1 /* 2 * This file is provided under a CDDLv1 license. When using or 3 * redistributing this file, you may do so under this license. 4 * In redistributing this file this license must be included 5 * and no other modification of this header file is permitted. 6 * 7 * CDDL LICENSE SUMMARY 8 * 9 * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. 10 * 11 * The contents of this file are subject to the terms of Version 12 * 1.0 of the Common Development and Distribution License (the "License"). 13 * 14 * You should have received a copy of the License with this software. 15 * You can obtain a copy of the License at 16 * http://www.opensolaris.org/os/licensing. 17 * See the License for the specific language governing permissions 18 * and limitations under the License. 19 */ 20 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * ********************************************************************** 28 * * 29 * Module Name: * 30 * e1000g_main.c * 31 * * 32 * Abstract: * 33 * This file contains the interface routines for the solaris OS. * 34 * It has all DDI entry point routines and GLD entry point routines. * 35 * * 36 * This file also contains routines that take care of initialization * 37 * uninit routine and interrupt routine. * 38 * * 39 * ********************************************************************** 40 */ 41 42 #include <sys/dlpi.h> 43 #include <sys/mac.h> 44 #include "e1000g_sw.h" 45 #include "e1000g_debug.h" 46 47 static char ident[] = "Intel PRO/1000 Ethernet"; 48 static char e1000g_string[] = "Intel(R) PRO/1000 Network Connection"; 49 static char e1000g_version[] = "Driver Ver. 5.3.8"; 50 51 /* 52 * Proto types for DDI entry points 53 */ 54 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t); 55 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t); 56 static int e1000g_quiesce(dev_info_t *); 57 58 /* 59 * init and intr routines prototype 60 */ 61 static int e1000g_resume(dev_info_t *); 62 static int e1000g_suspend(dev_info_t *); 63 static uint_t e1000g_intr_pciexpress(caddr_t); 64 static uint_t e1000g_intr(caddr_t); 65 static void e1000g_intr_work(struct e1000g *, uint32_t); 66 #pragma inline(e1000g_intr_work) 67 static int e1000g_init(struct e1000g *); 68 static int e1000g_start(struct e1000g *, boolean_t); 69 static void e1000g_stop(struct e1000g *, boolean_t); 70 static int e1000g_m_start(void *); 71 static void e1000g_m_stop(void *); 72 static int e1000g_m_promisc(void *, boolean_t); 73 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *); 74 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *); 75 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *); 76 static int e1000g_m_setprop(void *, const char *, mac_prop_id_t, 77 uint_t, const void *); 78 static int e1000g_m_getprop(void *, const char *, mac_prop_id_t, 79 uint_t, uint_t, void *, uint_t *); 80 static int e1000g_set_priv_prop(struct e1000g *, const char *, uint_t, 81 const void *); 82 static int e1000g_get_priv_prop(struct e1000g *, const char *, uint_t, 83 uint_t, void *, uint_t *); 84 static void e1000g_init_locks(struct e1000g *); 85 static void e1000g_destroy_locks(struct e1000g *); 86 static int e1000g_identify_hardware(struct e1000g *); 87 static int e1000g_regs_map(struct e1000g *); 88 static int e1000g_set_driver_params(struct e1000g *); 89 static void e1000g_set_bufsize(struct e1000g *); 90 static int e1000g_register_mac(struct e1000g *); 91 static boolean_t e1000g_rx_drain(struct e1000g *); 92 static boolean_t e1000g_tx_drain(struct e1000g *); 93 static void e1000g_init_unicst(struct e1000g *); 94 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, int); 95 static int e1000g_alloc_rx_data(struct e1000g *); 96 97 /* 98 * Local routines 99 */ 100 static boolean_t e1000g_reset_adapter(struct e1000g *); 101 static void e1000g_tx_clean(struct e1000g *); 102 static void e1000g_rx_clean(struct e1000g *); 103 static void e1000g_link_timer(void *); 104 static void e1000g_local_timer(void *); 105 static boolean_t e1000g_link_check(struct e1000g *); 106 static boolean_t e1000g_stall_check(struct e1000g *); 107 static void e1000g_smartspeed(struct e1000g *); 108 static void e1000g_get_conf(struct e1000g *); 109 static int e1000g_get_prop(struct e1000g *, char *, int, int, int); 110 static void enable_watchdog_timer(struct e1000g *); 111 static void disable_watchdog_timer(struct e1000g *); 112 static void start_watchdog_timer(struct e1000g *); 113 static void restart_watchdog_timer(struct e1000g *); 114 static void stop_watchdog_timer(struct e1000g *); 115 static void stop_link_timer(struct e1000g *); 116 static void stop_82547_timer(e1000g_tx_ring_t *); 117 static void e1000g_force_speed_duplex(struct e1000g *); 118 static void e1000g_get_max_frame_size(struct e1000g *); 119 static boolean_t is_valid_mac_addr(uint8_t *); 120 static void e1000g_unattach(dev_info_t *, struct e1000g *); 121 #ifdef E1000G_DEBUG 122 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *); 123 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *); 124 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *); 125 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *); 126 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *, 127 struct iocblk *, mblk_t *); 128 #endif 129 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *, 130 struct iocblk *, mblk_t *); 131 static boolean_t e1000g_check_loopback_support(struct e1000_hw *); 132 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t); 133 static void e1000g_set_internal_loopback(struct e1000g *); 134 static void e1000g_set_external_loopback_1000(struct e1000g *); 135 static void e1000g_set_external_loopback_100(struct e1000g *); 136 static void e1000g_set_external_loopback_10(struct e1000g *); 137 static int e1000g_add_intrs(struct e1000g *); 138 static int e1000g_intr_add(struct e1000g *, int); 139 static int e1000g_rem_intrs(struct e1000g *); 140 static int e1000g_enable_intrs(struct e1000g *); 141 static int e1000g_disable_intrs(struct e1000g *); 142 static boolean_t e1000g_link_up(struct e1000g *); 143 #ifdef __sparc 144 static boolean_t e1000g_find_mac_address(struct e1000g *); 145 #endif 146 static void e1000g_get_phy_state(struct e1000g *); 147 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, 148 const void *impl_data); 149 static void e1000g_fm_init(struct e1000g *Adapter); 150 static void e1000g_fm_fini(struct e1000g *Adapter); 151 static int e1000g_get_def_val(struct e1000g *, mac_prop_id_t, uint_t, void *); 152 static void e1000g_param_sync(struct e1000g *); 153 static void e1000g_get_driver_control(struct e1000_hw *); 154 static void e1000g_release_driver_control(struct e1000_hw *); 155 static void e1000g_restore_promisc(struct e1000g *Adapter); 156 157 mac_priv_prop_t e1000g_priv_props[] = { 158 {"_tx_bcopy_threshold", MAC_PROP_PERM_RW}, 159 {"_tx_interrupt_enable", MAC_PROP_PERM_RW}, 160 {"_tx_intr_delay", MAC_PROP_PERM_RW}, 161 {"_tx_intr_abs_delay", MAC_PROP_PERM_RW}, 162 {"_rx_bcopy_threshold", MAC_PROP_PERM_RW}, 163 {"_max_num_rcv_packets", MAC_PROP_PERM_RW}, 164 {"_rx_intr_delay", MAC_PROP_PERM_RW}, 165 {"_rx_intr_abs_delay", MAC_PROP_PERM_RW}, 166 {"_intr_throttling_rate", MAC_PROP_PERM_RW}, 167 {"_intr_adaptive", MAC_PROP_PERM_RW}, 168 {"_adv_pause_cap", MAC_PROP_PERM_READ}, 169 {"_adv_asym_pause_cap", MAC_PROP_PERM_READ}, 170 }; 171 #define E1000G_MAX_PRIV_PROPS \ 172 (sizeof (e1000g_priv_props)/sizeof (mac_priv_prop_t)) 173 174 175 static struct cb_ops cb_ws_ops = { 176 nulldev, /* cb_open */ 177 nulldev, /* cb_close */ 178 nodev, /* cb_strategy */ 179 nodev, /* cb_print */ 180 nodev, /* cb_dump */ 181 nodev, /* cb_read */ 182 nodev, /* cb_write */ 183 nodev, /* cb_ioctl */ 184 nodev, /* cb_devmap */ 185 nodev, /* cb_mmap */ 186 nodev, /* cb_segmap */ 187 nochpoll, /* cb_chpoll */ 188 ddi_prop_op, /* cb_prop_op */ 189 NULL, /* cb_stream */ 190 D_MP | D_HOTPLUG, /* cb_flag */ 191 CB_REV, /* cb_rev */ 192 nodev, /* cb_aread */ 193 nodev /* cb_awrite */ 194 }; 195 196 static struct dev_ops ws_ops = { 197 DEVO_REV, /* devo_rev */ 198 0, /* devo_refcnt */ 199 NULL, /* devo_getinfo */ 200 nulldev, /* devo_identify */ 201 nulldev, /* devo_probe */ 202 e1000g_attach, /* devo_attach */ 203 e1000g_detach, /* devo_detach */ 204 nodev, /* devo_reset */ 205 &cb_ws_ops, /* devo_cb_ops */ 206 NULL, /* devo_bus_ops */ 207 ddi_power, /* devo_power */ 208 e1000g_quiesce /* devo_quiesce */ 209 }; 210 211 static struct modldrv modldrv = { 212 &mod_driverops, /* Type of module. This one is a driver */ 213 ident, /* Discription string */ 214 &ws_ops, /* driver ops */ 215 }; 216 217 static struct modlinkage modlinkage = { 218 MODREV_1, &modldrv, NULL 219 }; 220 221 /* Access attributes for register mapping */ 222 static ddi_device_acc_attr_t e1000g_regs_acc_attr = { 223 DDI_DEVICE_ATTR_V0, 224 DDI_STRUCTURE_LE_ACC, 225 DDI_STRICTORDER_ACC, 226 DDI_FLAGERR_ACC 227 }; 228 229 #define E1000G_M_CALLBACK_FLAGS \ 230 (MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP) 231 232 static mac_callbacks_t e1000g_m_callbacks = { 233 E1000G_M_CALLBACK_FLAGS, 234 e1000g_m_stat, 235 e1000g_m_start, 236 e1000g_m_stop, 237 e1000g_m_promisc, 238 e1000g_m_multicst, 239 NULL, 240 e1000g_m_tx, 241 e1000g_m_ioctl, 242 e1000g_m_getcapab, 243 NULL, 244 NULL, 245 e1000g_m_setprop, 246 e1000g_m_getprop 247 }; 248 249 /* 250 * Global variables 251 */ 252 uint32_t e1000g_mblks_pending = 0; 253 /* 254 * Workaround for Dynamic Reconfiguration support, for x86 platform only. 255 * Here we maintain a private dev_info list if e1000g_force_detach is 256 * enabled. If we force the driver to detach while there are still some 257 * rx buffers retained in the upper layer, we have to keep a copy of the 258 * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data 259 * structure will be freed after the driver is detached. However when we 260 * finally free those rx buffers released by the upper layer, we need to 261 * refer to the dev_info to free the dma buffers. So we save a copy of 262 * the dev_info for this purpose. On x86 platform, we assume this copy 263 * of dev_info is always valid, but on SPARC platform, it could be invalid 264 * after the system board level DR operation. For this reason, the global 265 * variable e1000g_force_detach must be B_FALSE on SPARC platform. 266 */ 267 #ifdef __sparc 268 boolean_t e1000g_force_detach = B_FALSE; 269 #else 270 boolean_t e1000g_force_detach = B_TRUE; 271 #endif 272 private_devi_list_t *e1000g_private_devi_list = NULL; 273 274 /* 275 * The mutex e1000g_rx_detach_lock is defined to protect the processing of 276 * the private dev_info list, and to serialize the processing of rx buffer 277 * freeing and rx buffer recycling. 278 */ 279 kmutex_t e1000g_rx_detach_lock; 280 /* 281 * The rwlock e1000g_dma_type_lock is defined to protect the global flag 282 * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA". 283 * If there are many e1000g instances, the system may run out of DVMA 284 * resources during the initialization of the instances, then the flag will 285 * be changed to "USE_DMA". Because different e1000g instances are initialized 286 * in parallel, we need to use this lock to protect the flag. 287 */ 288 krwlock_t e1000g_dma_type_lock; 289 290 /* 291 * The 82546 chipset is a dual-port device, both the ports share one eeprom. 292 * Based on the information from Intel, the 82546 chipset has some hardware 293 * problem. When one port is being reset and the other port is trying to 294 * access the eeprom, it could cause system hang or panic. To workaround this 295 * hardware problem, we use a global mutex to prevent such operations from 296 * happening simultaneously on different instances. This workaround is applied 297 * to all the devices supported by this driver. 298 */ 299 kmutex_t e1000g_nvm_lock; 300 301 /* 302 * Loadable module configuration entry points for the driver 303 */ 304 305 /* 306 * _init - module initialization 307 */ 308 int 309 _init(void) 310 { 311 int status; 312 313 mac_init_ops(&ws_ops, WSNAME); 314 status = mod_install(&modlinkage); 315 if (status != DDI_SUCCESS) 316 mac_fini_ops(&ws_ops); 317 else { 318 mutex_init(&e1000g_rx_detach_lock, NULL, MUTEX_DRIVER, NULL); 319 rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL); 320 mutex_init(&e1000g_nvm_lock, NULL, MUTEX_DRIVER, NULL); 321 } 322 323 return (status); 324 } 325 326 /* 327 * _fini - module finalization 328 */ 329 int 330 _fini(void) 331 { 332 int status; 333 334 if (e1000g_mblks_pending != 0) 335 return (EBUSY); 336 337 status = mod_remove(&modlinkage); 338 if (status == DDI_SUCCESS) { 339 mac_fini_ops(&ws_ops); 340 341 if (e1000g_force_detach) { 342 private_devi_list_t *devi_node; 343 344 mutex_enter(&e1000g_rx_detach_lock); 345 while (e1000g_private_devi_list != NULL) { 346 devi_node = e1000g_private_devi_list; 347 e1000g_private_devi_list = 348 e1000g_private_devi_list->next; 349 350 kmem_free(devi_node->priv_dip, 351 sizeof (struct dev_info)); 352 kmem_free(devi_node, 353 sizeof (private_devi_list_t)); 354 } 355 mutex_exit(&e1000g_rx_detach_lock); 356 } 357 358 mutex_destroy(&e1000g_rx_detach_lock); 359 rw_destroy(&e1000g_dma_type_lock); 360 mutex_destroy(&e1000g_nvm_lock); 361 } 362 363 return (status); 364 } 365 366 /* 367 * _info - module information 368 */ 369 int 370 _info(struct modinfo *modinfop) 371 { 372 return (mod_info(&modlinkage, modinfop)); 373 } 374 375 /* 376 * e1000g_attach - driver attach 377 * 378 * This function is the device-specific initialization entry 379 * point. This entry point is required and must be written. 380 * The DDI_ATTACH command must be provided in the attach entry 381 * point. When attach() is called with cmd set to DDI_ATTACH, 382 * all normal kernel services (such as kmem_alloc(9F)) are 383 * available for use by the driver. 384 * 385 * The attach() function will be called once for each instance 386 * of the device on the system with cmd set to DDI_ATTACH. 387 * Until attach() succeeds, the only driver entry points which 388 * may be called are open(9E) and getinfo(9E). 389 */ 390 static int 391 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd) 392 { 393 struct e1000g *Adapter; 394 struct e1000_hw *hw; 395 struct e1000g_osdep *osdep; 396 int instance; 397 398 switch (cmd) { 399 default: 400 e1000g_log(NULL, CE_WARN, 401 "Unsupported command send to e1000g_attach... "); 402 return (DDI_FAILURE); 403 404 case DDI_RESUME: 405 return (e1000g_resume(devinfo)); 406 407 case DDI_ATTACH: 408 break; 409 } 410 411 /* 412 * get device instance number 413 */ 414 instance = ddi_get_instance(devinfo); 415 416 /* 417 * Allocate soft data structure 418 */ 419 Adapter = 420 (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP); 421 422 Adapter->dip = devinfo; 423 Adapter->instance = instance; 424 Adapter->tx_ring->adapter = Adapter; 425 Adapter->rx_ring->adapter = Adapter; 426 427 hw = &Adapter->shared; 428 osdep = &Adapter->osdep; 429 hw->back = osdep; 430 osdep->adapter = Adapter; 431 432 ddi_set_driver_private(devinfo, (caddr_t)Adapter); 433 434 /* 435 * Initialize for fma support 436 */ 437 Adapter->fm_capabilities = e1000g_get_prop(Adapter, "fm-capable", 438 0, 0x0f, 439 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE | 440 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE); 441 e1000g_fm_init(Adapter); 442 Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT; 443 444 /* 445 * PCI Configure 446 */ 447 if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) { 448 e1000g_log(Adapter, CE_WARN, "PCI configuration failed"); 449 goto attach_fail; 450 } 451 Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG; 452 453 /* 454 * Setup hardware 455 */ 456 if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) { 457 e1000g_log(Adapter, CE_WARN, "Identify hardware failed"); 458 goto attach_fail; 459 } 460 461 /* 462 * Map in the device registers. 463 */ 464 if (e1000g_regs_map(Adapter) != DDI_SUCCESS) { 465 e1000g_log(Adapter, CE_WARN, "Mapping registers failed"); 466 goto attach_fail; 467 } 468 Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP; 469 470 /* 471 * Initialize driver parameters 472 */ 473 if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) { 474 goto attach_fail; 475 } 476 Adapter->attach_progress |= ATTACH_PROGRESS_SETUP; 477 478 if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) { 479 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST); 480 goto attach_fail; 481 } 482 483 /* 484 * Initialize interrupts 485 */ 486 if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) { 487 e1000g_log(Adapter, CE_WARN, "Add interrupts failed"); 488 goto attach_fail; 489 } 490 Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR; 491 492 /* 493 * Initialize mutex's for this device. 494 * Do this before enabling the interrupt handler and 495 * register the softint to avoid the condition where 496 * interrupt handler can try using uninitialized mutex 497 */ 498 e1000g_init_locks(Adapter); 499 Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS; 500 501 /* 502 * Initialize Driver Counters 503 */ 504 if (e1000g_init_stats(Adapter) != DDI_SUCCESS) { 505 e1000g_log(Adapter, CE_WARN, "Init stats failed"); 506 goto attach_fail; 507 } 508 Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS; 509 510 /* 511 * Initialize chip hardware and software structures 512 */ 513 rw_enter(&Adapter->chip_lock, RW_WRITER); 514 if (e1000g_init(Adapter) != DDI_SUCCESS) { 515 rw_exit(&Adapter->chip_lock); 516 e1000g_log(Adapter, CE_WARN, "Adapter initialization failed"); 517 goto attach_fail; 518 } 519 rw_exit(&Adapter->chip_lock); 520 Adapter->attach_progress |= ATTACH_PROGRESS_INIT; 521 522 /* 523 * Register the driver to the MAC 524 */ 525 if (e1000g_register_mac(Adapter) != DDI_SUCCESS) { 526 e1000g_log(Adapter, CE_WARN, "Register MAC failed"); 527 goto attach_fail; 528 } 529 Adapter->attach_progress |= ATTACH_PROGRESS_MAC; 530 531 /* 532 * Now that mutex locks are initialized, and the chip is also 533 * initialized, enable interrupts. 534 */ 535 if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) { 536 e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed"); 537 goto attach_fail; 538 } 539 Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR; 540 541 /* 542 * If e1000g_force_detach is enabled, in global private dip list, 543 * we will create a new entry, which maintains the priv_dip for DR 544 * supports after driver detached. 545 */ 546 if (e1000g_force_detach) { 547 private_devi_list_t *devi_node; 548 549 Adapter->priv_dip = 550 kmem_zalloc(sizeof (struct dev_info), KM_SLEEP); 551 bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip), 552 sizeof (struct dev_info)); 553 554 devi_node = 555 kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP); 556 557 mutex_enter(&e1000g_rx_detach_lock); 558 devi_node->priv_dip = Adapter->priv_dip; 559 devi_node->flag = E1000G_PRIV_DEVI_ATTACH; 560 devi_node->pending_rx_count = 0; 561 562 Adapter->priv_devi_node = devi_node; 563 564 if (e1000g_private_devi_list == NULL) { 565 devi_node->prev = NULL; 566 devi_node->next = NULL; 567 e1000g_private_devi_list = devi_node; 568 } else { 569 devi_node->prev = NULL; 570 devi_node->next = e1000g_private_devi_list; 571 e1000g_private_devi_list->prev = devi_node; 572 e1000g_private_devi_list = devi_node; 573 } 574 mutex_exit(&e1000g_rx_detach_lock); 575 } 576 577 cmn_err(CE_CONT, "!%s, %s\n", e1000g_string, e1000g_version); 578 Adapter->e1000g_state = E1000G_INITIALIZED; 579 580 return (DDI_SUCCESS); 581 582 attach_fail: 583 e1000g_unattach(devinfo, Adapter); 584 return (DDI_FAILURE); 585 } 586 587 static int 588 e1000g_register_mac(struct e1000g *Adapter) 589 { 590 struct e1000_hw *hw = &Adapter->shared; 591 mac_register_t *mac; 592 int err; 593 594 if ((mac = mac_alloc(MAC_VERSION)) == NULL) 595 return (DDI_FAILURE); 596 597 mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER; 598 mac->m_driver = Adapter; 599 mac->m_dip = Adapter->dip; 600 mac->m_src_addr = hw->mac.addr; 601 mac->m_callbacks = &e1000g_m_callbacks; 602 mac->m_min_sdu = 0; 603 mac->m_max_sdu = Adapter->default_mtu; 604 mac->m_margin = VLAN_TAGSZ; 605 mac->m_priv_props = e1000g_priv_props; 606 mac->m_priv_prop_count = E1000G_MAX_PRIV_PROPS; 607 mac->m_v12n = MAC_VIRT_LEVEL1; 608 609 err = mac_register(mac, &Adapter->mh); 610 mac_free(mac); 611 612 return (err == 0 ? DDI_SUCCESS : DDI_FAILURE); 613 } 614 615 static int 616 e1000g_identify_hardware(struct e1000g *Adapter) 617 { 618 struct e1000_hw *hw = &Adapter->shared; 619 struct e1000g_osdep *osdep = &Adapter->osdep; 620 621 /* Get the device id */ 622 hw->vendor_id = 623 pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID); 624 hw->device_id = 625 pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID); 626 hw->revision_id = 627 pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID); 628 hw->subsystem_device_id = 629 pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID); 630 hw->subsystem_vendor_id = 631 pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID); 632 633 if (e1000_set_mac_type(hw) != E1000_SUCCESS) { 634 E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL, 635 "MAC type could not be set properly."); 636 return (DDI_FAILURE); 637 } 638 639 return (DDI_SUCCESS); 640 } 641 642 static int 643 e1000g_regs_map(struct e1000g *Adapter) 644 { 645 dev_info_t *devinfo = Adapter->dip; 646 struct e1000_hw *hw = &Adapter->shared; 647 struct e1000g_osdep *osdep = &Adapter->osdep; 648 off_t mem_size; 649 650 /* Get size of adapter register memory */ 651 if (ddi_dev_regsize(devinfo, ADAPTER_REG_SET, &mem_size) != 652 DDI_SUCCESS) { 653 E1000G_DEBUGLOG_0(Adapter, CE_WARN, 654 "ddi_dev_regsize for registers failed"); 655 return (DDI_FAILURE); 656 } 657 658 /* Map adapter register memory */ 659 if ((ddi_regs_map_setup(devinfo, ADAPTER_REG_SET, 660 (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr, 661 &osdep->reg_handle)) != DDI_SUCCESS) { 662 E1000G_DEBUGLOG_0(Adapter, CE_WARN, 663 "ddi_regs_map_setup for registers failed"); 664 goto regs_map_fail; 665 } 666 667 /* ICH needs to map flash memory */ 668 if (hw->mac.type == e1000_ich8lan || 669 hw->mac.type == e1000_ich9lan || 670 hw->mac.type == e1000_ich10lan) { 671 /* get flash size */ 672 if (ddi_dev_regsize(devinfo, ICH_FLASH_REG_SET, 673 &mem_size) != DDI_SUCCESS) { 674 E1000G_DEBUGLOG_0(Adapter, CE_WARN, 675 "ddi_dev_regsize for ICH flash failed"); 676 goto regs_map_fail; 677 } 678 679 /* map flash in */ 680 if (ddi_regs_map_setup(devinfo, ICH_FLASH_REG_SET, 681 (caddr_t *)&hw->flash_address, 0, 682 mem_size, &e1000g_regs_acc_attr, 683 &osdep->ich_flash_handle) != DDI_SUCCESS) { 684 E1000G_DEBUGLOG_0(Adapter, CE_WARN, 685 "ddi_regs_map_setup for ICH flash failed"); 686 goto regs_map_fail; 687 } 688 } 689 690 return (DDI_SUCCESS); 691 692 regs_map_fail: 693 if (osdep->reg_handle != NULL) 694 ddi_regs_map_free(&osdep->reg_handle); 695 696 return (DDI_FAILURE); 697 } 698 699 static int 700 e1000g_set_driver_params(struct e1000g *Adapter) 701 { 702 struct e1000_hw *hw; 703 uint32_t mem_bar, io_bar, bar64; 704 705 hw = &Adapter->shared; 706 707 /* Set MAC type and initialize hardware functions */ 708 if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) { 709 E1000G_DEBUGLOG_0(Adapter, CE_WARN, 710 "Could not setup hardware functions"); 711 return (DDI_FAILURE); 712 } 713 714 /* Get bus information */ 715 if (e1000_get_bus_info(hw) != E1000_SUCCESS) { 716 E1000G_DEBUGLOG_0(Adapter, CE_WARN, 717 "Could not get bus information"); 718 return (DDI_FAILURE); 719 } 720 721 /* get mem_base addr */ 722 mem_bar = pci_config_get32(Adapter->osdep.cfg_handle, PCI_CONF_BASE0); 723 bar64 = mem_bar & PCI_BASE_TYPE_ALL; 724 725 /* get io_base addr */ 726 if (hw->mac.type >= e1000_82544) { 727 if (bar64) { 728 /* IO BAR is different for 64 bit BAR mode */ 729 io_bar = pci_config_get32(Adapter->osdep.cfg_handle, 730 PCI_CONF_BASE4); 731 } else { 732 /* normal 32-bit BAR mode */ 733 io_bar = pci_config_get32(Adapter->osdep.cfg_handle, 734 PCI_CONF_BASE2); 735 } 736 hw->io_base = io_bar & PCI_BASE_IO_ADDR_M; 737 } else { 738 /* no I/O access for adapters prior to 82544 */ 739 hw->io_base = 0x0; 740 } 741 742 e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word); 743 744 hw->mac.autoneg_failed = B_TRUE; 745 746 /* Set the autoneg_wait_to_complete flag to B_FALSE */ 747 hw->phy.autoneg_wait_to_complete = B_FALSE; 748 749 /* Adaptive IFS related changes */ 750 hw->mac.adaptive_ifs = B_TRUE; 751 752 /* Enable phy init script for IGP phy of 82541/82547 */ 753 if ((hw->mac.type == e1000_82547) || 754 (hw->mac.type == e1000_82541) || 755 (hw->mac.type == e1000_82547_rev_2) || 756 (hw->mac.type == e1000_82541_rev_2)) 757 e1000_init_script_state_82541(hw, B_TRUE); 758 759 /* Enable the TTL workaround for 82541/82547 */ 760 e1000_set_ttl_workaround_state_82541(hw, B_TRUE); 761 762 #ifdef __sparc 763 Adapter->strip_crc = B_TRUE; 764 #else 765 Adapter->strip_crc = B_FALSE; 766 #endif 767 768 /* Get conf file properties */ 769 e1000g_get_conf(Adapter); 770 771 /* Get speed/duplex settings in conf file */ 772 hw->mac.forced_speed_duplex = ADVERTISE_100_FULL; 773 hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; 774 e1000g_force_speed_duplex(Adapter); 775 776 /* Get Jumbo Frames settings in conf file */ 777 e1000g_get_max_frame_size(Adapter); 778 779 /* Set Rx/Tx buffer size */ 780 e1000g_set_bufsize(Adapter); 781 782 /* Master Latency Timer */ 783 Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER; 784 785 /* copper options */ 786 if (hw->phy.media_type == e1000_media_type_copper) { 787 hw->phy.mdix = 0; /* AUTO_ALL_MODES */ 788 hw->phy.disable_polarity_correction = B_FALSE; 789 hw->phy.ms_type = e1000_ms_hw_default; /* E1000_MASTER_SLAVE */ 790 } 791 792 /* The initial link state should be "unknown" */ 793 Adapter->link_state = LINK_STATE_UNKNOWN; 794 795 /* Initialize rx parameters */ 796 Adapter->rx_intr_delay = DEFAULT_RX_INTR_DELAY; 797 Adapter->rx_intr_abs_delay = DEFAULT_RX_INTR_ABS_DELAY; 798 799 /* Initialize tx parameters */ 800 Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE; 801 Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD; 802 Adapter->tx_intr_delay = DEFAULT_TX_INTR_DELAY; 803 Adapter->tx_intr_abs_delay = DEFAULT_TX_INTR_ABS_DELAY; 804 805 /* Initialize rx parameters */ 806 Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD; 807 808 return (DDI_SUCCESS); 809 } 810 811 static void 812 e1000g_set_bufsize(struct e1000g *Adapter) 813 { 814 struct e1000_mac_info *mac = &Adapter->shared.mac; 815 uint64_t rx_size; 816 uint64_t tx_size; 817 818 dev_info_t *devinfo = Adapter->dip; 819 #ifdef __sparc 820 ulong_t iommu_pagesize; 821 #endif 822 /* Get the system page size */ 823 Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1); 824 825 #ifdef __sparc 826 iommu_pagesize = dvma_pagesize(devinfo); 827 if (iommu_pagesize != 0) { 828 if (Adapter->sys_page_sz == iommu_pagesize) { 829 if (iommu_pagesize > 0x4000) 830 Adapter->sys_page_sz = 0x4000; 831 } else { 832 if (Adapter->sys_page_sz > iommu_pagesize) 833 Adapter->sys_page_sz = iommu_pagesize; 834 } 835 } 836 if (Adapter->lso_enable) { 837 Adapter->dvma_page_num = E1000_LSO_MAXLEN / 838 Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM; 839 } else { 840 Adapter->dvma_page_num = Adapter->max_frame_size / 841 Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM; 842 } 843 ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM); 844 #endif 845 846 Adapter->min_frame_size = ETHERMIN + ETHERFCSL; 847 848 if (Adapter->mem_workaround_82546 && 849 ((mac->type == e1000_82545) || 850 (mac->type == e1000_82546) || 851 (mac->type == e1000_82546_rev_3))) { 852 Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K; 853 } else { 854 rx_size = Adapter->max_frame_size + E1000G_IPALIGNPRESERVEROOM; 855 if ((rx_size > FRAME_SIZE_UPTO_2K) && 856 (rx_size <= FRAME_SIZE_UPTO_4K)) 857 Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K; 858 else if ((rx_size > FRAME_SIZE_UPTO_4K) && 859 (rx_size <= FRAME_SIZE_UPTO_8K)) 860 Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K; 861 else if ((rx_size > FRAME_SIZE_UPTO_8K) && 862 (rx_size <= FRAME_SIZE_UPTO_16K)) 863 Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K; 864 else 865 Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K; 866 } 867 868 tx_size = Adapter->max_frame_size; 869 if ((tx_size > FRAME_SIZE_UPTO_2K) && (tx_size <= FRAME_SIZE_UPTO_4K)) 870 Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K; 871 else if ((tx_size > FRAME_SIZE_UPTO_4K) && 872 (tx_size <= FRAME_SIZE_UPTO_8K)) 873 Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K; 874 else if ((tx_size > FRAME_SIZE_UPTO_8K) && 875 (tx_size <= FRAME_SIZE_UPTO_16K)) 876 Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K; 877 else 878 Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K; 879 880 /* 881 * For Wiseman adapters we have an requirement of having receive 882 * buffers aligned at 256 byte boundary. Since Livengood does not 883 * require this and forcing it for all hardwares will have 884 * performance implications, I am making it applicable only for 885 * Wiseman and for Jumbo frames enabled mode as rest of the time, 886 * it is okay to have normal frames...but it does involve a 887 * potential risk where we may loose data if buffer is not 888 * aligned...so all wiseman boards to have 256 byte aligned 889 * buffers 890 */ 891 if (mac->type < e1000_82543) 892 Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE; 893 else 894 Adapter->rx_buf_align = 1; 895 } 896 897 /* 898 * e1000g_detach - driver detach 899 * 900 * The detach() function is the complement of the attach routine. 901 * If cmd is set to DDI_DETACH, detach() is used to remove the 902 * state associated with a given instance of a device node 903 * prior to the removal of that instance from the system. 904 * 905 * The detach() function will be called once for each instance 906 * of the device for which there has been a successful attach() 907 * once there are no longer any opens on the device. 908 * 909 * Interrupts routine are disabled, All memory allocated by this 910 * driver are freed. 911 */ 912 static int 913 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd) 914 { 915 struct e1000g *Adapter; 916 boolean_t rx_drain; 917 918 switch (cmd) { 919 default: 920 return (DDI_FAILURE); 921 922 case DDI_SUSPEND: 923 return (e1000g_suspend(devinfo)); 924 925 case DDI_DETACH: 926 break; 927 } 928 929 Adapter = (struct e1000g *)ddi_get_driver_private(devinfo); 930 if (Adapter == NULL) 931 return (DDI_FAILURE); 932 933 rx_drain = e1000g_rx_drain(Adapter); 934 if (!rx_drain && !e1000g_force_detach) 935 return (DDI_FAILURE); 936 937 if (mac_unregister(Adapter->mh) != 0) { 938 e1000g_log(Adapter, CE_WARN, "Unregister MAC failed"); 939 return (DDI_FAILURE); 940 } 941 Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC; 942 943 ASSERT(!(Adapter->e1000g_state & E1000G_STARTED)); 944 945 if (!e1000g_force_detach && !rx_drain) 946 return (DDI_FAILURE); 947 948 e1000g_unattach(devinfo, Adapter); 949 950 return (DDI_SUCCESS); 951 } 952 953 /* 954 * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance 955 */ 956 void 957 e1000g_free_priv_devi_node(private_devi_list_t *devi_node) 958 { 959 ASSERT(e1000g_private_devi_list != NULL); 960 ASSERT(devi_node != NULL); 961 962 if (devi_node->prev != NULL) 963 devi_node->prev->next = devi_node->next; 964 if (devi_node->next != NULL) 965 devi_node->next->prev = devi_node->prev; 966 if (devi_node == e1000g_private_devi_list) 967 e1000g_private_devi_list = devi_node->next; 968 969 kmem_free(devi_node->priv_dip, 970 sizeof (struct dev_info)); 971 kmem_free(devi_node, 972 sizeof (private_devi_list_t)); 973 } 974 975 static void 976 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter) 977 { 978 private_devi_list_t *devi_node; 979 int result; 980 981 if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) { 982 (void) e1000g_disable_intrs(Adapter); 983 } 984 985 if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) { 986 (void) mac_unregister(Adapter->mh); 987 } 988 989 if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) { 990 (void) e1000g_rem_intrs(Adapter); 991 } 992 993 if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) { 994 (void) ddi_prop_remove_all(devinfo); 995 } 996 997 if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) { 998 kstat_delete((kstat_t *)Adapter->e1000g_ksp); 999 } 1000 1001 if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) { 1002 stop_link_timer(Adapter); 1003 1004 mutex_enter(&e1000g_nvm_lock); 1005 result = e1000_reset_hw(&Adapter->shared); 1006 mutex_exit(&e1000g_nvm_lock); 1007 1008 if (result != E1000_SUCCESS) { 1009 e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE); 1010 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST); 1011 } 1012 } 1013 1014 if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) { 1015 if (Adapter->osdep.reg_handle != NULL) 1016 ddi_regs_map_free(&Adapter->osdep.reg_handle); 1017 if (Adapter->osdep.ich_flash_handle != NULL) 1018 ddi_regs_map_free(&Adapter->osdep.ich_flash_handle); 1019 } 1020 1021 if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) { 1022 if (Adapter->osdep.cfg_handle != NULL) 1023 pci_config_teardown(&Adapter->osdep.cfg_handle); 1024 } 1025 1026 if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) { 1027 e1000g_destroy_locks(Adapter); 1028 } 1029 1030 if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) { 1031 e1000g_fm_fini(Adapter); 1032 } 1033 1034 mutex_enter(&e1000g_rx_detach_lock); 1035 if (e1000g_force_detach && (Adapter->priv_devi_node != NULL)) { 1036 devi_node = Adapter->priv_devi_node; 1037 devi_node->flag |= E1000G_PRIV_DEVI_DETACH; 1038 1039 if (devi_node->pending_rx_count == 0) { 1040 e1000g_free_priv_devi_node(devi_node); 1041 } 1042 } 1043 mutex_exit(&e1000g_rx_detach_lock); 1044 1045 kmem_free((caddr_t)Adapter, sizeof (struct e1000g)); 1046 1047 /* 1048 * Another hotplug spec requirement, 1049 * run ddi_set_driver_private(devinfo, null); 1050 */ 1051 ddi_set_driver_private(devinfo, NULL); 1052 } 1053 1054 static void 1055 e1000g_init_locks(struct e1000g *Adapter) 1056 { 1057 e1000g_tx_ring_t *tx_ring; 1058 e1000g_rx_ring_t *rx_ring; 1059 1060 rw_init(&Adapter->chip_lock, NULL, 1061 RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri)); 1062 mutex_init(&Adapter->link_lock, NULL, 1063 MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri)); 1064 mutex_init(&Adapter->watchdog_lock, NULL, 1065 MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri)); 1066 1067 tx_ring = Adapter->tx_ring; 1068 1069 mutex_init(&tx_ring->tx_lock, NULL, 1070 MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri)); 1071 mutex_init(&tx_ring->usedlist_lock, NULL, 1072 MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri)); 1073 mutex_init(&tx_ring->freelist_lock, NULL, 1074 MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri)); 1075 1076 rx_ring = Adapter->rx_ring; 1077 1078 mutex_init(&rx_ring->rx_lock, NULL, 1079 MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri)); 1080 } 1081 1082 static void 1083 e1000g_destroy_locks(struct e1000g *Adapter) 1084 { 1085 e1000g_tx_ring_t *tx_ring; 1086 e1000g_rx_ring_t *rx_ring; 1087 1088 tx_ring = Adapter->tx_ring; 1089 mutex_destroy(&tx_ring->tx_lock); 1090 mutex_destroy(&tx_ring->usedlist_lock); 1091 mutex_destroy(&tx_ring->freelist_lock); 1092 1093 rx_ring = Adapter->rx_ring; 1094 mutex_destroy(&rx_ring->rx_lock); 1095 1096 mutex_destroy(&Adapter->link_lock); 1097 mutex_destroy(&Adapter->watchdog_lock); 1098 rw_destroy(&Adapter->chip_lock); 1099 } 1100 1101 static int 1102 e1000g_resume(dev_info_t *devinfo) 1103 { 1104 struct e1000g *Adapter; 1105 1106 Adapter = (struct e1000g *)ddi_get_driver_private(devinfo); 1107 if (Adapter == NULL) 1108 e1000g_log(Adapter, CE_PANIC, 1109 "Instance pointer is null\n"); 1110 1111 if (Adapter->dip != devinfo) 1112 e1000g_log(Adapter, CE_PANIC, 1113 "Devinfo is not the same as saved devinfo\n"); 1114 1115 rw_enter(&Adapter->chip_lock, RW_WRITER); 1116 1117 if (Adapter->e1000g_state & E1000G_STARTED) { 1118 if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) { 1119 rw_exit(&Adapter->chip_lock); 1120 /* 1121 * We note the failure, but return success, as the 1122 * system is still usable without this controller. 1123 */ 1124 e1000g_log(Adapter, CE_WARN, 1125 "e1000g_resume: failed to restart controller\n"); 1126 return (DDI_SUCCESS); 1127 } 1128 /* Enable and start the watchdog timer */ 1129 enable_watchdog_timer(Adapter); 1130 } 1131 1132 Adapter->e1000g_state &= ~E1000G_SUSPENDED; 1133 1134 rw_exit(&Adapter->chip_lock); 1135 1136 return (DDI_SUCCESS); 1137 } 1138 1139 static int 1140 e1000g_suspend(dev_info_t *devinfo) 1141 { 1142 struct e1000g *Adapter; 1143 1144 Adapter = (struct e1000g *)ddi_get_driver_private(devinfo); 1145 if (Adapter == NULL) 1146 return (DDI_FAILURE); 1147 1148 rw_enter(&Adapter->chip_lock, RW_WRITER); 1149 1150 Adapter->e1000g_state |= E1000G_SUSPENDED; 1151 1152 /* if the port isn't plumbed, we can simply return */ 1153 if (!(Adapter->e1000g_state & E1000G_STARTED)) { 1154 rw_exit(&Adapter->chip_lock); 1155 return (DDI_SUCCESS); 1156 } 1157 1158 e1000g_stop(Adapter, B_FALSE); 1159 1160 rw_exit(&Adapter->chip_lock); 1161 1162 /* Disable and stop all the timers */ 1163 disable_watchdog_timer(Adapter); 1164 stop_link_timer(Adapter); 1165 stop_82547_timer(Adapter->tx_ring); 1166 1167 return (DDI_SUCCESS); 1168 } 1169 1170 static int 1171 e1000g_init(struct e1000g *Adapter) 1172 { 1173 uint32_t pba; 1174 uint32_t high_water; 1175 struct e1000_hw *hw; 1176 clock_t link_timeout; 1177 int result; 1178 1179 hw = &Adapter->shared; 1180 1181 /* 1182 * reset to put the hardware in a known state 1183 * before we try to do anything with the eeprom 1184 */ 1185 mutex_enter(&e1000g_nvm_lock); 1186 result = e1000_reset_hw(hw); 1187 mutex_exit(&e1000g_nvm_lock); 1188 1189 if (result != E1000_SUCCESS) { 1190 e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE); 1191 goto init_fail; 1192 } 1193 1194 mutex_enter(&e1000g_nvm_lock); 1195 result = e1000_validate_nvm_checksum(hw); 1196 if (result < E1000_SUCCESS) { 1197 /* 1198 * Some PCI-E parts fail the first check due to 1199 * the link being in sleep state. Call it again, 1200 * if it fails a second time its a real issue. 1201 */ 1202 result = e1000_validate_nvm_checksum(hw); 1203 } 1204 mutex_exit(&e1000g_nvm_lock); 1205 1206 if (result < E1000_SUCCESS) { 1207 e1000g_log(Adapter, CE_WARN, 1208 "Invalid NVM checksum. Please contact " 1209 "the vendor to update the NVM."); 1210 e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE); 1211 goto init_fail; 1212 } 1213 1214 result = 0; 1215 #ifdef __sparc 1216 /* 1217 * First, we try to get the local ethernet address from OBP. If 1218 * failed, then we get it from the EEPROM of NIC card. 1219 */ 1220 result = e1000g_find_mac_address(Adapter); 1221 #endif 1222 /* Get the local ethernet address. */ 1223 if (!result) { 1224 mutex_enter(&e1000g_nvm_lock); 1225 result = e1000_read_mac_addr(hw); 1226 mutex_exit(&e1000g_nvm_lock); 1227 } 1228 1229 if (result < E1000_SUCCESS) { 1230 e1000g_log(Adapter, CE_WARN, "Read mac addr failed"); 1231 e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE); 1232 goto init_fail; 1233 } 1234 1235 /* check for valid mac address */ 1236 if (!is_valid_mac_addr(hw->mac.addr)) { 1237 e1000g_log(Adapter, CE_WARN, "Invalid mac addr"); 1238 e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE); 1239 goto init_fail; 1240 } 1241 1242 /* Set LAA state for 82571 chipset */ 1243 e1000_set_laa_state_82571(hw, B_TRUE); 1244 1245 /* Master Latency Timer implementation */ 1246 if (Adapter->master_latency_timer) { 1247 pci_config_put8(Adapter->osdep.cfg_handle, 1248 PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer); 1249 } 1250 1251 if (hw->mac.type < e1000_82547) { 1252 /* 1253 * Total FIFO is 64K 1254 */ 1255 if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K) 1256 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */ 1257 else 1258 pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */ 1259 } else if ((hw->mac.type == e1000_82571) || 1260 (hw->mac.type == e1000_82572) || 1261 (hw->mac.type == e1000_80003es2lan)) { 1262 /* 1263 * Total FIFO is 48K 1264 */ 1265 if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K) 1266 pba = E1000_PBA_30K; /* 30K for Rx, 18K for Tx */ 1267 else 1268 pba = E1000_PBA_38K; /* 38K for Rx, 10K for Tx */ 1269 } else if (hw->mac.type == e1000_82573) { 1270 pba = E1000_PBA_20K; /* 20K for Rx, 12K for Tx */ 1271 } else if (hw->mac.type == e1000_82574) { 1272 /* Keep adapter default: 20K for Rx, 20K for Tx */ 1273 pba = E1000_READ_REG(hw, E1000_PBA); 1274 } else if (hw->mac.type == e1000_ich8lan) { 1275 pba = E1000_PBA_8K; /* 8K for Rx, 12K for Tx */ 1276 } else if (hw->mac.type == e1000_ich9lan) { 1277 pba = E1000_PBA_10K; 1278 } else if (hw->mac.type == e1000_ich10lan) { 1279 pba = E1000_PBA_10K; 1280 } else { 1281 /* 1282 * Total FIFO is 40K 1283 */ 1284 if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K) 1285 pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */ 1286 else 1287 pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */ 1288 } 1289 E1000_WRITE_REG(hw, E1000_PBA, pba); 1290 1291 /* 1292 * These parameters set thresholds for the adapter's generation(Tx) 1293 * and response(Rx) to Ethernet PAUSE frames. These are just threshold 1294 * settings. Flow control is enabled or disabled in the configuration 1295 * file. 1296 * High-water mark is set down from the top of the rx fifo (not 1297 * sensitive to max_frame_size) and low-water is set just below 1298 * high-water mark. 1299 * The high water mark must be low enough to fit one full frame above 1300 * it in the rx FIFO. Should be the lower of: 1301 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early 1302 * receive size (assuming ERT set to E1000_ERT_2048), or the full 1303 * Rx FIFO size minus one full frame. 1304 */ 1305 high_water = min(((pba << 10) * 9 / 10), 1306 ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574 || 1307 hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_ich10lan) ? 1308 ((pba << 10) - (E1000_ERT_2048 << 3)) : 1309 ((pba << 10) - Adapter->max_frame_size))); 1310 1311 hw->fc.high_water = high_water & 0xFFF8; 1312 hw->fc.low_water = hw->fc.high_water - 8; 1313 1314 if (hw->mac.type == e1000_80003es2lan) 1315 hw->fc.pause_time = 0xFFFF; 1316 else 1317 hw->fc.pause_time = E1000_FC_PAUSE_TIME; 1318 hw->fc.send_xon = B_TRUE; 1319 1320 /* 1321 * Reset the adapter hardware the second time. 1322 */ 1323 mutex_enter(&e1000g_nvm_lock); 1324 result = e1000_reset_hw(hw); 1325 mutex_exit(&e1000g_nvm_lock); 1326 1327 if (result != E1000_SUCCESS) { 1328 e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE); 1329 goto init_fail; 1330 } 1331 1332 /* disable wakeup control by default */ 1333 if (hw->mac.type >= e1000_82544) 1334 E1000_WRITE_REG(hw, E1000_WUC, 0); 1335 1336 /* 1337 * MWI should be disabled on 82546. 1338 */ 1339 if (hw->mac.type == e1000_82546) 1340 e1000_pci_clear_mwi(hw); 1341 else 1342 e1000_pci_set_mwi(hw); 1343 1344 /* 1345 * Configure/Initialize hardware 1346 */ 1347 mutex_enter(&e1000g_nvm_lock); 1348 result = e1000_init_hw(hw); 1349 mutex_exit(&e1000g_nvm_lock); 1350 1351 if (result < E1000_SUCCESS) { 1352 e1000g_log(Adapter, CE_WARN, "Initialize hw failed"); 1353 e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE); 1354 goto init_fail; 1355 } 1356 1357 /* 1358 * Restore LED settings to the default from EEPROM 1359 * to meet the standard for Sun platforms. 1360 */ 1361 if ((hw->mac.type != e1000_82541) && 1362 (hw->mac.type != e1000_82541_rev_2) && 1363 (hw->mac.type != e1000_82547) && 1364 (hw->mac.type != e1000_82547_rev_2)) 1365 (void) e1000_cleanup_led(hw); 1366 1367 /* Disable Smart Power Down */ 1368 phy_spd_state(hw, B_FALSE); 1369 1370 /* Make sure driver has control */ 1371 e1000g_get_driver_control(hw); 1372 1373 /* 1374 * Initialize unicast addresses. 1375 */ 1376 e1000g_init_unicst(Adapter); 1377 1378 /* 1379 * Setup and initialize the mctable structures. After this routine 1380 * completes Multicast table will be set 1381 */ 1382 e1000g_setup_multicast(Adapter); 1383 msec_delay(5); 1384 1385 /* 1386 * Implement Adaptive IFS 1387 */ 1388 e1000_reset_adaptive(hw); 1389 1390 /* Setup Interrupt Throttling Register */ 1391 if (hw->mac.type >= e1000_82540) { 1392 E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate); 1393 } else 1394 Adapter->intr_adaptive = B_FALSE; 1395 1396 /* Start the timer for link setup */ 1397 if (hw->mac.autoneg) 1398 link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000); 1399 else 1400 link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000); 1401 1402 mutex_enter(&Adapter->link_lock); 1403 if (hw->phy.autoneg_wait_to_complete) { 1404 Adapter->link_complete = B_TRUE; 1405 } else { 1406 Adapter->link_complete = B_FALSE; 1407 Adapter->link_tid = timeout(e1000g_link_timer, 1408 (void *)Adapter, link_timeout); 1409 } 1410 mutex_exit(&Adapter->link_lock); 1411 1412 /* Enable PCI-Ex master */ 1413 if (hw->bus.type == e1000_bus_type_pci_express) { 1414 e1000_enable_pciex_master(hw); 1415 } 1416 1417 /* Save the state of the phy */ 1418 e1000g_get_phy_state(Adapter); 1419 1420 e1000g_param_sync(Adapter); 1421 1422 Adapter->init_count++; 1423 1424 if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) { 1425 goto init_fail; 1426 } 1427 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) { 1428 goto init_fail; 1429 } 1430 1431 Adapter->poll_mode = e1000g_poll_mode; 1432 1433 return (DDI_SUCCESS); 1434 1435 init_fail: 1436 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST); 1437 return (DDI_FAILURE); 1438 } 1439 1440 static int 1441 e1000g_alloc_rx_data(struct e1000g *Adapter) 1442 { 1443 e1000g_rx_ring_t *rx_ring; 1444 e1000g_rx_data_t *rx_data; 1445 1446 rx_ring = Adapter->rx_ring; 1447 1448 rx_data = kmem_zalloc(sizeof (e1000g_rx_data_t), KM_NOSLEEP); 1449 1450 if (rx_data == NULL) 1451 return (DDI_FAILURE); 1452 1453 rx_data->priv_devi_node = Adapter->priv_devi_node; 1454 rx_data->rx_ring = rx_ring; 1455 1456 mutex_init(&rx_data->freelist_lock, NULL, 1457 MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri)); 1458 mutex_init(&rx_data->recycle_lock, NULL, 1459 MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri)); 1460 1461 rx_ring->rx_data = rx_data; 1462 1463 return (DDI_SUCCESS); 1464 } 1465 1466 void 1467 e1000g_free_rx_pending_buffers(e1000g_rx_data_t *rx_data) 1468 { 1469 rx_sw_packet_t *packet, *next_packet; 1470 1471 if (rx_data == NULL) 1472 return; 1473 1474 packet = rx_data->packet_area; 1475 while (packet != NULL) { 1476 next_packet = packet->next; 1477 e1000g_free_rx_sw_packet(packet, B_TRUE); 1478 packet = next_packet; 1479 } 1480 rx_data->packet_area = NULL; 1481 } 1482 1483 void 1484 e1000g_free_rx_data(e1000g_rx_data_t *rx_data) 1485 { 1486 if (rx_data == NULL) 1487 return; 1488 1489 mutex_destroy(&rx_data->freelist_lock); 1490 mutex_destroy(&rx_data->recycle_lock); 1491 1492 kmem_free(rx_data, sizeof (e1000g_rx_data_t)); 1493 } 1494 1495 /* 1496 * Check if the link is up 1497 */ 1498 static boolean_t 1499 e1000g_link_up(struct e1000g *Adapter) 1500 { 1501 struct e1000_hw *hw; 1502 boolean_t link_up; 1503 1504 hw = &Adapter->shared; 1505 1506 (void) e1000_check_for_link(hw); 1507 1508 if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU) || 1509 ((!hw->mac.get_link_status) && (hw->mac.type == e1000_82543)) || 1510 ((hw->phy.media_type == e1000_media_type_internal_serdes) && 1511 (hw->mac.serdes_has_link))) { 1512 link_up = B_TRUE; 1513 } else { 1514 link_up = B_FALSE; 1515 } 1516 1517 return (link_up); 1518 } 1519 1520 static void 1521 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp) 1522 { 1523 struct iocblk *iocp; 1524 struct e1000g *e1000gp; 1525 enum ioc_reply status; 1526 1527 iocp = (struct iocblk *)(uintptr_t)mp->b_rptr; 1528 iocp->ioc_error = 0; 1529 e1000gp = (struct e1000g *)arg; 1530 1531 ASSERT(e1000gp); 1532 if (e1000gp == NULL) { 1533 miocnak(q, mp, 0, EINVAL); 1534 return; 1535 } 1536 1537 rw_enter(&e1000gp->chip_lock, RW_READER); 1538 if (e1000gp->e1000g_state & E1000G_SUSPENDED) { 1539 rw_exit(&e1000gp->chip_lock); 1540 miocnak(q, mp, 0, EINVAL); 1541 return; 1542 } 1543 rw_exit(&e1000gp->chip_lock); 1544 1545 switch (iocp->ioc_cmd) { 1546 1547 case LB_GET_INFO_SIZE: 1548 case LB_GET_INFO: 1549 case LB_GET_MODE: 1550 case LB_SET_MODE: 1551 status = e1000g_loopback_ioctl(e1000gp, iocp, mp); 1552 break; 1553 1554 1555 #ifdef E1000G_DEBUG 1556 case E1000G_IOC_REG_PEEK: 1557 case E1000G_IOC_REG_POKE: 1558 status = e1000g_pp_ioctl(e1000gp, iocp, mp); 1559 break; 1560 case E1000G_IOC_CHIP_RESET: 1561 e1000gp->reset_count++; 1562 if (e1000g_reset_adapter(e1000gp)) 1563 status = IOC_ACK; 1564 else 1565 status = IOC_INVAL; 1566 break; 1567 #endif 1568 default: 1569 status = IOC_INVAL; 1570 break; 1571 } 1572 1573 /* 1574 * Decide how to reply 1575 */ 1576 switch (status) { 1577 default: 1578 case IOC_INVAL: 1579 /* 1580 * Error, reply with a NAK and EINVAL or the specified error 1581 */ 1582 miocnak(q, mp, 0, iocp->ioc_error == 0 ? 1583 EINVAL : iocp->ioc_error); 1584 break; 1585 1586 case IOC_DONE: 1587 /* 1588 * OK, reply already sent 1589 */ 1590 break; 1591 1592 case IOC_ACK: 1593 /* 1594 * OK, reply with an ACK 1595 */ 1596 miocack(q, mp, 0, 0); 1597 break; 1598 1599 case IOC_REPLY: 1600 /* 1601 * OK, send prepared reply as ACK or NAK 1602 */ 1603 mp->b_datap->db_type = iocp->ioc_error == 0 ? 1604 M_IOCACK : M_IOCNAK; 1605 qreply(q, mp); 1606 break; 1607 } 1608 } 1609 1610 /* 1611 * The default value of e1000g_poll_mode == 0 assumes that the NIC is 1612 * capable of supporting only one interrupt and we shouldn't disable 1613 * the physical interrupt. In this case we let the interrupt come and 1614 * we queue the packets in the rx ring itself in case we are in polling 1615 * mode (better latency but slightly lower performance and a very 1616 * high intrrupt count in mpstat which is harmless). 1617 * 1618 * e1000g_poll_mode == 1 assumes that we have per Rx ring interrupt 1619 * which can be disabled in poll mode. This gives better overall 1620 * throughput (compared to the mode above), shows very low interrupt 1621 * count but has slightly higher latency since we pick the packets when 1622 * the poll thread does polling. 1623 * 1624 * Currently, this flag should be enabled only while doing performance 1625 * measurement or when it can be guaranteed that entire NIC going 1626 * in poll mode will not harm any traffic like cluster heartbeat etc. 1627 */ 1628 int e1000g_poll_mode = 0; 1629 1630 /* 1631 * Called from the upper layers when driver is in polling mode to 1632 * pick up any queued packets. Care should be taken to not block 1633 * this thread. 1634 */ 1635 static mblk_t *e1000g_poll_ring(void *arg, int bytes_to_pickup) 1636 { 1637 e1000g_rx_ring_t *rx_ring = (e1000g_rx_ring_t *)arg; 1638 mblk_t *mp = NULL; 1639 mblk_t *tail; 1640 struct e1000g *adapter; 1641 1642 adapter = rx_ring->adapter; 1643 1644 rw_enter(&adapter->chip_lock, RW_READER); 1645 1646 if (adapter->e1000g_state & E1000G_SUSPENDED) { 1647 rw_exit(&adapter->chip_lock); 1648 return (NULL); 1649 } 1650 1651 mutex_enter(&rx_ring->rx_lock); 1652 mp = e1000g_receive(rx_ring, &tail, bytes_to_pickup); 1653 mutex_exit(&rx_ring->rx_lock); 1654 rw_exit(&adapter->chip_lock); 1655 return (mp); 1656 } 1657 1658 static int 1659 e1000g_m_start(void *arg) 1660 { 1661 struct e1000g *Adapter = (struct e1000g *)arg; 1662 1663 rw_enter(&Adapter->chip_lock, RW_WRITER); 1664 1665 if (Adapter->e1000g_state & E1000G_SUSPENDED) { 1666 rw_exit(&Adapter->chip_lock); 1667 return (ECANCELED); 1668 } 1669 1670 if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) { 1671 rw_exit(&Adapter->chip_lock); 1672 return (ENOTACTIVE); 1673 } 1674 1675 Adapter->e1000g_state |= E1000G_STARTED; 1676 1677 rw_exit(&Adapter->chip_lock); 1678 1679 /* Enable and start the watchdog timer */ 1680 enable_watchdog_timer(Adapter); 1681 1682 return (0); 1683 } 1684 1685 static int 1686 e1000g_start(struct e1000g *Adapter, boolean_t global) 1687 { 1688 e1000g_rx_data_t *rx_data; 1689 1690 if (global) { 1691 if (e1000g_alloc_rx_data(Adapter) != DDI_SUCCESS) { 1692 e1000g_log(Adapter, CE_WARN, "Allocate rx data failed"); 1693 goto start_fail; 1694 } 1695 1696 /* Allocate dma resources for descriptors and buffers */ 1697 if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) { 1698 e1000g_log(Adapter, CE_WARN, 1699 "Alloc DMA resources failed"); 1700 goto start_fail; 1701 } 1702 Adapter->rx_buffer_setup = B_FALSE; 1703 } 1704 1705 if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) { 1706 if (e1000g_init(Adapter) != DDI_SUCCESS) { 1707 e1000g_log(Adapter, CE_WARN, 1708 "Adapter initialization failed"); 1709 goto start_fail; 1710 } 1711 } 1712 1713 /* Setup and initialize the transmit structures */ 1714 e1000g_tx_setup(Adapter); 1715 msec_delay(5); 1716 1717 /* Setup and initialize the receive structures */ 1718 e1000g_rx_setup(Adapter); 1719 msec_delay(5); 1720 1721 /* Restore the e1000g promiscuous mode */ 1722 e1000g_restore_promisc(Adapter); 1723 1724 e1000g_mask_interrupt(Adapter); 1725 1726 Adapter->attach_progress |= ATTACH_PROGRESS_INIT; 1727 1728 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) { 1729 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST); 1730 goto start_fail; 1731 } 1732 1733 return (DDI_SUCCESS); 1734 1735 start_fail: 1736 rx_data = Adapter->rx_ring->rx_data; 1737 1738 if (global) { 1739 e1000g_release_dma_resources(Adapter); 1740 e1000g_free_rx_pending_buffers(rx_data); 1741 e1000g_free_rx_data(rx_data); 1742 } 1743 1744 mutex_enter(&e1000g_nvm_lock); 1745 (void) e1000_reset_hw(&Adapter->shared); 1746 mutex_exit(&e1000g_nvm_lock); 1747 1748 return (DDI_FAILURE); 1749 } 1750 1751 static void 1752 e1000g_m_stop(void *arg) 1753 { 1754 struct e1000g *Adapter = (struct e1000g *)arg; 1755 1756 /* Drain tx sessions */ 1757 (void) e1000g_tx_drain(Adapter); 1758 1759 rw_enter(&Adapter->chip_lock, RW_WRITER); 1760 1761 if (Adapter->e1000g_state & E1000G_SUSPENDED) { 1762 rw_exit(&Adapter->chip_lock); 1763 return; 1764 } 1765 Adapter->e1000g_state &= ~E1000G_STARTED; 1766 e1000g_stop(Adapter, B_TRUE); 1767 1768 rw_exit(&Adapter->chip_lock); 1769 1770 /* Disable and stop all the timers */ 1771 disable_watchdog_timer(Adapter); 1772 stop_link_timer(Adapter); 1773 stop_82547_timer(Adapter->tx_ring); 1774 } 1775 1776 static void 1777 e1000g_stop(struct e1000g *Adapter, boolean_t global) 1778 { 1779 private_devi_list_t *devi_node; 1780 e1000g_rx_data_t *rx_data; 1781 int result; 1782 1783 Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT; 1784 1785 /* Stop the chip and release pending resources */ 1786 1787 /* Tell firmware driver is no longer in control */ 1788 e1000g_release_driver_control(&Adapter->shared); 1789 1790 e1000g_clear_all_interrupts(Adapter); 1791 1792 mutex_enter(&e1000g_nvm_lock); 1793 result = e1000_reset_hw(&Adapter->shared); 1794 mutex_exit(&e1000g_nvm_lock); 1795 1796 if (result != E1000_SUCCESS) { 1797 e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE); 1798 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST); 1799 } 1800 1801 /* Release resources still held by the TX descriptors */ 1802 e1000g_tx_clean(Adapter); 1803 1804 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) 1805 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST); 1806 1807 /* Clean the pending rx jumbo packet fragment */ 1808 e1000g_rx_clean(Adapter); 1809 1810 if (global) { 1811 e1000g_release_dma_resources(Adapter); 1812 1813 mutex_enter(&e1000g_rx_detach_lock); 1814 rx_data = Adapter->rx_ring->rx_data; 1815 rx_data->flag |= E1000G_RX_STOPPED; 1816 1817 if (rx_data->pending_count == 0) { 1818 e1000g_free_rx_pending_buffers(rx_data); 1819 e1000g_free_rx_data(rx_data); 1820 } else { 1821 devi_node = rx_data->priv_devi_node; 1822 if (devi_node != NULL) 1823 atomic_inc_32(&devi_node->pending_rx_count); 1824 else 1825 atomic_inc_32(&Adapter->pending_rx_count); 1826 } 1827 mutex_exit(&e1000g_rx_detach_lock); 1828 } 1829 1830 if (Adapter->link_state == LINK_STATE_UP) { 1831 Adapter->link_state = LINK_STATE_UNKNOWN; 1832 mac_link_update(Adapter->mh, Adapter->link_state); 1833 } 1834 } 1835 1836 static void 1837 e1000g_rx_clean(struct e1000g *Adapter) 1838 { 1839 e1000g_rx_data_t *rx_data = Adapter->rx_ring->rx_data; 1840 1841 if (rx_data == NULL) 1842 return; 1843 1844 if (rx_data->rx_mblk != NULL) { 1845 freemsg(rx_data->rx_mblk); 1846 rx_data->rx_mblk = NULL; 1847 rx_data->rx_mblk_tail = NULL; 1848 rx_data->rx_mblk_len = 0; 1849 } 1850 } 1851 1852 static void 1853 e1000g_tx_clean(struct e1000g *Adapter) 1854 { 1855 e1000g_tx_ring_t *tx_ring; 1856 p_tx_sw_packet_t packet; 1857 mblk_t *mp; 1858 mblk_t *nmp; 1859 uint32_t packet_count; 1860 1861 tx_ring = Adapter->tx_ring; 1862 1863 /* 1864 * Here we don't need to protect the lists using 1865 * the usedlist_lock and freelist_lock, for they 1866 * have been protected by the chip_lock. 1867 */ 1868 mp = NULL; 1869 nmp = NULL; 1870 packet_count = 0; 1871 packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list); 1872 while (packet != NULL) { 1873 if (packet->mp != NULL) { 1874 /* Assemble the message chain */ 1875 if (mp == NULL) { 1876 mp = packet->mp; 1877 nmp = packet->mp; 1878 } else { 1879 nmp->b_next = packet->mp; 1880 nmp = packet->mp; 1881 } 1882 /* Disconnect the message from the sw packet */ 1883 packet->mp = NULL; 1884 } 1885 1886 e1000g_free_tx_swpkt(packet); 1887 packet_count++; 1888 1889 packet = (p_tx_sw_packet_t) 1890 QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link); 1891 } 1892 1893 if (mp != NULL) 1894 freemsgchain(mp); 1895 1896 if (packet_count > 0) { 1897 QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list); 1898 QUEUE_INIT_LIST(&tx_ring->used_list); 1899 1900 /* Setup TX descriptor pointers */ 1901 tx_ring->tbd_next = tx_ring->tbd_first; 1902 tx_ring->tbd_oldest = tx_ring->tbd_first; 1903 1904 /* Setup our HW Tx Head & Tail descriptor pointers */ 1905 E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0); 1906 E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0); 1907 } 1908 } 1909 1910 static boolean_t 1911 e1000g_tx_drain(struct e1000g *Adapter) 1912 { 1913 int i; 1914 boolean_t done; 1915 e1000g_tx_ring_t *tx_ring; 1916 1917 tx_ring = Adapter->tx_ring; 1918 1919 /* Allow up to 'wsdraintime' for pending xmit's to complete. */ 1920 for (i = 0; i < TX_DRAIN_TIME; i++) { 1921 mutex_enter(&tx_ring->usedlist_lock); 1922 done = IS_QUEUE_EMPTY(&tx_ring->used_list); 1923 mutex_exit(&tx_ring->usedlist_lock); 1924 1925 if (done) 1926 break; 1927 1928 msec_delay(1); 1929 } 1930 1931 return (done); 1932 } 1933 1934 static boolean_t 1935 e1000g_rx_drain(struct e1000g *Adapter) 1936 { 1937 int i; 1938 boolean_t done; 1939 1940 /* 1941 * Allow up to RX_DRAIN_TIME for pending received packets to complete. 1942 */ 1943 for (i = 0; i < RX_DRAIN_TIME; i++) { 1944 done = (Adapter->pending_rx_count == 0); 1945 1946 if (done) 1947 break; 1948 1949 msec_delay(1); 1950 } 1951 1952 return (done); 1953 } 1954 1955 static boolean_t 1956 e1000g_reset_adapter(struct e1000g *Adapter) 1957 { 1958 /* Disable and stop all the timers */ 1959 disable_watchdog_timer(Adapter); 1960 stop_link_timer(Adapter); 1961 stop_82547_timer(Adapter->tx_ring); 1962 1963 rw_enter(&Adapter->chip_lock, RW_WRITER); 1964 1965 e1000g_stop(Adapter, B_FALSE); 1966 1967 if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) { 1968 rw_exit(&Adapter->chip_lock); 1969 e1000g_log(Adapter, CE_WARN, "Reset failed"); 1970 return (B_FALSE); 1971 } 1972 1973 rw_exit(&Adapter->chip_lock); 1974 1975 /* Enable and start the watchdog timer */ 1976 enable_watchdog_timer(Adapter); 1977 1978 return (B_TRUE); 1979 } 1980 1981 boolean_t 1982 e1000g_global_reset(struct e1000g *Adapter) 1983 { 1984 /* Disable and stop all the timers */ 1985 disable_watchdog_timer(Adapter); 1986 stop_link_timer(Adapter); 1987 stop_82547_timer(Adapter->tx_ring); 1988 1989 rw_enter(&Adapter->chip_lock, RW_WRITER); 1990 1991 e1000g_stop(Adapter, B_TRUE); 1992 1993 Adapter->init_count = 0; 1994 1995 if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) { 1996 rw_exit(&Adapter->chip_lock); 1997 e1000g_log(Adapter, CE_WARN, "Reset failed"); 1998 return (B_FALSE); 1999 } 2000 2001 rw_exit(&Adapter->chip_lock); 2002 2003 /* Enable and start the watchdog timer */ 2004 enable_watchdog_timer(Adapter); 2005 2006 return (B_TRUE); 2007 } 2008 2009 /* 2010 * e1000g_intr_pciexpress - ISR for PCI Express chipsets 2011 * 2012 * This interrupt service routine is for PCI-Express adapters. 2013 * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED 2014 * bit is set. 2015 */ 2016 static uint_t 2017 e1000g_intr_pciexpress(caddr_t arg) 2018 { 2019 struct e1000g *Adapter; 2020 uint32_t icr; 2021 2022 Adapter = (struct e1000g *)(uintptr_t)arg; 2023 icr = E1000_READ_REG(&Adapter->shared, E1000_ICR); 2024 2025 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) 2026 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED); 2027 2028 if (icr & E1000_ICR_INT_ASSERTED) { 2029 /* 2030 * E1000_ICR_INT_ASSERTED bit was set: 2031 * Read(Clear) the ICR, claim this interrupt, 2032 * look for work to do. 2033 */ 2034 e1000g_intr_work(Adapter, icr); 2035 return (DDI_INTR_CLAIMED); 2036 } else { 2037 /* 2038 * E1000_ICR_INT_ASSERTED bit was not set: 2039 * Don't claim this interrupt, return immediately. 2040 */ 2041 return (DDI_INTR_UNCLAIMED); 2042 } 2043 } 2044 2045 /* 2046 * e1000g_intr - ISR for PCI/PCI-X chipsets 2047 * 2048 * This interrupt service routine is for PCI/PCI-X adapters. 2049 * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED 2050 * bit is set or not. 2051 */ 2052 static uint_t 2053 e1000g_intr(caddr_t arg) 2054 { 2055 struct e1000g *Adapter; 2056 uint32_t icr; 2057 2058 Adapter = (struct e1000g *)(uintptr_t)arg; 2059 icr = E1000_READ_REG(&Adapter->shared, E1000_ICR); 2060 2061 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) 2062 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED); 2063 2064 if (icr) { 2065 /* 2066 * Any bit was set in ICR: 2067 * Read(Clear) the ICR, claim this interrupt, 2068 * look for work to do. 2069 */ 2070 e1000g_intr_work(Adapter, icr); 2071 return (DDI_INTR_CLAIMED); 2072 } else { 2073 /* 2074 * No bit was set in ICR: 2075 * Don't claim this interrupt, return immediately. 2076 */ 2077 return (DDI_INTR_UNCLAIMED); 2078 } 2079 } 2080 2081 /* 2082 * e1000g_intr_work - actual processing of ISR 2083 * 2084 * Read(clear) the ICR contents and call appropriate interrupt 2085 * processing routines. 2086 */ 2087 static void 2088 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr) 2089 { 2090 struct e1000_hw *hw; 2091 hw = &Adapter->shared; 2092 e1000g_tx_ring_t *tx_ring = Adapter->tx_ring; 2093 2094 Adapter->rx_pkt_cnt = 0; 2095 Adapter->tx_pkt_cnt = 0; 2096 2097 rw_enter(&Adapter->chip_lock, RW_READER); 2098 2099 if (Adapter->e1000g_state & E1000G_SUSPENDED) { 2100 rw_exit(&Adapter->chip_lock); 2101 return; 2102 } 2103 /* 2104 * Here we need to check the "e1000g_state" flag within the chip_lock to 2105 * ensure the receive routine will not execute when the adapter is 2106 * being reset. 2107 */ 2108 if (!(Adapter->e1000g_state & E1000G_STARTED)) { 2109 rw_exit(&Adapter->chip_lock); 2110 return; 2111 } 2112 2113 if (icr & E1000_ICR_RXT0) { 2114 mblk_t *mp = NULL; 2115 mblk_t *tail = NULL; 2116 e1000g_rx_ring_t *rx_ring; 2117 2118 rx_ring = Adapter->rx_ring; 2119 mutex_enter(&rx_ring->rx_lock); 2120 /* 2121 * Sometimes with legacy interrupts, it possible that 2122 * there is a single interrupt for Rx/Tx. In which 2123 * case, if poll flag is set, we shouldn't really 2124 * be doing Rx processing. 2125 */ 2126 if (!rx_ring->poll_flag) 2127 mp = e1000g_receive(rx_ring, &tail, 2128 E1000G_CHAIN_NO_LIMIT); 2129 mutex_exit(&rx_ring->rx_lock); 2130 rw_exit(&Adapter->chip_lock); 2131 if (mp != NULL) 2132 mac_rx_ring(Adapter->mh, rx_ring->mrh, 2133 mp, rx_ring->ring_gen_num); 2134 } else 2135 rw_exit(&Adapter->chip_lock); 2136 2137 if (icr & E1000_ICR_TXDW) { 2138 if (!Adapter->tx_intr_enable) 2139 e1000g_clear_tx_interrupt(Adapter); 2140 2141 /* Recycle the tx descriptors */ 2142 rw_enter(&Adapter->chip_lock, RW_READER); 2143 (void) e1000g_recycle(tx_ring); 2144 E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr); 2145 rw_exit(&Adapter->chip_lock); 2146 2147 if (tx_ring->resched_needed && 2148 (tx_ring->tbd_avail > DEFAULT_TX_UPDATE_THRESHOLD)) { 2149 tx_ring->resched_needed = B_FALSE; 2150 mac_tx_update(Adapter->mh); 2151 E1000G_STAT(tx_ring->stat_reschedule); 2152 } 2153 } 2154 2155 /* 2156 * The Receive Sequence errors RXSEQ and the link status change LSC 2157 * are checked to detect that the cable has been pulled out. For 2158 * the Wiseman 2.0 silicon, the receive sequence errors interrupt 2159 * are an indication that cable is not connected. 2160 */ 2161 if ((icr & E1000_ICR_RXSEQ) || 2162 (icr & E1000_ICR_LSC) || 2163 (icr & E1000_ICR_GPI_EN1)) { 2164 boolean_t link_changed; 2165 timeout_id_t tid = 0; 2166 2167 stop_watchdog_timer(Adapter); 2168 2169 rw_enter(&Adapter->chip_lock, RW_WRITER); 2170 2171 /* 2172 * Because we got a link-status-change interrupt, force 2173 * e1000_check_for_link() to look at phy 2174 */ 2175 Adapter->shared.mac.get_link_status = B_TRUE; 2176 2177 /* e1000g_link_check takes care of link status change */ 2178 link_changed = e1000g_link_check(Adapter); 2179 2180 /* Get new phy state */ 2181 e1000g_get_phy_state(Adapter); 2182 2183 /* 2184 * If the link timer has not timed out, we'll not notify 2185 * the upper layer with any link state until the link is up. 2186 */ 2187 if (link_changed && !Adapter->link_complete) { 2188 if (Adapter->link_state == LINK_STATE_UP) { 2189 mutex_enter(&Adapter->link_lock); 2190 Adapter->link_complete = B_TRUE; 2191 tid = Adapter->link_tid; 2192 Adapter->link_tid = 0; 2193 mutex_exit(&Adapter->link_lock); 2194 } else { 2195 link_changed = B_FALSE; 2196 } 2197 } 2198 rw_exit(&Adapter->chip_lock); 2199 2200 if (link_changed) { 2201 if (tid != 0) 2202 (void) untimeout(tid); 2203 2204 /* 2205 * Workaround for esb2. Data stuck in fifo on a link 2206 * down event. Stop receiver here and reset in watchdog. 2207 */ 2208 if ((Adapter->link_state == LINK_STATE_DOWN) && 2209 (Adapter->shared.mac.type == e1000_80003es2lan)) { 2210 uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL); 2211 E1000_WRITE_REG(hw, E1000_RCTL, 2212 rctl & ~E1000_RCTL_EN); 2213 e1000g_log(Adapter, CE_WARN, 2214 "ESB2 receiver disabled"); 2215 Adapter->esb2_workaround = B_TRUE; 2216 } 2217 if (!Adapter->reset_flag) 2218 mac_link_update(Adapter->mh, 2219 Adapter->link_state); 2220 if (Adapter->link_state == LINK_STATE_UP) 2221 Adapter->reset_flag = B_FALSE; 2222 } 2223 2224 start_watchdog_timer(Adapter); 2225 } 2226 } 2227 2228 static void 2229 e1000g_init_unicst(struct e1000g *Adapter) 2230 { 2231 struct e1000_hw *hw; 2232 int slot; 2233 2234 hw = &Adapter->shared; 2235 2236 if (Adapter->init_count == 0) { 2237 /* Initialize the multiple unicast addresses */ 2238 Adapter->unicst_total = MAX_NUM_UNICAST_ADDRESSES; 2239 2240 /* Workaround for an erratum of 82571 chipst */ 2241 if ((hw->mac.type == e1000_82571) && 2242 (e1000_get_laa_state_82571(hw) == B_TRUE)) 2243 Adapter->unicst_total--; 2244 2245 Adapter->unicst_avail = Adapter->unicst_total; 2246 2247 for (slot = 0; slot < Adapter->unicst_total; slot++) { 2248 /* Clear both the flag and MAC address */ 2249 Adapter->unicst_addr[slot].reg.high = 0; 2250 Adapter->unicst_addr[slot].reg.low = 0; 2251 } 2252 } else { 2253 /* Workaround for an erratum of 82571 chipst */ 2254 if ((hw->mac.type == e1000_82571) && 2255 (e1000_get_laa_state_82571(hw) == B_TRUE)) 2256 e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY); 2257 2258 /* Re-configure the RAR registers */ 2259 for (slot = 0; slot < Adapter->unicst_total; slot++) 2260 if (Adapter->unicst_addr[slot].mac.set == 1) 2261 e1000_rar_set(hw, 2262 Adapter->unicst_addr[slot].mac.addr, slot); 2263 } 2264 2265 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) 2266 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED); 2267 } 2268 2269 static int 2270 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr, 2271 int slot) 2272 { 2273 struct e1000_hw *hw; 2274 2275 hw = &Adapter->shared; 2276 2277 /* 2278 * The first revision of Wiseman silicon (rev 2.0) has an errata 2279 * that requires the receiver to be in reset when any of the 2280 * receive address registers (RAR regs) are accessed. The first 2281 * rev of Wiseman silicon also requires MWI to be disabled when 2282 * a global reset or a receive reset is issued. So before we 2283 * initialize the RARs, we check the rev of the Wiseman controller 2284 * and work around any necessary HW errata. 2285 */ 2286 if ((hw->mac.type == e1000_82542) && 2287 (hw->revision_id == E1000_REVISION_2)) { 2288 e1000_pci_clear_mwi(hw); 2289 E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST); 2290 msec_delay(5); 2291 } 2292 if (mac_addr == NULL) { 2293 E1000_WRITE_REG_ARRAY(hw, E1000_RA, slot << 1, 0); 2294 E1000_WRITE_FLUSH(hw); 2295 E1000_WRITE_REG_ARRAY(hw, E1000_RA, (slot << 1) + 1, 0); 2296 E1000_WRITE_FLUSH(hw); 2297 /* Clear both the flag and MAC address */ 2298 Adapter->unicst_addr[slot].reg.high = 0; 2299 Adapter->unicst_addr[slot].reg.low = 0; 2300 } else { 2301 bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr, 2302 ETHERADDRL); 2303 e1000_rar_set(hw, (uint8_t *)mac_addr, slot); 2304 Adapter->unicst_addr[slot].mac.set = 1; 2305 } 2306 2307 /* Workaround for an erratum of 82571 chipst */ 2308 if (slot == 0) { 2309 if ((hw->mac.type == e1000_82571) && 2310 (e1000_get_laa_state_82571(hw) == B_TRUE)) 2311 if (mac_addr == NULL) { 2312 E1000_WRITE_REG_ARRAY(hw, E1000_RA, 2313 slot << 1, 0); 2314 E1000_WRITE_FLUSH(hw); 2315 E1000_WRITE_REG_ARRAY(hw, E1000_RA, 2316 (slot << 1) + 1, 0); 2317 E1000_WRITE_FLUSH(hw); 2318 } else { 2319 e1000_rar_set(hw, (uint8_t *)mac_addr, 2320 LAST_RAR_ENTRY); 2321 } 2322 } 2323 2324 /* 2325 * If we are using Wiseman rev 2.0 silicon, we will have previously 2326 * put the receive in reset, and disabled MWI, to work around some 2327 * HW errata. Now we should take the receiver out of reset, and 2328 * re-enabled if MWI if it was previously enabled by the PCI BIOS. 2329 */ 2330 if ((hw->mac.type == e1000_82542) && 2331 (hw->revision_id == E1000_REVISION_2)) { 2332 E1000_WRITE_REG(hw, E1000_RCTL, 0); 2333 msec_delay(1); 2334 if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) 2335 e1000_pci_set_mwi(hw); 2336 e1000g_rx_setup(Adapter); 2337 } 2338 2339 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) { 2340 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED); 2341 return (EIO); 2342 } 2343 2344 return (0); 2345 } 2346 2347 static int 2348 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr) 2349 { 2350 struct e1000_hw *hw = &Adapter->shared; 2351 int res = 0; 2352 2353 if ((multiaddr[0] & 01) == 0) { 2354 res = EINVAL; 2355 goto done; 2356 } 2357 2358 if (Adapter->mcast_count >= MAX_NUM_MULTICAST_ADDRESSES) { 2359 res = ENOENT; 2360 goto done; 2361 } 2362 2363 bcopy(multiaddr, 2364 &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL); 2365 Adapter->mcast_count++; 2366 2367 /* 2368 * Update the MC table in the hardware 2369 */ 2370 e1000g_clear_interrupt(Adapter); 2371 2372 e1000g_setup_multicast(Adapter); 2373 2374 if ((hw->mac.type == e1000_82542) && 2375 (hw->revision_id == E1000_REVISION_2)) 2376 e1000g_rx_setup(Adapter); 2377 2378 e1000g_mask_interrupt(Adapter); 2379 2380 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) { 2381 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED); 2382 res = EIO; 2383 } 2384 2385 done: 2386 return (res); 2387 } 2388 2389 static int 2390 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr) 2391 { 2392 struct e1000_hw *hw = &Adapter->shared; 2393 unsigned i; 2394 2395 for (i = 0; i < Adapter->mcast_count; i++) { 2396 if (bcmp(multiaddr, &Adapter->mcast_table[i], 2397 ETHERADDRL) == 0) { 2398 for (i++; i < Adapter->mcast_count; i++) { 2399 Adapter->mcast_table[i - 1] = 2400 Adapter->mcast_table[i]; 2401 } 2402 Adapter->mcast_count--; 2403 break; 2404 } 2405 } 2406 2407 /* 2408 * Update the MC table in the hardware 2409 */ 2410 e1000g_clear_interrupt(Adapter); 2411 2412 e1000g_setup_multicast(Adapter); 2413 2414 if ((hw->mac.type == e1000_82542) && 2415 (hw->revision_id == E1000_REVISION_2)) 2416 e1000g_rx_setup(Adapter); 2417 2418 e1000g_mask_interrupt(Adapter); 2419 2420 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) { 2421 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED); 2422 return (EIO); 2423 } 2424 2425 return (0); 2426 } 2427 2428 /* 2429 * e1000g_setup_multicast - setup multicast data structures 2430 * 2431 * This routine initializes all of the multicast related structures. 2432 */ 2433 void 2434 e1000g_setup_multicast(struct e1000g *Adapter) 2435 { 2436 uint8_t *mc_addr_list; 2437 uint32_t mc_addr_count; 2438 uint32_t rctl; 2439 struct e1000_hw *hw; 2440 2441 hw = &Adapter->shared; 2442 2443 /* 2444 * The e1000g has the ability to do perfect filtering of 16 2445 * addresses. The driver uses one of the e1000g's 16 receive 2446 * address registers for its node/network/mac/individual address. 2447 * So, we have room for up to 15 multicast addresses in the CAM, 2448 * additional MC addresses are handled by the MTA (Multicast Table 2449 * Array) 2450 */ 2451 2452 rctl = E1000_READ_REG(hw, E1000_RCTL); 2453 2454 mc_addr_list = (uint8_t *)Adapter->mcast_table; 2455 2456 if (Adapter->mcast_count > MAX_NUM_MULTICAST_ADDRESSES) { 2457 E1000G_DEBUGLOG_1(Adapter, CE_WARN, 2458 "Adapter requested more than %d MC Addresses.\n", 2459 MAX_NUM_MULTICAST_ADDRESSES); 2460 mc_addr_count = MAX_NUM_MULTICAST_ADDRESSES; 2461 } else { 2462 /* 2463 * Set the number of MC addresses that we are being 2464 * requested to use 2465 */ 2466 mc_addr_count = Adapter->mcast_count; 2467 } 2468 /* 2469 * The Wiseman 2.0 silicon has an errata by which the receiver will 2470 * hang while writing to the receive address registers if the receiver 2471 * is not in reset before writing to the registers. Updating the RAR 2472 * is done during the setting up of the multicast table, hence the 2473 * receiver has to be put in reset before updating the multicast table 2474 * and then taken out of reset at the end 2475 */ 2476 /* 2477 * if WMI was enabled then dis able it before issueing the global 2478 * reset to the hardware. 2479 */ 2480 /* 2481 * Only required for WISEMAN_2_0 2482 */ 2483 if ((hw->mac.type == e1000_82542) && 2484 (hw->revision_id == E1000_REVISION_2)) { 2485 e1000_pci_clear_mwi(hw); 2486 /* 2487 * The e1000g must be in reset before changing any RA 2488 * registers. Reset receive unit. The chip will remain in 2489 * the reset state until software explicitly restarts it. 2490 */ 2491 E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST); 2492 /* Allow receiver time to go in to reset */ 2493 msec_delay(5); 2494 } 2495 2496 e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count, 2497 Adapter->unicst_total, hw->mac.rar_entry_count); 2498 2499 /* 2500 * Only for Wiseman_2_0 2501 * If MWI was enabled then re-enable it after issueing (as we 2502 * disabled it up there) the receive reset command. 2503 * Wainwright does not have a receive reset command and only thing 2504 * close to it is global reset which will require tx setup also 2505 */ 2506 if ((hw->mac.type == e1000_82542) && 2507 (hw->revision_id == E1000_REVISION_2)) { 2508 /* 2509 * if WMI was enabled then reenable it after issueing the 2510 * global or receive reset to the hardware. 2511 */ 2512 2513 /* 2514 * Take receiver out of reset 2515 * clear E1000_RCTL_RST bit (and all others) 2516 */ 2517 E1000_WRITE_REG(hw, E1000_RCTL, 0); 2518 msec_delay(5); 2519 if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) 2520 e1000_pci_set_mwi(hw); 2521 } 2522 2523 /* 2524 * Restore original value 2525 */ 2526 E1000_WRITE_REG(hw, E1000_RCTL, rctl); 2527 } 2528 2529 int 2530 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr) 2531 { 2532 struct e1000g *Adapter = (struct e1000g *)arg; 2533 int result; 2534 2535 rw_enter(&Adapter->chip_lock, RW_WRITER); 2536 2537 if (Adapter->e1000g_state & E1000G_SUSPENDED) { 2538 result = ECANCELED; 2539 goto done; 2540 } 2541 2542 result = (add) ? multicst_add(Adapter, addr) 2543 : multicst_remove(Adapter, addr); 2544 2545 done: 2546 rw_exit(&Adapter->chip_lock); 2547 return (result); 2548 2549 } 2550 2551 int 2552 e1000g_m_promisc(void *arg, boolean_t on) 2553 { 2554 struct e1000g *Adapter = (struct e1000g *)arg; 2555 uint32_t rctl; 2556 2557 rw_enter(&Adapter->chip_lock, RW_WRITER); 2558 2559 if (Adapter->e1000g_state & E1000G_SUSPENDED) { 2560 rw_exit(&Adapter->chip_lock); 2561 return (ECANCELED); 2562 } 2563 2564 rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL); 2565 2566 if (on) 2567 rctl |= 2568 (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM); 2569 else 2570 rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE)); 2571 2572 E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl); 2573 2574 Adapter->e1000g_promisc = on; 2575 2576 rw_exit(&Adapter->chip_lock); 2577 2578 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) { 2579 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED); 2580 return (EIO); 2581 } 2582 2583 return (0); 2584 } 2585 2586 /* 2587 * Entry points to enable and disable interrupts at the granularity of 2588 * a group. 2589 * Turns the poll_mode for the whole adapter on and off to enable or 2590 * override the ring level polling control over the hardware interrupts. 2591 */ 2592 static int 2593 e1000g_rx_group_intr_enable(mac_intr_handle_t arg) 2594 { 2595 struct e1000g *adapter = (struct e1000g *)arg; 2596 e1000g_rx_ring_t *rx_ring = adapter->rx_ring; 2597 2598 /* 2599 * Later interrupts at the granularity of the this ring will 2600 * invoke mac_rx() with NULL, indicating the need for another 2601 * software classification. 2602 * We have a single ring usable per adapter now, so we only need to 2603 * reset the rx handle for that one. 2604 * When more RX rings can be used, we should update each one of them. 2605 */ 2606 mutex_enter(&rx_ring->rx_lock); 2607 rx_ring->mrh = NULL; 2608 adapter->poll_mode = B_FALSE; 2609 mutex_exit(&rx_ring->rx_lock); 2610 return (0); 2611 } 2612 2613 static int 2614 e1000g_rx_group_intr_disable(mac_intr_handle_t arg) 2615 { 2616 struct e1000g *adapter = (struct e1000g *)arg; 2617 e1000g_rx_ring_t *rx_ring = adapter->rx_ring; 2618 2619 mutex_enter(&rx_ring->rx_lock); 2620 2621 /* 2622 * Later interrupts at the granularity of the this ring will 2623 * invoke mac_rx() with the handle for this ring; 2624 */ 2625 adapter->poll_mode = B_TRUE; 2626 rx_ring->mrh = rx_ring->mrh_init; 2627 mutex_exit(&rx_ring->rx_lock); 2628 return (0); 2629 } 2630 2631 /* 2632 * Entry points to enable and disable interrupts at the granularity of 2633 * a ring. 2634 * adapter poll_mode controls whether we actually proceed with hardware 2635 * interrupt toggling. 2636 */ 2637 static int 2638 e1000g_rx_ring_intr_enable(mac_intr_handle_t intrh) 2639 { 2640 e1000g_rx_ring_t *rx_ring = (e1000g_rx_ring_t *)intrh; 2641 struct e1000g *adapter = rx_ring->adapter; 2642 struct e1000_hw *hw = &adapter->shared; 2643 uint32_t intr_mask; 2644 2645 rw_enter(&adapter->chip_lock, RW_READER); 2646 2647 if (adapter->e1000g_state & E1000G_SUSPENDED) { 2648 rw_exit(&adapter->chip_lock); 2649 return (0); 2650 } 2651 2652 mutex_enter(&rx_ring->rx_lock); 2653 rx_ring->poll_flag = 0; 2654 mutex_exit(&rx_ring->rx_lock); 2655 2656 /* Rx interrupt enabling for MSI and legacy */ 2657 intr_mask = E1000_READ_REG(hw, E1000_IMS); 2658 intr_mask |= E1000_IMS_RXT0; 2659 E1000_WRITE_REG(hw, E1000_IMS, intr_mask); 2660 E1000_WRITE_FLUSH(hw); 2661 2662 /* Trigger a Rx interrupt to check Rx ring */ 2663 E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0); 2664 E1000_WRITE_FLUSH(hw); 2665 2666 rw_exit(&adapter->chip_lock); 2667 return (0); 2668 } 2669 2670 static int 2671 e1000g_rx_ring_intr_disable(mac_intr_handle_t intrh) 2672 { 2673 e1000g_rx_ring_t *rx_ring = (e1000g_rx_ring_t *)intrh; 2674 struct e1000g *adapter = rx_ring->adapter; 2675 struct e1000_hw *hw = &adapter->shared; 2676 2677 rw_enter(&adapter->chip_lock, RW_READER); 2678 2679 if (adapter->e1000g_state & E1000G_SUSPENDED) { 2680 rw_exit(&adapter->chip_lock); 2681 return (0); 2682 } 2683 mutex_enter(&rx_ring->rx_lock); 2684 rx_ring->poll_flag = 1; 2685 mutex_exit(&rx_ring->rx_lock); 2686 2687 /* Rx interrupt disabling for MSI and legacy */ 2688 E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0); 2689 E1000_WRITE_FLUSH(hw); 2690 2691 rw_exit(&adapter->chip_lock); 2692 return (0); 2693 } 2694 2695 /* 2696 * e1000g_unicst_find - Find the slot for the specified unicast address 2697 */ 2698 static int 2699 e1000g_unicst_find(struct e1000g *Adapter, const uint8_t *mac_addr) 2700 { 2701 int slot; 2702 2703 for (slot = 0; slot < Adapter->unicst_total; slot++) { 2704 if ((Adapter->unicst_addr[slot].mac.set == 1) && 2705 (bcmp(Adapter->unicst_addr[slot].mac.addr, 2706 mac_addr, ETHERADDRL) == 0)) 2707 return (slot); 2708 } 2709 2710 return (-1); 2711 } 2712 2713 /* 2714 * Entry points to add and remove a MAC address to a ring group. 2715 * The caller takes care of adding and removing the MAC addresses 2716 * to the filter via these two routines. 2717 */ 2718 2719 static int 2720 e1000g_addmac(void *arg, const uint8_t *mac_addr) 2721 { 2722 struct e1000g *Adapter = (struct e1000g *)arg; 2723 int slot, err; 2724 2725 rw_enter(&Adapter->chip_lock, RW_WRITER); 2726 2727 if (Adapter->e1000g_state & E1000G_SUSPENDED) { 2728 rw_exit(&Adapter->chip_lock); 2729 return (ECANCELED); 2730 } 2731 2732 if (e1000g_unicst_find(Adapter, mac_addr) != -1) { 2733 /* The same address is already in slot */ 2734 rw_exit(&Adapter->chip_lock); 2735 return (0); 2736 } 2737 2738 if (Adapter->unicst_avail == 0) { 2739 /* no slots available */ 2740 rw_exit(&Adapter->chip_lock); 2741 return (ENOSPC); 2742 } 2743 2744 /* Search for a free slot */ 2745 for (slot = 0; slot < Adapter->unicst_total; slot++) { 2746 if (Adapter->unicst_addr[slot].mac.set == 0) 2747 break; 2748 } 2749 ASSERT(slot < Adapter->unicst_total); 2750 2751 err = e1000g_unicst_set(Adapter, mac_addr, slot); 2752 if (err == 0) 2753 Adapter->unicst_avail--; 2754 2755 rw_exit(&Adapter->chip_lock); 2756 2757 return (err); 2758 } 2759 2760 static int 2761 e1000g_remmac(void *arg, const uint8_t *mac_addr) 2762 { 2763 struct e1000g *Adapter = (struct e1000g *)arg; 2764 int slot, err; 2765 2766 rw_enter(&Adapter->chip_lock, RW_WRITER); 2767 2768 if (Adapter->e1000g_state & E1000G_SUSPENDED) { 2769 rw_exit(&Adapter->chip_lock); 2770 return (ECANCELED); 2771 } 2772 2773 slot = e1000g_unicst_find(Adapter, mac_addr); 2774 if (slot == -1) { 2775 rw_exit(&Adapter->chip_lock); 2776 return (EINVAL); 2777 } 2778 2779 ASSERT(Adapter->unicst_addr[slot].mac.set); 2780 2781 /* Clear this slot */ 2782 err = e1000g_unicst_set(Adapter, NULL, slot); 2783 if (err == 0) 2784 Adapter->unicst_avail++; 2785 2786 rw_exit(&Adapter->chip_lock); 2787 2788 return (err); 2789 } 2790 2791 static int 2792 e1000g_ring_start(mac_ring_driver_t rh, uint64_t mr_gen_num) 2793 { 2794 e1000g_rx_ring_t *rx_ring = (e1000g_rx_ring_t *)rh; 2795 2796 mutex_enter(&rx_ring->rx_lock); 2797 rx_ring->ring_gen_num = mr_gen_num; 2798 mutex_exit(&rx_ring->rx_lock); 2799 return (0); 2800 } 2801 2802 /* 2803 * Callback funtion for MAC layer to register all rings. 2804 * 2805 * The hardware supports a single group with currently only one ring 2806 * available. 2807 * Though not offering virtualization ability per se, exposing the 2808 * group/ring still enables the polling and interrupt toggling. 2809 */ 2810 void 2811 e1000g_fill_ring(void *arg, mac_ring_type_t rtype, const int grp_index, 2812 const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh) 2813 { 2814 struct e1000g *Adapter = (struct e1000g *)arg; 2815 e1000g_rx_ring_t *rx_ring = Adapter->rx_ring; 2816 mac_intr_t *mintr; 2817 2818 /* 2819 * We advertised only RX group/rings, so the MAC framework shouldn't 2820 * ask for any thing else. 2821 */ 2822 ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0 && ring_index == 0); 2823 2824 rx_ring->mrh = rx_ring->mrh_init = rh; 2825 infop->mri_driver = (mac_ring_driver_t)rx_ring; 2826 infop->mri_start = e1000g_ring_start; 2827 infop->mri_stop = NULL; 2828 infop->mri_poll = e1000g_poll_ring; 2829 2830 /* Ring level interrupts */ 2831 mintr = &infop->mri_intr; 2832 mintr->mi_handle = (mac_intr_handle_t)rx_ring; 2833 mintr->mi_enable = e1000g_rx_ring_intr_enable; 2834 mintr->mi_disable = e1000g_rx_ring_intr_disable; 2835 } 2836 2837 static void 2838 e1000g_fill_group(void *arg, mac_ring_type_t rtype, const int grp_index, 2839 mac_group_info_t *infop, mac_group_handle_t gh) 2840 { 2841 struct e1000g *Adapter = (struct e1000g *)arg; 2842 mac_intr_t *mintr; 2843 2844 /* 2845 * We advertised a single RX ring. Getting a request for anything else 2846 * signifies a bug in the MAC framework. 2847 */ 2848 ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0); 2849 2850 Adapter->rx_group = gh; 2851 2852 infop->mgi_driver = (mac_group_driver_t)Adapter; 2853 infop->mgi_start = NULL; 2854 infop->mgi_stop = NULL; 2855 infop->mgi_addmac = e1000g_addmac; 2856 infop->mgi_remmac = e1000g_remmac; 2857 infop->mgi_count = 1; 2858 2859 /* Group level interrupts */ 2860 mintr = &infop->mgi_intr; 2861 mintr->mi_handle = (mac_intr_handle_t)Adapter; 2862 mintr->mi_enable = e1000g_rx_group_intr_enable; 2863 mintr->mi_disable = e1000g_rx_group_intr_disable; 2864 } 2865 2866 static boolean_t 2867 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data) 2868 { 2869 struct e1000g *Adapter = (struct e1000g *)arg; 2870 2871 switch (cap) { 2872 case MAC_CAPAB_HCKSUM: { 2873 uint32_t *txflags = cap_data; 2874 2875 if (Adapter->tx_hcksum_enable) 2876 *txflags = HCKSUM_IPHDRCKSUM | 2877 HCKSUM_INET_PARTIAL; 2878 else 2879 return (B_FALSE); 2880 break; 2881 } 2882 2883 case MAC_CAPAB_LSO: { 2884 mac_capab_lso_t *cap_lso = cap_data; 2885 2886 if (Adapter->lso_enable) { 2887 cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4; 2888 cap_lso->lso_basic_tcp_ipv4.lso_max = 2889 E1000_LSO_MAXLEN; 2890 } else 2891 return (B_FALSE); 2892 break; 2893 } 2894 case MAC_CAPAB_RINGS: { 2895 mac_capab_rings_t *cap_rings = cap_data; 2896 2897 /* No TX rings exposed yet */ 2898 if (cap_rings->mr_type != MAC_RING_TYPE_RX) 2899 return (B_FALSE); 2900 2901 cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC; 2902 cap_rings->mr_rnum = 1; 2903 cap_rings->mr_gnum = 1; 2904 cap_rings->mr_rget = e1000g_fill_ring; 2905 cap_rings->mr_gget = e1000g_fill_group; 2906 break; 2907 } 2908 default: 2909 return (B_FALSE); 2910 } 2911 return (B_TRUE); 2912 } 2913 2914 static boolean_t 2915 e1000g_param_locked(mac_prop_id_t pr_num) 2916 { 2917 /* 2918 * All en_* parameters are locked (read-only) while 2919 * the device is in any sort of loopback mode ... 2920 */ 2921 switch (pr_num) { 2922 case MAC_PROP_EN_1000FDX_CAP: 2923 case MAC_PROP_EN_1000HDX_CAP: 2924 case MAC_PROP_EN_100FDX_CAP: 2925 case MAC_PROP_EN_100HDX_CAP: 2926 case MAC_PROP_EN_10FDX_CAP: 2927 case MAC_PROP_EN_10HDX_CAP: 2928 case MAC_PROP_AUTONEG: 2929 case MAC_PROP_FLOWCTRL: 2930 return (B_TRUE); 2931 } 2932 return (B_FALSE); 2933 } 2934 2935 /* 2936 * callback function for set/get of properties 2937 */ 2938 static int 2939 e1000g_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num, 2940 uint_t pr_valsize, const void *pr_val) 2941 { 2942 struct e1000g *Adapter = arg; 2943 struct e1000_mac_info *mac = &Adapter->shared.mac; 2944 struct e1000_phy_info *phy = &Adapter->shared.phy; 2945 struct e1000_fc_info *fc = &Adapter->shared.fc; 2946 int err = 0; 2947 link_flowctrl_t flowctrl; 2948 uint32_t cur_mtu, new_mtu; 2949 uint64_t tmp = 0; 2950 2951 rw_enter(&Adapter->chip_lock, RW_WRITER); 2952 2953 if (Adapter->e1000g_state & E1000G_SUSPENDED) { 2954 rw_exit(&Adapter->chip_lock); 2955 return (ECANCELED); 2956 } 2957 2958 if (Adapter->loopback_mode != E1000G_LB_NONE && 2959 e1000g_param_locked(pr_num)) { 2960 /* 2961 * All en_* parameters are locked (read-only) 2962 * while the device is in any sort of loopback mode. 2963 */ 2964 rw_exit(&Adapter->chip_lock); 2965 return (EBUSY); 2966 } 2967 2968 switch (pr_num) { 2969 case MAC_PROP_EN_1000FDX_CAP: 2970 Adapter->param_en_1000fdx = *(uint8_t *)pr_val; 2971 Adapter->param_adv_1000fdx = *(uint8_t *)pr_val; 2972 goto reset; 2973 case MAC_PROP_EN_100FDX_CAP: 2974 Adapter->param_en_100fdx = *(uint8_t *)pr_val; 2975 Adapter->param_adv_100fdx = *(uint8_t *)pr_val; 2976 goto reset; 2977 case MAC_PROP_EN_100HDX_CAP: 2978 Adapter->param_en_100hdx = *(uint8_t *)pr_val; 2979 Adapter->param_adv_100hdx = *(uint8_t *)pr_val; 2980 goto reset; 2981 case MAC_PROP_EN_10FDX_CAP: 2982 Adapter->param_en_10fdx = *(uint8_t *)pr_val; 2983 Adapter->param_adv_10fdx = *(uint8_t *)pr_val; 2984 goto reset; 2985 case MAC_PROP_EN_10HDX_CAP: 2986 Adapter->param_en_10hdx = *(uint8_t *)pr_val; 2987 Adapter->param_adv_10hdx = *(uint8_t *)pr_val; 2988 goto reset; 2989 case MAC_PROP_AUTONEG: 2990 Adapter->param_adv_autoneg = *(uint8_t *)pr_val; 2991 goto reset; 2992 case MAC_PROP_FLOWCTRL: 2993 fc->send_xon = B_TRUE; 2994 bcopy(pr_val, &flowctrl, sizeof (flowctrl)); 2995 2996 switch (flowctrl) { 2997 default: 2998 err = EINVAL; 2999 break; 3000 case LINK_FLOWCTRL_NONE: 3001 fc->requested_mode = e1000_fc_none; 3002 break; 3003 case LINK_FLOWCTRL_RX: 3004 fc->requested_mode = e1000_fc_rx_pause; 3005 break; 3006 case LINK_FLOWCTRL_TX: 3007 fc->requested_mode = e1000_fc_tx_pause; 3008 break; 3009 case LINK_FLOWCTRL_BI: 3010 fc->requested_mode = e1000_fc_full; 3011 break; 3012 } 3013 reset: 3014 if (err == 0) { 3015 if (e1000g_reset_link(Adapter) != DDI_SUCCESS) 3016 err = EINVAL; 3017 } 3018 break; 3019 case MAC_PROP_ADV_1000FDX_CAP: 3020 case MAC_PROP_ADV_1000HDX_CAP: 3021 case MAC_PROP_ADV_100FDX_CAP: 3022 case MAC_PROP_ADV_100HDX_CAP: 3023 case MAC_PROP_ADV_10FDX_CAP: 3024 case MAC_PROP_ADV_10HDX_CAP: 3025 case MAC_PROP_EN_1000HDX_CAP: 3026 case MAC_PROP_STATUS: 3027 case MAC_PROP_SPEED: 3028 case MAC_PROP_DUPLEX: 3029 err = ENOTSUP; /* read-only prop. Can't set this. */ 3030 break; 3031 case MAC_PROP_MTU: 3032 cur_mtu = Adapter->default_mtu; 3033 bcopy(pr_val, &new_mtu, sizeof (new_mtu)); 3034 if (new_mtu == cur_mtu) { 3035 err = 0; 3036 break; 3037 } 3038 3039 tmp = new_mtu + sizeof (struct ether_vlan_header) + 3040 ETHERFCSL; 3041 if ((tmp < DEFAULT_FRAME_SIZE) || 3042 (tmp > MAXIMUM_FRAME_SIZE)) { 3043 err = EINVAL; 3044 break; 3045 } 3046 3047 /* ich8 does not support jumbo frames */ 3048 if ((mac->type == e1000_ich8lan) && 3049 (tmp > DEFAULT_FRAME_SIZE)) { 3050 err = EINVAL; 3051 break; 3052 } 3053 /* ich9 does not do jumbo frames on one phy type */ 3054 if ((mac->type == e1000_ich9lan) && 3055 (phy->type == e1000_phy_ife) && 3056 (tmp > DEFAULT_FRAME_SIZE)) { 3057 err = EINVAL; 3058 break; 3059 } 3060 if (Adapter->e1000g_state & E1000G_STARTED) { 3061 err = EBUSY; 3062 break; 3063 } 3064 3065 err = mac_maxsdu_update(Adapter->mh, new_mtu); 3066 if (err == 0) { 3067 Adapter->max_frame_size = (uint32_t)tmp; 3068 Adapter->default_mtu = new_mtu; 3069 e1000g_set_bufsize(Adapter); 3070 } 3071 break; 3072 case MAC_PROP_PRIVATE: 3073 err = e1000g_set_priv_prop(Adapter, pr_name, 3074 pr_valsize, pr_val); 3075 break; 3076 default: 3077 err = ENOTSUP; 3078 break; 3079 } 3080 rw_exit(&Adapter->chip_lock); 3081 return (err); 3082 } 3083 3084 static int 3085 e1000g_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num, 3086 uint_t pr_flags, uint_t pr_valsize, void *pr_val, uint_t *perm) 3087 { 3088 struct e1000g *Adapter = arg; 3089 struct e1000_fc_info *fc = &Adapter->shared.fc; 3090 int err = 0; 3091 link_flowctrl_t flowctrl; 3092 uint64_t tmp = 0; 3093 3094 if (pr_valsize == 0) 3095 return (EINVAL); 3096 3097 *perm = MAC_PROP_PERM_RW; 3098 3099 bzero(pr_val, pr_valsize); 3100 if ((pr_flags & MAC_PROP_DEFAULT) && (pr_num != MAC_PROP_PRIVATE)) { 3101 return (e1000g_get_def_val(Adapter, pr_num, 3102 pr_valsize, pr_val)); 3103 } 3104 3105 switch (pr_num) { 3106 case MAC_PROP_DUPLEX: 3107 *perm = MAC_PROP_PERM_READ; 3108 if (pr_valsize >= sizeof (link_duplex_t)) { 3109 bcopy(&Adapter->link_duplex, pr_val, 3110 sizeof (link_duplex_t)); 3111 } else 3112 err = EINVAL; 3113 break; 3114 case MAC_PROP_SPEED: 3115 *perm = MAC_PROP_PERM_READ; 3116 if (pr_valsize >= sizeof (uint64_t)) { 3117 tmp = Adapter->link_speed * 1000000ull; 3118 bcopy(&tmp, pr_val, sizeof (tmp)); 3119 } else 3120 err = EINVAL; 3121 break; 3122 case MAC_PROP_AUTONEG: 3123 *(uint8_t *)pr_val = Adapter->param_adv_autoneg; 3124 break; 3125 case MAC_PROP_FLOWCTRL: 3126 if (pr_valsize >= sizeof (link_flowctrl_t)) { 3127 switch (fc->current_mode) { 3128 case e1000_fc_none: 3129 flowctrl = LINK_FLOWCTRL_NONE; 3130 break; 3131 case e1000_fc_rx_pause: 3132 flowctrl = LINK_FLOWCTRL_RX; 3133 break; 3134 case e1000_fc_tx_pause: 3135 flowctrl = LINK_FLOWCTRL_TX; 3136 break; 3137 case e1000_fc_full: 3138 flowctrl = LINK_FLOWCTRL_BI; 3139 break; 3140 } 3141 bcopy(&flowctrl, pr_val, sizeof (flowctrl)); 3142 } else 3143 err = EINVAL; 3144 break; 3145 case MAC_PROP_ADV_1000FDX_CAP: 3146 *perm = MAC_PROP_PERM_READ; 3147 *(uint8_t *)pr_val = Adapter->param_adv_1000fdx; 3148 break; 3149 case MAC_PROP_EN_1000FDX_CAP: 3150 *(uint8_t *)pr_val = Adapter->param_en_1000fdx; 3151 break; 3152 case MAC_PROP_ADV_1000HDX_CAP: 3153 *perm = MAC_PROP_PERM_READ; 3154 *(uint8_t *)pr_val = Adapter->param_adv_1000hdx; 3155 break; 3156 case MAC_PROP_EN_1000HDX_CAP: 3157 *perm = MAC_PROP_PERM_READ; 3158 *(uint8_t *)pr_val = Adapter->param_en_1000hdx; 3159 break; 3160 case MAC_PROP_ADV_100FDX_CAP: 3161 *perm = MAC_PROP_PERM_READ; 3162 *(uint8_t *)pr_val = Adapter->param_adv_100fdx; 3163 break; 3164 case MAC_PROP_EN_100FDX_CAP: 3165 *(uint8_t *)pr_val = Adapter->param_en_100fdx; 3166 break; 3167 case MAC_PROP_ADV_100HDX_CAP: 3168 *perm = MAC_PROP_PERM_READ; 3169 *(uint8_t *)pr_val = Adapter->param_adv_100hdx; 3170 break; 3171 case MAC_PROP_EN_100HDX_CAP: 3172 *(uint8_t *)pr_val = Adapter->param_en_100hdx; 3173 break; 3174 case MAC_PROP_ADV_10FDX_CAP: 3175 *perm = MAC_PROP_PERM_READ; 3176 *(uint8_t *)pr_val = Adapter->param_adv_10fdx; 3177 break; 3178 case MAC_PROP_EN_10FDX_CAP: 3179 *(uint8_t *)pr_val = Adapter->param_en_10fdx; 3180 break; 3181 case MAC_PROP_ADV_10HDX_CAP: 3182 *perm = MAC_PROP_PERM_READ; 3183 *(uint8_t *)pr_val = Adapter->param_adv_10hdx; 3184 break; 3185 case MAC_PROP_EN_10HDX_CAP: 3186 *(uint8_t *)pr_val = Adapter->param_en_10hdx; 3187 break; 3188 case MAC_PROP_ADV_100T4_CAP: 3189 case MAC_PROP_EN_100T4_CAP: 3190 *perm = MAC_PROP_PERM_READ; 3191 *(uint8_t *)pr_val = Adapter->param_adv_100t4; 3192 break; 3193 case MAC_PROP_PRIVATE: 3194 err = e1000g_get_priv_prop(Adapter, pr_name, 3195 pr_flags, pr_valsize, pr_val, perm); 3196 break; 3197 default: 3198 err = ENOTSUP; 3199 break; 3200 } 3201 return (err); 3202 } 3203 3204 /* ARGSUSED2 */ 3205 static int 3206 e1000g_set_priv_prop(struct e1000g *Adapter, const char *pr_name, 3207 uint_t pr_valsize, const void *pr_val) 3208 { 3209 int err = 0; 3210 long result; 3211 struct e1000_hw *hw = &Adapter->shared; 3212 3213 if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) { 3214 if (pr_val == NULL) { 3215 err = EINVAL; 3216 return (err); 3217 } 3218 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); 3219 if (result < MIN_TX_BCOPY_THRESHOLD || 3220 result > MAX_TX_BCOPY_THRESHOLD) 3221 err = EINVAL; 3222 else { 3223 Adapter->tx_bcopy_thresh = (uint32_t)result; 3224 } 3225 return (err); 3226 } 3227 if (strcmp(pr_name, "_tx_interrupt_enable") == 0) { 3228 if (pr_val == NULL) { 3229 err = EINVAL; 3230 return (err); 3231 } 3232 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); 3233 if (result < 0 || result > 1) 3234 err = EINVAL; 3235 else { 3236 Adapter->tx_intr_enable = (result == 1) ? 3237 B_TRUE: B_FALSE; 3238 if (Adapter->tx_intr_enable) 3239 e1000g_mask_tx_interrupt(Adapter); 3240 else 3241 e1000g_clear_tx_interrupt(Adapter); 3242 if (e1000g_check_acc_handle( 3243 Adapter->osdep.reg_handle) != DDI_FM_OK) 3244 ddi_fm_service_impact(Adapter->dip, 3245 DDI_SERVICE_DEGRADED); 3246 } 3247 return (err); 3248 } 3249 if (strcmp(pr_name, "_tx_intr_delay") == 0) { 3250 if (pr_val == NULL) { 3251 err = EINVAL; 3252 return (err); 3253 } 3254 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); 3255 if (result < MIN_TX_INTR_DELAY || 3256 result > MAX_TX_INTR_DELAY) 3257 err = EINVAL; 3258 else { 3259 Adapter->tx_intr_delay = (uint32_t)result; 3260 E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay); 3261 if (e1000g_check_acc_handle( 3262 Adapter->osdep.reg_handle) != DDI_FM_OK) 3263 ddi_fm_service_impact(Adapter->dip, 3264 DDI_SERVICE_DEGRADED); 3265 } 3266 return (err); 3267 } 3268 if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) { 3269 if (pr_val == NULL) { 3270 err = EINVAL; 3271 return (err); 3272 } 3273 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); 3274 if (result < MIN_TX_INTR_ABS_DELAY || 3275 result > MAX_TX_INTR_ABS_DELAY) 3276 err = EINVAL; 3277 else { 3278 Adapter->tx_intr_abs_delay = (uint32_t)result; 3279 E1000_WRITE_REG(hw, E1000_TADV, 3280 Adapter->tx_intr_abs_delay); 3281 if (e1000g_check_acc_handle( 3282 Adapter->osdep.reg_handle) != DDI_FM_OK) 3283 ddi_fm_service_impact(Adapter->dip, 3284 DDI_SERVICE_DEGRADED); 3285 } 3286 return (err); 3287 } 3288 if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) { 3289 if (pr_val == NULL) { 3290 err = EINVAL; 3291 return (err); 3292 } 3293 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); 3294 if (result < MIN_RX_BCOPY_THRESHOLD || 3295 result > MAX_RX_BCOPY_THRESHOLD) 3296 err = EINVAL; 3297 else 3298 Adapter->rx_bcopy_thresh = (uint32_t)result; 3299 return (err); 3300 } 3301 if (strcmp(pr_name, "_max_num_rcv_packets") == 0) { 3302 if (pr_val == NULL) { 3303 err = EINVAL; 3304 return (err); 3305 } 3306 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); 3307 if (result < MIN_RX_LIMIT_ON_INTR || 3308 result > MAX_RX_LIMIT_ON_INTR) 3309 err = EINVAL; 3310 else 3311 Adapter->rx_limit_onintr = (uint32_t)result; 3312 return (err); 3313 } 3314 if (strcmp(pr_name, "_rx_intr_delay") == 0) { 3315 if (pr_val == NULL) { 3316 err = EINVAL; 3317 return (err); 3318 } 3319 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); 3320 if (result < MIN_RX_INTR_DELAY || 3321 result > MAX_RX_INTR_DELAY) 3322 err = EINVAL; 3323 else { 3324 Adapter->rx_intr_delay = (uint32_t)result; 3325 E1000_WRITE_REG(hw, E1000_RDTR, Adapter->rx_intr_delay); 3326 if (e1000g_check_acc_handle( 3327 Adapter->osdep.reg_handle) != DDI_FM_OK) 3328 ddi_fm_service_impact(Adapter->dip, 3329 DDI_SERVICE_DEGRADED); 3330 } 3331 return (err); 3332 } 3333 if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) { 3334 if (pr_val == NULL) { 3335 err = EINVAL; 3336 return (err); 3337 } 3338 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); 3339 if (result < MIN_RX_INTR_ABS_DELAY || 3340 result > MAX_RX_INTR_ABS_DELAY) 3341 err = EINVAL; 3342 else { 3343 Adapter->rx_intr_abs_delay = (uint32_t)result; 3344 E1000_WRITE_REG(hw, E1000_RADV, 3345 Adapter->rx_intr_abs_delay); 3346 if (e1000g_check_acc_handle( 3347 Adapter->osdep.reg_handle) != DDI_FM_OK) 3348 ddi_fm_service_impact(Adapter->dip, 3349 DDI_SERVICE_DEGRADED); 3350 } 3351 return (err); 3352 } 3353 if (strcmp(pr_name, "_intr_throttling_rate") == 0) { 3354 if (pr_val == NULL) { 3355 err = EINVAL; 3356 return (err); 3357 } 3358 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); 3359 if (result < MIN_INTR_THROTTLING || 3360 result > MAX_INTR_THROTTLING) 3361 err = EINVAL; 3362 else { 3363 if (hw->mac.type >= e1000_82540) { 3364 Adapter->intr_throttling_rate = 3365 (uint32_t)result; 3366 E1000_WRITE_REG(hw, E1000_ITR, 3367 Adapter->intr_throttling_rate); 3368 if (e1000g_check_acc_handle( 3369 Adapter->osdep.reg_handle) != DDI_FM_OK) 3370 ddi_fm_service_impact(Adapter->dip, 3371 DDI_SERVICE_DEGRADED); 3372 } else 3373 err = EINVAL; 3374 } 3375 return (err); 3376 } 3377 if (strcmp(pr_name, "_intr_adaptive") == 0) { 3378 if (pr_val == NULL) { 3379 err = EINVAL; 3380 return (err); 3381 } 3382 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); 3383 if (result < 0 || result > 1) 3384 err = EINVAL; 3385 else { 3386 if (hw->mac.type >= e1000_82540) { 3387 Adapter->intr_adaptive = (result == 1) ? 3388 B_TRUE : B_FALSE; 3389 } else { 3390 err = EINVAL; 3391 } 3392 } 3393 return (err); 3394 } 3395 return (ENOTSUP); 3396 } 3397 3398 static int 3399 e1000g_get_priv_prop(struct e1000g *Adapter, const char *pr_name, 3400 uint_t pr_flags, uint_t pr_valsize, void *pr_val, uint_t *perm) 3401 { 3402 int err = ENOTSUP; 3403 boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT); 3404 int value; 3405 3406 if (strcmp(pr_name, "_adv_pause_cap") == 0) { 3407 *perm = MAC_PROP_PERM_READ; 3408 if (is_default) 3409 goto done; 3410 value = Adapter->param_adv_pause; 3411 err = 0; 3412 goto done; 3413 } 3414 if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) { 3415 *perm = MAC_PROP_PERM_READ; 3416 if (is_default) 3417 goto done; 3418 value = Adapter->param_adv_asym_pause; 3419 err = 0; 3420 goto done; 3421 } 3422 if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) { 3423 value = (is_default ? DEFAULT_TX_BCOPY_THRESHOLD : 3424 Adapter->tx_bcopy_thresh); 3425 err = 0; 3426 goto done; 3427 } 3428 if (strcmp(pr_name, "_tx_interrupt_enable") == 0) { 3429 value = (is_default ? DEFAULT_TX_INTR_ENABLE : 3430 Adapter->tx_intr_enable); 3431 err = 0; 3432 goto done; 3433 } 3434 if (strcmp(pr_name, "_tx_intr_delay") == 0) { 3435 value = (is_default ? DEFAULT_TX_INTR_DELAY : 3436 Adapter->tx_intr_delay); 3437 err = 0; 3438 goto done; 3439 } 3440 if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) { 3441 value = (is_default ? DEFAULT_TX_INTR_ABS_DELAY : 3442 Adapter->tx_intr_abs_delay); 3443 err = 0; 3444 goto done; 3445 } 3446 if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) { 3447 value = (is_default ? DEFAULT_RX_BCOPY_THRESHOLD : 3448 Adapter->rx_bcopy_thresh); 3449 err = 0; 3450 goto done; 3451 } 3452 if (strcmp(pr_name, "_max_num_rcv_packets") == 0) { 3453 value = (is_default ? DEFAULT_RX_LIMIT_ON_INTR : 3454 Adapter->rx_limit_onintr); 3455 err = 0; 3456 goto done; 3457 } 3458 if (strcmp(pr_name, "_rx_intr_delay") == 0) { 3459 value = (is_default ? DEFAULT_RX_INTR_DELAY : 3460 Adapter->rx_intr_delay); 3461 err = 0; 3462 goto done; 3463 } 3464 if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) { 3465 value = (is_default ? DEFAULT_RX_INTR_ABS_DELAY : 3466 Adapter->rx_intr_abs_delay); 3467 err = 0; 3468 goto done; 3469 } 3470 if (strcmp(pr_name, "_intr_throttling_rate") == 0) { 3471 value = (is_default ? DEFAULT_INTR_THROTTLING : 3472 Adapter->intr_throttling_rate); 3473 err = 0; 3474 goto done; 3475 } 3476 if (strcmp(pr_name, "_intr_adaptive") == 0) { 3477 value = (is_default ? 1 : Adapter->intr_adaptive); 3478 err = 0; 3479 goto done; 3480 } 3481 done: 3482 if (err == 0) { 3483 (void) snprintf(pr_val, pr_valsize, "%d", value); 3484 } 3485 return (err); 3486 } 3487 3488 /* 3489 * e1000g_get_conf - get configurations set in e1000g.conf 3490 * This routine gets user-configured values out of the configuration 3491 * file e1000g.conf. 3492 * 3493 * For each configurable value, there is a minimum, a maximum, and a 3494 * default. 3495 * If user does not configure a value, use the default. 3496 * If user configures below the minimum, use the minumum. 3497 * If user configures above the maximum, use the maxumum. 3498 */ 3499 static void 3500 e1000g_get_conf(struct e1000g *Adapter) 3501 { 3502 struct e1000_hw *hw = &Adapter->shared; 3503 boolean_t tbi_compatibility = B_FALSE; 3504 3505 /* 3506 * get each configurable property from e1000g.conf 3507 */ 3508 3509 /* 3510 * NumTxDescriptors 3511 */ 3512 Adapter->tx_desc_num = 3513 e1000g_get_prop(Adapter, "NumTxDescriptors", 3514 MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR, 3515 DEFAULT_NUM_TX_DESCRIPTOR); 3516 3517 /* 3518 * NumRxDescriptors 3519 */ 3520 Adapter->rx_desc_num = 3521 e1000g_get_prop(Adapter, "NumRxDescriptors", 3522 MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR, 3523 DEFAULT_NUM_RX_DESCRIPTOR); 3524 3525 /* 3526 * NumRxFreeList 3527 */ 3528 Adapter->rx_freelist_num = 3529 e1000g_get_prop(Adapter, "NumRxFreeList", 3530 MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST, 3531 DEFAULT_NUM_RX_FREELIST); 3532 3533 /* 3534 * NumTxPacketList 3535 */ 3536 Adapter->tx_freelist_num = 3537 e1000g_get_prop(Adapter, "NumTxPacketList", 3538 MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST, 3539 DEFAULT_NUM_TX_FREELIST); 3540 3541 /* 3542 * FlowControl 3543 */ 3544 hw->fc.send_xon = B_TRUE; 3545 hw->fc.requested_mode = 3546 e1000g_get_prop(Adapter, "FlowControl", 3547 e1000_fc_none, 4, DEFAULT_FLOW_CONTROL); 3548 /* 4 is the setting that says "let the eeprom decide" */ 3549 if (hw->fc.requested_mode == 4) 3550 hw->fc.requested_mode = e1000_fc_default; 3551 3552 /* 3553 * Max Num Receive Packets on Interrupt 3554 */ 3555 Adapter->rx_limit_onintr = 3556 e1000g_get_prop(Adapter, "MaxNumReceivePackets", 3557 MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR, 3558 DEFAULT_RX_LIMIT_ON_INTR); 3559 3560 /* 3561 * PHY master slave setting 3562 */ 3563 hw->phy.ms_type = 3564 e1000g_get_prop(Adapter, "SetMasterSlave", 3565 e1000_ms_hw_default, e1000_ms_auto, 3566 e1000_ms_hw_default); 3567 3568 /* 3569 * Parameter which controls TBI mode workaround, which is only 3570 * needed on certain switches such as Cisco 6500/Foundry 3571 */ 3572 tbi_compatibility = 3573 e1000g_get_prop(Adapter, "TbiCompatibilityEnable", 3574 0, 1, DEFAULT_TBI_COMPAT_ENABLE); 3575 e1000_set_tbi_compatibility_82543(hw, tbi_compatibility); 3576 3577 /* 3578 * MSI Enable 3579 */ 3580 Adapter->msi_enable = 3581 e1000g_get_prop(Adapter, "MSIEnable", 3582 0, 1, DEFAULT_MSI_ENABLE); 3583 3584 /* 3585 * Interrupt Throttling Rate 3586 */ 3587 Adapter->intr_throttling_rate = 3588 e1000g_get_prop(Adapter, "intr_throttling_rate", 3589 MIN_INTR_THROTTLING, MAX_INTR_THROTTLING, 3590 DEFAULT_INTR_THROTTLING); 3591 3592 /* 3593 * Adaptive Interrupt Blanking Enable/Disable 3594 * It is enabled by default 3595 */ 3596 Adapter->intr_adaptive = 3597 (e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1) == 1) ? 3598 B_TRUE : B_FALSE; 3599 3600 /* 3601 * Hardware checksum enable/disable parameter 3602 */ 3603 Adapter->tx_hcksum_enable = 3604 e1000g_get_prop(Adapter, "tx_hcksum_enable", 3605 0, 1, DEFAULT_TX_HCKSUM_ENABLE); 3606 /* 3607 * Checksum on/off selection via global parameters. 3608 * 3609 * If the chip is flagged as not capable of (correctly) 3610 * handling checksumming, we don't enable it on either 3611 * Rx or Tx side. Otherwise, we take this chip's settings 3612 * from the patchable global defaults. 3613 * 3614 * We advertise our capabilities only if TX offload is 3615 * enabled. On receive, the stack will accept checksummed 3616 * packets anyway, even if we haven't said we can deliver 3617 * them. 3618 */ 3619 switch (hw->mac.type) { 3620 case e1000_82540: 3621 case e1000_82544: 3622 case e1000_82545: 3623 case e1000_82545_rev_3: 3624 case e1000_82546: 3625 case e1000_82546_rev_3: 3626 case e1000_82571: 3627 case e1000_82572: 3628 case e1000_82573: 3629 case e1000_80003es2lan: 3630 break; 3631 /* 3632 * For the following Intel PRO/1000 chipsets, we have not 3633 * tested the hardware checksum offload capability, so we 3634 * disable the capability for them. 3635 * e1000_82542, 3636 * e1000_82543, 3637 * e1000_82541, 3638 * e1000_82541_rev_2, 3639 * e1000_82547, 3640 * e1000_82547_rev_2, 3641 */ 3642 default: 3643 Adapter->tx_hcksum_enable = B_FALSE; 3644 } 3645 3646 /* 3647 * Large Send Offloading(LSO) Enable/Disable 3648 * If the tx hardware checksum is not enabled, LSO should be 3649 * disabled. 3650 */ 3651 Adapter->lso_enable = 3652 e1000g_get_prop(Adapter, "lso_enable", 3653 0, 1, DEFAULT_LSO_ENABLE); 3654 3655 switch (hw->mac.type) { 3656 case e1000_82546: 3657 case e1000_82546_rev_3: 3658 if (Adapter->lso_enable) 3659 Adapter->lso_premature_issue = B_TRUE; 3660 /* FALLTHRU */ 3661 case e1000_82571: 3662 case e1000_82572: 3663 case e1000_82573: 3664 case e1000_80003es2lan: 3665 break; 3666 default: 3667 Adapter->lso_enable = B_FALSE; 3668 } 3669 3670 if (!Adapter->tx_hcksum_enable) { 3671 Adapter->lso_premature_issue = B_FALSE; 3672 Adapter->lso_enable = B_FALSE; 3673 } 3674 3675 /* 3676 * If mem_workaround_82546 is enabled, the rx buffer allocated by 3677 * e1000_82545, e1000_82546 and e1000_82546_rev_3 3678 * will not cross 64k boundary. 3679 */ 3680 Adapter->mem_workaround_82546 = 3681 e1000g_get_prop(Adapter, "mem_workaround_82546", 3682 0, 1, DEFAULT_MEM_WORKAROUND_82546); 3683 } 3684 3685 /* 3686 * e1000g_get_prop - routine to read properties 3687 * 3688 * Get a user-configure property value out of the configuration 3689 * file e1000g.conf. 3690 * 3691 * Caller provides name of the property, a default value, a minimum 3692 * value, and a maximum value. 3693 * 3694 * Return configured value of the property, with default, minimum and 3695 * maximum properly applied. 3696 */ 3697 static int 3698 e1000g_get_prop(struct e1000g *Adapter, /* point to per-adapter structure */ 3699 char *propname, /* name of the property */ 3700 int minval, /* minimum acceptable value */ 3701 int maxval, /* maximim acceptable value */ 3702 int defval) /* default value */ 3703 { 3704 int propval; /* value returned for requested property */ 3705 int *props; /* point to array of properties returned */ 3706 uint_t nprops; /* number of property value returned */ 3707 3708 /* 3709 * get the array of properties from the config file 3710 */ 3711 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip, 3712 DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) { 3713 /* got some properties, test if we got enough */ 3714 if (Adapter->instance < nprops) { 3715 propval = props[Adapter->instance]; 3716 } else { 3717 /* not enough properties configured */ 3718 propval = defval; 3719 E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL, 3720 "Not Enough %s values found in e1000g.conf" 3721 " - set to %d\n", 3722 propname, propval); 3723 } 3724 3725 /* free memory allocated for properties */ 3726 ddi_prop_free(props); 3727 3728 } else { 3729 propval = defval; 3730 } 3731 3732 /* 3733 * enforce limits 3734 */ 3735 if (propval > maxval) { 3736 propval = maxval; 3737 E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL, 3738 "Too High %s value in e1000g.conf - set to %d\n", 3739 propname, propval); 3740 } 3741 3742 if (propval < minval) { 3743 propval = minval; 3744 E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL, 3745 "Too Low %s value in e1000g.conf - set to %d\n", 3746 propname, propval); 3747 } 3748 3749 return (propval); 3750 } 3751 3752 static boolean_t 3753 e1000g_link_check(struct e1000g *Adapter) 3754 { 3755 uint16_t speed, duplex, phydata; 3756 boolean_t link_changed = B_FALSE; 3757 struct e1000_hw *hw; 3758 uint32_t reg_tarc; 3759 3760 hw = &Adapter->shared; 3761 3762 if (e1000g_link_up(Adapter)) { 3763 /* 3764 * The Link is up, check whether it was marked as down earlier 3765 */ 3766 if (Adapter->link_state != LINK_STATE_UP) { 3767 (void) e1000_get_speed_and_duplex(hw, &speed, &duplex); 3768 Adapter->link_speed = speed; 3769 Adapter->link_duplex = duplex; 3770 Adapter->link_state = LINK_STATE_UP; 3771 link_changed = B_TRUE; 3772 3773 if (Adapter->link_speed == SPEED_1000) 3774 Adapter->stall_threshold = TX_STALL_TIME_2S; 3775 else 3776 Adapter->stall_threshold = TX_STALL_TIME_8S; 3777 3778 Adapter->tx_link_down_timeout = 0; 3779 3780 if ((hw->mac.type == e1000_82571) || 3781 (hw->mac.type == e1000_82572)) { 3782 reg_tarc = E1000_READ_REG(hw, E1000_TARC(0)); 3783 if (speed == SPEED_1000) 3784 reg_tarc |= (1 << 21); 3785 else 3786 reg_tarc &= ~(1 << 21); 3787 E1000_WRITE_REG(hw, E1000_TARC(0), reg_tarc); 3788 } 3789 } 3790 Adapter->smartspeed = 0; 3791 } else { 3792 if (Adapter->link_state != LINK_STATE_DOWN) { 3793 Adapter->link_speed = 0; 3794 Adapter->link_duplex = 0; 3795 Adapter->link_state = LINK_STATE_DOWN; 3796 link_changed = B_TRUE; 3797 3798 /* 3799 * SmartSpeed workaround for Tabor/TanaX, When the 3800 * driver loses link disable auto master/slave 3801 * resolution. 3802 */ 3803 if (hw->phy.type == e1000_phy_igp) { 3804 (void) e1000_read_phy_reg(hw, 3805 PHY_1000T_CTRL, &phydata); 3806 phydata |= CR_1000T_MS_ENABLE; 3807 (void) e1000_write_phy_reg(hw, 3808 PHY_1000T_CTRL, phydata); 3809 } 3810 } else { 3811 e1000g_smartspeed(Adapter); 3812 } 3813 3814 if (Adapter->e1000g_state & E1000G_STARTED) { 3815 if (Adapter->tx_link_down_timeout < 3816 MAX_TX_LINK_DOWN_TIMEOUT) { 3817 Adapter->tx_link_down_timeout++; 3818 } else if (Adapter->tx_link_down_timeout == 3819 MAX_TX_LINK_DOWN_TIMEOUT) { 3820 e1000g_tx_clean(Adapter); 3821 Adapter->tx_link_down_timeout++; 3822 } 3823 } 3824 } 3825 3826 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) 3827 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED); 3828 3829 return (link_changed); 3830 } 3831 3832 /* 3833 * e1000g_reset_link - Using the link properties to setup the link 3834 */ 3835 int 3836 e1000g_reset_link(struct e1000g *Adapter) 3837 { 3838 struct e1000_mac_info *mac; 3839 struct e1000_phy_info *phy; 3840 boolean_t invalid; 3841 3842 mac = &Adapter->shared.mac; 3843 phy = &Adapter->shared.phy; 3844 invalid = B_FALSE; 3845 3846 if (Adapter->param_adv_autoneg == 1) { 3847 mac->autoneg = B_TRUE; 3848 phy->autoneg_advertised = 0; 3849 3850 /* 3851 * 1000hdx is not supported for autonegotiation 3852 */ 3853 if (Adapter->param_adv_1000fdx == 1) 3854 phy->autoneg_advertised |= ADVERTISE_1000_FULL; 3855 3856 if (Adapter->param_adv_100fdx == 1) 3857 phy->autoneg_advertised |= ADVERTISE_100_FULL; 3858 3859 if (Adapter->param_adv_100hdx == 1) 3860 phy->autoneg_advertised |= ADVERTISE_100_HALF; 3861 3862 if (Adapter->param_adv_10fdx == 1) 3863 phy->autoneg_advertised |= ADVERTISE_10_FULL; 3864 3865 if (Adapter->param_adv_10hdx == 1) 3866 phy->autoneg_advertised |= ADVERTISE_10_HALF; 3867 3868 if (phy->autoneg_advertised == 0) 3869 invalid = B_TRUE; 3870 } else { 3871 mac->autoneg = B_FALSE; 3872 3873 /* 3874 * 1000fdx and 1000hdx are not supported for forced link 3875 */ 3876 if (Adapter->param_adv_100fdx == 1) 3877 mac->forced_speed_duplex = ADVERTISE_100_FULL; 3878 else if (Adapter->param_adv_100hdx == 1) 3879 mac->forced_speed_duplex = ADVERTISE_100_HALF; 3880 else if (Adapter->param_adv_10fdx == 1) 3881 mac->forced_speed_duplex = ADVERTISE_10_FULL; 3882 else if (Adapter->param_adv_10hdx == 1) 3883 mac->forced_speed_duplex = ADVERTISE_10_HALF; 3884 else 3885 invalid = B_TRUE; 3886 3887 } 3888 3889 if (invalid) { 3890 e1000g_log(Adapter, CE_WARN, 3891 "Invalid link sets. Setup link to" 3892 "support autonegotiation with all link capabilities."); 3893 mac->autoneg = B_TRUE; 3894 phy->autoneg_advertised = ADVERTISE_1000_FULL | 3895 ADVERTISE_100_FULL | ADVERTISE_100_HALF | 3896 ADVERTISE_10_FULL | ADVERTISE_10_HALF; 3897 } 3898 3899 return (e1000_setup_link(&Adapter->shared)); 3900 } 3901 3902 static void 3903 e1000g_timer_tx_resched(struct e1000g *Adapter) 3904 { 3905 e1000g_tx_ring_t *tx_ring = Adapter->tx_ring; 3906 3907 rw_enter(&Adapter->chip_lock, RW_READER); 3908 3909 if (tx_ring->resched_needed && 3910 ((ddi_get_lbolt() - tx_ring->resched_timestamp) > 3911 drv_usectohz(1000000)) && 3912 (Adapter->e1000g_state & E1000G_STARTED) && 3913 (tx_ring->tbd_avail >= DEFAULT_TX_NO_RESOURCE)) { 3914 tx_ring->resched_needed = B_FALSE; 3915 mac_tx_update(Adapter->mh); 3916 E1000G_STAT(tx_ring->stat_reschedule); 3917 E1000G_STAT(tx_ring->stat_timer_reschedule); 3918 } 3919 3920 rw_exit(&Adapter->chip_lock); 3921 } 3922 3923 static void 3924 e1000g_local_timer(void *ws) 3925 { 3926 struct e1000g *Adapter = (struct e1000g *)ws; 3927 struct e1000_hw *hw; 3928 e1000g_ether_addr_t ether_addr; 3929 boolean_t link_changed; 3930 3931 hw = &Adapter->shared; 3932 3933 if (Adapter->e1000g_state & E1000G_ERROR) { 3934 rw_enter(&Adapter->chip_lock, RW_WRITER); 3935 Adapter->e1000g_state &= ~E1000G_ERROR; 3936 rw_exit(&Adapter->chip_lock); 3937 3938 Adapter->reset_count++; 3939 if (e1000g_global_reset(Adapter)) { 3940 ddi_fm_service_impact(Adapter->dip, 3941 DDI_SERVICE_RESTORED); 3942 e1000g_timer_tx_resched(Adapter); 3943 } else 3944 ddi_fm_service_impact(Adapter->dip, 3945 DDI_SERVICE_LOST); 3946 return; 3947 } 3948 3949 if (e1000g_stall_check(Adapter)) { 3950 E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL, 3951 "Tx stall detected. Activate automatic recovery.\n"); 3952 e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL); 3953 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST); 3954 Adapter->reset_count++; 3955 if (e1000g_reset_adapter(Adapter)) { 3956 ddi_fm_service_impact(Adapter->dip, 3957 DDI_SERVICE_RESTORED); 3958 e1000g_timer_tx_resched(Adapter); 3959 } 3960 return; 3961 } 3962 3963 link_changed = B_FALSE; 3964 rw_enter(&Adapter->chip_lock, RW_READER); 3965 if (Adapter->link_complete) 3966 link_changed = e1000g_link_check(Adapter); 3967 rw_exit(&Adapter->chip_lock); 3968 3969 if (link_changed) { 3970 if (!Adapter->reset_flag) 3971 mac_link_update(Adapter->mh, Adapter->link_state); 3972 if (Adapter->link_state == LINK_STATE_UP) 3973 Adapter->reset_flag = B_FALSE; 3974 } 3975 /* 3976 * Workaround for esb2. Data stuck in fifo on a link 3977 * down event. Reset the adapter to recover it. 3978 */ 3979 if (Adapter->esb2_workaround) { 3980 Adapter->esb2_workaround = B_FALSE; 3981 (void) e1000g_reset_adapter(Adapter); 3982 return; 3983 } 3984 3985 /* 3986 * With 82571 controllers, any locally administered address will 3987 * be overwritten when there is a reset on the other port. 3988 * Detect this circumstance and correct it. 3989 */ 3990 if ((hw->mac.type == e1000_82571) && 3991 (e1000_get_laa_state_82571(hw) == B_TRUE)) { 3992 ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0); 3993 ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1); 3994 3995 ether_addr.reg.low = ntohl(ether_addr.reg.low); 3996 ether_addr.reg.high = ntohl(ether_addr.reg.high); 3997 3998 if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) || 3999 (ether_addr.mac.addr[4] != hw->mac.addr[1]) || 4000 (ether_addr.mac.addr[3] != hw->mac.addr[2]) || 4001 (ether_addr.mac.addr[2] != hw->mac.addr[3]) || 4002 (ether_addr.mac.addr[1] != hw->mac.addr[4]) || 4003 (ether_addr.mac.addr[0] != hw->mac.addr[5])) { 4004 e1000_rar_set(hw, hw->mac.addr, 0); 4005 } 4006 } 4007 4008 /* 4009 * Long TTL workaround for 82541/82547 4010 */ 4011 (void) e1000_igp_ttl_workaround_82547(hw); 4012 4013 /* 4014 * Check for Adaptive IFS settings If there are lots of collisions 4015 * change the value in steps... 4016 * These properties should only be set for 10/100 4017 */ 4018 if ((hw->phy.media_type == e1000_media_type_copper) && 4019 ((Adapter->link_speed == SPEED_100) || 4020 (Adapter->link_speed == SPEED_10))) { 4021 e1000_update_adaptive(hw); 4022 } 4023 /* 4024 * Set Timer Interrupts 4025 */ 4026 E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0); 4027 4028 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) 4029 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED); 4030 else 4031 e1000g_timer_tx_resched(Adapter); 4032 4033 restart_watchdog_timer(Adapter); 4034 } 4035 4036 /* 4037 * The function e1000g_link_timer() is called when the timer for link setup 4038 * is expired, which indicates the completion of the link setup. The link 4039 * state will not be updated until the link setup is completed. And the 4040 * link state will not be sent to the upper layer through mac_link_update() 4041 * in this function. It will be updated in the local timer routine or the 4042 * interrupt service routine after the interface is started (plumbed). 4043 */ 4044 static void 4045 e1000g_link_timer(void *arg) 4046 { 4047 struct e1000g *Adapter = (struct e1000g *)arg; 4048 4049 mutex_enter(&Adapter->link_lock); 4050 Adapter->link_complete = B_TRUE; 4051 Adapter->link_tid = 0; 4052 mutex_exit(&Adapter->link_lock); 4053 } 4054 4055 /* 4056 * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf 4057 * 4058 * This function read the forced speed and duplex for 10/100 Mbps speeds 4059 * and also for 1000 Mbps speeds from the e1000g.conf file 4060 */ 4061 static void 4062 e1000g_force_speed_duplex(struct e1000g *Adapter) 4063 { 4064 int forced; 4065 struct e1000_mac_info *mac = &Adapter->shared.mac; 4066 struct e1000_phy_info *phy = &Adapter->shared.phy; 4067 4068 /* 4069 * get value out of config file 4070 */ 4071 forced = e1000g_get_prop(Adapter, "ForceSpeedDuplex", 4072 GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY); 4073 4074 switch (forced) { 4075 case GDIAG_10_HALF: 4076 /* 4077 * Disable Auto Negotiation 4078 */ 4079 mac->autoneg = B_FALSE; 4080 mac->forced_speed_duplex = ADVERTISE_10_HALF; 4081 break; 4082 case GDIAG_10_FULL: 4083 /* 4084 * Disable Auto Negotiation 4085 */ 4086 mac->autoneg = B_FALSE; 4087 mac->forced_speed_duplex = ADVERTISE_10_FULL; 4088 break; 4089 case GDIAG_100_HALF: 4090 /* 4091 * Disable Auto Negotiation 4092 */ 4093 mac->autoneg = B_FALSE; 4094 mac->forced_speed_duplex = ADVERTISE_100_HALF; 4095 break; 4096 case GDIAG_100_FULL: 4097 /* 4098 * Disable Auto Negotiation 4099 */ 4100 mac->autoneg = B_FALSE; 4101 mac->forced_speed_duplex = ADVERTISE_100_FULL; 4102 break; 4103 case GDIAG_1000_FULL: 4104 /* 4105 * The gigabit spec requires autonegotiation. Therefore, 4106 * when the user wants to force the speed to 1000Mbps, we 4107 * enable AutoNeg, but only allow the harware to advertise 4108 * 1000Mbps. This is different from 10/100 operation, where 4109 * we are allowed to link without any negotiation. 4110 */ 4111 mac->autoneg = B_TRUE; 4112 phy->autoneg_advertised = ADVERTISE_1000_FULL; 4113 break; 4114 default: /* obey the setting of AutoNegAdvertised */ 4115 mac->autoneg = B_TRUE; 4116 phy->autoneg_advertised = 4117 (uint16_t)e1000g_get_prop(Adapter, "AutoNegAdvertised", 4118 0, AUTONEG_ADVERTISE_SPEED_DEFAULT, 4119 AUTONEG_ADVERTISE_SPEED_DEFAULT); 4120 break; 4121 } /* switch */ 4122 } 4123 4124 /* 4125 * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf 4126 * 4127 * This function reads MaxFrameSize from e1000g.conf 4128 */ 4129 static void 4130 e1000g_get_max_frame_size(struct e1000g *Adapter) 4131 { 4132 int max_frame; 4133 struct e1000_mac_info *mac = &Adapter->shared.mac; 4134 struct e1000_phy_info *phy = &Adapter->shared.phy; 4135 4136 /* 4137 * get value out of config file 4138 */ 4139 max_frame = e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0); 4140 4141 switch (max_frame) { 4142 case 0: 4143 Adapter->default_mtu = ETHERMTU; 4144 break; 4145 /* 4146 * To avoid excessive memory allocation for rx buffers, 4147 * the bytes of E1000G_IPALIGNPRESERVEROOM are reserved. 4148 */ 4149 case 1: 4150 Adapter->default_mtu = FRAME_SIZE_UPTO_4K - 4151 sizeof (struct ether_vlan_header) - ETHERFCSL - 4152 E1000G_IPALIGNPRESERVEROOM; 4153 break; 4154 case 2: 4155 Adapter->default_mtu = FRAME_SIZE_UPTO_8K - 4156 sizeof (struct ether_vlan_header) - ETHERFCSL - 4157 E1000G_IPALIGNPRESERVEROOM; 4158 break; 4159 case 3: 4160 if (mac->type >= e1000_82571) 4161 Adapter->default_mtu = MAXIMUM_MTU; 4162 else 4163 Adapter->default_mtu = FRAME_SIZE_UPTO_16K - 4164 sizeof (struct ether_vlan_header) - ETHERFCSL - 4165 E1000G_IPALIGNPRESERVEROOM; 4166 break; 4167 default: 4168 Adapter->default_mtu = ETHERMTU; 4169 break; 4170 } /* switch */ 4171 4172 Adapter->max_frame_size = Adapter->default_mtu + 4173 sizeof (struct ether_vlan_header) + ETHERFCSL; 4174 4175 /* ich8 does not do jumbo frames */ 4176 if (mac->type == e1000_ich8lan) { 4177 Adapter->default_mtu = ETHERMTU; 4178 Adapter->max_frame_size = ETHERMTU + 4179 sizeof (struct ether_vlan_header) + ETHERFCSL; 4180 } 4181 4182 /* ich9 does not do jumbo frames on one phy type */ 4183 if ((mac->type == e1000_ich9lan) && 4184 (phy->type == e1000_phy_ife)) { 4185 Adapter->default_mtu = ETHERMTU; 4186 Adapter->max_frame_size = ETHERMTU + 4187 sizeof (struct ether_vlan_header) + ETHERFCSL; 4188 } 4189 } 4190 4191 static void 4192 arm_watchdog_timer(struct e1000g *Adapter) 4193 { 4194 Adapter->watchdog_tid = 4195 timeout(e1000g_local_timer, 4196 (void *)Adapter, 1 * drv_usectohz(1000000)); 4197 } 4198 #pragma inline(arm_watchdog_timer) 4199 4200 static void 4201 enable_watchdog_timer(struct e1000g *Adapter) 4202 { 4203 mutex_enter(&Adapter->watchdog_lock); 4204 4205 if (!Adapter->watchdog_timer_enabled) { 4206 Adapter->watchdog_timer_enabled = B_TRUE; 4207 Adapter->watchdog_timer_started = B_TRUE; 4208 arm_watchdog_timer(Adapter); 4209 } 4210 4211 mutex_exit(&Adapter->watchdog_lock); 4212 } 4213 4214 static void 4215 disable_watchdog_timer(struct e1000g *Adapter) 4216 { 4217 timeout_id_t tid; 4218 4219 mutex_enter(&Adapter->watchdog_lock); 4220 4221 Adapter->watchdog_timer_enabled = B_FALSE; 4222 Adapter->watchdog_timer_started = B_FALSE; 4223 tid = Adapter->watchdog_tid; 4224 Adapter->watchdog_tid = 0; 4225 4226 mutex_exit(&Adapter->watchdog_lock); 4227 4228 if (tid != 0) 4229 (void) untimeout(tid); 4230 } 4231 4232 static void 4233 start_watchdog_timer(struct e1000g *Adapter) 4234 { 4235 mutex_enter(&Adapter->watchdog_lock); 4236 4237 if (Adapter->watchdog_timer_enabled) { 4238 if (!Adapter->watchdog_timer_started) { 4239 Adapter->watchdog_timer_started = B_TRUE; 4240 arm_watchdog_timer(Adapter); 4241 } 4242 } 4243 4244 mutex_exit(&Adapter->watchdog_lock); 4245 } 4246 4247 static void 4248 restart_watchdog_timer(struct e1000g *Adapter) 4249 { 4250 mutex_enter(&Adapter->watchdog_lock); 4251 4252 if (Adapter->watchdog_timer_started) 4253 arm_watchdog_timer(Adapter); 4254 4255 mutex_exit(&Adapter->watchdog_lock); 4256 } 4257 4258 static void 4259 stop_watchdog_timer(struct e1000g *Adapter) 4260 { 4261 timeout_id_t tid; 4262 4263 mutex_enter(&Adapter->watchdog_lock); 4264 4265 Adapter->watchdog_timer_started = B_FALSE; 4266 tid = Adapter->watchdog_tid; 4267 Adapter->watchdog_tid = 0; 4268 4269 mutex_exit(&Adapter->watchdog_lock); 4270 4271 if (tid != 0) 4272 (void) untimeout(tid); 4273 } 4274 4275 static void 4276 stop_link_timer(struct e1000g *Adapter) 4277 { 4278 timeout_id_t tid; 4279 4280 /* Disable the link timer */ 4281 mutex_enter(&Adapter->link_lock); 4282 4283 tid = Adapter->link_tid; 4284 Adapter->link_tid = 0; 4285 4286 mutex_exit(&Adapter->link_lock); 4287 4288 if (tid != 0) 4289 (void) untimeout(tid); 4290 } 4291 4292 static void 4293 stop_82547_timer(e1000g_tx_ring_t *tx_ring) 4294 { 4295 timeout_id_t tid; 4296 4297 /* Disable the tx timer for 82547 chipset */ 4298 mutex_enter(&tx_ring->tx_lock); 4299 4300 tx_ring->timer_enable_82547 = B_FALSE; 4301 tid = tx_ring->timer_id_82547; 4302 tx_ring->timer_id_82547 = 0; 4303 4304 mutex_exit(&tx_ring->tx_lock); 4305 4306 if (tid != 0) 4307 (void) untimeout(tid); 4308 } 4309 4310 void 4311 e1000g_clear_interrupt(struct e1000g *Adapter) 4312 { 4313 E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 4314 0xffffffff & ~E1000_IMS_RXSEQ); 4315 } 4316 4317 void 4318 e1000g_mask_interrupt(struct e1000g *Adapter) 4319 { 4320 E1000_WRITE_REG(&Adapter->shared, E1000_IMS, 4321 IMS_ENABLE_MASK & ~E1000_IMS_TXDW); 4322 4323 if (Adapter->tx_intr_enable) 4324 e1000g_mask_tx_interrupt(Adapter); 4325 } 4326 4327 /* 4328 * This routine is called by e1000g_quiesce(), therefore must not block. 4329 */ 4330 void 4331 e1000g_clear_all_interrupts(struct e1000g *Adapter) 4332 { 4333 E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff); 4334 } 4335 4336 void 4337 e1000g_mask_tx_interrupt(struct e1000g *Adapter) 4338 { 4339 E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000_IMS_TXDW); 4340 } 4341 4342 void 4343 e1000g_clear_tx_interrupt(struct e1000g *Adapter) 4344 { 4345 E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000_IMS_TXDW); 4346 } 4347 4348 static void 4349 e1000g_smartspeed(struct e1000g *Adapter) 4350 { 4351 struct e1000_hw *hw = &Adapter->shared; 4352 uint16_t phy_status; 4353 uint16_t phy_ctrl; 4354 4355 /* 4356 * If we're not T-or-T, or we're not autoneg'ing, or we're not 4357 * advertising 1000Full, we don't even use the workaround 4358 */ 4359 if ((hw->phy.type != e1000_phy_igp) || 4360 !hw->mac.autoneg || 4361 !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL)) 4362 return; 4363 4364 /* 4365 * True if this is the first call of this function or after every 4366 * 30 seconds of not having link 4367 */ 4368 if (Adapter->smartspeed == 0) { 4369 /* 4370 * If Master/Slave config fault is asserted twice, we 4371 * assume back-to-back 4372 */ 4373 (void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4374 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) 4375 return; 4376 4377 (void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4378 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) 4379 return; 4380 /* 4381 * We're assuming back-2-back because our status register 4382 * insists! there's a fault in the master/slave 4383 * relationship that was "negotiated" 4384 */ 4385 (void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4386 /* 4387 * Is the phy configured for manual configuration of 4388 * master/slave? 4389 */ 4390 if (phy_ctrl & CR_1000T_MS_ENABLE) { 4391 /* 4392 * Yes. Then disable manual configuration (enable 4393 * auto configuration) of master/slave 4394 */ 4395 phy_ctrl &= ~CR_1000T_MS_ENABLE; 4396 (void) e1000_write_phy_reg(hw, 4397 PHY_1000T_CTRL, phy_ctrl); 4398 /* 4399 * Effectively starting the clock 4400 */ 4401 Adapter->smartspeed++; 4402 /* 4403 * Restart autonegotiation 4404 */ 4405 if (!e1000_phy_setup_autoneg(hw) && 4406 !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) { 4407 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4408 MII_CR_RESTART_AUTO_NEG); 4409 (void) e1000_write_phy_reg(hw, 4410 PHY_CONTROL, phy_ctrl); 4411 } 4412 } 4413 return; 4414 /* 4415 * Has 6 seconds transpired still without link? Remember, 4416 * you should reset the smartspeed counter once you obtain 4417 * link 4418 */ 4419 } else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { 4420 /* 4421 * Yes. Remember, we did at the start determine that 4422 * there's a master/slave configuration fault, so we're 4423 * still assuming there's someone on the other end, but we 4424 * just haven't yet been able to talk to it. We then 4425 * re-enable auto configuration of master/slave to see if 4426 * we're running 2/3 pair cables. 4427 */ 4428 /* 4429 * If still no link, perhaps using 2/3 pair cable 4430 */ 4431 (void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4432 phy_ctrl |= CR_1000T_MS_ENABLE; 4433 (void) e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); 4434 /* 4435 * Restart autoneg with phy enabled for manual 4436 * configuration of master/slave 4437 */ 4438 if (!e1000_phy_setup_autoneg(hw) && 4439 !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) { 4440 phy_ctrl |= 4441 (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); 4442 (void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl); 4443 } 4444 /* 4445 * Hopefully, there are no more faults and we've obtained 4446 * link as a result. 4447 */ 4448 } 4449 /* 4450 * Restart process after E1000_SMARTSPEED_MAX iterations (30 4451 * seconds) 4452 */ 4453 if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX) 4454 Adapter->smartspeed = 0; 4455 } 4456 4457 static boolean_t 4458 is_valid_mac_addr(uint8_t *mac_addr) 4459 { 4460 const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 }; 4461 const uint8_t addr_test2[6] = 4462 { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 4463 4464 if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) || 4465 !(bcmp(addr_test2, mac_addr, ETHERADDRL))) 4466 return (B_FALSE); 4467 4468 return (B_TRUE); 4469 } 4470 4471 /* 4472 * e1000g_stall_check - check for tx stall 4473 * 4474 * This function checks if the adapter is stalled (in transmit). 4475 * 4476 * It is called each time the watchdog timeout is invoked. 4477 * If the transmit descriptor reclaim continuously fails, 4478 * the watchdog value will increment by 1. If the watchdog 4479 * value exceeds the threshold, the adapter is assumed to 4480 * have stalled and need to be reset. 4481 */ 4482 static boolean_t 4483 e1000g_stall_check(struct e1000g *Adapter) 4484 { 4485 e1000g_tx_ring_t *tx_ring; 4486 4487 tx_ring = Adapter->tx_ring; 4488 4489 if (Adapter->link_state != LINK_STATE_UP) 4490 return (B_FALSE); 4491 4492 (void) e1000g_recycle(tx_ring); 4493 4494 if (Adapter->stall_flag) { 4495 Adapter->stall_flag = B_FALSE; 4496 Adapter->reset_flag = B_TRUE; 4497 return (B_TRUE); 4498 } 4499 4500 return (B_FALSE); 4501 } 4502 4503 #ifdef E1000G_DEBUG 4504 static enum ioc_reply 4505 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp) 4506 { 4507 void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd); 4508 e1000g_peekpoke_t *ppd; 4509 uint64_t mem_va; 4510 uint64_t maxoff; 4511 boolean_t peek; 4512 4513 switch (iocp->ioc_cmd) { 4514 4515 case E1000G_IOC_REG_PEEK: 4516 peek = B_TRUE; 4517 break; 4518 4519 case E1000G_IOC_REG_POKE: 4520 peek = B_FALSE; 4521 break; 4522 4523 deault: 4524 E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL, 4525 "e1000g_diag_ioctl: invalid ioctl command 0x%X\n", 4526 iocp->ioc_cmd); 4527 return (IOC_INVAL); 4528 } 4529 4530 /* 4531 * Validate format of ioctl 4532 */ 4533 if (iocp->ioc_count != sizeof (e1000g_peekpoke_t)) 4534 return (IOC_INVAL); 4535 if (mp->b_cont == NULL) 4536 return (IOC_INVAL); 4537 4538 ppd = (e1000g_peekpoke_t *)(uintptr_t)mp->b_cont->b_rptr; 4539 4540 /* 4541 * Validate request parameters 4542 */ 4543 switch (ppd->pp_acc_space) { 4544 4545 default: 4546 E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL, 4547 "e1000g_diag_ioctl: invalid access space 0x%X\n", 4548 ppd->pp_acc_space); 4549 return (IOC_INVAL); 4550 4551 case E1000G_PP_SPACE_REG: 4552 /* 4553 * Memory-mapped I/O space 4554 */ 4555 ASSERT(ppd->pp_acc_size == 4); 4556 if (ppd->pp_acc_size != 4) 4557 return (IOC_INVAL); 4558 4559 if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0) 4560 return (IOC_INVAL); 4561 4562 mem_va = 0; 4563 maxoff = 0x10000; 4564 ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg; 4565 break; 4566 4567 case E1000G_PP_SPACE_E1000G: 4568 /* 4569 * E1000g data structure! 4570 */ 4571 mem_va = (uintptr_t)e1000gp; 4572 maxoff = sizeof (struct e1000g); 4573 ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem; 4574 break; 4575 4576 } 4577 4578 if (ppd->pp_acc_offset >= maxoff) 4579 return (IOC_INVAL); 4580 4581 if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff) 4582 return (IOC_INVAL); 4583 4584 /* 4585 * All OK - go! 4586 */ 4587 ppd->pp_acc_offset += mem_va; 4588 (*ppfn)(e1000gp, ppd); 4589 return (peek ? IOC_REPLY : IOC_ACK); 4590 } 4591 4592 static void 4593 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd) 4594 { 4595 ddi_acc_handle_t handle; 4596 uint32_t *regaddr; 4597 4598 handle = e1000gp->osdep.reg_handle; 4599 regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr + 4600 (uintptr_t)ppd->pp_acc_offset); 4601 4602 ppd->pp_acc_data = ddi_get32(handle, regaddr); 4603 } 4604 4605 static void 4606 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd) 4607 { 4608 ddi_acc_handle_t handle; 4609 uint32_t *regaddr; 4610 uint32_t value; 4611 4612 handle = e1000gp->osdep.reg_handle; 4613 regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr + 4614 (uintptr_t)ppd->pp_acc_offset); 4615 value = (uint32_t)ppd->pp_acc_data; 4616 4617 ddi_put32(handle, regaddr, value); 4618 } 4619 4620 static void 4621 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd) 4622 { 4623 uint64_t value; 4624 void *vaddr; 4625 4626 vaddr = (void *)(uintptr_t)ppd->pp_acc_offset; 4627 4628 switch (ppd->pp_acc_size) { 4629 case 1: 4630 value = *(uint8_t *)vaddr; 4631 break; 4632 4633 case 2: 4634 value = *(uint16_t *)vaddr; 4635 break; 4636 4637 case 4: 4638 value = *(uint32_t *)vaddr; 4639 break; 4640 4641 case 8: 4642 value = *(uint64_t *)vaddr; 4643 break; 4644 } 4645 4646 E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL, 4647 "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n", 4648 (void *)e1000gp, (void *)ppd, value, vaddr); 4649 4650 ppd->pp_acc_data = value; 4651 } 4652 4653 static void 4654 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd) 4655 { 4656 uint64_t value; 4657 void *vaddr; 4658 4659 vaddr = (void *)(uintptr_t)ppd->pp_acc_offset; 4660 value = ppd->pp_acc_data; 4661 4662 E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL, 4663 "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n", 4664 (void *)e1000gp, (void *)ppd, value, vaddr); 4665 4666 switch (ppd->pp_acc_size) { 4667 case 1: 4668 *(uint8_t *)vaddr = (uint8_t)value; 4669 break; 4670 4671 case 2: 4672 *(uint16_t *)vaddr = (uint16_t)value; 4673 break; 4674 4675 case 4: 4676 *(uint32_t *)vaddr = (uint32_t)value; 4677 break; 4678 4679 case 8: 4680 *(uint64_t *)vaddr = (uint64_t)value; 4681 break; 4682 } 4683 } 4684 #endif 4685 4686 /* 4687 * Loopback Support 4688 */ 4689 static lb_property_t lb_normal = 4690 { normal, "normal", E1000G_LB_NONE }; 4691 static lb_property_t lb_external1000 = 4692 { external, "1000Mbps", E1000G_LB_EXTERNAL_1000 }; 4693 static lb_property_t lb_external100 = 4694 { external, "100Mbps", E1000G_LB_EXTERNAL_100 }; 4695 static lb_property_t lb_external10 = 4696 { external, "10Mbps", E1000G_LB_EXTERNAL_10 }; 4697 static lb_property_t lb_phy = 4698 { internal, "PHY", E1000G_LB_INTERNAL_PHY }; 4699 4700 static enum ioc_reply 4701 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp) 4702 { 4703 lb_info_sz_t *lbsp; 4704 lb_property_t *lbpp; 4705 struct e1000_hw *hw; 4706 uint32_t *lbmp; 4707 uint32_t size; 4708 uint32_t value; 4709 4710 hw = &Adapter->shared; 4711 4712 if (mp->b_cont == NULL) 4713 return (IOC_INVAL); 4714 4715 if (!e1000g_check_loopback_support(hw)) { 4716 e1000g_log(NULL, CE_WARN, 4717 "Loopback is not supported on e1000g%d", Adapter->instance); 4718 return (IOC_INVAL); 4719 } 4720 4721 switch (iocp->ioc_cmd) { 4722 default: 4723 return (IOC_INVAL); 4724 4725 case LB_GET_INFO_SIZE: 4726 size = sizeof (lb_info_sz_t); 4727 if (iocp->ioc_count != size) 4728 return (IOC_INVAL); 4729 4730 rw_enter(&Adapter->chip_lock, RW_WRITER); 4731 e1000g_get_phy_state(Adapter); 4732 4733 /* 4734 * Workaround for hardware faults. In order to get a stable 4735 * state of phy, we will wait for a specific interval and 4736 * try again. The time delay is an experiential value based 4737 * on our testing. 4738 */ 4739 msec_delay(100); 4740 e1000g_get_phy_state(Adapter); 4741 rw_exit(&Adapter->chip_lock); 4742 4743 value = sizeof (lb_normal); 4744 if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) || 4745 (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) || 4746 (hw->phy.media_type == e1000_media_type_fiber) || 4747 (hw->phy.media_type == e1000_media_type_internal_serdes)) { 4748 value += sizeof (lb_phy); 4749 switch (hw->mac.type) { 4750 case e1000_82571: 4751 case e1000_82572: 4752 case e1000_80003es2lan: 4753 value += sizeof (lb_external1000); 4754 break; 4755 } 4756 } 4757 if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) || 4758 (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) 4759 value += sizeof (lb_external100); 4760 if (Adapter->phy_status & MII_SR_10T_FD_CAPS) 4761 value += sizeof (lb_external10); 4762 4763 lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr; 4764 *lbsp = value; 4765 break; 4766 4767 case LB_GET_INFO: 4768 value = sizeof (lb_normal); 4769 if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) || 4770 (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) || 4771 (hw->phy.media_type == e1000_media_type_fiber) || 4772 (hw->phy.media_type == e1000_media_type_internal_serdes)) { 4773 value += sizeof (lb_phy); 4774 switch (hw->mac.type) { 4775 case e1000_82571: 4776 case e1000_82572: 4777 case e1000_80003es2lan: 4778 value += sizeof (lb_external1000); 4779 break; 4780 } 4781 } 4782 if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) || 4783 (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) 4784 value += sizeof (lb_external100); 4785 if (Adapter->phy_status & MII_SR_10T_FD_CAPS) 4786 value += sizeof (lb_external10); 4787 4788 size = value; 4789 if (iocp->ioc_count != size) 4790 return (IOC_INVAL); 4791 4792 value = 0; 4793 lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr; 4794 lbpp[value++] = lb_normal; 4795 if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) || 4796 (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) || 4797 (hw->phy.media_type == e1000_media_type_fiber) || 4798 (hw->phy.media_type == e1000_media_type_internal_serdes)) { 4799 lbpp[value++] = lb_phy; 4800 switch (hw->mac.type) { 4801 case e1000_82571: 4802 case e1000_82572: 4803 case e1000_80003es2lan: 4804 lbpp[value++] = lb_external1000; 4805 break; 4806 } 4807 } 4808 if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) || 4809 (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) 4810 lbpp[value++] = lb_external100; 4811 if (Adapter->phy_status & MII_SR_10T_FD_CAPS) 4812 lbpp[value++] = lb_external10; 4813 break; 4814 4815 case LB_GET_MODE: 4816 size = sizeof (uint32_t); 4817 if (iocp->ioc_count != size) 4818 return (IOC_INVAL); 4819 4820 lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr; 4821 *lbmp = Adapter->loopback_mode; 4822 break; 4823 4824 case LB_SET_MODE: 4825 size = 0; 4826 if (iocp->ioc_count != sizeof (uint32_t)) 4827 return (IOC_INVAL); 4828 4829 lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr; 4830 if (!e1000g_set_loopback_mode(Adapter, *lbmp)) 4831 return (IOC_INVAL); 4832 break; 4833 } 4834 4835 iocp->ioc_count = size; 4836 iocp->ioc_error = 0; 4837 4838 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) { 4839 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED); 4840 return (IOC_INVAL); 4841 } 4842 4843 return (IOC_REPLY); 4844 } 4845 4846 static boolean_t 4847 e1000g_check_loopback_support(struct e1000_hw *hw) 4848 { 4849 switch (hw->mac.type) { 4850 case e1000_82540: 4851 case e1000_82545: 4852 case e1000_82545_rev_3: 4853 case e1000_82546: 4854 case e1000_82546_rev_3: 4855 case e1000_82541: 4856 case e1000_82541_rev_2: 4857 case e1000_82547: 4858 case e1000_82547_rev_2: 4859 case e1000_82571: 4860 case e1000_82572: 4861 case e1000_82573: 4862 case e1000_82574: 4863 case e1000_80003es2lan: 4864 case e1000_ich9lan: 4865 case e1000_ich10lan: 4866 return (B_TRUE); 4867 } 4868 return (B_FALSE); 4869 } 4870 4871 static boolean_t 4872 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode) 4873 { 4874 struct e1000_hw *hw; 4875 int i, times; 4876 boolean_t link_up; 4877 4878 if (mode == Adapter->loopback_mode) 4879 return (B_TRUE); 4880 4881 hw = &Adapter->shared; 4882 times = 0; 4883 4884 Adapter->loopback_mode = mode; 4885 4886 if (mode == E1000G_LB_NONE) { 4887 /* Reset the chip */ 4888 hw->phy.autoneg_wait_to_complete = B_TRUE; 4889 (void) e1000g_reset_adapter(Adapter); 4890 hw->phy.autoneg_wait_to_complete = B_FALSE; 4891 return (B_TRUE); 4892 } 4893 4894 again: 4895 4896 rw_enter(&Adapter->chip_lock, RW_WRITER); 4897 4898 switch (mode) { 4899 default: 4900 rw_exit(&Adapter->chip_lock); 4901 return (B_FALSE); 4902 4903 case E1000G_LB_EXTERNAL_1000: 4904 e1000g_set_external_loopback_1000(Adapter); 4905 break; 4906 4907 case E1000G_LB_EXTERNAL_100: 4908 e1000g_set_external_loopback_100(Adapter); 4909 break; 4910 4911 case E1000G_LB_EXTERNAL_10: 4912 e1000g_set_external_loopback_10(Adapter); 4913 break; 4914 4915 case E1000G_LB_INTERNAL_PHY: 4916 e1000g_set_internal_loopback(Adapter); 4917 break; 4918 } 4919 4920 times++; 4921 4922 rw_exit(&Adapter->chip_lock); 4923 4924 /* Wait for link up */ 4925 for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--) 4926 msec_delay(100); 4927 4928 rw_enter(&Adapter->chip_lock, RW_WRITER); 4929 4930 link_up = e1000g_link_up(Adapter); 4931 4932 rw_exit(&Adapter->chip_lock); 4933 4934 if (!link_up) { 4935 E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL, 4936 "Failed to get the link up"); 4937 if (times < 2) { 4938 /* Reset the link */ 4939 E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL, 4940 "Reset the link ..."); 4941 (void) e1000g_reset_adapter(Adapter); 4942 goto again; 4943 } 4944 } 4945 4946 return (B_TRUE); 4947 } 4948 4949 /* 4950 * The following loopback settings are from Intel's technical 4951 * document - "How To Loopback". All the register settings and 4952 * time delay values are directly inherited from the document 4953 * without more explanations available. 4954 */ 4955 static void 4956 e1000g_set_internal_loopback(struct e1000g *Adapter) 4957 { 4958 struct e1000_hw *hw; 4959 uint32_t ctrl; 4960 uint32_t status; 4961 uint16_t phy_ctrl; 4962 uint16_t phy_reg; 4963 uint32_t txcw; 4964 4965 hw = &Adapter->shared; 4966 4967 /* Disable Smart Power Down */ 4968 phy_spd_state(hw, B_FALSE); 4969 4970 (void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl); 4971 phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10); 4972 phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000; 4973 4974 switch (hw->mac.type) { 4975 case e1000_82540: 4976 case e1000_82545: 4977 case e1000_82545_rev_3: 4978 case e1000_82546: 4979 case e1000_82546_rev_3: 4980 case e1000_82573: 4981 /* Auto-MDI/MDIX off */ 4982 (void) e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 4983 /* Reset PHY to update Auto-MDI/MDIX */ 4984 (void) e1000_write_phy_reg(hw, PHY_CONTROL, 4985 phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN); 4986 /* Reset PHY to auto-neg off and force 1000 */ 4987 (void) e1000_write_phy_reg(hw, PHY_CONTROL, 4988 phy_ctrl | MII_CR_RESET); 4989 /* 4990 * Disable PHY receiver for 82540/545/546 and 82573 Family. 4991 * See comments above e1000g_set_internal_loopback() for the 4992 * background. 4993 */ 4994 (void) e1000_write_phy_reg(hw, 29, 0x001F); 4995 (void) e1000_write_phy_reg(hw, 30, 0x8FFC); 4996 (void) e1000_write_phy_reg(hw, 29, 0x001A); 4997 (void) e1000_write_phy_reg(hw, 30, 0x8FF0); 4998 break; 4999 case e1000_80003es2lan: 5000 /* Force Link Up */ 5001 (void) e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, 5002 0x1CC); 5003 /* Sets PCS loopback at 1Gbs */ 5004 (void) e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, 5005 0x1046); 5006 break; 5007 } 5008 5009 /* 5010 * The following registers should be set for e1000_phy_bm phy type. 5011 * e1000_82574, e1000_ich10lan and some e1000_ich9lan use this phy. 5012 * For others, we do not need to set these registers. 5013 */ 5014 if (hw->phy.type == e1000_phy_bm) { 5015 /* Set Default MAC Interface speed to 1GB */ 5016 (void) e1000_read_phy_reg(hw, PHY_REG(2, 21), &phy_reg); 5017 phy_reg &= ~0x0007; 5018 phy_reg |= 0x006; 5019 (void) e1000_write_phy_reg(hw, PHY_REG(2, 21), phy_reg); 5020 /* Assert SW reset for above settings to take effect */ 5021 (void) e1000_phy_commit(hw); 5022 msec_delay(1); 5023 /* Force Full Duplex */ 5024 (void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg); 5025 (void) e1000_write_phy_reg(hw, PHY_REG(769, 16), 5026 phy_reg | 0x000C); 5027 /* Set Link Up (in force link) */ 5028 (void) e1000_read_phy_reg(hw, PHY_REG(776, 16), &phy_reg); 5029 (void) e1000_write_phy_reg(hw, PHY_REG(776, 16), 5030 phy_reg | 0x0040); 5031 /* Force Link */ 5032 (void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg); 5033 (void) e1000_write_phy_reg(hw, PHY_REG(769, 16), 5034 phy_reg | 0x0040); 5035 /* Set Early Link Enable */ 5036 (void) e1000_read_phy_reg(hw, PHY_REG(769, 20), &phy_reg); 5037 (void) e1000_write_phy_reg(hw, PHY_REG(769, 20), 5038 phy_reg | 0x0400); 5039 } 5040 5041 /* Set loopback */ 5042 (void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK); 5043 5044 msec_delay(250); 5045 5046 /* Now set up the MAC to the same speed/duplex as the PHY. */ 5047 ctrl = E1000_READ_REG(hw, E1000_CTRL); 5048 ctrl &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 5049 ctrl |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 5050 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 5051 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */ 5052 E1000_CTRL_FD); /* Force Duplex to FULL */ 5053 5054 switch (hw->mac.type) { 5055 case e1000_82540: 5056 case e1000_82545: 5057 case e1000_82545_rev_3: 5058 case e1000_82546: 5059 case e1000_82546_rev_3: 5060 /* 5061 * For some serdes we'll need to commit the writes now 5062 * so that the status is updated on link 5063 */ 5064 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 5065 E1000_WRITE_REG(hw, E1000_CTRL, ctrl); 5066 msec_delay(100); 5067 ctrl = E1000_READ_REG(hw, E1000_CTRL); 5068 } 5069 5070 if (hw->phy.media_type == e1000_media_type_copper) { 5071 /* Invert Loss of Signal */ 5072 ctrl |= E1000_CTRL_ILOS; 5073 } else { 5074 /* Set ILOS on fiber nic if half duplex is detected */ 5075 status = E1000_READ_REG(hw, E1000_STATUS); 5076 if ((status & E1000_STATUS_FD) == 0) 5077 ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU; 5078 } 5079 break; 5080 5081 case e1000_82571: 5082 case e1000_82572: 5083 /* 5084 * The fiber/SerDes versions of this adapter do not contain an 5085 * accessible PHY. Therefore, loopback beyond MAC must be done 5086 * using SerDes analog loopback. 5087 */ 5088 if (hw->phy.media_type != e1000_media_type_copper) { 5089 /* Disable autoneg by setting bit 31 of TXCW to zero */ 5090 txcw = E1000_READ_REG(hw, E1000_TXCW); 5091 txcw &= ~((uint32_t)1 << 31); 5092 E1000_WRITE_REG(hw, E1000_TXCW, txcw); 5093 5094 /* 5095 * Write 0x410 to Serdes Control register 5096 * to enable Serdes analog loopback 5097 */ 5098 E1000_WRITE_REG(hw, E1000_SCTL, 0x0410); 5099 msec_delay(10); 5100 } 5101 5102 status = E1000_READ_REG(hw, E1000_STATUS); 5103 /* Set ILOS on fiber nic if half duplex is detected */ 5104 if ((hw->phy.media_type == e1000_media_type_fiber) && 5105 ((status & E1000_STATUS_FD) == 0 || 5106 (status & E1000_STATUS_LU) == 0)) 5107 ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU; 5108 else if (hw->phy.media_type == e1000_media_type_internal_serdes) 5109 ctrl |= E1000_CTRL_SLU; 5110 break; 5111 5112 case e1000_82573: 5113 ctrl |= E1000_CTRL_ILOS; 5114 break; 5115 case e1000_ich9lan: 5116 case e1000_ich10lan: 5117 ctrl |= E1000_CTRL_SLU; 5118 break; 5119 } 5120 if (hw->phy.type == e1000_phy_bm) 5121 ctrl |= E1000_CTRL_SLU | E1000_CTRL_ILOS; 5122 5123 E1000_WRITE_REG(hw, E1000_CTRL, ctrl); 5124 } 5125 5126 static void 5127 e1000g_set_external_loopback_1000(struct e1000g *Adapter) 5128 { 5129 struct e1000_hw *hw; 5130 uint32_t rctl; 5131 uint32_t ctrl_ext; 5132 uint32_t ctrl; 5133 uint32_t status; 5134 uint32_t txcw; 5135 uint16_t phydata; 5136 5137 hw = &Adapter->shared; 5138 5139 /* Disable Smart Power Down */ 5140 phy_spd_state(hw, B_FALSE); 5141 5142 switch (hw->mac.type) { 5143 case e1000_82571: 5144 case e1000_82572: 5145 switch (hw->phy.media_type) { 5146 case e1000_media_type_copper: 5147 /* Force link up (Must be done before the PHY writes) */ 5148 ctrl = E1000_READ_REG(hw, E1000_CTRL); 5149 ctrl |= E1000_CTRL_SLU; /* Force Link Up */ 5150 E1000_WRITE_REG(hw, E1000_CTRL, ctrl); 5151 5152 rctl = E1000_READ_REG(hw, E1000_RCTL); 5153 rctl |= (E1000_RCTL_EN | 5154 E1000_RCTL_SBP | 5155 E1000_RCTL_UPE | 5156 E1000_RCTL_MPE | 5157 E1000_RCTL_LPE | 5158 E1000_RCTL_BAM); /* 0x803E */ 5159 E1000_WRITE_REG(hw, E1000_RCTL, rctl); 5160 5161 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); 5162 ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA | 5163 E1000_CTRL_EXT_SDP6_DATA | 5164 E1000_CTRL_EXT_SDP7_DATA | 5165 E1000_CTRL_EXT_SDP4_DIR | 5166 E1000_CTRL_EXT_SDP6_DIR | 5167 E1000_CTRL_EXT_SDP7_DIR); /* 0x0DD0 */ 5168 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); 5169 5170 /* 5171 * This sequence tunes the PHY's SDP and no customer 5172 * settable values. For background, see comments above 5173 * e1000g_set_internal_loopback(). 5174 */ 5175 (void) e1000_write_phy_reg(hw, 0x0, 0x140); 5176 msec_delay(10); 5177 (void) e1000_write_phy_reg(hw, 0x9, 0x1A00); 5178 (void) e1000_write_phy_reg(hw, 0x12, 0xC10); 5179 (void) e1000_write_phy_reg(hw, 0x12, 0x1C10); 5180 (void) e1000_write_phy_reg(hw, 0x1F37, 0x76); 5181 (void) e1000_write_phy_reg(hw, 0x1F33, 0x1); 5182 (void) e1000_write_phy_reg(hw, 0x1F33, 0x0); 5183 5184 (void) e1000_write_phy_reg(hw, 0x1F35, 0x65); 5185 (void) e1000_write_phy_reg(hw, 0x1837, 0x3F7C); 5186 (void) e1000_write_phy_reg(hw, 0x1437, 0x3FDC); 5187 (void) e1000_write_phy_reg(hw, 0x1237, 0x3F7C); 5188 (void) e1000_write_phy_reg(hw, 0x1137, 0x3FDC); 5189 5190 msec_delay(50); 5191 break; 5192 case e1000_media_type_fiber: 5193 case e1000_media_type_internal_serdes: 5194 status = E1000_READ_REG(hw, E1000_STATUS); 5195 if (((status & E1000_STATUS_LU) == 0) || 5196 (hw->phy.media_type == 5197 e1000_media_type_internal_serdes)) { 5198 ctrl = E1000_READ_REG(hw, E1000_CTRL); 5199 ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU; 5200 E1000_WRITE_REG(hw, E1000_CTRL, ctrl); 5201 } 5202 5203 /* Disable autoneg by setting bit 31 of TXCW to zero */ 5204 txcw = E1000_READ_REG(hw, E1000_TXCW); 5205 txcw &= ~((uint32_t)1 << 31); 5206 E1000_WRITE_REG(hw, E1000_TXCW, txcw); 5207 5208 /* 5209 * Write 0x410 to Serdes Control register 5210 * to enable Serdes analog loopback 5211 */ 5212 E1000_WRITE_REG(hw, E1000_SCTL, 0x0410); 5213 msec_delay(10); 5214 break; 5215 default: 5216 break; 5217 } 5218 break; 5219 case e1000_82574: 5220 case e1000_80003es2lan: 5221 case e1000_ich9lan: 5222 case e1000_ich10lan: 5223 (void) e1000_read_phy_reg(hw, GG82563_REG(6, 16), &phydata); 5224 (void) e1000_write_phy_reg(hw, GG82563_REG(6, 16), 5225 phydata | (1 << 5)); 5226 Adapter->param_adv_autoneg = 1; 5227 Adapter->param_adv_1000fdx = 1; 5228 (void) e1000g_reset_link(Adapter); 5229 break; 5230 } 5231 } 5232 5233 static void 5234 e1000g_set_external_loopback_100(struct e1000g *Adapter) 5235 { 5236 struct e1000_hw *hw; 5237 uint32_t ctrl; 5238 uint16_t phy_ctrl; 5239 5240 hw = &Adapter->shared; 5241 5242 /* Disable Smart Power Down */ 5243 phy_spd_state(hw, B_FALSE); 5244 5245 phy_ctrl = (MII_CR_FULL_DUPLEX | 5246 MII_CR_SPEED_100); 5247 5248 /* Force 100/FD, reset PHY */ 5249 (void) e1000_write_phy_reg(hw, PHY_CONTROL, 5250 phy_ctrl | MII_CR_RESET); /* 0xA100 */ 5251 msec_delay(10); 5252 5253 /* Force 100/FD */ 5254 (void) e1000_write_phy_reg(hw, PHY_CONTROL, 5255 phy_ctrl); /* 0x2100 */ 5256 msec_delay(10); 5257 5258 /* Now setup the MAC to the same speed/duplex as the PHY. */ 5259 ctrl = E1000_READ_REG(hw, E1000_CTRL); 5260 ctrl &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 5261 ctrl |= (E1000_CTRL_SLU | /* Force Link Up */ 5262 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 5263 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 5264 E1000_CTRL_SPD_100 | /* Force Speed to 100 */ 5265 E1000_CTRL_FD); /* Force Duplex to FULL */ 5266 5267 E1000_WRITE_REG(hw, E1000_CTRL, ctrl); 5268 } 5269 5270 static void 5271 e1000g_set_external_loopback_10(struct e1000g *Adapter) 5272 { 5273 struct e1000_hw *hw; 5274 uint32_t ctrl; 5275 uint16_t phy_ctrl; 5276 5277 hw = &Adapter->shared; 5278 5279 /* Disable Smart Power Down */ 5280 phy_spd_state(hw, B_FALSE); 5281 5282 phy_ctrl = (MII_CR_FULL_DUPLEX | 5283 MII_CR_SPEED_10); 5284 5285 /* Force 10/FD, reset PHY */ 5286 (void) e1000_write_phy_reg(hw, PHY_CONTROL, 5287 phy_ctrl | MII_CR_RESET); /* 0x8100 */ 5288 msec_delay(10); 5289 5290 /* Force 10/FD */ 5291 (void) e1000_write_phy_reg(hw, PHY_CONTROL, 5292 phy_ctrl); /* 0x0100 */ 5293 msec_delay(10); 5294 5295 /* Now setup the MAC to the same speed/duplex as the PHY. */ 5296 ctrl = E1000_READ_REG(hw, E1000_CTRL); 5297 ctrl &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 5298 ctrl |= (E1000_CTRL_SLU | /* Force Link Up */ 5299 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 5300 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 5301 E1000_CTRL_SPD_10 | /* Force Speed to 10 */ 5302 E1000_CTRL_FD); /* Force Duplex to FULL */ 5303 5304 E1000_WRITE_REG(hw, E1000_CTRL, ctrl); 5305 } 5306 5307 #ifdef __sparc 5308 static boolean_t 5309 e1000g_find_mac_address(struct e1000g *Adapter) 5310 { 5311 struct e1000_hw *hw = &Adapter->shared; 5312 uchar_t *bytes; 5313 struct ether_addr sysaddr; 5314 uint_t nelts; 5315 int err; 5316 boolean_t found = B_FALSE; 5317 5318 /* 5319 * The "vendor's factory-set address" may already have 5320 * been extracted from the chip, but if the property 5321 * "local-mac-address" is set we use that instead. 5322 * 5323 * We check whether it looks like an array of 6 5324 * bytes (which it should, if OBP set it). If we can't 5325 * make sense of it this way, we'll ignore it. 5326 */ 5327 err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 5328 DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts); 5329 if (err == DDI_PROP_SUCCESS) { 5330 if (nelts == ETHERADDRL) { 5331 while (nelts--) 5332 hw->mac.addr[nelts] = bytes[nelts]; 5333 found = B_TRUE; 5334 } 5335 ddi_prop_free(bytes); 5336 } 5337 5338 /* 5339 * Look up the OBP property "local-mac-address?". If the user has set 5340 * 'local-mac-address? = false', use "the system address" instead. 5341 */ 5342 if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0, 5343 "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) { 5344 if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) { 5345 if (localetheraddr(NULL, &sysaddr) != 0) { 5346 bcopy(&sysaddr, hw->mac.addr, ETHERADDRL); 5347 found = B_TRUE; 5348 } 5349 } 5350 ddi_prop_free(bytes); 5351 } 5352 5353 /* 5354 * Finally(!), if there's a valid "mac-address" property (created 5355 * if we netbooted from this interface), we must use this instead 5356 * of any of the above to ensure that the NFS/install server doesn't 5357 * get confused by the address changing as Solaris takes over! 5358 */ 5359 err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 5360 DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts); 5361 if (err == DDI_PROP_SUCCESS) { 5362 if (nelts == ETHERADDRL) { 5363 while (nelts--) 5364 hw->mac.addr[nelts] = bytes[nelts]; 5365 found = B_TRUE; 5366 } 5367 ddi_prop_free(bytes); 5368 } 5369 5370 if (found) { 5371 bcopy(hw->mac.addr, hw->mac.perm_addr, 5372 ETHERADDRL); 5373 } 5374 5375 return (found); 5376 } 5377 #endif 5378 5379 static int 5380 e1000g_add_intrs(struct e1000g *Adapter) 5381 { 5382 dev_info_t *devinfo; 5383 int intr_types; 5384 int rc; 5385 5386 devinfo = Adapter->dip; 5387 5388 /* Get supported interrupt types */ 5389 rc = ddi_intr_get_supported_types(devinfo, &intr_types); 5390 5391 if (rc != DDI_SUCCESS) { 5392 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL, 5393 "Get supported interrupt types failed: %d\n", rc); 5394 return (DDI_FAILURE); 5395 } 5396 5397 /* 5398 * Based on Intel Technical Advisory document (TA-160), there are some 5399 * cases where some older Intel PCI-X NICs may "advertise" to the OS 5400 * that it supports MSI, but in fact has problems. 5401 * So we should only enable MSI for PCI-E NICs and disable MSI for old 5402 * PCI/PCI-X NICs. 5403 */ 5404 if (Adapter->shared.mac.type < e1000_82571) 5405 Adapter->msi_enable = B_FALSE; 5406 5407 if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enable) { 5408 rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI); 5409 5410 if (rc != DDI_SUCCESS) { 5411 E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL, 5412 "Add MSI failed, trying Legacy interrupts\n"); 5413 } else { 5414 Adapter->intr_type = DDI_INTR_TYPE_MSI; 5415 } 5416 } 5417 5418 if ((Adapter->intr_type == 0) && 5419 (intr_types & DDI_INTR_TYPE_FIXED)) { 5420 rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED); 5421 5422 if (rc != DDI_SUCCESS) { 5423 E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL, 5424 "Add Legacy interrupts failed\n"); 5425 return (DDI_FAILURE); 5426 } 5427 5428 Adapter->intr_type = DDI_INTR_TYPE_FIXED; 5429 } 5430 5431 if (Adapter->intr_type == 0) { 5432 E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL, 5433 "No interrupts registered\n"); 5434 return (DDI_FAILURE); 5435 } 5436 5437 return (DDI_SUCCESS); 5438 } 5439 5440 /* 5441 * e1000g_intr_add() handles MSI/Legacy interrupts 5442 */ 5443 static int 5444 e1000g_intr_add(struct e1000g *Adapter, int intr_type) 5445 { 5446 dev_info_t *devinfo; 5447 int count, avail, actual; 5448 int x, y, rc, inum = 0; 5449 int flag; 5450 ddi_intr_handler_t *intr_handler; 5451 5452 devinfo = Adapter->dip; 5453 5454 /* get number of interrupts */ 5455 rc = ddi_intr_get_nintrs(devinfo, intr_type, &count); 5456 if ((rc != DDI_SUCCESS) || (count == 0)) { 5457 E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL, 5458 "Get interrupt number failed. Return: %d, count: %d\n", 5459 rc, count); 5460 return (DDI_FAILURE); 5461 } 5462 5463 /* get number of available interrupts */ 5464 rc = ddi_intr_get_navail(devinfo, intr_type, &avail); 5465 if ((rc != DDI_SUCCESS) || (avail == 0)) { 5466 E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL, 5467 "Get interrupt available number failed. " 5468 "Return: %d, available: %d\n", rc, avail); 5469 return (DDI_FAILURE); 5470 } 5471 5472 if (avail < count) { 5473 E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL, 5474 "Interrupts count: %d, available: %d\n", 5475 count, avail); 5476 } 5477 5478 /* Allocate an array of interrupt handles */ 5479 Adapter->intr_size = count * sizeof (ddi_intr_handle_t); 5480 Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP); 5481 5482 /* Set NORMAL behavior for both MSI and FIXED interrupt */ 5483 flag = DDI_INTR_ALLOC_NORMAL; 5484 5485 /* call ddi_intr_alloc() */ 5486 rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum, 5487 count, &actual, flag); 5488 5489 if ((rc != DDI_SUCCESS) || (actual == 0)) { 5490 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL, 5491 "Allocate interrupts failed: %d\n", rc); 5492 5493 kmem_free(Adapter->htable, Adapter->intr_size); 5494 return (DDI_FAILURE); 5495 } 5496 5497 if (actual < count) { 5498 E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL, 5499 "Interrupts requested: %d, received: %d\n", 5500 count, actual); 5501 } 5502 5503 Adapter->intr_cnt = actual; 5504 5505 /* Get priority for first msi, assume remaining are all the same */ 5506 rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri); 5507 5508 if (rc != DDI_SUCCESS) { 5509 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL, 5510 "Get interrupt priority failed: %d\n", rc); 5511 5512 /* Free already allocated intr */ 5513 for (y = 0; y < actual; y++) 5514 (void) ddi_intr_free(Adapter->htable[y]); 5515 5516 kmem_free(Adapter->htable, Adapter->intr_size); 5517 return (DDI_FAILURE); 5518 } 5519 5520 /* 5521 * In Legacy Interrupt mode, for PCI-Express adapters, we should 5522 * use the interrupt service routine e1000g_intr_pciexpress() 5523 * to avoid interrupt stealing when sharing interrupt with other 5524 * devices. 5525 */ 5526 if (Adapter->shared.mac.type < e1000_82571) 5527 intr_handler = (ddi_intr_handler_t *)e1000g_intr; 5528 else 5529 intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress; 5530 5531 /* Call ddi_intr_add_handler() */ 5532 for (x = 0; x < actual; x++) { 5533 rc = ddi_intr_add_handler(Adapter->htable[x], 5534 intr_handler, (caddr_t)Adapter, NULL); 5535 5536 if (rc != DDI_SUCCESS) { 5537 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL, 5538 "Add interrupt handler failed: %d\n", rc); 5539 5540 /* Remove already added handler */ 5541 for (y = 0; y < x; y++) 5542 (void) ddi_intr_remove_handler( 5543 Adapter->htable[y]); 5544 5545 /* Free already allocated intr */ 5546 for (y = 0; y < actual; y++) 5547 (void) ddi_intr_free(Adapter->htable[y]); 5548 5549 kmem_free(Adapter->htable, Adapter->intr_size); 5550 return (DDI_FAILURE); 5551 } 5552 } 5553 5554 rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap); 5555 5556 if (rc != DDI_SUCCESS) { 5557 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL, 5558 "Get interrupt cap failed: %d\n", rc); 5559 5560 /* Free already allocated intr */ 5561 for (y = 0; y < actual; y++) { 5562 (void) ddi_intr_remove_handler(Adapter->htable[y]); 5563 (void) ddi_intr_free(Adapter->htable[y]); 5564 } 5565 5566 kmem_free(Adapter->htable, Adapter->intr_size); 5567 return (DDI_FAILURE); 5568 } 5569 5570 return (DDI_SUCCESS); 5571 } 5572 5573 static int 5574 e1000g_rem_intrs(struct e1000g *Adapter) 5575 { 5576 int x; 5577 int rc; 5578 5579 for (x = 0; x < Adapter->intr_cnt; x++) { 5580 rc = ddi_intr_remove_handler(Adapter->htable[x]); 5581 if (rc != DDI_SUCCESS) { 5582 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL, 5583 "Remove intr handler failed: %d\n", rc); 5584 return (DDI_FAILURE); 5585 } 5586 5587 rc = ddi_intr_free(Adapter->htable[x]); 5588 if (rc != DDI_SUCCESS) { 5589 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL, 5590 "Free intr failed: %d\n", rc); 5591 return (DDI_FAILURE); 5592 } 5593 } 5594 5595 kmem_free(Adapter->htable, Adapter->intr_size); 5596 5597 return (DDI_SUCCESS); 5598 } 5599 5600 static int 5601 e1000g_enable_intrs(struct e1000g *Adapter) 5602 { 5603 int x; 5604 int rc; 5605 5606 /* Enable interrupts */ 5607 if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) { 5608 /* Call ddi_intr_block_enable() for MSI */ 5609 rc = ddi_intr_block_enable(Adapter->htable, 5610 Adapter->intr_cnt); 5611 if (rc != DDI_SUCCESS) { 5612 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL, 5613 "Enable block intr failed: %d\n", rc); 5614 return (DDI_FAILURE); 5615 } 5616 } else { 5617 /* Call ddi_intr_enable() for Legacy/MSI non block enable */ 5618 for (x = 0; x < Adapter->intr_cnt; x++) { 5619 rc = ddi_intr_enable(Adapter->htable[x]); 5620 if (rc != DDI_SUCCESS) { 5621 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL, 5622 "Enable intr failed: %d\n", rc); 5623 return (DDI_FAILURE); 5624 } 5625 } 5626 } 5627 5628 return (DDI_SUCCESS); 5629 } 5630 5631 static int 5632 e1000g_disable_intrs(struct e1000g *Adapter) 5633 { 5634 int x; 5635 int rc; 5636 5637 /* Disable all interrupts */ 5638 if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) { 5639 rc = ddi_intr_block_disable(Adapter->htable, 5640 Adapter->intr_cnt); 5641 if (rc != DDI_SUCCESS) { 5642 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL, 5643 "Disable block intr failed: %d\n", rc); 5644 return (DDI_FAILURE); 5645 } 5646 } else { 5647 for (x = 0; x < Adapter->intr_cnt; x++) { 5648 rc = ddi_intr_disable(Adapter->htable[x]); 5649 if (rc != DDI_SUCCESS) { 5650 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL, 5651 "Disable intr failed: %d\n", rc); 5652 return (DDI_FAILURE); 5653 } 5654 } 5655 } 5656 5657 return (DDI_SUCCESS); 5658 } 5659 5660 /* 5661 * e1000g_get_phy_state - get the state of PHY registers, save in the adapter 5662 */ 5663 static void 5664 e1000g_get_phy_state(struct e1000g *Adapter) 5665 { 5666 struct e1000_hw *hw = &Adapter->shared; 5667 5668 (void) e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl); 5669 (void) e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status); 5670 (void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &Adapter->phy_an_adv); 5671 (void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &Adapter->phy_an_exp); 5672 (void) e1000_read_phy_reg(hw, PHY_EXT_STATUS, &Adapter->phy_ext_status); 5673 (void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &Adapter->phy_1000t_ctrl); 5674 (void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, 5675 &Adapter->phy_1000t_status); 5676 (void) e1000_read_phy_reg(hw, PHY_LP_ABILITY, &Adapter->phy_lp_able); 5677 5678 Adapter->param_autoneg_cap = 5679 (Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0; 5680 Adapter->param_pause_cap = 5681 (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0; 5682 Adapter->param_asym_pause_cap = 5683 (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0; 5684 Adapter->param_1000fdx_cap = 5685 ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) || 5686 (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0; 5687 Adapter->param_1000hdx_cap = 5688 ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) || 5689 (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0; 5690 Adapter->param_100t4_cap = 5691 (Adapter->phy_status & MII_SR_100T4_CAPS) ? 1 : 0; 5692 Adapter->param_100fdx_cap = 5693 ((Adapter->phy_status & MII_SR_100X_FD_CAPS) || 5694 (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0; 5695 Adapter->param_100hdx_cap = 5696 ((Adapter->phy_status & MII_SR_100X_HD_CAPS) || 5697 (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0; 5698 Adapter->param_10fdx_cap = 5699 (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0; 5700 Adapter->param_10hdx_cap = 5701 (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0; 5702 5703 Adapter->param_adv_autoneg = hw->mac.autoneg; 5704 Adapter->param_adv_pause = 5705 (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0; 5706 Adapter->param_adv_asym_pause = 5707 (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0; 5708 Adapter->param_adv_1000hdx = 5709 (Adapter->phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0; 5710 Adapter->param_adv_100t4 = 5711 (Adapter->phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0; 5712 if (Adapter->param_adv_autoneg == 1) { 5713 Adapter->param_adv_1000fdx = 5714 (Adapter->phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0; 5715 Adapter->param_adv_100fdx = 5716 (Adapter->phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0; 5717 Adapter->param_adv_100hdx = 5718 (Adapter->phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0; 5719 Adapter->param_adv_10fdx = 5720 (Adapter->phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0; 5721 Adapter->param_adv_10hdx = 5722 (Adapter->phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0; 5723 } 5724 5725 Adapter->param_lp_autoneg = 5726 (Adapter->phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0; 5727 Adapter->param_lp_pause = 5728 (Adapter->phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0; 5729 Adapter->param_lp_asym_pause = 5730 (Adapter->phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0; 5731 Adapter->param_lp_1000fdx = 5732 (Adapter->phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0; 5733 Adapter->param_lp_1000hdx = 5734 (Adapter->phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0; 5735 Adapter->param_lp_100t4 = 5736 (Adapter->phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0; 5737 Adapter->param_lp_100fdx = 5738 (Adapter->phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0; 5739 Adapter->param_lp_100hdx = 5740 (Adapter->phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0; 5741 Adapter->param_lp_10fdx = 5742 (Adapter->phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0; 5743 Adapter->param_lp_10hdx = 5744 (Adapter->phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0; 5745 } 5746 5747 /* 5748 * FMA support 5749 */ 5750 5751 int 5752 e1000g_check_acc_handle(ddi_acc_handle_t handle) 5753 { 5754 ddi_fm_error_t de; 5755 5756 ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION); 5757 ddi_fm_acc_err_clear(handle, DDI_FME_VERSION); 5758 return (de.fme_status); 5759 } 5760 5761 int 5762 e1000g_check_dma_handle(ddi_dma_handle_t handle) 5763 { 5764 ddi_fm_error_t de; 5765 5766 ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION); 5767 return (de.fme_status); 5768 } 5769 5770 /* 5771 * The IO fault service error handling callback function 5772 */ 5773 /* ARGSUSED2 */ 5774 static int 5775 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data) 5776 { 5777 /* 5778 * as the driver can always deal with an error in any dma or 5779 * access handle, we can just return the fme_status value. 5780 */ 5781 pci_ereport_post(dip, err, NULL); 5782 return (err->fme_status); 5783 } 5784 5785 static void 5786 e1000g_fm_init(struct e1000g *Adapter) 5787 { 5788 ddi_iblock_cookie_t iblk; 5789 int fma_acc_flag, fma_dma_flag; 5790 5791 /* Only register with IO Fault Services if we have some capability */ 5792 if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) { 5793 e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC; 5794 fma_acc_flag = 1; 5795 } else { 5796 e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC; 5797 fma_acc_flag = 0; 5798 } 5799 5800 if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) { 5801 fma_dma_flag = 1; 5802 } else { 5803 fma_dma_flag = 0; 5804 } 5805 5806 (void) e1000g_set_fma_flags(Adapter, fma_acc_flag, fma_dma_flag); 5807 5808 if (Adapter->fm_capabilities) { 5809 5810 /* Register capabilities with IO Fault Services */ 5811 ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk); 5812 5813 /* 5814 * Initialize pci ereport capabilities if ereport capable 5815 */ 5816 if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) || 5817 DDI_FM_ERRCB_CAP(Adapter->fm_capabilities)) 5818 pci_ereport_setup(Adapter->dip); 5819 5820 /* 5821 * Register error callback if error callback capable 5822 */ 5823 if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities)) 5824 ddi_fm_handler_register(Adapter->dip, 5825 e1000g_fm_error_cb, (void*) Adapter); 5826 } 5827 } 5828 5829 static void 5830 e1000g_fm_fini(struct e1000g *Adapter) 5831 { 5832 /* Only unregister FMA capabilities if we registered some */ 5833 if (Adapter->fm_capabilities) { 5834 5835 /* 5836 * Release any resources allocated by pci_ereport_setup() 5837 */ 5838 if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) || 5839 DDI_FM_ERRCB_CAP(Adapter->fm_capabilities)) 5840 pci_ereport_teardown(Adapter->dip); 5841 5842 /* 5843 * Un-register error callback if error callback capable 5844 */ 5845 if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities)) 5846 ddi_fm_handler_unregister(Adapter->dip); 5847 5848 /* Unregister from IO Fault Services */ 5849 mutex_enter(&e1000g_rx_detach_lock); 5850 ddi_fm_fini(Adapter->dip); 5851 if (Adapter->priv_dip != NULL) { 5852 DEVI(Adapter->priv_dip)->devi_fmhdl = NULL; 5853 } 5854 mutex_exit(&e1000g_rx_detach_lock); 5855 } 5856 } 5857 5858 void 5859 e1000g_fm_ereport(struct e1000g *Adapter, char *detail) 5860 { 5861 uint64_t ena; 5862 char buf[FM_MAX_CLASS]; 5863 5864 (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail); 5865 ena = fm_ena_generate(0, FM_ENA_FMT1); 5866 if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) { 5867 ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP, 5868 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL); 5869 } 5870 } 5871 5872 /* 5873 * quiesce(9E) entry point. 5874 * 5875 * This function is called when the system is single-threaded at high 5876 * PIL with preemption disabled. Therefore, this function must not be 5877 * blocked. 5878 * 5879 * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure. 5880 * DDI_FAILURE indicates an error condition and should almost never happen. 5881 */ 5882 static int 5883 e1000g_quiesce(dev_info_t *devinfo) 5884 { 5885 struct e1000g *Adapter; 5886 5887 Adapter = (struct e1000g *)ddi_get_driver_private(devinfo); 5888 5889 if (Adapter == NULL) 5890 return (DDI_FAILURE); 5891 5892 e1000g_clear_all_interrupts(Adapter); 5893 5894 (void) e1000_reset_hw(&Adapter->shared); 5895 5896 /* Setup our HW Tx Head & Tail descriptor pointers */ 5897 E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0); 5898 E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0); 5899 5900 /* Setup our HW Rx Head & Tail descriptor pointers */ 5901 E1000_WRITE_REG(&Adapter->shared, E1000_RDH(0), 0); 5902 E1000_WRITE_REG(&Adapter->shared, E1000_RDT(0), 0); 5903 5904 return (DDI_SUCCESS); 5905 } 5906 5907 static int 5908 e1000g_get_def_val(struct e1000g *Adapter, mac_prop_id_t pr_num, 5909 uint_t pr_valsize, void *pr_val) 5910 { 5911 link_flowctrl_t fl; 5912 int err = 0; 5913 5914 ASSERT(pr_valsize > 0); 5915 switch (pr_num) { 5916 case MAC_PROP_AUTONEG: 5917 *(uint8_t *)pr_val = 5918 ((Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0); 5919 break; 5920 case MAC_PROP_FLOWCTRL: 5921 if (pr_valsize < sizeof (link_flowctrl_t)) 5922 return (EINVAL); 5923 fl = LINK_FLOWCTRL_BI; 5924 bcopy(&fl, pr_val, sizeof (fl)); 5925 break; 5926 case MAC_PROP_ADV_1000FDX_CAP: 5927 case MAC_PROP_EN_1000FDX_CAP: 5928 *(uint8_t *)pr_val = 5929 ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) || 5930 (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0; 5931 break; 5932 case MAC_PROP_ADV_1000HDX_CAP: 5933 case MAC_PROP_EN_1000HDX_CAP: 5934 *(uint8_t *)pr_val = 5935 ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) || 5936 (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0; 5937 break; 5938 case MAC_PROP_ADV_100FDX_CAP: 5939 case MAC_PROP_EN_100FDX_CAP: 5940 *(uint8_t *)pr_val = 5941 ((Adapter->phy_status & MII_SR_100X_FD_CAPS) || 5942 (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0; 5943 break; 5944 case MAC_PROP_ADV_100HDX_CAP: 5945 case MAC_PROP_EN_100HDX_CAP: 5946 *(uint8_t *)pr_val = 5947 ((Adapter->phy_status & MII_SR_100X_HD_CAPS) || 5948 (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0; 5949 break; 5950 case MAC_PROP_ADV_10FDX_CAP: 5951 case MAC_PROP_EN_10FDX_CAP: 5952 *(uint8_t *)pr_val = 5953 (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0; 5954 break; 5955 case MAC_PROP_ADV_10HDX_CAP: 5956 case MAC_PROP_EN_10HDX_CAP: 5957 *(uint8_t *)pr_val = 5958 (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0; 5959 break; 5960 default: 5961 err = ENOTSUP; 5962 break; 5963 } 5964 return (err); 5965 } 5966 5967 /* 5968 * synchronize the adv* and en* parameters. 5969 * 5970 * See comments in <sys/dld.h> for details of the *_en_* 5971 * parameters. The usage of ndd for setting adv parameters will 5972 * synchronize all the en parameters with the e1000g parameters, 5973 * implicitly disabling any settings made via dladm. 5974 */ 5975 static void 5976 e1000g_param_sync(struct e1000g *Adapter) 5977 { 5978 Adapter->param_en_1000fdx = Adapter->param_adv_1000fdx; 5979 Adapter->param_en_1000hdx = Adapter->param_adv_1000hdx; 5980 Adapter->param_en_100fdx = Adapter->param_adv_100fdx; 5981 Adapter->param_en_100hdx = Adapter->param_adv_100hdx; 5982 Adapter->param_en_10fdx = Adapter->param_adv_10fdx; 5983 Adapter->param_en_10hdx = Adapter->param_adv_10hdx; 5984 } 5985 5986 /* 5987 * e1000g_get_driver_control - tell manageability firmware that the driver 5988 * has control. 5989 */ 5990 static void 5991 e1000g_get_driver_control(struct e1000_hw *hw) 5992 { 5993 uint32_t ctrl_ext; 5994 uint32_t swsm; 5995 5996 /* tell manageability firmware the driver has taken over */ 5997 switch (hw->mac.type) { 5998 case e1000_82573: 5999 swsm = E1000_READ_REG(hw, E1000_SWSM); 6000 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD); 6001 break; 6002 case e1000_82571: 6003 case e1000_82572: 6004 case e1000_82574: 6005 case e1000_80003es2lan: 6006 case e1000_ich8lan: 6007 case e1000_ich9lan: 6008 case e1000_ich10lan: 6009 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); 6010 E1000_WRITE_REG(hw, E1000_CTRL_EXT, 6011 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 6012 break; 6013 default: 6014 /* no manageability firmware: do nothing */ 6015 break; 6016 } 6017 } 6018 6019 /* 6020 * e1000g_release_driver_control - tell manageability firmware that the driver 6021 * has released control. 6022 */ 6023 static void 6024 e1000g_release_driver_control(struct e1000_hw *hw) 6025 { 6026 uint32_t ctrl_ext; 6027 uint32_t swsm; 6028 6029 /* tell manageability firmware the driver has released control */ 6030 switch (hw->mac.type) { 6031 case e1000_82573: 6032 swsm = E1000_READ_REG(hw, E1000_SWSM); 6033 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD); 6034 break; 6035 case e1000_82571: 6036 case e1000_82572: 6037 case e1000_82574: 6038 case e1000_80003es2lan: 6039 case e1000_ich8lan: 6040 case e1000_ich9lan: 6041 case e1000_ich10lan: 6042 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); 6043 E1000_WRITE_REG(hw, E1000_CTRL_EXT, 6044 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 6045 break; 6046 default: 6047 /* no manageability firmware: do nothing */ 6048 break; 6049 } 6050 } 6051 6052 /* 6053 * Restore e1000g promiscuous mode. 6054 */ 6055 static void 6056 e1000g_restore_promisc(struct e1000g *Adapter) 6057 { 6058 if (Adapter->e1000g_promisc) { 6059 uint32_t rctl; 6060 6061 rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL); 6062 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM); 6063 E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl); 6064 } 6065 } 6066