1 /****************************************************************************** 2 3 Copyright (c) 2001-2014, Intel Corporation 4 All rights reserved. 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions are met: 8 9 1. Redistributions of source code must retain the above copyright notice, 10 this list of conditions and the following disclaimer. 11 12 2. Redistributions in binary form must reproduce the above copyright 13 notice, this list of conditions and the following disclaimer in the 14 documentation and/or other materials provided with the distribution. 15 16 3. Neither the name of the Intel Corporation nor the names of its 17 contributors may be used to endorse or promote products derived from 18 this software without specific prior written permission. 19 20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 POSSIBILITY OF SUCH DAMAGE. 31 32 ******************************************************************************/ 33 /*$FreeBSD$*/ 34 35 #include "e1000_api.h" 36 37 static void e1000_reload_nvm_generic(struct e1000_hw *hw); 38 39 /** 40 * e1000_init_nvm_ops_generic - Initialize NVM function pointers 41 * @hw: pointer to the HW structure 42 * 43 * Setups up the function pointers to no-op functions 44 **/ 45 void e1000_init_nvm_ops_generic(struct e1000_hw *hw) 46 { 47 struct e1000_nvm_info *nvm = &hw->nvm; 48 DEBUGFUNC("e1000_init_nvm_ops_generic"); 49 50 /* Initialize function pointers */ 51 nvm->ops.init_params = e1000_null_ops_generic; 52 nvm->ops.acquire = e1000_null_ops_generic; 53 nvm->ops.read = e1000_null_read_nvm; 54 nvm->ops.release = e1000_null_nvm_generic; 55 nvm->ops.reload = e1000_reload_nvm_generic; 56 nvm->ops.update = e1000_null_ops_generic; 57 nvm->ops.valid_led_default = e1000_null_led_default; 58 nvm->ops.validate = e1000_null_ops_generic; 59 nvm->ops.write = e1000_null_write_nvm; 60 } 61 62 /** 63 * e1000_null_nvm_read - No-op function, return 0 64 * @hw: pointer to the HW structure 65 **/ 66 s32 e1000_null_read_nvm(struct e1000_hw E1000_UNUSEDARG *hw, 67 u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b, 68 u16 E1000_UNUSEDARG *c) 69 { 70 DEBUGFUNC("e1000_null_read_nvm"); 71 return E1000_SUCCESS; 72 } 73 74 /** 75 * e1000_null_nvm_generic - No-op function, return void 76 * @hw: pointer to the HW structure 77 **/ 78 void e1000_null_nvm_generic(struct e1000_hw E1000_UNUSEDARG *hw) 79 { 80 DEBUGFUNC("e1000_null_nvm_generic"); 81 return; 82 } 83 84 /** 85 * e1000_null_led_default - No-op function, return 0 86 * @hw: pointer to the HW structure 87 **/ 88 s32 e1000_null_led_default(struct e1000_hw E1000_UNUSEDARG *hw, 89 u16 E1000_UNUSEDARG *data) 90 { 91 DEBUGFUNC("e1000_null_led_default"); 92 return E1000_SUCCESS; 93 } 94 95 /** 96 * e1000_null_write_nvm - No-op function, return 0 97 * @hw: pointer to the HW structure 98 **/ 99 s32 e1000_null_write_nvm(struct e1000_hw E1000_UNUSEDARG *hw, 100 u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b, 101 u16 E1000_UNUSEDARG *c) 102 { 103 DEBUGFUNC("e1000_null_write_nvm"); 104 return E1000_SUCCESS; 105 } 106 107 /** 108 * e1000_raise_eec_clk - Raise EEPROM clock 109 * @hw: pointer to the HW structure 110 * @eecd: pointer to the EEPROM 111 * 112 * Enable/Raise the EEPROM clock bit. 113 **/ 114 static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) 115 { 116 *eecd = *eecd | E1000_EECD_SK; 117 E1000_WRITE_REG(hw, E1000_EECD, *eecd); 118 E1000_WRITE_FLUSH(hw); 119 usec_delay(hw->nvm.delay_usec); 120 } 121 122 /** 123 * e1000_lower_eec_clk - Lower EEPROM clock 124 * @hw: pointer to the HW structure 125 * @eecd: pointer to the EEPROM 126 * 127 * Clear/Lower the EEPROM clock bit. 128 **/ 129 static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) 130 { 131 *eecd = *eecd & ~E1000_EECD_SK; 132 E1000_WRITE_REG(hw, E1000_EECD, *eecd); 133 E1000_WRITE_FLUSH(hw); 134 usec_delay(hw->nvm.delay_usec); 135 } 136 137 /** 138 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM 139 * @hw: pointer to the HW structure 140 * @data: data to send to the EEPROM 141 * @count: number of bits to shift out 142 * 143 * We need to shift 'count' bits out to the EEPROM. So, the value in the 144 * "data" parameter will be shifted out to the EEPROM one bit at a time. 145 * In order to do this, "data" must be broken down into bits. 146 **/ 147 static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) 148 { 149 struct e1000_nvm_info *nvm = &hw->nvm; 150 u32 eecd = E1000_READ_REG(hw, E1000_EECD); 151 u32 mask; 152 153 DEBUGFUNC("e1000_shift_out_eec_bits"); 154 155 mask = 0x01 << (count - 1); 156 if (nvm->type == e1000_nvm_eeprom_microwire) 157 eecd &= ~E1000_EECD_DO; 158 else 159 if (nvm->type == e1000_nvm_eeprom_spi) 160 eecd |= E1000_EECD_DO; 161 162 do { 163 eecd &= ~E1000_EECD_DI; 164 165 if (data & mask) 166 eecd |= E1000_EECD_DI; 167 168 E1000_WRITE_REG(hw, E1000_EECD, eecd); 169 E1000_WRITE_FLUSH(hw); 170 171 usec_delay(nvm->delay_usec); 172 173 e1000_raise_eec_clk(hw, &eecd); 174 e1000_lower_eec_clk(hw, &eecd); 175 176 mask >>= 1; 177 } while (mask); 178 179 eecd &= ~E1000_EECD_DI; 180 E1000_WRITE_REG(hw, E1000_EECD, eecd); 181 } 182 183 /** 184 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM 185 * @hw: pointer to the HW structure 186 * @count: number of bits to shift in 187 * 188 * In order to read a register from the EEPROM, we need to shift 'count' bits 189 * in from the EEPROM. Bits are "shifted in" by raising the clock input to 190 * the EEPROM (setting the SK bit), and then reading the value of the data out 191 * "DO" bit. During this "shifting in" process the data in "DI" bit should 192 * always be clear. 193 **/ 194 static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) 195 { 196 u32 eecd; 197 u32 i; 198 u16 data; 199 200 DEBUGFUNC("e1000_shift_in_eec_bits"); 201 202 eecd = E1000_READ_REG(hw, E1000_EECD); 203 204 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); 205 data = 0; 206 207 for (i = 0; i < count; i++) { 208 data <<= 1; 209 e1000_raise_eec_clk(hw, &eecd); 210 211 eecd = E1000_READ_REG(hw, E1000_EECD); 212 213 eecd &= ~E1000_EECD_DI; 214 if (eecd & E1000_EECD_DO) 215 data |= 1; 216 217 e1000_lower_eec_clk(hw, &eecd); 218 } 219 220 return data; 221 } 222 223 /** 224 * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion 225 * @hw: pointer to the HW structure 226 * @ee_reg: EEPROM flag for polling 227 * 228 * Polls the EEPROM status bit for either read or write completion based 229 * upon the value of 'ee_reg'. 230 **/ 231 s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) 232 { 233 u32 attempts = 100000; 234 u32 i, reg = 0; 235 236 DEBUGFUNC("e1000_poll_eerd_eewr_done"); 237 238 for (i = 0; i < attempts; i++) { 239 if (ee_reg == E1000_NVM_POLL_READ) 240 reg = E1000_READ_REG(hw, E1000_EERD); 241 else 242 reg = E1000_READ_REG(hw, E1000_EEWR); 243 244 if (reg & E1000_NVM_RW_REG_DONE) 245 return E1000_SUCCESS; 246 247 usec_delay(5); 248 } 249 250 return -E1000_ERR_NVM; 251 } 252 253 /** 254 * e1000_acquire_nvm_generic - Generic request for access to EEPROM 255 * @hw: pointer to the HW structure 256 * 257 * Set the EEPROM access request bit and wait for EEPROM access grant bit. 258 * Return successful if access grant bit set, else clear the request for 259 * EEPROM access and return -E1000_ERR_NVM (-1). 260 **/ 261 s32 e1000_acquire_nvm_generic(struct e1000_hw *hw) 262 { 263 u32 eecd = E1000_READ_REG(hw, E1000_EECD); 264 s32 timeout = E1000_NVM_GRANT_ATTEMPTS; 265 266 DEBUGFUNC("e1000_acquire_nvm_generic"); 267 268 E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ); 269 eecd = E1000_READ_REG(hw, E1000_EECD); 270 271 while (timeout) { 272 if (eecd & E1000_EECD_GNT) 273 break; 274 usec_delay(5); 275 eecd = E1000_READ_REG(hw, E1000_EECD); 276 timeout--; 277 } 278 279 if (!timeout) { 280 eecd &= ~E1000_EECD_REQ; 281 E1000_WRITE_REG(hw, E1000_EECD, eecd); 282 DEBUGOUT("Could not acquire NVM grant\n"); 283 return -E1000_ERR_NVM; 284 } 285 286 return E1000_SUCCESS; 287 } 288 289 /** 290 * e1000_standby_nvm - Return EEPROM to standby state 291 * @hw: pointer to the HW structure 292 * 293 * Return the EEPROM to a standby state. 294 **/ 295 static void e1000_standby_nvm(struct e1000_hw *hw) 296 { 297 struct e1000_nvm_info *nvm = &hw->nvm; 298 u32 eecd = E1000_READ_REG(hw, E1000_EECD); 299 300 DEBUGFUNC("e1000_standby_nvm"); 301 302 if (nvm->type == e1000_nvm_eeprom_microwire) { 303 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); 304 E1000_WRITE_REG(hw, E1000_EECD, eecd); 305 E1000_WRITE_FLUSH(hw); 306 usec_delay(nvm->delay_usec); 307 308 e1000_raise_eec_clk(hw, &eecd); 309 310 /* Select EEPROM */ 311 eecd |= E1000_EECD_CS; 312 E1000_WRITE_REG(hw, E1000_EECD, eecd); 313 E1000_WRITE_FLUSH(hw); 314 usec_delay(nvm->delay_usec); 315 316 e1000_lower_eec_clk(hw, &eecd); 317 } else if (nvm->type == e1000_nvm_eeprom_spi) { 318 /* Toggle CS to flush commands */ 319 eecd |= E1000_EECD_CS; 320 E1000_WRITE_REG(hw, E1000_EECD, eecd); 321 E1000_WRITE_FLUSH(hw); 322 usec_delay(nvm->delay_usec); 323 eecd &= ~E1000_EECD_CS; 324 E1000_WRITE_REG(hw, E1000_EECD, eecd); 325 E1000_WRITE_FLUSH(hw); 326 usec_delay(nvm->delay_usec); 327 } 328 } 329 330 /** 331 * e1000_stop_nvm - Terminate EEPROM command 332 * @hw: pointer to the HW structure 333 * 334 * Terminates the current command by inverting the EEPROM's chip select pin. 335 **/ 336 void e1000_stop_nvm(struct e1000_hw *hw) 337 { 338 u32 eecd; 339 340 DEBUGFUNC("e1000_stop_nvm"); 341 342 eecd = E1000_READ_REG(hw, E1000_EECD); 343 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 344 /* Pull CS high */ 345 eecd |= E1000_EECD_CS; 346 e1000_lower_eec_clk(hw, &eecd); 347 } else if (hw->nvm.type == e1000_nvm_eeprom_microwire) { 348 /* CS on Microwire is active-high */ 349 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); 350 E1000_WRITE_REG(hw, E1000_EECD, eecd); 351 e1000_raise_eec_clk(hw, &eecd); 352 e1000_lower_eec_clk(hw, &eecd); 353 } 354 } 355 356 /** 357 * e1000_release_nvm_generic - Release exclusive access to EEPROM 358 * @hw: pointer to the HW structure 359 * 360 * Stop any current commands to the EEPROM and clear the EEPROM request bit. 361 **/ 362 void e1000_release_nvm_generic(struct e1000_hw *hw) 363 { 364 u32 eecd; 365 366 DEBUGFUNC("e1000_release_nvm_generic"); 367 368 e1000_stop_nvm(hw); 369 370 eecd = E1000_READ_REG(hw, E1000_EECD); 371 eecd &= ~E1000_EECD_REQ; 372 E1000_WRITE_REG(hw, E1000_EECD, eecd); 373 } 374 375 /** 376 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write 377 * @hw: pointer to the HW structure 378 * 379 * Setups the EEPROM for reading and writing. 380 **/ 381 static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) 382 { 383 struct e1000_nvm_info *nvm = &hw->nvm; 384 u32 eecd = E1000_READ_REG(hw, E1000_EECD); 385 u8 spi_stat_reg; 386 387 DEBUGFUNC("e1000_ready_nvm_eeprom"); 388 389 if (nvm->type == e1000_nvm_eeprom_microwire) { 390 /* Clear SK and DI */ 391 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); 392 E1000_WRITE_REG(hw, E1000_EECD, eecd); 393 /* Set CS */ 394 eecd |= E1000_EECD_CS; 395 E1000_WRITE_REG(hw, E1000_EECD, eecd); 396 } else if (nvm->type == e1000_nvm_eeprom_spi) { 397 u16 timeout = NVM_MAX_RETRY_SPI; 398 399 /* Clear SK and CS */ 400 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); 401 E1000_WRITE_REG(hw, E1000_EECD, eecd); 402 E1000_WRITE_FLUSH(hw); 403 usec_delay(1); 404 405 /* Read "Status Register" repeatedly until the LSB is cleared. 406 * The EEPROM will signal that the command has been completed 407 * by clearing bit 0 of the internal status register. If it's 408 * not cleared within 'timeout', then error out. 409 */ 410 while (timeout) { 411 e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, 412 hw->nvm.opcode_bits); 413 spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); 414 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) 415 break; 416 417 usec_delay(5); 418 e1000_standby_nvm(hw); 419 timeout--; 420 } 421 422 if (!timeout) { 423 DEBUGOUT("SPI NVM Status error\n"); 424 return -E1000_ERR_NVM; 425 } 426 } 427 428 return E1000_SUCCESS; 429 } 430 431 /** 432 * e1000_read_nvm_spi - Read EEPROM's using SPI 433 * @hw: pointer to the HW structure 434 * @offset: offset of word in the EEPROM to read 435 * @words: number of words to read 436 * @data: word read from the EEPROM 437 * 438 * Reads a 16 bit word from the EEPROM. 439 **/ 440 s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 441 { 442 struct e1000_nvm_info *nvm = &hw->nvm; 443 u32 i = 0; 444 s32 ret_val; 445 u16 word_in; 446 u8 read_opcode = NVM_READ_OPCODE_SPI; 447 448 DEBUGFUNC("e1000_read_nvm_spi"); 449 450 /* A check for invalid values: offset too large, too many words, 451 * and not enough words. 452 */ 453 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 454 (words == 0)) { 455 DEBUGOUT("nvm parameter(s) out of bounds\n"); 456 return -E1000_ERR_NVM; 457 } 458 459 ret_val = nvm->ops.acquire(hw); 460 if (ret_val) 461 return ret_val; 462 463 ret_val = e1000_ready_nvm_eeprom(hw); 464 if (ret_val) 465 goto release; 466 467 e1000_standby_nvm(hw); 468 469 if ((nvm->address_bits == 8) && (offset >= 128)) 470 read_opcode |= NVM_A8_OPCODE_SPI; 471 472 /* Send the READ command (opcode + addr) */ 473 e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); 474 e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits); 475 476 /* Read the data. SPI NVMs increment the address with each byte 477 * read and will roll over if reading beyond the end. This allows 478 * us to read the whole NVM from any offset 479 */ 480 for (i = 0; i < words; i++) { 481 word_in = e1000_shift_in_eec_bits(hw, 16); 482 data[i] = (word_in >> 8) | (word_in << 8); 483 } 484 485 release: 486 nvm->ops.release(hw); 487 488 return ret_val; 489 } 490 491 /** 492 * e1000_read_nvm_microwire - Reads EEPROM's using microwire 493 * @hw: pointer to the HW structure 494 * @offset: offset of word in the EEPROM to read 495 * @words: number of words to read 496 * @data: word read from the EEPROM 497 * 498 * Reads a 16 bit word from the EEPROM. 499 **/ 500 s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, 501 u16 *data) 502 { 503 struct e1000_nvm_info *nvm = &hw->nvm; 504 u32 i = 0; 505 s32 ret_val; 506 u8 read_opcode = NVM_READ_OPCODE_MICROWIRE; 507 508 DEBUGFUNC("e1000_read_nvm_microwire"); 509 510 /* A check for invalid values: offset too large, too many words, 511 * and not enough words. 512 */ 513 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 514 (words == 0)) { 515 DEBUGOUT("nvm parameter(s) out of bounds\n"); 516 return -E1000_ERR_NVM; 517 } 518 519 ret_val = nvm->ops.acquire(hw); 520 if (ret_val) 521 return ret_val; 522 523 ret_val = e1000_ready_nvm_eeprom(hw); 524 if (ret_val) 525 goto release; 526 527 for (i = 0; i < words; i++) { 528 /* Send the READ command (opcode + addr) */ 529 e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); 530 e1000_shift_out_eec_bits(hw, (u16)(offset + i), 531 nvm->address_bits); 532 533 /* Read the data. For microwire, each word requires the 534 * overhead of setup and tear-down. 535 */ 536 data[i] = e1000_shift_in_eec_bits(hw, 16); 537 e1000_standby_nvm(hw); 538 } 539 540 release: 541 nvm->ops.release(hw); 542 543 return ret_val; 544 } 545 546 /** 547 * e1000_read_nvm_eerd - Reads EEPROM using EERD register 548 * @hw: pointer to the HW structure 549 * @offset: offset of word in the EEPROM to read 550 * @words: number of words to read 551 * @data: word read from the EEPROM 552 * 553 * Reads a 16 bit word from the EEPROM using the EERD register. 554 **/ 555 s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 556 { 557 struct e1000_nvm_info *nvm = &hw->nvm; 558 u32 i, eerd = 0; 559 s32 ret_val = E1000_SUCCESS; 560 561 DEBUGFUNC("e1000_read_nvm_eerd"); 562 563 /* A check for invalid values: offset too large, too many words, 564 * too many words for the offset, and not enough words. 565 */ 566 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 567 (words == 0)) { 568 DEBUGOUT("nvm parameter(s) out of bounds\n"); 569 return -E1000_ERR_NVM; 570 } 571 572 for (i = 0; i < words; i++) { 573 eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + 574 E1000_NVM_RW_REG_START; 575 576 E1000_WRITE_REG(hw, E1000_EERD, eerd); 577 ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); 578 if (ret_val) 579 break; 580 581 data[i] = (E1000_READ_REG(hw, E1000_EERD) >> 582 E1000_NVM_RW_REG_DATA); 583 } 584 585 if (ret_val) 586 DEBUGOUT1("NVM read error: %d\n", ret_val); 587 588 return ret_val; 589 } 590 591 /** 592 * e1000_write_nvm_spi - Write to EEPROM using SPI 593 * @hw: pointer to the HW structure 594 * @offset: offset within the EEPROM to be written to 595 * @words: number of words to write 596 * @data: 16 bit word(s) to be written to the EEPROM 597 * 598 * Writes data to EEPROM at offset using SPI interface. 599 * 600 * If e1000_update_nvm_checksum is not called after this function , the 601 * EEPROM will most likely contain an invalid checksum. 602 **/ 603 s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 604 { 605 struct e1000_nvm_info *nvm = &hw->nvm; 606 s32 ret_val = -E1000_ERR_NVM; 607 u16 widx = 0; 608 609 DEBUGFUNC("e1000_write_nvm_spi"); 610 611 /* A check for invalid values: offset too large, too many words, 612 * and not enough words. 613 */ 614 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 615 (words == 0)) { 616 DEBUGOUT("nvm parameter(s) out of bounds\n"); 617 return -E1000_ERR_NVM; 618 } 619 620 while (widx < words) { 621 u8 write_opcode = NVM_WRITE_OPCODE_SPI; 622 623 ret_val = nvm->ops.acquire(hw); 624 if (ret_val) 625 return ret_val; 626 627 ret_val = e1000_ready_nvm_eeprom(hw); 628 if (ret_val) { 629 nvm->ops.release(hw); 630 return ret_val; 631 } 632 633 e1000_standby_nvm(hw); 634 635 /* Send the WRITE ENABLE command (8 bit opcode) */ 636 e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, 637 nvm->opcode_bits); 638 639 e1000_standby_nvm(hw); 640 641 /* Some SPI eeproms use the 8th address bit embedded in the 642 * opcode 643 */ 644 if ((nvm->address_bits == 8) && (offset >= 128)) 645 write_opcode |= NVM_A8_OPCODE_SPI; 646 647 /* Send the Write command (8-bit opcode + addr) */ 648 e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); 649 e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), 650 nvm->address_bits); 651 652 /* Loop to allow for up to whole page write of eeprom */ 653 while (widx < words) { 654 u16 word_out = data[widx]; 655 word_out = (word_out >> 8) | (word_out << 8); 656 e1000_shift_out_eec_bits(hw, word_out, 16); 657 widx++; 658 659 if ((((offset + widx) * 2) % nvm->page_size) == 0) { 660 e1000_standby_nvm(hw); 661 break; 662 } 663 } 664 msec_delay(10); 665 nvm->ops.release(hw); 666 } 667 668 return ret_val; 669 } 670 671 /** 672 * e1000_write_nvm_microwire - Writes EEPROM using microwire 673 * @hw: pointer to the HW structure 674 * @offset: offset within the EEPROM to be written to 675 * @words: number of words to write 676 * @data: 16 bit word(s) to be written to the EEPROM 677 * 678 * Writes data to EEPROM at offset using microwire interface. 679 * 680 * If e1000_update_nvm_checksum is not called after this function , the 681 * EEPROM will most likely contain an invalid checksum. 682 **/ 683 s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, 684 u16 *data) 685 { 686 struct e1000_nvm_info *nvm = &hw->nvm; 687 s32 ret_val; 688 u32 eecd; 689 u16 words_written = 0; 690 u16 widx = 0; 691 692 DEBUGFUNC("e1000_write_nvm_microwire"); 693 694 /* A check for invalid values: offset too large, too many words, 695 * and not enough words. 696 */ 697 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 698 (words == 0)) { 699 DEBUGOUT("nvm parameter(s) out of bounds\n"); 700 return -E1000_ERR_NVM; 701 } 702 703 ret_val = nvm->ops.acquire(hw); 704 if (ret_val) 705 return ret_val; 706 707 ret_val = e1000_ready_nvm_eeprom(hw); 708 if (ret_val) 709 goto release; 710 711 e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE, 712 (u16)(nvm->opcode_bits + 2)); 713 714 e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2)); 715 716 e1000_standby_nvm(hw); 717 718 while (words_written < words) { 719 e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE, 720 nvm->opcode_bits); 721 722 e1000_shift_out_eec_bits(hw, (u16)(offset + words_written), 723 nvm->address_bits); 724 725 e1000_shift_out_eec_bits(hw, data[words_written], 16); 726 727 e1000_standby_nvm(hw); 728 729 for (widx = 0; widx < 200; widx++) { 730 eecd = E1000_READ_REG(hw, E1000_EECD); 731 if (eecd & E1000_EECD_DO) 732 break; 733 usec_delay(50); 734 } 735 736 if (widx == 200) { 737 DEBUGOUT("NVM Write did not complete\n"); 738 ret_val = -E1000_ERR_NVM; 739 goto release; 740 } 741 742 e1000_standby_nvm(hw); 743 744 words_written++; 745 } 746 747 e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE, 748 (u16)(nvm->opcode_bits + 2)); 749 750 e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2)); 751 752 release: 753 nvm->ops.release(hw); 754 755 return ret_val; 756 } 757 758 /** 759 * e1000_read_pba_string_generic - Read device part number 760 * @hw: pointer to the HW structure 761 * @pba_num: pointer to device part number 762 * @pba_num_size: size of part number buffer 763 * 764 * Reads the product board assembly (PBA) number from the EEPROM and stores 765 * the value in pba_num. 766 **/ 767 s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, 768 u32 pba_num_size) 769 { 770 s32 ret_val; 771 u16 nvm_data; 772 u16 pba_ptr; 773 u16 offset; 774 u16 length; 775 776 DEBUGFUNC("e1000_read_pba_string_generic"); 777 778 if ((hw->mac.type >= e1000_i210) && 779 !e1000_get_flash_presence_i210(hw)) { 780 DEBUGOUT("Flashless no PBA string\n"); 781 return -E1000_ERR_NVM_PBA_SECTION; 782 } 783 784 if (pba_num == NULL) { 785 DEBUGOUT("PBA string buffer was null\n"); 786 return -E1000_ERR_INVALID_ARGUMENT; 787 } 788 789 ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); 790 if (ret_val) { 791 DEBUGOUT("NVM Read Error\n"); 792 return ret_val; 793 } 794 795 ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); 796 if (ret_val) { 797 DEBUGOUT("NVM Read Error\n"); 798 return ret_val; 799 } 800 801 /* if nvm_data is not ptr guard the PBA must be in legacy format which 802 * means pba_ptr is actually our second data word for the PBA number 803 * and we can decode it into an ascii string 804 */ 805 if (nvm_data != NVM_PBA_PTR_GUARD) { 806 DEBUGOUT("NVM PBA number is not stored as string\n"); 807 808 /* make sure callers buffer is big enough to store the PBA */ 809 if (pba_num_size < E1000_PBANUM_LENGTH) { 810 DEBUGOUT("PBA string buffer too small\n"); 811 return E1000_ERR_NO_SPACE; 812 } 813 814 /* extract hex string from data and pba_ptr */ 815 pba_num[0] = (nvm_data >> 12) & 0xF; 816 pba_num[1] = (nvm_data >> 8) & 0xF; 817 pba_num[2] = (nvm_data >> 4) & 0xF; 818 pba_num[3] = nvm_data & 0xF; 819 pba_num[4] = (pba_ptr >> 12) & 0xF; 820 pba_num[5] = (pba_ptr >> 8) & 0xF; 821 pba_num[6] = '-'; 822 pba_num[7] = 0; 823 pba_num[8] = (pba_ptr >> 4) & 0xF; 824 pba_num[9] = pba_ptr & 0xF; 825 826 /* put a null character on the end of our string */ 827 pba_num[10] = '\0'; 828 829 /* switch all the data but the '-' to hex char */ 830 for (offset = 0; offset < 10; offset++) { 831 if (pba_num[offset] < 0xA) 832 pba_num[offset] += '0'; 833 else if (pba_num[offset] < 0x10) 834 pba_num[offset] += 'A' - 0xA; 835 } 836 837 return E1000_SUCCESS; 838 } 839 840 ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length); 841 if (ret_val) { 842 DEBUGOUT("NVM Read Error\n"); 843 return ret_val; 844 } 845 846 if (length == 0xFFFF || length == 0) { 847 DEBUGOUT("NVM PBA number section invalid length\n"); 848 return -E1000_ERR_NVM_PBA_SECTION; 849 } 850 /* check if pba_num buffer is big enough */ 851 if (pba_num_size < (((u32)length * 2) - 1)) { 852 DEBUGOUT("PBA string buffer too small\n"); 853 return -E1000_ERR_NO_SPACE; 854 } 855 856 /* trim pba length from start of string */ 857 pba_ptr++; 858 length--; 859 860 for (offset = 0; offset < length; offset++) { 861 ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data); 862 if (ret_val) { 863 DEBUGOUT("NVM Read Error\n"); 864 return ret_val; 865 } 866 pba_num[offset * 2] = (u8)(nvm_data >> 8); 867 pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); 868 } 869 pba_num[offset * 2] = '\0'; 870 871 return E1000_SUCCESS; 872 } 873 874 /** 875 * e1000_read_pba_length_generic - Read device part number length 876 * @hw: pointer to the HW structure 877 * @pba_num_size: size of part number buffer 878 * 879 * Reads the product board assembly (PBA) number length from the EEPROM and 880 * stores the value in pba_num_size. 881 **/ 882 s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size) 883 { 884 s32 ret_val; 885 u16 nvm_data; 886 u16 pba_ptr; 887 u16 length; 888 889 DEBUGFUNC("e1000_read_pba_length_generic"); 890 891 if (pba_num_size == NULL) { 892 DEBUGOUT("PBA buffer size was null\n"); 893 return -E1000_ERR_INVALID_ARGUMENT; 894 } 895 896 ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); 897 if (ret_val) { 898 DEBUGOUT("NVM Read Error\n"); 899 return ret_val; 900 } 901 902 ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); 903 if (ret_val) { 904 DEBUGOUT("NVM Read Error\n"); 905 return ret_val; 906 } 907 908 /* if data is not ptr guard the PBA must be in legacy format */ 909 if (nvm_data != NVM_PBA_PTR_GUARD) { 910 *pba_num_size = E1000_PBANUM_LENGTH; 911 return E1000_SUCCESS; 912 } 913 914 ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length); 915 if (ret_val) { 916 DEBUGOUT("NVM Read Error\n"); 917 return ret_val; 918 } 919 920 if (length == 0xFFFF || length == 0) { 921 DEBUGOUT("NVM PBA number section invalid length\n"); 922 return -E1000_ERR_NVM_PBA_SECTION; 923 } 924 925 /* Convert from length in u16 values to u8 chars, add 1 for NULL, 926 * and subtract 2 because length field is included in length. 927 */ 928 *pba_num_size = ((u32)length * 2) - 1; 929 930 return E1000_SUCCESS; 931 } 932 933 934 /** 935 * e1000_read_pba_raw 936 * @hw: pointer to the HW structure 937 * @eeprom_buf: optional pointer to EEPROM image 938 * @eeprom_buf_size: size of EEPROM image in words 939 * @max_pba_block_size: PBA block size limit 940 * @pba: pointer to output PBA structure 941 * 942 * Reads PBA from EEPROM image when eeprom_buf is not NULL. 943 * Reads PBA from physical EEPROM device when eeprom_buf is NULL. 944 * 945 **/ 946 s32 e1000_read_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf, 947 u32 eeprom_buf_size, u16 max_pba_block_size, 948 struct e1000_pba *pba) 949 { 950 s32 ret_val; 951 u16 pba_block_size; 952 953 if (pba == NULL) 954 return -E1000_ERR_PARAM; 955 956 if (eeprom_buf == NULL) { 957 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2, 958 &pba->word[0]); 959 if (ret_val) 960 return ret_val; 961 } else { 962 if (eeprom_buf_size > NVM_PBA_OFFSET_1) { 963 pba->word[0] = eeprom_buf[NVM_PBA_OFFSET_0]; 964 pba->word[1] = eeprom_buf[NVM_PBA_OFFSET_1]; 965 } else { 966 return -E1000_ERR_PARAM; 967 } 968 } 969 970 if (pba->word[0] == NVM_PBA_PTR_GUARD) { 971 if (pba->pba_block == NULL) 972 return -E1000_ERR_PARAM; 973 974 ret_val = e1000_get_pba_block_size(hw, eeprom_buf, 975 eeprom_buf_size, 976 &pba_block_size); 977 if (ret_val) 978 return ret_val; 979 980 if (pba_block_size > max_pba_block_size) 981 return -E1000_ERR_PARAM; 982 983 if (eeprom_buf == NULL) { 984 ret_val = e1000_read_nvm(hw, pba->word[1], 985 pba_block_size, 986 pba->pba_block); 987 if (ret_val) 988 return ret_val; 989 } else { 990 if (eeprom_buf_size > (u32)(pba->word[1] + 991 pba_block_size)) { 992 memcpy(pba->pba_block, 993 &eeprom_buf[pba->word[1]], 994 pba_block_size * sizeof(u16)); 995 } else { 996 return -E1000_ERR_PARAM; 997 } 998 } 999 } 1000 1001 return E1000_SUCCESS; 1002 } 1003 1004 /** 1005 * e1000_write_pba_raw 1006 * @hw: pointer to the HW structure 1007 * @eeprom_buf: optional pointer to EEPROM image 1008 * @eeprom_buf_size: size of EEPROM image in words 1009 * @pba: pointer to PBA structure 1010 * 1011 * Writes PBA to EEPROM image when eeprom_buf is not NULL. 1012 * Writes PBA to physical EEPROM device when eeprom_buf is NULL. 1013 * 1014 **/ 1015 s32 e1000_write_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf, 1016 u32 eeprom_buf_size, struct e1000_pba *pba) 1017 { 1018 s32 ret_val; 1019 1020 if (pba == NULL) 1021 return -E1000_ERR_PARAM; 1022 1023 if (eeprom_buf == NULL) { 1024 ret_val = e1000_write_nvm(hw, NVM_PBA_OFFSET_0, 2, 1025 &pba->word[0]); 1026 if (ret_val) 1027 return ret_val; 1028 } else { 1029 if (eeprom_buf_size > NVM_PBA_OFFSET_1) { 1030 eeprom_buf[NVM_PBA_OFFSET_0] = pba->word[0]; 1031 eeprom_buf[NVM_PBA_OFFSET_1] = pba->word[1]; 1032 } else { 1033 return -E1000_ERR_PARAM; 1034 } 1035 } 1036 1037 if (pba->word[0] == NVM_PBA_PTR_GUARD) { 1038 if (pba->pba_block == NULL) 1039 return -E1000_ERR_PARAM; 1040 1041 if (eeprom_buf == NULL) { 1042 ret_val = e1000_write_nvm(hw, pba->word[1], 1043 pba->pba_block[0], 1044 pba->pba_block); 1045 if (ret_val) 1046 return ret_val; 1047 } else { 1048 if (eeprom_buf_size > (u32)(pba->word[1] + 1049 pba->pba_block[0])) { 1050 memcpy(&eeprom_buf[pba->word[1]], 1051 pba->pba_block, 1052 pba->pba_block[0] * sizeof(u16)); 1053 } else { 1054 return -E1000_ERR_PARAM; 1055 } 1056 } 1057 } 1058 1059 return E1000_SUCCESS; 1060 } 1061 1062 /** 1063 * e1000_get_pba_block_size 1064 * @hw: pointer to the HW structure 1065 * @eeprom_buf: optional pointer to EEPROM image 1066 * @eeprom_buf_size: size of EEPROM image in words 1067 * @pba_data_size: pointer to output variable 1068 * 1069 * Returns the size of the PBA block in words. Function operates on EEPROM 1070 * image if the eeprom_buf pointer is not NULL otherwise it accesses physical 1071 * EEPROM device. 1072 * 1073 **/ 1074 s32 e1000_get_pba_block_size(struct e1000_hw *hw, u16 *eeprom_buf, 1075 u32 eeprom_buf_size, u16 *pba_block_size) 1076 { 1077 s32 ret_val; 1078 u16 pba_word[2]; 1079 u16 length; 1080 1081 DEBUGFUNC("e1000_get_pba_block_size"); 1082 1083 if (eeprom_buf == NULL) { 1084 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2, &pba_word[0]); 1085 if (ret_val) 1086 return ret_val; 1087 } else { 1088 if (eeprom_buf_size > NVM_PBA_OFFSET_1) { 1089 pba_word[0] = eeprom_buf[NVM_PBA_OFFSET_0]; 1090 pba_word[1] = eeprom_buf[NVM_PBA_OFFSET_1]; 1091 } else { 1092 return -E1000_ERR_PARAM; 1093 } 1094 } 1095 1096 if (pba_word[0] == NVM_PBA_PTR_GUARD) { 1097 if (eeprom_buf == NULL) { 1098 ret_val = e1000_read_nvm(hw, pba_word[1] + 0, 1, 1099 &length); 1100 if (ret_val) 1101 return ret_val; 1102 } else { 1103 if (eeprom_buf_size > pba_word[1]) 1104 length = eeprom_buf[pba_word[1] + 0]; 1105 else 1106 return -E1000_ERR_PARAM; 1107 } 1108 1109 if (length == 0xFFFF || length == 0) 1110 return -E1000_ERR_NVM_PBA_SECTION; 1111 } else { 1112 /* PBA number in legacy format, there is no PBA Block. */ 1113 length = 0; 1114 } 1115 1116 if (pba_block_size != NULL) 1117 *pba_block_size = length; 1118 1119 return E1000_SUCCESS; 1120 } 1121 1122 /** 1123 * e1000_read_mac_addr_generic - Read device MAC address 1124 * @hw: pointer to the HW structure 1125 * 1126 * Reads the device MAC address from the EEPROM and stores the value. 1127 * Since devices with two ports use the same EEPROM, we increment the 1128 * last bit in the MAC address for the second port. 1129 **/ 1130 s32 e1000_read_mac_addr_generic(struct e1000_hw *hw) 1131 { 1132 u32 rar_high; 1133 u32 rar_low; 1134 u16 i; 1135 1136 rar_high = E1000_READ_REG(hw, E1000_RAH(0)); 1137 rar_low = E1000_READ_REG(hw, E1000_RAL(0)); 1138 1139 for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) 1140 hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); 1141 1142 for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) 1143 hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); 1144 1145 for (i = 0; i < ETH_ADDR_LEN; i++) 1146 hw->mac.addr[i] = hw->mac.perm_addr[i]; 1147 1148 return E1000_SUCCESS; 1149 } 1150 1151 /** 1152 * e1000_validate_nvm_checksum_generic - Validate EEPROM checksum 1153 * @hw: pointer to the HW structure 1154 * 1155 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM 1156 * and then verifies that the sum of the EEPROM is equal to 0xBABA. 1157 **/ 1158 s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw) 1159 { 1160 s32 ret_val; 1161 u16 checksum = 0; 1162 u16 i, nvm_data; 1163 1164 DEBUGFUNC("e1000_validate_nvm_checksum_generic"); 1165 1166 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 1167 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); 1168 if (ret_val) { 1169 DEBUGOUT("NVM Read Error\n"); 1170 return ret_val; 1171 } 1172 checksum += nvm_data; 1173 } 1174 1175 if (checksum != (u16) NVM_SUM) { 1176 DEBUGOUT("NVM Checksum Invalid\n"); 1177 return -E1000_ERR_NVM; 1178 } 1179 1180 return E1000_SUCCESS; 1181 } 1182 1183 /** 1184 * e1000_update_nvm_checksum_generic - Update EEPROM checksum 1185 * @hw: pointer to the HW structure 1186 * 1187 * Updates the EEPROM checksum by reading/adding each word of the EEPROM 1188 * up to the checksum. Then calculates the EEPROM checksum and writes the 1189 * value to the EEPROM. 1190 **/ 1191 s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw) 1192 { 1193 s32 ret_val; 1194 u16 checksum = 0; 1195 u16 i, nvm_data; 1196 1197 DEBUGFUNC("e1000_update_nvm_checksum"); 1198 1199 for (i = 0; i < NVM_CHECKSUM_REG; i++) { 1200 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); 1201 if (ret_val) { 1202 DEBUGOUT("NVM Read Error while updating checksum.\n"); 1203 return ret_val; 1204 } 1205 checksum += nvm_data; 1206 } 1207 checksum = (u16) NVM_SUM - checksum; 1208 ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum); 1209 if (ret_val) 1210 DEBUGOUT("NVM Write Error while updating checksum.\n"); 1211 1212 return ret_val; 1213 } 1214 1215 /** 1216 * e1000_reload_nvm_generic - Reloads EEPROM 1217 * @hw: pointer to the HW structure 1218 * 1219 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 1220 * extended control register. 1221 **/ 1222 static void e1000_reload_nvm_generic(struct e1000_hw *hw) 1223 { 1224 u32 ctrl_ext; 1225 1226 DEBUGFUNC("e1000_reload_nvm_generic"); 1227 1228 usec_delay(10); 1229 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); 1230 ctrl_ext |= E1000_CTRL_EXT_EE_RST; 1231 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); 1232 E1000_WRITE_FLUSH(hw); 1233 } 1234 1235 1236