1 /****************************************************************************** 2 3 Copyright (c) 2001-2013, Intel Corporation 4 All rights reserved. 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions are met: 8 9 1. Redistributions of source code must retain the above copyright notice, 10 this list of conditions and the following disclaimer. 11 12 2. Redistributions in binary form must reproduce the above copyright 13 notice, this list of conditions and the following disclaimer in the 14 documentation and/or other materials provided with the distribution. 15 16 3. Neither the name of the Intel Corporation nor the names of its 17 contributors may be used to endorse or promote products derived from 18 this software without specific prior written permission. 19 20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 POSSIBILITY OF SUCH DAMAGE. 31 32 ******************************************************************************/ 33 /*$FreeBSD$*/ 34 35 #include "e1000_api.h" 36 37 /** 38 * e1000_init_mac_params - Initialize MAC function pointers 39 * @hw: pointer to the HW structure 40 * 41 * This function initializes the function pointers for the MAC 42 * set of functions. Called by drivers or by e1000_setup_init_funcs. 43 **/ 44 s32 e1000_init_mac_params(struct e1000_hw *hw) 45 { 46 s32 ret_val = E1000_SUCCESS; 47 48 if (hw->mac.ops.init_params) { 49 ret_val = hw->mac.ops.init_params(hw); 50 if (ret_val) { 51 DEBUGOUT("MAC Initialization Error\n"); 52 goto out; 53 } 54 } else { 55 DEBUGOUT("mac.init_mac_params was NULL\n"); 56 ret_val = -E1000_ERR_CONFIG; 57 } 58 59 out: 60 return ret_val; 61 } 62 63 /** 64 * e1000_init_nvm_params - Initialize NVM function pointers 65 * @hw: pointer to the HW structure 66 * 67 * This function initializes the function pointers for the NVM 68 * set of functions. Called by drivers or by e1000_setup_init_funcs. 69 **/ 70 s32 e1000_init_nvm_params(struct e1000_hw *hw) 71 { 72 s32 ret_val = E1000_SUCCESS; 73 74 if (hw->nvm.ops.init_params) { 75 ret_val = hw->nvm.ops.init_params(hw); 76 if (ret_val) { 77 DEBUGOUT("NVM Initialization Error\n"); 78 goto out; 79 } 80 } else { 81 DEBUGOUT("nvm.init_nvm_params was NULL\n"); 82 ret_val = -E1000_ERR_CONFIG; 83 } 84 85 out: 86 return ret_val; 87 } 88 89 /** 90 * e1000_init_phy_params - Initialize PHY function pointers 91 * @hw: pointer to the HW structure 92 * 93 * This function initializes the function pointers for the PHY 94 * set of functions. Called by drivers or by e1000_setup_init_funcs. 95 **/ 96 s32 e1000_init_phy_params(struct e1000_hw *hw) 97 { 98 s32 ret_val = E1000_SUCCESS; 99 100 if (hw->phy.ops.init_params) { 101 ret_val = hw->phy.ops.init_params(hw); 102 if (ret_val) { 103 DEBUGOUT("PHY Initialization Error\n"); 104 goto out; 105 } 106 } else { 107 DEBUGOUT("phy.init_phy_params was NULL\n"); 108 ret_val = -E1000_ERR_CONFIG; 109 } 110 111 out: 112 return ret_val; 113 } 114 115 /** 116 * e1000_init_mbx_params - Initialize mailbox function pointers 117 * @hw: pointer to the HW structure 118 * 119 * This function initializes the function pointers for the PHY 120 * set of functions. Called by drivers or by e1000_setup_init_funcs. 121 **/ 122 s32 e1000_init_mbx_params(struct e1000_hw *hw) 123 { 124 s32 ret_val = E1000_SUCCESS; 125 126 if (hw->mbx.ops.init_params) { 127 ret_val = hw->mbx.ops.init_params(hw); 128 if (ret_val) { 129 DEBUGOUT("Mailbox Initialization Error\n"); 130 goto out; 131 } 132 } else { 133 DEBUGOUT("mbx.init_mbx_params was NULL\n"); 134 ret_val = -E1000_ERR_CONFIG; 135 } 136 137 out: 138 return ret_val; 139 } 140 141 /** 142 * e1000_set_mac_type - Sets MAC type 143 * @hw: pointer to the HW structure 144 * 145 * This function sets the mac type of the adapter based on the 146 * device ID stored in the hw structure. 147 * MUST BE FIRST FUNCTION CALLED (explicitly or through 148 * e1000_setup_init_funcs()). 149 **/ 150 s32 e1000_set_mac_type(struct e1000_hw *hw) 151 { 152 struct e1000_mac_info *mac = &hw->mac; 153 s32 ret_val = E1000_SUCCESS; 154 155 DEBUGFUNC("e1000_set_mac_type"); 156 157 switch (hw->device_id) { 158 case E1000_DEV_ID_82542: 159 mac->type = e1000_82542; 160 break; 161 case E1000_DEV_ID_82543GC_FIBER: 162 case E1000_DEV_ID_82543GC_COPPER: 163 mac->type = e1000_82543; 164 break; 165 case E1000_DEV_ID_82544EI_COPPER: 166 case E1000_DEV_ID_82544EI_FIBER: 167 case E1000_DEV_ID_82544GC_COPPER: 168 case E1000_DEV_ID_82544GC_LOM: 169 mac->type = e1000_82544; 170 break; 171 case E1000_DEV_ID_82540EM: 172 case E1000_DEV_ID_82540EM_LOM: 173 case E1000_DEV_ID_82540EP: 174 case E1000_DEV_ID_82540EP_LOM: 175 case E1000_DEV_ID_82540EP_LP: 176 mac->type = e1000_82540; 177 break; 178 case E1000_DEV_ID_82545EM_COPPER: 179 case E1000_DEV_ID_82545EM_FIBER: 180 mac->type = e1000_82545; 181 break; 182 case E1000_DEV_ID_82545GM_COPPER: 183 case E1000_DEV_ID_82545GM_FIBER: 184 case E1000_DEV_ID_82545GM_SERDES: 185 mac->type = e1000_82545_rev_3; 186 break; 187 case E1000_DEV_ID_82546EB_COPPER: 188 case E1000_DEV_ID_82546EB_FIBER: 189 case E1000_DEV_ID_82546EB_QUAD_COPPER: 190 mac->type = e1000_82546; 191 break; 192 case E1000_DEV_ID_82546GB_COPPER: 193 case E1000_DEV_ID_82546GB_FIBER: 194 case E1000_DEV_ID_82546GB_SERDES: 195 case E1000_DEV_ID_82546GB_PCIE: 196 case E1000_DEV_ID_82546GB_QUAD_COPPER: 197 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 198 mac->type = e1000_82546_rev_3; 199 break; 200 case E1000_DEV_ID_82541EI: 201 case E1000_DEV_ID_82541EI_MOBILE: 202 case E1000_DEV_ID_82541ER_LOM: 203 mac->type = e1000_82541; 204 break; 205 case E1000_DEV_ID_82541ER: 206 case E1000_DEV_ID_82541GI: 207 case E1000_DEV_ID_82541GI_LF: 208 case E1000_DEV_ID_82541GI_MOBILE: 209 mac->type = e1000_82541_rev_2; 210 break; 211 case E1000_DEV_ID_82547EI: 212 case E1000_DEV_ID_82547EI_MOBILE: 213 mac->type = e1000_82547; 214 break; 215 case E1000_DEV_ID_82547GI: 216 mac->type = e1000_82547_rev_2; 217 break; 218 case E1000_DEV_ID_82571EB_COPPER: 219 case E1000_DEV_ID_82571EB_FIBER: 220 case E1000_DEV_ID_82571EB_SERDES: 221 case E1000_DEV_ID_82571EB_SERDES_DUAL: 222 case E1000_DEV_ID_82571EB_SERDES_QUAD: 223 case E1000_DEV_ID_82571EB_QUAD_COPPER: 224 case E1000_DEV_ID_82571PT_QUAD_COPPER: 225 case E1000_DEV_ID_82571EB_QUAD_FIBER: 226 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 227 mac->type = e1000_82571; 228 break; 229 case E1000_DEV_ID_82572EI: 230 case E1000_DEV_ID_82572EI_COPPER: 231 case E1000_DEV_ID_82572EI_FIBER: 232 case E1000_DEV_ID_82572EI_SERDES: 233 mac->type = e1000_82572; 234 break; 235 case E1000_DEV_ID_82573E: 236 case E1000_DEV_ID_82573E_IAMT: 237 case E1000_DEV_ID_82573L: 238 mac->type = e1000_82573; 239 break; 240 case E1000_DEV_ID_82574L: 241 case E1000_DEV_ID_82574LA: 242 mac->type = e1000_82574; 243 break; 244 case E1000_DEV_ID_82583V: 245 mac->type = e1000_82583; 246 break; 247 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: 248 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: 249 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: 250 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: 251 mac->type = e1000_80003es2lan; 252 break; 253 case E1000_DEV_ID_ICH8_IFE: 254 case E1000_DEV_ID_ICH8_IFE_GT: 255 case E1000_DEV_ID_ICH8_IFE_G: 256 case E1000_DEV_ID_ICH8_IGP_M: 257 case E1000_DEV_ID_ICH8_IGP_M_AMT: 258 case E1000_DEV_ID_ICH8_IGP_AMT: 259 case E1000_DEV_ID_ICH8_IGP_C: 260 case E1000_DEV_ID_ICH8_82567V_3: 261 mac->type = e1000_ich8lan; 262 break; 263 case E1000_DEV_ID_ICH9_IFE: 264 case E1000_DEV_ID_ICH9_IFE_GT: 265 case E1000_DEV_ID_ICH9_IFE_G: 266 case E1000_DEV_ID_ICH9_IGP_M: 267 case E1000_DEV_ID_ICH9_IGP_M_AMT: 268 case E1000_DEV_ID_ICH9_IGP_M_V: 269 case E1000_DEV_ID_ICH9_IGP_AMT: 270 case E1000_DEV_ID_ICH9_BM: 271 case E1000_DEV_ID_ICH9_IGP_C: 272 case E1000_DEV_ID_ICH10_R_BM_LM: 273 case E1000_DEV_ID_ICH10_R_BM_LF: 274 case E1000_DEV_ID_ICH10_R_BM_V: 275 mac->type = e1000_ich9lan; 276 break; 277 case E1000_DEV_ID_ICH10_D_BM_LM: 278 case E1000_DEV_ID_ICH10_D_BM_LF: 279 case E1000_DEV_ID_ICH10_D_BM_V: 280 mac->type = e1000_ich10lan; 281 break; 282 case E1000_DEV_ID_PCH_D_HV_DM: 283 case E1000_DEV_ID_PCH_D_HV_DC: 284 case E1000_DEV_ID_PCH_M_HV_LM: 285 case E1000_DEV_ID_PCH_M_HV_LC: 286 mac->type = e1000_pchlan; 287 break; 288 case E1000_DEV_ID_PCH2_LV_LM: 289 case E1000_DEV_ID_PCH2_LV_V: 290 mac->type = e1000_pch2lan; 291 break; 292 case E1000_DEV_ID_PCH_LPT_I217_LM: 293 case E1000_DEV_ID_PCH_LPT_I217_V: 294 case E1000_DEV_ID_PCH_LPTLP_I218_LM: 295 case E1000_DEV_ID_PCH_LPTLP_I218_V: 296 mac->type = e1000_pch_lpt; 297 break; 298 case E1000_DEV_ID_82575EB_COPPER: 299 case E1000_DEV_ID_82575EB_FIBER_SERDES: 300 case E1000_DEV_ID_82575GB_QUAD_COPPER: 301 mac->type = e1000_82575; 302 break; 303 case E1000_DEV_ID_82576: 304 case E1000_DEV_ID_82576_FIBER: 305 case E1000_DEV_ID_82576_SERDES: 306 case E1000_DEV_ID_82576_QUAD_COPPER: 307 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 308 case E1000_DEV_ID_82576_NS: 309 case E1000_DEV_ID_82576_NS_SERDES: 310 case E1000_DEV_ID_82576_SERDES_QUAD: 311 mac->type = e1000_82576; 312 break; 313 case E1000_DEV_ID_82580_COPPER: 314 case E1000_DEV_ID_82580_FIBER: 315 case E1000_DEV_ID_82580_SERDES: 316 case E1000_DEV_ID_82580_SGMII: 317 case E1000_DEV_ID_82580_COPPER_DUAL: 318 case E1000_DEV_ID_82580_QUAD_FIBER: 319 case E1000_DEV_ID_DH89XXCC_SGMII: 320 case E1000_DEV_ID_DH89XXCC_SERDES: 321 case E1000_DEV_ID_DH89XXCC_BACKPLANE: 322 case E1000_DEV_ID_DH89XXCC_SFP: 323 mac->type = e1000_82580; 324 break; 325 case E1000_DEV_ID_I350_COPPER: 326 case E1000_DEV_ID_I350_FIBER: 327 case E1000_DEV_ID_I350_SERDES: 328 case E1000_DEV_ID_I350_SGMII: 329 case E1000_DEV_ID_I350_DA4: 330 mac->type = e1000_i350; 331 break; 332 #if defined(QV_RELEASE) && defined(SPRINGVILLE_FLASHLESS_HW) 333 case E1000_DEV_ID_I210_NVMLESS: 334 #endif /* QV_RELEASE && SPRINGVILLE_FLASHLESS_HW */ 335 case E1000_DEV_ID_I210_COPPER: 336 case E1000_DEV_ID_I210_COPPER_OEM1: 337 case E1000_DEV_ID_I210_COPPER_IT: 338 case E1000_DEV_ID_I210_FIBER: 339 case E1000_DEV_ID_I210_SERDES: 340 case E1000_DEV_ID_I210_SGMII: 341 mac->type = e1000_i210; 342 break; 343 case E1000_DEV_ID_I211_COPPER: 344 mac->type = e1000_i211; 345 break; 346 case E1000_DEV_ID_82576_VF: 347 case E1000_DEV_ID_82576_VF_HV: 348 mac->type = e1000_vfadapt; 349 break; 350 case E1000_DEV_ID_I350_VF: 351 case E1000_DEV_ID_I350_VF_HV: 352 mac->type = e1000_vfadapt_i350; 353 break; 354 355 default: 356 /* Should never have loaded on this device */ 357 ret_val = -E1000_ERR_MAC_INIT; 358 break; 359 } 360 361 return ret_val; 362 } 363 364 /** 365 * e1000_setup_init_funcs - Initializes function pointers 366 * @hw: pointer to the HW structure 367 * @init_device: TRUE will initialize the rest of the function pointers 368 * getting the device ready for use. FALSE will only set 369 * MAC type and the function pointers for the other init 370 * functions. Passing FALSE will not generate any hardware 371 * reads or writes. 372 * 373 * This function must be called by a driver in order to use the rest 374 * of the 'shared' code files. Called by drivers only. 375 **/ 376 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) 377 { 378 s32 ret_val; 379 380 /* Can't do much good without knowing the MAC type. */ 381 ret_val = e1000_set_mac_type(hw); 382 if (ret_val) { 383 DEBUGOUT("ERROR: MAC type could not be set properly.\n"); 384 goto out; 385 } 386 387 if (!hw->hw_addr) { 388 DEBUGOUT("ERROR: Registers not mapped\n"); 389 ret_val = -E1000_ERR_CONFIG; 390 goto out; 391 } 392 393 /* 394 * Init function pointers to generic implementations. We do this first 395 * allowing a driver module to override it afterward. 396 */ 397 e1000_init_mac_ops_generic(hw); 398 e1000_init_phy_ops_generic(hw); 399 e1000_init_nvm_ops_generic(hw); 400 e1000_init_mbx_ops_generic(hw); 401 402 /* 403 * Set up the init function pointers. These are functions within the 404 * adapter family file that sets up function pointers for the rest of 405 * the functions in that family. 406 */ 407 switch (hw->mac.type) { 408 case e1000_82542: 409 e1000_init_function_pointers_82542(hw); 410 break; 411 case e1000_82543: 412 case e1000_82544: 413 e1000_init_function_pointers_82543(hw); 414 break; 415 case e1000_82540: 416 case e1000_82545: 417 case e1000_82545_rev_3: 418 case e1000_82546: 419 case e1000_82546_rev_3: 420 e1000_init_function_pointers_82540(hw); 421 break; 422 case e1000_82541: 423 case e1000_82541_rev_2: 424 case e1000_82547: 425 case e1000_82547_rev_2: 426 e1000_init_function_pointers_82541(hw); 427 break; 428 case e1000_82571: 429 case e1000_82572: 430 case e1000_82573: 431 case e1000_82574: 432 case e1000_82583: 433 e1000_init_function_pointers_82571(hw); 434 break; 435 case e1000_80003es2lan: 436 e1000_init_function_pointers_80003es2lan(hw); 437 break; 438 case e1000_ich8lan: 439 case e1000_ich9lan: 440 case e1000_ich10lan: 441 case e1000_pchlan: 442 case e1000_pch2lan: 443 case e1000_pch_lpt: 444 e1000_init_function_pointers_ich8lan(hw); 445 break; 446 case e1000_82575: 447 case e1000_82576: 448 case e1000_82580: 449 case e1000_i350: 450 e1000_init_function_pointers_82575(hw); 451 break; 452 case e1000_i210: 453 case e1000_i211: 454 e1000_init_function_pointers_i210(hw); 455 break; 456 case e1000_vfadapt: 457 e1000_init_function_pointers_vf(hw); 458 break; 459 case e1000_vfadapt_i350: 460 e1000_init_function_pointers_vf(hw); 461 break; 462 default: 463 DEBUGOUT("Hardware not supported\n"); 464 ret_val = -E1000_ERR_CONFIG; 465 break; 466 } 467 468 /* 469 * Initialize the rest of the function pointers. These require some 470 * register reads/writes in some cases. 471 */ 472 if (!(ret_val) && init_device) { 473 ret_val = e1000_init_mac_params(hw); 474 if (ret_val) 475 goto out; 476 477 ret_val = e1000_init_nvm_params(hw); 478 if (ret_val) 479 goto out; 480 481 ret_val = e1000_init_phy_params(hw); 482 if (ret_val) 483 goto out; 484 485 ret_val = e1000_init_mbx_params(hw); 486 if (ret_val) 487 goto out; 488 } 489 490 out: 491 return ret_val; 492 } 493 494 /** 495 * e1000_get_bus_info - Obtain bus information for adapter 496 * @hw: pointer to the HW structure 497 * 498 * This will obtain information about the HW bus for which the 499 * adapter is attached and stores it in the hw structure. This is a 500 * function pointer entry point called by drivers. 501 **/ 502 s32 e1000_get_bus_info(struct e1000_hw *hw) 503 { 504 if (hw->mac.ops.get_bus_info) 505 return hw->mac.ops.get_bus_info(hw); 506 507 return E1000_SUCCESS; 508 } 509 510 /** 511 * e1000_clear_vfta - Clear VLAN filter table 512 * @hw: pointer to the HW structure 513 * 514 * This clears the VLAN filter table on the adapter. This is a function 515 * pointer entry point called by drivers. 516 **/ 517 void e1000_clear_vfta(struct e1000_hw *hw) 518 { 519 if (hw->mac.ops.clear_vfta) 520 hw->mac.ops.clear_vfta(hw); 521 } 522 523 /** 524 * e1000_write_vfta - Write value to VLAN filter table 525 * @hw: pointer to the HW structure 526 * @offset: the 32-bit offset in which to write the value to. 527 * @value: the 32-bit value to write at location offset. 528 * 529 * This writes a 32-bit value to a 32-bit offset in the VLAN filter 530 * table. This is a function pointer entry point called by drivers. 531 **/ 532 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) 533 { 534 if (hw->mac.ops.write_vfta) 535 hw->mac.ops.write_vfta(hw, offset, value); 536 } 537 538 /** 539 * e1000_update_mc_addr_list - Update Multicast addresses 540 * @hw: pointer to the HW structure 541 * @mc_addr_list: array of multicast addresses to program 542 * @mc_addr_count: number of multicast addresses to program 543 * 544 * Updates the Multicast Table Array. 545 * The caller must have a packed mc_addr_list of multicast addresses. 546 **/ 547 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, 548 u32 mc_addr_count) 549 { 550 if (hw->mac.ops.update_mc_addr_list) 551 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, 552 mc_addr_count); 553 } 554 555 /** 556 * e1000_force_mac_fc - Force MAC flow control 557 * @hw: pointer to the HW structure 558 * 559 * Force the MAC's flow control settings. Currently no func pointer exists 560 * and all implementations are handled in the generic version of this 561 * function. 562 **/ 563 s32 e1000_force_mac_fc(struct e1000_hw *hw) 564 { 565 return e1000_force_mac_fc_generic(hw); 566 } 567 568 /** 569 * e1000_check_for_link - Check/Store link connection 570 * @hw: pointer to the HW structure 571 * 572 * This checks the link condition of the adapter and stores the 573 * results in the hw->mac structure. This is a function pointer entry 574 * point called by drivers. 575 **/ 576 s32 e1000_check_for_link(struct e1000_hw *hw) 577 { 578 if (hw->mac.ops.check_for_link) 579 return hw->mac.ops.check_for_link(hw); 580 581 return -E1000_ERR_CONFIG; 582 } 583 584 /** 585 * e1000_check_mng_mode - Check management mode 586 * @hw: pointer to the HW structure 587 * 588 * This checks if the adapter has manageability enabled. 589 * This is a function pointer entry point called by drivers. 590 **/ 591 bool e1000_check_mng_mode(struct e1000_hw *hw) 592 { 593 if (hw->mac.ops.check_mng_mode) 594 return hw->mac.ops.check_mng_mode(hw); 595 596 return FALSE; 597 } 598 599 /** 600 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface 601 * @hw: pointer to the HW structure 602 * @buffer: pointer to the host interface 603 * @length: size of the buffer 604 * 605 * Writes the DHCP information to the host interface. 606 **/ 607 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) 608 { 609 return e1000_mng_write_dhcp_info_generic(hw, buffer, length); 610 } 611 612 /** 613 * e1000_reset_hw - Reset hardware 614 * @hw: pointer to the HW structure 615 * 616 * This resets the hardware into a known state. This is a function pointer 617 * entry point called by drivers. 618 **/ 619 s32 e1000_reset_hw(struct e1000_hw *hw) 620 { 621 if (hw->mac.ops.reset_hw) 622 return hw->mac.ops.reset_hw(hw); 623 624 return -E1000_ERR_CONFIG; 625 } 626 627 /** 628 * e1000_init_hw - Initialize hardware 629 * @hw: pointer to the HW structure 630 * 631 * This inits the hardware readying it for operation. This is a function 632 * pointer entry point called by drivers. 633 **/ 634 s32 e1000_init_hw(struct e1000_hw *hw) 635 { 636 if (hw->mac.ops.init_hw) 637 return hw->mac.ops.init_hw(hw); 638 639 return -E1000_ERR_CONFIG; 640 } 641 642 /** 643 * e1000_setup_link - Configures link and flow control 644 * @hw: pointer to the HW structure 645 * 646 * This configures link and flow control settings for the adapter. This 647 * is a function pointer entry point called by drivers. While modules can 648 * also call this, they probably call their own version of this function. 649 **/ 650 s32 e1000_setup_link(struct e1000_hw *hw) 651 { 652 if (hw->mac.ops.setup_link) 653 return hw->mac.ops.setup_link(hw); 654 655 return -E1000_ERR_CONFIG; 656 } 657 658 /** 659 * e1000_get_speed_and_duplex - Returns current speed and duplex 660 * @hw: pointer to the HW structure 661 * @speed: pointer to a 16-bit value to store the speed 662 * @duplex: pointer to a 16-bit value to store the duplex. 663 * 664 * This returns the speed and duplex of the adapter in the two 'out' 665 * variables passed in. This is a function pointer entry point called 666 * by drivers. 667 **/ 668 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) 669 { 670 if (hw->mac.ops.get_link_up_info) 671 return hw->mac.ops.get_link_up_info(hw, speed, duplex); 672 673 return -E1000_ERR_CONFIG; 674 } 675 676 /** 677 * e1000_setup_led - Configures SW controllable LED 678 * @hw: pointer to the HW structure 679 * 680 * This prepares the SW controllable LED for use and saves the current state 681 * of the LED so it can be later restored. This is a function pointer entry 682 * point called by drivers. 683 **/ 684 s32 e1000_setup_led(struct e1000_hw *hw) 685 { 686 if (hw->mac.ops.setup_led) 687 return hw->mac.ops.setup_led(hw); 688 689 return E1000_SUCCESS; 690 } 691 692 /** 693 * e1000_cleanup_led - Restores SW controllable LED 694 * @hw: pointer to the HW structure 695 * 696 * This restores the SW controllable LED to the value saved off by 697 * e1000_setup_led. This is a function pointer entry point called by drivers. 698 **/ 699 s32 e1000_cleanup_led(struct e1000_hw *hw) 700 { 701 if (hw->mac.ops.cleanup_led) 702 return hw->mac.ops.cleanup_led(hw); 703 704 return E1000_SUCCESS; 705 } 706 707 /** 708 * e1000_blink_led - Blink SW controllable LED 709 * @hw: pointer to the HW structure 710 * 711 * This starts the adapter LED blinking. Request the LED to be setup first 712 * and cleaned up after. This is a function pointer entry point called by 713 * drivers. 714 **/ 715 s32 e1000_blink_led(struct e1000_hw *hw) 716 { 717 if (hw->mac.ops.blink_led) 718 return hw->mac.ops.blink_led(hw); 719 720 return E1000_SUCCESS; 721 } 722 723 /** 724 * e1000_id_led_init - store LED configurations in SW 725 * @hw: pointer to the HW structure 726 * 727 * Initializes the LED config in SW. This is a function pointer entry point 728 * called by drivers. 729 **/ 730 s32 e1000_id_led_init(struct e1000_hw *hw) 731 { 732 if (hw->mac.ops.id_led_init) 733 return hw->mac.ops.id_led_init(hw); 734 735 return E1000_SUCCESS; 736 } 737 738 /** 739 * e1000_led_on - Turn on SW controllable LED 740 * @hw: pointer to the HW structure 741 * 742 * Turns the SW defined LED on. This is a function pointer entry point 743 * called by drivers. 744 **/ 745 s32 e1000_led_on(struct e1000_hw *hw) 746 { 747 if (hw->mac.ops.led_on) 748 return hw->mac.ops.led_on(hw); 749 750 return E1000_SUCCESS; 751 } 752 753 /** 754 * e1000_led_off - Turn off SW controllable LED 755 * @hw: pointer to the HW structure 756 * 757 * Turns the SW defined LED off. This is a function pointer entry point 758 * called by drivers. 759 **/ 760 s32 e1000_led_off(struct e1000_hw *hw) 761 { 762 if (hw->mac.ops.led_off) 763 return hw->mac.ops.led_off(hw); 764 765 return E1000_SUCCESS; 766 } 767 768 /** 769 * e1000_reset_adaptive - Reset adaptive IFS 770 * @hw: pointer to the HW structure 771 * 772 * Resets the adaptive IFS. Currently no func pointer exists and all 773 * implementations are handled in the generic version of this function. 774 **/ 775 void e1000_reset_adaptive(struct e1000_hw *hw) 776 { 777 e1000_reset_adaptive_generic(hw); 778 } 779 780 /** 781 * e1000_update_adaptive - Update adaptive IFS 782 * @hw: pointer to the HW structure 783 * 784 * Updates adapter IFS. Currently no func pointer exists and all 785 * implementations are handled in the generic version of this function. 786 **/ 787 void e1000_update_adaptive(struct e1000_hw *hw) 788 { 789 e1000_update_adaptive_generic(hw); 790 } 791 792 /** 793 * e1000_disable_pcie_master - Disable PCI-Express master access 794 * @hw: pointer to the HW structure 795 * 796 * Disables PCI-Express master access and verifies there are no pending 797 * requests. Currently no func pointer exists and all implementations are 798 * handled in the generic version of this function. 799 **/ 800 s32 e1000_disable_pcie_master(struct e1000_hw *hw) 801 { 802 return e1000_disable_pcie_master_generic(hw); 803 } 804 805 /** 806 * e1000_config_collision_dist - Configure collision distance 807 * @hw: pointer to the HW structure 808 * 809 * Configures the collision distance to the default value and is used 810 * during link setup. 811 **/ 812 void e1000_config_collision_dist(struct e1000_hw *hw) 813 { 814 if (hw->mac.ops.config_collision_dist) 815 hw->mac.ops.config_collision_dist(hw); 816 } 817 818 /** 819 * e1000_rar_set - Sets a receive address register 820 * @hw: pointer to the HW structure 821 * @addr: address to set the RAR to 822 * @index: the RAR to set 823 * 824 * Sets a Receive Address Register (RAR) to the specified address. 825 **/ 826 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 827 { 828 if (hw->mac.ops.rar_set) 829 hw->mac.ops.rar_set(hw, addr, index); 830 } 831 832 /** 833 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state 834 * @hw: pointer to the HW structure 835 * 836 * Ensures that the MDI/MDIX SW state is valid. 837 **/ 838 s32 e1000_validate_mdi_setting(struct e1000_hw *hw) 839 { 840 if (hw->mac.ops.validate_mdi_setting) 841 return hw->mac.ops.validate_mdi_setting(hw); 842 843 return E1000_SUCCESS; 844 } 845 846 /** 847 * e1000_hash_mc_addr - Determines address location in multicast table 848 * @hw: pointer to the HW structure 849 * @mc_addr: Multicast address to hash. 850 * 851 * This hashes an address to determine its location in the multicast 852 * table. Currently no func pointer exists and all implementations 853 * are handled in the generic version of this function. 854 **/ 855 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 856 { 857 return e1000_hash_mc_addr_generic(hw, mc_addr); 858 } 859 860 /** 861 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX 862 * @hw: pointer to the HW structure 863 * 864 * Enables packet filtering on transmit packets if manageability is enabled 865 * and host interface is enabled. 866 * Currently no func pointer exists and all implementations are handled in the 867 * generic version of this function. 868 **/ 869 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) 870 { 871 return e1000_enable_tx_pkt_filtering_generic(hw); 872 } 873 874 /** 875 * e1000_mng_host_if_write - Writes to the manageability host interface 876 * @hw: pointer to the HW structure 877 * @buffer: pointer to the host interface buffer 878 * @length: size of the buffer 879 * @offset: location in the buffer to write to 880 * @sum: sum of the data (not checksum) 881 * 882 * This function writes the buffer content at the offset given on the host if. 883 * It also does alignment considerations to do the writes in most efficient 884 * way. Also fills up the sum of the buffer in *buffer parameter. 885 **/ 886 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, 887 u16 offset, u8 *sum) 888 { 889 return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum); 890 } 891 892 /** 893 * e1000_mng_write_cmd_header - Writes manageability command header 894 * @hw: pointer to the HW structure 895 * @hdr: pointer to the host interface command header 896 * 897 * Writes the command header after does the checksum calculation. 898 **/ 899 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, 900 struct e1000_host_mng_command_header *hdr) 901 { 902 return e1000_mng_write_cmd_header_generic(hw, hdr); 903 } 904 905 /** 906 * e1000_mng_enable_host_if - Checks host interface is enabled 907 * @hw: pointer to the HW structure 908 * 909 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND 910 * 911 * This function checks whether the HOST IF is enabled for command operation 912 * and also checks whether the previous command is completed. It busy waits 913 * in case of previous command is not completed. 914 **/ 915 s32 e1000_mng_enable_host_if(struct e1000_hw *hw) 916 { 917 return e1000_mng_enable_host_if_generic(hw); 918 } 919 920 /** 921 * e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer 922 * @hw: pointer to the HW structure 923 * @itr: u32 indicating itr value 924 * 925 * Set the OBFF timer based on the given interrupt rate. 926 **/ 927 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr) 928 { 929 if (hw->mac.ops.set_obff_timer) 930 return hw->mac.ops.set_obff_timer(hw, itr); 931 932 return E1000_SUCCESS; 933 } 934 935 /** 936 * e1000_check_reset_block - Verifies PHY can be reset 937 * @hw: pointer to the HW structure 938 * 939 * Checks if the PHY is in a state that can be reset or if manageability 940 * has it tied up. This is a function pointer entry point called by drivers. 941 **/ 942 s32 e1000_check_reset_block(struct e1000_hw *hw) 943 { 944 if (hw->phy.ops.check_reset_block) 945 return hw->phy.ops.check_reset_block(hw); 946 947 return E1000_SUCCESS; 948 } 949 950 /** 951 * e1000_read_phy_reg - Reads PHY register 952 * @hw: pointer to the HW structure 953 * @offset: the register to read 954 * @data: the buffer to store the 16-bit read. 955 * 956 * Reads the PHY register and returns the value in data. 957 * This is a function pointer entry point called by drivers. 958 **/ 959 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) 960 { 961 if (hw->phy.ops.read_reg) 962 return hw->phy.ops.read_reg(hw, offset, data); 963 964 return E1000_SUCCESS; 965 } 966 967 /** 968 * e1000_write_phy_reg - Writes PHY register 969 * @hw: pointer to the HW structure 970 * @offset: the register to write 971 * @data: the value to write. 972 * 973 * Writes the PHY register at offset with the value in data. 974 * This is a function pointer entry point called by drivers. 975 **/ 976 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) 977 { 978 if (hw->phy.ops.write_reg) 979 return hw->phy.ops.write_reg(hw, offset, data); 980 981 return E1000_SUCCESS; 982 } 983 984 /** 985 * e1000_release_phy - Generic release PHY 986 * @hw: pointer to the HW structure 987 * 988 * Return if silicon family does not require a semaphore when accessing the 989 * PHY. 990 **/ 991 void e1000_release_phy(struct e1000_hw *hw) 992 { 993 if (hw->phy.ops.release) 994 hw->phy.ops.release(hw); 995 } 996 997 /** 998 * e1000_acquire_phy - Generic acquire PHY 999 * @hw: pointer to the HW structure 1000 * 1001 * Return success if silicon family does not require a semaphore when 1002 * accessing the PHY. 1003 **/ 1004 s32 e1000_acquire_phy(struct e1000_hw *hw) 1005 { 1006 if (hw->phy.ops.acquire) 1007 return hw->phy.ops.acquire(hw); 1008 1009 return E1000_SUCCESS; 1010 } 1011 1012 /** 1013 * e1000_cfg_on_link_up - Configure PHY upon link up 1014 * @hw: pointer to the HW structure 1015 **/ 1016 s32 e1000_cfg_on_link_up(struct e1000_hw *hw) 1017 { 1018 if (hw->phy.ops.cfg_on_link_up) 1019 return hw->phy.ops.cfg_on_link_up(hw); 1020 1021 return E1000_SUCCESS; 1022 } 1023 1024 /** 1025 * e1000_read_kmrn_reg - Reads register using Kumeran interface 1026 * @hw: pointer to the HW structure 1027 * @offset: the register to read 1028 * @data: the location to store the 16-bit value read. 1029 * 1030 * Reads a register out of the Kumeran interface. Currently no func pointer 1031 * exists and all implementations are handled in the generic version of 1032 * this function. 1033 **/ 1034 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 1035 { 1036 return e1000_read_kmrn_reg_generic(hw, offset, data); 1037 } 1038 1039 /** 1040 * e1000_write_kmrn_reg - Writes register using Kumeran interface 1041 * @hw: pointer to the HW structure 1042 * @offset: the register to write 1043 * @data: the value to write. 1044 * 1045 * Writes a register to the Kumeran interface. Currently no func pointer 1046 * exists and all implementations are handled in the generic version of 1047 * this function. 1048 **/ 1049 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 1050 { 1051 return e1000_write_kmrn_reg_generic(hw, offset, data); 1052 } 1053 1054 /** 1055 * e1000_get_cable_length - Retrieves cable length estimation 1056 * @hw: pointer to the HW structure 1057 * 1058 * This function estimates the cable length and stores them in 1059 * hw->phy.min_length and hw->phy.max_length. This is a function pointer 1060 * entry point called by drivers. 1061 **/ 1062 s32 e1000_get_cable_length(struct e1000_hw *hw) 1063 { 1064 if (hw->phy.ops.get_cable_length) 1065 return hw->phy.ops.get_cable_length(hw); 1066 1067 return E1000_SUCCESS; 1068 } 1069 1070 /** 1071 * e1000_get_phy_info - Retrieves PHY information from registers 1072 * @hw: pointer to the HW structure 1073 * 1074 * This function gets some information from various PHY registers and 1075 * populates hw->phy values with it. This is a function pointer entry 1076 * point called by drivers. 1077 **/ 1078 s32 e1000_get_phy_info(struct e1000_hw *hw) 1079 { 1080 if (hw->phy.ops.get_info) 1081 return hw->phy.ops.get_info(hw); 1082 1083 return E1000_SUCCESS; 1084 } 1085 1086 /** 1087 * e1000_phy_hw_reset - Hard PHY reset 1088 * @hw: pointer to the HW structure 1089 * 1090 * Performs a hard PHY reset. This is a function pointer entry point called 1091 * by drivers. 1092 **/ 1093 s32 e1000_phy_hw_reset(struct e1000_hw *hw) 1094 { 1095 if (hw->phy.ops.reset) 1096 return hw->phy.ops.reset(hw); 1097 1098 return E1000_SUCCESS; 1099 } 1100 1101 /** 1102 * e1000_phy_commit - Soft PHY reset 1103 * @hw: pointer to the HW structure 1104 * 1105 * Performs a soft PHY reset on those that apply. This is a function pointer 1106 * entry point called by drivers. 1107 **/ 1108 s32 e1000_phy_commit(struct e1000_hw *hw) 1109 { 1110 if (hw->phy.ops.commit) 1111 return hw->phy.ops.commit(hw); 1112 1113 return E1000_SUCCESS; 1114 } 1115 1116 /** 1117 * e1000_set_d0_lplu_state - Sets low power link up state for D0 1118 * @hw: pointer to the HW structure 1119 * @active: boolean used to enable/disable lplu 1120 * 1121 * Success returns 0, Failure returns 1 1122 * 1123 * The low power link up (lplu) state is set to the power management level D0 1124 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0 1125 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1126 * is used during Dx states where the power conservation is most important. 1127 * During driver activity, SmartSpeed should be enabled so performance is 1128 * maintained. This is a function pointer entry point called by drivers. 1129 **/ 1130 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) 1131 { 1132 if (hw->phy.ops.set_d0_lplu_state) 1133 return hw->phy.ops.set_d0_lplu_state(hw, active); 1134 1135 return E1000_SUCCESS; 1136 } 1137 1138 /** 1139 * e1000_set_d3_lplu_state - Sets low power link up state for D3 1140 * @hw: pointer to the HW structure 1141 * @active: boolean used to enable/disable lplu 1142 * 1143 * Success returns 0, Failure returns 1 1144 * 1145 * The low power link up (lplu) state is set to the power management level D3 1146 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 1147 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1148 * is used during Dx states where the power conservation is most important. 1149 * During driver activity, SmartSpeed should be enabled so performance is 1150 * maintained. This is a function pointer entry point called by drivers. 1151 **/ 1152 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1153 { 1154 if (hw->phy.ops.set_d3_lplu_state) 1155 return hw->phy.ops.set_d3_lplu_state(hw, active); 1156 1157 return E1000_SUCCESS; 1158 } 1159 1160 /** 1161 * e1000_read_mac_addr - Reads MAC address 1162 * @hw: pointer to the HW structure 1163 * 1164 * Reads the MAC address out of the adapter and stores it in the HW structure. 1165 * Currently no func pointer exists and all implementations are handled in the 1166 * generic version of this function. 1167 **/ 1168 s32 e1000_read_mac_addr(struct e1000_hw *hw) 1169 { 1170 if (hw->mac.ops.read_mac_addr) 1171 return hw->mac.ops.read_mac_addr(hw); 1172 1173 return e1000_read_mac_addr_generic(hw); 1174 } 1175 1176 /** 1177 * e1000_read_pba_string - Read device part number string 1178 * @hw: pointer to the HW structure 1179 * @pba_num: pointer to device part number 1180 * @pba_num_size: size of part number buffer 1181 * 1182 * Reads the product board assembly (PBA) number from the EEPROM and stores 1183 * the value in pba_num. 1184 * Currently no func pointer exists and all implementations are handled in the 1185 * generic version of this function. 1186 **/ 1187 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) 1188 { 1189 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size); 1190 } 1191 1192 /** 1193 * e1000_read_pba_length - Read device part number string length 1194 * @hw: pointer to the HW structure 1195 * @pba_num_size: size of part number buffer 1196 * 1197 * Reads the product board assembly (PBA) number length from the EEPROM and 1198 * stores the value in pba_num. 1199 * Currently no func pointer exists and all implementations are handled in the 1200 * generic version of this function. 1201 **/ 1202 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size) 1203 { 1204 return e1000_read_pba_length_generic(hw, pba_num_size); 1205 } 1206 1207 /** 1208 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum 1209 * @hw: pointer to the HW structure 1210 * 1211 * Validates the NVM checksum is correct. This is a function pointer entry 1212 * point called by drivers. 1213 **/ 1214 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) 1215 { 1216 if (hw->nvm.ops.validate) 1217 return hw->nvm.ops.validate(hw); 1218 1219 return -E1000_ERR_CONFIG; 1220 } 1221 1222 /** 1223 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum 1224 * @hw: pointer to the HW structure 1225 * 1226 * Updates the NVM checksum. Currently no func pointer exists and all 1227 * implementations are handled in the generic version of this function. 1228 **/ 1229 s32 e1000_update_nvm_checksum(struct e1000_hw *hw) 1230 { 1231 if (hw->nvm.ops.update) 1232 return hw->nvm.ops.update(hw); 1233 1234 return -E1000_ERR_CONFIG; 1235 } 1236 1237 /** 1238 * e1000_reload_nvm - Reloads EEPROM 1239 * @hw: pointer to the HW structure 1240 * 1241 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 1242 * extended control register. 1243 **/ 1244 void e1000_reload_nvm(struct e1000_hw *hw) 1245 { 1246 if (hw->nvm.ops.reload) 1247 hw->nvm.ops.reload(hw); 1248 } 1249 1250 /** 1251 * e1000_read_nvm - Reads NVM (EEPROM) 1252 * @hw: pointer to the HW structure 1253 * @offset: the word offset to read 1254 * @words: number of 16-bit words to read 1255 * @data: pointer to the properly sized buffer for the data. 1256 * 1257 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function 1258 * pointer entry point called by drivers. 1259 **/ 1260 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1261 { 1262 if (hw->nvm.ops.read) 1263 return hw->nvm.ops.read(hw, offset, words, data); 1264 1265 return -E1000_ERR_CONFIG; 1266 } 1267 1268 /** 1269 * e1000_write_nvm - Writes to NVM (EEPROM) 1270 * @hw: pointer to the HW structure 1271 * @offset: the word offset to read 1272 * @words: number of 16-bit words to write 1273 * @data: pointer to the properly sized buffer for the data. 1274 * 1275 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function 1276 * pointer entry point called by drivers. 1277 **/ 1278 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1279 { 1280 if (hw->nvm.ops.write) 1281 return hw->nvm.ops.write(hw, offset, words, data); 1282 1283 return E1000_SUCCESS; 1284 } 1285 1286 /** 1287 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register 1288 * @hw: pointer to the HW structure 1289 * @reg: 32bit register offset 1290 * @offset: the register to write 1291 * @data: the value to write. 1292 * 1293 * Writes the PHY register at offset with the value in data. 1294 * This is a function pointer entry point called by drivers. 1295 **/ 1296 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, 1297 u8 data) 1298 { 1299 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); 1300 } 1301 1302 /** 1303 * e1000_power_up_phy - Restores link in case of PHY power down 1304 * @hw: pointer to the HW structure 1305 * 1306 * The phy may be powered down to save power, to turn off link when the 1307 * driver is unloaded, or wake on lan is not enabled (among others). 1308 **/ 1309 void e1000_power_up_phy(struct e1000_hw *hw) 1310 { 1311 if (hw->phy.ops.power_up) 1312 hw->phy.ops.power_up(hw); 1313 1314 e1000_setup_link(hw); 1315 } 1316 1317 /** 1318 * e1000_power_down_phy - Power down PHY 1319 * @hw: pointer to the HW structure 1320 * 1321 * The phy may be powered down to save power, to turn off link when the 1322 * driver is unloaded, or wake on lan is not enabled (among others). 1323 **/ 1324 void e1000_power_down_phy(struct e1000_hw *hw) 1325 { 1326 if (hw->phy.ops.power_down) 1327 hw->phy.ops.power_down(hw); 1328 } 1329 1330 /** 1331 * e1000_power_up_fiber_serdes_link - Power up serdes link 1332 * @hw: pointer to the HW structure 1333 * 1334 * Power on the optics and PCS. 1335 **/ 1336 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw) 1337 { 1338 if (hw->mac.ops.power_up_serdes) 1339 hw->mac.ops.power_up_serdes(hw); 1340 } 1341 1342 /** 1343 * e1000_shutdown_fiber_serdes_link - Remove link during power down 1344 * @hw: pointer to the HW structure 1345 * 1346 * Shutdown the optics and PCS on driver unload. 1347 **/ 1348 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) 1349 { 1350 if (hw->mac.ops.shutdown_serdes) 1351 hw->mac.ops.shutdown_serdes(hw); 1352 } 1353 1354