1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Data-Link Driver 28 */ 29 30 #include <inet/common.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strsun.h> 34 #include <sys/vlan.h> 35 #include <sys/dld_impl.h> 36 #include <sys/cpuvar.h> 37 #include <sys/callb.h> 38 #include <sys/list.h> 39 #include <sys/mac_client.h> 40 #include <sys/mac_client_priv.h> 41 42 static int str_constructor(void *, void *, int); 43 static void str_destructor(void *, void *); 44 static mblk_t *str_unitdata_ind(dld_str_t *, mblk_t *, boolean_t); 45 static void str_notify_promisc_on_phys(dld_str_t *); 46 static void str_notify_promisc_off_phys(dld_str_t *); 47 static void str_notify_phys_addr(dld_str_t *, uint_t, const uint8_t *); 48 static void str_notify_link_up(dld_str_t *); 49 static void str_notify_link_down(dld_str_t *); 50 static void str_notify_capab_reneg(dld_str_t *); 51 static void str_notify_speed(dld_str_t *, uint32_t); 52 53 static void ioc_native(dld_str_t *, mblk_t *); 54 static void ioc_margin(dld_str_t *, mblk_t *); 55 static void ioc_raw(dld_str_t *, mblk_t *); 56 static void ioc_fast(dld_str_t *, mblk_t *); 57 static void ioc_lowlink(dld_str_t *, mblk_t *); 58 static void ioc(dld_str_t *, mblk_t *); 59 static void dld_ioc(dld_str_t *, mblk_t *); 60 static void dld_wput_nondata(dld_str_t *, mblk_t *); 61 62 static void str_mdata_raw_put(dld_str_t *, mblk_t *); 63 static mblk_t *i_dld_ether_header_update_tag(mblk_t *, uint_t, uint16_t, 64 link_tagmode_t); 65 static mblk_t *i_dld_ether_header_strip_tag(mblk_t *, boolean_t); 66 67 static uint32_t str_count; 68 static kmem_cache_t *str_cachep; 69 static mod_hash_t *str_hashp; 70 71 #define STR_HASHSZ 64 72 #define STR_HASH_KEY(key) ((mod_hash_key_t)(uintptr_t)(key)) 73 74 #define dld_taskq system_taskq 75 76 static kmutex_t dld_taskq_lock; 77 static kcondvar_t dld_taskq_cv; 78 static list_t dld_taskq_list; /* List of dld_str_t */ 79 boolean_t dld_taskq_quit; 80 boolean_t dld_taskq_done; 81 82 static void dld_taskq_dispatch(void); 83 84 /* 85 * Some notes on entry points, flow-control, queueing. 86 * 87 * This driver exports the traditional STREAMS put entry point as well as 88 * the non-STREAMS fast-path transmit routine which is provided to IP via 89 * the DL_CAPAB_POLL negotiation. The put procedure handles all control 90 * and data operations, while the fast-path routine deals only with M_DATA 91 * fast-path packets. Regardless of the entry point, all outbound packets 92 * will end up in DLD_TX(), where they will be delivered to the MAC layer. 93 * 94 * The transmit logic operates in the following way: All packets coming 95 * into DLD will be sent to the MAC layer through DLD_TX(). Flow-control 96 * happens when the MAC layer indicates the packets couldn't be 97 * transmitted due to 1) lack of resources (e.g. running out of 98 * descriptors), or 2) reaching the allowed bandwidth limit for this 99 * particular flow. The indication comes in the form of a Tx cookie that 100 * identifies the blocked ring. In such case, DLD will place a 101 * dummy message on its write-side STREAMS queue so that the queue is 102 * marked as "full". Any subsequent packets arriving at the driver will 103 * still be sent to the MAC layer where it either gets queued in the Tx 104 * SRS or discarded it if queue limit is exceeded. The write-side STREAMS 105 * queue gets enabled when MAC layer notifies DLD through MAC_NOTE_TX. 106 * When the write service procedure runs, it will remove the dummy 107 * message from the write-side STREAMS queue; in effect this will trigger 108 * backenabling. The sizes of q_hiwat and q_lowat are set to 1 and 0, 109 * respectively, due to the above reasons. 110 * 111 * All non-data operations, both DLPI and ioctls are single threaded on a per 112 * dld_str_t endpoint. This is done using a taskq so that the control operation 113 * has kernel context and can cv_wait for resources. In addition all set type 114 * operations that involve mac level state modification are serialized on a 115 * per mac end point using the perimeter mechanism provided by the mac layer. 116 * This serializes all mac clients trying to modify a single mac end point over 117 * the entire sequence of mac calls made by that client as an atomic unit. The 118 * mac framework locking is described in mac.c. A critical element is that 119 * DLD/DLS does not hold any locks across the mac perimeter. 120 * 121 * dld_finddevinfo() returns the dev_info_t * corresponding to a particular 122 * dev_t. It searches str_hashp (a table of dld_str_t's) for streams that 123 * match dev_t. If a stream is found and it is attached, its dev_info_t * 124 * is returned. If the mac handle is non-null, it can be safely accessed 125 * below. The mac handle won't be freed until the mac_unregister which 126 * won't happen until the driver detaches. The DDI framework ensures that 127 * the detach won't happen while a getinfo is in progress. 128 */ 129 typedef struct i_dld_str_state_s { 130 major_t ds_major; 131 minor_t ds_minor; 132 int ds_instance; 133 dev_info_t *ds_dip; 134 } i_dld_str_state_t; 135 136 /* ARGSUSED */ 137 static uint_t 138 i_dld_str_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 139 { 140 i_dld_str_state_t *statep = arg; 141 dld_str_t *dsp = (dld_str_t *)val; 142 mac_handle_t mh; 143 144 if (statep->ds_major != dsp->ds_major) 145 return (MH_WALK_CONTINUE); 146 147 ASSERT(statep->ds_minor != 0); 148 mh = dsp->ds_mh; 149 150 if (statep->ds_minor == dsp->ds_minor) { 151 /* 152 * Clone: a clone minor is unique. we can terminate the 153 * walk if we find a matching stream -- even if we fail 154 * to obtain the devinfo. 155 */ 156 if (mh != NULL) { 157 statep->ds_dip = mac_devinfo_get(mh); 158 statep->ds_instance = DLS_MINOR2INST(mac_minor(mh)); 159 } 160 return (MH_WALK_TERMINATE); 161 } 162 return (MH_WALK_CONTINUE); 163 } 164 165 static dev_info_t * 166 dld_finddevinfo(dev_t dev) 167 { 168 dev_info_t *dip; 169 i_dld_str_state_t state; 170 171 if (getminor(dev) == 0) 172 return (NULL); 173 174 /* 175 * See if it's a minor node of a link 176 */ 177 if ((dip = dls_link_devinfo(dev)) != NULL) 178 return (dip); 179 180 state.ds_minor = getminor(dev); 181 state.ds_major = getmajor(dev); 182 state.ds_dip = NULL; 183 state.ds_instance = -1; 184 185 mod_hash_walk(str_hashp, i_dld_str_walker, &state); 186 return (state.ds_dip); 187 } 188 189 int 190 dld_devt_to_instance(dev_t dev) 191 { 192 minor_t minor; 193 i_dld_str_state_t state; 194 195 /* 196 * GLDv3 numbers DLPI style 1 node as the instance number + 1. 197 * Minor number 0 is reserved for the DLPI style 2 unattached 198 * node. 199 */ 200 201 if ((minor = getminor(dev)) == 0) 202 return (-1); 203 204 /* 205 * Check for unopened style 1 node. 206 * Note that this doesn't *necessarily* work for legacy 207 * devices, but this code is only called within the 208 * getinfo(9e) implementation for true GLDv3 devices, so it 209 * doesn't matter. 210 */ 211 if (minor > 0 && minor <= DLS_MAX_MINOR) { 212 return (DLS_MINOR2INST(minor)); 213 } 214 215 state.ds_minor = getminor(dev); 216 state.ds_major = getmajor(dev); 217 state.ds_dip = NULL; 218 state.ds_instance = -1; 219 220 mod_hash_walk(str_hashp, i_dld_str_walker, &state); 221 return (state.ds_instance); 222 } 223 224 /* 225 * devo_getinfo: getinfo(9e) 226 * 227 * NB: This may be called for a provider before the provider's 228 * instances are attached. Hence, if a particular provider needs a 229 * special mapping (the mac instance != ddi_get_instance()), then it 230 * may need to provide its own implmentation using the 231 * mac_devt_to_instance() function, and translating the returned mac 232 * instance to a devinfo instance. For dev_t's where the minor number 233 * is too large (i.e. > MAC_MAX_MINOR), the provider can call this 234 * function indirectly via the mac_getinfo() function. 235 */ 236 /*ARGSUSED*/ 237 int 238 dld_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **resp) 239 { 240 dev_info_t *devinfo; 241 minor_t minor = getminor((dev_t)arg); 242 int rc = DDI_FAILURE; 243 244 switch (cmd) { 245 case DDI_INFO_DEVT2DEVINFO: 246 if ((devinfo = dld_finddevinfo((dev_t)arg)) != NULL) { 247 *(dev_info_t **)resp = devinfo; 248 rc = DDI_SUCCESS; 249 } 250 break; 251 case DDI_INFO_DEVT2INSTANCE: 252 if (minor > 0 && minor <= DLS_MAX_MINOR) { 253 *resp = (void *)(uintptr_t)DLS_MINOR2INST(minor); 254 rc = DDI_SUCCESS; 255 } else if (minor > DLS_MAX_MINOR && 256 (devinfo = dld_finddevinfo((dev_t)arg)) != NULL) { 257 *resp = (void *)(uintptr_t)ddi_get_instance(devinfo); 258 rc = DDI_SUCCESS; 259 } 260 break; 261 } 262 return (rc); 263 } 264 265 void * 266 dld_str_private(queue_t *q) 267 { 268 return (((dld_str_t *)(q->q_ptr))->ds_private); 269 } 270 271 int 272 dld_str_open(queue_t *rq, dev_t *devp, void *private) 273 { 274 dld_str_t *dsp; 275 major_t major; 276 minor_t minor; 277 int err; 278 279 major = getmajor(*devp); 280 minor = getminor(*devp); 281 282 /* 283 * Create a new dld_str_t for the stream. This will grab a new minor 284 * number that will be handed back in the cloned dev_t. Creation may 285 * fail if we can't allocate the dummy mblk used for flow-control. 286 */ 287 dsp = dld_str_create(rq, DLD_DLPI, major, 288 ((minor == 0) ? DL_STYLE2 : DL_STYLE1)); 289 if (dsp == NULL) 290 return (ENOSR); 291 292 ASSERT(dsp->ds_dlstate == DL_UNATTACHED); 293 dsp->ds_private = private; 294 if (minor != 0) { 295 /* 296 * Style 1 open 297 */ 298 if ((err = dld_str_attach(dsp, (t_uscalar_t)minor - 1)) != 0) 299 goto failed; 300 301 ASSERT(dsp->ds_dlstate == DL_UNBOUND); 302 } else { 303 (void) qassociate(rq, -1); 304 } 305 306 /* 307 * Enable the queue srv(9e) routine. 308 */ 309 qprocson(rq); 310 311 /* 312 * Construct a cloned dev_t to hand back. 313 */ 314 *devp = makedevice(getmajor(*devp), dsp->ds_minor); 315 return (0); 316 317 failed: 318 dld_str_destroy(dsp); 319 return (err); 320 } 321 322 int 323 dld_str_close(queue_t *rq) 324 { 325 dld_str_t *dsp = rq->q_ptr; 326 327 /* 328 * All modules on top have been popped off. So there can't be any 329 * threads from the top. 330 */ 331 ASSERT(dsp->ds_datathr_cnt == 0); 332 333 /* 334 * Wait until pending DLPI requests are processed. 335 */ 336 mutex_enter(&dsp->ds_lock); 337 while (dsp->ds_dlpi_pending) 338 cv_wait(&dsp->ds_dlpi_pending_cv, &dsp->ds_lock); 339 mutex_exit(&dsp->ds_lock); 340 341 342 /* 343 * This stream was open to a provider node. Check to see 344 * if it has been cleanly shut down. 345 */ 346 if (dsp->ds_dlstate != DL_UNATTACHED) { 347 /* 348 * The stream is either open to a style 1 provider or 349 * this is not clean shutdown. Detach from the PPA. 350 * (This is still ok even in the style 1 case). 351 */ 352 dld_str_detach(dsp); 353 } 354 355 dld_str_destroy(dsp); 356 return (0); 357 } 358 359 /* 360 * qi_qopen: open(9e) 361 */ 362 /*ARGSUSED*/ 363 int 364 dld_open(queue_t *rq, dev_t *devp, int flag, int sflag, cred_t *credp) 365 { 366 if (sflag == MODOPEN) 367 return (ENOTSUP); 368 369 /* 370 * This is a cloning driver and therefore each queue should only 371 * ever get opened once. 372 */ 373 if (rq->q_ptr != NULL) 374 return (EBUSY); 375 376 return (dld_str_open(rq, devp, NULL)); 377 } 378 379 /* 380 * qi_qclose: close(9e) 381 */ 382 int 383 dld_close(queue_t *rq) 384 { 385 /* 386 * Disable the queue srv(9e) routine. 387 */ 388 qprocsoff(rq); 389 390 return (dld_str_close(rq)); 391 } 392 393 /* 394 * qi_qputp: put(9e) 395 */ 396 void 397 dld_wput(queue_t *wq, mblk_t *mp) 398 { 399 dld_str_t *dsp = (dld_str_t *)wq->q_ptr; 400 dld_str_mode_t mode; 401 402 switch (DB_TYPE(mp)) { 403 case M_DATA: 404 mutex_enter(&dsp->ds_lock); 405 mode = dsp->ds_mode; 406 if ((dsp->ds_dlstate != DL_IDLE) || 407 (mode != DLD_FASTPATH && mode != DLD_RAW)) { 408 mutex_exit(&dsp->ds_lock); 409 freemsg(mp); 410 break; 411 } 412 413 DLD_DATATHR_INC(dsp); 414 mutex_exit(&dsp->ds_lock); 415 if (mode == DLD_FASTPATH) { 416 if (dsp->ds_mip->mi_media == DL_ETHER && 417 (MBLKL(mp) < sizeof (struct ether_header))) { 418 freemsg(mp); 419 } else { 420 (void) str_mdata_fastpath_put(dsp, mp, 0, 0); 421 } 422 } else { 423 str_mdata_raw_put(dsp, mp); 424 } 425 DLD_DATATHR_DCR(dsp); 426 break; 427 case M_PROTO: 428 case M_PCPROTO: { 429 t_uscalar_t prim; 430 431 if (MBLKL(mp) < sizeof (t_uscalar_t)) 432 break; 433 434 prim = ((union DL_primitives *)mp->b_rptr)->dl_primitive; 435 436 if (prim == DL_UNITDATA_REQ) { 437 proto_unitdata_req(dsp, mp); 438 } else { 439 dld_wput_nondata(dsp, mp); 440 } 441 break; 442 } 443 444 case M_IOCTL: 445 dld_wput_nondata(dsp, mp); 446 break; 447 448 case M_FLUSH: 449 if (*mp->b_rptr & FLUSHW) { 450 DLD_CLRQFULL(dsp); 451 *mp->b_rptr &= ~FLUSHW; 452 } 453 454 if (*mp->b_rptr & FLUSHR) { 455 qreply(wq, mp); 456 } else { 457 freemsg(mp); 458 } 459 break; 460 461 default: 462 freemsg(mp); 463 break; 464 } 465 } 466 467 /* 468 * qi_srvp: srv(9e) 469 */ 470 void 471 dld_wsrv(queue_t *wq) 472 { 473 dld_str_t *dsp = wq->q_ptr; 474 475 DLD_CLRQFULL(dsp); 476 } 477 478 void 479 dld_init_ops(struct dev_ops *ops, const char *name) 480 { 481 struct streamtab *stream; 482 struct qinit *rq, *wq; 483 struct module_info *modinfo; 484 485 modinfo = kmem_zalloc(sizeof (struct module_info), KM_SLEEP); 486 modinfo->mi_idname = kmem_zalloc(FMNAMESZ, KM_SLEEP); 487 (void) snprintf(modinfo->mi_idname, FMNAMESZ, "%s", name); 488 modinfo->mi_minpsz = 0; 489 modinfo->mi_maxpsz = 64*1024; 490 modinfo->mi_hiwat = 1; 491 modinfo->mi_lowat = 0; 492 493 rq = kmem_zalloc(sizeof (struct qinit), KM_SLEEP); 494 rq->qi_qopen = dld_open; 495 rq->qi_qclose = dld_close; 496 rq->qi_minfo = modinfo; 497 498 wq = kmem_zalloc(sizeof (struct qinit), KM_SLEEP); 499 wq->qi_putp = (pfi_t)dld_wput; 500 wq->qi_srvp = (pfi_t)dld_wsrv; 501 wq->qi_minfo = modinfo; 502 503 stream = kmem_zalloc(sizeof (struct streamtab), KM_SLEEP); 504 stream->st_rdinit = rq; 505 stream->st_wrinit = wq; 506 ops->devo_cb_ops->cb_str = stream; 507 508 if (ops->devo_getinfo == NULL) 509 ops->devo_getinfo = &dld_getinfo; 510 } 511 512 void 513 dld_fini_ops(struct dev_ops *ops) 514 { 515 struct streamtab *stream; 516 struct qinit *rq, *wq; 517 struct module_info *modinfo; 518 519 stream = ops->devo_cb_ops->cb_str; 520 rq = stream->st_rdinit; 521 wq = stream->st_wrinit; 522 modinfo = rq->qi_minfo; 523 ASSERT(wq->qi_minfo == modinfo); 524 525 kmem_free(stream, sizeof (struct streamtab)); 526 kmem_free(wq, sizeof (struct qinit)); 527 kmem_free(rq, sizeof (struct qinit)); 528 kmem_free(modinfo->mi_idname, FMNAMESZ); 529 kmem_free(modinfo, sizeof (struct module_info)); 530 } 531 532 /* 533 * Initialize this module's data structures. 534 */ 535 void 536 dld_str_init(void) 537 { 538 /* 539 * Create dld_str_t object cache. 540 */ 541 str_cachep = kmem_cache_create("dld_str_cache", sizeof (dld_str_t), 542 0, str_constructor, str_destructor, NULL, NULL, NULL, 0); 543 ASSERT(str_cachep != NULL); 544 545 /* 546 * Create a hash table for maintaining dld_str_t's. 547 * The ds_minor field (the clone minor number) of a dld_str_t 548 * is used as a key for this hash table because this number is 549 * globally unique (allocated from "dls_minor_arena"). 550 */ 551 str_hashp = mod_hash_create_idhash("dld_str_hash", STR_HASHSZ, 552 mod_hash_null_valdtor); 553 554 mutex_init(&dld_taskq_lock, NULL, MUTEX_DRIVER, NULL); 555 cv_init(&dld_taskq_cv, NULL, CV_DRIVER, NULL); 556 557 dld_taskq_quit = B_FALSE; 558 dld_taskq_done = B_FALSE; 559 list_create(&dld_taskq_list, sizeof (dld_str_t), 560 offsetof(dld_str_t, ds_tqlist)); 561 (void) thread_create(NULL, 0, dld_taskq_dispatch, NULL, 0, 562 &p0, TS_RUN, minclsyspri); 563 } 564 565 /* 566 * Tear down this module's data structures. 567 */ 568 int 569 dld_str_fini(void) 570 { 571 /* 572 * Make sure that there are no objects in use. 573 */ 574 if (str_count != 0) 575 return (EBUSY); 576 577 /* 578 * Ask the dld_taskq thread to quit and wait for it to be done 579 */ 580 mutex_enter(&dld_taskq_lock); 581 dld_taskq_quit = B_TRUE; 582 cv_signal(&dld_taskq_cv); 583 while (!dld_taskq_done) 584 cv_wait(&dld_taskq_cv, &dld_taskq_lock); 585 mutex_exit(&dld_taskq_lock); 586 list_destroy(&dld_taskq_list); 587 /* 588 * Destroy object cache. 589 */ 590 kmem_cache_destroy(str_cachep); 591 mod_hash_destroy_idhash(str_hashp); 592 return (0); 593 } 594 595 /* 596 * Create a new dld_str_t object. 597 */ 598 dld_str_t * 599 dld_str_create(queue_t *rq, uint_t type, major_t major, t_uscalar_t style) 600 { 601 dld_str_t *dsp; 602 int err; 603 604 /* 605 * Allocate an object from the cache. 606 */ 607 atomic_add_32(&str_count, 1); 608 dsp = kmem_cache_alloc(str_cachep, KM_SLEEP); 609 610 /* 611 * Allocate the dummy mblk for flow-control. 612 */ 613 dsp->ds_tx_flow_mp = allocb(1, BPRI_HI); 614 if (dsp->ds_tx_flow_mp == NULL) { 615 kmem_cache_free(str_cachep, dsp); 616 atomic_add_32(&str_count, -1); 617 return (NULL); 618 } 619 dsp->ds_type = type; 620 dsp->ds_major = major; 621 dsp->ds_style = style; 622 623 /* 624 * Initialize the queue pointers. 625 */ 626 ASSERT(RD(rq) == rq); 627 dsp->ds_rq = rq; 628 dsp->ds_wq = WR(rq); 629 rq->q_ptr = WR(rq)->q_ptr = (void *)dsp; 630 631 /* 632 * We want explicit control over our write-side STREAMS queue 633 * where the dummy mblk gets added/removed for flow-control. 634 */ 635 noenable(WR(rq)); 636 637 err = mod_hash_insert(str_hashp, STR_HASH_KEY(dsp->ds_minor), 638 (mod_hash_val_t)dsp); 639 ASSERT(err == 0); 640 return (dsp); 641 } 642 643 /* 644 * Destroy a dld_str_t object. 645 */ 646 void 647 dld_str_destroy(dld_str_t *dsp) 648 { 649 queue_t *rq; 650 queue_t *wq; 651 mod_hash_val_t val; 652 653 /* 654 * Clear the queue pointers. 655 */ 656 rq = dsp->ds_rq; 657 wq = dsp->ds_wq; 658 ASSERT(wq == WR(rq)); 659 rq->q_ptr = wq->q_ptr = NULL; 660 dsp->ds_rq = dsp->ds_wq = NULL; 661 662 ASSERT(dsp->ds_dlstate == DL_UNATTACHED); 663 ASSERT(dsp->ds_sap == 0); 664 ASSERT(dsp->ds_mh == NULL); 665 ASSERT(dsp->ds_mch == NULL); 666 ASSERT(dsp->ds_promisc == 0); 667 ASSERT(dsp->ds_mph == NULL); 668 ASSERT(dsp->ds_mip == NULL); 669 ASSERT(dsp->ds_mnh == NULL); 670 671 ASSERT(dsp->ds_polling == B_FALSE); 672 ASSERT(dsp->ds_direct == B_FALSE); 673 ASSERT(dsp->ds_lso == B_FALSE); 674 ASSERT(dsp->ds_lso_max == 0); 675 ASSERT(dsp->ds_passivestate != DLD_ACTIVE); 676 677 /* 678 * Reinitialize all the flags. 679 */ 680 dsp->ds_notifications = 0; 681 dsp->ds_passivestate = DLD_UNINITIALIZED; 682 dsp->ds_mode = DLD_UNITDATA; 683 dsp->ds_native = B_FALSE; 684 685 ASSERT(dsp->ds_datathr_cnt == 0); 686 ASSERT(dsp->ds_pending_head == NULL); 687 ASSERT(dsp->ds_pending_tail == NULL); 688 ASSERT(!dsp->ds_dlpi_pending); 689 690 ASSERT(dsp->ds_dlp == NULL); 691 ASSERT(dsp->ds_dmap == NULL); 692 ASSERT(dsp->ds_rx == NULL); 693 ASSERT(dsp->ds_rx_arg == NULL); 694 ASSERT(dsp->ds_next == NULL); 695 ASSERT(dsp->ds_head == NULL); 696 697 /* 698 * Free the dummy mblk if exists. 699 */ 700 if (dsp->ds_tx_flow_mp != NULL) { 701 freeb(dsp->ds_tx_flow_mp); 702 dsp->ds_tx_flow_mp = NULL; 703 } 704 705 (void) mod_hash_remove(str_hashp, STR_HASH_KEY(dsp->ds_minor), &val); 706 ASSERT(dsp == (dld_str_t *)val); 707 708 /* 709 * Free the object back to the cache. 710 */ 711 kmem_cache_free(str_cachep, dsp); 712 atomic_add_32(&str_count, -1); 713 } 714 715 /* 716 * kmem_cache contructor function: see kmem_cache_create(9f). 717 */ 718 /*ARGSUSED*/ 719 static int 720 str_constructor(void *buf, void *cdrarg, int kmflags) 721 { 722 dld_str_t *dsp = buf; 723 724 bzero(buf, sizeof (dld_str_t)); 725 726 /* 727 * Allocate a new minor number. 728 */ 729 if ((dsp->ds_minor = mac_minor_hold(kmflags == KM_SLEEP)) == 0) 730 return (-1); 731 732 /* 733 * Initialize the DLPI state machine. 734 */ 735 dsp->ds_dlstate = DL_UNATTACHED; 736 737 mutex_init(&dsp->ds_lock, NULL, MUTEX_DRIVER, NULL); 738 cv_init(&dsp->ds_datathr_cv, NULL, CV_DRIVER, NULL); 739 cv_init(&dsp->ds_dlpi_pending_cv, NULL, CV_DRIVER, NULL); 740 741 return (0); 742 } 743 744 /* 745 * kmem_cache destructor function. 746 */ 747 /*ARGSUSED*/ 748 static void 749 str_destructor(void *buf, void *cdrarg) 750 { 751 dld_str_t *dsp = buf; 752 753 /* 754 * Release the minor number. 755 */ 756 mac_minor_rele(dsp->ds_minor); 757 758 ASSERT(dsp->ds_tx_flow_mp == NULL); 759 760 mutex_destroy(&dsp->ds_lock); 761 cv_destroy(&dsp->ds_datathr_cv); 762 cv_destroy(&dsp->ds_dlpi_pending_cv); 763 } 764 765 /* 766 * Update the priority bits and VID (may need to insert tag if mp points 767 * to an untagged packet. 768 * If vid is VLAN_ID_NONE, use the VID encoded in the packet. 769 */ 770 static mblk_t * 771 i_dld_ether_header_update_tag(mblk_t *mp, uint_t pri, uint16_t vid, 772 link_tagmode_t tagmode) 773 { 774 mblk_t *hmp; 775 struct ether_vlan_header *evhp; 776 struct ether_header *ehp; 777 uint16_t old_tci = 0; 778 size_t len; 779 780 ASSERT(pri != 0 || vid != VLAN_ID_NONE); 781 782 evhp = (struct ether_vlan_header *)mp->b_rptr; 783 if (ntohs(evhp->ether_tpid) == ETHERTYPE_VLAN) { 784 /* 785 * Tagged packet, update the priority bits. 786 */ 787 len = sizeof (struct ether_vlan_header); 788 789 if ((DB_REF(mp) > 1) || (MBLKL(mp) < len)) { 790 /* 791 * In case some drivers only check the db_ref 792 * count of the first mblk, we pullup the 793 * message into a single mblk. 794 */ 795 hmp = msgpullup(mp, -1); 796 if ((hmp == NULL) || (MBLKL(hmp) < len)) { 797 freemsg(hmp); 798 return (NULL); 799 } else { 800 freemsg(mp); 801 mp = hmp; 802 } 803 } 804 805 evhp = (struct ether_vlan_header *)mp->b_rptr; 806 old_tci = ntohs(evhp->ether_tci); 807 } else { 808 /* 809 * Untagged packet. Two factors will cause us to insert a 810 * VLAN header: 811 * - This is a VLAN link (vid is specified) 812 * - The link supports user priority tagging and the priority 813 * is non-zero. 814 */ 815 if (vid == VLAN_ID_NONE && tagmode == LINK_TAGMODE_VLANONLY) 816 return (mp); 817 818 hmp = allocb(sizeof (struct ether_vlan_header), BPRI_MED); 819 if (hmp == NULL) 820 return (NULL); 821 822 evhp = (struct ether_vlan_header *)hmp->b_rptr; 823 ehp = (struct ether_header *)mp->b_rptr; 824 825 /* 826 * Copy the MAC addresses and typelen 827 */ 828 bcopy(ehp, evhp, (ETHERADDRL * 2)); 829 evhp->ether_type = ehp->ether_type; 830 evhp->ether_tpid = htons(ETHERTYPE_VLAN); 831 832 hmp->b_wptr += sizeof (struct ether_vlan_header); 833 mp->b_rptr += sizeof (struct ether_header); 834 835 /* 836 * Free the original message if it's now empty. Link the 837 * rest of the messages to the header message. 838 */ 839 if (MBLKL(mp) == 0) { 840 hmp->b_cont = mp->b_cont; 841 freeb(mp); 842 } else { 843 hmp->b_cont = mp; 844 } 845 mp = hmp; 846 } 847 848 if (pri == 0) 849 pri = VLAN_PRI(old_tci); 850 if (vid == VLAN_ID_NONE) 851 vid = VLAN_ID(old_tci); 852 evhp->ether_tci = htons(VLAN_TCI(pri, VLAN_CFI(old_tci), vid)); 853 return (mp); 854 } 855 856 /* 857 * M_DATA put (IP fast-path mode) 858 */ 859 mac_tx_cookie_t 860 str_mdata_fastpath_put(dld_str_t *dsp, mblk_t *mp, uintptr_t f_hint, 861 uint16_t flag) 862 { 863 boolean_t is_ethernet = (dsp->ds_mip->mi_media == DL_ETHER); 864 mblk_t *newmp; 865 uint_t pri; 866 mac_tx_cookie_t cookie; 867 868 if (is_ethernet) { 869 /* 870 * Update the priority bits to the assigned priority. 871 */ 872 pri = (VLAN_MBLKPRI(mp) == 0) ? dsp->ds_pri : VLAN_MBLKPRI(mp); 873 874 if (pri != 0) { 875 newmp = i_dld_ether_header_update_tag(mp, pri, 876 VLAN_ID_NONE, dsp->ds_dlp->dl_tagmode); 877 if (newmp == NULL) 878 goto discard; 879 mp = newmp; 880 } 881 } 882 883 if ((cookie = DLD_TX(dsp, mp, f_hint, flag)) != NULL) { 884 DLD_SETQFULL(dsp); 885 } 886 return (cookie); 887 888 discard: 889 /* TODO: bump kstat? */ 890 freemsg(mp); 891 return (NULL); 892 } 893 894 /* 895 * M_DATA put (DLIOCRAW mode) 896 */ 897 static void 898 str_mdata_raw_put(dld_str_t *dsp, mblk_t *mp) 899 { 900 boolean_t is_ethernet = (dsp->ds_mip->mi_media == DL_ETHER); 901 mblk_t *bp, *newmp; 902 size_t size; 903 mac_header_info_t mhi; 904 uint_t pri, vid, dvid; 905 uint_t max_sdu; 906 907 /* 908 * Certain MAC type plugins provide an illusion for raw DLPI 909 * consumers. They pretend that the MAC layer is something that 910 * it's not for the benefit of observability tools. For example, 911 * mac_wifi pretends that it's Ethernet for such consumers. 912 * Here, unless native mode is enabled, we call into the MAC layer so 913 * that this illusion can be maintained. The plugin will optionally 914 * transform the MAC header here into something that can be passed 915 * down. The header goes from raw mode to "cooked" mode. 916 */ 917 if (!dsp->ds_native) { 918 if ((newmp = mac_header_cook(dsp->ds_mh, mp)) == NULL) 919 goto discard; 920 mp = newmp; 921 } 922 923 size = MBLKL(mp); 924 925 /* 926 * Check the packet is not too big and that any remaining 927 * fragment list is composed entirely of M_DATA messages. (We 928 * know the first fragment was M_DATA otherwise we could not 929 * have got here). 930 */ 931 for (bp = mp->b_cont; bp != NULL; bp = bp->b_cont) { 932 if (DB_TYPE(bp) != M_DATA) 933 goto discard; 934 size += MBLKL(bp); 935 } 936 937 if (mac_vlan_header_info(dsp->ds_mh, mp, &mhi) != 0) 938 goto discard; 939 940 mac_sdu_get(dsp->ds_mh, NULL, &max_sdu); 941 /* 942 * If LSO is enabled, check the size against lso_max. Otherwise, 943 * compare the packet size with max_sdu. 944 */ 945 max_sdu = dsp->ds_lso ? dsp->ds_lso_max : max_sdu; 946 if (size > max_sdu + mhi.mhi_hdrsize) 947 goto discard; 948 949 if (is_ethernet) { 950 dvid = mac_client_vid(dsp->ds_mch); 951 952 /* 953 * Discard the packet if this is a VLAN stream but the VID in 954 * the packet is not correct. 955 */ 956 vid = VLAN_ID(mhi.mhi_tci); 957 if ((dvid != VLAN_ID_NONE) && (vid != VLAN_ID_NONE)) 958 goto discard; 959 960 /* 961 * Discard the packet if this packet is a tagged packet 962 * but both pri and VID are 0. 963 */ 964 pri = VLAN_PRI(mhi.mhi_tci); 965 if (mhi.mhi_istagged && !mhi.mhi_ispvid && pri == 0 && 966 vid == VLAN_ID_NONE) 967 goto discard; 968 969 /* 970 * Update the priority bits to the per-stream priority if 971 * priority is not set in the packet. Update the VID for 972 * packets on a VLAN stream. 973 */ 974 pri = (pri == 0) ? dsp->ds_pri : 0; 975 if ((pri != 0) || (dvid != VLAN_ID_NONE)) { 976 if ((newmp = i_dld_ether_header_update_tag(mp, pri, 977 dvid, dsp->ds_dlp->dl_tagmode)) == NULL) { 978 goto discard; 979 } 980 mp = newmp; 981 } 982 } 983 984 if (DLD_TX(dsp, mp, 0, 0) != NULL) { 985 /* Turn on flow-control for dld */ 986 DLD_SETQFULL(dsp); 987 } 988 return; 989 990 discard: 991 /* TODO: bump kstat? */ 992 freemsg(mp); 993 } 994 995 /* 996 * Process DL_ATTACH_REQ (style 2) or open(2) (style 1). 997 */ 998 int 999 dld_str_attach(dld_str_t *dsp, t_uscalar_t ppa) 1000 { 1001 dev_t dev; 1002 int err; 1003 const char *drvname; 1004 mac_perim_handle_t mph = NULL; 1005 boolean_t qassociated = B_FALSE; 1006 dls_link_t *dlp = NULL; 1007 dls_dl_handle_t ddp = NULL; 1008 1009 if ((drvname = ddi_major_to_name(dsp->ds_major)) == NULL) 1010 return (EINVAL); 1011 1012 if (dsp->ds_style == DL_STYLE2 && ppa > DLS_MAX_PPA) 1013 return (ENOTSUP); 1014 1015 /* 1016 * /dev node access. This will still be supported for backward 1017 * compatibility reason. 1018 */ 1019 if ((dsp->ds_style == DL_STYLE2) && (strcmp(drvname, "aggr") != 0) && 1020 (strcmp(drvname, "vnic") != 0)) { 1021 if (qassociate(dsp->ds_wq, DLS_PPA2INST(ppa)) != 0) 1022 return (EINVAL); 1023 qassociated = B_TRUE; 1024 } 1025 1026 dev = makedevice(dsp->ds_major, (minor_t)ppa + 1); 1027 if ((err = dls_devnet_hold_by_dev(dev, &ddp)) != 0) 1028 goto failed; 1029 1030 if ((err = mac_perim_enter_by_macname(dls_devnet_mac(ddp), &mph)) != 0) 1031 goto failed; 1032 1033 /* 1034 * Open a channel. 1035 */ 1036 if ((err = dls_link_hold(dls_devnet_mac(ddp), &dlp)) != 0) 1037 goto failed; 1038 1039 if ((err = dls_open(dlp, ddp, dsp)) != 0) 1040 goto failed; 1041 1042 /* 1043 * Set the default packet priority. 1044 */ 1045 dsp->ds_pri = 0; 1046 1047 /* 1048 * Add a notify function so that the we get updates from the MAC. 1049 */ 1050 dsp->ds_mnh = mac_notify_add(dsp->ds_mh, str_notify, dsp); 1051 dsp->ds_dlstate = DL_UNBOUND; 1052 mac_perim_exit(mph); 1053 return (0); 1054 1055 failed: 1056 if (dlp != NULL) 1057 dls_link_rele(dlp); 1058 if (mph != NULL) 1059 mac_perim_exit(mph); 1060 if (ddp != NULL) 1061 dls_devnet_rele(ddp); 1062 if (qassociated) 1063 (void) qassociate(dsp->ds_wq, -1); 1064 1065 return (err); 1066 } 1067 1068 /* 1069 * Process DL_DETACH_REQ (style 2) or close(2) (style 1). Can also be called 1070 * from close(2) for style 2. 1071 */ 1072 void 1073 dld_str_detach(dld_str_t *dsp) 1074 { 1075 mac_perim_handle_t mph; 1076 int err; 1077 1078 ASSERT(dsp->ds_datathr_cnt == 0); 1079 1080 mac_perim_enter_by_mh(dsp->ds_mh, &mph); 1081 /* 1082 * Remove the notify function. 1083 * 1084 * Note that we cannot wait for the notification callback to be removed 1085 * since it could cause the deadlock with str_notify() since they both 1086 * need the mac perimeter. Continue if we cannot remove the 1087 * notification callback right now and wait after we leave the 1088 * perimeter. 1089 */ 1090 err = mac_notify_remove(dsp->ds_mnh, B_FALSE); 1091 dsp->ds_mnh = NULL; 1092 1093 /* 1094 * Disable the capabilities 1095 */ 1096 dld_capabilities_disable(dsp); 1097 1098 /* 1099 * Clear LSO flags. 1100 */ 1101 dsp->ds_lso = B_FALSE; 1102 dsp->ds_lso_max = 0; 1103 1104 dls_close(dsp); 1105 mac_perim_exit(mph); 1106 1107 /* 1108 * Now we leave the mac perimeter. If mac_notify_remove() failed 1109 * because the notification callback was in progress, wait for 1110 * it to finish before we proceed. 1111 */ 1112 if (err != 0) 1113 mac_notify_remove_wait(dsp->ds_mh); 1114 1115 /* 1116 * An unreferenced tagged (non-persistent) vlan gets destroyed 1117 * automatically in the call to dls_devnet_rele. 1118 */ 1119 dls_devnet_rele(dsp->ds_ddh); 1120 1121 dsp->ds_sap = 0; 1122 dsp->ds_mh = NULL; 1123 dsp->ds_mch = NULL; 1124 dsp->ds_mip = NULL; 1125 1126 if (dsp->ds_style == DL_STYLE2) 1127 (void) qassociate(dsp->ds_wq, -1); 1128 1129 /* 1130 * Re-initialize the DLPI state machine. 1131 */ 1132 dsp->ds_dlstate = DL_UNATTACHED; 1133 } 1134 1135 /* 1136 * This function is only called for VLAN streams. In raw mode, we strip VLAN 1137 * tags before sending packets up to the DLS clients, with the exception of 1138 * special priority tagged packets, in that case, we set the VID to 0. 1139 * mp must be a VLAN tagged packet. 1140 */ 1141 static mblk_t * 1142 i_dld_ether_header_strip_tag(mblk_t *mp, boolean_t keep_pri) 1143 { 1144 mblk_t *newmp; 1145 struct ether_vlan_header *evhp; 1146 uint16_t tci, new_tci; 1147 1148 ASSERT(MBLKL(mp) >= sizeof (struct ether_vlan_header)); 1149 if (DB_REF(mp) > 1) { 1150 newmp = copymsg(mp); 1151 if (newmp == NULL) 1152 return (NULL); 1153 freemsg(mp); 1154 mp = newmp; 1155 } 1156 evhp = (struct ether_vlan_header *)mp->b_rptr; 1157 1158 tci = ntohs(evhp->ether_tci); 1159 if (VLAN_PRI(tci) == 0 || !keep_pri) { 1160 /* 1161 * Priority is 0, strip the tag. 1162 */ 1163 ovbcopy(mp->b_rptr, mp->b_rptr + VLAN_TAGSZ, 2 * ETHERADDRL); 1164 mp->b_rptr += VLAN_TAGSZ; 1165 } else { 1166 /* 1167 * Priority is not 0, update the VID to 0. 1168 */ 1169 new_tci = VLAN_TCI(VLAN_PRI(tci), VLAN_CFI(tci), VLAN_ID_NONE); 1170 evhp->ether_tci = htons(new_tci); 1171 } 1172 return (mp); 1173 } 1174 1175 /* 1176 * Raw mode receive function. 1177 */ 1178 /*ARGSUSED*/ 1179 void 1180 dld_str_rx_raw(void *arg, mac_resource_handle_t mrh, mblk_t *mp, 1181 mac_header_info_t *mhip) 1182 { 1183 dld_str_t *dsp = (dld_str_t *)arg; 1184 boolean_t is_ethernet = (dsp->ds_mip->mi_media == DL_ETHER); 1185 mblk_t *next, *newmp; 1186 1187 ASSERT(mp != NULL); 1188 do { 1189 /* 1190 * Get the pointer to the next packet in the chain and then 1191 * clear b_next before the packet gets passed on. 1192 */ 1193 next = mp->b_next; 1194 mp->b_next = NULL; 1195 1196 /* 1197 * Wind back b_rptr to point at the MAC header. 1198 */ 1199 ASSERT(mp->b_rptr >= DB_BASE(mp) + mhip->mhi_hdrsize); 1200 mp->b_rptr -= mhip->mhi_hdrsize; 1201 1202 /* 1203 * Certain MAC type plugins provide an illusion for raw 1204 * DLPI consumers. They pretend that the MAC layer is 1205 * something that it's not for the benefit of observability 1206 * tools. For example, mac_wifi pretends that it's Ethernet 1207 * for such consumers. Here, unless native mode is enabled, 1208 * we call into the MAC layer so that this illusion can be 1209 * maintained. The plugin will optionally transform the MAC 1210 * header here into something that can be passed up to raw 1211 * consumers. The header goes from "cooked" mode to raw mode. 1212 */ 1213 if (!dsp->ds_native) { 1214 newmp = mac_header_uncook(dsp->ds_mh, mp); 1215 if (newmp == NULL) { 1216 freemsg(mp); 1217 goto next; 1218 } 1219 mp = newmp; 1220 } 1221 1222 /* 1223 * Strip the VLAN tag for VLAN streams. 1224 */ 1225 if (is_ethernet && 1226 mac_client_vid(dsp->ds_mch) != VLAN_ID_NONE) { 1227 /* 1228 * The priority should be kept only for VLAN 1229 * data-links. 1230 */ 1231 newmp = i_dld_ether_header_strip_tag(mp, 1232 mac_client_is_vlan_vnic(dsp->ds_mch)); 1233 if (newmp == NULL) { 1234 freemsg(mp); 1235 goto next; 1236 } 1237 mp = newmp; 1238 } 1239 1240 /* 1241 * Pass the packet on. 1242 */ 1243 if (canputnext(dsp->ds_rq)) 1244 putnext(dsp->ds_rq, mp); 1245 else 1246 freemsg(mp); 1247 1248 next: 1249 /* 1250 * Move on to the next packet in the chain. 1251 */ 1252 mp = next; 1253 } while (mp != NULL); 1254 } 1255 1256 /* 1257 * Fast-path receive function. 1258 */ 1259 /*ARGSUSED*/ 1260 void 1261 dld_str_rx_fastpath(void *arg, mac_resource_handle_t mrh, mblk_t *mp, 1262 mac_header_info_t *mhip) 1263 { 1264 dld_str_t *dsp = (dld_str_t *)arg; 1265 mblk_t *next; 1266 size_t offset = 0; 1267 1268 /* 1269 * MAC header stripping rules: 1270 * - Tagged packets: 1271 * a. VLAN streams. Strip the whole VLAN header including the tag. 1272 * b. Physical streams 1273 * - VLAN packets (non-zero VID). The stream must be either a 1274 * DL_PROMISC_SAP listener or a ETHERTYPE_VLAN listener. 1275 * Strip the Ethernet header but keep the VLAN header. 1276 * - Special tagged packets (zero VID) 1277 * * The stream is either a DL_PROMISC_SAP listener or a 1278 * ETHERTYPE_VLAN listener, strip the Ethernet header but 1279 * keep the VLAN header. 1280 * * Otherwise, strip the whole VLAN header. 1281 * - Untagged packets. Strip the whole MAC header. 1282 */ 1283 if (mhip->mhi_istagged && 1284 (mac_client_vid(dsp->ds_mch) == VLAN_ID_NONE) && 1285 ((dsp->ds_sap == ETHERTYPE_VLAN) || 1286 (dsp->ds_promisc & DLS_PROMISC_SAP))) { 1287 offset = VLAN_TAGSZ; 1288 } 1289 1290 ASSERT(mp != NULL); 1291 do { 1292 /* 1293 * Get the pointer to the next packet in the chain and then 1294 * clear b_next before the packet gets passed on. 1295 */ 1296 next = mp->b_next; 1297 mp->b_next = NULL; 1298 1299 /* 1300 * Wind back b_rptr to point at the VLAN header. 1301 */ 1302 ASSERT(mp->b_rptr >= DB_BASE(mp) + offset); 1303 mp->b_rptr -= offset; 1304 1305 /* 1306 * Pass the packet on. 1307 */ 1308 if (canputnext(dsp->ds_rq)) 1309 putnext(dsp->ds_rq, mp); 1310 else 1311 freemsg(mp); 1312 /* 1313 * Move on to the next packet in the chain. 1314 */ 1315 mp = next; 1316 } while (mp != NULL); 1317 } 1318 1319 /* 1320 * Default receive function (send DL_UNITDATA_IND messages). 1321 */ 1322 /*ARGSUSED*/ 1323 void 1324 dld_str_rx_unitdata(void *arg, mac_resource_handle_t mrh, mblk_t *mp, 1325 mac_header_info_t *mhip) 1326 { 1327 dld_str_t *dsp = (dld_str_t *)arg; 1328 mblk_t *ud_mp; 1329 mblk_t *next; 1330 size_t offset = 0; 1331 boolean_t strip_vlan = B_TRUE; 1332 1333 /* 1334 * See MAC header stripping rules in the dld_str_rx_fastpath() function. 1335 */ 1336 if (mhip->mhi_istagged && 1337 (mac_client_vid(dsp->ds_mch) == VLAN_ID_NONE) && 1338 ((dsp->ds_sap == ETHERTYPE_VLAN) || 1339 (dsp->ds_promisc & DLS_PROMISC_SAP))) { 1340 offset = VLAN_TAGSZ; 1341 strip_vlan = B_FALSE; 1342 } 1343 1344 ASSERT(mp != NULL); 1345 do { 1346 /* 1347 * Get the pointer to the next packet in the chain and then 1348 * clear b_next before the packet gets passed on. 1349 */ 1350 next = mp->b_next; 1351 mp->b_next = NULL; 1352 1353 /* 1354 * Wind back b_rptr to point at the MAC header. 1355 */ 1356 ASSERT(mp->b_rptr >= DB_BASE(mp) + mhip->mhi_hdrsize); 1357 mp->b_rptr -= mhip->mhi_hdrsize; 1358 1359 /* 1360 * Create the DL_UNITDATA_IND M_PROTO. 1361 */ 1362 if ((ud_mp = str_unitdata_ind(dsp, mp, strip_vlan)) == NULL) { 1363 freemsgchain(mp); 1364 return; 1365 } 1366 1367 /* 1368 * Advance b_rptr to point at the payload (or the VLAN header). 1369 */ 1370 mp->b_rptr += (mhip->mhi_hdrsize - offset); 1371 1372 /* 1373 * Prepend the DL_UNITDATA_IND. 1374 */ 1375 ud_mp->b_cont = mp; 1376 1377 /* 1378 * Send the message. 1379 */ 1380 if (canputnext(dsp->ds_rq)) 1381 putnext(dsp->ds_rq, ud_mp); 1382 else 1383 freemsg(ud_mp); 1384 1385 /* 1386 * Move on to the next packet in the chain. 1387 */ 1388 mp = next; 1389 } while (mp != NULL); 1390 } 1391 1392 /* 1393 * DL_NOTIFY_IND: DL_NOTE_SDU_SIZE 1394 */ 1395 static void 1396 str_notify_sdu_size(dld_str_t *dsp, uint_t max_sdu) 1397 { 1398 mblk_t *mp; 1399 dl_notify_ind_t *dlip; 1400 1401 if (!(dsp->ds_notifications & DL_NOTE_SDU_SIZE)) 1402 return; 1403 1404 if ((mp = mexchange(dsp->ds_wq, NULL, sizeof (dl_notify_ind_t), 1405 M_PROTO, 0)) == NULL) 1406 return; 1407 1408 bzero(mp->b_rptr, sizeof (dl_notify_ind_t)); 1409 dlip = (dl_notify_ind_t *)mp->b_rptr; 1410 dlip->dl_primitive = DL_NOTIFY_IND; 1411 dlip->dl_notification = DL_NOTE_SDU_SIZE; 1412 dlip->dl_data = max_sdu; 1413 1414 qreply(dsp->ds_wq, mp); 1415 } 1416 1417 /* 1418 * Generate DL_NOTIFY_IND messages to notify the DLPI consumer of the 1419 * current state of the interface. 1420 */ 1421 void 1422 dld_str_notify_ind(dld_str_t *dsp) 1423 { 1424 mac_notify_type_t type; 1425 1426 for (type = 0; type < MAC_NNOTE; type++) 1427 str_notify(dsp, type); 1428 } 1429 1430 typedef struct dl_unitdata_ind_wrapper { 1431 dl_unitdata_ind_t dl_unitdata; 1432 uint8_t dl_dest_addr[MAXMACADDRLEN + sizeof (uint16_t)]; 1433 uint8_t dl_src_addr[MAXMACADDRLEN + sizeof (uint16_t)]; 1434 } dl_unitdata_ind_wrapper_t; 1435 1436 /* 1437 * Create a DL_UNITDATA_IND M_PROTO message. 1438 */ 1439 static mblk_t * 1440 str_unitdata_ind(dld_str_t *dsp, mblk_t *mp, boolean_t strip_vlan) 1441 { 1442 mblk_t *nmp; 1443 dl_unitdata_ind_wrapper_t *dlwp; 1444 dl_unitdata_ind_t *dlp; 1445 mac_header_info_t mhi; 1446 uint_t addr_length; 1447 uint8_t *daddr; 1448 uint8_t *saddr; 1449 1450 /* 1451 * Get the packet header information. 1452 */ 1453 if (mac_vlan_header_info(dsp->ds_mh, mp, &mhi) != 0) 1454 return (NULL); 1455 1456 /* 1457 * Allocate a message large enough to contain the wrapper structure 1458 * defined above. 1459 */ 1460 if ((nmp = mexchange(dsp->ds_wq, NULL, 1461 sizeof (dl_unitdata_ind_wrapper_t), M_PROTO, 1462 DL_UNITDATA_IND)) == NULL) 1463 return (NULL); 1464 1465 dlwp = (dl_unitdata_ind_wrapper_t *)nmp->b_rptr; 1466 1467 dlp = &(dlwp->dl_unitdata); 1468 ASSERT(dlp == (dl_unitdata_ind_t *)nmp->b_rptr); 1469 ASSERT(dlp->dl_primitive == DL_UNITDATA_IND); 1470 1471 /* 1472 * Copy in the destination address. 1473 */ 1474 addr_length = dsp->ds_mip->mi_addr_length; 1475 daddr = dlwp->dl_dest_addr; 1476 dlp->dl_dest_addr_offset = (uintptr_t)daddr - (uintptr_t)dlp; 1477 bcopy(mhi.mhi_daddr, daddr, addr_length); 1478 1479 /* 1480 * Set the destination DLSAP to the SAP value encoded in the packet. 1481 */ 1482 if (mhi.mhi_istagged && !strip_vlan) 1483 *(uint16_t *)(daddr + addr_length) = ETHERTYPE_VLAN; 1484 else 1485 *(uint16_t *)(daddr + addr_length) = mhi.mhi_bindsap; 1486 dlp->dl_dest_addr_length = addr_length + sizeof (uint16_t); 1487 1488 /* 1489 * If the destination address was multicast or broadcast then the 1490 * dl_group_address field should be non-zero. 1491 */ 1492 dlp->dl_group_address = (mhi.mhi_dsttype == MAC_ADDRTYPE_MULTICAST) || 1493 (mhi.mhi_dsttype == MAC_ADDRTYPE_BROADCAST); 1494 1495 /* 1496 * Copy in the source address if one exists. Some MAC types (DL_IB 1497 * for example) may not have access to source information. 1498 */ 1499 if (mhi.mhi_saddr == NULL) { 1500 dlp->dl_src_addr_offset = dlp->dl_src_addr_length = 0; 1501 } else { 1502 saddr = dlwp->dl_src_addr; 1503 dlp->dl_src_addr_offset = (uintptr_t)saddr - (uintptr_t)dlp; 1504 bcopy(mhi.mhi_saddr, saddr, addr_length); 1505 1506 /* 1507 * Set the source DLSAP to the packet ethertype. 1508 */ 1509 *(uint16_t *)(saddr + addr_length) = mhi.mhi_origsap; 1510 dlp->dl_src_addr_length = addr_length + sizeof (uint16_t); 1511 } 1512 1513 return (nmp); 1514 } 1515 1516 /* 1517 * DL_NOTIFY_IND: DL_NOTE_PROMISC_ON_PHYS 1518 */ 1519 static void 1520 str_notify_promisc_on_phys(dld_str_t *dsp) 1521 { 1522 mblk_t *mp; 1523 dl_notify_ind_t *dlip; 1524 1525 if (!(dsp->ds_notifications & DL_NOTE_PROMISC_ON_PHYS)) 1526 return; 1527 1528 if ((mp = mexchange(dsp->ds_wq, NULL, sizeof (dl_notify_ind_t), 1529 M_PROTO, 0)) == NULL) 1530 return; 1531 1532 bzero(mp->b_rptr, sizeof (dl_notify_ind_t)); 1533 dlip = (dl_notify_ind_t *)mp->b_rptr; 1534 dlip->dl_primitive = DL_NOTIFY_IND; 1535 dlip->dl_notification = DL_NOTE_PROMISC_ON_PHYS; 1536 1537 qreply(dsp->ds_wq, mp); 1538 } 1539 1540 /* 1541 * DL_NOTIFY_IND: DL_NOTE_PROMISC_OFF_PHYS 1542 */ 1543 static void 1544 str_notify_promisc_off_phys(dld_str_t *dsp) 1545 { 1546 mblk_t *mp; 1547 dl_notify_ind_t *dlip; 1548 1549 if (!(dsp->ds_notifications & DL_NOTE_PROMISC_OFF_PHYS)) 1550 return; 1551 1552 if ((mp = mexchange(dsp->ds_wq, NULL, sizeof (dl_notify_ind_t), 1553 M_PROTO, 0)) == NULL) 1554 return; 1555 1556 bzero(mp->b_rptr, sizeof (dl_notify_ind_t)); 1557 dlip = (dl_notify_ind_t *)mp->b_rptr; 1558 dlip->dl_primitive = DL_NOTIFY_IND; 1559 dlip->dl_notification = DL_NOTE_PROMISC_OFF_PHYS; 1560 1561 qreply(dsp->ds_wq, mp); 1562 } 1563 1564 /* 1565 * DL_NOTIFY_IND: DL_NOTE_PHYS_ADDR 1566 */ 1567 static void 1568 str_notify_phys_addr(dld_str_t *dsp, uint_t addr_type, const uint8_t *addr) 1569 { 1570 mblk_t *mp; 1571 dl_notify_ind_t *dlip; 1572 uint_t addr_length; 1573 uint16_t ethertype; 1574 1575 if (!(dsp->ds_notifications & DL_NOTE_PHYS_ADDR)) 1576 return; 1577 1578 addr_length = dsp->ds_mip->mi_addr_length; 1579 if ((mp = mexchange(dsp->ds_wq, NULL, 1580 sizeof (dl_notify_ind_t) + addr_length + sizeof (uint16_t), 1581 M_PROTO, 0)) == NULL) 1582 return; 1583 1584 bzero(mp->b_rptr, sizeof (dl_notify_ind_t)); 1585 dlip = (dl_notify_ind_t *)mp->b_rptr; 1586 dlip->dl_primitive = DL_NOTIFY_IND; 1587 dlip->dl_notification = DL_NOTE_PHYS_ADDR; 1588 dlip->dl_data = addr_type; 1589 dlip->dl_addr_offset = sizeof (dl_notify_ind_t); 1590 dlip->dl_addr_length = addr_length + sizeof (uint16_t); 1591 1592 bcopy(addr, &dlip[1], addr_length); 1593 1594 ethertype = (dsp->ds_sap < ETHERTYPE_802_MIN) ? 0 : dsp->ds_sap; 1595 *(uint16_t *)((uchar_t *)(dlip + 1) + addr_length) = ethertype; 1596 1597 qreply(dsp->ds_wq, mp); 1598 } 1599 1600 /* 1601 * DL_NOTIFY_IND: DL_NOTE_LINK_UP 1602 */ 1603 static void 1604 str_notify_link_up(dld_str_t *dsp) 1605 { 1606 mblk_t *mp; 1607 dl_notify_ind_t *dlip; 1608 1609 if (!(dsp->ds_notifications & DL_NOTE_LINK_UP)) 1610 return; 1611 1612 if ((mp = mexchange(dsp->ds_wq, NULL, sizeof (dl_notify_ind_t), 1613 M_PROTO, 0)) == NULL) 1614 return; 1615 1616 bzero(mp->b_rptr, sizeof (dl_notify_ind_t)); 1617 dlip = (dl_notify_ind_t *)mp->b_rptr; 1618 dlip->dl_primitive = DL_NOTIFY_IND; 1619 dlip->dl_notification = DL_NOTE_LINK_UP; 1620 1621 qreply(dsp->ds_wq, mp); 1622 } 1623 1624 /* 1625 * DL_NOTIFY_IND: DL_NOTE_LINK_DOWN 1626 */ 1627 static void 1628 str_notify_link_down(dld_str_t *dsp) 1629 { 1630 mblk_t *mp; 1631 dl_notify_ind_t *dlip; 1632 1633 if (!(dsp->ds_notifications & DL_NOTE_LINK_DOWN)) 1634 return; 1635 1636 if ((mp = mexchange(dsp->ds_wq, NULL, sizeof (dl_notify_ind_t), 1637 M_PROTO, 0)) == NULL) 1638 return; 1639 1640 bzero(mp->b_rptr, sizeof (dl_notify_ind_t)); 1641 dlip = (dl_notify_ind_t *)mp->b_rptr; 1642 dlip->dl_primitive = DL_NOTIFY_IND; 1643 dlip->dl_notification = DL_NOTE_LINK_DOWN; 1644 1645 qreply(dsp->ds_wq, mp); 1646 } 1647 1648 /* 1649 * DL_NOTIFY_IND: DL_NOTE_SPEED 1650 */ 1651 static void 1652 str_notify_speed(dld_str_t *dsp, uint32_t speed) 1653 { 1654 mblk_t *mp; 1655 dl_notify_ind_t *dlip; 1656 1657 if (!(dsp->ds_notifications & DL_NOTE_SPEED)) 1658 return; 1659 1660 if ((mp = mexchange(dsp->ds_wq, NULL, sizeof (dl_notify_ind_t), 1661 M_PROTO, 0)) == NULL) 1662 return; 1663 1664 bzero(mp->b_rptr, sizeof (dl_notify_ind_t)); 1665 dlip = (dl_notify_ind_t *)mp->b_rptr; 1666 dlip->dl_primitive = DL_NOTIFY_IND; 1667 dlip->dl_notification = DL_NOTE_SPEED; 1668 dlip->dl_data = speed; 1669 1670 qreply(dsp->ds_wq, mp); 1671 } 1672 1673 /* 1674 * DL_NOTIFY_IND: DL_NOTE_CAPAB_RENEG 1675 */ 1676 static void 1677 str_notify_capab_reneg(dld_str_t *dsp) 1678 { 1679 mblk_t *mp; 1680 dl_notify_ind_t *dlip; 1681 1682 if (!(dsp->ds_notifications & DL_NOTE_CAPAB_RENEG)) 1683 return; 1684 1685 if ((mp = mexchange(dsp->ds_wq, NULL, sizeof (dl_notify_ind_t), 1686 M_PROTO, 0)) == NULL) 1687 return; 1688 1689 bzero(mp->b_rptr, sizeof (dl_notify_ind_t)); 1690 dlip = (dl_notify_ind_t *)mp->b_rptr; 1691 dlip->dl_primitive = DL_NOTIFY_IND; 1692 dlip->dl_notification = DL_NOTE_CAPAB_RENEG; 1693 1694 qreply(dsp->ds_wq, mp); 1695 } 1696 1697 /* 1698 * DL_NOTIFY_IND: DL_NOTE_FASTPATH_FLUSH 1699 */ 1700 static void 1701 str_notify_fastpath_flush(dld_str_t *dsp) 1702 { 1703 mblk_t *mp; 1704 dl_notify_ind_t *dlip; 1705 1706 if (!(dsp->ds_notifications & DL_NOTE_FASTPATH_FLUSH)) 1707 return; 1708 1709 if ((mp = mexchange(dsp->ds_wq, NULL, sizeof (dl_notify_ind_t), 1710 M_PROTO, 0)) == NULL) 1711 return; 1712 1713 bzero(mp->b_rptr, sizeof (dl_notify_ind_t)); 1714 dlip = (dl_notify_ind_t *)mp->b_rptr; 1715 dlip->dl_primitive = DL_NOTIFY_IND; 1716 dlip->dl_notification = DL_NOTE_FASTPATH_FLUSH; 1717 1718 qreply(dsp->ds_wq, mp); 1719 } 1720 1721 /* 1722 * MAC notification callback. 1723 */ 1724 void 1725 str_notify(void *arg, mac_notify_type_t type) 1726 { 1727 dld_str_t *dsp = (dld_str_t *)arg; 1728 queue_t *q = dsp->ds_wq; 1729 mac_handle_t mh = dsp->ds_mh; 1730 mac_client_handle_t mch = dsp->ds_mch; 1731 uint8_t addr[MAXMACADDRLEN]; 1732 1733 switch (type) { 1734 case MAC_NOTE_TX: 1735 qenable(q); 1736 break; 1737 1738 case MAC_NOTE_DEVPROMISC: 1739 /* 1740 * Send the appropriate DL_NOTIFY_IND. 1741 */ 1742 if (mac_promisc_get(mh)) 1743 str_notify_promisc_on_phys(dsp); 1744 else 1745 str_notify_promisc_off_phys(dsp); 1746 break; 1747 1748 case MAC_NOTE_UNICST: 1749 /* 1750 * This notification is sent whenever the MAC unicast 1751 * address changes. 1752 */ 1753 mac_unicast_primary_get(mh, addr); 1754 1755 /* 1756 * Send the appropriate DL_NOTIFY_IND. 1757 */ 1758 str_notify_phys_addr(dsp, DL_CURR_PHYS_ADDR, addr); 1759 break; 1760 1761 case MAC_NOTE_DEST: 1762 /* 1763 * Only send up DL_NOTE_DEST_ADDR if the link has a 1764 * destination address. 1765 */ 1766 if (mac_dst_get(dsp->ds_mh, addr)) 1767 str_notify_phys_addr(dsp, DL_CURR_DEST_ADDR, addr); 1768 break; 1769 1770 case MAC_NOTE_LOWLINK: 1771 case MAC_NOTE_LINK: 1772 /* 1773 * LOWLINK refers to the actual link status. For links that 1774 * are not part of a bridge instance LOWLINK and LINK state 1775 * are the same. But for a link part of a bridge instance 1776 * LINK state refers to the aggregate link status: "up" when 1777 * at least one link part of the bridge is up and is "down" 1778 * when all links part of the bridge are down. 1779 * 1780 * Clients can request to be notified of the LOWLINK state 1781 * using the DLIOCLOWLINK ioctl. Clients such as the bridge 1782 * daemon request lowlink state changes and upper layer clients 1783 * receive notifications of the aggregate link state changes 1784 * which is the default when requesting LINK UP/DOWN state 1785 * notifications. 1786 */ 1787 1788 /* 1789 * Check that the notification type matches the one that we 1790 * want. If we want lower-level link notifications, and this 1791 * is upper, or if we want upper and this is lower, then 1792 * ignore. 1793 */ 1794 if ((type == MAC_NOTE_LOWLINK) != dsp->ds_lowlink) 1795 break; 1796 /* 1797 * This notification is sent every time the MAC driver 1798 * updates the link state. 1799 */ 1800 switch (mac_client_stat_get(mch, dsp->ds_lowlink ? 1801 MAC_STAT_LOWLINK_STATE : MAC_STAT_LINK_STATE)) { 1802 case LINK_STATE_UP: { 1803 uint64_t speed; 1804 /* 1805 * The link is up so send the appropriate 1806 * DL_NOTIFY_IND. 1807 */ 1808 str_notify_link_up(dsp); 1809 1810 speed = mac_stat_get(mh, MAC_STAT_IFSPEED); 1811 str_notify_speed(dsp, (uint32_t)(speed / 1000ull)); 1812 break; 1813 } 1814 case LINK_STATE_DOWN: 1815 /* 1816 * The link is down so send the appropriate 1817 * DL_NOTIFY_IND. 1818 */ 1819 str_notify_link_down(dsp); 1820 break; 1821 1822 default: 1823 break; 1824 } 1825 break; 1826 1827 case MAC_NOTE_CAPAB_CHG: 1828 /* 1829 * This notification is sent whenever the MAC resources 1830 * change or capabilities change. We need to renegotiate 1831 * the capabilities. Send the appropriate DL_NOTIFY_IND. 1832 */ 1833 str_notify_capab_reneg(dsp); 1834 break; 1835 1836 case MAC_NOTE_SDU_SIZE: { 1837 uint_t max_sdu; 1838 mac_sdu_get(dsp->ds_mh, NULL, &max_sdu); 1839 str_notify_sdu_size(dsp, max_sdu); 1840 break; 1841 } 1842 1843 case MAC_NOTE_FASTPATH_FLUSH: 1844 str_notify_fastpath_flush(dsp); 1845 break; 1846 1847 /* Unused notifications */ 1848 case MAC_NOTE_MARGIN: 1849 break; 1850 1851 default: 1852 ASSERT(B_FALSE); 1853 break; 1854 } 1855 } 1856 1857 /* 1858 * This function is called via a taskq mechansim to process all control 1859 * messages on a per 'dsp' end point. 1860 */ 1861 static void 1862 dld_wput_nondata_task(void *arg) 1863 { 1864 dld_str_t *dsp = arg; 1865 mblk_t *mp; 1866 1867 mutex_enter(&dsp->ds_lock); 1868 while (dsp->ds_pending_head != NULL) { 1869 mp = dsp->ds_pending_head; 1870 dsp->ds_pending_head = mp->b_next; 1871 mp->b_next = NULL; 1872 if (dsp->ds_pending_head == NULL) 1873 dsp->ds_pending_tail = NULL; 1874 mutex_exit(&dsp->ds_lock); 1875 1876 switch (DB_TYPE(mp)) { 1877 case M_PROTO: 1878 case M_PCPROTO: 1879 dld_proto(dsp, mp); 1880 break; 1881 case M_IOCTL: 1882 dld_ioc(dsp, mp); 1883 break; 1884 default: 1885 ASSERT(0); 1886 } 1887 1888 mutex_enter(&dsp->ds_lock); 1889 } 1890 ASSERT(dsp->ds_pending_tail == NULL); 1891 dsp->ds_dlpi_pending = 0; 1892 cv_broadcast(&dsp->ds_dlpi_pending_cv); 1893 mutex_exit(&dsp->ds_lock); 1894 } 1895 1896 /* 1897 * Kernel thread to handle taskq dispatch failures in dld_wput_data. This 1898 * thread is started at boot time. 1899 */ 1900 static void 1901 dld_taskq_dispatch(void) 1902 { 1903 callb_cpr_t cprinfo; 1904 dld_str_t *dsp; 1905 1906 CALLB_CPR_INIT(&cprinfo, &dld_taskq_lock, callb_generic_cpr, 1907 "dld_taskq_dispatch"); 1908 mutex_enter(&dld_taskq_lock); 1909 1910 while (!dld_taskq_quit) { 1911 dsp = list_head(&dld_taskq_list); 1912 while (dsp != NULL) { 1913 list_remove(&dld_taskq_list, dsp); 1914 mutex_exit(&dld_taskq_lock); 1915 VERIFY(taskq_dispatch(dld_taskq, dld_wput_nondata_task, 1916 dsp, TQ_SLEEP) != 0); 1917 mutex_enter(&dld_taskq_lock); 1918 dsp = list_head(&dld_taskq_list); 1919 } 1920 1921 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1922 cv_wait(&dld_taskq_cv, &dld_taskq_lock); 1923 CALLB_CPR_SAFE_END(&cprinfo, &dld_taskq_lock); 1924 } 1925 1926 dld_taskq_done = B_TRUE; 1927 cv_signal(&dld_taskq_cv); 1928 CALLB_CPR_EXIT(&cprinfo); 1929 thread_exit(); 1930 } 1931 1932 /* 1933 * All control operations are serialized on the 'dsp' and are also funneled 1934 * through a taskq mechanism to ensure that subsequent processing has kernel 1935 * context and can safely use cv_wait. 1936 * 1937 * Mechanisms to handle taskq dispatch failures 1938 * 1939 * The only way to be sure that taskq dispatch does not fail is to either 1940 * specify TQ_SLEEP or to use a static taskq and prepopulate it with 1941 * some number of entries and make sure that the number of outstanding requests 1942 * are less than that number. We can't use TQ_SLEEP since we don't know the 1943 * context. Nor can we bound the total number of 'dsp' end points. So we are 1944 * unable to use either of the above schemes, and are forced to deal with 1945 * taskq dispatch failures. Note that even dynamic taskq could fail in 1946 * dispatch if TQ_NOSLEEP is specified, since this flag is translated 1947 * eventually to KM_NOSLEEP and kmem allocations could fail in the taskq 1948 * framework. 1949 * 1950 * We maintain a queue of 'dsp's that encountered taskq dispatch failure. 1951 * We also have a single global thread to retry the taskq dispatch. This 1952 * thread loops in 'dld_taskq_dispatch' and retries the taskq dispatch, but 1953 * uses TQ_SLEEP to ensure eventual success of the dispatch operation. 1954 */ 1955 static void 1956 dld_wput_nondata(dld_str_t *dsp, mblk_t *mp) 1957 { 1958 ASSERT(mp->b_next == NULL); 1959 mutex_enter(&dsp->ds_lock); 1960 if (dsp->ds_pending_head != NULL) { 1961 ASSERT(dsp->ds_dlpi_pending); 1962 dsp->ds_pending_tail->b_next = mp; 1963 dsp->ds_pending_tail = mp; 1964 mutex_exit(&dsp->ds_lock); 1965 return; 1966 } 1967 ASSERT(dsp->ds_pending_tail == NULL); 1968 dsp->ds_pending_head = dsp->ds_pending_tail = mp; 1969 /* 1970 * At this point if ds_dlpi_pending is set, it implies that the taskq 1971 * thread is still active and is processing the last message, though 1972 * the pending queue has been emptied. 1973 */ 1974 if (dsp->ds_dlpi_pending) { 1975 mutex_exit(&dsp->ds_lock); 1976 return; 1977 } 1978 1979 dsp->ds_dlpi_pending = 1; 1980 mutex_exit(&dsp->ds_lock); 1981 1982 if (taskq_dispatch(dld_taskq, dld_wput_nondata_task, dsp, 1983 TQ_NOSLEEP) != 0) 1984 return; 1985 1986 mutex_enter(&dld_taskq_lock); 1987 list_insert_tail(&dld_taskq_list, dsp); 1988 cv_signal(&dld_taskq_cv); 1989 mutex_exit(&dld_taskq_lock); 1990 } 1991 1992 /* 1993 * Process an M_IOCTL message. 1994 */ 1995 static void 1996 dld_ioc(dld_str_t *dsp, mblk_t *mp) 1997 { 1998 uint_t cmd; 1999 2000 cmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 2001 ASSERT(dsp->ds_type == DLD_DLPI); 2002 2003 switch (cmd) { 2004 case DLIOCNATIVE: 2005 ioc_native(dsp, mp); 2006 break; 2007 case DLIOCMARGININFO: 2008 ioc_margin(dsp, mp); 2009 break; 2010 case DLIOCRAW: 2011 ioc_raw(dsp, mp); 2012 break; 2013 case DLIOCHDRINFO: 2014 ioc_fast(dsp, mp); 2015 break; 2016 case DLIOCLOWLINK: 2017 ioc_lowlink(dsp, mp); 2018 break; 2019 default: 2020 ioc(dsp, mp); 2021 } 2022 } 2023 2024 /* 2025 * DLIOCNATIVE 2026 */ 2027 static void 2028 ioc_native(dld_str_t *dsp, mblk_t *mp) 2029 { 2030 queue_t *q = dsp->ds_wq; 2031 const mac_info_t *mip = dsp->ds_mip; 2032 2033 /* 2034 * Native mode can be enabled if it's disabled and if the 2035 * native media type is different. 2036 */ 2037 if (!dsp->ds_native && mip->mi_media != mip->mi_nativemedia) 2038 dsp->ds_native = B_TRUE; 2039 2040 if (dsp->ds_native) 2041 miocack(q, mp, 0, mip->mi_nativemedia); 2042 else 2043 miocnak(q, mp, 0, ENOTSUP); 2044 } 2045 2046 /* 2047 * DLIOCMARGININFO 2048 */ 2049 static void 2050 ioc_margin(dld_str_t *dsp, mblk_t *mp) 2051 { 2052 queue_t *q = dsp->ds_wq; 2053 uint32_t margin; 2054 int err; 2055 2056 if (dsp->ds_dlstate == DL_UNATTACHED) { 2057 err = EINVAL; 2058 goto failed; 2059 } 2060 if ((err = miocpullup(mp, sizeof (uint32_t))) != 0) 2061 goto failed; 2062 2063 mac_margin_get(dsp->ds_mh, &margin); 2064 *((uint32_t *)mp->b_cont->b_rptr) = margin; 2065 miocack(q, mp, sizeof (uint32_t), 0); 2066 return; 2067 2068 failed: 2069 miocnak(q, mp, 0, err); 2070 } 2071 2072 /* 2073 * DLIOCRAW 2074 */ 2075 static void 2076 ioc_raw(dld_str_t *dsp, mblk_t *mp) 2077 { 2078 queue_t *q = dsp->ds_wq; 2079 mac_perim_handle_t mph; 2080 2081 if (dsp->ds_mh == NULL) { 2082 dsp->ds_mode = DLD_RAW; 2083 miocack(q, mp, 0, 0); 2084 return; 2085 } 2086 2087 mac_perim_enter_by_mh(dsp->ds_mh, &mph); 2088 if (dsp->ds_polling || dsp->ds_direct) { 2089 mac_perim_exit(mph); 2090 miocnak(q, mp, 0, EPROTO); 2091 return; 2092 } 2093 2094 if (dsp->ds_mode != DLD_RAW && dsp->ds_dlstate == DL_IDLE) { 2095 /* 2096 * Set the receive callback. 2097 */ 2098 dls_rx_set(dsp, dld_str_rx_raw, dsp); 2099 } 2100 2101 /* 2102 * Note that raw mode is enabled. 2103 */ 2104 dsp->ds_mode = DLD_RAW; 2105 mac_perim_exit(mph); 2106 2107 miocack(q, mp, 0, 0); 2108 } 2109 2110 /* 2111 * DLIOCHDRINFO 2112 */ 2113 static void 2114 ioc_fast(dld_str_t *dsp, mblk_t *mp) 2115 { 2116 dl_unitdata_req_t *dlp; 2117 off_t off; 2118 size_t len; 2119 const uint8_t *addr; 2120 uint16_t sap; 2121 mblk_t *nmp; 2122 mblk_t *hmp; 2123 uint_t addr_length; 2124 queue_t *q = dsp->ds_wq; 2125 int err; 2126 mac_perim_handle_t mph; 2127 2128 if (dld_opt & DLD_OPT_NO_FASTPATH) { 2129 err = ENOTSUP; 2130 goto failed; 2131 } 2132 2133 /* 2134 * DLIOCHDRINFO should only come from IP. The one initiated from 2135 * user-land should not be allowed. 2136 */ 2137 if (((struct iocblk *)mp->b_rptr)->ioc_cr != kcred) { 2138 err = EINVAL; 2139 goto failed; 2140 } 2141 2142 nmp = mp->b_cont; 2143 if (nmp == NULL || MBLKL(nmp) < sizeof (dl_unitdata_req_t) || 2144 (dlp = (dl_unitdata_req_t *)nmp->b_rptr, 2145 dlp->dl_primitive != DL_UNITDATA_REQ)) { 2146 err = EINVAL; 2147 goto failed; 2148 } 2149 2150 off = dlp->dl_dest_addr_offset; 2151 len = dlp->dl_dest_addr_length; 2152 2153 if (!MBLKIN(nmp, off, len)) { 2154 err = EINVAL; 2155 goto failed; 2156 } 2157 2158 if (dsp->ds_dlstate != DL_IDLE) { 2159 err = ENOTSUP; 2160 goto failed; 2161 } 2162 2163 addr_length = dsp->ds_mip->mi_addr_length; 2164 if (len != addr_length + sizeof (uint16_t)) { 2165 err = EINVAL; 2166 goto failed; 2167 } 2168 2169 addr = nmp->b_rptr + off; 2170 sap = *(uint16_t *)(nmp->b_rptr + off + addr_length); 2171 2172 if ((hmp = dls_header(dsp, addr, sap, 0, NULL)) == NULL) { 2173 err = ENOMEM; 2174 goto failed; 2175 } 2176 2177 /* 2178 * This ioctl might happen concurrently with a direct call to dld_capab 2179 * that tries to enable direct and/or poll capabilities. Since the 2180 * stack does not serialize them, we do so here to avoid mixing 2181 * the callbacks. 2182 */ 2183 mac_perim_enter_by_mh(dsp->ds_mh, &mph); 2184 if (dsp->ds_mode != DLD_FASTPATH) { 2185 /* 2186 * Set the receive callback (unless polling is enabled). 2187 */ 2188 if (!dsp->ds_polling && !dsp->ds_direct) 2189 dls_rx_set(dsp, dld_str_rx_fastpath, dsp); 2190 2191 /* 2192 * Note that fast-path mode is enabled. 2193 */ 2194 dsp->ds_mode = DLD_FASTPATH; 2195 } 2196 mac_perim_exit(mph); 2197 2198 freemsg(nmp->b_cont); 2199 nmp->b_cont = hmp; 2200 2201 miocack(q, mp, MBLKL(nmp) + MBLKL(hmp), 0); 2202 return; 2203 failed: 2204 miocnak(q, mp, 0, err); 2205 } 2206 2207 /* 2208 * DLIOCLOWLINK: request actual link state changes. When the 2209 * link is part of a bridge instance the client receives actual 2210 * link state changes and not the aggregate link status. Used by 2211 * the bridging daemon (bridged) for proper RSTP operation. 2212 */ 2213 static void 2214 ioc_lowlink(dld_str_t *dsp, mblk_t *mp) 2215 { 2216 queue_t *q = dsp->ds_wq; 2217 int err; 2218 2219 if ((err = miocpullup(mp, sizeof (int))) != 0) { 2220 miocnak(q, mp, 0, err); 2221 } else { 2222 /* LINTED: alignment */ 2223 dsp->ds_lowlink = *(boolean_t *)mp->b_cont->b_rptr; 2224 miocack(q, mp, 0, 0); 2225 } 2226 } 2227 2228 /* 2229 * Catch-all handler. 2230 */ 2231 static void 2232 ioc(dld_str_t *dsp, mblk_t *mp) 2233 { 2234 queue_t *q = dsp->ds_wq; 2235 2236 if (dsp->ds_dlstate == DL_UNATTACHED) { 2237 miocnak(q, mp, 0, EINVAL); 2238 return; 2239 } 2240 mac_ioctl(dsp->ds_mh, q, mp); 2241 } 2242