xref: /titanic_41/usr/src/uts/common/io/devinfo.c (revision f3312ec0e8acbd249df97358fb8c3ca92f4e089c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*
27  * driver for accessing kernel devinfo tree.
28  */
29 #include <sys/types.h>
30 #include <sys/pathname.h>
31 #include <sys/debug.h>
32 #include <sys/autoconf.h>
33 #include <sys/vmsystm.h>
34 #include <sys/conf.h>
35 #include <sys/file.h>
36 #include <sys/kmem.h>
37 #include <sys/modctl.h>
38 #include <sys/stat.h>
39 #include <sys/ddi.h>
40 #include <sys/sunddi.h>
41 #include <sys/sunldi_impl.h>
42 #include <sys/sunndi.h>
43 #include <sys/esunddi.h>
44 #include <sys/sunmdi.h>
45 #include <sys/ddi_impldefs.h>
46 #include <sys/ndi_impldefs.h>
47 #include <sys/mdi_impldefs.h>
48 #include <sys/devinfo_impl.h>
49 #include <sys/thread.h>
50 #include <sys/modhash.h>
51 #include <sys/bitmap.h>
52 #include <util/qsort.h>
53 #include <sys/disp.h>
54 #include <sys/kobj.h>
55 #include <sys/crc32.h>
56 #include <sys/ddi_hp.h>
57 #include <sys/ddi_hp_impl.h>
58 #include <sys/sysmacros.h>
59 #include <sys/list.h>
60 
61 
62 #ifdef DEBUG
63 static int di_debug;
64 #define	dcmn_err(args) if (di_debug >= 1) cmn_err args
65 #define	dcmn_err2(args) if (di_debug >= 2) cmn_err args
66 #define	dcmn_err3(args) if (di_debug >= 3) cmn_err args
67 #else
68 #define	dcmn_err(args) /* nothing */
69 #define	dcmn_err2(args) /* nothing */
70 #define	dcmn_err3(args) /* nothing */
71 #endif
72 
73 /*
74  * We partition the space of devinfo minor nodes equally between the full and
75  * unprivileged versions of the driver.  The even-numbered minor nodes are the
76  * full version, while the odd-numbered ones are the read-only version.
77  */
78 static int di_max_opens = 32;
79 
80 static int di_prop_dyn = 1;		/* enable dynamic property support */
81 
82 #define	DI_FULL_PARENT		0
83 #define	DI_READONLY_PARENT	1
84 #define	DI_NODE_SPECIES		2
85 #define	DI_UNPRIVILEGED_NODE(x)	(((x) % 2) != 0)
86 
87 #define	IOC_IDLE	0	/* snapshot ioctl states */
88 #define	IOC_SNAP	1	/* snapshot in progress */
89 #define	IOC_DONE	2	/* snapshot done, but not copied out */
90 #define	IOC_COPY	3	/* copyout in progress */
91 
92 /*
93  * Keep max alignment so we can move snapshot to different platforms.
94  *
95  * NOTE: Most callers should rely on the di_checkmem return value
96  * being aligned, and reestablish *off_p with aligned value, instead
97  * of trying to align size of their allocations: this approach will
98  * minimize memory use.
99  */
100 #define	DI_ALIGN(addr)	((addr + 7l) & ~7l)
101 
102 /*
103  * To avoid wasting memory, make a linked list of memory chunks.
104  * Size of each chunk is buf_size.
105  */
106 struct di_mem {
107 	struct di_mem	*next;		/* link to next chunk */
108 	char		*buf;		/* contiguous kernel memory */
109 	size_t		buf_size;	/* size of buf in bytes */
110 	devmap_cookie_t	cook;		/* cookie from ddi_umem_alloc */
111 };
112 
113 /*
114  * This is a stack for walking the tree without using recursion.
115  * When the devinfo tree height is above some small size, one
116  * gets watchdog resets on sun4m.
117  */
118 struct di_stack {
119 	void		*offset[MAX_TREE_DEPTH];
120 	struct dev_info *dip[MAX_TREE_DEPTH];
121 	int		circ[MAX_TREE_DEPTH];
122 	int		depth;	/* depth of current node to be copied */
123 };
124 
125 #define	TOP_OFFSET(stack)	\
126 	((di_off_t *)(stack)->offset[(stack)->depth - 1])
127 #define	TOP_NODE(stack)		\
128 	((stack)->dip[(stack)->depth - 1])
129 #define	PARENT_OFFSET(stack)	\
130 	((di_off_t *)(stack)->offset[(stack)->depth - 2])
131 #define	EMPTY_STACK(stack)	((stack)->depth == 0)
132 #define	POP_STACK(stack)	{ \
133 	ndi_devi_exit((dev_info_t *)TOP_NODE(stack), \
134 		(stack)->circ[(stack)->depth - 1]); \
135 	((stack)->depth--); \
136 }
137 #define	PUSH_STACK(stack, node, off_p)	{ \
138 	ASSERT(node != NULL); \
139 	ndi_devi_enter((dev_info_t *)node, &(stack)->circ[(stack)->depth]); \
140 	(stack)->dip[(stack)->depth] = (node); \
141 	(stack)->offset[(stack)->depth] = (void *)(off_p); \
142 	((stack)->depth)++; \
143 }
144 
145 #define	DI_ALL_PTR(s)	DI_ALL(di_mem_addr((s), 0))
146 
147 /*
148  * With devfs, the device tree has no global locks. The device tree is
149  * dynamic and dips may come and go if they are not locked locally. Under
150  * these conditions, pointers are no longer reliable as unique IDs.
151  * Specifically, these pointers cannot be used as keys for hash tables
152  * as the same devinfo structure may be freed in one part of the tree only
153  * to be allocated as the structure for a different device in another
154  * part of the tree. This can happen if DR and the snapshot are
155  * happening concurrently.
156  * The following data structures act as keys for devinfo nodes and
157  * pathinfo nodes.
158  */
159 
160 enum di_ktype {
161 	DI_DKEY = 1,
162 	DI_PKEY = 2
163 };
164 
165 struct di_dkey {
166 	dev_info_t	*dk_dip;
167 	major_t		dk_major;
168 	int		dk_inst;
169 	pnode_t		dk_nodeid;
170 };
171 
172 struct di_pkey {
173 	mdi_pathinfo_t	*pk_pip;
174 	char		*pk_path_addr;
175 	dev_info_t	*pk_client;
176 	dev_info_t	*pk_phci;
177 };
178 
179 struct di_key {
180 	enum di_ktype	k_type;
181 	union {
182 		struct di_dkey dkey;
183 		struct di_pkey pkey;
184 	} k_u;
185 };
186 
187 
188 struct i_lnode;
189 
190 typedef struct i_link {
191 	/*
192 	 * If a di_link struct representing this i_link struct makes it
193 	 * into the snapshot, then self will point to the offset of
194 	 * the di_link struct in the snapshot
195 	 */
196 	di_off_t	self;
197 
198 	int		spec_type;	/* block or char access type */
199 	struct i_lnode	*src_lnode;	/* src i_lnode */
200 	struct i_lnode	*tgt_lnode;	/* tgt i_lnode */
201 	struct i_link	*src_link_next;	/* next src i_link /w same i_lnode */
202 	struct i_link	*tgt_link_next;	/* next tgt i_link /w same i_lnode */
203 } i_link_t;
204 
205 typedef struct i_lnode {
206 	/*
207 	 * If a di_lnode struct representing this i_lnode struct makes it
208 	 * into the snapshot, then self will point to the offset of
209 	 * the di_lnode struct in the snapshot
210 	 */
211 	di_off_t	self;
212 
213 	/*
214 	 * used for hashing and comparing i_lnodes
215 	 */
216 	int		modid;
217 
218 	/*
219 	 * public information describing a link endpoint
220 	 */
221 	struct di_node	*di_node;	/* di_node in snapshot */
222 	dev_t		devt;		/* devt */
223 
224 	/*
225 	 * i_link ptr to links coming into this i_lnode node
226 	 * (this i_lnode is the target of these i_links)
227 	 */
228 	i_link_t	*link_in;
229 
230 	/*
231 	 * i_link ptr to links going out of this i_lnode node
232 	 * (this i_lnode is the source of these i_links)
233 	 */
234 	i_link_t	*link_out;
235 } i_lnode_t;
236 
237 typedef struct i_hp {
238 	di_off_t	hp_off;		/* Offset of di_hp_t in snapshot */
239 	dev_info_t	*hp_child;	/* Child devinfo node of the di_hp_t */
240 	list_node_t	hp_link;	/* List linkage */
241 } i_hp_t;
242 
243 /*
244  * Soft state associated with each instance of driver open.
245  */
246 static struct di_state {
247 	di_off_t	mem_size;	/* total # bytes in memlist */
248 	struct di_mem	*memlist;	/* head of memlist */
249 	uint_t		command;	/* command from ioctl */
250 	int		di_iocstate;	/* snapshot ioctl state	*/
251 	mod_hash_t	*reg_dip_hash;
252 	mod_hash_t	*reg_pip_hash;
253 	int		lnode_count;
254 	int		link_count;
255 
256 	mod_hash_t	*lnode_hash;
257 	mod_hash_t	*link_hash;
258 
259 	list_t		hp_list;
260 } **di_states;
261 
262 static kmutex_t di_lock;	/* serialize instance assignment */
263 
264 typedef enum {
265 	DI_QUIET = 0,	/* DI_QUIET must always be 0 */
266 	DI_ERR,
267 	DI_INFO,
268 	DI_TRACE,
269 	DI_TRACE1,
270 	DI_TRACE2
271 } di_cache_debug_t;
272 
273 static uint_t	di_chunk = 32;		/* I/O chunk size in pages */
274 
275 #define	DI_CACHE_LOCK(c)	(mutex_enter(&(c).cache_lock))
276 #define	DI_CACHE_UNLOCK(c)	(mutex_exit(&(c).cache_lock))
277 #define	DI_CACHE_LOCKED(c)	(mutex_owned(&(c).cache_lock))
278 
279 /*
280  * Check that whole device tree is being configured as a pre-condition for
281  * cleaning up /etc/devices files.
282  */
283 #define	DEVICES_FILES_CLEANABLE(st)	\
284 	(((st)->command & DINFOSUBTREE) && ((st)->command & DINFOFORCE) && \
285 	strcmp(DI_ALL_PTR(st)->root_path, "/") == 0)
286 
287 #define	CACHE_DEBUG(args)	\
288 	{ if (di_cache_debug != DI_QUIET) di_cache_print args; }
289 
290 typedef struct phci_walk_arg {
291 	di_off_t	off;
292 	struct di_state	*st;
293 } phci_walk_arg_t;
294 
295 static int di_open(dev_t *, int, int, cred_t *);
296 static int di_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
297 static int di_close(dev_t, int, int, cred_t *);
298 static int di_info(dev_info_t *, ddi_info_cmd_t, void *, void **);
299 static int di_attach(dev_info_t *, ddi_attach_cmd_t);
300 static int di_detach(dev_info_t *, ddi_detach_cmd_t);
301 
302 static di_off_t di_copyformat(di_off_t, struct di_state *, intptr_t, int);
303 static di_off_t di_snapshot_and_clean(struct di_state *);
304 static di_off_t di_copydevnm(di_off_t *, struct di_state *);
305 static di_off_t di_copytree(struct dev_info *, di_off_t *, struct di_state *);
306 static di_off_t di_copynode(struct dev_info *, struct di_stack *,
307     struct di_state *);
308 static di_off_t di_getmdata(struct ddi_minor_data *, di_off_t *, di_off_t,
309     struct di_state *);
310 static di_off_t di_getppdata(struct dev_info *, di_off_t *, struct di_state *);
311 static di_off_t di_getdpdata(struct dev_info *, di_off_t *, struct di_state *);
312 static di_off_t di_gethpdata(ddi_hp_cn_handle_t *, di_off_t *,
313     struct di_state *);
314 static di_off_t di_getprop(int, struct ddi_prop **, di_off_t *,
315     struct di_state *, struct dev_info *);
316 static void di_allocmem(struct di_state *, size_t);
317 static void di_freemem(struct di_state *);
318 static void di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz);
319 static di_off_t di_checkmem(struct di_state *, di_off_t, size_t);
320 static void *di_mem_addr(struct di_state *, di_off_t);
321 static int di_setstate(struct di_state *, int);
322 static void di_register_dip(struct di_state *, dev_info_t *, di_off_t);
323 static void di_register_pip(struct di_state *, mdi_pathinfo_t *, di_off_t);
324 static di_off_t di_getpath_data(dev_info_t *, di_off_t *, di_off_t,
325     struct di_state *, int);
326 static di_off_t di_getlink_data(di_off_t, struct di_state *);
327 static int di_dip_find(struct di_state *st, dev_info_t *node, di_off_t *off_p);
328 
329 static int cache_args_valid(struct di_state *st, int *error);
330 static int snapshot_is_cacheable(struct di_state *st);
331 static int di_cache_lookup(struct di_state *st);
332 static int di_cache_update(struct di_state *st);
333 static void di_cache_print(di_cache_debug_t msglevel, char *fmt, ...);
334 static int build_vhci_list(dev_info_t *vh_devinfo, void *arg);
335 static int build_phci_list(dev_info_t *ph_devinfo, void *arg);
336 static void di_hotplug_children(struct di_state *st);
337 
338 extern int modrootloaded;
339 extern void mdi_walk_vhcis(int (*)(dev_info_t *, void *), void *);
340 extern void mdi_vhci_walk_phcis(dev_info_t *,
341 	int (*)(dev_info_t *, void *), void *);
342 
343 
344 static struct cb_ops di_cb_ops = {
345 	di_open,		/* open */
346 	di_close,		/* close */
347 	nodev,			/* strategy */
348 	nodev,			/* print */
349 	nodev,			/* dump */
350 	nodev,			/* read */
351 	nodev,			/* write */
352 	di_ioctl,		/* ioctl */
353 	nodev,			/* devmap */
354 	nodev,			/* mmap */
355 	nodev,			/* segmap */
356 	nochpoll,		/* poll */
357 	ddi_prop_op,		/* prop_op */
358 	NULL,			/* streamtab  */
359 	D_NEW | D_MP		/* Driver compatibility flag */
360 };
361 
362 static struct dev_ops di_ops = {
363 	DEVO_REV,		/* devo_rev, */
364 	0,			/* refcnt  */
365 	di_info,		/* info */
366 	nulldev,		/* identify */
367 	nulldev,		/* probe */
368 	di_attach,		/* attach */
369 	di_detach,		/* detach */
370 	nodev,			/* reset */
371 	&di_cb_ops,		/* driver operations */
372 	NULL			/* bus operations */
373 };
374 
375 /*
376  * Module linkage information for the kernel.
377  */
378 static struct modldrv modldrv = {
379 	&mod_driverops,
380 	"DEVINFO Driver",
381 	&di_ops
382 };
383 
384 static struct modlinkage modlinkage = {
385 	MODREV_1,
386 	&modldrv,
387 	NULL
388 };
389 
390 int
391 _init(void)
392 {
393 	int	error;
394 
395 	mutex_init(&di_lock, NULL, MUTEX_DRIVER, NULL);
396 
397 	error = mod_install(&modlinkage);
398 	if (error != 0) {
399 		mutex_destroy(&di_lock);
400 		return (error);
401 	}
402 
403 	return (0);
404 }
405 
406 int
407 _info(struct modinfo *modinfop)
408 {
409 	return (mod_info(&modlinkage, modinfop));
410 }
411 
412 int
413 _fini(void)
414 {
415 	int	error;
416 
417 	error = mod_remove(&modlinkage);
418 	if (error != 0) {
419 		return (error);
420 	}
421 
422 	mutex_destroy(&di_lock);
423 	return (0);
424 }
425 
426 static dev_info_t *di_dip;
427 
428 /*ARGSUSED*/
429 static int
430 di_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
431 {
432 	int	error = DDI_FAILURE;
433 
434 	switch (infocmd) {
435 	case DDI_INFO_DEVT2DEVINFO:
436 		*result = (void *)di_dip;
437 		error = DDI_SUCCESS;
438 		break;
439 	case DDI_INFO_DEVT2INSTANCE:
440 		/*
441 		 * All dev_t's map to the same, single instance.
442 		 */
443 		*result = (void *)0;
444 		error = DDI_SUCCESS;
445 		break;
446 	default:
447 		break;
448 	}
449 
450 	return (error);
451 }
452 
453 static int
454 di_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
455 {
456 	int	error = DDI_FAILURE;
457 
458 	switch (cmd) {
459 	case DDI_ATTACH:
460 		di_states = kmem_zalloc(
461 		    di_max_opens * sizeof (struct di_state *), KM_SLEEP);
462 
463 		if (ddi_create_minor_node(dip, "devinfo", S_IFCHR,
464 		    DI_FULL_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE ||
465 		    ddi_create_minor_node(dip, "devinfo,ro", S_IFCHR,
466 		    DI_READONLY_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE) {
467 			kmem_free(di_states,
468 			    di_max_opens * sizeof (struct di_state *));
469 			ddi_remove_minor_node(dip, NULL);
470 			error = DDI_FAILURE;
471 		} else {
472 			di_dip = dip;
473 			ddi_report_dev(dip);
474 
475 			error = DDI_SUCCESS;
476 		}
477 		break;
478 	default:
479 		error = DDI_FAILURE;
480 		break;
481 	}
482 
483 	return (error);
484 }
485 
486 static int
487 di_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
488 {
489 	int	error = DDI_FAILURE;
490 
491 	switch (cmd) {
492 	case DDI_DETACH:
493 		ddi_remove_minor_node(dip, NULL);
494 		di_dip = NULL;
495 		kmem_free(di_states, di_max_opens * sizeof (struct di_state *));
496 
497 		error = DDI_SUCCESS;
498 		break;
499 	default:
500 		error = DDI_FAILURE;
501 		break;
502 	}
503 
504 	return (error);
505 }
506 
507 /*
508  * Allow multiple opens by tweaking the dev_t such that it looks like each
509  * open is getting a different minor device.  Each minor gets a separate
510  * entry in the di_states[] table.  Based on the original minor number, we
511  * discriminate opens of the full and read-only nodes.  If all of the instances
512  * of the selected minor node are currently open, we return EAGAIN.
513  */
514 /*ARGSUSED*/
515 static int
516 di_open(dev_t *devp, int flag, int otyp, cred_t *credp)
517 {
518 	int	m;
519 	minor_t	minor_parent = getminor(*devp);
520 
521 	if (minor_parent != DI_FULL_PARENT &&
522 	    minor_parent != DI_READONLY_PARENT)
523 		return (ENXIO);
524 
525 	mutex_enter(&di_lock);
526 
527 	for (m = minor_parent; m < di_max_opens; m += DI_NODE_SPECIES) {
528 		if (di_states[m] != NULL)
529 			continue;
530 
531 		di_states[m] = kmem_zalloc(sizeof (struct di_state), KM_SLEEP);
532 		break;	/* It's ours. */
533 	}
534 
535 	if (m >= di_max_opens) {
536 		/*
537 		 * maximum open instance for device reached
538 		 */
539 		mutex_exit(&di_lock);
540 		dcmn_err((CE_WARN, "devinfo: maximum devinfo open reached"));
541 		return (EAGAIN);
542 	}
543 	mutex_exit(&di_lock);
544 
545 	ASSERT(m < di_max_opens);
546 	*devp = makedevice(getmajor(*devp), (minor_t)(m + DI_NODE_SPECIES));
547 
548 	dcmn_err((CE_CONT, "di_open: thread = %p, assigned minor = %d\n",
549 	    (void *)curthread, m + DI_NODE_SPECIES));
550 
551 	return (0);
552 }
553 
554 /*ARGSUSED*/
555 static int
556 di_close(dev_t dev, int flag, int otype, cred_t *cred_p)
557 {
558 	struct di_state	*st;
559 	int		m = (int)getminor(dev) - DI_NODE_SPECIES;
560 
561 	if (m < 0) {
562 		cmn_err(CE_WARN, "closing non-existent devinfo minor %d",
563 		    m + DI_NODE_SPECIES);
564 		return (ENXIO);
565 	}
566 
567 	st = di_states[m];
568 	ASSERT(m < di_max_opens && st != NULL);
569 
570 	di_freemem(st);
571 	kmem_free(st, sizeof (struct di_state));
572 
573 	/*
574 	 * empty slot in state table
575 	 */
576 	mutex_enter(&di_lock);
577 	di_states[m] = NULL;
578 	dcmn_err((CE_CONT, "di_close: thread = %p, assigned minor = %d\n",
579 	    (void *)curthread, m + DI_NODE_SPECIES));
580 	mutex_exit(&di_lock);
581 
582 	return (0);
583 }
584 
585 
586 /*ARGSUSED*/
587 static int
588 di_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
589 {
590 	int		rv, error;
591 	di_off_t	off;
592 	struct di_all	*all;
593 	struct di_state	*st;
594 	int		m = (int)getminor(dev) - DI_NODE_SPECIES;
595 	major_t		i;
596 	char		*drv_name;
597 	size_t		map_size, size;
598 	struct di_mem	*dcp;
599 	int		ndi_flags;
600 
601 	if (m < 0 || m >= di_max_opens) {
602 		return (ENXIO);
603 	}
604 
605 	st = di_states[m];
606 	ASSERT(st != NULL);
607 
608 	dcmn_err2((CE_CONT, "di_ioctl: mode = %x, cmd = %x\n", mode, cmd));
609 
610 	switch (cmd) {
611 	case DINFOIDENT:
612 		/*
613 		 * This is called from di_init to verify that the driver
614 		 * opened is indeed devinfo. The purpose is to guard against
615 		 * sending ioctl to an unknown driver in case of an
616 		 * unresolved major number conflict during bfu.
617 		 */
618 		*rvalp = DI_MAGIC;
619 		return (0);
620 
621 	case DINFOLODRV:
622 		/*
623 		 * Hold an installed driver and return the result
624 		 */
625 		if (DI_UNPRIVILEGED_NODE(m)) {
626 			/*
627 			 * Only the fully enabled instances may issue
628 			 * DINFOLDDRV.
629 			 */
630 			return (EACCES);
631 		}
632 
633 		drv_name = kmem_alloc(MAXNAMELEN, KM_SLEEP);
634 		if (ddi_copyin((void *)arg, drv_name, MAXNAMELEN, mode) != 0) {
635 			kmem_free(drv_name, MAXNAMELEN);
636 			return (EFAULT);
637 		}
638 
639 		/*
640 		 * Some 3rd party driver's _init() walks the device tree,
641 		 * so we load the driver module before configuring driver.
642 		 */
643 		i = ddi_name_to_major(drv_name);
644 		if (ddi_hold_driver(i) == NULL) {
645 			kmem_free(drv_name, MAXNAMELEN);
646 			return (ENXIO);
647 		}
648 
649 		ndi_flags = NDI_DEVI_PERSIST | NDI_CONFIG | NDI_NO_EVENT;
650 
651 		/*
652 		 * i_ddi_load_drvconf() below will trigger a reprobe
653 		 * via reset_nexus_flags(). NDI_DRV_CONF_REPROBE isn't
654 		 * needed here.
655 		 */
656 		modunload_disable();
657 		(void) i_ddi_load_drvconf(i);
658 		(void) ndi_devi_config_driver(ddi_root_node(), ndi_flags, i);
659 		kmem_free(drv_name, MAXNAMELEN);
660 		ddi_rele_driver(i);
661 		rv = i_ddi_devs_attached(i);
662 		modunload_enable();
663 
664 		i_ddi_di_cache_invalidate();
665 
666 		return ((rv == DDI_SUCCESS)? 0 : ENXIO);
667 
668 	case DINFOUSRLD:
669 		/*
670 		 * The case for copying snapshot to userland
671 		 */
672 		if (di_setstate(st, IOC_COPY) == -1)
673 			return (EBUSY);
674 
675 		map_size = DI_ALL_PTR(st)->map_size;
676 		if (map_size == 0) {
677 			(void) di_setstate(st, IOC_DONE);
678 			return (EFAULT);
679 		}
680 
681 		/*
682 		 * copyout the snapshot
683 		 */
684 		map_size = (map_size + PAGEOFFSET) & PAGEMASK;
685 
686 		/*
687 		 * Return the map size, so caller may do a sanity
688 		 * check against the return value of snapshot ioctl()
689 		 */
690 		*rvalp = (int)map_size;
691 
692 		/*
693 		 * Copy one chunk at a time
694 		 */
695 		off = 0;
696 		dcp = st->memlist;
697 		while (map_size) {
698 			size = dcp->buf_size;
699 			if (map_size <= size) {
700 				size = map_size;
701 			}
702 
703 			if (ddi_copyout(di_mem_addr(st, off),
704 			    (void *)(arg + off), size, mode) != 0) {
705 				(void) di_setstate(st, IOC_DONE);
706 				return (EFAULT);
707 			}
708 
709 			map_size -= size;
710 			off += size;
711 			dcp = dcp->next;
712 		}
713 
714 		di_freemem(st);
715 		(void) di_setstate(st, IOC_IDLE);
716 		return (0);
717 
718 	default:
719 		if ((cmd & ~DIIOC_MASK) != DIIOC) {
720 			/*
721 			 * Invalid ioctl command
722 			 */
723 			return (ENOTTY);
724 		}
725 		/*
726 		 * take a snapshot
727 		 */
728 		st->command = cmd & DIIOC_MASK;
729 		/*FALLTHROUGH*/
730 	}
731 
732 	/*
733 	 * Obtain enough memory to hold header + rootpath.  We prevent kernel
734 	 * memory exhaustion by freeing any previously allocated snapshot and
735 	 * refusing the operation; otherwise we would be allowing ioctl(),
736 	 * ioctl(), ioctl(), ..., panic.
737 	 */
738 	if (di_setstate(st, IOC_SNAP) == -1)
739 		return (EBUSY);
740 
741 	/*
742 	 * Initial memlist always holds di_all and the root_path - and
743 	 * is at least a page and size.
744 	 */
745 	size = sizeof (struct di_all) +
746 	    sizeof (((struct dinfo_io *)(NULL))->root_path);
747 	if (size < PAGESIZE)
748 		size = PAGESIZE;
749 	off = di_checkmem(st, 0, size);
750 	all = DI_ALL_PTR(st);
751 	off += sizeof (struct di_all);		/* real length of di_all */
752 
753 	all->devcnt = devcnt;
754 	all->command = st->command;
755 	all->version = DI_SNAPSHOT_VERSION;
756 	all->top_vhci_devinfo = 0;		/* filled by build_vhci_list. */
757 
758 	/*
759 	 * Note the endianness in case we need to transport snapshot
760 	 * over the network.
761 	 */
762 #if defined(_LITTLE_ENDIAN)
763 	all->endianness = DI_LITTLE_ENDIAN;
764 #else
765 	all->endianness = DI_BIG_ENDIAN;
766 #endif
767 
768 	/* Copyin ioctl args, store in the snapshot. */
769 	if (copyinstr((void *)arg, all->req_path,
770 	    sizeof (((struct dinfo_io *)(NULL))->root_path), &size) != 0) {
771 		di_freemem(st);
772 		(void) di_setstate(st, IOC_IDLE);
773 		return (EFAULT);
774 	}
775 	(void) strcpy(all->root_path, all->req_path);
776 	off += size;				/* real length of root_path */
777 
778 	if ((st->command & DINFOCLEANUP) && !DEVICES_FILES_CLEANABLE(st)) {
779 		di_freemem(st);
780 		(void) di_setstate(st, IOC_IDLE);
781 		return (EINVAL);
782 	}
783 
784 	error = 0;
785 	if ((st->command & DINFOCACHE) && !cache_args_valid(st, &error)) {
786 		di_freemem(st);
787 		(void) di_setstate(st, IOC_IDLE);
788 		return (error);
789 	}
790 
791 	/*
792 	 * Only the fully enabled version may force load drivers or read
793 	 * the parent private data from a driver.
794 	 */
795 	if ((st->command & (DINFOPRIVDATA | DINFOFORCE)) != 0 &&
796 	    DI_UNPRIVILEGED_NODE(m)) {
797 		di_freemem(st);
798 		(void) di_setstate(st, IOC_IDLE);
799 		return (EACCES);
800 	}
801 
802 	/* Do we need private data? */
803 	if (st->command & DINFOPRIVDATA) {
804 		arg += sizeof (((struct dinfo_io *)(NULL))->root_path);
805 
806 #ifdef _MULTI_DATAMODEL
807 		switch (ddi_model_convert_from(mode & FMODELS)) {
808 		case DDI_MODEL_ILP32: {
809 			/*
810 			 * Cannot copy private data from 64-bit kernel
811 			 * to 32-bit app
812 			 */
813 			di_freemem(st);
814 			(void) di_setstate(st, IOC_IDLE);
815 			return (EINVAL);
816 		}
817 		case DDI_MODEL_NONE:
818 			if ((off = di_copyformat(off, st, arg, mode)) == 0) {
819 				di_freemem(st);
820 				(void) di_setstate(st, IOC_IDLE);
821 				return (EFAULT);
822 			}
823 			break;
824 		}
825 #else /* !_MULTI_DATAMODEL */
826 		if ((off = di_copyformat(off, st, arg, mode)) == 0) {
827 			di_freemem(st);
828 			(void) di_setstate(st, IOC_IDLE);
829 			return (EFAULT);
830 		}
831 #endif /* _MULTI_DATAMODEL */
832 	}
833 
834 	all->top_devinfo = DI_ALIGN(off);
835 
836 	/*
837 	 * For cache lookups we reallocate memory from scratch,
838 	 * so the value of "all" is no longer valid.
839 	 */
840 	all = NULL;
841 
842 	if (st->command & DINFOCACHE) {
843 		*rvalp = di_cache_lookup(st);
844 	} else if (snapshot_is_cacheable(st)) {
845 		DI_CACHE_LOCK(di_cache);
846 		*rvalp = di_cache_update(st);
847 		DI_CACHE_UNLOCK(di_cache);
848 	} else
849 		*rvalp = di_snapshot_and_clean(st);
850 
851 	if (*rvalp) {
852 		DI_ALL_PTR(st)->map_size = *rvalp;
853 		(void) di_setstate(st, IOC_DONE);
854 	} else {
855 		di_freemem(st);
856 		(void) di_setstate(st, IOC_IDLE);
857 	}
858 
859 	return (0);
860 }
861 
862 /*
863  * Get a chunk of memory >= size, for the snapshot
864  */
865 static void
866 di_allocmem(struct di_state *st, size_t size)
867 {
868 	struct di_mem	*mem = kmem_zalloc(sizeof (struct di_mem), KM_SLEEP);
869 
870 	/*
871 	 * Round up size to nearest power of 2. If it is less
872 	 * than st->mem_size, set it to st->mem_size (i.e.,
873 	 * the mem_size is doubled every time) to reduce the
874 	 * number of memory allocations.
875 	 */
876 	size_t tmp = 1;
877 	while (tmp < size) {
878 		tmp <<= 1;
879 	}
880 	size = (tmp > st->mem_size) ? tmp : st->mem_size;
881 
882 	mem->buf = ddi_umem_alloc(size, DDI_UMEM_SLEEP, &mem->cook);
883 	mem->buf_size = size;
884 
885 	dcmn_err2((CE_CONT, "di_allocmem: mem_size=%x\n", st->mem_size));
886 
887 	if (st->mem_size == 0) {	/* first chunk */
888 		st->memlist = mem;
889 	} else {
890 		/*
891 		 * locate end of linked list and add a chunk at the end
892 		 */
893 		struct di_mem *dcp = st->memlist;
894 		while (dcp->next != NULL) {
895 			dcp = dcp->next;
896 		}
897 
898 		dcp->next = mem;
899 	}
900 
901 	st->mem_size += size;
902 }
903 
904 /*
905  * Copy upto bufsiz bytes of the memlist to buf
906  */
907 static void
908 di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz)
909 {
910 	struct di_mem	*dcp;
911 	size_t		copysz;
912 
913 	if (st->mem_size == 0) {
914 		ASSERT(st->memlist == NULL);
915 		return;
916 	}
917 
918 	copysz = 0;
919 	for (dcp = st->memlist; dcp; dcp = dcp->next) {
920 
921 		ASSERT(bufsiz > 0);
922 
923 		if (bufsiz <= dcp->buf_size)
924 			copysz = bufsiz;
925 		else
926 			copysz = dcp->buf_size;
927 
928 		bcopy(dcp->buf, buf, copysz);
929 
930 		buf += copysz;
931 		bufsiz -= copysz;
932 
933 		if (bufsiz == 0)
934 			break;
935 	}
936 }
937 
938 /*
939  * Free all memory for the snapshot
940  */
941 static void
942 di_freemem(struct di_state *st)
943 {
944 	struct di_mem	*dcp, *tmp;
945 
946 	dcmn_err2((CE_CONT, "di_freemem\n"));
947 
948 	if (st->mem_size) {
949 		dcp = st->memlist;
950 		while (dcp) {	/* traverse the linked list */
951 			tmp = dcp;
952 			dcp = dcp->next;
953 			ddi_umem_free(tmp->cook);
954 			kmem_free(tmp, sizeof (struct di_mem));
955 		}
956 		st->mem_size = 0;
957 		st->memlist = NULL;
958 	}
959 
960 	ASSERT(st->mem_size == 0);
961 	ASSERT(st->memlist == NULL);
962 }
963 
964 /*
965  * Copies cached data to the di_state structure.
966  * Returns:
967  *	- size of data copied, on SUCCESS
968  *	- 0 on failure
969  */
970 static int
971 di_cache2mem(struct di_cache *cache, struct di_state *st)
972 {
973 	caddr_t	pa;
974 
975 	ASSERT(st->mem_size == 0);
976 	ASSERT(st->memlist == NULL);
977 	ASSERT(!servicing_interrupt());
978 	ASSERT(DI_CACHE_LOCKED(*cache));
979 
980 	if (cache->cache_size == 0) {
981 		ASSERT(cache->cache_data == NULL);
982 		CACHE_DEBUG((DI_ERR, "Empty cache. Skipping copy"));
983 		return (0);
984 	}
985 
986 	ASSERT(cache->cache_data);
987 
988 	di_allocmem(st, cache->cache_size);
989 
990 	pa = di_mem_addr(st, 0);
991 
992 	ASSERT(pa);
993 
994 	/*
995 	 * Verify that di_allocmem() allocates contiguous memory,
996 	 * so that it is safe to do straight bcopy()
997 	 */
998 	ASSERT(st->memlist != NULL);
999 	ASSERT(st->memlist->next == NULL);
1000 	bcopy(cache->cache_data, pa, cache->cache_size);
1001 
1002 	return (cache->cache_size);
1003 }
1004 
1005 /*
1006  * Copies a snapshot from di_state to the cache
1007  * Returns:
1008  *	- 0 on failure
1009  *	- size of copied data on success
1010  */
1011 static size_t
1012 di_mem2cache(struct di_state *st, struct di_cache *cache)
1013 {
1014 	size_t	map_size;
1015 
1016 	ASSERT(cache->cache_size == 0);
1017 	ASSERT(cache->cache_data == NULL);
1018 	ASSERT(!servicing_interrupt());
1019 	ASSERT(DI_CACHE_LOCKED(*cache));
1020 
1021 	if (st->mem_size == 0) {
1022 		ASSERT(st->memlist == NULL);
1023 		CACHE_DEBUG((DI_ERR, "Empty memlist. Skipping copy"));
1024 		return (0);
1025 	}
1026 
1027 	ASSERT(st->memlist);
1028 
1029 	/*
1030 	 * The size of the memory list may be much larger than the
1031 	 * size of valid data (map_size). Cache only the valid data
1032 	 */
1033 	map_size = DI_ALL_PTR(st)->map_size;
1034 	if (map_size == 0 || map_size < sizeof (struct di_all) ||
1035 	    map_size > st->mem_size) {
1036 		CACHE_DEBUG((DI_ERR, "cannot cache: bad size: 0x%x", map_size));
1037 		return (0);
1038 	}
1039 
1040 	cache->cache_data = kmem_alloc(map_size, KM_SLEEP);
1041 	cache->cache_size = map_size;
1042 	di_copymem(st, cache->cache_data, cache->cache_size);
1043 
1044 	return (map_size);
1045 }
1046 
1047 /*
1048  * Make sure there is at least "size" bytes memory left before
1049  * going on. Otherwise, start on a new chunk.
1050  */
1051 static di_off_t
1052 di_checkmem(struct di_state *st, di_off_t off, size_t size)
1053 {
1054 	dcmn_err3((CE_CONT, "di_checkmem: off=%x size=%x\n",
1055 	    off, (int)size));
1056 
1057 	/*
1058 	 * di_checkmem() shouldn't be called with a size of zero.
1059 	 * But in case it is, we want to make sure we return a valid
1060 	 * offset within the memlist and not an offset that points us
1061 	 * at the end of the memlist.
1062 	 */
1063 	if (size == 0) {
1064 		dcmn_err((CE_WARN, "di_checkmem: invalid zero size used"));
1065 		size = 1;
1066 	}
1067 
1068 	off = DI_ALIGN(off);
1069 	if ((st->mem_size - off) < size) {
1070 		off = st->mem_size;
1071 		di_allocmem(st, size);
1072 	}
1073 
1074 	/* verify that return value is aligned */
1075 	ASSERT(off == DI_ALIGN(off));
1076 	return (off);
1077 }
1078 
1079 /*
1080  * Copy the private data format from ioctl arg.
1081  * On success, the ending offset is returned. On error 0 is returned.
1082  */
1083 static di_off_t
1084 di_copyformat(di_off_t off, struct di_state *st, intptr_t arg, int mode)
1085 {
1086 	di_off_t		size;
1087 	struct di_priv_data	*priv;
1088 	struct di_all		*all = DI_ALL_PTR(st);
1089 
1090 	dcmn_err2((CE_CONT, "di_copyformat: off=%x, arg=%p mode=%x\n",
1091 	    off, (void *)arg, mode));
1092 
1093 	/*
1094 	 * Copyin data and check version.
1095 	 * We only handle private data version 0.
1096 	 */
1097 	priv = kmem_alloc(sizeof (struct di_priv_data), KM_SLEEP);
1098 	if ((ddi_copyin((void *)arg, priv, sizeof (struct di_priv_data),
1099 	    mode) != 0) || (priv->version != DI_PRIVDATA_VERSION_0)) {
1100 		kmem_free(priv, sizeof (struct di_priv_data));
1101 		return (0);
1102 	}
1103 
1104 	/*
1105 	 * Save di_priv_data copied from userland in snapshot.
1106 	 */
1107 	all->pd_version = priv->version;
1108 	all->n_ppdata = priv->n_parent;
1109 	all->n_dpdata = priv->n_driver;
1110 
1111 	/*
1112 	 * copyin private data format, modify offset accordingly
1113 	 */
1114 	if (all->n_ppdata) {	/* parent private data format */
1115 		/*
1116 		 * check memory
1117 		 */
1118 		size = all->n_ppdata * sizeof (struct di_priv_format);
1119 		all->ppdata_format = off = di_checkmem(st, off, size);
1120 		if (ddi_copyin(priv->parent, di_mem_addr(st, off), size,
1121 		    mode) != 0) {
1122 			kmem_free(priv, sizeof (struct di_priv_data));
1123 			return (0);
1124 		}
1125 
1126 		off += size;
1127 	}
1128 
1129 	if (all->n_dpdata) {	/* driver private data format */
1130 		/*
1131 		 * check memory
1132 		 */
1133 		size = all->n_dpdata * sizeof (struct di_priv_format);
1134 		all->dpdata_format = off = di_checkmem(st, off, size);
1135 		if (ddi_copyin(priv->driver, di_mem_addr(st, off), size,
1136 		    mode) != 0) {
1137 			kmem_free(priv, sizeof (struct di_priv_data));
1138 			return (0);
1139 		}
1140 
1141 		off += size;
1142 	}
1143 
1144 	kmem_free(priv, sizeof (struct di_priv_data));
1145 	return (off);
1146 }
1147 
1148 /*
1149  * Return the real address based on the offset (off) within snapshot
1150  */
1151 static void *
1152 di_mem_addr(struct di_state *st, di_off_t off)
1153 {
1154 	struct di_mem	*dcp = st->memlist;
1155 
1156 	dcmn_err3((CE_CONT, "di_mem_addr: dcp=%p off=%x\n",
1157 	    (void *)dcp, off));
1158 
1159 	ASSERT(off < st->mem_size);
1160 
1161 	while (off >= dcp->buf_size) {
1162 		off -= dcp->buf_size;
1163 		dcp = dcp->next;
1164 	}
1165 
1166 	dcmn_err3((CE_CONT, "di_mem_addr: new off=%x, return = %p\n",
1167 	    off, (void *)(dcp->buf + off)));
1168 
1169 	return (dcp->buf + off);
1170 }
1171 
1172 /*
1173  * Ideally we would use the whole key to derive the hash
1174  * value. However, the probability that two keys will
1175  * have the same dip (or pip) is very low, so
1176  * hashing by dip (or pip) pointer should suffice.
1177  */
1178 static uint_t
1179 di_hash_byptr(void *arg, mod_hash_key_t key)
1180 {
1181 	struct di_key	*dik = key;
1182 	size_t		rshift;
1183 	void		*ptr;
1184 
1185 	ASSERT(arg == NULL);
1186 
1187 	switch (dik->k_type) {
1188 	case DI_DKEY:
1189 		ptr = dik->k_u.dkey.dk_dip;
1190 		rshift = highbit(sizeof (struct dev_info));
1191 		break;
1192 	case DI_PKEY:
1193 		ptr = dik->k_u.pkey.pk_pip;
1194 		rshift = highbit(sizeof (struct mdi_pathinfo));
1195 		break;
1196 	default:
1197 		panic("devinfo: unknown key type");
1198 		/*NOTREACHED*/
1199 	}
1200 	return (mod_hash_byptr((void *)rshift, ptr));
1201 }
1202 
1203 static void
1204 di_key_dtor(mod_hash_key_t key)
1205 {
1206 	char		*path_addr;
1207 	struct di_key	*dik = key;
1208 
1209 	switch (dik->k_type) {
1210 	case DI_DKEY:
1211 		break;
1212 	case DI_PKEY:
1213 		path_addr = dik->k_u.pkey.pk_path_addr;
1214 		if (path_addr)
1215 			kmem_free(path_addr, strlen(path_addr) + 1);
1216 		break;
1217 	default:
1218 		panic("devinfo: unknown key type");
1219 		/*NOTREACHED*/
1220 	}
1221 
1222 	kmem_free(dik, sizeof (struct di_key));
1223 }
1224 
1225 static int
1226 di_dkey_cmp(struct di_dkey *dk1, struct di_dkey *dk2)
1227 {
1228 	if (dk1->dk_dip !=  dk2->dk_dip)
1229 		return (dk1->dk_dip > dk2->dk_dip ? 1 : -1);
1230 
1231 	if (dk1->dk_major != DDI_MAJOR_T_NONE &&
1232 	    dk2->dk_major != DDI_MAJOR_T_NONE) {
1233 		if (dk1->dk_major !=  dk2->dk_major)
1234 			return (dk1->dk_major > dk2->dk_major ? 1 : -1);
1235 
1236 		if (dk1->dk_inst !=  dk2->dk_inst)
1237 			return (dk1->dk_inst > dk2->dk_inst ? 1 : -1);
1238 	}
1239 
1240 	if (dk1->dk_nodeid != dk2->dk_nodeid)
1241 		return (dk1->dk_nodeid > dk2->dk_nodeid ? 1 : -1);
1242 
1243 	return (0);
1244 }
1245 
1246 static int
1247 di_pkey_cmp(struct di_pkey *pk1, struct di_pkey *pk2)
1248 {
1249 	char	*p1, *p2;
1250 	int	rv;
1251 
1252 	if (pk1->pk_pip !=  pk2->pk_pip)
1253 		return (pk1->pk_pip > pk2->pk_pip ? 1 : -1);
1254 
1255 	p1 = pk1->pk_path_addr;
1256 	p2 = pk2->pk_path_addr;
1257 
1258 	p1 = p1 ? p1 : "";
1259 	p2 = p2 ? p2 : "";
1260 
1261 	rv = strcmp(p1, p2);
1262 	if (rv)
1263 		return (rv > 0  ? 1 : -1);
1264 
1265 	if (pk1->pk_client !=  pk2->pk_client)
1266 		return (pk1->pk_client > pk2->pk_client ? 1 : -1);
1267 
1268 	if (pk1->pk_phci !=  pk2->pk_phci)
1269 		return (pk1->pk_phci > pk2->pk_phci ? 1 : -1);
1270 
1271 	return (0);
1272 }
1273 
1274 static int
1275 di_key_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
1276 {
1277 	struct di_key	*dik1, *dik2;
1278 
1279 	dik1 = key1;
1280 	dik2 = key2;
1281 
1282 	if (dik1->k_type != dik2->k_type) {
1283 		panic("devinfo: mismatched keys");
1284 		/*NOTREACHED*/
1285 	}
1286 
1287 	switch (dik1->k_type) {
1288 	case DI_DKEY:
1289 		return (di_dkey_cmp(&(dik1->k_u.dkey), &(dik2->k_u.dkey)));
1290 	case DI_PKEY:
1291 		return (di_pkey_cmp(&(dik1->k_u.pkey), &(dik2->k_u.pkey)));
1292 	default:
1293 		panic("devinfo: unknown key type");
1294 		/*NOTREACHED*/
1295 	}
1296 }
1297 
1298 static void
1299 di_copy_aliases(struct di_state *st, alias_pair_t *apair, di_off_t *offp)
1300 {
1301 	di_off_t 		off;
1302 	struct di_all		*all = DI_ALL_PTR(st);
1303 	struct di_alias		*di_alias;
1304 	di_off_t		curroff;
1305 	dev_info_t		*currdip;
1306 	size_t			size;
1307 
1308 	currdip = NULL;
1309 	if (resolve_pathname(apair->pair_alias, &currdip, NULL, NULL) != 0) {
1310 		return;
1311 	}
1312 
1313 	if (di_dip_find(st, currdip, &curroff) != 0) {
1314 		ndi_rele_devi(currdip);
1315 		return;
1316 	}
1317 	ndi_rele_devi(currdip);
1318 
1319 	off = *offp;
1320 	size = sizeof (struct di_alias);
1321 	size += strlen(apair->pair_alias) + 1;
1322 	off = di_checkmem(st, off, size);
1323 	di_alias = DI_ALIAS(di_mem_addr(st, off));
1324 
1325 	di_alias->self = off;
1326 	di_alias->next = all->aliases;
1327 	all->aliases = off;
1328 	(void) strcpy(di_alias->alias, apair->pair_alias);
1329 	di_alias->curroff = curroff;
1330 
1331 	off += size;
1332 
1333 	*offp = off;
1334 }
1335 
1336 /*
1337  * This is the main function that takes a snapshot
1338  */
1339 static di_off_t
1340 di_snapshot(struct di_state *st)
1341 {
1342 	di_off_t	off;
1343 	struct di_all	*all;
1344 	dev_info_t	*rootnode;
1345 	char		buf[80];
1346 	int		plen;
1347 	char		*path;
1348 	vnode_t		*vp;
1349 	int		i;
1350 
1351 	all = DI_ALL_PTR(st);
1352 	dcmn_err((CE_CONT, "Taking a snapshot of devinfo tree...\n"));
1353 
1354 	/*
1355 	 * Translate requested root path if an alias and snap-root != "/"
1356 	 */
1357 	if (ddi_aliases_present == B_TRUE && strcmp(all->root_path, "/") != 0) {
1358 		/* If there is no redirected alias, use root_path as is */
1359 		rootnode = ddi_alias_redirect(all->root_path);
1360 		if (rootnode) {
1361 			(void) ddi_pathname(rootnode, all->root_path);
1362 			goto got_root;
1363 		}
1364 	}
1365 
1366 	/*
1367 	 * Verify path before entrusting it to e_ddi_hold_devi_by_path because
1368 	 * some platforms have OBP bugs where executing the NDI_PROMNAME code
1369 	 * path against an invalid path results in panic.  The lookupnameat
1370 	 * is done relative to rootdir without a leading '/' on "devices/"
1371 	 * to force the lookup to occur in the global zone.
1372 	 */
1373 	plen = strlen("devices/") + strlen(all->root_path) + 1;
1374 	path = kmem_alloc(plen, KM_SLEEP);
1375 	(void) snprintf(path, plen, "devices/%s", all->root_path);
1376 	if (lookupnameat(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp, rootdir)) {
1377 		dcmn_err((CE_CONT, "Devinfo node %s not found\n",
1378 		    all->root_path));
1379 		kmem_free(path, plen);
1380 		return (0);
1381 	}
1382 	kmem_free(path, plen);
1383 	VN_RELE(vp);
1384 
1385 	/*
1386 	 * Hold the devinfo node referred by the path.
1387 	 */
1388 	rootnode = e_ddi_hold_devi_by_path(all->root_path, 0);
1389 	if (rootnode == NULL) {
1390 		dcmn_err((CE_CONT, "Devinfo node %s not found\n",
1391 		    all->root_path));
1392 		return (0);
1393 	}
1394 
1395 got_root:
1396 	(void) snprintf(buf, sizeof (buf),
1397 	    "devinfo registered dips (statep=%p)", (void *)st);
1398 
1399 	st->reg_dip_hash = mod_hash_create_extended(buf, 64,
1400 	    di_key_dtor, mod_hash_null_valdtor, di_hash_byptr,
1401 	    NULL, di_key_cmp, KM_SLEEP);
1402 
1403 
1404 	(void) snprintf(buf, sizeof (buf),
1405 	    "devinfo registered pips (statep=%p)", (void *)st);
1406 
1407 	st->reg_pip_hash = mod_hash_create_extended(buf, 64,
1408 	    di_key_dtor, mod_hash_null_valdtor, di_hash_byptr,
1409 	    NULL, di_key_cmp, KM_SLEEP);
1410 
1411 	if (DINFOHP & st->command) {
1412 		list_create(&st->hp_list, sizeof (i_hp_t),
1413 		    offsetof(i_hp_t, hp_link));
1414 	}
1415 
1416 	/*
1417 	 * copy the device tree
1418 	 */
1419 	off = di_copytree(DEVI(rootnode), &all->top_devinfo, st);
1420 
1421 	if (DINFOPATH & st->command) {
1422 		mdi_walk_vhcis(build_vhci_list, st);
1423 	}
1424 
1425 	if (DINFOHP & st->command) {
1426 		di_hotplug_children(st);
1427 	}
1428 
1429 	ddi_release_devi(rootnode);
1430 
1431 	/*
1432 	 * copy the devnames array
1433 	 */
1434 	all->devnames = off;
1435 	off = di_copydevnm(&all->devnames, st);
1436 
1437 
1438 	/* initialize the hash tables */
1439 	st->lnode_count = 0;
1440 	st->link_count = 0;
1441 
1442 	if (DINFOLYR & st->command) {
1443 		off = di_getlink_data(off, st);
1444 	}
1445 
1446 	all->aliases = 0;
1447 	if (ddi_aliases_present == B_FALSE)
1448 		goto done;
1449 
1450 	for (i = 0; i < ddi_aliases.dali_num_pairs; i++) {
1451 		di_copy_aliases(st, &(ddi_aliases.dali_alias_pairs[i]), &off);
1452 	}
1453 
1454 done:
1455 	/*
1456 	 * Free up hash tables
1457 	 */
1458 	mod_hash_destroy_hash(st->reg_dip_hash);
1459 	mod_hash_destroy_hash(st->reg_pip_hash);
1460 
1461 	/*
1462 	 * Record the timestamp now that we are done with snapshot.
1463 	 *
1464 	 * We compute the checksum later and then only if we cache
1465 	 * the snapshot, since checksumming adds some overhead.
1466 	 * The checksum is checked later if we read the cache file.
1467 	 * from disk.
1468 	 *
1469 	 * Set checksum field to 0 as CRC is calculated with that
1470 	 * field set to 0.
1471 	 */
1472 	all->snapshot_time = ddi_get_time();
1473 	all->cache_checksum = 0;
1474 
1475 	ASSERT(all->snapshot_time != 0);
1476 
1477 	return (off);
1478 }
1479 
1480 /*
1481  * Take a snapshot and clean /etc/devices files if DINFOCLEANUP is set
1482  */
1483 static di_off_t
1484 di_snapshot_and_clean(struct di_state *st)
1485 {
1486 	di_off_t	off;
1487 
1488 	modunload_disable();
1489 	off = di_snapshot(st);
1490 	if (off != 0 && (st->command & DINFOCLEANUP)) {
1491 		ASSERT(DEVICES_FILES_CLEANABLE(st));
1492 		/*
1493 		 * Cleanup /etc/devices files:
1494 		 * In order to accurately account for the system configuration
1495 		 * in /etc/devices files, the appropriate drivers must be
1496 		 * fully configured before the cleanup starts.
1497 		 * So enable modunload only after the cleanup.
1498 		 */
1499 		i_ddi_clean_devices_files();
1500 		/*
1501 		 * Remove backing store nodes for unused devices,
1502 		 * which retain past permissions customizations
1503 		 * and may be undesired for newly configured devices.
1504 		 */
1505 		dev_devices_cleanup();
1506 	}
1507 	modunload_enable();
1508 
1509 	return (off);
1510 }
1511 
1512 /*
1513  * construct vhci linkage in the snapshot.
1514  */
1515 static int
1516 build_vhci_list(dev_info_t *vh_devinfo, void *arg)
1517 {
1518 	struct di_all	*all;
1519 	struct di_node	*me;
1520 	struct di_state	*st;
1521 	di_off_t	off;
1522 	phci_walk_arg_t	pwa;
1523 
1524 	dcmn_err3((CE_CONT, "build_vhci list\n"));
1525 
1526 	dcmn_err3((CE_CONT, "vhci node %s%d\n",
1527 	    ddi_driver_name(vh_devinfo), ddi_get_instance(vh_devinfo)));
1528 
1529 	st = (struct di_state *)arg;
1530 	if (di_dip_find(st, vh_devinfo, &off) != 0) {
1531 		dcmn_err((CE_WARN, "di_dip_find error for the given node\n"));
1532 		return (DDI_WALK_TERMINATE);
1533 	}
1534 
1535 	dcmn_err3((CE_CONT, "st->mem_size: %d vh_devinfo off: 0x%x\n",
1536 	    st->mem_size, off));
1537 
1538 	all = DI_ALL_PTR(st);
1539 	if (all->top_vhci_devinfo == 0) {
1540 		all->top_vhci_devinfo = off;
1541 	} else {
1542 		me = DI_NODE(di_mem_addr(st, all->top_vhci_devinfo));
1543 
1544 		while (me->next_vhci != 0) {
1545 			me = DI_NODE(di_mem_addr(st, me->next_vhci));
1546 		}
1547 
1548 		me->next_vhci = off;
1549 	}
1550 
1551 	pwa.off = off;
1552 	pwa.st = st;
1553 	mdi_vhci_walk_phcis(vh_devinfo, build_phci_list, &pwa);
1554 
1555 	return (DDI_WALK_CONTINUE);
1556 }
1557 
1558 /*
1559  * construct phci linkage for the given vhci in the snapshot.
1560  */
1561 static int
1562 build_phci_list(dev_info_t *ph_devinfo, void *arg)
1563 {
1564 	struct di_node	*vh_di_node;
1565 	struct di_node	*me;
1566 	phci_walk_arg_t	*pwa;
1567 	di_off_t	off;
1568 
1569 	pwa = (phci_walk_arg_t *)arg;
1570 
1571 	dcmn_err3((CE_CONT, "build_phci list for vhci at offset: 0x%x\n",
1572 	    pwa->off));
1573 
1574 	vh_di_node = DI_NODE(di_mem_addr(pwa->st, pwa->off));
1575 	if (di_dip_find(pwa->st, ph_devinfo, &off) != 0) {
1576 		dcmn_err((CE_WARN, "di_dip_find error for the given node\n"));
1577 		return (DDI_WALK_TERMINATE);
1578 	}
1579 
1580 	dcmn_err3((CE_CONT, "phci node %s%d, at offset 0x%x\n",
1581 	    ddi_driver_name(ph_devinfo), ddi_get_instance(ph_devinfo), off));
1582 
1583 	if (vh_di_node->top_phci == 0) {
1584 		vh_di_node->top_phci = off;
1585 		return (DDI_WALK_CONTINUE);
1586 	}
1587 
1588 	me = DI_NODE(di_mem_addr(pwa->st, vh_di_node->top_phci));
1589 
1590 	while (me->next_phci != 0) {
1591 		me = DI_NODE(di_mem_addr(pwa->st, me->next_phci));
1592 	}
1593 	me->next_phci = off;
1594 
1595 	return (DDI_WALK_CONTINUE);
1596 }
1597 
1598 /*
1599  * Assumes all devinfo nodes in device tree have been snapshotted
1600  */
1601 static void
1602 snap_driver_list(struct di_state *st, struct devnames *dnp, di_off_t *off_p)
1603 {
1604 	struct dev_info	*node;
1605 	struct di_node	*me;
1606 	di_off_t	off;
1607 
1608 	ASSERT(mutex_owned(&dnp->dn_lock));
1609 
1610 	node = DEVI(dnp->dn_head);
1611 	for (; node; node = node->devi_next) {
1612 		if (di_dip_find(st, (dev_info_t *)node, &off) != 0)
1613 			continue;
1614 
1615 		ASSERT(off > 0);
1616 		me = DI_NODE(di_mem_addr(st, off));
1617 		ASSERT(me->next == 0 || me->next == -1);
1618 		/*
1619 		 * Only nodes which were BOUND when they were
1620 		 * snapshotted will be added to per-driver list.
1621 		 */
1622 		if (me->next != -1)
1623 			continue;
1624 
1625 		*off_p = off;
1626 		off_p = &me->next;
1627 	}
1628 
1629 	*off_p = 0;
1630 }
1631 
1632 /*
1633  * Copy the devnames array, so we have a list of drivers in the snapshot.
1634  * Also makes it possible to locate the per-driver devinfo nodes.
1635  */
1636 static di_off_t
1637 di_copydevnm(di_off_t *off_p, struct di_state *st)
1638 {
1639 	int		i;
1640 	di_off_t	off;
1641 	size_t		size;
1642 	struct di_devnm	*dnp;
1643 
1644 	dcmn_err2((CE_CONT, "di_copydevnm: *off_p = %p\n", (void *)off_p));
1645 
1646 	/*
1647 	 * make sure there is some allocated memory
1648 	 */
1649 	size = devcnt * sizeof (struct di_devnm);
1650 	*off_p = off = di_checkmem(st, *off_p, size);
1651 	dnp = DI_DEVNM(di_mem_addr(st, off));
1652 	off += size;
1653 
1654 	dcmn_err((CE_CONT, "Start copying devnamesp[%d] at offset 0x%x\n",
1655 	    devcnt, off));
1656 
1657 	for (i = 0; i < devcnt; i++) {
1658 		if (devnamesp[i].dn_name == NULL) {
1659 			continue;
1660 		}
1661 
1662 		/*
1663 		 * dn_name is not freed during driver unload or removal.
1664 		 *
1665 		 * There is a race condition when make_devname() changes
1666 		 * dn_name during our strcpy. This should be rare since
1667 		 * only add_drv does this. At any rate, we never had a
1668 		 * problem with ddi_name_to_major(), which should have
1669 		 * the same problem.
1670 		 */
1671 		dcmn_err2((CE_CONT, "di_copydevnm: %s%d, off=%x\n",
1672 		    devnamesp[i].dn_name, devnamesp[i].dn_instance, off));
1673 
1674 		size = strlen(devnamesp[i].dn_name) + 1;
1675 		dnp[i].name = off = di_checkmem(st, off, size);
1676 		(void) strcpy((char *)di_mem_addr(st, off),
1677 		    devnamesp[i].dn_name);
1678 		off += size;
1679 
1680 		mutex_enter(&devnamesp[i].dn_lock);
1681 
1682 		/*
1683 		 * Snapshot per-driver node list
1684 		 */
1685 		snap_driver_list(st, &devnamesp[i], &dnp[i].head);
1686 
1687 		/*
1688 		 * This is not used by libdevinfo, leave it for now
1689 		 */
1690 		dnp[i].flags = devnamesp[i].dn_flags;
1691 		dnp[i].instance = devnamesp[i].dn_instance;
1692 
1693 		/*
1694 		 * get global properties
1695 		 */
1696 		if ((DINFOPROP & st->command) &&
1697 		    devnamesp[i].dn_global_prop_ptr) {
1698 			dnp[i].global_prop = off;
1699 			off = di_getprop(DI_PROP_GLB_LIST,
1700 			    &devnamesp[i].dn_global_prop_ptr->prop_list,
1701 			    &dnp[i].global_prop, st, NULL);
1702 		}
1703 
1704 		/*
1705 		 * Bit encode driver ops: & bus_ops, cb_ops, & cb_ops->cb_str
1706 		 */
1707 		if (CB_DRV_INSTALLED(devopsp[i])) {
1708 			if (devopsp[i]->devo_cb_ops) {
1709 				dnp[i].ops |= DI_CB_OPS;
1710 				if (devopsp[i]->devo_cb_ops->cb_str)
1711 					dnp[i].ops |= DI_STREAM_OPS;
1712 			}
1713 			if (NEXUS_DRV(devopsp[i])) {
1714 				dnp[i].ops |= DI_BUS_OPS;
1715 			}
1716 		}
1717 
1718 		mutex_exit(&devnamesp[i].dn_lock);
1719 	}
1720 
1721 	dcmn_err((CE_CONT, "End copying devnamesp at offset 0x%x\n", off));
1722 
1723 	return (off);
1724 }
1725 
1726 /*
1727  * Copy the kernel devinfo tree. The tree and the devnames array forms
1728  * the entire snapshot (see also di_copydevnm).
1729  */
1730 static di_off_t
1731 di_copytree(struct dev_info *root, di_off_t *off_p, struct di_state *st)
1732 {
1733 	di_off_t	off;
1734 	struct dev_info	*node;
1735 	struct di_stack	*dsp = kmem_zalloc(sizeof (struct di_stack), KM_SLEEP);
1736 
1737 	dcmn_err((CE_CONT, "di_copytree: root = %p, *off_p = %x\n",
1738 	    (void *)root, *off_p));
1739 
1740 	/* force attach drivers */
1741 	if (i_ddi_devi_attached((dev_info_t *)root) &&
1742 	    (st->command & DINFOSUBTREE) && (st->command & DINFOFORCE)) {
1743 		(void) ndi_devi_config((dev_info_t *)root,
1744 		    NDI_CONFIG | NDI_DEVI_PERSIST | NDI_NO_EVENT |
1745 		    NDI_DRV_CONF_REPROBE);
1746 	}
1747 
1748 	/*
1749 	 * Push top_devinfo onto a stack
1750 	 *
1751 	 * The stack is necessary to avoid recursion, which can overrun
1752 	 * the kernel stack.
1753 	 */
1754 	PUSH_STACK(dsp, root, off_p);
1755 
1756 	/*
1757 	 * As long as there is a node on the stack, copy the node.
1758 	 * di_copynode() is responsible for pushing and popping
1759 	 * child and sibling nodes on the stack.
1760 	 */
1761 	while (!EMPTY_STACK(dsp)) {
1762 		node = TOP_NODE(dsp);
1763 		off = di_copynode(node, dsp, st);
1764 	}
1765 
1766 	/*
1767 	 * Free the stack structure
1768 	 */
1769 	kmem_free(dsp, sizeof (struct di_stack));
1770 
1771 	return (off);
1772 }
1773 
1774 /*
1775  * This is the core function, which copies all data associated with a single
1776  * node into the snapshot. The amount of information is determined by the
1777  * ioctl command.
1778  */
1779 static di_off_t
1780 di_copynode(struct dev_info *node, struct di_stack *dsp, struct di_state *st)
1781 {
1782 	di_off_t	off;
1783 	struct di_node	*me;
1784 	size_t		size;
1785 	struct dev_info *n;
1786 
1787 	dcmn_err2((CE_CONT, "di_copynode: depth = %x\n", dsp->depth));
1788 	ASSERT((node != NULL) && (node == TOP_NODE(dsp)));
1789 
1790 	/*
1791 	 * check memory usage, and fix offsets accordingly.
1792 	 */
1793 	size = sizeof (struct di_node);
1794 	*(TOP_OFFSET(dsp)) = off = di_checkmem(st, *(TOP_OFFSET(dsp)), size);
1795 	me = DI_NODE(di_mem_addr(st, off));
1796 	me->self = off;
1797 	off += size;
1798 
1799 	dcmn_err((CE_CONT, "copy node %s, instance #%d, at offset 0x%x\n",
1800 	    node->devi_node_name, node->devi_instance, off));
1801 
1802 	/*
1803 	 * Node parameters:
1804 	 * self		-- offset of current node within snapshot
1805 	 * nodeid	-- pointer to PROM node (tri-valued)
1806 	 * state	-- hot plugging device state
1807 	 * node_state	-- devinfo node state
1808 	 */
1809 	me->instance = node->devi_instance;
1810 	me->nodeid = node->devi_nodeid;
1811 	me->node_class = node->devi_node_class;
1812 	me->attributes = node->devi_node_attributes;
1813 	me->state = node->devi_state;
1814 	me->flags = node->devi_flags;
1815 	me->node_state = node->devi_node_state;
1816 	me->next_vhci = 0;		/* Filled up by build_vhci_list. */
1817 	me->top_phci = 0;		/* Filled up by build_phci_list. */
1818 	me->next_phci = 0;		/* Filled up by build_phci_list. */
1819 	me->multipath_component = MULTIPATH_COMPONENT_NONE; /* set default. */
1820 	me->user_private_data = NULL;
1821 
1822 	/*
1823 	 * Get parent's offset in snapshot from the stack
1824 	 * and store it in the current node
1825 	 */
1826 	if (dsp->depth > 1) {
1827 		me->parent = *(PARENT_OFFSET(dsp));
1828 	}
1829 
1830 	/*
1831 	 * Save the offset of this di_node in a hash table.
1832 	 * This is used later to resolve references to this
1833 	 * dip from other parts of the tree (per-driver list,
1834 	 * multipathing linkages, layered usage linkages).
1835 	 * The key used for the hash table is derived from
1836 	 * information in the dip.
1837 	 */
1838 	di_register_dip(st, (dev_info_t *)node, me->self);
1839 
1840 #ifdef	DEVID_COMPATIBILITY
1841 	/* check for devid as property marker */
1842 	if (node->devi_devid_str) {
1843 		ddi_devid_t	devid;
1844 
1845 		/*
1846 		 * The devid is now represented as a property. For
1847 		 * compatibility with di_devid() interface in libdevinfo we
1848 		 * must return it as a binary structure in the snapshot. When
1849 		 * (if) di_devid() is removed from libdevinfo then the code
1850 		 * related to DEVID_COMPATIBILITY can be removed.
1851 		 */
1852 		if (ddi_devid_str_decode(node->devi_devid_str, &devid, NULL) ==
1853 		    DDI_SUCCESS) {
1854 			size = ddi_devid_sizeof(devid);
1855 			off = di_checkmem(st, off, size);
1856 			me->devid = off;
1857 			bcopy(devid, di_mem_addr(st, off), size);
1858 			off += size;
1859 			ddi_devid_free(devid);
1860 		}
1861 	}
1862 #endif	/* DEVID_COMPATIBILITY */
1863 
1864 	if (node->devi_node_name) {
1865 		size = strlen(node->devi_node_name) + 1;
1866 		me->node_name = off = di_checkmem(st, off, size);
1867 		(void) strcpy(di_mem_addr(st, off), node->devi_node_name);
1868 		off += size;
1869 	}
1870 
1871 	if (node->devi_compat_names && (node->devi_compat_length > 1)) {
1872 		size = node->devi_compat_length;
1873 		me->compat_names = off = di_checkmem(st, off, size);
1874 		me->compat_length = (int)size;
1875 		bcopy(node->devi_compat_names, di_mem_addr(st, off), size);
1876 		off += size;
1877 	}
1878 
1879 	if (node->devi_addr) {
1880 		size = strlen(node->devi_addr) + 1;
1881 		me->address = off = di_checkmem(st, off, size);
1882 		(void) strcpy(di_mem_addr(st, off), node->devi_addr);
1883 		off += size;
1884 	}
1885 
1886 	if (node->devi_binding_name) {
1887 		size = strlen(node->devi_binding_name) + 1;
1888 		me->bind_name = off = di_checkmem(st, off, size);
1889 		(void) strcpy(di_mem_addr(st, off), node->devi_binding_name);
1890 		off += size;
1891 	}
1892 
1893 	me->drv_major = node->devi_major;
1894 
1895 	/*
1896 	 * If the dip is BOUND, set the next pointer of the
1897 	 * per-instance list to -1, indicating that it is yet to be resolved.
1898 	 * This will be resolved later in snap_driver_list().
1899 	 */
1900 	if (me->drv_major != -1) {
1901 		me->next = -1;
1902 	} else {
1903 		me->next = 0;
1904 	}
1905 
1906 	/*
1907 	 * An optimization to skip mutex_enter when not needed.
1908 	 */
1909 	if (!((DINFOMINOR | DINFOPROP | DINFOPATH | DINFOHP) & st->command)) {
1910 		goto priv_data;
1911 	}
1912 
1913 	/*
1914 	 * LOCKING: We already have an active ndi_devi_enter to gather the
1915 	 * minor data, and we will take devi_lock to gather properties as
1916 	 * needed off di_getprop.
1917 	 */
1918 	if (!(DINFOMINOR & st->command)) {
1919 		goto path;
1920 	}
1921 
1922 	ASSERT(DEVI_BUSY_OWNED(node));
1923 	if (node->devi_minor) {		/* minor data */
1924 		me->minor_data = off;
1925 		off = di_getmdata(node->devi_minor, &me->minor_data,
1926 		    me->self, st);
1927 	}
1928 
1929 path:
1930 	if (!(DINFOPATH & st->command)) {
1931 		goto property;
1932 	}
1933 
1934 	if (MDI_VHCI(node)) {
1935 		me->multipath_component = MULTIPATH_COMPONENT_VHCI;
1936 	}
1937 
1938 	if (MDI_CLIENT(node)) {
1939 		me->multipath_component = MULTIPATH_COMPONENT_CLIENT;
1940 		me->multipath_client = off;
1941 		off = di_getpath_data((dev_info_t *)node, &me->multipath_client,
1942 		    me->self, st, 1);
1943 		dcmn_err((CE_WARN, "me->multipath_client = %x for node %p "
1944 		    "component type = %d.  off=%d",
1945 		    me->multipath_client,
1946 		    (void *)node, node->devi_mdi_component, off));
1947 	}
1948 
1949 	if (MDI_PHCI(node)) {
1950 		me->multipath_component = MULTIPATH_COMPONENT_PHCI;
1951 		me->multipath_phci = off;
1952 		off = di_getpath_data((dev_info_t *)node, &me->multipath_phci,
1953 		    me->self, st, 0);
1954 		dcmn_err((CE_WARN, "me->multipath_phci = %x for node %p "
1955 		    "component type = %d.  off=%d",
1956 		    me->multipath_phci,
1957 		    (void *)node, node->devi_mdi_component, off));
1958 	}
1959 
1960 property:
1961 	if (!(DINFOPROP & st->command)) {
1962 		goto hotplug_data;
1963 	}
1964 
1965 	if (node->devi_drv_prop_ptr) {	/* driver property list */
1966 		me->drv_prop = off;
1967 		off = di_getprop(DI_PROP_DRV_LIST, &node->devi_drv_prop_ptr,
1968 		    &me->drv_prop, st, node);
1969 	}
1970 
1971 	if (node->devi_sys_prop_ptr) {	/* system property list */
1972 		me->sys_prop = off;
1973 		off = di_getprop(DI_PROP_SYS_LIST, &node->devi_sys_prop_ptr,
1974 		    &me->sys_prop, st, node);
1975 	}
1976 
1977 	if (node->devi_hw_prop_ptr) {	/* hardware property list */
1978 		me->hw_prop = off;
1979 		off = di_getprop(DI_PROP_HW_LIST, &node->devi_hw_prop_ptr,
1980 		    &me->hw_prop, st, node);
1981 	}
1982 
1983 	if (node->devi_global_prop_list == NULL) {
1984 		me->glob_prop = (di_off_t)-1;	/* not global property */
1985 	} else {
1986 		/*
1987 		 * Make copy of global property list if this devinfo refers
1988 		 * global properties different from what's on the devnames
1989 		 * array. It can happen if there has been a forced
1990 		 * driver.conf update. See mod_drv(1M).
1991 		 */
1992 		ASSERT(me->drv_major != -1);
1993 		if (node->devi_global_prop_list !=
1994 		    devnamesp[me->drv_major].dn_global_prop_ptr) {
1995 			me->glob_prop = off;
1996 			off = di_getprop(DI_PROP_GLB_LIST,
1997 			    &node->devi_global_prop_list->prop_list,
1998 			    &me->glob_prop, st, node);
1999 		}
2000 	}
2001 
2002 hotplug_data:
2003 	if (!(DINFOHP & st->command)) {
2004 		goto priv_data;
2005 	}
2006 
2007 	if (node->devi_hp_hdlp) {	/* hotplug data */
2008 		me->hp_data = off;
2009 		off = di_gethpdata(node->devi_hp_hdlp, &me->hp_data, st);
2010 	}
2011 
2012 priv_data:
2013 	if (!(DINFOPRIVDATA & st->command)) {
2014 		goto pm_info;
2015 	}
2016 
2017 	if (ddi_get_parent_data((dev_info_t *)node) != NULL) {
2018 		me->parent_data = off;
2019 		off = di_getppdata(node, &me->parent_data, st);
2020 	}
2021 
2022 	if (ddi_get_driver_private((dev_info_t *)node) != NULL) {
2023 		me->driver_data = off;
2024 		off = di_getdpdata(node, &me->driver_data, st);
2025 	}
2026 
2027 pm_info: /* NOT implemented */
2028 
2029 subtree:
2030 	/* keep the stack aligned */
2031 	off = DI_ALIGN(off);
2032 
2033 	if (!(DINFOSUBTREE & st->command)) {
2034 		POP_STACK(dsp);
2035 		return (off);
2036 	}
2037 
2038 child:
2039 	/*
2040 	 * If there is a visible child--push child onto stack.
2041 	 * Hold the parent (me) busy while doing so.
2042 	 */
2043 	if ((n = node->devi_child) != NULL) {
2044 		/* skip hidden nodes */
2045 		while (n && ndi_dev_is_hidden_node((dev_info_t *)n))
2046 			n = n->devi_sibling;
2047 		if (n) {
2048 			me->child = off;
2049 			PUSH_STACK(dsp, n, &me->child);
2050 			return (me->child);
2051 		}
2052 	}
2053 
2054 sibling:
2055 	/*
2056 	 * Done with any child nodes, unroll the stack till a visible
2057 	 * sibling of a parent node is found or root node is reached.
2058 	 */
2059 	POP_STACK(dsp);
2060 	while (!EMPTY_STACK(dsp)) {
2061 		if ((n = node->devi_sibling) != NULL) {
2062 			/* skip hidden nodes */
2063 			while (n && ndi_dev_is_hidden_node((dev_info_t *)n))
2064 				n = n->devi_sibling;
2065 			if (n) {
2066 				me->sibling = DI_ALIGN(off);
2067 				PUSH_STACK(dsp, n, &me->sibling);
2068 				return (me->sibling);
2069 			}
2070 		}
2071 		node = TOP_NODE(dsp);
2072 		me = DI_NODE(di_mem_addr(st, *(TOP_OFFSET(dsp))));
2073 		POP_STACK(dsp);
2074 	}
2075 
2076 	/*
2077 	 * DONE with all nodes
2078 	 */
2079 	return (off);
2080 }
2081 
2082 static i_lnode_t *
2083 i_lnode_alloc(int modid)
2084 {
2085 	i_lnode_t	*i_lnode;
2086 
2087 	i_lnode = kmem_zalloc(sizeof (i_lnode_t), KM_SLEEP);
2088 
2089 	ASSERT(modid != -1);
2090 	i_lnode->modid = modid;
2091 
2092 	return (i_lnode);
2093 }
2094 
2095 static void
2096 i_lnode_free(i_lnode_t *i_lnode)
2097 {
2098 	kmem_free(i_lnode, sizeof (i_lnode_t));
2099 }
2100 
2101 static void
2102 i_lnode_check_free(i_lnode_t *i_lnode)
2103 {
2104 	/* This lnode and its dip must have been snapshotted */
2105 	ASSERT(i_lnode->self > 0);
2106 	ASSERT(i_lnode->di_node->self > 0);
2107 
2108 	/* at least 1 link (in or out) must exist for this lnode */
2109 	ASSERT(i_lnode->link_in || i_lnode->link_out);
2110 
2111 	i_lnode_free(i_lnode);
2112 }
2113 
2114 static i_link_t *
2115 i_link_alloc(int spec_type)
2116 {
2117 	i_link_t	*i_link;
2118 
2119 	i_link = kmem_zalloc(sizeof (i_link_t), KM_SLEEP);
2120 	i_link->spec_type = spec_type;
2121 
2122 	return (i_link);
2123 }
2124 
2125 static void
2126 i_link_check_free(i_link_t *i_link)
2127 {
2128 	/* This link must have been snapshotted */
2129 	ASSERT(i_link->self > 0);
2130 
2131 	/* Both endpoint lnodes must exist for this link */
2132 	ASSERT(i_link->src_lnode);
2133 	ASSERT(i_link->tgt_lnode);
2134 
2135 	kmem_free(i_link, sizeof (i_link_t));
2136 }
2137 
2138 /*ARGSUSED*/
2139 static uint_t
2140 i_lnode_hashfunc(void *arg, mod_hash_key_t key)
2141 {
2142 	i_lnode_t	*i_lnode = (i_lnode_t *)key;
2143 	struct di_node	*ptr;
2144 	dev_t		dev;
2145 
2146 	dev = i_lnode->devt;
2147 	if (dev != DDI_DEV_T_NONE)
2148 		return (i_lnode->modid + getminor(dev) + getmajor(dev));
2149 
2150 	ptr = i_lnode->di_node;
2151 	ASSERT(ptr->self > 0);
2152 	if (ptr) {
2153 		uintptr_t k = (uintptr_t)ptr;
2154 		k >>= (int)highbit(sizeof (struct di_node));
2155 		return ((uint_t)k);
2156 	}
2157 
2158 	return (i_lnode->modid);
2159 }
2160 
2161 static int
2162 i_lnode_cmp(void *arg1, void *arg2)
2163 {
2164 	i_lnode_t	*i_lnode1 = (i_lnode_t *)arg1;
2165 	i_lnode_t	*i_lnode2 = (i_lnode_t *)arg2;
2166 
2167 	if (i_lnode1->modid != i_lnode2->modid) {
2168 		return ((i_lnode1->modid < i_lnode2->modid) ? -1 : 1);
2169 	}
2170 
2171 	if (i_lnode1->di_node != i_lnode2->di_node)
2172 		return ((i_lnode1->di_node < i_lnode2->di_node) ? -1 : 1);
2173 
2174 	if (i_lnode1->devt != i_lnode2->devt)
2175 		return ((i_lnode1->devt < i_lnode2->devt) ? -1 : 1);
2176 
2177 	return (0);
2178 }
2179 
2180 /*
2181  * An lnode represents a {dip, dev_t} tuple. A link represents a
2182  * {src_lnode, tgt_lnode, spec_type} tuple.
2183  * The following callback assumes that LDI framework ref-counts the
2184  * src_dip and tgt_dip while invoking this callback.
2185  */
2186 static int
2187 di_ldi_callback(const ldi_usage_t *ldi_usage, void *arg)
2188 {
2189 	struct di_state	*st = (struct di_state *)arg;
2190 	i_lnode_t	*src_lnode, *tgt_lnode, *i_lnode;
2191 	i_link_t	**i_link_next, *i_link;
2192 	di_off_t	soff, toff;
2193 	mod_hash_val_t	nodep = NULL;
2194 	int		res;
2195 
2196 	/*
2197 	 * if the source or target of this device usage information doesn't
2198 	 * correspond to a device node then we don't report it via
2199 	 * libdevinfo so return.
2200 	 */
2201 	if ((ldi_usage->src_dip == NULL) || (ldi_usage->tgt_dip == NULL))
2202 		return (LDI_USAGE_CONTINUE);
2203 
2204 	ASSERT(e_ddi_devi_holdcnt(ldi_usage->src_dip));
2205 	ASSERT(e_ddi_devi_holdcnt(ldi_usage->tgt_dip));
2206 
2207 	/*
2208 	 * Skip the ldi_usage if either src or tgt dip is not in the
2209 	 * snapshot. This saves us from pruning bad lnodes/links later.
2210 	 */
2211 	if (di_dip_find(st, ldi_usage->src_dip, &soff) != 0)
2212 		return (LDI_USAGE_CONTINUE);
2213 	if (di_dip_find(st, ldi_usage->tgt_dip, &toff) != 0)
2214 		return (LDI_USAGE_CONTINUE);
2215 
2216 	ASSERT(soff > 0);
2217 	ASSERT(toff > 0);
2218 
2219 	/*
2220 	 * allocate an i_lnode and add it to the lnode hash
2221 	 * if it is not already present. For this particular
2222 	 * link the lnode is a source, but it may
2223 	 * participate as tgt or src in any number of layered
2224 	 * operations - so it may already be in the hash.
2225 	 */
2226 	i_lnode = i_lnode_alloc(ldi_usage->src_modid);
2227 	i_lnode->di_node = DI_NODE(di_mem_addr(st, soff));
2228 	i_lnode->devt = ldi_usage->src_devt;
2229 
2230 	res = mod_hash_find(st->lnode_hash, i_lnode, &nodep);
2231 	if (res == MH_ERR_NOTFOUND) {
2232 		/*
2233 		 * new i_lnode
2234 		 * add it to the hash and increment the lnode count
2235 		 */
2236 		res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode);
2237 		ASSERT(res == 0);
2238 		st->lnode_count++;
2239 		src_lnode = i_lnode;
2240 	} else {
2241 		/* this i_lnode already exists in the lnode_hash */
2242 		i_lnode_free(i_lnode);
2243 		src_lnode = (i_lnode_t *)nodep;
2244 	}
2245 
2246 	/*
2247 	 * allocate a tgt i_lnode and add it to the lnode hash
2248 	 */
2249 	i_lnode = i_lnode_alloc(ldi_usage->tgt_modid);
2250 	i_lnode->di_node = DI_NODE(di_mem_addr(st, toff));
2251 	i_lnode->devt = ldi_usage->tgt_devt;
2252 
2253 	res = mod_hash_find(st->lnode_hash, i_lnode, &nodep);
2254 	if (res == MH_ERR_NOTFOUND) {
2255 		/*
2256 		 * new i_lnode
2257 		 * add it to the hash and increment the lnode count
2258 		 */
2259 		res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode);
2260 		ASSERT(res == 0);
2261 		st->lnode_count++;
2262 		tgt_lnode = i_lnode;
2263 	} else {
2264 		/* this i_lnode already exists in the lnode_hash */
2265 		i_lnode_free(i_lnode);
2266 		tgt_lnode = (i_lnode_t *)nodep;
2267 	}
2268 
2269 	/*
2270 	 * allocate a i_link
2271 	 */
2272 	i_link = i_link_alloc(ldi_usage->tgt_spec_type);
2273 	i_link->src_lnode = src_lnode;
2274 	i_link->tgt_lnode = tgt_lnode;
2275 
2276 	/*
2277 	 * add this link onto the src i_lnodes outbound i_link list
2278 	 */
2279 	i_link_next = &(src_lnode->link_out);
2280 	while (*i_link_next != NULL) {
2281 		if ((i_lnode_cmp(tgt_lnode, (*i_link_next)->tgt_lnode) == 0) &&
2282 		    (i_link->spec_type == (*i_link_next)->spec_type)) {
2283 			/* this link already exists */
2284 			kmem_free(i_link, sizeof (i_link_t));
2285 			return (LDI_USAGE_CONTINUE);
2286 		}
2287 		i_link_next = &((*i_link_next)->src_link_next);
2288 	}
2289 	*i_link_next = i_link;
2290 
2291 	/*
2292 	 * add this link onto the tgt i_lnodes inbound i_link list
2293 	 */
2294 	i_link_next = &(tgt_lnode->link_in);
2295 	while (*i_link_next != NULL) {
2296 		ASSERT(i_lnode_cmp(src_lnode, (*i_link_next)->src_lnode) != 0);
2297 		i_link_next = &((*i_link_next)->tgt_link_next);
2298 	}
2299 	*i_link_next = i_link;
2300 
2301 	/*
2302 	 * add this i_link to the link hash
2303 	 */
2304 	res = mod_hash_insert(st->link_hash, i_link, i_link);
2305 	ASSERT(res == 0);
2306 	st->link_count++;
2307 
2308 	return (LDI_USAGE_CONTINUE);
2309 }
2310 
2311 struct i_layer_data {
2312 	struct di_state	*st;
2313 	int		lnode_count;
2314 	int		link_count;
2315 	di_off_t	lnode_off;
2316 	di_off_t	link_off;
2317 };
2318 
2319 /*ARGSUSED*/
2320 static uint_t
2321 i_link_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
2322 {
2323 	i_link_t		*i_link  = (i_link_t *)key;
2324 	struct i_layer_data	*data = arg;
2325 	struct di_link		*me;
2326 	struct di_lnode		*melnode;
2327 	struct di_node		*medinode;
2328 
2329 	ASSERT(i_link->self == 0);
2330 
2331 	i_link->self = data->link_off +
2332 	    (data->link_count * sizeof (struct di_link));
2333 	data->link_count++;
2334 
2335 	ASSERT(data->link_off > 0 && data->link_count > 0);
2336 	ASSERT(data->lnode_count == data->st->lnode_count); /* lnodes done */
2337 	ASSERT(data->link_count <= data->st->link_count);
2338 
2339 	/* fill in fields for the di_link snapshot */
2340 	me = DI_LINK(di_mem_addr(data->st, i_link->self));
2341 	me->self = i_link->self;
2342 	me->spec_type = i_link->spec_type;
2343 
2344 	/*
2345 	 * The src_lnode and tgt_lnode i_lnode_t for this i_link_t
2346 	 * are created during the LDI table walk. Since we are
2347 	 * walking the link hash, the lnode hash has already been
2348 	 * walked and the lnodes have been snapshotted. Save lnode
2349 	 * offsets.
2350 	 */
2351 	me->src_lnode = i_link->src_lnode->self;
2352 	me->tgt_lnode = i_link->tgt_lnode->self;
2353 
2354 	/*
2355 	 * Save this link's offset in the src_lnode snapshot's link_out
2356 	 * field
2357 	 */
2358 	melnode = DI_LNODE(di_mem_addr(data->st, me->src_lnode));
2359 	me->src_link_next = melnode->link_out;
2360 	melnode->link_out = me->self;
2361 
2362 	/*
2363 	 * Put this link on the tgt_lnode's link_in field
2364 	 */
2365 	melnode = DI_LNODE(di_mem_addr(data->st, me->tgt_lnode));
2366 	me->tgt_link_next = melnode->link_in;
2367 	melnode->link_in = me->self;
2368 
2369 	/*
2370 	 * An i_lnode_t is only created if the corresponding dip exists
2371 	 * in the snapshot. A pointer to the di_node is saved in the
2372 	 * i_lnode_t when it is allocated. For this link, get the di_node
2373 	 * for the source lnode. Then put the link on the di_node's list
2374 	 * of src links
2375 	 */
2376 	medinode = i_link->src_lnode->di_node;
2377 	me->src_node_next = medinode->src_links;
2378 	medinode->src_links = me->self;
2379 
2380 	/*
2381 	 * Put this link on the tgt_links list of the target
2382 	 * dip.
2383 	 */
2384 	medinode = i_link->tgt_lnode->di_node;
2385 	me->tgt_node_next = medinode->tgt_links;
2386 	medinode->tgt_links = me->self;
2387 
2388 	return (MH_WALK_CONTINUE);
2389 }
2390 
2391 /*ARGSUSED*/
2392 static uint_t
2393 i_lnode_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
2394 {
2395 	i_lnode_t		*i_lnode = (i_lnode_t *)key;
2396 	struct i_layer_data	*data = arg;
2397 	struct di_lnode		*me;
2398 	struct di_node		*medinode;
2399 
2400 	ASSERT(i_lnode->self == 0);
2401 
2402 	i_lnode->self = data->lnode_off +
2403 	    (data->lnode_count * sizeof (struct di_lnode));
2404 	data->lnode_count++;
2405 
2406 	ASSERT(data->lnode_off > 0 && data->lnode_count > 0);
2407 	ASSERT(data->link_count == 0); /* links not done yet */
2408 	ASSERT(data->lnode_count <= data->st->lnode_count);
2409 
2410 	/* fill in fields for the di_lnode snapshot */
2411 	me = DI_LNODE(di_mem_addr(data->st, i_lnode->self));
2412 	me->self = i_lnode->self;
2413 
2414 	if (i_lnode->devt == DDI_DEV_T_NONE) {
2415 		me->dev_major = DDI_MAJOR_T_NONE;
2416 		me->dev_minor = DDI_MAJOR_T_NONE;
2417 	} else {
2418 		me->dev_major = getmajor(i_lnode->devt);
2419 		me->dev_minor = getminor(i_lnode->devt);
2420 	}
2421 
2422 	/*
2423 	 * The dip corresponding to this lnode must exist in
2424 	 * the snapshot or we wouldn't have created the i_lnode_t
2425 	 * during LDI walk. Save the offset of the dip.
2426 	 */
2427 	ASSERT(i_lnode->di_node && i_lnode->di_node->self > 0);
2428 	me->node = i_lnode->di_node->self;
2429 
2430 	/*
2431 	 * There must be at least one link in or out of this lnode
2432 	 * or we wouldn't have created it. These fields will be set
2433 	 * during the link hash walk.
2434 	 */
2435 	ASSERT((i_lnode->link_in != NULL) || (i_lnode->link_out != NULL));
2436 
2437 	/*
2438 	 * set the offset of the devinfo node associated with this
2439 	 * lnode. Also update the node_next next pointer.  this pointer
2440 	 * is set if there are multiple lnodes associated with the same
2441 	 * devinfo node.  (could occure when multiple minor nodes
2442 	 * are open for one device, etc.)
2443 	 */
2444 	medinode = i_lnode->di_node;
2445 	me->node_next = medinode->lnodes;
2446 	medinode->lnodes = me->self;
2447 
2448 	return (MH_WALK_CONTINUE);
2449 }
2450 
2451 static di_off_t
2452 di_getlink_data(di_off_t off, struct di_state *st)
2453 {
2454 	struct i_layer_data	data = {0};
2455 	size_t			size;
2456 
2457 	dcmn_err2((CE_CONT, "di_copylyr: off = %x\n", off));
2458 
2459 	st->lnode_hash = mod_hash_create_extended("di_lnode_hash", 32,
2460 	    mod_hash_null_keydtor, (void (*)(mod_hash_val_t))i_lnode_check_free,
2461 	    i_lnode_hashfunc, NULL, i_lnode_cmp, KM_SLEEP);
2462 
2463 	st->link_hash = mod_hash_create_ptrhash("di_link_hash", 32,
2464 	    (void (*)(mod_hash_val_t))i_link_check_free, sizeof (i_link_t));
2465 
2466 	/* get driver layering information */
2467 	(void) ldi_usage_walker(st, di_ldi_callback);
2468 
2469 	/* check if there is any link data to include in the snapshot */
2470 	if (st->lnode_count == 0) {
2471 		ASSERT(st->link_count == 0);
2472 		goto out;
2473 	}
2474 
2475 	ASSERT(st->link_count != 0);
2476 
2477 	/* get a pointer to snapshot memory for all the di_lnodes */
2478 	size = sizeof (struct di_lnode) * st->lnode_count;
2479 	data.lnode_off = off = di_checkmem(st, off, size);
2480 	off += size;
2481 
2482 	/* get a pointer to snapshot memory for all the di_links */
2483 	size = sizeof (struct di_link) * st->link_count;
2484 	data.link_off = off = di_checkmem(st, off, size);
2485 	off += size;
2486 
2487 	data.lnode_count = data.link_count = 0;
2488 	data.st = st;
2489 
2490 	/*
2491 	 * We have lnodes and links that will go into the
2492 	 * snapshot, so let's walk the respective hashes
2493 	 * and snapshot them. The various linkages are
2494 	 * also set up during the walk.
2495 	 */
2496 	mod_hash_walk(st->lnode_hash, i_lnode_walker, (void *)&data);
2497 	ASSERT(data.lnode_count == st->lnode_count);
2498 
2499 	mod_hash_walk(st->link_hash, i_link_walker, (void *)&data);
2500 	ASSERT(data.link_count == st->link_count);
2501 
2502 out:
2503 	/* free up the i_lnodes and i_links used to create the snapshot */
2504 	mod_hash_destroy_hash(st->lnode_hash);
2505 	mod_hash_destroy_hash(st->link_hash);
2506 	st->lnode_count = 0;
2507 	st->link_count = 0;
2508 
2509 	return (off);
2510 }
2511 
2512 
2513 /*
2514  * Copy all minor data nodes attached to a devinfo node into the snapshot.
2515  * It is called from di_copynode with active ndi_devi_enter to protect
2516  * the list of minor nodes.
2517  */
2518 static di_off_t
2519 di_getmdata(struct ddi_minor_data *mnode, di_off_t *off_p, di_off_t node,
2520 	struct di_state *st)
2521 {
2522 	di_off_t	off;
2523 	struct di_minor	*me;
2524 	size_t		size;
2525 
2526 	dcmn_err2((CE_CONT, "di_getmdata:\n"));
2527 
2528 	/*
2529 	 * check memory first
2530 	 */
2531 	off = di_checkmem(st, *off_p, sizeof (struct di_minor));
2532 	*off_p = off;
2533 
2534 	do {
2535 		me = DI_MINOR(di_mem_addr(st, off));
2536 		me->self = off;
2537 		me->type = mnode->type;
2538 		me->node = node;
2539 		me->user_private_data = NULL;
2540 
2541 		off += sizeof (struct di_minor);
2542 
2543 		/*
2544 		 * Split dev_t to major/minor, so it works for
2545 		 * both ILP32 and LP64 model
2546 		 */
2547 		me->dev_major = getmajor(mnode->ddm_dev);
2548 		me->dev_minor = getminor(mnode->ddm_dev);
2549 		me->spec_type = mnode->ddm_spec_type;
2550 
2551 		if (mnode->ddm_name) {
2552 			size = strlen(mnode->ddm_name) + 1;
2553 			me->name = off = di_checkmem(st, off, size);
2554 			(void) strcpy(di_mem_addr(st, off), mnode->ddm_name);
2555 			off += size;
2556 		}
2557 
2558 		if (mnode->ddm_node_type) {
2559 			size = strlen(mnode->ddm_node_type) + 1;
2560 			me->node_type = off = di_checkmem(st, off, size);
2561 			(void) strcpy(di_mem_addr(st, off),
2562 			    mnode->ddm_node_type);
2563 			off += size;
2564 		}
2565 
2566 		off = di_checkmem(st, off, sizeof (struct di_minor));
2567 		me->next = off;
2568 		mnode = mnode->next;
2569 	} while (mnode);
2570 
2571 	me->next = 0;
2572 
2573 	return (off);
2574 }
2575 
2576 /*
2577  * di_register_dip(), di_find_dip(): The dip must be protected
2578  * from deallocation when using these routines - this can either
2579  * be a reference count, a busy hold or a per-driver lock.
2580  */
2581 
2582 static void
2583 di_register_dip(struct di_state *st, dev_info_t *dip, di_off_t off)
2584 {
2585 	struct dev_info	*node = DEVI(dip);
2586 	struct di_key	*key = kmem_zalloc(sizeof (*key), KM_SLEEP);
2587 	struct di_dkey	*dk;
2588 
2589 	ASSERT(dip);
2590 	ASSERT(off > 0);
2591 
2592 	key->k_type = DI_DKEY;
2593 	dk = &(key->k_u.dkey);
2594 
2595 	dk->dk_dip = dip;
2596 	dk->dk_major = node->devi_major;
2597 	dk->dk_inst = node->devi_instance;
2598 	dk->dk_nodeid = node->devi_nodeid;
2599 
2600 	if (mod_hash_insert(st->reg_dip_hash, (mod_hash_key_t)key,
2601 	    (mod_hash_val_t)(uintptr_t)off) != 0) {
2602 		panic(
2603 		    "duplicate devinfo (%p) registered during device "
2604 		    "tree walk", (void *)dip);
2605 	}
2606 }
2607 
2608 
2609 static int
2610 di_dip_find(struct di_state *st, dev_info_t *dip, di_off_t *off_p)
2611 {
2612 	/*
2613 	 * uintptr_t must be used because it matches the size of void *;
2614 	 * mod_hash expects clients to place results into pointer-size
2615 	 * containers; since di_off_t is always a 32-bit offset, alignment
2616 	 * would otherwise be broken on 64-bit kernels.
2617 	 */
2618 	uintptr_t	offset;
2619 	struct		di_key key = {0};
2620 	struct		di_dkey *dk;
2621 
2622 	ASSERT(st->reg_dip_hash);
2623 	ASSERT(dip);
2624 	ASSERT(off_p);
2625 
2626 
2627 	key.k_type = DI_DKEY;
2628 	dk = &(key.k_u.dkey);
2629 
2630 	dk->dk_dip = dip;
2631 	dk->dk_major = DEVI(dip)->devi_major;
2632 	dk->dk_inst = DEVI(dip)->devi_instance;
2633 	dk->dk_nodeid = DEVI(dip)->devi_nodeid;
2634 
2635 	if (mod_hash_find(st->reg_dip_hash, (mod_hash_key_t)&key,
2636 	    (mod_hash_val_t *)&offset) == 0) {
2637 		*off_p = (di_off_t)offset;
2638 		return (0);
2639 	} else {
2640 		return (-1);
2641 	}
2642 }
2643 
2644 /*
2645  * di_register_pip(), di_find_pip(): The pip must be protected from deallocation
2646  * when using these routines. The caller must do this by protecting the
2647  * client(or phci)<->pip linkage while traversing the list and then holding the
2648  * pip when it is found in the list.
2649  */
2650 
2651 static void
2652 di_register_pip(struct di_state *st, mdi_pathinfo_t *pip, di_off_t off)
2653 {
2654 	struct di_key	*key = kmem_zalloc(sizeof (*key), KM_SLEEP);
2655 	char		*path_addr;
2656 	struct di_pkey	*pk;
2657 
2658 	ASSERT(pip);
2659 	ASSERT(off > 0);
2660 
2661 	key->k_type = DI_PKEY;
2662 	pk = &(key->k_u.pkey);
2663 
2664 	pk->pk_pip = pip;
2665 	path_addr = mdi_pi_get_addr(pip);
2666 	if (path_addr)
2667 		pk->pk_path_addr = i_ddi_strdup(path_addr, KM_SLEEP);
2668 	pk->pk_client = mdi_pi_get_client(pip);
2669 	pk->pk_phci = mdi_pi_get_phci(pip);
2670 
2671 	if (mod_hash_insert(st->reg_pip_hash, (mod_hash_key_t)key,
2672 	    (mod_hash_val_t)(uintptr_t)off) != 0) {
2673 		panic(
2674 		    "duplicate pathinfo (%p) registered during device "
2675 		    "tree walk", (void *)pip);
2676 	}
2677 }
2678 
2679 /*
2680  * As with di_register_pip, the caller must hold or lock the pip
2681  */
2682 static int
2683 di_pip_find(struct di_state *st, mdi_pathinfo_t *pip, di_off_t *off_p)
2684 {
2685 	/*
2686 	 * uintptr_t must be used because it matches the size of void *;
2687 	 * mod_hash expects clients to place results into pointer-size
2688 	 * containers; since di_off_t is always a 32-bit offset, alignment
2689 	 * would otherwise be broken on 64-bit kernels.
2690 	 */
2691 	uintptr_t	offset;
2692 	struct di_key	key = {0};
2693 	struct di_pkey	*pk;
2694 
2695 	ASSERT(st->reg_pip_hash);
2696 	ASSERT(off_p);
2697 
2698 	if (pip == NULL) {
2699 		*off_p = 0;
2700 		return (0);
2701 	}
2702 
2703 	key.k_type = DI_PKEY;
2704 	pk = &(key.k_u.pkey);
2705 
2706 	pk->pk_pip = pip;
2707 	pk->pk_path_addr = mdi_pi_get_addr(pip);
2708 	pk->pk_client = mdi_pi_get_client(pip);
2709 	pk->pk_phci = mdi_pi_get_phci(pip);
2710 
2711 	if (mod_hash_find(st->reg_pip_hash, (mod_hash_key_t)&key,
2712 	    (mod_hash_val_t *)&offset) == 0) {
2713 		*off_p = (di_off_t)offset;
2714 		return (0);
2715 	} else {
2716 		return (-1);
2717 	}
2718 }
2719 
2720 static di_path_state_t
2721 path_state_convert(mdi_pathinfo_state_t st)
2722 {
2723 	switch (st) {
2724 	case MDI_PATHINFO_STATE_ONLINE:
2725 		return (DI_PATH_STATE_ONLINE);
2726 	case MDI_PATHINFO_STATE_STANDBY:
2727 		return (DI_PATH_STATE_STANDBY);
2728 	case MDI_PATHINFO_STATE_OFFLINE:
2729 		return (DI_PATH_STATE_OFFLINE);
2730 	case MDI_PATHINFO_STATE_FAULT:
2731 		return (DI_PATH_STATE_FAULT);
2732 	default:
2733 		return (DI_PATH_STATE_UNKNOWN);
2734 	}
2735 }
2736 
2737 static uint_t
2738 path_flags_convert(uint_t pi_path_flags)
2739 {
2740 	uint_t	di_path_flags = 0;
2741 
2742 	/* MDI_PATHINFO_FLAGS_HIDDEN nodes not in snapshot */
2743 
2744 	if (pi_path_flags & MDI_PATHINFO_FLAGS_DEVICE_REMOVED)
2745 		di_path_flags |= DI_PATH_FLAGS_DEVICE_REMOVED;
2746 
2747 	return (di_path_flags);
2748 }
2749 
2750 
2751 static di_off_t
2752 di_path_getprop(mdi_pathinfo_t *pip, di_off_t *off_p,
2753     struct di_state *st)
2754 {
2755 	nvpair_t		*prop = NULL;
2756 	struct di_path_prop	*me;
2757 	int			off;
2758 	size_t			size;
2759 	char			*str;
2760 	uchar_t			*buf;
2761 	uint_t			nelems;
2762 
2763 	off = *off_p;
2764 	if (mdi_pi_get_next_prop(pip, NULL) == NULL) {
2765 		*off_p = 0;
2766 		return (off);
2767 	}
2768 
2769 	off = di_checkmem(st, off, sizeof (struct di_path_prop));
2770 	*off_p = off;
2771 
2772 	while (prop = mdi_pi_get_next_prop(pip, prop)) {
2773 		me = DI_PATHPROP(di_mem_addr(st, off));
2774 		me->self = off;
2775 		off += sizeof (struct di_path_prop);
2776 
2777 		/*
2778 		 * property name
2779 		 */
2780 		size = strlen(nvpair_name(prop)) + 1;
2781 		me->prop_name = off = di_checkmem(st, off, size);
2782 		(void) strcpy(di_mem_addr(st, off), nvpair_name(prop));
2783 		off += size;
2784 
2785 		switch (nvpair_type(prop)) {
2786 		case DATA_TYPE_BYTE:
2787 		case DATA_TYPE_INT16:
2788 		case DATA_TYPE_UINT16:
2789 		case DATA_TYPE_INT32:
2790 		case DATA_TYPE_UINT32:
2791 			me->prop_type = DDI_PROP_TYPE_INT;
2792 			size = sizeof (int32_t);
2793 			off = di_checkmem(st, off, size);
2794 			(void) nvpair_value_int32(prop,
2795 			    (int32_t *)di_mem_addr(st, off));
2796 			break;
2797 
2798 		case DATA_TYPE_INT64:
2799 		case DATA_TYPE_UINT64:
2800 			me->prop_type = DDI_PROP_TYPE_INT64;
2801 			size = sizeof (int64_t);
2802 			off = di_checkmem(st, off, size);
2803 			(void) nvpair_value_int64(prop,
2804 			    (int64_t *)di_mem_addr(st, off));
2805 			break;
2806 
2807 		case DATA_TYPE_STRING:
2808 			me->prop_type = DDI_PROP_TYPE_STRING;
2809 			(void) nvpair_value_string(prop, &str);
2810 			size = strlen(str) + 1;
2811 			off = di_checkmem(st, off, size);
2812 			(void) strcpy(di_mem_addr(st, off), str);
2813 			break;
2814 
2815 		case DATA_TYPE_BYTE_ARRAY:
2816 		case DATA_TYPE_INT16_ARRAY:
2817 		case DATA_TYPE_UINT16_ARRAY:
2818 		case DATA_TYPE_INT32_ARRAY:
2819 		case DATA_TYPE_UINT32_ARRAY:
2820 		case DATA_TYPE_INT64_ARRAY:
2821 		case DATA_TYPE_UINT64_ARRAY:
2822 			me->prop_type = DDI_PROP_TYPE_BYTE;
2823 			(void) nvpair_value_byte_array(prop, &buf, &nelems);
2824 			size = nelems;
2825 			if (nelems != 0) {
2826 				off = di_checkmem(st, off, size);
2827 				bcopy(buf, di_mem_addr(st, off), size);
2828 			}
2829 			break;
2830 
2831 		default:	/* Unknown or unhandled type; skip it */
2832 			size = 0;
2833 			break;
2834 		}
2835 
2836 		if (size > 0) {
2837 			me->prop_data = off;
2838 		}
2839 
2840 		me->prop_len = (int)size;
2841 		off += size;
2842 
2843 		off = di_checkmem(st, off, sizeof (struct di_path_prop));
2844 		me->prop_next = off;
2845 	}
2846 
2847 	me->prop_next = 0;
2848 	return (off);
2849 }
2850 
2851 
2852 static void
2853 di_path_one_endpoint(struct di_path *me, di_off_t noff, di_off_t **off_pp,
2854     int get_client)
2855 {
2856 	if (get_client) {
2857 		ASSERT(me->path_client == 0);
2858 		me->path_client = noff;
2859 		ASSERT(me->path_c_link == 0);
2860 		*off_pp = &me->path_c_link;
2861 		me->path_snap_state &=
2862 		    ~(DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOCLINK);
2863 	} else {
2864 		ASSERT(me->path_phci == 0);
2865 		me->path_phci = noff;
2866 		ASSERT(me->path_p_link == 0);
2867 		*off_pp = &me->path_p_link;
2868 		me->path_snap_state &=
2869 		    ~(DI_PATH_SNAP_NOPHCI | DI_PATH_SNAP_NOPLINK);
2870 	}
2871 }
2872 
2873 /*
2874  * off_p: pointer to the linkage field. This links pips along the client|phci
2875  *	   linkage list.
2876  * noff  : Offset for the endpoint dip snapshot.
2877  */
2878 static di_off_t
2879 di_getpath_data(dev_info_t *dip, di_off_t *off_p, di_off_t noff,
2880     struct di_state *st, int get_client)
2881 {
2882 	di_off_t	off;
2883 	mdi_pathinfo_t	*pip;
2884 	struct di_path	*me;
2885 	mdi_pathinfo_t	*(*next_pip)(dev_info_t *, mdi_pathinfo_t *);
2886 	size_t		size;
2887 
2888 	dcmn_err2((CE_WARN, "di_getpath_data: client = %d", get_client));
2889 
2890 	/*
2891 	 * The naming of the following mdi_xyz() is unfortunately
2892 	 * non-intuitive. mdi_get_next_phci_path() follows the
2893 	 * client_link i.e. the list of pip's belonging to the
2894 	 * given client dip.
2895 	 */
2896 	if (get_client)
2897 		next_pip = &mdi_get_next_phci_path;
2898 	else
2899 		next_pip = &mdi_get_next_client_path;
2900 
2901 	off = *off_p;
2902 
2903 	pip = NULL;
2904 	while (pip = (*next_pip)(dip, pip)) {
2905 		di_off_t stored_offset;
2906 
2907 		dcmn_err((CE_WARN, "marshalling pip = %p", (void *)pip));
2908 
2909 		mdi_pi_lock(pip);
2910 
2911 		/* We don't represent hidden paths in the snapshot */
2912 		if (mdi_pi_ishidden(pip)) {
2913 			dcmn_err((CE_WARN, "hidden, skip"));
2914 			mdi_pi_unlock(pip);
2915 			continue;
2916 		}
2917 
2918 		if (di_pip_find(st, pip, &stored_offset) != -1) {
2919 			/*
2920 			 * We've already seen this pathinfo node so we need to
2921 			 * take care not to snap it again; However, one endpoint
2922 			 * and linkage will be set here. The other endpoint
2923 			 * and linkage has already been set when the pip was
2924 			 * first snapshotted i.e. when the other endpoint dip
2925 			 * was snapshotted.
2926 			 */
2927 			me = DI_PATH(di_mem_addr(st, stored_offset));
2928 			*off_p = stored_offset;
2929 
2930 			di_path_one_endpoint(me, noff, &off_p, get_client);
2931 
2932 			/*
2933 			 * The other endpoint and linkage were set when this
2934 			 * pip was snapshotted. So we are done with both
2935 			 * endpoints and linkages.
2936 			 */
2937 			ASSERT(!(me->path_snap_state &
2938 			    (DI_PATH_SNAP_NOCLIENT|DI_PATH_SNAP_NOPHCI)));
2939 			ASSERT(!(me->path_snap_state &
2940 			    (DI_PATH_SNAP_NOCLINK|DI_PATH_SNAP_NOPLINK)));
2941 
2942 			mdi_pi_unlock(pip);
2943 			continue;
2944 		}
2945 
2946 		/*
2947 		 * Now that we need to snapshot this pip, check memory
2948 		 */
2949 		size = sizeof (struct di_path);
2950 		*off_p = off = di_checkmem(st, off, size);
2951 		me = DI_PATH(di_mem_addr(st, off));
2952 		me->self = off;
2953 		off += size;
2954 
2955 		me->path_snap_state =
2956 		    DI_PATH_SNAP_NOCLINK | DI_PATH_SNAP_NOPLINK;
2957 		me->path_snap_state |=
2958 		    DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOPHCI;
2959 
2960 		/*
2961 		 * Zero out fields as di_checkmem() doesn't guarantee
2962 		 * zero-filled memory
2963 		 */
2964 		me->path_client = me->path_phci = 0;
2965 		me->path_c_link = me->path_p_link = 0;
2966 
2967 		di_path_one_endpoint(me, noff, &off_p, get_client);
2968 
2969 		/*
2970 		 * Note the existence of this pathinfo
2971 		 */
2972 		di_register_pip(st, pip, me->self);
2973 
2974 		me->path_state = path_state_convert(mdi_pi_get_state(pip));
2975 		me->path_flags = path_flags_convert(mdi_pi_get_flags(pip));
2976 
2977 		me->path_instance = mdi_pi_get_path_instance(pip);
2978 
2979 		/*
2980 		 * Get intermediate addressing info.
2981 		 */
2982 		size = strlen(mdi_pi_get_addr(pip)) + 1;
2983 		me->path_addr = off = di_checkmem(st, off, size);
2984 		(void) strcpy(di_mem_addr(st, off), mdi_pi_get_addr(pip));
2985 		off += size;
2986 
2987 		/*
2988 		 * Get path properties if props are to be included in the
2989 		 * snapshot
2990 		 */
2991 		if (DINFOPROP & st->command) {
2992 			me->path_prop = off;
2993 			off = di_path_getprop(pip, &me->path_prop, st);
2994 		} else {
2995 			me->path_prop = 0;
2996 		}
2997 
2998 		mdi_pi_unlock(pip);
2999 	}
3000 
3001 	*off_p = 0;
3002 	return (off);
3003 }
3004 
3005 /*
3006  * Return driver prop_op entry point for the specified devinfo node.
3007  *
3008  * To return a non-NULL value:
3009  * - driver must be attached and held:
3010  *   If driver is not attached we ignore the driver property list.
3011  *   No one should rely on such properties.
3012  * - driver "cb_prop_op != ddi_prop_op":
3013  *   If "cb_prop_op == ddi_prop_op", framework does not need to call driver.
3014  *   XXX or parent's bus_prop_op != ddi_bus_prop_op
3015  */
3016 static int
3017 (*di_getprop_prop_op(struct dev_info *dip))
3018 	(dev_t, dev_info_t *, ddi_prop_op_t, int, char *, caddr_t, int *)
3019 {
3020 	struct dev_ops	*ops;
3021 
3022 	/* If driver is not attached we ignore the driver property list. */
3023 	if ((dip == NULL) || !i_ddi_devi_attached((dev_info_t *)dip))
3024 		return (NULL);
3025 
3026 	/*
3027 	 * Some nexus drivers incorrectly set cb_prop_op to nodev, nulldev,
3028 	 * or even NULL.
3029 	 */
3030 	ops = dip->devi_ops;
3031 	if (ops && ops->devo_cb_ops &&
3032 	    (ops->devo_cb_ops->cb_prop_op != ddi_prop_op) &&
3033 	    (ops->devo_cb_ops->cb_prop_op != nodev) &&
3034 	    (ops->devo_cb_ops->cb_prop_op != nulldev) &&
3035 	    (ops->devo_cb_ops->cb_prop_op != NULL))
3036 		return (ops->devo_cb_ops->cb_prop_op);
3037 	return (NULL);
3038 }
3039 
3040 static di_off_t
3041 di_getprop_add(int list, int dyn, struct di_state *st, struct dev_info *dip,
3042     int (*prop_op)(),
3043     char *name, dev_t devt, int aflags, int alen, caddr_t aval,
3044     di_off_t off, di_off_t **off_pp)
3045 {
3046 	int		need_free = 0;
3047 	dev_t		pdevt;
3048 	int		pflags;
3049 	int		rv;
3050 	caddr_t		val;
3051 	int		len;
3052 	size_t		size;
3053 	struct di_prop	*pp;
3054 
3055 	/* If we have prop_op function, ask driver for latest value */
3056 	if (prop_op) {
3057 		ASSERT(dip);
3058 
3059 		/* Must search DDI_DEV_T_NONE with DDI_DEV_T_ANY */
3060 		pdevt = (devt == DDI_DEV_T_NONE) ? DDI_DEV_T_ANY : devt;
3061 
3062 		/*
3063 		 * We have type information in flags, but are invoking an
3064 		 * old non-typed prop_op(9E) interface. Since not all types are
3065 		 * part of DDI_PROP_TYPE_ANY (example is DDI_PROP_TYPE_INT64),
3066 		 * we set DDI_PROP_CONSUMER_TYPED - causing the framework to
3067 		 * expand type bits beyond DDI_PROP_TYPE_ANY.  This allows us
3068 		 * to use the legacy prop_op(9E) interface to obtain updates
3069 		 * non-DDI_PROP_TYPE_ANY dynamic properties.
3070 		 */
3071 		pflags = aflags & ~DDI_PROP_TYPE_MASK;
3072 		pflags |= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3073 		    DDI_PROP_CONSUMER_TYPED;
3074 
3075 		/*
3076 		 * Hold and exit across prop_op(9E) to avoid lock order
3077 		 * issues between
3078 		 *   [ndi_devi_enter() ..prop_op(9E).. driver-lock]
3079 		 * .vs.
3080 		 *   [..ioctl(9E).. driver-lock ..ddi_remove_minor_node(9F)..
3081 		 *   ndi_devi_enter()]
3082 		 * ordering.
3083 		 */
3084 		ndi_hold_devi((dev_info_t *)dip);
3085 		ndi_devi_exit((dev_info_t *)dip, dip->devi_circular);
3086 		rv = (*prop_op)(pdevt, (dev_info_t *)dip,
3087 		    PROP_LEN_AND_VAL_ALLOC, pflags, name, &val, &len);
3088 		ndi_devi_enter((dev_info_t *)dip, &dip->devi_circular);
3089 		ndi_rele_devi((dev_info_t *)dip);
3090 
3091 		if (rv == DDI_PROP_SUCCESS) {
3092 			need_free = 1;		/* dynamic prop obtained */
3093 		} else if (dyn) {
3094 			/*
3095 			 * A dynamic property must succeed prop_op(9E) to show
3096 			 * up in the snapshot - that is the only source of its
3097 			 * value.
3098 			 */
3099 			return (off);		/* dynamic prop not supported */
3100 		} else {
3101 			/*
3102 			 * In case calling the driver caused an update off
3103 			 * prop_op(9E) of a non-dynamic property (code leading
3104 			 * to ddi_prop_change), we defer picking up val and
3105 			 * len informatiojn until after prop_op(9E) to ensure
3106 			 * that we snapshot the latest value.
3107 			 */
3108 			val = aval;
3109 			len = alen;
3110 
3111 		}
3112 	} else {
3113 		val = aval;
3114 		len = alen;
3115 	}
3116 
3117 	dcmn_err((CE_CONT, "di_getprop_add: list %d %s len %d val %p\n",
3118 	    list, name ? name : "NULL", len, (void *)val));
3119 
3120 	size = sizeof (struct di_prop);
3121 	**off_pp = off = di_checkmem(st, off, size);
3122 	pp = DI_PROP(di_mem_addr(st, off));
3123 	pp->self = off;
3124 	off += size;
3125 
3126 	pp->dev_major = getmajor(devt);
3127 	pp->dev_minor = getminor(devt);
3128 	pp->prop_flags = aflags;
3129 	pp->prop_list = list;
3130 
3131 	/* property name */
3132 	if (name) {
3133 		size = strlen(name) + 1;
3134 		pp->prop_name = off = di_checkmem(st, off, size);
3135 		(void) strcpy(di_mem_addr(st, off), name);
3136 		off += size;
3137 	} else {
3138 		pp->prop_name = -1;
3139 	}
3140 
3141 	pp->prop_len = len;
3142 	if (val == NULL) {
3143 		pp->prop_data = -1;
3144 	} else if (len != 0) {
3145 		size = len;
3146 		pp->prop_data = off = di_checkmem(st, off, size);
3147 		bcopy(val, di_mem_addr(st, off), size);
3148 		off += size;
3149 	}
3150 
3151 	pp->next = 0;			/* assume tail for now */
3152 	*off_pp = &pp->next;		/* return pointer to our next */
3153 
3154 	if (need_free)			/* free PROP_LEN_AND_VAL_ALLOC alloc */
3155 		kmem_free(val, len);
3156 	return (off);
3157 }
3158 
3159 
3160 /*
3161  * Copy a list of properties attached to a devinfo node. Called from
3162  * di_copynode with active ndi_devi_enter. The major number is passed in case
3163  * we need to call driver's prop_op entry. The value of list indicates
3164  * which list we are copying. Possible values are:
3165  * DI_PROP_DRV_LIST, DI_PROP_SYS_LIST, DI_PROP_GLB_LIST, DI_PROP_HW_LIST
3166  */
3167 static di_off_t
3168 di_getprop(int list, struct ddi_prop **pprop, di_off_t *off_p,
3169     struct di_state *st, struct dev_info *dip)
3170 {
3171 	struct ddi_prop		*prop;
3172 	int			(*prop_op)();
3173 	int			off;
3174 	struct ddi_minor_data	*mn;
3175 	i_ddi_prop_dyn_t	*dp;
3176 	struct plist {
3177 		struct plist	*pl_next;
3178 		char		*pl_name;
3179 		int		pl_flags;
3180 		dev_t		pl_dev;
3181 		int		pl_len;
3182 		caddr_t		pl_val;
3183 	}			*pl, *pl0, **plp;
3184 
3185 	ASSERT(st != NULL);
3186 
3187 	off = *off_p;
3188 	*off_p = 0;
3189 	dcmn_err((CE_CONT, "di_getprop: copy property list %d at addr %p\n",
3190 	    list, (void *)*pprop));
3191 
3192 	/* get pointer to driver's prop_op(9E) implementation if DRV_LIST */
3193 	prop_op = (list == DI_PROP_DRV_LIST) ? di_getprop_prop_op(dip) : NULL;
3194 
3195 	/*
3196 	 * Form private list of properties, holding devi_lock for properties
3197 	 * that hang off the dip.
3198 	 */
3199 	if (dip)
3200 		mutex_enter(&(dip->devi_lock));
3201 	for (pl0 = NULL, plp = &pl0, prop = *pprop;
3202 	    prop; plp = &pl->pl_next, prop = prop->prop_next) {
3203 		pl = kmem_alloc(sizeof (*pl), KM_SLEEP);
3204 		*plp = pl;
3205 		pl->pl_next = NULL;
3206 		if (prop->prop_name)
3207 			pl->pl_name = i_ddi_strdup(prop->prop_name, KM_SLEEP);
3208 		else
3209 			pl->pl_name = NULL;
3210 		pl->pl_flags = prop->prop_flags;
3211 		pl->pl_dev = prop->prop_dev;
3212 		if (prop->prop_len) {
3213 			pl->pl_len = prop->prop_len;
3214 			pl->pl_val = kmem_alloc(pl->pl_len, KM_SLEEP);
3215 			bcopy(prop->prop_val, pl->pl_val, pl->pl_len);
3216 		} else {
3217 			pl->pl_len = 0;
3218 			pl->pl_val = NULL;
3219 		}
3220 	}
3221 	if (dip)
3222 		mutex_exit(&(dip->devi_lock));
3223 
3224 	/*
3225 	 * Now that we have dropped devi_lock, perform a second-pass to
3226 	 * add properties to the snapshot.  We do this as a second pass
3227 	 * because we may need to call prop_op(9E) and we can't hold
3228 	 * devi_lock across that call.
3229 	 */
3230 	for (pl = pl0; pl; pl = pl0) {
3231 		pl0 = pl->pl_next;
3232 		off = di_getprop_add(list, 0, st, dip, prop_op, pl->pl_name,
3233 		    pl->pl_dev, pl->pl_flags, pl->pl_len, pl->pl_val,
3234 		    off, &off_p);
3235 		if (pl->pl_val)
3236 			kmem_free(pl->pl_val, pl->pl_len);
3237 		if (pl->pl_name)
3238 			kmem_free(pl->pl_name, strlen(pl->pl_name) + 1);
3239 		kmem_free(pl, sizeof (*pl));
3240 	}
3241 
3242 	/*
3243 	 * If there is no prop_op or dynamic property support has been
3244 	 * disabled, we are done.
3245 	 */
3246 	if ((prop_op == NULL) || (di_prop_dyn == 0)) {
3247 		*off_p = 0;
3248 		return (off);
3249 	}
3250 
3251 	/* Add dynamic driver properties to snapshot */
3252 	for (dp = i_ddi_prop_dyn_driver_get((dev_info_t *)dip);
3253 	    dp && dp->dp_name; dp++) {
3254 		if (dp->dp_spec_type) {
3255 			/* if spec_type, property of matching minor */
3256 			ASSERT(DEVI_BUSY_OWNED(dip));
3257 			for (mn = dip->devi_minor; mn; mn = mn->next) {
3258 				if (mn->ddm_spec_type != dp->dp_spec_type)
3259 					continue;
3260 				off = di_getprop_add(list, 1, st, dip, prop_op,
3261 				    dp->dp_name, mn->ddm_dev, dp->dp_type,
3262 				    0, NULL, off, &off_p);
3263 			}
3264 		} else {
3265 			/* property of devinfo node */
3266 			off = di_getprop_add(list, 1, st, dip, prop_op,
3267 			    dp->dp_name, DDI_DEV_T_NONE, dp->dp_type,
3268 			    0, NULL, off, &off_p);
3269 		}
3270 	}
3271 
3272 	/* Add dynamic parent properties to snapshot */
3273 	for (dp = i_ddi_prop_dyn_parent_get((dev_info_t *)dip);
3274 	    dp && dp->dp_name; dp++) {
3275 		if (dp->dp_spec_type) {
3276 			/* if spec_type, property of matching minor */
3277 			ASSERT(DEVI_BUSY_OWNED(dip));
3278 			for (mn = dip->devi_minor; mn; mn = mn->next) {
3279 				if (mn->ddm_spec_type != dp->dp_spec_type)
3280 					continue;
3281 				off = di_getprop_add(list, 1, st, dip, prop_op,
3282 				    dp->dp_name, mn->ddm_dev, dp->dp_type,
3283 				    0, NULL, off, &off_p);
3284 			}
3285 		} else {
3286 			/* property of devinfo node */
3287 			off = di_getprop_add(list, 1, st, dip, prop_op,
3288 			    dp->dp_name, DDI_DEV_T_NONE, dp->dp_type,
3289 			    0, NULL, off, &off_p);
3290 		}
3291 	}
3292 
3293 	*off_p = 0;
3294 	return (off);
3295 }
3296 
3297 /*
3298  * find private data format attached to a dip
3299  * parent = 1 to match driver name of parent dip (for parent private data)
3300  *	0 to match driver name of current dip (for driver private data)
3301  */
3302 #define	DI_MATCH_DRIVER	0
3303 #define	DI_MATCH_PARENT	1
3304 
3305 struct di_priv_format *
3306 di_match_drv_name(struct dev_info *node, struct di_state *st, int match)
3307 {
3308 	int			i, count, len;
3309 	char			*drv_name;
3310 	major_t			major;
3311 	struct di_all		*all;
3312 	struct di_priv_format	*form;
3313 
3314 	dcmn_err2((CE_CONT, "di_match_drv_name: node = %s, match = %x\n",
3315 	    node->devi_node_name, match));
3316 
3317 	if (match == DI_MATCH_PARENT) {
3318 		node = DEVI(node->devi_parent);
3319 	}
3320 
3321 	if (node == NULL) {
3322 		return (NULL);
3323 	}
3324 
3325 	major = node->devi_major;
3326 	if (major == (major_t)(-1)) {
3327 		return (NULL);
3328 	}
3329 
3330 	/*
3331 	 * Match the driver name.
3332 	 */
3333 	drv_name = ddi_major_to_name(major);
3334 	if ((drv_name == NULL) || *drv_name == '\0') {
3335 		return (NULL);
3336 	}
3337 
3338 	/* Now get the di_priv_format array */
3339 	all = DI_ALL_PTR(st);
3340 	if (match == DI_MATCH_PARENT) {
3341 		count = all->n_ppdata;
3342 		form = DI_PRIV_FORMAT(di_mem_addr(st, all->ppdata_format));
3343 	} else {
3344 		count = all->n_dpdata;
3345 		form = DI_PRIV_FORMAT(di_mem_addr(st, all->dpdata_format));
3346 	}
3347 
3348 	len = strlen(drv_name);
3349 	for (i = 0; i < count; i++) {
3350 		char *tmp;
3351 
3352 		tmp = form[i].drv_name;
3353 		while (tmp && (*tmp != '\0')) {
3354 			if (strncmp(drv_name, tmp, len) == 0) {
3355 				return (&form[i]);
3356 			}
3357 			/*
3358 			 * Move to next driver name, skipping a white space
3359 			 */
3360 			if (tmp = strchr(tmp, ' ')) {
3361 				tmp++;
3362 			}
3363 		}
3364 	}
3365 
3366 	return (NULL);
3367 }
3368 
3369 /*
3370  * The following functions copy data as specified by the format passed in.
3371  * To prevent invalid format from panicing the system, we call on_fault().
3372  * A return value of 0 indicates an error. Otherwise, the total offset
3373  * is returned.
3374  */
3375 #define	DI_MAX_PRIVDATA	(PAGESIZE >> 1)	/* max private data size */
3376 
3377 static di_off_t
3378 di_getprvdata(struct di_priv_format *pdp, struct dev_info *node,
3379     void *data, di_off_t *off_p, struct di_state *st)
3380 {
3381 	caddr_t		pa;
3382 	void		*ptr;
3383 	int		i, size, repeat;
3384 	di_off_t	off, off0, *tmp;
3385 	char		*path;
3386 	label_t		ljb;
3387 
3388 	dcmn_err2((CE_CONT, "di_getprvdata:\n"));
3389 
3390 	/*
3391 	 * check memory availability. Private data size is
3392 	 * limited to DI_MAX_PRIVDATA.
3393 	 */
3394 	off = di_checkmem(st, *off_p, DI_MAX_PRIVDATA);
3395 	*off_p = off;
3396 
3397 	if ((pdp->bytes == 0) || pdp->bytes > DI_MAX_PRIVDATA) {
3398 		goto failure;
3399 	}
3400 
3401 	if (!on_fault(&ljb)) {
3402 		/* copy the struct */
3403 		bcopy(data, di_mem_addr(st, off), pdp->bytes);
3404 		off0 = DI_ALIGN(pdp->bytes);	/* XXX remove DI_ALIGN */
3405 
3406 		/* dereferencing pointers */
3407 		for (i = 0; i < MAX_PTR_IN_PRV; i++) {
3408 
3409 			if (pdp->ptr[i].size == 0) {
3410 				goto success;	/* no more ptrs */
3411 			}
3412 
3413 			/*
3414 			 * first, get the pointer content
3415 			 */
3416 			if ((pdp->ptr[i].offset < 0) ||
3417 			    (pdp->ptr[i].offset > pdp->bytes - sizeof (char *)))
3418 				goto failure;	/* wrong offset */
3419 
3420 			pa = di_mem_addr(st, off + pdp->ptr[i].offset);
3421 
3422 			/* save a tmp ptr to store off_t later */
3423 			tmp = (di_off_t *)(intptr_t)pa;
3424 
3425 			/* get pointer value, if NULL continue */
3426 			ptr = *((void **) (intptr_t)pa);
3427 			if (ptr == NULL) {
3428 				continue;
3429 			}
3430 
3431 			/*
3432 			 * next, find the repeat count (array dimension)
3433 			 */
3434 			repeat = pdp->ptr[i].len_offset;
3435 
3436 			/*
3437 			 * Positive value indicates a fixed sized array.
3438 			 * 0 or negative value indicates variable sized array.
3439 			 *
3440 			 * For variable sized array, the variable must be
3441 			 * an int member of the structure, with an offset
3442 			 * equal to the absolution value of struct member.
3443 			 */
3444 			if (repeat > pdp->bytes - sizeof (int)) {
3445 				goto failure;	/* wrong offset */
3446 			}
3447 
3448 			if (repeat >= 0) {
3449 				repeat = *((int *)
3450 				    (intptr_t)((caddr_t)data + repeat));
3451 			} else {
3452 				repeat = -repeat;
3453 			}
3454 
3455 			/*
3456 			 * next, get the size of the object to be copied
3457 			 */
3458 			size = pdp->ptr[i].size * repeat;
3459 
3460 			/*
3461 			 * Arbitrarily limit the total size of object to be
3462 			 * copied (1 byte to 1/4 page).
3463 			 */
3464 			if ((size <= 0) || (size > (DI_MAX_PRIVDATA - off0))) {
3465 				goto failure;	/* wrong size or too big */
3466 			}
3467 
3468 			/*
3469 			 * Now copy the data
3470 			 */
3471 			*tmp = off0;
3472 			bcopy(ptr, di_mem_addr(st, off + off0), size);
3473 			off0 += DI_ALIGN(size);	/* XXX remove DI_ALIGN */
3474 		}
3475 	} else {
3476 		goto failure;
3477 	}
3478 
3479 success:
3480 	/*
3481 	 * success if reached here
3482 	 */
3483 	no_fault();
3484 	return (off + off0);
3485 	/*NOTREACHED*/
3486 
3487 failure:
3488 	/*
3489 	 * fault occurred
3490 	 */
3491 	no_fault();
3492 	path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3493 	cmn_err(CE_WARN, "devinfo: fault on private data for '%s' at %p",
3494 	    ddi_pathname((dev_info_t *)node, path), data);
3495 	kmem_free(path, MAXPATHLEN);
3496 	*off_p = -1;	/* set private data to indicate error */
3497 
3498 	return (off);
3499 }
3500 
3501 /*
3502  * get parent private data; on error, returns original offset
3503  */
3504 static di_off_t
3505 di_getppdata(struct dev_info *node, di_off_t *off_p, struct di_state *st)
3506 {
3507 	int			off;
3508 	struct di_priv_format	*ppdp;
3509 
3510 	dcmn_err2((CE_CONT, "di_getppdata:\n"));
3511 
3512 	/* find the parent data format */
3513 	if ((ppdp = di_match_drv_name(node, st, DI_MATCH_PARENT)) == NULL) {
3514 		off = *off_p;
3515 		*off_p = 0;	/* set parent data to none */
3516 		return (off);
3517 	}
3518 
3519 	return (di_getprvdata(ppdp, node,
3520 	    ddi_get_parent_data((dev_info_t *)node), off_p, st));
3521 }
3522 
3523 /*
3524  * get parent private data; returns original offset
3525  */
3526 static di_off_t
3527 di_getdpdata(struct dev_info *node, di_off_t *off_p, struct di_state *st)
3528 {
3529 	int			off;
3530 	struct di_priv_format	*dpdp;
3531 
3532 	dcmn_err2((CE_CONT, "di_getdpdata:"));
3533 
3534 	/* find the parent data format */
3535 	if ((dpdp = di_match_drv_name(node, st, DI_MATCH_DRIVER)) == NULL) {
3536 		off = *off_p;
3537 		*off_p = 0;	/* set driver data to none */
3538 		return (off);
3539 	}
3540 
3541 	return (di_getprvdata(dpdp, node,
3542 	    ddi_get_driver_private((dev_info_t *)node), off_p, st));
3543 }
3544 
3545 /*
3546  * Copy hotplug data associated with a devinfo node into the snapshot.
3547  */
3548 static di_off_t
3549 di_gethpdata(ddi_hp_cn_handle_t *hp_hdl, di_off_t *off_p,
3550     struct di_state *st)
3551 {
3552 	struct i_hp	*hp;
3553 	struct di_hp	*me;
3554 	size_t		size;
3555 	di_off_t	off;
3556 
3557 	dcmn_err2((CE_CONT, "di_gethpdata:\n"));
3558 
3559 	/*
3560 	 * check memory first
3561 	 */
3562 	off = di_checkmem(st, *off_p, sizeof (struct di_hp));
3563 	*off_p = off;
3564 
3565 	do {
3566 		me = DI_HP(di_mem_addr(st, off));
3567 		me->self = off;
3568 		me->hp_name = 0;
3569 		me->hp_connection = (int)hp_hdl->cn_info.cn_num;
3570 		me->hp_depends_on = (int)hp_hdl->cn_info.cn_num_dpd_on;
3571 		(void) ddihp_cn_getstate(hp_hdl);
3572 		me->hp_state = (int)hp_hdl->cn_info.cn_state;
3573 		me->hp_type = (int)hp_hdl->cn_info.cn_type;
3574 		me->hp_type_str = 0;
3575 		me->hp_last_change = (uint32_t)hp_hdl->cn_info.cn_last_change;
3576 		me->hp_child = 0;
3577 
3578 		/*
3579 		 * Child links are resolved later by di_hotplug_children().
3580 		 * Store a reference to this di_hp_t in the list used later
3581 		 * by di_hotplug_children().
3582 		 */
3583 		hp = kmem_zalloc(sizeof (i_hp_t), KM_SLEEP);
3584 		hp->hp_off = off;
3585 		hp->hp_child = hp_hdl->cn_info.cn_child;
3586 		list_insert_tail(&st->hp_list, hp);
3587 
3588 		off += sizeof (struct di_hp);
3589 
3590 		/* Add name of this di_hp_t to the snapshot */
3591 		if (hp_hdl->cn_info.cn_name) {
3592 			size = strlen(hp_hdl->cn_info.cn_name) + 1;
3593 			me->hp_name = off = di_checkmem(st, off, size);
3594 			(void) strcpy(di_mem_addr(st, off),
3595 			    hp_hdl->cn_info.cn_name);
3596 			off += size;
3597 		}
3598 
3599 		/* Add type description of this di_hp_t to the snapshot */
3600 		if (hp_hdl->cn_info.cn_type_str) {
3601 			size = strlen(hp_hdl->cn_info.cn_type_str) + 1;
3602 			me->hp_type_str = off = di_checkmem(st, off, size);
3603 			(void) strcpy(di_mem_addr(st, off),
3604 			    hp_hdl->cn_info.cn_type_str);
3605 			off += size;
3606 		}
3607 
3608 		/*
3609 		 * Set link to next in the chain of di_hp_t nodes,
3610 		 * or terminate the chain when processing the last node.
3611 		 */
3612 		if (hp_hdl->next != NULL) {
3613 			off = di_checkmem(st, off, sizeof (struct di_hp));
3614 			me->next = off;
3615 		} else {
3616 			me->next = 0;
3617 		}
3618 
3619 		/* Update pointer to next in the chain */
3620 		hp_hdl = hp_hdl->next;
3621 
3622 	} while (hp_hdl);
3623 
3624 	return (off);
3625 }
3626 
3627 /*
3628  * The driver is stateful across DINFOCPYALL and DINFOUSRLD.
3629  * This function encapsulates the state machine:
3630  *
3631  *	-> IOC_IDLE -> IOC_SNAP -> IOC_DONE -> IOC_COPY ->
3632  *	|		SNAPSHOT		USRLD	 |
3633  *	--------------------------------------------------
3634  *
3635  * Returns 0 on success and -1 on failure
3636  */
3637 static int
3638 di_setstate(struct di_state *st, int new_state)
3639 {
3640 	int	ret = 0;
3641 
3642 	mutex_enter(&di_lock);
3643 	switch (new_state) {
3644 	case IOC_IDLE:
3645 	case IOC_DONE:
3646 		break;
3647 	case IOC_SNAP:
3648 		if (st->di_iocstate != IOC_IDLE)
3649 			ret = -1;
3650 		break;
3651 	case IOC_COPY:
3652 		if (st->di_iocstate != IOC_DONE)
3653 			ret = -1;
3654 		break;
3655 	default:
3656 		ret = -1;
3657 	}
3658 
3659 	if (ret == 0)
3660 		st->di_iocstate = new_state;
3661 	else
3662 		cmn_err(CE_NOTE, "incorrect state transition from %d to %d",
3663 		    st->di_iocstate, new_state);
3664 	mutex_exit(&di_lock);
3665 	return (ret);
3666 }
3667 
3668 /*
3669  * We cannot assume the presence of the entire
3670  * snapshot in this routine. All we are guaranteed
3671  * is the di_all struct + 1 byte (for root_path)
3672  */
3673 static int
3674 header_plus_one_ok(struct di_all *all)
3675 {
3676 	/*
3677 	 * Refuse to read old versions
3678 	 */
3679 	if (all->version != DI_SNAPSHOT_VERSION) {
3680 		CACHE_DEBUG((DI_ERR, "bad version: 0x%x", all->version));
3681 		return (0);
3682 	}
3683 
3684 	if (all->cache_magic != DI_CACHE_MAGIC) {
3685 		CACHE_DEBUG((DI_ERR, "bad magic #: 0x%x", all->cache_magic));
3686 		return (0);
3687 	}
3688 
3689 	if (all->snapshot_time == 0) {
3690 		CACHE_DEBUG((DI_ERR, "bad timestamp: %ld", all->snapshot_time));
3691 		return (0);
3692 	}
3693 
3694 	if (all->top_devinfo == 0) {
3695 		CACHE_DEBUG((DI_ERR, "NULL top devinfo"));
3696 		return (0);
3697 	}
3698 
3699 	if (all->map_size < sizeof (*all) + 1) {
3700 		CACHE_DEBUG((DI_ERR, "bad map size: %u", all->map_size));
3701 		return (0);
3702 	}
3703 
3704 	if (all->root_path[0] != '/' || all->root_path[1] != '\0') {
3705 		CACHE_DEBUG((DI_ERR, "bad rootpath: %c%c",
3706 		    all->root_path[0], all->root_path[1]));
3707 		return (0);
3708 	}
3709 
3710 	/*
3711 	 * We can't check checksum here as we just have the header
3712 	 */
3713 
3714 	return (1);
3715 }
3716 
3717 static int
3718 chunk_write(struct vnode *vp, offset_t off, caddr_t buf, size_t len)
3719 {
3720 	rlim64_t	rlimit;
3721 	ssize_t		resid;
3722 	int		error = 0;
3723 
3724 
3725 	rlimit = RLIM64_INFINITY;
3726 
3727 	while (len) {
3728 		resid = 0;
3729 		error = vn_rdwr(UIO_WRITE, vp, buf, len, off,
3730 		    UIO_SYSSPACE, FSYNC, rlimit, kcred, &resid);
3731 
3732 		if (error || resid < 0) {
3733 			error = error ? error : EIO;
3734 			CACHE_DEBUG((DI_ERR, "write error: %d", error));
3735 			break;
3736 		}
3737 
3738 		/*
3739 		 * Check if we are making progress
3740 		 */
3741 		if (resid >= len) {
3742 			error = ENOSPC;
3743 			break;
3744 		}
3745 		buf += len - resid;
3746 		off += len - resid;
3747 		len = resid;
3748 	}
3749 
3750 	return (error);
3751 }
3752 
3753 static void
3754 di_cache_write(struct di_cache *cache)
3755 {
3756 	struct di_all	*all;
3757 	struct vnode	*vp;
3758 	int		oflags;
3759 	size_t		map_size;
3760 	size_t		chunk;
3761 	offset_t	off;
3762 	int		error;
3763 	char		*buf;
3764 
3765 	ASSERT(DI_CACHE_LOCKED(*cache));
3766 	ASSERT(!servicing_interrupt());
3767 
3768 	if (cache->cache_size == 0) {
3769 		ASSERT(cache->cache_data == NULL);
3770 		CACHE_DEBUG((DI_ERR, "Empty cache. Skipping write"));
3771 		return;
3772 	}
3773 
3774 	ASSERT(cache->cache_size > 0);
3775 	ASSERT(cache->cache_data);
3776 
3777 	if (!modrootloaded || rootvp == NULL || vn_is_readonly(rootvp)) {
3778 		CACHE_DEBUG((DI_ERR, "Can't write to rootFS. Skipping write"));
3779 		return;
3780 	}
3781 
3782 	all = (struct di_all *)cache->cache_data;
3783 
3784 	if (!header_plus_one_ok(all)) {
3785 		CACHE_DEBUG((DI_ERR, "Invalid header. Skipping write"));
3786 		return;
3787 	}
3788 
3789 	ASSERT(strcmp(all->root_path, "/") == 0);
3790 
3791 	/*
3792 	 * The cache_size is the total allocated memory for the cache.
3793 	 * The map_size is the actual size of valid data in the cache.
3794 	 * map_size may be smaller than cache_size but cannot exceed
3795 	 * cache_size.
3796 	 */
3797 	if (all->map_size > cache->cache_size) {
3798 		CACHE_DEBUG((DI_ERR, "map_size (0x%x) > cache_size (0x%x)."
3799 		    " Skipping write", all->map_size, cache->cache_size));
3800 		return;
3801 	}
3802 
3803 	/*
3804 	 * First unlink the temp file
3805 	 */
3806 	error = vn_remove(DI_CACHE_TEMP, UIO_SYSSPACE, RMFILE);
3807 	if (error && error != ENOENT) {
3808 		CACHE_DEBUG((DI_ERR, "%s: unlink failed: %d",
3809 		    DI_CACHE_TEMP, error));
3810 	}
3811 
3812 	if (error == EROFS) {
3813 		CACHE_DEBUG((DI_ERR, "RDONLY FS. Skipping write"));
3814 		return;
3815 	}
3816 
3817 	vp = NULL;
3818 	oflags = (FCREAT|FWRITE);
3819 	if (error = vn_open(DI_CACHE_TEMP, UIO_SYSSPACE, oflags,
3820 	    DI_CACHE_PERMS, &vp, CRCREAT, 0)) {
3821 		CACHE_DEBUG((DI_ERR, "%s: create failed: %d",
3822 		    DI_CACHE_TEMP, error));
3823 		return;
3824 	}
3825 
3826 	ASSERT(vp);
3827 
3828 	/*
3829 	 * Paranoid: Check if the file is on a read-only FS
3830 	 */
3831 	if (vn_is_readonly(vp)) {
3832 		CACHE_DEBUG((DI_ERR, "cannot write: readonly FS"));
3833 		goto fail;
3834 	}
3835 
3836 	/*
3837 	 * Note that we only write map_size bytes to disk - this saves
3838 	 * space as the actual cache size may be larger than size of
3839 	 * valid data in the cache.
3840 	 * Another advantage is that it makes verification of size
3841 	 * easier when the file is read later.
3842 	 */
3843 	map_size = all->map_size;
3844 	off = 0;
3845 	buf = cache->cache_data;
3846 
3847 	while (map_size) {
3848 		ASSERT(map_size > 0);
3849 		/*
3850 		 * Write in chunks so that VM system
3851 		 * is not overwhelmed
3852 		 */
3853 		if (map_size > di_chunk * PAGESIZE)
3854 			chunk = di_chunk * PAGESIZE;
3855 		else
3856 			chunk = map_size;
3857 
3858 		error = chunk_write(vp, off, buf, chunk);
3859 		if (error) {
3860 			CACHE_DEBUG((DI_ERR, "write failed: off=0x%x: %d",
3861 			    off, error));
3862 			goto fail;
3863 		}
3864 
3865 		off += chunk;
3866 		buf += chunk;
3867 		map_size -= chunk;
3868 
3869 		/* If low on memory, give pageout a chance to run */
3870 		if (freemem < desfree)
3871 			delay(1);
3872 	}
3873 
3874 	/*
3875 	 * Now sync the file and close it
3876 	 */
3877 	if (error = VOP_FSYNC(vp, FSYNC, kcred, NULL)) {
3878 		CACHE_DEBUG((DI_ERR, "FSYNC failed: %d", error));
3879 	}
3880 
3881 	if (error = VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred, NULL)) {
3882 		CACHE_DEBUG((DI_ERR, "close() failed: %d", error));
3883 		VN_RELE(vp);
3884 		return;
3885 	}
3886 
3887 	VN_RELE(vp);
3888 
3889 	/*
3890 	 * Now do the rename
3891 	 */
3892 	if (error = vn_rename(DI_CACHE_TEMP, DI_CACHE_FILE, UIO_SYSSPACE)) {
3893 		CACHE_DEBUG((DI_ERR, "rename failed: %d", error));
3894 		return;
3895 	}
3896 
3897 	CACHE_DEBUG((DI_INFO, "Cache write successful."));
3898 
3899 	return;
3900 
3901 fail:
3902 	(void) VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred, NULL);
3903 	VN_RELE(vp);
3904 }
3905 
3906 
3907 /*
3908  * Since we could be called early in boot,
3909  * use kobj_read_file()
3910  */
3911 static void
3912 di_cache_read(struct di_cache *cache)
3913 {
3914 	struct _buf	*file;
3915 	struct di_all	*all;
3916 	int		n;
3917 	size_t		map_size, sz, chunk;
3918 	offset_t	off;
3919 	caddr_t		buf;
3920 	uint32_t	saved_crc, crc;
3921 
3922 	ASSERT(modrootloaded);
3923 	ASSERT(DI_CACHE_LOCKED(*cache));
3924 	ASSERT(cache->cache_data == NULL);
3925 	ASSERT(cache->cache_size == 0);
3926 	ASSERT(!servicing_interrupt());
3927 
3928 	file = kobj_open_file(DI_CACHE_FILE);
3929 	if (file == (struct _buf *)-1) {
3930 		CACHE_DEBUG((DI_ERR, "%s: open failed: %d",
3931 		    DI_CACHE_FILE, ENOENT));
3932 		return;
3933 	}
3934 
3935 	/*
3936 	 * Read in the header+root_path first. The root_path must be "/"
3937 	 */
3938 	all = kmem_zalloc(sizeof (*all) + 1, KM_SLEEP);
3939 	n = kobj_read_file(file, (caddr_t)all, sizeof (*all) + 1, 0);
3940 
3941 	if ((n != sizeof (*all) + 1) || !header_plus_one_ok(all)) {
3942 		kmem_free(all, sizeof (*all) + 1);
3943 		kobj_close_file(file);
3944 		CACHE_DEBUG((DI_ERR, "cache header: read error or invalid"));
3945 		return;
3946 	}
3947 
3948 	map_size = all->map_size;
3949 
3950 	kmem_free(all, sizeof (*all) + 1);
3951 
3952 	ASSERT(map_size >= sizeof (*all) + 1);
3953 
3954 	buf = di_cache.cache_data = kmem_alloc(map_size, KM_SLEEP);
3955 	sz = map_size;
3956 	off = 0;
3957 	while (sz) {
3958 		/* Don't overload VM with large reads */
3959 		chunk = (sz > di_chunk * PAGESIZE) ? di_chunk * PAGESIZE : sz;
3960 		n = kobj_read_file(file, buf, chunk, off);
3961 		if (n != chunk) {
3962 			CACHE_DEBUG((DI_ERR, "%s: read error at offset: %lld",
3963 			    DI_CACHE_FILE, off));
3964 			goto fail;
3965 		}
3966 		off += chunk;
3967 		buf += chunk;
3968 		sz -= chunk;
3969 	}
3970 
3971 	ASSERT(off == map_size);
3972 
3973 	/*
3974 	 * Read past expected EOF to verify size.
3975 	 */
3976 	if (kobj_read_file(file, (caddr_t)&sz, 1, off) > 0) {
3977 		CACHE_DEBUG((DI_ERR, "%s: file size changed", DI_CACHE_FILE));
3978 		goto fail;
3979 	}
3980 
3981 	all = (struct di_all *)di_cache.cache_data;
3982 	if (!header_plus_one_ok(all)) {
3983 		CACHE_DEBUG((DI_ERR, "%s: file header changed", DI_CACHE_FILE));
3984 		goto fail;
3985 	}
3986 
3987 	/*
3988 	 * Compute CRC with checksum field in the cache data set to 0
3989 	 */
3990 	saved_crc = all->cache_checksum;
3991 	all->cache_checksum = 0;
3992 	CRC32(crc, di_cache.cache_data, map_size, -1U, crc32_table);
3993 	all->cache_checksum = saved_crc;
3994 
3995 	if (crc != all->cache_checksum) {
3996 		CACHE_DEBUG((DI_ERR,
3997 		    "%s: checksum error: expected=0x%x actual=0x%x",
3998 		    DI_CACHE_FILE, all->cache_checksum, crc));
3999 		goto fail;
4000 	}
4001 
4002 	if (all->map_size != map_size) {
4003 		CACHE_DEBUG((DI_ERR, "%s: map size changed", DI_CACHE_FILE));
4004 		goto fail;
4005 	}
4006 
4007 	kobj_close_file(file);
4008 
4009 	di_cache.cache_size = map_size;
4010 
4011 	return;
4012 
4013 fail:
4014 	kmem_free(di_cache.cache_data, map_size);
4015 	kobj_close_file(file);
4016 	di_cache.cache_data = NULL;
4017 	di_cache.cache_size = 0;
4018 }
4019 
4020 
4021 /*
4022  * Checks if arguments are valid for using the cache.
4023  */
4024 static int
4025 cache_args_valid(struct di_state *st, int *error)
4026 {
4027 	ASSERT(error);
4028 	ASSERT(st->mem_size > 0);
4029 	ASSERT(st->memlist != NULL);
4030 
4031 	if (!modrootloaded || !i_ddi_io_initialized()) {
4032 		CACHE_DEBUG((DI_ERR,
4033 		    "cache lookup failure: I/O subsystem not inited"));
4034 		*error = ENOTACTIVE;
4035 		return (0);
4036 	}
4037 
4038 	/*
4039 	 * No other flags allowed with DINFOCACHE
4040 	 */
4041 	if (st->command != (DINFOCACHE & DIIOC_MASK)) {
4042 		CACHE_DEBUG((DI_ERR,
4043 		    "cache lookup failure: bad flags: 0x%x",
4044 		    st->command));
4045 		*error = EINVAL;
4046 		return (0);
4047 	}
4048 
4049 	if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) {
4050 		CACHE_DEBUG((DI_ERR,
4051 		    "cache lookup failure: bad root: %s",
4052 		    DI_ALL_PTR(st)->root_path));
4053 		*error = EINVAL;
4054 		return (0);
4055 	}
4056 
4057 	CACHE_DEBUG((DI_INFO, "cache lookup args ok: 0x%x", st->command));
4058 
4059 	*error = 0;
4060 
4061 	return (1);
4062 }
4063 
4064 static int
4065 snapshot_is_cacheable(struct di_state *st)
4066 {
4067 	ASSERT(st->mem_size > 0);
4068 	ASSERT(st->memlist != NULL);
4069 
4070 	if ((st->command & DI_CACHE_SNAPSHOT_FLAGS) !=
4071 	    (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK)) {
4072 		CACHE_DEBUG((DI_INFO,
4073 		    "not cacheable: incompatible flags: 0x%x",
4074 		    st->command));
4075 		return (0);
4076 	}
4077 
4078 	if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) {
4079 		CACHE_DEBUG((DI_INFO,
4080 		    "not cacheable: incompatible root path: %s",
4081 		    DI_ALL_PTR(st)->root_path));
4082 		return (0);
4083 	}
4084 
4085 	CACHE_DEBUG((DI_INFO, "cacheable snapshot request: 0x%x", st->command));
4086 
4087 	return (1);
4088 }
4089 
4090 static int
4091 di_cache_lookup(struct di_state *st)
4092 {
4093 	size_t	rval;
4094 	int	cache_valid;
4095 
4096 	ASSERT(cache_args_valid(st, &cache_valid));
4097 	ASSERT(modrootloaded);
4098 
4099 	DI_CACHE_LOCK(di_cache);
4100 
4101 	/*
4102 	 * The following assignment determines the validity
4103 	 * of the cache as far as this snapshot is concerned.
4104 	 */
4105 	cache_valid = di_cache.cache_valid;
4106 
4107 	if (cache_valid && di_cache.cache_data == NULL) {
4108 		di_cache_read(&di_cache);
4109 		/* check for read or file error */
4110 		if (di_cache.cache_data == NULL)
4111 			cache_valid = 0;
4112 	}
4113 
4114 	if (cache_valid) {
4115 		/*
4116 		 * Ok, the cache was valid as of this particular
4117 		 * snapshot. Copy the cached snapshot. This is safe
4118 		 * to do as the cache cannot be freed (we hold the
4119 		 * cache lock). Free the memory allocated in di_state
4120 		 * up until this point - we will simply copy everything
4121 		 * in the cache.
4122 		 */
4123 
4124 		ASSERT(di_cache.cache_data != NULL);
4125 		ASSERT(di_cache.cache_size > 0);
4126 
4127 		di_freemem(st);
4128 
4129 		rval = 0;
4130 		if (di_cache2mem(&di_cache, st) > 0) {
4131 			/*
4132 			 * map_size is size of valid data in the
4133 			 * cached snapshot and may be less than
4134 			 * size of the cache.
4135 			 */
4136 			ASSERT(DI_ALL_PTR(st));
4137 			rval = DI_ALL_PTR(st)->map_size;
4138 
4139 			ASSERT(rval >= sizeof (struct di_all));
4140 			ASSERT(rval <= di_cache.cache_size);
4141 		}
4142 	} else {
4143 		/*
4144 		 * The cache isn't valid, we need to take a snapshot.
4145 		 * Set the command flags appropriately
4146 		 */
4147 		ASSERT(st->command == (DINFOCACHE & DIIOC_MASK));
4148 		st->command = (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK);
4149 		rval = di_cache_update(st);
4150 		st->command = (DINFOCACHE & DIIOC_MASK);
4151 	}
4152 
4153 	DI_CACHE_UNLOCK(di_cache);
4154 
4155 	/*
4156 	 * For cached snapshots, the devinfo driver always returns
4157 	 * a snapshot rooted at "/".
4158 	 */
4159 	ASSERT(rval == 0 || strcmp(DI_ALL_PTR(st)->root_path, "/") == 0);
4160 
4161 	return ((int)rval);
4162 }
4163 
4164 /*
4165  * This is a forced update of the cache  - the previous state of the cache
4166  * may be:
4167  *	- unpopulated
4168  *	- populated and invalid
4169  *	- populated and valid
4170  */
4171 static int
4172 di_cache_update(struct di_state *st)
4173 {
4174 	int		rval;
4175 	uint32_t	crc;
4176 	struct di_all	*all;
4177 
4178 	ASSERT(DI_CACHE_LOCKED(di_cache));
4179 	ASSERT(snapshot_is_cacheable(st));
4180 
4181 	/*
4182 	 * Free the in-core cache and the on-disk file (if they exist)
4183 	 */
4184 	i_ddi_di_cache_free(&di_cache);
4185 
4186 	/*
4187 	 * Set valid flag before taking the snapshot,
4188 	 * so that any invalidations that arrive
4189 	 * during or after the snapshot are not
4190 	 * removed by us.
4191 	 */
4192 	atomic_or_32(&di_cache.cache_valid, 1);
4193 
4194 	rval = di_snapshot_and_clean(st);
4195 
4196 	if (rval == 0) {
4197 		CACHE_DEBUG((DI_ERR, "can't update cache: bad snapshot"));
4198 		return (0);
4199 	}
4200 
4201 	DI_ALL_PTR(st)->map_size = rval;
4202 	if (di_mem2cache(st, &di_cache) == 0) {
4203 		CACHE_DEBUG((DI_ERR, "can't update cache: copy failed"));
4204 		return (0);
4205 	}
4206 
4207 	ASSERT(di_cache.cache_data);
4208 	ASSERT(di_cache.cache_size > 0);
4209 
4210 	/*
4211 	 * Now that we have cached the snapshot, compute its checksum.
4212 	 * The checksum is only computed over the valid data in the
4213 	 * cache, not the entire cache.
4214 	 * Also, set all the fields (except checksum) before computing
4215 	 * checksum.
4216 	 */
4217 	all = (struct di_all *)di_cache.cache_data;
4218 	all->cache_magic = DI_CACHE_MAGIC;
4219 	all->map_size = rval;
4220 
4221 	ASSERT(all->cache_checksum == 0);
4222 	CRC32(crc, di_cache.cache_data, all->map_size, -1U, crc32_table);
4223 	all->cache_checksum = crc;
4224 
4225 	di_cache_write(&di_cache);
4226 
4227 	return (rval);
4228 }
4229 
4230 static void
4231 di_cache_print(di_cache_debug_t msglevel, char *fmt, ...)
4232 {
4233 	va_list	ap;
4234 
4235 	if (di_cache_debug <= DI_QUIET)
4236 		return;
4237 
4238 	if (di_cache_debug < msglevel)
4239 		return;
4240 
4241 	switch (msglevel) {
4242 		case DI_ERR:
4243 			msglevel = CE_WARN;
4244 			break;
4245 		case DI_INFO:
4246 		case DI_TRACE:
4247 		default:
4248 			msglevel = CE_NOTE;
4249 			break;
4250 	}
4251 
4252 	va_start(ap, fmt);
4253 	vcmn_err(msglevel, fmt, ap);
4254 	va_end(ap);
4255 }
4256 
4257 static void
4258 di_hotplug_children(struct di_state *st)
4259 {
4260 	di_off_t	off;
4261 	struct di_hp	*hp;
4262 	struct i_hp	*hp_list_node;
4263 
4264 	while (hp_list_node = (struct i_hp *)list_remove_head(&st->hp_list)) {
4265 
4266 		if ((hp_list_node->hp_child != NULL) &&
4267 		    (di_dip_find(st, hp_list_node->hp_child, &off) == 0)) {
4268 			hp = DI_HP(di_mem_addr(st, hp_list_node->hp_off));
4269 			hp->hp_child = off;
4270 		}
4271 
4272 		kmem_free(hp_list_node, sizeof (i_hp_t));
4273 	}
4274 
4275 	list_destroy(&st->hp_list);
4276 }
4277