1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * driver for accessing kernel devinfo tree. 30 */ 31 #include <sys/types.h> 32 #include <sys/pathname.h> 33 #include <sys/debug.h> 34 #include <sys/autoconf.h> 35 #include <sys/conf.h> 36 #include <sys/file.h> 37 #include <sys/kmem.h> 38 #include <sys/modctl.h> 39 #include <sys/stat.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/sunldi_impl.h> 43 #include <sys/sunndi.h> 44 #include <sys/esunddi.h> 45 #include <sys/sunmdi.h> 46 #include <sys/ddi_impldefs.h> 47 #include <sys/ndi_impldefs.h> 48 #include <sys/mdi_impldefs.h> 49 #include <sys/devinfo_impl.h> 50 #include <sys/thread.h> 51 #include <sys/modhash.h> 52 #include <sys/bitmap.h> 53 #include <util/qsort.h> 54 #include <sys/disp.h> 55 #include <sys/kobj.h> 56 #include <sys/crc32.h> 57 58 59 #ifdef DEBUG 60 static int di_debug; 61 #define dcmn_err(args) if (di_debug >= 1) cmn_err args 62 #define dcmn_err2(args) if (di_debug >= 2) cmn_err args 63 #define dcmn_err3(args) if (di_debug >= 3) cmn_err args 64 #else 65 #define dcmn_err(args) /* nothing */ 66 #define dcmn_err2(args) /* nothing */ 67 #define dcmn_err3(args) /* nothing */ 68 #endif 69 70 /* 71 * We partition the space of devinfo minor nodes equally between the full and 72 * unprivileged versions of the driver. The even-numbered minor nodes are the 73 * full version, while the odd-numbered ones are the read-only version. 74 */ 75 static int di_max_opens = 32; 76 77 #define DI_FULL_PARENT 0 78 #define DI_READONLY_PARENT 1 79 #define DI_NODE_SPECIES 2 80 #define DI_UNPRIVILEGED_NODE(x) (((x) % 2) != 0) 81 82 #define IOC_IDLE 0 /* snapshot ioctl states */ 83 #define IOC_SNAP 1 /* snapshot in progress */ 84 #define IOC_DONE 2 /* snapshot done, but not copied out */ 85 #define IOC_COPY 3 /* copyout in progress */ 86 87 /* 88 * Keep max alignment so we can move snapshot to different platforms 89 */ 90 #define DI_ALIGN(addr) ((addr + 7l) & ~7l) 91 92 /* 93 * To avoid wasting memory, make a linked list of memory chunks. 94 * Size of each chunk is buf_size. 95 */ 96 struct di_mem { 97 struct di_mem *next; /* link to next chunk */ 98 char *buf; /* contiguous kernel memory */ 99 size_t buf_size; /* size of buf in bytes */ 100 devmap_cookie_t cook; /* cookie from ddi_umem_alloc */ 101 }; 102 103 /* 104 * This is a stack for walking the tree without using recursion. 105 * When the devinfo tree height is above some small size, one 106 * gets watchdog resets on sun4m. 107 */ 108 struct di_stack { 109 void *offset[MAX_TREE_DEPTH]; 110 struct dev_info *dip[MAX_TREE_DEPTH]; 111 int circ[MAX_TREE_DEPTH]; 112 int depth; /* depth of current node to be copied */ 113 }; 114 115 #define TOP_OFFSET(stack) \ 116 ((di_off_t *)(stack)->offset[(stack)->depth - 1]) 117 #define TOP_NODE(stack) \ 118 ((stack)->dip[(stack)->depth - 1]) 119 #define PARENT_OFFSET(stack) \ 120 ((di_off_t *)(stack)->offset[(stack)->depth - 2]) 121 #define EMPTY_STACK(stack) ((stack)->depth == 0) 122 #define POP_STACK(stack) { \ 123 ndi_devi_exit((dev_info_t *)TOP_NODE(stack), \ 124 (stack)->circ[(stack)->depth - 1]); \ 125 ((stack)->depth--); \ 126 } 127 #define PUSH_STACK(stack, node, offp) { \ 128 ASSERT(node != NULL); \ 129 ndi_devi_enter((dev_info_t *)node, &(stack)->circ[(stack)->depth]); \ 130 (stack)->dip[(stack)->depth] = (node); \ 131 (stack)->offset[(stack)->depth] = (void *)(offp); \ 132 ((stack)->depth)++; \ 133 } 134 135 #define DI_ALL_PTR(s) ((struct di_all *)(intptr_t)di_mem_addr((s), 0)) 136 137 /* 138 * With devfs, the device tree has no global locks. The device tree is 139 * dynamic and dips may come and go if they are not locked locally. Under 140 * these conditions, pointers are no longer reliable as unique IDs. 141 * Specifically, these pointers cannot be used as keys for hash tables 142 * as the same devinfo structure may be freed in one part of the tree only 143 * to be allocated as the structure for a different device in another 144 * part of the tree. This can happen if DR and the snapshot are 145 * happening concurrently. 146 * The following data structures act as keys for devinfo nodes and 147 * pathinfo nodes. 148 */ 149 150 enum di_ktype { 151 DI_DKEY = 1, 152 DI_PKEY = 2 153 }; 154 155 struct di_dkey { 156 dev_info_t *dk_dip; 157 major_t dk_major; 158 int dk_inst; 159 pnode_t dk_nodeid; 160 }; 161 162 struct di_pkey { 163 mdi_pathinfo_t *pk_pip; 164 char *pk_path_addr; 165 dev_info_t *pk_client; 166 dev_info_t *pk_phci; 167 }; 168 169 struct di_key { 170 enum di_ktype k_type; 171 union { 172 struct di_dkey dkey; 173 struct di_pkey pkey; 174 } k_u; 175 }; 176 177 178 struct i_lnode; 179 180 typedef struct i_link { 181 /* 182 * If a di_link struct representing this i_link struct makes it 183 * into the snapshot, then self will point to the offset of 184 * the di_link struct in the snapshot 185 */ 186 di_off_t self; 187 188 int spec_type; /* block or char access type */ 189 struct i_lnode *src_lnode; /* src i_lnode */ 190 struct i_lnode *tgt_lnode; /* tgt i_lnode */ 191 struct i_link *src_link_next; /* next src i_link /w same i_lnode */ 192 struct i_link *tgt_link_next; /* next tgt i_link /w same i_lnode */ 193 } i_link_t; 194 195 typedef struct i_lnode { 196 /* 197 * If a di_lnode struct representing this i_lnode struct makes it 198 * into the snapshot, then self will point to the offset of 199 * the di_lnode struct in the snapshot 200 */ 201 di_off_t self; 202 203 /* 204 * used for hashing and comparing i_lnodes 205 */ 206 int modid; 207 208 /* 209 * public information describing a link endpoint 210 */ 211 struct di_node *di_node; /* di_node in snapshot */ 212 dev_t devt; /* devt */ 213 214 /* 215 * i_link ptr to links coming into this i_lnode node 216 * (this i_lnode is the target of these i_links) 217 */ 218 i_link_t *link_in; 219 220 /* 221 * i_link ptr to links going out of this i_lnode node 222 * (this i_lnode is the source of these i_links) 223 */ 224 i_link_t *link_out; 225 } i_lnode_t; 226 227 /* 228 * Soft state associated with each instance of driver open. 229 */ 230 static struct di_state { 231 di_off_t mem_size; /* total # bytes in memlist */ 232 struct di_mem *memlist; /* head of memlist */ 233 uint_t command; /* command from ioctl */ 234 int di_iocstate; /* snapshot ioctl state */ 235 mod_hash_t *reg_dip_hash; 236 mod_hash_t *reg_pip_hash; 237 int lnode_count; 238 int link_count; 239 240 mod_hash_t *lnode_hash; 241 mod_hash_t *link_hash; 242 } **di_states; 243 244 static kmutex_t di_lock; /* serialize instance assignment */ 245 246 typedef enum { 247 DI_QUIET = 0, /* DI_QUIET must always be 0 */ 248 DI_ERR, 249 DI_INFO, 250 DI_TRACE, 251 DI_TRACE1, 252 DI_TRACE2 253 } di_cache_debug_t; 254 255 static uint_t di_chunk = 32; /* I/O chunk size in pages */ 256 257 #define DI_CACHE_LOCK(c) (mutex_enter(&(c).cache_lock)) 258 #define DI_CACHE_UNLOCK(c) (mutex_exit(&(c).cache_lock)) 259 #define DI_CACHE_LOCKED(c) (mutex_owned(&(c).cache_lock)) 260 261 /* 262 * Check that whole device tree is being configured as a pre-condition for 263 * cleaning up /etc/devices files. 264 */ 265 #define DEVICES_FILES_CLEANABLE(st) \ 266 (((st)->command & DINFOSUBTREE) && ((st)->command & DINFOFORCE) && \ 267 strcmp(DI_ALL_PTR(st)->root_path, "/") == 0) 268 269 #define CACHE_DEBUG(args) \ 270 { if (di_cache_debug != DI_QUIET) di_cache_print args; } 271 272 typedef struct phci_walk_arg { 273 di_off_t off; 274 struct di_state *st; 275 } phci_walk_arg_t; 276 277 static int di_open(dev_t *, int, int, cred_t *); 278 static int di_ioctl(dev_t, int, intptr_t, int, cred_t *, int *); 279 static int di_close(dev_t, int, int, cred_t *); 280 static int di_info(dev_info_t *, ddi_info_cmd_t, void *, void **); 281 static int di_attach(dev_info_t *, ddi_attach_cmd_t); 282 static int di_detach(dev_info_t *, ddi_detach_cmd_t); 283 284 static di_off_t di_copyformat(di_off_t, struct di_state *, intptr_t, int); 285 static di_off_t di_snapshot_and_clean(struct di_state *); 286 static di_off_t di_copydevnm(di_off_t *, struct di_state *); 287 static di_off_t di_copytree(struct dev_info *, di_off_t *, struct di_state *); 288 static di_off_t di_copynode(struct di_stack *, struct di_state *); 289 static di_off_t di_getmdata(struct ddi_minor_data *, di_off_t *, di_off_t, 290 struct di_state *); 291 static di_off_t di_getppdata(struct dev_info *, di_off_t *, struct di_state *); 292 static di_off_t di_getdpdata(struct dev_info *, di_off_t *, struct di_state *); 293 static di_off_t di_getprop(struct ddi_prop *, di_off_t *, 294 struct di_state *, struct dev_info *, int); 295 static void di_allocmem(struct di_state *, size_t); 296 static void di_freemem(struct di_state *); 297 static void di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz); 298 static di_off_t di_checkmem(struct di_state *, di_off_t, size_t); 299 static caddr_t di_mem_addr(struct di_state *, di_off_t); 300 static int di_setstate(struct di_state *, int); 301 static void di_register_dip(struct di_state *, dev_info_t *, di_off_t); 302 static void di_register_pip(struct di_state *, mdi_pathinfo_t *, di_off_t); 303 static di_off_t di_getpath_data(dev_info_t *, di_off_t *, di_off_t, 304 struct di_state *, int); 305 static di_off_t di_getlink_data(di_off_t, struct di_state *); 306 static int di_dip_find(struct di_state *st, dev_info_t *node, di_off_t *off_p); 307 308 static int cache_args_valid(struct di_state *st, int *error); 309 static int snapshot_is_cacheable(struct di_state *st); 310 static int di_cache_lookup(struct di_state *st); 311 static int di_cache_update(struct di_state *st); 312 static void di_cache_print(di_cache_debug_t msglevel, char *fmt, ...); 313 int build_vhci_list(dev_info_t *vh_devinfo, void *arg); 314 int build_phci_list(dev_info_t *ph_devinfo, void *arg); 315 316 static struct cb_ops di_cb_ops = { 317 di_open, /* open */ 318 di_close, /* close */ 319 nodev, /* strategy */ 320 nodev, /* print */ 321 nodev, /* dump */ 322 nodev, /* read */ 323 nodev, /* write */ 324 di_ioctl, /* ioctl */ 325 nodev, /* devmap */ 326 nodev, /* mmap */ 327 nodev, /* segmap */ 328 nochpoll, /* poll */ 329 ddi_prop_op, /* prop_op */ 330 NULL, /* streamtab */ 331 D_NEW | D_MP /* Driver compatibility flag */ 332 }; 333 334 static struct dev_ops di_ops = { 335 DEVO_REV, /* devo_rev, */ 336 0, /* refcnt */ 337 di_info, /* info */ 338 nulldev, /* identify */ 339 nulldev, /* probe */ 340 di_attach, /* attach */ 341 di_detach, /* detach */ 342 nodev, /* reset */ 343 &di_cb_ops, /* driver operations */ 344 NULL /* bus operations */ 345 }; 346 347 /* 348 * Module linkage information for the kernel. 349 */ 350 static struct modldrv modldrv = { 351 &mod_driverops, 352 "DEVINFO Driver %I%", 353 &di_ops 354 }; 355 356 static struct modlinkage modlinkage = { 357 MODREV_1, 358 &modldrv, 359 NULL 360 }; 361 362 int 363 _init(void) 364 { 365 int error; 366 367 mutex_init(&di_lock, NULL, MUTEX_DRIVER, NULL); 368 369 error = mod_install(&modlinkage); 370 if (error != 0) { 371 mutex_destroy(&di_lock); 372 return (error); 373 } 374 375 return (0); 376 } 377 378 int 379 _info(struct modinfo *modinfop) 380 { 381 return (mod_info(&modlinkage, modinfop)); 382 } 383 384 int 385 _fini(void) 386 { 387 int error; 388 389 error = mod_remove(&modlinkage); 390 if (error != 0) { 391 return (error); 392 } 393 394 mutex_destroy(&di_lock); 395 return (0); 396 } 397 398 static dev_info_t *di_dip; 399 400 /*ARGSUSED*/ 401 static int 402 di_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 403 { 404 int error = DDI_FAILURE; 405 406 switch (infocmd) { 407 case DDI_INFO_DEVT2DEVINFO: 408 *result = (void *)di_dip; 409 error = DDI_SUCCESS; 410 break; 411 case DDI_INFO_DEVT2INSTANCE: 412 /* 413 * All dev_t's map to the same, single instance. 414 */ 415 *result = (void *)0; 416 error = DDI_SUCCESS; 417 break; 418 default: 419 break; 420 } 421 422 return (error); 423 } 424 425 static int 426 di_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 427 { 428 int error = DDI_FAILURE; 429 430 switch (cmd) { 431 case DDI_ATTACH: 432 di_states = kmem_zalloc( 433 di_max_opens * sizeof (struct di_state *), KM_SLEEP); 434 435 if (ddi_create_minor_node(dip, "devinfo", S_IFCHR, 436 DI_FULL_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE || 437 ddi_create_minor_node(dip, "devinfo,ro", S_IFCHR, 438 DI_READONLY_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE) { 439 kmem_free(di_states, 440 di_max_opens * sizeof (struct di_state *)); 441 ddi_remove_minor_node(dip, NULL); 442 error = DDI_FAILURE; 443 } else { 444 di_dip = dip; 445 ddi_report_dev(dip); 446 447 error = DDI_SUCCESS; 448 } 449 break; 450 default: 451 error = DDI_FAILURE; 452 break; 453 } 454 455 return (error); 456 } 457 458 static int 459 di_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 460 { 461 int error = DDI_FAILURE; 462 463 switch (cmd) { 464 case DDI_DETACH: 465 ddi_remove_minor_node(dip, NULL); 466 di_dip = NULL; 467 kmem_free(di_states, di_max_opens * sizeof (struct di_state *)); 468 469 error = DDI_SUCCESS; 470 break; 471 default: 472 error = DDI_FAILURE; 473 break; 474 } 475 476 return (error); 477 } 478 479 /* 480 * Allow multiple opens by tweaking the dev_t such that it looks like each 481 * open is getting a different minor device. Each minor gets a separate 482 * entry in the di_states[] table. Based on the original minor number, we 483 * discriminate opens of the full and read-only nodes. If all of the instances 484 * of the selected minor node are currently open, we return EAGAIN. 485 */ 486 /*ARGSUSED*/ 487 static int 488 di_open(dev_t *devp, int flag, int otyp, cred_t *credp) 489 { 490 int m; 491 minor_t minor_parent = getminor(*devp); 492 493 if (minor_parent != DI_FULL_PARENT && 494 minor_parent != DI_READONLY_PARENT) 495 return (ENXIO); 496 497 mutex_enter(&di_lock); 498 499 for (m = minor_parent; m < di_max_opens; m += DI_NODE_SPECIES) { 500 if (di_states[m] != NULL) 501 continue; 502 503 di_states[m] = kmem_zalloc(sizeof (struct di_state), KM_SLEEP); 504 break; /* It's ours. */ 505 } 506 507 if (m >= di_max_opens) { 508 /* 509 * maximum open instance for device reached 510 */ 511 mutex_exit(&di_lock); 512 dcmn_err((CE_WARN, "devinfo: maximum devinfo open reached")); 513 return (EAGAIN); 514 } 515 mutex_exit(&di_lock); 516 517 ASSERT(m < di_max_opens); 518 *devp = makedevice(getmajor(*devp), (minor_t)(m + DI_NODE_SPECIES)); 519 520 dcmn_err((CE_CONT, "di_open: thread = %p, assigned minor = %d\n", 521 (void *)curthread, m + DI_NODE_SPECIES)); 522 523 return (0); 524 } 525 526 /*ARGSUSED*/ 527 static int 528 di_close(dev_t dev, int flag, int otype, cred_t *cred_p) 529 { 530 struct di_state *st; 531 int m = (int)getminor(dev) - DI_NODE_SPECIES; 532 533 if (m < 0) { 534 cmn_err(CE_WARN, "closing non-existent devinfo minor %d", 535 m + DI_NODE_SPECIES); 536 return (ENXIO); 537 } 538 539 st = di_states[m]; 540 ASSERT(m < di_max_opens && st != NULL); 541 542 di_freemem(st); 543 kmem_free(st, sizeof (struct di_state)); 544 545 /* 546 * empty slot in state table 547 */ 548 mutex_enter(&di_lock); 549 di_states[m] = NULL; 550 dcmn_err((CE_CONT, "di_close: thread = %p, assigned minor = %d\n", 551 (void *)curthread, m + DI_NODE_SPECIES)); 552 mutex_exit(&di_lock); 553 554 return (0); 555 } 556 557 558 /*ARGSUSED*/ 559 static int 560 di_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp) 561 { 562 int rv, error; 563 di_off_t off; 564 struct di_all *all; 565 struct di_state *st; 566 int m = (int)getminor(dev) - DI_NODE_SPECIES; 567 568 major_t i; 569 char *drv_name; 570 size_t map_size, size; 571 struct di_mem *dcp; 572 int ndi_flags; 573 574 if (m < 0 || m >= di_max_opens) { 575 return (ENXIO); 576 } 577 578 st = di_states[m]; 579 ASSERT(st != NULL); 580 581 dcmn_err2((CE_CONT, "di_ioctl: mode = %x, cmd = %x\n", mode, cmd)); 582 583 switch (cmd) { 584 case DINFOIDENT: 585 /* 586 * This is called from di_init to verify that the driver 587 * opened is indeed devinfo. The purpose is to guard against 588 * sending ioctl to an unknown driver in case of an 589 * unresolved major number conflict during bfu. 590 */ 591 *rvalp = DI_MAGIC; 592 return (0); 593 594 case DINFOLODRV: 595 /* 596 * Hold an installed driver and return the result 597 */ 598 if (DI_UNPRIVILEGED_NODE(m)) { 599 /* 600 * Only the fully enabled instances may issue 601 * DINFOLDDRV. 602 */ 603 return (EACCES); 604 } 605 606 drv_name = kmem_alloc(MAXNAMELEN, KM_SLEEP); 607 if (ddi_copyin((void *)arg, drv_name, MAXNAMELEN, mode) != 0) { 608 kmem_free(drv_name, MAXNAMELEN); 609 return (EFAULT); 610 } 611 612 /* 613 * Some 3rd party driver's _init() walks the device tree, 614 * so we load the driver module before configuring driver. 615 */ 616 i = ddi_name_to_major(drv_name); 617 if (ddi_hold_driver(i) == NULL) { 618 kmem_free(drv_name, MAXNAMELEN); 619 return (ENXIO); 620 } 621 622 ndi_flags = NDI_DEVI_PERSIST | NDI_CONFIG | NDI_NO_EVENT; 623 624 /* 625 * i_ddi_load_drvconf() below will trigger a reprobe 626 * via reset_nexus_flags(). NDI_DRV_CONF_REPROBE isn't 627 * needed here. 628 */ 629 modunload_disable(); 630 (void) i_ddi_load_drvconf(i); 631 (void) ndi_devi_config_driver(ddi_root_node(), ndi_flags, i); 632 kmem_free(drv_name, MAXNAMELEN); 633 ddi_rele_driver(i); 634 rv = i_ddi_devs_attached(i); 635 modunload_enable(); 636 637 i_ddi_di_cache_invalidate(KM_SLEEP); 638 639 return ((rv == DDI_SUCCESS)? 0 : ENXIO); 640 641 case DINFOUSRLD: 642 /* 643 * The case for copying snapshot to userland 644 */ 645 if (di_setstate(st, IOC_COPY) == -1) 646 return (EBUSY); 647 648 map_size = ((struct di_all *) 649 (intptr_t)di_mem_addr(st, 0))->map_size; 650 if (map_size == 0) { 651 (void) di_setstate(st, IOC_DONE); 652 return (EFAULT); 653 } 654 655 /* 656 * copyout the snapshot 657 */ 658 map_size = (map_size + PAGEOFFSET) & PAGEMASK; 659 660 /* 661 * Return the map size, so caller may do a sanity 662 * check against the return value of snapshot ioctl() 663 */ 664 *rvalp = (int)map_size; 665 666 /* 667 * Copy one chunk at a time 668 */ 669 off = 0; 670 dcp = st->memlist; 671 while (map_size) { 672 size = dcp->buf_size; 673 if (map_size <= size) { 674 size = map_size; 675 } 676 677 if (ddi_copyout(di_mem_addr(st, off), 678 (void *)(arg + off), size, mode) != 0) { 679 (void) di_setstate(st, IOC_DONE); 680 return (EFAULT); 681 } 682 683 map_size -= size; 684 off += size; 685 dcp = dcp->next; 686 } 687 688 di_freemem(st); 689 (void) di_setstate(st, IOC_IDLE); 690 return (0); 691 692 default: 693 if ((cmd & ~DIIOC_MASK) != DIIOC) { 694 /* 695 * Invalid ioctl command 696 */ 697 return (ENOTTY); 698 } 699 /* 700 * take a snapshot 701 */ 702 st->command = cmd & DIIOC_MASK; 703 /*FALLTHROUGH*/ 704 } 705 706 /* 707 * Obtain enough memory to hold header + rootpath. We prevent kernel 708 * memory exhaustion by freeing any previously allocated snapshot and 709 * refusing the operation; otherwise we would be allowing ioctl(), 710 * ioctl(), ioctl(), ..., panic. 711 */ 712 if (di_setstate(st, IOC_SNAP) == -1) 713 return (EBUSY); 714 715 size = sizeof (struct di_all) + 716 sizeof (((struct dinfo_io *)(NULL))->root_path); 717 if (size < PAGESIZE) 718 size = PAGESIZE; 719 di_allocmem(st, size); 720 721 all = (struct di_all *)(intptr_t)di_mem_addr(st, 0); 722 all->devcnt = devcnt; 723 all->command = st->command; 724 all->version = DI_SNAPSHOT_VERSION; 725 all->top_vhci_devinfo = 0; /* filled up by build_vhci_list. */ 726 727 /* 728 * Note the endianness in case we need to transport snapshot 729 * over the network. 730 */ 731 #if defined(_LITTLE_ENDIAN) 732 all->endianness = DI_LITTLE_ENDIAN; 733 #else 734 all->endianness = DI_BIG_ENDIAN; 735 #endif 736 737 /* Copyin ioctl args, store in the snapshot. */ 738 if (copyinstr((void *)arg, all->root_path, 739 sizeof (((struct dinfo_io *)(NULL))->root_path), &size) != 0) { 740 di_freemem(st); 741 (void) di_setstate(st, IOC_IDLE); 742 return (EFAULT); 743 } 744 745 if ((st->command & DINFOCLEANUP) && !DEVICES_FILES_CLEANABLE(st)) { 746 di_freemem(st); 747 (void) di_setstate(st, IOC_IDLE); 748 return (EINVAL); 749 } 750 751 error = 0; 752 if ((st->command & DINFOCACHE) && !cache_args_valid(st, &error)) { 753 di_freemem(st); 754 (void) di_setstate(st, IOC_IDLE); 755 return (error); 756 } 757 758 off = DI_ALIGN(sizeof (struct di_all) + size); 759 760 /* 761 * Only the fully enabled version may force load drivers or read 762 * the parent private data from a driver. 763 */ 764 if ((st->command & (DINFOPRIVDATA | DINFOFORCE)) != 0 && 765 DI_UNPRIVILEGED_NODE(m)) { 766 di_freemem(st); 767 (void) di_setstate(st, IOC_IDLE); 768 return (EACCES); 769 } 770 771 /* Do we need private data? */ 772 if (st->command & DINFOPRIVDATA) { 773 arg += sizeof (((struct dinfo_io *)(NULL))->root_path); 774 775 #ifdef _MULTI_DATAMODEL 776 switch (ddi_model_convert_from(mode & FMODELS)) { 777 case DDI_MODEL_ILP32: { 778 /* 779 * Cannot copy private data from 64-bit kernel 780 * to 32-bit app 781 */ 782 di_freemem(st); 783 (void) di_setstate(st, IOC_IDLE); 784 return (EINVAL); 785 } 786 case DDI_MODEL_NONE: 787 if ((off = di_copyformat(off, st, arg, mode)) == 0) { 788 di_freemem(st); 789 (void) di_setstate(st, IOC_IDLE); 790 return (EFAULT); 791 } 792 break; 793 } 794 #else /* !_MULTI_DATAMODEL */ 795 if ((off = di_copyformat(off, st, arg, mode)) == 0) { 796 di_freemem(st); 797 (void) di_setstate(st, IOC_IDLE); 798 return (EFAULT); 799 } 800 #endif /* _MULTI_DATAMODEL */ 801 } 802 803 all->top_devinfo = DI_ALIGN(off); 804 805 /* 806 * For cache lookups we reallocate memory from scratch, 807 * so the value of "all" is no longer valid. 808 */ 809 all = NULL; 810 811 if (st->command & DINFOCACHE) { 812 *rvalp = di_cache_lookup(st); 813 } else if (snapshot_is_cacheable(st)) { 814 DI_CACHE_LOCK(di_cache); 815 *rvalp = di_cache_update(st); 816 DI_CACHE_UNLOCK(di_cache); 817 } else 818 *rvalp = di_snapshot_and_clean(st); 819 820 if (*rvalp) { 821 DI_ALL_PTR(st)->map_size = *rvalp; 822 (void) di_setstate(st, IOC_DONE); 823 } else { 824 di_freemem(st); 825 (void) di_setstate(st, IOC_IDLE); 826 } 827 828 return (0); 829 } 830 831 /* 832 * Get a chunk of memory >= size, for the snapshot 833 */ 834 static void 835 di_allocmem(struct di_state *st, size_t size) 836 { 837 struct di_mem *mem = kmem_zalloc(sizeof (struct di_mem), 838 KM_SLEEP); 839 /* 840 * Round up size to nearest power of 2. If it is less 841 * than st->mem_size, set it to st->mem_size (i.e., 842 * the mem_size is doubled every time) to reduce the 843 * number of memory allocations. 844 */ 845 size_t tmp = 1; 846 while (tmp < size) { 847 tmp <<= 1; 848 } 849 size = (tmp > st->mem_size) ? tmp : st->mem_size; 850 851 mem->buf = ddi_umem_alloc(size, DDI_UMEM_SLEEP, &mem->cook); 852 mem->buf_size = size; 853 854 dcmn_err2((CE_CONT, "di_allocmem: mem_size=%x\n", st->mem_size)); 855 856 if (st->mem_size == 0) { /* first chunk */ 857 st->memlist = mem; 858 } else { 859 /* 860 * locate end of linked list and add a chunk at the end 861 */ 862 struct di_mem *dcp = st->memlist; 863 while (dcp->next != NULL) { 864 dcp = dcp->next; 865 } 866 867 dcp->next = mem; 868 } 869 870 st->mem_size += size; 871 } 872 873 /* 874 * Copy upto bufsiz bytes of the memlist to buf 875 */ 876 static void 877 di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz) 878 { 879 struct di_mem *dcp; 880 size_t copysz; 881 882 if (st->mem_size == 0) { 883 ASSERT(st->memlist == NULL); 884 return; 885 } 886 887 copysz = 0; 888 for (dcp = st->memlist; dcp; dcp = dcp->next) { 889 890 ASSERT(bufsiz > 0); 891 892 if (bufsiz <= dcp->buf_size) 893 copysz = bufsiz; 894 else 895 copysz = dcp->buf_size; 896 897 bcopy(dcp->buf, buf, copysz); 898 899 buf += copysz; 900 bufsiz -= copysz; 901 902 if (bufsiz == 0) 903 break; 904 } 905 } 906 907 /* 908 * Free all memory for the snapshot 909 */ 910 static void 911 di_freemem(struct di_state *st) 912 { 913 struct di_mem *dcp, *tmp; 914 915 dcmn_err2((CE_CONT, "di_freemem\n")); 916 917 if (st->mem_size) { 918 dcp = st->memlist; 919 while (dcp) { /* traverse the linked list */ 920 tmp = dcp; 921 dcp = dcp->next; 922 ddi_umem_free(tmp->cook); 923 kmem_free(tmp, sizeof (struct di_mem)); 924 } 925 st->mem_size = 0; 926 st->memlist = NULL; 927 } 928 929 ASSERT(st->mem_size == 0); 930 ASSERT(st->memlist == NULL); 931 } 932 933 /* 934 * Copies cached data to the di_state structure. 935 * Returns: 936 * - size of data copied, on SUCCESS 937 * - 0 on failure 938 */ 939 static int 940 di_cache2mem(struct di_cache *cache, struct di_state *st) 941 { 942 caddr_t pa; 943 944 ASSERT(st->mem_size == 0); 945 ASSERT(st->memlist == NULL); 946 ASSERT(!servicing_interrupt()); 947 ASSERT(DI_CACHE_LOCKED(*cache)); 948 949 if (cache->cache_size == 0) { 950 ASSERT(cache->cache_data == NULL); 951 CACHE_DEBUG((DI_ERR, "Empty cache. Skipping copy")); 952 return (0); 953 } 954 955 ASSERT(cache->cache_data); 956 957 di_allocmem(st, cache->cache_size); 958 959 pa = di_mem_addr(st, 0); 960 961 ASSERT(pa); 962 963 /* 964 * Verify that di_allocmem() allocates contiguous memory, 965 * so that it is safe to do straight bcopy() 966 */ 967 ASSERT(st->memlist != NULL); 968 ASSERT(st->memlist->next == NULL); 969 bcopy(cache->cache_data, pa, cache->cache_size); 970 971 return (cache->cache_size); 972 } 973 974 /* 975 * Copies a snapshot from di_state to the cache 976 * Returns: 977 * - 0 on failure 978 * - size of copied data on success 979 */ 980 static size_t 981 di_mem2cache(struct di_state *st, struct di_cache *cache) 982 { 983 size_t map_size; 984 985 ASSERT(cache->cache_size == 0); 986 ASSERT(cache->cache_data == NULL); 987 ASSERT(!servicing_interrupt()); 988 ASSERT(DI_CACHE_LOCKED(*cache)); 989 990 if (st->mem_size == 0) { 991 ASSERT(st->memlist == NULL); 992 CACHE_DEBUG((DI_ERR, "Empty memlist. Skipping copy")); 993 return (0); 994 } 995 996 ASSERT(st->memlist); 997 998 /* 999 * The size of the memory list may be much larger than the 1000 * size of valid data (map_size). Cache only the valid data 1001 */ 1002 map_size = DI_ALL_PTR(st)->map_size; 1003 if (map_size == 0 || map_size < sizeof (struct di_all) || 1004 map_size > st->mem_size) { 1005 CACHE_DEBUG((DI_ERR, "cannot cache: bad size: 0x%x", map_size)); 1006 return (0); 1007 } 1008 1009 cache->cache_data = kmem_alloc(map_size, KM_SLEEP); 1010 cache->cache_size = map_size; 1011 di_copymem(st, cache->cache_data, cache->cache_size); 1012 1013 return (map_size); 1014 } 1015 1016 /* 1017 * Make sure there is at least "size" bytes memory left before 1018 * going on. Otherwise, start on a new chunk. 1019 */ 1020 static di_off_t 1021 di_checkmem(struct di_state *st, di_off_t off, size_t size) 1022 { 1023 dcmn_err3((CE_CONT, "di_checkmem: off=%x size=%x\n", 1024 off, (int)size)); 1025 1026 /* 1027 * di_checkmem() shouldn't be called with a size of zero. 1028 * But in case it is, we want to make sure we return a valid 1029 * offset within the memlist and not an offset that points us 1030 * at the end of the memlist. 1031 */ 1032 if (size == 0) { 1033 dcmn_err((CE_WARN, "di_checkmem: invalid zero size used")); 1034 size = 1; 1035 } 1036 1037 off = DI_ALIGN(off); 1038 if ((st->mem_size - off) < size) { 1039 off = st->mem_size; 1040 di_allocmem(st, size); 1041 } 1042 1043 return (off); 1044 } 1045 1046 /* 1047 * Copy the private data format from ioctl arg. 1048 * On success, the ending offset is returned. On error 0 is returned. 1049 */ 1050 static di_off_t 1051 di_copyformat(di_off_t off, struct di_state *st, intptr_t arg, int mode) 1052 { 1053 di_off_t size; 1054 struct di_priv_data *priv; 1055 struct di_all *all = (struct di_all *)(intptr_t)di_mem_addr(st, 0); 1056 1057 dcmn_err2((CE_CONT, "di_copyformat: off=%x, arg=%p mode=%x\n", 1058 off, (void *)arg, mode)); 1059 1060 /* 1061 * Copyin data and check version. 1062 * We only handle private data version 0. 1063 */ 1064 priv = kmem_alloc(sizeof (struct di_priv_data), KM_SLEEP); 1065 if ((ddi_copyin((void *)arg, priv, sizeof (struct di_priv_data), 1066 mode) != 0) || (priv->version != DI_PRIVDATA_VERSION_0)) { 1067 kmem_free(priv, sizeof (struct di_priv_data)); 1068 return (0); 1069 } 1070 1071 /* 1072 * Save di_priv_data copied from userland in snapshot. 1073 */ 1074 all->pd_version = priv->version; 1075 all->n_ppdata = priv->n_parent; 1076 all->n_dpdata = priv->n_driver; 1077 1078 /* 1079 * copyin private data format, modify offset accordingly 1080 */ 1081 if (all->n_ppdata) { /* parent private data format */ 1082 /* 1083 * check memory 1084 */ 1085 size = all->n_ppdata * sizeof (struct di_priv_format); 1086 off = di_checkmem(st, off, size); 1087 all->ppdata_format = off; 1088 if (ddi_copyin(priv->parent, di_mem_addr(st, off), size, 1089 mode) != 0) { 1090 kmem_free(priv, sizeof (struct di_priv_data)); 1091 return (0); 1092 } 1093 1094 off += size; 1095 } 1096 1097 if (all->n_dpdata) { /* driver private data format */ 1098 /* 1099 * check memory 1100 */ 1101 size = all->n_dpdata * sizeof (struct di_priv_format); 1102 off = di_checkmem(st, off, size); 1103 all->dpdata_format = off; 1104 if (ddi_copyin(priv->driver, di_mem_addr(st, off), size, 1105 mode) != 0) { 1106 kmem_free(priv, sizeof (struct di_priv_data)); 1107 return (0); 1108 } 1109 1110 off += size; 1111 } 1112 1113 kmem_free(priv, sizeof (struct di_priv_data)); 1114 return (off); 1115 } 1116 1117 /* 1118 * Return the real address based on the offset (off) within snapshot 1119 */ 1120 static caddr_t 1121 di_mem_addr(struct di_state *st, di_off_t off) 1122 { 1123 struct di_mem *dcp = st->memlist; 1124 1125 dcmn_err3((CE_CONT, "di_mem_addr: dcp=%p off=%x\n", 1126 (void *)dcp, off)); 1127 1128 ASSERT(off < st->mem_size); 1129 1130 while (off >= dcp->buf_size) { 1131 off -= dcp->buf_size; 1132 dcp = dcp->next; 1133 } 1134 1135 dcmn_err3((CE_CONT, "di_mem_addr: new off=%x, return = %p\n", 1136 off, (void *)(dcp->buf + off))); 1137 1138 return (dcp->buf + off); 1139 } 1140 1141 /* 1142 * Ideally we would use the whole key to derive the hash 1143 * value. However, the probability that two keys will 1144 * have the same dip (or pip) is very low, so 1145 * hashing by dip (or pip) pointer should suffice. 1146 */ 1147 static uint_t 1148 di_hash_byptr(void *arg, mod_hash_key_t key) 1149 { 1150 struct di_key *dik = key; 1151 size_t rshift; 1152 void *ptr; 1153 1154 ASSERT(arg == NULL); 1155 1156 switch (dik->k_type) { 1157 case DI_DKEY: 1158 ptr = dik->k_u.dkey.dk_dip; 1159 rshift = highbit(sizeof (struct dev_info)); 1160 break; 1161 case DI_PKEY: 1162 ptr = dik->k_u.pkey.pk_pip; 1163 rshift = highbit(sizeof (struct mdi_pathinfo)); 1164 break; 1165 default: 1166 panic("devinfo: unknown key type"); 1167 /*NOTREACHED*/ 1168 } 1169 return (mod_hash_byptr((void *)rshift, ptr)); 1170 } 1171 1172 static void 1173 di_key_dtor(mod_hash_key_t key) 1174 { 1175 char *path_addr; 1176 struct di_key *dik = key; 1177 1178 switch (dik->k_type) { 1179 case DI_DKEY: 1180 break; 1181 case DI_PKEY: 1182 path_addr = dik->k_u.pkey.pk_path_addr; 1183 if (path_addr) 1184 kmem_free(path_addr, strlen(path_addr) + 1); 1185 break; 1186 default: 1187 panic("devinfo: unknown key type"); 1188 /*NOTREACHED*/ 1189 } 1190 1191 kmem_free(dik, sizeof (struct di_key)); 1192 } 1193 1194 static int 1195 di_dkey_cmp(struct di_dkey *dk1, struct di_dkey *dk2) 1196 { 1197 if (dk1->dk_dip != dk2->dk_dip) 1198 return (dk1->dk_dip > dk2->dk_dip ? 1 : -1); 1199 1200 if (dk1->dk_major != (major_t)-1 && dk2->dk_major != (major_t)-1) { 1201 if (dk1->dk_major != dk2->dk_major) 1202 return (dk1->dk_major > dk2->dk_major ? 1 : -1); 1203 1204 if (dk1->dk_inst != dk2->dk_inst) 1205 return (dk1->dk_inst > dk2->dk_inst ? 1 : -1); 1206 } 1207 1208 if (dk1->dk_nodeid != dk2->dk_nodeid) 1209 return (dk1->dk_nodeid > dk2->dk_nodeid ? 1 : -1); 1210 1211 return (0); 1212 } 1213 1214 static int 1215 di_pkey_cmp(struct di_pkey *pk1, struct di_pkey *pk2) 1216 { 1217 char *p1, *p2; 1218 int rv; 1219 1220 if (pk1->pk_pip != pk2->pk_pip) 1221 return (pk1->pk_pip > pk2->pk_pip ? 1 : -1); 1222 1223 p1 = pk1->pk_path_addr; 1224 p2 = pk2->pk_path_addr; 1225 1226 p1 = p1 ? p1 : ""; 1227 p2 = p2 ? p2 : ""; 1228 1229 rv = strcmp(p1, p2); 1230 if (rv) 1231 return (rv > 0 ? 1 : -1); 1232 1233 if (pk1->pk_client != pk2->pk_client) 1234 return (pk1->pk_client > pk2->pk_client ? 1 : -1); 1235 1236 if (pk1->pk_phci != pk2->pk_phci) 1237 return (pk1->pk_phci > pk2->pk_phci ? 1 : -1); 1238 1239 return (0); 1240 } 1241 1242 static int 1243 di_key_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 1244 { 1245 struct di_key *dik1, *dik2; 1246 1247 dik1 = key1; 1248 dik2 = key2; 1249 1250 if (dik1->k_type != dik2->k_type) { 1251 panic("devinfo: mismatched keys"); 1252 /*NOTREACHED*/ 1253 } 1254 1255 switch (dik1->k_type) { 1256 case DI_DKEY: 1257 return (di_dkey_cmp(&(dik1->k_u.dkey), &(dik2->k_u.dkey))); 1258 case DI_PKEY: 1259 return (di_pkey_cmp(&(dik1->k_u.pkey), &(dik2->k_u.pkey))); 1260 default: 1261 panic("devinfo: unknown key type"); 1262 /*NOTREACHED*/ 1263 } 1264 } 1265 1266 /* 1267 * This is the main function that takes a snapshot 1268 */ 1269 static di_off_t 1270 di_snapshot(struct di_state *st) 1271 { 1272 di_off_t off; 1273 struct di_all *all; 1274 dev_info_t *rootnode; 1275 char buf[80]; 1276 int plen; 1277 char *path; 1278 vnode_t *vp; 1279 1280 all = (struct di_all *)(intptr_t)di_mem_addr(st, 0); 1281 dcmn_err((CE_CONT, "Taking a snapshot of devinfo tree...\n")); 1282 1283 /* 1284 * Verify path before entrusting it to e_ddi_hold_devi_by_path because 1285 * some platforms have OBP bugs where executing the NDI_PROMNAME code 1286 * path against an invalid path results in panic. The lookupnameat 1287 * is done relative to rootdir without a leading '/' on "devices/" 1288 * to force the lookup to occur in the global zone. 1289 */ 1290 plen = strlen("devices/") + strlen(all->root_path) + 1; 1291 path = kmem_alloc(plen, KM_SLEEP); 1292 (void) snprintf(path, plen, "devices/%s", all->root_path); 1293 if (lookupnameat(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp, rootdir)) { 1294 dcmn_err((CE_CONT, "Devinfo node %s not found\n", 1295 all->root_path)); 1296 kmem_free(path, plen); 1297 return (0); 1298 } 1299 kmem_free(path, plen); 1300 VN_RELE(vp); 1301 1302 /* 1303 * Hold the devinfo node referred by the path. 1304 */ 1305 rootnode = e_ddi_hold_devi_by_path(all->root_path, 0); 1306 if (rootnode == NULL) { 1307 dcmn_err((CE_CONT, "Devinfo node %s not found\n", 1308 all->root_path)); 1309 return (0); 1310 } 1311 1312 (void) snprintf(buf, sizeof (buf), 1313 "devinfo registered dips (statep=%p)", (void *)st); 1314 1315 st->reg_dip_hash = mod_hash_create_extended(buf, 64, 1316 di_key_dtor, mod_hash_null_valdtor, di_hash_byptr, 1317 NULL, di_key_cmp, KM_SLEEP); 1318 1319 1320 (void) snprintf(buf, sizeof (buf), 1321 "devinfo registered pips (statep=%p)", (void *)st); 1322 1323 st->reg_pip_hash = mod_hash_create_extended(buf, 64, 1324 di_key_dtor, mod_hash_null_valdtor, di_hash_byptr, 1325 NULL, di_key_cmp, KM_SLEEP); 1326 1327 /* 1328 * copy the device tree 1329 */ 1330 off = di_copytree(DEVI(rootnode), &all->top_devinfo, st); 1331 1332 if (DINFOPATH & st->command) { 1333 mdi_walk_vhcis(build_vhci_list, st); 1334 } 1335 1336 ddi_release_devi(rootnode); 1337 1338 /* 1339 * copy the devnames array 1340 */ 1341 all->devnames = off; 1342 off = di_copydevnm(&all->devnames, st); 1343 1344 1345 /* initialize the hash tables */ 1346 st->lnode_count = 0; 1347 st->link_count = 0; 1348 1349 if (DINFOLYR & st->command) { 1350 off = di_getlink_data(off, st); 1351 } 1352 1353 /* 1354 * Free up hash tables 1355 */ 1356 mod_hash_destroy_hash(st->reg_dip_hash); 1357 mod_hash_destroy_hash(st->reg_pip_hash); 1358 1359 /* 1360 * Record the timestamp now that we are done with snapshot. 1361 * 1362 * We compute the checksum later and then only if we cache 1363 * the snapshot, since checksumming adds some overhead. 1364 * The checksum is checked later if we read the cache file. 1365 * from disk. 1366 * 1367 * Set checksum field to 0 as CRC is calculated with that 1368 * field set to 0. 1369 */ 1370 all->snapshot_time = ddi_get_time(); 1371 all->cache_checksum = 0; 1372 1373 ASSERT(all->snapshot_time != 0); 1374 1375 return (off); 1376 } 1377 1378 /* 1379 * Take a snapshot and clean /etc/devices files if DINFOCLEANUP is set 1380 */ 1381 static di_off_t 1382 di_snapshot_and_clean(struct di_state *st) 1383 { 1384 di_off_t off; 1385 1386 modunload_disable(); 1387 off = di_snapshot(st); 1388 if (off != 0 && (st->command & DINFOCLEANUP)) { 1389 ASSERT(DEVICES_FILES_CLEANABLE(st)); 1390 /* 1391 * Cleanup /etc/devices files: 1392 * In order to accurately account for the system configuration 1393 * in /etc/devices files, the appropriate drivers must be 1394 * fully configured before the cleanup starts. 1395 * So enable modunload only after the cleanup. 1396 */ 1397 i_ddi_clean_devices_files(); 1398 } 1399 modunload_enable(); 1400 1401 return (off); 1402 } 1403 1404 /* 1405 * construct vhci linkage in the snapshot. 1406 */ 1407 int 1408 build_vhci_list(dev_info_t *vh_devinfo, void *arg) 1409 { 1410 struct di_all *all; 1411 struct di_node *me; 1412 struct di_state *st; 1413 di_off_t off; 1414 phci_walk_arg_t pwa; 1415 1416 dcmn_err3((CE_CONT, "build_vhci list\n")); 1417 1418 dcmn_err3((CE_CONT, "vhci node %s, instance #%d\n", 1419 DEVI(vh_devinfo)->devi_node_name, 1420 DEVI(vh_devinfo)->devi_instance)); 1421 1422 st = (struct di_state *)arg; 1423 if (di_dip_find(st, vh_devinfo, &off) != 0) { 1424 dcmn_err((CE_WARN, "di_dip_find error for the given node\n")); 1425 return (DDI_WALK_TERMINATE); 1426 } 1427 1428 dcmn_err3((CE_CONT, "st->mem_size: %d vh_devinfo off: 0x%x\n", 1429 st->mem_size, off)); 1430 1431 all = (struct di_all *)(intptr_t)di_mem_addr(st, 0); 1432 if (all->top_vhci_devinfo == 0) { 1433 all->top_vhci_devinfo = off; 1434 } else { 1435 me = (struct di_node *) 1436 (intptr_t)di_mem_addr(st, all->top_vhci_devinfo); 1437 1438 while (me->next_vhci != 0) { 1439 me = (struct di_node *) 1440 (intptr_t)di_mem_addr(st, me->next_vhci); 1441 } 1442 1443 me->next_vhci = off; 1444 } 1445 1446 pwa.off = off; 1447 pwa.st = st; 1448 mdi_vhci_walk_phcis(vh_devinfo, build_phci_list, &pwa); 1449 1450 return (DDI_WALK_CONTINUE); 1451 } 1452 1453 /* 1454 * construct phci linkage for the given vhci in the snapshot. 1455 */ 1456 int 1457 build_phci_list(dev_info_t *ph_devinfo, void *arg) 1458 { 1459 struct di_node *vh_di_node; 1460 struct di_node *me; 1461 phci_walk_arg_t *pwa; 1462 di_off_t off; 1463 1464 pwa = (phci_walk_arg_t *)arg; 1465 1466 dcmn_err3((CE_CONT, "build_phci list for vhci at offset: 0x%x\n", 1467 pwa->off)); 1468 1469 vh_di_node = (struct di_node *)(intptr_t)di_mem_addr(pwa->st, pwa->off); 1470 1471 if (di_dip_find(pwa->st, ph_devinfo, &off) != 0) { 1472 dcmn_err((CE_WARN, "di_dip_find error for the given node\n")); 1473 return (DDI_WALK_TERMINATE); 1474 } 1475 1476 dcmn_err3((CE_CONT, "phci node %s, instance #%d, at offset 0x%x\n", 1477 DEVI(ph_devinfo)->devi_node_name, 1478 DEVI(ph_devinfo)->devi_instance, off)); 1479 1480 if (vh_di_node->top_phci == 0) { 1481 vh_di_node->top_phci = off; 1482 return (DDI_WALK_CONTINUE); 1483 } 1484 1485 me = (struct di_node *) 1486 (intptr_t)di_mem_addr(pwa->st, vh_di_node->top_phci); 1487 1488 while (me->next_phci != 0) { 1489 me = (struct di_node *) 1490 (intptr_t)di_mem_addr(pwa->st, me->next_phci); 1491 } 1492 me->next_phci = off; 1493 1494 return (DDI_WALK_CONTINUE); 1495 } 1496 1497 /* 1498 * Assumes all devinfo nodes in device tree have been snapshotted 1499 */ 1500 static void 1501 snap_driver_list(struct di_state *st, struct devnames *dnp, di_off_t *poff_p) 1502 { 1503 struct dev_info *node; 1504 struct di_node *me; 1505 di_off_t off; 1506 1507 ASSERT(mutex_owned(&dnp->dn_lock)); 1508 1509 node = DEVI(dnp->dn_head); 1510 for (; node; node = node->devi_next) { 1511 if (di_dip_find(st, (dev_info_t *)node, &off) != 0) 1512 continue; 1513 1514 ASSERT(off > 0); 1515 me = (struct di_node *)(intptr_t)di_mem_addr(st, off); 1516 ASSERT(me->next == 0 || me->next == -1); 1517 /* 1518 * Only nodes which were BOUND when they were 1519 * snapshotted will be added to per-driver list. 1520 */ 1521 if (me->next != -1) 1522 continue; 1523 1524 *poff_p = off; 1525 poff_p = &me->next; 1526 } 1527 1528 *poff_p = 0; 1529 } 1530 1531 /* 1532 * Copy the devnames array, so we have a list of drivers in the snapshot. 1533 * Also makes it possible to locate the per-driver devinfo nodes. 1534 */ 1535 static di_off_t 1536 di_copydevnm(di_off_t *off_p, struct di_state *st) 1537 { 1538 int i; 1539 di_off_t off; 1540 size_t size; 1541 struct di_devnm *dnp; 1542 1543 dcmn_err2((CE_CONT, "di_copydevnm: *off_p = %p\n", (void *)off_p)); 1544 1545 /* 1546 * make sure there is some allocated memory 1547 */ 1548 size = devcnt * sizeof (struct di_devnm); 1549 off = di_checkmem(st, *off_p, size); 1550 *off_p = off; 1551 1552 dcmn_err((CE_CONT, "Start copying devnamesp[%d] at offset 0x%x\n", 1553 devcnt, off)); 1554 1555 dnp = (struct di_devnm *)(intptr_t)di_mem_addr(st, off); 1556 off += size; 1557 1558 for (i = 0; i < devcnt; i++) { 1559 if (devnamesp[i].dn_name == NULL) { 1560 continue; 1561 } 1562 1563 /* 1564 * dn_name is not freed during driver unload or removal. 1565 * 1566 * There is a race condition when make_devname() changes 1567 * dn_name during our strcpy. This should be rare since 1568 * only add_drv does this. At any rate, we never had a 1569 * problem with ddi_name_to_major(), which should have 1570 * the same problem. 1571 */ 1572 dcmn_err2((CE_CONT, "di_copydevnm: %s%d, off=%x\n", 1573 devnamesp[i].dn_name, devnamesp[i].dn_instance, 1574 off)); 1575 1576 off = di_checkmem(st, off, strlen(devnamesp[i].dn_name) + 1); 1577 dnp[i].name = off; 1578 (void) strcpy((char *)di_mem_addr(st, off), 1579 devnamesp[i].dn_name); 1580 off += DI_ALIGN(strlen(devnamesp[i].dn_name) + 1); 1581 1582 mutex_enter(&devnamesp[i].dn_lock); 1583 1584 /* 1585 * Snapshot per-driver node list 1586 */ 1587 snap_driver_list(st, &devnamesp[i], &dnp[i].head); 1588 1589 /* 1590 * This is not used by libdevinfo, leave it for now 1591 */ 1592 dnp[i].flags = devnamesp[i].dn_flags; 1593 dnp[i].instance = devnamesp[i].dn_instance; 1594 1595 /* 1596 * get global properties 1597 */ 1598 if ((DINFOPROP & st->command) && 1599 devnamesp[i].dn_global_prop_ptr) { 1600 dnp[i].global_prop = off; 1601 off = di_getprop( 1602 devnamesp[i].dn_global_prop_ptr->prop_list, 1603 &dnp[i].global_prop, st, NULL, DI_PROP_GLB_LIST); 1604 } 1605 1606 /* 1607 * Bit encode driver ops: & bus_ops, cb_ops, & cb_ops->cb_str 1608 */ 1609 if (CB_DRV_INSTALLED(devopsp[i])) { 1610 if (devopsp[i]->devo_cb_ops) { 1611 dnp[i].ops |= DI_CB_OPS; 1612 if (devopsp[i]->devo_cb_ops->cb_str) 1613 dnp[i].ops |= DI_STREAM_OPS; 1614 } 1615 if (NEXUS_DRV(devopsp[i])) { 1616 dnp[i].ops |= DI_BUS_OPS; 1617 } 1618 } 1619 1620 mutex_exit(&devnamesp[i].dn_lock); 1621 } 1622 1623 dcmn_err((CE_CONT, "End copying devnamesp at offset 0x%x\n", off)); 1624 1625 return (off); 1626 } 1627 1628 /* 1629 * Copy the kernel devinfo tree. The tree and the devnames array forms 1630 * the entire snapshot (see also di_copydevnm). 1631 */ 1632 static di_off_t 1633 di_copytree(struct dev_info *root, di_off_t *off_p, struct di_state *st) 1634 { 1635 di_off_t off; 1636 struct di_stack *dsp = kmem_zalloc(sizeof (struct di_stack), KM_SLEEP); 1637 1638 dcmn_err((CE_CONT, "di_copytree: root = %p, *off_p = %x\n", 1639 (void *)root, *off_p)); 1640 1641 /* force attach drivers */ 1642 if (i_ddi_devi_attached((dev_info_t *)root) && 1643 (st->command & DINFOSUBTREE) && (st->command & DINFOFORCE)) { 1644 (void) ndi_devi_config((dev_info_t *)root, 1645 NDI_CONFIG | NDI_DEVI_PERSIST | NDI_NO_EVENT | 1646 NDI_DRV_CONF_REPROBE); 1647 } 1648 1649 /* 1650 * Push top_devinfo onto a stack 1651 * 1652 * The stack is necessary to avoid recursion, which can overrun 1653 * the kernel stack. 1654 */ 1655 PUSH_STACK(dsp, root, off_p); 1656 1657 /* 1658 * As long as there is a node on the stack, copy the node. 1659 * di_copynode() is responsible for pushing and popping 1660 * child and sibling nodes on the stack. 1661 */ 1662 while (!EMPTY_STACK(dsp)) { 1663 off = di_copynode(dsp, st); 1664 } 1665 1666 /* 1667 * Free the stack structure 1668 */ 1669 kmem_free(dsp, sizeof (struct di_stack)); 1670 1671 return (off); 1672 } 1673 1674 /* 1675 * This is the core function, which copies all data associated with a single 1676 * node into the snapshot. The amount of information is determined by the 1677 * ioctl command. 1678 */ 1679 static di_off_t 1680 di_copynode(struct di_stack *dsp, struct di_state *st) 1681 { 1682 di_off_t off; 1683 struct di_node *me; 1684 struct dev_info *node; 1685 1686 dcmn_err2((CE_CONT, "di_copynode: depth = %x\n", 1687 dsp->depth)); 1688 1689 node = TOP_NODE(dsp); 1690 1691 ASSERT(node != NULL); 1692 1693 /* 1694 * check memory usage, and fix offsets accordingly. 1695 */ 1696 off = di_checkmem(st, *(TOP_OFFSET(dsp)), sizeof (struct di_node)); 1697 *(TOP_OFFSET(dsp)) = off; 1698 me = DI_NODE(di_mem_addr(st, off)); 1699 1700 dcmn_err((CE_CONT, "copy node %s, instance #%d, at offset 0x%x\n", 1701 node->devi_node_name, node->devi_instance, off)); 1702 1703 /* 1704 * Node parameters: 1705 * self -- offset of current node within snapshot 1706 * nodeid -- pointer to PROM node (tri-valued) 1707 * state -- hot plugging device state 1708 * node_state -- devinfo node state (CF1, CF2, etc.) 1709 */ 1710 me->self = off; 1711 me->instance = node->devi_instance; 1712 me->nodeid = node->devi_nodeid; 1713 me->node_class = node->devi_node_class; 1714 me->attributes = node->devi_node_attributes; 1715 me->state = node->devi_state; 1716 me->node_state = node->devi_node_state; 1717 me->next_vhci = 0; /* Filled up by build_vhci_list. */ 1718 me->top_phci = 0; /* Filled up by build_phci_list. */ 1719 me->next_phci = 0; /* Filled up by build_phci_list. */ 1720 me->multipath_component = MULTIPATH_COMPONENT_NONE; /* set default. */ 1721 me->user_private_data = NULL; 1722 1723 /* 1724 * Get parent's offset in snapshot from the stack 1725 * and store it in the current node 1726 */ 1727 if (dsp->depth > 1) { 1728 me->parent = *(PARENT_OFFSET(dsp)); 1729 } 1730 1731 /* 1732 * Save the offset of this di_node in a hash table. 1733 * This is used later to resolve references to this 1734 * dip from other parts of the tree (per-driver list, 1735 * multipathing linkages, layered usage linkages). 1736 * The key used for the hash table is derived from 1737 * information in the dip. 1738 */ 1739 di_register_dip(st, (dev_info_t *)node, me->self); 1740 1741 /* 1742 * increment offset 1743 */ 1744 off += sizeof (struct di_node); 1745 1746 #ifdef DEVID_COMPATIBILITY 1747 /* check for devid as property marker */ 1748 if (node->devi_devid) { 1749 ddi_devid_t devid; 1750 char *devidstr; 1751 int devid_size; 1752 1753 /* 1754 * The devid is now represented as a property. 1755 * For micro release compatibility with di_devid interface 1756 * in libdevinfo we must return it as a binary structure in' 1757 * the snapshot. When di_devid is removed from libdevinfo 1758 * in a future release (and devi_devid is deleted) then 1759 * code related to DEVID_COMPATIBILITY can be removed. 1760 */ 1761 ASSERT(node->devi_devid == DEVID_COMPATIBILITY); 1762 /* XXX should be DDI_DEV_T_NONE! */ 1763 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, (dev_info_t *)node, 1764 DDI_PROP_DONTPASS, DEVID_PROP_NAME, &devidstr) == 1765 DDI_PROP_SUCCESS) { 1766 if (ddi_devid_str_decode(devidstr, &devid, NULL) == 1767 DDI_SUCCESS) { 1768 devid_size = ddi_devid_sizeof(devid); 1769 off = di_checkmem(st, off, devid_size); 1770 me->devid = off; 1771 bcopy(devid, 1772 di_mem_addr(st, off), devid_size); 1773 off += devid_size; 1774 ddi_devid_free(devid); 1775 } 1776 ddi_prop_free(devidstr); 1777 } 1778 } 1779 #endif /* DEVID_COMPATIBILITY */ 1780 1781 if (node->devi_node_name) { 1782 off = di_checkmem(st, off, strlen(node->devi_node_name) + 1); 1783 me->node_name = off; 1784 (void) strcpy(di_mem_addr(st, off), node->devi_node_name); 1785 off += strlen(node->devi_node_name) + 1; 1786 } 1787 1788 if (node->devi_compat_names && (node->devi_compat_length > 1)) { 1789 off = di_checkmem(st, off, node->devi_compat_length); 1790 me->compat_names = off; 1791 me->compat_length = node->devi_compat_length; 1792 bcopy(node->devi_compat_names, di_mem_addr(st, off), 1793 node->devi_compat_length); 1794 off += node->devi_compat_length; 1795 } 1796 1797 if (node->devi_addr) { 1798 off = di_checkmem(st, off, strlen(node->devi_addr) + 1); 1799 me->address = off; 1800 (void) strcpy(di_mem_addr(st, off), node->devi_addr); 1801 off += strlen(node->devi_addr) + 1; 1802 } 1803 1804 if (node->devi_binding_name) { 1805 off = di_checkmem(st, off, strlen(node->devi_binding_name) + 1); 1806 me->bind_name = off; 1807 (void) strcpy(di_mem_addr(st, off), node->devi_binding_name); 1808 off += strlen(node->devi_binding_name) + 1; 1809 } 1810 1811 me->drv_major = node->devi_major; 1812 1813 /* 1814 * If the dip is BOUND, set the next pointer of the 1815 * per-instance list to -1, indicating that it is yet to be resolved. 1816 * This will be resolved later in snap_driver_list(). 1817 */ 1818 if (me->drv_major != -1) { 1819 me->next = -1; 1820 } else { 1821 me->next = 0; 1822 } 1823 1824 /* 1825 * An optimization to skip mutex_enter when not needed. 1826 */ 1827 if (!((DINFOMINOR | DINFOPROP | DINFOPATH) & st->command)) { 1828 goto priv_data; 1829 } 1830 1831 /* 1832 * Grab current per dev_info node lock to 1833 * get minor data and properties. 1834 */ 1835 mutex_enter(&(node->devi_lock)); 1836 1837 if (!(DINFOMINOR & st->command)) { 1838 goto path; 1839 } 1840 1841 if (node->devi_minor) { /* minor data */ 1842 me->minor_data = DI_ALIGN(off); 1843 off = di_getmdata(node->devi_minor, &me->minor_data, 1844 me->self, st); 1845 } 1846 1847 path: 1848 if (!(DINFOPATH & st->command)) { 1849 goto property; 1850 } 1851 1852 if (MDI_VHCI(node)) { 1853 me->multipath_component = MULTIPATH_COMPONENT_VHCI; 1854 } 1855 1856 if (MDI_CLIENT(node)) { 1857 me->multipath_component = MULTIPATH_COMPONENT_CLIENT; 1858 me->multipath_client = DI_ALIGN(off); 1859 off = di_getpath_data((dev_info_t *)node, &me->multipath_client, 1860 me->self, st, 1); 1861 dcmn_err((CE_WARN, "me->multipath_client = %x for node %p " 1862 "component type = %d. off=%d", 1863 me->multipath_client, 1864 (void *)node, node->devi_mdi_component, off)); 1865 } 1866 1867 if (MDI_PHCI(node)) { 1868 me->multipath_component = MULTIPATH_COMPONENT_PHCI; 1869 me->multipath_phci = DI_ALIGN(off); 1870 off = di_getpath_data((dev_info_t *)node, &me->multipath_phci, 1871 me->self, st, 0); 1872 dcmn_err((CE_WARN, "me->multipath_phci = %x for node %p " 1873 "component type = %d. off=%d", 1874 me->multipath_phci, 1875 (void *)node, node->devi_mdi_component, off)); 1876 } 1877 1878 property: 1879 if (!(DINFOPROP & st->command)) { 1880 goto unlock; 1881 } 1882 1883 if (node->devi_drv_prop_ptr) { /* driver property list */ 1884 me->drv_prop = DI_ALIGN(off); 1885 off = di_getprop(node->devi_drv_prop_ptr, &me->drv_prop, st, 1886 node, DI_PROP_DRV_LIST); 1887 } 1888 1889 if (node->devi_sys_prop_ptr) { /* system property list */ 1890 me->sys_prop = DI_ALIGN(off); 1891 off = di_getprop(node->devi_sys_prop_ptr, &me->sys_prop, st, 1892 node, DI_PROP_SYS_LIST); 1893 } 1894 1895 if (node->devi_hw_prop_ptr) { /* hardware property list */ 1896 me->hw_prop = DI_ALIGN(off); 1897 off = di_getprop(node->devi_hw_prop_ptr, &me->hw_prop, st, 1898 node, DI_PROP_HW_LIST); 1899 } 1900 1901 if (node->devi_global_prop_list == NULL) { 1902 me->glob_prop = (di_off_t)-1; /* not global property */ 1903 } else { 1904 /* 1905 * Make copy of global property list if this devinfo refers 1906 * global properties different from what's on the devnames 1907 * array. It can happen if there has been a forced 1908 * driver.conf update. See mod_drv(1M). 1909 */ 1910 ASSERT(me->drv_major != -1); 1911 if (node->devi_global_prop_list != 1912 devnamesp[me->drv_major].dn_global_prop_ptr) { 1913 me->glob_prop = DI_ALIGN(off); 1914 off = di_getprop(node->devi_global_prop_list->prop_list, 1915 &me->glob_prop, st, node, DI_PROP_GLB_LIST); 1916 } 1917 } 1918 1919 unlock: 1920 /* 1921 * release current per dev_info node lock 1922 */ 1923 mutex_exit(&(node->devi_lock)); 1924 1925 priv_data: 1926 if (!(DINFOPRIVDATA & st->command)) { 1927 goto pm_info; 1928 } 1929 1930 if (ddi_get_parent_data((dev_info_t *)node) != NULL) { 1931 me->parent_data = DI_ALIGN(off); 1932 off = di_getppdata(node, &me->parent_data, st); 1933 } 1934 1935 if (ddi_get_driver_private((dev_info_t *)node) != NULL) { 1936 me->driver_data = DI_ALIGN(off); 1937 off = di_getdpdata(node, &me->driver_data, st); 1938 } 1939 1940 pm_info: /* NOT implemented */ 1941 1942 subtree: 1943 if (!(DINFOSUBTREE & st->command)) { 1944 POP_STACK(dsp); 1945 return (DI_ALIGN(off)); 1946 } 1947 1948 child: 1949 /* 1950 * If there is a child--push child onto stack. 1951 * Hold the parent busy while doing so. 1952 */ 1953 if (node->devi_child) { 1954 me->child = DI_ALIGN(off); 1955 PUSH_STACK(dsp, node->devi_child, &me->child); 1956 return (me->child); 1957 } 1958 1959 sibling: 1960 /* 1961 * no child node, unroll the stack till a sibling of 1962 * a parent node is found or root node is reached 1963 */ 1964 POP_STACK(dsp); 1965 while (!EMPTY_STACK(dsp) && (node->devi_sibling == NULL)) { 1966 node = TOP_NODE(dsp); 1967 me = DI_NODE(di_mem_addr(st, *(TOP_OFFSET(dsp)))); 1968 POP_STACK(dsp); 1969 } 1970 1971 if (!EMPTY_STACK(dsp)) { 1972 /* 1973 * a sibling is found, replace top of stack by its sibling 1974 */ 1975 me->sibling = DI_ALIGN(off); 1976 PUSH_STACK(dsp, node->devi_sibling, &me->sibling); 1977 return (me->sibling); 1978 } 1979 1980 /* 1981 * DONE with all nodes 1982 */ 1983 return (DI_ALIGN(off)); 1984 } 1985 1986 static i_lnode_t * 1987 i_lnode_alloc(int modid) 1988 { 1989 i_lnode_t *i_lnode; 1990 1991 i_lnode = kmem_zalloc(sizeof (i_lnode_t), KM_SLEEP); 1992 1993 ASSERT(modid != -1); 1994 i_lnode->modid = modid; 1995 1996 return (i_lnode); 1997 } 1998 1999 static void 2000 i_lnode_free(i_lnode_t *i_lnode) 2001 { 2002 kmem_free(i_lnode, sizeof (i_lnode_t)); 2003 } 2004 2005 static void 2006 i_lnode_check_free(i_lnode_t *i_lnode) 2007 { 2008 /* This lnode and its dip must have been snapshotted */ 2009 ASSERT(i_lnode->self > 0); 2010 ASSERT(i_lnode->di_node->self > 0); 2011 2012 /* at least 1 link (in or out) must exist for this lnode */ 2013 ASSERT(i_lnode->link_in || i_lnode->link_out); 2014 2015 i_lnode_free(i_lnode); 2016 } 2017 2018 static i_link_t * 2019 i_link_alloc(int spec_type) 2020 { 2021 i_link_t *i_link; 2022 2023 i_link = kmem_zalloc(sizeof (i_link_t), KM_SLEEP); 2024 i_link->spec_type = spec_type; 2025 2026 return (i_link); 2027 } 2028 2029 static void 2030 i_link_check_free(i_link_t *i_link) 2031 { 2032 /* This link must have been snapshotted */ 2033 ASSERT(i_link->self > 0); 2034 2035 /* Both endpoint lnodes must exist for this link */ 2036 ASSERT(i_link->src_lnode); 2037 ASSERT(i_link->tgt_lnode); 2038 2039 kmem_free(i_link, sizeof (i_link_t)); 2040 } 2041 2042 /*ARGSUSED*/ 2043 static uint_t 2044 i_lnode_hashfunc(void *arg, mod_hash_key_t key) 2045 { 2046 i_lnode_t *i_lnode = (i_lnode_t *)key; 2047 struct di_node *ptr; 2048 dev_t dev; 2049 2050 dev = i_lnode->devt; 2051 if (dev != DDI_DEV_T_NONE) 2052 return (i_lnode->modid + getminor(dev) + getmajor(dev)); 2053 2054 ptr = i_lnode->di_node; 2055 ASSERT(ptr->self > 0); 2056 if (ptr) { 2057 uintptr_t k = (uintptr_t)ptr; 2058 k >>= (int)highbit(sizeof (struct di_node)); 2059 return ((uint_t)k); 2060 } 2061 2062 return (i_lnode->modid); 2063 } 2064 2065 static int 2066 i_lnode_cmp(void *arg1, void *arg2) 2067 { 2068 i_lnode_t *i_lnode1 = (i_lnode_t *)arg1; 2069 i_lnode_t *i_lnode2 = (i_lnode_t *)arg2; 2070 2071 if (i_lnode1->modid != i_lnode2->modid) { 2072 return ((i_lnode1->modid < i_lnode2->modid) ? -1 : 1); 2073 } 2074 2075 if (i_lnode1->di_node != i_lnode2->di_node) 2076 return ((i_lnode1->di_node < i_lnode2->di_node) ? -1 : 1); 2077 2078 if (i_lnode1->devt != i_lnode2->devt) 2079 return ((i_lnode1->devt < i_lnode2->devt) ? -1 : 1); 2080 2081 return (0); 2082 } 2083 2084 /* 2085 * An lnode represents a {dip, dev_t} tuple. A link represents a 2086 * {src_lnode, tgt_lnode, spec_type} tuple. 2087 * The following callback assumes that LDI framework ref-counts the 2088 * src_dip and tgt_dip while invoking this callback. 2089 */ 2090 static int 2091 di_ldi_callback(const ldi_usage_t *ldi_usage, void *arg) 2092 { 2093 struct di_state *st = (struct di_state *)arg; 2094 i_lnode_t *src_lnode, *tgt_lnode, *i_lnode; 2095 i_link_t **i_link_next, *i_link; 2096 di_off_t soff, toff; 2097 mod_hash_val_t nodep = NULL; 2098 int res; 2099 2100 /* 2101 * if the source or target of this device usage information doesn't 2102 * corrospond to a device node then we don't report it via 2103 * libdevinfo so return. 2104 */ 2105 if ((ldi_usage->src_dip == NULL) || (ldi_usage->tgt_dip == NULL)) 2106 return (LDI_USAGE_CONTINUE); 2107 2108 ASSERT(e_ddi_devi_holdcnt(ldi_usage->src_dip)); 2109 ASSERT(e_ddi_devi_holdcnt(ldi_usage->tgt_dip)); 2110 2111 /* 2112 * Skip the ldi_usage if either src or tgt dip is not in the 2113 * snapshot. This saves us from pruning bad lnodes/links later. 2114 */ 2115 if (di_dip_find(st, ldi_usage->src_dip, &soff) != 0) 2116 return (LDI_USAGE_CONTINUE); 2117 if (di_dip_find(st, ldi_usage->tgt_dip, &toff) != 0) 2118 return (LDI_USAGE_CONTINUE); 2119 2120 ASSERT(soff > 0); 2121 ASSERT(toff > 0); 2122 2123 /* 2124 * allocate an i_lnode and add it to the lnode hash 2125 * if it is not already present. For this particular 2126 * link the lnode is a source, but it may 2127 * participate as tgt or src in any number of layered 2128 * operations - so it may already be in the hash. 2129 */ 2130 i_lnode = i_lnode_alloc(ldi_usage->src_modid); 2131 i_lnode->di_node = (struct di_node *)(intptr_t)di_mem_addr(st, soff); 2132 i_lnode->devt = ldi_usage->src_devt; 2133 2134 res = mod_hash_find(st->lnode_hash, i_lnode, &nodep); 2135 if (res == MH_ERR_NOTFOUND) { 2136 /* 2137 * new i_lnode 2138 * add it to the hash and increment the lnode count 2139 */ 2140 res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode); 2141 ASSERT(res == 0); 2142 st->lnode_count++; 2143 src_lnode = i_lnode; 2144 } else { 2145 /* this i_lnode already exists in the lnode_hash */ 2146 i_lnode_free(i_lnode); 2147 src_lnode = (i_lnode_t *)nodep; 2148 } 2149 2150 /* 2151 * allocate a tgt i_lnode and add it to the lnode hash 2152 */ 2153 i_lnode = i_lnode_alloc(ldi_usage->tgt_modid); 2154 i_lnode->di_node = (struct di_node *)(intptr_t)di_mem_addr(st, toff); 2155 i_lnode->devt = ldi_usage->tgt_devt; 2156 2157 res = mod_hash_find(st->lnode_hash, i_lnode, &nodep); 2158 if (res == MH_ERR_NOTFOUND) { 2159 /* 2160 * new i_lnode 2161 * add it to the hash and increment the lnode count 2162 */ 2163 res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode); 2164 ASSERT(res == 0); 2165 st->lnode_count++; 2166 tgt_lnode = i_lnode; 2167 } else { 2168 /* this i_lnode already exists in the lnode_hash */ 2169 i_lnode_free(i_lnode); 2170 tgt_lnode = (i_lnode_t *)nodep; 2171 } 2172 2173 /* 2174 * allocate a i_link 2175 */ 2176 i_link = i_link_alloc(ldi_usage->tgt_spec_type); 2177 i_link->src_lnode = src_lnode; 2178 i_link->tgt_lnode = tgt_lnode; 2179 2180 /* 2181 * add this link onto the src i_lnodes outbound i_link list 2182 */ 2183 i_link_next = &(src_lnode->link_out); 2184 while (*i_link_next != NULL) { 2185 if ((i_lnode_cmp(tgt_lnode, (*i_link_next)->tgt_lnode) == 0) && 2186 (i_link->spec_type == (*i_link_next)->spec_type)) { 2187 /* this link already exists */ 2188 kmem_free(i_link, sizeof (i_link_t)); 2189 return (LDI_USAGE_CONTINUE); 2190 } 2191 i_link_next = &((*i_link_next)->src_link_next); 2192 } 2193 *i_link_next = i_link; 2194 2195 /* 2196 * add this link onto the tgt i_lnodes inbound i_link list 2197 */ 2198 i_link_next = &(tgt_lnode->link_in); 2199 while (*i_link_next != NULL) { 2200 ASSERT(i_lnode_cmp(src_lnode, (*i_link_next)->src_lnode) != 0); 2201 i_link_next = &((*i_link_next)->tgt_link_next); 2202 } 2203 *i_link_next = i_link; 2204 2205 /* 2206 * add this i_link to the link hash 2207 */ 2208 res = mod_hash_insert(st->link_hash, i_link, i_link); 2209 ASSERT(res == 0); 2210 st->link_count++; 2211 2212 return (LDI_USAGE_CONTINUE); 2213 } 2214 2215 struct i_layer_data { 2216 struct di_state *st; 2217 int lnode_count; 2218 int link_count; 2219 di_off_t lnode_off; 2220 di_off_t link_off; 2221 }; 2222 2223 /*ARGSUSED*/ 2224 static uint_t 2225 i_link_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 2226 { 2227 i_link_t *i_link = (i_link_t *)key; 2228 struct i_layer_data *data = arg; 2229 struct di_link *me; 2230 struct di_lnode *melnode; 2231 struct di_node *medinode; 2232 2233 ASSERT(i_link->self == 0); 2234 2235 i_link->self = data->link_off + 2236 (data->link_count * sizeof (struct di_link)); 2237 data->link_count++; 2238 2239 ASSERT(data->link_off > 0 && data->link_count > 0); 2240 ASSERT(data->lnode_count == data->st->lnode_count); /* lnodes done */ 2241 ASSERT(data->link_count <= data->st->link_count); 2242 2243 /* fill in fields for the di_link snapshot */ 2244 me = (struct di_link *)(intptr_t)di_mem_addr(data->st, i_link->self); 2245 me->self = i_link->self; 2246 me->spec_type = i_link->spec_type; 2247 2248 /* 2249 * The src_lnode and tgt_lnode i_lnode_t for this i_link_t 2250 * are created during the LDI table walk. Since we are 2251 * walking the link hash, the lnode hash has already been 2252 * walked and the lnodes have been snapshotted. Save lnode 2253 * offsets. 2254 */ 2255 me->src_lnode = i_link->src_lnode->self; 2256 me->tgt_lnode = i_link->tgt_lnode->self; 2257 2258 /* 2259 * Save this link's offset in the src_lnode snapshot's link_out 2260 * field 2261 */ 2262 melnode = (struct di_lnode *) 2263 (intptr_t)di_mem_addr(data->st, me->src_lnode); 2264 me->src_link_next = melnode->link_out; 2265 melnode->link_out = me->self; 2266 2267 /* 2268 * Put this link on the tgt_lnode's link_in field 2269 */ 2270 melnode = (struct di_lnode *) 2271 (intptr_t)di_mem_addr(data->st, me->tgt_lnode); 2272 me->tgt_link_next = melnode->link_in; 2273 melnode->link_in = me->self; 2274 2275 /* 2276 * An i_lnode_t is only created if the corresponding dip exists 2277 * in the snapshot. A pointer to the di_node is saved in the 2278 * i_lnode_t when it is allocated. For this link, get the di_node 2279 * for the source lnode. Then put the link on the di_node's list 2280 * of src links 2281 */ 2282 medinode = i_link->src_lnode->di_node; 2283 me->src_node_next = medinode->src_links; 2284 medinode->src_links = me->self; 2285 2286 /* 2287 * Put this link on the tgt_links list of the target 2288 * dip. 2289 */ 2290 medinode = i_link->tgt_lnode->di_node; 2291 me->tgt_node_next = medinode->tgt_links; 2292 medinode->tgt_links = me->self; 2293 2294 return (MH_WALK_CONTINUE); 2295 } 2296 2297 /*ARGSUSED*/ 2298 static uint_t 2299 i_lnode_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 2300 { 2301 i_lnode_t *i_lnode = (i_lnode_t *)key; 2302 struct i_layer_data *data = arg; 2303 struct di_lnode *me; 2304 struct di_node *medinode; 2305 2306 ASSERT(i_lnode->self == 0); 2307 2308 i_lnode->self = data->lnode_off + 2309 (data->lnode_count * sizeof (struct di_lnode)); 2310 data->lnode_count++; 2311 2312 ASSERT(data->lnode_off > 0 && data->lnode_count > 0); 2313 ASSERT(data->link_count == 0); /* links not done yet */ 2314 ASSERT(data->lnode_count <= data->st->lnode_count); 2315 2316 /* fill in fields for the di_lnode snapshot */ 2317 me = (struct di_lnode *)(intptr_t)di_mem_addr(data->st, i_lnode->self); 2318 me->self = i_lnode->self; 2319 2320 if (i_lnode->devt == DDI_DEV_T_NONE) { 2321 me->dev_major = (major_t)-1; 2322 me->dev_minor = (minor_t)-1; 2323 } else { 2324 me->dev_major = getmajor(i_lnode->devt); 2325 me->dev_minor = getminor(i_lnode->devt); 2326 } 2327 2328 /* 2329 * The dip corresponding to this lnode must exist in 2330 * the snapshot or we wouldn't have created the i_lnode_t 2331 * during LDI walk. Save the offset of the dip. 2332 */ 2333 ASSERT(i_lnode->di_node && i_lnode->di_node->self > 0); 2334 me->node = i_lnode->di_node->self; 2335 2336 /* 2337 * There must be at least one link in or out of this lnode 2338 * or we wouldn't have created it. These fields will be set 2339 * during the link hash walk. 2340 */ 2341 ASSERT((i_lnode->link_in != NULL) || (i_lnode->link_out != NULL)); 2342 2343 /* 2344 * set the offset of the devinfo node associated with this 2345 * lnode. Also update the node_next next pointer. this pointer 2346 * is set if there are multiple lnodes associated with the same 2347 * devinfo node. (could occure when multiple minor nodes 2348 * are open for one device, etc.) 2349 */ 2350 medinode = i_lnode->di_node; 2351 me->node_next = medinode->lnodes; 2352 medinode->lnodes = me->self; 2353 2354 return (MH_WALK_CONTINUE); 2355 } 2356 2357 static di_off_t 2358 di_getlink_data(di_off_t off, struct di_state *st) 2359 { 2360 struct i_layer_data data = {0}; 2361 size_t size; 2362 2363 dcmn_err2((CE_CONT, "di_copylyr: off = %x\n", off)); 2364 2365 st->lnode_hash = mod_hash_create_extended("di_lnode_hash", 32, 2366 mod_hash_null_keydtor, (void (*)(mod_hash_val_t))i_lnode_check_free, 2367 i_lnode_hashfunc, NULL, i_lnode_cmp, KM_SLEEP); 2368 2369 st->link_hash = mod_hash_create_ptrhash("di_link_hash", 32, 2370 (void (*)(mod_hash_val_t))i_link_check_free, sizeof (i_link_t)); 2371 2372 /* get driver layering information */ 2373 (void) ldi_usage_walker(st, di_ldi_callback); 2374 2375 /* check if there is any link data to include in the snapshot */ 2376 if (st->lnode_count == 0) { 2377 ASSERT(st->link_count == 0); 2378 goto out; 2379 } 2380 2381 ASSERT(st->link_count != 0); 2382 2383 /* get a pointer to snapshot memory for all the di_lnodes */ 2384 size = sizeof (struct di_lnode) * st->lnode_count; 2385 data.lnode_off = off = di_checkmem(st, off, size); 2386 off += DI_ALIGN(size); 2387 2388 /* get a pointer to snapshot memory for all the di_links */ 2389 size = sizeof (struct di_link) * st->link_count; 2390 data.link_off = off = di_checkmem(st, off, size); 2391 off += DI_ALIGN(size); 2392 2393 data.lnode_count = data.link_count = 0; 2394 data.st = st; 2395 2396 /* 2397 * We have lnodes and links that will go into the 2398 * snapshot, so let's walk the respective hashes 2399 * and snapshot them. The various linkages are 2400 * also set up during the walk. 2401 */ 2402 mod_hash_walk(st->lnode_hash, i_lnode_walker, (void *)&data); 2403 ASSERT(data.lnode_count == st->lnode_count); 2404 2405 mod_hash_walk(st->link_hash, i_link_walker, (void *)&data); 2406 ASSERT(data.link_count == st->link_count); 2407 2408 out: 2409 /* free up the i_lnodes and i_links used to create the snapshot */ 2410 mod_hash_destroy_hash(st->lnode_hash); 2411 mod_hash_destroy_hash(st->link_hash); 2412 st->lnode_count = 0; 2413 st->link_count = 0; 2414 2415 return (off); 2416 } 2417 2418 2419 /* 2420 * Copy all minor data nodes attached to a devinfo node into the snapshot. 2421 * It is called from di_copynode with devi_lock held. 2422 */ 2423 static di_off_t 2424 di_getmdata(struct ddi_minor_data *mnode, di_off_t *off_p, di_off_t node, 2425 struct di_state *st) 2426 { 2427 di_off_t off; 2428 struct di_minor *me; 2429 2430 dcmn_err2((CE_CONT, "di_getmdata:\n")); 2431 2432 /* 2433 * check memory first 2434 */ 2435 off = di_checkmem(st, *off_p, sizeof (struct di_minor)); 2436 *off_p = off; 2437 2438 do { 2439 me = (struct di_minor *)(intptr_t)di_mem_addr(st, off); 2440 me->self = off; 2441 me->type = mnode->type; 2442 me->node = node; 2443 me->user_private_data = NULL; 2444 2445 off += DI_ALIGN(sizeof (struct di_minor)); 2446 2447 /* 2448 * Split dev_t to major/minor, so it works for 2449 * both ILP32 and LP64 model 2450 */ 2451 me->dev_major = getmajor(mnode->ddm_dev); 2452 me->dev_minor = getminor(mnode->ddm_dev); 2453 me->spec_type = mnode->ddm_spec_type; 2454 2455 if (mnode->ddm_name) { 2456 off = di_checkmem(st, off, 2457 strlen(mnode->ddm_name) + 1); 2458 me->name = off; 2459 (void) strcpy(di_mem_addr(st, off), mnode->ddm_name); 2460 off += DI_ALIGN(strlen(mnode->ddm_name) + 1); 2461 } 2462 2463 if (mnode->ddm_node_type) { 2464 off = di_checkmem(st, off, 2465 strlen(mnode->ddm_node_type) + 1); 2466 me->node_type = off; 2467 (void) strcpy(di_mem_addr(st, off), 2468 mnode->ddm_node_type); 2469 off += DI_ALIGN(strlen(mnode->ddm_node_type) + 1); 2470 } 2471 2472 off = di_checkmem(st, off, sizeof (struct di_minor)); 2473 me->next = off; 2474 mnode = mnode->next; 2475 } while (mnode); 2476 2477 me->next = 0; 2478 2479 return (off); 2480 } 2481 2482 /* 2483 * di_register_dip(), di_find_dip(): The dip must be protected 2484 * from deallocation when using these routines - this can either 2485 * be a reference count, a busy hold or a per-driver lock. 2486 */ 2487 2488 static void 2489 di_register_dip(struct di_state *st, dev_info_t *dip, di_off_t off) 2490 { 2491 struct dev_info *node = DEVI(dip); 2492 struct di_key *key = kmem_zalloc(sizeof (*key), KM_SLEEP); 2493 struct di_dkey *dk; 2494 2495 ASSERT(dip); 2496 ASSERT(off > 0); 2497 2498 key->k_type = DI_DKEY; 2499 dk = &(key->k_u.dkey); 2500 2501 dk->dk_dip = dip; 2502 dk->dk_major = node->devi_major; 2503 dk->dk_inst = node->devi_instance; 2504 dk->dk_nodeid = node->devi_nodeid; 2505 2506 if (mod_hash_insert(st->reg_dip_hash, (mod_hash_key_t)key, 2507 (mod_hash_val_t)(uintptr_t)off) != 0) { 2508 panic( 2509 "duplicate devinfo (%p) registered during device " 2510 "tree walk", (void *)dip); 2511 } 2512 } 2513 2514 2515 static int 2516 di_dip_find(struct di_state *st, dev_info_t *dip, di_off_t *off_p) 2517 { 2518 /* 2519 * uintptr_t must be used because it matches the size of void *; 2520 * mod_hash expects clients to place results into pointer-size 2521 * containers; since di_off_t is always a 32-bit offset, alignment 2522 * would otherwise be broken on 64-bit kernels. 2523 */ 2524 uintptr_t offset; 2525 struct di_key key = {0}; 2526 struct di_dkey *dk; 2527 2528 ASSERT(st->reg_dip_hash); 2529 ASSERT(dip); 2530 ASSERT(off_p); 2531 2532 2533 key.k_type = DI_DKEY; 2534 dk = &(key.k_u.dkey); 2535 2536 dk->dk_dip = dip; 2537 dk->dk_major = DEVI(dip)->devi_major; 2538 dk->dk_inst = DEVI(dip)->devi_instance; 2539 dk->dk_nodeid = DEVI(dip)->devi_nodeid; 2540 2541 if (mod_hash_find(st->reg_dip_hash, (mod_hash_key_t)&key, 2542 (mod_hash_val_t *)&offset) == 0) { 2543 *off_p = (di_off_t)offset; 2544 return (0); 2545 } else { 2546 return (-1); 2547 } 2548 } 2549 2550 /* 2551 * di_register_pip(), di_find_pip(): The pip must be protected from deallocation 2552 * when using these routines. The caller must do this by protecting the 2553 * client(or phci)<->pip linkage while traversing the list and then holding the 2554 * pip when it is found in the list. 2555 */ 2556 2557 static void 2558 di_register_pip(struct di_state *st, mdi_pathinfo_t *pip, di_off_t off) 2559 { 2560 struct di_key *key = kmem_zalloc(sizeof (*key), KM_SLEEP); 2561 char *path_addr; 2562 struct di_pkey *pk; 2563 2564 ASSERT(pip); 2565 ASSERT(off > 0); 2566 2567 key->k_type = DI_PKEY; 2568 pk = &(key->k_u.pkey); 2569 2570 pk->pk_pip = pip; 2571 path_addr = mdi_pi_get_addr(pip); 2572 if (path_addr) 2573 pk->pk_path_addr = i_ddi_strdup(path_addr, KM_SLEEP); 2574 pk->pk_client = mdi_pi_get_client(pip); 2575 pk->pk_phci = mdi_pi_get_phci(pip); 2576 2577 if (mod_hash_insert(st->reg_pip_hash, (mod_hash_key_t)key, 2578 (mod_hash_val_t)(uintptr_t)off) != 0) { 2579 panic( 2580 "duplicate pathinfo (%p) registered during device " 2581 "tree walk", (void *)pip); 2582 } 2583 } 2584 2585 /* 2586 * As with di_register_pip, the caller must hold or lock the pip 2587 */ 2588 static int 2589 di_pip_find(struct di_state *st, mdi_pathinfo_t *pip, di_off_t *off_p) 2590 { 2591 /* 2592 * uintptr_t must be used because it matches the size of void *; 2593 * mod_hash expects clients to place results into pointer-size 2594 * containers; since di_off_t is always a 32-bit offset, alignment 2595 * would otherwise be broken on 64-bit kernels. 2596 */ 2597 uintptr_t offset; 2598 struct di_key key = {0}; 2599 struct di_pkey *pk; 2600 2601 ASSERT(st->reg_pip_hash); 2602 ASSERT(off_p); 2603 2604 if (pip == NULL) { 2605 *off_p = 0; 2606 return (0); 2607 } 2608 2609 key.k_type = DI_PKEY; 2610 pk = &(key.k_u.pkey); 2611 2612 pk->pk_pip = pip; 2613 pk->pk_path_addr = mdi_pi_get_addr(pip); 2614 pk->pk_client = mdi_pi_get_client(pip); 2615 pk->pk_phci = mdi_pi_get_phci(pip); 2616 2617 if (mod_hash_find(st->reg_pip_hash, (mod_hash_key_t)&key, 2618 (mod_hash_val_t *)&offset) == 0) { 2619 *off_p = (di_off_t)offset; 2620 return (0); 2621 } else { 2622 return (-1); 2623 } 2624 } 2625 2626 static di_path_state_t 2627 path_state_convert(mdi_pathinfo_state_t st) 2628 { 2629 switch (st) { 2630 case MDI_PATHINFO_STATE_ONLINE: 2631 return (DI_PATH_STATE_ONLINE); 2632 case MDI_PATHINFO_STATE_STANDBY: 2633 return (DI_PATH_STATE_STANDBY); 2634 case MDI_PATHINFO_STATE_OFFLINE: 2635 return (DI_PATH_STATE_OFFLINE); 2636 case MDI_PATHINFO_STATE_FAULT: 2637 return (DI_PATH_STATE_FAULT); 2638 default: 2639 return (DI_PATH_STATE_UNKNOWN); 2640 } 2641 } 2642 2643 2644 static di_off_t 2645 di_path_getprop(mdi_pathinfo_t *pip, di_off_t off, di_off_t *off_p, 2646 struct di_state *st) 2647 { 2648 nvpair_t *prop = NULL; 2649 struct di_path_prop *me; 2650 2651 if (mdi_pi_get_next_prop(pip, NULL) == NULL) { 2652 *off_p = 0; 2653 return (off); 2654 } 2655 2656 off = di_checkmem(st, off, sizeof (struct di_path_prop)); 2657 *off_p = off; 2658 2659 while (prop = mdi_pi_get_next_prop(pip, prop)) { 2660 int delta = 0; 2661 2662 me = (struct di_path_prop *)(intptr_t)di_mem_addr(st, off); 2663 me->self = off; 2664 off += sizeof (struct di_path_prop); 2665 2666 /* 2667 * property name 2668 */ 2669 off = di_checkmem(st, off, strlen(nvpair_name(prop)) + 1); 2670 me->prop_name = off; 2671 (void) strcpy(di_mem_addr(st, off), nvpair_name(prop)); 2672 off += strlen(nvpair_name(prop)) + 1; 2673 2674 switch (nvpair_type(prop)) { 2675 case DATA_TYPE_BYTE: 2676 case DATA_TYPE_INT16: 2677 case DATA_TYPE_UINT16: 2678 case DATA_TYPE_INT32: 2679 case DATA_TYPE_UINT32: 2680 delta = sizeof (int32_t); 2681 me->prop_type = DDI_PROP_TYPE_INT; 2682 off = di_checkmem(st, off, delta); 2683 (void) nvpair_value_int32(prop, 2684 (int32_t *)(intptr_t)di_mem_addr(st, off)); 2685 break; 2686 2687 case DATA_TYPE_INT64: 2688 case DATA_TYPE_UINT64: 2689 delta = sizeof (int64_t); 2690 me->prop_type = DDI_PROP_TYPE_INT64; 2691 off = di_checkmem(st, off, delta); 2692 (void) nvpair_value_int64(prop, 2693 (int64_t *)(intptr_t)di_mem_addr(st, off)); 2694 break; 2695 2696 case DATA_TYPE_STRING: 2697 { 2698 char *str; 2699 (void) nvpair_value_string(prop, &str); 2700 delta = strlen(str) + 1; 2701 me->prop_type = DDI_PROP_TYPE_STRING; 2702 off = di_checkmem(st, off, delta); 2703 (void) strcpy(di_mem_addr(st, off), str); 2704 break; 2705 } 2706 case DATA_TYPE_BYTE_ARRAY: 2707 case DATA_TYPE_INT16_ARRAY: 2708 case DATA_TYPE_UINT16_ARRAY: 2709 case DATA_TYPE_INT32_ARRAY: 2710 case DATA_TYPE_UINT32_ARRAY: 2711 case DATA_TYPE_INT64_ARRAY: 2712 case DATA_TYPE_UINT64_ARRAY: 2713 { 2714 uchar_t *buf; 2715 uint_t nelems; 2716 (void) nvpair_value_byte_array(prop, &buf, &nelems); 2717 delta = nelems; 2718 me->prop_type = DDI_PROP_TYPE_BYTE; 2719 if (nelems != 0) { 2720 off = di_checkmem(st, off, delta); 2721 bcopy(buf, di_mem_addr(st, off), nelems); 2722 } 2723 break; 2724 } 2725 2726 default: /* Unknown or unhandled type; skip it */ 2727 delta = 0; 2728 break; 2729 } 2730 2731 if (delta > 0) { 2732 me->prop_data = off; 2733 } 2734 2735 me->prop_len = delta; 2736 off += delta; 2737 2738 off = di_checkmem(st, off, sizeof (struct di_path_prop)); 2739 me->prop_next = off; 2740 } 2741 2742 me->prop_next = 0; 2743 return (off); 2744 } 2745 2746 2747 static void 2748 di_path_one_endpoint(struct di_path *me, di_off_t noff, di_off_t **off_pp, 2749 int get_client) 2750 { 2751 if (get_client) { 2752 ASSERT(me->path_client == 0); 2753 me->path_client = noff; 2754 ASSERT(me->path_c_link == 0); 2755 *off_pp = &me->path_c_link; 2756 me->path_snap_state &= 2757 ~(DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOCLINK); 2758 } else { 2759 ASSERT(me->path_phci == 0); 2760 me->path_phci = noff; 2761 ASSERT(me->path_p_link == 0); 2762 *off_pp = &me->path_p_link; 2763 me->path_snap_state &= 2764 ~(DI_PATH_SNAP_NOPHCI | DI_PATH_SNAP_NOPLINK); 2765 } 2766 } 2767 2768 /* 2769 * poff_p: pointer to the linkage field. This links pips along the client|phci 2770 * linkage list. 2771 * noff : Offset for the endpoint dip snapshot. 2772 */ 2773 static di_off_t 2774 di_getpath_data(dev_info_t *dip, di_off_t *poff_p, di_off_t noff, 2775 struct di_state *st, int get_client) 2776 { 2777 di_off_t off; 2778 mdi_pathinfo_t *pip; 2779 struct di_path *me; 2780 mdi_pathinfo_t *(*next_pip)(dev_info_t *, mdi_pathinfo_t *); 2781 2782 dcmn_err2((CE_WARN, "di_getpath_data: client = %d", get_client)); 2783 2784 /* 2785 * The naming of the following mdi_xyz() is unfortunately 2786 * non-intuitive. mdi_get_next_phci_path() follows the 2787 * client_link i.e. the list of pip's belonging to the 2788 * given client dip. 2789 */ 2790 if (get_client) 2791 next_pip = &mdi_get_next_phci_path; 2792 else 2793 next_pip = &mdi_get_next_client_path; 2794 2795 off = *poff_p; 2796 2797 pip = NULL; 2798 while (pip = (*next_pip)(dip, pip)) { 2799 mdi_pathinfo_state_t state; 2800 di_off_t stored_offset; 2801 2802 dcmn_err((CE_WARN, "marshalling pip = %p", (void *)pip)); 2803 2804 mdi_pi_lock(pip); 2805 2806 if (di_pip_find(st, pip, &stored_offset) != -1) { 2807 /* 2808 * We've already seen this pathinfo node so we need to 2809 * take care not to snap it again; However, one endpoint 2810 * and linkage will be set here. The other endpoint 2811 * and linkage has already been set when the pip was 2812 * first snapshotted i.e. when the other endpoint dip 2813 * was snapshotted. 2814 */ 2815 me = (struct di_path *)(intptr_t) 2816 di_mem_addr(st, stored_offset); 2817 2818 *poff_p = stored_offset; 2819 2820 di_path_one_endpoint(me, noff, &poff_p, get_client); 2821 2822 /* 2823 * The other endpoint and linkage were set when this 2824 * pip was snapshotted. So we are done with both 2825 * endpoints and linkages. 2826 */ 2827 ASSERT(!(me->path_snap_state & 2828 (DI_PATH_SNAP_NOCLIENT|DI_PATH_SNAP_NOPHCI))); 2829 ASSERT(!(me->path_snap_state & 2830 (DI_PATH_SNAP_NOCLINK|DI_PATH_SNAP_NOPLINK))); 2831 2832 mdi_pi_unlock(pip); 2833 continue; 2834 } 2835 2836 /* 2837 * Now that we need to snapshot this pip, check memory 2838 */ 2839 off = di_checkmem(st, off, sizeof (struct di_path)); 2840 me = (struct di_path *)(intptr_t)di_mem_addr(st, off); 2841 me->self = off; 2842 *poff_p = off; 2843 off += sizeof (struct di_path); 2844 2845 me->path_snap_state = 2846 DI_PATH_SNAP_NOCLINK | DI_PATH_SNAP_NOPLINK; 2847 me->path_snap_state |= 2848 DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOPHCI; 2849 2850 /* 2851 * Zero out fields as di_checkmem() doesn't guarantee 2852 * zero-filled memory 2853 */ 2854 me->path_client = me->path_phci = 0; 2855 me->path_c_link = me->path_p_link = 0; 2856 2857 di_path_one_endpoint(me, noff, &poff_p, get_client); 2858 2859 /* 2860 * Note the existence of this pathinfo 2861 */ 2862 di_register_pip(st, pip, me->self); 2863 2864 state = mdi_pi_get_state(pip); 2865 me->path_state = path_state_convert(state); 2866 2867 /* 2868 * Get intermediate addressing info. 2869 */ 2870 off = di_checkmem(st, off, strlen(mdi_pi_get_addr(pip)) + 1); 2871 me->path_addr = off; 2872 (void) strcpy(di_mem_addr(st, off), mdi_pi_get_addr(pip)); 2873 off += strlen(mdi_pi_get_addr(pip)) + 1; 2874 2875 /* 2876 * Get path properties if props are to be included in the 2877 * snapshot 2878 */ 2879 if (DINFOPROP & st->command) { 2880 off = di_path_getprop(pip, off, &me->path_prop, st); 2881 } else { 2882 me->path_prop = 0; 2883 } 2884 2885 mdi_pi_unlock(pip); 2886 } 2887 2888 *poff_p = 0; 2889 2890 return (off); 2891 } 2892 2893 /* 2894 * Copy a list of properties attached to a devinfo node. Called from 2895 * di_copynode with devi_lock held. The major number is passed in case 2896 * we need to call driver's prop_op entry. The value of list indicates 2897 * which list we are copying. Possible values are: 2898 * DI_PROP_DRV_LIST, DI_PROP_SYS_LIST, DI_PROP_GLB_LIST, DI_PROP_HW_LIST 2899 */ 2900 static di_off_t 2901 di_getprop(struct ddi_prop *prop, di_off_t *off_p, struct di_state *st, 2902 struct dev_info *dip, int list) 2903 { 2904 dev_t dev; 2905 int (*prop_op)(); 2906 int off, need_prop_op = 0; 2907 int prop_op_fail = 0; 2908 ddi_prop_t *propp = NULL; 2909 struct di_prop *pp; 2910 struct dev_ops *ops = NULL; 2911 int prop_len; 2912 caddr_t prop_val; 2913 2914 2915 dcmn_err2((CE_CONT, "di_getprop:\n")); 2916 2917 ASSERT(st != NULL); 2918 2919 dcmn_err((CE_CONT, "copy property list at addr %p\n", (void *)prop)); 2920 2921 /* 2922 * Figure out if we need to call driver's prop_op entry point. 2923 * The conditions are: 2924 * -- driver property list 2925 * -- driver must be attached and held 2926 * -- driver's cb_prop_op != ddi_prop_op 2927 * or parent's bus_prop_op != ddi_bus_prop_op 2928 */ 2929 2930 if (list != DI_PROP_DRV_LIST) { 2931 goto getprop; 2932 } 2933 2934 /* 2935 * If driver is not attached or if major is -1, we ignore 2936 * the driver property list. No one should rely on such 2937 * properties. 2938 */ 2939 if (!i_ddi_devi_attached((dev_info_t *)dip)) { 2940 off = *off_p; 2941 *off_p = 0; 2942 return (off); 2943 } 2944 2945 /* 2946 * Now we have a driver which is held. We can examine entry points 2947 * and check the condition listed above. 2948 */ 2949 ops = dip->devi_ops; 2950 2951 /* 2952 * Some nexus drivers incorrectly set cb_prop_op to nodev, 2953 * nulldev or even NULL. 2954 */ 2955 if (ops && ops->devo_cb_ops && 2956 (ops->devo_cb_ops->cb_prop_op != ddi_prop_op) && 2957 (ops->devo_cb_ops->cb_prop_op != nodev) && 2958 (ops->devo_cb_ops->cb_prop_op != nulldev) && 2959 (ops->devo_cb_ops->cb_prop_op != NULL)) { 2960 need_prop_op = 1; 2961 } 2962 2963 getprop: 2964 /* 2965 * check memory availability 2966 */ 2967 off = di_checkmem(st, *off_p, sizeof (struct di_prop)); 2968 *off_p = off; 2969 /* 2970 * Now copy properties 2971 */ 2972 do { 2973 pp = (struct di_prop *)(intptr_t)di_mem_addr(st, off); 2974 pp->self = off; 2975 /* 2976 * Split dev_t to major/minor, so it works for 2977 * both ILP32 and LP64 model 2978 */ 2979 pp->dev_major = getmajor(prop->prop_dev); 2980 pp->dev_minor = getminor(prop->prop_dev); 2981 pp->prop_flags = prop->prop_flags; 2982 pp->prop_list = list; 2983 2984 /* 2985 * property name 2986 */ 2987 off += sizeof (struct di_prop); 2988 if (prop->prop_name) { 2989 off = di_checkmem(st, off, strlen(prop->prop_name) 2990 + 1); 2991 pp->prop_name = off; 2992 (void) strcpy(di_mem_addr(st, off), prop->prop_name); 2993 off += strlen(prop->prop_name) + 1; 2994 } 2995 2996 /* 2997 * Set prop_len here. This may change later 2998 * if cb_prop_op returns a different length. 2999 */ 3000 pp->prop_len = prop->prop_len; 3001 if (!need_prop_op) { 3002 if (prop->prop_val == NULL) { 3003 dcmn_err((CE_WARN, 3004 "devinfo: property fault at %p", 3005 (void *)prop)); 3006 pp->prop_data = -1; 3007 } else if (prop->prop_len != 0) { 3008 off = di_checkmem(st, off, prop->prop_len); 3009 pp->prop_data = off; 3010 bcopy(prop->prop_val, di_mem_addr(st, off), 3011 prop->prop_len); 3012 off += DI_ALIGN(pp->prop_len); 3013 } 3014 } 3015 3016 off = di_checkmem(st, off, sizeof (struct di_prop)); 3017 pp->next = off; 3018 prop = prop->prop_next; 3019 } while (prop); 3020 3021 pp->next = 0; 3022 3023 if (!need_prop_op) { 3024 dcmn_err((CE_CONT, "finished property " 3025 "list at offset 0x%x\n", off)); 3026 return (off); 3027 } 3028 3029 /* 3030 * If there is a need to call driver's prop_op entry, 3031 * we must release driver's devi_lock, because the 3032 * cb_prop_op entry point will grab it. 3033 * 3034 * The snapshot memory has already been allocated above, 3035 * which means the length of an active property should 3036 * remain fixed for this implementation to work. 3037 */ 3038 3039 3040 prop_op = ops->devo_cb_ops->cb_prop_op; 3041 pp = (struct di_prop *)(intptr_t)di_mem_addr(st, *off_p); 3042 3043 mutex_exit(&dip->devi_lock); 3044 3045 do { 3046 int err; 3047 struct di_prop *tmp; 3048 3049 if (pp->next) { 3050 tmp = (struct di_prop *) 3051 (intptr_t)di_mem_addr(st, pp->next); 3052 } else { 3053 tmp = NULL; 3054 } 3055 3056 /* 3057 * call into driver's prop_op entry point 3058 * 3059 * Must search DDI_DEV_T_NONE with DDI_DEV_T_ANY 3060 */ 3061 dev = makedevice(pp->dev_major, pp->dev_minor); 3062 if (dev == DDI_DEV_T_NONE) 3063 dev = DDI_DEV_T_ANY; 3064 3065 dcmn_err((CE_CONT, "call prop_op" 3066 "(%lx, %p, PROP_LEN_AND_VAL_BUF, " 3067 "DDI_PROP_DONTPASS, \"%s\", %p, &%d)\n", 3068 dev, 3069 (void *)dip, 3070 (char *)di_mem_addr(st, pp->prop_name), 3071 (void *)di_mem_addr(st, pp->prop_data), 3072 pp->prop_len)); 3073 3074 if ((err = (*prop_op)(dev, (dev_info_t)dip, 3075 PROP_LEN_AND_VAL_ALLOC, DDI_PROP_DONTPASS, 3076 (char *)di_mem_addr(st, pp->prop_name), 3077 &prop_val, &prop_len)) != DDI_PROP_SUCCESS) { 3078 if ((propp = i_ddi_prop_search(dev, 3079 (char *)di_mem_addr(st, pp->prop_name), 3080 (uint_t)pp->prop_flags, 3081 &(DEVI(dip)->devi_drv_prop_ptr))) != NULL) { 3082 pp->prop_len = propp->prop_len; 3083 if (pp->prop_len != 0) { 3084 off = di_checkmem(st, off, 3085 pp->prop_len); 3086 pp->prop_data = off; 3087 bcopy(propp->prop_val, di_mem_addr(st, 3088 pp->prop_data), propp->prop_len); 3089 off += DI_ALIGN(pp->prop_len); 3090 } 3091 } else { 3092 prop_op_fail = 1; 3093 } 3094 } else if (prop_len != 0) { 3095 pp->prop_len = prop_len; 3096 off = di_checkmem(st, off, prop_len); 3097 pp->prop_data = off; 3098 bcopy(prop_val, di_mem_addr(st, off), prop_len); 3099 off += DI_ALIGN(prop_len); 3100 kmem_free(prop_val, prop_len); 3101 } 3102 3103 if (prop_op_fail) { 3104 pp->prop_data = -1; 3105 dcmn_err((CE_WARN, "devinfo: prop_op failure " 3106 "for \"%s\" err %d", 3107 di_mem_addr(st, pp->prop_name), err)); 3108 } 3109 3110 pp = tmp; 3111 3112 } while (pp); 3113 3114 mutex_enter(&dip->devi_lock); 3115 dcmn_err((CE_CONT, "finished property list at offset 0x%x\n", off)); 3116 return (off); 3117 } 3118 3119 /* 3120 * find private data format attached to a dip 3121 * parent = 1 to match driver name of parent dip (for parent private data) 3122 * 0 to match driver name of current dip (for driver private data) 3123 */ 3124 #define DI_MATCH_DRIVER 0 3125 #define DI_MATCH_PARENT 1 3126 3127 struct di_priv_format * 3128 di_match_drv_name(struct dev_info *node, struct di_state *st, int match) 3129 { 3130 int i, count, len; 3131 char *drv_name; 3132 major_t major; 3133 struct di_all *all; 3134 struct di_priv_format *form; 3135 3136 dcmn_err2((CE_CONT, "di_match_drv_name: node = %s, match = %x\n", 3137 node->devi_node_name, match)); 3138 3139 if (match == DI_MATCH_PARENT) { 3140 node = DEVI(node->devi_parent); 3141 } 3142 3143 if (node == NULL) { 3144 return (NULL); 3145 } 3146 3147 major = ddi_name_to_major(node->devi_binding_name); 3148 if (major == (major_t)(-1)) { 3149 return (NULL); 3150 } 3151 3152 /* 3153 * Match the driver name. 3154 */ 3155 drv_name = ddi_major_to_name(major); 3156 if ((drv_name == NULL) || *drv_name == '\0') { 3157 return (NULL); 3158 } 3159 3160 /* Now get the di_priv_format array */ 3161 all = (struct di_all *)(intptr_t)di_mem_addr(st, 0); 3162 3163 if (match == DI_MATCH_PARENT) { 3164 count = all->n_ppdata; 3165 form = (struct di_priv_format *) 3166 (intptr_t)(di_mem_addr(st, 0) + all->ppdata_format); 3167 } else { 3168 count = all->n_dpdata; 3169 form = (struct di_priv_format *) 3170 (intptr_t)((caddr_t)all + all->dpdata_format); 3171 } 3172 3173 len = strlen(drv_name); 3174 for (i = 0; i < count; i++) { 3175 char *tmp; 3176 3177 tmp = form[i].drv_name; 3178 while (tmp && (*tmp != '\0')) { 3179 if (strncmp(drv_name, tmp, len) == 0) { 3180 return (&form[i]); 3181 } 3182 /* 3183 * Move to next driver name, skipping a white space 3184 */ 3185 if (tmp = strchr(tmp, ' ')) { 3186 tmp++; 3187 } 3188 } 3189 } 3190 3191 return (NULL); 3192 } 3193 3194 /* 3195 * The following functions copy data as specified by the format passed in. 3196 * To prevent invalid format from panicing the system, we call on_fault(). 3197 * A return value of 0 indicates an error. Otherwise, the total offset 3198 * is returned. 3199 */ 3200 #define DI_MAX_PRIVDATA (PAGESIZE >> 1) /* max private data size */ 3201 3202 static di_off_t 3203 di_getprvdata(struct di_priv_format *pdp, struct dev_info *node, 3204 void *data, di_off_t *off_p, struct di_state *st) 3205 { 3206 caddr_t pa; 3207 void *ptr; 3208 int i, size, repeat; 3209 di_off_t off, off0, *tmp; 3210 char *path; 3211 3212 label_t ljb; 3213 3214 dcmn_err2((CE_CONT, "di_getprvdata:\n")); 3215 3216 /* 3217 * check memory availability. Private data size is 3218 * limited to DI_MAX_PRIVDATA. 3219 */ 3220 off = di_checkmem(st, *off_p, DI_MAX_PRIVDATA); 3221 3222 if ((pdp->bytes == 0) || pdp->bytes > DI_MAX_PRIVDATA) { 3223 goto failure; 3224 } 3225 3226 if (!on_fault(&ljb)) { 3227 /* copy the struct */ 3228 bcopy(data, di_mem_addr(st, off), pdp->bytes); 3229 off0 = DI_ALIGN(pdp->bytes); 3230 3231 /* dereferencing pointers */ 3232 for (i = 0; i < MAX_PTR_IN_PRV; i++) { 3233 3234 if (pdp->ptr[i].size == 0) { 3235 goto success; /* no more ptrs */ 3236 } 3237 3238 /* 3239 * first, get the pointer content 3240 */ 3241 if ((pdp->ptr[i].offset < 0) || 3242 (pdp->ptr[i].offset > 3243 pdp->bytes - sizeof (char *))) 3244 goto failure; /* wrong offset */ 3245 3246 pa = di_mem_addr(st, off + pdp->ptr[i].offset); 3247 3248 /* save a tmp ptr to store off_t later */ 3249 tmp = (di_off_t *)(intptr_t)pa; 3250 3251 /* get pointer value, if NULL continue */ 3252 ptr = *((void **) (intptr_t)pa); 3253 if (ptr == NULL) { 3254 continue; 3255 } 3256 3257 /* 3258 * next, find the repeat count (array dimension) 3259 */ 3260 repeat = pdp->ptr[i].len_offset; 3261 3262 /* 3263 * Positive value indicates a fixed sized array. 3264 * 0 or negative value indicates variable sized array. 3265 * 3266 * For variable sized array, the variable must be 3267 * an int member of the structure, with an offset 3268 * equal to the absolution value of struct member. 3269 */ 3270 if (repeat > pdp->bytes - sizeof (int)) { 3271 goto failure; /* wrong offset */ 3272 } 3273 3274 if (repeat >= 0) { 3275 repeat = *((int *) 3276 (intptr_t)((caddr_t)data + repeat)); 3277 } else { 3278 repeat = -repeat; 3279 } 3280 3281 /* 3282 * next, get the size of the object to be copied 3283 */ 3284 size = pdp->ptr[i].size * repeat; 3285 3286 /* 3287 * Arbitrarily limit the total size of object to be 3288 * copied (1 byte to 1/4 page). 3289 */ 3290 if ((size <= 0) || (size > (DI_MAX_PRIVDATA - off0))) { 3291 goto failure; /* wrong size or too big */ 3292 } 3293 3294 /* 3295 * Now copy the data 3296 */ 3297 *tmp = off0; 3298 bcopy(ptr, di_mem_addr(st, off + off0), size); 3299 off0 += DI_ALIGN(size); 3300 } 3301 } else { 3302 goto failure; 3303 } 3304 3305 success: 3306 /* 3307 * success if reached here 3308 */ 3309 no_fault(); 3310 *off_p = off; 3311 3312 return (off + off0); 3313 /*NOTREACHED*/ 3314 3315 failure: 3316 /* 3317 * fault occurred 3318 */ 3319 no_fault(); 3320 path = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3321 cmn_err(CE_WARN, "devinfo: fault on private data for '%s' at %p", 3322 ddi_pathname((dev_info_t *)node, path), data); 3323 kmem_free(path, MAXPATHLEN); 3324 *off_p = -1; /* set private data to indicate error */ 3325 3326 return (off); 3327 } 3328 3329 /* 3330 * get parent private data; on error, returns original offset 3331 */ 3332 static di_off_t 3333 di_getppdata(struct dev_info *node, di_off_t *off_p, struct di_state *st) 3334 { 3335 int off; 3336 struct di_priv_format *ppdp; 3337 3338 dcmn_err2((CE_CONT, "di_getppdata:\n")); 3339 3340 /* find the parent data format */ 3341 if ((ppdp = di_match_drv_name(node, st, DI_MATCH_PARENT)) == NULL) { 3342 off = *off_p; 3343 *off_p = 0; /* set parent data to none */ 3344 return (off); 3345 } 3346 3347 return (di_getprvdata(ppdp, node, 3348 ddi_get_parent_data((dev_info_t *)node), off_p, st)); 3349 } 3350 3351 /* 3352 * get parent private data; returns original offset 3353 */ 3354 static di_off_t 3355 di_getdpdata(struct dev_info *node, di_off_t *off_p, struct di_state *st) 3356 { 3357 int off; 3358 struct di_priv_format *dpdp; 3359 3360 dcmn_err2((CE_CONT, "di_getdpdata:")); 3361 3362 /* find the parent data format */ 3363 if ((dpdp = di_match_drv_name(node, st, DI_MATCH_DRIVER)) == NULL) { 3364 off = *off_p; 3365 *off_p = 0; /* set driver data to none */ 3366 return (off); 3367 } 3368 3369 return (di_getprvdata(dpdp, node, 3370 ddi_get_driver_private((dev_info_t *)node), off_p, st)); 3371 } 3372 3373 /* 3374 * The driver is stateful across DINFOCPYALL and DINFOUSRLD. 3375 * This function encapsulates the state machine: 3376 * 3377 * -> IOC_IDLE -> IOC_SNAP -> IOC_DONE -> IOC_COPY -> 3378 * | SNAPSHOT USRLD | 3379 * -------------------------------------------------- 3380 * 3381 * Returns 0 on success and -1 on failure 3382 */ 3383 static int 3384 di_setstate(struct di_state *st, int new_state) 3385 { 3386 int ret = 0; 3387 3388 mutex_enter(&di_lock); 3389 switch (new_state) { 3390 case IOC_IDLE: 3391 case IOC_DONE: 3392 break; 3393 case IOC_SNAP: 3394 if (st->di_iocstate != IOC_IDLE) 3395 ret = -1; 3396 break; 3397 case IOC_COPY: 3398 if (st->di_iocstate != IOC_DONE) 3399 ret = -1; 3400 break; 3401 default: 3402 ret = -1; 3403 } 3404 3405 if (ret == 0) 3406 st->di_iocstate = new_state; 3407 else 3408 cmn_err(CE_NOTE, "incorrect state transition from %d to %d", 3409 st->di_iocstate, new_state); 3410 mutex_exit(&di_lock); 3411 return (ret); 3412 } 3413 3414 /* 3415 * We cannot assume the presence of the entire 3416 * snapshot in this routine. All we are guaranteed 3417 * is the di_all struct + 1 byte (for root_path) 3418 */ 3419 static int 3420 header_plus_one_ok(struct di_all *all) 3421 { 3422 /* 3423 * Refuse to read old versions 3424 */ 3425 if (all->version != DI_SNAPSHOT_VERSION) { 3426 CACHE_DEBUG((DI_ERR, "bad version: 0x%x", all->version)); 3427 return (0); 3428 } 3429 3430 if (all->cache_magic != DI_CACHE_MAGIC) { 3431 CACHE_DEBUG((DI_ERR, "bad magic #: 0x%x", all->cache_magic)); 3432 return (0); 3433 } 3434 3435 if (all->snapshot_time == 0) { 3436 CACHE_DEBUG((DI_ERR, "bad timestamp: %ld", all->snapshot_time)); 3437 return (0); 3438 } 3439 3440 if (all->top_devinfo == 0) { 3441 CACHE_DEBUG((DI_ERR, "NULL top devinfo")); 3442 return (0); 3443 } 3444 3445 if (all->map_size < sizeof (*all) + 1) { 3446 CACHE_DEBUG((DI_ERR, "bad map size: %u", all->map_size)); 3447 return (0); 3448 } 3449 3450 if (all->root_path[0] != '/' || all->root_path[1] != '\0') { 3451 CACHE_DEBUG((DI_ERR, "bad rootpath: %c%c", 3452 all->root_path[0], all->root_path[1])); 3453 return (0); 3454 } 3455 3456 /* 3457 * We can't check checksum here as we just have the header 3458 */ 3459 3460 return (1); 3461 } 3462 3463 static int 3464 chunk_write(struct vnode *vp, offset_t off, caddr_t buf, size_t len) 3465 { 3466 rlim64_t rlimit; 3467 ssize_t resid; 3468 int error = 0; 3469 3470 3471 rlimit = RLIM64_INFINITY; 3472 3473 while (len) { 3474 resid = 0; 3475 error = vn_rdwr(UIO_WRITE, vp, buf, len, off, 3476 UIO_SYSSPACE, FSYNC, rlimit, kcred, &resid); 3477 3478 if (error || resid < 0) { 3479 error = error ? error : EIO; 3480 CACHE_DEBUG((DI_ERR, "write error: %d", error)); 3481 break; 3482 } 3483 3484 /* 3485 * Check if we are making progress 3486 */ 3487 if (resid >= len) { 3488 error = ENOSPC; 3489 break; 3490 } 3491 buf += len - resid; 3492 off += len - resid; 3493 len = resid; 3494 } 3495 3496 return (error); 3497 } 3498 3499 extern int modrootloaded; 3500 extern void mdi_walk_vhcis(int (*)(dev_info_t *, void *), void *); 3501 extern void mdi_vhci_walk_phcis(dev_info_t *, 3502 int (*)(dev_info_t *, void *), void *); 3503 3504 static void 3505 di_cache_write(struct di_cache *cache) 3506 { 3507 struct di_all *all; 3508 struct vnode *vp; 3509 int oflags; 3510 size_t map_size; 3511 size_t chunk; 3512 offset_t off; 3513 int error; 3514 char *buf; 3515 3516 ASSERT(DI_CACHE_LOCKED(*cache)); 3517 ASSERT(!servicing_interrupt()); 3518 3519 if (cache->cache_size == 0) { 3520 ASSERT(cache->cache_data == NULL); 3521 CACHE_DEBUG((DI_ERR, "Empty cache. Skipping write")); 3522 return; 3523 } 3524 3525 ASSERT(cache->cache_size > 0); 3526 ASSERT(cache->cache_data); 3527 3528 if (!modrootloaded || rootvp == NULL || vn_is_readonly(rootvp)) { 3529 CACHE_DEBUG((DI_ERR, "Can't write to rootFS. Skipping write")); 3530 return; 3531 } 3532 3533 all = (struct di_all *)cache->cache_data; 3534 3535 if (!header_plus_one_ok(all)) { 3536 CACHE_DEBUG((DI_ERR, "Invalid header. Skipping write")); 3537 return; 3538 } 3539 3540 ASSERT(strcmp(all->root_path, "/") == 0); 3541 3542 /* 3543 * The cache_size is the total allocated memory for the cache. 3544 * The map_size is the actual size of valid data in the cache. 3545 * map_size may be smaller than cache_size but cannot exceed 3546 * cache_size. 3547 */ 3548 if (all->map_size > cache->cache_size) { 3549 CACHE_DEBUG((DI_ERR, "map_size (0x%x) > cache_size (0x%x)." 3550 " Skipping write", all->map_size, cache->cache_size)); 3551 return; 3552 } 3553 3554 /* 3555 * First unlink the temp file 3556 */ 3557 error = vn_remove(DI_CACHE_TEMP, UIO_SYSSPACE, RMFILE); 3558 if (error && error != ENOENT) { 3559 CACHE_DEBUG((DI_ERR, "%s: unlink failed: %d", 3560 DI_CACHE_TEMP, error)); 3561 } 3562 3563 if (error == EROFS) { 3564 CACHE_DEBUG((DI_ERR, "RDONLY FS. Skipping write")); 3565 return; 3566 } 3567 3568 vp = NULL; 3569 oflags = (FCREAT|FWRITE); 3570 if (error = vn_open(DI_CACHE_TEMP, UIO_SYSSPACE, oflags, 3571 DI_CACHE_PERMS, &vp, CRCREAT, 0)) { 3572 CACHE_DEBUG((DI_ERR, "%s: create failed: %d", 3573 DI_CACHE_TEMP, error)); 3574 return; 3575 } 3576 3577 ASSERT(vp); 3578 3579 /* 3580 * Paranoid: Check if the file is on a read-only FS 3581 */ 3582 if (vn_is_readonly(vp)) { 3583 CACHE_DEBUG((DI_ERR, "cannot write: readonly FS")); 3584 goto fail; 3585 } 3586 3587 /* 3588 * Note that we only write map_size bytes to disk - this saves 3589 * space as the actual cache size may be larger than size of 3590 * valid data in the cache. 3591 * Another advantage is that it makes verification of size 3592 * easier when the file is read later. 3593 */ 3594 map_size = all->map_size; 3595 off = 0; 3596 buf = cache->cache_data; 3597 3598 while (map_size) { 3599 ASSERT(map_size > 0); 3600 /* 3601 * Write in chunks so that VM system 3602 * is not overwhelmed 3603 */ 3604 if (map_size > di_chunk * PAGESIZE) 3605 chunk = di_chunk * PAGESIZE; 3606 else 3607 chunk = map_size; 3608 3609 error = chunk_write(vp, off, buf, chunk); 3610 if (error) { 3611 CACHE_DEBUG((DI_ERR, "write failed: off=0x%x: %d", 3612 off, error)); 3613 goto fail; 3614 } 3615 3616 off += chunk; 3617 buf += chunk; 3618 map_size -= chunk; 3619 3620 /* Give pageout a chance to run */ 3621 delay(1); 3622 } 3623 3624 /* 3625 * Now sync the file and close it 3626 */ 3627 if (error = VOP_FSYNC(vp, FSYNC, kcred)) { 3628 CACHE_DEBUG((DI_ERR, "FSYNC failed: %d", error)); 3629 } 3630 3631 if (error = VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred)) { 3632 CACHE_DEBUG((DI_ERR, "close() failed: %d", error)); 3633 VN_RELE(vp); 3634 return; 3635 } 3636 3637 VN_RELE(vp); 3638 3639 /* 3640 * Now do the rename 3641 */ 3642 if (error = vn_rename(DI_CACHE_TEMP, DI_CACHE_FILE, UIO_SYSSPACE)) { 3643 CACHE_DEBUG((DI_ERR, "rename failed: %d", error)); 3644 return; 3645 } 3646 3647 CACHE_DEBUG((DI_INFO, "Cache write successful.")); 3648 3649 return; 3650 3651 fail: 3652 (void) VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred); 3653 VN_RELE(vp); 3654 } 3655 3656 3657 /* 3658 * Since we could be called early in boot, 3659 * use kobj_read_file() 3660 */ 3661 static void 3662 di_cache_read(struct di_cache *cache) 3663 { 3664 struct _buf *file; 3665 struct di_all *all; 3666 int n; 3667 size_t map_size, sz, chunk; 3668 offset_t off; 3669 caddr_t buf; 3670 uint32_t saved_crc, crc; 3671 3672 ASSERT(modrootloaded); 3673 ASSERT(DI_CACHE_LOCKED(*cache)); 3674 ASSERT(cache->cache_data == NULL); 3675 ASSERT(cache->cache_size == 0); 3676 ASSERT(!servicing_interrupt()); 3677 3678 file = kobj_open_file(DI_CACHE_FILE); 3679 if (file == (struct _buf *)-1) { 3680 CACHE_DEBUG((DI_ERR, "%s: open failed: %d", 3681 DI_CACHE_FILE, ENOENT)); 3682 return; 3683 } 3684 3685 /* 3686 * Read in the header+root_path first. The root_path must be "/" 3687 */ 3688 all = kmem_zalloc(sizeof (*all) + 1, KM_SLEEP); 3689 n = kobj_read_file(file, (caddr_t)all, sizeof (*all) + 1, 0); 3690 3691 if ((n != sizeof (*all) + 1) || !header_plus_one_ok(all)) { 3692 kmem_free(all, sizeof (*all) + 1); 3693 kobj_close_file(file); 3694 CACHE_DEBUG((DI_ERR, "cache header: read error or invalid")); 3695 return; 3696 } 3697 3698 map_size = all->map_size; 3699 3700 kmem_free(all, sizeof (*all) + 1); 3701 3702 ASSERT(map_size >= sizeof (*all) + 1); 3703 3704 buf = di_cache.cache_data = kmem_alloc(map_size, KM_SLEEP); 3705 sz = map_size; 3706 off = 0; 3707 while (sz) { 3708 /* Don't overload VM with large reads */ 3709 chunk = (sz > di_chunk * PAGESIZE) ? di_chunk * PAGESIZE : sz; 3710 n = kobj_read_file(file, buf, chunk, off); 3711 if (n != chunk) { 3712 CACHE_DEBUG((DI_ERR, "%s: read error at offset: %lld", 3713 DI_CACHE_FILE, off)); 3714 goto fail; 3715 } 3716 off += chunk; 3717 buf += chunk; 3718 sz -= chunk; 3719 } 3720 3721 ASSERT(off == map_size); 3722 3723 /* 3724 * Read past expected EOF to verify size. 3725 */ 3726 if (kobj_read_file(file, (caddr_t)&sz, 1, off) > 0) { 3727 CACHE_DEBUG((DI_ERR, "%s: file size changed", DI_CACHE_FILE)); 3728 goto fail; 3729 } 3730 3731 all = (struct di_all *)di_cache.cache_data; 3732 if (!header_plus_one_ok(all)) { 3733 CACHE_DEBUG((DI_ERR, "%s: file header changed", DI_CACHE_FILE)); 3734 goto fail; 3735 } 3736 3737 /* 3738 * Compute CRC with checksum field in the cache data set to 0 3739 */ 3740 saved_crc = all->cache_checksum; 3741 all->cache_checksum = 0; 3742 CRC32(crc, di_cache.cache_data, map_size, -1U, crc32_table); 3743 all->cache_checksum = saved_crc; 3744 3745 if (crc != all->cache_checksum) { 3746 CACHE_DEBUG((DI_ERR, 3747 "%s: checksum error: expected=0x%x actual=0x%x", 3748 DI_CACHE_FILE, all->cache_checksum, crc)); 3749 goto fail; 3750 } 3751 3752 if (all->map_size != map_size) { 3753 CACHE_DEBUG((DI_ERR, "%s: map size changed", DI_CACHE_FILE)); 3754 goto fail; 3755 } 3756 3757 kobj_close_file(file); 3758 3759 di_cache.cache_size = map_size; 3760 3761 return; 3762 3763 fail: 3764 kmem_free(di_cache.cache_data, map_size); 3765 kobj_close_file(file); 3766 di_cache.cache_data = NULL; 3767 di_cache.cache_size = 0; 3768 } 3769 3770 3771 /* 3772 * Checks if arguments are valid for using the cache. 3773 */ 3774 static int 3775 cache_args_valid(struct di_state *st, int *error) 3776 { 3777 ASSERT(error); 3778 ASSERT(st->mem_size > 0); 3779 ASSERT(st->memlist != NULL); 3780 3781 if (!modrootloaded || !i_ddi_io_initialized()) { 3782 CACHE_DEBUG((DI_ERR, 3783 "cache lookup failure: I/O subsystem not inited")); 3784 *error = ENOTACTIVE; 3785 return (0); 3786 } 3787 3788 /* 3789 * No other flags allowed with DINFOCACHE 3790 */ 3791 if (st->command != (DINFOCACHE & DIIOC_MASK)) { 3792 CACHE_DEBUG((DI_ERR, 3793 "cache lookup failure: bad flags: 0x%x", 3794 st->command)); 3795 *error = EINVAL; 3796 return (0); 3797 } 3798 3799 if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) { 3800 CACHE_DEBUG((DI_ERR, 3801 "cache lookup failure: bad root: %s", 3802 DI_ALL_PTR(st)->root_path)); 3803 *error = EINVAL; 3804 return (0); 3805 } 3806 3807 CACHE_DEBUG((DI_INFO, "cache lookup args ok: 0x%x", st->command)); 3808 3809 *error = 0; 3810 3811 return (1); 3812 } 3813 3814 static int 3815 snapshot_is_cacheable(struct di_state *st) 3816 { 3817 ASSERT(st->mem_size > 0); 3818 ASSERT(st->memlist != NULL); 3819 3820 if ((st->command & DI_CACHE_SNAPSHOT_FLAGS) != 3821 (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK)) { 3822 CACHE_DEBUG((DI_INFO, 3823 "not cacheable: incompatible flags: 0x%x", 3824 st->command)); 3825 return (0); 3826 } 3827 3828 if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) { 3829 CACHE_DEBUG((DI_INFO, 3830 "not cacheable: incompatible root path: %s", 3831 DI_ALL_PTR(st)->root_path)); 3832 return (0); 3833 } 3834 3835 CACHE_DEBUG((DI_INFO, "cacheable snapshot request: 0x%x", st->command)); 3836 3837 return (1); 3838 } 3839 3840 static int 3841 di_cache_lookup(struct di_state *st) 3842 { 3843 size_t rval; 3844 int cache_valid; 3845 3846 ASSERT(cache_args_valid(st, &cache_valid)); 3847 ASSERT(modrootloaded); 3848 3849 DI_CACHE_LOCK(di_cache); 3850 3851 /* 3852 * The following assignment determines the validity 3853 * of the cache as far as this snapshot is concerned. 3854 */ 3855 cache_valid = di_cache.cache_valid; 3856 3857 if (cache_valid && di_cache.cache_data == NULL) { 3858 di_cache_read(&di_cache); 3859 /* check for read or file error */ 3860 if (di_cache.cache_data == NULL) 3861 cache_valid = 0; 3862 } 3863 3864 if (cache_valid) { 3865 /* 3866 * Ok, the cache was valid as of this particular 3867 * snapshot. Copy the cached snapshot. This is safe 3868 * to do as the cache cannot be freed (we hold the 3869 * cache lock). Free the memory allocated in di_state 3870 * up until this point - we will simply copy everything 3871 * in the cache. 3872 */ 3873 3874 ASSERT(di_cache.cache_data != NULL); 3875 ASSERT(di_cache.cache_size > 0); 3876 3877 di_freemem(st); 3878 3879 rval = 0; 3880 if (di_cache2mem(&di_cache, st) > 0) { 3881 3882 ASSERT(DI_ALL_PTR(st)); 3883 3884 /* 3885 * map_size is size of valid data in the 3886 * cached snapshot and may be less than 3887 * size of the cache. 3888 */ 3889 rval = DI_ALL_PTR(st)->map_size; 3890 3891 ASSERT(rval >= sizeof (struct di_all)); 3892 ASSERT(rval <= di_cache.cache_size); 3893 } 3894 } else { 3895 /* 3896 * The cache isn't valid, we need to take a snapshot. 3897 * Set the command flags appropriately 3898 */ 3899 ASSERT(st->command == (DINFOCACHE & DIIOC_MASK)); 3900 st->command = (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK); 3901 rval = di_cache_update(st); 3902 st->command = (DINFOCACHE & DIIOC_MASK); 3903 } 3904 3905 DI_CACHE_UNLOCK(di_cache); 3906 3907 /* 3908 * For cached snapshots, the devinfo driver always returns 3909 * a snapshot rooted at "/". 3910 */ 3911 ASSERT(rval == 0 || strcmp(DI_ALL_PTR(st)->root_path, "/") == 0); 3912 3913 return ((int)rval); 3914 } 3915 3916 /* 3917 * This is a forced update of the cache - the previous state of the cache 3918 * may be: 3919 * - unpopulated 3920 * - populated and invalid 3921 * - populated and valid 3922 */ 3923 static int 3924 di_cache_update(struct di_state *st) 3925 { 3926 int rval; 3927 uint32_t crc; 3928 struct di_all *all; 3929 3930 ASSERT(DI_CACHE_LOCKED(di_cache)); 3931 ASSERT(snapshot_is_cacheable(st)); 3932 3933 /* 3934 * Free the in-core cache and the on-disk file (if they exist) 3935 */ 3936 i_ddi_di_cache_free(&di_cache); 3937 3938 /* 3939 * Set valid flag before taking the snapshot, 3940 * so that any invalidations that arrive 3941 * during or after the snapshot are not 3942 * removed by us. 3943 */ 3944 atomic_or_32(&di_cache.cache_valid, 1); 3945 3946 rval = di_snapshot_and_clean(st); 3947 3948 if (rval == 0) { 3949 CACHE_DEBUG((DI_ERR, "can't update cache: bad snapshot")); 3950 return (0); 3951 } 3952 3953 DI_ALL_PTR(st)->map_size = rval; 3954 3955 if (di_mem2cache(st, &di_cache) == 0) { 3956 CACHE_DEBUG((DI_ERR, "can't update cache: copy failed")); 3957 return (0); 3958 } 3959 3960 ASSERT(di_cache.cache_data); 3961 ASSERT(di_cache.cache_size > 0); 3962 3963 /* 3964 * Now that we have cached the snapshot, compute its checksum. 3965 * The checksum is only computed over the valid data in the 3966 * cache, not the entire cache. 3967 * Also, set all the fields (except checksum) before computing 3968 * checksum. 3969 */ 3970 all = (struct di_all *)di_cache.cache_data; 3971 all->cache_magic = DI_CACHE_MAGIC; 3972 all->map_size = rval; 3973 3974 ASSERT(all->cache_checksum == 0); 3975 CRC32(crc, di_cache.cache_data, all->map_size, -1U, crc32_table); 3976 all->cache_checksum = crc; 3977 3978 di_cache_write(&di_cache); 3979 3980 return (rval); 3981 } 3982 3983 static void 3984 di_cache_print(di_cache_debug_t msglevel, char *fmt, ...) 3985 { 3986 va_list ap; 3987 3988 if (di_cache_debug <= DI_QUIET) 3989 return; 3990 3991 if (di_cache_debug < msglevel) 3992 return; 3993 3994 switch (msglevel) { 3995 case DI_ERR: 3996 msglevel = CE_WARN; 3997 break; 3998 case DI_INFO: 3999 case DI_TRACE: 4000 default: 4001 msglevel = CE_NOTE; 4002 break; 4003 } 4004 4005 va_start(ap, fmt); 4006 vcmn_err(msglevel, fmt, ap); 4007 va_end(ap); 4008 } 4009