1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * driver for accessing kernel devinfo tree. 30 */ 31 #include <sys/types.h> 32 #include <sys/pathname.h> 33 #include <sys/debug.h> 34 #include <sys/autoconf.h> 35 #include <sys/conf.h> 36 #include <sys/file.h> 37 #include <sys/kmem.h> 38 #include <sys/modctl.h> 39 #include <sys/stat.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/sunldi_impl.h> 43 #include <sys/sunndi.h> 44 #include <sys/esunddi.h> 45 #include <sys/sunmdi.h> 46 #include <sys/ddi_impldefs.h> 47 #include <sys/ndi_impldefs.h> 48 #include <sys/mdi_impldefs.h> 49 #include <sys/devinfo_impl.h> 50 #include <sys/thread.h> 51 #include <sys/modhash.h> 52 #include <sys/bitmap.h> 53 #include <util/qsort.h> 54 #include <sys/disp.h> 55 #include <sys/kobj.h> 56 #include <sys/crc32.h> 57 58 59 #ifdef DEBUG 60 static int di_debug; 61 #define dcmn_err(args) if (di_debug >= 1) cmn_err args 62 #define dcmn_err2(args) if (di_debug >= 2) cmn_err args 63 #define dcmn_err3(args) if (di_debug >= 3) cmn_err args 64 #else 65 #define dcmn_err(args) /* nothing */ 66 #define dcmn_err2(args) /* nothing */ 67 #define dcmn_err3(args) /* nothing */ 68 #endif 69 70 /* 71 * We partition the space of devinfo minor nodes equally between the full and 72 * unprivileged versions of the driver. The even-numbered minor nodes are the 73 * full version, while the odd-numbered ones are the read-only version. 74 */ 75 static int di_max_opens = 32; 76 77 #define DI_FULL_PARENT 0 78 #define DI_READONLY_PARENT 1 79 #define DI_NODE_SPECIES 2 80 #define DI_UNPRIVILEGED_NODE(x) (((x) % 2) != 0) 81 82 #define IOC_IDLE 0 /* snapshot ioctl states */ 83 #define IOC_SNAP 1 /* snapshot in progress */ 84 #define IOC_DONE 2 /* snapshot done, but not copied out */ 85 #define IOC_COPY 3 /* copyout in progress */ 86 87 /* 88 * Keep max alignment so we can move snapshot to different platforms 89 */ 90 #define DI_ALIGN(addr) ((addr + 7l) & ~7l) 91 92 /* 93 * To avoid wasting memory, make a linked list of memory chunks. 94 * Size of each chunk is buf_size. 95 */ 96 struct di_mem { 97 struct di_mem *next; /* link to next chunk */ 98 char *buf; /* contiguous kernel memory */ 99 size_t buf_size; /* size of buf in bytes */ 100 devmap_cookie_t cook; /* cookie from ddi_umem_alloc */ 101 }; 102 103 /* 104 * This is a stack for walking the tree without using recursion. 105 * When the devinfo tree height is above some small size, one 106 * gets watchdog resets on sun4m. 107 */ 108 struct di_stack { 109 void *offset[MAX_TREE_DEPTH]; 110 struct dev_info *dip[MAX_TREE_DEPTH]; 111 int circ[MAX_TREE_DEPTH]; 112 int depth; /* depth of current node to be copied */ 113 }; 114 115 #define TOP_OFFSET(stack) \ 116 ((di_off_t *)(stack)->offset[(stack)->depth - 1]) 117 #define TOP_NODE(stack) \ 118 ((stack)->dip[(stack)->depth - 1]) 119 #define PARENT_OFFSET(stack) \ 120 ((di_off_t *)(stack)->offset[(stack)->depth - 2]) 121 #define EMPTY_STACK(stack) ((stack)->depth == 0) 122 #define POP_STACK(stack) { \ 123 ndi_devi_exit((dev_info_t *)TOP_NODE(stack), \ 124 (stack)->circ[(stack)->depth - 1]); \ 125 ((stack)->depth--); \ 126 } 127 #define PUSH_STACK(stack, node, offp) { \ 128 ASSERT(node != NULL); \ 129 ndi_devi_enter((dev_info_t *)node, &(stack)->circ[(stack)->depth]); \ 130 (stack)->dip[(stack)->depth] = (node); \ 131 (stack)->offset[(stack)->depth] = (void *)(offp); \ 132 ((stack)->depth)++; \ 133 } 134 135 #define DI_ALL_PTR(s) ((struct di_all *)(intptr_t)di_mem_addr((s), 0)) 136 137 /* 138 * With devfs, the device tree has no global locks. The device tree is 139 * dynamic and dips may come and go if they are not locked locally. Under 140 * these conditions, pointers are no longer reliable as unique IDs. 141 * Specifically, these pointers cannot be used as keys for hash tables 142 * as the same devinfo structure may be freed in one part of the tree only 143 * to be allocated as the structure for a different device in another 144 * part of the tree. This can happen if DR and the snapshot are 145 * happening concurrently. 146 * The following data structures act as keys for devinfo nodes and 147 * pathinfo nodes. 148 */ 149 150 enum di_ktype { 151 DI_DKEY = 1, 152 DI_PKEY = 2 153 }; 154 155 struct di_dkey { 156 dev_info_t *dk_dip; 157 major_t dk_major; 158 int dk_inst; 159 pnode_t dk_nodeid; 160 }; 161 162 struct di_pkey { 163 mdi_pathinfo_t *pk_pip; 164 char *pk_path_addr; 165 dev_info_t *pk_client; 166 dev_info_t *pk_phci; 167 }; 168 169 struct di_key { 170 enum di_ktype k_type; 171 union { 172 struct di_dkey dkey; 173 struct di_pkey pkey; 174 } k_u; 175 }; 176 177 178 struct i_lnode; 179 180 typedef struct i_link { 181 /* 182 * If a di_link struct representing this i_link struct makes it 183 * into the snapshot, then self will point to the offset of 184 * the di_link struct in the snapshot 185 */ 186 di_off_t self; 187 188 int spec_type; /* block or char access type */ 189 struct i_lnode *src_lnode; /* src i_lnode */ 190 struct i_lnode *tgt_lnode; /* tgt i_lnode */ 191 struct i_link *src_link_next; /* next src i_link /w same i_lnode */ 192 struct i_link *tgt_link_next; /* next tgt i_link /w same i_lnode */ 193 } i_link_t; 194 195 typedef struct i_lnode { 196 /* 197 * If a di_lnode struct representing this i_lnode struct makes it 198 * into the snapshot, then self will point to the offset of 199 * the di_lnode struct in the snapshot 200 */ 201 di_off_t self; 202 203 /* 204 * used for hashing and comparing i_lnodes 205 */ 206 int modid; 207 208 /* 209 * public information describing a link endpoint 210 */ 211 struct di_node *di_node; /* di_node in snapshot */ 212 dev_t devt; /* devt */ 213 214 /* 215 * i_link ptr to links coming into this i_lnode node 216 * (this i_lnode is the target of these i_links) 217 */ 218 i_link_t *link_in; 219 220 /* 221 * i_link ptr to links going out of this i_lnode node 222 * (this i_lnode is the source of these i_links) 223 */ 224 i_link_t *link_out; 225 } i_lnode_t; 226 227 /* 228 * Soft state associated with each instance of driver open. 229 */ 230 static struct di_state { 231 di_off_t mem_size; /* total # bytes in memlist */ 232 struct di_mem *memlist; /* head of memlist */ 233 uint_t command; /* command from ioctl */ 234 int di_iocstate; /* snapshot ioctl state */ 235 mod_hash_t *reg_dip_hash; 236 mod_hash_t *reg_pip_hash; 237 int lnode_count; 238 int link_count; 239 240 mod_hash_t *lnode_hash; 241 mod_hash_t *link_hash; 242 } **di_states; 243 244 static kmutex_t di_lock; /* serialize instance assignment */ 245 246 typedef enum { 247 DI_QUIET = 0, /* DI_QUIET must always be 0 */ 248 DI_ERR, 249 DI_INFO, 250 DI_TRACE, 251 DI_TRACE1, 252 DI_TRACE2 253 } di_cache_debug_t; 254 255 static uint_t di_chunk = 32; /* I/O chunk size in pages */ 256 257 #define DI_CACHE_LOCK(c) (mutex_enter(&(c).cache_lock)) 258 #define DI_CACHE_UNLOCK(c) (mutex_exit(&(c).cache_lock)) 259 #define DI_CACHE_LOCKED(c) (mutex_owned(&(c).cache_lock)) 260 261 /* 262 * Check that whole device tree is being configured as a pre-condition for 263 * cleaning up /etc/devices files. 264 */ 265 #define DEVICES_FILES_CLEANABLE(st) \ 266 (((st)->command & DINFOSUBTREE) && ((st)->command & DINFOFORCE) && \ 267 strcmp(DI_ALL_PTR(st)->root_path, "/") == 0) 268 269 #define CACHE_DEBUG(args) \ 270 { if (di_cache_debug != DI_QUIET) di_cache_print args; } 271 272 typedef struct phci_walk_arg { 273 di_off_t off; 274 struct di_state *st; 275 } phci_walk_arg_t; 276 277 static int di_open(dev_t *, int, int, cred_t *); 278 static int di_ioctl(dev_t, int, intptr_t, int, cred_t *, int *); 279 static int di_close(dev_t, int, int, cred_t *); 280 static int di_info(dev_info_t *, ddi_info_cmd_t, void *, void **); 281 static int di_attach(dev_info_t *, ddi_attach_cmd_t); 282 static int di_detach(dev_info_t *, ddi_detach_cmd_t); 283 284 static di_off_t di_copyformat(di_off_t, struct di_state *, intptr_t, int); 285 static di_off_t di_snapshot_and_clean(struct di_state *); 286 static di_off_t di_copydevnm(di_off_t *, struct di_state *); 287 static di_off_t di_copytree(struct dev_info *, di_off_t *, struct di_state *); 288 static di_off_t di_copynode(struct di_stack *, struct di_state *); 289 static di_off_t di_getmdata(struct ddi_minor_data *, di_off_t *, di_off_t, 290 struct di_state *); 291 static di_off_t di_getppdata(struct dev_info *, di_off_t *, struct di_state *); 292 static di_off_t di_getdpdata(struct dev_info *, di_off_t *, struct di_state *); 293 static di_off_t di_getprop(struct ddi_prop *, di_off_t *, 294 struct di_state *, struct dev_info *, int); 295 static void di_allocmem(struct di_state *, size_t); 296 static void di_freemem(struct di_state *); 297 static void di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz); 298 static di_off_t di_checkmem(struct di_state *, di_off_t, size_t); 299 static caddr_t di_mem_addr(struct di_state *, di_off_t); 300 static int di_setstate(struct di_state *, int); 301 static void di_register_dip(struct di_state *, dev_info_t *, di_off_t); 302 static void di_register_pip(struct di_state *, mdi_pathinfo_t *, di_off_t); 303 static di_off_t di_getpath_data(dev_info_t *, di_off_t *, di_off_t, 304 struct di_state *, int); 305 static di_off_t di_getlink_data(di_off_t, struct di_state *); 306 static int di_dip_find(struct di_state *st, dev_info_t *node, di_off_t *off_p); 307 308 static int cache_args_valid(struct di_state *st, int *error); 309 static int snapshot_is_cacheable(struct di_state *st); 310 static int di_cache_lookup(struct di_state *st); 311 static int di_cache_update(struct di_state *st); 312 static void di_cache_print(di_cache_debug_t msglevel, char *fmt, ...); 313 int build_vhci_list(dev_info_t *vh_devinfo, void *arg); 314 int build_phci_list(dev_info_t *ph_devinfo, void *arg); 315 316 static struct cb_ops di_cb_ops = { 317 di_open, /* open */ 318 di_close, /* close */ 319 nodev, /* strategy */ 320 nodev, /* print */ 321 nodev, /* dump */ 322 nodev, /* read */ 323 nodev, /* write */ 324 di_ioctl, /* ioctl */ 325 nodev, /* devmap */ 326 nodev, /* mmap */ 327 nodev, /* segmap */ 328 nochpoll, /* poll */ 329 ddi_prop_op, /* prop_op */ 330 NULL, /* streamtab */ 331 D_NEW | D_MP /* Driver compatibility flag */ 332 }; 333 334 static struct dev_ops di_ops = { 335 DEVO_REV, /* devo_rev, */ 336 0, /* refcnt */ 337 di_info, /* info */ 338 nulldev, /* identify */ 339 nulldev, /* probe */ 340 di_attach, /* attach */ 341 di_detach, /* detach */ 342 nodev, /* reset */ 343 &di_cb_ops, /* driver operations */ 344 NULL /* bus operations */ 345 }; 346 347 /* 348 * Module linkage information for the kernel. 349 */ 350 static struct modldrv modldrv = { 351 &mod_driverops, 352 "DEVINFO Driver %I%", 353 &di_ops 354 }; 355 356 static struct modlinkage modlinkage = { 357 MODREV_1, 358 &modldrv, 359 NULL 360 }; 361 362 int 363 _init(void) 364 { 365 int error; 366 367 mutex_init(&di_lock, NULL, MUTEX_DRIVER, NULL); 368 369 error = mod_install(&modlinkage); 370 if (error != 0) { 371 mutex_destroy(&di_lock); 372 return (error); 373 } 374 375 return (0); 376 } 377 378 int 379 _info(struct modinfo *modinfop) 380 { 381 return (mod_info(&modlinkage, modinfop)); 382 } 383 384 int 385 _fini(void) 386 { 387 int error; 388 389 error = mod_remove(&modlinkage); 390 if (error != 0) { 391 return (error); 392 } 393 394 mutex_destroy(&di_lock); 395 return (0); 396 } 397 398 static dev_info_t *di_dip; 399 400 /*ARGSUSED*/ 401 static int 402 di_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 403 { 404 int error = DDI_FAILURE; 405 406 switch (infocmd) { 407 case DDI_INFO_DEVT2DEVINFO: 408 *result = (void *)di_dip; 409 error = DDI_SUCCESS; 410 break; 411 case DDI_INFO_DEVT2INSTANCE: 412 /* 413 * All dev_t's map to the same, single instance. 414 */ 415 *result = (void *)0; 416 error = DDI_SUCCESS; 417 break; 418 default: 419 break; 420 } 421 422 return (error); 423 } 424 425 static int 426 di_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 427 { 428 int error = DDI_FAILURE; 429 430 switch (cmd) { 431 case DDI_ATTACH: 432 di_states = kmem_zalloc( 433 di_max_opens * sizeof (struct di_state *), KM_SLEEP); 434 435 if (ddi_create_minor_node(dip, "devinfo", S_IFCHR, 436 DI_FULL_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE || 437 ddi_create_minor_node(dip, "devinfo,ro", S_IFCHR, 438 DI_READONLY_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE) { 439 kmem_free(di_states, 440 di_max_opens * sizeof (struct di_state *)); 441 ddi_remove_minor_node(dip, NULL); 442 error = DDI_FAILURE; 443 } else { 444 di_dip = dip; 445 ddi_report_dev(dip); 446 447 error = DDI_SUCCESS; 448 } 449 break; 450 default: 451 error = DDI_FAILURE; 452 break; 453 } 454 455 return (error); 456 } 457 458 static int 459 di_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 460 { 461 int error = DDI_FAILURE; 462 463 switch (cmd) { 464 case DDI_DETACH: 465 ddi_remove_minor_node(dip, NULL); 466 di_dip = NULL; 467 kmem_free(di_states, di_max_opens * sizeof (struct di_state *)); 468 469 error = DDI_SUCCESS; 470 break; 471 default: 472 error = DDI_FAILURE; 473 break; 474 } 475 476 return (error); 477 } 478 479 /* 480 * Allow multiple opens by tweaking the dev_t such that it looks like each 481 * open is getting a different minor device. Each minor gets a separate 482 * entry in the di_states[] table. Based on the original minor number, we 483 * discriminate opens of the full and read-only nodes. If all of the instances 484 * of the selected minor node are currently open, we return EAGAIN. 485 */ 486 /*ARGSUSED*/ 487 static int 488 di_open(dev_t *devp, int flag, int otyp, cred_t *credp) 489 { 490 int m; 491 minor_t minor_parent = getminor(*devp); 492 493 if (minor_parent != DI_FULL_PARENT && 494 minor_parent != DI_READONLY_PARENT) 495 return (ENXIO); 496 497 mutex_enter(&di_lock); 498 499 for (m = minor_parent; m < di_max_opens; m += DI_NODE_SPECIES) { 500 if (di_states[m] != NULL) 501 continue; 502 503 di_states[m] = kmem_zalloc(sizeof (struct di_state), KM_SLEEP); 504 break; /* It's ours. */ 505 } 506 507 if (m >= di_max_opens) { 508 /* 509 * maximum open instance for device reached 510 */ 511 mutex_exit(&di_lock); 512 dcmn_err((CE_WARN, "devinfo: maximum devinfo open reached")); 513 return (EAGAIN); 514 } 515 mutex_exit(&di_lock); 516 517 ASSERT(m < di_max_opens); 518 *devp = makedevice(getmajor(*devp), (minor_t)(m + DI_NODE_SPECIES)); 519 520 dcmn_err((CE_CONT, "di_open: thread = %p, assigned minor = %d\n", 521 (void *)curthread, m + DI_NODE_SPECIES)); 522 523 return (0); 524 } 525 526 /*ARGSUSED*/ 527 static int 528 di_close(dev_t dev, int flag, int otype, cred_t *cred_p) 529 { 530 struct di_state *st; 531 int m = (int)getminor(dev) - DI_NODE_SPECIES; 532 533 if (m < 0) { 534 cmn_err(CE_WARN, "closing non-existent devinfo minor %d", 535 m + DI_NODE_SPECIES); 536 return (ENXIO); 537 } 538 539 st = di_states[m]; 540 ASSERT(m < di_max_opens && st != NULL); 541 542 di_freemem(st); 543 kmem_free(st, sizeof (struct di_state)); 544 545 /* 546 * empty slot in state table 547 */ 548 mutex_enter(&di_lock); 549 di_states[m] = NULL; 550 dcmn_err((CE_CONT, "di_close: thread = %p, assigned minor = %d\n", 551 (void *)curthread, m + DI_NODE_SPECIES)); 552 mutex_exit(&di_lock); 553 554 return (0); 555 } 556 557 558 /*ARGSUSED*/ 559 static int 560 di_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp) 561 { 562 int rv, error; 563 di_off_t off; 564 struct di_all *all; 565 struct di_state *st; 566 int m = (int)getminor(dev) - DI_NODE_SPECIES; 567 568 major_t i; 569 char *drv_name; 570 size_t map_size, size; 571 struct di_mem *dcp; 572 int ndi_flags; 573 574 if (m < 0 || m >= di_max_opens) { 575 return (ENXIO); 576 } 577 578 st = di_states[m]; 579 ASSERT(st != NULL); 580 581 dcmn_err2((CE_CONT, "di_ioctl: mode = %x, cmd = %x\n", mode, cmd)); 582 583 switch (cmd) { 584 case DINFOIDENT: 585 /* 586 * This is called from di_init to verify that the driver 587 * opened is indeed devinfo. The purpose is to guard against 588 * sending ioctl to an unknown driver in case of an 589 * unresolved major number conflict during bfu. 590 */ 591 *rvalp = DI_MAGIC; 592 return (0); 593 594 case DINFOLODRV: 595 /* 596 * Hold an installed driver and return the result 597 */ 598 if (DI_UNPRIVILEGED_NODE(m)) { 599 /* 600 * Only the fully enabled instances may issue 601 * DINFOLDDRV. 602 */ 603 return (EACCES); 604 } 605 606 drv_name = kmem_alloc(MAXNAMELEN, KM_SLEEP); 607 if (ddi_copyin((void *)arg, drv_name, MAXNAMELEN, mode) != 0) { 608 kmem_free(drv_name, MAXNAMELEN); 609 return (EFAULT); 610 } 611 612 /* 613 * Some 3rd party driver's _init() walks the device tree, 614 * so we load the driver module before configuring driver. 615 */ 616 i = ddi_name_to_major(drv_name); 617 if (ddi_hold_driver(i) == NULL) { 618 kmem_free(drv_name, MAXNAMELEN); 619 return (ENXIO); 620 } 621 622 ndi_flags = NDI_DEVI_PERSIST | NDI_CONFIG | NDI_NO_EVENT; 623 624 /* 625 * i_ddi_load_drvconf() below will trigger a reprobe 626 * via reset_nexus_flags(). NDI_DRV_CONF_REPROBE isn't 627 * needed here. 628 */ 629 modunload_disable(); 630 (void) i_ddi_load_drvconf(i); 631 (void) ndi_devi_config_driver(ddi_root_node(), ndi_flags, i); 632 kmem_free(drv_name, MAXNAMELEN); 633 ddi_rele_driver(i); 634 rv = i_ddi_devs_attached(i); 635 modunload_enable(); 636 637 i_ddi_di_cache_invalidate(KM_SLEEP); 638 639 return ((rv == DDI_SUCCESS)? 0 : ENXIO); 640 641 case DINFOUSRLD: 642 /* 643 * The case for copying snapshot to userland 644 */ 645 if (di_setstate(st, IOC_COPY) == -1) 646 return (EBUSY); 647 648 map_size = ((struct di_all *) 649 (intptr_t)di_mem_addr(st, 0))->map_size; 650 if (map_size == 0) { 651 (void) di_setstate(st, IOC_DONE); 652 return (EFAULT); 653 } 654 655 /* 656 * copyout the snapshot 657 */ 658 map_size = (map_size + PAGEOFFSET) & PAGEMASK; 659 660 /* 661 * Return the map size, so caller may do a sanity 662 * check against the return value of snapshot ioctl() 663 */ 664 *rvalp = (int)map_size; 665 666 /* 667 * Copy one chunk at a time 668 */ 669 off = 0; 670 dcp = st->memlist; 671 while (map_size) { 672 size = dcp->buf_size; 673 if (map_size <= size) { 674 size = map_size; 675 } 676 677 if (ddi_copyout(di_mem_addr(st, off), 678 (void *)(arg + off), size, mode) != 0) { 679 (void) di_setstate(st, IOC_DONE); 680 return (EFAULT); 681 } 682 683 map_size -= size; 684 off += size; 685 dcp = dcp->next; 686 } 687 688 di_freemem(st); 689 (void) di_setstate(st, IOC_IDLE); 690 return (0); 691 692 default: 693 if ((cmd & ~DIIOC_MASK) != DIIOC) { 694 /* 695 * Invalid ioctl command 696 */ 697 return (ENOTTY); 698 } 699 /* 700 * take a snapshot 701 */ 702 st->command = cmd & DIIOC_MASK; 703 /*FALLTHROUGH*/ 704 } 705 706 /* 707 * Obtain enough memory to hold header + rootpath. We prevent kernel 708 * memory exhaustion by freeing any previously allocated snapshot and 709 * refusing the operation; otherwise we would be allowing ioctl(), 710 * ioctl(), ioctl(), ..., panic. 711 */ 712 if (di_setstate(st, IOC_SNAP) == -1) 713 return (EBUSY); 714 715 size = sizeof (struct di_all) + 716 sizeof (((struct dinfo_io *)(NULL))->root_path); 717 if (size < PAGESIZE) 718 size = PAGESIZE; 719 di_allocmem(st, size); 720 721 all = (struct di_all *)(intptr_t)di_mem_addr(st, 0); 722 all->devcnt = devcnt; 723 all->command = st->command; 724 all->version = DI_SNAPSHOT_VERSION; 725 all->top_vhci_devinfo = 0; /* filled up by build_vhci_list. */ 726 727 /* 728 * Note the endianness in case we need to transport snapshot 729 * over the network. 730 */ 731 #if defined(_LITTLE_ENDIAN) 732 all->endianness = DI_LITTLE_ENDIAN; 733 #else 734 all->endianness = DI_BIG_ENDIAN; 735 #endif 736 737 /* Copyin ioctl args, store in the snapshot. */ 738 if (copyinstr((void *)arg, all->root_path, 739 sizeof (((struct dinfo_io *)(NULL))->root_path), &size) != 0) { 740 di_freemem(st); 741 (void) di_setstate(st, IOC_IDLE); 742 return (EFAULT); 743 } 744 745 if ((st->command & DINFOCLEANUP) && !DEVICES_FILES_CLEANABLE(st)) { 746 di_freemem(st); 747 (void) di_setstate(st, IOC_IDLE); 748 return (EINVAL); 749 } 750 751 error = 0; 752 if ((st->command & DINFOCACHE) && !cache_args_valid(st, &error)) { 753 di_freemem(st); 754 (void) di_setstate(st, IOC_IDLE); 755 return (error); 756 } 757 758 off = DI_ALIGN(sizeof (struct di_all) + size); 759 760 /* 761 * Only the fully enabled version may force load drivers or read 762 * the parent private data from a driver. 763 */ 764 if ((st->command & (DINFOPRIVDATA | DINFOFORCE)) != 0 && 765 DI_UNPRIVILEGED_NODE(m)) { 766 di_freemem(st); 767 (void) di_setstate(st, IOC_IDLE); 768 return (EACCES); 769 } 770 771 /* Do we need private data? */ 772 if (st->command & DINFOPRIVDATA) { 773 arg += sizeof (((struct dinfo_io *)(NULL))->root_path); 774 775 #ifdef _MULTI_DATAMODEL 776 switch (ddi_model_convert_from(mode & FMODELS)) { 777 case DDI_MODEL_ILP32: { 778 /* 779 * Cannot copy private data from 64-bit kernel 780 * to 32-bit app 781 */ 782 di_freemem(st); 783 (void) di_setstate(st, IOC_IDLE); 784 return (EINVAL); 785 } 786 case DDI_MODEL_NONE: 787 if ((off = di_copyformat(off, st, arg, mode)) == 0) { 788 di_freemem(st); 789 (void) di_setstate(st, IOC_IDLE); 790 return (EFAULT); 791 } 792 break; 793 } 794 #else /* !_MULTI_DATAMODEL */ 795 if ((off = di_copyformat(off, st, arg, mode)) == 0) { 796 di_freemem(st); 797 (void) di_setstate(st, IOC_IDLE); 798 return (EFAULT); 799 } 800 #endif /* _MULTI_DATAMODEL */ 801 } 802 803 all->top_devinfo = DI_ALIGN(off); 804 805 /* 806 * For cache lookups we reallocate memory from scratch, 807 * so the value of "all" is no longer valid. 808 */ 809 all = NULL; 810 811 if (st->command & DINFOCACHE) { 812 *rvalp = di_cache_lookup(st); 813 } else if (snapshot_is_cacheable(st)) { 814 DI_CACHE_LOCK(di_cache); 815 *rvalp = di_cache_update(st); 816 DI_CACHE_UNLOCK(di_cache); 817 } else 818 *rvalp = di_snapshot_and_clean(st); 819 820 if (*rvalp) { 821 DI_ALL_PTR(st)->map_size = *rvalp; 822 (void) di_setstate(st, IOC_DONE); 823 } else { 824 di_freemem(st); 825 (void) di_setstate(st, IOC_IDLE); 826 } 827 828 return (0); 829 } 830 831 /* 832 * Get a chunk of memory >= size, for the snapshot 833 */ 834 static void 835 di_allocmem(struct di_state *st, size_t size) 836 { 837 struct di_mem *mem = kmem_zalloc(sizeof (struct di_mem), 838 KM_SLEEP); 839 /* 840 * Round up size to nearest power of 2. If it is less 841 * than st->mem_size, set it to st->mem_size (i.e., 842 * the mem_size is doubled every time) to reduce the 843 * number of memory allocations. 844 */ 845 size_t tmp = 1; 846 while (tmp < size) { 847 tmp <<= 1; 848 } 849 size = (tmp > st->mem_size) ? tmp : st->mem_size; 850 851 mem->buf = ddi_umem_alloc(size, DDI_UMEM_SLEEP, &mem->cook); 852 mem->buf_size = size; 853 854 dcmn_err2((CE_CONT, "di_allocmem: mem_size=%x\n", st->mem_size)); 855 856 if (st->mem_size == 0) { /* first chunk */ 857 st->memlist = mem; 858 } else { 859 /* 860 * locate end of linked list and add a chunk at the end 861 */ 862 struct di_mem *dcp = st->memlist; 863 while (dcp->next != NULL) { 864 dcp = dcp->next; 865 } 866 867 dcp->next = mem; 868 } 869 870 st->mem_size += size; 871 } 872 873 /* 874 * Copy upto bufsiz bytes of the memlist to buf 875 */ 876 static void 877 di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz) 878 { 879 struct di_mem *dcp; 880 size_t copysz; 881 882 if (st->mem_size == 0) { 883 ASSERT(st->memlist == NULL); 884 return; 885 } 886 887 copysz = 0; 888 for (dcp = st->memlist; dcp; dcp = dcp->next) { 889 890 ASSERT(bufsiz > 0); 891 892 if (bufsiz <= dcp->buf_size) 893 copysz = bufsiz; 894 else 895 copysz = dcp->buf_size; 896 897 bcopy(dcp->buf, buf, copysz); 898 899 buf += copysz; 900 bufsiz -= copysz; 901 902 if (bufsiz == 0) 903 break; 904 } 905 } 906 907 /* 908 * Free all memory for the snapshot 909 */ 910 static void 911 di_freemem(struct di_state *st) 912 { 913 struct di_mem *dcp, *tmp; 914 915 dcmn_err2((CE_CONT, "di_freemem\n")); 916 917 if (st->mem_size) { 918 dcp = st->memlist; 919 while (dcp) { /* traverse the linked list */ 920 tmp = dcp; 921 dcp = dcp->next; 922 ddi_umem_free(tmp->cook); 923 kmem_free(tmp, sizeof (struct di_mem)); 924 } 925 st->mem_size = 0; 926 st->memlist = NULL; 927 } 928 929 ASSERT(st->mem_size == 0); 930 ASSERT(st->memlist == NULL); 931 } 932 933 /* 934 * Copies cached data to the di_state structure. 935 * Returns: 936 * - size of data copied, on SUCCESS 937 * - 0 on failure 938 */ 939 static int 940 di_cache2mem(struct di_cache *cache, struct di_state *st) 941 { 942 caddr_t pa; 943 944 ASSERT(st->mem_size == 0); 945 ASSERT(st->memlist == NULL); 946 ASSERT(!servicing_interrupt()); 947 ASSERT(DI_CACHE_LOCKED(*cache)); 948 949 if (cache->cache_size == 0) { 950 ASSERT(cache->cache_data == NULL); 951 CACHE_DEBUG((DI_ERR, "Empty cache. Skipping copy")); 952 return (0); 953 } 954 955 ASSERT(cache->cache_data); 956 957 di_allocmem(st, cache->cache_size); 958 959 pa = di_mem_addr(st, 0); 960 961 ASSERT(pa); 962 963 /* 964 * Verify that di_allocmem() allocates contiguous memory, 965 * so that it is safe to do straight bcopy() 966 */ 967 ASSERT(st->memlist != NULL); 968 ASSERT(st->memlist->next == NULL); 969 bcopy(cache->cache_data, pa, cache->cache_size); 970 971 return (cache->cache_size); 972 } 973 974 /* 975 * Copies a snapshot from di_state to the cache 976 * Returns: 977 * - 0 on failure 978 * - size of copied data on success 979 */ 980 static size_t 981 di_mem2cache(struct di_state *st, struct di_cache *cache) 982 { 983 size_t map_size; 984 985 ASSERT(cache->cache_size == 0); 986 ASSERT(cache->cache_data == NULL); 987 ASSERT(!servicing_interrupt()); 988 ASSERT(DI_CACHE_LOCKED(*cache)); 989 990 if (st->mem_size == 0) { 991 ASSERT(st->memlist == NULL); 992 CACHE_DEBUG((DI_ERR, "Empty memlist. Skipping copy")); 993 return (0); 994 } 995 996 ASSERT(st->memlist); 997 998 /* 999 * The size of the memory list may be much larger than the 1000 * size of valid data (map_size). Cache only the valid data 1001 */ 1002 map_size = DI_ALL_PTR(st)->map_size; 1003 if (map_size == 0 || map_size < sizeof (struct di_all) || 1004 map_size > st->mem_size) { 1005 CACHE_DEBUG((DI_ERR, "cannot cache: bad size: 0x%x", map_size)); 1006 return (0); 1007 } 1008 1009 cache->cache_data = kmem_alloc(map_size, KM_SLEEP); 1010 cache->cache_size = map_size; 1011 di_copymem(st, cache->cache_data, cache->cache_size); 1012 1013 return (map_size); 1014 } 1015 1016 /* 1017 * Make sure there is at least "size" bytes memory left before 1018 * going on. Otherwise, start on a new chunk. 1019 */ 1020 static di_off_t 1021 di_checkmem(struct di_state *st, di_off_t off, size_t size) 1022 { 1023 dcmn_err3((CE_CONT, "di_checkmem: off=%x size=%x\n", 1024 off, (int)size)); 1025 1026 /* 1027 * di_checkmem() shouldn't be called with a size of zero. 1028 * But in case it is, we want to make sure we return a valid 1029 * offset within the memlist and not an offset that points us 1030 * at the end of the memlist. 1031 */ 1032 if (size == 0) { 1033 dcmn_err((CE_WARN, "di_checkmem: invalid zero size used")); 1034 size = 1; 1035 } 1036 1037 off = DI_ALIGN(off); 1038 if ((st->mem_size - off) < size) { 1039 off = st->mem_size; 1040 di_allocmem(st, size); 1041 } 1042 1043 return (off); 1044 } 1045 1046 /* 1047 * Copy the private data format from ioctl arg. 1048 * On success, the ending offset is returned. On error 0 is returned. 1049 */ 1050 static di_off_t 1051 di_copyformat(di_off_t off, struct di_state *st, intptr_t arg, int mode) 1052 { 1053 di_off_t size; 1054 struct di_priv_data *priv; 1055 struct di_all *all = (struct di_all *)(intptr_t)di_mem_addr(st, 0); 1056 1057 dcmn_err2((CE_CONT, "di_copyformat: off=%x, arg=%p mode=%x\n", 1058 off, (void *)arg, mode)); 1059 1060 /* 1061 * Copyin data and check version. 1062 * We only handle private data version 0. 1063 */ 1064 priv = kmem_alloc(sizeof (struct di_priv_data), KM_SLEEP); 1065 if ((ddi_copyin((void *)arg, priv, sizeof (struct di_priv_data), 1066 mode) != 0) || (priv->version != DI_PRIVDATA_VERSION_0)) { 1067 kmem_free(priv, sizeof (struct di_priv_data)); 1068 return (0); 1069 } 1070 1071 /* 1072 * Save di_priv_data copied from userland in snapshot. 1073 */ 1074 all->pd_version = priv->version; 1075 all->n_ppdata = priv->n_parent; 1076 all->n_dpdata = priv->n_driver; 1077 1078 /* 1079 * copyin private data format, modify offset accordingly 1080 */ 1081 if (all->n_ppdata) { /* parent private data format */ 1082 /* 1083 * check memory 1084 */ 1085 size = all->n_ppdata * sizeof (struct di_priv_format); 1086 off = di_checkmem(st, off, size); 1087 all->ppdata_format = off; 1088 if (ddi_copyin(priv->parent, di_mem_addr(st, off), size, 1089 mode) != 0) { 1090 kmem_free(priv, sizeof (struct di_priv_data)); 1091 return (0); 1092 } 1093 1094 off += size; 1095 } 1096 1097 if (all->n_dpdata) { /* driver private data format */ 1098 /* 1099 * check memory 1100 */ 1101 size = all->n_dpdata * sizeof (struct di_priv_format); 1102 off = di_checkmem(st, off, size); 1103 all->dpdata_format = off; 1104 if (ddi_copyin(priv->driver, di_mem_addr(st, off), size, 1105 mode) != 0) { 1106 kmem_free(priv, sizeof (struct di_priv_data)); 1107 return (0); 1108 } 1109 1110 off += size; 1111 } 1112 1113 kmem_free(priv, sizeof (struct di_priv_data)); 1114 return (off); 1115 } 1116 1117 /* 1118 * Return the real address based on the offset (off) within snapshot 1119 */ 1120 static caddr_t 1121 di_mem_addr(struct di_state *st, di_off_t off) 1122 { 1123 struct di_mem *dcp = st->memlist; 1124 1125 dcmn_err3((CE_CONT, "di_mem_addr: dcp=%p off=%x\n", 1126 (void *)dcp, off)); 1127 1128 ASSERT(off < st->mem_size); 1129 1130 while (off >= dcp->buf_size) { 1131 off -= dcp->buf_size; 1132 dcp = dcp->next; 1133 } 1134 1135 dcmn_err3((CE_CONT, "di_mem_addr: new off=%x, return = %p\n", 1136 off, (void *)(dcp->buf + off))); 1137 1138 return (dcp->buf + off); 1139 } 1140 1141 /* 1142 * Ideally we would use the whole key to derive the hash 1143 * value. However, the probability that two keys will 1144 * have the same dip (or pip) is very low, so 1145 * hashing by dip (or pip) pointer should suffice. 1146 */ 1147 static uint_t 1148 di_hash_byptr(void *arg, mod_hash_key_t key) 1149 { 1150 struct di_key *dik = key; 1151 size_t rshift; 1152 void *ptr; 1153 1154 ASSERT(arg == NULL); 1155 1156 switch (dik->k_type) { 1157 case DI_DKEY: 1158 ptr = dik->k_u.dkey.dk_dip; 1159 rshift = highbit(sizeof (struct dev_info)); 1160 break; 1161 case DI_PKEY: 1162 ptr = dik->k_u.pkey.pk_pip; 1163 rshift = highbit(sizeof (struct mdi_pathinfo)); 1164 break; 1165 default: 1166 panic("devinfo: unknown key type"); 1167 /*NOTREACHED*/ 1168 } 1169 return (mod_hash_byptr((void *)rshift, ptr)); 1170 } 1171 1172 static void 1173 di_key_dtor(mod_hash_key_t key) 1174 { 1175 char *path_addr; 1176 struct di_key *dik = key; 1177 1178 switch (dik->k_type) { 1179 case DI_DKEY: 1180 break; 1181 case DI_PKEY: 1182 path_addr = dik->k_u.pkey.pk_path_addr; 1183 if (path_addr) 1184 kmem_free(path_addr, strlen(path_addr) + 1); 1185 break; 1186 default: 1187 panic("devinfo: unknown key type"); 1188 /*NOTREACHED*/ 1189 } 1190 1191 kmem_free(dik, sizeof (struct di_key)); 1192 } 1193 1194 static int 1195 di_dkey_cmp(struct di_dkey *dk1, struct di_dkey *dk2) 1196 { 1197 if (dk1->dk_dip != dk2->dk_dip) 1198 return (dk1->dk_dip > dk2->dk_dip ? 1 : -1); 1199 1200 if (dk1->dk_major != (major_t)-1 && dk2->dk_major != (major_t)-1) { 1201 if (dk1->dk_major != dk2->dk_major) 1202 return (dk1->dk_major > dk2->dk_major ? 1 : -1); 1203 1204 if (dk1->dk_inst != dk2->dk_inst) 1205 return (dk1->dk_inst > dk2->dk_inst ? 1 : -1); 1206 } 1207 1208 if (dk1->dk_nodeid != dk2->dk_nodeid) 1209 return (dk1->dk_nodeid > dk2->dk_nodeid ? 1 : -1); 1210 1211 return (0); 1212 } 1213 1214 static int 1215 di_pkey_cmp(struct di_pkey *pk1, struct di_pkey *pk2) 1216 { 1217 char *p1, *p2; 1218 int rv; 1219 1220 if (pk1->pk_pip != pk2->pk_pip) 1221 return (pk1->pk_pip > pk2->pk_pip ? 1 : -1); 1222 1223 p1 = pk1->pk_path_addr; 1224 p2 = pk2->pk_path_addr; 1225 1226 p1 = p1 ? p1 : ""; 1227 p2 = p2 ? p2 : ""; 1228 1229 rv = strcmp(p1, p2); 1230 if (rv) 1231 return (rv > 0 ? 1 : -1); 1232 1233 if (pk1->pk_client != pk2->pk_client) 1234 return (pk1->pk_client > pk2->pk_client ? 1 : -1); 1235 1236 if (pk1->pk_phci != pk2->pk_phci) 1237 return (pk1->pk_phci > pk2->pk_phci ? 1 : -1); 1238 1239 return (0); 1240 } 1241 1242 static int 1243 di_key_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 1244 { 1245 struct di_key *dik1, *dik2; 1246 1247 dik1 = key1; 1248 dik2 = key2; 1249 1250 if (dik1->k_type != dik2->k_type) { 1251 panic("devinfo: mismatched keys"); 1252 /*NOTREACHED*/ 1253 } 1254 1255 switch (dik1->k_type) { 1256 case DI_DKEY: 1257 return (di_dkey_cmp(&(dik1->k_u.dkey), &(dik2->k_u.dkey))); 1258 case DI_PKEY: 1259 return (di_pkey_cmp(&(dik1->k_u.pkey), &(dik2->k_u.pkey))); 1260 default: 1261 panic("devinfo: unknown key type"); 1262 /*NOTREACHED*/ 1263 } 1264 } 1265 1266 /* 1267 * This is the main function that takes a snapshot 1268 */ 1269 static di_off_t 1270 di_snapshot(struct di_state *st) 1271 { 1272 di_off_t off; 1273 struct di_all *all; 1274 dev_info_t *rootnode; 1275 char buf[80]; 1276 int plen; 1277 char *path; 1278 vnode_t *vp; 1279 1280 all = (struct di_all *)(intptr_t)di_mem_addr(st, 0); 1281 dcmn_err((CE_CONT, "Taking a snapshot of devinfo tree...\n")); 1282 1283 /* 1284 * Verify path before entrusting it to e_ddi_hold_devi_by_path because 1285 * some platforms have OBP bugs where executing the NDI_PROMNAME code 1286 * path against an invalid path results in panic. The lookupnameat 1287 * is done relative to rootdir without a leading '/' on "devices/" 1288 * to force the lookup to occur in the global zone. 1289 */ 1290 plen = strlen("devices/") + strlen(all->root_path) + 1; 1291 path = kmem_alloc(plen, KM_SLEEP); 1292 (void) snprintf(path, plen, "devices/%s", all->root_path); 1293 if (lookupnameat(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp, rootdir)) { 1294 dcmn_err((CE_CONT, "Devinfo node %s not found\n", 1295 all->root_path)); 1296 kmem_free(path, plen); 1297 return (0); 1298 } 1299 kmem_free(path, plen); 1300 VN_RELE(vp); 1301 1302 /* 1303 * Hold the devinfo node referred by the path. 1304 */ 1305 rootnode = e_ddi_hold_devi_by_path(all->root_path, 0); 1306 if (rootnode == NULL) { 1307 dcmn_err((CE_CONT, "Devinfo node %s not found\n", 1308 all->root_path)); 1309 return (0); 1310 } 1311 1312 (void) snprintf(buf, sizeof (buf), 1313 "devinfo registered dips (statep=%p)", (void *)st); 1314 1315 st->reg_dip_hash = mod_hash_create_extended(buf, 64, 1316 di_key_dtor, mod_hash_null_valdtor, di_hash_byptr, 1317 NULL, di_key_cmp, KM_SLEEP); 1318 1319 1320 (void) snprintf(buf, sizeof (buf), 1321 "devinfo registered pips (statep=%p)", (void *)st); 1322 1323 st->reg_pip_hash = mod_hash_create_extended(buf, 64, 1324 di_key_dtor, mod_hash_null_valdtor, di_hash_byptr, 1325 NULL, di_key_cmp, KM_SLEEP); 1326 1327 /* 1328 * copy the device tree 1329 */ 1330 off = di_copytree(DEVI(rootnode), &all->top_devinfo, st); 1331 1332 if (DINFOPATH & st->command) { 1333 mdi_walk_vhcis(build_vhci_list, st); 1334 } 1335 1336 ddi_release_devi(rootnode); 1337 1338 /* 1339 * copy the devnames array 1340 */ 1341 all->devnames = off; 1342 off = di_copydevnm(&all->devnames, st); 1343 1344 1345 /* initialize the hash tables */ 1346 st->lnode_count = 0; 1347 st->link_count = 0; 1348 1349 if (DINFOLYR & st->command) { 1350 off = di_getlink_data(off, st); 1351 } 1352 1353 /* 1354 * Free up hash tables 1355 */ 1356 mod_hash_destroy_hash(st->reg_dip_hash); 1357 mod_hash_destroy_hash(st->reg_pip_hash); 1358 1359 /* 1360 * Record the timestamp now that we are done with snapshot. 1361 * 1362 * We compute the checksum later and then only if we cache 1363 * the snapshot, since checksumming adds some overhead. 1364 * The checksum is checked later if we read the cache file. 1365 * from disk. 1366 * 1367 * Set checksum field to 0 as CRC is calculated with that 1368 * field set to 0. 1369 */ 1370 all->snapshot_time = ddi_get_time(); 1371 all->cache_checksum = 0; 1372 1373 ASSERT(all->snapshot_time != 0); 1374 1375 return (off); 1376 } 1377 1378 /* 1379 * Take a snapshot and clean /etc/devices files if DINFOCLEANUP is set 1380 */ 1381 static di_off_t 1382 di_snapshot_and_clean(struct di_state *st) 1383 { 1384 di_off_t off; 1385 1386 modunload_disable(); 1387 off = di_snapshot(st); 1388 if (off != 0 && (st->command & DINFOCLEANUP)) { 1389 ASSERT(DEVICES_FILES_CLEANABLE(st)); 1390 /* 1391 * Cleanup /etc/devices files: 1392 * In order to accurately account for the system configuration 1393 * in /etc/devices files, the appropriate drivers must be 1394 * fully configured before the cleanup starts. 1395 * So enable modunload only after the cleanup. 1396 */ 1397 i_ddi_clean_devices_files(); 1398 } 1399 modunload_enable(); 1400 1401 return (off); 1402 } 1403 1404 /* 1405 * construct vhci linkage in the snapshot. 1406 */ 1407 int 1408 build_vhci_list(dev_info_t *vh_devinfo, void *arg) 1409 { 1410 struct di_all *all; 1411 struct di_node *me; 1412 struct di_state *st; 1413 di_off_t off; 1414 phci_walk_arg_t pwa; 1415 1416 dcmn_err3((CE_CONT, "build_vhci list\n")); 1417 1418 dcmn_err3((CE_CONT, "vhci node %s, instance #%d\n", 1419 DEVI(vh_devinfo)->devi_node_name, 1420 DEVI(vh_devinfo)->devi_instance)); 1421 1422 st = (struct di_state *)arg; 1423 if (di_dip_find(st, vh_devinfo, &off) != 0) { 1424 dcmn_err((CE_WARN, "di_dip_find error for the given node\n")); 1425 return (DDI_WALK_TERMINATE); 1426 } 1427 1428 dcmn_err3((CE_CONT, "st->mem_size: %d vh_devinfo off: 0x%x\n", 1429 st->mem_size, off)); 1430 1431 all = (struct di_all *)(intptr_t)di_mem_addr(st, 0); 1432 if (all->top_vhci_devinfo == 0) { 1433 all->top_vhci_devinfo = off; 1434 } else { 1435 me = (struct di_node *) 1436 (intptr_t)di_mem_addr(st, all->top_vhci_devinfo); 1437 1438 while (me->next_vhci != 0) { 1439 me = (struct di_node *) 1440 (intptr_t)di_mem_addr(st, me->next_vhci); 1441 } 1442 1443 me->next_vhci = off; 1444 } 1445 1446 pwa.off = off; 1447 pwa.st = st; 1448 mdi_vhci_walk_phcis(vh_devinfo, build_phci_list, &pwa); 1449 1450 return (DDI_WALK_CONTINUE); 1451 } 1452 1453 /* 1454 * construct phci linkage for the given vhci in the snapshot. 1455 */ 1456 int 1457 build_phci_list(dev_info_t *ph_devinfo, void *arg) 1458 { 1459 struct di_node *vh_di_node; 1460 struct di_node *me; 1461 phci_walk_arg_t *pwa; 1462 di_off_t off; 1463 1464 pwa = (phci_walk_arg_t *)arg; 1465 1466 dcmn_err3((CE_CONT, "build_phci list for vhci at offset: 0x%x\n", 1467 pwa->off)); 1468 1469 vh_di_node = (struct di_node *)(intptr_t)di_mem_addr(pwa->st, pwa->off); 1470 1471 if (di_dip_find(pwa->st, ph_devinfo, &off) != 0) { 1472 dcmn_err((CE_WARN, "di_dip_find error for the given node\n")); 1473 return (DDI_WALK_TERMINATE); 1474 } 1475 1476 dcmn_err3((CE_CONT, "phci node %s, instance #%d, at offset 0x%x\n", 1477 DEVI(ph_devinfo)->devi_node_name, 1478 DEVI(ph_devinfo)->devi_instance, off)); 1479 1480 if (vh_di_node->top_phci == 0) { 1481 vh_di_node->top_phci = off; 1482 return (DDI_WALK_CONTINUE); 1483 } 1484 1485 me = (struct di_node *) 1486 (intptr_t)di_mem_addr(pwa->st, vh_di_node->top_phci); 1487 1488 while (me->next_phci != 0) { 1489 me = (struct di_node *) 1490 (intptr_t)di_mem_addr(pwa->st, me->next_phci); 1491 } 1492 me->next_phci = off; 1493 1494 return (DDI_WALK_CONTINUE); 1495 } 1496 1497 /* 1498 * Assumes all devinfo nodes in device tree have been snapshotted 1499 */ 1500 static void 1501 snap_driver_list(struct di_state *st, struct devnames *dnp, di_off_t *poff_p) 1502 { 1503 struct dev_info *node; 1504 struct di_node *me; 1505 di_off_t off; 1506 1507 ASSERT(mutex_owned(&dnp->dn_lock)); 1508 1509 node = DEVI(dnp->dn_head); 1510 for (; node; node = node->devi_next) { 1511 if (di_dip_find(st, (dev_info_t *)node, &off) != 0) 1512 continue; 1513 1514 ASSERT(off > 0); 1515 me = (struct di_node *)(intptr_t)di_mem_addr(st, off); 1516 ASSERT(me->next == 0 || me->next == -1); 1517 /* 1518 * Only nodes which were BOUND when they were 1519 * snapshotted will be added to per-driver list. 1520 */ 1521 if (me->next != -1) 1522 continue; 1523 1524 *poff_p = off; 1525 poff_p = &me->next; 1526 } 1527 1528 *poff_p = 0; 1529 } 1530 1531 /* 1532 * Copy the devnames array, so we have a list of drivers in the snapshot. 1533 * Also makes it possible to locate the per-driver devinfo nodes. 1534 */ 1535 static di_off_t 1536 di_copydevnm(di_off_t *off_p, struct di_state *st) 1537 { 1538 int i; 1539 di_off_t off; 1540 size_t size; 1541 struct di_devnm *dnp; 1542 1543 dcmn_err2((CE_CONT, "di_copydevnm: *off_p = %p\n", (void *)off_p)); 1544 1545 /* 1546 * make sure there is some allocated memory 1547 */ 1548 size = devcnt * sizeof (struct di_devnm); 1549 off = di_checkmem(st, *off_p, size); 1550 *off_p = off; 1551 1552 dcmn_err((CE_CONT, "Start copying devnamesp[%d] at offset 0x%x\n", 1553 devcnt, off)); 1554 1555 dnp = (struct di_devnm *)(intptr_t)di_mem_addr(st, off); 1556 off += size; 1557 1558 for (i = 0; i < devcnt; i++) { 1559 if (devnamesp[i].dn_name == NULL) { 1560 continue; 1561 } 1562 1563 /* 1564 * dn_name is not freed during driver unload or removal. 1565 * 1566 * There is a race condition when make_devname() changes 1567 * dn_name during our strcpy. This should be rare since 1568 * only add_drv does this. At any rate, we never had a 1569 * problem with ddi_name_to_major(), which should have 1570 * the same problem. 1571 */ 1572 dcmn_err2((CE_CONT, "di_copydevnm: %s%d, off=%x\n", 1573 devnamesp[i].dn_name, devnamesp[i].dn_instance, 1574 off)); 1575 1576 off = di_checkmem(st, off, strlen(devnamesp[i].dn_name) + 1); 1577 dnp[i].name = off; 1578 (void) strcpy((char *)di_mem_addr(st, off), 1579 devnamesp[i].dn_name); 1580 off += DI_ALIGN(strlen(devnamesp[i].dn_name) + 1); 1581 1582 mutex_enter(&devnamesp[i].dn_lock); 1583 1584 /* 1585 * Snapshot per-driver node list 1586 */ 1587 snap_driver_list(st, &devnamesp[i], &dnp[i].head); 1588 1589 /* 1590 * This is not used by libdevinfo, leave it for now 1591 */ 1592 dnp[i].flags = devnamesp[i].dn_flags; 1593 dnp[i].instance = devnamesp[i].dn_instance; 1594 1595 /* 1596 * get global properties 1597 */ 1598 if ((DINFOPROP & st->command) && 1599 devnamesp[i].dn_global_prop_ptr) { 1600 dnp[i].global_prop = off; 1601 off = di_getprop( 1602 devnamesp[i].dn_global_prop_ptr->prop_list, 1603 &dnp[i].global_prop, st, NULL, DI_PROP_GLB_LIST); 1604 } 1605 1606 /* 1607 * Bit encode driver ops: & bus_ops, cb_ops, & cb_ops->cb_str 1608 */ 1609 if (CB_DRV_INSTALLED(devopsp[i])) { 1610 if (devopsp[i]->devo_cb_ops) { 1611 dnp[i].ops |= DI_CB_OPS; 1612 if (devopsp[i]->devo_cb_ops->cb_str) 1613 dnp[i].ops |= DI_STREAM_OPS; 1614 } 1615 if (NEXUS_DRV(devopsp[i])) { 1616 dnp[i].ops |= DI_BUS_OPS; 1617 } 1618 } 1619 1620 mutex_exit(&devnamesp[i].dn_lock); 1621 } 1622 1623 dcmn_err((CE_CONT, "End copying devnamesp at offset 0x%x\n", off)); 1624 1625 return (off); 1626 } 1627 1628 /* 1629 * Copy the kernel devinfo tree. The tree and the devnames array forms 1630 * the entire snapshot (see also di_copydevnm). 1631 */ 1632 static di_off_t 1633 di_copytree(struct dev_info *root, di_off_t *off_p, struct di_state *st) 1634 { 1635 di_off_t off; 1636 struct di_stack *dsp = kmem_zalloc(sizeof (struct di_stack), KM_SLEEP); 1637 1638 dcmn_err((CE_CONT, "di_copytree: root = %p, *off_p = %x\n", 1639 (void *)root, *off_p)); 1640 1641 /* force attach drivers */ 1642 if (i_ddi_devi_attached((dev_info_t *)root) && 1643 (st->command & DINFOSUBTREE) && (st->command & DINFOFORCE)) { 1644 (void) ndi_devi_config((dev_info_t *)root, 1645 NDI_CONFIG | NDI_DEVI_PERSIST | NDI_NO_EVENT | 1646 NDI_DRV_CONF_REPROBE); 1647 } 1648 1649 /* 1650 * Push top_devinfo onto a stack 1651 * 1652 * The stack is necessary to avoid recursion, which can overrun 1653 * the kernel stack. 1654 */ 1655 PUSH_STACK(dsp, root, off_p); 1656 1657 /* 1658 * As long as there is a node on the stack, copy the node. 1659 * di_copynode() is responsible for pushing and popping 1660 * child and sibling nodes on the stack. 1661 */ 1662 while (!EMPTY_STACK(dsp)) { 1663 off = di_copynode(dsp, st); 1664 } 1665 1666 /* 1667 * Free the stack structure 1668 */ 1669 kmem_free(dsp, sizeof (struct di_stack)); 1670 1671 return (off); 1672 } 1673 1674 /* 1675 * This is the core function, which copies all data associated with a single 1676 * node into the snapshot. The amount of information is determined by the 1677 * ioctl command. 1678 */ 1679 static di_off_t 1680 di_copynode(struct di_stack *dsp, struct di_state *st) 1681 { 1682 di_off_t off; 1683 struct di_node *me; 1684 struct dev_info *node; 1685 1686 dcmn_err2((CE_CONT, "di_copynode: depth = %x\n", 1687 dsp->depth)); 1688 1689 node = TOP_NODE(dsp); 1690 1691 ASSERT(node != NULL); 1692 1693 /* 1694 * check memory usage, and fix offsets accordingly. 1695 */ 1696 off = di_checkmem(st, *(TOP_OFFSET(dsp)), sizeof (struct di_node)); 1697 *(TOP_OFFSET(dsp)) = off; 1698 me = DI_NODE(di_mem_addr(st, off)); 1699 1700 dcmn_err((CE_CONT, "copy node %s, instance #%d, at offset 0x%x\n", 1701 node->devi_node_name, node->devi_instance, off)); 1702 1703 /* 1704 * Node parameters: 1705 * self -- offset of current node within snapshot 1706 * nodeid -- pointer to PROM node (tri-valued) 1707 * state -- hot plugging device state 1708 * node_state -- devinfo node state (CF1, CF2, etc.) 1709 */ 1710 me->self = off; 1711 me->instance = node->devi_instance; 1712 me->nodeid = node->devi_nodeid; 1713 me->node_class = node->devi_node_class; 1714 me->attributes = node->devi_node_attributes; 1715 me->state = node->devi_state; 1716 me->flags = node->devi_flags; 1717 me->node_state = node->devi_node_state; 1718 me->next_vhci = 0; /* Filled up by build_vhci_list. */ 1719 me->top_phci = 0; /* Filled up by build_phci_list. */ 1720 me->next_phci = 0; /* Filled up by build_phci_list. */ 1721 me->multipath_component = MULTIPATH_COMPONENT_NONE; /* set default. */ 1722 me->user_private_data = NULL; 1723 1724 /* 1725 * Get parent's offset in snapshot from the stack 1726 * and store it in the current node 1727 */ 1728 if (dsp->depth > 1) { 1729 me->parent = *(PARENT_OFFSET(dsp)); 1730 } 1731 1732 /* 1733 * Save the offset of this di_node in a hash table. 1734 * This is used later to resolve references to this 1735 * dip from other parts of the tree (per-driver list, 1736 * multipathing linkages, layered usage linkages). 1737 * The key used for the hash table is derived from 1738 * information in the dip. 1739 */ 1740 di_register_dip(st, (dev_info_t *)node, me->self); 1741 1742 /* 1743 * increment offset 1744 */ 1745 off += sizeof (struct di_node); 1746 1747 #ifdef DEVID_COMPATIBILITY 1748 /* check for devid as property marker */ 1749 if (node->devi_devid) { 1750 ddi_devid_t devid; 1751 char *devidstr; 1752 int devid_size; 1753 1754 /* 1755 * The devid is now represented as a property. 1756 * For micro release compatibility with di_devid interface 1757 * in libdevinfo we must return it as a binary structure in' 1758 * the snapshot. When di_devid is removed from libdevinfo 1759 * in a future release (and devi_devid is deleted) then 1760 * code related to DEVID_COMPATIBILITY can be removed. 1761 */ 1762 ASSERT(node->devi_devid == DEVID_COMPATIBILITY); 1763 /* XXX should be DDI_DEV_T_NONE! */ 1764 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, (dev_info_t *)node, 1765 DDI_PROP_DONTPASS, DEVID_PROP_NAME, &devidstr) == 1766 DDI_PROP_SUCCESS) { 1767 if (ddi_devid_str_decode(devidstr, &devid, NULL) == 1768 DDI_SUCCESS) { 1769 devid_size = ddi_devid_sizeof(devid); 1770 off = di_checkmem(st, off, devid_size); 1771 me->devid = off; 1772 bcopy(devid, 1773 di_mem_addr(st, off), devid_size); 1774 off += devid_size; 1775 ddi_devid_free(devid); 1776 } 1777 ddi_prop_free(devidstr); 1778 } 1779 } 1780 #endif /* DEVID_COMPATIBILITY */ 1781 1782 if (node->devi_node_name) { 1783 off = di_checkmem(st, off, strlen(node->devi_node_name) + 1); 1784 me->node_name = off; 1785 (void) strcpy(di_mem_addr(st, off), node->devi_node_name); 1786 off += strlen(node->devi_node_name) + 1; 1787 } 1788 1789 if (node->devi_compat_names && (node->devi_compat_length > 1)) { 1790 off = di_checkmem(st, off, node->devi_compat_length); 1791 me->compat_names = off; 1792 me->compat_length = node->devi_compat_length; 1793 bcopy(node->devi_compat_names, di_mem_addr(st, off), 1794 node->devi_compat_length); 1795 off += node->devi_compat_length; 1796 } 1797 1798 if (node->devi_addr) { 1799 off = di_checkmem(st, off, strlen(node->devi_addr) + 1); 1800 me->address = off; 1801 (void) strcpy(di_mem_addr(st, off), node->devi_addr); 1802 off += strlen(node->devi_addr) + 1; 1803 } 1804 1805 if (node->devi_binding_name) { 1806 off = di_checkmem(st, off, strlen(node->devi_binding_name) + 1); 1807 me->bind_name = off; 1808 (void) strcpy(di_mem_addr(st, off), node->devi_binding_name); 1809 off += strlen(node->devi_binding_name) + 1; 1810 } 1811 1812 me->drv_major = node->devi_major; 1813 1814 /* 1815 * If the dip is BOUND, set the next pointer of the 1816 * per-instance list to -1, indicating that it is yet to be resolved. 1817 * This will be resolved later in snap_driver_list(). 1818 */ 1819 if (me->drv_major != -1) { 1820 me->next = -1; 1821 } else { 1822 me->next = 0; 1823 } 1824 1825 /* 1826 * An optimization to skip mutex_enter when not needed. 1827 */ 1828 if (!((DINFOMINOR | DINFOPROP | DINFOPATH) & st->command)) { 1829 goto priv_data; 1830 } 1831 1832 /* 1833 * Grab current per dev_info node lock to 1834 * get minor data and properties. 1835 */ 1836 mutex_enter(&(node->devi_lock)); 1837 1838 if (!(DINFOMINOR & st->command)) { 1839 goto path; 1840 } 1841 1842 if (node->devi_minor) { /* minor data */ 1843 me->minor_data = DI_ALIGN(off); 1844 off = di_getmdata(node->devi_minor, &me->minor_data, 1845 me->self, st); 1846 } 1847 1848 path: 1849 if (!(DINFOPATH & st->command)) { 1850 goto property; 1851 } 1852 1853 if (MDI_VHCI(node)) { 1854 me->multipath_component = MULTIPATH_COMPONENT_VHCI; 1855 } 1856 1857 if (MDI_CLIENT(node)) { 1858 me->multipath_component = MULTIPATH_COMPONENT_CLIENT; 1859 me->multipath_client = DI_ALIGN(off); 1860 off = di_getpath_data((dev_info_t *)node, &me->multipath_client, 1861 me->self, st, 1); 1862 dcmn_err((CE_WARN, "me->multipath_client = %x for node %p " 1863 "component type = %d. off=%d", 1864 me->multipath_client, 1865 (void *)node, node->devi_mdi_component, off)); 1866 } 1867 1868 if (MDI_PHCI(node)) { 1869 me->multipath_component = MULTIPATH_COMPONENT_PHCI; 1870 me->multipath_phci = DI_ALIGN(off); 1871 off = di_getpath_data((dev_info_t *)node, &me->multipath_phci, 1872 me->self, st, 0); 1873 dcmn_err((CE_WARN, "me->multipath_phci = %x for node %p " 1874 "component type = %d. off=%d", 1875 me->multipath_phci, 1876 (void *)node, node->devi_mdi_component, off)); 1877 } 1878 1879 property: 1880 if (!(DINFOPROP & st->command)) { 1881 goto unlock; 1882 } 1883 1884 if (node->devi_drv_prop_ptr) { /* driver property list */ 1885 me->drv_prop = DI_ALIGN(off); 1886 off = di_getprop(node->devi_drv_prop_ptr, &me->drv_prop, st, 1887 node, DI_PROP_DRV_LIST); 1888 } 1889 1890 if (node->devi_sys_prop_ptr) { /* system property list */ 1891 me->sys_prop = DI_ALIGN(off); 1892 off = di_getprop(node->devi_sys_prop_ptr, &me->sys_prop, st, 1893 node, DI_PROP_SYS_LIST); 1894 } 1895 1896 if (node->devi_hw_prop_ptr) { /* hardware property list */ 1897 me->hw_prop = DI_ALIGN(off); 1898 off = di_getprop(node->devi_hw_prop_ptr, &me->hw_prop, st, 1899 node, DI_PROP_HW_LIST); 1900 } 1901 1902 if (node->devi_global_prop_list == NULL) { 1903 me->glob_prop = (di_off_t)-1; /* not global property */ 1904 } else { 1905 /* 1906 * Make copy of global property list if this devinfo refers 1907 * global properties different from what's on the devnames 1908 * array. It can happen if there has been a forced 1909 * driver.conf update. See mod_drv(1M). 1910 */ 1911 ASSERT(me->drv_major != -1); 1912 if (node->devi_global_prop_list != 1913 devnamesp[me->drv_major].dn_global_prop_ptr) { 1914 me->glob_prop = DI_ALIGN(off); 1915 off = di_getprop(node->devi_global_prop_list->prop_list, 1916 &me->glob_prop, st, node, DI_PROP_GLB_LIST); 1917 } 1918 } 1919 1920 unlock: 1921 /* 1922 * release current per dev_info node lock 1923 */ 1924 mutex_exit(&(node->devi_lock)); 1925 1926 priv_data: 1927 if (!(DINFOPRIVDATA & st->command)) { 1928 goto pm_info; 1929 } 1930 1931 if (ddi_get_parent_data((dev_info_t *)node) != NULL) { 1932 me->parent_data = DI_ALIGN(off); 1933 off = di_getppdata(node, &me->parent_data, st); 1934 } 1935 1936 if (ddi_get_driver_private((dev_info_t *)node) != NULL) { 1937 me->driver_data = DI_ALIGN(off); 1938 off = di_getdpdata(node, &me->driver_data, st); 1939 } 1940 1941 pm_info: /* NOT implemented */ 1942 1943 subtree: 1944 if (!(DINFOSUBTREE & st->command)) { 1945 POP_STACK(dsp); 1946 return (DI_ALIGN(off)); 1947 } 1948 1949 child: 1950 /* 1951 * If there is a child--push child onto stack. 1952 * Hold the parent busy while doing so. 1953 */ 1954 if (node->devi_child) { 1955 me->child = DI_ALIGN(off); 1956 PUSH_STACK(dsp, node->devi_child, &me->child); 1957 return (me->child); 1958 } 1959 1960 sibling: 1961 /* 1962 * no child node, unroll the stack till a sibling of 1963 * a parent node is found or root node is reached 1964 */ 1965 POP_STACK(dsp); 1966 while (!EMPTY_STACK(dsp) && (node->devi_sibling == NULL)) { 1967 node = TOP_NODE(dsp); 1968 me = DI_NODE(di_mem_addr(st, *(TOP_OFFSET(dsp)))); 1969 POP_STACK(dsp); 1970 } 1971 1972 if (!EMPTY_STACK(dsp)) { 1973 /* 1974 * a sibling is found, replace top of stack by its sibling 1975 */ 1976 me->sibling = DI_ALIGN(off); 1977 PUSH_STACK(dsp, node->devi_sibling, &me->sibling); 1978 return (me->sibling); 1979 } 1980 1981 /* 1982 * DONE with all nodes 1983 */ 1984 return (DI_ALIGN(off)); 1985 } 1986 1987 static i_lnode_t * 1988 i_lnode_alloc(int modid) 1989 { 1990 i_lnode_t *i_lnode; 1991 1992 i_lnode = kmem_zalloc(sizeof (i_lnode_t), KM_SLEEP); 1993 1994 ASSERT(modid != -1); 1995 i_lnode->modid = modid; 1996 1997 return (i_lnode); 1998 } 1999 2000 static void 2001 i_lnode_free(i_lnode_t *i_lnode) 2002 { 2003 kmem_free(i_lnode, sizeof (i_lnode_t)); 2004 } 2005 2006 static void 2007 i_lnode_check_free(i_lnode_t *i_lnode) 2008 { 2009 /* This lnode and its dip must have been snapshotted */ 2010 ASSERT(i_lnode->self > 0); 2011 ASSERT(i_lnode->di_node->self > 0); 2012 2013 /* at least 1 link (in or out) must exist for this lnode */ 2014 ASSERT(i_lnode->link_in || i_lnode->link_out); 2015 2016 i_lnode_free(i_lnode); 2017 } 2018 2019 static i_link_t * 2020 i_link_alloc(int spec_type) 2021 { 2022 i_link_t *i_link; 2023 2024 i_link = kmem_zalloc(sizeof (i_link_t), KM_SLEEP); 2025 i_link->spec_type = spec_type; 2026 2027 return (i_link); 2028 } 2029 2030 static void 2031 i_link_check_free(i_link_t *i_link) 2032 { 2033 /* This link must have been snapshotted */ 2034 ASSERT(i_link->self > 0); 2035 2036 /* Both endpoint lnodes must exist for this link */ 2037 ASSERT(i_link->src_lnode); 2038 ASSERT(i_link->tgt_lnode); 2039 2040 kmem_free(i_link, sizeof (i_link_t)); 2041 } 2042 2043 /*ARGSUSED*/ 2044 static uint_t 2045 i_lnode_hashfunc(void *arg, mod_hash_key_t key) 2046 { 2047 i_lnode_t *i_lnode = (i_lnode_t *)key; 2048 struct di_node *ptr; 2049 dev_t dev; 2050 2051 dev = i_lnode->devt; 2052 if (dev != DDI_DEV_T_NONE) 2053 return (i_lnode->modid + getminor(dev) + getmajor(dev)); 2054 2055 ptr = i_lnode->di_node; 2056 ASSERT(ptr->self > 0); 2057 if (ptr) { 2058 uintptr_t k = (uintptr_t)ptr; 2059 k >>= (int)highbit(sizeof (struct di_node)); 2060 return ((uint_t)k); 2061 } 2062 2063 return (i_lnode->modid); 2064 } 2065 2066 static int 2067 i_lnode_cmp(void *arg1, void *arg2) 2068 { 2069 i_lnode_t *i_lnode1 = (i_lnode_t *)arg1; 2070 i_lnode_t *i_lnode2 = (i_lnode_t *)arg2; 2071 2072 if (i_lnode1->modid != i_lnode2->modid) { 2073 return ((i_lnode1->modid < i_lnode2->modid) ? -1 : 1); 2074 } 2075 2076 if (i_lnode1->di_node != i_lnode2->di_node) 2077 return ((i_lnode1->di_node < i_lnode2->di_node) ? -1 : 1); 2078 2079 if (i_lnode1->devt != i_lnode2->devt) 2080 return ((i_lnode1->devt < i_lnode2->devt) ? -1 : 1); 2081 2082 return (0); 2083 } 2084 2085 /* 2086 * An lnode represents a {dip, dev_t} tuple. A link represents a 2087 * {src_lnode, tgt_lnode, spec_type} tuple. 2088 * The following callback assumes that LDI framework ref-counts the 2089 * src_dip and tgt_dip while invoking this callback. 2090 */ 2091 static int 2092 di_ldi_callback(const ldi_usage_t *ldi_usage, void *arg) 2093 { 2094 struct di_state *st = (struct di_state *)arg; 2095 i_lnode_t *src_lnode, *tgt_lnode, *i_lnode; 2096 i_link_t **i_link_next, *i_link; 2097 di_off_t soff, toff; 2098 mod_hash_val_t nodep = NULL; 2099 int res; 2100 2101 /* 2102 * if the source or target of this device usage information doesn't 2103 * corrospond to a device node then we don't report it via 2104 * libdevinfo so return. 2105 */ 2106 if ((ldi_usage->src_dip == NULL) || (ldi_usage->tgt_dip == NULL)) 2107 return (LDI_USAGE_CONTINUE); 2108 2109 ASSERT(e_ddi_devi_holdcnt(ldi_usage->src_dip)); 2110 ASSERT(e_ddi_devi_holdcnt(ldi_usage->tgt_dip)); 2111 2112 /* 2113 * Skip the ldi_usage if either src or tgt dip is not in the 2114 * snapshot. This saves us from pruning bad lnodes/links later. 2115 */ 2116 if (di_dip_find(st, ldi_usage->src_dip, &soff) != 0) 2117 return (LDI_USAGE_CONTINUE); 2118 if (di_dip_find(st, ldi_usage->tgt_dip, &toff) != 0) 2119 return (LDI_USAGE_CONTINUE); 2120 2121 ASSERT(soff > 0); 2122 ASSERT(toff > 0); 2123 2124 /* 2125 * allocate an i_lnode and add it to the lnode hash 2126 * if it is not already present. For this particular 2127 * link the lnode is a source, but it may 2128 * participate as tgt or src in any number of layered 2129 * operations - so it may already be in the hash. 2130 */ 2131 i_lnode = i_lnode_alloc(ldi_usage->src_modid); 2132 i_lnode->di_node = (struct di_node *)(intptr_t)di_mem_addr(st, soff); 2133 i_lnode->devt = ldi_usage->src_devt; 2134 2135 res = mod_hash_find(st->lnode_hash, i_lnode, &nodep); 2136 if (res == MH_ERR_NOTFOUND) { 2137 /* 2138 * new i_lnode 2139 * add it to the hash and increment the lnode count 2140 */ 2141 res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode); 2142 ASSERT(res == 0); 2143 st->lnode_count++; 2144 src_lnode = i_lnode; 2145 } else { 2146 /* this i_lnode already exists in the lnode_hash */ 2147 i_lnode_free(i_lnode); 2148 src_lnode = (i_lnode_t *)nodep; 2149 } 2150 2151 /* 2152 * allocate a tgt i_lnode and add it to the lnode hash 2153 */ 2154 i_lnode = i_lnode_alloc(ldi_usage->tgt_modid); 2155 i_lnode->di_node = (struct di_node *)(intptr_t)di_mem_addr(st, toff); 2156 i_lnode->devt = ldi_usage->tgt_devt; 2157 2158 res = mod_hash_find(st->lnode_hash, i_lnode, &nodep); 2159 if (res == MH_ERR_NOTFOUND) { 2160 /* 2161 * new i_lnode 2162 * add it to the hash and increment the lnode count 2163 */ 2164 res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode); 2165 ASSERT(res == 0); 2166 st->lnode_count++; 2167 tgt_lnode = i_lnode; 2168 } else { 2169 /* this i_lnode already exists in the lnode_hash */ 2170 i_lnode_free(i_lnode); 2171 tgt_lnode = (i_lnode_t *)nodep; 2172 } 2173 2174 /* 2175 * allocate a i_link 2176 */ 2177 i_link = i_link_alloc(ldi_usage->tgt_spec_type); 2178 i_link->src_lnode = src_lnode; 2179 i_link->tgt_lnode = tgt_lnode; 2180 2181 /* 2182 * add this link onto the src i_lnodes outbound i_link list 2183 */ 2184 i_link_next = &(src_lnode->link_out); 2185 while (*i_link_next != NULL) { 2186 if ((i_lnode_cmp(tgt_lnode, (*i_link_next)->tgt_lnode) == 0) && 2187 (i_link->spec_type == (*i_link_next)->spec_type)) { 2188 /* this link already exists */ 2189 kmem_free(i_link, sizeof (i_link_t)); 2190 return (LDI_USAGE_CONTINUE); 2191 } 2192 i_link_next = &((*i_link_next)->src_link_next); 2193 } 2194 *i_link_next = i_link; 2195 2196 /* 2197 * add this link onto the tgt i_lnodes inbound i_link list 2198 */ 2199 i_link_next = &(tgt_lnode->link_in); 2200 while (*i_link_next != NULL) { 2201 ASSERT(i_lnode_cmp(src_lnode, (*i_link_next)->src_lnode) != 0); 2202 i_link_next = &((*i_link_next)->tgt_link_next); 2203 } 2204 *i_link_next = i_link; 2205 2206 /* 2207 * add this i_link to the link hash 2208 */ 2209 res = mod_hash_insert(st->link_hash, i_link, i_link); 2210 ASSERT(res == 0); 2211 st->link_count++; 2212 2213 return (LDI_USAGE_CONTINUE); 2214 } 2215 2216 struct i_layer_data { 2217 struct di_state *st; 2218 int lnode_count; 2219 int link_count; 2220 di_off_t lnode_off; 2221 di_off_t link_off; 2222 }; 2223 2224 /*ARGSUSED*/ 2225 static uint_t 2226 i_link_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 2227 { 2228 i_link_t *i_link = (i_link_t *)key; 2229 struct i_layer_data *data = arg; 2230 struct di_link *me; 2231 struct di_lnode *melnode; 2232 struct di_node *medinode; 2233 2234 ASSERT(i_link->self == 0); 2235 2236 i_link->self = data->link_off + 2237 (data->link_count * sizeof (struct di_link)); 2238 data->link_count++; 2239 2240 ASSERT(data->link_off > 0 && data->link_count > 0); 2241 ASSERT(data->lnode_count == data->st->lnode_count); /* lnodes done */ 2242 ASSERT(data->link_count <= data->st->link_count); 2243 2244 /* fill in fields for the di_link snapshot */ 2245 me = (struct di_link *)(intptr_t)di_mem_addr(data->st, i_link->self); 2246 me->self = i_link->self; 2247 me->spec_type = i_link->spec_type; 2248 2249 /* 2250 * The src_lnode and tgt_lnode i_lnode_t for this i_link_t 2251 * are created during the LDI table walk. Since we are 2252 * walking the link hash, the lnode hash has already been 2253 * walked and the lnodes have been snapshotted. Save lnode 2254 * offsets. 2255 */ 2256 me->src_lnode = i_link->src_lnode->self; 2257 me->tgt_lnode = i_link->tgt_lnode->self; 2258 2259 /* 2260 * Save this link's offset in the src_lnode snapshot's link_out 2261 * field 2262 */ 2263 melnode = (struct di_lnode *) 2264 (intptr_t)di_mem_addr(data->st, me->src_lnode); 2265 me->src_link_next = melnode->link_out; 2266 melnode->link_out = me->self; 2267 2268 /* 2269 * Put this link on the tgt_lnode's link_in field 2270 */ 2271 melnode = (struct di_lnode *) 2272 (intptr_t)di_mem_addr(data->st, me->tgt_lnode); 2273 me->tgt_link_next = melnode->link_in; 2274 melnode->link_in = me->self; 2275 2276 /* 2277 * An i_lnode_t is only created if the corresponding dip exists 2278 * in the snapshot. A pointer to the di_node is saved in the 2279 * i_lnode_t when it is allocated. For this link, get the di_node 2280 * for the source lnode. Then put the link on the di_node's list 2281 * of src links 2282 */ 2283 medinode = i_link->src_lnode->di_node; 2284 me->src_node_next = medinode->src_links; 2285 medinode->src_links = me->self; 2286 2287 /* 2288 * Put this link on the tgt_links list of the target 2289 * dip. 2290 */ 2291 medinode = i_link->tgt_lnode->di_node; 2292 me->tgt_node_next = medinode->tgt_links; 2293 medinode->tgt_links = me->self; 2294 2295 return (MH_WALK_CONTINUE); 2296 } 2297 2298 /*ARGSUSED*/ 2299 static uint_t 2300 i_lnode_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 2301 { 2302 i_lnode_t *i_lnode = (i_lnode_t *)key; 2303 struct i_layer_data *data = arg; 2304 struct di_lnode *me; 2305 struct di_node *medinode; 2306 2307 ASSERT(i_lnode->self == 0); 2308 2309 i_lnode->self = data->lnode_off + 2310 (data->lnode_count * sizeof (struct di_lnode)); 2311 data->lnode_count++; 2312 2313 ASSERT(data->lnode_off > 0 && data->lnode_count > 0); 2314 ASSERT(data->link_count == 0); /* links not done yet */ 2315 ASSERT(data->lnode_count <= data->st->lnode_count); 2316 2317 /* fill in fields for the di_lnode snapshot */ 2318 me = (struct di_lnode *)(intptr_t)di_mem_addr(data->st, i_lnode->self); 2319 me->self = i_lnode->self; 2320 2321 if (i_lnode->devt == DDI_DEV_T_NONE) { 2322 me->dev_major = (major_t)-1; 2323 me->dev_minor = (minor_t)-1; 2324 } else { 2325 me->dev_major = getmajor(i_lnode->devt); 2326 me->dev_minor = getminor(i_lnode->devt); 2327 } 2328 2329 /* 2330 * The dip corresponding to this lnode must exist in 2331 * the snapshot or we wouldn't have created the i_lnode_t 2332 * during LDI walk. Save the offset of the dip. 2333 */ 2334 ASSERT(i_lnode->di_node && i_lnode->di_node->self > 0); 2335 me->node = i_lnode->di_node->self; 2336 2337 /* 2338 * There must be at least one link in or out of this lnode 2339 * or we wouldn't have created it. These fields will be set 2340 * during the link hash walk. 2341 */ 2342 ASSERT((i_lnode->link_in != NULL) || (i_lnode->link_out != NULL)); 2343 2344 /* 2345 * set the offset of the devinfo node associated with this 2346 * lnode. Also update the node_next next pointer. this pointer 2347 * is set if there are multiple lnodes associated with the same 2348 * devinfo node. (could occure when multiple minor nodes 2349 * are open for one device, etc.) 2350 */ 2351 medinode = i_lnode->di_node; 2352 me->node_next = medinode->lnodes; 2353 medinode->lnodes = me->self; 2354 2355 return (MH_WALK_CONTINUE); 2356 } 2357 2358 static di_off_t 2359 di_getlink_data(di_off_t off, struct di_state *st) 2360 { 2361 struct i_layer_data data = {0}; 2362 size_t size; 2363 2364 dcmn_err2((CE_CONT, "di_copylyr: off = %x\n", off)); 2365 2366 st->lnode_hash = mod_hash_create_extended("di_lnode_hash", 32, 2367 mod_hash_null_keydtor, (void (*)(mod_hash_val_t))i_lnode_check_free, 2368 i_lnode_hashfunc, NULL, i_lnode_cmp, KM_SLEEP); 2369 2370 st->link_hash = mod_hash_create_ptrhash("di_link_hash", 32, 2371 (void (*)(mod_hash_val_t))i_link_check_free, sizeof (i_link_t)); 2372 2373 /* get driver layering information */ 2374 (void) ldi_usage_walker(st, di_ldi_callback); 2375 2376 /* check if there is any link data to include in the snapshot */ 2377 if (st->lnode_count == 0) { 2378 ASSERT(st->link_count == 0); 2379 goto out; 2380 } 2381 2382 ASSERT(st->link_count != 0); 2383 2384 /* get a pointer to snapshot memory for all the di_lnodes */ 2385 size = sizeof (struct di_lnode) * st->lnode_count; 2386 data.lnode_off = off = di_checkmem(st, off, size); 2387 off += DI_ALIGN(size); 2388 2389 /* get a pointer to snapshot memory for all the di_links */ 2390 size = sizeof (struct di_link) * st->link_count; 2391 data.link_off = off = di_checkmem(st, off, size); 2392 off += DI_ALIGN(size); 2393 2394 data.lnode_count = data.link_count = 0; 2395 data.st = st; 2396 2397 /* 2398 * We have lnodes and links that will go into the 2399 * snapshot, so let's walk the respective hashes 2400 * and snapshot them. The various linkages are 2401 * also set up during the walk. 2402 */ 2403 mod_hash_walk(st->lnode_hash, i_lnode_walker, (void *)&data); 2404 ASSERT(data.lnode_count == st->lnode_count); 2405 2406 mod_hash_walk(st->link_hash, i_link_walker, (void *)&data); 2407 ASSERT(data.link_count == st->link_count); 2408 2409 out: 2410 /* free up the i_lnodes and i_links used to create the snapshot */ 2411 mod_hash_destroy_hash(st->lnode_hash); 2412 mod_hash_destroy_hash(st->link_hash); 2413 st->lnode_count = 0; 2414 st->link_count = 0; 2415 2416 return (off); 2417 } 2418 2419 2420 /* 2421 * Copy all minor data nodes attached to a devinfo node into the snapshot. 2422 * It is called from di_copynode with devi_lock held. 2423 */ 2424 static di_off_t 2425 di_getmdata(struct ddi_minor_data *mnode, di_off_t *off_p, di_off_t node, 2426 struct di_state *st) 2427 { 2428 di_off_t off; 2429 struct di_minor *me; 2430 2431 dcmn_err2((CE_CONT, "di_getmdata:\n")); 2432 2433 /* 2434 * check memory first 2435 */ 2436 off = di_checkmem(st, *off_p, sizeof (struct di_minor)); 2437 *off_p = off; 2438 2439 do { 2440 me = (struct di_minor *)(intptr_t)di_mem_addr(st, off); 2441 me->self = off; 2442 me->type = mnode->type; 2443 me->node = node; 2444 me->user_private_data = NULL; 2445 2446 off += DI_ALIGN(sizeof (struct di_minor)); 2447 2448 /* 2449 * Split dev_t to major/minor, so it works for 2450 * both ILP32 and LP64 model 2451 */ 2452 me->dev_major = getmajor(mnode->ddm_dev); 2453 me->dev_minor = getminor(mnode->ddm_dev); 2454 me->spec_type = mnode->ddm_spec_type; 2455 2456 if (mnode->ddm_name) { 2457 off = di_checkmem(st, off, 2458 strlen(mnode->ddm_name) + 1); 2459 me->name = off; 2460 (void) strcpy(di_mem_addr(st, off), mnode->ddm_name); 2461 off += DI_ALIGN(strlen(mnode->ddm_name) + 1); 2462 } 2463 2464 if (mnode->ddm_node_type) { 2465 off = di_checkmem(st, off, 2466 strlen(mnode->ddm_node_type) + 1); 2467 me->node_type = off; 2468 (void) strcpy(di_mem_addr(st, off), 2469 mnode->ddm_node_type); 2470 off += DI_ALIGN(strlen(mnode->ddm_node_type) + 1); 2471 } 2472 2473 off = di_checkmem(st, off, sizeof (struct di_minor)); 2474 me->next = off; 2475 mnode = mnode->next; 2476 } while (mnode); 2477 2478 me->next = 0; 2479 2480 return (off); 2481 } 2482 2483 /* 2484 * di_register_dip(), di_find_dip(): The dip must be protected 2485 * from deallocation when using these routines - this can either 2486 * be a reference count, a busy hold or a per-driver lock. 2487 */ 2488 2489 static void 2490 di_register_dip(struct di_state *st, dev_info_t *dip, di_off_t off) 2491 { 2492 struct dev_info *node = DEVI(dip); 2493 struct di_key *key = kmem_zalloc(sizeof (*key), KM_SLEEP); 2494 struct di_dkey *dk; 2495 2496 ASSERT(dip); 2497 ASSERT(off > 0); 2498 2499 key->k_type = DI_DKEY; 2500 dk = &(key->k_u.dkey); 2501 2502 dk->dk_dip = dip; 2503 dk->dk_major = node->devi_major; 2504 dk->dk_inst = node->devi_instance; 2505 dk->dk_nodeid = node->devi_nodeid; 2506 2507 if (mod_hash_insert(st->reg_dip_hash, (mod_hash_key_t)key, 2508 (mod_hash_val_t)(uintptr_t)off) != 0) { 2509 panic( 2510 "duplicate devinfo (%p) registered during device " 2511 "tree walk", (void *)dip); 2512 } 2513 } 2514 2515 2516 static int 2517 di_dip_find(struct di_state *st, dev_info_t *dip, di_off_t *off_p) 2518 { 2519 /* 2520 * uintptr_t must be used because it matches the size of void *; 2521 * mod_hash expects clients to place results into pointer-size 2522 * containers; since di_off_t is always a 32-bit offset, alignment 2523 * would otherwise be broken on 64-bit kernels. 2524 */ 2525 uintptr_t offset; 2526 struct di_key key = {0}; 2527 struct di_dkey *dk; 2528 2529 ASSERT(st->reg_dip_hash); 2530 ASSERT(dip); 2531 ASSERT(off_p); 2532 2533 2534 key.k_type = DI_DKEY; 2535 dk = &(key.k_u.dkey); 2536 2537 dk->dk_dip = dip; 2538 dk->dk_major = DEVI(dip)->devi_major; 2539 dk->dk_inst = DEVI(dip)->devi_instance; 2540 dk->dk_nodeid = DEVI(dip)->devi_nodeid; 2541 2542 if (mod_hash_find(st->reg_dip_hash, (mod_hash_key_t)&key, 2543 (mod_hash_val_t *)&offset) == 0) { 2544 *off_p = (di_off_t)offset; 2545 return (0); 2546 } else { 2547 return (-1); 2548 } 2549 } 2550 2551 /* 2552 * di_register_pip(), di_find_pip(): The pip must be protected from deallocation 2553 * when using these routines. The caller must do this by protecting the 2554 * client(or phci)<->pip linkage while traversing the list and then holding the 2555 * pip when it is found in the list. 2556 */ 2557 2558 static void 2559 di_register_pip(struct di_state *st, mdi_pathinfo_t *pip, di_off_t off) 2560 { 2561 struct di_key *key = kmem_zalloc(sizeof (*key), KM_SLEEP); 2562 char *path_addr; 2563 struct di_pkey *pk; 2564 2565 ASSERT(pip); 2566 ASSERT(off > 0); 2567 2568 key->k_type = DI_PKEY; 2569 pk = &(key->k_u.pkey); 2570 2571 pk->pk_pip = pip; 2572 path_addr = mdi_pi_get_addr(pip); 2573 if (path_addr) 2574 pk->pk_path_addr = i_ddi_strdup(path_addr, KM_SLEEP); 2575 pk->pk_client = mdi_pi_get_client(pip); 2576 pk->pk_phci = mdi_pi_get_phci(pip); 2577 2578 if (mod_hash_insert(st->reg_pip_hash, (mod_hash_key_t)key, 2579 (mod_hash_val_t)(uintptr_t)off) != 0) { 2580 panic( 2581 "duplicate pathinfo (%p) registered during device " 2582 "tree walk", (void *)pip); 2583 } 2584 } 2585 2586 /* 2587 * As with di_register_pip, the caller must hold or lock the pip 2588 */ 2589 static int 2590 di_pip_find(struct di_state *st, mdi_pathinfo_t *pip, di_off_t *off_p) 2591 { 2592 /* 2593 * uintptr_t must be used because it matches the size of void *; 2594 * mod_hash expects clients to place results into pointer-size 2595 * containers; since di_off_t is always a 32-bit offset, alignment 2596 * would otherwise be broken on 64-bit kernels. 2597 */ 2598 uintptr_t offset; 2599 struct di_key key = {0}; 2600 struct di_pkey *pk; 2601 2602 ASSERT(st->reg_pip_hash); 2603 ASSERT(off_p); 2604 2605 if (pip == NULL) { 2606 *off_p = 0; 2607 return (0); 2608 } 2609 2610 key.k_type = DI_PKEY; 2611 pk = &(key.k_u.pkey); 2612 2613 pk->pk_pip = pip; 2614 pk->pk_path_addr = mdi_pi_get_addr(pip); 2615 pk->pk_client = mdi_pi_get_client(pip); 2616 pk->pk_phci = mdi_pi_get_phci(pip); 2617 2618 if (mod_hash_find(st->reg_pip_hash, (mod_hash_key_t)&key, 2619 (mod_hash_val_t *)&offset) == 0) { 2620 *off_p = (di_off_t)offset; 2621 return (0); 2622 } else { 2623 return (-1); 2624 } 2625 } 2626 2627 static di_path_state_t 2628 path_state_convert(mdi_pathinfo_state_t st) 2629 { 2630 switch (st) { 2631 case MDI_PATHINFO_STATE_ONLINE: 2632 return (DI_PATH_STATE_ONLINE); 2633 case MDI_PATHINFO_STATE_STANDBY: 2634 return (DI_PATH_STATE_STANDBY); 2635 case MDI_PATHINFO_STATE_OFFLINE: 2636 return (DI_PATH_STATE_OFFLINE); 2637 case MDI_PATHINFO_STATE_FAULT: 2638 return (DI_PATH_STATE_FAULT); 2639 default: 2640 return (DI_PATH_STATE_UNKNOWN); 2641 } 2642 } 2643 2644 2645 static di_off_t 2646 di_path_getprop(mdi_pathinfo_t *pip, di_off_t off, di_off_t *off_p, 2647 struct di_state *st) 2648 { 2649 nvpair_t *prop = NULL; 2650 struct di_path_prop *me; 2651 2652 if (mdi_pi_get_next_prop(pip, NULL) == NULL) { 2653 *off_p = 0; 2654 return (off); 2655 } 2656 2657 off = di_checkmem(st, off, sizeof (struct di_path_prop)); 2658 *off_p = off; 2659 2660 while (prop = mdi_pi_get_next_prop(pip, prop)) { 2661 int delta = 0; 2662 2663 me = (struct di_path_prop *)(intptr_t)di_mem_addr(st, off); 2664 me->self = off; 2665 off += sizeof (struct di_path_prop); 2666 2667 /* 2668 * property name 2669 */ 2670 off = di_checkmem(st, off, strlen(nvpair_name(prop)) + 1); 2671 me->prop_name = off; 2672 (void) strcpy(di_mem_addr(st, off), nvpair_name(prop)); 2673 off += strlen(nvpair_name(prop)) + 1; 2674 2675 switch (nvpair_type(prop)) { 2676 case DATA_TYPE_BYTE: 2677 case DATA_TYPE_INT16: 2678 case DATA_TYPE_UINT16: 2679 case DATA_TYPE_INT32: 2680 case DATA_TYPE_UINT32: 2681 delta = sizeof (int32_t); 2682 me->prop_type = DDI_PROP_TYPE_INT; 2683 off = di_checkmem(st, off, delta); 2684 (void) nvpair_value_int32(prop, 2685 (int32_t *)(intptr_t)di_mem_addr(st, off)); 2686 break; 2687 2688 case DATA_TYPE_INT64: 2689 case DATA_TYPE_UINT64: 2690 delta = sizeof (int64_t); 2691 me->prop_type = DDI_PROP_TYPE_INT64; 2692 off = di_checkmem(st, off, delta); 2693 (void) nvpair_value_int64(prop, 2694 (int64_t *)(intptr_t)di_mem_addr(st, off)); 2695 break; 2696 2697 case DATA_TYPE_STRING: 2698 { 2699 char *str; 2700 (void) nvpair_value_string(prop, &str); 2701 delta = strlen(str) + 1; 2702 me->prop_type = DDI_PROP_TYPE_STRING; 2703 off = di_checkmem(st, off, delta); 2704 (void) strcpy(di_mem_addr(st, off), str); 2705 break; 2706 } 2707 case DATA_TYPE_BYTE_ARRAY: 2708 case DATA_TYPE_INT16_ARRAY: 2709 case DATA_TYPE_UINT16_ARRAY: 2710 case DATA_TYPE_INT32_ARRAY: 2711 case DATA_TYPE_UINT32_ARRAY: 2712 case DATA_TYPE_INT64_ARRAY: 2713 case DATA_TYPE_UINT64_ARRAY: 2714 { 2715 uchar_t *buf; 2716 uint_t nelems; 2717 (void) nvpair_value_byte_array(prop, &buf, &nelems); 2718 delta = nelems; 2719 me->prop_type = DDI_PROP_TYPE_BYTE; 2720 if (nelems != 0) { 2721 off = di_checkmem(st, off, delta); 2722 bcopy(buf, di_mem_addr(st, off), nelems); 2723 } 2724 break; 2725 } 2726 2727 default: /* Unknown or unhandled type; skip it */ 2728 delta = 0; 2729 break; 2730 } 2731 2732 if (delta > 0) { 2733 me->prop_data = off; 2734 } 2735 2736 me->prop_len = delta; 2737 off += delta; 2738 2739 off = di_checkmem(st, off, sizeof (struct di_path_prop)); 2740 me->prop_next = off; 2741 } 2742 2743 me->prop_next = 0; 2744 return (off); 2745 } 2746 2747 2748 static void 2749 di_path_one_endpoint(struct di_path *me, di_off_t noff, di_off_t **off_pp, 2750 int get_client) 2751 { 2752 if (get_client) { 2753 ASSERT(me->path_client == 0); 2754 me->path_client = noff; 2755 ASSERT(me->path_c_link == 0); 2756 *off_pp = &me->path_c_link; 2757 me->path_snap_state &= 2758 ~(DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOCLINK); 2759 } else { 2760 ASSERT(me->path_phci == 0); 2761 me->path_phci = noff; 2762 ASSERT(me->path_p_link == 0); 2763 *off_pp = &me->path_p_link; 2764 me->path_snap_state &= 2765 ~(DI_PATH_SNAP_NOPHCI | DI_PATH_SNAP_NOPLINK); 2766 } 2767 } 2768 2769 /* 2770 * poff_p: pointer to the linkage field. This links pips along the client|phci 2771 * linkage list. 2772 * noff : Offset for the endpoint dip snapshot. 2773 */ 2774 static di_off_t 2775 di_getpath_data(dev_info_t *dip, di_off_t *poff_p, di_off_t noff, 2776 struct di_state *st, int get_client) 2777 { 2778 di_off_t off; 2779 mdi_pathinfo_t *pip; 2780 struct di_path *me; 2781 mdi_pathinfo_t *(*next_pip)(dev_info_t *, mdi_pathinfo_t *); 2782 2783 dcmn_err2((CE_WARN, "di_getpath_data: client = %d", get_client)); 2784 2785 /* 2786 * The naming of the following mdi_xyz() is unfortunately 2787 * non-intuitive. mdi_get_next_phci_path() follows the 2788 * client_link i.e. the list of pip's belonging to the 2789 * given client dip. 2790 */ 2791 if (get_client) 2792 next_pip = &mdi_get_next_phci_path; 2793 else 2794 next_pip = &mdi_get_next_client_path; 2795 2796 off = *poff_p; 2797 2798 pip = NULL; 2799 while (pip = (*next_pip)(dip, pip)) { 2800 mdi_pathinfo_state_t state; 2801 di_off_t stored_offset; 2802 2803 dcmn_err((CE_WARN, "marshalling pip = %p", (void *)pip)); 2804 2805 mdi_pi_lock(pip); 2806 2807 if (di_pip_find(st, pip, &stored_offset) != -1) { 2808 /* 2809 * We've already seen this pathinfo node so we need to 2810 * take care not to snap it again; However, one endpoint 2811 * and linkage will be set here. The other endpoint 2812 * and linkage has already been set when the pip was 2813 * first snapshotted i.e. when the other endpoint dip 2814 * was snapshotted. 2815 */ 2816 me = (struct di_path *)(intptr_t) 2817 di_mem_addr(st, stored_offset); 2818 2819 *poff_p = stored_offset; 2820 2821 di_path_one_endpoint(me, noff, &poff_p, get_client); 2822 2823 /* 2824 * The other endpoint and linkage were set when this 2825 * pip was snapshotted. So we are done with both 2826 * endpoints and linkages. 2827 */ 2828 ASSERT(!(me->path_snap_state & 2829 (DI_PATH_SNAP_NOCLIENT|DI_PATH_SNAP_NOPHCI))); 2830 ASSERT(!(me->path_snap_state & 2831 (DI_PATH_SNAP_NOCLINK|DI_PATH_SNAP_NOPLINK))); 2832 2833 mdi_pi_unlock(pip); 2834 continue; 2835 } 2836 2837 /* 2838 * Now that we need to snapshot this pip, check memory 2839 */ 2840 off = di_checkmem(st, off, sizeof (struct di_path)); 2841 me = (struct di_path *)(intptr_t)di_mem_addr(st, off); 2842 me->self = off; 2843 *poff_p = off; 2844 off += sizeof (struct di_path); 2845 2846 me->path_snap_state = 2847 DI_PATH_SNAP_NOCLINK | DI_PATH_SNAP_NOPLINK; 2848 me->path_snap_state |= 2849 DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOPHCI; 2850 2851 /* 2852 * Zero out fields as di_checkmem() doesn't guarantee 2853 * zero-filled memory 2854 */ 2855 me->path_client = me->path_phci = 0; 2856 me->path_c_link = me->path_p_link = 0; 2857 2858 di_path_one_endpoint(me, noff, &poff_p, get_client); 2859 2860 /* 2861 * Note the existence of this pathinfo 2862 */ 2863 di_register_pip(st, pip, me->self); 2864 2865 state = mdi_pi_get_state(pip); 2866 me->path_state = path_state_convert(state); 2867 2868 /* 2869 * Get intermediate addressing info. 2870 */ 2871 off = di_checkmem(st, off, strlen(mdi_pi_get_addr(pip)) + 1); 2872 me->path_addr = off; 2873 (void) strcpy(di_mem_addr(st, off), mdi_pi_get_addr(pip)); 2874 off += strlen(mdi_pi_get_addr(pip)) + 1; 2875 2876 /* 2877 * Get path properties if props are to be included in the 2878 * snapshot 2879 */ 2880 if (DINFOPROP & st->command) { 2881 off = di_path_getprop(pip, off, &me->path_prop, st); 2882 } else { 2883 me->path_prop = 0; 2884 } 2885 2886 mdi_pi_unlock(pip); 2887 } 2888 2889 *poff_p = 0; 2890 2891 return (off); 2892 } 2893 2894 /* 2895 * Copy a list of properties attached to a devinfo node. Called from 2896 * di_copynode with devi_lock held. The major number is passed in case 2897 * we need to call driver's prop_op entry. The value of list indicates 2898 * which list we are copying. Possible values are: 2899 * DI_PROP_DRV_LIST, DI_PROP_SYS_LIST, DI_PROP_GLB_LIST, DI_PROP_HW_LIST 2900 */ 2901 static di_off_t 2902 di_getprop(struct ddi_prop *prop, di_off_t *off_p, struct di_state *st, 2903 struct dev_info *dip, int list) 2904 { 2905 dev_t dev; 2906 int (*prop_op)(); 2907 int off, need_prop_op = 0; 2908 int prop_op_fail = 0; 2909 ddi_prop_t *propp = NULL; 2910 struct di_prop *pp; 2911 struct dev_ops *ops = NULL; 2912 int prop_len; 2913 caddr_t prop_val; 2914 2915 2916 dcmn_err2((CE_CONT, "di_getprop:\n")); 2917 2918 ASSERT(st != NULL); 2919 2920 dcmn_err((CE_CONT, "copy property list at addr %p\n", (void *)prop)); 2921 2922 /* 2923 * Figure out if we need to call driver's prop_op entry point. 2924 * The conditions are: 2925 * -- driver property list 2926 * -- driver must be attached and held 2927 * -- driver's cb_prop_op != ddi_prop_op 2928 * or parent's bus_prop_op != ddi_bus_prop_op 2929 */ 2930 2931 if (list != DI_PROP_DRV_LIST) { 2932 goto getprop; 2933 } 2934 2935 /* 2936 * If driver is not attached or if major is -1, we ignore 2937 * the driver property list. No one should rely on such 2938 * properties. 2939 */ 2940 if (!i_ddi_devi_attached((dev_info_t *)dip)) { 2941 off = *off_p; 2942 *off_p = 0; 2943 return (off); 2944 } 2945 2946 /* 2947 * Now we have a driver which is held. We can examine entry points 2948 * and check the condition listed above. 2949 */ 2950 ops = dip->devi_ops; 2951 2952 /* 2953 * Some nexus drivers incorrectly set cb_prop_op to nodev, 2954 * nulldev or even NULL. 2955 */ 2956 if (ops && ops->devo_cb_ops && 2957 (ops->devo_cb_ops->cb_prop_op != ddi_prop_op) && 2958 (ops->devo_cb_ops->cb_prop_op != nodev) && 2959 (ops->devo_cb_ops->cb_prop_op != nulldev) && 2960 (ops->devo_cb_ops->cb_prop_op != NULL)) { 2961 need_prop_op = 1; 2962 } 2963 2964 getprop: 2965 /* 2966 * check memory availability 2967 */ 2968 off = di_checkmem(st, *off_p, sizeof (struct di_prop)); 2969 *off_p = off; 2970 /* 2971 * Now copy properties 2972 */ 2973 do { 2974 pp = (struct di_prop *)(intptr_t)di_mem_addr(st, off); 2975 pp->self = off; 2976 /* 2977 * Split dev_t to major/minor, so it works for 2978 * both ILP32 and LP64 model 2979 */ 2980 pp->dev_major = getmajor(prop->prop_dev); 2981 pp->dev_minor = getminor(prop->prop_dev); 2982 pp->prop_flags = prop->prop_flags; 2983 pp->prop_list = list; 2984 2985 /* 2986 * property name 2987 */ 2988 off += sizeof (struct di_prop); 2989 if (prop->prop_name) { 2990 off = di_checkmem(st, off, strlen(prop->prop_name) 2991 + 1); 2992 pp->prop_name = off; 2993 (void) strcpy(di_mem_addr(st, off), prop->prop_name); 2994 off += strlen(prop->prop_name) + 1; 2995 } 2996 2997 /* 2998 * Set prop_len here. This may change later 2999 * if cb_prop_op returns a different length. 3000 */ 3001 pp->prop_len = prop->prop_len; 3002 if (!need_prop_op) { 3003 if (prop->prop_val == NULL) { 3004 dcmn_err((CE_WARN, 3005 "devinfo: property fault at %p", 3006 (void *)prop)); 3007 pp->prop_data = -1; 3008 } else if (prop->prop_len != 0) { 3009 off = di_checkmem(st, off, prop->prop_len); 3010 pp->prop_data = off; 3011 bcopy(prop->prop_val, di_mem_addr(st, off), 3012 prop->prop_len); 3013 off += DI_ALIGN(pp->prop_len); 3014 } 3015 } 3016 3017 off = di_checkmem(st, off, sizeof (struct di_prop)); 3018 pp->next = off; 3019 prop = prop->prop_next; 3020 } while (prop); 3021 3022 pp->next = 0; 3023 3024 if (!need_prop_op) { 3025 dcmn_err((CE_CONT, "finished property " 3026 "list at offset 0x%x\n", off)); 3027 return (off); 3028 } 3029 3030 /* 3031 * If there is a need to call driver's prop_op entry, 3032 * we must release driver's devi_lock, because the 3033 * cb_prop_op entry point will grab it. 3034 * 3035 * The snapshot memory has already been allocated above, 3036 * which means the length of an active property should 3037 * remain fixed for this implementation to work. 3038 */ 3039 3040 3041 prop_op = ops->devo_cb_ops->cb_prop_op; 3042 pp = (struct di_prop *)(intptr_t)di_mem_addr(st, *off_p); 3043 3044 mutex_exit(&dip->devi_lock); 3045 3046 do { 3047 int err; 3048 struct di_prop *tmp; 3049 3050 if (pp->next) { 3051 tmp = (struct di_prop *) 3052 (intptr_t)di_mem_addr(st, pp->next); 3053 } else { 3054 tmp = NULL; 3055 } 3056 3057 /* 3058 * call into driver's prop_op entry point 3059 * 3060 * Must search DDI_DEV_T_NONE with DDI_DEV_T_ANY 3061 */ 3062 dev = makedevice(pp->dev_major, pp->dev_minor); 3063 if (dev == DDI_DEV_T_NONE) 3064 dev = DDI_DEV_T_ANY; 3065 3066 dcmn_err((CE_CONT, "call prop_op" 3067 "(%lx, %p, PROP_LEN_AND_VAL_BUF, " 3068 "DDI_PROP_DONTPASS, \"%s\", %p, &%d)\n", 3069 dev, 3070 (void *)dip, 3071 (char *)di_mem_addr(st, pp->prop_name), 3072 (void *)di_mem_addr(st, pp->prop_data), 3073 pp->prop_len)); 3074 3075 if ((err = (*prop_op)(dev, (dev_info_t)dip, 3076 PROP_LEN_AND_VAL_ALLOC, DDI_PROP_DONTPASS, 3077 (char *)di_mem_addr(st, pp->prop_name), 3078 &prop_val, &prop_len)) != DDI_PROP_SUCCESS) { 3079 if ((propp = i_ddi_prop_search(dev, 3080 (char *)di_mem_addr(st, pp->prop_name), 3081 (uint_t)pp->prop_flags, 3082 &(DEVI(dip)->devi_drv_prop_ptr))) != NULL) { 3083 pp->prop_len = propp->prop_len; 3084 if (pp->prop_len != 0) { 3085 off = di_checkmem(st, off, 3086 pp->prop_len); 3087 pp->prop_data = off; 3088 bcopy(propp->prop_val, di_mem_addr(st, 3089 pp->prop_data), propp->prop_len); 3090 off += DI_ALIGN(pp->prop_len); 3091 } 3092 } else { 3093 prop_op_fail = 1; 3094 } 3095 } else if (prop_len != 0) { 3096 pp->prop_len = prop_len; 3097 off = di_checkmem(st, off, prop_len); 3098 pp->prop_data = off; 3099 bcopy(prop_val, di_mem_addr(st, off), prop_len); 3100 off += DI_ALIGN(prop_len); 3101 kmem_free(prop_val, prop_len); 3102 } 3103 3104 if (prop_op_fail) { 3105 pp->prop_data = -1; 3106 dcmn_err((CE_WARN, "devinfo: prop_op failure " 3107 "for \"%s\" err %d", 3108 di_mem_addr(st, pp->prop_name), err)); 3109 } 3110 3111 pp = tmp; 3112 3113 } while (pp); 3114 3115 mutex_enter(&dip->devi_lock); 3116 dcmn_err((CE_CONT, "finished property list at offset 0x%x\n", off)); 3117 return (off); 3118 } 3119 3120 /* 3121 * find private data format attached to a dip 3122 * parent = 1 to match driver name of parent dip (for parent private data) 3123 * 0 to match driver name of current dip (for driver private data) 3124 */ 3125 #define DI_MATCH_DRIVER 0 3126 #define DI_MATCH_PARENT 1 3127 3128 struct di_priv_format * 3129 di_match_drv_name(struct dev_info *node, struct di_state *st, int match) 3130 { 3131 int i, count, len; 3132 char *drv_name; 3133 major_t major; 3134 struct di_all *all; 3135 struct di_priv_format *form; 3136 3137 dcmn_err2((CE_CONT, "di_match_drv_name: node = %s, match = %x\n", 3138 node->devi_node_name, match)); 3139 3140 if (match == DI_MATCH_PARENT) { 3141 node = DEVI(node->devi_parent); 3142 } 3143 3144 if (node == NULL) { 3145 return (NULL); 3146 } 3147 3148 major = ddi_name_to_major(node->devi_binding_name); 3149 if (major == (major_t)(-1)) { 3150 return (NULL); 3151 } 3152 3153 /* 3154 * Match the driver name. 3155 */ 3156 drv_name = ddi_major_to_name(major); 3157 if ((drv_name == NULL) || *drv_name == '\0') { 3158 return (NULL); 3159 } 3160 3161 /* Now get the di_priv_format array */ 3162 all = (struct di_all *)(intptr_t)di_mem_addr(st, 0); 3163 3164 if (match == DI_MATCH_PARENT) { 3165 count = all->n_ppdata; 3166 form = (struct di_priv_format *) 3167 (intptr_t)(di_mem_addr(st, 0) + all->ppdata_format); 3168 } else { 3169 count = all->n_dpdata; 3170 form = (struct di_priv_format *) 3171 (intptr_t)((caddr_t)all + all->dpdata_format); 3172 } 3173 3174 len = strlen(drv_name); 3175 for (i = 0; i < count; i++) { 3176 char *tmp; 3177 3178 tmp = form[i].drv_name; 3179 while (tmp && (*tmp != '\0')) { 3180 if (strncmp(drv_name, tmp, len) == 0) { 3181 return (&form[i]); 3182 } 3183 /* 3184 * Move to next driver name, skipping a white space 3185 */ 3186 if (tmp = strchr(tmp, ' ')) { 3187 tmp++; 3188 } 3189 } 3190 } 3191 3192 return (NULL); 3193 } 3194 3195 /* 3196 * The following functions copy data as specified by the format passed in. 3197 * To prevent invalid format from panicing the system, we call on_fault(). 3198 * A return value of 0 indicates an error. Otherwise, the total offset 3199 * is returned. 3200 */ 3201 #define DI_MAX_PRIVDATA (PAGESIZE >> 1) /* max private data size */ 3202 3203 static di_off_t 3204 di_getprvdata(struct di_priv_format *pdp, struct dev_info *node, 3205 void *data, di_off_t *off_p, struct di_state *st) 3206 { 3207 caddr_t pa; 3208 void *ptr; 3209 int i, size, repeat; 3210 di_off_t off, off0, *tmp; 3211 char *path; 3212 3213 label_t ljb; 3214 3215 dcmn_err2((CE_CONT, "di_getprvdata:\n")); 3216 3217 /* 3218 * check memory availability. Private data size is 3219 * limited to DI_MAX_PRIVDATA. 3220 */ 3221 off = di_checkmem(st, *off_p, DI_MAX_PRIVDATA); 3222 3223 if ((pdp->bytes == 0) || pdp->bytes > DI_MAX_PRIVDATA) { 3224 goto failure; 3225 } 3226 3227 if (!on_fault(&ljb)) { 3228 /* copy the struct */ 3229 bcopy(data, di_mem_addr(st, off), pdp->bytes); 3230 off0 = DI_ALIGN(pdp->bytes); 3231 3232 /* dereferencing pointers */ 3233 for (i = 0; i < MAX_PTR_IN_PRV; i++) { 3234 3235 if (pdp->ptr[i].size == 0) { 3236 goto success; /* no more ptrs */ 3237 } 3238 3239 /* 3240 * first, get the pointer content 3241 */ 3242 if ((pdp->ptr[i].offset < 0) || 3243 (pdp->ptr[i].offset > 3244 pdp->bytes - sizeof (char *))) 3245 goto failure; /* wrong offset */ 3246 3247 pa = di_mem_addr(st, off + pdp->ptr[i].offset); 3248 3249 /* save a tmp ptr to store off_t later */ 3250 tmp = (di_off_t *)(intptr_t)pa; 3251 3252 /* get pointer value, if NULL continue */ 3253 ptr = *((void **) (intptr_t)pa); 3254 if (ptr == NULL) { 3255 continue; 3256 } 3257 3258 /* 3259 * next, find the repeat count (array dimension) 3260 */ 3261 repeat = pdp->ptr[i].len_offset; 3262 3263 /* 3264 * Positive value indicates a fixed sized array. 3265 * 0 or negative value indicates variable sized array. 3266 * 3267 * For variable sized array, the variable must be 3268 * an int member of the structure, with an offset 3269 * equal to the absolution value of struct member. 3270 */ 3271 if (repeat > pdp->bytes - sizeof (int)) { 3272 goto failure; /* wrong offset */ 3273 } 3274 3275 if (repeat >= 0) { 3276 repeat = *((int *) 3277 (intptr_t)((caddr_t)data + repeat)); 3278 } else { 3279 repeat = -repeat; 3280 } 3281 3282 /* 3283 * next, get the size of the object to be copied 3284 */ 3285 size = pdp->ptr[i].size * repeat; 3286 3287 /* 3288 * Arbitrarily limit the total size of object to be 3289 * copied (1 byte to 1/4 page). 3290 */ 3291 if ((size <= 0) || (size > (DI_MAX_PRIVDATA - off0))) { 3292 goto failure; /* wrong size or too big */ 3293 } 3294 3295 /* 3296 * Now copy the data 3297 */ 3298 *tmp = off0; 3299 bcopy(ptr, di_mem_addr(st, off + off0), size); 3300 off0 += DI_ALIGN(size); 3301 } 3302 } else { 3303 goto failure; 3304 } 3305 3306 success: 3307 /* 3308 * success if reached here 3309 */ 3310 no_fault(); 3311 *off_p = off; 3312 3313 return (off + off0); 3314 /*NOTREACHED*/ 3315 3316 failure: 3317 /* 3318 * fault occurred 3319 */ 3320 no_fault(); 3321 path = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3322 cmn_err(CE_WARN, "devinfo: fault on private data for '%s' at %p", 3323 ddi_pathname((dev_info_t *)node, path), data); 3324 kmem_free(path, MAXPATHLEN); 3325 *off_p = -1; /* set private data to indicate error */ 3326 3327 return (off); 3328 } 3329 3330 /* 3331 * get parent private data; on error, returns original offset 3332 */ 3333 static di_off_t 3334 di_getppdata(struct dev_info *node, di_off_t *off_p, struct di_state *st) 3335 { 3336 int off; 3337 struct di_priv_format *ppdp; 3338 3339 dcmn_err2((CE_CONT, "di_getppdata:\n")); 3340 3341 /* find the parent data format */ 3342 if ((ppdp = di_match_drv_name(node, st, DI_MATCH_PARENT)) == NULL) { 3343 off = *off_p; 3344 *off_p = 0; /* set parent data to none */ 3345 return (off); 3346 } 3347 3348 return (di_getprvdata(ppdp, node, 3349 ddi_get_parent_data((dev_info_t *)node), off_p, st)); 3350 } 3351 3352 /* 3353 * get parent private data; returns original offset 3354 */ 3355 static di_off_t 3356 di_getdpdata(struct dev_info *node, di_off_t *off_p, struct di_state *st) 3357 { 3358 int off; 3359 struct di_priv_format *dpdp; 3360 3361 dcmn_err2((CE_CONT, "di_getdpdata:")); 3362 3363 /* find the parent data format */ 3364 if ((dpdp = di_match_drv_name(node, st, DI_MATCH_DRIVER)) == NULL) { 3365 off = *off_p; 3366 *off_p = 0; /* set driver data to none */ 3367 return (off); 3368 } 3369 3370 return (di_getprvdata(dpdp, node, 3371 ddi_get_driver_private((dev_info_t *)node), off_p, st)); 3372 } 3373 3374 /* 3375 * The driver is stateful across DINFOCPYALL and DINFOUSRLD. 3376 * This function encapsulates the state machine: 3377 * 3378 * -> IOC_IDLE -> IOC_SNAP -> IOC_DONE -> IOC_COPY -> 3379 * | SNAPSHOT USRLD | 3380 * -------------------------------------------------- 3381 * 3382 * Returns 0 on success and -1 on failure 3383 */ 3384 static int 3385 di_setstate(struct di_state *st, int new_state) 3386 { 3387 int ret = 0; 3388 3389 mutex_enter(&di_lock); 3390 switch (new_state) { 3391 case IOC_IDLE: 3392 case IOC_DONE: 3393 break; 3394 case IOC_SNAP: 3395 if (st->di_iocstate != IOC_IDLE) 3396 ret = -1; 3397 break; 3398 case IOC_COPY: 3399 if (st->di_iocstate != IOC_DONE) 3400 ret = -1; 3401 break; 3402 default: 3403 ret = -1; 3404 } 3405 3406 if (ret == 0) 3407 st->di_iocstate = new_state; 3408 else 3409 cmn_err(CE_NOTE, "incorrect state transition from %d to %d", 3410 st->di_iocstate, new_state); 3411 mutex_exit(&di_lock); 3412 return (ret); 3413 } 3414 3415 /* 3416 * We cannot assume the presence of the entire 3417 * snapshot in this routine. All we are guaranteed 3418 * is the di_all struct + 1 byte (for root_path) 3419 */ 3420 static int 3421 header_plus_one_ok(struct di_all *all) 3422 { 3423 /* 3424 * Refuse to read old versions 3425 */ 3426 if (all->version != DI_SNAPSHOT_VERSION) { 3427 CACHE_DEBUG((DI_ERR, "bad version: 0x%x", all->version)); 3428 return (0); 3429 } 3430 3431 if (all->cache_magic != DI_CACHE_MAGIC) { 3432 CACHE_DEBUG((DI_ERR, "bad magic #: 0x%x", all->cache_magic)); 3433 return (0); 3434 } 3435 3436 if (all->snapshot_time == 0) { 3437 CACHE_DEBUG((DI_ERR, "bad timestamp: %ld", all->snapshot_time)); 3438 return (0); 3439 } 3440 3441 if (all->top_devinfo == 0) { 3442 CACHE_DEBUG((DI_ERR, "NULL top devinfo")); 3443 return (0); 3444 } 3445 3446 if (all->map_size < sizeof (*all) + 1) { 3447 CACHE_DEBUG((DI_ERR, "bad map size: %u", all->map_size)); 3448 return (0); 3449 } 3450 3451 if (all->root_path[0] != '/' || all->root_path[1] != '\0') { 3452 CACHE_DEBUG((DI_ERR, "bad rootpath: %c%c", 3453 all->root_path[0], all->root_path[1])); 3454 return (0); 3455 } 3456 3457 /* 3458 * We can't check checksum here as we just have the header 3459 */ 3460 3461 return (1); 3462 } 3463 3464 static int 3465 chunk_write(struct vnode *vp, offset_t off, caddr_t buf, size_t len) 3466 { 3467 rlim64_t rlimit; 3468 ssize_t resid; 3469 int error = 0; 3470 3471 3472 rlimit = RLIM64_INFINITY; 3473 3474 while (len) { 3475 resid = 0; 3476 error = vn_rdwr(UIO_WRITE, vp, buf, len, off, 3477 UIO_SYSSPACE, FSYNC, rlimit, kcred, &resid); 3478 3479 if (error || resid < 0) { 3480 error = error ? error : EIO; 3481 CACHE_DEBUG((DI_ERR, "write error: %d", error)); 3482 break; 3483 } 3484 3485 /* 3486 * Check if we are making progress 3487 */ 3488 if (resid >= len) { 3489 error = ENOSPC; 3490 break; 3491 } 3492 buf += len - resid; 3493 off += len - resid; 3494 len = resid; 3495 } 3496 3497 return (error); 3498 } 3499 3500 extern int modrootloaded; 3501 extern void mdi_walk_vhcis(int (*)(dev_info_t *, void *), void *); 3502 extern void mdi_vhci_walk_phcis(dev_info_t *, 3503 int (*)(dev_info_t *, void *), void *); 3504 3505 static void 3506 di_cache_write(struct di_cache *cache) 3507 { 3508 struct di_all *all; 3509 struct vnode *vp; 3510 int oflags; 3511 size_t map_size; 3512 size_t chunk; 3513 offset_t off; 3514 int error; 3515 char *buf; 3516 3517 ASSERT(DI_CACHE_LOCKED(*cache)); 3518 ASSERT(!servicing_interrupt()); 3519 3520 if (cache->cache_size == 0) { 3521 ASSERT(cache->cache_data == NULL); 3522 CACHE_DEBUG((DI_ERR, "Empty cache. Skipping write")); 3523 return; 3524 } 3525 3526 ASSERT(cache->cache_size > 0); 3527 ASSERT(cache->cache_data); 3528 3529 if (!modrootloaded || rootvp == NULL || vn_is_readonly(rootvp)) { 3530 CACHE_DEBUG((DI_ERR, "Can't write to rootFS. Skipping write")); 3531 return; 3532 } 3533 3534 all = (struct di_all *)cache->cache_data; 3535 3536 if (!header_plus_one_ok(all)) { 3537 CACHE_DEBUG((DI_ERR, "Invalid header. Skipping write")); 3538 return; 3539 } 3540 3541 ASSERT(strcmp(all->root_path, "/") == 0); 3542 3543 /* 3544 * The cache_size is the total allocated memory for the cache. 3545 * The map_size is the actual size of valid data in the cache. 3546 * map_size may be smaller than cache_size but cannot exceed 3547 * cache_size. 3548 */ 3549 if (all->map_size > cache->cache_size) { 3550 CACHE_DEBUG((DI_ERR, "map_size (0x%x) > cache_size (0x%x)." 3551 " Skipping write", all->map_size, cache->cache_size)); 3552 return; 3553 } 3554 3555 /* 3556 * First unlink the temp file 3557 */ 3558 error = vn_remove(DI_CACHE_TEMP, UIO_SYSSPACE, RMFILE); 3559 if (error && error != ENOENT) { 3560 CACHE_DEBUG((DI_ERR, "%s: unlink failed: %d", 3561 DI_CACHE_TEMP, error)); 3562 } 3563 3564 if (error == EROFS) { 3565 CACHE_DEBUG((DI_ERR, "RDONLY FS. Skipping write")); 3566 return; 3567 } 3568 3569 vp = NULL; 3570 oflags = (FCREAT|FWRITE); 3571 if (error = vn_open(DI_CACHE_TEMP, UIO_SYSSPACE, oflags, 3572 DI_CACHE_PERMS, &vp, CRCREAT, 0)) { 3573 CACHE_DEBUG((DI_ERR, "%s: create failed: %d", 3574 DI_CACHE_TEMP, error)); 3575 return; 3576 } 3577 3578 ASSERT(vp); 3579 3580 /* 3581 * Paranoid: Check if the file is on a read-only FS 3582 */ 3583 if (vn_is_readonly(vp)) { 3584 CACHE_DEBUG((DI_ERR, "cannot write: readonly FS")); 3585 goto fail; 3586 } 3587 3588 /* 3589 * Note that we only write map_size bytes to disk - this saves 3590 * space as the actual cache size may be larger than size of 3591 * valid data in the cache. 3592 * Another advantage is that it makes verification of size 3593 * easier when the file is read later. 3594 */ 3595 map_size = all->map_size; 3596 off = 0; 3597 buf = cache->cache_data; 3598 3599 while (map_size) { 3600 ASSERT(map_size > 0); 3601 /* 3602 * Write in chunks so that VM system 3603 * is not overwhelmed 3604 */ 3605 if (map_size > di_chunk * PAGESIZE) 3606 chunk = di_chunk * PAGESIZE; 3607 else 3608 chunk = map_size; 3609 3610 error = chunk_write(vp, off, buf, chunk); 3611 if (error) { 3612 CACHE_DEBUG((DI_ERR, "write failed: off=0x%x: %d", 3613 off, error)); 3614 goto fail; 3615 } 3616 3617 off += chunk; 3618 buf += chunk; 3619 map_size -= chunk; 3620 3621 /* Give pageout a chance to run */ 3622 delay(1); 3623 } 3624 3625 /* 3626 * Now sync the file and close it 3627 */ 3628 if (error = VOP_FSYNC(vp, FSYNC, kcred)) { 3629 CACHE_DEBUG((DI_ERR, "FSYNC failed: %d", error)); 3630 } 3631 3632 if (error = VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred)) { 3633 CACHE_DEBUG((DI_ERR, "close() failed: %d", error)); 3634 VN_RELE(vp); 3635 return; 3636 } 3637 3638 VN_RELE(vp); 3639 3640 /* 3641 * Now do the rename 3642 */ 3643 if (error = vn_rename(DI_CACHE_TEMP, DI_CACHE_FILE, UIO_SYSSPACE)) { 3644 CACHE_DEBUG((DI_ERR, "rename failed: %d", error)); 3645 return; 3646 } 3647 3648 CACHE_DEBUG((DI_INFO, "Cache write successful.")); 3649 3650 return; 3651 3652 fail: 3653 (void) VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred); 3654 VN_RELE(vp); 3655 } 3656 3657 3658 /* 3659 * Since we could be called early in boot, 3660 * use kobj_read_file() 3661 */ 3662 static void 3663 di_cache_read(struct di_cache *cache) 3664 { 3665 struct _buf *file; 3666 struct di_all *all; 3667 int n; 3668 size_t map_size, sz, chunk; 3669 offset_t off; 3670 caddr_t buf; 3671 uint32_t saved_crc, crc; 3672 3673 ASSERT(modrootloaded); 3674 ASSERT(DI_CACHE_LOCKED(*cache)); 3675 ASSERT(cache->cache_data == NULL); 3676 ASSERT(cache->cache_size == 0); 3677 ASSERT(!servicing_interrupt()); 3678 3679 file = kobj_open_file(DI_CACHE_FILE); 3680 if (file == (struct _buf *)-1) { 3681 CACHE_DEBUG((DI_ERR, "%s: open failed: %d", 3682 DI_CACHE_FILE, ENOENT)); 3683 return; 3684 } 3685 3686 /* 3687 * Read in the header+root_path first. The root_path must be "/" 3688 */ 3689 all = kmem_zalloc(sizeof (*all) + 1, KM_SLEEP); 3690 n = kobj_read_file(file, (caddr_t)all, sizeof (*all) + 1, 0); 3691 3692 if ((n != sizeof (*all) + 1) || !header_plus_one_ok(all)) { 3693 kmem_free(all, sizeof (*all) + 1); 3694 kobj_close_file(file); 3695 CACHE_DEBUG((DI_ERR, "cache header: read error or invalid")); 3696 return; 3697 } 3698 3699 map_size = all->map_size; 3700 3701 kmem_free(all, sizeof (*all) + 1); 3702 3703 ASSERT(map_size >= sizeof (*all) + 1); 3704 3705 buf = di_cache.cache_data = kmem_alloc(map_size, KM_SLEEP); 3706 sz = map_size; 3707 off = 0; 3708 while (sz) { 3709 /* Don't overload VM with large reads */ 3710 chunk = (sz > di_chunk * PAGESIZE) ? di_chunk * PAGESIZE : sz; 3711 n = kobj_read_file(file, buf, chunk, off); 3712 if (n != chunk) { 3713 CACHE_DEBUG((DI_ERR, "%s: read error at offset: %lld", 3714 DI_CACHE_FILE, off)); 3715 goto fail; 3716 } 3717 off += chunk; 3718 buf += chunk; 3719 sz -= chunk; 3720 } 3721 3722 ASSERT(off == map_size); 3723 3724 /* 3725 * Read past expected EOF to verify size. 3726 */ 3727 if (kobj_read_file(file, (caddr_t)&sz, 1, off) > 0) { 3728 CACHE_DEBUG((DI_ERR, "%s: file size changed", DI_CACHE_FILE)); 3729 goto fail; 3730 } 3731 3732 all = (struct di_all *)di_cache.cache_data; 3733 if (!header_plus_one_ok(all)) { 3734 CACHE_DEBUG((DI_ERR, "%s: file header changed", DI_CACHE_FILE)); 3735 goto fail; 3736 } 3737 3738 /* 3739 * Compute CRC with checksum field in the cache data set to 0 3740 */ 3741 saved_crc = all->cache_checksum; 3742 all->cache_checksum = 0; 3743 CRC32(crc, di_cache.cache_data, map_size, -1U, crc32_table); 3744 all->cache_checksum = saved_crc; 3745 3746 if (crc != all->cache_checksum) { 3747 CACHE_DEBUG((DI_ERR, 3748 "%s: checksum error: expected=0x%x actual=0x%x", 3749 DI_CACHE_FILE, all->cache_checksum, crc)); 3750 goto fail; 3751 } 3752 3753 if (all->map_size != map_size) { 3754 CACHE_DEBUG((DI_ERR, "%s: map size changed", DI_CACHE_FILE)); 3755 goto fail; 3756 } 3757 3758 kobj_close_file(file); 3759 3760 di_cache.cache_size = map_size; 3761 3762 return; 3763 3764 fail: 3765 kmem_free(di_cache.cache_data, map_size); 3766 kobj_close_file(file); 3767 di_cache.cache_data = NULL; 3768 di_cache.cache_size = 0; 3769 } 3770 3771 3772 /* 3773 * Checks if arguments are valid for using the cache. 3774 */ 3775 static int 3776 cache_args_valid(struct di_state *st, int *error) 3777 { 3778 ASSERT(error); 3779 ASSERT(st->mem_size > 0); 3780 ASSERT(st->memlist != NULL); 3781 3782 if (!modrootloaded || !i_ddi_io_initialized()) { 3783 CACHE_DEBUG((DI_ERR, 3784 "cache lookup failure: I/O subsystem not inited")); 3785 *error = ENOTACTIVE; 3786 return (0); 3787 } 3788 3789 /* 3790 * No other flags allowed with DINFOCACHE 3791 */ 3792 if (st->command != (DINFOCACHE & DIIOC_MASK)) { 3793 CACHE_DEBUG((DI_ERR, 3794 "cache lookup failure: bad flags: 0x%x", 3795 st->command)); 3796 *error = EINVAL; 3797 return (0); 3798 } 3799 3800 if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) { 3801 CACHE_DEBUG((DI_ERR, 3802 "cache lookup failure: bad root: %s", 3803 DI_ALL_PTR(st)->root_path)); 3804 *error = EINVAL; 3805 return (0); 3806 } 3807 3808 CACHE_DEBUG((DI_INFO, "cache lookup args ok: 0x%x", st->command)); 3809 3810 *error = 0; 3811 3812 return (1); 3813 } 3814 3815 static int 3816 snapshot_is_cacheable(struct di_state *st) 3817 { 3818 ASSERT(st->mem_size > 0); 3819 ASSERT(st->memlist != NULL); 3820 3821 if ((st->command & DI_CACHE_SNAPSHOT_FLAGS) != 3822 (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK)) { 3823 CACHE_DEBUG((DI_INFO, 3824 "not cacheable: incompatible flags: 0x%x", 3825 st->command)); 3826 return (0); 3827 } 3828 3829 if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) { 3830 CACHE_DEBUG((DI_INFO, 3831 "not cacheable: incompatible root path: %s", 3832 DI_ALL_PTR(st)->root_path)); 3833 return (0); 3834 } 3835 3836 CACHE_DEBUG((DI_INFO, "cacheable snapshot request: 0x%x", st->command)); 3837 3838 return (1); 3839 } 3840 3841 static int 3842 di_cache_lookup(struct di_state *st) 3843 { 3844 size_t rval; 3845 int cache_valid; 3846 3847 ASSERT(cache_args_valid(st, &cache_valid)); 3848 ASSERT(modrootloaded); 3849 3850 DI_CACHE_LOCK(di_cache); 3851 3852 /* 3853 * The following assignment determines the validity 3854 * of the cache as far as this snapshot is concerned. 3855 */ 3856 cache_valid = di_cache.cache_valid; 3857 3858 if (cache_valid && di_cache.cache_data == NULL) { 3859 di_cache_read(&di_cache); 3860 /* check for read or file error */ 3861 if (di_cache.cache_data == NULL) 3862 cache_valid = 0; 3863 } 3864 3865 if (cache_valid) { 3866 /* 3867 * Ok, the cache was valid as of this particular 3868 * snapshot. Copy the cached snapshot. This is safe 3869 * to do as the cache cannot be freed (we hold the 3870 * cache lock). Free the memory allocated in di_state 3871 * up until this point - we will simply copy everything 3872 * in the cache. 3873 */ 3874 3875 ASSERT(di_cache.cache_data != NULL); 3876 ASSERT(di_cache.cache_size > 0); 3877 3878 di_freemem(st); 3879 3880 rval = 0; 3881 if (di_cache2mem(&di_cache, st) > 0) { 3882 3883 ASSERT(DI_ALL_PTR(st)); 3884 3885 /* 3886 * map_size is size of valid data in the 3887 * cached snapshot and may be less than 3888 * size of the cache. 3889 */ 3890 rval = DI_ALL_PTR(st)->map_size; 3891 3892 ASSERT(rval >= sizeof (struct di_all)); 3893 ASSERT(rval <= di_cache.cache_size); 3894 } 3895 } else { 3896 /* 3897 * The cache isn't valid, we need to take a snapshot. 3898 * Set the command flags appropriately 3899 */ 3900 ASSERT(st->command == (DINFOCACHE & DIIOC_MASK)); 3901 st->command = (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK); 3902 rval = di_cache_update(st); 3903 st->command = (DINFOCACHE & DIIOC_MASK); 3904 } 3905 3906 DI_CACHE_UNLOCK(di_cache); 3907 3908 /* 3909 * For cached snapshots, the devinfo driver always returns 3910 * a snapshot rooted at "/". 3911 */ 3912 ASSERT(rval == 0 || strcmp(DI_ALL_PTR(st)->root_path, "/") == 0); 3913 3914 return ((int)rval); 3915 } 3916 3917 /* 3918 * This is a forced update of the cache - the previous state of the cache 3919 * may be: 3920 * - unpopulated 3921 * - populated and invalid 3922 * - populated and valid 3923 */ 3924 static int 3925 di_cache_update(struct di_state *st) 3926 { 3927 int rval; 3928 uint32_t crc; 3929 struct di_all *all; 3930 3931 ASSERT(DI_CACHE_LOCKED(di_cache)); 3932 ASSERT(snapshot_is_cacheable(st)); 3933 3934 /* 3935 * Free the in-core cache and the on-disk file (if they exist) 3936 */ 3937 i_ddi_di_cache_free(&di_cache); 3938 3939 /* 3940 * Set valid flag before taking the snapshot, 3941 * so that any invalidations that arrive 3942 * during or after the snapshot are not 3943 * removed by us. 3944 */ 3945 atomic_or_32(&di_cache.cache_valid, 1); 3946 3947 rval = di_snapshot_and_clean(st); 3948 3949 if (rval == 0) { 3950 CACHE_DEBUG((DI_ERR, "can't update cache: bad snapshot")); 3951 return (0); 3952 } 3953 3954 DI_ALL_PTR(st)->map_size = rval; 3955 3956 if (di_mem2cache(st, &di_cache) == 0) { 3957 CACHE_DEBUG((DI_ERR, "can't update cache: copy failed")); 3958 return (0); 3959 } 3960 3961 ASSERT(di_cache.cache_data); 3962 ASSERT(di_cache.cache_size > 0); 3963 3964 /* 3965 * Now that we have cached the snapshot, compute its checksum. 3966 * The checksum is only computed over the valid data in the 3967 * cache, not the entire cache. 3968 * Also, set all the fields (except checksum) before computing 3969 * checksum. 3970 */ 3971 all = (struct di_all *)di_cache.cache_data; 3972 all->cache_magic = DI_CACHE_MAGIC; 3973 all->map_size = rval; 3974 3975 ASSERT(all->cache_checksum == 0); 3976 CRC32(crc, di_cache.cache_data, all->map_size, -1U, crc32_table); 3977 all->cache_checksum = crc; 3978 3979 di_cache_write(&di_cache); 3980 3981 return (rval); 3982 } 3983 3984 static void 3985 di_cache_print(di_cache_debug_t msglevel, char *fmt, ...) 3986 { 3987 va_list ap; 3988 3989 if (di_cache_debug <= DI_QUIET) 3990 return; 3991 3992 if (di_cache_debug < msglevel) 3993 return; 3994 3995 switch (msglevel) { 3996 case DI_ERR: 3997 msglevel = CE_WARN; 3998 break; 3999 case DI_INFO: 4000 case DI_TRACE: 4001 default: 4002 msglevel = CE_NOTE; 4003 break; 4004 } 4005 4006 va_start(ap, fmt); 4007 vcmn_err(msglevel, fmt, ap); 4008 va_end(ap); 4009 } 4010