1 /* 2 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 3 * Use is subject to license terms. 4 * 5 * STREAMS Crypto Module 6 * 7 * This module is used to facilitate Kerberos encryption 8 * operations for the telnet daemon and rlogin daemon. 9 * Because the Solaris telnet and rlogin daemons run mostly 10 * in-kernel via 'telmod' and 'rlmod', this module must be 11 * pushed on the STREAM *below* telmod or rlmod. 12 * 13 * Parts of the 3DES key derivation code are covered by the 14 * following copyright. 15 * 16 * Copyright (C) 1998 by the FundsXpress, INC. 17 * 18 * All rights reserved. 19 * 20 * Export of this software from the United States of America may require 21 * a specific license from the United States Government. It is the 22 * responsibility of any person or organization contemplating export to 23 * obtain such a license before exporting. 24 * 25 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and 26 * distribute this software and its documentation for any purpose and 27 * without fee is hereby granted, provided that the above copyright 28 * notice appear in all copies and that both that copyright notice and 29 * this permission notice appear in supporting documentation, and that 30 * the name of FundsXpress. not be used in advertising or publicity pertaining 31 * to distribution of the software without specific, written prior 32 * permission. FundsXpress makes no representations about the suitability of 33 * this software for any purpose. It is provided "as is" without express 34 * or implied warranty. 35 * 36 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR 37 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED 38 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. 39 */ 40 41 #include <sys/types.h> 42 #include <sys/sysmacros.h> 43 #include <sys/errno.h> 44 #include <sys/debug.h> 45 #include <sys/time.h> 46 #include <sys/stropts.h> 47 #include <sys/stream.h> 48 #include <sys/strsubr.h> 49 #include <sys/strlog.h> 50 #include <sys/cmn_err.h> 51 #include <sys/conf.h> 52 #include <sys/sunddi.h> 53 #include <sys/kmem.h> 54 #include <sys/strsun.h> 55 #include <sys/random.h> 56 #include <sys/types.h> 57 #include <sys/byteorder.h> 58 #include <sys/cryptmod.h> 59 #include <sys/crc32.h> 60 #include <sys/policy.h> 61 62 #include <sys/crypto/api.h> 63 64 /* 65 * Function prototypes. 66 */ 67 static int cryptmodopen(queue_t *, dev_t *, int, int, cred_t *); 68 static void cryptmodrput(queue_t *, mblk_t *); 69 static void cryptmodwput(queue_t *, mblk_t *); 70 static int cryptmodclose(queue_t *); 71 static int cryptmodwsrv(queue_t *); 72 static int cryptmodrsrv(queue_t *); 73 74 static mblk_t *do_encrypt(queue_t *q, mblk_t *mp); 75 static mblk_t *do_decrypt(queue_t *q, mblk_t *mp); 76 77 #define CRYPTMOD_ID 5150 78 79 #define CFB_BLKSZ 8 80 81 #define K5CLENGTH 5 82 83 static struct module_info cryptmod_minfo = { 84 CRYPTMOD_ID, /* mi_idnum */ 85 "cryptmod", /* mi_idname */ 86 0, /* mi_minpsz */ 87 INFPSZ, /* mi_maxpsz */ 88 65536, /* mi_hiwat */ 89 1024 /* mi_lowat */ 90 }; 91 92 static struct qinit cryptmod_rinit = { 93 (int (*)())cryptmodrput, /* qi_putp */ 94 cryptmodrsrv, /* qi_svc */ 95 cryptmodopen, /* qi_qopen */ 96 cryptmodclose, /* qi_qclose */ 97 NULL, /* qi_qadmin */ 98 &cryptmod_minfo, /* qi_minfo */ 99 NULL /* qi_mstat */ 100 }; 101 102 static struct qinit cryptmod_winit = { 103 (int (*)())cryptmodwput, /* qi_putp */ 104 cryptmodwsrv, /* qi_srvp */ 105 NULL, /* qi_qopen */ 106 NULL, /* qi_qclose */ 107 NULL, /* qi_qadmin */ 108 &cryptmod_minfo, /* qi_minfo */ 109 NULL /* qi_mstat */ 110 }; 111 112 static struct streamtab cryptmod_info = { 113 &cryptmod_rinit, /* st_rdinit */ 114 &cryptmod_winit, /* st_wrinit */ 115 NULL, /* st_muxrinit */ 116 NULL /* st_muxwinit */ 117 }; 118 119 typedef struct { 120 uint_t hash_len; 121 uint_t confound_len; 122 int (*hashfunc)(); 123 } hash_info_t; 124 125 #define MAX_CKSUM_LEN 20 126 #define CONFOUNDER_LEN 8 127 128 #define SHA1_HASHSIZE 20 129 #define MD5_HASHSIZE 16 130 #define CRC32_HASHSIZE 4 131 #define MSGBUF_SIZE 4096 132 #define CONFOUNDER_BYTES 128 133 134 135 static int crc32_calc(uchar_t *, uchar_t *, uint_t); 136 static int md5_calc(uchar_t *, uchar_t *, uint_t); 137 static int sha1_calc(uchar_t *, uchar_t *, uint_t); 138 139 static hash_info_t null_hash = {0, 0, NULL}; 140 static hash_info_t crc32_hash = {CRC32_HASHSIZE, CONFOUNDER_LEN, crc32_calc}; 141 static hash_info_t md5_hash = {MD5_HASHSIZE, CONFOUNDER_LEN, md5_calc}; 142 static hash_info_t sha1_hash = {SHA1_HASHSIZE, CONFOUNDER_LEN, sha1_calc}; 143 144 static crypto_mech_type_t sha1_hmac_mech = CRYPTO_MECH_INVALID; 145 static crypto_mech_type_t md5_hmac_mech = CRYPTO_MECH_INVALID; 146 static crypto_mech_type_t sha1_hash_mech = CRYPTO_MECH_INVALID; 147 static crypto_mech_type_t md5_hash_mech = CRYPTO_MECH_INVALID; 148 149 static int kef_crypt(struct cipher_data_t *, void *, 150 crypto_data_format_t, size_t, int); 151 static mblk_t * 152 arcfour_hmac_md5_encrypt(queue_t *, struct tmodinfo *, 153 mblk_t *, hash_info_t *); 154 static mblk_t * 155 arcfour_hmac_md5_decrypt(queue_t *, struct tmodinfo *, 156 mblk_t *, hash_info_t *); 157 158 static int 159 do_hmac(crypto_mech_type_t, crypto_key_t *, char *, int, char *, int); 160 161 /* 162 * This is the loadable module wrapper. 163 */ 164 #include <sys/modctl.h> 165 166 static struct fmodsw fsw = { 167 "cryptmod", 168 &cryptmod_info, 169 D_MP | D_MTQPAIR 170 }; 171 172 /* 173 * Module linkage information for the kernel. 174 */ 175 static struct modlstrmod modlstrmod = { 176 &mod_strmodops, 177 "STREAMS encryption module", 178 &fsw 179 }; 180 181 static struct modlinkage modlinkage = { 182 MODREV_1, 183 &modlstrmod, 184 NULL 185 }; 186 187 int 188 _init(void) 189 { 190 return (mod_install(&modlinkage)); 191 } 192 193 int 194 _fini(void) 195 { 196 return (mod_remove(&modlinkage)); 197 } 198 199 int 200 _info(struct modinfo *modinfop) 201 { 202 return (mod_info(&modlinkage, modinfop)); 203 } 204 205 static void 206 cleanup(struct cipher_data_t *cd) 207 { 208 if (cd->key != NULL) { 209 bzero(cd->key, cd->keylen); 210 kmem_free(cd->key, cd->keylen); 211 cd->key = NULL; 212 } 213 214 if (cd->ckey != NULL) { 215 /* 216 * ckey is a crypto_key_t structure which references 217 * "cd->key" for its raw key data. Since that was already 218 * cleared out, we don't need another "bzero" here. 219 */ 220 kmem_free(cd->ckey, sizeof (crypto_key_t)); 221 cd->ckey = NULL; 222 } 223 224 if (cd->block != NULL) { 225 kmem_free(cd->block, cd->blocklen); 226 cd->block = NULL; 227 } 228 229 if (cd->saveblock != NULL) { 230 kmem_free(cd->saveblock, cd->blocklen); 231 cd->saveblock = NULL; 232 } 233 234 if (cd->ivec != NULL) { 235 kmem_free(cd->ivec, cd->ivlen); 236 cd->ivec = NULL; 237 } 238 239 if (cd->d_encr_key.ck_data != NULL) { 240 bzero(cd->d_encr_key.ck_data, cd->keylen); 241 kmem_free(cd->d_encr_key.ck_data, cd->keylen); 242 } 243 244 if (cd->d_hmac_key.ck_data != NULL) { 245 bzero(cd->d_hmac_key.ck_data, cd->keylen); 246 kmem_free(cd->d_hmac_key.ck_data, cd->keylen); 247 } 248 249 if (cd->enc_tmpl != NULL) 250 (void) crypto_destroy_ctx_template(cd->enc_tmpl); 251 252 if (cd->hmac_tmpl != NULL) 253 (void) crypto_destroy_ctx_template(cd->hmac_tmpl); 254 255 if (cd->ctx != NULL) { 256 crypto_cancel_ctx(cd->ctx); 257 cd->ctx = NULL; 258 } 259 } 260 261 /* ARGSUSED */ 262 static int 263 cryptmodopen(queue_t *rq, dev_t *dev, int oflag, int sflag, cred_t *crp) 264 { 265 struct tmodinfo *tmi; 266 ASSERT(rq); 267 268 if (sflag != MODOPEN) 269 return (EINVAL); 270 271 (void) (STRLOG(CRYPTMOD_ID, 0, 5, SL_TRACE|SL_NOTE, 272 "cryptmodopen: opening module(PID %d)", 273 ddi_get_pid())); 274 275 if (rq->q_ptr != NULL) { 276 cmn_err(CE_WARN, "cryptmodopen: already opened"); 277 return (0); 278 } 279 280 /* 281 * Allocate and initialize per-Stream structure. 282 */ 283 tmi = (struct tmodinfo *)kmem_zalloc(sizeof (struct tmodinfo), 284 KM_SLEEP); 285 286 tmi->enc_data.method = CRYPT_METHOD_NONE; 287 tmi->dec_data.method = CRYPT_METHOD_NONE; 288 289 tmi->ready = (CRYPT_READ_READY | CRYPT_WRITE_READY); 290 291 rq->q_ptr = WR(rq)->q_ptr = tmi; 292 293 sha1_hmac_mech = crypto_mech2id(SUN_CKM_SHA1_HMAC); 294 md5_hmac_mech = crypto_mech2id(SUN_CKM_MD5_HMAC); 295 sha1_hash_mech = crypto_mech2id(SUN_CKM_SHA1); 296 md5_hash_mech = crypto_mech2id(SUN_CKM_MD5); 297 298 qprocson(rq); 299 300 return (0); 301 } 302 303 static int 304 cryptmodclose(queue_t *rq) 305 { 306 struct tmodinfo *tmi = (struct tmodinfo *)rq->q_ptr; 307 ASSERT(tmi); 308 309 qprocsoff(rq); 310 311 cleanup(&tmi->enc_data); 312 cleanup(&tmi->dec_data); 313 314 kmem_free(tmi, sizeof (struct tmodinfo)); 315 rq->q_ptr = WR(rq)->q_ptr = NULL; 316 317 return (0); 318 } 319 320 /* 321 * plaintext_offset 322 * 323 * Calculate exactly how much space is needed in front 324 * of the "plaintext" in an mbuf so it can be positioned 325 * 1 time instead of potentially moving the data multiple 326 * times. 327 */ 328 static int 329 plaintext_offset(struct cipher_data_t *cd) 330 { 331 int headspace = 0; 332 333 /* 4 byte length prepended to all RCMD msgs */ 334 if (ANY_RCMD_MODE(cd->option_mask)) 335 headspace += RCMD_LEN_SZ; 336 337 /* RCMD V2 mode adds an additional 4 byte plaintext length */ 338 if (cd->option_mask & CRYPTOPT_RCMD_MODE_V2) 339 headspace += RCMD_LEN_SZ; 340 341 /* Need extra space for hash and counfounder */ 342 switch (cd->method) { 343 case CRYPT_METHOD_DES_CBC_NULL: 344 headspace += null_hash.hash_len + null_hash.confound_len; 345 break; 346 case CRYPT_METHOD_DES_CBC_CRC: 347 headspace += crc32_hash.hash_len + crc32_hash.confound_len; 348 break; 349 case CRYPT_METHOD_DES_CBC_MD5: 350 headspace += md5_hash.hash_len + md5_hash.confound_len; 351 break; 352 case CRYPT_METHOD_DES3_CBC_SHA1: 353 headspace += sha1_hash.confound_len; 354 break; 355 case CRYPT_METHOD_ARCFOUR_HMAC_MD5: 356 headspace += md5_hash.hash_len + md5_hash.confound_len; 357 break; 358 case CRYPT_METHOD_AES128: 359 case CRYPT_METHOD_AES256: 360 headspace += DEFAULT_AES_BLOCKLEN; 361 break; 362 case CRYPT_METHOD_DES_CFB: 363 case CRYPT_METHOD_NONE: 364 break; 365 } 366 367 return (headspace); 368 } 369 /* 370 * encrypt_size 371 * 372 * Calculate the resulting size when encrypting 'plainlen' bytes 373 * of data. 374 */ 375 static size_t 376 encrypt_size(struct cipher_data_t *cd, size_t plainlen) 377 { 378 size_t cipherlen; 379 380 switch (cd->method) { 381 case CRYPT_METHOD_DES_CBC_NULL: 382 cipherlen = (size_t)P2ROUNDUP(null_hash.hash_len + 383 plainlen, 8); 384 break; 385 case CRYPT_METHOD_DES_CBC_MD5: 386 cipherlen = (size_t)P2ROUNDUP(md5_hash.hash_len + 387 md5_hash.confound_len + 388 plainlen, 8); 389 break; 390 case CRYPT_METHOD_DES_CBC_CRC: 391 cipherlen = (size_t)P2ROUNDUP(crc32_hash.hash_len + 392 crc32_hash.confound_len + 393 plainlen, 8); 394 break; 395 case CRYPT_METHOD_DES3_CBC_SHA1: 396 cipherlen = (size_t)P2ROUNDUP(sha1_hash.confound_len + 397 plainlen, 8) + 398 sha1_hash.hash_len; 399 break; 400 case CRYPT_METHOD_ARCFOUR_HMAC_MD5: 401 cipherlen = (size_t)P2ROUNDUP(md5_hash.confound_len + 402 plainlen, 1) + md5_hash.hash_len; 403 break; 404 case CRYPT_METHOD_AES128: 405 case CRYPT_METHOD_AES256: 406 /* No roundup for AES-CBC-CTS */ 407 cipherlen = DEFAULT_AES_BLOCKLEN + plainlen + 408 AES_TRUNCATED_HMAC_LEN; 409 break; 410 case CRYPT_METHOD_DES_CFB: 411 case CRYPT_METHOD_NONE: 412 cipherlen = plainlen; 413 break; 414 } 415 416 return (cipherlen); 417 } 418 419 /* 420 * des_cfb_encrypt 421 * 422 * Encrypt the mblk data using DES with cipher feedback. 423 * 424 * Given that V[i] is the initial 64 bit vector, V[n] is the nth 64 bit 425 * vector, D[n] is the nth chunk of 64 bits of data to encrypt 426 * (decrypt), and O[n] is the nth chunk of 64 bits of encrypted 427 * (decrypted) data, then: 428 * 429 * V[0] = DES(V[i], key) 430 * O[n] = D[n] <exclusive or > V[n] 431 * V[n+1] = DES(O[n], key) 432 * 433 * The size of the message being encrypted does not change in this 434 * algorithm, num_bytes in == num_bytes out. 435 */ 436 static mblk_t * 437 des_cfb_encrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp) 438 { 439 int savedbytes; 440 char *iptr, *optr, *lastoutput; 441 442 lastoutput = optr = (char *)mp->b_rptr; 443 iptr = (char *)mp->b_rptr; 444 savedbytes = tmi->enc_data.bytes % CFB_BLKSZ; 445 446 while (iptr < (char *)mp->b_wptr) { 447 /* 448 * Do DES-ECB. 449 * The first time this runs, the 'tmi->enc_data.block' will 450 * contain the initialization vector that should have been 451 * passed in with the SETUP ioctl. 452 * 453 * V[n] = DES(V[n-1], key) 454 */ 455 if (!(tmi->enc_data.bytes % CFB_BLKSZ)) { 456 int retval = 0; 457 retval = kef_crypt(&tmi->enc_data, 458 tmi->enc_data.block, 459 CRYPTO_DATA_RAW, 460 tmi->enc_data.blocklen, 461 CRYPT_ENCRYPT); 462 463 if (retval != CRYPTO_SUCCESS) { 464 #ifdef DEBUG 465 cmn_err(CE_WARN, "des_cfb_encrypt: kef_crypt " 466 "failed - error 0x%0x", retval); 467 #endif 468 mp->b_datap->db_type = M_ERROR; 469 mp->b_rptr = mp->b_datap->db_base; 470 *mp->b_rptr = EIO; 471 mp->b_wptr = mp->b_rptr + sizeof (char); 472 freemsg(mp->b_cont); 473 mp->b_cont = NULL; 474 qreply(WR(q), mp); 475 return (NULL); 476 } 477 } 478 479 /* O[n] = I[n] ^ V[n] */ 480 *(optr++) = *(iptr++) ^ 481 tmi->enc_data.block[tmi->enc_data.bytes % CFB_BLKSZ]; 482 483 tmi->enc_data.bytes++; 484 /* 485 * Feedback the encrypted output as the input to next DES call. 486 */ 487 if (!(tmi->enc_data.bytes % CFB_BLKSZ)) { 488 char *dbptr = tmi->enc_data.block; 489 /* 490 * Get the last bits of input from the previous 491 * msg block that we haven't yet used as feedback input. 492 */ 493 if (savedbytes > 0) { 494 bcopy(tmi->enc_data.saveblock, 495 dbptr, (size_t)savedbytes); 496 dbptr += savedbytes; 497 } 498 499 /* 500 * Now copy the correct bytes from the current input 501 * stream and update the 'lastoutput' ptr 502 */ 503 bcopy(lastoutput, dbptr, 504 (size_t)(CFB_BLKSZ - savedbytes)); 505 506 lastoutput += (CFB_BLKSZ - savedbytes); 507 savedbytes = 0; 508 } 509 } 510 /* 511 * If there are bytes of input here that we need in the next 512 * block to build an ivec, save them off here. 513 */ 514 if (lastoutput < optr) { 515 bcopy(lastoutput, 516 tmi->enc_data.saveblock + savedbytes, 517 (uint_t)(optr - lastoutput)); 518 } 519 return (mp); 520 } 521 522 /* 523 * des_cfb_decrypt 524 * 525 * Decrypt the data in the mblk using DES in Cipher Feedback mode 526 * 527 * # bytes in == # bytes out, no padding, confounding, or hashing 528 * is added. 529 * 530 */ 531 static mblk_t * 532 des_cfb_decrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp) 533 { 534 uint_t len; 535 uint_t savedbytes; 536 char *iptr; 537 char *lastinput; 538 uint_t cp; 539 540 len = MBLKL(mp); 541 542 /* decrypted output goes into the new data buffer */ 543 lastinput = iptr = (char *)mp->b_rptr; 544 545 savedbytes = tmi->dec_data.bytes % tmi->dec_data.blocklen; 546 547 /* 548 * Save the input CFB_BLKSZ bytes at a time. 549 * We are trying to decrypt in-place, but need to keep 550 * a small sliding window of encrypted text to be 551 * used to construct the feedback buffer. 552 */ 553 cp = ((tmi->dec_data.blocklen - savedbytes) > len ? len : 554 tmi->dec_data.blocklen - savedbytes); 555 556 bcopy(lastinput, tmi->dec_data.saveblock + savedbytes, cp); 557 savedbytes += cp; 558 559 lastinput += cp; 560 561 while (iptr < (char *)mp->b_wptr) { 562 /* 563 * Do DES-ECB. 564 * The first time this runs, the 'tmi->dec_data.block' will 565 * contain the initialization vector that should have been 566 * passed in with the SETUP ioctl. 567 */ 568 if (!(tmi->dec_data.bytes % CFB_BLKSZ)) { 569 int retval; 570 retval = kef_crypt(&tmi->dec_data, 571 tmi->dec_data.block, 572 CRYPTO_DATA_RAW, 573 tmi->dec_data.blocklen, 574 CRYPT_ENCRYPT); 575 576 if (retval != CRYPTO_SUCCESS) { 577 #ifdef DEBUG 578 cmn_err(CE_WARN, "des_cfb_decrypt: kef_crypt " 579 "failed - status 0x%0x", retval); 580 #endif 581 mp->b_datap->db_type = M_ERROR; 582 mp->b_rptr = mp->b_datap->db_base; 583 *mp->b_rptr = EIO; 584 mp->b_wptr = mp->b_rptr + sizeof (char); 585 freemsg(mp->b_cont); 586 mp->b_cont = NULL; 587 qreply(WR(q), mp); 588 return (NULL); 589 } 590 } 591 592 /* 593 * To decrypt, XOR the input with the output from the DES call 594 */ 595 *(iptr++) ^= tmi->dec_data.block[tmi->dec_data.bytes % 596 CFB_BLKSZ]; 597 598 tmi->dec_data.bytes++; 599 600 /* 601 * Feedback the encrypted input for next DES call. 602 */ 603 if (!(tmi->dec_data.bytes % tmi->dec_data.blocklen)) { 604 char *dbptr = tmi->dec_data.block; 605 /* 606 * Get the last bits of input from the previous block 607 * that we haven't yet processed. 608 */ 609 if (savedbytes > 0) { 610 bcopy(tmi->dec_data.saveblock, 611 dbptr, savedbytes); 612 dbptr += savedbytes; 613 } 614 615 savedbytes = 0; 616 617 /* 618 * This block makes sure that our local 619 * buffer of input data is full and can 620 * be accessed from the beginning. 621 */ 622 if (lastinput < (char *)mp->b_wptr) { 623 624 /* How many bytes are left in the mblk? */ 625 cp = (((char *)mp->b_wptr - lastinput) > 626 tmi->dec_data.blocklen ? 627 tmi->dec_data.blocklen : 628 (char *)mp->b_wptr - lastinput); 629 630 /* copy what we need */ 631 bcopy(lastinput, tmi->dec_data.saveblock, 632 cp); 633 634 lastinput += cp; 635 savedbytes = cp; 636 } 637 } 638 } 639 640 return (mp); 641 } 642 643 /* 644 * crc32_calc 645 * 646 * Compute a CRC32 checksum on the input 647 */ 648 static int 649 crc32_calc(uchar_t *buf, uchar_t *input, uint_t len) 650 { 651 uint32_t crc; 652 653 CRC32(crc, input, len, 0, crc32_table); 654 655 buf[0] = (uchar_t)(crc & 0xff); 656 buf[1] = (uchar_t)((crc >> 8) & 0xff); 657 buf[2] = (uchar_t)((crc >> 16) & 0xff); 658 buf[3] = (uchar_t)((crc >> 24) & 0xff); 659 660 return (CRYPTO_SUCCESS); 661 } 662 663 static int 664 kef_digest(crypto_mech_type_t digest_type, 665 uchar_t *input, uint_t inlen, 666 uchar_t *output, uint_t hashlen) 667 { 668 iovec_t v1, v2; 669 crypto_data_t d1, d2; 670 crypto_mechanism_t mech; 671 int rv; 672 673 mech.cm_type = digest_type; 674 mech.cm_param = 0; 675 mech.cm_param_len = 0; 676 677 v1.iov_base = (void *)input; 678 v1.iov_len = inlen; 679 680 d1.cd_format = CRYPTO_DATA_RAW; 681 d1.cd_offset = 0; 682 d1.cd_length = v1.iov_len; 683 d1.cd_raw = v1; 684 685 v2.iov_base = (void *)output; 686 v2.iov_len = hashlen; 687 688 d2.cd_format = CRYPTO_DATA_RAW; 689 d2.cd_offset = 0; 690 d2.cd_length = v2.iov_len; 691 d2.cd_raw = v2; 692 693 rv = crypto_digest(&mech, &d1, &d2, NULL); 694 695 return (rv); 696 } 697 698 /* 699 * sha1_calc 700 * 701 * Get a SHA1 hash on the input data. 702 */ 703 static int 704 sha1_calc(uchar_t *output, uchar_t *input, uint_t inlen) 705 { 706 int rv; 707 708 rv = kef_digest(sha1_hash_mech, input, inlen, output, SHA1_HASHSIZE); 709 710 return (rv); 711 } 712 713 /* 714 * Get an MD5 hash on the input data. 715 * md5_calc 716 * 717 */ 718 static int 719 md5_calc(uchar_t *output, uchar_t *input, uint_t inlen) 720 { 721 int rv; 722 723 rv = kef_digest(md5_hash_mech, input, inlen, output, MD5_HASHSIZE); 724 725 return (rv); 726 } 727 728 /* 729 * nfold 730 * duplicate the functionality of the krb5_nfold function from 731 * the userland kerberos mech. 732 * This is needed to derive keys for use with 3DES/SHA1-HMAC 733 * ciphers. 734 */ 735 static void 736 nfold(int inbits, uchar_t *in, int outbits, uchar_t *out) 737 { 738 int a, b, c, lcm; 739 int byte, i, msbit; 740 741 inbits >>= 3; 742 outbits >>= 3; 743 744 /* first compute lcm(n,k) */ 745 a = outbits; 746 b = inbits; 747 748 while (b != 0) { 749 c = b; 750 b = a%b; 751 a = c; 752 } 753 754 lcm = outbits*inbits/a; 755 756 /* now do the real work */ 757 758 bzero(out, outbits); 759 byte = 0; 760 761 /* 762 * Compute the msbit in k which gets added into this byte 763 * first, start with the msbit in the first, unrotated byte 764 * then, for each byte, shift to the right for each repetition 765 * last, pick out the correct byte within that shifted repetition 766 */ 767 for (i = lcm-1; i >= 0; i--) { 768 msbit = (((inbits<<3)-1) 769 +(((inbits<<3)+13)*(i/inbits)) 770 +((inbits-(i%inbits))<<3)) %(inbits<<3); 771 772 /* pull out the byte value itself */ 773 byte += (((in[((inbits-1)-(msbit>>3))%inbits]<<8)| 774 (in[((inbits)-(msbit>>3))%inbits])) 775 >>((msbit&7)+1))&0xff; 776 777 /* do the addition */ 778 byte += out[i%outbits]; 779 out[i%outbits] = byte&0xff; 780 781 byte >>= 8; 782 } 783 784 /* if there's a carry bit left over, add it back in */ 785 if (byte) { 786 for (i = outbits-1; i >= 0; i--) { 787 /* do the addition */ 788 byte += out[i]; 789 out[i] = byte&0xff; 790 791 /* keep around the carry bit, if any */ 792 byte >>= 8; 793 } 794 } 795 } 796 797 #define smask(step) ((1<<step)-1) 798 #define pstep(x, step) (((x)&smask(step))^(((x)>>step)&smask(step))) 799 #define parity_char(x) pstep(pstep(pstep((x), 4), 2), 1) 800 801 /* 802 * Duplicate the functionality of the "dk_derive_key" function 803 * in the Kerberos mechanism. 804 */ 805 static int 806 derive_key(struct cipher_data_t *cdata, uchar_t *constdata, 807 int constlen, char *dkey, int keybytes, 808 int blocklen) 809 { 810 int rv = 0; 811 int n = 0, i; 812 char *inblock; 813 char *rawkey; 814 char *zeroblock; 815 char *saveblock; 816 817 inblock = kmem_zalloc(blocklen, KM_SLEEP); 818 rawkey = kmem_zalloc(keybytes, KM_SLEEP); 819 zeroblock = kmem_zalloc(blocklen, KM_SLEEP); 820 821 if (constlen == blocklen) 822 bcopy(constdata, inblock, blocklen); 823 else 824 nfold(constlen * 8, constdata, 825 blocklen * 8, (uchar_t *)inblock); 826 827 /* 828 * zeroblock is an IV of all 0's. 829 * 830 * The "block" section of the cdata record is used as the 831 * IV for crypto operations in the kef_crypt function. 832 * 833 * We use 'block' as a generic IV data buffer because it 834 * is attached to the stream state data and thus can 835 * be used to hold information that must carry over 836 * from processing of one mblk to another. 837 * 838 * Here, we save the current IV and replace it with 839 * and empty IV (all 0's) for use when deriving the 840 * keys. Once the key derivation is done, we swap the 841 * old IV back into place. 842 */ 843 saveblock = cdata->block; 844 cdata->block = zeroblock; 845 846 while (n < keybytes) { 847 rv = kef_crypt(cdata, inblock, CRYPTO_DATA_RAW, 848 blocklen, CRYPT_ENCRYPT); 849 if (rv != CRYPTO_SUCCESS) { 850 /* put the original IV block back in place */ 851 cdata->block = saveblock; 852 cmn_err(CE_WARN, "failed to derive a key: %0x", rv); 853 goto cleanup; 854 } 855 856 if (keybytes - n < blocklen) { 857 bcopy(inblock, rawkey+n, (keybytes-n)); 858 break; 859 } 860 bcopy(inblock, rawkey+n, blocklen); 861 n += blocklen; 862 } 863 /* put the original IV block back in place */ 864 cdata->block = saveblock; 865 866 /* finally, make the key */ 867 if (cdata->method == CRYPT_METHOD_DES3_CBC_SHA1) { 868 /* 869 * 3DES key derivation requires that we make sure the 870 * key has the proper parity. 871 */ 872 for (i = 0; i < 3; i++) { 873 bcopy(rawkey+(i*7), dkey+(i*8), 7); 874 875 /* 'dkey' is our derived key output buffer */ 876 dkey[i*8+7] = (((dkey[i*8]&1)<<1) | 877 ((dkey[i*8+1]&1)<<2) | 878 ((dkey[i*8+2]&1)<<3) | 879 ((dkey[i*8+3]&1)<<4) | 880 ((dkey[i*8+4]&1)<<5) | 881 ((dkey[i*8+5]&1)<<6) | 882 ((dkey[i*8+6]&1)<<7)); 883 884 for (n = 0; n < 8; n++) { 885 dkey[i*8 + n] &= 0xfe; 886 dkey[i*8 + n] |= 1^parity_char(dkey[i*8 + n]); 887 } 888 } 889 } else if (IS_AES_METHOD(cdata->method)) { 890 bcopy(rawkey, dkey, keybytes); 891 } 892 cleanup: 893 kmem_free(inblock, blocklen); 894 kmem_free(zeroblock, blocklen); 895 kmem_free(rawkey, keybytes); 896 return (rv); 897 } 898 899 /* 900 * create_derived_keys 901 * 902 * Algorithm for deriving a new key and an HMAC key 903 * before computing the 3DES-SHA1-HMAC operation on the plaintext 904 * This algorithm matches the work done by Kerberos mechanism 905 * in userland. 906 */ 907 static int 908 create_derived_keys(struct cipher_data_t *cdata, uint32_t usage, 909 crypto_key_t *enckey, crypto_key_t *hmackey) 910 { 911 uchar_t constdata[K5CLENGTH]; 912 int keybytes; 913 int rv; 914 915 constdata[0] = (usage>>24)&0xff; 916 constdata[1] = (usage>>16)&0xff; 917 constdata[2] = (usage>>8)&0xff; 918 constdata[3] = usage & 0xff; 919 /* Use "0xAA" for deriving encryption key */ 920 constdata[4] = 0xAA; /* from MIT Kerberos code */ 921 922 enckey->ck_length = cdata->keylen * 8; 923 enckey->ck_format = CRYPTO_KEY_RAW; 924 enckey->ck_data = kmem_zalloc(cdata->keylen, KM_SLEEP); 925 926 switch (cdata->method) { 927 case CRYPT_METHOD_DES_CFB: 928 case CRYPT_METHOD_DES_CBC_NULL: 929 case CRYPT_METHOD_DES_CBC_MD5: 930 case CRYPT_METHOD_DES_CBC_CRC: 931 keybytes = 8; 932 break; 933 case CRYPT_METHOD_DES3_CBC_SHA1: 934 keybytes = CRYPT_DES3_KEYBYTES; 935 break; 936 case CRYPT_METHOD_ARCFOUR_HMAC_MD5: 937 case CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP: 938 keybytes = CRYPT_ARCFOUR_KEYBYTES; 939 break; 940 case CRYPT_METHOD_AES128: 941 keybytes = CRYPT_AES128_KEYBYTES; 942 break; 943 case CRYPT_METHOD_AES256: 944 keybytes = CRYPT_AES256_KEYBYTES; 945 break; 946 } 947 948 /* derive main crypto key */ 949 rv = derive_key(cdata, constdata, sizeof (constdata), 950 enckey->ck_data, keybytes, cdata->blocklen); 951 952 if (rv == CRYPTO_SUCCESS) { 953 954 /* Use "0x55" for deriving mac key */ 955 constdata[4] = 0x55; 956 957 hmackey->ck_length = cdata->keylen * 8; 958 hmackey->ck_format = CRYPTO_KEY_RAW; 959 hmackey->ck_data = kmem_zalloc(cdata->keylen, KM_SLEEP); 960 961 rv = derive_key(cdata, constdata, sizeof (constdata), 962 hmackey->ck_data, keybytes, 963 cdata->blocklen); 964 } else { 965 cmn_err(CE_WARN, "failed to derive crypto key: %02x", rv); 966 } 967 968 return (rv); 969 } 970 971 /* 972 * Compute 3-DES crypto and HMAC. 973 */ 974 static int 975 kef_decr_hmac(struct cipher_data_t *cdata, 976 mblk_t *mp, int length, 977 char *hmac, int hmaclen) 978 { 979 int rv = CRYPTO_FAILED; 980 981 crypto_mechanism_t encr_mech; 982 crypto_mechanism_t mac_mech; 983 crypto_data_t dd; 984 crypto_data_t mac; 985 iovec_t v1; 986 987 ASSERT(cdata != NULL); 988 ASSERT(mp != NULL); 989 ASSERT(hmac != NULL); 990 991 bzero(&dd, sizeof (dd)); 992 dd.cd_format = CRYPTO_DATA_MBLK; 993 dd.cd_offset = 0; 994 dd.cd_length = length; 995 dd.cd_mp = mp; 996 997 v1.iov_base = hmac; 998 v1.iov_len = hmaclen; 999 1000 mac.cd_format = CRYPTO_DATA_RAW; 1001 mac.cd_offset = 0; 1002 mac.cd_length = hmaclen; 1003 mac.cd_raw = v1; 1004 1005 /* 1006 * cdata->block holds the IVEC 1007 */ 1008 encr_mech.cm_type = cdata->mech_type; 1009 encr_mech.cm_param = cdata->block; 1010 1011 if (cdata->block != NULL) 1012 encr_mech.cm_param_len = cdata->blocklen; 1013 else 1014 encr_mech.cm_param_len = 0; 1015 1016 rv = crypto_decrypt(&encr_mech, &dd, &cdata->d_encr_key, 1017 cdata->enc_tmpl, NULL, NULL); 1018 if (rv != CRYPTO_SUCCESS) { 1019 cmn_err(CE_WARN, "crypto_decrypt failed: %0x", rv); 1020 return (rv); 1021 } 1022 1023 mac_mech.cm_type = sha1_hmac_mech; 1024 mac_mech.cm_param = NULL; 1025 mac_mech.cm_param_len = 0; 1026 1027 /* 1028 * Compute MAC of the plaintext decrypted above. 1029 */ 1030 rv = crypto_mac(&mac_mech, &dd, &cdata->d_hmac_key, 1031 cdata->hmac_tmpl, &mac, NULL); 1032 1033 if (rv != CRYPTO_SUCCESS) { 1034 cmn_err(CE_WARN, "crypto_mac failed: %0x", rv); 1035 } 1036 1037 return (rv); 1038 } 1039 1040 /* 1041 * Compute 3-DES crypto and HMAC. 1042 */ 1043 static int 1044 kef_encr_hmac(struct cipher_data_t *cdata, 1045 mblk_t *mp, int length, 1046 char *hmac, int hmaclen) 1047 { 1048 int rv = CRYPTO_FAILED; 1049 1050 crypto_mechanism_t encr_mech; 1051 crypto_mechanism_t mac_mech; 1052 crypto_data_t dd; 1053 crypto_data_t mac; 1054 iovec_t v1; 1055 1056 ASSERT(cdata != NULL); 1057 ASSERT(mp != NULL); 1058 ASSERT(hmac != NULL); 1059 1060 bzero(&dd, sizeof (dd)); 1061 dd.cd_format = CRYPTO_DATA_MBLK; 1062 dd.cd_offset = 0; 1063 dd.cd_length = length; 1064 dd.cd_mp = mp; 1065 1066 v1.iov_base = hmac; 1067 v1.iov_len = hmaclen; 1068 1069 mac.cd_format = CRYPTO_DATA_RAW; 1070 mac.cd_offset = 0; 1071 mac.cd_length = hmaclen; 1072 mac.cd_raw = v1; 1073 1074 /* 1075 * cdata->block holds the IVEC 1076 */ 1077 encr_mech.cm_type = cdata->mech_type; 1078 encr_mech.cm_param = cdata->block; 1079 1080 if (cdata->block != NULL) 1081 encr_mech.cm_param_len = cdata->blocklen; 1082 else 1083 encr_mech.cm_param_len = 0; 1084 1085 mac_mech.cm_type = sha1_hmac_mech; 1086 mac_mech.cm_param = NULL; 1087 mac_mech.cm_param_len = 0; 1088 1089 rv = crypto_mac(&mac_mech, &dd, &cdata->d_hmac_key, 1090 cdata->hmac_tmpl, &mac, NULL); 1091 1092 if (rv != CRYPTO_SUCCESS) { 1093 cmn_err(CE_WARN, "crypto_mac failed: %0x", rv); 1094 return (rv); 1095 } 1096 1097 rv = crypto_encrypt(&encr_mech, &dd, &cdata->d_encr_key, 1098 cdata->enc_tmpl, NULL, NULL); 1099 if (rv != CRYPTO_SUCCESS) { 1100 cmn_err(CE_WARN, "crypto_encrypt failed: %0x", rv); 1101 } 1102 1103 return (rv); 1104 } 1105 1106 /* 1107 * kef_crypt 1108 * 1109 * Use the Kernel encryption framework to provide the 1110 * crypto operations for the indicated data. 1111 */ 1112 static int 1113 kef_crypt(struct cipher_data_t *cdata, 1114 void *indata, crypto_data_format_t fmt, 1115 size_t length, int mode) 1116 { 1117 int rv = CRYPTO_FAILED; 1118 1119 crypto_mechanism_t mech; 1120 crypto_key_t crkey; 1121 iovec_t v1; 1122 crypto_data_t d1; 1123 1124 ASSERT(cdata != NULL); 1125 ASSERT(indata != NULL); 1126 ASSERT(fmt == CRYPTO_DATA_RAW || fmt == CRYPTO_DATA_MBLK); 1127 1128 bzero(&crkey, sizeof (crkey)); 1129 bzero(&d1, sizeof (d1)); 1130 1131 crkey.ck_format = CRYPTO_KEY_RAW; 1132 crkey.ck_data = cdata->key; 1133 1134 /* keys are measured in bits, not bytes, so multiply by 8 */ 1135 crkey.ck_length = cdata->keylen * 8; 1136 1137 if (fmt == CRYPTO_DATA_RAW) { 1138 v1.iov_base = (char *)indata; 1139 v1.iov_len = length; 1140 } 1141 1142 d1.cd_format = fmt; 1143 d1.cd_offset = 0; 1144 d1.cd_length = length; 1145 if (fmt == CRYPTO_DATA_RAW) 1146 d1.cd_raw = v1; 1147 else if (fmt == CRYPTO_DATA_MBLK) 1148 d1.cd_mp = (mblk_t *)indata; 1149 1150 mech.cm_type = cdata->mech_type; 1151 mech.cm_param = cdata->block; 1152 /* 1153 * cdata->block holds the IVEC 1154 */ 1155 if (cdata->block != NULL) 1156 mech.cm_param_len = cdata->blocklen; 1157 else 1158 mech.cm_param_len = 0; 1159 1160 /* 1161 * encrypt and decrypt in-place 1162 */ 1163 if (mode == CRYPT_ENCRYPT) 1164 rv = crypto_encrypt(&mech, &d1, &crkey, NULL, NULL, NULL); 1165 else 1166 rv = crypto_decrypt(&mech, &d1, &crkey, NULL, NULL, NULL); 1167 1168 if (rv != CRYPTO_SUCCESS) { 1169 cmn_err(CE_WARN, "%s returned error %08x", 1170 (mode == CRYPT_ENCRYPT ? "crypto_encrypt" : 1171 "crypto_decrypt"), rv); 1172 return (CRYPTO_FAILED); 1173 } 1174 1175 return (rv); 1176 } 1177 1178 static int 1179 do_hmac(crypto_mech_type_t mech, 1180 crypto_key_t *key, 1181 char *data, int datalen, 1182 char *hmac, int hmaclen) 1183 { 1184 int rv = 0; 1185 crypto_mechanism_t mac_mech; 1186 crypto_data_t dd; 1187 crypto_data_t mac; 1188 iovec_t vdata, vmac; 1189 1190 mac_mech.cm_type = mech; 1191 mac_mech.cm_param = NULL; 1192 mac_mech.cm_param_len = 0; 1193 1194 vdata.iov_base = data; 1195 vdata.iov_len = datalen; 1196 1197 bzero(&dd, sizeof (dd)); 1198 dd.cd_format = CRYPTO_DATA_RAW; 1199 dd.cd_offset = 0; 1200 dd.cd_length = datalen; 1201 dd.cd_raw = vdata; 1202 1203 vmac.iov_base = hmac; 1204 vmac.iov_len = hmaclen; 1205 1206 mac.cd_format = CRYPTO_DATA_RAW; 1207 mac.cd_offset = 0; 1208 mac.cd_length = hmaclen; 1209 mac.cd_raw = vmac; 1210 1211 /* 1212 * Compute MAC of the plaintext decrypted above. 1213 */ 1214 rv = crypto_mac(&mac_mech, &dd, key, NULL, &mac, NULL); 1215 1216 if (rv != CRYPTO_SUCCESS) { 1217 cmn_err(CE_WARN, "crypto_mac failed: %0x", rv); 1218 } 1219 1220 return (rv); 1221 } 1222 1223 #define XOR_BLOCK(src, dst) \ 1224 (dst)[0] ^= (src)[0]; \ 1225 (dst)[1] ^= (src)[1]; \ 1226 (dst)[2] ^= (src)[2]; \ 1227 (dst)[3] ^= (src)[3]; \ 1228 (dst)[4] ^= (src)[4]; \ 1229 (dst)[5] ^= (src)[5]; \ 1230 (dst)[6] ^= (src)[6]; \ 1231 (dst)[7] ^= (src)[7]; \ 1232 (dst)[8] ^= (src)[8]; \ 1233 (dst)[9] ^= (src)[9]; \ 1234 (dst)[10] ^= (src)[10]; \ 1235 (dst)[11] ^= (src)[11]; \ 1236 (dst)[12] ^= (src)[12]; \ 1237 (dst)[13] ^= (src)[13]; \ 1238 (dst)[14] ^= (src)[14]; \ 1239 (dst)[15] ^= (src)[15] 1240 1241 #define xorblock(x, y) XOR_BLOCK(y, x) 1242 1243 static int 1244 aes_cbc_cts_encrypt(struct tmodinfo *tmi, uchar_t *plain, size_t length) 1245 { 1246 int result = CRYPTO_SUCCESS; 1247 unsigned char tmp[DEFAULT_AES_BLOCKLEN]; 1248 unsigned char tmp2[DEFAULT_AES_BLOCKLEN]; 1249 unsigned char tmp3[DEFAULT_AES_BLOCKLEN]; 1250 int nblocks = 0, blockno; 1251 crypto_data_t ct, pt; 1252 crypto_mechanism_t mech; 1253 1254 mech.cm_type = tmi->enc_data.mech_type; 1255 if (tmi->enc_data.ivlen > 0 && tmi->enc_data.ivec != NULL) { 1256 bcopy(tmi->enc_data.ivec, tmp, DEFAULT_AES_BLOCKLEN); 1257 } else { 1258 bzero(tmp, sizeof (tmp)); 1259 } 1260 mech.cm_param = NULL; 1261 mech.cm_param_len = 0; 1262 1263 nblocks = (length + DEFAULT_AES_BLOCKLEN - 1) / DEFAULT_AES_BLOCKLEN; 1264 1265 bzero(&ct, sizeof (crypto_data_t)); 1266 bzero(&pt, sizeof (crypto_data_t)); 1267 1268 if (nblocks == 1) { 1269 pt.cd_format = CRYPTO_DATA_RAW; 1270 pt.cd_length = length; 1271 pt.cd_raw.iov_base = (char *)plain; 1272 pt.cd_raw.iov_len = length; 1273 1274 result = crypto_encrypt(&mech, &pt, 1275 &tmi->enc_data.d_encr_key, NULL, NULL, NULL); 1276 1277 if (result != CRYPTO_SUCCESS) { 1278 cmn_err(CE_WARN, "aes_cbc_cts_encrypt: " 1279 "crypto_encrypt failed: %0x", result); 1280 } 1281 } else { 1282 size_t nleft; 1283 1284 ct.cd_format = CRYPTO_DATA_RAW; 1285 ct.cd_offset = 0; 1286 ct.cd_length = DEFAULT_AES_BLOCKLEN; 1287 1288 pt.cd_format = CRYPTO_DATA_RAW; 1289 pt.cd_offset = 0; 1290 pt.cd_length = DEFAULT_AES_BLOCKLEN; 1291 1292 result = crypto_encrypt_init(&mech, 1293 &tmi->enc_data.d_encr_key, 1294 tmi->enc_data.enc_tmpl, 1295 &tmi->enc_data.ctx, NULL); 1296 1297 if (result != CRYPTO_SUCCESS) { 1298 cmn_err(CE_WARN, "aes_cbc_cts_encrypt: " 1299 "crypto_encrypt_init failed: %0x", result); 1300 goto cleanup; 1301 } 1302 1303 for (blockno = 0; blockno < nblocks - 2; blockno++) { 1304 xorblock(tmp, plain + blockno * DEFAULT_AES_BLOCKLEN); 1305 1306 pt.cd_raw.iov_base = (char *)tmp; 1307 pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; 1308 1309 ct.cd_raw.iov_base = (char *)plain + 1310 blockno * DEFAULT_AES_BLOCKLEN; 1311 ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; 1312 1313 result = crypto_encrypt_update(tmi->enc_data.ctx, 1314 &pt, &ct, NULL); 1315 1316 if (result != CRYPTO_SUCCESS) { 1317 cmn_err(CE_WARN, "aes_cbc_cts_encrypt: " 1318 "crypto_encrypt_update failed: %0x", 1319 result); 1320 goto cleanup; 1321 } 1322 /* copy result over original bytes */ 1323 /* make another copy for the next XOR step */ 1324 bcopy(plain + blockno * DEFAULT_AES_BLOCKLEN, 1325 tmp, DEFAULT_AES_BLOCKLEN); 1326 } 1327 /* XOR cipher text from n-3 with plain text from n-2 */ 1328 xorblock(tmp, plain + (nblocks - 2) * DEFAULT_AES_BLOCKLEN); 1329 1330 pt.cd_raw.iov_base = (char *)tmp; 1331 pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; 1332 1333 ct.cd_raw.iov_base = (char *)tmp2; 1334 ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; 1335 1336 /* encrypt XOR-ed block N-2 */ 1337 result = crypto_encrypt_update(tmi->enc_data.ctx, 1338 &pt, &ct, NULL); 1339 if (result != CRYPTO_SUCCESS) { 1340 cmn_err(CE_WARN, "aes_cbc_cts_encrypt: " 1341 "crypto_encrypt_update(2) failed: %0x", 1342 result); 1343 goto cleanup; 1344 } 1345 nleft = length - (nblocks - 1) * DEFAULT_AES_BLOCKLEN; 1346 1347 bzero(tmp3, sizeof (tmp3)); 1348 /* Save final plaintext bytes from n-1 */ 1349 bcopy(plain + (nblocks - 1) * DEFAULT_AES_BLOCKLEN, tmp3, 1350 nleft); 1351 1352 /* Overwrite n-1 with cipher text from n-2 */ 1353 bcopy(tmp2, plain + (nblocks - 1) * DEFAULT_AES_BLOCKLEN, 1354 nleft); 1355 1356 bcopy(tmp2, tmp, DEFAULT_AES_BLOCKLEN); 1357 /* XOR cipher text from n-1 with plain text from n-1 */ 1358 xorblock(tmp, tmp3); 1359 1360 pt.cd_raw.iov_base = (char *)tmp; 1361 pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; 1362 1363 ct.cd_raw.iov_base = (char *)tmp2; 1364 ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; 1365 1366 /* encrypt block N-2 */ 1367 result = crypto_encrypt_update(tmi->enc_data.ctx, 1368 &pt, &ct, NULL); 1369 1370 if (result != CRYPTO_SUCCESS) { 1371 cmn_err(CE_WARN, "aes_cbc_cts_encrypt: " 1372 "crypto_encrypt_update(3) failed: %0x", 1373 result); 1374 goto cleanup; 1375 } 1376 1377 bcopy(tmp2, plain + (nblocks - 2) * DEFAULT_AES_BLOCKLEN, 1378 DEFAULT_AES_BLOCKLEN); 1379 1380 1381 ct.cd_raw.iov_base = (char *)tmp2; 1382 ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; 1383 1384 /* 1385 * Ignore the output on the final step. 1386 */ 1387 result = crypto_encrypt_final(tmi->enc_data.ctx, &ct, NULL); 1388 if (result != CRYPTO_SUCCESS) { 1389 cmn_err(CE_WARN, "aes_cbc_cts_encrypt: " 1390 "crypto_encrypt_final(3) failed: %0x", 1391 result); 1392 } 1393 tmi->enc_data.ctx = NULL; 1394 } 1395 cleanup: 1396 bzero(tmp, sizeof (tmp)); 1397 bzero(tmp2, sizeof (tmp)); 1398 bzero(tmp3, sizeof (tmp)); 1399 bzero(tmi->enc_data.block, tmi->enc_data.blocklen); 1400 return (result); 1401 } 1402 1403 static int 1404 aes_cbc_cts_decrypt(struct tmodinfo *tmi, uchar_t *buff, size_t length) 1405 { 1406 int result = CRYPTO_SUCCESS; 1407 unsigned char tmp[DEFAULT_AES_BLOCKLEN]; 1408 unsigned char tmp2[DEFAULT_AES_BLOCKLEN]; 1409 unsigned char tmp3[DEFAULT_AES_BLOCKLEN]; 1410 int nblocks = 0, blockno; 1411 crypto_data_t ct, pt; 1412 crypto_mechanism_t mech; 1413 1414 mech.cm_type = tmi->enc_data.mech_type; 1415 1416 if (tmi->dec_data.ivec_usage != IVEC_NEVER && 1417 tmi->dec_data.ivlen > 0 && tmi->dec_data.ivec != NULL) { 1418 bcopy(tmi->dec_data.ivec, tmp, DEFAULT_AES_BLOCKLEN); 1419 } else { 1420 bzero(tmp, sizeof (tmp)); 1421 } 1422 mech.cm_param_len = 0; 1423 mech.cm_param = NULL; 1424 1425 nblocks = (length + DEFAULT_AES_BLOCKLEN - 1) / DEFAULT_AES_BLOCKLEN; 1426 1427 bzero(&pt, sizeof (pt)); 1428 bzero(&ct, sizeof (ct)); 1429 1430 if (nblocks == 1) { 1431 ct.cd_format = CRYPTO_DATA_RAW; 1432 ct.cd_length = length; 1433 ct.cd_raw.iov_base = (char *)buff; 1434 ct.cd_raw.iov_len = length; 1435 1436 result = crypto_decrypt(&mech, &ct, 1437 &tmi->dec_data.d_encr_key, NULL, NULL, NULL); 1438 1439 if (result != CRYPTO_SUCCESS) { 1440 cmn_err(CE_WARN, "aes_cbc_cts_decrypt: " 1441 "crypto_decrypt failed: %0x", result); 1442 goto cleanup; 1443 } 1444 } else { 1445 ct.cd_format = CRYPTO_DATA_RAW; 1446 ct.cd_offset = 0; 1447 ct.cd_length = DEFAULT_AES_BLOCKLEN; 1448 1449 pt.cd_format = CRYPTO_DATA_RAW; 1450 pt.cd_offset = 0; 1451 pt.cd_length = DEFAULT_AES_BLOCKLEN; 1452 1453 result = crypto_decrypt_init(&mech, 1454 &tmi->dec_data.d_encr_key, 1455 tmi->dec_data.enc_tmpl, 1456 &tmi->dec_data.ctx, NULL); 1457 1458 if (result != CRYPTO_SUCCESS) { 1459 cmn_err(CE_WARN, "aes_cbc_cts_decrypt: " 1460 "crypto_decrypt_init failed: %0x", result); 1461 goto cleanup; 1462 } 1463 for (blockno = 0; blockno < nblocks - 2; blockno++) { 1464 ct.cd_raw.iov_base = (char *)buff + 1465 (blockno * DEFAULT_AES_BLOCKLEN); 1466 ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; 1467 1468 pt.cd_raw.iov_base = (char *)tmp2; 1469 pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; 1470 1471 /* 1472 * Save the input to the decrypt so it can 1473 * be used later for an XOR operation 1474 */ 1475 bcopy(buff + (blockno * DEFAULT_AES_BLOCKLEN), 1476 tmi->dec_data.block, DEFAULT_AES_BLOCKLEN); 1477 1478 result = crypto_decrypt_update(tmi->dec_data.ctx, 1479 &ct, &pt, NULL); 1480 if (result != CRYPTO_SUCCESS) { 1481 cmn_err(CE_WARN, "aes_cbc_cts_decrypt: " 1482 "crypto_decrypt_update(1) error - " 1483 "result = 0x%08x", result); 1484 goto cleanup; 1485 } 1486 xorblock(tmp2, tmp); 1487 bcopy(tmp2, buff + blockno * DEFAULT_AES_BLOCKLEN, 1488 DEFAULT_AES_BLOCKLEN); 1489 /* 1490 * The original cipher text is used as the xor 1491 * for the next block, save it here. 1492 */ 1493 bcopy(tmi->dec_data.block, tmp, DEFAULT_AES_BLOCKLEN); 1494 } 1495 ct.cd_raw.iov_base = (char *)buff + 1496 ((nblocks - 2) * DEFAULT_AES_BLOCKLEN); 1497 ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; 1498 pt.cd_raw.iov_base = (char *)tmp2; 1499 pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; 1500 1501 result = crypto_decrypt_update(tmi->dec_data.ctx, 1502 &ct, &pt, NULL); 1503 if (result != CRYPTO_SUCCESS) { 1504 cmn_err(CE_WARN, 1505 "aes_cbc_cts_decrypt: " 1506 "crypto_decrypt_update(2) error -" 1507 " result = 0x%08x", result); 1508 goto cleanup; 1509 } 1510 bzero(tmp3, sizeof (tmp3)); 1511 bcopy(buff + (nblocks - 1) * DEFAULT_AES_BLOCKLEN, tmp3, 1512 length - ((nblocks - 1) * DEFAULT_AES_BLOCKLEN)); 1513 1514 xorblock(tmp2, tmp3); 1515 bcopy(tmp2, buff + (nblocks - 1) * DEFAULT_AES_BLOCKLEN, 1516 length - ((nblocks - 1) * DEFAULT_AES_BLOCKLEN)); 1517 1518 /* 2nd to last block ... */ 1519 bcopy(tmp3, tmp2, 1520 length - ((nblocks - 1) * DEFAULT_AES_BLOCKLEN)); 1521 1522 ct.cd_raw.iov_base = (char *)tmp2; 1523 ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; 1524 pt.cd_raw.iov_base = (char *)tmp3; 1525 pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; 1526 1527 result = crypto_decrypt_update(tmi->dec_data.ctx, 1528 &ct, &pt, NULL); 1529 if (result != CRYPTO_SUCCESS) { 1530 cmn_err(CE_WARN, 1531 "aes_cbc_cts_decrypt: " 1532 "crypto_decrypt_update(3) error - " 1533 "result = 0x%08x", result); 1534 goto cleanup; 1535 } 1536 xorblock(tmp3, tmp); 1537 1538 1539 /* Finally, update the 2nd to last block and we are done. */ 1540 bcopy(tmp3, buff + (nblocks - 2) * DEFAULT_AES_BLOCKLEN, 1541 DEFAULT_AES_BLOCKLEN); 1542 1543 /* Do Final step, but ignore output */ 1544 pt.cd_raw.iov_base = (char *)tmp2; 1545 pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; 1546 result = crypto_decrypt_final(tmi->dec_data.ctx, &pt, NULL); 1547 if (result != CRYPTO_SUCCESS) { 1548 cmn_err(CE_WARN, "aes_cbc_cts_decrypt: " 1549 "crypto_decrypt_final error - " 1550 "result = 0x%0x", result); 1551 } 1552 tmi->dec_data.ctx = NULL; 1553 } 1554 1555 cleanup: 1556 bzero(tmp, sizeof (tmp)); 1557 bzero(tmp2, sizeof (tmp)); 1558 bzero(tmp3, sizeof (tmp)); 1559 bzero(tmi->dec_data.block, tmi->dec_data.blocklen); 1560 return (result); 1561 } 1562 1563 /* 1564 * AES decrypt 1565 * 1566 * format of ciphertext when using AES 1567 * +-------------+------------+------------+ 1568 * | confounder | msg-data | hmac | 1569 * +-------------+------------+------------+ 1570 */ 1571 static mblk_t * 1572 aes_decrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp, 1573 hash_info_t *hash) 1574 { 1575 int result; 1576 size_t enclen; 1577 size_t inlen; 1578 uchar_t hmacbuff[64]; 1579 uchar_t tmpiv[DEFAULT_AES_BLOCKLEN]; 1580 1581 inlen = (size_t)MBLKL(mp); 1582 1583 enclen = inlen - AES_TRUNCATED_HMAC_LEN; 1584 if (tmi->dec_data.ivec_usage != IVEC_NEVER && 1585 tmi->dec_data.ivec != NULL && tmi->dec_data.ivlen > 0) { 1586 int nblocks = (enclen + DEFAULT_AES_BLOCKLEN - 1) / 1587 DEFAULT_AES_BLOCKLEN; 1588 bcopy(mp->b_rptr + DEFAULT_AES_BLOCKLEN * (nblocks - 2), 1589 tmpiv, DEFAULT_AES_BLOCKLEN); 1590 } 1591 1592 /* AES Decrypt */ 1593 result = aes_cbc_cts_decrypt(tmi, mp->b_rptr, enclen); 1594 1595 if (result != CRYPTO_SUCCESS) { 1596 cmn_err(CE_WARN, 1597 "aes_decrypt: aes_cbc_cts_decrypt " 1598 "failed - error %0x", result); 1599 goto cleanup; 1600 } 1601 1602 /* Verify the HMAC */ 1603 result = do_hmac(sha1_hmac_mech, 1604 &tmi->dec_data.d_hmac_key, 1605 (char *)mp->b_rptr, enclen, 1606 (char *)hmacbuff, hash->hash_len); 1607 1608 if (result != CRYPTO_SUCCESS) { 1609 cmn_err(CE_WARN, 1610 "aes_decrypt: do_hmac failed - error %0x", result); 1611 goto cleanup; 1612 } 1613 1614 if (bcmp(hmacbuff, mp->b_rptr + enclen, 1615 AES_TRUNCATED_HMAC_LEN) != 0) { 1616 result = -1; 1617 cmn_err(CE_WARN, "aes_decrypt: checksum verification failed"); 1618 goto cleanup; 1619 } 1620 1621 /* truncate the mblk at the end of the decrypted text */ 1622 mp->b_wptr = mp->b_rptr + enclen; 1623 1624 /* Adjust the beginning of the buffer to skip the confounder */ 1625 mp->b_rptr += DEFAULT_AES_BLOCKLEN; 1626 1627 if (tmi->dec_data.ivec_usage != IVEC_NEVER && 1628 tmi->dec_data.ivec != NULL && tmi->dec_data.ivlen > 0) 1629 bcopy(tmpiv, tmi->dec_data.ivec, DEFAULT_AES_BLOCKLEN); 1630 1631 cleanup: 1632 if (result != CRYPTO_SUCCESS) { 1633 mp->b_datap->db_type = M_ERROR; 1634 mp->b_rptr = mp->b_datap->db_base; 1635 *mp->b_rptr = EIO; 1636 mp->b_wptr = mp->b_rptr + sizeof (char); 1637 freemsg(mp->b_cont); 1638 mp->b_cont = NULL; 1639 qreply(WR(q), mp); 1640 return (NULL); 1641 } 1642 return (mp); 1643 } 1644 1645 /* 1646 * AES encrypt 1647 * 1648 * format of ciphertext when using AES 1649 * +-------------+------------+------------+ 1650 * | confounder | msg-data | hmac | 1651 * +-------------+------------+------------+ 1652 */ 1653 static mblk_t * 1654 aes_encrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp, 1655 hash_info_t *hash) 1656 { 1657 int result; 1658 size_t cipherlen; 1659 size_t inlen; 1660 uchar_t hmacbuff[64]; 1661 1662 inlen = (size_t)MBLKL(mp); 1663 1664 cipherlen = encrypt_size(&tmi->enc_data, inlen); 1665 1666 ASSERT(MBLKSIZE(mp) >= cipherlen); 1667 1668 /* 1669 * Shift the rptr back enough to insert the confounder. 1670 */ 1671 mp->b_rptr -= DEFAULT_AES_BLOCKLEN; 1672 1673 /* Get random data for confounder */ 1674 (void) random_get_pseudo_bytes((uint8_t *)mp->b_rptr, 1675 DEFAULT_AES_BLOCKLEN); 1676 1677 /* 1678 * Because we encrypt in-place, we need to calculate 1679 * the HMAC of the plaintext now, then stick it on 1680 * the end of the ciphertext down below. 1681 */ 1682 result = do_hmac(sha1_hmac_mech, 1683 &tmi->enc_data.d_hmac_key, 1684 (char *)mp->b_rptr, DEFAULT_AES_BLOCKLEN + inlen, 1685 (char *)hmacbuff, hash->hash_len); 1686 1687 if (result != CRYPTO_SUCCESS) { 1688 cmn_err(CE_WARN, "aes_encrypt: do_hmac failed - error %0x", 1689 result); 1690 goto cleanup; 1691 } 1692 /* Encrypt using AES-CBC-CTS */ 1693 result = aes_cbc_cts_encrypt(tmi, mp->b_rptr, 1694 inlen + DEFAULT_AES_BLOCKLEN); 1695 1696 if (result != CRYPTO_SUCCESS) { 1697 cmn_err(CE_WARN, "aes_encrypt: aes_cbc_cts_encrypt " 1698 "failed - error %0x", result); 1699 goto cleanup; 1700 } 1701 1702 /* copy the truncated HMAC to the end of the mblk */ 1703 bcopy(hmacbuff, mp->b_rptr + DEFAULT_AES_BLOCKLEN + inlen, 1704 AES_TRUNCATED_HMAC_LEN); 1705 1706 mp->b_wptr = mp->b_rptr + cipherlen; 1707 1708 /* 1709 * The final block of cipher text (not the HMAC) is used 1710 * as the next IV. 1711 */ 1712 if (tmi->enc_data.ivec_usage != IVEC_NEVER && 1713 tmi->enc_data.ivec != NULL) { 1714 int nblocks = (inlen + 2 * DEFAULT_AES_BLOCKLEN - 1) / 1715 DEFAULT_AES_BLOCKLEN; 1716 1717 bcopy(mp->b_rptr + (nblocks - 2) * DEFAULT_AES_BLOCKLEN, 1718 tmi->enc_data.ivec, DEFAULT_AES_BLOCKLEN); 1719 } 1720 1721 cleanup: 1722 if (result != CRYPTO_SUCCESS) { 1723 mp->b_datap->db_type = M_ERROR; 1724 mp->b_rptr = mp->b_datap->db_base; 1725 *mp->b_rptr = EIO; 1726 mp->b_wptr = mp->b_rptr + sizeof (char); 1727 freemsg(mp->b_cont); 1728 mp->b_cont = NULL; 1729 qreply(WR(q), mp); 1730 return (NULL); 1731 } 1732 return (mp); 1733 } 1734 1735 /* 1736 * ARCFOUR-HMAC-MD5 decrypt 1737 * 1738 * format of ciphertext when using ARCFOUR-HMAC-MD5 1739 * +-----------+------------+------------+ 1740 * | hmac | confounder | msg-data | 1741 * +-----------+------------+------------+ 1742 * 1743 */ 1744 static mblk_t * 1745 arcfour_hmac_md5_decrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp, 1746 hash_info_t *hash) 1747 { 1748 int result; 1749 size_t cipherlen; 1750 size_t inlen; 1751 size_t saltlen; 1752 crypto_key_t k1, k2; 1753 crypto_data_t indata; 1754 iovec_t v1; 1755 uchar_t ms_exp[9] = {0xab, 0xab, 0xab, 0xab, 0xab, 1756 0xab, 0xab, 0xab, 0xab }; 1757 uchar_t k1data[CRYPT_ARCFOUR_KEYBYTES]; 1758 uchar_t k2data[CRYPT_ARCFOUR_KEYBYTES]; 1759 uchar_t cksum[MD5_HASHSIZE]; 1760 uchar_t saltdata[CRYPT_ARCFOUR_KEYBYTES]; 1761 crypto_mechanism_t mech; 1762 int usage; 1763 1764 /* The usage constant is 1026 for all "old" rcmd mode operations */ 1765 if (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V1) 1766 usage = RCMDV1_USAGE; 1767 else 1768 usage = ARCFOUR_DECRYPT_USAGE; 1769 1770 /* 1771 * The size at this point should be the size of 1772 * all the plaintext plus the optional plaintext length 1773 * needed for RCMD V2 mode. There should also be room 1774 * at the head of the mblk for the confounder and hash info. 1775 */ 1776 inlen = (size_t)MBLKL(mp); 1777 1778 /* 1779 * The cipherlen does not include the HMAC at the 1780 * head of the buffer. 1781 */ 1782 cipherlen = inlen - hash->hash_len; 1783 1784 ASSERT(MBLKSIZE(mp) >= cipherlen); 1785 if (tmi->dec_data.method == CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP) { 1786 bcopy(ARCFOUR_EXP_SALT, saltdata, strlen(ARCFOUR_EXP_SALT)); 1787 saltdata[9] = 0; 1788 saltdata[10] = usage & 0xff; 1789 saltdata[11] = (usage >> 8) & 0xff; 1790 saltdata[12] = (usage >> 16) & 0xff; 1791 saltdata[13] = (usage >> 24) & 0xff; 1792 saltlen = 14; 1793 } else { 1794 saltdata[0] = usage & 0xff; 1795 saltdata[1] = (usage >> 8) & 0xff; 1796 saltdata[2] = (usage >> 16) & 0xff; 1797 saltdata[3] = (usage >> 24) & 0xff; 1798 saltlen = 4; 1799 } 1800 /* 1801 * Use the salt value to create a key to be used 1802 * for subsequent HMAC operations. 1803 */ 1804 result = do_hmac(md5_hmac_mech, 1805 tmi->dec_data.ckey, 1806 (char *)saltdata, saltlen, 1807 (char *)k1data, sizeof (k1data)); 1808 if (result != CRYPTO_SUCCESS) { 1809 cmn_err(CE_WARN, 1810 "arcfour_hmac_md5_decrypt: do_hmac(k1)" 1811 "failed - error %0x", result); 1812 goto cleanup; 1813 } 1814 bcopy(k1data, k2data, sizeof (k1data)); 1815 1816 /* 1817 * For the neutered MS RC4 encryption type, 1818 * set the trailing 9 bytes to 0xab per the 1819 * RC4-HMAC spec. 1820 */ 1821 if (tmi->dec_data.method == CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP) { 1822 bcopy((void *)&k1data[7], ms_exp, sizeof (ms_exp)); 1823 } 1824 1825 mech.cm_type = tmi->dec_data.mech_type; 1826 mech.cm_param = NULL; 1827 mech.cm_param_len = 0; 1828 1829 /* 1830 * If we have not yet initialized the decryption key, 1831 * context, and template, do it now. 1832 */ 1833 if (tmi->dec_data.ctx == NULL || 1834 (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V1)) { 1835 k1.ck_format = CRYPTO_KEY_RAW; 1836 k1.ck_length = CRYPT_ARCFOUR_KEYBYTES * 8; 1837 k1.ck_data = k1data; 1838 1839 tmi->dec_data.d_encr_key.ck_format = CRYPTO_KEY_RAW; 1840 tmi->dec_data.d_encr_key.ck_length = k1.ck_length; 1841 if (tmi->dec_data.d_encr_key.ck_data == NULL) 1842 tmi->dec_data.d_encr_key.ck_data = kmem_zalloc( 1843 CRYPT_ARCFOUR_KEYBYTES, KM_SLEEP); 1844 1845 /* 1846 * HMAC operation creates the encryption 1847 * key to be used for the decrypt operations. 1848 */ 1849 result = do_hmac(md5_hmac_mech, &k1, 1850 (char *)mp->b_rptr, hash->hash_len, 1851 (char *)tmi->dec_data.d_encr_key.ck_data, 1852 CRYPT_ARCFOUR_KEYBYTES); 1853 1854 1855 if (result != CRYPTO_SUCCESS) { 1856 cmn_err(CE_WARN, 1857 "arcfour_hmac_md5_decrypt: do_hmac(k3)" 1858 "failed - error %0x", result); 1859 goto cleanup; 1860 } 1861 } 1862 1863 tmi->dec_data.enc_tmpl = NULL; 1864 1865 if (tmi->dec_data.ctx == NULL && 1866 (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V2)) { 1867 /* 1868 * Only create a template if we are doing 1869 * chaining from block to block. 1870 */ 1871 result = crypto_create_ctx_template(&mech, 1872 &tmi->dec_data.d_encr_key, 1873 &tmi->dec_data.enc_tmpl, 1874 KM_SLEEP); 1875 if (result == CRYPTO_NOT_SUPPORTED) { 1876 tmi->dec_data.enc_tmpl = NULL; 1877 } else if (result != CRYPTO_SUCCESS) { 1878 cmn_err(CE_WARN, 1879 "arcfour_hmac_md5_decrypt: " 1880 "failed to create dec template " 1881 "for RC4 encrypt: %0x", result); 1882 goto cleanup; 1883 } 1884 1885 result = crypto_decrypt_init(&mech, 1886 &tmi->dec_data.d_encr_key, 1887 tmi->dec_data.enc_tmpl, 1888 &tmi->dec_data.ctx, NULL); 1889 1890 if (result != CRYPTO_SUCCESS) { 1891 cmn_err(CE_WARN, "crypto_decrypt_init failed:" 1892 " %0x", result); 1893 goto cleanup; 1894 } 1895 } 1896 1897 /* adjust the rptr so we don't decrypt the original hmac field */ 1898 1899 v1.iov_base = (char *)mp->b_rptr + hash->hash_len; 1900 v1.iov_len = cipherlen; 1901 1902 indata.cd_format = CRYPTO_DATA_RAW; 1903 indata.cd_offset = 0; 1904 indata.cd_length = cipherlen; 1905 indata.cd_raw = v1; 1906 1907 if (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V2) 1908 result = crypto_decrypt_update(tmi->dec_data.ctx, 1909 &indata, NULL, NULL); 1910 else 1911 result = crypto_decrypt(&mech, &indata, 1912 &tmi->dec_data.d_encr_key, NULL, NULL, NULL); 1913 1914 if (result != CRYPTO_SUCCESS) { 1915 cmn_err(CE_WARN, "crypto_decrypt_update failed:" 1916 " %0x", result); 1917 goto cleanup; 1918 } 1919 1920 k2.ck_format = CRYPTO_KEY_RAW; 1921 k2.ck_length = sizeof (k2data) * 8; 1922 k2.ck_data = k2data; 1923 1924 result = do_hmac(md5_hmac_mech, 1925 &k2, 1926 (char *)mp->b_rptr + hash->hash_len, cipherlen, 1927 (char *)cksum, hash->hash_len); 1928 1929 if (result != CRYPTO_SUCCESS) { 1930 cmn_err(CE_WARN, 1931 "arcfour_hmac_md5_decrypt: do_hmac(k2)" 1932 "failed - error %0x", result); 1933 goto cleanup; 1934 } 1935 1936 if (bcmp(cksum, mp->b_rptr, hash->hash_len) != 0) { 1937 cmn_err(CE_WARN, "arcfour_decrypt HMAC comparison failed"); 1938 result = -1; 1939 goto cleanup; 1940 } 1941 1942 /* 1943 * adjust the start of the mblk to skip over the 1944 * hash and confounder. 1945 */ 1946 mp->b_rptr += hash->hash_len + hash->confound_len; 1947 1948 cleanup: 1949 bzero(k1data, sizeof (k1data)); 1950 bzero(k2data, sizeof (k2data)); 1951 bzero(cksum, sizeof (cksum)); 1952 bzero(saltdata, sizeof (saltdata)); 1953 if (result != CRYPTO_SUCCESS) { 1954 mp->b_datap->db_type = M_ERROR; 1955 mp->b_rptr = mp->b_datap->db_base; 1956 *mp->b_rptr = EIO; 1957 mp->b_wptr = mp->b_rptr + sizeof (char); 1958 freemsg(mp->b_cont); 1959 mp->b_cont = NULL; 1960 qreply(WR(q), mp); 1961 return (NULL); 1962 } 1963 return (mp); 1964 } 1965 1966 /* 1967 * ARCFOUR-HMAC-MD5 encrypt 1968 * 1969 * format of ciphertext when using ARCFOUR-HMAC-MD5 1970 * +-----------+------------+------------+ 1971 * | hmac | confounder | msg-data | 1972 * +-----------+------------+------------+ 1973 * 1974 */ 1975 static mblk_t * 1976 arcfour_hmac_md5_encrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp, 1977 hash_info_t *hash) 1978 { 1979 int result; 1980 size_t cipherlen; 1981 size_t inlen; 1982 size_t saltlen; 1983 crypto_key_t k1, k2; 1984 crypto_data_t indata; 1985 iovec_t v1; 1986 uchar_t ms_exp[9] = {0xab, 0xab, 0xab, 0xab, 0xab, 1987 0xab, 0xab, 0xab, 0xab }; 1988 uchar_t k1data[CRYPT_ARCFOUR_KEYBYTES]; 1989 uchar_t k2data[CRYPT_ARCFOUR_KEYBYTES]; 1990 uchar_t saltdata[CRYPT_ARCFOUR_KEYBYTES]; 1991 crypto_mechanism_t mech; 1992 int usage; 1993 1994 bzero(&indata, sizeof (indata)); 1995 1996 /* The usage constant is 1026 for all "old" rcmd mode operations */ 1997 if (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V1) 1998 usage = RCMDV1_USAGE; 1999 else 2000 usage = ARCFOUR_ENCRYPT_USAGE; 2001 2002 mech.cm_type = tmi->enc_data.mech_type; 2003 mech.cm_param = NULL; 2004 mech.cm_param_len = 0; 2005 2006 /* 2007 * The size at this point should be the size of 2008 * all the plaintext plus the optional plaintext length 2009 * needed for RCMD V2 mode. There should also be room 2010 * at the head of the mblk for the confounder and hash info. 2011 */ 2012 inlen = (size_t)MBLKL(mp); 2013 2014 cipherlen = encrypt_size(&tmi->enc_data, inlen); 2015 2016 ASSERT(MBLKSIZE(mp) >= cipherlen); 2017 2018 /* 2019 * Shift the rptr back enough to insert 2020 * the confounder and hash. 2021 */ 2022 mp->b_rptr -= (hash->confound_len + hash->hash_len); 2023 2024 /* zero out the hash area */ 2025 bzero(mp->b_rptr, (size_t)hash->hash_len); 2026 2027 if (cipherlen > inlen) { 2028 bzero(mp->b_wptr, MBLKTAIL(mp)); 2029 } 2030 2031 if (tmi->enc_data.method == CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP) { 2032 bcopy(ARCFOUR_EXP_SALT, saltdata, strlen(ARCFOUR_EXP_SALT)); 2033 saltdata[9] = 0; 2034 saltdata[10] = usage & 0xff; 2035 saltdata[11] = (usage >> 8) & 0xff; 2036 saltdata[12] = (usage >> 16) & 0xff; 2037 saltdata[13] = (usage >> 24) & 0xff; 2038 saltlen = 14; 2039 } else { 2040 saltdata[0] = usage & 0xff; 2041 saltdata[1] = (usage >> 8) & 0xff; 2042 saltdata[2] = (usage >> 16) & 0xff; 2043 saltdata[3] = (usage >> 24) & 0xff; 2044 saltlen = 4; 2045 } 2046 /* 2047 * Use the salt value to create a key to be used 2048 * for subsequent HMAC operations. 2049 */ 2050 result = do_hmac(md5_hmac_mech, 2051 tmi->enc_data.ckey, 2052 (char *)saltdata, saltlen, 2053 (char *)k1data, sizeof (k1data)); 2054 if (result != CRYPTO_SUCCESS) { 2055 cmn_err(CE_WARN, 2056 "arcfour_hmac_md5_encrypt: do_hmac(k1)" 2057 "failed - error %0x", result); 2058 goto cleanup; 2059 } 2060 2061 bcopy(k1data, k2data, sizeof (k2data)); 2062 2063 /* 2064 * For the neutered MS RC4 encryption type, 2065 * set the trailing 9 bytes to 0xab per the 2066 * RC4-HMAC spec. 2067 */ 2068 if (tmi->enc_data.method == CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP) { 2069 bcopy((void *)&k1data[7], ms_exp, sizeof (ms_exp)); 2070 } 2071 2072 /* 2073 * Get the confounder bytes. 2074 */ 2075 (void) random_get_pseudo_bytes( 2076 (uint8_t *)(mp->b_rptr + hash->hash_len), 2077 (size_t)hash->confound_len); 2078 2079 k2.ck_data = k2data; 2080 k2.ck_format = CRYPTO_KEY_RAW; 2081 k2.ck_length = sizeof (k2data) * 8; 2082 2083 /* 2084 * This writes the HMAC to the hash area in the 2085 * mblk. The key used is the one just created by 2086 * the previous HMAC operation. 2087 * The data being processed is the confounder bytes 2088 * PLUS the input plaintext. 2089 */ 2090 result = do_hmac(md5_hmac_mech, &k2, 2091 (char *)mp->b_rptr + hash->hash_len, 2092 hash->confound_len + inlen, 2093 (char *)mp->b_rptr, hash->hash_len); 2094 if (result != CRYPTO_SUCCESS) { 2095 cmn_err(CE_WARN, 2096 "arcfour_hmac_md5_encrypt: do_hmac(k2)" 2097 "failed - error %0x", result); 2098 goto cleanup; 2099 } 2100 /* 2101 * Because of the odd way that MIT uses RC4 keys 2102 * on the rlogin stream, we only need to create 2103 * this key once. 2104 * However, if using "old" rcmd mode, we need to do 2105 * it every time. 2106 */ 2107 if (tmi->enc_data.ctx == NULL || 2108 (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V1)) { 2109 crypto_key_t *key = &tmi->enc_data.d_encr_key; 2110 2111 k1.ck_data = k1data; 2112 k1.ck_format = CRYPTO_KEY_RAW; 2113 k1.ck_length = sizeof (k1data) * 8; 2114 2115 key->ck_format = CRYPTO_KEY_RAW; 2116 key->ck_length = k1.ck_length; 2117 if (key->ck_data == NULL) 2118 key->ck_data = kmem_zalloc( 2119 CRYPT_ARCFOUR_KEYBYTES, KM_SLEEP); 2120 2121 /* 2122 * The final HMAC operation creates the encryption 2123 * key to be used for the encrypt operation. 2124 */ 2125 result = do_hmac(md5_hmac_mech, &k1, 2126 (char *)mp->b_rptr, hash->hash_len, 2127 (char *)key->ck_data, CRYPT_ARCFOUR_KEYBYTES); 2128 2129 if (result != CRYPTO_SUCCESS) { 2130 cmn_err(CE_WARN, 2131 "arcfour_hmac_md5_encrypt: do_hmac(k3)" 2132 "failed - error %0x", result); 2133 goto cleanup; 2134 } 2135 } 2136 2137 /* 2138 * If the context has not been initialized, do it now. 2139 */ 2140 if (tmi->enc_data.ctx == NULL && 2141 (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V2)) { 2142 /* 2143 * Only create a template if we are doing 2144 * chaining from block to block. 2145 */ 2146 result = crypto_create_ctx_template(&mech, 2147 &tmi->enc_data.d_encr_key, 2148 &tmi->enc_data.enc_tmpl, 2149 KM_SLEEP); 2150 if (result == CRYPTO_NOT_SUPPORTED) { 2151 tmi->enc_data.enc_tmpl = NULL; 2152 } else if (result != CRYPTO_SUCCESS) { 2153 cmn_err(CE_WARN, "failed to create enc template " 2154 "for RC4 encrypt: %0x", result); 2155 goto cleanup; 2156 } 2157 2158 result = crypto_encrypt_init(&mech, 2159 &tmi->enc_data.d_encr_key, 2160 tmi->enc_data.enc_tmpl, 2161 &tmi->enc_data.ctx, NULL); 2162 if (result != CRYPTO_SUCCESS) { 2163 cmn_err(CE_WARN, "crypto_encrypt_init failed:" 2164 " %0x", result); 2165 goto cleanup; 2166 } 2167 } 2168 v1.iov_base = (char *)mp->b_rptr + hash->hash_len; 2169 v1.iov_len = hash->confound_len + inlen; 2170 2171 indata.cd_format = CRYPTO_DATA_RAW; 2172 indata.cd_offset = 0; 2173 indata.cd_length = hash->confound_len + inlen; 2174 indata.cd_raw = v1; 2175 2176 if (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V2) 2177 result = crypto_encrypt_update(tmi->enc_data.ctx, 2178 &indata, NULL, NULL); 2179 else 2180 result = crypto_encrypt(&mech, &indata, 2181 &tmi->enc_data.d_encr_key, NULL, 2182 NULL, NULL); 2183 2184 if (result != CRYPTO_SUCCESS) { 2185 cmn_err(CE_WARN, "crypto_encrypt_update failed: 0x%0x", 2186 result); 2187 } 2188 2189 cleanup: 2190 bzero(k1data, sizeof (k1data)); 2191 bzero(k2data, sizeof (k2data)); 2192 bzero(saltdata, sizeof (saltdata)); 2193 if (result != CRYPTO_SUCCESS) { 2194 mp->b_datap->db_type = M_ERROR; 2195 mp->b_rptr = mp->b_datap->db_base; 2196 *mp->b_rptr = EIO; 2197 mp->b_wptr = mp->b_rptr + sizeof (char); 2198 freemsg(mp->b_cont); 2199 mp->b_cont = NULL; 2200 qreply(WR(q), mp); 2201 return (NULL); 2202 } 2203 return (mp); 2204 } 2205 2206 /* 2207 * DES-CBC-[HASH] encrypt 2208 * 2209 * Needed to support userland apps that must support Kerberos V5 2210 * encryption DES-CBC encryption modes. 2211 * 2212 * The HASH values supported are RAW(NULL), MD5, CRC32, and SHA1 2213 * 2214 * format of ciphertext for DES-CBC functions, per RFC1510 is: 2215 * +-----------+----------+-------------+-----+ 2216 * |confounder | cksum | msg-data | pad | 2217 * +-----------+----------+-------------+-----+ 2218 * 2219 * format of ciphertext when using DES3-SHA1-HMAC 2220 * +-----------+----------+-------------+-----+ 2221 * |confounder | msg-data | hmac | pad | 2222 * +-----------+----------+-------------+-----+ 2223 * 2224 * The confounder is 8 bytes of random data. 2225 * The cksum depends on the hash being used. 2226 * 4 bytes for CRC32 2227 * 16 bytes for MD5 2228 * 20 bytes for SHA1 2229 * 0 bytes for RAW 2230 * 2231 */ 2232 static mblk_t * 2233 des_cbc_encrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp, hash_info_t *hash) 2234 { 2235 int result; 2236 size_t cipherlen; 2237 size_t inlen; 2238 size_t plainlen; 2239 2240 /* 2241 * The size at this point should be the size of 2242 * all the plaintext plus the optional plaintext length 2243 * needed for RCMD V2 mode. There should also be room 2244 * at the head of the mblk for the confounder and hash info. 2245 */ 2246 inlen = (size_t)MBLKL(mp); 2247 2248 /* 2249 * The output size will be a multiple of 8 because this algorithm 2250 * only works on 8 byte chunks. 2251 */ 2252 cipherlen = encrypt_size(&tmi->enc_data, inlen); 2253 2254 ASSERT(MBLKSIZE(mp) >= cipherlen); 2255 2256 if (cipherlen > inlen) { 2257 bzero(mp->b_wptr, MBLKTAIL(mp)); 2258 } 2259 2260 /* 2261 * Shift the rptr back enough to insert 2262 * the confounder and hash. 2263 */ 2264 if (tmi->enc_data.method == CRYPT_METHOD_DES3_CBC_SHA1) { 2265 mp->b_rptr -= hash->confound_len; 2266 } else { 2267 mp->b_rptr -= (hash->confound_len + hash->hash_len); 2268 2269 /* zero out the hash area */ 2270 bzero(mp->b_rptr + hash->confound_len, (size_t)hash->hash_len); 2271 } 2272 2273 /* get random confounder from our friend, the 'random' module */ 2274 if (hash->confound_len > 0) { 2275 (void) random_get_pseudo_bytes((uint8_t *)mp->b_rptr, 2276 (size_t)hash->confound_len); 2277 } 2278 2279 /* 2280 * For 3DES we calculate an HMAC later. 2281 */ 2282 if (tmi->enc_data.method != CRYPT_METHOD_DES3_CBC_SHA1) { 2283 /* calculate chksum of confounder + input */ 2284 if (hash->hash_len > 0 && hash->hashfunc != NULL) { 2285 uchar_t cksum[MAX_CKSUM_LEN]; 2286 2287 result = hash->hashfunc(cksum, mp->b_rptr, 2288 cipherlen); 2289 if (result != CRYPTO_SUCCESS) { 2290 goto failure; 2291 } 2292 2293 /* put hash in place right after the confounder */ 2294 bcopy(cksum, (mp->b_rptr + hash->confound_len), 2295 (size_t)hash->hash_len); 2296 } 2297 } 2298 /* 2299 * In order to support the "old" Kerberos RCMD protocol, 2300 * we must use the IVEC 3 different ways: 2301 * IVEC_REUSE = keep using the same IV each time, this is 2302 * ugly and insecure, but necessary for 2303 * backwards compatibility with existing MIT code. 2304 * IVEC_ONETIME = Use the ivec as initialized when the crypto 2305 * was setup (see setup_crypto routine). 2306 * IVEC_NEVER = never use an IVEC, use a bunch of 0's as the IV (yuk). 2307 */ 2308 if (tmi->enc_data.ivec_usage == IVEC_NEVER) { 2309 bzero(tmi->enc_data.block, tmi->enc_data.blocklen); 2310 } else if (tmi->enc_data.ivec_usage == IVEC_REUSE) { 2311 bcopy(tmi->enc_data.ivec, tmi->enc_data.block, 2312 tmi->enc_data.blocklen); 2313 } 2314 2315 if (tmi->enc_data.method == CRYPT_METHOD_DES3_CBC_SHA1) { 2316 /* 2317 * The input length already included the hash size, 2318 * don't include this in the plaintext length 2319 * calculations. 2320 */ 2321 plainlen = cipherlen - hash->hash_len; 2322 2323 mp->b_wptr = mp->b_rptr + plainlen; 2324 2325 result = kef_encr_hmac(&tmi->enc_data, 2326 (void *)mp, (size_t)plainlen, 2327 (char *)(mp->b_rptr + plainlen), 2328 hash->hash_len); 2329 } else { 2330 ASSERT(mp->b_rptr + cipherlen <= DB_LIM(mp)); 2331 mp->b_wptr = mp->b_rptr + cipherlen; 2332 result = kef_crypt(&tmi->enc_data, (void *)mp, 2333 CRYPTO_DATA_MBLK, (size_t)cipherlen, 2334 CRYPT_ENCRYPT); 2335 } 2336 failure: 2337 if (result != CRYPTO_SUCCESS) { 2338 #ifdef DEBUG 2339 cmn_err(CE_WARN, 2340 "des_cbc_encrypt: kef_crypt encrypt " 2341 "failed (len: %ld) - error %0x", 2342 cipherlen, result); 2343 #endif 2344 mp->b_datap->db_type = M_ERROR; 2345 mp->b_rptr = mp->b_datap->db_base; 2346 *mp->b_rptr = EIO; 2347 mp->b_wptr = mp->b_rptr + sizeof (char); 2348 freemsg(mp->b_cont); 2349 mp->b_cont = NULL; 2350 qreply(WR(q), mp); 2351 return (NULL); 2352 } else if (tmi->enc_data.ivec_usage == IVEC_ONETIME) { 2353 /* 2354 * Because we are using KEF, we must manually 2355 * update our IV. 2356 */ 2357 bcopy(mp->b_wptr - tmi->enc_data.ivlen, 2358 tmi->enc_data.block, tmi->enc_data.ivlen); 2359 } 2360 if (tmi->enc_data.method == CRYPT_METHOD_DES3_CBC_SHA1) { 2361 mp->b_wptr = mp->b_rptr + cipherlen; 2362 } 2363 2364 return (mp); 2365 } 2366 2367 /* 2368 * des_cbc_decrypt 2369 * 2370 * 2371 * Needed to support userland apps that must support Kerberos V5 2372 * encryption DES-CBC decryption modes. 2373 * 2374 * The HASH values supported are RAW(NULL), MD5, CRC32, and SHA1 2375 * 2376 * format of ciphertext for DES-CBC functions, per RFC1510 is: 2377 * +-----------+----------+-------------+-----+ 2378 * |confounder | cksum | msg-data | pad | 2379 * +-----------+----------+-------------+-----+ 2380 * 2381 * format of ciphertext when using DES3-SHA1-HMAC 2382 * +-----------+----------+-------------+-----+ 2383 * |confounder | msg-data | hmac | pad | 2384 * +-----------+----------+-------------+-----+ 2385 * 2386 * The confounder is 8 bytes of random data. 2387 * The cksum depends on the hash being used. 2388 * 4 bytes for CRC32 2389 * 16 bytes for MD5 2390 * 20 bytes for SHA1 2391 * 0 bytes for RAW 2392 * 2393 */ 2394 static mblk_t * 2395 des_cbc_decrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp, hash_info_t *hash) 2396 { 2397 uint_t inlen, datalen; 2398 int result = 0; 2399 uchar_t *optr = NULL; 2400 uchar_t cksum[MAX_CKSUM_LEN], newcksum[MAX_CKSUM_LEN]; 2401 uchar_t nextiv[DEFAULT_DES_BLOCKLEN]; 2402 2403 /* Compute adjusted size */ 2404 inlen = MBLKL(mp); 2405 2406 optr = mp->b_rptr; 2407 2408 /* 2409 * In order to support the "old" Kerberos RCMD protocol, 2410 * we must use the IVEC 3 different ways: 2411 * IVEC_REUSE = keep using the same IV each time, this is 2412 * ugly and insecure, but necessary for 2413 * backwards compatibility with existing MIT code. 2414 * IVEC_ONETIME = Use the ivec as initialized when the crypto 2415 * was setup (see setup_crypto routine). 2416 * IVEC_NEVER = never use an IVEC, use a bunch of 0's as the IV (yuk). 2417 */ 2418 if (tmi->dec_data.ivec_usage == IVEC_NEVER) 2419 bzero(tmi->dec_data.block, tmi->dec_data.blocklen); 2420 else if (tmi->dec_data.ivec_usage == IVEC_REUSE) 2421 bcopy(tmi->dec_data.ivec, tmi->dec_data.block, 2422 tmi->dec_data.blocklen); 2423 2424 if (tmi->dec_data.method == CRYPT_METHOD_DES3_CBC_SHA1) { 2425 /* 2426 * Do not decrypt the HMAC at the end 2427 */ 2428 int decrypt_len = inlen - hash->hash_len; 2429 2430 /* 2431 * Move the wptr so the mblk appears to end 2432 * BEFORE the HMAC section. 2433 */ 2434 mp->b_wptr = mp->b_rptr + decrypt_len; 2435 2436 /* 2437 * Because we are using KEF, we must manually update our 2438 * IV. 2439 */ 2440 if (tmi->dec_data.ivec_usage == IVEC_ONETIME) { 2441 bcopy(mp->b_rptr + decrypt_len - tmi->dec_data.ivlen, 2442 nextiv, tmi->dec_data.ivlen); 2443 } 2444 2445 result = kef_decr_hmac(&tmi->dec_data, mp, decrypt_len, 2446 (char *)newcksum, hash->hash_len); 2447 } else { 2448 /* 2449 * Because we are using KEF, we must manually update our 2450 * IV. 2451 */ 2452 if (tmi->dec_data.ivec_usage == IVEC_ONETIME) { 2453 bcopy(mp->b_wptr - tmi->enc_data.ivlen, nextiv, 2454 tmi->dec_data.ivlen); 2455 } 2456 result = kef_crypt(&tmi->dec_data, (void *)mp, 2457 CRYPTO_DATA_MBLK, (size_t)inlen, CRYPT_DECRYPT); 2458 } 2459 if (result != CRYPTO_SUCCESS) { 2460 #ifdef DEBUG 2461 cmn_err(CE_WARN, 2462 "des_cbc_decrypt: kef_crypt decrypt " 2463 "failed - error %0x", result); 2464 #endif 2465 mp->b_datap->db_type = M_ERROR; 2466 mp->b_rptr = mp->b_datap->db_base; 2467 *mp->b_rptr = EIO; 2468 mp->b_wptr = mp->b_rptr + sizeof (char); 2469 freemsg(mp->b_cont); 2470 mp->b_cont = NULL; 2471 qreply(WR(q), mp); 2472 return (NULL); 2473 } 2474 2475 /* 2476 * Manually update the IV, KEF does not track this for us. 2477 */ 2478 if (tmi->dec_data.ivec_usage == IVEC_ONETIME) { 2479 bcopy(nextiv, tmi->dec_data.block, tmi->dec_data.ivlen); 2480 } 2481 2482 /* Verify the checksum(if necessary) */ 2483 if (hash->hash_len > 0) { 2484 if (tmi->dec_data.method == CRYPT_METHOD_DES3_CBC_SHA1) { 2485 bcopy(mp->b_rptr + inlen - hash->hash_len, cksum, 2486 hash->hash_len); 2487 } else { 2488 bcopy(optr + hash->confound_len, cksum, hash->hash_len); 2489 2490 /* zero the cksum in the buffer */ 2491 ASSERT(optr + hash->confound_len + hash->hash_len <= 2492 DB_LIM(mp)); 2493 bzero(optr + hash->confound_len, hash->hash_len); 2494 2495 /* calculate MD5 chksum of confounder + input */ 2496 if (hash->hashfunc) { 2497 (void) hash->hashfunc(newcksum, optr, inlen); 2498 } 2499 } 2500 2501 if (bcmp(cksum, newcksum, hash->hash_len)) { 2502 #ifdef DEBUG 2503 cmn_err(CE_WARN, "des_cbc_decrypt: checksum " 2504 "verification failed"); 2505 #endif 2506 mp->b_datap->db_type = M_ERROR; 2507 mp->b_rptr = mp->b_datap->db_base; 2508 *mp->b_rptr = EIO; 2509 mp->b_wptr = mp->b_rptr + sizeof (char); 2510 freemsg(mp->b_cont); 2511 mp->b_cont = NULL; 2512 qreply(WR(q), mp); 2513 return (NULL); 2514 } 2515 } 2516 2517 datalen = inlen - hash->confound_len - hash->hash_len; 2518 2519 /* Move just the decrypted input into place if necessary */ 2520 if (hash->confound_len > 0 || hash->hash_len > 0) { 2521 if (tmi->dec_data.method == CRYPT_METHOD_DES3_CBC_SHA1) 2522 mp->b_rptr += hash->confound_len; 2523 else 2524 mp->b_rptr += hash->confound_len + hash->hash_len; 2525 } 2526 2527 ASSERT(mp->b_rptr + datalen <= DB_LIM(mp)); 2528 mp->b_wptr = mp->b_rptr + datalen; 2529 2530 return (mp); 2531 } 2532 2533 static mblk_t * 2534 do_decrypt(queue_t *q, mblk_t *mp) 2535 { 2536 struct tmodinfo *tmi = (struct tmodinfo *)q->q_ptr; 2537 mblk_t *outmp; 2538 2539 switch (tmi->dec_data.method) { 2540 case CRYPT_METHOD_DES_CFB: 2541 outmp = des_cfb_decrypt(q, tmi, mp); 2542 break; 2543 case CRYPT_METHOD_NONE: 2544 outmp = mp; 2545 break; 2546 case CRYPT_METHOD_DES_CBC_NULL: 2547 outmp = des_cbc_decrypt(q, tmi, mp, &null_hash); 2548 break; 2549 case CRYPT_METHOD_DES_CBC_MD5: 2550 outmp = des_cbc_decrypt(q, tmi, mp, &md5_hash); 2551 break; 2552 case CRYPT_METHOD_DES_CBC_CRC: 2553 outmp = des_cbc_decrypt(q, tmi, mp, &crc32_hash); 2554 break; 2555 case CRYPT_METHOD_DES3_CBC_SHA1: 2556 outmp = des_cbc_decrypt(q, tmi, mp, &sha1_hash); 2557 break; 2558 case CRYPT_METHOD_ARCFOUR_HMAC_MD5: 2559 case CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP: 2560 outmp = arcfour_hmac_md5_decrypt(q, tmi, mp, &md5_hash); 2561 break; 2562 case CRYPT_METHOD_AES128: 2563 case CRYPT_METHOD_AES256: 2564 outmp = aes_decrypt(q, tmi, mp, &sha1_hash); 2565 break; 2566 } 2567 return (outmp); 2568 } 2569 2570 /* 2571 * do_encrypt 2572 * 2573 * Generic encryption routine for a single message block. 2574 * The input mblk may be replaced by some encrypt routines 2575 * because they add extra data in some cases that may exceed 2576 * the input mblk_t size limit. 2577 */ 2578 static mblk_t * 2579 do_encrypt(queue_t *q, mblk_t *mp) 2580 { 2581 struct tmodinfo *tmi = (struct tmodinfo *)q->q_ptr; 2582 mblk_t *outmp; 2583 2584 switch (tmi->enc_data.method) { 2585 case CRYPT_METHOD_DES_CFB: 2586 outmp = des_cfb_encrypt(q, tmi, mp); 2587 break; 2588 case CRYPT_METHOD_DES_CBC_NULL: 2589 outmp = des_cbc_encrypt(q, tmi, mp, &null_hash); 2590 break; 2591 case CRYPT_METHOD_DES_CBC_MD5: 2592 outmp = des_cbc_encrypt(q, tmi, mp, &md5_hash); 2593 break; 2594 case CRYPT_METHOD_DES_CBC_CRC: 2595 outmp = des_cbc_encrypt(q, tmi, mp, &crc32_hash); 2596 break; 2597 case CRYPT_METHOD_DES3_CBC_SHA1: 2598 outmp = des_cbc_encrypt(q, tmi, mp, &sha1_hash); 2599 break; 2600 case CRYPT_METHOD_ARCFOUR_HMAC_MD5: 2601 case CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP: 2602 outmp = arcfour_hmac_md5_encrypt(q, tmi, mp, &md5_hash); 2603 break; 2604 case CRYPT_METHOD_AES128: 2605 case CRYPT_METHOD_AES256: 2606 outmp = aes_encrypt(q, tmi, mp, &sha1_hash); 2607 break; 2608 case CRYPT_METHOD_NONE: 2609 outmp = mp; 2610 break; 2611 } 2612 return (outmp); 2613 } 2614 2615 /* 2616 * setup_crypto 2617 * 2618 * This takes the data from the CRYPTIOCSETUP ioctl 2619 * and sets up a cipher_data_t structure for either 2620 * encryption or decryption. This is where the 2621 * key and initialization vector data get stored 2622 * prior to beginning any crypto functions. 2623 * 2624 * Special note: 2625 * Some applications(e.g. telnetd) have ability to switch 2626 * crypto on/off periodically. Thus, the application may call 2627 * the CRYPTIOCSETUP ioctl many times for the same stream. 2628 * If the CRYPTIOCSETUP is called with 0 length key or ivec fields 2629 * assume that the key, block, and saveblock fields that are already 2630 * set from a previous CRIOCSETUP call are still valid. This helps avoid 2631 * a rekeying error that could occur if we overwrite these fields 2632 * with each CRYPTIOCSETUP call. 2633 * In short, sometimes, CRYPTIOCSETUP is used to simply toggle on/off 2634 * without resetting the original crypto parameters. 2635 * 2636 */ 2637 static int 2638 setup_crypto(struct cr_info_t *ci, struct cipher_data_t *cd, int encrypt) 2639 { 2640 uint_t newblocklen; 2641 uint32_t enc_usage = 0, dec_usage = 0; 2642 int rv; 2643 2644 /* 2645 * Initial sanity checks 2646 */ 2647 if (!CR_METHOD_OK(ci->crypto_method)) { 2648 cmn_err(CE_WARN, "Illegal crypto method (%d)", 2649 ci->crypto_method); 2650 return (EINVAL); 2651 } 2652 if (!CR_OPTIONS_OK(ci->option_mask)) { 2653 cmn_err(CE_WARN, "Illegal crypto options (%d)", 2654 ci->option_mask); 2655 return (EINVAL); 2656 } 2657 if (!CR_IVUSAGE_OK(ci->ivec_usage)) { 2658 cmn_err(CE_WARN, "Illegal ivec usage value (%d)", 2659 ci->ivec_usage); 2660 return (EINVAL); 2661 } 2662 2663 cd->method = ci->crypto_method; 2664 cd->bytes = 0; 2665 2666 if (ci->keylen > 0) { 2667 if (cd->key != NULL) { 2668 kmem_free(cd->key, cd->keylen); 2669 cd->key = NULL; 2670 cd->keylen = 0; 2671 } 2672 /* 2673 * cd->key holds the copy of the raw key bytes passed in 2674 * from the userland app. 2675 */ 2676 cd->key = (char *)kmem_alloc((size_t)ci->keylen, KM_SLEEP); 2677 2678 cd->keylen = ci->keylen; 2679 bcopy(ci->key, cd->key, (size_t)ci->keylen); 2680 } 2681 2682 /* 2683 * Configure the block size based on the type of cipher. 2684 */ 2685 switch (cd->method) { 2686 case CRYPT_METHOD_NONE: 2687 newblocklen = 0; 2688 break; 2689 case CRYPT_METHOD_DES_CFB: 2690 newblocklen = DEFAULT_DES_BLOCKLEN; 2691 cd->mech_type = crypto_mech2id(SUN_CKM_DES_ECB); 2692 break; 2693 case CRYPT_METHOD_DES_CBC_NULL: 2694 case CRYPT_METHOD_DES_CBC_MD5: 2695 case CRYPT_METHOD_DES_CBC_CRC: 2696 newblocklen = DEFAULT_DES_BLOCKLEN; 2697 cd->mech_type = crypto_mech2id(SUN_CKM_DES_CBC); 2698 break; 2699 case CRYPT_METHOD_DES3_CBC_SHA1: 2700 newblocklen = DEFAULT_DES_BLOCKLEN; 2701 cd->mech_type = crypto_mech2id(SUN_CKM_DES3_CBC); 2702 /* 3DES always uses the old usage constant */ 2703 enc_usage = RCMDV1_USAGE; 2704 dec_usage = RCMDV1_USAGE; 2705 break; 2706 case CRYPT_METHOD_ARCFOUR_HMAC_MD5: 2707 case CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP: 2708 newblocklen = 0; 2709 cd->mech_type = crypto_mech2id(SUN_CKM_RC4); 2710 break; 2711 case CRYPT_METHOD_AES128: 2712 case CRYPT_METHOD_AES256: 2713 newblocklen = DEFAULT_AES_BLOCKLEN; 2714 cd->mech_type = crypto_mech2id(SUN_CKM_AES_ECB); 2715 enc_usage = AES_ENCRYPT_USAGE; 2716 dec_usage = AES_DECRYPT_USAGE; 2717 break; 2718 } 2719 if (cd->mech_type == CRYPTO_MECH_INVALID) { 2720 return (CRYPTO_FAILED); 2721 } 2722 2723 /* 2724 * If RC4, initialize the master crypto key used by 2725 * the RC4 algorithm to derive the final encrypt and decrypt keys. 2726 */ 2727 if (cd->keylen > 0 && IS_RC4_METHOD(cd->method)) { 2728 /* 2729 * cd->ckey is a kernel crypto key structure used as the 2730 * master key in the RC4-HMAC crypto operations. 2731 */ 2732 if (cd->ckey == NULL) { 2733 cd->ckey = (crypto_key_t *)kmem_zalloc( 2734 sizeof (crypto_key_t), KM_SLEEP); 2735 } 2736 2737 cd->ckey->ck_format = CRYPTO_KEY_RAW; 2738 cd->ckey->ck_data = cd->key; 2739 2740 /* key length for EF is measured in bits */ 2741 cd->ckey->ck_length = cd->keylen * 8; 2742 } 2743 2744 /* 2745 * cd->block and cd->saveblock are used as temporary storage for 2746 * data that must be carried over between encrypt/decrypt operations 2747 * in some of the "feedback" modes. 2748 */ 2749 if (newblocklen != cd->blocklen) { 2750 if (cd->block != NULL) { 2751 kmem_free(cd->block, cd->blocklen); 2752 cd->block = NULL; 2753 } 2754 2755 if (cd->saveblock != NULL) { 2756 kmem_free(cd->saveblock, cd->blocklen); 2757 cd->saveblock = NULL; 2758 } 2759 2760 cd->blocklen = newblocklen; 2761 if (cd->blocklen) { 2762 cd->block = (char *)kmem_zalloc((size_t)cd->blocklen, 2763 KM_SLEEP); 2764 } 2765 2766 if (cd->method == CRYPT_METHOD_DES_CFB) 2767 cd->saveblock = (char *)kmem_zalloc(cd->blocklen, 2768 KM_SLEEP); 2769 else 2770 cd->saveblock = NULL; 2771 } 2772 2773 if (ci->iveclen != cd->ivlen) { 2774 if (cd->ivec != NULL) { 2775 kmem_free(cd->ivec, cd->ivlen); 2776 cd->ivec = NULL; 2777 } 2778 if (ci->ivec_usage != IVEC_NEVER && ci->iveclen > 0) { 2779 cd->ivec = (char *)kmem_zalloc((size_t)ci->iveclen, 2780 KM_SLEEP); 2781 cd->ivlen = ci->iveclen; 2782 } else { 2783 cd->ivlen = 0; 2784 cd->ivec = NULL; 2785 } 2786 } 2787 cd->option_mask = ci->option_mask; 2788 2789 /* 2790 * Old protocol requires a static 'usage' value for 2791 * deriving keys. Yuk. 2792 */ 2793 if (cd->option_mask & CRYPTOPT_RCMD_MODE_V1) { 2794 enc_usage = dec_usage = RCMDV1_USAGE; 2795 } 2796 2797 if (cd->ivlen > cd->blocklen) { 2798 cmn_err(CE_WARN, "setup_crypto: IV longer than block size"); 2799 return (EINVAL); 2800 } 2801 2802 /* 2803 * If we are using an IVEC "correctly" (i.e. set it once) 2804 * copy it here. 2805 */ 2806 if (ci->ivec_usage == IVEC_ONETIME && cd->block != NULL) 2807 bcopy(ci->ivec, cd->block, (size_t)cd->ivlen); 2808 2809 cd->ivec_usage = ci->ivec_usage; 2810 if (cd->ivec != NULL) { 2811 /* Save the original IVEC in case we need it later */ 2812 bcopy(ci->ivec, cd->ivec, (size_t)cd->ivlen); 2813 } 2814 /* 2815 * Special handling for 3DES-SHA1-HMAC and AES crypto: 2816 * generate derived keys and context templates 2817 * for better performance. 2818 */ 2819 if (cd->method == CRYPT_METHOD_DES3_CBC_SHA1 || 2820 IS_AES_METHOD(cd->method)) { 2821 crypto_mechanism_t enc_mech; 2822 crypto_mechanism_t hmac_mech; 2823 2824 if (cd->d_encr_key.ck_data != NULL) { 2825 bzero(cd->d_encr_key.ck_data, cd->keylen); 2826 kmem_free(cd->d_encr_key.ck_data, cd->keylen); 2827 } 2828 2829 if (cd->d_hmac_key.ck_data != NULL) { 2830 bzero(cd->d_hmac_key.ck_data, cd->keylen); 2831 kmem_free(cd->d_hmac_key.ck_data, cd->keylen); 2832 } 2833 2834 if (cd->enc_tmpl != NULL) 2835 (void) crypto_destroy_ctx_template(cd->enc_tmpl); 2836 2837 if (cd->hmac_tmpl != NULL) 2838 (void) crypto_destroy_ctx_template(cd->hmac_tmpl); 2839 2840 enc_mech.cm_type = cd->mech_type; 2841 enc_mech.cm_param = cd->ivec; 2842 enc_mech.cm_param_len = cd->ivlen; 2843 2844 hmac_mech.cm_type = sha1_hmac_mech; 2845 hmac_mech.cm_param = NULL; 2846 hmac_mech.cm_param_len = 0; 2847 2848 /* 2849 * Create the derived keys. 2850 */ 2851 rv = create_derived_keys(cd, 2852 (encrypt ? enc_usage : dec_usage), 2853 &cd->d_encr_key, &cd->d_hmac_key); 2854 2855 if (rv != CRYPTO_SUCCESS) { 2856 cmn_err(CE_WARN, "failed to create derived " 2857 "keys: %0x", rv); 2858 return (CRYPTO_FAILED); 2859 } 2860 2861 rv = crypto_create_ctx_template(&enc_mech, 2862 &cd->d_encr_key, 2863 &cd->enc_tmpl, KM_SLEEP); 2864 if (rv == CRYPTO_MECH_NOT_SUPPORTED) { 2865 cd->enc_tmpl = NULL; 2866 } else if (rv != CRYPTO_SUCCESS) { 2867 cmn_err(CE_WARN, "failed to create enc template " 2868 "for d_encr_key: %0x", rv); 2869 return (CRYPTO_FAILED); 2870 } 2871 2872 rv = crypto_create_ctx_template(&hmac_mech, 2873 &cd->d_hmac_key, 2874 &cd->hmac_tmpl, KM_SLEEP); 2875 if (rv == CRYPTO_MECH_NOT_SUPPORTED) { 2876 cd->hmac_tmpl = NULL; 2877 } else if (rv != CRYPTO_SUCCESS) { 2878 cmn_err(CE_WARN, "failed to create hmac template:" 2879 " %0x", rv); 2880 return (CRYPTO_FAILED); 2881 } 2882 } else if (IS_RC4_METHOD(cd->method)) { 2883 bzero(&cd->d_encr_key, sizeof (crypto_key_t)); 2884 bzero(&cd->d_hmac_key, sizeof (crypto_key_t)); 2885 cd->ctx = NULL; 2886 cd->enc_tmpl = NULL; 2887 cd->hmac_tmpl = NULL; 2888 } 2889 2890 /* Final sanity checks, make sure no fields are NULL */ 2891 if (cd->method != CRYPT_METHOD_NONE) { 2892 if (cd->block == NULL && cd->blocklen > 0) { 2893 #ifdef DEBUG 2894 cmn_err(CE_WARN, 2895 "setup_crypto: IV block not allocated"); 2896 #endif 2897 return (ENOMEM); 2898 } 2899 if (cd->key == NULL && cd->keylen > 0) { 2900 #ifdef DEBUG 2901 cmn_err(CE_WARN, 2902 "setup_crypto: key block not allocated"); 2903 #endif 2904 return (ENOMEM); 2905 } 2906 if (cd->method == CRYPT_METHOD_DES_CFB && 2907 cd->saveblock == NULL && cd->blocklen > 0) { 2908 #ifdef DEBUG 2909 cmn_err(CE_WARN, 2910 "setup_crypto: save block not allocated"); 2911 #endif 2912 return (ENOMEM); 2913 } 2914 if (cd->ivec == NULL && cd->ivlen > 0) { 2915 #ifdef DEBUG 2916 cmn_err(CE_WARN, 2917 "setup_crypto: IV not allocated"); 2918 #endif 2919 return (ENOMEM); 2920 } 2921 } 2922 return (0); 2923 } 2924 2925 /* 2926 * RCMDS require a 4 byte, clear text 2927 * length field before each message. 2928 * Add it now. 2929 */ 2930 static mblk_t * 2931 mklenmp(mblk_t *bp, uint32_t len) 2932 { 2933 mblk_t *lenmp; 2934 uchar_t *ucp; 2935 2936 if (bp->b_rptr - 4 < DB_BASE(bp) || DB_REF(bp) > 1) { 2937 lenmp = allocb(4, BPRI_MED); 2938 if (lenmp != NULL) { 2939 lenmp->b_rptr = lenmp->b_wptr = DB_LIM(lenmp); 2940 linkb(lenmp, bp); 2941 bp = lenmp; 2942 } 2943 } 2944 ucp = bp->b_rptr; 2945 *--ucp = len; 2946 *--ucp = len >> 8; 2947 *--ucp = len >> 16; 2948 *--ucp = len >> 24; 2949 2950 bp->b_rptr = ucp; 2951 2952 return (bp); 2953 } 2954 2955 static mblk_t * 2956 encrypt_block(queue_t *q, struct tmodinfo *tmi, mblk_t *mp, size_t plainlen) 2957 { 2958 mblk_t *newmp; 2959 size_t headspace; 2960 2961 mblk_t *cbp; 2962 size_t cipherlen; 2963 size_t extra = 0; 2964 uint32_t ptlen = (uint32_t)plainlen; 2965 /* 2966 * If we are using the "NEW" RCMD mode, 2967 * add 4 bytes to the plaintext for the 2968 * plaintext length that gets prepended 2969 * before encrypting. 2970 */ 2971 if (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V2) 2972 ptlen += 4; 2973 2974 cipherlen = encrypt_size(&tmi->enc_data, (size_t)ptlen); 2975 2976 /* 2977 * if we must allocb, then make sure its enough 2978 * to hold the length field so we dont have to allocb 2979 * again down below in 'mklenmp' 2980 */ 2981 if (ANY_RCMD_MODE(tmi->enc_data.option_mask)) { 2982 extra = sizeof (uint32_t); 2983 } 2984 2985 /* 2986 * Calculate how much space is needed in front of 2987 * the data. 2988 */ 2989 headspace = plaintext_offset(&tmi->enc_data); 2990 2991 /* 2992 * If the current block is too small, reallocate 2993 * one large enough to hold the hdr, tail, and 2994 * ciphertext. 2995 */ 2996 if ((cipherlen + extra >= MBLKSIZE(mp)) || DB_REF(mp) > 1) { 2997 int sz = P2ROUNDUP(cipherlen+extra, 8); 2998 2999 cbp = allocb_tmpl(sz, mp); 3000 if (cbp == NULL) { 3001 cmn_err(CE_WARN, 3002 "allocb (%d bytes) failed", sz); 3003 return (NULL); 3004 } 3005 3006 cbp->b_cont = mp->b_cont; 3007 3008 /* 3009 * headspace includes the length fields needed 3010 * for the RCMD modes (v1 == 4 bytes, V2 = 8) 3011 */ 3012 ASSERT(cbp->b_rptr + P2ROUNDUP(plainlen+headspace, 8) 3013 <= DB_LIM(cbp)); 3014 3015 cbp->b_rptr = DB_BASE(cbp) + headspace; 3016 bcopy(mp->b_rptr, cbp->b_rptr, plainlen); 3017 cbp->b_wptr = cbp->b_rptr + plainlen; 3018 3019 freeb(mp); 3020 } else { 3021 size_t extra = 0; 3022 cbp = mp; 3023 3024 /* 3025 * Some ciphers add HMAC after the final block 3026 * of the ciphertext, not at the beginning like the 3027 * 1-DES ciphers. 3028 */ 3029 if (tmi->enc_data.method == 3030 CRYPT_METHOD_DES3_CBC_SHA1 || 3031 IS_AES_METHOD(tmi->enc_data.method)) { 3032 extra = sha1_hash.hash_len; 3033 } 3034 3035 /* 3036 * Make sure the rptr is positioned correctly so that 3037 * routines later do not have to shift this data around 3038 */ 3039 if ((cbp->b_rptr + P2ROUNDUP(cipherlen + extra, 8) > 3040 DB_LIM(cbp)) || 3041 (cbp->b_rptr - headspace < DB_BASE(cbp))) { 3042 ovbcopy(cbp->b_rptr, DB_BASE(cbp) + headspace, 3043 plainlen); 3044 cbp->b_rptr = DB_BASE(cbp) + headspace; 3045 cbp->b_wptr = cbp->b_rptr + plainlen; 3046 } 3047 } 3048 3049 ASSERT(cbp->b_rptr - headspace >= DB_BASE(cbp)); 3050 ASSERT(cbp->b_wptr <= DB_LIM(cbp)); 3051 3052 /* 3053 * If using RCMD_MODE_V2 (new rcmd mode), prepend 3054 * the plaintext length before the actual plaintext. 3055 */ 3056 if (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V2) { 3057 cbp->b_rptr -= RCMD_LEN_SZ; 3058 3059 /* put plaintext length at head of buffer */ 3060 *(cbp->b_rptr + 3) = (uchar_t)(plainlen & 0xff); 3061 *(cbp->b_rptr + 2) = (uchar_t)((plainlen >> 8) & 0xff); 3062 *(cbp->b_rptr + 1) = (uchar_t)((plainlen >> 16) & 0xff); 3063 *(cbp->b_rptr) = (uchar_t)((plainlen >> 24) & 0xff); 3064 } 3065 3066 newmp = do_encrypt(q, cbp); 3067 3068 if (newmp != NULL && 3069 (tmi->enc_data.option_mask & 3070 (CRYPTOPT_RCMD_MODE_V1 | CRYPTOPT_RCMD_MODE_V2))) { 3071 mblk_t *lp; 3072 /* 3073 * Add length field, required when this is 3074 * used to encrypt "r*" commands(rlogin, rsh) 3075 * with Kerberos. 3076 */ 3077 lp = mklenmp(newmp, plainlen); 3078 3079 if (lp == NULL) { 3080 freeb(newmp); 3081 return (NULL); 3082 } else { 3083 newmp = lp; 3084 } 3085 } 3086 return (newmp); 3087 } 3088 3089 /* 3090 * encrypt_msgb 3091 * 3092 * encrypt a single message. This routine adds the 3093 * RCMD overhead bytes when necessary. 3094 */ 3095 static mblk_t * 3096 encrypt_msgb(queue_t *q, struct tmodinfo *tmi, mblk_t *mp) 3097 { 3098 size_t plainlen, outlen; 3099 mblk_t *newmp = NULL; 3100 3101 /* If not encrypting, do nothing */ 3102 if (tmi->enc_data.method == CRYPT_METHOD_NONE) { 3103 return (mp); 3104 } 3105 3106 plainlen = MBLKL(mp); 3107 if (plainlen == 0) 3108 return (NULL); 3109 3110 /* 3111 * If the block is too big, we encrypt in 4K chunks so that 3112 * older rlogin clients do not choke on the larger buffers. 3113 */ 3114 while ((plainlen = MBLKL(mp)) > MSGBUF_SIZE) { 3115 mblk_t *mp1 = NULL; 3116 outlen = MSGBUF_SIZE; 3117 /* 3118 * Allocate a new buffer that is only 4K bytes, the 3119 * extra bytes are for crypto overhead. 3120 */ 3121 mp1 = allocb(outlen + CONFOUNDER_BYTES, BPRI_MED); 3122 if (mp1 == NULL) { 3123 cmn_err(CE_WARN, 3124 "allocb (%d bytes) failed", 3125 (int)(outlen + CONFOUNDER_BYTES)); 3126 return (NULL); 3127 } 3128 /* Copy the next 4K bytes from the old block. */ 3129 bcopy(mp->b_rptr, mp1->b_rptr, outlen); 3130 mp1->b_wptr = mp1->b_rptr + outlen; 3131 /* Advance the old block. */ 3132 mp->b_rptr += outlen; 3133 3134 /* encrypt the new block */ 3135 newmp = encrypt_block(q, tmi, mp1, outlen); 3136 if (newmp == NULL) 3137 return (NULL); 3138 3139 putnext(q, newmp); 3140 } 3141 newmp = NULL; 3142 /* If there is data left (< MSGBUF_SIZE), encrypt it. */ 3143 if ((plainlen = MBLKL(mp)) > 0) 3144 newmp = encrypt_block(q, tmi, mp, plainlen); 3145 3146 return (newmp); 3147 } 3148 3149 /* 3150 * cryptmodwsrv 3151 * 3152 * Service routine for the write queue. 3153 * 3154 * Because data may be placed in the queue to hold between 3155 * the CRYPTIOCSTOP and CRYPTIOCSTART ioctls, the service routine is needed. 3156 */ 3157 static int 3158 cryptmodwsrv(queue_t *q) 3159 { 3160 mblk_t *mp; 3161 struct tmodinfo *tmi = (struct tmodinfo *)q->q_ptr; 3162 3163 while ((mp = getq(q)) != NULL) { 3164 switch (mp->b_datap->db_type) { 3165 default: 3166 /* 3167 * wput does not queue anything > QPCTL 3168 */ 3169 if (!canputnext(q) || 3170 !(tmi->ready & CRYPT_WRITE_READY)) { 3171 if (!putbq(q, mp)) { 3172 freemsg(mp); 3173 } 3174 return (0); 3175 } 3176 putnext(q, mp); 3177 break; 3178 case M_DATA: 3179 if (canputnext(q) && (tmi->ready & CRYPT_WRITE_READY)) { 3180 mblk_t *bp; 3181 mblk_t *newmsg = NULL; 3182 3183 /* 3184 * If multiple msgs, concat into 1 3185 * to minimize crypto operations later. 3186 */ 3187 if (mp->b_cont != NULL) { 3188 bp = msgpullup(mp, -1); 3189 if (bp != NULL) { 3190 freemsg(mp); 3191 mp = bp; 3192 } 3193 } 3194 newmsg = encrypt_msgb(q, tmi, mp); 3195 if (newmsg != NULL) 3196 putnext(q, newmsg); 3197 } else { 3198 if (!putbq(q, mp)) { 3199 freemsg(mp); 3200 } 3201 return (0); 3202 } 3203 break; 3204 } 3205 } 3206 return (0); 3207 } 3208 3209 static void 3210 start_stream(queue_t *wq, mblk_t *mp, uchar_t dir) 3211 { 3212 mblk_t *newmp = NULL; 3213 struct tmodinfo *tmi = (struct tmodinfo *)wq->q_ptr; 3214 3215 if (dir == CRYPT_ENCRYPT) { 3216 tmi->ready |= CRYPT_WRITE_READY; 3217 (void) (STRLOG(CRYPTMOD_ID, 0, 5, SL_TRACE|SL_NOTE, 3218 "start_stream: restart ENCRYPT/WRITE q")); 3219 3220 enableok(wq); 3221 qenable(wq); 3222 } else if (dir == CRYPT_DECRYPT) { 3223 /* 3224 * put any extra data in the RD 3225 * queue to be processed and 3226 * sent back up. 3227 */ 3228 newmp = mp->b_cont; 3229 mp->b_cont = NULL; 3230 3231 tmi->ready |= CRYPT_READ_READY; 3232 (void) (STRLOG(CRYPTMOD_ID, 0, 5, 3233 SL_TRACE|SL_NOTE, 3234 "start_stream: restart " 3235 "DECRYPT/READ q")); 3236 3237 if (newmp != NULL) 3238 if (!putbq(RD(wq), newmp)) 3239 freemsg(newmp); 3240 3241 enableok(RD(wq)); 3242 qenable(RD(wq)); 3243 } 3244 3245 miocack(wq, mp, 0, 0); 3246 } 3247 3248 /* 3249 * Write-side put procedure. Its main task is to detect ioctls and 3250 * FLUSH operations. Other message types are passed on through. 3251 */ 3252 static void 3253 cryptmodwput(queue_t *wq, mblk_t *mp) 3254 { 3255 struct iocblk *iocp; 3256 struct tmodinfo *tmi = (struct tmodinfo *)wq->q_ptr; 3257 int ret, err; 3258 3259 switch (mp->b_datap->db_type) { 3260 case M_DATA: 3261 if (wq->q_first == NULL && canputnext(wq) && 3262 (tmi->ready & CRYPT_WRITE_READY) && 3263 tmi->enc_data.method == CRYPT_METHOD_NONE) { 3264 putnext(wq, mp); 3265 return; 3266 } 3267 /* else, put it in the service queue */ 3268 if (!putq(wq, mp)) { 3269 freemsg(mp); 3270 } 3271 break; 3272 case M_FLUSH: 3273 if (*mp->b_rptr & FLUSHW) { 3274 flushq(wq, FLUSHDATA); 3275 } 3276 putnext(wq, mp); 3277 break; 3278 case M_IOCTL: 3279 iocp = (struct iocblk *)mp->b_rptr; 3280 switch (iocp->ioc_cmd) { 3281 case CRYPTIOCSETUP: 3282 ret = 0; 3283 (void) (STRLOG(CRYPTMOD_ID, 0, 5, 3284 SL_TRACE | SL_NOTE, 3285 "wput: got CRYPTIOCSETUP " 3286 "ioctl(%d)", iocp->ioc_cmd)); 3287 3288 if ((err = miocpullup(mp, 3289 sizeof (struct cr_info_t))) != 0) { 3290 cmn_err(CE_WARN, 3291 "wput: miocpullup failed for cr_info_t"); 3292 miocnak(wq, mp, 0, err); 3293 } else { 3294 struct cr_info_t *ci; 3295 ci = (struct cr_info_t *)mp->b_cont->b_rptr; 3296 3297 if (ci->direction_mask & CRYPT_ENCRYPT) { 3298 ret = setup_crypto(ci, &tmi->enc_data, 1); 3299 } 3300 3301 if (ret == 0 && 3302 (ci->direction_mask & CRYPT_DECRYPT)) { 3303 ret = setup_crypto(ci, &tmi->dec_data, 0); 3304 } 3305 if (ret == 0 && 3306 (ci->direction_mask & CRYPT_DECRYPT) && 3307 ANY_RCMD_MODE(tmi->dec_data.option_mask)) { 3308 bzero(&tmi->rcmd_state, 3309 sizeof (tmi->rcmd_state)); 3310 } 3311 if (ret == 0) { 3312 miocack(wq, mp, 0, 0); 3313 } else { 3314 cmn_err(CE_WARN, 3315 "wput: setup_crypto failed"); 3316 miocnak(wq, mp, 0, ret); 3317 } 3318 (void) (STRLOG(CRYPTMOD_ID, 0, 5, 3319 SL_TRACE|SL_NOTE, 3320 "wput: done with SETUP " 3321 "ioctl")); 3322 } 3323 break; 3324 case CRYPTIOCSTOP: 3325 (void) (STRLOG(CRYPTMOD_ID, 0, 5, 3326 SL_TRACE|SL_NOTE, 3327 "wput: got CRYPTIOCSTOP " 3328 "ioctl(%d)", iocp->ioc_cmd)); 3329 3330 if ((err = miocpullup(mp, sizeof (uint32_t))) != 0) { 3331 cmn_err(CE_WARN, 3332 "wput: CRYPTIOCSTOP ioctl wrong " 3333 "size (%d should be %d)", 3334 (int)iocp->ioc_count, 3335 (int)sizeof (uint32_t)); 3336 miocnak(wq, mp, 0, err); 3337 } else { 3338 uint32_t *stopdir; 3339 3340 stopdir = (uint32_t *)mp->b_cont->b_rptr; 3341 if (!CR_DIRECTION_OK(*stopdir)) { 3342 miocnak(wq, mp, 0, EINVAL); 3343 return; 3344 } 3345 3346 /* disable the queues until further notice */ 3347 if (*stopdir & CRYPT_ENCRYPT) { 3348 noenable(wq); 3349 tmi->ready &= ~CRYPT_WRITE_READY; 3350 } 3351 if (*stopdir & CRYPT_DECRYPT) { 3352 noenable(RD(wq)); 3353 tmi->ready &= ~CRYPT_READ_READY; 3354 } 3355 3356 miocack(wq, mp, 0, 0); 3357 } 3358 break; 3359 case CRYPTIOCSTARTDEC: 3360 (void) (STRLOG(CRYPTMOD_ID, 0, 5, 3361 SL_TRACE|SL_NOTE, 3362 "wput: got CRYPTIOCSTARTDEC " 3363 "ioctl(%d)", iocp->ioc_cmd)); 3364 3365 start_stream(wq, mp, CRYPT_DECRYPT); 3366 break; 3367 case CRYPTIOCSTARTENC: 3368 (void) (STRLOG(CRYPTMOD_ID, 0, 5, 3369 SL_TRACE|SL_NOTE, 3370 "wput: got CRYPTIOCSTARTENC " 3371 "ioctl(%d)", iocp->ioc_cmd)); 3372 3373 start_stream(wq, mp, CRYPT_ENCRYPT); 3374 break; 3375 default: 3376 putnext(wq, mp); 3377 break; 3378 } 3379 break; 3380 default: 3381 if (queclass(mp) < QPCTL) { 3382 if (wq->q_first != NULL || !canputnext(wq)) { 3383 if (!putq(wq, mp)) 3384 freemsg(mp); 3385 return; 3386 } 3387 } 3388 putnext(wq, mp); 3389 break; 3390 } 3391 } 3392 3393 /* 3394 * decrypt_rcmd_mblks 3395 * 3396 * Because kerberized r* commands(rsh, rlogin, etc) 3397 * use a 4 byte length field to indicate the # of 3398 * PLAINTEXT bytes that are encrypted in the field 3399 * that follows, we must parse out each message and 3400 * break out the length fields prior to sending them 3401 * upstream to our Solaris r* clients/servers which do 3402 * NOT understand this format. 3403 * 3404 * Kerberized/encrypted message format: 3405 * ------------------------------- 3406 * | XXXX | N bytes of ciphertext| 3407 * ------------------------------- 3408 * 3409 * Where: XXXX = number of plaintext bytes that were encrypted in 3410 * to make the ciphertext field. This is done 3411 * because we are using a cipher that pads out to 3412 * an 8 byte boundary. We only want the application 3413 * layer to see the correct number of plain text bytes, 3414 * not plaintext + pad. So, after we decrypt, we 3415 * must trim the output block down to the intended 3416 * plaintext length and eliminate the pad bytes. 3417 * 3418 * This routine takes the entire input message, breaks it into 3419 * a new message that does not contain these length fields and 3420 * returns a message consisting of mblks filled with just ciphertext. 3421 * 3422 */ 3423 static mblk_t * 3424 decrypt_rcmd_mblks(queue_t *q, mblk_t *mp) 3425 { 3426 mblk_t *newmp = NULL; 3427 size_t msglen; 3428 struct tmodinfo *tmi = (struct tmodinfo *)q->q_ptr; 3429 3430 msglen = msgsize(mp); 3431 3432 /* 3433 * If we need the length field, get it here. 3434 * Test the "plaintext length" indicator. 3435 */ 3436 if (tmi->rcmd_state.pt_len == 0) { 3437 uint32_t elen; 3438 int tocopy; 3439 mblk_t *nextp; 3440 3441 /* 3442 * Make sure we have recieved all 4 bytes of the 3443 * length field. 3444 */ 3445 while (mp != NULL) { 3446 ASSERT(tmi->rcmd_state.cd_len < sizeof (uint32_t)); 3447 3448 tocopy = sizeof (uint32_t) - 3449 tmi->rcmd_state.cd_len; 3450 if (tocopy > msglen) 3451 tocopy = msglen; 3452 3453 ASSERT(mp->b_rptr + tocopy <= DB_LIM(mp)); 3454 bcopy(mp->b_rptr, 3455 (char *)(&tmi->rcmd_state.next_len + 3456 tmi->rcmd_state.cd_len), tocopy); 3457 3458 tmi->rcmd_state.cd_len += tocopy; 3459 3460 if (tmi->rcmd_state.cd_len >= sizeof (uint32_t)) { 3461 tmi->rcmd_state.next_len = 3462 ntohl(tmi->rcmd_state.next_len); 3463 break; 3464 } 3465 3466 nextp = mp->b_cont; 3467 mp->b_cont = NULL; 3468 freeb(mp); 3469 mp = nextp; 3470 } 3471 3472 if (mp == NULL) { 3473 return (NULL); 3474 } 3475 /* 3476 * recalculate the msglen now that we've read the 3477 * length and adjusted the bufptr (b_rptr). 3478 */ 3479 msglen -= tocopy; 3480 mp->b_rptr += tocopy; 3481 3482 tmi->rcmd_state.pt_len = tmi->rcmd_state.next_len; 3483 3484 if (tmi->rcmd_state.pt_len <= 0) { 3485 /* 3486 * Return an IO error to break the connection. there 3487 * is no way to recover from this. Usually it means 3488 * the app has incorrectly requested decryption on 3489 * a non-encrypted stream, thus the "pt_len" field 3490 * is negative. 3491 */ 3492 mp->b_datap->db_type = M_ERROR; 3493 mp->b_rptr = mp->b_datap->db_base; 3494 *mp->b_rptr = EIO; 3495 mp->b_wptr = mp->b_rptr + sizeof (char); 3496 3497 freemsg(mp->b_cont); 3498 mp->b_cont = NULL; 3499 qreply(WR(q), mp); 3500 tmi->rcmd_state.cd_len = tmi->rcmd_state.pt_len = 0; 3501 return (NULL); 3502 } 3503 3504 /* 3505 * If this is V2 mode, then the encrypted data is actually 3506 * 4 bytes bigger than the indicated len because the plaintext 3507 * length is encrypted for an additional security check, but 3508 * its not counted as part of the overall length we just read. 3509 * Strange and confusing, but true. 3510 */ 3511 3512 if (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V2) 3513 elen = tmi->rcmd_state.pt_len + 4; 3514 else 3515 elen = tmi->rcmd_state.pt_len; 3516 3517 tmi->rcmd_state.cd_len = encrypt_size(&tmi->dec_data, elen); 3518 3519 /* 3520 * Allocate an mblk to hold the cipher text until it is 3521 * all ready to be processed. 3522 */ 3523 tmi->rcmd_state.c_msg = allocb(tmi->rcmd_state.cd_len, 3524 BPRI_HI); 3525 if (tmi->rcmd_state.c_msg == NULL) { 3526 #ifdef DEBUG 3527 cmn_err(CE_WARN, "decrypt_rcmd_msgb: allocb failed " 3528 "for %d bytes", 3529 (int)tmi->rcmd_state.cd_len); 3530 #endif 3531 /* 3532 * Return an IO error to break the connection. 3533 */ 3534 mp->b_datap->db_type = M_ERROR; 3535 mp->b_rptr = mp->b_datap->db_base; 3536 *mp->b_rptr = EIO; 3537 mp->b_wptr = mp->b_rptr + sizeof (char); 3538 freemsg(mp->b_cont); 3539 mp->b_cont = NULL; 3540 tmi->rcmd_state.cd_len = tmi->rcmd_state.pt_len = 0; 3541 qreply(WR(q), mp); 3542 return (NULL); 3543 } 3544 } 3545 3546 /* 3547 * If this entire message was just the length field, 3548 * free and return. The actual data will probably be next. 3549 */ 3550 if (msglen == 0) { 3551 freemsg(mp); 3552 return (NULL); 3553 } 3554 3555 /* 3556 * Copy as much of the cipher text as possible into 3557 * the new msgb (c_msg). 3558 * 3559 * Logic: if we got some bytes (msglen) and we still 3560 * "need" some bytes (len-rcvd), get them here. 3561 */ 3562 ASSERT(tmi->rcmd_state.c_msg != NULL); 3563 if (msglen > 0 && 3564 (tmi->rcmd_state.cd_len > MBLKL(tmi->rcmd_state.c_msg))) { 3565 mblk_t *bp, *nextp; 3566 size_t n; 3567 3568 /* 3569 * Walk the mblks and copy just as many bytes as we need 3570 * for this particular block of cipher text. 3571 */ 3572 bp = mp; 3573 while (bp != NULL) { 3574 size_t needed; 3575 size_t tocopy; 3576 n = MBLKL(bp); 3577 3578 needed = tmi->rcmd_state.cd_len - 3579 MBLKL(tmi->rcmd_state.c_msg); 3580 3581 tocopy = (needed >= n ? n : needed); 3582 3583 ASSERT(bp->b_rptr + tocopy <= DB_LIM(bp)); 3584 ASSERT(tmi->rcmd_state.c_msg->b_wptr + tocopy <= 3585 DB_LIM(tmi->rcmd_state.c_msg)); 3586 3587 /* Copy to end of new mblk */ 3588 bcopy(bp->b_rptr, tmi->rcmd_state.c_msg->b_wptr, 3589 tocopy); 3590 3591 tmi->rcmd_state.c_msg->b_wptr += tocopy; 3592 3593 bp->b_rptr += tocopy; 3594 3595 nextp = bp->b_cont; 3596 3597 /* 3598 * If we used this whole block, free it and 3599 * move on. 3600 */ 3601 if (!MBLKL(bp)) { 3602 freeb(bp); 3603 bp = NULL; 3604 } 3605 3606 /* If we got what we needed, stop the loop */ 3607 if (MBLKL(tmi->rcmd_state.c_msg) == 3608 tmi->rcmd_state.cd_len) { 3609 /* 3610 * If there is more data in the message, 3611 * its for another block of cipher text, 3612 * put it back in the queue for next time. 3613 */ 3614 if (bp) { 3615 if (!putbq(q, bp)) 3616 freemsg(bp); 3617 } else if (nextp != NULL) { 3618 /* 3619 * If there is more, put it back in the 3620 * queue for another pass thru. 3621 */ 3622 if (!putbq(q, nextp)) 3623 freemsg(nextp); 3624 } 3625 break; 3626 } 3627 bp = nextp; 3628 } 3629 } 3630 /* 3631 * Finally, if we received all the cipher text data for 3632 * this message, decrypt it into a new msg and send it up 3633 * to the app. 3634 */ 3635 if (tmi->rcmd_state.pt_len > 0 && 3636 MBLKL(tmi->rcmd_state.c_msg) == tmi->rcmd_state.cd_len) { 3637 mblk_t *bp; 3638 mblk_t *newbp; 3639 3640 /* 3641 * Now we can use our msg that we created when the 3642 * initial message boundary was detected. 3643 */ 3644 bp = tmi->rcmd_state.c_msg; 3645 tmi->rcmd_state.c_msg = NULL; 3646 3647 newbp = do_decrypt(q, bp); 3648 if (newbp != NULL) { 3649 bp = newbp; 3650 /* 3651 * If using RCMD_MODE_V2 ("new" mode), 3652 * look at the 4 byte plaintext length that 3653 * was just decrypted and compare with the 3654 * original pt_len value that was received. 3655 */ 3656 if (tmi->dec_data.option_mask & 3657 CRYPTOPT_RCMD_MODE_V2) { 3658 uint32_t pt_len2; 3659 3660 pt_len2 = *(uint32_t *)bp->b_rptr; 3661 pt_len2 = ntohl(pt_len2); 3662 /* 3663 * Make sure the 2 pt len fields agree. 3664 */ 3665 if (pt_len2 != tmi->rcmd_state.pt_len) { 3666 cmn_err(CE_WARN, 3667 "Inconsistent length fields" 3668 " received %d != %d", 3669 (int)tmi->rcmd_state.pt_len, 3670 (int)pt_len2); 3671 bp->b_datap->db_type = M_ERROR; 3672 bp->b_rptr = bp->b_datap->db_base; 3673 *bp->b_rptr = EIO; 3674 bp->b_wptr = bp->b_rptr + sizeof (char); 3675 freemsg(bp->b_cont); 3676 bp->b_cont = NULL; 3677 tmi->rcmd_state.cd_len = 0; 3678 qreply(WR(q), bp); 3679 return (NULL); 3680 } 3681 bp->b_rptr += sizeof (uint32_t); 3682 } 3683 3684 /* 3685 * Trim the decrypted block the length originally 3686 * indicated by the sender. This is to remove any 3687 * padding bytes that the sender added to satisfy 3688 * requirements of the crypto algorithm. 3689 */ 3690 bp->b_wptr = bp->b_rptr + tmi->rcmd_state.pt_len; 3691 3692 newmp = bp; 3693 3694 /* 3695 * Reset our state to indicate we are ready 3696 * for a new message. 3697 */ 3698 tmi->rcmd_state.pt_len = 0; 3699 tmi->rcmd_state.cd_len = 0; 3700 } else { 3701 #ifdef DEBUG 3702 cmn_err(CE_WARN, 3703 "decrypt_rcmd: do_decrypt on %d bytes failed", 3704 (int)tmi->rcmd_state.cd_len); 3705 #endif 3706 /* 3707 * do_decrypt already handled failures, just 3708 * return NULL. 3709 */ 3710 tmi->rcmd_state.pt_len = 0; 3711 tmi->rcmd_state.cd_len = 0; 3712 return (NULL); 3713 } 3714 } 3715 3716 /* 3717 * return the new message with the 'length' fields removed 3718 */ 3719 return (newmp); 3720 } 3721 3722 /* 3723 * cryptmodrsrv 3724 * 3725 * Read queue service routine 3726 * Necessary because if the ready flag is not set 3727 * (via CRYPTIOCSTOP/CRYPTIOCSTART ioctls) then the data 3728 * must remain on queue and not be passed along. 3729 */ 3730 static int 3731 cryptmodrsrv(queue_t *q) 3732 { 3733 mblk_t *mp, *bp; 3734 struct tmodinfo *tmi = (struct tmodinfo *)q->q_ptr; 3735 3736 while ((mp = getq(q)) != NULL) { 3737 switch (mp->b_datap->db_type) { 3738 case M_DATA: 3739 if (canputnext(q) && tmi->ready & CRYPT_READ_READY) { 3740 /* 3741 * Process "rcmd" messages differently because 3742 * they contain a 4 byte plaintext length 3743 * id that needs to be removed. 3744 */ 3745 if (tmi->dec_data.method != CRYPT_METHOD_NONE && 3746 (tmi->dec_data.option_mask & 3747 (CRYPTOPT_RCMD_MODE_V1 | 3748 CRYPTOPT_RCMD_MODE_V2))) { 3749 mp = decrypt_rcmd_mblks(q, mp); 3750 if (mp) 3751 putnext(q, mp); 3752 continue; 3753 } 3754 if ((bp = msgpullup(mp, -1)) != NULL) { 3755 freemsg(mp); 3756 if (MBLKL(bp) > 0) { 3757 mp = do_decrypt(q, bp); 3758 if (mp != NULL) 3759 putnext(q, mp); 3760 } 3761 } 3762 } else { 3763 if (!putbq(q, mp)) { 3764 freemsg(mp); 3765 } 3766 return (0); 3767 } 3768 break; 3769 default: 3770 /* 3771 * rput does not queue anything > QPCTL, so we don't 3772 * need to check for it here. 3773 */ 3774 if (!canputnext(q)) { 3775 if (!putbq(q, mp)) 3776 freemsg(mp); 3777 return (0); 3778 } 3779 putnext(q, mp); 3780 break; 3781 } 3782 } 3783 return (0); 3784 } 3785 3786 3787 /* 3788 * Read-side put procedure. 3789 */ 3790 static void 3791 cryptmodrput(queue_t *rq, mblk_t *mp) 3792 { 3793 switch (mp->b_datap->db_type) { 3794 case M_DATA: 3795 if (!putq(rq, mp)) { 3796 freemsg(mp); 3797 } 3798 break; 3799 case M_FLUSH: 3800 if (*mp->b_rptr & FLUSHR) { 3801 flushq(rq, FLUSHALL); 3802 } 3803 putnext(rq, mp); 3804 break; 3805 default: 3806 if (queclass(mp) < QPCTL) { 3807 if (rq->q_first != NULL || !canputnext(rq)) { 3808 if (!putq(rq, mp)) 3809 freemsg(mp); 3810 return; 3811 } 3812 } 3813 putnext(rq, mp); 3814 break; 3815 } 3816 } 3817