1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * CPU Device driver. The driver is not DDI-compliant. 30 * 31 * The driver supports following features: 32 * - Power management. 33 */ 34 35 #include <sys/types.h> 36 #include <sys/param.h> 37 #include <sys/errno.h> 38 #include <sys/modctl.h> 39 #include <sys/kmem.h> 40 #include <sys/conf.h> 41 #include <sys/cmn_err.h> 42 #include <sys/stat.h> 43 #include <sys/debug.h> 44 #include <sys/systm.h> 45 #include <sys/ddi.h> 46 #include <sys/sunddi.h> 47 48 #include <sys/machsystm.h> 49 #include <sys/x_call.h> 50 #include <sys/cpudrv.h> 51 #include <sys/cpudrv_plat.h> 52 #include <sys/msacct.h> 53 54 /* 55 * CPU power management 56 * 57 * The supported power saving model is to slow down the CPU (on SPARC by 58 * dividing the CPU clock and on x86 by dropping down a P-state). 59 * Periodically we determine the amount of time the CPU is running 60 * idle thread and threads in user mode during the last quantum. If the idle 61 * thread was running less than its low water mark for current speed for 62 * number of consecutive sampling periods, or number of running threads in 63 * user mode are above its high water mark, we arrange to go to the higher 64 * speed. If the idle thread was running more than its high water mark without 65 * dropping a number of consecutive times below the mark, and number of threads 66 * running in user mode are below its low water mark, we arrange to go to the 67 * next lower speed. While going down, we go through all the speeds. While 68 * going up we go to the maximum speed to minimize impact on the user, but have 69 * provisions in the driver to go to other speeds. 70 * 71 * The driver does not have knowledge of a particular implementation of this 72 * scheme and will work with all CPUs supporting this model. On SPARC, the 73 * driver determines supported speeds by looking at 'clock-divisors' property 74 * created by OBP. On x86, the driver retrieves the supported speeds from 75 * ACPI. 76 */ 77 78 /* 79 * Configuration function prototypes and data structures 80 */ 81 static int cpudrv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd); 82 static int cpudrv_detach(dev_info_t *dip, ddi_detach_cmd_t cmd); 83 static int cpudrv_power(dev_info_t *dip, int comp, int level); 84 85 struct dev_ops cpudrv_ops = { 86 DEVO_REV, /* rev */ 87 0, /* refcnt */ 88 nodev, /* getinfo */ 89 nulldev, /* identify */ 90 nulldev, /* probe */ 91 cpudrv_attach, /* attach */ 92 cpudrv_detach, /* detach */ 93 nodev, /* reset */ 94 (struct cb_ops *)NULL, /* cb_ops */ 95 (struct bus_ops *)NULL, /* bus_ops */ 96 cpudrv_power /* power */ 97 }; 98 99 static struct modldrv modldrv = { 100 &mod_driverops, /* modops */ 101 "CPU Driver %I%", /* linkinfo */ 102 &cpudrv_ops, /* dev_ops */ 103 }; 104 105 static struct modlinkage modlinkage = { 106 MODREV_1, /* rev */ 107 &modldrv, /* linkage */ 108 NULL 109 }; 110 111 /* 112 * Function prototypes 113 */ 114 static int cpudrv_pm_init(cpudrv_devstate_t *cpudsp); 115 static void cpudrv_pm_free(cpudrv_devstate_t *cpudsp); 116 static int cpudrv_pm_comp_create(cpudrv_devstate_t *cpudsp); 117 static void cpudrv_pm_monitor_disp(void *arg); 118 static void cpudrv_pm_monitor(void *arg); 119 120 /* 121 * Driver global variables 122 */ 123 uint_t cpudrv_debug = 0; 124 void *cpudrv_state; 125 static uint_t cpudrv_pm_idle_hwm = CPUDRV_PM_IDLE_HWM; 126 static uint_t cpudrv_pm_idle_lwm = CPUDRV_PM_IDLE_LWM; 127 static uint_t cpudrv_pm_idle_buf_zone = CPUDRV_PM_IDLE_BUF_ZONE; 128 static uint_t cpudrv_pm_idle_bhwm_cnt_max = CPUDRV_PM_IDLE_BHWM_CNT_MAX; 129 static uint_t cpudrv_pm_idle_blwm_cnt_max = CPUDRV_PM_IDLE_BLWM_CNT_MAX; 130 static uint_t cpudrv_pm_user_hwm = CPUDRV_PM_USER_HWM; 131 132 /* 133 * cpudrv_direct_pm allows user applications to directly control the 134 * power state transitions (direct pm) without following the normal 135 * direct pm protocol. This is needed because the normal protocol 136 * requires that a device only be lowered when it is idle, and be 137 * brought up when it request to do so by calling pm_raise_power(). 138 * Ignoring this protocol is harmless for CPU (other than speed). 139 * Moreover it might be the case that CPU is never idle or wants 140 * to be at higher speed because of the addition CPU cycles required 141 * to run the user application. 142 * 143 * The driver will still report idle/busy status to the framework. Although 144 * framework will ignore this information for direct pm devices and not 145 * try to bring them down when idle, user applications can still use this 146 * information if they wants. 147 * 148 * In the future, provide an ioctl to control setting of this mode. In 149 * that case, this variable should move to the state structure and 150 * be protected by the lock in the state structure. 151 */ 152 int cpudrv_direct_pm = 0; 153 154 /* 155 * Arranges for the handler function to be called at the interval suitable 156 * for current speed. 157 */ 158 #define CPUDRV_PM_MONITOR_INIT(cpudsp) { \ 159 ASSERT(mutex_owned(&(cpudsp)->lock)); \ 160 (cpudsp)->cpudrv_pm.timeout_id = timeout(cpudrv_pm_monitor_disp, \ 161 (cpudsp), (((cpudsp)->cpudrv_pm.cur_spd == NULL) ? \ 162 CPUDRV_PM_QUANT_CNT_OTHR : \ 163 (cpudsp)->cpudrv_pm.cur_spd->quant_cnt)); \ 164 } 165 166 /* 167 * Arranges for the handler function not to be called back. 168 */ 169 #define CPUDRV_PM_MONITOR_FINI(cpudsp) { \ 170 timeout_id_t tmp_tid; \ 171 ASSERT(mutex_owned(&(cpudsp)->lock)); \ 172 ASSERT((cpudsp)->cpudrv_pm.timeout_id); \ 173 tmp_tid = (cpudsp)->cpudrv_pm.timeout_id; \ 174 (cpudsp)->cpudrv_pm.timeout_id = 0; \ 175 mutex_exit(&(cpudsp)->lock); \ 176 (void) untimeout(tmp_tid); \ 177 mutex_enter(&(cpudsp)->cpudrv_pm.timeout_lock); \ 178 while ((cpudsp)->cpudrv_pm.timeout_count != 0) \ 179 cv_wait(&(cpudsp)->cpudrv_pm.timeout_cv, \ 180 &(cpudsp)->cpudrv_pm.timeout_lock); \ 181 mutex_exit(&(cpudsp)->cpudrv_pm.timeout_lock); \ 182 mutex_enter(&(cpudsp)->lock); \ 183 } 184 185 int 186 _init(void) 187 { 188 int error; 189 190 DPRINTF(D_INIT, (" _init: function called\n")); 191 if ((error = ddi_soft_state_init(&cpudrv_state, 192 sizeof (cpudrv_devstate_t), 0)) != 0) { 193 return (error); 194 } 195 196 if ((error = mod_install(&modlinkage)) != 0) { 197 ddi_soft_state_fini(&cpudrv_state); 198 } 199 200 /* 201 * Callbacks used by the PPM driver. 202 */ 203 CPUDRV_PM_SET_PPM_CALLBACKS(); 204 return (error); 205 } 206 207 int 208 _fini(void) 209 { 210 int error; 211 212 DPRINTF(D_FINI, (" _fini: function called\n")); 213 if ((error = mod_remove(&modlinkage)) == 0) { 214 ddi_soft_state_fini(&cpudrv_state); 215 } 216 217 return (error); 218 } 219 220 int 221 _info(struct modinfo *modinfop) 222 { 223 return (mod_info(&modlinkage, modinfop)); 224 } 225 226 /* 227 * Driver attach(9e) entry point. 228 */ 229 static int 230 cpudrv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 231 { 232 int instance; 233 cpudrv_devstate_t *cpudsp; 234 extern pri_t maxclsyspri; 235 236 instance = ddi_get_instance(dip); 237 238 switch (cmd) { 239 case DDI_ATTACH: 240 DPRINTF(D_ATTACH, ("cpudrv_attach: instance %d: " 241 "DDI_ATTACH called\n", instance)); 242 if (ddi_soft_state_zalloc(cpudrv_state, instance) != 243 DDI_SUCCESS) { 244 cmn_err(CE_WARN, "cpudrv_attach: instance %d: " 245 "can't allocate state", instance); 246 CPUDRV_PM_DISABLE(); 247 return (DDI_FAILURE); 248 } 249 if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) == 250 NULL) { 251 cmn_err(CE_WARN, "cpudrv_attach: instance %d: " 252 "can't get state", instance); 253 ddi_soft_state_free(cpudrv_state, instance); 254 CPUDRV_PM_DISABLE(); 255 return (DDI_FAILURE); 256 } 257 cpudsp->dip = dip; 258 259 /* 260 * Find CPU number for this dev_info node. 261 */ 262 if (!cpudrv_pm_get_cpu_id(dip, &(cpudsp->cpu_id))) { 263 cmn_err(CE_WARN, "cpudrv_attach: instance %d: " 264 "can't convert dip to cpu_id", instance); 265 ddi_soft_state_free(cpudrv_state, instance); 266 CPUDRV_PM_DISABLE(); 267 return (DDI_FAILURE); 268 } 269 if (cpudrv_pm_init(cpudsp) != DDI_SUCCESS) { 270 ddi_soft_state_free(cpudrv_state, instance); 271 CPUDRV_PM_DISABLE(); 272 return (DDI_FAILURE); 273 } 274 if (cpudrv_pm_comp_create(cpudsp) != DDI_SUCCESS) { 275 ddi_soft_state_free(cpudrv_state, instance); 276 CPUDRV_PM_DISABLE(); 277 cpudrv_pm_free(cpudsp); 278 return (DDI_FAILURE); 279 } 280 if (ddi_prop_update_string(DDI_DEV_T_NONE, 281 dip, "pm-class", "CPU") != DDI_PROP_SUCCESS) { 282 ddi_soft_state_free(cpudrv_state, instance); 283 CPUDRV_PM_DISABLE(); 284 cpudrv_pm_free(cpudsp); 285 return (DDI_FAILURE); 286 } 287 288 /* 289 * Taskq is used to dispatch routine to monitor CPU activities. 290 */ 291 cpudsp->cpudrv_pm.tq = taskq_create_instance( 292 "cpudrv_pm_monitor", 293 ddi_get_instance(dip), CPUDRV_PM_TASKQ_THREADS, 294 (maxclsyspri - 1), CPUDRV_PM_TASKQ_MIN, 295 CPUDRV_PM_TASKQ_MAX, TASKQ_PREPOPULATE|TASKQ_CPR_SAFE); 296 297 mutex_init(&cpudsp->lock, NULL, MUTEX_DRIVER, NULL); 298 mutex_init(&cpudsp->cpudrv_pm.timeout_lock, NULL, MUTEX_DRIVER, 299 NULL); 300 cv_init(&cpudsp->cpudrv_pm.timeout_cv, NULL, CV_DEFAULT, NULL); 301 302 /* 303 * Driver needs to assume that CPU is running at unknown speed 304 * at DDI_ATTACH and switch it to the needed speed. We assume 305 * that initial needed speed is full speed for us. 306 */ 307 /* 308 * We need to take the lock because cpudrv_pm_monitor() 309 * will start running in parallel with attach(). 310 */ 311 mutex_enter(&cpudsp->lock); 312 cpudsp->cpudrv_pm.cur_spd = NULL; 313 cpudsp->cpudrv_pm.targ_spd = cpudsp->cpudrv_pm.head_spd; 314 cpudsp->cpudrv_pm.pm_started = B_FALSE; 315 /* 316 * We don't call pm_raise_power() directly from attach because 317 * driver attach for a slave CPU node can happen before the 318 * CPU is even initialized. We just start the monitoring 319 * system which understands unknown speed and moves CPU 320 * to targ_spd when it have been initialized. 321 */ 322 CPUDRV_PM_MONITOR_INIT(cpudsp); 323 mutex_exit(&cpudsp->lock); 324 325 CPUDRV_PM_INSTALL_TOPSPEED_CHANGE_HANDLER(cpudsp, dip); 326 327 ddi_report_dev(dip); 328 return (DDI_SUCCESS); 329 330 case DDI_RESUME: 331 DPRINTF(D_ATTACH, ("cpudrv_attach: instance %d: " 332 "DDI_RESUME called\n", instance)); 333 if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) == 334 NULL) { 335 cmn_err(CE_WARN, "cpudrv_attach: instance %d: " 336 "can't get state", instance); 337 return (DDI_FAILURE); 338 } 339 mutex_enter(&cpudsp->lock); 340 /* 341 * Driver needs to assume that CPU is running at unknown speed 342 * at DDI_RESUME and switch it to the needed speed. We assume 343 * that the needed speed is full speed for us. 344 */ 345 cpudsp->cpudrv_pm.cur_spd = NULL; 346 cpudsp->cpudrv_pm.targ_spd = cpudsp->cpudrv_pm.head_spd; 347 CPUDRV_PM_MONITOR_INIT(cpudsp); 348 mutex_exit(&cpudsp->lock); 349 CPUDRV_PM_REDEFINE_TOPSPEED(dip); 350 return (DDI_SUCCESS); 351 352 default: 353 return (DDI_FAILURE); 354 } 355 } 356 357 /* 358 * Driver detach(9e) entry point. 359 */ 360 static int 361 cpudrv_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 362 { 363 int instance; 364 cpudrv_devstate_t *cpudsp; 365 cpudrv_pm_t *cpupm; 366 367 instance = ddi_get_instance(dip); 368 369 switch (cmd) { 370 case DDI_DETACH: 371 DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: " 372 "DDI_DETACH called\n", instance)); 373 /* 374 * If the only thing supported by the driver is power 375 * management, we can in future enhance the driver and 376 * framework that loads it to unload the driver when 377 * user has disabled CPU power management. 378 */ 379 return (DDI_FAILURE); 380 381 case DDI_SUSPEND: 382 DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: " 383 "DDI_SUSPEND called\n", instance)); 384 if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) == 385 NULL) { 386 cmn_err(CE_WARN, "cpudrv_detach: instance %d: " 387 "can't get state", instance); 388 return (DDI_FAILURE); 389 } 390 /* 391 * During a checkpoint-resume sequence, framework will 392 * stop interrupts to quiesce kernel activity. This will 393 * leave our monitoring system ineffective. Handle this 394 * by stopping our monitoring system and bringing CPU 395 * to full speed. In case we are in special direct pm 396 * mode, we leave the CPU at whatever speed it is. This 397 * is harmless other than speed. 398 */ 399 mutex_enter(&cpudsp->lock); 400 cpupm = &(cpudsp->cpudrv_pm); 401 402 DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: DDI_SUSPEND - " 403 "cur_spd %d, head_spd %d\n", instance, 404 cpupm->cur_spd->pm_level, cpupm->head_spd->pm_level)); 405 406 CPUDRV_PM_MONITOR_FINI(cpudsp); 407 408 if (!cpudrv_direct_pm && (cpupm->cur_spd != cpupm->head_spd)) { 409 if (cpupm->pm_busycnt < 1) { 410 if ((pm_busy_component(dip, CPUDRV_PM_COMP_NUM) 411 == DDI_SUCCESS)) { 412 cpupm->pm_busycnt++; 413 } else { 414 CPUDRV_PM_MONITOR_INIT(cpudsp); 415 mutex_exit(&cpudsp->lock); 416 cmn_err(CE_WARN, "cpudrv_detach: " 417 "instance %d: can't busy CPU " 418 "component", instance); 419 return (DDI_FAILURE); 420 } 421 } 422 mutex_exit(&cpudsp->lock); 423 if (pm_raise_power(dip, CPUDRV_PM_COMP_NUM, 424 cpupm->head_spd->pm_level) != DDI_SUCCESS) { 425 mutex_enter(&cpudsp->lock); 426 CPUDRV_PM_MONITOR_INIT(cpudsp); 427 mutex_exit(&cpudsp->lock); 428 cmn_err(CE_WARN, "cpudrv_detach: instance %d: " 429 "can't raise CPU power level", instance); 430 return (DDI_FAILURE); 431 } else { 432 return (DDI_SUCCESS); 433 } 434 } else { 435 mutex_exit(&cpudsp->lock); 436 return (DDI_SUCCESS); 437 } 438 439 default: 440 return (DDI_FAILURE); 441 } 442 } 443 444 /* 445 * Driver power(9e) entry point. 446 * 447 * Driver's notion of current power is set *only* in power(9e) entry point 448 * after actual power change operation has been successfully completed. 449 */ 450 /* ARGSUSED */ 451 static int 452 cpudrv_power(dev_info_t *dip, int comp, int level) 453 { 454 int instance; 455 cpudrv_devstate_t *cpudsp; 456 cpudrv_pm_t *cpupm; 457 cpudrv_pm_spd_t *new_spd; 458 boolean_t is_ready; 459 int ret; 460 461 instance = ddi_get_instance(dip); 462 463 DPRINTF(D_POWER, ("cpudrv_power: instance %d: level %d\n", 464 instance, level)); 465 if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) == NULL) { 466 cmn_err(CE_WARN, "cpudrv_power: instance %d: can't get state", 467 instance); 468 return (DDI_FAILURE); 469 } 470 471 mutex_enter(&cpudsp->lock); 472 cpupm = &(cpudsp->cpudrv_pm); 473 474 /* 475 * In normal operation, we fail if we are busy and request is 476 * to lower the power level. We let this go through if the driver 477 * is in special direct pm mode. On x86, we also let this through 478 * if the change is due to a request to throttle the max speed. 479 */ 480 if (!cpudrv_direct_pm && (cpupm->pm_busycnt >= 1) && 481 !cpudrv_pm_is_throttle_thread(cpupm)) { 482 if ((cpupm->cur_spd != NULL) && 483 (level < cpupm->cur_spd->pm_level)) { 484 mutex_exit(&cpudsp->lock); 485 return (DDI_FAILURE); 486 } 487 } 488 489 for (new_spd = cpupm->head_spd; new_spd; new_spd = new_spd->down_spd) { 490 if (new_spd->pm_level == level) 491 break; 492 } 493 if (!new_spd) { 494 CPUDRV_PM_RESET_THROTTLE_THREAD(cpupm); 495 mutex_exit(&cpudsp->lock); 496 cmn_err(CE_WARN, "cpudrv_power: instance %d: " 497 "can't locate new CPU speed", instance); 498 return (DDI_FAILURE); 499 } 500 501 /* 502 * We currently refuse to power manage if the CPU is not ready to 503 * take cross calls (cross calls fail silently if CPU is not ready 504 * for it). 505 * 506 * Additionally, for x86 platforms we cannot power manage 507 * any one instance, until all instances have been initialized. 508 * That's because we don't know what the CPU domains look like 509 * until all instances have been initialized. 510 */ 511 is_ready = CPUDRV_PM_XCALL_IS_READY(cpudsp->cpu_id); 512 if (!is_ready) { 513 DPRINTF(D_POWER, ("cpudrv_power: instance %d: " 514 "CPU not ready for x-calls\n", instance)); 515 } else if (!(is_ready = cpudrv_pm_all_instances_ready())) { 516 DPRINTF(D_POWER, ("cpudrv_power: instance %d: " 517 "waiting for all CPUs to be ready\n", instance)); 518 } 519 if (!is_ready) { 520 CPUDRV_PM_RESET_THROTTLE_THREAD(cpupm); 521 mutex_exit(&cpudsp->lock); 522 return (DDI_FAILURE); 523 } 524 525 /* 526 * Execute CPU specific routine on the requested CPU to change its 527 * speed to normal-speed/divisor. 528 */ 529 if ((ret = cpudrv_pm_change_speed(cpudsp, new_spd)) != DDI_SUCCESS) { 530 cmn_err(CE_WARN, "cpudrv_power: cpudrv_pm_change_speed() " 531 "return = %d", ret); 532 mutex_exit(&cpudsp->lock); 533 return (DDI_FAILURE); 534 } 535 536 /* 537 * Reset idle threshold time for the new power level. 538 */ 539 if ((cpupm->cur_spd != NULL) && (level < cpupm->cur_spd->pm_level)) { 540 if (pm_idle_component(dip, CPUDRV_PM_COMP_NUM) == 541 DDI_SUCCESS) { 542 if (cpupm->pm_busycnt >= 1) 543 cpupm->pm_busycnt--; 544 } else 545 cmn_err(CE_WARN, "cpudrv_power: instance %d: can't " 546 "idle CPU component", ddi_get_instance(dip)); 547 } 548 /* 549 * Reset various parameters because we are now running at new speed. 550 */ 551 cpupm->lastquan_mstate[CMS_IDLE] = 0; 552 cpupm->lastquan_mstate[CMS_SYSTEM] = 0; 553 cpupm->lastquan_mstate[CMS_USER] = 0; 554 cpupm->lastquan_lbolt = 0; 555 cpupm->cur_spd = new_spd; 556 CPUDRV_PM_RESET_THROTTLE_THREAD(cpupm); 557 mutex_exit(&cpudsp->lock); 558 559 return (DDI_SUCCESS); 560 } 561 562 /* 563 * Initialize the field that will be used for reporting 564 * the supported_frequencies_Hz cpu_info kstat. 565 */ 566 static void 567 set_supp_freqs(cpu_t *cp, cpudrv_pm_t *cpupm) 568 { 569 char *supp_freqs; 570 char *sfptr; 571 uint64_t *speeds; 572 cpudrv_pm_spd_t *spd; 573 int i; 574 #define UINT64_MAX_STRING (sizeof ("18446744073709551615")) 575 576 speeds = kmem_zalloc(cpupm->num_spd * sizeof (uint64_t), KM_SLEEP); 577 for (i = cpupm->num_spd - 1, spd = cpupm->head_spd; spd; 578 i--, spd = spd->down_spd) { 579 speeds[i] = 580 CPUDRV_PM_SPEED_HZ(cp->cpu_type_info.pi_clock, spd->speed); 581 } 582 583 supp_freqs = kmem_zalloc((UINT64_MAX_STRING * cpupm->num_spd), 584 KM_SLEEP); 585 sfptr = supp_freqs; 586 for (i = 0; i < cpupm->num_spd; i++) { 587 if (i == cpupm->num_spd - 1) { 588 (void) sprintf(sfptr, "%"PRIu64, speeds[i]); 589 } else { 590 (void) sprintf(sfptr, "%"PRIu64":", speeds[i]); 591 sfptr = supp_freqs + strlen(supp_freqs); 592 } 593 } 594 cpu_set_supp_freqs(cp, supp_freqs); 595 kmem_free(supp_freqs, (UINT64_MAX_STRING * cpupm->num_spd)); 596 kmem_free(speeds, cpupm->num_spd * sizeof (uint64_t)); 597 } 598 599 /* 600 * Initialize power management data. 601 */ 602 static int 603 cpudrv_pm_init(cpudrv_devstate_t *cpudsp) 604 { 605 cpudrv_pm_t *cpupm = &(cpudsp->cpudrv_pm); 606 cpudrv_pm_spd_t *cur_spd; 607 cpudrv_pm_spd_t *prev_spd = NULL; 608 int *speeds; 609 uint_t nspeeds; 610 int idle_cnt_percent; 611 int user_cnt_percent; 612 int i; 613 614 if (!cpudrv_pm_init_module(cpudsp)) 615 return (DDI_FAILURE); 616 617 CPUDRV_PM_GET_SPEEDS(cpudsp, speeds, nspeeds); 618 if (nspeeds < 2) { 619 /* Need at least two speeds to power manage */ 620 CPUDRV_PM_FREE_SPEEDS(speeds, nspeeds); 621 cpudrv_pm_free_module(cpudsp); 622 return (DDI_FAILURE); 623 } 624 cpupm->num_spd = nspeeds; 625 626 /* 627 * Calculate the watermarks and other parameters based on the 628 * supplied speeds. 629 * 630 * One of the basic assumption is that for X amount of CPU work, 631 * if CPU is slowed down by a factor of N, the time it takes to 632 * do the same work will be N * X. 633 * 634 * The driver declares that a CPU is idle and ready for slowed down, 635 * if amount of idle thread is more than the current speed idle_hwm 636 * without dropping below idle_hwm a number of consecutive sampling 637 * intervals and number of running threads in user mode are below 638 * user_lwm. We want to set the current user_lwm such that if we 639 * just switched to the next slower speed with no change in real work 640 * load, the amount of user threads at the slower speed will be such 641 * that it falls below the slower speed's user_hwm. If we didn't do 642 * that then we will just come back to the higher speed as soon as we 643 * go down even with no change in work load. 644 * The user_hwm is a fixed precentage and not calculated dynamically. 645 * 646 * We bring the CPU up if idle thread at current speed is less than 647 * the current speed idle_lwm for a number of consecutive sampling 648 * intervals or user threads are above the user_hwm for the current 649 * speed. 650 */ 651 for (i = 0; i < nspeeds; i++) { 652 cur_spd = kmem_zalloc(sizeof (cpudrv_pm_spd_t), KM_SLEEP); 653 cur_spd->speed = speeds[i]; 654 if (i == 0) { /* normal speed */ 655 cpupm->head_spd = cur_spd; 656 cur_spd->quant_cnt = CPUDRV_PM_QUANT_CNT_NORMAL; 657 cur_spd->idle_hwm = 658 (cpudrv_pm_idle_hwm * cur_spd->quant_cnt) / 100; 659 /* can't speed anymore */ 660 cur_spd->idle_lwm = 0; 661 cur_spd->user_hwm = UINT_MAX; 662 } else { 663 cur_spd->quant_cnt = CPUDRV_PM_QUANT_CNT_OTHR; 664 ASSERT(prev_spd != NULL); 665 prev_spd->down_spd = cur_spd; 666 cur_spd->up_spd = cpupm->head_spd; 667 668 /* 669 * Let's assume CPU is considered idle at full speed 670 * when it is spending I% of time in running the idle 671 * thread. At full speed, CPU will be busy (100 - I) % 672 * of times. This % of busyness increases by factor of 673 * N as CPU slows down. CPU that is idle I% of times 674 * in full speed, it is idle (100 - ((100 - I) * N)) % 675 * of times in N speed. The idle_lwm is a fixed 676 * percentage. A large value of N may result in 677 * idle_hwm to go below idle_lwm. We need to make sure 678 * that there is at least a buffer zone seperation 679 * between the idle_lwm and idle_hwm values. 680 */ 681 idle_cnt_percent = CPUDRV_PM_IDLE_CNT_PERCENT( 682 cpudrv_pm_idle_hwm, speeds, i); 683 idle_cnt_percent = max(idle_cnt_percent, 684 (cpudrv_pm_idle_lwm + cpudrv_pm_idle_buf_zone)); 685 cur_spd->idle_hwm = 686 (idle_cnt_percent * cur_spd->quant_cnt) / 100; 687 cur_spd->idle_lwm = 688 (cpudrv_pm_idle_lwm * cur_spd->quant_cnt) / 100; 689 690 /* 691 * The lwm for user threads are determined such that 692 * if CPU slows down, the load of work in the 693 * new speed would still keep the CPU at or below the 694 * user_hwm in the new speed. This is to prevent 695 * the quick jump back up to higher speed. 696 */ 697 cur_spd->user_hwm = (cpudrv_pm_user_hwm * 698 cur_spd->quant_cnt) / 100; 699 user_cnt_percent = CPUDRV_PM_USER_CNT_PERCENT( 700 cpudrv_pm_user_hwm, speeds, i); 701 prev_spd->user_lwm = 702 (user_cnt_percent * prev_spd->quant_cnt) / 100; 703 } 704 prev_spd = cur_spd; 705 } 706 /* Slowest speed. Can't slow down anymore */ 707 cur_spd->idle_hwm = UINT_MAX; 708 cur_spd->user_lwm = -1; 709 #ifdef DEBUG 710 DPRINTF(D_PM_INIT, ("cpudrv_pm_init: instance %d: head_spd spd %d, " 711 "num_spd %d\n", ddi_get_instance(cpudsp->dip), 712 cpupm->head_spd->speed, cpupm->num_spd)); 713 for (cur_spd = cpupm->head_spd; cur_spd; cur_spd = cur_spd->down_spd) { 714 DPRINTF(D_PM_INIT, ("cpudrv_pm_init: instance %d: speed %d, " 715 "down_spd spd %d, idle_hwm %d, user_lwm %d, " 716 "up_spd spd %d, idle_lwm %d, user_hwm %d, " 717 "quant_cnt %d\n", ddi_get_instance(cpudsp->dip), 718 cur_spd->speed, 719 (cur_spd->down_spd ? cur_spd->down_spd->speed : 0), 720 cur_spd->idle_hwm, cur_spd->user_lwm, 721 (cur_spd->up_spd ? cur_spd->up_spd->speed : 0), 722 cur_spd->idle_lwm, cur_spd->user_hwm, 723 cur_spd->quant_cnt)); 724 } 725 #endif /* DEBUG */ 726 CPUDRV_PM_FREE_SPEEDS(speeds, nspeeds); 727 return (DDI_SUCCESS); 728 } 729 730 /* 731 * Free CPU power management data. 732 */ 733 static void 734 cpudrv_pm_free(cpudrv_devstate_t *cpudsp) 735 { 736 cpudrv_pm_t *cpupm = &(cpudsp->cpudrv_pm); 737 cpudrv_pm_spd_t *cur_spd, *next_spd; 738 739 cur_spd = cpupm->head_spd; 740 while (cur_spd) { 741 next_spd = cur_spd->down_spd; 742 kmem_free(cur_spd, sizeof (cpudrv_pm_spd_t)); 743 cur_spd = next_spd; 744 } 745 bzero(cpupm, sizeof (cpudrv_pm_t)); 746 cpudrv_pm_free_module(cpudsp); 747 } 748 749 /* 750 * Create pm-components property. 751 */ 752 static int 753 cpudrv_pm_comp_create(cpudrv_devstate_t *cpudsp) 754 { 755 cpudrv_pm_t *cpupm = &(cpudsp->cpudrv_pm); 756 cpudrv_pm_spd_t *cur_spd; 757 char **pmc; 758 int size; 759 char name[] = "NAME=CPU Speed"; 760 int i, j; 761 uint_t comp_spd; 762 int result = DDI_FAILURE; 763 764 pmc = kmem_zalloc((cpupm->num_spd + 1) * sizeof (char *), KM_SLEEP); 765 size = CPUDRV_PM_COMP_SIZE(); 766 if (cpupm->num_spd > CPUDRV_PM_COMP_MAX_VAL) { 767 cmn_err(CE_WARN, "cpudrv_pm_comp_create: instance %d: " 768 "number of speeds exceeded limits", 769 ddi_get_instance(cpudsp->dip)); 770 kmem_free(pmc, (cpupm->num_spd + 1) * sizeof (char *)); 771 return (result); 772 } 773 774 for (i = cpupm->num_spd, cur_spd = cpupm->head_spd; i > 0; 775 i--, cur_spd = cur_spd->down_spd) { 776 cur_spd->pm_level = i; 777 pmc[i] = kmem_zalloc((size * sizeof (char)), KM_SLEEP); 778 comp_spd = CPUDRV_PM_COMP_SPEED(cpupm, cur_spd); 779 if (comp_spd > CPUDRV_PM_COMP_MAX_VAL) { 780 cmn_err(CE_WARN, "cpudrv_pm_comp_create: " 781 "instance %d: speed exceeded limits", 782 ddi_get_instance(cpudsp->dip)); 783 for (j = cpupm->num_spd; j >= i; j--) { 784 kmem_free(pmc[j], size * sizeof (char)); 785 } 786 kmem_free(pmc, (cpupm->num_spd + 1) * 787 sizeof (char *)); 788 return (result); 789 } 790 CPUDRV_PM_COMP_SPRINT(pmc[i], cpupm, cur_spd, comp_spd) 791 DPRINTF(D_PM_COMP_CREATE, ("cpudrv_pm_comp_create: " 792 "instance %d: pm-components power level %d string '%s'\n", 793 ddi_get_instance(cpudsp->dip), i, pmc[i])); 794 } 795 pmc[0] = kmem_zalloc(sizeof (name), KM_SLEEP); 796 (void) strcat(pmc[0], name); 797 DPRINTF(D_PM_COMP_CREATE, ("cpudrv_pm_comp_create: instance %d: " 798 "pm-components component name '%s'\n", 799 ddi_get_instance(cpudsp->dip), pmc[0])); 800 801 if (ddi_prop_update_string_array(DDI_DEV_T_NONE, cpudsp->dip, 802 "pm-components", pmc, cpupm->num_spd + 1) == DDI_PROP_SUCCESS) { 803 result = DDI_SUCCESS; 804 } else { 805 cmn_err(CE_WARN, "cpudrv_pm_comp_create: instance %d: " 806 "can't create pm-components property", 807 ddi_get_instance(cpudsp->dip)); 808 } 809 810 for (i = cpupm->num_spd; i > 0; i--) { 811 kmem_free(pmc[i], size * sizeof (char)); 812 } 813 kmem_free(pmc[0], sizeof (name)); 814 kmem_free(pmc, (cpupm->num_spd + 1) * sizeof (char *)); 815 return (result); 816 } 817 818 /* 819 * Mark a component idle. 820 */ 821 #define CPUDRV_PM_MONITOR_PM_IDLE_COMP(dip, cpupm) { \ 822 if ((cpupm)->pm_busycnt >= 1) { \ 823 if (pm_idle_component((dip), CPUDRV_PM_COMP_NUM) == \ 824 DDI_SUCCESS) { \ 825 DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: " \ 826 "instance %d: pm_idle_component called\n", \ 827 ddi_get_instance((dip)))); \ 828 (cpupm)->pm_busycnt--; \ 829 } else { \ 830 cmn_err(CE_WARN, "cpudrv_pm_monitor: instance %d: " \ 831 "can't idle CPU component", \ 832 ddi_get_instance((dip))); \ 833 } \ 834 } \ 835 } 836 837 /* 838 * Marks a component busy in both PM framework and driver state structure. 839 */ 840 #define CPUDRV_PM_MONITOR_PM_BUSY_COMP(dip, cpupm) { \ 841 if ((cpupm)->pm_busycnt < 1) { \ 842 if (pm_busy_component((dip), CPUDRV_PM_COMP_NUM) == \ 843 DDI_SUCCESS) { \ 844 DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: " \ 845 "instance %d: pm_busy_component called\n", \ 846 ddi_get_instance((dip)))); \ 847 (cpupm)->pm_busycnt++; \ 848 } else { \ 849 cmn_err(CE_WARN, "cpudrv_pm_monitor: instance %d: " \ 850 "can't busy CPU component", \ 851 ddi_get_instance((dip))); \ 852 } \ 853 } \ 854 } 855 856 /* 857 * Marks a component busy and calls pm_raise_power(). 858 */ 859 #define CPUDRV_PM_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm, new_level) { \ 860 /* \ 861 * Mark driver and PM framework busy first so framework doesn't try \ 862 * to bring CPU to lower speed when we need to be at higher speed. \ 863 */ \ 864 CPUDRV_PM_MONITOR_PM_BUSY_COMP((dip), (cpupm)); \ 865 mutex_exit(&(cpudsp)->lock); \ 866 DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: instance %d: " \ 867 "pm_raise_power called to %d\n", ddi_get_instance((dip)), \ 868 (new_level))); \ 869 if (pm_raise_power((dip), CPUDRV_PM_COMP_NUM, (new_level)) != \ 870 DDI_SUCCESS) { \ 871 cmn_err(CE_WARN, "cpudrv_pm_monitor: instance %d: can't " \ 872 "raise CPU power level", ddi_get_instance((dip))); \ 873 } \ 874 mutex_enter(&(cpudsp)->lock); \ 875 } 876 877 /* 878 * In order to monitor a CPU, we need to hold cpu_lock to access CPU 879 * statistics. Holding cpu_lock is not allowed from a callout routine. 880 * We dispatch a taskq to do that job. 881 */ 882 static void 883 cpudrv_pm_monitor_disp(void *arg) 884 { 885 cpudrv_devstate_t *cpudsp = (cpudrv_devstate_t *)arg; 886 887 /* 888 * We are here because the last task has scheduled a timeout. 889 * The queue should be empty at this time. 890 */ 891 mutex_enter(&cpudsp->cpudrv_pm.timeout_lock); 892 if (!taskq_dispatch(cpudsp->cpudrv_pm.tq, cpudrv_pm_monitor, arg, 893 TQ_NOSLEEP)) { 894 mutex_exit(&cpudsp->cpudrv_pm.timeout_lock); 895 DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor_disp: failed to " 896 "dispatch the cpudrv_pm_monitor taskq\n")); 897 mutex_enter(&cpudsp->lock); 898 CPUDRV_PM_MONITOR_INIT(cpudsp); 899 mutex_exit(&cpudsp->lock); 900 return; 901 } 902 cpudsp->cpudrv_pm.timeout_count++; 903 mutex_exit(&cpudsp->cpudrv_pm.timeout_lock); 904 } 905 906 /* 907 * Get current CPU microstate times and scale them. We should probably be 908 * using get_cpu_mstate() to get this data, but bugs in some of the ISRs 909 * have led to inflated system times and prevented CPUs from being power 910 * managed. We can probably safely ignore time spent in ISRs when 911 * determining idleness. 912 */ 913 static void 914 cpudrv_get_cpu_mstate(cpu_t *cpu, hrtime_t *times) 915 { 916 int i; 917 918 for (i = 0; i < NCMSTATES; i++) { 919 times[i] = cpu->cpu_acct[i]; 920 scalehrtime(×[i]); 921 } 922 } 923 924 /* 925 * Monitors each CPU for the amount of time idle thread was running in the 926 * last quantum and arranges for the CPU to go to the lower or higher speed. 927 * Called at the time interval appropriate for the current speed. The 928 * time interval for normal speed is CPUDRV_PM_QUANT_CNT_NORMAL. The time 929 * interval for other speeds (including unknown speed) is 930 * CPUDRV_PM_QUANT_CNT_OTHR. 931 */ 932 static void 933 cpudrv_pm_monitor(void *arg) 934 { 935 cpudrv_devstate_t *cpudsp = (cpudrv_devstate_t *)arg; 936 cpudrv_pm_t *cpupm; 937 cpudrv_pm_spd_t *cur_spd, *new_spd; 938 cpu_t *cp; 939 dev_info_t *dip; 940 uint_t idle_cnt, user_cnt, system_cnt; 941 clock_t lbolt_cnt; 942 hrtime_t msnsecs[NCMSTATES]; 943 boolean_t is_ready; 944 945 #define GET_CPU_MSTATE_CNT(state, cnt) \ 946 msnsecs[state] = NSEC_TO_TICK(msnsecs[state]); \ 947 if (cpupm->lastquan_mstate[state] > msnsecs[state]) \ 948 msnsecs[state] = cpupm->lastquan_mstate[state]; \ 949 cnt = msnsecs[state] - cpupm->lastquan_mstate[state]; \ 950 cpupm->lastquan_mstate[state] = msnsecs[state] 951 952 mutex_enter(&cpudsp->lock); 953 cpupm = &(cpudsp->cpudrv_pm); 954 if (cpupm->timeout_id == 0) { 955 mutex_exit(&cpudsp->lock); 956 goto do_return; 957 } 958 cur_spd = cpupm->cur_spd; 959 dip = cpudsp->dip; 960 961 /* 962 * We assume that a CPU is initialized and has a valid cpu_t 963 * structure, if it is ready for cross calls. If this changes, 964 * additional checks might be needed. 965 * 966 * Additionally, for x86 platforms we cannot power manage 967 * any one instance, until all instances have been initialized. 968 * That's because we don't know what the CPU domains look like 969 * until all instances have been initialized. 970 */ 971 is_ready = CPUDRV_PM_XCALL_IS_READY(cpudsp->cpu_id); 972 if (!is_ready) { 973 DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: instance %d: " 974 "CPU not ready for x-calls\n", ddi_get_instance(dip))); 975 } else if (!(is_ready = cpudrv_pm_all_instances_ready())) { 976 DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: instance %d: " 977 "waiting for all CPUs to be ready\n", 978 ddi_get_instance(dip))); 979 } 980 if (!is_ready) { 981 /* 982 * Make sure that we are busy so that framework doesn't 983 * try to bring us down in this situation. 984 */ 985 CPUDRV_PM_MONITOR_PM_BUSY_COMP(dip, cpupm); 986 CPUDRV_PM_MONITOR_INIT(cpudsp); 987 mutex_exit(&cpudsp->lock); 988 goto do_return; 989 } 990 991 /* 992 * Make sure that we are still not at unknown power level. 993 */ 994 if (cur_spd == NULL) { 995 DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: instance %d: " 996 "cur_spd is unknown\n", ddi_get_instance(dip))); 997 CPUDRV_PM_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm, 998 cpupm->targ_spd->pm_level); 999 /* 1000 * We just changed the speed. Wait till at least next 1001 * call to this routine before proceeding ahead. 1002 */ 1003 CPUDRV_PM_MONITOR_INIT(cpudsp); 1004 mutex_exit(&cpudsp->lock); 1005 goto do_return; 1006 } 1007 1008 mutex_enter(&cpu_lock); 1009 if ((cp = cpu_get(cpudsp->cpu_id)) == NULL) { 1010 mutex_exit(&cpu_lock); 1011 CPUDRV_PM_MONITOR_INIT(cpudsp); 1012 mutex_exit(&cpudsp->lock); 1013 cmn_err(CE_WARN, "cpudrv_pm_monitor: instance %d: can't get " 1014 "cpu_t", ddi_get_instance(dip)); 1015 goto do_return; 1016 } 1017 1018 if (!cpupm->pm_started) { 1019 cpupm->pm_started = B_TRUE; 1020 set_supp_freqs(cp, cpupm); 1021 } 1022 1023 cpudrv_get_cpu_mstate(cp, msnsecs); 1024 GET_CPU_MSTATE_CNT(CMS_IDLE, idle_cnt); 1025 GET_CPU_MSTATE_CNT(CMS_USER, user_cnt); 1026 GET_CPU_MSTATE_CNT(CMS_SYSTEM, system_cnt); 1027 1028 /* 1029 * We can't do anything when we have just switched to a state 1030 * because there is no valid timestamp. 1031 */ 1032 if (cpupm->lastquan_lbolt == 0) { 1033 cpupm->lastquan_lbolt = lbolt; 1034 mutex_exit(&cpu_lock); 1035 CPUDRV_PM_MONITOR_INIT(cpudsp); 1036 mutex_exit(&cpudsp->lock); 1037 goto do_return; 1038 } 1039 1040 /* 1041 * Various watermarks are based on this routine being called back 1042 * exactly at the requested period. This is not guaranteed 1043 * because this routine is called from a taskq that is dispatched 1044 * from a timeout routine. Handle this by finding out how many 1045 * ticks have elapsed since the last call (lbolt_cnt) and adjusting 1046 * the idle_cnt based on the delay added to the requested period 1047 * by timeout and taskq. 1048 */ 1049 lbolt_cnt = lbolt - cpupm->lastquan_lbolt; 1050 cpupm->lastquan_lbolt = lbolt; 1051 mutex_exit(&cpu_lock); 1052 /* 1053 * Time taken between recording the current counts and 1054 * arranging the next call of this routine is an error in our 1055 * calculation. We minimize the error by calling 1056 * CPUDRV_PM_MONITOR_INIT() here instead of end of this routine. 1057 */ 1058 CPUDRV_PM_MONITOR_INIT(cpudsp); 1059 DPRINTF(D_PM_MONITOR_VERBOSE, ("cpudrv_pm_monitor: instance %d: " 1060 "idle count %d, user count %d, system count %d, pm_level %d, " 1061 "pm_busycnt %d\n", ddi_get_instance(dip), idle_cnt, user_cnt, 1062 system_cnt, cur_spd->pm_level, cpupm->pm_busycnt)); 1063 1064 #ifdef DEBUG 1065 /* 1066 * Notify that timeout and taskq has caused delays and we need to 1067 * scale our parameters accordingly. 1068 * 1069 * To get accurate result, don't turn on other DPRINTFs with 1070 * the following DPRINTF. PROM calls generated by other 1071 * DPRINTFs changes the timing. 1072 */ 1073 if (lbolt_cnt > cur_spd->quant_cnt) { 1074 DPRINTF(D_PM_MONITOR_DELAY, ("cpudrv_pm_monitor: instance %d: " 1075 "lbolt count %ld > quantum_count %u\n", 1076 ddi_get_instance(dip), lbolt_cnt, cur_spd->quant_cnt)); 1077 } 1078 #endif /* DEBUG */ 1079 1080 /* 1081 * Adjust counts based on the delay added by timeout and taskq. 1082 */ 1083 idle_cnt = (idle_cnt * cur_spd->quant_cnt) / lbolt_cnt; 1084 user_cnt = (user_cnt * cur_spd->quant_cnt) / lbolt_cnt; 1085 if ((user_cnt > cur_spd->user_hwm) || (idle_cnt < cur_spd->idle_lwm && 1086 cur_spd->idle_blwm_cnt >= cpudrv_pm_idle_blwm_cnt_max)) { 1087 cur_spd->idle_blwm_cnt = 0; 1088 cur_spd->idle_bhwm_cnt = 0; 1089 /* 1090 * In normal situation, arrange to go to next higher speed. 1091 * If we are running in special direct pm mode, we just stay 1092 * at the current speed. 1093 */ 1094 if (cur_spd == cur_spd->up_spd || cpudrv_direct_pm) { 1095 CPUDRV_PM_MONITOR_PM_BUSY_COMP(dip, cpupm); 1096 } else { 1097 new_spd = cur_spd->up_spd; 1098 CPUDRV_PM_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm, 1099 new_spd->pm_level); 1100 } 1101 } else if ((user_cnt <= cur_spd->user_lwm) && 1102 (idle_cnt >= cur_spd->idle_hwm) || !CPU_ACTIVE(cp)) { 1103 cur_spd->idle_blwm_cnt = 0; 1104 cur_spd->idle_bhwm_cnt = 0; 1105 /* 1106 * Arrange to go to next lower speed by informing our idle 1107 * status to the power management framework. 1108 */ 1109 CPUDRV_PM_MONITOR_PM_IDLE_COMP(dip, cpupm); 1110 } else { 1111 /* 1112 * If we are between the idle water marks and have not 1113 * been here enough consecutive times to be considered 1114 * busy, just increment the count and return. 1115 */ 1116 if ((idle_cnt < cur_spd->idle_hwm) && 1117 (idle_cnt >= cur_spd->idle_lwm) && 1118 (cur_spd->idle_bhwm_cnt < cpudrv_pm_idle_bhwm_cnt_max)) { 1119 cur_spd->idle_blwm_cnt = 0; 1120 cur_spd->idle_bhwm_cnt++; 1121 mutex_exit(&cpudsp->lock); 1122 goto do_return; 1123 } 1124 if (idle_cnt < cur_spd->idle_lwm) { 1125 cur_spd->idle_blwm_cnt++; 1126 cur_spd->idle_bhwm_cnt = 0; 1127 } 1128 /* 1129 * Arranges to stay at the current speed. 1130 */ 1131 CPUDRV_PM_MONITOR_PM_BUSY_COMP(dip, cpupm); 1132 } 1133 mutex_exit(&cpudsp->lock); 1134 do_return: 1135 mutex_enter(&cpupm->timeout_lock); 1136 ASSERT(cpupm->timeout_count > 0); 1137 cpupm->timeout_count--; 1138 cv_signal(&cpupm->timeout_cv); 1139 mutex_exit(&cpupm->timeout_lock); 1140 } 1141