xref: /titanic_41/usr/src/uts/common/io/bge/bge_send.c (revision 3afe87ebb25691cb6d158edaa34a6fb9b703a691)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include "bge_impl.h"
28 
29 
30 /*
31  * The transmit-side code uses an allocation process which is similar
32  * to some theme park roller-coaster rides, where riders sit in cars
33  * that can go individually, but work better in a train.
34  *
35  * 1)	RESERVE a place - this doesn't refer to any specific car or
36  *	seat, just that you will get a ride.  The attempt to RESERVE a
37  *	place can fail if all spaces in all cars are already committed.
38  *
39  * 2)	Prepare yourself; this may take an arbitrary (but not unbounded)
40  *	time, and you can back out at this stage, in which case you must
41  *	give up (RENOUNCE) your place.
42  *
43  * 3)	CLAIM your space - a specific car (the next sequentially
44  *	numbered one) is allocated at this stage, and is guaranteed
45  *	to be part of the next train to depart.  Once you've done
46  *	this, you can't back out, nor wait for any external event
47  *	or resource.
48  *
49  * 4)	Occupy your car - when all CLAIMED cars are OCCUPIED, they
50  *	all depart together as a single train!
51  *
52  * 5)	At the end of the ride, you climb out of the car and RENOUNCE
53  *	your right to it, so that it can be recycled for another rider.
54  *
55  * For each rider, these have to occur in this order, but the riders
56  * don't have to stay in the same order at each stage.  In particular,
57  * they may overtake each other between RESERVING a place and CLAIMING
58  * it, or between CLAIMING and OCCUPYING a space.
59  *
60  * Once a car is CLAIMED, the train currently being assembled can't go
61  * without that car (this guarantees that the cars in a single train
62  * make up a consecutively-numbered set).  Therefore, when any train
63  * leaves, we know there can't be any riders in transit between CLAIMING
64  * and OCCUPYING their cars.  There can be some who have RESERVED but
65  * not yet CLAIMED their places.  That's OK, though, because they'll go
66  * into the next train.
67  */
68 
69 #define	BGE_DBG		BGE_DBG_SEND	/* debug flag for this code	*/
70 
71 /*
72  * ========== Send-side recycle routines ==========
73  */
74 
75 /*
76  * Recycle all the completed buffers in the specified send ring up to
77  * (but not including) the consumer index in the status block.
78  *
79  * This function must advance (srp->tc_next) AND adjust (srp->tx_free)
80  * to account for the packets it has recycled.
81  *
82  * This is a trivial version that just does that and nothing more, but
83  * it suffices while there's only one method for sending messages (by
84  * copying) and that method doesn't need any special per-buffer action
85  * for recycling.
86  */
87 static void bge_recycle_ring(bge_t *bgep, send_ring_t *srp);
88 #pragma	inline(bge_recycle_ring)
89 
90 static void
91 bge_recycle_ring(bge_t *bgep, send_ring_t *srp)
92 {
93 	sw_sbd_t *ssbdp;
94 	bge_queue_item_t *buf_item;
95 	bge_queue_item_t *buf_item_head;
96 	bge_queue_item_t *buf_item_tail;
97 	bge_queue_t *txbuf_queue;
98 	uint64_t slot;
99 	uint64_t n;
100 
101 	ASSERT(mutex_owned(srp->tc_lock));
102 
103 	/*
104 	 * We're about to release one or more places :-)
105 	 * These ASSERTions check that our invariants still hold:
106 	 *	there must always be at least one free place
107 	 *	at this point, there must be at least one place NOT free
108 	 *	we're not about to free more places than were claimed!
109 	 */
110 	ASSERT(srp->tx_free > 0);
111 	ASSERT(srp->tx_free < srp->desc.nslots);
112 
113 	buf_item_head = buf_item_tail = NULL;
114 	for (n = 0, slot = srp->tc_next; slot != *srp->cons_index_p;
115 	    slot = NEXT(slot, srp->desc.nslots)) {
116 		ssbdp = &srp->sw_sbds[slot];
117 		ASSERT(ssbdp->pbuf != NULL);
118 		buf_item = ssbdp->pbuf;
119 		if (buf_item_head == NULL)
120 			buf_item_head = buf_item_tail = buf_item;
121 		else {
122 			buf_item_tail->next = buf_item;
123 			buf_item_tail = buf_item;
124 		}
125 		ssbdp->pbuf = NULL;
126 		n++;
127 	}
128 	if (n == 0)
129 		return;
130 
131 	/*
132 	 * Update recycle index and free tx BD number
133 	 */
134 	srp->tc_next = slot;
135 	ASSERT(srp->tx_free + n <= srp->desc.nslots);
136 	bge_atomic_renounce(&srp->tx_free, n);
137 
138 	/*
139 	 * Reset the watchdog count: to 0 if all buffers are
140 	 * now free, or to 1 if some are still outstanding.
141 	 * Note: non-synchonised access here means we may get
142 	 * the "wrong" answer, but only in a harmless fashion
143 	 * (i.e. we deactivate the watchdog because all buffers
144 	 * are apparently free, even though another thread may
145 	 * have claimed one before we leave here; in this case
146 	 * the watchdog will restart on the next send() call).
147 	 */
148 	bgep->watchdog = srp->tx_free == srp->desc.nslots ? 0 : 1;
149 
150 	/*
151 	 * Return tx buffers to buffer push queue
152 	 */
153 	txbuf_queue = srp->txbuf_push_queue;
154 	mutex_enter(txbuf_queue->lock);
155 	buf_item_tail->next = txbuf_queue->head;
156 	txbuf_queue->head = buf_item_head;
157 	txbuf_queue->count += n;
158 	mutex_exit(txbuf_queue->lock);
159 
160 	/*
161 	 * Check if we need exchange the tx buffer push and pop queue
162 	 */
163 	if ((srp->txbuf_pop_queue->count < srp->tx_buffers_low) &&
164 	    (srp->txbuf_pop_queue->count < txbuf_queue->count)) {
165 		srp->txbuf_push_queue = srp->txbuf_pop_queue;
166 		srp->txbuf_pop_queue = txbuf_queue;
167 	}
168 
169 	if (srp->tx_flow != 0 || bgep->tx_resched_needed)
170 		ddi_trigger_softintr(bgep->drain_id);
171 }
172 
173 /*
174  * Recycle all returned slots in all rings.
175  *
176  * To give priority to low-numbered rings, whenever we have recycled any
177  * slots in any ring except 0, we restart scanning again from ring 0.
178  * Thus, for example, if rings 0, 3, and 10 are carrying traffic, the
179  * pattern of recycles might go 0, 3, 10, 3, 0, 10, 0:
180  *
181  *	0	found some - recycle them
182  *	1..2					none found
183  *	3	found some - recycle them	and restart scan
184  *	0..9					none found
185  *	10	found some - recycle them	and restart scan
186  *	0..2					none found
187  *	3	found some more - recycle them	and restart scan
188  *	0	found some more - recycle them
189  *	0..9					none found
190  *	10	found some more - recycle them	and restart scan
191  *	0	found some more - recycle them
192  *	1..15					none found
193  *
194  * The routine returns only when a complete scan has been performed
195  * without finding any slots to recycle.
196  *
197  * Note: the expression (BGE_SEND_RINGS_USED > 1) yields a compile-time
198  * constant and allows the compiler to optimise away the outer do-loop
199  * if only one send ring is being used.
200  */
201 void bge_recycle(bge_t *bgep, bge_status_t *bsp);
202 #pragma	no_inline(bge_recycle)
203 
204 void
205 bge_recycle(bge_t *bgep, bge_status_t *bsp)
206 {
207 	send_ring_t *srp;
208 	uint64_t ring;
209 	uint64_t tx_rings = bgep->chipid.tx_rings;
210 
211 restart:
212 	ring = 0;
213 	srp = &bgep->send[ring];
214 	do {
215 		/*
216 		 * For each ring, (srp->cons_index_p) points to the
217 		 * proper index within the status block (which has
218 		 * already been sync'd by the caller).
219 		 */
220 		ASSERT(srp->cons_index_p == SEND_INDEX_P(bsp, ring));
221 
222 		if (*srp->cons_index_p == srp->tc_next)
223 			continue;		/* no slots to recycle	*/
224 		if (mutex_tryenter(srp->tc_lock) == 0)
225 			continue;		/* already in process	*/
226 		bge_recycle_ring(bgep, srp);
227 		mutex_exit(srp->tc_lock);
228 
229 		/*
230 		 * Restart from ring 0, if we're not on ring 0 already.
231 		 * As H/W selects send BDs totally based on priority and
232 		 * available BDs on the higher priority ring are always
233 		 * selected first, driver should keep consistence with H/W
234 		 * and gives lower-numbered ring with higher priority.
235 		 */
236 		if (tx_rings > 1 && ring > 0)
237 			goto restart;
238 
239 		/*
240 		 * Loop over all rings (if there *are* multiple rings)
241 		 */
242 	} while (++srp, ++ring < tx_rings);
243 }
244 
245 
246 /*
247  * ========== Send-side transmit routines ==========
248  */
249 #define	TCP_CKSUM_OFFSET	16
250 #define	UDP_CKSUM_OFFSET	6
251 
252 static void
253 bge_pseudo_cksum(uint8_t *buf)
254 {
255 	uint32_t cksum;
256 	uint16_t iphl;
257 	uint16_t proto;
258 
259 	/*
260 	 * Point it to the ip header.
261 	 */
262 	buf += sizeof (struct ether_header);
263 
264 	/*
265 	 * Calculate the pseudo-header checksum.
266 	 */
267 	iphl = 4 * (buf[0] & 0xF);
268 	cksum = (((uint16_t)buf[2])<<8) + buf[3] - iphl;
269 	cksum += proto = buf[9];
270 	cksum += (((uint16_t)buf[12])<<8) + buf[13];
271 	cksum += (((uint16_t)buf[14])<<8) + buf[15];
272 	cksum += (((uint16_t)buf[16])<<8) + buf[17];
273 	cksum += (((uint16_t)buf[18])<<8) + buf[19];
274 	cksum = (cksum>>16) + (cksum & 0xFFFF);
275 	cksum = (cksum>>16) + (cksum & 0xFFFF);
276 
277 	/*
278 	 * Point it to the TCP/UDP header, and
279 	 * update the checksum field.
280 	 */
281 	buf += iphl + ((proto == IPPROTO_TCP) ?
282 	    TCP_CKSUM_OFFSET : UDP_CKSUM_OFFSET);
283 
284 	/*
285 	 * A real possibility that pointer cast is a problem.
286 	 * Should be fixed when we know the code better.
287 	 * E_BAD_PTR_CAST_ALIGN is added to make it temporarily clean.
288 	 */
289 	*(uint16_t *)buf = htons((uint16_t)cksum);
290 }
291 
292 static bge_queue_item_t *
293 bge_get_txbuf(bge_t *bgep, send_ring_t *srp)
294 {
295 	bge_queue_item_t *txbuf_item;
296 	bge_queue_t *txbuf_queue;
297 
298 	txbuf_queue = srp->txbuf_pop_queue;
299 	mutex_enter(txbuf_queue->lock);
300 	if (txbuf_queue->count == 0) {
301 		mutex_exit(txbuf_queue->lock);
302 		txbuf_queue = srp->txbuf_push_queue;
303 		mutex_enter(txbuf_queue->lock);
304 		if (txbuf_queue->count == 0) {
305 			mutex_exit(txbuf_queue->lock);
306 			/* Try to allocate more tx buffers */
307 			if (srp->tx_array < srp->tx_array_max) {
308 				mutex_enter(srp->tx_lock);
309 				txbuf_item = bge_alloc_txbuf_array(bgep, srp);
310 				mutex_exit(srp->tx_lock);
311 			} else
312 				txbuf_item = NULL;
313 			return (txbuf_item);
314 		}
315 	}
316 	txbuf_item = txbuf_queue->head;
317 	txbuf_queue->head = (bge_queue_item_t *)txbuf_item->next;
318 	txbuf_queue->count--;
319 	mutex_exit(txbuf_queue->lock);
320 	txbuf_item->next = NULL;
321 
322 	return (txbuf_item);
323 }
324 
325 static void bge_send_fill_txbd(send_ring_t *srp, send_pkt_t *pktp);
326 #pragma	inline(bge_send_fill_txbd)
327 
328 static void
329 bge_send_fill_txbd(send_ring_t *srp, send_pkt_t *pktp)
330 {
331 	bge_sbd_t *hw_sbd_p;
332 	sw_sbd_t *ssbdp;
333 	bge_queue_item_t *txbuf_item;
334 	sw_txbuf_t *txbuf;
335 	uint64_t slot;
336 
337 	ASSERT(mutex_owned(srp->tx_lock));
338 
339 	/*
340 	 * Go straight to claiming our already-reserved places
341 	 * on the train!
342 	 */
343 	ASSERT(pktp->txbuf_item != NULL);
344 	txbuf_item = pktp->txbuf_item;
345 	txbuf = txbuf_item->item;
346 	slot = srp->tx_next;
347 	ssbdp = &srp->sw_sbds[slot];
348 	hw_sbd_p = DMA_VPTR(ssbdp->desc);
349 	hw_sbd_p->flags = 0;
350 	ASSERT(txbuf->copy_len != 0);
351 	(void) ddi_dma_sync(txbuf->buf.dma_hdl,  0,
352 	    txbuf->copy_len, DDI_DMA_SYNC_FORDEV);
353 	ASSERT(ssbdp->pbuf == NULL);
354 	ssbdp->pbuf = txbuf_item;
355 	srp->tx_next = NEXT(slot, srp->desc.nslots);
356 	pktp->txbuf_item = NULL;
357 
358 	/*
359 	 * Setting hardware send buffer descriptor
360 	 */
361 	hw_sbd_p->host_buf_addr = txbuf->buf.cookie.dmac_laddress;
362 	hw_sbd_p->len = txbuf->copy_len;
363 	if (pktp->vlan_tci != 0) {
364 		hw_sbd_p->vlan_tci = pktp->vlan_tci;
365 		hw_sbd_p->host_buf_addr += VLAN_TAGSZ;
366 		hw_sbd_p->flags |= SBD_FLAG_VLAN_TAG;
367 	}
368 	if (pktp->pflags & HCK_IPV4_HDRCKSUM)
369 		hw_sbd_p->flags |= SBD_FLAG_IP_CKSUM;
370 	if (pktp->pflags & HCK_FULLCKSUM)
371 		hw_sbd_p->flags |= SBD_FLAG_TCP_UDP_CKSUM;
372 	hw_sbd_p->flags |= SBD_FLAG_PACKET_END;
373 }
374 
375 /*
376  * Send a message by copying it into a preallocated (and premapped) buffer
377  */
378 static void bge_send_copy(bge_t *bgep, sw_txbuf_t *txbuf, mblk_t *mp);
379 #pragma	inline(bge_send_copy)
380 
381 static void
382 bge_send_copy(bge_t *bgep, sw_txbuf_t *txbuf, mblk_t *mp)
383 {
384 	mblk_t *bp;
385 	uint32_t mblen;
386 	char *pbuf;
387 
388 	txbuf->copy_len = 0;
389 	pbuf = DMA_VPTR(txbuf->buf);
390 	for (bp = mp; bp != NULL; bp = bp->b_cont) {
391 		if ((mblen = MBLKL(bp)) == 0)
392 			continue;
393 		ASSERT(txbuf->copy_len + mblen <=
394 		    bgep->chipid.snd_buff_size);
395 		bcopy(bp->b_rptr, pbuf, mblen);
396 		pbuf += mblen;
397 		txbuf->copy_len += mblen;
398 	}
399 }
400 
401 /*
402  * Fill the Tx buffer descriptors and trigger the h/w transmission
403  */
404 static void
405 bge_send_serial(bge_t *bgep, send_ring_t *srp)
406 {
407 	send_pkt_t *pktp;
408 	uint64_t txfill_next;
409 	uint32_t count;
410 	uint32_t tx_next;
411 	sw_sbd_t *ssbdp;
412 	bge_status_t *bsp;
413 
414 	/*
415 	 * Try to hold the tx lock:
416 	 *	If we are in an interrupt context, use mutex_enter() to
417 	 *	ensure quick response for tx in interrupt context;
418 	 *	Otherwise, use mutex_tryenter() to serialize this h/w tx
419 	 *	BD filling and transmission triggering task.
420 	 */
421 	if (servicing_interrupt() != 0)
422 		mutex_enter(srp->tx_lock);
423 	else if (mutex_tryenter(srp->tx_lock) == 0)
424 		return;		/* already in process	*/
425 
426 	bsp = DMA_VPTR(bgep->status_block);
427 	txfill_next = srp->txfill_next;
428 start_tx:
429 	tx_next = srp->tx_next;
430 	ssbdp = &srp->sw_sbds[tx_next];
431 	for (count = 0; count < bgep->param_drain_max; ++count) {
432 		pktp = &srp->pktp[txfill_next];
433 		if (!pktp->tx_ready) {
434 			if (count == 0)
435 				srp->tx_block++;
436 			break;
437 		}
438 
439 		/*
440 		 * If there are no enough BDs: try to recycle more
441 		 */
442 		if (srp->tx_free <= 1)
443 			bge_recycle(bgep, bsp);
444 
445 		/*
446 		 * Reserved required BDs: 1 is enough
447 		 */
448 		if (!bge_atomic_reserve(&srp->tx_free, 1)) {
449 			srp->tx_nobd++;
450 			break;
451 		}
452 
453 		/*
454 		 * Filling the tx BD
455 		 */
456 		bge_send_fill_txbd(srp, pktp);
457 		txfill_next = NEXT(txfill_next, BGE_SEND_BUF_MAX);
458 		pktp->tx_ready = B_FALSE;
459 	}
460 
461 	/*
462 	 * Trigger h/w to start transmission.
463 	 */
464 	if (count != 0) {
465 		bge_atomic_sub64(&srp->tx_flow, count);
466 		if (tx_next + count > srp->desc.nslots) {
467 			(void) ddi_dma_sync(ssbdp->desc.dma_hdl,  0,
468 			    (srp->desc.nslots - tx_next) * sizeof (bge_sbd_t),
469 			    DDI_DMA_SYNC_FORDEV);
470 			count -= srp->desc.nslots - tx_next;
471 			ssbdp = &srp->sw_sbds[0];
472 		}
473 		(void) ddi_dma_sync(ssbdp->desc.dma_hdl,  0,
474 		    count*sizeof (bge_sbd_t), DDI_DMA_SYNC_FORDEV);
475 		bge_mbx_put(bgep, srp->chip_mbx_reg, srp->tx_next);
476 		srp->txfill_next = txfill_next;
477 		bgep->watchdog++;
478 		if (srp->tx_flow != 0 && srp->tx_free > 1)
479 			goto start_tx;
480 	}
481 
482 	mutex_exit(srp->tx_lock);
483 }
484 
485 mblk_t *
486 bge_ring_tx(void *arg, mblk_t *mp)
487 {
488 	send_ring_t *srp = arg;
489 	bge_t *bgep = srp->bgep;
490 	struct ether_vlan_header *ehp;
491 	bge_queue_item_t *txbuf_item;
492 	sw_txbuf_t *txbuf;
493 	send_pkt_t *pktp;
494 	uint64_t pkt_slot;
495 	uint16_t vlan_tci;
496 	uint32_t pflags;
497 	char *pbuf;
498 
499 	ASSERT(mp->b_next == NULL);
500 
501 	/*
502 	 * Get a s/w tx buffer first
503 	 */
504 	txbuf_item = bge_get_txbuf(bgep, srp);
505 	if (txbuf_item == NULL) {
506 		/* no tx buffer available */
507 		srp->tx_nobuf++;
508 		bgep->tx_resched_needed = B_TRUE;
509 		bge_send_serial(bgep, srp);
510 		return (mp);
511 	}
512 
513 	/*
514 	 * Copy all mp fragments to the pkt buffer
515 	 */
516 	txbuf = txbuf_item->item;
517 	bge_send_copy(bgep, txbuf, mp);
518 
519 	/*
520 	 * Determine if the packet is VLAN tagged.
521 	 */
522 	ASSERT(txbuf->copy_len >= sizeof (struct ether_header));
523 	pbuf = DMA_VPTR(txbuf->buf);
524 
525 	ehp = (void *)pbuf;
526 	if (ehp->ether_tpid == htons(ETHERTYPE_VLAN)) {
527 		/* Strip the vlan tag */
528 		vlan_tci = ntohs(ehp->ether_tci);
529 		pbuf = memmove(pbuf + VLAN_TAGSZ, pbuf, 2 * ETHERADDRL);
530 		txbuf->copy_len -= VLAN_TAGSZ;
531 	} else
532 		vlan_tci = 0;
533 
534 	/*
535 	 * Retrieve checksum offloading info.
536 	 */
537 	hcksum_retrieve(mp, NULL, NULL, NULL, NULL, NULL, NULL, &pflags);
538 
539 	/*
540 	 * Calculate pseudo checksum if needed.
541 	 */
542 	if ((pflags & HCK_FULLCKSUM) &&
543 	    (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM))
544 		bge_pseudo_cksum((uint8_t *)pbuf);
545 
546 	/*
547 	 * Packet buffer is ready to send: get and fill pkt info
548 	 */
549 	pkt_slot = bge_atomic_next(&srp->txpkt_next, BGE_SEND_BUF_MAX);
550 	pktp = &srp->pktp[pkt_slot];
551 	ASSERT(pktp->txbuf_item == NULL);
552 	pktp->txbuf_item = txbuf_item;
553 	pktp->vlan_tci = vlan_tci;
554 	pktp->pflags = pflags;
555 	atomic_inc_64(&srp->tx_flow);
556 	ASSERT(pktp->tx_ready == B_FALSE);
557 	pktp->tx_ready = B_TRUE;
558 
559 	/*
560 	 * Filling the h/w bd and trigger the h/w to start transmission
561 	 */
562 	bge_send_serial(bgep, srp);
563 
564 	srp->pushed_bytes += MBLKL(mp);
565 
566 	/*
567 	 * We've copied the contents, the message can be freed right away
568 	 */
569 	freemsg(mp);
570 	return (NULL);
571 }
572 
573 static mblk_t *
574 bge_send(bge_t *bgep, mblk_t *mp)
575 {
576 	send_ring_t *ring;
577 
578 	ring = &bgep->send[0];	/* ring 0 */
579 
580 	return (bge_ring_tx(ring, mp));
581 }
582 
583 uint_t
584 bge_send_drain(caddr_t arg)
585 {
586 	uint_t ring = 0;	/* use ring 0 */
587 	bge_t *bgep;
588 	send_ring_t *srp;
589 
590 	bgep = (void *)arg;
591 	BGE_TRACE(("bge_send_drain($%p)", (void *)bgep));
592 
593 	srp = &bgep->send[ring];
594 	bge_send_serial(bgep, srp);
595 
596 	if (bgep->tx_resched_needed &&
597 	    (srp->tx_flow < srp->tx_buffers_low) &&
598 	    (bgep->bge_mac_state == BGE_MAC_STARTED)) {
599 		mac_tx_update(bgep->mh);
600 		bgep->tx_resched_needed = B_FALSE;
601 		bgep->tx_resched++;
602 	}
603 
604 	return (DDI_INTR_CLAIMED);
605 }
606 
607 /*
608  * bge_m_tx() - send a chain of packets
609  */
610 mblk_t *
611 bge_m_tx(void *arg, mblk_t *mp)
612 {
613 	bge_t *bgep = arg;		/* private device info	*/
614 	mblk_t *next;
615 
616 	BGE_TRACE(("bge_m_tx($%p, $%p)", arg, (void *)mp));
617 
618 	ASSERT(mp != NULL);
619 	ASSERT(bgep->bge_mac_state == BGE_MAC_STARTED);
620 
621 	rw_enter(bgep->errlock, RW_READER);
622 	if (bgep->bge_chip_state != BGE_CHIP_RUNNING) {
623 		BGE_DEBUG(("bge_m_tx: chip not running"));
624 		freemsgchain(mp);
625 		mp = NULL;
626 	}
627 
628 	while (mp != NULL) {
629 		next = mp->b_next;
630 		mp->b_next = NULL;
631 
632 		if ((mp = bge_send(bgep, mp)) != NULL) {
633 			mp->b_next = next;
634 			break;
635 		}
636 
637 		mp = next;
638 	}
639 	rw_exit(bgep->errlock);
640 
641 	return (mp);
642 }
643