xref: /titanic_41/usr/src/uts/common/io/bge/bge_main2.c (revision 4d86dd30d2f1154ded30a45ac7c3a29f7febabac)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "bge_impl.h"
30 #include <sys/sdt.h>
31 #include <sys/dld.h>
32 
33 /*
34  * This is the string displayed by modinfo, etc.
35  * Make sure you keep the version ID up to date!
36  */
37 static char bge_ident[] = "Broadcom Gb Ethernet v0.60";
38 
39 /*
40  * Property names
41  */
42 static char debug_propname[] = "bge-debug-flags";
43 static char clsize_propname[] = "cache-line-size";
44 static char latency_propname[] = "latency-timer";
45 static char localmac_boolname[] = "local-mac-address?";
46 static char localmac_propname[] = "local-mac-address";
47 static char macaddr_propname[] = "mac-address";
48 static char subdev_propname[] = "subsystem-id";
49 static char subven_propname[] = "subsystem-vendor-id";
50 static char rxrings_propname[] = "bge-rx-rings";
51 static char txrings_propname[] = "bge-tx-rings";
52 static char fm_cap[] = "fm-capable";
53 static char default_mtu[] = "default_mtu";
54 
55 static int bge_add_intrs(bge_t *, int);
56 static void bge_rem_intrs(bge_t *);
57 
58 /*
59  * Describes the chip's DMA engine
60  */
61 static ddi_dma_attr_t dma_attr = {
62 	DMA_ATTR_V0,			/* dma_attr version	*/
63 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
64 	0xFFFFFFFFFFFFFFFFull,		/* dma_attr_addr_hi	*/
65 	0x00000000FFFFFFFFull,		/* dma_attr_count_max	*/
66 	0x0000000000000001ull,		/* dma_attr_align	*/
67 	0x00000FFF,			/* dma_attr_burstsizes	*/
68 	0x00000001,			/* dma_attr_minxfer	*/
69 	0x000000000000FFFFull,		/* dma_attr_maxxfer	*/
70 	0xFFFFFFFFFFFFFFFFull,		/* dma_attr_seg		*/
71 	1,				/* dma_attr_sgllen 	*/
72 	0x00000001,			/* dma_attr_granular 	*/
73 	DDI_DMA_FLAGERR			/* dma_attr_flags */
74 };
75 
76 /*
77  * PIO access attributes for registers
78  */
79 static ddi_device_acc_attr_t bge_reg_accattr = {
80 	DDI_DEVICE_ATTR_V0,
81 	DDI_NEVERSWAP_ACC,
82 	DDI_STRICTORDER_ACC,
83 	DDI_FLAGERR_ACC
84 };
85 
86 /*
87  * DMA access attributes for descriptors: NOT to be byte swapped.
88  */
89 static ddi_device_acc_attr_t bge_desc_accattr = {
90 	DDI_DEVICE_ATTR_V0,
91 	DDI_NEVERSWAP_ACC,
92 	DDI_STRICTORDER_ACC,
93 	DDI_FLAGERR_ACC
94 };
95 
96 /*
97  * DMA access attributes for data: NOT to be byte swapped.
98  */
99 static ddi_device_acc_attr_t bge_data_accattr = {
100 	DDI_DEVICE_ATTR_V0,
101 	DDI_NEVERSWAP_ACC,
102 	DDI_STRICTORDER_ACC
103 };
104 
105 /*
106  * Versions of the O/S up to Solaris 8 didn't support network booting
107  * from any network interface except the first (NET0).  Patching this
108  * flag to a non-zero value will tell the driver to work around this
109  * limitation by creating an extra (internal) pathname node.  To do
110  * this, just add a line like the following to the CLIENT'S etc/system
111  * file ON THE ROOT FILESYSTEM SERVER before booting the client:
112  *
113  *	set bge:bge_net1_boot_support = 1;
114  */
115 static uint32_t bge_net1_boot_support = 1;
116 
117 static int		bge_m_start(void *);
118 static void		bge_m_stop(void *);
119 static int		bge_m_promisc(void *, boolean_t);
120 static int		bge_m_multicst(void *, boolean_t, const uint8_t *);
121 static int		bge_m_unicst(void *, const uint8_t *);
122 static void		bge_m_resources(void *);
123 static void		bge_m_ioctl(void *, queue_t *, mblk_t *);
124 static boolean_t	bge_m_getcapab(void *, mac_capab_t, void *);
125 static int		bge_unicst_set(void *, const uint8_t *,
126     mac_addr_slot_t);
127 static int		bge_m_unicst_add(void *, mac_multi_addr_t *);
128 static int		bge_m_unicst_remove(void *, mac_addr_slot_t);
129 static int		bge_m_unicst_modify(void *, mac_multi_addr_t *);
130 static int		bge_m_unicst_get(void *, mac_multi_addr_t *);
131 static int		bge_m_setprop(void *, const char *, mac_prop_id_t,
132     uint_t, const void *);
133 static int		bge_m_getprop(void *, const char *, mac_prop_id_t,
134     uint_t, void *);
135 static int		bge_set_priv_prop(bge_t *, const char *, uint_t,
136     const void *);
137 static int		bge_get_priv_prop(bge_t *, const char *, uint_t,
138     void *);
139 
140 #define	BGE_M_CALLBACK_FLAGS\
141 	(MC_RESOURCES | MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP)
142 
143 static mac_callbacks_t bge_m_callbacks = {
144 	BGE_M_CALLBACK_FLAGS,
145 	bge_m_stat,
146 	bge_m_start,
147 	bge_m_stop,
148 	bge_m_promisc,
149 	bge_m_multicst,
150 	bge_m_unicst,
151 	bge_m_tx,
152 	bge_m_resources,
153 	bge_m_ioctl,
154 	bge_m_getcapab,
155 	NULL,
156 	NULL,
157 	bge_m_setprop,
158 	bge_m_getprop
159 };
160 
161 /*
162  * ========== Transmit and receive ring reinitialisation ==========
163  */
164 
165 /*
166  * These <reinit> routines each reset the specified ring to an initial
167  * state, assuming that the corresponding <init> routine has already
168  * been called exactly once.
169  */
170 
171 static void
172 bge_reinit_send_ring(send_ring_t *srp)
173 {
174 	bge_queue_t *txbuf_queue;
175 	bge_queue_item_t *txbuf_head;
176 	sw_txbuf_t *txbuf;
177 	sw_sbd_t *ssbdp;
178 	uint32_t slot;
179 
180 	/*
181 	 * Reinitialise control variables ...
182 	 */
183 	srp->tx_flow = 0;
184 	srp->tx_next = 0;
185 	srp->txfill_next = 0;
186 	srp->tx_free = srp->desc.nslots;
187 	ASSERT(mutex_owned(srp->tc_lock));
188 	srp->tc_next = 0;
189 	srp->txpkt_next = 0;
190 	srp->tx_block = 0;
191 	srp->tx_nobd = 0;
192 	srp->tx_nobuf = 0;
193 
194 	/*
195 	 * Initialize the tx buffer push queue
196 	 */
197 	mutex_enter(srp->freetxbuf_lock);
198 	mutex_enter(srp->txbuf_lock);
199 	txbuf_queue = &srp->freetxbuf_queue;
200 	txbuf_queue->head = NULL;
201 	txbuf_queue->count = 0;
202 	txbuf_queue->lock = srp->freetxbuf_lock;
203 	srp->txbuf_push_queue = txbuf_queue;
204 
205 	/*
206 	 * Initialize the tx buffer pop queue
207 	 */
208 	txbuf_queue = &srp->txbuf_queue;
209 	txbuf_queue->head = NULL;
210 	txbuf_queue->count = 0;
211 	txbuf_queue->lock = srp->txbuf_lock;
212 	srp->txbuf_pop_queue = txbuf_queue;
213 	txbuf_head = srp->txbuf_head;
214 	txbuf = srp->txbuf;
215 	for (slot = 0; slot < srp->tx_buffers; ++slot) {
216 		txbuf_head->item = txbuf;
217 		txbuf_head->next = txbuf_queue->head;
218 		txbuf_queue->head = txbuf_head;
219 		txbuf_queue->count++;
220 		txbuf++;
221 		txbuf_head++;
222 	}
223 	mutex_exit(srp->txbuf_lock);
224 	mutex_exit(srp->freetxbuf_lock);
225 
226 	/*
227 	 * Zero and sync all the h/w Send Buffer Descriptors
228 	 */
229 	DMA_ZERO(srp->desc);
230 	DMA_SYNC(srp->desc, DDI_DMA_SYNC_FORDEV);
231 	bzero(srp->pktp, BGE_SEND_BUF_MAX * sizeof (*srp->pktp));
232 	ssbdp = srp->sw_sbds;
233 	for (slot = 0; slot < srp->desc.nslots; ++ssbdp, ++slot)
234 		ssbdp->pbuf = NULL;
235 }
236 
237 static void
238 bge_reinit_recv_ring(recv_ring_t *rrp)
239 {
240 	/*
241 	 * Reinitialise control variables ...
242 	 */
243 	rrp->rx_next = 0;
244 }
245 
246 static void
247 bge_reinit_buff_ring(buff_ring_t *brp, uint32_t ring)
248 {
249 	bge_rbd_t *hw_rbd_p;
250 	sw_rbd_t *srbdp;
251 	uint32_t bufsize;
252 	uint32_t nslots;
253 	uint32_t slot;
254 
255 	static uint16_t ring_type_flag[BGE_BUFF_RINGS_MAX] = {
256 		RBD_FLAG_STD_RING,
257 		RBD_FLAG_JUMBO_RING,
258 		RBD_FLAG_MINI_RING
259 	};
260 
261 	/*
262 	 * Zero, initialise and sync all the h/w Receive Buffer Descriptors
263 	 * Note: all the remaining fields (<type>, <flags>, <ip_cksum>,
264 	 * <tcp_udp_cksum>, <error_flag>, <vlan_tag>, and <reserved>)
265 	 * should be zeroed, and so don't need to be set up specifically
266 	 * once the whole area has been cleared.
267 	 */
268 	DMA_ZERO(brp->desc);
269 
270 	hw_rbd_p = DMA_VPTR(brp->desc);
271 	nslots = brp->desc.nslots;
272 	ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT);
273 	bufsize = brp->buf[0].size;
274 	srbdp = brp->sw_rbds;
275 	for (slot = 0; slot < nslots; ++hw_rbd_p, ++srbdp, ++slot) {
276 		hw_rbd_p->host_buf_addr = srbdp->pbuf.cookie.dmac_laddress;
277 		hw_rbd_p->index = slot;
278 		hw_rbd_p->len = bufsize;
279 		hw_rbd_p->opaque = srbdp->pbuf.token;
280 		hw_rbd_p->flags |= ring_type_flag[ring];
281 	}
282 
283 	DMA_SYNC(brp->desc, DDI_DMA_SYNC_FORDEV);
284 
285 	/*
286 	 * Finally, reinitialise the ring control variables ...
287 	 */
288 	brp->rf_next = (nslots != 0) ? (nslots-1) : 0;
289 }
290 
291 /*
292  * Reinitialize all rings
293  */
294 static void
295 bge_reinit_rings(bge_t *bgep)
296 {
297 	uint32_t ring;
298 
299 	ASSERT(mutex_owned(bgep->genlock));
300 
301 	/*
302 	 * Send Rings ...
303 	 */
304 	for (ring = 0; ring < bgep->chipid.tx_rings; ++ring)
305 		bge_reinit_send_ring(&bgep->send[ring]);
306 
307 	/*
308 	 * Receive Return Rings ...
309 	 */
310 	for (ring = 0; ring < bgep->chipid.rx_rings; ++ring)
311 		bge_reinit_recv_ring(&bgep->recv[ring]);
312 
313 	/*
314 	 * Receive Producer Rings ...
315 	 */
316 	for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
317 		bge_reinit_buff_ring(&bgep->buff[ring], ring);
318 }
319 
320 /*
321  * ========== Internal state management entry points ==========
322  */
323 
324 #undef	BGE_DBG
325 #define	BGE_DBG		BGE_DBG_NEMO	/* debug flag for this code	*/
326 
327 /*
328  * These routines provide all the functionality required by the
329  * corresponding GLD entry points, but don't update the GLD state
330  * so they can be called internally without disturbing our record
331  * of what GLD thinks we should be doing ...
332  */
333 
334 /*
335  *	bge_reset() -- reset h/w & rings to initial state
336  */
337 static int
338 #ifdef BGE_IPMI_ASF
339 bge_reset(bge_t *bgep, uint_t asf_mode)
340 #else
341 bge_reset(bge_t *bgep)
342 #endif
343 {
344 	uint32_t	ring;
345 	int retval;
346 
347 	BGE_TRACE(("bge_reset($%p)", (void *)bgep));
348 
349 	ASSERT(mutex_owned(bgep->genlock));
350 
351 	/*
352 	 * Grab all the other mutexes in the world (this should
353 	 * ensure no other threads are manipulating driver state)
354 	 */
355 	for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
356 		mutex_enter(bgep->recv[ring].rx_lock);
357 	for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
358 		mutex_enter(bgep->buff[ring].rf_lock);
359 	rw_enter(bgep->errlock, RW_WRITER);
360 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
361 		mutex_enter(bgep->send[ring].tx_lock);
362 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
363 		mutex_enter(bgep->send[ring].tc_lock);
364 
365 #ifdef BGE_IPMI_ASF
366 	retval = bge_chip_reset(bgep, B_TRUE, asf_mode);
367 #else
368 	retval = bge_chip_reset(bgep, B_TRUE);
369 #endif
370 	bge_reinit_rings(bgep);
371 
372 	/*
373 	 * Free the world ...
374 	 */
375 	for (ring = BGE_SEND_RINGS_MAX; ring-- > 0; )
376 		mutex_exit(bgep->send[ring].tc_lock);
377 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
378 		mutex_exit(bgep->send[ring].tx_lock);
379 	rw_exit(bgep->errlock);
380 	for (ring = BGE_BUFF_RINGS_MAX; ring-- > 0; )
381 		mutex_exit(bgep->buff[ring].rf_lock);
382 	for (ring = BGE_RECV_RINGS_MAX; ring-- > 0; )
383 		mutex_exit(bgep->recv[ring].rx_lock);
384 
385 	BGE_DEBUG(("bge_reset($%p) done", (void *)bgep));
386 	return (retval);
387 }
388 
389 /*
390  *	bge_stop() -- stop processing, don't reset h/w or rings
391  */
392 static void
393 bge_stop(bge_t *bgep)
394 {
395 	BGE_TRACE(("bge_stop($%p)", (void *)bgep));
396 
397 	ASSERT(mutex_owned(bgep->genlock));
398 
399 #ifdef BGE_IPMI_ASF
400 	if (bgep->asf_enabled) {
401 		bgep->asf_pseudostop = B_TRUE;
402 	} else {
403 #endif
404 		bge_chip_stop(bgep, B_FALSE);
405 #ifdef BGE_IPMI_ASF
406 	}
407 #endif
408 
409 	BGE_DEBUG(("bge_stop($%p) done", (void *)bgep));
410 }
411 
412 /*
413  *	bge_start() -- start transmitting/receiving
414  */
415 static int
416 bge_start(bge_t *bgep, boolean_t reset_phys)
417 {
418 	int retval;
419 
420 	BGE_TRACE(("bge_start($%p, %d)", (void *)bgep, reset_phys));
421 
422 	ASSERT(mutex_owned(bgep->genlock));
423 
424 	/*
425 	 * Start chip processing, including enabling interrupts
426 	 */
427 	retval = bge_chip_start(bgep, reset_phys);
428 
429 	BGE_DEBUG(("bge_start($%p, %d) done", (void *)bgep, reset_phys));
430 	return (retval);
431 }
432 
433 /*
434  * bge_restart - restart transmitting/receiving after error or suspend
435  */
436 int
437 bge_restart(bge_t *bgep, boolean_t reset_phys)
438 {
439 	int retval = DDI_SUCCESS;
440 	ASSERT(mutex_owned(bgep->genlock));
441 
442 #ifdef BGE_IPMI_ASF
443 	if (bgep->asf_enabled) {
444 		if (bge_reset(bgep, ASF_MODE_POST_INIT) != DDI_SUCCESS)
445 			retval = DDI_FAILURE;
446 	} else
447 		if (bge_reset(bgep, ASF_MODE_NONE) != DDI_SUCCESS)
448 			retval = DDI_FAILURE;
449 #else
450 	if (bge_reset(bgep) != DDI_SUCCESS)
451 		retval = DDI_FAILURE;
452 #endif
453 	if (bgep->bge_mac_state == BGE_MAC_STARTED) {
454 		if (bge_start(bgep, reset_phys) != DDI_SUCCESS)
455 			retval = DDI_FAILURE;
456 		bgep->watchdog = 0;
457 		ddi_trigger_softintr(bgep->drain_id);
458 	}
459 
460 	BGE_DEBUG(("bge_restart($%p, %d) done", (void *)bgep, reset_phys));
461 	return (retval);
462 }
463 
464 
465 /*
466  * ========== Nemo-required management entry points ==========
467  */
468 
469 #undef	BGE_DBG
470 #define	BGE_DBG		BGE_DBG_NEMO	/* debug flag for this code	*/
471 
472 /*
473  *	bge_m_stop() -- stop transmitting/receiving
474  */
475 static void
476 bge_m_stop(void *arg)
477 {
478 	bge_t *bgep = arg;		/* private device info	*/
479 	send_ring_t *srp;
480 	uint32_t ring;
481 
482 	BGE_TRACE(("bge_m_stop($%p)", arg));
483 
484 	/*
485 	 * Just stop processing, then record new GLD state
486 	 */
487 	mutex_enter(bgep->genlock);
488 	if (!(bgep->progress & PROGRESS_INTR)) {
489 		/* can happen during autorecovery */
490 		mutex_exit(bgep->genlock);
491 		return;
492 	}
493 	bge_stop(bgep);
494 	/*
495 	 * Free the possible tx buffers allocated in tx process.
496 	 */
497 #ifdef BGE_IPMI_ASF
498 	if (!bgep->asf_pseudostop)
499 #endif
500 	{
501 		rw_enter(bgep->errlock, RW_WRITER);
502 		for (ring = 0; ring < bgep->chipid.tx_rings; ++ring) {
503 			srp = &bgep->send[ring];
504 			mutex_enter(srp->tx_lock);
505 			if (srp->tx_array > 1)
506 				bge_free_txbuf_arrays(srp);
507 			mutex_exit(srp->tx_lock);
508 		}
509 		rw_exit(bgep->errlock);
510 	}
511 	bgep->bge_mac_state = BGE_MAC_STOPPED;
512 	BGE_DEBUG(("bge_m_stop($%p) done", arg));
513 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
514 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
515 	mutex_exit(bgep->genlock);
516 }
517 
518 /*
519  *	bge_m_start() -- start transmitting/receiving
520  */
521 static int
522 bge_m_start(void *arg)
523 {
524 	bge_t *bgep = arg;		/* private device info	*/
525 
526 	BGE_TRACE(("bge_m_start($%p)", arg));
527 
528 	/*
529 	 * Start processing and record new GLD state
530 	 */
531 	mutex_enter(bgep->genlock);
532 	if (!(bgep->progress & PROGRESS_INTR)) {
533 		/* can happen during autorecovery */
534 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
535 		mutex_exit(bgep->genlock);
536 		return (EIO);
537 	}
538 #ifdef BGE_IPMI_ASF
539 	if (bgep->asf_enabled) {
540 		if ((bgep->asf_status == ASF_STAT_RUN) &&
541 		    (bgep->asf_pseudostop)) {
542 			bgep->bge_mac_state = BGE_MAC_STARTED;
543 			mutex_exit(bgep->genlock);
544 			return (0);
545 		}
546 	}
547 	if (bge_reset(bgep, ASF_MODE_INIT) != DDI_SUCCESS) {
548 #else
549 	if (bge_reset(bgep) != DDI_SUCCESS) {
550 #endif
551 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
552 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
553 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
554 		mutex_exit(bgep->genlock);
555 		return (EIO);
556 	}
557 	if (bge_start(bgep, B_TRUE) != DDI_SUCCESS) {
558 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
559 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
560 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
561 		mutex_exit(bgep->genlock);
562 		return (EIO);
563 	}
564 	bgep->bge_mac_state = BGE_MAC_STARTED;
565 	BGE_DEBUG(("bge_m_start($%p) done", arg));
566 
567 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
568 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
569 		mutex_exit(bgep->genlock);
570 		return (EIO);
571 	}
572 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
573 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
574 		mutex_exit(bgep->genlock);
575 		return (EIO);
576 	}
577 #ifdef BGE_IPMI_ASF
578 	if (bgep->asf_enabled) {
579 		if (bgep->asf_status != ASF_STAT_RUN) {
580 			/* start ASF heart beat */
581 			bgep->asf_timeout_id = timeout(bge_asf_heartbeat,
582 			    (void *)bgep,
583 			    drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
584 			bgep->asf_status = ASF_STAT_RUN;
585 		}
586 	}
587 #endif
588 	mutex_exit(bgep->genlock);
589 
590 	return (0);
591 }
592 
593 /*
594  *	bge_m_unicst() -- set the physical network address
595  */
596 static int
597 bge_m_unicst(void *arg, const uint8_t *macaddr)
598 {
599 	/*
600 	 * Request to set address in
601 	 * address slot 0, i.e., default address
602 	 */
603 	return (bge_unicst_set(arg, macaddr, 0));
604 }
605 
606 /*
607  *	bge_unicst_set() -- set the physical network address
608  */
609 static int
610 bge_unicst_set(void *arg, const uint8_t *macaddr, mac_addr_slot_t slot)
611 {
612 	bge_t *bgep = arg;		/* private device info	*/
613 
614 	BGE_TRACE(("bge_m_unicst_set($%p, %s)", arg,
615 	    ether_sprintf((void *)macaddr)));
616 	/*
617 	 * Remember the new current address in the driver state
618 	 * Sync the chip's idea of the address too ...
619 	 */
620 	mutex_enter(bgep->genlock);
621 	if (!(bgep->progress & PROGRESS_INTR)) {
622 		/* can happen during autorecovery */
623 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
624 		mutex_exit(bgep->genlock);
625 		return (EIO);
626 	}
627 	ethaddr_copy(macaddr, bgep->curr_addr[slot].addr);
628 #ifdef BGE_IPMI_ASF
629 	if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE) {
630 #else
631 	if (bge_chip_sync(bgep) == DDI_FAILURE) {
632 #endif
633 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
634 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
635 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
636 		mutex_exit(bgep->genlock);
637 		return (EIO);
638 	}
639 #ifdef BGE_IPMI_ASF
640 	if (bgep->asf_enabled) {
641 		/*
642 		 * The above bge_chip_sync() function wrote the ethernet MAC
643 		 * addresses registers which destroyed the IPMI/ASF sideband.
644 		 * Here, we have to reset chip to make IPMI/ASF sideband work.
645 		 */
646 		if (bgep->asf_status == ASF_STAT_RUN) {
647 			/*
648 			 * We must stop ASF heart beat before bge_chip_stop(),
649 			 * otherwise some computers (ex. IBM HS20 blade server)
650 			 * may crash.
651 			 */
652 			bge_asf_update_status(bgep);
653 			bge_asf_stop_timer(bgep);
654 			bgep->asf_status = ASF_STAT_STOP;
655 
656 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
657 		}
658 		bge_chip_stop(bgep, B_FALSE);
659 
660 		if (bge_restart(bgep, B_FALSE) == DDI_FAILURE) {
661 			(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
662 			(void) bge_check_acc_handle(bgep, bgep->io_handle);
663 			ddi_fm_service_impact(bgep->devinfo,
664 			    DDI_SERVICE_DEGRADED);
665 			mutex_exit(bgep->genlock);
666 			return (EIO);
667 		}
668 
669 		/*
670 		 * Start our ASF heartbeat counter as soon as possible.
671 		 */
672 		if (bgep->asf_status != ASF_STAT_RUN) {
673 			/* start ASF heart beat */
674 			bgep->asf_timeout_id = timeout(bge_asf_heartbeat,
675 			    (void *)bgep,
676 			    drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
677 			bgep->asf_status = ASF_STAT_RUN;
678 		}
679 	}
680 #endif
681 	BGE_DEBUG(("bge_m_unicst_set($%p) done", arg));
682 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
683 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
684 		mutex_exit(bgep->genlock);
685 		return (EIO);
686 	}
687 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
688 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
689 		mutex_exit(bgep->genlock);
690 		return (EIO);
691 	}
692 	mutex_exit(bgep->genlock);
693 
694 	return (0);
695 }
696 
697 /*
698  * The following four routines are used as callbacks for multiple MAC
699  * address support:
700  *    -  bge_m_unicst_add(void *, mac_multi_addr_t *);
701  *    -  bge_m_unicst_remove(void *, mac_addr_slot_t);
702  *    -  bge_m_unicst_modify(void *, mac_multi_addr_t *);
703  *    -  bge_m_unicst_get(void *, mac_multi_addr_t *);
704  */
705 
706 /*
707  * bge_m_unicst_add() - will find an unused address slot, set the
708  * address value to the one specified, reserve that slot and enable
709  * the NIC to start filtering on the new MAC address.
710  * address slot. Returns 0 on success.
711  */
712 static int
713 bge_m_unicst_add(void *arg, mac_multi_addr_t *maddr)
714 {
715 	bge_t *bgep = arg;		/* private device info	*/
716 	mac_addr_slot_t slot;
717 	int err;
718 
719 	if (mac_unicst_verify(bgep->mh,
720 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
721 		return (EINVAL);
722 
723 	mutex_enter(bgep->genlock);
724 	if (bgep->unicst_addr_avail == 0) {
725 		/* no slots available */
726 		mutex_exit(bgep->genlock);
727 		return (ENOSPC);
728 	}
729 
730 	/*
731 	 * Primary/default address is in slot 0. The next three
732 	 * addresses are the multiple MAC addresses. So multiple
733 	 * MAC address 0 is in slot 1, 1 in slot 2, and so on.
734 	 * So the first multiple MAC address resides in slot 1.
735 	 */
736 	for (slot = 1; slot < bgep->unicst_addr_total; slot++) {
737 		if (bgep->curr_addr[slot].set == B_FALSE) {
738 			bgep->curr_addr[slot].set = B_TRUE;
739 			break;
740 		}
741 	}
742 
743 	ASSERT(slot < bgep->unicst_addr_total);
744 	bgep->unicst_addr_avail--;
745 	mutex_exit(bgep->genlock);
746 	maddr->mma_slot = slot;
747 
748 	if ((err = bge_unicst_set(bgep, maddr->mma_addr, slot)) != 0) {
749 		mutex_enter(bgep->genlock);
750 		bgep->curr_addr[slot].set = B_FALSE;
751 		bgep->unicst_addr_avail++;
752 		mutex_exit(bgep->genlock);
753 	}
754 	return (err);
755 }
756 
757 /*
758  * bge_m_unicst_remove() - removes a MAC address that was added by a
759  * call to bge_m_unicst_add(). The slot number that was returned in
760  * add() is passed in the call to remove the address.
761  * Returns 0 on success.
762  */
763 static int
764 bge_m_unicst_remove(void *arg, mac_addr_slot_t slot)
765 {
766 	bge_t *bgep = arg;		/* private device info	*/
767 
768 	if (slot <= 0 || slot >= bgep->unicst_addr_total)
769 		return (EINVAL);
770 
771 	mutex_enter(bgep->genlock);
772 	if (bgep->curr_addr[slot].set == B_TRUE) {
773 		bgep->curr_addr[slot].set = B_FALSE;
774 		bgep->unicst_addr_avail++;
775 		mutex_exit(bgep->genlock);
776 		/*
777 		 * Copy the default address to the passed slot
778 		 */
779 		return (bge_unicst_set(bgep, bgep->curr_addr[0].addr, slot));
780 	}
781 	mutex_exit(bgep->genlock);
782 	return (EINVAL);
783 }
784 
785 /*
786  * bge_m_unicst_modify() - modifies the value of an address that
787  * has been added by bge_m_unicst_add(). The new address, address
788  * length and the slot number that was returned in the call to add
789  * should be passed to bge_m_unicst_modify(). mma_flags should be
790  * set to 0. Returns 0 on success.
791  */
792 static int
793 bge_m_unicst_modify(void *arg, mac_multi_addr_t *maddr)
794 {
795 	bge_t *bgep = arg;		/* private device info	*/
796 	mac_addr_slot_t slot;
797 
798 	if (mac_unicst_verify(bgep->mh,
799 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
800 		return (EINVAL);
801 
802 	slot = maddr->mma_slot;
803 
804 	if (slot <= 0 || slot >= bgep->unicst_addr_total)
805 		return (EINVAL);
806 
807 	mutex_enter(bgep->genlock);
808 	if (bgep->curr_addr[slot].set == B_TRUE) {
809 		mutex_exit(bgep->genlock);
810 		return (bge_unicst_set(bgep, maddr->mma_addr, slot));
811 	}
812 	mutex_exit(bgep->genlock);
813 
814 	return (EINVAL);
815 }
816 
817 /*
818  * bge_m_unicst_get() - will get the MAC address and all other
819  * information related to the address slot passed in mac_multi_addr_t.
820  * mma_flags should be set to 0 in the call.
821  * On return, mma_flags can take the following values:
822  * 1) MMAC_SLOT_UNUSED
823  * 2) MMAC_SLOT_USED | MMAC_VENDOR_ADDR
824  * 3) MMAC_SLOT_UNUSED | MMAC_VENDOR_ADDR
825  * 4) MMAC_SLOT_USED
826  */
827 static int
828 bge_m_unicst_get(void *arg, mac_multi_addr_t *maddr)
829 {
830 	bge_t *bgep = arg;		/* private device info	*/
831 	mac_addr_slot_t slot;
832 
833 	slot = maddr->mma_slot;
834 
835 	if (slot <= 0 || slot >= bgep->unicst_addr_total)
836 		return (EINVAL);
837 
838 	mutex_enter(bgep->genlock);
839 	if (bgep->curr_addr[slot].set == B_TRUE) {
840 		ethaddr_copy(bgep->curr_addr[slot].addr,
841 		    maddr->mma_addr);
842 		maddr->mma_flags = MMAC_SLOT_USED;
843 	} else {
844 		maddr->mma_flags = MMAC_SLOT_UNUSED;
845 	}
846 	mutex_exit(bgep->genlock);
847 
848 	return (0);
849 }
850 
851 extern void bge_wake_factotum(bge_t *);
852 
853 static boolean_t
854 bge_param_locked(mac_prop_id_t pr_num)
855 {
856 	/*
857 	 * All adv_* parameters are locked (read-only) while
858 	 * the device is in any sort of loopback mode ...
859 	 */
860 	switch (pr_num) {
861 		case DLD_PROP_ADV_1000FDX_CAP:
862 		case DLD_PROP_EN_1000FDX_CAP:
863 		case DLD_PROP_ADV_1000HDX_CAP:
864 		case DLD_PROP_EN_1000HDX_CAP:
865 		case DLD_PROP_ADV_100FDX_CAP:
866 		case DLD_PROP_EN_100FDX_CAP:
867 		case DLD_PROP_ADV_100HDX_CAP:
868 		case DLD_PROP_EN_100HDX_CAP:
869 		case DLD_PROP_ADV_10FDX_CAP:
870 		case DLD_PROP_EN_10FDX_CAP:
871 		case DLD_PROP_ADV_10HDX_CAP:
872 		case DLD_PROP_EN_10HDX_CAP:
873 		case DLD_PROP_AUTONEG:
874 		case DLD_PROP_FLOWCTRL:
875 			return (B_TRUE);
876 	}
877 	return (B_FALSE);
878 }
879 /*
880  * callback functions for set/get of properties
881  */
882 static int
883 bge_m_setprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
884     uint_t pr_valsize, const void *pr_val)
885 {
886 	bge_t *bgep = barg;
887 	int err = 0;
888 	uint64_t cur_mtu, new_mtu;
889 	uint_t	maxsdu;
890 	link_flowctrl_t fl;
891 
892 	mutex_enter(bgep->genlock);
893 	if (bgep->param_loop_mode != BGE_LOOP_NONE &&
894 	    bge_param_locked(pr_num)) {
895 		/*
896 		 * All adv_* parameters are locked (read-only)
897 		 * while the device is in any sort of loopback mode.
898 		 */
899 		mutex_exit(bgep->genlock);
900 		return (EBUSY);
901 	}
902 	switch (pr_num) {
903 		case DLD_PROP_EN_1000FDX_CAP:
904 			bgep->param_en_1000fdx = *(uint8_t *)pr_val;
905 			bgep->param_adv_1000fdx = *(uint8_t *)pr_val;
906 			goto reprogram;
907 		case DLD_PROP_EN_1000HDX_CAP:
908 			bgep->param_en_1000hdx = *(uint8_t *)pr_val;
909 			bgep->param_adv_1000hdx = *(uint8_t *)pr_val;
910 			goto reprogram;
911 		case DLD_PROP_EN_100FDX_CAP:
912 			bgep->param_en_100fdx = *(uint8_t *)pr_val;
913 			bgep->param_adv_100fdx = *(uint8_t *)pr_val;
914 			goto reprogram;
915 		case DLD_PROP_EN_100HDX_CAP:
916 			bgep->param_en_100hdx = *(uint8_t *)pr_val;
917 			bgep->param_adv_100hdx = *(uint8_t *)pr_val;
918 			goto reprogram;
919 		case DLD_PROP_EN_10FDX_CAP:
920 			bgep->param_en_10fdx = *(uint8_t *)pr_val;
921 			bgep->param_adv_10fdx = *(uint8_t *)pr_val;
922 			goto reprogram;
923 		case DLD_PROP_EN_10HDX_CAP:
924 			bgep->param_en_10hdx = *(uint8_t *)pr_val;
925 			bgep->param_adv_10hdx = *(uint8_t *)pr_val;
926 reprogram:
927 			if (err == 0 && bge_reprogram(bgep) == IOC_INVAL)
928 				err = EINVAL;
929 			break;
930 		case DLD_PROP_ADV_1000FDX_CAP:
931 		case DLD_PROP_ADV_1000HDX_CAP:
932 		case DLD_PROP_ADV_100FDX_CAP:
933 		case DLD_PROP_ADV_100HDX_CAP:
934 		case DLD_PROP_ADV_10FDX_CAP:
935 		case DLD_PROP_ADV_10HDX_CAP:
936 		case DLD_PROP_STATUS:
937 		case DLD_PROP_SPEED:
938 		case DLD_PROP_DUPLEX:
939 			err = EINVAL; /* read-only prop. Can't set this */
940 			break;
941 		case DLD_PROP_AUTONEG:
942 			bgep->param_adv_autoneg = *(uint8_t *)pr_val;
943 			if (bge_reprogram(bgep) == IOC_INVAL)
944 				err = EINVAL;
945 			break;
946 		case DLD_PROP_DEFMTU:
947 			cur_mtu = bgep->chipid.default_mtu;
948 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
949 			if (new_mtu == cur_mtu) {
950 				err = 0;
951 				break;
952 			}
953 			if (new_mtu < BGE_DEFAULT_MTU ||
954 			    new_mtu > BGE_MAXIMUM_MTU) {
955 				err = EINVAL;
956 				break;
957 			}
958 			if ((new_mtu > BGE_DEFAULT_MTU) &&
959 			    (bgep->chipid.flags & CHIP_FLAG_NO_JUMBO)) {
960 				err = EINVAL;
961 				break;
962 			}
963 			if (bgep->bge_mac_state == BGE_MAC_STARTED) {
964 				err = EBUSY;
965 				break;
966 			}
967 			bgep->chipid.default_mtu = new_mtu;
968 			if (bge_chip_id_init(bgep)) {
969 				err = EINVAL;
970 				break;
971 			}
972 			maxsdu = bgep->chipid.ethmax_size -
973 			    sizeof (struct ether_header);
974 			err = mac_maxsdu_update(bgep->mh, maxsdu);
975 			if (err == 0) {
976 				bgep->bge_dma_error = B_TRUE;
977 				bgep->manual_reset = B_TRUE;
978 				bge_chip_stop(bgep, B_TRUE);
979 				bge_wake_factotum(bgep);
980 				err = 0;
981 			}
982 			break;
983 		case DLD_PROP_FLOWCTRL:
984 			bcopy(pr_val, &fl, sizeof (fl));
985 			switch (fl) {
986 			default:
987 				err = EINVAL;
988 				break;
989 			case LINK_FLOWCTRL_NONE:
990 				bgep->param_adv_pause = 0;
991 				bgep->param_adv_asym_pause = 0;
992 
993 				bgep->param_link_rx_pause = B_FALSE;
994 				bgep->param_link_tx_pause = B_FALSE;
995 				break;
996 			case LINK_FLOWCTRL_RX:
997 				if (!((bgep->param_lp_pause == 0) &&
998 				    (bgep->param_lp_asym_pause == 1))) {
999 					err = EINVAL;
1000 					break;
1001 				}
1002 				bgep->param_adv_pause = 1;
1003 				bgep->param_adv_asym_pause = 1;
1004 
1005 				bgep->param_link_rx_pause = B_TRUE;
1006 				bgep->param_link_tx_pause = B_FALSE;
1007 				break;
1008 			case LINK_FLOWCTRL_TX:
1009 				if (!((bgep->param_lp_pause == 1) &&
1010 				    (bgep->param_lp_asym_pause == 1))) {
1011 					err = EINVAL;
1012 					break;
1013 				}
1014 				bgep->param_adv_pause = 0;
1015 				bgep->param_adv_asym_pause = 1;
1016 
1017 				bgep->param_link_rx_pause = B_FALSE;
1018 				bgep->param_link_tx_pause = B_TRUE;
1019 				break;
1020 			case LINK_FLOWCTRL_BI:
1021 				if (bgep->param_lp_pause != 1) {
1022 					err = EINVAL;
1023 					break;
1024 				}
1025 				bgep->param_adv_pause = 1;
1026 
1027 				bgep->param_link_rx_pause = B_TRUE;
1028 				bgep->param_link_tx_pause = B_TRUE;
1029 				break;
1030 			}
1031 
1032 			if (err == 0) {
1033 				if (bge_reprogram(bgep) == IOC_INVAL)
1034 					err = EINVAL;
1035 			}
1036 
1037 			break;
1038 		default:
1039 			err = bge_set_priv_prop(bgep, pr_name, pr_valsize,
1040 			    pr_val);
1041 			break;
1042 	}
1043 	mutex_exit(bgep->genlock);
1044 	return (err);
1045 }
1046 static int
1047 bge_m_getprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
1048     uint_t pr_valsize, void *pr_val)
1049 {
1050 	bge_t *bgep = barg;
1051 	int err = 0;
1052 	link_flowctrl_t fl;
1053 
1054 	bzero(pr_val, pr_valsize);
1055 	switch (pr_num) {
1056 		case DLD_PROP_DUPLEX:
1057 			if (pr_valsize < sizeof (uint8_t))
1058 				return (EINVAL);
1059 			*(uint8_t *)pr_val = bgep->param_link_duplex;
1060 			break;
1061 		case DLD_PROP_SPEED:
1062 			if (pr_valsize < sizeof (uint_t))
1063 				return (EINVAL);
1064 			bcopy(&(bgep->param_link_speed), pr_val,
1065 			    sizeof (bgep->param_link_speed));
1066 			break;
1067 		case DLD_PROP_STATUS:
1068 			if (pr_valsize < sizeof (uint8_t))
1069 				return (EINVAL);
1070 			*(uint8_t *)pr_val = bgep->param_link_up;
1071 			break;
1072 		case DLD_PROP_AUTONEG:
1073 			if (pr_valsize < sizeof (uint8_t))
1074 				return (EINVAL);
1075 			*(uint8_t *)pr_val = bgep->param_adv_autoneg;
1076 			break;
1077 		case DLD_PROP_DEFMTU: {
1078 			uint64_t tmp = 0;
1079 
1080 			if (pr_valsize < sizeof (uint64_t))
1081 				return (EINVAL);
1082 			tmp = bgep->chipid.default_mtu;
1083 			bcopy(&tmp, pr_val, sizeof (tmp));
1084 			break;
1085 		}
1086 		case DLD_PROP_FLOWCTRL:
1087 			if (pr_valsize < sizeof (link_flowctrl_t))
1088 				return (EINVAL);
1089 			if (bgep->param_link_rx_pause &&
1090 			    !bgep->param_link_tx_pause)
1091 				fl = LINK_FLOWCTRL_RX;
1092 
1093 			if (!bgep->param_link_rx_pause &&
1094 			    !bgep->param_link_tx_pause)
1095 				fl = LINK_FLOWCTRL_NONE;
1096 
1097 			if (!bgep->param_link_rx_pause &&
1098 			    bgep->param_link_tx_pause)
1099 				fl = LINK_FLOWCTRL_TX;
1100 
1101 			if (bgep->param_link_rx_pause &&
1102 			    bgep->param_link_tx_pause)
1103 				fl = LINK_FLOWCTRL_BI;
1104 			bcopy(&fl, pr_val, sizeof (fl));
1105 			break;
1106 		case DLD_PROP_ADV_1000FDX_CAP:
1107 			if (pr_valsize < sizeof (uint8_t))
1108 				return (EINVAL);
1109 			*(uint8_t *)pr_val = bgep->param_adv_1000fdx;
1110 			break;
1111 		case DLD_PROP_EN_1000FDX_CAP:
1112 			if (pr_valsize < sizeof (uint8_t))
1113 				return (EINVAL);
1114 			*(uint8_t *)pr_val = bgep->param_en_1000fdx;
1115 			break;
1116 		case DLD_PROP_ADV_1000HDX_CAP:
1117 			if (pr_valsize < sizeof (uint8_t))
1118 				return (EINVAL);
1119 			*(uint8_t *)pr_val = bgep->param_adv_1000hdx;
1120 			break;
1121 		case DLD_PROP_EN_1000HDX_CAP:
1122 			if (pr_valsize < sizeof (uint8_t))
1123 				return (EINVAL);
1124 			*(uint8_t *)pr_val = bgep->param_en_1000hdx;
1125 			break;
1126 		case DLD_PROP_ADV_100FDX_CAP:
1127 			if (pr_valsize < sizeof (uint8_t))
1128 				return (EINVAL);
1129 			*(uint8_t *)pr_val = bgep->param_adv_100fdx;
1130 			break;
1131 		case DLD_PROP_EN_100FDX_CAP:
1132 			if (pr_valsize < sizeof (uint8_t))
1133 				return (EINVAL);
1134 			*(uint8_t *)pr_val = bgep->param_en_100fdx;
1135 			break;
1136 		case DLD_PROP_ADV_100HDX_CAP:
1137 			if (pr_valsize < sizeof (uint8_t))
1138 				return (EINVAL);
1139 			*(uint8_t *)pr_val = bgep->param_adv_100hdx;
1140 			break;
1141 		case DLD_PROP_EN_100HDX_CAP:
1142 			if (pr_valsize < sizeof (uint8_t))
1143 				return (EINVAL);
1144 			*(uint8_t *)pr_val = bgep->param_en_100hdx;
1145 			break;
1146 		case DLD_PROP_ADV_10FDX_CAP:
1147 			if (pr_valsize < sizeof (uint8_t))
1148 				return (EINVAL);
1149 			*(uint8_t *)pr_val = bgep->param_adv_10fdx;
1150 			break;
1151 		case DLD_PROP_EN_10FDX_CAP:
1152 			if (pr_valsize < sizeof (uint8_t))
1153 				return (EINVAL);
1154 			*(uint8_t *)pr_val = bgep->param_en_10fdx;
1155 			break;
1156 		case DLD_PROP_ADV_10HDX_CAP:
1157 			if (pr_valsize < sizeof (uint8_t))
1158 				return (EINVAL);
1159 			*(uint8_t *)pr_val = bgep->param_adv_10hdx;
1160 			break;
1161 		case DLD_PROP_EN_10HDX_CAP:
1162 			if (pr_valsize < sizeof (uint8_t))
1163 				return (EINVAL);
1164 			*(uint8_t *)pr_val = bgep->param_en_10hdx;
1165 			break;
1166 		default:
1167 			err = bge_get_priv_prop(bgep, pr_name, pr_valsize,
1168 			    pr_val);
1169 			return (err);
1170 	}
1171 	return (0);
1172 }
1173 
1174 /* ARGSUSED */
1175 static int
1176 bge_set_priv_prop(bge_t *bgep, const char *pr_name, uint_t pr_valsize,
1177     const void *pr_val)
1178 {
1179 	int err = 0;
1180 	long result;
1181 
1182 	if (strcmp(pr_name, "_drain_max") == 0) {
1183 
1184 		/*
1185 		 * on the Tx side, we need to update the h/w register for
1186 		 * real packet transmission per packet. The drain_max parameter
1187 		 * is used to reduce the register access. This parameter
1188 		 * controls the max number of packets that we will hold before
1189 		 * updating the bge h/w to trigger h/w transmit. The bge
1190 		 * chipset usually has a max of 512 Tx descriptors, thus
1191 		 * the upper bound on drain_max is 512.
1192 		 */
1193 		if (pr_val == NULL) {
1194 			err = EINVAL;
1195 			return (err);
1196 		}
1197 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1198 		if (result > 512 || result < 1)
1199 			err = EINVAL;
1200 		else {
1201 			bgep->param_drain_max = (uint32_t)result;
1202 			if (bge_reprogram(bgep) == IOC_INVAL)
1203 				err = EINVAL;
1204 		}
1205 		return (err);
1206 	}
1207 	if (strcmp(pr_name, "_msi_cnt") == 0) {
1208 
1209 		if (pr_val == NULL) {
1210 			err = EINVAL;
1211 			return (err);
1212 		}
1213 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1214 		if (result > 7 || result < 0)
1215 			err = EINVAL;
1216 		else {
1217 			bgep->param_msi_cnt = (uint32_t)result;
1218 			if (bge_reprogram(bgep) == IOC_INVAL)
1219 				err = EINVAL;
1220 		}
1221 		return (err);
1222 	}
1223 	if (strcmp(pr_name, "_intr_coalesce_blank_time") == 0) {
1224 		if (ddi_strtol(pr_val, (char **)NULL, 0, &result) != 0) {
1225 			return (EINVAL);
1226 		}
1227 
1228 		bgep->chipid.rx_ticks_norm = result;
1229 		return (0);
1230 	}
1231 
1232 	if (strcmp(pr_name, "_intr_coalesce_pkt_cnt") == 0) {
1233 		if (ddi_strtol(pr_val, (char **)NULL, 0, &result) != 0)
1234 			return (EINVAL);
1235 
1236 		bgep->chipid.rx_count_norm = result;
1237 		return (0);
1238 	}
1239 	return (EINVAL);
1240 }
1241 
1242 static int
1243 bge_get_priv_prop(bge_t *bge, const char *pr_name, uint_t pr_valsize,
1244     void *pr_val)
1245 {
1246 	char valstr[MAXNAMELEN];
1247 	int err = EINVAL;
1248 	uint_t strsize;
1249 
1250 
1251 	if (strcmp(pr_name, "_drain_max") == 0) {
1252 		(void) sprintf(valstr, "%d", bge->param_drain_max);
1253 		err = 0;
1254 		goto done;
1255 	}
1256 	if (strcmp(pr_name, "_msi_cnt") == 0) {
1257 		(void) sprintf(valstr, "%d", bge->param_msi_cnt);
1258 		err = 0;
1259 		goto done;
1260 	}
1261 
1262 	if (strcmp(pr_name, "_intr_coalesce_blank_time") == 0) {
1263 		(void) sprintf(valstr, "%d", bge->chipid.rx_ticks_norm);
1264 		err = 0;
1265 		goto done;
1266 	}
1267 
1268 	if (strcmp(pr_name, "_intr_coalesce_pkt_cnt") == 0) {
1269 		(void) sprintf(valstr, "%d", bge->chipid.rx_count_norm);
1270 		err = 0;
1271 		goto done;
1272 	}
1273 
1274 done:
1275 	strsize = (uint_t)strlen(valstr);
1276 	if (pr_valsize < strsize) {
1277 		err = ENOBUFS;
1278 	} else {
1279 		(void) strlcpy(pr_val, valstr, pr_valsize);
1280 	}
1281 	return (err);
1282 }
1283 
1284 /*
1285  * Compute the index of the required bit in the multicast hash map.
1286  * This must mirror the way the hardware actually does it!
1287  * See Broadcom document 570X-PG102-R page 125.
1288  */
1289 static uint32_t
1290 bge_hash_index(const uint8_t *mca)
1291 {
1292 	uint32_t hash;
1293 
1294 	CRC32(hash, mca, ETHERADDRL, -1U, crc32_table);
1295 
1296 	return (hash);
1297 }
1298 
1299 /*
1300  *	bge_m_multicst_add() -- enable/disable a multicast address
1301  */
1302 static int
1303 bge_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
1304 {
1305 	bge_t *bgep = arg;		/* private device info	*/
1306 	uint32_t hash;
1307 	uint32_t index;
1308 	uint32_t word;
1309 	uint32_t bit;
1310 	uint8_t *refp;
1311 
1312 	BGE_TRACE(("bge_m_multicst($%p, %s, %s)", arg,
1313 	    (add) ? "add" : "remove", ether_sprintf((void *)mca)));
1314 
1315 	/*
1316 	 * Precalculate all required masks, pointers etc ...
1317 	 */
1318 	hash = bge_hash_index(mca);
1319 	index = hash % BGE_HASH_TABLE_SIZE;
1320 	word = index/32u;
1321 	bit = 1 << (index % 32u);
1322 	refp = &bgep->mcast_refs[index];
1323 
1324 	BGE_DEBUG(("bge_m_multicst: hash 0x%x index %d (%d:0x%x) = %d",
1325 	    hash, index, word, bit, *refp));
1326 
1327 	/*
1328 	 * We must set the appropriate bit in the hash map (and the
1329 	 * corresponding h/w register) when the refcount goes from 0
1330 	 * to >0, and clear it when the last ref goes away (refcount
1331 	 * goes from >0 back to 0).  If we change the hash map, we
1332 	 * must also update the chip's hardware map registers.
1333 	 */
1334 	mutex_enter(bgep->genlock);
1335 	if (!(bgep->progress & PROGRESS_INTR)) {
1336 		/* can happen during autorecovery */
1337 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1338 		mutex_exit(bgep->genlock);
1339 		return (EIO);
1340 	}
1341 	if (add) {
1342 		if ((*refp)++ == 0) {
1343 			bgep->mcast_hash[word] |= bit;
1344 #ifdef BGE_IPMI_ASF
1345 			if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
1346 #else
1347 			if (bge_chip_sync(bgep) == DDI_FAILURE) {
1348 #endif
1349 				(void) bge_check_acc_handle(bgep,
1350 				    bgep->cfg_handle);
1351 				(void) bge_check_acc_handle(bgep,
1352 				    bgep->io_handle);
1353 				ddi_fm_service_impact(bgep->devinfo,
1354 				    DDI_SERVICE_DEGRADED);
1355 				mutex_exit(bgep->genlock);
1356 				return (EIO);
1357 			}
1358 		}
1359 	} else {
1360 		if (--(*refp) == 0) {
1361 			bgep->mcast_hash[word] &= ~bit;
1362 #ifdef BGE_IPMI_ASF
1363 			if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
1364 #else
1365 			if (bge_chip_sync(bgep) == DDI_FAILURE) {
1366 #endif
1367 				(void) bge_check_acc_handle(bgep,
1368 				    bgep->cfg_handle);
1369 				(void) bge_check_acc_handle(bgep,
1370 				    bgep->io_handle);
1371 				ddi_fm_service_impact(bgep->devinfo,
1372 				    DDI_SERVICE_DEGRADED);
1373 				mutex_exit(bgep->genlock);
1374 				return (EIO);
1375 			}
1376 		}
1377 	}
1378 	BGE_DEBUG(("bge_m_multicst($%p) done", arg));
1379 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
1380 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1381 		mutex_exit(bgep->genlock);
1382 		return (EIO);
1383 	}
1384 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1385 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1386 		mutex_exit(bgep->genlock);
1387 		return (EIO);
1388 	}
1389 	mutex_exit(bgep->genlock);
1390 
1391 	return (0);
1392 }
1393 
1394 /*
1395  * bge_m_promisc() -- set or reset promiscuous mode on the board
1396  *
1397  *	Program the hardware to enable/disable promiscuous and/or
1398  *	receive-all-multicast modes.
1399  */
1400 static int
1401 bge_m_promisc(void *arg, boolean_t on)
1402 {
1403 	bge_t *bgep = arg;
1404 
1405 	BGE_TRACE(("bge_m_promisc_set($%p, %d)", arg, on));
1406 
1407 	/*
1408 	 * Store MAC layer specified mode and pass to chip layer to update h/w
1409 	 */
1410 	mutex_enter(bgep->genlock);
1411 	if (!(bgep->progress & PROGRESS_INTR)) {
1412 		/* can happen during autorecovery */
1413 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1414 		mutex_exit(bgep->genlock);
1415 		return (EIO);
1416 	}
1417 	bgep->promisc = on;
1418 #ifdef BGE_IPMI_ASF
1419 	if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
1420 #else
1421 	if (bge_chip_sync(bgep) == DDI_FAILURE) {
1422 #endif
1423 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
1424 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
1425 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1426 		mutex_exit(bgep->genlock);
1427 		return (EIO);
1428 	}
1429 	BGE_DEBUG(("bge_m_promisc_set($%p) done", arg));
1430 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
1431 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1432 		mutex_exit(bgep->genlock);
1433 		return (EIO);
1434 	}
1435 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1436 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1437 		mutex_exit(bgep->genlock);
1438 		return (EIO);
1439 	}
1440 	mutex_exit(bgep->genlock);
1441 	return (0);
1442 }
1443 
1444 /*ARGSUSED*/
1445 static boolean_t
1446 bge_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
1447 {
1448 	bge_t *bgep = arg;
1449 
1450 	switch (cap) {
1451 	case MAC_CAPAB_HCKSUM: {
1452 		uint32_t *txflags = cap_data;
1453 
1454 		*txflags = HCKSUM_INET_FULL_V4 | HCKSUM_IPHDRCKSUM;
1455 		break;
1456 	}
1457 
1458 	case MAC_CAPAB_POLL:
1459 		/*
1460 		 * There's nothing for us to fill in, simply returning
1461 		 * B_TRUE stating that we support polling is sufficient.
1462 		 */
1463 		break;
1464 
1465 	case MAC_CAPAB_MULTIADDRESS: {
1466 		multiaddress_capab_t	*mmacp = cap_data;
1467 
1468 		mutex_enter(bgep->genlock);
1469 		/*
1470 		 * The number of MAC addresses made available by
1471 		 * this capability is one less than the total as
1472 		 * the primary address in slot 0 is counted in
1473 		 * the total.
1474 		 */
1475 		mmacp->maddr_naddr = bgep->unicst_addr_total - 1;
1476 		mmacp->maddr_naddrfree = bgep->unicst_addr_avail;
1477 		/* No multiple factory addresses, set mma_flag to 0 */
1478 		mmacp->maddr_flag = 0;
1479 		mmacp->maddr_handle = bgep;
1480 		mmacp->maddr_add = bge_m_unicst_add;
1481 		mmacp->maddr_remove = bge_m_unicst_remove;
1482 		mmacp->maddr_modify = bge_m_unicst_modify;
1483 		mmacp->maddr_get = bge_m_unicst_get;
1484 		mmacp->maddr_reserve = NULL;
1485 		mutex_exit(bgep->genlock);
1486 		break;
1487 	}
1488 
1489 	default:
1490 		return (B_FALSE);
1491 	}
1492 	return (B_TRUE);
1493 }
1494 
1495 /*
1496  * Loopback ioctl code
1497  */
1498 
1499 static lb_property_t loopmodes[] = {
1500 	{ normal,	"normal",	BGE_LOOP_NONE		},
1501 	{ external,	"1000Mbps",	BGE_LOOP_EXTERNAL_1000	},
1502 	{ external,	"100Mbps",	BGE_LOOP_EXTERNAL_100	},
1503 	{ external,	"10Mbps",	BGE_LOOP_EXTERNAL_10	},
1504 	{ internal,	"PHY",		BGE_LOOP_INTERNAL_PHY	},
1505 	{ internal,	"MAC",		BGE_LOOP_INTERNAL_MAC	}
1506 };
1507 
1508 static enum ioc_reply
1509 bge_set_loop_mode(bge_t *bgep, uint32_t mode)
1510 {
1511 	/*
1512 	 * If the mode isn't being changed, there's nothing to do ...
1513 	 */
1514 	if (mode == bgep->param_loop_mode)
1515 		return (IOC_ACK);
1516 
1517 	/*
1518 	 * Validate the requested mode and prepare a suitable message
1519 	 * to explain the link down/up cycle that the change will
1520 	 * probably induce ...
1521 	 */
1522 	switch (mode) {
1523 	default:
1524 		return (IOC_INVAL);
1525 
1526 	case BGE_LOOP_NONE:
1527 	case BGE_LOOP_EXTERNAL_1000:
1528 	case BGE_LOOP_EXTERNAL_100:
1529 	case BGE_LOOP_EXTERNAL_10:
1530 	case BGE_LOOP_INTERNAL_PHY:
1531 	case BGE_LOOP_INTERNAL_MAC:
1532 		break;
1533 	}
1534 
1535 	/*
1536 	 * All OK; tell the caller to reprogram
1537 	 * the PHY and/or MAC for the new mode ...
1538 	 */
1539 	bgep->param_loop_mode = mode;
1540 	return (IOC_RESTART_ACK);
1541 }
1542 
1543 static enum ioc_reply
1544 bge_loop_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
1545 {
1546 	lb_info_sz_t *lbsp;
1547 	lb_property_t *lbpp;
1548 	uint32_t *lbmp;
1549 	int cmd;
1550 
1551 	_NOTE(ARGUNUSED(wq))
1552 
1553 	/*
1554 	 * Validate format of ioctl
1555 	 */
1556 	if (mp->b_cont == NULL)
1557 		return (IOC_INVAL);
1558 
1559 	cmd = iocp->ioc_cmd;
1560 	switch (cmd) {
1561 	default:
1562 		/* NOTREACHED */
1563 		bge_error(bgep, "bge_loop_ioctl: invalid cmd 0x%x", cmd);
1564 		return (IOC_INVAL);
1565 
1566 	case LB_GET_INFO_SIZE:
1567 		if (iocp->ioc_count != sizeof (lb_info_sz_t))
1568 			return (IOC_INVAL);
1569 		lbsp = (lb_info_sz_t *)mp->b_cont->b_rptr;
1570 		*lbsp = sizeof (loopmodes);
1571 		return (IOC_REPLY);
1572 
1573 	case LB_GET_INFO:
1574 		if (iocp->ioc_count != sizeof (loopmodes))
1575 			return (IOC_INVAL);
1576 		lbpp = (lb_property_t *)mp->b_cont->b_rptr;
1577 		bcopy(loopmodes, lbpp, sizeof (loopmodes));
1578 		return (IOC_REPLY);
1579 
1580 	case LB_GET_MODE:
1581 		if (iocp->ioc_count != sizeof (uint32_t))
1582 			return (IOC_INVAL);
1583 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
1584 		*lbmp = bgep->param_loop_mode;
1585 		return (IOC_REPLY);
1586 
1587 	case LB_SET_MODE:
1588 		if (iocp->ioc_count != sizeof (uint32_t))
1589 			return (IOC_INVAL);
1590 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
1591 		return (bge_set_loop_mode(bgep, *lbmp));
1592 	}
1593 }
1594 
1595 /*
1596  * Specific bge IOCTLs, the gld module handles the generic ones.
1597  */
1598 static void
1599 bge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
1600 {
1601 	bge_t *bgep = arg;
1602 	struct iocblk *iocp;
1603 	enum ioc_reply status;
1604 	boolean_t need_privilege;
1605 	int err;
1606 	int cmd;
1607 
1608 	/*
1609 	 * Validate the command before bothering with the mutex ...
1610 	 */
1611 	iocp = (struct iocblk *)mp->b_rptr;
1612 	iocp->ioc_error = 0;
1613 	need_privilege = B_TRUE;
1614 	cmd = iocp->ioc_cmd;
1615 	switch (cmd) {
1616 	default:
1617 		miocnak(wq, mp, 0, EINVAL);
1618 		return;
1619 
1620 	case BGE_MII_READ:
1621 	case BGE_MII_WRITE:
1622 	case BGE_SEE_READ:
1623 	case BGE_SEE_WRITE:
1624 	case BGE_FLASH_READ:
1625 	case BGE_FLASH_WRITE:
1626 	case BGE_DIAG:
1627 	case BGE_PEEK:
1628 	case BGE_POKE:
1629 	case BGE_PHY_RESET:
1630 	case BGE_SOFT_RESET:
1631 	case BGE_HARD_RESET:
1632 		break;
1633 
1634 	case LB_GET_INFO_SIZE:
1635 	case LB_GET_INFO:
1636 	case LB_GET_MODE:
1637 		need_privilege = B_FALSE;
1638 		/* FALLTHRU */
1639 	case LB_SET_MODE:
1640 		break;
1641 
1642 	case ND_GET:
1643 		need_privilege = B_FALSE;
1644 		/* FALLTHRU */
1645 	case ND_SET:
1646 		break;
1647 	}
1648 
1649 	if (need_privilege) {
1650 		/*
1651 		 * Check for specific net_config privilege on Solaris 10+.
1652 		 */
1653 		err = secpolicy_net_config(iocp->ioc_cr, B_FALSE);
1654 		if (err != 0) {
1655 			miocnak(wq, mp, 0, err);
1656 			return;
1657 		}
1658 	}
1659 
1660 	mutex_enter(bgep->genlock);
1661 	if (!(bgep->progress & PROGRESS_INTR)) {
1662 		/* can happen during autorecovery */
1663 		mutex_exit(bgep->genlock);
1664 		miocnak(wq, mp, 0, EIO);
1665 		return;
1666 	}
1667 
1668 	switch (cmd) {
1669 	default:
1670 		_NOTE(NOTREACHED)
1671 		status = IOC_INVAL;
1672 		break;
1673 
1674 	case BGE_MII_READ:
1675 	case BGE_MII_WRITE:
1676 	case BGE_SEE_READ:
1677 	case BGE_SEE_WRITE:
1678 	case BGE_FLASH_READ:
1679 	case BGE_FLASH_WRITE:
1680 	case BGE_DIAG:
1681 	case BGE_PEEK:
1682 	case BGE_POKE:
1683 	case BGE_PHY_RESET:
1684 	case BGE_SOFT_RESET:
1685 	case BGE_HARD_RESET:
1686 		status = bge_chip_ioctl(bgep, wq, mp, iocp);
1687 		break;
1688 
1689 	case LB_GET_INFO_SIZE:
1690 	case LB_GET_INFO:
1691 	case LB_GET_MODE:
1692 	case LB_SET_MODE:
1693 		status = bge_loop_ioctl(bgep, wq, mp, iocp);
1694 		break;
1695 
1696 	case ND_GET:
1697 	case ND_SET:
1698 		status = bge_nd_ioctl(bgep, wq, mp, iocp);
1699 		break;
1700 	}
1701 
1702 	/*
1703 	 * Do we need to reprogram the PHY and/or the MAC?
1704 	 * Do it now, while we still have the mutex.
1705 	 *
1706 	 * Note: update the PHY first, 'cos it controls the
1707 	 * speed/duplex parameters that the MAC code uses.
1708 	 */
1709 	switch (status) {
1710 	case IOC_RESTART_REPLY:
1711 	case IOC_RESTART_ACK:
1712 		if (bge_reprogram(bgep) == IOC_INVAL)
1713 			status = IOC_INVAL;
1714 		break;
1715 	}
1716 
1717 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
1718 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1719 		status = IOC_INVAL;
1720 	}
1721 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1722 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1723 		status = IOC_INVAL;
1724 	}
1725 	mutex_exit(bgep->genlock);
1726 
1727 	/*
1728 	 * Finally, decide how to reply
1729 	 */
1730 	switch (status) {
1731 	default:
1732 	case IOC_INVAL:
1733 		/*
1734 		 * Error, reply with a NAK and EINVAL or the specified error
1735 		 */
1736 		miocnak(wq, mp, 0, iocp->ioc_error == 0 ?
1737 		    EINVAL : iocp->ioc_error);
1738 		break;
1739 
1740 	case IOC_DONE:
1741 		/*
1742 		 * OK, reply already sent
1743 		 */
1744 		break;
1745 
1746 	case IOC_RESTART_ACK:
1747 	case IOC_ACK:
1748 		/*
1749 		 * OK, reply with an ACK
1750 		 */
1751 		miocack(wq, mp, 0, 0);
1752 		break;
1753 
1754 	case IOC_RESTART_REPLY:
1755 	case IOC_REPLY:
1756 		/*
1757 		 * OK, send prepared reply as ACK or NAK
1758 		 */
1759 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1760 		    M_IOCACK : M_IOCNAK;
1761 		qreply(wq, mp);
1762 		break;
1763 	}
1764 }
1765 
1766 static void
1767 bge_resources_add(bge_t *bgep, time_t time, uint_t pkt_cnt)
1768 {
1769 
1770 	recv_ring_t *rrp;
1771 	mac_rx_fifo_t mrf;
1772 	int ring;
1773 
1774 	/*
1775 	 * Register Rx rings as resources and save mac
1776 	 * resource id for future reference
1777 	 */
1778 	mrf.mrf_type = MAC_RX_FIFO;
1779 	mrf.mrf_blank = bge_chip_blank;
1780 	mrf.mrf_arg = (void *)bgep;
1781 	mrf.mrf_normal_blank_time = time;
1782 	mrf.mrf_normal_pkt_count = pkt_cnt;
1783 
1784 	for (ring = 0; ring < bgep->chipid.rx_rings; ring++) {
1785 		rrp = &bgep->recv[ring];
1786 		rrp->handle = mac_resource_add(bgep->mh,
1787 		    (mac_resource_t *)&mrf);
1788 	}
1789 }
1790 
1791 static void
1792 bge_m_resources(void *arg)
1793 {
1794 	bge_t *bgep = arg;
1795 
1796 	mutex_enter(bgep->genlock);
1797 
1798 	bge_resources_add(bgep, bgep->chipid.rx_ticks_norm,
1799 	    bgep->chipid.rx_count_norm);
1800 	mutex_exit(bgep->genlock);
1801 }
1802 
1803 /*
1804  * ========== Per-instance setup/teardown code ==========
1805  */
1806 
1807 #undef	BGE_DBG
1808 #define	BGE_DBG		BGE_DBG_INIT	/* debug flag for this code	*/
1809 /*
1810  * Allocate an area of memory and a DMA handle for accessing it
1811  */
1812 static int
1813 bge_alloc_dma_mem(bge_t *bgep, size_t memsize, ddi_device_acc_attr_t *attr_p,
1814 	uint_t dma_flags, dma_area_t *dma_p)
1815 {
1816 	caddr_t va;
1817 	int err;
1818 
1819 	BGE_TRACE(("bge_alloc_dma_mem($%p, %ld, $%p, 0x%x, $%p)",
1820 	    (void *)bgep, memsize, attr_p, dma_flags, dma_p));
1821 
1822 	/*
1823 	 * Allocate handle
1824 	 */
1825 	err = ddi_dma_alloc_handle(bgep->devinfo, &dma_attr,
1826 	    DDI_DMA_DONTWAIT, NULL, &dma_p->dma_hdl);
1827 	if (err != DDI_SUCCESS)
1828 		return (DDI_FAILURE);
1829 
1830 	/*
1831 	 * Allocate memory
1832 	 */
1833 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p,
1834 	    dma_flags, DDI_DMA_DONTWAIT, NULL, &va, &dma_p->alength,
1835 	    &dma_p->acc_hdl);
1836 	if (err != DDI_SUCCESS)
1837 		return (DDI_FAILURE);
1838 
1839 	/*
1840 	 * Bind the two together
1841 	 */
1842 	dma_p->mem_va = va;
1843 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
1844 	    va, dma_p->alength, dma_flags, DDI_DMA_DONTWAIT, NULL,
1845 	    &dma_p->cookie, &dma_p->ncookies);
1846 
1847 	BGE_DEBUG(("bge_alloc_dma_mem(): bind %d bytes; err %d, %d cookies",
1848 	    dma_p->alength, err, dma_p->ncookies));
1849 
1850 	if (err != DDI_DMA_MAPPED || dma_p->ncookies != 1)
1851 		return (DDI_FAILURE);
1852 
1853 	dma_p->nslots = ~0U;
1854 	dma_p->size = ~0U;
1855 	dma_p->token = ~0U;
1856 	dma_p->offset = 0;
1857 	return (DDI_SUCCESS);
1858 }
1859 
1860 /*
1861  * Free one allocated area of DMAable memory
1862  */
1863 static void
1864 bge_free_dma_mem(dma_area_t *dma_p)
1865 {
1866 	if (dma_p->dma_hdl != NULL) {
1867 		if (dma_p->ncookies) {
1868 			(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
1869 			dma_p->ncookies = 0;
1870 		}
1871 		ddi_dma_free_handle(&dma_p->dma_hdl);
1872 		dma_p->dma_hdl = NULL;
1873 	}
1874 
1875 	if (dma_p->acc_hdl != NULL) {
1876 		ddi_dma_mem_free(&dma_p->acc_hdl);
1877 		dma_p->acc_hdl = NULL;
1878 	}
1879 }
1880 /*
1881  * Utility routine to carve a slice off a chunk of allocated memory,
1882  * updating the chunk descriptor accordingly.  The size of the slice
1883  * is given by the product of the <qty> and <size> parameters.
1884  */
1885 static void
1886 bge_slice_chunk(dma_area_t *slice, dma_area_t *chunk,
1887 	uint32_t qty, uint32_t size)
1888 {
1889 	static uint32_t sequence = 0xbcd5704a;
1890 	size_t totsize;
1891 
1892 	totsize = qty*size;
1893 	ASSERT(size >= 0);
1894 	ASSERT(totsize <= chunk->alength);
1895 
1896 	*slice = *chunk;
1897 	slice->nslots = qty;
1898 	slice->size = size;
1899 	slice->alength = totsize;
1900 	slice->token = ++sequence;
1901 
1902 	chunk->mem_va = (caddr_t)chunk->mem_va + totsize;
1903 	chunk->alength -= totsize;
1904 	chunk->offset += totsize;
1905 	chunk->cookie.dmac_laddress += totsize;
1906 	chunk->cookie.dmac_size -= totsize;
1907 }
1908 
1909 /*
1910  * Initialise the specified Receive Producer (Buffer) Ring, using
1911  * the information in the <dma_area> descriptors that it contains
1912  * to set up all the other fields. This routine should be called
1913  * only once for each ring.
1914  */
1915 static void
1916 bge_init_buff_ring(bge_t *bgep, uint64_t ring)
1917 {
1918 	buff_ring_t *brp;
1919 	bge_status_t *bsp;
1920 	sw_rbd_t *srbdp;
1921 	dma_area_t pbuf;
1922 	uint32_t bufsize;
1923 	uint32_t nslots;
1924 	uint32_t slot;
1925 	uint32_t split;
1926 
1927 	static bge_regno_t nic_ring_addrs[BGE_BUFF_RINGS_MAX] = {
1928 		NIC_MEM_SHADOW_BUFF_STD,
1929 		NIC_MEM_SHADOW_BUFF_JUMBO,
1930 		NIC_MEM_SHADOW_BUFF_MINI
1931 	};
1932 	static bge_regno_t mailbox_regs[BGE_BUFF_RINGS_MAX] = {
1933 		RECV_STD_PROD_INDEX_REG,
1934 		RECV_JUMBO_PROD_INDEX_REG,
1935 		RECV_MINI_PROD_INDEX_REG
1936 	};
1937 	static bge_regno_t buff_cons_xref[BGE_BUFF_RINGS_MAX] = {
1938 		STATUS_STD_BUFF_CONS_INDEX,
1939 		STATUS_JUMBO_BUFF_CONS_INDEX,
1940 		STATUS_MINI_BUFF_CONS_INDEX
1941 	};
1942 
1943 	BGE_TRACE(("bge_init_buff_ring($%p, %d)",
1944 	    (void *)bgep, ring));
1945 
1946 	brp = &bgep->buff[ring];
1947 	nslots = brp->desc.nslots;
1948 	ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT);
1949 	bufsize = brp->buf[0].size;
1950 
1951 	/*
1952 	 * Set up the copy of the h/w RCB
1953 	 *
1954 	 * Note: unlike Send & Receive Return Rings, (where the max_len
1955 	 * field holds the number of slots), in a Receive Buffer Ring
1956 	 * this field indicates the size of each buffer in the ring.
1957 	 */
1958 	brp->hw_rcb.host_ring_addr = brp->desc.cookie.dmac_laddress;
1959 	brp->hw_rcb.max_len = bufsize;
1960 	brp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
1961 	brp->hw_rcb.nic_ring_addr = nic_ring_addrs[ring];
1962 
1963 	/*
1964 	 * Other one-off initialisation of per-ring data
1965 	 */
1966 	brp->bgep = bgep;
1967 	bsp = DMA_VPTR(bgep->status_block);
1968 	brp->cons_index_p = &bsp->buff_cons_index[buff_cons_xref[ring]];
1969 	brp->chip_mbx_reg = mailbox_regs[ring];
1970 	mutex_init(brp->rf_lock, NULL, MUTEX_DRIVER,
1971 	    DDI_INTR_PRI(bgep->intr_pri));
1972 
1973 	/*
1974 	 * Allocate the array of s/w Receive Buffer Descriptors
1975 	 */
1976 	srbdp = kmem_zalloc(nslots*sizeof (*srbdp), KM_SLEEP);
1977 	brp->sw_rbds = srbdp;
1978 
1979 	/*
1980 	 * Now initialise each array element once and for all
1981 	 */
1982 	for (split = 0; split < BGE_SPLIT; ++split) {
1983 		pbuf = brp->buf[split];
1984 		for (slot = 0; slot < nslots/BGE_SPLIT; ++srbdp, ++slot)
1985 			bge_slice_chunk(&srbdp->pbuf, &pbuf, 1, bufsize);
1986 		ASSERT(pbuf.alength == 0);
1987 	}
1988 }
1989 
1990 /*
1991  * Clean up initialisation done above before the memory is freed
1992  */
1993 static void
1994 bge_fini_buff_ring(bge_t *bgep, uint64_t ring)
1995 {
1996 	buff_ring_t *brp;
1997 	sw_rbd_t *srbdp;
1998 
1999 	BGE_TRACE(("bge_fini_buff_ring($%p, %d)",
2000 	    (void *)bgep, ring));
2001 
2002 	brp = &bgep->buff[ring];
2003 	srbdp = brp->sw_rbds;
2004 	kmem_free(srbdp, brp->desc.nslots*sizeof (*srbdp));
2005 
2006 	mutex_destroy(brp->rf_lock);
2007 }
2008 
2009 /*
2010  * Initialise the specified Receive (Return) Ring, using the
2011  * information in the <dma_area> descriptors that it contains
2012  * to set up all the other fields. This routine should be called
2013  * only once for each ring.
2014  */
2015 static void
2016 bge_init_recv_ring(bge_t *bgep, uint64_t ring)
2017 {
2018 	recv_ring_t *rrp;
2019 	bge_status_t *bsp;
2020 	uint32_t nslots;
2021 
2022 	BGE_TRACE(("bge_init_recv_ring($%p, %d)",
2023 	    (void *)bgep, ring));
2024 
2025 	/*
2026 	 * The chip architecture requires that receive return rings have
2027 	 * 512 or 1024 or 2048 elements per ring.  See 570X-PG108-R page 103.
2028 	 */
2029 	rrp = &bgep->recv[ring];
2030 	nslots = rrp->desc.nslots;
2031 	ASSERT(nslots == 0 || nslots == 512 ||
2032 	    nslots == 1024 || nslots == 2048);
2033 
2034 	/*
2035 	 * Set up the copy of the h/w RCB
2036 	 */
2037 	rrp->hw_rcb.host_ring_addr = rrp->desc.cookie.dmac_laddress;
2038 	rrp->hw_rcb.max_len = nslots;
2039 	rrp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
2040 	rrp->hw_rcb.nic_ring_addr = 0;
2041 
2042 	/*
2043 	 * Other one-off initialisation of per-ring data
2044 	 */
2045 	rrp->bgep = bgep;
2046 	bsp = DMA_VPTR(bgep->status_block);
2047 	rrp->prod_index_p = RECV_INDEX_P(bsp, ring);
2048 	rrp->chip_mbx_reg = RECV_RING_CONS_INDEX_REG(ring);
2049 	mutex_init(rrp->rx_lock, NULL, MUTEX_DRIVER,
2050 	    DDI_INTR_PRI(bgep->intr_pri));
2051 }
2052 
2053 
2054 /*
2055  * Clean up initialisation done above before the memory is freed
2056  */
2057 static void
2058 bge_fini_recv_ring(bge_t *bgep, uint64_t ring)
2059 {
2060 	recv_ring_t *rrp;
2061 
2062 	BGE_TRACE(("bge_fini_recv_ring($%p, %d)",
2063 	    (void *)bgep, ring));
2064 
2065 	rrp = &bgep->recv[ring];
2066 	if (rrp->rx_softint)
2067 		ddi_remove_softintr(rrp->rx_softint);
2068 	mutex_destroy(rrp->rx_lock);
2069 }
2070 
2071 /*
2072  * Initialise the specified Send Ring, using the information in the
2073  * <dma_area> descriptors that it contains to set up all the other
2074  * fields. This routine should be called only once for each ring.
2075  */
2076 static void
2077 bge_init_send_ring(bge_t *bgep, uint64_t ring)
2078 {
2079 	send_ring_t *srp;
2080 	bge_status_t *bsp;
2081 	sw_sbd_t *ssbdp;
2082 	dma_area_t desc;
2083 	dma_area_t pbuf;
2084 	uint32_t nslots;
2085 	uint32_t slot;
2086 	uint32_t split;
2087 	sw_txbuf_t *txbuf;
2088 
2089 	BGE_TRACE(("bge_init_send_ring($%p, %d)",
2090 	    (void *)bgep, ring));
2091 
2092 	/*
2093 	 * The chip architecture requires that host-based send rings
2094 	 * have 512 elements per ring.  See 570X-PG102-R page 56.
2095 	 */
2096 	srp = &bgep->send[ring];
2097 	nslots = srp->desc.nslots;
2098 	ASSERT(nslots == 0 || nslots == 512);
2099 
2100 	/*
2101 	 * Set up the copy of the h/w RCB
2102 	 */
2103 	srp->hw_rcb.host_ring_addr = srp->desc.cookie.dmac_laddress;
2104 	srp->hw_rcb.max_len = nslots;
2105 	srp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
2106 	srp->hw_rcb.nic_ring_addr = NIC_MEM_SHADOW_SEND_RING(ring, nslots);
2107 
2108 	/*
2109 	 * Other one-off initialisation of per-ring data
2110 	 */
2111 	srp->bgep = bgep;
2112 	bsp = DMA_VPTR(bgep->status_block);
2113 	srp->cons_index_p = SEND_INDEX_P(bsp, ring);
2114 	srp->chip_mbx_reg = SEND_RING_HOST_INDEX_REG(ring);
2115 	mutex_init(srp->tx_lock, NULL, MUTEX_DRIVER,
2116 	    DDI_INTR_PRI(bgep->intr_pri));
2117 	mutex_init(srp->txbuf_lock, NULL, MUTEX_DRIVER,
2118 	    DDI_INTR_PRI(bgep->intr_pri));
2119 	mutex_init(srp->freetxbuf_lock, NULL, MUTEX_DRIVER,
2120 	    DDI_INTR_PRI(bgep->intr_pri));
2121 	mutex_init(srp->tc_lock, NULL, MUTEX_DRIVER,
2122 	    DDI_INTR_PRI(bgep->intr_pri));
2123 	if (nslots == 0)
2124 		return;
2125 
2126 	/*
2127 	 * Allocate the array of s/w Send Buffer Descriptors
2128 	 */
2129 	ssbdp = kmem_zalloc(nslots*sizeof (*ssbdp), KM_SLEEP);
2130 	txbuf = kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (*txbuf), KM_SLEEP);
2131 	srp->txbuf_head =
2132 	    kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (bge_queue_item_t), KM_SLEEP);
2133 	srp->pktp = kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (send_pkt_t), KM_SLEEP);
2134 	srp->sw_sbds = ssbdp;
2135 	srp->txbuf = txbuf;
2136 	srp->tx_buffers = BGE_SEND_BUF_NUM;
2137 	srp->tx_buffers_low = srp->tx_buffers / 4;
2138 	if (bgep->chipid.snd_buff_size > BGE_SEND_BUFF_SIZE_DEFAULT)
2139 		srp->tx_array_max = BGE_SEND_BUF_ARRAY_JUMBO;
2140 	else
2141 		srp->tx_array_max = BGE_SEND_BUF_ARRAY;
2142 	srp->tx_array = 1;
2143 
2144 	/*
2145 	 * Chunk tx desc area
2146 	 */
2147 	desc = srp->desc;
2148 	for (slot = 0; slot < nslots; ++ssbdp, ++slot) {
2149 		bge_slice_chunk(&ssbdp->desc, &desc, 1,
2150 		    sizeof (bge_sbd_t));
2151 	}
2152 	ASSERT(desc.alength == 0);
2153 
2154 	/*
2155 	 * Chunk tx buffer area
2156 	 */
2157 	for (split = 0; split < BGE_SPLIT; ++split) {
2158 		pbuf = srp->buf[0][split];
2159 		for (slot = 0; slot < BGE_SEND_BUF_NUM/BGE_SPLIT; ++slot) {
2160 			bge_slice_chunk(&txbuf->buf, &pbuf, 1,
2161 			    bgep->chipid.snd_buff_size);
2162 			txbuf++;
2163 		}
2164 		ASSERT(pbuf.alength == 0);
2165 	}
2166 }
2167 
2168 /*
2169  * Clean up initialisation done above before the memory is freed
2170  */
2171 static void
2172 bge_fini_send_ring(bge_t *bgep, uint64_t ring)
2173 {
2174 	send_ring_t *srp;
2175 	uint32_t array;
2176 	uint32_t split;
2177 	uint32_t nslots;
2178 
2179 	BGE_TRACE(("bge_fini_send_ring($%p, %d)",
2180 	    (void *)bgep, ring));
2181 
2182 	srp = &bgep->send[ring];
2183 	mutex_destroy(srp->tc_lock);
2184 	mutex_destroy(srp->freetxbuf_lock);
2185 	mutex_destroy(srp->txbuf_lock);
2186 	mutex_destroy(srp->tx_lock);
2187 	nslots = srp->desc.nslots;
2188 	if (nslots == 0)
2189 		return;
2190 
2191 	for (array = 1; array < srp->tx_array; ++array)
2192 		for (split = 0; split < BGE_SPLIT; ++split)
2193 			bge_free_dma_mem(&srp->buf[array][split]);
2194 	kmem_free(srp->sw_sbds, nslots*sizeof (*srp->sw_sbds));
2195 	kmem_free(srp->txbuf_head, BGE_SEND_BUF_MAX*sizeof (*srp->txbuf_head));
2196 	kmem_free(srp->txbuf, BGE_SEND_BUF_MAX*sizeof (*srp->txbuf));
2197 	kmem_free(srp->pktp, BGE_SEND_BUF_MAX*sizeof (*srp->pktp));
2198 	srp->sw_sbds = NULL;
2199 	srp->txbuf_head = NULL;
2200 	srp->txbuf = NULL;
2201 	srp->pktp = NULL;
2202 }
2203 
2204 /*
2205  * Initialise all transmit, receive, and buffer rings.
2206  */
2207 void
2208 bge_init_rings(bge_t *bgep)
2209 {
2210 	uint32_t ring;
2211 
2212 	BGE_TRACE(("bge_init_rings($%p)", (void *)bgep));
2213 
2214 	/*
2215 	 * Perform one-off initialisation of each ring ...
2216 	 */
2217 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
2218 		bge_init_send_ring(bgep, ring);
2219 	for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
2220 		bge_init_recv_ring(bgep, ring);
2221 	for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
2222 		bge_init_buff_ring(bgep, ring);
2223 }
2224 
2225 /*
2226  * Undo the work of bge_init_rings() above before the memory is freed
2227  */
2228 void
2229 bge_fini_rings(bge_t *bgep)
2230 {
2231 	uint32_t ring;
2232 
2233 	BGE_TRACE(("bge_fini_rings($%p)", (void *)bgep));
2234 
2235 	for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
2236 		bge_fini_buff_ring(bgep, ring);
2237 	for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
2238 		bge_fini_recv_ring(bgep, ring);
2239 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
2240 		bge_fini_send_ring(bgep, ring);
2241 }
2242 
2243 /*
2244  * Called from the bge_m_stop() to free the tx buffers which are
2245  * allocated from the tx process.
2246  */
2247 void
2248 bge_free_txbuf_arrays(send_ring_t *srp)
2249 {
2250 	uint32_t array;
2251 	uint32_t split;
2252 
2253 	ASSERT(mutex_owned(srp->tx_lock));
2254 
2255 	/*
2256 	 * Free the extra tx buffer DMA area
2257 	 */
2258 	for (array = 1; array < srp->tx_array; ++array)
2259 		for (split = 0; split < BGE_SPLIT; ++split)
2260 			bge_free_dma_mem(&srp->buf[array][split]);
2261 
2262 	/*
2263 	 * Restore initial tx buffer numbers
2264 	 */
2265 	srp->tx_array = 1;
2266 	srp->tx_buffers = BGE_SEND_BUF_NUM;
2267 	srp->tx_buffers_low = srp->tx_buffers / 4;
2268 	srp->tx_flow = 0;
2269 	bzero(srp->pktp, BGE_SEND_BUF_MAX * sizeof (*srp->pktp));
2270 }
2271 
2272 /*
2273  * Called from tx process to allocate more tx buffers
2274  */
2275 bge_queue_item_t *
2276 bge_alloc_txbuf_array(bge_t *bgep, send_ring_t *srp)
2277 {
2278 	bge_queue_t *txbuf_queue;
2279 	bge_queue_item_t *txbuf_item_last;
2280 	bge_queue_item_t *txbuf_item;
2281 	bge_queue_item_t *txbuf_item_rtn;
2282 	sw_txbuf_t *txbuf;
2283 	dma_area_t area;
2284 	size_t txbuffsize;
2285 	uint32_t slot;
2286 	uint32_t array;
2287 	uint32_t split;
2288 	uint32_t err;
2289 
2290 	ASSERT(mutex_owned(srp->tx_lock));
2291 
2292 	array = srp->tx_array;
2293 	if (array >= srp->tx_array_max)
2294 		return (NULL);
2295 
2296 	/*
2297 	 * Allocate memory & handles for TX buffers
2298 	 */
2299 	txbuffsize = BGE_SEND_BUF_NUM*bgep->chipid.snd_buff_size;
2300 	ASSERT((txbuffsize % BGE_SPLIT) == 0);
2301 	for (split = 0; split < BGE_SPLIT; ++split) {
2302 		err = bge_alloc_dma_mem(bgep, txbuffsize/BGE_SPLIT,
2303 		    &bge_data_accattr, DDI_DMA_WRITE | BGE_DMA_MODE,
2304 		    &srp->buf[array][split]);
2305 		if (err != DDI_SUCCESS) {
2306 			/* Free the last already allocated OK chunks */
2307 			for (slot = 0; slot <= split; ++slot)
2308 				bge_free_dma_mem(&srp->buf[array][slot]);
2309 			srp->tx_alloc_fail++;
2310 			return (NULL);
2311 		}
2312 	}
2313 
2314 	/*
2315 	 * Chunk tx buffer area
2316 	 */
2317 	txbuf = srp->txbuf + array*BGE_SEND_BUF_NUM;
2318 	for (split = 0; split < BGE_SPLIT; ++split) {
2319 		area = srp->buf[array][split];
2320 		for (slot = 0; slot < BGE_SEND_BUF_NUM/BGE_SPLIT; ++slot) {
2321 			bge_slice_chunk(&txbuf->buf, &area, 1,
2322 			    bgep->chipid.snd_buff_size);
2323 			txbuf++;
2324 		}
2325 	}
2326 
2327 	/*
2328 	 * Add above buffers to the tx buffer pop queue
2329 	 */
2330 	txbuf_item = srp->txbuf_head + array*BGE_SEND_BUF_NUM;
2331 	txbuf = srp->txbuf + array*BGE_SEND_BUF_NUM;
2332 	txbuf_item_last = NULL;
2333 	for (slot = 0; slot < BGE_SEND_BUF_NUM; ++slot) {
2334 		txbuf_item->item = txbuf;
2335 		txbuf_item->next = txbuf_item_last;
2336 		txbuf_item_last = txbuf_item;
2337 		txbuf++;
2338 		txbuf_item++;
2339 	}
2340 	txbuf_item = srp->txbuf_head + array*BGE_SEND_BUF_NUM;
2341 	txbuf_item_rtn = txbuf_item;
2342 	txbuf_item++;
2343 	txbuf_queue = srp->txbuf_pop_queue;
2344 	mutex_enter(txbuf_queue->lock);
2345 	txbuf_item->next = txbuf_queue->head;
2346 	txbuf_queue->head = txbuf_item_last;
2347 	txbuf_queue->count += BGE_SEND_BUF_NUM - 1;
2348 	mutex_exit(txbuf_queue->lock);
2349 
2350 	srp->tx_array++;
2351 	srp->tx_buffers += BGE_SEND_BUF_NUM;
2352 	srp->tx_buffers_low = srp->tx_buffers / 4;
2353 
2354 	return (txbuf_item_rtn);
2355 }
2356 
2357 /*
2358  * This function allocates all the transmit and receive buffers
2359  * and descriptors, in four chunks.
2360  */
2361 int
2362 bge_alloc_bufs(bge_t *bgep)
2363 {
2364 	dma_area_t area;
2365 	size_t rxbuffsize;
2366 	size_t txbuffsize;
2367 	size_t rxbuffdescsize;
2368 	size_t rxdescsize;
2369 	size_t txdescsize;
2370 	uint32_t ring;
2371 	uint32_t rx_rings = bgep->chipid.rx_rings;
2372 	uint32_t tx_rings = bgep->chipid.tx_rings;
2373 	int split;
2374 	int err;
2375 
2376 	BGE_TRACE(("bge_alloc_bufs($%p)",
2377 	    (void *)bgep));
2378 
2379 	rxbuffsize = BGE_STD_SLOTS_USED*bgep->chipid.std_buf_size;
2380 	rxbuffsize += bgep->chipid.jumbo_slots*bgep->chipid.recv_jumbo_size;
2381 	rxbuffsize += BGE_MINI_SLOTS_USED*BGE_MINI_BUFF_SIZE;
2382 
2383 	txbuffsize = BGE_SEND_BUF_NUM*bgep->chipid.snd_buff_size;
2384 	txbuffsize *= tx_rings;
2385 
2386 	rxdescsize = rx_rings*bgep->chipid.recv_slots;
2387 	rxdescsize *= sizeof (bge_rbd_t);
2388 
2389 	rxbuffdescsize = BGE_STD_SLOTS_USED;
2390 	rxbuffdescsize += bgep->chipid.jumbo_slots;
2391 	rxbuffdescsize += BGE_MINI_SLOTS_USED;
2392 	rxbuffdescsize *= sizeof (bge_rbd_t);
2393 
2394 	txdescsize = tx_rings*BGE_SEND_SLOTS_USED;
2395 	txdescsize *= sizeof (bge_sbd_t);
2396 	txdescsize += sizeof (bge_statistics_t);
2397 	txdescsize += sizeof (bge_status_t);
2398 	txdescsize += BGE_STATUS_PADDING;
2399 
2400 	/*
2401 	 * Enable PCI relaxed ordering only for RX/TX data buffers
2402 	 */
2403 	if (bge_relaxed_ordering)
2404 		dma_attr.dma_attr_flags |= DDI_DMA_RELAXED_ORDERING;
2405 
2406 	/*
2407 	 * Allocate memory & handles for RX buffers
2408 	 */
2409 	ASSERT((rxbuffsize % BGE_SPLIT) == 0);
2410 	for (split = 0; split < BGE_SPLIT; ++split) {
2411 		err = bge_alloc_dma_mem(bgep, rxbuffsize/BGE_SPLIT,
2412 		    &bge_data_accattr, DDI_DMA_READ | BGE_DMA_MODE,
2413 		    &bgep->rx_buff[split]);
2414 		if (err != DDI_SUCCESS)
2415 			return (DDI_FAILURE);
2416 	}
2417 
2418 	/*
2419 	 * Allocate memory & handles for TX buffers
2420 	 */
2421 	ASSERT((txbuffsize % BGE_SPLIT) == 0);
2422 	for (split = 0; split < BGE_SPLIT; ++split) {
2423 		err = bge_alloc_dma_mem(bgep, txbuffsize/BGE_SPLIT,
2424 		    &bge_data_accattr, DDI_DMA_WRITE | BGE_DMA_MODE,
2425 		    &bgep->tx_buff[split]);
2426 		if (err != DDI_SUCCESS)
2427 			return (DDI_FAILURE);
2428 	}
2429 
2430 	dma_attr.dma_attr_flags &= ~DDI_DMA_RELAXED_ORDERING;
2431 
2432 	/*
2433 	 * Allocate memory & handles for receive return rings
2434 	 */
2435 	ASSERT((rxdescsize % rx_rings) == 0);
2436 	for (split = 0; split < rx_rings; ++split) {
2437 		err = bge_alloc_dma_mem(bgep, rxdescsize/rx_rings,
2438 		    &bge_desc_accattr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
2439 		    &bgep->rx_desc[split]);
2440 		if (err != DDI_SUCCESS)
2441 			return (DDI_FAILURE);
2442 	}
2443 
2444 	/*
2445 	 * Allocate memory & handles for buffer (producer) descriptor rings
2446 	 */
2447 	err = bge_alloc_dma_mem(bgep, rxbuffdescsize, &bge_desc_accattr,
2448 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->rx_desc[split]);
2449 	if (err != DDI_SUCCESS)
2450 		return (DDI_FAILURE);
2451 
2452 	/*
2453 	 * Allocate memory & handles for TX descriptor rings,
2454 	 * status block, and statistics area
2455 	 */
2456 	err = bge_alloc_dma_mem(bgep, txdescsize, &bge_desc_accattr,
2457 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->tx_desc);
2458 	if (err != DDI_SUCCESS)
2459 		return (DDI_FAILURE);
2460 
2461 	/*
2462 	 * Now carve up each of the allocated areas ...
2463 	 */
2464 	for (split = 0; split < BGE_SPLIT; ++split) {
2465 		area = bgep->rx_buff[split];
2466 		bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].buf[split],
2467 		    &area, BGE_STD_SLOTS_USED/BGE_SPLIT,
2468 		    bgep->chipid.std_buf_size);
2469 		bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].buf[split],
2470 		    &area, bgep->chipid.jumbo_slots/BGE_SPLIT,
2471 		    bgep->chipid.recv_jumbo_size);
2472 		bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].buf[split],
2473 		    &area, BGE_MINI_SLOTS_USED/BGE_SPLIT,
2474 		    BGE_MINI_BUFF_SIZE);
2475 		ASSERT(area.alength >= 0);
2476 	}
2477 
2478 	for (split = 0; split < BGE_SPLIT; ++split) {
2479 		area = bgep->tx_buff[split];
2480 		for (ring = 0; ring < tx_rings; ++ring)
2481 			bge_slice_chunk(&bgep->send[ring].buf[0][split],
2482 			    &area, BGE_SEND_BUF_NUM/BGE_SPLIT,
2483 			    bgep->chipid.snd_buff_size);
2484 		for (; ring < BGE_SEND_RINGS_MAX; ++ring)
2485 			bge_slice_chunk(&bgep->send[ring].buf[0][split],
2486 			    &area, 0, bgep->chipid.snd_buff_size);
2487 		ASSERT(area.alength >= 0);
2488 	}
2489 
2490 	for (ring = 0; ring < rx_rings; ++ring)
2491 		bge_slice_chunk(&bgep->recv[ring].desc, &bgep->rx_desc[ring],
2492 		    bgep->chipid.recv_slots, sizeof (bge_rbd_t));
2493 
2494 	area = bgep->rx_desc[rx_rings];
2495 	for (; ring < BGE_RECV_RINGS_MAX; ++ring)
2496 		bge_slice_chunk(&bgep->recv[ring].desc, &area,
2497 		    0, sizeof (bge_rbd_t));
2498 	bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].desc, &area,
2499 	    BGE_STD_SLOTS_USED, sizeof (bge_rbd_t));
2500 	bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].desc, &area,
2501 	    bgep->chipid.jumbo_slots, sizeof (bge_rbd_t));
2502 	bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].desc, &area,
2503 	    BGE_MINI_SLOTS_USED, sizeof (bge_rbd_t));
2504 	ASSERT(area.alength == 0);
2505 
2506 	area = bgep->tx_desc;
2507 	for (ring = 0; ring < tx_rings; ++ring)
2508 		bge_slice_chunk(&bgep->send[ring].desc, &area,
2509 		    BGE_SEND_SLOTS_USED, sizeof (bge_sbd_t));
2510 	for (; ring < BGE_SEND_RINGS_MAX; ++ring)
2511 		bge_slice_chunk(&bgep->send[ring].desc, &area,
2512 		    0, sizeof (bge_sbd_t));
2513 	bge_slice_chunk(&bgep->statistics, &area, 1, sizeof (bge_statistics_t));
2514 	bge_slice_chunk(&bgep->status_block, &area, 1, sizeof (bge_status_t));
2515 	ASSERT(area.alength == BGE_STATUS_PADDING);
2516 	DMA_ZERO(bgep->status_block);
2517 
2518 	return (DDI_SUCCESS);
2519 }
2520 
2521 /*
2522  * This routine frees the transmit and receive buffers and descriptors.
2523  * Make sure the chip is stopped before calling it!
2524  */
2525 void
2526 bge_free_bufs(bge_t *bgep)
2527 {
2528 	int split;
2529 
2530 	BGE_TRACE(("bge_free_bufs($%p)",
2531 	    (void *)bgep));
2532 
2533 	bge_free_dma_mem(&bgep->tx_desc);
2534 	for (split = 0; split < BGE_RECV_RINGS_SPLIT; ++split)
2535 		bge_free_dma_mem(&bgep->rx_desc[split]);
2536 	for (split = 0; split < BGE_SPLIT; ++split)
2537 		bge_free_dma_mem(&bgep->tx_buff[split]);
2538 	for (split = 0; split < BGE_SPLIT; ++split)
2539 		bge_free_dma_mem(&bgep->rx_buff[split]);
2540 }
2541 
2542 /*
2543  * Determine (initial) MAC address ("BIA") to use for this interface
2544  */
2545 
2546 static void
2547 bge_find_mac_address(bge_t *bgep, chip_id_t *cidp)
2548 {
2549 	struct ether_addr sysaddr;
2550 	char propbuf[8];		/* "true" or "false", plus NUL	*/
2551 	uchar_t *bytes;
2552 	int *ints;
2553 	uint_t nelts;
2554 	int err;
2555 
2556 	BGE_TRACE(("bge_find_mac_address($%p)",
2557 	    (void *)bgep));
2558 
2559 	BGE_DEBUG(("bge_find_mac_address: hw_mac_addr %012llx, => %s (%sset)",
2560 	    cidp->hw_mac_addr,
2561 	    ether_sprintf((void *)cidp->vendor_addr.addr),
2562 	    cidp->vendor_addr.set ? "" : "not "));
2563 
2564 	/*
2565 	 * The "vendor's factory-set address" may already have
2566 	 * been extracted from the chip, but if the property
2567 	 * "local-mac-address" is set we use that instead.  It
2568 	 * will normally be set by OBP, but it could also be
2569 	 * specified in a .conf file(!)
2570 	 *
2571 	 * There doesn't seem to be a way to define byte-array
2572 	 * properties in a .conf, so we check whether it looks
2573 	 * like an array of 6 ints instead.
2574 	 *
2575 	 * Then, we check whether it looks like an array of 6
2576 	 * bytes (which it should, if OBP set it).  If we can't
2577 	 * make sense of it either way, we'll ignore it.
2578 	 */
2579 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
2580 	    DDI_PROP_DONTPASS, localmac_propname, &ints, &nelts);
2581 	if (err == DDI_PROP_SUCCESS) {
2582 		if (nelts == ETHERADDRL) {
2583 			while (nelts--)
2584 				cidp->vendor_addr.addr[nelts] = ints[nelts];
2585 			cidp->vendor_addr.set = B_TRUE;
2586 		}
2587 		ddi_prop_free(ints);
2588 	}
2589 
2590 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo,
2591 	    DDI_PROP_DONTPASS, localmac_propname, &bytes, &nelts);
2592 	if (err == DDI_PROP_SUCCESS) {
2593 		if (nelts == ETHERADDRL) {
2594 			while (nelts--)
2595 				cidp->vendor_addr.addr[nelts] = bytes[nelts];
2596 			cidp->vendor_addr.set = B_TRUE;
2597 		}
2598 		ddi_prop_free(bytes);
2599 	}
2600 
2601 	BGE_DEBUG(("bge_find_mac_address: +local %s (%sset)",
2602 	    ether_sprintf((void *)cidp->vendor_addr.addr),
2603 	    cidp->vendor_addr.set ? "" : "not "));
2604 
2605 	/*
2606 	 * Look up the OBP property "local-mac-address?".  Note that even
2607 	 * though its value is a string (which should be "true" or "false"),
2608 	 * it can't be decoded by ddi_prop_lookup_string(9F).  So, we zero
2609 	 * the buffer first and then fetch the property as an untyped array;
2610 	 * this may or may not include a final NUL, but since there will
2611 	 * always be one left at the end of the buffer we can now treat it
2612 	 * as a string anyway.
2613 	 */
2614 	nelts = sizeof (propbuf);
2615 	bzero(propbuf, nelts--);
2616 	err = ddi_getlongprop_buf(DDI_DEV_T_ANY, bgep->devinfo,
2617 	    DDI_PROP_CANSLEEP, localmac_boolname, propbuf, (int *)&nelts);
2618 
2619 	/*
2620 	 * Now, if the address still isn't set from the hardware (SEEPROM)
2621 	 * or the OBP or .conf property, OR if the user has foolishly set
2622 	 * 'local-mac-address? = false', use "the system address" instead
2623 	 * (but only if it's non-null i.e. has been set from the IDPROM).
2624 	 */
2625 	if (cidp->vendor_addr.set == B_FALSE || strcmp(propbuf, "false") == 0)
2626 		if (localetheraddr(NULL, &sysaddr) != 0) {
2627 			ethaddr_copy(&sysaddr, cidp->vendor_addr.addr);
2628 			cidp->vendor_addr.set = B_TRUE;
2629 		}
2630 
2631 	BGE_DEBUG(("bge_find_mac_address: +system %s (%sset)",
2632 	    ether_sprintf((void *)cidp->vendor_addr.addr),
2633 	    cidp->vendor_addr.set ? "" : "not "));
2634 
2635 	/*
2636 	 * Finally(!), if there's a valid "mac-address" property (created
2637 	 * if we netbooted from this interface), we must use this instead
2638 	 * of any of the above to ensure that the NFS/install server doesn't
2639 	 * get confused by the address changing as Solaris takes over!
2640 	 */
2641 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo,
2642 	    DDI_PROP_DONTPASS, macaddr_propname, &bytes, &nelts);
2643 	if (err == DDI_PROP_SUCCESS) {
2644 		if (nelts == ETHERADDRL) {
2645 			while (nelts--)
2646 				cidp->vendor_addr.addr[nelts] = bytes[nelts];
2647 			cidp->vendor_addr.set = B_TRUE;
2648 		}
2649 		ddi_prop_free(bytes);
2650 	}
2651 
2652 	BGE_DEBUG(("bge_find_mac_address: =final %s (%sset)",
2653 	    ether_sprintf((void *)cidp->vendor_addr.addr),
2654 	    cidp->vendor_addr.set ? "" : "not "));
2655 }
2656 
2657 
2658 /*ARGSUSED*/
2659 int
2660 bge_check_acc_handle(bge_t *bgep, ddi_acc_handle_t handle)
2661 {
2662 	ddi_fm_error_t de;
2663 
2664 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
2665 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
2666 	return (de.fme_status);
2667 }
2668 
2669 /*ARGSUSED*/
2670 int
2671 bge_check_dma_handle(bge_t *bgep, ddi_dma_handle_t handle)
2672 {
2673 	ddi_fm_error_t de;
2674 
2675 	ASSERT(bgep->progress & PROGRESS_BUFS);
2676 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
2677 	return (de.fme_status);
2678 }
2679 
2680 /*
2681  * The IO fault service error handling callback function
2682  */
2683 /*ARGSUSED*/
2684 static int
2685 bge_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
2686 {
2687 	/*
2688 	 * as the driver can always deal with an error in any dma or
2689 	 * access handle, we can just return the fme_status value.
2690 	 */
2691 	pci_ereport_post(dip, err, NULL);
2692 	return (err->fme_status);
2693 }
2694 
2695 static void
2696 bge_fm_init(bge_t *bgep)
2697 {
2698 	ddi_iblock_cookie_t iblk;
2699 
2700 	/* Only register with IO Fault Services if we have some capability */
2701 	if (bgep->fm_capabilities) {
2702 		bge_reg_accattr.devacc_attr_access = DDI_FLAGERR_ACC;
2703 		bge_desc_accattr.devacc_attr_access = DDI_FLAGERR_ACC;
2704 		dma_attr.dma_attr_flags = DDI_DMA_FLAGERR;
2705 
2706 		/* Register capabilities with IO Fault Services */
2707 		ddi_fm_init(bgep->devinfo, &bgep->fm_capabilities, &iblk);
2708 
2709 		/*
2710 		 * Initialize pci ereport capabilities if ereport capable
2711 		 */
2712 		if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) ||
2713 		    DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2714 			pci_ereport_setup(bgep->devinfo);
2715 
2716 		/*
2717 		 * Register error callback if error callback capable
2718 		 */
2719 		if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2720 			ddi_fm_handler_register(bgep->devinfo,
2721 			    bge_fm_error_cb, (void*) bgep);
2722 	} else {
2723 		/*
2724 		 * These fields have to be cleared of FMA if there are no
2725 		 * FMA capabilities at runtime.
2726 		 */
2727 		bge_reg_accattr.devacc_attr_access = DDI_DEFAULT_ACC;
2728 		bge_desc_accattr.devacc_attr_access = DDI_DEFAULT_ACC;
2729 		dma_attr.dma_attr_flags = 0;
2730 	}
2731 }
2732 
2733 static void
2734 bge_fm_fini(bge_t *bgep)
2735 {
2736 	/* Only unregister FMA capabilities if we registered some */
2737 	if (bgep->fm_capabilities) {
2738 
2739 		/*
2740 		 * Release any resources allocated by pci_ereport_setup()
2741 		 */
2742 		if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) ||
2743 		    DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2744 			pci_ereport_teardown(bgep->devinfo);
2745 
2746 		/*
2747 		 * Un-register error callback if error callback capable
2748 		 */
2749 		if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2750 			ddi_fm_handler_unregister(bgep->devinfo);
2751 
2752 		/* Unregister from IO Fault Services */
2753 		ddi_fm_fini(bgep->devinfo);
2754 	}
2755 }
2756 
2757 static void
2758 #ifdef BGE_IPMI_ASF
2759 bge_unattach(bge_t *bgep, uint_t asf_mode)
2760 #else
2761 bge_unattach(bge_t *bgep)
2762 #endif
2763 {
2764 	BGE_TRACE(("bge_unattach($%p)",
2765 		(void *)bgep));
2766 
2767 	/*
2768 	 * Flag that no more activity may be initiated
2769 	 */
2770 	bgep->progress &= ~PROGRESS_READY;
2771 
2772 	/*
2773 	 * Quiesce the PHY and MAC (leave it reset but still powered).
2774 	 * Clean up and free all BGE data structures
2775 	 */
2776 	if (bgep->periodic_id != NULL) {
2777 		ddi_periodic_delete(bgep->periodic_id);
2778 		bgep->periodic_id = NULL;
2779 	}
2780 	if (bgep->progress & PROGRESS_KSTATS)
2781 		bge_fini_kstats(bgep);
2782 	if (bgep->progress & PROGRESS_NDD)
2783 		bge_nd_cleanup(bgep);
2784 	if (bgep->progress & PROGRESS_PHY)
2785 		bge_phys_reset(bgep);
2786 	if (bgep->progress & PROGRESS_HWINT) {
2787 		mutex_enter(bgep->genlock);
2788 #ifdef BGE_IPMI_ASF
2789 		if (bge_chip_reset(bgep, B_FALSE, asf_mode) != DDI_SUCCESS)
2790 #else
2791 		if (bge_chip_reset(bgep, B_FALSE) != DDI_SUCCESS)
2792 #endif
2793 			ddi_fm_service_impact(bgep->devinfo,
2794 			    DDI_SERVICE_UNAFFECTED);
2795 #ifdef BGE_IPMI_ASF
2796 		if (bgep->asf_enabled) {
2797 			/*
2798 			 * This register has been overlaid. We restore its
2799 			 * initial value here.
2800 			 */
2801 			bge_nic_put32(bgep, BGE_NIC_DATA_SIG_ADDR,
2802 			    BGE_NIC_DATA_SIG);
2803 		}
2804 #endif
2805 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
2806 			ddi_fm_service_impact(bgep->devinfo,
2807 			    DDI_SERVICE_UNAFFECTED);
2808 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
2809 			ddi_fm_service_impact(bgep->devinfo,
2810 			    DDI_SERVICE_UNAFFECTED);
2811 		mutex_exit(bgep->genlock);
2812 	}
2813 	if (bgep->progress & PROGRESS_INTR) {
2814 		bge_intr_disable(bgep);
2815 		bge_fini_rings(bgep);
2816 	}
2817 	if (bgep->progress & PROGRESS_HWINT) {
2818 		bge_rem_intrs(bgep);
2819 		rw_destroy(bgep->errlock);
2820 		mutex_destroy(bgep->softintrlock);
2821 		mutex_destroy(bgep->genlock);
2822 	}
2823 	if (bgep->progress & PROGRESS_FACTOTUM)
2824 		ddi_remove_softintr(bgep->factotum_id);
2825 	if (bgep->progress & PROGRESS_RESCHED)
2826 		ddi_remove_softintr(bgep->drain_id);
2827 	if (bgep->progress & PROGRESS_BUFS)
2828 		bge_free_bufs(bgep);
2829 	if (bgep->progress & PROGRESS_REGS)
2830 		ddi_regs_map_free(&bgep->io_handle);
2831 	if (bgep->progress & PROGRESS_CFG)
2832 		pci_config_teardown(&bgep->cfg_handle);
2833 
2834 	bge_fm_fini(bgep);
2835 
2836 	ddi_remove_minor_node(bgep->devinfo, NULL);
2837 	kmem_free(bgep->pstats, sizeof (bge_statistics_reg_t));
2838 	kmem_free(bgep->nd_params, PARAM_COUNT * sizeof (nd_param_t));
2839 	kmem_free(bgep, sizeof (*bgep));
2840 }
2841 
2842 static int
2843 bge_resume(dev_info_t *devinfo)
2844 {
2845 	bge_t *bgep;				/* Our private data	*/
2846 	chip_id_t *cidp;
2847 	chip_id_t chipid;
2848 
2849 	bgep = ddi_get_driver_private(devinfo);
2850 	if (bgep == NULL)
2851 		return (DDI_FAILURE);
2852 
2853 	/*
2854 	 * Refuse to resume if the data structures aren't consistent
2855 	 */
2856 	if (bgep->devinfo != devinfo)
2857 		return (DDI_FAILURE);
2858 
2859 #ifdef BGE_IPMI_ASF
2860 	/*
2861 	 * Power management hasn't been supported in BGE now. If you
2862 	 * want to implement it, please add the ASF/IPMI related
2863 	 * code here.
2864 	 */
2865 
2866 #endif
2867 
2868 	/*
2869 	 * Read chip ID & set up config space command register(s)
2870 	 * Refuse to resume if the chip has changed its identity!
2871 	 */
2872 	cidp = &bgep->chipid;
2873 	mutex_enter(bgep->genlock);
2874 	bge_chip_cfg_init(bgep, &chipid, B_FALSE);
2875 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
2876 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2877 		mutex_exit(bgep->genlock);
2878 		return (DDI_FAILURE);
2879 	}
2880 	mutex_exit(bgep->genlock);
2881 	if (chipid.vendor != cidp->vendor)
2882 		return (DDI_FAILURE);
2883 	if (chipid.device != cidp->device)
2884 		return (DDI_FAILURE);
2885 	if (chipid.revision != cidp->revision)
2886 		return (DDI_FAILURE);
2887 	if (chipid.asic_rev != cidp->asic_rev)
2888 		return (DDI_FAILURE);
2889 
2890 	/*
2891 	 * All OK, reinitialise h/w & kick off GLD scheduling
2892 	 */
2893 	mutex_enter(bgep->genlock);
2894 	if (bge_restart(bgep, B_TRUE) != DDI_SUCCESS) {
2895 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
2896 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
2897 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2898 		mutex_exit(bgep->genlock);
2899 		return (DDI_FAILURE);
2900 	}
2901 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
2902 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2903 		mutex_exit(bgep->genlock);
2904 		return (DDI_FAILURE);
2905 	}
2906 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
2907 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2908 		mutex_exit(bgep->genlock);
2909 		return (DDI_FAILURE);
2910 	}
2911 	mutex_exit(bgep->genlock);
2912 	return (DDI_SUCCESS);
2913 }
2914 
2915 /*
2916  * attach(9E) -- Attach a device to the system
2917  *
2918  * Called once for each board successfully probed.
2919  */
2920 static int
2921 bge_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
2922 {
2923 	bge_t *bgep;				/* Our private data	*/
2924 	mac_register_t *macp;
2925 	chip_id_t *cidp;
2926 	caddr_t regs;
2927 	int instance;
2928 	int err;
2929 	int intr_types;
2930 #ifdef BGE_IPMI_ASF
2931 	uint32_t mhcrValue;
2932 #ifdef __sparc
2933 	uint16_t value16;
2934 #endif
2935 #ifdef BGE_NETCONSOLE
2936 	int retval;
2937 #endif
2938 #endif
2939 
2940 	instance = ddi_get_instance(devinfo);
2941 
2942 	BGE_GTRACE(("bge_attach($%p, %d) instance %d",
2943 	    (void *)devinfo, cmd, instance));
2944 	BGE_BRKPT(NULL, "bge_attach");
2945 
2946 	switch (cmd) {
2947 	default:
2948 		return (DDI_FAILURE);
2949 
2950 	case DDI_RESUME:
2951 		return (bge_resume(devinfo));
2952 
2953 	case DDI_ATTACH:
2954 		break;
2955 	}
2956 
2957 	bgep = kmem_zalloc(sizeof (*bgep), KM_SLEEP);
2958 	bgep->pstats = kmem_zalloc(sizeof (bge_statistics_reg_t), KM_SLEEP);
2959 	bgep->nd_params =
2960 	    kmem_zalloc(PARAM_COUNT * sizeof (nd_param_t), KM_SLEEP);
2961 	ddi_set_driver_private(devinfo, bgep);
2962 	bgep->bge_guard = BGE_GUARD;
2963 	bgep->devinfo = devinfo;
2964 	bgep->param_drain_max = 64;
2965 	bgep->param_msi_cnt = 0;
2966 	bgep->param_loop_mode = 0;
2967 
2968 	/*
2969 	 * Initialize more fields in BGE private data
2970 	 */
2971 	bgep->debug = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
2972 	    DDI_PROP_DONTPASS, debug_propname, bge_debug);
2973 	(void) snprintf(bgep->ifname, sizeof (bgep->ifname), "%s%d",
2974 	    BGE_DRIVER_NAME, instance);
2975 
2976 	/*
2977 	 * Initialize for fma support
2978 	 */
2979 	bgep->fm_capabilities = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
2980 	    DDI_PROP_DONTPASS, fm_cap,
2981 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
2982 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
2983 	BGE_DEBUG(("bgep->fm_capabilities = %d", bgep->fm_capabilities));
2984 	bge_fm_init(bgep);
2985 
2986 	/*
2987 	 * Look up the IOMMU's page size for DVMA mappings (must be
2988 	 * a power of 2) and convert to a mask.  This can be used to
2989 	 * determine whether a message buffer crosses a page boundary.
2990 	 * Note: in 2s complement binary notation, if X is a power of
2991 	 * 2, then -X has the representation "11...1100...00".
2992 	 */
2993 	bgep->pagemask = dvma_pagesize(devinfo);
2994 	ASSERT(ddi_ffs(bgep->pagemask) == ddi_fls(bgep->pagemask));
2995 	bgep->pagemask = -bgep->pagemask;
2996 
2997 	/*
2998 	 * Map config space registers
2999 	 * Read chip ID & set up config space command register(s)
3000 	 *
3001 	 * Note: this leaves the chip accessible by Memory Space
3002 	 * accesses, but with interrupts and Bus Mastering off.
3003 	 * This should ensure that nothing untoward will happen
3004 	 * if it has been left active by the (net-)bootloader.
3005 	 * We'll re-enable Bus Mastering once we've reset the chip,
3006 	 * and allow interrupts only when everything else is set up.
3007 	 */
3008 	err = pci_config_setup(devinfo, &bgep->cfg_handle);
3009 #ifdef BGE_IPMI_ASF
3010 #ifdef __sparc
3011 	value16 = pci_config_get16(bgep->cfg_handle, PCI_CONF_COMM);
3012 	value16 = value16 | (PCI_COMM_MAE | PCI_COMM_ME);
3013 	pci_config_put16(bgep->cfg_handle, PCI_CONF_COMM, value16);
3014 	mhcrValue = MHCR_ENABLE_INDIRECT_ACCESS |
3015 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
3016 	    MHCR_MASK_INTERRUPT_MODE |
3017 	    MHCR_MASK_PCI_INT_OUTPUT |
3018 	    MHCR_CLEAR_INTERRUPT_INTA |
3019 	    MHCR_ENABLE_ENDIAN_WORD_SWAP |
3020 	    MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3021 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcrValue);
3022 	bge_ind_put32(bgep, MEMORY_ARBITER_MODE_REG,
3023 	    bge_ind_get32(bgep, MEMORY_ARBITER_MODE_REG) |
3024 	    MEMORY_ARBITER_ENABLE);
3025 #else
3026 	mhcrValue = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MHCR);
3027 #endif
3028 	if (mhcrValue & MHCR_ENABLE_ENDIAN_WORD_SWAP) {
3029 		bgep->asf_wordswapped = B_TRUE;
3030 	} else {
3031 		bgep->asf_wordswapped = B_FALSE;
3032 	}
3033 	bge_asf_get_config(bgep);
3034 #endif
3035 	if (err != DDI_SUCCESS) {
3036 		bge_problem(bgep, "pci_config_setup() failed");
3037 		goto attach_fail;
3038 	}
3039 	bgep->progress |= PROGRESS_CFG;
3040 	cidp = &bgep->chipid;
3041 	bzero(cidp, sizeof (*cidp));
3042 	bge_chip_cfg_init(bgep, cidp, B_FALSE);
3043 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
3044 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3045 		goto attach_fail;
3046 	}
3047 
3048 #ifdef BGE_IPMI_ASF
3049 	if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
3050 	    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
3051 		bgep->asf_newhandshake = B_TRUE;
3052 	} else {
3053 		bgep->asf_newhandshake = B_FALSE;
3054 	}
3055 #endif
3056 
3057 	/*
3058 	 * Update those parts of the chip ID derived from volatile
3059 	 * registers with the values seen by OBP (in case the chip
3060 	 * has been reset externally and therefore lost them).
3061 	 */
3062 	cidp->subven = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3063 	    DDI_PROP_DONTPASS, subven_propname, cidp->subven);
3064 	cidp->subdev = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3065 	    DDI_PROP_DONTPASS, subdev_propname, cidp->subdev);
3066 	cidp->clsize = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3067 	    DDI_PROP_DONTPASS, clsize_propname, cidp->clsize);
3068 	cidp->latency = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3069 	    DDI_PROP_DONTPASS, latency_propname, cidp->latency);
3070 	cidp->rx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3071 	    DDI_PROP_DONTPASS, rxrings_propname, cidp->rx_rings);
3072 	cidp->tx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3073 	    DDI_PROP_DONTPASS, txrings_propname, cidp->tx_rings);
3074 
3075 	if (bge_jumbo_enable == B_TRUE) {
3076 		cidp->default_mtu = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3077 		    DDI_PROP_DONTPASS, default_mtu, BGE_DEFAULT_MTU);
3078 		if ((cidp->default_mtu < BGE_DEFAULT_MTU)||
3079 		    (cidp->default_mtu > BGE_MAXIMUM_MTU)) {
3080 			cidp->default_mtu = BGE_DEFAULT_MTU;
3081 		}
3082 	}
3083 	/*
3084 	 * Map operating registers
3085 	 */
3086 	err = ddi_regs_map_setup(devinfo, BGE_PCI_OPREGS_RNUMBER,
3087 	    &regs, 0, 0, &bge_reg_accattr, &bgep->io_handle);
3088 	if (err != DDI_SUCCESS) {
3089 		bge_problem(bgep, "ddi_regs_map_setup() failed");
3090 		goto attach_fail;
3091 	}
3092 	bgep->io_regs = regs;
3093 	bgep->progress |= PROGRESS_REGS;
3094 
3095 	/*
3096 	 * Characterise the device, so we know its requirements.
3097 	 * Then allocate the appropriate TX and RX descriptors & buffers.
3098 	 */
3099 	if (bge_chip_id_init(bgep) == EIO) {
3100 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3101 		goto attach_fail;
3102 	}
3103 	err = bge_alloc_bufs(bgep);
3104 	if (err != DDI_SUCCESS) {
3105 		bge_problem(bgep, "DMA buffer allocation failed");
3106 		goto attach_fail;
3107 	}
3108 	bgep->progress |= PROGRESS_BUFS;
3109 
3110 	/*
3111 	 * Add the softint handlers:
3112 	 *
3113 	 * Both of these handlers are used to avoid restrictions on the
3114 	 * context and/or mutexes required for some operations.  In
3115 	 * particular, the hardware interrupt handler and its subfunctions
3116 	 * can detect a number of conditions that we don't want to handle
3117 	 * in that context or with that set of mutexes held.  So, these
3118 	 * softints are triggered instead:
3119 	 *
3120 	 * the <resched> softint is triggered if we have previously
3121 	 * had to refuse to send a packet because of resource shortage
3122 	 * (we've run out of transmit buffers), but the send completion
3123 	 * interrupt handler has now detected that more buffers have
3124 	 * become available.
3125 	 *
3126 	 * the <factotum> is triggered if the h/w interrupt handler
3127 	 * sees the <link state changed> or <error> bits in the status
3128 	 * block.  It's also triggered periodically to poll the link
3129 	 * state, just in case we aren't getting link status change
3130 	 * interrupts ...
3131 	 */
3132 	err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->drain_id,
3133 	    NULL, NULL, bge_send_drain, (caddr_t)bgep);
3134 	if (err != DDI_SUCCESS) {
3135 		bge_problem(bgep, "ddi_add_softintr() failed");
3136 		goto attach_fail;
3137 	}
3138 	bgep->progress |= PROGRESS_RESCHED;
3139 	err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->factotum_id,
3140 	    NULL, NULL, bge_chip_factotum, (caddr_t)bgep);
3141 	if (err != DDI_SUCCESS) {
3142 		bge_problem(bgep, "ddi_add_softintr() failed");
3143 		goto attach_fail;
3144 	}
3145 	bgep->progress |= PROGRESS_FACTOTUM;
3146 
3147 	/* Get supported interrupt types */
3148 	if (ddi_intr_get_supported_types(devinfo, &intr_types) != DDI_SUCCESS) {
3149 		bge_error(bgep, "ddi_intr_get_supported_types failed\n");
3150 
3151 		goto attach_fail;
3152 	}
3153 
3154 	BGE_DEBUG(("%s: ddi_intr_get_supported_types() returned: %x",
3155 	    bgep->ifname, intr_types));
3156 
3157 	if ((intr_types & DDI_INTR_TYPE_MSI) && bgep->chipid.msi_enabled) {
3158 		if (bge_add_intrs(bgep, DDI_INTR_TYPE_MSI) != DDI_SUCCESS) {
3159 			bge_error(bgep, "MSI registration failed, "
3160 			    "trying FIXED interrupt type\n");
3161 		} else {
3162 			BGE_DEBUG(("%s: Using MSI interrupt type",
3163 			    bgep->ifname));
3164 			bgep->intr_type = DDI_INTR_TYPE_MSI;
3165 			bgep->progress |= PROGRESS_HWINT;
3166 		}
3167 	}
3168 
3169 	if (!(bgep->progress & PROGRESS_HWINT) &&
3170 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
3171 		if (bge_add_intrs(bgep, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS) {
3172 			bge_error(bgep, "FIXED interrupt "
3173 			    "registration failed\n");
3174 			goto attach_fail;
3175 		}
3176 
3177 		BGE_DEBUG(("%s: Using FIXED interrupt type", bgep->ifname));
3178 
3179 		bgep->intr_type = DDI_INTR_TYPE_FIXED;
3180 		bgep->progress |= PROGRESS_HWINT;
3181 	}
3182 
3183 	if (!(bgep->progress & PROGRESS_HWINT)) {
3184 		bge_error(bgep, "No interrupts registered\n");
3185 		goto attach_fail;
3186 	}
3187 
3188 	/*
3189 	 * Note that interrupts are not enabled yet as
3190 	 * mutex locks are not initialized. Initialize mutex locks.
3191 	 */
3192 	mutex_init(bgep->genlock, NULL, MUTEX_DRIVER,
3193 	    DDI_INTR_PRI(bgep->intr_pri));
3194 	mutex_init(bgep->softintrlock, NULL, MUTEX_DRIVER,
3195 	    DDI_INTR_PRI(bgep->intr_pri));
3196 	rw_init(bgep->errlock, NULL, RW_DRIVER,
3197 	    DDI_INTR_PRI(bgep->intr_pri));
3198 
3199 	/*
3200 	 * Initialize rings.
3201 	 */
3202 	bge_init_rings(bgep);
3203 
3204 	/*
3205 	 * Now that mutex locks are initialized, enable interrupts.
3206 	 */
3207 	bge_intr_enable(bgep);
3208 	bgep->progress |= PROGRESS_INTR;
3209 
3210 	/*
3211 	 * Initialise link state variables
3212 	 * Stop, reset & reinitialise the chip.
3213 	 * Initialise the (internal) PHY.
3214 	 */
3215 	bgep->link_state = LINK_STATE_UNKNOWN;
3216 
3217 	mutex_enter(bgep->genlock);
3218 
3219 	/*
3220 	 * Reset chip & rings to initial state; also reset address
3221 	 * filtering, promiscuity, loopback mode.
3222 	 */
3223 #ifdef BGE_IPMI_ASF
3224 #ifdef BGE_NETCONSOLE
3225 	if (bge_reset(bgep, ASF_MODE_INIT) != DDI_SUCCESS) {
3226 #else
3227 	if (bge_reset(bgep, ASF_MODE_SHUTDOWN) != DDI_SUCCESS) {
3228 #endif
3229 #else
3230 	if (bge_reset(bgep) != DDI_SUCCESS) {
3231 #endif
3232 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
3233 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
3234 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3235 		mutex_exit(bgep->genlock);
3236 		goto attach_fail;
3237 	}
3238 
3239 #ifdef BGE_IPMI_ASF
3240 	if (bgep->asf_enabled) {
3241 		bgep->asf_status = ASF_STAT_RUN_INIT;
3242 	}
3243 #endif
3244 
3245 	bzero(bgep->mcast_hash, sizeof (bgep->mcast_hash));
3246 	bzero(bgep->mcast_refs, sizeof (bgep->mcast_refs));
3247 	bgep->promisc = B_FALSE;
3248 	bgep->param_loop_mode = BGE_LOOP_NONE;
3249 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
3250 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3251 		mutex_exit(bgep->genlock);
3252 		goto attach_fail;
3253 	}
3254 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
3255 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3256 		mutex_exit(bgep->genlock);
3257 		goto attach_fail;
3258 	}
3259 
3260 	mutex_exit(bgep->genlock);
3261 
3262 	if (bge_phys_init(bgep) == EIO) {
3263 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3264 		goto attach_fail;
3265 	}
3266 	bgep->progress |= PROGRESS_PHY;
3267 
3268 	/*
3269 	 * Register NDD-tweakable parameters
3270 	 */
3271 	if (bge_nd_init(bgep)) {
3272 		bge_problem(bgep, "bge_nd_init() failed");
3273 		goto attach_fail;
3274 	}
3275 	bgep->progress |= PROGRESS_NDD;
3276 
3277 	/*
3278 	 * Create & initialise named kstats
3279 	 */
3280 	bge_init_kstats(bgep, instance);
3281 	bgep->progress |= PROGRESS_KSTATS;
3282 
3283 	/*
3284 	 * Determine whether to override the chip's own MAC address
3285 	 */
3286 	bge_find_mac_address(bgep, cidp);
3287 	ethaddr_copy(cidp->vendor_addr.addr, bgep->curr_addr[0].addr);
3288 	bgep->curr_addr[0].set = B_TRUE;
3289 
3290 	bgep->unicst_addr_total = MAC_ADDRESS_REGS_MAX;
3291 	/*
3292 	 * Address available is one less than MAX
3293 	 * as primary address is not advertised
3294 	 * as a multiple MAC address.
3295 	 */
3296 	bgep->unicst_addr_avail = MAC_ADDRESS_REGS_MAX - 1;
3297 
3298 	if ((macp = mac_alloc(MAC_VERSION)) == NULL)
3299 		goto attach_fail;
3300 	macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
3301 	macp->m_driver = bgep;
3302 	macp->m_dip = devinfo;
3303 	macp->m_src_addr = bgep->curr_addr[0].addr;
3304 	macp->m_callbacks = &bge_m_callbacks;
3305 	macp->m_min_sdu = 0;
3306 	macp->m_max_sdu = cidp->ethmax_size - sizeof (struct ether_header);
3307 	macp->m_margin = VLAN_TAGSZ;
3308 	/*
3309 	 * Finally, we're ready to register ourselves with the MAC layer
3310 	 * interface; if this succeeds, we're all ready to start()
3311 	 */
3312 	err = mac_register(macp, &bgep->mh);
3313 	mac_free(macp);
3314 	if (err != 0)
3315 		goto attach_fail;
3316 
3317 	/*
3318 	 * Register a periodical handler.
3319 	 * bge_chip_cyclic() is invoked in kernel context.
3320 	 */
3321 	bgep->periodic_id = ddi_periodic_add(bge_chip_cyclic, bgep,
3322 	    BGE_CYCLIC_PERIOD, DDI_IPL_0);
3323 
3324 	bgep->progress |= PROGRESS_READY;
3325 	ASSERT(bgep->bge_guard == BGE_GUARD);
3326 #ifdef BGE_IPMI_ASF
3327 #ifdef BGE_NETCONSOLE
3328 	if (bgep->asf_enabled) {
3329 		mutex_enter(bgep->genlock);
3330 		retval = bge_chip_start(bgep, B_TRUE);
3331 		mutex_exit(bgep->genlock);
3332 		if (retval != DDI_SUCCESS)
3333 			goto attach_fail;
3334 	}
3335 #endif
3336 #endif
3337 	return (DDI_SUCCESS);
3338 
3339 attach_fail:
3340 #ifdef BGE_IPMI_ASF
3341 	bge_unattach(bgep, ASF_MODE_SHUTDOWN);
3342 #else
3343 	bge_unattach(bgep);
3344 #endif
3345 	return (DDI_FAILURE);
3346 }
3347 
3348 /*
3349  *	bge_suspend() -- suspend transmit/receive for powerdown
3350  */
3351 static int
3352 bge_suspend(bge_t *bgep)
3353 {
3354 	/*
3355 	 * Stop processing and idle (powerdown) the PHY ...
3356 	 */
3357 	mutex_enter(bgep->genlock);
3358 #ifdef BGE_IPMI_ASF
3359 	/*
3360 	 * Power management hasn't been supported in BGE now. If you
3361 	 * want to implement it, please add the ASF/IPMI related
3362 	 * code here.
3363 	 */
3364 #endif
3365 	bge_stop(bgep);
3366 	if (bge_phys_idle(bgep) != DDI_SUCCESS) {
3367 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
3368 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3369 		mutex_exit(bgep->genlock);
3370 		return (DDI_FAILURE);
3371 	}
3372 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
3373 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3374 		mutex_exit(bgep->genlock);
3375 		return (DDI_FAILURE);
3376 	}
3377 	mutex_exit(bgep->genlock);
3378 
3379 	return (DDI_SUCCESS);
3380 }
3381 
3382 /*
3383  * detach(9E) -- Detach a device from the system
3384  */
3385 static int
3386 bge_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
3387 {
3388 	bge_t *bgep;
3389 #ifdef BGE_IPMI_ASF
3390 	uint_t asf_mode;
3391 	asf_mode = ASF_MODE_NONE;
3392 #endif
3393 
3394 	BGE_GTRACE(("bge_detach($%p, %d)", (void *)devinfo, cmd));
3395 
3396 	bgep = ddi_get_driver_private(devinfo);
3397 
3398 	switch (cmd) {
3399 	default:
3400 		return (DDI_FAILURE);
3401 
3402 	case DDI_SUSPEND:
3403 		return (bge_suspend(bgep));
3404 
3405 	case DDI_DETACH:
3406 		break;
3407 	}
3408 
3409 #ifdef BGE_IPMI_ASF
3410 	mutex_enter(bgep->genlock);
3411 	if (bgep->asf_enabled && ((bgep->asf_status == ASF_STAT_RUN) ||
3412 	    (bgep->asf_status == ASF_STAT_RUN_INIT))) {
3413 
3414 		bge_asf_update_status(bgep);
3415 		if (bgep->asf_status == ASF_STAT_RUN) {
3416 			bge_asf_stop_timer(bgep);
3417 		}
3418 		bgep->asf_status = ASF_STAT_STOP;
3419 
3420 		bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
3421 
3422 		if (bgep->asf_pseudostop) {
3423 			bge_chip_stop(bgep, B_FALSE);
3424 			bgep->bge_mac_state = BGE_MAC_STOPPED;
3425 			bgep->asf_pseudostop = B_FALSE;
3426 		}
3427 
3428 		asf_mode = ASF_MODE_POST_SHUTDOWN;
3429 
3430 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
3431 			ddi_fm_service_impact(bgep->devinfo,
3432 			    DDI_SERVICE_UNAFFECTED);
3433 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
3434 			ddi_fm_service_impact(bgep->devinfo,
3435 			    DDI_SERVICE_UNAFFECTED);
3436 	}
3437 	mutex_exit(bgep->genlock);
3438 #endif
3439 
3440 	/*
3441 	 * Unregister from the GLD subsystem.  This can fail, in
3442 	 * particular if there are DLPI style-2 streams still open -
3443 	 * in which case we just return failure without shutting
3444 	 * down chip operations.
3445 	 */
3446 	if (mac_unregister(bgep->mh) != 0)
3447 		return (DDI_FAILURE);
3448 
3449 	/*
3450 	 * All activity stopped, so we can clean up & exit
3451 	 */
3452 #ifdef BGE_IPMI_ASF
3453 	bge_unattach(bgep, asf_mode);
3454 #else
3455 	bge_unattach(bgep);
3456 #endif
3457 	return (DDI_SUCCESS);
3458 }
3459 
3460 
3461 /*
3462  * ========== Module Loading Data & Entry Points ==========
3463  */
3464 
3465 #undef	BGE_DBG
3466 #define	BGE_DBG		BGE_DBG_INIT	/* debug flag for this code	*/
3467 
3468 DDI_DEFINE_STREAM_OPS(bge_dev_ops, nulldev, nulldev, bge_attach, bge_detach,
3469     nodev, NULL, D_MP, NULL);
3470 
3471 static struct modldrv bge_modldrv = {
3472 	&mod_driverops,		/* Type of module.  This one is a driver */
3473 	bge_ident,		/* short description */
3474 	&bge_dev_ops		/* driver specific ops */
3475 };
3476 
3477 static struct modlinkage modlinkage = {
3478 	MODREV_1, (void *)&bge_modldrv, NULL
3479 };
3480 
3481 
3482 int
3483 _info(struct modinfo *modinfop)
3484 {
3485 	return (mod_info(&modlinkage, modinfop));
3486 }
3487 
3488 int
3489 _init(void)
3490 {
3491 	int status;
3492 
3493 	mac_init_ops(&bge_dev_ops, "bge");
3494 	status = mod_install(&modlinkage);
3495 	if (status == DDI_SUCCESS)
3496 		mutex_init(bge_log_mutex, NULL, MUTEX_DRIVER, NULL);
3497 	else
3498 		mac_fini_ops(&bge_dev_ops);
3499 	return (status);
3500 }
3501 
3502 int
3503 _fini(void)
3504 {
3505 	int status;
3506 
3507 	status = mod_remove(&modlinkage);
3508 	if (status == DDI_SUCCESS) {
3509 		mac_fini_ops(&bge_dev_ops);
3510 		mutex_destroy(bge_log_mutex);
3511 	}
3512 	return (status);
3513 }
3514 
3515 
3516 /*
3517  * bge_add_intrs:
3518  *
3519  * Register FIXED or MSI interrupts.
3520  */
3521 static int
3522 bge_add_intrs(bge_t *bgep, int	intr_type)
3523 {
3524 	dev_info_t	*dip = bgep->devinfo;
3525 	int		avail, actual, intr_size, count = 0;
3526 	int		i, flag, ret;
3527 
3528 	BGE_DEBUG(("bge_add_intrs($%p, 0x%x)", (void *)bgep, intr_type));
3529 
3530 	/* Get number of interrupts */
3531 	ret = ddi_intr_get_nintrs(dip, intr_type, &count);
3532 	if ((ret != DDI_SUCCESS) || (count == 0)) {
3533 		bge_error(bgep, "ddi_intr_get_nintrs() failure, ret: %d, "
3534 		    "count: %d", ret, count);
3535 
3536 		return (DDI_FAILURE);
3537 	}
3538 
3539 	/* Get number of available interrupts */
3540 	ret = ddi_intr_get_navail(dip, intr_type, &avail);
3541 	if ((ret != DDI_SUCCESS) || (avail == 0)) {
3542 		bge_error(bgep, "ddi_intr_get_navail() failure, "
3543 		    "ret: %d, avail: %d\n", ret, avail);
3544 
3545 		return (DDI_FAILURE);
3546 	}
3547 
3548 	if (avail < count) {
3549 		BGE_DEBUG(("%s: nintrs() returned %d, navail returned %d",
3550 		    bgep->ifname, count, avail));
3551 	}
3552 
3553 	/*
3554 	 * BGE hardware generates only single MSI even though it claims
3555 	 * to support multiple MSIs. So, hard code MSI count value to 1.
3556 	 */
3557 	if (intr_type == DDI_INTR_TYPE_MSI) {
3558 		count = 1;
3559 		flag = DDI_INTR_ALLOC_STRICT;
3560 	} else {
3561 		flag = DDI_INTR_ALLOC_NORMAL;
3562 	}
3563 
3564 	/* Allocate an array of interrupt handles */
3565 	intr_size = count * sizeof (ddi_intr_handle_t);
3566 	bgep->htable = kmem_alloc(intr_size, KM_SLEEP);
3567 
3568 	/* Call ddi_intr_alloc() */
3569 	ret = ddi_intr_alloc(dip, bgep->htable, intr_type, 0,
3570 	    count, &actual, flag);
3571 
3572 	if ((ret != DDI_SUCCESS) || (actual == 0)) {
3573 		bge_error(bgep, "ddi_intr_alloc() failed %d\n", ret);
3574 
3575 		kmem_free(bgep->htable, intr_size);
3576 		return (DDI_FAILURE);
3577 	}
3578 
3579 	if (actual < count) {
3580 		BGE_DEBUG(("%s: Requested: %d, Received: %d",
3581 		    bgep->ifname, count, actual));
3582 	}
3583 
3584 	bgep->intr_cnt = actual;
3585 
3586 	/*
3587 	 * Get priority for first msi, assume remaining are all the same
3588 	 */
3589 	if ((ret = ddi_intr_get_pri(bgep->htable[0], &bgep->intr_pri)) !=
3590 	    DDI_SUCCESS) {
3591 		bge_error(bgep, "ddi_intr_get_pri() failed %d\n", ret);
3592 
3593 		/* Free already allocated intr */
3594 		for (i = 0; i < actual; i++) {
3595 			(void) ddi_intr_free(bgep->htable[i]);
3596 		}
3597 
3598 		kmem_free(bgep->htable, intr_size);
3599 		return (DDI_FAILURE);
3600 	}
3601 
3602 	/* Call ddi_intr_add_handler() */
3603 	for (i = 0; i < actual; i++) {
3604 		if ((ret = ddi_intr_add_handler(bgep->htable[i], bge_intr,
3605 		    (caddr_t)bgep, (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) {
3606 			bge_error(bgep, "ddi_intr_add_handler() "
3607 			    "failed %d\n", ret);
3608 
3609 			/* Free already allocated intr */
3610 			for (i = 0; i < actual; i++) {
3611 				(void) ddi_intr_free(bgep->htable[i]);
3612 			}
3613 
3614 			kmem_free(bgep->htable, intr_size);
3615 			return (DDI_FAILURE);
3616 		}
3617 	}
3618 
3619 	if ((ret = ddi_intr_get_cap(bgep->htable[0], &bgep->intr_cap))
3620 	    != DDI_SUCCESS) {
3621 		bge_error(bgep, "ddi_intr_get_cap() failed %d\n", ret);
3622 
3623 		for (i = 0; i < actual; i++) {
3624 			(void) ddi_intr_remove_handler(bgep->htable[i]);
3625 			(void) ddi_intr_free(bgep->htable[i]);
3626 		}
3627 
3628 		kmem_free(bgep->htable, intr_size);
3629 		return (DDI_FAILURE);
3630 	}
3631 
3632 	return (DDI_SUCCESS);
3633 }
3634 
3635 /*
3636  * bge_rem_intrs:
3637  *
3638  * Unregister FIXED or MSI interrupts
3639  */
3640 static void
3641 bge_rem_intrs(bge_t *bgep)
3642 {
3643 	int	i;
3644 
3645 	BGE_DEBUG(("bge_rem_intrs($%p)", (void *)bgep));
3646 
3647 	/* Call ddi_intr_remove_handler() */
3648 	for (i = 0; i < bgep->intr_cnt; i++) {
3649 		(void) ddi_intr_remove_handler(bgep->htable[i]);
3650 		(void) ddi_intr_free(bgep->htable[i]);
3651 	}
3652 
3653 	kmem_free(bgep->htable, bgep->intr_cnt * sizeof (ddi_intr_handle_t));
3654 }
3655 
3656 
3657 void
3658 bge_intr_enable(bge_t *bgep)
3659 {
3660 	int i;
3661 
3662 	if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) {
3663 		/* Call ddi_intr_block_enable() for MSI interrupts */
3664 		(void) ddi_intr_block_enable(bgep->htable, bgep->intr_cnt);
3665 	} else {
3666 		/* Call ddi_intr_enable for MSI or FIXED interrupts */
3667 		for (i = 0; i < bgep->intr_cnt; i++) {
3668 			(void) ddi_intr_enable(bgep->htable[i]);
3669 		}
3670 	}
3671 }
3672 
3673 
3674 void
3675 bge_intr_disable(bge_t *bgep)
3676 {
3677 	int i;
3678 
3679 	if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) {
3680 		/* Call ddi_intr_block_disable() */
3681 		(void) ddi_intr_block_disable(bgep->htable, bgep->intr_cnt);
3682 	} else {
3683 		for (i = 0; i < bgep->intr_cnt; i++) {
3684 			(void) ddi_intr_disable(bgep->htable[i]);
3685 		}
3686 	}
3687 }
3688 
3689 int
3690 bge_reprogram(bge_t *bgep)
3691 {
3692 	int status = 0;
3693 
3694 	ASSERT(mutex_owned(bgep->genlock));
3695 
3696 	if (bge_phys_update(bgep) != DDI_SUCCESS) {
3697 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3698 		status = IOC_INVAL;
3699 	}
3700 #ifdef BGE_IPMI_ASF
3701 	if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
3702 #else
3703 	if (bge_chip_sync(bgep) == DDI_FAILURE) {
3704 #endif
3705 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3706 		status = IOC_INVAL;
3707 	}
3708 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3709 		bge_chip_msi_trig(bgep);
3710 	return (status);
3711 }
3712