xref: /titanic_41/usr/src/uts/common/io/bge/bge_main2.c (revision 19d41fcc9d25d65db5db7c75dc9bbb68550868d2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "bge_impl.h"
30 #include <sys/sdt.h>
31 #include <sys/dld.h>
32 
33 /*
34  * This is the string displayed by modinfo, etc.
35  * Make sure you keep the version ID up to date!
36  */
37 static char bge_ident[] = "Broadcom Gb Ethernet v0.61";
38 
39 /*
40  * Property names
41  */
42 static char debug_propname[] = "bge-debug-flags";
43 static char clsize_propname[] = "cache-line-size";
44 static char latency_propname[] = "latency-timer";
45 static char localmac_boolname[] = "local-mac-address?";
46 static char localmac_propname[] = "local-mac-address";
47 static char macaddr_propname[] = "mac-address";
48 static char subdev_propname[] = "subsystem-id";
49 static char subven_propname[] = "subsystem-vendor-id";
50 static char rxrings_propname[] = "bge-rx-rings";
51 static char txrings_propname[] = "bge-tx-rings";
52 static char fm_cap[] = "fm-capable";
53 static char default_mtu[] = "default_mtu";
54 
55 static int bge_add_intrs(bge_t *, int);
56 static void bge_rem_intrs(bge_t *);
57 
58 /*
59  * Describes the chip's DMA engine
60  */
61 static ddi_dma_attr_t dma_attr = {
62 	DMA_ATTR_V0,			/* dma_attr version	*/
63 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
64 	0xFFFFFFFFFFFFFFFFull,		/* dma_attr_addr_hi	*/
65 	0x00000000FFFFFFFFull,		/* dma_attr_count_max	*/
66 	0x0000000000000001ull,		/* dma_attr_align	*/
67 	0x00000FFF,			/* dma_attr_burstsizes	*/
68 	0x00000001,			/* dma_attr_minxfer	*/
69 	0x000000000000FFFFull,		/* dma_attr_maxxfer	*/
70 	0xFFFFFFFFFFFFFFFFull,		/* dma_attr_seg		*/
71 	1,				/* dma_attr_sgllen 	*/
72 	0x00000001,			/* dma_attr_granular 	*/
73 	DDI_DMA_FLAGERR			/* dma_attr_flags */
74 };
75 
76 /*
77  * PIO access attributes for registers
78  */
79 static ddi_device_acc_attr_t bge_reg_accattr = {
80 	DDI_DEVICE_ATTR_V0,
81 	DDI_NEVERSWAP_ACC,
82 	DDI_STRICTORDER_ACC,
83 	DDI_FLAGERR_ACC
84 };
85 
86 /*
87  * DMA access attributes for descriptors: NOT to be byte swapped.
88  */
89 static ddi_device_acc_attr_t bge_desc_accattr = {
90 	DDI_DEVICE_ATTR_V0,
91 	DDI_NEVERSWAP_ACC,
92 	DDI_STRICTORDER_ACC,
93 	DDI_FLAGERR_ACC
94 };
95 
96 /*
97  * DMA access attributes for data: NOT to be byte swapped.
98  */
99 static ddi_device_acc_attr_t bge_data_accattr = {
100 	DDI_DEVICE_ATTR_V0,
101 	DDI_NEVERSWAP_ACC,
102 	DDI_STRICTORDER_ACC
103 };
104 
105 /*
106  * Versions of the O/S up to Solaris 8 didn't support network booting
107  * from any network interface except the first (NET0).  Patching this
108  * flag to a non-zero value will tell the driver to work around this
109  * limitation by creating an extra (internal) pathname node.  To do
110  * this, just add a line like the following to the CLIENT'S etc/system
111  * file ON THE ROOT FILESYSTEM SERVER before booting the client:
112  *
113  *	set bge:bge_net1_boot_support = 1;
114  */
115 static uint32_t bge_net1_boot_support = 1;
116 
117 static int		bge_m_start(void *);
118 static void		bge_m_stop(void *);
119 static int		bge_m_promisc(void *, boolean_t);
120 static int		bge_m_multicst(void *, boolean_t, const uint8_t *);
121 static int		bge_m_unicst(void *, const uint8_t *);
122 static void		bge_m_resources(void *);
123 static void		bge_m_ioctl(void *, queue_t *, mblk_t *);
124 static boolean_t	bge_m_getcapab(void *, mac_capab_t, void *);
125 static int		bge_unicst_set(void *, const uint8_t *,
126     mac_addr_slot_t);
127 static int		bge_m_unicst_add(void *, mac_multi_addr_t *);
128 static int		bge_m_unicst_remove(void *, mac_addr_slot_t);
129 static int		bge_m_unicst_modify(void *, mac_multi_addr_t *);
130 static int		bge_m_unicst_get(void *, mac_multi_addr_t *);
131 static int		bge_m_setprop(void *, const char *, mac_prop_id_t,
132     uint_t, const void *);
133 static int		bge_m_getprop(void *, const char *, mac_prop_id_t,
134     uint_t, void *);
135 static int		bge_set_priv_prop(bge_t *, const char *, uint_t,
136     const void *);
137 static int		bge_get_priv_prop(bge_t *, const char *, uint_t,
138     void *);
139 
140 #define	BGE_M_CALLBACK_FLAGS\
141 	(MC_RESOURCES | MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP)
142 
143 static mac_callbacks_t bge_m_callbacks = {
144 	BGE_M_CALLBACK_FLAGS,
145 	bge_m_stat,
146 	bge_m_start,
147 	bge_m_stop,
148 	bge_m_promisc,
149 	bge_m_multicst,
150 	bge_m_unicst,
151 	bge_m_tx,
152 	bge_m_resources,
153 	bge_m_ioctl,
154 	bge_m_getcapab,
155 	NULL,
156 	NULL,
157 	bge_m_setprop,
158 	bge_m_getprop
159 };
160 
161 /*
162  * ========== Transmit and receive ring reinitialisation ==========
163  */
164 
165 /*
166  * These <reinit> routines each reset the specified ring to an initial
167  * state, assuming that the corresponding <init> routine has already
168  * been called exactly once.
169  */
170 
171 static void
172 bge_reinit_send_ring(send_ring_t *srp)
173 {
174 	bge_queue_t *txbuf_queue;
175 	bge_queue_item_t *txbuf_head;
176 	sw_txbuf_t *txbuf;
177 	sw_sbd_t *ssbdp;
178 	uint32_t slot;
179 
180 	/*
181 	 * Reinitialise control variables ...
182 	 */
183 	srp->tx_flow = 0;
184 	srp->tx_next = 0;
185 	srp->txfill_next = 0;
186 	srp->tx_free = srp->desc.nslots;
187 	ASSERT(mutex_owned(srp->tc_lock));
188 	srp->tc_next = 0;
189 	srp->txpkt_next = 0;
190 	srp->tx_block = 0;
191 	srp->tx_nobd = 0;
192 	srp->tx_nobuf = 0;
193 
194 	/*
195 	 * Initialize the tx buffer push queue
196 	 */
197 	mutex_enter(srp->freetxbuf_lock);
198 	mutex_enter(srp->txbuf_lock);
199 	txbuf_queue = &srp->freetxbuf_queue;
200 	txbuf_queue->head = NULL;
201 	txbuf_queue->count = 0;
202 	txbuf_queue->lock = srp->freetxbuf_lock;
203 	srp->txbuf_push_queue = txbuf_queue;
204 
205 	/*
206 	 * Initialize the tx buffer pop queue
207 	 */
208 	txbuf_queue = &srp->txbuf_queue;
209 	txbuf_queue->head = NULL;
210 	txbuf_queue->count = 0;
211 	txbuf_queue->lock = srp->txbuf_lock;
212 	srp->txbuf_pop_queue = txbuf_queue;
213 	txbuf_head = srp->txbuf_head;
214 	txbuf = srp->txbuf;
215 	for (slot = 0; slot < srp->tx_buffers; ++slot) {
216 		txbuf_head->item = txbuf;
217 		txbuf_head->next = txbuf_queue->head;
218 		txbuf_queue->head = txbuf_head;
219 		txbuf_queue->count++;
220 		txbuf++;
221 		txbuf_head++;
222 	}
223 	mutex_exit(srp->txbuf_lock);
224 	mutex_exit(srp->freetxbuf_lock);
225 
226 	/*
227 	 * Zero and sync all the h/w Send Buffer Descriptors
228 	 */
229 	DMA_ZERO(srp->desc);
230 	DMA_SYNC(srp->desc, DDI_DMA_SYNC_FORDEV);
231 	bzero(srp->pktp, BGE_SEND_BUF_MAX * sizeof (*srp->pktp));
232 	ssbdp = srp->sw_sbds;
233 	for (slot = 0; slot < srp->desc.nslots; ++ssbdp, ++slot)
234 		ssbdp->pbuf = NULL;
235 }
236 
237 static void
238 bge_reinit_recv_ring(recv_ring_t *rrp)
239 {
240 	/*
241 	 * Reinitialise control variables ...
242 	 */
243 	rrp->rx_next = 0;
244 }
245 
246 static void
247 bge_reinit_buff_ring(buff_ring_t *brp, uint32_t ring)
248 {
249 	bge_rbd_t *hw_rbd_p;
250 	sw_rbd_t *srbdp;
251 	uint32_t bufsize;
252 	uint32_t nslots;
253 	uint32_t slot;
254 
255 	static uint16_t ring_type_flag[BGE_BUFF_RINGS_MAX] = {
256 		RBD_FLAG_STD_RING,
257 		RBD_FLAG_JUMBO_RING,
258 		RBD_FLAG_MINI_RING
259 	};
260 
261 	/*
262 	 * Zero, initialise and sync all the h/w Receive Buffer Descriptors
263 	 * Note: all the remaining fields (<type>, <flags>, <ip_cksum>,
264 	 * <tcp_udp_cksum>, <error_flag>, <vlan_tag>, and <reserved>)
265 	 * should be zeroed, and so don't need to be set up specifically
266 	 * once the whole area has been cleared.
267 	 */
268 	DMA_ZERO(brp->desc);
269 
270 	hw_rbd_p = DMA_VPTR(brp->desc);
271 	nslots = brp->desc.nslots;
272 	ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT);
273 	bufsize = brp->buf[0].size;
274 	srbdp = brp->sw_rbds;
275 	for (slot = 0; slot < nslots; ++hw_rbd_p, ++srbdp, ++slot) {
276 		hw_rbd_p->host_buf_addr = srbdp->pbuf.cookie.dmac_laddress;
277 		hw_rbd_p->index = slot;
278 		hw_rbd_p->len = bufsize;
279 		hw_rbd_p->opaque = srbdp->pbuf.token;
280 		hw_rbd_p->flags |= ring_type_flag[ring];
281 	}
282 
283 	DMA_SYNC(brp->desc, DDI_DMA_SYNC_FORDEV);
284 
285 	/*
286 	 * Finally, reinitialise the ring control variables ...
287 	 */
288 	brp->rf_next = (nslots != 0) ? (nslots-1) : 0;
289 }
290 
291 /*
292  * Reinitialize all rings
293  */
294 static void
295 bge_reinit_rings(bge_t *bgep)
296 {
297 	uint32_t ring;
298 
299 	ASSERT(mutex_owned(bgep->genlock));
300 
301 	/*
302 	 * Send Rings ...
303 	 */
304 	for (ring = 0; ring < bgep->chipid.tx_rings; ++ring)
305 		bge_reinit_send_ring(&bgep->send[ring]);
306 
307 	/*
308 	 * Receive Return Rings ...
309 	 */
310 	for (ring = 0; ring < bgep->chipid.rx_rings; ++ring)
311 		bge_reinit_recv_ring(&bgep->recv[ring]);
312 
313 	/*
314 	 * Receive Producer Rings ...
315 	 */
316 	for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
317 		bge_reinit_buff_ring(&bgep->buff[ring], ring);
318 }
319 
320 /*
321  * ========== Internal state management entry points ==========
322  */
323 
324 #undef	BGE_DBG
325 #define	BGE_DBG		BGE_DBG_NEMO	/* debug flag for this code	*/
326 
327 /*
328  * These routines provide all the functionality required by the
329  * corresponding GLD entry points, but don't update the GLD state
330  * so they can be called internally without disturbing our record
331  * of what GLD thinks we should be doing ...
332  */
333 
334 /*
335  *	bge_reset() -- reset h/w & rings to initial state
336  */
337 static int
338 #ifdef BGE_IPMI_ASF
339 bge_reset(bge_t *bgep, uint_t asf_mode)
340 #else
341 bge_reset(bge_t *bgep)
342 #endif
343 {
344 	uint32_t	ring;
345 	int retval;
346 
347 	BGE_TRACE(("bge_reset($%p)", (void *)bgep));
348 
349 	ASSERT(mutex_owned(bgep->genlock));
350 
351 	/*
352 	 * Grab all the other mutexes in the world (this should
353 	 * ensure no other threads are manipulating driver state)
354 	 */
355 	for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
356 		mutex_enter(bgep->recv[ring].rx_lock);
357 	for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
358 		mutex_enter(bgep->buff[ring].rf_lock);
359 	rw_enter(bgep->errlock, RW_WRITER);
360 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
361 		mutex_enter(bgep->send[ring].tx_lock);
362 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
363 		mutex_enter(bgep->send[ring].tc_lock);
364 
365 #ifdef BGE_IPMI_ASF
366 	retval = bge_chip_reset(bgep, B_TRUE, asf_mode);
367 #else
368 	retval = bge_chip_reset(bgep, B_TRUE);
369 #endif
370 	bge_reinit_rings(bgep);
371 
372 	/*
373 	 * Free the world ...
374 	 */
375 	for (ring = BGE_SEND_RINGS_MAX; ring-- > 0; )
376 		mutex_exit(bgep->send[ring].tc_lock);
377 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
378 		mutex_exit(bgep->send[ring].tx_lock);
379 	rw_exit(bgep->errlock);
380 	for (ring = BGE_BUFF_RINGS_MAX; ring-- > 0; )
381 		mutex_exit(bgep->buff[ring].rf_lock);
382 	for (ring = BGE_RECV_RINGS_MAX; ring-- > 0; )
383 		mutex_exit(bgep->recv[ring].rx_lock);
384 
385 	BGE_DEBUG(("bge_reset($%p) done", (void *)bgep));
386 	return (retval);
387 }
388 
389 /*
390  *	bge_stop() -- stop processing, don't reset h/w or rings
391  */
392 static void
393 bge_stop(bge_t *bgep)
394 {
395 	BGE_TRACE(("bge_stop($%p)", (void *)bgep));
396 
397 	ASSERT(mutex_owned(bgep->genlock));
398 
399 #ifdef BGE_IPMI_ASF
400 	if (bgep->asf_enabled) {
401 		bgep->asf_pseudostop = B_TRUE;
402 	} else {
403 #endif
404 		bge_chip_stop(bgep, B_FALSE);
405 #ifdef BGE_IPMI_ASF
406 	}
407 #endif
408 
409 	BGE_DEBUG(("bge_stop($%p) done", (void *)bgep));
410 }
411 
412 /*
413  *	bge_start() -- start transmitting/receiving
414  */
415 static int
416 bge_start(bge_t *bgep, boolean_t reset_phys)
417 {
418 	int retval;
419 
420 	BGE_TRACE(("bge_start($%p, %d)", (void *)bgep, reset_phys));
421 
422 	ASSERT(mutex_owned(bgep->genlock));
423 
424 	/*
425 	 * Start chip processing, including enabling interrupts
426 	 */
427 	retval = bge_chip_start(bgep, reset_phys);
428 
429 	BGE_DEBUG(("bge_start($%p, %d) done", (void *)bgep, reset_phys));
430 	return (retval);
431 }
432 
433 /*
434  * bge_restart - restart transmitting/receiving after error or suspend
435  */
436 int
437 bge_restart(bge_t *bgep, boolean_t reset_phys)
438 {
439 	int retval = DDI_SUCCESS;
440 	ASSERT(mutex_owned(bgep->genlock));
441 
442 #ifdef BGE_IPMI_ASF
443 	if (bgep->asf_enabled) {
444 		if (bge_reset(bgep, ASF_MODE_POST_INIT) != DDI_SUCCESS)
445 			retval = DDI_FAILURE;
446 	} else
447 		if (bge_reset(bgep, ASF_MODE_NONE) != DDI_SUCCESS)
448 			retval = DDI_FAILURE;
449 #else
450 	if (bge_reset(bgep) != DDI_SUCCESS)
451 		retval = DDI_FAILURE;
452 #endif
453 	if (bgep->bge_mac_state == BGE_MAC_STARTED) {
454 		if (bge_start(bgep, reset_phys) != DDI_SUCCESS)
455 			retval = DDI_FAILURE;
456 		bgep->watchdog = 0;
457 		ddi_trigger_softintr(bgep->drain_id);
458 	}
459 
460 	BGE_DEBUG(("bge_restart($%p, %d) done", (void *)bgep, reset_phys));
461 	return (retval);
462 }
463 
464 
465 /*
466  * ========== Nemo-required management entry points ==========
467  */
468 
469 #undef	BGE_DBG
470 #define	BGE_DBG		BGE_DBG_NEMO	/* debug flag for this code	*/
471 
472 /*
473  *	bge_m_stop() -- stop transmitting/receiving
474  */
475 static void
476 bge_m_stop(void *arg)
477 {
478 	bge_t *bgep = arg;		/* private device info	*/
479 	send_ring_t *srp;
480 	uint32_t ring;
481 
482 	BGE_TRACE(("bge_m_stop($%p)", arg));
483 
484 	/*
485 	 * Just stop processing, then record new GLD state
486 	 */
487 	mutex_enter(bgep->genlock);
488 	if (!(bgep->progress & PROGRESS_INTR)) {
489 		/* can happen during autorecovery */
490 		mutex_exit(bgep->genlock);
491 		return;
492 	}
493 	bge_stop(bgep);
494 	/*
495 	 * Free the possible tx buffers allocated in tx process.
496 	 */
497 #ifdef BGE_IPMI_ASF
498 	if (!bgep->asf_pseudostop)
499 #endif
500 	{
501 		rw_enter(bgep->errlock, RW_WRITER);
502 		for (ring = 0; ring < bgep->chipid.tx_rings; ++ring) {
503 			srp = &bgep->send[ring];
504 			mutex_enter(srp->tx_lock);
505 			if (srp->tx_array > 1)
506 				bge_free_txbuf_arrays(srp);
507 			mutex_exit(srp->tx_lock);
508 		}
509 		rw_exit(bgep->errlock);
510 	}
511 	bgep->bge_mac_state = BGE_MAC_STOPPED;
512 	BGE_DEBUG(("bge_m_stop($%p) done", arg));
513 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
514 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
515 	mutex_exit(bgep->genlock);
516 }
517 
518 /*
519  *	bge_m_start() -- start transmitting/receiving
520  */
521 static int
522 bge_m_start(void *arg)
523 {
524 	bge_t *bgep = arg;		/* private device info	*/
525 
526 	BGE_TRACE(("bge_m_start($%p)", arg));
527 
528 	/*
529 	 * Start processing and record new GLD state
530 	 */
531 	mutex_enter(bgep->genlock);
532 	if (!(bgep->progress & PROGRESS_INTR)) {
533 		/* can happen during autorecovery */
534 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
535 		mutex_exit(bgep->genlock);
536 		return (EIO);
537 	}
538 #ifdef BGE_IPMI_ASF
539 	if (bgep->asf_enabled) {
540 		if ((bgep->asf_status == ASF_STAT_RUN) &&
541 		    (bgep->asf_pseudostop)) {
542 			bgep->bge_mac_state = BGE_MAC_STARTED;
543 			mutex_exit(bgep->genlock);
544 			return (0);
545 		}
546 	}
547 	if (bge_reset(bgep, ASF_MODE_INIT) != DDI_SUCCESS) {
548 #else
549 	if (bge_reset(bgep) != DDI_SUCCESS) {
550 #endif
551 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
552 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
553 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
554 		mutex_exit(bgep->genlock);
555 		return (EIO);
556 	}
557 	if (bge_start(bgep, B_TRUE) != DDI_SUCCESS) {
558 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
559 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
560 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
561 		mutex_exit(bgep->genlock);
562 		return (EIO);
563 	}
564 	bgep->bge_mac_state = BGE_MAC_STARTED;
565 	BGE_DEBUG(("bge_m_start($%p) done", arg));
566 
567 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
568 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
569 		mutex_exit(bgep->genlock);
570 		return (EIO);
571 	}
572 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
573 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
574 		mutex_exit(bgep->genlock);
575 		return (EIO);
576 	}
577 #ifdef BGE_IPMI_ASF
578 	if (bgep->asf_enabled) {
579 		if (bgep->asf_status != ASF_STAT_RUN) {
580 			/* start ASF heart beat */
581 			bgep->asf_timeout_id = timeout(bge_asf_heartbeat,
582 			    (void *)bgep,
583 			    drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
584 			bgep->asf_status = ASF_STAT_RUN;
585 		}
586 	}
587 #endif
588 	mutex_exit(bgep->genlock);
589 
590 	return (0);
591 }
592 
593 /*
594  *	bge_m_unicst() -- set the physical network address
595  */
596 static int
597 bge_m_unicst(void *arg, const uint8_t *macaddr)
598 {
599 	/*
600 	 * Request to set address in
601 	 * address slot 0, i.e., default address
602 	 */
603 	return (bge_unicst_set(arg, macaddr, 0));
604 }
605 
606 /*
607  *	bge_unicst_set() -- set the physical network address
608  */
609 static int
610 bge_unicst_set(void *arg, const uint8_t *macaddr, mac_addr_slot_t slot)
611 {
612 	bge_t *bgep = arg;		/* private device info	*/
613 
614 	BGE_TRACE(("bge_m_unicst_set($%p, %s)", arg,
615 	    ether_sprintf((void *)macaddr)));
616 	/*
617 	 * Remember the new current address in the driver state
618 	 * Sync the chip's idea of the address too ...
619 	 */
620 	mutex_enter(bgep->genlock);
621 	if (!(bgep->progress & PROGRESS_INTR)) {
622 		/* can happen during autorecovery */
623 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
624 		mutex_exit(bgep->genlock);
625 		return (EIO);
626 	}
627 	ethaddr_copy(macaddr, bgep->curr_addr[slot].addr);
628 #ifdef BGE_IPMI_ASF
629 	if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE) {
630 #else
631 	if (bge_chip_sync(bgep) == DDI_FAILURE) {
632 #endif
633 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
634 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
635 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
636 		mutex_exit(bgep->genlock);
637 		return (EIO);
638 	}
639 #ifdef BGE_IPMI_ASF
640 	if (bgep->asf_enabled) {
641 		/*
642 		 * The above bge_chip_sync() function wrote the ethernet MAC
643 		 * addresses registers which destroyed the IPMI/ASF sideband.
644 		 * Here, we have to reset chip to make IPMI/ASF sideband work.
645 		 */
646 		if (bgep->asf_status == ASF_STAT_RUN) {
647 			/*
648 			 * We must stop ASF heart beat before bge_chip_stop(),
649 			 * otherwise some computers (ex. IBM HS20 blade server)
650 			 * may crash.
651 			 */
652 			bge_asf_update_status(bgep);
653 			bge_asf_stop_timer(bgep);
654 			bgep->asf_status = ASF_STAT_STOP;
655 
656 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
657 		}
658 		bge_chip_stop(bgep, B_FALSE);
659 
660 		if (bge_restart(bgep, B_FALSE) == DDI_FAILURE) {
661 			(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
662 			(void) bge_check_acc_handle(bgep, bgep->io_handle);
663 			ddi_fm_service_impact(bgep->devinfo,
664 			    DDI_SERVICE_DEGRADED);
665 			mutex_exit(bgep->genlock);
666 			return (EIO);
667 		}
668 
669 		/*
670 		 * Start our ASF heartbeat counter as soon as possible.
671 		 */
672 		if (bgep->asf_status != ASF_STAT_RUN) {
673 			/* start ASF heart beat */
674 			bgep->asf_timeout_id = timeout(bge_asf_heartbeat,
675 			    (void *)bgep,
676 			    drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
677 			bgep->asf_status = ASF_STAT_RUN;
678 		}
679 	}
680 #endif
681 	BGE_DEBUG(("bge_m_unicst_set($%p) done", arg));
682 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
683 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
684 		mutex_exit(bgep->genlock);
685 		return (EIO);
686 	}
687 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
688 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
689 		mutex_exit(bgep->genlock);
690 		return (EIO);
691 	}
692 	mutex_exit(bgep->genlock);
693 
694 	return (0);
695 }
696 
697 /*
698  * The following four routines are used as callbacks for multiple MAC
699  * address support:
700  *    -  bge_m_unicst_add(void *, mac_multi_addr_t *);
701  *    -  bge_m_unicst_remove(void *, mac_addr_slot_t);
702  *    -  bge_m_unicst_modify(void *, mac_multi_addr_t *);
703  *    -  bge_m_unicst_get(void *, mac_multi_addr_t *);
704  */
705 
706 /*
707  * bge_m_unicst_add() - will find an unused address slot, set the
708  * address value to the one specified, reserve that slot and enable
709  * the NIC to start filtering on the new MAC address.
710  * address slot. Returns 0 on success.
711  */
712 static int
713 bge_m_unicst_add(void *arg, mac_multi_addr_t *maddr)
714 {
715 	bge_t *bgep = arg;		/* private device info	*/
716 	mac_addr_slot_t slot;
717 	int err;
718 
719 	if (mac_unicst_verify(bgep->mh,
720 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
721 		return (EINVAL);
722 
723 	mutex_enter(bgep->genlock);
724 	if (bgep->unicst_addr_avail == 0) {
725 		/* no slots available */
726 		mutex_exit(bgep->genlock);
727 		return (ENOSPC);
728 	}
729 
730 	/*
731 	 * Primary/default address is in slot 0. The next three
732 	 * addresses are the multiple MAC addresses. So multiple
733 	 * MAC address 0 is in slot 1, 1 in slot 2, and so on.
734 	 * So the first multiple MAC address resides in slot 1.
735 	 */
736 	for (slot = 1; slot < bgep->unicst_addr_total; slot++) {
737 		if (bgep->curr_addr[slot].set == B_FALSE) {
738 			bgep->curr_addr[slot].set = B_TRUE;
739 			break;
740 		}
741 	}
742 
743 	ASSERT(slot < bgep->unicst_addr_total);
744 	bgep->unicst_addr_avail--;
745 	mutex_exit(bgep->genlock);
746 	maddr->mma_slot = slot;
747 
748 	if ((err = bge_unicst_set(bgep, maddr->mma_addr, slot)) != 0) {
749 		mutex_enter(bgep->genlock);
750 		bgep->curr_addr[slot].set = B_FALSE;
751 		bgep->unicst_addr_avail++;
752 		mutex_exit(bgep->genlock);
753 	}
754 	return (err);
755 }
756 
757 /*
758  * bge_m_unicst_remove() - removes a MAC address that was added by a
759  * call to bge_m_unicst_add(). The slot number that was returned in
760  * add() is passed in the call to remove the address.
761  * Returns 0 on success.
762  */
763 static int
764 bge_m_unicst_remove(void *arg, mac_addr_slot_t slot)
765 {
766 	bge_t *bgep = arg;		/* private device info	*/
767 
768 	if (slot <= 0 || slot >= bgep->unicst_addr_total)
769 		return (EINVAL);
770 
771 	mutex_enter(bgep->genlock);
772 	if (bgep->curr_addr[slot].set == B_TRUE) {
773 		bgep->curr_addr[slot].set = B_FALSE;
774 		bgep->unicst_addr_avail++;
775 		mutex_exit(bgep->genlock);
776 		/*
777 		 * Copy the default address to the passed slot
778 		 */
779 		return (bge_unicst_set(bgep, bgep->curr_addr[0].addr, slot));
780 	}
781 	mutex_exit(bgep->genlock);
782 	return (EINVAL);
783 }
784 
785 /*
786  * bge_m_unicst_modify() - modifies the value of an address that
787  * has been added by bge_m_unicst_add(). The new address, address
788  * length and the slot number that was returned in the call to add
789  * should be passed to bge_m_unicst_modify(). mma_flags should be
790  * set to 0. Returns 0 on success.
791  */
792 static int
793 bge_m_unicst_modify(void *arg, mac_multi_addr_t *maddr)
794 {
795 	bge_t *bgep = arg;		/* private device info	*/
796 	mac_addr_slot_t slot;
797 
798 	if (mac_unicst_verify(bgep->mh,
799 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
800 		return (EINVAL);
801 
802 	slot = maddr->mma_slot;
803 
804 	if (slot <= 0 || slot >= bgep->unicst_addr_total)
805 		return (EINVAL);
806 
807 	mutex_enter(bgep->genlock);
808 	if (bgep->curr_addr[slot].set == B_TRUE) {
809 		mutex_exit(bgep->genlock);
810 		return (bge_unicst_set(bgep, maddr->mma_addr, slot));
811 	}
812 	mutex_exit(bgep->genlock);
813 
814 	return (EINVAL);
815 }
816 
817 /*
818  * bge_m_unicst_get() - will get the MAC address and all other
819  * information related to the address slot passed in mac_multi_addr_t.
820  * mma_flags should be set to 0 in the call.
821  * On return, mma_flags can take the following values:
822  * 1) MMAC_SLOT_UNUSED
823  * 2) MMAC_SLOT_USED | MMAC_VENDOR_ADDR
824  * 3) MMAC_SLOT_UNUSED | MMAC_VENDOR_ADDR
825  * 4) MMAC_SLOT_USED
826  */
827 static int
828 bge_m_unicst_get(void *arg, mac_multi_addr_t *maddr)
829 {
830 	bge_t *bgep = arg;		/* private device info	*/
831 	mac_addr_slot_t slot;
832 
833 	slot = maddr->mma_slot;
834 
835 	if (slot <= 0 || slot >= bgep->unicst_addr_total)
836 		return (EINVAL);
837 
838 	mutex_enter(bgep->genlock);
839 	if (bgep->curr_addr[slot].set == B_TRUE) {
840 		ethaddr_copy(bgep->curr_addr[slot].addr,
841 		    maddr->mma_addr);
842 		maddr->mma_flags = MMAC_SLOT_USED;
843 	} else {
844 		maddr->mma_flags = MMAC_SLOT_UNUSED;
845 	}
846 	mutex_exit(bgep->genlock);
847 
848 	return (0);
849 }
850 
851 extern void bge_wake_factotum(bge_t *);
852 
853 static boolean_t
854 bge_param_locked(mac_prop_id_t pr_num)
855 {
856 	/*
857 	 * All adv_* parameters are locked (read-only) while
858 	 * the device is in any sort of loopback mode ...
859 	 */
860 	switch (pr_num) {
861 		case DLD_PROP_ADV_1000FDX_CAP:
862 		case DLD_PROP_EN_1000FDX_CAP:
863 		case DLD_PROP_ADV_1000HDX_CAP:
864 		case DLD_PROP_EN_1000HDX_CAP:
865 		case DLD_PROP_ADV_100FDX_CAP:
866 		case DLD_PROP_EN_100FDX_CAP:
867 		case DLD_PROP_ADV_100HDX_CAP:
868 		case DLD_PROP_EN_100HDX_CAP:
869 		case DLD_PROP_ADV_10FDX_CAP:
870 		case DLD_PROP_EN_10FDX_CAP:
871 		case DLD_PROP_ADV_10HDX_CAP:
872 		case DLD_PROP_EN_10HDX_CAP:
873 		case DLD_PROP_AUTONEG:
874 		case DLD_PROP_FLOWCTRL:
875 			return (B_TRUE);
876 	}
877 	return (B_FALSE);
878 }
879 /*
880  * callback functions for set/get of properties
881  */
882 static int
883 bge_m_setprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
884     uint_t pr_valsize, const void *pr_val)
885 {
886 	bge_t *bgep = barg;
887 	int err = 0;
888 	uint64_t cur_mtu, new_mtu;
889 	uint_t	maxsdu;
890 	link_flowctrl_t fl;
891 
892 	mutex_enter(bgep->genlock);
893 	if (bgep->param_loop_mode != BGE_LOOP_NONE &&
894 	    bge_param_locked(pr_num)) {
895 		/*
896 		 * All adv_* parameters are locked (read-only)
897 		 * while the device is in any sort of loopback mode.
898 		 */
899 		mutex_exit(bgep->genlock);
900 		return (EBUSY);
901 	}
902 	switch (pr_num) {
903 		case DLD_PROP_EN_1000FDX_CAP:
904 			bgep->param_en_1000fdx = *(uint8_t *)pr_val;
905 			bgep->param_adv_1000fdx = *(uint8_t *)pr_val;
906 			goto reprogram;
907 		case DLD_PROP_EN_1000HDX_CAP:
908 			bgep->param_en_1000hdx = *(uint8_t *)pr_val;
909 			bgep->param_adv_1000hdx = *(uint8_t *)pr_val;
910 			goto reprogram;
911 		case DLD_PROP_EN_100FDX_CAP:
912 			bgep->param_en_100fdx = *(uint8_t *)pr_val;
913 			bgep->param_adv_100fdx = *(uint8_t *)pr_val;
914 			goto reprogram;
915 		case DLD_PROP_EN_100HDX_CAP:
916 			bgep->param_en_100hdx = *(uint8_t *)pr_val;
917 			bgep->param_adv_100hdx = *(uint8_t *)pr_val;
918 			goto reprogram;
919 		case DLD_PROP_EN_10FDX_CAP:
920 			bgep->param_en_10fdx = *(uint8_t *)pr_val;
921 			bgep->param_adv_10fdx = *(uint8_t *)pr_val;
922 			goto reprogram;
923 		case DLD_PROP_EN_10HDX_CAP:
924 			bgep->param_en_10hdx = *(uint8_t *)pr_val;
925 			bgep->param_adv_10hdx = *(uint8_t *)pr_val;
926 reprogram:
927 			if (err == 0 && bge_reprogram(bgep) == IOC_INVAL)
928 				err = EINVAL;
929 			break;
930 		case DLD_PROP_ADV_1000FDX_CAP:
931 		case DLD_PROP_ADV_1000HDX_CAP:
932 		case DLD_PROP_ADV_100FDX_CAP:
933 		case DLD_PROP_ADV_100HDX_CAP:
934 		case DLD_PROP_ADV_10FDX_CAP:
935 		case DLD_PROP_ADV_10HDX_CAP:
936 		case DLD_PROP_STATUS:
937 		case DLD_PROP_SPEED:
938 		case DLD_PROP_DUPLEX:
939 			err = EINVAL; /* read-only prop. Can't set this */
940 			break;
941 		case DLD_PROP_AUTONEG:
942 			bgep->param_adv_autoneg = *(uint8_t *)pr_val;
943 			if (bge_reprogram(bgep) == IOC_INVAL)
944 				err = EINVAL;
945 			break;
946 		case DLD_PROP_DEFMTU:
947 			cur_mtu = bgep->chipid.default_mtu;
948 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
949 			if (new_mtu == cur_mtu) {
950 				err = 0;
951 				break;
952 			}
953 			if (new_mtu < BGE_DEFAULT_MTU ||
954 			    new_mtu > BGE_MAXIMUM_MTU) {
955 				err = EINVAL;
956 				break;
957 			}
958 			if ((new_mtu > BGE_DEFAULT_MTU) &&
959 			    (bgep->chipid.flags & CHIP_FLAG_NO_JUMBO)) {
960 				err = EINVAL;
961 				break;
962 			}
963 			if (bgep->bge_mac_state == BGE_MAC_STARTED) {
964 				err = EBUSY;
965 				break;
966 			}
967 			bgep->chipid.default_mtu = new_mtu;
968 			if (bge_chip_id_init(bgep)) {
969 				err = EINVAL;
970 				break;
971 			}
972 			maxsdu = bgep->chipid.ethmax_size -
973 			    sizeof (struct ether_header);
974 			err = mac_maxsdu_update(bgep->mh, maxsdu);
975 			if (err == 0) {
976 				bgep->bge_dma_error = B_TRUE;
977 				bgep->manual_reset = B_TRUE;
978 				bge_chip_stop(bgep, B_TRUE);
979 				bge_wake_factotum(bgep);
980 				err = 0;
981 			}
982 			break;
983 		case DLD_PROP_FLOWCTRL:
984 			bcopy(pr_val, &fl, sizeof (fl));
985 			switch (fl) {
986 			default:
987 				err = EINVAL;
988 				break;
989 			case LINK_FLOWCTRL_NONE:
990 				bgep->param_adv_pause = 0;
991 				bgep->param_adv_asym_pause = 0;
992 
993 				bgep->param_link_rx_pause = B_FALSE;
994 				bgep->param_link_tx_pause = B_FALSE;
995 				break;
996 			case LINK_FLOWCTRL_RX:
997 				if (!((bgep->param_lp_pause == 0) &&
998 				    (bgep->param_lp_asym_pause == 1))) {
999 					err = EINVAL;
1000 					break;
1001 				}
1002 				bgep->param_adv_pause = 1;
1003 				bgep->param_adv_asym_pause = 1;
1004 
1005 				bgep->param_link_rx_pause = B_TRUE;
1006 				bgep->param_link_tx_pause = B_FALSE;
1007 				break;
1008 			case LINK_FLOWCTRL_TX:
1009 				if (!((bgep->param_lp_pause == 1) &&
1010 				    (bgep->param_lp_asym_pause == 1))) {
1011 					err = EINVAL;
1012 					break;
1013 				}
1014 				bgep->param_adv_pause = 0;
1015 				bgep->param_adv_asym_pause = 1;
1016 
1017 				bgep->param_link_rx_pause = B_FALSE;
1018 				bgep->param_link_tx_pause = B_TRUE;
1019 				break;
1020 			case LINK_FLOWCTRL_BI:
1021 				if (bgep->param_lp_pause != 1) {
1022 					err = EINVAL;
1023 					break;
1024 				}
1025 				bgep->param_adv_pause = 1;
1026 
1027 				bgep->param_link_rx_pause = B_TRUE;
1028 				bgep->param_link_tx_pause = B_TRUE;
1029 				break;
1030 			}
1031 
1032 			if (err == 0) {
1033 				if (bge_reprogram(bgep) == IOC_INVAL)
1034 					err = EINVAL;
1035 			}
1036 
1037 			break;
1038 		default:
1039 			err = bge_set_priv_prop(bgep, pr_name, pr_valsize,
1040 			    pr_val);
1041 			break;
1042 	}
1043 	mutex_exit(bgep->genlock);
1044 	return (err);
1045 }
1046 static int
1047 bge_m_getprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
1048     uint_t pr_valsize, void *pr_val)
1049 {
1050 	bge_t *bgep = barg;
1051 	int err = 0;
1052 	link_flowctrl_t fl;
1053 	uint64_t tmp = 0;
1054 
1055 	bzero(pr_val, pr_valsize);
1056 	switch (pr_num) {
1057 		case DLD_PROP_DUPLEX:
1058 			if (pr_valsize < sizeof (uint8_t))
1059 				return (EINVAL);
1060 			*(uint8_t *)pr_val = bgep->param_link_duplex;
1061 			break;
1062 		case DLD_PROP_SPEED:
1063 			if (pr_valsize < sizeof (uint64_t))
1064 				return (EINVAL);
1065 			tmp = bgep->param_link_speed * 1000000ull;
1066 			bcopy(&tmp, pr_val, sizeof (tmp));
1067 			break;
1068 		case DLD_PROP_STATUS:
1069 			if (pr_valsize < sizeof (uint8_t))
1070 				return (EINVAL);
1071 			*(uint8_t *)pr_val = bgep->param_link_up;
1072 			break;
1073 		case DLD_PROP_AUTONEG:
1074 			if (pr_valsize < sizeof (uint8_t))
1075 				return (EINVAL);
1076 			*(uint8_t *)pr_val = bgep->param_adv_autoneg;
1077 			break;
1078 		case DLD_PROP_DEFMTU: {
1079 			if (pr_valsize < sizeof (uint64_t))
1080 				return (EINVAL);
1081 			tmp = bgep->chipid.default_mtu;
1082 			bcopy(&tmp, pr_val, sizeof (tmp));
1083 			break;
1084 		}
1085 		case DLD_PROP_FLOWCTRL:
1086 			if (pr_valsize < sizeof (link_flowctrl_t))
1087 				return (EINVAL);
1088 			if (bgep->param_link_rx_pause &&
1089 			    !bgep->param_link_tx_pause)
1090 				fl = LINK_FLOWCTRL_RX;
1091 
1092 			if (!bgep->param_link_rx_pause &&
1093 			    !bgep->param_link_tx_pause)
1094 				fl = LINK_FLOWCTRL_NONE;
1095 
1096 			if (!bgep->param_link_rx_pause &&
1097 			    bgep->param_link_tx_pause)
1098 				fl = LINK_FLOWCTRL_TX;
1099 
1100 			if (bgep->param_link_rx_pause &&
1101 			    bgep->param_link_tx_pause)
1102 				fl = LINK_FLOWCTRL_BI;
1103 			bcopy(&fl, pr_val, sizeof (fl));
1104 			break;
1105 		case DLD_PROP_ADV_1000FDX_CAP:
1106 			if (pr_valsize < sizeof (uint8_t))
1107 				return (EINVAL);
1108 			*(uint8_t *)pr_val = bgep->param_adv_1000fdx;
1109 			break;
1110 		case DLD_PROP_EN_1000FDX_CAP:
1111 			if (pr_valsize < sizeof (uint8_t))
1112 				return (EINVAL);
1113 			*(uint8_t *)pr_val = bgep->param_en_1000fdx;
1114 			break;
1115 		case DLD_PROP_ADV_1000HDX_CAP:
1116 			if (pr_valsize < sizeof (uint8_t))
1117 				return (EINVAL);
1118 			*(uint8_t *)pr_val = bgep->param_adv_1000hdx;
1119 			break;
1120 		case DLD_PROP_EN_1000HDX_CAP:
1121 			if (pr_valsize < sizeof (uint8_t))
1122 				return (EINVAL);
1123 			*(uint8_t *)pr_val = bgep->param_en_1000hdx;
1124 			break;
1125 		case DLD_PROP_ADV_100FDX_CAP:
1126 			if (pr_valsize < sizeof (uint8_t))
1127 				return (EINVAL);
1128 			*(uint8_t *)pr_val = bgep->param_adv_100fdx;
1129 			break;
1130 		case DLD_PROP_EN_100FDX_CAP:
1131 			if (pr_valsize < sizeof (uint8_t))
1132 				return (EINVAL);
1133 			*(uint8_t *)pr_val = bgep->param_en_100fdx;
1134 			break;
1135 		case DLD_PROP_ADV_100HDX_CAP:
1136 			if (pr_valsize < sizeof (uint8_t))
1137 				return (EINVAL);
1138 			*(uint8_t *)pr_val = bgep->param_adv_100hdx;
1139 			break;
1140 		case DLD_PROP_EN_100HDX_CAP:
1141 			if (pr_valsize < sizeof (uint8_t))
1142 				return (EINVAL);
1143 			*(uint8_t *)pr_val = bgep->param_en_100hdx;
1144 			break;
1145 		case DLD_PROP_ADV_10FDX_CAP:
1146 			if (pr_valsize < sizeof (uint8_t))
1147 				return (EINVAL);
1148 			*(uint8_t *)pr_val = bgep->param_adv_10fdx;
1149 			break;
1150 		case DLD_PROP_EN_10FDX_CAP:
1151 			if (pr_valsize < sizeof (uint8_t))
1152 				return (EINVAL);
1153 			*(uint8_t *)pr_val = bgep->param_en_10fdx;
1154 			break;
1155 		case DLD_PROP_ADV_10HDX_CAP:
1156 			if (pr_valsize < sizeof (uint8_t))
1157 				return (EINVAL);
1158 			*(uint8_t *)pr_val = bgep->param_adv_10hdx;
1159 			break;
1160 		case DLD_PROP_EN_10HDX_CAP:
1161 			if (pr_valsize < sizeof (uint8_t))
1162 				return (EINVAL);
1163 			*(uint8_t *)pr_val = bgep->param_en_10hdx;
1164 			break;
1165 		default:
1166 			err = bge_get_priv_prop(bgep, pr_name, pr_valsize,
1167 			    pr_val);
1168 			return (err);
1169 	}
1170 	return (0);
1171 }
1172 
1173 /* ARGSUSED */
1174 static int
1175 bge_set_priv_prop(bge_t *bgep, const char *pr_name, uint_t pr_valsize,
1176     const void *pr_val)
1177 {
1178 	int err = 0;
1179 	long result;
1180 
1181 	if (strcmp(pr_name, "_drain_max") == 0) {
1182 
1183 		/*
1184 		 * on the Tx side, we need to update the h/w register for
1185 		 * real packet transmission per packet. The drain_max parameter
1186 		 * is used to reduce the register access. This parameter
1187 		 * controls the max number of packets that we will hold before
1188 		 * updating the bge h/w to trigger h/w transmit. The bge
1189 		 * chipset usually has a max of 512 Tx descriptors, thus
1190 		 * the upper bound on drain_max is 512.
1191 		 */
1192 		if (pr_val == NULL) {
1193 			err = EINVAL;
1194 			return (err);
1195 		}
1196 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1197 		if (result > 512 || result < 1)
1198 			err = EINVAL;
1199 		else {
1200 			bgep->param_drain_max = (uint32_t)result;
1201 			if (bge_reprogram(bgep) == IOC_INVAL)
1202 				err = EINVAL;
1203 		}
1204 		return (err);
1205 	}
1206 	if (strcmp(pr_name, "_msi_cnt") == 0) {
1207 
1208 		if (pr_val == NULL) {
1209 			err = EINVAL;
1210 			return (err);
1211 		}
1212 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1213 		if (result > 7 || result < 0)
1214 			err = EINVAL;
1215 		else {
1216 			bgep->param_msi_cnt = (uint32_t)result;
1217 			if (bge_reprogram(bgep) == IOC_INVAL)
1218 				err = EINVAL;
1219 		}
1220 		return (err);
1221 	}
1222 	if (strcmp(pr_name, "_intr_coalesce_blank_time") == 0) {
1223 		if (ddi_strtol(pr_val, (char **)NULL, 0, &result) != 0) {
1224 			return (EINVAL);
1225 		}
1226 
1227 		bgep->chipid.rx_ticks_norm = result;
1228 		return (0);
1229 	}
1230 
1231 	if (strcmp(pr_name, "_intr_coalesce_pkt_cnt") == 0) {
1232 		if (ddi_strtol(pr_val, (char **)NULL, 0, &result) != 0)
1233 			return (EINVAL);
1234 
1235 		bgep->chipid.rx_count_norm = result;
1236 		return (0);
1237 	}
1238 	return (EINVAL);
1239 }
1240 
1241 static int
1242 bge_get_priv_prop(bge_t *bge, const char *pr_name, uint_t pr_valsize,
1243     void *pr_val)
1244 {
1245 	char valstr[MAXNAMELEN];
1246 	int err = EINVAL;
1247 	uint_t strsize;
1248 
1249 
1250 	if (strcmp(pr_name, "_drain_max") == 0) {
1251 		(void) sprintf(valstr, "%d", bge->param_drain_max);
1252 		err = 0;
1253 		goto done;
1254 	}
1255 	if (strcmp(pr_name, "_msi_cnt") == 0) {
1256 		(void) sprintf(valstr, "%d", bge->param_msi_cnt);
1257 		err = 0;
1258 		goto done;
1259 	}
1260 
1261 	if (strcmp(pr_name, "_intr_coalesce_blank_time") == 0) {
1262 		(void) sprintf(valstr, "%d", bge->chipid.rx_ticks_norm);
1263 		err = 0;
1264 		goto done;
1265 	}
1266 
1267 	if (strcmp(pr_name, "_intr_coalesce_pkt_cnt") == 0) {
1268 		(void) sprintf(valstr, "%d", bge->chipid.rx_count_norm);
1269 		err = 0;
1270 		goto done;
1271 	}
1272 
1273 done:
1274 	if (err != 0) {
1275 		strsize = (uint_t)strlen(valstr);
1276 		if (pr_valsize < strsize) {
1277 			err = ENOBUFS;
1278 		} else {
1279 			(void) strlcpy(pr_val, valstr, pr_valsize);
1280 		}
1281 	}
1282 	return (err);
1283 }
1284 
1285 /*
1286  * Compute the index of the required bit in the multicast hash map.
1287  * This must mirror the way the hardware actually does it!
1288  * See Broadcom document 570X-PG102-R page 125.
1289  */
1290 static uint32_t
1291 bge_hash_index(const uint8_t *mca)
1292 {
1293 	uint32_t hash;
1294 
1295 	CRC32(hash, mca, ETHERADDRL, -1U, crc32_table);
1296 
1297 	return (hash);
1298 }
1299 
1300 /*
1301  *	bge_m_multicst_add() -- enable/disable a multicast address
1302  */
1303 static int
1304 bge_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
1305 {
1306 	bge_t *bgep = arg;		/* private device info	*/
1307 	uint32_t hash;
1308 	uint32_t index;
1309 	uint32_t word;
1310 	uint32_t bit;
1311 	uint8_t *refp;
1312 
1313 	BGE_TRACE(("bge_m_multicst($%p, %s, %s)", arg,
1314 	    (add) ? "add" : "remove", ether_sprintf((void *)mca)));
1315 
1316 	/*
1317 	 * Precalculate all required masks, pointers etc ...
1318 	 */
1319 	hash = bge_hash_index(mca);
1320 	index = hash % BGE_HASH_TABLE_SIZE;
1321 	word = index/32u;
1322 	bit = 1 << (index % 32u);
1323 	refp = &bgep->mcast_refs[index];
1324 
1325 	BGE_DEBUG(("bge_m_multicst: hash 0x%x index %d (%d:0x%x) = %d",
1326 	    hash, index, word, bit, *refp));
1327 
1328 	/*
1329 	 * We must set the appropriate bit in the hash map (and the
1330 	 * corresponding h/w register) when the refcount goes from 0
1331 	 * to >0, and clear it when the last ref goes away (refcount
1332 	 * goes from >0 back to 0).  If we change the hash map, we
1333 	 * must also update the chip's hardware map registers.
1334 	 */
1335 	mutex_enter(bgep->genlock);
1336 	if (!(bgep->progress & PROGRESS_INTR)) {
1337 		/* can happen during autorecovery */
1338 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1339 		mutex_exit(bgep->genlock);
1340 		return (EIO);
1341 	}
1342 	if (add) {
1343 		if ((*refp)++ == 0) {
1344 			bgep->mcast_hash[word] |= bit;
1345 #ifdef BGE_IPMI_ASF
1346 			if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
1347 #else
1348 			if (bge_chip_sync(bgep) == DDI_FAILURE) {
1349 #endif
1350 				(void) bge_check_acc_handle(bgep,
1351 				    bgep->cfg_handle);
1352 				(void) bge_check_acc_handle(bgep,
1353 				    bgep->io_handle);
1354 				ddi_fm_service_impact(bgep->devinfo,
1355 				    DDI_SERVICE_DEGRADED);
1356 				mutex_exit(bgep->genlock);
1357 				return (EIO);
1358 			}
1359 		}
1360 	} else {
1361 		if (--(*refp) == 0) {
1362 			bgep->mcast_hash[word] &= ~bit;
1363 #ifdef BGE_IPMI_ASF
1364 			if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
1365 #else
1366 			if (bge_chip_sync(bgep) == DDI_FAILURE) {
1367 #endif
1368 				(void) bge_check_acc_handle(bgep,
1369 				    bgep->cfg_handle);
1370 				(void) bge_check_acc_handle(bgep,
1371 				    bgep->io_handle);
1372 				ddi_fm_service_impact(bgep->devinfo,
1373 				    DDI_SERVICE_DEGRADED);
1374 				mutex_exit(bgep->genlock);
1375 				return (EIO);
1376 			}
1377 		}
1378 	}
1379 	BGE_DEBUG(("bge_m_multicst($%p) done", arg));
1380 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
1381 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1382 		mutex_exit(bgep->genlock);
1383 		return (EIO);
1384 	}
1385 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1386 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1387 		mutex_exit(bgep->genlock);
1388 		return (EIO);
1389 	}
1390 	mutex_exit(bgep->genlock);
1391 
1392 	return (0);
1393 }
1394 
1395 /*
1396  * bge_m_promisc() -- set or reset promiscuous mode on the board
1397  *
1398  *	Program the hardware to enable/disable promiscuous and/or
1399  *	receive-all-multicast modes.
1400  */
1401 static int
1402 bge_m_promisc(void *arg, boolean_t on)
1403 {
1404 	bge_t *bgep = arg;
1405 
1406 	BGE_TRACE(("bge_m_promisc_set($%p, %d)", arg, on));
1407 
1408 	/*
1409 	 * Store MAC layer specified mode and pass to chip layer to update h/w
1410 	 */
1411 	mutex_enter(bgep->genlock);
1412 	if (!(bgep->progress & PROGRESS_INTR)) {
1413 		/* can happen during autorecovery */
1414 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1415 		mutex_exit(bgep->genlock);
1416 		return (EIO);
1417 	}
1418 	bgep->promisc = on;
1419 #ifdef BGE_IPMI_ASF
1420 	if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
1421 #else
1422 	if (bge_chip_sync(bgep) == DDI_FAILURE) {
1423 #endif
1424 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
1425 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
1426 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1427 		mutex_exit(bgep->genlock);
1428 		return (EIO);
1429 	}
1430 	BGE_DEBUG(("bge_m_promisc_set($%p) done", arg));
1431 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
1432 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1433 		mutex_exit(bgep->genlock);
1434 		return (EIO);
1435 	}
1436 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1437 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1438 		mutex_exit(bgep->genlock);
1439 		return (EIO);
1440 	}
1441 	mutex_exit(bgep->genlock);
1442 	return (0);
1443 }
1444 
1445 /*ARGSUSED*/
1446 static boolean_t
1447 bge_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
1448 {
1449 	bge_t *bgep = arg;
1450 
1451 	switch (cap) {
1452 	case MAC_CAPAB_HCKSUM: {
1453 		uint32_t *txflags = cap_data;
1454 
1455 		*txflags = HCKSUM_INET_FULL_V4 | HCKSUM_IPHDRCKSUM;
1456 		break;
1457 	}
1458 
1459 	case MAC_CAPAB_POLL:
1460 		/*
1461 		 * There's nothing for us to fill in, simply returning
1462 		 * B_TRUE stating that we support polling is sufficient.
1463 		 */
1464 		break;
1465 
1466 	case MAC_CAPAB_MULTIADDRESS: {
1467 		multiaddress_capab_t	*mmacp = cap_data;
1468 
1469 		mutex_enter(bgep->genlock);
1470 		/*
1471 		 * The number of MAC addresses made available by
1472 		 * this capability is one less than the total as
1473 		 * the primary address in slot 0 is counted in
1474 		 * the total.
1475 		 */
1476 		mmacp->maddr_naddr = bgep->unicst_addr_total - 1;
1477 		mmacp->maddr_naddrfree = bgep->unicst_addr_avail;
1478 		/* No multiple factory addresses, set mma_flag to 0 */
1479 		mmacp->maddr_flag = 0;
1480 		mmacp->maddr_handle = bgep;
1481 		mmacp->maddr_add = bge_m_unicst_add;
1482 		mmacp->maddr_remove = bge_m_unicst_remove;
1483 		mmacp->maddr_modify = bge_m_unicst_modify;
1484 		mmacp->maddr_get = bge_m_unicst_get;
1485 		mmacp->maddr_reserve = NULL;
1486 		mutex_exit(bgep->genlock);
1487 		break;
1488 	}
1489 
1490 	default:
1491 		return (B_FALSE);
1492 	}
1493 	return (B_TRUE);
1494 }
1495 
1496 /*
1497  * Loopback ioctl code
1498  */
1499 
1500 static lb_property_t loopmodes[] = {
1501 	{ normal,	"normal",	BGE_LOOP_NONE		},
1502 	{ external,	"1000Mbps",	BGE_LOOP_EXTERNAL_1000	},
1503 	{ external,	"100Mbps",	BGE_LOOP_EXTERNAL_100	},
1504 	{ external,	"10Mbps",	BGE_LOOP_EXTERNAL_10	},
1505 	{ internal,	"PHY",		BGE_LOOP_INTERNAL_PHY	},
1506 	{ internal,	"MAC",		BGE_LOOP_INTERNAL_MAC	}
1507 };
1508 
1509 static enum ioc_reply
1510 bge_set_loop_mode(bge_t *bgep, uint32_t mode)
1511 {
1512 	/*
1513 	 * If the mode isn't being changed, there's nothing to do ...
1514 	 */
1515 	if (mode == bgep->param_loop_mode)
1516 		return (IOC_ACK);
1517 
1518 	/*
1519 	 * Validate the requested mode and prepare a suitable message
1520 	 * to explain the link down/up cycle that the change will
1521 	 * probably induce ...
1522 	 */
1523 	switch (mode) {
1524 	default:
1525 		return (IOC_INVAL);
1526 
1527 	case BGE_LOOP_NONE:
1528 	case BGE_LOOP_EXTERNAL_1000:
1529 	case BGE_LOOP_EXTERNAL_100:
1530 	case BGE_LOOP_EXTERNAL_10:
1531 	case BGE_LOOP_INTERNAL_PHY:
1532 	case BGE_LOOP_INTERNAL_MAC:
1533 		break;
1534 	}
1535 
1536 	/*
1537 	 * All OK; tell the caller to reprogram
1538 	 * the PHY and/or MAC for the new mode ...
1539 	 */
1540 	bgep->param_loop_mode = mode;
1541 	return (IOC_RESTART_ACK);
1542 }
1543 
1544 static enum ioc_reply
1545 bge_loop_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
1546 {
1547 	lb_info_sz_t *lbsp;
1548 	lb_property_t *lbpp;
1549 	uint32_t *lbmp;
1550 	int cmd;
1551 
1552 	_NOTE(ARGUNUSED(wq))
1553 
1554 	/*
1555 	 * Validate format of ioctl
1556 	 */
1557 	if (mp->b_cont == NULL)
1558 		return (IOC_INVAL);
1559 
1560 	cmd = iocp->ioc_cmd;
1561 	switch (cmd) {
1562 	default:
1563 		/* NOTREACHED */
1564 		bge_error(bgep, "bge_loop_ioctl: invalid cmd 0x%x", cmd);
1565 		return (IOC_INVAL);
1566 
1567 	case LB_GET_INFO_SIZE:
1568 		if (iocp->ioc_count != sizeof (lb_info_sz_t))
1569 			return (IOC_INVAL);
1570 		lbsp = (lb_info_sz_t *)mp->b_cont->b_rptr;
1571 		*lbsp = sizeof (loopmodes);
1572 		return (IOC_REPLY);
1573 
1574 	case LB_GET_INFO:
1575 		if (iocp->ioc_count != sizeof (loopmodes))
1576 			return (IOC_INVAL);
1577 		lbpp = (lb_property_t *)mp->b_cont->b_rptr;
1578 		bcopy(loopmodes, lbpp, sizeof (loopmodes));
1579 		return (IOC_REPLY);
1580 
1581 	case LB_GET_MODE:
1582 		if (iocp->ioc_count != sizeof (uint32_t))
1583 			return (IOC_INVAL);
1584 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
1585 		*lbmp = bgep->param_loop_mode;
1586 		return (IOC_REPLY);
1587 
1588 	case LB_SET_MODE:
1589 		if (iocp->ioc_count != sizeof (uint32_t))
1590 			return (IOC_INVAL);
1591 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
1592 		return (bge_set_loop_mode(bgep, *lbmp));
1593 	}
1594 }
1595 
1596 /*
1597  * Specific bge IOCTLs, the gld module handles the generic ones.
1598  */
1599 static void
1600 bge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
1601 {
1602 	bge_t *bgep = arg;
1603 	struct iocblk *iocp;
1604 	enum ioc_reply status;
1605 	boolean_t need_privilege;
1606 	int err;
1607 	int cmd;
1608 
1609 	/*
1610 	 * Validate the command before bothering with the mutex ...
1611 	 */
1612 	iocp = (struct iocblk *)mp->b_rptr;
1613 	iocp->ioc_error = 0;
1614 	need_privilege = B_TRUE;
1615 	cmd = iocp->ioc_cmd;
1616 	switch (cmd) {
1617 	default:
1618 		miocnak(wq, mp, 0, EINVAL);
1619 		return;
1620 
1621 	case BGE_MII_READ:
1622 	case BGE_MII_WRITE:
1623 	case BGE_SEE_READ:
1624 	case BGE_SEE_WRITE:
1625 	case BGE_FLASH_READ:
1626 	case BGE_FLASH_WRITE:
1627 	case BGE_DIAG:
1628 	case BGE_PEEK:
1629 	case BGE_POKE:
1630 	case BGE_PHY_RESET:
1631 	case BGE_SOFT_RESET:
1632 	case BGE_HARD_RESET:
1633 		break;
1634 
1635 	case LB_GET_INFO_SIZE:
1636 	case LB_GET_INFO:
1637 	case LB_GET_MODE:
1638 		need_privilege = B_FALSE;
1639 		/* FALLTHRU */
1640 	case LB_SET_MODE:
1641 		break;
1642 
1643 	case ND_GET:
1644 		need_privilege = B_FALSE;
1645 		/* FALLTHRU */
1646 	case ND_SET:
1647 		break;
1648 	}
1649 
1650 	if (need_privilege) {
1651 		/*
1652 		 * Check for specific net_config privilege on Solaris 10+.
1653 		 */
1654 		err = secpolicy_net_config(iocp->ioc_cr, B_FALSE);
1655 		if (err != 0) {
1656 			miocnak(wq, mp, 0, err);
1657 			return;
1658 		}
1659 	}
1660 
1661 	mutex_enter(bgep->genlock);
1662 	if (!(bgep->progress & PROGRESS_INTR)) {
1663 		/* can happen during autorecovery */
1664 		mutex_exit(bgep->genlock);
1665 		miocnak(wq, mp, 0, EIO);
1666 		return;
1667 	}
1668 
1669 	switch (cmd) {
1670 	default:
1671 		_NOTE(NOTREACHED)
1672 		status = IOC_INVAL;
1673 		break;
1674 
1675 	case BGE_MII_READ:
1676 	case BGE_MII_WRITE:
1677 	case BGE_SEE_READ:
1678 	case BGE_SEE_WRITE:
1679 	case BGE_FLASH_READ:
1680 	case BGE_FLASH_WRITE:
1681 	case BGE_DIAG:
1682 	case BGE_PEEK:
1683 	case BGE_POKE:
1684 	case BGE_PHY_RESET:
1685 	case BGE_SOFT_RESET:
1686 	case BGE_HARD_RESET:
1687 		status = bge_chip_ioctl(bgep, wq, mp, iocp);
1688 		break;
1689 
1690 	case LB_GET_INFO_SIZE:
1691 	case LB_GET_INFO:
1692 	case LB_GET_MODE:
1693 	case LB_SET_MODE:
1694 		status = bge_loop_ioctl(bgep, wq, mp, iocp);
1695 		break;
1696 
1697 	case ND_GET:
1698 	case ND_SET:
1699 		status = bge_nd_ioctl(bgep, wq, mp, iocp);
1700 		break;
1701 	}
1702 
1703 	/*
1704 	 * Do we need to reprogram the PHY and/or the MAC?
1705 	 * Do it now, while we still have the mutex.
1706 	 *
1707 	 * Note: update the PHY first, 'cos it controls the
1708 	 * speed/duplex parameters that the MAC code uses.
1709 	 */
1710 	switch (status) {
1711 	case IOC_RESTART_REPLY:
1712 	case IOC_RESTART_ACK:
1713 		if (bge_reprogram(bgep) == IOC_INVAL)
1714 			status = IOC_INVAL;
1715 		break;
1716 	}
1717 
1718 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
1719 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1720 		status = IOC_INVAL;
1721 	}
1722 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1723 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1724 		status = IOC_INVAL;
1725 	}
1726 	mutex_exit(bgep->genlock);
1727 
1728 	/*
1729 	 * Finally, decide how to reply
1730 	 */
1731 	switch (status) {
1732 	default:
1733 	case IOC_INVAL:
1734 		/*
1735 		 * Error, reply with a NAK and EINVAL or the specified error
1736 		 */
1737 		miocnak(wq, mp, 0, iocp->ioc_error == 0 ?
1738 		    EINVAL : iocp->ioc_error);
1739 		break;
1740 
1741 	case IOC_DONE:
1742 		/*
1743 		 * OK, reply already sent
1744 		 */
1745 		break;
1746 
1747 	case IOC_RESTART_ACK:
1748 	case IOC_ACK:
1749 		/*
1750 		 * OK, reply with an ACK
1751 		 */
1752 		miocack(wq, mp, 0, 0);
1753 		break;
1754 
1755 	case IOC_RESTART_REPLY:
1756 	case IOC_REPLY:
1757 		/*
1758 		 * OK, send prepared reply as ACK or NAK
1759 		 */
1760 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1761 		    M_IOCACK : M_IOCNAK;
1762 		qreply(wq, mp);
1763 		break;
1764 	}
1765 }
1766 
1767 static void
1768 bge_resources_add(bge_t *bgep, time_t time, uint_t pkt_cnt)
1769 {
1770 
1771 	recv_ring_t *rrp;
1772 	mac_rx_fifo_t mrf;
1773 	int ring;
1774 
1775 	/*
1776 	 * Register Rx rings as resources and save mac
1777 	 * resource id for future reference
1778 	 */
1779 	mrf.mrf_type = MAC_RX_FIFO;
1780 	mrf.mrf_blank = bge_chip_blank;
1781 	mrf.mrf_arg = (void *)bgep;
1782 	mrf.mrf_normal_blank_time = time;
1783 	mrf.mrf_normal_pkt_count = pkt_cnt;
1784 
1785 	for (ring = 0; ring < bgep->chipid.rx_rings; ring++) {
1786 		rrp = &bgep->recv[ring];
1787 		rrp->handle = mac_resource_add(bgep->mh,
1788 		    (mac_resource_t *)&mrf);
1789 	}
1790 }
1791 
1792 static void
1793 bge_m_resources(void *arg)
1794 {
1795 	bge_t *bgep = arg;
1796 
1797 	mutex_enter(bgep->genlock);
1798 
1799 	bge_resources_add(bgep, bgep->chipid.rx_ticks_norm,
1800 	    bgep->chipid.rx_count_norm);
1801 	mutex_exit(bgep->genlock);
1802 }
1803 
1804 /*
1805  * ========== Per-instance setup/teardown code ==========
1806  */
1807 
1808 #undef	BGE_DBG
1809 #define	BGE_DBG		BGE_DBG_INIT	/* debug flag for this code	*/
1810 /*
1811  * Allocate an area of memory and a DMA handle for accessing it
1812  */
1813 static int
1814 bge_alloc_dma_mem(bge_t *bgep, size_t memsize, ddi_device_acc_attr_t *attr_p,
1815 	uint_t dma_flags, dma_area_t *dma_p)
1816 {
1817 	caddr_t va;
1818 	int err;
1819 
1820 	BGE_TRACE(("bge_alloc_dma_mem($%p, %ld, $%p, 0x%x, $%p)",
1821 	    (void *)bgep, memsize, attr_p, dma_flags, dma_p));
1822 
1823 	/*
1824 	 * Allocate handle
1825 	 */
1826 	err = ddi_dma_alloc_handle(bgep->devinfo, &dma_attr,
1827 	    DDI_DMA_DONTWAIT, NULL, &dma_p->dma_hdl);
1828 	if (err != DDI_SUCCESS)
1829 		return (DDI_FAILURE);
1830 
1831 	/*
1832 	 * Allocate memory
1833 	 */
1834 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p,
1835 	    dma_flags, DDI_DMA_DONTWAIT, NULL, &va, &dma_p->alength,
1836 	    &dma_p->acc_hdl);
1837 	if (err != DDI_SUCCESS)
1838 		return (DDI_FAILURE);
1839 
1840 	/*
1841 	 * Bind the two together
1842 	 */
1843 	dma_p->mem_va = va;
1844 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
1845 	    va, dma_p->alength, dma_flags, DDI_DMA_DONTWAIT, NULL,
1846 	    &dma_p->cookie, &dma_p->ncookies);
1847 
1848 	BGE_DEBUG(("bge_alloc_dma_mem(): bind %d bytes; err %d, %d cookies",
1849 	    dma_p->alength, err, dma_p->ncookies));
1850 
1851 	if (err != DDI_DMA_MAPPED || dma_p->ncookies != 1)
1852 		return (DDI_FAILURE);
1853 
1854 	dma_p->nslots = ~0U;
1855 	dma_p->size = ~0U;
1856 	dma_p->token = ~0U;
1857 	dma_p->offset = 0;
1858 	return (DDI_SUCCESS);
1859 }
1860 
1861 /*
1862  * Free one allocated area of DMAable memory
1863  */
1864 static void
1865 bge_free_dma_mem(dma_area_t *dma_p)
1866 {
1867 	if (dma_p->dma_hdl != NULL) {
1868 		if (dma_p->ncookies) {
1869 			(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
1870 			dma_p->ncookies = 0;
1871 		}
1872 		ddi_dma_free_handle(&dma_p->dma_hdl);
1873 		dma_p->dma_hdl = NULL;
1874 	}
1875 
1876 	if (dma_p->acc_hdl != NULL) {
1877 		ddi_dma_mem_free(&dma_p->acc_hdl);
1878 		dma_p->acc_hdl = NULL;
1879 	}
1880 }
1881 /*
1882  * Utility routine to carve a slice off a chunk of allocated memory,
1883  * updating the chunk descriptor accordingly.  The size of the slice
1884  * is given by the product of the <qty> and <size> parameters.
1885  */
1886 static void
1887 bge_slice_chunk(dma_area_t *slice, dma_area_t *chunk,
1888 	uint32_t qty, uint32_t size)
1889 {
1890 	static uint32_t sequence = 0xbcd5704a;
1891 	size_t totsize;
1892 
1893 	totsize = qty*size;
1894 	ASSERT(size >= 0);
1895 	ASSERT(totsize <= chunk->alength);
1896 
1897 	*slice = *chunk;
1898 	slice->nslots = qty;
1899 	slice->size = size;
1900 	slice->alength = totsize;
1901 	slice->token = ++sequence;
1902 
1903 	chunk->mem_va = (caddr_t)chunk->mem_va + totsize;
1904 	chunk->alength -= totsize;
1905 	chunk->offset += totsize;
1906 	chunk->cookie.dmac_laddress += totsize;
1907 	chunk->cookie.dmac_size -= totsize;
1908 }
1909 
1910 /*
1911  * Initialise the specified Receive Producer (Buffer) Ring, using
1912  * the information in the <dma_area> descriptors that it contains
1913  * to set up all the other fields. This routine should be called
1914  * only once for each ring.
1915  */
1916 static void
1917 bge_init_buff_ring(bge_t *bgep, uint64_t ring)
1918 {
1919 	buff_ring_t *brp;
1920 	bge_status_t *bsp;
1921 	sw_rbd_t *srbdp;
1922 	dma_area_t pbuf;
1923 	uint32_t bufsize;
1924 	uint32_t nslots;
1925 	uint32_t slot;
1926 	uint32_t split;
1927 
1928 	static bge_regno_t nic_ring_addrs[BGE_BUFF_RINGS_MAX] = {
1929 		NIC_MEM_SHADOW_BUFF_STD,
1930 		NIC_MEM_SHADOW_BUFF_JUMBO,
1931 		NIC_MEM_SHADOW_BUFF_MINI
1932 	};
1933 	static bge_regno_t mailbox_regs[BGE_BUFF_RINGS_MAX] = {
1934 		RECV_STD_PROD_INDEX_REG,
1935 		RECV_JUMBO_PROD_INDEX_REG,
1936 		RECV_MINI_PROD_INDEX_REG
1937 	};
1938 	static bge_regno_t buff_cons_xref[BGE_BUFF_RINGS_MAX] = {
1939 		STATUS_STD_BUFF_CONS_INDEX,
1940 		STATUS_JUMBO_BUFF_CONS_INDEX,
1941 		STATUS_MINI_BUFF_CONS_INDEX
1942 	};
1943 
1944 	BGE_TRACE(("bge_init_buff_ring($%p, %d)",
1945 	    (void *)bgep, ring));
1946 
1947 	brp = &bgep->buff[ring];
1948 	nslots = brp->desc.nslots;
1949 	ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT);
1950 	bufsize = brp->buf[0].size;
1951 
1952 	/*
1953 	 * Set up the copy of the h/w RCB
1954 	 *
1955 	 * Note: unlike Send & Receive Return Rings, (where the max_len
1956 	 * field holds the number of slots), in a Receive Buffer Ring
1957 	 * this field indicates the size of each buffer in the ring.
1958 	 */
1959 	brp->hw_rcb.host_ring_addr = brp->desc.cookie.dmac_laddress;
1960 	brp->hw_rcb.max_len = bufsize;
1961 	brp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
1962 	brp->hw_rcb.nic_ring_addr = nic_ring_addrs[ring];
1963 
1964 	/*
1965 	 * Other one-off initialisation of per-ring data
1966 	 */
1967 	brp->bgep = bgep;
1968 	bsp = DMA_VPTR(bgep->status_block);
1969 	brp->cons_index_p = &bsp->buff_cons_index[buff_cons_xref[ring]];
1970 	brp->chip_mbx_reg = mailbox_regs[ring];
1971 	mutex_init(brp->rf_lock, NULL, MUTEX_DRIVER,
1972 	    DDI_INTR_PRI(bgep->intr_pri));
1973 
1974 	/*
1975 	 * Allocate the array of s/w Receive Buffer Descriptors
1976 	 */
1977 	srbdp = kmem_zalloc(nslots*sizeof (*srbdp), KM_SLEEP);
1978 	brp->sw_rbds = srbdp;
1979 
1980 	/*
1981 	 * Now initialise each array element once and for all
1982 	 */
1983 	for (split = 0; split < BGE_SPLIT; ++split) {
1984 		pbuf = brp->buf[split];
1985 		for (slot = 0; slot < nslots/BGE_SPLIT; ++srbdp, ++slot)
1986 			bge_slice_chunk(&srbdp->pbuf, &pbuf, 1, bufsize);
1987 		ASSERT(pbuf.alength == 0);
1988 	}
1989 }
1990 
1991 /*
1992  * Clean up initialisation done above before the memory is freed
1993  */
1994 static void
1995 bge_fini_buff_ring(bge_t *bgep, uint64_t ring)
1996 {
1997 	buff_ring_t *brp;
1998 	sw_rbd_t *srbdp;
1999 
2000 	BGE_TRACE(("bge_fini_buff_ring($%p, %d)",
2001 	    (void *)bgep, ring));
2002 
2003 	brp = &bgep->buff[ring];
2004 	srbdp = brp->sw_rbds;
2005 	kmem_free(srbdp, brp->desc.nslots*sizeof (*srbdp));
2006 
2007 	mutex_destroy(brp->rf_lock);
2008 }
2009 
2010 /*
2011  * Initialise the specified Receive (Return) Ring, using the
2012  * information in the <dma_area> descriptors that it contains
2013  * to set up all the other fields. This routine should be called
2014  * only once for each ring.
2015  */
2016 static void
2017 bge_init_recv_ring(bge_t *bgep, uint64_t ring)
2018 {
2019 	recv_ring_t *rrp;
2020 	bge_status_t *bsp;
2021 	uint32_t nslots;
2022 
2023 	BGE_TRACE(("bge_init_recv_ring($%p, %d)",
2024 	    (void *)bgep, ring));
2025 
2026 	/*
2027 	 * The chip architecture requires that receive return rings have
2028 	 * 512 or 1024 or 2048 elements per ring.  See 570X-PG108-R page 103.
2029 	 */
2030 	rrp = &bgep->recv[ring];
2031 	nslots = rrp->desc.nslots;
2032 	ASSERT(nslots == 0 || nslots == 512 ||
2033 	    nslots == 1024 || nslots == 2048);
2034 
2035 	/*
2036 	 * Set up the copy of the h/w RCB
2037 	 */
2038 	rrp->hw_rcb.host_ring_addr = rrp->desc.cookie.dmac_laddress;
2039 	rrp->hw_rcb.max_len = nslots;
2040 	rrp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
2041 	rrp->hw_rcb.nic_ring_addr = 0;
2042 
2043 	/*
2044 	 * Other one-off initialisation of per-ring data
2045 	 */
2046 	rrp->bgep = bgep;
2047 	bsp = DMA_VPTR(bgep->status_block);
2048 	rrp->prod_index_p = RECV_INDEX_P(bsp, ring);
2049 	rrp->chip_mbx_reg = RECV_RING_CONS_INDEX_REG(ring);
2050 	mutex_init(rrp->rx_lock, NULL, MUTEX_DRIVER,
2051 	    DDI_INTR_PRI(bgep->intr_pri));
2052 }
2053 
2054 
2055 /*
2056  * Clean up initialisation done above before the memory is freed
2057  */
2058 static void
2059 bge_fini_recv_ring(bge_t *bgep, uint64_t ring)
2060 {
2061 	recv_ring_t *rrp;
2062 
2063 	BGE_TRACE(("bge_fini_recv_ring($%p, %d)",
2064 	    (void *)bgep, ring));
2065 
2066 	rrp = &bgep->recv[ring];
2067 	if (rrp->rx_softint)
2068 		ddi_remove_softintr(rrp->rx_softint);
2069 	mutex_destroy(rrp->rx_lock);
2070 }
2071 
2072 /*
2073  * Initialise the specified Send Ring, using the information in the
2074  * <dma_area> descriptors that it contains to set up all the other
2075  * fields. This routine should be called only once for each ring.
2076  */
2077 static void
2078 bge_init_send_ring(bge_t *bgep, uint64_t ring)
2079 {
2080 	send_ring_t *srp;
2081 	bge_status_t *bsp;
2082 	sw_sbd_t *ssbdp;
2083 	dma_area_t desc;
2084 	dma_area_t pbuf;
2085 	uint32_t nslots;
2086 	uint32_t slot;
2087 	uint32_t split;
2088 	sw_txbuf_t *txbuf;
2089 
2090 	BGE_TRACE(("bge_init_send_ring($%p, %d)",
2091 	    (void *)bgep, ring));
2092 
2093 	/*
2094 	 * The chip architecture requires that host-based send rings
2095 	 * have 512 elements per ring.  See 570X-PG102-R page 56.
2096 	 */
2097 	srp = &bgep->send[ring];
2098 	nslots = srp->desc.nslots;
2099 	ASSERT(nslots == 0 || nslots == 512);
2100 
2101 	/*
2102 	 * Set up the copy of the h/w RCB
2103 	 */
2104 	srp->hw_rcb.host_ring_addr = srp->desc.cookie.dmac_laddress;
2105 	srp->hw_rcb.max_len = nslots;
2106 	srp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
2107 	srp->hw_rcb.nic_ring_addr = NIC_MEM_SHADOW_SEND_RING(ring, nslots);
2108 
2109 	/*
2110 	 * Other one-off initialisation of per-ring data
2111 	 */
2112 	srp->bgep = bgep;
2113 	bsp = DMA_VPTR(bgep->status_block);
2114 	srp->cons_index_p = SEND_INDEX_P(bsp, ring);
2115 	srp->chip_mbx_reg = SEND_RING_HOST_INDEX_REG(ring);
2116 	mutex_init(srp->tx_lock, NULL, MUTEX_DRIVER,
2117 	    DDI_INTR_PRI(bgep->intr_pri));
2118 	mutex_init(srp->txbuf_lock, NULL, MUTEX_DRIVER,
2119 	    DDI_INTR_PRI(bgep->intr_pri));
2120 	mutex_init(srp->freetxbuf_lock, NULL, MUTEX_DRIVER,
2121 	    DDI_INTR_PRI(bgep->intr_pri));
2122 	mutex_init(srp->tc_lock, NULL, MUTEX_DRIVER,
2123 	    DDI_INTR_PRI(bgep->intr_pri));
2124 	if (nslots == 0)
2125 		return;
2126 
2127 	/*
2128 	 * Allocate the array of s/w Send Buffer Descriptors
2129 	 */
2130 	ssbdp = kmem_zalloc(nslots*sizeof (*ssbdp), KM_SLEEP);
2131 	txbuf = kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (*txbuf), KM_SLEEP);
2132 	srp->txbuf_head =
2133 	    kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (bge_queue_item_t), KM_SLEEP);
2134 	srp->pktp = kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (send_pkt_t), KM_SLEEP);
2135 	srp->sw_sbds = ssbdp;
2136 	srp->txbuf = txbuf;
2137 	srp->tx_buffers = BGE_SEND_BUF_NUM;
2138 	srp->tx_buffers_low = srp->tx_buffers / 4;
2139 	if (bgep->chipid.snd_buff_size > BGE_SEND_BUFF_SIZE_DEFAULT)
2140 		srp->tx_array_max = BGE_SEND_BUF_ARRAY_JUMBO;
2141 	else
2142 		srp->tx_array_max = BGE_SEND_BUF_ARRAY;
2143 	srp->tx_array = 1;
2144 
2145 	/*
2146 	 * Chunk tx desc area
2147 	 */
2148 	desc = srp->desc;
2149 	for (slot = 0; slot < nslots; ++ssbdp, ++slot) {
2150 		bge_slice_chunk(&ssbdp->desc, &desc, 1,
2151 		    sizeof (bge_sbd_t));
2152 	}
2153 	ASSERT(desc.alength == 0);
2154 
2155 	/*
2156 	 * Chunk tx buffer area
2157 	 */
2158 	for (split = 0; split < BGE_SPLIT; ++split) {
2159 		pbuf = srp->buf[0][split];
2160 		for (slot = 0; slot < BGE_SEND_BUF_NUM/BGE_SPLIT; ++slot) {
2161 			bge_slice_chunk(&txbuf->buf, &pbuf, 1,
2162 			    bgep->chipid.snd_buff_size);
2163 			txbuf++;
2164 		}
2165 		ASSERT(pbuf.alength == 0);
2166 	}
2167 }
2168 
2169 /*
2170  * Clean up initialisation done above before the memory is freed
2171  */
2172 static void
2173 bge_fini_send_ring(bge_t *bgep, uint64_t ring)
2174 {
2175 	send_ring_t *srp;
2176 	uint32_t array;
2177 	uint32_t split;
2178 	uint32_t nslots;
2179 
2180 	BGE_TRACE(("bge_fini_send_ring($%p, %d)",
2181 	    (void *)bgep, ring));
2182 
2183 	srp = &bgep->send[ring];
2184 	mutex_destroy(srp->tc_lock);
2185 	mutex_destroy(srp->freetxbuf_lock);
2186 	mutex_destroy(srp->txbuf_lock);
2187 	mutex_destroy(srp->tx_lock);
2188 	nslots = srp->desc.nslots;
2189 	if (nslots == 0)
2190 		return;
2191 
2192 	for (array = 1; array < srp->tx_array; ++array)
2193 		for (split = 0; split < BGE_SPLIT; ++split)
2194 			bge_free_dma_mem(&srp->buf[array][split]);
2195 	kmem_free(srp->sw_sbds, nslots*sizeof (*srp->sw_sbds));
2196 	kmem_free(srp->txbuf_head, BGE_SEND_BUF_MAX*sizeof (*srp->txbuf_head));
2197 	kmem_free(srp->txbuf, BGE_SEND_BUF_MAX*sizeof (*srp->txbuf));
2198 	kmem_free(srp->pktp, BGE_SEND_BUF_MAX*sizeof (*srp->pktp));
2199 	srp->sw_sbds = NULL;
2200 	srp->txbuf_head = NULL;
2201 	srp->txbuf = NULL;
2202 	srp->pktp = NULL;
2203 }
2204 
2205 /*
2206  * Initialise all transmit, receive, and buffer rings.
2207  */
2208 void
2209 bge_init_rings(bge_t *bgep)
2210 {
2211 	uint32_t ring;
2212 
2213 	BGE_TRACE(("bge_init_rings($%p)", (void *)bgep));
2214 
2215 	/*
2216 	 * Perform one-off initialisation of each ring ...
2217 	 */
2218 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
2219 		bge_init_send_ring(bgep, ring);
2220 	for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
2221 		bge_init_recv_ring(bgep, ring);
2222 	for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
2223 		bge_init_buff_ring(bgep, ring);
2224 }
2225 
2226 /*
2227  * Undo the work of bge_init_rings() above before the memory is freed
2228  */
2229 void
2230 bge_fini_rings(bge_t *bgep)
2231 {
2232 	uint32_t ring;
2233 
2234 	BGE_TRACE(("bge_fini_rings($%p)", (void *)bgep));
2235 
2236 	for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
2237 		bge_fini_buff_ring(bgep, ring);
2238 	for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
2239 		bge_fini_recv_ring(bgep, ring);
2240 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
2241 		bge_fini_send_ring(bgep, ring);
2242 }
2243 
2244 /*
2245  * Called from the bge_m_stop() to free the tx buffers which are
2246  * allocated from the tx process.
2247  */
2248 void
2249 bge_free_txbuf_arrays(send_ring_t *srp)
2250 {
2251 	uint32_t array;
2252 	uint32_t split;
2253 
2254 	ASSERT(mutex_owned(srp->tx_lock));
2255 
2256 	/*
2257 	 * Free the extra tx buffer DMA area
2258 	 */
2259 	for (array = 1; array < srp->tx_array; ++array)
2260 		for (split = 0; split < BGE_SPLIT; ++split)
2261 			bge_free_dma_mem(&srp->buf[array][split]);
2262 
2263 	/*
2264 	 * Restore initial tx buffer numbers
2265 	 */
2266 	srp->tx_array = 1;
2267 	srp->tx_buffers = BGE_SEND_BUF_NUM;
2268 	srp->tx_buffers_low = srp->tx_buffers / 4;
2269 	srp->tx_flow = 0;
2270 	bzero(srp->pktp, BGE_SEND_BUF_MAX * sizeof (*srp->pktp));
2271 }
2272 
2273 /*
2274  * Called from tx process to allocate more tx buffers
2275  */
2276 bge_queue_item_t *
2277 bge_alloc_txbuf_array(bge_t *bgep, send_ring_t *srp)
2278 {
2279 	bge_queue_t *txbuf_queue;
2280 	bge_queue_item_t *txbuf_item_last;
2281 	bge_queue_item_t *txbuf_item;
2282 	bge_queue_item_t *txbuf_item_rtn;
2283 	sw_txbuf_t *txbuf;
2284 	dma_area_t area;
2285 	size_t txbuffsize;
2286 	uint32_t slot;
2287 	uint32_t array;
2288 	uint32_t split;
2289 	uint32_t err;
2290 
2291 	ASSERT(mutex_owned(srp->tx_lock));
2292 
2293 	array = srp->tx_array;
2294 	if (array >= srp->tx_array_max)
2295 		return (NULL);
2296 
2297 	/*
2298 	 * Allocate memory & handles for TX buffers
2299 	 */
2300 	txbuffsize = BGE_SEND_BUF_NUM*bgep->chipid.snd_buff_size;
2301 	ASSERT((txbuffsize % BGE_SPLIT) == 0);
2302 	for (split = 0; split < BGE_SPLIT; ++split) {
2303 		err = bge_alloc_dma_mem(bgep, txbuffsize/BGE_SPLIT,
2304 		    &bge_data_accattr, DDI_DMA_WRITE | BGE_DMA_MODE,
2305 		    &srp->buf[array][split]);
2306 		if (err != DDI_SUCCESS) {
2307 			/* Free the last already allocated OK chunks */
2308 			for (slot = 0; slot <= split; ++slot)
2309 				bge_free_dma_mem(&srp->buf[array][slot]);
2310 			srp->tx_alloc_fail++;
2311 			return (NULL);
2312 		}
2313 	}
2314 
2315 	/*
2316 	 * Chunk tx buffer area
2317 	 */
2318 	txbuf = srp->txbuf + array*BGE_SEND_BUF_NUM;
2319 	for (split = 0; split < BGE_SPLIT; ++split) {
2320 		area = srp->buf[array][split];
2321 		for (slot = 0; slot < BGE_SEND_BUF_NUM/BGE_SPLIT; ++slot) {
2322 			bge_slice_chunk(&txbuf->buf, &area, 1,
2323 			    bgep->chipid.snd_buff_size);
2324 			txbuf++;
2325 		}
2326 	}
2327 
2328 	/*
2329 	 * Add above buffers to the tx buffer pop queue
2330 	 */
2331 	txbuf_item = srp->txbuf_head + array*BGE_SEND_BUF_NUM;
2332 	txbuf = srp->txbuf + array*BGE_SEND_BUF_NUM;
2333 	txbuf_item_last = NULL;
2334 	for (slot = 0; slot < BGE_SEND_BUF_NUM; ++slot) {
2335 		txbuf_item->item = txbuf;
2336 		txbuf_item->next = txbuf_item_last;
2337 		txbuf_item_last = txbuf_item;
2338 		txbuf++;
2339 		txbuf_item++;
2340 	}
2341 	txbuf_item = srp->txbuf_head + array*BGE_SEND_BUF_NUM;
2342 	txbuf_item_rtn = txbuf_item;
2343 	txbuf_item++;
2344 	txbuf_queue = srp->txbuf_pop_queue;
2345 	mutex_enter(txbuf_queue->lock);
2346 	txbuf_item->next = txbuf_queue->head;
2347 	txbuf_queue->head = txbuf_item_last;
2348 	txbuf_queue->count += BGE_SEND_BUF_NUM - 1;
2349 	mutex_exit(txbuf_queue->lock);
2350 
2351 	srp->tx_array++;
2352 	srp->tx_buffers += BGE_SEND_BUF_NUM;
2353 	srp->tx_buffers_low = srp->tx_buffers / 4;
2354 
2355 	return (txbuf_item_rtn);
2356 }
2357 
2358 /*
2359  * This function allocates all the transmit and receive buffers
2360  * and descriptors, in four chunks.
2361  */
2362 int
2363 bge_alloc_bufs(bge_t *bgep)
2364 {
2365 	dma_area_t area;
2366 	size_t rxbuffsize;
2367 	size_t txbuffsize;
2368 	size_t rxbuffdescsize;
2369 	size_t rxdescsize;
2370 	size_t txdescsize;
2371 	uint32_t ring;
2372 	uint32_t rx_rings = bgep->chipid.rx_rings;
2373 	uint32_t tx_rings = bgep->chipid.tx_rings;
2374 	int split;
2375 	int err;
2376 
2377 	BGE_TRACE(("bge_alloc_bufs($%p)",
2378 	    (void *)bgep));
2379 
2380 	rxbuffsize = BGE_STD_SLOTS_USED*bgep->chipid.std_buf_size;
2381 	rxbuffsize += bgep->chipid.jumbo_slots*bgep->chipid.recv_jumbo_size;
2382 	rxbuffsize += BGE_MINI_SLOTS_USED*BGE_MINI_BUFF_SIZE;
2383 
2384 	txbuffsize = BGE_SEND_BUF_NUM*bgep->chipid.snd_buff_size;
2385 	txbuffsize *= tx_rings;
2386 
2387 	rxdescsize = rx_rings*bgep->chipid.recv_slots;
2388 	rxdescsize *= sizeof (bge_rbd_t);
2389 
2390 	rxbuffdescsize = BGE_STD_SLOTS_USED;
2391 	rxbuffdescsize += bgep->chipid.jumbo_slots;
2392 	rxbuffdescsize += BGE_MINI_SLOTS_USED;
2393 	rxbuffdescsize *= sizeof (bge_rbd_t);
2394 
2395 	txdescsize = tx_rings*BGE_SEND_SLOTS_USED;
2396 	txdescsize *= sizeof (bge_sbd_t);
2397 	txdescsize += sizeof (bge_statistics_t);
2398 	txdescsize += sizeof (bge_status_t);
2399 	txdescsize += BGE_STATUS_PADDING;
2400 
2401 	/*
2402 	 * Enable PCI relaxed ordering only for RX/TX data buffers
2403 	 */
2404 	if (bge_relaxed_ordering)
2405 		dma_attr.dma_attr_flags |= DDI_DMA_RELAXED_ORDERING;
2406 
2407 	/*
2408 	 * Allocate memory & handles for RX buffers
2409 	 */
2410 	ASSERT((rxbuffsize % BGE_SPLIT) == 0);
2411 	for (split = 0; split < BGE_SPLIT; ++split) {
2412 		err = bge_alloc_dma_mem(bgep, rxbuffsize/BGE_SPLIT,
2413 		    &bge_data_accattr, DDI_DMA_READ | BGE_DMA_MODE,
2414 		    &bgep->rx_buff[split]);
2415 		if (err != DDI_SUCCESS)
2416 			return (DDI_FAILURE);
2417 	}
2418 
2419 	/*
2420 	 * Allocate memory & handles for TX buffers
2421 	 */
2422 	ASSERT((txbuffsize % BGE_SPLIT) == 0);
2423 	for (split = 0; split < BGE_SPLIT; ++split) {
2424 		err = bge_alloc_dma_mem(bgep, txbuffsize/BGE_SPLIT,
2425 		    &bge_data_accattr, DDI_DMA_WRITE | BGE_DMA_MODE,
2426 		    &bgep->tx_buff[split]);
2427 		if (err != DDI_SUCCESS)
2428 			return (DDI_FAILURE);
2429 	}
2430 
2431 	dma_attr.dma_attr_flags &= ~DDI_DMA_RELAXED_ORDERING;
2432 
2433 	/*
2434 	 * Allocate memory & handles for receive return rings
2435 	 */
2436 	ASSERT((rxdescsize % rx_rings) == 0);
2437 	for (split = 0; split < rx_rings; ++split) {
2438 		err = bge_alloc_dma_mem(bgep, rxdescsize/rx_rings,
2439 		    &bge_desc_accattr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
2440 		    &bgep->rx_desc[split]);
2441 		if (err != DDI_SUCCESS)
2442 			return (DDI_FAILURE);
2443 	}
2444 
2445 	/*
2446 	 * Allocate memory & handles for buffer (producer) descriptor rings
2447 	 */
2448 	err = bge_alloc_dma_mem(bgep, rxbuffdescsize, &bge_desc_accattr,
2449 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->rx_desc[split]);
2450 	if (err != DDI_SUCCESS)
2451 		return (DDI_FAILURE);
2452 
2453 	/*
2454 	 * Allocate memory & handles for TX descriptor rings,
2455 	 * status block, and statistics area
2456 	 */
2457 	err = bge_alloc_dma_mem(bgep, txdescsize, &bge_desc_accattr,
2458 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->tx_desc);
2459 	if (err != DDI_SUCCESS)
2460 		return (DDI_FAILURE);
2461 
2462 	/*
2463 	 * Now carve up each of the allocated areas ...
2464 	 */
2465 	for (split = 0; split < BGE_SPLIT; ++split) {
2466 		area = bgep->rx_buff[split];
2467 		bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].buf[split],
2468 		    &area, BGE_STD_SLOTS_USED/BGE_SPLIT,
2469 		    bgep->chipid.std_buf_size);
2470 		bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].buf[split],
2471 		    &area, bgep->chipid.jumbo_slots/BGE_SPLIT,
2472 		    bgep->chipid.recv_jumbo_size);
2473 		bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].buf[split],
2474 		    &area, BGE_MINI_SLOTS_USED/BGE_SPLIT,
2475 		    BGE_MINI_BUFF_SIZE);
2476 		ASSERT(area.alength >= 0);
2477 	}
2478 
2479 	for (split = 0; split < BGE_SPLIT; ++split) {
2480 		area = bgep->tx_buff[split];
2481 		for (ring = 0; ring < tx_rings; ++ring)
2482 			bge_slice_chunk(&bgep->send[ring].buf[0][split],
2483 			    &area, BGE_SEND_BUF_NUM/BGE_SPLIT,
2484 			    bgep->chipid.snd_buff_size);
2485 		for (; ring < BGE_SEND_RINGS_MAX; ++ring)
2486 			bge_slice_chunk(&bgep->send[ring].buf[0][split],
2487 			    &area, 0, bgep->chipid.snd_buff_size);
2488 		ASSERT(area.alength >= 0);
2489 	}
2490 
2491 	for (ring = 0; ring < rx_rings; ++ring)
2492 		bge_slice_chunk(&bgep->recv[ring].desc, &bgep->rx_desc[ring],
2493 		    bgep->chipid.recv_slots, sizeof (bge_rbd_t));
2494 
2495 	area = bgep->rx_desc[rx_rings];
2496 	for (; ring < BGE_RECV_RINGS_MAX; ++ring)
2497 		bge_slice_chunk(&bgep->recv[ring].desc, &area,
2498 		    0, sizeof (bge_rbd_t));
2499 	bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].desc, &area,
2500 	    BGE_STD_SLOTS_USED, sizeof (bge_rbd_t));
2501 	bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].desc, &area,
2502 	    bgep->chipid.jumbo_slots, sizeof (bge_rbd_t));
2503 	bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].desc, &area,
2504 	    BGE_MINI_SLOTS_USED, sizeof (bge_rbd_t));
2505 	ASSERT(area.alength == 0);
2506 
2507 	area = bgep->tx_desc;
2508 	for (ring = 0; ring < tx_rings; ++ring)
2509 		bge_slice_chunk(&bgep->send[ring].desc, &area,
2510 		    BGE_SEND_SLOTS_USED, sizeof (bge_sbd_t));
2511 	for (; ring < BGE_SEND_RINGS_MAX; ++ring)
2512 		bge_slice_chunk(&bgep->send[ring].desc, &area,
2513 		    0, sizeof (bge_sbd_t));
2514 	bge_slice_chunk(&bgep->statistics, &area, 1, sizeof (bge_statistics_t));
2515 	bge_slice_chunk(&bgep->status_block, &area, 1, sizeof (bge_status_t));
2516 	ASSERT(area.alength == BGE_STATUS_PADDING);
2517 	DMA_ZERO(bgep->status_block);
2518 
2519 	return (DDI_SUCCESS);
2520 }
2521 
2522 /*
2523  * This routine frees the transmit and receive buffers and descriptors.
2524  * Make sure the chip is stopped before calling it!
2525  */
2526 void
2527 bge_free_bufs(bge_t *bgep)
2528 {
2529 	int split;
2530 
2531 	BGE_TRACE(("bge_free_bufs($%p)",
2532 	    (void *)bgep));
2533 
2534 	bge_free_dma_mem(&bgep->tx_desc);
2535 	for (split = 0; split < BGE_RECV_RINGS_SPLIT; ++split)
2536 		bge_free_dma_mem(&bgep->rx_desc[split]);
2537 	for (split = 0; split < BGE_SPLIT; ++split)
2538 		bge_free_dma_mem(&bgep->tx_buff[split]);
2539 	for (split = 0; split < BGE_SPLIT; ++split)
2540 		bge_free_dma_mem(&bgep->rx_buff[split]);
2541 }
2542 
2543 /*
2544  * Determine (initial) MAC address ("BIA") to use for this interface
2545  */
2546 
2547 static void
2548 bge_find_mac_address(bge_t *bgep, chip_id_t *cidp)
2549 {
2550 	struct ether_addr sysaddr;
2551 	char propbuf[8];		/* "true" or "false", plus NUL	*/
2552 	uchar_t *bytes;
2553 	int *ints;
2554 	uint_t nelts;
2555 	int err;
2556 
2557 	BGE_TRACE(("bge_find_mac_address($%p)",
2558 	    (void *)bgep));
2559 
2560 	BGE_DEBUG(("bge_find_mac_address: hw_mac_addr %012llx, => %s (%sset)",
2561 	    cidp->hw_mac_addr,
2562 	    ether_sprintf((void *)cidp->vendor_addr.addr),
2563 	    cidp->vendor_addr.set ? "" : "not "));
2564 
2565 	/*
2566 	 * The "vendor's factory-set address" may already have
2567 	 * been extracted from the chip, but if the property
2568 	 * "local-mac-address" is set we use that instead.  It
2569 	 * will normally be set by OBP, but it could also be
2570 	 * specified in a .conf file(!)
2571 	 *
2572 	 * There doesn't seem to be a way to define byte-array
2573 	 * properties in a .conf, so we check whether it looks
2574 	 * like an array of 6 ints instead.
2575 	 *
2576 	 * Then, we check whether it looks like an array of 6
2577 	 * bytes (which it should, if OBP set it).  If we can't
2578 	 * make sense of it either way, we'll ignore it.
2579 	 */
2580 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
2581 	    DDI_PROP_DONTPASS, localmac_propname, &ints, &nelts);
2582 	if (err == DDI_PROP_SUCCESS) {
2583 		if (nelts == ETHERADDRL) {
2584 			while (nelts--)
2585 				cidp->vendor_addr.addr[nelts] = ints[nelts];
2586 			cidp->vendor_addr.set = B_TRUE;
2587 		}
2588 		ddi_prop_free(ints);
2589 	}
2590 
2591 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo,
2592 	    DDI_PROP_DONTPASS, localmac_propname, &bytes, &nelts);
2593 	if (err == DDI_PROP_SUCCESS) {
2594 		if (nelts == ETHERADDRL) {
2595 			while (nelts--)
2596 				cidp->vendor_addr.addr[nelts] = bytes[nelts];
2597 			cidp->vendor_addr.set = B_TRUE;
2598 		}
2599 		ddi_prop_free(bytes);
2600 	}
2601 
2602 	BGE_DEBUG(("bge_find_mac_address: +local %s (%sset)",
2603 	    ether_sprintf((void *)cidp->vendor_addr.addr),
2604 	    cidp->vendor_addr.set ? "" : "not "));
2605 
2606 	/*
2607 	 * Look up the OBP property "local-mac-address?".  Note that even
2608 	 * though its value is a string (which should be "true" or "false"),
2609 	 * it can't be decoded by ddi_prop_lookup_string(9F).  So, we zero
2610 	 * the buffer first and then fetch the property as an untyped array;
2611 	 * this may or may not include a final NUL, but since there will
2612 	 * always be one left at the end of the buffer we can now treat it
2613 	 * as a string anyway.
2614 	 */
2615 	nelts = sizeof (propbuf);
2616 	bzero(propbuf, nelts--);
2617 	err = ddi_getlongprop_buf(DDI_DEV_T_ANY, bgep->devinfo,
2618 	    DDI_PROP_CANSLEEP, localmac_boolname, propbuf, (int *)&nelts);
2619 
2620 	/*
2621 	 * Now, if the address still isn't set from the hardware (SEEPROM)
2622 	 * or the OBP or .conf property, OR if the user has foolishly set
2623 	 * 'local-mac-address? = false', use "the system address" instead
2624 	 * (but only if it's non-null i.e. has been set from the IDPROM).
2625 	 */
2626 	if (cidp->vendor_addr.set == B_FALSE || strcmp(propbuf, "false") == 0)
2627 		if (localetheraddr(NULL, &sysaddr) != 0) {
2628 			ethaddr_copy(&sysaddr, cidp->vendor_addr.addr);
2629 			cidp->vendor_addr.set = B_TRUE;
2630 		}
2631 
2632 	BGE_DEBUG(("bge_find_mac_address: +system %s (%sset)",
2633 	    ether_sprintf((void *)cidp->vendor_addr.addr),
2634 	    cidp->vendor_addr.set ? "" : "not "));
2635 
2636 	/*
2637 	 * Finally(!), if there's a valid "mac-address" property (created
2638 	 * if we netbooted from this interface), we must use this instead
2639 	 * of any of the above to ensure that the NFS/install server doesn't
2640 	 * get confused by the address changing as Solaris takes over!
2641 	 */
2642 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo,
2643 	    DDI_PROP_DONTPASS, macaddr_propname, &bytes, &nelts);
2644 	if (err == DDI_PROP_SUCCESS) {
2645 		if (nelts == ETHERADDRL) {
2646 			while (nelts--)
2647 				cidp->vendor_addr.addr[nelts] = bytes[nelts];
2648 			cidp->vendor_addr.set = B_TRUE;
2649 		}
2650 		ddi_prop_free(bytes);
2651 	}
2652 
2653 	BGE_DEBUG(("bge_find_mac_address: =final %s (%sset)",
2654 	    ether_sprintf((void *)cidp->vendor_addr.addr),
2655 	    cidp->vendor_addr.set ? "" : "not "));
2656 }
2657 
2658 
2659 /*ARGSUSED*/
2660 int
2661 bge_check_acc_handle(bge_t *bgep, ddi_acc_handle_t handle)
2662 {
2663 	ddi_fm_error_t de;
2664 
2665 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
2666 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
2667 	return (de.fme_status);
2668 }
2669 
2670 /*ARGSUSED*/
2671 int
2672 bge_check_dma_handle(bge_t *bgep, ddi_dma_handle_t handle)
2673 {
2674 	ddi_fm_error_t de;
2675 
2676 	ASSERT(bgep->progress & PROGRESS_BUFS);
2677 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
2678 	return (de.fme_status);
2679 }
2680 
2681 /*
2682  * The IO fault service error handling callback function
2683  */
2684 /*ARGSUSED*/
2685 static int
2686 bge_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
2687 {
2688 	/*
2689 	 * as the driver can always deal with an error in any dma or
2690 	 * access handle, we can just return the fme_status value.
2691 	 */
2692 	pci_ereport_post(dip, err, NULL);
2693 	return (err->fme_status);
2694 }
2695 
2696 static void
2697 bge_fm_init(bge_t *bgep)
2698 {
2699 	ddi_iblock_cookie_t iblk;
2700 
2701 	/* Only register with IO Fault Services if we have some capability */
2702 	if (bgep->fm_capabilities) {
2703 		bge_reg_accattr.devacc_attr_access = DDI_FLAGERR_ACC;
2704 		bge_desc_accattr.devacc_attr_access = DDI_FLAGERR_ACC;
2705 		dma_attr.dma_attr_flags = DDI_DMA_FLAGERR;
2706 
2707 		/* Register capabilities with IO Fault Services */
2708 		ddi_fm_init(bgep->devinfo, &bgep->fm_capabilities, &iblk);
2709 
2710 		/*
2711 		 * Initialize pci ereport capabilities if ereport capable
2712 		 */
2713 		if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) ||
2714 		    DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2715 			pci_ereport_setup(bgep->devinfo);
2716 
2717 		/*
2718 		 * Register error callback if error callback capable
2719 		 */
2720 		if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2721 			ddi_fm_handler_register(bgep->devinfo,
2722 			    bge_fm_error_cb, (void*) bgep);
2723 	} else {
2724 		/*
2725 		 * These fields have to be cleared of FMA if there are no
2726 		 * FMA capabilities at runtime.
2727 		 */
2728 		bge_reg_accattr.devacc_attr_access = DDI_DEFAULT_ACC;
2729 		bge_desc_accattr.devacc_attr_access = DDI_DEFAULT_ACC;
2730 		dma_attr.dma_attr_flags = 0;
2731 	}
2732 }
2733 
2734 static void
2735 bge_fm_fini(bge_t *bgep)
2736 {
2737 	/* Only unregister FMA capabilities if we registered some */
2738 	if (bgep->fm_capabilities) {
2739 
2740 		/*
2741 		 * Release any resources allocated by pci_ereport_setup()
2742 		 */
2743 		if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) ||
2744 		    DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2745 			pci_ereport_teardown(bgep->devinfo);
2746 
2747 		/*
2748 		 * Un-register error callback if error callback capable
2749 		 */
2750 		if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2751 			ddi_fm_handler_unregister(bgep->devinfo);
2752 
2753 		/* Unregister from IO Fault Services */
2754 		ddi_fm_fini(bgep->devinfo);
2755 	}
2756 }
2757 
2758 static void
2759 #ifdef BGE_IPMI_ASF
2760 bge_unattach(bge_t *bgep, uint_t asf_mode)
2761 #else
2762 bge_unattach(bge_t *bgep)
2763 #endif
2764 {
2765 	BGE_TRACE(("bge_unattach($%p)",
2766 		(void *)bgep));
2767 
2768 	/*
2769 	 * Flag that no more activity may be initiated
2770 	 */
2771 	bgep->progress &= ~PROGRESS_READY;
2772 
2773 	/*
2774 	 * Quiesce the PHY and MAC (leave it reset but still powered).
2775 	 * Clean up and free all BGE data structures
2776 	 */
2777 	if (bgep->periodic_id != NULL) {
2778 		ddi_periodic_delete(bgep->periodic_id);
2779 		bgep->periodic_id = NULL;
2780 	}
2781 	if (bgep->progress & PROGRESS_KSTATS)
2782 		bge_fini_kstats(bgep);
2783 	if (bgep->progress & PROGRESS_NDD)
2784 		bge_nd_cleanup(bgep);
2785 	if (bgep->progress & PROGRESS_PHY)
2786 		bge_phys_reset(bgep);
2787 	if (bgep->progress & PROGRESS_HWINT) {
2788 		mutex_enter(bgep->genlock);
2789 #ifdef BGE_IPMI_ASF
2790 		if (bge_chip_reset(bgep, B_FALSE, asf_mode) != DDI_SUCCESS)
2791 #else
2792 		if (bge_chip_reset(bgep, B_FALSE) != DDI_SUCCESS)
2793 #endif
2794 			ddi_fm_service_impact(bgep->devinfo,
2795 			    DDI_SERVICE_UNAFFECTED);
2796 #ifdef BGE_IPMI_ASF
2797 		if (bgep->asf_enabled) {
2798 			/*
2799 			 * This register has been overlaid. We restore its
2800 			 * initial value here.
2801 			 */
2802 			bge_nic_put32(bgep, BGE_NIC_DATA_SIG_ADDR,
2803 			    BGE_NIC_DATA_SIG);
2804 		}
2805 #endif
2806 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
2807 			ddi_fm_service_impact(bgep->devinfo,
2808 			    DDI_SERVICE_UNAFFECTED);
2809 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
2810 			ddi_fm_service_impact(bgep->devinfo,
2811 			    DDI_SERVICE_UNAFFECTED);
2812 		mutex_exit(bgep->genlock);
2813 	}
2814 	if (bgep->progress & PROGRESS_INTR) {
2815 		bge_intr_disable(bgep);
2816 		bge_fini_rings(bgep);
2817 	}
2818 	if (bgep->progress & PROGRESS_HWINT) {
2819 		bge_rem_intrs(bgep);
2820 		rw_destroy(bgep->errlock);
2821 		mutex_destroy(bgep->softintrlock);
2822 		mutex_destroy(bgep->genlock);
2823 	}
2824 	if (bgep->progress & PROGRESS_FACTOTUM)
2825 		ddi_remove_softintr(bgep->factotum_id);
2826 	if (bgep->progress & PROGRESS_RESCHED)
2827 		ddi_remove_softintr(bgep->drain_id);
2828 	if (bgep->progress & PROGRESS_BUFS)
2829 		bge_free_bufs(bgep);
2830 	if (bgep->progress & PROGRESS_REGS)
2831 		ddi_regs_map_free(&bgep->io_handle);
2832 	if (bgep->progress & PROGRESS_CFG)
2833 		pci_config_teardown(&bgep->cfg_handle);
2834 
2835 	bge_fm_fini(bgep);
2836 
2837 	ddi_remove_minor_node(bgep->devinfo, NULL);
2838 	kmem_free(bgep->pstats, sizeof (bge_statistics_reg_t));
2839 	kmem_free(bgep->nd_params, PARAM_COUNT * sizeof (nd_param_t));
2840 	kmem_free(bgep, sizeof (*bgep));
2841 }
2842 
2843 static int
2844 bge_resume(dev_info_t *devinfo)
2845 {
2846 	bge_t *bgep;				/* Our private data	*/
2847 	chip_id_t *cidp;
2848 	chip_id_t chipid;
2849 
2850 	bgep = ddi_get_driver_private(devinfo);
2851 	if (bgep == NULL)
2852 		return (DDI_FAILURE);
2853 
2854 	/*
2855 	 * Refuse to resume if the data structures aren't consistent
2856 	 */
2857 	if (bgep->devinfo != devinfo)
2858 		return (DDI_FAILURE);
2859 
2860 #ifdef BGE_IPMI_ASF
2861 	/*
2862 	 * Power management hasn't been supported in BGE now. If you
2863 	 * want to implement it, please add the ASF/IPMI related
2864 	 * code here.
2865 	 */
2866 
2867 #endif
2868 
2869 	/*
2870 	 * Read chip ID & set up config space command register(s)
2871 	 * Refuse to resume if the chip has changed its identity!
2872 	 */
2873 	cidp = &bgep->chipid;
2874 	mutex_enter(bgep->genlock);
2875 	bge_chip_cfg_init(bgep, &chipid, B_FALSE);
2876 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
2877 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2878 		mutex_exit(bgep->genlock);
2879 		return (DDI_FAILURE);
2880 	}
2881 	mutex_exit(bgep->genlock);
2882 	if (chipid.vendor != cidp->vendor)
2883 		return (DDI_FAILURE);
2884 	if (chipid.device != cidp->device)
2885 		return (DDI_FAILURE);
2886 	if (chipid.revision != cidp->revision)
2887 		return (DDI_FAILURE);
2888 	if (chipid.asic_rev != cidp->asic_rev)
2889 		return (DDI_FAILURE);
2890 
2891 	/*
2892 	 * All OK, reinitialise h/w & kick off GLD scheduling
2893 	 */
2894 	mutex_enter(bgep->genlock);
2895 	if (bge_restart(bgep, B_TRUE) != DDI_SUCCESS) {
2896 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
2897 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
2898 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2899 		mutex_exit(bgep->genlock);
2900 		return (DDI_FAILURE);
2901 	}
2902 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
2903 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2904 		mutex_exit(bgep->genlock);
2905 		return (DDI_FAILURE);
2906 	}
2907 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
2908 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2909 		mutex_exit(bgep->genlock);
2910 		return (DDI_FAILURE);
2911 	}
2912 	mutex_exit(bgep->genlock);
2913 	return (DDI_SUCCESS);
2914 }
2915 
2916 /*
2917  * attach(9E) -- Attach a device to the system
2918  *
2919  * Called once for each board successfully probed.
2920  */
2921 static int
2922 bge_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
2923 {
2924 	bge_t *bgep;				/* Our private data	*/
2925 	mac_register_t *macp;
2926 	chip_id_t *cidp;
2927 	caddr_t regs;
2928 	int instance;
2929 	int err;
2930 	int intr_types;
2931 #ifdef BGE_IPMI_ASF
2932 	uint32_t mhcrValue;
2933 #ifdef __sparc
2934 	uint16_t value16;
2935 #endif
2936 #ifdef BGE_NETCONSOLE
2937 	int retval;
2938 #endif
2939 #endif
2940 
2941 	instance = ddi_get_instance(devinfo);
2942 
2943 	BGE_GTRACE(("bge_attach($%p, %d) instance %d",
2944 	    (void *)devinfo, cmd, instance));
2945 	BGE_BRKPT(NULL, "bge_attach");
2946 
2947 	switch (cmd) {
2948 	default:
2949 		return (DDI_FAILURE);
2950 
2951 	case DDI_RESUME:
2952 		return (bge_resume(devinfo));
2953 
2954 	case DDI_ATTACH:
2955 		break;
2956 	}
2957 
2958 	bgep = kmem_zalloc(sizeof (*bgep), KM_SLEEP);
2959 	bgep->pstats = kmem_zalloc(sizeof (bge_statistics_reg_t), KM_SLEEP);
2960 	bgep->nd_params =
2961 	    kmem_zalloc(PARAM_COUNT * sizeof (nd_param_t), KM_SLEEP);
2962 	ddi_set_driver_private(devinfo, bgep);
2963 	bgep->bge_guard = BGE_GUARD;
2964 	bgep->devinfo = devinfo;
2965 	bgep->param_drain_max = 64;
2966 	bgep->param_msi_cnt = 0;
2967 	bgep->param_loop_mode = 0;
2968 
2969 	/*
2970 	 * Initialize more fields in BGE private data
2971 	 */
2972 	bgep->debug = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
2973 	    DDI_PROP_DONTPASS, debug_propname, bge_debug);
2974 	(void) snprintf(bgep->ifname, sizeof (bgep->ifname), "%s%d",
2975 	    BGE_DRIVER_NAME, instance);
2976 
2977 	/*
2978 	 * Initialize for fma support
2979 	 */
2980 	bgep->fm_capabilities = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
2981 	    DDI_PROP_DONTPASS, fm_cap,
2982 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
2983 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
2984 	BGE_DEBUG(("bgep->fm_capabilities = %d", bgep->fm_capabilities));
2985 	bge_fm_init(bgep);
2986 
2987 	/*
2988 	 * Look up the IOMMU's page size for DVMA mappings (must be
2989 	 * a power of 2) and convert to a mask.  This can be used to
2990 	 * determine whether a message buffer crosses a page boundary.
2991 	 * Note: in 2s complement binary notation, if X is a power of
2992 	 * 2, then -X has the representation "11...1100...00".
2993 	 */
2994 	bgep->pagemask = dvma_pagesize(devinfo);
2995 	ASSERT(ddi_ffs(bgep->pagemask) == ddi_fls(bgep->pagemask));
2996 	bgep->pagemask = -bgep->pagemask;
2997 
2998 	/*
2999 	 * Map config space registers
3000 	 * Read chip ID & set up config space command register(s)
3001 	 *
3002 	 * Note: this leaves the chip accessible by Memory Space
3003 	 * accesses, but with interrupts and Bus Mastering off.
3004 	 * This should ensure that nothing untoward will happen
3005 	 * if it has been left active by the (net-)bootloader.
3006 	 * We'll re-enable Bus Mastering once we've reset the chip,
3007 	 * and allow interrupts only when everything else is set up.
3008 	 */
3009 	err = pci_config_setup(devinfo, &bgep->cfg_handle);
3010 #ifdef BGE_IPMI_ASF
3011 #ifdef __sparc
3012 	value16 = pci_config_get16(bgep->cfg_handle, PCI_CONF_COMM);
3013 	value16 = value16 | (PCI_COMM_MAE | PCI_COMM_ME);
3014 	pci_config_put16(bgep->cfg_handle, PCI_CONF_COMM, value16);
3015 	mhcrValue = MHCR_ENABLE_INDIRECT_ACCESS |
3016 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
3017 	    MHCR_MASK_INTERRUPT_MODE |
3018 	    MHCR_MASK_PCI_INT_OUTPUT |
3019 	    MHCR_CLEAR_INTERRUPT_INTA |
3020 	    MHCR_ENABLE_ENDIAN_WORD_SWAP |
3021 	    MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3022 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcrValue);
3023 	bge_ind_put32(bgep, MEMORY_ARBITER_MODE_REG,
3024 	    bge_ind_get32(bgep, MEMORY_ARBITER_MODE_REG) |
3025 	    MEMORY_ARBITER_ENABLE);
3026 #else
3027 	mhcrValue = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MHCR);
3028 #endif
3029 	if (mhcrValue & MHCR_ENABLE_ENDIAN_WORD_SWAP) {
3030 		bgep->asf_wordswapped = B_TRUE;
3031 	} else {
3032 		bgep->asf_wordswapped = B_FALSE;
3033 	}
3034 	bge_asf_get_config(bgep);
3035 #endif
3036 	if (err != DDI_SUCCESS) {
3037 		bge_problem(bgep, "pci_config_setup() failed");
3038 		goto attach_fail;
3039 	}
3040 	bgep->progress |= PROGRESS_CFG;
3041 	cidp = &bgep->chipid;
3042 	bzero(cidp, sizeof (*cidp));
3043 	bge_chip_cfg_init(bgep, cidp, B_FALSE);
3044 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
3045 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3046 		goto attach_fail;
3047 	}
3048 
3049 #ifdef BGE_IPMI_ASF
3050 	if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
3051 	    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
3052 		bgep->asf_newhandshake = B_TRUE;
3053 	} else {
3054 		bgep->asf_newhandshake = B_FALSE;
3055 	}
3056 #endif
3057 
3058 	/*
3059 	 * Update those parts of the chip ID derived from volatile
3060 	 * registers with the values seen by OBP (in case the chip
3061 	 * has been reset externally and therefore lost them).
3062 	 */
3063 	cidp->subven = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3064 	    DDI_PROP_DONTPASS, subven_propname, cidp->subven);
3065 	cidp->subdev = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3066 	    DDI_PROP_DONTPASS, subdev_propname, cidp->subdev);
3067 	cidp->clsize = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3068 	    DDI_PROP_DONTPASS, clsize_propname, cidp->clsize);
3069 	cidp->latency = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3070 	    DDI_PROP_DONTPASS, latency_propname, cidp->latency);
3071 	cidp->rx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3072 	    DDI_PROP_DONTPASS, rxrings_propname, cidp->rx_rings);
3073 	cidp->tx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3074 	    DDI_PROP_DONTPASS, txrings_propname, cidp->tx_rings);
3075 
3076 	if (bge_jumbo_enable == B_TRUE) {
3077 		cidp->default_mtu = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3078 		    DDI_PROP_DONTPASS, default_mtu, BGE_DEFAULT_MTU);
3079 		if ((cidp->default_mtu < BGE_DEFAULT_MTU)||
3080 		    (cidp->default_mtu > BGE_MAXIMUM_MTU)) {
3081 			cidp->default_mtu = BGE_DEFAULT_MTU;
3082 		}
3083 	}
3084 	/*
3085 	 * Map operating registers
3086 	 */
3087 	err = ddi_regs_map_setup(devinfo, BGE_PCI_OPREGS_RNUMBER,
3088 	    &regs, 0, 0, &bge_reg_accattr, &bgep->io_handle);
3089 	if (err != DDI_SUCCESS) {
3090 		bge_problem(bgep, "ddi_regs_map_setup() failed");
3091 		goto attach_fail;
3092 	}
3093 	bgep->io_regs = regs;
3094 	bgep->progress |= PROGRESS_REGS;
3095 
3096 	/*
3097 	 * Characterise the device, so we know its requirements.
3098 	 * Then allocate the appropriate TX and RX descriptors & buffers.
3099 	 */
3100 	if (bge_chip_id_init(bgep) == EIO) {
3101 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3102 		goto attach_fail;
3103 	}
3104 	err = bge_alloc_bufs(bgep);
3105 	if (err != DDI_SUCCESS) {
3106 		bge_problem(bgep, "DMA buffer allocation failed");
3107 		goto attach_fail;
3108 	}
3109 	bgep->progress |= PROGRESS_BUFS;
3110 
3111 	/*
3112 	 * Add the softint handlers:
3113 	 *
3114 	 * Both of these handlers are used to avoid restrictions on the
3115 	 * context and/or mutexes required for some operations.  In
3116 	 * particular, the hardware interrupt handler and its subfunctions
3117 	 * can detect a number of conditions that we don't want to handle
3118 	 * in that context or with that set of mutexes held.  So, these
3119 	 * softints are triggered instead:
3120 	 *
3121 	 * the <resched> softint is triggered if we have previously
3122 	 * had to refuse to send a packet because of resource shortage
3123 	 * (we've run out of transmit buffers), but the send completion
3124 	 * interrupt handler has now detected that more buffers have
3125 	 * become available.
3126 	 *
3127 	 * the <factotum> is triggered if the h/w interrupt handler
3128 	 * sees the <link state changed> or <error> bits in the status
3129 	 * block.  It's also triggered periodically to poll the link
3130 	 * state, just in case we aren't getting link status change
3131 	 * interrupts ...
3132 	 */
3133 	err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->drain_id,
3134 	    NULL, NULL, bge_send_drain, (caddr_t)bgep);
3135 	if (err != DDI_SUCCESS) {
3136 		bge_problem(bgep, "ddi_add_softintr() failed");
3137 		goto attach_fail;
3138 	}
3139 	bgep->progress |= PROGRESS_RESCHED;
3140 	err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->factotum_id,
3141 	    NULL, NULL, bge_chip_factotum, (caddr_t)bgep);
3142 	if (err != DDI_SUCCESS) {
3143 		bge_problem(bgep, "ddi_add_softintr() failed");
3144 		goto attach_fail;
3145 	}
3146 	bgep->progress |= PROGRESS_FACTOTUM;
3147 
3148 	/* Get supported interrupt types */
3149 	if (ddi_intr_get_supported_types(devinfo, &intr_types) != DDI_SUCCESS) {
3150 		bge_error(bgep, "ddi_intr_get_supported_types failed\n");
3151 
3152 		goto attach_fail;
3153 	}
3154 
3155 	BGE_DEBUG(("%s: ddi_intr_get_supported_types() returned: %x",
3156 	    bgep->ifname, intr_types));
3157 
3158 	if ((intr_types & DDI_INTR_TYPE_MSI) && bgep->chipid.msi_enabled) {
3159 		if (bge_add_intrs(bgep, DDI_INTR_TYPE_MSI) != DDI_SUCCESS) {
3160 			bge_error(bgep, "MSI registration failed, "
3161 			    "trying FIXED interrupt type\n");
3162 		} else {
3163 			BGE_DEBUG(("%s: Using MSI interrupt type",
3164 			    bgep->ifname));
3165 			bgep->intr_type = DDI_INTR_TYPE_MSI;
3166 			bgep->progress |= PROGRESS_HWINT;
3167 		}
3168 	}
3169 
3170 	if (!(bgep->progress & PROGRESS_HWINT) &&
3171 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
3172 		if (bge_add_intrs(bgep, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS) {
3173 			bge_error(bgep, "FIXED interrupt "
3174 			    "registration failed\n");
3175 			goto attach_fail;
3176 		}
3177 
3178 		BGE_DEBUG(("%s: Using FIXED interrupt type", bgep->ifname));
3179 
3180 		bgep->intr_type = DDI_INTR_TYPE_FIXED;
3181 		bgep->progress |= PROGRESS_HWINT;
3182 	}
3183 
3184 	if (!(bgep->progress & PROGRESS_HWINT)) {
3185 		bge_error(bgep, "No interrupts registered\n");
3186 		goto attach_fail;
3187 	}
3188 
3189 	/*
3190 	 * Note that interrupts are not enabled yet as
3191 	 * mutex locks are not initialized. Initialize mutex locks.
3192 	 */
3193 	mutex_init(bgep->genlock, NULL, MUTEX_DRIVER,
3194 	    DDI_INTR_PRI(bgep->intr_pri));
3195 	mutex_init(bgep->softintrlock, NULL, MUTEX_DRIVER,
3196 	    DDI_INTR_PRI(bgep->intr_pri));
3197 	rw_init(bgep->errlock, NULL, RW_DRIVER,
3198 	    DDI_INTR_PRI(bgep->intr_pri));
3199 
3200 	/*
3201 	 * Initialize rings.
3202 	 */
3203 	bge_init_rings(bgep);
3204 
3205 	/*
3206 	 * Now that mutex locks are initialized, enable interrupts.
3207 	 */
3208 	bge_intr_enable(bgep);
3209 	bgep->progress |= PROGRESS_INTR;
3210 
3211 	/*
3212 	 * Initialise link state variables
3213 	 * Stop, reset & reinitialise the chip.
3214 	 * Initialise the (internal) PHY.
3215 	 */
3216 	bgep->link_state = LINK_STATE_UNKNOWN;
3217 
3218 	mutex_enter(bgep->genlock);
3219 
3220 	/*
3221 	 * Reset chip & rings to initial state; also reset address
3222 	 * filtering, promiscuity, loopback mode.
3223 	 */
3224 #ifdef BGE_IPMI_ASF
3225 #ifdef BGE_NETCONSOLE
3226 	if (bge_reset(bgep, ASF_MODE_INIT) != DDI_SUCCESS) {
3227 #else
3228 	if (bge_reset(bgep, ASF_MODE_SHUTDOWN) != DDI_SUCCESS) {
3229 #endif
3230 #else
3231 	if (bge_reset(bgep) != DDI_SUCCESS) {
3232 #endif
3233 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
3234 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
3235 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3236 		mutex_exit(bgep->genlock);
3237 		goto attach_fail;
3238 	}
3239 
3240 #ifdef BGE_IPMI_ASF
3241 	if (bgep->asf_enabled) {
3242 		bgep->asf_status = ASF_STAT_RUN_INIT;
3243 	}
3244 #endif
3245 
3246 	bzero(bgep->mcast_hash, sizeof (bgep->mcast_hash));
3247 	bzero(bgep->mcast_refs, sizeof (bgep->mcast_refs));
3248 	bgep->promisc = B_FALSE;
3249 	bgep->param_loop_mode = BGE_LOOP_NONE;
3250 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
3251 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3252 		mutex_exit(bgep->genlock);
3253 		goto attach_fail;
3254 	}
3255 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
3256 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3257 		mutex_exit(bgep->genlock);
3258 		goto attach_fail;
3259 	}
3260 
3261 	mutex_exit(bgep->genlock);
3262 
3263 	if (bge_phys_init(bgep) == EIO) {
3264 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3265 		goto attach_fail;
3266 	}
3267 	bgep->progress |= PROGRESS_PHY;
3268 
3269 	/*
3270 	 * Register NDD-tweakable parameters
3271 	 */
3272 	if (bge_nd_init(bgep)) {
3273 		bge_problem(bgep, "bge_nd_init() failed");
3274 		goto attach_fail;
3275 	}
3276 	bgep->progress |= PROGRESS_NDD;
3277 
3278 	/*
3279 	 * Create & initialise named kstats
3280 	 */
3281 	bge_init_kstats(bgep, instance);
3282 	bgep->progress |= PROGRESS_KSTATS;
3283 
3284 	/*
3285 	 * Determine whether to override the chip's own MAC address
3286 	 */
3287 	bge_find_mac_address(bgep, cidp);
3288 	ethaddr_copy(cidp->vendor_addr.addr, bgep->curr_addr[0].addr);
3289 	bgep->curr_addr[0].set = B_TRUE;
3290 
3291 	bgep->unicst_addr_total = MAC_ADDRESS_REGS_MAX;
3292 	/*
3293 	 * Address available is one less than MAX
3294 	 * as primary address is not advertised
3295 	 * as a multiple MAC address.
3296 	 */
3297 	bgep->unicst_addr_avail = MAC_ADDRESS_REGS_MAX - 1;
3298 
3299 	if ((macp = mac_alloc(MAC_VERSION)) == NULL)
3300 		goto attach_fail;
3301 	macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
3302 	macp->m_driver = bgep;
3303 	macp->m_dip = devinfo;
3304 	macp->m_src_addr = bgep->curr_addr[0].addr;
3305 	macp->m_callbacks = &bge_m_callbacks;
3306 	macp->m_min_sdu = 0;
3307 	macp->m_max_sdu = cidp->ethmax_size - sizeof (struct ether_header);
3308 	macp->m_margin = VLAN_TAGSZ;
3309 	/*
3310 	 * Finally, we're ready to register ourselves with the MAC layer
3311 	 * interface; if this succeeds, we're all ready to start()
3312 	 */
3313 	err = mac_register(macp, &bgep->mh);
3314 	mac_free(macp);
3315 	if (err != 0)
3316 		goto attach_fail;
3317 
3318 	/*
3319 	 * Register a periodical handler.
3320 	 * bge_chip_cyclic() is invoked in kernel context.
3321 	 */
3322 	bgep->periodic_id = ddi_periodic_add(bge_chip_cyclic, bgep,
3323 	    BGE_CYCLIC_PERIOD, DDI_IPL_0);
3324 
3325 	bgep->progress |= PROGRESS_READY;
3326 	ASSERT(bgep->bge_guard == BGE_GUARD);
3327 #ifdef BGE_IPMI_ASF
3328 #ifdef BGE_NETCONSOLE
3329 	if (bgep->asf_enabled) {
3330 		mutex_enter(bgep->genlock);
3331 		retval = bge_chip_start(bgep, B_TRUE);
3332 		mutex_exit(bgep->genlock);
3333 		if (retval != DDI_SUCCESS)
3334 			goto attach_fail;
3335 	}
3336 #endif
3337 #endif
3338 	return (DDI_SUCCESS);
3339 
3340 attach_fail:
3341 #ifdef BGE_IPMI_ASF
3342 	bge_unattach(bgep, ASF_MODE_SHUTDOWN);
3343 #else
3344 	bge_unattach(bgep);
3345 #endif
3346 	return (DDI_FAILURE);
3347 }
3348 
3349 /*
3350  *	bge_suspend() -- suspend transmit/receive for powerdown
3351  */
3352 static int
3353 bge_suspend(bge_t *bgep)
3354 {
3355 	/*
3356 	 * Stop processing and idle (powerdown) the PHY ...
3357 	 */
3358 	mutex_enter(bgep->genlock);
3359 #ifdef BGE_IPMI_ASF
3360 	/*
3361 	 * Power management hasn't been supported in BGE now. If you
3362 	 * want to implement it, please add the ASF/IPMI related
3363 	 * code here.
3364 	 */
3365 #endif
3366 	bge_stop(bgep);
3367 	if (bge_phys_idle(bgep) != DDI_SUCCESS) {
3368 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
3369 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3370 		mutex_exit(bgep->genlock);
3371 		return (DDI_FAILURE);
3372 	}
3373 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
3374 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3375 		mutex_exit(bgep->genlock);
3376 		return (DDI_FAILURE);
3377 	}
3378 	mutex_exit(bgep->genlock);
3379 
3380 	return (DDI_SUCCESS);
3381 }
3382 
3383 /*
3384  * detach(9E) -- Detach a device from the system
3385  */
3386 static int
3387 bge_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
3388 {
3389 	bge_t *bgep;
3390 #ifdef BGE_IPMI_ASF
3391 	uint_t asf_mode;
3392 	asf_mode = ASF_MODE_NONE;
3393 #endif
3394 
3395 	BGE_GTRACE(("bge_detach($%p, %d)", (void *)devinfo, cmd));
3396 
3397 	bgep = ddi_get_driver_private(devinfo);
3398 
3399 	switch (cmd) {
3400 	default:
3401 		return (DDI_FAILURE);
3402 
3403 	case DDI_SUSPEND:
3404 		return (bge_suspend(bgep));
3405 
3406 	case DDI_DETACH:
3407 		break;
3408 	}
3409 
3410 #ifdef BGE_IPMI_ASF
3411 	mutex_enter(bgep->genlock);
3412 	if (bgep->asf_enabled && ((bgep->asf_status == ASF_STAT_RUN) ||
3413 	    (bgep->asf_status == ASF_STAT_RUN_INIT))) {
3414 
3415 		bge_asf_update_status(bgep);
3416 		if (bgep->asf_status == ASF_STAT_RUN) {
3417 			bge_asf_stop_timer(bgep);
3418 		}
3419 		bgep->asf_status = ASF_STAT_STOP;
3420 
3421 		bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
3422 
3423 		if (bgep->asf_pseudostop) {
3424 			bge_chip_stop(bgep, B_FALSE);
3425 			bgep->bge_mac_state = BGE_MAC_STOPPED;
3426 			bgep->asf_pseudostop = B_FALSE;
3427 		}
3428 
3429 		asf_mode = ASF_MODE_POST_SHUTDOWN;
3430 
3431 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
3432 			ddi_fm_service_impact(bgep->devinfo,
3433 			    DDI_SERVICE_UNAFFECTED);
3434 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
3435 			ddi_fm_service_impact(bgep->devinfo,
3436 			    DDI_SERVICE_UNAFFECTED);
3437 	}
3438 	mutex_exit(bgep->genlock);
3439 #endif
3440 
3441 	/*
3442 	 * Unregister from the GLD subsystem.  This can fail, in
3443 	 * particular if there are DLPI style-2 streams still open -
3444 	 * in which case we just return failure without shutting
3445 	 * down chip operations.
3446 	 */
3447 	if (mac_unregister(bgep->mh) != 0)
3448 		return (DDI_FAILURE);
3449 
3450 	/*
3451 	 * All activity stopped, so we can clean up & exit
3452 	 */
3453 #ifdef BGE_IPMI_ASF
3454 	bge_unattach(bgep, asf_mode);
3455 #else
3456 	bge_unattach(bgep);
3457 #endif
3458 	return (DDI_SUCCESS);
3459 }
3460 
3461 
3462 /*
3463  * ========== Module Loading Data & Entry Points ==========
3464  */
3465 
3466 #undef	BGE_DBG
3467 #define	BGE_DBG		BGE_DBG_INIT	/* debug flag for this code	*/
3468 
3469 DDI_DEFINE_STREAM_OPS(bge_dev_ops, nulldev, nulldev, bge_attach, bge_detach,
3470     nodev, NULL, D_MP, NULL);
3471 
3472 static struct modldrv bge_modldrv = {
3473 	&mod_driverops,		/* Type of module.  This one is a driver */
3474 	bge_ident,		/* short description */
3475 	&bge_dev_ops		/* driver specific ops */
3476 };
3477 
3478 static struct modlinkage modlinkage = {
3479 	MODREV_1, (void *)&bge_modldrv, NULL
3480 };
3481 
3482 
3483 int
3484 _info(struct modinfo *modinfop)
3485 {
3486 	return (mod_info(&modlinkage, modinfop));
3487 }
3488 
3489 int
3490 _init(void)
3491 {
3492 	int status;
3493 
3494 	mac_init_ops(&bge_dev_ops, "bge");
3495 	status = mod_install(&modlinkage);
3496 	if (status == DDI_SUCCESS)
3497 		mutex_init(bge_log_mutex, NULL, MUTEX_DRIVER, NULL);
3498 	else
3499 		mac_fini_ops(&bge_dev_ops);
3500 	return (status);
3501 }
3502 
3503 int
3504 _fini(void)
3505 {
3506 	int status;
3507 
3508 	status = mod_remove(&modlinkage);
3509 	if (status == DDI_SUCCESS) {
3510 		mac_fini_ops(&bge_dev_ops);
3511 		mutex_destroy(bge_log_mutex);
3512 	}
3513 	return (status);
3514 }
3515 
3516 
3517 /*
3518  * bge_add_intrs:
3519  *
3520  * Register FIXED or MSI interrupts.
3521  */
3522 static int
3523 bge_add_intrs(bge_t *bgep, int	intr_type)
3524 {
3525 	dev_info_t	*dip = bgep->devinfo;
3526 	int		avail, actual, intr_size, count = 0;
3527 	int		i, flag, ret;
3528 
3529 	BGE_DEBUG(("bge_add_intrs($%p, 0x%x)", (void *)bgep, intr_type));
3530 
3531 	/* Get number of interrupts */
3532 	ret = ddi_intr_get_nintrs(dip, intr_type, &count);
3533 	if ((ret != DDI_SUCCESS) || (count == 0)) {
3534 		bge_error(bgep, "ddi_intr_get_nintrs() failure, ret: %d, "
3535 		    "count: %d", ret, count);
3536 
3537 		return (DDI_FAILURE);
3538 	}
3539 
3540 	/* Get number of available interrupts */
3541 	ret = ddi_intr_get_navail(dip, intr_type, &avail);
3542 	if ((ret != DDI_SUCCESS) || (avail == 0)) {
3543 		bge_error(bgep, "ddi_intr_get_navail() failure, "
3544 		    "ret: %d, avail: %d\n", ret, avail);
3545 
3546 		return (DDI_FAILURE);
3547 	}
3548 
3549 	if (avail < count) {
3550 		BGE_DEBUG(("%s: nintrs() returned %d, navail returned %d",
3551 		    bgep->ifname, count, avail));
3552 	}
3553 
3554 	/*
3555 	 * BGE hardware generates only single MSI even though it claims
3556 	 * to support multiple MSIs. So, hard code MSI count value to 1.
3557 	 */
3558 	if (intr_type == DDI_INTR_TYPE_MSI) {
3559 		count = 1;
3560 		flag = DDI_INTR_ALLOC_STRICT;
3561 	} else {
3562 		flag = DDI_INTR_ALLOC_NORMAL;
3563 	}
3564 
3565 	/* Allocate an array of interrupt handles */
3566 	intr_size = count * sizeof (ddi_intr_handle_t);
3567 	bgep->htable = kmem_alloc(intr_size, KM_SLEEP);
3568 
3569 	/* Call ddi_intr_alloc() */
3570 	ret = ddi_intr_alloc(dip, bgep->htable, intr_type, 0,
3571 	    count, &actual, flag);
3572 
3573 	if ((ret != DDI_SUCCESS) || (actual == 0)) {
3574 		bge_error(bgep, "ddi_intr_alloc() failed %d\n", ret);
3575 
3576 		kmem_free(bgep->htable, intr_size);
3577 		return (DDI_FAILURE);
3578 	}
3579 
3580 	if (actual < count) {
3581 		BGE_DEBUG(("%s: Requested: %d, Received: %d",
3582 		    bgep->ifname, count, actual));
3583 	}
3584 
3585 	bgep->intr_cnt = actual;
3586 
3587 	/*
3588 	 * Get priority for first msi, assume remaining are all the same
3589 	 */
3590 	if ((ret = ddi_intr_get_pri(bgep->htable[0], &bgep->intr_pri)) !=
3591 	    DDI_SUCCESS) {
3592 		bge_error(bgep, "ddi_intr_get_pri() failed %d\n", ret);
3593 
3594 		/* Free already allocated intr */
3595 		for (i = 0; i < actual; i++) {
3596 			(void) ddi_intr_free(bgep->htable[i]);
3597 		}
3598 
3599 		kmem_free(bgep->htable, intr_size);
3600 		return (DDI_FAILURE);
3601 	}
3602 
3603 	/* Call ddi_intr_add_handler() */
3604 	for (i = 0; i < actual; i++) {
3605 		if ((ret = ddi_intr_add_handler(bgep->htable[i], bge_intr,
3606 		    (caddr_t)bgep, (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) {
3607 			bge_error(bgep, "ddi_intr_add_handler() "
3608 			    "failed %d\n", ret);
3609 
3610 			/* Free already allocated intr */
3611 			for (i = 0; i < actual; i++) {
3612 				(void) ddi_intr_free(bgep->htable[i]);
3613 			}
3614 
3615 			kmem_free(bgep->htable, intr_size);
3616 			return (DDI_FAILURE);
3617 		}
3618 	}
3619 
3620 	if ((ret = ddi_intr_get_cap(bgep->htable[0], &bgep->intr_cap))
3621 	    != DDI_SUCCESS) {
3622 		bge_error(bgep, "ddi_intr_get_cap() failed %d\n", ret);
3623 
3624 		for (i = 0; i < actual; i++) {
3625 			(void) ddi_intr_remove_handler(bgep->htable[i]);
3626 			(void) ddi_intr_free(bgep->htable[i]);
3627 		}
3628 
3629 		kmem_free(bgep->htable, intr_size);
3630 		return (DDI_FAILURE);
3631 	}
3632 
3633 	return (DDI_SUCCESS);
3634 }
3635 
3636 /*
3637  * bge_rem_intrs:
3638  *
3639  * Unregister FIXED or MSI interrupts
3640  */
3641 static void
3642 bge_rem_intrs(bge_t *bgep)
3643 {
3644 	int	i;
3645 
3646 	BGE_DEBUG(("bge_rem_intrs($%p)", (void *)bgep));
3647 
3648 	/* Call ddi_intr_remove_handler() */
3649 	for (i = 0; i < bgep->intr_cnt; i++) {
3650 		(void) ddi_intr_remove_handler(bgep->htable[i]);
3651 		(void) ddi_intr_free(bgep->htable[i]);
3652 	}
3653 
3654 	kmem_free(bgep->htable, bgep->intr_cnt * sizeof (ddi_intr_handle_t));
3655 }
3656 
3657 
3658 void
3659 bge_intr_enable(bge_t *bgep)
3660 {
3661 	int i;
3662 
3663 	if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) {
3664 		/* Call ddi_intr_block_enable() for MSI interrupts */
3665 		(void) ddi_intr_block_enable(bgep->htable, bgep->intr_cnt);
3666 	} else {
3667 		/* Call ddi_intr_enable for MSI or FIXED interrupts */
3668 		for (i = 0; i < bgep->intr_cnt; i++) {
3669 			(void) ddi_intr_enable(bgep->htable[i]);
3670 		}
3671 	}
3672 }
3673 
3674 
3675 void
3676 bge_intr_disable(bge_t *bgep)
3677 {
3678 	int i;
3679 
3680 	if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) {
3681 		/* Call ddi_intr_block_disable() */
3682 		(void) ddi_intr_block_disable(bgep->htable, bgep->intr_cnt);
3683 	} else {
3684 		for (i = 0; i < bgep->intr_cnt; i++) {
3685 			(void) ddi_intr_disable(bgep->htable[i]);
3686 		}
3687 	}
3688 }
3689 
3690 int
3691 bge_reprogram(bge_t *bgep)
3692 {
3693 	int status = 0;
3694 
3695 	ASSERT(mutex_owned(bgep->genlock));
3696 
3697 	if (bge_phys_update(bgep) != DDI_SUCCESS) {
3698 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3699 		status = IOC_INVAL;
3700 	}
3701 #ifdef BGE_IPMI_ASF
3702 	if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
3703 #else
3704 	if (bge_chip_sync(bgep) == DDI_FAILURE) {
3705 #endif
3706 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3707 		status = IOC_INVAL;
3708 	}
3709 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3710 		bge_chip_msi_trig(bgep);
3711 	return (status);
3712 }
3713