1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include "sys/bge_impl2.h" 30 #include <sys/sdt.h> 31 32 /* 33 * This is the string displayed by modinfo, etc. 34 * Make sure you keep the version ID up to date! 35 */ 36 static char bge_ident[] = "BCM579x driver v0.48"; 37 38 /* 39 * Property names 40 */ 41 static char debug_propname[] = "bge-debug-flags"; 42 static char clsize_propname[] = "cache-line-size"; 43 static char latency_propname[] = "latency-timer"; 44 static char localmac_boolname[] = "local-mac-address?"; 45 static char localmac_propname[] = "local-mac-address"; 46 static char macaddr_propname[] = "mac-address"; 47 static char subdev_propname[] = "subsystem-id"; 48 static char subven_propname[] = "subsystem-vendor-id"; 49 static char rxrings_propname[] = "bge-rx-rings"; 50 static char txrings_propname[] = "bge-tx-rings"; 51 static char default_mtu[] = "default-mtu"; 52 53 static int bge_add_intrs(bge_t *, int); 54 static void bge_rem_intrs(bge_t *); 55 56 /* 57 * Describes the chip's DMA engine 58 */ 59 static ddi_dma_attr_t dma_attr = { 60 DMA_ATTR_V0, /* dma_attr version */ 61 0x0000000000000000ull, /* dma_attr_addr_lo */ 62 0xFFFFFFFFFFFFFFFFull, /* dma_attr_addr_hi */ 63 0x00000000FFFFFFFFull, /* dma_attr_count_max */ 64 0x0000000000000001ull, /* dma_attr_align */ 65 0x00000FFF, /* dma_attr_burstsizes */ 66 0x00000001, /* dma_attr_minxfer */ 67 0x000000000000FFFFull, /* dma_attr_maxxfer */ 68 0xFFFFFFFFFFFFFFFFull, /* dma_attr_seg */ 69 1, /* dma_attr_sgllen */ 70 0x00000001, /* dma_attr_granular */ 71 0 /* dma_attr_flags */ 72 }; 73 74 /* 75 * PIO access attributes for registers 76 */ 77 static ddi_device_acc_attr_t bge_reg_accattr = { 78 DDI_DEVICE_ATTR_V0, 79 DDI_NEVERSWAP_ACC, 80 DDI_STRICTORDER_ACC 81 }; 82 83 /* 84 * DMA access attributes for descriptors: NOT to be byte swapped. 85 */ 86 static ddi_device_acc_attr_t bge_desc_accattr = { 87 DDI_DEVICE_ATTR_V0, 88 DDI_NEVERSWAP_ACC, 89 DDI_STRICTORDER_ACC 90 }; 91 92 /* 93 * DMA access attributes for data: NOT to be byte swapped. 94 */ 95 static ddi_device_acc_attr_t bge_data_accattr = { 96 DDI_DEVICE_ATTR_V0, 97 DDI_NEVERSWAP_ACC, 98 DDI_STRICTORDER_ACC 99 }; 100 101 static ether_addr_t bge_broadcast_addr = { 102 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 103 }; 104 105 /* 106 * Versions of the O/S up to Solaris 8 didn't support network booting 107 * from any network interface except the first (NET0). Patching this 108 * flag to a non-zero value will tell the driver to work around this 109 * limitation by creating an extra (internal) pathname node. To do 110 * this, just add a line like the following to the CLIENT'S etc/system 111 * file ON THE ROOT FILESYSTEM SERVER before booting the client: 112 * 113 * set bge:bge_net1_boot_support = 1; 114 */ 115 static uint32_t bge_net1_boot_support = 1; 116 117 /* 118 * ========== Transmit and receive ring reinitialisation ========== 119 */ 120 121 /* 122 * These <reinit> routines each reset the specified ring to an initial 123 * state, assuming that the corresponding <init> routine has already 124 * been called exactly once. 125 */ 126 127 static void 128 bge_reinit_send_ring(send_ring_t *srp) 129 { 130 /* 131 * Reinitialise control variables ... 132 */ 133 ASSERT(srp->tx_flow == 0); 134 srp->tx_next = 0; 135 srp->tx_free = srp->desc.nslots; 136 137 ASSERT(mutex_owned(srp->tc_lock)); 138 srp->tc_next = 0; 139 140 /* 141 * Zero and sync all the h/w Send Buffer Descriptors 142 */ 143 DMA_ZERO(srp->desc); 144 DMA_SYNC(srp->desc, DDI_DMA_SYNC_FORDEV); 145 } 146 147 static void 148 bge_reinit_recv_ring(recv_ring_t *rrp) 149 { 150 /* 151 * Reinitialise control variables ... 152 */ 153 rrp->rx_next = 0; 154 } 155 156 static void 157 bge_reinit_buff_ring(buff_ring_t *brp, uint64_t ring) 158 { 159 bge_rbd_t *hw_rbd_p; 160 sw_rbd_t *srbdp; 161 uint32_t bufsize; 162 uint32_t nslots; 163 uint32_t slot; 164 165 static uint16_t ring_type_flag[BGE_BUFF_RINGS_MAX] = { 166 RBD_FLAG_STD_RING, 167 RBD_FLAG_JUMBO_RING, 168 RBD_FLAG_MINI_RING 169 }; 170 171 /* 172 * Zero, initialise and sync all the h/w Receive Buffer Descriptors 173 * Note: all the remaining fields (<type>, <flags>, <ip_cksum>, 174 * <tcp_udp_cksum>, <error_flag>, <vlan_tag>, and <reserved>) 175 * should be zeroed, and so don't need to be set up specifically 176 * once the whole area has been cleared. 177 */ 178 DMA_ZERO(brp->desc); 179 180 hw_rbd_p = DMA_VPTR(brp->desc); 181 nslots = brp->desc.nslots; 182 ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT); 183 bufsize = brp->buf[0].size; 184 srbdp = brp->sw_rbds; 185 for (slot = 0; slot < nslots; ++hw_rbd_p, ++srbdp, ++slot) { 186 hw_rbd_p->host_buf_addr = srbdp->pbuf.cookie.dmac_laddress; 187 hw_rbd_p->index = slot; 188 hw_rbd_p->len = bufsize; 189 hw_rbd_p->opaque = srbdp->pbuf.token; 190 hw_rbd_p->flags |= ring_type_flag[ring]; 191 } 192 193 DMA_SYNC(brp->desc, DDI_DMA_SYNC_FORDEV); 194 195 /* 196 * Finally, reinitialise the ring control variables ... 197 */ 198 brp->rf_next = (nslots != 0) ? (nslots-1) : 0; 199 } 200 201 /* 202 * Reinitialize all rings 203 */ 204 static void 205 bge_reinit_rings(bge_t *bgep) 206 { 207 uint64_t ring; 208 209 ASSERT(mutex_owned(bgep->genlock)); 210 211 /* 212 * Send Rings ... 213 */ 214 for (ring = 0; ring < bgep->chipid.tx_rings; ++ring) 215 bge_reinit_send_ring(&bgep->send[ring]); 216 217 /* 218 * Receive Return Rings ... 219 */ 220 for (ring = 0; ring < bgep->chipid.rx_rings; ++ring) 221 bge_reinit_recv_ring(&bgep->recv[ring]); 222 223 /* 224 * Receive Producer Rings ... 225 */ 226 for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring) 227 bge_reinit_buff_ring(&bgep->buff[ring], ring); 228 } 229 230 /* 231 * ========== Internal state management entry points ========== 232 */ 233 234 #undef BGE_DBG 235 #define BGE_DBG BGE_DBG_NEMO /* debug flag for this code */ 236 237 /* 238 * These routines provide all the functionality required by the 239 * corresponding GLD entry points, but don't update the GLD state 240 * so they can be called internally without disturbing our record 241 * of what GLD thinks we should be doing ... 242 */ 243 244 /* 245 * bge_reset() -- reset h/w & rings to initial state 246 */ 247 static void 248 bge_reset(bge_t *bgep) 249 { 250 uint64_t ring; 251 252 BGE_TRACE(("bge_reset($%p)", (void *)bgep)); 253 254 ASSERT(mutex_owned(bgep->genlock)); 255 256 /* 257 * Grab all the other mutexes in the world (this should 258 * ensure no other threads are manipulating driver state) 259 */ 260 for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring) 261 mutex_enter(bgep->recv[ring].rx_lock); 262 for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring) 263 mutex_enter(bgep->buff[ring].rf_lock); 264 rw_enter(bgep->errlock, RW_WRITER); 265 for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring) 266 mutex_enter(bgep->send[ring].tc_lock); 267 268 bge_chip_reset(bgep, B_TRUE); 269 bge_reinit_rings(bgep); 270 271 /* 272 * Free the world ... 273 */ 274 for (ring = BGE_SEND_RINGS_MAX; ring-- > 0; ) 275 mutex_exit(bgep->send[ring].tc_lock); 276 rw_exit(bgep->errlock); 277 for (ring = BGE_BUFF_RINGS_MAX; ring-- > 0; ) 278 mutex_exit(bgep->buff[ring].rf_lock); 279 for (ring = BGE_RECV_RINGS_MAX; ring-- > 0; ) 280 mutex_exit(bgep->recv[ring].rx_lock); 281 282 BGE_DEBUG(("bge_reset($%p) done", (void *)bgep)); 283 } 284 285 /* 286 * bge_stop() -- stop processing, don't reset h/w or rings 287 */ 288 static void 289 bge_stop(bge_t *bgep) 290 { 291 BGE_TRACE(("bge_stop($%p)", (void *)bgep)); 292 293 ASSERT(mutex_owned(bgep->genlock)); 294 295 bge_chip_stop(bgep, B_FALSE); 296 297 BGE_DEBUG(("bge_stop($%p) done", (void *)bgep)); 298 } 299 300 /* 301 * bge_start() -- start transmitting/receiving 302 */ 303 static void 304 bge_start(bge_t *bgep, boolean_t reset_phys) 305 { 306 BGE_TRACE(("bge_start($%p, %d)", (void *)bgep, reset_phys)); 307 308 ASSERT(mutex_owned(bgep->genlock)); 309 310 /* 311 * Start chip processing, including enabling interrupts 312 */ 313 bge_chip_start(bgep, reset_phys); 314 315 BGE_DEBUG(("bge_start($%p, %d) done", (void *)bgep, reset_phys)); 316 } 317 318 /* 319 * bge_restart - restart transmitting/receiving after error or suspend 320 */ 321 void 322 bge_restart(bge_t *bgep, boolean_t reset_phys) 323 { 324 ASSERT(mutex_owned(bgep->genlock)); 325 326 bge_reset(bgep); 327 if (bgep->bge_mac_state == BGE_MAC_STARTED) { 328 bge_start(bgep, reset_phys); 329 bgep->watchdog = 0; 330 ddi_trigger_softintr(bgep->resched_id); 331 } 332 333 BGE_DEBUG(("bge_restart($%p, %d) done", (void *)bgep, reset_phys)); 334 } 335 336 337 /* 338 * ========== Nemo-required management entry points ========== 339 */ 340 341 #undef BGE_DBG 342 #define BGE_DBG BGE_DBG_NEMO /* debug flag for this code */ 343 344 /* 345 * bge_m_stop() -- stop transmitting/receiving 346 */ 347 static void 348 bge_m_stop(void *arg) 349 { 350 bge_t *bgep = arg; /* private device info */ 351 352 BGE_TRACE(("bge_m_stop($%p)", arg)); 353 354 /* 355 * Just stop processing, then record new GLD state 356 */ 357 mutex_enter(bgep->genlock); 358 bgep->link_up_msg = bgep->link_down_msg = " (stopped)"; 359 bge_stop(bgep); 360 bgep->bge_mac_state = BGE_MAC_STOPPED; 361 BGE_DEBUG(("bge_m_stop($%p) done", arg)); 362 mutex_exit(bgep->genlock); 363 } 364 365 /* 366 * bge_m_start() -- start transmitting/receiving 367 */ 368 static int 369 bge_m_start(void *arg) 370 { 371 bge_t *bgep = arg; /* private device info */ 372 373 BGE_TRACE(("bge_m_start($%p)", arg)); 374 375 /* 376 * Start processing and record new GLD state 377 */ 378 mutex_enter(bgep->genlock); 379 bge_reset(bgep); 380 bgep->link_up_msg = bgep->link_down_msg = " (initialized)"; 381 bge_start(bgep, B_TRUE); 382 bgep->bge_mac_state = BGE_MAC_STARTED; 383 BGE_DEBUG(("bge_m_start($%p) done", arg)); 384 mutex_exit(bgep->genlock); 385 386 return (0); 387 } 388 389 /* 390 * bge_m_unicst_set() -- set the physical network address 391 */ 392 static int 393 bge_m_unicst(void *arg, const uint8_t *macaddr) 394 { 395 bge_t *bgep = arg; /* private device info */ 396 397 BGE_TRACE(("bge_m_unicst_set($%p, %s)", arg, 398 ether_sprintf((void *)macaddr))); 399 400 /* 401 * Remember the new current address in the driver state 402 * Sync the chip's idea of the address too ... 403 */ 404 mutex_enter(bgep->genlock); 405 ethaddr_copy(macaddr, bgep->curr_addr.addr); 406 bge_chip_sync(bgep); 407 BGE_DEBUG(("bge_m_unicst_set($%p) done", arg)); 408 mutex_exit(bgep->genlock); 409 410 return (0); 411 } 412 413 /* 414 * Compute the index of the required bit in the multicast hash map. 415 * This must mirror the way the hardware actually does it! 416 * See Broadcom document 570X-PG102-R page 125. 417 */ 418 static uint32_t 419 bge_hash_index(const uint8_t *mca) 420 { 421 uint32_t hash; 422 423 CRC32(hash, mca, ETHERADDRL, -1U, crc32_table); 424 425 return (hash); 426 } 427 428 /* 429 * bge_m_multicst_add() -- enable/disable a multicast address 430 */ 431 static int 432 bge_m_multicst(void *arg, boolean_t add, const uint8_t *mca) 433 { 434 bge_t *bgep = arg; /* private device info */ 435 uint32_t hash; 436 uint32_t index; 437 uint32_t word; 438 uint32_t bit; 439 uint8_t *refp; 440 441 BGE_TRACE(("bge_m_multicst($%p, %s, %s)", arg, 442 (add) ? "add" : "remove", ether_sprintf((void *)mca))); 443 444 /* 445 * Precalculate all required masks, pointers etc ... 446 */ 447 hash = bge_hash_index(mca); 448 index = hash % BGE_HASH_TABLE_SIZE; 449 word = index/32u; 450 bit = 1 << (index % 32u); 451 refp = &bgep->mcast_refs[index]; 452 453 BGE_DEBUG(("bge_m_multicst: hash 0x%x index %d (%d:0x%x) = %d", 454 hash, index, word, bit, *refp)); 455 456 /* 457 * We must set the appropriate bit in the hash map (and the 458 * corresponding h/w register) when the refcount goes from 0 459 * to >0, and clear it when the last ref goes away (refcount 460 * goes from >0 back to 0). If we change the hash map, we 461 * must also update the chip's hardware map registers. 462 */ 463 mutex_enter(bgep->genlock); 464 if (add) { 465 if ((*refp)++ == 0) { 466 bgep->mcast_hash[word] |= bit; 467 bge_chip_sync(bgep); 468 } 469 } else { 470 if (--(*refp) == 0) { 471 bgep->mcast_hash[word] &= ~bit; 472 bge_chip_sync(bgep); 473 } 474 } 475 BGE_DEBUG(("bge_m_multicst($%p) done", arg)); 476 mutex_exit(bgep->genlock); 477 478 return (0); 479 } 480 481 /* 482 * bge_m_promisc() -- set or reset promiscuous mode on the board 483 * 484 * Program the hardware to enable/disable promiscuous and/or 485 * receive-all-multicast modes. 486 */ 487 static int 488 bge_m_promisc(void *arg, boolean_t on) 489 { 490 bge_t *bgep = arg; 491 492 BGE_TRACE(("bge_m_promisc_set($%p, %d)", arg, on)); 493 494 /* 495 * Store MAC layer specified mode and pass to chip layer to update h/w 496 */ 497 mutex_enter(bgep->genlock); 498 bgep->promisc = on; 499 bge_chip_sync(bgep); 500 BGE_DEBUG(("bge_m_promisc_set($%p) done", arg)); 501 mutex_exit(bgep->genlock); 502 return (0); 503 } 504 505 /* 506 * Loopback ioctl code 507 */ 508 509 static lb_property_t loopmodes[] = { 510 { normal, "normal", BGE_LOOP_NONE }, 511 { external, "1000Mbps", BGE_LOOP_EXTERNAL_1000 }, 512 { external, "100Mbps", BGE_LOOP_EXTERNAL_100 }, 513 { external, "10Mbps", BGE_LOOP_EXTERNAL_10 }, 514 { internal, "PHY", BGE_LOOP_INTERNAL_PHY }, 515 { internal, "MAC", BGE_LOOP_INTERNAL_MAC } 516 }; 517 518 static enum ioc_reply 519 bge_set_loop_mode(bge_t *bgep, uint32_t mode) 520 { 521 const char *msg; 522 523 /* 524 * If the mode isn't being changed, there's nothing to do ... 525 */ 526 if (mode == bgep->param_loop_mode) 527 return (IOC_ACK); 528 529 /* 530 * Validate the requested mode and prepare a suitable message 531 * to explain the link down/up cycle that the change will 532 * probably induce ... 533 */ 534 switch (mode) { 535 default: 536 return (IOC_INVAL); 537 538 case BGE_LOOP_NONE: 539 msg = " (loopback disabled)"; 540 break; 541 542 case BGE_LOOP_EXTERNAL_1000: 543 case BGE_LOOP_EXTERNAL_100: 544 case BGE_LOOP_EXTERNAL_10: 545 msg = " (external loopback selected)"; 546 break; 547 548 case BGE_LOOP_INTERNAL_PHY: 549 msg = " (PHY internal loopback selected)"; 550 break; 551 552 case BGE_LOOP_INTERNAL_MAC: 553 msg = " (MAC internal loopback selected)"; 554 break; 555 } 556 557 /* 558 * All OK; tell the caller to reprogram 559 * the PHY and/or MAC for the new mode ... 560 */ 561 bgep->link_down_msg = bgep->link_up_msg = msg; 562 bgep->param_loop_mode = mode; 563 return (IOC_RESTART_ACK); 564 } 565 566 static enum ioc_reply 567 bge_loop_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp) 568 { 569 lb_info_sz_t *lbsp; 570 lb_property_t *lbpp; 571 uint32_t *lbmp; 572 int cmd; 573 574 _NOTE(ARGUNUSED(wq)) 575 576 /* 577 * Validate format of ioctl 578 */ 579 if (mp->b_cont == NULL) 580 return (IOC_INVAL); 581 582 cmd = iocp->ioc_cmd; 583 switch (cmd) { 584 default: 585 /* NOTREACHED */ 586 bge_error(bgep, "bge_loop_ioctl: invalid cmd 0x%x", cmd); 587 return (IOC_INVAL); 588 589 case LB_GET_INFO_SIZE: 590 if (iocp->ioc_count != sizeof (lb_info_sz_t)) 591 return (IOC_INVAL); 592 lbsp = (lb_info_sz_t *)mp->b_cont->b_rptr; 593 *lbsp = sizeof (loopmodes); 594 return (IOC_REPLY); 595 596 case LB_GET_INFO: 597 if (iocp->ioc_count != sizeof (loopmodes)) 598 return (IOC_INVAL); 599 lbpp = (lb_property_t *)mp->b_cont->b_rptr; 600 bcopy(loopmodes, lbpp, sizeof (loopmodes)); 601 return (IOC_REPLY); 602 603 case LB_GET_MODE: 604 if (iocp->ioc_count != sizeof (uint32_t)) 605 return (IOC_INVAL); 606 lbmp = (uint32_t *)mp->b_cont->b_rptr; 607 *lbmp = bgep->param_loop_mode; 608 return (IOC_REPLY); 609 610 case LB_SET_MODE: 611 if (iocp->ioc_count != sizeof (uint32_t)) 612 return (IOC_INVAL); 613 lbmp = (uint32_t *)mp->b_cont->b_rptr; 614 return (bge_set_loop_mode(bgep, *lbmp)); 615 } 616 } 617 618 /* 619 * Specific bge IOCTLs, the gld module handles the generic ones. 620 */ 621 static void 622 bge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp) 623 { 624 bge_t *bgep = arg; 625 struct iocblk *iocp; 626 enum ioc_reply status; 627 boolean_t need_privilege; 628 int err; 629 int cmd; 630 631 /* 632 * Validate the command before bothering with the mutex ... 633 */ 634 iocp = (struct iocblk *)mp->b_rptr; 635 iocp->ioc_error = 0; 636 need_privilege = B_TRUE; 637 cmd = iocp->ioc_cmd; 638 switch (cmd) { 639 default: 640 miocnak(wq, mp, 0, EINVAL); 641 return; 642 643 case BGE_MII_READ: 644 case BGE_MII_WRITE: 645 case BGE_SEE_READ: 646 case BGE_SEE_WRITE: 647 case BGE_DIAG: 648 case BGE_PEEK: 649 case BGE_POKE: 650 case BGE_PHY_RESET: 651 case BGE_SOFT_RESET: 652 case BGE_HARD_RESET: 653 break; 654 655 case LB_GET_INFO_SIZE: 656 case LB_GET_INFO: 657 case LB_GET_MODE: 658 need_privilege = B_FALSE; 659 /* FALLTHRU */ 660 case LB_SET_MODE: 661 break; 662 663 case ND_GET: 664 need_privilege = B_FALSE; 665 /* FALLTHRU */ 666 case ND_SET: 667 break; 668 } 669 670 if (need_privilege) { 671 /* 672 * Check for specific net_config privilege on Solaris 10+. 673 * Otherwise just check for root access ... 674 */ 675 if (secpolicy_net_config != NULL) 676 err = secpolicy_net_config(iocp->ioc_cr, B_FALSE); 677 else 678 err = drv_priv(iocp->ioc_cr); 679 if (err != 0) { 680 miocnak(wq, mp, 0, err); 681 return; 682 } 683 } 684 685 mutex_enter(bgep->genlock); 686 687 switch (cmd) { 688 default: 689 _NOTE(NOTREACHED) 690 status = IOC_INVAL; 691 break; 692 693 case BGE_MII_READ: 694 case BGE_MII_WRITE: 695 case BGE_SEE_READ: 696 case BGE_SEE_WRITE: 697 case BGE_DIAG: 698 case BGE_PEEK: 699 case BGE_POKE: 700 case BGE_PHY_RESET: 701 case BGE_SOFT_RESET: 702 case BGE_HARD_RESET: 703 status = bge_chip_ioctl(bgep, wq, mp, iocp); 704 break; 705 706 case LB_GET_INFO_SIZE: 707 case LB_GET_INFO: 708 case LB_GET_MODE: 709 case LB_SET_MODE: 710 status = bge_loop_ioctl(bgep, wq, mp, iocp); 711 break; 712 713 case ND_GET: 714 case ND_SET: 715 status = bge_nd_ioctl(bgep, wq, mp, iocp); 716 break; 717 } 718 719 /* 720 * Do we need to reprogram the PHY and/or the MAC? 721 * Do it now, while we still have the mutex. 722 * 723 * Note: update the PHY first, 'cos it controls the 724 * speed/duplex parameters that the MAC code uses. 725 */ 726 switch (status) { 727 case IOC_RESTART_REPLY: 728 case IOC_RESTART_ACK: 729 bge_phys_update(bgep); 730 bge_chip_sync(bgep); 731 if (bgep->intr_type == DDI_INTR_TYPE_MSI) 732 bge_chip_msi_trig(bgep); 733 break; 734 } 735 736 mutex_exit(bgep->genlock); 737 738 /* 739 * Finally, decide how to reply 740 */ 741 switch (status) { 742 default: 743 case IOC_INVAL: 744 /* 745 * Error, reply with a NAK and EINVAL or the specified error 746 */ 747 miocnak(wq, mp, 0, iocp->ioc_error == 0 ? 748 EINVAL : iocp->ioc_error); 749 break; 750 751 case IOC_DONE: 752 /* 753 * OK, reply already sent 754 */ 755 break; 756 757 case IOC_RESTART_ACK: 758 case IOC_ACK: 759 /* 760 * OK, reply with an ACK 761 */ 762 miocack(wq, mp, 0, 0); 763 break; 764 765 case IOC_RESTART_REPLY: 766 case IOC_REPLY: 767 /* 768 * OK, send prepared reply as ACK or NAK 769 */ 770 mp->b_datap->db_type = iocp->ioc_error == 0 ? 771 M_IOCACK : M_IOCNAK; 772 qreply(wq, mp); 773 break; 774 } 775 } 776 777 static void 778 bge_m_resources(void *arg) 779 { 780 bge_t *bgep = arg; 781 recv_ring_t *rrp; 782 mac_rx_fifo_t mrf; 783 int ring; 784 785 mutex_enter(bgep->genlock); 786 787 /* 788 * Register Rx rings as resources and save mac 789 * resource id for future reference 790 */ 791 mrf.mrf_type = MAC_RX_FIFO; 792 mrf.mrf_blank = bge_chip_blank; 793 mrf.mrf_arg = (void *)bgep; 794 mrf.mrf_normal_blank_time = bge_rx_ticks_norm; 795 mrf.mrf_normal_pkt_count = bge_rx_count_norm; 796 797 for (ring = 0; ring < bgep->chipid.rx_rings; ring++) { 798 rrp = &bgep->recv[ring]; 799 rrp->handle = mac_resource_add(bgep->macp, 800 (mac_resource_t *)&mrf); 801 } 802 803 mutex_exit(bgep->genlock); 804 } 805 806 /* 807 * ========== Per-instance setup/teardown code ========== 808 */ 809 810 #undef BGE_DBG 811 #define BGE_DBG BGE_DBG_INIT /* debug flag for this code */ 812 813 /* 814 * Utility routine to carve a slice off a chunk of allocated memory, 815 * updating the chunk descriptor accordingly. The size of the slice 816 * is given by the product of the <qty> and <size> parameters. 817 */ 818 static void 819 bge_slice_chunk(dma_area_t *slice, dma_area_t *chunk, 820 uint32_t qty, uint32_t size) 821 { 822 static uint32_t sequence = 0xbcd5704a; 823 size_t totsize; 824 825 totsize = qty*size; 826 ASSERT(size >= 0); 827 ASSERT(totsize <= chunk->alength); 828 829 *slice = *chunk; 830 slice->nslots = qty; 831 slice->size = size; 832 slice->alength = totsize; 833 slice->token = ++sequence; 834 835 chunk->mem_va = (caddr_t)chunk->mem_va + totsize; 836 chunk->alength -= totsize; 837 chunk->offset += totsize; 838 chunk->cookie.dmac_laddress += totsize; 839 chunk->cookie.dmac_size -= totsize; 840 } 841 842 /* 843 * Initialise the specified Receive Producer (Buffer) Ring, using 844 * the information in the <dma_area> descriptors that it contains 845 * to set up all the other fields. This routine should be called 846 * only once for each ring. 847 */ 848 static void 849 bge_init_buff_ring(bge_t *bgep, uint64_t ring) 850 { 851 buff_ring_t *brp; 852 bge_status_t *bsp; 853 sw_rbd_t *srbdp; 854 dma_area_t pbuf; 855 uint32_t bufsize; 856 uint32_t nslots; 857 uint32_t slot; 858 uint32_t split; 859 860 static bge_regno_t nic_ring_addrs[BGE_BUFF_RINGS_MAX] = { 861 NIC_MEM_SHADOW_BUFF_STD, 862 NIC_MEM_SHADOW_BUFF_JUMBO, 863 NIC_MEM_SHADOW_BUFF_MINI 864 }; 865 static bge_regno_t mailbox_regs[BGE_BUFF_RINGS_MAX] = { 866 RECV_STD_PROD_INDEX_REG, 867 RECV_JUMBO_PROD_INDEX_REG, 868 RECV_MINI_PROD_INDEX_REG 869 }; 870 static bge_regno_t buff_cons_xref[BGE_BUFF_RINGS_MAX] = { 871 STATUS_STD_BUFF_CONS_INDEX, 872 STATUS_JUMBO_BUFF_CONS_INDEX, 873 STATUS_MINI_BUFF_CONS_INDEX 874 }; 875 876 BGE_TRACE(("bge_init_buff_ring($%p, %d)", 877 (void *)bgep, ring)); 878 879 brp = &bgep->buff[ring]; 880 nslots = brp->desc.nslots; 881 ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT); 882 bufsize = brp->buf[0].size; 883 884 /* 885 * Set up the copy of the h/w RCB 886 * 887 * Note: unlike Send & Receive Return Rings, (where the max_len 888 * field holds the number of slots), in a Receive Buffer Ring 889 * this field indicates the size of each buffer in the ring. 890 */ 891 brp->hw_rcb.host_ring_addr = brp->desc.cookie.dmac_laddress; 892 brp->hw_rcb.max_len = bufsize; 893 brp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED; 894 brp->hw_rcb.nic_ring_addr = nic_ring_addrs[ring]; 895 896 /* 897 * Other one-off initialisation of per-ring data 898 */ 899 brp->bgep = bgep; 900 bsp = DMA_VPTR(bgep->status_block); 901 brp->cons_index_p = &bsp->buff_cons_index[buff_cons_xref[ring]]; 902 brp->chip_mbx_reg = mailbox_regs[ring]; 903 mutex_init(brp->rf_lock, NULL, MUTEX_DRIVER, 904 DDI_INTR_PRI(bgep->intr_pri)); 905 906 /* 907 * Allocate the array of s/w Receive Buffer Descriptors 908 */ 909 srbdp = kmem_zalloc(nslots*sizeof (*srbdp), KM_SLEEP); 910 brp->sw_rbds = srbdp; 911 912 /* 913 * Now initialise each array element once and for all 914 */ 915 for (split = 0; split < BGE_SPLIT; ++split) { 916 pbuf = brp->buf[split]; 917 for (slot = 0; slot < nslots/BGE_SPLIT; ++srbdp, ++slot) 918 bge_slice_chunk(&srbdp->pbuf, &pbuf, 1, bufsize); 919 ASSERT(pbuf.alength == 0); 920 } 921 } 922 923 /* 924 * Clean up initialisation done above before the memory is freed 925 */ 926 static void 927 bge_fini_buff_ring(bge_t *bgep, uint64_t ring) 928 { 929 buff_ring_t *brp; 930 sw_rbd_t *srbdp; 931 932 BGE_TRACE(("bge_fini_buff_ring($%p, %d)", 933 (void *)bgep, ring)); 934 935 brp = &bgep->buff[ring]; 936 srbdp = brp->sw_rbds; 937 kmem_free(srbdp, brp->desc.nslots*sizeof (*srbdp)); 938 939 mutex_destroy(brp->rf_lock); 940 } 941 942 /* 943 * Initialise the specified Receive (Return) Ring, using the 944 * information in the <dma_area> descriptors that it contains 945 * to set up all the other fields. This routine should be called 946 * only once for each ring. 947 */ 948 static void 949 bge_init_recv_ring(bge_t *bgep, uint64_t ring) 950 { 951 recv_ring_t *rrp; 952 bge_status_t *bsp; 953 uint32_t nslots; 954 955 BGE_TRACE(("bge_init_recv_ring($%p, %d)", 956 (void *)bgep, ring)); 957 958 /* 959 * The chip architecture requires that receive return rings have 960 * 512 or 1024 or 2048 elements per ring. See 570X-PG108-R page 103. 961 */ 962 rrp = &bgep->recv[ring]; 963 nslots = rrp->desc.nslots; 964 ASSERT(nslots == 0 || nslots == 512 || 965 nslots == 1024 || nslots == 2048); 966 967 /* 968 * Set up the copy of the h/w RCB 969 */ 970 rrp->hw_rcb.host_ring_addr = rrp->desc.cookie.dmac_laddress; 971 rrp->hw_rcb.max_len = nslots; 972 rrp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED; 973 rrp->hw_rcb.nic_ring_addr = 0; 974 975 /* 976 * Other one-off initialisation of per-ring data 977 */ 978 rrp->bgep = bgep; 979 bsp = DMA_VPTR(bgep->status_block); 980 rrp->prod_index_p = RECV_INDEX_P(bsp, ring); 981 rrp->chip_mbx_reg = RECV_RING_CONS_INDEX_REG(ring); 982 mutex_init(rrp->rx_lock, NULL, MUTEX_DRIVER, 983 DDI_INTR_PRI(bgep->intr_pri)); 984 } 985 986 987 /* 988 * Clean up initialisation done above before the memory is freed 989 */ 990 static void 991 bge_fini_recv_ring(bge_t *bgep, uint64_t ring) 992 { 993 recv_ring_t *rrp; 994 995 BGE_TRACE(("bge_fini_recv_ring($%p, %d)", 996 (void *)bgep, ring)); 997 998 rrp = &bgep->recv[ring]; 999 if (rrp->rx_softint) 1000 ddi_remove_softintr(rrp->rx_softint); 1001 mutex_destroy(rrp->rx_lock); 1002 } 1003 1004 /* 1005 * Initialise the specified Send Ring, using the information in the 1006 * <dma_area> descriptors that it contains to set up all the other 1007 * fields. This routine should be called only once for each ring. 1008 */ 1009 static void 1010 bge_init_send_ring(bge_t *bgep, uint64_t ring) 1011 { 1012 send_ring_t *srp; 1013 bge_status_t *bsp; 1014 sw_sbd_t *ssbdp; 1015 dma_area_t desc; 1016 dma_area_t pbuf; 1017 uint32_t nslots; 1018 uint32_t slot; 1019 uint32_t split; 1020 1021 BGE_TRACE(("bge_init_send_ring($%p, %d)", 1022 (void *)bgep, ring)); 1023 1024 /* 1025 * The chip architecture requires that host-based send rings 1026 * have 512 elements per ring. See 570X-PG102-R page 56. 1027 */ 1028 srp = &bgep->send[ring]; 1029 nslots = srp->desc.nslots; 1030 ASSERT(nslots == 0 || nslots == 512); 1031 1032 /* 1033 * Set up the copy of the h/w RCB 1034 */ 1035 srp->hw_rcb.host_ring_addr = srp->desc.cookie.dmac_laddress; 1036 srp->hw_rcb.max_len = nslots; 1037 srp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED; 1038 srp->hw_rcb.nic_ring_addr = NIC_MEM_SHADOW_SEND_RING(ring, nslots); 1039 1040 /* 1041 * Other one-off initialisation of per-ring data 1042 */ 1043 srp->bgep = bgep; 1044 bsp = DMA_VPTR(bgep->status_block); 1045 srp->cons_index_p = SEND_INDEX_P(bsp, ring); 1046 srp->chip_mbx_reg = SEND_RING_HOST_INDEX_REG(ring); 1047 mutex_init(srp->tx_lock, NULL, MUTEX_DRIVER, 1048 DDI_INTR_PRI(bgep->intr_pri)); 1049 mutex_init(srp->tc_lock, NULL, MUTEX_DRIVER, 1050 DDI_INTR_PRI(bgep->intr_pri)); 1051 1052 /* 1053 * Allocate the array of s/w Send Buffer Descriptors 1054 */ 1055 ssbdp = kmem_zalloc(nslots*sizeof (*ssbdp), KM_SLEEP); 1056 srp->sw_sbds = ssbdp; 1057 1058 /* 1059 * Now initialise each array element once and for all 1060 */ 1061 desc = srp->desc; 1062 for (split = 0; split < BGE_SPLIT; ++split) { 1063 pbuf = srp->buf[split]; 1064 for (slot = 0; slot < nslots/BGE_SPLIT; ++ssbdp, ++slot) { 1065 bge_slice_chunk(&ssbdp->desc, &desc, 1, 1066 sizeof (bge_sbd_t)); 1067 bge_slice_chunk(&ssbdp->pbuf, &pbuf, 1, 1068 bgep->chipid.snd_buff_size); 1069 } 1070 ASSERT(pbuf.alength == 0); 1071 } 1072 ASSERT(desc.alength == 0); 1073 } 1074 1075 /* 1076 * Clean up initialisation done above before the memory is freed 1077 */ 1078 static void 1079 bge_fini_send_ring(bge_t *bgep, uint64_t ring) 1080 { 1081 send_ring_t *srp; 1082 sw_sbd_t *ssbdp; 1083 1084 BGE_TRACE(("bge_fini_send_ring($%p, %d)", 1085 (void *)bgep, ring)); 1086 1087 srp = &bgep->send[ring]; 1088 ssbdp = srp->sw_sbds; 1089 kmem_free(ssbdp, srp->desc.nslots*sizeof (*ssbdp)); 1090 1091 mutex_destroy(srp->tx_lock); 1092 mutex_destroy(srp->tc_lock); 1093 } 1094 1095 /* 1096 * Initialise all transmit, receive, and buffer rings. 1097 * (also a few top-level mutexen that can't be done until 1098 * the h/w interrupt handler has been registered 'cos we 1099 * need the cookie). 1100 */ 1101 static void 1102 bge_init_rings(bge_t *bgep) 1103 { 1104 uint64_t ring; 1105 1106 BGE_TRACE(("bge_init_rings($%p)", (void *)bgep)); 1107 1108 mutex_init(bgep->genlock, NULL, MUTEX_DRIVER, 1109 DDI_INTR_PRI(bgep->intr_pri)); 1110 mutex_init(bgep->softintrlock, NULL, MUTEX_DRIVER, 1111 DDI_INTR_PRI(bgep->intr_pri)); 1112 rw_init(bgep->errlock, NULL, RW_DRIVER, 1113 DDI_INTR_PRI(bgep->intr_pri)); 1114 1115 /* 1116 * Perform one-off initialisation of each ring ... 1117 */ 1118 for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring) 1119 bge_init_send_ring(bgep, ring); 1120 for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring) 1121 bge_init_recv_ring(bgep, ring); 1122 for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring) 1123 bge_init_buff_ring(bgep, ring); 1124 } 1125 1126 /* 1127 * Undo the work of bge_init_rings() above before the memory is freed 1128 */ 1129 static void 1130 bge_fini_rings(bge_t *bgep) 1131 { 1132 uint64_t ring; 1133 1134 BGE_TRACE(("bge_fini_rings($%p)", (void *)bgep)); 1135 1136 for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring) 1137 bge_fini_buff_ring(bgep, ring); 1138 for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring) 1139 bge_fini_recv_ring(bgep, ring); 1140 for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring) 1141 bge_fini_send_ring(bgep, ring); 1142 1143 rw_destroy(bgep->errlock); 1144 mutex_destroy(bgep->softintrlock); 1145 mutex_destroy(bgep->genlock); 1146 } 1147 1148 /* 1149 * Allocate an area of memory and a DMA handle for accessing it 1150 */ 1151 static int 1152 bge_alloc_dma_mem(bge_t *bgep, size_t memsize, ddi_device_acc_attr_t *attr_p, 1153 uint_t dma_flags, dma_area_t *dma_p) 1154 { 1155 caddr_t va; 1156 int err; 1157 1158 BGE_TRACE(("bge_alloc_dma_mem($%p, %ld, $%p, 0x%x, $%p)", 1159 (void *)bgep, memsize, attr_p, dma_flags, dma_p)); 1160 1161 /* 1162 * Allocate handle 1163 */ 1164 err = ddi_dma_alloc_handle(bgep->devinfo, &dma_attr, 1165 DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl); 1166 if (err != DDI_SUCCESS) 1167 return (DDI_FAILURE); 1168 1169 /* 1170 * Allocate memory 1171 */ 1172 err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p, 1173 dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING), 1174 DDI_DMA_SLEEP, NULL, &va, &dma_p->alength, &dma_p->acc_hdl); 1175 if (err != DDI_SUCCESS) 1176 return (DDI_FAILURE); 1177 1178 /* 1179 * Bind the two together 1180 */ 1181 dma_p->mem_va = va; 1182 err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL, 1183 va, dma_p->alength, dma_flags, DDI_DMA_SLEEP, NULL, 1184 &dma_p->cookie, &dma_p->ncookies); 1185 1186 BGE_DEBUG(("bge_alloc_dma_mem(): bind %d bytes; err %d, %d cookies", 1187 dma_p->alength, err, dma_p->ncookies)); 1188 1189 if (err != DDI_DMA_MAPPED || dma_p->ncookies != 1) 1190 return (DDI_FAILURE); 1191 1192 dma_p->nslots = ~0U; 1193 dma_p->size = ~0U; 1194 dma_p->token = ~0U; 1195 dma_p->offset = 0; 1196 return (DDI_SUCCESS); 1197 } 1198 1199 /* 1200 * Free one allocated area of DMAable memory 1201 */ 1202 static void 1203 bge_free_dma_mem(dma_area_t *dma_p) 1204 { 1205 if (dma_p->dma_hdl != NULL) { 1206 if (dma_p->ncookies) { 1207 (void) ddi_dma_unbind_handle(dma_p->dma_hdl); 1208 dma_p->ncookies = 0; 1209 } 1210 ddi_dma_free_handle(&dma_p->dma_hdl); 1211 dma_p->dma_hdl = NULL; 1212 } 1213 1214 if (dma_p->acc_hdl != NULL) { 1215 ddi_dma_mem_free(&dma_p->acc_hdl); 1216 dma_p->acc_hdl = NULL; 1217 } 1218 } 1219 1220 /* 1221 * This function allocates all the transmit and receive buffers 1222 * and descriptors, in four chunks (or one, if MONOLITHIC). 1223 */ 1224 static int 1225 bge_alloc_bufs(bge_t *bgep) 1226 { 1227 dma_area_t area; 1228 size_t rxbuffsize; 1229 size_t txbuffsize; 1230 size_t rxbuffdescsize; 1231 size_t rxdescsize; 1232 size_t txdescsize; 1233 uint64_t ring; 1234 uint64_t rx_rings = bgep->chipid.rx_rings; 1235 uint64_t tx_rings = bgep->chipid.tx_rings; 1236 int split; 1237 int err; 1238 1239 BGE_TRACE(("bge_alloc_bufs($%p)", 1240 (void *)bgep)); 1241 1242 rxbuffsize = BGE_STD_SLOTS_USED*BGE_STD_BUFF_SIZE; 1243 rxbuffsize += bgep->chipid.jumbo_slots*bgep->chipid.recv_jumbo_size; 1244 rxbuffsize += BGE_MINI_SLOTS_USED*BGE_MINI_BUFF_SIZE; 1245 1246 txbuffsize = BGE_SEND_SLOTS_USED*bgep->chipid.snd_buff_size; 1247 txbuffsize *= tx_rings; 1248 1249 rxdescsize = rx_rings*bgep->chipid.recv_slots; 1250 rxdescsize *= sizeof (bge_rbd_t); 1251 1252 rxbuffdescsize = BGE_STD_SLOTS_USED; 1253 rxbuffdescsize += bgep->chipid.jumbo_slots; 1254 rxbuffdescsize += BGE_MINI_SLOTS_USED; 1255 rxbuffdescsize *= sizeof (bge_rbd_t); 1256 1257 txdescsize = tx_rings*BGE_SEND_SLOTS_USED; 1258 txdescsize *= sizeof (bge_sbd_t); 1259 txdescsize += sizeof (bge_statistics_t); 1260 txdescsize += sizeof (bge_status_t); 1261 txdescsize += BGE_STATUS_PADDING; 1262 1263 #if BGE_MONOLITHIC 1264 1265 err = bge_alloc_dma_mem(bgep, 1266 rxbuffsize+txbuffsize+rxbuffdescsize+rxdescsize+txdescsize, 1267 &bge_data_accattr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &area); 1268 if (err != DDI_SUCCESS) 1269 return (DDI_FAILURE); 1270 1271 BGE_DEBUG(("allocated range $%p-$%p (0x%lx-0x%lx)", 1272 DMA_VPTR(area), 1273 (caddr_t)DMA_VPTR(area)+area.alength, 1274 area.cookie.dmac_laddress, 1275 area.cookie.dmac_laddress+area.alength)); 1276 1277 bge_slice_chunk(&bgep->rx_buff[0], &area, 1, rxbuffsize); 1278 bge_slice_chunk(&bgep->tx_buff[0], &area, 1, txbuffsize); 1279 bge_slice_chunk(&bgep->rx_desc[0], &area, 1, rxdescsize); 1280 bge_slice_chunk(&bgep->tx_desc, &area, 1, txdescsize); 1281 1282 #else 1283 /* 1284 * Allocate memory & handles for RX buffers 1285 */ 1286 ASSERT((rxbuffsize % BGE_SPLIT) == 0); 1287 for (split = 0; split < BGE_SPLIT; ++split) { 1288 err = bge_alloc_dma_mem(bgep, rxbuffsize/BGE_SPLIT, 1289 &bge_data_accattr, DDI_DMA_READ | BGE_DMA_MODE, 1290 &bgep->rx_buff[split]); 1291 if (err != DDI_SUCCESS) 1292 return (DDI_FAILURE); 1293 } 1294 1295 /* 1296 * Allocate memory & handles for TX buffers 1297 */ 1298 ASSERT((txbuffsize % BGE_SPLIT) == 0); 1299 for (split = 0; split < BGE_SPLIT; ++split) { 1300 err = bge_alloc_dma_mem(bgep, txbuffsize/BGE_SPLIT, 1301 &bge_data_accattr, DDI_DMA_WRITE | BGE_DMA_MODE, 1302 &bgep->tx_buff[split]); 1303 if (err != DDI_SUCCESS) 1304 return (DDI_FAILURE); 1305 } 1306 1307 /* 1308 * Allocate memory & handles for receive return rings 1309 */ 1310 ASSERT((rxdescsize % rx_rings) == 0); 1311 for (split = 0; split < rx_rings; ++split) { 1312 err = bge_alloc_dma_mem(bgep, rxdescsize/rx_rings, 1313 &bge_desc_accattr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, 1314 &bgep->rx_desc[split]); 1315 if (err != DDI_SUCCESS) 1316 return (DDI_FAILURE); 1317 } 1318 1319 /* 1320 * Allocate memory & handles for buffer (producer) descriptor rings 1321 */ 1322 err = bge_alloc_dma_mem(bgep, rxbuffdescsize, &bge_desc_accattr, 1323 DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->rx_desc[split]); 1324 if (err != DDI_SUCCESS) 1325 return (DDI_FAILURE); 1326 1327 /* 1328 * Allocate memory & handles for TX descriptor rings, 1329 * status block, and statistics area 1330 */ 1331 err = bge_alloc_dma_mem(bgep, txdescsize, &bge_desc_accattr, 1332 DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->tx_desc); 1333 if (err != DDI_SUCCESS) 1334 return (DDI_FAILURE); 1335 1336 #endif /* BGE_MONOLITHIC */ 1337 1338 /* 1339 * Now carve up each of the allocated areas ... 1340 */ 1341 for (split = 0; split < BGE_SPLIT; ++split) { 1342 area = bgep->rx_buff[split]; 1343 bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].buf[split], 1344 &area, BGE_STD_SLOTS_USED/BGE_SPLIT, 1345 BGE_STD_BUFF_SIZE); 1346 bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].buf[split], 1347 &area, bgep->chipid.jumbo_slots/BGE_SPLIT, 1348 bgep->chipid.recv_jumbo_size); 1349 bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].buf[split], 1350 &area, BGE_MINI_SLOTS_USED/BGE_SPLIT, 1351 BGE_MINI_BUFF_SIZE); 1352 ASSERT(area.alength >= 0); 1353 } 1354 1355 for (split = 0; split < BGE_SPLIT; ++split) { 1356 area = bgep->tx_buff[split]; 1357 for (ring = 0; ring < tx_rings; ++ring) 1358 bge_slice_chunk(&bgep->send[ring].buf[split], 1359 &area, BGE_SEND_SLOTS_USED/BGE_SPLIT, 1360 bgep->chipid.snd_buff_size); 1361 for (; ring < BGE_SEND_RINGS_MAX; ++ring) 1362 bge_slice_chunk(&bgep->send[ring].buf[split], 1363 &area, 0/BGE_SPLIT, 1364 bgep->chipid.snd_buff_size); 1365 ASSERT(area.alength >= 0); 1366 } 1367 1368 for (ring = 0; ring < rx_rings; ++ring) 1369 bge_slice_chunk(&bgep->recv[ring].desc, &bgep->rx_desc[ring], 1370 bgep->chipid.recv_slots, sizeof (bge_rbd_t)); 1371 1372 area = bgep->rx_desc[rx_rings]; 1373 for (; ring < BGE_RECV_RINGS_MAX; ++ring) 1374 bge_slice_chunk(&bgep->recv[ring].desc, &area, 1375 0, sizeof (bge_rbd_t)); 1376 bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].desc, &area, 1377 BGE_STD_SLOTS_USED, sizeof (bge_rbd_t)); 1378 bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].desc, &area, 1379 bgep->chipid.jumbo_slots, sizeof (bge_rbd_t)); 1380 bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].desc, &area, 1381 BGE_MINI_SLOTS_USED, sizeof (bge_rbd_t)); 1382 ASSERT(area.alength == 0); 1383 1384 area = bgep->tx_desc; 1385 for (ring = 0; ring < tx_rings; ++ring) 1386 bge_slice_chunk(&bgep->send[ring].desc, &area, 1387 BGE_SEND_SLOTS_USED, sizeof (bge_sbd_t)); 1388 for (; ring < BGE_SEND_RINGS_MAX; ++ring) 1389 bge_slice_chunk(&bgep->send[ring].desc, &area, 1390 0, sizeof (bge_sbd_t)); 1391 bge_slice_chunk(&bgep->statistics, &area, 1, sizeof (bge_statistics_t)); 1392 bge_slice_chunk(&bgep->status_block, &area, 1, sizeof (bge_status_t)); 1393 ASSERT(area.alength == BGE_STATUS_PADDING); 1394 DMA_ZERO(bgep->status_block); 1395 1396 return (DDI_SUCCESS); 1397 } 1398 1399 /* 1400 * This routine frees the transmit and receive buffers and descriptors. 1401 * Make sure the chip is stopped before calling it! 1402 */ 1403 static void 1404 bge_free_bufs(bge_t *bgep) 1405 { 1406 int split; 1407 1408 BGE_TRACE(("bge_free_bufs($%p)", 1409 (void *)bgep)); 1410 1411 #if BGE_MONOLITHIC 1412 bge_free_dma_mem(&bgep->rx_buff[0]); 1413 #else 1414 bge_free_dma_mem(&bgep->tx_desc); 1415 for (split = 0; split < BGE_RECV_RINGS_SPLIT; ++split) 1416 bge_free_dma_mem(&bgep->rx_desc[split]); 1417 for (split = 0; split < BGE_SPLIT; ++split) 1418 bge_free_dma_mem(&bgep->tx_buff[split]); 1419 for (split = 0; split < BGE_SPLIT; ++split) 1420 bge_free_dma_mem(&bgep->rx_buff[split]); 1421 #endif /* BGE_MONOLITHIC */ 1422 } 1423 1424 /* 1425 * Determine (initial) MAC address ("BIA") to use for this interface 1426 */ 1427 1428 static void 1429 bge_find_mac_address(bge_t *bgep, chip_id_t *cidp) 1430 { 1431 struct ether_addr sysaddr; 1432 char propbuf[8]; /* "true" or "false", plus NUL */ 1433 uchar_t *bytes; 1434 int *ints; 1435 uint_t nelts; 1436 int err; 1437 1438 BGE_TRACE(("bge_find_mac_address($%p)", 1439 (void *)bgep)); 1440 1441 BGE_DEBUG(("bge_find_mac_address: hw_mac_addr %012llx, => %s (%sset)", 1442 cidp->hw_mac_addr, 1443 ether_sprintf((void *)cidp->vendor_addr.addr), 1444 cidp->vendor_addr.set ? "" : "not ")); 1445 1446 /* 1447 * The "vendor's factory-set address" may already have 1448 * been extracted from the chip, but if the property 1449 * "local-mac-address" is set we use that instead. It 1450 * will normally be set by OBP, but it could also be 1451 * specified in a .conf file(!) 1452 * 1453 * There doesn't seem to be a way to define byte-array 1454 * properties in a .conf, so we check whether it looks 1455 * like an array of 6 ints instead. 1456 * 1457 * Then, we check whether it looks like an array of 6 1458 * bytes (which it should, if OBP set it). If we can't 1459 * make sense of it either way, we'll ignore it. 1460 */ 1461 err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo, 1462 DDI_PROP_DONTPASS, localmac_propname, &ints, &nelts); 1463 if (err == DDI_PROP_SUCCESS) { 1464 if (nelts == ETHERADDRL) { 1465 while (nelts--) 1466 cidp->vendor_addr.addr[nelts] = ints[nelts]; 1467 cidp->vendor_addr.set = 1; 1468 } 1469 ddi_prop_free(ints); 1470 } 1471 1472 err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo, 1473 DDI_PROP_DONTPASS, localmac_propname, &bytes, &nelts); 1474 if (err == DDI_PROP_SUCCESS) { 1475 if (nelts == ETHERADDRL) { 1476 while (nelts--) 1477 cidp->vendor_addr.addr[nelts] = bytes[nelts]; 1478 cidp->vendor_addr.set = 1; 1479 } 1480 ddi_prop_free(bytes); 1481 } 1482 1483 BGE_DEBUG(("bge_find_mac_address: +local %s (%sset)", 1484 ether_sprintf((void *)cidp->vendor_addr.addr), 1485 cidp->vendor_addr.set ? "" : "not ")); 1486 1487 /* 1488 * Look up the OBP property "local-mac-address?". Note that even 1489 * though its value is a string (which should be "true" or "false"), 1490 * it can't be decoded by ddi_prop_lookup_string(9F). So, we zero 1491 * the buffer first and then fetch the property as an untyped array; 1492 * this may or may not include a final NUL, but since there will 1493 * always be one left at the end of the buffer we can now treat it 1494 * as a string anyway. 1495 */ 1496 nelts = sizeof (propbuf); 1497 bzero(propbuf, nelts--); 1498 err = ddi_getlongprop_buf(DDI_DEV_T_ANY, bgep->devinfo, 1499 DDI_PROP_CANSLEEP, localmac_boolname, propbuf, (int *)&nelts); 1500 1501 /* 1502 * Now, if the address still isn't set from the hardware (SEEPROM) 1503 * or the OBP or .conf property, OR if the user has foolishly set 1504 * 'local-mac-address? = false', use "the system address" instead 1505 * (but only if it's non-null i.e. has been set from the IDPROM). 1506 */ 1507 if (cidp->vendor_addr.set == 0 || strcmp(propbuf, "false") == 0) 1508 if (localetheraddr(NULL, &sysaddr) != 0) { 1509 ethaddr_copy(&sysaddr, cidp->vendor_addr.addr); 1510 cidp->vendor_addr.set = 1; 1511 } 1512 1513 BGE_DEBUG(("bge_find_mac_address: +system %s (%sset)", 1514 ether_sprintf((void *)cidp->vendor_addr.addr), 1515 cidp->vendor_addr.set ? "" : "not ")); 1516 1517 /* 1518 * Finally(!), if there's a valid "mac-address" property (created 1519 * if we netbooted from this interface), we must use this instead 1520 * of any of the above to ensure that the NFS/install server doesn't 1521 * get confused by the address changing as Solaris takes over! 1522 */ 1523 err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo, 1524 DDI_PROP_DONTPASS, macaddr_propname, &bytes, &nelts); 1525 if (err == DDI_PROP_SUCCESS) { 1526 if (nelts == ETHERADDRL) { 1527 while (nelts--) 1528 cidp->vendor_addr.addr[nelts] = bytes[nelts]; 1529 cidp->vendor_addr.set = 1; 1530 } 1531 ddi_prop_free(bytes); 1532 } 1533 1534 BGE_DEBUG(("bge_find_mac_address: =final %s (%sset)", 1535 ether_sprintf((void *)cidp->vendor_addr.addr), 1536 cidp->vendor_addr.set ? "" : "not ")); 1537 } 1538 1539 static void 1540 bge_unattach(bge_t *bgep) 1541 { 1542 mac_t *macp; 1543 1544 BGE_TRACE(("bge_unattach($%p)", 1545 (void *)bgep)); 1546 1547 /* 1548 * Flag that no more activity may be initiated 1549 */ 1550 bgep->progress &= ~PROGRESS_READY; 1551 1552 /* 1553 * Quiesce the PHY and MAC (leave it reset but still powered). 1554 * Clean up and free all BGE data structures 1555 */ 1556 if (bgep->cyclic_id) { 1557 mutex_enter(&cpu_lock); 1558 cyclic_remove(bgep->cyclic_id); 1559 mutex_exit(&cpu_lock); 1560 } 1561 if (bgep->progress & PROGRESS_KSTATS) 1562 bge_fini_kstats(bgep); 1563 if (bgep->progress & PROGRESS_NDD) 1564 bge_nd_cleanup(bgep); 1565 if (bgep->progress & PROGRESS_PHY) 1566 bge_phys_reset(bgep); 1567 if (bgep->progress & PROGRESS_HWINT) { 1568 mutex_enter(bgep->genlock); 1569 bge_chip_reset(bgep, B_FALSE); 1570 mutex_exit(bgep->genlock); 1571 } 1572 1573 if (bgep->progress & PROGRESS_INTR) { 1574 bge_rem_intrs(bgep); 1575 bge_fini_rings(bgep); 1576 } 1577 1578 if (bgep->progress & PROGRESS_FACTOTUM) 1579 ddi_remove_softintr(bgep->factotum_id); 1580 if (bgep->progress & PROGRESS_RESCHED) 1581 ddi_remove_softintr(bgep->resched_id); 1582 bge_free_bufs(bgep); 1583 if (bgep->progress & PROGRESS_REGS) 1584 ddi_regs_map_free(&bgep->io_handle); 1585 if (bgep->progress & PROGRESS_CFG) 1586 pci_config_teardown(&bgep->cfg_handle); 1587 1588 ddi_remove_minor_node(bgep->devinfo, NULL); 1589 macp = bgep->macp; 1590 kmem_free(macp, sizeof (*macp)); 1591 kmem_free(bgep, sizeof (*bgep)); 1592 } 1593 1594 static int 1595 bge_resume(dev_info_t *devinfo) 1596 { 1597 bge_t *bgep; /* Our private data */ 1598 chip_id_t *cidp; 1599 chip_id_t chipid; 1600 1601 bgep = ddi_get_driver_private(devinfo); 1602 if (bgep == NULL) 1603 return (DDI_FAILURE); 1604 1605 /* 1606 * Refuse to resume if the data structures aren't consistent 1607 */ 1608 if (bgep->devinfo != devinfo) 1609 return (DDI_FAILURE); 1610 1611 /* 1612 * Read chip ID & set up config space command register(s) 1613 * Refuse to resume if the chip has changed its identity! 1614 */ 1615 cidp = &bgep->chipid; 1616 bge_chip_cfg_init(bgep, &chipid, B_FALSE); 1617 if (chipid.vendor != cidp->vendor) 1618 return (DDI_FAILURE); 1619 if (chipid.device != cidp->device) 1620 return (DDI_FAILURE); 1621 if (chipid.revision != cidp->revision) 1622 return (DDI_FAILURE); 1623 if (chipid.asic_rev != cidp->asic_rev) 1624 return (DDI_FAILURE); 1625 1626 /* 1627 * All OK, reinitialise h/w & kick off GLD scheduling 1628 */ 1629 mutex_enter(bgep->genlock); 1630 bge_restart(bgep, B_TRUE); 1631 mutex_exit(bgep->genlock); 1632 return (DDI_SUCCESS); 1633 } 1634 1635 static uint8_t ether_brdcst[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 1636 1637 /* 1638 * attach(9E) -- Attach a device to the system 1639 * 1640 * Called once for each board successfully probed. 1641 */ 1642 static int 1643 bge_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd) 1644 { 1645 bge_t *bgep; /* Our private data */ 1646 mac_t *macp; 1647 chip_id_t *cidp; 1648 cyc_handler_t cychand; 1649 cyc_time_t cyctime; 1650 caddr_t regs; 1651 int instance; 1652 int err; 1653 mac_info_t *mip; 1654 int intr_types; 1655 int i; 1656 1657 instance = ddi_get_instance(devinfo); 1658 1659 BGE_GTRACE(("bge_attach($%p, %d) instance %d", 1660 (void *)devinfo, cmd, instance)); 1661 BGE_BRKPT(NULL, "bge_attach"); 1662 1663 switch (cmd) { 1664 default: 1665 return (DDI_FAILURE); 1666 1667 case DDI_RESUME: 1668 return (bge_resume(devinfo)); 1669 1670 case DDI_ATTACH: 1671 break; 1672 } 1673 1674 /* 1675 * Allocate mac_t and BGE private structures, and 1676 * cross-link them so that given either one of these or 1677 * the devinfo the others can be derived. 1678 */ 1679 macp = kmem_zalloc(sizeof (*macp), KM_SLEEP); 1680 bgep = kmem_zalloc(sizeof (*bgep), KM_SLEEP); 1681 ddi_set_driver_private(devinfo, bgep); 1682 bgep->bge_guard = BGE_GUARD; 1683 bgep->devinfo = devinfo; 1684 bgep->macp = macp; 1685 macp->m_driver = bgep; 1686 1687 /* 1688 * Initialize more fields in BGE private data 1689 */ 1690 bgep->debug = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 1691 DDI_PROP_DONTPASS, debug_propname, bge_debug); 1692 (void) snprintf(bgep->ifname, sizeof (bgep->ifname), "%s%d", 1693 BGE_DRIVER_NAME, instance); 1694 1695 /* 1696 * Look up the IOMMU's page size for DVMA mappings (must be 1697 * a power of 2) and convert to a mask. This can be used to 1698 * determine whether a message buffer crosses a page boundary. 1699 * Note: in 2s complement binary notation, if X is a power of 1700 * 2, then -X has the representation "11...1100...00". 1701 */ 1702 bgep->pagemask = dvma_pagesize(devinfo); 1703 ASSERT(ddi_ffs(bgep->pagemask) == ddi_fls(bgep->pagemask)); 1704 bgep->pagemask = -bgep->pagemask; 1705 1706 /* 1707 * Map config space registers 1708 * Read chip ID & set up config space command register(s) 1709 * 1710 * Note: this leaves the chip accessible by Memory Space 1711 * accesses, but with interrupts and Bus Mastering off. 1712 * This should ensure that nothing untoward will happen 1713 * if it has been left active by the (net-)bootloader. 1714 * We'll re-enable Bus Mastering once we've reset the chip, 1715 * and allow interrupts only when everything else is set up. 1716 */ 1717 err = pci_config_setup(devinfo, &bgep->cfg_handle); 1718 if (err != DDI_SUCCESS) { 1719 bge_problem(bgep, "pci_config_setup() failed"); 1720 goto attach_fail; 1721 } 1722 bgep->progress |= PROGRESS_CFG; 1723 cidp = &bgep->chipid; 1724 bzero(cidp, sizeof (*cidp)); 1725 bge_chip_cfg_init(bgep, cidp, B_FALSE); 1726 1727 /* 1728 * Update those parts of the chip ID derived from volatile 1729 * registers with the values seen by OBP (in case the chip 1730 * has been reset externally and therefore lost them). 1731 */ 1732 cidp->subven = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 1733 DDI_PROP_DONTPASS, subven_propname, cidp->subven); 1734 cidp->subdev = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 1735 DDI_PROP_DONTPASS, subdev_propname, cidp->subdev); 1736 cidp->clsize = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 1737 DDI_PROP_DONTPASS, clsize_propname, cidp->clsize); 1738 cidp->latency = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 1739 DDI_PROP_DONTPASS, latency_propname, cidp->latency); 1740 cidp->rx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 1741 DDI_PROP_DONTPASS, rxrings_propname, cidp->rx_rings); 1742 cidp->tx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 1743 DDI_PROP_DONTPASS, txrings_propname, cidp->tx_rings); 1744 1745 if (bge_jumbo_enable == B_TRUE) { 1746 cidp->default_mtu = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 1747 DDI_PROP_DONTPASS, default_mtu, BGE_DEFAULT_MTU); 1748 if ((cidp->default_mtu < BGE_DEFAULT_MTU)|| 1749 (cidp->default_mtu > BGE_MAXIMUM_MTU)) { 1750 cidp->default_mtu = BGE_DEFAULT_MTU; 1751 } 1752 } 1753 /* 1754 * Map operating registers 1755 */ 1756 err = ddi_regs_map_setup(devinfo, BGE_PCI_OPREGS_RNUMBER, 1757 ®s, 0, 0, &bge_reg_accattr, &bgep->io_handle); 1758 if (err != DDI_SUCCESS) { 1759 bge_problem(bgep, "ddi_regs_map_setup() failed"); 1760 goto attach_fail; 1761 } 1762 bgep->io_regs = regs; 1763 bgep->progress |= PROGRESS_REGS; 1764 1765 /* 1766 * Characterise the device, so we know its requirements. 1767 * Then allocate the appropriate TX and RX descriptors & buffers. 1768 */ 1769 bge_chip_id_init(bgep); 1770 err = bge_alloc_bufs(bgep); 1771 if (err != DDI_SUCCESS) { 1772 bge_problem(bgep, "DMA buffer allocation failed"); 1773 goto attach_fail; 1774 } 1775 1776 /* 1777 * Add the softint handlers: 1778 * 1779 * Both of these handlers are used to avoid restrictions on the 1780 * context and/or mutexes required for some operations. In 1781 * particular, the hardware interrupt handler and its subfunctions 1782 * can detect a number of conditions that we don't want to handle 1783 * in that context or with that set of mutexes held. So, these 1784 * softints are triggered instead: 1785 * 1786 * the <resched> softint is triggered if if we have previously 1787 * had to refuse to send a packet because of resource shortage 1788 * (we've run out of transmit buffers), but the send completion 1789 * interrupt handler has now detected that more buffers have 1790 * become available. 1791 * 1792 * the <factotum> is triggered if the h/w interrupt handler 1793 * sees the <link state changed> or <error> bits in the status 1794 * block. It's also triggered periodically to poll the link 1795 * state, just in case we aren't getting link status change 1796 * interrupts ... 1797 */ 1798 err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->resched_id, 1799 NULL, NULL, bge_reschedule, (caddr_t)bgep); 1800 if (err != DDI_SUCCESS) { 1801 bge_problem(bgep, "ddi_add_softintr() failed"); 1802 goto attach_fail; 1803 } 1804 bgep->progress |= PROGRESS_RESCHED; 1805 err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->factotum_id, 1806 NULL, NULL, bge_chip_factotum, (caddr_t)bgep); 1807 if (err != DDI_SUCCESS) { 1808 bge_problem(bgep, "ddi_add_softintr() failed"); 1809 goto attach_fail; 1810 } 1811 bgep->progress |= PROGRESS_FACTOTUM; 1812 1813 /* Get supported interrupt types */ 1814 if (ddi_intr_get_supported_types(devinfo, &intr_types) != DDI_SUCCESS) { 1815 bge_error(bgep, "ddi_intr_get_supported_types failed\n"); 1816 1817 goto attach_fail; 1818 } 1819 1820 bge_log(bgep, "ddi_intr_get_supported_types() returned: %x", 1821 intr_types); 1822 1823 if ((intr_types & DDI_INTR_TYPE_MSI) && bgep->chipid.msi_enabled) { 1824 if (bge_add_intrs(bgep, DDI_INTR_TYPE_MSI) != DDI_SUCCESS) { 1825 bge_error(bgep, "MSI registration failed, " 1826 "trying FIXED interrupt type\n"); 1827 } else { 1828 bge_log(bgep, "Using MSI interrupt type\n"); 1829 1830 bgep->intr_type = DDI_INTR_TYPE_MSI; 1831 bgep->progress |= PROGRESS_INTR; 1832 } 1833 } 1834 1835 if (!(bgep->progress & PROGRESS_INTR) && 1836 (intr_types & DDI_INTR_TYPE_FIXED)) { 1837 if (bge_add_intrs(bgep, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS) { 1838 bge_error(bgep, "FIXED interrupt " 1839 "registration failed\n"); 1840 goto attach_fail; 1841 } 1842 1843 bge_log(bgep, "Using FIXED interrupt type\n"); 1844 1845 bgep->intr_type = DDI_INTR_TYPE_FIXED; 1846 bgep->progress |= PROGRESS_INTR; 1847 } 1848 1849 if (!(bgep->progress & PROGRESS_INTR)) { 1850 bge_error(bgep, "No interrupts registered\n"); 1851 goto attach_fail; 1852 } 1853 1854 /* 1855 * Note that interrupts are not enabled yet as 1856 * mutex locks are not initialized. 1857 * Initialize rings and mutex locks. 1858 */ 1859 bge_init_rings(bgep); 1860 bgep->progress |= PROGRESS_HWINT; 1861 1862 /* 1863 * Now that mutex locks are initialized, enable interrupts. 1864 */ 1865 if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) { 1866 /* Call ddi_intr_block_enable() for MSI interrupts */ 1867 (void) ddi_intr_block_enable(bgep->htable, bgep->intr_cnt); 1868 } else { 1869 /* Call ddi_intr_enable for MSI or FIXED interrupts */ 1870 for (i = 0; i < bgep->intr_cnt; i++) { 1871 (void) ddi_intr_enable(bgep->htable[i]); 1872 } 1873 } 1874 1875 /* 1876 * Initialise link state variables 1877 * Stop, reset & reinitialise the chip. 1878 * Initialise the (internal) PHY. 1879 */ 1880 bgep->link_state = LINK_STATE_UNKNOWN; 1881 bgep->link_up_msg = bgep->link_down_msg = " (initialized)"; 1882 1883 mutex_enter(bgep->genlock); 1884 1885 /* 1886 * Reset chip & rings to initial state; also reset address 1887 * filtering, promiscuity, loopback mode. 1888 */ 1889 bge_reset(bgep); 1890 1891 bzero(bgep->mcast_hash, sizeof (bgep->mcast_hash)); 1892 bzero(bgep->mcast_refs, sizeof (bgep->mcast_refs)); 1893 bgep->promisc = B_FALSE; 1894 bgep->param_loop_mode = BGE_LOOP_NONE; 1895 1896 mutex_exit(bgep->genlock); 1897 1898 bge_phys_init(bgep); 1899 bgep->progress |= PROGRESS_PHY; 1900 1901 /* 1902 * Register NDD-tweakable parameters 1903 */ 1904 if (bge_nd_init(bgep)) { 1905 bge_problem(bgep, "bge_nd_init() failed"); 1906 goto attach_fail; 1907 } 1908 bgep->progress |= PROGRESS_NDD; 1909 1910 /* 1911 * Create & initialise named kstats 1912 */ 1913 bge_init_kstats(bgep, instance); 1914 bgep->progress |= PROGRESS_KSTATS; 1915 1916 /* 1917 * Determine whether to override the chip's own MAC address 1918 */ 1919 bge_find_mac_address(bgep, cidp); 1920 ethaddr_copy(cidp->vendor_addr.addr, bgep->curr_addr.addr); 1921 bgep->curr_addr.set = 1; 1922 1923 /* 1924 * Initialize pointers to device specific functions which 1925 * will be used by the generic layer. 1926 */ 1927 mip = &(macp->m_info); 1928 mip->mi_media = DL_ETHER; 1929 mip->mi_sdu_min = 0; 1930 mip->mi_sdu_max = cidp->ethmax_size - sizeof (struct ether_header); 1931 mip->mi_cksum = HCKSUM_INET_FULL_V4 | HCKSUM_IPHDRCKSUM; 1932 mip->mi_poll = DL_CAPAB_POLL; 1933 1934 mip->mi_addr_length = ETHERADDRL; 1935 bcopy(ether_brdcst, mip->mi_brdcst_addr, ETHERADDRL); 1936 bcopy(bgep->curr_addr.addr, mip->mi_unicst_addr, ETHERADDRL); 1937 1938 MAC_STAT_MIB(mip->mi_stat); 1939 mip->mi_stat[MAC_STAT_UNKNOWNS] = B_FALSE; 1940 MAC_STAT_ETHER(mip->mi_stat); 1941 mip->mi_stat[MAC_STAT_SQE_ERRORS] = B_FALSE; 1942 mip->mi_stat[MAC_STAT_MACRCV_ERRORS] = B_FALSE; 1943 if (!(bgep->chipid.flags & CHIP_FLAG_SERDES)) 1944 MAC_STAT_MII(mip->mi_stat); 1945 1946 macp->m_stat = bge_m_stat; 1947 macp->m_stop = bge_m_stop; 1948 macp->m_start = bge_m_start; 1949 macp->m_unicst = bge_m_unicst; 1950 macp->m_multicst = bge_m_multicst; 1951 macp->m_promisc = bge_m_promisc; 1952 macp->m_tx = bge_m_tx; 1953 macp->m_resources = bge_m_resources; 1954 macp->m_ioctl = bge_m_ioctl; 1955 1956 macp->m_dip = devinfo; 1957 macp->m_ident = MAC_IDENT; 1958 1959 /* 1960 * Finally, we're ready to register ourselves with the MAC layer 1961 * interface; if this succeeds, we're all ready to start() 1962 */ 1963 if (mac_register(macp) != 0) 1964 goto attach_fail; 1965 1966 cychand.cyh_func = bge_chip_cyclic; 1967 cychand.cyh_arg = bgep; 1968 cychand.cyh_level = CY_LOCK_LEVEL; 1969 cyctime.cyt_when = 0; 1970 cyctime.cyt_interval = BGE_CYCLIC_PERIOD; 1971 mutex_enter(&cpu_lock); 1972 bgep->cyclic_id = cyclic_add(&cychand, &cyctime); 1973 mutex_exit(&cpu_lock); 1974 1975 bgep->progress |= PROGRESS_READY; 1976 ASSERT(bgep->bge_guard == BGE_GUARD); 1977 return (DDI_SUCCESS); 1978 1979 attach_fail: 1980 bge_unattach(bgep); 1981 return (DDI_FAILURE); 1982 } 1983 1984 /* 1985 * bge_suspend() -- suspend transmit/receive for powerdown 1986 */ 1987 static int 1988 bge_suspend(bge_t *bgep) 1989 { 1990 /* 1991 * Stop processing and idle (powerdown) the PHY ... 1992 */ 1993 mutex_enter(bgep->genlock); 1994 bge_stop(bgep); 1995 bge_phys_idle(bgep); 1996 mutex_exit(bgep->genlock); 1997 1998 return (DDI_SUCCESS); 1999 } 2000 2001 /* 2002 * detach(9E) -- Detach a device from the system 2003 */ 2004 static int 2005 bge_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd) 2006 { 2007 bge_t *bgep; 2008 2009 BGE_GTRACE(("bge_detach($%p, %d)", (void *)devinfo, cmd)); 2010 2011 bgep = ddi_get_driver_private(devinfo); 2012 2013 switch (cmd) { 2014 default: 2015 return (DDI_FAILURE); 2016 2017 case DDI_SUSPEND: 2018 return (bge_suspend(bgep)); 2019 2020 case DDI_DETACH: 2021 break; 2022 } 2023 2024 /* 2025 * Unregister from the GLD subsystem. This can fail, in 2026 * particular if there are DLPI style-2 streams still open - 2027 * in which case we just return failure without shutting 2028 * down chip operations. 2029 */ 2030 if (mac_unregister(bgep->macp) != 0) 2031 return (DDI_FAILURE); 2032 2033 /* 2034 * All activity stopped, so we can clean up & exit 2035 */ 2036 bge_unattach(bgep); 2037 return (DDI_SUCCESS); 2038 } 2039 2040 2041 /* 2042 * ========== Module Loading Data & Entry Points ========== 2043 */ 2044 2045 #undef BGE_DBG 2046 #define BGE_DBG BGE_DBG_INIT /* debug flag for this code */ 2047 2048 DDI_DEFINE_STREAM_OPS(bge_dev_ops, nulldev, nulldev, bge_attach, bge_detach, 2049 nodev, NULL, D_MP, NULL); 2050 2051 static struct modldrv bge_modldrv = { 2052 &mod_driverops, /* Type of module. This one is a driver */ 2053 bge_ident, /* short description */ 2054 &bge_dev_ops /* driver specific ops */ 2055 }; 2056 2057 static struct modlinkage modlinkage = { 2058 MODREV_1, (void *)&bge_modldrv, NULL 2059 }; 2060 2061 2062 int 2063 _info(struct modinfo *modinfop) 2064 { 2065 return (mod_info(&modlinkage, modinfop)); 2066 } 2067 2068 int 2069 _init(void) 2070 { 2071 int status; 2072 2073 mac_init_ops(&bge_dev_ops, "bge"); 2074 status = mod_install(&modlinkage); 2075 if (status == DDI_SUCCESS) 2076 mutex_init(bge_log_mutex, NULL, MUTEX_DRIVER, NULL); 2077 else 2078 mac_fini_ops(&bge_dev_ops); 2079 return (status); 2080 } 2081 2082 int 2083 _fini(void) 2084 { 2085 int status; 2086 2087 status = mod_remove(&modlinkage); 2088 if (status == DDI_SUCCESS) { 2089 mac_fini_ops(&bge_dev_ops); 2090 mutex_destroy(bge_log_mutex); 2091 } 2092 return (status); 2093 } 2094 2095 2096 /* 2097 * bge_add_intrs: 2098 * 2099 * Register FIXED or MSI interrupts. 2100 */ 2101 static int 2102 bge_add_intrs(bge_t *bgep, int intr_type) 2103 { 2104 dev_info_t *dip = bgep->devinfo; 2105 int avail, actual, intr_size, count = 0; 2106 int i, flag, ret; 2107 2108 bge_log(bgep, "bge_add_intrs: interrupt type 0x%x\n", intr_type); 2109 2110 /* Get number of interrupts */ 2111 ret = ddi_intr_get_nintrs(dip, intr_type, &count); 2112 if ((ret != DDI_SUCCESS) || (count == 0)) { 2113 bge_error(bgep, "ddi_intr_get_nintrs() failure, ret: %d, " 2114 "count: %d", ret, count); 2115 2116 return (DDI_FAILURE); 2117 } 2118 2119 /* Get number of available interrupts */ 2120 ret = ddi_intr_get_navail(dip, intr_type, &avail); 2121 if ((ret != DDI_SUCCESS) || (avail == 0)) { 2122 bge_error(bgep, "ddi_intr_get_navail() failure, " 2123 "ret: %d, avail: %d\n", ret, avail); 2124 2125 return (DDI_FAILURE); 2126 } 2127 2128 if (avail < count) { 2129 bge_log(bgep, "nitrs() returned %d, navail returned %d\n", 2130 count, avail); 2131 } 2132 2133 /* 2134 * BGE hardware generates only single MSI even though it claims 2135 * to support multiple MSIs. So, hard code MSI count value to 1. 2136 */ 2137 if (intr_type == DDI_INTR_TYPE_MSI) { 2138 count = 1; 2139 flag = DDI_INTR_ALLOC_STRICT; 2140 } else { 2141 flag = DDI_INTR_ALLOC_NORMAL; 2142 } 2143 2144 /* Allocate an array of interrupt handles */ 2145 intr_size = count * sizeof (ddi_intr_handle_t); 2146 bgep->htable = kmem_alloc(intr_size, KM_SLEEP); 2147 2148 /* Call ddi_intr_alloc() */ 2149 ret = ddi_intr_alloc(dip, bgep->htable, intr_type, 0, 2150 count, &actual, flag); 2151 2152 if ((ret != DDI_SUCCESS) || (actual == 0)) { 2153 bge_error(bgep, "ddi_intr_alloc() failed %d\n", ret); 2154 2155 kmem_free(bgep->htable, intr_size); 2156 return (DDI_FAILURE); 2157 } 2158 2159 if (actual < count) { 2160 bge_log(bgep, "Requested: %d, Received: %d\n", count, actual); 2161 } 2162 2163 bgep->intr_cnt = actual; 2164 2165 /* 2166 * Get priority for first msi, assume remaining are all the same 2167 */ 2168 if ((ret = ddi_intr_get_pri(bgep->htable[0], &bgep->intr_pri)) != 2169 DDI_SUCCESS) { 2170 bge_error(bgep, "ddi_intr_get_pri() failed %d\n", ret); 2171 2172 /* Free already allocated intr */ 2173 for (i = 0; i < actual; i++) { 2174 (void) ddi_intr_free(bgep->htable[i]); 2175 } 2176 2177 kmem_free(bgep->htable, intr_size); 2178 return (DDI_FAILURE); 2179 } 2180 2181 /* Call ddi_intr_add_handler() */ 2182 for (i = 0; i < actual; i++) { 2183 if ((ret = ddi_intr_add_handler(bgep->htable[i], bge_intr, 2184 (caddr_t)bgep, (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) { 2185 bge_error(bgep, "ddi_intr_add_handler() " 2186 "failed %d\n", ret); 2187 2188 /* Free already allocated intr */ 2189 for (i = 0; i < actual; i++) { 2190 (void) ddi_intr_free(bgep->htable[i]); 2191 } 2192 2193 kmem_free(bgep->htable, intr_size); 2194 return (DDI_FAILURE); 2195 } 2196 } 2197 2198 if ((ret = ddi_intr_get_cap(bgep->htable[0], &bgep->intr_cap)) 2199 != DDI_SUCCESS) { 2200 bge_error(bgep, "ddi_intr_get_cap() failed %d\n", ret); 2201 2202 for (i = 0; i < actual; i++) { 2203 (void) ddi_intr_remove_handler(bgep->htable[i]); 2204 (void) ddi_intr_free(bgep->htable[i]); 2205 } 2206 2207 kmem_free(bgep->htable, intr_size); 2208 return (DDI_FAILURE); 2209 } 2210 2211 return (DDI_SUCCESS); 2212 } 2213 2214 /* 2215 * bge_rem_intrs: 2216 * 2217 * Unregister FIXED or MSI interrupts 2218 */ 2219 static void 2220 bge_rem_intrs(bge_t *bgep) 2221 { 2222 int i; 2223 2224 bge_log(bgep, "bge_rem_intrs\n"); 2225 2226 /* Disable all interrupts */ 2227 if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) { 2228 /* Call ddi_intr_block_disable() */ 2229 (void) ddi_intr_block_disable(bgep->htable, bgep->intr_cnt); 2230 } else { 2231 for (i = 0; i < bgep->intr_cnt; i++) { 2232 (void) ddi_intr_disable(bgep->htable[i]); 2233 } 2234 } 2235 2236 /* Call ddi_intr_remove_handler() */ 2237 for (i = 0; i < bgep->intr_cnt; i++) { 2238 (void) ddi_intr_remove_handler(bgep->htable[i]); 2239 (void) ddi_intr_free(bgep->htable[i]); 2240 } 2241 2242 kmem_free(bgep->htable, bgep->intr_cnt * sizeof (ddi_intr_handle_t)); 2243 } 2244