1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #ifndef _BGE_IMPL_H 28 #define _BGE_IMPL_H 29 30 31 #ifdef __cplusplus 32 extern "C" { 33 #endif 34 35 #include <sys/types.h> 36 #include <sys/stream.h> 37 #include <sys/strsun.h> 38 #include <sys/strsubr.h> 39 #include <sys/stat.h> 40 #include <sys/pci.h> 41 #include <sys/note.h> 42 #include <sys/modctl.h> 43 #include <sys/crc32.h> 44 #ifdef __sparcv9 45 #include <v9/sys/membar.h> 46 #endif /* __sparcv9 */ 47 #include <sys/kstat.h> 48 #include <sys/ethernet.h> 49 #include <sys/vlan.h> 50 #include <sys/errno.h> 51 #include <sys/dlpi.h> 52 #include <sys/devops.h> 53 #include <sys/debug.h> 54 #include <sys/conf.h> 55 56 #include <netinet/ip6.h> 57 58 #include <inet/common.h> 59 #include <inet/ip.h> 60 #include <inet/mi.h> 61 #include <inet/nd.h> 62 #include <sys/pattr.h> 63 64 #include <sys/disp.h> 65 #include <sys/cmn_err.h> 66 #include <sys/ddi.h> 67 #include <sys/sunddi.h> 68 69 #include <sys/ddifm.h> 70 #include <sys/fm/protocol.h> 71 #include <sys/fm/util.h> 72 #include <sys/fm/io/ddi.h> 73 74 #include <sys/mac_provider.h> 75 #include <sys/mac_ether.h> 76 77 #ifdef __amd64 78 #include <sys/x86_archext.h> 79 #endif 80 81 /* 82 * <sys/ethernet.h> *may* already have provided the typedef ether_addr_t; 83 * but of course C doesn't provide a way to check this directly. So here 84 * we rely on the fact that the symbol ETHERTYPE_AT was added to the 85 * header file (as a #define, which we *can* test for) at the same time 86 * as the typedef for ether_addr_t ;-! 87 */ 88 #ifndef ETHERTYPE_AT 89 typedef uchar_t ether_addr_t[ETHERADDRL]; 90 #endif /* ETHERTYPE_AT */ 91 92 /* 93 * Reconfiguring the network devices requires the net_config privilege 94 * in Solaris 10+. 95 */ 96 extern int secpolicy_net_config(const cred_t *, boolean_t); 97 98 #include <sys/netlb.h> /* originally from cassini */ 99 #include <sys/miiregs.h> /* by fjlite out of intel */ 100 101 #include "bge.h" 102 #include "bge_hw.h" 103 104 /* 105 * Compile-time feature switches ... 106 */ 107 #define BGE_DO_PPIO 0 /* peek/poke ioctls */ 108 #define BGE_RX_SOFTINT 0 /* softint per receive ring */ 109 #define BGE_CHOOSE_SEND_METHOD 0 /* send by copying only */ 110 111 /* 112 * NOTES: 113 * 114 * #defines: 115 * 116 * BGE_PCI_CONFIG_RNUMBER and BGE_PCI_OPREGS_RNUMBER are the 117 * register-set numbers to use for the config space registers 118 * and the operating registers respectively. On an OBP-based 119 * machine, regset 0 refers to CONFIG space, and regset 1 will 120 * be the operating registers in MEMORY space. If an expansion 121 * ROM is fitted, it may appear as a further register set. 122 * 123 * BGE_DMA_MODE defines the mode (STREAMING/CONSISTENT) used 124 * for the data buffers. The descriptors are always set up 125 * in CONSISTENT mode. 126 * 127 * BGE_HEADROOM defines how much space we'll leave in allocated 128 * mblks before the first valid data byte. This should be chosen 129 * to be 2 modulo 4, so that once the ethernet header (14 bytes) 130 * has been stripped off, the packet data will be 4-byte aligned. 131 * The remaining space can be used by upstream modules to prepend 132 * any headers required. 133 */ 134 135 #define BGE_PCI_CONFIG_RNUMBER 0 136 #define BGE_PCI_OPREGS_RNUMBER 1 137 #define BGE_DMA_MODE DDI_DMA_STREAMING 138 #define BGE_HEADROOM 34 139 140 /* 141 * BGE_HALFTICK is half the period of the cyclic callback (in 142 * nanoseconds), chosen so that 0.5s <= cyclic period <= 1s. 143 * Other time values are derived as odd multiples of this value 144 * so that there's little chance of ambiguity w.r.t. which tick 145 * a timeout expires on. 146 * 147 * BGE_PHY_STABLE_TIME is the period for which the contents of the 148 * PHY's status register must remain unchanging before we accept 149 * that the link has come up. [Sometimes the link comes up, only 150 * to go down again within a short time as the autonegotiation 151 * process cycles through various options before finding the best 152 * compatible mode. We don't want to report repeated link up/down 153 * cycles, so we wait until we think it's stable.] 154 * 155 * BGE_SERDES_STABLE_TIME is the analogous value for the SerDes 156 * interface. It's much shorter, 'cos the SerDes doesn't show 157 * these effects as much as the copper PHY. 158 * 159 * BGE_LINK_SETTLE_TIME is the period during which we regard link 160 * up/down cycles as an normal event after resetting/reprogramming 161 * the PHY. During this time, link up/down messages are sent to 162 * the log only, not the console. At any other time, link change 163 * events are regarded as unexpected and sent to both console & log. 164 * 165 * These latter two values have no theoretical justification, but 166 * are derived from observations and heuristics - the values below 167 * just seem to work quite well. 168 */ 169 170 #define BGE_HALFTICK 268435456LL /* 2**28 ns! */ 171 #define BGE_CYCLIC_PERIOD (2*BGE_HALFTICK) /* ~0.5s */ 172 #define BGE_SERDES_STABLE_TIME (3*BGE_HALFTICK) /* ~0.8s */ 173 #define BGE_PHY_STABLE_TIME (11*BGE_HALFTICK) /* ~3.0s */ 174 #define BGE_LINK_SETTLE_TIME (111*BGE_HALFTICK) /* ~30.0s */ 175 176 /* 177 * Indices used to identify the different buffer rings internally 178 */ 179 #define BGE_STD_BUFF_RING 0 180 #define BGE_JUMBO_BUFF_RING 1 181 #define BGE_MINI_BUFF_RING 2 182 183 /* 184 * Current implementation limits 185 */ 186 #define BGE_BUFF_RINGS_USED 2 /* std & jumbo ring */ 187 /* for now */ 188 #define BGE_RECV_RINGS_USED 16 /* up to 16 rtn rings */ 189 /* for now */ 190 #define BGE_SEND_RINGS_USED 4 /* up to 4 tx rings */ 191 /* for now */ 192 #define BGE_HASH_TABLE_SIZE 128 /* may be 256 later */ 193 194 /* 195 * Ring/buffer size parameters 196 * 197 * All of the (up to) 16 TX rings & and the corresponding buffers are the 198 * same size. 199 * 200 * Each of the (up to) 3 receive producer (aka buffer) rings is a different 201 * size and has different sized buffers associated with it too. 202 * 203 * The (up to) 16 receive return rings have no buffers associated with them. 204 * The number of slots per receive return ring must be 2048 if the mini 205 * ring is enabled, otherwise it may be 1024. See Broadcom document 206 * 570X-PG102-R page 56. 207 * 208 * Note: only the 5700 supported external memory (and therefore the mini 209 * ring); the 5702/3/4 don't. This driver doesn't support the original 210 * 5700, so we won't ever use the mini ring capability. 211 */ 212 213 #define BGE_SEND_RINGS_DEFAULT 1 214 #define BGE_RECV_RINGS_DEFAULT 1 215 216 #define BGE_SEND_BUFF_SIZE_DEFAULT 1536 217 #define BGE_SEND_BUFF_SIZE_JUMBO 9022 218 #define BGE_SEND_SLOTS_USED 512 219 220 #define BGE_STD_BUFF_SIZE 1536 /* 0x600 */ 221 #define BGE_STD_SLOTS_USED 512 222 223 #define BGE_JUMBO_BUFF_SIZE 9022 /* 9k */ 224 #define BGE_JUMBO_SLOTS_USED 256 225 226 #define BGE_MINI_BUFF_SIZE 128 /* 64? 256? */ 227 #define BGE_MINI_SLOTS_USED 0 /* must be 0; see above */ 228 229 #define BGE_RECV_BUFF_SIZE 0 230 #if BGE_MINI_SLOTS_USED > 0 231 #define BGE_RECV_SLOTS_USED 2048 /* required */ 232 #else 233 #define BGE_RECV_SLOTS_USED 1024 /* could be 2048 anyway */ 234 #endif 235 236 #define BGE_SEND_BUF_NUM 512 237 #define BGE_SEND_BUF_ARRAY 16 238 #define BGE_SEND_BUF_ARRAY_JUMBO 3 239 #define BGE_SEND_BUF_MAX (BGE_SEND_BUF_NUM*BGE_SEND_BUF_ARRAY) 240 241 /* 242 * PCI type. PCI-Express or PCI/PCIX 243 */ 244 #define BGE_PCI 0 245 #define BGE_PCI_E 1 246 #define BGE_PCI_X 2 247 248 /* 249 * Statistic type. There are two type of statistic: 250 * statistic block and statistic registers 251 */ 252 #define BGE_STAT_BLK 1 253 #define BGE_STAT_REG 2 254 255 /* 256 * MTU.for all chipsets ,the default is 1500 ,and some chipsets 257 * support 9k jumbo frames size 258 */ 259 #define BGE_DEFAULT_MTU 1500 260 #define BGE_MAXIMUM_MTU 9000 261 262 /* 263 * Pad the h/w defined status block (which can be up to 80 bytes long) 264 * to a power-of-two boundary 265 */ 266 #define BGE_STATUS_PADDING (128 - sizeof (bge_status_t)) 267 268 /* 269 * On platforms which support DVMA, we can simply allocate one big piece 270 * of memory for all the Tx buffers and another for the Rx buffers, and 271 * then carve them up as required. It doesn't matter if they aren't just 272 * one physically contiguous piece each, because both the CPU *and* the 273 * I/O device can see them *as though they were*. 274 * 275 * However, if only physically-addressed DMA is possible, this doesn't 276 * work; we can't expect to get enough contiguously-addressed memory for 277 * all the buffers of each type, so in this case we request a number of 278 * smaller pieces, each still large enough for several buffers but small 279 * enough to fit within "an I/O page" (e.g. 64K). 280 * 281 * The #define below specifies how many pieces of memory are to be used; 282 * 16 has been shown to work on an i86pc architecture but this could be 283 * different on other non-DVMA platforms ... 284 */ 285 #ifdef _DMA_USES_VIRTADDR 286 #define BGE_SPLIT 1 /* no split required */ 287 #else 288 #if ((BGE_BUFF_RINGS_USED > 1) || (BGE_SEND_RINGS_USED > 1) || \ 289 (BGE_RECV_RINGS_USED > 1)) 290 #define BGE_SPLIT 128 /* split 128 ways */ 291 #else 292 #define BGE_SPLIT 16 /* split 16 ways */ 293 #endif 294 #endif /* _DMA_USES_VIRTADDR */ 295 296 #define BGE_RECV_RINGS_SPLIT (BGE_RECV_RINGS_MAX + 1) 297 298 /* 299 * STREAMS parameters 300 */ 301 #define BGE_IDNUM 0 /* zero seems to work */ 302 #define BGE_LOWAT (256) 303 #define BGE_HIWAT (256*1024) 304 305 306 /* 307 * Basic data types, for clarity in distinguishing 'numbers' 308 * used for different purposes ... 309 * 310 * A <bge_regno_t> is a register 'address' (offset) in any one of 311 * various address spaces (PCI config space, PCI memory-mapped I/O 312 * register space, MII registers, etc). None of these exceeds 64K, 313 * so we could use a 16-bit representation but pointer-sized objects 314 * are more "natural" in most architectures; they seem to be handled 315 * more efficiently on SPARC and no worse on x86. 316 * 317 * BGE_REGNO_NONE represents the non-existent value in this space. 318 */ 319 typedef uintptr_t bge_regno_t; /* register # (offset) */ 320 #define BGE_REGNO_NONE (~(uintptr_t)0u) 321 322 /* 323 * Describes one chunk of allocated DMA-able memory 324 * 325 * In some cases, this is a single chunk as allocated from the system; 326 * but we also use this structure to represent slices carved off such 327 * a chunk. Even when we don't really need all the information, we 328 * use this structure as a convenient way of correlating the various 329 * ways of looking at a piece of memory (kernel VA, IO space DVMA, 330 * handle+offset, etc). 331 */ 332 typedef struct { 333 ddi_acc_handle_t acc_hdl; /* handle for memory */ 334 void *mem_va; /* CPU VA of memory */ 335 uint32_t nslots; /* number of slots */ 336 uint32_t size; /* size per slot */ 337 size_t alength; /* allocated size */ 338 /* >= product of above */ 339 340 ddi_dma_handle_t dma_hdl; /* DMA handle */ 341 offset_t offset; /* relative to handle */ 342 ddi_dma_cookie_t cookie; /* associated cookie */ 343 uint32_t ncookies; /* must be 1 */ 344 uint32_t token; /* arbitrary identifier */ 345 } dma_area_t; /* 0x50 (80) bytes */ 346 347 typedef struct bge_queue_item { 348 struct bge_queue_item *next; 349 void *item; 350 } bge_queue_item_t; 351 352 typedef struct bge_queue { 353 bge_queue_item_t *head; 354 uint32_t count; 355 kmutex_t *lock; 356 } bge_queue_t; 357 /* 358 * Software version of the Receive Buffer Descriptor 359 * There's one of these for each receive buffer (up to 256/512/1024 per ring). 360 */ 361 typedef struct sw_rbd { 362 dma_area_t pbuf; /* (const) related */ 363 /* buffer area */ 364 } sw_rbd_t; /* 0x50 (80) bytes */ 365 366 /* 367 * Software Receive Buffer (Producer) Ring Control Block 368 * There's one of these for each receiver producer ring (up to 3), 369 * but each holds buffers of a different size. 370 */ 371 typedef struct buff_ring { 372 dma_area_t desc; /* (const) related h/w */ 373 /* descriptor area */ 374 dma_area_t buf[BGE_SPLIT]; /* (const) related */ 375 /* buffer area(s) */ 376 bge_rcb_t hw_rcb; /* (const) image of h/w */ 377 /* RCB, and used to */ 378 struct bge *bgep; /* (const) containing */ 379 /* driver soft state */ 380 /* initialise same */ 381 volatile uint16_t *cons_index_p; /* (const) ptr to h/w */ 382 /* "consumer index" */ 383 /* (in status block) */ 384 385 /* 386 * The rf_lock must be held when updating the h/w producer index 387 * mailbox register (*chip_mbox_reg), or the s/w producer index 388 * (rf_next). 389 */ 390 bge_regno_t chip_mbx_reg; /* (const) h/w producer */ 391 /* index mailbox offset */ 392 kmutex_t rf_lock[1]; /* serialize refill */ 393 uint64_t rf_next; /* next slot to refill */ 394 /* ("producer index") */ 395 396 sw_rbd_t *sw_rbds; /* software descriptors */ 397 void *spare[4]; /* padding */ 398 } buff_ring_t; /* 0x100 (256) bytes */ 399 400 typedef struct bge_multi_mac { 401 int naddr; /* total supported addresses */ 402 int naddrfree; /* free addresses slots */ 403 ether_addr_t mac_addr[MAC_ADDRESS_REGS_MAX]; 404 boolean_t mac_addr_set[MAC_ADDRESS_REGS_MAX]; 405 } bge_multi_mac_t; 406 407 /* 408 * Software Receive (Return) Ring Control Block 409 * There's one of these for each receiver return ring (up to 16). 410 */ 411 typedef struct recv_ring { 412 /* 413 * The elements flagged (const) in the comments below are 414 * set up once during initialiation and thereafter unchanged. 415 */ 416 dma_area_t desc; /* (const) related h/w */ 417 /* descriptor area */ 418 bge_rcb_t hw_rcb; /* (const) image of h/w */ 419 /* RCB, and used to */ 420 /* initialise same */ 421 struct bge *bgep; /* (const) containing */ 422 /* driver soft state */ 423 ddi_softintr_t rx_softint; /* (const) per-ring */ 424 /* receive callback */ 425 volatile uint16_t *prod_index_p; /* (const) ptr to h/w */ 426 /* "producer index" */ 427 /* (in status block) */ 428 /* 429 * The rx_lock must be held when updating the h/w consumer index 430 * mailbox register (*chip_mbox_reg), or the s/w consumer index 431 * (rx_next). 432 */ 433 bge_regno_t chip_mbx_reg; /* (const) h/w consumer */ 434 /* index mailbox offset */ 435 kmutex_t rx_lock[1]; /* serialize receive */ 436 uint64_t rx_next; /* next slot to examine */ 437 438 mac_ring_handle_t ring_handle; 439 mac_group_handle_t ring_group_handle; 440 uint64_t ring_gen_num; 441 bge_rule_info_t *mac_addr_rule; 442 uint8_t mac_addr_val[ETHERADDRL]; 443 int poll_flag; /* Polling flag */ 444 445 /* Per-ring statistics */ 446 uint64_t rx_pkts; /* Received Packets Count */ 447 uint64_t rx_bytes; /* Received Bytes Count */ 448 } recv_ring_t; 449 450 451 /* 452 * Send packet structure 453 */ 454 typedef struct send_pkt { 455 uint16_t vlan_tci; 456 uint32_t pflags; 457 boolean_t tx_ready; 458 bge_queue_item_t *txbuf_item; 459 } send_pkt_t; 460 461 /* 462 * Software version of tx buffer structure 463 */ 464 typedef struct sw_txbuf { 465 dma_area_t buf; 466 uint32_t copy_len; 467 } sw_txbuf_t; 468 469 /* 470 * Software version of the Send Buffer Descriptor 471 * There's one of these for each send buffer (up to 512 per ring) 472 */ 473 typedef struct sw_sbd { 474 dma_area_t desc; /* (const) related h/w */ 475 /* descriptor area */ 476 bge_queue_item_t *pbuf; /* (const) related */ 477 /* buffer area */ 478 } sw_sbd_t; 479 480 /* 481 * Software Send Ring Control Block 482 * There's one of these for each of (up to) 16 send rings 483 */ 484 typedef struct send_ring { 485 /* 486 * The elements flagged (const) in the comments below are 487 * set up once during initialiation and thereafter unchanged. 488 */ 489 dma_area_t desc; /* (const) related h/w */ 490 /* descriptor area */ 491 dma_area_t buf[BGE_SEND_BUF_ARRAY][BGE_SPLIT]; 492 /* buffer area(s) */ 493 bge_rcb_t hw_rcb; /* (const) image of h/w */ 494 /* RCB, and used to */ 495 /* initialise same */ 496 struct bge *bgep; /* (const) containing */ 497 /* driver soft state */ 498 volatile uint16_t *cons_index_p; /* (const) ptr to h/w */ 499 /* "consumer index" */ 500 /* (in status block) */ 501 502 bge_regno_t chip_mbx_reg; /* (const) h/w producer */ 503 /* index mailbox offset */ 504 /* 505 * Tx buffer queue 506 */ 507 bge_queue_t txbuf_queue; 508 bge_queue_t freetxbuf_queue; 509 bge_queue_t *txbuf_push_queue; 510 bge_queue_t *txbuf_pop_queue; 511 kmutex_t txbuf_lock[1]; 512 kmutex_t freetxbuf_lock[1]; 513 bge_queue_item_t *txbuf_head; 514 send_pkt_t *pktp; 515 uint64_t txpkt_next; 516 uint64_t txfill_next; 517 sw_txbuf_t *txbuf; 518 uint32_t tx_buffers; 519 uint32_t tx_buffers_low; 520 uint32_t tx_array_max; 521 uint32_t tx_array; 522 kmutex_t tx_lock[1]; /* serialize h/w update */ 523 /* ("producer index") */ 524 uint64_t tx_next; /* next slot to use */ 525 uint64_t tx_flow; /* # concurrent sends */ 526 uint64_t tx_block; 527 uint64_t tx_nobd; 528 uint64_t tx_nobuf; 529 uint64_t tx_alloc_fail; 530 531 /* 532 * These counters/indexes are manipulated in the transmit 533 * path using atomics rather than mutexes for speed 534 */ 535 uint64_t tx_free; /* # of slots available */ 536 537 /* 538 * The tc_lock must be held while manipulating the s/w consumer 539 * index (tc_next). 540 */ 541 kmutex_t tc_lock[1]; /* serialize recycle */ 542 uint64_t tc_next; /* next slot to recycle */ 543 /* ("consumer index") */ 544 545 sw_sbd_t *sw_sbds; /* software descriptors */ 546 uint64_t mac_resid; /* special per resource id */ 547 uint64_t pushed_bytes; 548 } send_ring_t; /* 0x100 (256) bytes */ 549 550 typedef struct { 551 ether_addr_t addr; /* in canonical form */ 552 uint8_t spare; 553 boolean_t set; /* B_TRUE => valid */ 554 } bge_mac_addr_t; 555 556 /* 557 * The original 5700/01 supported only SEEPROMs. Later chips (5702+) 558 * support both SEEPROMs (using the same 2-wire CLK/DATA interface for 559 * the hardware and a backwards-compatible software access method), and 560 * buffered or unbuffered FLASH devices connected to the 4-wire SPI bus 561 * and using a new software access method. 562 * 563 * The access methods for SEEPROM and Flash are generally similar, with 564 * the chip handling the serialisation/deserialisation and handshaking, 565 * but the registers used are different, as are a few details of the 566 * protocol, and the timing, so we have to determine which (if any) is 567 * fitted. 568 * 569 * The value UNKNOWN means just that; we haven't yet tried to determine 570 * the device type. 571 * 572 * The value NONE can indicate either that a real and definite absence of 573 * any NVmem has been detected, or that there may be NVmem but we can't 574 * determine its type, perhaps because the NVconfig pins on the chip have 575 * been wired up incorrectly. In either case, access to the NVmem (if any) 576 * is not supported. 577 */ 578 enum bge_nvmem_type { 579 BGE_NVTYPE_NONE = -1, /* (or indeterminable) */ 580 BGE_NVTYPE_UNKNOWN, /* not yet checked */ 581 BGE_NVTYPE_SEEPROM, /* BCM5700/5701 only */ 582 BGE_NVTYPE_LEGACY_SEEPROM, /* 5702+ */ 583 BGE_NVTYPE_UNBUFFERED_FLASH, /* 5702+ */ 584 BGE_NVTYPE_BUFFERED_FLASH /* 5702+ */ 585 }; 586 587 /* 588 * Describes the characteristics of a specific chip 589 * 590 * Note: elements from <businfo> to <latency> are filled in by during 591 * the first phase of chip initialisation (see bge_chip_cfg_init()). 592 * The remaining ones are determined just after the first RESET, in 593 * bge_poll_firmware(). Thereafter, the entire structure is readonly. 594 */ 595 typedef struct { 596 uint32_t asic_rev; /* masked from MHCR */ 597 uint32_t businfo; /* from private reg */ 598 uint16_t command; /* saved during attach */ 599 600 uint16_t vendor; /* vendor-id */ 601 uint16_t device; /* device-id */ 602 uint16_t subven; /* subsystem-vendor-id */ 603 uint16_t subdev; /* subsystem-id */ 604 uint8_t revision; /* revision-id */ 605 uint8_t clsize; /* cache-line-size */ 606 uint8_t latency; /* latency-timer */ 607 608 uint8_t flags; 609 uint16_t chip_label; /* numeric part only */ 610 /* (e.g. 5703/5794/etc) */ 611 uint32_t mbuf_base; /* Mbuf pool parameters */ 612 uint32_t mbuf_length; /* depend on chiptype */ 613 uint32_t pci_type; 614 uint32_t statistic_type; 615 uint32_t bge_dma_rwctrl; 616 uint32_t bge_mlcr_default; 617 uint32_t recv_slots; /* receive ring size */ 618 enum bge_nvmem_type nvtype; /* SEEPROM or Flash */ 619 620 uint16_t jumbo_slots; 621 uint16_t ethmax_size; 622 uint16_t snd_buff_size; 623 uint16_t recv_jumbo_size; 624 uint16_t std_buf_size; 625 uint32_t mbuf_hi_water; 626 uint32_t mbuf_lo_water_rmac; 627 uint32_t mbuf_lo_water_rdma; 628 629 uint32_t rx_rings; /* from bge.conf */ 630 uint32_t tx_rings; /* from bge.conf */ 631 uint32_t default_mtu; /* from bge.conf */ 632 633 uint64_t hw_mac_addr; /* from chip register */ 634 bge_mac_addr_t vendor_addr; /* transform of same */ 635 boolean_t msi_enabled; /* default to true */ 636 637 uint32_t rx_ticks_norm; 638 uint32_t rx_count_norm; 639 uint32_t tx_ticks_norm; 640 uint32_t tx_count_norm; 641 } chip_id_t; 642 643 #define CHIP_FLAG_SUPPORTED 0x80 644 #define CHIP_FLAG_SERDES 0x40 645 #define CHIP_FLAG_PARTIAL_CSUM 0x20 646 #define CHIP_FLAG_NO_JUMBO 0x1 647 648 /* 649 * Collection of physical-layer functions to: 650 * (re)initialise the physical layer 651 * update it to match software settings 652 * check for link status change 653 */ 654 typedef struct { 655 int (*phys_restart)(struct bge *, boolean_t); 656 int (*phys_update)(struct bge *); 657 boolean_t (*phys_check)(struct bge *, boolean_t); 658 } phys_ops_t; 659 660 661 /* 662 * Actual state of the BCM570x chip 663 */ 664 enum bge_chip_state { 665 BGE_CHIP_FAULT = -2, /* fault, need reset */ 666 BGE_CHIP_ERROR, /* error, want reset */ 667 BGE_CHIP_INITIAL, /* Initial state only */ 668 BGE_CHIP_RESET, /* reset, need init */ 669 BGE_CHIP_STOPPED, /* Tx/Rx stopped */ 670 BGE_CHIP_RUNNING /* with interrupts */ 671 }; 672 673 enum bge_mac_state { 674 BGE_MAC_STOPPED = 0, 675 BGE_MAC_STARTED 676 }; 677 678 /* 679 * (Internal) return values from ioctl subroutines 680 */ 681 enum ioc_reply { 682 IOC_INVAL = -1, /* bad, NAK with EINVAL */ 683 IOC_DONE, /* OK, reply sent */ 684 IOC_ACK, /* OK, just send ACK */ 685 IOC_REPLY, /* OK, just send reply */ 686 IOC_RESTART_ACK, /* OK, restart & ACK */ 687 IOC_RESTART_REPLY /* OK, restart & reply */ 688 }; 689 690 /* 691 * (Internal) return values from send_msg subroutines 692 */ 693 enum send_status { 694 SEND_FAIL = -1, /* Not OK */ 695 SEND_KEEP, /* OK, msg queued */ 696 SEND_FREE /* OK, free msg */ 697 }; 698 699 /* 700 * (Internal) enumeration of this driver's kstats 701 */ 702 enum { 703 BGE_KSTAT_RAW = 0, 704 BGE_KSTAT_STATS, 705 BGE_KSTAT_CHIPID, 706 BGE_KSTAT_DRIVER, 707 BGE_KSTAT_PHYS, 708 709 BGE_KSTAT_COUNT 710 }; 711 712 #define BGE_MAX_RESOURCES 255 713 714 /* 715 * Per-instance soft-state structure 716 */ 717 typedef struct bge { 718 /* 719 * These fields are set by attach() and unchanged thereafter ... 720 */ 721 dev_info_t *devinfo; /* device instance */ 722 mac_handle_t mh; /* mac module handle */ 723 ddi_acc_handle_t cfg_handle; /* DDI I/O handle */ 724 ddi_acc_handle_t io_handle; /* DDI I/O handle */ 725 void *io_regs; /* mapped registers */ 726 ddi_periodic_t periodic_id; /* periodical callback */ 727 ddi_softintr_t factotum_id; /* factotum callback */ 728 ddi_softintr_t drain_id; /* reschedule callback */ 729 730 ddi_intr_handle_t *htable; /* For array of interrupts */ 731 int intr_type; /* What type of interrupt */ 732 int intr_cnt; /* # of intrs count returned */ 733 uint_t intr_pri; /* Interrupt priority */ 734 int intr_cap; /* Interrupt capabilities */ 735 uint32_t progress; /* attach tracking */ 736 uint32_t debug; /* per-instance debug */ 737 chip_id_t chipid; 738 const phys_ops_t *physops; 739 char ifname[8]; /* "bge0" ... "bge999" */ 740 741 int fm_capabilities; /* FMA capabilities */ 742 743 /* 744 * These structures describe the blocks of memory allocated during 745 * attach(). They remain unchanged thereafter, although the memory 746 * they describe is carved up into various separate regions and may 747 * therefore be described by other structures as well. 748 */ 749 dma_area_t tx_desc; /* transmit descriptors */ 750 dma_area_t rx_desc[BGE_RECV_RINGS_SPLIT]; 751 /* receive descriptors */ 752 dma_area_t tx_buff[BGE_SPLIT]; 753 dma_area_t rx_buff[BGE_SPLIT]; 754 755 /* 756 * The memory described by the <dma_area> structures above 757 * is carved up into various pieces, which are described by 758 * the structures below. 759 */ 760 dma_area_t statistics; /* describes hardware */ 761 /* statistics area */ 762 dma_area_t status_block; /* describes hardware */ 763 /* status block */ 764 /* 765 * For the BCM5705/5788/5721/5751/5752/5714 and 5715, 766 * the statistic block is not available,the statistic counter must 767 * be gotten from statistic registers.And bge_statistics_reg_t record 768 * the statistic registers value 769 */ 770 bge_statistics_reg_t *pstats; 771 772 /* 773 * Runtime read-write data starts here ... 774 * 775 * 3 Buffer Rings (std/jumbo/mini) 776 * 16 Receive (Return) Rings 777 * 16 Send Rings 778 * 779 * Note: they're not necessarily all used. 780 */ 781 buff_ring_t buff[BGE_BUFF_RINGS_MAX]; /* 3*0x0100 */ 782 783 /* may be obsoleted */ 784 recv_ring_t recv[BGE_RECV_RINGS_MAX]; /* 16*0x0090 */ 785 send_ring_t send[BGE_SEND_RINGS_MAX]; /* 16*0x0100 */ 786 787 /* 788 * Locks: 789 * 790 * Each buffer ring contains its own <rf_lock> which regulates 791 * ring refilling. 792 * 793 * Each receive (return) ring contains its own <rx_lock> which 794 * protects the critical cyclic counters etc. 795 * 796 * Each send ring contains two locks: <tx_lock> for the send-path 797 * protocol data and <tc_lock> for send-buffer recycling. 798 * 799 * Finally <genlock> is a general lock, protecting most other 800 * operational data in the state structure and chip register 801 * accesses. It is acquired by the interrupt handler and 802 * most "mode-control" routines. 803 * 804 * Any of the locks can be acquired singly, but where multiple 805 * locks are acquired, they *must* be in the order: 806 * 807 * genlock >>> rx_lock >>> rf_lock >>> tx_lock >>> tc_lock. 808 * 809 * and within any one class of lock the rings must be locked in 810 * ascending order (send[0].tc_lock >>> send[1].tc_lock), etc. 811 * 812 * Note: actually I don't believe there's any need to acquire 813 * locks on multiple rings, or even locks of all these classes 814 * concurrently; but I've set out the above order so there is a 815 * clear definition of lock hierarchy in case it's ever needed. 816 * 817 * Note: the combinations of locks that are actually held 818 * concurrently are: 819 * 820 * genlock >>> (bge_chip_interrupt()) 821 * rx_lock[i] >>> (bge_receive()) 822 * rf_lock[n] (bge_refill()) 823 * tc_lock[i] (bge_recycle()) 824 */ 825 kmutex_t genlock[1]; 826 krwlock_t errlock[1]; 827 kmutex_t softintrlock[1]; 828 829 /* 830 * Current Ethernet addresses and multicast hash (bitmap) and 831 * refcount tables, protected by <genlock> 832 */ 833 bge_mac_addr_t curr_addr[MAC_ADDRESS_REGS_MAX]; 834 uint32_t mcast_hash[BGE_HASH_TABLE_SIZE/32]; 835 uint8_t mcast_refs[BGE_HASH_TABLE_SIZE]; 836 uint32_t unicst_addr_total; /* total unicst addresses */ 837 uint32_t unicst_addr_avail; 838 /* unused unicst addr slots */ 839 840 /* 841 * Link state data (protected by genlock) 842 */ 843 link_state_t link_state; 844 845 /* 846 * Physical layer: copper only 847 */ 848 bge_regno_t phy_mii_addr; /* should be (const) 1! */ 849 uint16_t phy_gen_status; 850 uint16_t phy_aux_status; 851 852 /* 853 * Physical layer: serdes only 854 */ 855 uint32_t serdes_status; 856 uint32_t serdes_advert; 857 uint32_t serdes_lpadv; 858 859 /* 860 * Driver kstats, protected by <genlock> where necessary 861 */ 862 kstat_t *bge_kstats[BGE_KSTAT_COUNT]; 863 864 /* 865 * Miscellaneous operating variables (protected by genlock) 866 */ 867 uint64_t chip_resets; /* # of chip RESETs */ 868 uint64_t missed_dmas; /* # of missed DMAs */ 869 uint64_t missed_updates; /* # of missed updates */ 870 enum bge_mac_state bge_mac_state; /* definitions above */ 871 enum bge_chip_state bge_chip_state; /* definitions above */ 872 boolean_t send_hw_tcp_csum; 873 boolean_t recv_hw_tcp_csum; 874 boolean_t promisc; 875 boolean_t manual_reset; 876 877 /* 878 * Miscellaneous operating variables (not synchronised) 879 */ 880 uint32_t watchdog; /* watches for Tx stall */ 881 boolean_t bge_intr_running; 882 boolean_t bge_dma_error; 883 boolean_t tx_resched_needed; 884 uint64_t tx_resched; 885 uint32_t factotum_flag; /* softint pending */ 886 uintptr_t pagemask; 887 888 /* 889 * NDD parameters (protected by genlock) 890 */ 891 caddr_t nd_data_p; 892 893 /* 894 * A flag to prevent excessive config space accesses 895 * on platforms having BCM5714C/15C 896 */ 897 boolean_t lastWriteZeroData; 898 899 /* 900 * Spare space, plus guard element used to check data integrity 901 */ 902 uint64_t spare[5]; 903 uint64_t bge_guard; 904 905 /* 906 * Receive rules configure 907 */ 908 bge_recv_rule_t recv_rules[RECV_RULES_NUM_MAX]; 909 910 #ifdef BGE_IPMI_ASF 911 boolean_t asf_enabled; 912 boolean_t asf_wordswapped; 913 boolean_t asf_newhandshake; 914 boolean_t asf_pseudostop; 915 916 uint32_t asf_status; 917 timeout_id_t asf_timeout_id; 918 #endif 919 uint32_t param_en_pause:1, 920 param_en_asym_pause:1, 921 param_en_1000hdx:1, 922 param_en_1000fdx:1, 923 param_en_100fdx:1, 924 param_en_100hdx:1, 925 param_en_10fdx:1, 926 param_en_10hdx:1, 927 param_adv_autoneg:1, 928 param_adv_1000fdx:1, 929 param_adv_1000hdx:1, 930 param_adv_100fdx:1, 931 param_adv_100hdx:1, 932 param_adv_10fdx:1, 933 param_adv_10hdx:1, 934 param_lp_autoneg:1, 935 param_lp_pause:1, 936 param_lp_asym_pause:1, 937 param_lp_1000fdx:1, 938 param_lp_1000hdx:1, 939 param_lp_100fdx:1, 940 param_lp_100hdx:1, 941 param_lp_10fdx:1, 942 param_lp_10hdx:1, 943 param_link_up:1, 944 param_link_autoneg:1, 945 param_adv_pause:1, 946 param_adv_asym_pause:1, 947 param_link_rx_pause:1, 948 param_link_tx_pause:1, 949 param_pad_to_32:2; 950 951 uint32_t param_loop_mode; 952 uint32_t param_msi_cnt; 953 uint32_t param_drain_max; 954 uint64_t param_link_speed; 955 link_duplex_t param_link_duplex; 956 957 958 uint32_t link_update_timer; 959 } bge_t; 960 961 /* 962 * 'Progress' bit flags ... 963 */ 964 #define PROGRESS_CFG 0x0001 /* config space mapped */ 965 #define PROGRESS_REGS 0x0002 /* registers mapped */ 966 #define PROGRESS_BUFS 0x0004 /* ring buffers allocated */ 967 #define PROGRESS_RESCHED 0x0010 /* resched softint registered */ 968 #define PROGRESS_FACTOTUM 0x0020 /* factotum softint registered */ 969 #define PROGRESS_HWINT 0x0040 /* h/w interrupt registered */ 970 /* and mutexen initialised */ 971 #define PROGRESS_INTR 0x0080 /* Intrs enabled */ 972 #define PROGRESS_PHY 0x0100 /* PHY initialised */ 973 #define PROGRESS_NDD 0x1000 /* NDD parameters set up */ 974 #define PROGRESS_KSTATS 0x2000 /* kstats created */ 975 #define PROGRESS_READY 0x8000 /* ready for work */ 976 977 978 /* 979 * Sync a DMA area described by a dma_area_t 980 */ 981 #define DMA_SYNC(area, flag) ((void) ddi_dma_sync((area).dma_hdl, \ 982 (area).offset, (area).alength, (flag))) 983 984 /* 985 * Find the (kernel virtual) address of block of memory 986 * described by a dma_area_t 987 */ 988 #define DMA_VPTR(area) ((area).mem_va) 989 990 /* 991 * Zero a block of memory described by a dma_area_t 992 */ 993 #define DMA_ZERO(area) bzero(DMA_VPTR(area), (area).alength) 994 995 /* 996 * Next value of a cyclic index 997 */ 998 #define NEXT(index, limit) ((index)+1 < (limit) ? (index)+1 : 0) 999 1000 /* 1001 * Property lookups 1002 */ 1003 #define BGE_PROP_EXISTS(d, n) ddi_prop_exists(DDI_DEV_T_ANY, (d), \ 1004 DDI_PROP_DONTPASS, (n)) 1005 #define BGE_PROP_GET_INT(d, n) ddi_prop_get_int(DDI_DEV_T_ANY, (d), \ 1006 DDI_PROP_DONTPASS, (n), -1) 1007 1008 /* 1009 * Copy an ethernet address 1010 */ 1011 #define ethaddr_copy(src, dst) bcopy((src), (dst), ETHERADDRL) 1012 1013 /* 1014 * Endian swap 1015 */ 1016 /* BEGIN CSTYLED */ 1017 #define BGE_BSWAP_32(x) ((((x) & 0xff000000) >> 24) | \ 1018 (((x) & 0x00ff0000) >> 8) | \ 1019 (((x) & 0x0000ff00) << 8) | \ 1020 (((x) & 0x000000ff) << 24)) 1021 /* END CSTYLED */ 1022 1023 /* 1024 * Marker value placed at the end of the driver's state 1025 */ 1026 #define BGE_GUARD 0x1919306009031802 1027 1028 /* 1029 * Bit flags in the 'debug' word ... 1030 */ 1031 #define BGE_DBG_STOP 0x00000001 /* early debug_enter() */ 1032 #define BGE_DBG_TRACE 0x00000002 /* general flow tracing */ 1033 1034 #define BGE_DBG_REGS 0x00000010 /* low-level accesses */ 1035 #define BGE_DBG_MII 0x00000020 /* low-level MII access */ 1036 #define BGE_DBG_SEEPROM 0x00000040 /* low-level SEEPROM IO */ 1037 #define BGE_DBG_CHIP 0x00000080 /* low(ish)-level code */ 1038 1039 #define BGE_DBG_RECV 0x00000100 /* receive-side code */ 1040 #define BGE_DBG_SEND 0x00000200 /* packet-send code */ 1041 1042 #define BGE_DBG_INT 0x00001000 /* interrupt handler */ 1043 #define BGE_DBG_FACT 0x00002000 /* factotum (softint) */ 1044 1045 #define BGE_DBG_PHY 0x00010000 /* Copper PHY code */ 1046 #define BGE_DBG_SERDES 0x00020000 /* SerDes code */ 1047 #define BGE_DBG_PHYS 0x00040000 /* Physical layer code */ 1048 #define BGE_DBG_LINK 0x00080000 /* Link status check */ 1049 1050 #define BGE_DBG_INIT 0x00100000 /* initialisation */ 1051 #define BGE_DBG_NEMO 0x00200000 /* nemo interaction */ 1052 #define BGE_DBG_ADDR 0x00400000 /* address-setting code */ 1053 #define BGE_DBG_STATS 0x00800000 /* statistics */ 1054 1055 #define BGE_DBG_IOCTL 0x01000000 /* ioctl handling */ 1056 #define BGE_DBG_LOOP 0x02000000 /* loopback ioctl code */ 1057 #define BGE_DBG_PPIO 0x04000000 /* Peek/poke ioctls */ 1058 #define BGE_DBG_BADIOC 0x08000000 /* unknown ioctls */ 1059 1060 #define BGE_DBG_MCTL 0x10000000 /* mctl (csum) code */ 1061 #define BGE_DBG_NDD 0x20000000 /* NDD operations */ 1062 1063 /* 1064 * Debugging ... 1065 */ 1066 #ifdef DEBUG 1067 #define BGE_DEBUGGING 1 1068 #else 1069 #define BGE_DEBUGGING 0 1070 #endif /* DEBUG */ 1071 1072 1073 /* 1074 * 'Do-if-debugging' macro. The parameter <command> should be one or more 1075 * C statements (but without the *final* semicolon), which will either be 1076 * compiled inline or completely ignored, depending on the BGE_DEBUGGING 1077 * compile-time flag. 1078 * 1079 * You should get a compile-time error (at least on a DEBUG build) if 1080 * your statement isn't actually a statement, rather than unexpected 1081 * run-time behaviour caused by unintended matching of if-then-elses etc. 1082 * 1083 * Note that the BGE_DDB() macro itself can only be used as a statement, 1084 * not an expression, and should always be followed by a semicolon. 1085 */ 1086 #if BGE_DEBUGGING 1087 #define BGE_DDB(command) do { \ 1088 { command; } \ 1089 _NOTE(CONSTANTCONDITION) \ 1090 } while (0) 1091 #else /* BGE_DEBUGGING */ 1092 #define BGE_DDB(command) do { \ 1093 { _NOTE(EMPTY); } \ 1094 _NOTE(CONSTANTCONDITION) \ 1095 } while (0) 1096 #endif /* BGE_DEBUGGING */ 1097 1098 /* 1099 * 'Internal' macros used to construct the TRACE/DEBUG macros below. 1100 * These provide the primitive conditional-call capability required. 1101 * Note: the parameter <args> is a parenthesised list of the actual 1102 * printf-style arguments to be passed to the debug function ... 1103 */ 1104 #define BGE_XDB(b, w, f, args) BGE_DDB(if ((b) & (w)) f args) 1105 #define BGE_GDB(b, args) BGE_XDB(b, bge_debug, (*bge_gdb()), args) 1106 #define BGE_LDB(b, args) BGE_XDB(b, bgep->debug, (*bge_db(bgep)), args) 1107 #define BGE_CDB(f, args) BGE_XDB(BGE_DBG, bgep->debug, f, args) 1108 1109 /* 1110 * Conditional-print macros. 1111 * 1112 * Define BGE_DBG to be the relevant member of the set of BGE_DBG_* values 1113 * above before using the BGE_GDEBUG() or BGE_DEBUG() macros. The 'G' 1114 * versions look at the Global debug flag word (bge_debug); the non-G 1115 * versions look in the per-instance data (bgep->debug) and so require a 1116 * variable called 'bgep' to be in scope (and initialised!) before use. 1117 * 1118 * You could redefine BGE_TRC too if you really need two different 1119 * flavours of debugging output in the same area of code, but I don't 1120 * really recommend it. 1121 * 1122 * Note: the parameter <args> is a parenthesised list of the actual 1123 * arguments to be passed to the debug function, usually a printf-style 1124 * format string and corresponding values to be formatted. 1125 */ 1126 1127 #define BGE_TRC BGE_DBG_TRACE /* default 'trace' bit */ 1128 #define BGE_GTRACE(args) BGE_GDB(BGE_TRC, args) 1129 #define BGE_GDEBUG(args) BGE_GDB(BGE_DBG, args) 1130 #define BGE_TRACE(args) BGE_LDB(BGE_TRC, args) 1131 #define BGE_DEBUG(args) BGE_LDB(BGE_DBG, args) 1132 1133 /* 1134 * Debug-only action macros 1135 */ 1136 #define BGE_BRKPT(bgep, s) BGE_DDB(bge_dbg_enter(bgep, s)) 1137 #define BGE_MARK(bgep) BGE_DDB(bge_led_mark(bgep)) 1138 #define BGE_PCICHK(bgep) BGE_DDB(bge_pci_check(bgep)) 1139 #define BGE_PKTDUMP(args) BGE_DDB(bge_pkt_dump args) 1140 #define BGE_REPORT(args) BGE_DDB(bge_log args) 1141 1142 /* 1143 * Inter-source-file linkage ... 1144 */ 1145 1146 /* bge_chip.c */ 1147 uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno); 1148 void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t value); 1149 uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno); 1150 void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t value); 1151 void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits); 1152 void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits); 1153 void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t value); 1154 void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma); 1155 int bge_chip_id_init(bge_t *bgep); 1156 void bge_chip_coalesce_update(bge_t *bgep); 1157 int bge_chip_start(bge_t *bgep, boolean_t reset_phy); 1158 void bge_chip_stop(bge_t *bgep, boolean_t fault); 1159 #ifndef __sparc 1160 void bge_chip_stop_nonblocking(bge_t *bgep); 1161 #endif 1162 #ifdef BGE_IPMI_ASF 1163 void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data); 1164 #pragma inline(bge_nic_put32) 1165 uint32_t bge_nic_read32(bge_t *bgep, bge_regno_t addr); 1166 void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val); 1167 #pragma inline(bge_ind_put32) 1168 uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno); 1169 #pragma inline(bge_ind_get32) 1170 void bge_asf_update_status(bge_t *bgep); 1171 void bge_asf_heartbeat(void *bgep); 1172 void bge_asf_stop_timer(bge_t *bgep); 1173 void bge_asf_get_config(bge_t *bgep); 1174 void bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode); 1175 void bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode); 1176 void bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode); 1177 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode); 1178 int bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive); 1179 #else 1180 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma); 1181 int bge_chip_sync(bge_t *bgep); 1182 #endif 1183 void bge_chip_blank(void *arg, time_t ticks, uint_t count, int flag); 1184 extern mblk_t *bge_poll_ring(void *, int); 1185 uint_t bge_chip_factotum(caddr_t arg); 1186 void bge_chip_cyclic(void *arg); 1187 enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, 1188 struct iocblk *iocp); 1189 uint_t bge_intr(caddr_t arg1, caddr_t arg2); 1190 void bge_sync_mac_modes(bge_t *); 1191 extern uint32_t bge_rx_ticks_norm; 1192 extern uint32_t bge_tx_ticks_norm; 1193 extern uint32_t bge_rx_count_norm; 1194 extern uint32_t bge_tx_count_norm; 1195 extern boolean_t bge_relaxed_ordering; 1196 1197 void bge_chip_msi_trig(bge_t *bgep); 1198 1199 /* bge_kstats.c */ 1200 void bge_init_kstats(bge_t *bgep, int instance); 1201 void bge_fini_kstats(bge_t *bgep); 1202 int bge_m_stat(void *arg, uint_t stat, uint64_t *val); 1203 int bge_rx_ring_stat(mac_ring_driver_t, uint_t, uint64_t *); 1204 1205 /* bge_log.c */ 1206 #if BGE_DEBUGGING 1207 void (*bge_db(bge_t *bgep))(const char *fmt, ...); 1208 void (*bge_gdb(void))(const char *fmt, ...); 1209 void bge_pkt_dump(bge_t *bgep, bge_rbd_t *hbp, sw_rbd_t *sdp, const char *msg); 1210 void bge_dbg_enter(bge_t *bgep, const char *msg); 1211 #endif /* BGE_DEBUGGING */ 1212 void bge_problem(bge_t *bgep, const char *fmt, ...); 1213 void bge_log(bge_t *bgep, const char *fmt, ...); 1214 void bge_error(bge_t *bgep, const char *fmt, ...); 1215 void bge_fm_ereport(bge_t *bgep, char *detail); 1216 extern kmutex_t bge_log_mutex[1]; 1217 extern uint32_t bge_debug; 1218 1219 /* bge_main.c */ 1220 int bge_restart(bge_t *bgep, boolean_t reset_phy); 1221 int bge_check_acc_handle(bge_t *bgep, ddi_acc_handle_t handle); 1222 int bge_check_dma_handle(bge_t *bgep, ddi_dma_handle_t handle); 1223 void bge_init_rings(bge_t *bgep); 1224 void bge_fini_rings(bge_t *bgep); 1225 bge_queue_item_t *bge_alloc_txbuf_array(bge_t *bgep, send_ring_t *srp); 1226 void bge_free_txbuf_arrays(send_ring_t *srp); 1227 int bge_alloc_bufs(bge_t *bgep); 1228 void bge_free_bufs(bge_t *bgep); 1229 void bge_intr_enable(bge_t *bgep); 1230 void bge_intr_disable(bge_t *bgep); 1231 int bge_reprogram(bge_t *); 1232 1233 /* bge_phys.c */ 1234 int bge_phys_init(bge_t *bgep); 1235 void bge_phys_reset(bge_t *bgep); 1236 int bge_phys_idle(bge_t *bgep); 1237 int bge_phys_update(bge_t *bgep); 1238 boolean_t bge_phys_check(bge_t *bgep); 1239 1240 /* bge_ndd.c */ 1241 int bge_nd_init(bge_t *bgep); 1242 1243 /* bge_recv.c */ 1244 void bge_receive(bge_t *bgep, bge_status_t *bsp); 1245 1246 /* bge_send.c */ 1247 mblk_t *bge_m_tx(void *arg, mblk_t *mp); 1248 mblk_t *bge_ring_tx(void *arg, mblk_t *mp); 1249 void bge_recycle(bge_t *bgep, bge_status_t *bsp); 1250 uint_t bge_send_drain(caddr_t arg); 1251 1252 /* bge_atomic.c */ 1253 uint64_t bge_atomic_reserve(uint64_t *count_p, uint64_t n); 1254 void bge_atomic_renounce(uint64_t *count_p, uint64_t n); 1255 uint64_t bge_atomic_claim(uint64_t *count_p, uint64_t limit); 1256 uint64_t bge_atomic_next(uint64_t *sp, uint64_t limit); 1257 void bge_atomic_sub64(uint64_t *count_p, uint64_t n); 1258 uint64_t bge_atomic_clr64(uint64_t *sp, uint64_t bits); 1259 uint32_t bge_atomic_shl32(uint32_t *sp, uint_t count); 1260 1261 /* bge_mii_5906.c */ 1262 void bge_adj_volt_5906(bge_t *bgep); 1263 1264 /* 1265 * Reset type 1266 */ 1267 #define BGE_SHUTDOWN_RESET 0 1268 #define BGE_INIT_RESET 1 1269 #define BGE_SUSPEND_RESET 2 1270 1271 /* For asf_status */ 1272 #define ASF_STAT_NONE 0 1273 #define ASF_STAT_STOP 1 1274 #define ASF_STAT_RUN 2 1275 #define ASF_STAT_RUN_INIT 3 /* attached but don't plumb */ 1276 1277 /* ASF modes for bge_reset() and bge_chip_reset() */ 1278 #define ASF_MODE_NONE 0 /* don't launch asf */ 1279 #define ASF_MODE_SHUTDOWN 1 /* asf shutdown mode */ 1280 #define ASF_MODE_INIT 2 /* asf init mode */ 1281 #define ASF_MODE_POST_SHUTDOWN 3 /* only do post-shutdown */ 1282 #define ASF_MODE_POST_INIT 4 /* only do post-init */ 1283 1284 #define BGE_ASF_HEARTBEAT_INTERVAL 1500000 1285 1286 #define BGE_LINK_UPDATE_TIMEOUT 10 /* ~ 5 sec */ 1287 #define BGE_LINK_UPDATE_DONE (BGE_LINK_UPDATE_TIMEOUT+1) 1288 1289 #ifdef __cplusplus 1290 } 1291 #endif 1292 1293 #endif /* _BGE_IMPL_H */ 1294