1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include "bge_impl.h" 28 29 #define PIO_ADDR(bgep, offset) ((void *)((caddr_t)(bgep)->io_regs+(offset))) 30 31 /* 32 * Future features ... ? 33 */ 34 #define BGE_CFG_IO8 1 /* 8/16-bit cfg space BIS/BIC */ 35 #define BGE_IND_IO32 1 /* indirect access code */ 36 #define BGE_SEE_IO32 1 /* SEEPROM access code */ 37 #define BGE_FLASH_IO32 1 /* FLASH access code */ 38 39 /* 40 * BGE MSI tunable: 41 * 42 * By default MSI is enabled on all supported platforms but it is disabled 43 * for some Broadcom chips due to known MSI hardware issues. Currently MSI 44 * is enabled only for 5714C A2 and 5715C A2 broadcom chips. 45 */ 46 boolean_t bge_enable_msi = B_TRUE; 47 48 /* 49 * PCI-X/PCI-E relaxed ordering tunable for OS/Nexus driver 50 */ 51 boolean_t bge_relaxed_ordering = B_TRUE; 52 53 /* 54 * Property names 55 */ 56 static char knownids_propname[] = "bge-known-subsystems"; 57 58 /* 59 * Patchable globals: 60 * 61 * bge_autorecover 62 * Enables/disables automatic recovery after fault detection 63 * 64 * bge_mlcr_default 65 * Value to program into the MLCR; controls the chip's GPIO pins 66 * 67 * bge_dma_{rd,wr}prio 68 * Relative priorities of DMA reads & DMA writes respectively. 69 * These may each be patched to any value 0-3. Equal values 70 * will give "fair" (round-robin) arbitration for PCI access. 71 * Unequal values will give one or the other function priority. 72 * 73 * bge_dma_rwctrl 74 * Value to put in the Read/Write DMA control register. See 75 * the Broadcom PRM for things you can fiddle with in this 76 * register ... 77 * 78 * bge_{tx,rx}_{count,ticks}_{norm,intr} 79 * Send/receive interrupt coalescing parameters. Counts are 80 * #s of descriptors, ticks are in microseconds. *norm* values 81 * apply between status updates/interrupts; the *intr* values 82 * refer to the 'during-interrupt' versions - see the PRM. 83 * 84 * NOTE: these values have been determined by measurement. They 85 * differ significantly from the values recommended in the PRM. 86 */ 87 static uint32_t bge_autorecover = 1; 88 static uint32_t bge_mlcr_default_5714 = MLCR_DEFAULT_5714; 89 90 static uint32_t bge_dma_rdprio = 1; 91 static uint32_t bge_dma_wrprio = 0; 92 static uint32_t bge_dma_rwctrl = PDRWCR_VAR_DEFAULT; 93 static uint32_t bge_dma_rwctrl_5721 = PDRWCR_VAR_5721; 94 static uint32_t bge_dma_rwctrl_5714 = PDRWCR_VAR_5714; 95 static uint32_t bge_dma_rwctrl_5715 = PDRWCR_VAR_5715; 96 97 uint32_t bge_rx_ticks_norm = 128; 98 uint32_t bge_tx_ticks_norm = 2048; /* 8 for FJ2+ !?!? */ 99 uint32_t bge_rx_count_norm = 8; 100 uint32_t bge_tx_count_norm = 128; 101 102 static uint32_t bge_rx_ticks_intr = 128; 103 static uint32_t bge_tx_ticks_intr = 0; /* 8 for FJ2+ !?!? */ 104 static uint32_t bge_rx_count_intr = 2; 105 static uint32_t bge_tx_count_intr = 0; 106 107 /* 108 * Memory pool configuration parameters. 109 * 110 * These are generally specific to each member of the chip family, since 111 * each one may have a different memory size/configuration. 112 * 113 * Setting the mbuf pool length for a specific type of chip to 0 inhibits 114 * the driver from programming the various registers; instead they are left 115 * at their hardware defaults. This is the preferred option for later chips 116 * (5705+), whereas the older chips *required* these registers to be set, 117 * since the h/w default was 0 ;-( 118 */ 119 static uint32_t bge_mbuf_pool_base = MBUF_POOL_BASE_DEFAULT; 120 static uint32_t bge_mbuf_pool_base_5704 = MBUF_POOL_BASE_5704; 121 static uint32_t bge_mbuf_pool_base_5705 = MBUF_POOL_BASE_5705; 122 static uint32_t bge_mbuf_pool_base_5721 = MBUF_POOL_BASE_5721; 123 static uint32_t bge_mbuf_pool_len = MBUF_POOL_LENGTH_DEFAULT; 124 static uint32_t bge_mbuf_pool_len_5704 = MBUF_POOL_LENGTH_5704; 125 static uint32_t bge_mbuf_pool_len_5705 = 0; /* use h/w default */ 126 static uint32_t bge_mbuf_pool_len_5721 = 0; 127 128 /* 129 * Various high and low water marks, thresholds, etc ... 130 * 131 * Note: these are taken from revision 7 of the PRM, and some are different 132 * from both the values in earlier PRMs *and* those determined experimentally 133 * and used in earlier versions of this driver ... 134 */ 135 static uint32_t bge_mbuf_hi_water = MBUF_HIWAT_DEFAULT; 136 static uint32_t bge_mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_DEFAULT; 137 static uint32_t bge_mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_DEFAULT; 138 139 static uint32_t bge_dmad_lo_water = DMAD_POOL_LOWAT_DEFAULT; 140 static uint32_t bge_dmad_hi_water = DMAD_POOL_HIWAT_DEFAULT; 141 static uint32_t bge_lowat_recv_frames = LOWAT_MAX_RECV_FRAMES_DEFAULT; 142 143 static uint32_t bge_replenish_std = STD_RCV_BD_REPLENISH_DEFAULT; 144 static uint32_t bge_replenish_mini = MINI_RCV_BD_REPLENISH_DEFAULT; 145 static uint32_t bge_replenish_jumbo = JUMBO_RCV_BD_REPLENISH_DEFAULT; 146 147 static uint32_t bge_watchdog_count = 1 << 16; 148 static uint16_t bge_dma_miss_limit = 20; 149 150 static uint32_t bge_stop_start_on_sync = 0; 151 152 /* 153 * bge_intr_max_loop controls the maximum loop number within bge_intr. 154 * When loading NIC with heavy network traffic, it is useful. 155 * Increasing this value could have positive effect to throughput, 156 * but it might also increase ticks of a bge ISR stick on CPU, which might 157 * lead to bad UI interactive experience. So tune this with caution. 158 */ 159 static int bge_intr_max_loop = 1; 160 161 /* 162 * ========== Low-level chip & ring buffer manipulation ========== 163 */ 164 165 #define BGE_DBG BGE_DBG_REGS /* debug flag for this code */ 166 167 168 /* 169 * Config space read-modify-write routines 170 */ 171 172 #if BGE_CFG_IO8 173 174 static void bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits); 175 #pragma inline(bge_cfg_clr16) 176 177 static void 178 bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits) 179 { 180 uint16_t regval; 181 182 BGE_TRACE(("bge_cfg_clr16($%p, 0x%lx, 0x%x)", 183 (void *)bgep, regno, bits)); 184 185 regval = pci_config_get16(bgep->cfg_handle, regno); 186 187 BGE_DEBUG(("bge_cfg_clr16($%p, 0x%lx, 0x%x): 0x%x => 0x%x", 188 (void *)bgep, regno, bits, regval, regval & ~bits)); 189 190 regval &= ~bits; 191 pci_config_put16(bgep->cfg_handle, regno, regval); 192 } 193 194 #endif /* BGE_CFG_IO8 */ 195 196 static void bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits); 197 #pragma inline(bge_cfg_clr32) 198 199 static void 200 bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits) 201 { 202 uint32_t regval; 203 204 BGE_TRACE(("bge_cfg_clr32($%p, 0x%lx, 0x%x)", 205 (void *)bgep, regno, bits)); 206 207 regval = pci_config_get32(bgep->cfg_handle, regno); 208 209 BGE_DEBUG(("bge_cfg_clr32($%p, 0x%lx, 0x%x): 0x%x => 0x%x", 210 (void *)bgep, regno, bits, regval, regval & ~bits)); 211 212 regval &= ~bits; 213 pci_config_put32(bgep->cfg_handle, regno, regval); 214 } 215 216 #if BGE_IND_IO32 217 218 /* 219 * Indirect access to registers & RISC scratchpads, using config space 220 * accesses only. 221 * 222 * This isn't currently used, but someday we might want to use it for 223 * restoring the Subsystem Device/Vendor registers (which aren't directly 224 * writable in Config Space), or for downloading firmware into the RISCs 225 * 226 * In any case there are endian issues to be resolved before this code is 227 * enabled; the bizarre way that bytes get twisted by this chip AND by 228 * the PCI bridge in SPARC systems mean that we shouldn't enable it until 229 * it's been thoroughly tested for all access sizes on all supported 230 * architectures (SPARC *and* x86!). 231 */ 232 uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno); 233 #pragma inline(bge_ind_get32) 234 235 uint32_t 236 bge_ind_get32(bge_t *bgep, bge_regno_t regno) 237 { 238 uint32_t val; 239 240 BGE_TRACE(("bge_ind_get32($%p, 0x%lx)", (void *)bgep, regno)); 241 242 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno); 243 val = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_RIADR); 244 245 BGE_DEBUG(("bge_ind_get32($%p, 0x%lx) => 0x%x", 246 (void *)bgep, regno, val)); 247 248 val = LE_32(val); 249 250 return (val); 251 } 252 253 void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val); 254 #pragma inline(bge_ind_put32) 255 256 void 257 bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val) 258 { 259 BGE_TRACE(("bge_ind_put32($%p, 0x%lx, 0x%x)", 260 (void *)bgep, regno, val)); 261 262 val = LE_32(val); 263 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno); 264 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIADR, val); 265 } 266 267 #endif /* BGE_IND_IO32 */ 268 269 #if BGE_DEBUGGING 270 271 static void bge_pci_check(bge_t *bgep); 272 #pragma no_inline(bge_pci_check) 273 274 static void 275 bge_pci_check(bge_t *bgep) 276 { 277 uint16_t pcistatus; 278 279 pcistatus = pci_config_get16(bgep->cfg_handle, PCI_CONF_STAT); 280 if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0) 281 BGE_DEBUG(("bge_pci_check($%p): PCI status 0x%x", 282 (void *)bgep, pcistatus)); 283 } 284 285 #endif /* BGE_DEBUGGING */ 286 287 /* 288 * Perform first-stage chip (re-)initialisation, using only config-space 289 * accesses: 290 * 291 * + Read the vendor/device/revision/subsystem/cache-line-size registers, 292 * returning the data in the structure pointed to by <idp>. 293 * + Configure the target-mode endianness (swap) options. 294 * + Disable interrupts and enable Memory Space accesses. 295 * + Enable or disable Bus Mastering according to the <enable_dma> flag. 296 * 297 * This sequence is adapted from Broadcom document 570X-PG102-R, 298 * page 102, steps 1-3, 6-8 and 11-13. The omitted parts of the sequence 299 * are 4 and 5 (Reset Core and wait) which are handled elsewhere. 300 * 301 * This function MUST be called before any non-config-space accesses 302 * are made; on this first call <enable_dma> is B_FALSE, and it 303 * effectively performs steps 3-1(!) of the initialisation sequence 304 * (the rest are not required but should be harmless). 305 * 306 * It MUST also be called after a chip reset, as this disables 307 * Memory Space cycles! In this case, <enable_dma> is B_TRUE, and 308 * it is effectively performing steps 6-8. 309 */ 310 void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma); 311 #pragma no_inline(bge_chip_cfg_init) 312 313 void 314 bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma) 315 { 316 ddi_acc_handle_t handle; 317 uint16_t command; 318 uint32_t mhcr; 319 uint16_t value16; 320 int i; 321 322 BGE_TRACE(("bge_chip_cfg_init($%p, $%p, %d)", 323 (void *)bgep, (void *)cidp, enable_dma)); 324 325 /* 326 * Step 3: save PCI cache line size and subsystem vendor ID 327 * 328 * Read all the config-space registers that characterise the 329 * chip, specifically vendor/device/revision/subsystem vendor 330 * and subsystem device id. We expect (but don't check) that 331 * (vendor == VENDOR_ID_BROADCOM) && (device == DEVICE_ID_5704) 332 * 333 * Also save all bus-transaction related registers (cache-line 334 * size, bus-grant/latency parameters, etc). Some of these are 335 * cleared by reset, so we'll have to restore them later. This 336 * comes from the Broadcom document 570X-PG102-R ... 337 * 338 * Note: Broadcom document 570X-PG102-R seems to be in error 339 * here w.r.t. the offsets of the Subsystem Vendor ID and 340 * Subsystem (Device) ID registers, which are the opposite way 341 * round according to the PCI standard. For good measure, we 342 * save/restore both anyway. 343 */ 344 handle = bgep->cfg_handle; 345 346 mhcr = pci_config_get32(handle, PCI_CONF_BGE_MHCR); 347 cidp->asic_rev = mhcr & MHCR_CHIP_REV_MASK; 348 cidp->businfo = pci_config_get32(handle, PCI_CONF_BGE_PCISTATE); 349 cidp->command = pci_config_get16(handle, PCI_CONF_COMM); 350 351 cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID); 352 cidp->device = pci_config_get16(handle, PCI_CONF_DEVID); 353 cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID); 354 cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID); 355 cidp->revision = pci_config_get8(handle, PCI_CONF_REVID); 356 cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ); 357 cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER); 358 359 BGE_DEBUG(("bge_chip_cfg_init: %s bus is %s and %s; #INTA is %s", 360 cidp->businfo & PCISTATE_BUS_IS_PCI ? "PCI" : "PCI-X", 361 cidp->businfo & PCISTATE_BUS_IS_FAST ? "fast" : "slow", 362 cidp->businfo & PCISTATE_BUS_IS_32_BIT ? "narrow" : "wide", 363 cidp->businfo & PCISTATE_INTA_STATE ? "high" : "low")); 364 BGE_DEBUG(("bge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x", 365 cidp->vendor, cidp->device, cidp->revision)); 366 BGE_DEBUG(("bge_chip_cfg_init: subven 0x%x subdev 0x%x asic_rev 0x%x", 367 cidp->subven, cidp->subdev, cidp->asic_rev)); 368 BGE_DEBUG(("bge_chip_cfg_init: clsize %d latency %d command 0x%x", 369 cidp->clsize, cidp->latency, cidp->command)); 370 371 /* 372 * Step 2 (also step 6): disable and clear interrupts. 373 * Steps 11-13: configure PIO endianness options, and enable 374 * indirect register access. We'll also select any other 375 * options controlled by the MHCR (e.g. tagged status, mask 376 * interrupt mode) at this stage ... 377 * 378 * Note: internally, the chip is 64-bit and BIG-endian, but 379 * since it talks to the host over a (LITTLE-endian) PCI bus, 380 * it normally swaps bytes around at the PCI interface. 381 * However, the PCI host bridge on SPARC systems normally 382 * swaps the byte lanes around too, since SPARCs are also 383 * BIG-endian. So it turns out that on SPARC, the right 384 * option is to tell the chip to swap (and the host bridge 385 * will swap back again), whereas on x86 we ask the chip 386 * NOT to swap, so the natural little-endianness of the 387 * PCI bus is assumed. Then the only thing that doesn't 388 * automatically work right is access to an 8-byte register 389 * by a little-endian host; but we don't want to set the 390 * MHCR_ENABLE_REGISTER_WORD_SWAP bit because then 4-byte 391 * accesses don't go where expected ;-( So we live with 392 * that, and perform word-swaps in software in the few cases 393 * where a chip register is defined as an 8-byte value -- 394 * see the code below for details ... 395 * 396 * Note: the meaning of the 'MASK_INTERRUPT_MODE' bit isn't 397 * very clear in the register description in the PRM, but 398 * Broadcom document 570X-PG104-R page 248 explains a little 399 * more (under "Broadcom Mask Mode"). The bit changes the way 400 * the MASK_PCI_INT_OUTPUT bit works: with MASK_INTERRUPT_MODE 401 * clear, the chip interprets MASK_PCI_INT_OUTPUT in the same 402 * way as the 5700 did, which isn't very convenient. Setting 403 * the MASK_INTERRUPT_MODE bit makes the MASK_PCI_INT_OUTPUT 404 * bit do just what its name says -- MASK the PCI #INTA output 405 * (i.e. deassert the signal at the pin) leaving all internal 406 * state unchanged. This is much more convenient for our 407 * interrupt handler, so we set MASK_INTERRUPT_MODE here. 408 * 409 * Note: the inconvenient semantics of the interrupt mailbox 410 * (nonzero disables and acknowledges/clears the interrupt, 411 * zero enables AND CLEARS it) would make race conditions 412 * likely in the interrupt handler: 413 * 414 * (1) acknowledge & disable interrupts 415 * (2) while (more to do) 416 * process packets 417 * (3) enable interrupts -- also clears pending 418 * 419 * If the chip received more packets and internally generated 420 * an interrupt between the check at (2) and the mbox write 421 * at (3), this interrupt would be lost :-( 422 * 423 * The best way to avoid this is to use TAGGED STATUS mode, 424 * where the chip includes a unique tag in each status block 425 * update, and the host, when re-enabling interrupts, passes 426 * the last tag it saw back to the chip; then the chip can 427 * see whether the host is truly up to date, and regenerate 428 * its interrupt if not. 429 */ 430 mhcr = MHCR_ENABLE_INDIRECT_ACCESS | 431 MHCR_ENABLE_TAGGED_STATUS_MODE | 432 MHCR_MASK_INTERRUPT_MODE | 433 MHCR_CLEAR_INTERRUPT_INTA; 434 435 if (bgep->intr_type == DDI_INTR_TYPE_FIXED) 436 mhcr |= MHCR_MASK_PCI_INT_OUTPUT; 437 438 #ifdef _BIG_ENDIAN 439 mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP; 440 #endif /* _BIG_ENDIAN */ 441 442 pci_config_put32(handle, PCI_CONF_BGE_MHCR, mhcr); 443 444 #ifdef BGE_IPMI_ASF 445 bgep->asf_wordswapped = B_FALSE; 446 #endif 447 /* 448 * Step 1 (also step 7): Enable PCI Memory Space accesses 449 * Disable Memory Write/Invalidate 450 * Enable or disable Bus Mastering 451 * 452 * Note that all other bits are taken from the original value saved 453 * the first time through here, rather than from the current register 454 * value, 'cos that will have been cleared by a soft RESET since. 455 * In this way we preserve the OBP/nexus-parent's preferred settings 456 * of the parity-error and system-error enable bits across multiple 457 * chip RESETs. 458 */ 459 command = bgep->chipid.command | PCI_COMM_MAE; 460 command &= ~(PCI_COMM_ME|PCI_COMM_MEMWR_INVAL); 461 if (enable_dma) 462 command |= PCI_COMM_ME; 463 /* 464 * on BCM5714 revision A0, false parity error gets generated 465 * due to a logic bug. Provide a workaround by disabling parity 466 * error. 467 */ 468 if (((cidp->device == DEVICE_ID_5714C) || 469 (cidp->device == DEVICE_ID_5714S)) && 470 (cidp->revision == REVISION_ID_5714_A0)) { 471 command &= ~PCI_COMM_PARITY_DETECT; 472 } 473 pci_config_put16(handle, PCI_CONF_COMM, command); 474 475 /* 476 * On some PCI-E device, there were instances when 477 * the device was still link training. 478 */ 479 if (bgep->chipid.pci_type == BGE_PCI_E) { 480 i = 0; 481 value16 = pci_config_get16(handle, PCI_CONF_COMM); 482 while ((value16 != command) && (i < 100)) { 483 drv_usecwait(200); 484 value16 = pci_config_get16(handle, PCI_CONF_COMM); 485 ++i; 486 } 487 } 488 489 /* 490 * Clear any remaining error status bits 491 */ 492 pci_config_put16(handle, PCI_CONF_STAT, ~0); 493 494 /* 495 * Do following if and only if the device is NOT BCM5714C OR 496 * BCM5715C 497 */ 498 if (!((cidp->device == DEVICE_ID_5714C) || 499 (cidp->device == DEVICE_ID_5715C))) { 500 /* 501 * Make sure these indirect-access registers are sane 502 * rather than random after power-up or reset 503 */ 504 pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0); 505 pci_config_put32(handle, PCI_CONF_BGE_MWBAR, 0); 506 } 507 /* 508 * Step 8: Disable PCI-X/PCI-E Relaxed Ordering 509 */ 510 bge_cfg_clr16(bgep, PCIX_CONF_COMM, PCIX_COMM_RELAXED); 511 512 if (cidp->pci_type == BGE_PCI_E) { 513 if (DEVICE_5723_SERIES_CHIPSETS(bgep)) { 514 bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL_5723, 515 DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED); 516 } else 517 bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL, 518 DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED); 519 } 520 } 521 522 #ifdef __amd64 523 /* 524 * Distinguish CPU types 525 * 526 * These use to distinguish AMD64 or Intel EM64T of CPU running mode. 527 * If CPU runs on Intel EM64T mode,the 64bit operation cannot works fine 528 * for PCI-Express based network interface card. This is the work-around 529 * for those nics. 530 */ 531 static boolean_t bge_get_em64t_type(void); 532 #pragma inline(bge_get_em64t_type) 533 534 static boolean_t 535 bge_get_em64t_type(void) 536 { 537 538 return (x86_vendor == X86_VENDOR_Intel); 539 } 540 #endif 541 542 /* 543 * Operating register get/set access routines 544 */ 545 546 uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno); 547 #pragma inline(bge_reg_get32) 548 549 uint32_t 550 bge_reg_get32(bge_t *bgep, bge_regno_t regno) 551 { 552 BGE_TRACE(("bge_reg_get32($%p, 0x%lx)", 553 (void *)bgep, regno)); 554 555 return (ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno))); 556 } 557 558 void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data); 559 #pragma inline(bge_reg_put32) 560 561 void 562 bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data) 563 { 564 BGE_TRACE(("bge_reg_put32($%p, 0x%lx, 0x%x)", 565 (void *)bgep, regno, data)); 566 567 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), data); 568 BGE_PCICHK(bgep); 569 } 570 571 void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits); 572 #pragma inline(bge_reg_set32) 573 574 void 575 bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits) 576 { 577 uint32_t regval; 578 579 BGE_TRACE(("bge_reg_set32($%p, 0x%lx, 0x%x)", 580 (void *)bgep, regno, bits)); 581 582 regval = bge_reg_get32(bgep, regno); 583 regval |= bits; 584 bge_reg_put32(bgep, regno, regval); 585 } 586 587 void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits); 588 #pragma inline(bge_reg_clr32) 589 590 void 591 bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits) 592 { 593 uint32_t regval; 594 595 BGE_TRACE(("bge_reg_clr32($%p, 0x%lx, 0x%x)", 596 (void *)bgep, regno, bits)); 597 598 regval = bge_reg_get32(bgep, regno); 599 regval &= ~bits; 600 bge_reg_put32(bgep, regno, regval); 601 } 602 603 static uint64_t bge_reg_get64(bge_t *bgep, bge_regno_t regno); 604 #pragma inline(bge_reg_get64) 605 606 static uint64_t 607 bge_reg_get64(bge_t *bgep, bge_regno_t regno) 608 { 609 uint64_t regval; 610 611 #ifdef __amd64 612 if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type()) { 613 regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4)); 614 regval <<= 32; 615 regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)); 616 } else { 617 regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno)); 618 } 619 #elif defined(__sparc) 620 if (DEVICE_5723_SERIES_CHIPSETS(bgep)) { 621 regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)); 622 regval <<= 32; 623 regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4)); 624 } else { 625 regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno)); 626 } 627 #else 628 regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno)); 629 #endif 630 631 #ifdef _LITTLE_ENDIAN 632 regval = (regval >> 32) | (regval << 32); 633 #endif /* _LITTLE_ENDIAN */ 634 635 BGE_TRACE(("bge_reg_get64($%p, 0x%lx) = 0x%016llx", 636 (void *)bgep, regno, regval)); 637 638 return (regval); 639 } 640 641 static void bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data); 642 #pragma inline(bge_reg_put64) 643 644 static void 645 bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data) 646 { 647 BGE_TRACE(("bge_reg_put64($%p, 0x%lx, 0x%016llx)", 648 (void *)bgep, regno, data)); 649 650 #ifdef _LITTLE_ENDIAN 651 data = ((data >> 32) | (data << 32)); 652 #endif /* _LITTLE_ENDIAN */ 653 654 #ifdef __amd64 655 if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type()) { 656 ddi_put32(bgep->io_handle, 657 PIO_ADDR(bgep, regno), (uint32_t)data); 658 BGE_PCICHK(bgep); 659 ddi_put32(bgep->io_handle, 660 PIO_ADDR(bgep, regno + 4), (uint32_t)(data >> 32)); 661 662 } else { 663 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data); 664 } 665 #elif defined(__sparc) 666 if (DEVICE_5723_SERIES_CHIPSETS(bgep)) { 667 ddi_put32(bgep->io_handle, 668 PIO_ADDR(bgep, regno + 4), (uint32_t)data); 669 BGE_PCICHK(bgep); 670 ddi_put32(bgep->io_handle, 671 PIO_ADDR(bgep, regno), (uint32_t)(data >> 32)); 672 } else { 673 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data); 674 } 675 #else 676 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data); 677 #endif 678 679 BGE_PCICHK(bgep); 680 } 681 682 /* 683 * The DDI doesn't provide get/put functions for 128 bit data 684 * so we put RCBs out as two 64-bit chunks instead. 685 */ 686 static void bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp); 687 #pragma inline(bge_reg_putrcb) 688 689 static void 690 bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp) 691 { 692 uint64_t *p; 693 694 BGE_TRACE(("bge_reg_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)", 695 (void *)bgep, addr, rcbp->host_ring_addr, 696 rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr)); 697 698 ASSERT((addr % sizeof (*rcbp)) == 0); 699 700 p = (void *)rcbp; 701 bge_reg_put64(bgep, addr, *p++); 702 bge_reg_put64(bgep, addr+8, *p); 703 } 704 705 void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data); 706 #pragma inline(bge_mbx_put) 707 708 void 709 bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data) 710 { 711 if (DEVICE_5906_SERIES_CHIPSETS(bgep)) 712 regno += INTERRUPT_LP_MBOX_0_REG - INTERRUPT_MBOX_0_REG + 4; 713 714 BGE_TRACE(("bge_mbx_put($%p, 0x%lx, 0x%016llx)", 715 (void *)bgep, regno, data)); 716 717 /* 718 * Mailbox registers are nominally 64 bits on the 5701, but 719 * the MSW isn't used. On the 5703, they're only 32 bits 720 * anyway. So here we just write the lower(!) 32 bits - 721 * remembering that the chip is big-endian, even though the 722 * PCI bus is little-endian ... 723 */ 724 #ifdef _BIG_ENDIAN 725 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno+4), (uint32_t)data); 726 #else 727 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), (uint32_t)data); 728 #endif /* _BIG_ENDIAN */ 729 BGE_PCICHK(bgep); 730 } 731 732 uint32_t bge_mbx_get(bge_t *bgep, bge_regno_t regno); 733 #pragma inline(bge_mbx_get) 734 735 uint32_t 736 bge_mbx_get(bge_t *bgep, bge_regno_t regno) 737 { 738 uint32_t val32; 739 740 if (DEVICE_5906_SERIES_CHIPSETS(bgep)) 741 regno += INTERRUPT_LP_MBOX_0_REG - INTERRUPT_MBOX_0_REG + 4; 742 743 BGE_TRACE(("bge_mbx_get($%p, 0x%lx)", 744 (void *)bgep, regno)); 745 746 #ifdef _BIG_ENDIAN 747 val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno+4)); 748 #else 749 val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)); 750 #endif /* _BIG_ENDIAN */ 751 BGE_PCICHK(bgep); 752 753 return (val32); 754 } 755 756 757 #if BGE_DEBUGGING 758 759 void bge_led_mark(bge_t *bgep); 760 #pragma no_inline(bge_led_mark) 761 762 void 763 bge_led_mark(bge_t *bgep) 764 { 765 uint32_t led_ctrl = LED_CONTROL_OVERRIDE_LINK | 766 LED_CONTROL_1000MBPS_LED | 767 LED_CONTROL_100MBPS_LED | 768 LED_CONTROL_10MBPS_LED; 769 770 /* 771 * Blink all three LINK LEDs on simultaneously, then all off, 772 * then restore to automatic hardware control. This is used 773 * in laboratory testing to trigger a logic analyser or scope. 774 */ 775 bge_reg_set32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl); 776 led_ctrl ^= LED_CONTROL_OVERRIDE_LINK; 777 bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl); 778 led_ctrl = LED_CONTROL_OVERRIDE_LINK; 779 bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl); 780 } 781 782 #endif /* BGE_DEBUGGING */ 783 784 /* 785 * NIC on-chip memory access routines 786 * 787 * Only 32K of NIC memory is visible at a time, controlled by the 788 * Memory Window Base Address Register (in PCI config space). Once 789 * this is set, the 32K region of NIC-local memory that it refers 790 * to can be directly addressed in the upper 32K of the 64K of PCI 791 * memory space used for the device. 792 */ 793 794 static void bge_nic_setwin(bge_t *bgep, bge_regno_t base); 795 #pragma inline(bge_nic_setwin) 796 797 static void 798 bge_nic_setwin(bge_t *bgep, bge_regno_t base) 799 { 800 chip_id_t *cidp; 801 802 BGE_TRACE(("bge_nic_setwin($%p, 0x%lx)", 803 (void *)bgep, base)); 804 805 ASSERT((base & MWBAR_GRANULE_MASK) == 0); 806 807 /* 808 * Don't do repeated zero data writes, 809 * if the device is BCM5714C/15C. 810 */ 811 cidp = &bgep->chipid; 812 if ((cidp->device == DEVICE_ID_5714C) || 813 (cidp->device == DEVICE_ID_5715C)) { 814 if (bgep->lastWriteZeroData && (base == (bge_regno_t)0)) 815 return; 816 /* Adjust lastWriteZeroData */ 817 bgep->lastWriteZeroData = ((base == (bge_regno_t)0) ? 818 B_TRUE : B_FALSE); 819 } 820 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, base); 821 } 822 823 static uint32_t bge_nic_get32(bge_t *bgep, bge_regno_t addr); 824 #pragma inline(bge_nic_get32) 825 826 static uint32_t 827 bge_nic_get32(bge_t *bgep, bge_regno_t addr) 828 { 829 uint32_t data; 830 831 #if defined(BGE_IPMI_ASF) && !defined(__sparc) 832 if (bgep->asf_enabled && !bgep->asf_wordswapped) { 833 /* workaround for word swap error */ 834 if (addr & 4) 835 addr = addr - 4; 836 else 837 addr = addr + 4; 838 } 839 #endif 840 841 #ifdef __sparc 842 data = bge_nic_read32(bgep, addr); 843 #else 844 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK); 845 addr &= MWBAR_GRANULE_MASK; 846 addr += NIC_MEM_WINDOW_OFFSET; 847 848 data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr)); 849 #endif 850 851 BGE_TRACE(("bge_nic_get32($%p, 0x%lx) = 0x%08x", 852 (void *)bgep, addr, data)); 853 854 return (data); 855 } 856 857 void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data); 858 #pragma inline(bge_nic_put32) 859 860 void 861 bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data) 862 { 863 BGE_TRACE(("bge_nic_put32($%p, 0x%lx, 0x%08x)", 864 (void *)bgep, addr, data)); 865 866 #if defined(BGE_IPMI_ASF) && !defined(__sparc) 867 if (bgep->asf_enabled && !bgep->asf_wordswapped) { 868 /* workaround for word swap error */ 869 if (addr & 4) 870 addr = addr - 4; 871 else 872 addr = addr + 4; 873 } 874 #endif 875 876 #ifdef __sparc 877 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr); 878 data = LE_32(data); 879 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR, data); 880 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0); 881 #else 882 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK); 883 addr &= MWBAR_GRANULE_MASK; 884 addr += NIC_MEM_WINDOW_OFFSET; 885 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), data); 886 BGE_PCICHK(bgep); 887 #endif 888 } 889 890 static uint64_t bge_nic_get64(bge_t *bgep, bge_regno_t addr); 891 #pragma inline(bge_nic_get64) 892 893 static uint64_t 894 bge_nic_get64(bge_t *bgep, bge_regno_t addr) 895 { 896 uint64_t data; 897 898 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK); 899 addr &= MWBAR_GRANULE_MASK; 900 addr += NIC_MEM_WINDOW_OFFSET; 901 902 #ifdef __amd64 903 if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type()) { 904 data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr)); 905 data <<= 32; 906 data |= ddi_get32(bgep->io_handle, 907 PIO_ADDR(bgep, addr + 4)); 908 } else { 909 data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr)); 910 } 911 #elif defined(__sparc) 912 if (DEVICE_5723_SERIES_CHIPSETS(bgep)) { 913 data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr)); 914 data <<= 32; 915 data |= ddi_get32(bgep->io_handle, 916 PIO_ADDR(bgep, addr + 4)); 917 } else { 918 data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr)); 919 } 920 #else 921 data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr)); 922 #endif 923 924 BGE_TRACE(("bge_nic_get64($%p, 0x%lx) = 0x%016llx", 925 (void *)bgep, addr, data)); 926 927 return (data); 928 } 929 930 static void bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data); 931 #pragma inline(bge_nic_put64) 932 933 static void 934 bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data) 935 { 936 BGE_TRACE(("bge_nic_put64($%p, 0x%lx, 0x%016llx)", 937 (void *)bgep, addr, data)); 938 939 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK); 940 addr &= MWBAR_GRANULE_MASK; 941 addr += NIC_MEM_WINDOW_OFFSET; 942 943 #ifdef __amd64 944 if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type()) { 945 ddi_put32(bgep->io_handle, 946 PIO_ADDR(bgep, addr), (uint32_t)data); 947 BGE_PCICHK(bgep); 948 ddi_put32(bgep->io_handle, 949 PIO_ADDR(bgep, addr + 4), (uint32_t)(data >> 32)); 950 } else { 951 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data); 952 } 953 #elif defined(__sparc) 954 if (DEVICE_5723_SERIES_CHIPSETS(bgep)) { 955 ddi_put32(bgep->io_handle, 956 PIO_ADDR(bgep, addr + 4), (uint32_t)data); 957 BGE_PCICHK(bgep); 958 ddi_put32(bgep->io_handle, 959 PIO_ADDR(bgep, addr), (uint32_t)(data >> 32)); 960 } else { 961 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data); 962 } 963 #else 964 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data); 965 #endif 966 967 BGE_PCICHK(bgep); 968 } 969 970 /* 971 * The DDI doesn't provide get/put functions for 128 bit data 972 * so we put RCBs out as two 64-bit chunks instead. 973 */ 974 static void bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp); 975 #pragma inline(bge_nic_putrcb) 976 977 static void 978 bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp) 979 { 980 uint64_t *p; 981 982 BGE_TRACE(("bge_nic_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)", 983 (void *)bgep, addr, rcbp->host_ring_addr, 984 rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr)); 985 986 ASSERT((addr % sizeof (*rcbp)) == 0); 987 988 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK); 989 addr &= MWBAR_GRANULE_MASK; 990 addr += NIC_MEM_WINDOW_OFFSET; 991 992 p = (void *)rcbp; 993 #ifdef __amd64 994 if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type()) { 995 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), 996 (uint32_t)(*p)); 997 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4), 998 (uint32_t)(*p >> 32)); 999 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8), 1000 (uint32_t)(*(p + 1))); 1001 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12), 1002 (uint32_t)(*p >> 32)); 1003 1004 } else { 1005 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++); 1006 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr+8), *p); 1007 } 1008 #elif defined(__sparc) 1009 if (DEVICE_5723_SERIES_CHIPSETS(bgep)) { 1010 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4), 1011 (uint32_t)(*p)); 1012 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), 1013 (uint32_t)(*p >> 32)); 1014 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12), 1015 (uint32_t)(*(p + 1))); 1016 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8), 1017 (uint32_t)(*p >> 32)); 1018 } else { 1019 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++); 1020 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p); 1021 } 1022 #else 1023 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++); 1024 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p); 1025 #endif 1026 1027 BGE_PCICHK(bgep); 1028 } 1029 1030 static void bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes); 1031 #pragma inline(bge_nic_zero) 1032 1033 static void 1034 bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes) 1035 { 1036 BGE_TRACE(("bge_nic_zero($%p, 0x%lx, 0x%x)", 1037 (void *)bgep, addr, nbytes)); 1038 1039 ASSERT((addr & ~MWBAR_GRANULE_MASK) == 1040 ((addr+nbytes) & ~MWBAR_GRANULE_MASK)); 1041 1042 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK); 1043 addr &= MWBAR_GRANULE_MASK; 1044 addr += NIC_MEM_WINDOW_OFFSET; 1045 1046 (void) ddi_device_zero(bgep->io_handle, PIO_ADDR(bgep, addr), 1047 nbytes, 1, DDI_DATA_SZ08_ACC); 1048 BGE_PCICHK(bgep); 1049 } 1050 1051 /* 1052 * MII (PHY) register get/set access routines 1053 * 1054 * These use the chip's MII auto-access method, controlled by the 1055 * MII Communication register at 0x044c, so the CPU doesn't have 1056 * to fiddle with the individual bits. 1057 */ 1058 1059 #undef BGE_DBG 1060 #define BGE_DBG BGE_DBG_MII /* debug flag for this code */ 1061 1062 static uint16_t bge_mii_access(bge_t *bgep, bge_regno_t regno, 1063 uint16_t data, uint32_t cmd); 1064 #pragma no_inline(bge_mii_access) 1065 1066 static uint16_t 1067 bge_mii_access(bge_t *bgep, bge_regno_t regno, uint16_t data, uint32_t cmd) 1068 { 1069 uint32_t timeout; 1070 uint32_t regval1; 1071 uint32_t regval2; 1072 1073 BGE_TRACE(("bge_mii_access($%p, 0x%lx, 0x%x, 0x%x)", 1074 (void *)bgep, regno, data, cmd)); 1075 1076 ASSERT(mutex_owned(bgep->genlock)); 1077 1078 /* 1079 * Assemble the command ... 1080 */ 1081 cmd |= data << MI_COMMS_DATA_SHIFT; 1082 cmd |= regno << MI_COMMS_REGISTER_SHIFT; 1083 cmd |= bgep->phy_mii_addr << MI_COMMS_ADDRESS_SHIFT; 1084 cmd |= MI_COMMS_START; 1085 1086 /* 1087 * Wait for any command already in progress ... 1088 * 1089 * Note: this *shouldn't* ever find that there is a command 1090 * in progress, because we already hold the <genlock> mutex. 1091 * Nonetheless, we have sometimes seen the MI_COMMS_START 1092 * bit set here -- it seems that the chip can initiate MII 1093 * accesses internally, even with polling OFF. 1094 */ 1095 regval1 = regval2 = bge_reg_get32(bgep, MI_COMMS_REG); 1096 for (timeout = 100; ; ) { 1097 if ((regval2 & MI_COMMS_START) == 0) { 1098 bge_reg_put32(bgep, MI_COMMS_REG, cmd); 1099 break; 1100 } 1101 if (--timeout == 0) 1102 break; 1103 drv_usecwait(10); 1104 regval2 = bge_reg_get32(bgep, MI_COMMS_REG); 1105 } 1106 1107 if (timeout == 0) 1108 return ((uint16_t)~0u); 1109 1110 if (timeout != 100) 1111 BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- " 1112 "MI_COMMS_START set for %d us; 0x%x->0x%x", 1113 cmd, 10*(100-timeout), regval1, regval2)); 1114 1115 regval1 = bge_reg_get32(bgep, MI_COMMS_REG); 1116 for (timeout = 1000; ; ) { 1117 if ((regval1 & MI_COMMS_START) == 0) 1118 break; 1119 if (--timeout == 0) 1120 break; 1121 drv_usecwait(10); 1122 regval1 = bge_reg_get32(bgep, MI_COMMS_REG); 1123 } 1124 1125 /* 1126 * Drop out early if the READ FAILED bit is set -- this chip 1127 * could be a 5703/4S, with a SerDes instead of a PHY! 1128 */ 1129 if (regval2 & MI_COMMS_READ_FAILED) 1130 return ((uint16_t)~0u); 1131 1132 if (timeout == 0) 1133 return ((uint16_t)~0u); 1134 1135 /* 1136 * The PRM says to wait 5us after seeing the START bit clear 1137 * and then re-read the register to get the final value of the 1138 * data field, in order to avoid a race condition where the 1139 * START bit is clear but the data field isn't yet valid. 1140 * 1141 * Note: we don't actually seem to be encounter this race; 1142 * except when the START bit is seen set again (see below), 1143 * the data field doesn't change during this 5us interval. 1144 */ 1145 drv_usecwait(5); 1146 regval2 = bge_reg_get32(bgep, MI_COMMS_REG); 1147 1148 /* 1149 * Unfortunately, when following the PRMs instructions above, 1150 * we have occasionally seen the START bit set again(!) in the 1151 * value read after the 5us delay. This seems to be due to the 1152 * chip autonomously starting another MII access internally. 1153 * In such cases, the command/data/etc fields relate to the 1154 * internal command, rather than the one that we thought had 1155 * just finished. So in this case, we fall back to returning 1156 * the data from the original read that showed START clear. 1157 */ 1158 if (regval2 & MI_COMMS_START) { 1159 BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- " 1160 "MI_COMMS_START set after transaction; 0x%x->0x%x", 1161 cmd, regval1, regval2)); 1162 regval2 = regval1; 1163 } 1164 1165 if (regval2 & MI_COMMS_START) 1166 return ((uint16_t)~0u); 1167 1168 if (regval2 & MI_COMMS_READ_FAILED) 1169 return ((uint16_t)~0u); 1170 1171 return ((regval2 & MI_COMMS_DATA_MASK) >> MI_COMMS_DATA_SHIFT); 1172 } 1173 1174 uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno); 1175 #pragma no_inline(bge_mii_get16) 1176 1177 uint16_t 1178 bge_mii_get16(bge_t *bgep, bge_regno_t regno) 1179 { 1180 BGE_TRACE(("bge_mii_get16($%p, 0x%lx)", 1181 (void *)bgep, regno)); 1182 1183 ASSERT(mutex_owned(bgep->genlock)); 1184 1185 if (DEVICE_5906_SERIES_CHIPSETS(bgep) && ((regno == MII_AUX_CONTROL) || 1186 (regno == MII_MSCONTROL))) 1187 return (0); 1188 1189 return (bge_mii_access(bgep, regno, 0, MI_COMMS_COMMAND_READ)); 1190 } 1191 1192 void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data); 1193 #pragma no_inline(bge_mii_put16) 1194 1195 void 1196 bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data) 1197 { 1198 BGE_TRACE(("bge_mii_put16($%p, 0x%lx, 0x%x)", 1199 (void *)bgep, regno, data)); 1200 1201 ASSERT(mutex_owned(bgep->genlock)); 1202 1203 if (DEVICE_5906_SERIES_CHIPSETS(bgep) && ((regno == MII_AUX_CONTROL) || 1204 (regno == MII_MSCONTROL))) 1205 return; 1206 1207 (void) bge_mii_access(bgep, regno, data, MI_COMMS_COMMAND_WRITE); 1208 } 1209 1210 #undef BGE_DBG 1211 #define BGE_DBG BGE_DBG_SEEPROM /* debug flag for this code */ 1212 1213 #if BGE_SEE_IO32 || BGE_FLASH_IO32 1214 1215 /* 1216 * Basic SEEPROM get/set access routine 1217 * 1218 * This uses the chip's SEEPROM auto-access method, controlled by the 1219 * Serial EEPROM Address/Data Registers at 0x6838/683c, so the CPU 1220 * doesn't have to fiddle with the individual bits. 1221 * 1222 * The caller should hold <genlock> and *also* have already acquired 1223 * the right to access the SEEPROM, via bge_nvmem_acquire() above. 1224 * 1225 * Return value: 1226 * 0 on success, 1227 * ENODATA on access timeout (maybe retryable: device may just be busy) 1228 * EPROTO on other h/w or s/w errors. 1229 * 1230 * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output 1231 * from a (successful) SEEPROM_ACCESS_READ. 1232 */ 1233 static int bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, 1234 uint32_t *dp); 1235 #pragma no_inline(bge_seeprom_access) 1236 1237 static int 1238 bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp) 1239 { 1240 uint32_t tries; 1241 uint32_t regval; 1242 1243 ASSERT(mutex_owned(bgep->genlock)); 1244 1245 /* 1246 * On the newer chips that support both SEEPROM & Flash, we need 1247 * to specifically enable SEEPROM access (Flash is the default). 1248 * On older chips, we don't; SEEPROM is the only NVtype supported, 1249 * and the NVM control registers don't exist ... 1250 */ 1251 switch (bgep->chipid.nvtype) { 1252 case BGE_NVTYPE_NONE: 1253 case BGE_NVTYPE_UNKNOWN: 1254 _NOTE(NOTREACHED) 1255 case BGE_NVTYPE_SEEPROM: 1256 break; 1257 1258 case BGE_NVTYPE_LEGACY_SEEPROM: 1259 case BGE_NVTYPE_UNBUFFERED_FLASH: 1260 case BGE_NVTYPE_BUFFERED_FLASH: 1261 default: 1262 bge_reg_set32(bgep, NVM_CONFIG1_REG, 1263 NVM_CFG1_LEGACY_SEEPROM_MODE); 1264 break; 1265 } 1266 1267 /* 1268 * Check there's no command in progress. 1269 * 1270 * Note: this *shouldn't* ever find that there is a command 1271 * in progress, because we already hold the <genlock> mutex. 1272 * Also, to ensure we don't have a conflict with the chip's 1273 * internal firmware or a process accessing the same (shared) 1274 * SEEPROM through the other port of a 5704, we've already 1275 * been through the "software arbitration" protocol. 1276 * So this is just a final consistency check: we shouldn't 1277 * see EITHER the START bit (command started but not complete) 1278 * OR the COMPLETE bit (command completed but not cleared). 1279 */ 1280 regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG); 1281 if (regval & SEEPROM_ACCESS_START) 1282 return (EPROTO); 1283 if (regval & SEEPROM_ACCESS_COMPLETE) 1284 return (EPROTO); 1285 1286 /* 1287 * Assemble the command ... 1288 */ 1289 cmd |= addr & SEEPROM_ACCESS_ADDRESS_MASK; 1290 addr >>= SEEPROM_ACCESS_ADDRESS_SIZE; 1291 addr <<= SEEPROM_ACCESS_DEVID_SHIFT; 1292 cmd |= addr & SEEPROM_ACCESS_DEVID_MASK; 1293 cmd |= SEEPROM_ACCESS_START; 1294 cmd |= SEEPROM_ACCESS_COMPLETE; 1295 cmd |= regval & SEEPROM_ACCESS_HALFCLOCK_MASK; 1296 1297 bge_reg_put32(bgep, SERIAL_EEPROM_DATA_REG, *dp); 1298 bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, cmd); 1299 1300 /* 1301 * By observation, a successful access takes ~20us on a 5703/4, 1302 * but apparently much longer (up to 1000us) on the obsolescent 1303 * BCM5700/BCM5701. We want to be sure we don't get any false 1304 * timeouts here; but OTOH, we don't want a bogus access to lock 1305 * out interrupts for longer than necessary. So we'll allow up 1306 * to 1000us ... 1307 */ 1308 for (tries = 0; tries < 1000; ++tries) { 1309 regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG); 1310 if (regval & SEEPROM_ACCESS_COMPLETE) 1311 break; 1312 drv_usecwait(1); 1313 } 1314 1315 if (regval & SEEPROM_ACCESS_COMPLETE) { 1316 /* 1317 * All OK; read the SEEPROM data register, then write back 1318 * the value read from the address register in order to 1319 * clear the <complete> bit and leave the SEEPROM access 1320 * state machine idle, ready for the next access ... 1321 */ 1322 BGE_DEBUG(("bge_seeprom_access: complete after %d us", tries)); 1323 *dp = bge_reg_get32(bgep, SERIAL_EEPROM_DATA_REG); 1324 bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, regval); 1325 return (0); 1326 } 1327 1328 /* 1329 * Hmm ... what happened here? 1330 * 1331 * Most likely, the user addressed a non-existent SEEPROM. Or 1332 * maybe the SEEPROM was busy internally (e.g. processing a write) 1333 * and didn't respond to being addressed. Either way, it's left 1334 * the SEEPROM access state machine wedged. So we'll reset it 1335 * before we leave, so it's ready for next time ... 1336 */ 1337 BGE_DEBUG(("bge_seeprom_access: timed out after %d us", tries)); 1338 bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT); 1339 return (ENODATA); 1340 } 1341 1342 /* 1343 * Basic Flash get/set access routine 1344 * 1345 * These use the chip's Flash auto-access method, controlled by the 1346 * Flash Access Registers at 0x7000-701c, so the CPU doesn't have to 1347 * fiddle with the individual bits. 1348 * 1349 * The caller should hold <genlock> and *also* have already acquired 1350 * the right to access the Flash, via bge_nvmem_acquire() above. 1351 * 1352 * Return value: 1353 * 0 on success, 1354 * ENODATA on access timeout (maybe retryable: device may just be busy) 1355 * ENODEV if the NVmem device is missing or otherwise unusable 1356 * 1357 * <*dp> is an input to a NVM_FLASH_CMD_WR operation, or an output 1358 * from a (successful) NVM_FLASH_CMD_RD. 1359 */ 1360 static int bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, 1361 uint32_t *dp); 1362 #pragma no_inline(bge_flash_access) 1363 1364 static int 1365 bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp) 1366 { 1367 uint32_t tries; 1368 uint32_t regval; 1369 1370 ASSERT(mutex_owned(bgep->genlock)); 1371 1372 /* 1373 * On the newer chips that support both SEEPROM & Flash, we need 1374 * to specifically disable SEEPROM access while accessing Flash. 1375 * The older chips don't support Flash, and the NVM registers don't 1376 * exist, so we shouldn't be here at all! 1377 */ 1378 switch (bgep->chipid.nvtype) { 1379 case BGE_NVTYPE_NONE: 1380 case BGE_NVTYPE_UNKNOWN: 1381 _NOTE(NOTREACHED) 1382 case BGE_NVTYPE_SEEPROM: 1383 return (ENODEV); 1384 1385 case BGE_NVTYPE_LEGACY_SEEPROM: 1386 case BGE_NVTYPE_UNBUFFERED_FLASH: 1387 case BGE_NVTYPE_BUFFERED_FLASH: 1388 default: 1389 bge_reg_clr32(bgep, NVM_CONFIG1_REG, 1390 NVM_CFG1_LEGACY_SEEPROM_MODE); 1391 break; 1392 } 1393 1394 /* 1395 * Assemble the command ... 1396 */ 1397 addr &= NVM_FLASH_ADDR_MASK; 1398 cmd |= NVM_FLASH_CMD_DOIT; 1399 cmd |= NVM_FLASH_CMD_FIRST; 1400 cmd |= NVM_FLASH_CMD_LAST; 1401 cmd |= NVM_FLASH_CMD_DONE; 1402 1403 bge_reg_put32(bgep, NVM_FLASH_WRITE_REG, *dp); 1404 bge_reg_put32(bgep, NVM_FLASH_ADDR_REG, addr); 1405 bge_reg_put32(bgep, NVM_FLASH_CMD_REG, cmd); 1406 1407 /* 1408 * Allow up to 1000ms ... 1409 */ 1410 for (tries = 0; tries < 1000; ++tries) { 1411 regval = bge_reg_get32(bgep, NVM_FLASH_CMD_REG); 1412 if (regval & NVM_FLASH_CMD_DONE) 1413 break; 1414 drv_usecwait(1); 1415 } 1416 1417 if (regval & NVM_FLASH_CMD_DONE) { 1418 /* 1419 * All OK; read the data from the Flash read register 1420 */ 1421 BGE_DEBUG(("bge_flash_access: complete after %d us", tries)); 1422 *dp = bge_reg_get32(bgep, NVM_FLASH_READ_REG); 1423 return (0); 1424 } 1425 1426 /* 1427 * Hmm ... what happened here? 1428 * 1429 * Most likely, the user addressed a non-existent Flash. Or 1430 * maybe the Flash was busy internally (e.g. processing a write) 1431 * and didn't respond to being addressed. Either way, there's 1432 * nothing we can here ... 1433 */ 1434 BGE_DEBUG(("bge_flash_access: timed out after %d us", tries)); 1435 return (ENODATA); 1436 } 1437 1438 /* 1439 * The next two functions regulate access to the NVram (if fitted). 1440 * 1441 * On a 5704 (dual core) chip, there's only one SEEPROM and one Flash 1442 * (SPI) interface, but they can be accessed through either port. These 1443 * are managed by different instance of this driver and have no software 1444 * state in common. 1445 * 1446 * In addition (and even on a single core chip) the chip's internal 1447 * firmware can access the SEEPROM/Flash, most notably after a RESET 1448 * when it may download code to run internally. 1449 * 1450 * So we need to arbitrate between these various software agents. For 1451 * this purpose, the chip provides the Software Arbitration Register, 1452 * which implements hardware(!) arbitration. 1453 * 1454 * This functionality didn't exist on older (5700/5701) chips, so there's 1455 * nothing we can do by way of arbitration on those; also, if there's no 1456 * SEEPROM/Flash fitted (or we couldn't determine what type), there's also 1457 * nothing to do. 1458 * 1459 * The internal firmware appears to use Request 0, which is the highest 1460 * priority. So we'd like to use Request 2, leaving one higher and one 1461 * lower for any future developments ... but apparently this doesn't 1462 * always work. So for now, the code uses Request 1 ;-( 1463 */ 1464 1465 #define NVM_READ_REQ NVM_READ_REQ1 1466 #define NVM_RESET_REQ NVM_RESET_REQ1 1467 #define NVM_SET_REQ NVM_SET_REQ1 1468 1469 static void bge_nvmem_relinquish(bge_t *bgep); 1470 #pragma no_inline(bge_nvmem_relinquish) 1471 1472 static void 1473 bge_nvmem_relinquish(bge_t *bgep) 1474 { 1475 ASSERT(mutex_owned(bgep->genlock)); 1476 1477 switch (bgep->chipid.nvtype) { 1478 case BGE_NVTYPE_NONE: 1479 case BGE_NVTYPE_UNKNOWN: 1480 _NOTE(NOTREACHED) 1481 return; 1482 1483 case BGE_NVTYPE_SEEPROM: 1484 /* 1485 * No arbitration performed, no release needed 1486 */ 1487 return; 1488 1489 case BGE_NVTYPE_LEGACY_SEEPROM: 1490 case BGE_NVTYPE_UNBUFFERED_FLASH: 1491 case BGE_NVTYPE_BUFFERED_FLASH: 1492 default: 1493 break; 1494 } 1495 1496 /* 1497 * Our own request should be present (whether or not granted) ... 1498 */ 1499 (void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG); 1500 1501 /* 1502 * ... this will make it go away. 1503 */ 1504 bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_RESET_REQ); 1505 (void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG); 1506 } 1507 1508 /* 1509 * Arbitrate for access to the NVmem, if necessary 1510 * 1511 * Return value: 1512 * 0 on success 1513 * EAGAIN if the device is in use (retryable) 1514 * ENODEV if the NVmem device is missing or otherwise unusable 1515 */ 1516 static int bge_nvmem_acquire(bge_t *bgep); 1517 #pragma no_inline(bge_nvmem_acquire) 1518 1519 static int 1520 bge_nvmem_acquire(bge_t *bgep) 1521 { 1522 uint32_t regval; 1523 uint32_t tries; 1524 1525 ASSERT(mutex_owned(bgep->genlock)); 1526 1527 switch (bgep->chipid.nvtype) { 1528 case BGE_NVTYPE_NONE: 1529 case BGE_NVTYPE_UNKNOWN: 1530 /* 1531 * Access denied: no (recognisable) device fitted 1532 */ 1533 return (ENODEV); 1534 1535 case BGE_NVTYPE_SEEPROM: 1536 /* 1537 * Access granted: no arbitration needed (or possible) 1538 */ 1539 return (0); 1540 1541 case BGE_NVTYPE_LEGACY_SEEPROM: 1542 case BGE_NVTYPE_UNBUFFERED_FLASH: 1543 case BGE_NVTYPE_BUFFERED_FLASH: 1544 default: 1545 /* 1546 * Access conditional: conduct arbitration protocol 1547 */ 1548 break; 1549 } 1550 1551 /* 1552 * We're holding the per-port mutex <genlock>, so no-one other 1553 * thread can be attempting to access the NVmem through *this* 1554 * port. But it could be in use by the *other* port (of a 5704), 1555 * or by the chip's internal firmware, so we have to go through 1556 * the full (hardware) arbitration protocol ... 1557 * 1558 * Note that *because* we're holding <genlock>, the interrupt handler 1559 * won't be able to progress. So we're only willing to spin for a 1560 * fairly short time. Specifically: 1561 * 1562 * We *must* wait long enough for the hardware to resolve all 1563 * requests and determine the winner. Fortunately, this is 1564 * "almost instantaneous", even as observed by GHz CPUs. 1565 * 1566 * A successful access by another Solaris thread (via either 1567 * port) typically takes ~20us. So waiting a bit longer than 1568 * that will give a good chance of success, if the other user 1569 * *is* another thread on the other port. 1570 * 1571 * However, the internal firmware can hold on to the NVmem 1572 * for *much* longer: at least 10 milliseconds just after a 1573 * RESET, and maybe even longer if the NVmem actually contains 1574 * code to download and run on the internal CPUs. 1575 * 1576 * So, we'll allow 50us; if that's not enough then it's up to the 1577 * caller to retry later (hence the choice of return code EAGAIN). 1578 */ 1579 regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG); 1580 bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_SET_REQ); 1581 1582 for (tries = 0; tries < 50; ++tries) { 1583 regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG); 1584 if (regval & NVM_WON_REQ1) 1585 break; 1586 drv_usecwait(1); 1587 } 1588 1589 if (regval & NVM_WON_REQ1) { 1590 BGE_DEBUG(("bge_nvmem_acquire: won after %d us", tries)); 1591 return (0); 1592 } 1593 1594 /* 1595 * Somebody else must be accessing the NVmem, so abandon our 1596 * attempt take control of it. The caller can try again later ... 1597 */ 1598 BGE_DEBUG(("bge_nvmem_acquire: lost after %d us", tries)); 1599 bge_nvmem_relinquish(bgep); 1600 return (EAGAIN); 1601 } 1602 1603 /* 1604 * This code assumes that the GPIO1 bit has been wired up to the NVmem 1605 * write protect line in such a way that the NVmem is protected when 1606 * GPIO1 is an input, or is an output but driven high. Thus, to make the 1607 * NVmem writable we have to change GPIO1 to an output AND drive it low. 1608 * 1609 * Note: there's only one set of GPIO pins on a 5704, even though they 1610 * can be accessed through either port. So the chip has to resolve what 1611 * happens if the two ports program a single pin differently ... the rule 1612 * it uses is that if the ports disagree about the *direction* of a pin, 1613 * "output" wins over "input", but if they disagree about its *value* as 1614 * an output, then the pin is TRISTATED instead! In such a case, no-one 1615 * wins, and the external signal does whatever the external circuitry 1616 * defines as the default -- which we've assumed is the PROTECTED state. 1617 * So, we always change GPIO1 back to being an *input* whenever we're not 1618 * specifically using it to unprotect the NVmem. This allows either port 1619 * to update the NVmem, although obviously only one at a time! 1620 * 1621 * The caller should hold <genlock> and *also* have already acquired the 1622 * right to access the NVmem, via bge_nvmem_acquire() above. 1623 */ 1624 static void bge_nvmem_protect(bge_t *bgep, boolean_t protect); 1625 #pragma inline(bge_nvmem_protect) 1626 1627 static void 1628 bge_nvmem_protect(bge_t *bgep, boolean_t protect) 1629 { 1630 uint32_t regval; 1631 1632 ASSERT(mutex_owned(bgep->genlock)); 1633 1634 regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG); 1635 if (protect) { 1636 regval |= MLCR_MISC_PINS_OUTPUT_1; 1637 regval &= ~MLCR_MISC_PINS_OUTPUT_ENABLE_1; 1638 } else { 1639 regval &= ~MLCR_MISC_PINS_OUTPUT_1; 1640 regval |= MLCR_MISC_PINS_OUTPUT_ENABLE_1; 1641 } 1642 bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, regval); 1643 } 1644 1645 /* 1646 * Now put it all together ... 1647 * 1648 * Try to acquire control of the NVmem; if successful, then: 1649 * unprotect it (if we want to write to it) 1650 * perform the requested access 1651 * reprotect it (after a write) 1652 * relinquish control 1653 * 1654 * Return value: 1655 * 0 on success, 1656 * EAGAIN if the device is in use (retryable) 1657 * ENODATA on access timeout (maybe retryable: device may just be busy) 1658 * ENODEV if the NVmem device is missing or otherwise unusable 1659 * EPROTO on other h/w or s/w errors. 1660 */ 1661 static int 1662 bge_nvmem_rw32(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp) 1663 { 1664 int err; 1665 1666 if ((err = bge_nvmem_acquire(bgep)) == 0) { 1667 switch (cmd) { 1668 case BGE_SEE_READ: 1669 err = bge_seeprom_access(bgep, 1670 SEEPROM_ACCESS_READ, addr, dp); 1671 break; 1672 1673 case BGE_SEE_WRITE: 1674 bge_nvmem_protect(bgep, B_FALSE); 1675 err = bge_seeprom_access(bgep, 1676 SEEPROM_ACCESS_WRITE, addr, dp); 1677 bge_nvmem_protect(bgep, B_TRUE); 1678 break; 1679 1680 case BGE_FLASH_READ: 1681 if (DEVICE_5721_SERIES_CHIPSETS(bgep) || 1682 DEVICE_5723_SERIES_CHIPSETS(bgep) || 1683 DEVICE_5714_SERIES_CHIPSETS(bgep)) { 1684 bge_reg_set32(bgep, NVM_ACCESS_REG, 1685 NVM_ACCESS_ENABLE); 1686 } 1687 err = bge_flash_access(bgep, 1688 NVM_FLASH_CMD_RD, addr, dp); 1689 if (DEVICE_5721_SERIES_CHIPSETS(bgep) || 1690 DEVICE_5723_SERIES_CHIPSETS(bgep) || 1691 DEVICE_5714_SERIES_CHIPSETS(bgep)) { 1692 bge_reg_clr32(bgep, NVM_ACCESS_REG, 1693 NVM_ACCESS_ENABLE); 1694 } 1695 break; 1696 1697 case BGE_FLASH_WRITE: 1698 if (DEVICE_5721_SERIES_CHIPSETS(bgep) || 1699 DEVICE_5723_SERIES_CHIPSETS(bgep) || 1700 DEVICE_5714_SERIES_CHIPSETS(bgep)) { 1701 bge_reg_set32(bgep, NVM_ACCESS_REG, 1702 NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE); 1703 } 1704 bge_nvmem_protect(bgep, B_FALSE); 1705 err = bge_flash_access(bgep, 1706 NVM_FLASH_CMD_WR, addr, dp); 1707 bge_nvmem_protect(bgep, B_TRUE); 1708 if (DEVICE_5721_SERIES_CHIPSETS(bgep) || 1709 DEVICE_5723_SERIES_CHIPSETS(bgep) || 1710 DEVICE_5714_SERIES_CHIPSETS(bgep)) { 1711 bge_reg_clr32(bgep, NVM_ACCESS_REG, 1712 NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE); 1713 } 1714 1715 break; 1716 1717 default: 1718 _NOTE(NOTREACHED) 1719 break; 1720 } 1721 bge_nvmem_relinquish(bgep); 1722 } 1723 1724 BGE_DEBUG(("bge_nvmem_rw32: err %d", err)); 1725 return (err); 1726 } 1727 1728 /* 1729 * Attempt to get a MAC address from the SEEPROM or Flash, if any 1730 */ 1731 static uint64_t bge_get_nvmac(bge_t *bgep); 1732 #pragma no_inline(bge_get_nvmac) 1733 1734 static uint64_t 1735 bge_get_nvmac(bge_t *bgep) 1736 { 1737 uint32_t mac_high; 1738 uint32_t mac_low; 1739 uint32_t addr; 1740 uint32_t cmd; 1741 uint64_t mac; 1742 1743 BGE_TRACE(("bge_get_nvmac($%p)", 1744 (void *)bgep)); 1745 1746 switch (bgep->chipid.nvtype) { 1747 case BGE_NVTYPE_NONE: 1748 case BGE_NVTYPE_UNKNOWN: 1749 default: 1750 return (0ULL); 1751 1752 case BGE_NVTYPE_SEEPROM: 1753 case BGE_NVTYPE_LEGACY_SEEPROM: 1754 cmd = BGE_SEE_READ; 1755 break; 1756 1757 case BGE_NVTYPE_UNBUFFERED_FLASH: 1758 case BGE_NVTYPE_BUFFERED_FLASH: 1759 cmd = BGE_FLASH_READ; 1760 break; 1761 } 1762 1763 if (DEVICE_5906_SERIES_CHIPSETS(bgep)) 1764 addr = NVMEM_DATA_MAC_ADDRESS_5906; 1765 else 1766 addr = NVMEM_DATA_MAC_ADDRESS; 1767 1768 if (bge_nvmem_rw32(bgep, cmd, addr, &mac_high)) 1769 return (0ULL); 1770 addr += 4; 1771 if (bge_nvmem_rw32(bgep, cmd, addr, &mac_low)) 1772 return (0ULL); 1773 1774 /* 1775 * The Broadcom chip is natively BIG-endian, so that's how the 1776 * MAC address is represented in NVmem. We may need to swap it 1777 * around on a little-endian host ... 1778 */ 1779 #ifdef _BIG_ENDIAN 1780 mac = mac_high; 1781 mac = mac << 32; 1782 mac |= mac_low; 1783 #else 1784 mac = BGE_BSWAP_32(mac_high); 1785 mac = mac << 32; 1786 mac |= BGE_BSWAP_32(mac_low); 1787 #endif /* _BIG_ENDIAN */ 1788 1789 return (mac); 1790 } 1791 1792 #else /* BGE_SEE_IO32 || BGE_FLASH_IO32 */ 1793 1794 /* 1795 * Dummy version for when we're not supporting NVmem access 1796 */ 1797 static uint64_t bge_get_nvmac(bge_t *bgep); 1798 #pragma inline(bge_get_nvmac) 1799 1800 static uint64_t 1801 bge_get_nvmac(bge_t *bgep) 1802 { 1803 _NOTE(ARGUNUSED(bgep)) 1804 return (0ULL); 1805 } 1806 1807 #endif /* BGE_SEE_IO32 || BGE_FLASH_IO32 */ 1808 1809 /* 1810 * Determine the type of NVmem that is (or may be) attached to this chip, 1811 */ 1812 static enum bge_nvmem_type bge_nvmem_id(bge_t *bgep); 1813 #pragma no_inline(bge_nvmem_id) 1814 1815 static enum bge_nvmem_type 1816 bge_nvmem_id(bge_t *bgep) 1817 { 1818 enum bge_nvmem_type nvtype; 1819 uint32_t config1; 1820 1821 BGE_TRACE(("bge_nvmem_id($%p)", 1822 (void *)bgep)); 1823 1824 switch (bgep->chipid.device) { 1825 default: 1826 /* 1827 * We shouldn't get here; it means we don't recognise 1828 * the chip, which means we don't know how to determine 1829 * what sort of NVmem (if any) it has. So we'll say 1830 * NONE, to disable the NVmem access code ... 1831 */ 1832 nvtype = BGE_NVTYPE_NONE; 1833 break; 1834 1835 case DEVICE_ID_5700: 1836 case DEVICE_ID_5700x: 1837 case DEVICE_ID_5701: 1838 /* 1839 * These devices support *only* SEEPROMs 1840 */ 1841 nvtype = BGE_NVTYPE_SEEPROM; 1842 break; 1843 1844 case DEVICE_ID_5702: 1845 case DEVICE_ID_5702fe: 1846 case DEVICE_ID_5703C: 1847 case DEVICE_ID_5703S: 1848 case DEVICE_ID_5704C: 1849 case DEVICE_ID_5704S: 1850 case DEVICE_ID_5704: 1851 case DEVICE_ID_5705M: 1852 case DEVICE_ID_5705C: 1853 case DEVICE_ID_5705_2: 1854 case DEVICE_ID_5780: 1855 case DEVICE_ID_5782: 1856 case DEVICE_ID_5785: 1857 case DEVICE_ID_5787: 1858 case DEVICE_ID_5787M: 1859 case DEVICE_ID_5788: 1860 case DEVICE_ID_5789: 1861 case DEVICE_ID_5751: 1862 case DEVICE_ID_5751M: 1863 case DEVICE_ID_5752: 1864 case DEVICE_ID_5752M: 1865 case DEVICE_ID_5754: 1866 case DEVICE_ID_5755: 1867 case DEVICE_ID_5755M: 1868 case DEVICE_ID_5756M: 1869 case DEVICE_ID_5721: 1870 case DEVICE_ID_5722: 1871 case DEVICE_ID_5723: 1872 case DEVICE_ID_5761: 1873 case DEVICE_ID_5761E: 1874 case DEVICE_ID_5764: 1875 case DEVICE_ID_5714C: 1876 case DEVICE_ID_5714S: 1877 case DEVICE_ID_5715C: 1878 case DEVICE_ID_5715S: 1879 config1 = bge_reg_get32(bgep, NVM_CONFIG1_REG); 1880 if (config1 & NVM_CFG1_FLASH_MODE) 1881 if (config1 & NVM_CFG1_BUFFERED_MODE) 1882 nvtype = BGE_NVTYPE_BUFFERED_FLASH; 1883 else 1884 nvtype = BGE_NVTYPE_UNBUFFERED_FLASH; 1885 else 1886 nvtype = BGE_NVTYPE_LEGACY_SEEPROM; 1887 break; 1888 case DEVICE_ID_5906: 1889 case DEVICE_ID_5906M: 1890 nvtype = BGE_NVTYPE_BUFFERED_FLASH; 1891 break; 1892 } 1893 1894 return (nvtype); 1895 } 1896 1897 #undef BGE_DBG 1898 #define BGE_DBG BGE_DBG_CHIP /* debug flag for this code */ 1899 1900 static void 1901 bge_init_recv_rule(bge_t *bgep) 1902 { 1903 bge_recv_rule_t *rulep = bgep->recv_rules; 1904 uint32_t i; 1905 1906 /* 1907 * Initialize receive rule registers. 1908 * Note that rules may persist across each bge_m_start/stop() call. 1909 */ 1910 for (i = 0; i < RECV_RULES_NUM_MAX; i++, rulep++) { 1911 bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep->mask_value); 1912 bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep->control); 1913 } 1914 } 1915 1916 /* 1917 * Using the values captured by bge_chip_cfg_init(), and additional probes 1918 * as required, characterise the chip fully: determine the label by which 1919 * to refer to this chip, the correct settings for various registers, and 1920 * of course whether the device and/or subsystem are supported! 1921 */ 1922 int bge_chip_id_init(bge_t *bgep); 1923 #pragma no_inline(bge_chip_id_init) 1924 1925 int 1926 bge_chip_id_init(bge_t *bgep) 1927 { 1928 char buf[MAXPATHLEN]; /* any risk of stack overflow? */ 1929 boolean_t sys_ok; 1930 boolean_t dev_ok; 1931 chip_id_t *cidp; 1932 uint32_t subid; 1933 char *devname; 1934 char *sysname; 1935 int *ids; 1936 int err; 1937 uint_t i; 1938 1939 sys_ok = dev_ok = B_FALSE; 1940 cidp = &bgep->chipid; 1941 1942 /* 1943 * Check the PCI device ID to determine the generic chip type and 1944 * select parameters that depend on this. 1945 * 1946 * Note: because the SPARC platforms in general don't fit the 1947 * SEEPROM 'behind' the chip, the PCI revision ID register reads 1948 * as zero - which is why we use <asic_rev> rather than <revision> 1949 * below ... 1950 * 1951 * Note: in general we can't distinguish between the Copper/SerDes 1952 * versions by ID alone, as some Copper devices (e.g. some but not 1953 * all 5703Cs) have the same ID as the SerDes equivalents. So we 1954 * treat them the same here, and the MII code works out the media 1955 * type later on ... 1956 */ 1957 cidp->mbuf_base = bge_mbuf_pool_base; 1958 cidp->mbuf_length = bge_mbuf_pool_len; 1959 cidp->recv_slots = BGE_RECV_SLOTS_USED; 1960 cidp->bge_dma_rwctrl = bge_dma_rwctrl; 1961 cidp->pci_type = BGE_PCI_X; 1962 cidp->statistic_type = BGE_STAT_BLK; 1963 cidp->mbuf_lo_water_rdma = bge_mbuf_lo_water_rdma; 1964 cidp->mbuf_lo_water_rmac = bge_mbuf_lo_water_rmac; 1965 cidp->mbuf_hi_water = bge_mbuf_hi_water; 1966 cidp->rx_ticks_norm = bge_rx_ticks_norm; 1967 cidp->rx_count_norm = bge_rx_count_norm; 1968 cidp->tx_ticks_norm = bge_tx_ticks_norm; 1969 cidp->tx_count_norm = bge_tx_count_norm; 1970 1971 if (cidp->rx_rings == 0 || cidp->rx_rings > BGE_RECV_RINGS_MAX) 1972 cidp->rx_rings = BGE_RECV_RINGS_DEFAULT; 1973 if (cidp->tx_rings == 0 || cidp->tx_rings > BGE_SEND_RINGS_MAX) 1974 cidp->tx_rings = BGE_SEND_RINGS_DEFAULT; 1975 1976 cidp->msi_enabled = B_FALSE; 1977 1978 switch (cidp->device) { 1979 case DEVICE_ID_5700: 1980 case DEVICE_ID_5700x: 1981 cidp->chip_label = 5700; 1982 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM; 1983 break; 1984 1985 case DEVICE_ID_5701: 1986 cidp->chip_label = 5701; 1987 dev_ok = B_TRUE; 1988 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM; 1989 break; 1990 1991 case DEVICE_ID_5702: 1992 case DEVICE_ID_5702fe: 1993 cidp->chip_label = 5702; 1994 dev_ok = B_TRUE; 1995 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM; 1996 cidp->pci_type = BGE_PCI; 1997 break; 1998 1999 case DEVICE_ID_5703C: 2000 case DEVICE_ID_5703S: 2001 case DEVICE_ID_5703: 2002 /* 2003 * Revision A0 of the 5703/5793 had various errata 2004 * that we can't or don't work around, so it's not 2005 * supported, but all later versions are 2006 */ 2007 cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5793 : 5703; 2008 if (bgep->chipid.asic_rev != MHCR_CHIP_REV_5703_A0) 2009 dev_ok = B_TRUE; 2010 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM; 2011 break; 2012 2013 case DEVICE_ID_5704C: 2014 case DEVICE_ID_5704S: 2015 case DEVICE_ID_5704: 2016 cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5794 : 5704; 2017 cidp->mbuf_base = bge_mbuf_pool_base_5704; 2018 cidp->mbuf_length = bge_mbuf_pool_len_5704; 2019 dev_ok = B_TRUE; 2020 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM; 2021 break; 2022 2023 case DEVICE_ID_5705C: 2024 case DEVICE_ID_5705M: 2025 case DEVICE_ID_5705MA3: 2026 case DEVICE_ID_5705F: 2027 case DEVICE_ID_5705_2: 2028 case DEVICE_ID_5754: 2029 if (cidp->device == DEVICE_ID_5754) { 2030 cidp->chip_label = 5754; 2031 cidp->pci_type = BGE_PCI_E; 2032 } else { 2033 cidp->chip_label = 5705; 2034 cidp->pci_type = BGE_PCI; 2035 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM; 2036 } 2037 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705; 2038 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705; 2039 cidp->mbuf_hi_water = MBUF_HIWAT_5705; 2040 cidp->mbuf_base = bge_mbuf_pool_base_5705; 2041 cidp->mbuf_length = bge_mbuf_pool_len_5705; 2042 cidp->recv_slots = BGE_RECV_SLOTS_5705; 2043 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; 2044 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705; 2045 cidp->flags |= CHIP_FLAG_NO_JUMBO; 2046 cidp->statistic_type = BGE_STAT_REG; 2047 dev_ok = B_TRUE; 2048 break; 2049 2050 case DEVICE_ID_5906: 2051 case DEVICE_ID_5906M: 2052 cidp->chip_label = 5906; 2053 cidp->pci_type = BGE_PCI_E; 2054 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5906; 2055 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5906; 2056 cidp->mbuf_hi_water = MBUF_HIWAT_5906; 2057 cidp->mbuf_base = bge_mbuf_pool_base; 2058 cidp->mbuf_length = bge_mbuf_pool_len; 2059 cidp->recv_slots = BGE_RECV_SLOTS_5705; 2060 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; 2061 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705; 2062 cidp->flags |= CHIP_FLAG_NO_JUMBO; 2063 cidp->statistic_type = BGE_STAT_REG; 2064 dev_ok = B_TRUE; 2065 break; 2066 2067 case DEVICE_ID_5753: 2068 cidp->chip_label = 5753; 2069 cidp->pci_type = BGE_PCI_E; 2070 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705; 2071 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705; 2072 cidp->mbuf_hi_water = MBUF_HIWAT_5705; 2073 cidp->mbuf_base = bge_mbuf_pool_base_5705; 2074 cidp->mbuf_length = bge_mbuf_pool_len_5705; 2075 cidp->recv_slots = BGE_RECV_SLOTS_5705; 2076 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1; 2077 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; 2078 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705; 2079 cidp->flags |= CHIP_FLAG_NO_JUMBO; 2080 cidp->statistic_type = BGE_STAT_REG; 2081 dev_ok = B_TRUE; 2082 break; 2083 2084 case DEVICE_ID_5755: 2085 case DEVICE_ID_5755M: 2086 cidp->chip_label = 5755; 2087 cidp->pci_type = BGE_PCI_E; 2088 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705; 2089 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705; 2090 cidp->mbuf_hi_water = MBUF_HIWAT_5705; 2091 cidp->mbuf_base = bge_mbuf_pool_base_5705; 2092 cidp->mbuf_length = bge_mbuf_pool_len_5705; 2093 cidp->recv_slots = BGE_RECV_SLOTS_5705; 2094 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1; 2095 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; 2096 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705; 2097 cidp->flags |= CHIP_FLAG_NO_JUMBO; 2098 if (cidp->device == DEVICE_ID_5755M) 2099 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM; 2100 cidp->statistic_type = BGE_STAT_REG; 2101 dev_ok = B_TRUE; 2102 break; 2103 2104 case DEVICE_ID_5756M: 2105 /* 2106 * This is nearly identical to the 5755M. 2107 * (Actually reports the 5755 chip ID.) 2108 */ 2109 cidp->chip_label = 5756; 2110 cidp->pci_type = BGE_PCI_E; 2111 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705; 2112 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705; 2113 cidp->mbuf_hi_water = MBUF_HIWAT_5705; 2114 cidp->mbuf_base = bge_mbuf_pool_base_5705; 2115 cidp->mbuf_length = bge_mbuf_pool_len_5705; 2116 cidp->recv_slots = BGE_RECV_SLOTS_5705; 2117 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1; 2118 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; 2119 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705; 2120 cidp->flags |= CHIP_FLAG_NO_JUMBO; 2121 cidp->statistic_type = BGE_STAT_REG; 2122 dev_ok = B_TRUE; 2123 break; 2124 2125 case DEVICE_ID_5787: 2126 case DEVICE_ID_5787M: 2127 cidp->chip_label = 5787; 2128 cidp->pci_type = BGE_PCI_E; 2129 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705; 2130 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705; 2131 cidp->mbuf_hi_water = MBUF_HIWAT_5705; 2132 cidp->mbuf_base = bge_mbuf_pool_base_5705; 2133 cidp->mbuf_length = bge_mbuf_pool_len_5705; 2134 cidp->recv_slots = BGE_RECV_SLOTS_5705; 2135 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1; 2136 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; 2137 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705; 2138 cidp->flags |= CHIP_FLAG_NO_JUMBO; 2139 cidp->statistic_type = BGE_STAT_REG; 2140 dev_ok = B_TRUE; 2141 break; 2142 2143 case DEVICE_ID_5723: 2144 case DEVICE_ID_5761: 2145 case DEVICE_ID_5761E: 2146 cidp->msi_enabled = bge_enable_msi; 2147 /* 2148 * We don't use MSI for BCM5764 and BCM5785, as the 2149 * status block may fail to update when the network 2150 * traffic is heavy. 2151 */ 2152 /* FALLTHRU */ 2153 case DEVICE_ID_5785: 2154 case DEVICE_ID_5764: 2155 if (cidp->device == DEVICE_ID_5723) 2156 cidp->chip_label = 5723; 2157 else if (cidp->device == DEVICE_ID_5764) 2158 cidp->chip_label = 5764; 2159 else if (cidp->device == DEVICE_ID_5785) 2160 cidp->chip_label = 5785; 2161 else 2162 cidp->chip_label = 5761; 2163 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721; 2164 cidp->pci_type = BGE_PCI_E; 2165 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705; 2166 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705; 2167 cidp->mbuf_hi_water = MBUF_HIWAT_5705; 2168 cidp->mbuf_base = bge_mbuf_pool_base_5705; 2169 cidp->mbuf_length = bge_mbuf_pool_len_5705; 2170 cidp->recv_slots = BGE_RECV_SLOTS_5705; 2171 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1; 2172 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; 2173 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705; 2174 cidp->flags |= CHIP_FLAG_NO_JUMBO; 2175 cidp->statistic_type = BGE_STAT_REG; 2176 dev_ok = B_TRUE; 2177 break; 2178 2179 /* PCI-X device, identical to 5714 */ 2180 case DEVICE_ID_5780: 2181 cidp->chip_label = 5780; 2182 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705; 2183 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705; 2184 cidp->mbuf_hi_water = MBUF_HIWAT_5705; 2185 cidp->mbuf_base = bge_mbuf_pool_base_5721; 2186 cidp->mbuf_length = bge_mbuf_pool_len_5721; 2187 cidp->recv_slots = BGE_RECV_SLOTS_5721; 2188 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; 2189 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705; 2190 cidp->statistic_type = BGE_STAT_REG; 2191 dev_ok = B_TRUE; 2192 break; 2193 2194 case DEVICE_ID_5782: 2195 /* 2196 * Apart from the label, we treat this as a 5705(?) 2197 */ 2198 cidp->chip_label = 5782; 2199 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705; 2200 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705; 2201 cidp->mbuf_hi_water = MBUF_HIWAT_5705; 2202 cidp->mbuf_base = bge_mbuf_pool_base_5705; 2203 cidp->mbuf_length = bge_mbuf_pool_len_5705; 2204 cidp->recv_slots = BGE_RECV_SLOTS_5705; 2205 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; 2206 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705; 2207 cidp->flags |= CHIP_FLAG_NO_JUMBO; 2208 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM; 2209 cidp->statistic_type = BGE_STAT_REG; 2210 dev_ok = B_TRUE; 2211 break; 2212 2213 case DEVICE_ID_5788: 2214 /* 2215 * Apart from the label, we treat this as a 5705(?) 2216 */ 2217 cidp->chip_label = 5788; 2218 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705; 2219 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705; 2220 cidp->mbuf_hi_water = MBUF_HIWAT_5705; 2221 cidp->mbuf_base = bge_mbuf_pool_base_5705; 2222 cidp->mbuf_length = bge_mbuf_pool_len_5705; 2223 cidp->recv_slots = BGE_RECV_SLOTS_5705; 2224 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; 2225 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705; 2226 cidp->statistic_type = BGE_STAT_REG; 2227 cidp->flags |= CHIP_FLAG_NO_JUMBO; 2228 dev_ok = B_TRUE; 2229 break; 2230 2231 case DEVICE_ID_5714C: 2232 if (cidp->revision >= REVISION_ID_5714_A2) 2233 cidp->msi_enabled = bge_enable_msi; 2234 /* FALLTHRU */ 2235 case DEVICE_ID_5714S: 2236 cidp->chip_label = 5714; 2237 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705; 2238 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705; 2239 cidp->mbuf_hi_water = MBUF_HIWAT_5705; 2240 cidp->mbuf_base = bge_mbuf_pool_base_5721; 2241 cidp->mbuf_length = bge_mbuf_pool_len_5721; 2242 cidp->recv_slots = BGE_RECV_SLOTS_5721; 2243 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5714; 2244 cidp->bge_mlcr_default = bge_mlcr_default_5714; 2245 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; 2246 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705; 2247 cidp->pci_type = BGE_PCI_E; 2248 cidp->statistic_type = BGE_STAT_REG; 2249 dev_ok = B_TRUE; 2250 break; 2251 2252 case DEVICE_ID_5715C: 2253 case DEVICE_ID_5715S: 2254 cidp->chip_label = 5715; 2255 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705; 2256 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705; 2257 cidp->mbuf_hi_water = MBUF_HIWAT_5705; 2258 cidp->mbuf_base = bge_mbuf_pool_base_5721; 2259 cidp->mbuf_length = bge_mbuf_pool_len_5721; 2260 cidp->recv_slots = BGE_RECV_SLOTS_5721; 2261 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5715; 2262 cidp->bge_mlcr_default = bge_mlcr_default_5714; 2263 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; 2264 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705; 2265 cidp->pci_type = BGE_PCI_E; 2266 cidp->statistic_type = BGE_STAT_REG; 2267 if (cidp->revision >= REVISION_ID_5715_A2) 2268 cidp->msi_enabled = bge_enable_msi; 2269 dev_ok = B_TRUE; 2270 break; 2271 2272 case DEVICE_ID_5721: 2273 cidp->chip_label = 5721; 2274 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705; 2275 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705; 2276 cidp->mbuf_hi_water = MBUF_HIWAT_5705; 2277 cidp->mbuf_base = bge_mbuf_pool_base_5721; 2278 cidp->mbuf_length = bge_mbuf_pool_len_5721; 2279 cidp->recv_slots = BGE_RECV_SLOTS_5721; 2280 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721; 2281 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; 2282 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705; 2283 cidp->pci_type = BGE_PCI_E; 2284 cidp->statistic_type = BGE_STAT_REG; 2285 cidp->flags |= CHIP_FLAG_NO_JUMBO; 2286 dev_ok = B_TRUE; 2287 break; 2288 2289 case DEVICE_ID_5722: 2290 cidp->chip_label = 5722; 2291 cidp->pci_type = BGE_PCI_E; 2292 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705; 2293 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705; 2294 cidp->mbuf_hi_water = MBUF_HIWAT_5705; 2295 cidp->mbuf_base = bge_mbuf_pool_base_5705; 2296 cidp->mbuf_length = bge_mbuf_pool_len_5705; 2297 cidp->recv_slots = BGE_RECV_SLOTS_5705; 2298 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1; 2299 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; 2300 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705; 2301 cidp->flags |= CHIP_FLAG_NO_JUMBO; 2302 cidp->statistic_type = BGE_STAT_REG; 2303 dev_ok = B_TRUE; 2304 break; 2305 2306 case DEVICE_ID_5751: 2307 case DEVICE_ID_5751M: 2308 cidp->chip_label = 5751; 2309 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705; 2310 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705; 2311 cidp->mbuf_hi_water = MBUF_HIWAT_5705; 2312 cidp->mbuf_base = bge_mbuf_pool_base_5721; 2313 cidp->mbuf_length = bge_mbuf_pool_len_5721; 2314 cidp->recv_slots = BGE_RECV_SLOTS_5721; 2315 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721; 2316 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; 2317 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705; 2318 cidp->pci_type = BGE_PCI_E; 2319 cidp->statistic_type = BGE_STAT_REG; 2320 cidp->flags |= CHIP_FLAG_NO_JUMBO; 2321 dev_ok = B_TRUE; 2322 break; 2323 2324 case DEVICE_ID_5752: 2325 case DEVICE_ID_5752M: 2326 cidp->chip_label = 5752; 2327 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705; 2328 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705; 2329 cidp->mbuf_hi_water = MBUF_HIWAT_5705; 2330 cidp->mbuf_base = bge_mbuf_pool_base_5721; 2331 cidp->mbuf_length = bge_mbuf_pool_len_5721; 2332 cidp->recv_slots = BGE_RECV_SLOTS_5721; 2333 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721; 2334 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; 2335 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705; 2336 cidp->pci_type = BGE_PCI_E; 2337 cidp->statistic_type = BGE_STAT_REG; 2338 cidp->flags |= CHIP_FLAG_NO_JUMBO; 2339 dev_ok = B_TRUE; 2340 break; 2341 2342 case DEVICE_ID_5789: 2343 cidp->chip_label = 5789; 2344 cidp->mbuf_base = bge_mbuf_pool_base_5721; 2345 cidp->mbuf_length = bge_mbuf_pool_len_5721; 2346 cidp->recv_slots = BGE_RECV_SLOTS_5721; 2347 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721; 2348 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; 2349 cidp->tx_rings = BGE_RECV_RINGS_MAX_5705; 2350 cidp->pci_type = BGE_PCI_E; 2351 cidp->statistic_type = BGE_STAT_REG; 2352 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM; 2353 cidp->flags |= CHIP_FLAG_NO_JUMBO; 2354 cidp->msi_enabled = B_TRUE; 2355 dev_ok = B_TRUE; 2356 break; 2357 2358 } 2359 2360 /* 2361 * Setup the default jumbo parameter. 2362 */ 2363 cidp->ethmax_size = ETHERMAX; 2364 cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_DEFAULT; 2365 cidp->std_buf_size = BGE_STD_BUFF_SIZE; 2366 2367 /* 2368 * If jumbo is enabled and this kind of chipset supports jumbo feature, 2369 * setup below jumbo specific parameters. 2370 * 2371 * For BCM5714/5715, there is only one standard receive ring. So the 2372 * std buffer size should be set to BGE_JUMBO_BUFF_SIZE when jumbo 2373 * feature is enabled. 2374 */ 2375 if (!(cidp->flags & CHIP_FLAG_NO_JUMBO) && 2376 (cidp->default_mtu > BGE_DEFAULT_MTU)) { 2377 if (DEVICE_5714_SERIES_CHIPSETS(bgep)) { 2378 cidp->mbuf_lo_water_rdma = 2379 RDMA_MBUF_LOWAT_5714_JUMBO; 2380 cidp->mbuf_lo_water_rmac = 2381 MAC_RX_MBUF_LOWAT_5714_JUMBO; 2382 cidp->mbuf_hi_water = MBUF_HIWAT_5714_JUMBO; 2383 cidp->jumbo_slots = 0; 2384 cidp->std_buf_size = BGE_JUMBO_BUFF_SIZE; 2385 } else { 2386 cidp->mbuf_lo_water_rdma = 2387 RDMA_MBUF_LOWAT_JUMBO; 2388 cidp->mbuf_lo_water_rmac = 2389 MAC_RX_MBUF_LOWAT_JUMBO; 2390 cidp->mbuf_hi_water = MBUF_HIWAT_JUMBO; 2391 cidp->jumbo_slots = BGE_JUMBO_SLOTS_USED; 2392 } 2393 cidp->recv_jumbo_size = BGE_JUMBO_BUFF_SIZE; 2394 cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_JUMBO; 2395 cidp->ethmax_size = cidp->default_mtu + 2396 sizeof (struct ether_header); 2397 } 2398 2399 /* 2400 * Identify the NV memory type: SEEPROM or Flash? 2401 */ 2402 cidp->nvtype = bge_nvmem_id(bgep); 2403 2404 /* 2405 * Now, we want to check whether this device is part of a 2406 * supported subsystem (e.g., on the motherboard of a Sun 2407 * branded platform). 2408 * 2409 * Rule 1: If the Subsystem Vendor ID is "Sun", then it's OK ;-) 2410 */ 2411 if (cidp->subven == VENDOR_ID_SUN) 2412 sys_ok = B_TRUE; 2413 2414 /* 2415 * Rule 2: If it's on the list on known subsystems, then it's OK. 2416 * Note: 0x14e41647 should *not* appear in the list, but the code 2417 * doesn't enforce that. 2418 */ 2419 err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo, 2420 DDI_PROP_DONTPASS, knownids_propname, &ids, &i); 2421 if (err == DDI_PROP_SUCCESS) { 2422 /* 2423 * Got the list; scan for a matching subsystem vendor/device 2424 */ 2425 subid = (cidp->subven << 16) | cidp->subdev; 2426 while (i--) 2427 if (ids[i] == subid) 2428 sys_ok = B_TRUE; 2429 ddi_prop_free(ids); 2430 } 2431 2432 /* 2433 * Rule 3: If it's a Taco/ENWS motherboard device, then it's OK 2434 * 2435 * Unfortunately, early SunBlade 1500s and 2500s didn't reprogram 2436 * the Subsystem Vendor ID, so it defaults to Broadcom. Therefore, 2437 * we have to check specially for the exact device paths to the 2438 * motherboard devices on those platforms ;-( 2439 * 2440 * Note: we can't just use the "supported-subsystems" mechanism 2441 * above, because the entry would have to be 0x14e41647 -- which 2442 * would then accept *any* plugin card that *didn't* contain a 2443 * (valid) SEEPROM ;-( 2444 */ 2445 sysname = ddi_node_name(ddi_root_node()); 2446 devname = ddi_pathname(bgep->devinfo, buf); 2447 ASSERT(strlen(devname) > 0); 2448 if (strcmp(sysname, "SUNW,Sun-Blade-1500") == 0) /* Taco */ 2449 if (strcmp(devname, "/pci@1f,700000/network@2") == 0) 2450 sys_ok = B_TRUE; 2451 if (strcmp(sysname, "SUNW,Sun-Blade-2500") == 0) /* ENWS */ 2452 if (strcmp(devname, "/pci@1c,600000/network@3") == 0) 2453 sys_ok = B_TRUE; 2454 2455 /* 2456 * Now check what we've discovered: is this truly a supported 2457 * chip on (the motherboard of) a supported platform? 2458 * 2459 * Possible problems here: 2460 * 1) it's a completely unheard-of chip 2461 * 2) it's a recognised but unsupported chip (e.g. 5701, 5703C-A0) 2462 * 3) it's a chip we would support if it were on the motherboard 2463 * of a Sun platform, but this one isn't ;-( 2464 */ 2465 if (cidp->chip_label == 0) 2466 bge_problem(bgep, 2467 "Device 'pci%04x,%04x' not recognized (%d?)", 2468 cidp->vendor, cidp->device, cidp->device); 2469 else if (!dev_ok) 2470 bge_problem(bgep, 2471 "Device 'pci%04x,%04x' (%d) revision %d not supported", 2472 cidp->vendor, cidp->device, cidp->chip_label, 2473 cidp->revision); 2474 #if BGE_DEBUGGING 2475 else if (!sys_ok) 2476 bge_problem(bgep, 2477 "%d-based subsystem 'pci%04x,%04x' not validated", 2478 cidp->chip_label, cidp->subven, cidp->subdev); 2479 #endif 2480 else 2481 cidp->flags |= CHIP_FLAG_SUPPORTED; 2482 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) 2483 return (EIO); 2484 return (0); 2485 } 2486 2487 void 2488 bge_chip_msi_trig(bge_t *bgep) 2489 { 2490 uint32_t regval; 2491 2492 regval = bgep->param_msi_cnt<<4; 2493 bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, regval); 2494 BGE_DEBUG(("bge_chip_msi_trig:data = %d", regval)); 2495 } 2496 2497 /* 2498 * Various registers that control the chip's internal engines (state 2499 * machines) have a <reset> and <enable> bits (fortunately, in the 2500 * same place in each such register :-). 2501 * 2502 * To reset the state machine, the <reset> bit must be written with 1; 2503 * it will then read back as 1 while the reset is in progress, but 2504 * self-clear to 0 when the reset completes. 2505 * 2506 * To enable a state machine, one must set the <enable> bit, which 2507 * will continue to read back as 0 until the state machine is running. 2508 * 2509 * To disable a state machine, the <enable> bit must be cleared, but 2510 * it will continue to read back as 1 until the state machine actually 2511 * stops. 2512 * 2513 * This routine implements polling for completion of a reset, enable 2514 * or disable operation, returning B_TRUE on success (bit reached the 2515 * required state) or B_FALSE on timeout (200*100us == 20ms). 2516 */ 2517 static boolean_t bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno, 2518 uint32_t mask, uint32_t val); 2519 #pragma no_inline(bge_chip_poll_engine) 2520 2521 static boolean_t 2522 bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno, 2523 uint32_t mask, uint32_t val) 2524 { 2525 uint32_t regval; 2526 uint32_t n; 2527 2528 BGE_TRACE(("bge_chip_poll_engine($%p, 0x%lx, 0x%x, 0x%x)", 2529 (void *)bgep, regno, mask, val)); 2530 2531 for (n = 200; n; --n) { 2532 regval = bge_reg_get32(bgep, regno); 2533 if ((regval & mask) == val) 2534 return (B_TRUE); 2535 drv_usecwait(100); 2536 } 2537 2538 bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE); 2539 return (B_FALSE); 2540 } 2541 2542 /* 2543 * Various registers that control the chip's internal engines (state 2544 * machines) have a <reset> bit (fortunately, in the same place in 2545 * each such register :-). To reset the state machine, this bit must 2546 * be written with 1; it will then read back as 1 while the reset is 2547 * in progress, but self-clear to 0 when the reset completes. 2548 * 2549 * This code sets the bit, then polls for it to read back as zero. 2550 * The return value is B_TRUE on success (reset bit cleared itself), 2551 * or B_FALSE if the state machine didn't recover :( 2552 * 2553 * NOTE: the Core reset is similar to other resets, except that we 2554 * can't poll for completion, since the Core reset disables memory 2555 * access! So we just have to assume that it will all complete in 2556 * 100us. See Broadcom document 570X-PG102-R, p102, steps 4-5. 2557 */ 2558 static boolean_t bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno); 2559 #pragma no_inline(bge_chip_reset_engine) 2560 2561 static boolean_t 2562 bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno) 2563 { 2564 uint32_t regval; 2565 uint32_t val32; 2566 2567 regval = bge_reg_get32(bgep, regno); 2568 2569 BGE_TRACE(("bge_chip_reset_engine($%p, 0x%lx)", 2570 (void *)bgep, regno)); 2571 BGE_DEBUG(("bge_chip_reset_engine: 0x%lx before reset = 0x%08x", 2572 regno, regval)); 2573 2574 regval |= STATE_MACHINE_RESET_BIT; 2575 2576 switch (regno) { 2577 case MISC_CONFIG_REG: 2578 /* 2579 * BCM5714/5721/5751 pcie chip special case. In order to avoid 2580 * resetting PCIE block and bringing PCIE link down, bit 29 2581 * in the register needs to be set first, and then set it again 2582 * while the reset bit is written. 2583 * See:P500 of 57xx-PG102-RDS.pdf. 2584 */ 2585 if (DEVICE_5705_SERIES_CHIPSETS(bgep)|| 2586 DEVICE_5721_SERIES_CHIPSETS(bgep)|| 2587 DEVICE_5723_SERIES_CHIPSETS(bgep)|| 2588 DEVICE_5714_SERIES_CHIPSETS(bgep)|| 2589 DEVICE_5906_SERIES_CHIPSETS(bgep)) { 2590 regval |= MISC_CONFIG_GPHY_POWERDOWN_OVERRIDE; 2591 if (bgep->chipid.pci_type == BGE_PCI_E) { 2592 if (bgep->chipid.asic_rev == 2593 MHCR_CHIP_REV_5751_A0 || 2594 bgep->chipid.asic_rev == 2595 MHCR_CHIP_REV_5721_A0 || 2596 bgep->chipid.asic_rev == 2597 MHCR_CHIP_REV_5755_A0) { 2598 val32 = bge_reg_get32(bgep, 2599 PHY_TEST_CTRL_REG); 2600 if (val32 == (PHY_PCIE_SCRAM_MODE | 2601 PHY_PCIE_LTASS_MODE)) 2602 bge_reg_put32(bgep, 2603 PHY_TEST_CTRL_REG, 2604 PHY_PCIE_SCRAM_MODE); 2605 val32 = pci_config_get32 2606 (bgep->cfg_handle, 2607 PCI_CONF_BGE_CLKCTL); 2608 val32 |= CLKCTL_PCIE_A0_FIX; 2609 pci_config_put32(bgep->cfg_handle, 2610 PCI_CONF_BGE_CLKCTL, val32); 2611 } 2612 bge_reg_set32(bgep, regno, 2613 MISC_CONFIG_GRC_RESET_DISABLE); 2614 regval |= MISC_CONFIG_GRC_RESET_DISABLE; 2615 } 2616 } 2617 2618 /* 2619 * Special case - causes Core reset 2620 * 2621 * On SPARC v9 we want to ensure that we don't start 2622 * timing until the I/O access has actually reached 2623 * the chip, otherwise we might make the next access 2624 * too early. And we can't just force the write out 2625 * by following it with a read (even to config space) 2626 * because that would cause the fault we're trying 2627 * to avoid. Hence the need for membar_sync() here. 2628 */ 2629 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), regval); 2630 #ifdef __sparcv9 2631 membar_sync(); 2632 #endif /* __sparcv9 */ 2633 /* 2634 * On some platforms,system need about 300us for 2635 * link setup. 2636 */ 2637 drv_usecwait(300); 2638 if (DEVICE_5906_SERIES_CHIPSETS(bgep)) { 2639 bge_reg_set32(bgep, VCPU_STATUS_REG, VCPU_DRV_RESET); 2640 bge_reg_clr32( 2641 bgep, VCPU_EXT_CTL, VCPU_EXT_CTL_HALF); 2642 } 2643 2644 if (bgep->chipid.pci_type == BGE_PCI_E) { 2645 /* PCI-E device need more reset time */ 2646 drv_usecwait(120000); 2647 2648 /* Set PCIE max payload size and clear error status. */ 2649 if ((bgep->chipid.chip_label == 5721) || 2650 (bgep->chipid.chip_label == 5751) || 2651 (bgep->chipid.chip_label == 5752) || 2652 (bgep->chipid.chip_label == 5789) || 2653 (bgep->chipid.chip_label == 5906)) { 2654 pci_config_put16(bgep->cfg_handle, 2655 PCI_CONF_DEV_CTRL, READ_REQ_SIZE_MAX); 2656 pci_config_put16(bgep->cfg_handle, 2657 PCI_CONF_DEV_STUS, DEVICE_ERROR_STUS); 2658 } 2659 2660 if ((bgep->chipid.chip_label == 5723) || 2661 (bgep->chipid.chip_label == 5761)) { 2662 pci_config_put16(bgep->cfg_handle, 2663 PCI_CONF_DEV_CTRL_5723, READ_REQ_SIZE_MAX); 2664 pci_config_put16(bgep->cfg_handle, 2665 PCI_CONF_DEV_STUS_5723, DEVICE_ERROR_STUS); 2666 } 2667 } 2668 2669 BGE_PCICHK(bgep); 2670 return (B_TRUE); 2671 2672 default: 2673 bge_reg_put32(bgep, regno, regval); 2674 return (bge_chip_poll_engine(bgep, regno, 2675 STATE_MACHINE_RESET_BIT, 0)); 2676 } 2677 } 2678 2679 /* 2680 * Various registers that control the chip's internal engines (state 2681 * machines) have an <enable> bit (fortunately, in the same place in 2682 * each such register :-). To stop the state machine, this bit must 2683 * be written with 0, then polled to see when the state machine has 2684 * actually stopped. 2685 * 2686 * The return value is B_TRUE on success (enable bit cleared), or 2687 * B_FALSE if the state machine didn't stop :( 2688 */ 2689 static boolean_t bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, 2690 uint32_t morebits); 2691 #pragma no_inline(bge_chip_disable_engine) 2692 2693 static boolean_t 2694 bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits) 2695 { 2696 uint32_t regval; 2697 2698 BGE_TRACE(("bge_chip_disable_engine($%p, 0x%lx, 0x%x)", 2699 (void *)bgep, regno, morebits)); 2700 2701 switch (regno) { 2702 case FTQ_RESET_REG: 2703 /* 2704 * For Schumacher's bugfix CR6490108 2705 */ 2706 #ifdef BGE_IPMI_ASF 2707 #ifdef BGE_NETCONSOLE 2708 if (bgep->asf_enabled) 2709 return (B_TRUE); 2710 #endif 2711 #endif 2712 /* 2713 * Not quite like the others; it doesn't 2714 * have an <enable> bit, but instead we 2715 * have to set and then clear all the bits 2716 */ 2717 bge_reg_put32(bgep, regno, ~(uint32_t)0); 2718 drv_usecwait(100); 2719 bge_reg_put32(bgep, regno, 0); 2720 return (B_TRUE); 2721 2722 default: 2723 regval = bge_reg_get32(bgep, regno); 2724 regval &= ~STATE_MACHINE_ENABLE_BIT; 2725 regval &= ~morebits; 2726 bge_reg_put32(bgep, regno, regval); 2727 return (bge_chip_poll_engine(bgep, regno, 2728 STATE_MACHINE_ENABLE_BIT, 0)); 2729 } 2730 } 2731 2732 /* 2733 * Various registers that control the chip's internal engines (state 2734 * machines) have an <enable> bit (fortunately, in the same place in 2735 * each such register :-). To start the state machine, this bit must 2736 * be written with 1, then polled to see when the state machine has 2737 * actually started. 2738 * 2739 * The return value is B_TRUE on success (enable bit set), or 2740 * B_FALSE if the state machine didn't start :( 2741 */ 2742 static boolean_t bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, 2743 uint32_t morebits); 2744 #pragma no_inline(bge_chip_enable_engine) 2745 2746 static boolean_t 2747 bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits) 2748 { 2749 uint32_t regval; 2750 2751 BGE_TRACE(("bge_chip_enable_engine($%p, 0x%lx, 0x%x)", 2752 (void *)bgep, regno, morebits)); 2753 2754 switch (regno) { 2755 case FTQ_RESET_REG: 2756 #ifdef BGE_IPMI_ASF 2757 #ifdef BGE_NETCONSOLE 2758 if (bgep->asf_enabled) 2759 return (B_TRUE); 2760 #endif 2761 #endif 2762 /* 2763 * Not quite like the others; it doesn't 2764 * have an <enable> bit, but instead we 2765 * have to set and then clear all the bits 2766 */ 2767 bge_reg_put32(bgep, regno, ~(uint32_t)0); 2768 drv_usecwait(100); 2769 bge_reg_put32(bgep, regno, 0); 2770 return (B_TRUE); 2771 2772 default: 2773 regval = bge_reg_get32(bgep, regno); 2774 regval |= STATE_MACHINE_ENABLE_BIT; 2775 regval |= morebits; 2776 bge_reg_put32(bgep, regno, regval); 2777 return (bge_chip_poll_engine(bgep, regno, 2778 STATE_MACHINE_ENABLE_BIT, STATE_MACHINE_ENABLE_BIT)); 2779 } 2780 } 2781 2782 /* 2783 * Reprogram the Ethernet, Transmit, and Receive MAC 2784 * modes to match the param_* variables 2785 */ 2786 void bge_sync_mac_modes(bge_t *bgep); 2787 #pragma no_inline(bge_sync_mac_modes) 2788 2789 void 2790 bge_sync_mac_modes(bge_t *bgep) 2791 { 2792 uint32_t macmode; 2793 uint32_t regval; 2794 2795 ASSERT(mutex_owned(bgep->genlock)); 2796 2797 /* 2798 * Reprogram the Ethernet MAC mode ... 2799 */ 2800 macmode = regval = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG); 2801 if ((bgep->chipid.flags & CHIP_FLAG_SERDES) && 2802 (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC)) 2803 if (DEVICE_5714_SERIES_CHIPSETS(bgep)) 2804 macmode |= ETHERNET_MODE_LINK_POLARITY; 2805 else 2806 macmode &= ~ETHERNET_MODE_LINK_POLARITY; 2807 else 2808 macmode |= ETHERNET_MODE_LINK_POLARITY; 2809 macmode &= ~ETHERNET_MODE_PORTMODE_MASK; 2810 if ((bgep->chipid.flags & CHIP_FLAG_SERDES) && 2811 (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC)) { 2812 if (DEVICE_5714_SERIES_CHIPSETS(bgep)) 2813 macmode |= ETHERNET_MODE_PORTMODE_GMII; 2814 else 2815 macmode |= ETHERNET_MODE_PORTMODE_TBI; 2816 } else if (bgep->param_link_speed == 10 || 2817 bgep->param_link_speed == 100) 2818 macmode |= ETHERNET_MODE_PORTMODE_MII; 2819 else 2820 macmode |= ETHERNET_MODE_PORTMODE_GMII; 2821 if (bgep->param_link_duplex == LINK_DUPLEX_HALF) 2822 macmode |= ETHERNET_MODE_HALF_DUPLEX; 2823 else 2824 macmode &= ~ETHERNET_MODE_HALF_DUPLEX; 2825 if (bgep->param_loop_mode == BGE_LOOP_INTERNAL_MAC) 2826 macmode |= ETHERNET_MODE_MAC_LOOPBACK; 2827 else 2828 macmode &= ~ETHERNET_MODE_MAC_LOOPBACK; 2829 bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode); 2830 BGE_DEBUG(("bge_sync_mac_modes($%p) Ethernet MAC mode 0x%x => 0x%x", 2831 (void *)bgep, regval, macmode)); 2832 2833 /* 2834 * ... the Transmit MAC mode ... 2835 */ 2836 macmode = regval = bge_reg_get32(bgep, TRANSMIT_MAC_MODE_REG); 2837 if (bgep->param_link_tx_pause) 2838 macmode |= TRANSMIT_MODE_FLOW_CONTROL; 2839 else 2840 macmode &= ~TRANSMIT_MODE_FLOW_CONTROL; 2841 bge_reg_put32(bgep, TRANSMIT_MAC_MODE_REG, macmode); 2842 BGE_DEBUG(("bge_sync_mac_modes($%p) Transmit MAC mode 0x%x => 0x%x", 2843 (void *)bgep, regval, macmode)); 2844 2845 /* 2846 * ... and the Receive MAC mode 2847 */ 2848 macmode = regval = bge_reg_get32(bgep, RECEIVE_MAC_MODE_REG); 2849 if (bgep->param_link_rx_pause) 2850 macmode |= RECEIVE_MODE_FLOW_CONTROL; 2851 else 2852 macmode &= ~RECEIVE_MODE_FLOW_CONTROL; 2853 bge_reg_put32(bgep, RECEIVE_MAC_MODE_REG, macmode); 2854 BGE_DEBUG(("bge_sync_mac_modes($%p) Receive MAC mode 0x%x => 0x%x", 2855 (void *)bgep, regval, macmode)); 2856 2857 /* 2858 * For BCM5785, we need to configure the link status in the MI Status 2859 * register with a write command when auto-polling is disabled. 2860 */ 2861 if (bgep->chipid.device == DEVICE_ID_5785) 2862 if (bgep->param_link_speed == 10) 2863 bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK 2864 | MI_STATUS_10MBPS); 2865 else 2866 bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK); 2867 } 2868 2869 /* 2870 * bge_chip_sync() -- program the chip with the unicast MAC address, 2871 * the multicast hash table, the required level of promiscuity, and 2872 * the current loopback mode ... 2873 */ 2874 #ifdef BGE_IPMI_ASF 2875 int bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive); 2876 #else 2877 int bge_chip_sync(bge_t *bgep); 2878 #endif 2879 #pragma no_inline(bge_chip_sync) 2880 2881 int 2882 #ifdef BGE_IPMI_ASF 2883 bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive) 2884 #else 2885 bge_chip_sync(bge_t *bgep) 2886 #endif 2887 { 2888 void (*opfn)(bge_t *bgep, bge_regno_t reg, uint32_t bits); 2889 boolean_t promisc; 2890 uint64_t macaddr; 2891 uint32_t fill = 0; 2892 int i, j; 2893 int retval = DDI_SUCCESS; 2894 2895 BGE_TRACE(("bge_chip_sync($%p)", 2896 (void *)bgep)); 2897 2898 ASSERT(mutex_owned(bgep->genlock)); 2899 2900 promisc = B_FALSE; 2901 fill = ~(uint32_t)0; 2902 2903 if (bgep->promisc) 2904 promisc = B_TRUE; 2905 else 2906 fill = (uint32_t)0; 2907 2908 /* 2909 * If the TX/RX MAC engines are already running, we should stop 2910 * them (and reset the RX engine) before changing the parameters. 2911 * If they're not running, this will have no effect ... 2912 * 2913 * NOTE: this is currently disabled by default because stopping 2914 * and restarting the Tx engine may cause an outgoing packet in 2915 * transit to be truncated. Also, stopping and restarting the 2916 * Rx engine seems to not work correctly on the 5705. Testing 2917 * has not (yet!) revealed any problems with NOT stopping and 2918 * restarting these engines (and Broadcom say their drivers don't 2919 * do this), but if it is found to cause problems, this variable 2920 * can be patched to re-enable the old behaviour ... 2921 */ 2922 if (bge_stop_start_on_sync) { 2923 #ifdef BGE_IPMI_ASF 2924 if (!bgep->asf_enabled) { 2925 if (!bge_chip_disable_engine(bgep, 2926 RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG)) 2927 retval = DDI_FAILURE; 2928 } else { 2929 if (!bge_chip_disable_engine(bgep, 2930 RECEIVE_MAC_MODE_REG, 0)) 2931 retval = DDI_FAILURE; 2932 } 2933 #else 2934 if (!bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG, 2935 RECEIVE_MODE_KEEP_VLAN_TAG)) 2936 retval = DDI_FAILURE; 2937 #endif 2938 if (!bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0)) 2939 retval = DDI_FAILURE; 2940 if (!bge_chip_reset_engine(bgep, RECEIVE_MAC_MODE_REG)) 2941 retval = DDI_FAILURE; 2942 } 2943 2944 /* 2945 * Reprogram the hashed multicast address table ... 2946 */ 2947 for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i) 2948 bge_reg_put32(bgep, MAC_HASH_REG(i), 0); 2949 2950 for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i) 2951 bge_reg_put32(bgep, MAC_HASH_REG(i), 2952 bgep->mcast_hash[i] | fill); 2953 2954 #ifdef BGE_IPMI_ASF 2955 if (!bgep->asf_enabled || !asf_keeplive) { 2956 #endif 2957 /* 2958 * Transform the MAC address(es) from host to chip format, then 2959 * reprogram the transmit random backoff seed and the unicast 2960 * MAC address(es) ... 2961 */ 2962 for (j = 0; j < MAC_ADDRESS_REGS_MAX; j++) { 2963 for (i = 0, macaddr = 0ull; 2964 i < ETHERADDRL; ++i) { 2965 macaddr <<= 8; 2966 macaddr |= bgep->curr_addr[j].addr[i]; 2967 } 2968 fill += (macaddr >> 16) + (macaddr & 0xffffffff); 2969 bge_reg_put64(bgep, MAC_ADDRESS_REG(j), macaddr); 2970 2971 BGE_DEBUG(("bge_chip_sync($%p) " 2972 "setting MAC address %012llx", 2973 (void *)bgep, macaddr)); 2974 } 2975 #ifdef BGE_IPMI_ASF 2976 } 2977 #endif 2978 /* 2979 * Set random seed of backoff interval 2980 * - Writing zero means no backoff interval 2981 */ 2982 fill = ((fill >> 20) + (fill >> 10) + fill) & 0x3ff; 2983 if (fill == 0) 2984 fill = 1; 2985 bge_reg_put32(bgep, MAC_TX_RANDOM_BACKOFF_REG, fill); 2986 2987 /* 2988 * Set or clear the PROMISCUOUS mode bit 2989 */ 2990 opfn = promisc ? bge_reg_set32 : bge_reg_clr32; 2991 (*opfn)(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_PROMISCUOUS); 2992 2993 /* 2994 * Sync the rest of the MAC modes too ... 2995 */ 2996 bge_sync_mac_modes(bgep); 2997 2998 /* 2999 * Restart RX/TX MAC engines if required ... 3000 */ 3001 if (bgep->bge_chip_state == BGE_CHIP_RUNNING) { 3002 if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0)) 3003 retval = DDI_FAILURE; 3004 #ifdef BGE_IPMI_ASF 3005 if (!bgep->asf_enabled) { 3006 if (!bge_chip_enable_engine(bgep, 3007 RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG)) 3008 retval = DDI_FAILURE; 3009 } else { 3010 if (!bge_chip_enable_engine(bgep, 3011 RECEIVE_MAC_MODE_REG, 0)) 3012 retval = DDI_FAILURE; 3013 } 3014 #else 3015 if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 3016 RECEIVE_MODE_KEEP_VLAN_TAG)) 3017 retval = DDI_FAILURE; 3018 #endif 3019 } 3020 return (retval); 3021 } 3022 3023 /* 3024 * This array defines the sequence of state machine control registers 3025 * in which the <enable> bit must be cleared to bring the chip to a 3026 * clean stop. Taken from Broadcom document 570X-PG102-R, p116. 3027 */ 3028 static bge_regno_t shutdown_engine_regs[] = { 3029 RECEIVE_MAC_MODE_REG, 3030 RCV_BD_INITIATOR_MODE_REG, 3031 RCV_LIST_PLACEMENT_MODE_REG, 3032 RCV_LIST_SELECTOR_MODE_REG, /* BCM5704 series only */ 3033 RCV_DATA_BD_INITIATOR_MODE_REG, 3034 RCV_DATA_COMPLETION_MODE_REG, 3035 RCV_BD_COMPLETION_MODE_REG, 3036 3037 SEND_BD_SELECTOR_MODE_REG, 3038 SEND_BD_INITIATOR_MODE_REG, 3039 SEND_DATA_INITIATOR_MODE_REG, 3040 READ_DMA_MODE_REG, 3041 SEND_DATA_COMPLETION_MODE_REG, 3042 DMA_COMPLETION_MODE_REG, /* BCM5704 series only */ 3043 SEND_BD_COMPLETION_MODE_REG, 3044 TRANSMIT_MAC_MODE_REG, 3045 3046 HOST_COALESCE_MODE_REG, 3047 WRITE_DMA_MODE_REG, 3048 MBUF_CLUSTER_FREE_MODE_REG, /* BCM5704 series only */ 3049 FTQ_RESET_REG, /* special - see code */ 3050 BUFFER_MANAGER_MODE_REG, /* BCM5704 series only */ 3051 MEMORY_ARBITER_MODE_REG, /* BCM5704 series only */ 3052 BGE_REGNO_NONE /* terminator */ 3053 }; 3054 3055 #ifndef __sparc 3056 static bge_regno_t quiesce_regs[] = { 3057 READ_DMA_MODE_REG, 3058 DMA_COMPLETION_MODE_REG, 3059 WRITE_DMA_MODE_REG, 3060 BGE_REGNO_NONE 3061 }; 3062 3063 void bge_chip_stop_nonblocking(bge_t *bgep); 3064 #pragma no_inline(bge_chip_stop_nonblocking) 3065 3066 /* 3067 * This function is called by bge_quiesce(). We 3068 * turn off all the DMA engines here. 3069 */ 3070 void 3071 bge_chip_stop_nonblocking(bge_t *bgep) 3072 { 3073 bge_regno_t *rbp; 3074 3075 /* 3076 * Flag that no more activity may be initiated 3077 */ 3078 bgep->progress &= ~PROGRESS_READY; 3079 3080 rbp = quiesce_regs; 3081 while (*rbp != BGE_REGNO_NONE) { 3082 (void) bge_chip_disable_engine(bgep, *rbp, 0); 3083 ++rbp; 3084 } 3085 3086 bgep->bge_chip_state = BGE_CHIP_STOPPED; 3087 } 3088 3089 #endif 3090 3091 /* 3092 * bge_chip_stop() -- stop all chip processing 3093 * 3094 * If the <fault> parameter is B_TRUE, we're stopping the chip because 3095 * we've detected a problem internally; otherwise, this is a normal 3096 * (clean) stop (at user request i.e. the last STREAM has been closed). 3097 */ 3098 void bge_chip_stop(bge_t *bgep, boolean_t fault); 3099 #pragma no_inline(bge_chip_stop) 3100 3101 void 3102 bge_chip_stop(bge_t *bgep, boolean_t fault) 3103 { 3104 bge_regno_t regno; 3105 bge_regno_t *rbp; 3106 boolean_t ok; 3107 3108 BGE_TRACE(("bge_chip_stop($%p)", 3109 (void *)bgep)); 3110 3111 ASSERT(mutex_owned(bgep->genlock)); 3112 3113 rbp = shutdown_engine_regs; 3114 /* 3115 * When driver try to shutdown the BCM5705/5788/5721/5751/ 3116 * 5752/5714 and 5715 chipsets,the buffer manager and the mem 3117 * -ory arbiter should not be disabled. 3118 */ 3119 for (ok = B_TRUE; (regno = *rbp) != BGE_REGNO_NONE; ++rbp) { 3120 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) 3121 ok &= bge_chip_disable_engine(bgep, regno, 0); 3122 else if ((regno != RCV_LIST_SELECTOR_MODE_REG) && 3123 (regno != DMA_COMPLETION_MODE_REG) && 3124 (regno != MBUF_CLUSTER_FREE_MODE_REG)&& 3125 (regno != BUFFER_MANAGER_MODE_REG) && 3126 (regno != MEMORY_ARBITER_MODE_REG)) 3127 ok &= bge_chip_disable_engine(bgep, 3128 regno, 0); 3129 } 3130 3131 if (!ok && !fault) 3132 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED); 3133 3134 /* 3135 * Finally, disable (all) MAC events & clear the MAC status 3136 */ 3137 bge_reg_put32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 0); 3138 bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, ~0); 3139 3140 /* 3141 * if we're stopping the chip because of a detected fault then do 3142 * appropriate actions 3143 */ 3144 if (fault) { 3145 if (bgep->bge_chip_state != BGE_CHIP_FAULT) { 3146 bgep->bge_chip_state = BGE_CHIP_FAULT; 3147 if (!bgep->manual_reset) 3148 ddi_fm_service_impact(bgep->devinfo, 3149 DDI_SERVICE_LOST); 3150 if (bgep->bge_dma_error) { 3151 /* 3152 * need to free buffers in case the fault was 3153 * due to a memory error in a buffer - got to 3154 * do a fair bit of tidying first 3155 */ 3156 if (bgep->progress & PROGRESS_KSTATS) { 3157 bge_fini_kstats(bgep); 3158 bgep->progress &= ~PROGRESS_KSTATS; 3159 } 3160 if (bgep->progress & PROGRESS_INTR) { 3161 bge_intr_disable(bgep); 3162 rw_enter(bgep->errlock, RW_WRITER); 3163 bge_fini_rings(bgep); 3164 rw_exit(bgep->errlock); 3165 bgep->progress &= ~PROGRESS_INTR; 3166 } 3167 if (bgep->progress & PROGRESS_BUFS) { 3168 bge_free_bufs(bgep); 3169 bgep->progress &= ~PROGRESS_BUFS; 3170 } 3171 bgep->bge_dma_error = B_FALSE; 3172 } 3173 } 3174 } else 3175 bgep->bge_chip_state = BGE_CHIP_STOPPED; 3176 } 3177 3178 /* 3179 * Poll for completion of chip's ROM firmware; also, at least on the 3180 * first time through, find and return the hardware MAC address, if any. 3181 */ 3182 static uint64_t bge_poll_firmware(bge_t *bgep); 3183 #pragma no_inline(bge_poll_firmware) 3184 3185 static uint64_t 3186 bge_poll_firmware(bge_t *bgep) 3187 { 3188 uint64_t magic; 3189 uint64_t mac; 3190 uint32_t gen, val; 3191 uint32_t i; 3192 3193 /* 3194 * Step 19: poll for firmware completion (GENCOMM port set 3195 * to the ones complement of T3_MAGIC_NUMBER). 3196 * 3197 * While we're at it, we also read the MAC address register; 3198 * at some stage the firmware will load this with the 3199 * factory-set value. 3200 * 3201 * When both the magic number and the MAC address are set, 3202 * we're done; but we impose a time limit of one second 3203 * (1000*1000us) in case the firmware fails in some fashion 3204 * or the SEEPROM that provides that MAC address isn't fitted. 3205 * 3206 * After the first time through (chip state != INITIAL), we 3207 * don't need the MAC address to be set (we've already got it 3208 * or not, from the first time), so we don't wait for it, but 3209 * we still have to wait for the T3_MAGIC_NUMBER. 3210 * 3211 * Note: the magic number is only a 32-bit quantity, but the NIC 3212 * memory is 64-bit (and big-endian) internally. Addressing the 3213 * GENCOMM word as "the upper half of a 64-bit quantity" makes 3214 * it work correctly on both big- and little-endian hosts. 3215 */ 3216 if (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) == 3217 MHCR_CHIP_ASIC_REV_5906) { 3218 for (i = 0; i < 1000; ++i) { 3219 drv_usecwait(1000); 3220 val = bge_reg_get32(bgep, VCPU_STATUS_REG); 3221 if (val & VCPU_INIT_DONE) 3222 break; 3223 } 3224 BGE_DEBUG(("bge_poll_firmware($%p): return after %d loops", 3225 (void *)bgep, i)); 3226 mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0)); 3227 } else { 3228 for (i = 0; i < 1000; ++i) { 3229 drv_usecwait(1000); 3230 gen = bge_nic_get64(bgep, NIC_MEM_GENCOMM) >> 32; 3231 if (i == 0 && DEVICE_5704_SERIES_CHIPSETS(bgep)) 3232 drv_usecwait(100000); 3233 mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0)); 3234 #ifdef BGE_IPMI_ASF 3235 if (!bgep->asf_enabled) { 3236 #endif 3237 if (gen != ~T3_MAGIC_NUMBER) 3238 continue; 3239 #ifdef BGE_IPMI_ASF 3240 } 3241 #endif 3242 if (mac != 0ULL) 3243 break; 3244 if (bgep->bge_chip_state != BGE_CHIP_INITIAL) 3245 break; 3246 } 3247 } 3248 3249 magic = bge_nic_get64(bgep, NIC_MEM_GENCOMM); 3250 BGE_DEBUG(("bge_poll_firmware($%p): PXE magic 0x%x after %d loops", 3251 (void *)bgep, gen, i)); 3252 BGE_DEBUG(("bge_poll_firmware: MAC %016llx, GENCOMM %016llx", 3253 mac, magic)); 3254 3255 return (mac); 3256 } 3257 3258 /* 3259 * Maximum times of trying to get the NVRAM access lock 3260 * by calling bge_nvmem_acquire() 3261 */ 3262 #define MAX_TRY_NVMEM_ACQUIRE 10000 3263 3264 #ifdef BGE_IPMI_ASF 3265 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode); 3266 #else 3267 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma); 3268 #endif 3269 #pragma no_inline(bge_chip_reset) 3270 3271 int 3272 #ifdef BGE_IPMI_ASF 3273 bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode) 3274 #else 3275 bge_chip_reset(bge_t *bgep, boolean_t enable_dma) 3276 #endif 3277 { 3278 chip_id_t chipid; 3279 uint64_t mac; 3280 uint64_t magic; 3281 uint32_t modeflags; 3282 uint32_t mhcr; 3283 uint32_t sx0; 3284 uint32_t i, tries; 3285 #ifdef BGE_IPMI_ASF 3286 uint32_t mailbox; 3287 #endif 3288 int retval = DDI_SUCCESS; 3289 3290 BGE_TRACE(("bge_chip_reset($%p, %d)", 3291 (void *)bgep, enable_dma)); 3292 3293 ASSERT(mutex_owned(bgep->genlock)); 3294 3295 BGE_DEBUG(("bge_chip_reset($%p, %d): current state is %d", 3296 (void *)bgep, enable_dma, bgep->bge_chip_state)); 3297 3298 /* 3299 * Do we need to stop the chip cleanly before resetting? 3300 */ 3301 switch (bgep->bge_chip_state) { 3302 default: 3303 _NOTE(NOTREACHED) 3304 return (DDI_FAILURE); 3305 3306 case BGE_CHIP_INITIAL: 3307 case BGE_CHIP_STOPPED: 3308 case BGE_CHIP_RESET: 3309 break; 3310 3311 case BGE_CHIP_RUNNING: 3312 case BGE_CHIP_ERROR: 3313 case BGE_CHIP_FAULT: 3314 bge_chip_stop(bgep, B_FALSE); 3315 break; 3316 } 3317 3318 #ifdef BGE_IPMI_ASF 3319 if (bgep->asf_enabled) { 3320 #ifdef __sparc 3321 mhcr = MHCR_ENABLE_INDIRECT_ACCESS | 3322 MHCR_ENABLE_TAGGED_STATUS_MODE | 3323 MHCR_MASK_INTERRUPT_MODE | 3324 MHCR_MASK_PCI_INT_OUTPUT | 3325 MHCR_CLEAR_INTERRUPT_INTA | 3326 MHCR_ENABLE_ENDIAN_WORD_SWAP | 3327 MHCR_ENABLE_ENDIAN_BYTE_SWAP; 3328 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr); 3329 bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG, 3330 bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG) | 3331 MEMORY_ARBITER_ENABLE); 3332 #endif 3333 if (asf_mode == ASF_MODE_INIT) { 3334 bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET); 3335 } else if (asf_mode == ASF_MODE_SHUTDOWN) { 3336 bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET); 3337 } 3338 } 3339 #endif 3340 /* 3341 * Adapted from Broadcom document 570X-PG102-R, pp 102-116. 3342 * Updated to reflect Broadcom document 570X-PG104-R, pp 146-159. 3343 * 3344 * Before reset Core clock,it is 3345 * also required to initialize the Memory Arbiter as specified in step9 3346 * and Misc Host Control Register as specified in step-13 3347 * Step 4-5: reset Core clock & wait for completion 3348 * Steps 6-8: are done by bge_chip_cfg_init() 3349 * put the T3_MAGIC_NUMBER into the GENCOMM port before reset 3350 */ 3351 if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0)) 3352 retval = DDI_FAILURE; 3353 3354 mhcr = MHCR_ENABLE_INDIRECT_ACCESS | 3355 MHCR_ENABLE_TAGGED_STATUS_MODE | 3356 MHCR_MASK_INTERRUPT_MODE | 3357 MHCR_MASK_PCI_INT_OUTPUT | 3358 MHCR_CLEAR_INTERRUPT_INTA; 3359 #ifdef _BIG_ENDIAN 3360 mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP; 3361 #endif /* _BIG_ENDIAN */ 3362 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr); 3363 #ifdef BGE_IPMI_ASF 3364 if (bgep->asf_enabled) 3365 bgep->asf_wordswapped = B_FALSE; 3366 #endif 3367 /* 3368 * NVRAM Corruption Workaround 3369 */ 3370 for (tries = 0; tries < MAX_TRY_NVMEM_ACQUIRE; tries++) 3371 if (bge_nvmem_acquire(bgep) != EAGAIN) 3372 break; 3373 if (tries >= MAX_TRY_NVMEM_ACQUIRE) 3374 BGE_DEBUG(("%s: fail to acquire nvram lock", 3375 bgep->ifname)); 3376 3377 #ifdef BGE_IPMI_ASF 3378 if (!bgep->asf_enabled) { 3379 #endif 3380 magic = (uint64_t)T3_MAGIC_NUMBER << 32; 3381 bge_nic_put64(bgep, NIC_MEM_GENCOMM, magic); 3382 #ifdef BGE_IPMI_ASF 3383 } 3384 #endif 3385 3386 if (!bge_chip_reset_engine(bgep, MISC_CONFIG_REG)) 3387 retval = DDI_FAILURE; 3388 bge_chip_cfg_init(bgep, &chipid, enable_dma); 3389 3390 /* 3391 * Step 8a: This may belong elsewhere, but BCM5721 needs 3392 * a bit set to avoid a fifo overflow/underflow bug. 3393 */ 3394 if ((bgep->chipid.chip_label == 5721) || 3395 (bgep->chipid.chip_label == 5751) || 3396 (bgep->chipid.chip_label == 5752) || 3397 (bgep->chipid.chip_label == 5755) || 3398 (bgep->chipid.chip_label == 5756) || 3399 (bgep->chipid.chip_label == 5789) || 3400 (bgep->chipid.chip_label == 5906)) 3401 bge_reg_set32(bgep, TLP_CONTROL_REG, TLP_DATA_FIFO_PROTECT); 3402 3403 3404 /* 3405 * Step 9: enable MAC memory arbiter,bit30 and bit31 of 5714/5715 should 3406 * not be changed. 3407 */ 3408 if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0)) 3409 retval = DDI_FAILURE; 3410 3411 /* 3412 * Steps 10-11: configure PIO endianness options and 3413 * enable indirect register access -- already done 3414 * Steps 12-13: enable writing to the PCI state & clock 3415 * control registers -- not required; we aren't going to 3416 * use those features. 3417 * Steps 14-15: Configure DMA endianness options. See 3418 * the comments on the setting of the MHCR above. 3419 */ 3420 #ifdef _BIG_ENDIAN 3421 modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME | 3422 MODE_WORD_SWAP_NONFRAME | MODE_BYTE_SWAP_NONFRAME; 3423 #else 3424 modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME; 3425 #endif /* _BIG_ENDIAN */ 3426 #ifdef BGE_IPMI_ASF 3427 if (bgep->asf_enabled) 3428 modeflags |= MODE_HOST_STACK_UP; 3429 #endif 3430 bge_reg_put32(bgep, MODE_CONTROL_REG, modeflags); 3431 3432 #ifdef BGE_IPMI_ASF 3433 if (bgep->asf_enabled) { 3434 #ifdef __sparc 3435 bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG, 3436 MEMORY_ARBITER_ENABLE | 3437 bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG)); 3438 #endif 3439 3440 #ifdef BGE_NETCONSOLE 3441 if (!bgep->asf_newhandshake) { 3442 if ((asf_mode == ASF_MODE_INIT) || 3443 (asf_mode == ASF_MODE_POST_INIT)) { 3444 bge_asf_post_reset_old_mode(bgep, 3445 BGE_INIT_RESET); 3446 } else { 3447 bge_asf_post_reset_old_mode(bgep, 3448 BGE_SHUTDOWN_RESET); 3449 } 3450 } 3451 #endif 3452 3453 /* Wait for NVRAM init */ 3454 i = 0; 3455 drv_usecwait(5000); 3456 mailbox = bge_nic_get32(bgep, BGE_FIRMWARE_MAILBOX); 3457 3458 while ((mailbox != (uint32_t) 3459 ~BGE_MAGIC_NUM_FIRMWARE_INIT_DONE) && 3460 (i < 10000)) { 3461 drv_usecwait(100); 3462 mailbox = bge_nic_get32(bgep, 3463 BGE_FIRMWARE_MAILBOX); 3464 i++; 3465 } 3466 3467 #ifndef BGE_NETCONSOLE 3468 if (!bgep->asf_newhandshake) { 3469 if ((asf_mode == ASF_MODE_INIT) || 3470 (asf_mode == ASF_MODE_POST_INIT)) { 3471 3472 bge_asf_post_reset_old_mode(bgep, 3473 BGE_INIT_RESET); 3474 } else { 3475 bge_asf_post_reset_old_mode(bgep, 3476 BGE_SHUTDOWN_RESET); 3477 } 3478 } 3479 #endif 3480 } 3481 #endif 3482 /* 3483 * Steps 16-17: poll for firmware completion 3484 */ 3485 mac = bge_poll_firmware(bgep); 3486 3487 /* 3488 * Step 18: enable external memory -- doesn't apply. 3489 * 3490 * However we take the opportunity to set the MLCR anyway, as 3491 * this register also controls the SEEPROM auto-access method 3492 * which we may want to use later ... 3493 * 3494 * The proper value here depends on the way the chip is wired 3495 * into the circuit board, as this register *also* controls which 3496 * of the "Miscellaneous I/O" pins are driven as outputs and the 3497 * values driven onto those pins! 3498 * 3499 * See also step 74 in the PRM ... 3500 */ 3501 bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, 3502 bgep->chipid.bge_mlcr_default); 3503 bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT); 3504 3505 /* 3506 * Step 20: clear the Ethernet MAC mode register 3507 */ 3508 bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, 0); 3509 3510 /* 3511 * Step 21: restore cache-line-size, latency timer, and 3512 * subsystem ID registers to their original values (not 3513 * those read into the local structure <chipid>, 'cos 3514 * that was after they were cleared by the RESET). 3515 * 3516 * Note: the Subsystem Vendor/Device ID registers are not 3517 * directly writable in config space, so we use the shadow 3518 * copy in "Page Zero" of register space to restore them 3519 * both in one go ... 3520 */ 3521 pci_config_put8(bgep->cfg_handle, PCI_CONF_CACHE_LINESZ, 3522 bgep->chipid.clsize); 3523 pci_config_put8(bgep->cfg_handle, PCI_CONF_LATENCY_TIMER, 3524 bgep->chipid.latency); 3525 bge_reg_put32(bgep, PCI_CONF_SUBVENID, 3526 (bgep->chipid.subdev << 16) | bgep->chipid.subven); 3527 3528 /* 3529 * The SEND INDEX registers should be reset to zero by the 3530 * global chip reset; if they're not, there'll be trouble 3531 * later on. 3532 */ 3533 sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0)); 3534 if (sx0 != 0) { 3535 BGE_REPORT((bgep, "SEND INDEX - device didn't RESET")); 3536 bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE); 3537 retval = DDI_FAILURE; 3538 } 3539 3540 /* Enable MSI code */ 3541 if (bgep->intr_type == DDI_INTR_TYPE_MSI) 3542 bge_reg_set32(bgep, MSI_MODE_REG, 3543 MSI_PRI_HIGHEST|MSI_MSI_ENABLE|MSI_ERROR_ATTENTION); 3544 3545 /* 3546 * On the first time through, save the factory-set MAC address 3547 * (if any). If bge_poll_firmware() above didn't return one 3548 * (from a chip register) consider looking in the attached NV 3549 * memory device, if any. Once we have it, we save it in both 3550 * register-image (64-bit) and byte-array forms. All-zero and 3551 * all-one addresses are not valid, and we refuse to stash those. 3552 */ 3553 if (bgep->bge_chip_state == BGE_CHIP_INITIAL) { 3554 if (mac == 0ULL) 3555 mac = bge_get_nvmac(bgep); 3556 if (mac != 0ULL && mac != ~0ULL) { 3557 bgep->chipid.hw_mac_addr = mac; 3558 for (i = ETHERADDRL; i-- != 0; ) { 3559 bgep->chipid.vendor_addr.addr[i] = (uchar_t)mac; 3560 mac >>= 8; 3561 } 3562 bgep->chipid.vendor_addr.set = B_TRUE; 3563 } 3564 } 3565 3566 #ifdef BGE_IPMI_ASF 3567 if (bgep->asf_enabled && bgep->asf_newhandshake) { 3568 if (asf_mode != ASF_MODE_NONE) { 3569 if ((asf_mode == ASF_MODE_INIT) || 3570 (asf_mode == ASF_MODE_POST_INIT)) { 3571 3572 bge_asf_post_reset_new_mode(bgep, 3573 BGE_INIT_RESET); 3574 } else { 3575 bge_asf_post_reset_new_mode(bgep, 3576 BGE_SHUTDOWN_RESET); 3577 } 3578 } 3579 } 3580 #endif 3581 3582 /* 3583 * Record the new state 3584 */ 3585 bgep->chip_resets += 1; 3586 bgep->bge_chip_state = BGE_CHIP_RESET; 3587 return (retval); 3588 } 3589 3590 /* 3591 * bge_chip_start() -- start the chip transmitting and/or receiving, 3592 * including enabling interrupts 3593 */ 3594 int bge_chip_start(bge_t *bgep, boolean_t reset_phys); 3595 #pragma no_inline(bge_chip_start) 3596 3597 void 3598 bge_chip_coalesce_update(bge_t *bgep) 3599 { 3600 bge_reg_put32(bgep, SEND_COALESCE_MAX_BD_REG, 3601 bgep->chipid.tx_count_norm); 3602 bge_reg_put32(bgep, SEND_COALESCE_TICKS_REG, 3603 bgep->chipid.tx_ticks_norm); 3604 bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, 3605 bgep->chipid.rx_count_norm); 3606 bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, 3607 bgep->chipid.rx_ticks_norm); 3608 } 3609 3610 int 3611 bge_chip_start(bge_t *bgep, boolean_t reset_phys) 3612 { 3613 uint32_t coalmode; 3614 uint32_t ledctl; 3615 uint32_t mtu; 3616 uint32_t maxring; 3617 uint32_t stats_mask; 3618 uint32_t dma_wrprio; 3619 uint64_t ring; 3620 int retval = DDI_SUCCESS; 3621 3622 BGE_TRACE(("bge_chip_start($%p)", 3623 (void *)bgep)); 3624 3625 ASSERT(mutex_owned(bgep->genlock)); 3626 ASSERT(bgep->bge_chip_state == BGE_CHIP_RESET); 3627 3628 /* 3629 * Taken from Broadcom document 570X-PG102-R, pp 102-116. 3630 * The document specifies 95 separate steps to fully 3631 * initialise the chip!!!! 3632 * 3633 * The reset code above has already got us as far as step 3634 * 21, so we continue with ... 3635 * 3636 * Step 22: clear the MAC statistics block 3637 * (0x0300-0x0aff in NIC-local memory) 3638 */ 3639 if (bgep->chipid.statistic_type == BGE_STAT_BLK) 3640 bge_nic_zero(bgep, NIC_MEM_STATISTICS, 3641 NIC_MEM_STATISTICS_SIZE); 3642 3643 /* 3644 * Step 23: clear the status block (in host memory) 3645 */ 3646 DMA_ZERO(bgep->status_block); 3647 3648 /* 3649 * Step 24: set DMA read/write control register 3650 */ 3651 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PDRWCR, 3652 bgep->chipid.bge_dma_rwctrl); 3653 3654 /* 3655 * Step 25: Configure DMA endianness -- already done (16/17) 3656 * Step 26: Configure Host-Based Send Rings 3657 * Step 27: Indicate Host Stack Up 3658 */ 3659 bge_reg_set32(bgep, MODE_CONTROL_REG, 3660 MODE_HOST_SEND_BDS | 3661 MODE_HOST_STACK_UP); 3662 3663 /* 3664 * Step 28: Configure checksum options: 3665 * Solaris supports the hardware default checksum options. 3666 * 3667 * Workaround for Incorrect pseudo-header checksum calculation. 3668 */ 3669 if (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM) 3670 bge_reg_set32(bgep, MODE_CONTROL_REG, 3671 MODE_SEND_NO_PSEUDO_HDR_CSUM); 3672 3673 /* 3674 * Step 29: configure Timer Prescaler. The value is always the 3675 * same: the Core Clock frequency in MHz (66), minus 1, shifted 3676 * into bits 7-1. Don't set bit 0, 'cos that's the RESET bit 3677 * for the whole chip! 3678 */ 3679 bge_reg_put32(bgep, MISC_CONFIG_REG, MISC_CONFIG_DEFAULT); 3680 3681 if (DEVICE_5906_SERIES_CHIPSETS(bgep)) { 3682 drv_usecwait(40); 3683 /* put PHY into ready state */ 3684 bge_reg_clr32(bgep, MISC_CONFIG_REG, MISC_CONFIG_EPHY_IDDQ); 3685 (void) bge_reg_get32(bgep, MISC_CONFIG_REG); /* flush */ 3686 drv_usecwait(40); 3687 } 3688 3689 /* 3690 * Steps 30-31: Configure MAC local memory pool & DMA pool registers 3691 * 3692 * If the mbuf_length is specified as 0, we just leave these at 3693 * their hardware defaults, rather than explicitly setting them. 3694 * As the Broadcom HRM,driver better not change the parameters 3695 * when the chipsets is 5705/5788/5721/5751/5714 and 5715. 3696 */ 3697 if ((bgep->chipid.mbuf_length != 0) && 3698 (DEVICE_5704_SERIES_CHIPSETS(bgep))) { 3699 bge_reg_put32(bgep, MBUF_POOL_BASE_REG, 3700 bgep->chipid.mbuf_base); 3701 bge_reg_put32(bgep, MBUF_POOL_LENGTH_REG, 3702 bgep->chipid.mbuf_length); 3703 bge_reg_put32(bgep, DMAD_POOL_BASE_REG, 3704 DMAD_POOL_BASE_DEFAULT); 3705 bge_reg_put32(bgep, DMAD_POOL_LENGTH_REG, 3706 DMAD_POOL_LENGTH_DEFAULT); 3707 } 3708 3709 /* 3710 * Step 32: configure MAC memory pool watermarks 3711 */ 3712 bge_reg_put32(bgep, RDMA_MBUF_LOWAT_REG, 3713 bgep->chipid.mbuf_lo_water_rdma); 3714 bge_reg_put32(bgep, MAC_RX_MBUF_LOWAT_REG, 3715 bgep->chipid.mbuf_lo_water_rmac); 3716 bge_reg_put32(bgep, MBUF_HIWAT_REG, 3717 bgep->chipid.mbuf_hi_water); 3718 3719 /* 3720 * Step 33: configure DMA resource watermarks 3721 */ 3722 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) { 3723 bge_reg_put32(bgep, DMAD_POOL_LOWAT_REG, 3724 bge_dmad_lo_water); 3725 bge_reg_put32(bgep, DMAD_POOL_HIWAT_REG, 3726 bge_dmad_hi_water); 3727 } 3728 bge_reg_put32(bgep, LOWAT_MAX_RECV_FRAMES_REG, bge_lowat_recv_frames); 3729 3730 /* 3731 * Steps 34-36: enable buffer manager & internal h/w queues 3732 */ 3733 if (!bge_chip_enable_engine(bgep, BUFFER_MANAGER_MODE_REG, 3734 STATE_MACHINE_ATTN_ENABLE_BIT)) 3735 retval = DDI_FAILURE; 3736 if (!bge_chip_enable_engine(bgep, FTQ_RESET_REG, 0)) 3737 retval = DDI_FAILURE; 3738 3739 /* 3740 * Steps 37-39: initialise Receive Buffer (Producer) RCBs 3741 */ 3742 bge_reg_putrcb(bgep, STD_RCV_BD_RING_RCB_REG, 3743 &bgep->buff[BGE_STD_BUFF_RING].hw_rcb); 3744 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) { 3745 bge_reg_putrcb(bgep, JUMBO_RCV_BD_RING_RCB_REG, 3746 &bgep->buff[BGE_JUMBO_BUFF_RING].hw_rcb); 3747 bge_reg_putrcb(bgep, MINI_RCV_BD_RING_RCB_REG, 3748 &bgep->buff[BGE_MINI_BUFF_RING].hw_rcb); 3749 } 3750 3751 /* 3752 * Step 40: set Receive Buffer Descriptor Ring replenish thresholds 3753 */ 3754 bge_reg_put32(bgep, STD_RCV_BD_REPLENISH_REG, bge_replenish_std); 3755 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) { 3756 bge_reg_put32(bgep, JUMBO_RCV_BD_REPLENISH_REG, 3757 bge_replenish_jumbo); 3758 bge_reg_put32(bgep, MINI_RCV_BD_REPLENISH_REG, 3759 bge_replenish_mini); 3760 } 3761 3762 /* 3763 * Steps 41-43: clear Send Ring Producer Indices and initialise 3764 * Send Producer Rings (0x0100-0x01ff in NIC-local memory) 3765 */ 3766 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) 3767 maxring = BGE_SEND_RINGS_MAX; 3768 else 3769 maxring = BGE_SEND_RINGS_MAX_5705; 3770 for (ring = 0; ring < maxring; ++ring) { 3771 bge_mbx_put(bgep, SEND_RING_HOST_INDEX_REG(ring), 0); 3772 bge_mbx_put(bgep, SEND_RING_NIC_INDEX_REG(ring), 0); 3773 bge_nic_putrcb(bgep, NIC_MEM_SEND_RING(ring), 3774 &bgep->send[ring].hw_rcb); 3775 } 3776 3777 /* 3778 * Steps 44-45: initialise Receive Return Rings 3779 * (0x0200-0x02ff in NIC-local memory) 3780 */ 3781 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) 3782 maxring = BGE_RECV_RINGS_MAX; 3783 else 3784 maxring = BGE_RECV_RINGS_MAX_5705; 3785 for (ring = 0; ring < maxring; ++ring) 3786 bge_nic_putrcb(bgep, NIC_MEM_RECV_RING(ring), 3787 &bgep->recv[ring].hw_rcb); 3788 3789 /* 3790 * Step 46: initialise Receive Buffer (Producer) Ring indexes 3791 */ 3792 bge_mbx_put(bgep, RECV_STD_PROD_INDEX_REG, 0); 3793 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) { 3794 bge_mbx_put(bgep, RECV_JUMBO_PROD_INDEX_REG, 0); 3795 bge_mbx_put(bgep, RECV_MINI_PROD_INDEX_REG, 0); 3796 } 3797 /* 3798 * Step 47: configure the MAC unicast address 3799 * Step 48: configure the random backoff seed 3800 * Step 96: set up multicast filters 3801 */ 3802 #ifdef BGE_IPMI_ASF 3803 if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE) 3804 #else 3805 if (bge_chip_sync(bgep) == DDI_FAILURE) 3806 #endif 3807 retval = DDI_FAILURE; 3808 3809 /* 3810 * Step 49: configure the MTU 3811 */ 3812 mtu = bgep->chipid.ethmax_size+ETHERFCSL+VLAN_TAGSZ; 3813 bge_reg_put32(bgep, MAC_RX_MTU_SIZE_REG, mtu); 3814 3815 /* 3816 * Step 50: configure the IPG et al 3817 */ 3818 bge_reg_put32(bgep, MAC_TX_LENGTHS_REG, MAC_TX_LENGTHS_DEFAULT); 3819 3820 /* 3821 * Step 51: configure the default Rx Return Ring 3822 */ 3823 bge_reg_put32(bgep, RCV_RULES_CONFIG_REG, RCV_RULES_CONFIG_DEFAULT); 3824 3825 /* 3826 * Steps 52-54: configure Receive List Placement, 3827 * and enable Receive List Placement Statistics 3828 */ 3829 bge_reg_put32(bgep, RCV_LP_CONFIG_REG, 3830 RCV_LP_CONFIG(bgep->chipid.rx_rings)); 3831 switch (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev)) { 3832 case MHCR_CHIP_ASIC_REV_5700: 3833 case MHCR_CHIP_ASIC_REV_5701: 3834 case MHCR_CHIP_ASIC_REV_5703: 3835 case MHCR_CHIP_ASIC_REV_5704: 3836 bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, ~0); 3837 break; 3838 case MHCR_CHIP_ASIC_REV_5705: 3839 break; 3840 default: 3841 stats_mask = bge_reg_get32(bgep, RCV_LP_STATS_ENABLE_MASK_REG); 3842 stats_mask &= ~RCV_LP_STATS_DISABLE_MACTQ; 3843 bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, stats_mask); 3844 break; 3845 } 3846 bge_reg_set32(bgep, RCV_LP_STATS_CONTROL_REG, RCV_LP_STATS_ENABLE); 3847 3848 if (bgep->chipid.rx_rings > 1) 3849 bge_init_recv_rule(bgep); 3850 3851 /* 3852 * Steps 55-56: enable Send Data Initiator Statistics 3853 */ 3854 bge_reg_put32(bgep, SEND_INIT_STATS_ENABLE_MASK_REG, ~0); 3855 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) { 3856 bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG, 3857 SEND_INIT_STATS_ENABLE | SEND_INIT_STATS_FASTER); 3858 } else { 3859 bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG, 3860 SEND_INIT_STATS_ENABLE); 3861 } 3862 /* 3863 * Steps 57-58: stop (?) the Host Coalescing Engine 3864 */ 3865 if (!bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, ~0)) 3866 retval = DDI_FAILURE; 3867 3868 /* 3869 * Steps 59-62: initialise Host Coalescing parameters 3870 */ 3871 bge_chip_coalesce_update(bgep); 3872 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) { 3873 bge_reg_put32(bgep, SEND_COALESCE_INT_BD_REG, 3874 bge_tx_count_intr); 3875 bge_reg_put32(bgep, SEND_COALESCE_INT_TICKS_REG, 3876 bge_tx_ticks_intr); 3877 bge_reg_put32(bgep, RCV_COALESCE_INT_BD_REG, 3878 bge_rx_count_intr); 3879 bge_reg_put32(bgep, RCV_COALESCE_INT_TICKS_REG, 3880 bge_rx_ticks_intr); 3881 } 3882 3883 /* 3884 * Steps 63-64: initialise status block & statistics 3885 * host memory addresses 3886 * The statistic block does not exist in some chipsets 3887 * Step 65: initialise Statistics Coalescing Tick Counter 3888 */ 3889 bge_reg_put64(bgep, STATUS_BLOCK_HOST_ADDR_REG, 3890 bgep->status_block.cookie.dmac_laddress); 3891 3892 /* 3893 * Steps 66-67: initialise status block & statistics 3894 * NIC-local memory addresses 3895 */ 3896 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) { 3897 bge_reg_put64(bgep, STATISTICS_HOST_ADDR_REG, 3898 bgep->statistics.cookie.dmac_laddress); 3899 bge_reg_put32(bgep, STATISTICS_TICKS_REG, 3900 STATISTICS_TICKS_DEFAULT); 3901 bge_reg_put32(bgep, STATUS_BLOCK_BASE_ADDR_REG, 3902 NIC_MEM_STATUS_BLOCK); 3903 bge_reg_put32(bgep, STATISTICS_BASE_ADDR_REG, 3904 NIC_MEM_STATISTICS); 3905 } 3906 3907 /* 3908 * Steps 68-71: start the Host Coalescing Engine, the Receive BD 3909 * Completion Engine, the Receive List Placement Engine, and the 3910 * Receive List selector.Pay attention:0x3400 is not exist in BCM5714 3911 * and BCM5715. 3912 */ 3913 if (bgep->chipid.tx_rings <= COALESCE_64_BYTE_RINGS && 3914 bgep->chipid.rx_rings <= COALESCE_64_BYTE_RINGS) 3915 coalmode = COALESCE_64_BYTE_STATUS; 3916 else 3917 coalmode = 0; 3918 if (!bge_chip_enable_engine(bgep, HOST_COALESCE_MODE_REG, coalmode)) 3919 retval = DDI_FAILURE; 3920 if (!bge_chip_enable_engine(bgep, RCV_BD_COMPLETION_MODE_REG, 3921 STATE_MACHINE_ATTN_ENABLE_BIT)) 3922 retval = DDI_FAILURE; 3923 if (!bge_chip_enable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0)) 3924 retval = DDI_FAILURE; 3925 3926 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) 3927 if (!bge_chip_enable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG, 3928 STATE_MACHINE_ATTN_ENABLE_BIT)) 3929 retval = DDI_FAILURE; 3930 3931 /* 3932 * Step 72: Enable MAC DMA engines 3933 * Step 73: Clear & enable MAC statistics 3934 */ 3935 bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG, 3936 ETHERNET_MODE_ENABLE_FHDE | 3937 ETHERNET_MODE_ENABLE_RDE | 3938 ETHERNET_MODE_ENABLE_TDE); 3939 bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG, 3940 ETHERNET_MODE_ENABLE_TX_STATS | 3941 ETHERNET_MODE_ENABLE_RX_STATS | 3942 ETHERNET_MODE_CLEAR_TX_STATS | 3943 ETHERNET_MODE_CLEAR_RX_STATS); 3944 3945 /* 3946 * Step 74: configure the MLCR (Miscellaneous Local Control 3947 * Register); not required, as we set up the MLCR in step 10 3948 * (part of the reset code) above. 3949 * 3950 * Step 75: clear Interrupt Mailbox 0 3951 */ 3952 bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 0); 3953 3954 /* 3955 * Steps 76-87: Gentlemen, start your engines ... 3956 * 3957 * Enable the DMA Completion Engine, the Write DMA Engine, 3958 * the Read DMA Engine, Receive Data Completion Engine, 3959 * the MBuf Cluster Free Engine, the Send Data Completion Engine, 3960 * the Send BD Completion Engine, the Receive BD Initiator Engine, 3961 * the Receive Data Initiator Engine, the Send Data Initiator Engine, 3962 * the Send BD Initiator Engine, and the Send BD Selector Engine. 3963 * 3964 * Beware exhaust fumes? 3965 */ 3966 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) 3967 if (!bge_chip_enable_engine(bgep, DMA_COMPLETION_MODE_REG, 0)) 3968 retval = DDI_FAILURE; 3969 dma_wrprio = (bge_dma_wrprio << DMA_PRIORITY_SHIFT) | 3970 ALL_DMA_ATTN_BITS; 3971 if ((MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) == 3972 MHCR_CHIP_ASIC_REV_5755) || 3973 (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) == 3974 MHCR_CHIP_ASIC_REV_5906)) { 3975 dma_wrprio |= DMA_STATUS_TAG_FIX_CQ12384; 3976 } 3977 if (!bge_chip_enable_engine(bgep, WRITE_DMA_MODE_REG, 3978 dma_wrprio)) 3979 retval = DDI_FAILURE; 3980 if (DEVICE_5723_SERIES_CHIPSETS(bgep)) 3981 bge_dma_rdprio = 0; 3982 if (!bge_chip_enable_engine(bgep, READ_DMA_MODE_REG, 3983 (bge_dma_rdprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS)) 3984 retval = DDI_FAILURE; 3985 if (!bge_chip_enable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG, 3986 STATE_MACHINE_ATTN_ENABLE_BIT)) 3987 retval = DDI_FAILURE; 3988 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) 3989 if (!bge_chip_enable_engine(bgep, 3990 MBUF_CLUSTER_FREE_MODE_REG, 0)) 3991 retval = DDI_FAILURE; 3992 if (!bge_chip_enable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0)) 3993 retval = DDI_FAILURE; 3994 if (!bge_chip_enable_engine(bgep, SEND_BD_COMPLETION_MODE_REG, 3995 STATE_MACHINE_ATTN_ENABLE_BIT)) 3996 retval = DDI_FAILURE; 3997 if (!bge_chip_enable_engine(bgep, RCV_BD_INITIATOR_MODE_REG, 3998 RCV_BD_DISABLED_RING_ATTN)) 3999 retval = DDI_FAILURE; 4000 if (!bge_chip_enable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG, 4001 RCV_DATA_BD_ILL_RING_ATTN)) 4002 retval = DDI_FAILURE; 4003 if (!bge_chip_enable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0)) 4004 retval = DDI_FAILURE; 4005 if (!bge_chip_enable_engine(bgep, SEND_BD_INITIATOR_MODE_REG, 4006 STATE_MACHINE_ATTN_ENABLE_BIT)) 4007 retval = DDI_FAILURE; 4008 if (!bge_chip_enable_engine(bgep, SEND_BD_SELECTOR_MODE_REG, 4009 STATE_MACHINE_ATTN_ENABLE_BIT)) 4010 retval = DDI_FAILURE; 4011 4012 /* 4013 * Step 88: download firmware -- doesn't apply 4014 * Steps 89-90: enable Transmit & Receive MAC Engines 4015 */ 4016 if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0)) 4017 retval = DDI_FAILURE; 4018 #ifdef BGE_IPMI_ASF 4019 if (!bgep->asf_enabled) { 4020 if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 4021 RECEIVE_MODE_KEEP_VLAN_TAG)) 4022 retval = DDI_FAILURE; 4023 } else { 4024 if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 0)) 4025 retval = DDI_FAILURE; 4026 } 4027 #else 4028 if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 4029 RECEIVE_MODE_KEEP_VLAN_TAG)) 4030 retval = DDI_FAILURE; 4031 #endif 4032 4033 /* 4034 * Step 91: disable auto-polling of PHY status 4035 */ 4036 bge_reg_put32(bgep, MI_MODE_REG, MI_MODE_DEFAULT); 4037 4038 /* 4039 * Step 92: configure D0 power state (not required) 4040 * Step 93: initialise LED control register () 4041 */ 4042 ledctl = LED_CONTROL_DEFAULT; 4043 switch (bgep->chipid.device) { 4044 case DEVICE_ID_5700: 4045 case DEVICE_ID_5700x: 4046 case DEVICE_ID_5701: 4047 /* 4048 * Switch to 5700 (MAC) mode on these older chips 4049 */ 4050 ledctl &= ~LED_CONTROL_LED_MODE_MASK; 4051 ledctl |= LED_CONTROL_LED_MODE_5700; 4052 break; 4053 4054 default: 4055 break; 4056 } 4057 bge_reg_put32(bgep, ETHERNET_MAC_LED_CONTROL_REG, ledctl); 4058 4059 /* 4060 * Step 94: activate link 4061 */ 4062 bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK); 4063 4064 /* 4065 * Step 95: set up physical layer (PHY/SerDes) 4066 * restart autoneg (if required) 4067 */ 4068 if (reset_phys) 4069 if (bge_phys_update(bgep) == DDI_FAILURE) 4070 retval = DDI_FAILURE; 4071 4072 /* 4073 * Extra step (DSG): hand over all the Receive Buffers to the chip 4074 */ 4075 for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring) 4076 bge_mbx_put(bgep, bgep->buff[ring].chip_mbx_reg, 4077 bgep->buff[ring].rf_next); 4078 4079 /* 4080 * MSI bits:The least significant MSI 16-bit word. 4081 * ISR will be triggered different. 4082 */ 4083 if (bgep->intr_type == DDI_INTR_TYPE_MSI) 4084 bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 0x70); 4085 4086 /* 4087 * Extra step (DSG): select which interrupts are enabled 4088 * 4089 * Program the Ethernet MAC engine to signal attention on 4090 * Link Change events, then enable interrupts on MAC, DMA, 4091 * and FLOW attention signals. 4092 */ 4093 bge_reg_set32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 4094 ETHERNET_EVENT_LINK_INT | 4095 ETHERNET_STATUS_PCS_ERROR_INT); 4096 #ifdef BGE_IPMI_ASF 4097 if (bgep->asf_enabled) { 4098 bge_reg_set32(bgep, MODE_CONTROL_REG, 4099 MODE_INT_ON_FLOW_ATTN | 4100 MODE_INT_ON_DMA_ATTN | 4101 MODE_HOST_STACK_UP| 4102 MODE_INT_ON_MAC_ATTN); 4103 } else { 4104 #endif 4105 bge_reg_set32(bgep, MODE_CONTROL_REG, 4106 MODE_INT_ON_FLOW_ATTN | 4107 MODE_INT_ON_DMA_ATTN | 4108 MODE_INT_ON_MAC_ATTN); 4109 #ifdef BGE_IPMI_ASF 4110 } 4111 #endif 4112 4113 /* 4114 * Step 97: enable PCI interrupts!!! 4115 */ 4116 if (bgep->intr_type == DDI_INTR_TYPE_FIXED) 4117 bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR, 4118 MHCR_MASK_PCI_INT_OUTPUT); 4119 4120 /* 4121 * All done! 4122 */ 4123 bgep->bge_chip_state = BGE_CHIP_RUNNING; 4124 return (retval); 4125 } 4126 4127 4128 /* 4129 * ========== Hardware interrupt handler ========== 4130 */ 4131 4132 #undef BGE_DBG 4133 #define BGE_DBG BGE_DBG_INT /* debug flag for this code */ 4134 4135 /* 4136 * Sync the status block, then atomically clear the specified bits in 4137 * the <flags-and-tag> field of the status block. 4138 * the <flags> word of the status block, returning the value of the 4139 * <tag> and the <flags> before the bits were cleared. 4140 */ 4141 static int bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags); 4142 #pragma inline(bge_status_sync) 4143 4144 static int 4145 bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags) 4146 { 4147 bge_status_t *bsp; 4148 int retval; 4149 4150 BGE_TRACE(("bge_status_sync($%p, 0x%llx)", 4151 (void *)bgep, bits)); 4152 4153 ASSERT(bgep->bge_guard == BGE_GUARD); 4154 4155 DMA_SYNC(bgep->status_block, DDI_DMA_SYNC_FORKERNEL); 4156 retval = bge_check_dma_handle(bgep, bgep->status_block.dma_hdl); 4157 if (retval != DDI_FM_OK) 4158 return (retval); 4159 4160 bsp = DMA_VPTR(bgep->status_block); 4161 *flags = bge_atomic_clr64(&bsp->flags_n_tag, bits); 4162 4163 BGE_DEBUG(("bge_status_sync($%p, 0x%llx) returning 0x%llx", 4164 (void *)bgep, bits, *flags)); 4165 4166 return (retval); 4167 } 4168 4169 void bge_wake_factotum(bge_t *bgep); 4170 #pragma inline(bge_wake_factotum) 4171 4172 void 4173 bge_wake_factotum(bge_t *bgep) 4174 { 4175 mutex_enter(bgep->softintrlock); 4176 if (bgep->factotum_flag == 0) { 4177 bgep->factotum_flag = 1; 4178 ddi_trigger_softintr(bgep->factotum_id); 4179 } 4180 mutex_exit(bgep->softintrlock); 4181 } 4182 4183 /* 4184 * bge_intr() -- handle chip interrupts 4185 */ 4186 uint_t bge_intr(caddr_t arg1, caddr_t arg2); 4187 #pragma no_inline(bge_intr) 4188 4189 uint_t 4190 bge_intr(caddr_t arg1, caddr_t arg2) 4191 { 4192 bge_t *bgep = (void *)arg1; /* private device info */ 4193 bge_status_t *bsp; 4194 uint64_t flags; 4195 uint32_t regval; 4196 uint_t result; 4197 int retval, loop_cnt = 0; 4198 4199 BGE_TRACE(("bge_intr($%p) ($%p)", arg1, arg2)); 4200 4201 /* 4202 * GLD v2 checks that s/w setup is complete before passing 4203 * interrupts to this routine, thus eliminating the old 4204 * (and well-known) race condition around ddi_add_intr() 4205 */ 4206 ASSERT(bgep->progress & PROGRESS_HWINT); 4207 4208 result = DDI_INTR_UNCLAIMED; 4209 mutex_enter(bgep->genlock); 4210 4211 if (bgep->intr_type == DDI_INTR_TYPE_FIXED) { 4212 /* 4213 * Check whether chip's says it's asserting #INTA; 4214 * if not, don't process or claim the interrupt. 4215 * 4216 * Note that the PCI signal is active low, so the 4217 * bit is *zero* when the interrupt is asserted. 4218 */ 4219 regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG); 4220 if (regval & MLCR_INTA_STATE) { 4221 if (bge_check_acc_handle(bgep, bgep->io_handle) 4222 != DDI_FM_OK) 4223 goto chip_stop; 4224 mutex_exit(bgep->genlock); 4225 return (result); 4226 } 4227 4228 /* 4229 * Block further PCI interrupts ... 4230 */ 4231 bge_reg_set32(bgep, PCI_CONF_BGE_MHCR, 4232 MHCR_MASK_PCI_INT_OUTPUT); 4233 4234 } else { 4235 /* 4236 * Check MSI status 4237 */ 4238 regval = bge_reg_get32(bgep, MSI_STATUS_REG); 4239 if (regval & MSI_ERROR_ATTENTION) { 4240 BGE_REPORT((bgep, "msi error attention," 4241 " status=0x%x", regval)); 4242 bge_reg_put32(bgep, MSI_STATUS_REG, regval); 4243 } 4244 } 4245 4246 result = DDI_INTR_CLAIMED; 4247 4248 BGE_DEBUG(("bge_intr($%p) ($%p) regval 0x%08x", arg1, arg2, regval)); 4249 4250 /* 4251 * Sync the status block and grab the flags-n-tag from it. 4252 * We count the number of interrupts where there doesn't 4253 * seem to have been a DMA update of the status block; if 4254 * it *has* been updated, the counter will be cleared in 4255 * the while() loop below ... 4256 */ 4257 bgep->missed_dmas += 1; 4258 bsp = DMA_VPTR(bgep->status_block); 4259 for (loop_cnt = 0; loop_cnt < bge_intr_max_loop; loop_cnt++) { 4260 if (bgep->bge_chip_state != BGE_CHIP_RUNNING) { 4261 /* 4262 * bge_chip_stop() may have freed dma area etc 4263 * while we were in this interrupt handler - 4264 * better not call bge_status_sync() 4265 */ 4266 (void) bge_check_acc_handle(bgep, 4267 bgep->io_handle); 4268 mutex_exit(bgep->genlock); 4269 return (DDI_INTR_CLAIMED); 4270 } 4271 retval = bge_status_sync(bgep, STATUS_FLAG_UPDATED, 4272 &flags); 4273 if (retval != DDI_FM_OK) { 4274 bgep->bge_dma_error = B_TRUE; 4275 goto chip_stop; 4276 } 4277 4278 if (!(flags & STATUS_FLAG_UPDATED)) 4279 break; 4280 4281 /* 4282 * Tell the chip that we're processing the interrupt 4283 */ 4284 bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 4285 INTERRUPT_MBOX_DISABLE(flags)); 4286 if (bge_check_acc_handle(bgep, bgep->io_handle) != 4287 DDI_FM_OK) 4288 goto chip_stop; 4289 4290 /* 4291 * Drop the mutex while we: 4292 * Receive any newly-arrived packets 4293 * Recycle any newly-finished send buffers 4294 */ 4295 bgep->bge_intr_running = B_TRUE; 4296 mutex_exit(bgep->genlock); 4297 bge_receive(bgep, bsp); 4298 bge_recycle(bgep, bsp); 4299 mutex_enter(bgep->genlock); 4300 bgep->bge_intr_running = B_FALSE; 4301 4302 /* 4303 * Tell the chip we've finished processing, and 4304 * give it the tag that we got from the status 4305 * block earlier, so that it knows just how far 4306 * we've gone. If it's got more for us to do, 4307 * it will now update the status block and try 4308 * to assert an interrupt (but we've got the 4309 * #INTA blocked at present). If we see the 4310 * update, we'll loop around to do some more. 4311 * Eventually we'll get out of here ... 4312 */ 4313 bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 4314 INTERRUPT_MBOX_ENABLE(flags)); 4315 if (bgep->chipid.pci_type == BGE_PCI_E) 4316 (void) bge_mbx_get(bgep, INTERRUPT_MBOX_0_REG); 4317 bgep->missed_dmas = 0; 4318 } 4319 4320 /* 4321 * Check for exceptional conditions that we need to handle 4322 * 4323 * Link status changed 4324 * Status block not updated 4325 */ 4326 if (flags & STATUS_FLAG_LINK_CHANGED) 4327 bge_wake_factotum(bgep); 4328 4329 if (bgep->missed_dmas) { 4330 /* 4331 * Probably due to the internal status tag not 4332 * being reset. Force a status block update now; 4333 * this should ensure that we get an update and 4334 * a new interrupt. After that, we should be in 4335 * sync again ... 4336 */ 4337 BGE_REPORT((bgep, "interrupt: flags 0x%llx - " 4338 "not updated?", flags)); 4339 bgep->missed_updates++; 4340 bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 4341 COALESCE_NOW); 4342 4343 if (bgep->missed_dmas >= bge_dma_miss_limit) { 4344 /* 4345 * If this happens multiple times in a row, 4346 * it means DMA is just not working. Maybe 4347 * the chip's failed, or maybe there's a 4348 * problem on the PCI bus or in the host-PCI 4349 * bridge (Tomatillo). 4350 * 4351 * At all events, we want to stop further 4352 * interrupts and let the recovery code take 4353 * over to see whether anything can be done 4354 * about it ... 4355 */ 4356 bge_fm_ereport(bgep, 4357 DDI_FM_DEVICE_BADINT_LIMIT); 4358 goto chip_stop; 4359 } 4360 } 4361 4362 /* 4363 * Reenable assertion of #INTA, unless there's a DMA fault 4364 */ 4365 if (bgep->intr_type == DDI_INTR_TYPE_FIXED) { 4366 bge_reg_clr32(bgep, PCI_CONF_BGE_MHCR, 4367 MHCR_MASK_PCI_INT_OUTPUT); 4368 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != 4369 DDI_FM_OK) 4370 goto chip_stop; 4371 } 4372 4373 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) 4374 goto chip_stop; 4375 4376 mutex_exit(bgep->genlock); 4377 return (result); 4378 4379 chip_stop: 4380 #ifdef BGE_IPMI_ASF 4381 if (bgep->asf_enabled && bgep->asf_status == ASF_STAT_RUN) { 4382 /* 4383 * We must stop ASF heart beat before 4384 * bge_chip_stop(), otherwise some 4385 * computers (ex. IBM HS20 blade 4386 * server) may crash. 4387 */ 4388 bge_asf_update_status(bgep); 4389 bge_asf_stop_timer(bgep); 4390 bgep->asf_status = ASF_STAT_STOP; 4391 4392 bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET); 4393 (void) bge_check_acc_handle(bgep, bgep->cfg_handle); 4394 } 4395 #endif 4396 bge_chip_stop(bgep, B_TRUE); 4397 (void) bge_check_acc_handle(bgep, bgep->io_handle); 4398 mutex_exit(bgep->genlock); 4399 return (result); 4400 } 4401 4402 /* 4403 * ========== Factotum, implemented as a softint handler ========== 4404 */ 4405 4406 #undef BGE_DBG 4407 #define BGE_DBG BGE_DBG_FACT /* debug flag for this code */ 4408 4409 static void bge_factotum_error_handler(bge_t *bgep); 4410 #pragma no_inline(bge_factotum_error_handler) 4411 4412 static void 4413 bge_factotum_error_handler(bge_t *bgep) 4414 { 4415 uint32_t flow; 4416 uint32_t rdma; 4417 uint32_t wdma; 4418 uint32_t tmac; 4419 uint32_t rmac; 4420 uint32_t rxrs; 4421 uint32_t txrs = 0; 4422 4423 ASSERT(mutex_owned(bgep->genlock)); 4424 4425 /* 4426 * Read all the registers that show the possible 4427 * reasons for the ERROR bit to be asserted 4428 */ 4429 flow = bge_reg_get32(bgep, FLOW_ATTN_REG); 4430 rdma = bge_reg_get32(bgep, READ_DMA_STATUS_REG); 4431 wdma = bge_reg_get32(bgep, WRITE_DMA_STATUS_REG); 4432 tmac = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG); 4433 rmac = bge_reg_get32(bgep, RECEIVE_MAC_STATUS_REG); 4434 rxrs = bge_reg_get32(bgep, RX_RISC_STATE_REG); 4435 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) 4436 txrs = bge_reg_get32(bgep, TX_RISC_STATE_REG); 4437 4438 BGE_DEBUG(("factotum($%p) flow 0x%x rdma 0x%x wdma 0x%x", 4439 (void *)bgep, flow, rdma, wdma)); 4440 BGE_DEBUG(("factotum($%p) tmac 0x%x rmac 0x%x rxrs 0x%08x txrs 0x%08x", 4441 (void *)bgep, tmac, rmac, rxrs, txrs)); 4442 4443 /* 4444 * For now, just clear all the errors ... 4445 */ 4446 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) 4447 bge_reg_put32(bgep, TX_RISC_STATE_REG, ~0); 4448 bge_reg_put32(bgep, RX_RISC_STATE_REG, ~0); 4449 bge_reg_put32(bgep, RECEIVE_MAC_STATUS_REG, ~0); 4450 bge_reg_put32(bgep, WRITE_DMA_STATUS_REG, ~0); 4451 bge_reg_put32(bgep, READ_DMA_STATUS_REG, ~0); 4452 bge_reg_put32(bgep, FLOW_ATTN_REG, ~0); 4453 } 4454 4455 /* 4456 * Handler for hardware link state change. 4457 * 4458 * When this routine is called, the hardware link state has changed 4459 * and the new state is reflected in the param_* variables. Here 4460 * we must update the softstate and reprogram the MAC to match. 4461 */ 4462 static void bge_factotum_link_handler(bge_t *bgep); 4463 #pragma no_inline(bge_factotum_link_handler) 4464 4465 static void 4466 bge_factotum_link_handler(bge_t *bgep) 4467 { 4468 ASSERT(mutex_owned(bgep->genlock)); 4469 4470 /* 4471 * Update the s/w link_state 4472 */ 4473 if (bgep->param_link_up) 4474 bgep->link_state = LINK_STATE_UP; 4475 else 4476 bgep->link_state = LINK_STATE_DOWN; 4477 4478 /* 4479 * Reprogram the MAC modes to match 4480 */ 4481 bge_sync_mac_modes(bgep); 4482 } 4483 4484 static boolean_t bge_factotum_link_check(bge_t *bgep, int *dma_state); 4485 #pragma no_inline(bge_factotum_link_check) 4486 4487 static boolean_t 4488 bge_factotum_link_check(bge_t *bgep, int *dma_state) 4489 { 4490 boolean_t check; 4491 uint64_t flags; 4492 uint32_t tmac_status; 4493 4494 ASSERT(mutex_owned(bgep->genlock)); 4495 4496 /* 4497 * Get & clear the writable status bits in the Tx status register 4498 * (some bits are write-1-to-clear, others are just readonly). 4499 */ 4500 tmac_status = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG); 4501 bge_reg_put32(bgep, TRANSMIT_MAC_STATUS_REG, tmac_status); 4502 4503 /* 4504 * Get & clear the ERROR and LINK_CHANGED bits from the status block 4505 */ 4506 *dma_state = bge_status_sync(bgep, STATUS_FLAG_ERROR | 4507 STATUS_FLAG_LINK_CHANGED, &flags); 4508 if (*dma_state != DDI_FM_OK) 4509 return (B_FALSE); 4510 4511 /* 4512 * Clear any errors flagged in the status block ... 4513 */ 4514 if (flags & STATUS_FLAG_ERROR) 4515 bge_factotum_error_handler(bgep); 4516 4517 /* 4518 * We need to check the link status if: 4519 * the status block says there's been a link change 4520 * or there's any discrepancy between the various 4521 * flags indicating the link state (link_state, 4522 * param_link_up, and the LINK STATE bit in the 4523 * Transmit MAC status register). 4524 */ 4525 check = (flags & STATUS_FLAG_LINK_CHANGED) != 0; 4526 switch (bgep->link_state) { 4527 case LINK_STATE_UP: 4528 check |= (bgep->param_link_up == B_FALSE); 4529 check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) == 0); 4530 break; 4531 4532 case LINK_STATE_DOWN: 4533 check |= (bgep->param_link_up != B_FALSE); 4534 check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) != 0); 4535 break; 4536 4537 default: 4538 check = B_TRUE; 4539 break; 4540 } 4541 4542 /* 4543 * If <check> is false, we're sure the link hasn't changed. 4544 * If true, however, it's not yet definitive; we have to call 4545 * bge_phys_check() to determine whether the link has settled 4546 * into a new state yet ... and if it has, then call the link 4547 * state change handler.But when the chip is 5700 in Dell 6650 4548 * ,even if check is false, the link may have changed.So we 4549 * have to call bge_phys_check() to determine the link state. 4550 */ 4551 if (check || bgep->chipid.device == DEVICE_ID_5700) { 4552 check = bge_phys_check(bgep); 4553 if (check) 4554 bge_factotum_link_handler(bgep); 4555 } 4556 4557 return (check); 4558 } 4559 4560 /* 4561 * Factotum routine to check for Tx stall, using the 'watchdog' counter 4562 */ 4563 static boolean_t bge_factotum_stall_check(bge_t *bgep); 4564 #pragma no_inline(bge_factotum_stall_check) 4565 4566 static boolean_t 4567 bge_factotum_stall_check(bge_t *bgep) 4568 { 4569 uint32_t dogval; 4570 4571 ASSERT(mutex_owned(bgep->genlock)); 4572 4573 /* 4574 * Specific check for Tx stall ... 4575 * 4576 * The 'watchdog' counter is incremented whenever a packet 4577 * is queued, reset to 1 when some (but not all) buffers 4578 * are reclaimed, reset to 0 (disabled) when all buffers 4579 * are reclaimed, and shifted left here. If it exceeds the 4580 * threshold value, the chip is assumed to have stalled and 4581 * is put into the ERROR state. The factotum will then reset 4582 * it on the next pass. 4583 * 4584 * All of which should ensure that we don't get into a state 4585 * where packets are left pending indefinitely! 4586 */ 4587 dogval = bge_atomic_shl32(&bgep->watchdog, 1); 4588 if (dogval < bge_watchdog_count) 4589 return (B_FALSE); 4590 4591 #if !defined(BGE_NETCONSOLE) 4592 BGE_REPORT((bgep, "Tx stall detected, watchdog code 0x%x", dogval)); 4593 #endif 4594 bge_fm_ereport(bgep, DDI_FM_DEVICE_STALL); 4595 return (B_TRUE); 4596 } 4597 4598 /* 4599 * The factotum is woken up when there's something to do that we'd rather 4600 * not do from inside a hardware interrupt handler or high-level cyclic. 4601 * Its two main tasks are: 4602 * reset & restart the chip after an error 4603 * check the link status whenever necessary 4604 */ 4605 uint_t bge_chip_factotum(caddr_t arg); 4606 #pragma no_inline(bge_chip_factotum) 4607 4608 uint_t 4609 bge_chip_factotum(caddr_t arg) 4610 { 4611 bge_t *bgep; 4612 uint_t result; 4613 boolean_t error; 4614 boolean_t linkchg; 4615 int dma_state; 4616 4617 bgep = (void *)arg; 4618 4619 BGE_TRACE(("bge_chip_factotum($%p)", (void *)bgep)); 4620 4621 mutex_enter(bgep->softintrlock); 4622 if (bgep->factotum_flag == 0) { 4623 mutex_exit(bgep->softintrlock); 4624 return (DDI_INTR_UNCLAIMED); 4625 } 4626 bgep->factotum_flag = 0; 4627 mutex_exit(bgep->softintrlock); 4628 4629 result = DDI_INTR_CLAIMED; 4630 error = B_FALSE; 4631 linkchg = B_FALSE; 4632 4633 mutex_enter(bgep->genlock); 4634 switch (bgep->bge_chip_state) { 4635 default: 4636 break; 4637 4638 case BGE_CHIP_RUNNING: 4639 linkchg = bge_factotum_link_check(bgep, &dma_state); 4640 error = bge_factotum_stall_check(bgep); 4641 if (dma_state != DDI_FM_OK) { 4642 bgep->bge_dma_error = B_TRUE; 4643 error = B_TRUE; 4644 } 4645 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) 4646 error = B_TRUE; 4647 if (error) 4648 bgep->bge_chip_state = BGE_CHIP_ERROR; 4649 break; 4650 4651 case BGE_CHIP_ERROR: 4652 error = B_TRUE; 4653 break; 4654 4655 case BGE_CHIP_FAULT: 4656 /* 4657 * Fault detected, time to reset ... 4658 */ 4659 if (bge_autorecover) { 4660 if (!(bgep->progress & PROGRESS_BUFS)) { 4661 /* 4662 * if we can't allocate the ring buffers, 4663 * try later 4664 */ 4665 if (bge_alloc_bufs(bgep) != DDI_SUCCESS) { 4666 mutex_exit(bgep->genlock); 4667 return (result); 4668 } 4669 bgep->progress |= PROGRESS_BUFS; 4670 } 4671 if (!(bgep->progress & PROGRESS_INTR)) { 4672 bge_init_rings(bgep); 4673 bge_intr_enable(bgep); 4674 bgep->progress |= PROGRESS_INTR; 4675 } 4676 if (!(bgep->progress & PROGRESS_KSTATS)) { 4677 bge_init_kstats(bgep, 4678 ddi_get_instance(bgep->devinfo)); 4679 bgep->progress |= PROGRESS_KSTATS; 4680 } 4681 4682 BGE_REPORT((bgep, "automatic recovery activated")); 4683 4684 if (bge_restart(bgep, B_FALSE) != DDI_SUCCESS) { 4685 bgep->bge_chip_state = BGE_CHIP_ERROR; 4686 error = B_TRUE; 4687 } 4688 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != 4689 DDI_FM_OK) { 4690 bgep->bge_chip_state = BGE_CHIP_ERROR; 4691 error = B_TRUE; 4692 } 4693 if (bge_check_acc_handle(bgep, bgep->io_handle) != 4694 DDI_FM_OK) { 4695 bgep->bge_chip_state = BGE_CHIP_ERROR; 4696 error = B_TRUE; 4697 } 4698 if (error == B_FALSE) { 4699 #ifdef BGE_IPMI_ASF 4700 if (bgep->asf_enabled && 4701 bgep->asf_status != ASF_STAT_RUN) { 4702 bgep->asf_timeout_id = timeout( 4703 bge_asf_heartbeat, (void *)bgep, 4704 drv_usectohz( 4705 BGE_ASF_HEARTBEAT_INTERVAL)); 4706 bgep->asf_status = ASF_STAT_RUN; 4707 } 4708 #endif 4709 if (!bgep->manual_reset) { 4710 ddi_fm_service_impact(bgep->devinfo, 4711 DDI_SERVICE_RESTORED); 4712 } 4713 } 4714 } 4715 break; 4716 } 4717 4718 4719 /* 4720 * If an error is detected, stop the chip now, marking it as 4721 * faulty, so that it will be reset next time through ... 4722 * 4723 * Note that if intr_running is set, then bge_intr() has dropped 4724 * genlock to call bge_receive/bge_recycle. Can't stop the chip at 4725 * this point so have to wait until the next time the factotum runs. 4726 */ 4727 if (error && !bgep->bge_intr_running) { 4728 #ifdef BGE_IPMI_ASF 4729 if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) { 4730 /* 4731 * We must stop ASF heart beat before bge_chip_stop(), 4732 * otherwise some computers (ex. IBM HS20 blade server) 4733 * may crash. 4734 */ 4735 bge_asf_update_status(bgep); 4736 bge_asf_stop_timer(bgep); 4737 bgep->asf_status = ASF_STAT_STOP; 4738 4739 bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET); 4740 (void) bge_check_acc_handle(bgep, bgep->cfg_handle); 4741 } 4742 #endif 4743 bge_chip_stop(bgep, B_TRUE); 4744 (void) bge_check_acc_handle(bgep, bgep->io_handle); 4745 } 4746 mutex_exit(bgep->genlock); 4747 4748 /* 4749 * If the link state changed, tell the world about it. 4750 * Note: can't do this while still holding the mutex. 4751 */ 4752 if (bgep->link_update_timer == BGE_LINK_UPDATE_TIMEOUT && 4753 bgep->link_state != LINK_STATE_UNKNOWN) 4754 linkchg = B_TRUE; 4755 else if (bgep->link_update_timer < BGE_LINK_UPDATE_TIMEOUT && 4756 bgep->link_state == LINK_STATE_DOWN) 4757 linkchg = B_FALSE; 4758 4759 if (linkchg) { 4760 mac_link_update(bgep->mh, bgep->link_state); 4761 bgep->link_update_timer = BGE_LINK_UPDATE_DONE; 4762 } 4763 if (bgep->manual_reset) { 4764 bgep->manual_reset = B_FALSE; 4765 } 4766 4767 return (result); 4768 } 4769 4770 /* 4771 * High-level cyclic handler 4772 * 4773 * This routine schedules a (low-level) softint callback to the 4774 * factotum, and prods the chip to update the status block (which 4775 * will cause a hardware interrupt when complete). 4776 */ 4777 void bge_chip_cyclic(void *arg); 4778 #pragma no_inline(bge_chip_cyclic) 4779 4780 void 4781 bge_chip_cyclic(void *arg) 4782 { 4783 bge_t *bgep; 4784 4785 bgep = arg; 4786 4787 switch (bgep->bge_chip_state) { 4788 default: 4789 return; 4790 4791 case BGE_CHIP_RUNNING: 4792 bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, COALESCE_NOW); 4793 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) 4794 ddi_fm_service_impact(bgep->devinfo, 4795 DDI_SERVICE_UNAFFECTED); 4796 4797 if (bgep->link_update_timer < BGE_LINK_UPDATE_TIMEOUT) 4798 bgep->link_update_timer++; 4799 4800 break; 4801 4802 case BGE_CHIP_FAULT: 4803 case BGE_CHIP_ERROR: 4804 break; 4805 } 4806 4807 bge_wake_factotum(bgep); 4808 } 4809 4810 4811 /* 4812 * ========== Ioctl subfunctions ========== 4813 */ 4814 4815 #undef BGE_DBG 4816 #define BGE_DBG BGE_DBG_PPIO /* debug flag for this code */ 4817 4818 #if BGE_DEBUGGING || BGE_DO_PPIO 4819 4820 static void bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd); 4821 #pragma no_inline(bge_chip_peek_cfg) 4822 4823 static void 4824 bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd) 4825 { 4826 uint64_t regval; 4827 uint64_t regno; 4828 4829 BGE_TRACE(("bge_chip_peek_cfg($%p, $%p)", 4830 (void *)bgep, (void *)ppd)); 4831 4832 regno = ppd->pp_acc_offset; 4833 4834 switch (ppd->pp_acc_size) { 4835 case 1: 4836 regval = pci_config_get8(bgep->cfg_handle, regno); 4837 break; 4838 4839 case 2: 4840 regval = pci_config_get16(bgep->cfg_handle, regno); 4841 break; 4842 4843 case 4: 4844 regval = pci_config_get32(bgep->cfg_handle, regno); 4845 break; 4846 4847 case 8: 4848 regval = pci_config_get64(bgep->cfg_handle, regno); 4849 break; 4850 } 4851 4852 ppd->pp_acc_data = regval; 4853 } 4854 4855 static void bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd); 4856 #pragma no_inline(bge_chip_poke_cfg) 4857 4858 static void 4859 bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd) 4860 { 4861 uint64_t regval; 4862 uint64_t regno; 4863 4864 BGE_TRACE(("bge_chip_poke_cfg($%p, $%p)", 4865 (void *)bgep, (void *)ppd)); 4866 4867 regno = ppd->pp_acc_offset; 4868 regval = ppd->pp_acc_data; 4869 4870 switch (ppd->pp_acc_size) { 4871 case 1: 4872 pci_config_put8(bgep->cfg_handle, regno, regval); 4873 break; 4874 4875 case 2: 4876 pci_config_put16(bgep->cfg_handle, regno, regval); 4877 break; 4878 4879 case 4: 4880 pci_config_put32(bgep->cfg_handle, regno, regval); 4881 break; 4882 4883 case 8: 4884 pci_config_put64(bgep->cfg_handle, regno, regval); 4885 break; 4886 } 4887 } 4888 4889 static void bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd); 4890 #pragma no_inline(bge_chip_peek_reg) 4891 4892 static void 4893 bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd) 4894 { 4895 uint64_t regval; 4896 void *regaddr; 4897 4898 BGE_TRACE(("bge_chip_peek_reg($%p, $%p)", 4899 (void *)bgep, (void *)ppd)); 4900 4901 regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset); 4902 4903 switch (ppd->pp_acc_size) { 4904 case 1: 4905 regval = ddi_get8(bgep->io_handle, regaddr); 4906 break; 4907 4908 case 2: 4909 regval = ddi_get16(bgep->io_handle, regaddr); 4910 break; 4911 4912 case 4: 4913 regval = ddi_get32(bgep->io_handle, regaddr); 4914 break; 4915 4916 case 8: 4917 regval = ddi_get64(bgep->io_handle, regaddr); 4918 break; 4919 } 4920 4921 ppd->pp_acc_data = regval; 4922 } 4923 4924 static void bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd); 4925 #pragma no_inline(bge_chip_peek_reg) 4926 4927 static void 4928 bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd) 4929 { 4930 uint64_t regval; 4931 void *regaddr; 4932 4933 BGE_TRACE(("bge_chip_poke_reg($%p, $%p)", 4934 (void *)bgep, (void *)ppd)); 4935 4936 regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset); 4937 regval = ppd->pp_acc_data; 4938 4939 switch (ppd->pp_acc_size) { 4940 case 1: 4941 ddi_put8(bgep->io_handle, regaddr, regval); 4942 break; 4943 4944 case 2: 4945 ddi_put16(bgep->io_handle, regaddr, regval); 4946 break; 4947 4948 case 4: 4949 ddi_put32(bgep->io_handle, regaddr, regval); 4950 break; 4951 4952 case 8: 4953 ddi_put64(bgep->io_handle, regaddr, regval); 4954 break; 4955 } 4956 BGE_PCICHK(bgep); 4957 } 4958 4959 static void bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd); 4960 #pragma no_inline(bge_chip_peek_nic) 4961 4962 static void 4963 bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd) 4964 { 4965 uint64_t regoff; 4966 uint64_t regval; 4967 void *regaddr; 4968 4969 BGE_TRACE(("bge_chip_peek_nic($%p, $%p)", 4970 (void *)bgep, (void *)ppd)); 4971 4972 regoff = ppd->pp_acc_offset; 4973 bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK); 4974 regoff &= MWBAR_GRANULE_MASK; 4975 regoff += NIC_MEM_WINDOW_OFFSET; 4976 regaddr = PIO_ADDR(bgep, regoff); 4977 4978 switch (ppd->pp_acc_size) { 4979 case 1: 4980 regval = ddi_get8(bgep->io_handle, regaddr); 4981 break; 4982 4983 case 2: 4984 regval = ddi_get16(bgep->io_handle, regaddr); 4985 break; 4986 4987 case 4: 4988 regval = ddi_get32(bgep->io_handle, regaddr); 4989 break; 4990 4991 case 8: 4992 regval = ddi_get64(bgep->io_handle, regaddr); 4993 break; 4994 } 4995 4996 ppd->pp_acc_data = regval; 4997 } 4998 4999 static void bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd); 5000 #pragma no_inline(bge_chip_poke_nic) 5001 5002 static void 5003 bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd) 5004 { 5005 uint64_t regoff; 5006 uint64_t regval; 5007 void *regaddr; 5008 5009 BGE_TRACE(("bge_chip_poke_nic($%p, $%p)", 5010 (void *)bgep, (void *)ppd)); 5011 5012 regoff = ppd->pp_acc_offset; 5013 bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK); 5014 regoff &= MWBAR_GRANULE_MASK; 5015 regoff += NIC_MEM_WINDOW_OFFSET; 5016 regaddr = PIO_ADDR(bgep, regoff); 5017 regval = ppd->pp_acc_data; 5018 5019 switch (ppd->pp_acc_size) { 5020 case 1: 5021 ddi_put8(bgep->io_handle, regaddr, regval); 5022 break; 5023 5024 case 2: 5025 ddi_put16(bgep->io_handle, regaddr, regval); 5026 break; 5027 5028 case 4: 5029 ddi_put32(bgep->io_handle, regaddr, regval); 5030 break; 5031 5032 case 8: 5033 ddi_put64(bgep->io_handle, regaddr, regval); 5034 break; 5035 } 5036 BGE_PCICHK(bgep); 5037 } 5038 5039 static void bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd); 5040 #pragma no_inline(bge_chip_peek_mii) 5041 5042 static void 5043 bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd) 5044 { 5045 BGE_TRACE(("bge_chip_peek_mii($%p, $%p)", 5046 (void *)bgep, (void *)ppd)); 5047 5048 ppd->pp_acc_data = bge_mii_get16(bgep, ppd->pp_acc_offset/2); 5049 } 5050 5051 static void bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd); 5052 #pragma no_inline(bge_chip_poke_mii) 5053 5054 static void 5055 bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd) 5056 { 5057 BGE_TRACE(("bge_chip_poke_mii($%p, $%p)", 5058 (void *)bgep, (void *)ppd)); 5059 5060 bge_mii_put16(bgep, ppd->pp_acc_offset/2, ppd->pp_acc_data); 5061 } 5062 5063 #if BGE_SEE_IO32 5064 5065 static void bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd); 5066 #pragma no_inline(bge_chip_peek_seeprom) 5067 5068 static void 5069 bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd) 5070 { 5071 uint32_t data; 5072 int err; 5073 5074 BGE_TRACE(("bge_chip_peek_seeprom($%p, $%p)", 5075 (void *)bgep, (void *)ppd)); 5076 5077 err = bge_nvmem_rw32(bgep, BGE_SEE_READ, ppd->pp_acc_offset, &data); 5078 ppd->pp_acc_data = err ? ~0ull : data; 5079 } 5080 5081 static void bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd); 5082 #pragma no_inline(bge_chip_poke_seeprom) 5083 5084 static void 5085 bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd) 5086 { 5087 uint32_t data; 5088 5089 BGE_TRACE(("bge_chip_poke_seeprom($%p, $%p)", 5090 (void *)bgep, (void *)ppd)); 5091 5092 data = ppd->pp_acc_data; 5093 (void) bge_nvmem_rw32(bgep, BGE_SEE_WRITE, ppd->pp_acc_offset, &data); 5094 } 5095 #endif /* BGE_SEE_IO32 */ 5096 5097 #if BGE_FLASH_IO32 5098 5099 static void bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd); 5100 #pragma no_inline(bge_chip_peek_flash) 5101 5102 static void 5103 bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd) 5104 { 5105 uint32_t data; 5106 int err; 5107 5108 BGE_TRACE(("bge_chip_peek_flash($%p, $%p)", 5109 (void *)bgep, (void *)ppd)); 5110 5111 err = bge_nvmem_rw32(bgep, BGE_FLASH_READ, ppd->pp_acc_offset, &data); 5112 ppd->pp_acc_data = err ? ~0ull : data; 5113 } 5114 5115 static void bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd); 5116 #pragma no_inline(bge_chip_poke_flash) 5117 5118 static void 5119 bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd) 5120 { 5121 uint32_t data; 5122 5123 BGE_TRACE(("bge_chip_poke_flash($%p, $%p)", 5124 (void *)bgep, (void *)ppd)); 5125 5126 data = ppd->pp_acc_data; 5127 (void) bge_nvmem_rw32(bgep, BGE_FLASH_WRITE, 5128 ppd->pp_acc_offset, &data); 5129 } 5130 #endif /* BGE_FLASH_IO32 */ 5131 5132 static void bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd); 5133 #pragma no_inline(bge_chip_peek_mem) 5134 5135 static void 5136 bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd) 5137 { 5138 uint64_t regval; 5139 void *vaddr; 5140 5141 BGE_TRACE(("bge_chip_peek_bge($%p, $%p)", 5142 (void *)bgep, (void *)ppd)); 5143 5144 vaddr = (void *)(uintptr_t)ppd->pp_acc_offset; 5145 5146 switch (ppd->pp_acc_size) { 5147 case 1: 5148 regval = *(uint8_t *)vaddr; 5149 break; 5150 5151 case 2: 5152 regval = *(uint16_t *)vaddr; 5153 break; 5154 5155 case 4: 5156 regval = *(uint32_t *)vaddr; 5157 break; 5158 5159 case 8: 5160 regval = *(uint64_t *)vaddr; 5161 break; 5162 } 5163 5164 BGE_DEBUG(("bge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p", 5165 (void *)bgep, (void *)ppd, regval, vaddr)); 5166 5167 ppd->pp_acc_data = regval; 5168 } 5169 5170 static void bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd); 5171 #pragma no_inline(bge_chip_poke_mem) 5172 5173 static void 5174 bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd) 5175 { 5176 uint64_t regval; 5177 void *vaddr; 5178 5179 BGE_TRACE(("bge_chip_poke_mem($%p, $%p)", 5180 (void *)bgep, (void *)ppd)); 5181 5182 vaddr = (void *)(uintptr_t)ppd->pp_acc_offset; 5183 regval = ppd->pp_acc_data; 5184 5185 BGE_DEBUG(("bge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p", 5186 (void *)bgep, (void *)ppd, regval, vaddr)); 5187 5188 switch (ppd->pp_acc_size) { 5189 case 1: 5190 *(uint8_t *)vaddr = (uint8_t)regval; 5191 break; 5192 5193 case 2: 5194 *(uint16_t *)vaddr = (uint16_t)regval; 5195 break; 5196 5197 case 4: 5198 *(uint32_t *)vaddr = (uint32_t)regval; 5199 break; 5200 5201 case 8: 5202 *(uint64_t *)vaddr = (uint64_t)regval; 5203 break; 5204 } 5205 } 5206 5207 static enum ioc_reply bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, 5208 struct iocblk *iocp); 5209 #pragma no_inline(bge_pp_ioctl) 5210 5211 static enum ioc_reply 5212 bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp) 5213 { 5214 void (*ppfn)(bge_t *bgep, bge_peekpoke_t *ppd); 5215 bge_peekpoke_t *ppd; 5216 dma_area_t *areap; 5217 uint64_t sizemask; 5218 uint64_t mem_va; 5219 uint64_t maxoff; 5220 boolean_t peek; 5221 5222 switch (cmd) { 5223 default: 5224 /* NOTREACHED */ 5225 bge_error(bgep, "bge_pp_ioctl: invalid cmd 0x%x", cmd); 5226 return (IOC_INVAL); 5227 5228 case BGE_PEEK: 5229 peek = B_TRUE; 5230 break; 5231 5232 case BGE_POKE: 5233 peek = B_FALSE; 5234 break; 5235 } 5236 5237 /* 5238 * Validate format of ioctl 5239 */ 5240 if (iocp->ioc_count != sizeof (bge_peekpoke_t)) 5241 return (IOC_INVAL); 5242 if (mp->b_cont == NULL) 5243 return (IOC_INVAL); 5244 ppd = (void *)mp->b_cont->b_rptr; 5245 5246 /* 5247 * Validate request parameters 5248 */ 5249 switch (ppd->pp_acc_space) { 5250 default: 5251 return (IOC_INVAL); 5252 5253 case BGE_PP_SPACE_CFG: 5254 /* 5255 * Config space 5256 */ 5257 sizemask = 8|4|2|1; 5258 mem_va = 0; 5259 maxoff = PCI_CONF_HDR_SIZE; 5260 ppfn = peek ? bge_chip_peek_cfg : bge_chip_poke_cfg; 5261 break; 5262 5263 case BGE_PP_SPACE_REG: 5264 /* 5265 * Memory-mapped I/O space 5266 */ 5267 sizemask = 8|4|2|1; 5268 mem_va = 0; 5269 maxoff = RIAAR_REGISTER_MAX; 5270 ppfn = peek ? bge_chip_peek_reg : bge_chip_poke_reg; 5271 break; 5272 5273 case BGE_PP_SPACE_NIC: 5274 /* 5275 * NIC on-chip memory 5276 */ 5277 sizemask = 8|4|2|1; 5278 mem_va = 0; 5279 maxoff = MWBAR_ONCHIP_MAX; 5280 ppfn = peek ? bge_chip_peek_nic : bge_chip_poke_nic; 5281 break; 5282 5283 case BGE_PP_SPACE_MII: 5284 /* 5285 * PHY's MII registers 5286 * NB: all PHY registers are two bytes, but the 5287 * addresses increment in ones (word addressing). 5288 * So we scale the address here, then undo the 5289 * transformation inside the peek/poke functions. 5290 */ 5291 ppd->pp_acc_offset *= 2; 5292 sizemask = 2; 5293 mem_va = 0; 5294 maxoff = (MII_MAXREG+1)*2; 5295 ppfn = peek ? bge_chip_peek_mii : bge_chip_poke_mii; 5296 break; 5297 5298 #if BGE_SEE_IO32 5299 case BGE_PP_SPACE_SEEPROM: 5300 /* 5301 * Attached SEEPROM(s), if any. 5302 * NB: we use the high-order bits of the 'address' as 5303 * a device select to accommodate multiple SEEPROMS, 5304 * If each one is the maximum size (64kbytes), this 5305 * makes them appear contiguous. Otherwise, there may 5306 * be holes in the mapping. ENxS doesn't have any 5307 * SEEPROMs anyway ... 5308 */ 5309 sizemask = 4; 5310 mem_va = 0; 5311 maxoff = SEEPROM_DEV_AND_ADDR_MASK; 5312 ppfn = peek ? bge_chip_peek_seeprom : bge_chip_poke_seeprom; 5313 break; 5314 #endif /* BGE_SEE_IO32 */ 5315 5316 #if BGE_FLASH_IO32 5317 case BGE_PP_SPACE_FLASH: 5318 /* 5319 * Attached Flash device (if any); a maximum of one device 5320 * is currently supported. But it can be up to 1MB (unlike 5321 * the 64k limit on SEEPROMs) so why would you need more ;-) 5322 */ 5323 sizemask = 4; 5324 mem_va = 0; 5325 maxoff = NVM_FLASH_ADDR_MASK; 5326 ppfn = peek ? bge_chip_peek_flash : bge_chip_poke_flash; 5327 break; 5328 #endif /* BGE_FLASH_IO32 */ 5329 5330 case BGE_PP_SPACE_BGE: 5331 /* 5332 * BGE data structure! 5333 */ 5334 sizemask = 8|4|2|1; 5335 mem_va = (uintptr_t)bgep; 5336 maxoff = sizeof (*bgep); 5337 ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem; 5338 break; 5339 5340 case BGE_PP_SPACE_STATUS: 5341 case BGE_PP_SPACE_STATISTICS: 5342 case BGE_PP_SPACE_TXDESC: 5343 case BGE_PP_SPACE_TXBUFF: 5344 case BGE_PP_SPACE_RXDESC: 5345 case BGE_PP_SPACE_RXBUFF: 5346 /* 5347 * Various DMA_AREAs 5348 */ 5349 switch (ppd->pp_acc_space) { 5350 case BGE_PP_SPACE_TXDESC: 5351 areap = &bgep->tx_desc; 5352 break; 5353 case BGE_PP_SPACE_TXBUFF: 5354 areap = &bgep->tx_buff[0]; 5355 break; 5356 case BGE_PP_SPACE_RXDESC: 5357 areap = &bgep->rx_desc[0]; 5358 break; 5359 case BGE_PP_SPACE_RXBUFF: 5360 areap = &bgep->rx_buff[0]; 5361 break; 5362 case BGE_PP_SPACE_STATUS: 5363 areap = &bgep->status_block; 5364 break; 5365 case BGE_PP_SPACE_STATISTICS: 5366 if (bgep->chipid.statistic_type == BGE_STAT_BLK) 5367 areap = &bgep->statistics; 5368 break; 5369 } 5370 5371 sizemask = 8|4|2|1; 5372 mem_va = (uintptr_t)areap->mem_va; 5373 maxoff = areap->alength; 5374 ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem; 5375 break; 5376 } 5377 5378 switch (ppd->pp_acc_size) { 5379 default: 5380 return (IOC_INVAL); 5381 5382 case 8: 5383 case 4: 5384 case 2: 5385 case 1: 5386 if ((ppd->pp_acc_size & sizemask) == 0) 5387 return (IOC_INVAL); 5388 break; 5389 } 5390 5391 if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0) 5392 return (IOC_INVAL); 5393 5394 if (ppd->pp_acc_offset >= maxoff) 5395 return (IOC_INVAL); 5396 5397 if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff) 5398 return (IOC_INVAL); 5399 5400 /* 5401 * All OK - go do it! 5402 */ 5403 ppd->pp_acc_offset += mem_va; 5404 (*ppfn)(bgep, ppd); 5405 return (peek ? IOC_REPLY : IOC_ACK); 5406 } 5407 5408 static enum ioc_reply bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, 5409 struct iocblk *iocp); 5410 #pragma no_inline(bge_diag_ioctl) 5411 5412 static enum ioc_reply 5413 bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp) 5414 { 5415 ASSERT(mutex_owned(bgep->genlock)); 5416 5417 switch (cmd) { 5418 default: 5419 /* NOTREACHED */ 5420 bge_error(bgep, "bge_diag_ioctl: invalid cmd 0x%x", cmd); 5421 return (IOC_INVAL); 5422 5423 case BGE_DIAG: 5424 /* 5425 * Currently a no-op 5426 */ 5427 return (IOC_ACK); 5428 5429 case BGE_PEEK: 5430 case BGE_POKE: 5431 return (bge_pp_ioctl(bgep, cmd, mp, iocp)); 5432 5433 case BGE_PHY_RESET: 5434 return (IOC_RESTART_ACK); 5435 5436 case BGE_SOFT_RESET: 5437 case BGE_HARD_RESET: 5438 /* 5439 * Reset and reinitialise the 570x hardware 5440 */ 5441 bgep->bge_chip_state = BGE_CHIP_FAULT; 5442 ddi_trigger_softintr(bgep->factotum_id); 5443 (void) bge_restart(bgep, cmd == BGE_HARD_RESET); 5444 return (IOC_ACK); 5445 } 5446 5447 /* NOTREACHED */ 5448 } 5449 5450 #endif /* BGE_DEBUGGING || BGE_DO_PPIO */ 5451 5452 static enum ioc_reply bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, 5453 struct iocblk *iocp); 5454 #pragma no_inline(bge_mii_ioctl) 5455 5456 static enum ioc_reply 5457 bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp) 5458 { 5459 struct bge_mii_rw *miirwp; 5460 5461 /* 5462 * Validate format of ioctl 5463 */ 5464 if (iocp->ioc_count != sizeof (struct bge_mii_rw)) 5465 return (IOC_INVAL); 5466 if (mp->b_cont == NULL) 5467 return (IOC_INVAL); 5468 miirwp = (void *)mp->b_cont->b_rptr; 5469 5470 /* 5471 * Validate request parameters ... 5472 */ 5473 if (miirwp->mii_reg > MII_MAXREG) 5474 return (IOC_INVAL); 5475 5476 switch (cmd) { 5477 default: 5478 /* NOTREACHED */ 5479 bge_error(bgep, "bge_mii_ioctl: invalid cmd 0x%x", cmd); 5480 return (IOC_INVAL); 5481 5482 case BGE_MII_READ: 5483 miirwp->mii_data = bge_mii_get16(bgep, miirwp->mii_reg); 5484 return (IOC_REPLY); 5485 5486 case BGE_MII_WRITE: 5487 bge_mii_put16(bgep, miirwp->mii_reg, miirwp->mii_data); 5488 return (IOC_ACK); 5489 } 5490 5491 /* NOTREACHED */ 5492 } 5493 5494 #if BGE_SEE_IO32 5495 5496 static enum ioc_reply bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, 5497 struct iocblk *iocp); 5498 #pragma no_inline(bge_see_ioctl) 5499 5500 static enum ioc_reply 5501 bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp) 5502 { 5503 struct bge_see_rw *seerwp; 5504 5505 /* 5506 * Validate format of ioctl 5507 */ 5508 if (iocp->ioc_count != sizeof (struct bge_see_rw)) 5509 return (IOC_INVAL); 5510 if (mp->b_cont == NULL) 5511 return (IOC_INVAL); 5512 seerwp = (void *)mp->b_cont->b_rptr; 5513 5514 /* 5515 * Validate request parameters ... 5516 */ 5517 if (seerwp->see_addr & ~SEEPROM_DEV_AND_ADDR_MASK) 5518 return (IOC_INVAL); 5519 5520 switch (cmd) { 5521 default: 5522 /* NOTREACHED */ 5523 bge_error(bgep, "bge_see_ioctl: invalid cmd 0x%x", cmd); 5524 return (IOC_INVAL); 5525 5526 case BGE_SEE_READ: 5527 case BGE_SEE_WRITE: 5528 iocp->ioc_error = bge_nvmem_rw32(bgep, cmd, 5529 seerwp->see_addr, &seerwp->see_data); 5530 return (IOC_REPLY); 5531 } 5532 5533 /* NOTREACHED */ 5534 } 5535 5536 #endif /* BGE_SEE_IO32 */ 5537 5538 #if BGE_FLASH_IO32 5539 5540 static enum ioc_reply bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, 5541 struct iocblk *iocp); 5542 #pragma no_inline(bge_flash_ioctl) 5543 5544 static enum ioc_reply 5545 bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp) 5546 { 5547 struct bge_flash_rw *flashrwp; 5548 5549 /* 5550 * Validate format of ioctl 5551 */ 5552 if (iocp->ioc_count != sizeof (struct bge_flash_rw)) 5553 return (IOC_INVAL); 5554 if (mp->b_cont == NULL) 5555 return (IOC_INVAL); 5556 flashrwp = (void *)mp->b_cont->b_rptr; 5557 5558 /* 5559 * Validate request parameters ... 5560 */ 5561 if (flashrwp->flash_addr & ~NVM_FLASH_ADDR_MASK) 5562 return (IOC_INVAL); 5563 5564 switch (cmd) { 5565 default: 5566 /* NOTREACHED */ 5567 bge_error(bgep, "bge_flash_ioctl: invalid cmd 0x%x", cmd); 5568 return (IOC_INVAL); 5569 5570 case BGE_FLASH_READ: 5571 case BGE_FLASH_WRITE: 5572 iocp->ioc_error = bge_nvmem_rw32(bgep, cmd, 5573 flashrwp->flash_addr, &flashrwp->flash_data); 5574 return (IOC_REPLY); 5575 } 5576 5577 /* NOTREACHED */ 5578 } 5579 5580 #endif /* BGE_FLASH_IO32 */ 5581 5582 enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, 5583 struct iocblk *iocp); 5584 #pragma no_inline(bge_chip_ioctl) 5585 5586 enum ioc_reply 5587 bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp) 5588 { 5589 int cmd; 5590 5591 BGE_TRACE(("bge_chip_ioctl($%p, $%p, $%p, $%p)", 5592 (void *)bgep, (void *)wq, (void *)mp, (void *)iocp)); 5593 5594 ASSERT(mutex_owned(bgep->genlock)); 5595 5596 cmd = iocp->ioc_cmd; 5597 switch (cmd) { 5598 default: 5599 /* NOTREACHED */ 5600 bge_error(bgep, "bge_chip_ioctl: invalid cmd 0x%x", cmd); 5601 return (IOC_INVAL); 5602 5603 case BGE_DIAG: 5604 case BGE_PEEK: 5605 case BGE_POKE: 5606 case BGE_PHY_RESET: 5607 case BGE_SOFT_RESET: 5608 case BGE_HARD_RESET: 5609 #if BGE_DEBUGGING || BGE_DO_PPIO 5610 return (bge_diag_ioctl(bgep, cmd, mp, iocp)); 5611 #else 5612 return (IOC_INVAL); 5613 #endif /* BGE_DEBUGGING || BGE_DO_PPIO */ 5614 5615 case BGE_MII_READ: 5616 case BGE_MII_WRITE: 5617 return (bge_mii_ioctl(bgep, cmd, mp, iocp)); 5618 5619 #if BGE_SEE_IO32 5620 case BGE_SEE_READ: 5621 case BGE_SEE_WRITE: 5622 return (bge_see_ioctl(bgep, cmd, mp, iocp)); 5623 #endif /* BGE_SEE_IO32 */ 5624 5625 #if BGE_FLASH_IO32 5626 case BGE_FLASH_READ: 5627 case BGE_FLASH_WRITE: 5628 return (bge_flash_ioctl(bgep, cmd, mp, iocp)); 5629 #endif /* BGE_FLASH_IO32 */ 5630 } 5631 5632 /* NOTREACHED */ 5633 } 5634 5635 /* ARGSUSED */ 5636 void 5637 bge_chip_blank(void *arg, time_t ticks, uint_t count, int flag) 5638 { 5639 recv_ring_t *rrp = arg; 5640 bge_t *bgep = rrp->bgep; 5641 5642 mutex_enter(bgep->genlock); 5643 rrp->poll_flag = flag; 5644 #ifdef NOT_YET 5645 /* 5646 * XXX-Sunay: Since most broadcom cards support only one 5647 * interrupt but multiple rx rings, we can't disable the 5648 * physical interrupt. This need to be done via capability 5649 * negotiation depending on the NIC. 5650 */ 5651 bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, ticks); 5652 bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, count); 5653 #endif 5654 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) 5655 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED); 5656 mutex_exit(bgep->genlock); 5657 } 5658 5659 #ifdef BGE_IPMI_ASF 5660 5661 uint32_t 5662 bge_nic_read32(bge_t *bgep, bge_regno_t addr) 5663 { 5664 uint32_t data; 5665 5666 #ifndef __sparc 5667 if (!bgep->asf_wordswapped) { 5668 /* a workaround word swap error */ 5669 if (addr & 4) 5670 addr = addr - 4; 5671 else 5672 addr = addr + 4; 5673 } 5674 #endif 5675 5676 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr); 5677 data = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR); 5678 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0); 5679 5680 data = LE_32(data); 5681 return (data); 5682 } 5683 5684 void 5685 bge_asf_update_status(bge_t *bgep) 5686 { 5687 uint32_t event; 5688 5689 bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_ALIVE); 5690 bge_nic_put32(bgep, BGE_CMD_LENGTH_MAILBOX, 4); 5691 bge_nic_put32(bgep, BGE_CMD_DATA_MAILBOX, 3); 5692 5693 event = bge_reg_get32(bgep, RX_RISC_EVENT_REG); 5694 bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT); 5695 } 5696 5697 5698 /* 5699 * The driver is supposed to notify ASF that the OS is still running 5700 * every three seconds, otherwise the management server may attempt 5701 * to reboot the machine. If it hasn't actually failed, this is 5702 * not a desirable result. However, this isn't running as a real-time 5703 * thread, and even if it were, it might not be able to generate the 5704 * heartbeat in a timely manner due to system load. As it isn't a 5705 * significant strain on the machine, we will set the interval to half 5706 * of the required value. 5707 */ 5708 void 5709 bge_asf_heartbeat(void *arg) 5710 { 5711 bge_t *bgep = (bge_t *)arg; 5712 5713 mutex_enter(bgep->genlock); 5714 bge_asf_update_status((bge_t *)bgep); 5715 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) 5716 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 5717 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) 5718 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 5719 mutex_exit(bgep->genlock); 5720 ((bge_t *)bgep)->asf_timeout_id = timeout(bge_asf_heartbeat, bgep, 5721 drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL)); 5722 } 5723 5724 5725 void 5726 bge_asf_stop_timer(bge_t *bgep) 5727 { 5728 timeout_id_t tmp_id = 0; 5729 5730 while ((bgep->asf_timeout_id != 0) && 5731 (tmp_id != bgep->asf_timeout_id)) { 5732 tmp_id = bgep->asf_timeout_id; 5733 (void) untimeout(tmp_id); 5734 } 5735 bgep->asf_timeout_id = 0; 5736 } 5737 5738 5739 5740 /* 5741 * This function should be placed at the earliest position of bge_attach(). 5742 */ 5743 void 5744 bge_asf_get_config(bge_t *bgep) 5745 { 5746 uint32_t nicsig; 5747 uint32_t niccfg; 5748 5749 bgep->asf_enabled = B_FALSE; 5750 nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR); 5751 if (nicsig == BGE_NIC_DATA_SIG) { 5752 niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR); 5753 if (niccfg & BGE_NIC_CFG_ENABLE_ASF) 5754 /* 5755 * Here, we don't consider BAXTER, because BGE haven't 5756 * supported BAXTER (that is 5752). Also, as I know, 5757 * BAXTER doesn't support ASF feature. 5758 */ 5759 bgep->asf_enabled = B_TRUE; 5760 else 5761 bgep->asf_enabled = B_FALSE; 5762 } else 5763 bgep->asf_enabled = B_FALSE; 5764 } 5765 5766 5767 void 5768 bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode) 5769 { 5770 uint32_t tries; 5771 uint32_t event; 5772 5773 ASSERT(bgep->asf_enabled); 5774 5775 /* Issues "pause firmware" command and wait for ACK */ 5776 bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_PAUSE_FW); 5777 event = bge_reg_get32(bgep, RX_RISC_EVENT_REG); 5778 bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT); 5779 5780 event = bge_reg_get32(bgep, RX_RISC_EVENT_REG); 5781 tries = 0; 5782 while ((event & RRER_ASF_EVENT) && (tries < 100)) { 5783 drv_usecwait(1); 5784 tries ++; 5785 event = bge_reg_get32(bgep, RX_RISC_EVENT_REG); 5786 } 5787 5788 bge_nic_put32(bgep, BGE_FIRMWARE_MAILBOX, 5789 BGE_MAGIC_NUM_FIRMWARE_INIT_DONE); 5790 5791 if (bgep->asf_newhandshake) { 5792 switch (mode) { 5793 case BGE_INIT_RESET: 5794 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX, 5795 BGE_DRV_STATE_START); 5796 break; 5797 case BGE_SHUTDOWN_RESET: 5798 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX, 5799 BGE_DRV_STATE_UNLOAD); 5800 break; 5801 case BGE_SUSPEND_RESET: 5802 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX, 5803 BGE_DRV_STATE_SUSPEND); 5804 break; 5805 default: 5806 break; 5807 } 5808 } 5809 } 5810 5811 5812 void 5813 bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode) 5814 { 5815 switch (mode) { 5816 case BGE_INIT_RESET: 5817 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX, 5818 BGE_DRV_STATE_START); 5819 break; 5820 case BGE_SHUTDOWN_RESET: 5821 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX, 5822 BGE_DRV_STATE_UNLOAD); 5823 break; 5824 case BGE_SUSPEND_RESET: 5825 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX, 5826 BGE_DRV_STATE_SUSPEND); 5827 break; 5828 default: 5829 break; 5830 } 5831 } 5832 5833 5834 void 5835 bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode) 5836 { 5837 switch (mode) { 5838 case BGE_INIT_RESET: 5839 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX, 5840 BGE_DRV_STATE_START_DONE); 5841 break; 5842 case BGE_SHUTDOWN_RESET: 5843 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX, 5844 BGE_DRV_STATE_UNLOAD_DONE); 5845 break; 5846 default: 5847 break; 5848 } 5849 } 5850 5851 #endif /* BGE_IPMI_ASF */ 5852