xref: /titanic_41/usr/src/uts/common/io/bge/bge_chip2.c (revision c7402f0767d7a0360fabd0bd449c6baf9b282074)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include "bge_impl.h"
28 
29 #define	PIO_ADDR(bgep, offset)	((void *)((caddr_t)(bgep)->io_regs+(offset)))
30 
31 /*
32  * Future features ... ?
33  */
34 #define	BGE_CFG_IO8	1	/* 8/16-bit cfg space BIS/BIC	*/
35 #define	BGE_IND_IO32	1	/* indirect access code		*/
36 #define	BGE_SEE_IO32	1	/* SEEPROM access code		*/
37 #define	BGE_FLASH_IO32	1	/* FLASH access code		*/
38 
39 /*
40  * BGE MSI tunable:
41  *
42  * By default MSI is enabled on all supported platforms but it is disabled
43  * for some Broadcom chips due to known MSI hardware issues. Currently MSI
44  * is enabled only for 5714C A2 and 5715C A2 broadcom chips.
45  */
46 boolean_t bge_enable_msi = B_TRUE;
47 
48 /*
49  * PCI-X/PCI-E relaxed ordering tunable for OS/Nexus driver
50  */
51 boolean_t bge_relaxed_ordering = B_TRUE;
52 
53 /*
54  * Property names
55  */
56 static char knownids_propname[] = "bge-known-subsystems";
57 
58 /*
59  * Patchable globals:
60  *
61  *	bge_autorecover
62  *		Enables/disables automatic recovery after fault detection
63  *
64  *	bge_mlcr_default
65  *		Value to program into the MLCR; controls the chip's GPIO pins
66  *
67  *	bge_dma_{rd,wr}prio
68  *		Relative priorities of DMA reads & DMA writes respectively.
69  *		These may each be patched to any value 0-3.  Equal values
70  *		will give "fair" (round-robin) arbitration for PCI access.
71  *		Unequal values will give one or the other function priority.
72  *
73  *	bge_dma_rwctrl
74  *		Value to put in the Read/Write DMA control register.  See
75  *	        the Broadcom PRM for things you can fiddle with in this
76  *		register ...
77  *
78  *	bge_{tx,rx}_{count,ticks}_{norm,intr}
79  *		Send/receive interrupt coalescing parameters.  Counts are
80  *		#s of descriptors, ticks are in microseconds.  *norm* values
81  *		apply between status updates/interrupts; the *intr* values
82  *		refer to the 'during-interrupt' versions - see the PRM.
83  *
84  *		NOTE: these values have been determined by measurement. They
85  *		differ significantly from the values recommended in the PRM.
86  */
87 static uint32_t bge_autorecover = 1;
88 static uint32_t bge_mlcr_default_5714 = MLCR_DEFAULT_5714;
89 
90 static uint32_t bge_dma_rdprio = 1;
91 static uint32_t bge_dma_wrprio = 0;
92 static uint32_t bge_dma_rwctrl = PDRWCR_VAR_DEFAULT;
93 static uint32_t bge_dma_rwctrl_5721 = PDRWCR_VAR_5721;
94 static uint32_t bge_dma_rwctrl_5714 = PDRWCR_VAR_5714;
95 static uint32_t bge_dma_rwctrl_5715 = PDRWCR_VAR_5715;
96 
97 uint32_t bge_rx_ticks_norm = 128;
98 uint32_t bge_tx_ticks_norm = 2048;		/* 8 for FJ2+ !?!?	*/
99 uint32_t bge_rx_count_norm = 8;
100 uint32_t bge_tx_count_norm = 128;
101 
102 static uint32_t bge_rx_ticks_intr = 128;
103 static uint32_t bge_tx_ticks_intr = 0;		/* 8 for FJ2+ !?!?	*/
104 static uint32_t bge_rx_count_intr = 2;
105 static uint32_t bge_tx_count_intr = 0;
106 
107 /*
108  * Memory pool configuration parameters.
109  *
110  * These are generally specific to each member of the chip family, since
111  * each one may have a different memory size/configuration.
112  *
113  * Setting the mbuf pool length for a specific type of chip to 0 inhibits
114  * the driver from programming the various registers; instead they are left
115  * at their hardware defaults.  This is the preferred option for later chips
116  * (5705+), whereas the older chips *required* these registers to be set,
117  * since the h/w default was 0 ;-(
118  */
119 static uint32_t bge_mbuf_pool_base	= MBUF_POOL_BASE_DEFAULT;
120 static uint32_t bge_mbuf_pool_base_5704	= MBUF_POOL_BASE_5704;
121 static uint32_t bge_mbuf_pool_base_5705	= MBUF_POOL_BASE_5705;
122 static uint32_t bge_mbuf_pool_base_5721 = MBUF_POOL_BASE_5721;
123 static uint32_t bge_mbuf_pool_len	= MBUF_POOL_LENGTH_DEFAULT;
124 static uint32_t bge_mbuf_pool_len_5704	= MBUF_POOL_LENGTH_5704;
125 static uint32_t bge_mbuf_pool_len_5705	= 0;	/* use h/w default	*/
126 static uint32_t bge_mbuf_pool_len_5721	= 0;
127 
128 /*
129  * Various high and low water marks, thresholds, etc ...
130  *
131  * Note: these are taken from revision 7 of the PRM, and some are different
132  * from both the values in earlier PRMs *and* those determined experimentally
133  * and used in earlier versions of this driver ...
134  */
135 static uint32_t bge_mbuf_hi_water	= MBUF_HIWAT_DEFAULT;
136 static uint32_t bge_mbuf_lo_water_rmac	= MAC_RX_MBUF_LOWAT_DEFAULT;
137 static uint32_t bge_mbuf_lo_water_rdma	= RDMA_MBUF_LOWAT_DEFAULT;
138 
139 static uint32_t bge_dmad_lo_water	= DMAD_POOL_LOWAT_DEFAULT;
140 static uint32_t bge_dmad_hi_water	= DMAD_POOL_HIWAT_DEFAULT;
141 static uint32_t bge_lowat_recv_frames	= LOWAT_MAX_RECV_FRAMES_DEFAULT;
142 
143 static uint32_t bge_replenish_std	= STD_RCV_BD_REPLENISH_DEFAULT;
144 static uint32_t bge_replenish_mini	= MINI_RCV_BD_REPLENISH_DEFAULT;
145 static uint32_t bge_replenish_jumbo	= JUMBO_RCV_BD_REPLENISH_DEFAULT;
146 
147 static uint32_t	bge_watchdog_count	= 1 << 16;
148 static uint16_t bge_dma_miss_limit	= 20;
149 
150 static uint32_t bge_stop_start_on_sync	= 0;
151 
152 boolean_t bge_jumbo_enable		= B_TRUE;
153 
154 /*
155  * bge_intr_max_loop controls the maximum loop number within bge_intr.
156  * When loading NIC with heavy network traffic, it is useful.
157  * Increasing this value could have positive effect to throughput,
158  * but it might also increase ticks of a bge ISR stick on CPU, which might
159  * lead to bad UI interactive experience. So tune this with caution.
160  */
161 static int bge_intr_max_loop = 1;
162 
163 /*
164  * ========== Low-level chip & ring buffer manipulation ==========
165  */
166 
167 #define	BGE_DBG		BGE_DBG_REGS	/* debug flag for this code	*/
168 
169 
170 /*
171  * Config space read-modify-write routines
172  */
173 
174 #if	BGE_CFG_IO8
175 
176 static void bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
177 #pragma	inline(bge_cfg_clr16)
178 
179 static void
180 bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
181 {
182 	uint16_t regval;
183 
184 	BGE_TRACE(("bge_cfg_clr16($%p, 0x%lx, 0x%x)",
185 	    (void *)bgep, regno, bits));
186 
187 	regval = pci_config_get16(bgep->cfg_handle, regno);
188 
189 	BGE_DEBUG(("bge_cfg_clr16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
190 	    (void *)bgep, regno, bits, regval, regval & ~bits));
191 
192 	regval &= ~bits;
193 	pci_config_put16(bgep->cfg_handle, regno, regval);
194 }
195 
196 #endif	/* BGE_CFG_IO8 */
197 
198 static void bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
199 #pragma	inline(bge_cfg_clr32)
200 
201 static void
202 bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
203 {
204 	uint32_t regval;
205 
206 	BGE_TRACE(("bge_cfg_clr32($%p, 0x%lx, 0x%x)",
207 	    (void *)bgep, regno, bits));
208 
209 	regval = pci_config_get32(bgep->cfg_handle, regno);
210 
211 	BGE_DEBUG(("bge_cfg_clr32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
212 	    (void *)bgep, regno, bits, regval, regval & ~bits));
213 
214 	regval &= ~bits;
215 	pci_config_put32(bgep->cfg_handle, regno, regval);
216 }
217 
218 #if	BGE_IND_IO32
219 
220 /*
221  * Indirect access to registers & RISC scratchpads, using config space
222  * accesses only.
223  *
224  * This isn't currently used, but someday we might want to use it for
225  * restoring the Subsystem Device/Vendor registers (which aren't directly
226  * writable in Config Space), or for downloading firmware into the RISCs
227  *
228  * In any case there are endian issues to be resolved before this code is
229  * enabled; the bizarre way that bytes get twisted by this chip AND by
230  * the PCI bridge in SPARC systems mean that we shouldn't enable it until
231  * it's been thoroughly tested for all access sizes on all supported
232  * architectures (SPARC *and* x86!).
233  */
234 uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno);
235 #pragma	inline(bge_ind_get32)
236 
237 uint32_t
238 bge_ind_get32(bge_t *bgep, bge_regno_t regno)
239 {
240 	uint32_t val;
241 
242 	BGE_TRACE(("bge_ind_get32($%p, 0x%lx)", (void *)bgep, regno));
243 
244 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
245 	val = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_RIADR);
246 
247 	BGE_DEBUG(("bge_ind_get32($%p, 0x%lx) => 0x%x",
248 	    (void *)bgep, regno, val));
249 
250 	val = LE_32(val);
251 
252 	return (val);
253 }
254 
255 void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val);
256 #pragma	inline(bge_ind_put32)
257 
258 void
259 bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val)
260 {
261 	BGE_TRACE(("bge_ind_put32($%p, 0x%lx, 0x%x)",
262 	    (void *)bgep, regno, val));
263 
264 	val = LE_32(val);
265 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
266 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIADR, val);
267 }
268 
269 #endif	/* BGE_IND_IO32 */
270 
271 #if	BGE_DEBUGGING
272 
273 static void bge_pci_check(bge_t *bgep);
274 #pragma	no_inline(bge_pci_check)
275 
276 static void
277 bge_pci_check(bge_t *bgep)
278 {
279 	uint16_t pcistatus;
280 
281 	pcistatus = pci_config_get16(bgep->cfg_handle, PCI_CONF_STAT);
282 	if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0)
283 		BGE_DEBUG(("bge_pci_check($%p): PCI status 0x%x",
284 		    (void *)bgep, pcistatus));
285 }
286 
287 #endif	/* BGE_DEBUGGING */
288 
289 /*
290  * Perform first-stage chip (re-)initialisation, using only config-space
291  * accesses:
292  *
293  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
294  *   returning the data in the structure pointed to by <idp>.
295  * + Configure the target-mode endianness (swap) options.
296  * + Disable interrupts and enable Memory Space accesses.
297  * + Enable or disable Bus Mastering according to the <enable_dma> flag.
298  *
299  * This sequence is adapted from Broadcom document 570X-PG102-R,
300  * page 102, steps 1-3, 6-8 and 11-13.  The omitted parts of the sequence
301  * are 4 and 5 (Reset Core and wait) which are handled elsewhere.
302  *
303  * This function MUST be called before any non-config-space accesses
304  * are made; on this first call <enable_dma> is B_FALSE, and it
305  * effectively performs steps 3-1(!) of the initialisation sequence
306  * (the rest are not required but should be harmless).
307  *
308  * It MUST also be called after a chip reset, as this disables
309  * Memory Space cycles!  In this case, <enable_dma> is B_TRUE, and
310  * it is effectively performing steps 6-8.
311  */
312 void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma);
313 #pragma	no_inline(bge_chip_cfg_init)
314 
315 void
316 bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma)
317 {
318 	ddi_acc_handle_t handle;
319 	uint16_t command;
320 	uint32_t mhcr;
321 	uint16_t value16;
322 	int i;
323 
324 	BGE_TRACE(("bge_chip_cfg_init($%p, $%p, %d)",
325 	    (void *)bgep, (void *)cidp, enable_dma));
326 
327 	/*
328 	 * Step 3: save PCI cache line size and subsystem vendor ID
329 	 *
330 	 * Read all the config-space registers that characterise the
331 	 * chip, specifically vendor/device/revision/subsystem vendor
332 	 * and subsystem device id.  We expect (but don't check) that
333 	 * (vendor == VENDOR_ID_BROADCOM) && (device == DEVICE_ID_5704)
334 	 *
335 	 * Also save all bus-transaction related registers (cache-line
336 	 * size, bus-grant/latency parameters, etc).  Some of these are
337 	 * cleared by reset, so we'll have to restore them later.  This
338 	 * comes from the Broadcom document 570X-PG102-R ...
339 	 *
340 	 * Note: Broadcom document 570X-PG102-R seems to be in error
341 	 * here w.r.t. the offsets of the Subsystem Vendor ID and
342 	 * Subsystem (Device) ID registers, which are the opposite way
343 	 * round according to the PCI standard.  For good measure, we
344 	 * save/restore both anyway.
345 	 */
346 	handle = bgep->cfg_handle;
347 
348 	mhcr = pci_config_get32(handle, PCI_CONF_BGE_MHCR);
349 	cidp->asic_rev = mhcr & MHCR_CHIP_REV_MASK;
350 	cidp->businfo = pci_config_get32(handle, PCI_CONF_BGE_PCISTATE);
351 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
352 
353 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
354 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
355 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
356 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
357 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
358 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
359 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
360 
361 	BGE_DEBUG(("bge_chip_cfg_init: %s bus is %s and %s; #INTA is %s",
362 	    cidp->businfo & PCISTATE_BUS_IS_PCI ? "PCI" : "PCI-X",
363 	    cidp->businfo & PCISTATE_BUS_IS_FAST ? "fast" : "slow",
364 	    cidp->businfo & PCISTATE_BUS_IS_32_BIT ? "narrow" : "wide",
365 	    cidp->businfo & PCISTATE_INTA_STATE ? "high" : "low"));
366 	BGE_DEBUG(("bge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
367 	    cidp->vendor, cidp->device, cidp->revision));
368 	BGE_DEBUG(("bge_chip_cfg_init: subven 0x%x subdev 0x%x asic_rev 0x%x",
369 	    cidp->subven, cidp->subdev, cidp->asic_rev));
370 	BGE_DEBUG(("bge_chip_cfg_init: clsize %d latency %d command 0x%x",
371 	    cidp->clsize, cidp->latency, cidp->command));
372 
373 	/*
374 	 * Step 2 (also step 6): disable and clear interrupts.
375 	 * Steps 11-13: configure PIO endianness options, and enable
376 	 * indirect register access.  We'll also select any other
377 	 * options controlled by the MHCR (e.g. tagged status, mask
378 	 * interrupt mode) at this stage ...
379 	 *
380 	 * Note: internally, the chip is 64-bit and BIG-endian, but
381 	 * since it talks to the host over a (LITTLE-endian) PCI bus,
382 	 * it normally swaps bytes around at the PCI interface.
383 	 * However, the PCI host bridge on SPARC systems normally
384 	 * swaps the byte lanes around too, since SPARCs are also
385 	 * BIG-endian.  So it turns out that on SPARC, the right
386 	 * option is to tell the chip to swap (and the host bridge
387 	 * will swap back again), whereas on x86 we ask the chip
388 	 * NOT to swap, so the natural little-endianness of the
389 	 * PCI bus is assumed.  Then the only thing that doesn't
390 	 * automatically work right is access to an 8-byte register
391 	 * by a little-endian host; but we don't want to set the
392 	 * MHCR_ENABLE_REGISTER_WORD_SWAP bit because then 4-byte
393 	 * accesses don't go where expected ;-(  So we live with
394 	 * that, and perform word-swaps in software in the few cases
395 	 * where a chip register is defined as an 8-byte value --
396 	 * see the code below for details ...
397 	 *
398 	 * Note: the meaning of the 'MASK_INTERRUPT_MODE' bit isn't
399 	 * very clear in the register description in the PRM, but
400 	 * Broadcom document 570X-PG104-R page 248 explains a little
401 	 * more (under "Broadcom Mask Mode").  The bit changes the way
402 	 * the MASK_PCI_INT_OUTPUT bit works: with MASK_INTERRUPT_MODE
403 	 * clear, the chip interprets MASK_PCI_INT_OUTPUT in the same
404 	 * way as the 5700 did, which isn't very convenient.  Setting
405 	 * the MASK_INTERRUPT_MODE bit makes the MASK_PCI_INT_OUTPUT
406 	 * bit do just what its name says -- MASK the PCI #INTA output
407 	 * (i.e. deassert the signal at the pin) leaving all internal
408 	 * state unchanged.  This is much more convenient for our
409 	 * interrupt handler, so we set MASK_INTERRUPT_MODE here.
410 	 *
411 	 * Note: the inconvenient semantics of the interrupt mailbox
412 	 * (nonzero disables and acknowledges/clears the interrupt,
413 	 * zero enables AND CLEARS it) would make race conditions
414 	 * likely in the interrupt handler:
415 	 *
416 	 * (1)	acknowledge & disable interrupts
417 	 * (2)	while (more to do)
418 	 * 		process packets
419 	 * (3)	enable interrupts -- also clears pending
420 	 *
421 	 * If the chip received more packets and internally generated
422 	 * an interrupt between the check at (2) and the mbox write
423 	 * at (3), this interrupt would be lost :-(
424 	 *
425 	 * The best way to avoid this is to use TAGGED STATUS mode,
426 	 * where the chip includes a unique tag in each status block
427 	 * update, and the host, when re-enabling interrupts, passes
428 	 * the last tag it saw back to the chip; then the chip can
429 	 * see whether the host is truly up to date, and regenerate
430 	 * its interrupt if not.
431 	 */
432 	mhcr =	MHCR_ENABLE_INDIRECT_ACCESS |
433 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
434 	    MHCR_MASK_INTERRUPT_MODE |
435 	    MHCR_CLEAR_INTERRUPT_INTA;
436 
437 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
438 		mhcr |= MHCR_MASK_PCI_INT_OUTPUT;
439 
440 #ifdef	_BIG_ENDIAN
441 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
442 #endif	/* _BIG_ENDIAN */
443 
444 	pci_config_put32(handle, PCI_CONF_BGE_MHCR, mhcr);
445 
446 #ifdef BGE_IPMI_ASF
447 	bgep->asf_wordswapped = B_FALSE;
448 #endif
449 	/*
450 	 * Step 1 (also step 7): Enable PCI Memory Space accesses
451 	 *			 Disable Memory Write/Invalidate
452 	 *			 Enable or disable Bus Mastering
453 	 *
454 	 * Note that all other bits are taken from the original value saved
455 	 * the first time through here, rather than from the current register
456 	 * value, 'cos that will have been cleared by a soft RESET since.
457 	 * In this way we preserve the OBP/nexus-parent's preferred settings
458 	 * of the parity-error and system-error enable bits across multiple
459 	 * chip RESETs.
460 	 */
461 	command = bgep->chipid.command | PCI_COMM_MAE;
462 	command &= ~(PCI_COMM_ME|PCI_COMM_MEMWR_INVAL);
463 	if (enable_dma)
464 		command |= PCI_COMM_ME;
465 	/*
466 	 * on BCM5714 revision A0, false parity error gets generated
467 	 * due to a logic bug. Provide a workaround by disabling parity
468 	 * error.
469 	 */
470 	if (((cidp->device == DEVICE_ID_5714C) ||
471 	    (cidp->device == DEVICE_ID_5714S)) &&
472 	    (cidp->revision == REVISION_ID_5714_A0)) {
473 		command &= ~PCI_COMM_PARITY_DETECT;
474 	}
475 	pci_config_put16(handle, PCI_CONF_COMM, command);
476 
477 	/*
478 	 * On some PCI-E device, there were instances when
479 	 * the device was still link training.
480 	 */
481 	if (bgep->chipid.pci_type == BGE_PCI_E) {
482 		i = 0;
483 		value16 = pci_config_get16(handle, PCI_CONF_COMM);
484 		while ((value16 != command) && (i < 100)) {
485 			drv_usecwait(200);
486 			value16 = pci_config_get16(handle, PCI_CONF_COMM);
487 			++i;
488 		}
489 	}
490 
491 	/*
492 	 * Clear any remaining error status bits
493 	 */
494 	pci_config_put16(handle, PCI_CONF_STAT, ~0);
495 
496 	/*
497 	 * Do following if and only if the device is NOT BCM5714C OR
498 	 * BCM5715C
499 	 */
500 	if (!((cidp->device == DEVICE_ID_5714C) ||
501 	    (cidp->device == DEVICE_ID_5715C))) {
502 		/*
503 		 * Make sure these indirect-access registers are sane
504 		 * rather than random after power-up or reset
505 		 */
506 		pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0);
507 		pci_config_put32(handle, PCI_CONF_BGE_MWBAR, 0);
508 	}
509 	/*
510 	 * Step 8: Disable PCI-X/PCI-E Relaxed Ordering
511 	 */
512 	bge_cfg_clr16(bgep, PCIX_CONF_COMM, PCIX_COMM_RELAXED);
513 
514 	if (cidp->pci_type == BGE_PCI_E) {
515 		if (DEVICE_5723_SERIES_CHIPSETS(bgep)) {
516 			bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL_5723,
517 			    DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
518 		} else
519 			bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL,
520 			    DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
521 	}
522 }
523 
524 #ifdef __amd64
525 /*
526  * Distinguish CPU types
527  *
528  * These use to  distinguish AMD64 or Intel EM64T of CPU running mode.
529  * If CPU runs on Intel EM64T mode,the 64bit operation cannot works fine
530  * for PCI-Express based network interface card. This is the work-around
531  * for those nics.
532  */
533 static boolean_t bge_get_em64t_type(void);
534 #pragma	inline(bge_get_em64t_type)
535 
536 static boolean_t
537 bge_get_em64t_type(void)
538 {
539 
540 	return (x86_vendor == X86_VENDOR_Intel);
541 }
542 #endif
543 
544 /*
545  * Operating register get/set access routines
546  */
547 
548 uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno);
549 #pragma	inline(bge_reg_get32)
550 
551 uint32_t
552 bge_reg_get32(bge_t *bgep, bge_regno_t regno)
553 {
554 	BGE_TRACE(("bge_reg_get32($%p, 0x%lx)",
555 	    (void *)bgep, regno));
556 
557 	return (ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)));
558 }
559 
560 void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data);
561 #pragma	inline(bge_reg_put32)
562 
563 void
564 bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
565 {
566 	BGE_TRACE(("bge_reg_put32($%p, 0x%lx, 0x%x)",
567 	    (void *)bgep, regno, data));
568 
569 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), data);
570 	BGE_PCICHK(bgep);
571 }
572 
573 void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
574 #pragma	inline(bge_reg_set32)
575 
576 void
577 bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
578 {
579 	uint32_t regval;
580 
581 	BGE_TRACE(("bge_reg_set32($%p, 0x%lx, 0x%x)",
582 	    (void *)bgep, regno, bits));
583 
584 	regval = bge_reg_get32(bgep, regno);
585 	regval |= bits;
586 	bge_reg_put32(bgep, regno, regval);
587 }
588 
589 void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
590 #pragma	inline(bge_reg_clr32)
591 
592 void
593 bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
594 {
595 	uint32_t regval;
596 
597 	BGE_TRACE(("bge_reg_clr32($%p, 0x%lx, 0x%x)",
598 	    (void *)bgep, regno, bits));
599 
600 	regval = bge_reg_get32(bgep, regno);
601 	regval &= ~bits;
602 	bge_reg_put32(bgep, regno, regval);
603 }
604 
605 static uint64_t bge_reg_get64(bge_t *bgep, bge_regno_t regno);
606 #pragma	inline(bge_reg_get64)
607 
608 static uint64_t
609 bge_reg_get64(bge_t *bgep, bge_regno_t regno)
610 {
611 	uint64_t regval;
612 
613 #ifdef	__amd64
614 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type()) {
615 		regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
616 		regval <<= 32;
617 		regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
618 	} else {
619 		regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
620 	}
621 #elif defined(__sparc)
622 	if (DEVICE_5723_SERIES_CHIPSETS(bgep)) {
623 		regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
624 		regval <<= 32;
625 		regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
626 	} else {
627 		regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
628 	}
629 #else
630 	regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
631 #endif
632 
633 #ifdef	_LITTLE_ENDIAN
634 	regval = (regval >> 32) | (regval << 32);
635 #endif	/* _LITTLE_ENDIAN */
636 
637 	BGE_TRACE(("bge_reg_get64($%p, 0x%lx) = 0x%016llx",
638 	    (void *)bgep, regno, regval));
639 
640 	return (regval);
641 }
642 
643 static void bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data);
644 #pragma	inline(bge_reg_put64)
645 
646 static void
647 bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data)
648 {
649 	BGE_TRACE(("bge_reg_put64($%p, 0x%lx, 0x%016llx)",
650 	    (void *)bgep, regno, data));
651 
652 #ifdef	_LITTLE_ENDIAN
653 	data = ((data >> 32) | (data << 32));
654 #endif	/* _LITTLE_ENDIAN */
655 
656 #ifdef	__amd64
657 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type()) {
658 		ddi_put32(bgep->io_handle,
659 		    PIO_ADDR(bgep, regno), (uint32_t)data);
660 		BGE_PCICHK(bgep);
661 		ddi_put32(bgep->io_handle,
662 		    PIO_ADDR(bgep, regno + 4), (uint32_t)(data >> 32));
663 
664 	} else {
665 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
666 	}
667 #elif defined(__sparc)
668 	if (DEVICE_5723_SERIES_CHIPSETS(bgep)) {
669 		ddi_put32(bgep->io_handle,
670 		    PIO_ADDR(bgep, regno + 4), (uint32_t)data);
671 		BGE_PCICHK(bgep);
672 		ddi_put32(bgep->io_handle,
673 		    PIO_ADDR(bgep, regno), (uint32_t)(data >> 32));
674 	} else {
675 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
676 	}
677 #else
678 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
679 #endif
680 
681 	BGE_PCICHK(bgep);
682 }
683 
684 /*
685  * The DDI doesn't provide get/put functions for 128 bit data
686  * so we put RCBs out as two 64-bit chunks instead.
687  */
688 static void bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
689 #pragma	inline(bge_reg_putrcb)
690 
691 static void
692 bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
693 {
694 	uint64_t *p;
695 
696 	BGE_TRACE(("bge_reg_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
697 	    (void *)bgep, addr, rcbp->host_ring_addr,
698 	    rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
699 
700 	ASSERT((addr % sizeof (*rcbp)) == 0);
701 
702 	p = (void *)rcbp;
703 	bge_reg_put64(bgep, addr, *p++);
704 	bge_reg_put64(bgep, addr+8, *p);
705 }
706 
707 void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data);
708 #pragma	inline(bge_mbx_put)
709 
710 void
711 bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data)
712 {
713 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
714 		regno += INTERRUPT_LP_MBOX_0_REG - INTERRUPT_MBOX_0_REG + 4;
715 
716 	BGE_TRACE(("bge_mbx_put($%p, 0x%lx, 0x%016llx)",
717 	    (void *)bgep, regno, data));
718 
719 	/*
720 	 * Mailbox registers are nominally 64 bits on the 5701, but
721 	 * the MSW isn't used.  On the 5703, they're only 32 bits
722 	 * anyway.  So here we just write the lower(!) 32 bits -
723 	 * remembering that the chip is big-endian, even though the
724 	 * PCI bus is little-endian ...
725 	 */
726 #ifdef	_BIG_ENDIAN
727 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno+4), (uint32_t)data);
728 #else
729 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), (uint32_t)data);
730 #endif	/* _BIG_ENDIAN */
731 	BGE_PCICHK(bgep);
732 }
733 
734 uint32_t bge_mbx_get(bge_t *bgep, bge_regno_t regno);
735 #pragma inline(bge_mbx_get)
736 
737 uint32_t
738 bge_mbx_get(bge_t *bgep, bge_regno_t regno)
739 {
740 	uint32_t val32;
741 
742 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
743 		regno += INTERRUPT_LP_MBOX_0_REG - INTERRUPT_MBOX_0_REG + 4;
744 
745 	BGE_TRACE(("bge_mbx_get($%p, 0x%lx)",
746 	    (void *)bgep, regno));
747 
748 #ifdef	_BIG_ENDIAN
749 	val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno+4));
750 #else
751 	val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
752 #endif	/* _BIG_ENDIAN */
753 	BGE_PCICHK(bgep);
754 
755 	return (val32);
756 }
757 
758 
759 #if	BGE_DEBUGGING
760 
761 void bge_led_mark(bge_t *bgep);
762 #pragma	no_inline(bge_led_mark)
763 
764 void
765 bge_led_mark(bge_t *bgep)
766 {
767 	uint32_t led_ctrl = LED_CONTROL_OVERRIDE_LINK |
768 	    LED_CONTROL_1000MBPS_LED |
769 	    LED_CONTROL_100MBPS_LED |
770 	    LED_CONTROL_10MBPS_LED;
771 
772 	/*
773 	 * Blink all three LINK LEDs on simultaneously, then all off,
774 	 * then restore to automatic hardware control.  This is used
775 	 * in laboratory testing to trigger a logic analyser or scope.
776 	 */
777 	bge_reg_set32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
778 	led_ctrl ^= LED_CONTROL_OVERRIDE_LINK;
779 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
780 	led_ctrl = LED_CONTROL_OVERRIDE_LINK;
781 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
782 }
783 
784 #endif	/* BGE_DEBUGGING */
785 
786 /*
787  * NIC on-chip memory access routines
788  *
789  * Only 32K of NIC memory is visible at a time, controlled by the
790  * Memory Window Base Address Register (in PCI config space).  Once
791  * this is set, the 32K region of NIC-local memory that it refers
792  * to can be directly addressed in the upper 32K of the 64K of PCI
793  * memory space used for the device.
794  */
795 
796 static void bge_nic_setwin(bge_t *bgep, bge_regno_t base);
797 #pragma	inline(bge_nic_setwin)
798 
799 static void
800 bge_nic_setwin(bge_t *bgep, bge_regno_t base)
801 {
802 	chip_id_t *cidp;
803 
804 	BGE_TRACE(("bge_nic_setwin($%p, 0x%lx)",
805 	    (void *)bgep, base));
806 
807 	ASSERT((base & MWBAR_GRANULE_MASK) == 0);
808 
809 	/*
810 	 * Don't do repeated zero data writes,
811 	 * if the device is BCM5714C/15C.
812 	 */
813 	cidp = &bgep->chipid;
814 	if ((cidp->device == DEVICE_ID_5714C) ||
815 	    (cidp->device == DEVICE_ID_5715C)) {
816 		if (bgep->lastWriteZeroData && (base == (bge_regno_t)0))
817 			return;
818 		/* Adjust lastWriteZeroData */
819 		bgep->lastWriteZeroData = ((base == (bge_regno_t)0) ?
820 		    B_TRUE : B_FALSE);
821 	}
822 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, base);
823 }
824 
825 static uint32_t bge_nic_get32(bge_t *bgep, bge_regno_t addr);
826 #pragma	inline(bge_nic_get32)
827 
828 static uint32_t
829 bge_nic_get32(bge_t *bgep, bge_regno_t addr)
830 {
831 	uint32_t data;
832 
833 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
834 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
835 		/* workaround for word swap error */
836 		if (addr & 4)
837 			addr = addr - 4;
838 		else
839 			addr = addr + 4;
840 	}
841 #endif
842 
843 #ifdef __sparc
844 	data = bge_nic_read32(bgep, addr);
845 #else
846 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
847 	addr &= MWBAR_GRANULE_MASK;
848 	addr += NIC_MEM_WINDOW_OFFSET;
849 
850 	data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
851 #endif
852 
853 	BGE_TRACE(("bge_nic_get32($%p, 0x%lx) = 0x%08x",
854 	    (void *)bgep, addr, data));
855 
856 	return (data);
857 }
858 
859 void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data);
860 #pragma inline(bge_nic_put32)
861 
862 void
863 bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data)
864 {
865 	BGE_TRACE(("bge_nic_put32($%p, 0x%lx, 0x%08x)",
866 	    (void *)bgep, addr, data));
867 
868 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
869 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
870 		/* workaround for word swap error */
871 		if (addr & 4)
872 			addr = addr - 4;
873 		else
874 			addr = addr + 4;
875 	}
876 #endif
877 
878 #ifdef __sparc
879 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
880 	data = LE_32(data);
881 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR, data);
882 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
883 #else
884 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
885 	addr &= MWBAR_GRANULE_MASK;
886 	addr += NIC_MEM_WINDOW_OFFSET;
887 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), data);
888 	BGE_PCICHK(bgep);
889 #endif
890 }
891 
892 static uint64_t bge_nic_get64(bge_t *bgep, bge_regno_t addr);
893 #pragma	inline(bge_nic_get64)
894 
895 static uint64_t
896 bge_nic_get64(bge_t *bgep, bge_regno_t addr)
897 {
898 	uint64_t data;
899 
900 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
901 	addr &= MWBAR_GRANULE_MASK;
902 	addr += NIC_MEM_WINDOW_OFFSET;
903 
904 #ifdef	__amd64
905 		if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type()) {
906 			data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
907 			data <<= 32;
908 			data |= ddi_get32(bgep->io_handle,
909 			    PIO_ADDR(bgep, addr + 4));
910 		} else {
911 			data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
912 		}
913 #elif defined(__sparc)
914 		if (DEVICE_5723_SERIES_CHIPSETS(bgep)) {
915 			data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
916 			data <<= 32;
917 			data |= ddi_get32(bgep->io_handle,
918 			    PIO_ADDR(bgep, addr + 4));
919 		} else {
920 			data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
921 		}
922 #else
923 		data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
924 #endif
925 
926 	BGE_TRACE(("bge_nic_get64($%p, 0x%lx) = 0x%016llx",
927 	    (void *)bgep, addr, data));
928 
929 	return (data);
930 }
931 
932 static void bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data);
933 #pragma	inline(bge_nic_put64)
934 
935 static void
936 bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data)
937 {
938 	BGE_TRACE(("bge_nic_put64($%p, 0x%lx, 0x%016llx)",
939 	    (void *)bgep, addr, data));
940 
941 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
942 	addr &= MWBAR_GRANULE_MASK;
943 	addr += NIC_MEM_WINDOW_OFFSET;
944 
945 #ifdef	__amd64
946 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type()) {
947 		ddi_put32(bgep->io_handle,
948 		    PIO_ADDR(bgep, addr), (uint32_t)data);
949 		BGE_PCICHK(bgep);
950 		ddi_put32(bgep->io_handle,
951 		    PIO_ADDR(bgep, addr + 4), (uint32_t)(data >> 32));
952 	} else {
953 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
954 	}
955 #elif defined(__sparc)
956 	if (DEVICE_5723_SERIES_CHIPSETS(bgep)) {
957 		ddi_put32(bgep->io_handle,
958 		    PIO_ADDR(bgep, addr + 4), (uint32_t)data);
959 		BGE_PCICHK(bgep);
960 		ddi_put32(bgep->io_handle,
961 		    PIO_ADDR(bgep, addr), (uint32_t)(data >> 32));
962 	} else {
963 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
964 	}
965 #else
966 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
967 #endif
968 
969 	BGE_PCICHK(bgep);
970 }
971 
972 /*
973  * The DDI doesn't provide get/put functions for 128 bit data
974  * so we put RCBs out as two 64-bit chunks instead.
975  */
976 static void bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
977 #pragma	inline(bge_nic_putrcb)
978 
979 static void
980 bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
981 {
982 	uint64_t *p;
983 
984 	BGE_TRACE(("bge_nic_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
985 	    (void *)bgep, addr, rcbp->host_ring_addr,
986 	    rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
987 
988 	ASSERT((addr % sizeof (*rcbp)) == 0);
989 
990 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
991 	addr &= MWBAR_GRANULE_MASK;
992 	addr += NIC_MEM_WINDOW_OFFSET;
993 
994 	p = (void *)rcbp;
995 #ifdef	__amd64
996 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type()) {
997 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
998 		    (uint32_t)(*p));
999 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
1000 		    (uint32_t)(*p >> 32));
1001 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
1002 		    (uint32_t)(*(p + 1)));
1003 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
1004 		    (uint32_t)(*p >> 32));
1005 
1006 	} else {
1007 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1008 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr+8), *p);
1009 	}
1010 #elif defined(__sparc)
1011 	if (DEVICE_5723_SERIES_CHIPSETS(bgep)) {
1012 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
1013 		    (uint32_t)(*p));
1014 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
1015 		    (uint32_t)(*p >> 32));
1016 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
1017 		    (uint32_t)(*(p + 1)));
1018 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
1019 		    (uint32_t)(*p >> 32));
1020 	} else {
1021 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1022 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
1023 	}
1024 #else
1025 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1026 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
1027 #endif
1028 
1029 	BGE_PCICHK(bgep);
1030 }
1031 
1032 static void bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes);
1033 #pragma	inline(bge_nic_zero)
1034 
1035 static void
1036 bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes)
1037 {
1038 	BGE_TRACE(("bge_nic_zero($%p, 0x%lx, 0x%x)",
1039 	    (void *)bgep, addr, nbytes));
1040 
1041 	ASSERT((addr & ~MWBAR_GRANULE_MASK) ==
1042 	    ((addr+nbytes) & ~MWBAR_GRANULE_MASK));
1043 
1044 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1045 	addr &= MWBAR_GRANULE_MASK;
1046 	addr += NIC_MEM_WINDOW_OFFSET;
1047 
1048 	(void) ddi_device_zero(bgep->io_handle, PIO_ADDR(bgep, addr),
1049 	    nbytes, 1, DDI_DATA_SZ08_ACC);
1050 	BGE_PCICHK(bgep);
1051 }
1052 
1053 /*
1054  * MII (PHY) register get/set access routines
1055  *
1056  * These use the chip's MII auto-access method, controlled by the
1057  * MII Communication register at 0x044c, so the CPU doesn't have
1058  * to fiddle with the individual bits.
1059  */
1060 
1061 #undef	BGE_DBG
1062 #define	BGE_DBG		BGE_DBG_MII	/* debug flag for this code	*/
1063 
1064 static uint16_t bge_mii_access(bge_t *bgep, bge_regno_t regno,
1065 				uint16_t data, uint32_t cmd);
1066 #pragma	no_inline(bge_mii_access)
1067 
1068 static uint16_t
1069 bge_mii_access(bge_t *bgep, bge_regno_t regno, uint16_t data, uint32_t cmd)
1070 {
1071 	uint32_t timeout;
1072 	uint32_t regval1;
1073 	uint32_t regval2;
1074 
1075 	BGE_TRACE(("bge_mii_access($%p, 0x%lx, 0x%x, 0x%x)",
1076 	    (void *)bgep, regno, data, cmd));
1077 
1078 	ASSERT(mutex_owned(bgep->genlock));
1079 
1080 	/*
1081 	 * Assemble the command ...
1082 	 */
1083 	cmd |= data << MI_COMMS_DATA_SHIFT;
1084 	cmd |= regno << MI_COMMS_REGISTER_SHIFT;
1085 	cmd |= bgep->phy_mii_addr << MI_COMMS_ADDRESS_SHIFT;
1086 	cmd |= MI_COMMS_START;
1087 
1088 	/*
1089 	 * Wait for any command already in progress ...
1090 	 *
1091 	 * Note: this *shouldn't* ever find that there is a command
1092 	 * in progress, because we already hold the <genlock> mutex.
1093 	 * Nonetheless, we have sometimes seen the MI_COMMS_START
1094 	 * bit set here -- it seems that the chip can initiate MII
1095 	 * accesses internally, even with polling OFF.
1096 	 */
1097 	regval1 = regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1098 	for (timeout = 100; ; ) {
1099 		if ((regval2 & MI_COMMS_START) == 0) {
1100 			bge_reg_put32(bgep, MI_COMMS_REG, cmd);
1101 			break;
1102 		}
1103 		if (--timeout == 0)
1104 			break;
1105 		drv_usecwait(10);
1106 		regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1107 	}
1108 
1109 	if (timeout == 0)
1110 		return ((uint16_t)~0u);
1111 
1112 	if (timeout != 100)
1113 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1114 		    "MI_COMMS_START set for %d us; 0x%x->0x%x",
1115 		    cmd, 10*(100-timeout), regval1, regval2));
1116 
1117 	regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1118 	for (timeout = 1000; ; ) {
1119 		if ((regval1 & MI_COMMS_START) == 0)
1120 			break;
1121 		if (--timeout == 0)
1122 			break;
1123 		drv_usecwait(10);
1124 		regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1125 	}
1126 
1127 	/*
1128 	 * Drop out early if the READ FAILED bit is set -- this chip
1129 	 * could be a 5703/4S, with a SerDes instead of a PHY!
1130 	 */
1131 	if (regval2 & MI_COMMS_READ_FAILED)
1132 		return ((uint16_t)~0u);
1133 
1134 	if (timeout == 0)
1135 		return ((uint16_t)~0u);
1136 
1137 	/*
1138 	 * The PRM says to wait 5us after seeing the START bit clear
1139 	 * and then re-read the register to get the final value of the
1140 	 * data field, in order to avoid a race condition where the
1141 	 * START bit is clear but the data field isn't yet valid.
1142 	 *
1143 	 * Note: we don't actually seem to be encounter this race;
1144 	 * except when the START bit is seen set again (see below),
1145 	 * the data field doesn't change during this 5us interval.
1146 	 */
1147 	drv_usecwait(5);
1148 	regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1149 
1150 	/*
1151 	 * Unfortunately, when following the PRMs instructions above,
1152 	 * we have occasionally seen the START bit set again(!) in the
1153 	 * value read after the 5us delay. This seems to be due to the
1154 	 * chip autonomously starting another MII access internally.
1155 	 * In such cases, the command/data/etc fields relate to the
1156 	 * internal command, rather than the one that we thought had
1157 	 * just finished.  So in this case, we fall back to returning
1158 	 * the data from the original read that showed START clear.
1159 	 */
1160 	if (regval2 & MI_COMMS_START) {
1161 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1162 		    "MI_COMMS_START set after transaction; 0x%x->0x%x",
1163 		    cmd, regval1, regval2));
1164 		regval2 = regval1;
1165 	}
1166 
1167 	if (regval2 & MI_COMMS_START)
1168 		return ((uint16_t)~0u);
1169 
1170 	if (regval2 & MI_COMMS_READ_FAILED)
1171 		return ((uint16_t)~0u);
1172 
1173 	return ((regval2 & MI_COMMS_DATA_MASK) >> MI_COMMS_DATA_SHIFT);
1174 }
1175 
1176 uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno);
1177 #pragma	no_inline(bge_mii_get16)
1178 
1179 uint16_t
1180 bge_mii_get16(bge_t *bgep, bge_regno_t regno)
1181 {
1182 	BGE_TRACE(("bge_mii_get16($%p, 0x%lx)",
1183 	    (void *)bgep, regno));
1184 
1185 	ASSERT(mutex_owned(bgep->genlock));
1186 
1187 	if (DEVICE_5906_SERIES_CHIPSETS(bgep) && ((regno == MII_AUX_CONTROL) ||
1188 	    (regno == MII_1000BASE_T_CONTROL)))
1189 		return (0);
1190 
1191 	return (bge_mii_access(bgep, regno, 0, MI_COMMS_COMMAND_READ));
1192 }
1193 
1194 void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data);
1195 #pragma	no_inline(bge_mii_put16)
1196 
1197 void
1198 bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data)
1199 {
1200 	BGE_TRACE(("bge_mii_put16($%p, 0x%lx, 0x%x)",
1201 	    (void *)bgep, regno, data));
1202 
1203 	ASSERT(mutex_owned(bgep->genlock));
1204 
1205 	if (DEVICE_5906_SERIES_CHIPSETS(bgep) && ((regno == MII_AUX_CONTROL) ||
1206 	    (regno == MII_1000BASE_T_CONTROL)))
1207 		return;
1208 
1209 	(void) bge_mii_access(bgep, regno, data, MI_COMMS_COMMAND_WRITE);
1210 }
1211 
1212 #undef	BGE_DBG
1213 #define	BGE_DBG		BGE_DBG_SEEPROM	/* debug flag for this code	*/
1214 
1215 #if	BGE_SEE_IO32 || BGE_FLASH_IO32
1216 
1217 /*
1218  * Basic SEEPROM get/set access routine
1219  *
1220  * This uses the chip's SEEPROM auto-access method, controlled by the
1221  * Serial EEPROM Address/Data Registers at 0x6838/683c, so the CPU
1222  * doesn't have to fiddle with the individual bits.
1223  *
1224  * The caller should hold <genlock> and *also* have already acquired
1225  * the right to access the SEEPROM, via bge_nvmem_acquire() above.
1226  *
1227  * Return value:
1228  *	0 on success,
1229  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1230  *	EPROTO on other h/w or s/w errors.
1231  *
1232  * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
1233  * from a (successful) SEEPROM_ACCESS_READ.
1234  */
1235 static int bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1236 				uint32_t *dp);
1237 #pragma	no_inline(bge_seeprom_access)
1238 
1239 static int
1240 bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1241 {
1242 	uint32_t tries;
1243 	uint32_t regval;
1244 
1245 	ASSERT(mutex_owned(bgep->genlock));
1246 
1247 	/*
1248 	 * On the newer chips that support both SEEPROM & Flash, we need
1249 	 * to specifically enable SEEPROM access (Flash is the default).
1250 	 * On older chips, we don't; SEEPROM is the only NVtype supported,
1251 	 * and the NVM control registers don't exist ...
1252 	 */
1253 	switch (bgep->chipid.nvtype) {
1254 	case BGE_NVTYPE_NONE:
1255 	case BGE_NVTYPE_UNKNOWN:
1256 		_NOTE(NOTREACHED)
1257 	case BGE_NVTYPE_SEEPROM:
1258 		break;
1259 
1260 	case BGE_NVTYPE_LEGACY_SEEPROM:
1261 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1262 	case BGE_NVTYPE_BUFFERED_FLASH:
1263 	default:
1264 		bge_reg_set32(bgep, NVM_CONFIG1_REG,
1265 		    NVM_CFG1_LEGACY_SEEPROM_MODE);
1266 		break;
1267 	}
1268 
1269 	/*
1270 	 * Check there's no command in progress.
1271 	 *
1272 	 * Note: this *shouldn't* ever find that there is a command
1273 	 * in progress, because we already hold the <genlock> mutex.
1274 	 * Also, to ensure we don't have a conflict with the chip's
1275 	 * internal firmware or a process accessing the same (shared)
1276 	 * SEEPROM through the other port of a 5704, we've already
1277 	 * been through the "software arbitration" protocol.
1278 	 * So this is just a final consistency check: we shouldn't
1279 	 * see EITHER the START bit (command started but not complete)
1280 	 * OR the COMPLETE bit (command completed but not cleared).
1281 	 */
1282 	regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1283 	if (regval & SEEPROM_ACCESS_START)
1284 		return (EPROTO);
1285 	if (regval & SEEPROM_ACCESS_COMPLETE)
1286 		return (EPROTO);
1287 
1288 	/*
1289 	 * Assemble the command ...
1290 	 */
1291 	cmd |= addr & SEEPROM_ACCESS_ADDRESS_MASK;
1292 	addr >>= SEEPROM_ACCESS_ADDRESS_SIZE;
1293 	addr <<= SEEPROM_ACCESS_DEVID_SHIFT;
1294 	cmd |= addr & SEEPROM_ACCESS_DEVID_MASK;
1295 	cmd |= SEEPROM_ACCESS_START;
1296 	cmd |= SEEPROM_ACCESS_COMPLETE;
1297 	cmd |= regval & SEEPROM_ACCESS_HALFCLOCK_MASK;
1298 
1299 	bge_reg_put32(bgep, SERIAL_EEPROM_DATA_REG, *dp);
1300 	bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, cmd);
1301 
1302 	/*
1303 	 * By observation, a successful access takes ~20us on a 5703/4,
1304 	 * but apparently much longer (up to 1000us) on the obsolescent
1305 	 * BCM5700/BCM5701.  We want to be sure we don't get any false
1306 	 * timeouts here; but OTOH, we don't want a bogus access to lock
1307 	 * out interrupts for longer than necessary. So we'll allow up
1308 	 * to 1000us ...
1309 	 */
1310 	for (tries = 0; tries < 1000; ++tries) {
1311 		regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1312 		if (regval & SEEPROM_ACCESS_COMPLETE)
1313 			break;
1314 		drv_usecwait(1);
1315 	}
1316 
1317 	if (regval & SEEPROM_ACCESS_COMPLETE) {
1318 		/*
1319 		 * All OK; read the SEEPROM data register, then write back
1320 		 * the value read from the address register in order to
1321 		 * clear the <complete> bit and leave the SEEPROM access
1322 		 * state machine idle, ready for the next access ...
1323 		 */
1324 		BGE_DEBUG(("bge_seeprom_access: complete after %d us", tries));
1325 		*dp = bge_reg_get32(bgep, SERIAL_EEPROM_DATA_REG);
1326 		bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, regval);
1327 		return (0);
1328 	}
1329 
1330 	/*
1331 	 * Hmm ... what happened here?
1332 	 *
1333 	 * Most likely, the user addressed a non-existent SEEPROM. Or
1334 	 * maybe the SEEPROM was busy internally (e.g. processing a write)
1335 	 * and didn't respond to being addressed. Either way, it's left
1336 	 * the SEEPROM access state machine wedged. So we'll reset it
1337 	 * before we leave, so it's ready for next time ...
1338 	 */
1339 	BGE_DEBUG(("bge_seeprom_access: timed out after %d us", tries));
1340 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
1341 	return (ENODATA);
1342 }
1343 
1344 /*
1345  * Basic Flash get/set access routine
1346  *
1347  * These use the chip's Flash auto-access method, controlled by the
1348  * Flash Access Registers at 0x7000-701c, so the CPU doesn't have to
1349  * fiddle with the individual bits.
1350  *
1351  * The caller should hold <genlock> and *also* have already acquired
1352  * the right to access the Flash, via bge_nvmem_acquire() above.
1353  *
1354  * Return value:
1355  *	0 on success,
1356  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1357  *	ENODEV if the NVmem device is missing or otherwise unusable
1358  *
1359  * <*dp> is an input to a NVM_FLASH_CMD_WR operation, or an output
1360  * from a (successful) NVM_FLASH_CMD_RD.
1361  */
1362 static int bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1363 				uint32_t *dp);
1364 #pragma	no_inline(bge_flash_access)
1365 
1366 static int
1367 bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1368 {
1369 	uint32_t tries;
1370 	uint32_t regval;
1371 
1372 	ASSERT(mutex_owned(bgep->genlock));
1373 
1374 	/*
1375 	 * On the newer chips that support both SEEPROM & Flash, we need
1376 	 * to specifically disable SEEPROM access while accessing Flash.
1377 	 * The older chips don't support Flash, and the NVM registers don't
1378 	 * exist, so we shouldn't be here at all!
1379 	 */
1380 	switch (bgep->chipid.nvtype) {
1381 	case BGE_NVTYPE_NONE:
1382 	case BGE_NVTYPE_UNKNOWN:
1383 		_NOTE(NOTREACHED)
1384 	case BGE_NVTYPE_SEEPROM:
1385 		return (ENODEV);
1386 
1387 	case BGE_NVTYPE_LEGACY_SEEPROM:
1388 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1389 	case BGE_NVTYPE_BUFFERED_FLASH:
1390 	default:
1391 		bge_reg_clr32(bgep, NVM_CONFIG1_REG,
1392 		    NVM_CFG1_LEGACY_SEEPROM_MODE);
1393 		break;
1394 	}
1395 
1396 	/*
1397 	 * Assemble the command ...
1398 	 */
1399 	addr &= NVM_FLASH_ADDR_MASK;
1400 	cmd |= NVM_FLASH_CMD_DOIT;
1401 	cmd |= NVM_FLASH_CMD_FIRST;
1402 	cmd |= NVM_FLASH_CMD_LAST;
1403 	cmd |= NVM_FLASH_CMD_DONE;
1404 
1405 	bge_reg_put32(bgep, NVM_FLASH_WRITE_REG, *dp);
1406 	bge_reg_put32(bgep, NVM_FLASH_ADDR_REG, addr);
1407 	bge_reg_put32(bgep, NVM_FLASH_CMD_REG, cmd);
1408 
1409 	/*
1410 	 * Allow up to 1000ms ...
1411 	 */
1412 	for (tries = 0; tries < 1000; ++tries) {
1413 		regval = bge_reg_get32(bgep, NVM_FLASH_CMD_REG);
1414 		if (regval & NVM_FLASH_CMD_DONE)
1415 			break;
1416 		drv_usecwait(1);
1417 	}
1418 
1419 	if (regval & NVM_FLASH_CMD_DONE) {
1420 		/*
1421 		 * All OK; read the data from the Flash read register
1422 		 */
1423 		BGE_DEBUG(("bge_flash_access: complete after %d us", tries));
1424 		*dp = bge_reg_get32(bgep, NVM_FLASH_READ_REG);
1425 		return (0);
1426 	}
1427 
1428 	/*
1429 	 * Hmm ... what happened here?
1430 	 *
1431 	 * Most likely, the user addressed a non-existent Flash. Or
1432 	 * maybe the Flash was busy internally (e.g. processing a write)
1433 	 * and didn't respond to being addressed. Either way, there's
1434 	 * nothing we can here ...
1435 	 */
1436 	BGE_DEBUG(("bge_flash_access: timed out after %d us", tries));
1437 	return (ENODATA);
1438 }
1439 
1440 /*
1441  * The next two functions regulate access to the NVram (if fitted).
1442  *
1443  * On a 5704 (dual core) chip, there's only one SEEPROM and one Flash
1444  * (SPI) interface, but they can be accessed through either port. These
1445  * are managed by different instance of this driver and have no software
1446  * state in common.
1447  *
1448  * In addition (and even on a single core chip) the chip's internal
1449  * firmware can access the SEEPROM/Flash, most notably after a RESET
1450  * when it may download code to run internally.
1451  *
1452  * So we need to arbitrate between these various software agents.  For
1453  * this purpose, the chip provides the Software Arbitration Register,
1454  * which implements hardware(!) arbitration.
1455  *
1456  * This functionality didn't exist on older (5700/5701) chips, so there's
1457  * nothing we can do by way of arbitration on those; also, if there's no
1458  * SEEPROM/Flash fitted (or we couldn't determine what type), there's also
1459  * nothing to do.
1460  *
1461  * The internal firmware appears to use Request 0, which is the highest
1462  * priority.  So we'd like to use Request 2, leaving one higher and one
1463  * lower for any future developments ... but apparently this doesn't
1464  * always work.  So for now, the code uses Request 1 ;-(
1465  */
1466 
1467 #define	NVM_READ_REQ	NVM_READ_REQ1
1468 #define	NVM_RESET_REQ	NVM_RESET_REQ1
1469 #define	NVM_SET_REQ	NVM_SET_REQ1
1470 
1471 static void bge_nvmem_relinquish(bge_t *bgep);
1472 #pragma	no_inline(bge_nvmem_relinquish)
1473 
1474 static void
1475 bge_nvmem_relinquish(bge_t *bgep)
1476 {
1477 	ASSERT(mutex_owned(bgep->genlock));
1478 
1479 	switch (bgep->chipid.nvtype) {
1480 	case BGE_NVTYPE_NONE:
1481 	case BGE_NVTYPE_UNKNOWN:
1482 		_NOTE(NOTREACHED)
1483 		return;
1484 
1485 	case BGE_NVTYPE_SEEPROM:
1486 		/*
1487 		 * No arbitration performed, no release needed
1488 		 */
1489 		return;
1490 
1491 	case BGE_NVTYPE_LEGACY_SEEPROM:
1492 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1493 	case BGE_NVTYPE_BUFFERED_FLASH:
1494 	default:
1495 		break;
1496 	}
1497 
1498 	/*
1499 	 * Our own request should be present (whether or not granted) ...
1500 	 */
1501 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1502 
1503 	/*
1504 	 * ... this will make it go away.
1505 	 */
1506 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_RESET_REQ);
1507 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1508 }
1509 
1510 /*
1511  * Arbitrate for access to the NVmem, if necessary
1512  *
1513  * Return value:
1514  *	0 on success
1515  *	EAGAIN if the device is in use (retryable)
1516  *	ENODEV if the NVmem device is missing or otherwise unusable
1517  */
1518 static int bge_nvmem_acquire(bge_t *bgep);
1519 #pragma	no_inline(bge_nvmem_acquire)
1520 
1521 static int
1522 bge_nvmem_acquire(bge_t *bgep)
1523 {
1524 	uint32_t regval;
1525 	uint32_t tries;
1526 
1527 	ASSERT(mutex_owned(bgep->genlock));
1528 
1529 	switch (bgep->chipid.nvtype) {
1530 	case BGE_NVTYPE_NONE:
1531 	case BGE_NVTYPE_UNKNOWN:
1532 		/*
1533 		 * Access denied: no (recognisable) device fitted
1534 		 */
1535 		return (ENODEV);
1536 
1537 	case BGE_NVTYPE_SEEPROM:
1538 		/*
1539 		 * Access granted: no arbitration needed (or possible)
1540 		 */
1541 		return (0);
1542 
1543 	case BGE_NVTYPE_LEGACY_SEEPROM:
1544 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1545 	case BGE_NVTYPE_BUFFERED_FLASH:
1546 	default:
1547 		/*
1548 		 * Access conditional: conduct arbitration protocol
1549 		 */
1550 		break;
1551 	}
1552 
1553 	/*
1554 	 * We're holding the per-port mutex <genlock>, so no-one other
1555 	 * thread can be attempting to access the NVmem through *this*
1556 	 * port. But it could be in use by the *other* port (of a 5704),
1557 	 * or by the chip's internal firmware, so we have to go through
1558 	 * the full (hardware) arbitration protocol ...
1559 	 *
1560 	 * Note that *because* we're holding <genlock>, the interrupt handler
1561 	 * won't be able to progress.  So we're only willing to spin for a
1562 	 * fairly short time.  Specifically:
1563 	 *
1564 	 *	We *must* wait long enough for the hardware to resolve all
1565 	 *	requests and determine the winner.  Fortunately, this is
1566 	 *	"almost instantaneous", even as observed by GHz CPUs.
1567 	 *
1568 	 *	A successful access by another Solaris thread (via either
1569 	 *	port) typically takes ~20us.  So waiting a bit longer than
1570 	 *	that will give a good chance of success, if the other user
1571 	 *	*is* another thread on the other port.
1572 	 *
1573 	 *	However, the internal firmware can hold on to the NVmem
1574 	 *	for *much* longer: at least 10 milliseconds just after a
1575 	 *	RESET, and maybe even longer if the NVmem actually contains
1576 	 *	code to download and run on the internal CPUs.
1577 	 *
1578 	 * So, we'll allow 50us; if that's not enough then it's up to the
1579 	 * caller to retry later (hence the choice of return code EAGAIN).
1580 	 */
1581 	regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1582 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_SET_REQ);
1583 
1584 	for (tries = 0; tries < 50; ++tries) {
1585 		regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1586 		if (regval & NVM_WON_REQ1)
1587 			break;
1588 		drv_usecwait(1);
1589 	}
1590 
1591 	if (regval & NVM_WON_REQ1) {
1592 		BGE_DEBUG(("bge_nvmem_acquire: won after %d us", tries));
1593 		return (0);
1594 	}
1595 
1596 	/*
1597 	 * Somebody else must be accessing the NVmem, so abandon our
1598 	 * attempt take control of it.  The caller can try again later ...
1599 	 */
1600 	BGE_DEBUG(("bge_nvmem_acquire: lost after %d us", tries));
1601 	bge_nvmem_relinquish(bgep);
1602 	return (EAGAIN);
1603 }
1604 
1605 /*
1606  * This code assumes that the GPIO1 bit has been wired up to the NVmem
1607  * write protect line in such a way that the NVmem is protected when
1608  * GPIO1 is an input, or is an output but driven high.  Thus, to make the
1609  * NVmem writable we have to change GPIO1 to an output AND drive it low.
1610  *
1611  * Note: there's only one set of GPIO pins on a 5704, even though they
1612  * can be accessed through either port.  So the chip has to resolve what
1613  * happens if the two ports program a single pin differently ... the rule
1614  * it uses is that if the ports disagree about the *direction* of a pin,
1615  * "output" wins over "input", but if they disagree about its *value* as
1616  * an output, then the pin is TRISTATED instead!  In such a case, no-one
1617  * wins, and the external signal does whatever the external circuitry
1618  * defines as the default -- which we've assumed is the PROTECTED state.
1619  * So, we always change GPIO1 back to being an *input* whenever we're not
1620  * specifically using it to unprotect the NVmem. This allows either port
1621  * to update the NVmem, although obviously only one at a time!
1622  *
1623  * The caller should hold <genlock> and *also* have already acquired the
1624  * right to access the NVmem, via bge_nvmem_acquire() above.
1625  */
1626 static void bge_nvmem_protect(bge_t *bgep, boolean_t protect);
1627 #pragma	inline(bge_nvmem_protect)
1628 
1629 static void
1630 bge_nvmem_protect(bge_t *bgep, boolean_t protect)
1631 {
1632 	uint32_t regval;
1633 
1634 	ASSERT(mutex_owned(bgep->genlock));
1635 
1636 	regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
1637 	if (protect) {
1638 		regval |= MLCR_MISC_PINS_OUTPUT_1;
1639 		regval &= ~MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1640 	} else {
1641 		regval &= ~MLCR_MISC_PINS_OUTPUT_1;
1642 		regval |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1643 	}
1644 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, regval);
1645 }
1646 
1647 /*
1648  * Now put it all together ...
1649  *
1650  * Try to acquire control of the NVmem; if successful, then:
1651  *	unprotect it (if we want to write to it)
1652  *	perform the requested access
1653  *	reprotect it (after a write)
1654  *	relinquish control
1655  *
1656  * Return value:
1657  *	0 on success,
1658  *	EAGAIN if the device is in use (retryable)
1659  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1660  *	ENODEV if the NVmem device is missing or otherwise unusable
1661  *	EPROTO on other h/w or s/w errors.
1662  */
1663 static int
1664 bge_nvmem_rw32(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1665 {
1666 	int err;
1667 
1668 	if ((err = bge_nvmem_acquire(bgep)) == 0) {
1669 		switch (cmd) {
1670 		case BGE_SEE_READ:
1671 			err = bge_seeprom_access(bgep,
1672 			    SEEPROM_ACCESS_READ, addr, dp);
1673 			break;
1674 
1675 		case BGE_SEE_WRITE:
1676 			bge_nvmem_protect(bgep, B_FALSE);
1677 			err = bge_seeprom_access(bgep,
1678 			    SEEPROM_ACCESS_WRITE, addr, dp);
1679 			bge_nvmem_protect(bgep, B_TRUE);
1680 			break;
1681 
1682 		case BGE_FLASH_READ:
1683 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1684 			    DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1685 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1686 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1687 				    NVM_ACCESS_ENABLE);
1688 			}
1689 			err = bge_flash_access(bgep,
1690 			    NVM_FLASH_CMD_RD, addr, dp);
1691 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1692 			    DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1693 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1694 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1695 				    NVM_ACCESS_ENABLE);
1696 			}
1697 			break;
1698 
1699 		case BGE_FLASH_WRITE:
1700 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1701 			    DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1702 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1703 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1704 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1705 			}
1706 			bge_nvmem_protect(bgep, B_FALSE);
1707 			err = bge_flash_access(bgep,
1708 			    NVM_FLASH_CMD_WR, addr, dp);
1709 			bge_nvmem_protect(bgep, B_TRUE);
1710 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1711 			    DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1712 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1713 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1714 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1715 			}
1716 
1717 			break;
1718 
1719 		default:
1720 			_NOTE(NOTREACHED)
1721 			break;
1722 		}
1723 		bge_nvmem_relinquish(bgep);
1724 	}
1725 
1726 	BGE_DEBUG(("bge_nvmem_rw32: err %d", err));
1727 	return (err);
1728 }
1729 
1730 /*
1731  * Attempt to get a MAC address from the SEEPROM or Flash, if any
1732  */
1733 static uint64_t bge_get_nvmac(bge_t *bgep);
1734 #pragma no_inline(bge_get_nvmac)
1735 
1736 static uint64_t
1737 bge_get_nvmac(bge_t *bgep)
1738 {
1739 	uint32_t mac_high;
1740 	uint32_t mac_low;
1741 	uint32_t addr;
1742 	uint32_t cmd;
1743 	uint64_t mac;
1744 
1745 	BGE_TRACE(("bge_get_nvmac($%p)",
1746 	    (void *)bgep));
1747 
1748 	switch (bgep->chipid.nvtype) {
1749 	case BGE_NVTYPE_NONE:
1750 	case BGE_NVTYPE_UNKNOWN:
1751 	default:
1752 		return (0ULL);
1753 
1754 	case BGE_NVTYPE_SEEPROM:
1755 	case BGE_NVTYPE_LEGACY_SEEPROM:
1756 		cmd = BGE_SEE_READ;
1757 		break;
1758 
1759 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1760 	case BGE_NVTYPE_BUFFERED_FLASH:
1761 		cmd = BGE_FLASH_READ;
1762 		break;
1763 	}
1764 
1765 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
1766 		addr = NVMEM_DATA_MAC_ADDRESS_5906;
1767 	else
1768 		addr = NVMEM_DATA_MAC_ADDRESS;
1769 
1770 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_high))
1771 		return (0ULL);
1772 	addr += 4;
1773 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_low))
1774 		return (0ULL);
1775 
1776 	/*
1777 	 * The Broadcom chip is natively BIG-endian, so that's how the
1778 	 * MAC address is represented in NVmem.  We may need to swap it
1779 	 * around on a little-endian host ...
1780 	 */
1781 #ifdef	_BIG_ENDIAN
1782 	mac = mac_high;
1783 	mac = mac << 32;
1784 	mac |= mac_low;
1785 #else
1786 	mac = BGE_BSWAP_32(mac_high);
1787 	mac = mac << 32;
1788 	mac |= BGE_BSWAP_32(mac_low);
1789 #endif	/* _BIG_ENDIAN */
1790 
1791 	return (mac);
1792 }
1793 
1794 #else	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1795 
1796 /*
1797  * Dummy version for when we're not supporting NVmem access
1798  */
1799 static uint64_t bge_get_nvmac(bge_t *bgep);
1800 #pragma inline(bge_get_nvmac)
1801 
1802 static uint64_t
1803 bge_get_nvmac(bge_t *bgep)
1804 {
1805 	_NOTE(ARGUNUSED(bgep))
1806 	return (0ULL);
1807 }
1808 
1809 #endif	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1810 
1811 /*
1812  * Determine the type of NVmem that is (or may be) attached to this chip,
1813  */
1814 static enum bge_nvmem_type bge_nvmem_id(bge_t *bgep);
1815 #pragma no_inline(bge_nvmem_id)
1816 
1817 static enum bge_nvmem_type
1818 bge_nvmem_id(bge_t *bgep)
1819 {
1820 	enum bge_nvmem_type nvtype;
1821 	uint32_t config1;
1822 
1823 	BGE_TRACE(("bge_nvmem_id($%p)",
1824 	    (void *)bgep));
1825 
1826 	switch (bgep->chipid.device) {
1827 	default:
1828 		/*
1829 		 * We shouldn't get here; it means we don't recognise
1830 		 * the chip, which means we don't know how to determine
1831 		 * what sort of NVmem (if any) it has.  So we'll say
1832 		 * NONE, to disable the NVmem access code ...
1833 		 */
1834 		nvtype = BGE_NVTYPE_NONE;
1835 		break;
1836 
1837 	case DEVICE_ID_5700:
1838 	case DEVICE_ID_5700x:
1839 	case DEVICE_ID_5701:
1840 		/*
1841 		 * These devices support *only* SEEPROMs
1842 		 */
1843 		nvtype = BGE_NVTYPE_SEEPROM;
1844 		break;
1845 
1846 	case DEVICE_ID_5702:
1847 	case DEVICE_ID_5702fe:
1848 	case DEVICE_ID_5703C:
1849 	case DEVICE_ID_5703S:
1850 	case DEVICE_ID_5704C:
1851 	case DEVICE_ID_5704S:
1852 	case DEVICE_ID_5704:
1853 	case DEVICE_ID_5705M:
1854 	case DEVICE_ID_5705C:
1855 	case DEVICE_ID_5705_2:
1856 	case DEVICE_ID_5780:
1857 	case DEVICE_ID_5782:
1858 	case DEVICE_ID_5787:
1859 	case DEVICE_ID_5787M:
1860 	case DEVICE_ID_5788:
1861 	case DEVICE_ID_5789:
1862 	case DEVICE_ID_5751:
1863 	case DEVICE_ID_5751M:
1864 	case DEVICE_ID_5752:
1865 	case DEVICE_ID_5752M:
1866 	case DEVICE_ID_5754:
1867 	case DEVICE_ID_5755:
1868 	case DEVICE_ID_5755M:
1869 	case DEVICE_ID_5756M:
1870 	case DEVICE_ID_5721:
1871 	case DEVICE_ID_5722:
1872 	case DEVICE_ID_5723:
1873 	case DEVICE_ID_5761:
1874 	case DEVICE_ID_5761E:
1875 	case DEVICE_ID_5714C:
1876 	case DEVICE_ID_5714S:
1877 	case DEVICE_ID_5715C:
1878 	case DEVICE_ID_5715S:
1879 		config1 = bge_reg_get32(bgep, NVM_CONFIG1_REG);
1880 		if (config1 & NVM_CFG1_FLASH_MODE)
1881 			if (config1 & NVM_CFG1_BUFFERED_MODE)
1882 				nvtype = BGE_NVTYPE_BUFFERED_FLASH;
1883 			else
1884 				nvtype = BGE_NVTYPE_UNBUFFERED_FLASH;
1885 		else
1886 			nvtype = BGE_NVTYPE_LEGACY_SEEPROM;
1887 		break;
1888 	case DEVICE_ID_5906:
1889 	case DEVICE_ID_5906M:
1890 		nvtype = BGE_NVTYPE_BUFFERED_FLASH;
1891 		break;
1892 	}
1893 
1894 	return (nvtype);
1895 }
1896 
1897 #undef	BGE_DBG
1898 #define	BGE_DBG		BGE_DBG_CHIP	/* debug flag for this code	*/
1899 
1900 static void
1901 bge_init_recv_rule(bge_t *bgep)
1902 {
1903 	bge_recv_rule_t *rulep = bgep->recv_rules;
1904 	uint32_t i;
1905 
1906 	/*
1907 	 * Initialize receive rule registers.
1908 	 * Note that rules may persist across each bge_m_start/stop() call.
1909 	 */
1910 	for (i = 0; i < RECV_RULES_NUM_MAX; i++, rulep++) {
1911 		bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep->mask_value);
1912 		bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep->control);
1913 	}
1914 }
1915 
1916 /*
1917  * Using the values captured by bge_chip_cfg_init(), and additional probes
1918  * as required, characterise the chip fully: determine the label by which
1919  * to refer to this chip, the correct settings for various registers, and
1920  * of course whether the device and/or subsystem are supported!
1921  */
1922 int bge_chip_id_init(bge_t *bgep);
1923 #pragma	no_inline(bge_chip_id_init)
1924 
1925 int
1926 bge_chip_id_init(bge_t *bgep)
1927 {
1928 	char buf[MAXPATHLEN];		/* any risk of stack overflow?	*/
1929 	boolean_t sys_ok;
1930 	boolean_t dev_ok;
1931 	chip_id_t *cidp;
1932 	uint32_t subid;
1933 	char *devname;
1934 	char *sysname;
1935 	int *ids;
1936 	int err;
1937 	uint_t i;
1938 
1939 	sys_ok = dev_ok = B_FALSE;
1940 	cidp = &bgep->chipid;
1941 
1942 	/*
1943 	 * Check the PCI device ID to determine the generic chip type and
1944 	 * select parameters that depend on this.
1945 	 *
1946 	 * Note: because the SPARC platforms in general don't fit the
1947 	 * SEEPROM 'behind' the chip, the PCI revision ID register reads
1948 	 * as zero - which is why we use <asic_rev> rather than <revision>
1949 	 * below ...
1950 	 *
1951 	 * Note: in general we can't distinguish between the Copper/SerDes
1952 	 * versions by ID alone, as some Copper devices (e.g. some but not
1953 	 * all 5703Cs) have the same ID as the SerDes equivalents.  So we
1954 	 * treat them the same here, and the MII code works out the media
1955 	 * type later on ...
1956 	 */
1957 	cidp->mbuf_base = bge_mbuf_pool_base;
1958 	cidp->mbuf_length = bge_mbuf_pool_len;
1959 	cidp->recv_slots = BGE_RECV_SLOTS_USED;
1960 	cidp->bge_dma_rwctrl = bge_dma_rwctrl;
1961 	cidp->pci_type = BGE_PCI_X;
1962 	cidp->statistic_type = BGE_STAT_BLK;
1963 	cidp->mbuf_lo_water_rdma = bge_mbuf_lo_water_rdma;
1964 	cidp->mbuf_lo_water_rmac = bge_mbuf_lo_water_rmac;
1965 	cidp->mbuf_hi_water = bge_mbuf_hi_water;
1966 	cidp->rx_ticks_norm = bge_rx_ticks_norm;
1967 	cidp->rx_count_norm = bge_rx_count_norm;
1968 	cidp->tx_ticks_norm = bge_tx_ticks_norm;
1969 	cidp->tx_count_norm = bge_tx_count_norm;
1970 
1971 	if (cidp->rx_rings == 0 || cidp->rx_rings > BGE_RECV_RINGS_MAX)
1972 		cidp->rx_rings = BGE_RECV_RINGS_DEFAULT;
1973 	if (cidp->tx_rings == 0 || cidp->tx_rings > BGE_SEND_RINGS_MAX)
1974 		cidp->tx_rings = BGE_SEND_RINGS_DEFAULT;
1975 
1976 	cidp->msi_enabled = B_FALSE;
1977 
1978 	switch (cidp->device) {
1979 	case DEVICE_ID_5700:
1980 	case DEVICE_ID_5700x:
1981 		cidp->chip_label = 5700;
1982 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1983 		break;
1984 
1985 	case DEVICE_ID_5701:
1986 		cidp->chip_label = 5701;
1987 		dev_ok = B_TRUE;
1988 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1989 		break;
1990 
1991 	case DEVICE_ID_5702:
1992 	case DEVICE_ID_5702fe:
1993 		cidp->chip_label = 5702;
1994 		dev_ok = B_TRUE;
1995 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1996 		cidp->pci_type = BGE_PCI;
1997 		break;
1998 
1999 	case DEVICE_ID_5703C:
2000 	case DEVICE_ID_5703S:
2001 	case DEVICE_ID_5703:
2002 		/*
2003 		 * Revision A0 of the 5703/5793 had various errata
2004 		 * that we can't or don't work around, so it's not
2005 		 * supported, but all later versions are
2006 		 */
2007 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5793 : 5703;
2008 		if (bgep->chipid.asic_rev != MHCR_CHIP_REV_5703_A0)
2009 			dev_ok = B_TRUE;
2010 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2011 		break;
2012 
2013 	case DEVICE_ID_5704C:
2014 	case DEVICE_ID_5704S:
2015 	case DEVICE_ID_5704:
2016 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5794 : 5704;
2017 		cidp->mbuf_base = bge_mbuf_pool_base_5704;
2018 		cidp->mbuf_length = bge_mbuf_pool_len_5704;
2019 		dev_ok = B_TRUE;
2020 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2021 		break;
2022 
2023 	case DEVICE_ID_5705C:
2024 	case DEVICE_ID_5705M:
2025 	case DEVICE_ID_5705MA3:
2026 	case DEVICE_ID_5705F:
2027 	case DEVICE_ID_5705_2:
2028 	case DEVICE_ID_5754:
2029 		if (cidp->device == DEVICE_ID_5754) {
2030 			cidp->chip_label = 5754;
2031 			cidp->pci_type = BGE_PCI_E;
2032 		} else {
2033 			cidp->chip_label = 5705;
2034 			cidp->pci_type = BGE_PCI;
2035 		}
2036 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2037 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2038 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2039 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2040 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2041 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2042 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2043 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2044 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2045 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2046 		cidp->statistic_type = BGE_STAT_REG;
2047 		dev_ok = B_TRUE;
2048 		break;
2049 
2050 	case DEVICE_ID_5906:
2051 	case DEVICE_ID_5906M:
2052 		cidp->chip_label = 5906;
2053 		cidp->pci_type = BGE_PCI_E;
2054 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5906;
2055 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5906;
2056 		cidp->mbuf_hi_water = MBUF_HIWAT_5906;
2057 		cidp->mbuf_base = bge_mbuf_pool_base;
2058 		cidp->mbuf_length = bge_mbuf_pool_len;
2059 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2060 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2061 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2062 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2063 		cidp->statistic_type = BGE_STAT_REG;
2064 		dev_ok = B_TRUE;
2065 		break;
2066 
2067 	case DEVICE_ID_5753:
2068 		cidp->chip_label = 5753;
2069 		cidp->pci_type = BGE_PCI_E;
2070 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2071 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2072 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2073 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2074 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2075 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2076 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2077 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2078 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2079 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2080 		cidp->statistic_type = BGE_STAT_REG;
2081 		dev_ok = B_TRUE;
2082 		break;
2083 
2084 	case DEVICE_ID_5755:
2085 	case DEVICE_ID_5755M:
2086 		cidp->chip_label = 5755;
2087 		cidp->pci_type = BGE_PCI_E;
2088 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2089 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2090 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2091 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2092 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2093 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2094 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2095 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2096 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2097 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2098 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2099 		cidp->statistic_type = BGE_STAT_REG;
2100 		dev_ok = B_TRUE;
2101 		break;
2102 
2103 	case DEVICE_ID_5756M:
2104 		/*
2105 		 * This is nearly identical to the 5755M.
2106 		 * (Actually reports the 5755 chip ID.)
2107 		 */
2108 		cidp->chip_label = 5756;
2109 		cidp->pci_type = BGE_PCI_E;
2110 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2111 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2112 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2113 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2114 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2115 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2116 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2117 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2118 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2119 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2120 		cidp->statistic_type = BGE_STAT_REG;
2121 		dev_ok = B_TRUE;
2122 		break;
2123 
2124 	case DEVICE_ID_5787:
2125 	case DEVICE_ID_5787M:
2126 		cidp->chip_label = 5787;
2127 		cidp->pci_type = BGE_PCI_E;
2128 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2129 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2130 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2131 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2132 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2133 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2134 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2135 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2136 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2137 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2138 		cidp->statistic_type = BGE_STAT_REG;
2139 		dev_ok = B_TRUE;
2140 		break;
2141 
2142 	case DEVICE_ID_5723:
2143 	case DEVICE_ID_5761:
2144 	case DEVICE_ID_5761E:
2145 		cidp->chip_label = cidp->device == DEVICE_ID_5723 ? 5723: 5761;
2146 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2147 		cidp->msi_enabled = bge_enable_msi;
2148 		cidp->pci_type = BGE_PCI_E;
2149 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2150 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2151 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2152 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2153 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2154 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2155 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2156 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2157 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2158 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2159 		cidp->statistic_type = BGE_STAT_REG;
2160 		dev_ok = B_TRUE;
2161 		break;
2162 
2163 	/* PCI-X device, identical to 5714 */
2164 	case DEVICE_ID_5780:
2165 		cidp->chip_label = 5780;
2166 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2167 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2168 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2169 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2170 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2171 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2172 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2173 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2174 		cidp->statistic_type = BGE_STAT_REG;
2175 		dev_ok = B_TRUE;
2176 		break;
2177 
2178 	case DEVICE_ID_5782:
2179 		/*
2180 		 * Apart from the label, we treat this as a 5705(?)
2181 		 */
2182 		cidp->chip_label = 5782;
2183 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2184 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2185 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2186 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2187 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2188 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2189 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2190 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2191 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2192 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2193 		cidp->statistic_type = BGE_STAT_REG;
2194 		dev_ok = B_TRUE;
2195 		break;
2196 
2197 	case DEVICE_ID_5788:
2198 		/*
2199 		 * Apart from the label, we treat this as a 5705(?)
2200 		 */
2201 		cidp->chip_label = 5788;
2202 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2203 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2204 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2205 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2206 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2207 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2208 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2209 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2210 		cidp->statistic_type = BGE_STAT_REG;
2211 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2212 		dev_ok = B_TRUE;
2213 		break;
2214 
2215 	case DEVICE_ID_5714C:
2216 		if (cidp->revision >= REVISION_ID_5714_A2)
2217 			cidp->msi_enabled = bge_enable_msi;
2218 		/* FALLTHRU */
2219 	case DEVICE_ID_5714S:
2220 		cidp->chip_label = 5714;
2221 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2222 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2223 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2224 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2225 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2226 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2227 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5714;
2228 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2229 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2230 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2231 		cidp->pci_type = BGE_PCI_E;
2232 		cidp->statistic_type = BGE_STAT_REG;
2233 		dev_ok = B_TRUE;
2234 		break;
2235 
2236 	case DEVICE_ID_5715C:
2237 	case DEVICE_ID_5715S:
2238 		cidp->chip_label = 5715;
2239 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2240 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2241 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2242 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2243 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2244 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2245 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5715;
2246 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2247 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2248 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2249 		cidp->pci_type = BGE_PCI_E;
2250 		cidp->statistic_type = BGE_STAT_REG;
2251 		if (cidp->revision >= REVISION_ID_5715_A2)
2252 			cidp->msi_enabled = bge_enable_msi;
2253 		dev_ok = B_TRUE;
2254 		break;
2255 
2256 	case DEVICE_ID_5721:
2257 		cidp->chip_label = 5721;
2258 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2259 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2260 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2261 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2262 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2263 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2264 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2265 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2266 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2267 		cidp->pci_type = BGE_PCI_E;
2268 		cidp->statistic_type = BGE_STAT_REG;
2269 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2270 		dev_ok = B_TRUE;
2271 		break;
2272 
2273 	case DEVICE_ID_5722:
2274 		cidp->chip_label = 5722;
2275 		cidp->pci_type = BGE_PCI_E;
2276 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2277 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2278 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2279 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2280 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2281 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2282 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2283 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2284 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2285 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2286 		cidp->statistic_type = BGE_STAT_REG;
2287 		dev_ok = B_TRUE;
2288 		break;
2289 
2290 	case DEVICE_ID_5751:
2291 	case DEVICE_ID_5751M:
2292 		cidp->chip_label = 5751;
2293 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2294 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2295 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2296 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2297 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2298 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2299 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2300 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2301 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2302 		cidp->pci_type = BGE_PCI_E;
2303 		cidp->statistic_type = BGE_STAT_REG;
2304 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2305 		dev_ok = B_TRUE;
2306 		break;
2307 
2308 	case DEVICE_ID_5752:
2309 	case DEVICE_ID_5752M:
2310 		cidp->chip_label = 5752;
2311 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2312 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2313 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2314 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2315 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2316 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2317 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2318 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2319 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2320 		cidp->pci_type = BGE_PCI_E;
2321 		cidp->statistic_type = BGE_STAT_REG;
2322 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2323 		dev_ok = B_TRUE;
2324 		break;
2325 
2326 	case DEVICE_ID_5789:
2327 		cidp->chip_label = 5789;
2328 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2329 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2330 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2331 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2332 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2333 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
2334 		cidp->pci_type = BGE_PCI_E;
2335 		cidp->statistic_type = BGE_STAT_REG;
2336 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2337 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2338 		cidp->msi_enabled = B_TRUE;
2339 		dev_ok = B_TRUE;
2340 		break;
2341 
2342 	}
2343 
2344 	/*
2345 	 * Setup the default jumbo parameter.
2346 	 */
2347 	cidp->ethmax_size = ETHERMAX;
2348 	cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_DEFAULT;
2349 	cidp->std_buf_size = BGE_STD_BUFF_SIZE;
2350 
2351 	/*
2352 	 * If jumbo is enabled and this kind of chipset supports jumbo feature,
2353 	 * setup below jumbo specific parameters.
2354 	 *
2355 	 * For BCM5714/5715, there is only one standard receive ring. So the
2356 	 * std buffer size should be set to BGE_JUMBO_BUFF_SIZE when jumbo
2357 	 * feature is enabled.
2358 	 */
2359 	if (bge_jumbo_enable &&
2360 	    !(cidp->flags & CHIP_FLAG_NO_JUMBO) &&
2361 	    (cidp->default_mtu > BGE_DEFAULT_MTU) &&
2362 	    (cidp->default_mtu <= BGE_MAXIMUM_MTU)) {
2363 		if (DEVICE_5714_SERIES_CHIPSETS(bgep)) {
2364 			cidp->mbuf_lo_water_rdma =
2365 			    RDMA_MBUF_LOWAT_5714_JUMBO;
2366 			cidp->mbuf_lo_water_rmac =
2367 			    MAC_RX_MBUF_LOWAT_5714_JUMBO;
2368 			cidp->mbuf_hi_water = MBUF_HIWAT_5714_JUMBO;
2369 			cidp->jumbo_slots = 0;
2370 			cidp->std_buf_size = BGE_JUMBO_BUFF_SIZE;
2371 		} else {
2372 			cidp->mbuf_lo_water_rdma =
2373 			    RDMA_MBUF_LOWAT_JUMBO;
2374 			cidp->mbuf_lo_water_rmac =
2375 			    MAC_RX_MBUF_LOWAT_JUMBO;
2376 			cidp->mbuf_hi_water = MBUF_HIWAT_JUMBO;
2377 			cidp->jumbo_slots = BGE_JUMBO_SLOTS_USED;
2378 		}
2379 		cidp->recv_jumbo_size = BGE_JUMBO_BUFF_SIZE;
2380 		cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_JUMBO;
2381 		cidp->ethmax_size = cidp->default_mtu +
2382 		    sizeof (struct ether_header);
2383 	}
2384 
2385 	/*
2386 	 * Identify the NV memory type: SEEPROM or Flash?
2387 	 */
2388 	cidp->nvtype = bge_nvmem_id(bgep);
2389 
2390 	/*
2391 	 * Now, we want to check whether this device is part of a
2392 	 * supported subsystem (e.g., on the motherboard of a Sun
2393 	 * branded platform).
2394 	 *
2395 	 * Rule 1: If the Subsystem Vendor ID is "Sun", then it's OK ;-)
2396 	 */
2397 	if (cidp->subven == VENDOR_ID_SUN)
2398 		sys_ok = B_TRUE;
2399 
2400 	/*
2401 	 * Rule 2: If it's on the list on known subsystems, then it's OK.
2402 	 * Note: 0x14e41647 should *not* appear in the list, but the code
2403 	 * doesn't enforce that.
2404 	 */
2405 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
2406 	    DDI_PROP_DONTPASS, knownids_propname, &ids, &i);
2407 	if (err == DDI_PROP_SUCCESS) {
2408 		/*
2409 		 * Got the list; scan for a matching subsystem vendor/device
2410 		 */
2411 		subid = (cidp->subven << 16) | cidp->subdev;
2412 		while (i--)
2413 			if (ids[i] == subid)
2414 				sys_ok = B_TRUE;
2415 		ddi_prop_free(ids);
2416 	}
2417 
2418 	/*
2419 	 * Rule 3: If it's a Taco/ENWS motherboard device, then it's OK
2420 	 *
2421 	 * Unfortunately, early SunBlade 1500s and 2500s didn't reprogram
2422 	 * the Subsystem Vendor ID, so it defaults to Broadcom.  Therefore,
2423 	 * we have to check specially for the exact device paths to the
2424 	 * motherboard devices on those platforms ;-(
2425 	 *
2426 	 * Note: we can't just use the "supported-subsystems" mechanism
2427 	 * above, because the entry would have to be 0x14e41647 -- which
2428 	 * would then accept *any* plugin card that *didn't* contain a
2429 	 * (valid) SEEPROM ;-(
2430 	 */
2431 	sysname = ddi_node_name(ddi_root_node());
2432 	devname = ddi_pathname(bgep->devinfo, buf);
2433 	ASSERT(strlen(devname) > 0);
2434 	if (strcmp(sysname, "SUNW,Sun-Blade-1500") == 0)	/* Taco */
2435 		if (strcmp(devname, "/pci@1f,700000/network@2") == 0)
2436 			sys_ok = B_TRUE;
2437 	if (strcmp(sysname, "SUNW,Sun-Blade-2500") == 0)	/* ENWS */
2438 		if (strcmp(devname, "/pci@1c,600000/network@3") == 0)
2439 			sys_ok = B_TRUE;
2440 
2441 	/*
2442 	 * Now check what we've discovered: is this truly a supported
2443 	 * chip on (the motherboard of) a supported platform?
2444 	 *
2445 	 * Possible problems here:
2446 	 * 1)	it's a completely unheard-of chip
2447 	 * 2)	it's a recognised but unsupported chip (e.g. 5701, 5703C-A0)
2448 	 * 3)	it's a chip we would support if it were on the motherboard
2449 	 *	of a Sun platform, but this one isn't ;-(
2450 	 */
2451 	if (cidp->chip_label == 0)
2452 		bge_problem(bgep,
2453 		    "Device 'pci%04x,%04x' not recognized (%d?)",
2454 		    cidp->vendor, cidp->device, cidp->device);
2455 	else if (!dev_ok)
2456 		bge_problem(bgep,
2457 		    "Device 'pci%04x,%04x' (%d) revision %d not supported",
2458 		    cidp->vendor, cidp->device, cidp->chip_label,
2459 		    cidp->revision);
2460 #if	BGE_DEBUGGING
2461 	else if (!sys_ok)
2462 		bge_problem(bgep,
2463 		    "%d-based subsystem 'pci%04x,%04x' not validated",
2464 		    cidp->chip_label, cidp->subven, cidp->subdev);
2465 #endif
2466 	else
2467 		cidp->flags |= CHIP_FLAG_SUPPORTED;
2468 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
2469 		return (EIO);
2470 	return (0);
2471 }
2472 
2473 void
2474 bge_chip_msi_trig(bge_t *bgep)
2475 {
2476 	uint32_t	regval;
2477 
2478 	regval = bgep->param_msi_cnt<<4;
2479 	bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, regval);
2480 	BGE_DEBUG(("bge_chip_msi_trig:data = %d", regval));
2481 }
2482 
2483 /*
2484  * Various registers that control the chip's internal engines (state
2485  * machines) have a <reset> and <enable> bits (fortunately, in the
2486  * same place in each such register :-).
2487  *
2488  * To reset the state machine, the <reset> bit must be written with 1;
2489  * it will then read back as 1 while the reset is in progress, but
2490  * self-clear to 0 when the reset completes.
2491  *
2492  * To enable a state machine, one must set the <enable> bit, which
2493  * will continue to read back as 0 until the state machine is running.
2494  *
2495  * To disable a state machine, the <enable> bit must be cleared, but
2496  * it will continue to read back as 1 until the state machine actually
2497  * stops.
2498  *
2499  * This routine implements polling for completion of a reset, enable
2500  * or disable operation, returning B_TRUE on success (bit reached the
2501  * required state) or B_FALSE on timeout (200*100us == 20ms).
2502  */
2503 static boolean_t bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2504 					uint32_t mask, uint32_t val);
2505 #pragma	no_inline(bge_chip_poll_engine)
2506 
2507 static boolean_t
2508 bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2509 	uint32_t mask, uint32_t val)
2510 {
2511 	uint32_t regval;
2512 	uint32_t n;
2513 
2514 	BGE_TRACE(("bge_chip_poll_engine($%p, 0x%lx, 0x%x, 0x%x)",
2515 	    (void *)bgep, regno, mask, val));
2516 
2517 	for (n = 200; n; --n) {
2518 		regval = bge_reg_get32(bgep, regno);
2519 		if ((regval & mask) == val)
2520 			return (B_TRUE);
2521 		drv_usecwait(100);
2522 	}
2523 
2524 	bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
2525 	return (B_FALSE);
2526 }
2527 
2528 /*
2529  * Various registers that control the chip's internal engines (state
2530  * machines) have a <reset> bit (fortunately, in the same place in
2531  * each such register :-).  To reset the state machine, this bit must
2532  * be written with 1; it will then read back as 1 while the reset is
2533  * in progress, but self-clear to 0 when the reset completes.
2534  *
2535  * This code sets the bit, then polls for it to read back as zero.
2536  * The return value is B_TRUE on success (reset bit cleared itself),
2537  * or B_FALSE if the state machine didn't recover :(
2538  *
2539  * NOTE: the Core reset is similar to other resets, except that we
2540  * can't poll for completion, since the Core reset disables memory
2541  * access!  So we just have to assume that it will all complete in
2542  * 100us.  See Broadcom document 570X-PG102-R, p102, steps 4-5.
2543  */
2544 static boolean_t bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno);
2545 #pragma	no_inline(bge_chip_reset_engine)
2546 
2547 static boolean_t
2548 bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno)
2549 {
2550 	uint32_t regval;
2551 	uint32_t val32;
2552 
2553 	regval = bge_reg_get32(bgep, regno);
2554 
2555 	BGE_TRACE(("bge_chip_reset_engine($%p, 0x%lx)",
2556 	    (void *)bgep, regno));
2557 	BGE_DEBUG(("bge_chip_reset_engine: 0x%lx before reset = 0x%08x",
2558 	    regno, regval));
2559 
2560 	regval |= STATE_MACHINE_RESET_BIT;
2561 
2562 	switch (regno) {
2563 	case MISC_CONFIG_REG:
2564 		/*
2565 		 * BCM5714/5721/5751 pcie chip special case. In order to avoid
2566 		 * resetting PCIE block and bringing PCIE link down, bit 29
2567 		 * in the register needs to be set first, and then set it again
2568 		 * while the reset bit is written.
2569 		 * See:P500 of 57xx-PG102-RDS.pdf.
2570 		 */
2571 		if (DEVICE_5705_SERIES_CHIPSETS(bgep)||
2572 		    DEVICE_5721_SERIES_CHIPSETS(bgep)||
2573 		    DEVICE_5723_SERIES_CHIPSETS(bgep)||
2574 		    DEVICE_5714_SERIES_CHIPSETS(bgep)||
2575 		    DEVICE_5906_SERIES_CHIPSETS(bgep)) {
2576 			regval |= MISC_CONFIG_GPHY_POWERDOWN_OVERRIDE;
2577 			if (bgep->chipid.pci_type == BGE_PCI_E) {
2578 				if (bgep->chipid.asic_rev ==
2579 				    MHCR_CHIP_REV_5751_A0 ||
2580 				    bgep->chipid.asic_rev ==
2581 				    MHCR_CHIP_REV_5721_A0 ||
2582 				    bgep->chipid.asic_rev ==
2583 				    MHCR_CHIP_REV_5755_A0) {
2584 					val32 = bge_reg_get32(bgep,
2585 					    PHY_TEST_CTRL_REG);
2586 					if (val32 == (PHY_PCIE_SCRAM_MODE |
2587 					    PHY_PCIE_LTASS_MODE))
2588 						bge_reg_put32(bgep,
2589 						    PHY_TEST_CTRL_REG,
2590 						    PHY_PCIE_SCRAM_MODE);
2591 					val32 = pci_config_get32
2592 					    (bgep->cfg_handle,
2593 					    PCI_CONF_BGE_CLKCTL);
2594 					val32 |= CLKCTL_PCIE_A0_FIX;
2595 					pci_config_put32(bgep->cfg_handle,
2596 					    PCI_CONF_BGE_CLKCTL, val32);
2597 				}
2598 				bge_reg_set32(bgep, regno,
2599 				    MISC_CONFIG_GRC_RESET_DISABLE);
2600 				regval |= MISC_CONFIG_GRC_RESET_DISABLE;
2601 			}
2602 		}
2603 
2604 		/*
2605 		 * Special case - causes Core reset
2606 		 *
2607 		 * On SPARC v9 we want to ensure that we don't start
2608 		 * timing until the I/O access has actually reached
2609 		 * the chip, otherwise we might make the next access
2610 		 * too early.  And we can't just force the write out
2611 		 * by following it with a read (even to config space)
2612 		 * because that would cause the fault we're trying
2613 		 * to avoid.  Hence the need for membar_sync() here.
2614 		 */
2615 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), regval);
2616 #ifdef	__sparcv9
2617 		membar_sync();
2618 #endif	/* __sparcv9 */
2619 		/*
2620 		 * On some platforms,system need about 300us for
2621 		 * link setup.
2622 		 */
2623 		drv_usecwait(300);
2624 		if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
2625 			bge_reg_set32(bgep, VCPU_STATUS_REG, VCPU_DRV_RESET);
2626 			bge_reg_clr32(
2627 			    bgep, VCPU_EXT_CTL, VCPU_EXT_CTL_HALF);
2628 		}
2629 
2630 		if (bgep->chipid.pci_type == BGE_PCI_E) {
2631 			/* PCI-E device need more reset time */
2632 			drv_usecwait(120000);
2633 
2634 			/* Set PCIE max payload size and clear error status. */
2635 			if ((bgep->chipid.chip_label == 5721) ||
2636 			    (bgep->chipid.chip_label == 5751) ||
2637 			    (bgep->chipid.chip_label == 5752) ||
2638 			    (bgep->chipid.chip_label == 5789) ||
2639 			    (bgep->chipid.chip_label == 5906)) {
2640 				pci_config_put16(bgep->cfg_handle,
2641 				    PCI_CONF_DEV_CTRL, READ_REQ_SIZE_MAX);
2642 				pci_config_put16(bgep->cfg_handle,
2643 				    PCI_CONF_DEV_STUS, DEVICE_ERROR_STUS);
2644 			}
2645 
2646 			if ((bgep->chipid.chip_label == 5723) ||
2647 			    (bgep->chipid.chip_label == 5761)) {
2648 				pci_config_put16(bgep->cfg_handle,
2649 				    PCI_CONF_DEV_CTRL_5723, READ_REQ_SIZE_MAX);
2650 				pci_config_put16(bgep->cfg_handle,
2651 				    PCI_CONF_DEV_STUS_5723, DEVICE_ERROR_STUS);
2652 			}
2653 		}
2654 
2655 		BGE_PCICHK(bgep);
2656 		return (B_TRUE);
2657 
2658 	default:
2659 		bge_reg_put32(bgep, regno, regval);
2660 		return (bge_chip_poll_engine(bgep, regno,
2661 		    STATE_MACHINE_RESET_BIT, 0));
2662 	}
2663 }
2664 
2665 /*
2666  * Various registers that control the chip's internal engines (state
2667  * machines) have an <enable> bit (fortunately, in the same place in
2668  * each such register :-).  To stop the state machine, this bit must
2669  * be written with 0, then polled to see when the state machine has
2670  * actually stopped.
2671  *
2672  * The return value is B_TRUE on success (enable bit cleared), or
2673  * B_FALSE if the state machine didn't stop :(
2674  */
2675 static boolean_t bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno,
2676 						uint32_t morebits);
2677 #pragma	no_inline(bge_chip_disable_engine)
2678 
2679 static boolean_t
2680 bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2681 {
2682 	uint32_t regval;
2683 
2684 	BGE_TRACE(("bge_chip_disable_engine($%p, 0x%lx, 0x%x)",
2685 	    (void *)bgep, regno, morebits));
2686 
2687 	switch (regno) {
2688 	case FTQ_RESET_REG:
2689 		/*
2690 		 * For Schumacher's bugfix CR6490108
2691 		 */
2692 #ifdef BGE_IPMI_ASF
2693 #ifdef BGE_NETCONSOLE
2694 		if (bgep->asf_enabled)
2695 			return (B_TRUE);
2696 #endif
2697 #endif
2698 		/*
2699 		 * Not quite like the others; it doesn't
2700 		 * have an <enable> bit, but instead we
2701 		 * have to set and then clear all the bits
2702 		 */
2703 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2704 		drv_usecwait(100);
2705 		bge_reg_put32(bgep, regno, 0);
2706 		return (B_TRUE);
2707 
2708 	default:
2709 		regval = bge_reg_get32(bgep, regno);
2710 		regval &= ~STATE_MACHINE_ENABLE_BIT;
2711 		regval &= ~morebits;
2712 		bge_reg_put32(bgep, regno, regval);
2713 		return (bge_chip_poll_engine(bgep, regno,
2714 		    STATE_MACHINE_ENABLE_BIT, 0));
2715 	}
2716 }
2717 
2718 /*
2719  * Various registers that control the chip's internal engines (state
2720  * machines) have an <enable> bit (fortunately, in the same place in
2721  * each such register :-).  To start the state machine, this bit must
2722  * be written with 1, then polled to see when the state machine has
2723  * actually started.
2724  *
2725  * The return value is B_TRUE on success (enable bit set), or
2726  * B_FALSE if the state machine didn't start :(
2727  */
2728 static boolean_t bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno,
2729 					uint32_t morebits);
2730 #pragma	no_inline(bge_chip_enable_engine)
2731 
2732 static boolean_t
2733 bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2734 {
2735 	uint32_t regval;
2736 
2737 	BGE_TRACE(("bge_chip_enable_engine($%p, 0x%lx, 0x%x)",
2738 	    (void *)bgep, regno, morebits));
2739 
2740 	switch (regno) {
2741 	case FTQ_RESET_REG:
2742 #ifdef BGE_IPMI_ASF
2743 #ifdef BGE_NETCONSOLE
2744 		if (bgep->asf_enabled)
2745 			return (B_TRUE);
2746 #endif
2747 #endif
2748 		/*
2749 		 * Not quite like the others; it doesn't
2750 		 * have an <enable> bit, but instead we
2751 		 * have to set and then clear all the bits
2752 		 */
2753 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2754 		drv_usecwait(100);
2755 		bge_reg_put32(bgep, regno, 0);
2756 		return (B_TRUE);
2757 
2758 	default:
2759 		regval = bge_reg_get32(bgep, regno);
2760 		regval |= STATE_MACHINE_ENABLE_BIT;
2761 		regval |= morebits;
2762 		bge_reg_put32(bgep, regno, regval);
2763 		return (bge_chip_poll_engine(bgep, regno,
2764 		    STATE_MACHINE_ENABLE_BIT, STATE_MACHINE_ENABLE_BIT));
2765 	}
2766 }
2767 
2768 /*
2769  * Reprogram the Ethernet, Transmit, and Receive MAC
2770  * modes to match the param_* variables
2771  */
2772 void bge_sync_mac_modes(bge_t *bgep);
2773 #pragma	no_inline(bge_sync_mac_modes)
2774 
2775 void
2776 bge_sync_mac_modes(bge_t *bgep)
2777 {
2778 	uint32_t macmode;
2779 	uint32_t regval;
2780 
2781 	ASSERT(mutex_owned(bgep->genlock));
2782 
2783 	/*
2784 	 * Reprogram the Ethernet MAC mode ...
2785 	 */
2786 	macmode = regval = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
2787 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2788 	    (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
2789 		if (DEVICE_5714_SERIES_CHIPSETS(bgep))
2790 			macmode |= ETHERNET_MODE_LINK_POLARITY;
2791 		else
2792 			macmode &= ~ETHERNET_MODE_LINK_POLARITY;
2793 	else
2794 		macmode |= ETHERNET_MODE_LINK_POLARITY;
2795 	macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
2796 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2797 	    (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC)) {
2798 		if (DEVICE_5714_SERIES_CHIPSETS(bgep))
2799 			macmode |= ETHERNET_MODE_PORTMODE_GMII;
2800 		else
2801 			macmode |= ETHERNET_MODE_PORTMODE_TBI;
2802 	} else if (bgep->param_link_speed == 10 ||
2803 	    bgep->param_link_speed == 100)
2804 		macmode |= ETHERNET_MODE_PORTMODE_MII;
2805 	else
2806 		macmode |= ETHERNET_MODE_PORTMODE_GMII;
2807 	if (bgep->param_link_duplex == LINK_DUPLEX_HALF)
2808 		macmode |= ETHERNET_MODE_HALF_DUPLEX;
2809 	else
2810 		macmode &= ~ETHERNET_MODE_HALF_DUPLEX;
2811 	if (bgep->param_loop_mode == BGE_LOOP_INTERNAL_MAC)
2812 		macmode |= ETHERNET_MODE_MAC_LOOPBACK;
2813 	else
2814 		macmode &= ~ETHERNET_MODE_MAC_LOOPBACK;
2815 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
2816 	BGE_DEBUG(("bge_sync_mac_modes($%p) Ethernet MAC mode 0x%x => 0x%x",
2817 	    (void *)bgep, regval, macmode));
2818 
2819 	/*
2820 	 * ... the Transmit MAC mode ...
2821 	 */
2822 	macmode = regval = bge_reg_get32(bgep, TRANSMIT_MAC_MODE_REG);
2823 	if (bgep->param_link_tx_pause)
2824 		macmode |= TRANSMIT_MODE_FLOW_CONTROL;
2825 	else
2826 		macmode &= ~TRANSMIT_MODE_FLOW_CONTROL;
2827 	bge_reg_put32(bgep, TRANSMIT_MAC_MODE_REG, macmode);
2828 	BGE_DEBUG(("bge_sync_mac_modes($%p) Transmit MAC mode 0x%x => 0x%x",
2829 	    (void *)bgep, regval, macmode));
2830 
2831 	/*
2832 	 * ... and the Receive MAC mode
2833 	 */
2834 	macmode = regval = bge_reg_get32(bgep, RECEIVE_MAC_MODE_REG);
2835 	if (bgep->param_link_rx_pause)
2836 		macmode |= RECEIVE_MODE_FLOW_CONTROL;
2837 	else
2838 		macmode &= ~RECEIVE_MODE_FLOW_CONTROL;
2839 	bge_reg_put32(bgep, RECEIVE_MAC_MODE_REG, macmode);
2840 	BGE_DEBUG(("bge_sync_mac_modes($%p) Receive MAC mode 0x%x => 0x%x",
2841 	    (void *)bgep, regval, macmode));
2842 }
2843 
2844 /*
2845  * bge_chip_sync() -- program the chip with the unicast MAC address,
2846  * the multicast hash table, the required level of promiscuity, and
2847  * the current loopback mode ...
2848  */
2849 #ifdef BGE_IPMI_ASF
2850 int bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive);
2851 #else
2852 int bge_chip_sync(bge_t *bgep);
2853 #endif
2854 #pragma	no_inline(bge_chip_sync)
2855 
2856 int
2857 #ifdef BGE_IPMI_ASF
2858 bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive)
2859 #else
2860 bge_chip_sync(bge_t *bgep)
2861 #endif
2862 {
2863 	void (*opfn)(bge_t *bgep, bge_regno_t reg, uint32_t bits);
2864 	boolean_t promisc;
2865 	uint64_t macaddr;
2866 	uint32_t fill = 0;
2867 	int i, j;
2868 	int retval = DDI_SUCCESS;
2869 
2870 	BGE_TRACE(("bge_chip_sync($%p)",
2871 	    (void *)bgep));
2872 
2873 	ASSERT(mutex_owned(bgep->genlock));
2874 
2875 	promisc = B_FALSE;
2876 	fill = ~(uint32_t)0;
2877 
2878 	if (bgep->promisc)
2879 		promisc = B_TRUE;
2880 	else
2881 		fill = (uint32_t)0;
2882 
2883 	/*
2884 	 * If the TX/RX MAC engines are already running, we should stop
2885 	 * them (and reset the RX engine) before changing the parameters.
2886 	 * If they're not running, this will have no effect ...
2887 	 *
2888 	 * NOTE: this is currently disabled by default because stopping
2889 	 * and restarting the Tx engine may cause an outgoing packet in
2890 	 * transit to be truncated.  Also, stopping and restarting the
2891 	 * Rx engine seems to not work correctly on the 5705.  Testing
2892 	 * has not (yet!) revealed any problems with NOT stopping and
2893 	 * restarting these engines (and Broadcom say their drivers don't
2894 	 * do this), but if it is found to cause problems, this variable
2895 	 * can be patched to re-enable the old behaviour ...
2896 	 */
2897 	if (bge_stop_start_on_sync) {
2898 #ifdef BGE_IPMI_ASF
2899 		if (!bgep->asf_enabled) {
2900 			if (!bge_chip_disable_engine(bgep,
2901 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2902 				retval = DDI_FAILURE;
2903 		} else {
2904 			if (!bge_chip_disable_engine(bgep,
2905 			    RECEIVE_MAC_MODE_REG, 0))
2906 				retval = DDI_FAILURE;
2907 		}
2908 #else
2909 		if (!bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG,
2910 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2911 			retval = DDI_FAILURE;
2912 #endif
2913 		if (!bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2914 			retval = DDI_FAILURE;
2915 		if (!bge_chip_reset_engine(bgep, RECEIVE_MAC_MODE_REG))
2916 			retval = DDI_FAILURE;
2917 	}
2918 
2919 	/*
2920 	 * Reprogram the hashed multicast address table ...
2921 	 */
2922 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
2923 		bge_reg_put32(bgep, MAC_HASH_REG(i), 0);
2924 
2925 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
2926 		bge_reg_put32(bgep, MAC_HASH_REG(i),
2927 			bgep->mcast_hash[i] | fill);
2928 
2929 #ifdef BGE_IPMI_ASF
2930 	if (!bgep->asf_enabled || !asf_keeplive) {
2931 #endif
2932 		/*
2933 		 * Transform the MAC address(es) from host to chip format, then
2934 		 * reprogram the transmit random backoff seed and the unicast
2935 		 * MAC address(es) ...
2936 		 */
2937 		for (j = 0; j < MAC_ADDRESS_REGS_MAX; j++) {
2938 			for (i = 0, macaddr = 0ull;
2939 			    i < ETHERADDRL; ++i) {
2940 				macaddr <<= 8;
2941 				macaddr |= bgep->curr_addr[j].addr[i];
2942 			}
2943 			fill += (macaddr >> 16) + (macaddr & 0xffffffff);
2944 			bge_reg_put64(bgep, MAC_ADDRESS_REG(j), macaddr);
2945 
2946 			BGE_DEBUG(("bge_chip_sync($%p) "
2947 			    "setting MAC address %012llx",
2948 			    (void *)bgep, macaddr));
2949 		}
2950 #ifdef BGE_IPMI_ASF
2951 	}
2952 #endif
2953 	/*
2954 	 * Set random seed of backoff interval
2955 	 *   - Writing zero means no backoff interval
2956 	 */
2957 	fill = ((fill >> 20) + (fill >> 10) + fill) & 0x3ff;
2958 	if (fill == 0)
2959 		fill = 1;
2960 	bge_reg_put32(bgep, MAC_TX_RANDOM_BACKOFF_REG, fill);
2961 
2962 	/*
2963 	 * Set or clear the PROMISCUOUS mode bit
2964 	 */
2965 	opfn = promisc ? bge_reg_set32 : bge_reg_clr32;
2966 	(*opfn)(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_PROMISCUOUS);
2967 
2968 	/*
2969 	 * Sync the rest of the MAC modes too ...
2970 	 */
2971 	bge_sync_mac_modes(bgep);
2972 
2973 	/*
2974 	 * Restart RX/TX MAC engines if required ...
2975 	 */
2976 	if (bgep->bge_chip_state == BGE_CHIP_RUNNING) {
2977 		if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2978 			retval = DDI_FAILURE;
2979 #ifdef BGE_IPMI_ASF
2980 		if (!bgep->asf_enabled) {
2981 			if (!bge_chip_enable_engine(bgep,
2982 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2983 				retval = DDI_FAILURE;
2984 		} else {
2985 			if (!bge_chip_enable_engine(bgep,
2986 			    RECEIVE_MAC_MODE_REG, 0))
2987 				retval = DDI_FAILURE;
2988 		}
2989 #else
2990 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
2991 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2992 			retval = DDI_FAILURE;
2993 #endif
2994 	}
2995 	return (retval);
2996 }
2997 
2998 /*
2999  * This array defines the sequence of state machine control registers
3000  * in which the <enable> bit must be cleared to bring the chip to a
3001  * clean stop.  Taken from Broadcom document 570X-PG102-R, p116.
3002  */
3003 static bge_regno_t shutdown_engine_regs[] = {
3004 	RECEIVE_MAC_MODE_REG,
3005 	RCV_BD_INITIATOR_MODE_REG,
3006 	RCV_LIST_PLACEMENT_MODE_REG,
3007 	RCV_LIST_SELECTOR_MODE_REG,		/* BCM5704 series only	*/
3008 	RCV_DATA_BD_INITIATOR_MODE_REG,
3009 	RCV_DATA_COMPLETION_MODE_REG,
3010 	RCV_BD_COMPLETION_MODE_REG,
3011 
3012 	SEND_BD_SELECTOR_MODE_REG,
3013 	SEND_BD_INITIATOR_MODE_REG,
3014 	SEND_DATA_INITIATOR_MODE_REG,
3015 	READ_DMA_MODE_REG,
3016 	SEND_DATA_COMPLETION_MODE_REG,
3017 	DMA_COMPLETION_MODE_REG,		/* BCM5704 series only	*/
3018 	SEND_BD_COMPLETION_MODE_REG,
3019 	TRANSMIT_MAC_MODE_REG,
3020 
3021 	HOST_COALESCE_MODE_REG,
3022 	WRITE_DMA_MODE_REG,
3023 	MBUF_CLUSTER_FREE_MODE_REG,		/* BCM5704 series only	*/
3024 	FTQ_RESET_REG,		/* special - see code	*/
3025 	BUFFER_MANAGER_MODE_REG,		/* BCM5704 series only	*/
3026 	MEMORY_ARBITER_MODE_REG,		/* BCM5704 series only	*/
3027 	BGE_REGNO_NONE		/* terminator		*/
3028 };
3029 
3030 #ifndef __sparc
3031 static bge_regno_t quiesce_regs[] = {
3032 	READ_DMA_MODE_REG,
3033 	DMA_COMPLETION_MODE_REG,
3034 	WRITE_DMA_MODE_REG,
3035 	BGE_REGNO_NONE
3036 };
3037 
3038 void bge_chip_stop_nonblocking(bge_t *bgep);
3039 #pragma no_inline(bge_chip_stop_nonblocking)
3040 
3041 /*
3042  * This function is called by bge_quiesce(). We
3043  * turn off all the DMA engines here.
3044  */
3045 void
3046 bge_chip_stop_nonblocking(bge_t *bgep)
3047 {
3048 	bge_regno_t *rbp;
3049 
3050 	/*
3051 	 * Flag that no more activity may be initiated
3052 	 */
3053 	bgep->progress &= ~PROGRESS_READY;
3054 
3055 	rbp = quiesce_regs;
3056 	while (*rbp != BGE_REGNO_NONE) {
3057 		(void) bge_chip_disable_engine(bgep, *rbp, 0);
3058 		++rbp;
3059 	}
3060 
3061 	bgep->bge_chip_state = BGE_CHIP_STOPPED;
3062 }
3063 
3064 #endif
3065 
3066 /*
3067  * bge_chip_stop() -- stop all chip processing
3068  *
3069  * If the <fault> parameter is B_TRUE, we're stopping the chip because
3070  * we've detected a problem internally; otherwise, this is a normal
3071  * (clean) stop (at user request i.e. the last STREAM has been closed).
3072  */
3073 void bge_chip_stop(bge_t *bgep, boolean_t fault);
3074 #pragma	no_inline(bge_chip_stop)
3075 
3076 void
3077 bge_chip_stop(bge_t *bgep, boolean_t fault)
3078 {
3079 	bge_regno_t regno;
3080 	bge_regno_t *rbp;
3081 	boolean_t ok;
3082 
3083 	BGE_TRACE(("bge_chip_stop($%p)",
3084 	    (void *)bgep));
3085 
3086 	ASSERT(mutex_owned(bgep->genlock));
3087 
3088 	rbp = shutdown_engine_regs;
3089 	/*
3090 	 * When driver try to shutdown the BCM5705/5788/5721/5751/
3091 	 * 5752/5714 and 5715 chipsets,the buffer manager and the mem
3092 	 * -ory arbiter should not be disabled.
3093 	 */
3094 	for (ok = B_TRUE; (regno = *rbp) != BGE_REGNO_NONE; ++rbp) {
3095 			if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3096 				ok &= bge_chip_disable_engine(bgep, regno, 0);
3097 			else if ((regno != RCV_LIST_SELECTOR_MODE_REG) &&
3098 			    (regno != DMA_COMPLETION_MODE_REG) &&
3099 			    (regno != MBUF_CLUSTER_FREE_MODE_REG)&&
3100 			    (regno != BUFFER_MANAGER_MODE_REG) &&
3101 			    (regno != MEMORY_ARBITER_MODE_REG))
3102 				ok &= bge_chip_disable_engine(bgep,
3103 				    regno, 0);
3104 	}
3105 
3106 	if (!ok && !fault)
3107 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
3108 
3109 	/*
3110 	 * Finally, disable (all) MAC events & clear the MAC status
3111 	 */
3112 	bge_reg_put32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 0);
3113 	bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, ~0);
3114 
3115 	/*
3116 	 * if we're stopping the chip because of a detected fault then do
3117 	 * appropriate actions
3118 	 */
3119 	if (fault) {
3120 		if (bgep->bge_chip_state != BGE_CHIP_FAULT) {
3121 			bgep->bge_chip_state = BGE_CHIP_FAULT;
3122 			if (!bgep->manual_reset)
3123 				ddi_fm_service_impact(bgep->devinfo,
3124 				    DDI_SERVICE_LOST);
3125 			if (bgep->bge_dma_error) {
3126 				/*
3127 				 * need to free buffers in case the fault was
3128 				 * due to a memory error in a buffer - got to
3129 				 * do a fair bit of tidying first
3130 				 */
3131 				if (bgep->progress & PROGRESS_KSTATS) {
3132 					bge_fini_kstats(bgep);
3133 					bgep->progress &= ~PROGRESS_KSTATS;
3134 				}
3135 				if (bgep->progress & PROGRESS_INTR) {
3136 					bge_intr_disable(bgep);
3137 					rw_enter(bgep->errlock, RW_WRITER);
3138 					bge_fini_rings(bgep);
3139 					rw_exit(bgep->errlock);
3140 					bgep->progress &= ~PROGRESS_INTR;
3141 				}
3142 				if (bgep->progress & PROGRESS_BUFS) {
3143 					bge_free_bufs(bgep);
3144 					bgep->progress &= ~PROGRESS_BUFS;
3145 				}
3146 				bgep->bge_dma_error = B_FALSE;
3147 			}
3148 		}
3149 	} else
3150 		bgep->bge_chip_state = BGE_CHIP_STOPPED;
3151 }
3152 
3153 /*
3154  * Poll for completion of chip's ROM firmware; also, at least on the
3155  * first time through, find and return the hardware MAC address, if any.
3156  */
3157 static uint64_t bge_poll_firmware(bge_t *bgep);
3158 #pragma	no_inline(bge_poll_firmware)
3159 
3160 static uint64_t
3161 bge_poll_firmware(bge_t *bgep)
3162 {
3163 	uint64_t magic;
3164 	uint64_t mac;
3165 	uint32_t gen, val;
3166 	uint32_t i;
3167 
3168 	/*
3169 	 * Step 19: poll for firmware completion (GENCOMM port set
3170 	 * to the ones complement of T3_MAGIC_NUMBER).
3171 	 *
3172 	 * While we're at it, we also read the MAC address register;
3173 	 * at some stage the firmware will load this with the
3174 	 * factory-set value.
3175 	 *
3176 	 * When both the magic number and the MAC address are set,
3177 	 * we're done; but we impose a time limit of one second
3178 	 * (1000*1000us) in case the firmware fails in some fashion
3179 	 * or the SEEPROM that provides that MAC address isn't fitted.
3180 	 *
3181 	 * After the first time through (chip state != INITIAL), we
3182 	 * don't need the MAC address to be set (we've already got it
3183 	 * or not, from the first time), so we don't wait for it, but
3184 	 * we still have to wait for the T3_MAGIC_NUMBER.
3185 	 *
3186 	 * Note: the magic number is only a 32-bit quantity, but the NIC
3187 	 * memory is 64-bit (and big-endian) internally.  Addressing the
3188 	 * GENCOMM word as "the upper half of a 64-bit quantity" makes
3189 	 * it work correctly on both big- and little-endian hosts.
3190 	 */
3191 	if (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
3192 	    MHCR_CHIP_ASIC_REV_5906) {
3193 		for (i = 0; i < 1000; ++i) {
3194 			drv_usecwait(1000);
3195 			val = bge_reg_get32(bgep, VCPU_STATUS_REG);
3196 			if (val & VCPU_INIT_DONE)
3197 				break;
3198 		}
3199 		BGE_DEBUG(("bge_poll_firmware($%p): return after %d loops",
3200 		    (void *)bgep, i));
3201 		mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3202 	} else {
3203 		for (i = 0; i < 1000; ++i) {
3204 			drv_usecwait(1000);
3205 			gen = bge_nic_get64(bgep, NIC_MEM_GENCOMM) >> 32;
3206 			if (i == 0 && DEVICE_5704_SERIES_CHIPSETS(bgep))
3207 				drv_usecwait(100000);
3208 			mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3209 #ifdef BGE_IPMI_ASF
3210 			if (!bgep->asf_enabled) {
3211 #endif
3212 				if (gen != ~T3_MAGIC_NUMBER)
3213 					continue;
3214 #ifdef BGE_IPMI_ASF
3215 			}
3216 #endif
3217 			if (mac != 0ULL)
3218 				break;
3219 			if (bgep->bge_chip_state != BGE_CHIP_INITIAL)
3220 				break;
3221 		}
3222 	}
3223 
3224 	magic = bge_nic_get64(bgep, NIC_MEM_GENCOMM);
3225 	BGE_DEBUG(("bge_poll_firmware($%p): PXE magic 0x%x after %d loops",
3226 	    (void *)bgep, gen, i));
3227 	BGE_DEBUG(("bge_poll_firmware: MAC %016llx, GENCOMM %016llx",
3228 	    mac, magic));
3229 
3230 	return (mac);
3231 }
3232 
3233 /*
3234  * Maximum times of trying to get the NVRAM access lock
3235  * by calling bge_nvmem_acquire()
3236  */
3237 #define	MAX_TRY_NVMEM_ACQUIRE	10000
3238 
3239 #ifdef BGE_IPMI_ASF
3240 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode);
3241 #else
3242 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma);
3243 #endif
3244 #pragma	no_inline(bge_chip_reset)
3245 
3246 int
3247 #ifdef BGE_IPMI_ASF
3248 bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode)
3249 #else
3250 bge_chip_reset(bge_t *bgep, boolean_t enable_dma)
3251 #endif
3252 {
3253 	chip_id_t chipid;
3254 	uint64_t mac;
3255 	uint64_t magic;
3256 	uint32_t modeflags;
3257 	uint32_t mhcr;
3258 	uint32_t sx0;
3259 	uint32_t i, tries;
3260 #ifdef BGE_IPMI_ASF
3261 	uint32_t mailbox;
3262 #endif
3263 	int retval = DDI_SUCCESS;
3264 
3265 	BGE_TRACE(("bge_chip_reset($%p, %d)",
3266 		(void *)bgep, enable_dma));
3267 
3268 	ASSERT(mutex_owned(bgep->genlock));
3269 
3270 	BGE_DEBUG(("bge_chip_reset($%p, %d): current state is %d",
3271 		(void *)bgep, enable_dma, bgep->bge_chip_state));
3272 
3273 	/*
3274 	 * Do we need to stop the chip cleanly before resetting?
3275 	 */
3276 	switch (bgep->bge_chip_state) {
3277 	default:
3278 		_NOTE(NOTREACHED)
3279 		return (DDI_FAILURE);
3280 
3281 	case BGE_CHIP_INITIAL:
3282 	case BGE_CHIP_STOPPED:
3283 	case BGE_CHIP_RESET:
3284 		break;
3285 
3286 	case BGE_CHIP_RUNNING:
3287 	case BGE_CHIP_ERROR:
3288 	case BGE_CHIP_FAULT:
3289 		bge_chip_stop(bgep, B_FALSE);
3290 		break;
3291 	}
3292 
3293 #ifdef BGE_IPMI_ASF
3294 	if (bgep->asf_enabled) {
3295 #ifdef __sparc
3296 		mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3297 			MHCR_ENABLE_TAGGED_STATUS_MODE |
3298 			MHCR_MASK_INTERRUPT_MODE |
3299 			MHCR_MASK_PCI_INT_OUTPUT |
3300 			MHCR_CLEAR_INTERRUPT_INTA |
3301 			MHCR_ENABLE_ENDIAN_WORD_SWAP |
3302 			MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3303 		pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3304 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3305 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG) |
3306 			MEMORY_ARBITER_ENABLE);
3307 #endif
3308 		if (asf_mode == ASF_MODE_INIT) {
3309 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
3310 		} else if (asf_mode == ASF_MODE_SHUTDOWN) {
3311 			bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
3312 		}
3313 	}
3314 #endif
3315 	/*
3316 	 * Adapted from Broadcom document 570X-PG102-R, pp 102-116.
3317 	 * Updated to reflect Broadcom document 570X-PG104-R, pp 146-159.
3318 	 *
3319 	 * Before reset Core clock,it is
3320 	 * also required to initialize the Memory Arbiter as specified in step9
3321 	 * and Misc Host Control Register as specified in step-13
3322 	 * Step 4-5: reset Core clock & wait for completion
3323 	 * Steps 6-8: are done by bge_chip_cfg_init()
3324 	 * put the T3_MAGIC_NUMBER into the GENCOMM port before reset
3325 	 */
3326 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3327 		retval = DDI_FAILURE;
3328 
3329 	mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3330 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
3331 	    MHCR_MASK_INTERRUPT_MODE |
3332 	    MHCR_MASK_PCI_INT_OUTPUT |
3333 	    MHCR_CLEAR_INTERRUPT_INTA;
3334 #ifdef  _BIG_ENDIAN
3335 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3336 #endif  /* _BIG_ENDIAN */
3337 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3338 #ifdef BGE_IPMI_ASF
3339 	if (bgep->asf_enabled)
3340 		bgep->asf_wordswapped = B_FALSE;
3341 #endif
3342 	/*
3343 	 * NVRAM Corruption Workaround
3344 	 */
3345 	for (tries = 0; tries < MAX_TRY_NVMEM_ACQUIRE; tries++)
3346 		if (bge_nvmem_acquire(bgep) != EAGAIN)
3347 			break;
3348 	if (tries >= MAX_TRY_NVMEM_ACQUIRE)
3349 		BGE_DEBUG(("%s: fail to acquire nvram lock",
3350 			bgep->ifname));
3351 
3352 #ifdef BGE_IPMI_ASF
3353 	if (!bgep->asf_enabled) {
3354 #endif
3355 		magic = (uint64_t)T3_MAGIC_NUMBER << 32;
3356 		bge_nic_put64(bgep, NIC_MEM_GENCOMM, magic);
3357 #ifdef BGE_IPMI_ASF
3358 	}
3359 #endif
3360 
3361 	if (!bge_chip_reset_engine(bgep, MISC_CONFIG_REG))
3362 		retval = DDI_FAILURE;
3363 	bge_chip_cfg_init(bgep, &chipid, enable_dma);
3364 
3365 	/*
3366 	 * Step 8a: This may belong elsewhere, but BCM5721 needs
3367 	 * a bit set to avoid a fifo overflow/underflow bug.
3368 	 */
3369 	if ((bgep->chipid.chip_label == 5721) ||
3370 		(bgep->chipid.chip_label == 5751) ||
3371 		(bgep->chipid.chip_label == 5752) ||
3372 		(bgep->chipid.chip_label == 5755) ||
3373 		(bgep->chipid.chip_label == 5756) ||
3374 		(bgep->chipid.chip_label == 5789) ||
3375 		(bgep->chipid.chip_label == 5906))
3376 		bge_reg_set32(bgep, TLP_CONTROL_REG, TLP_DATA_FIFO_PROTECT);
3377 
3378 
3379 	/*
3380 	 * Step 9: enable MAC memory arbiter,bit30 and bit31 of 5714/5715 should
3381 	 * not be changed.
3382 	 */
3383 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3384 		retval = DDI_FAILURE;
3385 
3386 	/*
3387 	 * Steps 10-11: configure PIO endianness options and
3388 	 * enable indirect register access -- already done
3389 	 * Steps 12-13: enable writing to the PCI state & clock
3390 	 * control registers -- not required; we aren't going to
3391 	 * use those features.
3392 	 * Steps 14-15: Configure DMA endianness options.  See
3393 	 * the comments on the setting of the MHCR above.
3394 	 */
3395 #ifdef	_BIG_ENDIAN
3396 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME |
3397 		    MODE_WORD_SWAP_NONFRAME | MODE_BYTE_SWAP_NONFRAME;
3398 #else
3399 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME;
3400 #endif	/* _BIG_ENDIAN */
3401 #ifdef BGE_IPMI_ASF
3402 	if (bgep->asf_enabled)
3403 		modeflags |= MODE_HOST_STACK_UP;
3404 #endif
3405 	bge_reg_put32(bgep, MODE_CONTROL_REG, modeflags);
3406 
3407 #ifdef BGE_IPMI_ASF
3408 	if (bgep->asf_enabled) {
3409 #ifdef __sparc
3410 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3411 			MEMORY_ARBITER_ENABLE |
3412 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG));
3413 #endif
3414 
3415 #ifdef  BGE_NETCONSOLE
3416 		if (!bgep->asf_newhandshake) {
3417 			if ((asf_mode == ASF_MODE_INIT) ||
3418 			(asf_mode == ASF_MODE_POST_INIT)) {
3419 				bge_asf_post_reset_old_mode(bgep,
3420 					BGE_INIT_RESET);
3421 			} else {
3422 				bge_asf_post_reset_old_mode(bgep,
3423 					BGE_SHUTDOWN_RESET);
3424 			}
3425 		}
3426 #endif
3427 
3428 		/* Wait for NVRAM init */
3429 		i = 0;
3430 		drv_usecwait(5000);
3431 		mailbox = bge_nic_get32(bgep, BGE_FIRMWARE_MAILBOX);
3432 
3433 		while ((mailbox != (uint32_t)
3434 			~BGE_MAGIC_NUM_FIRMWARE_INIT_DONE) &&
3435 			(i < 10000)) {
3436 			drv_usecwait(100);
3437 			mailbox = bge_nic_get32(bgep,
3438 				BGE_FIRMWARE_MAILBOX);
3439 			i++;
3440 		}
3441 
3442 #ifndef BGE_NETCONSOLE
3443 		if (!bgep->asf_newhandshake) {
3444 			if ((asf_mode == ASF_MODE_INIT) ||
3445 				(asf_mode == ASF_MODE_POST_INIT)) {
3446 
3447 				bge_asf_post_reset_old_mode(bgep,
3448 					BGE_INIT_RESET);
3449 			} else {
3450 				bge_asf_post_reset_old_mode(bgep,
3451 					BGE_SHUTDOWN_RESET);
3452 			}
3453 		}
3454 #endif
3455 	}
3456 #endif
3457 	/*
3458 	 * Steps 16-17: poll for firmware completion
3459 	 */
3460 	mac = bge_poll_firmware(bgep);
3461 
3462 	/*
3463 	 * Step 18: enable external memory -- doesn't apply.
3464 	 *
3465 	 * However we take the opportunity to set the MLCR anyway, as
3466 	 * this register also controls the SEEPROM auto-access method
3467 	 * which we may want to use later ...
3468 	 *
3469 	 * The proper value here depends on the way the chip is wired
3470 	 * into the circuit board, as this register *also* controls which
3471 	 * of the "Miscellaneous I/O" pins are driven as outputs and the
3472 	 * values driven onto those pins!
3473 	 *
3474 	 * See also step 74 in the PRM ...
3475 	 */
3476 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG,
3477 	    bgep->chipid.bge_mlcr_default);
3478 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
3479 
3480 	/*
3481 	 * Step 20: clear the Ethernet MAC mode register
3482 	 */
3483 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, 0);
3484 
3485 	/*
3486 	 * Step 21: restore cache-line-size, latency timer, and
3487 	 * subsystem ID registers to their original values (not
3488 	 * those read into the local structure <chipid>, 'cos
3489 	 * that was after they were cleared by the RESET).
3490 	 *
3491 	 * Note: the Subsystem Vendor/Device ID registers are not
3492 	 * directly writable in config space, so we use the shadow
3493 	 * copy in "Page Zero" of register space to restore them
3494 	 * both in one go ...
3495 	 */
3496 	pci_config_put8(bgep->cfg_handle, PCI_CONF_CACHE_LINESZ,
3497 		bgep->chipid.clsize);
3498 	pci_config_put8(bgep->cfg_handle, PCI_CONF_LATENCY_TIMER,
3499 		bgep->chipid.latency);
3500 	bge_reg_put32(bgep, PCI_CONF_SUBVENID,
3501 		(bgep->chipid.subdev << 16) | bgep->chipid.subven);
3502 
3503 	/*
3504 	 * The SEND INDEX registers should be reset to zero by the
3505 	 * global chip reset; if they're not, there'll be trouble
3506 	 * later on.
3507 	 */
3508 	sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0));
3509 	if (sx0 != 0) {
3510 		BGE_REPORT((bgep, "SEND INDEX - device didn't RESET"));
3511 		bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
3512 		retval = DDI_FAILURE;
3513 	}
3514 
3515 	/* Enable MSI code */
3516 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3517 		bge_reg_set32(bgep, MSI_MODE_REG,
3518 		    MSI_PRI_HIGHEST|MSI_MSI_ENABLE|MSI_ERROR_ATTENTION);
3519 
3520 	/*
3521 	 * On the first time through, save the factory-set MAC address
3522 	 * (if any).  If bge_poll_firmware() above didn't return one
3523 	 * (from a chip register) consider looking in the attached NV
3524 	 * memory device, if any.  Once we have it, we save it in both
3525 	 * register-image (64-bit) and byte-array forms.  All-zero and
3526 	 * all-one addresses are not valid, and we refuse to stash those.
3527 	 */
3528 	if (bgep->bge_chip_state == BGE_CHIP_INITIAL) {
3529 		if (mac == 0ULL)
3530 			mac = bge_get_nvmac(bgep);
3531 		if (mac != 0ULL && mac != ~0ULL) {
3532 			bgep->chipid.hw_mac_addr = mac;
3533 			for (i = ETHERADDRL; i-- != 0; ) {
3534 				bgep->chipid.vendor_addr.addr[i] = (uchar_t)mac;
3535 				mac >>= 8;
3536 			}
3537 			bgep->chipid.vendor_addr.set = B_TRUE;
3538 		}
3539 	}
3540 
3541 #ifdef BGE_IPMI_ASF
3542 	if (bgep->asf_enabled && bgep->asf_newhandshake) {
3543 		if (asf_mode != ASF_MODE_NONE) {
3544 			if ((asf_mode == ASF_MODE_INIT) ||
3545 				(asf_mode == ASF_MODE_POST_INIT)) {
3546 
3547 				bge_asf_post_reset_new_mode(bgep,
3548 					BGE_INIT_RESET);
3549 			} else {
3550 				bge_asf_post_reset_new_mode(bgep,
3551 					BGE_SHUTDOWN_RESET);
3552 			}
3553 		}
3554 	}
3555 #endif
3556 
3557 	/*
3558 	 * Record the new state
3559 	 */
3560 	bgep->chip_resets += 1;
3561 	bgep->bge_chip_state = BGE_CHIP_RESET;
3562 	return (retval);
3563 }
3564 
3565 /*
3566  * bge_chip_start() -- start the chip transmitting and/or receiving,
3567  * including enabling interrupts
3568  */
3569 int bge_chip_start(bge_t *bgep, boolean_t reset_phys);
3570 #pragma	no_inline(bge_chip_start)
3571 
3572 void
3573 bge_chip_coalesce_update(bge_t *bgep)
3574 {
3575 	bge_reg_put32(bgep, SEND_COALESCE_MAX_BD_REG,
3576 	    bgep->chipid.tx_count_norm);
3577 	bge_reg_put32(bgep, SEND_COALESCE_TICKS_REG,
3578 	    bgep->chipid.tx_ticks_norm);
3579 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG,
3580 	    bgep->chipid.rx_count_norm);
3581 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG,
3582 	    bgep->chipid.rx_ticks_norm);
3583 }
3584 
3585 int
3586 bge_chip_start(bge_t *bgep, boolean_t reset_phys)
3587 {
3588 	uint32_t coalmode;
3589 	uint32_t ledctl;
3590 	uint32_t mtu;
3591 	uint32_t maxring;
3592 	uint32_t stats_mask;
3593 	uint32_t dma_wrprio;
3594 	uint64_t ring;
3595 	int retval = DDI_SUCCESS;
3596 
3597 	BGE_TRACE(("bge_chip_start($%p)",
3598 	    (void *)bgep));
3599 
3600 	ASSERT(mutex_owned(bgep->genlock));
3601 	ASSERT(bgep->bge_chip_state == BGE_CHIP_RESET);
3602 
3603 	/*
3604 	 * Taken from Broadcom document 570X-PG102-R, pp 102-116.
3605 	 * The document specifies 95 separate steps to fully
3606 	 * initialise the chip!!!!
3607 	 *
3608 	 * The reset code above has already got us as far as step
3609 	 * 21, so we continue with ...
3610 	 *
3611 	 * Step 22: clear the MAC statistics block
3612 	 * (0x0300-0x0aff in NIC-local memory)
3613 	 */
3614 	if (bgep->chipid.statistic_type == BGE_STAT_BLK)
3615 		bge_nic_zero(bgep, NIC_MEM_STATISTICS,
3616 		    NIC_MEM_STATISTICS_SIZE);
3617 
3618 	/*
3619 	 * Step 23: clear the status block (in host memory)
3620 	 */
3621 	DMA_ZERO(bgep->status_block);
3622 
3623 	/*
3624 	 * Step 24: set DMA read/write control register
3625 	 */
3626 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PDRWCR,
3627 	    bgep->chipid.bge_dma_rwctrl);
3628 
3629 	/*
3630 	 * Step 25: Configure DMA endianness -- already done (16/17)
3631 	 * Step 26: Configure Host-Based Send Rings
3632 	 * Step 27: Indicate Host Stack Up
3633 	 */
3634 	bge_reg_set32(bgep, MODE_CONTROL_REG,
3635 	    MODE_HOST_SEND_BDS |
3636 	    MODE_HOST_STACK_UP);
3637 
3638 	/*
3639 	 * Step 28: Configure checksum options:
3640 	 *	Solaris supports the hardware default checksum options.
3641 	 *
3642 	 *	Workaround for Incorrect pseudo-header checksum calculation.
3643 	 */
3644 	if (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM)
3645 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3646 		    MODE_SEND_NO_PSEUDO_HDR_CSUM);
3647 
3648 	/*
3649 	 * Step 29: configure Timer Prescaler.  The value is always the
3650 	 * same: the Core Clock frequency in MHz (66), minus 1, shifted
3651 	 * into bits 7-1.  Don't set bit 0, 'cos that's the RESET bit
3652 	 * for the whole chip!
3653 	 */
3654 	bge_reg_put32(bgep, MISC_CONFIG_REG, MISC_CONFIG_DEFAULT);
3655 
3656 	if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
3657 		drv_usecwait(40);
3658 		/* put PHY into ready state */
3659 		bge_reg_clr32(bgep, MISC_CONFIG_REG, MISC_CONFIG_EPHY_IDDQ);
3660 		(void) bge_reg_get32(bgep, MISC_CONFIG_REG); /* flush */
3661 		drv_usecwait(40);
3662 	}
3663 
3664 	/*
3665 	 * Steps 30-31: Configure MAC local memory pool & DMA pool registers
3666 	 *
3667 	 * If the mbuf_length is specified as 0, we just leave these at
3668 	 * their hardware defaults, rather than explicitly setting them.
3669 	 * As the Broadcom HRM,driver better not change the parameters
3670 	 * when the chipsets is 5705/5788/5721/5751/5714 and 5715.
3671 	 */
3672 	if ((bgep->chipid.mbuf_length != 0) &&
3673 	    (DEVICE_5704_SERIES_CHIPSETS(bgep))) {
3674 			bge_reg_put32(bgep, MBUF_POOL_BASE_REG,
3675 			    bgep->chipid.mbuf_base);
3676 			bge_reg_put32(bgep, MBUF_POOL_LENGTH_REG,
3677 			    bgep->chipid.mbuf_length);
3678 			bge_reg_put32(bgep, DMAD_POOL_BASE_REG,
3679 			    DMAD_POOL_BASE_DEFAULT);
3680 			bge_reg_put32(bgep, DMAD_POOL_LENGTH_REG,
3681 			    DMAD_POOL_LENGTH_DEFAULT);
3682 	}
3683 
3684 	/*
3685 	 * Step 32: configure MAC memory pool watermarks
3686 	 */
3687 	bge_reg_put32(bgep, RDMA_MBUF_LOWAT_REG,
3688 	    bgep->chipid.mbuf_lo_water_rdma);
3689 	bge_reg_put32(bgep, MAC_RX_MBUF_LOWAT_REG,
3690 	    bgep->chipid.mbuf_lo_water_rmac);
3691 	bge_reg_put32(bgep, MBUF_HIWAT_REG,
3692 	    bgep->chipid.mbuf_hi_water);
3693 
3694 	/*
3695 	 * Step 33: configure DMA resource watermarks
3696 	 */
3697 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3698 		bge_reg_put32(bgep, DMAD_POOL_LOWAT_REG,
3699 		    bge_dmad_lo_water);
3700 		bge_reg_put32(bgep, DMAD_POOL_HIWAT_REG,
3701 		    bge_dmad_hi_water);
3702 	}
3703 	bge_reg_put32(bgep, LOWAT_MAX_RECV_FRAMES_REG, bge_lowat_recv_frames);
3704 
3705 	/*
3706 	 * Steps 34-36: enable buffer manager & internal h/w queues
3707 	 */
3708 	if (!bge_chip_enable_engine(bgep, BUFFER_MANAGER_MODE_REG,
3709 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3710 		retval = DDI_FAILURE;
3711 	if (!bge_chip_enable_engine(bgep, FTQ_RESET_REG, 0))
3712 		retval = DDI_FAILURE;
3713 
3714 	/*
3715 	 * Steps 37-39: initialise Receive Buffer (Producer) RCBs
3716 	 */
3717 	bge_reg_putrcb(bgep, STD_RCV_BD_RING_RCB_REG,
3718 	    &bgep->buff[BGE_STD_BUFF_RING].hw_rcb);
3719 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3720 		bge_reg_putrcb(bgep, JUMBO_RCV_BD_RING_RCB_REG,
3721 		    &bgep->buff[BGE_JUMBO_BUFF_RING].hw_rcb);
3722 		bge_reg_putrcb(bgep, MINI_RCV_BD_RING_RCB_REG,
3723 		    &bgep->buff[BGE_MINI_BUFF_RING].hw_rcb);
3724 	}
3725 
3726 	/*
3727 	 * Step 40: set Receive Buffer Descriptor Ring replenish thresholds
3728 	 */
3729 	bge_reg_put32(bgep, STD_RCV_BD_REPLENISH_REG, bge_replenish_std);
3730 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3731 		bge_reg_put32(bgep, JUMBO_RCV_BD_REPLENISH_REG,
3732 		    bge_replenish_jumbo);
3733 		bge_reg_put32(bgep, MINI_RCV_BD_REPLENISH_REG,
3734 		    bge_replenish_mini);
3735 	}
3736 
3737 	/*
3738 	 * Steps 41-43: clear Send Ring Producer Indices and initialise
3739 	 * Send Producer Rings (0x0100-0x01ff in NIC-local memory)
3740 	 */
3741 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3742 		maxring = BGE_SEND_RINGS_MAX;
3743 	else
3744 		maxring = BGE_SEND_RINGS_MAX_5705;
3745 	for (ring = 0; ring < maxring; ++ring) {
3746 		bge_mbx_put(bgep, SEND_RING_HOST_INDEX_REG(ring), 0);
3747 		bge_mbx_put(bgep, SEND_RING_NIC_INDEX_REG(ring), 0);
3748 		bge_nic_putrcb(bgep, NIC_MEM_SEND_RING(ring),
3749 		    &bgep->send[ring].hw_rcb);
3750 	}
3751 
3752 	/*
3753 	 * Steps 44-45: initialise Receive Return Rings
3754 	 * (0x0200-0x02ff in NIC-local memory)
3755 	 */
3756 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3757 		maxring = BGE_RECV_RINGS_MAX;
3758 	else
3759 		maxring = BGE_RECV_RINGS_MAX_5705;
3760 	for (ring = 0; ring < maxring; ++ring)
3761 		bge_nic_putrcb(bgep, NIC_MEM_RECV_RING(ring),
3762 		    &bgep->recv[ring].hw_rcb);
3763 
3764 	/*
3765 	 * Step 46: initialise Receive Buffer (Producer) Ring indexes
3766 	 */
3767 	bge_mbx_put(bgep, RECV_STD_PROD_INDEX_REG, 0);
3768 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3769 		bge_mbx_put(bgep, RECV_JUMBO_PROD_INDEX_REG, 0);
3770 		bge_mbx_put(bgep, RECV_MINI_PROD_INDEX_REG, 0);
3771 	}
3772 	/*
3773 	 * Step 47: configure the MAC unicast address
3774 	 * Step 48: configure the random backoff seed
3775 	 * Step 96: set up multicast filters
3776 	 */
3777 #ifdef BGE_IPMI_ASF
3778 	if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE)
3779 #else
3780 	if (bge_chip_sync(bgep) == DDI_FAILURE)
3781 #endif
3782 		retval = DDI_FAILURE;
3783 
3784 	/*
3785 	 * Step 49: configure the MTU
3786 	 */
3787 	mtu = bgep->chipid.ethmax_size+ETHERFCSL+VLAN_TAGSZ;
3788 	bge_reg_put32(bgep, MAC_RX_MTU_SIZE_REG, mtu);
3789 
3790 	/*
3791 	 * Step 50: configure the IPG et al
3792 	 */
3793 	bge_reg_put32(bgep, MAC_TX_LENGTHS_REG, MAC_TX_LENGTHS_DEFAULT);
3794 
3795 	/*
3796 	 * Step 51: configure the default Rx Return Ring
3797 	 */
3798 	bge_reg_put32(bgep, RCV_RULES_CONFIG_REG, RCV_RULES_CONFIG_DEFAULT);
3799 
3800 	/*
3801 	 * Steps 52-54: configure Receive List Placement,
3802 	 * and enable Receive List Placement Statistics
3803 	 */
3804 	bge_reg_put32(bgep, RCV_LP_CONFIG_REG,
3805 	    RCV_LP_CONFIG(bgep->chipid.rx_rings));
3806 	switch (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev)) {
3807 	case MHCR_CHIP_ASIC_REV_5700:
3808 	case MHCR_CHIP_ASIC_REV_5701:
3809 	case MHCR_CHIP_ASIC_REV_5703:
3810 	case MHCR_CHIP_ASIC_REV_5704:
3811 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, ~0);
3812 		break;
3813 	case MHCR_CHIP_ASIC_REV_5705:
3814 		break;
3815 	default:
3816 		stats_mask = bge_reg_get32(bgep, RCV_LP_STATS_ENABLE_MASK_REG);
3817 		stats_mask &= ~RCV_LP_STATS_DISABLE_MACTQ;
3818 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, stats_mask);
3819 		break;
3820 	}
3821 	bge_reg_set32(bgep, RCV_LP_STATS_CONTROL_REG, RCV_LP_STATS_ENABLE);
3822 
3823 	if (bgep->chipid.rx_rings > 1)
3824 		bge_init_recv_rule(bgep);
3825 
3826 	/*
3827 	 * Steps 55-56: enable Send Data Initiator Statistics
3828 	 */
3829 	bge_reg_put32(bgep, SEND_INIT_STATS_ENABLE_MASK_REG, ~0);
3830 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3831 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3832 		    SEND_INIT_STATS_ENABLE | SEND_INIT_STATS_FASTER);
3833 	} else {
3834 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3835 		    SEND_INIT_STATS_ENABLE);
3836 	}
3837 	/*
3838 	 * Steps 57-58: stop (?) the Host Coalescing Engine
3839 	 */
3840 	if (!bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, ~0))
3841 		retval = DDI_FAILURE;
3842 
3843 	/*
3844 	 * Steps 59-62: initialise Host Coalescing parameters
3845 	 */
3846 	bge_chip_coalesce_update(bgep);
3847 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3848 		bge_reg_put32(bgep, SEND_COALESCE_INT_BD_REG,
3849 		    bge_tx_count_intr);
3850 		bge_reg_put32(bgep, SEND_COALESCE_INT_TICKS_REG,
3851 		    bge_tx_ticks_intr);
3852 		bge_reg_put32(bgep, RCV_COALESCE_INT_BD_REG,
3853 		    bge_rx_count_intr);
3854 		bge_reg_put32(bgep, RCV_COALESCE_INT_TICKS_REG,
3855 		    bge_rx_ticks_intr);
3856 	}
3857 
3858 	/*
3859 	 * Steps 63-64: initialise status block & statistics
3860 	 * host memory addresses
3861 	 * The statistic block does not exist in some chipsets
3862 	 * Step 65: initialise Statistics Coalescing Tick Counter
3863 	 */
3864 	bge_reg_put64(bgep, STATUS_BLOCK_HOST_ADDR_REG,
3865 	    bgep->status_block.cookie.dmac_laddress);
3866 
3867 	/*
3868 	 * Steps 66-67: initialise status block & statistics
3869 	 * NIC-local memory addresses
3870 	 */
3871 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3872 		bge_reg_put64(bgep, STATISTICS_HOST_ADDR_REG,
3873 		    bgep->statistics.cookie.dmac_laddress);
3874 		bge_reg_put32(bgep, STATISTICS_TICKS_REG,
3875 		    STATISTICS_TICKS_DEFAULT);
3876 		bge_reg_put32(bgep, STATUS_BLOCK_BASE_ADDR_REG,
3877 		    NIC_MEM_STATUS_BLOCK);
3878 		bge_reg_put32(bgep, STATISTICS_BASE_ADDR_REG,
3879 		    NIC_MEM_STATISTICS);
3880 	}
3881 
3882 	/*
3883 	 * Steps 68-71: start the Host Coalescing Engine, the Receive BD
3884 	 * Completion Engine, the Receive List Placement Engine, and the
3885 	 * Receive List selector.Pay attention:0x3400 is not exist in BCM5714
3886 	 * and BCM5715.
3887 	 */
3888 	if (bgep->chipid.tx_rings <= COALESCE_64_BYTE_RINGS &&
3889 	    bgep->chipid.rx_rings <= COALESCE_64_BYTE_RINGS)
3890 		coalmode = COALESCE_64_BYTE_STATUS;
3891 	else
3892 		coalmode = 0;
3893 	if (!bge_chip_enable_engine(bgep, HOST_COALESCE_MODE_REG, coalmode))
3894 		retval = DDI_FAILURE;
3895 	if (!bge_chip_enable_engine(bgep, RCV_BD_COMPLETION_MODE_REG,
3896 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3897 		retval = DDI_FAILURE;
3898 	if (!bge_chip_enable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0))
3899 		retval = DDI_FAILURE;
3900 
3901 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3902 		if (!bge_chip_enable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG,
3903 		    STATE_MACHINE_ATTN_ENABLE_BIT))
3904 			retval = DDI_FAILURE;
3905 
3906 	/*
3907 	 * Step 72: Enable MAC DMA engines
3908 	 * Step 73: Clear & enable MAC statistics
3909 	 */
3910 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3911 	    ETHERNET_MODE_ENABLE_FHDE |
3912 	    ETHERNET_MODE_ENABLE_RDE |
3913 	    ETHERNET_MODE_ENABLE_TDE);
3914 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3915 	    ETHERNET_MODE_ENABLE_TX_STATS |
3916 	    ETHERNET_MODE_ENABLE_RX_STATS |
3917 	    ETHERNET_MODE_CLEAR_TX_STATS |
3918 	    ETHERNET_MODE_CLEAR_RX_STATS);
3919 
3920 	/*
3921 	 * Step 74: configure the MLCR (Miscellaneous Local Control
3922 	 * Register); not required, as we set up the MLCR in step 10
3923 	 * (part of the reset code) above.
3924 	 *
3925 	 * Step 75: clear Interrupt Mailbox 0
3926 	 */
3927 	bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 0);
3928 
3929 	/*
3930 	 * Steps 76-87: Gentlemen, start your engines ...
3931 	 *
3932 	 * Enable the DMA Completion Engine, the Write DMA Engine,
3933 	 * the Read DMA Engine, Receive Data Completion Engine,
3934 	 * the MBuf Cluster Free Engine, the Send Data Completion Engine,
3935 	 * the Send BD Completion Engine, the Receive BD Initiator Engine,
3936 	 * the Receive Data Initiator Engine, the Send Data Initiator Engine,
3937 	 * the Send BD Initiator Engine, and the Send BD Selector Engine.
3938 	 *
3939 	 * Beware exhaust fumes?
3940 	 */
3941 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3942 		if (!bge_chip_enable_engine(bgep, DMA_COMPLETION_MODE_REG, 0))
3943 			retval = DDI_FAILURE;
3944 	dma_wrprio = (bge_dma_wrprio << DMA_PRIORITY_SHIFT) |
3945 	    ALL_DMA_ATTN_BITS;
3946 	if ((MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
3947 	    MHCR_CHIP_ASIC_REV_5755) ||
3948 	    (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
3949 	    MHCR_CHIP_ASIC_REV_5906)) {
3950 		dma_wrprio |= DMA_STATUS_TAG_FIX_CQ12384;
3951 	}
3952 	if (!bge_chip_enable_engine(bgep, WRITE_DMA_MODE_REG,
3953 	    dma_wrprio))
3954 		retval = DDI_FAILURE;
3955 	if (!bge_chip_enable_engine(bgep, READ_DMA_MODE_REG,
3956 	    (bge_dma_rdprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS))
3957 		retval = DDI_FAILURE;
3958 	if (!bge_chip_enable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG,
3959 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3960 		retval = DDI_FAILURE;
3961 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3962 		if (!bge_chip_enable_engine(bgep,
3963 		    MBUF_CLUSTER_FREE_MODE_REG, 0))
3964 			retval = DDI_FAILURE;
3965 	if (!bge_chip_enable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0))
3966 		retval = DDI_FAILURE;
3967 	if (!bge_chip_enable_engine(bgep, SEND_BD_COMPLETION_MODE_REG,
3968 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3969 		retval = DDI_FAILURE;
3970 	if (!bge_chip_enable_engine(bgep, RCV_BD_INITIATOR_MODE_REG,
3971 	    RCV_BD_DISABLED_RING_ATTN))
3972 		retval = DDI_FAILURE;
3973 	if (!bge_chip_enable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG,
3974 	    RCV_DATA_BD_ILL_RING_ATTN))
3975 		retval = DDI_FAILURE;
3976 	if (!bge_chip_enable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0))
3977 		retval = DDI_FAILURE;
3978 	if (!bge_chip_enable_engine(bgep, SEND_BD_INITIATOR_MODE_REG,
3979 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3980 		retval = DDI_FAILURE;
3981 	if (!bge_chip_enable_engine(bgep, SEND_BD_SELECTOR_MODE_REG,
3982 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3983 		retval = DDI_FAILURE;
3984 
3985 	/*
3986 	 * Step 88: download firmware -- doesn't apply
3987 	 * Steps 89-90: enable Transmit & Receive MAC Engines
3988 	 */
3989 	if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3990 		retval = DDI_FAILURE;
3991 #ifdef BGE_IPMI_ASF
3992 	if (!bgep->asf_enabled) {
3993 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3994 		    RECEIVE_MODE_KEEP_VLAN_TAG))
3995 			retval = DDI_FAILURE;
3996 	} else {
3997 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 0))
3998 			retval = DDI_FAILURE;
3999 	}
4000 #else
4001 	if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
4002 	    RECEIVE_MODE_KEEP_VLAN_TAG))
4003 		retval = DDI_FAILURE;
4004 #endif
4005 
4006 	/*
4007 	 * Step 91: disable auto-polling of PHY status
4008 	 */
4009 	bge_reg_put32(bgep, MI_MODE_REG, MI_MODE_DEFAULT);
4010 
4011 	/*
4012 	 * Step 92: configure D0 power state (not required)
4013 	 * Step 93: initialise LED control register ()
4014 	 */
4015 	ledctl = LED_CONTROL_DEFAULT;
4016 	switch (bgep->chipid.device) {
4017 	case DEVICE_ID_5700:
4018 	case DEVICE_ID_5700x:
4019 	case DEVICE_ID_5701:
4020 		/*
4021 		 * Switch to 5700 (MAC) mode on these older chips
4022 		 */
4023 		ledctl &= ~LED_CONTROL_LED_MODE_MASK;
4024 		ledctl |= LED_CONTROL_LED_MODE_5700;
4025 		break;
4026 
4027 	default:
4028 		break;
4029 	}
4030 	bge_reg_put32(bgep, ETHERNET_MAC_LED_CONTROL_REG, ledctl);
4031 
4032 	/*
4033 	 * Step 94: activate link
4034 	 */
4035 	bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
4036 
4037 	/*
4038 	 * Step 95: set up physical layer (PHY/SerDes)
4039 	 * restart autoneg (if required)
4040 	 */
4041 	if (reset_phys)
4042 		if (bge_phys_update(bgep) == DDI_FAILURE)
4043 			retval = DDI_FAILURE;
4044 
4045 	/*
4046 	 * Extra step (DSG): hand over all the Receive Buffers to the chip
4047 	 */
4048 	for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
4049 		bge_mbx_put(bgep, bgep->buff[ring].chip_mbx_reg,
4050 		    bgep->buff[ring].rf_next);
4051 
4052 	/*
4053 	 * MSI bits:The least significant MSI 16-bit word.
4054 	 * ISR will be triggered different.
4055 	 */
4056 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
4057 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 0x70);
4058 
4059 	/*
4060 	 * Extra step (DSG): select which interrupts are enabled
4061 	 *
4062 	 * Program the Ethernet MAC engine to signal attention on
4063 	 * Link Change events, then enable interrupts on MAC, DMA,
4064 	 * and FLOW attention signals.
4065 	 */
4066 	bge_reg_set32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG,
4067 	    ETHERNET_EVENT_LINK_INT |
4068 	    ETHERNET_STATUS_PCS_ERROR_INT);
4069 #ifdef BGE_IPMI_ASF
4070 	if (bgep->asf_enabled) {
4071 		bge_reg_set32(bgep, MODE_CONTROL_REG,
4072 		    MODE_INT_ON_FLOW_ATTN |
4073 		    MODE_INT_ON_DMA_ATTN |
4074 		    MODE_HOST_STACK_UP|
4075 		    MODE_INT_ON_MAC_ATTN);
4076 	} else {
4077 #endif
4078 		bge_reg_set32(bgep, MODE_CONTROL_REG,
4079 		    MODE_INT_ON_FLOW_ATTN |
4080 		    MODE_INT_ON_DMA_ATTN |
4081 		    MODE_INT_ON_MAC_ATTN);
4082 #ifdef BGE_IPMI_ASF
4083 	}
4084 #endif
4085 
4086 	/*
4087 	 * Step 97: enable PCI interrupts!!!
4088 	 */
4089 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
4090 		bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR,
4091 		    MHCR_MASK_PCI_INT_OUTPUT);
4092 
4093 	/*
4094 	 * All done!
4095 	 */
4096 	bgep->bge_chip_state = BGE_CHIP_RUNNING;
4097 	return (retval);
4098 }
4099 
4100 
4101 /*
4102  * ========== Hardware interrupt handler ==========
4103  */
4104 
4105 #undef	BGE_DBG
4106 #define	BGE_DBG		BGE_DBG_INT	/* debug flag for this code	*/
4107 
4108 /*
4109  * Sync the status block, then atomically clear the specified bits in
4110  * the <flags-and-tag> field of the status block.
4111  * the <flags> word of the status block, returning the value of the
4112  * <tag> and the <flags> before the bits were cleared.
4113  */
4114 static int bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags);
4115 #pragma	inline(bge_status_sync)
4116 
4117 static int
4118 bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags)
4119 {
4120 	bge_status_t *bsp;
4121 	int retval;
4122 
4123 	BGE_TRACE(("bge_status_sync($%p, 0x%llx)",
4124 	    (void *)bgep, bits));
4125 
4126 	ASSERT(bgep->bge_guard == BGE_GUARD);
4127 
4128 	DMA_SYNC(bgep->status_block, DDI_DMA_SYNC_FORKERNEL);
4129 	retval = bge_check_dma_handle(bgep, bgep->status_block.dma_hdl);
4130 	if (retval != DDI_FM_OK)
4131 		return (retval);
4132 
4133 	bsp = DMA_VPTR(bgep->status_block);
4134 	*flags = bge_atomic_clr64(&bsp->flags_n_tag, bits);
4135 
4136 	BGE_DEBUG(("bge_status_sync($%p, 0x%llx) returning 0x%llx",
4137 	    (void *)bgep, bits, *flags));
4138 
4139 	return (retval);
4140 }
4141 
4142 void bge_wake_factotum(bge_t *bgep);
4143 #pragma	inline(bge_wake_factotum)
4144 
4145 void
4146 bge_wake_factotum(bge_t *bgep)
4147 {
4148 	mutex_enter(bgep->softintrlock);
4149 	if (bgep->factotum_flag == 0) {
4150 		bgep->factotum_flag = 1;
4151 		ddi_trigger_softintr(bgep->factotum_id);
4152 	}
4153 	mutex_exit(bgep->softintrlock);
4154 }
4155 
4156 /*
4157  *	bge_intr() -- handle chip interrupts
4158  */
4159 uint_t bge_intr(caddr_t arg1, caddr_t arg2);
4160 #pragma	no_inline(bge_intr)
4161 
4162 uint_t
4163 bge_intr(caddr_t arg1, caddr_t arg2)
4164 {
4165 	bge_t *bgep = (void *)arg1;		/* private device info	*/
4166 	bge_status_t *bsp;
4167 	uint64_t flags;
4168 	uint32_t regval;
4169 	uint_t result;
4170 	int retval, loop_cnt = 0;
4171 
4172 	BGE_TRACE(("bge_intr($%p) ($%p)", arg1, arg2));
4173 
4174 	/*
4175 	 * GLD v2 checks that s/w setup is complete before passing
4176 	 * interrupts to this routine, thus eliminating the old
4177 	 * (and well-known) race condition around ddi_add_intr()
4178 	 */
4179 	ASSERT(bgep->progress & PROGRESS_HWINT);
4180 
4181 	result = DDI_INTR_UNCLAIMED;
4182 	mutex_enter(bgep->genlock);
4183 
4184 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
4185 		/*
4186 		 * Check whether chip's says it's asserting #INTA;
4187 		 * if not, don't process or claim the interrupt.
4188 		 *
4189 		 * Note that the PCI signal is active low, so the
4190 		 * bit is *zero* when the interrupt is asserted.
4191 		 */
4192 		regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
4193 		if (regval & MLCR_INTA_STATE) {
4194 			if (bge_check_acc_handle(bgep, bgep->io_handle)
4195 			    != DDI_FM_OK)
4196 				goto chip_stop;
4197 			mutex_exit(bgep->genlock);
4198 			return (result);
4199 		}
4200 
4201 		/*
4202 		 * Block further PCI interrupts ...
4203 		 */
4204 		bge_reg_set32(bgep, PCI_CONF_BGE_MHCR,
4205 		    MHCR_MASK_PCI_INT_OUTPUT);
4206 
4207 	} else {
4208 		/*
4209 		 * Check MSI status
4210 		 */
4211 		regval = bge_reg_get32(bgep, MSI_STATUS_REG);
4212 		if (regval & MSI_ERROR_ATTENTION) {
4213 			BGE_REPORT((bgep, "msi error attention,"
4214 			    " status=0x%x", regval));
4215 			bge_reg_put32(bgep, MSI_STATUS_REG, regval);
4216 		}
4217 	}
4218 
4219 	result = DDI_INTR_CLAIMED;
4220 
4221 	BGE_DEBUG(("bge_intr($%p) ($%p) regval 0x%08x", arg1, arg2, regval));
4222 
4223 	/*
4224 	 * Sync the status block and grab the flags-n-tag from it.
4225 	 * We count the number of interrupts where there doesn't
4226 	 * seem to have been a DMA update of the status block; if
4227 	 * it *has* been updated, the counter will be cleared in
4228 	 * the while() loop below ...
4229 	 */
4230 	bgep->missed_dmas += 1;
4231 	bsp = DMA_VPTR(bgep->status_block);
4232 	for (loop_cnt = 0; loop_cnt < bge_intr_max_loop; loop_cnt++) {
4233 		if (bgep->bge_chip_state != BGE_CHIP_RUNNING) {
4234 			/*
4235 			 * bge_chip_stop() may have freed dma area etc
4236 			 * while we were in this interrupt handler -
4237 			 * better not call bge_status_sync()
4238 			 */
4239 			(void) bge_check_acc_handle(bgep,
4240 			    bgep->io_handle);
4241 			mutex_exit(bgep->genlock);
4242 			return (DDI_INTR_CLAIMED);
4243 		}
4244 		retval = bge_status_sync(bgep, STATUS_FLAG_UPDATED,
4245 		    &flags);
4246 		if (retval != DDI_FM_OK) {
4247 			bgep->bge_dma_error = B_TRUE;
4248 			goto chip_stop;
4249 		}
4250 
4251 		if (!(flags & STATUS_FLAG_UPDATED))
4252 			break;
4253 
4254 		/*
4255 		 * Tell the chip that we're processing the interrupt
4256 		 */
4257 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
4258 		    INTERRUPT_MBOX_DISABLE(flags));
4259 		if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4260 		    DDI_FM_OK)
4261 			goto chip_stop;
4262 
4263 		/*
4264 		 * Drop the mutex while we:
4265 		 * 	Receive any newly-arrived packets
4266 		 *	Recycle any newly-finished send buffers
4267 		 */
4268 		bgep->bge_intr_running = B_TRUE;
4269 		mutex_exit(bgep->genlock);
4270 		bge_receive(bgep, bsp);
4271 		bge_recycle(bgep, bsp);
4272 		mutex_enter(bgep->genlock);
4273 		bgep->bge_intr_running = B_FALSE;
4274 
4275 		/*
4276 		 * Tell the chip we've finished processing, and
4277 		 * give it the tag that we got from the status
4278 		 * block earlier, so that it knows just how far
4279 		 * we've gone.  If it's got more for us to do,
4280 		 * it will now update the status block and try
4281 		 * to assert an interrupt (but we've got the
4282 		 * #INTA blocked at present).  If we see the
4283 		 * update, we'll loop around to do some more.
4284 		 * Eventually we'll get out of here ...
4285 		 */
4286 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
4287 		    INTERRUPT_MBOX_ENABLE(flags));
4288 		if (bgep->chipid.pci_type == BGE_PCI_E)
4289 			(void) bge_mbx_get(bgep, INTERRUPT_MBOX_0_REG);
4290 		bgep->missed_dmas = 0;
4291 	}
4292 
4293 	/*
4294 	 * Check for exceptional conditions that we need to handle
4295 	 *
4296 	 * Link status changed
4297 	 * Status block not updated
4298 	 */
4299 	if (flags & STATUS_FLAG_LINK_CHANGED)
4300 		bge_wake_factotum(bgep);
4301 
4302 	if (bgep->missed_dmas) {
4303 		/*
4304 		 * Probably due to the internal status tag not
4305 		 * being reset.  Force a status block update now;
4306 		 * this should ensure that we get an update and
4307 		 * a new interrupt.  After that, we should be in
4308 		 * sync again ...
4309 		 */
4310 		BGE_REPORT((bgep, "interrupt: flags 0x%llx - "
4311 		    "not updated?", flags));
4312 		bgep->missed_updates++;
4313 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG,
4314 		    COALESCE_NOW);
4315 
4316 		if (bgep->missed_dmas >= bge_dma_miss_limit) {
4317 			/*
4318 			 * If this happens multiple times in a row,
4319 			 * it means DMA is just not working.  Maybe
4320 			 * the chip's failed, or maybe there's a
4321 			 * problem on the PCI bus or in the host-PCI
4322 			 * bridge (Tomatillo).
4323 			 *
4324 			 * At all events, we want to stop further
4325 			 * interrupts and let the recovery code take
4326 			 * over to see whether anything can be done
4327 			 * about it ...
4328 			 */
4329 			bge_fm_ereport(bgep,
4330 			    DDI_FM_DEVICE_BADINT_LIMIT);
4331 			goto chip_stop;
4332 		}
4333 	}
4334 
4335 	/*
4336 	 * Reenable assertion of #INTA, unless there's a DMA fault
4337 	 */
4338 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
4339 		bge_reg_clr32(bgep, PCI_CONF_BGE_MHCR,
4340 		    MHCR_MASK_PCI_INT_OUTPUT);
4341 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4342 		    DDI_FM_OK)
4343 			goto chip_stop;
4344 	}
4345 
4346 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4347 		goto chip_stop;
4348 
4349 	mutex_exit(bgep->genlock);
4350 	return (result);
4351 
4352 chip_stop:
4353 #ifdef BGE_IPMI_ASF
4354 	if (bgep->asf_enabled && bgep->asf_status == ASF_STAT_RUN) {
4355 		/*
4356 		 * We must stop ASF heart beat before
4357 		 * bge_chip_stop(), otherwise some
4358 		 * computers (ex. IBM HS20 blade
4359 		 * server) may crash.
4360 		 */
4361 		bge_asf_update_status(bgep);
4362 		bge_asf_stop_timer(bgep);
4363 		bgep->asf_status = ASF_STAT_STOP;
4364 
4365 		bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4366 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4367 	}
4368 #endif
4369 	bge_chip_stop(bgep, B_TRUE);
4370 	(void) bge_check_acc_handle(bgep, bgep->io_handle);
4371 	mutex_exit(bgep->genlock);
4372 	return (result);
4373 }
4374 
4375 /*
4376  * ========== Factotum, implemented as a softint handler ==========
4377  */
4378 
4379 #undef	BGE_DBG
4380 #define	BGE_DBG		BGE_DBG_FACT	/* debug flag for this code	*/
4381 
4382 static void bge_factotum_error_handler(bge_t *bgep);
4383 #pragma	no_inline(bge_factotum_error_handler)
4384 
4385 static void
4386 bge_factotum_error_handler(bge_t *bgep)
4387 {
4388 	uint32_t flow;
4389 	uint32_t rdma;
4390 	uint32_t wdma;
4391 	uint32_t tmac;
4392 	uint32_t rmac;
4393 	uint32_t rxrs;
4394 	uint32_t txrs = 0;
4395 
4396 	ASSERT(mutex_owned(bgep->genlock));
4397 
4398 	/*
4399 	 * Read all the registers that show the possible
4400 	 * reasons for the ERROR bit to be asserted
4401 	 */
4402 	flow = bge_reg_get32(bgep, FLOW_ATTN_REG);
4403 	rdma = bge_reg_get32(bgep, READ_DMA_STATUS_REG);
4404 	wdma = bge_reg_get32(bgep, WRITE_DMA_STATUS_REG);
4405 	tmac = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4406 	rmac = bge_reg_get32(bgep, RECEIVE_MAC_STATUS_REG);
4407 	rxrs = bge_reg_get32(bgep, RX_RISC_STATE_REG);
4408 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4409 		txrs = bge_reg_get32(bgep, TX_RISC_STATE_REG);
4410 
4411 	BGE_DEBUG(("factotum($%p) flow 0x%x rdma 0x%x wdma 0x%x",
4412 	    (void *)bgep, flow, rdma, wdma));
4413 	BGE_DEBUG(("factotum($%p) tmac 0x%x rmac 0x%x rxrs 0x%08x txrs 0x%08x",
4414 	    (void *)bgep, tmac, rmac, rxrs, txrs));
4415 
4416 	/*
4417 	 * For now, just clear all the errors ...
4418 	 */
4419 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4420 		bge_reg_put32(bgep, TX_RISC_STATE_REG, ~0);
4421 	bge_reg_put32(bgep, RX_RISC_STATE_REG, ~0);
4422 	bge_reg_put32(bgep, RECEIVE_MAC_STATUS_REG, ~0);
4423 	bge_reg_put32(bgep, WRITE_DMA_STATUS_REG, ~0);
4424 	bge_reg_put32(bgep, READ_DMA_STATUS_REG, ~0);
4425 	bge_reg_put32(bgep, FLOW_ATTN_REG, ~0);
4426 }
4427 
4428 /*
4429  * Handler for hardware link state change.
4430  *
4431  * When this routine is called, the hardware link state has changed
4432  * and the new state is reflected in the param_* variables.  Here
4433  * we must update the softstate and reprogram the MAC to match.
4434  */
4435 static void bge_factotum_link_handler(bge_t *bgep);
4436 #pragma	no_inline(bge_factotum_link_handler)
4437 
4438 static void
4439 bge_factotum_link_handler(bge_t *bgep)
4440 {
4441 	ASSERT(mutex_owned(bgep->genlock));
4442 
4443 	/*
4444 	 * Update the s/w link_state
4445 	 */
4446 	if (bgep->param_link_up)
4447 		bgep->link_state = LINK_STATE_UP;
4448 	else
4449 		bgep->link_state = LINK_STATE_DOWN;
4450 
4451 	/*
4452 	 * Reprogram the MAC modes to match
4453 	 */
4454 	bge_sync_mac_modes(bgep);
4455 }
4456 
4457 static boolean_t bge_factotum_link_check(bge_t *bgep, int *dma_state);
4458 #pragma	no_inline(bge_factotum_link_check)
4459 
4460 static boolean_t
4461 bge_factotum_link_check(bge_t *bgep, int *dma_state)
4462 {
4463 	boolean_t check;
4464 	uint64_t flags;
4465 	uint32_t tmac_status;
4466 
4467 	ASSERT(mutex_owned(bgep->genlock));
4468 
4469 	/*
4470 	 * Get & clear the writable status bits in the Tx status register
4471 	 * (some bits are write-1-to-clear, others are just readonly).
4472 	 */
4473 	tmac_status = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4474 	bge_reg_put32(bgep, TRANSMIT_MAC_STATUS_REG, tmac_status);
4475 
4476 	/*
4477 	 * Get & clear the ERROR and LINK_CHANGED bits from the status block
4478 	 */
4479 	*dma_state = bge_status_sync(bgep, STATUS_FLAG_ERROR |
4480 	    STATUS_FLAG_LINK_CHANGED, &flags);
4481 	if (*dma_state != DDI_FM_OK)
4482 		return (B_FALSE);
4483 
4484 	/*
4485 	 * Clear any errors flagged in the status block ...
4486 	 */
4487 	if (flags & STATUS_FLAG_ERROR)
4488 		bge_factotum_error_handler(bgep);
4489 
4490 	/*
4491 	 * We need to check the link status if:
4492 	 *	the status block says there's been a link change
4493 	 *	or there's any discrepancy between the various
4494 	 *	flags indicating the link state (link_state,
4495 	 *	param_link_up, and the LINK STATE bit in the
4496 	 *	Transmit MAC status register).
4497 	 */
4498 	check = (flags & STATUS_FLAG_LINK_CHANGED) != 0;
4499 	switch (bgep->link_state) {
4500 	case LINK_STATE_UP:
4501 		check |= (bgep->param_link_up == B_FALSE);
4502 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) == 0);
4503 		break;
4504 
4505 	case LINK_STATE_DOWN:
4506 		check |= (bgep->param_link_up != B_FALSE);
4507 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) != 0);
4508 		break;
4509 
4510 	default:
4511 		check = B_TRUE;
4512 		break;
4513 	}
4514 
4515 	/*
4516 	 * If <check> is false, we're sure the link hasn't changed.
4517 	 * If true, however, it's not yet definitive; we have to call
4518 	 * bge_phys_check() to determine whether the link has settled
4519 	 * into a new state yet ... and if it has, then call the link
4520 	 * state change handler.But when the chip is 5700 in Dell 6650
4521 	 * ,even if check is false, the link may have changed.So we
4522 	 * have to call bge_phys_check() to determine the link state.
4523 	 */
4524 	if (check || bgep->chipid.device == DEVICE_ID_5700) {
4525 		check = bge_phys_check(bgep);
4526 		if (check)
4527 			bge_factotum_link_handler(bgep);
4528 	}
4529 
4530 	return (check);
4531 }
4532 
4533 /*
4534  * Factotum routine to check for Tx stall, using the 'watchdog' counter
4535  */
4536 static boolean_t bge_factotum_stall_check(bge_t *bgep);
4537 #pragma	no_inline(bge_factotum_stall_check)
4538 
4539 static boolean_t
4540 bge_factotum_stall_check(bge_t *bgep)
4541 {
4542 	uint32_t dogval;
4543 
4544 	ASSERT(mutex_owned(bgep->genlock));
4545 
4546 	/*
4547 	 * Specific check for Tx stall ...
4548 	 *
4549 	 * The 'watchdog' counter is incremented whenever a packet
4550 	 * is queued, reset to 1 when some (but not all) buffers
4551 	 * are reclaimed, reset to 0 (disabled) when all buffers
4552 	 * are reclaimed, and shifted left here.  If it exceeds the
4553 	 * threshold value, the chip is assumed to have stalled and
4554 	 * is put into the ERROR state.  The factotum will then reset
4555 	 * it on the next pass.
4556 	 *
4557 	 * All of which should ensure that we don't get into a state
4558 	 * where packets are left pending indefinitely!
4559 	 */
4560 	dogval = bge_atomic_shl32(&bgep->watchdog, 1);
4561 	if (dogval < bge_watchdog_count)
4562 		return (B_FALSE);
4563 
4564 #if !defined(BGE_NETCONSOLE)
4565 	BGE_REPORT((bgep, "Tx stall detected, watchdog code 0x%x", dogval));
4566 #endif
4567 	bge_fm_ereport(bgep, DDI_FM_DEVICE_STALL);
4568 	return (B_TRUE);
4569 }
4570 
4571 /*
4572  * The factotum is woken up when there's something to do that we'd rather
4573  * not do from inside a hardware interrupt handler or high-level cyclic.
4574  * Its two main tasks are:
4575  *	reset & restart the chip after an error
4576  *	check the link status whenever necessary
4577  */
4578 uint_t bge_chip_factotum(caddr_t arg);
4579 #pragma	no_inline(bge_chip_factotum)
4580 
4581 uint_t
4582 bge_chip_factotum(caddr_t arg)
4583 {
4584 	bge_t *bgep;
4585 	uint_t result;
4586 	boolean_t error;
4587 	boolean_t linkchg;
4588 	int dma_state;
4589 
4590 	bgep = (void *)arg;
4591 
4592 	BGE_TRACE(("bge_chip_factotum($%p)", (void *)bgep));
4593 
4594 	mutex_enter(bgep->softintrlock);
4595 	if (bgep->factotum_flag == 0) {
4596 		mutex_exit(bgep->softintrlock);
4597 		return (DDI_INTR_UNCLAIMED);
4598 	}
4599 	bgep->factotum_flag = 0;
4600 	mutex_exit(bgep->softintrlock);
4601 
4602 	result = DDI_INTR_CLAIMED;
4603 	error = B_FALSE;
4604 	linkchg = B_FALSE;
4605 
4606 	mutex_enter(bgep->genlock);
4607 	switch (bgep->bge_chip_state) {
4608 	default:
4609 		break;
4610 
4611 	case BGE_CHIP_RUNNING:
4612 		linkchg = bge_factotum_link_check(bgep, &dma_state);
4613 		error = bge_factotum_stall_check(bgep);
4614 		if (dma_state != DDI_FM_OK) {
4615 			bgep->bge_dma_error = B_TRUE;
4616 			error = B_TRUE;
4617 		}
4618 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4619 			error = B_TRUE;
4620 		if (error)
4621 			bgep->bge_chip_state = BGE_CHIP_ERROR;
4622 		break;
4623 
4624 	case BGE_CHIP_ERROR:
4625 		error = B_TRUE;
4626 		break;
4627 
4628 	case BGE_CHIP_FAULT:
4629 		/*
4630 		 * Fault detected, time to reset ...
4631 		 */
4632 		if (bge_autorecover) {
4633 			if (!(bgep->progress & PROGRESS_BUFS)) {
4634 				/*
4635 				 * if we can't allocate the ring buffers,
4636 				 * try later
4637 				 */
4638 				if (bge_alloc_bufs(bgep) != DDI_SUCCESS) {
4639 					mutex_exit(bgep->genlock);
4640 					return (result);
4641 				}
4642 				bgep->progress |= PROGRESS_BUFS;
4643 			}
4644 			if (!(bgep->progress & PROGRESS_INTR)) {
4645 				bge_init_rings(bgep);
4646 				bge_intr_enable(bgep);
4647 				bgep->progress |= PROGRESS_INTR;
4648 			}
4649 			if (!(bgep->progress & PROGRESS_KSTATS)) {
4650 				bge_init_kstats(bgep,
4651 				    ddi_get_instance(bgep->devinfo));
4652 				bgep->progress |= PROGRESS_KSTATS;
4653 			}
4654 
4655 			BGE_REPORT((bgep, "automatic recovery activated"));
4656 
4657 			if (bge_restart(bgep, B_FALSE) != DDI_SUCCESS) {
4658 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4659 				error = B_TRUE;
4660 			}
4661 			if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4662 			    DDI_FM_OK) {
4663 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4664 				error = B_TRUE;
4665 			}
4666 			if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4667 			    DDI_FM_OK) {
4668 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4669 				error = B_TRUE;
4670 			}
4671 			if (error == B_FALSE) {
4672 #ifdef BGE_IPMI_ASF
4673 				if (bgep->asf_enabled &&
4674 				    bgep->asf_status != ASF_STAT_RUN) {
4675 					bgep->asf_timeout_id = timeout(
4676 					    bge_asf_heartbeat, (void *)bgep,
4677 					    drv_usectohz(
4678 					    BGE_ASF_HEARTBEAT_INTERVAL));
4679 					bgep->asf_status = ASF_STAT_RUN;
4680 				}
4681 #endif
4682 				if (!bgep->manual_reset) {
4683 					ddi_fm_service_impact(bgep->devinfo,
4684 					    DDI_SERVICE_RESTORED);
4685 				}
4686 			}
4687 		}
4688 		break;
4689 	}
4690 
4691 
4692 	/*
4693 	 * If an error is detected, stop the chip now, marking it as
4694 	 * faulty, so that it will be reset next time through ...
4695 	 *
4696 	 * Note that if intr_running is set, then bge_intr() has dropped
4697 	 * genlock to call bge_receive/bge_recycle. Can't stop the chip at
4698 	 * this point so have to wait until the next time the factotum runs.
4699 	 */
4700 	if (error && !bgep->bge_intr_running) {
4701 #ifdef BGE_IPMI_ASF
4702 		if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) {
4703 			/*
4704 			 * We must stop ASF heart beat before bge_chip_stop(),
4705 			 * otherwise some computers (ex. IBM HS20 blade server)
4706 			 * may crash.
4707 			 */
4708 			bge_asf_update_status(bgep);
4709 			bge_asf_stop_timer(bgep);
4710 			bgep->asf_status = ASF_STAT_STOP;
4711 
4712 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4713 			(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4714 		}
4715 #endif
4716 		bge_chip_stop(bgep, B_TRUE);
4717 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
4718 	}
4719 	mutex_exit(bgep->genlock);
4720 
4721 	/*
4722 	 * If the link state changed, tell the world about it.
4723 	 * Note: can't do this while still holding the mutex.
4724 	 */
4725 	if (bgep->link_update_timer == BGE_LINK_UPDATE_TIMEOUT &&
4726 	    bgep->link_state != LINK_STATE_UNKNOWN)
4727 		linkchg = B_TRUE;
4728 	else if (bgep->link_update_timer < BGE_LINK_UPDATE_TIMEOUT &&
4729 	    bgep->link_state == LINK_STATE_DOWN)
4730 		linkchg = B_FALSE;
4731 
4732 	if (linkchg) {
4733 		mac_link_update(bgep->mh, bgep->link_state);
4734 		bgep->link_update_timer = BGE_LINK_UPDATE_DONE;
4735 	}
4736 	if (bgep->manual_reset) {
4737 		bgep->manual_reset = B_FALSE;
4738 	}
4739 
4740 	return (result);
4741 }
4742 
4743 /*
4744  * High-level cyclic handler
4745  *
4746  * This routine schedules a (low-level) softint callback to the
4747  * factotum, and prods the chip to update the status block (which
4748  * will cause a hardware interrupt when complete).
4749  */
4750 void bge_chip_cyclic(void *arg);
4751 #pragma	no_inline(bge_chip_cyclic)
4752 
4753 void
4754 bge_chip_cyclic(void *arg)
4755 {
4756 	bge_t *bgep;
4757 
4758 	bgep = arg;
4759 
4760 	switch (bgep->bge_chip_state) {
4761 	default:
4762 		return;
4763 
4764 	case BGE_CHIP_RUNNING:
4765 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, COALESCE_NOW);
4766 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4767 			ddi_fm_service_impact(bgep->devinfo,
4768 			    DDI_SERVICE_UNAFFECTED);
4769 
4770 		if (bgep->link_update_timer < BGE_LINK_UPDATE_TIMEOUT)
4771 			bgep->link_update_timer++;
4772 
4773 		break;
4774 
4775 	case BGE_CHIP_FAULT:
4776 	case BGE_CHIP_ERROR:
4777 		break;
4778 	}
4779 
4780 	bge_wake_factotum(bgep);
4781 }
4782 
4783 
4784 /*
4785  * ========== Ioctl subfunctions ==========
4786  */
4787 
4788 #undef	BGE_DBG
4789 #define	BGE_DBG		BGE_DBG_PPIO	/* debug flag for this code	*/
4790 
4791 #if	BGE_DEBUGGING || BGE_DO_PPIO
4792 
4793 static void bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4794 #pragma	no_inline(bge_chip_peek_cfg)
4795 
4796 static void
4797 bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4798 {
4799 	uint64_t regval;
4800 	uint64_t regno;
4801 
4802 	BGE_TRACE(("bge_chip_peek_cfg($%p, $%p)",
4803 	    (void *)bgep, (void *)ppd));
4804 
4805 	regno = ppd->pp_acc_offset;
4806 
4807 	switch (ppd->pp_acc_size) {
4808 	case 1:
4809 		regval = pci_config_get8(bgep->cfg_handle, regno);
4810 		break;
4811 
4812 	case 2:
4813 		regval = pci_config_get16(bgep->cfg_handle, regno);
4814 		break;
4815 
4816 	case 4:
4817 		regval = pci_config_get32(bgep->cfg_handle, regno);
4818 		break;
4819 
4820 	case 8:
4821 		regval = pci_config_get64(bgep->cfg_handle, regno);
4822 		break;
4823 	}
4824 
4825 	ppd->pp_acc_data = regval;
4826 }
4827 
4828 static void bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4829 #pragma	no_inline(bge_chip_poke_cfg)
4830 
4831 static void
4832 bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4833 {
4834 	uint64_t regval;
4835 	uint64_t regno;
4836 
4837 	BGE_TRACE(("bge_chip_poke_cfg($%p, $%p)",
4838 	    (void *)bgep, (void *)ppd));
4839 
4840 	regno = ppd->pp_acc_offset;
4841 	regval = ppd->pp_acc_data;
4842 
4843 	switch (ppd->pp_acc_size) {
4844 	case 1:
4845 		pci_config_put8(bgep->cfg_handle, regno, regval);
4846 		break;
4847 
4848 	case 2:
4849 		pci_config_put16(bgep->cfg_handle, regno, regval);
4850 		break;
4851 
4852 	case 4:
4853 		pci_config_put32(bgep->cfg_handle, regno, regval);
4854 		break;
4855 
4856 	case 8:
4857 		pci_config_put64(bgep->cfg_handle, regno, regval);
4858 		break;
4859 	}
4860 }
4861 
4862 static void bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4863 #pragma	no_inline(bge_chip_peek_reg)
4864 
4865 static void
4866 bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4867 {
4868 	uint64_t regval;
4869 	void *regaddr;
4870 
4871 	BGE_TRACE(("bge_chip_peek_reg($%p, $%p)",
4872 	    (void *)bgep, (void *)ppd));
4873 
4874 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4875 
4876 	switch (ppd->pp_acc_size) {
4877 	case 1:
4878 		regval = ddi_get8(bgep->io_handle, regaddr);
4879 		break;
4880 
4881 	case 2:
4882 		regval = ddi_get16(bgep->io_handle, regaddr);
4883 		break;
4884 
4885 	case 4:
4886 		regval = ddi_get32(bgep->io_handle, regaddr);
4887 		break;
4888 
4889 	case 8:
4890 		regval = ddi_get64(bgep->io_handle, regaddr);
4891 		break;
4892 	}
4893 
4894 	ppd->pp_acc_data = regval;
4895 }
4896 
4897 static void bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4898 #pragma	no_inline(bge_chip_peek_reg)
4899 
4900 static void
4901 bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4902 {
4903 	uint64_t regval;
4904 	void *regaddr;
4905 
4906 	BGE_TRACE(("bge_chip_poke_reg($%p, $%p)",
4907 	    (void *)bgep, (void *)ppd));
4908 
4909 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4910 	regval = ppd->pp_acc_data;
4911 
4912 	switch (ppd->pp_acc_size) {
4913 	case 1:
4914 		ddi_put8(bgep->io_handle, regaddr, regval);
4915 		break;
4916 
4917 	case 2:
4918 		ddi_put16(bgep->io_handle, regaddr, regval);
4919 		break;
4920 
4921 	case 4:
4922 		ddi_put32(bgep->io_handle, regaddr, regval);
4923 		break;
4924 
4925 	case 8:
4926 		ddi_put64(bgep->io_handle, regaddr, regval);
4927 		break;
4928 	}
4929 	BGE_PCICHK(bgep);
4930 }
4931 
4932 static void bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4933 #pragma	no_inline(bge_chip_peek_nic)
4934 
4935 static void
4936 bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4937 {
4938 	uint64_t regoff;
4939 	uint64_t regval;
4940 	void *regaddr;
4941 
4942 	BGE_TRACE(("bge_chip_peek_nic($%p, $%p)",
4943 	    (void *)bgep, (void *)ppd));
4944 
4945 	regoff = ppd->pp_acc_offset;
4946 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4947 	regoff &= MWBAR_GRANULE_MASK;
4948 	regoff += NIC_MEM_WINDOW_OFFSET;
4949 	regaddr = PIO_ADDR(bgep, regoff);
4950 
4951 	switch (ppd->pp_acc_size) {
4952 	case 1:
4953 		regval = ddi_get8(bgep->io_handle, regaddr);
4954 		break;
4955 
4956 	case 2:
4957 		regval = ddi_get16(bgep->io_handle, regaddr);
4958 		break;
4959 
4960 	case 4:
4961 		regval = ddi_get32(bgep->io_handle, regaddr);
4962 		break;
4963 
4964 	case 8:
4965 		regval = ddi_get64(bgep->io_handle, regaddr);
4966 		break;
4967 	}
4968 
4969 	ppd->pp_acc_data = regval;
4970 }
4971 
4972 static void bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4973 #pragma	no_inline(bge_chip_poke_nic)
4974 
4975 static void
4976 bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4977 {
4978 	uint64_t regoff;
4979 	uint64_t regval;
4980 	void *regaddr;
4981 
4982 	BGE_TRACE(("bge_chip_poke_nic($%p, $%p)",
4983 	    (void *)bgep, (void *)ppd));
4984 
4985 	regoff = ppd->pp_acc_offset;
4986 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4987 	regoff &= MWBAR_GRANULE_MASK;
4988 	regoff += NIC_MEM_WINDOW_OFFSET;
4989 	regaddr = PIO_ADDR(bgep, regoff);
4990 	regval = ppd->pp_acc_data;
4991 
4992 	switch (ppd->pp_acc_size) {
4993 	case 1:
4994 		ddi_put8(bgep->io_handle, regaddr, regval);
4995 		break;
4996 
4997 	case 2:
4998 		ddi_put16(bgep->io_handle, regaddr, regval);
4999 		break;
5000 
5001 	case 4:
5002 		ddi_put32(bgep->io_handle, regaddr, regval);
5003 		break;
5004 
5005 	case 8:
5006 		ddi_put64(bgep->io_handle, regaddr, regval);
5007 		break;
5008 	}
5009 	BGE_PCICHK(bgep);
5010 }
5011 
5012 static void bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd);
5013 #pragma	no_inline(bge_chip_peek_mii)
5014 
5015 static void
5016 bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd)
5017 {
5018 	BGE_TRACE(("bge_chip_peek_mii($%p, $%p)",
5019 	    (void *)bgep, (void *)ppd));
5020 
5021 	ppd->pp_acc_data = bge_mii_get16(bgep, ppd->pp_acc_offset/2);
5022 }
5023 
5024 static void bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd);
5025 #pragma	no_inline(bge_chip_poke_mii)
5026 
5027 static void
5028 bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd)
5029 {
5030 	BGE_TRACE(("bge_chip_poke_mii($%p, $%p)",
5031 	    (void *)bgep, (void *)ppd));
5032 
5033 	bge_mii_put16(bgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
5034 }
5035 
5036 #if	BGE_SEE_IO32
5037 
5038 static void bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
5039 #pragma	no_inline(bge_chip_peek_seeprom)
5040 
5041 static void
5042 bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
5043 {
5044 	uint32_t data;
5045 	int err;
5046 
5047 	BGE_TRACE(("bge_chip_peek_seeprom($%p, $%p)",
5048 	    (void *)bgep, (void *)ppd));
5049 
5050 	err = bge_nvmem_rw32(bgep, BGE_SEE_READ, ppd->pp_acc_offset, &data);
5051 	ppd->pp_acc_data = err ? ~0ull : data;
5052 }
5053 
5054 static void bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
5055 #pragma	no_inline(bge_chip_poke_seeprom)
5056 
5057 static void
5058 bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
5059 {
5060 	uint32_t data;
5061 
5062 	BGE_TRACE(("bge_chip_poke_seeprom($%p, $%p)",
5063 	    (void *)bgep, (void *)ppd));
5064 
5065 	data = ppd->pp_acc_data;
5066 	(void) bge_nvmem_rw32(bgep, BGE_SEE_WRITE, ppd->pp_acc_offset, &data);
5067 }
5068 #endif	/* BGE_SEE_IO32 */
5069 
5070 #if	BGE_FLASH_IO32
5071 
5072 static void bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd);
5073 #pragma	no_inline(bge_chip_peek_flash)
5074 
5075 static void
5076 bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd)
5077 {
5078 	uint32_t data;
5079 	int err;
5080 
5081 	BGE_TRACE(("bge_chip_peek_flash($%p, $%p)",
5082 	    (void *)bgep, (void *)ppd));
5083 
5084 	err = bge_nvmem_rw32(bgep, BGE_FLASH_READ, ppd->pp_acc_offset, &data);
5085 	ppd->pp_acc_data = err ? ~0ull : data;
5086 }
5087 
5088 static void bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd);
5089 #pragma	no_inline(bge_chip_poke_flash)
5090 
5091 static void
5092 bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd)
5093 {
5094 	uint32_t data;
5095 
5096 	BGE_TRACE(("bge_chip_poke_flash($%p, $%p)",
5097 	    (void *)bgep, (void *)ppd));
5098 
5099 	data = ppd->pp_acc_data;
5100 	(void) bge_nvmem_rw32(bgep, BGE_FLASH_WRITE,
5101 	    ppd->pp_acc_offset, &data);
5102 }
5103 #endif	/* BGE_FLASH_IO32 */
5104 
5105 static void bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd);
5106 #pragma	no_inline(bge_chip_peek_mem)
5107 
5108 static void
5109 bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd)
5110 {
5111 	uint64_t regval;
5112 	void *vaddr;
5113 
5114 	BGE_TRACE(("bge_chip_peek_bge($%p, $%p)",
5115 	    (void *)bgep, (void *)ppd));
5116 
5117 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5118 
5119 	switch (ppd->pp_acc_size) {
5120 	case 1:
5121 		regval = *(uint8_t *)vaddr;
5122 		break;
5123 
5124 	case 2:
5125 		regval = *(uint16_t *)vaddr;
5126 		break;
5127 
5128 	case 4:
5129 		regval = *(uint32_t *)vaddr;
5130 		break;
5131 
5132 	case 8:
5133 		regval = *(uint64_t *)vaddr;
5134 		break;
5135 	}
5136 
5137 	BGE_DEBUG(("bge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
5138 	    (void *)bgep, (void *)ppd, regval, vaddr));
5139 
5140 	ppd->pp_acc_data = regval;
5141 }
5142 
5143 static void bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd);
5144 #pragma	no_inline(bge_chip_poke_mem)
5145 
5146 static void
5147 bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd)
5148 {
5149 	uint64_t regval;
5150 	void *vaddr;
5151 
5152 	BGE_TRACE(("bge_chip_poke_mem($%p, $%p)",
5153 	    (void *)bgep, (void *)ppd));
5154 
5155 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5156 	regval = ppd->pp_acc_data;
5157 
5158 	BGE_DEBUG(("bge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
5159 	    (void *)bgep, (void *)ppd, regval, vaddr));
5160 
5161 	switch (ppd->pp_acc_size) {
5162 	case 1:
5163 		*(uint8_t *)vaddr = (uint8_t)regval;
5164 		break;
5165 
5166 	case 2:
5167 		*(uint16_t *)vaddr = (uint16_t)regval;
5168 		break;
5169 
5170 	case 4:
5171 		*(uint32_t *)vaddr = (uint32_t)regval;
5172 		break;
5173 
5174 	case 8:
5175 		*(uint64_t *)vaddr = (uint64_t)regval;
5176 		break;
5177 	}
5178 }
5179 
5180 static enum ioc_reply bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5181 					struct iocblk *iocp);
5182 #pragma	no_inline(bge_pp_ioctl)
5183 
5184 static enum ioc_reply
5185 bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5186 {
5187 	void (*ppfn)(bge_t *bgep, bge_peekpoke_t *ppd);
5188 	bge_peekpoke_t *ppd;
5189 	dma_area_t *areap;
5190 	uint64_t sizemask;
5191 	uint64_t mem_va;
5192 	uint64_t maxoff;
5193 	boolean_t peek;
5194 
5195 	switch (cmd) {
5196 	default:
5197 		/* NOTREACHED */
5198 		bge_error(bgep, "bge_pp_ioctl: invalid cmd 0x%x", cmd);
5199 		return (IOC_INVAL);
5200 
5201 	case BGE_PEEK:
5202 		peek = B_TRUE;
5203 		break;
5204 
5205 	case BGE_POKE:
5206 		peek = B_FALSE;
5207 		break;
5208 	}
5209 
5210 	/*
5211 	 * Validate format of ioctl
5212 	 */
5213 	if (iocp->ioc_count != sizeof (bge_peekpoke_t))
5214 		return (IOC_INVAL);
5215 	if (mp->b_cont == NULL)
5216 		return (IOC_INVAL);
5217 	ppd = (void *)mp->b_cont->b_rptr;
5218 
5219 	/*
5220 	 * Validate request parameters
5221 	 */
5222 	switch (ppd->pp_acc_space) {
5223 	default:
5224 		return (IOC_INVAL);
5225 
5226 	case BGE_PP_SPACE_CFG:
5227 		/*
5228 		 * Config space
5229 		 */
5230 		sizemask = 8|4|2|1;
5231 		mem_va = 0;
5232 		maxoff = PCI_CONF_HDR_SIZE;
5233 		ppfn = peek ? bge_chip_peek_cfg : bge_chip_poke_cfg;
5234 		break;
5235 
5236 	case BGE_PP_SPACE_REG:
5237 		/*
5238 		 * Memory-mapped I/O space
5239 		 */
5240 		sizemask = 8|4|2|1;
5241 		mem_va = 0;
5242 		maxoff = RIAAR_REGISTER_MAX;
5243 		ppfn = peek ? bge_chip_peek_reg : bge_chip_poke_reg;
5244 		break;
5245 
5246 	case BGE_PP_SPACE_NIC:
5247 		/*
5248 		 * NIC on-chip memory
5249 		 */
5250 		sizemask = 8|4|2|1;
5251 		mem_va = 0;
5252 		maxoff = MWBAR_ONCHIP_MAX;
5253 		ppfn = peek ? bge_chip_peek_nic : bge_chip_poke_nic;
5254 		break;
5255 
5256 	case BGE_PP_SPACE_MII:
5257 		/*
5258 		 * PHY's MII registers
5259 		 * NB: all PHY registers are two bytes, but the
5260 		 * addresses increment in ones (word addressing).
5261 		 * So we scale the address here, then undo the
5262 		 * transformation inside the peek/poke functions.
5263 		 */
5264 		ppd->pp_acc_offset *= 2;
5265 		sizemask = 2;
5266 		mem_va = 0;
5267 		maxoff = (MII_MAXREG+1)*2;
5268 		ppfn = peek ? bge_chip_peek_mii : bge_chip_poke_mii;
5269 		break;
5270 
5271 #if	BGE_SEE_IO32
5272 	case BGE_PP_SPACE_SEEPROM:
5273 		/*
5274 		 * Attached SEEPROM(s), if any.
5275 		 * NB: we use the high-order bits of the 'address' as
5276 		 * a device select to accommodate multiple SEEPROMS,
5277 		 * If each one is the maximum size (64kbytes), this
5278 		 * makes them appear contiguous.  Otherwise, there may
5279 		 * be holes in the mapping.  ENxS doesn't have any
5280 		 * SEEPROMs anyway ...
5281 		 */
5282 		sizemask = 4;
5283 		mem_va = 0;
5284 		maxoff = SEEPROM_DEV_AND_ADDR_MASK;
5285 		ppfn = peek ? bge_chip_peek_seeprom : bge_chip_poke_seeprom;
5286 		break;
5287 #endif	/* BGE_SEE_IO32 */
5288 
5289 #if	BGE_FLASH_IO32
5290 	case BGE_PP_SPACE_FLASH:
5291 		/*
5292 		 * Attached Flash device (if any); a maximum of one device
5293 		 * is currently supported.  But it can be up to 1MB (unlike
5294 		 * the 64k limit on SEEPROMs) so why would you need more ;-)
5295 		 */
5296 		sizemask = 4;
5297 		mem_va = 0;
5298 		maxoff = NVM_FLASH_ADDR_MASK;
5299 		ppfn = peek ? bge_chip_peek_flash : bge_chip_poke_flash;
5300 		break;
5301 #endif	/* BGE_FLASH_IO32 */
5302 
5303 	case BGE_PP_SPACE_BGE:
5304 		/*
5305 		 * BGE data structure!
5306 		 */
5307 		sizemask = 8|4|2|1;
5308 		mem_va = (uintptr_t)bgep;
5309 		maxoff = sizeof (*bgep);
5310 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5311 		break;
5312 
5313 	case BGE_PP_SPACE_STATUS:
5314 	case BGE_PP_SPACE_STATISTICS:
5315 	case BGE_PP_SPACE_TXDESC:
5316 	case BGE_PP_SPACE_TXBUFF:
5317 	case BGE_PP_SPACE_RXDESC:
5318 	case BGE_PP_SPACE_RXBUFF:
5319 		/*
5320 		 * Various DMA_AREAs
5321 		 */
5322 		switch (ppd->pp_acc_space) {
5323 		case BGE_PP_SPACE_TXDESC:
5324 			areap = &bgep->tx_desc;
5325 			break;
5326 		case BGE_PP_SPACE_TXBUFF:
5327 			areap = &bgep->tx_buff[0];
5328 			break;
5329 		case BGE_PP_SPACE_RXDESC:
5330 			areap = &bgep->rx_desc[0];
5331 			break;
5332 		case BGE_PP_SPACE_RXBUFF:
5333 			areap = &bgep->rx_buff[0];
5334 			break;
5335 		case BGE_PP_SPACE_STATUS:
5336 			areap = &bgep->status_block;
5337 			break;
5338 		case BGE_PP_SPACE_STATISTICS:
5339 			if (bgep->chipid.statistic_type == BGE_STAT_BLK)
5340 				areap = &bgep->statistics;
5341 			break;
5342 		}
5343 
5344 		sizemask = 8|4|2|1;
5345 		mem_va = (uintptr_t)areap->mem_va;
5346 		maxoff = areap->alength;
5347 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5348 		break;
5349 	}
5350 
5351 	switch (ppd->pp_acc_size) {
5352 	default:
5353 		return (IOC_INVAL);
5354 
5355 	case 8:
5356 	case 4:
5357 	case 2:
5358 	case 1:
5359 		if ((ppd->pp_acc_size & sizemask) == 0)
5360 			return (IOC_INVAL);
5361 		break;
5362 	}
5363 
5364 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
5365 		return (IOC_INVAL);
5366 
5367 	if (ppd->pp_acc_offset >= maxoff)
5368 		return (IOC_INVAL);
5369 
5370 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
5371 		return (IOC_INVAL);
5372 
5373 	/*
5374 	 * All OK - go do it!
5375 	 */
5376 	ppd->pp_acc_offset += mem_va;
5377 	(*ppfn)(bgep, ppd);
5378 	return (peek ? IOC_REPLY : IOC_ACK);
5379 }
5380 
5381 static enum ioc_reply bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5382 					struct iocblk *iocp);
5383 #pragma	no_inline(bge_diag_ioctl)
5384 
5385 static enum ioc_reply
5386 bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5387 {
5388 	ASSERT(mutex_owned(bgep->genlock));
5389 
5390 	switch (cmd) {
5391 	default:
5392 		/* NOTREACHED */
5393 		bge_error(bgep, "bge_diag_ioctl: invalid cmd 0x%x", cmd);
5394 		return (IOC_INVAL);
5395 
5396 	case BGE_DIAG:
5397 		/*
5398 		 * Currently a no-op
5399 		 */
5400 		return (IOC_ACK);
5401 
5402 	case BGE_PEEK:
5403 	case BGE_POKE:
5404 		return (bge_pp_ioctl(bgep, cmd, mp, iocp));
5405 
5406 	case BGE_PHY_RESET:
5407 		return (IOC_RESTART_ACK);
5408 
5409 	case BGE_SOFT_RESET:
5410 	case BGE_HARD_RESET:
5411 		/*
5412 		 * Reset and reinitialise the 570x hardware
5413 		 */
5414 		bgep->bge_chip_state = BGE_CHIP_FAULT;
5415 		ddi_trigger_softintr(bgep->factotum_id);
5416 		(void) bge_restart(bgep, cmd == BGE_HARD_RESET);
5417 		return (IOC_ACK);
5418 	}
5419 
5420 	/* NOTREACHED */
5421 }
5422 
5423 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5424 
5425 static enum ioc_reply bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5426 				    struct iocblk *iocp);
5427 #pragma	no_inline(bge_mii_ioctl)
5428 
5429 static enum ioc_reply
5430 bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5431 {
5432 	struct bge_mii_rw *miirwp;
5433 
5434 	/*
5435 	 * Validate format of ioctl
5436 	 */
5437 	if (iocp->ioc_count != sizeof (struct bge_mii_rw))
5438 		return (IOC_INVAL);
5439 	if (mp->b_cont == NULL)
5440 		return (IOC_INVAL);
5441 	miirwp = (void *)mp->b_cont->b_rptr;
5442 
5443 	/*
5444 	 * Validate request parameters ...
5445 	 */
5446 	if (miirwp->mii_reg > MII_MAXREG)
5447 		return (IOC_INVAL);
5448 
5449 	switch (cmd) {
5450 	default:
5451 		/* NOTREACHED */
5452 		bge_error(bgep, "bge_mii_ioctl: invalid cmd 0x%x", cmd);
5453 		return (IOC_INVAL);
5454 
5455 	case BGE_MII_READ:
5456 		miirwp->mii_data = bge_mii_get16(bgep, miirwp->mii_reg);
5457 		return (IOC_REPLY);
5458 
5459 	case BGE_MII_WRITE:
5460 		bge_mii_put16(bgep, miirwp->mii_reg, miirwp->mii_data);
5461 		return (IOC_ACK);
5462 	}
5463 
5464 	/* NOTREACHED */
5465 }
5466 
5467 #if	BGE_SEE_IO32
5468 
5469 static enum ioc_reply bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5470 				    struct iocblk *iocp);
5471 #pragma	no_inline(bge_see_ioctl)
5472 
5473 static enum ioc_reply
5474 bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5475 {
5476 	struct bge_see_rw *seerwp;
5477 
5478 	/*
5479 	 * Validate format of ioctl
5480 	 */
5481 	if (iocp->ioc_count != sizeof (struct bge_see_rw))
5482 		return (IOC_INVAL);
5483 	if (mp->b_cont == NULL)
5484 		return (IOC_INVAL);
5485 	seerwp = (void *)mp->b_cont->b_rptr;
5486 
5487 	/*
5488 	 * Validate request parameters ...
5489 	 */
5490 	if (seerwp->see_addr & ~SEEPROM_DEV_AND_ADDR_MASK)
5491 		return (IOC_INVAL);
5492 
5493 	switch (cmd) {
5494 	default:
5495 		/* NOTREACHED */
5496 		bge_error(bgep, "bge_see_ioctl: invalid cmd 0x%x", cmd);
5497 		return (IOC_INVAL);
5498 
5499 	case BGE_SEE_READ:
5500 	case BGE_SEE_WRITE:
5501 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5502 		    seerwp->see_addr, &seerwp->see_data);
5503 		return (IOC_REPLY);
5504 	}
5505 
5506 	/* NOTREACHED */
5507 }
5508 
5509 #endif	/* BGE_SEE_IO32 */
5510 
5511 #if	BGE_FLASH_IO32
5512 
5513 static enum ioc_reply bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5514 				    struct iocblk *iocp);
5515 #pragma	no_inline(bge_flash_ioctl)
5516 
5517 static enum ioc_reply
5518 bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5519 {
5520 	struct bge_flash_rw *flashrwp;
5521 
5522 	/*
5523 	 * Validate format of ioctl
5524 	 */
5525 	if (iocp->ioc_count != sizeof (struct bge_flash_rw))
5526 		return (IOC_INVAL);
5527 	if (mp->b_cont == NULL)
5528 		return (IOC_INVAL);
5529 	flashrwp = (void *)mp->b_cont->b_rptr;
5530 
5531 	/*
5532 	 * Validate request parameters ...
5533 	 */
5534 	if (flashrwp->flash_addr & ~NVM_FLASH_ADDR_MASK)
5535 		return (IOC_INVAL);
5536 
5537 	switch (cmd) {
5538 	default:
5539 		/* NOTREACHED */
5540 		bge_error(bgep, "bge_flash_ioctl: invalid cmd 0x%x", cmd);
5541 		return (IOC_INVAL);
5542 
5543 	case BGE_FLASH_READ:
5544 	case BGE_FLASH_WRITE:
5545 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5546 		    flashrwp->flash_addr, &flashrwp->flash_data);
5547 		return (IOC_REPLY);
5548 	}
5549 
5550 	/* NOTREACHED */
5551 }
5552 
5553 #endif	/* BGE_FLASH_IO32 */
5554 
5555 enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp,
5556 				struct iocblk *iocp);
5557 #pragma	no_inline(bge_chip_ioctl)
5558 
5559 enum ioc_reply
5560 bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
5561 {
5562 	int cmd;
5563 
5564 	BGE_TRACE(("bge_chip_ioctl($%p, $%p, $%p, $%p)",
5565 	    (void *)bgep, (void *)wq, (void *)mp, (void *)iocp));
5566 
5567 	ASSERT(mutex_owned(bgep->genlock));
5568 
5569 	cmd = iocp->ioc_cmd;
5570 	switch (cmd) {
5571 	default:
5572 		/* NOTREACHED */
5573 		bge_error(bgep, "bge_chip_ioctl: invalid cmd 0x%x", cmd);
5574 		return (IOC_INVAL);
5575 
5576 	case BGE_DIAG:
5577 	case BGE_PEEK:
5578 	case BGE_POKE:
5579 	case BGE_PHY_RESET:
5580 	case BGE_SOFT_RESET:
5581 	case BGE_HARD_RESET:
5582 #if	BGE_DEBUGGING || BGE_DO_PPIO
5583 		return (bge_diag_ioctl(bgep, cmd, mp, iocp));
5584 #else
5585 		return (IOC_INVAL);
5586 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5587 
5588 	case BGE_MII_READ:
5589 	case BGE_MII_WRITE:
5590 		return (bge_mii_ioctl(bgep, cmd, mp, iocp));
5591 
5592 #if	BGE_SEE_IO32
5593 	case BGE_SEE_READ:
5594 	case BGE_SEE_WRITE:
5595 		return (bge_see_ioctl(bgep, cmd, mp, iocp));
5596 #endif	/* BGE_SEE_IO32 */
5597 
5598 #if	BGE_FLASH_IO32
5599 	case BGE_FLASH_READ:
5600 	case BGE_FLASH_WRITE:
5601 		return (bge_flash_ioctl(bgep, cmd, mp, iocp));
5602 #endif	/* BGE_FLASH_IO32 */
5603 	}
5604 
5605 	/* NOTREACHED */
5606 }
5607 
5608 /* ARGSUSED */
5609 void
5610 bge_chip_blank(void *arg, time_t ticks, uint_t count, int flag)
5611 {
5612 	recv_ring_t *rrp = arg;
5613 	bge_t *bgep = rrp->bgep;
5614 
5615 	mutex_enter(bgep->genlock);
5616 	rrp->poll_flag = flag;
5617 #ifdef NOT_YET
5618 	/*
5619 	 * XXX-Sunay: Since most broadcom cards support only one
5620 	 * interrupt but multiple rx rings, we can't disable the
5621 	 * physical interrupt. This need to be done via capability
5622 	 * negotiation depending on the NIC.
5623 	 */
5624 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, ticks);
5625 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, count);
5626 #endif
5627 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5628 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
5629 	mutex_exit(bgep->genlock);
5630 }
5631 
5632 #ifdef BGE_IPMI_ASF
5633 
5634 uint32_t
5635 bge_nic_read32(bge_t *bgep, bge_regno_t addr)
5636 {
5637 	uint32_t data;
5638 
5639 #ifndef __sparc
5640 	if (!bgep->asf_wordswapped) {
5641 		/* a workaround word swap error */
5642 		if (addr & 4)
5643 			addr = addr - 4;
5644 		else
5645 			addr = addr + 4;
5646 	}
5647 #endif
5648 
5649 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
5650 	data = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR);
5651 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
5652 
5653 	data = LE_32(data);
5654 	return (data);
5655 }
5656 
5657 void
5658 bge_asf_update_status(bge_t *bgep)
5659 {
5660 	uint32_t event;
5661 
5662 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_ALIVE);
5663 	bge_nic_put32(bgep, BGE_CMD_LENGTH_MAILBOX, 4);
5664 	bge_nic_put32(bgep, BGE_CMD_DATA_MAILBOX,   3);
5665 
5666 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5667 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5668 }
5669 
5670 
5671 /*
5672  * The driver is supposed to notify ASF that the OS is still running
5673  * every three seconds, otherwise the management server may attempt
5674  * to reboot the machine.  If it hasn't actually failed, this is
5675  * not a desirable result.  However, this isn't running as a real-time
5676  * thread, and even if it were, it might not be able to generate the
5677  * heartbeat in a timely manner due to system load.  As it isn't a
5678  * significant strain on the machine, we will set the interval to half
5679  * of the required value.
5680  */
5681 void
5682 bge_asf_heartbeat(void *arg)
5683 {
5684 	bge_t *bgep = (bge_t *)arg;
5685 
5686 	mutex_enter(bgep->genlock);
5687 	bge_asf_update_status((bge_t *)bgep);
5688 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5689 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5690 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
5691 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5692 	mutex_exit(bgep->genlock);
5693 	((bge_t *)bgep)->asf_timeout_id = timeout(bge_asf_heartbeat, bgep,
5694 	    drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
5695 }
5696 
5697 
5698 void
5699 bge_asf_stop_timer(bge_t *bgep)
5700 {
5701 	timeout_id_t tmp_id = 0;
5702 
5703 	while ((bgep->asf_timeout_id != 0) &&
5704 	    (tmp_id != bgep->asf_timeout_id)) {
5705 		tmp_id = bgep->asf_timeout_id;
5706 		(void) untimeout(tmp_id);
5707 	}
5708 	bgep->asf_timeout_id = 0;
5709 }
5710 
5711 
5712 
5713 /*
5714  * This function should be placed at the earliest position of bge_attach().
5715  */
5716 void
5717 bge_asf_get_config(bge_t *bgep)
5718 {
5719 	uint32_t nicsig;
5720 	uint32_t niccfg;
5721 
5722 	bgep->asf_enabled = B_FALSE;
5723 	nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR);
5724 	if (nicsig == BGE_NIC_DATA_SIG) {
5725 		niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR);
5726 		if (niccfg & BGE_NIC_CFG_ENABLE_ASF)
5727 			/*
5728 			 * Here, we don't consider BAXTER, because BGE haven't
5729 			 * supported BAXTER (that is 5752). Also, as I know,
5730 			 * BAXTER doesn't support ASF feature.
5731 			 */
5732 			bgep->asf_enabled = B_TRUE;
5733 		else
5734 			bgep->asf_enabled = B_FALSE;
5735 	} else
5736 		bgep->asf_enabled = B_FALSE;
5737 }
5738 
5739 
5740 void
5741 bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode)
5742 {
5743 	uint32_t tries;
5744 	uint32_t event;
5745 
5746 	ASSERT(bgep->asf_enabled);
5747 
5748 	/* Issues "pause firmware" command and wait for ACK */
5749 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_PAUSE_FW);
5750 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5751 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5752 
5753 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5754 	tries = 0;
5755 	while ((event & RRER_ASF_EVENT) && (tries < 100)) {
5756 		drv_usecwait(1);
5757 		tries ++;
5758 		event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5759 	}
5760 
5761 	bge_nic_put32(bgep, BGE_FIRMWARE_MAILBOX,
5762 	    BGE_MAGIC_NUM_FIRMWARE_INIT_DONE);
5763 
5764 	if (bgep->asf_newhandshake) {
5765 		switch (mode) {
5766 		case BGE_INIT_RESET:
5767 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5768 			    BGE_DRV_STATE_START);
5769 			break;
5770 		case BGE_SHUTDOWN_RESET:
5771 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5772 			    BGE_DRV_STATE_UNLOAD);
5773 			break;
5774 		case BGE_SUSPEND_RESET:
5775 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5776 			    BGE_DRV_STATE_SUSPEND);
5777 			break;
5778 		default:
5779 			break;
5780 		}
5781 	}
5782 }
5783 
5784 
5785 void
5786 bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode)
5787 {
5788 	switch (mode) {
5789 	case BGE_INIT_RESET:
5790 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5791 		    BGE_DRV_STATE_START);
5792 		break;
5793 	case BGE_SHUTDOWN_RESET:
5794 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5795 		    BGE_DRV_STATE_UNLOAD);
5796 		break;
5797 	case BGE_SUSPEND_RESET:
5798 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5799 		    BGE_DRV_STATE_SUSPEND);
5800 		break;
5801 	default:
5802 		break;
5803 	}
5804 }
5805 
5806 
5807 void
5808 bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode)
5809 {
5810 	switch (mode) {
5811 	case BGE_INIT_RESET:
5812 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5813 		    BGE_DRV_STATE_START_DONE);
5814 		break;
5815 	case BGE_SHUTDOWN_RESET:
5816 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5817 		    BGE_DRV_STATE_UNLOAD_DONE);
5818 		break;
5819 	default:
5820 		break;
5821 	}
5822 }
5823 
5824 #endif /* BGE_IPMI_ASF */
5825