xref: /titanic_41/usr/src/uts/common/io/bge/bge_chip2.c (revision 200c5a5a428f15c16e2a526ed69d462af62e8e1a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "bge_impl.h"
30 
31 #define	PIO_ADDR(bgep, offset)	((void *)((caddr_t)(bgep)->io_regs+(offset)))
32 
33 /*
34  * Future features ... ?
35  */
36 #define	BGE_CFG_IO8	1	/* 8/16-bit cfg space BIS/BIC	*/
37 #define	BGE_IND_IO32	1	/* indirect access code		*/
38 #define	BGE_SEE_IO32	1	/* SEEPROM access code		*/
39 #define	BGE_FLASH_IO32	1	/* FLASH access code		*/
40 
41 /*
42  * BGE MSI tunable:
43  *
44  * By default MSI is enabled on all supported platforms but it is disabled
45  * for some Broadcom chips due to known MSI hardware issues. Currently MSI
46  * is enabled only for 5714C A2 and 5715C A2 broadcom chips.
47  */
48 #if defined(__sparc)
49 boolean_t bge_enable_msi = B_TRUE;
50 #else
51 boolean_t bge_enable_msi = B_FALSE;
52 #endif
53 
54 /*
55  * PCI-X/PCI-E relaxed ordering tunable for OS/Nexus driver
56  */
57 boolean_t bge_relaxed_ordering = B_TRUE;
58 
59 /*
60  * Property names
61  */
62 static char knownids_propname[] = "bge-known-subsystems";
63 
64 /*
65  * Patchable globals:
66  *
67  *	bge_autorecover
68  *		Enables/disables automatic recovery after fault detection
69  *
70  *	bge_mlcr_default
71  *		Value to program into the MLCR; controls the chip's GPIO pins
72  *
73  *	bge_dma_{rd,wr}prio
74  *		Relative priorities of DMA reads & DMA writes respectively.
75  *		These may each be patched to any value 0-3.  Equal values
76  *		will give "fair" (round-robin) arbitration for PCI access.
77  *		Unequal values will give one or the other function priority.
78  *
79  *	bge_dma_rwctrl
80  *		Value to put in the Read/Write DMA control register.  See
81  *	        the Broadcom PRM for things you can fiddle with in this
82  *		register ...
83  *
84  *	bge_{tx,rx}_{count,ticks}_{norm,intr}
85  *		Send/receive interrupt coalescing parameters.  Counts are
86  *		#s of descriptors, ticks are in microseconds.  *norm* values
87  *		apply between status updates/interrupts; the *intr* values
88  *		refer to the 'during-interrupt' versions - see the PRM.
89  *
90  *		NOTE: these values have been determined by measurement. They
91  *		differ significantly from the values recommended in the PRM.
92  */
93 static uint32_t bge_autorecover = 1;
94 static uint32_t bge_mlcr_default = MLCR_DEFAULT;
95 static uint32_t bge_mlcr_default_5714 = MLCR_DEFAULT_5714;
96 
97 static uint32_t bge_dma_rdprio = 1;
98 static uint32_t bge_dma_wrprio = 0;
99 static uint32_t bge_dma_rwctrl = PDRWCR_VAR_DEFAULT;
100 static uint32_t bge_dma_rwctrl_5721 = PDRWCR_VAR_5721;
101 static uint32_t bge_dma_rwctrl_5714 = PDRWCR_VAR_5714;
102 static uint32_t bge_dma_rwctrl_5715 = PDRWCR_VAR_5715;
103 
104 uint32_t bge_rx_ticks_norm = 128;
105 uint32_t bge_tx_ticks_norm = 2048;		/* 8 for FJ2+ !?!?	*/
106 uint32_t bge_rx_count_norm = 8;
107 uint32_t bge_tx_count_norm = 128;
108 
109 static uint32_t bge_rx_ticks_intr = 128;
110 static uint32_t bge_tx_ticks_intr = 0;		/* 8 for FJ2+ !?!?	*/
111 static uint32_t bge_rx_count_intr = 2;
112 static uint32_t bge_tx_count_intr = 0;
113 
114 /*
115  * Memory pool configuration parameters.
116  *
117  * These are generally specific to each member of the chip family, since
118  * each one may have a different memory size/configuration.
119  *
120  * Setting the mbuf pool length for a specific type of chip to 0 inhibits
121  * the driver from programming the various registers; instead they are left
122  * at their hardware defaults.  This is the preferred option for later chips
123  * (5705+), whereas the older chips *required* these registers to be set,
124  * since the h/w default was 0 ;-(
125  */
126 static uint32_t bge_mbuf_pool_base	= MBUF_POOL_BASE_DEFAULT;
127 static uint32_t bge_mbuf_pool_base_5704	= MBUF_POOL_BASE_5704;
128 static uint32_t bge_mbuf_pool_base_5705	= MBUF_POOL_BASE_5705;
129 static uint32_t bge_mbuf_pool_base_5721 = MBUF_POOL_BASE_5721;
130 static uint32_t bge_mbuf_pool_len	= MBUF_POOL_LENGTH_DEFAULT;
131 static uint32_t bge_mbuf_pool_len_5704	= MBUF_POOL_LENGTH_5704;
132 static uint32_t bge_mbuf_pool_len_5705	= 0;	/* use h/w default	*/
133 static uint32_t bge_mbuf_pool_len_5721	= 0;
134 
135 /*
136  * Various high and low water marks, thresholds, etc ...
137  *
138  * Note: these are taken from revision 7 of the PRM, and some are different
139  * from both the values in earlier PRMs *and* those determined experimentally
140  * and used in earlier versions of this driver ...
141  */
142 static uint32_t bge_mbuf_hi_water	= MBUF_HIWAT_DEFAULT;
143 static uint32_t bge_mbuf_lo_water_rmac	= MAC_RX_MBUF_LOWAT_DEFAULT;
144 static uint32_t bge_mbuf_lo_water_rdma	= RDMA_MBUF_LOWAT_DEFAULT;
145 
146 static uint32_t bge_dmad_lo_water	= DMAD_POOL_LOWAT_DEFAULT;
147 static uint32_t bge_dmad_hi_water	= DMAD_POOL_HIWAT_DEFAULT;
148 static uint32_t bge_lowat_recv_frames	= LOWAT_MAX_RECV_FRAMES_DEFAULT;
149 
150 static uint32_t bge_replenish_std	= STD_RCV_BD_REPLENISH_DEFAULT;
151 static uint32_t bge_replenish_mini	= MINI_RCV_BD_REPLENISH_DEFAULT;
152 static uint32_t bge_replenish_jumbo	= JUMBO_RCV_BD_REPLENISH_DEFAULT;
153 
154 static uint32_t	bge_watchdog_count	= 1 << 16;
155 static uint16_t bge_dma_miss_limit	= 20;
156 
157 static uint32_t bge_stop_start_on_sync	= 0;
158 
159 boolean_t bge_jumbo_enable		= B_TRUE;
160 static uint32_t bge_default_jumbo_size	= BGE_JUMBO_BUFF_SIZE;
161 
162 /*
163  * bge_intr_max_loop controls the maximum loop number within bge_intr.
164  * When loading NIC with heavy network traffic, it is useful.
165  * Increasing this value could have positive effect to throughput,
166  * but it might also increase ticks of a bge ISR stick on CPU, which might
167  * lead to bad UI interactive experience. So tune this with caution.
168  */
169 static int bge_intr_max_loop = 1;
170 
171 /*
172  * ========== Low-level chip & ring buffer manipulation ==========
173  */
174 
175 #define	BGE_DBG		BGE_DBG_REGS	/* debug flag for this code	*/
176 
177 
178 /*
179  * Config space read-modify-write routines
180  */
181 
182 #if	BGE_CFG_IO8
183 
184 /*
185  * 8- and 16-bit set/clr operations are not used; all the config registers
186  * that we need to do bit-twiddling on are 32 bits wide.  I'll leave the
187  * code here, though, in case we ever find that we do want it after all ...
188  */
189 
190 static void bge_cfg_set8(bge_t *bgep, bge_regno_t regno, uint8_t bits);
191 #pragma	inline(bge_cfg_set8)
192 
193 static void
194 bge_cfg_set8(bge_t *bgep, bge_regno_t regno, uint8_t bits)
195 {
196 	uint8_t regval;
197 
198 	BGE_TRACE(("bge_cfg_set8($%p, 0x%lx, 0x%x)",
199 		(void *)bgep, regno, bits));
200 
201 	regval = pci_config_get8(bgep->cfg_handle, regno);
202 
203 	BGE_DEBUG(("bge_cfg_set8($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
204 		(void *)bgep, regno, bits, regval, regval | bits));
205 
206 	regval |= bits;
207 	pci_config_put8(bgep->cfg_handle, regno, regval);
208 }
209 
210 static void bge_cfg_clr8(bge_t *bgep, bge_regno_t regno, uint8_t bits);
211 #pragma	inline(bge_cfg_clr8)
212 
213 static void
214 bge_cfg_clr8(bge_t *bgep, bge_regno_t regno, uint8_t bits)
215 {
216 	uint8_t regval;
217 
218 	BGE_TRACE(("bge_cfg_clr8($%p, 0x%lx, 0x%x)",
219 		(void *)bgep, regno, bits));
220 
221 	regval = pci_config_get8(bgep->cfg_handle, regno);
222 
223 	BGE_DEBUG(("bge_cfg_clr8($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
224 		(void *)bgep, regno, bits, regval, regval & ~bits));
225 
226 	regval &= ~bits;
227 	pci_config_put8(bgep->cfg_handle, regno, regval);
228 }
229 
230 static void bge_cfg_set16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
231 #pragma	inline(bge_cfg_set16)
232 
233 static void
234 bge_cfg_set16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
235 {
236 	uint16_t regval;
237 
238 	BGE_TRACE(("bge_cfg_set16($%p, 0x%lx, 0x%x)",
239 		(void *)bgep, regno, bits));
240 
241 	regval = pci_config_get16(bgep->cfg_handle, regno);
242 
243 	BGE_DEBUG(("bge_cfg_set16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
244 		(void *)bgep, regno, bits, regval, regval | bits));
245 
246 	regval |= bits;
247 	pci_config_put16(bgep->cfg_handle, regno, regval);
248 }
249 
250 static void bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
251 #pragma	inline(bge_cfg_clr16)
252 
253 static void
254 bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
255 {
256 	uint16_t regval;
257 
258 	BGE_TRACE(("bge_cfg_clr16($%p, 0x%lx, 0x%x)",
259 		(void *)bgep, regno, bits));
260 
261 	regval = pci_config_get16(bgep->cfg_handle, regno);
262 
263 	BGE_DEBUG(("bge_cfg_clr16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
264 		(void *)bgep, regno, bits, regval, regval & ~bits));
265 
266 	regval &= ~bits;
267 	pci_config_put16(bgep->cfg_handle, regno, regval);
268 }
269 
270 #endif	/* BGE_CFG_IO8 */
271 
272 static void bge_cfg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
273 #pragma	inline(bge_cfg_set32)
274 
275 static void
276 bge_cfg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
277 {
278 	uint32_t regval;
279 
280 	BGE_TRACE(("bge_cfg_set32($%p, 0x%lx, 0x%x)",
281 		(void *)bgep, regno, bits));
282 
283 	regval = pci_config_get32(bgep->cfg_handle, regno);
284 
285 	BGE_DEBUG(("bge_cfg_set32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
286 		(void *)bgep, regno, bits, regval, regval | bits));
287 
288 	regval |= bits;
289 	pci_config_put32(bgep->cfg_handle, regno, regval);
290 }
291 
292 static void bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
293 #pragma	inline(bge_cfg_clr32)
294 
295 static void
296 bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
297 {
298 	uint32_t regval;
299 
300 	BGE_TRACE(("bge_cfg_clr32($%p, 0x%lx, 0x%x)",
301 		(void *)bgep, regno, bits));
302 
303 	regval = pci_config_get32(bgep->cfg_handle, regno);
304 
305 	BGE_DEBUG(("bge_cfg_clr32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
306 		(void *)bgep, regno, bits, regval, regval & ~bits));
307 
308 	regval &= ~bits;
309 	pci_config_put32(bgep->cfg_handle, regno, regval);
310 }
311 
312 #if	BGE_IND_IO32
313 
314 /*
315  * Indirect access to registers & RISC scratchpads, using config space
316  * accesses only.
317  *
318  * This isn't currently used, but someday we might want to use it for
319  * restoring the Subsystem Device/Vendor registers (which aren't directly
320  * writable in Config Space), or for downloading firmware into the RISCs
321  *
322  * In any case there are endian issues to be resolved before this code is
323  * enabled; the bizarre way that bytes get twisted by this chip AND by
324  * the PCI bridge in SPARC systems mean that we shouldn't enable it until
325  * it's been thoroughly tested for all access sizes on all supported
326  * architectures (SPARC *and* x86!).
327  */
328 uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno);
329 #pragma	inline(bge_ind_get32)
330 
331 uint32_t
332 bge_ind_get32(bge_t *bgep, bge_regno_t regno)
333 {
334 	uint32_t val;
335 
336 	BGE_TRACE(("bge_ind_get32($%p, 0x%lx)", (void *)bgep, regno));
337 
338 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
339 	val = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_RIADR);
340 
341 	BGE_DEBUG(("bge_ind_get32($%p, 0x%lx) => 0x%x",
342 		(void *)bgep, regno, val));
343 
344 	val = LE_32(val);
345 
346 	return (val);
347 }
348 
349 void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val);
350 #pragma	inline(bge_ind_put32)
351 
352 void
353 bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val)
354 {
355 	BGE_TRACE(("bge_ind_put32($%p, 0x%lx, 0x%x)",
356 		(void *)bgep, regno, val));
357 
358 	val = LE_32(val);
359 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
360 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIADR, val);
361 }
362 
363 #endif	/* BGE_IND_IO32 */
364 
365 #if	BGE_DEBUGGING
366 
367 static void bge_pci_check(bge_t *bgep);
368 #pragma	no_inline(bge_pci_check)
369 
370 static void
371 bge_pci_check(bge_t *bgep)
372 {
373 	uint16_t pcistatus;
374 
375 	pcistatus = pci_config_get16(bgep->cfg_handle, PCI_CONF_STAT);
376 	if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0)
377 		BGE_DEBUG(("bge_pci_check($%p): PCI status 0x%x",
378 			(void *)bgep, pcistatus));
379 }
380 
381 #endif	/* BGE_DEBUGGING */
382 
383 /*
384  * Perform first-stage chip (re-)initialisation, using only config-space
385  * accesses:
386  *
387  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
388  *   returning the data in the structure pointed to by <idp>.
389  * + Configure the target-mode endianness (swap) options.
390  * + Disable interrupts and enable Memory Space accesses.
391  * + Enable or disable Bus Mastering according to the <enable_dma> flag.
392  *
393  * This sequence is adapted from Broadcom document 570X-PG102-R,
394  * page 102, steps 1-3, 6-8 and 11-13.  The omitted parts of the sequence
395  * are 4 and 5 (Reset Core and wait) which are handled elsewhere.
396  *
397  * This function MUST be called before any non-config-space accesses
398  * are made; on this first call <enable_dma> is B_FALSE, and it
399  * effectively performs steps 3-1(!) of the initialisation sequence
400  * (the rest are not required but should be harmless).
401  *
402  * It MUST also be called after a chip reset, as this disables
403  * Memory Space cycles!  In this case, <enable_dma> is B_TRUE, and
404  * it is effectively performing steps 6-8.
405  */
406 void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma);
407 #pragma	no_inline(bge_chip_cfg_init)
408 
409 void
410 bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma)
411 {
412 	ddi_acc_handle_t handle;
413 	uint16_t command;
414 	uint32_t mhcr;
415 	uint16_t value16;
416 	int i;
417 
418 	BGE_TRACE(("bge_chip_cfg_init($%p, $%p, %d)",
419 		(void *)bgep, (void *)cidp, enable_dma));
420 
421 	/*
422 	 * Step 3: save PCI cache line size and subsystem vendor ID
423 	 *
424 	 * Read all the config-space registers that characterise the
425 	 * chip, specifically vendor/device/revision/subsystem vendor
426 	 * and subsystem device id.  We expect (but don't check) that
427 	 * (vendor == VENDOR_ID_BROADCOM) && (device == DEVICE_ID_5704)
428 	 *
429 	 * Also save all bus-transaction related registers (cache-line
430 	 * size, bus-grant/latency parameters, etc).  Some of these are
431 	 * cleared by reset, so we'll have to restore them later.  This
432 	 * comes from the Broadcom document 570X-PG102-R ...
433 	 *
434 	 * Note: Broadcom document 570X-PG102-R seems to be in error
435 	 * here w.r.t. the offsets of the Subsystem Vendor ID and
436 	 * Subsystem (Device) ID registers, which are the opposite way
437 	 * round according to the PCI standard.  For good measure, we
438 	 * save/restore both anyway.
439 	 */
440 	handle = bgep->cfg_handle;
441 
442 	mhcr = pci_config_get32(handle, PCI_CONF_BGE_MHCR);
443 	cidp->asic_rev = mhcr & MHCR_CHIP_REV_MASK;
444 	cidp->businfo = pci_config_get32(handle, PCI_CONF_BGE_PCISTATE);
445 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
446 
447 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
448 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
449 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
450 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
451 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
452 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
453 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
454 
455 	BGE_DEBUG(("bge_chip_cfg_init: %s bus is %s and %s; #INTA is %s",
456 		cidp->businfo & PCISTATE_BUS_IS_PCI ? "PCI" : "PCI-X",
457 		cidp->businfo & PCISTATE_BUS_IS_FAST ? "fast" : "slow",
458 		cidp->businfo & PCISTATE_BUS_IS_32_BIT ? "narrow" : "wide",
459 		cidp->businfo & PCISTATE_INTA_STATE ? "high" : "low"));
460 	BGE_DEBUG(("bge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
461 		cidp->vendor, cidp->device, cidp->revision));
462 	BGE_DEBUG(("bge_chip_cfg_init: subven 0x%x subdev 0x%x asic_rev 0x%x",
463 		cidp->subven, cidp->subdev, cidp->asic_rev));
464 	BGE_DEBUG(("bge_chip_cfg_init: clsize %d latency %d command 0x%x",
465 		cidp->clsize, cidp->latency, cidp->command));
466 
467 	/*
468 	 * Step 2 (also step 6): disable and clear interrupts.
469 	 * Steps 11-13: configure PIO endianness options, and enable
470 	 * indirect register access.  We'll also select any other
471 	 * options controlled by the MHCR (e.g. tagged status, mask
472 	 * interrupt mode) at this stage ...
473 	 *
474 	 * Note: internally, the chip is 64-bit and BIG-endian, but
475 	 * since it talks to the host over a (LITTLE-endian) PCI bus,
476 	 * it normally swaps bytes around at the PCI interface.
477 	 * However, the PCI host bridge on SPARC systems normally
478 	 * swaps the byte lanes around too, since SPARCs are also
479 	 * BIG-endian.  So it turns out that on SPARC, the right
480 	 * option is to tell the chip to swap (and the host bridge
481 	 * will swap back again), whereas on x86 we ask the chip
482 	 * NOT to swap, so the natural little-endianness of the
483 	 * PCI bus is assumed.  Then the only thing that doesn't
484 	 * automatically work right is access to an 8-byte register
485 	 * by a little-endian host; but we don't want to set the
486 	 * MHCR_ENABLE_REGISTER_WORD_SWAP bit because then 4-byte
487 	 * accesses don't go where expected ;-(  So we live with
488 	 * that, and perform word-swaps in software in the few cases
489 	 * where a chip register is defined as an 8-byte value --
490 	 * see the code below for details ...
491 	 *
492 	 * Note: the meaning of the 'MASK_INTERRUPT_MODE' bit isn't
493 	 * very clear in the register description in the PRM, but
494 	 * Broadcom document 570X-PG104-R page 248 explains a little
495 	 * more (under "Broadcom Mask Mode").  The bit changes the way
496 	 * the MASK_PCI_INT_OUTPUT bit works: with MASK_INTERRUPT_MODE
497 	 * clear, the chip interprets MASK_PCI_INT_OUTPUT in the same
498 	 * way as the 5700 did, which isn't very convenient.  Setting
499 	 * the MASK_INTERRUPT_MODE bit makes the MASK_PCI_INT_OUTPUT
500 	 * bit do just what its name says -- MASK the PCI #INTA output
501 	 * (i.e. deassert the signal at the pin) leaving all internal
502 	 * state unchanged.  This is much more convenient for our
503 	 * interrupt handler, so we set MASK_INTERRUPT_MODE here.
504 	 *
505 	 * Note: the inconvenient semantics of the interrupt mailbox
506 	 * (nonzero disables and acknowledges/clears the interrupt,
507 	 * zero enables AND CLEARS it) would make race conditions
508 	 * likely in the interrupt handler:
509 	 *
510 	 * (1)	acknowledge & disable interrupts
511 	 * (2)	while (more to do)
512 	 * 		process packets
513 	 * (3)	enable interrupts -- also clears pending
514 	 *
515 	 * If the chip received more packets and internally generated
516 	 * an interrupt between the check at (2) and the mbox write
517 	 * at (3), this interrupt would be lost :-(
518 	 *
519 	 * The best way to avoid this is to use TAGGED STATUS mode,
520 	 * where the chip includes a unique tag in each status block
521 	 * update, and the host, when re-enabling interrupts, passes
522 	 * the last tag it saw back to the chip; then the chip can
523 	 * see whether the host is truly up to date, and regenerate
524 	 * its interrupt if not.
525 	 */
526 	mhcr =	MHCR_ENABLE_INDIRECT_ACCESS |
527 		MHCR_ENABLE_TAGGED_STATUS_MODE |
528 		MHCR_MASK_INTERRUPT_MODE |
529 		MHCR_CLEAR_INTERRUPT_INTA;
530 
531 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
532 		mhcr |= MHCR_MASK_PCI_INT_OUTPUT;
533 
534 #ifdef	_BIG_ENDIAN
535 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
536 #endif	/* _BIG_ENDIAN */
537 
538 	pci_config_put32(handle, PCI_CONF_BGE_MHCR, mhcr);
539 
540 #ifdef BGE_IPMI_ASF
541 	bgep->asf_wordswapped = B_FALSE;
542 #endif
543 	/*
544 	 * Step 1 (also step 7): Enable PCI Memory Space accesses
545 	 *			 Disable Memory Write/Invalidate
546 	 *			 Enable or disable Bus Mastering
547 	 *
548 	 * Note that all other bits are taken from the original value saved
549 	 * the first time through here, rather than from the current register
550 	 * value, 'cos that will have been cleared by a soft RESET since.
551 	 * In this way we preserve the OBP/nexus-parent's preferred settings
552 	 * of the parity-error and system-error enable bits across multiple
553 	 * chip RESETs.
554 	 */
555 	command = bgep->chipid.command | PCI_COMM_MAE;
556 	command &= ~(PCI_COMM_ME|PCI_COMM_MEMWR_INVAL);
557 	if (enable_dma)
558 		command |= PCI_COMM_ME;
559 	/*
560 	 * on BCM5714 revision A0, false parity error gets generated
561 	 * due to a logic bug. Provide a workaround by disabling parity
562 	 * error.
563 	 */
564 	if (((cidp->device == DEVICE_ID_5714C) ||
565 	    (cidp->device == DEVICE_ID_5714S)) &&
566 	    (cidp->revision == REVISION_ID_5714_A0)) {
567 		command &= ~PCI_COMM_PARITY_DETECT;
568 	}
569 	pci_config_put16(handle, PCI_CONF_COMM, command);
570 
571 	/*
572 	 * On some PCI-E device, there were instances when
573 	 * the device was still link training.
574 	 */
575 	if (bgep->chipid.pci_type == BGE_PCI_E) {
576 		i = 0;
577 		value16 = pci_config_get16(handle, PCI_CONF_COMM);
578 		while ((value16 != command) && (i < 100)) {
579 			drv_usecwait(200);
580 			value16 = pci_config_get16(handle, PCI_CONF_COMM);
581 			++i;
582 		}
583 	}
584 
585 	/*
586 	 * Clear any remaining error status bits
587 	 */
588 	pci_config_put16(handle, PCI_CONF_STAT, ~0);
589 
590 	/*
591 	 * Do following if and only if the device is NOT BCM5714C OR
592 	 * BCM5715C
593 	 */
594 	if (!((cidp->device == DEVICE_ID_5714C) ||
595 		(cidp->device == DEVICE_ID_5715C))) {
596 		/*
597 		 * Make sure these indirect-access registers are sane
598 		 * rather than random after power-up or reset
599 		 */
600 		pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0);
601 		pci_config_put32(handle, PCI_CONF_BGE_MWBAR, 0);
602 	}
603 	/*
604 	 * Step 8: Disable PCI-X/PCI-E Relaxed Ordering
605 	 */
606 	bge_cfg_clr16(bgep, PCIX_CONF_COMM, PCIX_COMM_RELAXED);
607 
608 	if (cidp->pci_type == BGE_PCI_E)
609 		bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL,
610 				DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
611 }
612 
613 #ifdef __amd64
614 /*
615  * Distinguish CPU types
616  *
617  * These use to  distinguish AMD64 or Intel EM64T of CPU running mode.
618  * If CPU runs on Intel EM64T mode,the 64bit operation cannot works fine
619  * for PCI-Express based network interface card. This is the work-around
620  * for those nics.
621  */
622 static boolean_t bge_get_em64t_type(void);
623 #pragma	inline(bge_get_em64t_type)
624 
625 static boolean_t
626 bge_get_em64t_type(void)
627 {
628 
629 	return (x86_vendor == X86_VENDOR_Intel);
630 }
631 #endif
632 
633 /*
634  * Operating register get/set access routines
635  */
636 
637 uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno);
638 #pragma	inline(bge_reg_get32)
639 
640 uint32_t
641 bge_reg_get32(bge_t *bgep, bge_regno_t regno)
642 {
643 	BGE_TRACE(("bge_reg_get32($%p, 0x%lx)",
644 		(void *)bgep, regno));
645 
646 	return (ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)));
647 }
648 
649 void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data);
650 #pragma	inline(bge_reg_put32)
651 
652 void
653 bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
654 {
655 	BGE_TRACE(("bge_reg_put32($%p, 0x%lx, 0x%x)",
656 		(void *)bgep, regno, data));
657 
658 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), data);
659 	BGE_PCICHK(bgep);
660 }
661 
662 void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
663 #pragma	inline(bge_reg_set32)
664 
665 void
666 bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
667 {
668 	uint32_t regval;
669 
670 	BGE_TRACE(("bge_reg_set32($%p, 0x%lx, 0x%x)",
671 		(void *)bgep, regno, bits));
672 
673 	regval = bge_reg_get32(bgep, regno);
674 	regval |= bits;
675 	bge_reg_put32(bgep, regno, regval);
676 }
677 
678 void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
679 #pragma	inline(bge_reg_clr32)
680 
681 void
682 bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
683 {
684 	uint32_t regval;
685 
686 	BGE_TRACE(("bge_reg_clr32($%p, 0x%lx, 0x%x)",
687 		(void *)bgep, regno, bits));
688 
689 	regval = bge_reg_get32(bgep, regno);
690 	regval &= ~bits;
691 	bge_reg_put32(bgep, regno, regval);
692 }
693 
694 static uint64_t bge_reg_get64(bge_t *bgep, bge_regno_t regno);
695 #pragma	inline(bge_reg_get64)
696 
697 static uint64_t
698 bge_reg_get64(bge_t *bgep, bge_regno_t regno)
699 {
700 	uint64_t regval;
701 
702 #ifdef	__amd64
703 	if (bge_get_em64t_type()) {
704 		regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
705 		regval <<= 32;
706 		regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
707 	} else {
708 		regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
709 	}
710 #else
711 	regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
712 #endif
713 
714 #ifdef	_LITTLE_ENDIAN
715 	regval = (regval >> 32) | (regval << 32);
716 #endif	/* _LITTLE_ENDIAN */
717 
718 	BGE_TRACE(("bge_reg_get64($%p, 0x%lx) = 0x%016llx",
719 		(void *)bgep, regno, regval));
720 
721 	return (regval);
722 }
723 
724 static void bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data);
725 #pragma	inline(bge_reg_put64)
726 
727 static void
728 bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data)
729 {
730 	BGE_TRACE(("bge_reg_put64($%p, 0x%lx, 0x%016llx)",
731 		(void *)bgep, regno, data));
732 
733 #ifdef	_LITTLE_ENDIAN
734 	data = ((data >> 32) | (data << 32));
735 #endif	/* _LITTLE_ENDIAN */
736 
737 #ifdef	__amd64
738 	if (bge_get_em64t_type()) {
739 		ddi_put32(bgep->io_handle,
740 			PIO_ADDR(bgep, regno), (uint32_t)data);
741 		BGE_PCICHK(bgep);
742 		ddi_put32(bgep->io_handle,
743 			PIO_ADDR(bgep, regno + 4), (uint32_t)(data >> 32));
744 
745 	} else {
746 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
747 	}
748 #else
749 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
750 #endif
751 
752 	BGE_PCICHK(bgep);
753 }
754 
755 /*
756  * The DDI doesn't provide get/put functions for 128 bit data
757  * so we put RCBs out as two 64-bit chunks instead.
758  */
759 static void bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
760 #pragma	inline(bge_reg_putrcb)
761 
762 static void
763 bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
764 {
765 	uint64_t *p;
766 
767 	BGE_TRACE(("bge_reg_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
768 		(void *)bgep, addr, rcbp->host_ring_addr,
769 		rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
770 
771 	ASSERT((addr % sizeof (*rcbp)) == 0);
772 
773 	p = (void *)rcbp;
774 	bge_reg_put64(bgep, addr, *p++);
775 	bge_reg_put64(bgep, addr+8, *p);
776 }
777 
778 void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data);
779 #pragma	inline(bge_mbx_put)
780 
781 void
782 bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data)
783 {
784 	BGE_TRACE(("bge_mbx_put($%p, 0x%lx, 0x%016llx)",
785 		(void *)bgep, regno, data));
786 
787 	/*
788 	 * Mailbox registers are nominally 64 bits on the 5701, but
789 	 * the MSW isn't used.  On the 5703, they're only 32 bits
790 	 * anyway.  So here we just write the lower(!) 32 bits -
791 	 * remembering that the chip is big-endian, even though the
792 	 * PCI bus is little-endian ...
793 	 */
794 #ifdef	_BIG_ENDIAN
795 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno+4), (uint32_t)data);
796 #else
797 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), (uint32_t)data);
798 #endif	/* _BIG_ENDIAN */
799 	BGE_PCICHK(bgep);
800 }
801 
802 #if	BGE_DEBUGGING
803 
804 void bge_led_mark(bge_t *bgep);
805 #pragma	no_inline(bge_led_mark)
806 
807 void
808 bge_led_mark(bge_t *bgep)
809 {
810 	uint32_t led_ctrl = LED_CONTROL_OVERRIDE_LINK |
811 			    LED_CONTROL_1000MBPS_LED |
812 			    LED_CONTROL_100MBPS_LED |
813 			    LED_CONTROL_10MBPS_LED;
814 
815 	/*
816 	 * Blink all three LINK LEDs on simultaneously, then all off,
817 	 * then restore to automatic hardware control.  This is used
818 	 * in laboratory testing to trigger a logic analyser or scope.
819 	 */
820 	bge_reg_set32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
821 	led_ctrl ^= LED_CONTROL_OVERRIDE_LINK;
822 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
823 	led_ctrl = LED_CONTROL_OVERRIDE_LINK;
824 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
825 }
826 
827 #endif	/* BGE_DEBUGGING */
828 
829 /*
830  * NIC on-chip memory access routines
831  *
832  * Only 32K of NIC memory is visible at a time, controlled by the
833  * Memory Window Base Address Register (in PCI config space).  Once
834  * this is set, the 32K region of NIC-local memory that it refers
835  * to can be directly addressed in the upper 32K of the 64K of PCI
836  * memory space used for the device.
837  */
838 
839 static void bge_nic_setwin(bge_t *bgep, bge_regno_t base);
840 #pragma	inline(bge_nic_setwin)
841 
842 static void
843 bge_nic_setwin(bge_t *bgep, bge_regno_t base)
844 {
845 	chip_id_t *cidp;
846 
847 	BGE_TRACE(("bge_nic_setwin($%p, 0x%lx)",
848 		(void *)bgep, base));
849 
850 	ASSERT((base & MWBAR_GRANULE_MASK) == 0);
851 
852 	/*
853 	 * Don't do repeated zero data writes,
854 	 * if the device is BCM5714C/15C.
855 	 */
856 	cidp = &bgep->chipid;
857 	if ((cidp->device == DEVICE_ID_5714C) ||
858 		(cidp->device == DEVICE_ID_5715C)) {
859 		if (bgep->lastWriteZeroData && (base == (bge_regno_t)0))
860 			return;
861 		/* Adjust lastWriteZeroData */
862 		bgep->lastWriteZeroData = ((base == (bge_regno_t)0) ?
863 			B_TRUE : B_FALSE);
864 	}
865 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, base);
866 }
867 
868 static uint32_t bge_nic_get32(bge_t *bgep, bge_regno_t addr);
869 #pragma	inline(bge_nic_get32)
870 
871 static uint32_t
872 bge_nic_get32(bge_t *bgep, bge_regno_t addr)
873 {
874 	uint32_t data;
875 
876 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
877 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
878 		/* workaround for word swap error */
879 		if (addr & 4)
880 			addr = addr - 4;
881 		else
882 			addr = addr + 4;
883 	}
884 #endif
885 
886 #ifdef __sparc
887 	data = bge_nic_read32(bgep, addr);
888 #else
889 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
890 	addr &= MWBAR_GRANULE_MASK;
891 	addr += NIC_MEM_WINDOW_OFFSET;
892 
893 	data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
894 #endif
895 
896 	BGE_TRACE(("bge_nic_get32($%p, 0x%lx) = 0x%08x",
897 		(void *)bgep, addr, data));
898 
899 	return (data);
900 }
901 
902 void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data);
903 #pragma inline(bge_nic_put32)
904 
905 void
906 bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data)
907 {
908 	BGE_TRACE(("bge_nic_put32($%p, 0x%lx, 0x%08x)",
909 		(void *)bgep, addr, data));
910 
911 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
912 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
913 		/* workaround for word swap error */
914 		if (addr & 4)
915 			addr = addr - 4;
916 		else
917 			addr = addr + 4;
918 	}
919 #endif
920 
921 #ifdef __sparc
922 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
923 	data = LE_32(data);
924 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR, data);
925 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
926 #else
927 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
928 	addr &= MWBAR_GRANULE_MASK;
929 	addr += NIC_MEM_WINDOW_OFFSET;
930 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), data);
931 	BGE_PCICHK(bgep);
932 #endif
933 }
934 
935 static uint64_t bge_nic_get64(bge_t *bgep, bge_regno_t addr);
936 #pragma	inline(bge_nic_get64)
937 
938 static uint64_t
939 bge_nic_get64(bge_t *bgep, bge_regno_t addr)
940 {
941 	uint64_t data;
942 
943 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
944 	addr &= MWBAR_GRANULE_MASK;
945 	addr += NIC_MEM_WINDOW_OFFSET;
946 
947 #ifdef	__amd64
948 		if (bge_get_em64t_type()) {
949 			data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
950 			data <<= 32;
951 			data |= ddi_get32(bgep->io_handle,
952 				PIO_ADDR(bgep, addr + 4));
953 		} else {
954 			data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
955 		}
956 #else
957 		data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
958 #endif
959 
960 	BGE_TRACE(("bge_nic_get64($%p, 0x%lx) = 0x%016llx",
961 		(void *)bgep, addr, data));
962 
963 	return (data);
964 }
965 
966 static void bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data);
967 #pragma	inline(bge_nic_put64)
968 
969 static void
970 bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data)
971 {
972 	BGE_TRACE(("bge_nic_put64($%p, 0x%lx, 0x%016llx)",
973 		(void *)bgep, addr, data));
974 
975 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
976 	addr &= MWBAR_GRANULE_MASK;
977 	addr += NIC_MEM_WINDOW_OFFSET;
978 
979 #ifdef	__amd64
980 	if (bge_get_em64t_type()) {
981 		ddi_put32(bgep->io_handle,
982 			PIO_ADDR(bgep, addr), (uint32_t)data);
983 		BGE_PCICHK(bgep);
984 		ddi_put32(bgep->io_handle,
985 			PIO_ADDR(bgep, addr + 4), (uint32_t)(data >> 32));
986 	} else {
987 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
988 	}
989 #else
990 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
991 #endif
992 
993 	BGE_PCICHK(bgep);
994 }
995 
996 /*
997  * The DDI doesn't provide get/put functions for 128 bit data
998  * so we put RCBs out as two 64-bit chunks instead.
999  */
1000 static void bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
1001 #pragma	inline(bge_nic_putrcb)
1002 
1003 static void
1004 bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
1005 {
1006 	uint64_t *p;
1007 
1008 	BGE_TRACE(("bge_nic_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
1009 		(void *)bgep, addr, rcbp->host_ring_addr,
1010 		rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
1011 
1012 	ASSERT((addr % sizeof (*rcbp)) == 0);
1013 
1014 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1015 	addr &= MWBAR_GRANULE_MASK;
1016 	addr += NIC_MEM_WINDOW_OFFSET;
1017 
1018 	p = (void *)rcbp;
1019 #ifdef	__amd64
1020 	if (bge_get_em64t_type()) {
1021 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
1022 			(uint32_t)(*p));
1023 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
1024 			(uint32_t)(*p >> 32));
1025 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
1026 			(uint32_t)(*(p + 1)));
1027 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
1028 			(uint32_t)(*p >> 32));
1029 
1030 	} else {
1031 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1032 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr+8), *p);
1033 	}
1034 #else
1035 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1036 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
1037 #endif
1038 
1039 	BGE_PCICHK(bgep);
1040 }
1041 
1042 static void bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes);
1043 #pragma	inline(bge_nic_zero)
1044 
1045 static void
1046 bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes)
1047 {
1048 	BGE_TRACE(("bge_nic_zero($%p, 0x%lx, 0x%x)",
1049 		(void *)bgep, addr, nbytes));
1050 
1051 	ASSERT((addr & ~MWBAR_GRANULE_MASK) ==
1052 		((addr+nbytes) & ~MWBAR_GRANULE_MASK));
1053 
1054 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1055 	addr &= MWBAR_GRANULE_MASK;
1056 	addr += NIC_MEM_WINDOW_OFFSET;
1057 
1058 	(void) ddi_device_zero(bgep->io_handle, PIO_ADDR(bgep, addr),
1059 		nbytes, 1, DDI_DATA_SZ08_ACC);
1060 	BGE_PCICHK(bgep);
1061 }
1062 
1063 /*
1064  * MII (PHY) register get/set access routines
1065  *
1066  * These use the chip's MII auto-access method, controlled by the
1067  * MII Communication register at 0x044c, so the CPU doesn't have
1068  * to fiddle with the individual bits.
1069  */
1070 
1071 #undef	BGE_DBG
1072 #define	BGE_DBG		BGE_DBG_MII	/* debug flag for this code	*/
1073 
1074 static uint16_t bge_mii_access(bge_t *bgep, bge_regno_t regno,
1075 				uint16_t data, uint32_t cmd);
1076 #pragma	no_inline(bge_mii_access)
1077 
1078 static uint16_t
1079 bge_mii_access(bge_t *bgep, bge_regno_t regno, uint16_t data, uint32_t cmd)
1080 {
1081 	uint32_t timeout;
1082 	uint32_t regval1;
1083 	uint32_t regval2;
1084 
1085 	BGE_TRACE(("bge_mii_access($%p, 0x%lx, 0x%x, 0x%x)",
1086 		(void *)bgep, regno, data, cmd));
1087 
1088 	ASSERT(mutex_owned(bgep->genlock));
1089 
1090 	/*
1091 	 * Assemble the command ...
1092 	 */
1093 	cmd |= data << MI_COMMS_DATA_SHIFT;
1094 	cmd |= regno << MI_COMMS_REGISTER_SHIFT;
1095 	cmd |= bgep->phy_mii_addr << MI_COMMS_ADDRESS_SHIFT;
1096 	cmd |= MI_COMMS_START;
1097 
1098 	/*
1099 	 * Wait for any command already in progress ...
1100 	 *
1101 	 * Note: this *shouldn't* ever find that there is a command
1102 	 * in progress, because we already hold the <genlock> mutex.
1103 	 * Nonetheless, we have sometimes seen the MI_COMMS_START
1104 	 * bit set here -- it seems that the chip can initiate MII
1105 	 * accesses internally, even with polling OFF.
1106 	 */
1107 	regval1 = regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1108 	for (timeout = 100; ; ) {
1109 		if ((regval2 & MI_COMMS_START) == 0) {
1110 			bge_reg_put32(bgep, MI_COMMS_REG, cmd);
1111 			break;
1112 		}
1113 		if (--timeout == 0)
1114 			break;
1115 		drv_usecwait(10);
1116 		regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1117 	}
1118 
1119 	if (timeout == 0)
1120 		return ((uint16_t)~0u);
1121 
1122 	if (timeout != 100)
1123 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1124 			"MI_COMMS_START set for %d us; 0x%x->0x%x",
1125 			cmd, 10*(100-timeout), regval1, regval2));
1126 
1127 	regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1128 	for (timeout = 1000; ; ) {
1129 		if ((regval1 & MI_COMMS_START) == 0)
1130 			break;
1131 		if (--timeout == 0)
1132 			break;
1133 		drv_usecwait(10);
1134 		regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1135 	}
1136 
1137 	/*
1138 	 * Drop out early if the READ FAILED bit is set -- this chip
1139 	 * could be a 5703/4S, with a SerDes instead of a PHY!
1140 	 */
1141 	if (regval2 & MI_COMMS_READ_FAILED)
1142 		return ((uint16_t)~0u);
1143 
1144 	if (timeout == 0)
1145 		return ((uint16_t)~0u);
1146 
1147 	/*
1148 	 * The PRM says to wait 5us after seeing the START bit clear
1149 	 * and then re-read the register to get the final value of the
1150 	 * data field, in order to avoid a race condition where the
1151 	 * START bit is clear but the data field isn't yet valid.
1152 	 *
1153 	 * Note: we don't actually seem to be encounter this race;
1154 	 * except when the START bit is seen set again (see below),
1155 	 * the data field doesn't change during this 5us interval.
1156 	 */
1157 	drv_usecwait(5);
1158 	regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1159 
1160 	/*
1161 	 * Unfortunately, when following the PRMs instructions above,
1162 	 * we have occasionally seen the START bit set again(!) in the
1163 	 * value read after the 5us delay. This seems to be due to the
1164 	 * chip autonomously starting another MII access internally.
1165 	 * In such cases, the command/data/etc fields relate to the
1166 	 * internal command, rather than the one that we thought had
1167 	 * just finished.  So in this case, we fall back to returning
1168 	 * the data from the original read that showed START clear.
1169 	 */
1170 	if (regval2 & MI_COMMS_START) {
1171 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1172 			"MI_COMMS_START set after transaction; 0x%x->0x%x",
1173 			cmd, regval1, regval2));
1174 		regval2 = regval1;
1175 	}
1176 
1177 	if (regval2 & MI_COMMS_START)
1178 		return ((uint16_t)~0u);
1179 
1180 	if (regval2 & MI_COMMS_READ_FAILED)
1181 		return ((uint16_t)~0u);
1182 
1183 	return ((regval2 & MI_COMMS_DATA_MASK) >> MI_COMMS_DATA_SHIFT);
1184 }
1185 
1186 uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno);
1187 #pragma	no_inline(bge_mii_get16)
1188 
1189 uint16_t
1190 bge_mii_get16(bge_t *bgep, bge_regno_t regno)
1191 {
1192 	BGE_TRACE(("bge_mii_get16($%p, 0x%lx)",
1193 		(void *)bgep, regno));
1194 
1195 	ASSERT(mutex_owned(bgep->genlock));
1196 
1197 	return (bge_mii_access(bgep, regno, 0, MI_COMMS_COMMAND_READ));
1198 }
1199 
1200 void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data);
1201 #pragma	no_inline(bge_mii_put16)
1202 
1203 void
1204 bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data)
1205 {
1206 	BGE_TRACE(("bge_mii_put16($%p, 0x%lx, 0x%x)",
1207 		(void *)bgep, regno, data));
1208 
1209 	ASSERT(mutex_owned(bgep->genlock));
1210 
1211 	(void) bge_mii_access(bgep, regno, data, MI_COMMS_COMMAND_WRITE);
1212 }
1213 
1214 #undef	BGE_DBG
1215 #define	BGE_DBG		BGE_DBG_SEEPROM	/* debug flag for this code	*/
1216 
1217 #if	BGE_SEE_IO32 || BGE_FLASH_IO32
1218 
1219 /*
1220  * Basic SEEPROM get/set access routine
1221  *
1222  * This uses the chip's SEEPROM auto-access method, controlled by the
1223  * Serial EEPROM Address/Data Registers at 0x6838/683c, so the CPU
1224  * doesn't have to fiddle with the individual bits.
1225  *
1226  * The caller should hold <genlock> and *also* have already acquired
1227  * the right to access the SEEPROM, via bge_nvmem_acquire() above.
1228  *
1229  * Return value:
1230  *	0 on success,
1231  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1232  *	EPROTO on other h/w or s/w errors.
1233  *
1234  * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
1235  * from a (successful) SEEPROM_ACCESS_READ.
1236  */
1237 static int bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1238 				uint32_t *dp);
1239 #pragma	no_inline(bge_seeprom_access)
1240 
1241 static int
1242 bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1243 {
1244 	uint32_t tries;
1245 	uint32_t regval;
1246 
1247 	ASSERT(mutex_owned(bgep->genlock));
1248 
1249 	/*
1250 	 * On the newer chips that support both SEEPROM & Flash, we need
1251 	 * to specifically enable SEEPROM access (Flash is the default).
1252 	 * On older chips, we don't; SEEPROM is the only NVtype supported,
1253 	 * and the NVM control registers don't exist ...
1254 	 */
1255 	switch (bgep->chipid.nvtype) {
1256 	case BGE_NVTYPE_NONE:
1257 	case BGE_NVTYPE_UNKNOWN:
1258 		_NOTE(NOTREACHED)
1259 	case BGE_NVTYPE_SEEPROM:
1260 		break;
1261 
1262 	case BGE_NVTYPE_LEGACY_SEEPROM:
1263 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1264 	case BGE_NVTYPE_BUFFERED_FLASH:
1265 	default:
1266 		bge_reg_set32(bgep, NVM_CONFIG1_REG,
1267 				NVM_CFG1_LEGACY_SEEPROM_MODE);
1268 		break;
1269 	}
1270 
1271 	/*
1272 	 * Check there's no command in progress.
1273 	 *
1274 	 * Note: this *shouldn't* ever find that there is a command
1275 	 * in progress, because we already hold the <genlock> mutex.
1276 	 * Also, to ensure we don't have a conflict with the chip's
1277 	 * internal firmware or a process accessing the same (shared)
1278 	 * SEEPROM through the other port of a 5704, we've already
1279 	 * been through the "software arbitration" protocol.
1280 	 * So this is just a final consistency check: we shouldn't
1281 	 * see EITHER the START bit (command started but not complete)
1282 	 * OR the COMPLETE bit (command completed but not cleared).
1283 	 */
1284 	regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1285 	if (regval & SEEPROM_ACCESS_START)
1286 		return (EPROTO);
1287 	if (regval & SEEPROM_ACCESS_COMPLETE)
1288 		return (EPROTO);
1289 
1290 	/*
1291 	 * Assemble the command ...
1292 	 */
1293 	cmd |= addr & SEEPROM_ACCESS_ADDRESS_MASK;
1294 	addr >>= SEEPROM_ACCESS_ADDRESS_SIZE;
1295 	addr <<= SEEPROM_ACCESS_DEVID_SHIFT;
1296 	cmd |= addr & SEEPROM_ACCESS_DEVID_MASK;
1297 	cmd |= SEEPROM_ACCESS_START;
1298 	cmd |= SEEPROM_ACCESS_COMPLETE;
1299 	cmd |= regval & SEEPROM_ACCESS_HALFCLOCK_MASK;
1300 
1301 	bge_reg_put32(bgep, SERIAL_EEPROM_DATA_REG, *dp);
1302 	bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, cmd);
1303 
1304 	/*
1305 	 * By observation, a successful access takes ~20us on a 5703/4,
1306 	 * but apparently much longer (up to 1000us) on the obsolescent
1307 	 * BCM5700/BCM5701.  We want to be sure we don't get any false
1308 	 * timeouts here; but OTOH, we don't want a bogus access to lock
1309 	 * out interrupts for longer than necessary. So we'll allow up
1310 	 * to 1000us ...
1311 	 */
1312 	for (tries = 0; tries < 1000; ++tries) {
1313 		regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1314 		if (regval & SEEPROM_ACCESS_COMPLETE)
1315 			break;
1316 		drv_usecwait(1);
1317 	}
1318 
1319 	if (regval & SEEPROM_ACCESS_COMPLETE) {
1320 		/*
1321 		 * All OK; read the SEEPROM data register, then write back
1322 		 * the value read from the address register in order to
1323 		 * clear the <complete> bit and leave the SEEPROM access
1324 		 * state machine idle, ready for the next access ...
1325 		 */
1326 		BGE_DEBUG(("bge_seeprom_access: complete after %d us", tries));
1327 		*dp = bge_reg_get32(bgep, SERIAL_EEPROM_DATA_REG);
1328 		bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, regval);
1329 		return (0);
1330 	}
1331 
1332 	/*
1333 	 * Hmm ... what happened here?
1334 	 *
1335 	 * Most likely, the user addressed a non-existent SEEPROM. Or
1336 	 * maybe the SEEPROM was busy internally (e.g. processing a write)
1337 	 * and didn't respond to being addressed. Either way, it's left
1338 	 * the SEEPROM access state machine wedged. So we'll reset it
1339 	 * before we leave, so it's ready for next time ...
1340 	 */
1341 	BGE_DEBUG(("bge_seeprom_access: timed out after %d us", tries));
1342 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
1343 	return (ENODATA);
1344 }
1345 
1346 /*
1347  * Basic Flash get/set access routine
1348  *
1349  * These use the chip's Flash auto-access method, controlled by the
1350  * Flash Access Registers at 0x7000-701c, so the CPU doesn't have to
1351  * fiddle with the individual bits.
1352  *
1353  * The caller should hold <genlock> and *also* have already acquired
1354  * the right to access the Flash, via bge_nvmem_acquire() above.
1355  *
1356  * Return value:
1357  *	0 on success,
1358  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1359  *	ENODEV if the NVmem device is missing or otherwise unusable
1360  *
1361  * <*dp> is an input to a NVM_FLASH_CMD_WR operation, or an output
1362  * from a (successful) NVM_FLASH_CMD_RD.
1363  */
1364 static int bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1365 				uint32_t *dp);
1366 #pragma	no_inline(bge_flash_access)
1367 
1368 static int
1369 bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1370 {
1371 	uint32_t tries;
1372 	uint32_t regval;
1373 
1374 	ASSERT(mutex_owned(bgep->genlock));
1375 
1376 	/*
1377 	 * On the newer chips that support both SEEPROM & Flash, we need
1378 	 * to specifically disable SEEPROM access while accessing Flash.
1379 	 * The older chips don't support Flash, and the NVM registers don't
1380 	 * exist, so we shouldn't be here at all!
1381 	 */
1382 	switch (bgep->chipid.nvtype) {
1383 	case BGE_NVTYPE_NONE:
1384 	case BGE_NVTYPE_UNKNOWN:
1385 		_NOTE(NOTREACHED)
1386 	case BGE_NVTYPE_SEEPROM:
1387 		return (ENODEV);
1388 
1389 	case BGE_NVTYPE_LEGACY_SEEPROM:
1390 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1391 	case BGE_NVTYPE_BUFFERED_FLASH:
1392 	default:
1393 		bge_reg_clr32(bgep, NVM_CONFIG1_REG,
1394 				NVM_CFG1_LEGACY_SEEPROM_MODE);
1395 		break;
1396 	}
1397 
1398 	/*
1399 	 * Assemble the command ...
1400 	 */
1401 	addr &= NVM_FLASH_ADDR_MASK;
1402 	cmd |= NVM_FLASH_CMD_DOIT;
1403 	cmd |= NVM_FLASH_CMD_FIRST;
1404 	cmd |= NVM_FLASH_CMD_LAST;
1405 	cmd |= NVM_FLASH_CMD_DONE;
1406 
1407 	bge_reg_put32(bgep, NVM_FLASH_WRITE_REG, *dp);
1408 	bge_reg_put32(bgep, NVM_FLASH_ADDR_REG, addr);
1409 	bge_reg_put32(bgep, NVM_FLASH_CMD_REG, cmd);
1410 
1411 	/*
1412 	 * Allow up to 1000ms ...
1413 	 */
1414 	for (tries = 0; tries < 1000; ++tries) {
1415 		regval = bge_reg_get32(bgep, NVM_FLASH_CMD_REG);
1416 		if (regval & NVM_FLASH_CMD_DONE)
1417 			break;
1418 		drv_usecwait(1);
1419 	}
1420 
1421 	if (regval & NVM_FLASH_CMD_DONE) {
1422 		/*
1423 		 * All OK; read the data from the Flash read register
1424 		 */
1425 		BGE_DEBUG(("bge_flash_access: complete after %d us", tries));
1426 		*dp = bge_reg_get32(bgep, NVM_FLASH_READ_REG);
1427 		return (0);
1428 	}
1429 
1430 	/*
1431 	 * Hmm ... what happened here?
1432 	 *
1433 	 * Most likely, the user addressed a non-existent Flash. Or
1434 	 * maybe the Flash was busy internally (e.g. processing a write)
1435 	 * and didn't respond to being addressed. Either way, there's
1436 	 * nothing we can here ...
1437 	 */
1438 	BGE_DEBUG(("bge_flash_access: timed out after %d us", tries));
1439 	return (ENODATA);
1440 }
1441 
1442 /*
1443  * The next two functions regulate access to the NVram (if fitted).
1444  *
1445  * On a 5704 (dual core) chip, there's only one SEEPROM and one Flash
1446  * (SPI) interface, but they can be accessed through either port. These
1447  * are managed by different instance of this driver and have no software
1448  * state in common.
1449  *
1450  * In addition (and even on a single core chip) the chip's internal
1451  * firmware can access the SEEPROM/Flash, most notably after a RESET
1452  * when it may download code to run internally.
1453  *
1454  * So we need to arbitrate between these various software agents.  For
1455  * this purpose, the chip provides the Software Arbitration Register,
1456  * which implements hardware(!) arbitration.
1457  *
1458  * This functionality didn't exist on older (5700/5701) chips, so there's
1459  * nothing we can do by way of arbitration on those; also, if there's no
1460  * SEEPROM/Flash fitted (or we couldn't determine what type), there's also
1461  * nothing to do.
1462  *
1463  * The internal firmware appears to use Request 0, which is the highest
1464  * priority.  So we'd like to use Request 2, leaving one higher and one
1465  * lower for any future developments ... but apparently this doesn't
1466  * always work.  So for now, the code uses Request 1 ;-(
1467  */
1468 
1469 #define	NVM_READ_REQ	NVM_READ_REQ1
1470 #define	NVM_RESET_REQ	NVM_RESET_REQ1
1471 #define	NVM_SET_REQ	NVM_SET_REQ1
1472 
1473 static void bge_nvmem_relinquish(bge_t *bgep);
1474 #pragma	no_inline(bge_nvmem_relinquish)
1475 
1476 static void
1477 bge_nvmem_relinquish(bge_t *bgep)
1478 {
1479 	ASSERT(mutex_owned(bgep->genlock));
1480 
1481 	switch (bgep->chipid.nvtype) {
1482 	case BGE_NVTYPE_NONE:
1483 	case BGE_NVTYPE_UNKNOWN:
1484 		_NOTE(NOTREACHED)
1485 		return;
1486 
1487 	case BGE_NVTYPE_SEEPROM:
1488 		/*
1489 		 * No arbitration performed, no release needed
1490 		 */
1491 		return;
1492 
1493 	case BGE_NVTYPE_LEGACY_SEEPROM:
1494 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1495 	case BGE_NVTYPE_BUFFERED_FLASH:
1496 	default:
1497 		break;
1498 	}
1499 
1500 	/*
1501 	 * Our own request should be present (whether or not granted) ...
1502 	 */
1503 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1504 
1505 	/*
1506 	 * ... this will make it go away.
1507 	 */
1508 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_RESET_REQ);
1509 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1510 }
1511 
1512 /*
1513  * Arbitrate for access to the NVmem, if necessary
1514  *
1515  * Return value:
1516  *	0 on success
1517  *	EAGAIN if the device is in use (retryable)
1518  *	ENODEV if the NVmem device is missing or otherwise unusable
1519  */
1520 static int bge_nvmem_acquire(bge_t *bgep);
1521 #pragma	no_inline(bge_nvmem_acquire)
1522 
1523 static int
1524 bge_nvmem_acquire(bge_t *bgep)
1525 {
1526 	uint32_t regval;
1527 	uint32_t tries;
1528 
1529 	ASSERT(mutex_owned(bgep->genlock));
1530 
1531 	switch (bgep->chipid.nvtype) {
1532 	case BGE_NVTYPE_NONE:
1533 	case BGE_NVTYPE_UNKNOWN:
1534 		/*
1535 		 * Access denied: no (recognisable) device fitted
1536 		 */
1537 		return (ENODEV);
1538 
1539 	case BGE_NVTYPE_SEEPROM:
1540 		/*
1541 		 * Access granted: no arbitration needed (or possible)
1542 		 */
1543 		return (0);
1544 
1545 	case BGE_NVTYPE_LEGACY_SEEPROM:
1546 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1547 	case BGE_NVTYPE_BUFFERED_FLASH:
1548 	default:
1549 		/*
1550 		 * Access conditional: conduct arbitration protocol
1551 		 */
1552 		break;
1553 	}
1554 
1555 	/*
1556 	 * We're holding the per-port mutex <genlock>, so no-one other
1557 	 * thread can be attempting to access the NVmem through *this*
1558 	 * port. But it could be in use by the *other* port (of a 5704),
1559 	 * or by the chip's internal firmware, so we have to go through
1560 	 * the full (hardware) arbitration protocol ...
1561 	 *
1562 	 * Note that *because* we're holding <genlock>, the interrupt handler
1563 	 * won't be able to progress.  So we're only willing to spin for a
1564 	 * fairly short time.  Specifically:
1565 	 *
1566 	 *	We *must* wait long enough for the hardware to resolve all
1567 	 *	requests and determine the winner.  Fortunately, this is
1568 	 *	"almost instantaneous", even as observed by GHz CPUs.
1569 	 *
1570 	 *	A successful access by another Solaris thread (via either
1571 	 *	port) typically takes ~20us.  So waiting a bit longer than
1572 	 *	that will give a good chance of success, if the other user
1573 	 *	*is* another thread on the other port.
1574 	 *
1575 	 *	However, the internal firmware can hold on to the NVmem
1576 	 *	for *much* longer: at least 10 milliseconds just after a
1577 	 *	RESET, and maybe even longer if the NVmem actually contains
1578 	 *	code to download and run on the internal CPUs.
1579 	 *
1580 	 * So, we'll allow 50us; if that's not enough then it's up to the
1581 	 * caller to retry later (hence the choice of return code EAGAIN).
1582 	 */
1583 	regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1584 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_SET_REQ);
1585 
1586 	for (tries = 0; tries < 50; ++tries) {
1587 		regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1588 		if (regval & NVM_WON_REQ1)
1589 			break;
1590 		drv_usecwait(1);
1591 	}
1592 
1593 	if (regval & NVM_WON_REQ1) {
1594 		BGE_DEBUG(("bge_nvmem_acquire: won after %d us", tries));
1595 		return (0);
1596 	}
1597 
1598 	/*
1599 	 * Somebody else must be accessing the NVmem, so abandon our
1600 	 * attempt take control of it.  The caller can try again later ...
1601 	 */
1602 	BGE_DEBUG(("bge_nvmem_acquire: lost after %d us", tries));
1603 	bge_nvmem_relinquish(bgep);
1604 	return (EAGAIN);
1605 }
1606 
1607 /*
1608  * This code assumes that the GPIO1 bit has been wired up to the NVmem
1609  * write protect line in such a way that the NVmem is protected when
1610  * GPIO1 is an input, or is an output but driven high.  Thus, to make the
1611  * NVmem writable we have to change GPIO1 to an output AND drive it low.
1612  *
1613  * Note: there's only one set of GPIO pins on a 5704, even though they
1614  * can be accessed through either port.  So the chip has to resolve what
1615  * happens if the two ports program a single pin differently ... the rule
1616  * it uses is that if the ports disagree about the *direction* of a pin,
1617  * "output" wins over "input", but if they disagree about its *value* as
1618  * an output, then the pin is TRISTATED instead!  In such a case, no-one
1619  * wins, and the external signal does whatever the external circuitry
1620  * defines as the default -- which we've assumed is the PROTECTED state.
1621  * So, we always change GPIO1 back to being an *input* whenever we're not
1622  * specifically using it to unprotect the NVmem. This allows either port
1623  * to update the NVmem, although obviously only one at a time!
1624  *
1625  * The caller should hold <genlock> and *also* have already acquired the
1626  * right to access the NVmem, via bge_nvmem_acquire() above.
1627  */
1628 static void bge_nvmem_protect(bge_t *bgep, boolean_t protect);
1629 #pragma	inline(bge_nvmem_protect)
1630 
1631 static void
1632 bge_nvmem_protect(bge_t *bgep, boolean_t protect)
1633 {
1634 	uint32_t regval;
1635 
1636 	ASSERT(mutex_owned(bgep->genlock));
1637 
1638 	regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
1639 	if (protect) {
1640 		regval |= MLCR_MISC_PINS_OUTPUT_1;
1641 		regval &= ~MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1642 	} else {
1643 		regval &= ~MLCR_MISC_PINS_OUTPUT_1;
1644 		regval |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1645 	}
1646 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, regval);
1647 }
1648 
1649 /*
1650  * Now put it all together ...
1651  *
1652  * Try to acquire control of the NVmem; if successful, then:
1653  *	unprotect it (if we want to write to it)
1654  *	perform the requested access
1655  *	reprotect it (after a write)
1656  *	relinquish control
1657  *
1658  * Return value:
1659  *	0 on success,
1660  *	EAGAIN if the device is in use (retryable)
1661  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1662  *	ENODEV if the NVmem device is missing or otherwise unusable
1663  *	EPROTO on other h/w or s/w errors.
1664  */
1665 static int
1666 bge_nvmem_rw32(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1667 {
1668 	int err;
1669 
1670 	if ((err = bge_nvmem_acquire(bgep)) == 0) {
1671 		switch (cmd) {
1672 		case BGE_SEE_READ:
1673 			err = bge_seeprom_access(bgep,
1674 			    SEEPROM_ACCESS_READ, addr, dp);
1675 			break;
1676 
1677 		case BGE_SEE_WRITE:
1678 			bge_nvmem_protect(bgep, B_FALSE);
1679 			err = bge_seeprom_access(bgep,
1680 			    SEEPROM_ACCESS_WRITE, addr, dp);
1681 			bge_nvmem_protect(bgep, B_TRUE);
1682 			break;
1683 
1684 		case BGE_FLASH_READ:
1685 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1686 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1687 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1688 				    NVM_ACCESS_ENABLE);
1689 			}
1690 			err = bge_flash_access(bgep,
1691 			    NVM_FLASH_CMD_RD, addr, dp);
1692 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1693 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1694 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1695 				    NVM_ACCESS_ENABLE);
1696 			}
1697 			break;
1698 
1699 		case BGE_FLASH_WRITE:
1700 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1701 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1702 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1703 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1704 			}
1705 			bge_nvmem_protect(bgep, B_FALSE);
1706 			err = bge_flash_access(bgep,
1707 			    NVM_FLASH_CMD_WR, addr, dp);
1708 			bge_nvmem_protect(bgep, B_TRUE);
1709 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1710 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1711 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1712 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1713 			}
1714 
1715 			break;
1716 
1717 		default:
1718 			_NOTE(NOTREACHED)
1719 			break;
1720 		}
1721 		bge_nvmem_relinquish(bgep);
1722 	}
1723 
1724 	BGE_DEBUG(("bge_nvmem_rw32: err %d", err));
1725 	return (err);
1726 }
1727 
1728 /*
1729  * Attempt to get a MAC address from the SEEPROM or Flash, if any
1730  */
1731 static uint64_t bge_get_nvmac(bge_t *bgep);
1732 #pragma no_inline(bge_get_nvmac)
1733 
1734 static uint64_t
1735 bge_get_nvmac(bge_t *bgep)
1736 {
1737 	uint32_t mac_high;
1738 	uint32_t mac_low;
1739 	uint32_t addr;
1740 	uint32_t cmd;
1741 	uint64_t mac;
1742 
1743 	BGE_TRACE(("bge_get_nvmac($%p)",
1744 		(void *)bgep));
1745 
1746 	switch (bgep->chipid.nvtype) {
1747 	case BGE_NVTYPE_NONE:
1748 	case BGE_NVTYPE_UNKNOWN:
1749 	default:
1750 		return (0ULL);
1751 
1752 	case BGE_NVTYPE_SEEPROM:
1753 	case BGE_NVTYPE_LEGACY_SEEPROM:
1754 		cmd = BGE_SEE_READ;
1755 		break;
1756 
1757 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1758 	case BGE_NVTYPE_BUFFERED_FLASH:
1759 		cmd = BGE_FLASH_READ;
1760 		break;
1761 	}
1762 
1763 	addr = NVMEM_DATA_MAC_ADDRESS;
1764 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_high))
1765 		return (0ULL);
1766 	addr += 4;
1767 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_low))
1768 		return (0ULL);
1769 
1770 	/*
1771 	 * The Broadcom chip is natively BIG-endian, so that's how the
1772 	 * MAC address is represented in NVmem.  We may need to swap it
1773 	 * around on a little-endian host ...
1774 	 */
1775 #ifdef	_BIG_ENDIAN
1776 	mac = mac_high;
1777 	mac = mac << 32;
1778 	mac |= mac_low;
1779 #else
1780 	mac = BGE_BSWAP_32(mac_high);
1781 	mac = mac << 32;
1782 	mac |= BGE_BSWAP_32(mac_low);
1783 #endif	/* _BIG_ENDIAN */
1784 
1785 	return (mac);
1786 }
1787 
1788 #else	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1789 
1790 /*
1791  * Dummy version for when we're not supporting NVmem access
1792  */
1793 static uint64_t bge_get_nvmac(bge_t *bgep);
1794 #pragma inline(bge_get_nvmac)
1795 
1796 static uint64_t
1797 bge_get_nvmac(bge_t *bgep)
1798 {
1799 	_NOTE(ARGUNUSED(bgep))
1800 	return (0ULL);
1801 }
1802 
1803 #endif	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1804 
1805 /*
1806  * Determine the type of NVmem that is (or may be) attached to this chip,
1807  */
1808 static enum bge_nvmem_type bge_nvmem_id(bge_t *bgep);
1809 #pragma no_inline(bge_nvmem_id)
1810 
1811 static enum bge_nvmem_type
1812 bge_nvmem_id(bge_t *bgep)
1813 {
1814 	enum bge_nvmem_type nvtype;
1815 	uint32_t config1;
1816 
1817 	BGE_TRACE(("bge_nvmem_id($%p)",
1818 		(void *)bgep));
1819 
1820 	switch (bgep->chipid.device) {
1821 	default:
1822 		/*
1823 		 * We shouldn't get here; it means we don't recognise
1824 		 * the chip, which means we don't know how to determine
1825 		 * what sort of NVmem (if any) it has.  So we'll say
1826 		 * NONE, to disable the NVmem access code ...
1827 		 */
1828 		nvtype = BGE_NVTYPE_NONE;
1829 		break;
1830 
1831 	case DEVICE_ID_5700:
1832 	case DEVICE_ID_5700x:
1833 	case DEVICE_ID_5701:
1834 		/*
1835 		 * These devices support *only* SEEPROMs
1836 		 */
1837 		nvtype = BGE_NVTYPE_SEEPROM;
1838 		break;
1839 
1840 	case DEVICE_ID_5702:
1841 	case DEVICE_ID_5702fe:
1842 	case DEVICE_ID_5703C:
1843 	case DEVICE_ID_5703S:
1844 	case DEVICE_ID_5704C:
1845 	case DEVICE_ID_5704S:
1846 	case DEVICE_ID_5704:
1847 	case DEVICE_ID_5705M:
1848 	case DEVICE_ID_5705C:
1849 	case DEVICE_ID_5705_2:
1850 	case DEVICE_ID_5706:
1851 	case DEVICE_ID_5782:
1852 	case DEVICE_ID_5788:
1853 	case DEVICE_ID_5789:
1854 	case DEVICE_ID_5751:
1855 	case DEVICE_ID_5751M:
1856 	case DEVICE_ID_5752:
1857 	case DEVICE_ID_5752M:
1858 	case DEVICE_ID_5754:
1859 	case DEVICE_ID_5721:
1860 	case DEVICE_ID_5714C:
1861 	case DEVICE_ID_5714S:
1862 	case DEVICE_ID_5715C:
1863 	case DEVICE_ID_5715S:
1864 		config1 = bge_reg_get32(bgep, NVM_CONFIG1_REG);
1865 		if (config1 & NVM_CFG1_FLASH_MODE)
1866 			if (config1 & NVM_CFG1_BUFFERED_MODE)
1867 				nvtype = BGE_NVTYPE_BUFFERED_FLASH;
1868 			else
1869 				nvtype = BGE_NVTYPE_UNBUFFERED_FLASH;
1870 		else
1871 			nvtype = BGE_NVTYPE_LEGACY_SEEPROM;
1872 		break;
1873 	}
1874 
1875 	return (nvtype);
1876 }
1877 
1878 #undef	BGE_DBG
1879 #define	BGE_DBG		BGE_DBG_CHIP	/* debug flag for this code	*/
1880 
1881 static void
1882 bge_init_recv_rule(bge_t *bgep)
1883 {
1884 	bge_recv_rule_t *rulep;
1885 	uint32_t i;
1886 
1887 	/*
1888 	 * receive rule: direct all TCP traffic to ring RULE_MATCH_TO_RING
1889 	 * 1. to direct UDP traffic, set:
1890 	 * 	rulep->control = RULE_PROTO_CONTROL;
1891 	 * 	rulep->mask_value = RULE_UDP_MASK_VALUE;
1892 	 * 2. to direct ICMP traffic, set:
1893 	 * 	rulep->control = RULE_PROTO_CONTROL;
1894 	 * 	rulep->mask_value = RULE_ICMP_MASK_VALUE;
1895 	 * 3. to direct traffic by source ip, set:
1896 	 * 	rulep->control = RULE_SIP_CONTROL;
1897 	 * 	rulep->mask_value = RULE_SIP_MASK_VALUE;
1898 	 */
1899 	rulep = bgep->recv_rules;
1900 	rulep->control = RULE_PROTO_CONTROL;
1901 	rulep->mask_value = RULE_TCP_MASK_VALUE;
1902 
1903 	/*
1904 	 * set receive rule registers
1905 	 */
1906 	rulep = bgep->recv_rules;
1907 	for (i = 0; i < RECV_RULES_NUM_MAX; i++, rulep++) {
1908 		bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep->mask_value);
1909 		bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep->control);
1910 	}
1911 }
1912 
1913 /*
1914  * Using the values captured by bge_chip_cfg_init(), and additional probes
1915  * as required, characterise the chip fully: determine the label by which
1916  * to refer to this chip, the correct settings for various registers, and
1917  * of course whether the device and/or subsystem are supported!
1918  */
1919 int bge_chip_id_init(bge_t *bgep);
1920 #pragma	no_inline(bge_chip_id_init)
1921 
1922 int
1923 bge_chip_id_init(bge_t *bgep)
1924 {
1925 	char buf[MAXPATHLEN];		/* any risk of stack overflow?	*/
1926 	boolean_t sys_ok;
1927 	boolean_t dev_ok;
1928 	chip_id_t *cidp;
1929 	uint32_t subid;
1930 	char *devname;
1931 	char *sysname;
1932 	int *ids;
1933 	int err;
1934 	uint_t i;
1935 
1936 	ASSERT(bgep->bge_chip_state == BGE_CHIP_INITIAL);
1937 
1938 	sys_ok = dev_ok = B_FALSE;
1939 	cidp = &bgep->chipid;
1940 
1941 	/*
1942 	 * Check the PCI device ID to determine the generic chip type and
1943 	 * select parameters that depend on this.
1944 	 *
1945 	 * Note: because the SPARC platforms in general don't fit the
1946 	 * SEEPROM 'behind' the chip, the PCI revision ID register reads
1947 	 * as zero - which is why we use <asic_rev> rather than <revision>
1948 	 * below ...
1949 	 *
1950 	 * Note: in general we can't distinguish between the Copper/SerDes
1951 	 * versions by ID alone, as some Copper devices (e.g. some but not
1952 	 * all 5703Cs) have the same ID as the SerDes equivalents.  So we
1953 	 * treat them the same here, and the MII code works out the media
1954 	 * type later on ...
1955 	 */
1956 	cidp->mbuf_base = bge_mbuf_pool_base;
1957 	cidp->mbuf_length = bge_mbuf_pool_len;
1958 	cidp->recv_slots = BGE_RECV_SLOTS_USED;
1959 	cidp->bge_dma_rwctrl = bge_dma_rwctrl;
1960 	cidp->pci_type = BGE_PCI_X;
1961 	cidp->statistic_type = BGE_STAT_BLK;
1962 	cidp->mbuf_lo_water_rdma = bge_mbuf_lo_water_rdma;
1963 	cidp->mbuf_lo_water_rmac = bge_mbuf_lo_water_rmac;
1964 	cidp->mbuf_hi_water = bge_mbuf_hi_water;
1965 
1966 	if (cidp->rx_rings == 0 || cidp->rx_rings > BGE_RECV_RINGS_MAX)
1967 		cidp->rx_rings = BGE_RECV_RINGS_DEFAULT;
1968 	if (cidp->tx_rings == 0 || cidp->tx_rings > BGE_SEND_RINGS_MAX)
1969 		cidp->tx_rings = BGE_SEND_RINGS_DEFAULT;
1970 
1971 	cidp->msi_enabled = B_FALSE;
1972 
1973 	switch (cidp->device) {
1974 	case DEVICE_ID_5700:
1975 	case DEVICE_ID_5700x:
1976 		cidp->chip_label = 5700;
1977 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1978 		break;
1979 
1980 	case DEVICE_ID_5701:
1981 		cidp->chip_label = 5701;
1982 		dev_ok = B_TRUE;
1983 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1984 		break;
1985 
1986 	case DEVICE_ID_5702:
1987 	case DEVICE_ID_5702fe:
1988 		cidp->chip_label = 5702;
1989 		dev_ok = B_TRUE;
1990 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1991 		cidp->pci_type = BGE_PCI;
1992 		break;
1993 
1994 	case DEVICE_ID_5703C:
1995 	case DEVICE_ID_5703S:
1996 	case DEVICE_ID_5703:
1997 		/*
1998 		 * Revision A0 of the 5703/5793 had various errata
1999 		 * that we can't or don't work around, so it's not
2000 		 * supported, but all later versions are
2001 		 */
2002 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5793 : 5703;
2003 		if (bgep->chipid.asic_rev != MHCR_CHIP_REV_5703_A0)
2004 			dev_ok = B_TRUE;
2005 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2006 		break;
2007 
2008 	case DEVICE_ID_5704C:
2009 	case DEVICE_ID_5704S:
2010 	case DEVICE_ID_5704:
2011 		/*
2012 		 * Revision A0 of the 5704/5794 had various errata
2013 		 * but we have workarounds, so it *is* supported.
2014 		 */
2015 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5794 : 5704;
2016 		cidp->mbuf_base = bge_mbuf_pool_base_5704;
2017 		cidp->mbuf_length = bge_mbuf_pool_len_5704;
2018 		dev_ok = B_TRUE;
2019 		if (cidp->asic_rev <  MHCR_CHIP_REV_5704_B0)
2020 			cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2021 		break;
2022 
2023 	case DEVICE_ID_5705C:
2024 	case DEVICE_ID_5705M:
2025 	case DEVICE_ID_5705MA3:
2026 	case DEVICE_ID_5705F:
2027 	case DEVICE_ID_5705_2:
2028 	case DEVICE_ID_5754:
2029 		if (cidp->device == DEVICE_ID_5754) {
2030 			cidp->chip_label = 5754;
2031 			cidp->pci_type = BGE_PCI_E;
2032 		} else {
2033 			cidp->chip_label = 5705;
2034 			cidp->pci_type = BGE_PCI;
2035 		}
2036 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2037 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2038 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2039 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2040 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2041 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2042 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2043 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2044 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2045 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2046 		cidp->statistic_type = BGE_STAT_REG;
2047 		dev_ok = B_TRUE;
2048 		break;
2049 
2050 	case DEVICE_ID_5706:
2051 		cidp->chip_label = 5706;
2052 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2053 		break;
2054 
2055 	case DEVICE_ID_5782:
2056 		/*
2057 		 * Apart from the label, we treat this as a 5705(?)
2058 		 */
2059 		cidp->chip_label = 5782;
2060 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2061 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2062 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2063 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2064 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2065 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2066 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2067 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2068 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2069 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2070 		cidp->statistic_type = BGE_STAT_REG;
2071 		dev_ok = B_TRUE;
2072 		break;
2073 
2074 	case DEVICE_ID_5788:
2075 		/*
2076 		 * Apart from the label, we treat this as a 5705(?)
2077 		 */
2078 		cidp->chip_label = 5788;
2079 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2080 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2081 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2082 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2083 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2084 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2085 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2086 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2087 		cidp->statistic_type = BGE_STAT_REG;
2088 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2089 		dev_ok = B_TRUE;
2090 		break;
2091 
2092 	case DEVICE_ID_5714C:
2093 		if (cidp->revision >= REVISION_ID_5714_A2)
2094 			cidp->msi_enabled = bge_enable_msi;
2095 		/* FALLTHRU */
2096 	case DEVICE_ID_5714S:
2097 		cidp->chip_label = 5714;
2098 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2099 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2100 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2101 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2102 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2103 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2104 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5714;
2105 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2106 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2107 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2108 		cidp->pci_type = BGE_PCI_E;
2109 		cidp->statistic_type = BGE_STAT_REG;
2110 		dev_ok = B_TRUE;
2111 		break;
2112 
2113 	case DEVICE_ID_5715C:
2114 	case DEVICE_ID_5715S:
2115 		cidp->chip_label = 5715;
2116 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2117 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2118 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2119 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2120 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2121 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2122 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5715;
2123 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2124 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2125 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2126 		cidp->pci_type = BGE_PCI_E;
2127 		cidp->statistic_type = BGE_STAT_REG;
2128 		if (cidp->revision >= REVISION_ID_5715_A2)
2129 			cidp->msi_enabled = bge_enable_msi;
2130 		dev_ok = B_TRUE;
2131 		break;
2132 
2133 	case DEVICE_ID_5721:
2134 		cidp->chip_label = 5721;
2135 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2136 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2137 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2138 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2139 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2140 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2141 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2142 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2143 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2144 		cidp->pci_type = BGE_PCI_E;
2145 		cidp->statistic_type = BGE_STAT_REG;
2146 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2147 		dev_ok = B_TRUE;
2148 		break;
2149 
2150 	case DEVICE_ID_5751:
2151 	case DEVICE_ID_5751M:
2152 		cidp->chip_label = 5751;
2153 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2154 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2155 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2156 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2157 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2158 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2159 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2160 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2161 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2162 		cidp->pci_type = BGE_PCI_E;
2163 		cidp->statistic_type = BGE_STAT_REG;
2164 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2165 		dev_ok = B_TRUE;
2166 		break;
2167 
2168 	case DEVICE_ID_5752:
2169 	case DEVICE_ID_5752M:
2170 		cidp->chip_label = 5752;
2171 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2172 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2173 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2174 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2175 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2176 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2177 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2178 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2179 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2180 		cidp->pci_type = BGE_PCI_E;
2181 		cidp->statistic_type = BGE_STAT_REG;
2182 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2183 		dev_ok = B_TRUE;
2184 		break;
2185 
2186 	case DEVICE_ID_5789:
2187 		cidp->chip_label = 5789;
2188 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2189 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2190 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2191 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2192 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2193 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
2194 		cidp->pci_type = BGE_PCI_E;
2195 		cidp->statistic_type = BGE_STAT_REG;
2196 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2197 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2198 		cidp->msi_enabled = B_TRUE;
2199 		dev_ok = B_TRUE;
2200 		break;
2201 
2202 	}
2203 
2204 	/*
2205 	 * Setup the default jumbo parameter.
2206 	 */
2207 	cidp->ethmax_size = ETHERMAX;
2208 	cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_DEFAULT;
2209 	cidp->std_buf_size = BGE_STD_BUFF_SIZE;
2210 
2211 	/*
2212 	 * If jumbo is enabled and this kind of chipset supports jumbo feature,
2213 	 * setup below jumbo specific parameters.
2214 	 *
2215 	 * For BCM5714/5715, there is only one standard receive ring. So the
2216 	 * std buffer size should be set to BGE_JUMBO_BUFF_SIZE when jumbo
2217 	 * feature is enabled.
2218 	 */
2219 	if (bge_jumbo_enable &&
2220 	    !(cidp->flags & CHIP_FLAG_NO_JUMBO) &&
2221 	    (cidp->default_mtu > BGE_DEFAULT_MTU) &&
2222 	    (cidp->default_mtu <= BGE_MAXIMUM_MTU)) {
2223 	    if (DEVICE_5714_SERIES_CHIPSETS(bgep)) {
2224 			cidp->mbuf_lo_water_rdma =
2225 			    RDMA_MBUF_LOWAT_5714_JUMBO;
2226 			cidp->mbuf_lo_water_rmac =
2227 			    MAC_RX_MBUF_LOWAT_5714_JUMBO;
2228 			cidp->mbuf_hi_water = MBUF_HIWAT_5714_JUMBO;
2229 			cidp->jumbo_slots = 0;
2230 			cidp->std_buf_size = BGE_JUMBO_BUFF_SIZE;
2231 	    } else {
2232 			cidp->mbuf_lo_water_rdma =
2233 			    RDMA_MBUF_LOWAT_JUMBO;
2234 			cidp->mbuf_lo_water_rmac =
2235 			    MAC_RX_MBUF_LOWAT_JUMBO;
2236 			cidp->mbuf_hi_water = MBUF_HIWAT_JUMBO;
2237 			cidp->jumbo_slots = BGE_JUMBO_SLOTS_USED;
2238 		}
2239 		cidp->recv_jumbo_size = BGE_JUMBO_BUFF_SIZE;
2240 		cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_JUMBO;
2241 		cidp->ethmax_size = cidp->default_mtu +
2242 		    sizeof (struct ether_header);
2243 	}
2244 
2245 	/*
2246 	 * Identify the NV memory type: SEEPROM or Flash?
2247 	 */
2248 	cidp->nvtype = bge_nvmem_id(bgep);
2249 
2250 	/*
2251 	 * Now, we want to check whether this device is part of a
2252 	 * supported subsystem (e.g., on the motherboard of a Sun
2253 	 * branded platform).
2254 	 *
2255 	 * Rule 1: If the Subsystem Vendor ID is "Sun", then it's OK ;-)
2256 	 */
2257 	if (cidp->subven == VENDOR_ID_SUN)
2258 		sys_ok = B_TRUE;
2259 
2260 	/*
2261 	 * Rule 2: If it's on the list on known subsystems, then it's OK.
2262 	 * Note: 0x14e41647 should *not* appear in the list, but the code
2263 	 * doesn't enforce that.
2264 	 */
2265 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
2266 		DDI_PROP_DONTPASS, knownids_propname, &ids, &i);
2267 	if (err == DDI_PROP_SUCCESS) {
2268 		/*
2269 		 * Got the list; scan for a matching subsystem vendor/device
2270 		 */
2271 		subid = (cidp->subven << 16) | cidp->subdev;
2272 		while (i--)
2273 			if (ids[i] == subid)
2274 				sys_ok = B_TRUE;
2275 		ddi_prop_free(ids);
2276 	}
2277 
2278 	/*
2279 	 * Rule 3: If it's a Taco/ENWS motherboard device, then it's OK
2280 	 *
2281 	 * Unfortunately, early SunBlade 1500s and 2500s didn't reprogram
2282 	 * the Subsystem Vendor ID, so it defaults to Broadcom.  Therefore,
2283 	 * we have to check specially for the exact device paths to the
2284 	 * motherboard devices on those platforms ;-(
2285 	 *
2286 	 * Note: we can't just use the "supported-subsystems" mechanism
2287 	 * above, because the entry would have to be 0x14e41647 -- which
2288 	 * would then accept *any* plugin card that *didn't* contain a
2289 	 * (valid) SEEPROM ;-(
2290 	 */
2291 	sysname = ddi_node_name(ddi_root_node());
2292 	devname = ddi_pathname(bgep->devinfo, buf);
2293 	ASSERT(strlen(devname) > 0);
2294 	if (strcmp(sysname, "SUNW,Sun-Blade-1500") == 0)	/* Taco */
2295 		if (strcmp(devname, "/pci@1f,700000/network@2") == 0)
2296 			sys_ok = B_TRUE;
2297 	if (strcmp(sysname, "SUNW,Sun-Blade-2500") == 0)	/* ENWS */
2298 		if (strcmp(devname, "/pci@1c,600000/network@3") == 0)
2299 			sys_ok = B_TRUE;
2300 
2301 	/*
2302 	 * Now check what we've discovered: is this truly a supported
2303 	 * chip on (the motherboard of) a supported platform?
2304 	 *
2305 	 * Possible problems here:
2306 	 * 1)	it's a completely unheard-of chip (e.g. 5761)
2307 	 * 2)	it's a recognised but unsupported chip (e.g. 5701, 5703C-A0)
2308 	 * 3)	it's a chip we would support if it were on the motherboard
2309 	 *	of a Sun platform, but this one isn't ;-(
2310 	 */
2311 	if (cidp->chip_label == 0)
2312 		bge_problem(bgep,
2313 			"Device 'pci%04x,%04x' not recognized (%d?)",
2314 			cidp->vendor, cidp->device, cidp->device);
2315 	else if (!dev_ok)
2316 		bge_problem(bgep,
2317 			"Device 'pci%04x,%04x' (%d) revision %d not supported",
2318 			cidp->vendor, cidp->device, cidp->chip_label,
2319 			cidp->revision);
2320 #if	BGE_DEBUGGING
2321 	else if (!sys_ok)
2322 		bge_problem(bgep,
2323 			"%d-based subsystem 'pci%04x,%04x' not validated",
2324 			cidp->chip_label, cidp->subven, cidp->subdev);
2325 #endif
2326 	else
2327 		cidp->flags |= CHIP_FLAG_SUPPORTED;
2328 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
2329 		return (EIO);
2330 	return (0);
2331 }
2332 
2333 void
2334 bge_chip_msi_trig(bge_t *bgep)
2335 {
2336 	uint32_t	regval;
2337 
2338 	regval = bgep->param_msi_cnt<<4;
2339 	bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, regval);
2340 	BGE_DEBUG(("bge_chip_msi_trig:data = %d", regval));
2341 }
2342 
2343 /*
2344  * Various registers that control the chip's internal engines (state
2345  * machines) have a <reset> and <enable> bits (fortunately, in the
2346  * same place in each such register :-).
2347  *
2348  * To reset the state machine, the <reset> bit must be written with 1;
2349  * it will then read back as 1 while the reset is in progress, but
2350  * self-clear to 0 when the reset completes.
2351  *
2352  * To enable a state machine, one must set the <enable> bit, which
2353  * will continue to read back as 0 until the state machine is running.
2354  *
2355  * To disable a state machine, the <enable> bit must be cleared, but
2356  * it will continue to read back as 1 until the state machine actually
2357  * stops.
2358  *
2359  * This routine implements polling for completion of a reset, enable
2360  * or disable operation, returning B_TRUE on success (bit reached the
2361  * required state) or B_FALSE on timeout (200*100us == 20ms).
2362  */
2363 static boolean_t bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2364 					uint32_t mask, uint32_t val);
2365 #pragma	no_inline(bge_chip_poll_engine)
2366 
2367 static boolean_t
2368 bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2369 	uint32_t mask, uint32_t val)
2370 {
2371 	uint32_t regval;
2372 	uint32_t n;
2373 
2374 	BGE_TRACE(("bge_chip_poll_engine($%p, 0x%lx, 0x%x, 0x%x)",
2375 		(void *)bgep, regno, mask, val));
2376 
2377 	for (n = 200; n; --n) {
2378 		regval = bge_reg_get32(bgep, regno);
2379 		if ((regval & mask) == val)
2380 			return (B_TRUE);
2381 		drv_usecwait(100);
2382 	}
2383 
2384 	bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
2385 	return (B_FALSE);
2386 }
2387 
2388 /*
2389  * Various registers that control the chip's internal engines (state
2390  * machines) have a <reset> bit (fortunately, in the same place in
2391  * each such register :-).  To reset the state machine, this bit must
2392  * be written with 1; it will then read back as 1 while the reset is
2393  * in progress, but self-clear to 0 when the reset completes.
2394  *
2395  * This code sets the bit, then polls for it to read back as zero.
2396  * The return value is B_TRUE on success (reset bit cleared itself),
2397  * or B_FALSE if the state machine didn't recover :(
2398  *
2399  * NOTE: the Core reset is similar to other resets, except that we
2400  * can't poll for completion, since the Core reset disables memory
2401  * access!  So we just have to assume that it will all complete in
2402  * 100us.  See Broadcom document 570X-PG102-R, p102, steps 4-5.
2403  */
2404 static boolean_t bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno);
2405 #pragma	no_inline(bge_chip_reset_engine)
2406 
2407 static boolean_t
2408 bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno)
2409 {
2410 	uint32_t regval;
2411 	uint32_t val32;
2412 
2413 	regval = bge_reg_get32(bgep, regno);
2414 
2415 	BGE_TRACE(("bge_chip_reset_engine($%p, 0x%lx)",
2416 		(void *)bgep, regno));
2417 	BGE_DEBUG(("bge_chip_reset_engine: 0x%lx before reset = 0x%08x",
2418 		regno, regval));
2419 
2420 	regval |= STATE_MACHINE_RESET_BIT;
2421 
2422 	switch (regno) {
2423 	case MISC_CONFIG_REG:
2424 		/*
2425 		 * BCM5714/5721/5751 pcie chip special case. In order to avoid
2426 		 * resetting PCIE block and bringing PCIE link down, bit 29
2427 		 * in the register needs to be set first, and then set it again
2428 		 * while the reset bit is written.
2429 		 * See:P500 of 57xx-PG102-RDS.pdf.
2430 		 */
2431 		if (DEVICE_5705_SERIES_CHIPSETS(bgep)||
2432 		    DEVICE_5721_SERIES_CHIPSETS(bgep)||
2433 		    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
2434 			regval |= MISC_CONFIG_GPHY_POWERDOWN_OVERRIDE;
2435 			if (bgep->chipid.pci_type == BGE_PCI_E) {
2436 				if (bgep->chipid.asic_rev ==
2437 				    MHCR_CHIP_REV_5751_A0 ||
2438 				    bgep->chipid.asic_rev ==
2439 				    MHCR_CHIP_REV_5721_A0) {
2440 					val32 = bge_reg_get32(bgep,
2441 					    PHY_TEST_CTRL_REG);
2442 					if (val32 == (PHY_PCIE_SCRAM_MODE |
2443 					    PHY_PCIE_LTASS_MODE))
2444 						bge_reg_put32(bgep,
2445 						    PHY_TEST_CTRL_REG,
2446 						    PHY_PCIE_SCRAM_MODE);
2447 					val32 = pci_config_get32
2448 					    (bgep->cfg_handle,
2449 					    PCI_CONF_BGE_CLKCTL);
2450 					val32 |= CLKCTL_PCIE_A0_FIX;
2451 					pci_config_put32(bgep->cfg_handle,
2452 					    PCI_CONF_BGE_CLKCTL, val32);
2453 				}
2454 				bge_reg_set32(bgep, regno,
2455 					MISC_CONFIG_GRC_RESET_DISABLE);
2456 				regval |= MISC_CONFIG_GRC_RESET_DISABLE;
2457 			}
2458 		}
2459 
2460 		/*
2461 		 * Special case - causes Core reset
2462 		 *
2463 		 * On SPARC v9 we want to ensure that we don't start
2464 		 * timing until the I/O access has actually reached
2465 		 * the chip, otherwise we might make the next access
2466 		 * too early.  And we can't just force the write out
2467 		 * by following it with a read (even to config space)
2468 		 * because that would cause the fault we're trying
2469 		 * to avoid.  Hence the need for membar_sync() here.
2470 		 */
2471 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), regval);
2472 #ifdef	__sparcv9
2473 		membar_sync();
2474 #endif	/* __sparcv9 */
2475 		/*
2476 		 * On some platforms,system need about 300us for
2477 		 * link setup.
2478 		 */
2479 		drv_usecwait(300);
2480 
2481 		if (bgep->chipid.pci_type == BGE_PCI_E) {
2482 			/* PCI-E device need more reset time */
2483 			drv_usecwait(120000);
2484 
2485 			/* Set PCIE max payload size and clear error status. */
2486 			if ((bgep->chipid.chip_label == 5721) ||
2487 			    (bgep->chipid.chip_label == 5751) ||
2488 			    (bgep->chipid.chip_label == 5752) ||
2489 			    (bgep->chipid.chip_label == 5789)) {
2490 				pci_config_put16(bgep->cfg_handle,
2491 					PCI_CONF_DEV_CTRL, READ_REQ_SIZE_MAX);
2492 				pci_config_put16(bgep->cfg_handle,
2493 					PCI_CONF_DEV_STUS, DEVICE_ERROR_STUS);
2494 			}
2495 		}
2496 
2497 		BGE_PCICHK(bgep);
2498 		return (B_TRUE);
2499 
2500 	default:
2501 		bge_reg_put32(bgep, regno, regval);
2502 		return (bge_chip_poll_engine(bgep, regno,
2503 		    STATE_MACHINE_RESET_BIT, 0));
2504 	}
2505 }
2506 
2507 /*
2508  * Various registers that control the chip's internal engines (state
2509  * machines) have an <enable> bit (fortunately, in the same place in
2510  * each such register :-).  To stop the state machine, this bit must
2511  * be written with 0, then polled to see when the state machine has
2512  * actually stopped.
2513  *
2514  * The return value is B_TRUE on success (enable bit cleared), or
2515  * B_FALSE if the state machine didn't stop :(
2516  */
2517 static boolean_t bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno,
2518 						uint32_t morebits);
2519 #pragma	no_inline(bge_chip_disable_engine)
2520 
2521 static boolean_t
2522 bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2523 {
2524 	uint32_t regval;
2525 
2526 	BGE_TRACE(("bge_chip_disable_engine($%p, 0x%lx, 0x%x)",
2527 		(void *)bgep, regno, morebits));
2528 
2529 	switch (regno) {
2530 	case FTQ_RESET_REG:
2531 		/*
2532 		 * For Schumacher's bugfix CR6490108
2533 		 */
2534 #ifdef BGE_IPMI_ASF
2535 #ifdef BGE_NETCONSOLE
2536 		if (bgep->asf_enabled)
2537 			return (B_TRUE);
2538 #endif
2539 #endif
2540 		/*
2541 		 * Not quite like the others; it doesn't
2542 		 * have an <enable> bit, but instead we
2543 		 * have to set and then clear all the bits
2544 		 */
2545 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2546 		drv_usecwait(100);
2547 		bge_reg_put32(bgep, regno, 0);
2548 		return (B_TRUE);
2549 
2550 	default:
2551 		regval = bge_reg_get32(bgep, regno);
2552 		regval &= ~STATE_MACHINE_ENABLE_BIT;
2553 		regval &= ~morebits;
2554 		bge_reg_put32(bgep, regno, regval);
2555 		return (bge_chip_poll_engine(bgep, regno,
2556 		    STATE_MACHINE_ENABLE_BIT, 0));
2557 	}
2558 }
2559 
2560 /*
2561  * Various registers that control the chip's internal engines (state
2562  * machines) have an <enable> bit (fortunately, in the same place in
2563  * each such register :-).  To start the state machine, this bit must
2564  * be written with 1, then polled to see when the state machine has
2565  * actually started.
2566  *
2567  * The return value is B_TRUE on success (enable bit set), or
2568  * B_FALSE if the state machine didn't start :(
2569  */
2570 static boolean_t bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno,
2571 					uint32_t morebits);
2572 #pragma	no_inline(bge_chip_enable_engine)
2573 
2574 static boolean_t
2575 bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2576 {
2577 	uint32_t regval;
2578 
2579 	BGE_TRACE(("bge_chip_enable_engine($%p, 0x%lx, 0x%x)",
2580 		(void *)bgep, regno, morebits));
2581 
2582 	switch (regno) {
2583 	case FTQ_RESET_REG:
2584 #ifdef BGE_IPMI_ASF
2585 #ifdef BGE_NETCONSOLE
2586 		if (bgep->asf_enabled)
2587 			return (B_TRUE);
2588 #endif
2589 #endif
2590 		/*
2591 		 * Not quite like the others; it doesn't
2592 		 * have an <enable> bit, but instead we
2593 		 * have to set and then clear all the bits
2594 		 */
2595 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2596 		drv_usecwait(100);
2597 		bge_reg_put32(bgep, regno, 0);
2598 		return (B_TRUE);
2599 
2600 	default:
2601 		regval = bge_reg_get32(bgep, regno);
2602 		regval |= STATE_MACHINE_ENABLE_BIT;
2603 		regval |= morebits;
2604 		bge_reg_put32(bgep, regno, regval);
2605 		return (bge_chip_poll_engine(bgep, regno,
2606 		    STATE_MACHINE_ENABLE_BIT, STATE_MACHINE_ENABLE_BIT));
2607 	}
2608 }
2609 
2610 /*
2611  * Reprogram the Ethernet, Transmit, and Receive MAC
2612  * modes to match the param_* variables
2613  */
2614 static void bge_sync_mac_modes(bge_t *bgep);
2615 #pragma	no_inline(bge_sync_mac_modes)
2616 
2617 static void
2618 bge_sync_mac_modes(bge_t *bgep)
2619 {
2620 	uint32_t macmode;
2621 	uint32_t regval;
2622 
2623 	ASSERT(mutex_owned(bgep->genlock));
2624 
2625 	/*
2626 	 * Reprogram the Ethernet MAC mode ...
2627 	 */
2628 	macmode = regval = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
2629 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2630 		(bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
2631 		macmode &= ~ETHERNET_MODE_LINK_POLARITY;
2632 	else
2633 		macmode |= ETHERNET_MODE_LINK_POLARITY;
2634 	macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
2635 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2636 		(bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
2637 		macmode |= ETHERNET_MODE_PORTMODE_TBI;
2638 	else if (bgep->param_link_speed == 10 || bgep->param_link_speed == 100)
2639 		macmode |= ETHERNET_MODE_PORTMODE_MII;
2640 	else
2641 		macmode |= ETHERNET_MODE_PORTMODE_GMII;
2642 	if (bgep->param_link_duplex == LINK_DUPLEX_HALF)
2643 		macmode |= ETHERNET_MODE_HALF_DUPLEX;
2644 	else
2645 		macmode &= ~ETHERNET_MODE_HALF_DUPLEX;
2646 	if (bgep->param_loop_mode == BGE_LOOP_INTERNAL_MAC)
2647 		macmode |= ETHERNET_MODE_MAC_LOOPBACK;
2648 	else
2649 		macmode &= ~ETHERNET_MODE_MAC_LOOPBACK;
2650 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
2651 	BGE_DEBUG(("bge_sync_mac_modes($%p) Ethernet MAC mode 0x%x => 0x%x",
2652 		(void *)bgep, regval, macmode));
2653 
2654 	/*
2655 	 * ... the Transmit MAC mode ...
2656 	 */
2657 	macmode = regval = bge_reg_get32(bgep, TRANSMIT_MAC_MODE_REG);
2658 	if (bgep->param_link_tx_pause)
2659 		macmode |= TRANSMIT_MODE_FLOW_CONTROL;
2660 	else
2661 		macmode &= ~TRANSMIT_MODE_FLOW_CONTROL;
2662 	bge_reg_put32(bgep, TRANSMIT_MAC_MODE_REG, macmode);
2663 	BGE_DEBUG(("bge_sync_mac_modes($%p) Transmit MAC mode 0x%x => 0x%x",
2664 		(void *)bgep, regval, macmode));
2665 
2666 	/*
2667 	 * ... and the Receive MAC mode
2668 	 */
2669 	macmode = regval = bge_reg_get32(bgep, RECEIVE_MAC_MODE_REG);
2670 	if (bgep->param_link_rx_pause)
2671 		macmode |= RECEIVE_MODE_FLOW_CONTROL;
2672 	else
2673 		macmode &= ~RECEIVE_MODE_FLOW_CONTROL;
2674 	bge_reg_put32(bgep, RECEIVE_MAC_MODE_REG, macmode);
2675 	BGE_DEBUG(("bge_sync_mac_modes($%p) Receive MAC mode 0x%x => 0x%x",
2676 		(void *)bgep, regval, macmode));
2677 }
2678 
2679 /*
2680  * bge_chip_sync() -- program the chip with the unicast MAC address,
2681  * the multicast hash table, the required level of promiscuity, and
2682  * the current loopback mode ...
2683  */
2684 #ifdef BGE_IPMI_ASF
2685 int bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive);
2686 #else
2687 int bge_chip_sync(bge_t *bgep);
2688 #endif
2689 #pragma	no_inline(bge_chip_sync)
2690 
2691 int
2692 #ifdef BGE_IPMI_ASF
2693 bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive)
2694 #else
2695 bge_chip_sync(bge_t *bgep)
2696 #endif
2697 {
2698 	void (*opfn)(bge_t *bgep, bge_regno_t reg, uint32_t bits);
2699 	boolean_t promisc;
2700 	uint64_t macaddr;
2701 	uint32_t fill;
2702 	int i, j;
2703 	int retval = DDI_SUCCESS;
2704 
2705 	BGE_TRACE(("bge_chip_sync($%p)",
2706 		(void *)bgep));
2707 
2708 	ASSERT(mutex_owned(bgep->genlock));
2709 
2710 	promisc = B_FALSE;
2711 	fill = ~(uint32_t)0;
2712 
2713 	if (bgep->promisc)
2714 		promisc = B_TRUE;
2715 	else
2716 		fill = (uint32_t)0;
2717 
2718 	/*
2719 	 * If the TX/RX MAC engines are already running, we should stop
2720 	 * them (and reset the RX engine) before changing the parameters.
2721 	 * If they're not running, this will have no effect ...
2722 	 *
2723 	 * NOTE: this is currently disabled by default because stopping
2724 	 * and restarting the Tx engine may cause an outgoing packet in
2725 	 * transit to be truncated.  Also, stopping and restarting the
2726 	 * Rx engine seems to not work correctly on the 5705.  Testing
2727 	 * has not (yet!) revealed any problems with NOT stopping and
2728 	 * restarting these engines (and Broadcom say their drivers don't
2729 	 * do this), but if it is found to cause problems, this variable
2730 	 * can be patched to re-enable the old behaviour ...
2731 	 */
2732 	if (bge_stop_start_on_sync) {
2733 #ifdef BGE_IPMI_ASF
2734 		if (!bgep->asf_enabled) {
2735 			if (!bge_chip_disable_engine(bgep,
2736 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2737 				retval = DDI_FAILURE;
2738 		} else {
2739 			if (!bge_chip_disable_engine(bgep,
2740 			    RECEIVE_MAC_MODE_REG, 0))
2741 				retval = DDI_FAILURE;
2742 		}
2743 #else
2744 		if (!bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG,
2745 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2746 			retval = DDI_FAILURE;
2747 #endif
2748 		if (!bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2749 			retval = DDI_FAILURE;
2750 		if (!bge_chip_reset_engine(bgep, RECEIVE_MAC_MODE_REG))
2751 			retval = DDI_FAILURE;
2752 	}
2753 
2754 	/*
2755 	 * Reprogram the hashed multicast address table ...
2756 	 */
2757 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
2758 		bge_reg_put32(bgep, MAC_HASH_REG(i),
2759 			bgep->mcast_hash[i] | fill);
2760 
2761 #ifdef BGE_IPMI_ASF
2762 	if (!bgep->asf_enabled || !asf_keeplive) {
2763 #endif
2764 		/*
2765 		 * Transform the MAC address(es) from host to chip format, then
2766 		 * reprogram the transmit random backoff seed and the unicast
2767 		 * MAC address(es) ...
2768 		 */
2769 		for (j = 0; j < MAC_ADDRESS_REGS_MAX; j++) {
2770 			for (i = 0, fill = 0, macaddr = 0ull;
2771 			    i < ETHERADDRL; ++i) {
2772 				macaddr <<= 8;
2773 				macaddr |= bgep->curr_addr[j].addr[i];
2774 				fill += bgep->curr_addr[j].addr[i];
2775 			}
2776 			bge_reg_put32(bgep, MAC_TX_RANDOM_BACKOFF_REG, fill);
2777 			bge_reg_put64(bgep, MAC_ADDRESS_REG(j), macaddr);
2778 		}
2779 
2780 		BGE_DEBUG(("bge_chip_sync($%p) setting MAC address %012llx",
2781 			(void *)bgep, macaddr));
2782 #ifdef BGE_IPMI_ASF
2783 	}
2784 #endif
2785 
2786 	/*
2787 	 * Set or clear the PROMISCUOUS mode bit
2788 	 */
2789 	opfn = promisc ? bge_reg_set32 : bge_reg_clr32;
2790 	(*opfn)(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_PROMISCUOUS);
2791 
2792 	/*
2793 	 * Sync the rest of the MAC modes too ...
2794 	 */
2795 	bge_sync_mac_modes(bgep);
2796 
2797 	/*
2798 	 * Restart RX/TX MAC engines if required ...
2799 	 */
2800 	if (bgep->bge_chip_state == BGE_CHIP_RUNNING) {
2801 		if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2802 			retval = DDI_FAILURE;
2803 #ifdef BGE_IPMI_ASF
2804 		if (!bgep->asf_enabled) {
2805 			if (!bge_chip_enable_engine(bgep,
2806 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2807 				retval = DDI_FAILURE;
2808 		} else {
2809 			if (!bge_chip_enable_engine(bgep,
2810 			    RECEIVE_MAC_MODE_REG, 0))
2811 				retval = DDI_FAILURE;
2812 		}
2813 #else
2814 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
2815 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2816 			retval = DDI_FAILURE;
2817 #endif
2818 	}
2819 	return (retval);
2820 }
2821 
2822 /*
2823  * This array defines the sequence of state machine control registers
2824  * in which the <enable> bit must be cleared to bring the chip to a
2825  * clean stop.  Taken from Broadcom document 570X-PG102-R, p116.
2826  */
2827 static bge_regno_t shutdown_engine_regs[] = {
2828 	RECEIVE_MAC_MODE_REG,
2829 	RCV_BD_INITIATOR_MODE_REG,
2830 	RCV_LIST_PLACEMENT_MODE_REG,
2831 	RCV_LIST_SELECTOR_MODE_REG,		/* BCM5704 series only	*/
2832 	RCV_DATA_BD_INITIATOR_MODE_REG,
2833 	RCV_DATA_COMPLETION_MODE_REG,
2834 	RCV_BD_COMPLETION_MODE_REG,
2835 
2836 	SEND_BD_SELECTOR_MODE_REG,
2837 	SEND_BD_INITIATOR_MODE_REG,
2838 	SEND_DATA_INITIATOR_MODE_REG,
2839 	READ_DMA_MODE_REG,
2840 	SEND_DATA_COMPLETION_MODE_REG,
2841 	DMA_COMPLETION_MODE_REG,		/* BCM5704 series only	*/
2842 	SEND_BD_COMPLETION_MODE_REG,
2843 	TRANSMIT_MAC_MODE_REG,
2844 
2845 	HOST_COALESCE_MODE_REG,
2846 	WRITE_DMA_MODE_REG,
2847 	MBUF_CLUSTER_FREE_MODE_REG,		/* BCM5704 series only	*/
2848 	FTQ_RESET_REG,		/* special - see code	*/
2849 	BUFFER_MANAGER_MODE_REG,		/* BCM5704 series only	*/
2850 	MEMORY_ARBITER_MODE_REG,		/* BCM5704 series only	*/
2851 	BGE_REGNO_NONE		/* terminator		*/
2852 };
2853 
2854 /*
2855  * bge_chip_stop() -- stop all chip processing
2856  *
2857  * If the <fault> parameter is B_TRUE, we're stopping the chip because
2858  * we've detected a problem internally; otherwise, this is a normal
2859  * (clean) stop (at user request i.e. the last STREAM has been closed).
2860  */
2861 void bge_chip_stop(bge_t *bgep, boolean_t fault);
2862 #pragma	no_inline(bge_chip_stop)
2863 
2864 void
2865 bge_chip_stop(bge_t *bgep, boolean_t fault)
2866 {
2867 	bge_regno_t regno;
2868 	bge_regno_t *rbp;
2869 	boolean_t ok;
2870 
2871 	BGE_TRACE(("bge_chip_stop($%p)",
2872 		(void *)bgep));
2873 
2874 	ASSERT(mutex_owned(bgep->genlock));
2875 
2876 	rbp = shutdown_engine_regs;
2877 	/*
2878 	 * When driver try to shutdown the BCM5705/5788/5721/5751/
2879 	 * 5752/5714 and 5715 chipsets,the buffer manager and the mem
2880 	 * -ory arbiter should not be disabled.
2881 	 */
2882 	for (ok = B_TRUE; (regno = *rbp) != BGE_REGNO_NONE; ++rbp) {
2883 			if (DEVICE_5704_SERIES_CHIPSETS(bgep))
2884 			    ok &= bge_chip_disable_engine(bgep, regno, 0);
2885 			else if ((regno != RCV_LIST_SELECTOR_MODE_REG) &&
2886 				    (regno != DMA_COMPLETION_MODE_REG) &&
2887 				    (regno != MBUF_CLUSTER_FREE_MODE_REG)&&
2888 				    (regno != BUFFER_MANAGER_MODE_REG) &&
2889 				    (regno != MEMORY_ARBITER_MODE_REG))
2890 					ok &= bge_chip_disable_engine(bgep,
2891 					    regno, 0);
2892 	}
2893 
2894 	if (!ok && !fault)
2895 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
2896 
2897 	/*
2898 	 * Finally, disable (all) MAC events & clear the MAC status
2899 	 */
2900 	bge_reg_put32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 0);
2901 	bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, ~0);
2902 
2903 	/*
2904 	 * if we're stopping the chip because of a detected fault then do
2905 	 * appropriate actions
2906 	 */
2907 	if (fault) {
2908 		if (bgep->bge_chip_state != BGE_CHIP_FAULT) {
2909 			bgep->bge_chip_state = BGE_CHIP_FAULT;
2910 			ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2911 			if (bgep->bge_dma_error) {
2912 				/*
2913 				 * need to free buffers in case the fault was
2914 				 * due to a memory error in a buffer - got to
2915 				 * do a fair bit of tidying first
2916 				 */
2917 				if (bgep->progress & PROGRESS_KSTATS) {
2918 					bge_fini_kstats(bgep);
2919 					bgep->progress &= ~PROGRESS_KSTATS;
2920 				}
2921 				if (bgep->progress & PROGRESS_INTR) {
2922 					bge_intr_disable(bgep);
2923 					rw_enter(bgep->errlock, RW_WRITER);
2924 					bge_fini_rings(bgep);
2925 					rw_exit(bgep->errlock);
2926 					bgep->progress &= ~PROGRESS_INTR;
2927 				}
2928 				if (bgep->progress & PROGRESS_BUFS) {
2929 					bge_free_bufs(bgep);
2930 					bgep->progress &= ~PROGRESS_BUFS;
2931 				}
2932 				bgep->bge_dma_error = B_FALSE;
2933 			}
2934 		}
2935 	} else
2936 		bgep->bge_chip_state = BGE_CHIP_STOPPED;
2937 }
2938 
2939 /*
2940  * Poll for completion of chip's ROM firmware; also, at least on the
2941  * first time through, find and return the hardware MAC address, if any.
2942  */
2943 static uint64_t bge_poll_firmware(bge_t *bgep);
2944 #pragma	no_inline(bge_poll_firmware)
2945 
2946 static uint64_t
2947 bge_poll_firmware(bge_t *bgep)
2948 {
2949 	uint64_t magic;
2950 	uint64_t mac;
2951 	uint32_t gen;
2952 	uint32_t i;
2953 
2954 	/*
2955 	 * Step 19: poll for firmware completion (GENCOMM port set
2956 	 * to the ones complement of T3_MAGIC_NUMBER).
2957 	 *
2958 	 * While we're at it, we also read the MAC address register;
2959 	 * at some stage the firmware will load this with the
2960 	 * factory-set value.
2961 	 *
2962 	 * When both the magic number and the MAC address are set,
2963 	 * we're done; but we impose a time limit of one second
2964 	 * (1000*1000us) in case the firmware fails in some fashion
2965 	 * or the SEEPROM that provides that MAC address isn't fitted.
2966 	 *
2967 	 * After the first time through (chip state != INITIAL), we
2968 	 * don't need the MAC address to be set (we've already got it
2969 	 * or not, from the first time), so we don't wait for it, but
2970 	 * we still have to wait for the T3_MAGIC_NUMBER.
2971 	 *
2972 	 * Note: the magic number is only a 32-bit quantity, but the NIC
2973 	 * memory is 64-bit (and big-endian) internally.  Addressing the
2974 	 * GENCOMM word as "the upper half of a 64-bit quantity" makes
2975 	 * it work correctly on both big- and little-endian hosts.
2976 	 */
2977 	for (i = 0; i < 1000; ++i) {
2978 		drv_usecwait(1000);
2979 		gen = bge_nic_get64(bgep, NIC_MEM_GENCOMM) >> 32;
2980 		mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
2981 #ifdef BGE_IPMI_ASF
2982 		if (!bgep->asf_enabled) {
2983 #endif
2984 			if (gen != ~T3_MAGIC_NUMBER)
2985 				continue;
2986 #ifdef BGE_IPMI_ASF
2987 		}
2988 #endif
2989 		if (mac != 0ULL)
2990 			break;
2991 		if (bgep->bge_chip_state != BGE_CHIP_INITIAL)
2992 			break;
2993 	}
2994 
2995 	magic = bge_nic_get64(bgep, NIC_MEM_GENCOMM);
2996 	BGE_DEBUG(("bge_poll_firmware($%p): PXE magic 0x%x after %d loops",
2997 		(void *)bgep, gen, i));
2998 	BGE_DEBUG(("bge_poll_firmware: MAC %016llx, GENCOMM %016llx",
2999 		mac, magic));
3000 
3001 	return (mac);
3002 }
3003 
3004 /*
3005  * Maximum times of trying to get the NVRAM access lock
3006  * by calling bge_nvmem_acquire()
3007  */
3008 #define	MAX_TRY_NVMEM_ACQUIRE	10000
3009 
3010 #ifdef BGE_IPMI_ASF
3011 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode);
3012 #else
3013 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma);
3014 #endif
3015 #pragma	no_inline(bge_chip_reset)
3016 
3017 int
3018 #ifdef BGE_IPMI_ASF
3019 bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode)
3020 #else
3021 bge_chip_reset(bge_t *bgep, boolean_t enable_dma)
3022 #endif
3023 {
3024 	chip_id_t chipid;
3025 	uint64_t mac;
3026 	uint64_t magic;
3027 	uint32_t modeflags;
3028 	uint32_t mhcr;
3029 	uint32_t sx0;
3030 	uint32_t i, tries;
3031 #ifdef BGE_IPMI_ASF
3032 	uint32_t mailbox;
3033 #endif
3034 	int retval = DDI_SUCCESS;
3035 
3036 	BGE_TRACE(("bge_chip_reset($%p, %d)",
3037 		(void *)bgep, enable_dma));
3038 
3039 	ASSERT(mutex_owned(bgep->genlock));
3040 
3041 	BGE_DEBUG(("bge_chip_reset($%p, %d): current state is %d",
3042 		(void *)bgep, enable_dma, bgep->bge_chip_state));
3043 
3044 	/*
3045 	 * Do we need to stop the chip cleanly before resetting?
3046 	 */
3047 	switch (bgep->bge_chip_state) {
3048 	default:
3049 		_NOTE(NOTREACHED)
3050 		return (DDI_FAILURE);
3051 
3052 	case BGE_CHIP_INITIAL:
3053 	case BGE_CHIP_STOPPED:
3054 	case BGE_CHIP_RESET:
3055 		break;
3056 
3057 	case BGE_CHIP_RUNNING:
3058 	case BGE_CHIP_ERROR:
3059 	case BGE_CHIP_FAULT:
3060 		bge_chip_stop(bgep, B_FALSE);
3061 		break;
3062 	}
3063 
3064 #ifdef BGE_IPMI_ASF
3065 	if (bgep->asf_enabled) {
3066 #ifdef __sparc
3067 		mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3068 			MHCR_ENABLE_TAGGED_STATUS_MODE |
3069 			MHCR_MASK_INTERRUPT_MODE |
3070 			MHCR_MASK_PCI_INT_OUTPUT |
3071 			MHCR_CLEAR_INTERRUPT_INTA |
3072 			MHCR_ENABLE_ENDIAN_WORD_SWAP |
3073 			MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3074 		pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3075 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3076 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG) |
3077 			MEMORY_ARBITER_ENABLE);
3078 #endif
3079 		if (asf_mode == ASF_MODE_INIT) {
3080 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
3081 		} else if (asf_mode == ASF_MODE_SHUTDOWN) {
3082 			bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
3083 		}
3084 	}
3085 #endif
3086 	/*
3087 	 * Adapted from Broadcom document 570X-PG102-R, pp 102-116.
3088 	 * Updated to reflect Broadcom document 570X-PG104-R, pp 146-159.
3089 	 *
3090 	 * Before reset Core clock,it is
3091 	 * also required to initialize the Memory Arbiter as specified in step9
3092 	 * and Misc Host Control Register as specified in step-13
3093 	 * Step 4-5: reset Core clock & wait for completion
3094 	 * Steps 6-8: are done by bge_chip_cfg_init()
3095 	 * put the T3_MAGIC_NUMBER into the GENCOMM port before reset
3096 	 */
3097 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3098 		retval = DDI_FAILURE;
3099 
3100 	mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3101 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
3102 	    MHCR_MASK_INTERRUPT_MODE |
3103 	    MHCR_MASK_PCI_INT_OUTPUT |
3104 	    MHCR_CLEAR_INTERRUPT_INTA;
3105 #ifdef  _BIG_ENDIAN
3106 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3107 #endif  /* _BIG_ENDIAN */
3108 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3109 #ifdef BGE_IPMI_ASF
3110 	if (bgep->asf_enabled)
3111 		bgep->asf_wordswapped = B_FALSE;
3112 #endif
3113 	/*
3114 	 * NVRAM Corruption Workaround
3115 	 */
3116 	for (tries = 0; tries < MAX_TRY_NVMEM_ACQUIRE; tries++)
3117 		if (bge_nvmem_acquire(bgep) != EAGAIN)
3118 			break;
3119 	if (tries >= MAX_TRY_NVMEM_ACQUIRE)
3120 		BGE_DEBUG(("%s: fail to acquire nvram lock",
3121 			bgep->ifname));
3122 
3123 #ifdef BGE_IPMI_ASF
3124 	if (!bgep->asf_enabled) {
3125 #endif
3126 		magic = (uint64_t)T3_MAGIC_NUMBER << 32;
3127 		bge_nic_put64(bgep, NIC_MEM_GENCOMM, magic);
3128 #ifdef BGE_IPMI_ASF
3129 	}
3130 #endif
3131 
3132 	if (!bge_chip_reset_engine(bgep, MISC_CONFIG_REG))
3133 		retval = DDI_FAILURE;
3134 	bge_chip_cfg_init(bgep, &chipid, enable_dma);
3135 
3136 	/*
3137 	 * Step 8a: This may belong elsewhere, but BCM5721 needs
3138 	 * a bit set to avoid a fifo overflow/underflow bug.
3139 	 */
3140 	if ((bgep->chipid.chip_label == 5721) ||
3141 		(bgep->chipid.chip_label == 5751) ||
3142 		(bgep->chipid.chip_label == 5752) ||
3143 		(bgep->chipid.chip_label == 5789))
3144 		bge_reg_set32(bgep, TLP_CONTROL_REG, TLP_DATA_FIFO_PROTECT);
3145 
3146 
3147 	/*
3148 	 * Step 9: enable MAC memory arbiter,bit30 and bit31 of 5714/5715 should
3149 	 * not be changed.
3150 	 */
3151 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3152 		retval = DDI_FAILURE;
3153 
3154 	/*
3155 	 * Steps 10-11: configure PIO endianness options and
3156 	 * enable indirect register access -- already done
3157 	 * Steps 12-13: enable writing to the PCI state & clock
3158 	 * control registers -- not required; we aren't going to
3159 	 * use those features.
3160 	 * Steps 14-15: Configure DMA endianness options.  See
3161 	 * the comments on the setting of the MHCR above.
3162 	 */
3163 #ifdef	_BIG_ENDIAN
3164 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME |
3165 		    MODE_WORD_SWAP_NONFRAME | MODE_BYTE_SWAP_NONFRAME;
3166 #else
3167 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME;
3168 #endif	/* _BIG_ENDIAN */
3169 #ifdef BGE_IPMI_ASF
3170 	if (bgep->asf_enabled)
3171 		modeflags |= MODE_HOST_STACK_UP;
3172 #endif
3173 	bge_reg_put32(bgep, MODE_CONTROL_REG, modeflags);
3174 
3175 #ifdef BGE_IPMI_ASF
3176 	if (bgep->asf_enabled) {
3177 #ifdef __sparc
3178 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3179 			MEMORY_ARBITER_ENABLE |
3180 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG));
3181 #endif
3182 
3183 #ifdef  BGE_NETCONSOLE
3184 		if (!bgep->asf_newhandshake) {
3185 			if ((asf_mode == ASF_MODE_INIT) ||
3186 			(asf_mode == ASF_MODE_POST_INIT)) {
3187 				bge_asf_post_reset_old_mode(bgep,
3188 					BGE_INIT_RESET);
3189 			} else {
3190 				bge_asf_post_reset_old_mode(bgep,
3191 					BGE_SHUTDOWN_RESET);
3192 			}
3193 		}
3194 #endif
3195 
3196 		/* Wait for NVRAM init */
3197 		i = 0;
3198 		drv_usecwait(5000);
3199 		mailbox = bge_nic_get32(bgep, BGE_FIRMWARE_MAILBOX);
3200 
3201 		while ((mailbox != (uint32_t)
3202 			~BGE_MAGIC_NUM_FIRMWARE_INIT_DONE) &&
3203 			(i < 10000)) {
3204 			drv_usecwait(100);
3205 			mailbox = bge_nic_get32(bgep,
3206 				BGE_FIRMWARE_MAILBOX);
3207 			i++;
3208 		}
3209 
3210 #ifndef BGE_NETCONSOLE
3211 		if (!bgep->asf_newhandshake) {
3212 			if ((asf_mode == ASF_MODE_INIT) ||
3213 				(asf_mode == ASF_MODE_POST_INIT)) {
3214 
3215 				bge_asf_post_reset_old_mode(bgep,
3216 					BGE_INIT_RESET);
3217 			} else {
3218 				bge_asf_post_reset_old_mode(bgep,
3219 					BGE_SHUTDOWN_RESET);
3220 			}
3221 		}
3222 #endif
3223 	}
3224 #endif
3225 	/*
3226 	 * Steps 16-17: poll for firmware completion
3227 	 */
3228 	mac = bge_poll_firmware(bgep);
3229 
3230 	/*
3231 	 * Step 18: enable external memory -- doesn't apply.
3232 	 *
3233 	 * However we take the opportunity to set the MLCR anyway, as
3234 	 * this register also controls the SEEPROM auto-access method
3235 	 * which we may want to use later ...
3236 	 *
3237 	 * The proper value here depends on the way the chip is wired
3238 	 * into the circuit board, as this register *also* controls which
3239 	 * of the "Miscellaneous I/O" pins are driven as outputs and the
3240 	 * values driven onto those pins!
3241 	 *
3242 	 * See also step 74 in the PRM ...
3243 	 */
3244 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG,
3245 	    bgep->chipid.bge_mlcr_default);
3246 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
3247 
3248 	/*
3249 	 * Step 20: clear the Ethernet MAC mode register
3250 	 */
3251 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, 0);
3252 
3253 	/*
3254 	 * Step 21: restore cache-line-size, latency timer, and
3255 	 * subsystem ID registers to their original values (not
3256 	 * those read into the local structure <chipid>, 'cos
3257 	 * that was after they were cleared by the RESET).
3258 	 *
3259 	 * Note: the Subsystem Vendor/Device ID registers are not
3260 	 * directly writable in config space, so we use the shadow
3261 	 * copy in "Page Zero" of register space to restore them
3262 	 * both in one go ...
3263 	 */
3264 	pci_config_put8(bgep->cfg_handle, PCI_CONF_CACHE_LINESZ,
3265 		bgep->chipid.clsize);
3266 	pci_config_put8(bgep->cfg_handle, PCI_CONF_LATENCY_TIMER,
3267 		bgep->chipid.latency);
3268 	bge_reg_put32(bgep, PCI_CONF_SUBVENID,
3269 		(bgep->chipid.subdev << 16) | bgep->chipid.subven);
3270 
3271 	/*
3272 	 * The SEND INDEX registers should be reset to zero by the
3273 	 * global chip reset; if they're not, there'll be trouble
3274 	 * later on.
3275 	 */
3276 	sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0));
3277 	if (sx0 != 0) {
3278 		BGE_REPORT((bgep, "SEND INDEX - device didn't RESET"));
3279 		bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
3280 		retval = DDI_FAILURE;
3281 	}
3282 
3283 	/* Enable MSI code */
3284 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3285 		bge_reg_set32(bgep, MSI_MODE_REG,
3286 		    MSI_PRI_HIGHEST|MSI_MSI_ENABLE|MSI_ERROR_ATTENTION);
3287 
3288 	/*
3289 	 * On the first time through, save the factory-set MAC address
3290 	 * (if any).  If bge_poll_firmware() above didn't return one
3291 	 * (from a chip register) consider looking in the attached NV
3292 	 * memory device, if any.  Once we have it, we save it in both
3293 	 * register-image (64-bit) and byte-array forms.  All-zero and
3294 	 * all-one addresses are not valid, and we refuse to stash those.
3295 	 */
3296 	if (bgep->bge_chip_state == BGE_CHIP_INITIAL) {
3297 		if (mac == 0ULL)
3298 			mac = bge_get_nvmac(bgep);
3299 		if (mac != 0ULL && mac != ~0ULL) {
3300 			bgep->chipid.hw_mac_addr = mac;
3301 			for (i = ETHERADDRL; i-- != 0; ) {
3302 				bgep->chipid.vendor_addr.addr[i] = (uchar_t)mac;
3303 				mac >>= 8;
3304 			}
3305 			bgep->chipid.vendor_addr.set = B_TRUE;
3306 		}
3307 	}
3308 
3309 #ifdef BGE_IPMI_ASF
3310 	if (bgep->asf_enabled && bgep->asf_newhandshake) {
3311 		if (asf_mode != ASF_MODE_NONE) {
3312 			if ((asf_mode == ASF_MODE_INIT) ||
3313 				(asf_mode == ASF_MODE_POST_INIT)) {
3314 
3315 				bge_asf_post_reset_new_mode(bgep,
3316 					BGE_INIT_RESET);
3317 			} else {
3318 				bge_asf_post_reset_new_mode(bgep,
3319 					BGE_SHUTDOWN_RESET);
3320 			}
3321 		}
3322 	}
3323 #endif
3324 
3325 	/*
3326 	 * Record the new state
3327 	 */
3328 	bgep->chip_resets += 1;
3329 	bgep->bge_chip_state = BGE_CHIP_RESET;
3330 	return (retval);
3331 }
3332 
3333 /*
3334  * bge_chip_start() -- start the chip transmitting and/or receiving,
3335  * including enabling interrupts
3336  */
3337 int bge_chip_start(bge_t *bgep, boolean_t reset_phys);
3338 #pragma	no_inline(bge_chip_start)
3339 
3340 int
3341 bge_chip_start(bge_t *bgep, boolean_t reset_phys)
3342 {
3343 	uint32_t coalmode;
3344 	uint32_t ledctl;
3345 	uint32_t mtu;
3346 	uint32_t maxring;
3347 	uint32_t stats_mask;
3348 	uint64_t ring;
3349 	int retval = DDI_SUCCESS;
3350 
3351 	BGE_TRACE(("bge_chip_start($%p)",
3352 		(void *)bgep));
3353 
3354 	ASSERT(mutex_owned(bgep->genlock));
3355 	ASSERT(bgep->bge_chip_state == BGE_CHIP_RESET);
3356 
3357 	/*
3358 	 * Taken from Broadcom document 570X-PG102-R, pp 102-116.
3359 	 * The document specifies 95 separate steps to fully
3360 	 * initialise the chip!!!!
3361 	 *
3362 	 * The reset code above has already got us as far as step
3363 	 * 21, so we continue with ...
3364 	 *
3365 	 * Step 22: clear the MAC statistics block
3366 	 * (0x0300-0x0aff in NIC-local memory)
3367 	 */
3368 	if (bgep->chipid.statistic_type == BGE_STAT_BLK)
3369 		bge_nic_zero(bgep, NIC_MEM_STATISTICS,
3370 		    NIC_MEM_STATISTICS_SIZE);
3371 
3372 	/*
3373 	 * Step 23: clear the status block (in host memory)
3374 	 */
3375 	DMA_ZERO(bgep->status_block);
3376 
3377 	/*
3378 	 * Step 24: set DMA read/write control register
3379 	 */
3380 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PDRWCR,
3381 		bgep->chipid.bge_dma_rwctrl);
3382 
3383 	/*
3384 	 * Step 25: Configure DMA endianness -- already done (16/17)
3385 	 * Step 26: Configure Host-Based Send Rings
3386 	 * Step 27: Indicate Host Stack Up
3387 	 */
3388 	bge_reg_set32(bgep, MODE_CONTROL_REG,
3389 		MODE_HOST_SEND_BDS |
3390 		MODE_HOST_STACK_UP);
3391 
3392 	/*
3393 	 * Step 28: Configure checksum options:
3394 	 *	Solaris supports the hardware default checksum options.
3395 	 *
3396 	 *	Workaround for Incorrect pseudo-header checksum calculation.
3397 	 */
3398 	if (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM)
3399 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3400 		    MODE_SEND_NO_PSEUDO_HDR_CSUM);
3401 
3402 	/*
3403 	 * Step 29: configure Timer Prescaler.  The value is always the
3404 	 * same: the Core Clock frequency in MHz (66), minus 1, shifted
3405 	 * into bits 7-1.  Don't set bit 0, 'cos that's the RESET bit
3406 	 * for the whole chip!
3407 	 */
3408 	bge_reg_put32(bgep, MISC_CONFIG_REG, MISC_CONFIG_DEFAULT);
3409 
3410 	/*
3411 	 * Steps 30-31: Configure MAC local memory pool & DMA pool registers
3412 	 *
3413 	 * If the mbuf_length is specified as 0, we just leave these at
3414 	 * their hardware defaults, rather than explicitly setting them.
3415 	 * As the Broadcom HRM,driver better not change the parameters
3416 	 * when the chipsets is 5705/5788/5721/5751/5714 and 5715.
3417 	 */
3418 	if ((bgep->chipid.mbuf_length != 0) &&
3419 		(DEVICE_5704_SERIES_CHIPSETS(bgep))) {
3420 			bge_reg_put32(bgep, MBUF_POOL_BASE_REG,
3421 				bgep->chipid.mbuf_base);
3422 			bge_reg_put32(bgep, MBUF_POOL_LENGTH_REG,
3423 				bgep->chipid.mbuf_length);
3424 			bge_reg_put32(bgep, DMAD_POOL_BASE_REG,
3425 				DMAD_POOL_BASE_DEFAULT);
3426 			bge_reg_put32(bgep, DMAD_POOL_LENGTH_REG,
3427 				DMAD_POOL_LENGTH_DEFAULT);
3428 	}
3429 
3430 	/*
3431 	 * Step 32: configure MAC memory pool watermarks
3432 	 */
3433 	bge_reg_put32(bgep, RDMA_MBUF_LOWAT_REG,
3434 		bgep->chipid.mbuf_lo_water_rdma);
3435 	bge_reg_put32(bgep, MAC_RX_MBUF_LOWAT_REG,
3436 		bgep->chipid.mbuf_lo_water_rmac);
3437 	bge_reg_put32(bgep, MBUF_HIWAT_REG,
3438 		bgep->chipid.mbuf_hi_water);
3439 
3440 	/*
3441 	 * Step 33: configure DMA resource watermarks
3442 	 */
3443 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3444 		bge_reg_put32(bgep, DMAD_POOL_LOWAT_REG,
3445 		    bge_dmad_lo_water);
3446 		bge_reg_put32(bgep, DMAD_POOL_HIWAT_REG,
3447 		    bge_dmad_hi_water);
3448 	}
3449 	bge_reg_put32(bgep, LOWAT_MAX_RECV_FRAMES_REG, bge_lowat_recv_frames);
3450 
3451 	/*
3452 	 * Steps 34-36: enable buffer manager & internal h/w queues
3453 	 */
3454 	if (!bge_chip_enable_engine(bgep, BUFFER_MANAGER_MODE_REG,
3455 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3456 		retval = DDI_FAILURE;
3457 	if (!bge_chip_enable_engine(bgep, FTQ_RESET_REG, 0))
3458 		retval = DDI_FAILURE;
3459 
3460 	/*
3461 	 * Steps 37-39: initialise Receive Buffer (Producer) RCBs
3462 	 */
3463 	bge_reg_putrcb(bgep, STD_RCV_BD_RING_RCB_REG,
3464 		&bgep->buff[BGE_STD_BUFF_RING].hw_rcb);
3465 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3466 		bge_reg_putrcb(bgep, JUMBO_RCV_BD_RING_RCB_REG,
3467 			&bgep->buff[BGE_JUMBO_BUFF_RING].hw_rcb);
3468 		bge_reg_putrcb(bgep, MINI_RCV_BD_RING_RCB_REG,
3469 			&bgep->buff[BGE_MINI_BUFF_RING].hw_rcb);
3470 	}
3471 
3472 	/*
3473 	 * Step 40: set Receive Buffer Descriptor Ring replenish thresholds
3474 	 */
3475 	bge_reg_put32(bgep, STD_RCV_BD_REPLENISH_REG, bge_replenish_std);
3476 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3477 		bge_reg_put32(bgep, JUMBO_RCV_BD_REPLENISH_REG,
3478 		    bge_replenish_jumbo);
3479 		bge_reg_put32(bgep, MINI_RCV_BD_REPLENISH_REG,
3480 		    bge_replenish_mini);
3481 	}
3482 
3483 	/*
3484 	 * Steps 41-43: clear Send Ring Producer Indices and initialise
3485 	 * Send Producer Rings (0x0100-0x01ff in NIC-local memory)
3486 	 */
3487 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3488 		maxring = BGE_SEND_RINGS_MAX;
3489 	else
3490 		maxring = BGE_SEND_RINGS_MAX_5705;
3491 	for (ring = 0; ring < maxring; ++ring) {
3492 		bge_mbx_put(bgep, SEND_RING_HOST_INDEX_REG(ring), 0);
3493 		bge_mbx_put(bgep, SEND_RING_NIC_INDEX_REG(ring), 0);
3494 		bge_nic_putrcb(bgep, NIC_MEM_SEND_RING(ring),
3495 			&bgep->send[ring].hw_rcb);
3496 	}
3497 
3498 	/*
3499 	 * Steps 44-45: initialise Receive Return Rings
3500 	 * (0x0200-0x02ff in NIC-local memory)
3501 	 */
3502 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3503 		maxring = BGE_RECV_RINGS_MAX;
3504 	else
3505 		maxring = BGE_RECV_RINGS_MAX_5705;
3506 	for (ring = 0; ring < maxring; ++ring)
3507 		bge_nic_putrcb(bgep, NIC_MEM_RECV_RING(ring),
3508 			&bgep->recv[ring].hw_rcb);
3509 
3510 	/*
3511 	 * Step 46: initialise Receive Buffer (Producer) Ring indexes
3512 	 */
3513 	bge_mbx_put(bgep, RECV_STD_PROD_INDEX_REG, 0);
3514 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3515 		bge_mbx_put(bgep, RECV_JUMBO_PROD_INDEX_REG, 0);
3516 		bge_mbx_put(bgep, RECV_MINI_PROD_INDEX_REG, 0);
3517 	}
3518 	/*
3519 	 * Step 47: configure the MAC unicast address
3520 	 * Step 48: configure the random backoff seed
3521 	 * Step 96: set up multicast filters
3522 	 */
3523 #ifdef BGE_IPMI_ASF
3524 	if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE)
3525 #else
3526 	if (bge_chip_sync(bgep) == DDI_FAILURE)
3527 #endif
3528 		retval = DDI_FAILURE;
3529 
3530 	/*
3531 	 * Step 49: configure the MTU
3532 	 */
3533 	mtu = bgep->chipid.ethmax_size+ETHERFCSL+VLAN_TAGSZ;
3534 	bge_reg_put32(bgep, MAC_RX_MTU_SIZE_REG, mtu);
3535 
3536 	/*
3537 	 * Step 50: configure the IPG et al
3538 	 */
3539 	bge_reg_put32(bgep, MAC_TX_LENGTHS_REG, MAC_TX_LENGTHS_DEFAULT);
3540 
3541 	/*
3542 	 * Step 51: configure the default Rx Return Ring
3543 	 */
3544 	bge_reg_put32(bgep, RCV_RULES_CONFIG_REG, RCV_RULES_CONFIG_DEFAULT);
3545 
3546 	/*
3547 	 * Steps 52-54: configure Receive List Placement,
3548 	 * and enable Receive List Placement Statistics
3549 	 */
3550 	bge_reg_put32(bgep, RCV_LP_CONFIG_REG,
3551 		RCV_LP_CONFIG(bgep->chipid.rx_rings));
3552 	switch (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev)) {
3553 	case MHCR_CHIP_ASIC_REV_5700:
3554 	case MHCR_CHIP_ASIC_REV_5701:
3555 	case MHCR_CHIP_ASIC_REV_5703:
3556 	case MHCR_CHIP_ASIC_REV_5704:
3557 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, ~0);
3558 		break;
3559 	case MHCR_CHIP_ASIC_REV_5705:
3560 		break;
3561 	default:
3562 		stats_mask = bge_reg_get32(bgep, RCV_LP_STATS_ENABLE_MASK_REG);
3563 		stats_mask &= ~RCV_LP_STATS_DISABLE_MACTQ;
3564 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, stats_mask);
3565 		break;
3566 	}
3567 	bge_reg_set32(bgep, RCV_LP_STATS_CONTROL_REG, RCV_LP_STATS_ENABLE);
3568 
3569 	if (bgep->chipid.rx_rings > 1)
3570 		bge_init_recv_rule(bgep);
3571 
3572 	/*
3573 	 * Steps 55-56: enable Send Data Initiator Statistics
3574 	 */
3575 	bge_reg_put32(bgep, SEND_INIT_STATS_ENABLE_MASK_REG, ~0);
3576 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3577 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3578 		    SEND_INIT_STATS_ENABLE | SEND_INIT_STATS_FASTER);
3579 	} else {
3580 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3581 		    SEND_INIT_STATS_ENABLE);
3582 	}
3583 	/*
3584 	 * Steps 57-58: stop (?) the Host Coalescing Engine
3585 	 */
3586 	if (!bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, ~0))
3587 		retval = DDI_FAILURE;
3588 
3589 	/*
3590 	 * Steps 59-62: initialise Host Coalescing parameters
3591 	 */
3592 	bge_reg_put32(bgep, SEND_COALESCE_MAX_BD_REG, bge_tx_count_norm);
3593 	bge_reg_put32(bgep, SEND_COALESCE_TICKS_REG, bge_tx_ticks_norm);
3594 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, bge_rx_count_norm);
3595 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, bge_rx_ticks_norm);
3596 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3597 		bge_reg_put32(bgep, SEND_COALESCE_INT_BD_REG,
3598 		    bge_tx_count_intr);
3599 		bge_reg_put32(bgep, SEND_COALESCE_INT_TICKS_REG,
3600 		    bge_tx_ticks_intr);
3601 		bge_reg_put32(bgep, RCV_COALESCE_INT_BD_REG,
3602 		    bge_rx_count_intr);
3603 		bge_reg_put32(bgep, RCV_COALESCE_INT_TICKS_REG,
3604 		    bge_rx_ticks_intr);
3605 	}
3606 
3607 	/*
3608 	 * Steps 63-64: initialise status block & statistics
3609 	 * host memory addresses
3610 	 * The statistic block does not exist in some chipsets
3611 	 * Step 65: initialise Statistics Coalescing Tick Counter
3612 	 */
3613 	bge_reg_put64(bgep, STATUS_BLOCK_HOST_ADDR_REG,
3614 		bgep->status_block.cookie.dmac_laddress);
3615 
3616 	/*
3617 	 * Steps 66-67: initialise status block & statistics
3618 	 * NIC-local memory addresses
3619 	 */
3620 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3621 		bge_reg_put64(bgep, STATISTICS_HOST_ADDR_REG,
3622 		    bgep->statistics.cookie.dmac_laddress);
3623 		bge_reg_put32(bgep, STATISTICS_TICKS_REG,
3624 		    STATISTICS_TICKS_DEFAULT);
3625 		bge_reg_put32(bgep, STATUS_BLOCK_BASE_ADDR_REG,
3626 		    NIC_MEM_STATUS_BLOCK);
3627 		bge_reg_put32(bgep, STATISTICS_BASE_ADDR_REG,
3628 		    NIC_MEM_STATISTICS);
3629 	}
3630 
3631 	/*
3632 	 * Steps 68-71: start the Host Coalescing Engine, the Receive BD
3633 	 * Completion Engine, the Receive List Placement Engine, and the
3634 	 * Receive List selector.Pay attention:0x3400 is not exist in BCM5714
3635 	 * and BCM5715.
3636 	 */
3637 	if (bgep->chipid.tx_rings <= COALESCE_64_BYTE_RINGS &&
3638 	    bgep->chipid.rx_rings <= COALESCE_64_BYTE_RINGS)
3639 		coalmode = COALESCE_64_BYTE_STATUS;
3640 	else
3641 		coalmode = 0;
3642 	if (!bge_chip_enable_engine(bgep, HOST_COALESCE_MODE_REG, coalmode))
3643 		retval = DDI_FAILURE;
3644 	if (!bge_chip_enable_engine(bgep, RCV_BD_COMPLETION_MODE_REG,
3645 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3646 		retval = DDI_FAILURE;
3647 	if (!bge_chip_enable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0))
3648 		retval = DDI_FAILURE;
3649 
3650 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3651 		if (!bge_chip_enable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG,
3652 		    STATE_MACHINE_ATTN_ENABLE_BIT))
3653 			retval = DDI_FAILURE;
3654 
3655 	/*
3656 	 * Step 72: Enable MAC DMA engines
3657 	 * Step 73: Clear & enable MAC statistics
3658 	 */
3659 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3660 		ETHERNET_MODE_ENABLE_FHDE |
3661 		ETHERNET_MODE_ENABLE_RDE |
3662 		ETHERNET_MODE_ENABLE_TDE);
3663 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3664 		ETHERNET_MODE_ENABLE_TX_STATS |
3665 		ETHERNET_MODE_ENABLE_RX_STATS |
3666 		ETHERNET_MODE_CLEAR_TX_STATS |
3667 		ETHERNET_MODE_CLEAR_RX_STATS);
3668 
3669 	/*
3670 	 * Step 74: configure the MLCR (Miscellaneous Local Control
3671 	 * Register); not required, as we set up the MLCR in step 10
3672 	 * (part of the reset code) above.
3673 	 *
3674 	 * Step 75: clear Interrupt Mailbox 0
3675 	 */
3676 	bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 0);
3677 
3678 	/*
3679 	 * Steps 76-87: Gentlemen, start your engines ...
3680 	 *
3681 	 * Enable the DMA Completion Engine, the Write DMA Engine,
3682 	 * the Read DMA Engine, Receive Data Completion Engine,
3683 	 * the MBuf Cluster Free Engine, the Send Data Completion Engine,
3684 	 * the Send BD Completion Engine, the Receive BD Initiator Engine,
3685 	 * the Receive Data Initiator Engine, the Send Data Initiator Engine,
3686 	 * the Send BD Initiator Engine, and the Send BD Selector Engine.
3687 	 *
3688 	 * Beware exhaust fumes?
3689 	 */
3690 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3691 		if (!bge_chip_enable_engine(bgep, DMA_COMPLETION_MODE_REG, 0))
3692 			retval = DDI_FAILURE;
3693 	if (!bge_chip_enable_engine(bgep, WRITE_DMA_MODE_REG,
3694 	    (bge_dma_wrprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS))
3695 		retval = DDI_FAILURE;
3696 	if (!bge_chip_enable_engine(bgep, READ_DMA_MODE_REG,
3697 	    (bge_dma_rdprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS))
3698 		retval = DDI_FAILURE;
3699 	if (!bge_chip_enable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG,
3700 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3701 		retval = DDI_FAILURE;
3702 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3703 		if (!bge_chip_enable_engine(bgep,
3704 		    MBUF_CLUSTER_FREE_MODE_REG, 0))
3705 			retval = DDI_FAILURE;
3706 	if (!bge_chip_enable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0))
3707 		retval = DDI_FAILURE;
3708 	if (!bge_chip_enable_engine(bgep, SEND_BD_COMPLETION_MODE_REG,
3709 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3710 		retval = DDI_FAILURE;
3711 	if (!bge_chip_enable_engine(bgep, RCV_BD_INITIATOR_MODE_REG,
3712 	    RCV_BD_DISABLED_RING_ATTN))
3713 		retval = DDI_FAILURE;
3714 	if (!bge_chip_enable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG,
3715 	    RCV_DATA_BD_ILL_RING_ATTN))
3716 		retval = DDI_FAILURE;
3717 	if (!bge_chip_enable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0))
3718 		retval = DDI_FAILURE;
3719 	if (!bge_chip_enable_engine(bgep, SEND_BD_INITIATOR_MODE_REG,
3720 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3721 		retval = DDI_FAILURE;
3722 	if (!bge_chip_enable_engine(bgep, SEND_BD_SELECTOR_MODE_REG,
3723 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3724 		retval = DDI_FAILURE;
3725 
3726 	/*
3727 	 * Step 88: download firmware -- doesn't apply
3728 	 * Steps 89-90: enable Transmit & Receive MAC Engines
3729 	 */
3730 	if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3731 		retval = DDI_FAILURE;
3732 #ifdef BGE_IPMI_ASF
3733 	if (!bgep->asf_enabled) {
3734 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3735 		    RECEIVE_MODE_KEEP_VLAN_TAG))
3736 			retval = DDI_FAILURE;
3737 	} else {
3738 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 0))
3739 			retval = DDI_FAILURE;
3740 	}
3741 #else
3742 	if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3743 	    RECEIVE_MODE_KEEP_VLAN_TAG))
3744 		retval = DDI_FAILURE;
3745 #endif
3746 
3747 	/*
3748 	 * Step 91: disable auto-polling of PHY status
3749 	 */
3750 	bge_reg_put32(bgep, MI_MODE_REG, MI_MODE_DEFAULT);
3751 
3752 	/*
3753 	 * Step 92: configure D0 power state (not required)
3754 	 * Step 93: initialise LED control register ()
3755 	 */
3756 	ledctl = LED_CONTROL_DEFAULT;
3757 	switch (bgep->chipid.device) {
3758 	case DEVICE_ID_5700:
3759 	case DEVICE_ID_5700x:
3760 	case DEVICE_ID_5701:
3761 		/*
3762 		 * Switch to 5700 (MAC) mode on these older chips
3763 		 */
3764 		ledctl &= ~LED_CONTROL_LED_MODE_MASK;
3765 		ledctl |= LED_CONTROL_LED_MODE_5700;
3766 		break;
3767 
3768 	default:
3769 		break;
3770 	}
3771 	bge_reg_put32(bgep, ETHERNET_MAC_LED_CONTROL_REG, ledctl);
3772 
3773 	/*
3774 	 * Step 94: activate link
3775 	 */
3776 	bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
3777 
3778 	/*
3779 	 * Step 95: set up physical layer (PHY/SerDes)
3780 	 * restart autoneg (if required)
3781 	 */
3782 	if (reset_phys)
3783 		if (bge_phys_update(bgep) == DDI_FAILURE)
3784 			retval = DDI_FAILURE;
3785 
3786 	/*
3787 	 * Extra step (DSG): hand over all the Receive Buffers to the chip
3788 	 */
3789 	for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
3790 		bge_mbx_put(bgep, bgep->buff[ring].chip_mbx_reg,
3791 			bgep->buff[ring].rf_next);
3792 
3793 	/*
3794 	 * MSI bits:The least significant MSI 16-bit word.
3795 	 * ISR will be triggered different.
3796 	 */
3797 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3798 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 0x70);
3799 
3800 	/*
3801 	 * Extra step (DSG): select which interrupts are enabled
3802 	 *
3803 	 * Program the Ethernet MAC engine to signal attention on
3804 	 * Link Change events, then enable interrupts on MAC, DMA,
3805 	 * and FLOW attention signals.
3806 	 */
3807 	bge_reg_set32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG,
3808 		ETHERNET_EVENT_LINK_INT |
3809 		ETHERNET_STATUS_PCS_ERROR_INT);
3810 #ifdef BGE_IPMI_ASF
3811 	if (bgep->asf_enabled) {
3812 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3813 			MODE_INT_ON_FLOW_ATTN |
3814 			MODE_INT_ON_DMA_ATTN |
3815 			MODE_HOST_STACK_UP|
3816 			MODE_INT_ON_MAC_ATTN);
3817 	} else {
3818 #endif
3819 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3820 			MODE_INT_ON_FLOW_ATTN |
3821 			MODE_INT_ON_DMA_ATTN |
3822 			MODE_INT_ON_MAC_ATTN);
3823 #ifdef BGE_IPMI_ASF
3824 	}
3825 #endif
3826 
3827 	/*
3828 	 * Step 97: enable PCI interrupts!!!
3829 	 */
3830 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
3831 		bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR,
3832 		    MHCR_MASK_PCI_INT_OUTPUT);
3833 
3834 	/*
3835 	 * All done!
3836 	 */
3837 	bgep->bge_chip_state = BGE_CHIP_RUNNING;
3838 	return (retval);
3839 }
3840 
3841 
3842 /*
3843  * ========== Hardware interrupt handler ==========
3844  */
3845 
3846 #undef	BGE_DBG
3847 #define	BGE_DBG		BGE_DBG_INT	/* debug flag for this code	*/
3848 
3849 /*
3850  * Sync the status block, then atomically clear the specified bits in
3851  * the <flags-and-tag> field of the status block.
3852  * the <flags> word of the status block, returning the value of the
3853  * <tag> and the <flags> before the bits were cleared.
3854  */
3855 static int bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags);
3856 #pragma	inline(bge_status_sync)
3857 
3858 static int
3859 bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags)
3860 {
3861 	bge_status_t *bsp;
3862 	int retval;
3863 
3864 	BGE_TRACE(("bge_status_sync($%p, 0x%llx)",
3865 		(void *)bgep, bits));
3866 
3867 	ASSERT(bgep->bge_guard == BGE_GUARD);
3868 
3869 	DMA_SYNC(bgep->status_block, DDI_DMA_SYNC_FORKERNEL);
3870 	retval = bge_check_dma_handle(bgep, bgep->status_block.dma_hdl);
3871 	if (retval != DDI_FM_OK)
3872 		return (retval);
3873 
3874 	bsp = DMA_VPTR(bgep->status_block);
3875 	*flags = bge_atomic_clr64(&bsp->flags_n_tag, bits);
3876 
3877 	BGE_DEBUG(("bge_status_sync($%p, 0x%llx) returning 0x%llx",
3878 		(void *)bgep, bits, *flags));
3879 
3880 	return (retval);
3881 }
3882 
3883 static void bge_wake_factotum(bge_t *bgep);
3884 #pragma	inline(bge_wake_factotum)
3885 
3886 static void
3887 bge_wake_factotum(bge_t *bgep)
3888 {
3889 	mutex_enter(bgep->softintrlock);
3890 	if (bgep->factotum_flag == 0) {
3891 		bgep->factotum_flag = 1;
3892 		ddi_trigger_softintr(bgep->factotum_id);
3893 	}
3894 	mutex_exit(bgep->softintrlock);
3895 }
3896 
3897 /*
3898  *	bge_intr() -- handle chip interrupts
3899  */
3900 uint_t bge_intr(caddr_t arg1, caddr_t arg2);
3901 #pragma	no_inline(bge_intr)
3902 
3903 uint_t
3904 bge_intr(caddr_t arg1, caddr_t arg2)
3905 {
3906 	bge_t *bgep = (bge_t *)arg1;		/* private device info	*/
3907 	bge_status_t *bsp;
3908 	uint64_t flags;
3909 	uint32_t regval;
3910 	uint_t result;
3911 	int retval, loop_cnt = 0;
3912 
3913 	BGE_TRACE(("bge_intr($%p) ($%p)", arg1, arg2));
3914 
3915 	/*
3916 	 * GLD v2 checks that s/w setup is complete before passing
3917 	 * interrupts to this routine, thus eliminating the old
3918 	 * (and well-known) race condition around ddi_add_intr()
3919 	 */
3920 	ASSERT(bgep->progress & PROGRESS_HWINT);
3921 
3922 	result = DDI_INTR_UNCLAIMED;
3923 	mutex_enter(bgep->genlock);
3924 
3925 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
3926 		/*
3927 		 * Check whether chip's says it's asserting #INTA;
3928 		 * if not, don't process or claim the interrupt.
3929 		 *
3930 		 * Note that the PCI signal is active low, so the
3931 		 * bit is *zero* when the interrupt is asserted.
3932 		 */
3933 		regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
3934 		if (regval & MLCR_INTA_STATE) {
3935 			if (bge_check_acc_handle(bgep, bgep->io_handle)
3936 			    != DDI_FM_OK)
3937 				goto chip_stop;
3938 			mutex_exit(bgep->genlock);
3939 			return (result);
3940 		}
3941 
3942 		/*
3943 		 * Block further PCI interrupts ...
3944 		 */
3945 		bge_reg_set32(bgep, PCI_CONF_BGE_MHCR,
3946 		    MHCR_MASK_PCI_INT_OUTPUT);
3947 
3948 	} else {
3949 		/*
3950 		 * Check MSI status
3951 		 */
3952 		regval = bge_reg_get32(bgep, MSI_STATUS_REG);
3953 		if (regval & MSI_ERROR_ATTENTION) {
3954 			BGE_REPORT((bgep, "msi error attention,"
3955 			    " status=0x%x", regval));
3956 			bge_reg_put32(bgep, MSI_STATUS_REG, regval);
3957 		}
3958 	}
3959 
3960 	result = DDI_INTR_CLAIMED;
3961 
3962 	BGE_DEBUG(("bge_intr($%p) ($%p) regval 0x%08x", arg1, arg2, regval));
3963 
3964 	/*
3965 	 * Sync the status block and grab the flags-n-tag from it.
3966 	 * We count the number of interrupts where there doesn't
3967 	 * seem to have been a DMA update of the status block; if
3968 	 * it *has* been updated, the counter will be cleared in
3969 	 * the while() loop below ...
3970 	 */
3971 	bgep->missed_dmas += 1;
3972 	bsp = DMA_VPTR(bgep->status_block);
3973 	for (loop_cnt = 0; loop_cnt < bge_intr_max_loop; loop_cnt++) {
3974 		if (bgep->bge_chip_state != BGE_CHIP_RUNNING) {
3975 			/*
3976 			 * bge_chip_stop() may have freed dma area etc
3977 			 * while we were in this interrupt handler -
3978 			 * better not call bge_status_sync()
3979 			 */
3980 			(void) bge_check_acc_handle(bgep,
3981 			    bgep->io_handle);
3982 			mutex_exit(bgep->genlock);
3983 			return (DDI_INTR_CLAIMED);
3984 		}
3985 		retval = bge_status_sync(bgep, STATUS_FLAG_UPDATED,
3986 		    &flags);
3987 		if (retval != DDI_FM_OK) {
3988 			bgep->bge_dma_error = B_TRUE;
3989 			goto chip_stop;
3990 		}
3991 
3992 		if (!(flags & STATUS_FLAG_UPDATED))
3993 			break;
3994 
3995 		/*
3996 		 * Tell the chip that we're processing the interrupt
3997 		 */
3998 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
3999 		    INTERRUPT_MBOX_DISABLE(flags));
4000 		if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4001 		    DDI_FM_OK)
4002 			goto chip_stop;
4003 
4004 		/*
4005 		 * Drop the mutex while we:
4006 		 * 	Receive any newly-arrived packets
4007 		 *	Recycle any newly-finished send buffers
4008 		 */
4009 		bgep->bge_intr_running = B_TRUE;
4010 		mutex_exit(bgep->genlock);
4011 		bge_receive(bgep, bsp);
4012 		bge_recycle(bgep, bsp);
4013 		mutex_enter(bgep->genlock);
4014 		bgep->bge_intr_running = B_FALSE;
4015 
4016 		/*
4017 		 * Tell the chip we've finished processing, and
4018 		 * give it the tag that we got from the status
4019 		 * block earlier, so that it knows just how far
4020 		 * we've gone.  If it's got more for us to do,
4021 		 * it will now update the status block and try
4022 		 * to assert an interrupt (but we've got the
4023 		 * #INTA blocked at present).  If we see the
4024 		 * update, we'll loop around to do some more.
4025 		 * Eventually we'll get out of here ...
4026 		 */
4027 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
4028 		    INTERRUPT_MBOX_ENABLE(flags));
4029 		bgep->missed_dmas = 0;
4030 	}
4031 
4032 	/*
4033 	 * Check for exceptional conditions that we need to handle
4034 	 *
4035 	 * Link status changed
4036 	 * Status block not updated
4037 	 */
4038 	if (flags & STATUS_FLAG_LINK_CHANGED)
4039 		bge_wake_factotum(bgep);
4040 
4041 	if (bgep->missed_dmas) {
4042 		/*
4043 		 * Probably due to the internal status tag not
4044 		 * being reset.  Force a status block update now;
4045 		 * this should ensure that we get an update and
4046 		 * a new interrupt.  After that, we should be in
4047 		 * sync again ...
4048 		 */
4049 		BGE_REPORT((bgep, "interrupt: flags 0x%llx - "
4050 		    "not updated?", flags));
4051 		bgep->missed_updates++;
4052 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG,
4053 		    COALESCE_NOW);
4054 
4055 		if (bgep->missed_dmas >= bge_dma_miss_limit) {
4056 			/*
4057 			 * If this happens multiple times in a row,
4058 			 * it means DMA is just not working.  Maybe
4059 			 * the chip's failed, or maybe there's a
4060 			 * problem on the PCI bus or in the host-PCI
4061 			 * bridge (Tomatillo).
4062 			 *
4063 			 * At all events, we want to stop further
4064 			 * interrupts and let the recovery code take
4065 			 * over to see whether anything can be done
4066 			 * about it ...
4067 			 */
4068 			bge_fm_ereport(bgep,
4069 			    DDI_FM_DEVICE_BADINT_LIMIT);
4070 			goto chip_stop;
4071 		}
4072 	}
4073 
4074 	/*
4075 	 * Reenable assertion of #INTA, unless there's a DMA fault
4076 	 */
4077 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
4078 		bge_reg_clr32(bgep, PCI_CONF_BGE_MHCR,
4079 		    MHCR_MASK_PCI_INT_OUTPUT);
4080 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4081 		    DDI_FM_OK)
4082 			goto chip_stop;
4083 	}
4084 
4085 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4086 		goto chip_stop;
4087 
4088 	mutex_exit(bgep->genlock);
4089 	return (result);
4090 
4091 chip_stop:
4092 #ifdef BGE_IPMI_ASF
4093 	if (bgep->asf_enabled && bgep->asf_status == ASF_STAT_RUN) {
4094 		/*
4095 		 * We must stop ASF heart beat before
4096 		 * bge_chip_stop(), otherwise some
4097 		 * computers (ex. IBM HS20 blade
4098 		 * server) may crash.
4099 		 */
4100 		bge_asf_update_status(bgep);
4101 		bge_asf_stop_timer(bgep);
4102 		bgep->asf_status = ASF_STAT_STOP;
4103 
4104 		bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4105 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4106 	}
4107 #endif
4108 	bge_chip_stop(bgep, B_TRUE);
4109 	(void) bge_check_acc_handle(bgep, bgep->io_handle);
4110 	mutex_exit(bgep->genlock);
4111 	return (result);
4112 }
4113 
4114 /*
4115  * ========== Factotum, implemented as a softint handler ==========
4116  */
4117 
4118 #undef	BGE_DBG
4119 #define	BGE_DBG		BGE_DBG_FACT	/* debug flag for this code	*/
4120 
4121 static void bge_factotum_error_handler(bge_t *bgep);
4122 #pragma	no_inline(bge_factotum_error_handler)
4123 
4124 static void
4125 bge_factotum_error_handler(bge_t *bgep)
4126 {
4127 	uint32_t flow;
4128 	uint32_t rdma;
4129 	uint32_t wdma;
4130 	uint32_t tmac;
4131 	uint32_t rmac;
4132 	uint32_t rxrs;
4133 	uint32_t txrs = 0;
4134 
4135 	ASSERT(mutex_owned(bgep->genlock));
4136 
4137 	/*
4138 	 * Read all the registers that show the possible
4139 	 * reasons for the ERROR bit to be asserted
4140 	 */
4141 	flow = bge_reg_get32(bgep, FLOW_ATTN_REG);
4142 	rdma = bge_reg_get32(bgep, READ_DMA_STATUS_REG);
4143 	wdma = bge_reg_get32(bgep, WRITE_DMA_STATUS_REG);
4144 	tmac = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4145 	rmac = bge_reg_get32(bgep, RECEIVE_MAC_STATUS_REG);
4146 	rxrs = bge_reg_get32(bgep, RX_RISC_STATE_REG);
4147 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4148 		txrs = bge_reg_get32(bgep, TX_RISC_STATE_REG);
4149 
4150 	BGE_DEBUG(("factotum($%p) flow 0x%x rdma 0x%x wdma 0x%x",
4151 		(void *)bgep, flow, rdma, wdma));
4152 	BGE_DEBUG(("factotum($%p) tmac 0x%x rmac 0x%x rxrs 0x%08x txrs 0x%08x",
4153 		(void *)bgep, tmac, rmac, rxrs, txrs));
4154 
4155 	/*
4156 	 * For now, just clear all the errors ...
4157 	 */
4158 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4159 		bge_reg_put32(bgep, TX_RISC_STATE_REG, ~0);
4160 	bge_reg_put32(bgep, RX_RISC_STATE_REG, ~0);
4161 	bge_reg_put32(bgep, RECEIVE_MAC_STATUS_REG, ~0);
4162 	bge_reg_put32(bgep, WRITE_DMA_STATUS_REG, ~0);
4163 	bge_reg_put32(bgep, READ_DMA_STATUS_REG, ~0);
4164 	bge_reg_put32(bgep, FLOW_ATTN_REG, ~0);
4165 }
4166 
4167 /*
4168  * Handler for hardware link state change.
4169  *
4170  * When this routine is called, the hardware link state has changed
4171  * and the new state is reflected in the param_* variables.  Here
4172  * we must update the softstate, reprogram the MAC to match, and
4173  * record the change in the log and/or on the console.
4174  */
4175 static void bge_factotum_link_handler(bge_t *bgep);
4176 #pragma	no_inline(bge_factotum_link_handler)
4177 
4178 static void
4179 bge_factotum_link_handler(bge_t *bgep)
4180 {
4181 	void (*logfn)(bge_t *bgep, const char *fmt, ...);
4182 	const char *msg;
4183 	hrtime_t deltat;
4184 
4185 	ASSERT(mutex_owned(bgep->genlock));
4186 
4187 	/*
4188 	 * Update the s/w link_state
4189 	 */
4190 	if (bgep->param_link_up)
4191 		bgep->link_state = LINK_STATE_UP;
4192 	else
4193 		bgep->link_state = LINK_STATE_DOWN;
4194 
4195 	/*
4196 	 * Reprogram the MAC modes to match
4197 	 */
4198 	bge_sync_mac_modes(bgep);
4199 
4200 	/*
4201 	 * Finally, we have to decide whether to write a message
4202 	 * on the console or only in the log.  If the PHY has
4203 	 * been reprogrammed (at user request) "recently", then
4204 	 * the message only goes in the log.  Otherwise it's an
4205 	 * "unexpected" event, and it goes on the console as well.
4206 	 */
4207 	deltat = bgep->phys_event_time - bgep->phys_write_time;
4208 	if (deltat > BGE_LINK_SETTLE_TIME)
4209 		msg = "";
4210 	else if (bgep->param_link_up)
4211 		msg = bgep->link_up_msg;
4212 	else
4213 		msg = bgep->link_down_msg;
4214 
4215 	logfn = (msg == NULL || *msg == '\0') ? bge_notice : bge_log;
4216 	(*logfn)(bgep, "link %s%s", bgep->link_mode_msg, msg);
4217 }
4218 
4219 static boolean_t bge_factotum_link_check(bge_t *bgep, int *dma_state);
4220 #pragma	no_inline(bge_factotum_link_check)
4221 
4222 static boolean_t
4223 bge_factotum_link_check(bge_t *bgep, int *dma_state)
4224 {
4225 	boolean_t check;
4226 	uint64_t flags;
4227 	uint32_t tmac_status;
4228 
4229 	ASSERT(mutex_owned(bgep->genlock));
4230 
4231 	/*
4232 	 * Get & clear the writable status bits in the Tx status register
4233 	 * (some bits are write-1-to-clear, others are just readonly).
4234 	 */
4235 	tmac_status = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4236 	bge_reg_put32(bgep, TRANSMIT_MAC_STATUS_REG, tmac_status);
4237 
4238 	/*
4239 	 * Get & clear the ERROR and LINK_CHANGED bits from the status block
4240 	 */
4241 	*dma_state = bge_status_sync(bgep, STATUS_FLAG_ERROR |
4242 	    STATUS_FLAG_LINK_CHANGED, &flags);
4243 	if (*dma_state != DDI_FM_OK)
4244 		return (B_FALSE);
4245 
4246 	/*
4247 	 * Clear any errors flagged in the status block ...
4248 	 */
4249 	if (flags & STATUS_FLAG_ERROR)
4250 		bge_factotum_error_handler(bgep);
4251 
4252 	/*
4253 	 * We need to check the link status if:
4254 	 *	the status block says there's been a link change
4255 	 *	or there's any discrepancy between the various
4256 	 *	flags indicating the link state (link_state,
4257 	 *	param_link_up, and the LINK STATE bit in the
4258 	 *	Transmit MAC status register).
4259 	 */
4260 	check = (flags & STATUS_FLAG_LINK_CHANGED) != 0;
4261 	switch (bgep->link_state) {
4262 	case LINK_STATE_UP:
4263 		check |= (bgep->param_link_up == B_FALSE);
4264 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) == 0);
4265 		break;
4266 
4267 	case LINK_STATE_DOWN:
4268 		check |= (bgep->param_link_up != B_FALSE);
4269 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) != 0);
4270 		break;
4271 
4272 	default:
4273 		check = B_TRUE;
4274 		break;
4275 	}
4276 
4277 	/*
4278 	 * If <check> is false, we're sure the link hasn't changed.
4279 	 * If true, however, it's not yet definitive; we have to call
4280 	 * bge_phys_check() to determine whether the link has settled
4281 	 * into a new state yet ... and if it has, then call the link
4282 	 * state change handler.But when the chip is 5700 in Dell 6650
4283 	 * ,even if check is false, the link may have changed.So we
4284 	 * have to call bge_phys_check() to determine the link state.
4285 	 */
4286 	if (check || bgep->chipid.device == DEVICE_ID_5700) {
4287 		check = bge_phys_check(bgep);
4288 		if (check)
4289 			bge_factotum_link_handler(bgep);
4290 	}
4291 
4292 	return (check);
4293 }
4294 
4295 /*
4296  * Factotum routine to check for Tx stall, using the 'watchdog' counter
4297  */
4298 static boolean_t bge_factotum_stall_check(bge_t *bgep);
4299 #pragma	no_inline(bge_factotum_stall_check)
4300 
4301 static boolean_t
4302 bge_factotum_stall_check(bge_t *bgep)
4303 {
4304 	uint32_t dogval;
4305 
4306 	ASSERT(mutex_owned(bgep->genlock));
4307 
4308 	/*
4309 	 * Specific check for Tx stall ...
4310 	 *
4311 	 * The 'watchdog' counter is incremented whenever a packet
4312 	 * is queued, reset to 1 when some (but not all) buffers
4313 	 * are reclaimed, reset to 0 (disabled) when all buffers
4314 	 * are reclaimed, and shifted left here.  If it exceeds the
4315 	 * threshold value, the chip is assumed to have stalled and
4316 	 * is put into the ERROR state.  The factotum will then reset
4317 	 * it on the next pass.
4318 	 *
4319 	 * All of which should ensure that we don't get into a state
4320 	 * where packets are left pending indefinitely!
4321 	 */
4322 	dogval = bge_atomic_shl32(&bgep->watchdog, 1);
4323 	if (dogval < bge_watchdog_count)
4324 		return (B_FALSE);
4325 
4326 #if !defined(BGE_NETCONSOLE)
4327 	BGE_REPORT((bgep, "Tx stall detected, watchdog code 0x%x", dogval));
4328 #endif
4329 	bge_fm_ereport(bgep, DDI_FM_DEVICE_STALL);
4330 	return (B_TRUE);
4331 }
4332 
4333 /*
4334  * The factotum is woken up when there's something to do that we'd rather
4335  * not do from inside a hardware interrupt handler or high-level cyclic.
4336  * Its two main tasks are:
4337  *	reset & restart the chip after an error
4338  *	check the link status whenever necessary
4339  */
4340 uint_t bge_chip_factotum(caddr_t arg);
4341 #pragma	no_inline(bge_chip_factotum)
4342 
4343 uint_t
4344 bge_chip_factotum(caddr_t arg)
4345 {
4346 	bge_t *bgep;
4347 	uint_t result;
4348 	boolean_t error;
4349 	boolean_t linkchg;
4350 	int dma_state;
4351 
4352 	bgep = (bge_t *)arg;
4353 
4354 	BGE_TRACE(("bge_chip_factotum($%p)", (void *)bgep));
4355 
4356 	mutex_enter(bgep->softintrlock);
4357 	if (bgep->factotum_flag == 0) {
4358 		mutex_exit(bgep->softintrlock);
4359 		return (DDI_INTR_UNCLAIMED);
4360 	}
4361 	bgep->factotum_flag = 0;
4362 	mutex_exit(bgep->softintrlock);
4363 
4364 	result = DDI_INTR_CLAIMED;
4365 	error = B_FALSE;
4366 	linkchg = B_FALSE;
4367 
4368 	mutex_enter(bgep->genlock);
4369 	switch (bgep->bge_chip_state) {
4370 	default:
4371 		break;
4372 
4373 	case BGE_CHIP_RUNNING:
4374 		linkchg = bge_factotum_link_check(bgep, &dma_state);
4375 		error = bge_factotum_stall_check(bgep);
4376 		if (dma_state != DDI_FM_OK) {
4377 			bgep->bge_dma_error = B_TRUE;
4378 			error = B_TRUE;
4379 		}
4380 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4381 			error = B_TRUE;
4382 		if (error)
4383 			bgep->bge_chip_state = BGE_CHIP_ERROR;
4384 		break;
4385 
4386 	case BGE_CHIP_ERROR:
4387 		error = B_TRUE;
4388 		break;
4389 
4390 	case BGE_CHIP_FAULT:
4391 		/*
4392 		 * Fault detected, time to reset ...
4393 		 */
4394 		if (bge_autorecover) {
4395 			if (!(bgep->progress & PROGRESS_BUFS)) {
4396 				/*
4397 				 * if we can't allocate the ring buffers,
4398 				 * try later
4399 				 */
4400 				if (bge_alloc_bufs(bgep) != DDI_SUCCESS) {
4401 					mutex_exit(bgep->genlock);
4402 					return (result);
4403 				}
4404 				bgep->progress |= PROGRESS_BUFS;
4405 			}
4406 			if (!(bgep->progress & PROGRESS_INTR)) {
4407 				bge_init_rings(bgep);
4408 				bge_intr_enable(bgep);
4409 				bgep->progress |= PROGRESS_INTR;
4410 			}
4411 			if (!(bgep->progress & PROGRESS_KSTATS)) {
4412 				bge_init_kstats(bgep,
4413 				    ddi_get_instance(bgep->devinfo));
4414 				bgep->progress |= PROGRESS_KSTATS;
4415 			}
4416 
4417 			BGE_REPORT((bgep, "automatic recovery activated"));
4418 
4419 			if (bge_restart(bgep, B_FALSE) != DDI_SUCCESS) {
4420 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4421 				error = B_TRUE;
4422 			}
4423 			if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4424 			    DDI_FM_OK) {
4425 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4426 				error = B_TRUE;
4427 			}
4428 			if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4429 			    DDI_FM_OK) {
4430 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4431 				error = B_TRUE;
4432 			}
4433 			if (error == B_FALSE) {
4434 #ifdef BGE_IPMI_ASF
4435 				if (bgep->asf_enabled &&
4436 				    bgep->asf_status != ASF_STAT_RUN) {
4437 					bgep->asf_timeout_id = timeout(
4438 					    bge_asf_heartbeat, (void *)bgep,
4439 					    drv_usectohz(
4440 					    BGE_ASF_HEARTBEAT_INTERVAL));
4441 					bgep->asf_status = ASF_STAT_RUN;
4442 				}
4443 #endif
4444 				ddi_fm_service_impact(bgep->devinfo,
4445 				    DDI_SERVICE_RESTORED);
4446 			}
4447 		}
4448 		break;
4449 	}
4450 
4451 
4452 	/*
4453 	 * If an error is detected, stop the chip now, marking it as
4454 	 * faulty, so that it will be reset next time through ...
4455 	 *
4456 	 * Note that if intr_running is set, then bge_intr() has dropped
4457 	 * genlock to call bge_receive/bge_recycle. Can't stop the chip at
4458 	 * this point so have to wait until the next time the factotum runs.
4459 	 */
4460 	if (error && !bgep->bge_intr_running) {
4461 #ifdef BGE_IPMI_ASF
4462 		if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) {
4463 			/*
4464 			 * We must stop ASF heart beat before bge_chip_stop(),
4465 			 * otherwise some computers (ex. IBM HS20 blade server)
4466 			 * may crash.
4467 			 */
4468 			bge_asf_update_status(bgep);
4469 			bge_asf_stop_timer(bgep);
4470 			bgep->asf_status = ASF_STAT_STOP;
4471 
4472 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4473 			(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4474 		}
4475 #endif
4476 		bge_chip_stop(bgep, B_TRUE);
4477 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
4478 	}
4479 	mutex_exit(bgep->genlock);
4480 
4481 	/*
4482 	 * If the link state changed, tell the world about it.
4483 	 * Note: can't do this while still holding the mutex.
4484 	 */
4485 	if (linkchg)
4486 		mac_link_update(bgep->mh, bgep->link_state);
4487 
4488 	return (result);
4489 }
4490 
4491 /*
4492  * High-level cyclic handler
4493  *
4494  * This routine schedules a (low-level) softint callback to the
4495  * factotum, and prods the chip to update the status block (which
4496  * will cause a hardware interrupt when complete).
4497  */
4498 void bge_chip_cyclic(void *arg);
4499 #pragma	no_inline(bge_chip_cyclic)
4500 
4501 void
4502 bge_chip_cyclic(void *arg)
4503 {
4504 	bge_t *bgep;
4505 
4506 	bgep = arg;
4507 
4508 	switch (bgep->bge_chip_state) {
4509 	default:
4510 		return;
4511 
4512 	case BGE_CHIP_RUNNING:
4513 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, COALESCE_NOW);
4514 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4515 			ddi_fm_service_impact(bgep->devinfo,
4516 			    DDI_SERVICE_UNAFFECTED);
4517 		break;
4518 
4519 	case BGE_CHIP_FAULT:
4520 	case BGE_CHIP_ERROR:
4521 		break;
4522 	}
4523 
4524 	bge_wake_factotum(bgep);
4525 }
4526 
4527 
4528 /*
4529  * ========== Ioctl subfunctions ==========
4530  */
4531 
4532 #undef	BGE_DBG
4533 #define	BGE_DBG		BGE_DBG_PPIO	/* debug flag for this code	*/
4534 
4535 #if	BGE_DEBUGGING || BGE_DO_PPIO
4536 
4537 static void bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4538 #pragma	no_inline(bge_chip_peek_cfg)
4539 
4540 static void
4541 bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4542 {
4543 	uint64_t regval;
4544 	uint64_t regno;
4545 
4546 	BGE_TRACE(("bge_chip_peek_cfg($%p, $%p)",
4547 		(void *)bgep, (void *)ppd));
4548 
4549 	regno = ppd->pp_acc_offset;
4550 
4551 	switch (ppd->pp_acc_size) {
4552 	case 1:
4553 		regval = pci_config_get8(bgep->cfg_handle, regno);
4554 		break;
4555 
4556 	case 2:
4557 		regval = pci_config_get16(bgep->cfg_handle, regno);
4558 		break;
4559 
4560 	case 4:
4561 		regval = pci_config_get32(bgep->cfg_handle, regno);
4562 		break;
4563 
4564 	case 8:
4565 		regval = pci_config_get64(bgep->cfg_handle, regno);
4566 		break;
4567 	}
4568 
4569 	ppd->pp_acc_data = regval;
4570 }
4571 
4572 static void bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4573 #pragma	no_inline(bge_chip_poke_cfg)
4574 
4575 static void
4576 bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4577 {
4578 	uint64_t regval;
4579 	uint64_t regno;
4580 
4581 	BGE_TRACE(("bge_chip_poke_cfg($%p, $%p)",
4582 		(void *)bgep, (void *)ppd));
4583 
4584 	regno = ppd->pp_acc_offset;
4585 	regval = ppd->pp_acc_data;
4586 
4587 	switch (ppd->pp_acc_size) {
4588 	case 1:
4589 		pci_config_put8(bgep->cfg_handle, regno, regval);
4590 		break;
4591 
4592 	case 2:
4593 		pci_config_put16(bgep->cfg_handle, regno, regval);
4594 		break;
4595 
4596 	case 4:
4597 		pci_config_put32(bgep->cfg_handle, regno, regval);
4598 		break;
4599 
4600 	case 8:
4601 		pci_config_put64(bgep->cfg_handle, regno, regval);
4602 		break;
4603 	}
4604 }
4605 
4606 static void bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4607 #pragma	no_inline(bge_chip_peek_reg)
4608 
4609 static void
4610 bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4611 {
4612 	uint64_t regval;
4613 	void *regaddr;
4614 
4615 	BGE_TRACE(("bge_chip_peek_reg($%p, $%p)",
4616 		(void *)bgep, (void *)ppd));
4617 
4618 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4619 
4620 	switch (ppd->pp_acc_size) {
4621 	case 1:
4622 		regval = ddi_get8(bgep->io_handle, regaddr);
4623 		break;
4624 
4625 	case 2:
4626 		regval = ddi_get16(bgep->io_handle, regaddr);
4627 		break;
4628 
4629 	case 4:
4630 		regval = ddi_get32(bgep->io_handle, regaddr);
4631 		break;
4632 
4633 	case 8:
4634 		regval = ddi_get64(bgep->io_handle, regaddr);
4635 		break;
4636 	}
4637 
4638 	ppd->pp_acc_data = regval;
4639 }
4640 
4641 static void bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4642 #pragma	no_inline(bge_chip_peek_reg)
4643 
4644 static void
4645 bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4646 {
4647 	uint64_t regval;
4648 	void *regaddr;
4649 
4650 	BGE_TRACE(("bge_chip_poke_reg($%p, $%p)",
4651 		(void *)bgep, (void *)ppd));
4652 
4653 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4654 	regval = ppd->pp_acc_data;
4655 
4656 	switch (ppd->pp_acc_size) {
4657 	case 1:
4658 		ddi_put8(bgep->io_handle, regaddr, regval);
4659 		break;
4660 
4661 	case 2:
4662 		ddi_put16(bgep->io_handle, regaddr, regval);
4663 		break;
4664 
4665 	case 4:
4666 		ddi_put32(bgep->io_handle, regaddr, regval);
4667 		break;
4668 
4669 	case 8:
4670 		ddi_put64(bgep->io_handle, regaddr, regval);
4671 		break;
4672 	}
4673 	BGE_PCICHK(bgep);
4674 }
4675 
4676 static void bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4677 #pragma	no_inline(bge_chip_peek_nic)
4678 
4679 static void
4680 bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4681 {
4682 	uint64_t regoff;
4683 	uint64_t regval;
4684 	void *regaddr;
4685 
4686 	BGE_TRACE(("bge_chip_peek_nic($%p, $%p)",
4687 		(void *)bgep, (void *)ppd));
4688 
4689 	regoff = ppd->pp_acc_offset;
4690 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4691 	regoff &= MWBAR_GRANULE_MASK;
4692 	regoff += NIC_MEM_WINDOW_OFFSET;
4693 	regaddr = PIO_ADDR(bgep, regoff);
4694 
4695 	switch (ppd->pp_acc_size) {
4696 	case 1:
4697 		regval = ddi_get8(bgep->io_handle, regaddr);
4698 		break;
4699 
4700 	case 2:
4701 		regval = ddi_get16(bgep->io_handle, regaddr);
4702 		break;
4703 
4704 	case 4:
4705 		regval = ddi_get32(bgep->io_handle, regaddr);
4706 		break;
4707 
4708 	case 8:
4709 		regval = ddi_get64(bgep->io_handle, regaddr);
4710 		break;
4711 	}
4712 
4713 	ppd->pp_acc_data = regval;
4714 }
4715 
4716 static void bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4717 #pragma	no_inline(bge_chip_poke_nic)
4718 
4719 static void
4720 bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4721 {
4722 	uint64_t regoff;
4723 	uint64_t regval;
4724 	void *regaddr;
4725 
4726 	BGE_TRACE(("bge_chip_poke_nic($%p, $%p)",
4727 		(void *)bgep, (void *)ppd));
4728 
4729 	regoff = ppd->pp_acc_offset;
4730 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4731 	regoff &= MWBAR_GRANULE_MASK;
4732 	regoff += NIC_MEM_WINDOW_OFFSET;
4733 	regaddr = PIO_ADDR(bgep, regoff);
4734 	regval = ppd->pp_acc_data;
4735 
4736 	switch (ppd->pp_acc_size) {
4737 	case 1:
4738 		ddi_put8(bgep->io_handle, regaddr, regval);
4739 		break;
4740 
4741 	case 2:
4742 		ddi_put16(bgep->io_handle, regaddr, regval);
4743 		break;
4744 
4745 	case 4:
4746 		ddi_put32(bgep->io_handle, regaddr, regval);
4747 		break;
4748 
4749 	case 8:
4750 		ddi_put64(bgep->io_handle, regaddr, regval);
4751 		break;
4752 	}
4753 	BGE_PCICHK(bgep);
4754 }
4755 
4756 static void bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd);
4757 #pragma	no_inline(bge_chip_peek_mii)
4758 
4759 static void
4760 bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd)
4761 {
4762 	BGE_TRACE(("bge_chip_peek_mii($%p, $%p)",
4763 		(void *)bgep, (void *)ppd));
4764 
4765 	ppd->pp_acc_data = bge_mii_get16(bgep, ppd->pp_acc_offset/2);
4766 }
4767 
4768 static void bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd);
4769 #pragma	no_inline(bge_chip_poke_mii)
4770 
4771 static void
4772 bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd)
4773 {
4774 	BGE_TRACE(("bge_chip_poke_mii($%p, $%p)",
4775 		(void *)bgep, (void *)ppd));
4776 
4777 	bge_mii_put16(bgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
4778 }
4779 
4780 #if	BGE_SEE_IO32
4781 
4782 static void bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
4783 #pragma	no_inline(bge_chip_peek_seeprom)
4784 
4785 static void
4786 bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
4787 {
4788 	uint32_t data;
4789 	int err;
4790 
4791 	BGE_TRACE(("bge_chip_peek_seeprom($%p, $%p)",
4792 		(void *)bgep, (void *)ppd));
4793 
4794 	err = bge_nvmem_rw32(bgep, BGE_SEE_READ, ppd->pp_acc_offset, &data);
4795 	ppd->pp_acc_data = err ? ~0ull : data;
4796 }
4797 
4798 static void bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
4799 #pragma	no_inline(bge_chip_poke_seeprom)
4800 
4801 static void
4802 bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
4803 {
4804 	uint32_t data;
4805 
4806 	BGE_TRACE(("bge_chip_poke_seeprom($%p, $%p)",
4807 		(void *)bgep, (void *)ppd));
4808 
4809 	data = ppd->pp_acc_data;
4810 	(void) bge_nvmem_rw32(bgep, BGE_SEE_WRITE, ppd->pp_acc_offset, &data);
4811 }
4812 #endif	/* BGE_SEE_IO32 */
4813 
4814 #if	BGE_FLASH_IO32
4815 
4816 static void bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd);
4817 #pragma	no_inline(bge_chip_peek_flash)
4818 
4819 static void
4820 bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd)
4821 {
4822 	uint32_t data;
4823 	int err;
4824 
4825 	BGE_TRACE(("bge_chip_peek_flash($%p, $%p)",
4826 		(void *)bgep, (void *)ppd));
4827 
4828 	err = bge_nvmem_rw32(bgep, BGE_FLASH_READ, ppd->pp_acc_offset, &data);
4829 	ppd->pp_acc_data = err ? ~0ull : data;
4830 }
4831 
4832 static void bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd);
4833 #pragma	no_inline(bge_chip_poke_flash)
4834 
4835 static void
4836 bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd)
4837 {
4838 	uint32_t data;
4839 
4840 	BGE_TRACE(("bge_chip_poke_flash($%p, $%p)",
4841 		(void *)bgep, (void *)ppd));
4842 
4843 	data = ppd->pp_acc_data;
4844 	(void) bge_nvmem_rw32(bgep, BGE_FLASH_WRITE,
4845 	    ppd->pp_acc_offset, &data);
4846 }
4847 #endif	/* BGE_FLASH_IO32 */
4848 
4849 static void bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd);
4850 #pragma	no_inline(bge_chip_peek_mem)
4851 
4852 static void
4853 bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd)
4854 {
4855 	uint64_t regval;
4856 	void *vaddr;
4857 
4858 	BGE_TRACE(("bge_chip_peek_bge($%p, $%p)",
4859 		(void *)bgep, (void *)ppd));
4860 
4861 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4862 
4863 	switch (ppd->pp_acc_size) {
4864 	case 1:
4865 		regval = *(uint8_t *)vaddr;
4866 		break;
4867 
4868 	case 2:
4869 		regval = *(uint16_t *)vaddr;
4870 		break;
4871 
4872 	case 4:
4873 		regval = *(uint32_t *)vaddr;
4874 		break;
4875 
4876 	case 8:
4877 		regval = *(uint64_t *)vaddr;
4878 		break;
4879 	}
4880 
4881 	BGE_DEBUG(("bge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
4882 		(void *)bgep, (void *)ppd, regval, vaddr));
4883 
4884 	ppd->pp_acc_data = regval;
4885 }
4886 
4887 static void bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd);
4888 #pragma	no_inline(bge_chip_poke_mem)
4889 
4890 static void
4891 bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd)
4892 {
4893 	uint64_t regval;
4894 	void *vaddr;
4895 
4896 	BGE_TRACE(("bge_chip_poke_mem($%p, $%p)",
4897 		(void *)bgep, (void *)ppd));
4898 
4899 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4900 	regval = ppd->pp_acc_data;
4901 
4902 	BGE_DEBUG(("bge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
4903 		(void *)bgep, (void *)ppd, regval, vaddr));
4904 
4905 	switch (ppd->pp_acc_size) {
4906 	case 1:
4907 		*(uint8_t *)vaddr = (uint8_t)regval;
4908 		break;
4909 
4910 	case 2:
4911 		*(uint16_t *)vaddr = (uint16_t)regval;
4912 		break;
4913 
4914 	case 4:
4915 		*(uint32_t *)vaddr = (uint32_t)regval;
4916 		break;
4917 
4918 	case 8:
4919 		*(uint64_t *)vaddr = (uint64_t)regval;
4920 		break;
4921 	}
4922 }
4923 
4924 static enum ioc_reply bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
4925 					struct iocblk *iocp);
4926 #pragma	no_inline(bge_pp_ioctl)
4927 
4928 static enum ioc_reply
4929 bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
4930 {
4931 	void (*ppfn)(bge_t *bgep, bge_peekpoke_t *ppd);
4932 	bge_peekpoke_t *ppd;
4933 	dma_area_t *areap;
4934 	uint64_t sizemask;
4935 	uint64_t mem_va;
4936 	uint64_t maxoff;
4937 	boolean_t peek;
4938 
4939 	switch (cmd) {
4940 	default:
4941 		/* NOTREACHED */
4942 		bge_error(bgep, "bge_pp_ioctl: invalid cmd 0x%x", cmd);
4943 		return (IOC_INVAL);
4944 
4945 	case BGE_PEEK:
4946 		peek = B_TRUE;
4947 		break;
4948 
4949 	case BGE_POKE:
4950 		peek = B_FALSE;
4951 		break;
4952 	}
4953 
4954 	/*
4955 	 * Validate format of ioctl
4956 	 */
4957 	if (iocp->ioc_count != sizeof (bge_peekpoke_t))
4958 		return (IOC_INVAL);
4959 	if (mp->b_cont == NULL)
4960 		return (IOC_INVAL);
4961 	ppd = (bge_peekpoke_t *)mp->b_cont->b_rptr;
4962 
4963 	/*
4964 	 * Validate request parameters
4965 	 */
4966 	switch (ppd->pp_acc_space) {
4967 	default:
4968 		return (IOC_INVAL);
4969 
4970 	case BGE_PP_SPACE_CFG:
4971 		/*
4972 		 * Config space
4973 		 */
4974 		sizemask = 8|4|2|1;
4975 		mem_va = 0;
4976 		maxoff = PCI_CONF_HDR_SIZE;
4977 		ppfn = peek ? bge_chip_peek_cfg : bge_chip_poke_cfg;
4978 		break;
4979 
4980 	case BGE_PP_SPACE_REG:
4981 		/*
4982 		 * Memory-mapped I/O space
4983 		 */
4984 		sizemask = 8|4|2|1;
4985 		mem_va = 0;
4986 		maxoff = RIAAR_REGISTER_MAX;
4987 		ppfn = peek ? bge_chip_peek_reg : bge_chip_poke_reg;
4988 		break;
4989 
4990 	case BGE_PP_SPACE_NIC:
4991 		/*
4992 		 * NIC on-chip memory
4993 		 */
4994 		sizemask = 8|4|2|1;
4995 		mem_va = 0;
4996 		maxoff = MWBAR_ONCHIP_MAX;
4997 		ppfn = peek ? bge_chip_peek_nic : bge_chip_poke_nic;
4998 		break;
4999 
5000 	case BGE_PP_SPACE_MII:
5001 		/*
5002 		 * PHY's MII registers
5003 		 * NB: all PHY registers are two bytes, but the
5004 		 * addresses increment in ones (word addressing).
5005 		 * So we scale the address here, then undo the
5006 		 * transformation inside the peek/poke functions.
5007 		 */
5008 		ppd->pp_acc_offset *= 2;
5009 		sizemask = 2;
5010 		mem_va = 0;
5011 		maxoff = (MII_MAXREG+1)*2;
5012 		ppfn = peek ? bge_chip_peek_mii : bge_chip_poke_mii;
5013 		break;
5014 
5015 #if	BGE_SEE_IO32
5016 	case BGE_PP_SPACE_SEEPROM:
5017 		/*
5018 		 * Attached SEEPROM(s), if any.
5019 		 * NB: we use the high-order bits of the 'address' as
5020 		 * a device select to accommodate multiple SEEPROMS,
5021 		 * If each one is the maximum size (64kbytes), this
5022 		 * makes them appear contiguous.  Otherwise, there may
5023 		 * be holes in the mapping.  ENxS doesn't have any
5024 		 * SEEPROMs anyway ...
5025 		 */
5026 		sizemask = 4;
5027 		mem_va = 0;
5028 		maxoff = SEEPROM_DEV_AND_ADDR_MASK;
5029 		ppfn = peek ? bge_chip_peek_seeprom : bge_chip_poke_seeprom;
5030 		break;
5031 #endif	/* BGE_SEE_IO32 */
5032 
5033 #if	BGE_FLASH_IO32
5034 	case BGE_PP_SPACE_FLASH:
5035 		/*
5036 		 * Attached Flash device (if any); a maximum of one device
5037 		 * is currently supported.  But it can be up to 1MB (unlike
5038 		 * the 64k limit on SEEPROMs) so why would you need more ;-)
5039 		 */
5040 		sizemask = 4;
5041 		mem_va = 0;
5042 		maxoff = NVM_FLASH_ADDR_MASK;
5043 		ppfn = peek ? bge_chip_peek_flash : bge_chip_poke_flash;
5044 		break;
5045 #endif	/* BGE_FLASH_IO32 */
5046 
5047 	case BGE_PP_SPACE_BGE:
5048 		/*
5049 		 * BGE data structure!
5050 		 */
5051 		sizemask = 8|4|2|1;
5052 		mem_va = (uintptr_t)bgep;
5053 		maxoff = sizeof (*bgep);
5054 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5055 		break;
5056 
5057 	case BGE_PP_SPACE_STATUS:
5058 	case BGE_PP_SPACE_STATISTICS:
5059 	case BGE_PP_SPACE_TXDESC:
5060 	case BGE_PP_SPACE_TXBUFF:
5061 	case BGE_PP_SPACE_RXDESC:
5062 	case BGE_PP_SPACE_RXBUFF:
5063 		/*
5064 		 * Various DMA_AREAs
5065 		 */
5066 		switch (ppd->pp_acc_space) {
5067 		case BGE_PP_SPACE_TXDESC:
5068 			areap = &bgep->tx_desc;
5069 			break;
5070 		case BGE_PP_SPACE_TXBUFF:
5071 			areap = &bgep->tx_buff[0];
5072 			break;
5073 		case BGE_PP_SPACE_RXDESC:
5074 			areap = &bgep->rx_desc[0];
5075 			break;
5076 		case BGE_PP_SPACE_RXBUFF:
5077 			areap = &bgep->rx_buff[0];
5078 			break;
5079 		case BGE_PP_SPACE_STATUS:
5080 			areap = &bgep->status_block;
5081 			break;
5082 		case BGE_PP_SPACE_STATISTICS:
5083 			if (bgep->chipid.statistic_type == BGE_STAT_BLK)
5084 				areap = &bgep->statistics;
5085 			break;
5086 		}
5087 
5088 		sizemask = 8|4|2|1;
5089 		mem_va = (uintptr_t)areap->mem_va;
5090 		maxoff = areap->alength;
5091 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5092 		break;
5093 	}
5094 
5095 	switch (ppd->pp_acc_size) {
5096 	default:
5097 		return (IOC_INVAL);
5098 
5099 	case 8:
5100 	case 4:
5101 	case 2:
5102 	case 1:
5103 		if ((ppd->pp_acc_size & sizemask) == 0)
5104 			return (IOC_INVAL);
5105 		break;
5106 	}
5107 
5108 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
5109 		return (IOC_INVAL);
5110 
5111 	if (ppd->pp_acc_offset >= maxoff)
5112 		return (IOC_INVAL);
5113 
5114 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
5115 		return (IOC_INVAL);
5116 
5117 	/*
5118 	 * All OK - go do it!
5119 	 */
5120 	ppd->pp_acc_offset += mem_va;
5121 	(*ppfn)(bgep, ppd);
5122 	return (peek ? IOC_REPLY : IOC_ACK);
5123 }
5124 
5125 static enum ioc_reply bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5126 					struct iocblk *iocp);
5127 #pragma	no_inline(bge_diag_ioctl)
5128 
5129 static enum ioc_reply
5130 bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5131 {
5132 	ASSERT(mutex_owned(bgep->genlock));
5133 
5134 	switch (cmd) {
5135 	default:
5136 		/* NOTREACHED */
5137 		bge_error(bgep, "bge_diag_ioctl: invalid cmd 0x%x", cmd);
5138 		return (IOC_INVAL);
5139 
5140 	case BGE_DIAG:
5141 		/*
5142 		 * Currently a no-op
5143 		 */
5144 		return (IOC_ACK);
5145 
5146 	case BGE_PEEK:
5147 	case BGE_POKE:
5148 		return (bge_pp_ioctl(bgep, cmd, mp, iocp));
5149 
5150 	case BGE_PHY_RESET:
5151 		return (IOC_RESTART_ACK);
5152 
5153 	case BGE_SOFT_RESET:
5154 	case BGE_HARD_RESET:
5155 		/*
5156 		 * Reset and reinitialise the 570x hardware
5157 		 */
5158 		bgep->bge_chip_state = BGE_CHIP_FAULT;
5159 		ddi_trigger_softintr(bgep->factotum_id);
5160 		(void) bge_restart(bgep, cmd == BGE_HARD_RESET);
5161 		return (IOC_ACK);
5162 	}
5163 
5164 	/* NOTREACHED */
5165 }
5166 
5167 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5168 
5169 static enum ioc_reply bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5170 				    struct iocblk *iocp);
5171 #pragma	no_inline(bge_mii_ioctl)
5172 
5173 static enum ioc_reply
5174 bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5175 {
5176 	struct bge_mii_rw *miirwp;
5177 
5178 	/*
5179 	 * Validate format of ioctl
5180 	 */
5181 	if (iocp->ioc_count != sizeof (struct bge_mii_rw))
5182 		return (IOC_INVAL);
5183 	if (mp->b_cont == NULL)
5184 		return (IOC_INVAL);
5185 	miirwp = (struct bge_mii_rw *)mp->b_cont->b_rptr;
5186 
5187 	/*
5188 	 * Validate request parameters ...
5189 	 */
5190 	if (miirwp->mii_reg > MII_MAXREG)
5191 		return (IOC_INVAL);
5192 
5193 	switch (cmd) {
5194 	default:
5195 		/* NOTREACHED */
5196 		bge_error(bgep, "bge_mii_ioctl: invalid cmd 0x%x", cmd);
5197 		return (IOC_INVAL);
5198 
5199 	case BGE_MII_READ:
5200 		miirwp->mii_data = bge_mii_get16(bgep, miirwp->mii_reg);
5201 		return (IOC_REPLY);
5202 
5203 	case BGE_MII_WRITE:
5204 		bge_mii_put16(bgep, miirwp->mii_reg, miirwp->mii_data);
5205 		return (IOC_ACK);
5206 	}
5207 
5208 	/* NOTREACHED */
5209 }
5210 
5211 #if	BGE_SEE_IO32
5212 
5213 static enum ioc_reply bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5214 				    struct iocblk *iocp);
5215 #pragma	no_inline(bge_see_ioctl)
5216 
5217 static enum ioc_reply
5218 bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5219 {
5220 	struct bge_see_rw *seerwp;
5221 
5222 	/*
5223 	 * Validate format of ioctl
5224 	 */
5225 	if (iocp->ioc_count != sizeof (struct bge_see_rw))
5226 		return (IOC_INVAL);
5227 	if (mp->b_cont == NULL)
5228 		return (IOC_INVAL);
5229 	seerwp = (struct bge_see_rw *)mp->b_cont->b_rptr;
5230 
5231 	/*
5232 	 * Validate request parameters ...
5233 	 */
5234 	if (seerwp->see_addr & ~SEEPROM_DEV_AND_ADDR_MASK)
5235 		return (IOC_INVAL);
5236 
5237 	switch (cmd) {
5238 	default:
5239 		/* NOTREACHED */
5240 		bge_error(bgep, "bge_see_ioctl: invalid cmd 0x%x", cmd);
5241 		return (IOC_INVAL);
5242 
5243 	case BGE_SEE_READ:
5244 	case BGE_SEE_WRITE:
5245 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5246 		    seerwp->see_addr, &seerwp->see_data);
5247 		return (IOC_REPLY);
5248 	}
5249 
5250 	/* NOTREACHED */
5251 }
5252 
5253 #endif	/* BGE_SEE_IO32 */
5254 
5255 #if	BGE_FLASH_IO32
5256 
5257 static enum ioc_reply bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5258 				    struct iocblk *iocp);
5259 #pragma	no_inline(bge_flash_ioctl)
5260 
5261 static enum ioc_reply
5262 bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5263 {
5264 	struct bge_flash_rw *flashrwp;
5265 
5266 	/*
5267 	 * Validate format of ioctl
5268 	 */
5269 	if (iocp->ioc_count != sizeof (struct bge_flash_rw))
5270 		return (IOC_INVAL);
5271 	if (mp->b_cont == NULL)
5272 		return (IOC_INVAL);
5273 	flashrwp = (struct bge_flash_rw *)mp->b_cont->b_rptr;
5274 
5275 	/*
5276 	 * Validate request parameters ...
5277 	 */
5278 	if (flashrwp->flash_addr & ~NVM_FLASH_ADDR_MASK)
5279 		return (IOC_INVAL);
5280 
5281 	switch (cmd) {
5282 	default:
5283 		/* NOTREACHED */
5284 		bge_error(bgep, "bge_flash_ioctl: invalid cmd 0x%x", cmd);
5285 		return (IOC_INVAL);
5286 
5287 	case BGE_FLASH_READ:
5288 	case BGE_FLASH_WRITE:
5289 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5290 		    flashrwp->flash_addr, &flashrwp->flash_data);
5291 		return (IOC_REPLY);
5292 	}
5293 
5294 	/* NOTREACHED */
5295 }
5296 
5297 #endif	/* BGE_FLASH_IO32 */
5298 
5299 enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp,
5300 				struct iocblk *iocp);
5301 #pragma	no_inline(bge_chip_ioctl)
5302 
5303 enum ioc_reply
5304 bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
5305 {
5306 	int cmd;
5307 
5308 	BGE_TRACE(("bge_chip_ioctl($%p, $%p, $%p, $%p)",
5309 		(void *)bgep, (void *)wq, (void *)mp, (void *)iocp));
5310 
5311 	ASSERT(mutex_owned(bgep->genlock));
5312 
5313 	cmd = iocp->ioc_cmd;
5314 	switch (cmd) {
5315 	default:
5316 		/* NOTREACHED */
5317 		bge_error(bgep, "bge_chip_ioctl: invalid cmd 0x%x", cmd);
5318 		return (IOC_INVAL);
5319 
5320 	case BGE_DIAG:
5321 	case BGE_PEEK:
5322 	case BGE_POKE:
5323 	case BGE_PHY_RESET:
5324 	case BGE_SOFT_RESET:
5325 	case BGE_HARD_RESET:
5326 #if	BGE_DEBUGGING || BGE_DO_PPIO
5327 		return (bge_diag_ioctl(bgep, cmd, mp, iocp));
5328 #else
5329 		return (IOC_INVAL);
5330 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5331 
5332 	case BGE_MII_READ:
5333 	case BGE_MII_WRITE:
5334 		return (bge_mii_ioctl(bgep, cmd, mp, iocp));
5335 
5336 #if	BGE_SEE_IO32
5337 	case BGE_SEE_READ:
5338 	case BGE_SEE_WRITE:
5339 		return (bge_see_ioctl(bgep, cmd, mp, iocp));
5340 #endif	/* BGE_SEE_IO32 */
5341 
5342 #if	BGE_FLASH_IO32
5343 	case BGE_FLASH_READ:
5344 	case BGE_FLASH_WRITE:
5345 		return (bge_flash_ioctl(bgep, cmd, mp, iocp));
5346 #endif	/* BGE_FLASH_IO32 */
5347 	}
5348 
5349 	/* NOTREACHED */
5350 }
5351 
5352 void
5353 bge_chip_blank(void *arg, time_t ticks, uint_t count)
5354 {
5355 	bge_t *bgep = arg;
5356 
5357 	mutex_enter(bgep->genlock);
5358 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, ticks);
5359 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, count);
5360 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5361 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
5362 	mutex_exit(bgep->genlock);
5363 }
5364 
5365 #ifdef BGE_IPMI_ASF
5366 
5367 uint32_t
5368 bge_nic_read32(bge_t *bgep, bge_regno_t addr)
5369 {
5370 	uint32_t data;
5371 
5372 #ifndef __sparc
5373 	if (!bgep->asf_wordswapped) {
5374 		/* a workaround word swap error */
5375 		if (addr & 4)
5376 			addr = addr - 4;
5377 		else
5378 			addr = addr + 4;
5379 	}
5380 #endif
5381 
5382 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
5383 	data = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR);
5384 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
5385 
5386 	data = LE_32(data);
5387 	return (data);
5388 }
5389 
5390 void
5391 bge_asf_update_status(bge_t *bgep)
5392 {
5393 	uint32_t event;
5394 
5395 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_ALIVE);
5396 	bge_nic_put32(bgep, BGE_CMD_LENGTH_MAILBOX, 4);
5397 	bge_nic_put32(bgep, BGE_CMD_DATA_MAILBOX,   3);
5398 
5399 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5400 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5401 }
5402 
5403 
5404 /*
5405  * The driver is supposed to notify ASF that the OS is still running
5406  * every three seconds, otherwise the management server may attempt
5407  * to reboot the machine.  If it hasn't actually failed, this is
5408  * not a desirable result.  However, this isn't running as a real-time
5409  * thread, and even if it were, it might not be able to generate the
5410  * heartbeat in a timely manner due to system load.  As it isn't a
5411  * significant strain on the machine, we will set the interval to half
5412  * of the required value.
5413  */
5414 void
5415 bge_asf_heartbeat(void *arg)
5416 {
5417 	bge_t *bgep = (bge_t *)arg;
5418 
5419 	mutex_enter(bgep->genlock);
5420 	bge_asf_update_status((bge_t *)bgep);
5421 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5422 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5423 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
5424 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5425 	mutex_exit(bgep->genlock);
5426 	((bge_t *)bgep)->asf_timeout_id = timeout(bge_asf_heartbeat, bgep,
5427 		drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
5428 }
5429 
5430 
5431 void
5432 bge_asf_stop_timer(bge_t *bgep)
5433 {
5434 	timeout_id_t tmp_id = 0;
5435 
5436 	while ((bgep->asf_timeout_id != 0) &&
5437 		(tmp_id != bgep->asf_timeout_id)) {
5438 		tmp_id = bgep->asf_timeout_id;
5439 		(void) untimeout(tmp_id);
5440 	}
5441 	bgep->asf_timeout_id = 0;
5442 }
5443 
5444 
5445 
5446 /*
5447  * This function should be placed at the earliest position of bge_attach().
5448  */
5449 void
5450 bge_asf_get_config(bge_t *bgep)
5451 {
5452 	uint32_t nicsig;
5453 	uint32_t niccfg;
5454 
5455 	bgep->asf_enabled = B_FALSE;
5456 	nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR);
5457 	if (nicsig == BGE_NIC_DATA_SIG) {
5458 		niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR);
5459 		if (niccfg & BGE_NIC_CFG_ENABLE_ASF)
5460 			/*
5461 			 * Here, we don't consider BAXTER, because BGE haven't
5462 			 * supported BAXTER (that is 5752). Also, as I know,
5463 			 * BAXTER doesn't support ASF feature.
5464 			 */
5465 			bgep->asf_enabled = B_TRUE;
5466 		else
5467 			bgep->asf_enabled = B_FALSE;
5468 	} else
5469 		bgep->asf_enabled = B_FALSE;
5470 }
5471 
5472 
5473 void
5474 bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode)
5475 {
5476 	uint32_t tries;
5477 	uint32_t event;
5478 
5479 	ASSERT(bgep->asf_enabled);
5480 
5481 	/* Issues "pause firmware" command and wait for ACK */
5482 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_PAUSE_FW);
5483 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5484 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5485 
5486 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5487 	tries = 0;
5488 	while ((event & RRER_ASF_EVENT) && (tries < 100)) {
5489 		drv_usecwait(1);
5490 		tries ++;
5491 		event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5492 	}
5493 
5494 	bge_nic_put32(bgep, BGE_FIRMWARE_MAILBOX,
5495 		BGE_MAGIC_NUM_FIRMWARE_INIT_DONE);
5496 
5497 	if (bgep->asf_newhandshake) {
5498 		switch (mode) {
5499 		case BGE_INIT_RESET:
5500 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5501 				BGE_DRV_STATE_START);
5502 			break;
5503 		case BGE_SHUTDOWN_RESET:
5504 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5505 				BGE_DRV_STATE_UNLOAD);
5506 			break;
5507 		case BGE_SUSPEND_RESET:
5508 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5509 				BGE_DRV_STATE_SUSPEND);
5510 			break;
5511 		default:
5512 			break;
5513 		}
5514 	}
5515 }
5516 
5517 
5518 void
5519 bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode)
5520 {
5521 	switch (mode) {
5522 	case BGE_INIT_RESET:
5523 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5524 			BGE_DRV_STATE_START);
5525 		break;
5526 	case BGE_SHUTDOWN_RESET:
5527 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5528 			BGE_DRV_STATE_UNLOAD);
5529 		break;
5530 	case BGE_SUSPEND_RESET:
5531 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5532 			BGE_DRV_STATE_SUSPEND);
5533 		break;
5534 	default:
5535 		break;
5536 	}
5537 }
5538 
5539 
5540 void
5541 bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode)
5542 {
5543 	switch (mode) {
5544 	case BGE_INIT_RESET:
5545 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5546 			BGE_DRV_STATE_START_DONE);
5547 		break;
5548 	case BGE_SHUTDOWN_RESET:
5549 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5550 			BGE_DRV_STATE_UNLOAD_DONE);
5551 		break;
5552 	default:
5553 		break;
5554 	}
5555 }
5556 
5557 #endif /* BGE_IPMI_ASF */
5558