xref: /titanic_41/usr/src/uts/common/io/ath/ath_main.c (revision e14bb3258d05c1b1077e2db7cf77088924e56919)
1 /*
2  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Copyright (c) 2002-2004 Sam Leffler, Errno Consulting
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer,
15  * without modification.
16  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17  * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18  * redistribution must be conditioned upon including a substantially
19  * similar Disclaimer requirement for further binary redistribution.
20  * 3. Neither the names of the above-listed copyright holders nor the names
21  * of any contributors may be used to endorse or promote products derived
22  * from this software without specific prior written permission.
23  *
24  * NO WARRANTY
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
28  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
29  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
30  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
33  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
35  * THE POSSIBILITY OF SUCH DAMAGES.
36  *
37  */
38 
39 
40 /*
41  * Driver for the Atheros Wireless LAN controller.
42  *
43  * The Atheros driver calls into net80211 module for IEEE80211 protocol
44  * management functionalities. The driver includes a LLD(Low Level Driver)
45  * part to implement H/W related operations.
46  * The following is the high level structure of ath driver.
47  * (The arrows between modules indicate function call direction.)
48  *
49  *
50  *                                                  |
51  *                                                  | GLD thread
52  *                                                  V
53  *         ==================  =========================================
54  *         |                |  |[1]                                    |
55  *         |                |  |  GLDv3 Callback functions registered  |
56  *         |   Net80211     |  =========================       by      |
57  *         |    module      |          |               |     driver    |
58  *         |                |          V               |               |
59  *         |                |========================  |               |
60  *         |   Functions exported by net80211       |  |               |
61  *         |                                        |  |               |
62  *         ==========================================  =================
63  *                         |                                  |
64  *                         V                                  |
65  *         +----------------------------------+               |
66  *         |[2]                               |               |
67  *         |    Net80211 Callback functions   |               |
68  *         |      registered by LLD           |               |
69  *         +----------------------------------+               |
70  *                         |                                  |
71  *                         V                                  v
72  *         +-----------------------------------------------------------+
73  *         |[3]                                                        |
74  *         |                LLD Internal functions                     |
75  *         |                                                           |
76  *         +-----------------------------------------------------------+
77  *                                    ^
78  *                                    | Software interrupt thread
79  *                                    |
80  *
81  * The short description of each module is as below:
82  *      Module 1: GLD callback functions, which are intercepting the calls from
83  *                GLD to LLD.
84  *      Module 2: Net80211 callback functions registered by LLD, which
85  *                calls into LLD for H/W related functions needed by net80211.
86  *      Module 3: LLD Internal functions, which are responsible for allocing
87  *                descriptor/buffer, handling interrupt and other H/W
88  *                operations.
89  *
90  * All functions are running in 3 types of thread:
91  * 1. GLD callbacks threads, such as ioctl, intr, etc.
92  * 2. Clock interruptt thread which is responsible for scan, rate control and
93  *    calibration.
94  * 3. Software Interrupt thread originated in LLD.
95  *
96  * The lock strategy is as below:
97  * There have 4 queues for tx, each queue has one asc_txqlock[i] to
98  *      prevent conflicts access to queue resource from different thread.
99  *
100  * All the transmit buffers are contained in asc_txbuf which are
101  *      protected by asc_txbuflock.
102  *
103  * Each receive buffers are contained in asc_rxbuf which are protected
104  *      by asc_rxbuflock.
105  *
106  * In ath struct, asc_genlock is a general lock, protecting most other
107  *      operational data in ath_softc struct and HAL accesses.
108  *      It is acquired by the interupt handler and most "mode-ctrl" routines.
109  *
110  * Any of the locks can be acquired singly, but where multiple
111  * locks are acquired, they *must* be in the order:
112  *    asc_genlock >> asc_txqlock[i] >> asc_txbuflock >> asc_rxbuflock
113  */
114 
115 #include <sys/param.h>
116 #include <sys/types.h>
117 #include <sys/signal.h>
118 #include <sys/stream.h>
119 #include <sys/termio.h>
120 #include <sys/errno.h>
121 #include <sys/file.h>
122 #include <sys/cmn_err.h>
123 #include <sys/stropts.h>
124 #include <sys/strsubr.h>
125 #include <sys/strtty.h>
126 #include <sys/kbio.h>
127 #include <sys/cred.h>
128 #include <sys/stat.h>
129 #include <sys/consdev.h>
130 #include <sys/kmem.h>
131 #include <sys/modctl.h>
132 #include <sys/ddi.h>
133 #include <sys/sunddi.h>
134 #include <sys/pci.h>
135 #include <sys/errno.h>
136 #include <sys/mac.h>
137 #include <sys/dlpi.h>
138 #include <sys/ethernet.h>
139 #include <sys/list.h>
140 #include <sys/byteorder.h>
141 #include <sys/strsun.h>
142 #include <sys/policy.h>
143 #include <inet/common.h>
144 #include <inet/nd.h>
145 #include <inet/mi.h>
146 #include <inet/wifi_ioctl.h>
147 #include <sys/mac_wifi.h>
148 #include "ath_hal.h"
149 #include "ath_impl.h"
150 #include "ath_aux.h"
151 #include "ath_rate.h"
152 
153 #define	ATH_MAX_RSSI	63	/* max rssi */
154 
155 extern void ath_halfix_init(void);
156 extern void ath_halfix_finit(void);
157 extern int32_t ath_getset(ath_t *asc, mblk_t *mp, uint32_t cmd);
158 
159 /*
160  * PIO access attributes for registers
161  */
162 static ddi_device_acc_attr_t ath_reg_accattr = {
163 	DDI_DEVICE_ATTR_V0,
164 	DDI_STRUCTURE_LE_ACC,
165 	DDI_STRICTORDER_ACC
166 };
167 
168 /*
169  * DMA access attributes for descriptors: NOT to be byte swapped.
170  */
171 static ddi_device_acc_attr_t ath_desc_accattr = {
172 	DDI_DEVICE_ATTR_V0,
173 	DDI_STRUCTURE_LE_ACC,
174 	DDI_STRICTORDER_ACC
175 };
176 
177 /*
178  * Describes the chip's DMA engine
179  */
180 static ddi_dma_attr_t ath_dma_attr = {
181 	DMA_ATTR_V0,		/* version number */
182 	0,			/* low address */
183 	0xffffffffU,		/* high address */
184 	0x3ffffU,		/* counter register max */
185 	1,			/* alignment */
186 	0xFFF,			/* burst sizes */
187 	1,			/* minimum transfer size */
188 	0x3ffffU,		/* max transfer size */
189 	0xffffffffU,		/* address register max */
190 	1,			/* no scatter-gather */
191 	1,			/* granularity of device */
192 	0,			/* DMA flags */
193 };
194 
195 static ddi_dma_attr_t ath_desc_dma_attr = {
196 	DMA_ATTR_V0,		/* version number */
197 	0,			/* low address */
198 	0xffffffffU,		/* high address */
199 	0xffffffffU,		/* counter register max */
200 	0x1000,			/* alignment */
201 	0xFFF,			/* burst sizes */
202 	1,			/* minimum transfer size */
203 	0xffffffffU,		/* max transfer size */
204 	0xffffffffU,		/* address register max */
205 	1,			/* no scatter-gather */
206 	1,			/* granularity of device */
207 	0,			/* DMA flags */
208 };
209 
210 static kmutex_t ath_loglock;
211 static void *ath_soft_state_p = NULL;
212 static int ath_dwelltime = 150;		/* scan interval, ms */
213 
214 static int	ath_m_stat(void *,  uint_t, uint64_t *);
215 static int	ath_m_start(void *);
216 static void	ath_m_stop(void *);
217 static int	ath_m_promisc(void *, boolean_t);
218 static int	ath_m_multicst(void *, boolean_t, const uint8_t *);
219 static int	ath_m_unicst(void *, const uint8_t *);
220 static mblk_t	*ath_m_tx(void *, mblk_t *);
221 static void	ath_m_ioctl(void *, queue_t *, mblk_t *);
222 static int	ath_m_setprop(void *, const char *, mac_prop_id_t,
223     uint_t, const void *);
224 static int	ath_m_getprop(void *, const char *, mac_prop_id_t,
225     uint_t, uint_t, void *);
226 
227 static mac_callbacks_t ath_m_callbacks = {
228 	MC_IOCTL | MC_SETPROP | MC_GETPROP,
229 	ath_m_stat,
230 	ath_m_start,
231 	ath_m_stop,
232 	ath_m_promisc,
233 	ath_m_multicst,
234 	ath_m_unicst,
235 	ath_m_tx,
236 	NULL,		/* mc_resources; */
237 	ath_m_ioctl,
238 	NULL,		/* mc_getcapab */
239 	NULL,
240 	NULL,
241 	ath_m_setprop,
242 	ath_m_getprop
243 };
244 
245 /*
246  * Available debug flags:
247  * ATH_DBG_INIT, ATH_DBG_GLD, ATH_DBG_HAL, ATH_DBG_INT, ATH_DBG_ATTACH,
248  * ATH_DBG_DETACH, ATH_DBG_AUX, ATH_DBG_WIFICFG, ATH_DBG_OSDEP
249  */
250 uint32_t ath_dbg_flags = 0;
251 
252 /*
253  * Exception/warning cases not leading to panic.
254  */
255 void
256 ath_problem(const int8_t *fmt, ...)
257 {
258 	va_list args;
259 
260 	mutex_enter(&ath_loglock);
261 
262 	va_start(args, fmt);
263 	vcmn_err(CE_WARN, fmt, args);
264 	va_end(args);
265 
266 	mutex_exit(&ath_loglock);
267 }
268 
269 /*
270  * Normal log information independent of debug.
271  */
272 void
273 ath_log(const int8_t *fmt, ...)
274 {
275 	va_list args;
276 
277 	mutex_enter(&ath_loglock);
278 
279 	va_start(args, fmt);
280 	vcmn_err(CE_CONT, fmt, args);
281 	va_end(args);
282 
283 	mutex_exit(&ath_loglock);
284 }
285 
286 void
287 ath_dbg(uint32_t dbg_flags, const int8_t *fmt, ...)
288 {
289 	va_list args;
290 
291 	if (dbg_flags & ath_dbg_flags) {
292 		mutex_enter(&ath_loglock);
293 		va_start(args, fmt);
294 		vcmn_err(CE_CONT, fmt, args);
295 		va_end(args);
296 		mutex_exit(&ath_loglock);
297 	}
298 }
299 
300 void
301 ath_setup_desc(ath_t *asc, struct ath_buf *bf)
302 {
303 	struct ath_desc *ds;
304 
305 	ds = bf->bf_desc;
306 	ds->ds_link = bf->bf_daddr;
307 	ds->ds_data = bf->bf_dma.cookie.dmac_address;
308 	ds->ds_vdata = bf->bf_dma.mem_va;
309 	ATH_HAL_SETUPRXDESC(asc->asc_ah, ds,
310 	    bf->bf_dma.alength,		/* buffer size */
311 	    0);
312 
313 	if (asc->asc_rxlink != NULL)
314 		*asc->asc_rxlink = bf->bf_daddr;
315 	asc->asc_rxlink = &ds->ds_link;
316 }
317 
318 
319 /*
320  * Allocate an area of memory and a DMA handle for accessing it
321  */
322 static int
323 ath_alloc_dma_mem(dev_info_t *devinfo, ddi_dma_attr_t *dma_attr, size_t memsize,
324     ddi_device_acc_attr_t *attr_p, uint_t alloc_flags,
325     uint_t bind_flags, dma_area_t *dma_p)
326 {
327 	int err;
328 
329 	/*
330 	 * Allocate handle
331 	 */
332 	err = ddi_dma_alloc_handle(devinfo, dma_attr,
333 	    DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl);
334 	if (err != DDI_SUCCESS)
335 		return (DDI_FAILURE);
336 
337 	/*
338 	 * Allocate memory
339 	 */
340 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p,
341 	    alloc_flags, DDI_DMA_SLEEP, NULL, &dma_p->mem_va,
342 	    &dma_p->alength, &dma_p->acc_hdl);
343 	if (err != DDI_SUCCESS)
344 		return (DDI_FAILURE);
345 
346 	/*
347 	 * Bind the two together
348 	 */
349 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
350 	    dma_p->mem_va, dma_p->alength, bind_flags,
351 	    DDI_DMA_SLEEP, NULL, &dma_p->cookie, &dma_p->ncookies);
352 	if (err != DDI_DMA_MAPPED)
353 		return (DDI_FAILURE);
354 
355 	dma_p->nslots = ~0U;
356 	dma_p->size = ~0U;
357 	dma_p->token = ~0U;
358 	dma_p->offset = 0;
359 	return (DDI_SUCCESS);
360 }
361 
362 /*
363  * Free one allocated area of DMAable memory
364  */
365 static void
366 ath_free_dma_mem(dma_area_t *dma_p)
367 {
368 	if (dma_p->dma_hdl != NULL) {
369 		(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
370 		if (dma_p->acc_hdl != NULL) {
371 			ddi_dma_mem_free(&dma_p->acc_hdl);
372 			dma_p->acc_hdl = NULL;
373 		}
374 		ddi_dma_free_handle(&dma_p->dma_hdl);
375 		dma_p->ncookies = 0;
376 		dma_p->dma_hdl = NULL;
377 	}
378 }
379 
380 
381 static int
382 ath_desc_alloc(dev_info_t *devinfo, ath_t *asc)
383 {
384 	int i, err;
385 	size_t size;
386 	struct ath_desc *ds;
387 	struct ath_buf *bf;
388 
389 	size = sizeof (struct ath_desc) * (ATH_TXBUF + ATH_RXBUF);
390 
391 	err = ath_alloc_dma_mem(devinfo, &ath_desc_dma_attr, size,
392 	    &ath_desc_accattr, DDI_DMA_CONSISTENT,
393 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &asc->asc_desc_dma);
394 
395 	/* virtual address of the first descriptor */
396 	asc->asc_desc = (struct ath_desc *)asc->asc_desc_dma.mem_va;
397 
398 	ds = asc->asc_desc;
399 	ATH_DEBUG((ATH_DBG_INIT, "ath: ath_desc_alloc(): DMA map: "
400 	    "%p (%d) -> %p\n",
401 	    asc->asc_desc, asc->asc_desc_dma.alength,
402 	    asc->asc_desc_dma.cookie.dmac_address));
403 
404 	/* allocate data structures to describe TX/RX DMA buffers */
405 	asc->asc_vbuflen = sizeof (struct ath_buf) * (ATH_TXBUF + ATH_RXBUF);
406 	bf = (struct ath_buf *)kmem_zalloc(asc->asc_vbuflen, KM_SLEEP);
407 	asc->asc_vbufptr = bf;
408 
409 	/* DMA buffer size for each TX/RX packet */
410 	asc->asc_dmabuf_size = roundup(1000 + sizeof (struct ieee80211_frame) +
411 	    IEEE80211_MTU + IEEE80211_CRC_LEN +
412 	    (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
413 	    IEEE80211_WEP_CRCLEN), asc->asc_cachelsz);
414 
415 	/* create RX buffer list and allocate DMA memory */
416 	list_create(&asc->asc_rxbuf_list, sizeof (struct ath_buf),
417 	    offsetof(struct ath_buf, bf_node));
418 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
419 		bf->bf_desc = ds;
420 		bf->bf_daddr = asc->asc_desc_dma.cookie.dmac_address +
421 		    ((uintptr_t)ds - (uintptr_t)asc->asc_desc);
422 		list_insert_tail(&asc->asc_rxbuf_list, bf);
423 
424 		/* alloc DMA memory */
425 		err = ath_alloc_dma_mem(devinfo, &ath_dma_attr,
426 		    asc->asc_dmabuf_size, &ath_desc_accattr,
427 		    DDI_DMA_STREAMING, DDI_DMA_READ | DDI_DMA_STREAMING,
428 		    &bf->bf_dma);
429 		if (err != DDI_SUCCESS)
430 			return (err);
431 	}
432 
433 	/* create TX buffer list and allocate DMA memory */
434 	list_create(&asc->asc_txbuf_list, sizeof (struct ath_buf),
435 	    offsetof(struct ath_buf, bf_node));
436 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++) {
437 		bf->bf_desc = ds;
438 		bf->bf_daddr = asc->asc_desc_dma.cookie.dmac_address +
439 		    ((uintptr_t)ds - (uintptr_t)asc->asc_desc);
440 		list_insert_tail(&asc->asc_txbuf_list, bf);
441 
442 		/* alloc DMA memory */
443 		err = ath_alloc_dma_mem(devinfo, &ath_dma_attr,
444 		    asc->asc_dmabuf_size, &ath_desc_accattr,
445 		    DDI_DMA_STREAMING, DDI_DMA_STREAMING, &bf->bf_dma);
446 		if (err != DDI_SUCCESS)
447 			return (err);
448 	}
449 
450 	return (DDI_SUCCESS);
451 }
452 
453 static void
454 ath_desc_free(ath_t *asc)
455 {
456 	struct ath_buf *bf;
457 
458 	/* Free TX DMA buffer */
459 	bf = list_head(&asc->asc_txbuf_list);
460 	while (bf != NULL) {
461 		ath_free_dma_mem(&bf->bf_dma);
462 		list_remove(&asc->asc_txbuf_list, bf);
463 		bf = list_head(&asc->asc_txbuf_list);
464 	}
465 	list_destroy(&asc->asc_txbuf_list);
466 
467 	/* Free RX DMA uffer */
468 	bf = list_head(&asc->asc_rxbuf_list);
469 	while (bf != NULL) {
470 		ath_free_dma_mem(&bf->bf_dma);
471 		list_remove(&asc->asc_rxbuf_list, bf);
472 		bf = list_head(&asc->asc_rxbuf_list);
473 	}
474 	list_destroy(&asc->asc_rxbuf_list);
475 
476 	/* Free descriptor DMA buffer */
477 	ath_free_dma_mem(&asc->asc_desc_dma);
478 
479 	kmem_free((void *)asc->asc_vbufptr, asc->asc_vbuflen);
480 	asc->asc_vbufptr = NULL;
481 }
482 
483 static void
484 ath_printrxbuf(struct ath_buf *bf, int32_t done)
485 {
486 	struct ath_desc *ds = bf->bf_desc;
487 
488 	ATH_DEBUG((ATH_DBG_RECV, "ath: R (%p %p) %08x %08x %08x "
489 	    "%08x %08x %08x %c\n",
490 	    ds, bf->bf_daddr,
491 	    ds->ds_link, ds->ds_data,
492 	    ds->ds_ctl0, ds->ds_ctl1,
493 	    ds->ds_hw[0], ds->ds_hw[1],
494 	    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!'));
495 }
496 
497 static void
498 ath_rx_handler(ath_t *asc)
499 {
500 	ieee80211com_t *ic = (ieee80211com_t *)asc;
501 	struct ath_buf *bf;
502 	struct ath_hal *ah = asc->asc_ah;
503 	struct ath_desc *ds;
504 	mblk_t *rx_mp;
505 	struct ieee80211_frame *wh;
506 	int32_t len, loop = 1;
507 	uint8_t phyerr;
508 	HAL_STATUS status;
509 	HAL_NODE_STATS hal_node_stats;
510 	struct ieee80211_node *in;
511 
512 	do {
513 		mutex_enter(&asc->asc_rxbuflock);
514 		bf = list_head(&asc->asc_rxbuf_list);
515 		if (bf == NULL) {
516 			ATH_DEBUG((ATH_DBG_RECV, "ath: ath_rx_handler(): "
517 			    "no buffer\n"));
518 			mutex_exit(&asc->asc_rxbuflock);
519 			break;
520 		}
521 		ASSERT(bf->bf_dma.cookie.dmac_address != NULL);
522 		ds = bf->bf_desc;
523 		if (ds->ds_link == bf->bf_daddr) {
524 			/*
525 			 * Never process the self-linked entry at the end,
526 			 * this may be met at heavy load.
527 			 */
528 			mutex_exit(&asc->asc_rxbuflock);
529 			break;
530 		}
531 
532 		status = ATH_HAL_RXPROCDESC(ah, ds,
533 		    bf->bf_daddr,
534 		    ATH_PA2DESC(asc, ds->ds_link));
535 		if (status == HAL_EINPROGRESS) {
536 			mutex_exit(&asc->asc_rxbuflock);
537 			break;
538 		}
539 		list_remove(&asc->asc_rxbuf_list, bf);
540 		mutex_exit(&asc->asc_rxbuflock);
541 
542 		if (ds->ds_rxstat.rs_status != 0) {
543 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
544 				asc->asc_stats.ast_rx_crcerr++;
545 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
546 				asc->asc_stats.ast_rx_fifoerr++;
547 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
548 				asc->asc_stats.ast_rx_badcrypt++;
549 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
550 				asc->asc_stats.ast_rx_phyerr++;
551 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
552 				asc->asc_stats.ast_rx_phy[phyerr]++;
553 			}
554 			goto rx_next;
555 		}
556 		len = ds->ds_rxstat.rs_datalen;
557 
558 		/* less than sizeof(struct ieee80211_frame) */
559 		if (len < 20) {
560 			asc->asc_stats.ast_rx_tooshort++;
561 			goto rx_next;
562 		}
563 
564 		if ((rx_mp = allocb(asc->asc_dmabuf_size, BPRI_MED)) == NULL) {
565 			ath_problem("ath: ath_rx_handler(): "
566 			    "allocing mblk buffer failed.\n");
567 			return;
568 		}
569 
570 		ATH_DMA_SYNC(bf->bf_dma, DDI_DMA_SYNC_FORCPU);
571 		bcopy(bf->bf_dma.mem_va, rx_mp->b_rptr, len);
572 
573 		rx_mp->b_wptr += len;
574 		wh = (struct ieee80211_frame *)rx_mp->b_rptr;
575 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
576 		    IEEE80211_FC0_TYPE_CTL) {
577 			/*
578 			 * Ignore control frame received in promisc mode.
579 			 */
580 			freemsg(rx_mp);
581 			goto rx_next;
582 		}
583 		/* Remove the CRC at the end of IEEE80211 frame */
584 		rx_mp->b_wptr -= IEEE80211_CRC_LEN;
585 #ifdef DEBUG
586 		ath_printrxbuf(bf, status == HAL_OK);
587 #endif /* DEBUG */
588 		/*
589 		 * Locate the node for sender, track state, and then
590 		 * pass the (referenced) node up to the 802.11 layer
591 		 * for its use.
592 		 */
593 		in = ieee80211_find_rxnode(ic, wh);
594 
595 		/*
596 		 * Send frame up for processing.
597 		 */
598 		(void) ieee80211_input(ic, rx_mp, in,
599 		    ds->ds_rxstat.rs_rssi,
600 		    ds->ds_rxstat.rs_tstamp);
601 
602 		ieee80211_free_node(in);
603 
604 rx_next:
605 		mutex_enter(&asc->asc_rxbuflock);
606 		list_insert_tail(&asc->asc_rxbuf_list, bf);
607 		mutex_exit(&asc->asc_rxbuflock);
608 		ath_setup_desc(asc, bf);
609 	} while (loop);
610 
611 	/* rx signal state monitoring */
612 	ATH_HAL_RXMONITOR(ah, &hal_node_stats, &asc->asc_curchan);
613 }
614 
615 static void
616 ath_printtxbuf(struct ath_buf *bf, int done)
617 {
618 	struct ath_desc *ds = bf->bf_desc;
619 
620 	ATH_DEBUG((ATH_DBG_SEND, "ath: T(%p %p) %08x %08x %08x %08x %08x"
621 	    " %08x %08x %08x %c\n",
622 	    ds, bf->bf_daddr,
623 	    ds->ds_link, ds->ds_data,
624 	    ds->ds_ctl0, ds->ds_ctl1,
625 	    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
626 	    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!'));
627 }
628 
629 /*
630  * The input parameter mp has following assumption:
631  * For data packets, GLDv3 mac_wifi plugin allocates and fills the
632  * ieee80211 header. For management packets, net80211 allocates and
633  * fills the ieee80211 header. In both cases, enough spaces in the
634  * header are left for encryption option.
635  */
636 static int32_t
637 ath_tx_start(ath_t *asc, struct ieee80211_node *in, struct ath_buf *bf,
638     mblk_t *mp)
639 {
640 	ieee80211com_t *ic = (ieee80211com_t *)asc;
641 	struct ieee80211_frame *wh;
642 	struct ath_hal *ah = asc->asc_ah;
643 	uint32_t subtype, flags, ctsduration;
644 	int32_t keyix, iswep, hdrlen, pktlen, mblen, mbslen, try0;
645 	uint8_t rix, cix, txrate, ctsrate;
646 	struct ath_desc *ds;
647 	struct ath_txq *txq;
648 	HAL_PKT_TYPE atype;
649 	const HAL_RATE_TABLE *rt;
650 	HAL_BOOL shortPreamble;
651 	struct ath_node *an;
652 	caddr_t dest;
653 
654 	/*
655 	 * CRC are added by H/W, not encaped by driver,
656 	 * but we must count it in pkt length.
657 	 */
658 	pktlen = IEEE80211_CRC_LEN;
659 
660 	wh = (struct ieee80211_frame *)mp->b_rptr;
661 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
662 	keyix = HAL_TXKEYIX_INVALID;
663 	hdrlen = sizeof (struct ieee80211_frame);
664 	if (iswep != 0) {
665 		const struct ieee80211_cipher *cip;
666 		struct ieee80211_key *k;
667 
668 		/*
669 		 * Construct the 802.11 header+trailer for an encrypted
670 		 * frame. The only reason this can fail is because of an
671 		 * unknown or unsupported cipher/key type.
672 		 */
673 		k = ieee80211_crypto_encap(ic, mp);
674 		if (k == NULL) {
675 			ATH_DEBUG((ATH_DBG_AUX, "crypto_encap failed\n"));
676 			/*
677 			 * This can happen when the key is yanked after the
678 			 * frame was queued.  Just discard the frame; the
679 			 * 802.11 layer counts failures and provides
680 			 * debugging/diagnostics.
681 			 */
682 			return (EIO);
683 		}
684 		cip = k->wk_cipher;
685 		/*
686 		 * Adjust the packet + header lengths for the crypto
687 		 * additions and calculate the h/w key index.  When
688 		 * a s/w mic is done the frame will have had any mic
689 		 * added to it prior to entry so m0->m_pkthdr.len above will
690 		 * account for it. Otherwise we need to add it to the
691 		 * packet length.
692 		 */
693 		hdrlen += cip->ic_header;
694 		pktlen += cip->ic_trailer;
695 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
696 			pktlen += cip->ic_miclen;
697 		keyix = k->wk_keyix;
698 
699 		/* packet header may have moved, reset our local pointer */
700 		wh = (struct ieee80211_frame *)mp->b_rptr;
701 	}
702 
703 	dest = bf->bf_dma.mem_va;
704 	for (; mp != NULL; mp = mp->b_cont) {
705 		mblen = MBLKL(mp);
706 		bcopy(mp->b_rptr, dest, mblen);
707 		dest += mblen;
708 	}
709 	mbslen = (uintptr_t)dest - (uintptr_t)bf->bf_dma.mem_va;
710 	pktlen += mbslen;
711 
712 	bf->bf_in = in;
713 
714 	/* setup descriptors */
715 	ds = bf->bf_desc;
716 	rt = asc->asc_currates;
717 	ASSERT(rt != NULL);
718 
719 	/*
720 	 * The 802.11 layer marks whether or not we should
721 	 * use short preamble based on the current mode and
722 	 * negotiated parameters.
723 	 */
724 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
725 	    (in->in_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
726 		shortPreamble = AH_TRUE;
727 		asc->asc_stats.ast_tx_shortpre++;
728 	} else {
729 		shortPreamble = AH_FALSE;
730 	}
731 
732 	an = ATH_NODE(in);
733 
734 	/*
735 	 * Calculate Atheros packet type from IEEE80211 packet header
736 	 * and setup for rate calculations.
737 	 */
738 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
739 	case IEEE80211_FC0_TYPE_MGT:
740 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
741 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
742 			atype = HAL_PKT_TYPE_BEACON;
743 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
744 			atype = HAL_PKT_TYPE_PROBE_RESP;
745 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
746 			atype = HAL_PKT_TYPE_ATIM;
747 		else
748 			atype = HAL_PKT_TYPE_NORMAL;
749 		rix = 0;	/* lowest rate */
750 		try0 = ATH_TXMAXTRY;
751 		if (shortPreamble)
752 			txrate = an->an_tx_mgtratesp;
753 		else
754 			txrate = an->an_tx_mgtrate;
755 		/* force all ctl frames to highest queue */
756 		txq = asc->asc_ac2q[WME_AC_VO];
757 		break;
758 	case IEEE80211_FC0_TYPE_CTL:
759 		atype = HAL_PKT_TYPE_PSPOLL;
760 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
761 		rix = 0;	/* lowest rate */
762 		try0 = ATH_TXMAXTRY;
763 		if (shortPreamble)
764 			txrate = an->an_tx_mgtratesp;
765 		else
766 			txrate = an->an_tx_mgtrate;
767 		/* force all ctl frames to highest queue */
768 		txq = asc->asc_ac2q[WME_AC_VO];
769 		break;
770 	case IEEE80211_FC0_TYPE_DATA:
771 		atype = HAL_PKT_TYPE_NORMAL;
772 		rix = an->an_tx_rix0;
773 		try0 = an->an_tx_try0;
774 		if (shortPreamble)
775 			txrate = an->an_tx_rate0sp;
776 		else
777 			txrate = an->an_tx_rate0;
778 		/* Always use background queue */
779 		txq = asc->asc_ac2q[WME_AC_BK];
780 		break;
781 	default:
782 		/* Unknown 802.11 frame */
783 		asc->asc_stats.ast_tx_invalid++;
784 		return (1);
785 	}
786 	/*
787 	 * Calculate miscellaneous flags.
788 	 */
789 	flags = HAL_TXDESC_CLRDMASK;
790 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
791 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
792 		asc->asc_stats.ast_tx_noack++;
793 	} else if (pktlen > ic->ic_rtsthreshold) {
794 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
795 		asc->asc_stats.ast_tx_rts++;
796 	}
797 
798 	/*
799 	 * Calculate duration.  This logically belongs in the 802.11
800 	 * layer but it lacks sufficient information to calculate it.
801 	 */
802 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
803 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
804 	    IEEE80211_FC0_TYPE_CTL) {
805 		uint16_t dur;
806 		dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE,
807 		    rix, shortPreamble);
808 		/* LINTED E_BAD_PTR_CAST_ALIGN */
809 		*(uint16_t *)wh->i_dur = LE_16(dur);
810 	}
811 
812 	/*
813 	 * Calculate RTS/CTS rate and duration if needed.
814 	 */
815 	ctsduration = 0;
816 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
817 		/*
818 		 * CTS transmit rate is derived from the transmit rate
819 		 * by looking in the h/w rate table.  We must also factor
820 		 * in whether or not a short preamble is to be used.
821 		 */
822 		cix = rt->info[rix].controlRate;
823 		ctsrate = rt->info[cix].rateCode;
824 		if (shortPreamble)
825 			ctsrate |= rt->info[cix].shortPreamble;
826 		/*
827 		 * Compute the transmit duration based on the size
828 		 * of an ACK frame.  We call into the HAL to do the
829 		 * computation since it depends on the characteristics
830 		 * of the actual PHY being used.
831 		 */
832 		if (flags & HAL_TXDESC_RTSENA) {	/* SIFS + CTS */
833 			ctsduration += ath_hal_computetxtime(ah,
834 			    rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
835 		}
836 		/* SIFS + data */
837 		ctsduration += ath_hal_computetxtime(ah,
838 		    rt, pktlen, rix, shortPreamble);
839 		if ((flags & HAL_TXDESC_NOACK) == 0) {	/* SIFS + ACK */
840 			ctsduration += ath_hal_computetxtime(ah,
841 			    rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
842 		}
843 	} else
844 		ctsrate = 0;
845 
846 	if (++txq->axq_intrcnt >= ATH_TXINTR_PERIOD) {
847 		flags |= HAL_TXDESC_INTREQ;
848 		txq->axq_intrcnt = 0;
849 	}
850 
851 	/*
852 	 * Formulate first tx descriptor with tx controls.
853 	 */
854 	ATH_HAL_SETUPTXDESC(ah, ds,
855 	    pktlen,			/* packet length */
856 	    hdrlen,			/* header length */
857 	    atype,			/* Atheros packet type */
858 	    MIN(in->in_txpower, 60),	/* txpower */
859 	    txrate, try0,		/* series 0 rate/tries */
860 	    keyix,			/* key cache index */
861 	    an->an_tx_antenna,		/* antenna mode */
862 	    flags,			/* flags */
863 	    ctsrate,			/* rts/cts rate */
864 	    ctsduration);		/* rts/cts duration */
865 	bf->bf_flags = flags;
866 
867 	/* LINTED E_BAD_PTR_CAST_ALIGN */
868 	ATH_DEBUG((ATH_DBG_SEND, "ath: ath_xmit(): to %s totlen=%d "
869 	    "an->an_tx_rate1sp=%d tx_rate2sp=%d tx_rate3sp=%d "
870 	    "qnum=%d rix=%d sht=%d dur = %d\n",
871 	    ieee80211_macaddr_sprintf(wh->i_addr1), mbslen, an->an_tx_rate1sp,
872 	    an->an_tx_rate2sp, an->an_tx_rate3sp,
873 	    txq->axq_qnum, rix, shortPreamble, *(uint16_t *)wh->i_dur));
874 
875 	/*
876 	 * Setup the multi-rate retry state only when we're
877 	 * going to use it.  This assumes ath_hal_setuptxdesc
878 	 * initializes the descriptors (so we don't have to)
879 	 * when the hardware supports multi-rate retry and
880 	 * we don't use it.
881 	 */
882 	if (try0 != ATH_TXMAXTRY)
883 		ATH_HAL_SETUPXTXDESC(ah, ds,
884 		    an->an_tx_rate1sp, 2,	/* series 1 */
885 		    an->an_tx_rate2sp, 2,	/* series 2 */
886 		    an->an_tx_rate3sp, 2);	/* series 3 */
887 
888 	ds->ds_link = 0;
889 	ds->ds_data = bf->bf_dma.cookie.dmac_address;
890 	ATH_HAL_FILLTXDESC(ah, ds,
891 	    mbslen,		/* segment length */
892 	    AH_TRUE,		/* first segment */
893 	    AH_TRUE,		/* last segment */
894 	    ds);		/* first descriptor */
895 
896 	ATH_DMA_SYNC(bf->bf_dma, DDI_DMA_SYNC_FORDEV);
897 
898 	mutex_enter(&txq->axq_lock);
899 	list_insert_tail(&txq->axq_list, bf);
900 	if (txq->axq_link == NULL) {
901 		ATH_HAL_PUTTXBUF(ah, txq->axq_qnum, bf->bf_daddr);
902 	} else {
903 		*txq->axq_link = bf->bf_daddr;
904 	}
905 	txq->axq_link = &ds->ds_link;
906 	mutex_exit(&txq->axq_lock);
907 
908 	ATH_HAL_TXSTART(ah, txq->axq_qnum);
909 
910 	ic->ic_stats.is_tx_frags++;
911 	ic->ic_stats.is_tx_bytes += pktlen;
912 
913 	return (0);
914 }
915 
916 /*
917  * Transmit a management frame.  On failure we reclaim the skbuff.
918  * Note that management frames come directly from the 802.11 layer
919  * and do not honor the send queue flow control.  Need to investigate
920  * using priority queueing so management frames can bypass data.
921  */
922 static int
923 ath_xmit(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
924 {
925 	ath_t *asc = (ath_t *)ic;
926 	struct ath_hal *ah = asc->asc_ah;
927 	struct ieee80211_node *in = NULL;
928 	struct ath_buf *bf = NULL;
929 	struct ieee80211_frame *wh;
930 	int error = 0;
931 
932 	ASSERT(mp->b_next == NULL);
933 
934 	if (!ATH_IS_RUNNING(asc)) {
935 		if ((type & IEEE80211_FC0_TYPE_MASK) !=
936 		    IEEE80211_FC0_TYPE_DATA) {
937 			freemsg(mp);
938 		}
939 		return (ENXIO);
940 	}
941 
942 	/* Grab a TX buffer */
943 	mutex_enter(&asc->asc_txbuflock);
944 	bf = list_head(&asc->asc_txbuf_list);
945 	if (bf != NULL)
946 		list_remove(&asc->asc_txbuf_list, bf);
947 	if (list_empty(&asc->asc_txbuf_list)) {
948 		ATH_DEBUG((ATH_DBG_SEND, "ath: ath_mgmt_send(): "
949 		    "stop queue\n"));
950 		asc->asc_stats.ast_tx_qstop++;
951 	}
952 	mutex_exit(&asc->asc_txbuflock);
953 	if (bf == NULL) {
954 		ATH_DEBUG((ATH_DBG_SEND, "ath: ath_mgmt_send(): discard, "
955 		    "no xmit buf\n"));
956 		ic->ic_stats.is_tx_nobuf++;
957 		if ((type & IEEE80211_FC0_TYPE_MASK) ==
958 		    IEEE80211_FC0_TYPE_DATA) {
959 			asc->asc_stats.ast_tx_nobuf++;
960 			mutex_enter(&asc->asc_resched_lock);
961 			asc->asc_resched_needed = B_TRUE;
962 			mutex_exit(&asc->asc_resched_lock);
963 		} else {
964 			asc->asc_stats.ast_tx_nobufmgt++;
965 			freemsg(mp);
966 		}
967 		return (ENOMEM);
968 	}
969 
970 	wh = (struct ieee80211_frame *)mp->b_rptr;
971 
972 	/* Locate node */
973 	in = ieee80211_find_txnode(ic,  wh->i_addr1);
974 	if (in == NULL) {
975 		error = EIO;
976 		goto bad;
977 	}
978 
979 	in->in_inact = 0;
980 	switch (type & IEEE80211_FC0_TYPE_MASK) {
981 	case IEEE80211_FC0_TYPE_DATA:
982 		(void) ieee80211_encap(ic, mp, in);
983 		break;
984 	default:
985 		if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
986 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
987 			/* fill time stamp */
988 			uint64_t tsf;
989 			uint32_t *tstamp;
990 
991 			tsf = ATH_HAL_GETTSF64(ah);
992 			/* adjust 100us delay to xmit */
993 			tsf += 100;
994 			/* LINTED E_BAD_PTR_CAST_ALIGN */
995 			tstamp = (uint32_t *)&wh[1];
996 			tstamp[0] = LE_32(tsf & 0xffffffff);
997 			tstamp[1] = LE_32(tsf >> 32);
998 		}
999 		asc->asc_stats.ast_tx_mgmt++;
1000 		break;
1001 	}
1002 
1003 	error = ath_tx_start(asc, in, bf, mp);
1004 	if (error != 0) {
1005 bad:
1006 		ic->ic_stats.is_tx_failed++;
1007 		if (bf != NULL) {
1008 			mutex_enter(&asc->asc_txbuflock);
1009 			list_insert_tail(&asc->asc_txbuf_list, bf);
1010 			mutex_exit(&asc->asc_txbuflock);
1011 		}
1012 	}
1013 	if (in != NULL)
1014 		ieee80211_free_node(in);
1015 	if ((type & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA ||
1016 	    error == 0) {
1017 		freemsg(mp);
1018 	}
1019 
1020 	return (error);
1021 }
1022 
1023 static mblk_t *
1024 ath_m_tx(void *arg, mblk_t *mp)
1025 {
1026 	ath_t *asc = arg;
1027 	ieee80211com_t *ic = (ieee80211com_t *)asc;
1028 	mblk_t *next;
1029 	int error = 0;
1030 
1031 	/*
1032 	 * No data frames go out unless we're associated; this
1033 	 * should not happen as the 802.11 layer does not enable
1034 	 * the xmit queue until we enter the RUN state.
1035 	 */
1036 	if (ic->ic_state != IEEE80211_S_RUN) {
1037 		ATH_DEBUG((ATH_DBG_SEND, "ath: ath_m_tx(): "
1038 		    "discard, state %u\n", ic->ic_state));
1039 		asc->asc_stats.ast_tx_discard++;
1040 		freemsgchain(mp);
1041 		return (NULL);
1042 	}
1043 
1044 	while (mp != NULL) {
1045 		next = mp->b_next;
1046 		mp->b_next = NULL;
1047 		error = ath_xmit(ic, mp, IEEE80211_FC0_TYPE_DATA);
1048 		if (error != 0) {
1049 			mp->b_next = next;
1050 			if (error == ENOMEM) {
1051 				break;
1052 			} else {
1053 				freemsgchain(mp);	/* CR6501759 issues */
1054 				return (NULL);
1055 			}
1056 		}
1057 		mp = next;
1058 	}
1059 
1060 	return (mp);
1061 
1062 }
1063 
1064 static int
1065 ath_tx_processq(ath_t *asc, struct ath_txq *txq)
1066 {
1067 	ieee80211com_t *ic = (ieee80211com_t *)asc;
1068 	struct ath_hal *ah = asc->asc_ah;
1069 	struct ath_buf *bf;
1070 	struct ath_desc *ds;
1071 	struct ieee80211_node *in;
1072 	int32_t sr, lr, nacked = 0;
1073 	HAL_STATUS status;
1074 	struct ath_node *an;
1075 
1076 	for (;;) {
1077 		mutex_enter(&txq->axq_lock);
1078 		bf = list_head(&txq->axq_list);
1079 		if (bf == NULL) {
1080 			txq->axq_link = NULL;
1081 			mutex_exit(&txq->axq_lock);
1082 			break;
1083 		}
1084 		ds = bf->bf_desc;	/* last decriptor */
1085 		status = ATH_HAL_TXPROCDESC(ah, ds);
1086 #ifdef DEBUG
1087 		ath_printtxbuf(bf, status == HAL_OK);
1088 #endif
1089 		if (status == HAL_EINPROGRESS) {
1090 			mutex_exit(&txq->axq_lock);
1091 			break;
1092 		}
1093 		list_remove(&txq->axq_list, bf);
1094 		mutex_exit(&txq->axq_lock);
1095 		in = bf->bf_in;
1096 		if (in != NULL) {
1097 			an = ATH_NODE(in);
1098 			/* Successful transmition */
1099 			if (ds->ds_txstat.ts_status == 0) {
1100 				an->an_tx_ok++;
1101 				an->an_tx_antenna =
1102 				    ds->ds_txstat.ts_antenna;
1103 				if (ds->ds_txstat.ts_rate &
1104 				    HAL_TXSTAT_ALTRATE)
1105 					asc->asc_stats.ast_tx_altrate++;
1106 				asc->asc_stats.ast_tx_rssidelta =
1107 				    ds->ds_txstat.ts_rssi -
1108 				    asc->asc_stats.ast_tx_rssi;
1109 				asc->asc_stats.ast_tx_rssi =
1110 				    ds->ds_txstat.ts_rssi;
1111 			} else {
1112 				an->an_tx_err++;
1113 				if (ds->ds_txstat.ts_status &
1114 				    HAL_TXERR_XRETRY)
1115 					asc->asc_stats.
1116 					    ast_tx_xretries++;
1117 				if (ds->ds_txstat.ts_status &
1118 				    HAL_TXERR_FIFO)
1119 					asc->asc_stats.ast_tx_fifoerr++;
1120 				if (ds->ds_txstat.ts_status &
1121 				    HAL_TXERR_FILT)
1122 					asc->asc_stats.
1123 					    ast_tx_filtered++;
1124 				an->an_tx_antenna = 0;	/* invalidate */
1125 			}
1126 			sr = ds->ds_txstat.ts_shortretry;
1127 			lr = ds->ds_txstat.ts_longretry;
1128 			asc->asc_stats.ast_tx_shortretry += sr;
1129 			asc->asc_stats.ast_tx_longretry += lr;
1130 			/*
1131 			 * Hand the descriptor to the rate control algorithm.
1132 			 */
1133 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
1134 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
1135 				/*
1136 				 * If frame was ack'd update the last rx time
1137 				 * used to workaround phantom bmiss interrupts.
1138 				 */
1139 				if (ds->ds_txstat.ts_status == 0) {
1140 					nacked++;
1141 					an->an_tx_ok++;
1142 				} else {
1143 					an->an_tx_err++;
1144 				}
1145 				an->an_tx_retr += sr + lr;
1146 			}
1147 		}
1148 		bf->bf_in = NULL;
1149 		mutex_enter(&asc->asc_txbuflock);
1150 		list_insert_tail(&asc->asc_txbuf_list, bf);
1151 		mutex_exit(&asc->asc_txbuflock);
1152 		/*
1153 		 * Reschedule stalled outbound packets
1154 		 */
1155 		mutex_enter(&asc->asc_resched_lock);
1156 		if (asc->asc_resched_needed) {
1157 			asc->asc_resched_needed = B_FALSE;
1158 			mac_tx_update(ic->ic_mach);
1159 		}
1160 		mutex_exit(&asc->asc_resched_lock);
1161 	}
1162 	return (nacked);
1163 }
1164 
1165 
1166 static void
1167 ath_tx_handler(ath_t *asc)
1168 {
1169 	int i;
1170 
1171 	/*
1172 	 * Process each active queue.
1173 	 */
1174 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
1175 		if (ATH_TXQ_SETUP(asc, i)) {
1176 			(void) ath_tx_processq(asc, &asc->asc_txq[i]);
1177 		}
1178 	}
1179 }
1180 
1181 static struct ieee80211_node *
1182 ath_node_alloc(ieee80211com_t *ic)
1183 {
1184 	struct ath_node *an;
1185 	ath_t *asc = (ath_t *)ic;
1186 
1187 	an = kmem_zalloc(sizeof (struct ath_node), KM_SLEEP);
1188 	ath_rate_update(asc, &an->an_node, 0);
1189 	return (&an->an_node);
1190 }
1191 
1192 static void
1193 ath_node_free(struct ieee80211_node *in)
1194 {
1195 	ieee80211com_t *ic = in->in_ic;
1196 	ath_t *asc = (ath_t *)ic;
1197 	struct ath_buf *bf;
1198 	struct ath_txq *txq;
1199 	int32_t i;
1200 
1201 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
1202 		if (ATH_TXQ_SETUP(asc, i)) {
1203 			txq = &asc->asc_txq[i];
1204 			mutex_enter(&txq->axq_lock);
1205 			bf = list_head(&txq->axq_list);
1206 			while (bf != NULL) {
1207 				if (bf->bf_in == in) {
1208 					bf->bf_in = NULL;
1209 				}
1210 				bf = list_next(&txq->axq_list, bf);
1211 			}
1212 			mutex_exit(&txq->axq_lock);
1213 		}
1214 	}
1215 	ic->ic_node_cleanup(in);
1216 	if (in->in_wpa_ie != NULL)
1217 		ieee80211_free(in->in_wpa_ie);
1218 	kmem_free(in, sizeof (struct ath_node));
1219 }
1220 
1221 static void
1222 ath_next_scan(void *arg)
1223 {
1224 	ieee80211com_t *ic = arg;
1225 	ath_t *asc = (ath_t *)ic;
1226 
1227 	asc->asc_scan_timer = 0;
1228 	if (ic->ic_state == IEEE80211_S_SCAN) {
1229 		asc->asc_scan_timer = timeout(ath_next_scan, (void *)asc,
1230 		    drv_usectohz(ath_dwelltime * 1000));
1231 		ieee80211_next_scan(ic);
1232 	}
1233 }
1234 
1235 static void
1236 ath_stop_scantimer(ath_t *asc)
1237 {
1238 	timeout_id_t tmp_id = 0;
1239 
1240 	while ((asc->asc_scan_timer != 0) && (tmp_id != asc->asc_scan_timer)) {
1241 		tmp_id = asc->asc_scan_timer;
1242 		(void) untimeout(tmp_id);
1243 	}
1244 	asc->asc_scan_timer = 0;
1245 }
1246 
1247 static int32_t
1248 ath_newstate(ieee80211com_t *ic, enum ieee80211_state nstate, int arg)
1249 {
1250 	ath_t *asc = (ath_t *)ic;
1251 	struct ath_hal *ah = asc->asc_ah;
1252 	struct ieee80211_node *in;
1253 	int32_t i, error;
1254 	uint8_t *bssid;
1255 	uint32_t rfilt;
1256 	enum ieee80211_state ostate;
1257 
1258 	static const HAL_LED_STATE leds[] = {
1259 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
1260 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
1261 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
1262 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
1263 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
1264 	};
1265 	if (!ATH_IS_RUNNING(asc))
1266 		return (0);
1267 
1268 	ostate = ic->ic_state;
1269 	if (nstate != IEEE80211_S_SCAN)
1270 		ath_stop_scantimer(asc);
1271 
1272 	ATH_LOCK(asc);
1273 	ATH_HAL_SETLEDSTATE(ah, leds[nstate]);	/* set LED */
1274 
1275 	if (nstate == IEEE80211_S_INIT) {
1276 		asc->asc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
1277 		ATH_HAL_INTRSET(ah, asc->asc_imask &~ HAL_INT_GLOBAL);
1278 		ATH_UNLOCK(asc);
1279 		goto done;
1280 	}
1281 	in = ic->ic_bss;
1282 	error = ath_chan_set(asc, ic->ic_curchan);
1283 	if (error != 0) {
1284 		if (nstate != IEEE80211_S_SCAN) {
1285 			ATH_UNLOCK(asc);
1286 			ieee80211_reset_chan(ic);
1287 			goto bad;
1288 		}
1289 	}
1290 
1291 	rfilt = ath_calcrxfilter(asc);
1292 	if (nstate == IEEE80211_S_SCAN)
1293 		bssid = ic->ic_macaddr;
1294 	else
1295 		bssid = in->in_bssid;
1296 	ATH_HAL_SETRXFILTER(ah, rfilt);
1297 
1298 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode != IEEE80211_M_IBSS)
1299 		ATH_HAL_SETASSOCID(ah, bssid, in->in_associd);
1300 	else
1301 		ATH_HAL_SETASSOCID(ah, bssid, 0);
1302 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
1303 		for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1304 			if (ATH_HAL_KEYISVALID(ah, i))
1305 				ATH_HAL_KEYSETMAC(ah, i, bssid);
1306 		}
1307 	}
1308 
1309 	if ((nstate == IEEE80211_S_RUN) &&
1310 	    (ostate != IEEE80211_S_RUN)) {
1311 		/* Configure the beacon and sleep timers. */
1312 		ath_beacon_config(asc);
1313 	} else {
1314 		asc->asc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
1315 		ATH_HAL_INTRSET(ah, asc->asc_imask);
1316 	}
1317 	/*
1318 	 * Reset the rate control state.
1319 	 */
1320 	ath_rate_ctl_reset(asc, nstate);
1321 
1322 	if (nstate == IEEE80211_S_RUN && (ostate != IEEE80211_S_RUN)) {
1323 		nvlist_t *attr_list = NULL;
1324 		sysevent_id_t eid;
1325 		int32_t err = 0;
1326 		char *str_name = "ATH";
1327 		char str_value[256] = {0};
1328 
1329 		ATH_DEBUG((ATH_DBG_80211, "ath: ath new state(RUN): "
1330 		    "ic_flags=0x%08x iv=%d"
1331 		    " bssid=%s capinfo=0x%04x chan=%d\n",
1332 		    ic->ic_flags,
1333 		    in->in_intval,
1334 		    ieee80211_macaddr_sprintf(in->in_bssid),
1335 		    in->in_capinfo,
1336 		    ieee80211_chan2ieee(ic, in->in_chan)));
1337 
1338 		(void) sprintf(str_value, "%s%s%d", "-i ",
1339 		    ddi_driver_name(asc->asc_dev),
1340 		    ddi_get_instance(asc->asc_dev));
1341 		if (nvlist_alloc(&attr_list,
1342 		    NV_UNIQUE_NAME_TYPE, KM_SLEEP) == 0) {
1343 			err = nvlist_add_string(attr_list,
1344 			    str_name, str_value);
1345 			if (err != DDI_SUCCESS)
1346 				ATH_DEBUG((ATH_DBG_80211, "ath: "
1347 				    "ath_new_state: error log event\n"));
1348 			err = ddi_log_sysevent(asc->asc_dev,
1349 			    DDI_VENDOR_SUNW, "class",
1350 			    "subclass", attr_list,
1351 			    &eid, DDI_NOSLEEP);
1352 			if (err != DDI_SUCCESS)
1353 				ATH_DEBUG((ATH_DBG_80211, "ath: "
1354 				    "ath_new_state(): error log event\n"));
1355 			nvlist_free(attr_list);
1356 		}
1357 	}
1358 
1359 	ATH_UNLOCK(asc);
1360 done:
1361 	/*
1362 	 * Invoke the parent method to complete the work.
1363 	 */
1364 	error = asc->asc_newstate(ic, nstate, arg);
1365 	/*
1366 	 * Finally, start any timers.
1367 	 */
1368 	if (nstate == IEEE80211_S_RUN) {
1369 		ieee80211_start_watchdog(ic, 1);
1370 	} else if ((nstate == IEEE80211_S_SCAN) && (ostate != nstate)) {
1371 		/* start ap/neighbor scan timer */
1372 		ASSERT(asc->asc_scan_timer == 0);
1373 		asc->asc_scan_timer = timeout(ath_next_scan, (void *)asc,
1374 		    drv_usectohz(ath_dwelltime * 1000));
1375 	}
1376 bad:
1377 	return (error);
1378 }
1379 
1380 /*
1381  * Periodically recalibrate the PHY to account
1382  * for temperature/environment changes.
1383  */
1384 static void
1385 ath_calibrate(ath_t *asc)
1386 {
1387 	struct ath_hal *ah = asc->asc_ah;
1388 	HAL_BOOL iqcaldone;
1389 
1390 	asc->asc_stats.ast_per_cal++;
1391 
1392 	if (ATH_HAL_GETRFGAIN(ah) == HAL_RFGAIN_NEED_CHANGE) {
1393 		/*
1394 		 * Rfgain is out of bounds, reset the chip
1395 		 * to load new gain values.
1396 		 */
1397 		ATH_DEBUG((ATH_DBG_HAL, "ath: ath_calibrate(): "
1398 		    "Need change RFgain\n"));
1399 		asc->asc_stats.ast_per_rfgain++;
1400 		(void) ath_reset(&asc->asc_isc);
1401 	}
1402 	if (!ATH_HAL_CALIBRATE(ah, &asc->asc_curchan, &iqcaldone)) {
1403 		ATH_DEBUG((ATH_DBG_HAL, "ath: ath_calibrate(): "
1404 		    "calibration of channel %u failed\n",
1405 		    asc->asc_curchan.channel));
1406 		asc->asc_stats.ast_per_calfail++;
1407 	}
1408 }
1409 
1410 static void
1411 ath_watchdog(void *arg)
1412 {
1413 	ath_t *asc = arg;
1414 	ieee80211com_t *ic = &asc->asc_isc;
1415 	int ntimer = 0;
1416 
1417 	ATH_LOCK(asc);
1418 	ic->ic_watchdog_timer = 0;
1419 	if (!ATH_IS_RUNNING(asc)) {
1420 		ATH_UNLOCK(asc);
1421 		return;
1422 	}
1423 
1424 	if (ic->ic_state == IEEE80211_S_RUN) {
1425 		/* periodic recalibration */
1426 		ath_calibrate(asc);
1427 
1428 		/*
1429 		 * Start the background rate control thread if we
1430 		 * are not configured to use a fixed xmit rate.
1431 		 */
1432 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1433 			asc->asc_stats.ast_rate_calls ++;
1434 			if (ic->ic_opmode == IEEE80211_M_STA)
1435 				ath_rate_ctl(ic, ic->ic_bss);
1436 			else
1437 				ieee80211_iterate_nodes(&ic->ic_sta,
1438 				    ath_rate_cb, asc);
1439 		}
1440 
1441 		ntimer = 1;
1442 	}
1443 	ATH_UNLOCK(asc);
1444 
1445 	ieee80211_watchdog(ic);
1446 	if (ntimer != 0)
1447 		ieee80211_start_watchdog(ic, ntimer);
1448 }
1449 
1450 static uint_t
1451 ath_intr(caddr_t arg)
1452 {
1453 	/* LINTED E_BAD_PTR_CAST_ALIGN */
1454 	ath_t *asc = (ath_t *)arg;
1455 	struct ath_hal *ah = asc->asc_ah;
1456 	HAL_INT status;
1457 	ieee80211com_t *ic = (ieee80211com_t *)asc;
1458 
1459 	ATH_LOCK(asc);
1460 
1461 	if (!ATH_IS_RUNNING(asc)) {
1462 		/*
1463 		 * The hardware is not ready/present, don't touch anything.
1464 		 * Note this can happen early on if the IRQ is shared.
1465 		 */
1466 		ATH_UNLOCK(asc);
1467 		return (DDI_INTR_UNCLAIMED);
1468 	}
1469 
1470 	if (!ATH_HAL_INTRPEND(ah)) {	/* shared irq, not for us */
1471 		ATH_UNLOCK(asc);
1472 		return (DDI_INTR_UNCLAIMED);
1473 	}
1474 
1475 	ATH_HAL_GETISR(ah, &status);
1476 	status &= asc->asc_imask;
1477 	if (status & HAL_INT_FATAL) {
1478 		asc->asc_stats.ast_hardware++;
1479 		goto reset;
1480 	} else if (status & HAL_INT_RXORN) {
1481 		asc->asc_stats.ast_rxorn++;
1482 		goto reset;
1483 	} else {
1484 		if (status & HAL_INT_RXEOL) {
1485 			asc->asc_stats.ast_rxeol++;
1486 			asc->asc_rxlink = NULL;
1487 		}
1488 		if (status & HAL_INT_TXURN) {
1489 			asc->asc_stats.ast_txurn++;
1490 			ATH_HAL_UPDATETXTRIGLEVEL(ah, AH_TRUE);
1491 		}
1492 
1493 		if (status & HAL_INT_RX) {
1494 			asc->asc_rx_pend = 1;
1495 			ddi_trigger_softintr(asc->asc_softint_id);
1496 		}
1497 		if (status & HAL_INT_TX) {
1498 			ath_tx_handler(asc);
1499 		}
1500 		ATH_UNLOCK(asc);
1501 
1502 		if (status & HAL_INT_SWBA) {
1503 			/* This will occur only in Host-AP or Ad-Hoc mode */
1504 			return (DDI_INTR_CLAIMED);
1505 		}
1506 		if (status & HAL_INT_BMISS) {
1507 			if (ic->ic_state == IEEE80211_S_RUN) {
1508 				(void) ieee80211_new_state(ic,
1509 				    IEEE80211_S_ASSOC, -1);
1510 			}
1511 		}
1512 	}
1513 
1514 	return (DDI_INTR_CLAIMED);
1515 reset:
1516 	(void) ath_reset(ic);
1517 	ATH_UNLOCK(asc);
1518 	return (DDI_INTR_CLAIMED);
1519 }
1520 
1521 static uint_t
1522 ath_softint_handler(caddr_t data)
1523 {
1524 	/* LINTED E_BAD_PTR_CAST_ALIGN */
1525 	ath_t *asc = (ath_t *)data;
1526 
1527 	/*
1528 	 * Check if the soft interrupt is triggered by another
1529 	 * driver at the same level.
1530 	 */
1531 	ATH_LOCK(asc);
1532 	if (asc->asc_rx_pend) { /* Soft interrupt for this driver */
1533 		asc->asc_rx_pend = 0;
1534 		ATH_UNLOCK(asc);
1535 		ath_rx_handler(asc);
1536 		return (DDI_INTR_CLAIMED);
1537 	}
1538 	ATH_UNLOCK(asc);
1539 	return (DDI_INTR_UNCLAIMED);
1540 }
1541 
1542 /*
1543  * following are gld callback routine
1544  * ath_gld_send, ath_gld_ioctl, ath_gld_gstat
1545  * are listed in other corresponding sections.
1546  * reset the hardware w/o losing operational state.  this is
1547  * basically a more efficient way of doing ath_gld_stop, ath_gld_start,
1548  * followed by state transitions to the current 802.11
1549  * operational state.  used to recover from errors rx overrun
1550  * and to reset the hardware when rf gain settings must be reset.
1551  */
1552 
1553 static void
1554 ath_stop_locked(ath_t *asc)
1555 {
1556 	ieee80211com_t *ic = (ieee80211com_t *)asc;
1557 	struct ath_hal *ah = asc->asc_ah;
1558 
1559 	ATH_LOCK_ASSERT(asc);
1560 	if (!asc->asc_isrunning)
1561 		return;
1562 
1563 	/*
1564 	 * Shutdown the hardware and driver:
1565 	 *    reset 802.11 state machine
1566 	 *    turn off timers
1567 	 *    disable interrupts
1568 	 *    turn off the radio
1569 	 *    clear transmit machinery
1570 	 *    clear receive machinery
1571 	 *    drain and release tx queues
1572 	 *    reclaim beacon resources
1573 	 *    power down hardware
1574 	 *
1575 	 * Note that some of this work is not possible if the
1576 	 * hardware is gone (invalid).
1577 	 */
1578 	ATH_UNLOCK(asc);
1579 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1580 	ieee80211_stop_watchdog(ic);
1581 	ATH_LOCK(asc);
1582 	ATH_HAL_INTRSET(ah, 0);
1583 	ath_draintxq(asc);
1584 	if (!asc->asc_invalid) {
1585 		ath_stoprecv(asc);
1586 		ATH_HAL_PHYDISABLE(ah);
1587 	} else {
1588 		asc->asc_rxlink = NULL;
1589 	}
1590 	asc->asc_isrunning = 0;
1591 }
1592 
1593 static void
1594 ath_m_stop(void *arg)
1595 {
1596 	ath_t *asc = arg;
1597 	struct ath_hal *ah = asc->asc_ah;
1598 
1599 	ATH_LOCK(asc);
1600 	ath_stop_locked(asc);
1601 	ATH_HAL_SETPOWER(ah, HAL_PM_AWAKE);
1602 	asc->asc_invalid = 1;
1603 	ATH_UNLOCK(asc);
1604 }
1605 
1606 static int
1607 ath_start_locked(ath_t *asc)
1608 {
1609 	ieee80211com_t *ic = (ieee80211com_t *)asc;
1610 	struct ath_hal *ah = asc->asc_ah;
1611 	HAL_STATUS status;
1612 
1613 	ATH_LOCK_ASSERT(asc);
1614 
1615 	/*
1616 	 * The basic interface to setting the hardware in a good
1617 	 * state is ``reset''.  On return the hardware is known to
1618 	 * be powered up and with interrupts disabled.  This must
1619 	 * be followed by initialization of the appropriate bits
1620 	 * and then setup of the interrupt mask.
1621 	 */
1622 	asc->asc_curchan.channel = ic->ic_curchan->ich_freq;
1623 	asc->asc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1624 	if (!ATH_HAL_RESET(ah, (HAL_OPMODE)ic->ic_opmode,
1625 	    &asc->asc_curchan, AH_FALSE, &status)) {
1626 		ATH_DEBUG((ATH_DBG_HAL, "ath: ath_m_start(): "
1627 		    "reset hardware failed: '%s' (HAL status %u)\n",
1628 		    ath_get_hal_status_desc(status), status));
1629 		return (ENOTACTIVE);
1630 	}
1631 
1632 	(void) ath_startrecv(asc);
1633 
1634 	/*
1635 	 * Enable interrupts.
1636 	 */
1637 	asc->asc_imask = HAL_INT_RX | HAL_INT_TX
1638 	    | HAL_INT_RXEOL | HAL_INT_RXORN
1639 	    | HAL_INT_FATAL | HAL_INT_GLOBAL;
1640 	ATH_HAL_INTRSET(ah, asc->asc_imask);
1641 
1642 	/*
1643 	 * The hardware should be ready to go now so it's safe
1644 	 * to kick the 802.11 state machine as it's likely to
1645 	 * immediately call back to us to send mgmt frames.
1646 	 */
1647 	ath_chan_change(asc, ic->ic_curchan);
1648 
1649 	asc->asc_isrunning = 1;
1650 
1651 	return (0);
1652 }
1653 
1654 int
1655 ath_m_start(void *arg)
1656 {
1657 	ath_t *asc = arg;
1658 	int err;
1659 
1660 	ATH_LOCK(asc);
1661 	/*
1662 	 * Stop anything previously setup.  This is safe
1663 	 * whether this is the first time through or not.
1664 	 */
1665 	ath_stop_locked(asc);
1666 
1667 	if ((err = ath_start_locked(asc)) != 0) {
1668 		ATH_UNLOCK(asc);
1669 		return (err);
1670 	}
1671 
1672 	asc->asc_invalid = 0;
1673 	ATH_UNLOCK(asc);
1674 
1675 	return (0);
1676 }
1677 
1678 
1679 static int
1680 ath_m_unicst(void *arg, const uint8_t *macaddr)
1681 {
1682 	ath_t *asc = arg;
1683 	struct ath_hal *ah = asc->asc_ah;
1684 
1685 	ATH_DEBUG((ATH_DBG_GLD, "ath: ath_gld_saddr(): "
1686 	    "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x\n",
1687 	    macaddr[0], macaddr[1], macaddr[2],
1688 	    macaddr[3], macaddr[4], macaddr[5]));
1689 
1690 	ATH_LOCK(asc);
1691 	IEEE80211_ADDR_COPY(asc->asc_isc.ic_macaddr, macaddr);
1692 	ATH_HAL_SETMAC(ah, asc->asc_isc.ic_macaddr);
1693 
1694 	(void) ath_reset(&asc->asc_isc);
1695 	ATH_UNLOCK(asc);
1696 	return (0);
1697 }
1698 
1699 static int
1700 ath_m_promisc(void *arg, boolean_t on)
1701 {
1702 	ath_t *asc = arg;
1703 	struct ath_hal *ah = asc->asc_ah;
1704 	uint32_t rfilt;
1705 
1706 	ATH_LOCK(asc);
1707 	rfilt = ATH_HAL_GETRXFILTER(ah);
1708 	if (on)
1709 		rfilt |= HAL_RX_FILTER_PROM;
1710 	else
1711 		rfilt &= ~HAL_RX_FILTER_PROM;
1712 	asc->asc_promisc = on;
1713 	ATH_HAL_SETRXFILTER(ah, rfilt);
1714 	ATH_UNLOCK(asc);
1715 
1716 	return (0);
1717 }
1718 
1719 static int
1720 ath_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
1721 {
1722 	ath_t *asc = arg;
1723 	struct ath_hal *ah = asc->asc_ah;
1724 	uint32_t val, index, bit;
1725 	uint8_t pos;
1726 	uint32_t *mfilt = asc->asc_mcast_hash;
1727 
1728 	ATH_LOCK(asc);
1729 	/* calculate XOR of eight 6bit values */
1730 	val = ATH_LE_READ_4(mca + 0);
1731 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1732 	val = ATH_LE_READ_4(mca + 3);
1733 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1734 	pos &= 0x3f;
1735 	index = pos / 32;
1736 	bit = 1 << (pos % 32);
1737 
1738 	if (add) {	/* enable multicast */
1739 		asc->asc_mcast_refs[pos]++;
1740 		mfilt[index] |= bit;
1741 	} else {	/* disable multicast */
1742 		if (--asc->asc_mcast_refs[pos] == 0)
1743 			mfilt[index] &= ~bit;
1744 	}
1745 	ATH_HAL_SETMCASTFILTER(ah, mfilt[0], mfilt[1]);
1746 
1747 	ATH_UNLOCK(asc);
1748 	return (0);
1749 }
1750 
1751 /*
1752  * callback functions for /get/set properties
1753  */
1754 static int
1755 ath_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
1756     uint_t wldp_length, const void *wldp_buf)
1757 {
1758 	ath_t	*asc = arg;
1759 	int	err;
1760 
1761 	err = ieee80211_setprop(&asc->asc_isc, pr_name, wldp_pr_num,
1762 	    wldp_length, wldp_buf);
1763 
1764 	ATH_LOCK(asc);
1765 
1766 	if (err == ENETRESET) {
1767 		if (ATH_IS_RUNNING(asc)) {
1768 			ATH_UNLOCK(asc);
1769 			(void) ath_m_start(asc);
1770 			(void) ieee80211_new_state(&asc->asc_isc,
1771 			    IEEE80211_S_SCAN, -1);
1772 			ATH_LOCK(asc);
1773 		}
1774 		err = 0;
1775 	}
1776 
1777 	ATH_UNLOCK(asc);
1778 
1779 	return (err);
1780 }
1781 static int
1782 ath_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
1783     uint_t pr_flags, uint_t wldp_length, void *wldp_buf)
1784 {
1785 	ath_t	*asc = arg;
1786 	int	err = 0;
1787 
1788 	err = ieee80211_getprop(&asc->asc_isc, pr_name, wldp_pr_num,
1789 	    pr_flags, wldp_length, wldp_buf);
1790 
1791 	return (err);
1792 }
1793 
1794 static void
1795 ath_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
1796 {
1797 	ath_t *asc = arg;
1798 	int32_t err;
1799 
1800 	err = ieee80211_ioctl(&asc->asc_isc, wq, mp);
1801 	ATH_LOCK(asc);
1802 	if (err == ENETRESET) {
1803 		if (ATH_IS_RUNNING(asc)) {
1804 			ATH_UNLOCK(asc);
1805 			(void) ath_m_start(asc);
1806 			(void) ieee80211_new_state(&asc->asc_isc,
1807 			    IEEE80211_S_SCAN, -1);
1808 			ATH_LOCK(asc);
1809 		}
1810 	}
1811 	ATH_UNLOCK(asc);
1812 }
1813 
1814 static int
1815 ath_m_stat(void *arg, uint_t stat, uint64_t *val)
1816 {
1817 	ath_t *asc = arg;
1818 	ieee80211com_t *ic = (ieee80211com_t *)asc;
1819 	struct ieee80211_node *in = ic->ic_bss;
1820 	struct ieee80211_rateset *rs = &in->in_rates;
1821 
1822 	ATH_LOCK(asc);
1823 	switch (stat) {
1824 	case MAC_STAT_IFSPEED:
1825 		*val = (rs->ir_rates[in->in_txrate] & IEEE80211_RATE_VAL) / 2 *
1826 		    1000000ull;
1827 		break;
1828 	case MAC_STAT_NOXMTBUF:
1829 		*val = asc->asc_stats.ast_tx_nobuf +
1830 		    asc->asc_stats.ast_tx_nobufmgt;
1831 		break;
1832 	case MAC_STAT_IERRORS:
1833 		*val = asc->asc_stats.ast_rx_tooshort;
1834 		break;
1835 	case MAC_STAT_RBYTES:
1836 		*val = ic->ic_stats.is_rx_bytes;
1837 		break;
1838 	case MAC_STAT_IPACKETS:
1839 		*val = ic->ic_stats.is_rx_frags;
1840 		break;
1841 	case MAC_STAT_OBYTES:
1842 		*val = ic->ic_stats.is_tx_bytes;
1843 		break;
1844 	case MAC_STAT_OPACKETS:
1845 		*val = ic->ic_stats.is_tx_frags;
1846 		break;
1847 	case MAC_STAT_OERRORS:
1848 	case WIFI_STAT_TX_FAILED:
1849 		*val = asc->asc_stats.ast_tx_fifoerr +
1850 		    asc->asc_stats.ast_tx_xretries +
1851 		    asc->asc_stats.ast_tx_discard;
1852 		break;
1853 	case WIFI_STAT_TX_RETRANS:
1854 		*val = asc->asc_stats.ast_tx_xretries;
1855 		break;
1856 	case WIFI_STAT_FCS_ERRORS:
1857 		*val = asc->asc_stats.ast_rx_crcerr;
1858 		break;
1859 	case WIFI_STAT_WEP_ERRORS:
1860 		*val = asc->asc_stats.ast_rx_badcrypt;
1861 		break;
1862 	case WIFI_STAT_TX_FRAGS:
1863 	case WIFI_STAT_MCAST_TX:
1864 	case WIFI_STAT_RTS_SUCCESS:
1865 	case WIFI_STAT_RTS_FAILURE:
1866 	case WIFI_STAT_ACK_FAILURE:
1867 	case WIFI_STAT_RX_FRAGS:
1868 	case WIFI_STAT_MCAST_RX:
1869 	case WIFI_STAT_RX_DUPS:
1870 		ATH_UNLOCK(asc);
1871 		return (ieee80211_stat(ic, stat, val));
1872 	default:
1873 		ATH_UNLOCK(asc);
1874 		return (ENOTSUP);
1875 	}
1876 	ATH_UNLOCK(asc);
1877 
1878 	return (0);
1879 }
1880 
1881 static int
1882 ath_pci_setup(ath_t *asc)
1883 {
1884 	uint16_t command;
1885 
1886 	/*
1887 	 * Enable memory mapping and bus mastering
1888 	 */
1889 	ASSERT(asc != NULL);
1890 	command = pci_config_get16(asc->asc_cfg_handle, PCI_CONF_COMM);
1891 	command |= PCI_COMM_MAE | PCI_COMM_ME;
1892 	pci_config_put16(asc->asc_cfg_handle, PCI_CONF_COMM, command);
1893 	command = pci_config_get16(asc->asc_cfg_handle, PCI_CONF_COMM);
1894 	if ((command & PCI_COMM_MAE) == 0) {
1895 		ath_problem("ath: ath_pci_setup(): "
1896 		    "failed to enable memory mapping\n");
1897 		return (EIO);
1898 	}
1899 	if ((command & PCI_COMM_ME) == 0) {
1900 		ath_problem("ath: ath_pci_setup(): "
1901 		    "failed to enable bus mastering\n");
1902 		return (EIO);
1903 	}
1904 	ATH_DEBUG((ATH_DBG_INIT, "ath: ath_pci_setup(): "
1905 	    "set command reg to 0x%x \n", command));
1906 
1907 	return (0);
1908 }
1909 
1910 static int
1911 ath_resume(dev_info_t *devinfo)
1912 {
1913 	ath_t *asc;
1914 	int ret = DDI_SUCCESS;
1915 
1916 	asc = ddi_get_soft_state(ath_soft_state_p, ddi_get_instance(devinfo));
1917 	if (asc == NULL) {
1918 		ATH_DEBUG((ATH_DBG_SUSPEND, "ath: ath_resume(): "
1919 		    "failed to get soft state\n"));
1920 		return (DDI_FAILURE);
1921 	}
1922 
1923 	ATH_LOCK(asc);
1924 	/*
1925 	 * Set up config space command register(s). Refuse
1926 	 * to resume on failure.
1927 	 */
1928 	if (ath_pci_setup(asc) != 0) {
1929 		ATH_DEBUG((ATH_DBG_SUSPEND, "ath: ath_resume(): "
1930 		    "ath_pci_setup() failed\n"));
1931 		ATH_UNLOCK(asc);
1932 		return (DDI_FAILURE);
1933 	}
1934 
1935 	if (!asc->asc_invalid)
1936 		ret = ath_start_locked(asc);
1937 	ATH_UNLOCK(asc);
1938 
1939 	return (ret);
1940 }
1941 
1942 static int
1943 ath_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
1944 {
1945 	ath_t *asc;
1946 	ieee80211com_t *ic;
1947 	struct ath_hal *ah;
1948 	uint8_t csz;
1949 	HAL_STATUS status;
1950 	caddr_t regs;
1951 	uint32_t i, val;
1952 	uint16_t vendor_id, device_id;
1953 	const char *athname;
1954 	int32_t ath_countrycode = CTRY_DEFAULT;	/* country code */
1955 	int32_t err, ath_regdomain = 0; /* regulatory domain */
1956 	char strbuf[32];
1957 	int instance;
1958 	wifi_data_t wd = { 0 };
1959 	mac_register_t *macp;
1960 
1961 	switch (cmd) {
1962 	case DDI_ATTACH:
1963 		break;
1964 
1965 	case DDI_RESUME:
1966 		return (ath_resume(devinfo));
1967 
1968 	default:
1969 		return (DDI_FAILURE);
1970 	}
1971 
1972 	instance = ddi_get_instance(devinfo);
1973 	if (ddi_soft_state_zalloc(ath_soft_state_p, instance) != DDI_SUCCESS) {
1974 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
1975 		    "Unable to alloc softstate\n"));
1976 		return (DDI_FAILURE);
1977 	}
1978 
1979 	asc = ddi_get_soft_state(ath_soft_state_p, ddi_get_instance(devinfo));
1980 	ic = (ieee80211com_t *)asc;
1981 	asc->asc_dev = devinfo;
1982 
1983 	mutex_init(&asc->asc_genlock, NULL, MUTEX_DRIVER, NULL);
1984 	mutex_init(&asc->asc_txbuflock, NULL, MUTEX_DRIVER, NULL);
1985 	mutex_init(&asc->asc_rxbuflock, NULL, MUTEX_DRIVER, NULL);
1986 	mutex_init(&asc->asc_resched_lock, NULL, MUTEX_DRIVER, NULL);
1987 
1988 	err = pci_config_setup(devinfo, &asc->asc_cfg_handle);
1989 	if (err != DDI_SUCCESS) {
1990 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
1991 		    "pci_config_setup() failed"));
1992 		goto attach_fail0;
1993 	}
1994 
1995 	if (ath_pci_setup(asc) != 0)
1996 		goto attach_fail1;
1997 
1998 	/*
1999 	 * Cache line size is used to size and align various
2000 	 * structures used to communicate with the hardware.
2001 	 */
2002 	csz = pci_config_get8(asc->asc_cfg_handle, PCI_CONF_CACHE_LINESZ);
2003 	if (csz == 0) {
2004 		/*
2005 		 * We must have this setup properly for rx buffer
2006 		 * DMA to work so force a reasonable value here if it
2007 		 * comes up zero.
2008 		 */
2009 		csz = ATH_DEF_CACHE_BYTES / sizeof (uint32_t);
2010 		pci_config_put8(asc->asc_cfg_handle, PCI_CONF_CACHE_LINESZ,
2011 		    csz);
2012 	}
2013 	asc->asc_cachelsz = csz << 2;
2014 	vendor_id = pci_config_get16(asc->asc_cfg_handle, PCI_CONF_VENID);
2015 	device_id = pci_config_get16(asc->asc_cfg_handle, PCI_CONF_DEVID);
2016 	ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): vendor 0x%x, "
2017 	    "device id 0x%x, cache size %d\n", vendor_id, device_id, csz));
2018 
2019 	athname = ath_hal_probe(vendor_id, device_id);
2020 	ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): athname: %s\n",
2021 	    athname ? athname : "Atheros ???"));
2022 
2023 	pci_config_put8(asc->asc_cfg_handle, PCI_CONF_LATENCY_TIMER, 0xa8);
2024 	val = pci_config_get32(asc->asc_cfg_handle, 0x40);
2025 	if ((val & 0x0000ff00) != 0)
2026 		pci_config_put32(asc->asc_cfg_handle, 0x40, val & 0xffff00ff);
2027 
2028 	err = ddi_regs_map_setup(devinfo, 1,
2029 	    &regs, 0, 0, &ath_reg_accattr, &asc->asc_io_handle);
2030 	ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2031 	    "regs map1 = %x err=%d\n", regs, err));
2032 	if (err != DDI_SUCCESS) {
2033 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2034 		    "ddi_regs_map_setup() failed"));
2035 		goto attach_fail1;
2036 	}
2037 
2038 	ah = ath_hal_attach(device_id, asc, 0, regs, &status);
2039 	if (ah == NULL) {
2040 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2041 		    "unable to attach hw: '%s' (HAL status %u)\n",
2042 		    ath_get_hal_status_desc(status), status));
2043 		goto attach_fail2;
2044 	}
2045 	ATH_HAL_INTRSET(ah, 0);
2046 	asc->asc_ah = ah;
2047 
2048 	if (ah->ah_abi != HAL_ABI_VERSION) {
2049 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2050 		    "HAL ABI mismatch detected (0x%x != 0x%x)\n",
2051 		    ah->ah_abi, HAL_ABI_VERSION));
2052 		goto attach_fail3;
2053 	}
2054 
2055 	ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2056 	    "HAL ABI version 0x%x\n", ah->ah_abi));
2057 	ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2058 	    "HAL mac version %d.%d, phy version %d.%d\n",
2059 	    ah->ah_macVersion, ah->ah_macRev,
2060 	    ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf));
2061 	if (ah->ah_analog5GhzRev)
2062 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2063 		    "HAL 5ghz radio version %d.%d\n",
2064 		    ah->ah_analog5GhzRev >> 4,
2065 		    ah->ah_analog5GhzRev & 0xf));
2066 	if (ah->ah_analog2GhzRev)
2067 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2068 		    "HAL 2ghz radio version %d.%d\n",
2069 		    ah->ah_analog2GhzRev >> 4,
2070 		    ah->ah_analog2GhzRev & 0xf));
2071 
2072 	/*
2073 	 * Check if the MAC has multi-rate retry support.
2074 	 * We do this by trying to setup a fake extended
2075 	 * descriptor.  MAC's that don't have support will
2076 	 * return false w/o doing anything.  MAC's that do
2077 	 * support it will return true w/o doing anything.
2078 	 */
2079 	asc->asc_mrretry = ATH_HAL_SETUPXTXDESC(ah, NULL, 0, 0, 0, 0, 0, 0);
2080 	ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2081 	    "multi rate retry support=%x\n",
2082 	    asc->asc_mrretry));
2083 
2084 	/*
2085 	 * Get the hardware key cache size.
2086 	 */
2087 	asc->asc_keymax = ATH_HAL_KEYCACHESIZE(ah);
2088 	if (asc->asc_keymax > sizeof (asc->asc_keymap) * NBBY) {
2089 		ATH_DEBUG((ATH_DBG_ATTACH, "ath_attach:"
2090 		    " Warning, using only %u entries in %u key cache\n",
2091 		    sizeof (asc->asc_keymap) * NBBY, asc->asc_keymax));
2092 		asc->asc_keymax = sizeof (asc->asc_keymap) * NBBY;
2093 	}
2094 	/*
2095 	 * Reset the key cache since some parts do not
2096 	 * reset the contents on initial power up.
2097 	 */
2098 	for (i = 0; i < asc->asc_keymax; i++)
2099 		ATH_HAL_KEYRESET(ah, i);
2100 
2101 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2102 		setbit(asc->asc_keymap, i);
2103 		setbit(asc->asc_keymap, i+32);
2104 		setbit(asc->asc_keymap, i+64);
2105 		setbit(asc->asc_keymap, i+32+64);
2106 	}
2107 
2108 	ATH_HAL_GETREGDOMAIN(ah, (uint32_t *)&ath_regdomain);
2109 	ATH_HAL_GETCOUNTRYCODE(ah, &ath_countrycode);
2110 	/*
2111 	 * Collect the channel list using the default country
2112 	 * code and including outdoor channels.  The 802.11 layer
2113 	 * is resposible for filtering this list to a set of
2114 	 * channels that it considers ok to use.
2115 	 */
2116 	asc->asc_have11g = 0;
2117 
2118 	/* enable outdoor use, enable extended channels */
2119 	err = ath_getchannels(asc, ath_countrycode, AH_FALSE, AH_TRUE);
2120 	if (err != 0)
2121 		goto attach_fail3;
2122 
2123 	/*
2124 	 * Setup rate tables for all potential media types.
2125 	 */
2126 	ath_rate_setup(asc, IEEE80211_MODE_11A);
2127 	ath_rate_setup(asc, IEEE80211_MODE_11B);
2128 	ath_rate_setup(asc, IEEE80211_MODE_11G);
2129 	ath_rate_setup(asc, IEEE80211_MODE_TURBO_A);
2130 
2131 	/* Setup here so ath_rate_update is happy */
2132 	ath_setcurmode(asc, IEEE80211_MODE_11A);
2133 
2134 	err = ath_desc_alloc(devinfo, asc);
2135 	if (err != DDI_SUCCESS) {
2136 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2137 		    "failed to allocate descriptors: %d\n", err));
2138 		goto attach_fail3;
2139 	}
2140 
2141 	/* Setup transmit queues in the HAL */
2142 	if (ath_txq_setup(asc))
2143 		goto attach_fail4;
2144 
2145 	ATH_HAL_GETMAC(ah, ic->ic_macaddr);
2146 
2147 	/*
2148 	 * Initialize pointers to device specific functions which
2149 	 * will be used by the generic layer.
2150 	 */
2151 	/* 11g support is identified when we fetch the channel set */
2152 	if (asc->asc_have11g)
2153 		ic->ic_caps |= IEEE80211_C_SHPREAMBLE |
2154 		    IEEE80211_C_SHSLOT;		/* short slot time */
2155 	/*
2156 	 * Query the hal to figure out h/w crypto support.
2157 	 */
2158 	if (ATH_HAL_CIPHERSUPPORTED(ah, HAL_CIPHER_WEP))
2159 		ic->ic_caps |= IEEE80211_C_WEP;
2160 	if (ATH_HAL_CIPHERSUPPORTED(ah, HAL_CIPHER_AES_OCB))
2161 		ic->ic_caps |= IEEE80211_C_AES;
2162 	if (ATH_HAL_CIPHERSUPPORTED(ah, HAL_CIPHER_AES_CCM)) {
2163 		ATH_DEBUG((ATH_DBG_ATTACH, "Atheros support H/W CCMP\n"));
2164 		ic->ic_caps |= IEEE80211_C_AES_CCM;
2165 	}
2166 	if (ATH_HAL_CIPHERSUPPORTED(ah, HAL_CIPHER_CKIP))
2167 		ic->ic_caps |= IEEE80211_C_CKIP;
2168 	if (ATH_HAL_CIPHERSUPPORTED(ah, HAL_CIPHER_TKIP)) {
2169 		ATH_DEBUG((ATH_DBG_ATTACH, "Atheros support H/W TKIP\n"));
2170 		ic->ic_caps |= IEEE80211_C_TKIP;
2171 		/*
2172 		 * Check if h/w does the MIC and/or whether the
2173 		 * separate key cache entries are required to
2174 		 * handle both tx+rx MIC keys.
2175 		 */
2176 		if (ATH_HAL_CIPHERSUPPORTED(ah, HAL_CIPHER_MIC)) {
2177 			ATH_DEBUG((ATH_DBG_ATTACH, "Support H/W TKIP MIC\n"));
2178 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
2179 		}
2180 		if (ATH_HAL_TKIPSPLIT(ah))
2181 			asc->asc_splitmic = 1;
2182 	}
2183 	ic->ic_caps |= IEEE80211_C_WPA;	/* Support WPA/WPA2 */
2184 
2185 	asc->asc_hasclrkey = ATH_HAL_CIPHERSUPPORTED(ah, HAL_CIPHER_CLR);
2186 	ic->ic_phytype = IEEE80211_T_OFDM;
2187 	ic->ic_opmode = IEEE80211_M_STA;
2188 	ic->ic_state = IEEE80211_S_INIT;
2189 	ic->ic_maxrssi = ATH_MAX_RSSI;
2190 	ic->ic_set_shortslot = ath_set_shortslot;
2191 	ic->ic_xmit = ath_xmit;
2192 	ieee80211_attach(ic);
2193 
2194 	/* different instance has different WPA door */
2195 	(void) snprintf(ic->ic_wpadoor, MAX_IEEE80211STR, "%s_%s%d", WPA_DOOR,
2196 	    ddi_driver_name(devinfo),
2197 	    ddi_get_instance(devinfo));
2198 
2199 	/* Override 80211 default routines */
2200 	ic->ic_reset = ath_reset;
2201 	asc->asc_newstate = ic->ic_newstate;
2202 	ic->ic_newstate = ath_newstate;
2203 	ic->ic_watchdog = ath_watchdog;
2204 	ic->ic_node_alloc = ath_node_alloc;
2205 	ic->ic_node_free = ath_node_free;
2206 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
2207 	ic->ic_crypto.cs_key_delete = ath_key_delete;
2208 	ic->ic_crypto.cs_key_set = ath_key_set;
2209 	ieee80211_media_init(ic);
2210 	/*
2211 	 * initialize default tx key
2212 	 */
2213 	ic->ic_def_txkey = 0;
2214 
2215 	asc->asc_rx_pend = 0;
2216 	ATH_HAL_INTRSET(ah, 0);
2217 	err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW,
2218 	    &asc->asc_softint_id, NULL, 0, ath_softint_handler, (caddr_t)asc);
2219 	if (err != DDI_SUCCESS) {
2220 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2221 		    "ddi_add_softintr() failed\n"));
2222 		goto attach_fail5;
2223 	}
2224 
2225 	if (ddi_get_iblock_cookie(devinfo, 0, &asc->asc_iblock)
2226 	    != DDI_SUCCESS) {
2227 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2228 		    "Can not get iblock cookie for INT\n"));
2229 		goto attach_fail6;
2230 	}
2231 
2232 	if (ddi_add_intr(devinfo, 0, NULL, NULL, ath_intr,
2233 	    (caddr_t)asc) != DDI_SUCCESS) {
2234 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2235 		    "Can not set intr for ATH driver\n"));
2236 		goto attach_fail6;
2237 	}
2238 
2239 	/*
2240 	 * Provide initial settings for the WiFi plugin; whenever this
2241 	 * information changes, we need to call mac_plugindata_update()
2242 	 */
2243 	wd.wd_opmode = ic->ic_opmode;
2244 	wd.wd_secalloc = WIFI_SEC_NONE;
2245 	IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_bss->in_bssid);
2246 
2247 	if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
2248 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2249 		    "MAC version mismatch\n"));
2250 		goto attach_fail7;
2251 	}
2252 
2253 	macp->m_type_ident	= MAC_PLUGIN_IDENT_WIFI;
2254 	macp->m_driver		= asc;
2255 	macp->m_dip		= devinfo;
2256 	macp->m_src_addr	= ic->ic_macaddr;
2257 	macp->m_callbacks	= &ath_m_callbacks;
2258 	macp->m_min_sdu		= 0;
2259 	macp->m_max_sdu		= IEEE80211_MTU;
2260 	macp->m_pdata		= &wd;
2261 	macp->m_pdata_size	= sizeof (wd);
2262 
2263 	err = mac_register(macp, &ic->ic_mach);
2264 	mac_free(macp);
2265 	if (err != 0) {
2266 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2267 		    "mac_register err %x\n", err));
2268 		goto attach_fail7;
2269 	}
2270 
2271 	/* Create minor node of type DDI_NT_NET_WIFI */
2272 	(void) snprintf(strbuf, sizeof (strbuf), "%s%d",
2273 	    ATH_NODENAME, instance);
2274 	err = ddi_create_minor_node(devinfo, strbuf, S_IFCHR,
2275 	    instance + 1, DDI_NT_NET_WIFI, 0);
2276 	if (err != DDI_SUCCESS)
2277 		ATH_DEBUG((ATH_DBG_ATTACH, "WARN: ath: ath_attach(): "
2278 		    "Create minor node failed - %d\n", err));
2279 
2280 	mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
2281 	asc->asc_invalid = 1;
2282 	asc->asc_isrunning = 0;
2283 	asc->asc_promisc = B_FALSE;
2284 	bzero(asc->asc_mcast_refs, sizeof (asc->asc_mcast_refs));
2285 	bzero(asc->asc_mcast_hash, sizeof (asc->asc_mcast_hash));
2286 	return (DDI_SUCCESS);
2287 attach_fail7:
2288 	ddi_remove_intr(devinfo, 0, asc->asc_iblock);
2289 attach_fail6:
2290 	ddi_remove_softintr(asc->asc_softint_id);
2291 attach_fail5:
2292 	(void) ieee80211_detach(ic);
2293 attach_fail4:
2294 	ath_desc_free(asc);
2295 attach_fail3:
2296 	ah->ah_detach(asc->asc_ah);
2297 attach_fail2:
2298 	ddi_regs_map_free(&asc->asc_io_handle);
2299 attach_fail1:
2300 	pci_config_teardown(&asc->asc_cfg_handle);
2301 attach_fail0:
2302 	asc->asc_invalid = 1;
2303 	mutex_destroy(&asc->asc_txbuflock);
2304 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2305 		if (ATH_TXQ_SETUP(asc, i)) {
2306 			struct ath_txq *txq = &asc->asc_txq[i];
2307 			mutex_destroy(&txq->axq_lock);
2308 		}
2309 	}
2310 	mutex_destroy(&asc->asc_rxbuflock);
2311 	mutex_destroy(&asc->asc_genlock);
2312 	mutex_destroy(&asc->asc_resched_lock);
2313 	ddi_soft_state_free(ath_soft_state_p, instance);
2314 
2315 	return (DDI_FAILURE);
2316 }
2317 
2318 /*
2319  * Suspend transmit/receive for powerdown
2320  */
2321 static int
2322 ath_suspend(ath_t *asc)
2323 {
2324 	ATH_LOCK(asc);
2325 	ath_stop_locked(asc);
2326 	ATH_UNLOCK(asc);
2327 	ATH_DEBUG((ATH_DBG_SUSPEND, "ath: suspended.\n"));
2328 
2329 	return (DDI_SUCCESS);
2330 }
2331 
2332 static int32_t
2333 ath_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
2334 {
2335 	ath_t *asc;
2336 
2337 	asc = ddi_get_soft_state(ath_soft_state_p, ddi_get_instance(devinfo));
2338 	ASSERT(asc != NULL);
2339 
2340 	switch (cmd) {
2341 	case DDI_DETACH:
2342 		break;
2343 
2344 	case DDI_SUSPEND:
2345 		return (ath_suspend(asc));
2346 
2347 	default:
2348 		return (DDI_FAILURE);
2349 	}
2350 
2351 	if (mac_disable(asc->asc_isc.ic_mach) != 0)
2352 		return (DDI_FAILURE);
2353 
2354 	ath_stop_scantimer(asc);
2355 
2356 	/* disable interrupts */
2357 	ATH_HAL_INTRSET(asc->asc_ah, 0);
2358 
2359 	/*
2360 	 * Unregister from the MAC layer subsystem
2361 	 */
2362 	(void) mac_unregister(asc->asc_isc.ic_mach);
2363 
2364 	/* free intterrupt resources */
2365 	ddi_remove_intr(devinfo, 0, asc->asc_iblock);
2366 	ddi_remove_softintr(asc->asc_softint_id);
2367 
2368 	/*
2369 	 * NB: the order of these is important:
2370 	 * o call the 802.11 layer before detaching the hal to
2371 	 *   insure callbacks into the driver to delete global
2372 	 *   key cache entries can be handled
2373 	 * o reclaim the tx queue data structures after calling
2374 	 *   the 802.11 layer as we'll get called back to reclaim
2375 	 *   node state and potentially want to use them
2376 	 * o to cleanup the tx queues the hal is called, so detach
2377 	 *   it last
2378 	 */
2379 	ieee80211_detach(&asc->asc_isc);
2380 	ath_desc_free(asc);
2381 	ath_txq_cleanup(asc);
2382 	asc->asc_ah->ah_detach(asc->asc_ah);
2383 
2384 	/* free io handle */
2385 	ddi_regs_map_free(&asc->asc_io_handle);
2386 	pci_config_teardown(&asc->asc_cfg_handle);
2387 
2388 	/* destroy locks */
2389 	mutex_destroy(&asc->asc_rxbuflock);
2390 	mutex_destroy(&asc->asc_genlock);
2391 	mutex_destroy(&asc->asc_resched_lock);
2392 
2393 	ddi_remove_minor_node(devinfo, NULL);
2394 	ddi_soft_state_free(ath_soft_state_p, ddi_get_instance(devinfo));
2395 
2396 	return (DDI_SUCCESS);
2397 }
2398 
2399 DDI_DEFINE_STREAM_OPS(ath_dev_ops, nulldev, nulldev, ath_attach, ath_detach,
2400     nodev, NULL, D_MP, NULL, ddi_quiesce_not_supported);
2401 
2402 static struct modldrv ath_modldrv = {
2403 	&mod_driverops,		/* Type of module.  This one is a driver */
2404 	"ath driver",		/* short description */
2405 	&ath_dev_ops		/* driver specific ops */
2406 };
2407 
2408 static struct modlinkage modlinkage = {
2409 	MODREV_1, (void *)&ath_modldrv, NULL
2410 };
2411 
2412 
2413 int
2414 _info(struct modinfo *modinfop)
2415 {
2416 	return (mod_info(&modlinkage, modinfop));
2417 }
2418 
2419 int
2420 _init(void)
2421 {
2422 	int status;
2423 
2424 	status = ddi_soft_state_init(&ath_soft_state_p, sizeof (ath_t), 1);
2425 	if (status != 0)
2426 		return (status);
2427 
2428 	mutex_init(&ath_loglock, NULL, MUTEX_DRIVER, NULL);
2429 	ath_halfix_init();
2430 	mac_init_ops(&ath_dev_ops, "ath");
2431 	status = mod_install(&modlinkage);
2432 	if (status != 0) {
2433 		mac_fini_ops(&ath_dev_ops);
2434 		ath_halfix_finit();
2435 		mutex_destroy(&ath_loglock);
2436 		ddi_soft_state_fini(&ath_soft_state_p);
2437 	}
2438 
2439 	return (status);
2440 }
2441 
2442 int
2443 _fini(void)
2444 {
2445 	int status;
2446 
2447 	status = mod_remove(&modlinkage);
2448 	if (status == 0) {
2449 		mac_fini_ops(&ath_dev_ops);
2450 		ath_halfix_finit();
2451 		mutex_destroy(&ath_loglock);
2452 		ddi_soft_state_fini(&ath_soft_state_p);
2453 	}
2454 	return (status);
2455 }
2456