xref: /titanic_41/usr/src/uts/common/io/ath/ath_main.c (revision ae5b046d8f8cec187d40041c4b74b43f561d5ac7)
1 /*
2  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Copyright (c) 2002-2004 Sam Leffler, Errno Consulting
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer,
15  * without modification.
16  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17  * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18  * redistribution must be conditioned upon including a substantially
19  * similar Disclaimer requirement for further binary redistribution.
20  * 3. Neither the names of the above-listed copyright holders nor the names
21  * of any contributors may be used to endorse or promote products derived
22  * from this software without specific prior written permission.
23  *
24  * NO WARRANTY
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
28  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
29  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
30  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
33  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
35  * THE POSSIBILITY OF SUCH DAMAGES.
36  *
37  */
38 
39 #pragma ident	"%Z%%M%	%I%	%E% SMI"
40 
41 /*
42  * Driver for the Atheros Wireless LAN controller.
43  *
44  * The Atheros driver calls into net80211 module for IEEE80211 protocol
45  * management functionalities. The driver includes a LLD(Low Level Driver)
46  * part to implement H/W related operations.
47  * The following is the high level structure of ath driver.
48  * (The arrows between modules indicate function call direction.)
49  *
50  *
51  *                                                  |
52  *                                                  | GLD thread
53  *                                                  V
54  *         ==================  =========================================
55  *         |                |  |[1]                                    |
56  *         |                |  |  GLDv3 Callback functions registered  |
57  *         |   Net80211     |  =========================       by      |
58  *         |    module      |          |               |     driver    |
59  *         |                |          V               |               |
60  *         |                |========================  |               |
61  *         |   Functions exported by net80211       |  |               |
62  *         |                                        |  |               |
63  *         ==========================================  =================
64  *                         |                                  |
65  *                         V                                  |
66  *         +----------------------------------+               |
67  *         |[2]                               |               |
68  *         |    Net80211 Callback functions   |               |
69  *         |      registered by LLD           |               |
70  *         +----------------------------------+               |
71  *                         |                                  |
72  *                         V                                  v
73  *         +-----------------------------------------------------------+
74  *         |[3]                                                        |
75  *         |                LLD Internal functions                     |
76  *         |                                                           |
77  *         +-----------------------------------------------------------+
78  *                                    ^
79  *                                    | Software interrupt thread
80  *                                    |
81  *
82  * The short description of each module is as below:
83  *      Module 1: GLD callback functions, which are intercepting the calls from
84  *                GLD to LLD.
85  *      Module 2: Net80211 callback functions registered by LLD, which
86  *                calls into LLD for H/W related functions needed by net80211.
87  *      Module 3: LLD Internal functions, which are responsible for allocing
88  *                descriptor/buffer, handling interrupt and other H/W
89  *                operations.
90  *
91  * All functions are running in 3 types of thread:
92  * 1. GLD callbacks threads, such as ioctl, intr, etc.
93  * 2. Clock interruptt thread which is responsible for scan, rate control and
94  *    calibration.
95  * 3. Software Interrupt thread originated in LLD.
96  *
97  * The lock strategy is as below:
98  * There have 4 queues for tx, each queue has one asc_txqlock[i] to
99  *      prevent conflicts access to queue resource from different thread.
100  *
101  * All the transmit buffers are contained in asc_txbuf which are
102  *      protected by asc_txbuflock.
103  *
104  * Each receive buffers are contained in asc_rxbuf which are protected
105  *      by asc_rxbuflock.
106  *
107  * In ath struct, asc_genlock is a general lock, protecting most other
108  *      operational data in ath_softc struct and HAL accesses.
109  *      It is acquired by the interupt handler and most "mode-ctrl" routines.
110  *
111  * Any of the locks can be acquired singly, but where multiple
112  * locks are acquired, they *must* be in the order:
113  *    asc_genlock >> asc_txqlock[i] >> asc_txbuflock >> asc_rxbuflock
114  */
115 
116 #include <sys/param.h>
117 #include <sys/types.h>
118 #include <sys/signal.h>
119 #include <sys/stream.h>
120 #include <sys/termio.h>
121 #include <sys/errno.h>
122 #include <sys/file.h>
123 #include <sys/cmn_err.h>
124 #include <sys/stropts.h>
125 #include <sys/strsubr.h>
126 #include <sys/strtty.h>
127 #include <sys/kbio.h>
128 #include <sys/cred.h>
129 #include <sys/stat.h>
130 #include <sys/consdev.h>
131 #include <sys/kmem.h>
132 #include <sys/modctl.h>
133 #include <sys/ddi.h>
134 #include <sys/sunddi.h>
135 #include <sys/pci.h>
136 #include <sys/errno.h>
137 #include <sys/mac.h>
138 #include <sys/dlpi.h>
139 #include <sys/ethernet.h>
140 #include <sys/list.h>
141 #include <sys/byteorder.h>
142 #include <sys/strsun.h>
143 #include <sys/policy.h>
144 #include <inet/common.h>
145 #include <inet/nd.h>
146 #include <inet/mi.h>
147 #include <inet/wifi_ioctl.h>
148 #include <sys/mac_wifi.h>
149 #include "ath_hal.h"
150 #include "ath_impl.h"
151 #include "ath_aux.h"
152 #include "ath_rate.h"
153 
154 #define	ATH_MAX_RSSI	63	/* max rssi */
155 
156 extern void ath_halfix_init(void);
157 extern void ath_halfix_finit(void);
158 extern int32_t ath_getset(ath_t *asc, mblk_t *mp, uint32_t cmd);
159 
160 /*
161  * PIO access attributes for registers
162  */
163 static ddi_device_acc_attr_t ath_reg_accattr = {
164 	DDI_DEVICE_ATTR_V0,
165 	DDI_STRUCTURE_LE_ACC,
166 	DDI_STRICTORDER_ACC
167 };
168 
169 /*
170  * DMA access attributes for descriptors: NOT to be byte swapped.
171  */
172 static ddi_device_acc_attr_t ath_desc_accattr = {
173 	DDI_DEVICE_ATTR_V0,
174 	DDI_STRUCTURE_LE_ACC,
175 	DDI_STRICTORDER_ACC
176 };
177 
178 /*
179  * Describes the chip's DMA engine
180  */
181 static ddi_dma_attr_t ath_dma_attr = {
182 	DMA_ATTR_V0,		/* version number */
183 	0,			/* low address */
184 	0xffffffffU,		/* high address */
185 	0x3ffffU,		/* counter register max */
186 	1,			/* alignment */
187 	0xFFF,			/* burst sizes */
188 	1,			/* minimum transfer size */
189 	0x3ffffU,		/* max transfer size */
190 	0xffffffffU,		/* address register max */
191 	1,			/* no scatter-gather */
192 	1,			/* granularity of device */
193 	0,			/* DMA flags */
194 };
195 
196 static ddi_dma_attr_t ath_desc_dma_attr = {
197 	DMA_ATTR_V0,		/* version number */
198 	0,			/* low address */
199 	0xffffffffU,		/* high address */
200 	0xffffffffU,		/* counter register max */
201 	0x1000,			/* alignment */
202 	0xFFF,			/* burst sizes */
203 	1,			/* minimum transfer size */
204 	0xffffffffU,		/* max transfer size */
205 	0xffffffffU,		/* address register max */
206 	1,			/* no scatter-gather */
207 	1,			/* granularity of device */
208 	0,			/* DMA flags */
209 };
210 
211 static kmutex_t ath_loglock;
212 static void *ath_soft_state_p = NULL;
213 static int ath_dwelltime = 150;		/* scan interval, ms */
214 
215 static int	ath_m_stat(void *,  uint_t, uint64_t *);
216 static int	ath_m_start(void *);
217 static void	ath_m_stop(void *);
218 static int	ath_m_promisc(void *, boolean_t);
219 static int	ath_m_multicst(void *, boolean_t, const uint8_t *);
220 static int	ath_m_unicst(void *, const uint8_t *);
221 static mblk_t	*ath_m_tx(void *, mblk_t *);
222 static void	ath_m_ioctl(void *, queue_t *, mblk_t *);
223 static mac_callbacks_t ath_m_callbacks = {
224 	MC_IOCTL,
225 	ath_m_stat,
226 	ath_m_start,
227 	ath_m_stop,
228 	ath_m_promisc,
229 	ath_m_multicst,
230 	ath_m_unicst,
231 	ath_m_tx,
232 	NULL,		/* mc_resources; */
233 	ath_m_ioctl,
234 	NULL		/* mc_getcapab */
235 };
236 
237 /*
238  * Available debug flags:
239  * ATH_DBG_INIT, ATH_DBG_GLD, ATH_DBG_HAL, ATH_DBG_INT, ATH_DBG_ATTACH,
240  * ATH_DBG_DETACH, ATH_DBG_AUX, ATH_DBG_WIFICFG, ATH_DBG_OSDEP
241  */
242 uint32_t ath_dbg_flags = 0;
243 
244 /*
245  * Exception/warning cases not leading to panic.
246  */
247 void
248 ath_problem(const int8_t *fmt, ...)
249 {
250 	va_list args;
251 
252 	mutex_enter(&ath_loglock);
253 
254 	va_start(args, fmt);
255 	vcmn_err(CE_WARN, fmt, args);
256 	va_end(args);
257 
258 	mutex_exit(&ath_loglock);
259 }
260 
261 /*
262  * Normal log information independent of debug.
263  */
264 void
265 ath_log(const int8_t *fmt, ...)
266 {
267 	va_list args;
268 
269 	mutex_enter(&ath_loglock);
270 
271 	va_start(args, fmt);
272 	vcmn_err(CE_CONT, fmt, args);
273 	va_end(args);
274 
275 	mutex_exit(&ath_loglock);
276 }
277 
278 void
279 ath_dbg(uint32_t dbg_flags, const int8_t *fmt, ...)
280 {
281 	va_list args;
282 
283 	if (dbg_flags & ath_dbg_flags) {
284 		mutex_enter(&ath_loglock);
285 		va_start(args, fmt);
286 		vcmn_err(CE_CONT, fmt, args);
287 		va_end(args);
288 		mutex_exit(&ath_loglock);
289 	}
290 }
291 
292 void
293 ath_setup_desc(ath_t *asc, struct ath_buf *bf)
294 {
295 	struct ath_desc *ds;
296 
297 	ds = bf->bf_desc;
298 	ds->ds_link = bf->bf_daddr;
299 	ds->ds_data = bf->bf_dma.cookie.dmac_address;
300 	ds->ds_vdata = bf->bf_dma.mem_va;
301 	ATH_HAL_SETUPRXDESC(asc->asc_ah, ds,
302 	    bf->bf_dma.alength,		/* buffer size */
303 	    0);
304 
305 	if (asc->asc_rxlink != NULL)
306 		*asc->asc_rxlink = bf->bf_daddr;
307 	asc->asc_rxlink = &ds->ds_link;
308 }
309 
310 
311 /*
312  * Allocate an area of memory and a DMA handle for accessing it
313  */
314 static int
315 ath_alloc_dma_mem(dev_info_t *devinfo, ddi_dma_attr_t *dma_attr, size_t memsize,
316     ddi_device_acc_attr_t *attr_p, uint_t alloc_flags,
317     uint_t bind_flags, dma_area_t *dma_p)
318 {
319 	int err;
320 
321 	/*
322 	 * Allocate handle
323 	 */
324 	err = ddi_dma_alloc_handle(devinfo, dma_attr,
325 	    DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl);
326 	if (err != DDI_SUCCESS)
327 		return (DDI_FAILURE);
328 
329 	/*
330 	 * Allocate memory
331 	 */
332 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p,
333 	    alloc_flags, DDI_DMA_SLEEP, NULL, &dma_p->mem_va,
334 	    &dma_p->alength, &dma_p->acc_hdl);
335 	if (err != DDI_SUCCESS)
336 		return (DDI_FAILURE);
337 
338 	/*
339 	 * Bind the two together
340 	 */
341 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
342 	    dma_p->mem_va, dma_p->alength, bind_flags,
343 	    DDI_DMA_SLEEP, NULL, &dma_p->cookie, &dma_p->ncookies);
344 	if (err != DDI_DMA_MAPPED)
345 		return (DDI_FAILURE);
346 
347 	dma_p->nslots = ~0U;
348 	dma_p->size = ~0U;
349 	dma_p->token = ~0U;
350 	dma_p->offset = 0;
351 	return (DDI_SUCCESS);
352 }
353 
354 /*
355  * Free one allocated area of DMAable memory
356  */
357 static void
358 ath_free_dma_mem(dma_area_t *dma_p)
359 {
360 	if (dma_p->dma_hdl != NULL) {
361 		(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
362 		if (dma_p->acc_hdl != NULL) {
363 			ddi_dma_mem_free(&dma_p->acc_hdl);
364 			dma_p->acc_hdl = NULL;
365 		}
366 		ddi_dma_free_handle(&dma_p->dma_hdl);
367 		dma_p->ncookies = 0;
368 		dma_p->dma_hdl = NULL;
369 	}
370 }
371 
372 
373 static int
374 ath_desc_alloc(dev_info_t *devinfo, ath_t *asc)
375 {
376 	int i, err;
377 	size_t size;
378 	struct ath_desc *ds;
379 	struct ath_buf *bf;
380 
381 	size = sizeof (struct ath_desc) * (ATH_TXBUF + ATH_RXBUF);
382 
383 	err = ath_alloc_dma_mem(devinfo, &ath_desc_dma_attr, size,
384 	    &ath_desc_accattr, DDI_DMA_CONSISTENT,
385 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &asc->asc_desc_dma);
386 
387 	/* virtual address of the first descriptor */
388 	asc->asc_desc = (struct ath_desc *)asc->asc_desc_dma.mem_va;
389 
390 	ds = asc->asc_desc;
391 	ATH_DEBUG((ATH_DBG_INIT, "ath: ath_desc_alloc(): DMA map: "
392 	    "%p (%d) -> %p\n",
393 	    asc->asc_desc, asc->asc_desc_dma.alength,
394 	    asc->asc_desc_dma.cookie.dmac_address));
395 
396 	/* allocate data structures to describe TX/RX DMA buffers */
397 	asc->asc_vbuflen = sizeof (struct ath_buf) * (ATH_TXBUF + ATH_RXBUF);
398 	bf = (struct ath_buf *)kmem_zalloc(asc->asc_vbuflen, KM_SLEEP);
399 	asc->asc_vbufptr = bf;
400 
401 	/* DMA buffer size for each TX/RX packet */
402 	asc->asc_dmabuf_size = roundup(1000 + sizeof (struct ieee80211_frame) +
403 	    IEEE80211_MTU + IEEE80211_CRC_LEN +
404 	    (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
405 	    IEEE80211_WEP_CRCLEN), asc->asc_cachelsz);
406 
407 	/* create RX buffer list and allocate DMA memory */
408 	list_create(&asc->asc_rxbuf_list, sizeof (struct ath_buf),
409 	    offsetof(struct ath_buf, bf_node));
410 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
411 		bf->bf_desc = ds;
412 		bf->bf_daddr = asc->asc_desc_dma.cookie.dmac_address +
413 		    ((caddr_t)ds - (caddr_t)asc->asc_desc);
414 		list_insert_tail(&asc->asc_rxbuf_list, bf);
415 
416 		/* alloc DMA memory */
417 		err = ath_alloc_dma_mem(devinfo, &ath_dma_attr,
418 		    asc->asc_dmabuf_size, &ath_desc_accattr,
419 		    DDI_DMA_STREAMING, DDI_DMA_READ | DDI_DMA_STREAMING,
420 		    &bf->bf_dma);
421 		if (err != DDI_SUCCESS)
422 			return (err);
423 	}
424 
425 	/* create TX buffer list and allocate DMA memory */
426 	list_create(&asc->asc_txbuf_list, sizeof (struct ath_buf),
427 	    offsetof(struct ath_buf, bf_node));
428 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++) {
429 		bf->bf_desc = ds;
430 		bf->bf_daddr = asc->asc_desc_dma.cookie.dmac_address +
431 		    ((caddr_t)ds - (caddr_t)asc->asc_desc);
432 		list_insert_tail(&asc->asc_txbuf_list, bf);
433 
434 		/* alloc DMA memory */
435 		err = ath_alloc_dma_mem(devinfo, &ath_dma_attr,
436 		    asc->asc_dmabuf_size, &ath_desc_accattr,
437 		    DDI_DMA_STREAMING, DDI_DMA_STREAMING, &bf->bf_dma);
438 		if (err != DDI_SUCCESS)
439 			return (err);
440 	}
441 
442 	return (DDI_SUCCESS);
443 }
444 
445 static void
446 ath_desc_free(ath_t *asc)
447 {
448 	struct ath_buf *bf;
449 
450 	/* Free TX DMA buffer */
451 	bf = list_head(&asc->asc_txbuf_list);
452 	while (bf != NULL) {
453 		ath_free_dma_mem(&bf->bf_dma);
454 		list_remove(&asc->asc_txbuf_list, bf);
455 		bf = list_head(&asc->asc_txbuf_list);
456 	}
457 	list_destroy(&asc->asc_txbuf_list);
458 
459 	/* Free RX DMA uffer */
460 	bf = list_head(&asc->asc_rxbuf_list);
461 	while (bf != NULL) {
462 		ath_free_dma_mem(&bf->bf_dma);
463 		list_remove(&asc->asc_rxbuf_list, bf);
464 		bf = list_head(&asc->asc_rxbuf_list);
465 	}
466 	list_destroy(&asc->asc_rxbuf_list);
467 
468 	/* Free descriptor DMA buffer */
469 	ath_free_dma_mem(&asc->asc_desc_dma);
470 
471 	kmem_free((void *)asc->asc_vbufptr, asc->asc_vbuflen);
472 	asc->asc_vbufptr = NULL;
473 }
474 
475 static void
476 ath_printrxbuf(struct ath_buf *bf, int32_t done)
477 {
478 	struct ath_desc *ds = bf->bf_desc;
479 
480 	ATH_DEBUG((ATH_DBG_RECV, "ath: R (%p %p) %08x %08x %08x "
481 	    "%08x %08x %08x %c\n",
482 	    ds, bf->bf_daddr,
483 	    ds->ds_link, ds->ds_data,
484 	    ds->ds_ctl0, ds->ds_ctl1,
485 	    ds->ds_hw[0], ds->ds_hw[1],
486 	    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!'));
487 }
488 
489 static void
490 ath_rx_handler(ath_t *asc)
491 {
492 	ieee80211com_t *ic = (ieee80211com_t *)asc;
493 	struct ath_buf *bf;
494 	struct ath_hal *ah = asc->asc_ah;
495 	struct ath_desc *ds;
496 	mblk_t *rx_mp;
497 	struct ieee80211_frame *wh;
498 	int32_t len, loop = 1;
499 	uint8_t phyerr;
500 	HAL_STATUS status;
501 	HAL_NODE_STATS hal_node_stats;
502 	struct ieee80211_node *in;
503 
504 	do {
505 		mutex_enter(&asc->asc_rxbuflock);
506 		bf = list_head(&asc->asc_rxbuf_list);
507 		if (bf == NULL) {
508 			ATH_DEBUG((ATH_DBG_RECV, "ath: ath_rx_handler(): "
509 			    "no buffer\n"));
510 			mutex_exit(&asc->asc_rxbuflock);
511 			break;
512 		}
513 		ASSERT(bf->bf_dma.cookie.dmac_address != NULL);
514 		ds = bf->bf_desc;
515 		if (ds->ds_link == bf->bf_daddr) {
516 			/*
517 			 * Never process the self-linked entry at the end,
518 			 * this may be met at heavy load.
519 			 */
520 			mutex_exit(&asc->asc_rxbuflock);
521 			break;
522 		}
523 
524 		status = ATH_HAL_RXPROCDESC(ah, ds,
525 		    bf->bf_daddr,
526 		    ATH_PA2DESC(asc, ds->ds_link));
527 		if (status == HAL_EINPROGRESS) {
528 			mutex_exit(&asc->asc_rxbuflock);
529 			break;
530 		}
531 		list_remove(&asc->asc_rxbuf_list, bf);
532 		mutex_exit(&asc->asc_rxbuflock);
533 
534 		if (ds->ds_rxstat.rs_status != 0) {
535 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
536 				asc->asc_stats.ast_rx_crcerr++;
537 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
538 				asc->asc_stats.ast_rx_fifoerr++;
539 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
540 				asc->asc_stats.ast_rx_badcrypt++;
541 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
542 				asc->asc_stats.ast_rx_phyerr++;
543 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
544 				asc->asc_stats.ast_rx_phy[phyerr]++;
545 			}
546 			goto rx_next;
547 		}
548 		len = ds->ds_rxstat.rs_datalen;
549 
550 		/* less than sizeof(struct ieee80211_frame) */
551 		if (len < 20) {
552 			asc->asc_stats.ast_rx_tooshort++;
553 			goto rx_next;
554 		}
555 
556 		if ((rx_mp = allocb(asc->asc_dmabuf_size, BPRI_MED)) == NULL) {
557 			ath_problem("ath: ath_rx_handler(): "
558 			    "allocing mblk buffer failed.\n");
559 			return;
560 		}
561 
562 		ATH_DMA_SYNC(bf->bf_dma, DDI_DMA_SYNC_FORCPU);
563 		bcopy(bf->bf_dma.mem_va, rx_mp->b_rptr, len);
564 
565 		rx_mp->b_wptr += len;
566 		wh = (struct ieee80211_frame *)rx_mp->b_rptr;
567 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
568 		    IEEE80211_FC0_TYPE_CTL) {
569 			/*
570 			 * Ignore control frame received in promisc mode.
571 			 */
572 			freemsg(rx_mp);
573 			goto rx_next;
574 		}
575 		/* Remove the CRC at the end of IEEE80211 frame */
576 		rx_mp->b_wptr -= IEEE80211_CRC_LEN;
577 #ifdef DEBUG
578 		ath_printrxbuf(bf, status == HAL_OK);
579 #endif /* DEBUG */
580 		/*
581 		 * Locate the node for sender, track state, and then
582 		 * pass the (referenced) node up to the 802.11 layer
583 		 * for its use.
584 		 */
585 		in = ieee80211_find_rxnode(ic, wh);
586 
587 		/*
588 		 * Send frame up for processing.
589 		 */
590 		(void) ieee80211_input(ic, rx_mp, in,
591 		    ds->ds_rxstat.rs_rssi,
592 		    ds->ds_rxstat.rs_tstamp);
593 
594 		ieee80211_free_node(in);
595 
596 rx_next:
597 		mutex_enter(&asc->asc_rxbuflock);
598 		list_insert_tail(&asc->asc_rxbuf_list, bf);
599 		mutex_exit(&asc->asc_rxbuflock);
600 		ath_setup_desc(asc, bf);
601 	} while (loop);
602 
603 	/* rx signal state monitoring */
604 	ATH_HAL_RXMONITOR(ah, &hal_node_stats, &asc->asc_curchan);
605 }
606 
607 static void
608 ath_printtxbuf(struct ath_buf *bf, int done)
609 {
610 	struct ath_desc *ds = bf->bf_desc;
611 
612 	ATH_DEBUG((ATH_DBG_SEND, "ath: T(%p %p) %08x %08x %08x %08x %08x"
613 	    " %08x %08x %08x %c\n",
614 	    ds, bf->bf_daddr,
615 	    ds->ds_link, ds->ds_data,
616 	    ds->ds_ctl0, ds->ds_ctl1,
617 	    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
618 	    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!'));
619 }
620 
621 /*
622  * The input parameter mp has following assumption:
623  * For data packets, GLDv3 mac_wifi plugin allocates and fills the
624  * ieee80211 header. For management packets, net80211 allocates and
625  * fills the ieee80211 header. In both cases, enough spaces in the
626  * header are left for encryption option.
627  */
628 static int32_t
629 ath_tx_start(ath_t *asc, struct ieee80211_node *in, struct ath_buf *bf,
630     mblk_t *mp)
631 {
632 	ieee80211com_t *ic = (ieee80211com_t *)asc;
633 	struct ieee80211_frame *wh;
634 	struct ath_hal *ah = asc->asc_ah;
635 	uint32_t subtype, flags, ctsduration;
636 	int32_t keyix, iswep, hdrlen, pktlen, mblen, mbslen, try0;
637 	uint8_t rix, cix, txrate, ctsrate;
638 	struct ath_desc *ds;
639 	struct ath_txq *txq;
640 	HAL_PKT_TYPE atype;
641 	const HAL_RATE_TABLE *rt;
642 	HAL_BOOL shortPreamble;
643 	struct ath_node *an;
644 	caddr_t dest;
645 
646 	/*
647 	 * CRC are added by H/W, not encaped by driver,
648 	 * but we must count it in pkt length.
649 	 */
650 	pktlen = IEEE80211_CRC_LEN;
651 
652 	wh = (struct ieee80211_frame *)mp->b_rptr;
653 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
654 	keyix = HAL_TXKEYIX_INVALID;
655 	hdrlen = sizeof (struct ieee80211_frame);
656 	if (iswep != 0) {
657 		const struct ieee80211_cipher *cip;
658 		struct ieee80211_key *k;
659 
660 		/*
661 		 * Construct the 802.11 header+trailer for an encrypted
662 		 * frame. The only reason this can fail is because of an
663 		 * unknown or unsupported cipher/key type.
664 		 */
665 		k = ieee80211_crypto_encap(ic, mp);
666 		if (k == NULL) {
667 			ATH_DEBUG((ATH_DBG_AUX, "crypto_encap failed\n"));
668 			/*
669 			 * This can happen when the key is yanked after the
670 			 * frame was queued.  Just discard the frame; the
671 			 * 802.11 layer counts failures and provides
672 			 * debugging/diagnostics.
673 			 */
674 			return (EIO);
675 		}
676 		cip = k->wk_cipher;
677 		/*
678 		 * Adjust the packet + header lengths for the crypto
679 		 * additions and calculate the h/w key index.  When
680 		 * a s/w mic is done the frame will have had any mic
681 		 * added to it prior to entry so m0->m_pkthdr.len above will
682 		 * account for it. Otherwise we need to add it to the
683 		 * packet length.
684 		 */
685 		hdrlen += cip->ic_header;
686 		pktlen += cip->ic_trailer;
687 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
688 			pktlen += cip->ic_miclen;
689 		keyix = k->wk_keyix;
690 
691 		/* packet header may have moved, reset our local pointer */
692 		wh = (struct ieee80211_frame *)mp->b_rptr;
693 	}
694 
695 	dest = bf->bf_dma.mem_va;
696 	for (; mp != NULL; mp = mp->b_cont) {
697 		mblen = MBLKL(mp);
698 		bcopy(mp->b_rptr, dest, mblen);
699 		dest += mblen;
700 	}
701 	mbslen = dest - bf->bf_dma.mem_va;
702 	pktlen += mbslen;
703 
704 	bf->bf_in = in;
705 
706 	/* setup descriptors */
707 	ds = bf->bf_desc;
708 	rt = asc->asc_currates;
709 	ASSERT(rt != NULL);
710 
711 	/*
712 	 * The 802.11 layer marks whether or not we should
713 	 * use short preamble based on the current mode and
714 	 * negotiated parameters.
715 	 */
716 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
717 	    (in->in_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
718 		shortPreamble = AH_TRUE;
719 		asc->asc_stats.ast_tx_shortpre++;
720 	} else {
721 		shortPreamble = AH_FALSE;
722 	}
723 
724 	an = ATH_NODE(in);
725 
726 	/*
727 	 * Calculate Atheros packet type from IEEE80211 packet header
728 	 * and setup for rate calculations.
729 	 */
730 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
731 	case IEEE80211_FC0_TYPE_MGT:
732 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
733 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
734 			atype = HAL_PKT_TYPE_BEACON;
735 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
736 			atype = HAL_PKT_TYPE_PROBE_RESP;
737 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
738 			atype = HAL_PKT_TYPE_ATIM;
739 		else
740 			atype = HAL_PKT_TYPE_NORMAL;
741 		rix = 0;	/* lowest rate */
742 		try0 = ATH_TXMAXTRY;
743 		if (shortPreamble)
744 			txrate = an->an_tx_mgtratesp;
745 		else
746 			txrate = an->an_tx_mgtrate;
747 		/* force all ctl frames to highest queue */
748 		txq = asc->asc_ac2q[WME_AC_VO];
749 		break;
750 	case IEEE80211_FC0_TYPE_CTL:
751 		atype = HAL_PKT_TYPE_PSPOLL;
752 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
753 		rix = 0;	/* lowest rate */
754 		try0 = ATH_TXMAXTRY;
755 		if (shortPreamble)
756 			txrate = an->an_tx_mgtratesp;
757 		else
758 			txrate = an->an_tx_mgtrate;
759 		/* force all ctl frames to highest queue */
760 		txq = asc->asc_ac2q[WME_AC_VO];
761 		break;
762 	case IEEE80211_FC0_TYPE_DATA:
763 		atype = HAL_PKT_TYPE_NORMAL;
764 		rix = an->an_tx_rix0;
765 		try0 = an->an_tx_try0;
766 		if (shortPreamble)
767 			txrate = an->an_tx_rate0sp;
768 		else
769 			txrate = an->an_tx_rate0;
770 		/* Always use background queue */
771 		txq = asc->asc_ac2q[WME_AC_BK];
772 		break;
773 	default:
774 		/* Unknown 802.11 frame */
775 		asc->asc_stats.ast_tx_invalid++;
776 		return (1);
777 	}
778 	/*
779 	 * Calculate miscellaneous flags.
780 	 */
781 	flags = HAL_TXDESC_CLRDMASK;
782 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
783 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
784 		asc->asc_stats.ast_tx_noack++;
785 	} else if (pktlen > ic->ic_rtsthreshold) {
786 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
787 		asc->asc_stats.ast_tx_rts++;
788 	}
789 
790 	/*
791 	 * Calculate duration.  This logically belongs in the 802.11
792 	 * layer but it lacks sufficient information to calculate it.
793 	 */
794 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
795 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
796 	    IEEE80211_FC0_TYPE_CTL) {
797 		uint16_t dur;
798 		dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE,
799 		    rix, shortPreamble);
800 		*(uint16_t *)wh->i_dur = LE_16(dur);
801 	}
802 
803 	/*
804 	 * Calculate RTS/CTS rate and duration if needed.
805 	 */
806 	ctsduration = 0;
807 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
808 		/*
809 		 * CTS transmit rate is derived from the transmit rate
810 		 * by looking in the h/w rate table.  We must also factor
811 		 * in whether or not a short preamble is to be used.
812 		 */
813 		cix = rt->info[rix].controlRate;
814 		ctsrate = rt->info[cix].rateCode;
815 		if (shortPreamble)
816 			ctsrate |= rt->info[cix].shortPreamble;
817 		/*
818 		 * Compute the transmit duration based on the size
819 		 * of an ACK frame.  We call into the HAL to do the
820 		 * computation since it depends on the characteristics
821 		 * of the actual PHY being used.
822 		 */
823 		if (flags & HAL_TXDESC_RTSENA) {	/* SIFS + CTS */
824 			ctsduration += ath_hal_computetxtime(ah,
825 			    rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
826 		}
827 		/* SIFS + data */
828 		ctsduration += ath_hal_computetxtime(ah,
829 		    rt, pktlen, rix, shortPreamble);
830 		if ((flags & HAL_TXDESC_NOACK) == 0) {	/* SIFS + ACK */
831 			ctsduration += ath_hal_computetxtime(ah,
832 			    rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
833 		}
834 	} else
835 		ctsrate = 0;
836 
837 	if (++txq->axq_intrcnt >= ATH_TXINTR_PERIOD) {
838 		flags |= HAL_TXDESC_INTREQ;
839 		txq->axq_intrcnt = 0;
840 	}
841 
842 	/*
843 	 * Formulate first tx descriptor with tx controls.
844 	 */
845 	ATH_HAL_SETUPTXDESC(ah, ds,
846 	    pktlen,			/* packet length */
847 	    hdrlen,			/* header length */
848 	    atype,			/* Atheros packet type */
849 	    MIN(in->in_txpower, 60),	/* txpower */
850 	    txrate, try0,		/* series 0 rate/tries */
851 	    keyix,			/* key cache index */
852 	    an->an_tx_antenna,		/* antenna mode */
853 	    flags,			/* flags */
854 	    ctsrate,			/* rts/cts rate */
855 	    ctsduration);		/* rts/cts duration */
856 	bf->bf_flags = flags;
857 
858 	ATH_DEBUG((ATH_DBG_SEND, "ath: ath_xmit(): to %s totlen=%d "
859 	    "an->an_tx_rate1sp=%d tx_rate2sp=%d tx_rate3sp=%d "
860 	    "qnum=%d rix=%d sht=%d dur = %d\n",
861 	    ieee80211_macaddr_sprintf(wh->i_addr1), mbslen, an->an_tx_rate1sp,
862 	    an->an_tx_rate2sp, an->an_tx_rate3sp,
863 	    txq->axq_qnum, rix, shortPreamble, *(uint16_t *)wh->i_dur));
864 
865 	/*
866 	 * Setup the multi-rate retry state only when we're
867 	 * going to use it.  This assumes ath_hal_setuptxdesc
868 	 * initializes the descriptors (so we don't have to)
869 	 * when the hardware supports multi-rate retry and
870 	 * we don't use it.
871 	 */
872 	if (try0 != ATH_TXMAXTRY)
873 		ATH_HAL_SETUPXTXDESC(ah, ds,
874 		    an->an_tx_rate1sp, 2,	/* series 1 */
875 		    an->an_tx_rate2sp, 2,	/* series 2 */
876 		    an->an_tx_rate3sp, 2);	/* series 3 */
877 
878 	ds->ds_link = 0;
879 	ds->ds_data = bf->bf_dma.cookie.dmac_address;
880 	ATH_HAL_FILLTXDESC(ah, ds,
881 	    mbslen,		/* segment length */
882 	    AH_TRUE,		/* first segment */
883 	    AH_TRUE,		/* last segment */
884 	    ds);		/* first descriptor */
885 
886 	ATH_DMA_SYNC(bf->bf_dma, DDI_DMA_SYNC_FORDEV);
887 
888 	mutex_enter(&txq->axq_lock);
889 	list_insert_tail(&txq->axq_list, bf);
890 	if (txq->axq_link == NULL) {
891 		ATH_HAL_PUTTXBUF(ah, txq->axq_qnum, bf->bf_daddr);
892 	} else {
893 		*txq->axq_link = bf->bf_daddr;
894 	}
895 	txq->axq_link = &ds->ds_link;
896 	mutex_exit(&txq->axq_lock);
897 
898 	ATH_HAL_TXSTART(ah, txq->axq_qnum);
899 
900 	ic->ic_stats.is_tx_frags++;
901 	ic->ic_stats.is_tx_bytes += pktlen;
902 
903 	return (0);
904 }
905 
906 /*
907  * Transmit a management frame.  On failure we reclaim the skbuff.
908  * Note that management frames come directly from the 802.11 layer
909  * and do not honor the send queue flow control.  Need to investigate
910  * using priority queueing so management frames can bypass data.
911  */
912 static int
913 ath_xmit(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
914 {
915 	ath_t *asc = (ath_t *)ic;
916 	struct ath_hal *ah = asc->asc_ah;
917 	struct ieee80211_node *in = NULL;
918 	struct ath_buf *bf = NULL;
919 	struct ieee80211_frame *wh;
920 	int error = 0;
921 
922 	ASSERT(mp->b_next == NULL);
923 
924 	if (!ATH_IS_RUNNING(asc)) {
925 		if ((type & IEEE80211_FC0_TYPE_MASK) !=
926 		    IEEE80211_FC0_TYPE_DATA) {
927 			freemsg(mp);
928 		}
929 		return (ENXIO);
930 	}
931 
932 	/* Grab a TX buffer */
933 	mutex_enter(&asc->asc_txbuflock);
934 	bf = list_head(&asc->asc_txbuf_list);
935 	if (bf != NULL)
936 		list_remove(&asc->asc_txbuf_list, bf);
937 	if (list_empty(&asc->asc_txbuf_list)) {
938 		ATH_DEBUG((ATH_DBG_SEND, "ath: ath_mgmt_send(): "
939 		    "stop queue\n"));
940 		asc->asc_stats.ast_tx_qstop++;
941 	}
942 	mutex_exit(&asc->asc_txbuflock);
943 	if (bf == NULL) {
944 		ATH_DEBUG((ATH_DBG_SEND, "ath: ath_mgmt_send(): discard, "
945 		    "no xmit buf\n"));
946 		ic->ic_stats.is_tx_nobuf++;
947 		if ((type & IEEE80211_FC0_TYPE_MASK) ==
948 		    IEEE80211_FC0_TYPE_DATA) {
949 			asc->asc_stats.ast_tx_nobuf++;
950 			mutex_enter(&asc->asc_resched_lock);
951 			asc->asc_resched_needed = B_TRUE;
952 			mutex_exit(&asc->asc_resched_lock);
953 		} else {
954 			asc->asc_stats.ast_tx_nobufmgt++;
955 			freemsg(mp);
956 		}
957 		return (ENOMEM);
958 	}
959 
960 	wh = (struct ieee80211_frame *)mp->b_rptr;
961 
962 	/* Locate node */
963 	in = ieee80211_find_txnode(ic,  wh->i_addr1);
964 	if (in == NULL) {
965 		error = EIO;
966 		goto bad;
967 	}
968 
969 	in->in_inact = 0;
970 	switch (type & IEEE80211_FC0_TYPE_MASK) {
971 	case IEEE80211_FC0_TYPE_DATA:
972 		(void) ieee80211_encap(ic, mp, in);
973 		break;
974 	default:
975 		if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
976 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
977 			/* fill time stamp */
978 			uint64_t tsf;
979 			uint32_t *tstamp;
980 
981 			tsf = ATH_HAL_GETTSF64(ah);
982 			/* adjust 100us delay to xmit */
983 			tsf += 100;
984 			tstamp = (uint32_t *)&wh[1];
985 			tstamp[0] = LE_32(tsf & 0xffffffff);
986 			tstamp[1] = LE_32(tsf >> 32);
987 		}
988 		asc->asc_stats.ast_tx_mgmt++;
989 		break;
990 	}
991 
992 	error = ath_tx_start(asc, in, bf, mp);
993 	if (error != 0) {
994 bad:
995 		ic->ic_stats.is_tx_failed++;
996 		if (bf != NULL) {
997 			mutex_enter(&asc->asc_txbuflock);
998 			list_insert_tail(&asc->asc_txbuf_list, bf);
999 			mutex_exit(&asc->asc_txbuflock);
1000 		}
1001 	}
1002 	if (in != NULL)
1003 		ieee80211_free_node(in);
1004 	if ((type & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA ||
1005 	    error == 0) {
1006 		freemsg(mp);
1007 	}
1008 
1009 	return (error);
1010 }
1011 
1012 static mblk_t *
1013 ath_m_tx(void *arg, mblk_t *mp)
1014 {
1015 	ath_t *asc = arg;
1016 	ieee80211com_t *ic = (ieee80211com_t *)asc;
1017 	mblk_t *next;
1018 	int error = 0;
1019 
1020 	/*
1021 	 * No data frames go out unless we're associated; this
1022 	 * should not happen as the 802.11 layer does not enable
1023 	 * the xmit queue until we enter the RUN state.
1024 	 */
1025 	if (ic->ic_state != IEEE80211_S_RUN) {
1026 		ATH_DEBUG((ATH_DBG_SEND, "ath: ath_m_tx(): "
1027 		    "discard, state %u\n", ic->ic_state));
1028 		asc->asc_stats.ast_tx_discard++;
1029 		freemsgchain(mp);
1030 		return (NULL);
1031 	}
1032 
1033 	while (mp != NULL) {
1034 		next = mp->b_next;
1035 		mp->b_next = NULL;
1036 		error = ath_xmit(ic, mp, IEEE80211_FC0_TYPE_DATA);
1037 		if (error != 0) {
1038 			mp->b_next = next;
1039 			if (error == ENOMEM) {
1040 				break;
1041 			} else {
1042 				freemsgchain(mp);	/* CR6501759 issues */
1043 				return (NULL);
1044 			}
1045 		}
1046 		mp = next;
1047 	}
1048 
1049 	return (mp);
1050 
1051 }
1052 
1053 static int
1054 ath_tx_processq(ath_t *asc, struct ath_txq *txq)
1055 {
1056 	ieee80211com_t *ic = (ieee80211com_t *)asc;
1057 	struct ath_hal *ah = asc->asc_ah;
1058 	struct ath_buf *bf;
1059 	struct ath_desc *ds;
1060 	struct ieee80211_node *in;
1061 	int32_t sr, lr, nacked = 0;
1062 	HAL_STATUS status;
1063 	struct ath_node *an;
1064 
1065 	for (;;) {
1066 		mutex_enter(&txq->axq_lock);
1067 		bf = list_head(&txq->axq_list);
1068 		if (bf == NULL) {
1069 			txq->axq_link = NULL;
1070 			mutex_exit(&txq->axq_lock);
1071 			break;
1072 		}
1073 		ds = bf->bf_desc;	/* last decriptor */
1074 		status = ATH_HAL_TXPROCDESC(ah, ds);
1075 #ifdef DEBUG
1076 		ath_printtxbuf(bf, status == HAL_OK);
1077 #endif
1078 		if (status == HAL_EINPROGRESS) {
1079 			mutex_exit(&txq->axq_lock);
1080 			break;
1081 		}
1082 		list_remove(&txq->axq_list, bf);
1083 		mutex_exit(&txq->axq_lock);
1084 		in = bf->bf_in;
1085 		if (in != NULL) {
1086 			an = ATH_NODE(in);
1087 			/* Successful transmition */
1088 			if (ds->ds_txstat.ts_status == 0) {
1089 				an->an_tx_ok++;
1090 				an->an_tx_antenna =
1091 				    ds->ds_txstat.ts_antenna;
1092 				if (ds->ds_txstat.ts_rate &
1093 				    HAL_TXSTAT_ALTRATE)
1094 					asc->asc_stats.ast_tx_altrate++;
1095 				asc->asc_stats.ast_tx_rssidelta =
1096 				    ds->ds_txstat.ts_rssi -
1097 				    asc->asc_stats.ast_tx_rssi;
1098 				asc->asc_stats.ast_tx_rssi =
1099 				    ds->ds_txstat.ts_rssi;
1100 			} else {
1101 				an->an_tx_err++;
1102 				if (ds->ds_txstat.ts_status &
1103 				    HAL_TXERR_XRETRY)
1104 					asc->asc_stats.
1105 					    ast_tx_xretries++;
1106 				if (ds->ds_txstat.ts_status &
1107 				    HAL_TXERR_FIFO)
1108 					asc->asc_stats.ast_tx_fifoerr++;
1109 				if (ds->ds_txstat.ts_status &
1110 				    HAL_TXERR_FILT)
1111 					asc->asc_stats.
1112 					    ast_tx_filtered++;
1113 				an->an_tx_antenna = 0;	/* invalidate */
1114 			}
1115 			sr = ds->ds_txstat.ts_shortretry;
1116 			lr = ds->ds_txstat.ts_longretry;
1117 			asc->asc_stats.ast_tx_shortretry += sr;
1118 			asc->asc_stats.ast_tx_longretry += lr;
1119 			/*
1120 			 * Hand the descriptor to the rate control algorithm.
1121 			 */
1122 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
1123 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
1124 				/*
1125 				 * If frame was ack'd update the last rx time
1126 				 * used to workaround phantom bmiss interrupts.
1127 				 */
1128 				if (ds->ds_txstat.ts_status == 0) {
1129 					nacked++;
1130 					an->an_tx_ok++;
1131 				} else {
1132 					an->an_tx_err++;
1133 				}
1134 				an->an_tx_retr += sr + lr;
1135 			}
1136 		}
1137 		bf->bf_in = NULL;
1138 		mutex_enter(&asc->asc_txbuflock);
1139 		list_insert_tail(&asc->asc_txbuf_list, bf);
1140 		mutex_exit(&asc->asc_txbuflock);
1141 		/*
1142 		 * Reschedule stalled outbound packets
1143 		 */
1144 		mutex_enter(&asc->asc_resched_lock);
1145 		if (asc->asc_resched_needed) {
1146 			asc->asc_resched_needed = B_FALSE;
1147 			mac_tx_update(ic->ic_mach);
1148 		}
1149 		mutex_exit(&asc->asc_resched_lock);
1150 	}
1151 	return (nacked);
1152 }
1153 
1154 
1155 static void
1156 ath_tx_handler(ath_t *asc)
1157 {
1158 	int i;
1159 
1160 	/*
1161 	 * Process each active queue.
1162 	 */
1163 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
1164 		if (ATH_TXQ_SETUP(asc, i)) {
1165 			(void) ath_tx_processq(asc, &asc->asc_txq[i]);
1166 		}
1167 	}
1168 }
1169 
1170 static struct ieee80211_node *
1171 ath_node_alloc(ieee80211com_t *ic)
1172 {
1173 	struct ath_node *an;
1174 	ath_t *asc = (ath_t *)ic;
1175 
1176 	an = kmem_zalloc(sizeof (struct ath_node), KM_SLEEP);
1177 	ath_rate_update(asc, &an->an_node, 0);
1178 	return (&an->an_node);
1179 }
1180 
1181 static void
1182 ath_node_free(struct ieee80211_node *in)
1183 {
1184 	ieee80211com_t *ic = in->in_ic;
1185 	ath_t *asc = (ath_t *)ic;
1186 	struct ath_buf *bf;
1187 	struct ath_txq *txq;
1188 	int32_t i;
1189 
1190 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
1191 		if (ATH_TXQ_SETUP(asc, i)) {
1192 			txq = &asc->asc_txq[i];
1193 			mutex_enter(&txq->axq_lock);
1194 			bf = list_head(&txq->axq_list);
1195 			while (bf != NULL) {
1196 				if (bf->bf_in == in) {
1197 					bf->bf_in = NULL;
1198 				}
1199 				bf = list_next(&txq->axq_list, bf);
1200 			}
1201 			mutex_exit(&txq->axq_lock);
1202 		}
1203 	}
1204 	ic->ic_node_cleanup(in);
1205 	if (in->in_wpa_ie != NULL)
1206 		ieee80211_free(in->in_wpa_ie);
1207 	kmem_free(in, sizeof (struct ath_node));
1208 }
1209 
1210 static void
1211 ath_next_scan(void *arg)
1212 {
1213 	ieee80211com_t *ic = arg;
1214 	ath_t *asc = (ath_t *)ic;
1215 
1216 	asc->asc_scan_timer = 0;
1217 	if (ic->ic_state == IEEE80211_S_SCAN) {
1218 		asc->asc_scan_timer = timeout(ath_next_scan, (void *)asc,
1219 		    drv_usectohz(ath_dwelltime * 1000));
1220 		ieee80211_next_scan(ic);
1221 	}
1222 }
1223 
1224 static void
1225 ath_stop_scantimer(ath_t *asc)
1226 {
1227 	timeout_id_t tmp_id = 0;
1228 
1229 	while ((asc->asc_scan_timer != 0) && (tmp_id != asc->asc_scan_timer)) {
1230 		tmp_id = asc->asc_scan_timer;
1231 		(void) untimeout(tmp_id);
1232 	}
1233 	asc->asc_scan_timer = 0;
1234 }
1235 
1236 static int32_t
1237 ath_newstate(ieee80211com_t *ic, enum ieee80211_state nstate, int arg)
1238 {
1239 	ath_t *asc = (ath_t *)ic;
1240 	struct ath_hal *ah = asc->asc_ah;
1241 	struct ieee80211_node *in;
1242 	int32_t i, error;
1243 	uint8_t *bssid;
1244 	uint32_t rfilt;
1245 	enum ieee80211_state ostate;
1246 
1247 	static const HAL_LED_STATE leds[] = {
1248 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
1249 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
1250 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
1251 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
1252 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
1253 	};
1254 	if (!ATH_IS_RUNNING(asc))
1255 		return (0);
1256 
1257 	ostate = ic->ic_state;
1258 	if (nstate != IEEE80211_S_SCAN)
1259 		ath_stop_scantimer(asc);
1260 
1261 	ATH_LOCK(asc);
1262 	ATH_HAL_SETLEDSTATE(ah, leds[nstate]);	/* set LED */
1263 
1264 	if (nstate == IEEE80211_S_INIT) {
1265 		asc->asc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
1266 		ATH_HAL_INTRSET(ah, asc->asc_imask &~ HAL_INT_GLOBAL);
1267 		ATH_UNLOCK(asc);
1268 		goto done;
1269 	}
1270 	in = ic->ic_bss;
1271 	error = ath_chan_set(asc, ic->ic_curchan);
1272 	if (error != 0) {
1273 		if (nstate != IEEE80211_S_SCAN) {
1274 			ATH_UNLOCK(asc);
1275 			ieee80211_reset_chan(ic);
1276 			goto bad;
1277 		}
1278 	}
1279 
1280 	rfilt = ath_calcrxfilter(asc);
1281 	if (nstate == IEEE80211_S_SCAN)
1282 		bssid = ic->ic_macaddr;
1283 	else
1284 		bssid = in->in_bssid;
1285 	ATH_HAL_SETRXFILTER(ah, rfilt);
1286 
1287 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode != IEEE80211_M_IBSS)
1288 		ATH_HAL_SETASSOCID(ah, bssid, in->in_associd);
1289 	else
1290 		ATH_HAL_SETASSOCID(ah, bssid, 0);
1291 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
1292 		for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1293 			if (ATH_HAL_KEYISVALID(ah, i))
1294 				ATH_HAL_KEYSETMAC(ah, i, bssid);
1295 		}
1296 	}
1297 
1298 	if ((nstate == IEEE80211_S_RUN) &&
1299 	    (ostate != IEEE80211_S_RUN)) {
1300 		/* Configure the beacon and sleep timers. */
1301 		ath_beacon_config(asc);
1302 	} else {
1303 		asc->asc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
1304 		ATH_HAL_INTRSET(ah, asc->asc_imask);
1305 	}
1306 	/*
1307 	 * Reset the rate control state.
1308 	 */
1309 	ath_rate_ctl_reset(asc, nstate);
1310 
1311 	if (nstate == IEEE80211_S_RUN && (ostate != IEEE80211_S_RUN)) {
1312 		nvlist_t *attr_list = NULL;
1313 		sysevent_id_t eid;
1314 		int32_t err = 0;
1315 		char *str_name = "ATH";
1316 		char str_value[256] = {0};
1317 
1318 		ATH_DEBUG((ATH_DBG_80211, "ath: ath new state(RUN): "
1319 		    "ic_flags=0x%08x iv=%d"
1320 		    " bssid=%s capinfo=0x%04x chan=%d\n",
1321 		    ic->ic_flags,
1322 		    in->in_intval,
1323 		    ieee80211_macaddr_sprintf(in->in_bssid),
1324 		    in->in_capinfo,
1325 		    ieee80211_chan2ieee(ic, in->in_chan)));
1326 
1327 		(void) sprintf(str_value, "%s%s%d", "-i ",
1328 		    ddi_driver_name(asc->asc_dev),
1329 		    ddi_get_instance(asc->asc_dev));
1330 		if (nvlist_alloc(&attr_list,
1331 		    NV_UNIQUE_NAME_TYPE, KM_SLEEP) == 0) {
1332 			err = nvlist_add_string(attr_list,
1333 			    str_name, str_value);
1334 			if (err != DDI_SUCCESS)
1335 				ATH_DEBUG((ATH_DBG_80211, "ath: "
1336 				    "ath_new_state: error log event\n"));
1337 			err = ddi_log_sysevent(asc->asc_dev,
1338 			    DDI_VENDOR_SUNW, "class",
1339 			    "subclass", attr_list,
1340 			    &eid, DDI_NOSLEEP);
1341 			if (err != DDI_SUCCESS)
1342 				ATH_DEBUG((ATH_DBG_80211, "ath: "
1343 				    "ath_new_state(): error log event\n"));
1344 			nvlist_free(attr_list);
1345 		}
1346 	}
1347 
1348 	ATH_UNLOCK(asc);
1349 done:
1350 	/*
1351 	 * Invoke the parent method to complete the work.
1352 	 */
1353 	error = asc->asc_newstate(ic, nstate, arg);
1354 	/*
1355 	 * Finally, start any timers.
1356 	 */
1357 	if (nstate == IEEE80211_S_RUN) {
1358 		ieee80211_start_watchdog(ic, 1);
1359 	} else if ((nstate == IEEE80211_S_SCAN) && (ostate != nstate)) {
1360 		/* start ap/neighbor scan timer */
1361 		ASSERT(asc->asc_scan_timer == 0);
1362 		asc->asc_scan_timer = timeout(ath_next_scan, (void *)asc,
1363 		    drv_usectohz(ath_dwelltime * 1000));
1364 	}
1365 bad:
1366 	return (error);
1367 }
1368 
1369 /*
1370  * Periodically recalibrate the PHY to account
1371  * for temperature/environment changes.
1372  */
1373 static void
1374 ath_calibrate(ath_t *asc)
1375 {
1376 	struct ath_hal *ah = asc->asc_ah;
1377 	HAL_BOOL iqcaldone;
1378 
1379 	asc->asc_stats.ast_per_cal++;
1380 
1381 	if (ATH_HAL_GETRFGAIN(ah) == HAL_RFGAIN_NEED_CHANGE) {
1382 		/*
1383 		 * Rfgain is out of bounds, reset the chip
1384 		 * to load new gain values.
1385 		 */
1386 		ATH_DEBUG((ATH_DBG_HAL, "ath: ath_calibrate(): "
1387 		    "Need change RFgain\n"));
1388 		asc->asc_stats.ast_per_rfgain++;
1389 		(void) ath_reset(&asc->asc_isc);
1390 	}
1391 	if (!ATH_HAL_CALIBRATE(ah, &asc->asc_curchan, &iqcaldone)) {
1392 		ATH_DEBUG((ATH_DBG_HAL, "ath: ath_calibrate(): "
1393 		    "calibration of channel %u failed\n",
1394 		    asc->asc_curchan.channel));
1395 		asc->asc_stats.ast_per_calfail++;
1396 	}
1397 }
1398 
1399 static void
1400 ath_watchdog(void *arg)
1401 {
1402 	ath_t *asc = arg;
1403 	ieee80211com_t *ic = &asc->asc_isc;
1404 	int ntimer = 0;
1405 
1406 	ATH_LOCK(asc);
1407 	ic->ic_watchdog_timer = 0;
1408 	if (!ATH_IS_RUNNING(asc)) {
1409 		ATH_UNLOCK(asc);
1410 		return;
1411 	}
1412 
1413 	if (ic->ic_state == IEEE80211_S_RUN) {
1414 		/* periodic recalibration */
1415 		ath_calibrate(asc);
1416 
1417 		/*
1418 		 * Start the background rate control thread if we
1419 		 * are not configured to use a fixed xmit rate.
1420 		 */
1421 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1422 			asc->asc_stats.ast_rate_calls ++;
1423 			if (ic->ic_opmode == IEEE80211_M_STA)
1424 				ath_rate_ctl(ic, ic->ic_bss);
1425 			else
1426 				ieee80211_iterate_nodes(&ic->ic_sta,
1427 				    ath_rate_cb, asc);
1428 		}
1429 
1430 		ntimer = 1;
1431 	}
1432 	ATH_UNLOCK(asc);
1433 
1434 	ieee80211_watchdog(ic);
1435 	if (ntimer != 0)
1436 		ieee80211_start_watchdog(ic, ntimer);
1437 }
1438 
1439 static uint_t
1440 ath_intr(caddr_t arg)
1441 {
1442 	ath_t *asc = (ath_t *)arg;
1443 	struct ath_hal *ah = asc->asc_ah;
1444 	HAL_INT status;
1445 	ieee80211com_t *ic = (ieee80211com_t *)asc;
1446 
1447 	ATH_LOCK(asc);
1448 
1449 	if (!ATH_IS_RUNNING(asc)) {
1450 		/*
1451 		 * The hardware is not ready/present, don't touch anything.
1452 		 * Note this can happen early on if the IRQ is shared.
1453 		 */
1454 		ATH_UNLOCK(asc);
1455 		return (DDI_INTR_UNCLAIMED);
1456 	}
1457 
1458 	if (!ATH_HAL_INTRPEND(ah)) {	/* shared irq, not for us */
1459 		ATH_UNLOCK(asc);
1460 		return (DDI_INTR_UNCLAIMED);
1461 	}
1462 
1463 	ATH_HAL_GETISR(ah, &status);
1464 	status &= asc->asc_imask;
1465 	if (status & HAL_INT_FATAL) {
1466 		asc->asc_stats.ast_hardware++;
1467 		goto reset;
1468 	} else if (status & HAL_INT_RXORN) {
1469 		asc->asc_stats.ast_rxorn++;
1470 		goto reset;
1471 	} else {
1472 		if (status & HAL_INT_RXEOL) {
1473 			asc->asc_stats.ast_rxeol++;
1474 			asc->asc_rxlink = NULL;
1475 		}
1476 		if (status & HAL_INT_TXURN) {
1477 			asc->asc_stats.ast_txurn++;
1478 			ATH_HAL_UPDATETXTRIGLEVEL(ah, AH_TRUE);
1479 		}
1480 
1481 		if (status & HAL_INT_RX) {
1482 			asc->asc_rx_pend = 1;
1483 			ddi_trigger_softintr(asc->asc_softint_id);
1484 		}
1485 		if (status & HAL_INT_TX) {
1486 			ath_tx_handler(asc);
1487 		}
1488 		ATH_UNLOCK(asc);
1489 
1490 		if (status & HAL_INT_SWBA) {
1491 			/* This will occur only in Host-AP or Ad-Hoc mode */
1492 			return (DDI_INTR_CLAIMED);
1493 		}
1494 		if (status & HAL_INT_BMISS) {
1495 			if (ic->ic_state == IEEE80211_S_RUN) {
1496 				(void) ieee80211_new_state(ic,
1497 				    IEEE80211_S_ASSOC, -1);
1498 			}
1499 		}
1500 	}
1501 
1502 	return (DDI_INTR_CLAIMED);
1503 reset:
1504 	(void) ath_reset(ic);
1505 	ATH_UNLOCK(asc);
1506 	return (DDI_INTR_CLAIMED);
1507 }
1508 
1509 static uint_t
1510 ath_softint_handler(caddr_t data)
1511 {
1512 	ath_t *asc = (ath_t *)data;
1513 
1514 	/*
1515 	 * Check if the soft interrupt is triggered by another
1516 	 * driver at the same level.
1517 	 */
1518 	ATH_LOCK(asc);
1519 	if (asc->asc_rx_pend) { /* Soft interrupt for this driver */
1520 		asc->asc_rx_pend = 0;
1521 		ATH_UNLOCK(asc);
1522 		ath_rx_handler(asc);
1523 		return (DDI_INTR_CLAIMED);
1524 	}
1525 	ATH_UNLOCK(asc);
1526 	return (DDI_INTR_UNCLAIMED);
1527 }
1528 
1529 /*
1530  * following are gld callback routine
1531  * ath_gld_send, ath_gld_ioctl, ath_gld_gstat
1532  * are listed in other corresponding sections.
1533  * reset the hardware w/o losing operational state.  this is
1534  * basically a more efficient way of doing ath_gld_stop, ath_gld_start,
1535  * followed by state transitions to the current 802.11
1536  * operational state.  used to recover from errors rx overrun
1537  * and to reset the hardware when rf gain settings must be reset.
1538  */
1539 
1540 static void
1541 ath_stop_locked(ath_t *asc)
1542 {
1543 	ieee80211com_t *ic = (ieee80211com_t *)asc;
1544 	struct ath_hal *ah = asc->asc_ah;
1545 
1546 	ATH_LOCK_ASSERT(asc);
1547 	if (!asc->asc_isrunning)
1548 		return;
1549 
1550 	/*
1551 	 * Shutdown the hardware and driver:
1552 	 *    reset 802.11 state machine
1553 	 *    turn off timers
1554 	 *    disable interrupts
1555 	 *    turn off the radio
1556 	 *    clear transmit machinery
1557 	 *    clear receive machinery
1558 	 *    drain and release tx queues
1559 	 *    reclaim beacon resources
1560 	 *    power down hardware
1561 	 *
1562 	 * Note that some of this work is not possible if the
1563 	 * hardware is gone (invalid).
1564 	 */
1565 	ATH_UNLOCK(asc);
1566 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1567 	ieee80211_stop_watchdog(ic);
1568 	ATH_LOCK(asc);
1569 	ATH_HAL_INTRSET(ah, 0);
1570 	ath_draintxq(asc);
1571 	if (!asc->asc_invalid) {
1572 		ath_stoprecv(asc);
1573 		ATH_HAL_PHYDISABLE(ah);
1574 	} else {
1575 		asc->asc_rxlink = NULL;
1576 	}
1577 	asc->asc_isrunning = 0;
1578 }
1579 
1580 static void
1581 ath_m_stop(void *arg)
1582 {
1583 	ath_t *asc = arg;
1584 	struct ath_hal *ah = asc->asc_ah;
1585 
1586 	ATH_LOCK(asc);
1587 	ath_stop_locked(asc);
1588 	ATH_HAL_SETPOWER(ah, HAL_PM_AWAKE);
1589 	asc->asc_invalid = 1;
1590 	ATH_UNLOCK(asc);
1591 }
1592 
1593 static int
1594 ath_start_locked(ath_t *asc)
1595 {
1596 	ieee80211com_t *ic = (ieee80211com_t *)asc;
1597 	struct ath_hal *ah = asc->asc_ah;
1598 	HAL_STATUS status;
1599 
1600 	ATH_LOCK_ASSERT(asc);
1601 
1602 	/*
1603 	 * The basic interface to setting the hardware in a good
1604 	 * state is ``reset''.  On return the hardware is known to
1605 	 * be powered up and with interrupts disabled.  This must
1606 	 * be followed by initialization of the appropriate bits
1607 	 * and then setup of the interrupt mask.
1608 	 */
1609 	asc->asc_curchan.channel = ic->ic_curchan->ich_freq;
1610 	asc->asc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1611 	if (!ATH_HAL_RESET(ah, (HAL_OPMODE)ic->ic_opmode,
1612 	    &asc->asc_curchan, AH_FALSE, &status)) {
1613 		ATH_DEBUG((ATH_DBG_HAL, "ath: ath_m_start(): "
1614 		    "reset hardware failed: '%s' (HAL status %u)\n",
1615 		    ath_get_hal_status_desc(status), status));
1616 		return (ENOTACTIVE);
1617 	}
1618 
1619 	(void) ath_startrecv(asc);
1620 
1621 	/*
1622 	 * Enable interrupts.
1623 	 */
1624 	asc->asc_imask = HAL_INT_RX | HAL_INT_TX
1625 	    | HAL_INT_RXEOL | HAL_INT_RXORN
1626 	    | HAL_INT_FATAL | HAL_INT_GLOBAL;
1627 	ATH_HAL_INTRSET(ah, asc->asc_imask);
1628 
1629 	/*
1630 	 * The hardware should be ready to go now so it's safe
1631 	 * to kick the 802.11 state machine as it's likely to
1632 	 * immediately call back to us to send mgmt frames.
1633 	 */
1634 	ath_chan_change(asc, ic->ic_curchan);
1635 
1636 	asc->asc_isrunning = 1;
1637 
1638 	return (0);
1639 }
1640 
1641 int
1642 ath_m_start(void *arg)
1643 {
1644 	ath_t *asc = arg;
1645 	int err;
1646 
1647 	ATH_LOCK(asc);
1648 	/*
1649 	 * Stop anything previously setup.  This is safe
1650 	 * whether this is the first time through or not.
1651 	 */
1652 	ath_stop_locked(asc);
1653 
1654 	if ((err = ath_start_locked(asc)) != 0) {
1655 		ATH_UNLOCK(asc);
1656 		return (err);
1657 	}
1658 
1659 	asc->asc_invalid = 0;
1660 	ATH_UNLOCK(asc);
1661 
1662 	return (0);
1663 }
1664 
1665 
1666 static int
1667 ath_m_unicst(void *arg, const uint8_t *macaddr)
1668 {
1669 	ath_t *asc = arg;
1670 	struct ath_hal *ah = asc->asc_ah;
1671 
1672 	ATH_DEBUG((ATH_DBG_GLD, "ath: ath_gld_saddr(): "
1673 	    "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x\n",
1674 	    macaddr[0], macaddr[1], macaddr[2],
1675 	    macaddr[3], macaddr[4], macaddr[5]));
1676 
1677 	ATH_LOCK(asc);
1678 	IEEE80211_ADDR_COPY(asc->asc_isc.ic_macaddr, macaddr);
1679 	ATH_HAL_SETMAC(ah, asc->asc_isc.ic_macaddr);
1680 
1681 	(void) ath_reset(&asc->asc_isc);
1682 	ATH_UNLOCK(asc);
1683 	return (0);
1684 }
1685 
1686 static int
1687 ath_m_promisc(void *arg, boolean_t on)
1688 {
1689 	ath_t *asc = arg;
1690 	struct ath_hal *ah = asc->asc_ah;
1691 	uint32_t rfilt;
1692 
1693 	ATH_LOCK(asc);
1694 	rfilt = ATH_HAL_GETRXFILTER(ah);
1695 	if (on)
1696 		rfilt |= HAL_RX_FILTER_PROM;
1697 	else
1698 		rfilt &= ~HAL_RX_FILTER_PROM;
1699 	asc->asc_promisc = on;
1700 	ATH_HAL_SETRXFILTER(ah, rfilt);
1701 	ATH_UNLOCK(asc);
1702 
1703 	return (0);
1704 }
1705 
1706 static int
1707 ath_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
1708 {
1709 	ath_t *asc = arg;
1710 	struct ath_hal *ah = asc->asc_ah;
1711 	uint32_t val, index, bit;
1712 	uint8_t pos;
1713 	uint32_t *mfilt = asc->asc_mcast_hash;
1714 
1715 	ATH_LOCK(asc);
1716 	/* calculate XOR of eight 6bit values */
1717 	val = ATH_LE_READ_4(mca + 0);
1718 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1719 	val = ATH_LE_READ_4(mca + 3);
1720 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1721 	pos &= 0x3f;
1722 	index = pos / 32;
1723 	bit = 1 << (pos % 32);
1724 
1725 	if (add) {	/* enable multicast */
1726 		asc->asc_mcast_refs[pos]++;
1727 		mfilt[index] |= bit;
1728 	} else {	/* disable multicast */
1729 		if (--asc->asc_mcast_refs[pos] == 0)
1730 			mfilt[index] &= ~bit;
1731 	}
1732 	ATH_HAL_SETMCASTFILTER(ah, mfilt[0], mfilt[1]);
1733 
1734 	ATH_UNLOCK(asc);
1735 	return (0);
1736 }
1737 
1738 static void
1739 ath_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
1740 {
1741 	ath_t *asc = arg;
1742 	int32_t err;
1743 
1744 	err = ieee80211_ioctl(&asc->asc_isc, wq, mp);
1745 	ATH_LOCK(asc);
1746 	if (err == ENETRESET) {
1747 		if (ATH_IS_RUNNING(asc)) {
1748 			ATH_UNLOCK(asc);
1749 			(void) ath_m_start(asc);
1750 			(void) ieee80211_new_state(&asc->asc_isc,
1751 			    IEEE80211_S_SCAN, -1);
1752 			ATH_LOCK(asc);
1753 		}
1754 	}
1755 	ATH_UNLOCK(asc);
1756 }
1757 
1758 static int
1759 ath_m_stat(void *arg, uint_t stat, uint64_t *val)
1760 {
1761 	ath_t *asc = arg;
1762 	ieee80211com_t *ic = (ieee80211com_t *)asc;
1763 	struct ieee80211_node *in = ic->ic_bss;
1764 	struct ieee80211_rateset *rs = &in->in_rates;
1765 
1766 	ATH_LOCK(asc);
1767 	switch (stat) {
1768 	case MAC_STAT_IFSPEED:
1769 		*val = (rs->ir_rates[in->in_txrate] & IEEE80211_RATE_VAL) / 2 *
1770 		    1000000ull;
1771 		break;
1772 	case MAC_STAT_NOXMTBUF:
1773 		*val = asc->asc_stats.ast_tx_nobuf +
1774 		    asc->asc_stats.ast_tx_nobufmgt;
1775 		break;
1776 	case MAC_STAT_IERRORS:
1777 		*val = asc->asc_stats.ast_rx_tooshort;
1778 		break;
1779 	case MAC_STAT_RBYTES:
1780 		*val = ic->ic_stats.is_rx_bytes;
1781 		break;
1782 	case MAC_STAT_IPACKETS:
1783 		*val = ic->ic_stats.is_rx_frags;
1784 		break;
1785 	case MAC_STAT_OBYTES:
1786 		*val = ic->ic_stats.is_tx_bytes;
1787 		break;
1788 	case MAC_STAT_OPACKETS:
1789 		*val = ic->ic_stats.is_tx_frags;
1790 		break;
1791 	case MAC_STAT_OERRORS:
1792 	case WIFI_STAT_TX_FAILED:
1793 		*val = asc->asc_stats.ast_tx_fifoerr +
1794 		    asc->asc_stats.ast_tx_xretries +
1795 		    asc->asc_stats.ast_tx_discard;
1796 		break;
1797 	case WIFI_STAT_TX_RETRANS:
1798 		*val = asc->asc_stats.ast_tx_xretries;
1799 		break;
1800 	case WIFI_STAT_FCS_ERRORS:
1801 		*val = asc->asc_stats.ast_rx_crcerr;
1802 		break;
1803 	case WIFI_STAT_WEP_ERRORS:
1804 		*val = asc->asc_stats.ast_rx_badcrypt;
1805 		break;
1806 	case WIFI_STAT_TX_FRAGS:
1807 	case WIFI_STAT_MCAST_TX:
1808 	case WIFI_STAT_RTS_SUCCESS:
1809 	case WIFI_STAT_RTS_FAILURE:
1810 	case WIFI_STAT_ACK_FAILURE:
1811 	case WIFI_STAT_RX_FRAGS:
1812 	case WIFI_STAT_MCAST_RX:
1813 	case WIFI_STAT_RX_DUPS:
1814 		ATH_UNLOCK(asc);
1815 		return (ieee80211_stat(ic, stat, val));
1816 	default:
1817 		ATH_UNLOCK(asc);
1818 		return (ENOTSUP);
1819 	}
1820 	ATH_UNLOCK(asc);
1821 
1822 	return (0);
1823 }
1824 
1825 static int
1826 ath_pci_setup(ath_t *asc)
1827 {
1828 	uint16_t command;
1829 
1830 	/*
1831 	 * Enable memory mapping and bus mastering
1832 	 */
1833 	ASSERT(asc != NULL);
1834 	command = pci_config_get16(asc->asc_cfg_handle, PCI_CONF_COMM);
1835 	command |= PCI_COMM_MAE | PCI_COMM_ME;
1836 	pci_config_put16(asc->asc_cfg_handle, PCI_CONF_COMM, command);
1837 	command = pci_config_get16(asc->asc_cfg_handle, PCI_CONF_COMM);
1838 	if ((command & PCI_COMM_MAE) == 0) {
1839 		ath_problem("ath: ath_pci_setup(): "
1840 		    "failed to enable memory mapping\n");
1841 		return (EIO);
1842 	}
1843 	if ((command & PCI_COMM_ME) == 0) {
1844 		ath_problem("ath: ath_pci_setup(): "
1845 		    "failed to enable bus mastering\n");
1846 		return (EIO);
1847 	}
1848 	ATH_DEBUG((ATH_DBG_INIT, "ath: ath_pci_setup(): "
1849 	    "set command reg to 0x%x \n", command));
1850 
1851 	return (0);
1852 }
1853 
1854 static int
1855 ath_resume(dev_info_t *devinfo)
1856 {
1857 	ath_t *asc;
1858 	int ret = DDI_SUCCESS;
1859 
1860 	asc = ddi_get_soft_state(ath_soft_state_p, ddi_get_instance(devinfo));
1861 	if (asc == NULL) {
1862 		ATH_DEBUG((ATH_DBG_SUSPEND, "ath: ath_resume(): "
1863 		    "failed to get soft state\n"));
1864 		return (DDI_FAILURE);
1865 	}
1866 
1867 	ATH_LOCK(asc);
1868 	/*
1869 	 * Set up config space command register(s). Refuse
1870 	 * to resume on failure.
1871 	 */
1872 	if (ath_pci_setup(asc) != 0) {
1873 		ATH_DEBUG((ATH_DBG_SUSPEND, "ath: ath_resume(): "
1874 		    "ath_pci_setup() failed\n"));
1875 		ATH_UNLOCK(asc);
1876 		return (DDI_FAILURE);
1877 	}
1878 
1879 	if (!asc->asc_invalid)
1880 		ret = ath_start_locked(asc);
1881 	ATH_UNLOCK(asc);
1882 
1883 	return (ret);
1884 }
1885 
1886 static int
1887 ath_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
1888 {
1889 	ath_t *asc;
1890 	ieee80211com_t *ic;
1891 	struct ath_hal *ah;
1892 	uint8_t csz;
1893 	HAL_STATUS status;
1894 	caddr_t regs;
1895 	uint32_t i, val;
1896 	uint16_t vendor_id, device_id;
1897 	const char *athname;
1898 	int32_t ath_countrycode = CTRY_DEFAULT;	/* country code */
1899 	int32_t err, ath_regdomain = 0; /* regulatory domain */
1900 	char strbuf[32];
1901 	int instance;
1902 	wifi_data_t wd = { 0 };
1903 	mac_register_t *macp;
1904 
1905 	switch (cmd) {
1906 	case DDI_ATTACH:
1907 		break;
1908 
1909 	case DDI_RESUME:
1910 		return (ath_resume(devinfo));
1911 
1912 	default:
1913 		return (DDI_FAILURE);
1914 	}
1915 
1916 	instance = ddi_get_instance(devinfo);
1917 	if (ddi_soft_state_zalloc(ath_soft_state_p, instance) != DDI_SUCCESS) {
1918 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
1919 		    "Unable to alloc softstate\n"));
1920 		return (DDI_FAILURE);
1921 	}
1922 
1923 	asc = ddi_get_soft_state(ath_soft_state_p, ddi_get_instance(devinfo));
1924 	ic = (ieee80211com_t *)asc;
1925 	asc->asc_dev = devinfo;
1926 
1927 	mutex_init(&asc->asc_genlock, NULL, MUTEX_DRIVER, NULL);
1928 	mutex_init(&asc->asc_txbuflock, NULL, MUTEX_DRIVER, NULL);
1929 	mutex_init(&asc->asc_rxbuflock, NULL, MUTEX_DRIVER, NULL);
1930 	mutex_init(&asc->asc_resched_lock, NULL, MUTEX_DRIVER, NULL);
1931 
1932 	err = pci_config_setup(devinfo, &asc->asc_cfg_handle);
1933 	if (err != DDI_SUCCESS) {
1934 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
1935 		    "pci_config_setup() failed"));
1936 		goto attach_fail0;
1937 	}
1938 
1939 	if (ath_pci_setup(asc) != 0)
1940 		goto attach_fail1;
1941 
1942 	/*
1943 	 * Cache line size is used to size and align various
1944 	 * structures used to communicate with the hardware.
1945 	 */
1946 	csz = pci_config_get8(asc->asc_cfg_handle, PCI_CONF_CACHE_LINESZ);
1947 	if (csz == 0) {
1948 		/*
1949 		 * We must have this setup properly for rx buffer
1950 		 * DMA to work so force a reasonable value here if it
1951 		 * comes up zero.
1952 		 */
1953 		csz = ATH_DEF_CACHE_BYTES / sizeof (uint32_t);
1954 		pci_config_put8(asc->asc_cfg_handle, PCI_CONF_CACHE_LINESZ,
1955 		    csz);
1956 	}
1957 	asc->asc_cachelsz = csz << 2;
1958 	vendor_id = pci_config_get16(asc->asc_cfg_handle, PCI_CONF_VENID);
1959 	device_id = pci_config_get16(asc->asc_cfg_handle, PCI_CONF_DEVID);
1960 	ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): vendor 0x%x, "
1961 	    "device id 0x%x, cache size %d\n", vendor_id, device_id, csz));
1962 
1963 	athname = ath_hal_probe(vendor_id, device_id);
1964 	ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): athname: %s\n",
1965 	    athname ? athname : "Atheros ???"));
1966 
1967 	pci_config_put8(asc->asc_cfg_handle, PCI_CONF_LATENCY_TIMER, 0xa8);
1968 	val = pci_config_get32(asc->asc_cfg_handle, 0x40);
1969 	if ((val & 0x0000ff00) != 0)
1970 		pci_config_put32(asc->asc_cfg_handle, 0x40, val & 0xffff00ff);
1971 
1972 	err = ddi_regs_map_setup(devinfo, 1,
1973 	    &regs, 0, 0, &ath_reg_accattr, &asc->asc_io_handle);
1974 	ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
1975 	    "regs map1 = %x err=%d\n", regs, err));
1976 	if (err != DDI_SUCCESS) {
1977 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
1978 		    "ddi_regs_map_setup() failed"));
1979 		goto attach_fail1;
1980 	}
1981 
1982 	ah = ath_hal_attach(device_id, asc, 0, regs, &status);
1983 	if (ah == NULL) {
1984 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
1985 		    "unable to attach hw: '%s' (HAL status %u)\n",
1986 		    ath_get_hal_status_desc(status), status));
1987 		goto attach_fail2;
1988 	}
1989 	ATH_HAL_INTRSET(ah, 0);
1990 	asc->asc_ah = ah;
1991 
1992 	if (ah->ah_abi != HAL_ABI_VERSION) {
1993 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
1994 		    "HAL ABI mismatch detected (0x%x != 0x%x)\n",
1995 		    ah->ah_abi, HAL_ABI_VERSION));
1996 		goto attach_fail3;
1997 	}
1998 
1999 	ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2000 	    "HAL ABI version 0x%x\n", ah->ah_abi));
2001 	ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2002 	    "HAL mac version %d.%d, phy version %d.%d\n",
2003 	    ah->ah_macVersion, ah->ah_macRev,
2004 	    ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf));
2005 	if (ah->ah_analog5GhzRev)
2006 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2007 		    "HAL 5ghz radio version %d.%d\n",
2008 		    ah->ah_analog5GhzRev >> 4,
2009 		    ah->ah_analog5GhzRev & 0xf));
2010 	if (ah->ah_analog2GhzRev)
2011 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2012 		    "HAL 2ghz radio version %d.%d\n",
2013 		    ah->ah_analog2GhzRev >> 4,
2014 		    ah->ah_analog2GhzRev & 0xf));
2015 
2016 	/*
2017 	 * Check if the MAC has multi-rate retry support.
2018 	 * We do this by trying to setup a fake extended
2019 	 * descriptor.  MAC's that don't have support will
2020 	 * return false w/o doing anything.  MAC's that do
2021 	 * support it will return true w/o doing anything.
2022 	 */
2023 	asc->asc_mrretry = ATH_HAL_SETUPXTXDESC(ah, NULL, 0, 0, 0, 0, 0, 0);
2024 	ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2025 	    "multi rate retry support=%x\n",
2026 	    asc->asc_mrretry));
2027 
2028 	/*
2029 	 * Get the hardware key cache size.
2030 	 */
2031 	asc->asc_keymax = ATH_HAL_KEYCACHESIZE(ah);
2032 	if (asc->asc_keymax > sizeof (asc->asc_keymap) * NBBY) {
2033 		ATH_DEBUG((ATH_DBG_ATTACH, "ath_attach:"
2034 		    " Warning, using only %u entries in %u key cache\n",
2035 		    sizeof (asc->asc_keymap) * NBBY, asc->asc_keymax));
2036 		asc->asc_keymax = sizeof (asc->asc_keymap) * NBBY;
2037 	}
2038 	/*
2039 	 * Reset the key cache since some parts do not
2040 	 * reset the contents on initial power up.
2041 	 */
2042 	for (i = 0; i < asc->asc_keymax; i++)
2043 		ATH_HAL_KEYRESET(ah, i);
2044 
2045 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2046 		setbit(asc->asc_keymap, i);
2047 		setbit(asc->asc_keymap, i+32);
2048 		setbit(asc->asc_keymap, i+64);
2049 		setbit(asc->asc_keymap, i+32+64);
2050 	}
2051 
2052 	ATH_HAL_GETREGDOMAIN(ah, (uint32_t *)&ath_regdomain);
2053 	ATH_HAL_GETCOUNTRYCODE(ah, &ath_countrycode);
2054 	/*
2055 	 * Collect the channel list using the default country
2056 	 * code and including outdoor channels.  The 802.11 layer
2057 	 * is resposible for filtering this list to a set of
2058 	 * channels that it considers ok to use.
2059 	 */
2060 	asc->asc_have11g = 0;
2061 
2062 	/* enable outdoor use, enable extended channels */
2063 	err = ath_getchannels(asc, ath_countrycode, AH_FALSE, AH_TRUE);
2064 	if (err != 0)
2065 		goto attach_fail3;
2066 
2067 	/*
2068 	 * Setup rate tables for all potential media types.
2069 	 */
2070 	ath_rate_setup(asc, IEEE80211_MODE_11A);
2071 	ath_rate_setup(asc, IEEE80211_MODE_11B);
2072 	ath_rate_setup(asc, IEEE80211_MODE_11G);
2073 	ath_rate_setup(asc, IEEE80211_MODE_TURBO_A);
2074 
2075 	/* Setup here so ath_rate_update is happy */
2076 	ath_setcurmode(asc, IEEE80211_MODE_11A);
2077 
2078 	err = ath_desc_alloc(devinfo, asc);
2079 	if (err != DDI_SUCCESS) {
2080 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2081 		    "failed to allocate descriptors: %d\n", err));
2082 		goto attach_fail3;
2083 	}
2084 
2085 	/* Setup transmit queues in the HAL */
2086 	if (ath_txq_setup(asc))
2087 		goto attach_fail4;
2088 
2089 	ATH_HAL_GETMAC(ah, ic->ic_macaddr);
2090 
2091 	/*
2092 	 * Initialize pointers to device specific functions which
2093 	 * will be used by the generic layer.
2094 	 */
2095 	/* 11g support is identified when we fetch the channel set */
2096 	if (asc->asc_have11g)
2097 		ic->ic_caps |= IEEE80211_C_SHPREAMBLE |
2098 		    IEEE80211_C_SHSLOT;		/* short slot time */
2099 	/*
2100 	 * Query the hal to figure out h/w crypto support.
2101 	 */
2102 	if (ATH_HAL_CIPHERSUPPORTED(ah, HAL_CIPHER_WEP))
2103 		ic->ic_caps |= IEEE80211_C_WEP;
2104 	if (ATH_HAL_CIPHERSUPPORTED(ah, HAL_CIPHER_AES_OCB))
2105 		ic->ic_caps |= IEEE80211_C_AES;
2106 	if (ATH_HAL_CIPHERSUPPORTED(ah, HAL_CIPHER_AES_CCM)) {
2107 		ATH_DEBUG((ATH_DBG_ATTACH, "Atheros support H/W CCMP\n"));
2108 		ic->ic_caps |= IEEE80211_C_AES_CCM;
2109 	}
2110 	if (ATH_HAL_CIPHERSUPPORTED(ah, HAL_CIPHER_CKIP))
2111 		ic->ic_caps |= IEEE80211_C_CKIP;
2112 	if (ATH_HAL_CIPHERSUPPORTED(ah, HAL_CIPHER_TKIP)) {
2113 		ATH_DEBUG((ATH_DBG_ATTACH, "Atheros support H/W TKIP\n"));
2114 		ic->ic_caps |= IEEE80211_C_TKIP;
2115 		/*
2116 		 * Check if h/w does the MIC and/or whether the
2117 		 * separate key cache entries are required to
2118 		 * handle both tx+rx MIC keys.
2119 		 */
2120 		if (ATH_HAL_CIPHERSUPPORTED(ah, HAL_CIPHER_MIC)) {
2121 			ATH_DEBUG((ATH_DBG_ATTACH, "Support H/W TKIP MIC\n"));
2122 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
2123 		}
2124 		if (ATH_HAL_TKIPSPLIT(ah))
2125 			asc->asc_splitmic = 1;
2126 	}
2127 	ic->ic_caps |= IEEE80211_C_WPA;	/* Support WPA/WPA2 */
2128 
2129 	asc->asc_hasclrkey = ATH_HAL_CIPHERSUPPORTED(ah, HAL_CIPHER_CLR);
2130 	ic->ic_phytype = IEEE80211_T_OFDM;
2131 	ic->ic_opmode = IEEE80211_M_STA;
2132 	ic->ic_state = IEEE80211_S_INIT;
2133 	ic->ic_maxrssi = ATH_MAX_RSSI;
2134 	ic->ic_set_shortslot = ath_set_shortslot;
2135 	ic->ic_xmit = ath_xmit;
2136 	ieee80211_attach(ic);
2137 
2138 	/* different instance has different WPA door */
2139 	(void) snprintf(ic->ic_wpadoor, MAX_IEEE80211STR, "%s_%s%d", WPA_DOOR,
2140 	    ddi_driver_name(devinfo),
2141 	    ddi_get_instance(devinfo));
2142 
2143 	/* Override 80211 default routines */
2144 	ic->ic_reset = ath_reset;
2145 	asc->asc_newstate = ic->ic_newstate;
2146 	ic->ic_newstate = ath_newstate;
2147 	ic->ic_watchdog = ath_watchdog;
2148 	ic->ic_node_alloc = ath_node_alloc;
2149 	ic->ic_node_free = ath_node_free;
2150 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
2151 	ic->ic_crypto.cs_key_delete = ath_key_delete;
2152 	ic->ic_crypto.cs_key_set = ath_key_set;
2153 	ieee80211_media_init(ic);
2154 	/*
2155 	 * initialize default tx key
2156 	 */
2157 	ic->ic_def_txkey = 0;
2158 
2159 	asc->asc_rx_pend = 0;
2160 	ATH_HAL_INTRSET(ah, 0);
2161 	err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW,
2162 	    &asc->asc_softint_id, NULL, 0, ath_softint_handler, (caddr_t)asc);
2163 	if (err != DDI_SUCCESS) {
2164 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2165 		    "ddi_add_softintr() failed\n"));
2166 		goto attach_fail5;
2167 	}
2168 
2169 	if (ddi_get_iblock_cookie(devinfo, 0, &asc->asc_iblock)
2170 	    != DDI_SUCCESS) {
2171 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2172 		    "Can not get iblock cookie for INT\n"));
2173 		goto attach_fail6;
2174 	}
2175 
2176 	if (ddi_add_intr(devinfo, 0, NULL, NULL, ath_intr,
2177 	    (caddr_t)asc) != DDI_SUCCESS) {
2178 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2179 		    "Can not set intr for ATH driver\n"));
2180 		goto attach_fail6;
2181 	}
2182 
2183 	/*
2184 	 * Provide initial settings for the WiFi plugin; whenever this
2185 	 * information changes, we need to call mac_plugindata_update()
2186 	 */
2187 	wd.wd_opmode = ic->ic_opmode;
2188 	wd.wd_secalloc = WIFI_SEC_NONE;
2189 	IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_bss->in_bssid);
2190 
2191 	if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
2192 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2193 		    "MAC version mismatch\n"));
2194 		goto attach_fail7;
2195 	}
2196 
2197 	macp->m_type_ident	= MAC_PLUGIN_IDENT_WIFI;
2198 	macp->m_driver		= asc;
2199 	macp->m_dip		= devinfo;
2200 	macp->m_src_addr	= ic->ic_macaddr;
2201 	macp->m_callbacks	= &ath_m_callbacks;
2202 	macp->m_min_sdu		= 0;
2203 	macp->m_max_sdu		= IEEE80211_MTU;
2204 	macp->m_pdata		= &wd;
2205 	macp->m_pdata_size	= sizeof (wd);
2206 
2207 	err = mac_register(macp, &ic->ic_mach);
2208 	mac_free(macp);
2209 	if (err != 0) {
2210 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2211 		    "mac_register err %x\n", err));
2212 		goto attach_fail7;
2213 	}
2214 
2215 	/* Create minor node of type DDI_NT_NET_WIFI */
2216 	(void) snprintf(strbuf, sizeof (strbuf), "%s%d",
2217 	    ATH_NODENAME, instance);
2218 	err = ddi_create_minor_node(devinfo, strbuf, S_IFCHR,
2219 	    instance + 1, DDI_NT_NET_WIFI, 0);
2220 	if (err != DDI_SUCCESS)
2221 		ATH_DEBUG((ATH_DBG_ATTACH, "WARN: ath: ath_attach(): "
2222 		    "Create minor node failed - %d\n", err));
2223 
2224 	mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
2225 	asc->asc_invalid = 1;
2226 	asc->asc_isrunning = 0;
2227 	asc->asc_promisc = B_FALSE;
2228 	bzero(asc->asc_mcast_refs, sizeof (asc->asc_mcast_refs));
2229 	bzero(asc->asc_mcast_hash, sizeof (asc->asc_mcast_hash));
2230 	return (DDI_SUCCESS);
2231 attach_fail7:
2232 	ddi_remove_intr(devinfo, 0, asc->asc_iblock);
2233 attach_fail6:
2234 	ddi_remove_softintr(asc->asc_softint_id);
2235 attach_fail5:
2236 	(void) ieee80211_detach(ic);
2237 attach_fail4:
2238 	ath_desc_free(asc);
2239 attach_fail3:
2240 	ah->ah_detach(asc->asc_ah);
2241 attach_fail2:
2242 	ddi_regs_map_free(&asc->asc_io_handle);
2243 attach_fail1:
2244 	pci_config_teardown(&asc->asc_cfg_handle);
2245 attach_fail0:
2246 	asc->asc_invalid = 1;
2247 	mutex_destroy(&asc->asc_txbuflock);
2248 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2249 		if (ATH_TXQ_SETUP(asc, i)) {
2250 			struct ath_txq *txq = &asc->asc_txq[i];
2251 			mutex_destroy(&txq->axq_lock);
2252 		}
2253 	}
2254 	mutex_destroy(&asc->asc_rxbuflock);
2255 	mutex_destroy(&asc->asc_genlock);
2256 	mutex_destroy(&asc->asc_resched_lock);
2257 	ddi_soft_state_free(ath_soft_state_p, instance);
2258 
2259 	return (DDI_FAILURE);
2260 }
2261 
2262 /*
2263  * Suspend transmit/receive for powerdown
2264  */
2265 static int
2266 ath_suspend(ath_t *asc)
2267 {
2268 	ATH_LOCK(asc);
2269 	ath_stop_locked(asc);
2270 	ATH_UNLOCK(asc);
2271 	ATH_DEBUG((ATH_DBG_SUSPEND, "ath: suspended.\n"));
2272 
2273 	return (DDI_SUCCESS);
2274 }
2275 
2276 static int32_t
2277 ath_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
2278 {
2279 	ath_t *asc;
2280 
2281 	asc = ddi_get_soft_state(ath_soft_state_p, ddi_get_instance(devinfo));
2282 	ASSERT(asc != NULL);
2283 
2284 	switch (cmd) {
2285 	case DDI_DETACH:
2286 		break;
2287 
2288 	case DDI_SUSPEND:
2289 		return (ath_suspend(asc));
2290 
2291 	default:
2292 		return (DDI_FAILURE);
2293 	}
2294 
2295 	ath_stop_scantimer(asc);
2296 
2297 	/* disable interrupts */
2298 	ATH_HAL_INTRSET(asc->asc_ah, 0);
2299 
2300 	/*
2301 	 * Unregister from the MAC layer subsystem
2302 	 */
2303 	if (mac_unregister(asc->asc_isc.ic_mach) != 0)
2304 		return (DDI_FAILURE);
2305 
2306 	/* free intterrupt resources */
2307 	ddi_remove_intr(devinfo, 0, asc->asc_iblock);
2308 	ddi_remove_softintr(asc->asc_softint_id);
2309 
2310 	/*
2311 	 * NB: the order of these is important:
2312 	 * o call the 802.11 layer before detaching the hal to
2313 	 *   insure callbacks into the driver to delete global
2314 	 *   key cache entries can be handled
2315 	 * o reclaim the tx queue data structures after calling
2316 	 *   the 802.11 layer as we'll get called back to reclaim
2317 	 *   node state and potentially want to use them
2318 	 * o to cleanup the tx queues the hal is called, so detach
2319 	 *   it last
2320 	 */
2321 	ieee80211_detach(&asc->asc_isc);
2322 	ath_desc_free(asc);
2323 	ath_txq_cleanup(asc);
2324 	asc->asc_ah->ah_detach(asc->asc_ah);
2325 
2326 	/* free io handle */
2327 	ddi_regs_map_free(&asc->asc_io_handle);
2328 	pci_config_teardown(&asc->asc_cfg_handle);
2329 
2330 	/* destroy locks */
2331 	mutex_destroy(&asc->asc_rxbuflock);
2332 	mutex_destroy(&asc->asc_genlock);
2333 	mutex_destroy(&asc->asc_resched_lock);
2334 
2335 	ddi_remove_minor_node(devinfo, NULL);
2336 	ddi_soft_state_free(ath_soft_state_p, ddi_get_instance(devinfo));
2337 
2338 	return (DDI_SUCCESS);
2339 }
2340 
2341 DDI_DEFINE_STREAM_OPS(ath_dev_ops, nulldev, nulldev, ath_attach, ath_detach,
2342     nodev, NULL, D_MP, NULL);
2343 
2344 static struct modldrv ath_modldrv = {
2345 	&mod_driverops,		/* Type of module.  This one is a driver */
2346 	"ath driver 1.3.1/HAL 0.9.17.2",	/* short description */
2347 	&ath_dev_ops		/* driver specific ops */
2348 };
2349 
2350 static struct modlinkage modlinkage = {
2351 	MODREV_1, (void *)&ath_modldrv, NULL
2352 };
2353 
2354 
2355 int
2356 _info(struct modinfo *modinfop)
2357 {
2358 	return (mod_info(&modlinkage, modinfop));
2359 }
2360 
2361 int
2362 _init(void)
2363 {
2364 	int status;
2365 
2366 	status = ddi_soft_state_init(&ath_soft_state_p, sizeof (ath_t), 1);
2367 	if (status != 0)
2368 		return (status);
2369 
2370 	mutex_init(&ath_loglock, NULL, MUTEX_DRIVER, NULL);
2371 	ath_halfix_init();
2372 	mac_init_ops(&ath_dev_ops, "ath");
2373 	status = mod_install(&modlinkage);
2374 	if (status != 0) {
2375 		mac_fini_ops(&ath_dev_ops);
2376 		ath_halfix_finit();
2377 		mutex_destroy(&ath_loglock);
2378 		ddi_soft_state_fini(&ath_soft_state_p);
2379 	}
2380 
2381 	return (status);
2382 }
2383 
2384 int
2385 _fini(void)
2386 {
2387 	int status;
2388 
2389 	status = mod_remove(&modlinkage);
2390 	if (status == 0) {
2391 		mac_fini_ops(&ath_dev_ops);
2392 		ath_halfix_finit();
2393 		mutex_destroy(&ath_loglock);
2394 		ddi_soft_state_fini(&ath_soft_state_p);
2395 	}
2396 	return (status);
2397 }
2398