xref: /titanic_41/usr/src/uts/common/inet/udp/udp.c (revision 8c112d45d87338e20826001e18cb9e22e5187658)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 const char udp_version[] = "@(#)udp.c	1.206	08/10/17 SMI";
28 
29 #include <sys/types.h>
30 #include <sys/stream.h>
31 #include <sys/dlpi.h>
32 #include <sys/pattr.h>
33 #include <sys/stropts.h>
34 #include <sys/strlog.h>
35 #include <sys/strsun.h>
36 #include <sys/time.h>
37 #define	_SUN_TPI_VERSION 2
38 #include <sys/tihdr.h>
39 #include <sys/timod.h>
40 #include <sys/ddi.h>
41 #include <sys/sunddi.h>
42 #include <sys/strsubr.h>
43 #include <sys/suntpi.h>
44 #include <sys/xti_inet.h>
45 #include <sys/cmn_err.h>
46 #include <sys/kmem.h>
47 #include <sys/policy.h>
48 #include <sys/ucred.h>
49 #include <sys/zone.h>
50 
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/vtrace.h>
54 #include <sys/sdt.h>
55 #include <sys/debug.h>
56 #include <sys/isa_defs.h>
57 #include <sys/random.h>
58 #include <netinet/in.h>
59 #include <netinet/ip6.h>
60 #include <netinet/icmp6.h>
61 #include <netinet/udp.h>
62 #include <net/if.h>
63 #include <net/route.h>
64 
65 #include <inet/common.h>
66 #include <inet/ip.h>
67 #include <inet/ip_impl.h>
68 #include <inet/ip6.h>
69 #include <inet/ip_ire.h>
70 #include <inet/ip_if.h>
71 #include <inet/ip_multi.h>
72 #include <inet/ip_ndp.h>
73 #include <inet/mi.h>
74 #include <inet/mib2.h>
75 #include <inet/nd.h>
76 #include <inet/optcom.h>
77 #include <inet/snmpcom.h>
78 #include <inet/kstatcom.h>
79 #include <inet/udp_impl.h>
80 #include <inet/ipclassifier.h>
81 #include <inet/ipsec_impl.h>
82 #include <inet/ipp_common.h>
83 
84 /*
85  * The ipsec_info.h header file is here since it has the definition for the
86  * M_CTL message types used by IP to convey information to the ULP. The
87  * ipsec_info.h needs the pfkeyv2.h, hence the latter's presence.
88  */
89 #include <net/pfkeyv2.h>
90 #include <inet/ipsec_info.h>
91 
92 #include <sys/tsol/label.h>
93 #include <sys/tsol/tnet.h>
94 #include <rpc/pmap_prot.h>
95 
96 /*
97  * Synchronization notes:
98  *
99  * UDP is MT and uses the usual kernel synchronization primitives. There are 2
100  * locks, the fanout lock (uf_lock) and the udp endpoint lock udp_rwlock.
101  * We also use conn_lock when updating things that affect the IP classifier
102  * lookup.
103  * The lock order is udp_rwlock -> uf_lock and is udp_rwlock -> conn_lock.
104  *
105  * The fanout lock uf_lock:
106  * When a UDP endpoint is bound to a local port, it is inserted into
107  * a bind hash list.  The list consists of an array of udp_fanout_t buckets.
108  * The size of the array is controlled by the udp_bind_fanout_size variable.
109  * This variable can be changed in /etc/system if the default value is
110  * not large enough.  Each bind hash bucket is protected by a per bucket
111  * lock.  It protects the udp_bind_hash and udp_ptpbhn fields in the udp_t
112  * structure and a few other fields in the udp_t. A UDP endpoint is removed
113  * from the bind hash list only when it is being unbound or being closed.
114  * The per bucket lock also protects a UDP endpoint's state changes.
115  *
116  * The udp_rwlock:
117  * This protects most of the other fields in the udp_t. The exact list of
118  * fields which are protected by each of the above locks is documented in
119  * the udp_t structure definition.
120  *
121  * Plumbing notes:
122  * UDP is always a device driver. For compatibility with mibopen() code
123  * it is possible to I_PUSH "udp", but that results in pushing a passthrough
124  * dummy module.
125  *
126  * The above implies that we don't support any intermediate module to
127  * reside in between /dev/ip and udp -- in fact, we never supported such
128  * scenario in the past as the inter-layer communication semantics have
129  * always been private.
130  */
131 
132 /* For /etc/system control */
133 uint_t udp_bind_fanout_size = UDP_BIND_FANOUT_SIZE;
134 
135 #define	NDD_TOO_QUICK_MSG \
136 	"ndd get info rate too high for non-privileged users, try again " \
137 	"later.\n"
138 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
139 
140 /* Option processing attrs */
141 typedef struct udpattrs_s {
142 	union {
143 		ip6_pkt_t	*udpattr_ipp6;	/* For V6 */
144 		ip4_pkt_t 	*udpattr_ipp4;	/* For V4 */
145 	} udpattr_ippu;
146 #define	udpattr_ipp6 udpattr_ippu.udpattr_ipp6
147 #define	udpattr_ipp4 udpattr_ippu.udpattr_ipp4
148 	mblk_t		*udpattr_mb;
149 	boolean_t	udpattr_credset;
150 } udpattrs_t;
151 
152 static void	udp_addr_req(queue_t *q, mblk_t *mp);
153 static void	udp_bind(queue_t *q, mblk_t *mp);
154 static void	udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp);
155 static void	udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock);
156 static void	udp_bind_result(conn_t *, mblk_t *);
157 static void	udp_bind_ack(conn_t *, mblk_t *mp);
158 static void	udp_bind_error(conn_t *, mblk_t *mp);
159 static int	udp_build_hdrs(udp_t *udp);
160 static void	udp_capability_req(queue_t *q, mblk_t *mp);
161 static int	udp_close(queue_t *q);
162 static void	udp_connect(queue_t *q, mblk_t *mp);
163 static void	udp_disconnect(queue_t *q, mblk_t *mp);
164 static void	udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error,
165 		    int sys_error);
166 static void	udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive,
167 		    t_scalar_t tlierr, int unixerr);
168 static int	udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
169 		    cred_t *cr);
170 static int	udp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
171 		    char *value, caddr_t cp, cred_t *cr);
172 static int	udp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
173 		    char *value, caddr_t cp, cred_t *cr);
174 static void	udp_icmp_error(queue_t *q, mblk_t *mp);
175 static void	udp_icmp_error_ipv6(queue_t *q, mblk_t *mp);
176 static void	udp_info_req(queue_t *q, mblk_t *mp);
177 static void	udp_input(void *, mblk_t *, void *);
178 static mblk_t	*udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim,
179 		    t_scalar_t addr_length);
180 static void	udp_lrput(queue_t *, mblk_t *);
181 static void	udp_lwput(queue_t *, mblk_t *);
182 static int	udp_open(queue_t *q, dev_t *devp, int flag, int sflag,
183 		    cred_t *credp, boolean_t isv6);
184 static int	udp_openv4(queue_t *q, dev_t *devp, int flag, int sflag,
185 		    cred_t *credp);
186 static int	udp_openv6(queue_t *q, dev_t *devp, int flag, int sflag,
187 		    cred_t *credp);
188 static  int	udp_unitdata_opt_process(queue_t *q, mblk_t *mp,
189 		    int *errorp, udpattrs_t *udpattrs);
190 static boolean_t udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name);
191 static int	udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
192 static boolean_t udp_param_register(IDP *ndp, udpparam_t *udppa, int cnt);
193 static int	udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
194 		    cred_t *cr);
195 static void	udp_report_item(mblk_t *mp, udp_t *udp);
196 static int	udp_rinfop(queue_t *q, infod_t *dp);
197 static int	udp_rrw(queue_t *q, struiod_t *dp);
198 static int	udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
199 		    cred_t *cr);
200 static void	udp_send_data(udp_t *, queue_t *, mblk_t *, ipha_t *);
201 static void	udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr,
202 		    t_scalar_t destlen, t_scalar_t err);
203 static void	udp_unbind(queue_t *q, mblk_t *mp);
204 static in_port_t udp_update_next_port(udp_t *udp, in_port_t port,
205     boolean_t random);
206 static mblk_t	*udp_output_v4(conn_t *, mblk_t *, ipaddr_t, uint16_t, uint_t,
207 		    int *, boolean_t);
208 static mblk_t	*udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6,
209 		    int *error);
210 static void	udp_wput_other(queue_t *q, mblk_t *mp);
211 static void	udp_wput_iocdata(queue_t *q, mblk_t *mp);
212 static size_t	udp_set_rcv_hiwat(udp_t *udp, size_t size);
213 
214 static void	*udp_stack_init(netstackid_t stackid, netstack_t *ns);
215 static void	udp_stack_fini(netstackid_t stackid, void *arg);
216 
217 static void	*udp_kstat_init(netstackid_t stackid);
218 static void	udp_kstat_fini(netstackid_t stackid, kstat_t *ksp);
219 static void	*udp_kstat2_init(netstackid_t, udp_stat_t *);
220 static void	udp_kstat2_fini(netstackid_t, kstat_t *);
221 static int	udp_kstat_update(kstat_t *kp, int rw);
222 
223 static void	udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp,
224 		    uint_t pkt_len);
225 static void	udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing);
226 static void	udp_xmit(queue_t *, mblk_t *, ire_t *ire, conn_t *, zoneid_t);
227 
228 #define	UDP_RECV_HIWATER	(56 * 1024)
229 #define	UDP_RECV_LOWATER	128
230 #define	UDP_XMIT_HIWATER	(56 * 1024)
231 #define	UDP_XMIT_LOWATER	1024
232 
233 static struct module_info udp_mod_info =  {
234 	UDP_MOD_ID, UDP_MOD_NAME, 1, INFPSZ, UDP_RECV_HIWATER, UDP_RECV_LOWATER
235 };
236 
237 /*
238  * Entry points for UDP as a device.
239  * We have separate open functions for the /dev/udp and /dev/udp6 devices.
240  */
241 static struct qinit udp_rinitv4 = {
242 	NULL, NULL, udp_openv4, udp_close, NULL,
243 	&udp_mod_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD
244 };
245 
246 static struct qinit udp_rinitv6 = {
247 	NULL, NULL, udp_openv6, udp_close, NULL,
248 	&udp_mod_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD
249 };
250 
251 static struct qinit udp_winit = {
252 	(pfi_t)udp_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL,
253 	&udp_mod_info, NULL, NULL, NULL, STRUIOT_NONE
254 };
255 
256 /*
257  * UDP needs to handle I_LINK and I_PLINK since ifconfig
258  * likes to use it as a place to hang the various streams.
259  */
260 static struct qinit udp_lrinit = {
261 	(pfi_t)udp_lrput, NULL, udp_openv4, udp_close, NULL,
262 	&udp_mod_info
263 };
264 
265 static struct qinit udp_lwinit = {
266 	(pfi_t)udp_lwput, NULL, udp_openv4, udp_close, NULL,
267 	&udp_mod_info
268 };
269 
270 /* For AF_INET aka /dev/udp */
271 struct streamtab udpinfov4 = {
272 	&udp_rinitv4, &udp_winit, &udp_lrinit, &udp_lwinit
273 };
274 
275 /* For AF_INET6 aka /dev/udp6 */
276 struct streamtab udpinfov6 = {
277 	&udp_rinitv6, &udp_winit, &udp_lrinit, &udp_lwinit
278 };
279 
280 static	sin_t	sin_null;	/* Zero address for quick clears */
281 static	sin6_t	sin6_null;	/* Zero address for quick clears */
282 
283 #define	UDP_MAXPACKET_IPV4 (IP_MAXPACKET - UDPH_SIZE - IP_SIMPLE_HDR_LENGTH)
284 
285 /* Default structure copied into T_INFO_ACK messages */
286 static struct T_info_ack udp_g_t_info_ack_ipv4 = {
287 	T_INFO_ACK,
288 	UDP_MAXPACKET_IPV4,	/* TSDU_size. Excl. headers */
289 	T_INVALID,	/* ETSU_size.  udp does not support expedited data. */
290 	T_INVALID,	/* CDATA_size. udp does not support connect data. */
291 	T_INVALID,	/* DDATA_size. udp does not support disconnect data. */
292 	sizeof (sin_t),	/* ADDR_size. */
293 	0,		/* OPT_size - not initialized here */
294 	UDP_MAXPACKET_IPV4,	/* TIDU_size.  Excl. headers */
295 	T_CLTS,		/* SERV_type.  udp supports connection-less. */
296 	TS_UNBND,	/* CURRENT_state.  This is set from udp_state. */
297 	(XPG4_1|SENDZERO) /* PROVIDER_flag */
298 };
299 
300 #define	UDP_MAXPACKET_IPV6 (IP_MAXPACKET - UDPH_SIZE - IPV6_HDR_LEN)
301 
302 static	struct T_info_ack udp_g_t_info_ack_ipv6 = {
303 	T_INFO_ACK,
304 	UDP_MAXPACKET_IPV6,	/* TSDU_size.  Excl. headers */
305 	T_INVALID,	/* ETSU_size.  udp does not support expedited data. */
306 	T_INVALID,	/* CDATA_size. udp does not support connect data. */
307 	T_INVALID,	/* DDATA_size. udp does not support disconnect data. */
308 	sizeof (sin6_t), /* ADDR_size. */
309 	0,		/* OPT_size - not initialized here */
310 	UDP_MAXPACKET_IPV6,	/* TIDU_size. Excl. headers */
311 	T_CLTS,		/* SERV_type.  udp supports connection-less. */
312 	TS_UNBND,	/* CURRENT_state.  This is set from udp_state. */
313 	(XPG4_1|SENDZERO) /* PROVIDER_flag */
314 };
315 
316 /* largest UDP port number */
317 #define	UDP_MAX_PORT	65535
318 
319 /*
320  * Table of ND variables supported by udp.  These are loaded into us_nd
321  * in udp_open.
322  * All of these are alterable, within the min/max values given, at run time.
323  */
324 /* BEGIN CSTYLED */
325 udpparam_t udp_param_arr[] = {
326  /*min		max		value		name */
327  { 0L,		256,		32,		"udp_wroff_extra" },
328  { 1L,		255,		255,		"udp_ipv4_ttl" },
329  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS, "udp_ipv6_hoplimit"},
330  { 1024,	(32 * 1024),	1024,		"udp_smallest_nonpriv_port" },
331  { 0,		1,		1,		"udp_do_checksum" },
332  { 1024,	UDP_MAX_PORT,	(32 * 1024),	"udp_smallest_anon_port" },
333  { 1024,	UDP_MAX_PORT,	UDP_MAX_PORT,	"udp_largest_anon_port" },
334  { UDP_XMIT_LOWATER, (1<<30), UDP_XMIT_HIWATER,	"udp_xmit_hiwat"},
335  { 0,		     (1<<30), UDP_XMIT_LOWATER, "udp_xmit_lowat"},
336  { UDP_RECV_LOWATER, (1<<30), UDP_RECV_HIWATER,	"udp_recv_hiwat"},
337  { 65536,	(1<<30),	2*1024*1024,	"udp_max_buf"},
338  { 100,		60000,		1000,		"udp_ndd_get_info_interval"},
339 };
340 /* END CSTYLED */
341 
342 /* Setable in /etc/system */
343 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
344 uint32_t udp_random_anon_port = 1;
345 
346 /*
347  * Hook functions to enable cluster networking.
348  * On non-clustered systems these vectors must always be NULL
349  */
350 
351 void (*cl_inet_bind)(uchar_t protocol, sa_family_t addr_family,
352     uint8_t *laddrp, in_port_t lport) = NULL;
353 void (*cl_inet_unbind)(uint8_t protocol, sa_family_t addr_family,
354     uint8_t *laddrp, in_port_t lport) = NULL;
355 
356 typedef union T_primitives *t_primp_t;
357 
358 /*
359  * Return the next anonymous port in the privileged port range for
360  * bind checking.
361  *
362  * Trusted Extension (TX) notes: TX allows administrator to mark or
363  * reserve ports as Multilevel ports (MLP). MLP has special function
364  * on TX systems. Once a port is made MLP, it's not available as
365  * ordinary port. This creates "holes" in the port name space. It
366  * may be necessary to skip the "holes" find a suitable anon port.
367  */
368 static in_port_t
369 udp_get_next_priv_port(udp_t *udp)
370 {
371 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
372 	in_port_t nextport;
373 	boolean_t restart = B_FALSE;
374 	udp_stack_t *us = udp->udp_us;
375 
376 retry:
377 	if (next_priv_port < us->us_min_anonpriv_port ||
378 	    next_priv_port >= IPPORT_RESERVED) {
379 		next_priv_port = IPPORT_RESERVED - 1;
380 		if (restart)
381 			return (0);
382 		restart = B_TRUE;
383 	}
384 
385 	if (is_system_labeled() &&
386 	    (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred),
387 	    next_priv_port, IPPROTO_UDP, B_FALSE)) != 0) {
388 		next_priv_port = nextport;
389 		goto retry;
390 	}
391 
392 	return (next_priv_port--);
393 }
394 
395 /* UDP bind hash report triggered via the Named Dispatch mechanism. */
396 /* ARGSUSED */
397 static int
398 udp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
399 {
400 	udp_fanout_t	*udpf;
401 	int		i;
402 	zoneid_t	zoneid;
403 	conn_t		*connp;
404 	udp_t		*udp;
405 	udp_stack_t	*us;
406 
407 	connp = Q_TO_CONN(q);
408 	udp = connp->conn_udp;
409 	us = udp->udp_us;
410 
411 	/* Refer to comments in udp_status_report(). */
412 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
413 		if (ddi_get_lbolt() - us->us_last_ndd_get_info_time <
414 		    drv_usectohz(us->us_ndd_get_info_interval * 1000)) {
415 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
416 			return (0);
417 		}
418 	}
419 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
420 		/* The following may work even if we cannot get a large buf. */
421 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
422 		return (0);
423 	}
424 
425 	(void) mi_mpprintf(mp,
426 	    "UDP     " MI_COL_HDRPAD_STR
427 	/*   12345678[89ABCDEF] */
428 	    " zone lport src addr        dest addr       port  state");
429 	/*    1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */
430 
431 	zoneid = connp->conn_zoneid;
432 
433 	for (i = 0; i < us->us_bind_fanout_size; i++) {
434 		udpf = &us->us_bind_fanout[i];
435 		mutex_enter(&udpf->uf_lock);
436 
437 		/* Print the hash index. */
438 		udp = udpf->uf_udp;
439 		if (zoneid != GLOBAL_ZONEID) {
440 			/* skip to first entry in this zone; might be none */
441 			while (udp != NULL &&
442 			    udp->udp_connp->conn_zoneid != zoneid)
443 				udp = udp->udp_bind_hash;
444 		}
445 		if (udp != NULL) {
446 			uint_t print_len, buf_len;
447 
448 			buf_len = mp->b_cont->b_datap->db_lim -
449 			    mp->b_cont->b_wptr;
450 			print_len = snprintf((char *)mp->b_cont->b_wptr,
451 			    buf_len, "%d\n", i);
452 			if (print_len < buf_len) {
453 				mp->b_cont->b_wptr += print_len;
454 			} else {
455 				mp->b_cont->b_wptr += buf_len;
456 			}
457 			for (; udp != NULL; udp = udp->udp_bind_hash) {
458 				if (zoneid == GLOBAL_ZONEID ||
459 				    zoneid == udp->udp_connp->conn_zoneid)
460 					udp_report_item(mp->b_cont, udp);
461 			}
462 		}
463 		mutex_exit(&udpf->uf_lock);
464 	}
465 	us->us_last_ndd_get_info_time = ddi_get_lbolt();
466 	return (0);
467 }
468 
469 /*
470  * Hash list removal routine for udp_t structures.
471  */
472 static void
473 udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock)
474 {
475 	udp_t	*udpnext;
476 	kmutex_t *lockp;
477 	udp_stack_t *us = udp->udp_us;
478 
479 	if (udp->udp_ptpbhn == NULL)
480 		return;
481 
482 	/*
483 	 * Extract the lock pointer in case there are concurrent
484 	 * hash_remove's for this instance.
485 	 */
486 	ASSERT(udp->udp_port != 0);
487 	if (!caller_holds_lock) {
488 		lockp = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
489 		    us->us_bind_fanout_size)].uf_lock;
490 		ASSERT(lockp != NULL);
491 		mutex_enter(lockp);
492 	}
493 	if (udp->udp_ptpbhn != NULL) {
494 		udpnext = udp->udp_bind_hash;
495 		if (udpnext != NULL) {
496 			udpnext->udp_ptpbhn = udp->udp_ptpbhn;
497 			udp->udp_bind_hash = NULL;
498 		}
499 		*udp->udp_ptpbhn = udpnext;
500 		udp->udp_ptpbhn = NULL;
501 	}
502 	if (!caller_holds_lock) {
503 		mutex_exit(lockp);
504 	}
505 }
506 
507 static void
508 udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp)
509 {
510 	udp_t	**udpp;
511 	udp_t	*udpnext;
512 
513 	ASSERT(MUTEX_HELD(&uf->uf_lock));
514 	ASSERT(udp->udp_ptpbhn == NULL);
515 	udpp = &uf->uf_udp;
516 	udpnext = udpp[0];
517 	if (udpnext != NULL) {
518 		/*
519 		 * If the new udp bound to the INADDR_ANY address
520 		 * and the first one in the list is not bound to
521 		 * INADDR_ANY we skip all entries until we find the
522 		 * first one bound to INADDR_ANY.
523 		 * This makes sure that applications binding to a
524 		 * specific address get preference over those binding to
525 		 * INADDR_ANY.
526 		 */
527 		if (V6_OR_V4_INADDR_ANY(udp->udp_bound_v6src) &&
528 		    !V6_OR_V4_INADDR_ANY(udpnext->udp_bound_v6src)) {
529 			while ((udpnext = udpp[0]) != NULL &&
530 			    !V6_OR_V4_INADDR_ANY(
531 			    udpnext->udp_bound_v6src)) {
532 				udpp = &(udpnext->udp_bind_hash);
533 			}
534 			if (udpnext != NULL)
535 				udpnext->udp_ptpbhn = &udp->udp_bind_hash;
536 		} else {
537 			udpnext->udp_ptpbhn = &udp->udp_bind_hash;
538 		}
539 	}
540 	udp->udp_bind_hash = udpnext;
541 	udp->udp_ptpbhn = udpp;
542 	udpp[0] = udp;
543 }
544 
545 /*
546  * This routine is called to handle each O_T_BIND_REQ/T_BIND_REQ message
547  * passed to udp_wput.
548  * It associates a port number and local address with the stream.
549  * The O_T_BIND_REQ/T_BIND_REQ is passed downstream to ip with the UDP
550  * protocol type (IPPROTO_UDP) placed in the message following the address.
551  * A T_BIND_ACK message is passed upstream when ip acknowledges the request.
552  * (Called as writer.)
553  *
554  * Note that UDP over IPv4 and IPv6 sockets can use the same port number
555  * without setting SO_REUSEADDR. This is needed so that they
556  * can be viewed as two independent transport protocols.
557  * However, anonymouns ports are allocated from the same range to avoid
558  * duplicating the us->us_next_port_to_try.
559  */
560 static void
561 udp_bind(queue_t *q, mblk_t *mp)
562 {
563 	sin_t		*sin;
564 	sin6_t		*sin6;
565 	mblk_t		*mp1;
566 	in_port_t	port;		/* Host byte order */
567 	in_port_t	requested_port;	/* Host byte order */
568 	struct T_bind_req *tbr;
569 	int		count;
570 	in6_addr_t	v6src;
571 	boolean_t	bind_to_req_port_only;
572 	int		loopmax;
573 	udp_fanout_t	*udpf;
574 	in_port_t	lport;		/* Network byte order */
575 	zoneid_t	zoneid;
576 	conn_t		*connp;
577 	udp_t		*udp;
578 	boolean_t	is_inaddr_any;
579 	mlp_type_t	addrtype, mlptype;
580 	udp_stack_t	*us;
581 
582 	connp = Q_TO_CONN(q);
583 	udp = connp->conn_udp;
584 	us = udp->udp_us;
585 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
586 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
587 		    "udp_bind: bad req, len %u",
588 		    (uint_t)(mp->b_wptr - mp->b_rptr));
589 		udp_err_ack(q, mp, TPROTO, 0);
590 		return;
591 	}
592 	if (udp->udp_state != TS_UNBND) {
593 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
594 		    "udp_bind: bad state, %u", udp->udp_state);
595 		udp_err_ack(q, mp, TOUTSTATE, 0);
596 		return;
597 	}
598 	/*
599 	 * Reallocate the message to make sure we have enough room for an
600 	 * address and the protocol type.
601 	 */
602 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
603 	if (!mp1) {
604 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
605 		return;
606 	}
607 
608 	mp = mp1;
609 	tbr = (struct T_bind_req *)mp->b_rptr;
610 	switch (tbr->ADDR_length) {
611 	case 0:			/* Request for a generic port */
612 		tbr->ADDR_offset = sizeof (struct T_bind_req);
613 		if (udp->udp_family == AF_INET) {
614 			tbr->ADDR_length = sizeof (sin_t);
615 			sin = (sin_t *)&tbr[1];
616 			*sin = sin_null;
617 			sin->sin_family = AF_INET;
618 			mp->b_wptr = (uchar_t *)&sin[1];
619 		} else {
620 			ASSERT(udp->udp_family == AF_INET6);
621 			tbr->ADDR_length = sizeof (sin6_t);
622 			sin6 = (sin6_t *)&tbr[1];
623 			*sin6 = sin6_null;
624 			sin6->sin6_family = AF_INET6;
625 			mp->b_wptr = (uchar_t *)&sin6[1];
626 		}
627 		port = 0;
628 		break;
629 
630 	case sizeof (sin_t):	/* Complete IPv4 address */
631 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
632 		    sizeof (sin_t));
633 		if (sin == NULL || !OK_32PTR((char *)sin)) {
634 			udp_err_ack(q, mp, TSYSERR, EINVAL);
635 			return;
636 		}
637 		if (udp->udp_family != AF_INET ||
638 		    sin->sin_family != AF_INET) {
639 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
640 			return;
641 		}
642 		port = ntohs(sin->sin_port);
643 		break;
644 
645 	case sizeof (sin6_t):	/* complete IPv6 address */
646 		sin6 = (sin6_t *)mi_offset_param(mp, tbr->ADDR_offset,
647 		    sizeof (sin6_t));
648 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
649 			udp_err_ack(q, mp, TSYSERR, EINVAL);
650 			return;
651 		}
652 		if (udp->udp_family != AF_INET6 ||
653 		    sin6->sin6_family != AF_INET6) {
654 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
655 			return;
656 		}
657 		port = ntohs(sin6->sin6_port);
658 		break;
659 
660 	default:		/* Invalid request */
661 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
662 		    "udp_bind: bad ADDR_length length %u", tbr->ADDR_length);
663 		udp_err_ack(q, mp, TBADADDR, 0);
664 		return;
665 	}
666 
667 	requested_port = port;
668 
669 	if (requested_port == 0 || tbr->PRIM_type == O_T_BIND_REQ)
670 		bind_to_req_port_only = B_FALSE;
671 	else			/* T_BIND_REQ and requested_port != 0 */
672 		bind_to_req_port_only = B_TRUE;
673 
674 	if (requested_port == 0) {
675 		/*
676 		 * If the application passed in zero for the port number, it
677 		 * doesn't care which port number we bind to. Get one in the
678 		 * valid range.
679 		 */
680 		if (udp->udp_anon_priv_bind) {
681 			port = udp_get_next_priv_port(udp);
682 		} else {
683 			port = udp_update_next_port(udp,
684 			    us->us_next_port_to_try, B_TRUE);
685 		}
686 	} else {
687 		/*
688 		 * If the port is in the well-known privileged range,
689 		 * make sure the caller was privileged.
690 		 */
691 		int i;
692 		boolean_t priv = B_FALSE;
693 
694 		if (port < us->us_smallest_nonpriv_port) {
695 			priv = B_TRUE;
696 		} else {
697 			for (i = 0; i < us->us_num_epriv_ports; i++) {
698 				if (port == us->us_epriv_ports[i]) {
699 					priv = B_TRUE;
700 					break;
701 				}
702 			}
703 		}
704 
705 		if (priv) {
706 			cred_t *cr = DB_CREDDEF(mp, connp->conn_cred);
707 
708 			if (secpolicy_net_privaddr(cr, port,
709 			    IPPROTO_UDP) != 0) {
710 				udp_err_ack(q, mp, TACCES, 0);
711 				return;
712 			}
713 		}
714 	}
715 
716 	if (port == 0) {
717 		udp_err_ack(q, mp, TNOADDR, 0);
718 		return;
719 	}
720 
721 	/*
722 	 * The state must be TS_UNBND. TPI mandates that users must send
723 	 * TPI primitives only 1 at a time and wait for the response before
724 	 * sending the next primitive.
725 	 */
726 	rw_enter(&udp->udp_rwlock, RW_WRITER);
727 	if (udp->udp_state != TS_UNBND || udp->udp_pending_op != -1) {
728 		rw_exit(&udp->udp_rwlock);
729 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
730 		    "udp_bind: bad state, %u", udp->udp_state);
731 		udp_err_ack(q, mp, TOUTSTATE, 0);
732 		return;
733 	}
734 	udp->udp_pending_op = tbr->PRIM_type;
735 	/*
736 	 * Copy the source address into our udp structure. This address
737 	 * may still be zero; if so, IP will fill in the correct address
738 	 * each time an outbound packet is passed to it. Since the udp is
739 	 * not yet in the bind hash list, we don't grab the uf_lock to
740 	 * change udp_ipversion
741 	 */
742 	if (udp->udp_family == AF_INET) {
743 		ASSERT(sin != NULL);
744 		ASSERT(udp->udp_ipversion == IPV4_VERSION);
745 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
746 		    udp->udp_ip_snd_options_len;
747 		IN6_IPADDR_TO_V4MAPPED(sin->sin_addr.s_addr, &v6src);
748 	} else {
749 		ASSERT(sin6 != NULL);
750 		v6src = sin6->sin6_addr;
751 		if (IN6_IS_ADDR_V4MAPPED(&v6src)) {
752 			/*
753 			 * no need to hold the uf_lock to set the udp_ipversion
754 			 * since we are not yet in the fanout list
755 			 */
756 			udp->udp_ipversion = IPV4_VERSION;
757 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
758 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
759 		} else {
760 			udp->udp_ipversion = IPV6_VERSION;
761 			udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len;
762 		}
763 	}
764 
765 	/*
766 	 * If udp_reuseaddr is not set, then we have to make sure that
767 	 * the IP address and port number the application requested
768 	 * (or we selected for the application) is not being used by
769 	 * another stream.  If another stream is already using the
770 	 * requested IP address and port, the behavior depends on
771 	 * "bind_to_req_port_only". If set the bind fails; otherwise we
772 	 * search for any an unused port to bind to the the stream.
773 	 *
774 	 * As per the BSD semantics, as modified by the Deering multicast
775 	 * changes, if udp_reuseaddr is set, then we allow multiple binds
776 	 * to the same port independent of the local IP address.
777 	 *
778 	 * This is slightly different than in SunOS 4.X which did not
779 	 * support IP multicast. Note that the change implemented by the
780 	 * Deering multicast code effects all binds - not only binding
781 	 * to IP multicast addresses.
782 	 *
783 	 * Note that when binding to port zero we ignore SO_REUSEADDR in
784 	 * order to guarantee a unique port.
785 	 */
786 
787 	count = 0;
788 	if (udp->udp_anon_priv_bind) {
789 		/*
790 		 * loopmax = (IPPORT_RESERVED-1) -
791 		 *    us->us_min_anonpriv_port + 1
792 		 */
793 		loopmax = IPPORT_RESERVED - us->us_min_anonpriv_port;
794 	} else {
795 		loopmax = us->us_largest_anon_port -
796 		    us->us_smallest_anon_port + 1;
797 	}
798 
799 	is_inaddr_any = V6_OR_V4_INADDR_ANY(v6src);
800 	zoneid = connp->conn_zoneid;
801 
802 	for (;;) {
803 		udp_t		*udp1;
804 		boolean_t	found_exclbind = B_FALSE;
805 
806 		/*
807 		 * Walk through the list of udp streams bound to
808 		 * requested port with the same IP address.
809 		 */
810 		lport = htons(port);
811 		udpf = &us->us_bind_fanout[UDP_BIND_HASH(lport,
812 		    us->us_bind_fanout_size)];
813 		mutex_enter(&udpf->uf_lock);
814 		for (udp1 = udpf->uf_udp; udp1 != NULL;
815 		    udp1 = udp1->udp_bind_hash) {
816 			if (lport != udp1->udp_port)
817 				continue;
818 
819 			/*
820 			 * On a labeled system, we must treat bindings to ports
821 			 * on shared IP addresses by sockets with MAC exemption
822 			 * privilege as being in all zones, as there's
823 			 * otherwise no way to identify the right receiver.
824 			 */
825 			if (!(IPCL_ZONE_MATCH(udp1->udp_connp, zoneid) ||
826 			    IPCL_ZONE_MATCH(connp,
827 			    udp1->udp_connp->conn_zoneid)) &&
828 			    !connp->conn_mac_exempt && \
829 			    !udp1->udp_connp->conn_mac_exempt)
830 				continue;
831 
832 			/*
833 			 * If UDP_EXCLBIND is set for either the bound or
834 			 * binding endpoint, the semantics of bind
835 			 * is changed according to the following chart.
836 			 *
837 			 * spec = specified address (v4 or v6)
838 			 * unspec = unspecified address (v4 or v6)
839 			 * A = specified addresses are different for endpoints
840 			 *
841 			 * bound	bind to		allowed?
842 			 * -------------------------------------
843 			 * unspec	unspec		no
844 			 * unspec	spec		no
845 			 * spec		unspec		no
846 			 * spec		spec		yes if A
847 			 *
848 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
849 			 * as UDP_EXCLBIND, except that zoneid is ignored.
850 			 */
851 			if (udp1->udp_exclbind || udp->udp_exclbind ||
852 			    udp1->udp_connp->conn_mac_exempt ||
853 			    connp->conn_mac_exempt) {
854 				if (V6_OR_V4_INADDR_ANY(
855 				    udp1->udp_bound_v6src) ||
856 				    is_inaddr_any ||
857 				    IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src,
858 				    &v6src)) {
859 					found_exclbind = B_TRUE;
860 					break;
861 				}
862 				continue;
863 			}
864 
865 			/*
866 			 * Check ipversion to allow IPv4 and IPv6 sockets to
867 			 * have disjoint port number spaces.
868 			 */
869 			if (udp->udp_ipversion != udp1->udp_ipversion) {
870 
871 				/*
872 				 * On the first time through the loop, if the
873 				 * the user intentionally specified a
874 				 * particular port number, then ignore any
875 				 * bindings of the other protocol that may
876 				 * conflict. This allows the user to bind IPv6
877 				 * alone and get both v4 and v6, or bind both
878 				 * both and get each seperately. On subsequent
879 				 * times through the loop, we're checking a
880 				 * port that we chose (not the user) and thus
881 				 * we do not allow casual duplicate bindings.
882 				 */
883 				if (count == 0 && requested_port != 0)
884 					continue;
885 			}
886 
887 			/*
888 			 * No difference depending on SO_REUSEADDR.
889 			 *
890 			 * If existing port is bound to a
891 			 * non-wildcard IP address and
892 			 * the requesting stream is bound to
893 			 * a distinct different IP addresses
894 			 * (non-wildcard, also), keep going.
895 			 */
896 			if (!is_inaddr_any &&
897 			    !V6_OR_V4_INADDR_ANY(udp1->udp_bound_v6src) &&
898 			    !IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src,
899 			    &v6src)) {
900 				continue;
901 			}
902 			break;
903 		}
904 
905 		if (!found_exclbind &&
906 		    (udp->udp_reuseaddr && requested_port != 0)) {
907 			break;
908 		}
909 
910 		if (udp1 == NULL) {
911 			/*
912 			 * No other stream has this IP address
913 			 * and port number. We can use it.
914 			 */
915 			break;
916 		}
917 		mutex_exit(&udpf->uf_lock);
918 		if (bind_to_req_port_only) {
919 			/*
920 			 * We get here only when requested port
921 			 * is bound (and only first  of the for()
922 			 * loop iteration).
923 			 *
924 			 * The semantics of this bind request
925 			 * require it to fail so we return from
926 			 * the routine (and exit the loop).
927 			 *
928 			 */
929 			udp->udp_pending_op = -1;
930 			rw_exit(&udp->udp_rwlock);
931 			udp_err_ack(q, mp, TADDRBUSY, 0);
932 			return;
933 		}
934 
935 		if (udp->udp_anon_priv_bind) {
936 			port = udp_get_next_priv_port(udp);
937 		} else {
938 			if ((count == 0) && (requested_port != 0)) {
939 				/*
940 				 * If the application wants us to find
941 				 * a port, get one to start with. Set
942 				 * requested_port to 0, so that we will
943 				 * update us->us_next_port_to_try below.
944 				 */
945 				port = udp_update_next_port(udp,
946 				    us->us_next_port_to_try, B_TRUE);
947 				requested_port = 0;
948 			} else {
949 				port = udp_update_next_port(udp, port + 1,
950 				    B_FALSE);
951 			}
952 		}
953 
954 		if (port == 0 || ++count >= loopmax) {
955 			/*
956 			 * We've tried every possible port number and
957 			 * there are none available, so send an error
958 			 * to the user.
959 			 */
960 			udp->udp_pending_op = -1;
961 			rw_exit(&udp->udp_rwlock);
962 			udp_err_ack(q, mp, TNOADDR, 0);
963 			return;
964 		}
965 	}
966 
967 	/*
968 	 * Copy the source address into our udp structure.  This address
969 	 * may still be zero; if so, ip will fill in the correct address
970 	 * each time an outbound packet is passed to it.
971 	 * If we are binding to a broadcast or multicast address then
972 	 * udp_bind_ack will clear the source address when it receives
973 	 * the T_BIND_ACK.
974 	 */
975 	udp->udp_v6src = udp->udp_bound_v6src = v6src;
976 	udp->udp_port = lport;
977 	/*
978 	 * Now reset the the next anonymous port if the application requested
979 	 * an anonymous port, or we handed out the next anonymous port.
980 	 */
981 	if ((requested_port == 0) && (!udp->udp_anon_priv_bind)) {
982 		us->us_next_port_to_try = port + 1;
983 	}
984 
985 	/* Initialize the O_T_BIND_REQ/T_BIND_REQ for ip. */
986 	if (udp->udp_family == AF_INET) {
987 		sin->sin_port = udp->udp_port;
988 	} else {
989 		int error;
990 
991 		sin6->sin6_port = udp->udp_port;
992 		/* Rebuild the header template */
993 		error = udp_build_hdrs(udp);
994 		if (error != 0) {
995 			udp->udp_pending_op = -1;
996 			rw_exit(&udp->udp_rwlock);
997 			mutex_exit(&udpf->uf_lock);
998 			udp_err_ack(q, mp, TSYSERR, error);
999 			return;
1000 		}
1001 	}
1002 	udp->udp_state = TS_IDLE;
1003 	udp_bind_hash_insert(udpf, udp);
1004 	mutex_exit(&udpf->uf_lock);
1005 	rw_exit(&udp->udp_rwlock);
1006 
1007 	if (cl_inet_bind) {
1008 		/*
1009 		 * Running in cluster mode - register bind information
1010 		 */
1011 		if (udp->udp_ipversion == IPV4_VERSION) {
1012 			(*cl_inet_bind)(IPPROTO_UDP, AF_INET,
1013 			    (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)),
1014 			    (in_port_t)udp->udp_port);
1015 		} else {
1016 			(*cl_inet_bind)(IPPROTO_UDP, AF_INET6,
1017 			    (uint8_t *)&(udp->udp_v6src),
1018 			    (in_port_t)udp->udp_port);
1019 		}
1020 
1021 	}
1022 
1023 	connp->conn_anon_port = (is_system_labeled() && requested_port == 0);
1024 	if (is_system_labeled() && (!connp->conn_anon_port ||
1025 	    connp->conn_anon_mlp)) {
1026 		uint16_t mlpport;
1027 		cred_t *cr = connp->conn_cred;
1028 		zone_t *zone;
1029 
1030 		zone = crgetzone(cr);
1031 		connp->conn_mlp_type = udp->udp_recvucred ? mlptBoth :
1032 		    mlptSingle;
1033 		addrtype = tsol_mlp_addr_type(zone->zone_id, IPV6_VERSION,
1034 		    &v6src, us->us_netstack->netstack_ip);
1035 		if (addrtype == mlptSingle) {
1036 			rw_enter(&udp->udp_rwlock, RW_WRITER);
1037 			udp->udp_pending_op = -1;
1038 			rw_exit(&udp->udp_rwlock);
1039 			udp_err_ack(q, mp, TNOADDR, 0);
1040 			connp->conn_anon_port = B_FALSE;
1041 			connp->conn_mlp_type = mlptSingle;
1042 			return;
1043 		}
1044 		mlpport = connp->conn_anon_port ? PMAPPORT : port;
1045 		mlptype = tsol_mlp_port_type(zone, IPPROTO_UDP, mlpport,
1046 		    addrtype);
1047 		if (mlptype != mlptSingle &&
1048 		    (connp->conn_mlp_type == mlptSingle ||
1049 		    secpolicy_net_bindmlp(cr) != 0)) {
1050 			if (udp->udp_debug) {
1051 				(void) strlog(UDP_MOD_ID, 0, 1,
1052 				    SL_ERROR|SL_TRACE,
1053 				    "udp_bind: no priv for multilevel port %d",
1054 				    mlpport);
1055 			}
1056 			rw_enter(&udp->udp_rwlock, RW_WRITER);
1057 			udp->udp_pending_op = -1;
1058 			rw_exit(&udp->udp_rwlock);
1059 			udp_err_ack(q, mp, TACCES, 0);
1060 			connp->conn_anon_port = B_FALSE;
1061 			connp->conn_mlp_type = mlptSingle;
1062 			return;
1063 		}
1064 
1065 		/*
1066 		 * If we're specifically binding a shared IP address and the
1067 		 * port is MLP on shared addresses, then check to see if this
1068 		 * zone actually owns the MLP.  Reject if not.
1069 		 */
1070 		if (mlptype == mlptShared && addrtype == mlptShared) {
1071 			/*
1072 			 * No need to handle exclusive-stack zones since
1073 			 * ALL_ZONES only applies to the shared stack.
1074 			 */
1075 			zoneid_t mlpzone;
1076 
1077 			mlpzone = tsol_mlp_findzone(IPPROTO_UDP,
1078 			    htons(mlpport));
1079 			if (connp->conn_zoneid != mlpzone) {
1080 				if (udp->udp_debug) {
1081 					(void) strlog(UDP_MOD_ID, 0, 1,
1082 					    SL_ERROR|SL_TRACE,
1083 					    "udp_bind: attempt to bind port "
1084 					    "%d on shared addr in zone %d "
1085 					    "(should be %d)",
1086 					    mlpport, connp->conn_zoneid,
1087 					    mlpzone);
1088 				}
1089 				rw_enter(&udp->udp_rwlock, RW_WRITER);
1090 				udp->udp_pending_op = -1;
1091 				rw_exit(&udp->udp_rwlock);
1092 				udp_err_ack(q, mp, TACCES, 0);
1093 				connp->conn_anon_port = B_FALSE;
1094 				connp->conn_mlp_type = mlptSingle;
1095 				return;
1096 			}
1097 		}
1098 		if (connp->conn_anon_port) {
1099 			int error;
1100 
1101 			error = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
1102 			    port, B_TRUE);
1103 			if (error != 0) {
1104 				if (udp->udp_debug) {
1105 					(void) strlog(UDP_MOD_ID, 0, 1,
1106 					    SL_ERROR|SL_TRACE,
1107 					    "udp_bind: cannot establish anon "
1108 					    "MLP for port %d", port);
1109 				}
1110 				rw_enter(&udp->udp_rwlock, RW_WRITER);
1111 				udp->udp_pending_op = -1;
1112 				rw_exit(&udp->udp_rwlock);
1113 				udp_err_ack(q, mp, TACCES, 0);
1114 				connp->conn_anon_port = B_FALSE;
1115 				connp->conn_mlp_type = mlptSingle;
1116 				return;
1117 			}
1118 		}
1119 		connp->conn_mlp_type = mlptype;
1120 	}
1121 
1122 	/* Pass the protocol number in the message following the address. */
1123 	*mp->b_wptr++ = IPPROTO_UDP;
1124 	if (!V6_OR_V4_INADDR_ANY(udp->udp_v6src)) {
1125 		/*
1126 		 * Append a request for an IRE if udp_v6src not
1127 		 * zero (IPv4 - INADDR_ANY, or IPv6 - all-zeroes address).
1128 		 */
1129 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
1130 		if (!mp->b_cont) {
1131 			rw_enter(&udp->udp_rwlock, RW_WRITER);
1132 			udp->udp_pending_op = -1;
1133 			rw_exit(&udp->udp_rwlock);
1134 			udp_err_ack(q, mp, TSYSERR, ENOMEM);
1135 			return;
1136 		}
1137 		mp->b_cont->b_wptr += sizeof (ire_t);
1138 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
1139 	}
1140 	if (udp->udp_family == AF_INET6)
1141 		mp = ip_bind_v6(q, mp, connp, NULL);
1142 	else
1143 		mp = ip_bind_v4(q, mp, connp);
1144 
1145 	/* The above return NULL if the bind needs to be deferred */
1146 	if (mp != NULL)
1147 		udp_bind_result(connp, mp);
1148 	else
1149 		CONN_INC_REF(connp);
1150 }
1151 
1152 /*
1153  * This is called from ip_wput_nondata to handle the results of a
1154  * deferred UDP bind. It is called once the bind has been completed.
1155  */
1156 void
1157 udp_resume_bind(conn_t *connp, mblk_t *mp)
1158 {
1159 	ASSERT(connp != NULL && IPCL_IS_UDP(connp));
1160 
1161 	udp_bind_result(connp, mp);
1162 
1163 	CONN_OPER_PENDING_DONE(connp);
1164 }
1165 
1166 /*
1167  * This routine handles each T_CONN_REQ message passed to udp.  It
1168  * associates a default destination address with the stream.
1169  *
1170  * This routine sends down a T_BIND_REQ to IP with the following mblks:
1171  *	T_BIND_REQ	- specifying local and remote address/port
1172  *	IRE_DB_REQ_TYPE	- to get an IRE back containing ire_type and src
1173  *	T_OK_ACK	- for the T_CONN_REQ
1174  *	T_CONN_CON	- to keep the TPI user happy
1175  *
1176  * The connect completes in udp_bind_result.
1177  * When a T_BIND_ACK is received information is extracted from the IRE
1178  * and the two appended messages are sent to the TPI user.
1179  * Should udp_bind_result receive T_ERROR_ACK for the T_BIND_REQ it will
1180  * convert it to an error ack for the appropriate primitive.
1181  */
1182 static void
1183 udp_connect(queue_t *q, mblk_t *mp)
1184 {
1185 	sin6_t	*sin6;
1186 	sin_t	*sin;
1187 	struct T_conn_req	*tcr;
1188 	in6_addr_t v6dst;
1189 	ipaddr_t v4dst;
1190 	uint16_t dstport;
1191 	uint32_t flowinfo;
1192 	mblk_t	*mp1, *mp2;
1193 	udp_fanout_t	*udpf;
1194 	udp_t	*udp, *udp1;
1195 	ushort_t	ipversion;
1196 	udp_stack_t	*us;
1197 	conn_t		*connp = Q_TO_CONN(q);
1198 
1199 	udp = connp->conn_udp;
1200 	tcr = (struct T_conn_req *)mp->b_rptr;
1201 	us = udp->udp_us;
1202 
1203 	/* A bit of sanity checking */
1204 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_req)) {
1205 		udp_err_ack(q, mp, TPROTO, 0);
1206 		return;
1207 	}
1208 
1209 	if (tcr->OPT_length != 0) {
1210 		udp_err_ack(q, mp, TBADOPT, 0);
1211 		return;
1212 	}
1213 
1214 	/*
1215 	 * Determine packet type based on type of address passed in
1216 	 * the request should contain an IPv4 or IPv6 address.
1217 	 * Make sure that address family matches the type of
1218 	 * family of the the address passed down
1219 	 */
1220 	switch (tcr->DEST_length) {
1221 	default:
1222 		udp_err_ack(q, mp, TBADADDR, 0);
1223 		return;
1224 
1225 	case sizeof (sin_t):
1226 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
1227 		    sizeof (sin_t));
1228 		if (sin == NULL || !OK_32PTR((char *)sin)) {
1229 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1230 			return;
1231 		}
1232 		if (udp->udp_family != AF_INET ||
1233 		    sin->sin_family != AF_INET) {
1234 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1235 			return;
1236 		}
1237 		v4dst = sin->sin_addr.s_addr;
1238 		dstport = sin->sin_port;
1239 		IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
1240 		ASSERT(udp->udp_ipversion == IPV4_VERSION);
1241 		ipversion = IPV4_VERSION;
1242 		break;
1243 
1244 	case sizeof (sin6_t):
1245 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
1246 		    sizeof (sin6_t));
1247 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
1248 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1249 			return;
1250 		}
1251 		if (udp->udp_family != AF_INET6 ||
1252 		    sin6->sin6_family != AF_INET6) {
1253 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1254 			return;
1255 		}
1256 		v6dst = sin6->sin6_addr;
1257 		dstport = sin6->sin6_port;
1258 		if (IN6_IS_ADDR_V4MAPPED(&v6dst)) {
1259 			IN6_V4MAPPED_TO_IPADDR(&v6dst, v4dst);
1260 			ipversion = IPV4_VERSION;
1261 			flowinfo = 0;
1262 		} else {
1263 			ipversion = IPV6_VERSION;
1264 			flowinfo = sin6->sin6_flowinfo;
1265 		}
1266 		break;
1267 	}
1268 	if (dstport == 0) {
1269 		udp_err_ack(q, mp, TBADADDR, 0);
1270 		return;
1271 	}
1272 
1273 	rw_enter(&udp->udp_rwlock, RW_WRITER);
1274 
1275 	/*
1276 	 * This UDP must have bound to a port already before doing a connect.
1277 	 * TPI mandates that users must send TPI primitives only 1 at a time
1278 	 * and wait for the response before sending the next primitive.
1279 	 */
1280 	if (udp->udp_state == TS_UNBND || udp->udp_pending_op != -1) {
1281 		rw_exit(&udp->udp_rwlock);
1282 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1283 		    "udp_connect: bad state, %u", udp->udp_state);
1284 		udp_err_ack(q, mp, TOUTSTATE, 0);
1285 		return;
1286 	}
1287 	udp->udp_pending_op = T_CONN_REQ;
1288 	ASSERT(udp->udp_port != 0 && udp->udp_ptpbhn != NULL);
1289 
1290 	if (ipversion == IPV4_VERSION) {
1291 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
1292 		    udp->udp_ip_snd_options_len;
1293 	} else {
1294 		udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len;
1295 	}
1296 
1297 	udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
1298 	    us->us_bind_fanout_size)];
1299 
1300 	mutex_enter(&udpf->uf_lock);
1301 	if (udp->udp_state == TS_DATA_XFER) {
1302 		/* Already connected - clear out state */
1303 		udp->udp_v6src = udp->udp_bound_v6src;
1304 		udp->udp_state = TS_IDLE;
1305 	}
1306 
1307 	/*
1308 	 * Create a default IP header with no IP options.
1309 	 */
1310 	udp->udp_dstport = dstport;
1311 	udp->udp_ipversion = ipversion;
1312 	if (ipversion == IPV4_VERSION) {
1313 		/*
1314 		 * Interpret a zero destination to mean loopback.
1315 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1316 		 * generate the T_CONN_CON.
1317 		 */
1318 		if (v4dst == INADDR_ANY) {
1319 			v4dst = htonl(INADDR_LOOPBACK);
1320 			IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
1321 			if (udp->udp_family == AF_INET) {
1322 				sin->sin_addr.s_addr = v4dst;
1323 			} else {
1324 				sin6->sin6_addr = v6dst;
1325 			}
1326 		}
1327 		udp->udp_v6dst = v6dst;
1328 		udp->udp_flowinfo = 0;
1329 
1330 		/*
1331 		 * If the destination address is multicast and
1332 		 * an outgoing multicast interface has been set,
1333 		 * use the address of that interface as our
1334 		 * source address if no source address has been set.
1335 		 */
1336 		if (V4_PART_OF_V6(udp->udp_v6src) == INADDR_ANY &&
1337 		    CLASSD(v4dst) &&
1338 		    udp->udp_multicast_if_addr != INADDR_ANY) {
1339 			IN6_IPADDR_TO_V4MAPPED(udp->udp_multicast_if_addr,
1340 			    &udp->udp_v6src);
1341 		}
1342 	} else {
1343 		ASSERT(udp->udp_ipversion == IPV6_VERSION);
1344 		/*
1345 		 * Interpret a zero destination to mean loopback.
1346 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1347 		 * generate the T_CONN_CON.
1348 		 */
1349 		if (IN6_IS_ADDR_UNSPECIFIED(&v6dst)) {
1350 			v6dst = ipv6_loopback;
1351 			sin6->sin6_addr = v6dst;
1352 		}
1353 		udp->udp_v6dst = v6dst;
1354 		udp->udp_flowinfo = flowinfo;
1355 		/*
1356 		 * If the destination address is multicast and
1357 		 * an outgoing multicast interface has been set,
1358 		 * then the ip bind logic will pick the correct source
1359 		 * address (i.e. matching the outgoing multicast interface).
1360 		 */
1361 	}
1362 
1363 	/*
1364 	 * Verify that the src/port/dst/port is unique for all
1365 	 * connections in TS_DATA_XFER
1366 	 */
1367 	for (udp1 = udpf->uf_udp; udp1 != NULL; udp1 = udp1->udp_bind_hash) {
1368 		if (udp1->udp_state != TS_DATA_XFER)
1369 			continue;
1370 		if (udp->udp_port != udp1->udp_port ||
1371 		    udp->udp_ipversion != udp1->udp_ipversion ||
1372 		    dstport != udp1->udp_dstport ||
1373 		    !IN6_ARE_ADDR_EQUAL(&udp->udp_v6src, &udp1->udp_v6src) ||
1374 		    !IN6_ARE_ADDR_EQUAL(&v6dst, &udp1->udp_v6dst) ||
1375 		    !(IPCL_ZONE_MATCH(udp->udp_connp,
1376 		    udp1->udp_connp->conn_zoneid) ||
1377 		    IPCL_ZONE_MATCH(udp1->udp_connp,
1378 		    udp->udp_connp->conn_zoneid)))
1379 			continue;
1380 		mutex_exit(&udpf->uf_lock);
1381 		udp->udp_pending_op = -1;
1382 		rw_exit(&udp->udp_rwlock);
1383 		udp_err_ack(q, mp, TBADADDR, 0);
1384 		return;
1385 	}
1386 	udp->udp_state = TS_DATA_XFER;
1387 	mutex_exit(&udpf->uf_lock);
1388 
1389 	/*
1390 	 * Send down bind to IP to verify that there is a route
1391 	 * and to determine the source address.
1392 	 * This will come back as T_BIND_ACK with an IRE_DB_TYPE in rput.
1393 	 */
1394 	if (udp->udp_family == AF_INET)
1395 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa_conn_t));
1396 	else
1397 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
1398 	if (mp1 == NULL) {
1399 bind_failed:
1400 		mutex_enter(&udpf->uf_lock);
1401 		udp->udp_state = TS_IDLE;
1402 		udp->udp_pending_op = -1;
1403 		mutex_exit(&udpf->uf_lock);
1404 		rw_exit(&udp->udp_rwlock);
1405 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1406 		return;
1407 	}
1408 
1409 	rw_exit(&udp->udp_rwlock);
1410 	/*
1411 	 * We also have to send a connection confirmation to
1412 	 * keep TLI happy. Prepare it for udp_bind_result.
1413 	 */
1414 	if (udp->udp_family == AF_INET)
1415 		mp2 = mi_tpi_conn_con(NULL, (char *)sin,
1416 		    sizeof (*sin), NULL, 0);
1417 	else
1418 		mp2 = mi_tpi_conn_con(NULL, (char *)sin6,
1419 		    sizeof (*sin6), NULL, 0);
1420 	if (mp2 == NULL) {
1421 		freemsg(mp1);
1422 		rw_enter(&udp->udp_rwlock, RW_WRITER);
1423 		goto bind_failed;
1424 	}
1425 
1426 	mp = mi_tpi_ok_ack_alloc(mp);
1427 	if (mp == NULL) {
1428 		/* Unable to reuse the T_CONN_REQ for the ack. */
1429 		freemsg(mp2);
1430 		rw_enter(&udp->udp_rwlock, RW_WRITER);
1431 		mutex_enter(&udpf->uf_lock);
1432 		udp->udp_state = TS_IDLE;
1433 		udp->udp_pending_op = -1;
1434 		mutex_exit(&udpf->uf_lock);
1435 		rw_exit(&udp->udp_rwlock);
1436 		udp_err_ack_prim(q, mp1, T_CONN_REQ, TSYSERR, ENOMEM);
1437 		return;
1438 	}
1439 
1440 	/* Hang onto the T_OK_ACK and T_CONN_CON for later. */
1441 	linkb(mp1, mp);
1442 	linkb(mp1, mp2);
1443 
1444 	mblk_setcred(mp1, connp->conn_cred);
1445 	if (udp->udp_family == AF_INET)
1446 		mp1 = ip_bind_v4(q, mp1, connp);
1447 	else
1448 		mp1 = ip_bind_v6(q, mp1, connp, NULL);
1449 
1450 	/* The above return NULL if the bind needs to be deferred */
1451 	if (mp1 != NULL)
1452 		udp_bind_result(connp, mp1);
1453 	else
1454 		CONN_INC_REF(connp);
1455 }
1456 
1457 static int
1458 udp_close(queue_t *q)
1459 {
1460 	conn_t	*connp = (conn_t *)q->q_ptr;
1461 	udp_t	*udp;
1462 
1463 	ASSERT(connp != NULL && IPCL_IS_UDP(connp));
1464 	udp = connp->conn_udp;
1465 
1466 	udp_quiesce_conn(connp);
1467 	ip_quiesce_conn(connp);
1468 	/*
1469 	 * Disable read-side synchronous stream
1470 	 * interface and drain any queued data.
1471 	 */
1472 	udp_rcv_drain(q, udp, B_TRUE);
1473 	ASSERT(!udp->udp_direct_sockfs);
1474 
1475 	qprocsoff(q);
1476 
1477 	ASSERT(udp->udp_rcv_cnt == 0);
1478 	ASSERT(udp->udp_rcv_msgcnt == 0);
1479 	ASSERT(udp->udp_rcv_list_head == NULL);
1480 	ASSERT(udp->udp_rcv_list_tail == NULL);
1481 
1482 	udp_close_free(connp);
1483 
1484 	/*
1485 	 * Now we are truly single threaded on this stream, and can
1486 	 * delete the things hanging off the connp, and finally the connp.
1487 	 * We removed this connp from the fanout list, it cannot be
1488 	 * accessed thru the fanouts, and we already waited for the
1489 	 * conn_ref to drop to 0. We are already in close, so
1490 	 * there cannot be any other thread from the top. qprocsoff
1491 	 * has completed, and service has completed or won't run in
1492 	 * future.
1493 	 */
1494 	ASSERT(connp->conn_ref == 1);
1495 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
1496 	connp->conn_ref--;
1497 	ipcl_conn_destroy(connp);
1498 
1499 	q->q_ptr = WR(q)->q_ptr = NULL;
1500 	return (0);
1501 }
1502 
1503 /*
1504  * Called in the close path to quiesce the conn
1505  */
1506 void
1507 udp_quiesce_conn(conn_t *connp)
1508 {
1509 	udp_t	*udp = connp->conn_udp;
1510 
1511 	if (cl_inet_unbind != NULL && udp->udp_state == TS_IDLE) {
1512 		/*
1513 		 * Running in cluster mode - register unbind information
1514 		 */
1515 		if (udp->udp_ipversion == IPV4_VERSION) {
1516 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET,
1517 			    (uint8_t *)(&(V4_PART_OF_V6(udp->udp_v6src))),
1518 			    (in_port_t)udp->udp_port);
1519 		} else {
1520 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET6,
1521 			    (uint8_t *)(&(udp->udp_v6src)),
1522 			    (in_port_t)udp->udp_port);
1523 		}
1524 	}
1525 
1526 	udp_bind_hash_remove(udp, B_FALSE);
1527 
1528 }
1529 
1530 void
1531 udp_close_free(conn_t *connp)
1532 {
1533 	udp_t *udp = connp->conn_udp;
1534 
1535 	/* If there are any options associated with the stream, free them. */
1536 	if (udp->udp_ip_snd_options != NULL) {
1537 		mi_free((char *)udp->udp_ip_snd_options);
1538 		udp->udp_ip_snd_options = NULL;
1539 		udp->udp_ip_snd_options_len = 0;
1540 	}
1541 
1542 	if (udp->udp_ip_rcv_options != NULL) {
1543 		mi_free((char *)udp->udp_ip_rcv_options);
1544 		udp->udp_ip_rcv_options = NULL;
1545 		udp->udp_ip_rcv_options_len = 0;
1546 	}
1547 
1548 	/* Free memory associated with sticky options */
1549 	if (udp->udp_sticky_hdrs_len != 0) {
1550 		kmem_free(udp->udp_sticky_hdrs,
1551 		    udp->udp_sticky_hdrs_len);
1552 		udp->udp_sticky_hdrs = NULL;
1553 		udp->udp_sticky_hdrs_len = 0;
1554 	}
1555 
1556 	ip6_pkt_free(&udp->udp_sticky_ipp);
1557 
1558 	/*
1559 	 * Clear any fields which the kmem_cache constructor clears.
1560 	 * Only udp_connp needs to be preserved.
1561 	 * TBD: We should make this more efficient to avoid clearing
1562 	 * everything.
1563 	 */
1564 	ASSERT(udp->udp_connp == connp);
1565 	bzero(udp, sizeof (udp_t));
1566 	udp->udp_connp = connp;
1567 }
1568 
1569 /*
1570  * This routine handles each T_DISCON_REQ message passed to udp
1571  * as an indicating that UDP is no longer connected. This results
1572  * in sending a T_BIND_REQ to IP to restore the binding to just
1573  * the local address/port.
1574  *
1575  * This routine sends down a T_BIND_REQ to IP with the following mblks:
1576  *	T_BIND_REQ	- specifying just the local address/port
1577  *	T_OK_ACK	- for the T_DISCON_REQ
1578  *
1579  * The disconnect completes in udp_bind_result.
1580  * When a T_BIND_ACK is received the appended T_OK_ACK is sent to the TPI user.
1581  * Should udp_bind_result receive T_ERROR_ACK for the T_BIND_REQ it will
1582  * convert it to an error ack for the appropriate primitive.
1583  */
1584 static void
1585 udp_disconnect(queue_t *q, mblk_t *mp)
1586 {
1587 	udp_t	*udp;
1588 	mblk_t	*mp1;
1589 	udp_fanout_t *udpf;
1590 	udp_stack_t *us;
1591 	conn_t	*connp = Q_TO_CONN(q);
1592 
1593 	udp = connp->conn_udp;
1594 	us = udp->udp_us;
1595 	rw_enter(&udp->udp_rwlock, RW_WRITER);
1596 	if (udp->udp_state != TS_DATA_XFER || udp->udp_pending_op != -1) {
1597 		rw_exit(&udp->udp_rwlock);
1598 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1599 		    "udp_disconnect: bad state, %u", udp->udp_state);
1600 		udp_err_ack(q, mp, TOUTSTATE, 0);
1601 		return;
1602 	}
1603 	udp->udp_pending_op = T_DISCON_REQ;
1604 	udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
1605 	    us->us_bind_fanout_size)];
1606 	mutex_enter(&udpf->uf_lock);
1607 	udp->udp_v6src = udp->udp_bound_v6src;
1608 	udp->udp_state = TS_IDLE;
1609 	mutex_exit(&udpf->uf_lock);
1610 
1611 	/*
1612 	 * Send down bind to IP to remove the full binding and revert
1613 	 * to the local address binding.
1614 	 */
1615 	if (udp->udp_family == AF_INET)
1616 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin_t));
1617 	else
1618 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin6_t));
1619 	if (mp1 == NULL) {
1620 		udp->udp_pending_op = -1;
1621 		rw_exit(&udp->udp_rwlock);
1622 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1623 		return;
1624 	}
1625 	mp = mi_tpi_ok_ack_alloc(mp);
1626 	if (mp == NULL) {
1627 		/* Unable to reuse the T_DISCON_REQ for the ack. */
1628 		udp->udp_pending_op = -1;
1629 		rw_exit(&udp->udp_rwlock);
1630 		udp_err_ack_prim(q, mp1, T_DISCON_REQ, TSYSERR, ENOMEM);
1631 		return;
1632 	}
1633 
1634 	if (udp->udp_family == AF_INET6) {
1635 		int error;
1636 
1637 		/* Rebuild the header template */
1638 		error = udp_build_hdrs(udp);
1639 		if (error != 0) {
1640 			udp->udp_pending_op = -1;
1641 			rw_exit(&udp->udp_rwlock);
1642 			udp_err_ack_prim(q, mp, T_DISCON_REQ, TSYSERR, error);
1643 			freemsg(mp1);
1644 			return;
1645 		}
1646 	}
1647 
1648 	rw_exit(&udp->udp_rwlock);
1649 	/* Append the T_OK_ACK to the T_BIND_REQ for udp_bind_ack */
1650 	linkb(mp1, mp);
1651 
1652 	if (udp->udp_family == AF_INET6)
1653 		mp1 = ip_bind_v6(q, mp1, connp, NULL);
1654 	else
1655 		mp1 = ip_bind_v4(q, mp1, connp);
1656 
1657 	/* The above return NULL if the bind needs to be deferred */
1658 	if (mp1 != NULL)
1659 		udp_bind_result(connp, mp1);
1660 	else
1661 		CONN_INC_REF(connp);
1662 }
1663 
1664 /* This routine creates a T_ERROR_ACK message and passes it upstream. */
1665 static void
1666 udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error)
1667 {
1668 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
1669 		qreply(q, mp);
1670 }
1671 
1672 /* Shorthand to generate and send TPI error acks to our client */
1673 static void
1674 udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, t_scalar_t t_error,
1675     int sys_error)
1676 {
1677 	struct T_error_ack	*teackp;
1678 
1679 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
1680 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
1681 		teackp = (struct T_error_ack *)mp->b_rptr;
1682 		teackp->ERROR_prim = primitive;
1683 		teackp->TLI_error = t_error;
1684 		teackp->UNIX_error = sys_error;
1685 		qreply(q, mp);
1686 	}
1687 }
1688 
1689 /*ARGSUSED*/
1690 static int
1691 udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
1692 {
1693 	int i;
1694 	udp_t		*udp = Q_TO_UDP(q);
1695 	udp_stack_t *us = udp->udp_us;
1696 
1697 	for (i = 0; i < us->us_num_epriv_ports; i++) {
1698 		if (us->us_epriv_ports[i] != 0)
1699 			(void) mi_mpprintf(mp, "%d ", us->us_epriv_ports[i]);
1700 	}
1701 	return (0);
1702 }
1703 
1704 /* ARGSUSED */
1705 static int
1706 udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
1707     cred_t *cr)
1708 {
1709 	long	new_value;
1710 	int	i;
1711 	udp_t		*udp = Q_TO_UDP(q);
1712 	udp_stack_t *us = udp->udp_us;
1713 
1714 	/*
1715 	 * Fail the request if the new value does not lie within the
1716 	 * port number limits.
1717 	 */
1718 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
1719 	    new_value <= 0 || new_value >= 65536) {
1720 		return (EINVAL);
1721 	}
1722 
1723 	/* Check if the value is already in the list */
1724 	for (i = 0; i < us->us_num_epriv_ports; i++) {
1725 		if (new_value == us->us_epriv_ports[i]) {
1726 			return (EEXIST);
1727 		}
1728 	}
1729 	/* Find an empty slot */
1730 	for (i = 0; i < us->us_num_epriv_ports; i++) {
1731 		if (us->us_epriv_ports[i] == 0)
1732 			break;
1733 	}
1734 	if (i == us->us_num_epriv_ports) {
1735 		return (EOVERFLOW);
1736 	}
1737 
1738 	/* Set the new value */
1739 	us->us_epriv_ports[i] = (in_port_t)new_value;
1740 	return (0);
1741 }
1742 
1743 /* ARGSUSED */
1744 static int
1745 udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
1746     cred_t *cr)
1747 {
1748 	long	new_value;
1749 	int	i;
1750 	udp_t		*udp = Q_TO_UDP(q);
1751 	udp_stack_t *us = udp->udp_us;
1752 
1753 	/*
1754 	 * Fail the request if the new value does not lie within the
1755 	 * port number limits.
1756 	 */
1757 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
1758 	    new_value <= 0 || new_value >= 65536) {
1759 		return (EINVAL);
1760 	}
1761 
1762 	/* Check that the value is already in the list */
1763 	for (i = 0; i < us->us_num_epriv_ports; i++) {
1764 		if (us->us_epriv_ports[i] == new_value)
1765 			break;
1766 	}
1767 	if (i == us->us_num_epriv_ports) {
1768 		return (ESRCH);
1769 	}
1770 
1771 	/* Clear the value */
1772 	us->us_epriv_ports[i] = 0;
1773 	return (0);
1774 }
1775 
1776 /* At minimum we need 4 bytes of UDP header */
1777 #define	ICMP_MIN_UDP_HDR	4
1778 
1779 /*
1780  * udp_icmp_error is called by udp_input to process ICMP msgs. passed up by IP.
1781  * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
1782  * Assumes that IP has pulled up everything up to and including the ICMP header.
1783  */
1784 static void
1785 udp_icmp_error(queue_t *q, mblk_t *mp)
1786 {
1787 	icmph_t *icmph;
1788 	ipha_t	*ipha;
1789 	int	iph_hdr_length;
1790 	udpha_t	*udpha;
1791 	sin_t	sin;
1792 	sin6_t	sin6;
1793 	mblk_t	*mp1;
1794 	int	error = 0;
1795 	udp_t	*udp = Q_TO_UDP(q);
1796 
1797 	ipha = (ipha_t *)mp->b_rptr;
1798 
1799 	ASSERT(OK_32PTR(mp->b_rptr));
1800 
1801 	if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
1802 		ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
1803 		udp_icmp_error_ipv6(q, mp);
1804 		return;
1805 	}
1806 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
1807 
1808 	/* Skip past the outer IP and ICMP headers */
1809 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
1810 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
1811 	ipha = (ipha_t *)&icmph[1];
1812 
1813 	/* Skip past the inner IP and find the ULP header */
1814 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
1815 	udpha = (udpha_t *)((char *)ipha + iph_hdr_length);
1816 
1817 	switch (icmph->icmph_type) {
1818 	case ICMP_DEST_UNREACHABLE:
1819 		switch (icmph->icmph_code) {
1820 		case ICMP_FRAGMENTATION_NEEDED:
1821 			/*
1822 			 * IP has already adjusted the path MTU.
1823 			 */
1824 			break;
1825 		case ICMP_PORT_UNREACHABLE:
1826 		case ICMP_PROTOCOL_UNREACHABLE:
1827 			error = ECONNREFUSED;
1828 			break;
1829 		default:
1830 			/* Transient errors */
1831 			break;
1832 		}
1833 		break;
1834 	default:
1835 		/* Transient errors */
1836 		break;
1837 	}
1838 	if (error == 0) {
1839 		freemsg(mp);
1840 		return;
1841 	}
1842 
1843 	/*
1844 	 * Deliver T_UDERROR_IND when the application has asked for it.
1845 	 * The socket layer enables this automatically when connected.
1846 	 */
1847 	if (!udp->udp_dgram_errind) {
1848 		freemsg(mp);
1849 		return;
1850 	}
1851 
1852 	switch (udp->udp_family) {
1853 	case AF_INET:
1854 		sin = sin_null;
1855 		sin.sin_family = AF_INET;
1856 		sin.sin_addr.s_addr = ipha->ipha_dst;
1857 		sin.sin_port = udpha->uha_dst_port;
1858 		mp1 = mi_tpi_uderror_ind((char *)&sin, sizeof (sin_t), NULL, 0,
1859 		    error);
1860 		break;
1861 	case AF_INET6:
1862 		sin6 = sin6_null;
1863 		sin6.sin6_family = AF_INET6;
1864 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &sin6.sin6_addr);
1865 		sin6.sin6_port = udpha->uha_dst_port;
1866 
1867 		mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t),
1868 		    NULL, 0, error);
1869 		break;
1870 	}
1871 	if (mp1)
1872 		putnext(q, mp1);
1873 	freemsg(mp);
1874 }
1875 
1876 /*
1877  * udp_icmp_error_ipv6 is called by udp_icmp_error to process ICMP for IPv6.
1878  * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
1879  * Assumes that IP has pulled up all the extension headers as well as the
1880  * ICMPv6 header.
1881  */
1882 static void
1883 udp_icmp_error_ipv6(queue_t *q, mblk_t *mp)
1884 {
1885 	icmp6_t		*icmp6;
1886 	ip6_t		*ip6h, *outer_ip6h;
1887 	uint16_t	iph_hdr_length;
1888 	uint8_t		*nexthdrp;
1889 	udpha_t		*udpha;
1890 	sin6_t		sin6;
1891 	mblk_t		*mp1;
1892 	int		error = 0;
1893 	udp_t		*udp = Q_TO_UDP(q);
1894 	udp_stack_t	*us = udp->udp_us;
1895 
1896 	outer_ip6h = (ip6_t *)mp->b_rptr;
1897 	if (outer_ip6h->ip6_nxt != IPPROTO_ICMPV6)
1898 		iph_hdr_length = ip_hdr_length_v6(mp, outer_ip6h);
1899 	else
1900 		iph_hdr_length = IPV6_HDR_LEN;
1901 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
1902 	ip6h = (ip6_t *)&icmp6[1];
1903 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) {
1904 		freemsg(mp);
1905 		return;
1906 	}
1907 	udpha = (udpha_t *)((char *)ip6h + iph_hdr_length);
1908 
1909 	switch (icmp6->icmp6_type) {
1910 	case ICMP6_DST_UNREACH:
1911 		switch (icmp6->icmp6_code) {
1912 		case ICMP6_DST_UNREACH_NOPORT:
1913 			error = ECONNREFUSED;
1914 			break;
1915 		case ICMP6_DST_UNREACH_ADMIN:
1916 		case ICMP6_DST_UNREACH_NOROUTE:
1917 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
1918 		case ICMP6_DST_UNREACH_ADDR:
1919 			/* Transient errors */
1920 			break;
1921 		default:
1922 			break;
1923 		}
1924 		break;
1925 	case ICMP6_PACKET_TOO_BIG: {
1926 		struct T_unitdata_ind	*tudi;
1927 		struct T_opthdr		*toh;
1928 		size_t			udi_size;
1929 		mblk_t			*newmp;
1930 		t_scalar_t		opt_length = sizeof (struct T_opthdr) +
1931 		    sizeof (struct ip6_mtuinfo);
1932 		sin6_t			*sin6;
1933 		struct ip6_mtuinfo	*mtuinfo;
1934 
1935 		/*
1936 		 * If the application has requested to receive path mtu
1937 		 * information, send up an empty message containing an
1938 		 * IPV6_PATHMTU ancillary data item.
1939 		 */
1940 		if (!udp->udp_ipv6_recvpathmtu)
1941 			break;
1942 
1943 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t) +
1944 		    opt_length;
1945 		if ((newmp = allocb(udi_size, BPRI_MED)) == NULL) {
1946 			BUMP_MIB(&us->us_udp_mib, udpInErrors);
1947 			break;
1948 		}
1949 
1950 		/*
1951 		 * newmp->b_cont is left to NULL on purpose.  This is an
1952 		 * empty message containing only ancillary data.
1953 		 */
1954 		newmp->b_datap->db_type = M_PROTO;
1955 		tudi = (struct T_unitdata_ind *)newmp->b_rptr;
1956 		newmp->b_wptr = (uchar_t *)tudi + udi_size;
1957 		tudi->PRIM_type = T_UNITDATA_IND;
1958 		tudi->SRC_length = sizeof (sin6_t);
1959 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
1960 		tudi->OPT_offset = tudi->SRC_offset + sizeof (sin6_t);
1961 		tudi->OPT_length = opt_length;
1962 
1963 		sin6 = (sin6_t *)&tudi[1];
1964 		bzero(sin6, sizeof (sin6_t));
1965 		sin6->sin6_family = AF_INET6;
1966 		sin6->sin6_addr = udp->udp_v6dst;
1967 
1968 		toh = (struct T_opthdr *)&sin6[1];
1969 		toh->level = IPPROTO_IPV6;
1970 		toh->name = IPV6_PATHMTU;
1971 		toh->len = opt_length;
1972 		toh->status = 0;
1973 
1974 		mtuinfo = (struct ip6_mtuinfo *)&toh[1];
1975 		bzero(mtuinfo, sizeof (struct ip6_mtuinfo));
1976 		mtuinfo->ip6m_addr.sin6_family = AF_INET6;
1977 		mtuinfo->ip6m_addr.sin6_addr = ip6h->ip6_dst;
1978 		mtuinfo->ip6m_mtu = icmp6->icmp6_mtu;
1979 		/*
1980 		 * We've consumed everything we need from the original
1981 		 * message.  Free it, then send our empty message.
1982 		 */
1983 		freemsg(mp);
1984 		putnext(q, newmp);
1985 		return;
1986 	}
1987 	case ICMP6_TIME_EXCEEDED:
1988 		/* Transient errors */
1989 		break;
1990 	case ICMP6_PARAM_PROB:
1991 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
1992 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
1993 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
1994 		    (uchar_t *)nexthdrp) {
1995 			error = ECONNREFUSED;
1996 			break;
1997 		}
1998 		break;
1999 	}
2000 	if (error == 0) {
2001 		freemsg(mp);
2002 		return;
2003 	}
2004 
2005 	/*
2006 	 * Deliver T_UDERROR_IND when the application has asked for it.
2007 	 * The socket layer enables this automatically when connected.
2008 	 */
2009 	if (!udp->udp_dgram_errind) {
2010 		freemsg(mp);
2011 		return;
2012 	}
2013 
2014 	sin6 = sin6_null;
2015 	sin6.sin6_family = AF_INET6;
2016 	sin6.sin6_addr = ip6h->ip6_dst;
2017 	sin6.sin6_port = udpha->uha_dst_port;
2018 	sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
2019 
2020 	mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), NULL, 0,
2021 	    error);
2022 	if (mp1)
2023 		putnext(q, mp1);
2024 	freemsg(mp);
2025 }
2026 
2027 /*
2028  * This routine responds to T_ADDR_REQ messages.  It is called by udp_wput.
2029  * The local address is filled in if endpoint is bound. The remote address
2030  * is filled in if remote address has been precified ("connected endpoint")
2031  * (The concept of connected CLTS sockets is alien to published TPI
2032  *  but we support it anyway).
2033  */
2034 static void
2035 udp_addr_req(queue_t *q, mblk_t *mp)
2036 {
2037 	sin_t	*sin;
2038 	sin6_t	*sin6;
2039 	mblk_t	*ackmp;
2040 	struct T_addr_ack *taa;
2041 	udp_t	*udp = Q_TO_UDP(q);
2042 
2043 	/* Make it large enough for worst case */
2044 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
2045 	    2 * sizeof (sin6_t), 1);
2046 	if (ackmp == NULL) {
2047 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
2048 		return;
2049 	}
2050 	taa = (struct T_addr_ack *)ackmp->b_rptr;
2051 
2052 	bzero(taa, sizeof (struct T_addr_ack));
2053 	ackmp->b_wptr = (uchar_t *)&taa[1];
2054 
2055 	taa->PRIM_type = T_ADDR_ACK;
2056 	ackmp->b_datap->db_type = M_PCPROTO;
2057 	rw_enter(&udp->udp_rwlock, RW_READER);
2058 	/*
2059 	 * Note: Following code assumes 32 bit alignment of basic
2060 	 * data structures like sin_t and struct T_addr_ack.
2061 	 */
2062 	if (udp->udp_state != TS_UNBND) {
2063 		/*
2064 		 * Fill in local address first
2065 		 */
2066 		taa->LOCADDR_offset = sizeof (*taa);
2067 		if (udp->udp_family == AF_INET) {
2068 			taa->LOCADDR_length = sizeof (sin_t);
2069 			sin = (sin_t *)&taa[1];
2070 			/* Fill zeroes and then initialize non-zero fields */
2071 			*sin = sin_null;
2072 			sin->sin_family = AF_INET;
2073 			if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) &&
2074 			    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
2075 				IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src,
2076 				    sin->sin_addr.s_addr);
2077 			} else {
2078 				/*
2079 				 * INADDR_ANY
2080 				 * udp_v6src is not set, we might be bound to
2081 				 * broadcast/multicast. Use udp_bound_v6src as
2082 				 * local address instead (that could
2083 				 * also still be INADDR_ANY)
2084 				 */
2085 				IN6_V4MAPPED_TO_IPADDR(&udp->udp_bound_v6src,
2086 				    sin->sin_addr.s_addr);
2087 			}
2088 			sin->sin_port = udp->udp_port;
2089 			ackmp->b_wptr = (uchar_t *)&sin[1];
2090 			if (udp->udp_state == TS_DATA_XFER) {
2091 				/*
2092 				 * connected, fill remote address too
2093 				 */
2094 				taa->REMADDR_length = sizeof (sin_t);
2095 				/* assumed 32-bit alignment */
2096 				taa->REMADDR_offset = taa->LOCADDR_offset +
2097 				    taa->LOCADDR_length;
2098 
2099 				sin = (sin_t *)(ackmp->b_rptr +
2100 				    taa->REMADDR_offset);
2101 				/* initialize */
2102 				*sin = sin_null;
2103 				sin->sin_family = AF_INET;
2104 				sin->sin_addr.s_addr =
2105 				    V4_PART_OF_V6(udp->udp_v6dst);
2106 				sin->sin_port = udp->udp_dstport;
2107 				ackmp->b_wptr = (uchar_t *)&sin[1];
2108 			}
2109 		} else {
2110 			taa->LOCADDR_length = sizeof (sin6_t);
2111 			sin6 = (sin6_t *)&taa[1];
2112 			/* Fill zeroes and then initialize non-zero fields */
2113 			*sin6 = sin6_null;
2114 			sin6->sin6_family = AF_INET6;
2115 			if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
2116 				sin6->sin6_addr = udp->udp_v6src;
2117 			} else {
2118 				/*
2119 				 * UNSPECIFIED
2120 				 * udp_v6src is not set, we might be bound to
2121 				 * broadcast/multicast. Use udp_bound_v6src as
2122 				 * local address instead (that could
2123 				 * also still be UNSPECIFIED)
2124 				 */
2125 				sin6->sin6_addr =
2126 				    udp->udp_bound_v6src;
2127 			}
2128 			sin6->sin6_port = udp->udp_port;
2129 			ackmp->b_wptr = (uchar_t *)&sin6[1];
2130 			if (udp->udp_state == TS_DATA_XFER) {
2131 				/*
2132 				 * connected, fill remote address too
2133 				 */
2134 				taa->REMADDR_length = sizeof (sin6_t);
2135 				/* assumed 32-bit alignment */
2136 				taa->REMADDR_offset = taa->LOCADDR_offset +
2137 				    taa->LOCADDR_length;
2138 
2139 				sin6 = (sin6_t *)(ackmp->b_rptr +
2140 				    taa->REMADDR_offset);
2141 				/* initialize */
2142 				*sin6 = sin6_null;
2143 				sin6->sin6_family = AF_INET6;
2144 				sin6->sin6_addr = udp->udp_v6dst;
2145 				sin6->sin6_port =  udp->udp_dstport;
2146 				ackmp->b_wptr = (uchar_t *)&sin6[1];
2147 			}
2148 			ackmp->b_wptr = (uchar_t *)&sin6[1];
2149 		}
2150 	}
2151 	rw_exit(&udp->udp_rwlock);
2152 	ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim);
2153 	qreply(q, ackmp);
2154 }
2155 
2156 static void
2157 udp_copy_info(struct T_info_ack *tap, udp_t *udp)
2158 {
2159 	if (udp->udp_family == AF_INET) {
2160 		*tap = udp_g_t_info_ack_ipv4;
2161 	} else {
2162 		*tap = udp_g_t_info_ack_ipv6;
2163 	}
2164 	tap->CURRENT_state = udp->udp_state;
2165 	tap->OPT_size = udp_max_optsize;
2166 }
2167 
2168 /*
2169  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
2170  * udp_wput.  Much of the T_CAPABILITY_ACK information is copied from
2171  * udp_g_t_info_ack.  The current state of the stream is copied from
2172  * udp_state.
2173  */
2174 static void
2175 udp_capability_req(queue_t *q, mblk_t *mp)
2176 {
2177 	t_uscalar_t		cap_bits1;
2178 	struct T_capability_ack	*tcap;
2179 	udp_t	*udp = Q_TO_UDP(q);
2180 
2181 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
2182 
2183 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
2184 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
2185 	if (!mp)
2186 		return;
2187 
2188 	tcap = (struct T_capability_ack *)mp->b_rptr;
2189 	tcap->CAP_bits1 = 0;
2190 
2191 	if (cap_bits1 & TC1_INFO) {
2192 		udp_copy_info(&tcap->INFO_ack, udp);
2193 		tcap->CAP_bits1 |= TC1_INFO;
2194 	}
2195 
2196 	qreply(q, mp);
2197 }
2198 
2199 /*
2200  * This routine responds to T_INFO_REQ messages.  It is called by udp_wput.
2201  * Most of the T_INFO_ACK information is copied from udp_g_t_info_ack.
2202  * The current state of the stream is copied from udp_state.
2203  */
2204 static void
2205 udp_info_req(queue_t *q, mblk_t *mp)
2206 {
2207 	udp_t *udp = Q_TO_UDP(q);
2208 
2209 	/* Create a T_INFO_ACK message. */
2210 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
2211 	    T_INFO_ACK);
2212 	if (!mp)
2213 		return;
2214 	udp_copy_info((struct T_info_ack *)mp->b_rptr, udp);
2215 	qreply(q, mp);
2216 }
2217 
2218 /*
2219  * IP recognizes seven kinds of bind requests:
2220  *
2221  * - A zero-length address binds only to the protocol number.
2222  *
2223  * - A 4-byte address is treated as a request to
2224  * validate that the address is a valid local IPv4
2225  * address, appropriate for an application to bind to.
2226  * IP does the verification, but does not make any note
2227  * of the address at this time.
2228  *
2229  * - A 16-byte address contains is treated as a request
2230  * to validate a local IPv6 address, as the 4-byte
2231  * address case above.
2232  *
2233  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
2234  * use it for the inbound fanout of packets.
2235  *
2236  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
2237  * use it for the inbound fanout of packets.
2238  *
2239  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
2240  * information consisting of local and remote addresses
2241  * and ports.  In this case, the addresses are both
2242  * validated as appropriate for this operation, and, if
2243  * so, the information is retained for use in the
2244  * inbound fanout.
2245  *
2246  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
2247  * fanout information, like the 12-byte case above.
2248  *
2249  * IP will also fill in the IRE request mblk with information
2250  * regarding our peer.  In all cases, we notify IP of our protocol
2251  * type by appending a single protocol byte to the bind request.
2252  */
2253 static mblk_t *
2254 udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, t_scalar_t addr_length)
2255 {
2256 	char	*cp;
2257 	mblk_t	*mp;
2258 	struct T_bind_req *tbr;
2259 	ipa_conn_t	*ac;
2260 	ipa6_conn_t	*ac6;
2261 	sin_t		*sin;
2262 	sin6_t		*sin6;
2263 
2264 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
2265 	ASSERT(RW_LOCK_HELD(&udp->udp_rwlock));
2266 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
2267 	if (!mp)
2268 		return (mp);
2269 	mp->b_datap->db_type = M_PROTO;
2270 	tbr = (struct T_bind_req *)mp->b_rptr;
2271 	tbr->PRIM_type = bind_prim;
2272 	tbr->ADDR_offset = sizeof (*tbr);
2273 	tbr->CONIND_number = 0;
2274 	tbr->ADDR_length = addr_length;
2275 	cp = (char *)&tbr[1];
2276 	switch (addr_length) {
2277 	case sizeof (ipa_conn_t):
2278 		ASSERT(udp->udp_family == AF_INET);
2279 		/* Append a request for an IRE */
2280 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2281 		if (!mp->b_cont) {
2282 			freemsg(mp);
2283 			return (NULL);
2284 		}
2285 		mp->b_cont->b_wptr += sizeof (ire_t);
2286 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2287 
2288 		/* cp known to be 32 bit aligned */
2289 		ac = (ipa_conn_t *)cp;
2290 		ac->ac_laddr = V4_PART_OF_V6(udp->udp_v6src);
2291 		ac->ac_faddr = V4_PART_OF_V6(udp->udp_v6dst);
2292 		ac->ac_fport = udp->udp_dstport;
2293 		ac->ac_lport = udp->udp_port;
2294 		break;
2295 
2296 	case sizeof (ipa6_conn_t):
2297 		ASSERT(udp->udp_family == AF_INET6);
2298 		/* Append a request for an IRE */
2299 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2300 		if (!mp->b_cont) {
2301 			freemsg(mp);
2302 			return (NULL);
2303 		}
2304 		mp->b_cont->b_wptr += sizeof (ire_t);
2305 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2306 
2307 		/* cp known to be 32 bit aligned */
2308 		ac6 = (ipa6_conn_t *)cp;
2309 		ac6->ac6_laddr = udp->udp_v6src;
2310 		ac6->ac6_faddr = udp->udp_v6dst;
2311 		ac6->ac6_fport = udp->udp_dstport;
2312 		ac6->ac6_lport = udp->udp_port;
2313 		break;
2314 
2315 	case sizeof (sin_t):
2316 		ASSERT(udp->udp_family == AF_INET);
2317 		/* Append a request for an IRE */
2318 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2319 		if (!mp->b_cont) {
2320 			freemsg(mp);
2321 			return (NULL);
2322 		}
2323 		mp->b_cont->b_wptr += sizeof (ire_t);
2324 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2325 
2326 		sin = (sin_t *)cp;
2327 		*sin = sin_null;
2328 		sin->sin_family = AF_INET;
2329 		sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_bound_v6src);
2330 		sin->sin_port = udp->udp_port;
2331 		break;
2332 
2333 	case sizeof (sin6_t):
2334 		ASSERT(udp->udp_family == AF_INET6);
2335 		/* Append a request for an IRE */
2336 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2337 		if (!mp->b_cont) {
2338 			freemsg(mp);
2339 			return (NULL);
2340 		}
2341 		mp->b_cont->b_wptr += sizeof (ire_t);
2342 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2343 
2344 		sin6 = (sin6_t *)cp;
2345 		*sin6 = sin6_null;
2346 		sin6->sin6_family = AF_INET6;
2347 		sin6->sin6_addr = udp->udp_bound_v6src;
2348 		sin6->sin6_port = udp->udp_port;
2349 		break;
2350 	}
2351 	/* Add protocol number to end */
2352 	cp[addr_length] = (char)IPPROTO_UDP;
2353 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
2354 	return (mp);
2355 }
2356 
2357 /* For /dev/udp aka AF_INET open */
2358 static int
2359 udp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2360 {
2361 	return (udp_open(q, devp, flag, sflag, credp, B_FALSE));
2362 }
2363 
2364 /* For /dev/udp6 aka AF_INET6 open */
2365 static int
2366 udp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2367 {
2368 	return (udp_open(q, devp, flag, sflag, credp, B_TRUE));
2369 }
2370 
2371 /*
2372  * This is the open routine for udp.  It allocates a udp_t structure for
2373  * the stream and, on the first open of the module, creates an ND table.
2374  */
2375 /*ARGSUSED2*/
2376 static int
2377 udp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
2378     boolean_t isv6)
2379 {
2380 	int		err;
2381 	udp_t		*udp;
2382 	conn_t		*connp;
2383 	dev_t		conn_dev;
2384 	zoneid_t	zoneid;
2385 	netstack_t	*ns;
2386 	udp_stack_t	*us;
2387 	vmem_t		*minor_arena;
2388 
2389 	TRACE_1(TR_FAC_UDP, TR_UDP_OPEN, "udp_open: q %p", q);
2390 
2391 	/* If the stream is already open, return immediately. */
2392 	if (q->q_ptr != NULL)
2393 		return (0);
2394 
2395 	if (sflag == MODOPEN)
2396 		return (EINVAL);
2397 
2398 	ns = netstack_find_by_cred(credp);
2399 	ASSERT(ns != NULL);
2400 	us = ns->netstack_udp;
2401 	ASSERT(us != NULL);
2402 
2403 	/*
2404 	 * For exclusive stacks we set the zoneid to zero
2405 	 * to make UDP operate as if in the global zone.
2406 	 */
2407 	if (ns->netstack_stackid != GLOBAL_NETSTACKID)
2408 		zoneid = GLOBAL_ZONEID;
2409 	else
2410 		zoneid = crgetzoneid(credp);
2411 
2412 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
2413 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
2414 		minor_arena = ip_minor_arena_la;
2415 	} else {
2416 		/*
2417 		 * Either minor numbers in the large arena were exhausted
2418 		 * or a non socket application is doing the open.
2419 		 * Try to allocate from the small arena.
2420 		 */
2421 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
2422 			netstack_rele(ns);
2423 			return (EBUSY);
2424 		}
2425 		minor_arena = ip_minor_arena_sa;
2426 	}
2427 
2428 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
2429 
2430 	connp = ipcl_conn_create(IPCL_UDPCONN, KM_SLEEP, ns);
2431 	connp->conn_dev = conn_dev;
2432 	connp->conn_minor_arena = minor_arena;
2433 	udp = connp->conn_udp;
2434 
2435 	/*
2436 	 * ipcl_conn_create did a netstack_hold. Undo the hold that was
2437 	 * done by netstack_find_by_cred()
2438 	 */
2439 	netstack_rele(ns);
2440 
2441 	/*
2442 	 * Initialize the udp_t structure for this stream.
2443 	 */
2444 	q->q_ptr = connp;
2445 	WR(q)->q_ptr = connp;
2446 	connp->conn_rq = q;
2447 	connp->conn_wq = WR(q);
2448 
2449 	rw_enter(&udp->udp_rwlock, RW_WRITER);
2450 	ASSERT(connp->conn_ulp == IPPROTO_UDP);
2451 	ASSERT(connp->conn_udp == udp);
2452 	ASSERT(udp->udp_connp == connp);
2453 
2454 	/* Set the initial state of the stream and the privilege status. */
2455 	udp->udp_state = TS_UNBND;
2456 	if (isv6) {
2457 		udp->udp_family = AF_INET6;
2458 		udp->udp_ipversion = IPV6_VERSION;
2459 		udp->udp_max_hdr_len = IPV6_HDR_LEN + UDPH_SIZE;
2460 		udp->udp_ttl = us->us_ipv6_hoplimit;
2461 		connp->conn_af_isv6 = B_TRUE;
2462 		connp->conn_flags |= IPCL_ISV6;
2463 	} else {
2464 		udp->udp_family = AF_INET;
2465 		udp->udp_ipversion = IPV4_VERSION;
2466 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE;
2467 		udp->udp_ttl = us->us_ipv4_ttl;
2468 		connp->conn_af_isv6 = B_FALSE;
2469 		connp->conn_flags &= ~IPCL_ISV6;
2470 	}
2471 
2472 	udp->udp_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2473 	udp->udp_pending_op = -1;
2474 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
2475 	connp->conn_zoneid = zoneid;
2476 
2477 	udp->udp_open_time = lbolt64;
2478 	udp->udp_open_pid = curproc->p_pid;
2479 
2480 	/*
2481 	 * If the caller has the process-wide flag set, then default to MAC
2482 	 * exempt mode.  This allows read-down to unlabeled hosts.
2483 	 */
2484 	if (getpflags(NET_MAC_AWARE, credp) != 0)
2485 		connp->conn_mac_exempt = B_TRUE;
2486 
2487 	if (flag & SO_SOCKSTR) {
2488 		connp->conn_flags |= IPCL_SOCKET;
2489 		udp->udp_issocket = B_TRUE;
2490 		udp->udp_direct_sockfs = B_TRUE;
2491 	}
2492 
2493 	connp->conn_ulp_labeled = is_system_labeled();
2494 
2495 	udp->udp_us = us;
2496 
2497 	q->q_hiwat = us->us_recv_hiwat;
2498 	WR(q)->q_hiwat = us->us_xmit_hiwat;
2499 	WR(q)->q_lowat = us->us_xmit_lowat;
2500 
2501 	connp->conn_recv = udp_input;
2502 	crhold(credp);
2503 	connp->conn_cred = credp;
2504 
2505 	mutex_enter(&connp->conn_lock);
2506 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2507 	mutex_exit(&connp->conn_lock);
2508 
2509 	qprocson(q);
2510 
2511 	if (udp->udp_family == AF_INET6) {
2512 		/* Build initial header template for transmit */
2513 		if ((err = udp_build_hdrs(udp)) != 0) {
2514 			rw_exit(&udp->udp_rwlock);
2515 			qprocsoff(q);
2516 			ipcl_conn_destroy(connp);
2517 			return (err);
2518 		}
2519 	}
2520 	rw_exit(&udp->udp_rwlock);
2521 
2522 	/* Set the Stream head write offset and high watermark. */
2523 	(void) mi_set_sth_wroff(q,
2524 	    udp->udp_max_hdr_len + us->us_wroff_extra);
2525 	(void) mi_set_sth_hiwat(q, udp_set_rcv_hiwat(udp, q->q_hiwat));
2526 
2527 	return (0);
2528 }
2529 
2530 /*
2531  * Which UDP options OK to set through T_UNITDATA_REQ...
2532  */
2533 /* ARGSUSED */
2534 static boolean_t
2535 udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name)
2536 {
2537 	return (B_TRUE);
2538 }
2539 
2540 /*
2541  * This routine gets default values of certain options whose default
2542  * values are maintained by protcol specific code
2543  */
2544 /* ARGSUSED */
2545 int
2546 udp_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
2547 {
2548 	udp_t		*udp = Q_TO_UDP(q);
2549 	udp_stack_t *us = udp->udp_us;
2550 	int *i1 = (int *)ptr;
2551 
2552 	switch (level) {
2553 	case IPPROTO_IP:
2554 		switch (name) {
2555 		case IP_MULTICAST_TTL:
2556 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL;
2557 			return (sizeof (uchar_t));
2558 		case IP_MULTICAST_LOOP:
2559 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP;
2560 			return (sizeof (uchar_t));
2561 		}
2562 		break;
2563 	case IPPROTO_IPV6:
2564 		switch (name) {
2565 		case IPV6_MULTICAST_HOPS:
2566 			*i1 = IP_DEFAULT_MULTICAST_TTL;
2567 			return (sizeof (int));
2568 		case IPV6_MULTICAST_LOOP:
2569 			*i1 = IP_DEFAULT_MULTICAST_LOOP;
2570 			return (sizeof (int));
2571 		case IPV6_UNICAST_HOPS:
2572 			*i1 = us->us_ipv6_hoplimit;
2573 			return (sizeof (int));
2574 		}
2575 		break;
2576 	}
2577 	return (-1);
2578 }
2579 
2580 /*
2581  * This routine retrieves the current status of socket options.
2582  * It returns the size of the option retrieved.
2583  */
2584 int
2585 udp_opt_get_locked(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
2586 {
2587 	int	*i1 = (int *)ptr;
2588 	conn_t	*connp;
2589 	udp_t	*udp;
2590 	ip6_pkt_t *ipp;
2591 	int	len;
2592 	udp_stack_t	*us;
2593 
2594 	connp = Q_TO_CONN(q);
2595 	udp = connp->conn_udp;
2596 	ipp = &udp->udp_sticky_ipp;
2597 	us = udp->udp_us;
2598 
2599 	switch (level) {
2600 	case SOL_SOCKET:
2601 		switch (name) {
2602 		case SO_DEBUG:
2603 			*i1 = udp->udp_debug;
2604 			break;	/* goto sizeof (int) option return */
2605 		case SO_REUSEADDR:
2606 			*i1 = udp->udp_reuseaddr;
2607 			break;	/* goto sizeof (int) option return */
2608 		case SO_TYPE:
2609 			*i1 = SOCK_DGRAM;
2610 			break;	/* goto sizeof (int) option return */
2611 
2612 		/*
2613 		 * The following three items are available here,
2614 		 * but are only meaningful to IP.
2615 		 */
2616 		case SO_DONTROUTE:
2617 			*i1 = udp->udp_dontroute;
2618 			break;	/* goto sizeof (int) option return */
2619 		case SO_USELOOPBACK:
2620 			*i1 = udp->udp_useloopback;
2621 			break;	/* goto sizeof (int) option return */
2622 		case SO_BROADCAST:
2623 			*i1 = udp->udp_broadcast;
2624 			break;	/* goto sizeof (int) option return */
2625 
2626 		case SO_SNDBUF:
2627 			*i1 = q->q_hiwat;
2628 			break;	/* goto sizeof (int) option return */
2629 		case SO_RCVBUF:
2630 			*i1 = RD(q)->q_hiwat;
2631 			break;	/* goto sizeof (int) option return */
2632 		case SO_DGRAM_ERRIND:
2633 			*i1 = udp->udp_dgram_errind;
2634 			break;	/* goto sizeof (int) option return */
2635 		case SO_RECVUCRED:
2636 			*i1 = udp->udp_recvucred;
2637 			break;	/* goto sizeof (int) option return */
2638 		case SO_TIMESTAMP:
2639 			*i1 = udp->udp_timestamp;
2640 			break;	/* goto sizeof (int) option return */
2641 		case SO_ANON_MLP:
2642 			*i1 = connp->conn_anon_mlp;
2643 			break;	/* goto sizeof (int) option return */
2644 		case SO_MAC_EXEMPT:
2645 			*i1 = connp->conn_mac_exempt;
2646 			break;	/* goto sizeof (int) option return */
2647 		case SO_ALLZONES:
2648 			*i1 = connp->conn_allzones;
2649 			break;	/* goto sizeof (int) option return */
2650 		case SO_EXCLBIND:
2651 			*i1 = udp->udp_exclbind ? SO_EXCLBIND : 0;
2652 			break;
2653 		case SO_PROTOTYPE:
2654 			*i1 = IPPROTO_UDP;
2655 			break;
2656 		case SO_DOMAIN:
2657 			*i1 = udp->udp_family;
2658 			break;
2659 		default:
2660 			return (-1);
2661 		}
2662 		break;
2663 	case IPPROTO_IP:
2664 		if (udp->udp_family != AF_INET)
2665 			return (-1);
2666 		switch (name) {
2667 		case IP_OPTIONS:
2668 		case T_IP_OPTIONS:
2669 			len = udp->udp_ip_rcv_options_len - udp->udp_label_len;
2670 			if (len > 0) {
2671 				bcopy(udp->udp_ip_rcv_options +
2672 				    udp->udp_label_len, ptr, len);
2673 			}
2674 			return (len);
2675 		case IP_TOS:
2676 		case T_IP_TOS:
2677 			*i1 = (int)udp->udp_type_of_service;
2678 			break;	/* goto sizeof (int) option return */
2679 		case IP_TTL:
2680 			*i1 = (int)udp->udp_ttl;
2681 			break;	/* goto sizeof (int) option return */
2682 		case IP_DHCPINIT_IF:
2683 			return (-EINVAL);
2684 		case IP_NEXTHOP:
2685 		case IP_RECVPKTINFO:
2686 			/*
2687 			 * This also handles IP_PKTINFO.
2688 			 * IP_PKTINFO and IP_RECVPKTINFO have the same value.
2689 			 * Differentiation is based on the size of the argument
2690 			 * passed in.
2691 			 * This option is handled in IP which will return an
2692 			 * error for IP_PKTINFO as it's not supported as a
2693 			 * sticky option.
2694 			 */
2695 			return (-EINVAL);
2696 		case IP_MULTICAST_IF:
2697 			/* 0 address if not set */
2698 			*(ipaddr_t *)ptr = udp->udp_multicast_if_addr;
2699 			return (sizeof (ipaddr_t));
2700 		case IP_MULTICAST_TTL:
2701 			*(uchar_t *)ptr = udp->udp_multicast_ttl;
2702 			return (sizeof (uchar_t));
2703 		case IP_MULTICAST_LOOP:
2704 			*ptr = connp->conn_multicast_loop;
2705 			return (sizeof (uint8_t));
2706 		case IP_RECVOPTS:
2707 			*i1 = udp->udp_recvopts;
2708 			break;	/* goto sizeof (int) option return */
2709 		case IP_RECVDSTADDR:
2710 			*i1 = udp->udp_recvdstaddr;
2711 			break;	/* goto sizeof (int) option return */
2712 		case IP_RECVIF:
2713 			*i1 = udp->udp_recvif;
2714 			break;	/* goto sizeof (int) option return */
2715 		case IP_RECVSLLA:
2716 			*i1 = udp->udp_recvslla;
2717 			break;	/* goto sizeof (int) option return */
2718 		case IP_RECVTTL:
2719 			*i1 = udp->udp_recvttl;
2720 			break;	/* goto sizeof (int) option return */
2721 		case IP_ADD_MEMBERSHIP:
2722 		case IP_DROP_MEMBERSHIP:
2723 		case IP_BLOCK_SOURCE:
2724 		case IP_UNBLOCK_SOURCE:
2725 		case IP_ADD_SOURCE_MEMBERSHIP:
2726 		case IP_DROP_SOURCE_MEMBERSHIP:
2727 		case MCAST_JOIN_GROUP:
2728 		case MCAST_LEAVE_GROUP:
2729 		case MCAST_BLOCK_SOURCE:
2730 		case MCAST_UNBLOCK_SOURCE:
2731 		case MCAST_JOIN_SOURCE_GROUP:
2732 		case MCAST_LEAVE_SOURCE_GROUP:
2733 		case IP_DONTFAILOVER_IF:
2734 			/* cannot "get" the value for these */
2735 			return (-1);
2736 		case IP_BOUND_IF:
2737 			/* Zero if not set */
2738 			*i1 = udp->udp_bound_if;
2739 			break;	/* goto sizeof (int) option return */
2740 		case IP_UNSPEC_SRC:
2741 			*i1 = udp->udp_unspec_source;
2742 			break;	/* goto sizeof (int) option return */
2743 		case IP_BROADCAST_TTL:
2744 			*(uchar_t *)ptr = connp->conn_broadcast_ttl;
2745 			return (sizeof (uchar_t));
2746 		default:
2747 			return (-1);
2748 		}
2749 		break;
2750 	case IPPROTO_IPV6:
2751 		if (udp->udp_family != AF_INET6)
2752 			return (-1);
2753 		switch (name) {
2754 		case IPV6_UNICAST_HOPS:
2755 			*i1 = (unsigned int)udp->udp_ttl;
2756 			break;	/* goto sizeof (int) option return */
2757 		case IPV6_MULTICAST_IF:
2758 			/* 0 index if not set */
2759 			*i1 = udp->udp_multicast_if_index;
2760 			break;	/* goto sizeof (int) option return */
2761 		case IPV6_MULTICAST_HOPS:
2762 			*i1 = udp->udp_multicast_ttl;
2763 			break;	/* goto sizeof (int) option return */
2764 		case IPV6_MULTICAST_LOOP:
2765 			*i1 = connp->conn_multicast_loop;
2766 			break;	/* goto sizeof (int) option return */
2767 		case IPV6_JOIN_GROUP:
2768 		case IPV6_LEAVE_GROUP:
2769 		case MCAST_JOIN_GROUP:
2770 		case MCAST_LEAVE_GROUP:
2771 		case MCAST_BLOCK_SOURCE:
2772 		case MCAST_UNBLOCK_SOURCE:
2773 		case MCAST_JOIN_SOURCE_GROUP:
2774 		case MCAST_LEAVE_SOURCE_GROUP:
2775 			/* cannot "get" the value for these */
2776 			return (-1);
2777 		case IPV6_BOUND_IF:
2778 			/* Zero if not set */
2779 			*i1 = udp->udp_bound_if;
2780 			break;	/* goto sizeof (int) option return */
2781 		case IPV6_UNSPEC_SRC:
2782 			*i1 = udp->udp_unspec_source;
2783 			break;	/* goto sizeof (int) option return */
2784 		case IPV6_RECVPKTINFO:
2785 			*i1 = udp->udp_ip_recvpktinfo;
2786 			break;	/* goto sizeof (int) option return */
2787 		case IPV6_RECVTCLASS:
2788 			*i1 = udp->udp_ipv6_recvtclass;
2789 			break;	/* goto sizeof (int) option return */
2790 		case IPV6_RECVPATHMTU:
2791 			*i1 = udp->udp_ipv6_recvpathmtu;
2792 			break;	/* goto sizeof (int) option return */
2793 		case IPV6_RECVHOPLIMIT:
2794 			*i1 = udp->udp_ipv6_recvhoplimit;
2795 			break;	/* goto sizeof (int) option return */
2796 		case IPV6_RECVHOPOPTS:
2797 			*i1 = udp->udp_ipv6_recvhopopts;
2798 			break;	/* goto sizeof (int) option return */
2799 		case IPV6_RECVDSTOPTS:
2800 			*i1 = udp->udp_ipv6_recvdstopts;
2801 			break;	/* goto sizeof (int) option return */
2802 		case _OLD_IPV6_RECVDSTOPTS:
2803 			*i1 = udp->udp_old_ipv6_recvdstopts;
2804 			break;	/* goto sizeof (int) option return */
2805 		case IPV6_RECVRTHDRDSTOPTS:
2806 			*i1 = udp->udp_ipv6_recvrthdrdstopts;
2807 			break;	/* goto sizeof (int) option return */
2808 		case IPV6_RECVRTHDR:
2809 			*i1 = udp->udp_ipv6_recvrthdr;
2810 			break;	/* goto sizeof (int) option return */
2811 		case IPV6_PKTINFO: {
2812 			/* XXX assumes that caller has room for max size! */
2813 			struct in6_pktinfo *pkti;
2814 
2815 			pkti = (struct in6_pktinfo *)ptr;
2816 			if (ipp->ipp_fields & IPPF_IFINDEX)
2817 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
2818 			else
2819 				pkti->ipi6_ifindex = 0;
2820 			if (ipp->ipp_fields & IPPF_ADDR)
2821 				pkti->ipi6_addr = ipp->ipp_addr;
2822 			else
2823 				pkti->ipi6_addr = ipv6_all_zeros;
2824 			return (sizeof (struct in6_pktinfo));
2825 		}
2826 		case IPV6_TCLASS:
2827 			if (ipp->ipp_fields & IPPF_TCLASS)
2828 				*i1 = ipp->ipp_tclass;
2829 			else
2830 				*i1 = IPV6_FLOW_TCLASS(
2831 				    IPV6_DEFAULT_VERS_AND_FLOW);
2832 			break;	/* goto sizeof (int) option return */
2833 		case IPV6_NEXTHOP: {
2834 			sin6_t *sin6 = (sin6_t *)ptr;
2835 
2836 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
2837 				return (0);
2838 			*sin6 = sin6_null;
2839 			sin6->sin6_family = AF_INET6;
2840 			sin6->sin6_addr = ipp->ipp_nexthop;
2841 			return (sizeof (sin6_t));
2842 		}
2843 		case IPV6_HOPOPTS:
2844 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
2845 				return (0);
2846 			if (ipp->ipp_hopoptslen <= udp->udp_label_len_v6)
2847 				return (0);
2848 			/*
2849 			 * The cipso/label option is added by kernel.
2850 			 * User is not usually aware of this option.
2851 			 * We copy out the hbh opt after the label option.
2852 			 */
2853 			bcopy((char *)ipp->ipp_hopopts + udp->udp_label_len_v6,
2854 			    ptr, ipp->ipp_hopoptslen - udp->udp_label_len_v6);
2855 			if (udp->udp_label_len_v6 > 0) {
2856 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
2857 				ptr[1] = (ipp->ipp_hopoptslen -
2858 				    udp->udp_label_len_v6 + 7) / 8 - 1;
2859 			}
2860 			return (ipp->ipp_hopoptslen - udp->udp_label_len_v6);
2861 		case IPV6_RTHDRDSTOPTS:
2862 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
2863 				return (0);
2864 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
2865 			return (ipp->ipp_rtdstoptslen);
2866 		case IPV6_RTHDR:
2867 			if (!(ipp->ipp_fields & IPPF_RTHDR))
2868 				return (0);
2869 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
2870 			return (ipp->ipp_rthdrlen);
2871 		case IPV6_DSTOPTS:
2872 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
2873 				return (0);
2874 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
2875 			return (ipp->ipp_dstoptslen);
2876 		case IPV6_PATHMTU:
2877 			return (ip_fill_mtuinfo(&udp->udp_v6dst,
2878 			    udp->udp_dstport, (struct ip6_mtuinfo *)ptr,
2879 			    us->us_netstack));
2880 		default:
2881 			return (-1);
2882 		}
2883 		break;
2884 	case IPPROTO_UDP:
2885 		switch (name) {
2886 		case UDP_ANONPRIVBIND:
2887 			*i1 = udp->udp_anon_priv_bind;
2888 			break;
2889 		case UDP_EXCLBIND:
2890 			*i1 = udp->udp_exclbind ? UDP_EXCLBIND : 0;
2891 			break;
2892 		case UDP_RCVHDR:
2893 			*i1 = udp->udp_rcvhdr ? 1 : 0;
2894 			break;
2895 		case UDP_NAT_T_ENDPOINT:
2896 			*i1 = udp->udp_nat_t_endpoint;
2897 			break;
2898 		default:
2899 			return (-1);
2900 		}
2901 		break;
2902 	default:
2903 		return (-1);
2904 	}
2905 	return (sizeof (int));
2906 }
2907 
2908 int
2909 udp_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
2910 {
2911 	udp_t	*udp;
2912 	int	err;
2913 
2914 	udp = Q_TO_UDP(q);
2915 
2916 	rw_enter(&udp->udp_rwlock, RW_READER);
2917 	err = udp_opt_get_locked(q, level, name, ptr);
2918 	rw_exit(&udp->udp_rwlock);
2919 	return (err);
2920 }
2921 
2922 /*
2923  * This routine sets socket options.
2924  */
2925 /* ARGSUSED */
2926 int
2927 udp_opt_set_locked(queue_t *q, uint_t optset_context, int level,
2928     int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
2929     uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
2930 {
2931 	udpattrs_t *attrs = thisdg_attrs;
2932 	int	*i1 = (int *)invalp;
2933 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
2934 	boolean_t checkonly;
2935 	int	error;
2936 	conn_t	*connp;
2937 	udp_t	*udp;
2938 	uint_t	newlen;
2939 	udp_stack_t *us;
2940 	size_t	sth_wroff;
2941 
2942 	connp = Q_TO_CONN(q);
2943 	udp = connp->conn_udp;
2944 	us = udp->udp_us;
2945 
2946 	switch (optset_context) {
2947 	case SETFN_OPTCOM_CHECKONLY:
2948 		checkonly = B_TRUE;
2949 		/*
2950 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
2951 		 * inlen != 0 implies value supplied and
2952 		 * 	we have to "pretend" to set it.
2953 		 * inlen == 0 implies that there is no
2954 		 * 	value part in T_CHECK request and just validation
2955 		 * done elsewhere should be enough, we just return here.
2956 		 */
2957 		if (inlen == 0) {
2958 			*outlenp = 0;
2959 			return (0);
2960 		}
2961 		break;
2962 	case SETFN_OPTCOM_NEGOTIATE:
2963 		checkonly = B_FALSE;
2964 		break;
2965 	case SETFN_UD_NEGOTIATE:
2966 	case SETFN_CONN_NEGOTIATE:
2967 		checkonly = B_FALSE;
2968 		/*
2969 		 * Negotiating local and "association-related" options
2970 		 * through T_UNITDATA_REQ.
2971 		 *
2972 		 * Following routine can filter out ones we do not
2973 		 * want to be "set" this way.
2974 		 */
2975 		if (!udp_opt_allow_udr_set(level, name)) {
2976 			*outlenp = 0;
2977 			return (EINVAL);
2978 		}
2979 		break;
2980 	default:
2981 		/*
2982 		 * We should never get here
2983 		 */
2984 		*outlenp = 0;
2985 		return (EINVAL);
2986 	}
2987 
2988 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
2989 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
2990 
2991 	/*
2992 	 * For fixed length options, no sanity check
2993 	 * of passed in length is done. It is assumed *_optcom_req()
2994 	 * routines do the right thing.
2995 	 */
2996 
2997 	switch (level) {
2998 	case SOL_SOCKET:
2999 		switch (name) {
3000 		case SO_REUSEADDR:
3001 			if (!checkonly)
3002 				udp->udp_reuseaddr = onoff;
3003 			break;
3004 		case SO_DEBUG:
3005 			if (!checkonly)
3006 				udp->udp_debug = onoff;
3007 			break;
3008 		/*
3009 		 * The following three items are available here,
3010 		 * but are only meaningful to IP.
3011 		 */
3012 		case SO_DONTROUTE:
3013 			if (!checkonly)
3014 				udp->udp_dontroute = onoff;
3015 			break;
3016 		case SO_USELOOPBACK:
3017 			if (!checkonly)
3018 				udp->udp_useloopback = onoff;
3019 			break;
3020 		case SO_BROADCAST:
3021 			if (!checkonly)
3022 				udp->udp_broadcast = onoff;
3023 			break;
3024 
3025 		case SO_SNDBUF:
3026 			if (*i1 > us->us_max_buf) {
3027 				*outlenp = 0;
3028 				return (ENOBUFS);
3029 			}
3030 			if (!checkonly) {
3031 				q->q_hiwat = *i1;
3032 			}
3033 			break;
3034 		case SO_RCVBUF:
3035 			if (*i1 > us->us_max_buf) {
3036 				*outlenp = 0;
3037 				return (ENOBUFS);
3038 			}
3039 			if (!checkonly) {
3040 				RD(q)->q_hiwat = *i1;
3041 				rw_exit(&udp->udp_rwlock);
3042 				(void) mi_set_sth_hiwat(RD(q),
3043 				    udp_set_rcv_hiwat(udp, *i1));
3044 				rw_enter(&udp->udp_rwlock, RW_WRITER);
3045 			}
3046 			break;
3047 		case SO_DGRAM_ERRIND:
3048 			if (!checkonly)
3049 				udp->udp_dgram_errind = onoff;
3050 			break;
3051 		case SO_RECVUCRED:
3052 			if (!checkonly)
3053 				udp->udp_recvucred = onoff;
3054 			break;
3055 		case SO_ALLZONES:
3056 			/*
3057 			 * "soft" error (negative)
3058 			 * option not handled at this level
3059 			 * Do not modify *outlenp.
3060 			 */
3061 			return (-EINVAL);
3062 		case SO_TIMESTAMP:
3063 			if (!checkonly)
3064 				udp->udp_timestamp = onoff;
3065 			break;
3066 		case SO_ANON_MLP:
3067 			/* Pass option along to IP level for handling */
3068 			return (-EINVAL);
3069 		case SO_MAC_EXEMPT:
3070 			/* Pass option along to IP level for handling */
3071 			return (-EINVAL);
3072 		case SCM_UCRED: {
3073 			struct ucred_s *ucr;
3074 			cred_t *cr, *newcr;
3075 			ts_label_t *tsl;
3076 
3077 			/*
3078 			 * Only sockets that have proper privileges and are
3079 			 * bound to MLPs will have any other value here, so
3080 			 * this implicitly tests for privilege to set label.
3081 			 */
3082 			if (connp->conn_mlp_type == mlptSingle)
3083 				break;
3084 			ucr = (struct ucred_s *)invalp;
3085 			if (inlen != ucredsize ||
3086 			    ucr->uc_labeloff < sizeof (*ucr) ||
3087 			    ucr->uc_labeloff + sizeof (bslabel_t) > inlen)
3088 				return (EINVAL);
3089 			if (!checkonly) {
3090 				mblk_t *mb;
3091 
3092 				if (attrs == NULL ||
3093 				    (mb = attrs->udpattr_mb) == NULL)
3094 					return (EINVAL);
3095 				if ((cr = DB_CRED(mb)) == NULL)
3096 					cr = udp->udp_connp->conn_cred;
3097 				ASSERT(cr != NULL);
3098 				if ((tsl = crgetlabel(cr)) == NULL)
3099 					return (EINVAL);
3100 				newcr = copycred_from_bslabel(cr, UCLABEL(ucr),
3101 				    tsl->tsl_doi, KM_NOSLEEP);
3102 				if (newcr == NULL)
3103 					return (ENOSR);
3104 				mblk_setcred(mb, newcr);
3105 				attrs->udpattr_credset = B_TRUE;
3106 				crfree(newcr);
3107 			}
3108 			break;
3109 		}
3110 		case SO_EXCLBIND:
3111 			if (!checkonly)
3112 				udp->udp_exclbind = onoff;
3113 			break;
3114 		default:
3115 			*outlenp = 0;
3116 			return (EINVAL);
3117 		}
3118 		break;
3119 	case IPPROTO_IP:
3120 		if (udp->udp_family != AF_INET) {
3121 			*outlenp = 0;
3122 			return (ENOPROTOOPT);
3123 		}
3124 		switch (name) {
3125 		case IP_OPTIONS:
3126 		case T_IP_OPTIONS:
3127 			/* Save options for use by IP. */
3128 			newlen = inlen + udp->udp_label_len;
3129 			if ((inlen & 0x3) || newlen > IP_MAX_OPT_LENGTH) {
3130 				*outlenp = 0;
3131 				return (EINVAL);
3132 			}
3133 			if (checkonly)
3134 				break;
3135 
3136 			/*
3137 			 * Update the stored options taking into account
3138 			 * any CIPSO option which we should not overwrite.
3139 			 */
3140 			if (!tsol_option_set(&udp->udp_ip_snd_options,
3141 			    &udp->udp_ip_snd_options_len,
3142 			    udp->udp_label_len, invalp, inlen)) {
3143 				*outlenp = 0;
3144 				return (ENOMEM);
3145 			}
3146 
3147 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
3148 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
3149 			sth_wroff = udp->udp_max_hdr_len + us->us_wroff_extra;
3150 			rw_exit(&udp->udp_rwlock);
3151 			(void) mi_set_sth_wroff(RD(q), sth_wroff);
3152 			rw_enter(&udp->udp_rwlock, RW_WRITER);
3153 			break;
3154 
3155 		case IP_TTL:
3156 			if (!checkonly) {
3157 				udp->udp_ttl = (uchar_t)*i1;
3158 			}
3159 			break;
3160 		case IP_TOS:
3161 		case T_IP_TOS:
3162 			if (!checkonly) {
3163 				udp->udp_type_of_service = (uchar_t)*i1;
3164 			}
3165 			break;
3166 		case IP_MULTICAST_IF: {
3167 			/*
3168 			 * TODO should check OPTMGMT reply and undo this if
3169 			 * there is an error.
3170 			 */
3171 			struct in_addr *inap = (struct in_addr *)invalp;
3172 			if (!checkonly) {
3173 				udp->udp_multicast_if_addr =
3174 				    inap->s_addr;
3175 			}
3176 			break;
3177 		}
3178 		case IP_MULTICAST_TTL:
3179 			if (!checkonly)
3180 				udp->udp_multicast_ttl = *invalp;
3181 			break;
3182 		case IP_MULTICAST_LOOP:
3183 			if (!checkonly)
3184 				connp->conn_multicast_loop = *invalp;
3185 			break;
3186 		case IP_RECVOPTS:
3187 			if (!checkonly)
3188 				udp->udp_recvopts = onoff;
3189 			break;
3190 		case IP_RECVDSTADDR:
3191 			if (!checkonly)
3192 				udp->udp_recvdstaddr = onoff;
3193 			break;
3194 		case IP_RECVIF:
3195 			if (!checkonly)
3196 				udp->udp_recvif = onoff;
3197 			break;
3198 		case IP_RECVSLLA:
3199 			if (!checkonly)
3200 				udp->udp_recvslla = onoff;
3201 			break;
3202 		case IP_RECVTTL:
3203 			if (!checkonly)
3204 				udp->udp_recvttl = onoff;
3205 			break;
3206 		case IP_PKTINFO: {
3207 			/*
3208 			 * This also handles IP_RECVPKTINFO.
3209 			 * IP_PKTINFO and IP_RECVPKTINFO have same value.
3210 			 * Differentiation is based on the size of the
3211 			 * argument passed in.
3212 			 */
3213 			struct in_pktinfo *pktinfop;
3214 			ip4_pkt_t *attr_pktinfop;
3215 
3216 			if (checkonly)
3217 				break;
3218 
3219 			if (inlen == sizeof (int)) {
3220 				/*
3221 				 * This is IP_RECVPKTINFO option.
3222 				 * Keep a local copy of whether this option is
3223 				 * set or not and pass it down to IP for
3224 				 * processing.
3225 				 */
3226 
3227 				udp->udp_ip_recvpktinfo = onoff;
3228 				return (-EINVAL);
3229 			}
3230 
3231 			if (attrs == NULL ||
3232 			    (attr_pktinfop = attrs->udpattr_ipp4) == NULL) {
3233 				/*
3234 				 * sticky option or no buffer to return
3235 				 * the results.
3236 				 */
3237 				return (EINVAL);
3238 			}
3239 
3240 			if (inlen != sizeof (struct in_pktinfo))
3241 				return (EINVAL);
3242 
3243 			pktinfop = (struct in_pktinfo *)invalp;
3244 
3245 			/*
3246 			 * At least one of the values should be specified
3247 			 */
3248 			if (pktinfop->ipi_ifindex == 0 &&
3249 			    pktinfop->ipi_spec_dst.s_addr == INADDR_ANY) {
3250 				return (EINVAL);
3251 			}
3252 
3253 			attr_pktinfop->ip4_addr = pktinfop->ipi_spec_dst.s_addr;
3254 			attr_pktinfop->ip4_ill_index = pktinfop->ipi_ifindex;
3255 
3256 			break;
3257 		}
3258 		case IP_ADD_MEMBERSHIP:
3259 		case IP_DROP_MEMBERSHIP:
3260 		case IP_BLOCK_SOURCE:
3261 		case IP_UNBLOCK_SOURCE:
3262 		case IP_ADD_SOURCE_MEMBERSHIP:
3263 		case IP_DROP_SOURCE_MEMBERSHIP:
3264 		case MCAST_JOIN_GROUP:
3265 		case MCAST_LEAVE_GROUP:
3266 		case MCAST_BLOCK_SOURCE:
3267 		case MCAST_UNBLOCK_SOURCE:
3268 		case MCAST_JOIN_SOURCE_GROUP:
3269 		case MCAST_LEAVE_SOURCE_GROUP:
3270 		case IP_SEC_OPT:
3271 		case IP_NEXTHOP:
3272 		case IP_DHCPINIT_IF:
3273 			/*
3274 			 * "soft" error (negative)
3275 			 * option not handled at this level
3276 			 * Do not modify *outlenp.
3277 			 */
3278 			return (-EINVAL);
3279 		case IP_BOUND_IF:
3280 			if (!checkonly)
3281 				udp->udp_bound_if = *i1;
3282 			break;
3283 		case IP_UNSPEC_SRC:
3284 			if (!checkonly)
3285 				udp->udp_unspec_source = onoff;
3286 			break;
3287 		case IP_BROADCAST_TTL:
3288 			if (!checkonly)
3289 				connp->conn_broadcast_ttl = *invalp;
3290 			break;
3291 		default:
3292 			*outlenp = 0;
3293 			return (EINVAL);
3294 		}
3295 		break;
3296 	case IPPROTO_IPV6: {
3297 		ip6_pkt_t		*ipp;
3298 		boolean_t		sticky;
3299 
3300 		if (udp->udp_family != AF_INET6) {
3301 			*outlenp = 0;
3302 			return (ENOPROTOOPT);
3303 		}
3304 		/*
3305 		 * Deal with both sticky options and ancillary data
3306 		 */
3307 		sticky = B_FALSE;
3308 		if (attrs == NULL || (ipp = attrs->udpattr_ipp6) ==
3309 		    NULL) {
3310 			/* sticky options, or none */
3311 			ipp = &udp->udp_sticky_ipp;
3312 			sticky = B_TRUE;
3313 		}
3314 
3315 		switch (name) {
3316 		case IPV6_MULTICAST_IF:
3317 			if (!checkonly)
3318 				udp->udp_multicast_if_index = *i1;
3319 			break;
3320 		case IPV6_UNICAST_HOPS:
3321 			/* -1 means use default */
3322 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
3323 				*outlenp = 0;
3324 				return (EINVAL);
3325 			}
3326 			if (!checkonly) {
3327 				if (*i1 == -1) {
3328 					udp->udp_ttl = ipp->ipp_unicast_hops =
3329 					    us->us_ipv6_hoplimit;
3330 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
3331 					/* Pass modified value to IP. */
3332 					*i1 = udp->udp_ttl;
3333 				} else {
3334 					udp->udp_ttl = ipp->ipp_unicast_hops =
3335 					    (uint8_t)*i1;
3336 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
3337 				}
3338 				/* Rebuild the header template */
3339 				error = udp_build_hdrs(udp);
3340 				if (error != 0) {
3341 					*outlenp = 0;
3342 					return (error);
3343 				}
3344 			}
3345 			break;
3346 		case IPV6_MULTICAST_HOPS:
3347 			/* -1 means use default */
3348 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
3349 				*outlenp = 0;
3350 				return (EINVAL);
3351 			}
3352 			if (!checkonly) {
3353 				if (*i1 == -1) {
3354 					udp->udp_multicast_ttl =
3355 					    ipp->ipp_multicast_hops =
3356 					    IP_DEFAULT_MULTICAST_TTL;
3357 					ipp->ipp_fields &= ~IPPF_MULTICAST_HOPS;
3358 					/* Pass modified value to IP. */
3359 					*i1 = udp->udp_multicast_ttl;
3360 				} else {
3361 					udp->udp_multicast_ttl =
3362 					    ipp->ipp_multicast_hops =
3363 					    (uint8_t)*i1;
3364 					ipp->ipp_fields |= IPPF_MULTICAST_HOPS;
3365 				}
3366 			}
3367 			break;
3368 		case IPV6_MULTICAST_LOOP:
3369 			if (*i1 != 0 && *i1 != 1) {
3370 				*outlenp = 0;
3371 				return (EINVAL);
3372 			}
3373 			if (!checkonly)
3374 				connp->conn_multicast_loop = *i1;
3375 			break;
3376 		case IPV6_JOIN_GROUP:
3377 		case IPV6_LEAVE_GROUP:
3378 		case MCAST_JOIN_GROUP:
3379 		case MCAST_LEAVE_GROUP:
3380 		case MCAST_BLOCK_SOURCE:
3381 		case MCAST_UNBLOCK_SOURCE:
3382 		case MCAST_JOIN_SOURCE_GROUP:
3383 		case MCAST_LEAVE_SOURCE_GROUP:
3384 			/*
3385 			 * "soft" error (negative)
3386 			 * option not handled at this level
3387 			 * Note: Do not modify *outlenp
3388 			 */
3389 			return (-EINVAL);
3390 		case IPV6_BOUND_IF:
3391 			if (!checkonly)
3392 				udp->udp_bound_if = *i1;
3393 			break;
3394 		case IPV6_UNSPEC_SRC:
3395 			if (!checkonly)
3396 				udp->udp_unspec_source = onoff;
3397 			break;
3398 		/*
3399 		 * Set boolean switches for ancillary data delivery
3400 		 */
3401 		case IPV6_RECVPKTINFO:
3402 			if (!checkonly)
3403 				udp->udp_ip_recvpktinfo = onoff;
3404 			break;
3405 		case IPV6_RECVTCLASS:
3406 			if (!checkonly) {
3407 				udp->udp_ipv6_recvtclass = onoff;
3408 			}
3409 			break;
3410 		case IPV6_RECVPATHMTU:
3411 			if (!checkonly) {
3412 				udp->udp_ipv6_recvpathmtu = onoff;
3413 			}
3414 			break;
3415 		case IPV6_RECVHOPLIMIT:
3416 			if (!checkonly)
3417 				udp->udp_ipv6_recvhoplimit = onoff;
3418 			break;
3419 		case IPV6_RECVHOPOPTS:
3420 			if (!checkonly)
3421 				udp->udp_ipv6_recvhopopts = onoff;
3422 			break;
3423 		case IPV6_RECVDSTOPTS:
3424 			if (!checkonly)
3425 				udp->udp_ipv6_recvdstopts = onoff;
3426 			break;
3427 		case _OLD_IPV6_RECVDSTOPTS:
3428 			if (!checkonly)
3429 				udp->udp_old_ipv6_recvdstopts = onoff;
3430 			break;
3431 		case IPV6_RECVRTHDRDSTOPTS:
3432 			if (!checkonly)
3433 				udp->udp_ipv6_recvrthdrdstopts = onoff;
3434 			break;
3435 		case IPV6_RECVRTHDR:
3436 			if (!checkonly)
3437 				udp->udp_ipv6_recvrthdr = onoff;
3438 			break;
3439 		/*
3440 		 * Set sticky options or ancillary data.
3441 		 * If sticky options, (re)build any extension headers
3442 		 * that might be needed as a result.
3443 		 */
3444 		case IPV6_PKTINFO:
3445 			/*
3446 			 * The source address and ifindex are verified
3447 			 * in ip_opt_set(). For ancillary data the
3448 			 * source address is checked in ip_wput_v6.
3449 			 */
3450 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
3451 				return (EINVAL);
3452 			if (checkonly)
3453 				break;
3454 
3455 			if (inlen == 0) {
3456 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
3457 				ipp->ipp_sticky_ignored |=
3458 				    (IPPF_IFINDEX|IPPF_ADDR);
3459 			} else {
3460 				struct in6_pktinfo *pkti;
3461 
3462 				pkti = (struct in6_pktinfo *)invalp;
3463 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
3464 				ipp->ipp_addr = pkti->ipi6_addr;
3465 				if (ipp->ipp_ifindex != 0)
3466 					ipp->ipp_fields |= IPPF_IFINDEX;
3467 				else
3468 					ipp->ipp_fields &= ~IPPF_IFINDEX;
3469 				if (!IN6_IS_ADDR_UNSPECIFIED(
3470 				    &ipp->ipp_addr))
3471 					ipp->ipp_fields |= IPPF_ADDR;
3472 				else
3473 					ipp->ipp_fields &= ~IPPF_ADDR;
3474 			}
3475 			if (sticky) {
3476 				error = udp_build_hdrs(udp);
3477 				if (error != 0)
3478 					return (error);
3479 			}
3480 			break;
3481 		case IPV6_HOPLIMIT:
3482 			if (sticky)
3483 				return (EINVAL);
3484 			if (inlen != 0 && inlen != sizeof (int))
3485 				return (EINVAL);
3486 			if (checkonly)
3487 				break;
3488 
3489 			if (inlen == 0) {
3490 				ipp->ipp_fields &= ~IPPF_HOPLIMIT;
3491 				ipp->ipp_sticky_ignored |= IPPF_HOPLIMIT;
3492 			} else {
3493 				if (*i1 > 255 || *i1 < -1)
3494 					return (EINVAL);
3495 				if (*i1 == -1)
3496 					ipp->ipp_hoplimit =
3497 					    us->us_ipv6_hoplimit;
3498 				else
3499 					ipp->ipp_hoplimit = *i1;
3500 				ipp->ipp_fields |= IPPF_HOPLIMIT;
3501 			}
3502 			break;
3503 		case IPV6_TCLASS:
3504 			if (inlen != 0 && inlen != sizeof (int))
3505 				return (EINVAL);
3506 			if (checkonly)
3507 				break;
3508 
3509 			if (inlen == 0) {
3510 				ipp->ipp_fields &= ~IPPF_TCLASS;
3511 				ipp->ipp_sticky_ignored |= IPPF_TCLASS;
3512 			} else {
3513 				if (*i1 > 255 || *i1 < -1)
3514 					return (EINVAL);
3515 				if (*i1 == -1)
3516 					ipp->ipp_tclass = 0;
3517 				else
3518 					ipp->ipp_tclass = *i1;
3519 				ipp->ipp_fields |= IPPF_TCLASS;
3520 			}
3521 			if (sticky) {
3522 				error = udp_build_hdrs(udp);
3523 				if (error != 0)
3524 					return (error);
3525 			}
3526 			break;
3527 		case IPV6_NEXTHOP:
3528 			/*
3529 			 * IP will verify that the nexthop is reachable
3530 			 * and fail for sticky options.
3531 			 */
3532 			if (inlen != 0 && inlen != sizeof (sin6_t))
3533 				return (EINVAL);
3534 			if (checkonly)
3535 				break;
3536 
3537 			if (inlen == 0) {
3538 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
3539 				ipp->ipp_sticky_ignored |= IPPF_NEXTHOP;
3540 			} else {
3541 				sin6_t *sin6 = (sin6_t *)invalp;
3542 
3543 				if (sin6->sin6_family != AF_INET6)
3544 					return (EAFNOSUPPORT);
3545 				if (IN6_IS_ADDR_V4MAPPED(
3546 				    &sin6->sin6_addr))
3547 					return (EADDRNOTAVAIL);
3548 				ipp->ipp_nexthop = sin6->sin6_addr;
3549 				if (!IN6_IS_ADDR_UNSPECIFIED(
3550 				    &ipp->ipp_nexthop))
3551 					ipp->ipp_fields |= IPPF_NEXTHOP;
3552 				else
3553 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
3554 			}
3555 			if (sticky) {
3556 				error = udp_build_hdrs(udp);
3557 				if (error != 0)
3558 					return (error);
3559 			}
3560 			break;
3561 		case IPV6_HOPOPTS: {
3562 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
3563 			/*
3564 			 * Sanity checks - minimum size, size a multiple of
3565 			 * eight bytes, and matching size passed in.
3566 			 */
3567 			if (inlen != 0 &&
3568 			    inlen != (8 * (hopts->ip6h_len + 1)))
3569 				return (EINVAL);
3570 
3571 			if (checkonly)
3572 				break;
3573 
3574 			error = optcom_pkt_set(invalp, inlen, sticky,
3575 			    (uchar_t **)&ipp->ipp_hopopts,
3576 			    &ipp->ipp_hopoptslen,
3577 			    sticky ? udp->udp_label_len_v6 : 0);
3578 			if (error != 0)
3579 				return (error);
3580 			if (ipp->ipp_hopoptslen == 0) {
3581 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
3582 				ipp->ipp_sticky_ignored |= IPPF_HOPOPTS;
3583 			} else {
3584 				ipp->ipp_fields |= IPPF_HOPOPTS;
3585 			}
3586 			if (sticky) {
3587 				error = udp_build_hdrs(udp);
3588 				if (error != 0)
3589 					return (error);
3590 			}
3591 			break;
3592 		}
3593 		case IPV6_RTHDRDSTOPTS: {
3594 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
3595 
3596 			/*
3597 			 * Sanity checks - minimum size, size a multiple of
3598 			 * eight bytes, and matching size passed in.
3599 			 */
3600 			if (inlen != 0 &&
3601 			    inlen != (8 * (dopts->ip6d_len + 1)))
3602 				return (EINVAL);
3603 
3604 			if (checkonly)
3605 				break;
3606 
3607 			if (inlen == 0) {
3608 				if (sticky &&
3609 				    (ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) {
3610 					kmem_free(ipp->ipp_rtdstopts,
3611 					    ipp->ipp_rtdstoptslen);
3612 					ipp->ipp_rtdstopts = NULL;
3613 					ipp->ipp_rtdstoptslen = 0;
3614 				}
3615 
3616 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
3617 				ipp->ipp_sticky_ignored |= IPPF_RTDSTOPTS;
3618 			} else {
3619 				error = optcom_pkt_set(invalp, inlen, sticky,
3620 				    (uchar_t **)&ipp->ipp_rtdstopts,
3621 				    &ipp->ipp_rtdstoptslen, 0);
3622 				if (error != 0)
3623 					return (error);
3624 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
3625 			}
3626 			if (sticky) {
3627 				error = udp_build_hdrs(udp);
3628 				if (error != 0)
3629 					return (error);
3630 			}
3631 			break;
3632 		}
3633 		case IPV6_DSTOPTS: {
3634 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
3635 
3636 			/*
3637 			 * Sanity checks - minimum size, size a multiple of
3638 			 * eight bytes, and matching size passed in.
3639 			 */
3640 			if (inlen != 0 &&
3641 			    inlen != (8 * (dopts->ip6d_len + 1)))
3642 				return (EINVAL);
3643 
3644 			if (checkonly)
3645 				break;
3646 
3647 			if (inlen == 0) {
3648 				if (sticky &&
3649 				    (ipp->ipp_fields & IPPF_DSTOPTS) != 0) {
3650 					kmem_free(ipp->ipp_dstopts,
3651 					    ipp->ipp_dstoptslen);
3652 					ipp->ipp_dstopts = NULL;
3653 					ipp->ipp_dstoptslen = 0;
3654 				}
3655 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
3656 				ipp->ipp_sticky_ignored |= IPPF_DSTOPTS;
3657 			} else {
3658 				error = optcom_pkt_set(invalp, inlen, sticky,
3659 				    (uchar_t **)&ipp->ipp_dstopts,
3660 				    &ipp->ipp_dstoptslen, 0);
3661 				if (error != 0)
3662 					return (error);
3663 				ipp->ipp_fields |= IPPF_DSTOPTS;
3664 			}
3665 			if (sticky) {
3666 				error = udp_build_hdrs(udp);
3667 				if (error != 0)
3668 					return (error);
3669 			}
3670 			break;
3671 		}
3672 		case IPV6_RTHDR: {
3673 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
3674 
3675 			/*
3676 			 * Sanity checks - minimum size, size a multiple of
3677 			 * eight bytes, and matching size passed in.
3678 			 */
3679 			if (inlen != 0 &&
3680 			    inlen != (8 * (rt->ip6r_len + 1)))
3681 				return (EINVAL);
3682 
3683 			if (checkonly)
3684 				break;
3685 
3686 			if (inlen == 0) {
3687 				if (sticky &&
3688 				    (ipp->ipp_fields & IPPF_RTHDR) != 0) {
3689 					kmem_free(ipp->ipp_rthdr,
3690 					    ipp->ipp_rthdrlen);
3691 					ipp->ipp_rthdr = NULL;
3692 					ipp->ipp_rthdrlen = 0;
3693 				}
3694 				ipp->ipp_fields &= ~IPPF_RTHDR;
3695 				ipp->ipp_sticky_ignored |= IPPF_RTHDR;
3696 			} else {
3697 				error = optcom_pkt_set(invalp, inlen, sticky,
3698 				    (uchar_t **)&ipp->ipp_rthdr,
3699 				    &ipp->ipp_rthdrlen, 0);
3700 				if (error != 0)
3701 					return (error);
3702 				ipp->ipp_fields |= IPPF_RTHDR;
3703 			}
3704 			if (sticky) {
3705 				error = udp_build_hdrs(udp);
3706 				if (error != 0)
3707 					return (error);
3708 			}
3709 			break;
3710 		}
3711 
3712 		case IPV6_DONTFRAG:
3713 			if (checkonly)
3714 				break;
3715 
3716 			if (onoff) {
3717 				ipp->ipp_fields |= IPPF_DONTFRAG;
3718 			} else {
3719 				ipp->ipp_fields &= ~IPPF_DONTFRAG;
3720 			}
3721 			break;
3722 
3723 		case IPV6_USE_MIN_MTU:
3724 			if (inlen != sizeof (int))
3725 				return (EINVAL);
3726 
3727 			if (*i1 < -1 || *i1 > 1)
3728 				return (EINVAL);
3729 
3730 			if (checkonly)
3731 				break;
3732 
3733 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
3734 			ipp->ipp_use_min_mtu = *i1;
3735 			break;
3736 
3737 		case IPV6_BOUND_PIF:
3738 		case IPV6_SEC_OPT:
3739 		case IPV6_DONTFAILOVER_IF:
3740 		case IPV6_SRC_PREFERENCES:
3741 		case IPV6_V6ONLY:
3742 			/* Handled at the IP level */
3743 			return (-EINVAL);
3744 		default:
3745 			*outlenp = 0;
3746 			return (EINVAL);
3747 		}
3748 		break;
3749 		}		/* end IPPROTO_IPV6 */
3750 	case IPPROTO_UDP:
3751 		switch (name) {
3752 		case UDP_ANONPRIVBIND:
3753 			if ((error = secpolicy_net_privaddr(cr, 0,
3754 			    IPPROTO_UDP)) != 0) {
3755 				*outlenp = 0;
3756 				return (error);
3757 			}
3758 			if (!checkonly) {
3759 				udp->udp_anon_priv_bind = onoff;
3760 			}
3761 			break;
3762 		case UDP_EXCLBIND:
3763 			if (!checkonly)
3764 				udp->udp_exclbind = onoff;
3765 			break;
3766 		case UDP_RCVHDR:
3767 			if (!checkonly)
3768 				udp->udp_rcvhdr = onoff;
3769 			break;
3770 		case UDP_NAT_T_ENDPOINT:
3771 			if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) {
3772 				*outlenp = 0;
3773 				return (error);
3774 			}
3775 
3776 			/*
3777 			 * Use udp_family instead so we can avoid ambiguitites
3778 			 * with AF_INET6 sockets that may switch from IPv4
3779 			 * to IPv6.
3780 			 */
3781 			if (udp->udp_family != AF_INET) {
3782 				*outlenp = 0;
3783 				return (EAFNOSUPPORT);
3784 			}
3785 
3786 			if (!checkonly) {
3787 				udp->udp_nat_t_endpoint = onoff;
3788 
3789 				udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
3790 				    UDPH_SIZE + udp->udp_ip_snd_options_len;
3791 
3792 				/* Also, adjust wroff */
3793 				if (onoff) {
3794 					udp->udp_max_hdr_len +=
3795 					    sizeof (uint32_t);
3796 				}
3797 				(void) mi_set_sth_wroff(RD(q),
3798 				    udp->udp_max_hdr_len + us->us_wroff_extra);
3799 			}
3800 			break;
3801 		default:
3802 			*outlenp = 0;
3803 			return (EINVAL);
3804 		}
3805 		break;
3806 	default:
3807 		*outlenp = 0;
3808 		return (EINVAL);
3809 	}
3810 	/*
3811 	 * Common case of OK return with outval same as inval.
3812 	 */
3813 	if (invalp != outvalp) {
3814 		/* don't trust bcopy for identical src/dst */
3815 		(void) bcopy(invalp, outvalp, inlen);
3816 	}
3817 	*outlenp = inlen;
3818 	return (0);
3819 }
3820 
3821 int
3822 udp_opt_set(queue_t *q, uint_t optset_context, int level,
3823     int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
3824     uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
3825 {
3826 	udp_t	*udp;
3827 	int	err;
3828 
3829 	udp = Q_TO_UDP(q);
3830 
3831 	rw_enter(&udp->udp_rwlock, RW_WRITER);
3832 	err = udp_opt_set_locked(q, optset_context, level, name, inlen, invalp,
3833 	    outlenp, outvalp, thisdg_attrs, cr, mblk);
3834 	rw_exit(&udp->udp_rwlock);
3835 	return (err);
3836 }
3837 
3838 /*
3839  * Update udp_sticky_hdrs based on udp_sticky_ipp, udp_v6src, and udp_ttl.
3840  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
3841  * headers, and the udp header.
3842  * Returns failure if can't allocate memory.
3843  */
3844 static int
3845 udp_build_hdrs(udp_t *udp)
3846 {
3847 	udp_stack_t *us = udp->udp_us;
3848 	uchar_t	*hdrs;
3849 	uint_t	hdrs_len;
3850 	ip6_t	*ip6h;
3851 	ip6i_t	*ip6i;
3852 	udpha_t	*udpha;
3853 	ip6_pkt_t *ipp = &udp->udp_sticky_ipp;
3854 	size_t	sth_wroff;
3855 
3856 	ASSERT(RW_WRITE_HELD(&udp->udp_rwlock));
3857 	hdrs_len = ip_total_hdrs_len_v6(ipp) + UDPH_SIZE;
3858 	ASSERT(hdrs_len != 0);
3859 	if (hdrs_len != udp->udp_sticky_hdrs_len) {
3860 		/* Need to reallocate */
3861 		hdrs = kmem_alloc(hdrs_len, KM_NOSLEEP);
3862 		if (hdrs == NULL)
3863 			return (ENOMEM);
3864 
3865 		if (udp->udp_sticky_hdrs_len != 0) {
3866 			kmem_free(udp->udp_sticky_hdrs,
3867 			    udp->udp_sticky_hdrs_len);
3868 		}
3869 		udp->udp_sticky_hdrs = hdrs;
3870 		udp->udp_sticky_hdrs_len = hdrs_len;
3871 	}
3872 	ip_build_hdrs_v6(udp->udp_sticky_hdrs,
3873 	    udp->udp_sticky_hdrs_len - UDPH_SIZE, ipp, IPPROTO_UDP);
3874 
3875 	/* Set header fields not in ipp */
3876 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
3877 		ip6i = (ip6i_t *)udp->udp_sticky_hdrs;
3878 		ip6h = (ip6_t *)&ip6i[1];
3879 	} else {
3880 		ip6h = (ip6_t *)udp->udp_sticky_hdrs;
3881 	}
3882 
3883 	if (!(ipp->ipp_fields & IPPF_ADDR))
3884 		ip6h->ip6_src = udp->udp_v6src;
3885 
3886 	udpha = (udpha_t *)(udp->udp_sticky_hdrs + hdrs_len - UDPH_SIZE);
3887 	udpha->uha_src_port = udp->udp_port;
3888 
3889 	/* Try to get everything in a single mblk */
3890 	if (hdrs_len > udp->udp_max_hdr_len) {
3891 		udp->udp_max_hdr_len = hdrs_len;
3892 		sth_wroff = udp->udp_max_hdr_len + us->us_wroff_extra;
3893 		rw_exit(&udp->udp_rwlock);
3894 		(void) mi_set_sth_wroff(udp->udp_connp->conn_rq, sth_wroff);
3895 		rw_enter(&udp->udp_rwlock, RW_WRITER);
3896 	}
3897 	return (0);
3898 }
3899 
3900 /*
3901  * This routine retrieves the value of an ND variable in a udpparam_t
3902  * structure.  It is called through nd_getset when a user reads the
3903  * variable.
3904  */
3905 /* ARGSUSED */
3906 static int
3907 udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
3908 {
3909 	udpparam_t *udppa = (udpparam_t *)cp;
3910 
3911 	(void) mi_mpprintf(mp, "%d", udppa->udp_param_value);
3912 	return (0);
3913 }
3914 
3915 /*
3916  * Walk through the param array specified registering each element with the
3917  * named dispatch (ND) handler.
3918  */
3919 static boolean_t
3920 udp_param_register(IDP *ndp, udpparam_t *udppa, int cnt)
3921 {
3922 	for (; cnt-- > 0; udppa++) {
3923 		if (udppa->udp_param_name && udppa->udp_param_name[0]) {
3924 			if (!nd_load(ndp, udppa->udp_param_name,
3925 			    udp_param_get, udp_param_set,
3926 			    (caddr_t)udppa)) {
3927 				nd_free(ndp);
3928 				return (B_FALSE);
3929 			}
3930 		}
3931 	}
3932 	if (!nd_load(ndp, "udp_extra_priv_ports",
3933 	    udp_extra_priv_ports_get, NULL, NULL)) {
3934 		nd_free(ndp);
3935 		return (B_FALSE);
3936 	}
3937 	if (!nd_load(ndp, "udp_extra_priv_ports_add",
3938 	    NULL, udp_extra_priv_ports_add, NULL)) {
3939 		nd_free(ndp);
3940 		return (B_FALSE);
3941 	}
3942 	if (!nd_load(ndp, "udp_extra_priv_ports_del",
3943 	    NULL, udp_extra_priv_ports_del, NULL)) {
3944 		nd_free(ndp);
3945 		return (B_FALSE);
3946 	}
3947 	if (!nd_load(ndp, "udp_status", udp_status_report, NULL,
3948 	    NULL)) {
3949 		nd_free(ndp);
3950 		return (B_FALSE);
3951 	}
3952 	if (!nd_load(ndp, "udp_bind_hash", udp_bind_hash_report, NULL,
3953 	    NULL)) {
3954 		nd_free(ndp);
3955 		return (B_FALSE);
3956 	}
3957 	return (B_TRUE);
3958 }
3959 
3960 /* This routine sets an ND variable in a udpparam_t structure. */
3961 /* ARGSUSED */
3962 static int
3963 udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
3964 {
3965 	long		new_value;
3966 	udpparam_t	*udppa = (udpparam_t *)cp;
3967 
3968 	/*
3969 	 * Fail the request if the new value does not lie within the
3970 	 * required bounds.
3971 	 */
3972 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
3973 	    new_value < udppa->udp_param_min ||
3974 	    new_value > udppa->udp_param_max) {
3975 		return (EINVAL);
3976 	}
3977 
3978 	/* Set the new value */
3979 	udppa->udp_param_value = new_value;
3980 	return (0);
3981 }
3982 
3983 /*
3984  * Copy hop-by-hop option from ipp->ipp_hopopts to the buffer provided (with
3985  * T_opthdr) and return the number of bytes copied.  'dbuf' may be NULL to
3986  * just count the length needed for allocation.  If 'dbuf' is non-NULL,
3987  * then it's assumed to be allocated to be large enough.
3988  *
3989  * Returns zero if trimming of the security option causes all options to go
3990  * away.
3991  */
3992 static size_t
3993 copy_hop_opts(const ip6_pkt_t *ipp, uchar_t *dbuf)
3994 {
3995 	struct T_opthdr *toh;
3996 	size_t hol = ipp->ipp_hopoptslen;
3997 	ip6_hbh_t *dstopt = NULL;
3998 	const ip6_hbh_t *srcopt = ipp->ipp_hopopts;
3999 	size_t tlen, olen, plen;
4000 	boolean_t deleting;
4001 	const struct ip6_opt *sopt, *lastpad;
4002 	struct ip6_opt *dopt;
4003 
4004 	if ((toh = (struct T_opthdr *)dbuf) != NULL) {
4005 		toh->level = IPPROTO_IPV6;
4006 		toh->name = IPV6_HOPOPTS;
4007 		toh->status = 0;
4008 		dstopt = (ip6_hbh_t *)(toh + 1);
4009 	}
4010 
4011 	/*
4012 	 * If labeling is enabled, then skip the label option
4013 	 * but get other options if there are any.
4014 	 */
4015 	if (is_system_labeled()) {
4016 		dopt = NULL;
4017 		if (dstopt != NULL) {
4018 			/* will fill in ip6h_len later */
4019 			dstopt->ip6h_nxt = srcopt->ip6h_nxt;
4020 			dopt = (struct ip6_opt *)(dstopt + 1);
4021 		}
4022 		sopt = (const struct ip6_opt *)(srcopt + 1);
4023 		hol -= sizeof (*srcopt);
4024 		tlen = sizeof (*dstopt);
4025 		lastpad = NULL;
4026 		deleting = B_FALSE;
4027 		/*
4028 		 * This loop finds the first (lastpad pointer) of any number of
4029 		 * pads that preceeds the security option, then treats the
4030 		 * security option as though it were a pad, and then finds the
4031 		 * next non-pad option (or end of list).
4032 		 *
4033 		 * It then treats the entire block as one big pad.  To preserve
4034 		 * alignment of any options that follow, or just the end of the
4035 		 * list, it computes a minimal new padding size that keeps the
4036 		 * same alignment for the next option.
4037 		 *
4038 		 * If it encounters just a sequence of pads with no security
4039 		 * option, those are copied as-is rather than collapsed.
4040 		 *
4041 		 * Note that to handle the end of list case, the code makes one
4042 		 * loop with 'hol' set to zero.
4043 		 */
4044 		for (;;) {
4045 			if (hol > 0) {
4046 				if (sopt->ip6o_type == IP6OPT_PAD1) {
4047 					if (lastpad == NULL)
4048 						lastpad = sopt;
4049 					sopt = (const struct ip6_opt *)
4050 					    &sopt->ip6o_len;
4051 					hol--;
4052 					continue;
4053 				}
4054 				olen = sopt->ip6o_len + sizeof (*sopt);
4055 				if (olen > hol)
4056 					olen = hol;
4057 				if (sopt->ip6o_type == IP6OPT_PADN ||
4058 				    sopt->ip6o_type == ip6opt_ls) {
4059 					if (sopt->ip6o_type == ip6opt_ls)
4060 						deleting = B_TRUE;
4061 					if (lastpad == NULL)
4062 						lastpad = sopt;
4063 					sopt = (const struct ip6_opt *)
4064 					    ((const char *)sopt + olen);
4065 					hol -= olen;
4066 					continue;
4067 				}
4068 			} else {
4069 				/* if nothing was copied at all, then delete */
4070 				if (tlen == sizeof (*dstopt))
4071 					return (0);
4072 				/* last pass; pick up any trailing padding */
4073 				olen = 0;
4074 			}
4075 			if (deleting) {
4076 				/*
4077 				 * compute aligning effect of deleted material
4078 				 * to reproduce with pad.
4079 				 */
4080 				plen = ((const char *)sopt -
4081 				    (const char *)lastpad) & 7;
4082 				tlen += plen;
4083 				if (dopt != NULL) {
4084 					if (plen == 1) {
4085 						dopt->ip6o_type = IP6OPT_PAD1;
4086 					} else if (plen > 1) {
4087 						plen -= sizeof (*dopt);
4088 						dopt->ip6o_type = IP6OPT_PADN;
4089 						dopt->ip6o_len = plen;
4090 						if (plen > 0)
4091 							bzero(dopt + 1, plen);
4092 					}
4093 					dopt = (struct ip6_opt *)
4094 					    ((char *)dopt + plen);
4095 				}
4096 				deleting = B_FALSE;
4097 				lastpad = NULL;
4098 			}
4099 			/* if there's uncopied padding, then copy that now */
4100 			if (lastpad != NULL) {
4101 				olen += (const char *)sopt -
4102 				    (const char *)lastpad;
4103 				sopt = lastpad;
4104 				lastpad = NULL;
4105 			}
4106 			if (dopt != NULL && olen > 0) {
4107 				bcopy(sopt, dopt, olen);
4108 				dopt = (struct ip6_opt *)((char *)dopt + olen);
4109 			}
4110 			if (hol == 0)
4111 				break;
4112 			tlen += olen;
4113 			sopt = (const struct ip6_opt *)
4114 			    ((const char *)sopt + olen);
4115 			hol -= olen;
4116 		}
4117 		/* go back and patch up the length value, rounded upward */
4118 		if (dstopt != NULL)
4119 			dstopt->ip6h_len = (tlen - 1) >> 3;
4120 	} else {
4121 		tlen = hol;
4122 		if (dstopt != NULL)
4123 			bcopy(srcopt, dstopt, hol);
4124 	}
4125 
4126 	tlen += sizeof (*toh);
4127 	if (toh != NULL)
4128 		toh->len = tlen;
4129 
4130 	return (tlen);
4131 }
4132 
4133 /*
4134  * Update udp_rcv_opt_len from the packet.
4135  * Called when options received, and when no options received but
4136  * udp_ip_recv_opt_len has previously recorded options.
4137  */
4138 static void
4139 udp_save_ip_rcv_opt(udp_t *udp, void *opt, int opt_len)
4140 {
4141 	/* Save the options if any */
4142 	if (opt_len > 0) {
4143 		if (opt_len > udp->udp_ip_rcv_options_len) {
4144 			/* Need to allocate larger buffer */
4145 			if (udp->udp_ip_rcv_options_len != 0)
4146 				mi_free((char *)udp->udp_ip_rcv_options);
4147 			udp->udp_ip_rcv_options_len = 0;
4148 			udp->udp_ip_rcv_options =
4149 			    (uchar_t *)mi_alloc(opt_len, BPRI_HI);
4150 			if (udp->udp_ip_rcv_options != NULL)
4151 				udp->udp_ip_rcv_options_len = opt_len;
4152 		}
4153 		if (udp->udp_ip_rcv_options_len != 0) {
4154 			bcopy(opt, udp->udp_ip_rcv_options, opt_len);
4155 			/* Adjust length if we are resusing the space */
4156 			udp->udp_ip_rcv_options_len = opt_len;
4157 		}
4158 	} else if (udp->udp_ip_rcv_options_len != 0) {
4159 		/* Clear out previously recorded options */
4160 		mi_free((char *)udp->udp_ip_rcv_options);
4161 		udp->udp_ip_rcv_options = NULL;
4162 		udp->udp_ip_rcv_options_len = 0;
4163 	}
4164 }
4165 
4166 /* ARGSUSED2 */
4167 static void
4168 udp_input(void *arg1, mblk_t *mp, void *arg2)
4169 {
4170 	conn_t *connp = (conn_t *)arg1;
4171 	struct T_unitdata_ind	*tudi;
4172 	uchar_t			*rptr;		/* Pointer to IP header */
4173 	int			hdr_length;	/* Length of IP+UDP headers */
4174 	int			opt_len;
4175 	int			udi_size;	/* Size of T_unitdata_ind */
4176 	int			mp_len;
4177 	udp_t			*udp;
4178 	udpha_t			*udpha;
4179 	int			ipversion;
4180 	ip6_pkt_t		ipp;
4181 	ip6_t			*ip6h;
4182 	ip6i_t			*ip6i;
4183 	mblk_t			*mp1;
4184 	mblk_t			*options_mp = NULL;
4185 	ip_pktinfo_t		*pinfo = NULL;
4186 	cred_t			*cr = NULL;
4187 	pid_t			cpid;
4188 	uint32_t		udp_ip_rcv_options_len;
4189 	udp_bits_t		udp_bits;
4190 	cred_t			*rcr = connp->conn_cred;
4191 	udp_stack_t *us;
4192 
4193 	ASSERT(connp->conn_flags & IPCL_UDPCONN);
4194 
4195 	udp = connp->conn_udp;
4196 	us = udp->udp_us;
4197 	rptr = mp->b_rptr;
4198 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_CTL);
4199 	ASSERT(OK_32PTR(rptr));
4200 
4201 	/*
4202 	 * IP should have prepended the options data in an M_CTL
4203 	 * Check M_CTL "type" to make sure are not here bcos of
4204 	 * a valid ICMP message
4205 	 */
4206 	if (DB_TYPE(mp) == M_CTL) {
4207 		if (MBLKL(mp) == sizeof (ip_pktinfo_t) &&
4208 		    ((ip_pktinfo_t *)mp->b_rptr)->ip_pkt_ulp_type ==
4209 		    IN_PKTINFO) {
4210 			/*
4211 			 * IP_RECVIF or IP_RECVSLLA or IPF_RECVADDR information
4212 			 * has been prepended to the packet by IP. We need to
4213 			 * extract the mblk and adjust the rptr
4214 			 */
4215 			pinfo = (ip_pktinfo_t *)mp->b_rptr;
4216 			options_mp = mp;
4217 			mp = mp->b_cont;
4218 			rptr = mp->b_rptr;
4219 			UDP_STAT(us, udp_in_pktinfo);
4220 		} else {
4221 			/*
4222 			 * ICMP messages.
4223 			 */
4224 			udp_icmp_error(connp->conn_rq, mp);
4225 			return;
4226 		}
4227 	}
4228 
4229 	mp_len = msgdsize(mp);
4230 	/*
4231 	 * This is the inbound data path.
4232 	 * First, we check to make sure the IP version number is correct,
4233 	 * and then pull the IP and UDP headers into the first mblk.
4234 	 */
4235 
4236 	/* Initialize regardless if ipversion is IPv4 or IPv6 */
4237 	ipp.ipp_fields = 0;
4238 
4239 	ipversion = IPH_HDR_VERSION(rptr);
4240 
4241 	rw_enter(&udp->udp_rwlock, RW_READER);
4242 	udp_ip_rcv_options_len = udp->udp_ip_rcv_options_len;
4243 	udp_bits = udp->udp_bits;
4244 	rw_exit(&udp->udp_rwlock);
4245 
4246 	switch (ipversion) {
4247 	case IPV4_VERSION:
4248 		ASSERT(MBLKL(mp) >= sizeof (ipha_t));
4249 		ASSERT(((ipha_t *)rptr)->ipha_protocol == IPPROTO_UDP);
4250 		hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE;
4251 		opt_len = hdr_length - (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE);
4252 		if ((opt_len > 0 || udp_ip_rcv_options_len > 0) &&
4253 		    udp->udp_family == AF_INET) {
4254 			/*
4255 			 * Record/update udp_ip_rcv_options with the lock
4256 			 * held. Not needed for AF_INET6 sockets
4257 			 * since they don't support a getsockopt of IP_OPTIONS.
4258 			 */
4259 			rw_enter(&udp->udp_rwlock, RW_WRITER);
4260 			udp_save_ip_rcv_opt(udp, rptr + IP_SIMPLE_HDR_LENGTH,
4261 			    opt_len);
4262 			rw_exit(&udp->udp_rwlock);
4263 		}
4264 		/* Handle IPV6_RECVPKTINFO even for IPv4 packet. */
4265 		if ((udp->udp_family == AF_INET6) && (pinfo != NULL) &&
4266 		    udp->udp_ip_recvpktinfo) {
4267 			if (pinfo->ip_pkt_flags & IPF_RECVIF) {
4268 				ipp.ipp_fields |= IPPF_IFINDEX;
4269 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
4270 			}
4271 		}
4272 		break;
4273 	case IPV6_VERSION:
4274 		/*
4275 		 * IPv6 packets can only be received by applications
4276 		 * that are prepared to receive IPv6 addresses.
4277 		 * The IP fanout must ensure this.
4278 		 */
4279 		ASSERT(udp->udp_family == AF_INET6);
4280 
4281 		ip6h = (ip6_t *)rptr;
4282 		ASSERT((uchar_t *)&ip6h[1] <= mp->b_wptr);
4283 
4284 		if (ip6h->ip6_nxt != IPPROTO_UDP) {
4285 			uint8_t nexthdrp;
4286 			/* Look for ifindex information */
4287 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
4288 				ip6i = (ip6i_t *)ip6h;
4289 				if ((uchar_t *)&ip6i[1] > mp->b_wptr)
4290 					goto tossit;
4291 
4292 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
4293 					ASSERT(ip6i->ip6i_ifindex != 0);
4294 					ipp.ipp_fields |= IPPF_IFINDEX;
4295 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
4296 				}
4297 				rptr = (uchar_t *)&ip6i[1];
4298 				mp->b_rptr = rptr;
4299 				if (rptr == mp->b_wptr) {
4300 					mp1 = mp->b_cont;
4301 					freeb(mp);
4302 					mp = mp1;
4303 					rptr = mp->b_rptr;
4304 				}
4305 				if (MBLKL(mp) < (IPV6_HDR_LEN + UDPH_SIZE))
4306 					goto tossit;
4307 				ip6h = (ip6_t *)rptr;
4308 				mp_len = msgdsize(mp);
4309 			}
4310 			/*
4311 			 * Find any potentially interesting extension headers
4312 			 * as well as the length of the IPv6 + extension
4313 			 * headers.
4314 			 */
4315 			hdr_length = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp) +
4316 			    UDPH_SIZE;
4317 			ASSERT(nexthdrp == IPPROTO_UDP);
4318 		} else {
4319 			hdr_length = IPV6_HDR_LEN + UDPH_SIZE;
4320 			ip6i = NULL;
4321 		}
4322 		break;
4323 	default:
4324 		ASSERT(0);
4325 	}
4326 
4327 	/*
4328 	 * IP inspected the UDP header thus all of it must be in the mblk.
4329 	 * UDP length check is performed for IPv6 packets and IPv4 packets
4330 	 * to check if the size of the packet as specified
4331 	 * by the header is the same as the physical size of the packet.
4332 	 * FIXME? Didn't IP already check this?
4333 	 */
4334 	udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE));
4335 	if ((MBLKL(mp) < hdr_length) ||
4336 	    (mp_len != (ntohs(udpha->uha_length) + hdr_length - UDPH_SIZE))) {
4337 		goto tossit;
4338 	}
4339 
4340 
4341 	/* Walk past the headers unless IP_RECVHDR was set. */
4342 	if (!udp_bits.udpb_rcvhdr) {
4343 		mp->b_rptr = rptr + hdr_length;
4344 		mp_len -= hdr_length;
4345 	}
4346 
4347 	/*
4348 	 * This is the inbound data path.  Packets are passed upstream as
4349 	 * T_UNITDATA_IND messages with full IP headers still attached.
4350 	 */
4351 	if (udp->udp_family == AF_INET) {
4352 		sin_t *sin;
4353 
4354 		ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION);
4355 
4356 		/*
4357 		 * Normally only send up the source address.
4358 		 * If IP_RECVDSTADDR is set we include the destination IP
4359 		 * address as an option. With IP_RECVOPTS we include all
4360 		 * the IP options.
4361 		 */
4362 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
4363 		if (udp_bits.udpb_recvdstaddr) {
4364 			udi_size += sizeof (struct T_opthdr) +
4365 			    sizeof (struct in_addr);
4366 			UDP_STAT(us, udp_in_recvdstaddr);
4367 		}
4368 
4369 		if (udp_bits.udpb_ip_recvpktinfo && (pinfo != NULL) &&
4370 		    (pinfo->ip_pkt_flags & IPF_RECVADDR)) {
4371 			udi_size += sizeof (struct T_opthdr) +
4372 			    sizeof (struct in_pktinfo);
4373 			UDP_STAT(us, udp_ip_rcvpktinfo);
4374 		}
4375 
4376 		if ((udp_bits.udpb_recvopts) && opt_len > 0) {
4377 			udi_size += sizeof (struct T_opthdr) + opt_len;
4378 			UDP_STAT(us, udp_in_recvopts);
4379 		}
4380 
4381 		/*
4382 		 * If the IP_RECVSLLA or the IP_RECVIF is set then allocate
4383 		 * space accordingly
4384 		 */
4385 		if ((udp_bits.udpb_recvif) && (pinfo != NULL) &&
4386 		    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
4387 			udi_size += sizeof (struct T_opthdr) + sizeof (uint_t);
4388 			UDP_STAT(us, udp_in_recvif);
4389 		}
4390 
4391 		if ((udp_bits.udpb_recvslla) && (pinfo != NULL) &&
4392 		    (pinfo->ip_pkt_flags & IPF_RECVSLLA)) {
4393 			udi_size += sizeof (struct T_opthdr) +
4394 			    sizeof (struct sockaddr_dl);
4395 			UDP_STAT(us, udp_in_recvslla);
4396 		}
4397 
4398 		if ((udp_bits.udpb_recvucred) &&
4399 		    (cr = DB_CRED(mp)) != NULL) {
4400 			udi_size += sizeof (struct T_opthdr) + ucredsize;
4401 			cpid = DB_CPID(mp);
4402 			UDP_STAT(us, udp_in_recvucred);
4403 		}
4404 
4405 		/*
4406 		 * If SO_TIMESTAMP is set allocate the appropriate sized
4407 		 * buffer. Since gethrestime() expects a pointer aligned
4408 		 * argument, we allocate space necessary for extra
4409 		 * alignment (even though it might not be used).
4410 		 */
4411 		if (udp_bits.udpb_timestamp) {
4412 			udi_size += sizeof (struct T_opthdr) +
4413 			    sizeof (timestruc_t) + _POINTER_ALIGNMENT;
4414 			UDP_STAT(us, udp_in_timestamp);
4415 		}
4416 
4417 		/*
4418 		 * If IP_RECVTTL is set allocate the appropriate sized buffer
4419 		 */
4420 		if (udp_bits.udpb_recvttl) {
4421 			udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t);
4422 			UDP_STAT(us, udp_in_recvttl);
4423 		}
4424 
4425 		/* Allocate a message block for the T_UNITDATA_IND structure. */
4426 		mp1 = allocb(udi_size, BPRI_MED);
4427 		if (mp1 == NULL) {
4428 			freemsg(mp);
4429 			if (options_mp != NULL)
4430 				freeb(options_mp);
4431 			BUMP_MIB(&us->us_udp_mib, udpInErrors);
4432 			return;
4433 		}
4434 		mp1->b_cont = mp;
4435 		mp = mp1;
4436 		mp->b_datap->db_type = M_PROTO;
4437 		tudi = (struct T_unitdata_ind *)mp->b_rptr;
4438 		mp->b_wptr = (uchar_t *)tudi + udi_size;
4439 		tudi->PRIM_type = T_UNITDATA_IND;
4440 		tudi->SRC_length = sizeof (sin_t);
4441 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
4442 		tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
4443 		    sizeof (sin_t);
4444 		udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t));
4445 		tudi->OPT_length = udi_size;
4446 		sin = (sin_t *)&tudi[1];
4447 		sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src;
4448 		sin->sin_port =	udpha->uha_src_port;
4449 		sin->sin_family = udp->udp_family;
4450 		*(uint32_t *)&sin->sin_zero[0] = 0;
4451 		*(uint32_t *)&sin->sin_zero[4] = 0;
4452 
4453 		/*
4454 		 * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or
4455 		 * IP_RECVTTL has been set.
4456 		 */
4457 		if (udi_size != 0) {
4458 			/*
4459 			 * Copy in destination address before options to avoid
4460 			 * any padding issues.
4461 			 */
4462 			char *dstopt;
4463 
4464 			dstopt = (char *)&sin[1];
4465 			if (udp_bits.udpb_recvdstaddr) {
4466 				struct T_opthdr *toh;
4467 				ipaddr_t *dstptr;
4468 
4469 				toh = (struct T_opthdr *)dstopt;
4470 				toh->level = IPPROTO_IP;
4471 				toh->name = IP_RECVDSTADDR;
4472 				toh->len = sizeof (struct T_opthdr) +
4473 				    sizeof (ipaddr_t);
4474 				toh->status = 0;
4475 				dstopt += sizeof (struct T_opthdr);
4476 				dstptr = (ipaddr_t *)dstopt;
4477 				*dstptr = ((ipha_t *)rptr)->ipha_dst;
4478 				dstopt += sizeof (ipaddr_t);
4479 				udi_size -= toh->len;
4480 			}
4481 
4482 			if (udp_bits.udpb_recvopts && opt_len > 0) {
4483 				struct T_opthdr *toh;
4484 
4485 				toh = (struct T_opthdr *)dstopt;
4486 				toh->level = IPPROTO_IP;
4487 				toh->name = IP_RECVOPTS;
4488 				toh->len = sizeof (struct T_opthdr) + opt_len;
4489 				toh->status = 0;
4490 				dstopt += sizeof (struct T_opthdr);
4491 				bcopy(rptr + IP_SIMPLE_HDR_LENGTH, dstopt,
4492 				    opt_len);
4493 				dstopt += opt_len;
4494 				udi_size -= toh->len;
4495 			}
4496 
4497 			if ((udp_bits.udpb_ip_recvpktinfo) && (pinfo != NULL) &&
4498 			    (pinfo->ip_pkt_flags & IPF_RECVADDR)) {
4499 				struct T_opthdr *toh;
4500 				struct in_pktinfo *pktinfop;
4501 
4502 				toh = (struct T_opthdr *)dstopt;
4503 				toh->level = IPPROTO_IP;
4504 				toh->name = IP_PKTINFO;
4505 				toh->len = sizeof (struct T_opthdr) +
4506 				    sizeof (*pktinfop);
4507 				toh->status = 0;
4508 				dstopt += sizeof (struct T_opthdr);
4509 				pktinfop = (struct in_pktinfo *)dstopt;
4510 				pktinfop->ipi_ifindex = pinfo->ip_pkt_ifindex;
4511 				pktinfop->ipi_spec_dst =
4512 				    pinfo->ip_pkt_match_addr;
4513 				pktinfop->ipi_addr.s_addr =
4514 				    ((ipha_t *)rptr)->ipha_dst;
4515 
4516 				dstopt += sizeof (struct in_pktinfo);
4517 				udi_size -= toh->len;
4518 			}
4519 
4520 			if ((udp_bits.udpb_recvslla) && (pinfo != NULL) &&
4521 			    (pinfo->ip_pkt_flags & IPF_RECVSLLA)) {
4522 
4523 				struct T_opthdr *toh;
4524 				struct sockaddr_dl	*dstptr;
4525 
4526 				toh = (struct T_opthdr *)dstopt;
4527 				toh->level = IPPROTO_IP;
4528 				toh->name = IP_RECVSLLA;
4529 				toh->len = sizeof (struct T_opthdr) +
4530 				    sizeof (struct sockaddr_dl);
4531 				toh->status = 0;
4532 				dstopt += sizeof (struct T_opthdr);
4533 				dstptr = (struct sockaddr_dl *)dstopt;
4534 				bcopy(&pinfo->ip_pkt_slla, dstptr,
4535 				    sizeof (struct sockaddr_dl));
4536 				dstopt += sizeof (struct sockaddr_dl);
4537 				udi_size -= toh->len;
4538 			}
4539 
4540 			if ((udp_bits.udpb_recvif) && (pinfo != NULL) &&
4541 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
4542 
4543 				struct T_opthdr *toh;
4544 				uint_t		*dstptr;
4545 
4546 				toh = (struct T_opthdr *)dstopt;
4547 				toh->level = IPPROTO_IP;
4548 				toh->name = IP_RECVIF;
4549 				toh->len = sizeof (struct T_opthdr) +
4550 				    sizeof (uint_t);
4551 				toh->status = 0;
4552 				dstopt += sizeof (struct T_opthdr);
4553 				dstptr = (uint_t *)dstopt;
4554 				*dstptr = pinfo->ip_pkt_ifindex;
4555 				dstopt += sizeof (uint_t);
4556 				udi_size -= toh->len;
4557 			}
4558 
4559 			if (cr != NULL) {
4560 				struct T_opthdr *toh;
4561 
4562 				toh = (struct T_opthdr *)dstopt;
4563 				toh->level = SOL_SOCKET;
4564 				toh->name = SCM_UCRED;
4565 				toh->len = sizeof (struct T_opthdr) + ucredsize;
4566 				toh->status = 0;
4567 				dstopt += sizeof (struct T_opthdr);
4568 				(void) cred2ucred(cr, cpid, dstopt, rcr);
4569 				dstopt += ucredsize;
4570 				udi_size -= toh->len;
4571 			}
4572 
4573 			if (udp_bits.udpb_timestamp) {
4574 				struct	T_opthdr *toh;
4575 
4576 				toh = (struct T_opthdr *)dstopt;
4577 				toh->level = SOL_SOCKET;
4578 				toh->name = SCM_TIMESTAMP;
4579 				toh->len = sizeof (struct T_opthdr) +
4580 				    sizeof (timestruc_t) + _POINTER_ALIGNMENT;
4581 				toh->status = 0;
4582 				dstopt += sizeof (struct T_opthdr);
4583 				/* Align for gethrestime() */
4584 				dstopt = (char *)P2ROUNDUP((intptr_t)dstopt,
4585 				    sizeof (intptr_t));
4586 				gethrestime((timestruc_t *)dstopt);
4587 				dstopt = (char *)toh + toh->len;
4588 				udi_size -= toh->len;
4589 			}
4590 
4591 			/*
4592 			 * CAUTION:
4593 			 * Due to aligment issues
4594 			 * Processing of IP_RECVTTL option
4595 			 * should always be the last. Adding
4596 			 * any option processing after this will
4597 			 * cause alignment panic.
4598 			 */
4599 			if (udp_bits.udpb_recvttl) {
4600 				struct	T_opthdr *toh;
4601 				uint8_t	*dstptr;
4602 
4603 				toh = (struct T_opthdr *)dstopt;
4604 				toh->level = IPPROTO_IP;
4605 				toh->name = IP_RECVTTL;
4606 				toh->len = sizeof (struct T_opthdr) +
4607 				    sizeof (uint8_t);
4608 				toh->status = 0;
4609 				dstopt += sizeof (struct T_opthdr);
4610 				dstptr = (uint8_t *)dstopt;
4611 				*dstptr = ((ipha_t *)rptr)->ipha_ttl;
4612 				dstopt += sizeof (uint8_t);
4613 				udi_size -= toh->len;
4614 			}
4615 
4616 			/* Consumed all of allocated space */
4617 			ASSERT(udi_size == 0);
4618 		}
4619 	} else {
4620 		sin6_t *sin6;
4621 
4622 		/*
4623 		 * Handle both IPv4 and IPv6 packets for IPv6 sockets.
4624 		 *
4625 		 * Normally we only send up the address. If receiving of any
4626 		 * optional receive side information is enabled, we also send
4627 		 * that up as options.
4628 		 */
4629 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t);
4630 
4631 		if (ipp.ipp_fields & (IPPF_HOPOPTS|IPPF_DSTOPTS|IPPF_RTDSTOPTS|
4632 		    IPPF_RTHDR|IPPF_IFINDEX)) {
4633 			if ((udp_bits.udpb_ipv6_recvhopopts) &&
4634 			    (ipp.ipp_fields & IPPF_HOPOPTS)) {
4635 				size_t hlen;
4636 
4637 				UDP_STAT(us, udp_in_recvhopopts);
4638 				hlen = copy_hop_opts(&ipp, NULL);
4639 				if (hlen == 0)
4640 					ipp.ipp_fields &= ~IPPF_HOPOPTS;
4641 				udi_size += hlen;
4642 			}
4643 			if (((udp_bits.udpb_ipv6_recvdstopts) ||
4644 			    udp_bits.udpb_old_ipv6_recvdstopts) &&
4645 			    (ipp.ipp_fields & IPPF_DSTOPTS)) {
4646 				udi_size += sizeof (struct T_opthdr) +
4647 				    ipp.ipp_dstoptslen;
4648 				UDP_STAT(us, udp_in_recvdstopts);
4649 			}
4650 			if ((((udp_bits.udpb_ipv6_recvdstopts) &&
4651 			    udp_bits.udpb_ipv6_recvrthdr &&
4652 			    (ipp.ipp_fields & IPPF_RTHDR)) ||
4653 			    (udp_bits.udpb_ipv6_recvrthdrdstopts)) &&
4654 			    (ipp.ipp_fields & IPPF_RTDSTOPTS)) {
4655 				udi_size += sizeof (struct T_opthdr) +
4656 				    ipp.ipp_rtdstoptslen;
4657 				UDP_STAT(us, udp_in_recvrtdstopts);
4658 			}
4659 			if ((udp_bits.udpb_ipv6_recvrthdr) &&
4660 			    (ipp.ipp_fields & IPPF_RTHDR)) {
4661 				udi_size += sizeof (struct T_opthdr) +
4662 				    ipp.ipp_rthdrlen;
4663 				UDP_STAT(us, udp_in_recvrthdr);
4664 			}
4665 			if ((udp_bits.udpb_ip_recvpktinfo) &&
4666 			    (ipp.ipp_fields & IPPF_IFINDEX)) {
4667 				udi_size += sizeof (struct T_opthdr) +
4668 				    sizeof (struct in6_pktinfo);
4669 				UDP_STAT(us, udp_in_recvpktinfo);
4670 			}
4671 
4672 		}
4673 		if ((udp_bits.udpb_recvucred) &&
4674 		    (cr = DB_CRED(mp)) != NULL) {
4675 			udi_size += sizeof (struct T_opthdr) + ucredsize;
4676 			cpid = DB_CPID(mp);
4677 			UDP_STAT(us, udp_in_recvucred);
4678 		}
4679 
4680 		/*
4681 		 * If SO_TIMESTAMP is set allocate the appropriate sized
4682 		 * buffer. Since gethrestime() expects a pointer aligned
4683 		 * argument, we allocate space necessary for extra
4684 		 * alignment (even though it might not be used).
4685 		 */
4686 		if (udp_bits.udpb_timestamp) {
4687 			udi_size += sizeof (struct T_opthdr) +
4688 			    sizeof (timestruc_t) + _POINTER_ALIGNMENT;
4689 			UDP_STAT(us, udp_in_timestamp);
4690 		}
4691 
4692 		if (udp_bits.udpb_ipv6_recvhoplimit) {
4693 			udi_size += sizeof (struct T_opthdr) + sizeof (int);
4694 			UDP_STAT(us, udp_in_recvhoplimit);
4695 		}
4696 
4697 		if (udp_bits.udpb_ipv6_recvtclass) {
4698 			udi_size += sizeof (struct T_opthdr) + sizeof (int);
4699 			UDP_STAT(us, udp_in_recvtclass);
4700 		}
4701 
4702 		mp1 = allocb(udi_size, BPRI_MED);
4703 		if (mp1 == NULL) {
4704 			freemsg(mp);
4705 			if (options_mp != NULL)
4706 				freeb(options_mp);
4707 			BUMP_MIB(&us->us_udp_mib, udpInErrors);
4708 			return;
4709 		}
4710 		mp1->b_cont = mp;
4711 		mp = mp1;
4712 		mp->b_datap->db_type = M_PROTO;
4713 		tudi = (struct T_unitdata_ind *)mp->b_rptr;
4714 		mp->b_wptr = (uchar_t *)tudi + udi_size;
4715 		tudi->PRIM_type = T_UNITDATA_IND;
4716 		tudi->SRC_length = sizeof (sin6_t);
4717 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
4718 		tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
4719 		    sizeof (sin6_t);
4720 		udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin6_t));
4721 		tudi->OPT_length = udi_size;
4722 		sin6 = (sin6_t *)&tudi[1];
4723 		if (ipversion == IPV4_VERSION) {
4724 			in6_addr_t v6dst;
4725 
4726 			IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_src,
4727 			    &sin6->sin6_addr);
4728 			IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_dst,
4729 			    &v6dst);
4730 			sin6->sin6_flowinfo = 0;
4731 			sin6->sin6_scope_id = 0;
4732 			sin6->__sin6_src_id = ip_srcid_find_addr(&v6dst,
4733 			    connp->conn_zoneid, us->us_netstack);
4734 		} else {
4735 			sin6->sin6_addr = ip6h->ip6_src;
4736 			/* No sin6_flowinfo per API */
4737 			sin6->sin6_flowinfo = 0;
4738 			/* For link-scope source pass up scope id */
4739 			if ((ipp.ipp_fields & IPPF_IFINDEX) &&
4740 			    IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src))
4741 				sin6->sin6_scope_id = ipp.ipp_ifindex;
4742 			else
4743 				sin6->sin6_scope_id = 0;
4744 			sin6->__sin6_src_id = ip_srcid_find_addr(
4745 			    &ip6h->ip6_dst, connp->conn_zoneid,
4746 			    us->us_netstack);
4747 		}
4748 		sin6->sin6_port = udpha->uha_src_port;
4749 		sin6->sin6_family = udp->udp_family;
4750 
4751 		if (udi_size != 0) {
4752 			uchar_t *dstopt;
4753 
4754 			dstopt = (uchar_t *)&sin6[1];
4755 			if ((udp_bits.udpb_ip_recvpktinfo) &&
4756 			    (ipp.ipp_fields & IPPF_IFINDEX)) {
4757 				struct T_opthdr *toh;
4758 				struct in6_pktinfo *pkti;
4759 
4760 				toh = (struct T_opthdr *)dstopt;
4761 				toh->level = IPPROTO_IPV6;
4762 				toh->name = IPV6_PKTINFO;
4763 				toh->len = sizeof (struct T_opthdr) +
4764 				    sizeof (*pkti);
4765 				toh->status = 0;
4766 				dstopt += sizeof (struct T_opthdr);
4767 				pkti = (struct in6_pktinfo *)dstopt;
4768 				if (ipversion == IPV6_VERSION)
4769 					pkti->ipi6_addr = ip6h->ip6_dst;
4770 				else
4771 					IN6_IPADDR_TO_V4MAPPED(
4772 					    ((ipha_t *)rptr)->ipha_dst,
4773 					    &pkti->ipi6_addr);
4774 				pkti->ipi6_ifindex = ipp.ipp_ifindex;
4775 				dstopt += sizeof (*pkti);
4776 				udi_size -= toh->len;
4777 			}
4778 			if (udp_bits.udpb_ipv6_recvhoplimit) {
4779 				struct T_opthdr *toh;
4780 
4781 				toh = (struct T_opthdr *)dstopt;
4782 				toh->level = IPPROTO_IPV6;
4783 				toh->name = IPV6_HOPLIMIT;
4784 				toh->len = sizeof (struct T_opthdr) +
4785 				    sizeof (uint_t);
4786 				toh->status = 0;
4787 				dstopt += sizeof (struct T_opthdr);
4788 				if (ipversion == IPV6_VERSION)
4789 					*(uint_t *)dstopt = ip6h->ip6_hops;
4790 				else
4791 					*(uint_t *)dstopt =
4792 					    ((ipha_t *)rptr)->ipha_ttl;
4793 				dstopt += sizeof (uint_t);
4794 				udi_size -= toh->len;
4795 			}
4796 			if (udp_bits.udpb_ipv6_recvtclass) {
4797 				struct T_opthdr *toh;
4798 
4799 				toh = (struct T_opthdr *)dstopt;
4800 				toh->level = IPPROTO_IPV6;
4801 				toh->name = IPV6_TCLASS;
4802 				toh->len = sizeof (struct T_opthdr) +
4803 				    sizeof (uint_t);
4804 				toh->status = 0;
4805 				dstopt += sizeof (struct T_opthdr);
4806 				if (ipversion == IPV6_VERSION) {
4807 					*(uint_t *)dstopt =
4808 					    IPV6_FLOW_TCLASS(ip6h->ip6_flow);
4809 				} else {
4810 					ipha_t *ipha = (ipha_t *)rptr;
4811 					*(uint_t *)dstopt =
4812 					    ipha->ipha_type_of_service;
4813 				}
4814 				dstopt += sizeof (uint_t);
4815 				udi_size -= toh->len;
4816 			}
4817 			if ((udp_bits.udpb_ipv6_recvhopopts) &&
4818 			    (ipp.ipp_fields & IPPF_HOPOPTS)) {
4819 				size_t hlen;
4820 
4821 				hlen = copy_hop_opts(&ipp, dstopt);
4822 				dstopt += hlen;
4823 				udi_size -= hlen;
4824 			}
4825 			if ((udp_bits.udpb_ipv6_recvdstopts) &&
4826 			    (udp_bits.udpb_ipv6_recvrthdr) &&
4827 			    (ipp.ipp_fields & IPPF_RTHDR) &&
4828 			    (ipp.ipp_fields & IPPF_RTDSTOPTS)) {
4829 				struct T_opthdr *toh;
4830 
4831 				toh = (struct T_opthdr *)dstopt;
4832 				toh->level = IPPROTO_IPV6;
4833 				toh->name = IPV6_DSTOPTS;
4834 				toh->len = sizeof (struct T_opthdr) +
4835 				    ipp.ipp_rtdstoptslen;
4836 				toh->status = 0;
4837 				dstopt += sizeof (struct T_opthdr);
4838 				bcopy(ipp.ipp_rtdstopts, dstopt,
4839 				    ipp.ipp_rtdstoptslen);
4840 				dstopt += ipp.ipp_rtdstoptslen;
4841 				udi_size -= toh->len;
4842 			}
4843 			if ((udp_bits.udpb_ipv6_recvrthdr) &&
4844 			    (ipp.ipp_fields & IPPF_RTHDR)) {
4845 				struct T_opthdr *toh;
4846 
4847 				toh = (struct T_opthdr *)dstopt;
4848 				toh->level = IPPROTO_IPV6;
4849 				toh->name = IPV6_RTHDR;
4850 				toh->len = sizeof (struct T_opthdr) +
4851 				    ipp.ipp_rthdrlen;
4852 				toh->status = 0;
4853 				dstopt += sizeof (struct T_opthdr);
4854 				bcopy(ipp.ipp_rthdr, dstopt, ipp.ipp_rthdrlen);
4855 				dstopt += ipp.ipp_rthdrlen;
4856 				udi_size -= toh->len;
4857 			}
4858 			if ((udp_bits.udpb_ipv6_recvdstopts) &&
4859 			    (ipp.ipp_fields & IPPF_DSTOPTS)) {
4860 				struct T_opthdr *toh;
4861 
4862 				toh = (struct T_opthdr *)dstopt;
4863 				toh->level = IPPROTO_IPV6;
4864 				toh->name = IPV6_DSTOPTS;
4865 				toh->len = sizeof (struct T_opthdr) +
4866 				    ipp.ipp_dstoptslen;
4867 				toh->status = 0;
4868 				dstopt += sizeof (struct T_opthdr);
4869 				bcopy(ipp.ipp_dstopts, dstopt,
4870 				    ipp.ipp_dstoptslen);
4871 				dstopt += ipp.ipp_dstoptslen;
4872 				udi_size -= toh->len;
4873 			}
4874 
4875 			if (cr != NULL) {
4876 				struct T_opthdr *toh;
4877 
4878 				toh = (struct T_opthdr *)dstopt;
4879 				toh->level = SOL_SOCKET;
4880 				toh->name = SCM_UCRED;
4881 				toh->len = sizeof (struct T_opthdr) + ucredsize;
4882 				toh->status = 0;
4883 				(void) cred2ucred(cr, cpid, &toh[1], rcr);
4884 				dstopt += toh->len;
4885 				udi_size -= toh->len;
4886 			}
4887 			if (udp_bits.udpb_timestamp) {
4888 				struct	T_opthdr *toh;
4889 
4890 				toh = (struct T_opthdr *)dstopt;
4891 				toh->level = SOL_SOCKET;
4892 				toh->name = SCM_TIMESTAMP;
4893 				toh->len = sizeof (struct T_opthdr) +
4894 				    sizeof (timestruc_t) + _POINTER_ALIGNMENT;
4895 				toh->status = 0;
4896 				dstopt += sizeof (struct T_opthdr);
4897 				/* Align for gethrestime() */
4898 				dstopt = (uchar_t *)P2ROUNDUP((intptr_t)dstopt,
4899 				    sizeof (intptr_t));
4900 				gethrestime((timestruc_t *)dstopt);
4901 				dstopt = (uchar_t *)toh + toh->len;
4902 				udi_size -= toh->len;
4903 			}
4904 
4905 			/* Consumed all of allocated space */
4906 			ASSERT(udi_size == 0);
4907 		}
4908 #undef	sin6
4909 		/* No IP_RECVDSTADDR for IPv6. */
4910 	}
4911 
4912 	BUMP_MIB(&us->us_udp_mib, udpHCInDatagrams);
4913 	if (options_mp != NULL)
4914 		freeb(options_mp);
4915 
4916 	if (udp_bits.udpb_direct_sockfs) {
4917 		/*
4918 		 * There is nothing above us except for the stream head;
4919 		 * use the read-side synchronous stream interface in
4920 		 * order to reduce the time spent in interrupt thread.
4921 		 */
4922 		ASSERT(udp->udp_issocket);
4923 		udp_rcv_enqueue(connp->conn_rq, udp, mp, mp_len);
4924 	} else {
4925 		/*
4926 		 * Use regular STREAMS interface to pass data upstream
4927 		 * if this is not a socket endpoint, or if we have
4928 		 * switched over to the slow mode due to sockmod being
4929 		 * popped or a module being pushed on top of us.
4930 		 */
4931 		putnext(connp->conn_rq, mp);
4932 	}
4933 	return;
4934 
4935 tossit:
4936 	freemsg(mp);
4937 	if (options_mp != NULL)
4938 		freeb(options_mp);
4939 	BUMP_MIB(&us->us_udp_mib, udpInErrors);
4940 }
4941 
4942 /*
4943  * Handle the results of a T_BIND_REQ whether deferred by IP or handled
4944  * immediately.
4945  */
4946 static void
4947 udp_bind_result(conn_t *connp, mblk_t *mp)
4948 {
4949 	struct T_error_ack	*tea;
4950 
4951 	switch (mp->b_datap->db_type) {
4952 	case M_PROTO:
4953 	case M_PCPROTO:
4954 		/* M_PROTO messages contain some type of TPI message. */
4955 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
4956 		    (uintptr_t)INT_MAX);
4957 		if (mp->b_wptr - mp->b_rptr < sizeof (t_scalar_t)) {
4958 			freemsg(mp);
4959 			return;
4960 		}
4961 		tea = (struct T_error_ack *)mp->b_rptr;
4962 
4963 		switch (tea->PRIM_type) {
4964 		case T_ERROR_ACK:
4965 			switch (tea->ERROR_prim) {
4966 			case O_T_BIND_REQ:
4967 			case T_BIND_REQ:
4968 				udp_bind_error(connp, mp);
4969 				return;
4970 			default:
4971 				break;
4972 			}
4973 			ASSERT(0);
4974 			freemsg(mp);
4975 			return;
4976 
4977 		case T_BIND_ACK:
4978 			udp_bind_ack(connp, mp);
4979 			return;
4980 
4981 		default:
4982 			break;
4983 		}
4984 		freemsg(mp);
4985 		return;
4986 	default:
4987 		/* FIXME: other cases? */
4988 		ASSERT(0);
4989 		freemsg(mp);
4990 		return;
4991 	}
4992 }
4993 
4994 /*
4995  * Process a T_BIND_ACK
4996  */
4997 static void
4998 udp_bind_ack(conn_t *connp, mblk_t *mp)
4999 {
5000 	udp_t	*udp = connp->conn_udp;
5001 	mblk_t	*mp1;
5002 	ire_t	*ire;
5003 	struct T_bind_ack *tba;
5004 	uchar_t *addrp;
5005 	ipa_conn_t	*ac;
5006 	ipa6_conn_t	*ac6;
5007 	udp_fanout_t	*udpf;
5008 	udp_stack_t	*us = udp->udp_us;
5009 
5010 	ASSERT(udp->udp_pending_op != -1);
5011 	rw_enter(&udp->udp_rwlock, RW_WRITER);
5012 	/*
5013 	 * If a broadcast/multicast address was bound set
5014 	 * the source address to 0.
5015 	 * This ensures no datagrams with broadcast address
5016 	 * as source address are emitted (which would violate
5017 	 * RFC1122 - Hosts requirements)
5018 	 *
5019 	 * Note that when connecting the returned IRE is
5020 	 * for the destination address and we only perform
5021 	 * the broadcast check for the source address (it
5022 	 * is OK to connect to a broadcast/multicast address.)
5023 	 */
5024 	mp1 = mp->b_cont;
5025 	if (mp1 != NULL && mp1->b_datap->db_type == IRE_DB_TYPE) {
5026 		ire = (ire_t *)mp1->b_rptr;
5027 
5028 		/*
5029 		 * Note: we get IRE_BROADCAST for IPv6 to "mark" a multicast
5030 		 * local address.
5031 		 */
5032 		udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
5033 		    us->us_bind_fanout_size)];
5034 		if (ire->ire_type == IRE_BROADCAST &&
5035 		    udp->udp_state != TS_DATA_XFER) {
5036 			ASSERT(udp->udp_pending_op == T_BIND_REQ ||
5037 			    udp->udp_pending_op == O_T_BIND_REQ);
5038 			/* This was just a local bind to a broadcast addr */
5039 			mutex_enter(&udpf->uf_lock);
5040 			V6_SET_ZERO(udp->udp_v6src);
5041 			mutex_exit(&udpf->uf_lock);
5042 			if (udp->udp_family == AF_INET6)
5043 				(void) udp_build_hdrs(udp);
5044 		} else if (V6_OR_V4_INADDR_ANY(udp->udp_v6src)) {
5045 			/*
5046 			 * Local address not yet set - pick it from the
5047 			 * T_bind_ack
5048 			 */
5049 			tba = (struct T_bind_ack *)mp->b_rptr;
5050 			addrp = &mp->b_rptr[tba->ADDR_offset];
5051 			switch (udp->udp_family) {
5052 			case AF_INET:
5053 				if (tba->ADDR_length == sizeof (ipa_conn_t)) {
5054 					ac = (ipa_conn_t *)addrp;
5055 				} else {
5056 					ASSERT(tba->ADDR_length ==
5057 					    sizeof (ipa_conn_x_t));
5058 					ac = &((ipa_conn_x_t *)addrp)->acx_conn;
5059 				}
5060 				mutex_enter(&udpf->uf_lock);
5061 				IN6_IPADDR_TO_V4MAPPED(ac->ac_laddr,
5062 				    &udp->udp_v6src);
5063 				mutex_exit(&udpf->uf_lock);
5064 				break;
5065 			case AF_INET6:
5066 				if (tba->ADDR_length == sizeof (ipa6_conn_t)) {
5067 					ac6 = (ipa6_conn_t *)addrp;
5068 				} else {
5069 					ASSERT(tba->ADDR_length ==
5070 					    sizeof (ipa6_conn_x_t));
5071 					ac6 = &((ipa6_conn_x_t *)
5072 					    addrp)->ac6x_conn;
5073 				}
5074 				mutex_enter(&udpf->uf_lock);
5075 				udp->udp_v6src = ac6->ac6_laddr;
5076 				mutex_exit(&udpf->uf_lock);
5077 				(void) udp_build_hdrs(udp);
5078 				break;
5079 			}
5080 		}
5081 		mp1 = mp1->b_cont;
5082 	}
5083 	udp->udp_pending_op = -1;
5084 	rw_exit(&udp->udp_rwlock);
5085 	/*
5086 	 * Look for one or more appended ACK message added by
5087 	 * udp_connect or udp_disconnect.
5088 	 * If none found just send up the T_BIND_ACK.
5089 	 * udp_connect has appended a T_OK_ACK and a T_CONN_CON.
5090 	 * udp_disconnect has appended a T_OK_ACK.
5091 	 */
5092 	if (mp1 != NULL) {
5093 		if (mp->b_cont == mp1)
5094 			mp->b_cont = NULL;
5095 		else {
5096 			ASSERT(mp->b_cont->b_cont == mp1);
5097 			mp->b_cont->b_cont = NULL;
5098 		}
5099 		freemsg(mp);
5100 		mp = mp1;
5101 		while (mp != NULL) {
5102 			mp1 = mp->b_cont;
5103 			mp->b_cont = NULL;
5104 			putnext(connp->conn_rq, mp);
5105 			mp = mp1;
5106 		}
5107 		return;
5108 	}
5109 	freemsg(mp->b_cont);
5110 	mp->b_cont = NULL;
5111 	putnext(connp->conn_rq, mp);
5112 }
5113 
5114 static void
5115 udp_bind_error(conn_t *connp, mblk_t *mp)
5116 {
5117 	udp_t	*udp = connp->conn_udp;
5118 	struct T_error_ack *tea;
5119 	udp_fanout_t	*udpf;
5120 	udp_stack_t	*us = udp->udp_us;
5121 
5122 	tea = (struct T_error_ack *)mp->b_rptr;
5123 
5124 	/*
5125 	 * If our O_T_BIND_REQ/T_BIND_REQ fails,
5126 	 * clear out the associated port and source
5127 	 * address before passing the message
5128 	 * upstream. If this was caused by a T_CONN_REQ
5129 	 * revert back to bound state.
5130 	 */
5131 
5132 	rw_enter(&udp->udp_rwlock, RW_WRITER);
5133 	ASSERT(udp->udp_pending_op != -1);
5134 	tea->ERROR_prim = udp->udp_pending_op;
5135 	udp->udp_pending_op = -1;
5136 	udpf = &us->us_bind_fanout[
5137 	    UDP_BIND_HASH(udp->udp_port,
5138 	    us->us_bind_fanout_size)];
5139 	mutex_enter(&udpf->uf_lock);
5140 
5141 	switch (tea->ERROR_prim) {
5142 	case T_CONN_REQ:
5143 		ASSERT(udp->udp_state == TS_DATA_XFER);
5144 		/* Connect failed */
5145 		/* Revert back to the bound source */
5146 		udp->udp_v6src = udp->udp_bound_v6src;
5147 		udp->udp_state = TS_IDLE;
5148 		mutex_exit(&udpf->uf_lock);
5149 		if (udp->udp_family == AF_INET6)
5150 			(void) udp_build_hdrs(udp);
5151 		rw_exit(&udp->udp_rwlock);
5152 		break;
5153 
5154 	case T_DISCON_REQ:
5155 	case T_BIND_REQ:
5156 	case O_T_BIND_REQ:
5157 		V6_SET_ZERO(udp->udp_v6src);
5158 		V6_SET_ZERO(udp->udp_bound_v6src);
5159 		udp->udp_state = TS_UNBND;
5160 		udp_bind_hash_remove(udp, B_TRUE);
5161 		udp->udp_port = 0;
5162 		mutex_exit(&udpf->uf_lock);
5163 		if (udp->udp_family == AF_INET6)
5164 			(void) udp_build_hdrs(udp);
5165 		rw_exit(&udp->udp_rwlock);
5166 		break;
5167 
5168 	default:
5169 		mutex_exit(&udpf->uf_lock);
5170 		rw_exit(&udp->udp_rwlock);
5171 		(void) mi_strlog(connp->conn_rq, 1,
5172 		    SL_ERROR|SL_TRACE,
5173 		    "udp_input_other: bad ERROR_prim, "
5174 		    "len %d", tea->ERROR_prim);
5175 	}
5176 	putnext(connp->conn_rq, mp);
5177 }
5178 
5179 /*
5180  * return SNMP stuff in buffer in mpdata. We don't hold any lock and report
5181  * information that can be changing beneath us.
5182  */
5183 mblk_t *
5184 udp_snmp_get(queue_t *q, mblk_t *mpctl)
5185 {
5186 	mblk_t			*mpdata;
5187 	mblk_t			*mp_conn_ctl;
5188 	mblk_t			*mp_attr_ctl;
5189 	mblk_t			*mp6_conn_ctl;
5190 	mblk_t			*mp6_attr_ctl;
5191 	mblk_t			*mp_conn_tail;
5192 	mblk_t			*mp_attr_tail;
5193 	mblk_t			*mp6_conn_tail;
5194 	mblk_t			*mp6_attr_tail;
5195 	struct opthdr		*optp;
5196 	mib2_udpEntry_t		ude;
5197 	mib2_udp6Entry_t	ude6;
5198 	mib2_transportMLPEntry_t mlp;
5199 	int			state;
5200 	zoneid_t		zoneid;
5201 	int			i;
5202 	connf_t			*connfp;
5203 	conn_t			*connp = Q_TO_CONN(q);
5204 	int			v4_conn_idx;
5205 	int			v6_conn_idx;
5206 	boolean_t		needattr;
5207 	udp_t			*udp;
5208 	ip_stack_t		*ipst = connp->conn_netstack->netstack_ip;
5209 	udp_stack_t		*us = connp->conn_netstack->netstack_udp;
5210 	mblk_t			*mp2ctl;
5211 
5212 	/*
5213 	 * make a copy of the original message
5214 	 */
5215 	mp2ctl = copymsg(mpctl);
5216 
5217 	mp_conn_ctl = mp_attr_ctl = mp6_conn_ctl = NULL;
5218 	if (mpctl == NULL ||
5219 	    (mpdata = mpctl->b_cont) == NULL ||
5220 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
5221 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
5222 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
5223 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
5224 		freemsg(mp_conn_ctl);
5225 		freemsg(mp_attr_ctl);
5226 		freemsg(mp6_conn_ctl);
5227 		freemsg(mpctl);
5228 		freemsg(mp2ctl);
5229 		return (0);
5230 	}
5231 
5232 	zoneid = connp->conn_zoneid;
5233 
5234 	/* fixed length structure for IPv4 and IPv6 counters */
5235 	SET_MIB(us->us_udp_mib.udpEntrySize, sizeof (mib2_udpEntry_t));
5236 	SET_MIB(us->us_udp_mib.udp6EntrySize, sizeof (mib2_udp6Entry_t));
5237 	/* synchronize 64- and 32-bit counters */
5238 	SYNC32_MIB(&us->us_udp_mib, udpInDatagrams, udpHCInDatagrams);
5239 	SYNC32_MIB(&us->us_udp_mib, udpOutDatagrams, udpHCOutDatagrams);
5240 
5241 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
5242 	optp->level = MIB2_UDP;
5243 	optp->name = 0;
5244 	(void) snmp_append_data(mpdata, (char *)&us->us_udp_mib,
5245 	    sizeof (us->us_udp_mib));
5246 	optp->len = msgdsize(mpdata);
5247 	qreply(q, mpctl);
5248 
5249 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
5250 	v4_conn_idx = v6_conn_idx = 0;
5251 
5252 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
5253 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
5254 		connp = NULL;
5255 
5256 		while ((connp = ipcl_get_next_conn(connfp, connp,
5257 		    IPCL_UDPCONN))) {
5258 			udp = connp->conn_udp;
5259 			if (zoneid != connp->conn_zoneid)
5260 				continue;
5261 
5262 			/*
5263 			 * Note that the port numbers are sent in
5264 			 * host byte order
5265 			 */
5266 
5267 			if (udp->udp_state == TS_UNBND)
5268 				state = MIB2_UDP_unbound;
5269 			else if (udp->udp_state == TS_IDLE)
5270 				state = MIB2_UDP_idle;
5271 			else if (udp->udp_state == TS_DATA_XFER)
5272 				state = MIB2_UDP_connected;
5273 			else
5274 				state = MIB2_UDP_unknown;
5275 
5276 			needattr = B_FALSE;
5277 			bzero(&mlp, sizeof (mlp));
5278 			if (connp->conn_mlp_type != mlptSingle) {
5279 				if (connp->conn_mlp_type == mlptShared ||
5280 				    connp->conn_mlp_type == mlptBoth)
5281 					mlp.tme_flags |= MIB2_TMEF_SHARED;
5282 				if (connp->conn_mlp_type == mlptPrivate ||
5283 				    connp->conn_mlp_type == mlptBoth)
5284 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
5285 				needattr = B_TRUE;
5286 			}
5287 
5288 			/*
5289 			 * Create an IPv4 table entry for IPv4 entries and also
5290 			 * any IPv6 entries which are bound to in6addr_any
5291 			 * (i.e. anything a IPv4 peer could connect/send to).
5292 			 */
5293 			if (udp->udp_ipversion == IPV4_VERSION ||
5294 			    (udp->udp_state <= TS_IDLE &&
5295 			    IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src))) {
5296 				ude.udpEntryInfo.ue_state = state;
5297 				/*
5298 				 * If in6addr_any this will set it to
5299 				 * INADDR_ANY
5300 				 */
5301 				ude.udpLocalAddress =
5302 				    V4_PART_OF_V6(udp->udp_v6src);
5303 				ude.udpLocalPort = ntohs(udp->udp_port);
5304 				if (udp->udp_state == TS_DATA_XFER) {
5305 					/*
5306 					 * Can potentially get here for
5307 					 * v6 socket if another process
5308 					 * (say, ping) has just done a
5309 					 * sendto(), changing the state
5310 					 * from the TS_IDLE above to
5311 					 * TS_DATA_XFER by the time we hit
5312 					 * this part of the code.
5313 					 */
5314 					ude.udpEntryInfo.ue_RemoteAddress =
5315 					    V4_PART_OF_V6(udp->udp_v6dst);
5316 					ude.udpEntryInfo.ue_RemotePort =
5317 					    ntohs(udp->udp_dstport);
5318 				} else {
5319 					ude.udpEntryInfo.ue_RemoteAddress = 0;
5320 					ude.udpEntryInfo.ue_RemotePort = 0;
5321 				}
5322 
5323 				/*
5324 				 * We make the assumption that all udp_t
5325 				 * structs will be created within an address
5326 				 * region no larger than 32-bits.
5327 				 */
5328 				ude.udpInstance = (uint32_t)(uintptr_t)udp;
5329 				ude.udpCreationProcess =
5330 				    (udp->udp_open_pid < 0) ?
5331 				    MIB2_UNKNOWN_PROCESS :
5332 				    udp->udp_open_pid;
5333 				ude.udpCreationTime = udp->udp_open_time;
5334 
5335 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
5336 				    &mp_conn_tail, (char *)&ude, sizeof (ude));
5337 				mlp.tme_connidx = v4_conn_idx++;
5338 				if (needattr)
5339 					(void) snmp_append_data2(
5340 					    mp_attr_ctl->b_cont, &mp_attr_tail,
5341 					    (char *)&mlp, sizeof (mlp));
5342 			}
5343 			if (udp->udp_ipversion == IPV6_VERSION) {
5344 				ude6.udp6EntryInfo.ue_state  = state;
5345 				ude6.udp6LocalAddress = udp->udp_v6src;
5346 				ude6.udp6LocalPort = ntohs(udp->udp_port);
5347 				ude6.udp6IfIndex = udp->udp_bound_if;
5348 				if (udp->udp_state == TS_DATA_XFER) {
5349 					ude6.udp6EntryInfo.ue_RemoteAddress =
5350 					    udp->udp_v6dst;
5351 					ude6.udp6EntryInfo.ue_RemotePort =
5352 					    ntohs(udp->udp_dstport);
5353 				} else {
5354 					ude6.udp6EntryInfo.ue_RemoteAddress =
5355 					    sin6_null.sin6_addr;
5356 					ude6.udp6EntryInfo.ue_RemotePort = 0;
5357 				}
5358 				/*
5359 				 * We make the assumption that all udp_t
5360 				 * structs will be created within an address
5361 				 * region no larger than 32-bits.
5362 				 */
5363 				ude6.udp6Instance = (uint32_t)(uintptr_t)udp;
5364 				ude6.udp6CreationProcess =
5365 				    (udp->udp_open_pid < 0) ?
5366 				    MIB2_UNKNOWN_PROCESS :
5367 				    udp->udp_open_pid;
5368 				ude6.udp6CreationTime = udp->udp_open_time;
5369 
5370 				(void) snmp_append_data2(mp6_conn_ctl->b_cont,
5371 				    &mp6_conn_tail, (char *)&ude6,
5372 				    sizeof (ude6));
5373 				mlp.tme_connidx = v6_conn_idx++;
5374 				if (needattr)
5375 					(void) snmp_append_data2(
5376 					    mp6_attr_ctl->b_cont,
5377 					    &mp6_attr_tail, (char *)&mlp,
5378 					    sizeof (mlp));
5379 			}
5380 		}
5381 	}
5382 
5383 	/* IPv4 UDP endpoints */
5384 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
5385 	    sizeof (struct T_optmgmt_ack)];
5386 	optp->level = MIB2_UDP;
5387 	optp->name = MIB2_UDP_ENTRY;
5388 	optp->len = msgdsize(mp_conn_ctl->b_cont);
5389 	qreply(q, mp_conn_ctl);
5390 
5391 	/* table of MLP attributes... */
5392 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
5393 	    sizeof (struct T_optmgmt_ack)];
5394 	optp->level = MIB2_UDP;
5395 	optp->name = EXPER_XPORT_MLP;
5396 	optp->len = msgdsize(mp_attr_ctl->b_cont);
5397 	if (optp->len == 0)
5398 		freemsg(mp_attr_ctl);
5399 	else
5400 		qreply(q, mp_attr_ctl);
5401 
5402 	/* IPv6 UDP endpoints */
5403 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
5404 	    sizeof (struct T_optmgmt_ack)];
5405 	optp->level = MIB2_UDP6;
5406 	optp->name = MIB2_UDP6_ENTRY;
5407 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
5408 	qreply(q, mp6_conn_ctl);
5409 
5410 	/* table of MLP attributes... */
5411 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
5412 	    sizeof (struct T_optmgmt_ack)];
5413 	optp->level = MIB2_UDP6;
5414 	optp->name = EXPER_XPORT_MLP;
5415 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
5416 	if (optp->len == 0)
5417 		freemsg(mp6_attr_ctl);
5418 	else
5419 		qreply(q, mp6_attr_ctl);
5420 
5421 	return (mp2ctl);
5422 }
5423 
5424 /*
5425  * Return 0 if invalid set request, 1 otherwise, including non-udp requests.
5426  * NOTE: Per MIB-II, UDP has no writable data.
5427  * TODO:  If this ever actually tries to set anything, it needs to be
5428  * to do the appropriate locking.
5429  */
5430 /* ARGSUSED */
5431 int
5432 udp_snmp_set(queue_t *q, t_scalar_t level, t_scalar_t name,
5433     uchar_t *ptr, int len)
5434 {
5435 	switch (level) {
5436 	case MIB2_UDP:
5437 		return (0);
5438 	default:
5439 		return (1);
5440 	}
5441 }
5442 
5443 static void
5444 udp_report_item(mblk_t *mp, udp_t *udp)
5445 {
5446 	char *state;
5447 	char addrbuf1[INET6_ADDRSTRLEN];
5448 	char addrbuf2[INET6_ADDRSTRLEN];
5449 	uint_t print_len, buf_len;
5450 
5451 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
5452 	ASSERT(buf_len >= 0);
5453 	if (buf_len == 0)
5454 		return;
5455 
5456 	if (udp->udp_state == TS_UNBND)
5457 		state = "UNBOUND";
5458 	else if (udp->udp_state == TS_IDLE)
5459 		state = "IDLE";
5460 	else if (udp->udp_state == TS_DATA_XFER)
5461 		state = "CONNECTED";
5462 	else
5463 		state = "UnkState";
5464 	print_len = snprintf((char *)mp->b_wptr, buf_len,
5465 	    MI_COL_PTRFMT_STR "%4d %5u %s %s %5u %s\n",
5466 	    (void *)udp, udp->udp_connp->conn_zoneid, ntohs(udp->udp_port),
5467 	    inet_ntop(AF_INET6, &udp->udp_v6src, addrbuf1, sizeof (addrbuf1)),
5468 	    inet_ntop(AF_INET6, &udp->udp_v6dst, addrbuf2, sizeof (addrbuf2)),
5469 	    ntohs(udp->udp_dstport), state);
5470 	if (print_len < buf_len) {
5471 		mp->b_wptr += print_len;
5472 	} else {
5473 		mp->b_wptr += buf_len;
5474 	}
5475 }
5476 
5477 /* Report for ndd "udp_status" */
5478 /* ARGSUSED */
5479 static int
5480 udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
5481 {
5482 	zoneid_t zoneid;
5483 	connf_t	*connfp;
5484 	conn_t	*connp = Q_TO_CONN(q);
5485 	udp_t	*udp = connp->conn_udp;
5486 	int	i;
5487 	udp_stack_t *us = udp->udp_us;
5488 	ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
5489 
5490 	/*
5491 	 * Because of the ndd constraint, at most we can have 64K buffer
5492 	 * to put in all UDP info.  So to be more efficient, just
5493 	 * allocate a 64K buffer here, assuming we need that large buffer.
5494 	 * This may be a problem as any user can read udp_status.  Therefore
5495 	 * we limit the rate of doing this using us_ndd_get_info_interval.
5496 	 * This should be OK as normal users should not do this too often.
5497 	 */
5498 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
5499 		if (ddi_get_lbolt() - us->us_last_ndd_get_info_time <
5500 		    drv_usectohz(us->us_ndd_get_info_interval * 1000)) {
5501 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
5502 			return (0);
5503 		}
5504 	}
5505 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
5506 		/* The following may work even if we cannot get a large buf. */
5507 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
5508 		return (0);
5509 	}
5510 	(void) mi_mpprintf(mp,
5511 	    "UDP     " MI_COL_HDRPAD_STR
5512 	/*   12345678[89ABCDEF] */
5513 	    " zone lport src addr        dest addr       port  state");
5514 	/*    1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */
5515 
5516 	zoneid = connp->conn_zoneid;
5517 
5518 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
5519 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
5520 		connp = NULL;
5521 
5522 		while ((connp = ipcl_get_next_conn(connfp, connp,
5523 		    IPCL_UDPCONN))) {
5524 			udp = connp->conn_udp;
5525 			if (zoneid != GLOBAL_ZONEID &&
5526 			    zoneid != connp->conn_zoneid)
5527 				continue;
5528 
5529 			udp_report_item(mp->b_cont, udp);
5530 		}
5531 	}
5532 	us->us_last_ndd_get_info_time = ddi_get_lbolt();
5533 	return (0);
5534 }
5535 
5536 /*
5537  * This routine creates a T_UDERROR_IND message and passes it upstream.
5538  * The address and options are copied from the T_UNITDATA_REQ message
5539  * passed in mp.  This message is freed.
5540  */
5541 static void
5542 udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr, t_scalar_t destlen,
5543     t_scalar_t err)
5544 {
5545 	struct T_unitdata_req *tudr;
5546 	mblk_t	*mp1;
5547 	uchar_t	*optaddr;
5548 	t_scalar_t optlen;
5549 
5550 	if (DB_TYPE(mp) == M_DATA) {
5551 		ASSERT(destaddr != NULL && destlen != 0);
5552 		optaddr = NULL;
5553 		optlen = 0;
5554 	} else {
5555 		if ((mp->b_wptr < mp->b_rptr) ||
5556 		    (MBLKL(mp)) < sizeof (struct T_unitdata_req)) {
5557 			goto done;
5558 		}
5559 		tudr = (struct T_unitdata_req *)mp->b_rptr;
5560 		destaddr = mp->b_rptr + tudr->DEST_offset;
5561 		if (destaddr < mp->b_rptr || destaddr >= mp->b_wptr ||
5562 		    destaddr + tudr->DEST_length < mp->b_rptr ||
5563 		    destaddr + tudr->DEST_length > mp->b_wptr) {
5564 			goto done;
5565 		}
5566 		optaddr = mp->b_rptr + tudr->OPT_offset;
5567 		if (optaddr < mp->b_rptr || optaddr >= mp->b_wptr ||
5568 		    optaddr + tudr->OPT_length < mp->b_rptr ||
5569 		    optaddr + tudr->OPT_length > mp->b_wptr) {
5570 			goto done;
5571 		}
5572 		destlen = tudr->DEST_length;
5573 		optlen = tudr->OPT_length;
5574 	}
5575 
5576 	mp1 = mi_tpi_uderror_ind((char *)destaddr, destlen,
5577 	    (char *)optaddr, optlen, err);
5578 	if (mp1 != NULL)
5579 		qreply(q, mp1);
5580 
5581 done:
5582 	freemsg(mp);
5583 }
5584 
5585 /*
5586  * This routine removes a port number association from a stream.  It
5587  * is called by udp_wput to handle T_UNBIND_REQ messages.
5588  */
5589 static void
5590 udp_unbind(queue_t *q, mblk_t *mp)
5591 {
5592 	udp_t *udp = Q_TO_UDP(q);
5593 	udp_fanout_t	*udpf;
5594 	udp_stack_t	*us = udp->udp_us;
5595 
5596 	if (cl_inet_unbind != NULL) {
5597 		/*
5598 		 * Running in cluster mode - register unbind information
5599 		 */
5600 		if (udp->udp_ipversion == IPV4_VERSION) {
5601 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET,
5602 			    (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)),
5603 			    (in_port_t)udp->udp_port);
5604 		} else {
5605 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET6,
5606 			    (uint8_t *)&(udp->udp_v6src),
5607 			    (in_port_t)udp->udp_port);
5608 		}
5609 	}
5610 
5611 	rw_enter(&udp->udp_rwlock, RW_WRITER);
5612 	if (udp->udp_state == TS_UNBND || udp->udp_pending_op != -1) {
5613 		rw_exit(&udp->udp_rwlock);
5614 		udp_err_ack(q, mp, TOUTSTATE, 0);
5615 		return;
5616 	}
5617 	udp->udp_pending_op = T_UNBIND_REQ;
5618 	rw_exit(&udp->udp_rwlock);
5619 
5620 	/*
5621 	 * Pass the unbind to IP; T_UNBIND_REQ is larger than T_OK_ACK
5622 	 * and therefore ip_unbind must never return NULL.
5623 	 */
5624 	mp = ip_unbind(q, mp);
5625 	ASSERT(mp != NULL);
5626 	ASSERT(((struct T_ok_ack *)mp->b_rptr)->PRIM_type == T_OK_ACK);
5627 
5628 	/*
5629 	 * Once we're unbound from IP, the pending operation may be cleared
5630 	 * here.
5631 	 */
5632 	rw_enter(&udp->udp_rwlock, RW_WRITER);
5633 	udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
5634 	    us->us_bind_fanout_size)];
5635 	mutex_enter(&udpf->uf_lock);
5636 	udp_bind_hash_remove(udp, B_TRUE);
5637 	V6_SET_ZERO(udp->udp_v6src);
5638 	V6_SET_ZERO(udp->udp_bound_v6src);
5639 	udp->udp_port = 0;
5640 	mutex_exit(&udpf->uf_lock);
5641 
5642 	udp->udp_pending_op = -1;
5643 	udp->udp_state = TS_UNBND;
5644 	if (udp->udp_family == AF_INET6)
5645 		(void) udp_build_hdrs(udp);
5646 	rw_exit(&udp->udp_rwlock);
5647 
5648 	qreply(q, mp);
5649 }
5650 
5651 /*
5652  * Don't let port fall into the privileged range.
5653  * Since the extra privileged ports can be arbitrary we also
5654  * ensure that we exclude those from consideration.
5655  * us->us_epriv_ports is not sorted thus we loop over it until
5656  * there are no changes.
5657  */
5658 static in_port_t
5659 udp_update_next_port(udp_t *udp, in_port_t port, boolean_t random)
5660 {
5661 	int i;
5662 	in_port_t nextport;
5663 	boolean_t restart = B_FALSE;
5664 	udp_stack_t *us = udp->udp_us;
5665 
5666 	if (random && udp_random_anon_port != 0) {
5667 		(void) random_get_pseudo_bytes((uint8_t *)&port,
5668 		    sizeof (in_port_t));
5669 		/*
5670 		 * Unless changed by a sys admin, the smallest anon port
5671 		 * is 32768 and the largest anon port is 65535.  It is
5672 		 * very likely (50%) for the random port to be smaller
5673 		 * than the smallest anon port.  When that happens,
5674 		 * add port % (anon port range) to the smallest anon
5675 		 * port to get the random port.  It should fall into the
5676 		 * valid anon port range.
5677 		 */
5678 		if (port < us->us_smallest_anon_port) {
5679 			port = us->us_smallest_anon_port +
5680 			    port % (us->us_largest_anon_port -
5681 			    us->us_smallest_anon_port);
5682 		}
5683 	}
5684 
5685 retry:
5686 	if (port < us->us_smallest_anon_port)
5687 		port = us->us_smallest_anon_port;
5688 
5689 	if (port > us->us_largest_anon_port) {
5690 		port = us->us_smallest_anon_port;
5691 		if (restart)
5692 			return (0);
5693 		restart = B_TRUE;
5694 	}
5695 
5696 	if (port < us->us_smallest_nonpriv_port)
5697 		port = us->us_smallest_nonpriv_port;
5698 
5699 	for (i = 0; i < us->us_num_epriv_ports; i++) {
5700 		if (port == us->us_epriv_ports[i]) {
5701 			port++;
5702 			/*
5703 			 * Make sure that the port is in the
5704 			 * valid range.
5705 			 */
5706 			goto retry;
5707 		}
5708 	}
5709 
5710 	if (is_system_labeled() &&
5711 	    (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred),
5712 	    port, IPPROTO_UDP, B_TRUE)) != 0) {
5713 		port = nextport;
5714 		goto retry;
5715 	}
5716 
5717 	return (port);
5718 }
5719 
5720 static int
5721 udp_update_label(queue_t *wq, mblk_t *mp, ipaddr_t dst)
5722 {
5723 	int err;
5724 	uchar_t opt_storage[IP_MAX_OPT_LENGTH];
5725 	udp_t *udp = Q_TO_UDP(wq);
5726 	udp_stack_t	*us = udp->udp_us;
5727 
5728 	err = tsol_compute_label(DB_CREDDEF(mp, udp->udp_connp->conn_cred), dst,
5729 	    opt_storage, udp->udp_connp->conn_mac_exempt,
5730 	    us->us_netstack->netstack_ip);
5731 	if (err == 0) {
5732 		err = tsol_update_options(&udp->udp_ip_snd_options,
5733 		    &udp->udp_ip_snd_options_len, &udp->udp_label_len,
5734 		    opt_storage);
5735 	}
5736 	if (err != 0) {
5737 		DTRACE_PROBE4(
5738 		    tx__ip__log__info__updatelabel__udp,
5739 		    char *, "queue(1) failed to update options(2) on mp(3)",
5740 		    queue_t *, wq, char *, opt_storage, mblk_t *, mp);
5741 	} else {
5742 		IN6_IPADDR_TO_V4MAPPED(dst, &udp->udp_v6lastdst);
5743 	}
5744 	return (err);
5745 }
5746 
5747 static mblk_t *
5748 udp_output_v4(conn_t *connp, mblk_t *mp, ipaddr_t v4dst, uint16_t port,
5749     uint_t srcid, int *error, boolean_t insert_spi)
5750 {
5751 	udp_t	*udp = connp->conn_udp;
5752 	queue_t	*q = connp->conn_wq;
5753 	mblk_t	*mp1 = mp;
5754 	mblk_t	*mp2;
5755 	ipha_t	*ipha;
5756 	int	ip_hdr_length;
5757 	uint32_t ip_len;
5758 	udpha_t	*udpha;
5759 	boolean_t lock_held = B_FALSE;
5760 	in_port_t	uha_src_port;
5761 	udpattrs_t	attrs;
5762 	uchar_t	ip_snd_opt[IP_MAX_OPT_LENGTH];
5763 	uint32_t	ip_snd_opt_len = 0;
5764 	ip4_pkt_t  pktinfo;
5765 	ip4_pkt_t  *pktinfop = &pktinfo;
5766 	ip_opt_info_t optinfo;
5767 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
5768 	udp_stack_t	*us = udp->udp_us;
5769 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5770 
5771 
5772 	*error = 0;
5773 	pktinfop->ip4_ill_index = 0;
5774 	pktinfop->ip4_addr = INADDR_ANY;
5775 	optinfo.ip_opt_flags = 0;
5776 	optinfo.ip_opt_ill_index = 0;
5777 
5778 	if (v4dst == INADDR_ANY)
5779 		v4dst = htonl(INADDR_LOOPBACK);
5780 
5781 	/*
5782 	 * If options passed in, feed it for verification and handling
5783 	 */
5784 	attrs.udpattr_credset = B_FALSE;
5785 	if (DB_TYPE(mp) != M_DATA) {
5786 		mp1 = mp->b_cont;
5787 		if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) {
5788 			attrs.udpattr_ipp4 = pktinfop;
5789 			attrs.udpattr_mb = mp;
5790 			if (udp_unitdata_opt_process(q, mp, error, &attrs) < 0)
5791 				goto done;
5792 			/*
5793 			 * Note: success in processing options.
5794 			 * mp option buffer represented by
5795 			 * OPT_length/offset now potentially modified
5796 			 * and contain option setting results
5797 			 */
5798 			ASSERT(*error == 0);
5799 		}
5800 	}
5801 
5802 	/* mp1 points to the M_DATA mblk carrying the packet */
5803 	ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA);
5804 
5805 	rw_enter(&udp->udp_rwlock, RW_READER);
5806 	lock_held = B_TRUE;
5807 	/*
5808 	 * Check if our saved options are valid; update if not.
5809 	 * TSOL Note: Since we are not in WRITER mode, UDP packets
5810 	 * to different destination may require different labels,
5811 	 * or worse, UDP packets to same IP address may require
5812 	 * different labels due to use of shared all-zones address.
5813 	 * We use conn_lock to ensure that lastdst, ip_snd_options,
5814 	 * and ip_snd_options_len are consistent for the current
5815 	 * destination and are updated atomically.
5816 	 */
5817 	mutex_enter(&connp->conn_lock);
5818 	if (is_system_labeled()) {
5819 		/* Using UDP MLP requires SCM_UCRED from user */
5820 		if (connp->conn_mlp_type != mlptSingle &&
5821 		    !attrs.udpattr_credset) {
5822 			mutex_exit(&connp->conn_lock);
5823 			DTRACE_PROBE4(
5824 			    tx__ip__log__info__output__udp,
5825 			    char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)",
5826 			    mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q);
5827 			*error = ECONNREFUSED;
5828 			goto done;
5829 		}
5830 		/*
5831 		 * update label option for this UDP socket if
5832 		 * - the destination has changed, or
5833 		 * - the UDP socket is MLP
5834 		 */
5835 		if ((!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6lastdst) ||
5836 		    V4_PART_OF_V6(udp->udp_v6lastdst) != v4dst ||
5837 		    connp->conn_mlp_type != mlptSingle) &&
5838 		    (*error = udp_update_label(q, mp, v4dst)) != 0) {
5839 			mutex_exit(&connp->conn_lock);
5840 			goto done;
5841 		}
5842 	}
5843 	if (udp->udp_ip_snd_options_len > 0) {
5844 		ip_snd_opt_len = udp->udp_ip_snd_options_len;
5845 		bcopy(udp->udp_ip_snd_options, ip_snd_opt, ip_snd_opt_len);
5846 	}
5847 	mutex_exit(&connp->conn_lock);
5848 
5849 	/* Add an IP header */
5850 	ip_hdr_length = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + ip_snd_opt_len +
5851 	    (insert_spi ? sizeof (uint32_t) : 0);
5852 	ipha = (ipha_t *)&mp1->b_rptr[-ip_hdr_length];
5853 	if (DB_REF(mp1) != 1 || (uchar_t *)ipha < DB_BASE(mp1) ||
5854 	    !OK_32PTR(ipha)) {
5855 		mp2 = allocb(ip_hdr_length + us->us_wroff_extra, BPRI_LO);
5856 		if (mp2 == NULL) {
5857 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
5858 			    "udp_wput_end: q %p (%S)", q, "allocbfail2");
5859 			*error = ENOMEM;
5860 			goto done;
5861 		}
5862 		mp2->b_wptr = DB_LIM(mp2);
5863 		mp2->b_cont = mp1;
5864 		mp1 = mp2;
5865 		if (DB_TYPE(mp) != M_DATA)
5866 			mp->b_cont = mp1;
5867 		else
5868 			mp = mp1;
5869 
5870 		ipha = (ipha_t *)(mp1->b_wptr - ip_hdr_length);
5871 	}
5872 	ip_hdr_length -= (UDPH_SIZE + (insert_spi ? sizeof (uint32_t) : 0));
5873 #ifdef	_BIG_ENDIAN
5874 	/* Set version, header length, and tos */
5875 	*(uint16_t *)&ipha->ipha_version_and_hdr_length =
5876 	    ((((IP_VERSION << 4) | (ip_hdr_length>>2)) << 8) |
5877 	    udp->udp_type_of_service);
5878 	/* Set ttl and protocol */
5879 	*(uint16_t *)&ipha->ipha_ttl = (udp->udp_ttl << 8) | IPPROTO_UDP;
5880 #else
5881 	/* Set version, header length, and tos */
5882 	*(uint16_t *)&ipha->ipha_version_and_hdr_length =
5883 	    ((udp->udp_type_of_service << 8) |
5884 	    ((IP_VERSION << 4) | (ip_hdr_length>>2)));
5885 	/* Set ttl and protocol */
5886 	*(uint16_t *)&ipha->ipha_ttl = (IPPROTO_UDP << 8) | udp->udp_ttl;
5887 #endif
5888 	if (pktinfop->ip4_addr != INADDR_ANY) {
5889 		ipha->ipha_src = pktinfop->ip4_addr;
5890 		optinfo.ip_opt_flags = IP_VERIFY_SRC;
5891 	} else {
5892 		/*
5893 		 * Copy our address into the packet.  If this is zero,
5894 		 * first look at __sin6_src_id for a hint. If we leave the
5895 		 * source as INADDR_ANY then ip will fill in the real source
5896 		 * address.
5897 		 */
5898 		IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, ipha->ipha_src);
5899 		if (srcid != 0 && ipha->ipha_src == INADDR_ANY) {
5900 			in6_addr_t v6src;
5901 
5902 			ip_srcid_find_id(srcid, &v6src, connp->conn_zoneid,
5903 			    us->us_netstack);
5904 			IN6_V4MAPPED_TO_IPADDR(&v6src, ipha->ipha_src);
5905 		}
5906 	}
5907 	uha_src_port = udp->udp_port;
5908 	if (ip_hdr_length == IP_SIMPLE_HDR_LENGTH) {
5909 		rw_exit(&udp->udp_rwlock);
5910 		lock_held = B_FALSE;
5911 	}
5912 
5913 	if (pktinfop->ip4_ill_index != 0) {
5914 		optinfo.ip_opt_ill_index = pktinfop->ip4_ill_index;
5915 	}
5916 
5917 	ipha->ipha_fragment_offset_and_flags = 0;
5918 	ipha->ipha_ident = 0;
5919 
5920 	mp1->b_rptr = (uchar_t *)ipha;
5921 
5922 	ASSERT((uintptr_t)(mp1->b_wptr - (uchar_t *)ipha) <=
5923 	    (uintptr_t)UINT_MAX);
5924 
5925 	/* Determine length of packet */
5926 	ip_len = (uint32_t)(mp1->b_wptr - (uchar_t *)ipha);
5927 	if ((mp2 = mp1->b_cont) != NULL) {
5928 		do {
5929 			ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX);
5930 			ip_len += (uint32_t)MBLKL(mp2);
5931 		} while ((mp2 = mp2->b_cont) != NULL);
5932 	}
5933 	/*
5934 	 * If the size of the packet is greater than the maximum allowed by
5935 	 * ip, return an error. Passing this down could cause panics because
5936 	 * the size will have wrapped and be inconsistent with the msg size.
5937 	 */
5938 	if (ip_len > IP_MAXPACKET) {
5939 		TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
5940 		    "udp_wput_end: q %p (%S)", q, "IP length exceeded");
5941 		*error = EMSGSIZE;
5942 		goto done;
5943 	}
5944 	ipha->ipha_length = htons((uint16_t)ip_len);
5945 	ip_len -= ip_hdr_length;
5946 	ip_len = htons((uint16_t)ip_len);
5947 	udpha = (udpha_t *)(((uchar_t *)ipha) + ip_hdr_length);
5948 
5949 	/* Insert all-0s SPI now. */
5950 	if (insert_spi)
5951 		*((uint32_t *)(udpha + 1)) = 0;
5952 
5953 	/*
5954 	 * Copy in the destination address
5955 	 */
5956 	ipha->ipha_dst = v4dst;
5957 
5958 	/*
5959 	 * Set ttl based on IP_MULTICAST_TTL to match IPv6 logic.
5960 	 */
5961 	if (CLASSD(v4dst))
5962 		ipha->ipha_ttl = udp->udp_multicast_ttl;
5963 
5964 	udpha->uha_dst_port = port;
5965 	udpha->uha_src_port = uha_src_port;
5966 
5967 	if (ip_snd_opt_len > 0) {
5968 		uint32_t	cksum;
5969 
5970 		bcopy(ip_snd_opt, &ipha[1], ip_snd_opt_len);
5971 		lock_held = B_FALSE;
5972 		rw_exit(&udp->udp_rwlock);
5973 		/*
5974 		 * Massage source route putting first source route in ipha_dst.
5975 		 * Ignore the destination in T_unitdata_req.
5976 		 * Create a checksum adjustment for a source route, if any.
5977 		 */
5978 		cksum = ip_massage_options(ipha, us->us_netstack);
5979 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5980 		cksum -= ((ipha->ipha_dst >> 16) & 0xFFFF) +
5981 		    (ipha->ipha_dst & 0xFFFF);
5982 		if ((int)cksum < 0)
5983 			cksum--;
5984 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5985 		/*
5986 		 * IP does the checksum if uha_checksum is non-zero,
5987 		 * We make it easy for IP to include our pseudo header
5988 		 * by putting our length in uha_checksum.
5989 		 */
5990 		cksum += ip_len;
5991 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5992 		/* There might be a carry. */
5993 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5994 #ifdef _LITTLE_ENDIAN
5995 		if (us->us_do_checksum)
5996 			ip_len = (cksum << 16) | ip_len;
5997 #else
5998 		if (us->us_do_checksum)
5999 			ip_len = (ip_len << 16) | cksum;
6000 		else
6001 			ip_len <<= 16;
6002 #endif
6003 	} else {
6004 		/*
6005 		 * IP does the checksum if uha_checksum is non-zero,
6006 		 * We make it easy for IP to include our pseudo header
6007 		 * by putting our length in uha_checksum.
6008 		 */
6009 		if (us->us_do_checksum)
6010 			ip_len |= (ip_len << 16);
6011 #ifndef _LITTLE_ENDIAN
6012 		else
6013 			ip_len <<= 16;
6014 #endif
6015 	}
6016 	ASSERT(!lock_held);
6017 	/* Set UDP length and checksum */
6018 	*((uint32_t *)&udpha->uha_length) = ip_len;
6019 	if (DB_CRED(mp) != NULL)
6020 		mblk_setcred(mp1, DB_CRED(mp));
6021 
6022 	if (DB_TYPE(mp) != M_DATA) {
6023 		ASSERT(mp != mp1);
6024 		freeb(mp);
6025 	}
6026 
6027 	/* mp has been consumed and we'll return success */
6028 	ASSERT(*error == 0);
6029 	mp = NULL;
6030 
6031 	/* We're done.  Pass the packet to ip. */
6032 	BUMP_MIB(&us->us_udp_mib, udpHCOutDatagrams);
6033 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6034 	    "udp_wput_end: q %p (%S)", q, "end");
6035 
6036 	if ((connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
6037 	    CONN_OUTBOUND_POLICY_PRESENT(connp, ipss) ||
6038 	    connp->conn_dontroute ||
6039 	    connp->conn_nofailover_ill != NULL ||
6040 	    connp->conn_outgoing_ill != NULL || optinfo.ip_opt_flags != 0 ||
6041 	    optinfo.ip_opt_ill_index != 0 ||
6042 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
6043 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst) ||
6044 	    ipst->ips_ip_g_mrouter != NULL) {
6045 		UDP_STAT(us, udp_ip_send);
6046 		ip_output_options(connp, mp1, connp->conn_wq, IP_WPUT,
6047 		    &optinfo);
6048 	} else {
6049 		udp_send_data(udp, connp->conn_wq, mp1, ipha);
6050 	}
6051 
6052 done:
6053 	if (lock_held)
6054 		rw_exit(&udp->udp_rwlock);
6055 	if (*error != 0) {
6056 		ASSERT(mp != NULL);
6057 		BUMP_MIB(&us->us_udp_mib, udpOutErrors);
6058 	}
6059 	return (mp);
6060 }
6061 
6062 static void
6063 udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha)
6064 {
6065 	conn_t	*connp = udp->udp_connp;
6066 	ipaddr_t src, dst;
6067 	ire_t	*ire;
6068 	ipif_t	*ipif = NULL;
6069 	mblk_t	*ire_fp_mp;
6070 	boolean_t retry_caching;
6071 	udp_stack_t *us = udp->udp_us;
6072 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6073 
6074 	dst = ipha->ipha_dst;
6075 	src = ipha->ipha_src;
6076 	ASSERT(ipha->ipha_ident == 0);
6077 
6078 	if (CLASSD(dst)) {
6079 		int err;
6080 
6081 		ipif = conn_get_held_ipif(connp,
6082 		    &connp->conn_multicast_ipif, &err);
6083 
6084 		if (ipif == NULL || ipif->ipif_isv6 ||
6085 		    (ipif->ipif_ill->ill_phyint->phyint_flags &
6086 		    PHYI_LOOPBACK)) {
6087 			if (ipif != NULL)
6088 				ipif_refrele(ipif);
6089 			UDP_STAT(us, udp_ip_send);
6090 			ip_output(connp, mp, q, IP_WPUT);
6091 			return;
6092 		}
6093 	}
6094 
6095 	retry_caching = B_FALSE;
6096 	mutex_enter(&connp->conn_lock);
6097 	ire = connp->conn_ire_cache;
6098 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
6099 
6100 	if (ire == NULL || ire->ire_addr != dst ||
6101 	    (ire->ire_marks & IRE_MARK_CONDEMNED)) {
6102 		retry_caching = B_TRUE;
6103 	} else if (CLASSD(dst) && (ire->ire_type & IRE_CACHE)) {
6104 		ill_t *stq_ill = (ill_t *)ire->ire_stq->q_ptr;
6105 
6106 		ASSERT(ipif != NULL);
6107 		if (stq_ill != ipif->ipif_ill && (stq_ill->ill_group == NULL ||
6108 		    stq_ill->ill_group != ipif->ipif_ill->ill_group))
6109 			retry_caching = B_TRUE;
6110 	}
6111 
6112 	if (!retry_caching) {
6113 		ASSERT(ire != NULL);
6114 		IRE_REFHOLD(ire);
6115 		mutex_exit(&connp->conn_lock);
6116 	} else {
6117 		boolean_t cached = B_FALSE;
6118 
6119 		connp->conn_ire_cache = NULL;
6120 		mutex_exit(&connp->conn_lock);
6121 
6122 		/* Release the old ire */
6123 		if (ire != NULL) {
6124 			IRE_REFRELE_NOTR(ire);
6125 			ire = NULL;
6126 		}
6127 
6128 		if (CLASSD(dst)) {
6129 			ASSERT(ipif != NULL);
6130 			ire = ire_ctable_lookup(dst, 0, 0, ipif,
6131 			    connp->conn_zoneid, MBLK_GETLABEL(mp),
6132 			    MATCH_IRE_ILL_GROUP, ipst);
6133 		} else {
6134 			ASSERT(ipif == NULL);
6135 			ire = ire_cache_lookup(dst, connp->conn_zoneid,
6136 			    MBLK_GETLABEL(mp), ipst);
6137 		}
6138 
6139 		if (ire == NULL) {
6140 			if (ipif != NULL)
6141 				ipif_refrele(ipif);
6142 			UDP_STAT(us, udp_ire_null);
6143 			ip_output(connp, mp, q, IP_WPUT);
6144 			return;
6145 		}
6146 		IRE_REFHOLD_NOTR(ire);
6147 
6148 		mutex_enter(&connp->conn_lock);
6149 		if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL &&
6150 		    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
6151 			irb_t		*irb = ire->ire_bucket;
6152 
6153 			/*
6154 			 * IRE's created for non-connection oriented transports
6155 			 * are normally initialized with IRE_MARK_TEMPORARY set
6156 			 * in the ire_marks. These IRE's are preferentially
6157 			 * reaped when the hash chain length in the cache
6158 			 * bucket exceeds the maximum value specified in
6159 			 * ip[6]_ire_max_bucket_cnt. This can severely affect
6160 			 * UDP performance if IRE cache entries that we need
6161 			 * to reuse are continually removed. To remedy this,
6162 			 * when we cache the IRE in the conn_t, we remove the
6163 			 * IRE_MARK_TEMPORARY bit from the ire_marks if it was
6164 			 * set.
6165 			 */
6166 			if (ire->ire_marks & IRE_MARK_TEMPORARY) {
6167 				rw_enter(&irb->irb_lock, RW_WRITER);
6168 				if (ire->ire_marks & IRE_MARK_TEMPORARY) {
6169 					ire->ire_marks &= ~IRE_MARK_TEMPORARY;
6170 					irb->irb_tmp_ire_cnt--;
6171 				}
6172 				rw_exit(&irb->irb_lock);
6173 			}
6174 			connp->conn_ire_cache = ire;
6175 			cached = B_TRUE;
6176 		}
6177 		mutex_exit(&connp->conn_lock);
6178 
6179 		/*
6180 		 * We can continue to use the ire but since it was not
6181 		 * cached, we should drop the extra reference.
6182 		 */
6183 		if (!cached)
6184 			IRE_REFRELE_NOTR(ire);
6185 	}
6186 	ASSERT(ire != NULL && ire->ire_ipversion == IPV4_VERSION);
6187 	ASSERT(!CLASSD(dst) || ipif != NULL);
6188 
6189 	/*
6190 	 * Check if we can take the fast-path.
6191 	 * Note that "incomplete" ire's (where the link-layer for next hop
6192 	 * is not resolved, or where the fast-path header in nce_fp_mp is not
6193 	 * available yet) are sent down the legacy (slow) path
6194 	 */
6195 	if ((ire->ire_type & (IRE_BROADCAST|IRE_LOCAL|IRE_LOOPBACK)) ||
6196 	    (ire->ire_flags & RTF_MULTIRT) || (ire->ire_stq == NULL) ||
6197 	    (ire->ire_max_frag < ntohs(ipha->ipha_length)) ||
6198 	    ((ire->ire_nce == NULL) ||
6199 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL)) ||
6200 	    connp->conn_nexthop_set || (MBLKL(ire_fp_mp) > MBLKHEAD(mp))) {
6201 		if (ipif != NULL)
6202 			ipif_refrele(ipif);
6203 		UDP_STAT(us, udp_ip_ire_send);
6204 		IRE_REFRELE(ire);
6205 		ip_output(connp, mp, q, IP_WPUT);
6206 		return;
6207 	}
6208 
6209 	if (src == INADDR_ANY && !connp->conn_unspec_src) {
6210 		if (CLASSD(dst) && !(ire->ire_flags & RTF_SETSRC))
6211 			ipha->ipha_src = ipif->ipif_src_addr;
6212 		else
6213 			ipha->ipha_src = ire->ire_src_addr;
6214 	}
6215 
6216 	if (ipif != NULL)
6217 		ipif_refrele(ipif);
6218 
6219 	udp_xmit(connp->conn_wq, mp, ire, connp, connp->conn_zoneid);
6220 }
6221 
6222 static void
6223 udp_xmit(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, zoneid_t zoneid)
6224 {
6225 	ipaddr_t src, dst;
6226 	ill_t	*ill;
6227 	mblk_t	*ire_fp_mp;
6228 	uint_t	ire_fp_mp_len;
6229 	uint16_t *up;
6230 	uint32_t cksum, hcksum_txflags;
6231 	queue_t	*dev_q;
6232 	udp_t	*udp = connp->conn_udp;
6233 	ipha_t	*ipha = (ipha_t *)mp->b_rptr;
6234 	udp_stack_t	*us = udp->udp_us;
6235 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6236 	boolean_t ll_multicast = B_FALSE;
6237 
6238 	dev_q = ire->ire_stq->q_next;
6239 	ASSERT(dev_q != NULL);
6240 
6241 
6242 	if (DEV_Q_IS_FLOW_CTLED(dev_q)) {
6243 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsHCOutRequests);
6244 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
6245 		if (ipst->ips_ip_output_queue)
6246 			(void) putq(connp->conn_wq, mp);
6247 		else
6248 			freemsg(mp);
6249 		ire_refrele(ire);
6250 		return;
6251 	}
6252 
6253 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
6254 	ire_fp_mp_len = MBLKL(ire_fp_mp);
6255 	ASSERT(MBLKHEAD(mp) >= ire_fp_mp_len);
6256 
6257 	dst = ipha->ipha_dst;
6258 	src = ipha->ipha_src;
6259 
6260 	ill = ire_to_ill(ire);
6261 	ASSERT(ill != NULL);
6262 
6263 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
6264 
6265 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
6266 #ifndef _BIG_ENDIAN
6267 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
6268 #endif
6269 
6270 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
6271 		ASSERT(ill->ill_hcksum_capab != NULL);
6272 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
6273 	} else {
6274 		hcksum_txflags = 0;
6275 	}
6276 
6277 	/* pseudo-header checksum (do it in parts for IP header checksum) */
6278 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
6279 
6280 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
6281 	up = IPH_UDPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
6282 	if (*up != 0) {
6283 		IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags,
6284 		    mp, ipha, up, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH,
6285 		    ntohs(ipha->ipha_length), cksum);
6286 
6287 		/* Software checksum? */
6288 		if (DB_CKSUMFLAGS(mp) == 0) {
6289 			UDP_STAT(us, udp_out_sw_cksum);
6290 			UDP_STAT_UPDATE(us, udp_out_sw_cksum_bytes,
6291 			    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
6292 		}
6293 	}
6294 
6295 	if (!CLASSD(dst)) {
6296 		ipha->ipha_fragment_offset_and_flags |=
6297 		    (uint32_t)htons(ire->ire_frag_flag);
6298 	}
6299 
6300 	/* Calculate IP header checksum if hardware isn't capable */
6301 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
6302 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
6303 		    ((uint16_t *)ipha)[4]);
6304 	}
6305 
6306 	if (CLASSD(dst)) {
6307 		boolean_t ilm_exists;
6308 
6309 		ILM_WALKER_HOLD(ill);
6310 		ilm_exists = (ilm_lookup_ill(ill, dst, ALL_ZONES) != NULL);
6311 		ILM_WALKER_RELE(ill);
6312 		if (ilm_exists) {
6313 			ip_multicast_loopback(q, ill, mp,
6314 			    connp->conn_multicast_loop ? 0 :
6315 			    IP_FF_NO_MCAST_LOOP, zoneid);
6316 		}
6317 
6318 		/* If multicast TTL is 0 then we are done */
6319 		if (ipha->ipha_ttl == 0) {
6320 			freemsg(mp);
6321 			ire_refrele(ire);
6322 			return;
6323 		}
6324 		ll_multicast = B_TRUE;
6325 	}
6326 
6327 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
6328 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
6329 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
6330 
6331 	UPDATE_OB_PKT_COUNT(ire);
6332 	ire->ire_last_used_time = lbolt;
6333 
6334 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
6335 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
6336 	    ntohs(ipha->ipha_length));
6337 
6338 	if (ILL_DLS_CAPABLE(ill)) {
6339 		/*
6340 		 * Send the packet directly to DLD, where it may be queued
6341 		 * depending on the availability of transmit resources at
6342 		 * the media layer.
6343 		 */
6344 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
6345 	} else {
6346 		DTRACE_PROBE4(ip4__physical__out__start,
6347 		    ill_t *, NULL, ill_t *, ill,
6348 		    ipha_t *, ipha, mblk_t *, mp);
6349 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
6350 		    ipst->ips_ipv4firewall_physical_out,
6351 		    NULL, ill, ipha, mp, mp, ll_multicast, ipst);
6352 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
6353 		if (mp != NULL) {
6354 			DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL,
6355 			    void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill,
6356 			    ipha_t *, ipha, ip6_t *, NULL, int, 0);
6357 			putnext(ire->ire_stq, mp);
6358 		}
6359 	}
6360 
6361 	IRE_REFRELE(ire);
6362 }
6363 
6364 static boolean_t
6365 udp_update_label_v6(queue_t *wq, mblk_t *mp, in6_addr_t *dst)
6366 {
6367 	udp_t *udp = Q_TO_UDP(wq);
6368 	int err;
6369 	uchar_t opt_storage[TSOL_MAX_IPV6_OPTION];
6370 	udp_stack_t		*us = udp->udp_us;
6371 
6372 	err = tsol_compute_label_v6(DB_CREDDEF(mp, udp->udp_connp->conn_cred),
6373 	    dst, opt_storage, udp->udp_connp->conn_mac_exempt,
6374 	    us->us_netstack->netstack_ip);
6375 	if (err == 0) {
6376 		err = tsol_update_sticky(&udp->udp_sticky_ipp,
6377 		    &udp->udp_label_len_v6, opt_storage);
6378 	}
6379 	if (err != 0) {
6380 		DTRACE_PROBE4(
6381 		    tx__ip__log__drop__updatelabel__udp6,
6382 		    char *, "queue(1) failed to update options(2) on mp(3)",
6383 		    queue_t *, wq, char *, opt_storage, mblk_t *, mp);
6384 	} else {
6385 		udp->udp_v6lastdst = *dst;
6386 	}
6387 	return (err);
6388 }
6389 
6390 void
6391 udp_output_connected(void *arg, mblk_t *mp)
6392 {
6393 	conn_t	*connp = (conn_t *)arg;
6394 	udp_t	*udp = connp->conn_udp;
6395 	udp_stack_t	*us = udp->udp_us;
6396 	ipaddr_t	v4dst;
6397 	in_port_t	dstport;
6398 	boolean_t	mapped_addr;
6399 	struct sockaddr_storage ss;
6400 	sin_t		*sin;
6401 	sin6_t		*sin6;
6402 	struct sockaddr	*addr;
6403 	socklen_t	addrlen;
6404 	int		error;
6405 	boolean_t	insert_spi = udp->udp_nat_t_endpoint;
6406 
6407 	/* M_DATA for connected socket */
6408 
6409 	ASSERT(udp->udp_issocket);
6410 	UDP_DBGSTAT(us, udp_data_conn);
6411 
6412 	mutex_enter(&connp->conn_lock);
6413 	if (udp->udp_state != TS_DATA_XFER) {
6414 		mutex_exit(&connp->conn_lock);
6415 		BUMP_MIB(&us->us_udp_mib, udpOutErrors);
6416 		UDP_STAT(us, udp_out_err_notconn);
6417 		freemsg(mp);
6418 		TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6419 		    "udp_wput_end: connp %p (%S)", connp,
6420 		    "not-connected; address required");
6421 		return;
6422 	}
6423 
6424 	mapped_addr = IN6_IS_ADDR_V4MAPPED(&udp->udp_v6dst);
6425 	if (mapped_addr)
6426 		IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6dst, v4dst);
6427 
6428 	/* Initialize addr and addrlen as if they're passed in */
6429 	if (udp->udp_family == AF_INET) {
6430 		sin = (sin_t *)&ss;
6431 		sin->sin_family = AF_INET;
6432 		dstport = sin->sin_port = udp->udp_dstport;
6433 		ASSERT(mapped_addr);
6434 		sin->sin_addr.s_addr = v4dst;
6435 		addr = (struct sockaddr *)sin;
6436 		addrlen = sizeof (*sin);
6437 	} else {
6438 		sin6 = (sin6_t *)&ss;
6439 		sin6->sin6_family = AF_INET6;
6440 		dstport = sin6->sin6_port = udp->udp_dstport;
6441 		sin6->sin6_flowinfo = udp->udp_flowinfo;
6442 		sin6->sin6_addr = udp->udp_v6dst;
6443 		sin6->sin6_scope_id = 0;
6444 		sin6->__sin6_src_id = 0;
6445 		addr = (struct sockaddr *)sin6;
6446 		addrlen = sizeof (*sin6);
6447 	}
6448 	mutex_exit(&connp->conn_lock);
6449 
6450 	if (mapped_addr) {
6451 		/*
6452 		 * Handle both AF_INET and AF_INET6; the latter
6453 		 * for IPV4 mapped destination addresses.  Note
6454 		 * here that both addr and addrlen point to the
6455 		 * corresponding struct depending on the address
6456 		 * family of the socket.
6457 		 */
6458 		mp = udp_output_v4(connp, mp, v4dst, dstport, 0, &error,
6459 		    insert_spi);
6460 	} else {
6461 		mp = udp_output_v6(connp, mp, sin6, &error);
6462 	}
6463 	if (error == 0) {
6464 		ASSERT(mp == NULL);
6465 		return;
6466 	}
6467 
6468 	UDP_STAT(us, udp_out_err_output);
6469 	ASSERT(mp != NULL);
6470 	/* mp is freed by the following routine */
6471 	udp_ud_err(connp->conn_wq, mp, (uchar_t *)addr, (t_scalar_t)addrlen,
6472 	    (t_scalar_t)error);
6473 }
6474 
6475 /*
6476  * This routine handles all messages passed downstream.  It either
6477  * consumes the message or passes it downstream; it never queues a
6478  * a message.
6479  *
6480  * Also entry point for sockfs when udp is in "direct sockfs" mode.  This mode
6481  * is valid when we are directly beneath the stream head, and thus sockfs
6482  * is able to bypass STREAMS and directly call us, passing along the sockaddr
6483  * structure without the cumbersome T_UNITDATA_REQ interface for the case of
6484  * connected endpoints.
6485  */
6486 void
6487 udp_wput(queue_t *q, mblk_t *mp)
6488 {
6489 	sin6_t		*sin6;
6490 	sin_t		*sin;
6491 	ipaddr_t	v4dst;
6492 	uint16_t	port;
6493 	uint_t		srcid;
6494 	conn_t		*connp = Q_TO_CONN(q);
6495 	udp_t		*udp = connp->conn_udp;
6496 	int		error = 0;
6497 	struct sockaddr	*addr;
6498 	socklen_t	addrlen;
6499 	udp_stack_t *us = udp->udp_us;
6500 	boolean_t	insert_spi = udp->udp_nat_t_endpoint;
6501 
6502 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_START,
6503 	    "udp_wput_start: queue %p mp %p", q, mp);
6504 
6505 	/*
6506 	 * We directly handle several cases here: T_UNITDATA_REQ message
6507 	 * coming down as M_PROTO/M_PCPROTO and M_DATA messages for connected
6508 	 * socket.
6509 	 */
6510 	switch (DB_TYPE(mp)) {
6511 	case M_DATA:
6512 		/*
6513 		 * Quick check for error cases. Checks will be done again
6514 		 * under the lock later on
6515 		 */
6516 		if (!udp->udp_direct_sockfs || udp->udp_state != TS_DATA_XFER) {
6517 			/* Not connected; address is required */
6518 			BUMP_MIB(&us->us_udp_mib, udpOutErrors);
6519 			UDP_STAT(us, udp_out_err_notconn);
6520 			freemsg(mp);
6521 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6522 			    "udp_wput_end: connp %p (%S)", connp,
6523 			    "not-connected; address required");
6524 			return;
6525 		}
6526 		udp_output_connected(connp, mp);
6527 		return;
6528 
6529 	case M_PROTO:
6530 	case M_PCPROTO: {
6531 		struct T_unitdata_req *tudr;
6532 
6533 		ASSERT((uintptr_t)MBLKL(mp) <= (uintptr_t)INT_MAX);
6534 		tudr = (struct T_unitdata_req *)mp->b_rptr;
6535 
6536 		/* Handle valid T_UNITDATA_REQ here */
6537 		if (MBLKL(mp) >= sizeof (*tudr) &&
6538 		    ((t_primp_t)mp->b_rptr)->type == T_UNITDATA_REQ) {
6539 			if (mp->b_cont == NULL) {
6540 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6541 				    "udp_wput_end: q %p (%S)", q, "badaddr");
6542 				error = EPROTO;
6543 				goto ud_error;
6544 			}
6545 
6546 			if (!MBLKIN(mp, 0, tudr->DEST_offset +
6547 			    tudr->DEST_length)) {
6548 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6549 				    "udp_wput_end: q %p (%S)", q, "badaddr");
6550 				error = EADDRNOTAVAIL;
6551 				goto ud_error;
6552 			}
6553 			/*
6554 			 * If a port has not been bound to the stream, fail.
6555 			 * This is not a problem when sockfs is directly
6556 			 * above us, because it will ensure that the socket
6557 			 * is first bound before allowing data to be sent.
6558 			 */
6559 			if (udp->udp_state == TS_UNBND) {
6560 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6561 				    "udp_wput_end: q %p (%S)", q, "outstate");
6562 				error = EPROTO;
6563 				goto ud_error;
6564 			}
6565 			addr = (struct sockaddr *)
6566 			    &mp->b_rptr[tudr->DEST_offset];
6567 			addrlen = tudr->DEST_length;
6568 			if (tudr->OPT_length != 0)
6569 				UDP_STAT(us, udp_out_opt);
6570 			break;
6571 		}
6572 		/* FALLTHRU */
6573 	}
6574 	default:
6575 		udp_wput_other(q, mp);
6576 		return;
6577 	}
6578 	ASSERT(addr != NULL);
6579 
6580 	switch (udp->udp_family) {
6581 	case AF_INET6:
6582 		sin6 = (sin6_t *)addr;
6583 		if (!OK_32PTR((char *)sin6) || (addrlen != sizeof (sin6_t)) ||
6584 		    (sin6->sin6_family != AF_INET6)) {
6585 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6586 			    "udp_wput_end: q %p (%S)", q, "badaddr");
6587 			error = EADDRNOTAVAIL;
6588 			goto ud_error;
6589 		}
6590 
6591 		if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6592 			/*
6593 			 * Destination is a non-IPv4-compatible IPv6 address.
6594 			 * Send out an IPv6 format packet.
6595 			 */
6596 			mp = udp_output_v6(connp, mp, sin6, &error);
6597 			if (error != 0)
6598 				goto ud_error;
6599 
6600 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6601 			    "udp_wput_end: q %p (%S)", q, "udp_output_v6");
6602 			return;
6603 		}
6604 		/*
6605 		 * If the local address is not zero or a mapped address
6606 		 * return an error.  It would be possible to send an IPv4
6607 		 * packet but the response would never make it back to the
6608 		 * application since it is bound to a non-mapped address.
6609 		 */
6610 		if (!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src) &&
6611 		    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
6612 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6613 			    "udp_wput_end: q %p (%S)", q, "badaddr");
6614 			error = EADDRNOTAVAIL;
6615 			goto ud_error;
6616 		}
6617 		/* Send IPv4 packet without modifying udp_ipversion */
6618 		/* Extract port and ipaddr */
6619 		port = sin6->sin6_port;
6620 		IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, v4dst);
6621 		srcid = sin6->__sin6_src_id;
6622 		break;
6623 
6624 	case AF_INET:
6625 		sin = (sin_t *)addr;
6626 		if ((!OK_32PTR((char *)sin) || addrlen != sizeof (sin_t)) ||
6627 		    (sin->sin_family != AF_INET)) {
6628 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6629 			    "udp_wput_end: q %p (%S)", q, "badaddr");
6630 			error = EADDRNOTAVAIL;
6631 			goto ud_error;
6632 		}
6633 		/* Extract port and ipaddr */
6634 		port = sin->sin_port;
6635 		v4dst = sin->sin_addr.s_addr;
6636 		srcid = 0;
6637 		break;
6638 	}
6639 
6640 	mp = udp_output_v4(connp, mp, v4dst, port, srcid, &error, insert_spi);
6641 	if (error != 0) {
6642 ud_error:
6643 		UDP_STAT(us, udp_out_err_output);
6644 		ASSERT(mp != NULL);
6645 		/* mp is freed by the following routine */
6646 		udp_ud_err(q, mp, (uchar_t *)addr, (t_scalar_t)addrlen,
6647 		    (t_scalar_t)error);
6648 	}
6649 }
6650 
6651 /*
6652  * udp_output_v6():
6653  * Assumes that udp_wput did some sanity checking on the destination
6654  * address.
6655  */
6656 static mblk_t *
6657 udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6, int *error)
6658 {
6659 	ip6_t		*ip6h;
6660 	ip6i_t		*ip6i;	/* mp1->b_rptr even if no ip6i_t */
6661 	mblk_t		*mp1 = mp;
6662 	mblk_t		*mp2;
6663 	int		udp_ip_hdr_len = IPV6_HDR_LEN + UDPH_SIZE;
6664 	size_t		ip_len;
6665 	udpha_t		*udph;
6666 	udp_t		*udp = connp->conn_udp;
6667 	queue_t		*q = connp->conn_wq;
6668 	ip6_pkt_t	ipp_s;	/* For ancillary data options */
6669 	ip6_pkt_t	*ipp = &ipp_s;
6670 	ip6_pkt_t	*tipp;	/* temporary ipp */
6671 	uint32_t	csum = 0;
6672 	uint_t		ignore = 0;
6673 	uint_t		option_exists = 0, is_sticky = 0;
6674 	uint8_t		*cp;
6675 	uint8_t		*nxthdr_ptr;
6676 	in6_addr_t	ip6_dst;
6677 	udpattrs_t	attrs;
6678 	boolean_t	opt_present;
6679 	ip6_hbh_t	*hopoptsptr = NULL;
6680 	uint_t		hopoptslen = 0;
6681 	boolean_t	is_ancillary = B_FALSE;
6682 	udp_stack_t	*us = udp->udp_us;
6683 	size_t		sth_wroff = 0;
6684 
6685 	*error = 0;
6686 
6687 	/*
6688 	 * If the local address is a mapped address return
6689 	 * an error.
6690 	 * It would be possible to send an IPv6 packet but the
6691 	 * response would never make it back to the application
6692 	 * since it is bound to a mapped address.
6693 	 */
6694 	if (IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src)) {
6695 		*error = EADDRNOTAVAIL;
6696 		goto done;
6697 	}
6698 
6699 	ipp->ipp_fields = 0;
6700 	ipp->ipp_sticky_ignored = 0;
6701 
6702 	/*
6703 	 * If TPI options passed in, feed it for verification and handling
6704 	 */
6705 	attrs.udpattr_credset = B_FALSE;
6706 	opt_present = B_FALSE;
6707 	if (DB_TYPE(mp) != M_DATA) {
6708 		mp1 = mp->b_cont;
6709 		if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) {
6710 			attrs.udpattr_ipp6 = ipp;
6711 			attrs.udpattr_mb = mp;
6712 			if (udp_unitdata_opt_process(q, mp, error,
6713 			    &attrs) < 0) {
6714 				goto done;
6715 			}
6716 			ASSERT(*error == 0);
6717 			opt_present = B_TRUE;
6718 		}
6719 	}
6720 	rw_enter(&udp->udp_rwlock, RW_READER);
6721 	ignore = ipp->ipp_sticky_ignored;
6722 
6723 	/* mp1 points to the M_DATA mblk carrying the packet */
6724 	ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA);
6725 
6726 	if (sin6->sin6_scope_id != 0 &&
6727 	    IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) {
6728 		/*
6729 		 * IPPF_SCOPE_ID is special.  It's neither a sticky
6730 		 * option nor ancillary data.  It needs to be
6731 		 * explicitly set in options_exists.
6732 		 */
6733 		option_exists |= IPPF_SCOPE_ID;
6734 	}
6735 
6736 	/*
6737 	 * Compute the destination address
6738 	 */
6739 	ip6_dst = sin6->sin6_addr;
6740 	if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
6741 		ip6_dst = ipv6_loopback;
6742 
6743 	/*
6744 	 * If we're not going to the same destination as last time, then
6745 	 * recompute the label required.  This is done in a separate routine to
6746 	 * avoid blowing up our stack here.
6747 	 *
6748 	 * TSOL Note: Since we are not in WRITER mode, UDP packets
6749 	 * to different destination may require different labels,
6750 	 * or worse, UDP packets to same IP address may require
6751 	 * different labels due to use of shared all-zones address.
6752 	 * We use conn_lock to ensure that lastdst, sticky ipp_hopopts,
6753 	 * and sticky ipp_hopoptslen are consistent for the current
6754 	 * destination and are updated atomically.
6755 	 */
6756 	mutex_enter(&connp->conn_lock);
6757 	if (is_system_labeled()) {
6758 		/* Using UDP MLP requires SCM_UCRED from user */
6759 		if (connp->conn_mlp_type != mlptSingle &&
6760 		    !attrs.udpattr_credset) {
6761 			DTRACE_PROBE4(
6762 			    tx__ip__log__info__output__udp6,
6763 			    char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)",
6764 			    mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q);
6765 			*error = ECONNREFUSED;
6766 			rw_exit(&udp->udp_rwlock);
6767 			mutex_exit(&connp->conn_lock);
6768 			goto done;
6769 		}
6770 		/*
6771 		 * update label option for this UDP socket if
6772 		 * - the destination has changed, or
6773 		 * - the UDP socket is MLP
6774 		 */
6775 		if ((opt_present ||
6776 		    !IN6_ARE_ADDR_EQUAL(&udp->udp_v6lastdst, &ip6_dst) ||
6777 		    connp->conn_mlp_type != mlptSingle) &&
6778 		    (*error = udp_update_label_v6(q, mp, &ip6_dst)) != 0) {
6779 			rw_exit(&udp->udp_rwlock);
6780 			mutex_exit(&connp->conn_lock);
6781 			goto done;
6782 		}
6783 	}
6784 
6785 	/*
6786 	 * If there's a security label here, then we ignore any options the
6787 	 * user may try to set.  We keep the peer's label as a hidden sticky
6788 	 * option. We make a private copy of this label before releasing the
6789 	 * lock so that label is kept consistent with the destination addr.
6790 	 */
6791 	if (udp->udp_label_len_v6 > 0) {
6792 		ignore &= ~IPPF_HOPOPTS;
6793 		ipp->ipp_fields &= ~IPPF_HOPOPTS;
6794 	}
6795 
6796 	if ((udp->udp_sticky_ipp.ipp_fields == 0) && (ipp->ipp_fields == 0)) {
6797 		/* No sticky options nor ancillary data. */
6798 		mutex_exit(&connp->conn_lock);
6799 		goto no_options;
6800 	}
6801 
6802 	/*
6803 	 * Go through the options figuring out where each is going to
6804 	 * come from and build two masks.  The first mask indicates if
6805 	 * the option exists at all.  The second mask indicates if the
6806 	 * option is sticky or ancillary.
6807 	 */
6808 	if (!(ignore & IPPF_HOPOPTS)) {
6809 		if (ipp->ipp_fields & IPPF_HOPOPTS) {
6810 			option_exists |= IPPF_HOPOPTS;
6811 			udp_ip_hdr_len += ipp->ipp_hopoptslen;
6812 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_HOPOPTS) {
6813 			option_exists |= IPPF_HOPOPTS;
6814 			is_sticky |= IPPF_HOPOPTS;
6815 			ASSERT(udp->udp_sticky_ipp.ipp_hopoptslen != 0);
6816 			hopoptsptr = kmem_alloc(
6817 			    udp->udp_sticky_ipp.ipp_hopoptslen, KM_NOSLEEP);
6818 			if (hopoptsptr == NULL) {
6819 				*error = ENOMEM;
6820 				mutex_exit(&connp->conn_lock);
6821 				goto done;
6822 			}
6823 			hopoptslen = udp->udp_sticky_ipp.ipp_hopoptslen;
6824 			bcopy(udp->udp_sticky_ipp.ipp_hopopts, hopoptsptr,
6825 			    hopoptslen);
6826 			udp_ip_hdr_len += hopoptslen;
6827 		}
6828 	}
6829 	mutex_exit(&connp->conn_lock);
6830 
6831 	if (!(ignore & IPPF_RTHDR)) {
6832 		if (ipp->ipp_fields & IPPF_RTHDR) {
6833 			option_exists |= IPPF_RTHDR;
6834 			udp_ip_hdr_len += ipp->ipp_rthdrlen;
6835 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTHDR) {
6836 			option_exists |= IPPF_RTHDR;
6837 			is_sticky |= IPPF_RTHDR;
6838 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rthdrlen;
6839 		}
6840 	}
6841 
6842 	if (!(ignore & IPPF_RTDSTOPTS) && (option_exists & IPPF_RTHDR)) {
6843 		if (ipp->ipp_fields & IPPF_RTDSTOPTS) {
6844 			option_exists |= IPPF_RTDSTOPTS;
6845 			udp_ip_hdr_len += ipp->ipp_rtdstoptslen;
6846 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTDSTOPTS) {
6847 			option_exists |= IPPF_RTDSTOPTS;
6848 			is_sticky |= IPPF_RTDSTOPTS;
6849 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rtdstoptslen;
6850 		}
6851 	}
6852 
6853 	if (!(ignore & IPPF_DSTOPTS)) {
6854 		if (ipp->ipp_fields & IPPF_DSTOPTS) {
6855 			option_exists |= IPPF_DSTOPTS;
6856 			udp_ip_hdr_len += ipp->ipp_dstoptslen;
6857 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DSTOPTS) {
6858 			option_exists |= IPPF_DSTOPTS;
6859 			is_sticky |= IPPF_DSTOPTS;
6860 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_dstoptslen;
6861 		}
6862 	}
6863 
6864 	if (!(ignore & IPPF_IFINDEX)) {
6865 		if (ipp->ipp_fields & IPPF_IFINDEX) {
6866 			option_exists |= IPPF_IFINDEX;
6867 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_IFINDEX) {
6868 			option_exists |= IPPF_IFINDEX;
6869 			is_sticky |= IPPF_IFINDEX;
6870 		}
6871 	}
6872 
6873 	if (!(ignore & IPPF_ADDR)) {
6874 		if (ipp->ipp_fields & IPPF_ADDR) {
6875 			option_exists |= IPPF_ADDR;
6876 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_ADDR) {
6877 			option_exists |= IPPF_ADDR;
6878 			is_sticky |= IPPF_ADDR;
6879 		}
6880 	}
6881 
6882 	if (!(ignore & IPPF_DONTFRAG)) {
6883 		if (ipp->ipp_fields & IPPF_DONTFRAG) {
6884 			option_exists |= IPPF_DONTFRAG;
6885 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DONTFRAG) {
6886 			option_exists |= IPPF_DONTFRAG;
6887 			is_sticky |= IPPF_DONTFRAG;
6888 		}
6889 	}
6890 
6891 	if (!(ignore & IPPF_USE_MIN_MTU)) {
6892 		if (ipp->ipp_fields & IPPF_USE_MIN_MTU) {
6893 			option_exists |= IPPF_USE_MIN_MTU;
6894 		} else if (udp->udp_sticky_ipp.ipp_fields &
6895 		    IPPF_USE_MIN_MTU) {
6896 			option_exists |= IPPF_USE_MIN_MTU;
6897 			is_sticky |= IPPF_USE_MIN_MTU;
6898 		}
6899 	}
6900 
6901 	if (!(ignore & IPPF_HOPLIMIT) && (ipp->ipp_fields & IPPF_HOPLIMIT))
6902 		option_exists |= IPPF_HOPLIMIT;
6903 	/* IPV6_HOPLIMIT can never be sticky */
6904 	ASSERT(!(udp->udp_sticky_ipp.ipp_fields & IPPF_HOPLIMIT));
6905 
6906 	if (!(ignore & IPPF_UNICAST_HOPS) &&
6907 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_UNICAST_HOPS)) {
6908 		option_exists |= IPPF_UNICAST_HOPS;
6909 		is_sticky |= IPPF_UNICAST_HOPS;
6910 	}
6911 
6912 	if (!(ignore & IPPF_MULTICAST_HOPS) &&
6913 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_MULTICAST_HOPS)) {
6914 		option_exists |= IPPF_MULTICAST_HOPS;
6915 		is_sticky |= IPPF_MULTICAST_HOPS;
6916 	}
6917 
6918 	if (!(ignore & IPPF_TCLASS)) {
6919 		if (ipp->ipp_fields & IPPF_TCLASS) {
6920 			option_exists |= IPPF_TCLASS;
6921 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_TCLASS) {
6922 			option_exists |= IPPF_TCLASS;
6923 			is_sticky |= IPPF_TCLASS;
6924 		}
6925 	}
6926 
6927 	if (!(ignore & IPPF_NEXTHOP) &&
6928 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_NEXTHOP)) {
6929 		option_exists |= IPPF_NEXTHOP;
6930 		is_sticky |= IPPF_NEXTHOP;
6931 	}
6932 
6933 no_options:
6934 
6935 	/*
6936 	 * If any options carried in the ip6i_t were specified, we
6937 	 * need to account for the ip6i_t in the data we'll be sending
6938 	 * down.
6939 	 */
6940 	if (option_exists & IPPF_HAS_IP6I)
6941 		udp_ip_hdr_len += sizeof (ip6i_t);
6942 
6943 	/* check/fix buffer config, setup pointers into it */
6944 	ip6h = (ip6_t *)&mp1->b_rptr[-udp_ip_hdr_len];
6945 	if (DB_REF(mp1) != 1 || ((unsigned char *)ip6h < DB_BASE(mp1)) ||
6946 	    !OK_32PTR(ip6h)) {
6947 
6948 		/* Try to get everything in a single mblk next time */
6949 		if (udp_ip_hdr_len > udp->udp_max_hdr_len) {
6950 			udp->udp_max_hdr_len = udp_ip_hdr_len;
6951 			sth_wroff = udp->udp_max_hdr_len + us->us_wroff_extra;
6952 		}
6953 
6954 		mp2 = allocb(udp_ip_hdr_len + us->us_wroff_extra, BPRI_LO);
6955 		if (mp2 == NULL) {
6956 			*error = ENOMEM;
6957 			rw_exit(&udp->udp_rwlock);
6958 			goto done;
6959 		}
6960 		mp2->b_wptr = DB_LIM(mp2);
6961 		mp2->b_cont = mp1;
6962 		mp1 = mp2;
6963 		if (DB_TYPE(mp) != M_DATA)
6964 			mp->b_cont = mp1;
6965 		else
6966 			mp = mp1;
6967 
6968 		ip6h = (ip6_t *)(mp1->b_wptr - udp_ip_hdr_len);
6969 	}
6970 	mp1->b_rptr = (unsigned char *)ip6h;
6971 	ip6i = (ip6i_t *)ip6h;
6972 
6973 #define	ANCIL_OR_STICKY_PTR(f) ((is_sticky & f) ? &udp->udp_sticky_ipp : ipp)
6974 	if (option_exists & IPPF_HAS_IP6I) {
6975 		ip6h = (ip6_t *)&ip6i[1];
6976 		ip6i->ip6i_flags = 0;
6977 		ip6i->ip6i_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
6978 
6979 		/* sin6_scope_id takes precendence over IPPF_IFINDEX */
6980 		if (option_exists & IPPF_SCOPE_ID) {
6981 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6982 			ip6i->ip6i_ifindex = sin6->sin6_scope_id;
6983 		} else if (option_exists & IPPF_IFINDEX) {
6984 			tipp = ANCIL_OR_STICKY_PTR(IPPF_IFINDEX);
6985 			ASSERT(tipp->ipp_ifindex != 0);
6986 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6987 			ip6i->ip6i_ifindex = tipp->ipp_ifindex;
6988 		}
6989 
6990 		if (option_exists & IPPF_ADDR) {
6991 			/*
6992 			 * Enable per-packet source address verification if
6993 			 * IPV6_PKTINFO specified the source address.
6994 			 * ip6_src is set in the transport's _wput function.
6995 			 */
6996 			ip6i->ip6i_flags |= IP6I_VERIFY_SRC;
6997 		}
6998 
6999 		if (option_exists & IPPF_DONTFRAG) {
7000 			ip6i->ip6i_flags |= IP6I_DONTFRAG;
7001 		}
7002 
7003 		if (option_exists & IPPF_USE_MIN_MTU) {
7004 			ip6i->ip6i_flags = IP6I_API_USE_MIN_MTU(
7005 			    ip6i->ip6i_flags, ipp->ipp_use_min_mtu);
7006 		}
7007 
7008 		if (option_exists & IPPF_NEXTHOP) {
7009 			tipp = ANCIL_OR_STICKY_PTR(IPPF_NEXTHOP);
7010 			ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_nexthop));
7011 			ip6i->ip6i_flags |= IP6I_NEXTHOP;
7012 			ip6i->ip6i_nexthop = tipp->ipp_nexthop;
7013 		}
7014 
7015 		/*
7016 		 * tell IP this is an ip6i_t private header
7017 		 */
7018 		ip6i->ip6i_nxt = IPPROTO_RAW;
7019 	}
7020 
7021 	/* Initialize IPv6 header */
7022 	ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
7023 	bzero(&ip6h->ip6_src, sizeof (ip6h->ip6_src));
7024 
7025 	/* Set the hoplimit of the outgoing packet. */
7026 	if (option_exists & IPPF_HOPLIMIT) {
7027 		/* IPV6_HOPLIMIT ancillary data overrides all other settings. */
7028 		ip6h->ip6_hops = ipp->ipp_hoplimit;
7029 		ip6i->ip6i_flags |= IP6I_HOPLIMIT;
7030 	} else if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) {
7031 		ip6h->ip6_hops = udp->udp_multicast_ttl;
7032 		if (option_exists & IPPF_MULTICAST_HOPS)
7033 			ip6i->ip6i_flags |= IP6I_HOPLIMIT;
7034 	} else {
7035 		ip6h->ip6_hops = udp->udp_ttl;
7036 		if (option_exists & IPPF_UNICAST_HOPS)
7037 			ip6i->ip6i_flags |= IP6I_HOPLIMIT;
7038 	}
7039 
7040 	if (option_exists & IPPF_ADDR) {
7041 		tipp = ANCIL_OR_STICKY_PTR(IPPF_ADDR);
7042 		ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_addr));
7043 		ip6h->ip6_src = tipp->ipp_addr;
7044 	} else {
7045 		/*
7046 		 * The source address was not set using IPV6_PKTINFO.
7047 		 * First look at the bound source.
7048 		 * If unspecified fallback to __sin6_src_id.
7049 		 */
7050 		ip6h->ip6_src = udp->udp_v6src;
7051 		if (sin6->__sin6_src_id != 0 &&
7052 		    IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) {
7053 			ip_srcid_find_id(sin6->__sin6_src_id,
7054 			    &ip6h->ip6_src, connp->conn_zoneid,
7055 			    us->us_netstack);
7056 		}
7057 	}
7058 
7059 	nxthdr_ptr = (uint8_t *)&ip6h->ip6_nxt;
7060 	cp = (uint8_t *)&ip6h[1];
7061 
7062 	/*
7063 	 * Here's where we have to start stringing together
7064 	 * any extension headers in the right order:
7065 	 * Hop-by-hop, destination, routing, and final destination opts.
7066 	 */
7067 	if (option_exists & IPPF_HOPOPTS) {
7068 		/* Hop-by-hop options */
7069 		ip6_hbh_t *hbh = (ip6_hbh_t *)cp;
7070 		tipp = ANCIL_OR_STICKY_PTR(IPPF_HOPOPTS);
7071 		if (hopoptslen == 0) {
7072 			hopoptsptr = tipp->ipp_hopopts;
7073 			hopoptslen = tipp->ipp_hopoptslen;
7074 			is_ancillary = B_TRUE;
7075 		}
7076 
7077 		*nxthdr_ptr = IPPROTO_HOPOPTS;
7078 		nxthdr_ptr = &hbh->ip6h_nxt;
7079 
7080 		bcopy(hopoptsptr, cp, hopoptslen);
7081 		cp += hopoptslen;
7082 
7083 		if (hopoptsptr != NULL && !is_ancillary) {
7084 			kmem_free(hopoptsptr, hopoptslen);
7085 			hopoptsptr = NULL;
7086 			hopoptslen = 0;
7087 		}
7088 	}
7089 	/*
7090 	 * En-route destination options
7091 	 * Only do them if there's a routing header as well
7092 	 */
7093 	if (option_exists & IPPF_RTDSTOPTS) {
7094 		ip6_dest_t *dst = (ip6_dest_t *)cp;
7095 		tipp = ANCIL_OR_STICKY_PTR(IPPF_RTDSTOPTS);
7096 
7097 		*nxthdr_ptr = IPPROTO_DSTOPTS;
7098 		nxthdr_ptr = &dst->ip6d_nxt;
7099 
7100 		bcopy(tipp->ipp_rtdstopts, cp, tipp->ipp_rtdstoptslen);
7101 		cp += tipp->ipp_rtdstoptslen;
7102 	}
7103 	/*
7104 	 * Routing header next
7105 	 */
7106 	if (option_exists & IPPF_RTHDR) {
7107 		ip6_rthdr_t *rt = (ip6_rthdr_t *)cp;
7108 		tipp = ANCIL_OR_STICKY_PTR(IPPF_RTHDR);
7109 
7110 		*nxthdr_ptr = IPPROTO_ROUTING;
7111 		nxthdr_ptr = &rt->ip6r_nxt;
7112 
7113 		bcopy(tipp->ipp_rthdr, cp, tipp->ipp_rthdrlen);
7114 		cp += tipp->ipp_rthdrlen;
7115 	}
7116 	/*
7117 	 * Do ultimate destination options
7118 	 */
7119 	if (option_exists & IPPF_DSTOPTS) {
7120 		ip6_dest_t *dest = (ip6_dest_t *)cp;
7121 		tipp = ANCIL_OR_STICKY_PTR(IPPF_DSTOPTS);
7122 
7123 		*nxthdr_ptr = IPPROTO_DSTOPTS;
7124 		nxthdr_ptr = &dest->ip6d_nxt;
7125 
7126 		bcopy(tipp->ipp_dstopts, cp, tipp->ipp_dstoptslen);
7127 		cp += tipp->ipp_dstoptslen;
7128 	}
7129 	/*
7130 	 * Now set the last header pointer to the proto passed in
7131 	 */
7132 	ASSERT((int)(cp - (uint8_t *)ip6i) == (udp_ip_hdr_len - UDPH_SIZE));
7133 	*nxthdr_ptr = IPPROTO_UDP;
7134 
7135 	/* Update UDP header */
7136 	udph = (udpha_t *)((uchar_t *)ip6i + udp_ip_hdr_len - UDPH_SIZE);
7137 	udph->uha_dst_port = sin6->sin6_port;
7138 	udph->uha_src_port = udp->udp_port;
7139 
7140 	/*
7141 	 * Copy in the destination address
7142 	 */
7143 	ip6h->ip6_dst = ip6_dst;
7144 
7145 	ip6h->ip6_vcf =
7146 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
7147 	    (sin6->sin6_flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
7148 
7149 	if (option_exists & IPPF_TCLASS) {
7150 		tipp = ANCIL_OR_STICKY_PTR(IPPF_TCLASS);
7151 		ip6h->ip6_vcf = IPV6_TCLASS_FLOW(ip6h->ip6_vcf,
7152 		    tipp->ipp_tclass);
7153 	}
7154 	rw_exit(&udp->udp_rwlock);
7155 
7156 	if (option_exists & IPPF_RTHDR) {
7157 		ip6_rthdr_t	*rth;
7158 
7159 		/*
7160 		 * Perform any processing needed for source routing.
7161 		 * We know that all extension headers will be in the same mblk
7162 		 * as the IPv6 header.
7163 		 */
7164 		rth = ip_find_rthdr_v6(ip6h, mp1->b_wptr);
7165 		if (rth != NULL && rth->ip6r_segleft != 0) {
7166 			if (rth->ip6r_type != IPV6_RTHDR_TYPE_0) {
7167 				/*
7168 				 * Drop packet - only support Type 0 routing.
7169 				 * Notify the application as well.
7170 				 */
7171 				*error = EPROTO;
7172 				goto done;
7173 			}
7174 
7175 			/*
7176 			 * rth->ip6r_len is twice the number of
7177 			 * addresses in the header. Thus it must be even.
7178 			 */
7179 			if (rth->ip6r_len & 0x1) {
7180 				*error = EPROTO;
7181 				goto done;
7182 			}
7183 			/*
7184 			 * Shuffle the routing header and ip6_dst
7185 			 * addresses, and get the checksum difference
7186 			 * between the first hop (in ip6_dst) and
7187 			 * the destination (in the last routing hdr entry).
7188 			 */
7189 			csum = ip_massage_options_v6(ip6h, rth,
7190 			    us->us_netstack);
7191 			/*
7192 			 * Verify that the first hop isn't a mapped address.
7193 			 * Routers along the path need to do this verification
7194 			 * for subsequent hops.
7195 			 */
7196 			if (IN6_IS_ADDR_V4MAPPED(&ip6h->ip6_dst)) {
7197 				*error = EADDRNOTAVAIL;
7198 				goto done;
7199 			}
7200 
7201 			cp += (rth->ip6r_len + 1)*8;
7202 		}
7203 	}
7204 
7205 	/* count up length of UDP packet */
7206 	ip_len = (mp1->b_wptr - (unsigned char *)ip6h) - IPV6_HDR_LEN;
7207 	if ((mp2 = mp1->b_cont) != NULL) {
7208 		do {
7209 			ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX);
7210 			ip_len += (uint32_t)MBLKL(mp2);
7211 		} while ((mp2 = mp2->b_cont) != NULL);
7212 	}
7213 
7214 	/*
7215 	 * If the size of the packet is greater than the maximum allowed by
7216 	 * ip, return an error. Passing this down could cause panics because
7217 	 * the size will have wrapped and be inconsistent with the msg size.
7218 	 */
7219 	if (ip_len > IP_MAXPACKET) {
7220 		*error = EMSGSIZE;
7221 		goto done;
7222 	}
7223 
7224 	/* Store the UDP length. Subtract length of extension hdrs */
7225 	udph->uha_length = htons(ip_len + IPV6_HDR_LEN -
7226 	    (int)((uchar_t *)udph - (uchar_t *)ip6h));
7227 
7228 	/*
7229 	 * We make it easy for IP to include our pseudo header
7230 	 * by putting our length in uh_checksum, modified (if
7231 	 * we have a routing header) by the checksum difference
7232 	 * between the ultimate destination and first hop addresses.
7233 	 * Note: UDP over IPv6 must always checksum the packet.
7234 	 */
7235 	csum += udph->uha_length;
7236 	csum = (csum & 0xFFFF) + (csum >> 16);
7237 	udph->uha_checksum = (uint16_t)csum;
7238 
7239 #ifdef _LITTLE_ENDIAN
7240 	ip_len = htons(ip_len);
7241 #endif
7242 	ip6h->ip6_plen = ip_len;
7243 	if (DB_CRED(mp) != NULL)
7244 		mblk_setcred(mp1, DB_CRED(mp));
7245 
7246 	if (DB_TYPE(mp) != M_DATA) {
7247 		ASSERT(mp != mp1);
7248 		freeb(mp);
7249 	}
7250 
7251 	/* mp has been consumed and we'll return success */
7252 	ASSERT(*error == 0);
7253 	mp = NULL;
7254 
7255 	/* We're done. Pass the packet to IP */
7256 	BUMP_MIB(&us->us_udp_mib, udpHCOutDatagrams);
7257 	ip_output_v6(connp, mp1, q, IP_WPUT);
7258 
7259 done:
7260 	if (sth_wroff != 0) {
7261 		(void) mi_set_sth_wroff(RD(q),
7262 		    udp->udp_max_hdr_len + us->us_wroff_extra);
7263 	}
7264 	if (hopoptsptr != NULL && !is_ancillary) {
7265 		kmem_free(hopoptsptr, hopoptslen);
7266 		hopoptsptr = NULL;
7267 	}
7268 	if (*error != 0) {
7269 		ASSERT(mp != NULL);
7270 		BUMP_MIB(&us->us_udp_mib, udpOutErrors);
7271 	}
7272 	return (mp);
7273 }
7274 
7275 
7276 static int
7277 udp_getpeername(udp_t *udp, struct sockaddr *sa, uint_t *salenp)
7278 {
7279 	sin_t *sin = (sin_t *)sa;
7280 	sin6_t *sin6 = (sin6_t *)sa;
7281 
7282 	ASSERT(RW_LOCK_HELD(&udp->udp_rwlock));
7283 
7284 	if (udp->udp_state != TS_DATA_XFER)
7285 		return (ENOTCONN);
7286 
7287 	switch (udp->udp_family) {
7288 	case AF_INET:
7289 		ASSERT(udp->udp_ipversion == IPV4_VERSION);
7290 
7291 		if (*salenp < sizeof (sin_t))
7292 			return (EINVAL);
7293 
7294 		*salenp = sizeof (sin_t);
7295 		*sin = sin_null;
7296 		sin->sin_family = AF_INET;
7297 		sin->sin_port = udp->udp_dstport;
7298 		sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_v6dst);
7299 		break;
7300 
7301 	case AF_INET6:
7302 		if (*salenp < sizeof (sin6_t))
7303 			return (EINVAL);
7304 
7305 		*salenp = sizeof (sin6_t);
7306 		*sin6 = sin6_null;
7307 		sin6->sin6_family = AF_INET6;
7308 		sin6->sin6_port = udp->udp_dstport;
7309 		sin6->sin6_addr = udp->udp_v6dst;
7310 		sin6->sin6_flowinfo = udp->udp_flowinfo;
7311 		break;
7312 	}
7313 
7314 	return (0);
7315 }
7316 
7317 static int
7318 udp_getmyname(udp_t *udp, struct sockaddr *sa, uint_t *salenp)
7319 {
7320 	sin_t *sin = (sin_t *)sa;
7321 	sin6_t *sin6 = (sin6_t *)sa;
7322 
7323 	ASSERT(RW_LOCK_HELD(&udp->udp_rwlock));
7324 
7325 	switch (udp->udp_family) {
7326 	case AF_INET:
7327 		ASSERT(udp->udp_ipversion == IPV4_VERSION);
7328 
7329 		if (*salenp < sizeof (sin_t))
7330 			return (EINVAL);
7331 
7332 		*salenp = sizeof (sin_t);
7333 		*sin = sin_null;
7334 		sin->sin_family = AF_INET;
7335 		sin->sin_port = udp->udp_port;
7336 
7337 		/*
7338 		 * If udp_v6src is unspecified, we might be bound to broadcast
7339 		 * / multicast.  Use udp_bound_v6src as local address instead
7340 		 * (that could also still be unspecified).
7341 		 */
7342 		if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) &&
7343 		    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
7344 			sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_v6src);
7345 		} else {
7346 			sin->sin_addr.s_addr =
7347 			    V4_PART_OF_V6(udp->udp_bound_v6src);
7348 		}
7349 		break;
7350 
7351 	case AF_INET6:
7352 		if (*salenp < sizeof (sin6_t))
7353 			return (EINVAL);
7354 
7355 		*salenp = sizeof (sin6_t);
7356 		*sin6 = sin6_null;
7357 		sin6->sin6_family = AF_INET6;
7358 		sin6->sin6_port = udp->udp_port;
7359 		sin6->sin6_flowinfo = udp->udp_flowinfo;
7360 
7361 		/*
7362 		 * If udp_v6src is unspecified, we might be bound to broadcast
7363 		 * / multicast.  Use udp_bound_v6src as local address instead
7364 		 * (that could also still be unspecified).
7365 		 */
7366 		if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src))
7367 			sin6->sin6_addr = udp->udp_v6src;
7368 		else
7369 			sin6->sin6_addr = udp->udp_bound_v6src;
7370 		break;
7371 	}
7372 
7373 	return (0);
7374 }
7375 
7376 /*
7377  * Handle special out-of-band ioctl requests (see PSARC/2008/265).
7378  */
7379 static void
7380 udp_wput_cmdblk(queue_t *q, mblk_t *mp)
7381 {
7382 	void	*data;
7383 	mblk_t	*datamp = mp->b_cont;
7384 	udp_t	*udp = Q_TO_UDP(q);
7385 	cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr;
7386 
7387 	if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) {
7388 		cmdp->cb_error = EPROTO;
7389 		qreply(q, mp);
7390 		return;
7391 	}
7392 	data = datamp->b_rptr;
7393 
7394 	rw_enter(&udp->udp_rwlock, RW_READER);
7395 	switch (cmdp->cb_cmd) {
7396 	case TI_GETPEERNAME:
7397 		cmdp->cb_error = udp_getpeername(udp, data, &cmdp->cb_len);
7398 		break;
7399 	case TI_GETMYNAME:
7400 		cmdp->cb_error = udp_getmyname(udp, data, &cmdp->cb_len);
7401 		break;
7402 	default:
7403 		cmdp->cb_error = EINVAL;
7404 		break;
7405 	}
7406 	rw_exit(&udp->udp_rwlock);
7407 
7408 	qreply(q, mp);
7409 }
7410 
7411 static void
7412 udp_wput_other(queue_t *q, mblk_t *mp)
7413 {
7414 	uchar_t	*rptr = mp->b_rptr;
7415 	struct datab *db;
7416 	struct iocblk *iocp;
7417 	cred_t	*cr;
7418 	conn_t	*connp = Q_TO_CONN(q);
7419 	udp_t	*udp = connp->conn_udp;
7420 	udp_stack_t *us;
7421 
7422 	TRACE_1(TR_FAC_UDP, TR_UDP_WPUT_OTHER_START,
7423 	    "udp_wput_other_start: q %p", q);
7424 
7425 	us = udp->udp_us;
7426 	db = mp->b_datap;
7427 
7428 	cr = DB_CREDDEF(mp, connp->conn_cred);
7429 
7430 	switch (db->db_type) {
7431 	case M_CMD:
7432 		udp_wput_cmdblk(q, mp);
7433 		return;
7434 
7435 	case M_PROTO:
7436 	case M_PCPROTO:
7437 		if (mp->b_wptr - rptr < sizeof (t_scalar_t)) {
7438 			freemsg(mp);
7439 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7440 			    "udp_wput_other_end: q %p (%S)", q, "protoshort");
7441 			return;
7442 		}
7443 		switch (((t_primp_t)rptr)->type) {
7444 		case T_ADDR_REQ:
7445 			udp_addr_req(q, mp);
7446 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7447 			    "udp_wput_other_end: q %p (%S)", q, "addrreq");
7448 			return;
7449 		case O_T_BIND_REQ:
7450 		case T_BIND_REQ:
7451 			udp_bind(q, mp);
7452 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7453 			    "udp_wput_other_end: q %p (%S)", q, "bindreq");
7454 			return;
7455 		case T_CONN_REQ:
7456 			udp_connect(q, mp);
7457 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7458 			    "udp_wput_other_end: q %p (%S)", q, "connreq");
7459 			return;
7460 		case T_CAPABILITY_REQ:
7461 			udp_capability_req(q, mp);
7462 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7463 			    "udp_wput_other_end: q %p (%S)", q, "capabreq");
7464 			return;
7465 		case T_INFO_REQ:
7466 			udp_info_req(q, mp);
7467 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7468 			    "udp_wput_other_end: q %p (%S)", q, "inforeq");
7469 			return;
7470 		case T_UNITDATA_REQ:
7471 			/*
7472 			 * If a T_UNITDATA_REQ gets here, the address must
7473 			 * be bad.  Valid T_UNITDATA_REQs are handled
7474 			 * in udp_wput.
7475 			 */
7476 			udp_ud_err(q, mp, NULL, 0, EADDRNOTAVAIL);
7477 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7478 			    "udp_wput_other_end: q %p (%S)", q, "unitdatareq");
7479 			return;
7480 		case T_UNBIND_REQ:
7481 			udp_unbind(q, mp);
7482 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7483 			    "udp_wput_other_end: q %p (%S)", q, "unbindreq");
7484 			return;
7485 		case T_SVR4_OPTMGMT_REQ:
7486 			if (!snmpcom_req(q, mp, udp_snmp_set, ip_snmp_get,
7487 			    cr)) {
7488 				(void) svr4_optcom_req(q,
7489 				    mp, cr, &udp_opt_obj, B_TRUE);
7490 			}
7491 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7492 			    "udp_wput_other_end: q %p (%S)", q, "optmgmtreq");
7493 			return;
7494 
7495 		case T_OPTMGMT_REQ:
7496 			(void) tpi_optcom_req(q, mp, cr, &udp_opt_obj, B_TRUE);
7497 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7498 			    "udp_wput_other_end: q %p (%S)", q, "optmgmtreq");
7499 			return;
7500 
7501 		case T_DISCON_REQ:
7502 			udp_disconnect(q, mp);
7503 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7504 			    "udp_wput_other_end: q %p (%S)", q, "disconreq");
7505 			return;
7506 
7507 		/* The following TPI message is not supported by udp. */
7508 		case O_T_CONN_RES:
7509 		case T_CONN_RES:
7510 			udp_err_ack(q, mp, TNOTSUPPORT, 0);
7511 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7512 			    "udp_wput_other_end: q %p (%S)", q,
7513 			    "connres/disconreq");
7514 			return;
7515 
7516 		/* The following 3 TPI messages are illegal for udp. */
7517 		case T_DATA_REQ:
7518 		case T_EXDATA_REQ:
7519 		case T_ORDREL_REQ:
7520 			udp_err_ack(q, mp, TNOTSUPPORT, 0);
7521 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7522 			    "udp_wput_other_end: q %p (%S)", q,
7523 			    "data/exdata/ordrel");
7524 			return;
7525 		default:
7526 			break;
7527 		}
7528 		break;
7529 	case M_FLUSH:
7530 		if (*rptr & FLUSHW)
7531 			flushq(q, FLUSHDATA);
7532 		break;
7533 	case M_IOCTL:
7534 		iocp = (struct iocblk *)mp->b_rptr;
7535 		switch (iocp->ioc_cmd) {
7536 		case TI_GETPEERNAME:
7537 			if (udp->udp_state != TS_DATA_XFER) {
7538 				/*
7539 				 * If a default destination address has not
7540 				 * been associated with the stream, then we
7541 				 * don't know the peer's name.
7542 				 */
7543 				iocp->ioc_error = ENOTCONN;
7544 				iocp->ioc_count = 0;
7545 				mp->b_datap->db_type = M_IOCACK;
7546 				qreply(q, mp);
7547 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7548 				    "udp_wput_other_end: q %p (%S)", q,
7549 				    "getpeername");
7550 				return;
7551 			}
7552 			/* FALLTHRU */
7553 		case TI_GETMYNAME: {
7554 			/*
7555 			 * For TI_GETPEERNAME and TI_GETMYNAME, we first
7556 			 * need to copyin the user's strbuf structure.
7557 			 * Processing will continue in the M_IOCDATA case
7558 			 * below.
7559 			 */
7560 			mi_copyin(q, mp, NULL,
7561 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
7562 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7563 			    "udp_wput_other_end: q %p (%S)", q, "getmyname");
7564 			return;
7565 			}
7566 		case ND_SET:
7567 			/* nd_getset performs the necessary checking */
7568 		case ND_GET:
7569 			if (nd_getset(q, us->us_nd, mp)) {
7570 				qreply(q, mp);
7571 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7572 				    "udp_wput_other_end: q %p (%S)", q, "get");
7573 				return;
7574 			}
7575 			break;
7576 		case _SIOCSOCKFALLBACK:
7577 			/*
7578 			 * Either sockmod is about to be popped and the
7579 			 * socket would now be treated as a plain stream,
7580 			 * or a module is about to be pushed so we could
7581 			 * no longer use read-side synchronous stream.
7582 			 * Drain any queued data and disable direct sockfs
7583 			 * interface from now on.
7584 			 */
7585 			if (!udp->udp_issocket) {
7586 				DB_TYPE(mp) = M_IOCNAK;
7587 				iocp->ioc_error = EINVAL;
7588 			} else {
7589 				udp->udp_issocket = B_FALSE;
7590 				if (udp->udp_direct_sockfs) {
7591 					/*
7592 					 * Disable read-side synchronous
7593 					 * stream interface and drain any
7594 					 * queued data.
7595 					 */
7596 					udp_rcv_drain(RD(q), udp,
7597 					    B_FALSE);
7598 					ASSERT(!udp->udp_direct_sockfs);
7599 					UDP_STAT(us, udp_sock_fallback);
7600 				}
7601 				DB_TYPE(mp) = M_IOCACK;
7602 				iocp->ioc_error = 0;
7603 			}
7604 			iocp->ioc_count = 0;
7605 			iocp->ioc_rval = 0;
7606 			qreply(q, mp);
7607 			return;
7608 		default:
7609 			break;
7610 		}
7611 		break;
7612 	case M_IOCDATA:
7613 		udp_wput_iocdata(q, mp);
7614 		TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7615 		    "udp_wput_other_end: q %p (%S)", q, "iocdata");
7616 		return;
7617 	default:
7618 		/* Unrecognized messages are passed through without change. */
7619 		break;
7620 	}
7621 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7622 	    "udp_wput_other_end: q %p (%S)", q, "end");
7623 	ip_output(connp, mp, q, IP_WPUT);
7624 }
7625 
7626 /*
7627  * udp_wput_iocdata is called by udp_wput_other to handle all M_IOCDATA
7628  * messages.
7629  */
7630 static void
7631 udp_wput_iocdata(queue_t *q, mblk_t *mp)
7632 {
7633 	mblk_t	*mp1;
7634 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7635 	STRUCT_HANDLE(strbuf, sb);
7636 	udp_t	*udp = Q_TO_UDP(q);
7637 	int	error;
7638 	uint_t	addrlen;
7639 
7640 	/* Make sure it is one of ours. */
7641 	switch (iocp->ioc_cmd) {
7642 	case TI_GETMYNAME:
7643 	case TI_GETPEERNAME:
7644 		break;
7645 	default:
7646 		ip_output(udp->udp_connp, mp, q, IP_WPUT);
7647 		return;
7648 	}
7649 
7650 	switch (mi_copy_state(q, mp, &mp1)) {
7651 	case -1:
7652 		return;
7653 	case MI_COPY_CASE(MI_COPY_IN, 1):
7654 		break;
7655 	case MI_COPY_CASE(MI_COPY_OUT, 1):
7656 		/*
7657 		 * The address has been copied out, so now
7658 		 * copyout the strbuf.
7659 		 */
7660 		mi_copyout(q, mp);
7661 		return;
7662 	case MI_COPY_CASE(MI_COPY_OUT, 2):
7663 		/*
7664 		 * The address and strbuf have been copied out.
7665 		 * We're done, so just acknowledge the original
7666 		 * M_IOCTL.
7667 		 */
7668 		mi_copy_done(q, mp, 0);
7669 		return;
7670 	default:
7671 		/*
7672 		 * Something strange has happened, so acknowledge
7673 		 * the original M_IOCTL with an EPROTO error.
7674 		 */
7675 		mi_copy_done(q, mp, EPROTO);
7676 		return;
7677 	}
7678 
7679 	/*
7680 	 * Now we have the strbuf structure for TI_GETMYNAME
7681 	 * and TI_GETPEERNAME.  Next we copyout the requested
7682 	 * address and then we'll copyout the strbuf.
7683 	 */
7684 	STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr);
7685 	addrlen = udp->udp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
7686 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
7687 		mi_copy_done(q, mp, EINVAL);
7688 		return;
7689 	}
7690 
7691 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
7692 	if (mp1 == NULL)
7693 		return;
7694 
7695 	rw_enter(&udp->udp_rwlock, RW_READER);
7696 	switch (iocp->ioc_cmd) {
7697 	case TI_GETMYNAME:
7698 		error = udp_getmyname(udp, (void *)mp1->b_rptr, &addrlen);
7699 		break;
7700 	case TI_GETPEERNAME:
7701 		error = udp_getpeername(udp, (void *)mp1->b_rptr, &addrlen);
7702 		break;
7703 	}
7704 	rw_exit(&udp->udp_rwlock);
7705 
7706 	if (error != 0) {
7707 		mi_copy_done(q, mp, error);
7708 	} else {
7709 		mp1->b_wptr += addrlen;
7710 		STRUCT_FSET(sb, len, addrlen);
7711 
7712 		/* Copy out the address */
7713 		mi_copyout(q, mp);
7714 	}
7715 }
7716 
7717 static int
7718 udp_unitdata_opt_process(queue_t *q, mblk_t *mp, int *errorp,
7719     udpattrs_t *udpattrs)
7720 {
7721 	struct T_unitdata_req *udreqp;
7722 	int is_absreq_failure;
7723 	cred_t *cr;
7724 	conn_t	*connp = Q_TO_CONN(q);
7725 
7726 	ASSERT(((t_primp_t)mp->b_rptr)->type);
7727 
7728 	cr = DB_CREDDEF(mp, connp->conn_cred);
7729 
7730 	udreqp = (struct T_unitdata_req *)mp->b_rptr;
7731 
7732 	*errorp = tpi_optcom_buf(q, mp, &udreqp->OPT_length,
7733 	    udreqp->OPT_offset, cr, &udp_opt_obj,
7734 	    udpattrs, &is_absreq_failure);
7735 
7736 	if (*errorp != 0) {
7737 		/*
7738 		 * Note: No special action needed in this
7739 		 * module for "is_absreq_failure"
7740 		 */
7741 		return (-1);		/* failure */
7742 	}
7743 	ASSERT(is_absreq_failure == 0);
7744 	return (0);	/* success */
7745 }
7746 
7747 void
7748 udp_ddi_init(void)
7749 {
7750 	udp_max_optsize = optcom_max_optsize(udp_opt_obj.odb_opt_des_arr,
7751 	    udp_opt_obj.odb_opt_arr_cnt);
7752 
7753 	/*
7754 	 * We want to be informed each time a stack is created or
7755 	 * destroyed in the kernel, so we can maintain the
7756 	 * set of udp_stack_t's.
7757 	 */
7758 	netstack_register(NS_UDP, udp_stack_init, NULL, udp_stack_fini);
7759 }
7760 
7761 void
7762 udp_ddi_destroy(void)
7763 {
7764 	netstack_unregister(NS_UDP);
7765 }
7766 
7767 /*
7768  * Initialize the UDP stack instance.
7769  */
7770 static void *
7771 udp_stack_init(netstackid_t stackid, netstack_t *ns)
7772 {
7773 	udp_stack_t	*us;
7774 	udpparam_t	*pa;
7775 	int		i;
7776 
7777 	us = (udp_stack_t *)kmem_zalloc(sizeof (*us), KM_SLEEP);
7778 	us->us_netstack = ns;
7779 
7780 	us->us_num_epriv_ports = UDP_NUM_EPRIV_PORTS;
7781 	us->us_epriv_ports[0] = 2049;
7782 	us->us_epriv_ports[1] = 4045;
7783 
7784 	/*
7785 	 * The smallest anonymous port in the priviledged port range which UDP
7786 	 * looks for free port.  Use in the option UDP_ANONPRIVBIND.
7787 	 */
7788 	us->us_min_anonpriv_port = 512;
7789 
7790 	us->us_bind_fanout_size = udp_bind_fanout_size;
7791 
7792 	/* Roundup variable that might have been modified in /etc/system */
7793 	if (us->us_bind_fanout_size & (us->us_bind_fanout_size - 1)) {
7794 		/* Not a power of two. Round up to nearest power of two */
7795 		for (i = 0; i < 31; i++) {
7796 			if (us->us_bind_fanout_size < (1 << i))
7797 				break;
7798 		}
7799 		us->us_bind_fanout_size = 1 << i;
7800 	}
7801 	us->us_bind_fanout = kmem_zalloc(us->us_bind_fanout_size *
7802 	    sizeof (udp_fanout_t), KM_SLEEP);
7803 	for (i = 0; i < us->us_bind_fanout_size; i++) {
7804 		mutex_init(&us->us_bind_fanout[i].uf_lock, NULL, MUTEX_DEFAULT,
7805 		    NULL);
7806 	}
7807 
7808 	pa = (udpparam_t *)kmem_alloc(sizeof (udp_param_arr), KM_SLEEP);
7809 
7810 	us->us_param_arr = pa;
7811 	bcopy(udp_param_arr, us->us_param_arr, sizeof (udp_param_arr));
7812 
7813 	(void) udp_param_register(&us->us_nd,
7814 	    us->us_param_arr, A_CNT(udp_param_arr));
7815 
7816 	us->us_kstat = udp_kstat2_init(stackid, &us->us_statistics);
7817 	us->us_mibkp = udp_kstat_init(stackid);
7818 	return (us);
7819 }
7820 
7821 /*
7822  * Free the UDP stack instance.
7823  */
7824 static void
7825 udp_stack_fini(netstackid_t stackid, void *arg)
7826 {
7827 	udp_stack_t *us = (udp_stack_t *)arg;
7828 	int i;
7829 
7830 	for (i = 0; i < us->us_bind_fanout_size; i++) {
7831 		mutex_destroy(&us->us_bind_fanout[i].uf_lock);
7832 	}
7833 
7834 	kmem_free(us->us_bind_fanout, us->us_bind_fanout_size *
7835 	    sizeof (udp_fanout_t));
7836 
7837 	us->us_bind_fanout = NULL;
7838 
7839 	nd_free(&us->us_nd);
7840 	kmem_free(us->us_param_arr, sizeof (udp_param_arr));
7841 	us->us_param_arr = NULL;
7842 
7843 	udp_kstat_fini(stackid, us->us_mibkp);
7844 	us->us_mibkp = NULL;
7845 
7846 	udp_kstat2_fini(stackid, us->us_kstat);
7847 	us->us_kstat = NULL;
7848 	bzero(&us->us_statistics, sizeof (us->us_statistics));
7849 	kmem_free(us, sizeof (*us));
7850 }
7851 
7852 static void *
7853 udp_kstat2_init(netstackid_t stackid, udp_stat_t *us_statisticsp)
7854 {
7855 	kstat_t *ksp;
7856 
7857 	udp_stat_t template = {
7858 		{ "udp_ip_send",		KSTAT_DATA_UINT64 },
7859 		{ "udp_ip_ire_send",		KSTAT_DATA_UINT64 },
7860 		{ "udp_ire_null",		KSTAT_DATA_UINT64 },
7861 		{ "udp_drain",			KSTAT_DATA_UINT64 },
7862 		{ "udp_sock_fallback",		KSTAT_DATA_UINT64 },
7863 		{ "udp_rrw_busy",		KSTAT_DATA_UINT64 },
7864 		{ "udp_rrw_msgcnt",		KSTAT_DATA_UINT64 },
7865 		{ "udp_out_sw_cksum",		KSTAT_DATA_UINT64 },
7866 		{ "udp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
7867 		{ "udp_out_opt",		KSTAT_DATA_UINT64 },
7868 		{ "udp_out_err_notconn",	KSTAT_DATA_UINT64 },
7869 		{ "udp_out_err_output",		KSTAT_DATA_UINT64 },
7870 		{ "udp_out_err_tudr",		KSTAT_DATA_UINT64 },
7871 		{ "udp_in_pktinfo",		KSTAT_DATA_UINT64 },
7872 		{ "udp_in_recvdstaddr",		KSTAT_DATA_UINT64 },
7873 		{ "udp_in_recvopts",		KSTAT_DATA_UINT64 },
7874 		{ "udp_in_recvif",		KSTAT_DATA_UINT64 },
7875 		{ "udp_in_recvslla",		KSTAT_DATA_UINT64 },
7876 		{ "udp_in_recvucred",		KSTAT_DATA_UINT64 },
7877 		{ "udp_in_recvttl",		KSTAT_DATA_UINT64 },
7878 		{ "udp_in_recvhopopts",		KSTAT_DATA_UINT64 },
7879 		{ "udp_in_recvhoplimit",	KSTAT_DATA_UINT64 },
7880 		{ "udp_in_recvdstopts",		KSTAT_DATA_UINT64 },
7881 		{ "udp_in_recvrtdstopts",	KSTAT_DATA_UINT64 },
7882 		{ "udp_in_recvrthdr",		KSTAT_DATA_UINT64 },
7883 		{ "udp_in_recvpktinfo",		KSTAT_DATA_UINT64 },
7884 		{ "udp_in_recvtclass",		KSTAT_DATA_UINT64 },
7885 		{ "udp_in_timestamp",		KSTAT_DATA_UINT64 },
7886 #ifdef DEBUG
7887 		{ "udp_data_conn",		KSTAT_DATA_UINT64 },
7888 		{ "udp_data_notconn",		KSTAT_DATA_UINT64 },
7889 #endif
7890 	};
7891 
7892 	ksp = kstat_create_netstack(UDP_MOD_NAME, 0, "udpstat", "net",
7893 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
7894 	    KSTAT_FLAG_VIRTUAL, stackid);
7895 
7896 	if (ksp == NULL)
7897 		return (NULL);
7898 
7899 	bcopy(&template, us_statisticsp, sizeof (template));
7900 	ksp->ks_data = (void *)us_statisticsp;
7901 	ksp->ks_private = (void *)(uintptr_t)stackid;
7902 
7903 	kstat_install(ksp);
7904 	return (ksp);
7905 }
7906 
7907 static void
7908 udp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
7909 {
7910 	if (ksp != NULL) {
7911 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
7912 		kstat_delete_netstack(ksp, stackid);
7913 	}
7914 }
7915 
7916 static void *
7917 udp_kstat_init(netstackid_t stackid)
7918 {
7919 	kstat_t	*ksp;
7920 
7921 	udp_named_kstat_t template = {
7922 		{ "inDatagrams",	KSTAT_DATA_UINT64, 0 },
7923 		{ "inErrors",		KSTAT_DATA_UINT32, 0 },
7924 		{ "outDatagrams",	KSTAT_DATA_UINT64, 0 },
7925 		{ "entrySize",		KSTAT_DATA_INT32, 0 },
7926 		{ "entry6Size",		KSTAT_DATA_INT32, 0 },
7927 		{ "outErrors",		KSTAT_DATA_UINT32, 0 },
7928 	};
7929 
7930 	ksp = kstat_create_netstack(UDP_MOD_NAME, 0, UDP_MOD_NAME, "mib2",
7931 	    KSTAT_TYPE_NAMED,
7932 	    NUM_OF_FIELDS(udp_named_kstat_t), 0, stackid);
7933 
7934 	if (ksp == NULL || ksp->ks_data == NULL)
7935 		return (NULL);
7936 
7937 	template.entrySize.value.ui32 = sizeof (mib2_udpEntry_t);
7938 	template.entry6Size.value.ui32 = sizeof (mib2_udp6Entry_t);
7939 
7940 	bcopy(&template, ksp->ks_data, sizeof (template));
7941 	ksp->ks_update = udp_kstat_update;
7942 	ksp->ks_private = (void *)(uintptr_t)stackid;
7943 
7944 	kstat_install(ksp);
7945 	return (ksp);
7946 }
7947 
7948 static void
7949 udp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
7950 {
7951 	if (ksp != NULL) {
7952 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
7953 		kstat_delete_netstack(ksp, stackid);
7954 	}
7955 }
7956 
7957 static int
7958 udp_kstat_update(kstat_t *kp, int rw)
7959 {
7960 	udp_named_kstat_t *udpkp;
7961 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
7962 	netstack_t	*ns;
7963 	udp_stack_t	*us;
7964 
7965 	if ((kp == NULL) || (kp->ks_data == NULL))
7966 		return (EIO);
7967 
7968 	if (rw == KSTAT_WRITE)
7969 		return (EACCES);
7970 
7971 	ns = netstack_find_by_stackid(stackid);
7972 	if (ns == NULL)
7973 		return (-1);
7974 	us = ns->netstack_udp;
7975 	if (us == NULL) {
7976 		netstack_rele(ns);
7977 		return (-1);
7978 	}
7979 	udpkp = (udp_named_kstat_t *)kp->ks_data;
7980 
7981 	udpkp->inDatagrams.value.ui64 =	us->us_udp_mib.udpHCInDatagrams;
7982 	udpkp->inErrors.value.ui32 =	us->us_udp_mib.udpInErrors;
7983 	udpkp->outDatagrams.value.ui64 = us->us_udp_mib.udpHCOutDatagrams;
7984 	udpkp->outErrors.value.ui32 =	us->us_udp_mib.udpOutErrors;
7985 	netstack_rele(ns);
7986 	return (0);
7987 }
7988 
7989 /*
7990  * Read-side synchronous stream info entry point, called as a
7991  * result of handling certain STREAMS ioctl operations.
7992  */
7993 static int
7994 udp_rinfop(queue_t *q, infod_t *dp)
7995 {
7996 	mblk_t	*mp;
7997 	uint_t	cmd = dp->d_cmd;
7998 	int	res = 0;
7999 	int	error = 0;
8000 	udp_t	*udp = Q_TO_UDP(q);
8001 	struct stdata *stp = STREAM(q);
8002 
8003 	mutex_enter(&udp->udp_drain_lock);
8004 	/* If shutdown on read has happened, return nothing */
8005 	mutex_enter(&stp->sd_lock);
8006 	if (stp->sd_flag & STREOF) {
8007 		mutex_exit(&stp->sd_lock);
8008 		goto done;
8009 	}
8010 	mutex_exit(&stp->sd_lock);
8011 
8012 	if ((mp = udp->udp_rcv_list_head) == NULL)
8013 		goto done;
8014 
8015 	ASSERT(DB_TYPE(mp) != M_DATA && mp->b_cont != NULL);
8016 
8017 	if (cmd & INFOD_COUNT) {
8018 		/*
8019 		 * Return the number of messages.
8020 		 */
8021 		dp->d_count += udp->udp_rcv_msgcnt;
8022 		res |= INFOD_COUNT;
8023 	}
8024 	if (cmd & INFOD_BYTES) {
8025 		/*
8026 		 * Return size of all data messages.
8027 		 */
8028 		dp->d_bytes += udp->udp_rcv_cnt;
8029 		res |= INFOD_BYTES;
8030 	}
8031 	if (cmd & INFOD_FIRSTBYTES) {
8032 		/*
8033 		 * Return size of first data message.
8034 		 */
8035 		dp->d_bytes = msgdsize(mp);
8036 		res |= INFOD_FIRSTBYTES;
8037 		dp->d_cmd &= ~INFOD_FIRSTBYTES;
8038 	}
8039 	if (cmd & INFOD_COPYOUT) {
8040 		mblk_t *mp1 = mp->b_cont;
8041 		int n;
8042 		/*
8043 		 * Return data contents of first message.
8044 		 */
8045 		ASSERT(DB_TYPE(mp1) == M_DATA);
8046 		while (mp1 != NULL && dp->d_uiop->uio_resid > 0) {
8047 			n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1));
8048 			if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n,
8049 			    UIO_READ, dp->d_uiop)) != 0) {
8050 				goto done;
8051 			}
8052 			mp1 = mp1->b_cont;
8053 		}
8054 		res |= INFOD_COPYOUT;
8055 		dp->d_cmd &= ~INFOD_COPYOUT;
8056 	}
8057 done:
8058 	mutex_exit(&udp->udp_drain_lock);
8059 
8060 	dp->d_res |= res;
8061 
8062 	return (error);
8063 }
8064 
8065 /*
8066  * Read-side synchronous stream entry point.  This is called as a result
8067  * of recv/read operation done at sockfs, and is guaranteed to execute
8068  * outside of the interrupt thread context.  It returns a single datagram
8069  * (b_cont chain of T_UNITDATA_IND plus data) to the upper layer.
8070  */
8071 static int
8072 udp_rrw(queue_t *q, struiod_t *dp)
8073 {
8074 	mblk_t	*mp;
8075 	udp_t	*udp = Q_TO_UDP(q);
8076 	udp_stack_t *us = udp->udp_us;
8077 
8078 	/*
8079 	 * Dequeue datagram from the head of the list and return
8080 	 * it to caller; also ensure that RSLEEP sd_wakeq flag is
8081 	 * set/cleared depending on whether or not there's data
8082 	 * remaining in the list.
8083 	 */
8084 	mutex_enter(&udp->udp_drain_lock);
8085 	if (!udp->udp_direct_sockfs) {
8086 		mutex_exit(&udp->udp_drain_lock);
8087 		UDP_STAT(us, udp_rrw_busy);
8088 		return (EBUSY);
8089 	}
8090 	if ((mp = udp->udp_rcv_list_head) != NULL) {
8091 		uint_t size = msgdsize(mp);
8092 
8093 		/* Last datagram in the list? */
8094 		if ((udp->udp_rcv_list_head = mp->b_next) == NULL)
8095 			udp->udp_rcv_list_tail = NULL;
8096 		mp->b_next = NULL;
8097 
8098 		udp->udp_rcv_cnt -= size;
8099 		udp->udp_rcv_msgcnt--;
8100 		UDP_STAT(us, udp_rrw_msgcnt);
8101 
8102 		/* No longer flow-controlling? */
8103 		if (udp->udp_rcv_cnt < udp->udp_rcv_hiwat &&
8104 		    udp->udp_rcv_msgcnt < udp->udp_rcv_hiwat)
8105 			udp->udp_drain_qfull = B_FALSE;
8106 	}
8107 	if (udp->udp_rcv_list_head == NULL) {
8108 		/*
8109 		 * Either we just dequeued the last datagram or
8110 		 * we get here from sockfs and have nothing to
8111 		 * return; in this case clear RSLEEP.
8112 		 */
8113 		ASSERT(udp->udp_rcv_cnt == 0);
8114 		ASSERT(udp->udp_rcv_msgcnt == 0);
8115 		ASSERT(udp->udp_rcv_list_tail == NULL);
8116 		STR_WAKEUP_CLEAR(STREAM(q));
8117 	} else {
8118 		/*
8119 		 * More data follows; we need udp_rrw() to be
8120 		 * called in future to pick up the rest.
8121 		 */
8122 		STR_WAKEUP_SET(STREAM(q));
8123 	}
8124 	mutex_exit(&udp->udp_drain_lock);
8125 	dp->d_mp = mp;
8126 	return (0);
8127 }
8128 
8129 /*
8130  * Enqueue a completely-built T_UNITDATA_IND message into the receive
8131  * list; this is typically executed within the interrupt thread context
8132  * and so we do things as quickly as possible.
8133  */
8134 static void
8135 udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp, uint_t pkt_len)
8136 {
8137 	ASSERT(q == RD(q));
8138 	ASSERT(pkt_len == msgdsize(mp));
8139 	ASSERT(mp->b_next == NULL && mp->b_cont != NULL);
8140 	ASSERT(DB_TYPE(mp) == M_PROTO && DB_TYPE(mp->b_cont) == M_DATA);
8141 	ASSERT(MBLKL(mp) >= sizeof (struct T_unitdata_ind));
8142 
8143 	mutex_enter(&udp->udp_drain_lock);
8144 	/*
8145 	 * Wake up and signal the receiving app; it is okay to do this
8146 	 * before enqueueing the mp because we are holding the drain lock.
8147 	 * One of the advantages of synchronous stream is the ability for
8148 	 * us to find out when the application performs a read on the
8149 	 * socket by way of udp_rrw() entry point being called.  We need
8150 	 * to generate SIGPOLL/SIGIO for each received data in the case
8151 	 * of asynchronous socket just as in the strrput() case.  However,
8152 	 * we only wake the application up when necessary, i.e. during the
8153 	 * first enqueue.  When udp_rrw() is called, we send up a single
8154 	 * datagram upstream and call STR_WAKEUP_SET() again when there
8155 	 * are still data remaining in our receive queue.
8156 	 */
8157 	STR_WAKEUP_SENDSIG(STREAM(q), udp->udp_rcv_list_head);
8158 	if (udp->udp_rcv_list_head == NULL)
8159 		udp->udp_rcv_list_head = mp;
8160 	else
8161 		udp->udp_rcv_list_tail->b_next = mp;
8162 	udp->udp_rcv_list_tail = mp;
8163 	udp->udp_rcv_cnt += pkt_len;
8164 	udp->udp_rcv_msgcnt++;
8165 
8166 	/* Need to flow-control? */
8167 	if (udp->udp_rcv_cnt >= udp->udp_rcv_hiwat ||
8168 	    udp->udp_rcv_msgcnt >= udp->udp_rcv_hiwat)
8169 		udp->udp_drain_qfull = B_TRUE;
8170 
8171 	mutex_exit(&udp->udp_drain_lock);
8172 }
8173 
8174 /*
8175  * Drain the contents of receive list to the module upstream; we do
8176  * this during close or when we fallback to the slow mode due to
8177  * sockmod being popped or a module being pushed on top of us.
8178  */
8179 static void
8180 udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing)
8181 {
8182 	mblk_t *mp;
8183 	udp_stack_t *us = udp->udp_us;
8184 
8185 	ASSERT(q == RD(q));
8186 
8187 	mutex_enter(&udp->udp_drain_lock);
8188 	/*
8189 	 * There is no race with a concurrent udp_input() sending
8190 	 * up packets using putnext() after we have cleared the
8191 	 * udp_direct_sockfs flag but before we have completed
8192 	 * sending up the packets in udp_rcv_list, since we are
8193 	 * either a writer or we have quiesced the conn.
8194 	 */
8195 	udp->udp_direct_sockfs = B_FALSE;
8196 	mutex_exit(&udp->udp_drain_lock);
8197 
8198 	if (udp->udp_rcv_list_head != NULL)
8199 		UDP_STAT(us, udp_drain);
8200 
8201 	/*
8202 	 * Send up everything via putnext(); note here that we
8203 	 * don't need the udp_drain_lock to protect us since
8204 	 * nothing can enter udp_rrw() and that we currently
8205 	 * have exclusive access to this udp.
8206 	 */
8207 	while ((mp = udp->udp_rcv_list_head) != NULL) {
8208 		udp->udp_rcv_list_head = mp->b_next;
8209 		mp->b_next = NULL;
8210 		udp->udp_rcv_cnt -= msgdsize(mp);
8211 		udp->udp_rcv_msgcnt--;
8212 		if (closing) {
8213 			freemsg(mp);
8214 		} else {
8215 			putnext(q, mp);
8216 		}
8217 	}
8218 	ASSERT(udp->udp_rcv_cnt == 0);
8219 	ASSERT(udp->udp_rcv_msgcnt == 0);
8220 	ASSERT(udp->udp_rcv_list_head == NULL);
8221 	udp->udp_rcv_list_tail = NULL;
8222 	udp->udp_drain_qfull = B_FALSE;
8223 }
8224 
8225 static size_t
8226 udp_set_rcv_hiwat(udp_t *udp, size_t size)
8227 {
8228 	udp_stack_t *us = udp->udp_us;
8229 
8230 	/* We add a bit of extra buffering */
8231 	size += size >> 1;
8232 	if (size > us->us_max_buf)
8233 		size = us->us_max_buf;
8234 
8235 	udp->udp_rcv_hiwat = size;
8236 	return (size);
8237 }
8238 
8239 /*
8240  * For the lower queue so that UDP can be a dummy mux.
8241  * Nobody should be sending
8242  * packets up this stream
8243  */
8244 static void
8245 udp_lrput(queue_t *q, mblk_t *mp)
8246 {
8247 	mblk_t *mp1;
8248 
8249 	switch (mp->b_datap->db_type) {
8250 	case M_FLUSH:
8251 		/* Turn around */
8252 		if (*mp->b_rptr & FLUSHW) {
8253 			*mp->b_rptr &= ~FLUSHR;
8254 			qreply(q, mp);
8255 			return;
8256 		}
8257 		break;
8258 	}
8259 	/* Could receive messages that passed through ar_rput */
8260 	for (mp1 = mp; mp1; mp1 = mp1->b_cont)
8261 		mp1->b_prev = mp1->b_next = NULL;
8262 	freemsg(mp);
8263 }
8264 
8265 /*
8266  * For the lower queue so that UDP can be a dummy mux.
8267  * Nobody should be sending packets down this stream.
8268  */
8269 /* ARGSUSED */
8270 void
8271 udp_lwput(queue_t *q, mblk_t *mp)
8272 {
8273 	freemsg(mp);
8274 }
8275