xref: /titanic_41/usr/src/uts/common/inet/udp/udp.c (revision 24a1f0af9f770e0e795ef1fa1c6dece8dd8dc959)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 #include <sys/types.h>
28 #include <sys/stream.h>
29 #include <sys/dlpi.h>
30 #include <sys/pattr.h>
31 #include <sys/stropts.h>
32 #include <sys/strlog.h>
33 #include <sys/strsun.h>
34 #include <sys/time.h>
35 #define	_SUN_TPI_VERSION 2
36 #include <sys/tihdr.h>
37 #include <sys/timod.h>
38 #include <sys/ddi.h>
39 #include <sys/sunddi.h>
40 #include <sys/strsubr.h>
41 #include <sys/suntpi.h>
42 #include <sys/xti_inet.h>
43 #include <sys/cmn_err.h>
44 #include <sys/kmem.h>
45 #include <sys/policy.h>
46 #include <sys/ucred.h>
47 #include <sys/zone.h>
48 
49 #include <sys/socket.h>
50 #include <sys/sockio.h>
51 #include <sys/vtrace.h>
52 #include <sys/sdt.h>
53 #include <sys/debug.h>
54 #include <sys/isa_defs.h>
55 #include <sys/random.h>
56 #include <netinet/in.h>
57 #include <netinet/ip6.h>
58 #include <netinet/icmp6.h>
59 #include <netinet/udp.h>
60 #include <net/if.h>
61 #include <net/route.h>
62 
63 #include <inet/common.h>
64 #include <inet/ip.h>
65 #include <inet/ip_impl.h>
66 #include <inet/ip6.h>
67 #include <inet/ip_ire.h>
68 #include <inet/ip_if.h>
69 #include <inet/ip_multi.h>
70 #include <inet/ip_ndp.h>
71 #include <inet/mi.h>
72 #include <inet/mib2.h>
73 #include <inet/nd.h>
74 #include <inet/optcom.h>
75 #include <inet/snmpcom.h>
76 #include <inet/kstatcom.h>
77 #include <inet/udp_impl.h>
78 #include <inet/ipclassifier.h>
79 #include <inet/ipsec_impl.h>
80 #include <inet/ipp_common.h>
81 #include <inet/ipnet.h>
82 
83 /*
84  * The ipsec_info.h header file is here since it has the definition for the
85  * M_CTL message types used by IP to convey information to the ULP. The
86  * ipsec_info.h needs the pfkeyv2.h, hence the latter's presence.
87  */
88 #include <net/pfkeyv2.h>
89 #include <inet/ipsec_info.h>
90 
91 #include <sys/tsol/label.h>
92 #include <sys/tsol/tnet.h>
93 #include <rpc/pmap_prot.h>
94 
95 /*
96  * Synchronization notes:
97  *
98  * UDP is MT and uses the usual kernel synchronization primitives. There are 2
99  * locks, the fanout lock (uf_lock) and the udp endpoint lock udp_rwlock.
100  * We also use conn_lock when updating things that affect the IP classifier
101  * lookup.
102  * The lock order is udp_rwlock -> uf_lock and is udp_rwlock -> conn_lock.
103  *
104  * The fanout lock uf_lock:
105  * When a UDP endpoint is bound to a local port, it is inserted into
106  * a bind hash list.  The list consists of an array of udp_fanout_t buckets.
107  * The size of the array is controlled by the udp_bind_fanout_size variable.
108  * This variable can be changed in /etc/system if the default value is
109  * not large enough.  Each bind hash bucket is protected by a per bucket
110  * lock.  It protects the udp_bind_hash and udp_ptpbhn fields in the udp_t
111  * structure and a few other fields in the udp_t. A UDP endpoint is removed
112  * from the bind hash list only when it is being unbound or being closed.
113  * The per bucket lock also protects a UDP endpoint's state changes.
114  *
115  * The udp_rwlock:
116  * This protects most of the other fields in the udp_t. The exact list of
117  * fields which are protected by each of the above locks is documented in
118  * the udp_t structure definition.
119  *
120  * Plumbing notes:
121  * UDP is always a device driver. For compatibility with mibopen() code
122  * it is possible to I_PUSH "udp", but that results in pushing a passthrough
123  * dummy module.
124  *
125  * The above implies that we don't support any intermediate module to
126  * reside in between /dev/ip and udp -- in fact, we never supported such
127  * scenario in the past as the inter-layer communication semantics have
128  * always been private.
129  */
130 
131 /* For /etc/system control */
132 uint_t udp_bind_fanout_size = UDP_BIND_FANOUT_SIZE;
133 
134 #define	NDD_TOO_QUICK_MSG \
135 	"ndd get info rate too high for non-privileged users, try again " \
136 	"later.\n"
137 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
138 
139 /* Option processing attrs */
140 typedef struct udpattrs_s {
141 	union {
142 		ip6_pkt_t	*udpattr_ipp6;	/* For V6 */
143 		ip4_pkt_t 	*udpattr_ipp4;	/* For V4 */
144 	} udpattr_ippu;
145 #define	udpattr_ipp6 udpattr_ippu.udpattr_ipp6
146 #define	udpattr_ipp4 udpattr_ippu.udpattr_ipp4
147 	mblk_t		*udpattr_mb;
148 	boolean_t	udpattr_credset;
149 } udpattrs_t;
150 
151 static void	udp_addr_req(queue_t *q, mblk_t *mp);
152 static void	udp_bind(queue_t *q, mblk_t *mp);
153 static void	udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp);
154 static void	udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock);
155 static void	udp_bind_result(conn_t *, mblk_t *);
156 static void	udp_bind_ack(conn_t *, mblk_t *mp);
157 static void	udp_bind_error(conn_t *, mblk_t *mp);
158 static int	udp_build_hdrs(udp_t *udp);
159 static void	udp_capability_req(queue_t *q, mblk_t *mp);
160 static int	udp_close(queue_t *q);
161 static void	udp_connect(queue_t *q, mblk_t *mp);
162 static void	udp_disconnect(queue_t *q, mblk_t *mp);
163 static void	udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error,
164 		    int sys_error);
165 static void	udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive,
166 		    t_scalar_t tlierr, int unixerr);
167 static int	udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
168 		    cred_t *cr);
169 static int	udp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
170 		    char *value, caddr_t cp, cred_t *cr);
171 static int	udp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
172 		    char *value, caddr_t cp, cred_t *cr);
173 static void	udp_icmp_error(queue_t *q, mblk_t *mp);
174 static void	udp_icmp_error_ipv6(queue_t *q, mblk_t *mp);
175 static void	udp_info_req(queue_t *q, mblk_t *mp);
176 static void	udp_input(void *, mblk_t *, void *);
177 static mblk_t	*udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim,
178 		    t_scalar_t addr_length);
179 static void	udp_lrput(queue_t *, mblk_t *);
180 static void	udp_lwput(queue_t *, mblk_t *);
181 static int	udp_open(queue_t *q, dev_t *devp, int flag, int sflag,
182 		    cred_t *credp, boolean_t isv6);
183 static int	udp_openv4(queue_t *q, dev_t *devp, int flag, int sflag,
184 		    cred_t *credp);
185 static int	udp_openv6(queue_t *q, dev_t *devp, int flag, int sflag,
186 		    cred_t *credp);
187 static  int	udp_unitdata_opt_process(queue_t *q, mblk_t *mp,
188 		    int *errorp, udpattrs_t *udpattrs);
189 static boolean_t udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name);
190 static int	udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
191 static boolean_t udp_param_register(IDP *ndp, udpparam_t *udppa, int cnt);
192 static int	udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
193 		    cred_t *cr);
194 static void	udp_report_item(mblk_t *mp, udp_t *udp);
195 static int	udp_rinfop(queue_t *q, infod_t *dp);
196 static int	udp_rrw(queue_t *q, struiod_t *dp);
197 static int	udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
198 		    cred_t *cr);
199 static void	udp_send_data(udp_t *, queue_t *, mblk_t *, ipha_t *);
200 static void	udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr,
201 		    t_scalar_t destlen, t_scalar_t err);
202 static void	udp_unbind(queue_t *q, mblk_t *mp);
203 static in_port_t udp_update_next_port(udp_t *udp, in_port_t port,
204     boolean_t random);
205 static mblk_t	*udp_output_v4(conn_t *, mblk_t *, ipaddr_t, uint16_t, uint_t,
206 		    int *, boolean_t);
207 static mblk_t	*udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6,
208 		    int *error);
209 static void	udp_wput_other(queue_t *q, mblk_t *mp);
210 static void	udp_wput_iocdata(queue_t *q, mblk_t *mp);
211 static size_t	udp_set_rcv_hiwat(udp_t *udp, size_t size);
212 
213 static void	*udp_stack_init(netstackid_t stackid, netstack_t *ns);
214 static void	udp_stack_fini(netstackid_t stackid, void *arg);
215 
216 static void	*udp_kstat_init(netstackid_t stackid);
217 static void	udp_kstat_fini(netstackid_t stackid, kstat_t *ksp);
218 static void	*udp_kstat2_init(netstackid_t, udp_stat_t *);
219 static void	udp_kstat2_fini(netstackid_t, kstat_t *);
220 static int	udp_kstat_update(kstat_t *kp, int rw);
221 
222 static void	udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp,
223 		    uint_t pkt_len);
224 static void	udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing);
225 static void	udp_xmit(queue_t *, mblk_t *, ire_t *ire, conn_t *, zoneid_t);
226 
227 #define	UDP_RECV_HIWATER	(56 * 1024)
228 #define	UDP_RECV_LOWATER	128
229 #define	UDP_XMIT_HIWATER	(56 * 1024)
230 #define	UDP_XMIT_LOWATER	1024
231 
232 static struct module_info udp_mod_info =  {
233 	UDP_MOD_ID, UDP_MOD_NAME, 1, INFPSZ, UDP_RECV_HIWATER, UDP_RECV_LOWATER
234 };
235 
236 /*
237  * Entry points for UDP as a device.
238  * We have separate open functions for the /dev/udp and /dev/udp6 devices.
239  */
240 static struct qinit udp_rinitv4 = {
241 	NULL, NULL, udp_openv4, udp_close, NULL,
242 	&udp_mod_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD
243 };
244 
245 static struct qinit udp_rinitv6 = {
246 	NULL, NULL, udp_openv6, udp_close, NULL,
247 	&udp_mod_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD
248 };
249 
250 static struct qinit udp_winit = {
251 	(pfi_t)udp_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL,
252 	&udp_mod_info, NULL, NULL, NULL, STRUIOT_NONE
253 };
254 
255 /*
256  * UDP needs to handle I_LINK and I_PLINK since ifconfig
257  * likes to use it as a place to hang the various streams.
258  */
259 static struct qinit udp_lrinit = {
260 	(pfi_t)udp_lrput, NULL, udp_openv4, udp_close, NULL,
261 	&udp_mod_info
262 };
263 
264 static struct qinit udp_lwinit = {
265 	(pfi_t)udp_lwput, NULL, udp_openv4, udp_close, NULL,
266 	&udp_mod_info
267 };
268 
269 /* For AF_INET aka /dev/udp */
270 struct streamtab udpinfov4 = {
271 	&udp_rinitv4, &udp_winit, &udp_lrinit, &udp_lwinit
272 };
273 
274 /* For AF_INET6 aka /dev/udp6 */
275 struct streamtab udpinfov6 = {
276 	&udp_rinitv6, &udp_winit, &udp_lrinit, &udp_lwinit
277 };
278 
279 static	sin_t	sin_null;	/* Zero address for quick clears */
280 static	sin6_t	sin6_null;	/* Zero address for quick clears */
281 
282 #define	UDP_MAXPACKET_IPV4 (IP_MAXPACKET - UDPH_SIZE - IP_SIMPLE_HDR_LENGTH)
283 
284 /* Default structure copied into T_INFO_ACK messages */
285 static struct T_info_ack udp_g_t_info_ack_ipv4 = {
286 	T_INFO_ACK,
287 	UDP_MAXPACKET_IPV4,	/* TSDU_size. Excl. headers */
288 	T_INVALID,	/* ETSU_size.  udp does not support expedited data. */
289 	T_INVALID,	/* CDATA_size. udp does not support connect data. */
290 	T_INVALID,	/* DDATA_size. udp does not support disconnect data. */
291 	sizeof (sin_t),	/* ADDR_size. */
292 	0,		/* OPT_size - not initialized here */
293 	UDP_MAXPACKET_IPV4,	/* TIDU_size.  Excl. headers */
294 	T_CLTS,		/* SERV_type.  udp supports connection-less. */
295 	TS_UNBND,	/* CURRENT_state.  This is set from udp_state. */
296 	(XPG4_1|SENDZERO) /* PROVIDER_flag */
297 };
298 
299 #define	UDP_MAXPACKET_IPV6 (IP_MAXPACKET - UDPH_SIZE - IPV6_HDR_LEN)
300 
301 static	struct T_info_ack udp_g_t_info_ack_ipv6 = {
302 	T_INFO_ACK,
303 	UDP_MAXPACKET_IPV6,	/* TSDU_size.  Excl. headers */
304 	T_INVALID,	/* ETSU_size.  udp does not support expedited data. */
305 	T_INVALID,	/* CDATA_size. udp does not support connect data. */
306 	T_INVALID,	/* DDATA_size. udp does not support disconnect data. */
307 	sizeof (sin6_t), /* ADDR_size. */
308 	0,		/* OPT_size - not initialized here */
309 	UDP_MAXPACKET_IPV6,	/* TIDU_size. Excl. headers */
310 	T_CLTS,		/* SERV_type.  udp supports connection-less. */
311 	TS_UNBND,	/* CURRENT_state.  This is set from udp_state. */
312 	(XPG4_1|SENDZERO) /* PROVIDER_flag */
313 };
314 
315 /* largest UDP port number */
316 #define	UDP_MAX_PORT	65535
317 
318 /*
319  * Table of ND variables supported by udp.  These are loaded into us_nd
320  * in udp_open.
321  * All of these are alterable, within the min/max values given, at run time.
322  */
323 /* BEGIN CSTYLED */
324 udpparam_t udp_param_arr[] = {
325  /*min		max		value		name */
326  { 0L,		256,		32,		"udp_wroff_extra" },
327  { 1L,		255,		255,		"udp_ipv4_ttl" },
328  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS, "udp_ipv6_hoplimit"},
329  { 1024,	(32 * 1024),	1024,		"udp_smallest_nonpriv_port" },
330  { 0,		1,		1,		"udp_do_checksum" },
331  { 1024,	UDP_MAX_PORT,	(32 * 1024),	"udp_smallest_anon_port" },
332  { 1024,	UDP_MAX_PORT,	UDP_MAX_PORT,	"udp_largest_anon_port" },
333  { UDP_XMIT_LOWATER, (1<<30), UDP_XMIT_HIWATER,	"udp_xmit_hiwat"},
334  { 0,		     (1<<30), UDP_XMIT_LOWATER, "udp_xmit_lowat"},
335  { UDP_RECV_LOWATER, (1<<30), UDP_RECV_HIWATER,	"udp_recv_hiwat"},
336  { 65536,	(1<<30),	2*1024*1024,	"udp_max_buf"},
337  { 100,		60000,		1000,		"udp_ndd_get_info_interval"},
338 };
339 /* END CSTYLED */
340 
341 /* Setable in /etc/system */
342 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
343 uint32_t udp_random_anon_port = 1;
344 
345 /*
346  * Hook functions to enable cluster networking.
347  * On non-clustered systems these vectors must always be NULL
348  */
349 
350 void (*cl_inet_bind)(uchar_t protocol, sa_family_t addr_family,
351     uint8_t *laddrp, in_port_t lport) = NULL;
352 void (*cl_inet_unbind)(uint8_t protocol, sa_family_t addr_family,
353     uint8_t *laddrp, in_port_t lport) = NULL;
354 
355 typedef union T_primitives *t_primp_t;
356 
357 /*
358  * Return the next anonymous port in the privileged port range for
359  * bind checking.
360  *
361  * Trusted Extension (TX) notes: TX allows administrator to mark or
362  * reserve ports as Multilevel ports (MLP). MLP has special function
363  * on TX systems. Once a port is made MLP, it's not available as
364  * ordinary port. This creates "holes" in the port name space. It
365  * may be necessary to skip the "holes" find a suitable anon port.
366  */
367 static in_port_t
368 udp_get_next_priv_port(udp_t *udp)
369 {
370 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
371 	in_port_t nextport;
372 	boolean_t restart = B_FALSE;
373 	udp_stack_t *us = udp->udp_us;
374 
375 retry:
376 	if (next_priv_port < us->us_min_anonpriv_port ||
377 	    next_priv_port >= IPPORT_RESERVED) {
378 		next_priv_port = IPPORT_RESERVED - 1;
379 		if (restart)
380 			return (0);
381 		restart = B_TRUE;
382 	}
383 
384 	if (is_system_labeled() &&
385 	    (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred),
386 	    next_priv_port, IPPROTO_UDP, B_FALSE)) != 0) {
387 		next_priv_port = nextport;
388 		goto retry;
389 	}
390 
391 	return (next_priv_port--);
392 }
393 
394 /* UDP bind hash report triggered via the Named Dispatch mechanism. */
395 /* ARGSUSED */
396 static int
397 udp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
398 {
399 	udp_fanout_t	*udpf;
400 	int		i;
401 	zoneid_t	zoneid;
402 	conn_t		*connp;
403 	udp_t		*udp;
404 	udp_stack_t	*us;
405 
406 	connp = Q_TO_CONN(q);
407 	udp = connp->conn_udp;
408 	us = udp->udp_us;
409 
410 	/* Refer to comments in udp_status_report(). */
411 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
412 		if (ddi_get_lbolt() - us->us_last_ndd_get_info_time <
413 		    drv_usectohz(us->us_ndd_get_info_interval * 1000)) {
414 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
415 			return (0);
416 		}
417 	}
418 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
419 		/* The following may work even if we cannot get a large buf. */
420 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
421 		return (0);
422 	}
423 
424 	(void) mi_mpprintf(mp,
425 	    "UDP     " MI_COL_HDRPAD_STR
426 	/*   12345678[89ABCDEF] */
427 	    " zone lport src addr        dest addr       port  state");
428 	/*    1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */
429 
430 	zoneid = connp->conn_zoneid;
431 
432 	for (i = 0; i < us->us_bind_fanout_size; i++) {
433 		udpf = &us->us_bind_fanout[i];
434 		mutex_enter(&udpf->uf_lock);
435 
436 		/* Print the hash index. */
437 		udp = udpf->uf_udp;
438 		if (zoneid != GLOBAL_ZONEID) {
439 			/* skip to first entry in this zone; might be none */
440 			while (udp != NULL &&
441 			    udp->udp_connp->conn_zoneid != zoneid)
442 				udp = udp->udp_bind_hash;
443 		}
444 		if (udp != NULL) {
445 			uint_t print_len, buf_len;
446 
447 			buf_len = mp->b_cont->b_datap->db_lim -
448 			    mp->b_cont->b_wptr;
449 			print_len = snprintf((char *)mp->b_cont->b_wptr,
450 			    buf_len, "%d\n", i);
451 			if (print_len < buf_len) {
452 				mp->b_cont->b_wptr += print_len;
453 			} else {
454 				mp->b_cont->b_wptr += buf_len;
455 			}
456 			for (; udp != NULL; udp = udp->udp_bind_hash) {
457 				if (zoneid == GLOBAL_ZONEID ||
458 				    zoneid == udp->udp_connp->conn_zoneid)
459 					udp_report_item(mp->b_cont, udp);
460 			}
461 		}
462 		mutex_exit(&udpf->uf_lock);
463 	}
464 	us->us_last_ndd_get_info_time = ddi_get_lbolt();
465 	return (0);
466 }
467 
468 /*
469  * Hash list removal routine for udp_t structures.
470  */
471 static void
472 udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock)
473 {
474 	udp_t	*udpnext;
475 	kmutex_t *lockp;
476 	udp_stack_t *us = udp->udp_us;
477 
478 	if (udp->udp_ptpbhn == NULL)
479 		return;
480 
481 	/*
482 	 * Extract the lock pointer in case there are concurrent
483 	 * hash_remove's for this instance.
484 	 */
485 	ASSERT(udp->udp_port != 0);
486 	if (!caller_holds_lock) {
487 		lockp = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
488 		    us->us_bind_fanout_size)].uf_lock;
489 		ASSERT(lockp != NULL);
490 		mutex_enter(lockp);
491 	}
492 	if (udp->udp_ptpbhn != NULL) {
493 		udpnext = udp->udp_bind_hash;
494 		if (udpnext != NULL) {
495 			udpnext->udp_ptpbhn = udp->udp_ptpbhn;
496 			udp->udp_bind_hash = NULL;
497 		}
498 		*udp->udp_ptpbhn = udpnext;
499 		udp->udp_ptpbhn = NULL;
500 	}
501 	if (!caller_holds_lock) {
502 		mutex_exit(lockp);
503 	}
504 }
505 
506 static void
507 udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp)
508 {
509 	udp_t	**udpp;
510 	udp_t	*udpnext;
511 
512 	ASSERT(MUTEX_HELD(&uf->uf_lock));
513 	ASSERT(udp->udp_ptpbhn == NULL);
514 	udpp = &uf->uf_udp;
515 	udpnext = udpp[0];
516 	if (udpnext != NULL) {
517 		/*
518 		 * If the new udp bound to the INADDR_ANY address
519 		 * and the first one in the list is not bound to
520 		 * INADDR_ANY we skip all entries until we find the
521 		 * first one bound to INADDR_ANY.
522 		 * This makes sure that applications binding to a
523 		 * specific address get preference over those binding to
524 		 * INADDR_ANY.
525 		 */
526 		if (V6_OR_V4_INADDR_ANY(udp->udp_bound_v6src) &&
527 		    !V6_OR_V4_INADDR_ANY(udpnext->udp_bound_v6src)) {
528 			while ((udpnext = udpp[0]) != NULL &&
529 			    !V6_OR_V4_INADDR_ANY(
530 			    udpnext->udp_bound_v6src)) {
531 				udpp = &(udpnext->udp_bind_hash);
532 			}
533 			if (udpnext != NULL)
534 				udpnext->udp_ptpbhn = &udp->udp_bind_hash;
535 		} else {
536 			udpnext->udp_ptpbhn = &udp->udp_bind_hash;
537 		}
538 	}
539 	udp->udp_bind_hash = udpnext;
540 	udp->udp_ptpbhn = udpp;
541 	udpp[0] = udp;
542 }
543 
544 /*
545  * This routine is called to handle each O_T_BIND_REQ/T_BIND_REQ message
546  * passed to udp_wput.
547  * It associates a port number and local address with the stream.
548  * The O_T_BIND_REQ/T_BIND_REQ is passed downstream to ip with the UDP
549  * protocol type (IPPROTO_UDP) placed in the message following the address.
550  * A T_BIND_ACK message is passed upstream when ip acknowledges the request.
551  * (Called as writer.)
552  *
553  * Note that UDP over IPv4 and IPv6 sockets can use the same port number
554  * without setting SO_REUSEADDR. This is needed so that they
555  * can be viewed as two independent transport protocols.
556  * However, anonymouns ports are allocated from the same range to avoid
557  * duplicating the us->us_next_port_to_try.
558  */
559 static void
560 udp_bind(queue_t *q, mblk_t *mp)
561 {
562 	sin_t		*sin;
563 	sin6_t		*sin6;
564 	mblk_t		*mp1;
565 	in_port_t	port;		/* Host byte order */
566 	in_port_t	requested_port;	/* Host byte order */
567 	struct T_bind_req *tbr;
568 	int		count;
569 	in6_addr_t	v6src;
570 	boolean_t	bind_to_req_port_only;
571 	int		loopmax;
572 	udp_fanout_t	*udpf;
573 	in_port_t	lport;		/* Network byte order */
574 	zoneid_t	zoneid;
575 	conn_t		*connp;
576 	udp_t		*udp;
577 	boolean_t	is_inaddr_any;
578 	mlp_type_t	addrtype, mlptype;
579 	udp_stack_t	*us;
580 
581 	connp = Q_TO_CONN(q);
582 	udp = connp->conn_udp;
583 	us = udp->udp_us;
584 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
585 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
586 		    "udp_bind: bad req, len %u",
587 		    (uint_t)(mp->b_wptr - mp->b_rptr));
588 		udp_err_ack(q, mp, TPROTO, 0);
589 		return;
590 	}
591 	if (udp->udp_state != TS_UNBND) {
592 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
593 		    "udp_bind: bad state, %u", udp->udp_state);
594 		udp_err_ack(q, mp, TOUTSTATE, 0);
595 		return;
596 	}
597 	/*
598 	 * Reallocate the message to make sure we have enough room for an
599 	 * address and the protocol type.
600 	 */
601 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
602 	if (!mp1) {
603 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
604 		return;
605 	}
606 
607 	mp = mp1;
608 	tbr = (struct T_bind_req *)mp->b_rptr;
609 	switch (tbr->ADDR_length) {
610 	case 0:			/* Request for a generic port */
611 		tbr->ADDR_offset = sizeof (struct T_bind_req);
612 		if (udp->udp_family == AF_INET) {
613 			tbr->ADDR_length = sizeof (sin_t);
614 			sin = (sin_t *)&tbr[1];
615 			*sin = sin_null;
616 			sin->sin_family = AF_INET;
617 			mp->b_wptr = (uchar_t *)&sin[1];
618 		} else {
619 			ASSERT(udp->udp_family == AF_INET6);
620 			tbr->ADDR_length = sizeof (sin6_t);
621 			sin6 = (sin6_t *)&tbr[1];
622 			*sin6 = sin6_null;
623 			sin6->sin6_family = AF_INET6;
624 			mp->b_wptr = (uchar_t *)&sin6[1];
625 		}
626 		port = 0;
627 		break;
628 
629 	case sizeof (sin_t):	/* Complete IPv4 address */
630 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
631 		    sizeof (sin_t));
632 		if (sin == NULL || !OK_32PTR((char *)sin)) {
633 			udp_err_ack(q, mp, TSYSERR, EINVAL);
634 			return;
635 		}
636 		if (udp->udp_family != AF_INET ||
637 		    sin->sin_family != AF_INET) {
638 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
639 			return;
640 		}
641 		port = ntohs(sin->sin_port);
642 		break;
643 
644 	case sizeof (sin6_t):	/* complete IPv6 address */
645 		sin6 = (sin6_t *)mi_offset_param(mp, tbr->ADDR_offset,
646 		    sizeof (sin6_t));
647 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
648 			udp_err_ack(q, mp, TSYSERR, EINVAL);
649 			return;
650 		}
651 		if (udp->udp_family != AF_INET6 ||
652 		    sin6->sin6_family != AF_INET6) {
653 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
654 			return;
655 		}
656 		port = ntohs(sin6->sin6_port);
657 		break;
658 
659 	default:		/* Invalid request */
660 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
661 		    "udp_bind: bad ADDR_length length %u", tbr->ADDR_length);
662 		udp_err_ack(q, mp, TBADADDR, 0);
663 		return;
664 	}
665 
666 	requested_port = port;
667 
668 	if (requested_port == 0 || tbr->PRIM_type == O_T_BIND_REQ)
669 		bind_to_req_port_only = B_FALSE;
670 	else			/* T_BIND_REQ and requested_port != 0 */
671 		bind_to_req_port_only = B_TRUE;
672 
673 	if (requested_port == 0) {
674 		/*
675 		 * If the application passed in zero for the port number, it
676 		 * doesn't care which port number we bind to. Get one in the
677 		 * valid range.
678 		 */
679 		if (udp->udp_anon_priv_bind) {
680 			port = udp_get_next_priv_port(udp);
681 		} else {
682 			port = udp_update_next_port(udp,
683 			    us->us_next_port_to_try, B_TRUE);
684 		}
685 	} else {
686 		/*
687 		 * If the port is in the well-known privileged range,
688 		 * make sure the caller was privileged.
689 		 */
690 		int i;
691 		boolean_t priv = B_FALSE;
692 
693 		if (port < us->us_smallest_nonpriv_port) {
694 			priv = B_TRUE;
695 		} else {
696 			for (i = 0; i < us->us_num_epriv_ports; i++) {
697 				if (port == us->us_epriv_ports[i]) {
698 					priv = B_TRUE;
699 					break;
700 				}
701 			}
702 		}
703 
704 		if (priv) {
705 			cred_t *cr = DB_CREDDEF(mp, connp->conn_cred);
706 
707 			if (secpolicy_net_privaddr(cr, port,
708 			    IPPROTO_UDP) != 0) {
709 				udp_err_ack(q, mp, TACCES, 0);
710 				return;
711 			}
712 		}
713 	}
714 
715 	if (port == 0) {
716 		udp_err_ack(q, mp, TNOADDR, 0);
717 		return;
718 	}
719 
720 	/*
721 	 * The state must be TS_UNBND. TPI mandates that users must send
722 	 * TPI primitives only 1 at a time and wait for the response before
723 	 * sending the next primitive.
724 	 */
725 	rw_enter(&udp->udp_rwlock, RW_WRITER);
726 	if (udp->udp_state != TS_UNBND || udp->udp_pending_op != -1) {
727 		rw_exit(&udp->udp_rwlock);
728 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
729 		    "udp_bind: bad state, %u", udp->udp_state);
730 		udp_err_ack(q, mp, TOUTSTATE, 0);
731 		return;
732 	}
733 	udp->udp_pending_op = tbr->PRIM_type;
734 	/*
735 	 * Copy the source address into our udp structure. This address
736 	 * may still be zero; if so, IP will fill in the correct address
737 	 * each time an outbound packet is passed to it. Since the udp is
738 	 * not yet in the bind hash list, we don't grab the uf_lock to
739 	 * change udp_ipversion
740 	 */
741 	if (udp->udp_family == AF_INET) {
742 		ASSERT(sin != NULL);
743 		ASSERT(udp->udp_ipversion == IPV4_VERSION);
744 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
745 		    udp->udp_ip_snd_options_len;
746 		IN6_IPADDR_TO_V4MAPPED(sin->sin_addr.s_addr, &v6src);
747 	} else {
748 		ASSERT(sin6 != NULL);
749 		v6src = sin6->sin6_addr;
750 		if (IN6_IS_ADDR_V4MAPPED(&v6src)) {
751 			/*
752 			 * no need to hold the uf_lock to set the udp_ipversion
753 			 * since we are not yet in the fanout list
754 			 */
755 			udp->udp_ipversion = IPV4_VERSION;
756 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
757 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
758 		} else {
759 			udp->udp_ipversion = IPV6_VERSION;
760 			udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len;
761 		}
762 	}
763 
764 	/*
765 	 * If udp_reuseaddr is not set, then we have to make sure that
766 	 * the IP address and port number the application requested
767 	 * (or we selected for the application) is not being used by
768 	 * another stream.  If another stream is already using the
769 	 * requested IP address and port, the behavior depends on
770 	 * "bind_to_req_port_only". If set the bind fails; otherwise we
771 	 * search for any an unused port to bind to the the stream.
772 	 *
773 	 * As per the BSD semantics, as modified by the Deering multicast
774 	 * changes, if udp_reuseaddr is set, then we allow multiple binds
775 	 * to the same port independent of the local IP address.
776 	 *
777 	 * This is slightly different than in SunOS 4.X which did not
778 	 * support IP multicast. Note that the change implemented by the
779 	 * Deering multicast code effects all binds - not only binding
780 	 * to IP multicast addresses.
781 	 *
782 	 * Note that when binding to port zero we ignore SO_REUSEADDR in
783 	 * order to guarantee a unique port.
784 	 */
785 
786 	count = 0;
787 	if (udp->udp_anon_priv_bind) {
788 		/*
789 		 * loopmax = (IPPORT_RESERVED-1) -
790 		 *    us->us_min_anonpriv_port + 1
791 		 */
792 		loopmax = IPPORT_RESERVED - us->us_min_anonpriv_port;
793 	} else {
794 		loopmax = us->us_largest_anon_port -
795 		    us->us_smallest_anon_port + 1;
796 	}
797 
798 	is_inaddr_any = V6_OR_V4_INADDR_ANY(v6src);
799 	zoneid = connp->conn_zoneid;
800 
801 	for (;;) {
802 		udp_t		*udp1;
803 		boolean_t	found_exclbind = B_FALSE;
804 
805 		/*
806 		 * Walk through the list of udp streams bound to
807 		 * requested port with the same IP address.
808 		 */
809 		lport = htons(port);
810 		udpf = &us->us_bind_fanout[UDP_BIND_HASH(lport,
811 		    us->us_bind_fanout_size)];
812 		mutex_enter(&udpf->uf_lock);
813 		for (udp1 = udpf->uf_udp; udp1 != NULL;
814 		    udp1 = udp1->udp_bind_hash) {
815 			if (lport != udp1->udp_port)
816 				continue;
817 
818 			/*
819 			 * On a labeled system, we must treat bindings to ports
820 			 * on shared IP addresses by sockets with MAC exemption
821 			 * privilege as being in all zones, as there's
822 			 * otherwise no way to identify the right receiver.
823 			 */
824 			if (!(IPCL_ZONE_MATCH(udp1->udp_connp, zoneid) ||
825 			    IPCL_ZONE_MATCH(connp,
826 			    udp1->udp_connp->conn_zoneid)) &&
827 			    !connp->conn_mac_exempt && \
828 			    !udp1->udp_connp->conn_mac_exempt)
829 				continue;
830 
831 			/*
832 			 * If UDP_EXCLBIND is set for either the bound or
833 			 * binding endpoint, the semantics of bind
834 			 * is changed according to the following chart.
835 			 *
836 			 * spec = specified address (v4 or v6)
837 			 * unspec = unspecified address (v4 or v6)
838 			 * A = specified addresses are different for endpoints
839 			 *
840 			 * bound	bind to		allowed?
841 			 * -------------------------------------
842 			 * unspec	unspec		no
843 			 * unspec	spec		no
844 			 * spec		unspec		no
845 			 * spec		spec		yes if A
846 			 *
847 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
848 			 * as UDP_EXCLBIND, except that zoneid is ignored.
849 			 */
850 			if (udp1->udp_exclbind || udp->udp_exclbind ||
851 			    udp1->udp_connp->conn_mac_exempt ||
852 			    connp->conn_mac_exempt) {
853 				if (V6_OR_V4_INADDR_ANY(
854 				    udp1->udp_bound_v6src) ||
855 				    is_inaddr_any ||
856 				    IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src,
857 				    &v6src)) {
858 					found_exclbind = B_TRUE;
859 					break;
860 				}
861 				continue;
862 			}
863 
864 			/*
865 			 * Check ipversion to allow IPv4 and IPv6 sockets to
866 			 * have disjoint port number spaces.
867 			 */
868 			if (udp->udp_ipversion != udp1->udp_ipversion) {
869 
870 				/*
871 				 * On the first time through the loop, if the
872 				 * the user intentionally specified a
873 				 * particular port number, then ignore any
874 				 * bindings of the other protocol that may
875 				 * conflict. This allows the user to bind IPv6
876 				 * alone and get both v4 and v6, or bind both
877 				 * both and get each seperately. On subsequent
878 				 * times through the loop, we're checking a
879 				 * port that we chose (not the user) and thus
880 				 * we do not allow casual duplicate bindings.
881 				 */
882 				if (count == 0 && requested_port != 0)
883 					continue;
884 			}
885 
886 			/*
887 			 * No difference depending on SO_REUSEADDR.
888 			 *
889 			 * If existing port is bound to a
890 			 * non-wildcard IP address and
891 			 * the requesting stream is bound to
892 			 * a distinct different IP addresses
893 			 * (non-wildcard, also), keep going.
894 			 */
895 			if (!is_inaddr_any &&
896 			    !V6_OR_V4_INADDR_ANY(udp1->udp_bound_v6src) &&
897 			    !IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src,
898 			    &v6src)) {
899 				continue;
900 			}
901 			break;
902 		}
903 
904 		if (!found_exclbind &&
905 		    (udp->udp_reuseaddr && requested_port != 0)) {
906 			break;
907 		}
908 
909 		if (udp1 == NULL) {
910 			/*
911 			 * No other stream has this IP address
912 			 * and port number. We can use it.
913 			 */
914 			break;
915 		}
916 		mutex_exit(&udpf->uf_lock);
917 		if (bind_to_req_port_only) {
918 			/*
919 			 * We get here only when requested port
920 			 * is bound (and only first  of the for()
921 			 * loop iteration).
922 			 *
923 			 * The semantics of this bind request
924 			 * require it to fail so we return from
925 			 * the routine (and exit the loop).
926 			 *
927 			 */
928 			udp->udp_pending_op = -1;
929 			rw_exit(&udp->udp_rwlock);
930 			udp_err_ack(q, mp, TADDRBUSY, 0);
931 			return;
932 		}
933 
934 		if (udp->udp_anon_priv_bind) {
935 			port = udp_get_next_priv_port(udp);
936 		} else {
937 			if ((count == 0) && (requested_port != 0)) {
938 				/*
939 				 * If the application wants us to find
940 				 * a port, get one to start with. Set
941 				 * requested_port to 0, so that we will
942 				 * update us->us_next_port_to_try below.
943 				 */
944 				port = udp_update_next_port(udp,
945 				    us->us_next_port_to_try, B_TRUE);
946 				requested_port = 0;
947 			} else {
948 				port = udp_update_next_port(udp, port + 1,
949 				    B_FALSE);
950 			}
951 		}
952 
953 		if (port == 0 || ++count >= loopmax) {
954 			/*
955 			 * We've tried every possible port number and
956 			 * there are none available, so send an error
957 			 * to the user.
958 			 */
959 			udp->udp_pending_op = -1;
960 			rw_exit(&udp->udp_rwlock);
961 			udp_err_ack(q, mp, TNOADDR, 0);
962 			return;
963 		}
964 	}
965 
966 	/*
967 	 * Copy the source address into our udp structure.  This address
968 	 * may still be zero; if so, ip will fill in the correct address
969 	 * each time an outbound packet is passed to it.
970 	 * If we are binding to a broadcast or multicast address then
971 	 * udp_bind_ack will clear the source address when it receives
972 	 * the T_BIND_ACK.
973 	 */
974 	udp->udp_v6src = udp->udp_bound_v6src = v6src;
975 	udp->udp_port = lport;
976 	/*
977 	 * Now reset the the next anonymous port if the application requested
978 	 * an anonymous port, or we handed out the next anonymous port.
979 	 */
980 	if ((requested_port == 0) && (!udp->udp_anon_priv_bind)) {
981 		us->us_next_port_to_try = port + 1;
982 	}
983 
984 	/* Initialize the O_T_BIND_REQ/T_BIND_REQ for ip. */
985 	if (udp->udp_family == AF_INET) {
986 		sin->sin_port = udp->udp_port;
987 	} else {
988 		int error;
989 
990 		sin6->sin6_port = udp->udp_port;
991 		/* Rebuild the header template */
992 		error = udp_build_hdrs(udp);
993 		if (error != 0) {
994 			udp->udp_pending_op = -1;
995 			rw_exit(&udp->udp_rwlock);
996 			mutex_exit(&udpf->uf_lock);
997 			udp_err_ack(q, mp, TSYSERR, error);
998 			return;
999 		}
1000 	}
1001 	udp->udp_state = TS_IDLE;
1002 	udp_bind_hash_insert(udpf, udp);
1003 	mutex_exit(&udpf->uf_lock);
1004 	rw_exit(&udp->udp_rwlock);
1005 
1006 	if (cl_inet_bind) {
1007 		/*
1008 		 * Running in cluster mode - register bind information
1009 		 */
1010 		if (udp->udp_ipversion == IPV4_VERSION) {
1011 			(*cl_inet_bind)(IPPROTO_UDP, AF_INET,
1012 			    (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)),
1013 			    (in_port_t)udp->udp_port);
1014 		} else {
1015 			(*cl_inet_bind)(IPPROTO_UDP, AF_INET6,
1016 			    (uint8_t *)&(udp->udp_v6src),
1017 			    (in_port_t)udp->udp_port);
1018 		}
1019 
1020 	}
1021 
1022 	connp->conn_anon_port = (is_system_labeled() && requested_port == 0);
1023 	if (is_system_labeled() && (!connp->conn_anon_port ||
1024 	    connp->conn_anon_mlp)) {
1025 		uint16_t mlpport;
1026 		cred_t *cr = connp->conn_cred;
1027 		zone_t *zone;
1028 
1029 		zone = crgetzone(cr);
1030 		connp->conn_mlp_type = udp->udp_recvucred ? mlptBoth :
1031 		    mlptSingle;
1032 		addrtype = tsol_mlp_addr_type(zone->zone_id, IPV6_VERSION,
1033 		    &v6src, us->us_netstack->netstack_ip);
1034 		if (addrtype == mlptSingle) {
1035 			rw_enter(&udp->udp_rwlock, RW_WRITER);
1036 			udp->udp_pending_op = -1;
1037 			rw_exit(&udp->udp_rwlock);
1038 			udp_err_ack(q, mp, TNOADDR, 0);
1039 			connp->conn_anon_port = B_FALSE;
1040 			connp->conn_mlp_type = mlptSingle;
1041 			return;
1042 		}
1043 		mlpport = connp->conn_anon_port ? PMAPPORT : port;
1044 		mlptype = tsol_mlp_port_type(zone, IPPROTO_UDP, mlpport,
1045 		    addrtype);
1046 		if (mlptype != mlptSingle &&
1047 		    (connp->conn_mlp_type == mlptSingle ||
1048 		    secpolicy_net_bindmlp(cr) != 0)) {
1049 			if (udp->udp_debug) {
1050 				(void) strlog(UDP_MOD_ID, 0, 1,
1051 				    SL_ERROR|SL_TRACE,
1052 				    "udp_bind: no priv for multilevel port %d",
1053 				    mlpport);
1054 			}
1055 			rw_enter(&udp->udp_rwlock, RW_WRITER);
1056 			udp->udp_pending_op = -1;
1057 			rw_exit(&udp->udp_rwlock);
1058 			udp_err_ack(q, mp, TACCES, 0);
1059 			connp->conn_anon_port = B_FALSE;
1060 			connp->conn_mlp_type = mlptSingle;
1061 			return;
1062 		}
1063 
1064 		/*
1065 		 * If we're specifically binding a shared IP address and the
1066 		 * port is MLP on shared addresses, then check to see if this
1067 		 * zone actually owns the MLP.  Reject if not.
1068 		 */
1069 		if (mlptype == mlptShared && addrtype == mlptShared) {
1070 			/*
1071 			 * No need to handle exclusive-stack zones since
1072 			 * ALL_ZONES only applies to the shared stack.
1073 			 */
1074 			zoneid_t mlpzone;
1075 
1076 			mlpzone = tsol_mlp_findzone(IPPROTO_UDP,
1077 			    htons(mlpport));
1078 			if (connp->conn_zoneid != mlpzone) {
1079 				if (udp->udp_debug) {
1080 					(void) strlog(UDP_MOD_ID, 0, 1,
1081 					    SL_ERROR|SL_TRACE,
1082 					    "udp_bind: attempt to bind port "
1083 					    "%d on shared addr in zone %d "
1084 					    "(should be %d)",
1085 					    mlpport, connp->conn_zoneid,
1086 					    mlpzone);
1087 				}
1088 				rw_enter(&udp->udp_rwlock, RW_WRITER);
1089 				udp->udp_pending_op = -1;
1090 				rw_exit(&udp->udp_rwlock);
1091 				udp_err_ack(q, mp, TACCES, 0);
1092 				connp->conn_anon_port = B_FALSE;
1093 				connp->conn_mlp_type = mlptSingle;
1094 				return;
1095 			}
1096 		}
1097 		if (connp->conn_anon_port) {
1098 			int error;
1099 
1100 			error = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
1101 			    port, B_TRUE);
1102 			if (error != 0) {
1103 				if (udp->udp_debug) {
1104 					(void) strlog(UDP_MOD_ID, 0, 1,
1105 					    SL_ERROR|SL_TRACE,
1106 					    "udp_bind: cannot establish anon "
1107 					    "MLP for port %d", port);
1108 				}
1109 				rw_enter(&udp->udp_rwlock, RW_WRITER);
1110 				udp->udp_pending_op = -1;
1111 				rw_exit(&udp->udp_rwlock);
1112 				udp_err_ack(q, mp, TACCES, 0);
1113 				connp->conn_anon_port = B_FALSE;
1114 				connp->conn_mlp_type = mlptSingle;
1115 				return;
1116 			}
1117 		}
1118 		connp->conn_mlp_type = mlptype;
1119 	}
1120 
1121 	/* Pass the protocol number in the message following the address. */
1122 	*mp->b_wptr++ = IPPROTO_UDP;
1123 	if (!V6_OR_V4_INADDR_ANY(udp->udp_v6src)) {
1124 		/*
1125 		 * Append a request for an IRE if udp_v6src not
1126 		 * zero (IPv4 - INADDR_ANY, or IPv6 - all-zeroes address).
1127 		 */
1128 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
1129 		if (!mp->b_cont) {
1130 			rw_enter(&udp->udp_rwlock, RW_WRITER);
1131 			udp->udp_pending_op = -1;
1132 			rw_exit(&udp->udp_rwlock);
1133 			udp_err_ack(q, mp, TSYSERR, ENOMEM);
1134 			return;
1135 		}
1136 		mp->b_cont->b_wptr += sizeof (ire_t);
1137 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
1138 	}
1139 	if (udp->udp_family == AF_INET6)
1140 		mp = ip_bind_v6(q, mp, connp, NULL);
1141 	else
1142 		mp = ip_bind_v4(q, mp, connp);
1143 
1144 	/* The above return NULL if the bind needs to be deferred */
1145 	if (mp != NULL)
1146 		udp_bind_result(connp, mp);
1147 	else
1148 		CONN_INC_REF(connp);
1149 }
1150 
1151 /*
1152  * This is called from ip_wput_nondata to handle the results of a
1153  * deferred UDP bind. It is called once the bind has been completed.
1154  */
1155 void
1156 udp_resume_bind(conn_t *connp, mblk_t *mp)
1157 {
1158 	ASSERT(connp != NULL && IPCL_IS_UDP(connp));
1159 
1160 	udp_bind_result(connp, mp);
1161 
1162 	CONN_OPER_PENDING_DONE(connp);
1163 }
1164 
1165 /*
1166  * This routine handles each T_CONN_REQ message passed to udp.  It
1167  * associates a default destination address with the stream.
1168  *
1169  * This routine sends down a T_BIND_REQ to IP with the following mblks:
1170  *	T_BIND_REQ	- specifying local and remote address/port
1171  *	IRE_DB_REQ_TYPE	- to get an IRE back containing ire_type and src
1172  *	T_OK_ACK	- for the T_CONN_REQ
1173  *	T_CONN_CON	- to keep the TPI user happy
1174  *
1175  * The connect completes in udp_bind_result.
1176  * When a T_BIND_ACK is received information is extracted from the IRE
1177  * and the two appended messages are sent to the TPI user.
1178  * Should udp_bind_result receive T_ERROR_ACK for the T_BIND_REQ it will
1179  * convert it to an error ack for the appropriate primitive.
1180  */
1181 static void
1182 udp_connect(queue_t *q, mblk_t *mp)
1183 {
1184 	sin6_t	*sin6;
1185 	sin_t	*sin;
1186 	struct T_conn_req	*tcr;
1187 	in6_addr_t v6dst;
1188 	ipaddr_t v4dst;
1189 	uint16_t dstport;
1190 	uint32_t flowinfo;
1191 	mblk_t	*mp1, *mp2;
1192 	udp_fanout_t	*udpf;
1193 	udp_t	*udp, *udp1;
1194 	ushort_t	ipversion;
1195 	udp_stack_t	*us;
1196 	conn_t		*connp = Q_TO_CONN(q);
1197 
1198 	udp = connp->conn_udp;
1199 	tcr = (struct T_conn_req *)mp->b_rptr;
1200 	us = udp->udp_us;
1201 
1202 	/* A bit of sanity checking */
1203 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_req)) {
1204 		udp_err_ack(q, mp, TPROTO, 0);
1205 		return;
1206 	}
1207 
1208 	if (tcr->OPT_length != 0) {
1209 		udp_err_ack(q, mp, TBADOPT, 0);
1210 		return;
1211 	}
1212 
1213 	/*
1214 	 * Determine packet type based on type of address passed in
1215 	 * the request should contain an IPv4 or IPv6 address.
1216 	 * Make sure that address family matches the type of
1217 	 * family of the the address passed down
1218 	 */
1219 	switch (tcr->DEST_length) {
1220 	default:
1221 		udp_err_ack(q, mp, TBADADDR, 0);
1222 		return;
1223 
1224 	case sizeof (sin_t):
1225 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
1226 		    sizeof (sin_t));
1227 		if (sin == NULL || !OK_32PTR((char *)sin)) {
1228 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1229 			return;
1230 		}
1231 		if (udp->udp_family != AF_INET ||
1232 		    sin->sin_family != AF_INET) {
1233 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1234 			return;
1235 		}
1236 		v4dst = sin->sin_addr.s_addr;
1237 		dstport = sin->sin_port;
1238 		IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
1239 		ASSERT(udp->udp_ipversion == IPV4_VERSION);
1240 		ipversion = IPV4_VERSION;
1241 		break;
1242 
1243 	case sizeof (sin6_t):
1244 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
1245 		    sizeof (sin6_t));
1246 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
1247 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1248 			return;
1249 		}
1250 		if (udp->udp_family != AF_INET6 ||
1251 		    sin6->sin6_family != AF_INET6) {
1252 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1253 			return;
1254 		}
1255 		v6dst = sin6->sin6_addr;
1256 		dstport = sin6->sin6_port;
1257 		if (IN6_IS_ADDR_V4MAPPED(&v6dst)) {
1258 			IN6_V4MAPPED_TO_IPADDR(&v6dst, v4dst);
1259 			ipversion = IPV4_VERSION;
1260 			flowinfo = 0;
1261 		} else {
1262 			ipversion = IPV6_VERSION;
1263 			flowinfo = sin6->sin6_flowinfo;
1264 		}
1265 		break;
1266 	}
1267 	if (dstport == 0) {
1268 		udp_err_ack(q, mp, TBADADDR, 0);
1269 		return;
1270 	}
1271 
1272 	rw_enter(&udp->udp_rwlock, RW_WRITER);
1273 
1274 	/*
1275 	 * This UDP must have bound to a port already before doing a connect.
1276 	 * TPI mandates that users must send TPI primitives only 1 at a time
1277 	 * and wait for the response before sending the next primitive.
1278 	 */
1279 	if (udp->udp_state == TS_UNBND || udp->udp_pending_op != -1) {
1280 		rw_exit(&udp->udp_rwlock);
1281 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1282 		    "udp_connect: bad state, %u", udp->udp_state);
1283 		udp_err_ack(q, mp, TOUTSTATE, 0);
1284 		return;
1285 	}
1286 	udp->udp_pending_op = T_CONN_REQ;
1287 	ASSERT(udp->udp_port != 0 && udp->udp_ptpbhn != NULL);
1288 
1289 	if (ipversion == IPV4_VERSION) {
1290 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
1291 		    udp->udp_ip_snd_options_len;
1292 	} else {
1293 		udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len;
1294 	}
1295 
1296 	udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
1297 	    us->us_bind_fanout_size)];
1298 
1299 	mutex_enter(&udpf->uf_lock);
1300 	if (udp->udp_state == TS_DATA_XFER) {
1301 		/* Already connected - clear out state */
1302 		udp->udp_v6src = udp->udp_bound_v6src;
1303 		udp->udp_state = TS_IDLE;
1304 	}
1305 
1306 	/*
1307 	 * Create a default IP header with no IP options.
1308 	 */
1309 	udp->udp_dstport = dstport;
1310 	udp->udp_ipversion = ipversion;
1311 	if (ipversion == IPV4_VERSION) {
1312 		/*
1313 		 * Interpret a zero destination to mean loopback.
1314 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1315 		 * generate the T_CONN_CON.
1316 		 */
1317 		if (v4dst == INADDR_ANY) {
1318 			v4dst = htonl(INADDR_LOOPBACK);
1319 			IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
1320 			if (udp->udp_family == AF_INET) {
1321 				sin->sin_addr.s_addr = v4dst;
1322 			} else {
1323 				sin6->sin6_addr = v6dst;
1324 			}
1325 		}
1326 		udp->udp_v6dst = v6dst;
1327 		udp->udp_flowinfo = 0;
1328 
1329 		/*
1330 		 * If the destination address is multicast and
1331 		 * an outgoing multicast interface has been set,
1332 		 * use the address of that interface as our
1333 		 * source address if no source address has been set.
1334 		 */
1335 		if (V4_PART_OF_V6(udp->udp_v6src) == INADDR_ANY &&
1336 		    CLASSD(v4dst) &&
1337 		    udp->udp_multicast_if_addr != INADDR_ANY) {
1338 			IN6_IPADDR_TO_V4MAPPED(udp->udp_multicast_if_addr,
1339 			    &udp->udp_v6src);
1340 		}
1341 	} else {
1342 		ASSERT(udp->udp_ipversion == IPV6_VERSION);
1343 		/*
1344 		 * Interpret a zero destination to mean loopback.
1345 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1346 		 * generate the T_CONN_CON.
1347 		 */
1348 		if (IN6_IS_ADDR_UNSPECIFIED(&v6dst)) {
1349 			v6dst = ipv6_loopback;
1350 			sin6->sin6_addr = v6dst;
1351 		}
1352 		udp->udp_v6dst = v6dst;
1353 		udp->udp_flowinfo = flowinfo;
1354 		/*
1355 		 * If the destination address is multicast and
1356 		 * an outgoing multicast interface has been set,
1357 		 * then the ip bind logic will pick the correct source
1358 		 * address (i.e. matching the outgoing multicast interface).
1359 		 */
1360 	}
1361 
1362 	/*
1363 	 * Verify that the src/port/dst/port is unique for all
1364 	 * connections in TS_DATA_XFER
1365 	 */
1366 	for (udp1 = udpf->uf_udp; udp1 != NULL; udp1 = udp1->udp_bind_hash) {
1367 		if (udp1->udp_state != TS_DATA_XFER)
1368 			continue;
1369 		if (udp->udp_port != udp1->udp_port ||
1370 		    udp->udp_ipversion != udp1->udp_ipversion ||
1371 		    dstport != udp1->udp_dstport ||
1372 		    !IN6_ARE_ADDR_EQUAL(&udp->udp_v6src, &udp1->udp_v6src) ||
1373 		    !IN6_ARE_ADDR_EQUAL(&v6dst, &udp1->udp_v6dst) ||
1374 		    !(IPCL_ZONE_MATCH(udp->udp_connp,
1375 		    udp1->udp_connp->conn_zoneid) ||
1376 		    IPCL_ZONE_MATCH(udp1->udp_connp,
1377 		    udp->udp_connp->conn_zoneid)))
1378 			continue;
1379 		mutex_exit(&udpf->uf_lock);
1380 		udp->udp_pending_op = -1;
1381 		rw_exit(&udp->udp_rwlock);
1382 		udp_err_ack(q, mp, TBADADDR, 0);
1383 		return;
1384 	}
1385 	udp->udp_state = TS_DATA_XFER;
1386 	mutex_exit(&udpf->uf_lock);
1387 
1388 	/*
1389 	 * Send down bind to IP to verify that there is a route
1390 	 * and to determine the source address.
1391 	 * This will come back as T_BIND_ACK with an IRE_DB_TYPE in rput.
1392 	 */
1393 	if (udp->udp_family == AF_INET)
1394 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa_conn_t));
1395 	else
1396 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
1397 	if (mp1 == NULL) {
1398 bind_failed:
1399 		mutex_enter(&udpf->uf_lock);
1400 		udp->udp_state = TS_IDLE;
1401 		udp->udp_pending_op = -1;
1402 		mutex_exit(&udpf->uf_lock);
1403 		rw_exit(&udp->udp_rwlock);
1404 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1405 		return;
1406 	}
1407 
1408 	rw_exit(&udp->udp_rwlock);
1409 	/*
1410 	 * We also have to send a connection confirmation to
1411 	 * keep TLI happy. Prepare it for udp_bind_result.
1412 	 */
1413 	if (udp->udp_family == AF_INET)
1414 		mp2 = mi_tpi_conn_con(NULL, (char *)sin,
1415 		    sizeof (*sin), NULL, 0);
1416 	else
1417 		mp2 = mi_tpi_conn_con(NULL, (char *)sin6,
1418 		    sizeof (*sin6), NULL, 0);
1419 	if (mp2 == NULL) {
1420 		freemsg(mp1);
1421 		rw_enter(&udp->udp_rwlock, RW_WRITER);
1422 		goto bind_failed;
1423 	}
1424 
1425 	mp = mi_tpi_ok_ack_alloc(mp);
1426 	if (mp == NULL) {
1427 		/* Unable to reuse the T_CONN_REQ for the ack. */
1428 		freemsg(mp2);
1429 		rw_enter(&udp->udp_rwlock, RW_WRITER);
1430 		mutex_enter(&udpf->uf_lock);
1431 		udp->udp_state = TS_IDLE;
1432 		udp->udp_pending_op = -1;
1433 		mutex_exit(&udpf->uf_lock);
1434 		rw_exit(&udp->udp_rwlock);
1435 		udp_err_ack_prim(q, mp1, T_CONN_REQ, TSYSERR, ENOMEM);
1436 		return;
1437 	}
1438 
1439 	/* Hang onto the T_OK_ACK and T_CONN_CON for later. */
1440 	linkb(mp1, mp);
1441 	linkb(mp1, mp2);
1442 
1443 	mblk_setcred(mp1, connp->conn_cred);
1444 	if (udp->udp_family == AF_INET)
1445 		mp1 = ip_bind_v4(q, mp1, connp);
1446 	else
1447 		mp1 = ip_bind_v6(q, mp1, connp, NULL);
1448 
1449 	/* The above return NULL if the bind needs to be deferred */
1450 	if (mp1 != NULL)
1451 		udp_bind_result(connp, mp1);
1452 	else
1453 		CONN_INC_REF(connp);
1454 }
1455 
1456 static int
1457 udp_close(queue_t *q)
1458 {
1459 	conn_t	*connp = (conn_t *)q->q_ptr;
1460 	udp_t	*udp;
1461 
1462 	ASSERT(connp != NULL && IPCL_IS_UDP(connp));
1463 	udp = connp->conn_udp;
1464 
1465 	udp_quiesce_conn(connp);
1466 	ip_quiesce_conn(connp);
1467 	/*
1468 	 * Disable read-side synchronous stream
1469 	 * interface and drain any queued data.
1470 	 */
1471 	udp_rcv_drain(q, udp, B_TRUE);
1472 	ASSERT(!udp->udp_direct_sockfs);
1473 
1474 	qprocsoff(q);
1475 
1476 	ASSERT(udp->udp_rcv_cnt == 0);
1477 	ASSERT(udp->udp_rcv_msgcnt == 0);
1478 	ASSERT(udp->udp_rcv_list_head == NULL);
1479 	ASSERT(udp->udp_rcv_list_tail == NULL);
1480 
1481 	udp_close_free(connp);
1482 
1483 	/*
1484 	 * Now we are truly single threaded on this stream, and can
1485 	 * delete the things hanging off the connp, and finally the connp.
1486 	 * We removed this connp from the fanout list, it cannot be
1487 	 * accessed thru the fanouts, and we already waited for the
1488 	 * conn_ref to drop to 0. We are already in close, so
1489 	 * there cannot be any other thread from the top. qprocsoff
1490 	 * has completed, and service has completed or won't run in
1491 	 * future.
1492 	 */
1493 	ASSERT(connp->conn_ref == 1);
1494 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
1495 	connp->conn_ref--;
1496 	ipcl_conn_destroy(connp);
1497 
1498 	q->q_ptr = WR(q)->q_ptr = NULL;
1499 	return (0);
1500 }
1501 
1502 /*
1503  * Called in the close path to quiesce the conn
1504  */
1505 void
1506 udp_quiesce_conn(conn_t *connp)
1507 {
1508 	udp_t	*udp = connp->conn_udp;
1509 
1510 	if (cl_inet_unbind != NULL && udp->udp_state == TS_IDLE) {
1511 		/*
1512 		 * Running in cluster mode - register unbind information
1513 		 */
1514 		if (udp->udp_ipversion == IPV4_VERSION) {
1515 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET,
1516 			    (uint8_t *)(&(V4_PART_OF_V6(udp->udp_v6src))),
1517 			    (in_port_t)udp->udp_port);
1518 		} else {
1519 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET6,
1520 			    (uint8_t *)(&(udp->udp_v6src)),
1521 			    (in_port_t)udp->udp_port);
1522 		}
1523 	}
1524 
1525 	udp_bind_hash_remove(udp, B_FALSE);
1526 
1527 }
1528 
1529 void
1530 udp_close_free(conn_t *connp)
1531 {
1532 	udp_t *udp = connp->conn_udp;
1533 
1534 	/* If there are any options associated with the stream, free them. */
1535 	if (udp->udp_ip_snd_options != NULL) {
1536 		mi_free((char *)udp->udp_ip_snd_options);
1537 		udp->udp_ip_snd_options = NULL;
1538 		udp->udp_ip_snd_options_len = 0;
1539 	}
1540 
1541 	if (udp->udp_ip_rcv_options != NULL) {
1542 		mi_free((char *)udp->udp_ip_rcv_options);
1543 		udp->udp_ip_rcv_options = NULL;
1544 		udp->udp_ip_rcv_options_len = 0;
1545 	}
1546 
1547 	/* Free memory associated with sticky options */
1548 	if (udp->udp_sticky_hdrs_len != 0) {
1549 		kmem_free(udp->udp_sticky_hdrs,
1550 		    udp->udp_sticky_hdrs_len);
1551 		udp->udp_sticky_hdrs = NULL;
1552 		udp->udp_sticky_hdrs_len = 0;
1553 	}
1554 
1555 	ip6_pkt_free(&udp->udp_sticky_ipp);
1556 
1557 	/*
1558 	 * Clear any fields which the kmem_cache constructor clears.
1559 	 * Only udp_connp needs to be preserved.
1560 	 * TBD: We should make this more efficient to avoid clearing
1561 	 * everything.
1562 	 */
1563 	ASSERT(udp->udp_connp == connp);
1564 	bzero(udp, sizeof (udp_t));
1565 	udp->udp_connp = connp;
1566 }
1567 
1568 /*
1569  * This routine handles each T_DISCON_REQ message passed to udp
1570  * as an indicating that UDP is no longer connected. This results
1571  * in sending a T_BIND_REQ to IP to restore the binding to just
1572  * the local address/port.
1573  *
1574  * This routine sends down a T_BIND_REQ to IP with the following mblks:
1575  *	T_BIND_REQ	- specifying just the local address/port
1576  *	T_OK_ACK	- for the T_DISCON_REQ
1577  *
1578  * The disconnect completes in udp_bind_result.
1579  * When a T_BIND_ACK is received the appended T_OK_ACK is sent to the TPI user.
1580  * Should udp_bind_result receive T_ERROR_ACK for the T_BIND_REQ it will
1581  * convert it to an error ack for the appropriate primitive.
1582  */
1583 static void
1584 udp_disconnect(queue_t *q, mblk_t *mp)
1585 {
1586 	udp_t	*udp;
1587 	mblk_t	*mp1;
1588 	udp_fanout_t *udpf;
1589 	udp_stack_t *us;
1590 	conn_t	*connp = Q_TO_CONN(q);
1591 
1592 	udp = connp->conn_udp;
1593 	us = udp->udp_us;
1594 	rw_enter(&udp->udp_rwlock, RW_WRITER);
1595 	if (udp->udp_state != TS_DATA_XFER || udp->udp_pending_op != -1) {
1596 		rw_exit(&udp->udp_rwlock);
1597 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1598 		    "udp_disconnect: bad state, %u", udp->udp_state);
1599 		udp_err_ack(q, mp, TOUTSTATE, 0);
1600 		return;
1601 	}
1602 	udp->udp_pending_op = T_DISCON_REQ;
1603 	udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
1604 	    us->us_bind_fanout_size)];
1605 	mutex_enter(&udpf->uf_lock);
1606 	udp->udp_v6src = udp->udp_bound_v6src;
1607 	udp->udp_state = TS_IDLE;
1608 	mutex_exit(&udpf->uf_lock);
1609 
1610 	/*
1611 	 * Send down bind to IP to remove the full binding and revert
1612 	 * to the local address binding.
1613 	 */
1614 	if (udp->udp_family == AF_INET)
1615 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin_t));
1616 	else
1617 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin6_t));
1618 	if (mp1 == NULL) {
1619 		udp->udp_pending_op = -1;
1620 		rw_exit(&udp->udp_rwlock);
1621 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1622 		return;
1623 	}
1624 	mp = mi_tpi_ok_ack_alloc(mp);
1625 	if (mp == NULL) {
1626 		/* Unable to reuse the T_DISCON_REQ for the ack. */
1627 		udp->udp_pending_op = -1;
1628 		rw_exit(&udp->udp_rwlock);
1629 		udp_err_ack_prim(q, mp1, T_DISCON_REQ, TSYSERR, ENOMEM);
1630 		return;
1631 	}
1632 
1633 	if (udp->udp_family == AF_INET6) {
1634 		int error;
1635 
1636 		/* Rebuild the header template */
1637 		error = udp_build_hdrs(udp);
1638 		if (error != 0) {
1639 			udp->udp_pending_op = -1;
1640 			rw_exit(&udp->udp_rwlock);
1641 			udp_err_ack_prim(q, mp, T_DISCON_REQ, TSYSERR, error);
1642 			freemsg(mp1);
1643 			return;
1644 		}
1645 	}
1646 
1647 	rw_exit(&udp->udp_rwlock);
1648 	/* Append the T_OK_ACK to the T_BIND_REQ for udp_bind_ack */
1649 	linkb(mp1, mp);
1650 
1651 	if (udp->udp_family == AF_INET6)
1652 		mp1 = ip_bind_v6(q, mp1, connp, NULL);
1653 	else
1654 		mp1 = ip_bind_v4(q, mp1, connp);
1655 
1656 	/* The above return NULL if the bind needs to be deferred */
1657 	if (mp1 != NULL)
1658 		udp_bind_result(connp, mp1);
1659 	else
1660 		CONN_INC_REF(connp);
1661 }
1662 
1663 /* This routine creates a T_ERROR_ACK message and passes it upstream. */
1664 static void
1665 udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error)
1666 {
1667 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
1668 		qreply(q, mp);
1669 }
1670 
1671 /* Shorthand to generate and send TPI error acks to our client */
1672 static void
1673 udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, t_scalar_t t_error,
1674     int sys_error)
1675 {
1676 	struct T_error_ack	*teackp;
1677 
1678 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
1679 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
1680 		teackp = (struct T_error_ack *)mp->b_rptr;
1681 		teackp->ERROR_prim = primitive;
1682 		teackp->TLI_error = t_error;
1683 		teackp->UNIX_error = sys_error;
1684 		qreply(q, mp);
1685 	}
1686 }
1687 
1688 /*ARGSUSED*/
1689 static int
1690 udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
1691 {
1692 	int i;
1693 	udp_t		*udp = Q_TO_UDP(q);
1694 	udp_stack_t *us = udp->udp_us;
1695 
1696 	for (i = 0; i < us->us_num_epriv_ports; i++) {
1697 		if (us->us_epriv_ports[i] != 0)
1698 			(void) mi_mpprintf(mp, "%d ", us->us_epriv_ports[i]);
1699 	}
1700 	return (0);
1701 }
1702 
1703 /* ARGSUSED */
1704 static int
1705 udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
1706     cred_t *cr)
1707 {
1708 	long	new_value;
1709 	int	i;
1710 	udp_t		*udp = Q_TO_UDP(q);
1711 	udp_stack_t *us = udp->udp_us;
1712 
1713 	/*
1714 	 * Fail the request if the new value does not lie within the
1715 	 * port number limits.
1716 	 */
1717 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
1718 	    new_value <= 0 || new_value >= 65536) {
1719 		return (EINVAL);
1720 	}
1721 
1722 	/* Check if the value is already in the list */
1723 	for (i = 0; i < us->us_num_epriv_ports; i++) {
1724 		if (new_value == us->us_epriv_ports[i]) {
1725 			return (EEXIST);
1726 		}
1727 	}
1728 	/* Find an empty slot */
1729 	for (i = 0; i < us->us_num_epriv_ports; i++) {
1730 		if (us->us_epriv_ports[i] == 0)
1731 			break;
1732 	}
1733 	if (i == us->us_num_epriv_ports) {
1734 		return (EOVERFLOW);
1735 	}
1736 
1737 	/* Set the new value */
1738 	us->us_epriv_ports[i] = (in_port_t)new_value;
1739 	return (0);
1740 }
1741 
1742 /* ARGSUSED */
1743 static int
1744 udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
1745     cred_t *cr)
1746 {
1747 	long	new_value;
1748 	int	i;
1749 	udp_t		*udp = Q_TO_UDP(q);
1750 	udp_stack_t *us = udp->udp_us;
1751 
1752 	/*
1753 	 * Fail the request if the new value does not lie within the
1754 	 * port number limits.
1755 	 */
1756 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
1757 	    new_value <= 0 || new_value >= 65536) {
1758 		return (EINVAL);
1759 	}
1760 
1761 	/* Check that the value is already in the list */
1762 	for (i = 0; i < us->us_num_epriv_ports; i++) {
1763 		if (us->us_epriv_ports[i] == new_value)
1764 			break;
1765 	}
1766 	if (i == us->us_num_epriv_ports) {
1767 		return (ESRCH);
1768 	}
1769 
1770 	/* Clear the value */
1771 	us->us_epriv_ports[i] = 0;
1772 	return (0);
1773 }
1774 
1775 /* At minimum we need 4 bytes of UDP header */
1776 #define	ICMP_MIN_UDP_HDR	4
1777 
1778 /*
1779  * udp_icmp_error is called by udp_input to process ICMP msgs. passed up by IP.
1780  * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
1781  * Assumes that IP has pulled up everything up to and including the ICMP header.
1782  */
1783 static void
1784 udp_icmp_error(queue_t *q, mblk_t *mp)
1785 {
1786 	icmph_t *icmph;
1787 	ipha_t	*ipha;
1788 	int	iph_hdr_length;
1789 	udpha_t	*udpha;
1790 	sin_t	sin;
1791 	sin6_t	sin6;
1792 	mblk_t	*mp1;
1793 	int	error = 0;
1794 	udp_t	*udp = Q_TO_UDP(q);
1795 
1796 	ipha = (ipha_t *)mp->b_rptr;
1797 
1798 	ASSERT(OK_32PTR(mp->b_rptr));
1799 
1800 	if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
1801 		ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
1802 		udp_icmp_error_ipv6(q, mp);
1803 		return;
1804 	}
1805 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
1806 
1807 	/* Skip past the outer IP and ICMP headers */
1808 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
1809 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
1810 	ipha = (ipha_t *)&icmph[1];
1811 
1812 	/* Skip past the inner IP and find the ULP header */
1813 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
1814 	udpha = (udpha_t *)((char *)ipha + iph_hdr_length);
1815 
1816 	switch (icmph->icmph_type) {
1817 	case ICMP_DEST_UNREACHABLE:
1818 		switch (icmph->icmph_code) {
1819 		case ICMP_FRAGMENTATION_NEEDED:
1820 			/*
1821 			 * IP has already adjusted the path MTU.
1822 			 */
1823 			break;
1824 		case ICMP_PORT_UNREACHABLE:
1825 		case ICMP_PROTOCOL_UNREACHABLE:
1826 			error = ECONNREFUSED;
1827 			break;
1828 		default:
1829 			/* Transient errors */
1830 			break;
1831 		}
1832 		break;
1833 	default:
1834 		/* Transient errors */
1835 		break;
1836 	}
1837 	if (error == 0) {
1838 		freemsg(mp);
1839 		return;
1840 	}
1841 
1842 	/*
1843 	 * Deliver T_UDERROR_IND when the application has asked for it.
1844 	 * The socket layer enables this automatically when connected.
1845 	 */
1846 	if (!udp->udp_dgram_errind) {
1847 		freemsg(mp);
1848 		return;
1849 	}
1850 
1851 	switch (udp->udp_family) {
1852 	case AF_INET:
1853 		sin = sin_null;
1854 		sin.sin_family = AF_INET;
1855 		sin.sin_addr.s_addr = ipha->ipha_dst;
1856 		sin.sin_port = udpha->uha_dst_port;
1857 		mp1 = mi_tpi_uderror_ind((char *)&sin, sizeof (sin_t), NULL, 0,
1858 		    error);
1859 		break;
1860 	case AF_INET6:
1861 		sin6 = sin6_null;
1862 		sin6.sin6_family = AF_INET6;
1863 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &sin6.sin6_addr);
1864 		sin6.sin6_port = udpha->uha_dst_port;
1865 
1866 		mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t),
1867 		    NULL, 0, error);
1868 		break;
1869 	}
1870 	if (mp1)
1871 		putnext(q, mp1);
1872 	freemsg(mp);
1873 }
1874 
1875 /*
1876  * udp_icmp_error_ipv6 is called by udp_icmp_error to process ICMP for IPv6.
1877  * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
1878  * Assumes that IP has pulled up all the extension headers as well as the
1879  * ICMPv6 header.
1880  */
1881 static void
1882 udp_icmp_error_ipv6(queue_t *q, mblk_t *mp)
1883 {
1884 	icmp6_t		*icmp6;
1885 	ip6_t		*ip6h, *outer_ip6h;
1886 	uint16_t	iph_hdr_length;
1887 	uint8_t		*nexthdrp;
1888 	udpha_t		*udpha;
1889 	sin6_t		sin6;
1890 	mblk_t		*mp1;
1891 	int		error = 0;
1892 	udp_t		*udp = Q_TO_UDP(q);
1893 	udp_stack_t	*us = udp->udp_us;
1894 
1895 	outer_ip6h = (ip6_t *)mp->b_rptr;
1896 	if (outer_ip6h->ip6_nxt != IPPROTO_ICMPV6)
1897 		iph_hdr_length = ip_hdr_length_v6(mp, outer_ip6h);
1898 	else
1899 		iph_hdr_length = IPV6_HDR_LEN;
1900 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
1901 	ip6h = (ip6_t *)&icmp6[1];
1902 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) {
1903 		freemsg(mp);
1904 		return;
1905 	}
1906 	udpha = (udpha_t *)((char *)ip6h + iph_hdr_length);
1907 
1908 	switch (icmp6->icmp6_type) {
1909 	case ICMP6_DST_UNREACH:
1910 		switch (icmp6->icmp6_code) {
1911 		case ICMP6_DST_UNREACH_NOPORT:
1912 			error = ECONNREFUSED;
1913 			break;
1914 		case ICMP6_DST_UNREACH_ADMIN:
1915 		case ICMP6_DST_UNREACH_NOROUTE:
1916 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
1917 		case ICMP6_DST_UNREACH_ADDR:
1918 			/* Transient errors */
1919 			break;
1920 		default:
1921 			break;
1922 		}
1923 		break;
1924 	case ICMP6_PACKET_TOO_BIG: {
1925 		struct T_unitdata_ind	*tudi;
1926 		struct T_opthdr		*toh;
1927 		size_t			udi_size;
1928 		mblk_t			*newmp;
1929 		t_scalar_t		opt_length = sizeof (struct T_opthdr) +
1930 		    sizeof (struct ip6_mtuinfo);
1931 		sin6_t			*sin6;
1932 		struct ip6_mtuinfo	*mtuinfo;
1933 
1934 		/*
1935 		 * If the application has requested to receive path mtu
1936 		 * information, send up an empty message containing an
1937 		 * IPV6_PATHMTU ancillary data item.
1938 		 */
1939 		if (!udp->udp_ipv6_recvpathmtu)
1940 			break;
1941 
1942 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t) +
1943 		    opt_length;
1944 		if ((newmp = allocb(udi_size, BPRI_MED)) == NULL) {
1945 			BUMP_MIB(&us->us_udp_mib, udpInErrors);
1946 			break;
1947 		}
1948 
1949 		/*
1950 		 * newmp->b_cont is left to NULL on purpose.  This is an
1951 		 * empty message containing only ancillary data.
1952 		 */
1953 		newmp->b_datap->db_type = M_PROTO;
1954 		tudi = (struct T_unitdata_ind *)newmp->b_rptr;
1955 		newmp->b_wptr = (uchar_t *)tudi + udi_size;
1956 		tudi->PRIM_type = T_UNITDATA_IND;
1957 		tudi->SRC_length = sizeof (sin6_t);
1958 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
1959 		tudi->OPT_offset = tudi->SRC_offset + sizeof (sin6_t);
1960 		tudi->OPT_length = opt_length;
1961 
1962 		sin6 = (sin6_t *)&tudi[1];
1963 		bzero(sin6, sizeof (sin6_t));
1964 		sin6->sin6_family = AF_INET6;
1965 		sin6->sin6_addr = udp->udp_v6dst;
1966 
1967 		toh = (struct T_opthdr *)&sin6[1];
1968 		toh->level = IPPROTO_IPV6;
1969 		toh->name = IPV6_PATHMTU;
1970 		toh->len = opt_length;
1971 		toh->status = 0;
1972 
1973 		mtuinfo = (struct ip6_mtuinfo *)&toh[1];
1974 		bzero(mtuinfo, sizeof (struct ip6_mtuinfo));
1975 		mtuinfo->ip6m_addr.sin6_family = AF_INET6;
1976 		mtuinfo->ip6m_addr.sin6_addr = ip6h->ip6_dst;
1977 		mtuinfo->ip6m_mtu = icmp6->icmp6_mtu;
1978 		/*
1979 		 * We've consumed everything we need from the original
1980 		 * message.  Free it, then send our empty message.
1981 		 */
1982 		freemsg(mp);
1983 		putnext(q, newmp);
1984 		return;
1985 	}
1986 	case ICMP6_TIME_EXCEEDED:
1987 		/* Transient errors */
1988 		break;
1989 	case ICMP6_PARAM_PROB:
1990 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
1991 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
1992 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
1993 		    (uchar_t *)nexthdrp) {
1994 			error = ECONNREFUSED;
1995 			break;
1996 		}
1997 		break;
1998 	}
1999 	if (error == 0) {
2000 		freemsg(mp);
2001 		return;
2002 	}
2003 
2004 	/*
2005 	 * Deliver T_UDERROR_IND when the application has asked for it.
2006 	 * The socket layer enables this automatically when connected.
2007 	 */
2008 	if (!udp->udp_dgram_errind) {
2009 		freemsg(mp);
2010 		return;
2011 	}
2012 
2013 	sin6 = sin6_null;
2014 	sin6.sin6_family = AF_INET6;
2015 	sin6.sin6_addr = ip6h->ip6_dst;
2016 	sin6.sin6_port = udpha->uha_dst_port;
2017 	sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
2018 
2019 	mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), NULL, 0,
2020 	    error);
2021 	if (mp1)
2022 		putnext(q, mp1);
2023 	freemsg(mp);
2024 }
2025 
2026 /*
2027  * This routine responds to T_ADDR_REQ messages.  It is called by udp_wput.
2028  * The local address is filled in if endpoint is bound. The remote address
2029  * is filled in if remote address has been precified ("connected endpoint")
2030  * (The concept of connected CLTS sockets is alien to published TPI
2031  *  but we support it anyway).
2032  */
2033 static void
2034 udp_addr_req(queue_t *q, mblk_t *mp)
2035 {
2036 	sin_t	*sin;
2037 	sin6_t	*sin6;
2038 	mblk_t	*ackmp;
2039 	struct T_addr_ack *taa;
2040 	udp_t	*udp = Q_TO_UDP(q);
2041 
2042 	/* Make it large enough for worst case */
2043 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
2044 	    2 * sizeof (sin6_t), 1);
2045 	if (ackmp == NULL) {
2046 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
2047 		return;
2048 	}
2049 	taa = (struct T_addr_ack *)ackmp->b_rptr;
2050 
2051 	bzero(taa, sizeof (struct T_addr_ack));
2052 	ackmp->b_wptr = (uchar_t *)&taa[1];
2053 
2054 	taa->PRIM_type = T_ADDR_ACK;
2055 	ackmp->b_datap->db_type = M_PCPROTO;
2056 	rw_enter(&udp->udp_rwlock, RW_READER);
2057 	/*
2058 	 * Note: Following code assumes 32 bit alignment of basic
2059 	 * data structures like sin_t and struct T_addr_ack.
2060 	 */
2061 	if (udp->udp_state != TS_UNBND) {
2062 		/*
2063 		 * Fill in local address first
2064 		 */
2065 		taa->LOCADDR_offset = sizeof (*taa);
2066 		if (udp->udp_family == AF_INET) {
2067 			taa->LOCADDR_length = sizeof (sin_t);
2068 			sin = (sin_t *)&taa[1];
2069 			/* Fill zeroes and then initialize non-zero fields */
2070 			*sin = sin_null;
2071 			sin->sin_family = AF_INET;
2072 			if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) &&
2073 			    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
2074 				IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src,
2075 				    sin->sin_addr.s_addr);
2076 			} else {
2077 				/*
2078 				 * INADDR_ANY
2079 				 * udp_v6src is not set, we might be bound to
2080 				 * broadcast/multicast. Use udp_bound_v6src as
2081 				 * local address instead (that could
2082 				 * also still be INADDR_ANY)
2083 				 */
2084 				IN6_V4MAPPED_TO_IPADDR(&udp->udp_bound_v6src,
2085 				    sin->sin_addr.s_addr);
2086 			}
2087 			sin->sin_port = udp->udp_port;
2088 			ackmp->b_wptr = (uchar_t *)&sin[1];
2089 			if (udp->udp_state == TS_DATA_XFER) {
2090 				/*
2091 				 * connected, fill remote address too
2092 				 */
2093 				taa->REMADDR_length = sizeof (sin_t);
2094 				/* assumed 32-bit alignment */
2095 				taa->REMADDR_offset = taa->LOCADDR_offset +
2096 				    taa->LOCADDR_length;
2097 
2098 				sin = (sin_t *)(ackmp->b_rptr +
2099 				    taa->REMADDR_offset);
2100 				/* initialize */
2101 				*sin = sin_null;
2102 				sin->sin_family = AF_INET;
2103 				sin->sin_addr.s_addr =
2104 				    V4_PART_OF_V6(udp->udp_v6dst);
2105 				sin->sin_port = udp->udp_dstport;
2106 				ackmp->b_wptr = (uchar_t *)&sin[1];
2107 			}
2108 		} else {
2109 			taa->LOCADDR_length = sizeof (sin6_t);
2110 			sin6 = (sin6_t *)&taa[1];
2111 			/* Fill zeroes and then initialize non-zero fields */
2112 			*sin6 = sin6_null;
2113 			sin6->sin6_family = AF_INET6;
2114 			if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
2115 				sin6->sin6_addr = udp->udp_v6src;
2116 			} else {
2117 				/*
2118 				 * UNSPECIFIED
2119 				 * udp_v6src is not set, we might be bound to
2120 				 * broadcast/multicast. Use udp_bound_v6src as
2121 				 * local address instead (that could
2122 				 * also still be UNSPECIFIED)
2123 				 */
2124 				sin6->sin6_addr =
2125 				    udp->udp_bound_v6src;
2126 			}
2127 			sin6->sin6_port = udp->udp_port;
2128 			ackmp->b_wptr = (uchar_t *)&sin6[1];
2129 			if (udp->udp_state == TS_DATA_XFER) {
2130 				/*
2131 				 * connected, fill remote address too
2132 				 */
2133 				taa->REMADDR_length = sizeof (sin6_t);
2134 				/* assumed 32-bit alignment */
2135 				taa->REMADDR_offset = taa->LOCADDR_offset +
2136 				    taa->LOCADDR_length;
2137 
2138 				sin6 = (sin6_t *)(ackmp->b_rptr +
2139 				    taa->REMADDR_offset);
2140 				/* initialize */
2141 				*sin6 = sin6_null;
2142 				sin6->sin6_family = AF_INET6;
2143 				sin6->sin6_addr = udp->udp_v6dst;
2144 				sin6->sin6_port =  udp->udp_dstport;
2145 				ackmp->b_wptr = (uchar_t *)&sin6[1];
2146 			}
2147 			ackmp->b_wptr = (uchar_t *)&sin6[1];
2148 		}
2149 	}
2150 	rw_exit(&udp->udp_rwlock);
2151 	ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim);
2152 	qreply(q, ackmp);
2153 }
2154 
2155 static void
2156 udp_copy_info(struct T_info_ack *tap, udp_t *udp)
2157 {
2158 	if (udp->udp_family == AF_INET) {
2159 		*tap = udp_g_t_info_ack_ipv4;
2160 	} else {
2161 		*tap = udp_g_t_info_ack_ipv6;
2162 	}
2163 	tap->CURRENT_state = udp->udp_state;
2164 	tap->OPT_size = udp_max_optsize;
2165 }
2166 
2167 /*
2168  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
2169  * udp_wput.  Much of the T_CAPABILITY_ACK information is copied from
2170  * udp_g_t_info_ack.  The current state of the stream is copied from
2171  * udp_state.
2172  */
2173 static void
2174 udp_capability_req(queue_t *q, mblk_t *mp)
2175 {
2176 	t_uscalar_t		cap_bits1;
2177 	struct T_capability_ack	*tcap;
2178 	udp_t	*udp = Q_TO_UDP(q);
2179 
2180 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
2181 
2182 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
2183 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
2184 	if (!mp)
2185 		return;
2186 
2187 	tcap = (struct T_capability_ack *)mp->b_rptr;
2188 	tcap->CAP_bits1 = 0;
2189 
2190 	if (cap_bits1 & TC1_INFO) {
2191 		udp_copy_info(&tcap->INFO_ack, udp);
2192 		tcap->CAP_bits1 |= TC1_INFO;
2193 	}
2194 
2195 	qreply(q, mp);
2196 }
2197 
2198 /*
2199  * This routine responds to T_INFO_REQ messages.  It is called by udp_wput.
2200  * Most of the T_INFO_ACK information is copied from udp_g_t_info_ack.
2201  * The current state of the stream is copied from udp_state.
2202  */
2203 static void
2204 udp_info_req(queue_t *q, mblk_t *mp)
2205 {
2206 	udp_t *udp = Q_TO_UDP(q);
2207 
2208 	/* Create a T_INFO_ACK message. */
2209 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
2210 	    T_INFO_ACK);
2211 	if (!mp)
2212 		return;
2213 	udp_copy_info((struct T_info_ack *)mp->b_rptr, udp);
2214 	qreply(q, mp);
2215 }
2216 
2217 /*
2218  * IP recognizes seven kinds of bind requests:
2219  *
2220  * - A zero-length address binds only to the protocol number.
2221  *
2222  * - A 4-byte address is treated as a request to
2223  * validate that the address is a valid local IPv4
2224  * address, appropriate for an application to bind to.
2225  * IP does the verification, but does not make any note
2226  * of the address at this time.
2227  *
2228  * - A 16-byte address contains is treated as a request
2229  * to validate a local IPv6 address, as the 4-byte
2230  * address case above.
2231  *
2232  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
2233  * use it for the inbound fanout of packets.
2234  *
2235  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
2236  * use it for the inbound fanout of packets.
2237  *
2238  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
2239  * information consisting of local and remote addresses
2240  * and ports.  In this case, the addresses are both
2241  * validated as appropriate for this operation, and, if
2242  * so, the information is retained for use in the
2243  * inbound fanout.
2244  *
2245  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
2246  * fanout information, like the 12-byte case above.
2247  *
2248  * IP will also fill in the IRE request mblk with information
2249  * regarding our peer.  In all cases, we notify IP of our protocol
2250  * type by appending a single protocol byte to the bind request.
2251  */
2252 static mblk_t *
2253 udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, t_scalar_t addr_length)
2254 {
2255 	char	*cp;
2256 	mblk_t	*mp;
2257 	struct T_bind_req *tbr;
2258 	ipa_conn_t	*ac;
2259 	ipa6_conn_t	*ac6;
2260 	sin_t		*sin;
2261 	sin6_t		*sin6;
2262 
2263 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
2264 	ASSERT(RW_LOCK_HELD(&udp->udp_rwlock));
2265 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
2266 	if (!mp)
2267 		return (mp);
2268 	mp->b_datap->db_type = M_PROTO;
2269 	tbr = (struct T_bind_req *)mp->b_rptr;
2270 	tbr->PRIM_type = bind_prim;
2271 	tbr->ADDR_offset = sizeof (*tbr);
2272 	tbr->CONIND_number = 0;
2273 	tbr->ADDR_length = addr_length;
2274 	cp = (char *)&tbr[1];
2275 	switch (addr_length) {
2276 	case sizeof (ipa_conn_t):
2277 		ASSERT(udp->udp_family == AF_INET);
2278 		/* Append a request for an IRE */
2279 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2280 		if (!mp->b_cont) {
2281 			freemsg(mp);
2282 			return (NULL);
2283 		}
2284 		mp->b_cont->b_wptr += sizeof (ire_t);
2285 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2286 
2287 		/* cp known to be 32 bit aligned */
2288 		ac = (ipa_conn_t *)cp;
2289 		ac->ac_laddr = V4_PART_OF_V6(udp->udp_v6src);
2290 		ac->ac_faddr = V4_PART_OF_V6(udp->udp_v6dst);
2291 		ac->ac_fport = udp->udp_dstport;
2292 		ac->ac_lport = udp->udp_port;
2293 		break;
2294 
2295 	case sizeof (ipa6_conn_t):
2296 		ASSERT(udp->udp_family == AF_INET6);
2297 		/* Append a request for an IRE */
2298 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2299 		if (!mp->b_cont) {
2300 			freemsg(mp);
2301 			return (NULL);
2302 		}
2303 		mp->b_cont->b_wptr += sizeof (ire_t);
2304 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2305 
2306 		/* cp known to be 32 bit aligned */
2307 		ac6 = (ipa6_conn_t *)cp;
2308 		ac6->ac6_laddr = udp->udp_v6src;
2309 		ac6->ac6_faddr = udp->udp_v6dst;
2310 		ac6->ac6_fport = udp->udp_dstport;
2311 		ac6->ac6_lport = udp->udp_port;
2312 		break;
2313 
2314 	case sizeof (sin_t):
2315 		ASSERT(udp->udp_family == AF_INET);
2316 		/* Append a request for an IRE */
2317 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2318 		if (!mp->b_cont) {
2319 			freemsg(mp);
2320 			return (NULL);
2321 		}
2322 		mp->b_cont->b_wptr += sizeof (ire_t);
2323 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2324 
2325 		sin = (sin_t *)cp;
2326 		*sin = sin_null;
2327 		sin->sin_family = AF_INET;
2328 		sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_bound_v6src);
2329 		sin->sin_port = udp->udp_port;
2330 		break;
2331 
2332 	case sizeof (sin6_t):
2333 		ASSERT(udp->udp_family == AF_INET6);
2334 		/* Append a request for an IRE */
2335 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2336 		if (!mp->b_cont) {
2337 			freemsg(mp);
2338 			return (NULL);
2339 		}
2340 		mp->b_cont->b_wptr += sizeof (ire_t);
2341 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2342 
2343 		sin6 = (sin6_t *)cp;
2344 		*sin6 = sin6_null;
2345 		sin6->sin6_family = AF_INET6;
2346 		sin6->sin6_addr = udp->udp_bound_v6src;
2347 		sin6->sin6_port = udp->udp_port;
2348 		break;
2349 	}
2350 	/* Add protocol number to end */
2351 	cp[addr_length] = (char)IPPROTO_UDP;
2352 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
2353 	return (mp);
2354 }
2355 
2356 /* For /dev/udp aka AF_INET open */
2357 static int
2358 udp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2359 {
2360 	return (udp_open(q, devp, flag, sflag, credp, B_FALSE));
2361 }
2362 
2363 /* For /dev/udp6 aka AF_INET6 open */
2364 static int
2365 udp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2366 {
2367 	return (udp_open(q, devp, flag, sflag, credp, B_TRUE));
2368 }
2369 
2370 /*
2371  * This is the open routine for udp.  It allocates a udp_t structure for
2372  * the stream and, on the first open of the module, creates an ND table.
2373  */
2374 /*ARGSUSED2*/
2375 static int
2376 udp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
2377     boolean_t isv6)
2378 {
2379 	int		err;
2380 	udp_t		*udp;
2381 	conn_t		*connp;
2382 	dev_t		conn_dev;
2383 	zoneid_t	zoneid;
2384 	netstack_t	*ns;
2385 	udp_stack_t	*us;
2386 	vmem_t		*minor_arena;
2387 
2388 	TRACE_1(TR_FAC_UDP, TR_UDP_OPEN, "udp_open: q %p", q);
2389 
2390 	/* If the stream is already open, return immediately. */
2391 	if (q->q_ptr != NULL)
2392 		return (0);
2393 
2394 	if (sflag == MODOPEN)
2395 		return (EINVAL);
2396 
2397 	ns = netstack_find_by_cred(credp);
2398 	ASSERT(ns != NULL);
2399 	us = ns->netstack_udp;
2400 	ASSERT(us != NULL);
2401 
2402 	/*
2403 	 * For exclusive stacks we set the zoneid to zero
2404 	 * to make UDP operate as if in the global zone.
2405 	 */
2406 	if (ns->netstack_stackid != GLOBAL_NETSTACKID)
2407 		zoneid = GLOBAL_ZONEID;
2408 	else
2409 		zoneid = crgetzoneid(credp);
2410 
2411 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
2412 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
2413 		minor_arena = ip_minor_arena_la;
2414 	} else {
2415 		/*
2416 		 * Either minor numbers in the large arena were exhausted
2417 		 * or a non socket application is doing the open.
2418 		 * Try to allocate from the small arena.
2419 		 */
2420 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
2421 			netstack_rele(ns);
2422 			return (EBUSY);
2423 		}
2424 		minor_arena = ip_minor_arena_sa;
2425 	}
2426 
2427 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
2428 
2429 	connp = ipcl_conn_create(IPCL_UDPCONN, KM_SLEEP, ns);
2430 	connp->conn_dev = conn_dev;
2431 	connp->conn_minor_arena = minor_arena;
2432 	udp = connp->conn_udp;
2433 
2434 	/*
2435 	 * ipcl_conn_create did a netstack_hold. Undo the hold that was
2436 	 * done by netstack_find_by_cred()
2437 	 */
2438 	netstack_rele(ns);
2439 
2440 	/*
2441 	 * Initialize the udp_t structure for this stream.
2442 	 */
2443 	q->q_ptr = connp;
2444 	WR(q)->q_ptr = connp;
2445 	connp->conn_rq = q;
2446 	connp->conn_wq = WR(q);
2447 
2448 	rw_enter(&udp->udp_rwlock, RW_WRITER);
2449 	ASSERT(connp->conn_ulp == IPPROTO_UDP);
2450 	ASSERT(connp->conn_udp == udp);
2451 	ASSERT(udp->udp_connp == connp);
2452 
2453 	/* Set the initial state of the stream and the privilege status. */
2454 	udp->udp_state = TS_UNBND;
2455 	if (isv6) {
2456 		udp->udp_family = AF_INET6;
2457 		udp->udp_ipversion = IPV6_VERSION;
2458 		udp->udp_max_hdr_len = IPV6_HDR_LEN + UDPH_SIZE;
2459 		udp->udp_ttl = us->us_ipv6_hoplimit;
2460 		connp->conn_af_isv6 = B_TRUE;
2461 		connp->conn_flags |= IPCL_ISV6;
2462 	} else {
2463 		udp->udp_family = AF_INET;
2464 		udp->udp_ipversion = IPV4_VERSION;
2465 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE;
2466 		udp->udp_ttl = us->us_ipv4_ttl;
2467 		connp->conn_af_isv6 = B_FALSE;
2468 		connp->conn_flags &= ~IPCL_ISV6;
2469 	}
2470 
2471 	udp->udp_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2472 	udp->udp_pending_op = -1;
2473 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
2474 	connp->conn_zoneid = zoneid;
2475 
2476 	udp->udp_open_time = lbolt64;
2477 	udp->udp_open_pid = curproc->p_pid;
2478 
2479 	/*
2480 	 * If the caller has the process-wide flag set, then default to MAC
2481 	 * exempt mode.  This allows read-down to unlabeled hosts.
2482 	 */
2483 	if (getpflags(NET_MAC_AWARE, credp) != 0)
2484 		connp->conn_mac_exempt = B_TRUE;
2485 
2486 	if (flag & SO_SOCKSTR) {
2487 		connp->conn_flags |= IPCL_SOCKET;
2488 		udp->udp_issocket = B_TRUE;
2489 		udp->udp_direct_sockfs = B_TRUE;
2490 	}
2491 
2492 	connp->conn_ulp_labeled = is_system_labeled();
2493 
2494 	udp->udp_us = us;
2495 
2496 	q->q_hiwat = us->us_recv_hiwat;
2497 	WR(q)->q_hiwat = us->us_xmit_hiwat;
2498 	WR(q)->q_lowat = us->us_xmit_lowat;
2499 
2500 	connp->conn_recv = udp_input;
2501 	crhold(credp);
2502 	connp->conn_cred = credp;
2503 
2504 	mutex_enter(&connp->conn_lock);
2505 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2506 	mutex_exit(&connp->conn_lock);
2507 
2508 	qprocson(q);
2509 
2510 	if (udp->udp_family == AF_INET6) {
2511 		/* Build initial header template for transmit */
2512 		if ((err = udp_build_hdrs(udp)) != 0) {
2513 			rw_exit(&udp->udp_rwlock);
2514 			qprocsoff(q);
2515 			ipcl_conn_destroy(connp);
2516 			return (err);
2517 		}
2518 	}
2519 	rw_exit(&udp->udp_rwlock);
2520 
2521 	/* Set the Stream head write offset and high watermark. */
2522 	(void) mi_set_sth_wroff(q,
2523 	    udp->udp_max_hdr_len + us->us_wroff_extra);
2524 	(void) mi_set_sth_hiwat(q, udp_set_rcv_hiwat(udp, q->q_hiwat));
2525 
2526 	return (0);
2527 }
2528 
2529 /*
2530  * Which UDP options OK to set through T_UNITDATA_REQ...
2531  */
2532 /* ARGSUSED */
2533 static boolean_t
2534 udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name)
2535 {
2536 	return (B_TRUE);
2537 }
2538 
2539 /*
2540  * This routine gets default values of certain options whose default
2541  * values are maintained by protcol specific code
2542  */
2543 /* ARGSUSED */
2544 int
2545 udp_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
2546 {
2547 	udp_t		*udp = Q_TO_UDP(q);
2548 	udp_stack_t *us = udp->udp_us;
2549 	int *i1 = (int *)ptr;
2550 
2551 	switch (level) {
2552 	case IPPROTO_IP:
2553 		switch (name) {
2554 		case IP_MULTICAST_TTL:
2555 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL;
2556 			return (sizeof (uchar_t));
2557 		case IP_MULTICAST_LOOP:
2558 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP;
2559 			return (sizeof (uchar_t));
2560 		}
2561 		break;
2562 	case IPPROTO_IPV6:
2563 		switch (name) {
2564 		case IPV6_MULTICAST_HOPS:
2565 			*i1 = IP_DEFAULT_MULTICAST_TTL;
2566 			return (sizeof (int));
2567 		case IPV6_MULTICAST_LOOP:
2568 			*i1 = IP_DEFAULT_MULTICAST_LOOP;
2569 			return (sizeof (int));
2570 		case IPV6_UNICAST_HOPS:
2571 			*i1 = us->us_ipv6_hoplimit;
2572 			return (sizeof (int));
2573 		}
2574 		break;
2575 	}
2576 	return (-1);
2577 }
2578 
2579 /*
2580  * This routine retrieves the current status of socket options.
2581  * It returns the size of the option retrieved.
2582  */
2583 int
2584 udp_opt_get_locked(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
2585 {
2586 	int	*i1 = (int *)ptr;
2587 	conn_t	*connp;
2588 	udp_t	*udp;
2589 	ip6_pkt_t *ipp;
2590 	int	len;
2591 	udp_stack_t	*us;
2592 
2593 	connp = Q_TO_CONN(q);
2594 	udp = connp->conn_udp;
2595 	ipp = &udp->udp_sticky_ipp;
2596 	us = udp->udp_us;
2597 
2598 	switch (level) {
2599 	case SOL_SOCKET:
2600 		switch (name) {
2601 		case SO_DEBUG:
2602 			*i1 = udp->udp_debug;
2603 			break;	/* goto sizeof (int) option return */
2604 		case SO_REUSEADDR:
2605 			*i1 = udp->udp_reuseaddr;
2606 			break;	/* goto sizeof (int) option return */
2607 		case SO_TYPE:
2608 			*i1 = SOCK_DGRAM;
2609 			break;	/* goto sizeof (int) option return */
2610 
2611 		/*
2612 		 * The following three items are available here,
2613 		 * but are only meaningful to IP.
2614 		 */
2615 		case SO_DONTROUTE:
2616 			*i1 = udp->udp_dontroute;
2617 			break;	/* goto sizeof (int) option return */
2618 		case SO_USELOOPBACK:
2619 			*i1 = udp->udp_useloopback;
2620 			break;	/* goto sizeof (int) option return */
2621 		case SO_BROADCAST:
2622 			*i1 = udp->udp_broadcast;
2623 			break;	/* goto sizeof (int) option return */
2624 
2625 		case SO_SNDBUF:
2626 			*i1 = q->q_hiwat;
2627 			break;	/* goto sizeof (int) option return */
2628 		case SO_RCVBUF:
2629 			*i1 = RD(q)->q_hiwat;
2630 			break;	/* goto sizeof (int) option return */
2631 		case SO_DGRAM_ERRIND:
2632 			*i1 = udp->udp_dgram_errind;
2633 			break;	/* goto sizeof (int) option return */
2634 		case SO_RECVUCRED:
2635 			*i1 = udp->udp_recvucred;
2636 			break;	/* goto sizeof (int) option return */
2637 		case SO_TIMESTAMP:
2638 			*i1 = udp->udp_timestamp;
2639 			break;	/* goto sizeof (int) option return */
2640 		case SO_ANON_MLP:
2641 			*i1 = connp->conn_anon_mlp;
2642 			break;	/* goto sizeof (int) option return */
2643 		case SO_MAC_EXEMPT:
2644 			*i1 = connp->conn_mac_exempt;
2645 			break;	/* goto sizeof (int) option return */
2646 		case SO_ALLZONES:
2647 			*i1 = connp->conn_allzones;
2648 			break;	/* goto sizeof (int) option return */
2649 		case SO_EXCLBIND:
2650 			*i1 = udp->udp_exclbind ? SO_EXCLBIND : 0;
2651 			break;
2652 		case SO_PROTOTYPE:
2653 			*i1 = IPPROTO_UDP;
2654 			break;
2655 		case SO_DOMAIN:
2656 			*i1 = udp->udp_family;
2657 			break;
2658 		default:
2659 			return (-1);
2660 		}
2661 		break;
2662 	case IPPROTO_IP:
2663 		if (udp->udp_family != AF_INET)
2664 			return (-1);
2665 		switch (name) {
2666 		case IP_OPTIONS:
2667 		case T_IP_OPTIONS:
2668 			len = udp->udp_ip_rcv_options_len - udp->udp_label_len;
2669 			if (len > 0) {
2670 				bcopy(udp->udp_ip_rcv_options +
2671 				    udp->udp_label_len, ptr, len);
2672 			}
2673 			return (len);
2674 		case IP_TOS:
2675 		case T_IP_TOS:
2676 			*i1 = (int)udp->udp_type_of_service;
2677 			break;	/* goto sizeof (int) option return */
2678 		case IP_TTL:
2679 			*i1 = (int)udp->udp_ttl;
2680 			break;	/* goto sizeof (int) option return */
2681 		case IP_DHCPINIT_IF:
2682 			return (-EINVAL);
2683 		case IP_NEXTHOP:
2684 		case IP_RECVPKTINFO:
2685 			/*
2686 			 * This also handles IP_PKTINFO.
2687 			 * IP_PKTINFO and IP_RECVPKTINFO have the same value.
2688 			 * Differentiation is based on the size of the argument
2689 			 * passed in.
2690 			 * This option is handled in IP which will return an
2691 			 * error for IP_PKTINFO as it's not supported as a
2692 			 * sticky option.
2693 			 */
2694 			return (-EINVAL);
2695 		case IP_MULTICAST_IF:
2696 			/* 0 address if not set */
2697 			*(ipaddr_t *)ptr = udp->udp_multicast_if_addr;
2698 			return (sizeof (ipaddr_t));
2699 		case IP_MULTICAST_TTL:
2700 			*(uchar_t *)ptr = udp->udp_multicast_ttl;
2701 			return (sizeof (uchar_t));
2702 		case IP_MULTICAST_LOOP:
2703 			*ptr = connp->conn_multicast_loop;
2704 			return (sizeof (uint8_t));
2705 		case IP_RECVOPTS:
2706 			*i1 = udp->udp_recvopts;
2707 			break;	/* goto sizeof (int) option return */
2708 		case IP_RECVDSTADDR:
2709 			*i1 = udp->udp_recvdstaddr;
2710 			break;	/* goto sizeof (int) option return */
2711 		case IP_RECVIF:
2712 			*i1 = udp->udp_recvif;
2713 			break;	/* goto sizeof (int) option return */
2714 		case IP_RECVSLLA:
2715 			*i1 = udp->udp_recvslla;
2716 			break;	/* goto sizeof (int) option return */
2717 		case IP_RECVTTL:
2718 			*i1 = udp->udp_recvttl;
2719 			break;	/* goto sizeof (int) option return */
2720 		case IP_ADD_MEMBERSHIP:
2721 		case IP_DROP_MEMBERSHIP:
2722 		case IP_BLOCK_SOURCE:
2723 		case IP_UNBLOCK_SOURCE:
2724 		case IP_ADD_SOURCE_MEMBERSHIP:
2725 		case IP_DROP_SOURCE_MEMBERSHIP:
2726 		case MCAST_JOIN_GROUP:
2727 		case MCAST_LEAVE_GROUP:
2728 		case MCAST_BLOCK_SOURCE:
2729 		case MCAST_UNBLOCK_SOURCE:
2730 		case MCAST_JOIN_SOURCE_GROUP:
2731 		case MCAST_LEAVE_SOURCE_GROUP:
2732 		case IP_DONTFAILOVER_IF:
2733 			/* cannot "get" the value for these */
2734 			return (-1);
2735 		case IP_BOUND_IF:
2736 			/* Zero if not set */
2737 			*i1 = udp->udp_bound_if;
2738 			break;	/* goto sizeof (int) option return */
2739 		case IP_UNSPEC_SRC:
2740 			*i1 = udp->udp_unspec_source;
2741 			break;	/* goto sizeof (int) option return */
2742 		case IP_BROADCAST_TTL:
2743 			*(uchar_t *)ptr = connp->conn_broadcast_ttl;
2744 			return (sizeof (uchar_t));
2745 		default:
2746 			return (-1);
2747 		}
2748 		break;
2749 	case IPPROTO_IPV6:
2750 		if (udp->udp_family != AF_INET6)
2751 			return (-1);
2752 		switch (name) {
2753 		case IPV6_UNICAST_HOPS:
2754 			*i1 = (unsigned int)udp->udp_ttl;
2755 			break;	/* goto sizeof (int) option return */
2756 		case IPV6_MULTICAST_IF:
2757 			/* 0 index if not set */
2758 			*i1 = udp->udp_multicast_if_index;
2759 			break;	/* goto sizeof (int) option return */
2760 		case IPV6_MULTICAST_HOPS:
2761 			*i1 = udp->udp_multicast_ttl;
2762 			break;	/* goto sizeof (int) option return */
2763 		case IPV6_MULTICAST_LOOP:
2764 			*i1 = connp->conn_multicast_loop;
2765 			break;	/* goto sizeof (int) option return */
2766 		case IPV6_JOIN_GROUP:
2767 		case IPV6_LEAVE_GROUP:
2768 		case MCAST_JOIN_GROUP:
2769 		case MCAST_LEAVE_GROUP:
2770 		case MCAST_BLOCK_SOURCE:
2771 		case MCAST_UNBLOCK_SOURCE:
2772 		case MCAST_JOIN_SOURCE_GROUP:
2773 		case MCAST_LEAVE_SOURCE_GROUP:
2774 			/* cannot "get" the value for these */
2775 			return (-1);
2776 		case IPV6_BOUND_IF:
2777 			/* Zero if not set */
2778 			*i1 = udp->udp_bound_if;
2779 			break;	/* goto sizeof (int) option return */
2780 		case IPV6_UNSPEC_SRC:
2781 			*i1 = udp->udp_unspec_source;
2782 			break;	/* goto sizeof (int) option return */
2783 		case IPV6_RECVPKTINFO:
2784 			*i1 = udp->udp_ip_recvpktinfo;
2785 			break;	/* goto sizeof (int) option return */
2786 		case IPV6_RECVTCLASS:
2787 			*i1 = udp->udp_ipv6_recvtclass;
2788 			break;	/* goto sizeof (int) option return */
2789 		case IPV6_RECVPATHMTU:
2790 			*i1 = udp->udp_ipv6_recvpathmtu;
2791 			break;	/* goto sizeof (int) option return */
2792 		case IPV6_RECVHOPLIMIT:
2793 			*i1 = udp->udp_ipv6_recvhoplimit;
2794 			break;	/* goto sizeof (int) option return */
2795 		case IPV6_RECVHOPOPTS:
2796 			*i1 = udp->udp_ipv6_recvhopopts;
2797 			break;	/* goto sizeof (int) option return */
2798 		case IPV6_RECVDSTOPTS:
2799 			*i1 = udp->udp_ipv6_recvdstopts;
2800 			break;	/* goto sizeof (int) option return */
2801 		case _OLD_IPV6_RECVDSTOPTS:
2802 			*i1 = udp->udp_old_ipv6_recvdstopts;
2803 			break;	/* goto sizeof (int) option return */
2804 		case IPV6_RECVRTHDRDSTOPTS:
2805 			*i1 = udp->udp_ipv6_recvrthdrdstopts;
2806 			break;	/* goto sizeof (int) option return */
2807 		case IPV6_RECVRTHDR:
2808 			*i1 = udp->udp_ipv6_recvrthdr;
2809 			break;	/* goto sizeof (int) option return */
2810 		case IPV6_PKTINFO: {
2811 			/* XXX assumes that caller has room for max size! */
2812 			struct in6_pktinfo *pkti;
2813 
2814 			pkti = (struct in6_pktinfo *)ptr;
2815 			if (ipp->ipp_fields & IPPF_IFINDEX)
2816 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
2817 			else
2818 				pkti->ipi6_ifindex = 0;
2819 			if (ipp->ipp_fields & IPPF_ADDR)
2820 				pkti->ipi6_addr = ipp->ipp_addr;
2821 			else
2822 				pkti->ipi6_addr = ipv6_all_zeros;
2823 			return (sizeof (struct in6_pktinfo));
2824 		}
2825 		case IPV6_TCLASS:
2826 			if (ipp->ipp_fields & IPPF_TCLASS)
2827 				*i1 = ipp->ipp_tclass;
2828 			else
2829 				*i1 = IPV6_FLOW_TCLASS(
2830 				    IPV6_DEFAULT_VERS_AND_FLOW);
2831 			break;	/* goto sizeof (int) option return */
2832 		case IPV6_NEXTHOP: {
2833 			sin6_t *sin6 = (sin6_t *)ptr;
2834 
2835 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
2836 				return (0);
2837 			*sin6 = sin6_null;
2838 			sin6->sin6_family = AF_INET6;
2839 			sin6->sin6_addr = ipp->ipp_nexthop;
2840 			return (sizeof (sin6_t));
2841 		}
2842 		case IPV6_HOPOPTS:
2843 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
2844 				return (0);
2845 			if (ipp->ipp_hopoptslen <= udp->udp_label_len_v6)
2846 				return (0);
2847 			/*
2848 			 * The cipso/label option is added by kernel.
2849 			 * User is not usually aware of this option.
2850 			 * We copy out the hbh opt after the label option.
2851 			 */
2852 			bcopy((char *)ipp->ipp_hopopts + udp->udp_label_len_v6,
2853 			    ptr, ipp->ipp_hopoptslen - udp->udp_label_len_v6);
2854 			if (udp->udp_label_len_v6 > 0) {
2855 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
2856 				ptr[1] = (ipp->ipp_hopoptslen -
2857 				    udp->udp_label_len_v6 + 7) / 8 - 1;
2858 			}
2859 			return (ipp->ipp_hopoptslen - udp->udp_label_len_v6);
2860 		case IPV6_RTHDRDSTOPTS:
2861 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
2862 				return (0);
2863 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
2864 			return (ipp->ipp_rtdstoptslen);
2865 		case IPV6_RTHDR:
2866 			if (!(ipp->ipp_fields & IPPF_RTHDR))
2867 				return (0);
2868 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
2869 			return (ipp->ipp_rthdrlen);
2870 		case IPV6_DSTOPTS:
2871 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
2872 				return (0);
2873 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
2874 			return (ipp->ipp_dstoptslen);
2875 		case IPV6_PATHMTU:
2876 			return (ip_fill_mtuinfo(&udp->udp_v6dst,
2877 			    udp->udp_dstport, (struct ip6_mtuinfo *)ptr,
2878 			    us->us_netstack));
2879 		default:
2880 			return (-1);
2881 		}
2882 		break;
2883 	case IPPROTO_UDP:
2884 		switch (name) {
2885 		case UDP_ANONPRIVBIND:
2886 			*i1 = udp->udp_anon_priv_bind;
2887 			break;
2888 		case UDP_EXCLBIND:
2889 			*i1 = udp->udp_exclbind ? UDP_EXCLBIND : 0;
2890 			break;
2891 		case UDP_RCVHDR:
2892 			*i1 = udp->udp_rcvhdr ? 1 : 0;
2893 			break;
2894 		case UDP_NAT_T_ENDPOINT:
2895 			*i1 = udp->udp_nat_t_endpoint;
2896 			break;
2897 		default:
2898 			return (-1);
2899 		}
2900 		break;
2901 	default:
2902 		return (-1);
2903 	}
2904 	return (sizeof (int));
2905 }
2906 
2907 int
2908 udp_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
2909 {
2910 	udp_t	*udp;
2911 	int	err;
2912 
2913 	udp = Q_TO_UDP(q);
2914 
2915 	rw_enter(&udp->udp_rwlock, RW_READER);
2916 	err = udp_opt_get_locked(q, level, name, ptr);
2917 	rw_exit(&udp->udp_rwlock);
2918 	return (err);
2919 }
2920 
2921 /*
2922  * This routine sets socket options.
2923  */
2924 /* ARGSUSED */
2925 int
2926 udp_opt_set_locked(queue_t *q, uint_t optset_context, int level,
2927     int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
2928     uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
2929 {
2930 	udpattrs_t *attrs = thisdg_attrs;
2931 	int	*i1 = (int *)invalp;
2932 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
2933 	boolean_t checkonly;
2934 	int	error;
2935 	conn_t	*connp;
2936 	udp_t	*udp;
2937 	uint_t	newlen;
2938 	udp_stack_t *us;
2939 	size_t	sth_wroff;
2940 
2941 	connp = Q_TO_CONN(q);
2942 	udp = connp->conn_udp;
2943 	us = udp->udp_us;
2944 
2945 	switch (optset_context) {
2946 	case SETFN_OPTCOM_CHECKONLY:
2947 		checkonly = B_TRUE;
2948 		/*
2949 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
2950 		 * inlen != 0 implies value supplied and
2951 		 * 	we have to "pretend" to set it.
2952 		 * inlen == 0 implies that there is no
2953 		 * 	value part in T_CHECK request and just validation
2954 		 * done elsewhere should be enough, we just return here.
2955 		 */
2956 		if (inlen == 0) {
2957 			*outlenp = 0;
2958 			return (0);
2959 		}
2960 		break;
2961 	case SETFN_OPTCOM_NEGOTIATE:
2962 		checkonly = B_FALSE;
2963 		break;
2964 	case SETFN_UD_NEGOTIATE:
2965 	case SETFN_CONN_NEGOTIATE:
2966 		checkonly = B_FALSE;
2967 		/*
2968 		 * Negotiating local and "association-related" options
2969 		 * through T_UNITDATA_REQ.
2970 		 *
2971 		 * Following routine can filter out ones we do not
2972 		 * want to be "set" this way.
2973 		 */
2974 		if (!udp_opt_allow_udr_set(level, name)) {
2975 			*outlenp = 0;
2976 			return (EINVAL);
2977 		}
2978 		break;
2979 	default:
2980 		/*
2981 		 * We should never get here
2982 		 */
2983 		*outlenp = 0;
2984 		return (EINVAL);
2985 	}
2986 
2987 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
2988 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
2989 
2990 	/*
2991 	 * For fixed length options, no sanity check
2992 	 * of passed in length is done. It is assumed *_optcom_req()
2993 	 * routines do the right thing.
2994 	 */
2995 
2996 	switch (level) {
2997 	case SOL_SOCKET:
2998 		switch (name) {
2999 		case SO_REUSEADDR:
3000 			if (!checkonly)
3001 				udp->udp_reuseaddr = onoff;
3002 			break;
3003 		case SO_DEBUG:
3004 			if (!checkonly)
3005 				udp->udp_debug = onoff;
3006 			break;
3007 		/*
3008 		 * The following three items are available here,
3009 		 * but are only meaningful to IP.
3010 		 */
3011 		case SO_DONTROUTE:
3012 			if (!checkonly)
3013 				udp->udp_dontroute = onoff;
3014 			break;
3015 		case SO_USELOOPBACK:
3016 			if (!checkonly)
3017 				udp->udp_useloopback = onoff;
3018 			break;
3019 		case SO_BROADCAST:
3020 			if (!checkonly)
3021 				udp->udp_broadcast = onoff;
3022 			break;
3023 
3024 		case SO_SNDBUF:
3025 			if (*i1 > us->us_max_buf) {
3026 				*outlenp = 0;
3027 				return (ENOBUFS);
3028 			}
3029 			if (!checkonly) {
3030 				q->q_hiwat = *i1;
3031 			}
3032 			break;
3033 		case SO_RCVBUF:
3034 			if (*i1 > us->us_max_buf) {
3035 				*outlenp = 0;
3036 				return (ENOBUFS);
3037 			}
3038 			if (!checkonly) {
3039 				RD(q)->q_hiwat = *i1;
3040 				rw_exit(&udp->udp_rwlock);
3041 				(void) mi_set_sth_hiwat(RD(q),
3042 				    udp_set_rcv_hiwat(udp, *i1));
3043 				rw_enter(&udp->udp_rwlock, RW_WRITER);
3044 			}
3045 			break;
3046 		case SO_DGRAM_ERRIND:
3047 			if (!checkonly)
3048 				udp->udp_dgram_errind = onoff;
3049 			break;
3050 		case SO_RECVUCRED:
3051 			if (!checkonly)
3052 				udp->udp_recvucred = onoff;
3053 			break;
3054 		case SO_ALLZONES:
3055 			/*
3056 			 * "soft" error (negative)
3057 			 * option not handled at this level
3058 			 * Do not modify *outlenp.
3059 			 */
3060 			return (-EINVAL);
3061 		case SO_TIMESTAMP:
3062 			if (!checkonly)
3063 				udp->udp_timestamp = onoff;
3064 			break;
3065 		case SO_ANON_MLP:
3066 			/* Pass option along to IP level for handling */
3067 			return (-EINVAL);
3068 		case SO_MAC_EXEMPT:
3069 			/* Pass option along to IP level for handling */
3070 			return (-EINVAL);
3071 		case SCM_UCRED: {
3072 			struct ucred_s *ucr;
3073 			cred_t *cr, *newcr;
3074 			ts_label_t *tsl;
3075 
3076 			/*
3077 			 * Only sockets that have proper privileges and are
3078 			 * bound to MLPs will have any other value here, so
3079 			 * this implicitly tests for privilege to set label.
3080 			 */
3081 			if (connp->conn_mlp_type == mlptSingle)
3082 				break;
3083 			ucr = (struct ucred_s *)invalp;
3084 			if (inlen != ucredsize ||
3085 			    ucr->uc_labeloff < sizeof (*ucr) ||
3086 			    ucr->uc_labeloff + sizeof (bslabel_t) > inlen)
3087 				return (EINVAL);
3088 			if (!checkonly) {
3089 				mblk_t *mb;
3090 
3091 				if (attrs == NULL ||
3092 				    (mb = attrs->udpattr_mb) == NULL)
3093 					return (EINVAL);
3094 				if ((cr = DB_CRED(mb)) == NULL)
3095 					cr = udp->udp_connp->conn_cred;
3096 				ASSERT(cr != NULL);
3097 				if ((tsl = crgetlabel(cr)) == NULL)
3098 					return (EINVAL);
3099 				newcr = copycred_from_bslabel(cr, UCLABEL(ucr),
3100 				    tsl->tsl_doi, KM_NOSLEEP);
3101 				if (newcr == NULL)
3102 					return (ENOSR);
3103 				mblk_setcred(mb, newcr);
3104 				attrs->udpattr_credset = B_TRUE;
3105 				crfree(newcr);
3106 			}
3107 			break;
3108 		}
3109 		case SO_EXCLBIND:
3110 			if (!checkonly)
3111 				udp->udp_exclbind = onoff;
3112 			break;
3113 		default:
3114 			*outlenp = 0;
3115 			return (EINVAL);
3116 		}
3117 		break;
3118 	case IPPROTO_IP:
3119 		if (udp->udp_family != AF_INET) {
3120 			*outlenp = 0;
3121 			return (ENOPROTOOPT);
3122 		}
3123 		switch (name) {
3124 		case IP_OPTIONS:
3125 		case T_IP_OPTIONS:
3126 			/* Save options for use by IP. */
3127 			newlen = inlen + udp->udp_label_len;
3128 			if ((inlen & 0x3) || newlen > IP_MAX_OPT_LENGTH) {
3129 				*outlenp = 0;
3130 				return (EINVAL);
3131 			}
3132 			if (checkonly)
3133 				break;
3134 
3135 			/*
3136 			 * Update the stored options taking into account
3137 			 * any CIPSO option which we should not overwrite.
3138 			 */
3139 			if (!tsol_option_set(&udp->udp_ip_snd_options,
3140 			    &udp->udp_ip_snd_options_len,
3141 			    udp->udp_label_len, invalp, inlen)) {
3142 				*outlenp = 0;
3143 				return (ENOMEM);
3144 			}
3145 
3146 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
3147 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
3148 			sth_wroff = udp->udp_max_hdr_len + us->us_wroff_extra;
3149 			rw_exit(&udp->udp_rwlock);
3150 			(void) mi_set_sth_wroff(RD(q), sth_wroff);
3151 			rw_enter(&udp->udp_rwlock, RW_WRITER);
3152 			break;
3153 
3154 		case IP_TTL:
3155 			if (!checkonly) {
3156 				udp->udp_ttl = (uchar_t)*i1;
3157 			}
3158 			break;
3159 		case IP_TOS:
3160 		case T_IP_TOS:
3161 			if (!checkonly) {
3162 				udp->udp_type_of_service = (uchar_t)*i1;
3163 			}
3164 			break;
3165 		case IP_MULTICAST_IF: {
3166 			/*
3167 			 * TODO should check OPTMGMT reply and undo this if
3168 			 * there is an error.
3169 			 */
3170 			struct in_addr *inap = (struct in_addr *)invalp;
3171 			if (!checkonly) {
3172 				udp->udp_multicast_if_addr =
3173 				    inap->s_addr;
3174 			}
3175 			break;
3176 		}
3177 		case IP_MULTICAST_TTL:
3178 			if (!checkonly)
3179 				udp->udp_multicast_ttl = *invalp;
3180 			break;
3181 		case IP_MULTICAST_LOOP:
3182 			if (!checkonly)
3183 				connp->conn_multicast_loop = *invalp;
3184 			break;
3185 		case IP_RECVOPTS:
3186 			if (!checkonly)
3187 				udp->udp_recvopts = onoff;
3188 			break;
3189 		case IP_RECVDSTADDR:
3190 			if (!checkonly)
3191 				udp->udp_recvdstaddr = onoff;
3192 			break;
3193 		case IP_RECVIF:
3194 			if (!checkonly)
3195 				udp->udp_recvif = onoff;
3196 			break;
3197 		case IP_RECVSLLA:
3198 			if (!checkonly)
3199 				udp->udp_recvslla = onoff;
3200 			break;
3201 		case IP_RECVTTL:
3202 			if (!checkonly)
3203 				udp->udp_recvttl = onoff;
3204 			break;
3205 		case IP_PKTINFO: {
3206 			/*
3207 			 * This also handles IP_RECVPKTINFO.
3208 			 * IP_PKTINFO and IP_RECVPKTINFO have same value.
3209 			 * Differentiation is based on the size of the
3210 			 * argument passed in.
3211 			 */
3212 			struct in_pktinfo *pktinfop;
3213 			ip4_pkt_t *attr_pktinfop;
3214 
3215 			if (checkonly)
3216 				break;
3217 
3218 			if (inlen == sizeof (int)) {
3219 				/*
3220 				 * This is IP_RECVPKTINFO option.
3221 				 * Keep a local copy of whether this option is
3222 				 * set or not and pass it down to IP for
3223 				 * processing.
3224 				 */
3225 
3226 				udp->udp_ip_recvpktinfo = onoff;
3227 				return (-EINVAL);
3228 			}
3229 
3230 			if (attrs == NULL ||
3231 			    (attr_pktinfop = attrs->udpattr_ipp4) == NULL) {
3232 				/*
3233 				 * sticky option or no buffer to return
3234 				 * the results.
3235 				 */
3236 				return (EINVAL);
3237 			}
3238 
3239 			if (inlen != sizeof (struct in_pktinfo))
3240 				return (EINVAL);
3241 
3242 			pktinfop = (struct in_pktinfo *)invalp;
3243 
3244 			/*
3245 			 * At least one of the values should be specified
3246 			 */
3247 			if (pktinfop->ipi_ifindex == 0 &&
3248 			    pktinfop->ipi_spec_dst.s_addr == INADDR_ANY) {
3249 				return (EINVAL);
3250 			}
3251 
3252 			attr_pktinfop->ip4_addr = pktinfop->ipi_spec_dst.s_addr;
3253 			attr_pktinfop->ip4_ill_index = pktinfop->ipi_ifindex;
3254 
3255 			break;
3256 		}
3257 		case IP_ADD_MEMBERSHIP:
3258 		case IP_DROP_MEMBERSHIP:
3259 		case IP_BLOCK_SOURCE:
3260 		case IP_UNBLOCK_SOURCE:
3261 		case IP_ADD_SOURCE_MEMBERSHIP:
3262 		case IP_DROP_SOURCE_MEMBERSHIP:
3263 		case MCAST_JOIN_GROUP:
3264 		case MCAST_LEAVE_GROUP:
3265 		case MCAST_BLOCK_SOURCE:
3266 		case MCAST_UNBLOCK_SOURCE:
3267 		case MCAST_JOIN_SOURCE_GROUP:
3268 		case MCAST_LEAVE_SOURCE_GROUP:
3269 		case IP_SEC_OPT:
3270 		case IP_NEXTHOP:
3271 		case IP_DHCPINIT_IF:
3272 			/*
3273 			 * "soft" error (negative)
3274 			 * option not handled at this level
3275 			 * Do not modify *outlenp.
3276 			 */
3277 			return (-EINVAL);
3278 		case IP_BOUND_IF:
3279 			if (!checkonly)
3280 				udp->udp_bound_if = *i1;
3281 			break;
3282 		case IP_UNSPEC_SRC:
3283 			if (!checkonly)
3284 				udp->udp_unspec_source = onoff;
3285 			break;
3286 		case IP_BROADCAST_TTL:
3287 			if (!checkonly)
3288 				connp->conn_broadcast_ttl = *invalp;
3289 			break;
3290 		default:
3291 			*outlenp = 0;
3292 			return (EINVAL);
3293 		}
3294 		break;
3295 	case IPPROTO_IPV6: {
3296 		ip6_pkt_t		*ipp;
3297 		boolean_t		sticky;
3298 
3299 		if (udp->udp_family != AF_INET6) {
3300 			*outlenp = 0;
3301 			return (ENOPROTOOPT);
3302 		}
3303 		/*
3304 		 * Deal with both sticky options and ancillary data
3305 		 */
3306 		sticky = B_FALSE;
3307 		if (attrs == NULL || (ipp = attrs->udpattr_ipp6) ==
3308 		    NULL) {
3309 			/* sticky options, or none */
3310 			ipp = &udp->udp_sticky_ipp;
3311 			sticky = B_TRUE;
3312 		}
3313 
3314 		switch (name) {
3315 		case IPV6_MULTICAST_IF:
3316 			if (!checkonly)
3317 				udp->udp_multicast_if_index = *i1;
3318 			break;
3319 		case IPV6_UNICAST_HOPS:
3320 			/* -1 means use default */
3321 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
3322 				*outlenp = 0;
3323 				return (EINVAL);
3324 			}
3325 			if (!checkonly) {
3326 				if (*i1 == -1) {
3327 					udp->udp_ttl = ipp->ipp_unicast_hops =
3328 					    us->us_ipv6_hoplimit;
3329 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
3330 					/* Pass modified value to IP. */
3331 					*i1 = udp->udp_ttl;
3332 				} else {
3333 					udp->udp_ttl = ipp->ipp_unicast_hops =
3334 					    (uint8_t)*i1;
3335 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
3336 				}
3337 				/* Rebuild the header template */
3338 				error = udp_build_hdrs(udp);
3339 				if (error != 0) {
3340 					*outlenp = 0;
3341 					return (error);
3342 				}
3343 			}
3344 			break;
3345 		case IPV6_MULTICAST_HOPS:
3346 			/* -1 means use default */
3347 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
3348 				*outlenp = 0;
3349 				return (EINVAL);
3350 			}
3351 			if (!checkonly) {
3352 				if (*i1 == -1) {
3353 					udp->udp_multicast_ttl =
3354 					    ipp->ipp_multicast_hops =
3355 					    IP_DEFAULT_MULTICAST_TTL;
3356 					ipp->ipp_fields &= ~IPPF_MULTICAST_HOPS;
3357 					/* Pass modified value to IP. */
3358 					*i1 = udp->udp_multicast_ttl;
3359 				} else {
3360 					udp->udp_multicast_ttl =
3361 					    ipp->ipp_multicast_hops =
3362 					    (uint8_t)*i1;
3363 					ipp->ipp_fields |= IPPF_MULTICAST_HOPS;
3364 				}
3365 			}
3366 			break;
3367 		case IPV6_MULTICAST_LOOP:
3368 			if (*i1 != 0 && *i1 != 1) {
3369 				*outlenp = 0;
3370 				return (EINVAL);
3371 			}
3372 			if (!checkonly)
3373 				connp->conn_multicast_loop = *i1;
3374 			break;
3375 		case IPV6_JOIN_GROUP:
3376 		case IPV6_LEAVE_GROUP:
3377 		case MCAST_JOIN_GROUP:
3378 		case MCAST_LEAVE_GROUP:
3379 		case MCAST_BLOCK_SOURCE:
3380 		case MCAST_UNBLOCK_SOURCE:
3381 		case MCAST_JOIN_SOURCE_GROUP:
3382 		case MCAST_LEAVE_SOURCE_GROUP:
3383 			/*
3384 			 * "soft" error (negative)
3385 			 * option not handled at this level
3386 			 * Note: Do not modify *outlenp
3387 			 */
3388 			return (-EINVAL);
3389 		case IPV6_BOUND_IF:
3390 			if (!checkonly)
3391 				udp->udp_bound_if = *i1;
3392 			break;
3393 		case IPV6_UNSPEC_SRC:
3394 			if (!checkonly)
3395 				udp->udp_unspec_source = onoff;
3396 			break;
3397 		/*
3398 		 * Set boolean switches for ancillary data delivery
3399 		 */
3400 		case IPV6_RECVPKTINFO:
3401 			if (!checkonly)
3402 				udp->udp_ip_recvpktinfo = onoff;
3403 			break;
3404 		case IPV6_RECVTCLASS:
3405 			if (!checkonly) {
3406 				udp->udp_ipv6_recvtclass = onoff;
3407 			}
3408 			break;
3409 		case IPV6_RECVPATHMTU:
3410 			if (!checkonly) {
3411 				udp->udp_ipv6_recvpathmtu = onoff;
3412 			}
3413 			break;
3414 		case IPV6_RECVHOPLIMIT:
3415 			if (!checkonly)
3416 				udp->udp_ipv6_recvhoplimit = onoff;
3417 			break;
3418 		case IPV6_RECVHOPOPTS:
3419 			if (!checkonly)
3420 				udp->udp_ipv6_recvhopopts = onoff;
3421 			break;
3422 		case IPV6_RECVDSTOPTS:
3423 			if (!checkonly)
3424 				udp->udp_ipv6_recvdstopts = onoff;
3425 			break;
3426 		case _OLD_IPV6_RECVDSTOPTS:
3427 			if (!checkonly)
3428 				udp->udp_old_ipv6_recvdstopts = onoff;
3429 			break;
3430 		case IPV6_RECVRTHDRDSTOPTS:
3431 			if (!checkonly)
3432 				udp->udp_ipv6_recvrthdrdstopts = onoff;
3433 			break;
3434 		case IPV6_RECVRTHDR:
3435 			if (!checkonly)
3436 				udp->udp_ipv6_recvrthdr = onoff;
3437 			break;
3438 		/*
3439 		 * Set sticky options or ancillary data.
3440 		 * If sticky options, (re)build any extension headers
3441 		 * that might be needed as a result.
3442 		 */
3443 		case IPV6_PKTINFO:
3444 			/*
3445 			 * The source address and ifindex are verified
3446 			 * in ip_opt_set(). For ancillary data the
3447 			 * source address is checked in ip_wput_v6.
3448 			 */
3449 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
3450 				return (EINVAL);
3451 			if (checkonly)
3452 				break;
3453 
3454 			if (inlen == 0) {
3455 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
3456 				ipp->ipp_sticky_ignored |=
3457 				    (IPPF_IFINDEX|IPPF_ADDR);
3458 			} else {
3459 				struct in6_pktinfo *pkti;
3460 
3461 				pkti = (struct in6_pktinfo *)invalp;
3462 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
3463 				ipp->ipp_addr = pkti->ipi6_addr;
3464 				if (ipp->ipp_ifindex != 0)
3465 					ipp->ipp_fields |= IPPF_IFINDEX;
3466 				else
3467 					ipp->ipp_fields &= ~IPPF_IFINDEX;
3468 				if (!IN6_IS_ADDR_UNSPECIFIED(
3469 				    &ipp->ipp_addr))
3470 					ipp->ipp_fields |= IPPF_ADDR;
3471 				else
3472 					ipp->ipp_fields &= ~IPPF_ADDR;
3473 			}
3474 			if (sticky) {
3475 				error = udp_build_hdrs(udp);
3476 				if (error != 0)
3477 					return (error);
3478 			}
3479 			break;
3480 		case IPV6_HOPLIMIT:
3481 			if (sticky)
3482 				return (EINVAL);
3483 			if (inlen != 0 && inlen != sizeof (int))
3484 				return (EINVAL);
3485 			if (checkonly)
3486 				break;
3487 
3488 			if (inlen == 0) {
3489 				ipp->ipp_fields &= ~IPPF_HOPLIMIT;
3490 				ipp->ipp_sticky_ignored |= IPPF_HOPLIMIT;
3491 			} else {
3492 				if (*i1 > 255 || *i1 < -1)
3493 					return (EINVAL);
3494 				if (*i1 == -1)
3495 					ipp->ipp_hoplimit =
3496 					    us->us_ipv6_hoplimit;
3497 				else
3498 					ipp->ipp_hoplimit = *i1;
3499 				ipp->ipp_fields |= IPPF_HOPLIMIT;
3500 			}
3501 			break;
3502 		case IPV6_TCLASS:
3503 			if (inlen != 0 && inlen != sizeof (int))
3504 				return (EINVAL);
3505 			if (checkonly)
3506 				break;
3507 
3508 			if (inlen == 0) {
3509 				ipp->ipp_fields &= ~IPPF_TCLASS;
3510 				ipp->ipp_sticky_ignored |= IPPF_TCLASS;
3511 			} else {
3512 				if (*i1 > 255 || *i1 < -1)
3513 					return (EINVAL);
3514 				if (*i1 == -1)
3515 					ipp->ipp_tclass = 0;
3516 				else
3517 					ipp->ipp_tclass = *i1;
3518 				ipp->ipp_fields |= IPPF_TCLASS;
3519 			}
3520 			if (sticky) {
3521 				error = udp_build_hdrs(udp);
3522 				if (error != 0)
3523 					return (error);
3524 			}
3525 			break;
3526 		case IPV6_NEXTHOP:
3527 			/*
3528 			 * IP will verify that the nexthop is reachable
3529 			 * and fail for sticky options.
3530 			 */
3531 			if (inlen != 0 && inlen != sizeof (sin6_t))
3532 				return (EINVAL);
3533 			if (checkonly)
3534 				break;
3535 
3536 			if (inlen == 0) {
3537 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
3538 				ipp->ipp_sticky_ignored |= IPPF_NEXTHOP;
3539 			} else {
3540 				sin6_t *sin6 = (sin6_t *)invalp;
3541 
3542 				if (sin6->sin6_family != AF_INET6)
3543 					return (EAFNOSUPPORT);
3544 				if (IN6_IS_ADDR_V4MAPPED(
3545 				    &sin6->sin6_addr))
3546 					return (EADDRNOTAVAIL);
3547 				ipp->ipp_nexthop = sin6->sin6_addr;
3548 				if (!IN6_IS_ADDR_UNSPECIFIED(
3549 				    &ipp->ipp_nexthop))
3550 					ipp->ipp_fields |= IPPF_NEXTHOP;
3551 				else
3552 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
3553 			}
3554 			if (sticky) {
3555 				error = udp_build_hdrs(udp);
3556 				if (error != 0)
3557 					return (error);
3558 			}
3559 			break;
3560 		case IPV6_HOPOPTS: {
3561 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
3562 			/*
3563 			 * Sanity checks - minimum size, size a multiple of
3564 			 * eight bytes, and matching size passed in.
3565 			 */
3566 			if (inlen != 0 &&
3567 			    inlen != (8 * (hopts->ip6h_len + 1)))
3568 				return (EINVAL);
3569 
3570 			if (checkonly)
3571 				break;
3572 
3573 			error = optcom_pkt_set(invalp, inlen, sticky,
3574 			    (uchar_t **)&ipp->ipp_hopopts,
3575 			    &ipp->ipp_hopoptslen,
3576 			    sticky ? udp->udp_label_len_v6 : 0);
3577 			if (error != 0)
3578 				return (error);
3579 			if (ipp->ipp_hopoptslen == 0) {
3580 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
3581 				ipp->ipp_sticky_ignored |= IPPF_HOPOPTS;
3582 			} else {
3583 				ipp->ipp_fields |= IPPF_HOPOPTS;
3584 			}
3585 			if (sticky) {
3586 				error = udp_build_hdrs(udp);
3587 				if (error != 0)
3588 					return (error);
3589 			}
3590 			break;
3591 		}
3592 		case IPV6_RTHDRDSTOPTS: {
3593 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
3594 
3595 			/*
3596 			 * Sanity checks - minimum size, size a multiple of
3597 			 * eight bytes, and matching size passed in.
3598 			 */
3599 			if (inlen != 0 &&
3600 			    inlen != (8 * (dopts->ip6d_len + 1)))
3601 				return (EINVAL);
3602 
3603 			if (checkonly)
3604 				break;
3605 
3606 			if (inlen == 0) {
3607 				if (sticky &&
3608 				    (ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) {
3609 					kmem_free(ipp->ipp_rtdstopts,
3610 					    ipp->ipp_rtdstoptslen);
3611 					ipp->ipp_rtdstopts = NULL;
3612 					ipp->ipp_rtdstoptslen = 0;
3613 				}
3614 
3615 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
3616 				ipp->ipp_sticky_ignored |= IPPF_RTDSTOPTS;
3617 			} else {
3618 				error = optcom_pkt_set(invalp, inlen, sticky,
3619 				    (uchar_t **)&ipp->ipp_rtdstopts,
3620 				    &ipp->ipp_rtdstoptslen, 0);
3621 				if (error != 0)
3622 					return (error);
3623 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
3624 			}
3625 			if (sticky) {
3626 				error = udp_build_hdrs(udp);
3627 				if (error != 0)
3628 					return (error);
3629 			}
3630 			break;
3631 		}
3632 		case IPV6_DSTOPTS: {
3633 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
3634 
3635 			/*
3636 			 * Sanity checks - minimum size, size a multiple of
3637 			 * eight bytes, and matching size passed in.
3638 			 */
3639 			if (inlen != 0 &&
3640 			    inlen != (8 * (dopts->ip6d_len + 1)))
3641 				return (EINVAL);
3642 
3643 			if (checkonly)
3644 				break;
3645 
3646 			if (inlen == 0) {
3647 				if (sticky &&
3648 				    (ipp->ipp_fields & IPPF_DSTOPTS) != 0) {
3649 					kmem_free(ipp->ipp_dstopts,
3650 					    ipp->ipp_dstoptslen);
3651 					ipp->ipp_dstopts = NULL;
3652 					ipp->ipp_dstoptslen = 0;
3653 				}
3654 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
3655 				ipp->ipp_sticky_ignored |= IPPF_DSTOPTS;
3656 			} else {
3657 				error = optcom_pkt_set(invalp, inlen, sticky,
3658 				    (uchar_t **)&ipp->ipp_dstopts,
3659 				    &ipp->ipp_dstoptslen, 0);
3660 				if (error != 0)
3661 					return (error);
3662 				ipp->ipp_fields |= IPPF_DSTOPTS;
3663 			}
3664 			if (sticky) {
3665 				error = udp_build_hdrs(udp);
3666 				if (error != 0)
3667 					return (error);
3668 			}
3669 			break;
3670 		}
3671 		case IPV6_RTHDR: {
3672 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
3673 
3674 			/*
3675 			 * Sanity checks - minimum size, size a multiple of
3676 			 * eight bytes, and matching size passed in.
3677 			 */
3678 			if (inlen != 0 &&
3679 			    inlen != (8 * (rt->ip6r_len + 1)))
3680 				return (EINVAL);
3681 
3682 			if (checkonly)
3683 				break;
3684 
3685 			if (inlen == 0) {
3686 				if (sticky &&
3687 				    (ipp->ipp_fields & IPPF_RTHDR) != 0) {
3688 					kmem_free(ipp->ipp_rthdr,
3689 					    ipp->ipp_rthdrlen);
3690 					ipp->ipp_rthdr = NULL;
3691 					ipp->ipp_rthdrlen = 0;
3692 				}
3693 				ipp->ipp_fields &= ~IPPF_RTHDR;
3694 				ipp->ipp_sticky_ignored |= IPPF_RTHDR;
3695 			} else {
3696 				error = optcom_pkt_set(invalp, inlen, sticky,
3697 				    (uchar_t **)&ipp->ipp_rthdr,
3698 				    &ipp->ipp_rthdrlen, 0);
3699 				if (error != 0)
3700 					return (error);
3701 				ipp->ipp_fields |= IPPF_RTHDR;
3702 			}
3703 			if (sticky) {
3704 				error = udp_build_hdrs(udp);
3705 				if (error != 0)
3706 					return (error);
3707 			}
3708 			break;
3709 		}
3710 
3711 		case IPV6_DONTFRAG:
3712 			if (checkonly)
3713 				break;
3714 
3715 			if (onoff) {
3716 				ipp->ipp_fields |= IPPF_DONTFRAG;
3717 			} else {
3718 				ipp->ipp_fields &= ~IPPF_DONTFRAG;
3719 			}
3720 			break;
3721 
3722 		case IPV6_USE_MIN_MTU:
3723 			if (inlen != sizeof (int))
3724 				return (EINVAL);
3725 
3726 			if (*i1 < -1 || *i1 > 1)
3727 				return (EINVAL);
3728 
3729 			if (checkonly)
3730 				break;
3731 
3732 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
3733 			ipp->ipp_use_min_mtu = *i1;
3734 			break;
3735 
3736 		case IPV6_BOUND_PIF:
3737 		case IPV6_SEC_OPT:
3738 		case IPV6_DONTFAILOVER_IF:
3739 		case IPV6_SRC_PREFERENCES:
3740 		case IPV6_V6ONLY:
3741 			/* Handled at the IP level */
3742 			return (-EINVAL);
3743 		default:
3744 			*outlenp = 0;
3745 			return (EINVAL);
3746 		}
3747 		break;
3748 		}		/* end IPPROTO_IPV6 */
3749 	case IPPROTO_UDP:
3750 		switch (name) {
3751 		case UDP_ANONPRIVBIND:
3752 			if ((error = secpolicy_net_privaddr(cr, 0,
3753 			    IPPROTO_UDP)) != 0) {
3754 				*outlenp = 0;
3755 				return (error);
3756 			}
3757 			if (!checkonly) {
3758 				udp->udp_anon_priv_bind = onoff;
3759 			}
3760 			break;
3761 		case UDP_EXCLBIND:
3762 			if (!checkonly)
3763 				udp->udp_exclbind = onoff;
3764 			break;
3765 		case UDP_RCVHDR:
3766 			if (!checkonly)
3767 				udp->udp_rcvhdr = onoff;
3768 			break;
3769 		case UDP_NAT_T_ENDPOINT:
3770 			if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) {
3771 				*outlenp = 0;
3772 				return (error);
3773 			}
3774 
3775 			/*
3776 			 * Use udp_family instead so we can avoid ambiguitites
3777 			 * with AF_INET6 sockets that may switch from IPv4
3778 			 * to IPv6.
3779 			 */
3780 			if (udp->udp_family != AF_INET) {
3781 				*outlenp = 0;
3782 				return (EAFNOSUPPORT);
3783 			}
3784 
3785 			if (!checkonly) {
3786 				udp->udp_nat_t_endpoint = onoff;
3787 
3788 				udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
3789 				    UDPH_SIZE + udp->udp_ip_snd_options_len;
3790 
3791 				/* Also, adjust wroff */
3792 				if (onoff) {
3793 					udp->udp_max_hdr_len +=
3794 					    sizeof (uint32_t);
3795 				}
3796 				(void) mi_set_sth_wroff(RD(q),
3797 				    udp->udp_max_hdr_len + us->us_wroff_extra);
3798 			}
3799 			break;
3800 		default:
3801 			*outlenp = 0;
3802 			return (EINVAL);
3803 		}
3804 		break;
3805 	default:
3806 		*outlenp = 0;
3807 		return (EINVAL);
3808 	}
3809 	/*
3810 	 * Common case of OK return with outval same as inval.
3811 	 */
3812 	if (invalp != outvalp) {
3813 		/* don't trust bcopy for identical src/dst */
3814 		(void) bcopy(invalp, outvalp, inlen);
3815 	}
3816 	*outlenp = inlen;
3817 	return (0);
3818 }
3819 
3820 int
3821 udp_opt_set(queue_t *q, uint_t optset_context, int level,
3822     int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
3823     uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
3824 {
3825 	udp_t	*udp;
3826 	int	err;
3827 
3828 	udp = Q_TO_UDP(q);
3829 
3830 	rw_enter(&udp->udp_rwlock, RW_WRITER);
3831 	err = udp_opt_set_locked(q, optset_context, level, name, inlen, invalp,
3832 	    outlenp, outvalp, thisdg_attrs, cr, mblk);
3833 	rw_exit(&udp->udp_rwlock);
3834 	return (err);
3835 }
3836 
3837 /*
3838  * Update udp_sticky_hdrs based on udp_sticky_ipp, udp_v6src, and udp_ttl.
3839  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
3840  * headers, and the udp header.
3841  * Returns failure if can't allocate memory.
3842  */
3843 static int
3844 udp_build_hdrs(udp_t *udp)
3845 {
3846 	udp_stack_t *us = udp->udp_us;
3847 	uchar_t	*hdrs;
3848 	uint_t	hdrs_len;
3849 	ip6_t	*ip6h;
3850 	ip6i_t	*ip6i;
3851 	udpha_t	*udpha;
3852 	ip6_pkt_t *ipp = &udp->udp_sticky_ipp;
3853 	size_t	sth_wroff;
3854 
3855 	ASSERT(RW_WRITE_HELD(&udp->udp_rwlock));
3856 	hdrs_len = ip_total_hdrs_len_v6(ipp) + UDPH_SIZE;
3857 	ASSERT(hdrs_len != 0);
3858 	if (hdrs_len != udp->udp_sticky_hdrs_len) {
3859 		/* Need to reallocate */
3860 		hdrs = kmem_alloc(hdrs_len, KM_NOSLEEP);
3861 		if (hdrs == NULL)
3862 			return (ENOMEM);
3863 
3864 		if (udp->udp_sticky_hdrs_len != 0) {
3865 			kmem_free(udp->udp_sticky_hdrs,
3866 			    udp->udp_sticky_hdrs_len);
3867 		}
3868 		udp->udp_sticky_hdrs = hdrs;
3869 		udp->udp_sticky_hdrs_len = hdrs_len;
3870 	}
3871 	ip_build_hdrs_v6(udp->udp_sticky_hdrs,
3872 	    udp->udp_sticky_hdrs_len - UDPH_SIZE, ipp, IPPROTO_UDP);
3873 
3874 	/* Set header fields not in ipp */
3875 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
3876 		ip6i = (ip6i_t *)udp->udp_sticky_hdrs;
3877 		ip6h = (ip6_t *)&ip6i[1];
3878 	} else {
3879 		ip6h = (ip6_t *)udp->udp_sticky_hdrs;
3880 	}
3881 
3882 	if (!(ipp->ipp_fields & IPPF_ADDR))
3883 		ip6h->ip6_src = udp->udp_v6src;
3884 
3885 	udpha = (udpha_t *)(udp->udp_sticky_hdrs + hdrs_len - UDPH_SIZE);
3886 	udpha->uha_src_port = udp->udp_port;
3887 
3888 	/* Try to get everything in a single mblk */
3889 	if (hdrs_len > udp->udp_max_hdr_len) {
3890 		udp->udp_max_hdr_len = hdrs_len;
3891 		sth_wroff = udp->udp_max_hdr_len + us->us_wroff_extra;
3892 		rw_exit(&udp->udp_rwlock);
3893 		(void) mi_set_sth_wroff(udp->udp_connp->conn_rq, sth_wroff);
3894 		rw_enter(&udp->udp_rwlock, RW_WRITER);
3895 	}
3896 	return (0);
3897 }
3898 
3899 /*
3900  * This routine retrieves the value of an ND variable in a udpparam_t
3901  * structure.  It is called through nd_getset when a user reads the
3902  * variable.
3903  */
3904 /* ARGSUSED */
3905 static int
3906 udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
3907 {
3908 	udpparam_t *udppa = (udpparam_t *)cp;
3909 
3910 	(void) mi_mpprintf(mp, "%d", udppa->udp_param_value);
3911 	return (0);
3912 }
3913 
3914 /*
3915  * Walk through the param array specified registering each element with the
3916  * named dispatch (ND) handler.
3917  */
3918 static boolean_t
3919 udp_param_register(IDP *ndp, udpparam_t *udppa, int cnt)
3920 {
3921 	for (; cnt-- > 0; udppa++) {
3922 		if (udppa->udp_param_name && udppa->udp_param_name[0]) {
3923 			if (!nd_load(ndp, udppa->udp_param_name,
3924 			    udp_param_get, udp_param_set,
3925 			    (caddr_t)udppa)) {
3926 				nd_free(ndp);
3927 				return (B_FALSE);
3928 			}
3929 		}
3930 	}
3931 	if (!nd_load(ndp, "udp_extra_priv_ports",
3932 	    udp_extra_priv_ports_get, NULL, NULL)) {
3933 		nd_free(ndp);
3934 		return (B_FALSE);
3935 	}
3936 	if (!nd_load(ndp, "udp_extra_priv_ports_add",
3937 	    NULL, udp_extra_priv_ports_add, NULL)) {
3938 		nd_free(ndp);
3939 		return (B_FALSE);
3940 	}
3941 	if (!nd_load(ndp, "udp_extra_priv_ports_del",
3942 	    NULL, udp_extra_priv_ports_del, NULL)) {
3943 		nd_free(ndp);
3944 		return (B_FALSE);
3945 	}
3946 	if (!nd_load(ndp, "udp_status", udp_status_report, NULL,
3947 	    NULL)) {
3948 		nd_free(ndp);
3949 		return (B_FALSE);
3950 	}
3951 	if (!nd_load(ndp, "udp_bind_hash", udp_bind_hash_report, NULL,
3952 	    NULL)) {
3953 		nd_free(ndp);
3954 		return (B_FALSE);
3955 	}
3956 	return (B_TRUE);
3957 }
3958 
3959 /* This routine sets an ND variable in a udpparam_t structure. */
3960 /* ARGSUSED */
3961 static int
3962 udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
3963 {
3964 	long		new_value;
3965 	udpparam_t	*udppa = (udpparam_t *)cp;
3966 
3967 	/*
3968 	 * Fail the request if the new value does not lie within the
3969 	 * required bounds.
3970 	 */
3971 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
3972 	    new_value < udppa->udp_param_min ||
3973 	    new_value > udppa->udp_param_max) {
3974 		return (EINVAL);
3975 	}
3976 
3977 	/* Set the new value */
3978 	udppa->udp_param_value = new_value;
3979 	return (0);
3980 }
3981 
3982 /*
3983  * Copy hop-by-hop option from ipp->ipp_hopopts to the buffer provided (with
3984  * T_opthdr) and return the number of bytes copied.  'dbuf' may be NULL to
3985  * just count the length needed for allocation.  If 'dbuf' is non-NULL,
3986  * then it's assumed to be allocated to be large enough.
3987  *
3988  * Returns zero if trimming of the security option causes all options to go
3989  * away.
3990  */
3991 static size_t
3992 copy_hop_opts(const ip6_pkt_t *ipp, uchar_t *dbuf)
3993 {
3994 	struct T_opthdr *toh;
3995 	size_t hol = ipp->ipp_hopoptslen;
3996 	ip6_hbh_t *dstopt = NULL;
3997 	const ip6_hbh_t *srcopt = ipp->ipp_hopopts;
3998 	size_t tlen, olen, plen;
3999 	boolean_t deleting;
4000 	const struct ip6_opt *sopt, *lastpad;
4001 	struct ip6_opt *dopt;
4002 
4003 	if ((toh = (struct T_opthdr *)dbuf) != NULL) {
4004 		toh->level = IPPROTO_IPV6;
4005 		toh->name = IPV6_HOPOPTS;
4006 		toh->status = 0;
4007 		dstopt = (ip6_hbh_t *)(toh + 1);
4008 	}
4009 
4010 	/*
4011 	 * If labeling is enabled, then skip the label option
4012 	 * but get other options if there are any.
4013 	 */
4014 	if (is_system_labeled()) {
4015 		dopt = NULL;
4016 		if (dstopt != NULL) {
4017 			/* will fill in ip6h_len later */
4018 			dstopt->ip6h_nxt = srcopt->ip6h_nxt;
4019 			dopt = (struct ip6_opt *)(dstopt + 1);
4020 		}
4021 		sopt = (const struct ip6_opt *)(srcopt + 1);
4022 		hol -= sizeof (*srcopt);
4023 		tlen = sizeof (*dstopt);
4024 		lastpad = NULL;
4025 		deleting = B_FALSE;
4026 		/*
4027 		 * This loop finds the first (lastpad pointer) of any number of
4028 		 * pads that preceeds the security option, then treats the
4029 		 * security option as though it were a pad, and then finds the
4030 		 * next non-pad option (or end of list).
4031 		 *
4032 		 * It then treats the entire block as one big pad.  To preserve
4033 		 * alignment of any options that follow, or just the end of the
4034 		 * list, it computes a minimal new padding size that keeps the
4035 		 * same alignment for the next option.
4036 		 *
4037 		 * If it encounters just a sequence of pads with no security
4038 		 * option, those are copied as-is rather than collapsed.
4039 		 *
4040 		 * Note that to handle the end of list case, the code makes one
4041 		 * loop with 'hol' set to zero.
4042 		 */
4043 		for (;;) {
4044 			if (hol > 0) {
4045 				if (sopt->ip6o_type == IP6OPT_PAD1) {
4046 					if (lastpad == NULL)
4047 						lastpad = sopt;
4048 					sopt = (const struct ip6_opt *)
4049 					    &sopt->ip6o_len;
4050 					hol--;
4051 					continue;
4052 				}
4053 				olen = sopt->ip6o_len + sizeof (*sopt);
4054 				if (olen > hol)
4055 					olen = hol;
4056 				if (sopt->ip6o_type == IP6OPT_PADN ||
4057 				    sopt->ip6o_type == ip6opt_ls) {
4058 					if (sopt->ip6o_type == ip6opt_ls)
4059 						deleting = B_TRUE;
4060 					if (lastpad == NULL)
4061 						lastpad = sopt;
4062 					sopt = (const struct ip6_opt *)
4063 					    ((const char *)sopt + olen);
4064 					hol -= olen;
4065 					continue;
4066 				}
4067 			} else {
4068 				/* if nothing was copied at all, then delete */
4069 				if (tlen == sizeof (*dstopt))
4070 					return (0);
4071 				/* last pass; pick up any trailing padding */
4072 				olen = 0;
4073 			}
4074 			if (deleting) {
4075 				/*
4076 				 * compute aligning effect of deleted material
4077 				 * to reproduce with pad.
4078 				 */
4079 				plen = ((const char *)sopt -
4080 				    (const char *)lastpad) & 7;
4081 				tlen += plen;
4082 				if (dopt != NULL) {
4083 					if (plen == 1) {
4084 						dopt->ip6o_type = IP6OPT_PAD1;
4085 					} else if (plen > 1) {
4086 						plen -= sizeof (*dopt);
4087 						dopt->ip6o_type = IP6OPT_PADN;
4088 						dopt->ip6o_len = plen;
4089 						if (plen > 0)
4090 							bzero(dopt + 1, plen);
4091 					}
4092 					dopt = (struct ip6_opt *)
4093 					    ((char *)dopt + plen);
4094 				}
4095 				deleting = B_FALSE;
4096 				lastpad = NULL;
4097 			}
4098 			/* if there's uncopied padding, then copy that now */
4099 			if (lastpad != NULL) {
4100 				olen += (const char *)sopt -
4101 				    (const char *)lastpad;
4102 				sopt = lastpad;
4103 				lastpad = NULL;
4104 			}
4105 			if (dopt != NULL && olen > 0) {
4106 				bcopy(sopt, dopt, olen);
4107 				dopt = (struct ip6_opt *)((char *)dopt + olen);
4108 			}
4109 			if (hol == 0)
4110 				break;
4111 			tlen += olen;
4112 			sopt = (const struct ip6_opt *)
4113 			    ((const char *)sopt + olen);
4114 			hol -= olen;
4115 		}
4116 		/* go back and patch up the length value, rounded upward */
4117 		if (dstopt != NULL)
4118 			dstopt->ip6h_len = (tlen - 1) >> 3;
4119 	} else {
4120 		tlen = hol;
4121 		if (dstopt != NULL)
4122 			bcopy(srcopt, dstopt, hol);
4123 	}
4124 
4125 	tlen += sizeof (*toh);
4126 	if (toh != NULL)
4127 		toh->len = tlen;
4128 
4129 	return (tlen);
4130 }
4131 
4132 /*
4133  * Update udp_rcv_opt_len from the packet.
4134  * Called when options received, and when no options received but
4135  * udp_ip_recv_opt_len has previously recorded options.
4136  */
4137 static void
4138 udp_save_ip_rcv_opt(udp_t *udp, void *opt, int opt_len)
4139 {
4140 	/* Save the options if any */
4141 	if (opt_len > 0) {
4142 		if (opt_len > udp->udp_ip_rcv_options_len) {
4143 			/* Need to allocate larger buffer */
4144 			if (udp->udp_ip_rcv_options_len != 0)
4145 				mi_free((char *)udp->udp_ip_rcv_options);
4146 			udp->udp_ip_rcv_options_len = 0;
4147 			udp->udp_ip_rcv_options =
4148 			    (uchar_t *)mi_alloc(opt_len, BPRI_HI);
4149 			if (udp->udp_ip_rcv_options != NULL)
4150 				udp->udp_ip_rcv_options_len = opt_len;
4151 		}
4152 		if (udp->udp_ip_rcv_options_len != 0) {
4153 			bcopy(opt, udp->udp_ip_rcv_options, opt_len);
4154 			/* Adjust length if we are resusing the space */
4155 			udp->udp_ip_rcv_options_len = opt_len;
4156 		}
4157 	} else if (udp->udp_ip_rcv_options_len != 0) {
4158 		/* Clear out previously recorded options */
4159 		mi_free((char *)udp->udp_ip_rcv_options);
4160 		udp->udp_ip_rcv_options = NULL;
4161 		udp->udp_ip_rcv_options_len = 0;
4162 	}
4163 }
4164 
4165 /* ARGSUSED2 */
4166 static void
4167 udp_input(void *arg1, mblk_t *mp, void *arg2)
4168 {
4169 	conn_t *connp = (conn_t *)arg1;
4170 	struct T_unitdata_ind	*tudi;
4171 	uchar_t			*rptr;		/* Pointer to IP header */
4172 	int			hdr_length;	/* Length of IP+UDP headers */
4173 	int			opt_len;
4174 	int			udi_size;	/* Size of T_unitdata_ind */
4175 	int			mp_len;
4176 	udp_t			*udp;
4177 	udpha_t			*udpha;
4178 	int			ipversion;
4179 	ip6_pkt_t		ipp;
4180 	ip6_t			*ip6h;
4181 	ip6i_t			*ip6i;
4182 	mblk_t			*mp1;
4183 	mblk_t			*options_mp = NULL;
4184 	ip_pktinfo_t		*pinfo = NULL;
4185 	cred_t			*cr = NULL;
4186 	pid_t			cpid;
4187 	uint32_t		udp_ip_rcv_options_len;
4188 	udp_bits_t		udp_bits;
4189 	cred_t			*rcr = connp->conn_cred;
4190 	udp_stack_t *us;
4191 
4192 	ASSERT(connp->conn_flags & IPCL_UDPCONN);
4193 
4194 	udp = connp->conn_udp;
4195 	us = udp->udp_us;
4196 	rptr = mp->b_rptr;
4197 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_CTL);
4198 	ASSERT(OK_32PTR(rptr));
4199 
4200 	/*
4201 	 * IP should have prepended the options data in an M_CTL
4202 	 * Check M_CTL "type" to make sure are not here bcos of
4203 	 * a valid ICMP message
4204 	 */
4205 	if (DB_TYPE(mp) == M_CTL) {
4206 		if (MBLKL(mp) == sizeof (ip_pktinfo_t) &&
4207 		    ((ip_pktinfo_t *)mp->b_rptr)->ip_pkt_ulp_type ==
4208 		    IN_PKTINFO) {
4209 			/*
4210 			 * IP_RECVIF or IP_RECVSLLA or IPF_RECVADDR information
4211 			 * has been prepended to the packet by IP. We need to
4212 			 * extract the mblk and adjust the rptr
4213 			 */
4214 			pinfo = (ip_pktinfo_t *)mp->b_rptr;
4215 			options_mp = mp;
4216 			mp = mp->b_cont;
4217 			rptr = mp->b_rptr;
4218 			UDP_STAT(us, udp_in_pktinfo);
4219 		} else {
4220 			/*
4221 			 * ICMP messages.
4222 			 */
4223 			udp_icmp_error(connp->conn_rq, mp);
4224 			return;
4225 		}
4226 	}
4227 
4228 	mp_len = msgdsize(mp);
4229 	/*
4230 	 * This is the inbound data path.
4231 	 * First, we check to make sure the IP version number is correct,
4232 	 * and then pull the IP and UDP headers into the first mblk.
4233 	 */
4234 
4235 	/* Initialize regardless if ipversion is IPv4 or IPv6 */
4236 	ipp.ipp_fields = 0;
4237 
4238 	ipversion = IPH_HDR_VERSION(rptr);
4239 
4240 	rw_enter(&udp->udp_rwlock, RW_READER);
4241 	udp_ip_rcv_options_len = udp->udp_ip_rcv_options_len;
4242 	udp_bits = udp->udp_bits;
4243 	rw_exit(&udp->udp_rwlock);
4244 
4245 	switch (ipversion) {
4246 	case IPV4_VERSION:
4247 		ASSERT(MBLKL(mp) >= sizeof (ipha_t));
4248 		ASSERT(((ipha_t *)rptr)->ipha_protocol == IPPROTO_UDP);
4249 		hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE;
4250 		opt_len = hdr_length - (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE);
4251 		if ((opt_len > 0 || udp_ip_rcv_options_len > 0) &&
4252 		    udp->udp_family == AF_INET) {
4253 			/*
4254 			 * Record/update udp_ip_rcv_options with the lock
4255 			 * held. Not needed for AF_INET6 sockets
4256 			 * since they don't support a getsockopt of IP_OPTIONS.
4257 			 */
4258 			rw_enter(&udp->udp_rwlock, RW_WRITER);
4259 			udp_save_ip_rcv_opt(udp, rptr + IP_SIMPLE_HDR_LENGTH,
4260 			    opt_len);
4261 			rw_exit(&udp->udp_rwlock);
4262 		}
4263 		/* Handle IPV6_RECVPKTINFO even for IPv4 packet. */
4264 		if ((udp->udp_family == AF_INET6) && (pinfo != NULL) &&
4265 		    udp->udp_ip_recvpktinfo) {
4266 			if (pinfo->ip_pkt_flags & IPF_RECVIF) {
4267 				ipp.ipp_fields |= IPPF_IFINDEX;
4268 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
4269 			}
4270 		}
4271 		break;
4272 	case IPV6_VERSION:
4273 		/*
4274 		 * IPv6 packets can only be received by applications
4275 		 * that are prepared to receive IPv6 addresses.
4276 		 * The IP fanout must ensure this.
4277 		 */
4278 		ASSERT(udp->udp_family == AF_INET6);
4279 
4280 		ip6h = (ip6_t *)rptr;
4281 		ASSERT((uchar_t *)&ip6h[1] <= mp->b_wptr);
4282 
4283 		if (ip6h->ip6_nxt != IPPROTO_UDP) {
4284 			uint8_t nexthdrp;
4285 			/* Look for ifindex information */
4286 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
4287 				ip6i = (ip6i_t *)ip6h;
4288 				if ((uchar_t *)&ip6i[1] > mp->b_wptr)
4289 					goto tossit;
4290 
4291 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
4292 					ASSERT(ip6i->ip6i_ifindex != 0);
4293 					ipp.ipp_fields |= IPPF_IFINDEX;
4294 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
4295 				}
4296 				rptr = (uchar_t *)&ip6i[1];
4297 				mp->b_rptr = rptr;
4298 				if (rptr == mp->b_wptr) {
4299 					mp1 = mp->b_cont;
4300 					freeb(mp);
4301 					mp = mp1;
4302 					rptr = mp->b_rptr;
4303 				}
4304 				if (MBLKL(mp) < (IPV6_HDR_LEN + UDPH_SIZE))
4305 					goto tossit;
4306 				ip6h = (ip6_t *)rptr;
4307 				mp_len = msgdsize(mp);
4308 			}
4309 			/*
4310 			 * Find any potentially interesting extension headers
4311 			 * as well as the length of the IPv6 + extension
4312 			 * headers.
4313 			 */
4314 			hdr_length = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp) +
4315 			    UDPH_SIZE;
4316 			ASSERT(nexthdrp == IPPROTO_UDP);
4317 		} else {
4318 			hdr_length = IPV6_HDR_LEN + UDPH_SIZE;
4319 			ip6i = NULL;
4320 		}
4321 		break;
4322 	default:
4323 		ASSERT(0);
4324 	}
4325 
4326 	/*
4327 	 * IP inspected the UDP header thus all of it must be in the mblk.
4328 	 * UDP length check is performed for IPv6 packets and IPv4 packets
4329 	 * to check if the size of the packet as specified
4330 	 * by the header is the same as the physical size of the packet.
4331 	 * FIXME? Didn't IP already check this?
4332 	 */
4333 	udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE));
4334 	if ((MBLKL(mp) < hdr_length) ||
4335 	    (mp_len != (ntohs(udpha->uha_length) + hdr_length - UDPH_SIZE))) {
4336 		goto tossit;
4337 	}
4338 
4339 
4340 	/* Walk past the headers unless IP_RECVHDR was set. */
4341 	if (!udp_bits.udpb_rcvhdr) {
4342 		mp->b_rptr = rptr + hdr_length;
4343 		mp_len -= hdr_length;
4344 	}
4345 
4346 	/*
4347 	 * This is the inbound data path.  Packets are passed upstream as
4348 	 * T_UNITDATA_IND messages with full IP headers still attached.
4349 	 */
4350 	if (udp->udp_family == AF_INET) {
4351 		sin_t *sin;
4352 
4353 		ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION);
4354 
4355 		/*
4356 		 * Normally only send up the source address.
4357 		 * If IP_RECVDSTADDR is set we include the destination IP
4358 		 * address as an option. With IP_RECVOPTS we include all
4359 		 * the IP options.
4360 		 */
4361 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
4362 		if (udp_bits.udpb_recvdstaddr) {
4363 			udi_size += sizeof (struct T_opthdr) +
4364 			    sizeof (struct in_addr);
4365 			UDP_STAT(us, udp_in_recvdstaddr);
4366 		}
4367 
4368 		if (udp_bits.udpb_ip_recvpktinfo && (pinfo != NULL) &&
4369 		    (pinfo->ip_pkt_flags & IPF_RECVADDR)) {
4370 			udi_size += sizeof (struct T_opthdr) +
4371 			    sizeof (struct in_pktinfo);
4372 			UDP_STAT(us, udp_ip_rcvpktinfo);
4373 		}
4374 
4375 		if ((udp_bits.udpb_recvopts) && opt_len > 0) {
4376 			udi_size += sizeof (struct T_opthdr) + opt_len;
4377 			UDP_STAT(us, udp_in_recvopts);
4378 		}
4379 
4380 		/*
4381 		 * If the IP_RECVSLLA or the IP_RECVIF is set then allocate
4382 		 * space accordingly
4383 		 */
4384 		if ((udp_bits.udpb_recvif) && (pinfo != NULL) &&
4385 		    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
4386 			udi_size += sizeof (struct T_opthdr) + sizeof (uint_t);
4387 			UDP_STAT(us, udp_in_recvif);
4388 		}
4389 
4390 		if ((udp_bits.udpb_recvslla) && (pinfo != NULL) &&
4391 		    (pinfo->ip_pkt_flags & IPF_RECVSLLA)) {
4392 			udi_size += sizeof (struct T_opthdr) +
4393 			    sizeof (struct sockaddr_dl);
4394 			UDP_STAT(us, udp_in_recvslla);
4395 		}
4396 
4397 		if ((udp_bits.udpb_recvucred) &&
4398 		    (cr = DB_CRED(mp)) != NULL) {
4399 			udi_size += sizeof (struct T_opthdr) + ucredsize;
4400 			cpid = DB_CPID(mp);
4401 			UDP_STAT(us, udp_in_recvucred);
4402 		}
4403 
4404 		/*
4405 		 * If SO_TIMESTAMP is set allocate the appropriate sized
4406 		 * buffer. Since gethrestime() expects a pointer aligned
4407 		 * argument, we allocate space necessary for extra
4408 		 * alignment (even though it might not be used).
4409 		 */
4410 		if (udp_bits.udpb_timestamp) {
4411 			udi_size += sizeof (struct T_opthdr) +
4412 			    sizeof (timestruc_t) + _POINTER_ALIGNMENT;
4413 			UDP_STAT(us, udp_in_timestamp);
4414 		}
4415 
4416 		/*
4417 		 * If IP_RECVTTL is set allocate the appropriate sized buffer
4418 		 */
4419 		if (udp_bits.udpb_recvttl) {
4420 			udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t);
4421 			UDP_STAT(us, udp_in_recvttl);
4422 		}
4423 
4424 		/* Allocate a message block for the T_UNITDATA_IND structure. */
4425 		mp1 = allocb(udi_size, BPRI_MED);
4426 		if (mp1 == NULL) {
4427 			freemsg(mp);
4428 			if (options_mp != NULL)
4429 				freeb(options_mp);
4430 			BUMP_MIB(&us->us_udp_mib, udpInErrors);
4431 			return;
4432 		}
4433 		mp1->b_cont = mp;
4434 		mp = mp1;
4435 		mp->b_datap->db_type = M_PROTO;
4436 		tudi = (struct T_unitdata_ind *)mp->b_rptr;
4437 		mp->b_wptr = (uchar_t *)tudi + udi_size;
4438 		tudi->PRIM_type = T_UNITDATA_IND;
4439 		tudi->SRC_length = sizeof (sin_t);
4440 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
4441 		tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
4442 		    sizeof (sin_t);
4443 		udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t));
4444 		tudi->OPT_length = udi_size;
4445 		sin = (sin_t *)&tudi[1];
4446 		sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src;
4447 		sin->sin_port =	udpha->uha_src_port;
4448 		sin->sin_family = udp->udp_family;
4449 		*(uint32_t *)&sin->sin_zero[0] = 0;
4450 		*(uint32_t *)&sin->sin_zero[4] = 0;
4451 
4452 		/*
4453 		 * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or
4454 		 * IP_RECVTTL has been set.
4455 		 */
4456 		if (udi_size != 0) {
4457 			/*
4458 			 * Copy in destination address before options to avoid
4459 			 * any padding issues.
4460 			 */
4461 			char *dstopt;
4462 
4463 			dstopt = (char *)&sin[1];
4464 			if (udp_bits.udpb_recvdstaddr) {
4465 				struct T_opthdr *toh;
4466 				ipaddr_t *dstptr;
4467 
4468 				toh = (struct T_opthdr *)dstopt;
4469 				toh->level = IPPROTO_IP;
4470 				toh->name = IP_RECVDSTADDR;
4471 				toh->len = sizeof (struct T_opthdr) +
4472 				    sizeof (ipaddr_t);
4473 				toh->status = 0;
4474 				dstopt += sizeof (struct T_opthdr);
4475 				dstptr = (ipaddr_t *)dstopt;
4476 				*dstptr = ((ipha_t *)rptr)->ipha_dst;
4477 				dstopt += sizeof (ipaddr_t);
4478 				udi_size -= toh->len;
4479 			}
4480 
4481 			if (udp_bits.udpb_recvopts && opt_len > 0) {
4482 				struct T_opthdr *toh;
4483 
4484 				toh = (struct T_opthdr *)dstopt;
4485 				toh->level = IPPROTO_IP;
4486 				toh->name = IP_RECVOPTS;
4487 				toh->len = sizeof (struct T_opthdr) + opt_len;
4488 				toh->status = 0;
4489 				dstopt += sizeof (struct T_opthdr);
4490 				bcopy(rptr + IP_SIMPLE_HDR_LENGTH, dstopt,
4491 				    opt_len);
4492 				dstopt += opt_len;
4493 				udi_size -= toh->len;
4494 			}
4495 
4496 			if ((udp_bits.udpb_ip_recvpktinfo) && (pinfo != NULL) &&
4497 			    (pinfo->ip_pkt_flags & IPF_RECVADDR)) {
4498 				struct T_opthdr *toh;
4499 				struct in_pktinfo *pktinfop;
4500 
4501 				toh = (struct T_opthdr *)dstopt;
4502 				toh->level = IPPROTO_IP;
4503 				toh->name = IP_PKTINFO;
4504 				toh->len = sizeof (struct T_opthdr) +
4505 				    sizeof (*pktinfop);
4506 				toh->status = 0;
4507 				dstopt += sizeof (struct T_opthdr);
4508 				pktinfop = (struct in_pktinfo *)dstopt;
4509 				pktinfop->ipi_ifindex = pinfo->ip_pkt_ifindex;
4510 				pktinfop->ipi_spec_dst =
4511 				    pinfo->ip_pkt_match_addr;
4512 				pktinfop->ipi_addr.s_addr =
4513 				    ((ipha_t *)rptr)->ipha_dst;
4514 
4515 				dstopt += sizeof (struct in_pktinfo);
4516 				udi_size -= toh->len;
4517 			}
4518 
4519 			if ((udp_bits.udpb_recvslla) && (pinfo != NULL) &&
4520 			    (pinfo->ip_pkt_flags & IPF_RECVSLLA)) {
4521 
4522 				struct T_opthdr *toh;
4523 				struct sockaddr_dl	*dstptr;
4524 
4525 				toh = (struct T_opthdr *)dstopt;
4526 				toh->level = IPPROTO_IP;
4527 				toh->name = IP_RECVSLLA;
4528 				toh->len = sizeof (struct T_opthdr) +
4529 				    sizeof (struct sockaddr_dl);
4530 				toh->status = 0;
4531 				dstopt += sizeof (struct T_opthdr);
4532 				dstptr = (struct sockaddr_dl *)dstopt;
4533 				bcopy(&pinfo->ip_pkt_slla, dstptr,
4534 				    sizeof (struct sockaddr_dl));
4535 				dstopt += sizeof (struct sockaddr_dl);
4536 				udi_size -= toh->len;
4537 			}
4538 
4539 			if ((udp_bits.udpb_recvif) && (pinfo != NULL) &&
4540 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
4541 
4542 				struct T_opthdr *toh;
4543 				uint_t		*dstptr;
4544 
4545 				toh = (struct T_opthdr *)dstopt;
4546 				toh->level = IPPROTO_IP;
4547 				toh->name = IP_RECVIF;
4548 				toh->len = sizeof (struct T_opthdr) +
4549 				    sizeof (uint_t);
4550 				toh->status = 0;
4551 				dstopt += sizeof (struct T_opthdr);
4552 				dstptr = (uint_t *)dstopt;
4553 				*dstptr = pinfo->ip_pkt_ifindex;
4554 				dstopt += sizeof (uint_t);
4555 				udi_size -= toh->len;
4556 			}
4557 
4558 			if (cr != NULL) {
4559 				struct T_opthdr *toh;
4560 
4561 				toh = (struct T_opthdr *)dstopt;
4562 				toh->level = SOL_SOCKET;
4563 				toh->name = SCM_UCRED;
4564 				toh->len = sizeof (struct T_opthdr) + ucredsize;
4565 				toh->status = 0;
4566 				dstopt += sizeof (struct T_opthdr);
4567 				(void) cred2ucred(cr, cpid, dstopt, rcr);
4568 				dstopt += ucredsize;
4569 				udi_size -= toh->len;
4570 			}
4571 
4572 			if (udp_bits.udpb_timestamp) {
4573 				struct	T_opthdr *toh;
4574 
4575 				toh = (struct T_opthdr *)dstopt;
4576 				toh->level = SOL_SOCKET;
4577 				toh->name = SCM_TIMESTAMP;
4578 				toh->len = sizeof (struct T_opthdr) +
4579 				    sizeof (timestruc_t) + _POINTER_ALIGNMENT;
4580 				toh->status = 0;
4581 				dstopt += sizeof (struct T_opthdr);
4582 				/* Align for gethrestime() */
4583 				dstopt = (char *)P2ROUNDUP((intptr_t)dstopt,
4584 				    sizeof (intptr_t));
4585 				gethrestime((timestruc_t *)dstopt);
4586 				dstopt = (char *)toh + toh->len;
4587 				udi_size -= toh->len;
4588 			}
4589 
4590 			/*
4591 			 * CAUTION:
4592 			 * Due to aligment issues
4593 			 * Processing of IP_RECVTTL option
4594 			 * should always be the last. Adding
4595 			 * any option processing after this will
4596 			 * cause alignment panic.
4597 			 */
4598 			if (udp_bits.udpb_recvttl) {
4599 				struct	T_opthdr *toh;
4600 				uint8_t	*dstptr;
4601 
4602 				toh = (struct T_opthdr *)dstopt;
4603 				toh->level = IPPROTO_IP;
4604 				toh->name = IP_RECVTTL;
4605 				toh->len = sizeof (struct T_opthdr) +
4606 				    sizeof (uint8_t);
4607 				toh->status = 0;
4608 				dstopt += sizeof (struct T_opthdr);
4609 				dstptr = (uint8_t *)dstopt;
4610 				*dstptr = ((ipha_t *)rptr)->ipha_ttl;
4611 				dstopt += sizeof (uint8_t);
4612 				udi_size -= toh->len;
4613 			}
4614 
4615 			/* Consumed all of allocated space */
4616 			ASSERT(udi_size == 0);
4617 		}
4618 	} else {
4619 		sin6_t *sin6;
4620 
4621 		/*
4622 		 * Handle both IPv4 and IPv6 packets for IPv6 sockets.
4623 		 *
4624 		 * Normally we only send up the address. If receiving of any
4625 		 * optional receive side information is enabled, we also send
4626 		 * that up as options.
4627 		 */
4628 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t);
4629 
4630 		if (ipp.ipp_fields & (IPPF_HOPOPTS|IPPF_DSTOPTS|IPPF_RTDSTOPTS|
4631 		    IPPF_RTHDR|IPPF_IFINDEX)) {
4632 			if ((udp_bits.udpb_ipv6_recvhopopts) &&
4633 			    (ipp.ipp_fields & IPPF_HOPOPTS)) {
4634 				size_t hlen;
4635 
4636 				UDP_STAT(us, udp_in_recvhopopts);
4637 				hlen = copy_hop_opts(&ipp, NULL);
4638 				if (hlen == 0)
4639 					ipp.ipp_fields &= ~IPPF_HOPOPTS;
4640 				udi_size += hlen;
4641 			}
4642 			if (((udp_bits.udpb_ipv6_recvdstopts) ||
4643 			    udp_bits.udpb_old_ipv6_recvdstopts) &&
4644 			    (ipp.ipp_fields & IPPF_DSTOPTS)) {
4645 				udi_size += sizeof (struct T_opthdr) +
4646 				    ipp.ipp_dstoptslen;
4647 				UDP_STAT(us, udp_in_recvdstopts);
4648 			}
4649 			if ((((udp_bits.udpb_ipv6_recvdstopts) &&
4650 			    udp_bits.udpb_ipv6_recvrthdr &&
4651 			    (ipp.ipp_fields & IPPF_RTHDR)) ||
4652 			    (udp_bits.udpb_ipv6_recvrthdrdstopts)) &&
4653 			    (ipp.ipp_fields & IPPF_RTDSTOPTS)) {
4654 				udi_size += sizeof (struct T_opthdr) +
4655 				    ipp.ipp_rtdstoptslen;
4656 				UDP_STAT(us, udp_in_recvrtdstopts);
4657 			}
4658 			if ((udp_bits.udpb_ipv6_recvrthdr) &&
4659 			    (ipp.ipp_fields & IPPF_RTHDR)) {
4660 				udi_size += sizeof (struct T_opthdr) +
4661 				    ipp.ipp_rthdrlen;
4662 				UDP_STAT(us, udp_in_recvrthdr);
4663 			}
4664 			if ((udp_bits.udpb_ip_recvpktinfo) &&
4665 			    (ipp.ipp_fields & IPPF_IFINDEX)) {
4666 				udi_size += sizeof (struct T_opthdr) +
4667 				    sizeof (struct in6_pktinfo);
4668 				UDP_STAT(us, udp_in_recvpktinfo);
4669 			}
4670 
4671 		}
4672 		if ((udp_bits.udpb_recvucred) &&
4673 		    (cr = DB_CRED(mp)) != NULL) {
4674 			udi_size += sizeof (struct T_opthdr) + ucredsize;
4675 			cpid = DB_CPID(mp);
4676 			UDP_STAT(us, udp_in_recvucred);
4677 		}
4678 
4679 		/*
4680 		 * If SO_TIMESTAMP is set allocate the appropriate sized
4681 		 * buffer. Since gethrestime() expects a pointer aligned
4682 		 * argument, we allocate space necessary for extra
4683 		 * alignment (even though it might not be used).
4684 		 */
4685 		if (udp_bits.udpb_timestamp) {
4686 			udi_size += sizeof (struct T_opthdr) +
4687 			    sizeof (timestruc_t) + _POINTER_ALIGNMENT;
4688 			UDP_STAT(us, udp_in_timestamp);
4689 		}
4690 
4691 		if (udp_bits.udpb_ipv6_recvhoplimit) {
4692 			udi_size += sizeof (struct T_opthdr) + sizeof (int);
4693 			UDP_STAT(us, udp_in_recvhoplimit);
4694 		}
4695 
4696 		if (udp_bits.udpb_ipv6_recvtclass) {
4697 			udi_size += sizeof (struct T_opthdr) + sizeof (int);
4698 			UDP_STAT(us, udp_in_recvtclass);
4699 		}
4700 
4701 		mp1 = allocb(udi_size, BPRI_MED);
4702 		if (mp1 == NULL) {
4703 			freemsg(mp);
4704 			if (options_mp != NULL)
4705 				freeb(options_mp);
4706 			BUMP_MIB(&us->us_udp_mib, udpInErrors);
4707 			return;
4708 		}
4709 		mp1->b_cont = mp;
4710 		mp = mp1;
4711 		mp->b_datap->db_type = M_PROTO;
4712 		tudi = (struct T_unitdata_ind *)mp->b_rptr;
4713 		mp->b_wptr = (uchar_t *)tudi + udi_size;
4714 		tudi->PRIM_type = T_UNITDATA_IND;
4715 		tudi->SRC_length = sizeof (sin6_t);
4716 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
4717 		tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
4718 		    sizeof (sin6_t);
4719 		udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin6_t));
4720 		tudi->OPT_length = udi_size;
4721 		sin6 = (sin6_t *)&tudi[1];
4722 		if (ipversion == IPV4_VERSION) {
4723 			in6_addr_t v6dst;
4724 
4725 			IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_src,
4726 			    &sin6->sin6_addr);
4727 			IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_dst,
4728 			    &v6dst);
4729 			sin6->sin6_flowinfo = 0;
4730 			sin6->sin6_scope_id = 0;
4731 			sin6->__sin6_src_id = ip_srcid_find_addr(&v6dst,
4732 			    connp->conn_zoneid, us->us_netstack);
4733 		} else {
4734 			sin6->sin6_addr = ip6h->ip6_src;
4735 			/* No sin6_flowinfo per API */
4736 			sin6->sin6_flowinfo = 0;
4737 			/* For link-scope source pass up scope id */
4738 			if ((ipp.ipp_fields & IPPF_IFINDEX) &&
4739 			    IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src))
4740 				sin6->sin6_scope_id = ipp.ipp_ifindex;
4741 			else
4742 				sin6->sin6_scope_id = 0;
4743 			sin6->__sin6_src_id = ip_srcid_find_addr(
4744 			    &ip6h->ip6_dst, connp->conn_zoneid,
4745 			    us->us_netstack);
4746 		}
4747 		sin6->sin6_port = udpha->uha_src_port;
4748 		sin6->sin6_family = udp->udp_family;
4749 
4750 		if (udi_size != 0) {
4751 			uchar_t *dstopt;
4752 
4753 			dstopt = (uchar_t *)&sin6[1];
4754 			if ((udp_bits.udpb_ip_recvpktinfo) &&
4755 			    (ipp.ipp_fields & IPPF_IFINDEX)) {
4756 				struct T_opthdr *toh;
4757 				struct in6_pktinfo *pkti;
4758 
4759 				toh = (struct T_opthdr *)dstopt;
4760 				toh->level = IPPROTO_IPV6;
4761 				toh->name = IPV6_PKTINFO;
4762 				toh->len = sizeof (struct T_opthdr) +
4763 				    sizeof (*pkti);
4764 				toh->status = 0;
4765 				dstopt += sizeof (struct T_opthdr);
4766 				pkti = (struct in6_pktinfo *)dstopt;
4767 				if (ipversion == IPV6_VERSION)
4768 					pkti->ipi6_addr = ip6h->ip6_dst;
4769 				else
4770 					IN6_IPADDR_TO_V4MAPPED(
4771 					    ((ipha_t *)rptr)->ipha_dst,
4772 					    &pkti->ipi6_addr);
4773 				pkti->ipi6_ifindex = ipp.ipp_ifindex;
4774 				dstopt += sizeof (*pkti);
4775 				udi_size -= toh->len;
4776 			}
4777 			if (udp_bits.udpb_ipv6_recvhoplimit) {
4778 				struct T_opthdr *toh;
4779 
4780 				toh = (struct T_opthdr *)dstopt;
4781 				toh->level = IPPROTO_IPV6;
4782 				toh->name = IPV6_HOPLIMIT;
4783 				toh->len = sizeof (struct T_opthdr) +
4784 				    sizeof (uint_t);
4785 				toh->status = 0;
4786 				dstopt += sizeof (struct T_opthdr);
4787 				if (ipversion == IPV6_VERSION)
4788 					*(uint_t *)dstopt = ip6h->ip6_hops;
4789 				else
4790 					*(uint_t *)dstopt =
4791 					    ((ipha_t *)rptr)->ipha_ttl;
4792 				dstopt += sizeof (uint_t);
4793 				udi_size -= toh->len;
4794 			}
4795 			if (udp_bits.udpb_ipv6_recvtclass) {
4796 				struct T_opthdr *toh;
4797 
4798 				toh = (struct T_opthdr *)dstopt;
4799 				toh->level = IPPROTO_IPV6;
4800 				toh->name = IPV6_TCLASS;
4801 				toh->len = sizeof (struct T_opthdr) +
4802 				    sizeof (uint_t);
4803 				toh->status = 0;
4804 				dstopt += sizeof (struct T_opthdr);
4805 				if (ipversion == IPV6_VERSION) {
4806 					*(uint_t *)dstopt =
4807 					    IPV6_FLOW_TCLASS(ip6h->ip6_flow);
4808 				} else {
4809 					ipha_t *ipha = (ipha_t *)rptr;
4810 					*(uint_t *)dstopt =
4811 					    ipha->ipha_type_of_service;
4812 				}
4813 				dstopt += sizeof (uint_t);
4814 				udi_size -= toh->len;
4815 			}
4816 			if ((udp_bits.udpb_ipv6_recvhopopts) &&
4817 			    (ipp.ipp_fields & IPPF_HOPOPTS)) {
4818 				size_t hlen;
4819 
4820 				hlen = copy_hop_opts(&ipp, dstopt);
4821 				dstopt += hlen;
4822 				udi_size -= hlen;
4823 			}
4824 			if ((udp_bits.udpb_ipv6_recvdstopts) &&
4825 			    (udp_bits.udpb_ipv6_recvrthdr) &&
4826 			    (ipp.ipp_fields & IPPF_RTHDR) &&
4827 			    (ipp.ipp_fields & IPPF_RTDSTOPTS)) {
4828 				struct T_opthdr *toh;
4829 
4830 				toh = (struct T_opthdr *)dstopt;
4831 				toh->level = IPPROTO_IPV6;
4832 				toh->name = IPV6_DSTOPTS;
4833 				toh->len = sizeof (struct T_opthdr) +
4834 				    ipp.ipp_rtdstoptslen;
4835 				toh->status = 0;
4836 				dstopt += sizeof (struct T_opthdr);
4837 				bcopy(ipp.ipp_rtdstopts, dstopt,
4838 				    ipp.ipp_rtdstoptslen);
4839 				dstopt += ipp.ipp_rtdstoptslen;
4840 				udi_size -= toh->len;
4841 			}
4842 			if ((udp_bits.udpb_ipv6_recvrthdr) &&
4843 			    (ipp.ipp_fields & IPPF_RTHDR)) {
4844 				struct T_opthdr *toh;
4845 
4846 				toh = (struct T_opthdr *)dstopt;
4847 				toh->level = IPPROTO_IPV6;
4848 				toh->name = IPV6_RTHDR;
4849 				toh->len = sizeof (struct T_opthdr) +
4850 				    ipp.ipp_rthdrlen;
4851 				toh->status = 0;
4852 				dstopt += sizeof (struct T_opthdr);
4853 				bcopy(ipp.ipp_rthdr, dstopt, ipp.ipp_rthdrlen);
4854 				dstopt += ipp.ipp_rthdrlen;
4855 				udi_size -= toh->len;
4856 			}
4857 			if ((udp_bits.udpb_ipv6_recvdstopts) &&
4858 			    (ipp.ipp_fields & IPPF_DSTOPTS)) {
4859 				struct T_opthdr *toh;
4860 
4861 				toh = (struct T_opthdr *)dstopt;
4862 				toh->level = IPPROTO_IPV6;
4863 				toh->name = IPV6_DSTOPTS;
4864 				toh->len = sizeof (struct T_opthdr) +
4865 				    ipp.ipp_dstoptslen;
4866 				toh->status = 0;
4867 				dstopt += sizeof (struct T_opthdr);
4868 				bcopy(ipp.ipp_dstopts, dstopt,
4869 				    ipp.ipp_dstoptslen);
4870 				dstopt += ipp.ipp_dstoptslen;
4871 				udi_size -= toh->len;
4872 			}
4873 
4874 			if (cr != NULL) {
4875 				struct T_opthdr *toh;
4876 
4877 				toh = (struct T_opthdr *)dstopt;
4878 				toh->level = SOL_SOCKET;
4879 				toh->name = SCM_UCRED;
4880 				toh->len = sizeof (struct T_opthdr) + ucredsize;
4881 				toh->status = 0;
4882 				(void) cred2ucred(cr, cpid, &toh[1], rcr);
4883 				dstopt += toh->len;
4884 				udi_size -= toh->len;
4885 			}
4886 			if (udp_bits.udpb_timestamp) {
4887 				struct	T_opthdr *toh;
4888 
4889 				toh = (struct T_opthdr *)dstopt;
4890 				toh->level = SOL_SOCKET;
4891 				toh->name = SCM_TIMESTAMP;
4892 				toh->len = sizeof (struct T_opthdr) +
4893 				    sizeof (timestruc_t) + _POINTER_ALIGNMENT;
4894 				toh->status = 0;
4895 				dstopt += sizeof (struct T_opthdr);
4896 				/* Align for gethrestime() */
4897 				dstopt = (uchar_t *)P2ROUNDUP((intptr_t)dstopt,
4898 				    sizeof (intptr_t));
4899 				gethrestime((timestruc_t *)dstopt);
4900 				dstopt = (uchar_t *)toh + toh->len;
4901 				udi_size -= toh->len;
4902 			}
4903 
4904 			/* Consumed all of allocated space */
4905 			ASSERT(udi_size == 0);
4906 		}
4907 #undef	sin6
4908 		/* No IP_RECVDSTADDR for IPv6. */
4909 	}
4910 
4911 	BUMP_MIB(&us->us_udp_mib, udpHCInDatagrams);
4912 	if (options_mp != NULL)
4913 		freeb(options_mp);
4914 
4915 	if (udp_bits.udpb_direct_sockfs) {
4916 		/*
4917 		 * There is nothing above us except for the stream head;
4918 		 * use the read-side synchronous stream interface in
4919 		 * order to reduce the time spent in interrupt thread.
4920 		 */
4921 		ASSERT(udp->udp_issocket);
4922 		udp_rcv_enqueue(connp->conn_rq, udp, mp, mp_len);
4923 	} else {
4924 		/*
4925 		 * Use regular STREAMS interface to pass data upstream
4926 		 * if this is not a socket endpoint, or if we have
4927 		 * switched over to the slow mode due to sockmod being
4928 		 * popped or a module being pushed on top of us.
4929 		 */
4930 		putnext(connp->conn_rq, mp);
4931 	}
4932 	return;
4933 
4934 tossit:
4935 	freemsg(mp);
4936 	if (options_mp != NULL)
4937 		freeb(options_mp);
4938 	BUMP_MIB(&us->us_udp_mib, udpInErrors);
4939 }
4940 
4941 /*
4942  * Handle the results of a T_BIND_REQ whether deferred by IP or handled
4943  * immediately.
4944  */
4945 static void
4946 udp_bind_result(conn_t *connp, mblk_t *mp)
4947 {
4948 	struct T_error_ack	*tea;
4949 
4950 	switch (mp->b_datap->db_type) {
4951 	case M_PROTO:
4952 	case M_PCPROTO:
4953 		/* M_PROTO messages contain some type of TPI message. */
4954 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
4955 		    (uintptr_t)INT_MAX);
4956 		if (mp->b_wptr - mp->b_rptr < sizeof (t_scalar_t)) {
4957 			freemsg(mp);
4958 			return;
4959 		}
4960 		tea = (struct T_error_ack *)mp->b_rptr;
4961 
4962 		switch (tea->PRIM_type) {
4963 		case T_ERROR_ACK:
4964 			switch (tea->ERROR_prim) {
4965 			case O_T_BIND_REQ:
4966 			case T_BIND_REQ:
4967 				udp_bind_error(connp, mp);
4968 				return;
4969 			default:
4970 				break;
4971 			}
4972 			ASSERT(0);
4973 			freemsg(mp);
4974 			return;
4975 
4976 		case T_BIND_ACK:
4977 			udp_bind_ack(connp, mp);
4978 			return;
4979 
4980 		default:
4981 			break;
4982 		}
4983 		freemsg(mp);
4984 		return;
4985 	default:
4986 		/* FIXME: other cases? */
4987 		ASSERT(0);
4988 		freemsg(mp);
4989 		return;
4990 	}
4991 }
4992 
4993 /*
4994  * Process a T_BIND_ACK
4995  */
4996 static void
4997 udp_bind_ack(conn_t *connp, mblk_t *mp)
4998 {
4999 	udp_t	*udp = connp->conn_udp;
5000 	mblk_t	*mp1;
5001 	ire_t	*ire;
5002 	struct T_bind_ack *tba;
5003 	uchar_t *addrp;
5004 	ipa_conn_t	*ac;
5005 	ipa6_conn_t	*ac6;
5006 	udp_fanout_t	*udpf;
5007 	udp_stack_t	*us = udp->udp_us;
5008 
5009 	ASSERT(udp->udp_pending_op != -1);
5010 	rw_enter(&udp->udp_rwlock, RW_WRITER);
5011 	/*
5012 	 * If a broadcast/multicast address was bound set
5013 	 * the source address to 0.
5014 	 * This ensures no datagrams with broadcast address
5015 	 * as source address are emitted (which would violate
5016 	 * RFC1122 - Hosts requirements)
5017 	 *
5018 	 * Note that when connecting the returned IRE is
5019 	 * for the destination address and we only perform
5020 	 * the broadcast check for the source address (it
5021 	 * is OK to connect to a broadcast/multicast address.)
5022 	 */
5023 	mp1 = mp->b_cont;
5024 	if (mp1 != NULL && mp1->b_datap->db_type == IRE_DB_TYPE) {
5025 		ire = (ire_t *)mp1->b_rptr;
5026 
5027 		/*
5028 		 * Note: we get IRE_BROADCAST for IPv6 to "mark" a multicast
5029 		 * local address.
5030 		 */
5031 		udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
5032 		    us->us_bind_fanout_size)];
5033 		if (ire->ire_type == IRE_BROADCAST &&
5034 		    udp->udp_state != TS_DATA_XFER) {
5035 			ASSERT(udp->udp_pending_op == T_BIND_REQ ||
5036 			    udp->udp_pending_op == O_T_BIND_REQ);
5037 			/* This was just a local bind to a broadcast addr */
5038 			mutex_enter(&udpf->uf_lock);
5039 			V6_SET_ZERO(udp->udp_v6src);
5040 			mutex_exit(&udpf->uf_lock);
5041 			if (udp->udp_family == AF_INET6)
5042 				(void) udp_build_hdrs(udp);
5043 		} else if (V6_OR_V4_INADDR_ANY(udp->udp_v6src)) {
5044 			/*
5045 			 * Local address not yet set - pick it from the
5046 			 * T_bind_ack
5047 			 */
5048 			tba = (struct T_bind_ack *)mp->b_rptr;
5049 			addrp = &mp->b_rptr[tba->ADDR_offset];
5050 			switch (udp->udp_family) {
5051 			case AF_INET:
5052 				if (tba->ADDR_length == sizeof (ipa_conn_t)) {
5053 					ac = (ipa_conn_t *)addrp;
5054 				} else {
5055 					ASSERT(tba->ADDR_length ==
5056 					    sizeof (ipa_conn_x_t));
5057 					ac = &((ipa_conn_x_t *)addrp)->acx_conn;
5058 				}
5059 				mutex_enter(&udpf->uf_lock);
5060 				IN6_IPADDR_TO_V4MAPPED(ac->ac_laddr,
5061 				    &udp->udp_v6src);
5062 				mutex_exit(&udpf->uf_lock);
5063 				break;
5064 			case AF_INET6:
5065 				if (tba->ADDR_length == sizeof (ipa6_conn_t)) {
5066 					ac6 = (ipa6_conn_t *)addrp;
5067 				} else {
5068 					ASSERT(tba->ADDR_length ==
5069 					    sizeof (ipa6_conn_x_t));
5070 					ac6 = &((ipa6_conn_x_t *)
5071 					    addrp)->ac6x_conn;
5072 				}
5073 				mutex_enter(&udpf->uf_lock);
5074 				udp->udp_v6src = ac6->ac6_laddr;
5075 				mutex_exit(&udpf->uf_lock);
5076 				(void) udp_build_hdrs(udp);
5077 				break;
5078 			}
5079 		}
5080 		mp1 = mp1->b_cont;
5081 	}
5082 	udp->udp_pending_op = -1;
5083 	rw_exit(&udp->udp_rwlock);
5084 	/*
5085 	 * Look for one or more appended ACK message added by
5086 	 * udp_connect or udp_disconnect.
5087 	 * If none found just send up the T_BIND_ACK.
5088 	 * udp_connect has appended a T_OK_ACK and a T_CONN_CON.
5089 	 * udp_disconnect has appended a T_OK_ACK.
5090 	 */
5091 	if (mp1 != NULL) {
5092 		if (mp->b_cont == mp1)
5093 			mp->b_cont = NULL;
5094 		else {
5095 			ASSERT(mp->b_cont->b_cont == mp1);
5096 			mp->b_cont->b_cont = NULL;
5097 		}
5098 		freemsg(mp);
5099 		mp = mp1;
5100 		while (mp != NULL) {
5101 			mp1 = mp->b_cont;
5102 			mp->b_cont = NULL;
5103 			putnext(connp->conn_rq, mp);
5104 			mp = mp1;
5105 		}
5106 		return;
5107 	}
5108 	freemsg(mp->b_cont);
5109 	mp->b_cont = NULL;
5110 	putnext(connp->conn_rq, mp);
5111 }
5112 
5113 static void
5114 udp_bind_error(conn_t *connp, mblk_t *mp)
5115 {
5116 	udp_t	*udp = connp->conn_udp;
5117 	struct T_error_ack *tea;
5118 	udp_fanout_t	*udpf;
5119 	udp_stack_t	*us = udp->udp_us;
5120 
5121 	tea = (struct T_error_ack *)mp->b_rptr;
5122 
5123 	/*
5124 	 * If our O_T_BIND_REQ/T_BIND_REQ fails,
5125 	 * clear out the associated port and source
5126 	 * address before passing the message
5127 	 * upstream. If this was caused by a T_CONN_REQ
5128 	 * revert back to bound state.
5129 	 */
5130 
5131 	rw_enter(&udp->udp_rwlock, RW_WRITER);
5132 	ASSERT(udp->udp_pending_op != -1);
5133 	tea->ERROR_prim = udp->udp_pending_op;
5134 	udp->udp_pending_op = -1;
5135 	udpf = &us->us_bind_fanout[
5136 	    UDP_BIND_HASH(udp->udp_port,
5137 	    us->us_bind_fanout_size)];
5138 	mutex_enter(&udpf->uf_lock);
5139 
5140 	switch (tea->ERROR_prim) {
5141 	case T_CONN_REQ:
5142 		ASSERT(udp->udp_state == TS_DATA_XFER);
5143 		/* Connect failed */
5144 		/* Revert back to the bound source */
5145 		udp->udp_v6src = udp->udp_bound_v6src;
5146 		udp->udp_state = TS_IDLE;
5147 		mutex_exit(&udpf->uf_lock);
5148 		if (udp->udp_family == AF_INET6)
5149 			(void) udp_build_hdrs(udp);
5150 		rw_exit(&udp->udp_rwlock);
5151 		break;
5152 
5153 	case T_DISCON_REQ:
5154 	case T_BIND_REQ:
5155 	case O_T_BIND_REQ:
5156 		V6_SET_ZERO(udp->udp_v6src);
5157 		V6_SET_ZERO(udp->udp_bound_v6src);
5158 		udp->udp_state = TS_UNBND;
5159 		udp_bind_hash_remove(udp, B_TRUE);
5160 		udp->udp_port = 0;
5161 		mutex_exit(&udpf->uf_lock);
5162 		if (udp->udp_family == AF_INET6)
5163 			(void) udp_build_hdrs(udp);
5164 		rw_exit(&udp->udp_rwlock);
5165 		break;
5166 
5167 	default:
5168 		mutex_exit(&udpf->uf_lock);
5169 		rw_exit(&udp->udp_rwlock);
5170 		(void) mi_strlog(connp->conn_rq, 1,
5171 		    SL_ERROR|SL_TRACE,
5172 		    "udp_input_other: bad ERROR_prim, "
5173 		    "len %d", tea->ERROR_prim);
5174 	}
5175 	putnext(connp->conn_rq, mp);
5176 }
5177 
5178 /*
5179  * return SNMP stuff in buffer in mpdata. We don't hold any lock and report
5180  * information that can be changing beneath us.
5181  */
5182 mblk_t *
5183 udp_snmp_get(queue_t *q, mblk_t *mpctl)
5184 {
5185 	mblk_t			*mpdata;
5186 	mblk_t			*mp_conn_ctl;
5187 	mblk_t			*mp_attr_ctl;
5188 	mblk_t			*mp6_conn_ctl;
5189 	mblk_t			*mp6_attr_ctl;
5190 	mblk_t			*mp_conn_tail;
5191 	mblk_t			*mp_attr_tail;
5192 	mblk_t			*mp6_conn_tail;
5193 	mblk_t			*mp6_attr_tail;
5194 	struct opthdr		*optp;
5195 	mib2_udpEntry_t		ude;
5196 	mib2_udp6Entry_t	ude6;
5197 	mib2_transportMLPEntry_t mlp;
5198 	int			state;
5199 	zoneid_t		zoneid;
5200 	int			i;
5201 	connf_t			*connfp;
5202 	conn_t			*connp = Q_TO_CONN(q);
5203 	int			v4_conn_idx;
5204 	int			v6_conn_idx;
5205 	boolean_t		needattr;
5206 	udp_t			*udp;
5207 	ip_stack_t		*ipst = connp->conn_netstack->netstack_ip;
5208 	udp_stack_t		*us = connp->conn_netstack->netstack_udp;
5209 	mblk_t			*mp2ctl;
5210 
5211 	/*
5212 	 * make a copy of the original message
5213 	 */
5214 	mp2ctl = copymsg(mpctl);
5215 
5216 	mp_conn_ctl = mp_attr_ctl = mp6_conn_ctl = NULL;
5217 	if (mpctl == NULL ||
5218 	    (mpdata = mpctl->b_cont) == NULL ||
5219 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
5220 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
5221 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
5222 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
5223 		freemsg(mp_conn_ctl);
5224 		freemsg(mp_attr_ctl);
5225 		freemsg(mp6_conn_ctl);
5226 		freemsg(mpctl);
5227 		freemsg(mp2ctl);
5228 		return (0);
5229 	}
5230 
5231 	zoneid = connp->conn_zoneid;
5232 
5233 	/* fixed length structure for IPv4 and IPv6 counters */
5234 	SET_MIB(us->us_udp_mib.udpEntrySize, sizeof (mib2_udpEntry_t));
5235 	SET_MIB(us->us_udp_mib.udp6EntrySize, sizeof (mib2_udp6Entry_t));
5236 	/* synchronize 64- and 32-bit counters */
5237 	SYNC32_MIB(&us->us_udp_mib, udpInDatagrams, udpHCInDatagrams);
5238 	SYNC32_MIB(&us->us_udp_mib, udpOutDatagrams, udpHCOutDatagrams);
5239 
5240 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
5241 	optp->level = MIB2_UDP;
5242 	optp->name = 0;
5243 	(void) snmp_append_data(mpdata, (char *)&us->us_udp_mib,
5244 	    sizeof (us->us_udp_mib));
5245 	optp->len = msgdsize(mpdata);
5246 	qreply(q, mpctl);
5247 
5248 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
5249 	v4_conn_idx = v6_conn_idx = 0;
5250 
5251 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
5252 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
5253 		connp = NULL;
5254 
5255 		while ((connp = ipcl_get_next_conn(connfp, connp,
5256 		    IPCL_UDPCONN))) {
5257 			udp = connp->conn_udp;
5258 			if (zoneid != connp->conn_zoneid)
5259 				continue;
5260 
5261 			/*
5262 			 * Note that the port numbers are sent in
5263 			 * host byte order
5264 			 */
5265 
5266 			if (udp->udp_state == TS_UNBND)
5267 				state = MIB2_UDP_unbound;
5268 			else if (udp->udp_state == TS_IDLE)
5269 				state = MIB2_UDP_idle;
5270 			else if (udp->udp_state == TS_DATA_XFER)
5271 				state = MIB2_UDP_connected;
5272 			else
5273 				state = MIB2_UDP_unknown;
5274 
5275 			needattr = B_FALSE;
5276 			bzero(&mlp, sizeof (mlp));
5277 			if (connp->conn_mlp_type != mlptSingle) {
5278 				if (connp->conn_mlp_type == mlptShared ||
5279 				    connp->conn_mlp_type == mlptBoth)
5280 					mlp.tme_flags |= MIB2_TMEF_SHARED;
5281 				if (connp->conn_mlp_type == mlptPrivate ||
5282 				    connp->conn_mlp_type == mlptBoth)
5283 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
5284 				needattr = B_TRUE;
5285 			}
5286 
5287 			/*
5288 			 * Create an IPv4 table entry for IPv4 entries and also
5289 			 * any IPv6 entries which are bound to in6addr_any
5290 			 * (i.e. anything a IPv4 peer could connect/send to).
5291 			 */
5292 			if (udp->udp_ipversion == IPV4_VERSION ||
5293 			    (udp->udp_state <= TS_IDLE &&
5294 			    IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src))) {
5295 				ude.udpEntryInfo.ue_state = state;
5296 				/*
5297 				 * If in6addr_any this will set it to
5298 				 * INADDR_ANY
5299 				 */
5300 				ude.udpLocalAddress =
5301 				    V4_PART_OF_V6(udp->udp_v6src);
5302 				ude.udpLocalPort = ntohs(udp->udp_port);
5303 				if (udp->udp_state == TS_DATA_XFER) {
5304 					/*
5305 					 * Can potentially get here for
5306 					 * v6 socket if another process
5307 					 * (say, ping) has just done a
5308 					 * sendto(), changing the state
5309 					 * from the TS_IDLE above to
5310 					 * TS_DATA_XFER by the time we hit
5311 					 * this part of the code.
5312 					 */
5313 					ude.udpEntryInfo.ue_RemoteAddress =
5314 					    V4_PART_OF_V6(udp->udp_v6dst);
5315 					ude.udpEntryInfo.ue_RemotePort =
5316 					    ntohs(udp->udp_dstport);
5317 				} else {
5318 					ude.udpEntryInfo.ue_RemoteAddress = 0;
5319 					ude.udpEntryInfo.ue_RemotePort = 0;
5320 				}
5321 
5322 				/*
5323 				 * We make the assumption that all udp_t
5324 				 * structs will be created within an address
5325 				 * region no larger than 32-bits.
5326 				 */
5327 				ude.udpInstance = (uint32_t)(uintptr_t)udp;
5328 				ude.udpCreationProcess =
5329 				    (udp->udp_open_pid < 0) ?
5330 				    MIB2_UNKNOWN_PROCESS :
5331 				    udp->udp_open_pid;
5332 				ude.udpCreationTime = udp->udp_open_time;
5333 
5334 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
5335 				    &mp_conn_tail, (char *)&ude, sizeof (ude));
5336 				mlp.tme_connidx = v4_conn_idx++;
5337 				if (needattr)
5338 					(void) snmp_append_data2(
5339 					    mp_attr_ctl->b_cont, &mp_attr_tail,
5340 					    (char *)&mlp, sizeof (mlp));
5341 			}
5342 			if (udp->udp_ipversion == IPV6_VERSION) {
5343 				ude6.udp6EntryInfo.ue_state  = state;
5344 				ude6.udp6LocalAddress = udp->udp_v6src;
5345 				ude6.udp6LocalPort = ntohs(udp->udp_port);
5346 				ude6.udp6IfIndex = udp->udp_bound_if;
5347 				if (udp->udp_state == TS_DATA_XFER) {
5348 					ude6.udp6EntryInfo.ue_RemoteAddress =
5349 					    udp->udp_v6dst;
5350 					ude6.udp6EntryInfo.ue_RemotePort =
5351 					    ntohs(udp->udp_dstport);
5352 				} else {
5353 					ude6.udp6EntryInfo.ue_RemoteAddress =
5354 					    sin6_null.sin6_addr;
5355 					ude6.udp6EntryInfo.ue_RemotePort = 0;
5356 				}
5357 				/*
5358 				 * We make the assumption that all udp_t
5359 				 * structs will be created within an address
5360 				 * region no larger than 32-bits.
5361 				 */
5362 				ude6.udp6Instance = (uint32_t)(uintptr_t)udp;
5363 				ude6.udp6CreationProcess =
5364 				    (udp->udp_open_pid < 0) ?
5365 				    MIB2_UNKNOWN_PROCESS :
5366 				    udp->udp_open_pid;
5367 				ude6.udp6CreationTime = udp->udp_open_time;
5368 
5369 				(void) snmp_append_data2(mp6_conn_ctl->b_cont,
5370 				    &mp6_conn_tail, (char *)&ude6,
5371 				    sizeof (ude6));
5372 				mlp.tme_connidx = v6_conn_idx++;
5373 				if (needattr)
5374 					(void) snmp_append_data2(
5375 					    mp6_attr_ctl->b_cont,
5376 					    &mp6_attr_tail, (char *)&mlp,
5377 					    sizeof (mlp));
5378 			}
5379 		}
5380 	}
5381 
5382 	/* IPv4 UDP endpoints */
5383 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
5384 	    sizeof (struct T_optmgmt_ack)];
5385 	optp->level = MIB2_UDP;
5386 	optp->name = MIB2_UDP_ENTRY;
5387 	optp->len = msgdsize(mp_conn_ctl->b_cont);
5388 	qreply(q, mp_conn_ctl);
5389 
5390 	/* table of MLP attributes... */
5391 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
5392 	    sizeof (struct T_optmgmt_ack)];
5393 	optp->level = MIB2_UDP;
5394 	optp->name = EXPER_XPORT_MLP;
5395 	optp->len = msgdsize(mp_attr_ctl->b_cont);
5396 	if (optp->len == 0)
5397 		freemsg(mp_attr_ctl);
5398 	else
5399 		qreply(q, mp_attr_ctl);
5400 
5401 	/* IPv6 UDP endpoints */
5402 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
5403 	    sizeof (struct T_optmgmt_ack)];
5404 	optp->level = MIB2_UDP6;
5405 	optp->name = MIB2_UDP6_ENTRY;
5406 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
5407 	qreply(q, mp6_conn_ctl);
5408 
5409 	/* table of MLP attributes... */
5410 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
5411 	    sizeof (struct T_optmgmt_ack)];
5412 	optp->level = MIB2_UDP6;
5413 	optp->name = EXPER_XPORT_MLP;
5414 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
5415 	if (optp->len == 0)
5416 		freemsg(mp6_attr_ctl);
5417 	else
5418 		qreply(q, mp6_attr_ctl);
5419 
5420 	return (mp2ctl);
5421 }
5422 
5423 /*
5424  * Return 0 if invalid set request, 1 otherwise, including non-udp requests.
5425  * NOTE: Per MIB-II, UDP has no writable data.
5426  * TODO:  If this ever actually tries to set anything, it needs to be
5427  * to do the appropriate locking.
5428  */
5429 /* ARGSUSED */
5430 int
5431 udp_snmp_set(queue_t *q, t_scalar_t level, t_scalar_t name,
5432     uchar_t *ptr, int len)
5433 {
5434 	switch (level) {
5435 	case MIB2_UDP:
5436 		return (0);
5437 	default:
5438 		return (1);
5439 	}
5440 }
5441 
5442 static void
5443 udp_report_item(mblk_t *mp, udp_t *udp)
5444 {
5445 	char *state;
5446 	char addrbuf1[INET6_ADDRSTRLEN];
5447 	char addrbuf2[INET6_ADDRSTRLEN];
5448 	uint_t print_len, buf_len;
5449 
5450 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
5451 	ASSERT(buf_len >= 0);
5452 	if (buf_len == 0)
5453 		return;
5454 
5455 	if (udp->udp_state == TS_UNBND)
5456 		state = "UNBOUND";
5457 	else if (udp->udp_state == TS_IDLE)
5458 		state = "IDLE";
5459 	else if (udp->udp_state == TS_DATA_XFER)
5460 		state = "CONNECTED";
5461 	else
5462 		state = "UnkState";
5463 	print_len = snprintf((char *)mp->b_wptr, buf_len,
5464 	    MI_COL_PTRFMT_STR "%4d %5u %s %s %5u %s\n",
5465 	    (void *)udp, udp->udp_connp->conn_zoneid, ntohs(udp->udp_port),
5466 	    inet_ntop(AF_INET6, &udp->udp_v6src, addrbuf1, sizeof (addrbuf1)),
5467 	    inet_ntop(AF_INET6, &udp->udp_v6dst, addrbuf2, sizeof (addrbuf2)),
5468 	    ntohs(udp->udp_dstport), state);
5469 	if (print_len < buf_len) {
5470 		mp->b_wptr += print_len;
5471 	} else {
5472 		mp->b_wptr += buf_len;
5473 	}
5474 }
5475 
5476 /* Report for ndd "udp_status" */
5477 /* ARGSUSED */
5478 static int
5479 udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
5480 {
5481 	zoneid_t zoneid;
5482 	connf_t	*connfp;
5483 	conn_t	*connp = Q_TO_CONN(q);
5484 	udp_t	*udp = connp->conn_udp;
5485 	int	i;
5486 	udp_stack_t *us = udp->udp_us;
5487 	ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
5488 
5489 	/*
5490 	 * Because of the ndd constraint, at most we can have 64K buffer
5491 	 * to put in all UDP info.  So to be more efficient, just
5492 	 * allocate a 64K buffer here, assuming we need that large buffer.
5493 	 * This may be a problem as any user can read udp_status.  Therefore
5494 	 * we limit the rate of doing this using us_ndd_get_info_interval.
5495 	 * This should be OK as normal users should not do this too often.
5496 	 */
5497 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
5498 		if (ddi_get_lbolt() - us->us_last_ndd_get_info_time <
5499 		    drv_usectohz(us->us_ndd_get_info_interval * 1000)) {
5500 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
5501 			return (0);
5502 		}
5503 	}
5504 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
5505 		/* The following may work even if we cannot get a large buf. */
5506 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
5507 		return (0);
5508 	}
5509 	(void) mi_mpprintf(mp,
5510 	    "UDP     " MI_COL_HDRPAD_STR
5511 	/*   12345678[89ABCDEF] */
5512 	    " zone lport src addr        dest addr       port  state");
5513 	/*    1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */
5514 
5515 	zoneid = connp->conn_zoneid;
5516 
5517 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
5518 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
5519 		connp = NULL;
5520 
5521 		while ((connp = ipcl_get_next_conn(connfp, connp,
5522 		    IPCL_UDPCONN))) {
5523 			udp = connp->conn_udp;
5524 			if (zoneid != GLOBAL_ZONEID &&
5525 			    zoneid != connp->conn_zoneid)
5526 				continue;
5527 
5528 			udp_report_item(mp->b_cont, udp);
5529 		}
5530 	}
5531 	us->us_last_ndd_get_info_time = ddi_get_lbolt();
5532 	return (0);
5533 }
5534 
5535 /*
5536  * This routine creates a T_UDERROR_IND message and passes it upstream.
5537  * The address and options are copied from the T_UNITDATA_REQ message
5538  * passed in mp.  This message is freed.
5539  */
5540 static void
5541 udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr, t_scalar_t destlen,
5542     t_scalar_t err)
5543 {
5544 	struct T_unitdata_req *tudr;
5545 	mblk_t	*mp1;
5546 	uchar_t	*optaddr;
5547 	t_scalar_t optlen;
5548 
5549 	if (DB_TYPE(mp) == M_DATA) {
5550 		ASSERT(destaddr != NULL && destlen != 0);
5551 		optaddr = NULL;
5552 		optlen = 0;
5553 	} else {
5554 		if ((mp->b_wptr < mp->b_rptr) ||
5555 		    (MBLKL(mp)) < sizeof (struct T_unitdata_req)) {
5556 			goto done;
5557 		}
5558 		tudr = (struct T_unitdata_req *)mp->b_rptr;
5559 		destaddr = mp->b_rptr + tudr->DEST_offset;
5560 		if (destaddr < mp->b_rptr || destaddr >= mp->b_wptr ||
5561 		    destaddr + tudr->DEST_length < mp->b_rptr ||
5562 		    destaddr + tudr->DEST_length > mp->b_wptr) {
5563 			goto done;
5564 		}
5565 		optaddr = mp->b_rptr + tudr->OPT_offset;
5566 		if (optaddr < mp->b_rptr || optaddr >= mp->b_wptr ||
5567 		    optaddr + tudr->OPT_length < mp->b_rptr ||
5568 		    optaddr + tudr->OPT_length > mp->b_wptr) {
5569 			goto done;
5570 		}
5571 		destlen = tudr->DEST_length;
5572 		optlen = tudr->OPT_length;
5573 	}
5574 
5575 	mp1 = mi_tpi_uderror_ind((char *)destaddr, destlen,
5576 	    (char *)optaddr, optlen, err);
5577 	if (mp1 != NULL)
5578 		qreply(q, mp1);
5579 
5580 done:
5581 	freemsg(mp);
5582 }
5583 
5584 /*
5585  * This routine removes a port number association from a stream.  It
5586  * is called by udp_wput to handle T_UNBIND_REQ messages.
5587  */
5588 static void
5589 udp_unbind(queue_t *q, mblk_t *mp)
5590 {
5591 	udp_t *udp = Q_TO_UDP(q);
5592 	udp_fanout_t	*udpf;
5593 	udp_stack_t	*us = udp->udp_us;
5594 
5595 	if (cl_inet_unbind != NULL) {
5596 		/*
5597 		 * Running in cluster mode - register unbind information
5598 		 */
5599 		if (udp->udp_ipversion == IPV4_VERSION) {
5600 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET,
5601 			    (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)),
5602 			    (in_port_t)udp->udp_port);
5603 		} else {
5604 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET6,
5605 			    (uint8_t *)&(udp->udp_v6src),
5606 			    (in_port_t)udp->udp_port);
5607 		}
5608 	}
5609 
5610 	rw_enter(&udp->udp_rwlock, RW_WRITER);
5611 	if (udp->udp_state == TS_UNBND || udp->udp_pending_op != -1) {
5612 		rw_exit(&udp->udp_rwlock);
5613 		udp_err_ack(q, mp, TOUTSTATE, 0);
5614 		return;
5615 	}
5616 	udp->udp_pending_op = T_UNBIND_REQ;
5617 	rw_exit(&udp->udp_rwlock);
5618 
5619 	/*
5620 	 * Pass the unbind to IP; T_UNBIND_REQ is larger than T_OK_ACK
5621 	 * and therefore ip_unbind must never return NULL.
5622 	 */
5623 	mp = ip_unbind(q, mp);
5624 	ASSERT(mp != NULL);
5625 	ASSERT(((struct T_ok_ack *)mp->b_rptr)->PRIM_type == T_OK_ACK);
5626 
5627 	/*
5628 	 * Once we're unbound from IP, the pending operation may be cleared
5629 	 * here.
5630 	 */
5631 	rw_enter(&udp->udp_rwlock, RW_WRITER);
5632 	udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
5633 	    us->us_bind_fanout_size)];
5634 	mutex_enter(&udpf->uf_lock);
5635 	udp_bind_hash_remove(udp, B_TRUE);
5636 	V6_SET_ZERO(udp->udp_v6src);
5637 	V6_SET_ZERO(udp->udp_bound_v6src);
5638 	udp->udp_port = 0;
5639 	mutex_exit(&udpf->uf_lock);
5640 
5641 	udp->udp_pending_op = -1;
5642 	udp->udp_state = TS_UNBND;
5643 	if (udp->udp_family == AF_INET6)
5644 		(void) udp_build_hdrs(udp);
5645 	rw_exit(&udp->udp_rwlock);
5646 
5647 	qreply(q, mp);
5648 }
5649 
5650 /*
5651  * Don't let port fall into the privileged range.
5652  * Since the extra privileged ports can be arbitrary we also
5653  * ensure that we exclude those from consideration.
5654  * us->us_epriv_ports is not sorted thus we loop over it until
5655  * there are no changes.
5656  */
5657 static in_port_t
5658 udp_update_next_port(udp_t *udp, in_port_t port, boolean_t random)
5659 {
5660 	int i;
5661 	in_port_t nextport;
5662 	boolean_t restart = B_FALSE;
5663 	udp_stack_t *us = udp->udp_us;
5664 
5665 	if (random && udp_random_anon_port != 0) {
5666 		(void) random_get_pseudo_bytes((uint8_t *)&port,
5667 		    sizeof (in_port_t));
5668 		/*
5669 		 * Unless changed by a sys admin, the smallest anon port
5670 		 * is 32768 and the largest anon port is 65535.  It is
5671 		 * very likely (50%) for the random port to be smaller
5672 		 * than the smallest anon port.  When that happens,
5673 		 * add port % (anon port range) to the smallest anon
5674 		 * port to get the random port.  It should fall into the
5675 		 * valid anon port range.
5676 		 */
5677 		if (port < us->us_smallest_anon_port) {
5678 			port = us->us_smallest_anon_port +
5679 			    port % (us->us_largest_anon_port -
5680 			    us->us_smallest_anon_port);
5681 		}
5682 	}
5683 
5684 retry:
5685 	if (port < us->us_smallest_anon_port)
5686 		port = us->us_smallest_anon_port;
5687 
5688 	if (port > us->us_largest_anon_port) {
5689 		port = us->us_smallest_anon_port;
5690 		if (restart)
5691 			return (0);
5692 		restart = B_TRUE;
5693 	}
5694 
5695 	if (port < us->us_smallest_nonpriv_port)
5696 		port = us->us_smallest_nonpriv_port;
5697 
5698 	for (i = 0; i < us->us_num_epriv_ports; i++) {
5699 		if (port == us->us_epriv_ports[i]) {
5700 			port++;
5701 			/*
5702 			 * Make sure that the port is in the
5703 			 * valid range.
5704 			 */
5705 			goto retry;
5706 		}
5707 	}
5708 
5709 	if (is_system_labeled() &&
5710 	    (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred),
5711 	    port, IPPROTO_UDP, B_TRUE)) != 0) {
5712 		port = nextport;
5713 		goto retry;
5714 	}
5715 
5716 	return (port);
5717 }
5718 
5719 static int
5720 udp_update_label(queue_t *wq, mblk_t *mp, ipaddr_t dst)
5721 {
5722 	int err;
5723 	uchar_t opt_storage[IP_MAX_OPT_LENGTH];
5724 	udp_t *udp = Q_TO_UDP(wq);
5725 	udp_stack_t	*us = udp->udp_us;
5726 
5727 	err = tsol_compute_label(DB_CREDDEF(mp, udp->udp_connp->conn_cred), dst,
5728 	    opt_storage, udp->udp_connp->conn_mac_exempt,
5729 	    us->us_netstack->netstack_ip);
5730 	if (err == 0) {
5731 		err = tsol_update_options(&udp->udp_ip_snd_options,
5732 		    &udp->udp_ip_snd_options_len, &udp->udp_label_len,
5733 		    opt_storage);
5734 	}
5735 	if (err != 0) {
5736 		DTRACE_PROBE4(
5737 		    tx__ip__log__info__updatelabel__udp,
5738 		    char *, "queue(1) failed to update options(2) on mp(3)",
5739 		    queue_t *, wq, char *, opt_storage, mblk_t *, mp);
5740 	} else {
5741 		IN6_IPADDR_TO_V4MAPPED(dst, &udp->udp_v6lastdst);
5742 	}
5743 	return (err);
5744 }
5745 
5746 static mblk_t *
5747 udp_output_v4(conn_t *connp, mblk_t *mp, ipaddr_t v4dst, uint16_t port,
5748     uint_t srcid, int *error, boolean_t insert_spi)
5749 {
5750 	udp_t	*udp = connp->conn_udp;
5751 	queue_t	*q = connp->conn_wq;
5752 	mblk_t	*mp1 = mp;
5753 	mblk_t	*mp2;
5754 	ipha_t	*ipha;
5755 	int	ip_hdr_length;
5756 	uint32_t ip_len;
5757 	udpha_t	*udpha;
5758 	boolean_t lock_held = B_FALSE;
5759 	in_port_t	uha_src_port;
5760 	udpattrs_t	attrs;
5761 	uchar_t	ip_snd_opt[IP_MAX_OPT_LENGTH];
5762 	uint32_t	ip_snd_opt_len = 0;
5763 	ip4_pkt_t  pktinfo;
5764 	ip4_pkt_t  *pktinfop = &pktinfo;
5765 	ip_opt_info_t optinfo;
5766 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
5767 	udp_stack_t	*us = udp->udp_us;
5768 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5769 
5770 
5771 	*error = 0;
5772 	pktinfop->ip4_ill_index = 0;
5773 	pktinfop->ip4_addr = INADDR_ANY;
5774 	optinfo.ip_opt_flags = 0;
5775 	optinfo.ip_opt_ill_index = 0;
5776 
5777 	if (v4dst == INADDR_ANY)
5778 		v4dst = htonl(INADDR_LOOPBACK);
5779 
5780 	/*
5781 	 * If options passed in, feed it for verification and handling
5782 	 */
5783 	attrs.udpattr_credset = B_FALSE;
5784 	if (DB_TYPE(mp) != M_DATA) {
5785 		mp1 = mp->b_cont;
5786 		if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) {
5787 			attrs.udpattr_ipp4 = pktinfop;
5788 			attrs.udpattr_mb = mp;
5789 			if (udp_unitdata_opt_process(q, mp, error, &attrs) < 0)
5790 				goto done;
5791 			/*
5792 			 * Note: success in processing options.
5793 			 * mp option buffer represented by
5794 			 * OPT_length/offset now potentially modified
5795 			 * and contain option setting results
5796 			 */
5797 			ASSERT(*error == 0);
5798 		}
5799 	}
5800 
5801 	/* mp1 points to the M_DATA mblk carrying the packet */
5802 	ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA);
5803 
5804 	rw_enter(&udp->udp_rwlock, RW_READER);
5805 	lock_held = B_TRUE;
5806 	/*
5807 	 * Check if our saved options are valid; update if not.
5808 	 * TSOL Note: Since we are not in WRITER mode, UDP packets
5809 	 * to different destination may require different labels,
5810 	 * or worse, UDP packets to same IP address may require
5811 	 * different labels due to use of shared all-zones address.
5812 	 * We use conn_lock to ensure that lastdst, ip_snd_options,
5813 	 * and ip_snd_options_len are consistent for the current
5814 	 * destination and are updated atomically.
5815 	 */
5816 	mutex_enter(&connp->conn_lock);
5817 	if (is_system_labeled()) {
5818 		/* Using UDP MLP requires SCM_UCRED from user */
5819 		if (connp->conn_mlp_type != mlptSingle &&
5820 		    !attrs.udpattr_credset) {
5821 			mutex_exit(&connp->conn_lock);
5822 			DTRACE_PROBE4(
5823 			    tx__ip__log__info__output__udp,
5824 			    char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)",
5825 			    mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q);
5826 			*error = ECONNREFUSED;
5827 			goto done;
5828 		}
5829 		/*
5830 		 * update label option for this UDP socket if
5831 		 * - the destination has changed, or
5832 		 * - the UDP socket is MLP
5833 		 */
5834 		if ((!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6lastdst) ||
5835 		    V4_PART_OF_V6(udp->udp_v6lastdst) != v4dst ||
5836 		    connp->conn_mlp_type != mlptSingle) &&
5837 		    (*error = udp_update_label(q, mp, v4dst)) != 0) {
5838 			mutex_exit(&connp->conn_lock);
5839 			goto done;
5840 		}
5841 	}
5842 	if (udp->udp_ip_snd_options_len > 0) {
5843 		ip_snd_opt_len = udp->udp_ip_snd_options_len;
5844 		bcopy(udp->udp_ip_snd_options, ip_snd_opt, ip_snd_opt_len);
5845 	}
5846 	mutex_exit(&connp->conn_lock);
5847 
5848 	/* Add an IP header */
5849 	ip_hdr_length = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + ip_snd_opt_len +
5850 	    (insert_spi ? sizeof (uint32_t) : 0);
5851 	ipha = (ipha_t *)&mp1->b_rptr[-ip_hdr_length];
5852 	if (DB_REF(mp1) != 1 || (uchar_t *)ipha < DB_BASE(mp1) ||
5853 	    !OK_32PTR(ipha)) {
5854 		mp2 = allocb(ip_hdr_length + us->us_wroff_extra, BPRI_LO);
5855 		if (mp2 == NULL) {
5856 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
5857 			    "udp_wput_end: q %p (%S)", q, "allocbfail2");
5858 			*error = ENOMEM;
5859 			goto done;
5860 		}
5861 		mp2->b_wptr = DB_LIM(mp2);
5862 		mp2->b_cont = mp1;
5863 		mp1 = mp2;
5864 		if (DB_TYPE(mp) != M_DATA)
5865 			mp->b_cont = mp1;
5866 		else
5867 			mp = mp1;
5868 
5869 		ipha = (ipha_t *)(mp1->b_wptr - ip_hdr_length);
5870 	}
5871 	ip_hdr_length -= (UDPH_SIZE + (insert_spi ? sizeof (uint32_t) : 0));
5872 #ifdef	_BIG_ENDIAN
5873 	/* Set version, header length, and tos */
5874 	*(uint16_t *)&ipha->ipha_version_and_hdr_length =
5875 	    ((((IP_VERSION << 4) | (ip_hdr_length>>2)) << 8) |
5876 	    udp->udp_type_of_service);
5877 	/* Set ttl and protocol */
5878 	*(uint16_t *)&ipha->ipha_ttl = (udp->udp_ttl << 8) | IPPROTO_UDP;
5879 #else
5880 	/* Set version, header length, and tos */
5881 	*(uint16_t *)&ipha->ipha_version_and_hdr_length =
5882 	    ((udp->udp_type_of_service << 8) |
5883 	    ((IP_VERSION << 4) | (ip_hdr_length>>2)));
5884 	/* Set ttl and protocol */
5885 	*(uint16_t *)&ipha->ipha_ttl = (IPPROTO_UDP << 8) | udp->udp_ttl;
5886 #endif
5887 	if (pktinfop->ip4_addr != INADDR_ANY) {
5888 		ipha->ipha_src = pktinfop->ip4_addr;
5889 		optinfo.ip_opt_flags = IP_VERIFY_SRC;
5890 	} else {
5891 		/*
5892 		 * Copy our address into the packet.  If this is zero,
5893 		 * first look at __sin6_src_id for a hint. If we leave the
5894 		 * source as INADDR_ANY then ip will fill in the real source
5895 		 * address.
5896 		 */
5897 		IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, ipha->ipha_src);
5898 		if (srcid != 0 && ipha->ipha_src == INADDR_ANY) {
5899 			in6_addr_t v6src;
5900 
5901 			ip_srcid_find_id(srcid, &v6src, connp->conn_zoneid,
5902 			    us->us_netstack);
5903 			IN6_V4MAPPED_TO_IPADDR(&v6src, ipha->ipha_src);
5904 		}
5905 	}
5906 	uha_src_port = udp->udp_port;
5907 	if (ip_hdr_length == IP_SIMPLE_HDR_LENGTH) {
5908 		rw_exit(&udp->udp_rwlock);
5909 		lock_held = B_FALSE;
5910 	}
5911 
5912 	if (pktinfop->ip4_ill_index != 0) {
5913 		optinfo.ip_opt_ill_index = pktinfop->ip4_ill_index;
5914 	}
5915 
5916 	ipha->ipha_fragment_offset_and_flags = 0;
5917 	ipha->ipha_ident = 0;
5918 
5919 	mp1->b_rptr = (uchar_t *)ipha;
5920 
5921 	ASSERT((uintptr_t)(mp1->b_wptr - (uchar_t *)ipha) <=
5922 	    (uintptr_t)UINT_MAX);
5923 
5924 	/* Determine length of packet */
5925 	ip_len = (uint32_t)(mp1->b_wptr - (uchar_t *)ipha);
5926 	if ((mp2 = mp1->b_cont) != NULL) {
5927 		do {
5928 			ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX);
5929 			ip_len += (uint32_t)MBLKL(mp2);
5930 		} while ((mp2 = mp2->b_cont) != NULL);
5931 	}
5932 	/*
5933 	 * If the size of the packet is greater than the maximum allowed by
5934 	 * ip, return an error. Passing this down could cause panics because
5935 	 * the size will have wrapped and be inconsistent with the msg size.
5936 	 */
5937 	if (ip_len > IP_MAXPACKET) {
5938 		TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
5939 		    "udp_wput_end: q %p (%S)", q, "IP length exceeded");
5940 		*error = EMSGSIZE;
5941 		goto done;
5942 	}
5943 	ipha->ipha_length = htons((uint16_t)ip_len);
5944 	ip_len -= ip_hdr_length;
5945 	ip_len = htons((uint16_t)ip_len);
5946 	udpha = (udpha_t *)(((uchar_t *)ipha) + ip_hdr_length);
5947 
5948 	/* Insert all-0s SPI now. */
5949 	if (insert_spi)
5950 		*((uint32_t *)(udpha + 1)) = 0;
5951 
5952 	/*
5953 	 * Copy in the destination address
5954 	 */
5955 	ipha->ipha_dst = v4dst;
5956 
5957 	/*
5958 	 * Set ttl based on IP_MULTICAST_TTL to match IPv6 logic.
5959 	 */
5960 	if (CLASSD(v4dst))
5961 		ipha->ipha_ttl = udp->udp_multicast_ttl;
5962 
5963 	udpha->uha_dst_port = port;
5964 	udpha->uha_src_port = uha_src_port;
5965 
5966 	if (ip_snd_opt_len > 0) {
5967 		uint32_t	cksum;
5968 
5969 		bcopy(ip_snd_opt, &ipha[1], ip_snd_opt_len);
5970 		lock_held = B_FALSE;
5971 		rw_exit(&udp->udp_rwlock);
5972 		/*
5973 		 * Massage source route putting first source route in ipha_dst.
5974 		 * Ignore the destination in T_unitdata_req.
5975 		 * Create a checksum adjustment for a source route, if any.
5976 		 */
5977 		cksum = ip_massage_options(ipha, us->us_netstack);
5978 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5979 		cksum -= ((ipha->ipha_dst >> 16) & 0xFFFF) +
5980 		    (ipha->ipha_dst & 0xFFFF);
5981 		if ((int)cksum < 0)
5982 			cksum--;
5983 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5984 		/*
5985 		 * IP does the checksum if uha_checksum is non-zero,
5986 		 * We make it easy for IP to include our pseudo header
5987 		 * by putting our length in uha_checksum.
5988 		 */
5989 		cksum += ip_len;
5990 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5991 		/* There might be a carry. */
5992 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5993 #ifdef _LITTLE_ENDIAN
5994 		if (us->us_do_checksum)
5995 			ip_len = (cksum << 16) | ip_len;
5996 #else
5997 		if (us->us_do_checksum)
5998 			ip_len = (ip_len << 16) | cksum;
5999 		else
6000 			ip_len <<= 16;
6001 #endif
6002 	} else {
6003 		/*
6004 		 * IP does the checksum if uha_checksum is non-zero,
6005 		 * We make it easy for IP to include our pseudo header
6006 		 * by putting our length in uha_checksum.
6007 		 */
6008 		if (us->us_do_checksum)
6009 			ip_len |= (ip_len << 16);
6010 #ifndef _LITTLE_ENDIAN
6011 		else
6012 			ip_len <<= 16;
6013 #endif
6014 	}
6015 	ASSERT(!lock_held);
6016 	/* Set UDP length and checksum */
6017 	*((uint32_t *)&udpha->uha_length) = ip_len;
6018 	if (DB_CRED(mp) != NULL)
6019 		mblk_setcred(mp1, DB_CRED(mp));
6020 
6021 	if (DB_TYPE(mp) != M_DATA) {
6022 		ASSERT(mp != mp1);
6023 		freeb(mp);
6024 	}
6025 
6026 	/* mp has been consumed and we'll return success */
6027 	ASSERT(*error == 0);
6028 	mp = NULL;
6029 
6030 	/* We're done.  Pass the packet to ip. */
6031 	BUMP_MIB(&us->us_udp_mib, udpHCOutDatagrams);
6032 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6033 	    "udp_wput_end: q %p (%S)", q, "end");
6034 
6035 	if ((connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
6036 	    CONN_OUTBOUND_POLICY_PRESENT(connp, ipss) ||
6037 	    connp->conn_dontroute ||
6038 	    connp->conn_nofailover_ill != NULL ||
6039 	    connp->conn_outgoing_ill != NULL || optinfo.ip_opt_flags != 0 ||
6040 	    optinfo.ip_opt_ill_index != 0 ||
6041 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
6042 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst) ||
6043 	    ipst->ips_ip_g_mrouter != NULL) {
6044 		UDP_STAT(us, udp_ip_send);
6045 		ip_output_options(connp, mp1, connp->conn_wq, IP_WPUT,
6046 		    &optinfo);
6047 	} else {
6048 		udp_send_data(udp, connp->conn_wq, mp1, ipha);
6049 	}
6050 
6051 done:
6052 	if (lock_held)
6053 		rw_exit(&udp->udp_rwlock);
6054 	if (*error != 0) {
6055 		ASSERT(mp != NULL);
6056 		BUMP_MIB(&us->us_udp_mib, udpOutErrors);
6057 	}
6058 	return (mp);
6059 }
6060 
6061 static void
6062 udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha)
6063 {
6064 	conn_t	*connp = udp->udp_connp;
6065 	ipaddr_t src, dst;
6066 	ire_t	*ire;
6067 	ipif_t	*ipif = NULL;
6068 	mblk_t	*ire_fp_mp;
6069 	boolean_t retry_caching;
6070 	udp_stack_t *us = udp->udp_us;
6071 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6072 
6073 	dst = ipha->ipha_dst;
6074 	src = ipha->ipha_src;
6075 	ASSERT(ipha->ipha_ident == 0);
6076 
6077 	if (CLASSD(dst)) {
6078 		int err;
6079 
6080 		ipif = conn_get_held_ipif(connp,
6081 		    &connp->conn_multicast_ipif, &err);
6082 
6083 		if (ipif == NULL || ipif->ipif_isv6 ||
6084 		    (ipif->ipif_ill->ill_phyint->phyint_flags &
6085 		    PHYI_LOOPBACK)) {
6086 			if (ipif != NULL)
6087 				ipif_refrele(ipif);
6088 			UDP_STAT(us, udp_ip_send);
6089 			ip_output(connp, mp, q, IP_WPUT);
6090 			return;
6091 		}
6092 	}
6093 
6094 	retry_caching = B_FALSE;
6095 	mutex_enter(&connp->conn_lock);
6096 	ire = connp->conn_ire_cache;
6097 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
6098 
6099 	if (ire == NULL || ire->ire_addr != dst ||
6100 	    (ire->ire_marks & IRE_MARK_CONDEMNED)) {
6101 		retry_caching = B_TRUE;
6102 	} else if (CLASSD(dst) && (ire->ire_type & IRE_CACHE)) {
6103 		ill_t *stq_ill = (ill_t *)ire->ire_stq->q_ptr;
6104 
6105 		ASSERT(ipif != NULL);
6106 		if (stq_ill != ipif->ipif_ill && (stq_ill->ill_group == NULL ||
6107 		    stq_ill->ill_group != ipif->ipif_ill->ill_group))
6108 			retry_caching = B_TRUE;
6109 	}
6110 
6111 	if (!retry_caching) {
6112 		ASSERT(ire != NULL);
6113 		IRE_REFHOLD(ire);
6114 		mutex_exit(&connp->conn_lock);
6115 	} else {
6116 		boolean_t cached = B_FALSE;
6117 
6118 		connp->conn_ire_cache = NULL;
6119 		mutex_exit(&connp->conn_lock);
6120 
6121 		/* Release the old ire */
6122 		if (ire != NULL) {
6123 			IRE_REFRELE_NOTR(ire);
6124 			ire = NULL;
6125 		}
6126 
6127 		if (CLASSD(dst)) {
6128 			ASSERT(ipif != NULL);
6129 			ire = ire_ctable_lookup(dst, 0, 0, ipif,
6130 			    connp->conn_zoneid, MBLK_GETLABEL(mp),
6131 			    MATCH_IRE_ILL_GROUP, ipst);
6132 		} else {
6133 			ASSERT(ipif == NULL);
6134 			ire = ire_cache_lookup(dst, connp->conn_zoneid,
6135 			    MBLK_GETLABEL(mp), ipst);
6136 		}
6137 
6138 		if (ire == NULL) {
6139 			if (ipif != NULL)
6140 				ipif_refrele(ipif);
6141 			UDP_STAT(us, udp_ire_null);
6142 			ip_output(connp, mp, q, IP_WPUT);
6143 			return;
6144 		}
6145 		IRE_REFHOLD_NOTR(ire);
6146 
6147 		mutex_enter(&connp->conn_lock);
6148 		if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL &&
6149 		    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
6150 			irb_t		*irb = ire->ire_bucket;
6151 
6152 			/*
6153 			 * IRE's created for non-connection oriented transports
6154 			 * are normally initialized with IRE_MARK_TEMPORARY set
6155 			 * in the ire_marks. These IRE's are preferentially
6156 			 * reaped when the hash chain length in the cache
6157 			 * bucket exceeds the maximum value specified in
6158 			 * ip[6]_ire_max_bucket_cnt. This can severely affect
6159 			 * UDP performance if IRE cache entries that we need
6160 			 * to reuse are continually removed. To remedy this,
6161 			 * when we cache the IRE in the conn_t, we remove the
6162 			 * IRE_MARK_TEMPORARY bit from the ire_marks if it was
6163 			 * set.
6164 			 */
6165 			if (ire->ire_marks & IRE_MARK_TEMPORARY) {
6166 				rw_enter(&irb->irb_lock, RW_WRITER);
6167 				if (ire->ire_marks & IRE_MARK_TEMPORARY) {
6168 					ire->ire_marks &= ~IRE_MARK_TEMPORARY;
6169 					irb->irb_tmp_ire_cnt--;
6170 				}
6171 				rw_exit(&irb->irb_lock);
6172 			}
6173 			connp->conn_ire_cache = ire;
6174 			cached = B_TRUE;
6175 		}
6176 		mutex_exit(&connp->conn_lock);
6177 
6178 		/*
6179 		 * We can continue to use the ire but since it was not
6180 		 * cached, we should drop the extra reference.
6181 		 */
6182 		if (!cached)
6183 			IRE_REFRELE_NOTR(ire);
6184 	}
6185 	ASSERT(ire != NULL && ire->ire_ipversion == IPV4_VERSION);
6186 	ASSERT(!CLASSD(dst) || ipif != NULL);
6187 
6188 	/*
6189 	 * Check if we can take the fast-path.
6190 	 * Note that "incomplete" ire's (where the link-layer for next hop
6191 	 * is not resolved, or where the fast-path header in nce_fp_mp is not
6192 	 * available yet) are sent down the legacy (slow) path
6193 	 */
6194 	if ((ire->ire_type & (IRE_BROADCAST|IRE_LOCAL|IRE_LOOPBACK)) ||
6195 	    (ire->ire_flags & RTF_MULTIRT) || (ire->ire_stq == NULL) ||
6196 	    (ire->ire_max_frag < ntohs(ipha->ipha_length)) ||
6197 	    ((ire->ire_nce == NULL) ||
6198 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL)) ||
6199 	    connp->conn_nexthop_set || (MBLKL(ire_fp_mp) > MBLKHEAD(mp))) {
6200 		if (ipif != NULL)
6201 			ipif_refrele(ipif);
6202 		UDP_STAT(us, udp_ip_ire_send);
6203 		IRE_REFRELE(ire);
6204 		ip_output(connp, mp, q, IP_WPUT);
6205 		return;
6206 	}
6207 
6208 	if (src == INADDR_ANY && !connp->conn_unspec_src) {
6209 		if (CLASSD(dst) && !(ire->ire_flags & RTF_SETSRC))
6210 			ipha->ipha_src = ipif->ipif_src_addr;
6211 		else
6212 			ipha->ipha_src = ire->ire_src_addr;
6213 	}
6214 
6215 	if (ipif != NULL)
6216 		ipif_refrele(ipif);
6217 
6218 	udp_xmit(connp->conn_wq, mp, ire, connp, connp->conn_zoneid);
6219 }
6220 
6221 static void
6222 udp_xmit(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, zoneid_t zoneid)
6223 {
6224 	ipaddr_t src, dst;
6225 	ill_t	*ill;
6226 	mblk_t	*ire_fp_mp;
6227 	uint_t	ire_fp_mp_len;
6228 	uint16_t *up;
6229 	uint32_t cksum, hcksum_txflags;
6230 	queue_t	*dev_q;
6231 	udp_t	*udp = connp->conn_udp;
6232 	ipha_t	*ipha = (ipha_t *)mp->b_rptr;
6233 	udp_stack_t	*us = udp->udp_us;
6234 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6235 	boolean_t ll_multicast = B_FALSE;
6236 
6237 	dev_q = ire->ire_stq->q_next;
6238 	ASSERT(dev_q != NULL);
6239 
6240 
6241 	if (DEV_Q_IS_FLOW_CTLED(dev_q)) {
6242 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsHCOutRequests);
6243 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
6244 		if (ipst->ips_ip_output_queue)
6245 			(void) putq(connp->conn_wq, mp);
6246 		else
6247 			freemsg(mp);
6248 		ire_refrele(ire);
6249 		return;
6250 	}
6251 
6252 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
6253 	ire_fp_mp_len = MBLKL(ire_fp_mp);
6254 	ASSERT(MBLKHEAD(mp) >= ire_fp_mp_len);
6255 
6256 	dst = ipha->ipha_dst;
6257 	src = ipha->ipha_src;
6258 
6259 	ill = ire_to_ill(ire);
6260 	ASSERT(ill != NULL);
6261 
6262 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
6263 
6264 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
6265 #ifndef _BIG_ENDIAN
6266 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
6267 #endif
6268 
6269 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
6270 		ASSERT(ill->ill_hcksum_capab != NULL);
6271 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
6272 	} else {
6273 		hcksum_txflags = 0;
6274 	}
6275 
6276 	/* pseudo-header checksum (do it in parts for IP header checksum) */
6277 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
6278 
6279 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
6280 	up = IPH_UDPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
6281 	if (*up != 0) {
6282 		IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags,
6283 		    mp, ipha, up, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH,
6284 		    ntohs(ipha->ipha_length), cksum);
6285 
6286 		/* Software checksum? */
6287 		if (DB_CKSUMFLAGS(mp) == 0) {
6288 			UDP_STAT(us, udp_out_sw_cksum);
6289 			UDP_STAT_UPDATE(us, udp_out_sw_cksum_bytes,
6290 			    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
6291 		}
6292 	}
6293 
6294 	if (!CLASSD(dst)) {
6295 		ipha->ipha_fragment_offset_and_flags |=
6296 		    (uint32_t)htons(ire->ire_frag_flag);
6297 	}
6298 
6299 	/* Calculate IP header checksum if hardware isn't capable */
6300 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
6301 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
6302 		    ((uint16_t *)ipha)[4]);
6303 	}
6304 
6305 	if (CLASSD(dst)) {
6306 		boolean_t ilm_exists;
6307 
6308 		ILM_WALKER_HOLD(ill);
6309 		ilm_exists = (ilm_lookup_ill(ill, dst, ALL_ZONES) != NULL);
6310 		ILM_WALKER_RELE(ill);
6311 		if (ilm_exists) {
6312 			ip_multicast_loopback(q, ill, mp,
6313 			    connp->conn_multicast_loop ? 0 :
6314 			    IP_FF_NO_MCAST_LOOP, zoneid);
6315 		}
6316 
6317 		/* If multicast TTL is 0 then we are done */
6318 		if (ipha->ipha_ttl == 0) {
6319 			freemsg(mp);
6320 			ire_refrele(ire);
6321 			return;
6322 		}
6323 		ll_multicast = B_TRUE;
6324 	}
6325 
6326 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
6327 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
6328 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
6329 
6330 	UPDATE_OB_PKT_COUNT(ire);
6331 	ire->ire_last_used_time = lbolt;
6332 
6333 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
6334 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
6335 	    ntohs(ipha->ipha_length));
6336 
6337 	if (ILL_DLS_CAPABLE(ill)) {
6338 		/*
6339 		 * Send the packet directly to DLD, where it may be queued
6340 		 * depending on the availability of transmit resources at
6341 		 * the media layer.
6342 		 */
6343 		IP_DLS_ILL_TX(ill, ipha, mp, ipst, ire_fp_mp_len);
6344 	} else {
6345 		DTRACE_PROBE4(ip4__physical__out__start,
6346 		    ill_t *, NULL, ill_t *, ill,
6347 		    ipha_t *, ipha, mblk_t *, mp);
6348 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
6349 		    ipst->ips_ipv4firewall_physical_out,
6350 		    NULL, ill, ipha, mp, mp, ll_multicast, ipst);
6351 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
6352 		if (mp != NULL) {
6353 			if (ipst->ips_ipobs_enabled) {
6354 				ipobs_hook(mp, IPOBS_HOOK_OUTBOUND,
6355 				    IP_REAL_ZONEID(connp->conn_zoneid, ipst),
6356 				    ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len,
6357 				    ipst);
6358 			}
6359 			DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL,
6360 			    void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill,
6361 			    ipha_t *, ipha, ip6_t *, NULL, int, 0);
6362 			putnext(ire->ire_stq, mp);
6363 		}
6364 	}
6365 	IRE_REFRELE(ire);
6366 }
6367 
6368 static boolean_t
6369 udp_update_label_v6(queue_t *wq, mblk_t *mp, in6_addr_t *dst)
6370 {
6371 	udp_t *udp = Q_TO_UDP(wq);
6372 	int err;
6373 	uchar_t opt_storage[TSOL_MAX_IPV6_OPTION];
6374 	udp_stack_t		*us = udp->udp_us;
6375 
6376 	err = tsol_compute_label_v6(DB_CREDDEF(mp, udp->udp_connp->conn_cred),
6377 	    dst, opt_storage, udp->udp_connp->conn_mac_exempt,
6378 	    us->us_netstack->netstack_ip);
6379 	if (err == 0) {
6380 		err = tsol_update_sticky(&udp->udp_sticky_ipp,
6381 		    &udp->udp_label_len_v6, opt_storage);
6382 	}
6383 	if (err != 0) {
6384 		DTRACE_PROBE4(
6385 		    tx__ip__log__drop__updatelabel__udp6,
6386 		    char *, "queue(1) failed to update options(2) on mp(3)",
6387 		    queue_t *, wq, char *, opt_storage, mblk_t *, mp);
6388 	} else {
6389 		udp->udp_v6lastdst = *dst;
6390 	}
6391 	return (err);
6392 }
6393 
6394 void
6395 udp_output_connected(void *arg, mblk_t *mp)
6396 {
6397 	conn_t	*connp = (conn_t *)arg;
6398 	udp_t	*udp = connp->conn_udp;
6399 	udp_stack_t	*us = udp->udp_us;
6400 	ipaddr_t	v4dst;
6401 	in_port_t	dstport;
6402 	boolean_t	mapped_addr;
6403 	struct sockaddr_storage ss;
6404 	sin_t		*sin;
6405 	sin6_t		*sin6;
6406 	struct sockaddr	*addr;
6407 	socklen_t	addrlen;
6408 	int		error;
6409 	boolean_t	insert_spi = udp->udp_nat_t_endpoint;
6410 
6411 	/* M_DATA for connected socket */
6412 
6413 	ASSERT(udp->udp_issocket);
6414 	UDP_DBGSTAT(us, udp_data_conn);
6415 
6416 	mutex_enter(&connp->conn_lock);
6417 	if (udp->udp_state != TS_DATA_XFER) {
6418 		mutex_exit(&connp->conn_lock);
6419 		BUMP_MIB(&us->us_udp_mib, udpOutErrors);
6420 		UDP_STAT(us, udp_out_err_notconn);
6421 		freemsg(mp);
6422 		TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6423 		    "udp_wput_end: connp %p (%S)", connp,
6424 		    "not-connected; address required");
6425 		return;
6426 	}
6427 
6428 	mapped_addr = IN6_IS_ADDR_V4MAPPED(&udp->udp_v6dst);
6429 	if (mapped_addr)
6430 		IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6dst, v4dst);
6431 
6432 	/* Initialize addr and addrlen as if they're passed in */
6433 	if (udp->udp_family == AF_INET) {
6434 		sin = (sin_t *)&ss;
6435 		sin->sin_family = AF_INET;
6436 		dstport = sin->sin_port = udp->udp_dstport;
6437 		ASSERT(mapped_addr);
6438 		sin->sin_addr.s_addr = v4dst;
6439 		addr = (struct sockaddr *)sin;
6440 		addrlen = sizeof (*sin);
6441 	} else {
6442 		sin6 = (sin6_t *)&ss;
6443 		sin6->sin6_family = AF_INET6;
6444 		dstport = sin6->sin6_port = udp->udp_dstport;
6445 		sin6->sin6_flowinfo = udp->udp_flowinfo;
6446 		sin6->sin6_addr = udp->udp_v6dst;
6447 		sin6->sin6_scope_id = 0;
6448 		sin6->__sin6_src_id = 0;
6449 		addr = (struct sockaddr *)sin6;
6450 		addrlen = sizeof (*sin6);
6451 	}
6452 	mutex_exit(&connp->conn_lock);
6453 
6454 	if (mapped_addr) {
6455 		/*
6456 		 * Handle both AF_INET and AF_INET6; the latter
6457 		 * for IPV4 mapped destination addresses.  Note
6458 		 * here that both addr and addrlen point to the
6459 		 * corresponding struct depending on the address
6460 		 * family of the socket.
6461 		 */
6462 		mp = udp_output_v4(connp, mp, v4dst, dstport, 0, &error,
6463 		    insert_spi);
6464 	} else {
6465 		mp = udp_output_v6(connp, mp, sin6, &error);
6466 	}
6467 	if (error == 0) {
6468 		ASSERT(mp == NULL);
6469 		return;
6470 	}
6471 
6472 	UDP_STAT(us, udp_out_err_output);
6473 	ASSERT(mp != NULL);
6474 	/* mp is freed by the following routine */
6475 	udp_ud_err(connp->conn_wq, mp, (uchar_t *)addr, (t_scalar_t)addrlen,
6476 	    (t_scalar_t)error);
6477 }
6478 
6479 /*
6480  * This routine handles all messages passed downstream.  It either
6481  * consumes the message or passes it downstream; it never queues a
6482  * a message.
6483  *
6484  * Also entry point for sockfs when udp is in "direct sockfs" mode.  This mode
6485  * is valid when we are directly beneath the stream head, and thus sockfs
6486  * is able to bypass STREAMS and directly call us, passing along the sockaddr
6487  * structure without the cumbersome T_UNITDATA_REQ interface for the case of
6488  * connected endpoints.
6489  */
6490 void
6491 udp_wput(queue_t *q, mblk_t *mp)
6492 {
6493 	sin6_t		*sin6;
6494 	sin_t		*sin;
6495 	ipaddr_t	v4dst;
6496 	uint16_t	port;
6497 	uint_t		srcid;
6498 	conn_t		*connp = Q_TO_CONN(q);
6499 	udp_t		*udp = connp->conn_udp;
6500 	int		error = 0;
6501 	struct sockaddr	*addr;
6502 	socklen_t	addrlen;
6503 	udp_stack_t *us = udp->udp_us;
6504 	boolean_t	insert_spi = udp->udp_nat_t_endpoint;
6505 
6506 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_START,
6507 	    "udp_wput_start: queue %p mp %p", q, mp);
6508 
6509 	/*
6510 	 * We directly handle several cases here: T_UNITDATA_REQ message
6511 	 * coming down as M_PROTO/M_PCPROTO and M_DATA messages for connected
6512 	 * socket.
6513 	 */
6514 	switch (DB_TYPE(mp)) {
6515 	case M_DATA:
6516 		/*
6517 		 * Quick check for error cases. Checks will be done again
6518 		 * under the lock later on
6519 		 */
6520 		if (!udp->udp_direct_sockfs || udp->udp_state != TS_DATA_XFER) {
6521 			/* Not connected; address is required */
6522 			BUMP_MIB(&us->us_udp_mib, udpOutErrors);
6523 			UDP_STAT(us, udp_out_err_notconn);
6524 			freemsg(mp);
6525 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6526 			    "udp_wput_end: connp %p (%S)", connp,
6527 			    "not-connected; address required");
6528 			return;
6529 		}
6530 		udp_output_connected(connp, mp);
6531 		return;
6532 
6533 	case M_PROTO:
6534 	case M_PCPROTO: {
6535 		struct T_unitdata_req *tudr;
6536 
6537 		ASSERT((uintptr_t)MBLKL(mp) <= (uintptr_t)INT_MAX);
6538 		tudr = (struct T_unitdata_req *)mp->b_rptr;
6539 
6540 		/* Handle valid T_UNITDATA_REQ here */
6541 		if (MBLKL(mp) >= sizeof (*tudr) &&
6542 		    ((t_primp_t)mp->b_rptr)->type == T_UNITDATA_REQ) {
6543 			if (mp->b_cont == NULL) {
6544 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6545 				    "udp_wput_end: q %p (%S)", q, "badaddr");
6546 				error = EPROTO;
6547 				goto ud_error;
6548 			}
6549 
6550 			if (!MBLKIN(mp, 0, tudr->DEST_offset +
6551 			    tudr->DEST_length)) {
6552 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6553 				    "udp_wput_end: q %p (%S)", q, "badaddr");
6554 				error = EADDRNOTAVAIL;
6555 				goto ud_error;
6556 			}
6557 			/*
6558 			 * If a port has not been bound to the stream, fail.
6559 			 * This is not a problem when sockfs is directly
6560 			 * above us, because it will ensure that the socket
6561 			 * is first bound before allowing data to be sent.
6562 			 */
6563 			if (udp->udp_state == TS_UNBND) {
6564 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6565 				    "udp_wput_end: q %p (%S)", q, "outstate");
6566 				error = EPROTO;
6567 				goto ud_error;
6568 			}
6569 			addr = (struct sockaddr *)
6570 			    &mp->b_rptr[tudr->DEST_offset];
6571 			addrlen = tudr->DEST_length;
6572 			if (tudr->OPT_length != 0)
6573 				UDP_STAT(us, udp_out_opt);
6574 			break;
6575 		}
6576 		/* FALLTHRU */
6577 	}
6578 	default:
6579 		udp_wput_other(q, mp);
6580 		return;
6581 	}
6582 	ASSERT(addr != NULL);
6583 
6584 	switch (udp->udp_family) {
6585 	case AF_INET6:
6586 		sin6 = (sin6_t *)addr;
6587 		if (!OK_32PTR((char *)sin6) || (addrlen != sizeof (sin6_t)) ||
6588 		    (sin6->sin6_family != AF_INET6)) {
6589 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6590 			    "udp_wput_end: q %p (%S)", q, "badaddr");
6591 			error = EADDRNOTAVAIL;
6592 			goto ud_error;
6593 		}
6594 
6595 		if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6596 			/*
6597 			 * Destination is a non-IPv4-compatible IPv6 address.
6598 			 * Send out an IPv6 format packet.
6599 			 */
6600 			mp = udp_output_v6(connp, mp, sin6, &error);
6601 			if (error != 0)
6602 				goto ud_error;
6603 
6604 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6605 			    "udp_wput_end: q %p (%S)", q, "udp_output_v6");
6606 			return;
6607 		}
6608 		/*
6609 		 * If the local address is not zero or a mapped address
6610 		 * return an error.  It would be possible to send an IPv4
6611 		 * packet but the response would never make it back to the
6612 		 * application since it is bound to a non-mapped address.
6613 		 */
6614 		if (!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src) &&
6615 		    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
6616 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6617 			    "udp_wput_end: q %p (%S)", q, "badaddr");
6618 			error = EADDRNOTAVAIL;
6619 			goto ud_error;
6620 		}
6621 		/* Send IPv4 packet without modifying udp_ipversion */
6622 		/* Extract port and ipaddr */
6623 		port = sin6->sin6_port;
6624 		IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, v4dst);
6625 		srcid = sin6->__sin6_src_id;
6626 		break;
6627 
6628 	case AF_INET:
6629 		sin = (sin_t *)addr;
6630 		if ((!OK_32PTR((char *)sin) || addrlen != sizeof (sin_t)) ||
6631 		    (sin->sin_family != AF_INET)) {
6632 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6633 			    "udp_wput_end: q %p (%S)", q, "badaddr");
6634 			error = EADDRNOTAVAIL;
6635 			goto ud_error;
6636 		}
6637 		/* Extract port and ipaddr */
6638 		port = sin->sin_port;
6639 		v4dst = sin->sin_addr.s_addr;
6640 		srcid = 0;
6641 		break;
6642 	}
6643 
6644 	mp = udp_output_v4(connp, mp, v4dst, port, srcid, &error, insert_spi);
6645 	if (error != 0) {
6646 ud_error:
6647 		UDP_STAT(us, udp_out_err_output);
6648 		ASSERT(mp != NULL);
6649 		/* mp is freed by the following routine */
6650 		udp_ud_err(q, mp, (uchar_t *)addr, (t_scalar_t)addrlen,
6651 		    (t_scalar_t)error);
6652 	}
6653 }
6654 
6655 /*
6656  * udp_output_v6():
6657  * Assumes that udp_wput did some sanity checking on the destination
6658  * address.
6659  */
6660 static mblk_t *
6661 udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6, int *error)
6662 {
6663 	ip6_t		*ip6h;
6664 	ip6i_t		*ip6i;	/* mp1->b_rptr even if no ip6i_t */
6665 	mblk_t		*mp1 = mp;
6666 	mblk_t		*mp2;
6667 	int		udp_ip_hdr_len = IPV6_HDR_LEN + UDPH_SIZE;
6668 	size_t		ip_len;
6669 	udpha_t		*udph;
6670 	udp_t		*udp = connp->conn_udp;
6671 	queue_t		*q = connp->conn_wq;
6672 	ip6_pkt_t	ipp_s;	/* For ancillary data options */
6673 	ip6_pkt_t	*ipp = &ipp_s;
6674 	ip6_pkt_t	*tipp;	/* temporary ipp */
6675 	uint32_t	csum = 0;
6676 	uint_t		ignore = 0;
6677 	uint_t		option_exists = 0, is_sticky = 0;
6678 	uint8_t		*cp;
6679 	uint8_t		*nxthdr_ptr;
6680 	in6_addr_t	ip6_dst;
6681 	udpattrs_t	attrs;
6682 	boolean_t	opt_present;
6683 	ip6_hbh_t	*hopoptsptr = NULL;
6684 	uint_t		hopoptslen = 0;
6685 	boolean_t	is_ancillary = B_FALSE;
6686 	udp_stack_t	*us = udp->udp_us;
6687 	size_t		sth_wroff = 0;
6688 
6689 	*error = 0;
6690 
6691 	/*
6692 	 * If the local address is a mapped address return
6693 	 * an error.
6694 	 * It would be possible to send an IPv6 packet but the
6695 	 * response would never make it back to the application
6696 	 * since it is bound to a mapped address.
6697 	 */
6698 	if (IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src)) {
6699 		*error = EADDRNOTAVAIL;
6700 		goto done;
6701 	}
6702 
6703 	ipp->ipp_fields = 0;
6704 	ipp->ipp_sticky_ignored = 0;
6705 
6706 	/*
6707 	 * If TPI options passed in, feed it for verification and handling
6708 	 */
6709 	attrs.udpattr_credset = B_FALSE;
6710 	opt_present = B_FALSE;
6711 	if (DB_TYPE(mp) != M_DATA) {
6712 		mp1 = mp->b_cont;
6713 		if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) {
6714 			attrs.udpattr_ipp6 = ipp;
6715 			attrs.udpattr_mb = mp;
6716 			if (udp_unitdata_opt_process(q, mp, error,
6717 			    &attrs) < 0) {
6718 				goto done;
6719 			}
6720 			ASSERT(*error == 0);
6721 			opt_present = B_TRUE;
6722 		}
6723 	}
6724 	rw_enter(&udp->udp_rwlock, RW_READER);
6725 	ignore = ipp->ipp_sticky_ignored;
6726 
6727 	/* mp1 points to the M_DATA mblk carrying the packet */
6728 	ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA);
6729 
6730 	if (sin6->sin6_scope_id != 0 &&
6731 	    IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) {
6732 		/*
6733 		 * IPPF_SCOPE_ID is special.  It's neither a sticky
6734 		 * option nor ancillary data.  It needs to be
6735 		 * explicitly set in options_exists.
6736 		 */
6737 		option_exists |= IPPF_SCOPE_ID;
6738 	}
6739 
6740 	/*
6741 	 * Compute the destination address
6742 	 */
6743 	ip6_dst = sin6->sin6_addr;
6744 	if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
6745 		ip6_dst = ipv6_loopback;
6746 
6747 	/*
6748 	 * If we're not going to the same destination as last time, then
6749 	 * recompute the label required.  This is done in a separate routine to
6750 	 * avoid blowing up our stack here.
6751 	 *
6752 	 * TSOL Note: Since we are not in WRITER mode, UDP packets
6753 	 * to different destination may require different labels,
6754 	 * or worse, UDP packets to same IP address may require
6755 	 * different labels due to use of shared all-zones address.
6756 	 * We use conn_lock to ensure that lastdst, sticky ipp_hopopts,
6757 	 * and sticky ipp_hopoptslen are consistent for the current
6758 	 * destination and are updated atomically.
6759 	 */
6760 	mutex_enter(&connp->conn_lock);
6761 	if (is_system_labeled()) {
6762 		/* Using UDP MLP requires SCM_UCRED from user */
6763 		if (connp->conn_mlp_type != mlptSingle &&
6764 		    !attrs.udpattr_credset) {
6765 			DTRACE_PROBE4(
6766 			    tx__ip__log__info__output__udp6,
6767 			    char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)",
6768 			    mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q);
6769 			*error = ECONNREFUSED;
6770 			rw_exit(&udp->udp_rwlock);
6771 			mutex_exit(&connp->conn_lock);
6772 			goto done;
6773 		}
6774 		/*
6775 		 * update label option for this UDP socket if
6776 		 * - the destination has changed, or
6777 		 * - the UDP socket is MLP
6778 		 */
6779 		if ((opt_present ||
6780 		    !IN6_ARE_ADDR_EQUAL(&udp->udp_v6lastdst, &ip6_dst) ||
6781 		    connp->conn_mlp_type != mlptSingle) &&
6782 		    (*error = udp_update_label_v6(q, mp, &ip6_dst)) != 0) {
6783 			rw_exit(&udp->udp_rwlock);
6784 			mutex_exit(&connp->conn_lock);
6785 			goto done;
6786 		}
6787 	}
6788 
6789 	/*
6790 	 * If there's a security label here, then we ignore any options the
6791 	 * user may try to set.  We keep the peer's label as a hidden sticky
6792 	 * option. We make a private copy of this label before releasing the
6793 	 * lock so that label is kept consistent with the destination addr.
6794 	 */
6795 	if (udp->udp_label_len_v6 > 0) {
6796 		ignore &= ~IPPF_HOPOPTS;
6797 		ipp->ipp_fields &= ~IPPF_HOPOPTS;
6798 	}
6799 
6800 	if ((udp->udp_sticky_ipp.ipp_fields == 0) && (ipp->ipp_fields == 0)) {
6801 		/* No sticky options nor ancillary data. */
6802 		mutex_exit(&connp->conn_lock);
6803 		goto no_options;
6804 	}
6805 
6806 	/*
6807 	 * Go through the options figuring out where each is going to
6808 	 * come from and build two masks.  The first mask indicates if
6809 	 * the option exists at all.  The second mask indicates if the
6810 	 * option is sticky or ancillary.
6811 	 */
6812 	if (!(ignore & IPPF_HOPOPTS)) {
6813 		if (ipp->ipp_fields & IPPF_HOPOPTS) {
6814 			option_exists |= IPPF_HOPOPTS;
6815 			udp_ip_hdr_len += ipp->ipp_hopoptslen;
6816 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_HOPOPTS) {
6817 			option_exists |= IPPF_HOPOPTS;
6818 			is_sticky |= IPPF_HOPOPTS;
6819 			ASSERT(udp->udp_sticky_ipp.ipp_hopoptslen != 0);
6820 			hopoptsptr = kmem_alloc(
6821 			    udp->udp_sticky_ipp.ipp_hopoptslen, KM_NOSLEEP);
6822 			if (hopoptsptr == NULL) {
6823 				*error = ENOMEM;
6824 				mutex_exit(&connp->conn_lock);
6825 				goto done;
6826 			}
6827 			hopoptslen = udp->udp_sticky_ipp.ipp_hopoptslen;
6828 			bcopy(udp->udp_sticky_ipp.ipp_hopopts, hopoptsptr,
6829 			    hopoptslen);
6830 			udp_ip_hdr_len += hopoptslen;
6831 		}
6832 	}
6833 	mutex_exit(&connp->conn_lock);
6834 
6835 	if (!(ignore & IPPF_RTHDR)) {
6836 		if (ipp->ipp_fields & IPPF_RTHDR) {
6837 			option_exists |= IPPF_RTHDR;
6838 			udp_ip_hdr_len += ipp->ipp_rthdrlen;
6839 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTHDR) {
6840 			option_exists |= IPPF_RTHDR;
6841 			is_sticky |= IPPF_RTHDR;
6842 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rthdrlen;
6843 		}
6844 	}
6845 
6846 	if (!(ignore & IPPF_RTDSTOPTS) && (option_exists & IPPF_RTHDR)) {
6847 		if (ipp->ipp_fields & IPPF_RTDSTOPTS) {
6848 			option_exists |= IPPF_RTDSTOPTS;
6849 			udp_ip_hdr_len += ipp->ipp_rtdstoptslen;
6850 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTDSTOPTS) {
6851 			option_exists |= IPPF_RTDSTOPTS;
6852 			is_sticky |= IPPF_RTDSTOPTS;
6853 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rtdstoptslen;
6854 		}
6855 	}
6856 
6857 	if (!(ignore & IPPF_DSTOPTS)) {
6858 		if (ipp->ipp_fields & IPPF_DSTOPTS) {
6859 			option_exists |= IPPF_DSTOPTS;
6860 			udp_ip_hdr_len += ipp->ipp_dstoptslen;
6861 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DSTOPTS) {
6862 			option_exists |= IPPF_DSTOPTS;
6863 			is_sticky |= IPPF_DSTOPTS;
6864 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_dstoptslen;
6865 		}
6866 	}
6867 
6868 	if (!(ignore & IPPF_IFINDEX)) {
6869 		if (ipp->ipp_fields & IPPF_IFINDEX) {
6870 			option_exists |= IPPF_IFINDEX;
6871 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_IFINDEX) {
6872 			option_exists |= IPPF_IFINDEX;
6873 			is_sticky |= IPPF_IFINDEX;
6874 		}
6875 	}
6876 
6877 	if (!(ignore & IPPF_ADDR)) {
6878 		if (ipp->ipp_fields & IPPF_ADDR) {
6879 			option_exists |= IPPF_ADDR;
6880 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_ADDR) {
6881 			option_exists |= IPPF_ADDR;
6882 			is_sticky |= IPPF_ADDR;
6883 		}
6884 	}
6885 
6886 	if (!(ignore & IPPF_DONTFRAG)) {
6887 		if (ipp->ipp_fields & IPPF_DONTFRAG) {
6888 			option_exists |= IPPF_DONTFRAG;
6889 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DONTFRAG) {
6890 			option_exists |= IPPF_DONTFRAG;
6891 			is_sticky |= IPPF_DONTFRAG;
6892 		}
6893 	}
6894 
6895 	if (!(ignore & IPPF_USE_MIN_MTU)) {
6896 		if (ipp->ipp_fields & IPPF_USE_MIN_MTU) {
6897 			option_exists |= IPPF_USE_MIN_MTU;
6898 		} else if (udp->udp_sticky_ipp.ipp_fields &
6899 		    IPPF_USE_MIN_MTU) {
6900 			option_exists |= IPPF_USE_MIN_MTU;
6901 			is_sticky |= IPPF_USE_MIN_MTU;
6902 		}
6903 	}
6904 
6905 	if (!(ignore & IPPF_HOPLIMIT) && (ipp->ipp_fields & IPPF_HOPLIMIT))
6906 		option_exists |= IPPF_HOPLIMIT;
6907 	/* IPV6_HOPLIMIT can never be sticky */
6908 	ASSERT(!(udp->udp_sticky_ipp.ipp_fields & IPPF_HOPLIMIT));
6909 
6910 	if (!(ignore & IPPF_UNICAST_HOPS) &&
6911 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_UNICAST_HOPS)) {
6912 		option_exists |= IPPF_UNICAST_HOPS;
6913 		is_sticky |= IPPF_UNICAST_HOPS;
6914 	}
6915 
6916 	if (!(ignore & IPPF_MULTICAST_HOPS) &&
6917 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_MULTICAST_HOPS)) {
6918 		option_exists |= IPPF_MULTICAST_HOPS;
6919 		is_sticky |= IPPF_MULTICAST_HOPS;
6920 	}
6921 
6922 	if (!(ignore & IPPF_TCLASS)) {
6923 		if (ipp->ipp_fields & IPPF_TCLASS) {
6924 			option_exists |= IPPF_TCLASS;
6925 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_TCLASS) {
6926 			option_exists |= IPPF_TCLASS;
6927 			is_sticky |= IPPF_TCLASS;
6928 		}
6929 	}
6930 
6931 	if (!(ignore & IPPF_NEXTHOP) &&
6932 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_NEXTHOP)) {
6933 		option_exists |= IPPF_NEXTHOP;
6934 		is_sticky |= IPPF_NEXTHOP;
6935 	}
6936 
6937 no_options:
6938 
6939 	/*
6940 	 * If any options carried in the ip6i_t were specified, we
6941 	 * need to account for the ip6i_t in the data we'll be sending
6942 	 * down.
6943 	 */
6944 	if (option_exists & IPPF_HAS_IP6I)
6945 		udp_ip_hdr_len += sizeof (ip6i_t);
6946 
6947 	/* check/fix buffer config, setup pointers into it */
6948 	ip6h = (ip6_t *)&mp1->b_rptr[-udp_ip_hdr_len];
6949 	if (DB_REF(mp1) != 1 || ((unsigned char *)ip6h < DB_BASE(mp1)) ||
6950 	    !OK_32PTR(ip6h)) {
6951 
6952 		/* Try to get everything in a single mblk next time */
6953 		if (udp_ip_hdr_len > udp->udp_max_hdr_len) {
6954 			udp->udp_max_hdr_len = udp_ip_hdr_len;
6955 			sth_wroff = udp->udp_max_hdr_len + us->us_wroff_extra;
6956 		}
6957 
6958 		mp2 = allocb(udp_ip_hdr_len + us->us_wroff_extra, BPRI_LO);
6959 		if (mp2 == NULL) {
6960 			*error = ENOMEM;
6961 			rw_exit(&udp->udp_rwlock);
6962 			goto done;
6963 		}
6964 		mp2->b_wptr = DB_LIM(mp2);
6965 		mp2->b_cont = mp1;
6966 		mp1 = mp2;
6967 		if (DB_TYPE(mp) != M_DATA)
6968 			mp->b_cont = mp1;
6969 		else
6970 			mp = mp1;
6971 
6972 		ip6h = (ip6_t *)(mp1->b_wptr - udp_ip_hdr_len);
6973 	}
6974 	mp1->b_rptr = (unsigned char *)ip6h;
6975 	ip6i = (ip6i_t *)ip6h;
6976 
6977 #define	ANCIL_OR_STICKY_PTR(f) ((is_sticky & f) ? &udp->udp_sticky_ipp : ipp)
6978 	if (option_exists & IPPF_HAS_IP6I) {
6979 		ip6h = (ip6_t *)&ip6i[1];
6980 		ip6i->ip6i_flags = 0;
6981 		ip6i->ip6i_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
6982 
6983 		/* sin6_scope_id takes precendence over IPPF_IFINDEX */
6984 		if (option_exists & IPPF_SCOPE_ID) {
6985 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6986 			ip6i->ip6i_ifindex = sin6->sin6_scope_id;
6987 		} else if (option_exists & IPPF_IFINDEX) {
6988 			tipp = ANCIL_OR_STICKY_PTR(IPPF_IFINDEX);
6989 			ASSERT(tipp->ipp_ifindex != 0);
6990 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6991 			ip6i->ip6i_ifindex = tipp->ipp_ifindex;
6992 		}
6993 
6994 		if (option_exists & IPPF_ADDR) {
6995 			/*
6996 			 * Enable per-packet source address verification if
6997 			 * IPV6_PKTINFO specified the source address.
6998 			 * ip6_src is set in the transport's _wput function.
6999 			 */
7000 			ip6i->ip6i_flags |= IP6I_VERIFY_SRC;
7001 		}
7002 
7003 		if (option_exists & IPPF_DONTFRAG) {
7004 			ip6i->ip6i_flags |= IP6I_DONTFRAG;
7005 		}
7006 
7007 		if (option_exists & IPPF_USE_MIN_MTU) {
7008 			ip6i->ip6i_flags = IP6I_API_USE_MIN_MTU(
7009 			    ip6i->ip6i_flags, ipp->ipp_use_min_mtu);
7010 		}
7011 
7012 		if (option_exists & IPPF_NEXTHOP) {
7013 			tipp = ANCIL_OR_STICKY_PTR(IPPF_NEXTHOP);
7014 			ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_nexthop));
7015 			ip6i->ip6i_flags |= IP6I_NEXTHOP;
7016 			ip6i->ip6i_nexthop = tipp->ipp_nexthop;
7017 		}
7018 
7019 		/*
7020 		 * tell IP this is an ip6i_t private header
7021 		 */
7022 		ip6i->ip6i_nxt = IPPROTO_RAW;
7023 	}
7024 
7025 	/* Initialize IPv6 header */
7026 	ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
7027 	bzero(&ip6h->ip6_src, sizeof (ip6h->ip6_src));
7028 
7029 	/* Set the hoplimit of the outgoing packet. */
7030 	if (option_exists & IPPF_HOPLIMIT) {
7031 		/* IPV6_HOPLIMIT ancillary data overrides all other settings. */
7032 		ip6h->ip6_hops = ipp->ipp_hoplimit;
7033 		ip6i->ip6i_flags |= IP6I_HOPLIMIT;
7034 	} else if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) {
7035 		ip6h->ip6_hops = udp->udp_multicast_ttl;
7036 		if (option_exists & IPPF_MULTICAST_HOPS)
7037 			ip6i->ip6i_flags |= IP6I_HOPLIMIT;
7038 	} else {
7039 		ip6h->ip6_hops = udp->udp_ttl;
7040 		if (option_exists & IPPF_UNICAST_HOPS)
7041 			ip6i->ip6i_flags |= IP6I_HOPLIMIT;
7042 	}
7043 
7044 	if (option_exists & IPPF_ADDR) {
7045 		tipp = ANCIL_OR_STICKY_PTR(IPPF_ADDR);
7046 		ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_addr));
7047 		ip6h->ip6_src = tipp->ipp_addr;
7048 	} else {
7049 		/*
7050 		 * The source address was not set using IPV6_PKTINFO.
7051 		 * First look at the bound source.
7052 		 * If unspecified fallback to __sin6_src_id.
7053 		 */
7054 		ip6h->ip6_src = udp->udp_v6src;
7055 		if (sin6->__sin6_src_id != 0 &&
7056 		    IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) {
7057 			ip_srcid_find_id(sin6->__sin6_src_id,
7058 			    &ip6h->ip6_src, connp->conn_zoneid,
7059 			    us->us_netstack);
7060 		}
7061 	}
7062 
7063 	nxthdr_ptr = (uint8_t *)&ip6h->ip6_nxt;
7064 	cp = (uint8_t *)&ip6h[1];
7065 
7066 	/*
7067 	 * Here's where we have to start stringing together
7068 	 * any extension headers in the right order:
7069 	 * Hop-by-hop, destination, routing, and final destination opts.
7070 	 */
7071 	if (option_exists & IPPF_HOPOPTS) {
7072 		/* Hop-by-hop options */
7073 		ip6_hbh_t *hbh = (ip6_hbh_t *)cp;
7074 		tipp = ANCIL_OR_STICKY_PTR(IPPF_HOPOPTS);
7075 		if (hopoptslen == 0) {
7076 			hopoptsptr = tipp->ipp_hopopts;
7077 			hopoptslen = tipp->ipp_hopoptslen;
7078 			is_ancillary = B_TRUE;
7079 		}
7080 
7081 		*nxthdr_ptr = IPPROTO_HOPOPTS;
7082 		nxthdr_ptr = &hbh->ip6h_nxt;
7083 
7084 		bcopy(hopoptsptr, cp, hopoptslen);
7085 		cp += hopoptslen;
7086 
7087 		if (hopoptsptr != NULL && !is_ancillary) {
7088 			kmem_free(hopoptsptr, hopoptslen);
7089 			hopoptsptr = NULL;
7090 			hopoptslen = 0;
7091 		}
7092 	}
7093 	/*
7094 	 * En-route destination options
7095 	 * Only do them if there's a routing header as well
7096 	 */
7097 	if (option_exists & IPPF_RTDSTOPTS) {
7098 		ip6_dest_t *dst = (ip6_dest_t *)cp;
7099 		tipp = ANCIL_OR_STICKY_PTR(IPPF_RTDSTOPTS);
7100 
7101 		*nxthdr_ptr = IPPROTO_DSTOPTS;
7102 		nxthdr_ptr = &dst->ip6d_nxt;
7103 
7104 		bcopy(tipp->ipp_rtdstopts, cp, tipp->ipp_rtdstoptslen);
7105 		cp += tipp->ipp_rtdstoptslen;
7106 	}
7107 	/*
7108 	 * Routing header next
7109 	 */
7110 	if (option_exists & IPPF_RTHDR) {
7111 		ip6_rthdr_t *rt = (ip6_rthdr_t *)cp;
7112 		tipp = ANCIL_OR_STICKY_PTR(IPPF_RTHDR);
7113 
7114 		*nxthdr_ptr = IPPROTO_ROUTING;
7115 		nxthdr_ptr = &rt->ip6r_nxt;
7116 
7117 		bcopy(tipp->ipp_rthdr, cp, tipp->ipp_rthdrlen);
7118 		cp += tipp->ipp_rthdrlen;
7119 	}
7120 	/*
7121 	 * Do ultimate destination options
7122 	 */
7123 	if (option_exists & IPPF_DSTOPTS) {
7124 		ip6_dest_t *dest = (ip6_dest_t *)cp;
7125 		tipp = ANCIL_OR_STICKY_PTR(IPPF_DSTOPTS);
7126 
7127 		*nxthdr_ptr = IPPROTO_DSTOPTS;
7128 		nxthdr_ptr = &dest->ip6d_nxt;
7129 
7130 		bcopy(tipp->ipp_dstopts, cp, tipp->ipp_dstoptslen);
7131 		cp += tipp->ipp_dstoptslen;
7132 	}
7133 	/*
7134 	 * Now set the last header pointer to the proto passed in
7135 	 */
7136 	ASSERT((int)(cp - (uint8_t *)ip6i) == (udp_ip_hdr_len - UDPH_SIZE));
7137 	*nxthdr_ptr = IPPROTO_UDP;
7138 
7139 	/* Update UDP header */
7140 	udph = (udpha_t *)((uchar_t *)ip6i + udp_ip_hdr_len - UDPH_SIZE);
7141 	udph->uha_dst_port = sin6->sin6_port;
7142 	udph->uha_src_port = udp->udp_port;
7143 
7144 	/*
7145 	 * Copy in the destination address
7146 	 */
7147 	ip6h->ip6_dst = ip6_dst;
7148 
7149 	ip6h->ip6_vcf =
7150 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
7151 	    (sin6->sin6_flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
7152 
7153 	if (option_exists & IPPF_TCLASS) {
7154 		tipp = ANCIL_OR_STICKY_PTR(IPPF_TCLASS);
7155 		ip6h->ip6_vcf = IPV6_TCLASS_FLOW(ip6h->ip6_vcf,
7156 		    tipp->ipp_tclass);
7157 	}
7158 	rw_exit(&udp->udp_rwlock);
7159 
7160 	if (option_exists & IPPF_RTHDR) {
7161 		ip6_rthdr_t	*rth;
7162 
7163 		/*
7164 		 * Perform any processing needed for source routing.
7165 		 * We know that all extension headers will be in the same mblk
7166 		 * as the IPv6 header.
7167 		 */
7168 		rth = ip_find_rthdr_v6(ip6h, mp1->b_wptr);
7169 		if (rth != NULL && rth->ip6r_segleft != 0) {
7170 			if (rth->ip6r_type != IPV6_RTHDR_TYPE_0) {
7171 				/*
7172 				 * Drop packet - only support Type 0 routing.
7173 				 * Notify the application as well.
7174 				 */
7175 				*error = EPROTO;
7176 				goto done;
7177 			}
7178 
7179 			/*
7180 			 * rth->ip6r_len is twice the number of
7181 			 * addresses in the header. Thus it must be even.
7182 			 */
7183 			if (rth->ip6r_len & 0x1) {
7184 				*error = EPROTO;
7185 				goto done;
7186 			}
7187 			/*
7188 			 * Shuffle the routing header and ip6_dst
7189 			 * addresses, and get the checksum difference
7190 			 * between the first hop (in ip6_dst) and
7191 			 * the destination (in the last routing hdr entry).
7192 			 */
7193 			csum = ip_massage_options_v6(ip6h, rth,
7194 			    us->us_netstack);
7195 			/*
7196 			 * Verify that the first hop isn't a mapped address.
7197 			 * Routers along the path need to do this verification
7198 			 * for subsequent hops.
7199 			 */
7200 			if (IN6_IS_ADDR_V4MAPPED(&ip6h->ip6_dst)) {
7201 				*error = EADDRNOTAVAIL;
7202 				goto done;
7203 			}
7204 
7205 			cp += (rth->ip6r_len + 1)*8;
7206 		}
7207 	}
7208 
7209 	/* count up length of UDP packet */
7210 	ip_len = (mp1->b_wptr - (unsigned char *)ip6h) - IPV6_HDR_LEN;
7211 	if ((mp2 = mp1->b_cont) != NULL) {
7212 		do {
7213 			ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX);
7214 			ip_len += (uint32_t)MBLKL(mp2);
7215 		} while ((mp2 = mp2->b_cont) != NULL);
7216 	}
7217 
7218 	/*
7219 	 * If the size of the packet is greater than the maximum allowed by
7220 	 * ip, return an error. Passing this down could cause panics because
7221 	 * the size will have wrapped and be inconsistent with the msg size.
7222 	 */
7223 	if (ip_len > IP_MAXPACKET) {
7224 		*error = EMSGSIZE;
7225 		goto done;
7226 	}
7227 
7228 	/* Store the UDP length. Subtract length of extension hdrs */
7229 	udph->uha_length = htons(ip_len + IPV6_HDR_LEN -
7230 	    (int)((uchar_t *)udph - (uchar_t *)ip6h));
7231 
7232 	/*
7233 	 * We make it easy for IP to include our pseudo header
7234 	 * by putting our length in uh_checksum, modified (if
7235 	 * we have a routing header) by the checksum difference
7236 	 * between the ultimate destination and first hop addresses.
7237 	 * Note: UDP over IPv6 must always checksum the packet.
7238 	 */
7239 	csum += udph->uha_length;
7240 	csum = (csum & 0xFFFF) + (csum >> 16);
7241 	udph->uha_checksum = (uint16_t)csum;
7242 
7243 #ifdef _LITTLE_ENDIAN
7244 	ip_len = htons(ip_len);
7245 #endif
7246 	ip6h->ip6_plen = ip_len;
7247 	if (DB_CRED(mp) != NULL)
7248 		mblk_setcred(mp1, DB_CRED(mp));
7249 
7250 	if (DB_TYPE(mp) != M_DATA) {
7251 		ASSERT(mp != mp1);
7252 		freeb(mp);
7253 	}
7254 
7255 	/* mp has been consumed and we'll return success */
7256 	ASSERT(*error == 0);
7257 	mp = NULL;
7258 
7259 	/* We're done. Pass the packet to IP */
7260 	BUMP_MIB(&us->us_udp_mib, udpHCOutDatagrams);
7261 	ip_output_v6(connp, mp1, q, IP_WPUT);
7262 
7263 done:
7264 	if (sth_wroff != 0) {
7265 		(void) mi_set_sth_wroff(RD(q),
7266 		    udp->udp_max_hdr_len + us->us_wroff_extra);
7267 	}
7268 	if (hopoptsptr != NULL && !is_ancillary) {
7269 		kmem_free(hopoptsptr, hopoptslen);
7270 		hopoptsptr = NULL;
7271 	}
7272 	if (*error != 0) {
7273 		ASSERT(mp != NULL);
7274 		BUMP_MIB(&us->us_udp_mib, udpOutErrors);
7275 	}
7276 	return (mp);
7277 }
7278 
7279 
7280 static int
7281 udp_getpeername(udp_t *udp, struct sockaddr *sa, uint_t *salenp)
7282 {
7283 	sin_t *sin = (sin_t *)sa;
7284 	sin6_t *sin6 = (sin6_t *)sa;
7285 
7286 	ASSERT(RW_LOCK_HELD(&udp->udp_rwlock));
7287 
7288 	if (udp->udp_state != TS_DATA_XFER)
7289 		return (ENOTCONN);
7290 
7291 	switch (udp->udp_family) {
7292 	case AF_INET:
7293 		ASSERT(udp->udp_ipversion == IPV4_VERSION);
7294 
7295 		if (*salenp < sizeof (sin_t))
7296 			return (EINVAL);
7297 
7298 		*salenp = sizeof (sin_t);
7299 		*sin = sin_null;
7300 		sin->sin_family = AF_INET;
7301 		sin->sin_port = udp->udp_dstport;
7302 		sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_v6dst);
7303 		break;
7304 
7305 	case AF_INET6:
7306 		if (*salenp < sizeof (sin6_t))
7307 			return (EINVAL);
7308 
7309 		*salenp = sizeof (sin6_t);
7310 		*sin6 = sin6_null;
7311 		sin6->sin6_family = AF_INET6;
7312 		sin6->sin6_port = udp->udp_dstport;
7313 		sin6->sin6_addr = udp->udp_v6dst;
7314 		sin6->sin6_flowinfo = udp->udp_flowinfo;
7315 		break;
7316 	}
7317 
7318 	return (0);
7319 }
7320 
7321 static int
7322 udp_getmyname(udp_t *udp, struct sockaddr *sa, uint_t *salenp)
7323 {
7324 	sin_t *sin = (sin_t *)sa;
7325 	sin6_t *sin6 = (sin6_t *)sa;
7326 
7327 	ASSERT(RW_LOCK_HELD(&udp->udp_rwlock));
7328 
7329 	switch (udp->udp_family) {
7330 	case AF_INET:
7331 		ASSERT(udp->udp_ipversion == IPV4_VERSION);
7332 
7333 		if (*salenp < sizeof (sin_t))
7334 			return (EINVAL);
7335 
7336 		*salenp = sizeof (sin_t);
7337 		*sin = sin_null;
7338 		sin->sin_family = AF_INET;
7339 		sin->sin_port = udp->udp_port;
7340 
7341 		/*
7342 		 * If udp_v6src is unspecified, we might be bound to broadcast
7343 		 * / multicast.  Use udp_bound_v6src as local address instead
7344 		 * (that could also still be unspecified).
7345 		 */
7346 		if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) &&
7347 		    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
7348 			sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_v6src);
7349 		} else {
7350 			sin->sin_addr.s_addr =
7351 			    V4_PART_OF_V6(udp->udp_bound_v6src);
7352 		}
7353 		break;
7354 
7355 	case AF_INET6:
7356 		if (*salenp < sizeof (sin6_t))
7357 			return (EINVAL);
7358 
7359 		*salenp = sizeof (sin6_t);
7360 		*sin6 = sin6_null;
7361 		sin6->sin6_family = AF_INET6;
7362 		sin6->sin6_port = udp->udp_port;
7363 		sin6->sin6_flowinfo = udp->udp_flowinfo;
7364 
7365 		/*
7366 		 * If udp_v6src is unspecified, we might be bound to broadcast
7367 		 * / multicast.  Use udp_bound_v6src as local address instead
7368 		 * (that could also still be unspecified).
7369 		 */
7370 		if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src))
7371 			sin6->sin6_addr = udp->udp_v6src;
7372 		else
7373 			sin6->sin6_addr = udp->udp_bound_v6src;
7374 		break;
7375 	}
7376 
7377 	return (0);
7378 }
7379 
7380 /*
7381  * Handle special out-of-band ioctl requests (see PSARC/2008/265).
7382  */
7383 static void
7384 udp_wput_cmdblk(queue_t *q, mblk_t *mp)
7385 {
7386 	void	*data;
7387 	mblk_t	*datamp = mp->b_cont;
7388 	udp_t	*udp = Q_TO_UDP(q);
7389 	cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr;
7390 
7391 	if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) {
7392 		cmdp->cb_error = EPROTO;
7393 		qreply(q, mp);
7394 		return;
7395 	}
7396 	data = datamp->b_rptr;
7397 
7398 	rw_enter(&udp->udp_rwlock, RW_READER);
7399 	switch (cmdp->cb_cmd) {
7400 	case TI_GETPEERNAME:
7401 		cmdp->cb_error = udp_getpeername(udp, data, &cmdp->cb_len);
7402 		break;
7403 	case TI_GETMYNAME:
7404 		cmdp->cb_error = udp_getmyname(udp, data, &cmdp->cb_len);
7405 		break;
7406 	default:
7407 		cmdp->cb_error = EINVAL;
7408 		break;
7409 	}
7410 	rw_exit(&udp->udp_rwlock);
7411 
7412 	qreply(q, mp);
7413 }
7414 
7415 static void
7416 udp_wput_other(queue_t *q, mblk_t *mp)
7417 {
7418 	uchar_t	*rptr = mp->b_rptr;
7419 	struct datab *db;
7420 	struct iocblk *iocp;
7421 	cred_t	*cr;
7422 	conn_t	*connp = Q_TO_CONN(q);
7423 	udp_t	*udp = connp->conn_udp;
7424 	udp_stack_t *us;
7425 
7426 	TRACE_1(TR_FAC_UDP, TR_UDP_WPUT_OTHER_START,
7427 	    "udp_wput_other_start: q %p", q);
7428 
7429 	us = udp->udp_us;
7430 	db = mp->b_datap;
7431 
7432 	cr = DB_CREDDEF(mp, connp->conn_cred);
7433 
7434 	switch (db->db_type) {
7435 	case M_CMD:
7436 		udp_wput_cmdblk(q, mp);
7437 		return;
7438 
7439 	case M_PROTO:
7440 	case M_PCPROTO:
7441 		if (mp->b_wptr - rptr < sizeof (t_scalar_t)) {
7442 			freemsg(mp);
7443 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7444 			    "udp_wput_other_end: q %p (%S)", q, "protoshort");
7445 			return;
7446 		}
7447 		switch (((t_primp_t)rptr)->type) {
7448 		case T_ADDR_REQ:
7449 			udp_addr_req(q, mp);
7450 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7451 			    "udp_wput_other_end: q %p (%S)", q, "addrreq");
7452 			return;
7453 		case O_T_BIND_REQ:
7454 		case T_BIND_REQ:
7455 			udp_bind(q, mp);
7456 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7457 			    "udp_wput_other_end: q %p (%S)", q, "bindreq");
7458 			return;
7459 		case T_CONN_REQ:
7460 			udp_connect(q, mp);
7461 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7462 			    "udp_wput_other_end: q %p (%S)", q, "connreq");
7463 			return;
7464 		case T_CAPABILITY_REQ:
7465 			udp_capability_req(q, mp);
7466 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7467 			    "udp_wput_other_end: q %p (%S)", q, "capabreq");
7468 			return;
7469 		case T_INFO_REQ:
7470 			udp_info_req(q, mp);
7471 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7472 			    "udp_wput_other_end: q %p (%S)", q, "inforeq");
7473 			return;
7474 		case T_UNITDATA_REQ:
7475 			/*
7476 			 * If a T_UNITDATA_REQ gets here, the address must
7477 			 * be bad.  Valid T_UNITDATA_REQs are handled
7478 			 * in udp_wput.
7479 			 */
7480 			udp_ud_err(q, mp, NULL, 0, EADDRNOTAVAIL);
7481 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7482 			    "udp_wput_other_end: q %p (%S)", q, "unitdatareq");
7483 			return;
7484 		case T_UNBIND_REQ:
7485 			udp_unbind(q, mp);
7486 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7487 			    "udp_wput_other_end: q %p (%S)", q, "unbindreq");
7488 			return;
7489 		case T_SVR4_OPTMGMT_REQ:
7490 			if (!snmpcom_req(q, mp, udp_snmp_set, ip_snmp_get,
7491 			    cr)) {
7492 				(void) svr4_optcom_req(q,
7493 				    mp, cr, &udp_opt_obj, B_TRUE);
7494 			}
7495 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7496 			    "udp_wput_other_end: q %p (%S)", q, "optmgmtreq");
7497 			return;
7498 
7499 		case T_OPTMGMT_REQ:
7500 			(void) tpi_optcom_req(q, mp, cr, &udp_opt_obj, B_TRUE);
7501 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7502 			    "udp_wput_other_end: q %p (%S)", q, "optmgmtreq");
7503 			return;
7504 
7505 		case T_DISCON_REQ:
7506 			udp_disconnect(q, mp);
7507 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7508 			    "udp_wput_other_end: q %p (%S)", q, "disconreq");
7509 			return;
7510 
7511 		/* The following TPI message is not supported by udp. */
7512 		case O_T_CONN_RES:
7513 		case T_CONN_RES:
7514 			udp_err_ack(q, mp, TNOTSUPPORT, 0);
7515 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7516 			    "udp_wput_other_end: q %p (%S)", q,
7517 			    "connres/disconreq");
7518 			return;
7519 
7520 		/* The following 3 TPI messages are illegal for udp. */
7521 		case T_DATA_REQ:
7522 		case T_EXDATA_REQ:
7523 		case T_ORDREL_REQ:
7524 			udp_err_ack(q, mp, TNOTSUPPORT, 0);
7525 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7526 			    "udp_wput_other_end: q %p (%S)", q,
7527 			    "data/exdata/ordrel");
7528 			return;
7529 		default:
7530 			break;
7531 		}
7532 		break;
7533 	case M_FLUSH:
7534 		if (*rptr & FLUSHW)
7535 			flushq(q, FLUSHDATA);
7536 		break;
7537 	case M_IOCTL:
7538 		iocp = (struct iocblk *)mp->b_rptr;
7539 		switch (iocp->ioc_cmd) {
7540 		case TI_GETPEERNAME:
7541 			if (udp->udp_state != TS_DATA_XFER) {
7542 				/*
7543 				 * If a default destination address has not
7544 				 * been associated with the stream, then we
7545 				 * don't know the peer's name.
7546 				 */
7547 				iocp->ioc_error = ENOTCONN;
7548 				iocp->ioc_count = 0;
7549 				mp->b_datap->db_type = M_IOCACK;
7550 				qreply(q, mp);
7551 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7552 				    "udp_wput_other_end: q %p (%S)", q,
7553 				    "getpeername");
7554 				return;
7555 			}
7556 			/* FALLTHRU */
7557 		case TI_GETMYNAME: {
7558 			/*
7559 			 * For TI_GETPEERNAME and TI_GETMYNAME, we first
7560 			 * need to copyin the user's strbuf structure.
7561 			 * Processing will continue in the M_IOCDATA case
7562 			 * below.
7563 			 */
7564 			mi_copyin(q, mp, NULL,
7565 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
7566 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7567 			    "udp_wput_other_end: q %p (%S)", q, "getmyname");
7568 			return;
7569 			}
7570 		case ND_SET:
7571 			/* nd_getset performs the necessary checking */
7572 		case ND_GET:
7573 			if (nd_getset(q, us->us_nd, mp)) {
7574 				qreply(q, mp);
7575 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7576 				    "udp_wput_other_end: q %p (%S)", q, "get");
7577 				return;
7578 			}
7579 			break;
7580 		case _SIOCSOCKFALLBACK:
7581 			/*
7582 			 * Either sockmod is about to be popped and the
7583 			 * socket would now be treated as a plain stream,
7584 			 * or a module is about to be pushed so we could
7585 			 * no longer use read-side synchronous stream.
7586 			 * Drain any queued data and disable direct sockfs
7587 			 * interface from now on.
7588 			 */
7589 			if (!udp->udp_issocket) {
7590 				DB_TYPE(mp) = M_IOCNAK;
7591 				iocp->ioc_error = EINVAL;
7592 			} else {
7593 				udp->udp_issocket = B_FALSE;
7594 				if (udp->udp_direct_sockfs) {
7595 					/*
7596 					 * Disable read-side synchronous
7597 					 * stream interface and drain any
7598 					 * queued data.
7599 					 */
7600 					udp_rcv_drain(RD(q), udp,
7601 					    B_FALSE);
7602 					ASSERT(!udp->udp_direct_sockfs);
7603 					UDP_STAT(us, udp_sock_fallback);
7604 				}
7605 				DB_TYPE(mp) = M_IOCACK;
7606 				iocp->ioc_error = 0;
7607 			}
7608 			iocp->ioc_count = 0;
7609 			iocp->ioc_rval = 0;
7610 			qreply(q, mp);
7611 			return;
7612 		default:
7613 			break;
7614 		}
7615 		break;
7616 	case M_IOCDATA:
7617 		udp_wput_iocdata(q, mp);
7618 		TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7619 		    "udp_wput_other_end: q %p (%S)", q, "iocdata");
7620 		return;
7621 	default:
7622 		/* Unrecognized messages are passed through without change. */
7623 		break;
7624 	}
7625 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7626 	    "udp_wput_other_end: q %p (%S)", q, "end");
7627 	ip_output(connp, mp, q, IP_WPUT);
7628 }
7629 
7630 /*
7631  * udp_wput_iocdata is called by udp_wput_other to handle all M_IOCDATA
7632  * messages.
7633  */
7634 static void
7635 udp_wput_iocdata(queue_t *q, mblk_t *mp)
7636 {
7637 	mblk_t	*mp1;
7638 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7639 	STRUCT_HANDLE(strbuf, sb);
7640 	udp_t	*udp = Q_TO_UDP(q);
7641 	int	error;
7642 	uint_t	addrlen;
7643 
7644 	/* Make sure it is one of ours. */
7645 	switch (iocp->ioc_cmd) {
7646 	case TI_GETMYNAME:
7647 	case TI_GETPEERNAME:
7648 		break;
7649 	default:
7650 		ip_output(udp->udp_connp, mp, q, IP_WPUT);
7651 		return;
7652 	}
7653 
7654 	switch (mi_copy_state(q, mp, &mp1)) {
7655 	case -1:
7656 		return;
7657 	case MI_COPY_CASE(MI_COPY_IN, 1):
7658 		break;
7659 	case MI_COPY_CASE(MI_COPY_OUT, 1):
7660 		/*
7661 		 * The address has been copied out, so now
7662 		 * copyout the strbuf.
7663 		 */
7664 		mi_copyout(q, mp);
7665 		return;
7666 	case MI_COPY_CASE(MI_COPY_OUT, 2):
7667 		/*
7668 		 * The address and strbuf have been copied out.
7669 		 * We're done, so just acknowledge the original
7670 		 * M_IOCTL.
7671 		 */
7672 		mi_copy_done(q, mp, 0);
7673 		return;
7674 	default:
7675 		/*
7676 		 * Something strange has happened, so acknowledge
7677 		 * the original M_IOCTL with an EPROTO error.
7678 		 */
7679 		mi_copy_done(q, mp, EPROTO);
7680 		return;
7681 	}
7682 
7683 	/*
7684 	 * Now we have the strbuf structure for TI_GETMYNAME
7685 	 * and TI_GETPEERNAME.  Next we copyout the requested
7686 	 * address and then we'll copyout the strbuf.
7687 	 */
7688 	STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr);
7689 	addrlen = udp->udp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
7690 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
7691 		mi_copy_done(q, mp, EINVAL);
7692 		return;
7693 	}
7694 
7695 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
7696 	if (mp1 == NULL)
7697 		return;
7698 
7699 	rw_enter(&udp->udp_rwlock, RW_READER);
7700 	switch (iocp->ioc_cmd) {
7701 	case TI_GETMYNAME:
7702 		error = udp_getmyname(udp, (void *)mp1->b_rptr, &addrlen);
7703 		break;
7704 	case TI_GETPEERNAME:
7705 		error = udp_getpeername(udp, (void *)mp1->b_rptr, &addrlen);
7706 		break;
7707 	}
7708 	rw_exit(&udp->udp_rwlock);
7709 
7710 	if (error != 0) {
7711 		mi_copy_done(q, mp, error);
7712 	} else {
7713 		mp1->b_wptr += addrlen;
7714 		STRUCT_FSET(sb, len, addrlen);
7715 
7716 		/* Copy out the address */
7717 		mi_copyout(q, mp);
7718 	}
7719 }
7720 
7721 static int
7722 udp_unitdata_opt_process(queue_t *q, mblk_t *mp, int *errorp,
7723     udpattrs_t *udpattrs)
7724 {
7725 	struct T_unitdata_req *udreqp;
7726 	int is_absreq_failure;
7727 	cred_t *cr;
7728 	conn_t	*connp = Q_TO_CONN(q);
7729 
7730 	ASSERT(((t_primp_t)mp->b_rptr)->type);
7731 
7732 	cr = DB_CREDDEF(mp, connp->conn_cred);
7733 
7734 	udreqp = (struct T_unitdata_req *)mp->b_rptr;
7735 
7736 	*errorp = tpi_optcom_buf(q, mp, &udreqp->OPT_length,
7737 	    udreqp->OPT_offset, cr, &udp_opt_obj,
7738 	    udpattrs, &is_absreq_failure);
7739 
7740 	if (*errorp != 0) {
7741 		/*
7742 		 * Note: No special action needed in this
7743 		 * module for "is_absreq_failure"
7744 		 */
7745 		return (-1);		/* failure */
7746 	}
7747 	ASSERT(is_absreq_failure == 0);
7748 	return (0);	/* success */
7749 }
7750 
7751 void
7752 udp_ddi_init(void)
7753 {
7754 	udp_max_optsize = optcom_max_optsize(udp_opt_obj.odb_opt_des_arr,
7755 	    udp_opt_obj.odb_opt_arr_cnt);
7756 
7757 	/*
7758 	 * We want to be informed each time a stack is created or
7759 	 * destroyed in the kernel, so we can maintain the
7760 	 * set of udp_stack_t's.
7761 	 */
7762 	netstack_register(NS_UDP, udp_stack_init, NULL, udp_stack_fini);
7763 }
7764 
7765 void
7766 udp_ddi_destroy(void)
7767 {
7768 	netstack_unregister(NS_UDP);
7769 }
7770 
7771 /*
7772  * Initialize the UDP stack instance.
7773  */
7774 static void *
7775 udp_stack_init(netstackid_t stackid, netstack_t *ns)
7776 {
7777 	udp_stack_t	*us;
7778 	udpparam_t	*pa;
7779 	int		i;
7780 
7781 	us = (udp_stack_t *)kmem_zalloc(sizeof (*us), KM_SLEEP);
7782 	us->us_netstack = ns;
7783 
7784 	us->us_num_epriv_ports = UDP_NUM_EPRIV_PORTS;
7785 	us->us_epriv_ports[0] = 2049;
7786 	us->us_epriv_ports[1] = 4045;
7787 
7788 	/*
7789 	 * The smallest anonymous port in the priviledged port range which UDP
7790 	 * looks for free port.  Use in the option UDP_ANONPRIVBIND.
7791 	 */
7792 	us->us_min_anonpriv_port = 512;
7793 
7794 	us->us_bind_fanout_size = udp_bind_fanout_size;
7795 
7796 	/* Roundup variable that might have been modified in /etc/system */
7797 	if (us->us_bind_fanout_size & (us->us_bind_fanout_size - 1)) {
7798 		/* Not a power of two. Round up to nearest power of two */
7799 		for (i = 0; i < 31; i++) {
7800 			if (us->us_bind_fanout_size < (1 << i))
7801 				break;
7802 		}
7803 		us->us_bind_fanout_size = 1 << i;
7804 	}
7805 	us->us_bind_fanout = kmem_zalloc(us->us_bind_fanout_size *
7806 	    sizeof (udp_fanout_t), KM_SLEEP);
7807 	for (i = 0; i < us->us_bind_fanout_size; i++) {
7808 		mutex_init(&us->us_bind_fanout[i].uf_lock, NULL, MUTEX_DEFAULT,
7809 		    NULL);
7810 	}
7811 
7812 	pa = (udpparam_t *)kmem_alloc(sizeof (udp_param_arr), KM_SLEEP);
7813 
7814 	us->us_param_arr = pa;
7815 	bcopy(udp_param_arr, us->us_param_arr, sizeof (udp_param_arr));
7816 
7817 	(void) udp_param_register(&us->us_nd,
7818 	    us->us_param_arr, A_CNT(udp_param_arr));
7819 
7820 	us->us_kstat = udp_kstat2_init(stackid, &us->us_statistics);
7821 	us->us_mibkp = udp_kstat_init(stackid);
7822 	return (us);
7823 }
7824 
7825 /*
7826  * Free the UDP stack instance.
7827  */
7828 static void
7829 udp_stack_fini(netstackid_t stackid, void *arg)
7830 {
7831 	udp_stack_t *us = (udp_stack_t *)arg;
7832 	int i;
7833 
7834 	for (i = 0; i < us->us_bind_fanout_size; i++) {
7835 		mutex_destroy(&us->us_bind_fanout[i].uf_lock);
7836 	}
7837 
7838 	kmem_free(us->us_bind_fanout, us->us_bind_fanout_size *
7839 	    sizeof (udp_fanout_t));
7840 
7841 	us->us_bind_fanout = NULL;
7842 
7843 	nd_free(&us->us_nd);
7844 	kmem_free(us->us_param_arr, sizeof (udp_param_arr));
7845 	us->us_param_arr = NULL;
7846 
7847 	udp_kstat_fini(stackid, us->us_mibkp);
7848 	us->us_mibkp = NULL;
7849 
7850 	udp_kstat2_fini(stackid, us->us_kstat);
7851 	us->us_kstat = NULL;
7852 	bzero(&us->us_statistics, sizeof (us->us_statistics));
7853 	kmem_free(us, sizeof (*us));
7854 }
7855 
7856 static void *
7857 udp_kstat2_init(netstackid_t stackid, udp_stat_t *us_statisticsp)
7858 {
7859 	kstat_t *ksp;
7860 
7861 	udp_stat_t template = {
7862 		{ "udp_ip_send",		KSTAT_DATA_UINT64 },
7863 		{ "udp_ip_ire_send",		KSTAT_DATA_UINT64 },
7864 		{ "udp_ire_null",		KSTAT_DATA_UINT64 },
7865 		{ "udp_drain",			KSTAT_DATA_UINT64 },
7866 		{ "udp_sock_fallback",		KSTAT_DATA_UINT64 },
7867 		{ "udp_rrw_busy",		KSTAT_DATA_UINT64 },
7868 		{ "udp_rrw_msgcnt",		KSTAT_DATA_UINT64 },
7869 		{ "udp_out_sw_cksum",		KSTAT_DATA_UINT64 },
7870 		{ "udp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
7871 		{ "udp_out_opt",		KSTAT_DATA_UINT64 },
7872 		{ "udp_out_err_notconn",	KSTAT_DATA_UINT64 },
7873 		{ "udp_out_err_output",		KSTAT_DATA_UINT64 },
7874 		{ "udp_out_err_tudr",		KSTAT_DATA_UINT64 },
7875 		{ "udp_in_pktinfo",		KSTAT_DATA_UINT64 },
7876 		{ "udp_in_recvdstaddr",		KSTAT_DATA_UINT64 },
7877 		{ "udp_in_recvopts",		KSTAT_DATA_UINT64 },
7878 		{ "udp_in_recvif",		KSTAT_DATA_UINT64 },
7879 		{ "udp_in_recvslla",		KSTAT_DATA_UINT64 },
7880 		{ "udp_in_recvucred",		KSTAT_DATA_UINT64 },
7881 		{ "udp_in_recvttl",		KSTAT_DATA_UINT64 },
7882 		{ "udp_in_recvhopopts",		KSTAT_DATA_UINT64 },
7883 		{ "udp_in_recvhoplimit",	KSTAT_DATA_UINT64 },
7884 		{ "udp_in_recvdstopts",		KSTAT_DATA_UINT64 },
7885 		{ "udp_in_recvrtdstopts",	KSTAT_DATA_UINT64 },
7886 		{ "udp_in_recvrthdr",		KSTAT_DATA_UINT64 },
7887 		{ "udp_in_recvpktinfo",		KSTAT_DATA_UINT64 },
7888 		{ "udp_in_recvtclass",		KSTAT_DATA_UINT64 },
7889 		{ "udp_in_timestamp",		KSTAT_DATA_UINT64 },
7890 #ifdef DEBUG
7891 		{ "udp_data_conn",		KSTAT_DATA_UINT64 },
7892 		{ "udp_data_notconn",		KSTAT_DATA_UINT64 },
7893 #endif
7894 	};
7895 
7896 	ksp = kstat_create_netstack(UDP_MOD_NAME, 0, "udpstat", "net",
7897 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
7898 	    KSTAT_FLAG_VIRTUAL, stackid);
7899 
7900 	if (ksp == NULL)
7901 		return (NULL);
7902 
7903 	bcopy(&template, us_statisticsp, sizeof (template));
7904 	ksp->ks_data = (void *)us_statisticsp;
7905 	ksp->ks_private = (void *)(uintptr_t)stackid;
7906 
7907 	kstat_install(ksp);
7908 	return (ksp);
7909 }
7910 
7911 static void
7912 udp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
7913 {
7914 	if (ksp != NULL) {
7915 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
7916 		kstat_delete_netstack(ksp, stackid);
7917 	}
7918 }
7919 
7920 static void *
7921 udp_kstat_init(netstackid_t stackid)
7922 {
7923 	kstat_t	*ksp;
7924 
7925 	udp_named_kstat_t template = {
7926 		{ "inDatagrams",	KSTAT_DATA_UINT64, 0 },
7927 		{ "inErrors",		KSTAT_DATA_UINT32, 0 },
7928 		{ "outDatagrams",	KSTAT_DATA_UINT64, 0 },
7929 		{ "entrySize",		KSTAT_DATA_INT32, 0 },
7930 		{ "entry6Size",		KSTAT_DATA_INT32, 0 },
7931 		{ "outErrors",		KSTAT_DATA_UINT32, 0 },
7932 	};
7933 
7934 	ksp = kstat_create_netstack(UDP_MOD_NAME, 0, UDP_MOD_NAME, "mib2",
7935 	    KSTAT_TYPE_NAMED,
7936 	    NUM_OF_FIELDS(udp_named_kstat_t), 0, stackid);
7937 
7938 	if (ksp == NULL || ksp->ks_data == NULL)
7939 		return (NULL);
7940 
7941 	template.entrySize.value.ui32 = sizeof (mib2_udpEntry_t);
7942 	template.entry6Size.value.ui32 = sizeof (mib2_udp6Entry_t);
7943 
7944 	bcopy(&template, ksp->ks_data, sizeof (template));
7945 	ksp->ks_update = udp_kstat_update;
7946 	ksp->ks_private = (void *)(uintptr_t)stackid;
7947 
7948 	kstat_install(ksp);
7949 	return (ksp);
7950 }
7951 
7952 static void
7953 udp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
7954 {
7955 	if (ksp != NULL) {
7956 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
7957 		kstat_delete_netstack(ksp, stackid);
7958 	}
7959 }
7960 
7961 static int
7962 udp_kstat_update(kstat_t *kp, int rw)
7963 {
7964 	udp_named_kstat_t *udpkp;
7965 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
7966 	netstack_t	*ns;
7967 	udp_stack_t	*us;
7968 
7969 	if ((kp == NULL) || (kp->ks_data == NULL))
7970 		return (EIO);
7971 
7972 	if (rw == KSTAT_WRITE)
7973 		return (EACCES);
7974 
7975 	ns = netstack_find_by_stackid(stackid);
7976 	if (ns == NULL)
7977 		return (-1);
7978 	us = ns->netstack_udp;
7979 	if (us == NULL) {
7980 		netstack_rele(ns);
7981 		return (-1);
7982 	}
7983 	udpkp = (udp_named_kstat_t *)kp->ks_data;
7984 
7985 	udpkp->inDatagrams.value.ui64 =	us->us_udp_mib.udpHCInDatagrams;
7986 	udpkp->inErrors.value.ui32 =	us->us_udp_mib.udpInErrors;
7987 	udpkp->outDatagrams.value.ui64 = us->us_udp_mib.udpHCOutDatagrams;
7988 	udpkp->outErrors.value.ui32 =	us->us_udp_mib.udpOutErrors;
7989 	netstack_rele(ns);
7990 	return (0);
7991 }
7992 
7993 /*
7994  * Read-side synchronous stream info entry point, called as a
7995  * result of handling certain STREAMS ioctl operations.
7996  */
7997 static int
7998 udp_rinfop(queue_t *q, infod_t *dp)
7999 {
8000 	mblk_t	*mp;
8001 	uint_t	cmd = dp->d_cmd;
8002 	int	res = 0;
8003 	int	error = 0;
8004 	udp_t	*udp = Q_TO_UDP(q);
8005 	struct stdata *stp = STREAM(q);
8006 
8007 	mutex_enter(&udp->udp_drain_lock);
8008 	/* If shutdown on read has happened, return nothing */
8009 	mutex_enter(&stp->sd_lock);
8010 	if (stp->sd_flag & STREOF) {
8011 		mutex_exit(&stp->sd_lock);
8012 		goto done;
8013 	}
8014 	mutex_exit(&stp->sd_lock);
8015 
8016 	if ((mp = udp->udp_rcv_list_head) == NULL)
8017 		goto done;
8018 
8019 	ASSERT(DB_TYPE(mp) != M_DATA && mp->b_cont != NULL);
8020 
8021 	if (cmd & INFOD_COUNT) {
8022 		/*
8023 		 * Return the number of messages.
8024 		 */
8025 		dp->d_count += udp->udp_rcv_msgcnt;
8026 		res |= INFOD_COUNT;
8027 	}
8028 	if (cmd & INFOD_BYTES) {
8029 		/*
8030 		 * Return size of all data messages.
8031 		 */
8032 		dp->d_bytes += udp->udp_rcv_cnt;
8033 		res |= INFOD_BYTES;
8034 	}
8035 	if (cmd & INFOD_FIRSTBYTES) {
8036 		/*
8037 		 * Return size of first data message.
8038 		 */
8039 		dp->d_bytes = msgdsize(mp);
8040 		res |= INFOD_FIRSTBYTES;
8041 		dp->d_cmd &= ~INFOD_FIRSTBYTES;
8042 	}
8043 	if (cmd & INFOD_COPYOUT) {
8044 		mblk_t *mp1 = mp->b_cont;
8045 		int n;
8046 		/*
8047 		 * Return data contents of first message.
8048 		 */
8049 		ASSERT(DB_TYPE(mp1) == M_DATA);
8050 		while (mp1 != NULL && dp->d_uiop->uio_resid > 0) {
8051 			n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1));
8052 			if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n,
8053 			    UIO_READ, dp->d_uiop)) != 0) {
8054 				goto done;
8055 			}
8056 			mp1 = mp1->b_cont;
8057 		}
8058 		res |= INFOD_COPYOUT;
8059 		dp->d_cmd &= ~INFOD_COPYOUT;
8060 	}
8061 done:
8062 	mutex_exit(&udp->udp_drain_lock);
8063 
8064 	dp->d_res |= res;
8065 
8066 	return (error);
8067 }
8068 
8069 /*
8070  * Read-side synchronous stream entry point.  This is called as a result
8071  * of recv/read operation done at sockfs, and is guaranteed to execute
8072  * outside of the interrupt thread context.  It returns a single datagram
8073  * (b_cont chain of T_UNITDATA_IND plus data) to the upper layer.
8074  */
8075 static int
8076 udp_rrw(queue_t *q, struiod_t *dp)
8077 {
8078 	mblk_t	*mp;
8079 	udp_t	*udp = Q_TO_UDP(q);
8080 	udp_stack_t *us = udp->udp_us;
8081 
8082 	/*
8083 	 * Dequeue datagram from the head of the list and return
8084 	 * it to caller; also ensure that RSLEEP sd_wakeq flag is
8085 	 * set/cleared depending on whether or not there's data
8086 	 * remaining in the list.
8087 	 */
8088 	mutex_enter(&udp->udp_drain_lock);
8089 	if (!udp->udp_direct_sockfs) {
8090 		mutex_exit(&udp->udp_drain_lock);
8091 		UDP_STAT(us, udp_rrw_busy);
8092 		return (EBUSY);
8093 	}
8094 	if ((mp = udp->udp_rcv_list_head) != NULL) {
8095 		uint_t size = msgdsize(mp);
8096 
8097 		/* Last datagram in the list? */
8098 		if ((udp->udp_rcv_list_head = mp->b_next) == NULL)
8099 			udp->udp_rcv_list_tail = NULL;
8100 		mp->b_next = NULL;
8101 
8102 		udp->udp_rcv_cnt -= size;
8103 		udp->udp_rcv_msgcnt--;
8104 		UDP_STAT(us, udp_rrw_msgcnt);
8105 
8106 		/* No longer flow-controlling? */
8107 		if (udp->udp_rcv_cnt < udp->udp_rcv_hiwat &&
8108 		    udp->udp_rcv_msgcnt < udp->udp_rcv_hiwat)
8109 			udp->udp_drain_qfull = B_FALSE;
8110 	}
8111 	if (udp->udp_rcv_list_head == NULL) {
8112 		/*
8113 		 * Either we just dequeued the last datagram or
8114 		 * we get here from sockfs and have nothing to
8115 		 * return; in this case clear RSLEEP.
8116 		 */
8117 		ASSERT(udp->udp_rcv_cnt == 0);
8118 		ASSERT(udp->udp_rcv_msgcnt == 0);
8119 		ASSERT(udp->udp_rcv_list_tail == NULL);
8120 		STR_WAKEUP_CLEAR(STREAM(q));
8121 	} else {
8122 		/*
8123 		 * More data follows; we need udp_rrw() to be
8124 		 * called in future to pick up the rest.
8125 		 */
8126 		STR_WAKEUP_SET(STREAM(q));
8127 	}
8128 	mutex_exit(&udp->udp_drain_lock);
8129 	dp->d_mp = mp;
8130 	return (0);
8131 }
8132 
8133 /*
8134  * Enqueue a completely-built T_UNITDATA_IND message into the receive
8135  * list; this is typically executed within the interrupt thread context
8136  * and so we do things as quickly as possible.
8137  */
8138 static void
8139 udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp, uint_t pkt_len)
8140 {
8141 	ASSERT(q == RD(q));
8142 	ASSERT(pkt_len == msgdsize(mp));
8143 	ASSERT(mp->b_next == NULL && mp->b_cont != NULL);
8144 	ASSERT(DB_TYPE(mp) == M_PROTO && DB_TYPE(mp->b_cont) == M_DATA);
8145 	ASSERT(MBLKL(mp) >= sizeof (struct T_unitdata_ind));
8146 
8147 	mutex_enter(&udp->udp_drain_lock);
8148 	/*
8149 	 * Wake up and signal the receiving app; it is okay to do this
8150 	 * before enqueueing the mp because we are holding the drain lock.
8151 	 * One of the advantages of synchronous stream is the ability for
8152 	 * us to find out when the application performs a read on the
8153 	 * socket by way of udp_rrw() entry point being called.  We need
8154 	 * to generate SIGPOLL/SIGIO for each received data in the case
8155 	 * of asynchronous socket just as in the strrput() case.  However,
8156 	 * we only wake the application up when necessary, i.e. during the
8157 	 * first enqueue.  When udp_rrw() is called, we send up a single
8158 	 * datagram upstream and call STR_WAKEUP_SET() again when there
8159 	 * are still data remaining in our receive queue.
8160 	 */
8161 	STR_WAKEUP_SENDSIG(STREAM(q), udp->udp_rcv_list_head);
8162 	if (udp->udp_rcv_list_head == NULL)
8163 		udp->udp_rcv_list_head = mp;
8164 	else
8165 		udp->udp_rcv_list_tail->b_next = mp;
8166 	udp->udp_rcv_list_tail = mp;
8167 	udp->udp_rcv_cnt += pkt_len;
8168 	udp->udp_rcv_msgcnt++;
8169 
8170 	/* Need to flow-control? */
8171 	if (udp->udp_rcv_cnt >= udp->udp_rcv_hiwat ||
8172 	    udp->udp_rcv_msgcnt >= udp->udp_rcv_hiwat)
8173 		udp->udp_drain_qfull = B_TRUE;
8174 
8175 	mutex_exit(&udp->udp_drain_lock);
8176 }
8177 
8178 /*
8179  * Drain the contents of receive list to the module upstream; we do
8180  * this during close or when we fallback to the slow mode due to
8181  * sockmod being popped or a module being pushed on top of us.
8182  */
8183 static void
8184 udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing)
8185 {
8186 	mblk_t *mp;
8187 	udp_stack_t *us = udp->udp_us;
8188 
8189 	ASSERT(q == RD(q));
8190 
8191 	mutex_enter(&udp->udp_drain_lock);
8192 	/*
8193 	 * There is no race with a concurrent udp_input() sending
8194 	 * up packets using putnext() after we have cleared the
8195 	 * udp_direct_sockfs flag but before we have completed
8196 	 * sending up the packets in udp_rcv_list, since we are
8197 	 * either a writer or we have quiesced the conn.
8198 	 */
8199 	udp->udp_direct_sockfs = B_FALSE;
8200 	mutex_exit(&udp->udp_drain_lock);
8201 
8202 	if (udp->udp_rcv_list_head != NULL)
8203 		UDP_STAT(us, udp_drain);
8204 
8205 	/*
8206 	 * Send up everything via putnext(); note here that we
8207 	 * don't need the udp_drain_lock to protect us since
8208 	 * nothing can enter udp_rrw() and that we currently
8209 	 * have exclusive access to this udp.
8210 	 */
8211 	while ((mp = udp->udp_rcv_list_head) != NULL) {
8212 		udp->udp_rcv_list_head = mp->b_next;
8213 		mp->b_next = NULL;
8214 		udp->udp_rcv_cnt -= msgdsize(mp);
8215 		udp->udp_rcv_msgcnt--;
8216 		if (closing) {
8217 			freemsg(mp);
8218 		} else {
8219 			putnext(q, mp);
8220 		}
8221 	}
8222 	ASSERT(udp->udp_rcv_cnt == 0);
8223 	ASSERT(udp->udp_rcv_msgcnt == 0);
8224 	ASSERT(udp->udp_rcv_list_head == NULL);
8225 	udp->udp_rcv_list_tail = NULL;
8226 	udp->udp_drain_qfull = B_FALSE;
8227 }
8228 
8229 static size_t
8230 udp_set_rcv_hiwat(udp_t *udp, size_t size)
8231 {
8232 	udp_stack_t *us = udp->udp_us;
8233 
8234 	/* We add a bit of extra buffering */
8235 	size += size >> 1;
8236 	if (size > us->us_max_buf)
8237 		size = us->us_max_buf;
8238 
8239 	udp->udp_rcv_hiwat = size;
8240 	return (size);
8241 }
8242 
8243 /*
8244  * For the lower queue so that UDP can be a dummy mux.
8245  * Nobody should be sending
8246  * packets up this stream
8247  */
8248 static void
8249 udp_lrput(queue_t *q, mblk_t *mp)
8250 {
8251 	mblk_t *mp1;
8252 
8253 	switch (mp->b_datap->db_type) {
8254 	case M_FLUSH:
8255 		/* Turn around */
8256 		if (*mp->b_rptr & FLUSHW) {
8257 			*mp->b_rptr &= ~FLUSHR;
8258 			qreply(q, mp);
8259 			return;
8260 		}
8261 		break;
8262 	}
8263 	/* Could receive messages that passed through ar_rput */
8264 	for (mp1 = mp; mp1; mp1 = mp1->b_cont)
8265 		mp1->b_prev = mp1->b_next = NULL;
8266 	freemsg(mp);
8267 }
8268 
8269 /*
8270  * For the lower queue so that UDP can be a dummy mux.
8271  * Nobody should be sending packets down this stream.
8272  */
8273 /* ARGSUSED */
8274 void
8275 udp_lwput(queue_t *q, mblk_t *mp)
8276 {
8277 	freemsg(mp);
8278 }
8279