1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 const char udp_version[] = "%Z%%M% %I% %E% SMI"; 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/pattr.h> 35 #include <sys/stropts.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/time.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/strsubr.h> 45 #include <sys/suntpi.h> 46 #include <sys/xti_inet.h> 47 #include <sys/cmn_err.h> 48 #include <sys/kmem.h> 49 #include <sys/policy.h> 50 #include <sys/ucred.h> 51 #include <sys/zone.h> 52 53 #include <sys/socket.h> 54 #include <sys/sockio.h> 55 #include <sys/vtrace.h> 56 #include <sys/sdt.h> 57 #include <sys/debug.h> 58 #include <sys/isa_defs.h> 59 #include <sys/random.h> 60 #include <netinet/in.h> 61 #include <netinet/ip6.h> 62 #include <netinet/icmp6.h> 63 #include <netinet/udp.h> 64 #include <net/if.h> 65 #include <net/route.h> 66 67 #include <inet/common.h> 68 #include <inet/ip.h> 69 #include <inet/ip_impl.h> 70 #include <inet/ip6.h> 71 #include <inet/ip_ire.h> 72 #include <inet/ip_if.h> 73 #include <inet/ip_multi.h> 74 #include <inet/ip_ndp.h> 75 #include <inet/mi.h> 76 #include <inet/mib2.h> 77 #include <inet/nd.h> 78 #include <inet/optcom.h> 79 #include <inet/snmpcom.h> 80 #include <inet/kstatcom.h> 81 #include <inet/udp_impl.h> 82 #include <inet/ipclassifier.h> 83 #include <inet/ipsec_impl.h> 84 #include <inet/ipp_common.h> 85 86 /* 87 * The ipsec_info.h header file is here since it has the definition for the 88 * M_CTL message types used by IP to convey information to the ULP. The 89 * ipsec_info.h needs the pfkeyv2.h, hence the latter's presence. 90 */ 91 #include <net/pfkeyv2.h> 92 #include <inet/ipsec_info.h> 93 94 #include <sys/tsol/label.h> 95 #include <sys/tsol/tnet.h> 96 #include <rpc/pmap_prot.h> 97 98 /* 99 * Synchronization notes: 100 * 101 * UDP uses a combination of its internal perimeter, a global lock and 102 * a set of bind hash locks to protect its data structures. Please see 103 * the note above udp_mode_assertions for details about the internal 104 * perimeter. 105 * 106 * When a UDP endpoint is bound to a local port, it is inserted into 107 * a bind hash list. The list consists of an array of udp_fanout_t buckets. 108 * The size of the array is controlled by the udp_bind_fanout_size variable. 109 * This variable can be changed in /etc/system if the default value is 110 * not large enough. Each bind hash bucket is protected by a per bucket 111 * lock. It protects the udp_bind_hash and udp_ptpbhn fields in the udp_t 112 * structure. An UDP endpoint is removed from the bind hash list only 113 * when it is being unbound or being closed. The per bucket lock also 114 * protects a UDP endpoint's state changes. 115 * 116 * Plumbing notes: 117 * 118 * Both udp and ip are merged, but the streams plumbing is kept unchanged 119 * in that udp is always pushed atop /dev/ip. This is done to preserve 120 * backwards compatibility for certain applications which rely on such 121 * plumbing geometry to do things such as issuing I_POP on the stream 122 * in order to obtain direct access to /dev/ip, etc. 123 * 124 * All UDP processings happen in the /dev/ip instance; the udp module 125 * instance does not possess any state about the endpoint, and merely 126 * acts as a dummy module whose presence is to keep the streams plumbing 127 * appearance unchanged. At open time /dev/ip allocates a conn_t that 128 * happens to embed a udp_t. This stays dormant until the time udp is 129 * pushed, which indicates to /dev/ip that it must convert itself from 130 * an IP to a UDP endpoint. 131 * 132 * We only allow for the following plumbing cases: 133 * 134 * Normal: 135 * /dev/ip is first opened and later udp is pushed directly on top. 136 * This is the default action that happens when a udp socket or 137 * /dev/udp is opened. The conn_t created by /dev/ip instance is 138 * now shared and is marked with IPCL_UDP. 139 * 140 * SNMP-only: 141 * udp is pushed on top of a module other than /dev/ip. When this 142 * happens it will support only SNMP semantics. A new conn_t is 143 * allocated and marked with IPCL_UDPMOD. 144 * 145 * The above cases imply that we don't support any intermediate module to 146 * reside in between /dev/ip and udp -- in fact, we never supported such 147 * scenario in the past as the inter-layer communication semantics have 148 * always been private. Also note that the normal case allows for SNMP 149 * requests to be processed in addition to the rest of UDP operations. 150 * 151 * The normal case plumbing is depicted by the following diagram: 152 * 153 * +---------------+---------------+ 154 * | | | udp 155 * | udp_wq | udp_rq | 156 * | | UDP_RD | 157 * | | | 158 * +---------------+---------------+ 159 * | ^ 160 * v | 161 * +---------------+---------------+ 162 * | | | /dev/ip 163 * | ip_wq | ip_rq | conn_t 164 * | UDP_WR | | 165 * | | | 166 * +---------------+---------------+ 167 * 168 * Messages arriving at udp_wq from above will end up in ip_wq before 169 * it gets processed, i.e. udp write entry points will advance udp_wq 170 * and use its q_next value as ip_wq in order to use the conn_t that 171 * is stored in its q_ptr. Likewise, messages generated by ip to the 172 * module above udp will appear as if they are originated from udp_rq, 173 * i.e. putnext() calls to the module above udp is done using the 174 * udp_rq instead of ip_rq in order to avoid udp_rput() which does 175 * nothing more than calling putnext(). 176 * 177 * The above implies the following rule of thumb: 178 * 179 * 1. udp_t is obtained from conn_t, which is created by the /dev/ip 180 * instance and is stored in q_ptr of both ip_wq and ip_rq. There 181 * is no direct reference to conn_t from either udp_wq or udp_rq. 182 * 183 * 2. Write-side entry points of udp can obtain the conn_t via the 184 * Q_TO_CONN() macro, using the queue value obtain from UDP_WR(). 185 * 186 * 3. While in /dev/ip context, putnext() to the module above udp can 187 * be done by supplying the queue value obtained from UDP_RD(). 188 * 189 */ 190 191 static queue_t *UDP_WR(queue_t *); 192 static queue_t *UDP_RD(queue_t *); 193 194 struct kmem_cache *udp_cache; 195 196 /* For /etc/system control */ 197 uint_t udp_bind_fanout_size = UDP_BIND_FANOUT_SIZE; 198 199 #define NDD_TOO_QUICK_MSG \ 200 "ndd get info rate too high for non-privileged users, try again " \ 201 "later.\n" 202 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 203 204 /* Option processing attrs */ 205 typedef struct udpattrs_s { 206 union { 207 ip6_pkt_t *udpattr_ipp6; /* For V6 */ 208 ip4_pkt_t *udpattr_ipp4; /* For V4 */ 209 } udpattr_ippu; 210 #define udpattr_ipp6 udpattr_ippu.udpattr_ipp6 211 #define udpattr_ipp4 udpattr_ippu.udpattr_ipp4 212 mblk_t *udpattr_mb; 213 boolean_t udpattr_credset; 214 } udpattrs_t; 215 216 static void udp_addr_req(queue_t *q, mblk_t *mp); 217 static void udp_bind(queue_t *q, mblk_t *mp); 218 static void udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp); 219 static void udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock); 220 static int udp_build_hdrs(queue_t *q, udp_t *udp); 221 static void udp_capability_req(queue_t *q, mblk_t *mp); 222 static int udp_close(queue_t *q); 223 static void udp_connect(queue_t *q, mblk_t *mp); 224 static void udp_disconnect(queue_t *q, mblk_t *mp); 225 static void udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, 226 int sys_error); 227 static void udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, 228 t_scalar_t tlierr, int unixerr); 229 static int udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 230 cred_t *cr); 231 static int udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 232 char *value, caddr_t cp, cred_t *cr); 233 static int udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 234 char *value, caddr_t cp, cred_t *cr); 235 static void udp_icmp_error(queue_t *q, mblk_t *mp); 236 static void udp_icmp_error_ipv6(queue_t *q, mblk_t *mp); 237 static void udp_info_req(queue_t *q, mblk_t *mp); 238 static mblk_t *udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, 239 t_scalar_t addr_length); 240 static int udp_open(queue_t *q, dev_t *devp, int flag, int sflag, 241 cred_t *credp); 242 static int udp_unitdata_opt_process(queue_t *q, mblk_t *mp, 243 int *errorp, udpattrs_t *udpattrs); 244 static boolean_t udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name); 245 static int udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 246 static boolean_t udp_param_register(IDP *ndp, udpparam_t *udppa, int cnt); 247 static int udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 248 cred_t *cr); 249 static void udp_report_item(mblk_t *mp, udp_t *udp); 250 static void udp_rput(queue_t *q, mblk_t *mp); 251 static void udp_rput_other(queue_t *, mblk_t *); 252 static int udp_rinfop(queue_t *q, infod_t *dp); 253 static int udp_rrw(queue_t *q, struiod_t *dp); 254 static void udp_rput_bind_ack(queue_t *q, mblk_t *mp); 255 static int udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 256 cred_t *cr); 257 static void udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha); 258 static void udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr, 259 t_scalar_t destlen, t_scalar_t err); 260 static void udp_unbind(queue_t *q, mblk_t *mp); 261 static in_port_t udp_update_next_port(udp_t *udp, in_port_t port, 262 boolean_t random); 263 static void udp_wput(queue_t *q, mblk_t *mp); 264 static mblk_t *udp_output_v4(conn_t *, mblk_t *mp, ipaddr_t v4dst, 265 uint16_t port, uint_t srcid, int *error); 266 static mblk_t *udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6, 267 int *error); 268 static void udp_wput_other(queue_t *q, mblk_t *mp); 269 static void udp_wput_iocdata(queue_t *q, mblk_t *mp); 270 static void udp_output(conn_t *connp, mblk_t *mp, struct sockaddr *addr, 271 socklen_t addrlen); 272 static size_t udp_set_rcv_hiwat(udp_t *udp, size_t size); 273 274 static void *udp_stack_init(netstackid_t stackid, netstack_t *ns); 275 static void udp_stack_fini(netstackid_t stackid, void *arg); 276 277 static void *udp_kstat_init(netstackid_t stackid); 278 static void udp_kstat_fini(netstackid_t stackid, kstat_t *ksp); 279 static void *udp_kstat2_init(netstackid_t, udp_stat_t *); 280 static void udp_kstat2_fini(netstackid_t, kstat_t *); 281 static int udp_kstat_update(kstat_t *kp, int rw); 282 static void udp_input_wrapper(void *arg, mblk_t *mp, void *arg2); 283 static void udp_rput_other_wrapper(void *arg, mblk_t *mp, void *arg2); 284 static void udp_wput_other_wrapper(void *arg, mblk_t *mp, void *arg2); 285 static void udp_resume_bind_cb(void *arg, mblk_t *mp, void *arg2); 286 287 static void udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp, 288 uint_t pkt_len); 289 static void udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing); 290 static void udp_enter(conn_t *, mblk_t *, sqproc_t, uint8_t); 291 static void udp_exit(conn_t *); 292 static void udp_become_writer(conn_t *, mblk_t *, sqproc_t, uint8_t); 293 #ifdef DEBUG 294 static void udp_mode_assertions(udp_t *, int); 295 #endif /* DEBUG */ 296 297 major_t UDP6_MAJ; 298 #define UDP6 "udp6" 299 300 #define UDP_RECV_HIWATER (56 * 1024) 301 #define UDP_RECV_LOWATER 128 302 #define UDP_XMIT_HIWATER (56 * 1024) 303 #define UDP_XMIT_LOWATER 1024 304 305 static struct module_info udp_info = { 306 UDP_MOD_ID, UDP_MOD_NAME, 1, INFPSZ, UDP_RECV_HIWATER, UDP_RECV_LOWATER 307 }; 308 309 static struct qinit udp_rinit = { 310 (pfi_t)udp_rput, NULL, udp_open, udp_close, NULL, 311 &udp_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD 312 }; 313 314 static struct qinit udp_winit = { 315 (pfi_t)udp_wput, NULL, NULL, NULL, NULL, 316 &udp_info, NULL, NULL, NULL, STRUIOT_NONE 317 }; 318 319 /* Support for just SNMP if UDP is not pushed directly over device IP */ 320 struct qinit udp_snmp_rinit = { 321 (pfi_t)putnext, NULL, udp_open, ip_snmpmod_close, NULL, 322 &udp_info, NULL, NULL, NULL, STRUIOT_NONE 323 }; 324 325 struct qinit udp_snmp_winit = { 326 (pfi_t)ip_snmpmod_wput, NULL, udp_open, ip_snmpmod_close, NULL, 327 &udp_info, NULL, NULL, NULL, STRUIOT_NONE 328 }; 329 330 struct streamtab udpinfo = { 331 &udp_rinit, &udp_winit 332 }; 333 334 static sin_t sin_null; /* Zero address for quick clears */ 335 static sin6_t sin6_null; /* Zero address for quick clears */ 336 337 #define UDP_MAXPACKET_IPV4 (IP_MAXPACKET - UDPH_SIZE - IP_SIMPLE_HDR_LENGTH) 338 339 /* Default structure copied into T_INFO_ACK messages */ 340 static struct T_info_ack udp_g_t_info_ack_ipv4 = { 341 T_INFO_ACK, 342 UDP_MAXPACKET_IPV4, /* TSDU_size. Excl. headers */ 343 T_INVALID, /* ETSU_size. udp does not support expedited data. */ 344 T_INVALID, /* CDATA_size. udp does not support connect data. */ 345 T_INVALID, /* DDATA_size. udp does not support disconnect data. */ 346 sizeof (sin_t), /* ADDR_size. */ 347 0, /* OPT_size - not initialized here */ 348 UDP_MAXPACKET_IPV4, /* TIDU_size. Excl. headers */ 349 T_CLTS, /* SERV_type. udp supports connection-less. */ 350 TS_UNBND, /* CURRENT_state. This is set from udp_state. */ 351 (XPG4_1|SENDZERO) /* PROVIDER_flag */ 352 }; 353 354 #define UDP_MAXPACKET_IPV6 (IP_MAXPACKET - UDPH_SIZE - IPV6_HDR_LEN) 355 356 static struct T_info_ack udp_g_t_info_ack_ipv6 = { 357 T_INFO_ACK, 358 UDP_MAXPACKET_IPV6, /* TSDU_size. Excl. headers */ 359 T_INVALID, /* ETSU_size. udp does not support expedited data. */ 360 T_INVALID, /* CDATA_size. udp does not support connect data. */ 361 T_INVALID, /* DDATA_size. udp does not support disconnect data. */ 362 sizeof (sin6_t), /* ADDR_size. */ 363 0, /* OPT_size - not initialized here */ 364 UDP_MAXPACKET_IPV6, /* TIDU_size. Excl. headers */ 365 T_CLTS, /* SERV_type. udp supports connection-less. */ 366 TS_UNBND, /* CURRENT_state. This is set from udp_state. */ 367 (XPG4_1|SENDZERO) /* PROVIDER_flag */ 368 }; 369 370 /* largest UDP port number */ 371 #define UDP_MAX_PORT 65535 372 373 /* 374 * Table of ND variables supported by udp. These are loaded into us_nd 375 * in udp_open. 376 * All of these are alterable, within the min/max values given, at run time. 377 */ 378 /* BEGIN CSTYLED */ 379 udpparam_t udp_param_arr[] = { 380 /*min max value name */ 381 { 0L, 256, 32, "udp_wroff_extra" }, 382 { 1L, 255, 255, "udp_ipv4_ttl" }, 383 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "udp_ipv6_hoplimit"}, 384 { 1024, (32 * 1024), 1024, "udp_smallest_nonpriv_port" }, 385 { 0, 1, 1, "udp_do_checksum" }, 386 { 1024, UDP_MAX_PORT, (32 * 1024), "udp_smallest_anon_port" }, 387 { 1024, UDP_MAX_PORT, UDP_MAX_PORT, "udp_largest_anon_port" }, 388 { UDP_XMIT_LOWATER, (1<<30), UDP_XMIT_HIWATER, "udp_xmit_hiwat"}, 389 { 0, (1<<30), UDP_XMIT_LOWATER, "udp_xmit_lowat"}, 390 { UDP_RECV_LOWATER, (1<<30), UDP_RECV_HIWATER, "udp_recv_hiwat"}, 391 { 65536, (1<<30), 2*1024*1024, "udp_max_buf"}, 392 { 100, 60000, 1000, "udp_ndd_get_info_interval"}, 393 }; 394 /* END CSTYLED */ 395 396 /* Setable in /etc/system */ 397 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 398 uint32_t udp_random_anon_port = 1; 399 400 /* 401 * Hook functions to enable cluster networking. 402 * On non-clustered systems these vectors must always be NULL 403 */ 404 405 void (*cl_inet_bind)(uchar_t protocol, sa_family_t addr_family, 406 uint8_t *laddrp, in_port_t lport) = NULL; 407 void (*cl_inet_unbind)(uint8_t protocol, sa_family_t addr_family, 408 uint8_t *laddrp, in_port_t lport) = NULL; 409 410 typedef union T_primitives *t_primp_t; 411 412 #define UDP_ENQUEUE_MP(udp, mp, proc, tag) { \ 413 ASSERT((mp)->b_prev == NULL && (mp)->b_queue == NULL); \ 414 ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock)); \ 415 (mp)->b_queue = (queue_t *)((uintptr_t)tag); \ 416 (mp)->b_prev = (mblk_t *)proc; \ 417 if ((udp)->udp_mphead == NULL) \ 418 (udp)->udp_mphead = (mp); \ 419 else \ 420 (udp)->udp_mptail->b_next = (mp); \ 421 (udp)->udp_mptail = (mp); \ 422 (udp)->udp_mpcount++; \ 423 } 424 425 #define UDP_READERS_INCREF(udp) { \ 426 ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock)); \ 427 (udp)->udp_reader_count++; \ 428 } 429 430 #define UDP_READERS_DECREF(udp) { \ 431 ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock)); \ 432 (udp)->udp_reader_count--; \ 433 if ((udp)->udp_reader_count == 0) \ 434 cv_broadcast(&(udp)->udp_connp->conn_cv); \ 435 } 436 437 #define UDP_SQUEUE_DECREF(udp) { \ 438 ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock)); \ 439 (udp)->udp_squeue_count--; \ 440 if ((udp)->udp_squeue_count == 0) \ 441 cv_broadcast(&(udp)->udp_connp->conn_cv); \ 442 } 443 444 /* 445 * Notes on UDP endpoint synchronization: 446 * 447 * UDP needs exclusive operation on a per endpoint basis, when executing 448 * functions that modify the endpoint state. udp_rput_other() deals with 449 * packets with IP options, and processing these packets end up having 450 * to update the endpoint's option related state. udp_wput_other() deals 451 * with control operations from the top, e.g. connect() that needs to 452 * update the endpoint state. These could be synchronized using locks, 453 * but the current version uses squeues for this purpose. squeues may 454 * give performance improvement for certain cases such as connected UDP 455 * sockets; thus the framework allows for using squeues. 456 * 457 * The perimeter routines are described as follows: 458 * 459 * udp_enter(): 460 * Enter the UDP endpoint perimeter. 461 * 462 * udp_become_writer(): 463 * Become exclusive on the UDP endpoint. Specifies a function 464 * that will be called exclusively either immediately or later 465 * when the perimeter is available exclusively. 466 * 467 * udp_exit(): 468 * Exit the UDP perimeter. 469 * 470 * Entering UDP from the top or from the bottom must be done using 471 * udp_enter(). No lock must be held while attempting to enter the UDP 472 * perimeter. When finished, udp_exit() must be called to get out of 473 * the perimeter. 474 * 475 * UDP operates in either MT_HOT mode or in SQUEUE mode. In MT_HOT mode, 476 * multiple threads may enter a UDP endpoint concurrently. This is used 477 * for sending and/or receiving normal data. Control operations and other 478 * special cases call udp_become_writer() to become exclusive on a per 479 * endpoint basis and this results in transitioning to SQUEUE mode. squeue 480 * by definition serializes access to the conn_t. When there are no more 481 * pending messages on the squeue for the UDP connection, the endpoint 482 * reverts to MT_HOT mode. During the interregnum when not all MT threads 483 * of an endpoint have finished, messages are queued in the UDP endpoint 484 * and the UDP is in UDP_MT_QUEUED mode or UDP_QUEUED_SQUEUE mode. 485 * 486 * These modes have the following analogs: 487 * 488 * UDP_MT_HOT/udp_reader_count==0 none 489 * UDP_MT_HOT/udp_reader_count>0 RW_READ_LOCK 490 * UDP_MT_QUEUED RW_WRITE_WANTED 491 * UDP_SQUEUE or UDP_QUEUED_SQUEUE RW_WRITE_LOCKED 492 * 493 * Stable modes: UDP_MT_HOT, UDP_SQUEUE 494 * Transient modes: UDP_MT_QUEUED, UDP_QUEUED_SQUEUE 495 * 496 * While in stable modes, UDP keeps track of the number of threads 497 * operating on the endpoint. The udp_reader_count variable represents 498 * the number of threads entering the endpoint as readers while it is 499 * in UDP_MT_HOT mode. Transitioning to UDP_SQUEUE happens when there 500 * is only a single reader, i.e. when this counter drops to 1. Likewise, 501 * udp_squeue_count represents the number of threads operating on the 502 * endpoint's squeue while it is in UDP_SQUEUE mode. The mode transition 503 * to UDP_MT_HOT happens after the last thread exits the endpoint, i.e. 504 * when this counter drops to 0. 505 * 506 * The default mode is set to UDP_MT_HOT and UDP alternates between 507 * UDP_MT_HOT and UDP_SQUEUE as shown in the state transition below. 508 * 509 * Mode transition: 510 * ---------------------------------------------------------------- 511 * old mode Event New mode 512 * ---------------------------------------------------------------- 513 * UDP_MT_HOT Call to udp_become_writer() UDP_SQUEUE 514 * and udp_reader_count == 1 515 * 516 * UDP_MT_HOT Call to udp_become_writer() UDP_MT_QUEUED 517 * and udp_reader_count > 1 518 * 519 * UDP_MT_QUEUED udp_reader_count drops to zero UDP_QUEUED_SQUEUE 520 * 521 * UDP_QUEUED_SQUEUE All messages enqueued on the UDP_SQUEUE 522 * internal UDP queue successfully 523 * moved to squeue AND udp_squeue_count != 0 524 * 525 * UDP_QUEUED_SQUEUE All messages enqueued on the UDP_MT_HOT 526 * internal UDP queue successfully 527 * moved to squeue AND udp_squeue_count 528 * drops to zero 529 * 530 * UDP_SQUEUE udp_squeue_count drops to zero UDP_MT_HOT 531 * ---------------------------------------------------------------- 532 */ 533 534 static queue_t * 535 UDP_WR(queue_t *q) 536 { 537 ASSERT(q->q_ptr == NULL && _OTHERQ(q)->q_ptr == NULL); 538 ASSERT(WR(q)->q_next != NULL && WR(q)->q_next->q_ptr != NULL); 539 ASSERT(IPCL_IS_UDP(Q_TO_CONN(WR(q)->q_next))); 540 541 return (_WR(q)->q_next); 542 } 543 544 static queue_t * 545 UDP_RD(queue_t *q) 546 { 547 ASSERT(q->q_ptr != NULL && _OTHERQ(q)->q_ptr != NULL); 548 ASSERT(IPCL_IS_UDP(Q_TO_CONN(q))); 549 ASSERT(RD(q)->q_next != NULL && RD(q)->q_next->q_ptr == NULL); 550 551 return (_RD(q)->q_next); 552 } 553 554 #ifdef DEBUG 555 #define UDP_MODE_ASSERTIONS(udp, caller) udp_mode_assertions(udp, caller) 556 #else 557 #define UDP_MODE_ASSERTIONS(udp, caller) 558 #endif 559 560 /* Invariants */ 561 #ifdef DEBUG 562 563 uint32_t udp_count[4]; 564 565 /* Context of udp_mode_assertions */ 566 #define UDP_ENTER 1 567 #define UDP_BECOME_WRITER 2 568 #define UDP_EXIT 3 569 570 static void 571 udp_mode_assertions(udp_t *udp, int caller) 572 { 573 ASSERT(MUTEX_HELD(&udp->udp_connp->conn_lock)); 574 575 switch (udp->udp_mode) { 576 case UDP_MT_HOT: 577 /* 578 * Messages have not yet been enqueued on the internal queue, 579 * otherwise we would have switched to UDP_MT_QUEUED. Likewise 580 * by definition, there can't be any messages enqueued on the 581 * squeue. The UDP could be quiescent, so udp_reader_count 582 * could be zero at entry. 583 */ 584 ASSERT(udp->udp_mphead == NULL && udp->udp_mpcount == 0 && 585 udp->udp_squeue_count == 0); 586 ASSERT(caller == UDP_ENTER || udp->udp_reader_count != 0); 587 udp_count[0]++; 588 break; 589 590 case UDP_MT_QUEUED: 591 /* 592 * The last MT thread to exit the udp perimeter empties the 593 * internal queue and then switches the UDP to 594 * UDP_QUEUED_SQUEUE mode. Since we are still in UDP_MT_QUEUED 595 * mode, it means there must be at least 1 MT thread still in 596 * the perimeter and at least 1 message on the internal queue. 597 */ 598 ASSERT(udp->udp_reader_count >= 1 && udp->udp_mphead != NULL && 599 udp->udp_mpcount != 0 && udp->udp_squeue_count == 0); 600 udp_count[1]++; 601 break; 602 603 case UDP_QUEUED_SQUEUE: 604 /* 605 * The switch has happened from MT to SQUEUE. So there can't 606 * any MT threads. Messages could still pile up on the internal 607 * queue until the transition is complete and we move to 608 * UDP_SQUEUE mode. We can't assert on nonzero udp_squeue_count 609 * since the squeue could drain any time. 610 */ 611 ASSERT(udp->udp_reader_count == 0); 612 udp_count[2]++; 613 break; 614 615 case UDP_SQUEUE: 616 /* 617 * The transition is complete. Thre can't be any messages on 618 * the internal queue. The udp could be quiescent or the squeue 619 * could drain any time, so we can't assert on nonzero 620 * udp_squeue_count during entry. Nor can we assert that 621 * udp_reader_count is zero, since, a reader thread could have 622 * directly become writer in line by calling udp_become_writer 623 * without going through the queued states. 624 */ 625 ASSERT(udp->udp_mphead == NULL && udp->udp_mpcount == 0); 626 ASSERT(caller == UDP_ENTER || udp->udp_squeue_count != 0); 627 udp_count[3]++; 628 break; 629 } 630 } 631 #endif 632 633 #define _UDP_ENTER(connp, mp, proc, tag) { \ 634 udp_t *_udp = (connp)->conn_udp; \ 635 \ 636 mutex_enter(&(connp)->conn_lock); \ 637 if ((connp)->conn_state_flags & CONN_CLOSING) { \ 638 mutex_exit(&(connp)->conn_lock); \ 639 freemsg(mp); \ 640 } else { \ 641 UDP_MODE_ASSERTIONS(_udp, UDP_ENTER); \ 642 \ 643 switch (_udp->udp_mode) { \ 644 case UDP_MT_HOT: \ 645 /* We can execute as reader right away. */ \ 646 UDP_READERS_INCREF(_udp); \ 647 mutex_exit(&(connp)->conn_lock); \ 648 (*(proc))(connp, mp, (connp)->conn_sqp); \ 649 break; \ 650 \ 651 case UDP_SQUEUE: \ 652 /* \ 653 * We are in squeue mode, send the \ 654 * packet to the squeue \ 655 */ \ 656 _udp->udp_squeue_count++; \ 657 CONN_INC_REF_LOCKED(connp); \ 658 mutex_exit(&(connp)->conn_lock); \ 659 squeue_enter((connp)->conn_sqp, mp, proc, \ 660 connp, tag); \ 661 break; \ 662 \ 663 case UDP_MT_QUEUED: \ 664 case UDP_QUEUED_SQUEUE: \ 665 /* \ 666 * Some messages may have been enqueued \ 667 * ahead of us. Enqueue the new message \ 668 * at the tail of the internal queue to \ 669 * preserve message ordering. \ 670 */ \ 671 UDP_ENQUEUE_MP(_udp, mp, proc, tag); \ 672 mutex_exit(&(connp)->conn_lock); \ 673 break; \ 674 } \ 675 } \ 676 } 677 678 static void 679 udp_enter(conn_t *connp, mblk_t *mp, sqproc_t proc, uint8_t tag) 680 { 681 _UDP_ENTER(connp, mp, proc, tag); 682 } 683 684 static void 685 udp_become_writer(conn_t *connp, mblk_t *mp, sqproc_t proc, uint8_t tag) 686 { 687 udp_t *udp; 688 689 udp = connp->conn_udp; 690 691 mutex_enter(&connp->conn_lock); 692 693 UDP_MODE_ASSERTIONS(udp, UDP_BECOME_WRITER); 694 695 switch (udp->udp_mode) { 696 case UDP_MT_HOT: 697 if (udp->udp_reader_count == 1) { 698 /* 699 * We are the only MT thread. Switch to squeue mode 700 * immediately. 701 */ 702 udp->udp_mode = UDP_SQUEUE; 703 udp->udp_squeue_count = 1; 704 CONN_INC_REF_LOCKED(connp); 705 mutex_exit(&connp->conn_lock); 706 squeue_enter(connp->conn_sqp, mp, proc, connp, tag); 707 return; 708 } 709 /* FALLTHRU */ 710 711 case UDP_MT_QUEUED: 712 /* Enqueue the packet internally in UDP */ 713 udp->udp_mode = UDP_MT_QUEUED; 714 UDP_ENQUEUE_MP(udp, mp, proc, tag); 715 mutex_exit(&connp->conn_lock); 716 return; 717 718 case UDP_SQUEUE: 719 case UDP_QUEUED_SQUEUE: 720 /* 721 * We are already exclusive. i.e. we are already 722 * writer. Simply call the desired function. 723 */ 724 udp->udp_squeue_count++; 725 mutex_exit(&connp->conn_lock); 726 (*proc)(connp, mp, connp->conn_sqp); 727 return; 728 } 729 } 730 731 /* 732 * Transition from MT mode to SQUEUE mode, when the last MT thread 733 * is exiting the UDP perimeter. Move all messages from the internal 734 * udp queue to the squeue. A better way would be to move all the 735 * messages in one shot, this needs more support from the squeue framework 736 */ 737 static void 738 udp_switch_to_squeue(udp_t *udp) 739 { 740 mblk_t *mp; 741 mblk_t *mp_next; 742 sqproc_t proc; 743 uint8_t tag; 744 conn_t *connp = udp->udp_connp; 745 746 ASSERT(MUTEX_HELD(&connp->conn_lock)); 747 ASSERT(udp->udp_mode == UDP_MT_QUEUED); 748 while (udp->udp_mphead != NULL) { 749 mp = udp->udp_mphead; 750 udp->udp_mphead = NULL; 751 udp->udp_mptail = NULL; 752 udp->udp_mpcount = 0; 753 udp->udp_mode = UDP_QUEUED_SQUEUE; 754 mutex_exit(&connp->conn_lock); 755 /* 756 * It is best not to hold any locks across the calls 757 * to squeue functions. Since we drop the lock we 758 * need to go back and check the udp_mphead once again 759 * after the squeue_fill and hence the while loop at 760 * the top of this function 761 */ 762 for (; mp != NULL; mp = mp_next) { 763 mp_next = mp->b_next; 764 proc = (sqproc_t)mp->b_prev; 765 tag = (uint8_t)((uintptr_t)mp->b_queue); 766 mp->b_next = NULL; 767 mp->b_prev = NULL; 768 mp->b_queue = NULL; 769 CONN_INC_REF(connp); 770 udp->udp_squeue_count++; 771 squeue_fill(connp->conn_sqp, mp, proc, connp, 772 tag); 773 } 774 mutex_enter(&connp->conn_lock); 775 } 776 /* 777 * udp_squeue_count of zero implies that the squeue has drained 778 * even before we arrived here (i.e. after the squeue_fill above) 779 */ 780 udp->udp_mode = (udp->udp_squeue_count != 0) ? 781 UDP_SQUEUE : UDP_MT_HOT; 782 } 783 784 #define _UDP_EXIT(connp) { \ 785 udp_t *_udp = (connp)->conn_udp; \ 786 \ 787 mutex_enter(&(connp)->conn_lock); \ 788 UDP_MODE_ASSERTIONS(_udp, UDP_EXIT); \ 789 \ 790 switch (_udp->udp_mode) { \ 791 case UDP_MT_HOT: \ 792 UDP_READERS_DECREF(_udp); \ 793 mutex_exit(&(connp)->conn_lock); \ 794 break; \ 795 \ 796 case UDP_SQUEUE: \ 797 UDP_SQUEUE_DECREF(_udp); \ 798 if (_udp->udp_squeue_count == 0) \ 799 _udp->udp_mode = UDP_MT_HOT; \ 800 mutex_exit(&(connp)->conn_lock); \ 801 break; \ 802 \ 803 case UDP_MT_QUEUED: \ 804 /* \ 805 * If this is the last MT thread, we need to \ 806 * switch to squeue mode \ 807 */ \ 808 UDP_READERS_DECREF(_udp); \ 809 if (_udp->udp_reader_count == 0) \ 810 udp_switch_to_squeue(_udp); \ 811 mutex_exit(&(connp)->conn_lock); \ 812 break; \ 813 \ 814 case UDP_QUEUED_SQUEUE: \ 815 UDP_SQUEUE_DECREF(_udp); \ 816 /* \ 817 * Even if the udp_squeue_count drops to zero, we \ 818 * don't want to change udp_mode to UDP_MT_HOT here. \ 819 * The thread in udp_switch_to_squeue will take care \ 820 * of the transition to UDP_MT_HOT, after emptying \ 821 * any more new messages that have been enqueued in \ 822 * udp_mphead. \ 823 */ \ 824 mutex_exit(&(connp)->conn_lock); \ 825 break; \ 826 } \ 827 } 828 829 static void 830 udp_exit(conn_t *connp) 831 { 832 _UDP_EXIT(connp); 833 } 834 835 /* 836 * Return the next anonymous port in the privileged port range for 837 * bind checking. 838 * 839 * Trusted Extension (TX) notes: TX allows administrator to mark or 840 * reserve ports as Multilevel ports (MLP). MLP has special function 841 * on TX systems. Once a port is made MLP, it's not available as 842 * ordinary port. This creates "holes" in the port name space. It 843 * may be necessary to skip the "holes" find a suitable anon port. 844 */ 845 static in_port_t 846 udp_get_next_priv_port(udp_t *udp) 847 { 848 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 849 in_port_t nextport; 850 boolean_t restart = B_FALSE; 851 udp_stack_t *us = udp->udp_us; 852 853 retry: 854 if (next_priv_port < us->us_min_anonpriv_port || 855 next_priv_port >= IPPORT_RESERVED) { 856 next_priv_port = IPPORT_RESERVED - 1; 857 if (restart) 858 return (0); 859 restart = B_TRUE; 860 } 861 862 if (is_system_labeled() && 863 (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred), 864 next_priv_port, IPPROTO_UDP, B_FALSE)) != 0) { 865 next_priv_port = nextport; 866 goto retry; 867 } 868 869 return (next_priv_port--); 870 } 871 872 /* UDP bind hash report triggered via the Named Dispatch mechanism. */ 873 /* ARGSUSED */ 874 static int 875 udp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 876 { 877 udp_fanout_t *udpf; 878 int i; 879 zoneid_t zoneid; 880 conn_t *connp; 881 udp_t *udp; 882 udp_stack_t *us; 883 884 connp = Q_TO_CONN(q); 885 udp = connp->conn_udp; 886 us = udp->udp_us; 887 888 /* Refer to comments in udp_status_report(). */ 889 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 890 if (ddi_get_lbolt() - us->us_last_ndd_get_info_time < 891 drv_usectohz(us->us_ndd_get_info_interval * 1000)) { 892 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 893 return (0); 894 } 895 } 896 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 897 /* The following may work even if we cannot get a large buf. */ 898 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 899 return (0); 900 } 901 902 (void) mi_mpprintf(mp, 903 "UDP " MI_COL_HDRPAD_STR 904 /* 12345678[89ABCDEF] */ 905 " zone lport src addr dest addr port state"); 906 /* 1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */ 907 908 zoneid = connp->conn_zoneid; 909 910 for (i = 0; i < us->us_bind_fanout_size; i++) { 911 udpf = &us->us_bind_fanout[i]; 912 mutex_enter(&udpf->uf_lock); 913 914 /* Print the hash index. */ 915 udp = udpf->uf_udp; 916 if (zoneid != GLOBAL_ZONEID) { 917 /* skip to first entry in this zone; might be none */ 918 while (udp != NULL && 919 udp->udp_connp->conn_zoneid != zoneid) 920 udp = udp->udp_bind_hash; 921 } 922 if (udp != NULL) { 923 uint_t print_len, buf_len; 924 925 buf_len = mp->b_cont->b_datap->db_lim - 926 mp->b_cont->b_wptr; 927 print_len = snprintf((char *)mp->b_cont->b_wptr, 928 buf_len, "%d\n", i); 929 if (print_len < buf_len) { 930 mp->b_cont->b_wptr += print_len; 931 } else { 932 mp->b_cont->b_wptr += buf_len; 933 } 934 for (; udp != NULL; udp = udp->udp_bind_hash) { 935 if (zoneid == GLOBAL_ZONEID || 936 zoneid == udp->udp_connp->conn_zoneid) 937 udp_report_item(mp->b_cont, udp); 938 } 939 } 940 mutex_exit(&udpf->uf_lock); 941 } 942 us->us_last_ndd_get_info_time = ddi_get_lbolt(); 943 return (0); 944 } 945 946 /* 947 * Hash list removal routine for udp_t structures. 948 */ 949 static void 950 udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock) 951 { 952 udp_t *udpnext; 953 kmutex_t *lockp; 954 udp_stack_t *us = udp->udp_us; 955 956 if (udp->udp_ptpbhn == NULL) 957 return; 958 959 /* 960 * Extract the lock pointer in case there are concurrent 961 * hash_remove's for this instance. 962 */ 963 ASSERT(udp->udp_port != 0); 964 if (!caller_holds_lock) { 965 lockp = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port, 966 us->us_bind_fanout_size)].uf_lock; 967 ASSERT(lockp != NULL); 968 mutex_enter(lockp); 969 } 970 if (udp->udp_ptpbhn != NULL) { 971 udpnext = udp->udp_bind_hash; 972 if (udpnext != NULL) { 973 udpnext->udp_ptpbhn = udp->udp_ptpbhn; 974 udp->udp_bind_hash = NULL; 975 } 976 *udp->udp_ptpbhn = udpnext; 977 udp->udp_ptpbhn = NULL; 978 } 979 if (!caller_holds_lock) { 980 mutex_exit(lockp); 981 } 982 } 983 984 static void 985 udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp) 986 { 987 udp_t **udpp; 988 udp_t *udpnext; 989 990 ASSERT(MUTEX_HELD(&uf->uf_lock)); 991 if (udp->udp_ptpbhn != NULL) { 992 udp_bind_hash_remove(udp, B_TRUE); 993 } 994 udpp = &uf->uf_udp; 995 udpnext = udpp[0]; 996 if (udpnext != NULL) { 997 /* 998 * If the new udp bound to the INADDR_ANY address 999 * and the first one in the list is not bound to 1000 * INADDR_ANY we skip all entries until we find the 1001 * first one bound to INADDR_ANY. 1002 * This makes sure that applications binding to a 1003 * specific address get preference over those binding to 1004 * INADDR_ANY. 1005 */ 1006 if (V6_OR_V4_INADDR_ANY(udp->udp_bound_v6src) && 1007 !V6_OR_V4_INADDR_ANY(udpnext->udp_bound_v6src)) { 1008 while ((udpnext = udpp[0]) != NULL && 1009 !V6_OR_V4_INADDR_ANY( 1010 udpnext->udp_bound_v6src)) { 1011 udpp = &(udpnext->udp_bind_hash); 1012 } 1013 if (udpnext != NULL) 1014 udpnext->udp_ptpbhn = &udp->udp_bind_hash; 1015 } else { 1016 udpnext->udp_ptpbhn = &udp->udp_bind_hash; 1017 } 1018 } 1019 udp->udp_bind_hash = udpnext; 1020 udp->udp_ptpbhn = udpp; 1021 udpp[0] = udp; 1022 } 1023 1024 /* 1025 * This routine is called to handle each O_T_BIND_REQ/T_BIND_REQ message 1026 * passed to udp_wput. 1027 * It associates a port number and local address with the stream. 1028 * The O_T_BIND_REQ/T_BIND_REQ is passed downstream to ip with the UDP 1029 * protocol type (IPPROTO_UDP) placed in the message following the address. 1030 * A T_BIND_ACK message is passed upstream when ip acknowledges the request. 1031 * (Called as writer.) 1032 * 1033 * Note that UDP over IPv4 and IPv6 sockets can use the same port number 1034 * without setting SO_REUSEADDR. This is needed so that they 1035 * can be viewed as two independent transport protocols. 1036 * However, anonymouns ports are allocated from the same range to avoid 1037 * duplicating the us->us_next_port_to_try. 1038 */ 1039 static void 1040 udp_bind(queue_t *q, mblk_t *mp) 1041 { 1042 sin_t *sin; 1043 sin6_t *sin6; 1044 mblk_t *mp1; 1045 in_port_t port; /* Host byte order */ 1046 in_port_t requested_port; /* Host byte order */ 1047 struct T_bind_req *tbr; 1048 int count; 1049 in6_addr_t v6src; 1050 boolean_t bind_to_req_port_only; 1051 int loopmax; 1052 udp_fanout_t *udpf; 1053 in_port_t lport; /* Network byte order */ 1054 zoneid_t zoneid; 1055 conn_t *connp; 1056 udp_t *udp; 1057 boolean_t is_inaddr_any; 1058 mlp_type_t addrtype, mlptype; 1059 udp_stack_t *us; 1060 1061 connp = Q_TO_CONN(q); 1062 udp = connp->conn_udp; 1063 us = udp->udp_us; 1064 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 1065 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 1066 "udp_bind: bad req, len %u", 1067 (uint_t)(mp->b_wptr - mp->b_rptr)); 1068 udp_err_ack(q, mp, TPROTO, 0); 1069 return; 1070 } 1071 1072 if (udp->udp_state != TS_UNBND) { 1073 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 1074 "udp_bind: bad state, %u", udp->udp_state); 1075 udp_err_ack(q, mp, TOUTSTATE, 0); 1076 return; 1077 } 1078 /* 1079 * Reallocate the message to make sure we have enough room for an 1080 * address and the protocol type. 1081 */ 1082 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 1083 if (!mp1) { 1084 udp_err_ack(q, mp, TSYSERR, ENOMEM); 1085 return; 1086 } 1087 1088 mp = mp1; 1089 tbr = (struct T_bind_req *)mp->b_rptr; 1090 switch (tbr->ADDR_length) { 1091 case 0: /* Request for a generic port */ 1092 tbr->ADDR_offset = sizeof (struct T_bind_req); 1093 if (udp->udp_family == AF_INET) { 1094 tbr->ADDR_length = sizeof (sin_t); 1095 sin = (sin_t *)&tbr[1]; 1096 *sin = sin_null; 1097 sin->sin_family = AF_INET; 1098 mp->b_wptr = (uchar_t *)&sin[1]; 1099 } else { 1100 ASSERT(udp->udp_family == AF_INET6); 1101 tbr->ADDR_length = sizeof (sin6_t); 1102 sin6 = (sin6_t *)&tbr[1]; 1103 *sin6 = sin6_null; 1104 sin6->sin6_family = AF_INET6; 1105 mp->b_wptr = (uchar_t *)&sin6[1]; 1106 } 1107 port = 0; 1108 break; 1109 1110 case sizeof (sin_t): /* Complete IPv4 address */ 1111 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 1112 sizeof (sin_t)); 1113 if (sin == NULL || !OK_32PTR((char *)sin)) { 1114 udp_err_ack(q, mp, TSYSERR, EINVAL); 1115 return; 1116 } 1117 if (udp->udp_family != AF_INET || 1118 sin->sin_family != AF_INET) { 1119 udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); 1120 return; 1121 } 1122 port = ntohs(sin->sin_port); 1123 break; 1124 1125 case sizeof (sin6_t): /* complete IPv6 address */ 1126 sin6 = (sin6_t *)mi_offset_param(mp, tbr->ADDR_offset, 1127 sizeof (sin6_t)); 1128 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 1129 udp_err_ack(q, mp, TSYSERR, EINVAL); 1130 return; 1131 } 1132 if (udp->udp_family != AF_INET6 || 1133 sin6->sin6_family != AF_INET6) { 1134 udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); 1135 return; 1136 } 1137 port = ntohs(sin6->sin6_port); 1138 break; 1139 1140 default: /* Invalid request */ 1141 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 1142 "udp_bind: bad ADDR_length length %u", tbr->ADDR_length); 1143 udp_err_ack(q, mp, TBADADDR, 0); 1144 return; 1145 } 1146 1147 requested_port = port; 1148 1149 if (requested_port == 0 || tbr->PRIM_type == O_T_BIND_REQ) 1150 bind_to_req_port_only = B_FALSE; 1151 else /* T_BIND_REQ and requested_port != 0 */ 1152 bind_to_req_port_only = B_TRUE; 1153 1154 if (requested_port == 0) { 1155 /* 1156 * If the application passed in zero for the port number, it 1157 * doesn't care which port number we bind to. Get one in the 1158 * valid range. 1159 */ 1160 if (udp->udp_anon_priv_bind) { 1161 port = udp_get_next_priv_port(udp); 1162 } else { 1163 port = udp_update_next_port(udp, 1164 us->us_next_port_to_try, B_TRUE); 1165 } 1166 } else { 1167 /* 1168 * If the port is in the well-known privileged range, 1169 * make sure the caller was privileged. 1170 */ 1171 int i; 1172 boolean_t priv = B_FALSE; 1173 1174 if (port < us->us_smallest_nonpriv_port) { 1175 priv = B_TRUE; 1176 } else { 1177 for (i = 0; i < us->us_num_epriv_ports; i++) { 1178 if (port == us->us_epriv_ports[i]) { 1179 priv = B_TRUE; 1180 break; 1181 } 1182 } 1183 } 1184 1185 if (priv) { 1186 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 1187 1188 if (secpolicy_net_privaddr(cr, port) != 0) { 1189 udp_err_ack(q, mp, TACCES, 0); 1190 return; 1191 } 1192 } 1193 } 1194 1195 if (port == 0) { 1196 udp_err_ack(q, mp, TNOADDR, 0); 1197 return; 1198 } 1199 1200 /* 1201 * Copy the source address into our udp structure. This address 1202 * may still be zero; if so, IP will fill in the correct address 1203 * each time an outbound packet is passed to it. 1204 */ 1205 if (udp->udp_family == AF_INET) { 1206 ASSERT(sin != NULL); 1207 ASSERT(udp->udp_ipversion == IPV4_VERSION); 1208 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + 1209 udp->udp_ip_snd_options_len; 1210 IN6_IPADDR_TO_V4MAPPED(sin->sin_addr.s_addr, &v6src); 1211 } else { 1212 ASSERT(sin6 != NULL); 1213 v6src = sin6->sin6_addr; 1214 if (IN6_IS_ADDR_V4MAPPED(&v6src)) { 1215 udp->udp_ipversion = IPV4_VERSION; 1216 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + 1217 UDPH_SIZE + udp->udp_ip_snd_options_len; 1218 } else { 1219 udp->udp_ipversion = IPV6_VERSION; 1220 udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len; 1221 } 1222 } 1223 1224 /* 1225 * If udp_reuseaddr is not set, then we have to make sure that 1226 * the IP address and port number the application requested 1227 * (or we selected for the application) is not being used by 1228 * another stream. If another stream is already using the 1229 * requested IP address and port, the behavior depends on 1230 * "bind_to_req_port_only". If set the bind fails; otherwise we 1231 * search for any an unused port to bind to the the stream. 1232 * 1233 * As per the BSD semantics, as modified by the Deering multicast 1234 * changes, if udp_reuseaddr is set, then we allow multiple binds 1235 * to the same port independent of the local IP address. 1236 * 1237 * This is slightly different than in SunOS 4.X which did not 1238 * support IP multicast. Note that the change implemented by the 1239 * Deering multicast code effects all binds - not only binding 1240 * to IP multicast addresses. 1241 * 1242 * Note that when binding to port zero we ignore SO_REUSEADDR in 1243 * order to guarantee a unique port. 1244 */ 1245 1246 count = 0; 1247 if (udp->udp_anon_priv_bind) { 1248 /* 1249 * loopmax = (IPPORT_RESERVED-1) - 1250 * us->us_min_anonpriv_port + 1 1251 */ 1252 loopmax = IPPORT_RESERVED - us->us_min_anonpriv_port; 1253 } else { 1254 loopmax = us->us_largest_anon_port - 1255 us->us_smallest_anon_port + 1; 1256 } 1257 1258 is_inaddr_any = V6_OR_V4_INADDR_ANY(v6src); 1259 zoneid = connp->conn_zoneid; 1260 1261 for (;;) { 1262 udp_t *udp1; 1263 boolean_t found_exclbind = B_FALSE; 1264 1265 /* 1266 * Walk through the list of udp streams bound to 1267 * requested port with the same IP address. 1268 */ 1269 lport = htons(port); 1270 udpf = &us->us_bind_fanout[UDP_BIND_HASH(lport, 1271 us->us_bind_fanout_size)]; 1272 mutex_enter(&udpf->uf_lock); 1273 for (udp1 = udpf->uf_udp; udp1 != NULL; 1274 udp1 = udp1->udp_bind_hash) { 1275 if (lport != udp1->udp_port) 1276 continue; 1277 1278 /* 1279 * On a labeled system, we must treat bindings to ports 1280 * on shared IP addresses by sockets with MAC exemption 1281 * privilege as being in all zones, as there's 1282 * otherwise no way to identify the right receiver. 1283 */ 1284 if (zoneid != udp1->udp_connp->conn_zoneid && 1285 !udp->udp_mac_exempt && !udp1->udp_mac_exempt) 1286 continue; 1287 1288 /* 1289 * If UDP_EXCLBIND is set for either the bound or 1290 * binding endpoint, the semantics of bind 1291 * is changed according to the following chart. 1292 * 1293 * spec = specified address (v4 or v6) 1294 * unspec = unspecified address (v4 or v6) 1295 * A = specified addresses are different for endpoints 1296 * 1297 * bound bind to allowed? 1298 * ------------------------------------- 1299 * unspec unspec no 1300 * unspec spec no 1301 * spec unspec no 1302 * spec spec yes if A 1303 * 1304 * For labeled systems, SO_MAC_EXEMPT behaves the same 1305 * as UDP_EXCLBIND, except that zoneid is ignored. 1306 */ 1307 if (udp1->udp_exclbind || udp->udp_exclbind || 1308 udp1->udp_mac_exempt || udp->udp_mac_exempt) { 1309 if (V6_OR_V4_INADDR_ANY( 1310 udp1->udp_bound_v6src) || 1311 is_inaddr_any || 1312 IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src, 1313 &v6src)) { 1314 found_exclbind = B_TRUE; 1315 break; 1316 } 1317 continue; 1318 } 1319 1320 /* 1321 * Check ipversion to allow IPv4 and IPv6 sockets to 1322 * have disjoint port number spaces. 1323 */ 1324 if (udp->udp_ipversion != udp1->udp_ipversion) { 1325 1326 /* 1327 * On the first time through the loop, if the 1328 * the user intentionally specified a 1329 * particular port number, then ignore any 1330 * bindings of the other protocol that may 1331 * conflict. This allows the user to bind IPv6 1332 * alone and get both v4 and v6, or bind both 1333 * both and get each seperately. On subsequent 1334 * times through the loop, we're checking a 1335 * port that we chose (not the user) and thus 1336 * we do not allow casual duplicate bindings. 1337 */ 1338 if (count == 0 && requested_port != 0) 1339 continue; 1340 } 1341 1342 /* 1343 * No difference depending on SO_REUSEADDR. 1344 * 1345 * If existing port is bound to a 1346 * non-wildcard IP address and 1347 * the requesting stream is bound to 1348 * a distinct different IP addresses 1349 * (non-wildcard, also), keep going. 1350 */ 1351 if (!is_inaddr_any && 1352 !V6_OR_V4_INADDR_ANY(udp1->udp_bound_v6src) && 1353 !IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src, 1354 &v6src)) { 1355 continue; 1356 } 1357 break; 1358 } 1359 1360 if (!found_exclbind && 1361 (udp->udp_reuseaddr && requested_port != 0)) { 1362 break; 1363 } 1364 1365 if (udp1 == NULL) { 1366 /* 1367 * No other stream has this IP address 1368 * and port number. We can use it. 1369 */ 1370 break; 1371 } 1372 mutex_exit(&udpf->uf_lock); 1373 if (bind_to_req_port_only) { 1374 /* 1375 * We get here only when requested port 1376 * is bound (and only first of the for() 1377 * loop iteration). 1378 * 1379 * The semantics of this bind request 1380 * require it to fail so we return from 1381 * the routine (and exit the loop). 1382 * 1383 */ 1384 udp_err_ack(q, mp, TADDRBUSY, 0); 1385 return; 1386 } 1387 1388 if (udp->udp_anon_priv_bind) { 1389 port = udp_get_next_priv_port(udp); 1390 } else { 1391 if ((count == 0) && (requested_port != 0)) { 1392 /* 1393 * If the application wants us to find 1394 * a port, get one to start with. Set 1395 * requested_port to 0, so that we will 1396 * update us->us_next_port_to_try below. 1397 */ 1398 port = udp_update_next_port(udp, 1399 us->us_next_port_to_try, B_TRUE); 1400 requested_port = 0; 1401 } else { 1402 port = udp_update_next_port(udp, port + 1, 1403 B_FALSE); 1404 } 1405 } 1406 1407 if (port == 0 || ++count >= loopmax) { 1408 /* 1409 * We've tried every possible port number and 1410 * there are none available, so send an error 1411 * to the user. 1412 */ 1413 udp_err_ack(q, mp, TNOADDR, 0); 1414 return; 1415 } 1416 } 1417 1418 /* 1419 * Copy the source address into our udp structure. This address 1420 * may still be zero; if so, ip will fill in the correct address 1421 * each time an outbound packet is passed to it. 1422 * If we are binding to a broadcast or multicast address udp_rput 1423 * will clear the source address when it receives the T_BIND_ACK. 1424 */ 1425 udp->udp_v6src = udp->udp_bound_v6src = v6src; 1426 udp->udp_port = lport; 1427 /* 1428 * Now reset the the next anonymous port if the application requested 1429 * an anonymous port, or we handed out the next anonymous port. 1430 */ 1431 if ((requested_port == 0) && (!udp->udp_anon_priv_bind)) { 1432 us->us_next_port_to_try = port + 1; 1433 } 1434 1435 /* Initialize the O_T_BIND_REQ/T_BIND_REQ for ip. */ 1436 if (udp->udp_family == AF_INET) { 1437 sin->sin_port = udp->udp_port; 1438 } else { 1439 int error; 1440 1441 sin6->sin6_port = udp->udp_port; 1442 /* Rebuild the header template */ 1443 error = udp_build_hdrs(q, udp); 1444 if (error != 0) { 1445 mutex_exit(&udpf->uf_lock); 1446 udp_err_ack(q, mp, TSYSERR, error); 1447 return; 1448 } 1449 } 1450 udp->udp_state = TS_IDLE; 1451 udp_bind_hash_insert(udpf, udp); 1452 mutex_exit(&udpf->uf_lock); 1453 1454 if (cl_inet_bind) { 1455 /* 1456 * Running in cluster mode - register bind information 1457 */ 1458 if (udp->udp_ipversion == IPV4_VERSION) { 1459 (*cl_inet_bind)(IPPROTO_UDP, AF_INET, 1460 (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)), 1461 (in_port_t)udp->udp_port); 1462 } else { 1463 (*cl_inet_bind)(IPPROTO_UDP, AF_INET6, 1464 (uint8_t *)&(udp->udp_v6src), 1465 (in_port_t)udp->udp_port); 1466 } 1467 1468 } 1469 1470 connp->conn_anon_port = (is_system_labeled() && requested_port == 0); 1471 if (is_system_labeled() && (!connp->conn_anon_port || 1472 connp->conn_anon_mlp)) { 1473 uint16_t mlpport; 1474 cred_t *cr = connp->conn_cred; 1475 zone_t *zone; 1476 1477 zone = crgetzone(cr); 1478 connp->conn_mlp_type = udp->udp_recvucred ? mlptBoth : 1479 mlptSingle; 1480 addrtype = tsol_mlp_addr_type(zone->zone_id, IPV6_VERSION, 1481 &v6src, udp->udp_us->us_netstack->netstack_ip); 1482 if (addrtype == mlptSingle) { 1483 udp_err_ack(q, mp, TNOADDR, 0); 1484 connp->conn_anon_port = B_FALSE; 1485 connp->conn_mlp_type = mlptSingle; 1486 return; 1487 } 1488 mlpport = connp->conn_anon_port ? PMAPPORT : port; 1489 mlptype = tsol_mlp_port_type(zone, IPPROTO_UDP, mlpport, 1490 addrtype); 1491 if (mlptype != mlptSingle && 1492 (connp->conn_mlp_type == mlptSingle || 1493 secpolicy_net_bindmlp(cr) != 0)) { 1494 if (udp->udp_debug) { 1495 (void) strlog(UDP_MOD_ID, 0, 1, 1496 SL_ERROR|SL_TRACE, 1497 "udp_bind: no priv for multilevel port %d", 1498 mlpport); 1499 } 1500 udp_err_ack(q, mp, TACCES, 0); 1501 connp->conn_anon_port = B_FALSE; 1502 connp->conn_mlp_type = mlptSingle; 1503 return; 1504 } 1505 1506 /* 1507 * If we're specifically binding a shared IP address and the 1508 * port is MLP on shared addresses, then check to see if this 1509 * zone actually owns the MLP. Reject if not. 1510 */ 1511 if (mlptype == mlptShared && addrtype == mlptShared) { 1512 /* 1513 * No need to handle exclusive-stack zones since 1514 * ALL_ZONES only applies to the shared stack. 1515 */ 1516 zoneid_t mlpzone; 1517 1518 mlpzone = tsol_mlp_findzone(IPPROTO_UDP, 1519 htons(mlpport)); 1520 if (connp->conn_zoneid != mlpzone) { 1521 if (udp->udp_debug) { 1522 (void) strlog(UDP_MOD_ID, 0, 1, 1523 SL_ERROR|SL_TRACE, 1524 "udp_bind: attempt to bind port " 1525 "%d on shared addr in zone %d " 1526 "(should be %d)", 1527 mlpport, connp->conn_zoneid, 1528 mlpzone); 1529 } 1530 udp_err_ack(q, mp, TACCES, 0); 1531 connp->conn_anon_port = B_FALSE; 1532 connp->conn_mlp_type = mlptSingle; 1533 return; 1534 } 1535 } 1536 if (connp->conn_anon_port) { 1537 int error; 1538 1539 error = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 1540 port, B_TRUE); 1541 if (error != 0) { 1542 if (udp->udp_debug) { 1543 (void) strlog(UDP_MOD_ID, 0, 1, 1544 SL_ERROR|SL_TRACE, 1545 "udp_bind: cannot establish anon " 1546 "MLP for port %d", port); 1547 } 1548 udp_err_ack(q, mp, TACCES, 0); 1549 connp->conn_anon_port = B_FALSE; 1550 connp->conn_mlp_type = mlptSingle; 1551 return; 1552 } 1553 } 1554 connp->conn_mlp_type = mlptype; 1555 } 1556 1557 /* Pass the protocol number in the message following the address. */ 1558 *mp->b_wptr++ = IPPROTO_UDP; 1559 if (!V6_OR_V4_INADDR_ANY(udp->udp_v6src)) { 1560 /* 1561 * Append a request for an IRE if udp_v6src not 1562 * zero (IPv4 - INADDR_ANY, or IPv6 - all-zeroes address). 1563 */ 1564 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 1565 if (!mp->b_cont) { 1566 udp_err_ack(q, mp, TSYSERR, ENOMEM); 1567 return; 1568 } 1569 mp->b_cont->b_wptr += sizeof (ire_t); 1570 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 1571 } 1572 if (udp->udp_family == AF_INET6) 1573 mp = ip_bind_v6(q, mp, connp, NULL); 1574 else 1575 mp = ip_bind_v4(q, mp, connp); 1576 1577 if (mp != NULL) 1578 udp_rput_other(_RD(q), mp); 1579 else 1580 CONN_INC_REF(connp); 1581 } 1582 1583 1584 void 1585 udp_resume_bind(conn_t *connp, mblk_t *mp) 1586 { 1587 udp_enter(connp, mp, udp_resume_bind_cb, SQTAG_BIND_RETRY); 1588 } 1589 1590 /* 1591 * This is called from ip_wput_nondata to resume a deferred UDP bind. 1592 */ 1593 /* ARGSUSED */ 1594 static void 1595 udp_resume_bind_cb(void *arg, mblk_t *mp, void *arg2) 1596 { 1597 conn_t *connp = arg; 1598 1599 ASSERT(connp != NULL && IPCL_IS_UDP(connp)); 1600 1601 udp_rput_other(connp->conn_rq, mp); 1602 1603 CONN_OPER_PENDING_DONE(connp); 1604 udp_exit(connp); 1605 } 1606 1607 /* 1608 * This routine handles each T_CONN_REQ message passed to udp. It 1609 * associates a default destination address with the stream. 1610 * 1611 * This routine sends down a T_BIND_REQ to IP with the following mblks: 1612 * T_BIND_REQ - specifying local and remote address/port 1613 * IRE_DB_REQ_TYPE - to get an IRE back containing ire_type and src 1614 * T_OK_ACK - for the T_CONN_REQ 1615 * T_CONN_CON - to keep the TPI user happy 1616 * 1617 * The connect completes in udp_rput. 1618 * When a T_BIND_ACK is received information is extracted from the IRE 1619 * and the two appended messages are sent to the TPI user. 1620 * Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert 1621 * it to an error ack for the appropriate primitive. 1622 */ 1623 static void 1624 udp_connect(queue_t *q, mblk_t *mp) 1625 { 1626 sin6_t *sin6; 1627 sin_t *sin; 1628 struct T_conn_req *tcr; 1629 in6_addr_t v6dst; 1630 ipaddr_t v4dst; 1631 uint16_t dstport; 1632 uint32_t flowinfo; 1633 mblk_t *mp1, *mp2; 1634 udp_fanout_t *udpf; 1635 udp_t *udp, *udp1; 1636 udp_stack_t *us; 1637 1638 udp = Q_TO_UDP(q); 1639 1640 tcr = (struct T_conn_req *)mp->b_rptr; 1641 us = udp->udp_us; 1642 1643 /* A bit of sanity checking */ 1644 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_req)) { 1645 udp_err_ack(q, mp, TPROTO, 0); 1646 return; 1647 } 1648 /* 1649 * This UDP must have bound to a port already before doing 1650 * a connect. 1651 */ 1652 if (udp->udp_state == TS_UNBND) { 1653 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 1654 "udp_connect: bad state, %u", udp->udp_state); 1655 udp_err_ack(q, mp, TOUTSTATE, 0); 1656 return; 1657 } 1658 ASSERT(udp->udp_port != 0 && udp->udp_ptpbhn != NULL); 1659 1660 udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port, 1661 us->us_bind_fanout_size)]; 1662 1663 if (udp->udp_state == TS_DATA_XFER) { 1664 /* Already connected - clear out state */ 1665 mutex_enter(&udpf->uf_lock); 1666 udp->udp_v6src = udp->udp_bound_v6src; 1667 udp->udp_state = TS_IDLE; 1668 mutex_exit(&udpf->uf_lock); 1669 } 1670 1671 if (tcr->OPT_length != 0) { 1672 udp_err_ack(q, mp, TBADOPT, 0); 1673 return; 1674 } 1675 1676 /* 1677 * Determine packet type based on type of address passed in 1678 * the request should contain an IPv4 or IPv6 address. 1679 * Make sure that address family matches the type of 1680 * family of the the address passed down 1681 */ 1682 switch (tcr->DEST_length) { 1683 default: 1684 udp_err_ack(q, mp, TBADADDR, 0); 1685 return; 1686 1687 case sizeof (sin_t): 1688 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 1689 sizeof (sin_t)); 1690 if (sin == NULL || !OK_32PTR((char *)sin)) { 1691 udp_err_ack(q, mp, TSYSERR, EINVAL); 1692 return; 1693 } 1694 if (udp->udp_family != AF_INET || 1695 sin->sin_family != AF_INET) { 1696 udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); 1697 return; 1698 } 1699 v4dst = sin->sin_addr.s_addr; 1700 dstport = sin->sin_port; 1701 IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst); 1702 ASSERT(udp->udp_ipversion == IPV4_VERSION); 1703 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + 1704 udp->udp_ip_snd_options_len; 1705 break; 1706 1707 case sizeof (sin6_t): 1708 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 1709 sizeof (sin6_t)); 1710 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 1711 udp_err_ack(q, mp, TSYSERR, EINVAL); 1712 return; 1713 } 1714 if (udp->udp_family != AF_INET6 || 1715 sin6->sin6_family != AF_INET6) { 1716 udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); 1717 return; 1718 } 1719 v6dst = sin6->sin6_addr; 1720 if (IN6_IS_ADDR_V4MAPPED(&v6dst)) { 1721 IN6_V4MAPPED_TO_IPADDR(&v6dst, v4dst); 1722 udp->udp_ipversion = IPV4_VERSION; 1723 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + 1724 UDPH_SIZE + udp->udp_ip_snd_options_len; 1725 flowinfo = 0; 1726 } else { 1727 udp->udp_ipversion = IPV6_VERSION; 1728 udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len; 1729 flowinfo = sin6->sin6_flowinfo; 1730 } 1731 dstport = sin6->sin6_port; 1732 break; 1733 } 1734 if (dstport == 0) { 1735 udp_err_ack(q, mp, TBADADDR, 0); 1736 return; 1737 } 1738 1739 /* 1740 * Create a default IP header with no IP options. 1741 */ 1742 udp->udp_dstport = dstport; 1743 if (udp->udp_ipversion == IPV4_VERSION) { 1744 /* 1745 * Interpret a zero destination to mean loopback. 1746 * Update the T_CONN_REQ (sin/sin6) since it is used to 1747 * generate the T_CONN_CON. 1748 */ 1749 if (v4dst == INADDR_ANY) { 1750 v4dst = htonl(INADDR_LOOPBACK); 1751 IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst); 1752 if (udp->udp_family == AF_INET) { 1753 sin->sin_addr.s_addr = v4dst; 1754 } else { 1755 sin6->sin6_addr = v6dst; 1756 } 1757 } 1758 udp->udp_v6dst = v6dst; 1759 udp->udp_flowinfo = 0; 1760 1761 /* 1762 * If the destination address is multicast and 1763 * an outgoing multicast interface has been set, 1764 * use the address of that interface as our 1765 * source address if no source address has been set. 1766 */ 1767 if (V4_PART_OF_V6(udp->udp_v6src) == INADDR_ANY && 1768 CLASSD(v4dst) && 1769 udp->udp_multicast_if_addr != INADDR_ANY) { 1770 IN6_IPADDR_TO_V4MAPPED(udp->udp_multicast_if_addr, 1771 &udp->udp_v6src); 1772 } 1773 } else { 1774 ASSERT(udp->udp_ipversion == IPV6_VERSION); 1775 /* 1776 * Interpret a zero destination to mean loopback. 1777 * Update the T_CONN_REQ (sin/sin6) since it is used to 1778 * generate the T_CONN_CON. 1779 */ 1780 if (IN6_IS_ADDR_UNSPECIFIED(&v6dst)) { 1781 v6dst = ipv6_loopback; 1782 sin6->sin6_addr = v6dst; 1783 } 1784 udp->udp_v6dst = v6dst; 1785 udp->udp_flowinfo = flowinfo; 1786 /* 1787 * If the destination address is multicast and 1788 * an outgoing multicast interface has been set, 1789 * then the ip bind logic will pick the correct source 1790 * address (i.e. matching the outgoing multicast interface). 1791 */ 1792 } 1793 1794 /* 1795 * Verify that the src/port/dst/port and zoneid is unique for all 1796 * connections in TS_DATA_XFER 1797 */ 1798 mutex_enter(&udpf->uf_lock); 1799 for (udp1 = udpf->uf_udp; udp1 != NULL; udp1 = udp1->udp_bind_hash) { 1800 if (udp1->udp_state != TS_DATA_XFER) 1801 continue; 1802 if (udp->udp_port != udp1->udp_port || 1803 udp->udp_ipversion != udp1->udp_ipversion || 1804 dstport != udp1->udp_dstport || 1805 !IN6_ARE_ADDR_EQUAL(&udp->udp_v6src, &udp1->udp_v6src) || 1806 !IN6_ARE_ADDR_EQUAL(&v6dst, &udp1->udp_v6dst) || 1807 udp->udp_connp->conn_zoneid != udp1->udp_connp->conn_zoneid) 1808 continue; 1809 mutex_exit(&udpf->uf_lock); 1810 udp_err_ack(q, mp, TBADADDR, 0); 1811 return; 1812 } 1813 udp->udp_state = TS_DATA_XFER; 1814 mutex_exit(&udpf->uf_lock); 1815 1816 /* 1817 * Send down bind to IP to verify that there is a route 1818 * and to determine the source address. 1819 * This will come back as T_BIND_ACK with an IRE_DB_TYPE in rput. 1820 */ 1821 if (udp->udp_family == AF_INET) 1822 mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa_conn_t)); 1823 else 1824 mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 1825 if (mp1 == NULL) { 1826 udp_err_ack(q, mp, TSYSERR, ENOMEM); 1827 bind_failed: 1828 mutex_enter(&udpf->uf_lock); 1829 udp->udp_state = TS_IDLE; 1830 mutex_exit(&udpf->uf_lock); 1831 return; 1832 } 1833 1834 /* 1835 * We also have to send a connection confirmation to 1836 * keep TLI happy. Prepare it for udp_rput. 1837 */ 1838 if (udp->udp_family == AF_INET) 1839 mp2 = mi_tpi_conn_con(NULL, (char *)sin, 1840 sizeof (*sin), NULL, 0); 1841 else 1842 mp2 = mi_tpi_conn_con(NULL, (char *)sin6, 1843 sizeof (*sin6), NULL, 0); 1844 if (mp2 == NULL) { 1845 freemsg(mp1); 1846 udp_err_ack(q, mp, TSYSERR, ENOMEM); 1847 goto bind_failed; 1848 } 1849 1850 mp = mi_tpi_ok_ack_alloc(mp); 1851 if (mp == NULL) { 1852 /* Unable to reuse the T_CONN_REQ for the ack. */ 1853 freemsg(mp2); 1854 udp_err_ack_prim(q, mp1, T_CONN_REQ, TSYSERR, ENOMEM); 1855 goto bind_failed; 1856 } 1857 1858 /* Hang onto the T_OK_ACK and T_CONN_CON for later. */ 1859 linkb(mp1, mp); 1860 linkb(mp1, mp2); 1861 1862 mblk_setcred(mp1, udp->udp_connp->conn_cred); 1863 if (udp->udp_family == AF_INET) 1864 mp1 = ip_bind_v4(q, mp1, udp->udp_connp); 1865 else 1866 mp1 = ip_bind_v6(q, mp1, udp->udp_connp, NULL); 1867 1868 if (mp1 != NULL) 1869 udp_rput_other(_RD(q), mp1); 1870 else 1871 CONN_INC_REF(udp->udp_connp); 1872 } 1873 1874 static int 1875 udp_close(queue_t *q) 1876 { 1877 conn_t *connp = Q_TO_CONN(UDP_WR(q)); 1878 udp_t *udp; 1879 queue_t *ip_rq = RD(UDP_WR(q)); 1880 1881 ASSERT(connp != NULL && IPCL_IS_UDP(connp)); 1882 udp = connp->conn_udp; 1883 1884 ip_quiesce_conn(connp); 1885 /* 1886 * Disable read-side synchronous stream 1887 * interface and drain any queued data. 1888 */ 1889 udp_rcv_drain(q, udp, B_TRUE); 1890 ASSERT(!udp->udp_direct_sockfs); 1891 1892 qprocsoff(q); 1893 1894 /* restore IP module's high and low water marks to default values */ 1895 ip_rq->q_hiwat = ip_rq->q_qinfo->qi_minfo->mi_hiwat; 1896 WR(ip_rq)->q_hiwat = WR(ip_rq)->q_qinfo->qi_minfo->mi_hiwat; 1897 WR(ip_rq)->q_lowat = WR(ip_rq)->q_qinfo->qi_minfo->mi_lowat; 1898 1899 ASSERT(udp->udp_rcv_cnt == 0); 1900 ASSERT(udp->udp_rcv_msgcnt == 0); 1901 ASSERT(udp->udp_rcv_list_head == NULL); 1902 ASSERT(udp->udp_rcv_list_tail == NULL); 1903 1904 udp_close_free(connp); 1905 1906 /* 1907 * Restore connp as an IP endpoint. 1908 * Locking required to prevent a race with udp_snmp_get()/ 1909 * ipcl_get_next_conn(), which selects conn_t which are 1910 * IPCL_UDP and not CONN_CONDEMNED. 1911 */ 1912 mutex_enter(&connp->conn_lock); 1913 connp->conn_flags &= ~IPCL_UDP; 1914 connp->conn_state_flags &= 1915 ~(CONN_CLOSING | CONN_CONDEMNED | CONN_QUIESCED); 1916 connp->conn_ulp_labeled = B_FALSE; 1917 mutex_exit(&connp->conn_lock); 1918 1919 return (0); 1920 } 1921 1922 /* 1923 * Called in the close path from IP (ip_quiesce_conn) to quiesce the conn 1924 */ 1925 void 1926 udp_quiesce_conn(conn_t *connp) 1927 { 1928 udp_t *udp = connp->conn_udp; 1929 1930 if (cl_inet_unbind != NULL && udp->udp_state == TS_IDLE) { 1931 /* 1932 * Running in cluster mode - register unbind information 1933 */ 1934 if (udp->udp_ipversion == IPV4_VERSION) { 1935 (*cl_inet_unbind)(IPPROTO_UDP, AF_INET, 1936 (uint8_t *)(&(V4_PART_OF_V6(udp->udp_v6src))), 1937 (in_port_t)udp->udp_port); 1938 } else { 1939 (*cl_inet_unbind)(IPPROTO_UDP, AF_INET6, 1940 (uint8_t *)(&(udp->udp_v6src)), 1941 (in_port_t)udp->udp_port); 1942 } 1943 } 1944 1945 udp_bind_hash_remove(udp, B_FALSE); 1946 1947 mutex_enter(&connp->conn_lock); 1948 while (udp->udp_reader_count != 0 || udp->udp_squeue_count != 0 || 1949 udp->udp_mode != UDP_MT_HOT) { 1950 cv_wait(&connp->conn_cv, &connp->conn_lock); 1951 } 1952 mutex_exit(&connp->conn_lock); 1953 } 1954 1955 void 1956 udp_close_free(conn_t *connp) 1957 { 1958 udp_t *udp = connp->conn_udp; 1959 1960 /* If there are any options associated with the stream, free them. */ 1961 if (udp->udp_ip_snd_options) { 1962 mi_free((char *)udp->udp_ip_snd_options); 1963 udp->udp_ip_snd_options = NULL; 1964 } 1965 1966 if (udp->udp_ip_rcv_options) { 1967 mi_free((char *)udp->udp_ip_rcv_options); 1968 udp->udp_ip_rcv_options = NULL; 1969 } 1970 1971 /* Free memory associated with sticky options */ 1972 if (udp->udp_sticky_hdrs_len != 0) { 1973 kmem_free(udp->udp_sticky_hdrs, 1974 udp->udp_sticky_hdrs_len); 1975 udp->udp_sticky_hdrs = NULL; 1976 udp->udp_sticky_hdrs_len = 0; 1977 } 1978 1979 ip6_pkt_free(&udp->udp_sticky_ipp); 1980 1981 udp->udp_connp = NULL; 1982 netstack_rele(udp->udp_us->us_netstack); 1983 1984 connp->conn_udp = NULL; 1985 kmem_cache_free(udp_cache, udp); 1986 } 1987 1988 /* 1989 * This routine handles each T_DISCON_REQ message passed to udp 1990 * as an indicating that UDP is no longer connected. This results 1991 * in sending a T_BIND_REQ to IP to restore the binding to just 1992 * the local address/port. 1993 * 1994 * This routine sends down a T_BIND_REQ to IP with the following mblks: 1995 * T_BIND_REQ - specifying just the local address/port 1996 * T_OK_ACK - for the T_DISCON_REQ 1997 * 1998 * The disconnect completes in udp_rput. 1999 * When a T_BIND_ACK is received the appended T_OK_ACK is sent to the TPI user. 2000 * Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert 2001 * it to an error ack for the appropriate primitive. 2002 */ 2003 static void 2004 udp_disconnect(queue_t *q, mblk_t *mp) 2005 { 2006 udp_t *udp = Q_TO_UDP(q); 2007 mblk_t *mp1; 2008 udp_fanout_t *udpf; 2009 udp_stack_t *us; 2010 2011 us = udp->udp_us; 2012 if (udp->udp_state != TS_DATA_XFER) { 2013 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 2014 "udp_disconnect: bad state, %u", udp->udp_state); 2015 udp_err_ack(q, mp, TOUTSTATE, 0); 2016 return; 2017 } 2018 udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port, 2019 us->us_bind_fanout_size)]; 2020 mutex_enter(&udpf->uf_lock); 2021 udp->udp_v6src = udp->udp_bound_v6src; 2022 udp->udp_state = TS_IDLE; 2023 mutex_exit(&udpf->uf_lock); 2024 2025 /* 2026 * Send down bind to IP to remove the full binding and revert 2027 * to the local address binding. 2028 */ 2029 if (udp->udp_family == AF_INET) 2030 mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin_t)); 2031 else 2032 mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin6_t)); 2033 if (mp1 == NULL) { 2034 udp_err_ack(q, mp, TSYSERR, ENOMEM); 2035 return; 2036 } 2037 mp = mi_tpi_ok_ack_alloc(mp); 2038 if (mp == NULL) { 2039 /* Unable to reuse the T_DISCON_REQ for the ack. */ 2040 udp_err_ack_prim(q, mp1, T_DISCON_REQ, TSYSERR, ENOMEM); 2041 return; 2042 } 2043 2044 if (udp->udp_family == AF_INET6) { 2045 int error; 2046 2047 /* Rebuild the header template */ 2048 error = udp_build_hdrs(q, udp); 2049 if (error != 0) { 2050 udp_err_ack_prim(q, mp, T_DISCON_REQ, TSYSERR, error); 2051 freemsg(mp1); 2052 return; 2053 } 2054 } 2055 mutex_enter(&udpf->uf_lock); 2056 udp->udp_discon_pending = 1; 2057 mutex_exit(&udpf->uf_lock); 2058 2059 /* Append the T_OK_ACK to the T_BIND_REQ for udp_rput */ 2060 linkb(mp1, mp); 2061 2062 if (udp->udp_family == AF_INET6) 2063 mp1 = ip_bind_v6(q, mp1, udp->udp_connp, NULL); 2064 else 2065 mp1 = ip_bind_v4(q, mp1, udp->udp_connp); 2066 2067 if (mp1 != NULL) 2068 udp_rput_other(_RD(q), mp1); 2069 else 2070 CONN_INC_REF(udp->udp_connp); 2071 } 2072 2073 /* This routine creates a T_ERROR_ACK message and passes it upstream. */ 2074 static void 2075 udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error) 2076 { 2077 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 2078 putnext(UDP_RD(q), mp); 2079 } 2080 2081 /* Shorthand to generate and send TPI error acks to our client */ 2082 static void 2083 udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, t_scalar_t t_error, 2084 int sys_error) 2085 { 2086 struct T_error_ack *teackp; 2087 2088 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 2089 M_PCPROTO, T_ERROR_ACK)) != NULL) { 2090 teackp = (struct T_error_ack *)mp->b_rptr; 2091 teackp->ERROR_prim = primitive; 2092 teackp->TLI_error = t_error; 2093 teackp->UNIX_error = sys_error; 2094 putnext(UDP_RD(q), mp); 2095 } 2096 } 2097 2098 /*ARGSUSED*/ 2099 static int 2100 udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 2101 { 2102 int i; 2103 udp_t *udp = Q_TO_UDP(q); 2104 udp_stack_t *us = udp->udp_us; 2105 2106 for (i = 0; i < us->us_num_epriv_ports; i++) { 2107 if (us->us_epriv_ports[i] != 0) 2108 (void) mi_mpprintf(mp, "%d ", us->us_epriv_ports[i]); 2109 } 2110 return (0); 2111 } 2112 2113 /* ARGSUSED */ 2114 static int 2115 udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 2116 cred_t *cr) 2117 { 2118 long new_value; 2119 int i; 2120 udp_t *udp = Q_TO_UDP(q); 2121 udp_stack_t *us = udp->udp_us; 2122 2123 /* 2124 * Fail the request if the new value does not lie within the 2125 * port number limits. 2126 */ 2127 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 2128 new_value <= 0 || new_value >= 65536) { 2129 return (EINVAL); 2130 } 2131 2132 /* Check if the value is already in the list */ 2133 for (i = 0; i < us->us_num_epriv_ports; i++) { 2134 if (new_value == us->us_epriv_ports[i]) { 2135 return (EEXIST); 2136 } 2137 } 2138 /* Find an empty slot */ 2139 for (i = 0; i < us->us_num_epriv_ports; i++) { 2140 if (us->us_epriv_ports[i] == 0) 2141 break; 2142 } 2143 if (i == us->us_num_epriv_ports) { 2144 return (EOVERFLOW); 2145 } 2146 2147 /* Set the new value */ 2148 us->us_epriv_ports[i] = (in_port_t)new_value; 2149 return (0); 2150 } 2151 2152 /* ARGSUSED */ 2153 static int 2154 udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 2155 cred_t *cr) 2156 { 2157 long new_value; 2158 int i; 2159 udp_t *udp = Q_TO_UDP(q); 2160 udp_stack_t *us = udp->udp_us; 2161 2162 /* 2163 * Fail the request if the new value does not lie within the 2164 * port number limits. 2165 */ 2166 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 2167 new_value <= 0 || new_value >= 65536) { 2168 return (EINVAL); 2169 } 2170 2171 /* Check that the value is already in the list */ 2172 for (i = 0; i < us->us_num_epriv_ports; i++) { 2173 if (us->us_epriv_ports[i] == new_value) 2174 break; 2175 } 2176 if (i == us->us_num_epriv_ports) { 2177 return (ESRCH); 2178 } 2179 2180 /* Clear the value */ 2181 us->us_epriv_ports[i] = 0; 2182 return (0); 2183 } 2184 2185 /* At minimum we need 4 bytes of UDP header */ 2186 #define ICMP_MIN_UDP_HDR 4 2187 2188 /* 2189 * udp_icmp_error is called by udp_rput to process ICMP msgs. passed up by IP. 2190 * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors. 2191 * Assumes that IP has pulled up everything up to and including the ICMP header. 2192 * An M_CTL could potentially come here from some other module (i.e. if UDP 2193 * is pushed on some module other than IP). Thus, if we find that the M_CTL 2194 * does not have enough ICMP information , following STREAMS conventions, 2195 * we send it upstream assuming it is an M_CTL we don't understand. 2196 */ 2197 static void 2198 udp_icmp_error(queue_t *q, mblk_t *mp) 2199 { 2200 icmph_t *icmph; 2201 ipha_t *ipha; 2202 int iph_hdr_length; 2203 udpha_t *udpha; 2204 sin_t sin; 2205 sin6_t sin6; 2206 mblk_t *mp1; 2207 int error = 0; 2208 size_t mp_size = MBLKL(mp); 2209 udp_t *udp = Q_TO_UDP(q); 2210 2211 /* 2212 * Assume IP provides aligned packets - otherwise toss 2213 */ 2214 if (!OK_32PTR(mp->b_rptr)) { 2215 freemsg(mp); 2216 return; 2217 } 2218 2219 /* 2220 * Verify that we have a complete IP header and the application has 2221 * asked for errors. If not, send it upstream. 2222 */ 2223 if (!udp->udp_dgram_errind || mp_size < sizeof (ipha_t)) { 2224 noticmpv4: 2225 putnext(UDP_RD(q), mp); 2226 return; 2227 } 2228 2229 ipha = (ipha_t *)mp->b_rptr; 2230 /* 2231 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 2232 * upstream. ICMPv6 is handled in udp_icmp_error_ipv6. 2233 */ 2234 switch (IPH_HDR_VERSION(ipha)) { 2235 case IPV6_VERSION: 2236 udp_icmp_error_ipv6(q, mp); 2237 return; 2238 case IPV4_VERSION: 2239 break; 2240 default: 2241 goto noticmpv4; 2242 } 2243 2244 /* Skip past the outer IP and ICMP headers */ 2245 iph_hdr_length = IPH_HDR_LENGTH(ipha); 2246 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2247 /* 2248 * If we don't have the correct outer IP header length or if the ULP 2249 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 2250 * send the packet upstream. 2251 */ 2252 if (iph_hdr_length < sizeof (ipha_t) || 2253 ipha->ipha_protocol != IPPROTO_ICMP || 2254 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 2255 goto noticmpv4; 2256 } 2257 ipha = (ipha_t *)&icmph[1]; 2258 2259 /* Skip past the inner IP and find the ULP header */ 2260 iph_hdr_length = IPH_HDR_LENGTH(ipha); 2261 udpha = (udpha_t *)((char *)ipha + iph_hdr_length); 2262 /* 2263 * If we don't have the correct inner IP header length or if the ULP 2264 * is not IPPROTO_UDP or if we don't have at least ICMP_MIN_UDP_HDR 2265 * bytes of UDP header, send it upstream. 2266 */ 2267 if (iph_hdr_length < sizeof (ipha_t) || 2268 ipha->ipha_protocol != IPPROTO_UDP || 2269 (uchar_t *)udpha + ICMP_MIN_UDP_HDR > mp->b_wptr) { 2270 goto noticmpv4; 2271 } 2272 2273 switch (icmph->icmph_type) { 2274 case ICMP_DEST_UNREACHABLE: 2275 switch (icmph->icmph_code) { 2276 case ICMP_FRAGMENTATION_NEEDED: 2277 /* 2278 * IP has already adjusted the path MTU. 2279 * XXX Somehow pass MTU indication to application? 2280 */ 2281 break; 2282 case ICMP_PORT_UNREACHABLE: 2283 case ICMP_PROTOCOL_UNREACHABLE: 2284 error = ECONNREFUSED; 2285 break; 2286 default: 2287 /* Transient errors */ 2288 break; 2289 } 2290 break; 2291 default: 2292 /* Transient errors */ 2293 break; 2294 } 2295 if (error == 0) { 2296 freemsg(mp); 2297 return; 2298 } 2299 2300 switch (udp->udp_family) { 2301 case AF_INET: 2302 sin = sin_null; 2303 sin.sin_family = AF_INET; 2304 sin.sin_addr.s_addr = ipha->ipha_dst; 2305 sin.sin_port = udpha->uha_dst_port; 2306 mp1 = mi_tpi_uderror_ind((char *)&sin, sizeof (sin_t), NULL, 0, 2307 error); 2308 break; 2309 case AF_INET6: 2310 sin6 = sin6_null; 2311 sin6.sin6_family = AF_INET6; 2312 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &sin6.sin6_addr); 2313 sin6.sin6_port = udpha->uha_dst_port; 2314 2315 mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), 2316 NULL, 0, error); 2317 break; 2318 } 2319 if (mp1) 2320 putnext(UDP_RD(q), mp1); 2321 freemsg(mp); 2322 } 2323 2324 /* 2325 * udp_icmp_error_ipv6 is called by udp_icmp_error to process ICMP for IPv6. 2326 * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors. 2327 * Assumes that IP has pulled up all the extension headers as well as the 2328 * ICMPv6 header. 2329 * An M_CTL could potentially come here from some other module (i.e. if UDP 2330 * is pushed on some module other than IP). Thus, if we find that the M_CTL 2331 * does not have enough ICMP information , following STREAMS conventions, 2332 * we send it upstream assuming it is an M_CTL we don't understand. The reason 2333 * it might get here is if the non-ICMP M_CTL accidently has 6 in the version 2334 * field (when cast to ipha_t in udp_icmp_error). 2335 */ 2336 static void 2337 udp_icmp_error_ipv6(queue_t *q, mblk_t *mp) 2338 { 2339 icmp6_t *icmp6; 2340 ip6_t *ip6h, *outer_ip6h; 2341 uint16_t hdr_length; 2342 uint8_t *nexthdrp; 2343 udpha_t *udpha; 2344 sin6_t sin6; 2345 mblk_t *mp1; 2346 int error = 0; 2347 size_t mp_size = MBLKL(mp); 2348 udp_t *udp = Q_TO_UDP(q); 2349 2350 /* 2351 * Verify that we have a complete IP header. If not, send it upstream. 2352 */ 2353 if (mp_size < sizeof (ip6_t)) { 2354 noticmpv6: 2355 putnext(UDP_RD(q), mp); 2356 return; 2357 } 2358 2359 outer_ip6h = (ip6_t *)mp->b_rptr; 2360 /* 2361 * Verify this is an ICMPV6 packet, else send it upstream 2362 */ 2363 if (outer_ip6h->ip6_nxt == IPPROTO_ICMPV6) { 2364 hdr_length = IPV6_HDR_LEN; 2365 } else if (!ip_hdr_length_nexthdr_v6(mp, outer_ip6h, &hdr_length, 2366 &nexthdrp) || 2367 *nexthdrp != IPPROTO_ICMPV6) { 2368 goto noticmpv6; 2369 } 2370 icmp6 = (icmp6_t *)&mp->b_rptr[hdr_length]; 2371 ip6h = (ip6_t *)&icmp6[1]; 2372 /* 2373 * Verify we have a complete ICMP and inner IP header. 2374 */ 2375 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 2376 goto noticmpv6; 2377 2378 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &hdr_length, &nexthdrp)) 2379 goto noticmpv6; 2380 udpha = (udpha_t *)((char *)ip6h + hdr_length); 2381 /* 2382 * Validate inner header. If the ULP is not IPPROTO_UDP or if we don't 2383 * have at least ICMP_MIN_UDP_HDR bytes of UDP header send the 2384 * packet upstream. 2385 */ 2386 if ((*nexthdrp != IPPROTO_UDP) || 2387 ((uchar_t *)udpha + ICMP_MIN_UDP_HDR) > mp->b_wptr) { 2388 goto noticmpv6; 2389 } 2390 2391 switch (icmp6->icmp6_type) { 2392 case ICMP6_DST_UNREACH: 2393 switch (icmp6->icmp6_code) { 2394 case ICMP6_DST_UNREACH_NOPORT: 2395 error = ECONNREFUSED; 2396 break; 2397 case ICMP6_DST_UNREACH_ADMIN: 2398 case ICMP6_DST_UNREACH_NOROUTE: 2399 case ICMP6_DST_UNREACH_BEYONDSCOPE: 2400 case ICMP6_DST_UNREACH_ADDR: 2401 /* Transient errors */ 2402 break; 2403 default: 2404 break; 2405 } 2406 break; 2407 case ICMP6_PACKET_TOO_BIG: { 2408 struct T_unitdata_ind *tudi; 2409 struct T_opthdr *toh; 2410 size_t udi_size; 2411 mblk_t *newmp; 2412 t_scalar_t opt_length = sizeof (struct T_opthdr) + 2413 sizeof (struct ip6_mtuinfo); 2414 sin6_t *sin6; 2415 struct ip6_mtuinfo *mtuinfo; 2416 2417 /* 2418 * If the application has requested to receive path mtu 2419 * information, send up an empty message containing an 2420 * IPV6_PATHMTU ancillary data item. 2421 */ 2422 if (!udp->udp_ipv6_recvpathmtu) 2423 break; 2424 2425 udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t) + 2426 opt_length; 2427 if ((newmp = allocb(udi_size, BPRI_MED)) == NULL) { 2428 BUMP_MIB(&udp->udp_mib, udpInErrors); 2429 break; 2430 } 2431 2432 /* 2433 * newmp->b_cont is left to NULL on purpose. This is an 2434 * empty message containing only ancillary data. 2435 */ 2436 newmp->b_datap->db_type = M_PROTO; 2437 tudi = (struct T_unitdata_ind *)newmp->b_rptr; 2438 newmp->b_wptr = (uchar_t *)tudi + udi_size; 2439 tudi->PRIM_type = T_UNITDATA_IND; 2440 tudi->SRC_length = sizeof (sin6_t); 2441 tudi->SRC_offset = sizeof (struct T_unitdata_ind); 2442 tudi->OPT_offset = tudi->SRC_offset + sizeof (sin6_t); 2443 tudi->OPT_length = opt_length; 2444 2445 sin6 = (sin6_t *)&tudi[1]; 2446 bzero(sin6, sizeof (sin6_t)); 2447 sin6->sin6_family = AF_INET6; 2448 sin6->sin6_addr = udp->udp_v6dst; 2449 2450 toh = (struct T_opthdr *)&sin6[1]; 2451 toh->level = IPPROTO_IPV6; 2452 toh->name = IPV6_PATHMTU; 2453 toh->len = opt_length; 2454 toh->status = 0; 2455 2456 mtuinfo = (struct ip6_mtuinfo *)&toh[1]; 2457 bzero(mtuinfo, sizeof (struct ip6_mtuinfo)); 2458 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 2459 mtuinfo->ip6m_addr.sin6_addr = ip6h->ip6_dst; 2460 mtuinfo->ip6m_mtu = icmp6->icmp6_mtu; 2461 /* 2462 * We've consumed everything we need from the original 2463 * message. Free it, then send our empty message. 2464 */ 2465 freemsg(mp); 2466 putnext(UDP_RD(q), newmp); 2467 return; 2468 } 2469 case ICMP6_TIME_EXCEEDED: 2470 /* Transient errors */ 2471 break; 2472 case ICMP6_PARAM_PROB: 2473 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 2474 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 2475 (uchar_t *)ip6h + icmp6->icmp6_pptr == 2476 (uchar_t *)nexthdrp) { 2477 error = ECONNREFUSED; 2478 break; 2479 } 2480 break; 2481 } 2482 if (error == 0) { 2483 freemsg(mp); 2484 return; 2485 } 2486 2487 sin6 = sin6_null; 2488 sin6.sin6_family = AF_INET6; 2489 sin6.sin6_addr = ip6h->ip6_dst; 2490 sin6.sin6_port = udpha->uha_dst_port; 2491 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 2492 2493 mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), NULL, 0, 2494 error); 2495 if (mp1) 2496 putnext(UDP_RD(q), mp1); 2497 freemsg(mp); 2498 } 2499 2500 /* 2501 * This routine responds to T_ADDR_REQ messages. It is called by udp_wput. 2502 * The local address is filled in if endpoint is bound. The remote address 2503 * is filled in if remote address has been precified ("connected endpoint") 2504 * (The concept of connected CLTS sockets is alien to published TPI 2505 * but we support it anyway). 2506 */ 2507 static void 2508 udp_addr_req(queue_t *q, mblk_t *mp) 2509 { 2510 sin_t *sin; 2511 sin6_t *sin6; 2512 mblk_t *ackmp; 2513 struct T_addr_ack *taa; 2514 udp_t *udp = Q_TO_UDP(q); 2515 2516 /* Make it large enough for worst case */ 2517 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 2518 2 * sizeof (sin6_t), 1); 2519 if (ackmp == NULL) { 2520 udp_err_ack(q, mp, TSYSERR, ENOMEM); 2521 return; 2522 } 2523 taa = (struct T_addr_ack *)ackmp->b_rptr; 2524 2525 bzero(taa, sizeof (struct T_addr_ack)); 2526 ackmp->b_wptr = (uchar_t *)&taa[1]; 2527 2528 taa->PRIM_type = T_ADDR_ACK; 2529 ackmp->b_datap->db_type = M_PCPROTO; 2530 /* 2531 * Note: Following code assumes 32 bit alignment of basic 2532 * data structures like sin_t and struct T_addr_ack. 2533 */ 2534 if (udp->udp_state != TS_UNBND) { 2535 /* 2536 * Fill in local address first 2537 */ 2538 taa->LOCADDR_offset = sizeof (*taa); 2539 if (udp->udp_family == AF_INET) { 2540 taa->LOCADDR_length = sizeof (sin_t); 2541 sin = (sin_t *)&taa[1]; 2542 /* Fill zeroes and then initialize non-zero fields */ 2543 *sin = sin_null; 2544 sin->sin_family = AF_INET; 2545 if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) && 2546 !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 2547 IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, 2548 sin->sin_addr.s_addr); 2549 } else { 2550 /* 2551 * INADDR_ANY 2552 * udp_v6src is not set, we might be bound to 2553 * broadcast/multicast. Use udp_bound_v6src as 2554 * local address instead (that could 2555 * also still be INADDR_ANY) 2556 */ 2557 IN6_V4MAPPED_TO_IPADDR(&udp->udp_bound_v6src, 2558 sin->sin_addr.s_addr); 2559 } 2560 sin->sin_port = udp->udp_port; 2561 ackmp->b_wptr = (uchar_t *)&sin[1]; 2562 if (udp->udp_state == TS_DATA_XFER) { 2563 /* 2564 * connected, fill remote address too 2565 */ 2566 taa->REMADDR_length = sizeof (sin_t); 2567 /* assumed 32-bit alignment */ 2568 taa->REMADDR_offset = taa->LOCADDR_offset + 2569 taa->LOCADDR_length; 2570 2571 sin = (sin_t *)(ackmp->b_rptr + 2572 taa->REMADDR_offset); 2573 /* initialize */ 2574 *sin = sin_null; 2575 sin->sin_family = AF_INET; 2576 sin->sin_addr.s_addr = 2577 V4_PART_OF_V6(udp->udp_v6dst); 2578 sin->sin_port = udp->udp_dstport; 2579 ackmp->b_wptr = (uchar_t *)&sin[1]; 2580 } 2581 } else { 2582 taa->LOCADDR_length = sizeof (sin6_t); 2583 sin6 = (sin6_t *)&taa[1]; 2584 /* Fill zeroes and then initialize non-zero fields */ 2585 *sin6 = sin6_null; 2586 sin6->sin6_family = AF_INET6; 2587 if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 2588 sin6->sin6_addr = udp->udp_v6src; 2589 } else { 2590 /* 2591 * UNSPECIFIED 2592 * udp_v6src is not set, we might be bound to 2593 * broadcast/multicast. Use udp_bound_v6src as 2594 * local address instead (that could 2595 * also still be UNSPECIFIED) 2596 */ 2597 sin6->sin6_addr = 2598 udp->udp_bound_v6src; 2599 } 2600 sin6->sin6_port = udp->udp_port; 2601 ackmp->b_wptr = (uchar_t *)&sin6[1]; 2602 if (udp->udp_state == TS_DATA_XFER) { 2603 /* 2604 * connected, fill remote address too 2605 */ 2606 taa->REMADDR_length = sizeof (sin6_t); 2607 /* assumed 32-bit alignment */ 2608 taa->REMADDR_offset = taa->LOCADDR_offset + 2609 taa->LOCADDR_length; 2610 2611 sin6 = (sin6_t *)(ackmp->b_rptr + 2612 taa->REMADDR_offset); 2613 /* initialize */ 2614 *sin6 = sin6_null; 2615 sin6->sin6_family = AF_INET6; 2616 sin6->sin6_addr = udp->udp_v6dst; 2617 sin6->sin6_port = udp->udp_dstport; 2618 ackmp->b_wptr = (uchar_t *)&sin6[1]; 2619 } 2620 ackmp->b_wptr = (uchar_t *)&sin6[1]; 2621 } 2622 } 2623 ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim); 2624 putnext(UDP_RD(q), ackmp); 2625 } 2626 2627 static void 2628 udp_copy_info(struct T_info_ack *tap, udp_t *udp) 2629 { 2630 if (udp->udp_family == AF_INET) { 2631 *tap = udp_g_t_info_ack_ipv4; 2632 } else { 2633 *tap = udp_g_t_info_ack_ipv6; 2634 } 2635 tap->CURRENT_state = udp->udp_state; 2636 tap->OPT_size = udp_max_optsize; 2637 } 2638 2639 /* 2640 * This routine responds to T_CAPABILITY_REQ messages. It is called by 2641 * udp_wput. Much of the T_CAPABILITY_ACK information is copied from 2642 * udp_g_t_info_ack. The current state of the stream is copied from 2643 * udp_state. 2644 */ 2645 static void 2646 udp_capability_req(queue_t *q, mblk_t *mp) 2647 { 2648 t_uscalar_t cap_bits1; 2649 struct T_capability_ack *tcap; 2650 udp_t *udp = Q_TO_UDP(q); 2651 2652 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 2653 2654 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 2655 mp->b_datap->db_type, T_CAPABILITY_ACK); 2656 if (!mp) 2657 return; 2658 2659 tcap = (struct T_capability_ack *)mp->b_rptr; 2660 tcap->CAP_bits1 = 0; 2661 2662 if (cap_bits1 & TC1_INFO) { 2663 udp_copy_info(&tcap->INFO_ack, udp); 2664 tcap->CAP_bits1 |= TC1_INFO; 2665 } 2666 2667 putnext(UDP_RD(q), mp); 2668 } 2669 2670 /* 2671 * This routine responds to T_INFO_REQ messages. It is called by udp_wput. 2672 * Most of the T_INFO_ACK information is copied from udp_g_t_info_ack. 2673 * The current state of the stream is copied from udp_state. 2674 */ 2675 static void 2676 udp_info_req(queue_t *q, mblk_t *mp) 2677 { 2678 udp_t *udp = Q_TO_UDP(q); 2679 2680 /* Create a T_INFO_ACK message. */ 2681 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 2682 T_INFO_ACK); 2683 if (!mp) 2684 return; 2685 udp_copy_info((struct T_info_ack *)mp->b_rptr, udp); 2686 putnext(UDP_RD(q), mp); 2687 } 2688 2689 /* 2690 * IP recognizes seven kinds of bind requests: 2691 * 2692 * - A zero-length address binds only to the protocol number. 2693 * 2694 * - A 4-byte address is treated as a request to 2695 * validate that the address is a valid local IPv4 2696 * address, appropriate for an application to bind to. 2697 * IP does the verification, but does not make any note 2698 * of the address at this time. 2699 * 2700 * - A 16-byte address contains is treated as a request 2701 * to validate a local IPv6 address, as the 4-byte 2702 * address case above. 2703 * 2704 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 2705 * use it for the inbound fanout of packets. 2706 * 2707 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 2708 * use it for the inbound fanout of packets. 2709 * 2710 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 2711 * information consisting of local and remote addresses 2712 * and ports. In this case, the addresses are both 2713 * validated as appropriate for this operation, and, if 2714 * so, the information is retained for use in the 2715 * inbound fanout. 2716 * 2717 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 2718 * fanout information, like the 12-byte case above. 2719 * 2720 * IP will also fill in the IRE request mblk with information 2721 * regarding our peer. In all cases, we notify IP of our protocol 2722 * type by appending a single protocol byte to the bind request. 2723 */ 2724 static mblk_t * 2725 udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, t_scalar_t addr_length) 2726 { 2727 char *cp; 2728 mblk_t *mp; 2729 struct T_bind_req *tbr; 2730 ipa_conn_t *ac; 2731 ipa6_conn_t *ac6; 2732 sin_t *sin; 2733 sin6_t *sin6; 2734 2735 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 2736 2737 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 2738 if (!mp) 2739 return (mp); 2740 mp->b_datap->db_type = M_PROTO; 2741 tbr = (struct T_bind_req *)mp->b_rptr; 2742 tbr->PRIM_type = bind_prim; 2743 tbr->ADDR_offset = sizeof (*tbr); 2744 tbr->CONIND_number = 0; 2745 tbr->ADDR_length = addr_length; 2746 cp = (char *)&tbr[1]; 2747 switch (addr_length) { 2748 case sizeof (ipa_conn_t): 2749 ASSERT(udp->udp_family == AF_INET); 2750 /* Append a request for an IRE */ 2751 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 2752 if (!mp->b_cont) { 2753 freemsg(mp); 2754 return (NULL); 2755 } 2756 mp->b_cont->b_wptr += sizeof (ire_t); 2757 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 2758 2759 /* cp known to be 32 bit aligned */ 2760 ac = (ipa_conn_t *)cp; 2761 ac->ac_laddr = V4_PART_OF_V6(udp->udp_v6src); 2762 ac->ac_faddr = V4_PART_OF_V6(udp->udp_v6dst); 2763 ac->ac_fport = udp->udp_dstport; 2764 ac->ac_lport = udp->udp_port; 2765 break; 2766 2767 case sizeof (ipa6_conn_t): 2768 ASSERT(udp->udp_family == AF_INET6); 2769 /* Append a request for an IRE */ 2770 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 2771 if (!mp->b_cont) { 2772 freemsg(mp); 2773 return (NULL); 2774 } 2775 mp->b_cont->b_wptr += sizeof (ire_t); 2776 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 2777 2778 /* cp known to be 32 bit aligned */ 2779 ac6 = (ipa6_conn_t *)cp; 2780 ac6->ac6_laddr = udp->udp_v6src; 2781 ac6->ac6_faddr = udp->udp_v6dst; 2782 ac6->ac6_fport = udp->udp_dstport; 2783 ac6->ac6_lport = udp->udp_port; 2784 break; 2785 2786 case sizeof (sin_t): 2787 ASSERT(udp->udp_family == AF_INET); 2788 /* Append a request for an IRE */ 2789 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 2790 if (!mp->b_cont) { 2791 freemsg(mp); 2792 return (NULL); 2793 } 2794 mp->b_cont->b_wptr += sizeof (ire_t); 2795 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 2796 2797 sin = (sin_t *)cp; 2798 *sin = sin_null; 2799 sin->sin_family = AF_INET; 2800 sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_bound_v6src); 2801 sin->sin_port = udp->udp_port; 2802 break; 2803 2804 case sizeof (sin6_t): 2805 ASSERT(udp->udp_family == AF_INET6); 2806 /* Append a request for an IRE */ 2807 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 2808 if (!mp->b_cont) { 2809 freemsg(mp); 2810 return (NULL); 2811 } 2812 mp->b_cont->b_wptr += sizeof (ire_t); 2813 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 2814 2815 sin6 = (sin6_t *)cp; 2816 *sin6 = sin6_null; 2817 sin6->sin6_family = AF_INET6; 2818 sin6->sin6_addr = udp->udp_bound_v6src; 2819 sin6->sin6_port = udp->udp_port; 2820 break; 2821 } 2822 /* Add protocol number to end */ 2823 cp[addr_length] = (char)IPPROTO_UDP; 2824 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 2825 return (mp); 2826 } 2827 2828 /* 2829 * This is the open routine for udp. It allocates a udp_t structure for 2830 * the stream and, on the first open of the module, creates an ND table. 2831 */ 2832 /* ARGSUSED */ 2833 static int 2834 udp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2835 { 2836 int err; 2837 udp_t *udp; 2838 conn_t *connp; 2839 queue_t *ip_wq; 2840 zoneid_t zoneid; 2841 netstack_t *ns; 2842 udp_stack_t *us; 2843 2844 TRACE_1(TR_FAC_UDP, TR_UDP_OPEN, "udp_open: q %p", q); 2845 2846 /* If the stream is already open, return immediately. */ 2847 if (q->q_ptr != NULL) 2848 return (0); 2849 2850 /* If this is not a push of udp as a module, fail. */ 2851 if (sflag != MODOPEN) 2852 return (EINVAL); 2853 2854 ns = netstack_find_by_cred(credp); 2855 ASSERT(ns != NULL); 2856 us = ns->netstack_udp; 2857 ASSERT(us != NULL); 2858 2859 /* 2860 * For exclusive stacks we set the zoneid to zero 2861 * to make UDP operate as if in the global zone. 2862 */ 2863 if (us->us_netstack->netstack_stackid != GLOBAL_NETSTACKID) 2864 zoneid = GLOBAL_ZONEID; 2865 else 2866 zoneid = crgetzoneid(credp); 2867 2868 q->q_hiwat = us->us_recv_hiwat; 2869 WR(q)->q_hiwat = us->us_xmit_hiwat; 2870 WR(q)->q_lowat = us->us_xmit_lowat; 2871 2872 /* Insert ourselves in the stream since we're about to walk q_next */ 2873 qprocson(q); 2874 2875 udp = kmem_cache_alloc(udp_cache, KM_SLEEP); 2876 bzero(udp, sizeof (*udp)); 2877 2878 /* 2879 * UDP is supported only as a module and it has to be pushed directly 2880 * above the device instance of IP. If UDP is pushed anywhere else 2881 * on a stream, it will support just T_SVR4_OPTMGMT_REQ for the 2882 * sake of MIB browsers and fail everything else. 2883 */ 2884 ip_wq = WR(q)->q_next; 2885 if (NOT_OVER_IP(ip_wq)) { 2886 /* Support just SNMP for MIB browsers */ 2887 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, 2888 us->us_netstack); 2889 connp->conn_rq = q; 2890 connp->conn_wq = WR(q); 2891 connp->conn_flags |= IPCL_UDPMOD; 2892 connp->conn_cred = credp; 2893 connp->conn_zoneid = zoneid; 2894 connp->conn_udp = udp; 2895 udp->udp_us = us; 2896 udp->udp_connp = connp; 2897 q->q_ptr = WR(q)->q_ptr = connp; 2898 crhold(credp); 2899 q->q_qinfo = &udp_snmp_rinit; 2900 WR(q)->q_qinfo = &udp_snmp_winit; 2901 return (0); 2902 } 2903 2904 /* 2905 * Initialize the udp_t structure for this stream. 2906 */ 2907 q = RD(ip_wq); 2908 connp = Q_TO_CONN(q); 2909 mutex_enter(&connp->conn_lock); 2910 connp->conn_proto = IPPROTO_UDP; 2911 connp->conn_flags |= IPCL_UDP; 2912 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 2913 connp->conn_udp = udp; 2914 2915 /* Set the initial state of the stream and the privilege status. */ 2916 udp->udp_connp = connp; 2917 udp->udp_state = TS_UNBND; 2918 udp->udp_mode = UDP_MT_HOT; 2919 if (getmajor(*devp) == (major_t)UDP6_MAJ) { 2920 udp->udp_family = AF_INET6; 2921 udp->udp_ipversion = IPV6_VERSION; 2922 udp->udp_max_hdr_len = IPV6_HDR_LEN + UDPH_SIZE; 2923 udp->udp_ttl = us->us_ipv6_hoplimit; 2924 connp->conn_af_isv6 = B_TRUE; 2925 connp->conn_flags |= IPCL_ISV6; 2926 } else { 2927 udp->udp_family = AF_INET; 2928 udp->udp_ipversion = IPV4_VERSION; 2929 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE; 2930 udp->udp_ttl = us->us_ipv4_ttl; 2931 connp->conn_af_isv6 = B_FALSE; 2932 connp->conn_flags &= ~IPCL_ISV6; 2933 } 2934 2935 udp->udp_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2936 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 2937 connp->conn_zoneid = zoneid; 2938 2939 udp->udp_open_time = lbolt64; 2940 udp->udp_open_pid = curproc->p_pid; 2941 2942 /* 2943 * If the caller has the process-wide flag set, then default to MAC 2944 * exempt mode. This allows read-down to unlabeled hosts. 2945 */ 2946 if (getpflags(NET_MAC_AWARE, credp) != 0) 2947 udp->udp_mac_exempt = B_TRUE; 2948 2949 if (connp->conn_flags & IPCL_SOCKET) { 2950 udp->udp_issocket = B_TRUE; 2951 udp->udp_direct_sockfs = B_TRUE; 2952 } 2953 2954 connp->conn_ulp_labeled = is_system_labeled(); 2955 2956 mutex_exit(&connp->conn_lock); 2957 udp->udp_us = us; 2958 2959 /* 2960 * The transmit hiwat/lowat is only looked at on IP's queue. 2961 * Store in q_hiwat in order to return on SO_SNDBUF/SO_RCVBUF 2962 * getsockopts. 2963 */ 2964 q->q_hiwat = us->us_recv_hiwat; 2965 WR(q)->q_hiwat = us->us_xmit_hiwat; 2966 WR(q)->q_lowat = us->us_xmit_lowat; 2967 2968 if (udp->udp_family == AF_INET6) { 2969 /* Build initial header template for transmit */ 2970 if ((err = udp_build_hdrs(q, udp)) != 0) { 2971 /* XXX missing free of connp? crfree? netstack_rele? */ 2972 qprocsoff(UDP_RD(q)); 2973 udp->udp_connp = NULL; 2974 connp->conn_udp = NULL; 2975 kmem_cache_free(udp_cache, udp); 2976 return (err); 2977 } 2978 } 2979 2980 /* Set the Stream head write offset and high watermark. */ 2981 (void) mi_set_sth_wroff(UDP_RD(q), 2982 udp->udp_max_hdr_len + us->us_wroff_extra); 2983 (void) mi_set_sth_hiwat(UDP_RD(q), udp_set_rcv_hiwat(udp, q->q_hiwat)); 2984 2985 return (0); 2986 } 2987 2988 /* 2989 * Which UDP options OK to set through T_UNITDATA_REQ... 2990 */ 2991 /* ARGSUSED */ 2992 static boolean_t 2993 udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name) 2994 { 2995 return (B_TRUE); 2996 } 2997 2998 /* 2999 * This routine gets default values of certain options whose default 3000 * values are maintained by protcol specific code 3001 */ 3002 /* ARGSUSED */ 3003 int 3004 udp_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) 3005 { 3006 udp_t *udp = Q_TO_UDP(q); 3007 udp_stack_t *us = udp->udp_us; 3008 int *i1 = (int *)ptr; 3009 3010 switch (level) { 3011 case IPPROTO_IP: 3012 switch (name) { 3013 case IP_MULTICAST_TTL: 3014 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 3015 return (sizeof (uchar_t)); 3016 case IP_MULTICAST_LOOP: 3017 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 3018 return (sizeof (uchar_t)); 3019 } 3020 break; 3021 case IPPROTO_IPV6: 3022 switch (name) { 3023 case IPV6_MULTICAST_HOPS: 3024 *i1 = IP_DEFAULT_MULTICAST_TTL; 3025 return (sizeof (int)); 3026 case IPV6_MULTICAST_LOOP: 3027 *i1 = IP_DEFAULT_MULTICAST_LOOP; 3028 return (sizeof (int)); 3029 case IPV6_UNICAST_HOPS: 3030 *i1 = us->us_ipv6_hoplimit; 3031 return (sizeof (int)); 3032 } 3033 break; 3034 } 3035 return (-1); 3036 } 3037 3038 /* 3039 * This routine retrieves the current status of socket options 3040 * and expects the caller to pass in the queue pointer of the 3041 * upper instance. It returns the size of the option retrieved. 3042 */ 3043 int 3044 udp_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) 3045 { 3046 int *i1 = (int *)ptr; 3047 conn_t *connp; 3048 udp_t *udp; 3049 ip6_pkt_t *ipp; 3050 int len; 3051 udp_stack_t *us; 3052 3053 q = UDP_WR(q); 3054 connp = Q_TO_CONN(q); 3055 udp = connp->conn_udp; 3056 ipp = &udp->udp_sticky_ipp; 3057 us = udp->udp_us; 3058 3059 switch (level) { 3060 case SOL_SOCKET: 3061 switch (name) { 3062 case SO_DEBUG: 3063 *i1 = udp->udp_debug; 3064 break; /* goto sizeof (int) option return */ 3065 case SO_REUSEADDR: 3066 *i1 = udp->udp_reuseaddr; 3067 break; /* goto sizeof (int) option return */ 3068 case SO_TYPE: 3069 *i1 = SOCK_DGRAM; 3070 break; /* goto sizeof (int) option return */ 3071 3072 /* 3073 * The following three items are available here, 3074 * but are only meaningful to IP. 3075 */ 3076 case SO_DONTROUTE: 3077 *i1 = udp->udp_dontroute; 3078 break; /* goto sizeof (int) option return */ 3079 case SO_USELOOPBACK: 3080 *i1 = udp->udp_useloopback; 3081 break; /* goto sizeof (int) option return */ 3082 case SO_BROADCAST: 3083 *i1 = udp->udp_broadcast; 3084 break; /* goto sizeof (int) option return */ 3085 3086 case SO_SNDBUF: 3087 *i1 = q->q_hiwat; 3088 break; /* goto sizeof (int) option return */ 3089 case SO_RCVBUF: 3090 *i1 = RD(q)->q_hiwat; 3091 break; /* goto sizeof (int) option return */ 3092 case SO_DGRAM_ERRIND: 3093 *i1 = udp->udp_dgram_errind; 3094 break; /* goto sizeof (int) option return */ 3095 case SO_RECVUCRED: 3096 *i1 = udp->udp_recvucred; 3097 break; /* goto sizeof (int) option return */ 3098 case SO_TIMESTAMP: 3099 *i1 = udp->udp_timestamp; 3100 break; /* goto sizeof (int) option return */ 3101 case SO_ANON_MLP: 3102 *i1 = udp->udp_anon_mlp; 3103 break; /* goto sizeof (int) option return */ 3104 case SO_MAC_EXEMPT: 3105 *i1 = udp->udp_mac_exempt; 3106 break; /* goto sizeof (int) option return */ 3107 case SO_ALLZONES: 3108 *i1 = connp->conn_allzones; 3109 break; /* goto sizeof (int) option return */ 3110 case SO_EXCLBIND: 3111 *i1 = udp->udp_exclbind ? SO_EXCLBIND : 0; 3112 break; 3113 case SO_PROTOTYPE: 3114 *i1 = IPPROTO_UDP; 3115 break; 3116 case SO_DOMAIN: 3117 *i1 = udp->udp_family; 3118 break; 3119 default: 3120 return (-1); 3121 } 3122 break; 3123 case IPPROTO_IP: 3124 if (udp->udp_family != AF_INET) 3125 return (-1); 3126 switch (name) { 3127 case IP_OPTIONS: 3128 case T_IP_OPTIONS: 3129 len = udp->udp_ip_rcv_options_len - udp->udp_label_len; 3130 if (len > 0) { 3131 bcopy(udp->udp_ip_rcv_options + 3132 udp->udp_label_len, ptr, len); 3133 } 3134 return (len); 3135 case IP_TOS: 3136 case T_IP_TOS: 3137 *i1 = (int)udp->udp_type_of_service; 3138 break; /* goto sizeof (int) option return */ 3139 case IP_TTL: 3140 *i1 = (int)udp->udp_ttl; 3141 break; /* goto sizeof (int) option return */ 3142 case IP_NEXTHOP: 3143 case IP_RECVPKTINFO: 3144 /* 3145 * This also handles IP_PKTINFO. 3146 * IP_PKTINFO and IP_RECVPKTINFO have the same value. 3147 * Differentiation is based on the size of the argument 3148 * passed in. 3149 * This option is handled in IP which will return an 3150 * error for IP_PKTINFO as it's not supported as a 3151 * sticky option. 3152 */ 3153 return (-EINVAL); 3154 case IP_MULTICAST_IF: 3155 /* 0 address if not set */ 3156 *(ipaddr_t *)ptr = udp->udp_multicast_if_addr; 3157 return (sizeof (ipaddr_t)); 3158 case IP_MULTICAST_TTL: 3159 *(uchar_t *)ptr = udp->udp_multicast_ttl; 3160 return (sizeof (uchar_t)); 3161 case IP_MULTICAST_LOOP: 3162 *ptr = connp->conn_multicast_loop; 3163 return (sizeof (uint8_t)); 3164 case IP_RECVOPTS: 3165 *i1 = udp->udp_recvopts; 3166 break; /* goto sizeof (int) option return */ 3167 case IP_RECVDSTADDR: 3168 *i1 = udp->udp_recvdstaddr; 3169 break; /* goto sizeof (int) option return */ 3170 case IP_RECVIF: 3171 *i1 = udp->udp_recvif; 3172 break; /* goto sizeof (int) option return */ 3173 case IP_RECVSLLA: 3174 *i1 = udp->udp_recvslla; 3175 break; /* goto sizeof (int) option return */ 3176 case IP_RECVTTL: 3177 *i1 = udp->udp_recvttl; 3178 break; /* goto sizeof (int) option return */ 3179 case IP_ADD_MEMBERSHIP: 3180 case IP_DROP_MEMBERSHIP: 3181 case IP_BLOCK_SOURCE: 3182 case IP_UNBLOCK_SOURCE: 3183 case IP_ADD_SOURCE_MEMBERSHIP: 3184 case IP_DROP_SOURCE_MEMBERSHIP: 3185 case MCAST_JOIN_GROUP: 3186 case MCAST_LEAVE_GROUP: 3187 case MCAST_BLOCK_SOURCE: 3188 case MCAST_UNBLOCK_SOURCE: 3189 case MCAST_JOIN_SOURCE_GROUP: 3190 case MCAST_LEAVE_SOURCE_GROUP: 3191 case IP_DONTFAILOVER_IF: 3192 /* cannot "get" the value for these */ 3193 return (-1); 3194 case IP_BOUND_IF: 3195 /* Zero if not set */ 3196 *i1 = udp->udp_bound_if; 3197 break; /* goto sizeof (int) option return */ 3198 case IP_UNSPEC_SRC: 3199 *i1 = udp->udp_unspec_source; 3200 break; /* goto sizeof (int) option return */ 3201 case IP_XMIT_IF: 3202 *i1 = udp->udp_xmit_if; 3203 break; /* goto sizeof (int) option return */ 3204 default: 3205 return (-1); 3206 } 3207 break; 3208 case IPPROTO_IPV6: 3209 if (udp->udp_family != AF_INET6) 3210 return (-1); 3211 switch (name) { 3212 case IPV6_UNICAST_HOPS: 3213 *i1 = (unsigned int)udp->udp_ttl; 3214 break; /* goto sizeof (int) option return */ 3215 case IPV6_MULTICAST_IF: 3216 /* 0 index if not set */ 3217 *i1 = udp->udp_multicast_if_index; 3218 break; /* goto sizeof (int) option return */ 3219 case IPV6_MULTICAST_HOPS: 3220 *i1 = udp->udp_multicast_ttl; 3221 break; /* goto sizeof (int) option return */ 3222 case IPV6_MULTICAST_LOOP: 3223 *i1 = connp->conn_multicast_loop; 3224 break; /* goto sizeof (int) option return */ 3225 case IPV6_JOIN_GROUP: 3226 case IPV6_LEAVE_GROUP: 3227 case MCAST_JOIN_GROUP: 3228 case MCAST_LEAVE_GROUP: 3229 case MCAST_BLOCK_SOURCE: 3230 case MCAST_UNBLOCK_SOURCE: 3231 case MCAST_JOIN_SOURCE_GROUP: 3232 case MCAST_LEAVE_SOURCE_GROUP: 3233 /* cannot "get" the value for these */ 3234 return (-1); 3235 case IPV6_BOUND_IF: 3236 /* Zero if not set */ 3237 *i1 = udp->udp_bound_if; 3238 break; /* goto sizeof (int) option return */ 3239 case IPV6_UNSPEC_SRC: 3240 *i1 = udp->udp_unspec_source; 3241 break; /* goto sizeof (int) option return */ 3242 case IPV6_RECVPKTINFO: 3243 *i1 = udp->udp_ip_recvpktinfo; 3244 break; /* goto sizeof (int) option return */ 3245 case IPV6_RECVTCLASS: 3246 *i1 = udp->udp_ipv6_recvtclass; 3247 break; /* goto sizeof (int) option return */ 3248 case IPV6_RECVPATHMTU: 3249 *i1 = udp->udp_ipv6_recvpathmtu; 3250 break; /* goto sizeof (int) option return */ 3251 case IPV6_RECVHOPLIMIT: 3252 *i1 = udp->udp_ipv6_recvhoplimit; 3253 break; /* goto sizeof (int) option return */ 3254 case IPV6_RECVHOPOPTS: 3255 *i1 = udp->udp_ipv6_recvhopopts; 3256 break; /* goto sizeof (int) option return */ 3257 case IPV6_RECVDSTOPTS: 3258 *i1 = udp->udp_ipv6_recvdstopts; 3259 break; /* goto sizeof (int) option return */ 3260 case _OLD_IPV6_RECVDSTOPTS: 3261 *i1 = udp->udp_old_ipv6_recvdstopts; 3262 break; /* goto sizeof (int) option return */ 3263 case IPV6_RECVRTHDRDSTOPTS: 3264 *i1 = udp->udp_ipv6_recvrthdrdstopts; 3265 break; /* goto sizeof (int) option return */ 3266 case IPV6_RECVRTHDR: 3267 *i1 = udp->udp_ipv6_recvrthdr; 3268 break; /* goto sizeof (int) option return */ 3269 case IPV6_PKTINFO: { 3270 /* XXX assumes that caller has room for max size! */ 3271 struct in6_pktinfo *pkti; 3272 3273 pkti = (struct in6_pktinfo *)ptr; 3274 if (ipp->ipp_fields & IPPF_IFINDEX) 3275 pkti->ipi6_ifindex = ipp->ipp_ifindex; 3276 else 3277 pkti->ipi6_ifindex = 0; 3278 if (ipp->ipp_fields & IPPF_ADDR) 3279 pkti->ipi6_addr = ipp->ipp_addr; 3280 else 3281 pkti->ipi6_addr = ipv6_all_zeros; 3282 return (sizeof (struct in6_pktinfo)); 3283 } 3284 case IPV6_TCLASS: 3285 if (ipp->ipp_fields & IPPF_TCLASS) 3286 *i1 = ipp->ipp_tclass; 3287 else 3288 *i1 = IPV6_FLOW_TCLASS( 3289 IPV6_DEFAULT_VERS_AND_FLOW); 3290 break; /* goto sizeof (int) option return */ 3291 case IPV6_NEXTHOP: { 3292 sin6_t *sin6 = (sin6_t *)ptr; 3293 3294 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 3295 return (0); 3296 *sin6 = sin6_null; 3297 sin6->sin6_family = AF_INET6; 3298 sin6->sin6_addr = ipp->ipp_nexthop; 3299 return (sizeof (sin6_t)); 3300 } 3301 case IPV6_HOPOPTS: 3302 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 3303 return (0); 3304 if (ipp->ipp_hopoptslen <= udp->udp_label_len_v6) 3305 return (0); 3306 /* 3307 * The cipso/label option is added by kernel. 3308 * User is not usually aware of this option. 3309 * We copy out the hbh opt after the label option. 3310 */ 3311 bcopy((char *)ipp->ipp_hopopts + udp->udp_label_len_v6, 3312 ptr, ipp->ipp_hopoptslen - udp->udp_label_len_v6); 3313 if (udp->udp_label_len_v6 > 0) { 3314 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 3315 ptr[1] = (ipp->ipp_hopoptslen - 3316 udp->udp_label_len_v6 + 7) / 8 - 1; 3317 } 3318 return (ipp->ipp_hopoptslen - udp->udp_label_len_v6); 3319 case IPV6_RTHDRDSTOPTS: 3320 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 3321 return (0); 3322 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 3323 return (ipp->ipp_rtdstoptslen); 3324 case IPV6_RTHDR: 3325 if (!(ipp->ipp_fields & IPPF_RTHDR)) 3326 return (0); 3327 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 3328 return (ipp->ipp_rthdrlen); 3329 case IPV6_DSTOPTS: 3330 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 3331 return (0); 3332 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 3333 return (ipp->ipp_dstoptslen); 3334 case IPV6_PATHMTU: 3335 return (ip_fill_mtuinfo(&udp->udp_v6dst, 3336 udp->udp_dstport, (struct ip6_mtuinfo *)ptr, 3337 us->us_netstack)); 3338 default: 3339 return (-1); 3340 } 3341 break; 3342 case IPPROTO_UDP: 3343 switch (name) { 3344 case UDP_ANONPRIVBIND: 3345 *i1 = udp->udp_anon_priv_bind; 3346 break; 3347 case UDP_EXCLBIND: 3348 *i1 = udp->udp_exclbind ? UDP_EXCLBIND : 0; 3349 break; 3350 case UDP_RCVHDR: 3351 *i1 = udp->udp_rcvhdr ? 1 : 0; 3352 break; 3353 default: 3354 return (-1); 3355 } 3356 break; 3357 default: 3358 return (-1); 3359 } 3360 return (sizeof (int)); 3361 } 3362 3363 /* 3364 * This routine sets socket options; it expects the caller 3365 * to pass in the queue pointer of the upper instance. 3366 */ 3367 /* ARGSUSED */ 3368 int 3369 udp_opt_set(queue_t *q, uint_t optset_context, int level, 3370 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 3371 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 3372 { 3373 udpattrs_t *attrs = thisdg_attrs; 3374 int *i1 = (int *)invalp; 3375 boolean_t onoff = (*i1 == 0) ? 0 : 1; 3376 boolean_t checkonly; 3377 int error; 3378 conn_t *connp; 3379 udp_t *udp; 3380 uint_t newlen; 3381 udp_stack_t *us; 3382 3383 q = UDP_WR(q); 3384 connp = Q_TO_CONN(q); 3385 udp = connp->conn_udp; 3386 us = udp->udp_us; 3387 3388 switch (optset_context) { 3389 case SETFN_OPTCOM_CHECKONLY: 3390 checkonly = B_TRUE; 3391 /* 3392 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 3393 * inlen != 0 implies value supplied and 3394 * we have to "pretend" to set it. 3395 * inlen == 0 implies that there is no 3396 * value part in T_CHECK request and just validation 3397 * done elsewhere should be enough, we just return here. 3398 */ 3399 if (inlen == 0) { 3400 *outlenp = 0; 3401 return (0); 3402 } 3403 break; 3404 case SETFN_OPTCOM_NEGOTIATE: 3405 checkonly = B_FALSE; 3406 break; 3407 case SETFN_UD_NEGOTIATE: 3408 case SETFN_CONN_NEGOTIATE: 3409 checkonly = B_FALSE; 3410 /* 3411 * Negotiating local and "association-related" options 3412 * through T_UNITDATA_REQ. 3413 * 3414 * Following routine can filter out ones we do not 3415 * want to be "set" this way. 3416 */ 3417 if (!udp_opt_allow_udr_set(level, name)) { 3418 *outlenp = 0; 3419 return (EINVAL); 3420 } 3421 break; 3422 default: 3423 /* 3424 * We should never get here 3425 */ 3426 *outlenp = 0; 3427 return (EINVAL); 3428 } 3429 3430 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 3431 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 3432 3433 /* 3434 * For fixed length options, no sanity check 3435 * of passed in length is done. It is assumed *_optcom_req() 3436 * routines do the right thing. 3437 */ 3438 3439 switch (level) { 3440 case SOL_SOCKET: 3441 switch (name) { 3442 case SO_REUSEADDR: 3443 if (!checkonly) 3444 udp->udp_reuseaddr = onoff; 3445 break; 3446 case SO_DEBUG: 3447 if (!checkonly) 3448 udp->udp_debug = onoff; 3449 break; 3450 /* 3451 * The following three items are available here, 3452 * but are only meaningful to IP. 3453 */ 3454 case SO_DONTROUTE: 3455 if (!checkonly) 3456 udp->udp_dontroute = onoff; 3457 break; 3458 case SO_USELOOPBACK: 3459 if (!checkonly) 3460 udp->udp_useloopback = onoff; 3461 break; 3462 case SO_BROADCAST: 3463 if (!checkonly) 3464 udp->udp_broadcast = onoff; 3465 break; 3466 3467 case SO_SNDBUF: 3468 if (*i1 > us->us_max_buf) { 3469 *outlenp = 0; 3470 return (ENOBUFS); 3471 } 3472 if (!checkonly) { 3473 q->q_hiwat = *i1; 3474 WR(UDP_RD(q))->q_hiwat = *i1; 3475 } 3476 break; 3477 case SO_RCVBUF: 3478 if (*i1 > us->us_max_buf) { 3479 *outlenp = 0; 3480 return (ENOBUFS); 3481 } 3482 if (!checkonly) { 3483 RD(q)->q_hiwat = *i1; 3484 UDP_RD(q)->q_hiwat = *i1; 3485 (void) mi_set_sth_hiwat(UDP_RD(q), 3486 udp_set_rcv_hiwat(udp, *i1)); 3487 } 3488 break; 3489 case SO_DGRAM_ERRIND: 3490 if (!checkonly) 3491 udp->udp_dgram_errind = onoff; 3492 break; 3493 case SO_RECVUCRED: 3494 if (!checkonly) 3495 udp->udp_recvucred = onoff; 3496 break; 3497 case SO_ALLZONES: 3498 /* 3499 * "soft" error (negative) 3500 * option not handled at this level 3501 * Do not modify *outlenp. 3502 */ 3503 return (-EINVAL); 3504 case SO_TIMESTAMP: 3505 if (!checkonly) 3506 udp->udp_timestamp = onoff; 3507 break; 3508 case SO_ANON_MLP: 3509 if (!checkonly) 3510 udp->udp_anon_mlp = onoff; 3511 break; 3512 case SO_MAC_EXEMPT: 3513 if (secpolicy_net_mac_aware(cr) != 0 || 3514 udp->udp_state != TS_UNBND) 3515 return (EACCES); 3516 if (!checkonly) 3517 udp->udp_mac_exempt = onoff; 3518 break; 3519 case SCM_UCRED: { 3520 struct ucred_s *ucr; 3521 cred_t *cr, *newcr; 3522 ts_label_t *tsl; 3523 3524 /* 3525 * Only sockets that have proper privileges and are 3526 * bound to MLPs will have any other value here, so 3527 * this implicitly tests for privilege to set label. 3528 */ 3529 if (connp->conn_mlp_type == mlptSingle) 3530 break; 3531 ucr = (struct ucred_s *)invalp; 3532 if (inlen != ucredsize || 3533 ucr->uc_labeloff < sizeof (*ucr) || 3534 ucr->uc_labeloff + sizeof (bslabel_t) > inlen) 3535 return (EINVAL); 3536 if (!checkonly) { 3537 mblk_t *mb; 3538 3539 if (attrs == NULL || 3540 (mb = attrs->udpattr_mb) == NULL) 3541 return (EINVAL); 3542 if ((cr = DB_CRED(mb)) == NULL) 3543 cr = udp->udp_connp->conn_cred; 3544 ASSERT(cr != NULL); 3545 if ((tsl = crgetlabel(cr)) == NULL) 3546 return (EINVAL); 3547 newcr = copycred_from_bslabel(cr, UCLABEL(ucr), 3548 tsl->tsl_doi, KM_NOSLEEP); 3549 if (newcr == NULL) 3550 return (ENOSR); 3551 mblk_setcred(mb, newcr); 3552 attrs->udpattr_credset = B_TRUE; 3553 crfree(newcr); 3554 } 3555 break; 3556 } 3557 case SO_EXCLBIND: 3558 if (!checkonly) 3559 udp->udp_exclbind = onoff; 3560 break; 3561 default: 3562 *outlenp = 0; 3563 return (EINVAL); 3564 } 3565 break; 3566 case IPPROTO_IP: 3567 if (udp->udp_family != AF_INET) { 3568 *outlenp = 0; 3569 return (ENOPROTOOPT); 3570 } 3571 switch (name) { 3572 case IP_OPTIONS: 3573 case T_IP_OPTIONS: 3574 /* Save options for use by IP. */ 3575 newlen = inlen + udp->udp_label_len; 3576 if ((inlen & 0x3) || newlen > IP_MAX_OPT_LENGTH) { 3577 *outlenp = 0; 3578 return (EINVAL); 3579 } 3580 if (checkonly) 3581 break; 3582 3583 if (!tsol_option_set(&udp->udp_ip_snd_options, 3584 &udp->udp_ip_snd_options_len, 3585 udp->udp_label_len, invalp, inlen)) { 3586 *outlenp = 0; 3587 return (ENOMEM); 3588 } 3589 3590 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + 3591 UDPH_SIZE + udp->udp_ip_snd_options_len; 3592 (void) mi_set_sth_wroff(RD(q), udp->udp_max_hdr_len + 3593 us->us_wroff_extra); 3594 break; 3595 3596 case IP_TTL: 3597 if (!checkonly) { 3598 udp->udp_ttl = (uchar_t)*i1; 3599 } 3600 break; 3601 case IP_TOS: 3602 case T_IP_TOS: 3603 if (!checkonly) { 3604 udp->udp_type_of_service = (uchar_t)*i1; 3605 } 3606 break; 3607 case IP_MULTICAST_IF: { 3608 /* 3609 * TODO should check OPTMGMT reply and undo this if 3610 * there is an error. 3611 */ 3612 struct in_addr *inap = (struct in_addr *)invalp; 3613 if (!checkonly) { 3614 udp->udp_multicast_if_addr = 3615 inap->s_addr; 3616 } 3617 break; 3618 } 3619 case IP_MULTICAST_TTL: 3620 if (!checkonly) 3621 udp->udp_multicast_ttl = *invalp; 3622 break; 3623 case IP_MULTICAST_LOOP: 3624 if (!checkonly) 3625 connp->conn_multicast_loop = *invalp; 3626 break; 3627 case IP_RECVOPTS: 3628 if (!checkonly) 3629 udp->udp_recvopts = onoff; 3630 break; 3631 case IP_RECVDSTADDR: 3632 if (!checkonly) 3633 udp->udp_recvdstaddr = onoff; 3634 break; 3635 case IP_RECVIF: 3636 if (!checkonly) 3637 udp->udp_recvif = onoff; 3638 break; 3639 case IP_RECVSLLA: 3640 if (!checkonly) 3641 udp->udp_recvslla = onoff; 3642 break; 3643 case IP_RECVTTL: 3644 if (!checkonly) 3645 udp->udp_recvttl = onoff; 3646 break; 3647 case IP_PKTINFO: { 3648 /* 3649 * This also handles IP_RECVPKTINFO. 3650 * IP_PKTINFO and IP_RECVPKTINFO have same value. 3651 * Differentiation is based on the size of the 3652 * argument passed in. 3653 */ 3654 struct in_pktinfo *pktinfop; 3655 ip4_pkt_t *attr_pktinfop; 3656 3657 if (checkonly) 3658 break; 3659 3660 if (inlen == sizeof (int)) { 3661 /* 3662 * This is IP_RECVPKTINFO option. 3663 * Keep a local copy of whether this option is 3664 * set or not and pass it down to IP for 3665 * processing. 3666 */ 3667 3668 udp->udp_ip_recvpktinfo = onoff; 3669 return (-EINVAL); 3670 } 3671 3672 if (attrs == NULL || 3673 (attr_pktinfop = attrs->udpattr_ipp4) == NULL) { 3674 /* 3675 * sticky option or no buffer to return 3676 * the results. 3677 */ 3678 return (EINVAL); 3679 } 3680 3681 if (inlen != sizeof (struct in_pktinfo)) 3682 return (EINVAL); 3683 3684 pktinfop = (struct in_pktinfo *)invalp; 3685 3686 /* 3687 * At least one of the values should be specified 3688 */ 3689 if (pktinfop->ipi_ifindex == 0 && 3690 pktinfop->ipi_spec_dst.s_addr == INADDR_ANY) { 3691 return (EINVAL); 3692 } 3693 3694 attr_pktinfop->ip4_addr = pktinfop->ipi_spec_dst.s_addr; 3695 attr_pktinfop->ip4_ill_index = pktinfop->ipi_ifindex; 3696 3697 break; 3698 } 3699 case IP_ADD_MEMBERSHIP: 3700 case IP_DROP_MEMBERSHIP: 3701 case IP_BLOCK_SOURCE: 3702 case IP_UNBLOCK_SOURCE: 3703 case IP_ADD_SOURCE_MEMBERSHIP: 3704 case IP_DROP_SOURCE_MEMBERSHIP: 3705 case MCAST_JOIN_GROUP: 3706 case MCAST_LEAVE_GROUP: 3707 case MCAST_BLOCK_SOURCE: 3708 case MCAST_UNBLOCK_SOURCE: 3709 case MCAST_JOIN_SOURCE_GROUP: 3710 case MCAST_LEAVE_SOURCE_GROUP: 3711 case IP_SEC_OPT: 3712 case IP_NEXTHOP: 3713 /* 3714 * "soft" error (negative) 3715 * option not handled at this level 3716 * Do not modify *outlenp. 3717 */ 3718 return (-EINVAL); 3719 case IP_BOUND_IF: 3720 if (!checkonly) 3721 udp->udp_bound_if = *i1; 3722 break; 3723 case IP_UNSPEC_SRC: 3724 if (!checkonly) 3725 udp->udp_unspec_source = onoff; 3726 break; 3727 case IP_XMIT_IF: 3728 if (!checkonly) 3729 udp->udp_xmit_if = *i1; 3730 break; 3731 default: 3732 *outlenp = 0; 3733 return (EINVAL); 3734 } 3735 break; 3736 case IPPROTO_IPV6: { 3737 ip6_pkt_t *ipp; 3738 boolean_t sticky; 3739 3740 if (udp->udp_family != AF_INET6) { 3741 *outlenp = 0; 3742 return (ENOPROTOOPT); 3743 } 3744 /* 3745 * Deal with both sticky options and ancillary data 3746 */ 3747 sticky = B_FALSE; 3748 if (attrs == NULL || (ipp = attrs->udpattr_ipp6) == 3749 NULL) { 3750 /* sticky options, or none */ 3751 ipp = &udp->udp_sticky_ipp; 3752 sticky = B_TRUE; 3753 } 3754 3755 switch (name) { 3756 case IPV6_MULTICAST_IF: 3757 if (!checkonly) 3758 udp->udp_multicast_if_index = *i1; 3759 break; 3760 case IPV6_UNICAST_HOPS: 3761 /* -1 means use default */ 3762 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 3763 *outlenp = 0; 3764 return (EINVAL); 3765 } 3766 if (!checkonly) { 3767 if (*i1 == -1) { 3768 udp->udp_ttl = ipp->ipp_unicast_hops = 3769 us->us_ipv6_hoplimit; 3770 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 3771 /* Pass modified value to IP. */ 3772 *i1 = udp->udp_ttl; 3773 } else { 3774 udp->udp_ttl = ipp->ipp_unicast_hops = 3775 (uint8_t)*i1; 3776 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 3777 } 3778 /* Rebuild the header template */ 3779 error = udp_build_hdrs(q, udp); 3780 if (error != 0) { 3781 *outlenp = 0; 3782 return (error); 3783 } 3784 } 3785 break; 3786 case IPV6_MULTICAST_HOPS: 3787 /* -1 means use default */ 3788 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 3789 *outlenp = 0; 3790 return (EINVAL); 3791 } 3792 if (!checkonly) { 3793 if (*i1 == -1) { 3794 udp->udp_multicast_ttl = 3795 ipp->ipp_multicast_hops = 3796 IP_DEFAULT_MULTICAST_TTL; 3797 ipp->ipp_fields &= ~IPPF_MULTICAST_HOPS; 3798 /* Pass modified value to IP. */ 3799 *i1 = udp->udp_multicast_ttl; 3800 } else { 3801 udp->udp_multicast_ttl = 3802 ipp->ipp_multicast_hops = 3803 (uint8_t)*i1; 3804 ipp->ipp_fields |= IPPF_MULTICAST_HOPS; 3805 } 3806 } 3807 break; 3808 case IPV6_MULTICAST_LOOP: 3809 if (*i1 != 0 && *i1 != 1) { 3810 *outlenp = 0; 3811 return (EINVAL); 3812 } 3813 if (!checkonly) 3814 connp->conn_multicast_loop = *i1; 3815 break; 3816 case IPV6_JOIN_GROUP: 3817 case IPV6_LEAVE_GROUP: 3818 case MCAST_JOIN_GROUP: 3819 case MCAST_LEAVE_GROUP: 3820 case MCAST_BLOCK_SOURCE: 3821 case MCAST_UNBLOCK_SOURCE: 3822 case MCAST_JOIN_SOURCE_GROUP: 3823 case MCAST_LEAVE_SOURCE_GROUP: 3824 /* 3825 * "soft" error (negative) 3826 * option not handled at this level 3827 * Note: Do not modify *outlenp 3828 */ 3829 return (-EINVAL); 3830 case IPV6_BOUND_IF: 3831 if (!checkonly) 3832 udp->udp_bound_if = *i1; 3833 break; 3834 case IPV6_UNSPEC_SRC: 3835 if (!checkonly) 3836 udp->udp_unspec_source = onoff; 3837 break; 3838 /* 3839 * Set boolean switches for ancillary data delivery 3840 */ 3841 case IPV6_RECVPKTINFO: 3842 if (!checkonly) 3843 udp->udp_ip_recvpktinfo = onoff; 3844 break; 3845 case IPV6_RECVTCLASS: 3846 if (!checkonly) { 3847 udp->udp_ipv6_recvtclass = onoff; 3848 } 3849 break; 3850 case IPV6_RECVPATHMTU: 3851 if (!checkonly) { 3852 udp->udp_ipv6_recvpathmtu = onoff; 3853 } 3854 break; 3855 case IPV6_RECVHOPLIMIT: 3856 if (!checkonly) 3857 udp->udp_ipv6_recvhoplimit = onoff; 3858 break; 3859 case IPV6_RECVHOPOPTS: 3860 if (!checkonly) 3861 udp->udp_ipv6_recvhopopts = onoff; 3862 break; 3863 case IPV6_RECVDSTOPTS: 3864 if (!checkonly) 3865 udp->udp_ipv6_recvdstopts = onoff; 3866 break; 3867 case _OLD_IPV6_RECVDSTOPTS: 3868 if (!checkonly) 3869 udp->udp_old_ipv6_recvdstopts = onoff; 3870 break; 3871 case IPV6_RECVRTHDRDSTOPTS: 3872 if (!checkonly) 3873 udp->udp_ipv6_recvrthdrdstopts = onoff; 3874 break; 3875 case IPV6_RECVRTHDR: 3876 if (!checkonly) 3877 udp->udp_ipv6_recvrthdr = onoff; 3878 break; 3879 /* 3880 * Set sticky options or ancillary data. 3881 * If sticky options, (re)build any extension headers 3882 * that might be needed as a result. 3883 */ 3884 case IPV6_PKTINFO: 3885 /* 3886 * The source address and ifindex are verified 3887 * in ip_opt_set(). For ancillary data the 3888 * source address is checked in ip_wput_v6. 3889 */ 3890 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 3891 return (EINVAL); 3892 if (checkonly) 3893 break; 3894 3895 if (inlen == 0) { 3896 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 3897 ipp->ipp_sticky_ignored |= 3898 (IPPF_IFINDEX|IPPF_ADDR); 3899 } else { 3900 struct in6_pktinfo *pkti; 3901 3902 pkti = (struct in6_pktinfo *)invalp; 3903 ipp->ipp_ifindex = pkti->ipi6_ifindex; 3904 ipp->ipp_addr = pkti->ipi6_addr; 3905 if (ipp->ipp_ifindex != 0) 3906 ipp->ipp_fields |= IPPF_IFINDEX; 3907 else 3908 ipp->ipp_fields &= ~IPPF_IFINDEX; 3909 if (!IN6_IS_ADDR_UNSPECIFIED( 3910 &ipp->ipp_addr)) 3911 ipp->ipp_fields |= IPPF_ADDR; 3912 else 3913 ipp->ipp_fields &= ~IPPF_ADDR; 3914 } 3915 if (sticky) { 3916 error = udp_build_hdrs(q, udp); 3917 if (error != 0) 3918 return (error); 3919 } 3920 break; 3921 case IPV6_HOPLIMIT: 3922 if (sticky) 3923 return (EINVAL); 3924 if (inlen != 0 && inlen != sizeof (int)) 3925 return (EINVAL); 3926 if (checkonly) 3927 break; 3928 3929 if (inlen == 0) { 3930 ipp->ipp_fields &= ~IPPF_HOPLIMIT; 3931 ipp->ipp_sticky_ignored |= IPPF_HOPLIMIT; 3932 } else { 3933 if (*i1 > 255 || *i1 < -1) 3934 return (EINVAL); 3935 if (*i1 == -1) 3936 ipp->ipp_hoplimit = 3937 us->us_ipv6_hoplimit; 3938 else 3939 ipp->ipp_hoplimit = *i1; 3940 ipp->ipp_fields |= IPPF_HOPLIMIT; 3941 } 3942 break; 3943 case IPV6_TCLASS: 3944 if (inlen != 0 && inlen != sizeof (int)) 3945 return (EINVAL); 3946 if (checkonly) 3947 break; 3948 3949 if (inlen == 0) { 3950 ipp->ipp_fields &= ~IPPF_TCLASS; 3951 ipp->ipp_sticky_ignored |= IPPF_TCLASS; 3952 } else { 3953 if (*i1 > 255 || *i1 < -1) 3954 return (EINVAL); 3955 if (*i1 == -1) 3956 ipp->ipp_tclass = 0; 3957 else 3958 ipp->ipp_tclass = *i1; 3959 ipp->ipp_fields |= IPPF_TCLASS; 3960 } 3961 if (sticky) { 3962 error = udp_build_hdrs(q, udp); 3963 if (error != 0) 3964 return (error); 3965 } 3966 break; 3967 case IPV6_NEXTHOP: 3968 /* 3969 * IP will verify that the nexthop is reachable 3970 * and fail for sticky options. 3971 */ 3972 if (inlen != 0 && inlen != sizeof (sin6_t)) 3973 return (EINVAL); 3974 if (checkonly) 3975 break; 3976 3977 if (inlen == 0) { 3978 ipp->ipp_fields &= ~IPPF_NEXTHOP; 3979 ipp->ipp_sticky_ignored |= IPPF_NEXTHOP; 3980 } else { 3981 sin6_t *sin6 = (sin6_t *)invalp; 3982 3983 if (sin6->sin6_family != AF_INET6) 3984 return (EAFNOSUPPORT); 3985 if (IN6_IS_ADDR_V4MAPPED( 3986 &sin6->sin6_addr)) 3987 return (EADDRNOTAVAIL); 3988 ipp->ipp_nexthop = sin6->sin6_addr; 3989 if (!IN6_IS_ADDR_UNSPECIFIED( 3990 &ipp->ipp_nexthop)) 3991 ipp->ipp_fields |= IPPF_NEXTHOP; 3992 else 3993 ipp->ipp_fields &= ~IPPF_NEXTHOP; 3994 } 3995 if (sticky) { 3996 error = udp_build_hdrs(q, udp); 3997 if (error != 0) 3998 return (error); 3999 } 4000 break; 4001 case IPV6_HOPOPTS: { 4002 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 4003 /* 4004 * Sanity checks - minimum size, size a multiple of 4005 * eight bytes, and matching size passed in. 4006 */ 4007 if (inlen != 0 && 4008 inlen != (8 * (hopts->ip6h_len + 1))) 4009 return (EINVAL); 4010 4011 if (checkonly) 4012 break; 4013 4014 error = optcom_pkt_set(invalp, inlen, sticky, 4015 (uchar_t **)&ipp->ipp_hopopts, 4016 &ipp->ipp_hopoptslen, 4017 sticky ? udp->udp_label_len_v6 : 0); 4018 if (error != 0) 4019 return (error); 4020 if (ipp->ipp_hopoptslen == 0) { 4021 ipp->ipp_fields &= ~IPPF_HOPOPTS; 4022 ipp->ipp_sticky_ignored |= IPPF_HOPOPTS; 4023 } else { 4024 ipp->ipp_fields |= IPPF_HOPOPTS; 4025 } 4026 if (sticky) { 4027 error = udp_build_hdrs(q, udp); 4028 if (error != 0) 4029 return (error); 4030 } 4031 break; 4032 } 4033 case IPV6_RTHDRDSTOPTS: { 4034 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 4035 4036 /* 4037 * Sanity checks - minimum size, size a multiple of 4038 * eight bytes, and matching size passed in. 4039 */ 4040 if (inlen != 0 && 4041 inlen != (8 * (dopts->ip6d_len + 1))) 4042 return (EINVAL); 4043 4044 if (checkonly) 4045 break; 4046 4047 if (inlen == 0) { 4048 if (sticky && 4049 (ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) { 4050 kmem_free(ipp->ipp_rtdstopts, 4051 ipp->ipp_rtdstoptslen); 4052 ipp->ipp_rtdstopts = NULL; 4053 ipp->ipp_rtdstoptslen = 0; 4054 } 4055 4056 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 4057 ipp->ipp_sticky_ignored |= IPPF_RTDSTOPTS; 4058 } else { 4059 error = optcom_pkt_set(invalp, inlen, sticky, 4060 (uchar_t **)&ipp->ipp_rtdstopts, 4061 &ipp->ipp_rtdstoptslen, 0); 4062 if (error != 0) 4063 return (error); 4064 ipp->ipp_fields |= IPPF_RTDSTOPTS; 4065 } 4066 if (sticky) { 4067 error = udp_build_hdrs(q, udp); 4068 if (error != 0) 4069 return (error); 4070 } 4071 break; 4072 } 4073 case IPV6_DSTOPTS: { 4074 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 4075 4076 /* 4077 * Sanity checks - minimum size, size a multiple of 4078 * eight bytes, and matching size passed in. 4079 */ 4080 if (inlen != 0 && 4081 inlen != (8 * (dopts->ip6d_len + 1))) 4082 return (EINVAL); 4083 4084 if (checkonly) 4085 break; 4086 4087 if (inlen == 0) { 4088 if (sticky && 4089 (ipp->ipp_fields & IPPF_DSTOPTS) != 0) { 4090 kmem_free(ipp->ipp_dstopts, 4091 ipp->ipp_dstoptslen); 4092 ipp->ipp_dstopts = NULL; 4093 ipp->ipp_dstoptslen = 0; 4094 } 4095 ipp->ipp_fields &= ~IPPF_DSTOPTS; 4096 ipp->ipp_sticky_ignored |= IPPF_DSTOPTS; 4097 } else { 4098 error = optcom_pkt_set(invalp, inlen, sticky, 4099 (uchar_t **)&ipp->ipp_dstopts, 4100 &ipp->ipp_dstoptslen, 0); 4101 if (error != 0) 4102 return (error); 4103 ipp->ipp_fields |= IPPF_DSTOPTS; 4104 } 4105 if (sticky) { 4106 error = udp_build_hdrs(q, udp); 4107 if (error != 0) 4108 return (error); 4109 } 4110 break; 4111 } 4112 case IPV6_RTHDR: { 4113 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 4114 4115 /* 4116 * Sanity checks - minimum size, size a multiple of 4117 * eight bytes, and matching size passed in. 4118 */ 4119 if (inlen != 0 && 4120 inlen != (8 * (rt->ip6r_len + 1))) 4121 return (EINVAL); 4122 4123 if (checkonly) 4124 break; 4125 4126 if (inlen == 0) { 4127 if (sticky && 4128 (ipp->ipp_fields & IPPF_RTHDR) != 0) { 4129 kmem_free(ipp->ipp_rthdr, 4130 ipp->ipp_rthdrlen); 4131 ipp->ipp_rthdr = NULL; 4132 ipp->ipp_rthdrlen = 0; 4133 } 4134 ipp->ipp_fields &= ~IPPF_RTHDR; 4135 ipp->ipp_sticky_ignored |= IPPF_RTHDR; 4136 } else { 4137 error = optcom_pkt_set(invalp, inlen, sticky, 4138 (uchar_t **)&ipp->ipp_rthdr, 4139 &ipp->ipp_rthdrlen, 0); 4140 if (error != 0) 4141 return (error); 4142 ipp->ipp_fields |= IPPF_RTHDR; 4143 } 4144 if (sticky) { 4145 error = udp_build_hdrs(q, udp); 4146 if (error != 0) 4147 return (error); 4148 } 4149 break; 4150 } 4151 4152 case IPV6_DONTFRAG: 4153 if (checkonly) 4154 break; 4155 4156 if (onoff) { 4157 ipp->ipp_fields |= IPPF_DONTFRAG; 4158 } else { 4159 ipp->ipp_fields &= ~IPPF_DONTFRAG; 4160 } 4161 break; 4162 4163 case IPV6_USE_MIN_MTU: 4164 if (inlen != sizeof (int)) 4165 return (EINVAL); 4166 4167 if (*i1 < -1 || *i1 > 1) 4168 return (EINVAL); 4169 4170 if (checkonly) 4171 break; 4172 4173 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 4174 ipp->ipp_use_min_mtu = *i1; 4175 break; 4176 4177 case IPV6_BOUND_PIF: 4178 case IPV6_SEC_OPT: 4179 case IPV6_DONTFAILOVER_IF: 4180 case IPV6_SRC_PREFERENCES: 4181 case IPV6_V6ONLY: 4182 /* Handled at the IP level */ 4183 return (-EINVAL); 4184 default: 4185 *outlenp = 0; 4186 return (EINVAL); 4187 } 4188 break; 4189 } /* end IPPROTO_IPV6 */ 4190 case IPPROTO_UDP: 4191 switch (name) { 4192 case UDP_ANONPRIVBIND: 4193 if ((error = secpolicy_net_privaddr(cr, 0)) != 0) { 4194 *outlenp = 0; 4195 return (error); 4196 } 4197 if (!checkonly) { 4198 udp->udp_anon_priv_bind = onoff; 4199 } 4200 break; 4201 case UDP_EXCLBIND: 4202 if (!checkonly) 4203 udp->udp_exclbind = onoff; 4204 break; 4205 case UDP_RCVHDR: 4206 if (!checkonly) 4207 udp->udp_rcvhdr = onoff; 4208 break; 4209 default: 4210 *outlenp = 0; 4211 return (EINVAL); 4212 } 4213 break; 4214 default: 4215 *outlenp = 0; 4216 return (EINVAL); 4217 } 4218 /* 4219 * Common case of OK return with outval same as inval. 4220 */ 4221 if (invalp != outvalp) { 4222 /* don't trust bcopy for identical src/dst */ 4223 (void) bcopy(invalp, outvalp, inlen); 4224 } 4225 *outlenp = inlen; 4226 return (0); 4227 } 4228 4229 /* 4230 * Update udp_sticky_hdrs based on udp_sticky_ipp, udp_v6src, and udp_ttl. 4231 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 4232 * headers, and the udp header. 4233 * Returns failure if can't allocate memory. 4234 */ 4235 static int 4236 udp_build_hdrs(queue_t *q, udp_t *udp) 4237 { 4238 udp_stack_t *us = udp->udp_us; 4239 uchar_t *hdrs; 4240 uint_t hdrs_len; 4241 ip6_t *ip6h; 4242 ip6i_t *ip6i; 4243 udpha_t *udpha; 4244 ip6_pkt_t *ipp = &udp->udp_sticky_ipp; 4245 4246 hdrs_len = ip_total_hdrs_len_v6(ipp) + UDPH_SIZE; 4247 ASSERT(hdrs_len != 0); 4248 if (hdrs_len != udp->udp_sticky_hdrs_len) { 4249 /* Need to reallocate */ 4250 hdrs = kmem_alloc(hdrs_len, KM_NOSLEEP); 4251 if (hdrs == NULL) 4252 return (ENOMEM); 4253 4254 if (udp->udp_sticky_hdrs_len != 0) { 4255 kmem_free(udp->udp_sticky_hdrs, 4256 udp->udp_sticky_hdrs_len); 4257 } 4258 udp->udp_sticky_hdrs = hdrs; 4259 udp->udp_sticky_hdrs_len = hdrs_len; 4260 } 4261 ip_build_hdrs_v6(udp->udp_sticky_hdrs, 4262 udp->udp_sticky_hdrs_len - UDPH_SIZE, ipp, IPPROTO_UDP); 4263 4264 /* Set header fields not in ipp */ 4265 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 4266 ip6i = (ip6i_t *)udp->udp_sticky_hdrs; 4267 ip6h = (ip6_t *)&ip6i[1]; 4268 } else { 4269 ip6h = (ip6_t *)udp->udp_sticky_hdrs; 4270 } 4271 4272 if (!(ipp->ipp_fields & IPPF_ADDR)) 4273 ip6h->ip6_src = udp->udp_v6src; 4274 4275 udpha = (udpha_t *)(udp->udp_sticky_hdrs + hdrs_len - UDPH_SIZE); 4276 udpha->uha_src_port = udp->udp_port; 4277 4278 /* Try to get everything in a single mblk */ 4279 if (hdrs_len > udp->udp_max_hdr_len) { 4280 udp->udp_max_hdr_len = hdrs_len; 4281 (void) mi_set_sth_wroff(RD(q), udp->udp_max_hdr_len + 4282 us->us_wroff_extra); 4283 } 4284 return (0); 4285 } 4286 4287 /* 4288 * This routine retrieves the value of an ND variable in a udpparam_t 4289 * structure. It is called through nd_getset when a user reads the 4290 * variable. 4291 */ 4292 /* ARGSUSED */ 4293 static int 4294 udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 4295 { 4296 udpparam_t *udppa = (udpparam_t *)cp; 4297 4298 (void) mi_mpprintf(mp, "%d", udppa->udp_param_value); 4299 return (0); 4300 } 4301 4302 /* 4303 * Walk through the param array specified registering each element with the 4304 * named dispatch (ND) handler. 4305 */ 4306 static boolean_t 4307 udp_param_register(IDP *ndp, udpparam_t *udppa, int cnt) 4308 { 4309 for (; cnt-- > 0; udppa++) { 4310 if (udppa->udp_param_name && udppa->udp_param_name[0]) { 4311 if (!nd_load(ndp, udppa->udp_param_name, 4312 udp_param_get, udp_param_set, 4313 (caddr_t)udppa)) { 4314 nd_free(ndp); 4315 return (B_FALSE); 4316 } 4317 } 4318 } 4319 if (!nd_load(ndp, "udp_extra_priv_ports", 4320 udp_extra_priv_ports_get, NULL, NULL)) { 4321 nd_free(ndp); 4322 return (B_FALSE); 4323 } 4324 if (!nd_load(ndp, "udp_extra_priv_ports_add", 4325 NULL, udp_extra_priv_ports_add, NULL)) { 4326 nd_free(ndp); 4327 return (B_FALSE); 4328 } 4329 if (!nd_load(ndp, "udp_extra_priv_ports_del", 4330 NULL, udp_extra_priv_ports_del, NULL)) { 4331 nd_free(ndp); 4332 return (B_FALSE); 4333 } 4334 if (!nd_load(ndp, "udp_status", udp_status_report, NULL, 4335 NULL)) { 4336 nd_free(ndp); 4337 return (B_FALSE); 4338 } 4339 if (!nd_load(ndp, "udp_bind_hash", udp_bind_hash_report, NULL, 4340 NULL)) { 4341 nd_free(ndp); 4342 return (B_FALSE); 4343 } 4344 return (B_TRUE); 4345 } 4346 4347 /* This routine sets an ND variable in a udpparam_t structure. */ 4348 /* ARGSUSED */ 4349 static int 4350 udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 4351 { 4352 long new_value; 4353 udpparam_t *udppa = (udpparam_t *)cp; 4354 4355 /* 4356 * Fail the request if the new value does not lie within the 4357 * required bounds. 4358 */ 4359 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 4360 new_value < udppa->udp_param_min || 4361 new_value > udppa->udp_param_max) { 4362 return (EINVAL); 4363 } 4364 4365 /* Set the new value */ 4366 udppa->udp_param_value = new_value; 4367 return (0); 4368 } 4369 4370 /* 4371 * Copy hop-by-hop option from ipp->ipp_hopopts to the buffer provided (with 4372 * T_opthdr) and return the number of bytes copied. 'dbuf' may be NULL to 4373 * just count the length needed for allocation. If 'dbuf' is non-NULL, 4374 * then it's assumed to be allocated to be large enough. 4375 * 4376 * Returns zero if trimming of the security option causes all options to go 4377 * away. 4378 */ 4379 static size_t 4380 copy_hop_opts(const ip6_pkt_t *ipp, uchar_t *dbuf) 4381 { 4382 struct T_opthdr *toh; 4383 size_t hol = ipp->ipp_hopoptslen; 4384 ip6_hbh_t *dstopt = NULL; 4385 const ip6_hbh_t *srcopt = ipp->ipp_hopopts; 4386 size_t tlen, olen, plen; 4387 boolean_t deleting; 4388 const struct ip6_opt *sopt, *lastpad; 4389 struct ip6_opt *dopt; 4390 4391 if ((toh = (struct T_opthdr *)dbuf) != NULL) { 4392 toh->level = IPPROTO_IPV6; 4393 toh->name = IPV6_HOPOPTS; 4394 toh->status = 0; 4395 dstopt = (ip6_hbh_t *)(toh + 1); 4396 } 4397 4398 /* 4399 * If labeling is enabled, then skip the label option 4400 * but get other options if there are any. 4401 */ 4402 if (is_system_labeled()) { 4403 dopt = NULL; 4404 if (dstopt != NULL) { 4405 /* will fill in ip6h_len later */ 4406 dstopt->ip6h_nxt = srcopt->ip6h_nxt; 4407 dopt = (struct ip6_opt *)(dstopt + 1); 4408 } 4409 sopt = (const struct ip6_opt *)(srcopt + 1); 4410 hol -= sizeof (*srcopt); 4411 tlen = sizeof (*dstopt); 4412 lastpad = NULL; 4413 deleting = B_FALSE; 4414 /* 4415 * This loop finds the first (lastpad pointer) of any number of 4416 * pads that preceeds the security option, then treats the 4417 * security option as though it were a pad, and then finds the 4418 * next non-pad option (or end of list). 4419 * 4420 * It then treats the entire block as one big pad. To preserve 4421 * alignment of any options that follow, or just the end of the 4422 * list, it computes a minimal new padding size that keeps the 4423 * same alignment for the next option. 4424 * 4425 * If it encounters just a sequence of pads with no security 4426 * option, those are copied as-is rather than collapsed. 4427 * 4428 * Note that to handle the end of list case, the code makes one 4429 * loop with 'hol' set to zero. 4430 */ 4431 for (;;) { 4432 if (hol > 0) { 4433 if (sopt->ip6o_type == IP6OPT_PAD1) { 4434 if (lastpad == NULL) 4435 lastpad = sopt; 4436 sopt = (const struct ip6_opt *) 4437 &sopt->ip6o_len; 4438 hol--; 4439 continue; 4440 } 4441 olen = sopt->ip6o_len + sizeof (*sopt); 4442 if (olen > hol) 4443 olen = hol; 4444 if (sopt->ip6o_type == IP6OPT_PADN || 4445 sopt->ip6o_type == ip6opt_ls) { 4446 if (sopt->ip6o_type == ip6opt_ls) 4447 deleting = B_TRUE; 4448 if (lastpad == NULL) 4449 lastpad = sopt; 4450 sopt = (const struct ip6_opt *) 4451 ((const char *)sopt + olen); 4452 hol -= olen; 4453 continue; 4454 } 4455 } else { 4456 /* if nothing was copied at all, then delete */ 4457 if (tlen == sizeof (*dstopt)) 4458 return (0); 4459 /* last pass; pick up any trailing padding */ 4460 olen = 0; 4461 } 4462 if (deleting) { 4463 /* 4464 * compute aligning effect of deleted material 4465 * to reproduce with pad. 4466 */ 4467 plen = ((const char *)sopt - 4468 (const char *)lastpad) & 7; 4469 tlen += plen; 4470 if (dopt != NULL) { 4471 if (plen == 1) { 4472 dopt->ip6o_type = IP6OPT_PAD1; 4473 } else if (plen > 1) { 4474 plen -= sizeof (*dopt); 4475 dopt->ip6o_type = IP6OPT_PADN; 4476 dopt->ip6o_len = plen; 4477 if (plen > 0) 4478 bzero(dopt + 1, plen); 4479 } 4480 dopt = (struct ip6_opt *) 4481 ((char *)dopt + plen); 4482 } 4483 deleting = B_FALSE; 4484 lastpad = NULL; 4485 } 4486 /* if there's uncopied padding, then copy that now */ 4487 if (lastpad != NULL) { 4488 olen += (const char *)sopt - 4489 (const char *)lastpad; 4490 sopt = lastpad; 4491 lastpad = NULL; 4492 } 4493 if (dopt != NULL && olen > 0) { 4494 bcopy(sopt, dopt, olen); 4495 dopt = (struct ip6_opt *)((char *)dopt + olen); 4496 } 4497 if (hol == 0) 4498 break; 4499 tlen += olen; 4500 sopt = (const struct ip6_opt *) 4501 ((const char *)sopt + olen); 4502 hol -= olen; 4503 } 4504 /* go back and patch up the length value, rounded upward */ 4505 if (dstopt != NULL) 4506 dstopt->ip6h_len = (tlen - 1) >> 3; 4507 } else { 4508 tlen = hol; 4509 if (dstopt != NULL) 4510 bcopy(srcopt, dstopt, hol); 4511 } 4512 4513 tlen += sizeof (*toh); 4514 if (toh != NULL) 4515 toh->len = tlen; 4516 4517 return (tlen); 4518 } 4519 4520 static void 4521 udp_input(conn_t *connp, mblk_t *mp) 4522 { 4523 struct T_unitdata_ind *tudi; 4524 uchar_t *rptr; /* Pointer to IP header */ 4525 int hdr_length; /* Length of IP+UDP headers */ 4526 int udi_size; /* Size of T_unitdata_ind */ 4527 int mp_len; 4528 udp_t *udp; 4529 udpha_t *udpha; 4530 int ipversion; 4531 ip6_pkt_t ipp; 4532 ip6_t *ip6h; 4533 ip6i_t *ip6i; 4534 mblk_t *mp1; 4535 mblk_t *options_mp = NULL; 4536 ip_pktinfo_t *pinfo = NULL; 4537 cred_t *cr = NULL; 4538 queue_t *q = connp->conn_rq; 4539 pid_t cpid; 4540 cred_t *rcr = connp->conn_cred; 4541 udp_stack_t *us; 4542 4543 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_START, 4544 "udp_rput_start: q %p mp %p", q, mp); 4545 4546 udp = connp->conn_udp; 4547 us = udp->udp_us; 4548 rptr = mp->b_rptr; 4549 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_CTL); 4550 ASSERT(OK_32PTR(rptr)); 4551 4552 /* 4553 * IP should have prepended the options data in an M_CTL 4554 * Check M_CTL "type" to make sure are not here bcos of 4555 * a valid ICMP message 4556 */ 4557 if (DB_TYPE(mp) == M_CTL) { 4558 if (MBLKL(mp) == sizeof (ip_pktinfo_t) && 4559 ((ip_pktinfo_t *)mp->b_rptr)->ip_pkt_ulp_type == 4560 IN_PKTINFO) { 4561 /* 4562 * IP_RECVIF or IP_RECVSLLA or IPF_RECVADDR information 4563 * has been appended to the packet by IP. We need to 4564 * extract the mblk and adjust the rptr 4565 */ 4566 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4567 options_mp = mp; 4568 mp = mp->b_cont; 4569 rptr = mp->b_rptr; 4570 UDP_STAT(us, udp_in_pktinfo); 4571 } else { 4572 /* 4573 * ICMP messages. 4574 */ 4575 udp_icmp_error(q, mp); 4576 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, 4577 "udp_rput_end: q %p (%S)", q, "m_ctl"); 4578 return; 4579 } 4580 } 4581 4582 mp_len = msgdsize(mp); 4583 /* 4584 * This is the inbound data path. 4585 * First, we check to make sure the IP version number is correct, 4586 * and then pull the IP and UDP headers into the first mblk. 4587 * Assume IP provides aligned packets - otherwise toss. 4588 * Also, check if we have a complete IP header. 4589 */ 4590 4591 /* Initialize regardless if ipversion is IPv4 or IPv6 */ 4592 ipp.ipp_fields = 0; 4593 4594 ipversion = IPH_HDR_VERSION(rptr); 4595 switch (ipversion) { 4596 case IPV4_VERSION: 4597 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 4598 ASSERT(((ipha_t *)rptr)->ipha_protocol == IPPROTO_UDP); 4599 hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE; 4600 if ((hdr_length > IP_SIMPLE_HDR_LENGTH + UDPH_SIZE) || 4601 (udp->udp_ip_rcv_options_len)) { 4602 /* 4603 * Handle IPv4 packets with options outside of the 4604 * main data path. Not needed for AF_INET6 sockets 4605 * since they don't support a getsockopt of IP_OPTIONS. 4606 */ 4607 if (udp->udp_family == AF_INET6) 4608 break; 4609 /* 4610 * UDP length check performed for IPv4 packets with 4611 * options to check whether UDP length specified in 4612 * the header is the same as the physical length of 4613 * the packet. 4614 */ 4615 udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE)); 4616 if (mp_len != (ntohs(udpha->uha_length) + 4617 hdr_length - UDPH_SIZE)) { 4618 goto tossit; 4619 } 4620 /* 4621 * Handle the case where the packet has IP options 4622 * and the IP_RECVSLLA & IP_RECVIF are set 4623 */ 4624 if (pinfo != NULL) 4625 mp = options_mp; 4626 udp_become_writer(connp, mp, udp_rput_other_wrapper, 4627 SQTAG_UDP_INPUT); 4628 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, 4629 "udp_rput_end: q %p (%S)", q, "end"); 4630 return; 4631 } 4632 4633 /* Handle IPV6_RECVHOPLIMIT. */ 4634 if ((udp->udp_family == AF_INET6) && (pinfo != NULL) && 4635 udp->udp_ip_recvpktinfo) { 4636 if (pinfo->ip_pkt_flags & IPF_RECVIF) { 4637 ipp.ipp_fields |= IPPF_IFINDEX; 4638 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 4639 } 4640 } 4641 break; 4642 case IPV6_VERSION: 4643 /* 4644 * IPv6 packets can only be received by applications 4645 * that are prepared to receive IPv6 addresses. 4646 * The IP fanout must ensure this. 4647 */ 4648 ASSERT(udp->udp_family == AF_INET6); 4649 4650 ip6h = (ip6_t *)rptr; 4651 ASSERT((uchar_t *)&ip6h[1] <= mp->b_wptr); 4652 4653 if (ip6h->ip6_nxt != IPPROTO_UDP) { 4654 uint8_t nexthdrp; 4655 /* Look for ifindex information */ 4656 if (ip6h->ip6_nxt == IPPROTO_RAW) { 4657 ip6i = (ip6i_t *)ip6h; 4658 if ((uchar_t *)&ip6i[1] > mp->b_wptr) 4659 goto tossit; 4660 4661 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 4662 ASSERT(ip6i->ip6i_ifindex != 0); 4663 ipp.ipp_fields |= IPPF_IFINDEX; 4664 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 4665 } 4666 rptr = (uchar_t *)&ip6i[1]; 4667 mp->b_rptr = rptr; 4668 if (rptr == mp->b_wptr) { 4669 mp1 = mp->b_cont; 4670 freeb(mp); 4671 mp = mp1; 4672 rptr = mp->b_rptr; 4673 } 4674 if (MBLKL(mp) < (IPV6_HDR_LEN + UDPH_SIZE)) 4675 goto tossit; 4676 ip6h = (ip6_t *)rptr; 4677 mp_len = msgdsize(mp); 4678 } 4679 /* 4680 * Find any potentially interesting extension headers 4681 * as well as the length of the IPv6 + extension 4682 * headers. 4683 */ 4684 hdr_length = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp) + 4685 UDPH_SIZE; 4686 ASSERT(nexthdrp == IPPROTO_UDP); 4687 } else { 4688 hdr_length = IPV6_HDR_LEN + UDPH_SIZE; 4689 ip6i = NULL; 4690 } 4691 break; 4692 default: 4693 ASSERT(0); 4694 } 4695 4696 /* 4697 * IP inspected the UDP header thus all of it must be in the mblk. 4698 * UDP length check is performed for IPv6 packets and IPv4 packets 4699 * without options to check if the size of the packet as specified 4700 * by the header is the same as the physical size of the packet. 4701 */ 4702 udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE)); 4703 if ((MBLKL(mp) < hdr_length) || 4704 (mp_len != (ntohs(udpha->uha_length) + hdr_length - UDPH_SIZE))) { 4705 goto tossit; 4706 } 4707 4708 /* Walk past the headers. */ 4709 if (!udp->udp_rcvhdr) { 4710 mp->b_rptr = rptr + hdr_length; 4711 mp_len -= hdr_length; 4712 } 4713 4714 /* 4715 * This is the inbound data path. Packets are passed upstream as 4716 * T_UNITDATA_IND messages with full IP headers still attached. 4717 */ 4718 if (udp->udp_family == AF_INET) { 4719 sin_t *sin; 4720 4721 ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION); 4722 4723 /* 4724 * Normally only send up the address. 4725 * If IP_RECVDSTADDR is set we include the destination IP 4726 * address as an option. With IP_RECVOPTS we include all 4727 * the IP options. Only ip_rput_other() handles packets 4728 * that contain IP options. 4729 */ 4730 udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t); 4731 if (udp->udp_recvdstaddr) { 4732 udi_size += sizeof (struct T_opthdr) + 4733 sizeof (struct in_addr); 4734 UDP_STAT(us, udp_in_recvdstaddr); 4735 } 4736 4737 if (udp->udp_ip_recvpktinfo && (pinfo != NULL) && 4738 (pinfo->ip_pkt_flags & IPF_RECVADDR)) { 4739 udi_size += sizeof (struct T_opthdr) + 4740 sizeof (struct in_pktinfo); 4741 UDP_STAT(us, udp_ip_recvpktinfo); 4742 } 4743 4744 /* 4745 * If the IP_RECVSLLA or the IP_RECVIF is set then allocate 4746 * space accordingly 4747 */ 4748 if (udp->udp_recvif && (pinfo != NULL) && 4749 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 4750 udi_size += sizeof (struct T_opthdr) + sizeof (uint_t); 4751 UDP_STAT(us, udp_in_recvif); 4752 } 4753 4754 if (udp->udp_recvslla && (pinfo != NULL) && 4755 (pinfo->ip_pkt_flags & IPF_RECVSLLA)) { 4756 udi_size += sizeof (struct T_opthdr) + 4757 sizeof (struct sockaddr_dl); 4758 UDP_STAT(us, udp_in_recvslla); 4759 } 4760 4761 if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) { 4762 udi_size += sizeof (struct T_opthdr) + ucredsize; 4763 cpid = DB_CPID(mp); 4764 UDP_STAT(us, udp_in_recvucred); 4765 } 4766 4767 /* 4768 * If SO_TIMESTAMP is set allocate the appropriate sized 4769 * buffer. Since gethrestime() expects a pointer aligned 4770 * argument, we allocate space necessary for extra 4771 * alignment (even though it might not be used). 4772 */ 4773 if (udp->udp_timestamp) { 4774 udi_size += sizeof (struct T_opthdr) + 4775 sizeof (timestruc_t) + _POINTER_ALIGNMENT; 4776 UDP_STAT(us, udp_in_timestamp); 4777 } 4778 4779 /* 4780 * If IP_RECVTTL is set allocate the appropriate sized buffer 4781 */ 4782 if (udp->udp_recvttl) { 4783 udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t); 4784 UDP_STAT(us, udp_in_recvttl); 4785 } 4786 ASSERT(IPH_HDR_LENGTH((ipha_t *)rptr) == IP_SIMPLE_HDR_LENGTH); 4787 4788 /* Allocate a message block for the T_UNITDATA_IND structure. */ 4789 mp1 = allocb(udi_size, BPRI_MED); 4790 if (mp1 == NULL) { 4791 freemsg(mp); 4792 if (options_mp != NULL) 4793 freeb(options_mp); 4794 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, 4795 "udp_rput_end: q %p (%S)", q, "allocbfail"); 4796 BUMP_MIB(&udp->udp_mib, udpInErrors); 4797 return; 4798 } 4799 mp1->b_cont = mp; 4800 mp = mp1; 4801 mp->b_datap->db_type = M_PROTO; 4802 tudi = (struct T_unitdata_ind *)mp->b_rptr; 4803 mp->b_wptr = (uchar_t *)tudi + udi_size; 4804 tudi->PRIM_type = T_UNITDATA_IND; 4805 tudi->SRC_length = sizeof (sin_t); 4806 tudi->SRC_offset = sizeof (struct T_unitdata_ind); 4807 tudi->OPT_offset = sizeof (struct T_unitdata_ind) + 4808 sizeof (sin_t); 4809 udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t)); 4810 tudi->OPT_length = udi_size; 4811 sin = (sin_t *)&tudi[1]; 4812 sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src; 4813 sin->sin_port = udpha->uha_src_port; 4814 sin->sin_family = udp->udp_family; 4815 *(uint32_t *)&sin->sin_zero[0] = 0; 4816 *(uint32_t *)&sin->sin_zero[4] = 0; 4817 4818 /* 4819 * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or 4820 * IP_RECVTTL has been set. 4821 */ 4822 if (udi_size != 0) { 4823 /* 4824 * Copy in destination address before options to avoid 4825 * any padding issues. 4826 */ 4827 char *dstopt; 4828 4829 dstopt = (char *)&sin[1]; 4830 if (udp->udp_recvdstaddr) { 4831 struct T_opthdr *toh; 4832 ipaddr_t *dstptr; 4833 4834 toh = (struct T_opthdr *)dstopt; 4835 toh->level = IPPROTO_IP; 4836 toh->name = IP_RECVDSTADDR; 4837 toh->len = sizeof (struct T_opthdr) + 4838 sizeof (ipaddr_t); 4839 toh->status = 0; 4840 dstopt += sizeof (struct T_opthdr); 4841 dstptr = (ipaddr_t *)dstopt; 4842 *dstptr = ((ipha_t *)rptr)->ipha_dst; 4843 dstopt = (char *)toh + toh->len; 4844 udi_size -= toh->len; 4845 } 4846 4847 if (udp->udp_ip_recvpktinfo && (pinfo != NULL) && 4848 (pinfo->ip_pkt_flags & IPF_RECVADDR)) { 4849 struct T_opthdr *toh; 4850 struct in_pktinfo *pktinfop; 4851 4852 toh = (struct T_opthdr *)dstopt; 4853 toh->level = IPPROTO_IP; 4854 toh->name = IP_PKTINFO; 4855 toh->len = sizeof (struct T_opthdr) + 4856 sizeof (*pktinfop); 4857 toh->status = 0; 4858 dstopt += sizeof (struct T_opthdr); 4859 pktinfop = (struct in_pktinfo *)dstopt; 4860 pktinfop->ipi_ifindex = pinfo->ip_pkt_ifindex; 4861 pktinfop->ipi_spec_dst = 4862 pinfo->ip_pkt_match_addr; 4863 pktinfop->ipi_addr.s_addr = 4864 ((ipha_t *)rptr)->ipha_dst; 4865 4866 dstopt += sizeof (struct in_pktinfo); 4867 udi_size -= toh->len; 4868 } 4869 4870 if (udp->udp_recvslla && (pinfo != NULL) && 4871 (pinfo->ip_pkt_flags & IPF_RECVSLLA)) { 4872 4873 struct T_opthdr *toh; 4874 struct sockaddr_dl *dstptr; 4875 4876 toh = (struct T_opthdr *)dstopt; 4877 toh->level = IPPROTO_IP; 4878 toh->name = IP_RECVSLLA; 4879 toh->len = sizeof (struct T_opthdr) + 4880 sizeof (struct sockaddr_dl); 4881 toh->status = 0; 4882 dstopt += sizeof (struct T_opthdr); 4883 dstptr = (struct sockaddr_dl *)dstopt; 4884 bcopy(&pinfo->ip_pkt_slla, dstptr, 4885 sizeof (struct sockaddr_dl)); 4886 dstopt = (char *)toh + toh->len; 4887 udi_size -= toh->len; 4888 } 4889 4890 if (udp->udp_recvif && (pinfo != NULL) && 4891 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 4892 4893 struct T_opthdr *toh; 4894 uint_t *dstptr; 4895 4896 toh = (struct T_opthdr *)dstopt; 4897 toh->level = IPPROTO_IP; 4898 toh->name = IP_RECVIF; 4899 toh->len = sizeof (struct T_opthdr) + 4900 sizeof (uint_t); 4901 toh->status = 0; 4902 dstopt += sizeof (struct T_opthdr); 4903 dstptr = (uint_t *)dstopt; 4904 *dstptr = pinfo->ip_pkt_ifindex; 4905 dstopt = (char *)toh + toh->len; 4906 udi_size -= toh->len; 4907 } 4908 4909 if (cr != NULL) { 4910 struct T_opthdr *toh; 4911 4912 toh = (struct T_opthdr *)dstopt; 4913 toh->level = SOL_SOCKET; 4914 toh->name = SCM_UCRED; 4915 toh->len = sizeof (struct T_opthdr) + ucredsize; 4916 toh->status = 0; 4917 (void) cred2ucred(cr, cpid, &toh[1], rcr); 4918 dstopt = (char *)toh + toh->len; 4919 udi_size -= toh->len; 4920 } 4921 4922 if (udp->udp_timestamp) { 4923 struct T_opthdr *toh; 4924 4925 toh = (struct T_opthdr *)dstopt; 4926 toh->level = SOL_SOCKET; 4927 toh->name = SCM_TIMESTAMP; 4928 toh->len = sizeof (struct T_opthdr) + 4929 sizeof (timestruc_t) + _POINTER_ALIGNMENT; 4930 toh->status = 0; 4931 dstopt += sizeof (struct T_opthdr); 4932 /* Align for gethrestime() */ 4933 dstopt = (char *)P2ROUNDUP((intptr_t)dstopt, 4934 sizeof (intptr_t)); 4935 gethrestime((timestruc_t *)dstopt); 4936 dstopt = (char *)toh + toh->len; 4937 udi_size -= toh->len; 4938 } 4939 4940 /* 4941 * CAUTION: 4942 * Due to aligment issues 4943 * Processing of IP_RECVTTL option 4944 * should always be the last. Adding 4945 * any option processing after this will 4946 * cause alignment panic. 4947 */ 4948 if (udp->udp_recvttl) { 4949 struct T_opthdr *toh; 4950 uint8_t *dstptr; 4951 4952 toh = (struct T_opthdr *)dstopt; 4953 toh->level = IPPROTO_IP; 4954 toh->name = IP_RECVTTL; 4955 toh->len = sizeof (struct T_opthdr) + 4956 sizeof (uint8_t); 4957 toh->status = 0; 4958 dstopt += sizeof (struct T_opthdr); 4959 dstptr = (uint8_t *)dstopt; 4960 *dstptr = ((ipha_t *)rptr)->ipha_ttl; 4961 dstopt = (char *)toh + toh->len; 4962 udi_size -= toh->len; 4963 } 4964 4965 /* Consumed all of allocated space */ 4966 ASSERT(udi_size == 0); 4967 } 4968 } else { 4969 sin6_t *sin6; 4970 4971 /* 4972 * Handle both IPv4 and IPv6 packets for IPv6 sockets. 4973 * 4974 * Normally we only send up the address. If receiving of any 4975 * optional receive side information is enabled, we also send 4976 * that up as options. 4977 * [ Only udp_rput_other() handles packets that contain IP 4978 * options so code to account for does not appear immediately 4979 * below but elsewhere ] 4980 */ 4981 udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t); 4982 4983 if (ipp.ipp_fields & (IPPF_HOPOPTS|IPPF_DSTOPTS|IPPF_RTDSTOPTS| 4984 IPPF_RTHDR|IPPF_IFINDEX)) { 4985 if (udp->udp_ipv6_recvhopopts && 4986 (ipp.ipp_fields & IPPF_HOPOPTS)) { 4987 size_t hlen; 4988 4989 UDP_STAT(us, udp_in_recvhopopts); 4990 hlen = copy_hop_opts(&ipp, NULL); 4991 if (hlen == 0) 4992 ipp.ipp_fields &= ~IPPF_HOPOPTS; 4993 udi_size += hlen; 4994 } 4995 if ((udp->udp_ipv6_recvdstopts || 4996 udp->udp_old_ipv6_recvdstopts) && 4997 (ipp.ipp_fields & IPPF_DSTOPTS)) { 4998 udi_size += sizeof (struct T_opthdr) + 4999 ipp.ipp_dstoptslen; 5000 UDP_STAT(us, udp_in_recvdstopts); 5001 } 5002 if (((udp->udp_ipv6_recvdstopts && 5003 udp->udp_ipv6_recvrthdr && 5004 (ipp.ipp_fields & IPPF_RTHDR)) || 5005 udp->udp_ipv6_recvrthdrdstopts) && 5006 (ipp.ipp_fields & IPPF_RTDSTOPTS)) { 5007 udi_size += sizeof (struct T_opthdr) + 5008 ipp.ipp_rtdstoptslen; 5009 UDP_STAT(us, udp_in_recvrtdstopts); 5010 } 5011 if (udp->udp_ipv6_recvrthdr && 5012 (ipp.ipp_fields & IPPF_RTHDR)) { 5013 udi_size += sizeof (struct T_opthdr) + 5014 ipp.ipp_rthdrlen; 5015 UDP_STAT(us, udp_in_recvrthdr); 5016 } 5017 if (udp->udp_ip_recvpktinfo && 5018 (ipp.ipp_fields & IPPF_IFINDEX)) { 5019 udi_size += sizeof (struct T_opthdr) + 5020 sizeof (struct in6_pktinfo); 5021 UDP_STAT(us, udp_in_recvpktinfo); 5022 } 5023 5024 } 5025 if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) { 5026 udi_size += sizeof (struct T_opthdr) + ucredsize; 5027 cpid = DB_CPID(mp); 5028 UDP_STAT(us, udp_in_recvucred); 5029 } 5030 5031 if (udp->udp_ipv6_recvhoplimit) { 5032 udi_size += sizeof (struct T_opthdr) + sizeof (int); 5033 UDP_STAT(us, udp_in_recvhoplimit); 5034 } 5035 5036 if (udp->udp_ipv6_recvtclass) { 5037 udi_size += sizeof (struct T_opthdr) + sizeof (int); 5038 UDP_STAT(us, udp_in_recvtclass); 5039 } 5040 5041 mp1 = allocb(udi_size, BPRI_MED); 5042 if (mp1 == NULL) { 5043 freemsg(mp); 5044 if (options_mp != NULL) 5045 freeb(options_mp); 5046 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, 5047 "udp_rput_end: q %p (%S)", q, "allocbfail"); 5048 BUMP_MIB(&udp->udp_mib, udpInErrors); 5049 return; 5050 } 5051 mp1->b_cont = mp; 5052 mp = mp1; 5053 mp->b_datap->db_type = M_PROTO; 5054 tudi = (struct T_unitdata_ind *)mp->b_rptr; 5055 mp->b_wptr = (uchar_t *)tudi + udi_size; 5056 tudi->PRIM_type = T_UNITDATA_IND; 5057 tudi->SRC_length = sizeof (sin6_t); 5058 tudi->SRC_offset = sizeof (struct T_unitdata_ind); 5059 tudi->OPT_offset = sizeof (struct T_unitdata_ind) + 5060 sizeof (sin6_t); 5061 udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin6_t)); 5062 tudi->OPT_length = udi_size; 5063 sin6 = (sin6_t *)&tudi[1]; 5064 if (ipversion == IPV4_VERSION) { 5065 in6_addr_t v6dst; 5066 5067 IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_src, 5068 &sin6->sin6_addr); 5069 IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_dst, 5070 &v6dst); 5071 sin6->sin6_flowinfo = 0; 5072 sin6->sin6_scope_id = 0; 5073 sin6->__sin6_src_id = ip_srcid_find_addr(&v6dst, 5074 connp->conn_zoneid, us->us_netstack); 5075 } else { 5076 sin6->sin6_addr = ip6h->ip6_src; 5077 /* No sin6_flowinfo per API */ 5078 sin6->sin6_flowinfo = 0; 5079 /* For link-scope source pass up scope id */ 5080 if ((ipp.ipp_fields & IPPF_IFINDEX) && 5081 IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) 5082 sin6->sin6_scope_id = ipp.ipp_ifindex; 5083 else 5084 sin6->sin6_scope_id = 0; 5085 sin6->__sin6_src_id = ip_srcid_find_addr( 5086 &ip6h->ip6_dst, connp->conn_zoneid, 5087 us->us_netstack); 5088 } 5089 sin6->sin6_port = udpha->uha_src_port; 5090 sin6->sin6_family = udp->udp_family; 5091 5092 if (udi_size != 0) { 5093 uchar_t *dstopt; 5094 5095 dstopt = (uchar_t *)&sin6[1]; 5096 if (udp->udp_ip_recvpktinfo && 5097 (ipp.ipp_fields & IPPF_IFINDEX)) { 5098 struct T_opthdr *toh; 5099 struct in6_pktinfo *pkti; 5100 5101 toh = (struct T_opthdr *)dstopt; 5102 toh->level = IPPROTO_IPV6; 5103 toh->name = IPV6_PKTINFO; 5104 toh->len = sizeof (struct T_opthdr) + 5105 sizeof (*pkti); 5106 toh->status = 0; 5107 dstopt += sizeof (struct T_opthdr); 5108 pkti = (struct in6_pktinfo *)dstopt; 5109 if (ipversion == IPV6_VERSION) 5110 pkti->ipi6_addr = ip6h->ip6_dst; 5111 else 5112 IN6_IPADDR_TO_V4MAPPED( 5113 ((ipha_t *)rptr)->ipha_dst, 5114 &pkti->ipi6_addr); 5115 pkti->ipi6_ifindex = ipp.ipp_ifindex; 5116 dstopt += sizeof (*pkti); 5117 udi_size -= toh->len; 5118 } 5119 if (udp->udp_ipv6_recvhoplimit) { 5120 struct T_opthdr *toh; 5121 5122 toh = (struct T_opthdr *)dstopt; 5123 toh->level = IPPROTO_IPV6; 5124 toh->name = IPV6_HOPLIMIT; 5125 toh->len = sizeof (struct T_opthdr) + 5126 sizeof (uint_t); 5127 toh->status = 0; 5128 dstopt += sizeof (struct T_opthdr); 5129 if (ipversion == IPV6_VERSION) 5130 *(uint_t *)dstopt = ip6h->ip6_hops; 5131 else 5132 *(uint_t *)dstopt = 5133 ((ipha_t *)rptr)->ipha_ttl; 5134 dstopt += sizeof (uint_t); 5135 udi_size -= toh->len; 5136 } 5137 if (udp->udp_ipv6_recvtclass) { 5138 struct T_opthdr *toh; 5139 5140 toh = (struct T_opthdr *)dstopt; 5141 toh->level = IPPROTO_IPV6; 5142 toh->name = IPV6_TCLASS; 5143 toh->len = sizeof (struct T_opthdr) + 5144 sizeof (uint_t); 5145 toh->status = 0; 5146 dstopt += sizeof (struct T_opthdr); 5147 if (ipversion == IPV6_VERSION) { 5148 *(uint_t *)dstopt = 5149 IPV6_FLOW_TCLASS(ip6h->ip6_flow); 5150 } else { 5151 ipha_t *ipha = (ipha_t *)rptr; 5152 *(uint_t *)dstopt = 5153 ipha->ipha_type_of_service; 5154 } 5155 dstopt += sizeof (uint_t); 5156 udi_size -= toh->len; 5157 } 5158 if (udp->udp_ipv6_recvhopopts && 5159 (ipp.ipp_fields & IPPF_HOPOPTS)) { 5160 size_t hlen; 5161 5162 hlen = copy_hop_opts(&ipp, dstopt); 5163 dstopt += hlen; 5164 udi_size -= hlen; 5165 } 5166 if (udp->udp_ipv6_recvdstopts && 5167 udp->udp_ipv6_recvrthdr && 5168 (ipp.ipp_fields & IPPF_RTHDR) && 5169 (ipp.ipp_fields & IPPF_RTDSTOPTS)) { 5170 struct T_opthdr *toh; 5171 5172 toh = (struct T_opthdr *)dstopt; 5173 toh->level = IPPROTO_IPV6; 5174 toh->name = IPV6_DSTOPTS; 5175 toh->len = sizeof (struct T_opthdr) + 5176 ipp.ipp_rtdstoptslen; 5177 toh->status = 0; 5178 dstopt += sizeof (struct T_opthdr); 5179 bcopy(ipp.ipp_rtdstopts, dstopt, 5180 ipp.ipp_rtdstoptslen); 5181 dstopt += ipp.ipp_rtdstoptslen; 5182 udi_size -= toh->len; 5183 } 5184 if (udp->udp_ipv6_recvrthdr && 5185 (ipp.ipp_fields & IPPF_RTHDR)) { 5186 struct T_opthdr *toh; 5187 5188 toh = (struct T_opthdr *)dstopt; 5189 toh->level = IPPROTO_IPV6; 5190 toh->name = IPV6_RTHDR; 5191 toh->len = sizeof (struct T_opthdr) + 5192 ipp.ipp_rthdrlen; 5193 toh->status = 0; 5194 dstopt += sizeof (struct T_opthdr); 5195 bcopy(ipp.ipp_rthdr, dstopt, ipp.ipp_rthdrlen); 5196 dstopt += ipp.ipp_rthdrlen; 5197 udi_size -= toh->len; 5198 } 5199 if (udp->udp_ipv6_recvdstopts && 5200 (ipp.ipp_fields & IPPF_DSTOPTS)) { 5201 struct T_opthdr *toh; 5202 5203 toh = (struct T_opthdr *)dstopt; 5204 toh->level = IPPROTO_IPV6; 5205 toh->name = IPV6_DSTOPTS; 5206 toh->len = sizeof (struct T_opthdr) + 5207 ipp.ipp_dstoptslen; 5208 toh->status = 0; 5209 dstopt += sizeof (struct T_opthdr); 5210 bcopy(ipp.ipp_dstopts, dstopt, 5211 ipp.ipp_dstoptslen); 5212 dstopt += ipp.ipp_dstoptslen; 5213 udi_size -= toh->len; 5214 } 5215 5216 if (cr != NULL) { 5217 struct T_opthdr *toh; 5218 5219 toh = (struct T_opthdr *)dstopt; 5220 toh->level = SOL_SOCKET; 5221 toh->name = SCM_UCRED; 5222 toh->len = sizeof (struct T_opthdr) + ucredsize; 5223 toh->status = 0; 5224 (void) cred2ucred(cr, cpid, &toh[1], rcr); 5225 dstopt += toh->len; 5226 udi_size -= toh->len; 5227 } 5228 /* Consumed all of allocated space */ 5229 ASSERT(udi_size == 0); 5230 } 5231 #undef sin6 5232 /* No IP_RECVDSTADDR for IPv6. */ 5233 } 5234 5235 BUMP_MIB(&udp->udp_mib, udpHCInDatagrams); 5236 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, 5237 "udp_rput_end: q %p (%S)", q, "end"); 5238 if (options_mp != NULL) 5239 freeb(options_mp); 5240 5241 if (udp->udp_direct_sockfs) { 5242 /* 5243 * There is nothing above us except for the stream head; 5244 * use the read-side synchronous stream interface in 5245 * order to reduce the time spent in interrupt thread. 5246 */ 5247 ASSERT(udp->udp_issocket); 5248 udp_rcv_enqueue(UDP_RD(q), udp, mp, mp_len); 5249 } else { 5250 /* 5251 * Use regular STREAMS interface to pass data upstream 5252 * if this is not a socket endpoint, or if we have 5253 * switched over to the slow mode due to sockmod being 5254 * popped or a module being pushed on top of us. 5255 */ 5256 putnext(UDP_RD(q), mp); 5257 } 5258 return; 5259 5260 tossit: 5261 freemsg(mp); 5262 if (options_mp != NULL) 5263 freeb(options_mp); 5264 BUMP_MIB(&udp->udp_mib, udpInErrors); 5265 } 5266 5267 void 5268 udp_conn_recv(conn_t *connp, mblk_t *mp) 5269 { 5270 _UDP_ENTER(connp, mp, udp_input_wrapper, SQTAG_UDP_FANOUT); 5271 } 5272 5273 /* ARGSUSED */ 5274 static void 5275 udp_input_wrapper(void *arg, mblk_t *mp, void *arg2) 5276 { 5277 udp_input((conn_t *)arg, mp); 5278 _UDP_EXIT((conn_t *)arg); 5279 } 5280 5281 /* 5282 * Process non-M_DATA messages as well as M_DATA messages that requires 5283 * modifications to udp_ip_rcv_options i.e. IPv4 packets with IP options. 5284 */ 5285 static void 5286 udp_rput_other(queue_t *q, mblk_t *mp) 5287 { 5288 struct T_unitdata_ind *tudi; 5289 mblk_t *mp1; 5290 uchar_t *rptr; 5291 uchar_t *new_rptr; 5292 int hdr_length; 5293 int udi_size; /* Size of T_unitdata_ind */ 5294 int opt_len; /* Length of IP options */ 5295 sin_t *sin; 5296 struct T_error_ack *tea; 5297 mblk_t *options_mp = NULL; 5298 ip_pktinfo_t *pinfo; 5299 boolean_t recv_on = B_FALSE; 5300 cred_t *cr = NULL; 5301 udp_t *udp = Q_TO_UDP(q); 5302 pid_t cpid; 5303 cred_t *rcr = udp->udp_connp->conn_cred; 5304 udp_stack_t *us = udp->udp_us; 5305 5306 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_START, 5307 "udp_rput_other: q %p mp %p", q, mp); 5308 5309 ASSERT(OK_32PTR(mp->b_rptr)); 5310 rptr = mp->b_rptr; 5311 5312 switch (mp->b_datap->db_type) { 5313 case M_CTL: 5314 /* 5315 * We are here only if IP_RECVSLLA and/or IP_RECVIF are set 5316 */ 5317 recv_on = B_TRUE; 5318 options_mp = mp; 5319 pinfo = (ip_pktinfo_t *)options_mp->b_rptr; 5320 5321 /* 5322 * The actual data is in mp->b_cont 5323 */ 5324 mp = mp->b_cont; 5325 ASSERT(OK_32PTR(mp->b_rptr)); 5326 rptr = mp->b_rptr; 5327 break; 5328 case M_DATA: 5329 /* 5330 * M_DATA messages contain IPv4 datagrams. They are handled 5331 * after this switch. 5332 */ 5333 break; 5334 case M_PROTO: 5335 case M_PCPROTO: 5336 /* M_PROTO messages contain some type of TPI message. */ 5337 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 5338 if (mp->b_wptr - rptr < sizeof (t_scalar_t)) { 5339 freemsg(mp); 5340 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, 5341 "udp_rput_other_end: q %p (%S)", q, "protoshort"); 5342 return; 5343 } 5344 tea = (struct T_error_ack *)rptr; 5345 5346 switch (tea->PRIM_type) { 5347 case T_ERROR_ACK: 5348 switch (tea->ERROR_prim) { 5349 case O_T_BIND_REQ: 5350 case T_BIND_REQ: { 5351 /* 5352 * If our O_T_BIND_REQ/T_BIND_REQ fails, 5353 * clear out the associated port and source 5354 * address before passing the message 5355 * upstream. If this was caused by a T_CONN_REQ 5356 * revert back to bound state. 5357 */ 5358 udp_fanout_t *udpf; 5359 5360 udpf = &us->us_bind_fanout[ 5361 UDP_BIND_HASH(udp->udp_port, 5362 us->us_bind_fanout_size)]; 5363 mutex_enter(&udpf->uf_lock); 5364 if (udp->udp_state == TS_DATA_XFER) { 5365 /* Connect failed */ 5366 tea->ERROR_prim = T_CONN_REQ; 5367 /* Revert back to the bound source */ 5368 udp->udp_v6src = udp->udp_bound_v6src; 5369 udp->udp_state = TS_IDLE; 5370 mutex_exit(&udpf->uf_lock); 5371 if (udp->udp_family == AF_INET6) 5372 (void) udp_build_hdrs(q, udp); 5373 break; 5374 } 5375 5376 if (udp->udp_discon_pending) { 5377 tea->ERROR_prim = T_DISCON_REQ; 5378 udp->udp_discon_pending = 0; 5379 } 5380 V6_SET_ZERO(udp->udp_v6src); 5381 V6_SET_ZERO(udp->udp_bound_v6src); 5382 udp->udp_state = TS_UNBND; 5383 udp_bind_hash_remove(udp, B_TRUE); 5384 udp->udp_port = 0; 5385 mutex_exit(&udpf->uf_lock); 5386 if (udp->udp_family == AF_INET6) 5387 (void) udp_build_hdrs(q, udp); 5388 break; 5389 } 5390 default: 5391 break; 5392 } 5393 break; 5394 case T_BIND_ACK: 5395 udp_rput_bind_ack(q, mp); 5396 return; 5397 5398 case T_OPTMGMT_ACK: 5399 case T_OK_ACK: 5400 break; 5401 default: 5402 freemsg(mp); 5403 return; 5404 } 5405 putnext(UDP_RD(q), mp); 5406 return; 5407 } 5408 5409 /* 5410 * This is the inbound data path. 5411 * First, we make sure the data contains both IP and UDP headers. 5412 * 5413 * This handle IPv4 packets for only AF_INET sockets. 5414 * AF_INET6 sockets can never access udp_ip_rcv_options thus there 5415 * is no need saving the options. 5416 */ 5417 ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION); 5418 hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE; 5419 if (mp->b_wptr - rptr < hdr_length) { 5420 if (!pullupmsg(mp, hdr_length)) { 5421 freemsg(mp); 5422 if (options_mp != NULL) 5423 freeb(options_mp); 5424 BUMP_MIB(&udp->udp_mib, udpInErrors); 5425 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, 5426 "udp_rput_other_end: q %p (%S)", q, "hdrshort"); 5427 return; 5428 } 5429 rptr = mp->b_rptr; 5430 } 5431 /* Walk past the headers. */ 5432 new_rptr = rptr + hdr_length; 5433 if (!udp->udp_rcvhdr) 5434 mp->b_rptr = new_rptr; 5435 5436 /* Save the options if any */ 5437 opt_len = hdr_length - (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE); 5438 if (opt_len > 0) { 5439 if (opt_len > udp->udp_ip_rcv_options_len) { 5440 if (udp->udp_ip_rcv_options_len) 5441 mi_free((char *)udp->udp_ip_rcv_options); 5442 udp->udp_ip_rcv_options_len = 0; 5443 udp->udp_ip_rcv_options = 5444 (uchar_t *)mi_alloc(opt_len, BPRI_HI); 5445 if (udp->udp_ip_rcv_options) 5446 udp->udp_ip_rcv_options_len = opt_len; 5447 } 5448 if (udp->udp_ip_rcv_options_len) { 5449 bcopy(rptr + IP_SIMPLE_HDR_LENGTH, 5450 udp->udp_ip_rcv_options, opt_len); 5451 /* Adjust length if we are resusing the space */ 5452 udp->udp_ip_rcv_options_len = opt_len; 5453 } 5454 } else if (udp->udp_ip_rcv_options_len) { 5455 mi_free((char *)udp->udp_ip_rcv_options); 5456 udp->udp_ip_rcv_options = NULL; 5457 udp->udp_ip_rcv_options_len = 0; 5458 } 5459 5460 /* 5461 * Normally only send up the address. 5462 * If IP_RECVDSTADDR is set we include the destination IP 5463 * address as an option. With IP_RECVOPTS we include all 5464 * the IP options. 5465 */ 5466 udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t); 5467 if (udp->udp_recvdstaddr) { 5468 udi_size += sizeof (struct T_opthdr) + sizeof (struct in_addr); 5469 UDP_STAT(us, udp_in_recvdstaddr); 5470 } 5471 5472 if (udp->udp_ip_recvpktinfo && recv_on && 5473 (pinfo->ip_pkt_flags & IPF_RECVADDR)) { 5474 udi_size += sizeof (struct T_opthdr) + 5475 sizeof (struct in_pktinfo); 5476 UDP_STAT(us, udp_ip_recvpktinfo); 5477 } 5478 5479 if (udp->udp_recvopts && opt_len > 0) { 5480 udi_size += sizeof (struct T_opthdr) + opt_len; 5481 UDP_STAT(us, udp_in_recvopts); 5482 } 5483 5484 /* 5485 * If the IP_RECVSLLA or the IP_RECVIF is set then allocate 5486 * space accordingly 5487 */ 5488 if (udp->udp_recvif && recv_on && 5489 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 5490 udi_size += sizeof (struct T_opthdr) + sizeof (uint_t); 5491 UDP_STAT(us, udp_in_recvif); 5492 } 5493 5494 if (udp->udp_recvslla && recv_on && 5495 (pinfo->ip_pkt_flags & IPF_RECVSLLA)) { 5496 udi_size += sizeof (struct T_opthdr) + 5497 sizeof (struct sockaddr_dl); 5498 UDP_STAT(us, udp_in_recvslla); 5499 } 5500 5501 if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) { 5502 udi_size += sizeof (struct T_opthdr) + ucredsize; 5503 cpid = DB_CPID(mp); 5504 UDP_STAT(us, udp_in_recvucred); 5505 } 5506 /* 5507 * If IP_RECVTTL is set allocate the appropriate sized buffer 5508 */ 5509 if (udp->udp_recvttl) { 5510 udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t); 5511 UDP_STAT(us, udp_in_recvttl); 5512 } 5513 5514 /* Allocate a message block for the T_UNITDATA_IND structure. */ 5515 mp1 = allocb(udi_size, BPRI_MED); 5516 if (mp1 == NULL) { 5517 freemsg(mp); 5518 if (options_mp != NULL) 5519 freeb(options_mp); 5520 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, 5521 "udp_rput_other_end: q %p (%S)", q, "allocbfail"); 5522 BUMP_MIB(&udp->udp_mib, udpInErrors); 5523 return; 5524 } 5525 mp1->b_cont = mp; 5526 mp = mp1; 5527 mp->b_datap->db_type = M_PROTO; 5528 tudi = (struct T_unitdata_ind *)mp->b_rptr; 5529 mp->b_wptr = (uchar_t *)tudi + udi_size; 5530 tudi->PRIM_type = T_UNITDATA_IND; 5531 tudi->SRC_length = sizeof (sin_t); 5532 tudi->SRC_offset = sizeof (struct T_unitdata_ind); 5533 tudi->OPT_offset = sizeof (struct T_unitdata_ind) + sizeof (sin_t); 5534 udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t)); 5535 tudi->OPT_length = udi_size; 5536 5537 sin = (sin_t *)&tudi[1]; 5538 sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src; 5539 sin->sin_port = ((in_port_t *) 5540 new_rptr)[-(UDPH_SIZE/sizeof (in_port_t))]; 5541 sin->sin_family = AF_INET; 5542 *(uint32_t *)&sin->sin_zero[0] = 0; 5543 *(uint32_t *)&sin->sin_zero[4] = 0; 5544 5545 /* 5546 * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or 5547 * IP_RECVTTL has been set. 5548 */ 5549 if (udi_size != 0) { 5550 /* 5551 * Copy in destination address before options to avoid any 5552 * padding issues. 5553 */ 5554 char *dstopt; 5555 5556 dstopt = (char *)&sin[1]; 5557 if (udp->udp_recvdstaddr) { 5558 struct T_opthdr *toh; 5559 ipaddr_t *dstptr; 5560 5561 toh = (struct T_opthdr *)dstopt; 5562 toh->level = IPPROTO_IP; 5563 toh->name = IP_RECVDSTADDR; 5564 toh->len = sizeof (struct T_opthdr) + sizeof (ipaddr_t); 5565 toh->status = 0; 5566 dstopt += sizeof (struct T_opthdr); 5567 dstptr = (ipaddr_t *)dstopt; 5568 *dstptr = (((ipaddr_t *)rptr)[4]); 5569 dstopt += sizeof (ipaddr_t); 5570 udi_size -= toh->len; 5571 } 5572 if (udp->udp_recvopts && udi_size != 0) { 5573 struct T_opthdr *toh; 5574 5575 toh = (struct T_opthdr *)dstopt; 5576 toh->level = IPPROTO_IP; 5577 toh->name = IP_RECVOPTS; 5578 toh->len = sizeof (struct T_opthdr) + opt_len; 5579 toh->status = 0; 5580 dstopt += sizeof (struct T_opthdr); 5581 bcopy(rptr + IP_SIMPLE_HDR_LENGTH, dstopt, opt_len); 5582 dstopt += opt_len; 5583 udi_size -= toh->len; 5584 } 5585 if (udp->udp_ip_recvpktinfo && recv_on && 5586 (pinfo->ip_pkt_flags & IPF_RECVADDR)) { 5587 5588 struct T_opthdr *toh; 5589 struct in_pktinfo *pktinfop; 5590 5591 toh = (struct T_opthdr *)dstopt; 5592 toh->level = IPPROTO_IP; 5593 toh->name = IP_PKTINFO; 5594 toh->len = sizeof (struct T_opthdr) + 5595 sizeof (*pktinfop); 5596 toh->status = 0; 5597 dstopt += sizeof (struct T_opthdr); 5598 pktinfop = (struct in_pktinfo *)dstopt; 5599 pktinfop->ipi_ifindex = pinfo->ip_pkt_ifindex; 5600 pktinfop->ipi_spec_dst = pinfo->ip_pkt_match_addr; 5601 5602 pktinfop->ipi_addr.s_addr = ((ipha_t *)rptr)->ipha_dst; 5603 5604 dstopt += sizeof (struct in_pktinfo); 5605 udi_size -= toh->len; 5606 } 5607 5608 if (udp->udp_recvslla && recv_on && 5609 (pinfo->ip_pkt_flags & IPF_RECVSLLA)) { 5610 5611 struct T_opthdr *toh; 5612 struct sockaddr_dl *dstptr; 5613 5614 toh = (struct T_opthdr *)dstopt; 5615 toh->level = IPPROTO_IP; 5616 toh->name = IP_RECVSLLA; 5617 toh->len = sizeof (struct T_opthdr) + 5618 sizeof (struct sockaddr_dl); 5619 toh->status = 0; 5620 dstopt += sizeof (struct T_opthdr); 5621 dstptr = (struct sockaddr_dl *)dstopt; 5622 bcopy(&pinfo->ip_pkt_slla, dstptr, 5623 sizeof (struct sockaddr_dl)); 5624 dstopt += sizeof (struct sockaddr_dl); 5625 udi_size -= toh->len; 5626 } 5627 5628 if (udp->udp_recvif && recv_on && 5629 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 5630 5631 struct T_opthdr *toh; 5632 uint_t *dstptr; 5633 5634 toh = (struct T_opthdr *)dstopt; 5635 toh->level = IPPROTO_IP; 5636 toh->name = IP_RECVIF; 5637 toh->len = sizeof (struct T_opthdr) + 5638 sizeof (uint_t); 5639 toh->status = 0; 5640 dstopt += sizeof (struct T_opthdr); 5641 dstptr = (uint_t *)dstopt; 5642 *dstptr = pinfo->ip_pkt_ifindex; 5643 dstopt += sizeof (uint_t); 5644 udi_size -= toh->len; 5645 } 5646 5647 if (cr != NULL) { 5648 struct T_opthdr *toh; 5649 5650 toh = (struct T_opthdr *)dstopt; 5651 toh->level = SOL_SOCKET; 5652 toh->name = SCM_UCRED; 5653 toh->len = sizeof (struct T_opthdr) + ucredsize; 5654 toh->status = 0; 5655 (void) cred2ucred(cr, cpid, &toh[1], rcr); 5656 dstopt += toh->len; 5657 udi_size -= toh->len; 5658 } 5659 5660 if (udp->udp_recvttl) { 5661 struct T_opthdr *toh; 5662 uint8_t *dstptr; 5663 5664 toh = (struct T_opthdr *)dstopt; 5665 toh->level = IPPROTO_IP; 5666 toh->name = IP_RECVTTL; 5667 toh->len = sizeof (struct T_opthdr) + 5668 sizeof (uint8_t); 5669 toh->status = 0; 5670 dstopt += sizeof (struct T_opthdr); 5671 dstptr = (uint8_t *)dstopt; 5672 *dstptr = ((ipha_t *)rptr)->ipha_ttl; 5673 dstopt += sizeof (uint8_t); 5674 udi_size -= toh->len; 5675 } 5676 5677 ASSERT(udi_size == 0); /* "Consumed" all of allocated space */ 5678 } 5679 BUMP_MIB(&udp->udp_mib, udpHCInDatagrams); 5680 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, 5681 "udp_rput_other_end: q %p (%S)", q, "end"); 5682 if (options_mp != NULL) 5683 freeb(options_mp); 5684 5685 if (udp->udp_direct_sockfs) { 5686 /* 5687 * There is nothing above us except for the stream head; 5688 * use the read-side synchronous stream interface in 5689 * order to reduce the time spent in interrupt thread. 5690 */ 5691 ASSERT(udp->udp_issocket); 5692 udp_rcv_enqueue(UDP_RD(q), udp, mp, msgdsize(mp)); 5693 } else { 5694 /* 5695 * Use regular STREAMS interface to pass data upstream 5696 * if this is not a socket endpoint, or if we have 5697 * switched over to the slow mode due to sockmod being 5698 * popped or a module being pushed on top of us. 5699 */ 5700 putnext(UDP_RD(q), mp); 5701 } 5702 } 5703 5704 /* ARGSUSED */ 5705 static void 5706 udp_rput_other_wrapper(void *arg, mblk_t *mp, void *arg2) 5707 { 5708 conn_t *connp = arg; 5709 5710 udp_rput_other(connp->conn_rq, mp); 5711 udp_exit(connp); 5712 } 5713 5714 /* 5715 * Process a T_BIND_ACK 5716 */ 5717 static void 5718 udp_rput_bind_ack(queue_t *q, mblk_t *mp) 5719 { 5720 udp_t *udp = Q_TO_UDP(q); 5721 mblk_t *mp1; 5722 ire_t *ire; 5723 struct T_bind_ack *tba; 5724 uchar_t *addrp; 5725 ipa_conn_t *ac; 5726 ipa6_conn_t *ac6; 5727 5728 if (udp->udp_discon_pending) 5729 udp->udp_discon_pending = 0; 5730 5731 /* 5732 * If a broadcast/multicast address was bound set 5733 * the source address to 0. 5734 * This ensures no datagrams with broadcast address 5735 * as source address are emitted (which would violate 5736 * RFC1122 - Hosts requirements) 5737 * 5738 * Note that when connecting the returned IRE is 5739 * for the destination address and we only perform 5740 * the broadcast check for the source address (it 5741 * is OK to connect to a broadcast/multicast address.) 5742 */ 5743 mp1 = mp->b_cont; 5744 if (mp1 != NULL && mp1->b_datap->db_type == IRE_DB_TYPE) { 5745 ire = (ire_t *)mp1->b_rptr; 5746 5747 /* 5748 * Note: we get IRE_BROADCAST for IPv6 to "mark" a multicast 5749 * local address. 5750 */ 5751 if (ire->ire_type == IRE_BROADCAST && 5752 udp->udp_state != TS_DATA_XFER) { 5753 /* This was just a local bind to a broadcast addr */ 5754 V6_SET_ZERO(udp->udp_v6src); 5755 if (udp->udp_family == AF_INET6) 5756 (void) udp_build_hdrs(q, udp); 5757 } else if (V6_OR_V4_INADDR_ANY(udp->udp_v6src)) { 5758 /* 5759 * Local address not yet set - pick it from the 5760 * T_bind_ack 5761 */ 5762 tba = (struct T_bind_ack *)mp->b_rptr; 5763 addrp = &mp->b_rptr[tba->ADDR_offset]; 5764 switch (udp->udp_family) { 5765 case AF_INET: 5766 if (tba->ADDR_length == sizeof (ipa_conn_t)) { 5767 ac = (ipa_conn_t *)addrp; 5768 } else { 5769 ASSERT(tba->ADDR_length == 5770 sizeof (ipa_conn_x_t)); 5771 ac = &((ipa_conn_x_t *)addrp)->acx_conn; 5772 } 5773 IN6_IPADDR_TO_V4MAPPED(ac->ac_laddr, 5774 &udp->udp_v6src); 5775 break; 5776 case AF_INET6: 5777 if (tba->ADDR_length == sizeof (ipa6_conn_t)) { 5778 ac6 = (ipa6_conn_t *)addrp; 5779 } else { 5780 ASSERT(tba->ADDR_length == 5781 sizeof (ipa6_conn_x_t)); 5782 ac6 = &((ipa6_conn_x_t *) 5783 addrp)->ac6x_conn; 5784 } 5785 udp->udp_v6src = ac6->ac6_laddr; 5786 (void) udp_build_hdrs(q, udp); 5787 break; 5788 } 5789 } 5790 mp1 = mp1->b_cont; 5791 } 5792 /* 5793 * Look for one or more appended ACK message added by 5794 * udp_connect or udp_disconnect. 5795 * If none found just send up the T_BIND_ACK. 5796 * udp_connect has appended a T_OK_ACK and a T_CONN_CON. 5797 * udp_disconnect has appended a T_OK_ACK. 5798 */ 5799 if (mp1 != NULL) { 5800 if (mp->b_cont == mp1) 5801 mp->b_cont = NULL; 5802 else { 5803 ASSERT(mp->b_cont->b_cont == mp1); 5804 mp->b_cont->b_cont = NULL; 5805 } 5806 freemsg(mp); 5807 mp = mp1; 5808 while (mp != NULL) { 5809 mp1 = mp->b_cont; 5810 mp->b_cont = NULL; 5811 putnext(UDP_RD(q), mp); 5812 mp = mp1; 5813 } 5814 return; 5815 } 5816 freemsg(mp->b_cont); 5817 mp->b_cont = NULL; 5818 putnext(UDP_RD(q), mp); 5819 } 5820 5821 /* 5822 * return SNMP stuff in buffer in mpdata 5823 */ 5824 int 5825 udp_snmp_get(queue_t *q, mblk_t *mpctl) 5826 { 5827 mblk_t *mpdata; 5828 mblk_t *mp_conn_ctl; 5829 mblk_t *mp_attr_ctl; 5830 mblk_t *mp6_conn_ctl; 5831 mblk_t *mp6_attr_ctl; 5832 mblk_t *mp_conn_tail; 5833 mblk_t *mp_attr_tail; 5834 mblk_t *mp6_conn_tail; 5835 mblk_t *mp6_attr_tail; 5836 struct opthdr *optp; 5837 mib2_udpEntry_t ude; 5838 mib2_udp6Entry_t ude6; 5839 mib2_transportMLPEntry_t mlp; 5840 int state; 5841 zoneid_t zoneid; 5842 int i; 5843 connf_t *connfp; 5844 conn_t *connp = Q_TO_CONN(q); 5845 udp_t *udp = connp->conn_udp; 5846 int v4_conn_idx; 5847 int v6_conn_idx; 5848 boolean_t needattr; 5849 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 5850 5851 mp_conn_ctl = mp_attr_ctl = mp6_conn_ctl = NULL; 5852 if (mpctl == NULL || 5853 (mpdata = mpctl->b_cont) == NULL || 5854 (mp_conn_ctl = copymsg(mpctl)) == NULL || 5855 (mp_attr_ctl = copymsg(mpctl)) == NULL || 5856 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 5857 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 5858 freemsg(mp_conn_ctl); 5859 freemsg(mp_attr_ctl); 5860 freemsg(mp6_conn_ctl); 5861 return (0); 5862 } 5863 5864 zoneid = connp->conn_zoneid; 5865 5866 /* fixed length structure for IPv4 and IPv6 counters */ 5867 SET_MIB(udp->udp_mib.udpEntrySize, sizeof (mib2_udpEntry_t)); 5868 SET_MIB(udp->udp_mib.udp6EntrySize, sizeof (mib2_udp6Entry_t)); 5869 /* synchronize 64- and 32-bit counters */ 5870 SYNC32_MIB(&udp->udp_mib, udpInDatagrams, udpHCInDatagrams); 5871 SYNC32_MIB(&udp->udp_mib, udpOutDatagrams, udpHCOutDatagrams); 5872 5873 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 5874 optp->level = MIB2_UDP; 5875 optp->name = 0; 5876 (void) snmp_append_data(mpdata, (char *)&udp->udp_mib, 5877 sizeof (udp->udp_mib)); 5878 optp->len = msgdsize(mpdata); 5879 qreply(q, mpctl); 5880 5881 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 5882 v4_conn_idx = v6_conn_idx = 0; 5883 5884 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 5885 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 5886 connp = NULL; 5887 5888 while ((connp = ipcl_get_next_conn(connfp, connp, 5889 IPCL_UDP))) { 5890 udp = connp->conn_udp; 5891 if (zoneid != connp->conn_zoneid) 5892 continue; 5893 5894 /* 5895 * Note that the port numbers are sent in 5896 * host byte order 5897 */ 5898 5899 if (udp->udp_state == TS_UNBND) 5900 state = MIB2_UDP_unbound; 5901 else if (udp->udp_state == TS_IDLE) 5902 state = MIB2_UDP_idle; 5903 else if (udp->udp_state == TS_DATA_XFER) 5904 state = MIB2_UDP_connected; 5905 else 5906 state = MIB2_UDP_unknown; 5907 5908 needattr = B_FALSE; 5909 bzero(&mlp, sizeof (mlp)); 5910 if (connp->conn_mlp_type != mlptSingle) { 5911 if (connp->conn_mlp_type == mlptShared || 5912 connp->conn_mlp_type == mlptBoth) 5913 mlp.tme_flags |= MIB2_TMEF_SHARED; 5914 if (connp->conn_mlp_type == mlptPrivate || 5915 connp->conn_mlp_type == mlptBoth) 5916 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 5917 needattr = B_TRUE; 5918 } 5919 5920 /* 5921 * Create an IPv4 table entry for IPv4 entries and also 5922 * any IPv6 entries which are bound to in6addr_any 5923 * (i.e. anything a IPv4 peer could connect/send to). 5924 */ 5925 if (udp->udp_ipversion == IPV4_VERSION || 5926 (udp->udp_state <= TS_IDLE && 5927 IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src))) { 5928 ude.udpEntryInfo.ue_state = state; 5929 /* 5930 * If in6addr_any this will set it to 5931 * INADDR_ANY 5932 */ 5933 ude.udpLocalAddress = 5934 V4_PART_OF_V6(udp->udp_v6src); 5935 ude.udpLocalPort = ntohs(udp->udp_port); 5936 if (udp->udp_state == TS_DATA_XFER) { 5937 /* 5938 * Can potentially get here for 5939 * v6 socket if another process 5940 * (say, ping) has just done a 5941 * sendto(), changing the state 5942 * from the TS_IDLE above to 5943 * TS_DATA_XFER by the time we hit 5944 * this part of the code. 5945 */ 5946 ude.udpEntryInfo.ue_RemoteAddress = 5947 V4_PART_OF_V6(udp->udp_v6dst); 5948 ude.udpEntryInfo.ue_RemotePort = 5949 ntohs(udp->udp_dstport); 5950 } else { 5951 ude.udpEntryInfo.ue_RemoteAddress = 0; 5952 ude.udpEntryInfo.ue_RemotePort = 0; 5953 } 5954 5955 /* 5956 * We make the assumption that all udp_t 5957 * structs will be created within an address 5958 * region no larger than 32-bits. 5959 */ 5960 ude.udpInstance = (uint32_t)(uintptr_t)udp; 5961 ude.udpCreationProcess = 5962 (udp->udp_open_pid < 0) ? 5963 MIB2_UNKNOWN_PROCESS : 5964 udp->udp_open_pid; 5965 ude.udpCreationTime = udp->udp_open_time; 5966 5967 (void) snmp_append_data2(mp_conn_ctl->b_cont, 5968 &mp_conn_tail, (char *)&ude, sizeof (ude)); 5969 mlp.tme_connidx = v4_conn_idx++; 5970 if (needattr) 5971 (void) snmp_append_data2( 5972 mp_attr_ctl->b_cont, &mp_attr_tail, 5973 (char *)&mlp, sizeof (mlp)); 5974 } 5975 if (udp->udp_ipversion == IPV6_VERSION) { 5976 ude6.udp6EntryInfo.ue_state = state; 5977 ude6.udp6LocalAddress = udp->udp_v6src; 5978 ude6.udp6LocalPort = ntohs(udp->udp_port); 5979 ude6.udp6IfIndex = udp->udp_bound_if; 5980 if (udp->udp_state == TS_DATA_XFER) { 5981 ude6.udp6EntryInfo.ue_RemoteAddress = 5982 udp->udp_v6dst; 5983 ude6.udp6EntryInfo.ue_RemotePort = 5984 ntohs(udp->udp_dstport); 5985 } else { 5986 ude6.udp6EntryInfo.ue_RemoteAddress = 5987 sin6_null.sin6_addr; 5988 ude6.udp6EntryInfo.ue_RemotePort = 0; 5989 } 5990 /* 5991 * We make the assumption that all udp_t 5992 * structs will be created within an address 5993 * region no larger than 32-bits. 5994 */ 5995 ude6.udp6Instance = (uint32_t)(uintptr_t)udp; 5996 ude6.udp6CreationProcess = 5997 (udp->udp_open_pid < 0) ? 5998 MIB2_UNKNOWN_PROCESS : 5999 udp->udp_open_pid; 6000 ude6.udp6CreationTime = udp->udp_open_time; 6001 6002 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 6003 &mp6_conn_tail, (char *)&ude6, 6004 sizeof (ude6)); 6005 mlp.tme_connidx = v6_conn_idx++; 6006 if (needattr) 6007 (void) snmp_append_data2( 6008 mp6_attr_ctl->b_cont, 6009 &mp6_attr_tail, (char *)&mlp, 6010 sizeof (mlp)); 6011 } 6012 } 6013 } 6014 6015 /* IPv4 UDP endpoints */ 6016 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 6017 sizeof (struct T_optmgmt_ack)]; 6018 optp->level = MIB2_UDP; 6019 optp->name = MIB2_UDP_ENTRY; 6020 optp->len = msgdsize(mp_conn_ctl->b_cont); 6021 qreply(q, mp_conn_ctl); 6022 6023 /* table of MLP attributes... */ 6024 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 6025 sizeof (struct T_optmgmt_ack)]; 6026 optp->level = MIB2_UDP; 6027 optp->name = EXPER_XPORT_MLP; 6028 optp->len = msgdsize(mp_attr_ctl->b_cont); 6029 if (optp->len == 0) 6030 freemsg(mp_attr_ctl); 6031 else 6032 qreply(q, mp_attr_ctl); 6033 6034 /* IPv6 UDP endpoints */ 6035 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 6036 sizeof (struct T_optmgmt_ack)]; 6037 optp->level = MIB2_UDP6; 6038 optp->name = MIB2_UDP6_ENTRY; 6039 optp->len = msgdsize(mp6_conn_ctl->b_cont); 6040 qreply(q, mp6_conn_ctl); 6041 6042 /* table of MLP attributes... */ 6043 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 6044 sizeof (struct T_optmgmt_ack)]; 6045 optp->level = MIB2_UDP6; 6046 optp->name = EXPER_XPORT_MLP; 6047 optp->len = msgdsize(mp6_attr_ctl->b_cont); 6048 if (optp->len == 0) 6049 freemsg(mp6_attr_ctl); 6050 else 6051 qreply(q, mp6_attr_ctl); 6052 6053 return (1); 6054 } 6055 6056 /* 6057 * Return 0 if invalid set request, 1 otherwise, including non-udp requests. 6058 * NOTE: Per MIB-II, UDP has no writable data. 6059 * TODO: If this ever actually tries to set anything, it needs to be 6060 * to do the appropriate locking. 6061 */ 6062 /* ARGSUSED */ 6063 int 6064 udp_snmp_set(queue_t *q, t_scalar_t level, t_scalar_t name, 6065 uchar_t *ptr, int len) 6066 { 6067 switch (level) { 6068 case MIB2_UDP: 6069 return (0); 6070 default: 6071 return (1); 6072 } 6073 } 6074 6075 static void 6076 udp_report_item(mblk_t *mp, udp_t *udp) 6077 { 6078 char *state; 6079 char addrbuf1[INET6_ADDRSTRLEN]; 6080 char addrbuf2[INET6_ADDRSTRLEN]; 6081 uint_t print_len, buf_len; 6082 6083 buf_len = mp->b_datap->db_lim - mp->b_wptr; 6084 ASSERT(buf_len >= 0); 6085 if (buf_len == 0) 6086 return; 6087 6088 if (udp->udp_state == TS_UNBND) 6089 state = "UNBOUND"; 6090 else if (udp->udp_state == TS_IDLE) 6091 state = "IDLE"; 6092 else if (udp->udp_state == TS_DATA_XFER) 6093 state = "CONNECTED"; 6094 else 6095 state = "UnkState"; 6096 print_len = snprintf((char *)mp->b_wptr, buf_len, 6097 MI_COL_PTRFMT_STR "%4d %5u %s %s %5u %s\n", 6098 (void *)udp, udp->udp_connp->conn_zoneid, ntohs(udp->udp_port), 6099 inet_ntop(AF_INET6, &udp->udp_v6src, 6100 addrbuf1, sizeof (addrbuf1)), 6101 inet_ntop(AF_INET6, &udp->udp_v6dst, 6102 addrbuf2, sizeof (addrbuf2)), 6103 ntohs(udp->udp_dstport), state); 6104 if (print_len < buf_len) { 6105 mp->b_wptr += print_len; 6106 } else { 6107 mp->b_wptr += buf_len; 6108 } 6109 } 6110 6111 /* Report for ndd "udp_status" */ 6112 /* ARGSUSED */ 6113 static int 6114 udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 6115 { 6116 zoneid_t zoneid; 6117 connf_t *connfp; 6118 conn_t *connp = Q_TO_CONN(q); 6119 udp_t *udp = connp->conn_udp; 6120 int i; 6121 udp_stack_t *us = udp->udp_us; 6122 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6123 6124 /* 6125 * Because of the ndd constraint, at most we can have 64K buffer 6126 * to put in all UDP info. So to be more efficient, just 6127 * allocate a 64K buffer here, assuming we need that large buffer. 6128 * This may be a problem as any user can read udp_status. Therefore 6129 * we limit the rate of doing this using us_ndd_get_info_interval. 6130 * This should be OK as normal users should not do this too often. 6131 */ 6132 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 6133 if (ddi_get_lbolt() - us->us_last_ndd_get_info_time < 6134 drv_usectohz(us->us_ndd_get_info_interval * 1000)) { 6135 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 6136 return (0); 6137 } 6138 } 6139 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 6140 /* The following may work even if we cannot get a large buf. */ 6141 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 6142 return (0); 6143 } 6144 (void) mi_mpprintf(mp, 6145 "UDP " MI_COL_HDRPAD_STR 6146 /* 12345678[89ABCDEF] */ 6147 " zone lport src addr dest addr port state"); 6148 /* 1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */ 6149 6150 zoneid = connp->conn_zoneid; 6151 6152 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 6153 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 6154 connp = NULL; 6155 6156 while ((connp = ipcl_get_next_conn(connfp, connp, 6157 IPCL_UDP))) { 6158 udp = connp->conn_udp; 6159 if (zoneid != GLOBAL_ZONEID && 6160 zoneid != connp->conn_zoneid) 6161 continue; 6162 6163 udp_report_item(mp->b_cont, udp); 6164 } 6165 } 6166 us->us_last_ndd_get_info_time = ddi_get_lbolt(); 6167 return (0); 6168 } 6169 6170 /* 6171 * This routine creates a T_UDERROR_IND message and passes it upstream. 6172 * The address and options are copied from the T_UNITDATA_REQ message 6173 * passed in mp. This message is freed. 6174 */ 6175 static void 6176 udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr, t_scalar_t destlen, 6177 t_scalar_t err) 6178 { 6179 struct T_unitdata_req *tudr; 6180 mblk_t *mp1; 6181 uchar_t *optaddr; 6182 t_scalar_t optlen; 6183 6184 if (DB_TYPE(mp) == M_DATA) { 6185 ASSERT(destaddr != NULL && destlen != 0); 6186 optaddr = NULL; 6187 optlen = 0; 6188 } else { 6189 if ((mp->b_wptr < mp->b_rptr) || 6190 (MBLKL(mp)) < sizeof (struct T_unitdata_req)) { 6191 goto done; 6192 } 6193 tudr = (struct T_unitdata_req *)mp->b_rptr; 6194 destaddr = mp->b_rptr + tudr->DEST_offset; 6195 if (destaddr < mp->b_rptr || destaddr >= mp->b_wptr || 6196 destaddr + tudr->DEST_length < mp->b_rptr || 6197 destaddr + tudr->DEST_length > mp->b_wptr) { 6198 goto done; 6199 } 6200 optaddr = mp->b_rptr + tudr->OPT_offset; 6201 if (optaddr < mp->b_rptr || optaddr >= mp->b_wptr || 6202 optaddr + tudr->OPT_length < mp->b_rptr || 6203 optaddr + tudr->OPT_length > mp->b_wptr) { 6204 goto done; 6205 } 6206 destlen = tudr->DEST_length; 6207 optlen = tudr->OPT_length; 6208 } 6209 6210 mp1 = mi_tpi_uderror_ind((char *)destaddr, destlen, 6211 (char *)optaddr, optlen, err); 6212 if (mp1 != NULL) 6213 putnext(UDP_RD(q), mp1); 6214 6215 done: 6216 freemsg(mp); 6217 } 6218 6219 /* 6220 * This routine removes a port number association from a stream. It 6221 * is called by udp_wput to handle T_UNBIND_REQ messages. 6222 */ 6223 static void 6224 udp_unbind(queue_t *q, mblk_t *mp) 6225 { 6226 udp_t *udp = Q_TO_UDP(q); 6227 6228 /* If a bind has not been done, we can't unbind. */ 6229 if (udp->udp_state == TS_UNBND) { 6230 udp_err_ack(q, mp, TOUTSTATE, 0); 6231 return; 6232 } 6233 if (cl_inet_unbind != NULL) { 6234 /* 6235 * Running in cluster mode - register unbind information 6236 */ 6237 if (udp->udp_ipversion == IPV4_VERSION) { 6238 (*cl_inet_unbind)(IPPROTO_UDP, AF_INET, 6239 (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)), 6240 (in_port_t)udp->udp_port); 6241 } else { 6242 (*cl_inet_unbind)(IPPROTO_UDP, AF_INET6, 6243 (uint8_t *)&(udp->udp_v6src), 6244 (in_port_t)udp->udp_port); 6245 } 6246 } 6247 6248 udp_bind_hash_remove(udp, B_FALSE); 6249 V6_SET_ZERO(udp->udp_v6src); 6250 V6_SET_ZERO(udp->udp_bound_v6src); 6251 udp->udp_port = 0; 6252 udp->udp_state = TS_UNBND; 6253 6254 if (udp->udp_family == AF_INET6) { 6255 int error; 6256 6257 /* Rebuild the header template */ 6258 error = udp_build_hdrs(q, udp); 6259 if (error != 0) { 6260 udp_err_ack(q, mp, TSYSERR, error); 6261 return; 6262 } 6263 } 6264 /* 6265 * Pass the unbind to IP; T_UNBIND_REQ is larger than T_OK_ACK 6266 * and therefore ip_unbind must never return NULL. 6267 */ 6268 mp = ip_unbind(q, mp); 6269 ASSERT(mp != NULL); 6270 putnext(UDP_RD(q), mp); 6271 } 6272 6273 /* 6274 * Don't let port fall into the privileged range. 6275 * Since the extra privileged ports can be arbitrary we also 6276 * ensure that we exclude those from consideration. 6277 * us->us_epriv_ports is not sorted thus we loop over it until 6278 * there are no changes. 6279 */ 6280 static in_port_t 6281 udp_update_next_port(udp_t *udp, in_port_t port, boolean_t random) 6282 { 6283 int i; 6284 in_port_t nextport; 6285 boolean_t restart = B_FALSE; 6286 udp_stack_t *us = udp->udp_us; 6287 6288 if (random && udp_random_anon_port != 0) { 6289 (void) random_get_pseudo_bytes((uint8_t *)&port, 6290 sizeof (in_port_t)); 6291 /* 6292 * Unless changed by a sys admin, the smallest anon port 6293 * is 32768 and the largest anon port is 65535. It is 6294 * very likely (50%) for the random port to be smaller 6295 * than the smallest anon port. When that happens, 6296 * add port % (anon port range) to the smallest anon 6297 * port to get the random port. It should fall into the 6298 * valid anon port range. 6299 */ 6300 if (port < us->us_smallest_anon_port) { 6301 port = us->us_smallest_anon_port + 6302 port % (us->us_largest_anon_port - 6303 us->us_smallest_anon_port); 6304 } 6305 } 6306 6307 retry: 6308 if (port < us->us_smallest_anon_port) 6309 port = us->us_smallest_anon_port; 6310 6311 if (port > us->us_largest_anon_port) { 6312 port = us->us_smallest_anon_port; 6313 if (restart) 6314 return (0); 6315 restart = B_TRUE; 6316 } 6317 6318 if (port < us->us_smallest_nonpriv_port) 6319 port = us->us_smallest_nonpriv_port; 6320 6321 for (i = 0; i < us->us_num_epriv_ports; i++) { 6322 if (port == us->us_epriv_ports[i]) { 6323 port++; 6324 /* 6325 * Make sure that the port is in the 6326 * valid range. 6327 */ 6328 goto retry; 6329 } 6330 } 6331 6332 if (is_system_labeled() && 6333 (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred), 6334 port, IPPROTO_UDP, B_TRUE)) != 0) { 6335 port = nextport; 6336 goto retry; 6337 } 6338 6339 return (port); 6340 } 6341 6342 static int 6343 udp_update_label(queue_t *wq, mblk_t *mp, ipaddr_t dst) 6344 { 6345 int err; 6346 uchar_t opt_storage[IP_MAX_OPT_LENGTH]; 6347 udp_t *udp = Q_TO_UDP(wq); 6348 6349 err = tsol_compute_label(DB_CREDDEF(mp, udp->udp_connp->conn_cred), dst, 6350 opt_storage, udp->udp_mac_exempt, 6351 udp->udp_us->us_netstack->netstack_ip); 6352 if (err == 0) { 6353 err = tsol_update_options(&udp->udp_ip_snd_options, 6354 &udp->udp_ip_snd_options_len, &udp->udp_label_len, 6355 opt_storage); 6356 } 6357 if (err != 0) { 6358 DTRACE_PROBE4( 6359 tx__ip__log__info__updatelabel__udp, 6360 char *, "queue(1) failed to update options(2) on mp(3)", 6361 queue_t *, wq, char *, opt_storage, mblk_t *, mp); 6362 } else { 6363 IN6_IPADDR_TO_V4MAPPED(dst, &udp->udp_v6lastdst); 6364 } 6365 return (err); 6366 } 6367 6368 static mblk_t * 6369 udp_output_v4(conn_t *connp, mblk_t *mp, ipaddr_t v4dst, uint16_t port, 6370 uint_t srcid, int *error) 6371 { 6372 udp_t *udp = connp->conn_udp; 6373 queue_t *q = connp->conn_wq; 6374 mblk_t *mp1 = mp; 6375 mblk_t *mp2; 6376 ipha_t *ipha; 6377 int ip_hdr_length; 6378 uint32_t ip_len; 6379 udpha_t *udpha; 6380 udpattrs_t attrs; 6381 uchar_t ip_snd_opt[IP_MAX_OPT_LENGTH]; 6382 uint32_t ip_snd_opt_len = 0; 6383 ip4_pkt_t pktinfo; 6384 ip4_pkt_t *pktinfop = &pktinfo; 6385 ip_opt_info_t optinfo; 6386 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6387 udp_stack_t *us = udp->udp_us; 6388 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6389 6390 6391 *error = 0; 6392 pktinfop->ip4_ill_index = 0; 6393 pktinfop->ip4_addr = INADDR_ANY; 6394 optinfo.ip_opt_flags = 0; 6395 optinfo.ip_opt_ill_index = 0; 6396 6397 if (v4dst == INADDR_ANY) 6398 v4dst = htonl(INADDR_LOOPBACK); 6399 6400 /* 6401 * If options passed in, feed it for verification and handling 6402 */ 6403 attrs.udpattr_credset = B_FALSE; 6404 if (DB_TYPE(mp) != M_DATA) { 6405 mp1 = mp->b_cont; 6406 if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) { 6407 attrs.udpattr_ipp4 = pktinfop; 6408 attrs.udpattr_mb = mp; 6409 if (udp_unitdata_opt_process(q, mp, error, &attrs) < 0) 6410 goto done; 6411 /* 6412 * Note: success in processing options. 6413 * mp option buffer represented by 6414 * OPT_length/offset now potentially modified 6415 * and contain option setting results 6416 */ 6417 ASSERT(*error == 0); 6418 } 6419 } 6420 6421 /* mp1 points to the M_DATA mblk carrying the packet */ 6422 ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA); 6423 6424 /* 6425 * Check if our saved options are valid; update if not 6426 * TSOL Note: Since we are not in WRITER mode, UDP packets 6427 * to different destination may require different labels. 6428 * We use conn_lock to ensure that lastdst, ip_snd_options, 6429 * and ip_snd_options_len are consistent for the current 6430 * destination and are updated atomically. 6431 */ 6432 mutex_enter(&connp->conn_lock); 6433 if (is_system_labeled()) { 6434 /* Using UDP MLP requires SCM_UCRED from user */ 6435 if (connp->conn_mlp_type != mlptSingle && 6436 !attrs.udpattr_credset) { 6437 mutex_exit(&connp->conn_lock); 6438 DTRACE_PROBE4( 6439 tx__ip__log__info__output__udp, 6440 char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)", 6441 mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q); 6442 *error = ECONNREFUSED; 6443 goto done; 6444 } 6445 if ((!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6lastdst) || 6446 V4_PART_OF_V6(udp->udp_v6lastdst) != v4dst) && 6447 (*error = udp_update_label(q, mp, v4dst)) != 0) { 6448 mutex_exit(&connp->conn_lock); 6449 goto done; 6450 } 6451 } 6452 if (udp->udp_ip_snd_options_len > 0) { 6453 ip_snd_opt_len = udp->udp_ip_snd_options_len; 6454 bcopy(udp->udp_ip_snd_options, ip_snd_opt, ip_snd_opt_len); 6455 } 6456 mutex_exit(&connp->conn_lock); 6457 6458 /* Add an IP header */ 6459 ip_hdr_length = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + ip_snd_opt_len; 6460 ipha = (ipha_t *)&mp1->b_rptr[-ip_hdr_length]; 6461 if (DB_REF(mp1) != 1 || (uchar_t *)ipha < DB_BASE(mp1) || 6462 !OK_32PTR(ipha)) { 6463 mp2 = allocb(ip_hdr_length + us->us_wroff_extra, BPRI_LO); 6464 if (mp2 == NULL) { 6465 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6466 "udp_wput_end: q %p (%S)", q, "allocbfail2"); 6467 *error = ENOMEM; 6468 goto done; 6469 } 6470 mp2->b_wptr = DB_LIM(mp2); 6471 mp2->b_cont = mp1; 6472 mp1 = mp2; 6473 if (DB_TYPE(mp) != M_DATA) 6474 mp->b_cont = mp1; 6475 else 6476 mp = mp1; 6477 6478 ipha = (ipha_t *)(mp1->b_wptr - ip_hdr_length); 6479 } 6480 ip_hdr_length -= UDPH_SIZE; 6481 #ifdef _BIG_ENDIAN 6482 /* Set version, header length, and tos */ 6483 *(uint16_t *)&ipha->ipha_version_and_hdr_length = 6484 ((((IP_VERSION << 4) | (ip_hdr_length>>2)) << 8) | 6485 udp->udp_type_of_service); 6486 /* Set ttl and protocol */ 6487 *(uint16_t *)&ipha->ipha_ttl = (udp->udp_ttl << 8) | IPPROTO_UDP; 6488 #else 6489 /* Set version, header length, and tos */ 6490 *(uint16_t *)&ipha->ipha_version_and_hdr_length = 6491 ((udp->udp_type_of_service << 8) | 6492 ((IP_VERSION << 4) | (ip_hdr_length>>2))); 6493 /* Set ttl and protocol */ 6494 *(uint16_t *)&ipha->ipha_ttl = (IPPROTO_UDP << 8) | udp->udp_ttl; 6495 #endif 6496 if (pktinfop->ip4_addr != INADDR_ANY) { 6497 ipha->ipha_src = pktinfop->ip4_addr; 6498 optinfo.ip_opt_flags = IP_VERIFY_SRC; 6499 } else { 6500 /* 6501 * Copy our address into the packet. If this is zero, 6502 * first look at __sin6_src_id for a hint. If we leave the 6503 * source as INADDR_ANY then ip will fill in the real source 6504 * address. 6505 */ 6506 IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, ipha->ipha_src); 6507 if (srcid != 0 && ipha->ipha_src == INADDR_ANY) { 6508 in6_addr_t v6src; 6509 6510 ip_srcid_find_id(srcid, &v6src, connp->conn_zoneid, 6511 us->us_netstack); 6512 IN6_V4MAPPED_TO_IPADDR(&v6src, ipha->ipha_src); 6513 } 6514 } 6515 6516 if (pktinfop->ip4_ill_index != 0) { 6517 optinfo.ip_opt_ill_index = pktinfop->ip4_ill_index; 6518 } 6519 6520 ipha->ipha_fragment_offset_and_flags = 0; 6521 ipha->ipha_ident = 0; 6522 6523 mp1->b_rptr = (uchar_t *)ipha; 6524 6525 ASSERT((uintptr_t)(mp1->b_wptr - (uchar_t *)ipha) <= 6526 (uintptr_t)UINT_MAX); 6527 6528 /* Determine length of packet */ 6529 ip_len = (uint32_t)(mp1->b_wptr - (uchar_t *)ipha); 6530 if ((mp2 = mp1->b_cont) != NULL) { 6531 do { 6532 ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX); 6533 ip_len += (uint32_t)MBLKL(mp2); 6534 } while ((mp2 = mp2->b_cont) != NULL); 6535 } 6536 /* 6537 * If the size of the packet is greater than the maximum allowed by 6538 * ip, return an error. Passing this down could cause panics because 6539 * the size will have wrapped and be inconsistent with the msg size. 6540 */ 6541 if (ip_len > IP_MAXPACKET) { 6542 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6543 "udp_wput_end: q %p (%S)", q, "IP length exceeded"); 6544 *error = EMSGSIZE; 6545 goto done; 6546 } 6547 ipha->ipha_length = htons((uint16_t)ip_len); 6548 ip_len -= ip_hdr_length; 6549 ip_len = htons((uint16_t)ip_len); 6550 udpha = (udpha_t *)(((uchar_t *)ipha) + ip_hdr_length); 6551 6552 /* 6553 * Copy in the destination address 6554 */ 6555 ipha->ipha_dst = v4dst; 6556 6557 /* 6558 * Set ttl based on IP_MULTICAST_TTL to match IPv6 logic. 6559 */ 6560 if (CLASSD(v4dst)) 6561 ipha->ipha_ttl = udp->udp_multicast_ttl; 6562 6563 udpha->uha_dst_port = port; 6564 udpha->uha_src_port = udp->udp_port; 6565 6566 if (ip_hdr_length > IP_SIMPLE_HDR_LENGTH) { 6567 uint32_t cksum; 6568 6569 bcopy(ip_snd_opt, &ipha[1], ip_snd_opt_len); 6570 /* 6571 * Massage source route putting first source route in ipha_dst. 6572 * Ignore the destination in T_unitdata_req. 6573 * Create a checksum adjustment for a source route, if any. 6574 */ 6575 cksum = ip_massage_options(ipha, us->us_netstack); 6576 cksum = (cksum & 0xFFFF) + (cksum >> 16); 6577 cksum -= ((ipha->ipha_dst >> 16) & 0xFFFF) + 6578 (ipha->ipha_dst & 0xFFFF); 6579 if ((int)cksum < 0) 6580 cksum--; 6581 cksum = (cksum & 0xFFFF) + (cksum >> 16); 6582 /* 6583 * IP does the checksum if uha_checksum is non-zero, 6584 * We make it easy for IP to include our pseudo header 6585 * by putting our length in uha_checksum. 6586 */ 6587 cksum += ip_len; 6588 cksum = (cksum & 0xFFFF) + (cksum >> 16); 6589 /* There might be a carry. */ 6590 cksum = (cksum & 0xFFFF) + (cksum >> 16); 6591 #ifdef _LITTLE_ENDIAN 6592 if (us->us_do_checksum) 6593 ip_len = (cksum << 16) | ip_len; 6594 #else 6595 if (us->us_do_checksum) 6596 ip_len = (ip_len << 16) | cksum; 6597 else 6598 ip_len <<= 16; 6599 #endif 6600 } else { 6601 /* 6602 * IP does the checksum if uha_checksum is non-zero, 6603 * We make it easy for IP to include our pseudo header 6604 * by putting our length in uha_checksum. 6605 */ 6606 if (us->us_do_checksum) 6607 ip_len |= (ip_len << 16); 6608 #ifndef _LITTLE_ENDIAN 6609 else 6610 ip_len <<= 16; 6611 #endif 6612 } 6613 6614 /* Set UDP length and checksum */ 6615 *((uint32_t *)&udpha->uha_length) = ip_len; 6616 if (DB_CRED(mp) != NULL) 6617 mblk_setcred(mp1, DB_CRED(mp)); 6618 6619 if (DB_TYPE(mp) != M_DATA) { 6620 ASSERT(mp != mp1); 6621 freeb(mp); 6622 } 6623 6624 /* mp has been consumed and we'll return success */ 6625 ASSERT(*error == 0); 6626 mp = NULL; 6627 6628 /* We're done. Pass the packet to ip. */ 6629 BUMP_MIB(&udp->udp_mib, udpHCOutDatagrams); 6630 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6631 "udp_wput_end: q %p (%S)", q, "end"); 6632 6633 if ((connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 6634 CONN_OUTBOUND_POLICY_PRESENT(connp, ipss) || 6635 connp->conn_dontroute || connp->conn_xmit_if_ill != NULL || 6636 connp->conn_nofailover_ill != NULL || 6637 connp->conn_outgoing_ill != NULL || optinfo.ip_opt_flags != 0 || 6638 optinfo.ip_opt_ill_index != 0 || 6639 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 6640 IPP_ENABLED(IPP_LOCAL_OUT, ipst) || 6641 ipst->ips_ip_g_mrouter != NULL) { 6642 UDP_STAT(us, udp_ip_send); 6643 ip_output_options(connp, mp1, connp->conn_wq, IP_WPUT, 6644 &optinfo); 6645 } else { 6646 udp_send_data(udp, connp->conn_wq, mp1, ipha); 6647 } 6648 6649 done: 6650 if (*error != 0) { 6651 ASSERT(mp != NULL); 6652 BUMP_MIB(&udp->udp_mib, udpOutErrors); 6653 } 6654 return (mp); 6655 } 6656 6657 static void 6658 udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha) 6659 { 6660 conn_t *connp = udp->udp_connp; 6661 ipaddr_t src, dst; 6662 ill_t *ill; 6663 ire_t *ire; 6664 ipif_t *ipif = NULL; 6665 mblk_t *ire_fp_mp; 6666 uint_t ire_fp_mp_len; 6667 uint16_t *up; 6668 uint32_t cksum, hcksum_txflags; 6669 queue_t *dev_q; 6670 boolean_t retry_caching; 6671 udp_stack_t *us = udp->udp_us; 6672 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6673 6674 dst = ipha->ipha_dst; 6675 src = ipha->ipha_src; 6676 ASSERT(ipha->ipha_ident == 0); 6677 6678 if (CLASSD(dst)) { 6679 int err; 6680 6681 ipif = conn_get_held_ipif(connp, 6682 &connp->conn_multicast_ipif, &err); 6683 6684 if (ipif == NULL || ipif->ipif_isv6 || 6685 (ipif->ipif_ill->ill_phyint->phyint_flags & 6686 PHYI_LOOPBACK)) { 6687 if (ipif != NULL) 6688 ipif_refrele(ipif); 6689 UDP_STAT(us, udp_ip_send); 6690 ip_output(connp, mp, q, IP_WPUT); 6691 return; 6692 } 6693 } 6694 6695 retry_caching = B_FALSE; 6696 mutex_enter(&connp->conn_lock); 6697 ire = connp->conn_ire_cache; 6698 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 6699 6700 if (ire == NULL || ire->ire_addr != dst || 6701 (ire->ire_marks & IRE_MARK_CONDEMNED)) { 6702 retry_caching = B_TRUE; 6703 } else if (CLASSD(dst) && (ire->ire_type & IRE_CACHE)) { 6704 ill_t *stq_ill = (ill_t *)ire->ire_stq->q_ptr; 6705 6706 ASSERT(ipif != NULL); 6707 if (stq_ill != ipif->ipif_ill && (stq_ill->ill_group == NULL || 6708 stq_ill->ill_group != ipif->ipif_ill->ill_group)) 6709 retry_caching = B_TRUE; 6710 } 6711 6712 if (!retry_caching) { 6713 ASSERT(ire != NULL); 6714 IRE_REFHOLD(ire); 6715 mutex_exit(&connp->conn_lock); 6716 } else { 6717 boolean_t cached = B_FALSE; 6718 6719 connp->conn_ire_cache = NULL; 6720 mutex_exit(&connp->conn_lock); 6721 6722 /* Release the old ire */ 6723 if (ire != NULL) { 6724 IRE_REFRELE_NOTR(ire); 6725 ire = NULL; 6726 } 6727 6728 if (CLASSD(dst)) { 6729 ASSERT(ipif != NULL); 6730 ire = ire_ctable_lookup(dst, 0, 0, ipif, 6731 connp->conn_zoneid, MBLK_GETLABEL(mp), 6732 MATCH_IRE_ILL_GROUP, ipst); 6733 } else { 6734 ASSERT(ipif == NULL); 6735 ire = ire_cache_lookup(dst, connp->conn_zoneid, 6736 MBLK_GETLABEL(mp), ipst); 6737 } 6738 6739 if (ire == NULL) { 6740 if (ipif != NULL) 6741 ipif_refrele(ipif); 6742 UDP_STAT(us, udp_ire_null); 6743 ip_output(connp, mp, q, IP_WPUT); 6744 return; 6745 } 6746 IRE_REFHOLD_NOTR(ire); 6747 6748 mutex_enter(&connp->conn_lock); 6749 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 6750 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 6751 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 6752 connp->conn_ire_cache = ire; 6753 cached = B_TRUE; 6754 } 6755 rw_exit(&ire->ire_bucket->irb_lock); 6756 } 6757 mutex_exit(&connp->conn_lock); 6758 6759 /* 6760 * We can continue to use the ire but since it was not 6761 * cached, we should drop the extra reference. 6762 */ 6763 if (!cached) 6764 IRE_REFRELE_NOTR(ire); 6765 } 6766 ASSERT(ire != NULL && ire->ire_ipversion == IPV4_VERSION); 6767 ASSERT(!CLASSD(dst) || ipif != NULL); 6768 6769 /* 6770 * Check if we can take the fast-path. 6771 * Note that "incomplete" ire's (where the link-layer for next hop 6772 * is not resolved, or where the fast-path header in nce_fp_mp is not 6773 * available yet) are sent down the legacy (slow) path 6774 */ 6775 if ((ire->ire_type & (IRE_BROADCAST|IRE_LOCAL|IRE_LOOPBACK)) || 6776 (ire->ire_flags & RTF_MULTIRT) || (ire->ire_stq == NULL) || 6777 (ire->ire_max_frag < ntohs(ipha->ipha_length)) || 6778 (connp->conn_nexthop_set) || 6779 (ire->ire_nce == NULL) || 6780 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 6781 ((ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp))) { 6782 if (ipif != NULL) 6783 ipif_refrele(ipif); 6784 UDP_STAT(us, udp_ip_ire_send); 6785 IRE_REFRELE(ire); 6786 ip_output(connp, mp, q, IP_WPUT); 6787 return; 6788 } 6789 6790 ill = ire_to_ill(ire); 6791 ASSERT(ill != NULL); 6792 6793 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 6794 6795 dev_q = ire->ire_stq->q_next; 6796 ASSERT(dev_q != NULL); 6797 /* 6798 * If the service thread is already running, or if the driver 6799 * queue is currently flow-controlled, queue this packet. 6800 */ 6801 if ((q->q_first != NULL || connp->conn_draining) || 6802 ((dev_q->q_next || dev_q->q_first) && !canput(dev_q))) { 6803 if (ipst->ips_ip_output_queue) { 6804 (void) putq(q, mp); 6805 } else { 6806 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 6807 freemsg(mp); 6808 } 6809 if (ipif != NULL) 6810 ipif_refrele(ipif); 6811 IRE_REFRELE(ire); 6812 return; 6813 } 6814 6815 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 6816 #ifndef _BIG_ENDIAN 6817 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 6818 #endif 6819 6820 if (src == INADDR_ANY && !connp->conn_unspec_src) { 6821 if (CLASSD(dst) && !(ire->ire_flags & RTF_SETSRC)) 6822 src = ipha->ipha_src = ipif->ipif_src_addr; 6823 else 6824 src = ipha->ipha_src = ire->ire_src_addr; 6825 } 6826 6827 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 6828 ASSERT(ill->ill_hcksum_capab != NULL); 6829 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 6830 } else { 6831 hcksum_txflags = 0; 6832 } 6833 6834 /* pseudo-header checksum (do it in parts for IP header checksum) */ 6835 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 6836 6837 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 6838 up = IPH_UDPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 6839 if (*up != 0) { 6840 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, 6841 mp, ipha, up, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 6842 ntohs(ipha->ipha_length), cksum); 6843 6844 /* Software checksum? */ 6845 if (DB_CKSUMFLAGS(mp) == 0) { 6846 UDP_STAT(us, udp_out_sw_cksum); 6847 UDP_STAT_UPDATE(us, udp_out_sw_cksum_bytes, 6848 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 6849 } 6850 } 6851 6852 ipha->ipha_fragment_offset_and_flags |= 6853 (uint32_t)htons(ire->ire_frag_flag); 6854 6855 /* Calculate IP header checksum if hardware isn't capable */ 6856 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 6857 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 6858 ((uint16_t *)ipha)[4]); 6859 } 6860 6861 if (CLASSD(dst)) { 6862 ilm_t *ilm; 6863 6864 ILM_WALKER_HOLD(ill); 6865 ilm = ilm_lookup_ill(ill, dst, ALL_ZONES); 6866 ILM_WALKER_RELE(ill); 6867 if (ilm != NULL) { 6868 ip_multicast_loopback(q, ill, mp, 6869 connp->conn_multicast_loop ? 0 : 6870 IP_FF_NO_MCAST_LOOP, connp->conn_zoneid); 6871 } 6872 6873 /* If multicast TTL is 0 then we are done */ 6874 if (ipha->ipha_ttl == 0) { 6875 if (ipif != NULL) 6876 ipif_refrele(ipif); 6877 freemsg(mp); 6878 IRE_REFRELE(ire); 6879 return; 6880 } 6881 } 6882 6883 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 6884 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 6885 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 6886 6887 UPDATE_OB_PKT_COUNT(ire); 6888 ire->ire_last_used_time = lbolt; 6889 6890 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 6891 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 6892 ntohs(ipha->ipha_length)); 6893 6894 if (ILL_DLS_CAPABLE(ill)) { 6895 /* 6896 * Send the packet directly to DLD, where it may be queued 6897 * depending on the availability of transmit resources at 6898 * the media layer. 6899 */ 6900 IP_DLS_ILL_TX(ill, ipha, mp, ipst); 6901 } else { 6902 DTRACE_PROBE4(ip4__physical__out__start, 6903 ill_t *, NULL, ill_t *, ill, 6904 ipha_t *, ipha, mblk_t *, mp); 6905 FW_HOOKS(ipst->ips_ip4_physical_out_event, 6906 ipst->ips_ipv4firewall_physical_out, 6907 NULL, ill, ipha, mp, mp, ipst); 6908 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 6909 if (mp != NULL) 6910 putnext(ire->ire_stq, mp); 6911 } 6912 6913 if (ipif != NULL) 6914 ipif_refrele(ipif); 6915 IRE_REFRELE(ire); 6916 } 6917 6918 static boolean_t 6919 udp_update_label_v6(queue_t *wq, mblk_t *mp, in6_addr_t *dst) 6920 { 6921 udp_t *udp = Q_TO_UDP(wq); 6922 int err; 6923 uchar_t opt_storage[TSOL_MAX_IPV6_OPTION]; 6924 6925 err = tsol_compute_label_v6(DB_CREDDEF(mp, udp->udp_connp->conn_cred), 6926 dst, opt_storage, udp->udp_mac_exempt, 6927 udp->udp_us->us_netstack->netstack_ip); 6928 if (err == 0) { 6929 err = tsol_update_sticky(&udp->udp_sticky_ipp, 6930 &udp->udp_label_len_v6, opt_storage); 6931 } 6932 if (err != 0) { 6933 DTRACE_PROBE4( 6934 tx__ip__log__drop__updatelabel__udp6, 6935 char *, "queue(1) failed to update options(2) on mp(3)", 6936 queue_t *, wq, char *, opt_storage, mblk_t *, mp); 6937 } else { 6938 udp->udp_v6lastdst = *dst; 6939 } 6940 return (err); 6941 } 6942 6943 /* 6944 * This routine handles all messages passed downstream. It either 6945 * consumes the message or passes it downstream; it never queues a 6946 * a message. 6947 */ 6948 static void 6949 udp_output(conn_t *connp, mblk_t *mp, struct sockaddr *addr, socklen_t addrlen) 6950 { 6951 sin6_t *sin6; 6952 sin_t *sin; 6953 ipaddr_t v4dst; 6954 uint16_t port; 6955 uint_t srcid; 6956 queue_t *q = connp->conn_wq; 6957 udp_t *udp = connp->conn_udp; 6958 int error = 0; 6959 struct sockaddr_storage ss; 6960 udp_stack_t *us = udp->udp_us; 6961 6962 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_START, 6963 "udp_wput_start: connp %p mp %p", connp, mp); 6964 6965 /* 6966 * We directly handle several cases here: T_UNITDATA_REQ message 6967 * coming down as M_PROTO/M_PCPROTO and M_DATA messages for both 6968 * connected and non-connected socket. The latter carries the 6969 * address structure along when this routine gets called. 6970 */ 6971 switch (DB_TYPE(mp)) { 6972 case M_DATA: 6973 if (!udp->udp_direct_sockfs || udp->udp_state != TS_DATA_XFER) { 6974 if (!udp->udp_direct_sockfs || 6975 addr == NULL || addrlen == 0) { 6976 /* Not connected; address is required */ 6977 BUMP_MIB(&udp->udp_mib, udpOutErrors); 6978 UDP_STAT(us, udp_out_err_notconn); 6979 freemsg(mp); 6980 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6981 "udp_wput_end: connp %p (%S)", connp, 6982 "not-connected; address required"); 6983 return; 6984 } 6985 ASSERT(udp->udp_issocket); 6986 UDP_DBGSTAT(us, udp_data_notconn); 6987 /* Not connected; do some more checks below */ 6988 break; 6989 } 6990 /* M_DATA for connected socket */ 6991 UDP_DBGSTAT(us, udp_data_conn); 6992 IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6dst, v4dst); 6993 6994 /* Initialize addr and addrlen as if they're passed in */ 6995 if (udp->udp_family == AF_INET) { 6996 sin = (sin_t *)&ss; 6997 sin->sin_family = AF_INET; 6998 sin->sin_port = udp->udp_dstport; 6999 sin->sin_addr.s_addr = v4dst; 7000 addr = (struct sockaddr *)sin; 7001 addrlen = sizeof (*sin); 7002 } else { 7003 sin6 = (sin6_t *)&ss; 7004 sin6->sin6_family = AF_INET6; 7005 sin6->sin6_port = udp->udp_dstport; 7006 sin6->sin6_flowinfo = udp->udp_flowinfo; 7007 sin6->sin6_addr = udp->udp_v6dst; 7008 sin6->sin6_scope_id = 0; 7009 sin6->__sin6_src_id = 0; 7010 addr = (struct sockaddr *)sin6; 7011 addrlen = sizeof (*sin6); 7012 } 7013 7014 if (udp->udp_family == AF_INET || 7015 IN6_IS_ADDR_V4MAPPED(&udp->udp_v6dst)) { 7016 /* 7017 * Handle both AF_INET and AF_INET6; the latter 7018 * for IPV4 mapped destination addresses. Note 7019 * here that both addr and addrlen point to the 7020 * corresponding struct depending on the address 7021 * family of the socket. 7022 */ 7023 mp = udp_output_v4(connp, mp, v4dst, 7024 udp->udp_dstport, 0, &error); 7025 } else { 7026 mp = udp_output_v6(connp, mp, sin6, &error); 7027 } 7028 if (error != 0) { 7029 ASSERT(addr != NULL && addrlen != 0); 7030 goto ud_error; 7031 } 7032 return; 7033 case M_PROTO: 7034 case M_PCPROTO: { 7035 struct T_unitdata_req *tudr; 7036 7037 ASSERT((uintptr_t)MBLKL(mp) <= (uintptr_t)INT_MAX); 7038 tudr = (struct T_unitdata_req *)mp->b_rptr; 7039 7040 /* Handle valid T_UNITDATA_REQ here */ 7041 if (MBLKL(mp) >= sizeof (*tudr) && 7042 ((t_primp_t)mp->b_rptr)->type == T_UNITDATA_REQ) { 7043 if (mp->b_cont == NULL) { 7044 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 7045 "udp_wput_end: q %p (%S)", q, "badaddr"); 7046 error = EPROTO; 7047 goto ud_error; 7048 } 7049 7050 if (!MBLKIN(mp, 0, tudr->DEST_offset + 7051 tudr->DEST_length)) { 7052 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 7053 "udp_wput_end: q %p (%S)", q, "badaddr"); 7054 error = EADDRNOTAVAIL; 7055 goto ud_error; 7056 } 7057 /* 7058 * If a port has not been bound to the stream, fail. 7059 * This is not a problem when sockfs is directly 7060 * above us, because it will ensure that the socket 7061 * is first bound before allowing data to be sent. 7062 */ 7063 if (udp->udp_state == TS_UNBND) { 7064 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 7065 "udp_wput_end: q %p (%S)", q, "outstate"); 7066 error = EPROTO; 7067 goto ud_error; 7068 } 7069 addr = (struct sockaddr *) 7070 &mp->b_rptr[tudr->DEST_offset]; 7071 addrlen = tudr->DEST_length; 7072 if (tudr->OPT_length != 0) 7073 UDP_STAT(us, udp_out_opt); 7074 break; 7075 } 7076 /* FALLTHRU */ 7077 } 7078 default: 7079 udp_become_writer(connp, mp, udp_wput_other_wrapper, 7080 SQTAG_UDP_OUTPUT); 7081 return; 7082 } 7083 ASSERT(addr != NULL); 7084 7085 switch (udp->udp_family) { 7086 case AF_INET6: 7087 sin6 = (sin6_t *)addr; 7088 if (!OK_32PTR((char *)sin6) || addrlen != sizeof (sin6_t) || 7089 sin6->sin6_family != AF_INET6) { 7090 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 7091 "udp_wput_end: q %p (%S)", q, "badaddr"); 7092 error = EADDRNOTAVAIL; 7093 goto ud_error; 7094 } 7095 7096 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 7097 /* 7098 * Destination is a non-IPv4-compatible IPv6 address. 7099 * Send out an IPv6 format packet. 7100 */ 7101 mp = udp_output_v6(connp, mp, sin6, &error); 7102 if (error != 0) 7103 goto ud_error; 7104 7105 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 7106 "udp_wput_end: q %p (%S)", q, "udp_output_v6"); 7107 return; 7108 } 7109 /* 7110 * If the local address is not zero or a mapped address 7111 * return an error. It would be possible to send an IPv4 7112 * packet but the response would never make it back to the 7113 * application since it is bound to a non-mapped address. 7114 */ 7115 if (!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src) && 7116 !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 7117 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 7118 "udp_wput_end: q %p (%S)", q, "badaddr"); 7119 error = EADDRNOTAVAIL; 7120 goto ud_error; 7121 } 7122 /* Send IPv4 packet without modifying udp_ipversion */ 7123 /* Extract port and ipaddr */ 7124 port = sin6->sin6_port; 7125 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, v4dst); 7126 srcid = sin6->__sin6_src_id; 7127 break; 7128 7129 case AF_INET: 7130 sin = (sin_t *)addr; 7131 if (!OK_32PTR((char *)sin) || addrlen != sizeof (sin_t) || 7132 sin->sin_family != AF_INET) { 7133 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 7134 "udp_wput_end: q %p (%S)", q, "badaddr"); 7135 error = EADDRNOTAVAIL; 7136 goto ud_error; 7137 } 7138 /* Extract port and ipaddr */ 7139 port = sin->sin_port; 7140 v4dst = sin->sin_addr.s_addr; 7141 srcid = 0; 7142 break; 7143 } 7144 7145 mp = udp_output_v4(connp, mp, v4dst, port, srcid, &error); 7146 if (error != 0) { 7147 ud_error: 7148 UDP_STAT(us, udp_out_err_output); 7149 ASSERT(mp != NULL); 7150 /* mp is freed by the following routine */ 7151 udp_ud_err(q, mp, (uchar_t *)addr, (t_scalar_t)addrlen, 7152 (t_scalar_t)error); 7153 } 7154 } 7155 7156 /* ARGSUSED */ 7157 static void 7158 udp_output_wrapper(void *arg, mblk_t *mp, void *arg2) 7159 { 7160 udp_output((conn_t *)arg, mp, NULL, 0); 7161 _UDP_EXIT((conn_t *)arg); 7162 } 7163 7164 static void 7165 udp_wput(queue_t *q, mblk_t *mp) 7166 { 7167 _UDP_ENTER(Q_TO_CONN(UDP_WR(q)), mp, udp_output_wrapper, 7168 SQTAG_UDP_WPUT); 7169 } 7170 7171 /* 7172 * Allocate and prepare a T_UNITDATA_REQ message. 7173 */ 7174 static mblk_t * 7175 udp_tudr_alloc(struct sockaddr *addr, socklen_t addrlen) 7176 { 7177 struct T_unitdata_req *tudr; 7178 mblk_t *mp; 7179 7180 mp = allocb(sizeof (*tudr) + addrlen, BPRI_MED); 7181 if (mp != NULL) { 7182 mp->b_wptr += sizeof (*tudr) + addrlen; 7183 DB_TYPE(mp) = M_PROTO; 7184 7185 tudr = (struct T_unitdata_req *)mp->b_rptr; 7186 tudr->PRIM_type = T_UNITDATA_REQ; 7187 tudr->DEST_length = addrlen; 7188 tudr->DEST_offset = (t_scalar_t)sizeof (*tudr); 7189 tudr->OPT_length = 0; 7190 tudr->OPT_offset = 0; 7191 bcopy(addr, tudr+1, addrlen); 7192 } 7193 return (mp); 7194 } 7195 7196 /* 7197 * Entry point for sockfs when udp is in "direct sockfs" mode. This mode 7198 * is valid when we are directly beneath the stream head, and thus sockfs 7199 * is able to bypass STREAMS and directly call us, passing along the sockaddr 7200 * structure without the cumbersome T_UNITDATA_REQ interface. Note that 7201 * this is done for both connected and non-connected endpoint. 7202 */ 7203 void 7204 udp_wput_data(queue_t *q, mblk_t *mp, struct sockaddr *addr, socklen_t addrlen) 7205 { 7206 conn_t *connp; 7207 udp_t *udp; 7208 udp_stack_t *us; 7209 7210 q = UDP_WR(q); 7211 connp = Q_TO_CONN(q); 7212 udp = connp->conn_udp; 7213 us = udp->udp_us; 7214 7215 /* udpsockfs should only send down M_DATA for this entry point */ 7216 ASSERT(DB_TYPE(mp) == M_DATA); 7217 7218 mutex_enter(&connp->conn_lock); 7219 UDP_MODE_ASSERTIONS(udp, UDP_ENTER); 7220 7221 if (udp->udp_mode != UDP_MT_HOT) { 7222 /* 7223 * We can't enter this conn right away because another 7224 * thread is currently executing as writer; therefore we 7225 * need to deposit the message into the squeue to be 7226 * drained later. If a socket address is present, we 7227 * need to create a T_UNITDATA_REQ message as placeholder. 7228 */ 7229 if (addr != NULL && addrlen != 0) { 7230 mblk_t *tudr_mp = udp_tudr_alloc(addr, addrlen); 7231 7232 if (tudr_mp == NULL) { 7233 mutex_exit(&connp->conn_lock); 7234 BUMP_MIB(&udp->udp_mib, udpOutErrors); 7235 UDP_STAT(us, udp_out_err_tudr); 7236 freemsg(mp); 7237 return; 7238 } 7239 /* Tag the packet with T_UNITDATA_REQ */ 7240 tudr_mp->b_cont = mp; 7241 mp = tudr_mp; 7242 } 7243 mutex_exit(&connp->conn_lock); 7244 udp_enter(connp, mp, udp_output_wrapper, SQTAG_UDP_WPUT); 7245 return; 7246 } 7247 7248 /* We can execute as reader right away. */ 7249 UDP_READERS_INCREF(udp); 7250 mutex_exit(&connp->conn_lock); 7251 7252 udp_output(connp, mp, addr, addrlen); 7253 7254 udp_exit(connp); 7255 } 7256 7257 /* 7258 * udp_output_v6(): 7259 * Assumes that udp_wput did some sanity checking on the destination 7260 * address. 7261 */ 7262 static mblk_t * 7263 udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6, int *error) 7264 { 7265 ip6_t *ip6h; 7266 ip6i_t *ip6i; /* mp1->b_rptr even if no ip6i_t */ 7267 mblk_t *mp1 = mp; 7268 mblk_t *mp2; 7269 int udp_ip_hdr_len = IPV6_HDR_LEN + UDPH_SIZE; 7270 size_t ip_len; 7271 udpha_t *udph; 7272 udp_t *udp = connp->conn_udp; 7273 queue_t *q = connp->conn_wq; 7274 ip6_pkt_t ipp_s; /* For ancillary data options */ 7275 ip6_pkt_t *ipp = &ipp_s; 7276 ip6_pkt_t *tipp; /* temporary ipp */ 7277 uint32_t csum = 0; 7278 uint_t ignore = 0; 7279 uint_t option_exists = 0, is_sticky = 0; 7280 uint8_t *cp; 7281 uint8_t *nxthdr_ptr; 7282 in6_addr_t ip6_dst; 7283 udpattrs_t attrs; 7284 boolean_t opt_present; 7285 ip6_hbh_t *hopoptsptr = NULL; 7286 uint_t hopoptslen = 0; 7287 boolean_t is_ancillary = B_FALSE; 7288 udp_stack_t *us = udp->udp_us; 7289 7290 *error = 0; 7291 7292 /* 7293 * If the local address is a mapped address return 7294 * an error. 7295 * It would be possible to send an IPv6 packet but the 7296 * response would never make it back to the application 7297 * since it is bound to a mapped address. 7298 */ 7299 if (IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src)) { 7300 *error = EADDRNOTAVAIL; 7301 goto done; 7302 } 7303 7304 ipp->ipp_fields = 0; 7305 ipp->ipp_sticky_ignored = 0; 7306 7307 /* 7308 * If TPI options passed in, feed it for verification and handling 7309 */ 7310 attrs.udpattr_credset = B_FALSE; 7311 opt_present = B_FALSE; 7312 if (DB_TYPE(mp) != M_DATA) { 7313 mp1 = mp->b_cont; 7314 if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) { 7315 attrs.udpattr_ipp6 = ipp; 7316 attrs.udpattr_mb = mp; 7317 if (udp_unitdata_opt_process(q, mp, error, &attrs) < 0) 7318 goto done; 7319 ASSERT(*error == 0); 7320 opt_present = B_TRUE; 7321 } 7322 } 7323 ignore = ipp->ipp_sticky_ignored; 7324 7325 /* mp1 points to the M_DATA mblk carrying the packet */ 7326 ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA); 7327 7328 if (sin6->sin6_scope_id != 0 && 7329 IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { 7330 /* 7331 * IPPF_SCOPE_ID is special. It's neither a sticky 7332 * option nor ancillary data. It needs to be 7333 * explicitly set in options_exists. 7334 */ 7335 option_exists |= IPPF_SCOPE_ID; 7336 } 7337 7338 /* 7339 * Compute the destination address 7340 */ 7341 ip6_dst = sin6->sin6_addr; 7342 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) 7343 ip6_dst = ipv6_loopback; 7344 7345 /* 7346 * If we're not going to the same destination as last time, then 7347 * recompute the label required. This is done in a separate routine to 7348 * avoid blowing up our stack here. 7349 * 7350 * TSOL Note: Since we are not in WRITER mode, UDP packets 7351 * to different destination may require different labels. 7352 * We use conn_lock to ensure that lastdst, sticky ipp_hopopts, 7353 * and sticky ipp_hopoptslen are consistent for the current 7354 * destination and are updated atomically. 7355 */ 7356 mutex_enter(&connp->conn_lock); 7357 if (is_system_labeled()) { 7358 /* Using UDP MLP requires SCM_UCRED from user */ 7359 if (connp->conn_mlp_type != mlptSingle && 7360 !attrs.udpattr_credset) { 7361 DTRACE_PROBE4( 7362 tx__ip__log__info__output__udp6, 7363 char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)", 7364 mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q); 7365 *error = ECONNREFUSED; 7366 mutex_exit(&connp->conn_lock); 7367 goto done; 7368 } 7369 if ((opt_present || 7370 !IN6_ARE_ADDR_EQUAL(&udp->udp_v6lastdst, &ip6_dst)) && 7371 (*error = udp_update_label_v6(q, mp, &ip6_dst)) != 0) { 7372 mutex_exit(&connp->conn_lock); 7373 goto done; 7374 } 7375 } 7376 7377 /* 7378 * If there's a security label here, then we ignore any options the 7379 * user may try to set. We keep the peer's label as a hidden sticky 7380 * option. We make a private copy of this label before releasing the 7381 * lock so that label is kept consistent with the destination addr. 7382 */ 7383 if (udp->udp_label_len_v6 > 0) { 7384 ignore &= ~IPPF_HOPOPTS; 7385 ipp->ipp_fields &= ~IPPF_HOPOPTS; 7386 } 7387 7388 if ((udp->udp_sticky_ipp.ipp_fields == 0) && (ipp->ipp_fields == 0)) { 7389 /* No sticky options nor ancillary data. */ 7390 mutex_exit(&connp->conn_lock); 7391 goto no_options; 7392 } 7393 7394 /* 7395 * Go through the options figuring out where each is going to 7396 * come from and build two masks. The first mask indicates if 7397 * the option exists at all. The second mask indicates if the 7398 * option is sticky or ancillary. 7399 */ 7400 if (!(ignore & IPPF_HOPOPTS)) { 7401 if (ipp->ipp_fields & IPPF_HOPOPTS) { 7402 option_exists |= IPPF_HOPOPTS; 7403 udp_ip_hdr_len += ipp->ipp_hopoptslen; 7404 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_HOPOPTS) { 7405 option_exists |= IPPF_HOPOPTS; 7406 is_sticky |= IPPF_HOPOPTS; 7407 ASSERT(udp->udp_sticky_ipp.ipp_hopoptslen != 0); 7408 hopoptsptr = kmem_alloc( 7409 udp->udp_sticky_ipp.ipp_hopoptslen, KM_NOSLEEP); 7410 if (hopoptsptr == NULL) { 7411 *error = ENOMEM; 7412 mutex_exit(&connp->conn_lock); 7413 goto done; 7414 } 7415 hopoptslen = udp->udp_sticky_ipp.ipp_hopoptslen; 7416 bcopy(udp->udp_sticky_ipp.ipp_hopopts, hopoptsptr, 7417 hopoptslen); 7418 udp_ip_hdr_len += hopoptslen; 7419 } 7420 } 7421 mutex_exit(&connp->conn_lock); 7422 7423 if (!(ignore & IPPF_RTHDR)) { 7424 if (ipp->ipp_fields & IPPF_RTHDR) { 7425 option_exists |= IPPF_RTHDR; 7426 udp_ip_hdr_len += ipp->ipp_rthdrlen; 7427 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTHDR) { 7428 option_exists |= IPPF_RTHDR; 7429 is_sticky |= IPPF_RTHDR; 7430 udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rthdrlen; 7431 } 7432 } 7433 7434 if (!(ignore & IPPF_RTDSTOPTS) && (option_exists & IPPF_RTHDR)) { 7435 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 7436 option_exists |= IPPF_RTDSTOPTS; 7437 udp_ip_hdr_len += ipp->ipp_rtdstoptslen; 7438 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTDSTOPTS) { 7439 option_exists |= IPPF_RTDSTOPTS; 7440 is_sticky |= IPPF_RTDSTOPTS; 7441 udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rtdstoptslen; 7442 } 7443 } 7444 7445 if (!(ignore & IPPF_DSTOPTS)) { 7446 if (ipp->ipp_fields & IPPF_DSTOPTS) { 7447 option_exists |= IPPF_DSTOPTS; 7448 udp_ip_hdr_len += ipp->ipp_dstoptslen; 7449 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DSTOPTS) { 7450 option_exists |= IPPF_DSTOPTS; 7451 is_sticky |= IPPF_DSTOPTS; 7452 udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_dstoptslen; 7453 } 7454 } 7455 7456 if (!(ignore & IPPF_IFINDEX)) { 7457 if (ipp->ipp_fields & IPPF_IFINDEX) { 7458 option_exists |= IPPF_IFINDEX; 7459 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_IFINDEX) { 7460 option_exists |= IPPF_IFINDEX; 7461 is_sticky |= IPPF_IFINDEX; 7462 } 7463 } 7464 7465 if (!(ignore & IPPF_ADDR)) { 7466 if (ipp->ipp_fields & IPPF_ADDR) { 7467 option_exists |= IPPF_ADDR; 7468 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_ADDR) { 7469 option_exists |= IPPF_ADDR; 7470 is_sticky |= IPPF_ADDR; 7471 } 7472 } 7473 7474 if (!(ignore & IPPF_DONTFRAG)) { 7475 if (ipp->ipp_fields & IPPF_DONTFRAG) { 7476 option_exists |= IPPF_DONTFRAG; 7477 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DONTFRAG) { 7478 option_exists |= IPPF_DONTFRAG; 7479 is_sticky |= IPPF_DONTFRAG; 7480 } 7481 } 7482 7483 if (!(ignore & IPPF_USE_MIN_MTU)) { 7484 if (ipp->ipp_fields & IPPF_USE_MIN_MTU) { 7485 option_exists |= IPPF_USE_MIN_MTU; 7486 } else if (udp->udp_sticky_ipp.ipp_fields & 7487 IPPF_USE_MIN_MTU) { 7488 option_exists |= IPPF_USE_MIN_MTU; 7489 is_sticky |= IPPF_USE_MIN_MTU; 7490 } 7491 } 7492 7493 if (!(ignore & IPPF_HOPLIMIT) && (ipp->ipp_fields & IPPF_HOPLIMIT)) 7494 option_exists |= IPPF_HOPLIMIT; 7495 /* IPV6_HOPLIMIT can never be sticky */ 7496 ASSERT(!(udp->udp_sticky_ipp.ipp_fields & IPPF_HOPLIMIT)); 7497 7498 if (!(ignore & IPPF_UNICAST_HOPS) && 7499 (udp->udp_sticky_ipp.ipp_fields & IPPF_UNICAST_HOPS)) { 7500 option_exists |= IPPF_UNICAST_HOPS; 7501 is_sticky |= IPPF_UNICAST_HOPS; 7502 } 7503 7504 if (!(ignore & IPPF_MULTICAST_HOPS) && 7505 (udp->udp_sticky_ipp.ipp_fields & IPPF_MULTICAST_HOPS)) { 7506 option_exists |= IPPF_MULTICAST_HOPS; 7507 is_sticky |= IPPF_MULTICAST_HOPS; 7508 } 7509 7510 if (!(ignore & IPPF_TCLASS)) { 7511 if (ipp->ipp_fields & IPPF_TCLASS) { 7512 option_exists |= IPPF_TCLASS; 7513 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_TCLASS) { 7514 option_exists |= IPPF_TCLASS; 7515 is_sticky |= IPPF_TCLASS; 7516 } 7517 } 7518 7519 if (!(ignore & IPPF_NEXTHOP) && 7520 (udp->udp_sticky_ipp.ipp_fields & IPPF_NEXTHOP)) { 7521 option_exists |= IPPF_NEXTHOP; 7522 is_sticky |= IPPF_NEXTHOP; 7523 } 7524 7525 no_options: 7526 7527 /* 7528 * If any options carried in the ip6i_t were specified, we 7529 * need to account for the ip6i_t in the data we'll be sending 7530 * down. 7531 */ 7532 if (option_exists & IPPF_HAS_IP6I) 7533 udp_ip_hdr_len += sizeof (ip6i_t); 7534 7535 /* check/fix buffer config, setup pointers into it */ 7536 ip6h = (ip6_t *)&mp1->b_rptr[-udp_ip_hdr_len]; 7537 if (DB_REF(mp1) != 1 || ((unsigned char *)ip6h < DB_BASE(mp1)) || 7538 !OK_32PTR(ip6h)) { 7539 /* Try to get everything in a single mblk next time */ 7540 if (udp_ip_hdr_len > udp->udp_max_hdr_len) { 7541 udp->udp_max_hdr_len = udp_ip_hdr_len; 7542 (void) mi_set_sth_wroff(UDP_RD(q), 7543 udp->udp_max_hdr_len + us->us_wroff_extra); 7544 } 7545 mp2 = allocb(udp_ip_hdr_len + us->us_wroff_extra, BPRI_LO); 7546 if (mp2 == NULL) { 7547 *error = ENOMEM; 7548 goto done; 7549 } 7550 mp2->b_wptr = DB_LIM(mp2); 7551 mp2->b_cont = mp1; 7552 mp1 = mp2; 7553 if (DB_TYPE(mp) != M_DATA) 7554 mp->b_cont = mp1; 7555 else 7556 mp = mp1; 7557 7558 ip6h = (ip6_t *)(mp1->b_wptr - udp_ip_hdr_len); 7559 } 7560 mp1->b_rptr = (unsigned char *)ip6h; 7561 ip6i = (ip6i_t *)ip6h; 7562 7563 #define ANCIL_OR_STICKY_PTR(f) ((is_sticky & f) ? &udp->udp_sticky_ipp : ipp) 7564 if (option_exists & IPPF_HAS_IP6I) { 7565 ip6h = (ip6_t *)&ip6i[1]; 7566 ip6i->ip6i_flags = 0; 7567 ip6i->ip6i_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 7568 7569 /* sin6_scope_id takes precendence over IPPF_IFINDEX */ 7570 if (option_exists & IPPF_SCOPE_ID) { 7571 ip6i->ip6i_flags |= IP6I_IFINDEX; 7572 ip6i->ip6i_ifindex = sin6->sin6_scope_id; 7573 } else if (option_exists & IPPF_IFINDEX) { 7574 tipp = ANCIL_OR_STICKY_PTR(IPPF_IFINDEX); 7575 ASSERT(tipp->ipp_ifindex != 0); 7576 ip6i->ip6i_flags |= IP6I_IFINDEX; 7577 ip6i->ip6i_ifindex = tipp->ipp_ifindex; 7578 } 7579 7580 if (option_exists & IPPF_ADDR) { 7581 /* 7582 * Enable per-packet source address verification if 7583 * IPV6_PKTINFO specified the source address. 7584 * ip6_src is set in the transport's _wput function. 7585 */ 7586 ip6i->ip6i_flags |= IP6I_VERIFY_SRC; 7587 } 7588 7589 if (option_exists & IPPF_DONTFRAG) { 7590 ip6i->ip6i_flags |= IP6I_DONTFRAG; 7591 } 7592 7593 if (option_exists & IPPF_USE_MIN_MTU) { 7594 ip6i->ip6i_flags = IP6I_API_USE_MIN_MTU( 7595 ip6i->ip6i_flags, ipp->ipp_use_min_mtu); 7596 } 7597 7598 if (option_exists & IPPF_NEXTHOP) { 7599 tipp = ANCIL_OR_STICKY_PTR(IPPF_NEXTHOP); 7600 ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_nexthop)); 7601 ip6i->ip6i_flags |= IP6I_NEXTHOP; 7602 ip6i->ip6i_nexthop = tipp->ipp_nexthop; 7603 } 7604 7605 /* 7606 * tell IP this is an ip6i_t private header 7607 */ 7608 ip6i->ip6i_nxt = IPPROTO_RAW; 7609 } 7610 7611 /* Initialize IPv6 header */ 7612 ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 7613 bzero(&ip6h->ip6_src, sizeof (ip6h->ip6_src)); 7614 7615 /* Set the hoplimit of the outgoing packet. */ 7616 if (option_exists & IPPF_HOPLIMIT) { 7617 /* IPV6_HOPLIMIT ancillary data overrides all other settings. */ 7618 ip6h->ip6_hops = ipp->ipp_hoplimit; 7619 ip6i->ip6i_flags |= IP6I_HOPLIMIT; 7620 } else if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { 7621 ip6h->ip6_hops = udp->udp_multicast_ttl; 7622 if (option_exists & IPPF_MULTICAST_HOPS) 7623 ip6i->ip6i_flags |= IP6I_HOPLIMIT; 7624 } else { 7625 ip6h->ip6_hops = udp->udp_ttl; 7626 if (option_exists & IPPF_UNICAST_HOPS) 7627 ip6i->ip6i_flags |= IP6I_HOPLIMIT; 7628 } 7629 7630 if (option_exists & IPPF_ADDR) { 7631 tipp = ANCIL_OR_STICKY_PTR(IPPF_ADDR); 7632 ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_addr)); 7633 ip6h->ip6_src = tipp->ipp_addr; 7634 } else { 7635 /* 7636 * The source address was not set using IPV6_PKTINFO. 7637 * First look at the bound source. 7638 * If unspecified fallback to __sin6_src_id. 7639 */ 7640 ip6h->ip6_src = udp->udp_v6src; 7641 if (sin6->__sin6_src_id != 0 && 7642 IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) { 7643 ip_srcid_find_id(sin6->__sin6_src_id, 7644 &ip6h->ip6_src, connp->conn_zoneid, 7645 us->us_netstack); 7646 } 7647 } 7648 7649 nxthdr_ptr = (uint8_t *)&ip6h->ip6_nxt; 7650 cp = (uint8_t *)&ip6h[1]; 7651 7652 /* 7653 * Here's where we have to start stringing together 7654 * any extension headers in the right order: 7655 * Hop-by-hop, destination, routing, and final destination opts. 7656 */ 7657 if (option_exists & IPPF_HOPOPTS) { 7658 /* Hop-by-hop options */ 7659 ip6_hbh_t *hbh = (ip6_hbh_t *)cp; 7660 tipp = ANCIL_OR_STICKY_PTR(IPPF_HOPOPTS); 7661 if (hopoptslen == 0) { 7662 hopoptsptr = tipp->ipp_hopopts; 7663 hopoptslen = tipp->ipp_hopoptslen; 7664 is_ancillary = B_TRUE; 7665 } 7666 7667 *nxthdr_ptr = IPPROTO_HOPOPTS; 7668 nxthdr_ptr = &hbh->ip6h_nxt; 7669 7670 bcopy(hopoptsptr, cp, hopoptslen); 7671 cp += hopoptslen; 7672 7673 if (hopoptsptr != NULL && !is_ancillary) { 7674 kmem_free(hopoptsptr, hopoptslen); 7675 hopoptsptr = NULL; 7676 hopoptslen = 0; 7677 } 7678 } 7679 /* 7680 * En-route destination options 7681 * Only do them if there's a routing header as well 7682 */ 7683 if (option_exists & IPPF_RTDSTOPTS) { 7684 ip6_dest_t *dst = (ip6_dest_t *)cp; 7685 tipp = ANCIL_OR_STICKY_PTR(IPPF_RTDSTOPTS); 7686 7687 *nxthdr_ptr = IPPROTO_DSTOPTS; 7688 nxthdr_ptr = &dst->ip6d_nxt; 7689 7690 bcopy(tipp->ipp_rtdstopts, cp, tipp->ipp_rtdstoptslen); 7691 cp += tipp->ipp_rtdstoptslen; 7692 } 7693 /* 7694 * Routing header next 7695 */ 7696 if (option_exists & IPPF_RTHDR) { 7697 ip6_rthdr_t *rt = (ip6_rthdr_t *)cp; 7698 tipp = ANCIL_OR_STICKY_PTR(IPPF_RTHDR); 7699 7700 *nxthdr_ptr = IPPROTO_ROUTING; 7701 nxthdr_ptr = &rt->ip6r_nxt; 7702 7703 bcopy(tipp->ipp_rthdr, cp, tipp->ipp_rthdrlen); 7704 cp += tipp->ipp_rthdrlen; 7705 } 7706 /* 7707 * Do ultimate destination options 7708 */ 7709 if (option_exists & IPPF_DSTOPTS) { 7710 ip6_dest_t *dest = (ip6_dest_t *)cp; 7711 tipp = ANCIL_OR_STICKY_PTR(IPPF_DSTOPTS); 7712 7713 *nxthdr_ptr = IPPROTO_DSTOPTS; 7714 nxthdr_ptr = &dest->ip6d_nxt; 7715 7716 bcopy(tipp->ipp_dstopts, cp, tipp->ipp_dstoptslen); 7717 cp += tipp->ipp_dstoptslen; 7718 } 7719 /* 7720 * Now set the last header pointer to the proto passed in 7721 */ 7722 ASSERT((int)(cp - (uint8_t *)ip6i) == (udp_ip_hdr_len - UDPH_SIZE)); 7723 *nxthdr_ptr = IPPROTO_UDP; 7724 7725 /* Update UDP header */ 7726 udph = (udpha_t *)((uchar_t *)ip6i + udp_ip_hdr_len - UDPH_SIZE); 7727 udph->uha_dst_port = sin6->sin6_port; 7728 udph->uha_src_port = udp->udp_port; 7729 7730 /* 7731 * Copy in the destination address 7732 */ 7733 ip6h->ip6_dst = ip6_dst; 7734 7735 ip6h->ip6_vcf = 7736 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 7737 (sin6->sin6_flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 7738 7739 if (option_exists & IPPF_TCLASS) { 7740 tipp = ANCIL_OR_STICKY_PTR(IPPF_TCLASS); 7741 ip6h->ip6_vcf = IPV6_TCLASS_FLOW(ip6h->ip6_vcf, 7742 tipp->ipp_tclass); 7743 } 7744 7745 if (option_exists & IPPF_RTHDR) { 7746 ip6_rthdr_t *rth; 7747 7748 /* 7749 * Perform any processing needed for source routing. 7750 * We know that all extension headers will be in the same mblk 7751 * as the IPv6 header. 7752 */ 7753 rth = ip_find_rthdr_v6(ip6h, mp1->b_wptr); 7754 if (rth != NULL && rth->ip6r_segleft != 0) { 7755 if (rth->ip6r_type != IPV6_RTHDR_TYPE_0) { 7756 /* 7757 * Drop packet - only support Type 0 routing. 7758 * Notify the application as well. 7759 */ 7760 *error = EPROTO; 7761 goto done; 7762 } 7763 7764 /* 7765 * rth->ip6r_len is twice the number of 7766 * addresses in the header. Thus it must be even. 7767 */ 7768 if (rth->ip6r_len & 0x1) { 7769 *error = EPROTO; 7770 goto done; 7771 } 7772 /* 7773 * Shuffle the routing header and ip6_dst 7774 * addresses, and get the checksum difference 7775 * between the first hop (in ip6_dst) and 7776 * the destination (in the last routing hdr entry). 7777 */ 7778 csum = ip_massage_options_v6(ip6h, rth, 7779 us->us_netstack); 7780 /* 7781 * Verify that the first hop isn't a mapped address. 7782 * Routers along the path need to do this verification 7783 * for subsequent hops. 7784 */ 7785 if (IN6_IS_ADDR_V4MAPPED(&ip6h->ip6_dst)) { 7786 *error = EADDRNOTAVAIL; 7787 goto done; 7788 } 7789 7790 cp += (rth->ip6r_len + 1)*8; 7791 } 7792 } 7793 7794 /* count up length of UDP packet */ 7795 ip_len = (mp1->b_wptr - (unsigned char *)ip6h) - IPV6_HDR_LEN; 7796 if ((mp2 = mp1->b_cont) != NULL) { 7797 do { 7798 ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX); 7799 ip_len += (uint32_t)MBLKL(mp2); 7800 } while ((mp2 = mp2->b_cont) != NULL); 7801 } 7802 7803 /* 7804 * If the size of the packet is greater than the maximum allowed by 7805 * ip, return an error. Passing this down could cause panics because 7806 * the size will have wrapped and be inconsistent with the msg size. 7807 */ 7808 if (ip_len > IP_MAXPACKET) { 7809 *error = EMSGSIZE; 7810 goto done; 7811 } 7812 7813 /* Store the UDP length. Subtract length of extension hdrs */ 7814 udph->uha_length = htons(ip_len + IPV6_HDR_LEN - 7815 (int)((uchar_t *)udph - (uchar_t *)ip6h)); 7816 7817 /* 7818 * We make it easy for IP to include our pseudo header 7819 * by putting our length in uh_checksum, modified (if 7820 * we have a routing header) by the checksum difference 7821 * between the ultimate destination and first hop addresses. 7822 * Note: UDP over IPv6 must always checksum the packet. 7823 */ 7824 csum += udph->uha_length; 7825 csum = (csum & 0xFFFF) + (csum >> 16); 7826 udph->uha_checksum = (uint16_t)csum; 7827 7828 #ifdef _LITTLE_ENDIAN 7829 ip_len = htons(ip_len); 7830 #endif 7831 ip6h->ip6_plen = ip_len; 7832 if (DB_CRED(mp) != NULL) 7833 mblk_setcred(mp1, DB_CRED(mp)); 7834 7835 if (DB_TYPE(mp) != M_DATA) { 7836 ASSERT(mp != mp1); 7837 freeb(mp); 7838 } 7839 7840 /* mp has been consumed and we'll return success */ 7841 ASSERT(*error == 0); 7842 mp = NULL; 7843 7844 /* We're done. Pass the packet to IP */ 7845 BUMP_MIB(&udp->udp_mib, udpHCOutDatagrams); 7846 ip_output_v6(connp, mp1, q, IP_WPUT); 7847 7848 done: 7849 if (hopoptsptr != NULL && !is_ancillary) { 7850 kmem_free(hopoptsptr, hopoptslen); 7851 hopoptsptr = NULL; 7852 } 7853 if (*error != 0) { 7854 ASSERT(mp != NULL); 7855 BUMP_MIB(&udp->udp_mib, udpOutErrors); 7856 } 7857 return (mp); 7858 } 7859 7860 static void 7861 udp_wput_other(queue_t *q, mblk_t *mp) 7862 { 7863 uchar_t *rptr = mp->b_rptr; 7864 struct datab *db; 7865 struct iocblk *iocp; 7866 cred_t *cr; 7867 conn_t *connp = Q_TO_CONN(q); 7868 udp_t *udp = connp->conn_udp; 7869 udp_stack_t *us; 7870 7871 TRACE_1(TR_FAC_UDP, TR_UDP_WPUT_OTHER_START, 7872 "udp_wput_other_start: q %p", q); 7873 7874 us = udp->udp_us; 7875 db = mp->b_datap; 7876 7877 cr = DB_CREDDEF(mp, connp->conn_cred); 7878 7879 switch (db->db_type) { 7880 case M_PROTO: 7881 case M_PCPROTO: 7882 if (mp->b_wptr - rptr < sizeof (t_scalar_t)) { 7883 freemsg(mp); 7884 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7885 "udp_wput_other_end: q %p (%S)", 7886 q, "protoshort"); 7887 return; 7888 } 7889 switch (((t_primp_t)rptr)->type) { 7890 case T_ADDR_REQ: 7891 udp_addr_req(q, mp); 7892 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7893 "udp_wput_other_end: q %p (%S)", q, "addrreq"); 7894 return; 7895 case O_T_BIND_REQ: 7896 case T_BIND_REQ: 7897 udp_bind(q, mp); 7898 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7899 "udp_wput_other_end: q %p (%S)", q, "bindreq"); 7900 return; 7901 case T_CONN_REQ: 7902 udp_connect(q, mp); 7903 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7904 "udp_wput_other_end: q %p (%S)", q, "connreq"); 7905 return; 7906 case T_CAPABILITY_REQ: 7907 udp_capability_req(q, mp); 7908 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7909 "udp_wput_other_end: q %p (%S)", q, "capabreq"); 7910 return; 7911 case T_INFO_REQ: 7912 udp_info_req(q, mp); 7913 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7914 "udp_wput_other_end: q %p (%S)", q, "inforeq"); 7915 return; 7916 case T_UNITDATA_REQ: 7917 /* 7918 * If a T_UNITDATA_REQ gets here, the address must 7919 * be bad. Valid T_UNITDATA_REQs are handled 7920 * in udp_wput. 7921 */ 7922 udp_ud_err(q, mp, NULL, 0, EADDRNOTAVAIL); 7923 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7924 "udp_wput_other_end: q %p (%S)", 7925 q, "unitdatareq"); 7926 return; 7927 case T_UNBIND_REQ: 7928 udp_unbind(q, mp); 7929 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7930 "udp_wput_other_end: q %p (%S)", q, "unbindreq"); 7931 return; 7932 case T_SVR4_OPTMGMT_REQ: 7933 if (!snmpcom_req(q, mp, udp_snmp_set, udp_snmp_get, cr)) 7934 /* 7935 * Use upper queue for option processing in 7936 * case the request is not handled at this 7937 * level and needs to be passed down to IP. 7938 */ 7939 (void) svr4_optcom_req(_WR(UDP_RD(q)), 7940 mp, cr, &udp_opt_obj); 7941 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7942 "udp_wput_other_end: q %p (%S)", 7943 q, "optmgmtreq"); 7944 return; 7945 7946 case T_OPTMGMT_REQ: 7947 /* 7948 * Use upper queue for option processing in 7949 * case the request is not handled at this 7950 * level and needs to be passed down to IP. 7951 */ 7952 (void) tpi_optcom_req(_WR(UDP_RD(q)), 7953 mp, cr, &udp_opt_obj); 7954 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7955 "udp_wput_other_end: q %p (%S)", 7956 q, "optmgmtreq"); 7957 return; 7958 7959 case T_DISCON_REQ: 7960 udp_disconnect(q, mp); 7961 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7962 "udp_wput_other_end: q %p (%S)", 7963 q, "disconreq"); 7964 return; 7965 7966 /* The following TPI message is not supported by udp. */ 7967 case O_T_CONN_RES: 7968 case T_CONN_RES: 7969 udp_err_ack(q, mp, TNOTSUPPORT, 0); 7970 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7971 "udp_wput_other_end: q %p (%S)", 7972 q, "connres/disconreq"); 7973 return; 7974 7975 /* The following 3 TPI messages are illegal for udp. */ 7976 case T_DATA_REQ: 7977 case T_EXDATA_REQ: 7978 case T_ORDREL_REQ: 7979 udp_err_ack(q, mp, TNOTSUPPORT, 0); 7980 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7981 "udp_wput_other_end: q %p (%S)", 7982 q, "data/exdata/ordrel"); 7983 return; 7984 default: 7985 break; 7986 } 7987 break; 7988 case M_FLUSH: 7989 if (*rptr & FLUSHW) 7990 flushq(q, FLUSHDATA); 7991 break; 7992 case M_IOCTL: 7993 iocp = (struct iocblk *)mp->b_rptr; 7994 switch (iocp->ioc_cmd) { 7995 case TI_GETPEERNAME: 7996 if (udp->udp_state != TS_DATA_XFER) { 7997 /* 7998 * If a default destination address has not 7999 * been associated with the stream, then we 8000 * don't know the peer's name. 8001 */ 8002 iocp->ioc_error = ENOTCONN; 8003 iocp->ioc_count = 0; 8004 mp->b_datap->db_type = M_IOCACK; 8005 putnext(UDP_RD(q), mp); 8006 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 8007 "udp_wput_other_end: q %p (%S)", 8008 q, "getpeername"); 8009 return; 8010 } 8011 /* FALLTHRU */ 8012 case TI_GETMYNAME: { 8013 /* 8014 * For TI_GETPEERNAME and TI_GETMYNAME, we first 8015 * need to copyin the user's strbuf structure. 8016 * Processing will continue in the M_IOCDATA case 8017 * below. 8018 */ 8019 mi_copyin(q, mp, NULL, 8020 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 8021 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 8022 "udp_wput_other_end: q %p (%S)", 8023 q, "getmyname"); 8024 return; 8025 } 8026 case ND_SET: 8027 /* nd_getset performs the necessary checking */ 8028 case ND_GET: 8029 if (nd_getset(q, us->us_nd, mp)) { 8030 putnext(UDP_RD(q), mp); 8031 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 8032 "udp_wput_other_end: q %p (%S)", 8033 q, "get"); 8034 return; 8035 } 8036 break; 8037 case _SIOCSOCKFALLBACK: 8038 /* 8039 * Either sockmod is about to be popped and the 8040 * socket would now be treated as a plain stream, 8041 * or a module is about to be pushed so we could 8042 * no longer use read-side synchronous stream. 8043 * Drain any queued data and disable direct sockfs 8044 * interface from now on. 8045 */ 8046 if (!udp->udp_issocket) { 8047 DB_TYPE(mp) = M_IOCNAK; 8048 iocp->ioc_error = EINVAL; 8049 } else { 8050 udp->udp_issocket = B_FALSE; 8051 if (udp->udp_direct_sockfs) { 8052 /* 8053 * Disable read-side synchronous 8054 * stream interface and drain any 8055 * queued data. 8056 */ 8057 udp_rcv_drain(UDP_RD(q), udp, 8058 B_FALSE); 8059 ASSERT(!udp->udp_direct_sockfs); 8060 UDP_STAT(us, udp_sock_fallback); 8061 } 8062 DB_TYPE(mp) = M_IOCACK; 8063 iocp->ioc_error = 0; 8064 } 8065 iocp->ioc_count = 0; 8066 iocp->ioc_rval = 0; 8067 putnext(UDP_RD(q), mp); 8068 return; 8069 default: 8070 break; 8071 } 8072 break; 8073 case M_IOCDATA: 8074 udp_wput_iocdata(q, mp); 8075 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 8076 "udp_wput_other_end: q %p (%S)", q, "iocdata"); 8077 return; 8078 default: 8079 /* Unrecognized messages are passed through without change. */ 8080 break; 8081 } 8082 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 8083 "udp_wput_other_end: q %p (%S)", q, "end"); 8084 ip_output(connp, mp, q, IP_WPUT); 8085 } 8086 8087 /* ARGSUSED */ 8088 static void 8089 udp_wput_other_wrapper(void *arg, mblk_t *mp, void *arg2) 8090 { 8091 udp_wput_other(((conn_t *)arg)->conn_wq, mp); 8092 udp_exit((conn_t *)arg); 8093 } 8094 8095 /* 8096 * udp_wput_iocdata is called by udp_wput_other to handle all M_IOCDATA 8097 * messages. 8098 */ 8099 static void 8100 udp_wput_iocdata(queue_t *q, mblk_t *mp) 8101 { 8102 mblk_t *mp1; 8103 STRUCT_HANDLE(strbuf, sb); 8104 uint16_t port; 8105 in6_addr_t v6addr; 8106 ipaddr_t v4addr; 8107 uint32_t flowinfo = 0; 8108 int addrlen; 8109 udp_t *udp = Q_TO_UDP(q); 8110 8111 /* Make sure it is one of ours. */ 8112 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 8113 case TI_GETMYNAME: 8114 case TI_GETPEERNAME: 8115 break; 8116 default: 8117 ip_output(udp->udp_connp, mp, q, IP_WPUT); 8118 return; 8119 } 8120 8121 q = WR(UDP_RD(q)); 8122 switch (mi_copy_state(q, mp, &mp1)) { 8123 case -1: 8124 return; 8125 case MI_COPY_CASE(MI_COPY_IN, 1): 8126 break; 8127 case MI_COPY_CASE(MI_COPY_OUT, 1): 8128 /* 8129 * The address has been copied out, so now 8130 * copyout the strbuf. 8131 */ 8132 mi_copyout(q, mp); 8133 return; 8134 case MI_COPY_CASE(MI_COPY_OUT, 2): 8135 /* 8136 * The address and strbuf have been copied out. 8137 * We're done, so just acknowledge the original 8138 * M_IOCTL. 8139 */ 8140 mi_copy_done(q, mp, 0); 8141 return; 8142 default: 8143 /* 8144 * Something strange has happened, so acknowledge 8145 * the original M_IOCTL with an EPROTO error. 8146 */ 8147 mi_copy_done(q, mp, EPROTO); 8148 return; 8149 } 8150 8151 /* 8152 * Now we have the strbuf structure for TI_GETMYNAME 8153 * and TI_GETPEERNAME. Next we copyout the requested 8154 * address and then we'll copyout the strbuf. 8155 */ 8156 STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, 8157 (void *)mp1->b_rptr); 8158 if (udp->udp_family == AF_INET) 8159 addrlen = sizeof (sin_t); 8160 else 8161 addrlen = sizeof (sin6_t); 8162 8163 if (STRUCT_FGET(sb, maxlen) < addrlen) { 8164 mi_copy_done(q, mp, EINVAL); 8165 return; 8166 } 8167 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 8168 case TI_GETMYNAME: 8169 if (udp->udp_family == AF_INET) { 8170 ASSERT(udp->udp_ipversion == IPV4_VERSION); 8171 if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) && 8172 !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 8173 v4addr = V4_PART_OF_V6(udp->udp_v6src); 8174 } else { 8175 /* 8176 * INADDR_ANY 8177 * udp_v6src is not set, we might be bound to 8178 * broadcast/multicast. Use udp_bound_v6src as 8179 * local address instead (that could 8180 * also still be INADDR_ANY) 8181 */ 8182 v4addr = V4_PART_OF_V6(udp->udp_bound_v6src); 8183 } 8184 } else { 8185 /* udp->udp_family == AF_INET6 */ 8186 if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 8187 v6addr = udp->udp_v6src; 8188 } else { 8189 /* 8190 * UNSPECIFIED 8191 * udp_v6src is not set, we might be bound to 8192 * broadcast/multicast. Use udp_bound_v6src as 8193 * local address instead (that could 8194 * also still be UNSPECIFIED) 8195 */ 8196 v6addr = udp->udp_bound_v6src; 8197 } 8198 } 8199 port = udp->udp_port; 8200 break; 8201 case TI_GETPEERNAME: 8202 if (udp->udp_state != TS_DATA_XFER) { 8203 mi_copy_done(q, mp, ENOTCONN); 8204 return; 8205 } 8206 if (udp->udp_family == AF_INET) { 8207 ASSERT(udp->udp_ipversion == IPV4_VERSION); 8208 v4addr = V4_PART_OF_V6(udp->udp_v6dst); 8209 } else { 8210 /* udp->udp_family == AF_INET6) */ 8211 v6addr = udp->udp_v6dst; 8212 flowinfo = udp->udp_flowinfo; 8213 } 8214 port = udp->udp_dstport; 8215 break; 8216 default: 8217 mi_copy_done(q, mp, EPROTO); 8218 return; 8219 } 8220 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 8221 if (!mp1) 8222 return; 8223 8224 if (udp->udp_family == AF_INET) { 8225 sin_t *sin; 8226 8227 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 8228 sin = (sin_t *)mp1->b_rptr; 8229 mp1->b_wptr = (uchar_t *)&sin[1]; 8230 *sin = sin_null; 8231 sin->sin_family = AF_INET; 8232 sin->sin_addr.s_addr = v4addr; 8233 sin->sin_port = port; 8234 } else { 8235 /* udp->udp_family == AF_INET6 */ 8236 sin6_t *sin6; 8237 8238 STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); 8239 sin6 = (sin6_t *)mp1->b_rptr; 8240 mp1->b_wptr = (uchar_t *)&sin6[1]; 8241 *sin6 = sin6_null; 8242 sin6->sin6_family = AF_INET6; 8243 sin6->sin6_flowinfo = flowinfo; 8244 sin6->sin6_addr = v6addr; 8245 sin6->sin6_port = port; 8246 } 8247 /* Copy out the address */ 8248 mi_copyout(q, mp); 8249 } 8250 8251 8252 static int 8253 udp_unitdata_opt_process(queue_t *q, mblk_t *mp, int *errorp, 8254 udpattrs_t *udpattrs) 8255 { 8256 struct T_unitdata_req *udreqp; 8257 int is_absreq_failure; 8258 cred_t *cr; 8259 conn_t *connp = Q_TO_CONN(q); 8260 8261 ASSERT(((t_primp_t)mp->b_rptr)->type); 8262 8263 cr = DB_CREDDEF(mp, connp->conn_cred); 8264 8265 udreqp = (struct T_unitdata_req *)mp->b_rptr; 8266 8267 /* 8268 * Use upper queue for option processing since the callback 8269 * routines expect to be called in UDP instance instead of IP. 8270 */ 8271 *errorp = tpi_optcom_buf(_WR(UDP_RD(q)), mp, &udreqp->OPT_length, 8272 udreqp->OPT_offset, cr, &udp_opt_obj, 8273 udpattrs, &is_absreq_failure); 8274 8275 if (*errorp != 0) { 8276 /* 8277 * Note: No special action needed in this 8278 * module for "is_absreq_failure" 8279 */ 8280 return (-1); /* failure */ 8281 } 8282 ASSERT(is_absreq_failure == 0); 8283 return (0); /* success */ 8284 } 8285 8286 void 8287 udp_ddi_init(void) 8288 { 8289 UDP6_MAJ = ddi_name_to_major(UDP6); 8290 udp_max_optsize = optcom_max_optsize(udp_opt_obj.odb_opt_des_arr, 8291 udp_opt_obj.odb_opt_arr_cnt); 8292 8293 udp_cache = kmem_cache_create("udp_cache", sizeof (udp_t), 8294 CACHE_ALIGN_SIZE, NULL, NULL, NULL, NULL, NULL, 0); 8295 8296 /* 8297 * We want to be informed each time a stack is created or 8298 * destroyed in the kernel, so we can maintain the 8299 * set of udp_stack_t's. 8300 */ 8301 netstack_register(NS_UDP, udp_stack_init, NULL, udp_stack_fini); 8302 } 8303 8304 void 8305 udp_ddi_destroy(void) 8306 { 8307 netstack_unregister(NS_UDP); 8308 8309 kmem_cache_destroy(udp_cache); 8310 } 8311 8312 /* 8313 * Initialize the UDP stack instance. 8314 */ 8315 static void * 8316 udp_stack_init(netstackid_t stackid, netstack_t *ns) 8317 { 8318 udp_stack_t *us; 8319 udpparam_t *pa; 8320 int i; 8321 8322 us = (udp_stack_t *)kmem_zalloc(sizeof (*us), KM_SLEEP); 8323 us->us_netstack = ns; 8324 8325 us->us_num_epriv_ports = UDP_NUM_EPRIV_PORTS; 8326 us->us_epriv_ports[0] = 2049; 8327 us->us_epriv_ports[1] = 4045; 8328 8329 /* 8330 * The smallest anonymous port in the priviledged port range which UDP 8331 * looks for free port. Use in the option UDP_ANONPRIVBIND. 8332 */ 8333 us->us_min_anonpriv_port = 512; 8334 8335 us->us_bind_fanout_size = udp_bind_fanout_size; 8336 8337 /* Roundup variable that might have been modified in /etc/system */ 8338 if (us->us_bind_fanout_size & (us->us_bind_fanout_size - 1)) { 8339 /* Not a power of two. Round up to nearest power of two */ 8340 for (i = 0; i < 31; i++) { 8341 if (us->us_bind_fanout_size < (1 << i)) 8342 break; 8343 } 8344 us->us_bind_fanout_size = 1 << i; 8345 } 8346 us->us_bind_fanout = kmem_zalloc(us->us_bind_fanout_size * 8347 sizeof (udp_fanout_t), KM_SLEEP); 8348 for (i = 0; i < us->us_bind_fanout_size; i++) { 8349 mutex_init(&us->us_bind_fanout[i].uf_lock, NULL, MUTEX_DEFAULT, 8350 NULL); 8351 } 8352 8353 pa = (udpparam_t *)kmem_alloc(sizeof (udp_param_arr), KM_SLEEP); 8354 8355 us->us_param_arr = pa; 8356 bcopy(udp_param_arr, us->us_param_arr, sizeof (udp_param_arr)); 8357 8358 (void) udp_param_register(&us->us_nd, 8359 us->us_param_arr, A_CNT(udp_param_arr)); 8360 8361 us->us_kstat = udp_kstat2_init(stackid, &us->us_statistics); 8362 us->us_mibkp = udp_kstat_init(stackid); 8363 return (us); 8364 } 8365 8366 /* 8367 * Free the UDP stack instance. 8368 */ 8369 static void 8370 udp_stack_fini(netstackid_t stackid, void *arg) 8371 { 8372 udp_stack_t *us = (udp_stack_t *)arg; 8373 int i; 8374 8375 for (i = 0; i < us->us_bind_fanout_size; i++) { 8376 mutex_destroy(&us->us_bind_fanout[i].uf_lock); 8377 } 8378 8379 kmem_free(us->us_bind_fanout, us->us_bind_fanout_size * 8380 sizeof (udp_fanout_t)); 8381 8382 us->us_bind_fanout = NULL; 8383 8384 nd_free(&us->us_nd); 8385 kmem_free(us->us_param_arr, sizeof (udp_param_arr)); 8386 us->us_param_arr = NULL; 8387 8388 udp_kstat_fini(stackid, us->us_mibkp); 8389 us->us_mibkp = NULL; 8390 8391 udp_kstat2_fini(stackid, us->us_kstat); 8392 us->us_kstat = NULL; 8393 bzero(&us->us_statistics, sizeof (us->us_statistics)); 8394 kmem_free(us, sizeof (*us)); 8395 } 8396 8397 static void * 8398 udp_kstat2_init(netstackid_t stackid, udp_stat_t *us_statisticsp) 8399 { 8400 kstat_t *ksp; 8401 8402 udp_stat_t template = { 8403 { "udp_ip_send", KSTAT_DATA_UINT64 }, 8404 { "udp_ip_ire_send", KSTAT_DATA_UINT64 }, 8405 { "udp_ire_null", KSTAT_DATA_UINT64 }, 8406 { "udp_drain", KSTAT_DATA_UINT64 }, 8407 { "udp_sock_fallback", KSTAT_DATA_UINT64 }, 8408 { "udp_rrw_busy", KSTAT_DATA_UINT64 }, 8409 { "udp_rrw_msgcnt", KSTAT_DATA_UINT64 }, 8410 { "udp_out_sw_cksum", KSTAT_DATA_UINT64 }, 8411 { "udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 8412 { "udp_out_opt", KSTAT_DATA_UINT64 }, 8413 { "udp_out_err_notconn", KSTAT_DATA_UINT64 }, 8414 { "udp_out_err_output", KSTAT_DATA_UINT64 }, 8415 { "udp_out_err_tudr", KSTAT_DATA_UINT64 }, 8416 { "udp_in_pktinfo", KSTAT_DATA_UINT64 }, 8417 { "udp_in_recvdstaddr", KSTAT_DATA_UINT64 }, 8418 { "udp_in_recvopts", KSTAT_DATA_UINT64 }, 8419 { "udp_in_recvif", KSTAT_DATA_UINT64 }, 8420 { "udp_in_recvslla", KSTAT_DATA_UINT64 }, 8421 { "udp_in_recvucred", KSTAT_DATA_UINT64 }, 8422 { "udp_in_recvttl", KSTAT_DATA_UINT64 }, 8423 { "udp_in_recvhopopts", KSTAT_DATA_UINT64 }, 8424 { "udp_in_recvhoplimit", KSTAT_DATA_UINT64 }, 8425 { "udp_in_recvdstopts", KSTAT_DATA_UINT64 }, 8426 { "udp_in_recvrtdstopts", KSTAT_DATA_UINT64 }, 8427 { "udp_in_recvrthdr", KSTAT_DATA_UINT64 }, 8428 { "udp_in_recvpktinfo", KSTAT_DATA_UINT64 }, 8429 { "udp_in_recvtclass", KSTAT_DATA_UINT64 }, 8430 { "udp_in_timestamp", KSTAT_DATA_UINT64 }, 8431 #ifdef DEBUG 8432 { "udp_data_conn", KSTAT_DATA_UINT64 }, 8433 { "udp_data_notconn", KSTAT_DATA_UINT64 }, 8434 #endif 8435 }; 8436 8437 ksp = kstat_create_netstack(UDP_MOD_NAME, 0, "udpstat", "net", 8438 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 8439 KSTAT_FLAG_VIRTUAL, stackid); 8440 8441 if (ksp == NULL) 8442 return (NULL); 8443 8444 bcopy(&template, us_statisticsp, sizeof (template)); 8445 ksp->ks_data = (void *)us_statisticsp; 8446 ksp->ks_private = (void *)(uintptr_t)stackid; 8447 8448 kstat_install(ksp); 8449 return (ksp); 8450 } 8451 8452 static void 8453 udp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 8454 { 8455 if (ksp != NULL) { 8456 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 8457 kstat_delete_netstack(ksp, stackid); 8458 } 8459 } 8460 8461 static void * 8462 udp_kstat_init(netstackid_t stackid) 8463 { 8464 kstat_t *ksp; 8465 8466 udp_named_kstat_t template = { 8467 { "inDatagrams", KSTAT_DATA_UINT64, 0 }, 8468 { "inErrors", KSTAT_DATA_UINT32, 0 }, 8469 { "outDatagrams", KSTAT_DATA_UINT64, 0 }, 8470 { "entrySize", KSTAT_DATA_INT32, 0 }, 8471 { "entry6Size", KSTAT_DATA_INT32, 0 }, 8472 { "outErrors", KSTAT_DATA_UINT32, 0 }, 8473 }; 8474 8475 ksp = kstat_create_netstack(UDP_MOD_NAME, 0, UDP_MOD_NAME, "mib2", 8476 KSTAT_TYPE_NAMED, 8477 NUM_OF_FIELDS(udp_named_kstat_t), 0, stackid); 8478 8479 if (ksp == NULL || ksp->ks_data == NULL) 8480 return (NULL); 8481 8482 template.entrySize.value.ui32 = sizeof (mib2_udpEntry_t); 8483 template.entry6Size.value.ui32 = sizeof (mib2_udp6Entry_t); 8484 8485 bcopy(&template, ksp->ks_data, sizeof (template)); 8486 ksp->ks_update = udp_kstat_update; 8487 ksp->ks_private = (void *)(uintptr_t)stackid; 8488 8489 kstat_install(ksp); 8490 return (ksp); 8491 } 8492 8493 static void 8494 udp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 8495 { 8496 if (ksp != NULL) { 8497 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 8498 kstat_delete_netstack(ksp, stackid); 8499 } 8500 } 8501 8502 static int 8503 udp_kstat_update(kstat_t *kp, int rw) 8504 { 8505 udp_named_kstat_t *udpkp; 8506 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 8507 netstack_t *ns; 8508 udp_stack_t *us; 8509 8510 if ((kp == NULL) || (kp->ks_data == NULL)) 8511 return (EIO); 8512 8513 if (rw == KSTAT_WRITE) 8514 return (EACCES); 8515 8516 ns = netstack_find_by_stackid(stackid); 8517 if (ns == NULL) 8518 return (-1); 8519 us = ns->netstack_udp; 8520 if (us == NULL) { 8521 netstack_rele(ns); 8522 return (-1); 8523 } 8524 udpkp = (udp_named_kstat_t *)kp->ks_data; 8525 8526 udpkp->inDatagrams.value.ui32 = us->us_udp_mib.udpHCInDatagrams; 8527 udpkp->inErrors.value.ui32 = us->us_udp_mib.udpInErrors; 8528 udpkp->outDatagrams.value.ui32 = us->us_udp_mib.udpHCOutDatagrams; 8529 udpkp->outErrors.value.ui32 = us->us_udp_mib.udpOutErrors; 8530 netstack_rele(ns); 8531 return (0); 8532 } 8533 8534 /* ARGSUSED */ 8535 static void 8536 udp_rput(queue_t *q, mblk_t *mp) 8537 { 8538 /* 8539 * We get here whenever we do qreply() from IP, 8540 * i.e as part of handlings ioctls, etc. 8541 */ 8542 putnext(q, mp); 8543 } 8544 8545 /* 8546 * Read-side synchronous stream info entry point, called as a 8547 * result of handling certain STREAMS ioctl operations. 8548 */ 8549 static int 8550 udp_rinfop(queue_t *q, infod_t *dp) 8551 { 8552 mblk_t *mp; 8553 uint_t cmd = dp->d_cmd; 8554 int res = 0; 8555 int error = 0; 8556 udp_t *udp = Q_TO_UDP(RD(UDP_WR(q))); 8557 struct stdata *stp = STREAM(q); 8558 8559 mutex_enter(&udp->udp_drain_lock); 8560 /* If shutdown on read has happened, return nothing */ 8561 mutex_enter(&stp->sd_lock); 8562 if (stp->sd_flag & STREOF) { 8563 mutex_exit(&stp->sd_lock); 8564 goto done; 8565 } 8566 mutex_exit(&stp->sd_lock); 8567 8568 if ((mp = udp->udp_rcv_list_head) == NULL) 8569 goto done; 8570 8571 ASSERT(DB_TYPE(mp) != M_DATA && mp->b_cont != NULL); 8572 8573 if (cmd & INFOD_COUNT) { 8574 /* 8575 * Return the number of messages. 8576 */ 8577 dp->d_count += udp->udp_rcv_msgcnt; 8578 res |= INFOD_COUNT; 8579 } 8580 if (cmd & INFOD_BYTES) { 8581 /* 8582 * Return size of all data messages. 8583 */ 8584 dp->d_bytes += udp->udp_rcv_cnt; 8585 res |= INFOD_BYTES; 8586 } 8587 if (cmd & INFOD_FIRSTBYTES) { 8588 /* 8589 * Return size of first data message. 8590 */ 8591 dp->d_bytes = msgdsize(mp); 8592 res |= INFOD_FIRSTBYTES; 8593 dp->d_cmd &= ~INFOD_FIRSTBYTES; 8594 } 8595 if (cmd & INFOD_COPYOUT) { 8596 mblk_t *mp1 = mp->b_cont; 8597 int n; 8598 /* 8599 * Return data contents of first message. 8600 */ 8601 ASSERT(DB_TYPE(mp1) == M_DATA); 8602 while (mp1 != NULL && dp->d_uiop->uio_resid > 0) { 8603 n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1)); 8604 if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n, 8605 UIO_READ, dp->d_uiop)) != 0) { 8606 goto done; 8607 } 8608 mp1 = mp1->b_cont; 8609 } 8610 res |= INFOD_COPYOUT; 8611 dp->d_cmd &= ~INFOD_COPYOUT; 8612 } 8613 done: 8614 mutex_exit(&udp->udp_drain_lock); 8615 8616 dp->d_res |= res; 8617 8618 return (error); 8619 } 8620 8621 /* 8622 * Read-side synchronous stream entry point. This is called as a result 8623 * of recv/read operation done at sockfs, and is guaranteed to execute 8624 * outside of the interrupt thread context. It returns a single datagram 8625 * (b_cont chain of T_UNITDATA_IND plus data) to the upper layer. 8626 */ 8627 static int 8628 udp_rrw(queue_t *q, struiod_t *dp) 8629 { 8630 mblk_t *mp; 8631 udp_t *udp = Q_TO_UDP(_RD(UDP_WR(q))); 8632 udp_stack_t *us = udp->udp_us; 8633 8634 /* We should never get here when we're in SNMP mode */ 8635 ASSERT(!(udp->udp_connp->conn_flags & IPCL_UDPMOD)); 8636 8637 /* 8638 * Dequeue datagram from the head of the list and return 8639 * it to caller; also ensure that RSLEEP sd_wakeq flag is 8640 * set/cleared depending on whether or not there's data 8641 * remaining in the list. 8642 */ 8643 mutex_enter(&udp->udp_drain_lock); 8644 if (!udp->udp_direct_sockfs) { 8645 mutex_exit(&udp->udp_drain_lock); 8646 UDP_STAT(us, udp_rrw_busy); 8647 return (EBUSY); 8648 } 8649 if ((mp = udp->udp_rcv_list_head) != NULL) { 8650 uint_t size = msgdsize(mp); 8651 8652 /* Last datagram in the list? */ 8653 if ((udp->udp_rcv_list_head = mp->b_next) == NULL) 8654 udp->udp_rcv_list_tail = NULL; 8655 mp->b_next = NULL; 8656 8657 udp->udp_rcv_cnt -= size; 8658 udp->udp_rcv_msgcnt--; 8659 UDP_STAT(us, udp_rrw_msgcnt); 8660 8661 /* No longer flow-controlling? */ 8662 if (udp->udp_rcv_cnt < udp->udp_rcv_hiwat && 8663 udp->udp_rcv_msgcnt < udp->udp_rcv_hiwat) 8664 udp->udp_drain_qfull = B_FALSE; 8665 } 8666 if (udp->udp_rcv_list_head == NULL) { 8667 /* 8668 * Either we just dequeued the last datagram or 8669 * we get here from sockfs and have nothing to 8670 * return; in this case clear RSLEEP. 8671 */ 8672 ASSERT(udp->udp_rcv_cnt == 0); 8673 ASSERT(udp->udp_rcv_msgcnt == 0); 8674 ASSERT(udp->udp_rcv_list_tail == NULL); 8675 STR_WAKEUP_CLEAR(STREAM(q)); 8676 } else { 8677 /* 8678 * More data follows; we need udp_rrw() to be 8679 * called in future to pick up the rest. 8680 */ 8681 STR_WAKEUP_SET(STREAM(q)); 8682 } 8683 mutex_exit(&udp->udp_drain_lock); 8684 dp->d_mp = mp; 8685 return (0); 8686 } 8687 8688 /* 8689 * Enqueue a completely-built T_UNITDATA_IND message into the receive 8690 * list; this is typically executed within the interrupt thread context 8691 * and so we do things as quickly as possible. 8692 */ 8693 static void 8694 udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp, uint_t pkt_len) 8695 { 8696 ASSERT(q == RD(q)); 8697 ASSERT(pkt_len == msgdsize(mp)); 8698 ASSERT(mp->b_next == NULL && mp->b_cont != NULL); 8699 ASSERT(DB_TYPE(mp) == M_PROTO && DB_TYPE(mp->b_cont) == M_DATA); 8700 ASSERT(MBLKL(mp) >= sizeof (struct T_unitdata_ind)); 8701 8702 mutex_enter(&udp->udp_drain_lock); 8703 /* 8704 * Wake up and signal the receiving app; it is okay to do this 8705 * before enqueueing the mp because we are holding the drain lock. 8706 * One of the advantages of synchronous stream is the ability for 8707 * us to find out when the application performs a read on the 8708 * socket by way of udp_rrw() entry point being called. We need 8709 * to generate SIGPOLL/SIGIO for each received data in the case 8710 * of asynchronous socket just as in the strrput() case. However, 8711 * we only wake the application up when necessary, i.e. during the 8712 * first enqueue. When udp_rrw() is called, we send up a single 8713 * datagram upstream and call STR_WAKEUP_SET() again when there 8714 * are still data remaining in our receive queue. 8715 */ 8716 if (udp->udp_rcv_list_head == NULL) { 8717 STR_WAKEUP_SET(STREAM(q)); 8718 udp->udp_rcv_list_head = mp; 8719 } else { 8720 udp->udp_rcv_list_tail->b_next = mp; 8721 } 8722 udp->udp_rcv_list_tail = mp; 8723 udp->udp_rcv_cnt += pkt_len; 8724 udp->udp_rcv_msgcnt++; 8725 8726 /* Need to flow-control? */ 8727 if (udp->udp_rcv_cnt >= udp->udp_rcv_hiwat || 8728 udp->udp_rcv_msgcnt >= udp->udp_rcv_hiwat) 8729 udp->udp_drain_qfull = B_TRUE; 8730 8731 /* Update poll events and send SIGPOLL/SIGIO if necessary */ 8732 STR_SENDSIG(STREAM(q)); 8733 mutex_exit(&udp->udp_drain_lock); 8734 } 8735 8736 /* 8737 * Drain the contents of receive list to the module upstream; we do 8738 * this during close or when we fallback to the slow mode due to 8739 * sockmod being popped or a module being pushed on top of us. 8740 */ 8741 static void 8742 udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing) 8743 { 8744 mblk_t *mp; 8745 udp_stack_t *us = udp->udp_us; 8746 8747 ASSERT(q == RD(q)); 8748 8749 mutex_enter(&udp->udp_drain_lock); 8750 /* 8751 * There is no race with a concurrent udp_input() sending 8752 * up packets using putnext() after we have cleared the 8753 * udp_direct_sockfs flag but before we have completed 8754 * sending up the packets in udp_rcv_list, since we are 8755 * either a writer or we have quiesced the conn. 8756 */ 8757 udp->udp_direct_sockfs = B_FALSE; 8758 mutex_exit(&udp->udp_drain_lock); 8759 8760 if (udp->udp_rcv_list_head != NULL) 8761 UDP_STAT(us, udp_drain); 8762 8763 /* 8764 * Send up everything via putnext(); note here that we 8765 * don't need the udp_drain_lock to protect us since 8766 * nothing can enter udp_rrw() and that we currently 8767 * have exclusive access to this udp. 8768 */ 8769 while ((mp = udp->udp_rcv_list_head) != NULL) { 8770 udp->udp_rcv_list_head = mp->b_next; 8771 mp->b_next = NULL; 8772 udp->udp_rcv_cnt -= msgdsize(mp); 8773 udp->udp_rcv_msgcnt--; 8774 if (closing) { 8775 freemsg(mp); 8776 } else { 8777 putnext(q, mp); 8778 } 8779 } 8780 ASSERT(udp->udp_rcv_cnt == 0); 8781 ASSERT(udp->udp_rcv_msgcnt == 0); 8782 ASSERT(udp->udp_rcv_list_head == NULL); 8783 udp->udp_rcv_list_tail = NULL; 8784 udp->udp_drain_qfull = B_FALSE; 8785 } 8786 8787 static size_t 8788 udp_set_rcv_hiwat(udp_t *udp, size_t size) 8789 { 8790 udp_stack_t *us = udp->udp_us; 8791 8792 /* We add a bit of extra buffering */ 8793 size += size >> 1; 8794 if (size > us->us_max_buf) 8795 size = us->us_max_buf; 8796 8797 udp->udp_rcv_hiwat = size; 8798 return (size); 8799 } 8800 8801 /* 8802 * Little helper for IPsec's NAT-T processing. 8803 */ 8804 boolean_t 8805 udp_compute_checksum(netstack_t *ns) 8806 { 8807 udp_stack_t *us = ns->netstack_udp; 8808 8809 return (us->us_do_checksum); 8810 } 8811