xref: /titanic_41/usr/src/uts/common/inet/tcp/tcp_input.c (revision 7484d118eeb19c6c9d97e3efb0d63d59a9c4153b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /* This file contains all TCP input processing functions. */
27 
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/strsun.h>
31 #include <sys/strsubr.h>
32 #include <sys/stropts.h>
33 #include <sys/strlog.h>
34 #define	_SUN_TPI_VERSION 2
35 #include <sys/tihdr.h>
36 #include <sys/suntpi.h>
37 #include <sys/xti_inet.h>
38 #include <sys/squeue_impl.h>
39 #include <sys/squeue.h>
40 #include <sys/tsol/tnet.h>
41 
42 #include <inet/common.h>
43 #include <inet/ip.h>
44 #include <inet/tcp.h>
45 #include <inet/tcp_impl.h>
46 #include <inet/tcp_cluster.h>
47 #include <inet/proto_set.h>
48 #include <inet/ipsec_impl.h>
49 
50 /*
51  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
52  */
53 
54 #ifdef _BIG_ENDIAN
55 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
56 	(TCPOPT_TSTAMP << 8) | 10)
57 #else
58 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
59 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
60 #endif
61 
62 /*
63  * Flags returned from tcp_parse_options.
64  */
65 #define	TCP_OPT_MSS_PRESENT	1
66 #define	TCP_OPT_WSCALE_PRESENT	2
67 #define	TCP_OPT_TSTAMP_PRESENT	4
68 #define	TCP_OPT_SACK_OK_PRESENT	8
69 #define	TCP_OPT_SACK_PRESENT	16
70 
71 /*
72  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
73  */
74 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
75 
76 /*
77  * Since tcp_listener is not cleared atomically with tcp_detached
78  * being cleared we need this extra bit to tell a detached connection
79  * apart from one that is in the process of being accepted.
80  */
81 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
82 	(TCP_IS_DETACHED(tcp) &&	\
83 	    (!(tcp)->tcp_hard_binding))
84 
85 /*
86  * Steps to do when a tcp_t moves to TIME-WAIT state.
87  *
88  * This connection is done, we don't need to account for it.  Decrement
89  * the listener connection counter if needed.
90  *
91  * Decrement the connection counter of the stack.  Note that this counter
92  * is per CPU.  So the total number of connections in a stack is the sum of all
93  * of them.  Since there is no lock for handling all of them exclusively, the
94  * resulting sum is only an approximation.
95  *
96  * Unconditionally clear the exclusive binding bit so this TIME-WAIT
97  * connection won't interfere with new ones.
98  *
99  * Start the TIME-WAIT timer.  If upper layer has not closed the connection,
100  * the timer is handled within the context of this tcp_t.  When the timer
101  * fires, tcp_clean_death() is called.  If upper layer closes the connection
102  * during this period, tcp_time_wait_append() will be called to add this
103  * tcp_t to the global TIME-WAIT list.  Note that this means that the
104  * actual wait time in TIME-WAIT state will be longer than the
105  * tcps_time_wait_interval since the period before upper layer closes the
106  * connection is not accounted for when tcp_time_wait_append() is called.
107  *
108  * If uppser layer has closed the connection, call tcp_time_wait_append()
109  * directly.
110  *
111  */
112 #define	SET_TIME_WAIT(tcps, tcp, connp)				\
113 {								\
114 	(tcp)->tcp_state = TCPS_TIME_WAIT;			\
115 	if ((tcp)->tcp_listen_cnt != NULL)			\
116 		TCP_DECR_LISTEN_CNT(tcp);			\
117 	atomic_dec_64(						\
118 	    (uint64_t *)&(tcps)->tcps_sc[CPU->cpu_seqid]->tcp_sc_conn_cnt); \
119 	(connp)->conn_exclbind = 0;				\
120 	if (!TCP_IS_DETACHED(tcp)) {				\
121 		TCP_TIMER_RESTART(tcp, (tcps)->tcps_time_wait_interval); \
122 	} else {						\
123 		tcp_time_wait_append(tcp);			\
124 		TCP_DBGSTAT(tcps, tcp_rput_time_wait);		\
125 	}							\
126 }
127 
128 /*
129  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
130  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
131  * data, TCP will not respond with an ACK.  RFC 793 requires that
132  * TCP responds with an ACK for such a bogus ACK.  By not following
133  * the RFC, we prevent TCP from getting into an ACK storm if somehow
134  * an attacker successfully spoofs an acceptable segment to our
135  * peer; or when our peer is "confused."
136  */
137 static uint32_t tcp_drop_ack_unsent_cnt = 10;
138 
139 /*
140  * The shift factor applied to tcp_mss to decide if the peer sends us a
141  * valid initial receive window.  By default, if the peer receive window
142  * is smaller than 1 MSS (shift factor is 0), it is considered as invalid.
143  */
144 static uint32_t tcp_init_wnd_shft = 0;
145 
146 /* Process ICMP source quench message or not. */
147 static boolean_t tcp_icmp_source_quench = B_FALSE;
148 
149 static boolean_t tcp_outbound_squeue_switch = B_FALSE;
150 
151 static mblk_t	*tcp_conn_create_v4(conn_t *, conn_t *, mblk_t *,
152 		    ip_recv_attr_t *);
153 static mblk_t	*tcp_conn_create_v6(conn_t *, conn_t *, mblk_t *,
154 		    ip_recv_attr_t *);
155 static boolean_t	tcp_drop_q0(tcp_t *);
156 static void	tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *);
157 static mblk_t	*tcp_input_add_ancillary(tcp_t *, mblk_t *, ip_pkt_t *,
158 		    ip_recv_attr_t *);
159 static void	tcp_input_listener(void *, mblk_t *, void *, ip_recv_attr_t *);
160 static int	tcp_parse_options(tcpha_t *, tcp_opt_t *);
161 static void	tcp_process_options(tcp_t *, tcpha_t *);
162 static mblk_t	*tcp_reass(tcp_t *, mblk_t *, uint32_t);
163 static void	tcp_reass_elim_overlap(tcp_t *, mblk_t *);
164 static void	tcp_rsrv_input(void *, mblk_t *, void *, ip_recv_attr_t *);
165 static void	tcp_set_rto(tcp_t *, time_t);
166 static void	tcp_setcred_data(mblk_t *, ip_recv_attr_t *);
167 
168 /*
169  * Set the MSS associated with a particular tcp based on its current value,
170  * and a new one passed in. Observe minimums and maximums, and reset other
171  * state variables that we want to view as multiples of MSS.
172  *
173  * The value of MSS could be either increased or descreased.
174  */
175 void
176 tcp_mss_set(tcp_t *tcp, uint32_t mss)
177 {
178 	uint32_t	mss_max;
179 	tcp_stack_t	*tcps = tcp->tcp_tcps;
180 	conn_t		*connp = tcp->tcp_connp;
181 
182 	if (connp->conn_ipversion == IPV4_VERSION)
183 		mss_max = tcps->tcps_mss_max_ipv4;
184 	else
185 		mss_max = tcps->tcps_mss_max_ipv6;
186 
187 	if (mss < tcps->tcps_mss_min)
188 		mss = tcps->tcps_mss_min;
189 	if (mss > mss_max)
190 		mss = mss_max;
191 	/*
192 	 * Unless naglim has been set by our client to
193 	 * a non-mss value, force naglim to track mss.
194 	 * This can help to aggregate small writes.
195 	 */
196 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
197 		tcp->tcp_naglim = mss;
198 	/*
199 	 * TCP should be able to buffer at least 4 MSS data for obvious
200 	 * performance reason.
201 	 */
202 	if ((mss << 2) > connp->conn_sndbuf)
203 		connp->conn_sndbuf = mss << 2;
204 
205 	/*
206 	 * Set the send lowater to at least twice of MSS.
207 	 */
208 	if ((mss << 1) > connp->conn_sndlowat)
209 		connp->conn_sndlowat = mss << 1;
210 
211 	/*
212 	 * Update tcp_cwnd according to the new value of MSS. Keep the
213 	 * previous ratio to preserve the transmit rate.
214 	 */
215 	tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
216 	tcp->tcp_cwnd_cnt = 0;
217 
218 	tcp->tcp_mss = mss;
219 	(void) tcp_maxpsz_set(tcp, B_TRUE);
220 }
221 
222 /*
223  * Extract option values from a tcp header.  We put any found values into the
224  * tcpopt struct and return a bitmask saying which options were found.
225  */
226 static int
227 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt)
228 {
229 	uchar_t		*endp;
230 	int		len;
231 	uint32_t	mss;
232 	uchar_t		*up = (uchar_t *)tcpha;
233 	int		found = 0;
234 	int32_t		sack_len;
235 	tcp_seq		sack_begin, sack_end;
236 	tcp_t		*tcp;
237 
238 	endp = up + TCP_HDR_LENGTH(tcpha);
239 	up += TCP_MIN_HEADER_LENGTH;
240 	while (up < endp) {
241 		len = endp - up;
242 		switch (*up) {
243 		case TCPOPT_EOL:
244 			break;
245 
246 		case TCPOPT_NOP:
247 			up++;
248 			continue;
249 
250 		case TCPOPT_MAXSEG:
251 			if (len < TCPOPT_MAXSEG_LEN ||
252 			    up[1] != TCPOPT_MAXSEG_LEN)
253 				break;
254 
255 			mss = BE16_TO_U16(up+2);
256 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
257 			tcpopt->tcp_opt_mss = mss;
258 			found |= TCP_OPT_MSS_PRESENT;
259 
260 			up += TCPOPT_MAXSEG_LEN;
261 			continue;
262 
263 		case TCPOPT_WSCALE:
264 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
265 				break;
266 
267 			if (up[2] > TCP_MAX_WINSHIFT)
268 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
269 			else
270 				tcpopt->tcp_opt_wscale = up[2];
271 			found |= TCP_OPT_WSCALE_PRESENT;
272 
273 			up += TCPOPT_WS_LEN;
274 			continue;
275 
276 		case TCPOPT_SACK_PERMITTED:
277 			if (len < TCPOPT_SACK_OK_LEN ||
278 			    up[1] != TCPOPT_SACK_OK_LEN)
279 				break;
280 			found |= TCP_OPT_SACK_OK_PRESENT;
281 			up += TCPOPT_SACK_OK_LEN;
282 			continue;
283 
284 		case TCPOPT_SACK:
285 			if (len <= 2 || up[1] <= 2 || len < up[1])
286 				break;
287 
288 			/* If TCP is not interested in SACK blks... */
289 			if ((tcp = tcpopt->tcp) == NULL) {
290 				up += up[1];
291 				continue;
292 			}
293 			sack_len = up[1] - TCPOPT_HEADER_LEN;
294 			up += TCPOPT_HEADER_LEN;
295 
296 			/*
297 			 * If the list is empty, allocate one and assume
298 			 * nothing is sack'ed.
299 			 */
300 			if (tcp->tcp_notsack_list == NULL) {
301 				tcp_notsack_update(&(tcp->tcp_notsack_list),
302 				    tcp->tcp_suna, tcp->tcp_snxt,
303 				    &(tcp->tcp_num_notsack_blk),
304 				    &(tcp->tcp_cnt_notsack_list));
305 
306 				/*
307 				 * Make sure tcp_notsack_list is not NULL.
308 				 * This happens when kmem_alloc(KM_NOSLEEP)
309 				 * returns NULL.
310 				 */
311 				if (tcp->tcp_notsack_list == NULL) {
312 					up += sack_len;
313 					continue;
314 				}
315 				tcp->tcp_fack = tcp->tcp_suna;
316 			}
317 
318 			while (sack_len > 0) {
319 				if (up + 8 > endp) {
320 					up = endp;
321 					break;
322 				}
323 				sack_begin = BE32_TO_U32(up);
324 				up += 4;
325 				sack_end = BE32_TO_U32(up);
326 				up += 4;
327 				sack_len -= 8;
328 				/*
329 				 * Bounds checking.  Make sure the SACK
330 				 * info is within tcp_suna and tcp_snxt.
331 				 * If this SACK blk is out of bound, ignore
332 				 * it but continue to parse the following
333 				 * blks.
334 				 */
335 				if (SEQ_LEQ(sack_end, sack_begin) ||
336 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
337 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
338 					continue;
339 				}
340 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
341 				    sack_begin, sack_end,
342 				    &(tcp->tcp_num_notsack_blk),
343 				    &(tcp->tcp_cnt_notsack_list));
344 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
345 					tcp->tcp_fack = sack_end;
346 				}
347 			}
348 			found |= TCP_OPT_SACK_PRESENT;
349 			continue;
350 
351 		case TCPOPT_TSTAMP:
352 			if (len < TCPOPT_TSTAMP_LEN ||
353 			    up[1] != TCPOPT_TSTAMP_LEN)
354 				break;
355 
356 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
357 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
358 
359 			found |= TCP_OPT_TSTAMP_PRESENT;
360 
361 			up += TCPOPT_TSTAMP_LEN;
362 			continue;
363 
364 		default:
365 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
366 				break;
367 			up += up[1];
368 			continue;
369 		}
370 		break;
371 	}
372 	return (found);
373 }
374 
375 /*
376  * Process all TCP option in SYN segment.  Note that this function should
377  * be called after tcp_set_destination() is called so that the necessary info
378  * from IRE is already set in the tcp structure.
379  *
380  * This function sets up the correct tcp_mss value according to the
381  * MSS option value and our header size.  It also sets up the window scale
382  * and timestamp values, and initialize SACK info blocks.  But it does not
383  * change receive window size after setting the tcp_mss value.  The caller
384  * should do the appropriate change.
385  */
386 static void
387 tcp_process_options(tcp_t *tcp, tcpha_t *tcpha)
388 {
389 	int options;
390 	tcp_opt_t tcpopt;
391 	uint32_t mss_max;
392 	char *tmp_tcph;
393 	tcp_stack_t	*tcps = tcp->tcp_tcps;
394 	conn_t		*connp = tcp->tcp_connp;
395 
396 	tcpopt.tcp = NULL;
397 	options = tcp_parse_options(tcpha, &tcpopt);
398 
399 	/*
400 	 * Process MSS option.  Note that MSS option value does not account
401 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
402 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
403 	 * IPv6.
404 	 */
405 	if (!(options & TCP_OPT_MSS_PRESENT)) {
406 		if (connp->conn_ipversion == IPV4_VERSION)
407 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
408 		else
409 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
410 	} else {
411 		if (connp->conn_ipversion == IPV4_VERSION)
412 			mss_max = tcps->tcps_mss_max_ipv4;
413 		else
414 			mss_max = tcps->tcps_mss_max_ipv6;
415 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
416 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
417 		else if (tcpopt.tcp_opt_mss > mss_max)
418 			tcpopt.tcp_opt_mss = mss_max;
419 	}
420 
421 	/* Process Window Scale option. */
422 	if (options & TCP_OPT_WSCALE_PRESENT) {
423 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
424 		tcp->tcp_snd_ws_ok = B_TRUE;
425 	} else {
426 		tcp->tcp_snd_ws = B_FALSE;
427 		tcp->tcp_snd_ws_ok = B_FALSE;
428 		tcp->tcp_rcv_ws = B_FALSE;
429 	}
430 
431 	/* Process Timestamp option. */
432 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
433 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
434 		tmp_tcph = (char *)tcp->tcp_tcpha;
435 
436 		tcp->tcp_snd_ts_ok = B_TRUE;
437 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
438 		tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64();
439 		ASSERT(OK_32PTR(tmp_tcph));
440 		ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH);
441 
442 		/* Fill in our template header with basic timestamp option. */
443 		tmp_tcph += connp->conn_ht_ulp_len;
444 		tmp_tcph[0] = TCPOPT_NOP;
445 		tmp_tcph[1] = TCPOPT_NOP;
446 		tmp_tcph[2] = TCPOPT_TSTAMP;
447 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
448 		connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN;
449 		connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN;
450 		tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4);
451 	} else {
452 		tcp->tcp_snd_ts_ok = B_FALSE;
453 	}
454 
455 	/*
456 	 * Process SACK options.  If SACK is enabled for this connection,
457 	 * then allocate the SACK info structure.  Note the following ways
458 	 * when tcp_snd_sack_ok is set to true.
459 	 *
460 	 * For active connection: in tcp_set_destination() called in
461 	 * tcp_connect().
462 	 *
463 	 * For passive connection: in tcp_set_destination() called in
464 	 * tcp_input_listener().
465 	 *
466 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
467 	 * That check makes sure that if we did not send a SACK OK option,
468 	 * we will not enable SACK for this connection even though the other
469 	 * side sends us SACK OK option.  For active connection, the SACK
470 	 * info structure has already been allocated.  So we need to free
471 	 * it if SACK is disabled.
472 	 */
473 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
474 	    (tcp->tcp_snd_sack_ok ||
475 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
476 		ASSERT(tcp->tcp_num_sack_blk == 0);
477 		ASSERT(tcp->tcp_notsack_list == NULL);
478 
479 		tcp->tcp_snd_sack_ok = B_TRUE;
480 		if (tcp->tcp_snd_ts_ok) {
481 			tcp->tcp_max_sack_blk = 3;
482 		} else {
483 			tcp->tcp_max_sack_blk = 4;
484 		}
485 	} else if (tcp->tcp_snd_sack_ok) {
486 		/*
487 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
488 		 * no SACK info will be used for this
489 		 * connection.  This assumes that SACK usage
490 		 * permission is negotiated.  This may need
491 		 * to be changed once this is clarified.
492 		 */
493 		ASSERT(tcp->tcp_num_sack_blk == 0);
494 		ASSERT(tcp->tcp_notsack_list == NULL);
495 		tcp->tcp_snd_sack_ok = B_FALSE;
496 	}
497 
498 	/*
499 	 * Now we know the exact TCP/IP header length, subtract
500 	 * that from tcp_mss to get our side's MSS.
501 	 */
502 	tcp->tcp_mss -= connp->conn_ht_iphc_len;
503 
504 	/*
505 	 * Here we assume that the other side's header size will be equal to
506 	 * our header size.  We calculate the real MSS accordingly.  Need to
507 	 * take into additional stuffs IPsec puts in.
508 	 *
509 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
510 	 */
511 	tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len +
512 	    tcp->tcp_ipsec_overhead -
513 	    ((connp->conn_ipversion == IPV4_VERSION ?
514 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
515 
516 	/*
517 	 * Set MSS to the smaller one of both ends of the connection.
518 	 * We should not have called tcp_mss_set() before, but our
519 	 * side of the MSS should have been set to a proper value
520 	 * by tcp_set_destination().  tcp_mss_set() will also set up the
521 	 * STREAM head parameters properly.
522 	 *
523 	 * If we have a larger-than-16-bit window but the other side
524 	 * didn't want to do window scale, tcp_rwnd_set() will take
525 	 * care of that.
526 	 */
527 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
528 
529 	/*
530 	 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been
531 	 * updated properly.
532 	 */
533 	TCP_SET_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial);
534 }
535 
536 /*
537  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
538  * is filled, return as much as we can.  The message passed in may be
539  * multi-part, chained using b_cont.  "start" is the starting sequence
540  * number for this piece.
541  */
542 static mblk_t *
543 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
544 {
545 	uint32_t	end;
546 	mblk_t		*mp1;
547 	mblk_t		*mp2;
548 	mblk_t		*next_mp;
549 	uint32_t	u1;
550 	tcp_stack_t	*tcps = tcp->tcp_tcps;
551 
552 
553 	/* Walk through all the new pieces. */
554 	do {
555 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
556 		    (uintptr_t)INT_MAX);
557 		end = start + (int)(mp->b_wptr - mp->b_rptr);
558 		next_mp = mp->b_cont;
559 		if (start == end) {
560 			/* Empty.  Blast it. */
561 			freeb(mp);
562 			continue;
563 		}
564 		mp->b_cont = NULL;
565 		TCP_REASS_SET_SEQ(mp, start);
566 		TCP_REASS_SET_END(mp, end);
567 		mp1 = tcp->tcp_reass_tail;
568 		if (!mp1) {
569 			tcp->tcp_reass_tail = mp;
570 			tcp->tcp_reass_head = mp;
571 			TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs);
572 			TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes,
573 			    end - start);
574 			continue;
575 		}
576 		/* New stuff completely beyond tail? */
577 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
578 			/* Link it on end. */
579 			mp1->b_cont = mp;
580 			tcp->tcp_reass_tail = mp;
581 			TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs);
582 			TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes,
583 			    end - start);
584 			continue;
585 		}
586 		mp1 = tcp->tcp_reass_head;
587 		u1 = TCP_REASS_SEQ(mp1);
588 		/* New stuff at the front? */
589 		if (SEQ_LT(start, u1)) {
590 			/* Yes... Check for overlap. */
591 			mp->b_cont = mp1;
592 			tcp->tcp_reass_head = mp;
593 			tcp_reass_elim_overlap(tcp, mp);
594 			continue;
595 		}
596 		/*
597 		 * The new piece fits somewhere between the head and tail.
598 		 * We find our slot, where mp1 precedes us and mp2 trails.
599 		 */
600 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
601 			u1 = TCP_REASS_SEQ(mp2);
602 			if (SEQ_LEQ(start, u1))
603 				break;
604 		}
605 		/* Link ourselves in */
606 		mp->b_cont = mp2;
607 		mp1->b_cont = mp;
608 
609 		/* Trim overlap with following mblk(s) first */
610 		tcp_reass_elim_overlap(tcp, mp);
611 
612 		/* Trim overlap with preceding mblk */
613 		tcp_reass_elim_overlap(tcp, mp1);
614 
615 	} while (start = end, mp = next_mp);
616 	mp1 = tcp->tcp_reass_head;
617 	/* Anything ready to go? */
618 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
619 		return (NULL);
620 	/* Eat what we can off the queue */
621 	for (;;) {
622 		mp = mp1->b_cont;
623 		end = TCP_REASS_END(mp1);
624 		TCP_REASS_SET_SEQ(mp1, 0);
625 		TCP_REASS_SET_END(mp1, 0);
626 		if (!mp) {
627 			tcp->tcp_reass_tail = NULL;
628 			break;
629 		}
630 		if (end != TCP_REASS_SEQ(mp)) {
631 			mp1->b_cont = NULL;
632 			break;
633 		}
634 		mp1 = mp;
635 	}
636 	mp1 = tcp->tcp_reass_head;
637 	tcp->tcp_reass_head = mp;
638 	return (mp1);
639 }
640 
641 /* Eliminate any overlap that mp may have over later mblks */
642 static void
643 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
644 {
645 	uint32_t	end;
646 	mblk_t		*mp1;
647 	uint32_t	u1;
648 	tcp_stack_t	*tcps = tcp->tcp_tcps;
649 
650 	end = TCP_REASS_END(mp);
651 	while ((mp1 = mp->b_cont) != NULL) {
652 		u1 = TCP_REASS_SEQ(mp1);
653 		if (!SEQ_GT(end, u1))
654 			break;
655 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
656 			mp->b_wptr -= end - u1;
657 			TCP_REASS_SET_END(mp, u1);
658 			TCPS_BUMP_MIB(tcps, tcpInDataPartDupSegs);
659 			TCPS_UPDATE_MIB(tcps, tcpInDataPartDupBytes,
660 			    end - u1);
661 			break;
662 		}
663 		mp->b_cont = mp1->b_cont;
664 		TCP_REASS_SET_SEQ(mp1, 0);
665 		TCP_REASS_SET_END(mp1, 0);
666 		freeb(mp1);
667 		TCPS_BUMP_MIB(tcps, tcpInDataDupSegs);
668 		TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes, end - u1);
669 	}
670 	if (!mp1)
671 		tcp->tcp_reass_tail = mp;
672 }
673 
674 /*
675  * This function does PAWS protection check. Returns B_TRUE if the
676  * segment passes the PAWS test, else returns B_FALSE.
677  */
678 boolean_t
679 tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp)
680 {
681 	uint8_t	flags;
682 	int	options;
683 	uint8_t *up;
684 	conn_t	*connp = tcp->tcp_connp;
685 
686 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
687 	/*
688 	 * If timestamp option is aligned nicely, get values inline,
689 	 * otherwise call general routine to parse.  Only do that
690 	 * if timestamp is the only option.
691 	 */
692 	if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH +
693 	    TCPOPT_REAL_TS_LEN &&
694 	    OK_32PTR((up = ((uint8_t *)tcpha) +
695 	    TCP_MIN_HEADER_LENGTH)) &&
696 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
697 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
698 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
699 
700 		options = TCP_OPT_TSTAMP_PRESENT;
701 	} else {
702 		if (tcp->tcp_snd_sack_ok) {
703 			tcpoptp->tcp = tcp;
704 		} else {
705 			tcpoptp->tcp = NULL;
706 		}
707 		options = tcp_parse_options(tcpha, tcpoptp);
708 	}
709 
710 	if (options & TCP_OPT_TSTAMP_PRESENT) {
711 		/*
712 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
713 		 * regardless of the timestamp, page 18 RFC 1323.bis.
714 		 */
715 		if ((flags & TH_RST) == 0 &&
716 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
717 		    tcp->tcp_ts_recent)) {
718 			if (LBOLT_FASTPATH64 <
719 			    (tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) {
720 				/* This segment is not acceptable. */
721 				return (B_FALSE);
722 			} else {
723 				/*
724 				 * Connection has been idle for
725 				 * too long.  Reset the timestamp
726 				 * and assume the segment is valid.
727 				 */
728 				tcp->tcp_ts_recent =
729 				    tcpoptp->tcp_opt_ts_val;
730 			}
731 		}
732 	} else {
733 		/*
734 		 * If we don't get a timestamp on every packet, we
735 		 * figure we can't really trust 'em, so we stop sending
736 		 * and parsing them.
737 		 */
738 		tcp->tcp_snd_ts_ok = B_FALSE;
739 
740 		connp->conn_ht_iphc_len -= TCPOPT_REAL_TS_LEN;
741 		connp->conn_ht_ulp_len -= TCPOPT_REAL_TS_LEN;
742 		tcp->tcp_tcpha->tha_offset_and_reserved -= (3 << 4);
743 		/*
744 		 * Adjust the tcp_mss and tcp_cwnd accordingly. We avoid
745 		 * doing a slow start here so as to not to lose on the
746 		 * transfer rate built up so far.
747 		 */
748 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN);
749 		if (tcp->tcp_snd_sack_ok)
750 			tcp->tcp_max_sack_blk = 4;
751 	}
752 	return (B_TRUE);
753 }
754 
755 /*
756  * Defense for the SYN attack -
757  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
758  *    one from the list of droppable eagers. This list is a subset of q0.
759  *    see comments before the definition of MAKE_DROPPABLE().
760  * 2. Don't drop a SYN request before its first timeout. This gives every
761  *    request at least til the first timeout to complete its 3-way handshake.
762  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
763  *    requests currently on the queue that has timed out. This will be used
764  *    as an indicator of whether an attack is under way, so that appropriate
765  *    actions can be taken. (It's incremented in tcp_timer() and decremented
766  *    either when eager goes into ESTABLISHED, or gets freed up.)
767  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
768  *    # of timeout drops back to <= q0len/32 => SYN alert off
769  */
770 static boolean_t
771 tcp_drop_q0(tcp_t *tcp)
772 {
773 	tcp_t	*eager;
774 	mblk_t	*mp;
775 	tcp_stack_t	*tcps = tcp->tcp_tcps;
776 
777 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
778 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
779 
780 	/* Pick oldest eager from the list of droppable eagers */
781 	eager = tcp->tcp_eager_prev_drop_q0;
782 
783 	/* If list is empty. return B_FALSE */
784 	if (eager == tcp) {
785 		return (B_FALSE);
786 	}
787 
788 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
789 	if ((mp = allocb(0, BPRI_HI)) == NULL)
790 		return (B_FALSE);
791 
792 	/*
793 	 * Take this eager out from the list of droppable eagers since we are
794 	 * going to drop it.
795 	 */
796 	MAKE_UNDROPPABLE(eager);
797 
798 	if (tcp->tcp_connp->conn_debug) {
799 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
800 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
801 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
802 		    tcp->tcp_conn_req_cnt_q0,
803 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
804 	}
805 
806 	TCPS_BUMP_MIB(tcps, tcpHalfOpenDrop);
807 
808 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
809 	CONN_INC_REF(eager->tcp_connp);
810 
811 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
812 	    tcp_clean_death_wrapper, eager->tcp_connp, NULL,
813 	    SQ_FILL, SQTAG_TCP_DROP_Q0);
814 
815 	return (B_TRUE);
816 }
817 
818 /*
819  * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6
820  */
821 static mblk_t *
822 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
823     ip_recv_attr_t *ira)
824 {
825 	tcp_t 		*ltcp = lconnp->conn_tcp;
826 	tcp_t		*tcp = connp->conn_tcp;
827 	mblk_t		*tpi_mp;
828 	ipha_t		*ipha;
829 	ip6_t		*ip6h;
830 	sin6_t 		sin6;
831 	uint_t		ifindex = ira->ira_ruifindex;
832 	tcp_stack_t	*tcps = tcp->tcp_tcps;
833 
834 	if (ira->ira_flags & IRAF_IS_IPV4) {
835 		ipha = (ipha_t *)mp->b_rptr;
836 
837 		connp->conn_ipversion = IPV4_VERSION;
838 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6);
839 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6);
840 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
841 
842 		sin6 = sin6_null;
843 		sin6.sin6_addr = connp->conn_faddr_v6;
844 		sin6.sin6_port = connp->conn_fport;
845 		sin6.sin6_family = AF_INET6;
846 		sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6,
847 		    IPCL_ZONEID(lconnp), tcps->tcps_netstack);
848 
849 		if (connp->conn_recv_ancillary.crb_recvdstaddr) {
850 			sin6_t	sin6d;
851 
852 			sin6d = sin6_null;
853 			sin6d.sin6_addr = connp->conn_laddr_v6;
854 			sin6d.sin6_port = connp->conn_lport;
855 			sin6d.sin6_family = AF_INET;
856 			tpi_mp = mi_tpi_extconn_ind(NULL,
857 			    (char *)&sin6d, sizeof (sin6_t),
858 			    (char *)&tcp,
859 			    (t_scalar_t)sizeof (intptr_t),
860 			    (char *)&sin6d, sizeof (sin6_t),
861 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
862 		} else {
863 			tpi_mp = mi_tpi_conn_ind(NULL,
864 			    (char *)&sin6, sizeof (sin6_t),
865 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
866 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
867 		}
868 	} else {
869 		ip6h = (ip6_t *)mp->b_rptr;
870 
871 		connp->conn_ipversion = IPV6_VERSION;
872 		connp->conn_laddr_v6 = ip6h->ip6_dst;
873 		connp->conn_faddr_v6 = ip6h->ip6_src;
874 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
875 
876 		sin6 = sin6_null;
877 		sin6.sin6_addr = connp->conn_faddr_v6;
878 		sin6.sin6_port = connp->conn_fport;
879 		sin6.sin6_family = AF_INET6;
880 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
881 		sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6,
882 		    IPCL_ZONEID(lconnp), tcps->tcps_netstack);
883 
884 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
885 			/* Pass up the scope_id of remote addr */
886 			sin6.sin6_scope_id = ifindex;
887 		} else {
888 			sin6.sin6_scope_id = 0;
889 		}
890 		if (connp->conn_recv_ancillary.crb_recvdstaddr) {
891 			sin6_t	sin6d;
892 
893 			sin6d = sin6_null;
894 			sin6.sin6_addr = connp->conn_laddr_v6;
895 			sin6d.sin6_port = connp->conn_lport;
896 			sin6d.sin6_family = AF_INET6;
897 			if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6))
898 				sin6d.sin6_scope_id = ifindex;
899 
900 			tpi_mp = mi_tpi_extconn_ind(NULL,
901 			    (char *)&sin6d, sizeof (sin6_t),
902 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
903 			    (char *)&sin6d, sizeof (sin6_t),
904 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
905 		} else {
906 			tpi_mp = mi_tpi_conn_ind(NULL,
907 			    (char *)&sin6, sizeof (sin6_t),
908 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
909 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
910 		}
911 	}
912 
913 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
914 	return (tpi_mp);
915 }
916 
917 /* Handle a SYN on an AF_INET socket */
918 static mblk_t *
919 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp,
920     ip_recv_attr_t *ira)
921 {
922 	tcp_t 		*ltcp = lconnp->conn_tcp;
923 	tcp_t		*tcp = connp->conn_tcp;
924 	sin_t		sin;
925 	mblk_t		*tpi_mp = NULL;
926 	tcp_stack_t	*tcps = tcp->tcp_tcps;
927 	ipha_t		*ipha;
928 
929 	ASSERT(ira->ira_flags & IRAF_IS_IPV4);
930 	ipha = (ipha_t *)mp->b_rptr;
931 
932 	connp->conn_ipversion = IPV4_VERSION;
933 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6);
934 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6);
935 	connp->conn_saddr_v6 = connp->conn_laddr_v6;
936 
937 	sin = sin_null;
938 	sin.sin_addr.s_addr = connp->conn_faddr_v4;
939 	sin.sin_port = connp->conn_fport;
940 	sin.sin_family = AF_INET;
941 	if (lconnp->conn_recv_ancillary.crb_recvdstaddr) {
942 		sin_t	sind;
943 
944 		sind = sin_null;
945 		sind.sin_addr.s_addr = connp->conn_laddr_v4;
946 		sind.sin_port = connp->conn_lport;
947 		sind.sin_family = AF_INET;
948 		tpi_mp = mi_tpi_extconn_ind(NULL,
949 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
950 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
951 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
952 	} else {
953 		tpi_mp = mi_tpi_conn_ind(NULL,
954 		    (char *)&sin, sizeof (sin_t),
955 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
956 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
957 	}
958 
959 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
960 	return (tpi_mp);
961 }
962 
963 /*
964  * Called via squeue to get on to eager's perimeter. It sends a
965  * TH_RST if eager is in the fanout table. The listener wants the
966  * eager to disappear either by means of tcp_eager_blowoff() or
967  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
968  * called (via squeue) if the eager cannot be inserted in the
969  * fanout table in tcp_input_listener().
970  */
971 /* ARGSUSED */
972 void
973 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
974 {
975 	conn_t	*econnp = (conn_t *)arg;
976 	tcp_t	*eager = econnp->conn_tcp;
977 	tcp_t	*listener = eager->tcp_listener;
978 
979 	/*
980 	 * We could be called because listener is closing. Since
981 	 * the eager was using listener's queue's, we avoid
982 	 * using the listeners queues from now on.
983 	 */
984 	ASSERT(eager->tcp_detached);
985 	econnp->conn_rq = NULL;
986 	econnp->conn_wq = NULL;
987 
988 	/*
989 	 * An eager's conn_fanout will be NULL if it's a duplicate
990 	 * for an existing 4-tuples in the conn fanout table.
991 	 * We don't want to send an RST out in such case.
992 	 */
993 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
994 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
995 		    eager, eager->tcp_snxt, 0, TH_RST);
996 	}
997 
998 	/* We are here because listener wants this eager gone */
999 	if (listener != NULL) {
1000 		mutex_enter(&listener->tcp_eager_lock);
1001 		tcp_eager_unlink(eager);
1002 		if (eager->tcp_tconnind_started) {
1003 			/*
1004 			 * The eager has sent a conn_ind up to the
1005 			 * listener but listener decides to close
1006 			 * instead. We need to drop the extra ref
1007 			 * placed on eager in tcp_input_data() before
1008 			 * sending the conn_ind to listener.
1009 			 */
1010 			CONN_DEC_REF(econnp);
1011 		}
1012 		mutex_exit(&listener->tcp_eager_lock);
1013 		CONN_DEC_REF(listener->tcp_connp);
1014 	}
1015 
1016 	if (eager->tcp_state != TCPS_CLOSED)
1017 		tcp_close_detached(eager);
1018 }
1019 
1020 /*
1021  * Reset any eager connection hanging off this listener marked
1022  * with 'seqnum' and then reclaim it's resources.
1023  */
1024 boolean_t
1025 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
1026 {
1027 	tcp_t	*eager;
1028 	mblk_t 	*mp;
1029 
1030 	eager = listener;
1031 	mutex_enter(&listener->tcp_eager_lock);
1032 	do {
1033 		eager = eager->tcp_eager_next_q;
1034 		if (eager == NULL) {
1035 			mutex_exit(&listener->tcp_eager_lock);
1036 			return (B_FALSE);
1037 		}
1038 	} while (eager->tcp_conn_req_seqnum != seqnum);
1039 
1040 	if (eager->tcp_closemp_used) {
1041 		mutex_exit(&listener->tcp_eager_lock);
1042 		return (B_TRUE);
1043 	}
1044 	eager->tcp_closemp_used = B_TRUE;
1045 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1046 	CONN_INC_REF(eager->tcp_connp);
1047 	mutex_exit(&listener->tcp_eager_lock);
1048 	mp = &eager->tcp_closemp;
1049 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
1050 	    eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF);
1051 	return (B_TRUE);
1052 }
1053 
1054 /*
1055  * Reset any eager connection hanging off this listener
1056  * and then reclaim it's resources.
1057  */
1058 void
1059 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
1060 {
1061 	tcp_t	*eager;
1062 	mblk_t	*mp;
1063 	tcp_stack_t	*tcps = listener->tcp_tcps;
1064 
1065 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
1066 
1067 	if (!q0_only) {
1068 		/* First cleanup q */
1069 		TCP_STAT(tcps, tcp_eager_blowoff_q);
1070 		eager = listener->tcp_eager_next_q;
1071 		while (eager != NULL) {
1072 			if (!eager->tcp_closemp_used) {
1073 				eager->tcp_closemp_used = B_TRUE;
1074 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1075 				CONN_INC_REF(eager->tcp_connp);
1076 				mp = &eager->tcp_closemp;
1077 				SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
1078 				    tcp_eager_kill, eager->tcp_connp, NULL,
1079 				    SQ_FILL, SQTAG_TCP_EAGER_CLEANUP);
1080 			}
1081 			eager = eager->tcp_eager_next_q;
1082 		}
1083 	}
1084 	/* Then cleanup q0 */
1085 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
1086 	eager = listener->tcp_eager_next_q0;
1087 	while (eager != listener) {
1088 		if (!eager->tcp_closemp_used) {
1089 			eager->tcp_closemp_used = B_TRUE;
1090 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1091 			CONN_INC_REF(eager->tcp_connp);
1092 			mp = &eager->tcp_closemp;
1093 			SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
1094 			    tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL,
1095 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
1096 		}
1097 		eager = eager->tcp_eager_next_q0;
1098 	}
1099 }
1100 
1101 /*
1102  * If we are an eager connection hanging off a listener that hasn't
1103  * formally accepted the connection yet, get off his list and blow off
1104  * any data that we have accumulated.
1105  */
1106 void
1107 tcp_eager_unlink(tcp_t *tcp)
1108 {
1109 	tcp_t	*listener = tcp->tcp_listener;
1110 
1111 	ASSERT(listener != NULL);
1112 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
1113 	if (tcp->tcp_eager_next_q0 != NULL) {
1114 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
1115 
1116 		/* Remove the eager tcp from q0 */
1117 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
1118 		    tcp->tcp_eager_prev_q0;
1119 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
1120 		    tcp->tcp_eager_next_q0;
1121 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
1122 		listener->tcp_conn_req_cnt_q0--;
1123 
1124 		tcp->tcp_eager_next_q0 = NULL;
1125 		tcp->tcp_eager_prev_q0 = NULL;
1126 
1127 		/*
1128 		 * Take the eager out, if it is in the list of droppable
1129 		 * eagers.
1130 		 */
1131 		MAKE_UNDROPPABLE(tcp);
1132 
1133 		if (tcp->tcp_syn_rcvd_timeout != 0) {
1134 			/* we have timed out before */
1135 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
1136 			listener->tcp_syn_rcvd_timeout--;
1137 		}
1138 	} else {
1139 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
1140 		tcp_t	*prev = NULL;
1141 
1142 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
1143 			if (tcpp[0] == tcp) {
1144 				if (listener->tcp_eager_last_q == tcp) {
1145 					/*
1146 					 * If we are unlinking the last
1147 					 * element on the list, adjust
1148 					 * tail pointer. Set tail pointer
1149 					 * to nil when list is empty.
1150 					 */
1151 					ASSERT(tcp->tcp_eager_next_q == NULL);
1152 					if (listener->tcp_eager_last_q ==
1153 					    listener->tcp_eager_next_q) {
1154 						listener->tcp_eager_last_q =
1155 						    NULL;
1156 					} else {
1157 						/*
1158 						 * We won't get here if there
1159 						 * is only one eager in the
1160 						 * list.
1161 						 */
1162 						ASSERT(prev != NULL);
1163 						listener->tcp_eager_last_q =
1164 						    prev;
1165 					}
1166 				}
1167 				tcpp[0] = tcp->tcp_eager_next_q;
1168 				tcp->tcp_eager_next_q = NULL;
1169 				tcp->tcp_eager_last_q = NULL;
1170 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
1171 				listener->tcp_conn_req_cnt_q--;
1172 				break;
1173 			}
1174 			prev = tcpp[0];
1175 		}
1176 	}
1177 	tcp->tcp_listener = NULL;
1178 }
1179 
1180 /* BEGIN CSTYLED */
1181 /*
1182  *
1183  * The sockfs ACCEPT path:
1184  * =======================
1185  *
1186  * The eager is now established in its own perimeter as soon as SYN is
1187  * received in tcp_input_listener(). When sockfs receives conn_ind, it
1188  * completes the accept processing on the acceptor STREAM. The sending
1189  * of conn_ind part is common for both sockfs listener and a TLI/XTI
1190  * listener but a TLI/XTI listener completes the accept processing
1191  * on the listener perimeter.
1192  *
1193  * Common control flow for 3 way handshake:
1194  * ----------------------------------------
1195  *
1196  * incoming SYN (listener perimeter)	-> tcp_input_listener()
1197  *
1198  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_input_data()
1199  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
1200  *
1201  * Sockfs ACCEPT Path:
1202  * -------------------
1203  *
1204  * open acceptor stream (tcp_open allocates tcp_tli_accept()
1205  * as STREAM entry point)
1206  *
1207  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept()
1208  *
1209  * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager
1210  * association (we are not behind eager's squeue but sockfs is protecting us
1211  * and no one knows about this stream yet. The STREAMS entry point q->q_info
1212  * is changed to point at tcp_wput().
1213  *
1214  * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to
1215  * listener (done on listener's perimeter).
1216  *
1217  * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish
1218  * accept.
1219  *
1220  * TLI/XTI client ACCEPT path:
1221  * ---------------------------
1222  *
1223  * soaccept() sends T_CONN_RES on the listener STREAM.
1224  *
1225  * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send
1226  * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()).
1227  *
1228  * Locks:
1229  * ======
1230  *
1231  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
1232  * and listeners->tcp_eager_next_q.
1233  *
1234  * Referencing:
1235  * ============
1236  *
1237  * 1) We start out in tcp_input_listener by eager placing a ref on
1238  * listener and listener adding eager to listeners->tcp_eager_next_q0.
1239  *
1240  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
1241  * doing so we place a ref on the eager. This ref is finally dropped at the
1242  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
1243  * reference is dropped by the squeue framework.
1244  *
1245  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
1246  *
1247  * The reference must be released by the same entity that added the reference
1248  * In the above scheme, the eager is the entity that adds and releases the
1249  * references. Note that tcp_accept_finish executes in the squeue of the eager
1250  * (albeit after it is attached to the acceptor stream). Though 1. executes
1251  * in the listener's squeue, the eager is nascent at this point and the
1252  * reference can be considered to have been added on behalf of the eager.
1253  *
1254  * Eager getting a Reset or listener closing:
1255  * ==========================================
1256  *
1257  * Once the listener and eager are linked, the listener never does the unlink.
1258  * If the listener needs to close, tcp_eager_cleanup() is called which queues
1259  * a message on all eager perimeter. The eager then does the unlink, clears
1260  * any pointers to the listener's queue and drops the reference to the
1261  * listener. The listener waits in tcp_close outside the squeue until its
1262  * refcount has dropped to 1. This ensures that the listener has waited for
1263  * all eagers to clear their association with the listener.
1264  *
1265  * Similarly, if eager decides to go away, it can unlink itself and close.
1266  * When the T_CONN_RES comes down, we check if eager has closed. Note that
1267  * the reference to eager is still valid because of the extra ref we put
1268  * in tcp_send_conn_ind.
1269  *
1270  * Listener can always locate the eager under the protection
1271  * of the listener->tcp_eager_lock, and then do a refhold
1272  * on the eager during the accept processing.
1273  *
1274  * The acceptor stream accesses the eager in the accept processing
1275  * based on the ref placed on eager before sending T_conn_ind.
1276  * The only entity that can negate this refhold is a listener close
1277  * which is mutually exclusive with an active acceptor stream.
1278  *
1279  * Eager's reference on the listener
1280  * ===================================
1281  *
1282  * If the accept happens (even on a closed eager) the eager drops its
1283  * reference on the listener at the start of tcp_accept_finish. If the
1284  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
1285  * the reference is dropped in tcp_closei_local. If the listener closes,
1286  * the reference is dropped in tcp_eager_kill. In all cases the reference
1287  * is dropped while executing in the eager's context (squeue).
1288  */
1289 /* END CSTYLED */
1290 
1291 /* Process the SYN packet, mp, directed at the listener 'tcp' */
1292 
1293 /*
1294  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
1295  * tcp_input_data will not see any packets for listeners since the listener
1296  * has conn_recv set to tcp_input_listener.
1297  */
1298 /* ARGSUSED */
1299 static void
1300 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
1301 {
1302 	tcpha_t		*tcpha;
1303 	uint32_t	seg_seq;
1304 	tcp_t		*eager;
1305 	int		err;
1306 	conn_t		*econnp = NULL;
1307 	squeue_t	*new_sqp;
1308 	mblk_t		*mp1;
1309 	uint_t 		ip_hdr_len;
1310 	conn_t		*lconnp = (conn_t *)arg;
1311 	tcp_t		*listener = lconnp->conn_tcp;
1312 	tcp_stack_t	*tcps = listener->tcp_tcps;
1313 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
1314 	uint_t		flags;
1315 	mblk_t		*tpi_mp;
1316 	uint_t		ifindex = ira->ira_ruifindex;
1317 	boolean_t	tlc_set = B_FALSE;
1318 
1319 	ip_hdr_len = ira->ira_ip_hdr_length;
1320 	tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len];
1321 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
1322 
1323 	DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, lconnp->conn_ixa,
1324 	    __dtrace_tcp_void_ip_t *, mp->b_rptr, tcp_t *, listener,
1325 	    __dtrace_tcp_tcph_t *, tcpha);
1326 
1327 	if (!(flags & TH_SYN)) {
1328 		if ((flags & TH_RST) || (flags & TH_URG)) {
1329 			freemsg(mp);
1330 			return;
1331 		}
1332 		if (flags & TH_ACK) {
1333 			/* Note this executes in listener's squeue */
1334 			tcp_xmit_listeners_reset(mp, ira, ipst, lconnp);
1335 			return;
1336 		}
1337 
1338 		freemsg(mp);
1339 		return;
1340 	}
1341 
1342 	if (listener->tcp_state != TCPS_LISTEN)
1343 		goto error2;
1344 
1345 	ASSERT(IPCL_IS_BOUND(lconnp));
1346 
1347 	mutex_enter(&listener->tcp_eager_lock);
1348 
1349 	/*
1350 	 * The system is under memory pressure, so we need to do our part
1351 	 * to relieve the pressure.  So we only accept new request if there
1352 	 * is nothing waiting to be accepted or waiting to complete the 3-way
1353 	 * handshake.  This means that busy listener will not get too many
1354 	 * new requests which they cannot handle in time while non-busy
1355 	 * listener is still functioning properly.
1356 	 */
1357 	if (tcps->tcps_reclaim && (listener->tcp_conn_req_cnt_q > 0 ||
1358 	    listener->tcp_conn_req_cnt_q0 > 0)) {
1359 		mutex_exit(&listener->tcp_eager_lock);
1360 		TCP_STAT(tcps, tcp_listen_mem_drop);
1361 		goto error2;
1362 	}
1363 
1364 	if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) {
1365 		mutex_exit(&listener->tcp_eager_lock);
1366 		TCP_STAT(tcps, tcp_listendrop);
1367 		TCPS_BUMP_MIB(tcps, tcpListenDrop);
1368 		if (lconnp->conn_debug) {
1369 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
1370 			    "tcp_input_listener: listen backlog (max=%d) "
1371 			    "overflow (%d pending) on %s",
1372 			    listener->tcp_conn_req_max,
1373 			    listener->tcp_conn_req_cnt_q,
1374 			    tcp_display(listener, NULL, DISP_PORT_ONLY));
1375 		}
1376 		goto error2;
1377 	}
1378 
1379 	if (listener->tcp_conn_req_cnt_q0 >=
1380 	    listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
1381 		/*
1382 		 * Q0 is full. Drop a pending half-open req from the queue
1383 		 * to make room for the new SYN req. Also mark the time we
1384 		 * drop a SYN.
1385 		 *
1386 		 * A more aggressive defense against SYN attack will
1387 		 * be to set the "tcp_syn_defense" flag now.
1388 		 */
1389 		TCP_STAT(tcps, tcp_listendropq0);
1390 		listener->tcp_last_rcv_lbolt = ddi_get_lbolt64();
1391 		if (!tcp_drop_q0(listener)) {
1392 			mutex_exit(&listener->tcp_eager_lock);
1393 			TCPS_BUMP_MIB(tcps, tcpListenDropQ0);
1394 			if (lconnp->conn_debug) {
1395 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
1396 				    "tcp_input_listener: listen half-open "
1397 				    "queue (max=%d) full (%d pending) on %s",
1398 				    tcps->tcps_conn_req_max_q0,
1399 				    listener->tcp_conn_req_cnt_q0,
1400 				    tcp_display(listener, NULL,
1401 				    DISP_PORT_ONLY));
1402 			}
1403 			goto error2;
1404 		}
1405 	}
1406 
1407 	/*
1408 	 * Enforce the limit set on the number of connections per listener.
1409 	 * Note that tlc_cnt starts with 1.  So need to add 1 to tlc_max
1410 	 * for comparison.
1411 	 */
1412 	if (listener->tcp_listen_cnt != NULL) {
1413 		tcp_listen_cnt_t *tlc = listener->tcp_listen_cnt;
1414 		int64_t now;
1415 
1416 		if (atomic_add_32_nv(&tlc->tlc_cnt, 1) > tlc->tlc_max + 1) {
1417 			mutex_exit(&listener->tcp_eager_lock);
1418 			now = ddi_get_lbolt64();
1419 			atomic_add_32(&tlc->tlc_cnt, -1);
1420 			TCP_STAT(tcps, tcp_listen_cnt_drop);
1421 			tlc->tlc_drop++;
1422 			if (now - tlc->tlc_report_time >
1423 			    MSEC_TO_TICK(TCP_TLC_REPORT_INTERVAL)) {
1424 				zcmn_err(lconnp->conn_zoneid, CE_WARN,
1425 				    "Listener (port %d) connection max (%u) "
1426 				    "reached: %u attempts dropped total\n",
1427 				    ntohs(listener->tcp_connp->conn_lport),
1428 				    tlc->tlc_max, tlc->tlc_drop);
1429 				tlc->tlc_report_time = now;
1430 			}
1431 			goto error2;
1432 		}
1433 		tlc_set = B_TRUE;
1434 	}
1435 
1436 	mutex_exit(&listener->tcp_eager_lock);
1437 
1438 	/*
1439 	 * IP sets ira_sqp to either the senders conn_sqp (for loopback)
1440 	 * or based on the ring (for packets from GLD). Otherwise it is
1441 	 * set based on lbolt i.e., a somewhat random number.
1442 	 */
1443 	ASSERT(ira->ira_sqp != NULL);
1444 	new_sqp = ira->ira_sqp;
1445 
1446 	econnp = (conn_t *)tcp_get_conn(arg2, tcps);
1447 	if (econnp == NULL)
1448 		goto error2;
1449 
1450 	ASSERT(econnp->conn_netstack == lconnp->conn_netstack);
1451 	econnp->conn_sqp = new_sqp;
1452 	econnp->conn_initial_sqp = new_sqp;
1453 	econnp->conn_ixa->ixa_sqp = new_sqp;
1454 
1455 	econnp->conn_fport = tcpha->tha_lport;
1456 	econnp->conn_lport = tcpha->tha_fport;
1457 
1458 	err = conn_inherit_parent(lconnp, econnp);
1459 	if (err != 0)
1460 		goto error3;
1461 
1462 	/* We already know the laddr of the new connection is ours */
1463 	econnp->conn_ixa->ixa_src_generation = ipst->ips_src_generation;
1464 
1465 	ASSERT(OK_32PTR(mp->b_rptr));
1466 	ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION ||
1467 	    IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
1468 
1469 	if (lconnp->conn_family == AF_INET) {
1470 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION);
1471 		tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira);
1472 	} else {
1473 		tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira);
1474 	}
1475 
1476 	if (tpi_mp == NULL)
1477 		goto error3;
1478 
1479 	eager = econnp->conn_tcp;
1480 	eager->tcp_detached = B_TRUE;
1481 	SOCK_CONNID_INIT(eager->tcp_connid);
1482 
1483 	/*
1484 	 * Initialize the eager's tcp_t and inherit some parameters from
1485 	 * the listener.
1486 	 */
1487 	tcp_init_values(eager, listener);
1488 
1489 	ASSERT((econnp->conn_ixa->ixa_flags &
1490 	    (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
1491 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) ==
1492 	    (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
1493 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO));
1494 
1495 	if (!tcps->tcps_dev_flow_ctl)
1496 		econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
1497 
1498 	/* Prepare for diffing against previous packets */
1499 	eager->tcp_recvifindex = 0;
1500 	eager->tcp_recvhops = 0xffffffffU;
1501 
1502 	if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) {
1503 		if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) ||
1504 		    IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) {
1505 			econnp->conn_incoming_ifindex = ifindex;
1506 			econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
1507 			econnp->conn_ixa->ixa_scopeid = ifindex;
1508 		}
1509 	}
1510 
1511 	if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) ==
1512 	    (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) &&
1513 	    tcps->tcps_rev_src_routes) {
1514 		ipha_t *ipha = (ipha_t *)mp->b_rptr;
1515 		ip_pkt_t *ipp = &econnp->conn_xmit_ipp;
1516 
1517 		/* Source routing option copyover (reverse it) */
1518 		err = ip_find_hdr_v4(ipha, ipp, B_TRUE);
1519 		if (err != 0) {
1520 			freemsg(tpi_mp);
1521 			goto error3;
1522 		}
1523 		ip_pkt_source_route_reverse_v4(ipp);
1524 	}
1525 
1526 	ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL);
1527 	ASSERT(!eager->tcp_tconnind_started);
1528 	/*
1529 	 * If the SYN came with a credential, it's a loopback packet or a
1530 	 * labeled packet; attach the credential to the TPI message.
1531 	 */
1532 	if (ira->ira_cred != NULL)
1533 		mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid);
1534 
1535 	eager->tcp_conn.tcp_eager_conn_ind = tpi_mp;
1536 	ASSERT(eager->tcp_ordrel_mp == NULL);
1537 
1538 	/* Inherit the listener's non-STREAMS flag */
1539 	if (IPCL_IS_NONSTR(lconnp)) {
1540 		econnp->conn_flags |= IPCL_NONSTR;
1541 		/* All non-STREAMS tcp_ts are sockets */
1542 		eager->tcp_issocket = B_TRUE;
1543 	} else {
1544 		/*
1545 		 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that
1546 		 * at close time, we will always have that to send up.
1547 		 * Otherwise, we need to do special handling in case the
1548 		 * allocation fails at that time.
1549 		 */
1550 		if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL)
1551 			goto error3;
1552 	}
1553 	/*
1554 	 * Now that the IP addresses and ports are setup in econnp we
1555 	 * can do the IPsec policy work.
1556 	 */
1557 	if (ira->ira_flags & IRAF_IPSEC_SECURE) {
1558 		if (lconnp->conn_policy != NULL) {
1559 			/*
1560 			 * Inherit the policy from the listener; use
1561 			 * actions from ira
1562 			 */
1563 			if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) {
1564 				CONN_DEC_REF(econnp);
1565 				freemsg(mp);
1566 				goto error3;
1567 			}
1568 		}
1569 	}
1570 
1571 	/*
1572 	 * tcp_set_destination() may set tcp_rwnd according to the route
1573 	 * metrics. If it does not, the eager's receive window will be set
1574 	 * to the listener's receive window later in this function.
1575 	 */
1576 	eager->tcp_rwnd = 0;
1577 
1578 	if (is_system_labeled()) {
1579 		ip_xmit_attr_t *ixa = econnp->conn_ixa;
1580 
1581 		ASSERT(ira->ira_tsl != NULL);
1582 		/* Discard any old label */
1583 		if (ixa->ixa_free_flags & IXA_FREE_TSL) {
1584 			ASSERT(ixa->ixa_tsl != NULL);
1585 			label_rele(ixa->ixa_tsl);
1586 			ixa->ixa_free_flags &= ~IXA_FREE_TSL;
1587 			ixa->ixa_tsl = NULL;
1588 		}
1589 		if ((lconnp->conn_mlp_type != mlptSingle ||
1590 		    lconnp->conn_mac_mode != CONN_MAC_DEFAULT) &&
1591 		    ira->ira_tsl != NULL) {
1592 			/*
1593 			 * If this is an MLP connection or a MAC-Exempt
1594 			 * connection with an unlabeled node, packets are to be
1595 			 * exchanged using the security label of the received
1596 			 * SYN packet instead of the server application's label.
1597 			 * tsol_check_dest called from ip_set_destination
1598 			 * might later update TSF_UNLABELED by replacing
1599 			 * ixa_tsl with a new label.
1600 			 */
1601 			label_hold(ira->ira_tsl);
1602 			ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl);
1603 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
1604 			    econnp, ts_label_t *, ixa->ixa_tsl)
1605 		} else {
1606 			ixa->ixa_tsl = crgetlabel(econnp->conn_cred);
1607 			DTRACE_PROBE2(syn_accept, conn_t *,
1608 			    econnp, ts_label_t *, ixa->ixa_tsl)
1609 		}
1610 		/*
1611 		 * conn_connect() called from tcp_set_destination will verify
1612 		 * the destination is allowed to receive packets at the
1613 		 * security label of the SYN-ACK we are generating. As part of
1614 		 * that, tsol_check_dest() may create a new effective label for
1615 		 * this connection.
1616 		 * Finally conn_connect() will call conn_update_label.
1617 		 * All that remains for TCP to do is to call
1618 		 * conn_build_hdr_template which is done as part of
1619 		 * tcp_set_destination.
1620 		 */
1621 	}
1622 
1623 	/*
1624 	 * Since we will clear tcp_listener before we clear tcp_detached
1625 	 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress
1626 	 * so we can tell a TCP_IS_DETACHED_NONEAGER apart.
1627 	 */
1628 	eager->tcp_hard_binding = B_TRUE;
1629 
1630 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
1631 	    TCP_BIND_HASH(econnp->conn_lport)], eager, 0);
1632 
1633 	CL_INET_CONNECT(econnp, B_FALSE, err);
1634 	if (err != 0) {
1635 		tcp_bind_hash_remove(eager);
1636 		goto error3;
1637 	}
1638 
1639 	SOCK_CONNID_BUMP(eager->tcp_connid);
1640 
1641 	/*
1642 	 * Adapt our mss, ttl, ... based on the remote address.
1643 	 */
1644 
1645 	if (tcp_set_destination(eager) != 0) {
1646 		TCPS_BUMP_MIB(tcps, tcpAttemptFails);
1647 		/* Undo the bind_hash_insert */
1648 		tcp_bind_hash_remove(eager);
1649 		goto error3;
1650 	}
1651 
1652 	/* Process all TCP options. */
1653 	tcp_process_options(eager, tcpha);
1654 
1655 	/* Is the other end ECN capable? */
1656 	if (tcps->tcps_ecn_permitted >= 1 &&
1657 	    (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
1658 		eager->tcp_ecn_ok = B_TRUE;
1659 	}
1660 
1661 	/*
1662 	 * The listener's conn_rcvbuf should be the default window size or a
1663 	 * window size changed via SO_RCVBUF option. First round up the
1664 	 * eager's tcp_rwnd to the nearest MSS. Then find out the window
1665 	 * scale option value if needed. Call tcp_rwnd_set() to finish the
1666 	 * setting.
1667 	 *
1668 	 * Note if there is a rpipe metric associated with the remote host,
1669 	 * we should not inherit receive window size from listener.
1670 	 */
1671 	eager->tcp_rwnd = MSS_ROUNDUP(
1672 	    (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf :
1673 	    eager->tcp_rwnd), eager->tcp_mss);
1674 	if (eager->tcp_snd_ws_ok)
1675 		tcp_set_ws_value(eager);
1676 	/*
1677 	 * Note that this is the only place tcp_rwnd_set() is called for
1678 	 * accepting a connection.  We need to call it here instead of
1679 	 * after the 3-way handshake because we need to tell the other
1680 	 * side our rwnd in the SYN-ACK segment.
1681 	 */
1682 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
1683 
1684 	ASSERT(eager->tcp_connp->conn_rcvbuf != 0 &&
1685 	    eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd);
1686 
1687 	ASSERT(econnp->conn_rcvbuf != 0 &&
1688 	    econnp->conn_rcvbuf == eager->tcp_rwnd);
1689 
1690 	/* Put a ref on the listener for the eager. */
1691 	CONN_INC_REF(lconnp);
1692 	mutex_enter(&listener->tcp_eager_lock);
1693 	listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
1694 	eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0;
1695 	listener->tcp_eager_next_q0 = eager;
1696 	eager->tcp_eager_prev_q0 = listener;
1697 
1698 	/* Set tcp_listener before adding it to tcp_conn_fanout */
1699 	eager->tcp_listener = listener;
1700 	eager->tcp_saved_listener = listener;
1701 
1702 	/*
1703 	 * Set tcp_listen_cnt so that when the connection is done, the counter
1704 	 * is decremented.
1705 	 */
1706 	eager->tcp_listen_cnt = listener->tcp_listen_cnt;
1707 
1708 	/*
1709 	 * Tag this detached tcp vector for later retrieval
1710 	 * by our listener client in tcp_accept().
1711 	 */
1712 	eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum;
1713 	listener->tcp_conn_req_cnt_q0++;
1714 	if (++listener->tcp_conn_req_seqnum == -1) {
1715 		/*
1716 		 * -1 is "special" and defined in TPI as something
1717 		 * that should never be used in T_CONN_IND
1718 		 */
1719 		++listener->tcp_conn_req_seqnum;
1720 	}
1721 	mutex_exit(&listener->tcp_eager_lock);
1722 
1723 	if (listener->tcp_syn_defense) {
1724 		/* Don't drop the SYN that comes from a good IP source */
1725 		ipaddr_t *addr_cache;
1726 
1727 		addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
1728 		if (addr_cache != NULL && econnp->conn_faddr_v4 ==
1729 		    addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) {
1730 			eager->tcp_dontdrop = B_TRUE;
1731 		}
1732 	}
1733 
1734 	/*
1735 	 * We need to insert the eager in its own perimeter but as soon
1736 	 * as we do that, we expose the eager to the classifier and
1737 	 * should not touch any field outside the eager's perimeter.
1738 	 * So do all the work necessary before inserting the eager
1739 	 * in its own perimeter. Be optimistic that conn_connect()
1740 	 * will succeed but undo everything if it fails.
1741 	 */
1742 	seg_seq = ntohl(tcpha->tha_seq);
1743 	eager->tcp_irs = seg_seq;
1744 	eager->tcp_rack = seg_seq;
1745 	eager->tcp_rnxt = seg_seq + 1;
1746 	eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt);
1747 	TCPS_BUMP_MIB(tcps, tcpPassiveOpens);
1748 	eager->tcp_state = TCPS_SYN_RCVD;
1749 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1750 	    econnp->conn_ixa, void, NULL, tcp_t *, eager, void, NULL,
1751 	    int32_t, TCPS_LISTEN);
1752 
1753 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
1754 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
1755 	if (mp1 == NULL) {
1756 		/*
1757 		 * Increment the ref count as we are going to
1758 		 * enqueueing an mp in squeue
1759 		 */
1760 		CONN_INC_REF(econnp);
1761 		goto error;
1762 	}
1763 
1764 	/*
1765 	 * We need to start the rto timer. In normal case, we start
1766 	 * the timer after sending the packet on the wire (or at
1767 	 * least believing that packet was sent by waiting for
1768 	 * conn_ip_output() to return). Since this is the first packet
1769 	 * being sent on the wire for the eager, our initial tcp_rto
1770 	 * is at least tcp_rexmit_interval_min which is a fairly
1771 	 * large value to allow the algorithm to adjust slowly to large
1772 	 * fluctuations of RTT during first few transmissions.
1773 	 *
1774 	 * Starting the timer first and then sending the packet in this
1775 	 * case shouldn't make much difference since tcp_rexmit_interval_min
1776 	 * is of the order of several 100ms and starting the timer
1777 	 * first and then sending the packet will result in difference
1778 	 * of few micro seconds.
1779 	 *
1780 	 * Without this optimization, we are forced to hold the fanout
1781 	 * lock across the ipcl_bind_insert() and sending the packet
1782 	 * so that we don't race against an incoming packet (maybe RST)
1783 	 * for this eager.
1784 	 *
1785 	 * It is necessary to acquire an extra reference on the eager
1786 	 * at this point and hold it until after tcp_send_data() to
1787 	 * ensure against an eager close race.
1788 	 */
1789 
1790 	CONN_INC_REF(econnp);
1791 
1792 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
1793 
1794 	/*
1795 	 * Insert the eager in its own perimeter now. We are ready to deal
1796 	 * with any packets on eager.
1797 	 */
1798 	if (ipcl_conn_insert(econnp) != 0)
1799 		goto error;
1800 
1801 	ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp);
1802 	freemsg(mp);
1803 	/*
1804 	 * Send the SYN-ACK. Use the right squeue so that conn_ixa is
1805 	 * only used by one thread at a time.
1806 	 */
1807 	if (econnp->conn_sqp == lconnp->conn_sqp) {
1808 		DTRACE_TCP5(send, mblk_t *, NULL, ip_xmit_attr_t *,
1809 		    econnp->conn_ixa, __dtrace_tcp_void_ip_t *, mp1->b_rptr,
1810 		    tcp_t *, eager, __dtrace_tcp_tcph_t *,
1811 		    &mp1->b_rptr[econnp->conn_ixa->ixa_ip_hdr_length]);
1812 		(void) conn_ip_output(mp1, econnp->conn_ixa);
1813 		CONN_DEC_REF(econnp);
1814 	} else {
1815 		SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_send_synack,
1816 		    econnp, NULL, SQ_PROCESS, SQTAG_TCP_SEND_SYNACK);
1817 	}
1818 	return;
1819 error:
1820 	freemsg(mp1);
1821 	eager->tcp_closemp_used = B_TRUE;
1822 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1823 	mp1 = &eager->tcp_closemp;
1824 	SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill,
1825 	    econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2);
1826 
1827 	/*
1828 	 * If a connection already exists, send the mp to that connections so
1829 	 * that it can be appropriately dealt with.
1830 	 */
1831 	ipst = tcps->tcps_netstack->netstack_ip;
1832 
1833 	if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) {
1834 		if (!IPCL_IS_CONNECTED(econnp)) {
1835 			/*
1836 			 * Something bad happened. ipcl_conn_insert()
1837 			 * failed because a connection already existed
1838 			 * in connected hash but we can't find it
1839 			 * anymore (someone blew it away). Just
1840 			 * free this message and hopefully remote
1841 			 * will retransmit at which time the SYN can be
1842 			 * treated as a new connection or dealth with
1843 			 * a TH_RST if a connection already exists.
1844 			 */
1845 			CONN_DEC_REF(econnp);
1846 			freemsg(mp);
1847 		} else {
1848 			SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data,
1849 			    econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1);
1850 		}
1851 	} else {
1852 		/* Nobody wants this packet */
1853 		freemsg(mp);
1854 	}
1855 	return;
1856 error3:
1857 	CONN_DEC_REF(econnp);
1858 error2:
1859 	freemsg(mp);
1860 	if (tlc_set)
1861 		atomic_add_32(&listener->tcp_listen_cnt->tlc_cnt, -1);
1862 }
1863 
1864 /*
1865  * In an ideal case of vertical partition in NUMA architecture, its
1866  * beneficial to have the listener and all the incoming connections
1867  * tied to the same squeue. The other constraint is that incoming
1868  * connections should be tied to the squeue attached to interrupted
1869  * CPU for obvious locality reason so this leaves the listener to
1870  * be tied to the same squeue. Our only problem is that when listener
1871  * is binding, the CPU that will get interrupted by the NIC whose
1872  * IP address the listener is binding to is not even known. So
1873  * the code below allows us to change that binding at the time the
1874  * CPU is interrupted by virtue of incoming connection's squeue.
1875  *
1876  * This is usefull only in case of a listener bound to a specific IP
1877  * address. For other kind of listeners, they get bound the
1878  * very first time and there is no attempt to rebind them.
1879  */
1880 void
1881 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2,
1882     ip_recv_attr_t *ira)
1883 {
1884 	conn_t		*connp = (conn_t *)arg;
1885 	squeue_t	*sqp = (squeue_t *)arg2;
1886 	squeue_t	*new_sqp;
1887 	uint32_t	conn_flags;
1888 
1889 	/*
1890 	 * IP sets ira_sqp to either the senders conn_sqp (for loopback)
1891 	 * or based on the ring (for packets from GLD). Otherwise it is
1892 	 * set based on lbolt i.e., a somewhat random number.
1893 	 */
1894 	ASSERT(ira->ira_sqp != NULL);
1895 	new_sqp = ira->ira_sqp;
1896 
1897 	if (connp->conn_fanout == NULL)
1898 		goto done;
1899 
1900 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
1901 		mutex_enter(&connp->conn_fanout->connf_lock);
1902 		mutex_enter(&connp->conn_lock);
1903 		/*
1904 		 * No one from read or write side can access us now
1905 		 * except for already queued packets on this squeue.
1906 		 * But since we haven't changed the squeue yet, they
1907 		 * can't execute. If they are processed after we have
1908 		 * changed the squeue, they are sent back to the
1909 		 * correct squeue down below.
1910 		 * But a listner close can race with processing of
1911 		 * incoming SYN. If incoming SYN processing changes
1912 		 * the squeue then the listener close which is waiting
1913 		 * to enter the squeue would operate on the wrong
1914 		 * squeue. Hence we don't change the squeue here unless
1915 		 * the refcount is exactly the minimum refcount. The
1916 		 * minimum refcount of 4 is counted as - 1 each for
1917 		 * TCP and IP, 1 for being in the classifier hash, and
1918 		 * 1 for the mblk being processed.
1919 		 */
1920 
1921 		if (connp->conn_ref != 4 ||
1922 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
1923 			mutex_exit(&connp->conn_lock);
1924 			mutex_exit(&connp->conn_fanout->connf_lock);
1925 			goto done;
1926 		}
1927 		if (connp->conn_sqp != new_sqp) {
1928 			while (connp->conn_sqp != new_sqp)
1929 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
1930 			/* No special MT issues for outbound ixa_sqp hint */
1931 			connp->conn_ixa->ixa_sqp = new_sqp;
1932 		}
1933 
1934 		do {
1935 			conn_flags = connp->conn_flags;
1936 			conn_flags |= IPCL_FULLY_BOUND;
1937 			(void) cas32(&connp->conn_flags, connp->conn_flags,
1938 			    conn_flags);
1939 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
1940 
1941 		mutex_exit(&connp->conn_fanout->connf_lock);
1942 		mutex_exit(&connp->conn_lock);
1943 
1944 		/*
1945 		 * Assume we have picked a good squeue for the listener. Make
1946 		 * subsequent SYNs not try to change the squeue.
1947 		 */
1948 		connp->conn_recv = tcp_input_listener;
1949 	}
1950 
1951 done:
1952 	if (connp->conn_sqp != sqp) {
1953 		CONN_INC_REF(connp);
1954 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
1955 		    ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND);
1956 	} else {
1957 		tcp_input_listener(connp, mp, sqp, ira);
1958 	}
1959 }
1960 
1961 /*
1962  * Send up all messages queued on tcp_rcv_list.
1963  */
1964 uint_t
1965 tcp_rcv_drain(tcp_t *tcp)
1966 {
1967 	mblk_t *mp;
1968 	uint_t ret = 0;
1969 #ifdef DEBUG
1970 	uint_t cnt = 0;
1971 #endif
1972 	queue_t	*q = tcp->tcp_connp->conn_rq;
1973 
1974 	/* Can't drain on an eager connection */
1975 	if (tcp->tcp_listener != NULL)
1976 		return (ret);
1977 
1978 	/* Can't be a non-STREAMS connection */
1979 	ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1980 
1981 	/* No need for the push timer now. */
1982 	if (tcp->tcp_push_tid != 0) {
1983 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
1984 		tcp->tcp_push_tid = 0;
1985 	}
1986 
1987 	/*
1988 	 * Handle two cases here: we are currently fused or we were
1989 	 * previously fused and have some urgent data to be delivered
1990 	 * upstream.  The latter happens because we either ran out of
1991 	 * memory or were detached and therefore sending the SIGURG was
1992 	 * deferred until this point.  In either case we pass control
1993 	 * over to tcp_fuse_rcv_drain() since it may need to complete
1994 	 * some work.
1995 	 */
1996 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
1997 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
1998 		    &tcp->tcp_fused_sigurg_mp))
1999 			return (ret);
2000 	}
2001 
2002 	while ((mp = tcp->tcp_rcv_list) != NULL) {
2003 		tcp->tcp_rcv_list = mp->b_next;
2004 		mp->b_next = NULL;
2005 #ifdef DEBUG
2006 		cnt += msgdsize(mp);
2007 #endif
2008 		putnext(q, mp);
2009 	}
2010 #ifdef DEBUG
2011 	ASSERT(cnt == tcp->tcp_rcv_cnt);
2012 #endif
2013 	tcp->tcp_rcv_last_head = NULL;
2014 	tcp->tcp_rcv_last_tail = NULL;
2015 	tcp->tcp_rcv_cnt = 0;
2016 
2017 	if (canputnext(q))
2018 		return (tcp_rwnd_reopen(tcp));
2019 
2020 	return (ret);
2021 }
2022 
2023 /*
2024  * Queue data on tcp_rcv_list which is a b_next chain.
2025  * tcp_rcv_last_head/tail is the last element of this chain.
2026  * Each element of the chain is a b_cont chain.
2027  *
2028  * M_DATA messages are added to the current element.
2029  * Other messages are added as new (b_next) elements.
2030  */
2031 void
2032 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr)
2033 {
2034 	ASSERT(seg_len == msgdsize(mp));
2035 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
2036 
2037 	if (is_system_labeled()) {
2038 		ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL);
2039 		/*
2040 		 * Provide for protocols above TCP such as RPC. NOPID leaves
2041 		 * db_cpid unchanged.
2042 		 * The cred could have already been set.
2043 		 */
2044 		if (cr != NULL)
2045 			mblk_setcred(mp, cr, NOPID);
2046 	}
2047 
2048 	if (tcp->tcp_rcv_list == NULL) {
2049 		ASSERT(tcp->tcp_rcv_last_head == NULL);
2050 		tcp->tcp_rcv_list = mp;
2051 		tcp->tcp_rcv_last_head = mp;
2052 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
2053 		tcp->tcp_rcv_last_tail->b_cont = mp;
2054 	} else {
2055 		tcp->tcp_rcv_last_head->b_next = mp;
2056 		tcp->tcp_rcv_last_head = mp;
2057 	}
2058 
2059 	while (mp->b_cont)
2060 		mp = mp->b_cont;
2061 
2062 	tcp->tcp_rcv_last_tail = mp;
2063 	tcp->tcp_rcv_cnt += seg_len;
2064 	tcp->tcp_rwnd -= seg_len;
2065 }
2066 
2067 /* Generate an ACK-only (no data) segment for a TCP endpoint */
2068 mblk_t *
2069 tcp_ack_mp(tcp_t *tcp)
2070 {
2071 	uint32_t	seq_no;
2072 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2073 	conn_t		*connp = tcp->tcp_connp;
2074 
2075 	/*
2076 	 * There are a few cases to be considered while setting the sequence no.
2077 	 * Essentially, we can come here while processing an unacceptable pkt
2078 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
2079 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
2080 	 * If we are here for a zero window probe, stick with suna. In all
2081 	 * other cases, we check if suna + swnd encompasses snxt and set
2082 	 * the sequence number to snxt, if so. If snxt falls outside the
2083 	 * window (the receiver probably shrunk its window), we will go with
2084 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
2085 	 * receiver.
2086 	 */
2087 	if (tcp->tcp_zero_win_probe) {
2088 		seq_no = tcp->tcp_suna;
2089 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
2090 		ASSERT(tcp->tcp_swnd == 0);
2091 		seq_no = tcp->tcp_snxt;
2092 	} else {
2093 		seq_no = SEQ_GT(tcp->tcp_snxt,
2094 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
2095 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
2096 	}
2097 
2098 	if (tcp->tcp_valid_bits) {
2099 		/*
2100 		 * For the complex case where we have to send some
2101 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
2102 		 */
2103 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
2104 		    NULL, B_FALSE));
2105 	} else {
2106 		/* Generate a simple ACK */
2107 		int	data_length;
2108 		uchar_t	*rptr;
2109 		tcpha_t	*tcpha;
2110 		mblk_t	*mp1;
2111 		int32_t	total_hdr_len;
2112 		int32_t	tcp_hdr_len;
2113 		int32_t	num_sack_blk = 0;
2114 		int32_t sack_opt_len;
2115 		ip_xmit_attr_t *ixa = connp->conn_ixa;
2116 
2117 		/*
2118 		 * Allocate space for TCP + IP headers
2119 		 * and link-level header
2120 		 */
2121 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
2122 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
2123 			    tcp->tcp_num_sack_blk);
2124 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
2125 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
2126 			total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len;
2127 			tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len;
2128 		} else {
2129 			total_hdr_len = connp->conn_ht_iphc_len;
2130 			tcp_hdr_len = connp->conn_ht_ulp_len;
2131 		}
2132 		mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
2133 		if (!mp1)
2134 			return (NULL);
2135 
2136 		/* Update the latest receive window size in TCP header. */
2137 		tcp->tcp_tcpha->tha_win =
2138 		    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
2139 		/* copy in prototype TCP + IP header */
2140 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
2141 		mp1->b_rptr = rptr;
2142 		mp1->b_wptr = rptr + total_hdr_len;
2143 		bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len);
2144 
2145 		tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length];
2146 
2147 		/* Set the TCP sequence number. */
2148 		tcpha->tha_seq = htonl(seq_no);
2149 
2150 		/* Set up the TCP flag field. */
2151 		tcpha->tha_flags = (uchar_t)TH_ACK;
2152 		if (tcp->tcp_ecn_echo_on)
2153 			tcpha->tha_flags |= TH_ECE;
2154 
2155 		tcp->tcp_rack = tcp->tcp_rnxt;
2156 		tcp->tcp_rack_cnt = 0;
2157 
2158 		/* fill in timestamp option if in use */
2159 		if (tcp->tcp_snd_ts_ok) {
2160 			uint32_t llbolt = (uint32_t)LBOLT_FASTPATH;
2161 
2162 			U32_TO_BE32(llbolt,
2163 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+4);
2164 			U32_TO_BE32(tcp->tcp_ts_recent,
2165 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+8);
2166 		}
2167 
2168 		/* Fill in SACK options */
2169 		if (num_sack_blk > 0) {
2170 			uchar_t *wptr = (uchar_t *)tcpha +
2171 			    connp->conn_ht_ulp_len;
2172 			sack_blk_t *tmp;
2173 			int32_t	i;
2174 
2175 			wptr[0] = TCPOPT_NOP;
2176 			wptr[1] = TCPOPT_NOP;
2177 			wptr[2] = TCPOPT_SACK;
2178 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
2179 			    sizeof (sack_blk_t);
2180 			wptr += TCPOPT_REAL_SACK_LEN;
2181 
2182 			tmp = tcp->tcp_sack_list;
2183 			for (i = 0; i < num_sack_blk; i++) {
2184 				U32_TO_BE32(tmp[i].begin, wptr);
2185 				wptr += sizeof (tcp_seq);
2186 				U32_TO_BE32(tmp[i].end, wptr);
2187 				wptr += sizeof (tcp_seq);
2188 			}
2189 			tcpha->tha_offset_and_reserved +=
2190 			    ((num_sack_blk * 2 + 1) << 4);
2191 		}
2192 
2193 		ixa->ixa_pktlen = total_hdr_len;
2194 
2195 		if (ixa->ixa_flags & IXAF_IS_IPV4) {
2196 			((ipha_t *)rptr)->ipha_length = htons(total_hdr_len);
2197 		} else {
2198 			ip6_t *ip6 = (ip6_t *)rptr;
2199 
2200 			ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN);
2201 		}
2202 
2203 		/*
2204 		 * Prime pump for checksum calculation in IP.  Include the
2205 		 * adjustment for a source route if any.
2206 		 */
2207 		data_length = tcp_hdr_len + connp->conn_sum;
2208 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
2209 		tcpha->tha_sum = htons(data_length);
2210 
2211 		if (tcp->tcp_ip_forward_progress) {
2212 			tcp->tcp_ip_forward_progress = B_FALSE;
2213 			connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF;
2214 		} else {
2215 			connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF;
2216 		}
2217 		return (mp1);
2218 	}
2219 }
2220 
2221 /*
2222  * Handle M_DATA messages from IP. Its called directly from IP via
2223  * squeue for received IP packets.
2224  *
2225  * The first argument is always the connp/tcp to which the mp belongs.
2226  * There are no exceptions to this rule. The caller has already put
2227  * a reference on this connp/tcp and once tcp_input_data() returns,
2228  * the squeue will do the refrele.
2229  *
2230  * The TH_SYN for the listener directly go to tcp_input_listener via
2231  * squeue. ICMP errors go directly to tcp_icmp_input().
2232  *
2233  * sqp: NULL = recursive, sqp != NULL means called from squeue
2234  */
2235 void
2236 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
2237 {
2238 	int32_t		bytes_acked;
2239 	int32_t		gap;
2240 	mblk_t		*mp1;
2241 	uint_t		flags;
2242 	uint32_t	new_swnd = 0;
2243 	uchar_t		*iphdr;
2244 	uchar_t		*rptr;
2245 	int32_t		rgap;
2246 	uint32_t	seg_ack;
2247 	int		seg_len;
2248 	uint_t		ip_hdr_len;
2249 	uint32_t	seg_seq;
2250 	tcpha_t		*tcpha;
2251 	int		urp;
2252 	tcp_opt_t	tcpopt;
2253 	ip_pkt_t	ipp;
2254 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
2255 	uint32_t	cwnd;
2256 	uint32_t	add;
2257 	int		npkt;
2258 	int		mss;
2259 	conn_t		*connp = (conn_t *)arg;
2260 	squeue_t	*sqp = (squeue_t *)arg2;
2261 	tcp_t		*tcp = connp->conn_tcp;
2262 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2263 
2264 	/*
2265 	 * RST from fused tcp loopback peer should trigger an unfuse.
2266 	 */
2267 	if (tcp->tcp_fused) {
2268 		TCP_STAT(tcps, tcp_fusion_aborted);
2269 		tcp_unfuse(tcp);
2270 	}
2271 
2272 	iphdr = mp->b_rptr;
2273 	rptr = mp->b_rptr;
2274 	ASSERT(OK_32PTR(rptr));
2275 
2276 	ip_hdr_len = ira->ira_ip_hdr_length;
2277 	if (connp->conn_recv_ancillary.crb_all != 0) {
2278 		/*
2279 		 * Record packet information in the ip_pkt_t
2280 		 */
2281 		ipp.ipp_fields = 0;
2282 		if (ira->ira_flags & IRAF_IS_IPV4) {
2283 			(void) ip_find_hdr_v4((ipha_t *)rptr, &ipp,
2284 			    B_FALSE);
2285 		} else {
2286 			uint8_t nexthdrp;
2287 
2288 			/*
2289 			 * IPv6 packets can only be received by applications
2290 			 * that are prepared to receive IPv6 addresses.
2291 			 * The IP fanout must ensure this.
2292 			 */
2293 			ASSERT(connp->conn_family == AF_INET6);
2294 
2295 			(void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp,
2296 			    &nexthdrp);
2297 			ASSERT(nexthdrp == IPPROTO_TCP);
2298 
2299 			/* Could have caused a pullup? */
2300 			iphdr = mp->b_rptr;
2301 			rptr = mp->b_rptr;
2302 		}
2303 	}
2304 	ASSERT(DB_TYPE(mp) == M_DATA);
2305 	ASSERT(mp->b_next == NULL);
2306 
2307 	tcpha = (tcpha_t *)&rptr[ip_hdr_len];
2308 	seg_seq = ntohl(tcpha->tha_seq);
2309 	seg_ack = ntohl(tcpha->tha_ack);
2310 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
2311 	seg_len = (int)(mp->b_wptr - rptr) -
2312 	    (ip_hdr_len + TCP_HDR_LENGTH(tcpha));
2313 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
2314 		do {
2315 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
2316 			    (uintptr_t)INT_MAX);
2317 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
2318 		} while ((mp1 = mp1->b_cont) != NULL &&
2319 		    mp1->b_datap->db_type == M_DATA);
2320 	}
2321 
2322 	DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, connp->conn_ixa,
2323 	    __dtrace_tcp_void_ip_t *, iphdr, tcp_t *, tcp,
2324 	    __dtrace_tcp_tcph_t *, tcpha);
2325 
2326 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
2327 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
2328 		    seg_len, tcpha, ira);
2329 		return;
2330 	}
2331 
2332 	if (sqp != NULL) {
2333 		/*
2334 		 * This is the correct place to update tcp_last_recv_time. Note
2335 		 * that it is also updated for tcp structure that belongs to
2336 		 * global and listener queues which do not really need updating.
2337 		 * But that should not cause any harm.  And it is updated for
2338 		 * all kinds of incoming segments, not only for data segments.
2339 		 */
2340 		tcp->tcp_last_recv_time = LBOLT_FASTPATH;
2341 	}
2342 
2343 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
2344 
2345 	BUMP_LOCAL(tcp->tcp_ibsegs);
2346 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
2347 
2348 	if ((flags & TH_URG) && sqp != NULL) {
2349 		/*
2350 		 * TCP can't handle urgent pointers that arrive before
2351 		 * the connection has been accept()ed since it can't
2352 		 * buffer OOB data.  Discard segment if this happens.
2353 		 *
2354 		 * We can't just rely on a non-null tcp_listener to indicate
2355 		 * that the accept() has completed since unlinking of the
2356 		 * eager and completion of the accept are not atomic.
2357 		 * tcp_detached, when it is not set (B_FALSE) indicates
2358 		 * that the accept() has completed.
2359 		 *
2360 		 * Nor can it reassemble urgent pointers, so discard
2361 		 * if it's not the next segment expected.
2362 		 *
2363 		 * Otherwise, collapse chain into one mblk (discard if
2364 		 * that fails).  This makes sure the headers, retransmitted
2365 		 * data, and new data all are in the same mblk.
2366 		 */
2367 		ASSERT(mp != NULL);
2368 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
2369 			freemsg(mp);
2370 			return;
2371 		}
2372 		/* Update pointers into message */
2373 		iphdr = rptr = mp->b_rptr;
2374 		tcpha = (tcpha_t *)&rptr[ip_hdr_len];
2375 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
2376 			/*
2377 			 * Since we can't handle any data with this urgent
2378 			 * pointer that is out of sequence, we expunge
2379 			 * the data.  This allows us to still register
2380 			 * the urgent mark and generate the M_PCSIG,
2381 			 * which we can do.
2382 			 */
2383 			mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha);
2384 			seg_len = 0;
2385 		}
2386 	}
2387 
2388 	switch (tcp->tcp_state) {
2389 	case TCPS_SYN_SENT:
2390 		if (connp->conn_final_sqp == NULL &&
2391 		    tcp_outbound_squeue_switch && sqp != NULL) {
2392 			ASSERT(connp->conn_initial_sqp == connp->conn_sqp);
2393 			connp->conn_final_sqp = sqp;
2394 			if (connp->conn_final_sqp != connp->conn_sqp) {
2395 				DTRACE_PROBE1(conn__final__sqp__switch,
2396 				    conn_t *, connp);
2397 				CONN_INC_REF(connp);
2398 				SQUEUE_SWITCH(connp, connp->conn_final_sqp);
2399 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2400 				    tcp_input_data, connp, ira, ip_squeue_flag,
2401 				    SQTAG_CONNECT_FINISH);
2402 				return;
2403 			}
2404 			DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp);
2405 		}
2406 		if (flags & TH_ACK) {
2407 			/*
2408 			 * Note that our stack cannot send data before a
2409 			 * connection is established, therefore the
2410 			 * following check is valid.  Otherwise, it has
2411 			 * to be changed.
2412 			 */
2413 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
2414 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
2415 				freemsg(mp);
2416 				if (flags & TH_RST)
2417 					return;
2418 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
2419 				    tcp, seg_ack, 0, TH_RST);
2420 				return;
2421 			}
2422 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
2423 		}
2424 		if (flags & TH_RST) {
2425 			if (flags & TH_ACK) {
2426 				DTRACE_TCP5(connect__refused, mblk_t *, NULL,
2427 				    ip_xmit_attr_t *, connp->conn_ixa,
2428 				    void_ip_t *, iphdr, tcp_t *, tcp,
2429 				    tcph_t *, tcpha);
2430 				(void) tcp_clean_death(tcp, ECONNREFUSED);
2431 			}
2432 			freemsg(mp);
2433 			return;
2434 		}
2435 		if (!(flags & TH_SYN)) {
2436 			freemsg(mp);
2437 			return;
2438 		}
2439 
2440 		/* Process all TCP options. */
2441 		tcp_process_options(tcp, tcpha);
2442 		/*
2443 		 * The following changes our rwnd to be a multiple of the
2444 		 * MIN(peer MSS, our MSS) for performance reason.
2445 		 */
2446 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf,
2447 		    tcp->tcp_mss));
2448 
2449 		/* Is the other end ECN capable? */
2450 		if (tcp->tcp_ecn_ok) {
2451 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
2452 				tcp->tcp_ecn_ok = B_FALSE;
2453 			}
2454 		}
2455 		/*
2456 		 * Clear ECN flags because it may interfere with later
2457 		 * processing.
2458 		 */
2459 		flags &= ~(TH_ECE|TH_CWR);
2460 
2461 		tcp->tcp_irs = seg_seq;
2462 		tcp->tcp_rack = seg_seq;
2463 		tcp->tcp_rnxt = seg_seq + 1;
2464 		tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt);
2465 		if (!TCP_IS_DETACHED(tcp)) {
2466 			/* Allocate room for SACK options if needed. */
2467 			connp->conn_wroff = connp->conn_ht_iphc_len;
2468 			if (tcp->tcp_snd_sack_ok)
2469 				connp->conn_wroff += TCPOPT_MAX_SACK_LEN;
2470 			if (!tcp->tcp_loopback)
2471 				connp->conn_wroff += tcps->tcps_wroff_xtra;
2472 
2473 			(void) proto_set_tx_wroff(connp->conn_rq, connp,
2474 			    connp->conn_wroff);
2475 		}
2476 		if (flags & TH_ACK) {
2477 			/*
2478 			 * If we can't get the confirmation upstream, pretend
2479 			 * we didn't even see this one.
2480 			 *
2481 			 * XXX: how can we pretend we didn't see it if we
2482 			 * have updated rnxt et. al.
2483 			 *
2484 			 * For loopback we defer sending up the T_CONN_CON
2485 			 * until after some checks below.
2486 			 */
2487 			mp1 = NULL;
2488 			/*
2489 			 * tcp_sendmsg() checks tcp_state without entering
2490 			 * the squeue so tcp_state should be updated before
2491 			 * sending up connection confirmation.  Probe the
2492 			 * state change below when we are sure the connection
2493 			 * confirmation has been sent.
2494 			 */
2495 			tcp->tcp_state = TCPS_ESTABLISHED;
2496 			if (!tcp_conn_con(tcp, iphdr, mp,
2497 			    tcp->tcp_loopback ? &mp1 : NULL, ira)) {
2498 				tcp->tcp_state = TCPS_SYN_SENT;
2499 				freemsg(mp);
2500 				return;
2501 			}
2502 			TCPS_CONN_INC(tcps);
2503 			/* SYN was acked - making progress */
2504 			tcp->tcp_ip_forward_progress = B_TRUE;
2505 
2506 			/* One for the SYN */
2507 			tcp->tcp_suna = tcp->tcp_iss + 1;
2508 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
2509 
2510 			/*
2511 			 * If SYN was retransmitted, need to reset all
2512 			 * retransmission info.  This is because this
2513 			 * segment will be treated as a dup ACK.
2514 			 */
2515 			if (tcp->tcp_rexmit) {
2516 				tcp->tcp_rexmit = B_FALSE;
2517 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
2518 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
2519 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
2520 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
2521 				tcp->tcp_ms_we_have_waited = 0;
2522 
2523 				/*
2524 				 * Set tcp_cwnd back to 1 MSS, per
2525 				 * recommendation from
2526 				 * draft-floyd-incr-init-win-01.txt,
2527 				 * Increasing TCP's Initial Window.
2528 				 */
2529 				tcp->tcp_cwnd = tcp->tcp_mss;
2530 			}
2531 
2532 			tcp->tcp_swl1 = seg_seq;
2533 			tcp->tcp_swl2 = seg_ack;
2534 
2535 			new_swnd = ntohs(tcpha->tha_win);
2536 			tcp->tcp_swnd = new_swnd;
2537 			if (new_swnd > tcp->tcp_max_swnd)
2538 				tcp->tcp_max_swnd = new_swnd;
2539 
2540 			/*
2541 			 * Always send the three-way handshake ack immediately
2542 			 * in order to make the connection complete as soon as
2543 			 * possible on the accepting host.
2544 			 */
2545 			flags |= TH_ACK_NEEDED;
2546 
2547 			/*
2548 			 * Trace connect-established here.
2549 			 */
2550 			DTRACE_TCP5(connect__established, mblk_t *, NULL,
2551 			    ip_xmit_attr_t *, tcp->tcp_connp->conn_ixa,
2552 			    void_ip_t *, iphdr, tcp_t *, tcp, tcph_t *, tcpha);
2553 
2554 			/* Trace change from SYN_SENT -> ESTABLISHED here */
2555 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2556 			    connp->conn_ixa, void, NULL, tcp_t *, tcp,
2557 			    void, NULL, int32_t, TCPS_SYN_SENT);
2558 
2559 			/*
2560 			 * Special case for loopback.  At this point we have
2561 			 * received SYN-ACK from the remote endpoint.  In
2562 			 * order to ensure that both endpoints reach the
2563 			 * fused state prior to any data exchange, the final
2564 			 * ACK needs to be sent before we indicate T_CONN_CON
2565 			 * to the module upstream.
2566 			 */
2567 			if (tcp->tcp_loopback) {
2568 				mblk_t *ack_mp;
2569 
2570 				ASSERT(!tcp->tcp_unfusable);
2571 				ASSERT(mp1 != NULL);
2572 				/*
2573 				 * For loopback, we always get a pure SYN-ACK
2574 				 * and only need to send back the final ACK
2575 				 * with no data (this is because the other
2576 				 * tcp is ours and we don't do T/TCP).  This
2577 				 * final ACK triggers the passive side to
2578 				 * perform fusion in ESTABLISHED state.
2579 				 */
2580 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
2581 					if (tcp->tcp_ack_tid != 0) {
2582 						(void) TCP_TIMER_CANCEL(tcp,
2583 						    tcp->tcp_ack_tid);
2584 						tcp->tcp_ack_tid = 0;
2585 					}
2586 					tcp_send_data(tcp, ack_mp);
2587 					BUMP_LOCAL(tcp->tcp_obsegs);
2588 					TCPS_BUMP_MIB(tcps, tcpOutAck);
2589 
2590 					if (!IPCL_IS_NONSTR(connp)) {
2591 						/* Send up T_CONN_CON */
2592 						if (ira->ira_cred != NULL) {
2593 							mblk_setcred(mp1,
2594 							    ira->ira_cred,
2595 							    ira->ira_cpid);
2596 						}
2597 						putnext(connp->conn_rq, mp1);
2598 					} else {
2599 						(*connp->conn_upcalls->
2600 						    su_connected)
2601 						    (connp->conn_upper_handle,
2602 						    tcp->tcp_connid,
2603 						    ira->ira_cred,
2604 						    ira->ira_cpid);
2605 						freemsg(mp1);
2606 					}
2607 
2608 					freemsg(mp);
2609 					return;
2610 				}
2611 				/*
2612 				 * Forget fusion; we need to handle more
2613 				 * complex cases below.  Send the deferred
2614 				 * T_CONN_CON message upstream and proceed
2615 				 * as usual.  Mark this tcp as not capable
2616 				 * of fusion.
2617 				 */
2618 				TCP_STAT(tcps, tcp_fusion_unfusable);
2619 				tcp->tcp_unfusable = B_TRUE;
2620 				if (!IPCL_IS_NONSTR(connp)) {
2621 					if (ira->ira_cred != NULL) {
2622 						mblk_setcred(mp1, ira->ira_cred,
2623 						    ira->ira_cpid);
2624 					}
2625 					putnext(connp->conn_rq, mp1);
2626 				} else {
2627 					(*connp->conn_upcalls->su_connected)
2628 					    (connp->conn_upper_handle,
2629 					    tcp->tcp_connid, ira->ira_cred,
2630 					    ira->ira_cpid);
2631 					freemsg(mp1);
2632 				}
2633 			}
2634 
2635 			/*
2636 			 * Check to see if there is data to be sent.  If
2637 			 * yes, set the transmit flag.  Then check to see
2638 			 * if received data processing needs to be done.
2639 			 * If not, go straight to xmit_check.  This short
2640 			 * cut is OK as we don't support T/TCP.
2641 			 */
2642 			if (tcp->tcp_unsent)
2643 				flags |= TH_XMIT_NEEDED;
2644 
2645 			if (seg_len == 0 && !(flags & TH_URG)) {
2646 				freemsg(mp);
2647 				goto xmit_check;
2648 			}
2649 
2650 			flags &= ~TH_SYN;
2651 			seg_seq++;
2652 			break;
2653 		}
2654 		tcp->tcp_state = TCPS_SYN_RCVD;
2655 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2656 		    connp->conn_ixa, void_ip_t *, NULL, tcp_t *, tcp,
2657 		    tcph_t *, NULL, int32_t, TCPS_SYN_SENT);
2658 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
2659 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
2660 		if (mp1 != NULL) {
2661 			tcp_send_data(tcp, mp1);
2662 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
2663 		}
2664 		freemsg(mp);
2665 		return;
2666 	case TCPS_SYN_RCVD:
2667 		if (flags & TH_ACK) {
2668 			/*
2669 			 * In this state, a SYN|ACK packet is either bogus
2670 			 * because the other side must be ACKing our SYN which
2671 			 * indicates it has seen the ACK for their SYN and
2672 			 * shouldn't retransmit it or we're crossing SYNs
2673 			 * on active open.
2674 			 */
2675 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
2676 				freemsg(mp);
2677 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
2678 				    tcp, seg_ack, 0, TH_RST);
2679 				return;
2680 			}
2681 			/*
2682 			 * NOTE: RFC 793 pg. 72 says this should be
2683 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
2684 			 * but that would mean we have an ack that ignored
2685 			 * our SYN.
2686 			 */
2687 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
2688 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
2689 				freemsg(mp);
2690 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
2691 				    tcp, seg_ack, 0, TH_RST);
2692 				return;
2693 			}
2694 			/*
2695 			 * No sane TCP stack will send such a small window
2696 			 * without receiving any data.  Just drop this invalid
2697 			 * ACK.  We also shorten the abort timeout in case
2698 			 * this is an attack.
2699 			 */
2700 			if ((ntohs(tcpha->tha_win) << tcp->tcp_snd_ws) <
2701 			    (tcp->tcp_mss >> tcp_init_wnd_shft)) {
2702 				freemsg(mp);
2703 				TCP_STAT(tcps, tcp_zwin_ack_syn);
2704 				tcp->tcp_second_ctimer_threshold =
2705 				    tcp_early_abort * SECONDS;
2706 				return;
2707 			}
2708 		}
2709 		break;
2710 	case TCPS_LISTEN:
2711 		/*
2712 		 * Only a TLI listener can come through this path when a
2713 		 * acceptor is going back to be a listener and a packet
2714 		 * for the acceptor hits the classifier. For a socket
2715 		 * listener, this can never happen because a listener
2716 		 * can never accept connection on itself and hence a
2717 		 * socket acceptor can not go back to being a listener.
2718 		 */
2719 		ASSERT(!TCP_IS_SOCKET(tcp));
2720 		/*FALLTHRU*/
2721 	case TCPS_CLOSED:
2722 	case TCPS_BOUND: {
2723 		conn_t	*new_connp;
2724 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
2725 
2726 		/*
2727 		 * Don't accept any input on a closed tcp as this TCP logically
2728 		 * does not exist on the system. Don't proceed further with
2729 		 * this TCP. For instance, this packet could trigger another
2730 		 * close of this tcp which would be disastrous for tcp_refcnt.
2731 		 * tcp_close_detached / tcp_clean_death / tcp_closei_local must
2732 		 * be called at most once on a TCP. In this case we need to
2733 		 * refeed the packet into the classifier and figure out where
2734 		 * the packet should go.
2735 		 */
2736 		new_connp = ipcl_classify(mp, ira, ipst);
2737 		if (new_connp != NULL) {
2738 			/* Drops ref on new_connp */
2739 			tcp_reinput(new_connp, mp, ira, ipst);
2740 			return;
2741 		}
2742 		/* We failed to classify. For now just drop the packet */
2743 		freemsg(mp);
2744 		return;
2745 	}
2746 	case TCPS_IDLE:
2747 		/*
2748 		 * Handle the case where the tcp_clean_death() has happened
2749 		 * on a connection (application hasn't closed yet) but a packet
2750 		 * was already queued on squeue before tcp_clean_death()
2751 		 * was processed. Calling tcp_clean_death() twice on same
2752 		 * connection can result in weird behaviour.
2753 		 */
2754 		freemsg(mp);
2755 		return;
2756 	default:
2757 		break;
2758 	}
2759 
2760 	/*
2761 	 * Already on the correct queue/perimeter.
2762 	 * If this is a detached connection and not an eager
2763 	 * connection hanging off a listener then new data
2764 	 * (past the FIN) will cause a reset.
2765 	 * We do a special check here where it
2766 	 * is out of the main line, rather than check
2767 	 * if we are detached every time we see new
2768 	 * data down below.
2769 	 */
2770 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
2771 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
2772 		TCPS_BUMP_MIB(tcps, tcpInClosed);
2773 		DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
2774 		freemsg(mp);
2775 		tcp_xmit_ctl("new data when detached", tcp,
2776 		    tcp->tcp_snxt, 0, TH_RST);
2777 		(void) tcp_clean_death(tcp, EPROTO);
2778 		return;
2779 	}
2780 
2781 	mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha);
2782 	urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION;
2783 	new_swnd = ntohs(tcpha->tha_win) <<
2784 	    ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws);
2785 
2786 	if (tcp->tcp_snd_ts_ok) {
2787 		if (!tcp_paws_check(tcp, tcpha, &tcpopt)) {
2788 			/*
2789 			 * This segment is not acceptable.
2790 			 * Drop it and send back an ACK.
2791 			 */
2792 			freemsg(mp);
2793 			flags |= TH_ACK_NEEDED;
2794 			goto ack_check;
2795 		}
2796 	} else if (tcp->tcp_snd_sack_ok) {
2797 		tcpopt.tcp = tcp;
2798 		/*
2799 		 * SACK info in already updated in tcp_parse_options.  Ignore
2800 		 * all other TCP options...
2801 		 */
2802 		(void) tcp_parse_options(tcpha, &tcpopt);
2803 	}
2804 try_again:;
2805 	mss = tcp->tcp_mss;
2806 	gap = seg_seq - tcp->tcp_rnxt;
2807 	rgap = tcp->tcp_rwnd - (gap + seg_len);
2808 	/*
2809 	 * gap is the amount of sequence space between what we expect to see
2810 	 * and what we got for seg_seq.  A positive value for gap means
2811 	 * something got lost.  A negative value means we got some old stuff.
2812 	 */
2813 	if (gap < 0) {
2814 		/* Old stuff present.  Is the SYN in there? */
2815 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
2816 		    (seg_len != 0)) {
2817 			flags &= ~TH_SYN;
2818 			seg_seq++;
2819 			urp--;
2820 			/* Recompute the gaps after noting the SYN. */
2821 			goto try_again;
2822 		}
2823 		TCPS_BUMP_MIB(tcps, tcpInDataDupSegs);
2824 		TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes,
2825 		    (seg_len > -gap ? -gap : seg_len));
2826 		/* Remove the old stuff from seg_len. */
2827 		seg_len += gap;
2828 		/*
2829 		 * Anything left?
2830 		 * Make sure to check for unack'd FIN when rest of data
2831 		 * has been previously ack'd.
2832 		 */
2833 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
2834 			/*
2835 			 * Resets are only valid if they lie within our offered
2836 			 * window.  If the RST bit is set, we just ignore this
2837 			 * segment.
2838 			 */
2839 			if (flags & TH_RST) {
2840 				freemsg(mp);
2841 				return;
2842 			}
2843 
2844 			/*
2845 			 * The arriving of dup data packets indicate that we
2846 			 * may have postponed an ack for too long, or the other
2847 			 * side's RTT estimate is out of shape. Start acking
2848 			 * more often.
2849 			 */
2850 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
2851 			    tcp->tcp_rack_cnt >= 1 &&
2852 			    tcp->tcp_rack_abs_max > 2) {
2853 				tcp->tcp_rack_abs_max--;
2854 			}
2855 			tcp->tcp_rack_cur_max = 1;
2856 
2857 			/*
2858 			 * This segment is "unacceptable".  None of its
2859 			 * sequence space lies within our advertized window.
2860 			 *
2861 			 * Adjust seg_len to the original value for tracing.
2862 			 */
2863 			seg_len -= gap;
2864 			if (connp->conn_debug) {
2865 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
2866 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
2867 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
2868 				    "seg_len %d, rnxt %u, snxt %u, %s",
2869 				    gap, rgap, flags, seg_seq, seg_ack,
2870 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
2871 				    tcp_display(tcp, NULL,
2872 				    DISP_ADDR_AND_PORT));
2873 			}
2874 
2875 			/*
2876 			 * Arrange to send an ACK in response to the
2877 			 * unacceptable segment per RFC 793 page 69. There
2878 			 * is only one small difference between ours and the
2879 			 * acceptability test in the RFC - we accept ACK-only
2880 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
2881 			 * will be generated.
2882 			 *
2883 			 * Note that we have to ACK an ACK-only packet at least
2884 			 * for stacks that send 0-length keep-alives with
2885 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
2886 			 * section 4.2.3.6. As long as we don't ever generate
2887 			 * an unacceptable packet in response to an incoming
2888 			 * packet that is unacceptable, it should not cause
2889 			 * "ACK wars".
2890 			 */
2891 			flags |=  TH_ACK_NEEDED;
2892 
2893 			/*
2894 			 * Continue processing this segment in order to use the
2895 			 * ACK information it contains, but skip all other
2896 			 * sequence-number processing.	Processing the ACK
2897 			 * information is necessary in order to
2898 			 * re-synchronize connections that may have lost
2899 			 * synchronization.
2900 			 *
2901 			 * We clear seg_len and flag fields related to
2902 			 * sequence number processing as they are not
2903 			 * to be trusted for an unacceptable segment.
2904 			 */
2905 			seg_len = 0;
2906 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
2907 			goto process_ack;
2908 		}
2909 
2910 		/* Fix seg_seq, and chew the gap off the front. */
2911 		seg_seq = tcp->tcp_rnxt;
2912 		urp += gap;
2913 		do {
2914 			mblk_t	*mp2;
2915 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
2916 			    (uintptr_t)UINT_MAX);
2917 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
2918 			if (gap > 0) {
2919 				mp->b_rptr = mp->b_wptr - gap;
2920 				break;
2921 			}
2922 			mp2 = mp;
2923 			mp = mp->b_cont;
2924 			freeb(mp2);
2925 		} while (gap < 0);
2926 		/*
2927 		 * If the urgent data has already been acknowledged, we
2928 		 * should ignore TH_URG below
2929 		 */
2930 		if (urp < 0)
2931 			flags &= ~TH_URG;
2932 	}
2933 	/*
2934 	 * rgap is the amount of stuff received out of window.  A negative
2935 	 * value is the amount out of window.
2936 	 */
2937 	if (rgap < 0) {
2938 		mblk_t	*mp2;
2939 
2940 		if (tcp->tcp_rwnd == 0) {
2941 			TCPS_BUMP_MIB(tcps, tcpInWinProbe);
2942 		} else {
2943 			TCPS_BUMP_MIB(tcps, tcpInDataPastWinSegs);
2944 			TCPS_UPDATE_MIB(tcps, tcpInDataPastWinBytes, -rgap);
2945 		}
2946 
2947 		/*
2948 		 * seg_len does not include the FIN, so if more than
2949 		 * just the FIN is out of window, we act like we don't
2950 		 * see it.  (If just the FIN is out of window, rgap
2951 		 * will be zero and we will go ahead and acknowledge
2952 		 * the FIN.)
2953 		 */
2954 		flags &= ~TH_FIN;
2955 
2956 		/* Fix seg_len and make sure there is something left. */
2957 		seg_len += rgap;
2958 		if (seg_len <= 0) {
2959 			/*
2960 			 * Resets are only valid if they lie within our offered
2961 			 * window.  If the RST bit is set, we just ignore this
2962 			 * segment.
2963 			 */
2964 			if (flags & TH_RST) {
2965 				freemsg(mp);
2966 				return;
2967 			}
2968 
2969 			/* Per RFC 793, we need to send back an ACK. */
2970 			flags |= TH_ACK_NEEDED;
2971 
2972 			/*
2973 			 * Send SIGURG as soon as possible i.e. even
2974 			 * if the TH_URG was delivered in a window probe
2975 			 * packet (which will be unacceptable).
2976 			 *
2977 			 * We generate a signal if none has been generated
2978 			 * for this connection or if this is a new urgent
2979 			 * byte. Also send a zero-length "unmarked" message
2980 			 * to inform SIOCATMARK that this is not the mark.
2981 			 *
2982 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
2983 			 * is sent up. This plus the check for old data
2984 			 * (gap >= 0) handles the wraparound of the sequence
2985 			 * number space without having to always track the
2986 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
2987 			 * this max in its rcv_up variable).
2988 			 *
2989 			 * This prevents duplicate SIGURGS due to a "late"
2990 			 * zero-window probe when the T_EXDATA_IND has already
2991 			 * been sent up.
2992 			 */
2993 			if ((flags & TH_URG) &&
2994 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
2995 			    tcp->tcp_urp_last))) {
2996 				if (IPCL_IS_NONSTR(connp)) {
2997 					if (!TCP_IS_DETACHED(tcp)) {
2998 						(*connp->conn_upcalls->
2999 						    su_signal_oob)
3000 						    (connp->conn_upper_handle,
3001 						    urp);
3002 					}
3003 				} else {
3004 					mp1 = allocb(0, BPRI_MED);
3005 					if (mp1 == NULL) {
3006 						freemsg(mp);
3007 						return;
3008 					}
3009 					if (!TCP_IS_DETACHED(tcp) &&
3010 					    !putnextctl1(connp->conn_rq,
3011 					    M_PCSIG, SIGURG)) {
3012 						/* Try again on the rexmit. */
3013 						freemsg(mp1);
3014 						freemsg(mp);
3015 						return;
3016 					}
3017 					/*
3018 					 * If the next byte would be the mark
3019 					 * then mark with MARKNEXT else mark
3020 					 * with NOTMARKNEXT.
3021 					 */
3022 					if (gap == 0 && urp == 0)
3023 						mp1->b_flag |= MSGMARKNEXT;
3024 					else
3025 						mp1->b_flag |= MSGNOTMARKNEXT;
3026 					freemsg(tcp->tcp_urp_mark_mp);
3027 					tcp->tcp_urp_mark_mp = mp1;
3028 					flags |= TH_SEND_URP_MARK;
3029 				}
3030 				tcp->tcp_urp_last_valid = B_TRUE;
3031 				tcp->tcp_urp_last = urp + seg_seq;
3032 			}
3033 			/*
3034 			 * If this is a zero window probe, continue to
3035 			 * process the ACK part.  But we need to set seg_len
3036 			 * to 0 to avoid data processing.  Otherwise just
3037 			 * drop the segment and send back an ACK.
3038 			 */
3039 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
3040 				flags &= ~(TH_SYN | TH_URG);
3041 				seg_len = 0;
3042 				goto process_ack;
3043 			} else {
3044 				freemsg(mp);
3045 				goto ack_check;
3046 			}
3047 		}
3048 		/* Pitch out of window stuff off the end. */
3049 		rgap = seg_len;
3050 		mp2 = mp;
3051 		do {
3052 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
3053 			    (uintptr_t)INT_MAX);
3054 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
3055 			if (rgap < 0) {
3056 				mp2->b_wptr += rgap;
3057 				if ((mp1 = mp2->b_cont) != NULL) {
3058 					mp2->b_cont = NULL;
3059 					freemsg(mp1);
3060 				}
3061 				break;
3062 			}
3063 		} while ((mp2 = mp2->b_cont) != NULL);
3064 	}
3065 ok:;
3066 	/*
3067 	 * TCP should check ECN info for segments inside the window only.
3068 	 * Therefore the check should be done here.
3069 	 */
3070 	if (tcp->tcp_ecn_ok) {
3071 		if (flags & TH_CWR) {
3072 			tcp->tcp_ecn_echo_on = B_FALSE;
3073 		}
3074 		/*
3075 		 * Note that both ECN_CE and CWR can be set in the
3076 		 * same segment.  In this case, we once again turn
3077 		 * on ECN_ECHO.
3078 		 */
3079 		if (connp->conn_ipversion == IPV4_VERSION) {
3080 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
3081 
3082 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
3083 				tcp->tcp_ecn_echo_on = B_TRUE;
3084 			}
3085 		} else {
3086 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
3087 
3088 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
3089 			    htonl(IPH_ECN_CE << 20)) {
3090 				tcp->tcp_ecn_echo_on = B_TRUE;
3091 			}
3092 		}
3093 	}
3094 
3095 	/*
3096 	 * Check whether we can update tcp_ts_recent.  This test is
3097 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
3098 	 * Extensions for High Performance: An Update", Internet Draft.
3099 	 */
3100 	if (tcp->tcp_snd_ts_ok &&
3101 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
3102 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
3103 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
3104 		tcp->tcp_last_rcv_lbolt = LBOLT_FASTPATH64;
3105 	}
3106 
3107 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
3108 		/*
3109 		 * FIN in an out of order segment.  We record this in
3110 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
3111 		 * Clear the FIN so that any check on FIN flag will fail.
3112 		 * Remember that FIN also counts in the sequence number
3113 		 * space.  So we need to ack out of order FIN only segments.
3114 		 */
3115 		if (flags & TH_FIN) {
3116 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
3117 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
3118 			flags &= ~TH_FIN;
3119 			flags |= TH_ACK_NEEDED;
3120 		}
3121 		if (seg_len > 0) {
3122 			/* Fill in the SACK blk list. */
3123 			if (tcp->tcp_snd_sack_ok) {
3124 				tcp_sack_insert(tcp->tcp_sack_list,
3125 				    seg_seq, seg_seq + seg_len,
3126 				    &(tcp->tcp_num_sack_blk));
3127 			}
3128 
3129 			/*
3130 			 * Attempt reassembly and see if we have something
3131 			 * ready to go.
3132 			 */
3133 			mp = tcp_reass(tcp, mp, seg_seq);
3134 			/* Always ack out of order packets */
3135 			flags |= TH_ACK_NEEDED | TH_PUSH;
3136 			if (mp) {
3137 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
3138 				    (uintptr_t)INT_MAX);
3139 				seg_len = mp->b_cont ? msgdsize(mp) :
3140 				    (int)(mp->b_wptr - mp->b_rptr);
3141 				seg_seq = tcp->tcp_rnxt;
3142 				/*
3143 				 * A gap is filled and the seq num and len
3144 				 * of the gap match that of a previously
3145 				 * received FIN, put the FIN flag back in.
3146 				 */
3147 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
3148 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
3149 					flags |= TH_FIN;
3150 					tcp->tcp_valid_bits &=
3151 					    ~TCP_OFO_FIN_VALID;
3152 				}
3153 				if (tcp->tcp_reass_tid != 0) {
3154 					(void) TCP_TIMER_CANCEL(tcp,
3155 					    tcp->tcp_reass_tid);
3156 					/*
3157 					 * Restart the timer if there is still
3158 					 * data in the reassembly queue.
3159 					 */
3160 					if (tcp->tcp_reass_head != NULL) {
3161 						tcp->tcp_reass_tid = TCP_TIMER(
3162 						    tcp, tcp_reass_timer,
3163 						    tcps->tcps_reass_timeout);
3164 					} else {
3165 						tcp->tcp_reass_tid = 0;
3166 					}
3167 				}
3168 			} else {
3169 				/*
3170 				 * Keep going even with NULL mp.
3171 				 * There may be a useful ACK or something else
3172 				 * we don't want to miss.
3173 				 *
3174 				 * But TCP should not perform fast retransmit
3175 				 * because of the ack number.  TCP uses
3176 				 * seg_len == 0 to determine if it is a pure
3177 				 * ACK.  And this is not a pure ACK.
3178 				 */
3179 				seg_len = 0;
3180 				ofo_seg = B_TRUE;
3181 
3182 				if (tcps->tcps_reass_timeout != 0 &&
3183 				    tcp->tcp_reass_tid == 0) {
3184 					tcp->tcp_reass_tid = TCP_TIMER(tcp,
3185 					    tcp_reass_timer,
3186 					    tcps->tcps_reass_timeout);
3187 				}
3188 			}
3189 		}
3190 	} else if (seg_len > 0) {
3191 		TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs);
3192 		TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, seg_len);
3193 		/*
3194 		 * If an out of order FIN was received before, and the seq
3195 		 * num and len of the new segment match that of the FIN,
3196 		 * put the FIN flag back in.
3197 		 */
3198 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
3199 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
3200 			flags |= TH_FIN;
3201 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
3202 		}
3203 	}
3204 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
3205 	if (flags & TH_RST) {
3206 		freemsg(mp);
3207 		switch (tcp->tcp_state) {
3208 		case TCPS_SYN_RCVD:
3209 			(void) tcp_clean_death(tcp, ECONNREFUSED);
3210 			break;
3211 		case TCPS_ESTABLISHED:
3212 		case TCPS_FIN_WAIT_1:
3213 		case TCPS_FIN_WAIT_2:
3214 		case TCPS_CLOSE_WAIT:
3215 			(void) tcp_clean_death(tcp, ECONNRESET);
3216 			break;
3217 		case TCPS_CLOSING:
3218 		case TCPS_LAST_ACK:
3219 			(void) tcp_clean_death(tcp, 0);
3220 			break;
3221 		default:
3222 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
3223 			(void) tcp_clean_death(tcp, ENXIO);
3224 			break;
3225 		}
3226 		return;
3227 	}
3228 	if (flags & TH_SYN) {
3229 		/*
3230 		 * See RFC 793, Page 71
3231 		 *
3232 		 * The seq number must be in the window as it should
3233 		 * be "fixed" above.  If it is outside window, it should
3234 		 * be already rejected.  Note that we allow seg_seq to be
3235 		 * rnxt + rwnd because we want to accept 0 window probe.
3236 		 */
3237 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
3238 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
3239 		freemsg(mp);
3240 		/*
3241 		 * If the ACK flag is not set, just use our snxt as the
3242 		 * seq number of the RST segment.
3243 		 */
3244 		if (!(flags & TH_ACK)) {
3245 			seg_ack = tcp->tcp_snxt;
3246 		}
3247 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
3248 		    TH_RST|TH_ACK);
3249 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
3250 		(void) tcp_clean_death(tcp, ECONNRESET);
3251 		return;
3252 	}
3253 	/*
3254 	 * urp could be -1 when the urp field in the packet is 0
3255 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
3256 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
3257 	 */
3258 	if (flags & TH_URG && urp >= 0) {
3259 		if (!tcp->tcp_urp_last_valid ||
3260 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
3261 			/*
3262 			 * Non-STREAMS sockets handle the urgent data a litte
3263 			 * differently from STREAMS based sockets. There is no
3264 			 * need to mark any mblks with the MSG{NOT,}MARKNEXT
3265 			 * flags to keep SIOCATMARK happy. Instead a
3266 			 * su_signal_oob upcall is made to update the mark.
3267 			 * Neither is a T_EXDATA_IND mblk needed to be
3268 			 * prepended to the urgent data. The urgent data is
3269 			 * delivered using the su_recv upcall, where we set
3270 			 * the MSG_OOB flag to indicate that it is urg data.
3271 			 *
3272 			 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED
3273 			 * are used by non-STREAMS sockets.
3274 			 */
3275 			if (IPCL_IS_NONSTR(connp)) {
3276 				if (!TCP_IS_DETACHED(tcp)) {
3277 					(*connp->conn_upcalls->su_signal_oob)
3278 					    (connp->conn_upper_handle, urp);
3279 				}
3280 			} else {
3281 				/*
3282 				 * If we haven't generated the signal yet for
3283 				 * this urgent pointer value, do it now.  Also,
3284 				 * send up a zero-length M_DATA indicating
3285 				 * whether or not this is the mark. The latter
3286 				 * is not needed when a T_EXDATA_IND is sent up.
3287 				 * However, if there are allocation failures
3288 				 * this code relies on the sender retransmitting
3289 				 * and the socket code for determining the mark
3290 				 * should not block waiting for the peer to
3291 				 * transmit. Thus, for simplicity we always
3292 				 * send up the mark indication.
3293 				 */
3294 				mp1 = allocb(0, BPRI_MED);
3295 				if (mp1 == NULL) {
3296 					freemsg(mp);
3297 					return;
3298 				}
3299 				if (!TCP_IS_DETACHED(tcp) &&
3300 				    !putnextctl1(connp->conn_rq, M_PCSIG,
3301 				    SIGURG)) {
3302 					/* Try again on the rexmit. */
3303 					freemsg(mp1);
3304 					freemsg(mp);
3305 					return;
3306 				}
3307 				/*
3308 				 * Mark with NOTMARKNEXT for now.
3309 				 * The code below will change this to MARKNEXT
3310 				 * if we are at the mark.
3311 				 *
3312 				 * If there are allocation failures (e.g. in
3313 				 * dupmsg below) the next time tcp_input_data
3314 				 * sees the urgent segment it will send up the
3315 				 * MSGMARKNEXT message.
3316 				 */
3317 				mp1->b_flag |= MSGNOTMARKNEXT;
3318 				freemsg(tcp->tcp_urp_mark_mp);
3319 				tcp->tcp_urp_mark_mp = mp1;
3320 				flags |= TH_SEND_URP_MARK;
3321 #ifdef DEBUG
3322 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3323 				    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
3324 				    "last %x, %s",
3325 				    seg_seq, urp, tcp->tcp_urp_last,
3326 				    tcp_display(tcp, NULL, DISP_PORT_ONLY));
3327 #endif /* DEBUG */
3328 			}
3329 			tcp->tcp_urp_last_valid = B_TRUE;
3330 			tcp->tcp_urp_last = urp + seg_seq;
3331 		} else if (tcp->tcp_urp_mark_mp != NULL) {
3332 			/*
3333 			 * An allocation failure prevented the previous
3334 			 * tcp_input_data from sending up the allocated
3335 			 * MSG*MARKNEXT message - send it up this time
3336 			 * around.
3337 			 */
3338 			flags |= TH_SEND_URP_MARK;
3339 		}
3340 
3341 		/*
3342 		 * If the urgent byte is in this segment, make sure that it is
3343 		 * all by itself.  This makes it much easier to deal with the
3344 		 * possibility of an allocation failure on the T_exdata_ind.
3345 		 * Note that seg_len is the number of bytes in the segment, and
3346 		 * urp is the offset into the segment of the urgent byte.
3347 		 * urp < seg_len means that the urgent byte is in this segment.
3348 		 */
3349 		if (urp < seg_len) {
3350 			if (seg_len != 1) {
3351 				uint32_t  tmp_rnxt;
3352 				/*
3353 				 * Break it up and feed it back in.
3354 				 * Re-attach the IP header.
3355 				 */
3356 				mp->b_rptr = iphdr;
3357 				if (urp > 0) {
3358 					/*
3359 					 * There is stuff before the urgent
3360 					 * byte.
3361 					 */
3362 					mp1 = dupmsg(mp);
3363 					if (!mp1) {
3364 						/*
3365 						 * Trim from urgent byte on.
3366 						 * The rest will come back.
3367 						 */
3368 						(void) adjmsg(mp,
3369 						    urp - seg_len);
3370 						tcp_input_data(connp,
3371 						    mp, NULL, ira);
3372 						return;
3373 					}
3374 					(void) adjmsg(mp1, urp - seg_len);
3375 					/* Feed this piece back in. */
3376 					tmp_rnxt = tcp->tcp_rnxt;
3377 					tcp_input_data(connp, mp1, NULL, ira);
3378 					/*
3379 					 * If the data passed back in was not
3380 					 * processed (ie: bad ACK) sending
3381 					 * the remainder back in will cause a
3382 					 * loop. In this case, drop the
3383 					 * packet and let the sender try
3384 					 * sending a good packet.
3385 					 */
3386 					if (tmp_rnxt == tcp->tcp_rnxt) {
3387 						freemsg(mp);
3388 						return;
3389 					}
3390 				}
3391 				if (urp != seg_len - 1) {
3392 					uint32_t  tmp_rnxt;
3393 					/*
3394 					 * There is stuff after the urgent
3395 					 * byte.
3396 					 */
3397 					mp1 = dupmsg(mp);
3398 					if (!mp1) {
3399 						/*
3400 						 * Trim everything beyond the
3401 						 * urgent byte.  The rest will
3402 						 * come back.
3403 						 */
3404 						(void) adjmsg(mp,
3405 						    urp + 1 - seg_len);
3406 						tcp_input_data(connp,
3407 						    mp, NULL, ira);
3408 						return;
3409 					}
3410 					(void) adjmsg(mp1, urp + 1 - seg_len);
3411 					tmp_rnxt = tcp->tcp_rnxt;
3412 					tcp_input_data(connp, mp1, NULL, ira);
3413 					/*
3414 					 * If the data passed back in was not
3415 					 * processed (ie: bad ACK) sending
3416 					 * the remainder back in will cause a
3417 					 * loop. In this case, drop the
3418 					 * packet and let the sender try
3419 					 * sending a good packet.
3420 					 */
3421 					if (tmp_rnxt == tcp->tcp_rnxt) {
3422 						freemsg(mp);
3423 						return;
3424 					}
3425 				}
3426 				tcp_input_data(connp, mp, NULL, ira);
3427 				return;
3428 			}
3429 			/*
3430 			 * This segment contains only the urgent byte.  We
3431 			 * have to allocate the T_exdata_ind, if we can.
3432 			 */
3433 			if (IPCL_IS_NONSTR(connp)) {
3434 				int error;
3435 
3436 				(*connp->conn_upcalls->su_recv)
3437 				    (connp->conn_upper_handle, mp, seg_len,
3438 				    MSG_OOB, &error, NULL);
3439 				/*
3440 				 * We should never be in middle of a
3441 				 * fallback, the squeue guarantees that.
3442 				 */
3443 				ASSERT(error != EOPNOTSUPP);
3444 				mp = NULL;
3445 				goto update_ack;
3446 			} else if (!tcp->tcp_urp_mp) {
3447 				struct T_exdata_ind *tei;
3448 				mp1 = allocb(sizeof (struct T_exdata_ind),
3449 				    BPRI_MED);
3450 				if (!mp1) {
3451 					/*
3452 					 * Sigh... It'll be back.
3453 					 * Generate any MSG*MARK message now.
3454 					 */
3455 					freemsg(mp);
3456 					seg_len = 0;
3457 					if (flags & TH_SEND_URP_MARK) {
3458 
3459 
3460 						ASSERT(tcp->tcp_urp_mark_mp);
3461 						tcp->tcp_urp_mark_mp->b_flag &=
3462 						    ~MSGNOTMARKNEXT;
3463 						tcp->tcp_urp_mark_mp->b_flag |=
3464 						    MSGMARKNEXT;
3465 					}
3466 					goto ack_check;
3467 				}
3468 				mp1->b_datap->db_type = M_PROTO;
3469 				tei = (struct T_exdata_ind *)mp1->b_rptr;
3470 				tei->PRIM_type = T_EXDATA_IND;
3471 				tei->MORE_flag = 0;
3472 				mp1->b_wptr = (uchar_t *)&tei[1];
3473 				tcp->tcp_urp_mp = mp1;
3474 #ifdef DEBUG
3475 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3476 				    "tcp_rput: allocated exdata_ind %s",
3477 				    tcp_display(tcp, NULL,
3478 				    DISP_PORT_ONLY));
3479 #endif /* DEBUG */
3480 				/*
3481 				 * There is no need to send a separate MSG*MARK
3482 				 * message since the T_EXDATA_IND will be sent
3483 				 * now.
3484 				 */
3485 				flags &= ~TH_SEND_URP_MARK;
3486 				freemsg(tcp->tcp_urp_mark_mp);
3487 				tcp->tcp_urp_mark_mp = NULL;
3488 			}
3489 			/*
3490 			 * Now we are all set.  On the next putnext upstream,
3491 			 * tcp_urp_mp will be non-NULL and will get prepended
3492 			 * to what has to be this piece containing the urgent
3493 			 * byte.  If for any reason we abort this segment below,
3494 			 * if it comes back, we will have this ready, or it
3495 			 * will get blown off in close.
3496 			 */
3497 		} else if (urp == seg_len) {
3498 			/*
3499 			 * The urgent byte is the next byte after this sequence
3500 			 * number. If this endpoint is non-STREAMS, then there
3501 			 * is nothing to do here since the socket has already
3502 			 * been notified about the urg pointer by the
3503 			 * su_signal_oob call above.
3504 			 *
3505 			 * In case of STREAMS, some more work might be needed.
3506 			 * If there is data it is marked with MSGMARKNEXT and
3507 			 * and any tcp_urp_mark_mp is discarded since it is not
3508 			 * needed. Otherwise, if the code above just allocated
3509 			 * a zero-length tcp_urp_mark_mp message, that message
3510 			 * is tagged with MSGMARKNEXT. Sending up these
3511 			 * MSGMARKNEXT messages makes SIOCATMARK work correctly
3512 			 * even though the T_EXDATA_IND will not be sent up
3513 			 * until the urgent byte arrives.
3514 			 */
3515 			if (!IPCL_IS_NONSTR(tcp->tcp_connp)) {
3516 				if (seg_len != 0) {
3517 					flags |= TH_MARKNEXT_NEEDED;
3518 					freemsg(tcp->tcp_urp_mark_mp);
3519 					tcp->tcp_urp_mark_mp = NULL;
3520 					flags &= ~TH_SEND_URP_MARK;
3521 				} else if (tcp->tcp_urp_mark_mp != NULL) {
3522 					flags |= TH_SEND_URP_MARK;
3523 					tcp->tcp_urp_mark_mp->b_flag &=
3524 					    ~MSGNOTMARKNEXT;
3525 					tcp->tcp_urp_mark_mp->b_flag |=
3526 					    MSGMARKNEXT;
3527 				}
3528 			}
3529 #ifdef DEBUG
3530 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3531 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
3532 			    seg_len, flags,
3533 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
3534 #endif /* DEBUG */
3535 		}
3536 #ifdef DEBUG
3537 		else {
3538 			/* Data left until we hit mark */
3539 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3540 			    "tcp_rput: URP %d bytes left, %s",
3541 			    urp - seg_len, tcp_display(tcp, NULL,
3542 			    DISP_PORT_ONLY));
3543 		}
3544 #endif /* DEBUG */
3545 	}
3546 
3547 process_ack:
3548 	if (!(flags & TH_ACK)) {
3549 		freemsg(mp);
3550 		goto xmit_check;
3551 	}
3552 	}
3553 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
3554 
3555 	if (bytes_acked > 0)
3556 		tcp->tcp_ip_forward_progress = B_TRUE;
3557 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
3558 		/*
3559 		 * tcp_sendmsg() checks tcp_state without entering
3560 		 * the squeue so tcp_state should be updated before
3561 		 * sending up a connection confirmation or a new
3562 		 * connection indication.
3563 		 */
3564 		tcp->tcp_state = TCPS_ESTABLISHED;
3565 
3566 		/*
3567 		 * We are seeing the final ack in the three way
3568 		 * hand shake of a active open'ed connection
3569 		 * so we must send up a T_CONN_CON
3570 		 */
3571 		if (tcp->tcp_active_open) {
3572 			if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) {
3573 				freemsg(mp);
3574 				tcp->tcp_state = TCPS_SYN_RCVD;
3575 				return;
3576 			}
3577 			/*
3578 			 * Don't fuse the loopback endpoints for
3579 			 * simultaneous active opens.
3580 			 */
3581 			if (tcp->tcp_loopback) {
3582 				TCP_STAT(tcps, tcp_fusion_unfusable);
3583 				tcp->tcp_unfusable = B_TRUE;
3584 			}
3585 			/*
3586 			 * For simultaneous active open, trace receipt of final
3587 			 * ACK as tcp:::connect-established.
3588 			 */
3589 			DTRACE_TCP5(connect__established, mblk_t *, NULL,
3590 			    ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *,
3591 			    iphdr, tcp_t *, tcp, tcph_t *, tcpha);
3592 		} else if (IPCL_IS_NONSTR(connp)) {
3593 			/*
3594 			 * 3-way handshake has completed, so notify socket
3595 			 * of the new connection.
3596 			 *
3597 			 * We are here means eager is fine but it can
3598 			 * get a TH_RST at any point between now and till
3599 			 * accept completes and disappear. We need to
3600 			 * ensure that reference to eager is valid after
3601 			 * we get out of eager's perimeter. So we do
3602 			 * an extra refhold.
3603 			 */
3604 			CONN_INC_REF(connp);
3605 
3606 			if (!tcp_newconn_notify(tcp, ira)) {
3607 				freemsg(mp);
3608 				/* notification did not go up, so drop ref */
3609 				CONN_DEC_REF(connp);
3610 				return;
3611 			}
3612 			/*
3613 			 * For passive open, trace receipt of final ACK as
3614 			 * tcp:::accept-established.
3615 			 */
3616 			DTRACE_TCP5(accept__established, mlbk_t *, NULL,
3617 			    ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *,
3618 			    iphdr, tcp_t *, tcp, tcph_t *, tcpha);
3619 		} else {
3620 			/*
3621 			 * 3-way handshake complete - this is a STREAMS based
3622 			 * socket, so pass up the T_CONN_IND.
3623 			 */
3624 			tcp_t	*listener = tcp->tcp_listener;
3625 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
3626 
3627 			tcp->tcp_tconnind_started = B_TRUE;
3628 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
3629 			ASSERT(mp != NULL);
3630 			/*
3631 			 * We are here means eager is fine but it can
3632 			 * get a TH_RST at any point between now and till
3633 			 * accept completes and disappear. We need to
3634 			 * ensure that reference to eager is valid after
3635 			 * we get out of eager's perimeter. So we do
3636 			 * an extra refhold.
3637 			 */
3638 			CONN_INC_REF(connp);
3639 
3640 			/*
3641 			 * The listener also exists because of the refhold
3642 			 * done in tcp_input_listener. Its possible that it
3643 			 * might have closed. We will check that once we
3644 			 * get inside listeners context.
3645 			 */
3646 			CONN_INC_REF(listener->tcp_connp);
3647 			if (listener->tcp_connp->conn_sqp ==
3648 			    connp->conn_sqp) {
3649 				/*
3650 				 * We optimize by not calling an SQUEUE_ENTER
3651 				 * on the listener since we know that the
3652 				 * listener and eager squeues are the same.
3653 				 * We are able to make this check safely only
3654 				 * because neither the eager nor the listener
3655 				 * can change its squeue. Only an active connect
3656 				 * can change its squeue
3657 				 */
3658 				tcp_send_conn_ind(listener->tcp_connp, mp,
3659 				    listener->tcp_connp->conn_sqp);
3660 				CONN_DEC_REF(listener->tcp_connp);
3661 			} else if (!tcp->tcp_loopback) {
3662 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
3663 				    mp, tcp_send_conn_ind,
3664 				    listener->tcp_connp, NULL, SQ_FILL,
3665 				    SQTAG_TCP_CONN_IND);
3666 			} else {
3667 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
3668 				    mp, tcp_send_conn_ind,
3669 				    listener->tcp_connp, NULL, SQ_NODRAIN,
3670 				    SQTAG_TCP_CONN_IND);
3671 			}
3672 			/*
3673 			 * For passive open, trace receipt of final ACK as
3674 			 * tcp:::accept-established.
3675 			 */
3676 			DTRACE_TCP5(accept__established, mlbk_t *, NULL,
3677 			    ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *,
3678 			    iphdr, tcp_t *, tcp, tcph_t *, tcpha);
3679 		}
3680 		TCPS_CONN_INC(tcps);
3681 
3682 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
3683 		bytes_acked--;
3684 		/* SYN was acked - making progress */
3685 		tcp->tcp_ip_forward_progress = B_TRUE;
3686 
3687 		/*
3688 		 * If SYN was retransmitted, need to reset all
3689 		 * retransmission info as this segment will be
3690 		 * treated as a dup ACK.
3691 		 */
3692 		if (tcp->tcp_rexmit) {
3693 			tcp->tcp_rexmit = B_FALSE;
3694 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
3695 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
3696 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
3697 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
3698 			tcp->tcp_ms_we_have_waited = 0;
3699 			tcp->tcp_cwnd = mss;
3700 		}
3701 
3702 		/*
3703 		 * We set the send window to zero here.
3704 		 * This is needed if there is data to be
3705 		 * processed already on the queue.
3706 		 * Later (at swnd_update label), the
3707 		 * "new_swnd > tcp_swnd" condition is satisfied
3708 		 * the XMIT_NEEDED flag is set in the current
3709 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
3710 		 * called if there is already data on queue in
3711 		 * this state.
3712 		 */
3713 		tcp->tcp_swnd = 0;
3714 
3715 		if (new_swnd > tcp->tcp_max_swnd)
3716 			tcp->tcp_max_swnd = new_swnd;
3717 		tcp->tcp_swl1 = seg_seq;
3718 		tcp->tcp_swl2 = seg_ack;
3719 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
3720 
3721 		/* Trace change from SYN_RCVD -> ESTABLISHED here */
3722 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
3723 		    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
3724 		    int32_t, TCPS_SYN_RCVD);
3725 
3726 		/* Fuse when both sides are in ESTABLISHED state */
3727 		if (tcp->tcp_loopback && do_tcp_fusion)
3728 			tcp_fuse(tcp, iphdr, tcpha);
3729 
3730 	}
3731 	/* This code follows 4.4BSD-Lite2 mostly. */
3732 	if (bytes_acked < 0)
3733 		goto est;
3734 
3735 	/*
3736 	 * If TCP is ECN capable and the congestion experience bit is
3737 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
3738 	 * done once per window (or more loosely, per RTT).
3739 	 */
3740 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
3741 		tcp->tcp_cwr = B_FALSE;
3742 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
3743 		if (!tcp->tcp_cwr) {
3744 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
3745 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
3746 			tcp->tcp_cwnd = npkt * mss;
3747 			/*
3748 			 * If the cwnd is 0, use the timer to clock out
3749 			 * new segments.  This is required by the ECN spec.
3750 			 */
3751 			if (npkt == 0) {
3752 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
3753 				/*
3754 				 * This makes sure that when the ACK comes
3755 				 * back, we will increase tcp_cwnd by 1 MSS.
3756 				 */
3757 				tcp->tcp_cwnd_cnt = 0;
3758 			}
3759 			tcp->tcp_cwr = B_TRUE;
3760 			/*
3761 			 * This marks the end of the current window of in
3762 			 * flight data.  That is why we don't use
3763 			 * tcp_suna + tcp_swnd.  Only data in flight can
3764 			 * provide ECN info.
3765 			 */
3766 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
3767 			tcp->tcp_ecn_cwr_sent = B_FALSE;
3768 		}
3769 	}
3770 
3771 	mp1 = tcp->tcp_xmit_head;
3772 	if (bytes_acked == 0) {
3773 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
3774 			int dupack_cnt;
3775 
3776 			TCPS_BUMP_MIB(tcps, tcpInDupAck);
3777 			/*
3778 			 * Fast retransmit.  When we have seen exactly three
3779 			 * identical ACKs while we have unacked data
3780 			 * outstanding we take it as a hint that our peer
3781 			 * dropped something.
3782 			 *
3783 			 * If TCP is retransmitting, don't do fast retransmit.
3784 			 */
3785 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
3786 			    ! tcp->tcp_rexmit) {
3787 				/* Do Limited Transmit */
3788 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
3789 				    tcps->tcps_dupack_fast_retransmit) {
3790 					/*
3791 					 * RFC 3042
3792 					 *
3793 					 * What we need to do is temporarily
3794 					 * increase tcp_cwnd so that new
3795 					 * data can be sent if it is allowed
3796 					 * by the receive window (tcp_rwnd).
3797 					 * tcp_wput_data() will take care of
3798 					 * the rest.
3799 					 *
3800 					 * If the connection is SACK capable,
3801 					 * only do limited xmit when there
3802 					 * is SACK info.
3803 					 *
3804 					 * Note how tcp_cwnd is incremented.
3805 					 * The first dup ACK will increase
3806 					 * it by 1 MSS.  The second dup ACK
3807 					 * will increase it by 2 MSS.  This
3808 					 * means that only 1 new segment will
3809 					 * be sent for each dup ACK.
3810 					 */
3811 					if (tcp->tcp_unsent > 0 &&
3812 					    (!tcp->tcp_snd_sack_ok ||
3813 					    (tcp->tcp_snd_sack_ok &&
3814 					    tcp->tcp_notsack_list != NULL))) {
3815 						tcp->tcp_cwnd += mss <<
3816 						    (tcp->tcp_dupack_cnt - 1);
3817 						flags |= TH_LIMIT_XMIT;
3818 					}
3819 				} else if (dupack_cnt ==
3820 				    tcps->tcps_dupack_fast_retransmit) {
3821 
3822 				/*
3823 				 * If we have reduced tcp_ssthresh
3824 				 * because of ECN, do not reduce it again
3825 				 * unless it is already one window of data
3826 				 * away.  After one window of data, tcp_cwr
3827 				 * should then be cleared.  Note that
3828 				 * for non ECN capable connection, tcp_cwr
3829 				 * should always be false.
3830 				 *
3831 				 * Adjust cwnd since the duplicate
3832 				 * ack indicates that a packet was
3833 				 * dropped (due to congestion.)
3834 				 */
3835 				if (!tcp->tcp_cwr) {
3836 					npkt = ((tcp->tcp_snxt -
3837 					    tcp->tcp_suna) >> 1) / mss;
3838 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
3839 					    mss;
3840 					tcp->tcp_cwnd = (npkt +
3841 					    tcp->tcp_dupack_cnt) * mss;
3842 				}
3843 				if (tcp->tcp_ecn_ok) {
3844 					tcp->tcp_cwr = B_TRUE;
3845 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
3846 					tcp->tcp_ecn_cwr_sent = B_FALSE;
3847 				}
3848 
3849 				/*
3850 				 * We do Hoe's algorithm.  Refer to her
3851 				 * paper "Improving the Start-up Behavior
3852 				 * of a Congestion Control Scheme for TCP,"
3853 				 * appeared in SIGCOMM'96.
3854 				 *
3855 				 * Save highest seq no we have sent so far.
3856 				 * Be careful about the invisible FIN byte.
3857 				 */
3858 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
3859 				    (tcp->tcp_unsent == 0)) {
3860 					tcp->tcp_rexmit_max = tcp->tcp_fss;
3861 				} else {
3862 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
3863 				}
3864 
3865 				/*
3866 				 * Do not allow bursty traffic during.
3867 				 * fast recovery.  Refer to Fall and Floyd's
3868 				 * paper "Simulation-based Comparisons of
3869 				 * Tahoe, Reno and SACK TCP" (in CCR?)
3870 				 * This is a best current practise.
3871 				 */
3872 				tcp->tcp_snd_burst = TCP_CWND_SS;
3873 
3874 				/*
3875 				 * For SACK:
3876 				 * Calculate tcp_pipe, which is the
3877 				 * estimated number of bytes in
3878 				 * network.
3879 				 *
3880 				 * tcp_fack is the highest sack'ed seq num
3881 				 * TCP has received.
3882 				 *
3883 				 * tcp_pipe is explained in the above quoted
3884 				 * Fall and Floyd's paper.  tcp_fack is
3885 				 * explained in Mathis and Mahdavi's
3886 				 * "Forward Acknowledgment: Refining TCP
3887 				 * Congestion Control" in SIGCOMM '96.
3888 				 */
3889 				if (tcp->tcp_snd_sack_ok) {
3890 					if (tcp->tcp_notsack_list != NULL) {
3891 						tcp->tcp_pipe = tcp->tcp_snxt -
3892 						    tcp->tcp_fack;
3893 						tcp->tcp_sack_snxt = seg_ack;
3894 						flags |= TH_NEED_SACK_REXMIT;
3895 					} else {
3896 						/*
3897 						 * Always initialize tcp_pipe
3898 						 * even though we don't have
3899 						 * any SACK info.  If later
3900 						 * we get SACK info and
3901 						 * tcp_pipe is not initialized,
3902 						 * funny things will happen.
3903 						 */
3904 						tcp->tcp_pipe =
3905 						    tcp->tcp_cwnd_ssthresh;
3906 					}
3907 				} else {
3908 					flags |= TH_REXMIT_NEEDED;
3909 				} /* tcp_snd_sack_ok */
3910 
3911 				} else {
3912 					/*
3913 					 * Here we perform congestion
3914 					 * avoidance, but NOT slow start.
3915 					 * This is known as the Fast
3916 					 * Recovery Algorithm.
3917 					 */
3918 					if (tcp->tcp_snd_sack_ok &&
3919 					    tcp->tcp_notsack_list != NULL) {
3920 						flags |= TH_NEED_SACK_REXMIT;
3921 						tcp->tcp_pipe -= mss;
3922 						if (tcp->tcp_pipe < 0)
3923 							tcp->tcp_pipe = 0;
3924 					} else {
3925 					/*
3926 					 * We know that one more packet has
3927 					 * left the pipe thus we can update
3928 					 * cwnd.
3929 					 */
3930 					cwnd = tcp->tcp_cwnd + mss;
3931 					if (cwnd > tcp->tcp_cwnd_max)
3932 						cwnd = tcp->tcp_cwnd_max;
3933 					tcp->tcp_cwnd = cwnd;
3934 					if (tcp->tcp_unsent > 0)
3935 						flags |= TH_XMIT_NEEDED;
3936 					}
3937 				}
3938 			}
3939 		} else if (tcp->tcp_zero_win_probe) {
3940 			/*
3941 			 * If the window has opened, need to arrange
3942 			 * to send additional data.
3943 			 */
3944 			if (new_swnd != 0) {
3945 				/* tcp_suna != tcp_snxt */
3946 				/* Packet contains a window update */
3947 				TCPS_BUMP_MIB(tcps, tcpInWinUpdate);
3948 				tcp->tcp_zero_win_probe = 0;
3949 				tcp->tcp_timer_backoff = 0;
3950 				tcp->tcp_ms_we_have_waited = 0;
3951 
3952 				/*
3953 				 * Transmit starting with tcp_suna since
3954 				 * the one byte probe is not ack'ed.
3955 				 * If TCP has sent more than one identical
3956 				 * probe, tcp_rexmit will be set.  That means
3957 				 * tcp_ss_rexmit() will send out the one
3958 				 * byte along with new data.  Otherwise,
3959 				 * fake the retransmission.
3960 				 */
3961 				flags |= TH_XMIT_NEEDED;
3962 				if (!tcp->tcp_rexmit) {
3963 					tcp->tcp_rexmit = B_TRUE;
3964 					tcp->tcp_dupack_cnt = 0;
3965 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
3966 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
3967 				}
3968 			}
3969 		}
3970 		goto swnd_update;
3971 	}
3972 
3973 	/*
3974 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
3975 	 * If the ACK value acks something that we have not yet sent, it might
3976 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
3977 	 * other side.
3978 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
3979 	 * state is handled above, so we can always just drop the segment and
3980 	 * send an ACK here.
3981 	 *
3982 	 * In the case where the peer shrinks the window, we see the new window
3983 	 * update, but all the data sent previously is queued up by the peer.
3984 	 * To account for this, in tcp_process_shrunk_swnd(), the sequence
3985 	 * number, which was already sent, and within window, is recorded.
3986 	 * tcp_snxt is then updated.
3987 	 *
3988 	 * If the window has previously shrunk, and an ACK for data not yet
3989 	 * sent, according to tcp_snxt is recieved, it may still be valid. If
3990 	 * the ACK is for data within the window at the time the window was
3991 	 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to
3992 	 * the sequence number ACK'ed.
3993 	 *
3994 	 * If the ACK covers all the data sent at the time the window was
3995 	 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE.
3996 	 *
3997 	 * Should we send ACKs in response to ACK only segments?
3998 	 */
3999 
4000 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
4001 		if ((tcp->tcp_is_wnd_shrnk) &&
4002 		    (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) {
4003 			uint32_t data_acked_ahead_snxt;
4004 
4005 			data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt;
4006 			tcp_update_xmit_tail(tcp, seg_ack);
4007 			tcp->tcp_unsent -= data_acked_ahead_snxt;
4008 		} else {
4009 			TCPS_BUMP_MIB(tcps, tcpInAckUnsent);
4010 			/* drop the received segment */
4011 			freemsg(mp);
4012 
4013 			/*
4014 			 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
4015 			 * greater than 0, check if the number of such
4016 			 * bogus ACks is greater than that count.  If yes,
4017 			 * don't send back any ACK.  This prevents TCP from
4018 			 * getting into an ACK storm if somehow an attacker
4019 			 * successfully spoofs an acceptable segment to our
4020 			 * peer.  If this continues (count > 2 X threshold),
4021 			 * we should abort this connection.
4022 			 */
4023 			if (tcp_drop_ack_unsent_cnt > 0 &&
4024 			    ++tcp->tcp_in_ack_unsent >
4025 			    tcp_drop_ack_unsent_cnt) {
4026 				TCP_STAT(tcps, tcp_in_ack_unsent_drop);
4027 				if (tcp->tcp_in_ack_unsent > 2 *
4028 				    tcp_drop_ack_unsent_cnt) {
4029 					(void) tcp_clean_death(tcp, EPROTO);
4030 				}
4031 				return;
4032 			}
4033 			mp = tcp_ack_mp(tcp);
4034 			if (mp != NULL) {
4035 				BUMP_LOCAL(tcp->tcp_obsegs);
4036 				TCPS_BUMP_MIB(tcps, tcpOutAck);
4037 				tcp_send_data(tcp, mp);
4038 			}
4039 			return;
4040 		}
4041 	} else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack,
4042 	    tcp->tcp_snxt_shrunk)) {
4043 			tcp->tcp_is_wnd_shrnk = B_FALSE;
4044 	}
4045 
4046 	/*
4047 	 * TCP gets a new ACK, update the notsack'ed list to delete those
4048 	 * blocks that are covered by this ACK.
4049 	 */
4050 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
4051 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
4052 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
4053 	}
4054 
4055 	/*
4056 	 * If we got an ACK after fast retransmit, check to see
4057 	 * if it is a partial ACK.  If it is not and the congestion
4058 	 * window was inflated to account for the other side's
4059 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
4060 	 */
4061 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
4062 		ASSERT(tcp->tcp_rexmit == B_FALSE);
4063 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
4064 			tcp->tcp_dupack_cnt = 0;
4065 			/*
4066 			 * Restore the orig tcp_cwnd_ssthresh after
4067 			 * fast retransmit phase.
4068 			 */
4069 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
4070 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
4071 			}
4072 			tcp->tcp_rexmit_max = seg_ack;
4073 			tcp->tcp_cwnd_cnt = 0;
4074 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
4075 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
4076 
4077 			/*
4078 			 * Remove all notsack info to avoid confusion with
4079 			 * the next fast retrasnmit/recovery phase.
4080 			 */
4081 			if (tcp->tcp_snd_sack_ok) {
4082 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list,
4083 				    tcp);
4084 			}
4085 		} else {
4086 			if (tcp->tcp_snd_sack_ok &&
4087 			    tcp->tcp_notsack_list != NULL) {
4088 				flags |= TH_NEED_SACK_REXMIT;
4089 				tcp->tcp_pipe -= mss;
4090 				if (tcp->tcp_pipe < 0)
4091 					tcp->tcp_pipe = 0;
4092 			} else {
4093 				/*
4094 				 * Hoe's algorithm:
4095 				 *
4096 				 * Retransmit the unack'ed segment and
4097 				 * restart fast recovery.  Note that we
4098 				 * need to scale back tcp_cwnd to the
4099 				 * original value when we started fast
4100 				 * recovery.  This is to prevent overly
4101 				 * aggressive behaviour in sending new
4102 				 * segments.
4103 				 */
4104 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
4105 				    tcps->tcps_dupack_fast_retransmit * mss;
4106 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
4107 				flags |= TH_REXMIT_NEEDED;
4108 			}
4109 		}
4110 	} else {
4111 		tcp->tcp_dupack_cnt = 0;
4112 		if (tcp->tcp_rexmit) {
4113 			/*
4114 			 * TCP is retranmitting.  If the ACK ack's all
4115 			 * outstanding data, update tcp_rexmit_max and
4116 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
4117 			 * to the correct value.
4118 			 *
4119 			 * Note that SEQ_LEQ() is used.  This is to avoid
4120 			 * unnecessary fast retransmit caused by dup ACKs
4121 			 * received when TCP does slow start retransmission
4122 			 * after a time out.  During this phase, TCP may
4123 			 * send out segments which are already received.
4124 			 * This causes dup ACKs to be sent back.
4125 			 */
4126 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
4127 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
4128 					tcp->tcp_rexmit_nxt = seg_ack;
4129 				}
4130 				if (seg_ack != tcp->tcp_rexmit_max) {
4131 					flags |= TH_XMIT_NEEDED;
4132 				}
4133 			} else {
4134 				tcp->tcp_rexmit = B_FALSE;
4135 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
4136 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
4137 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
4138 			}
4139 			tcp->tcp_ms_we_have_waited = 0;
4140 		}
4141 	}
4142 
4143 	TCPS_BUMP_MIB(tcps, tcpInAckSegs);
4144 	TCPS_UPDATE_MIB(tcps, tcpInAckBytes, bytes_acked);
4145 	tcp->tcp_suna = seg_ack;
4146 	if (tcp->tcp_zero_win_probe != 0) {
4147 		tcp->tcp_zero_win_probe = 0;
4148 		tcp->tcp_timer_backoff = 0;
4149 	}
4150 
4151 	/*
4152 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
4153 	 * Note that it cannot be the SYN being ack'ed.  The code flow
4154 	 * will not reach here.
4155 	 */
4156 	if (mp1 == NULL) {
4157 		goto fin_acked;
4158 	}
4159 
4160 	/*
4161 	 * Update the congestion window.
4162 	 *
4163 	 * If TCP is not ECN capable or TCP is ECN capable but the
4164 	 * congestion experience bit is not set, increase the tcp_cwnd as
4165 	 * usual.
4166 	 */
4167 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
4168 		cwnd = tcp->tcp_cwnd;
4169 		add = mss;
4170 
4171 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
4172 			/*
4173 			 * This is to prevent an increase of less than 1 MSS of
4174 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
4175 			 * may send out tinygrams in order to preserve mblk
4176 			 * boundaries.
4177 			 *
4178 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
4179 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
4180 			 * increased by 1 MSS for every RTTs.
4181 			 */
4182 			if (tcp->tcp_cwnd_cnt <= 0) {
4183 				tcp->tcp_cwnd_cnt = cwnd + add;
4184 			} else {
4185 				tcp->tcp_cwnd_cnt -= add;
4186 				add = 0;
4187 			}
4188 		}
4189 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
4190 	}
4191 
4192 	/* See if the latest urgent data has been acknowledged */
4193 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
4194 	    SEQ_GT(seg_ack, tcp->tcp_urg))
4195 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
4196 
4197 	/* Can we update the RTT estimates? */
4198 	if (tcp->tcp_snd_ts_ok) {
4199 		/* Ignore zero timestamp echo-reply. */
4200 		if (tcpopt.tcp_opt_ts_ecr != 0) {
4201 			tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH -
4202 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
4203 		}
4204 
4205 		/* If needed, restart the timer. */
4206 		if (tcp->tcp_set_timer == 1) {
4207 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4208 			tcp->tcp_set_timer = 0;
4209 		}
4210 		/*
4211 		 * Update tcp_csuna in case the other side stops sending
4212 		 * us timestamps.
4213 		 */
4214 		tcp->tcp_csuna = tcp->tcp_snxt;
4215 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
4216 		/*
4217 		 * An ACK sequence we haven't seen before, so get the RTT
4218 		 * and update the RTO. But first check if the timestamp is
4219 		 * valid to use.
4220 		 */
4221 		if ((mp1->b_next != NULL) &&
4222 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
4223 			tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH -
4224 			    (int32_t)(intptr_t)mp1->b_prev);
4225 		else
4226 			TCPS_BUMP_MIB(tcps, tcpRttNoUpdate);
4227 
4228 		/* Remeber the last sequence to be ACKed */
4229 		tcp->tcp_csuna = seg_ack;
4230 		if (tcp->tcp_set_timer == 1) {
4231 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4232 			tcp->tcp_set_timer = 0;
4233 		}
4234 	} else {
4235 		TCPS_BUMP_MIB(tcps, tcpRttNoUpdate);
4236 	}
4237 
4238 	/* Eat acknowledged bytes off the xmit queue. */
4239 	for (;;) {
4240 		mblk_t	*mp2;
4241 		uchar_t	*wptr;
4242 
4243 		wptr = mp1->b_wptr;
4244 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
4245 		bytes_acked -= (int)(wptr - mp1->b_rptr);
4246 		if (bytes_acked < 0) {
4247 			mp1->b_rptr = wptr + bytes_acked;
4248 			/*
4249 			 * Set a new timestamp if all the bytes timed by the
4250 			 * old timestamp have been ack'ed.
4251 			 */
4252 			if (SEQ_GT(seg_ack,
4253 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
4254 				mp1->b_prev =
4255 				    (mblk_t *)(uintptr_t)LBOLT_FASTPATH;
4256 				mp1->b_next = NULL;
4257 			}
4258 			break;
4259 		}
4260 		mp1->b_next = NULL;
4261 		mp1->b_prev = NULL;
4262 		mp2 = mp1;
4263 		mp1 = mp1->b_cont;
4264 
4265 		/*
4266 		 * This notification is required for some zero-copy
4267 		 * clients to maintain a copy semantic. After the data
4268 		 * is ack'ed, client is safe to modify or reuse the buffer.
4269 		 */
4270 		if (tcp->tcp_snd_zcopy_aware &&
4271 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
4272 			tcp_zcopy_notify(tcp);
4273 		freeb(mp2);
4274 		if (bytes_acked == 0) {
4275 			if (mp1 == NULL) {
4276 				/* Everything is ack'ed, clear the tail. */
4277 				tcp->tcp_xmit_tail = NULL;
4278 				/*
4279 				 * Cancel the timer unless we are still
4280 				 * waiting for an ACK for the FIN packet.
4281 				 */
4282 				if (tcp->tcp_timer_tid != 0 &&
4283 				    tcp->tcp_snxt == tcp->tcp_suna) {
4284 					(void) TCP_TIMER_CANCEL(tcp,
4285 					    tcp->tcp_timer_tid);
4286 					tcp->tcp_timer_tid = 0;
4287 				}
4288 				goto pre_swnd_update;
4289 			}
4290 			if (mp2 != tcp->tcp_xmit_tail)
4291 				break;
4292 			tcp->tcp_xmit_tail = mp1;
4293 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
4294 			    (uintptr_t)INT_MAX);
4295 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
4296 			    mp1->b_rptr);
4297 			break;
4298 		}
4299 		if (mp1 == NULL) {
4300 			/*
4301 			 * More was acked but there is nothing more
4302 			 * outstanding.  This means that the FIN was
4303 			 * just acked or that we're talking to a clown.
4304 			 */
4305 fin_acked:
4306 			ASSERT(tcp->tcp_fin_sent);
4307 			tcp->tcp_xmit_tail = NULL;
4308 			if (tcp->tcp_fin_sent) {
4309 				/* FIN was acked - making progress */
4310 				if (!tcp->tcp_fin_acked)
4311 					tcp->tcp_ip_forward_progress = B_TRUE;
4312 				tcp->tcp_fin_acked = B_TRUE;
4313 				if (tcp->tcp_linger_tid != 0 &&
4314 				    TCP_TIMER_CANCEL(tcp,
4315 				    tcp->tcp_linger_tid) >= 0) {
4316 					tcp_stop_lingering(tcp);
4317 					freemsg(mp);
4318 					mp = NULL;
4319 				}
4320 			} else {
4321 				/*
4322 				 * We should never get here because
4323 				 * we have already checked that the
4324 				 * number of bytes ack'ed should be
4325 				 * smaller than or equal to what we
4326 				 * have sent so far (it is the
4327 				 * acceptability check of the ACK).
4328 				 * We can only get here if the send
4329 				 * queue is corrupted.
4330 				 *
4331 				 * Terminate the connection and
4332 				 * panic the system.  It is better
4333 				 * for us to panic instead of
4334 				 * continuing to avoid other disaster.
4335 				 */
4336 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
4337 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
4338 				panic("Memory corruption "
4339 				    "detected for connection %s.",
4340 				    tcp_display(tcp, NULL,
4341 				    DISP_ADDR_AND_PORT));
4342 				/*NOTREACHED*/
4343 			}
4344 			goto pre_swnd_update;
4345 		}
4346 		ASSERT(mp2 != tcp->tcp_xmit_tail);
4347 	}
4348 	if (tcp->tcp_unsent) {
4349 		flags |= TH_XMIT_NEEDED;
4350 	}
4351 pre_swnd_update:
4352 	tcp->tcp_xmit_head = mp1;
4353 swnd_update:
4354 	/*
4355 	 * The following check is different from most other implementations.
4356 	 * For bi-directional transfer, when segments are dropped, the
4357 	 * "normal" check will not accept a window update in those
4358 	 * retransmitted segemnts.  Failing to do that, TCP may send out
4359 	 * segments which are outside receiver's window.  As TCP accepts
4360 	 * the ack in those retransmitted segments, if the window update in
4361 	 * the same segment is not accepted, TCP will incorrectly calculates
4362 	 * that it can send more segments.  This can create a deadlock
4363 	 * with the receiver if its window becomes zero.
4364 	 */
4365 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
4366 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
4367 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
4368 		/*
4369 		 * The criteria for update is:
4370 		 *
4371 		 * 1. the segment acknowledges some data.  Or
4372 		 * 2. the segment is new, i.e. it has a higher seq num. Or
4373 		 * 3. the segment is not old and the advertised window is
4374 		 * larger than the previous advertised window.
4375 		 */
4376 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
4377 			flags |= TH_XMIT_NEEDED;
4378 		tcp->tcp_swnd = new_swnd;
4379 		if (new_swnd > tcp->tcp_max_swnd)
4380 			tcp->tcp_max_swnd = new_swnd;
4381 		tcp->tcp_swl1 = seg_seq;
4382 		tcp->tcp_swl2 = seg_ack;
4383 	}
4384 est:
4385 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
4386 
4387 		switch (tcp->tcp_state) {
4388 		case TCPS_FIN_WAIT_1:
4389 			if (tcp->tcp_fin_acked) {
4390 				tcp->tcp_state = TCPS_FIN_WAIT_2;
4391 				DTRACE_TCP6(state__change, void, NULL,
4392 				    ip_xmit_attr_t *, connp->conn_ixa,
4393 				    void, NULL, tcp_t *, tcp, void, NULL,
4394 				    int32_t, TCPS_FIN_WAIT_1);
4395 				/*
4396 				 * We implement the non-standard BSD/SunOS
4397 				 * FIN_WAIT_2 flushing algorithm.
4398 				 * If there is no user attached to this
4399 				 * TCP endpoint, then this TCP struct
4400 				 * could hang around forever in FIN_WAIT_2
4401 				 * state if the peer forgets to send us
4402 				 * a FIN.  To prevent this, we wait only
4403 				 * 2*MSL (a convenient time value) for
4404 				 * the FIN to arrive.  If it doesn't show up,
4405 				 * we flush the TCP endpoint.  This algorithm,
4406 				 * though a violation of RFC-793, has worked
4407 				 * for over 10 years in BSD systems.
4408 				 * Note: SunOS 4.x waits 675 seconds before
4409 				 * flushing the FIN_WAIT_2 connection.
4410 				 */
4411 				TCP_TIMER_RESTART(tcp,
4412 				    tcp->tcp_fin_wait_2_flush_interval);
4413 			}
4414 			break;
4415 		case TCPS_FIN_WAIT_2:
4416 			break;	/* Shutdown hook? */
4417 		case TCPS_LAST_ACK:
4418 			freemsg(mp);
4419 			if (tcp->tcp_fin_acked) {
4420 				(void) tcp_clean_death(tcp, 0);
4421 				return;
4422 			}
4423 			goto xmit_check;
4424 		case TCPS_CLOSING:
4425 			if (tcp->tcp_fin_acked) {
4426 				SET_TIME_WAIT(tcps, tcp, connp);
4427 				DTRACE_TCP6(state__change, void, NULL,
4428 				    ip_xmit_attr_t *, connp->conn_ixa, void,
4429 				    NULL, tcp_t *, tcp, void, NULL, int32_t,
4430 				    TCPS_CLOSING);
4431 			}
4432 			/*FALLTHRU*/
4433 		case TCPS_CLOSE_WAIT:
4434 			freemsg(mp);
4435 			goto xmit_check;
4436 		default:
4437 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
4438 			break;
4439 		}
4440 	}
4441 	if (flags & TH_FIN) {
4442 		/* Make sure we ack the fin */
4443 		flags |= TH_ACK_NEEDED;
4444 		if (!tcp->tcp_fin_rcvd) {
4445 			tcp->tcp_fin_rcvd = B_TRUE;
4446 			tcp->tcp_rnxt++;
4447 			tcpha = tcp->tcp_tcpha;
4448 			tcpha->tha_ack = htonl(tcp->tcp_rnxt);
4449 
4450 			/*
4451 			 * Generate the ordrel_ind at the end unless the
4452 			 * conn is detached or it is a STREAMS based eager.
4453 			 * In the eager case we defer the notification until
4454 			 * tcp_accept_finish has run.
4455 			 */
4456 			if (!TCP_IS_DETACHED(tcp) && (IPCL_IS_NONSTR(connp) ||
4457 			    (tcp->tcp_listener == NULL &&
4458 			    !tcp->tcp_hard_binding)))
4459 				flags |= TH_ORDREL_NEEDED;
4460 			switch (tcp->tcp_state) {
4461 			case TCPS_SYN_RCVD:
4462 				tcp->tcp_state = TCPS_CLOSE_WAIT;
4463 				DTRACE_TCP6(state__change, void, NULL,
4464 				    ip_xmit_attr_t *, connp->conn_ixa,
4465 				    void, NULL, tcp_t *, tcp, void, NULL,
4466 				    int32_t, TCPS_SYN_RCVD);
4467 				/* Keepalive? */
4468 				break;
4469 			case TCPS_ESTABLISHED:
4470 				tcp->tcp_state = TCPS_CLOSE_WAIT;
4471 				DTRACE_TCP6(state__change, void, NULL,
4472 				    ip_xmit_attr_t *, connp->conn_ixa,
4473 				    void, NULL, tcp_t *, tcp, void, NULL,
4474 				    int32_t, TCPS_ESTABLISHED);
4475 				/* Keepalive? */
4476 				break;
4477 			case TCPS_FIN_WAIT_1:
4478 				if (!tcp->tcp_fin_acked) {
4479 					tcp->tcp_state = TCPS_CLOSING;
4480 					DTRACE_TCP6(state__change, void, NULL,
4481 					    ip_xmit_attr_t *, connp->conn_ixa,
4482 					    void, NULL, tcp_t *, tcp, void,
4483 					    NULL, int32_t, TCPS_FIN_WAIT_1);
4484 					break;
4485 				}
4486 				/* FALLTHRU */
4487 			case TCPS_FIN_WAIT_2:
4488 				SET_TIME_WAIT(tcps, tcp, connp);
4489 				DTRACE_TCP6(state__change, void, NULL,
4490 				    ip_xmit_attr_t *, connp->conn_ixa, void,
4491 				    NULL, tcp_t *, tcp, void, NULL, int32_t,
4492 				    TCPS_FIN_WAIT_2);
4493 				if (seg_len) {
4494 					/*
4495 					 * implies data piggybacked on FIN.
4496 					 * break to handle data.
4497 					 */
4498 					break;
4499 				}
4500 				freemsg(mp);
4501 				goto ack_check;
4502 			}
4503 		}
4504 	}
4505 	if (mp == NULL)
4506 		goto xmit_check;
4507 	if (seg_len == 0) {
4508 		freemsg(mp);
4509 		goto xmit_check;
4510 	}
4511 	if (mp->b_rptr == mp->b_wptr) {
4512 		/*
4513 		 * The header has been consumed, so we remove the
4514 		 * zero-length mblk here.
4515 		 */
4516 		mp1 = mp;
4517 		mp = mp->b_cont;
4518 		freeb(mp1);
4519 	}
4520 update_ack:
4521 	tcpha = tcp->tcp_tcpha;
4522 	tcp->tcp_rack_cnt++;
4523 	{
4524 		uint32_t cur_max;
4525 
4526 		cur_max = tcp->tcp_rack_cur_max;
4527 		if (tcp->tcp_rack_cnt >= cur_max) {
4528 			/*
4529 			 * We have more unacked data than we should - send
4530 			 * an ACK now.
4531 			 */
4532 			flags |= TH_ACK_NEEDED;
4533 			cur_max++;
4534 			if (cur_max > tcp->tcp_rack_abs_max)
4535 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
4536 			else
4537 				tcp->tcp_rack_cur_max = cur_max;
4538 		} else if (TCP_IS_DETACHED(tcp)) {
4539 			/* We don't have an ACK timer for detached TCP. */
4540 			flags |= TH_ACK_NEEDED;
4541 		} else if (seg_len < mss) {
4542 			/*
4543 			 * If we get a segment that is less than an mss, and we
4544 			 * already have unacknowledged data, and the amount
4545 			 * unacknowledged is not a multiple of mss, then we
4546 			 * better generate an ACK now.  Otherwise, this may be
4547 			 * the tail piece of a transaction, and we would rather
4548 			 * wait for the response.
4549 			 */
4550 			uint32_t udif;
4551 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
4552 			    (uintptr_t)INT_MAX);
4553 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
4554 			if (udif && (udif % mss))
4555 				flags |= TH_ACK_NEEDED;
4556 			else
4557 				flags |= TH_ACK_TIMER_NEEDED;
4558 		} else {
4559 			/* Start delayed ack timer */
4560 			flags |= TH_ACK_TIMER_NEEDED;
4561 		}
4562 	}
4563 	tcp->tcp_rnxt += seg_len;
4564 	tcpha->tha_ack = htonl(tcp->tcp_rnxt);
4565 
4566 	if (mp == NULL)
4567 		goto xmit_check;
4568 
4569 	/* Update SACK list */
4570 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
4571 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
4572 		    &(tcp->tcp_num_sack_blk));
4573 	}
4574 
4575 	if (tcp->tcp_urp_mp) {
4576 		tcp->tcp_urp_mp->b_cont = mp;
4577 		mp = tcp->tcp_urp_mp;
4578 		tcp->tcp_urp_mp = NULL;
4579 		/* Ready for a new signal. */
4580 		tcp->tcp_urp_last_valid = B_FALSE;
4581 #ifdef DEBUG
4582 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
4583 		    "tcp_rput: sending exdata_ind %s",
4584 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4585 #endif /* DEBUG */
4586 	}
4587 
4588 	/*
4589 	 * Check for ancillary data changes compared to last segment.
4590 	 */
4591 	if (connp->conn_recv_ancillary.crb_all != 0) {
4592 		mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira);
4593 		if (mp == NULL)
4594 			return;
4595 	}
4596 
4597 	if (IPCL_IS_NONSTR(connp)) {
4598 		/*
4599 		 * Non-STREAMS socket
4600 		 */
4601 		boolean_t push = flags & (TH_PUSH|TH_FIN);
4602 		int error;
4603 
4604 		if ((*connp->conn_upcalls->su_recv)(
4605 		    connp->conn_upper_handle,
4606 		    mp, seg_len, 0, &error, &push) <= 0) {
4607 			/*
4608 			 * We should never be in middle of a
4609 			 * fallback, the squeue guarantees that.
4610 			 */
4611 			ASSERT(error != EOPNOTSUPP);
4612 			if (error == ENOSPC)
4613 				tcp->tcp_rwnd -= seg_len;
4614 		} else if (push) {
4615 			/* PUSH bit set and sockfs is not flow controlled */
4616 			flags |= tcp_rwnd_reopen(tcp);
4617 		}
4618 	} else if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) {
4619 		/*
4620 		 * Side queue inbound data until the accept happens.
4621 		 * tcp_accept/tcp_rput drains this when the accept happens.
4622 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
4623 		 * T_EXDATA_IND) it is queued on b_next.
4624 		 * XXX Make urgent data use this. Requires:
4625 		 *	Removing tcp_listener check for TH_URG
4626 		 *	Making M_PCPROTO and MARK messages skip the eager case
4627 		 */
4628 
4629 		tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred);
4630 	} else {
4631 		/* Active STREAMS socket */
4632 		if (mp->b_datap->db_type != M_DATA ||
4633 		    (flags & TH_MARKNEXT_NEEDED)) {
4634 			if (tcp->tcp_rcv_list != NULL) {
4635 				flags |= tcp_rcv_drain(tcp);
4636 			}
4637 			ASSERT(tcp->tcp_rcv_list == NULL ||
4638 			    tcp->tcp_fused_sigurg);
4639 
4640 			if (flags & TH_MARKNEXT_NEEDED) {
4641 #ifdef DEBUG
4642 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
4643 				    "tcp_rput: sending MSGMARKNEXT %s",
4644 				    tcp_display(tcp, NULL,
4645 				    DISP_PORT_ONLY));
4646 #endif /* DEBUG */
4647 				mp->b_flag |= MSGMARKNEXT;
4648 				flags &= ~TH_MARKNEXT_NEEDED;
4649 			}
4650 
4651 			if (is_system_labeled())
4652 				tcp_setcred_data(mp, ira);
4653 
4654 			putnext(connp->conn_rq, mp);
4655 			if (!canputnext(connp->conn_rq))
4656 				tcp->tcp_rwnd -= seg_len;
4657 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
4658 		    tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) {
4659 			if (tcp->tcp_rcv_list != NULL) {
4660 				/*
4661 				 * Enqueue the new segment first and then
4662 				 * call tcp_rcv_drain() to send all data
4663 				 * up.  The other way to do this is to
4664 				 * send all queued data up and then call
4665 				 * putnext() to send the new segment up.
4666 				 * This way can remove the else part later
4667 				 * on.
4668 				 *
4669 				 * We don't do this to avoid one more call to
4670 				 * canputnext() as tcp_rcv_drain() needs to
4671 				 * call canputnext().
4672 				 */
4673 				tcp_rcv_enqueue(tcp, mp, seg_len,
4674 				    ira->ira_cred);
4675 				flags |= tcp_rcv_drain(tcp);
4676 			} else {
4677 				if (is_system_labeled())
4678 					tcp_setcred_data(mp, ira);
4679 
4680 				putnext(connp->conn_rq, mp);
4681 				if (!canputnext(connp->conn_rq))
4682 					tcp->tcp_rwnd -= seg_len;
4683 			}
4684 		} else {
4685 			/*
4686 			 * Enqueue all packets when processing an mblk
4687 			 * from the co queue and also enqueue normal packets.
4688 			 */
4689 			tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred);
4690 		}
4691 		/*
4692 		 * Make sure the timer is running if we have data waiting
4693 		 * for a push bit. This provides resiliency against
4694 		 * implementations that do not correctly generate push bits.
4695 		 */
4696 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
4697 			/*
4698 			 * The connection may be closed at this point, so don't
4699 			 * do anything for a detached tcp.
4700 			 */
4701 			if (!TCP_IS_DETACHED(tcp))
4702 				tcp->tcp_push_tid = TCP_TIMER(tcp,
4703 				    tcp_push_timer,
4704 				    tcps->tcps_push_timer_interval);
4705 		}
4706 	}
4707 
4708 xmit_check:
4709 	/* Is there anything left to do? */
4710 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
4711 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
4712 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
4713 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
4714 		goto done;
4715 
4716 	/* Any transmit work to do and a non-zero window? */
4717 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
4718 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
4719 		if (flags & TH_REXMIT_NEEDED) {
4720 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
4721 
4722 			TCPS_BUMP_MIB(tcps, tcpOutFastRetrans);
4723 			if (snd_size > mss)
4724 				snd_size = mss;
4725 			if (snd_size > tcp->tcp_swnd)
4726 				snd_size = tcp->tcp_swnd;
4727 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
4728 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
4729 			    B_TRUE);
4730 
4731 			if (mp1 != NULL) {
4732 				tcp->tcp_xmit_head->b_prev =
4733 				    (mblk_t *)LBOLT_FASTPATH;
4734 				tcp->tcp_csuna = tcp->tcp_snxt;
4735 				TCPS_BUMP_MIB(tcps, tcpRetransSegs);
4736 				TCPS_UPDATE_MIB(tcps, tcpRetransBytes,
4737 				    snd_size);
4738 				tcp_send_data(tcp, mp1);
4739 			}
4740 		}
4741 		if (flags & TH_NEED_SACK_REXMIT) {
4742 			tcp_sack_rexmit(tcp, &flags);
4743 		}
4744 		/*
4745 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
4746 		 * out new segment.  Note that tcp_rexmit should not be
4747 		 * set, otherwise TH_LIMIT_XMIT should not be set.
4748 		 */
4749 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
4750 			if (!tcp->tcp_rexmit) {
4751 				tcp_wput_data(tcp, NULL, B_FALSE);
4752 			} else {
4753 				tcp_ss_rexmit(tcp);
4754 			}
4755 		}
4756 		/*
4757 		 * Adjust tcp_cwnd back to normal value after sending
4758 		 * new data segments.
4759 		 */
4760 		if (flags & TH_LIMIT_XMIT) {
4761 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
4762 			/*
4763 			 * This will restart the timer.  Restarting the
4764 			 * timer is used to avoid a timeout before the
4765 			 * limited transmitted segment's ACK gets back.
4766 			 */
4767 			if (tcp->tcp_xmit_head != NULL)
4768 				tcp->tcp_xmit_head->b_prev =
4769 				    (mblk_t *)LBOLT_FASTPATH;
4770 		}
4771 
4772 		/* Anything more to do? */
4773 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
4774 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
4775 			goto done;
4776 	}
4777 ack_check:
4778 	if (flags & TH_SEND_URP_MARK) {
4779 		ASSERT(tcp->tcp_urp_mark_mp);
4780 		ASSERT(!IPCL_IS_NONSTR(connp));
4781 		/*
4782 		 * Send up any queued data and then send the mark message
4783 		 */
4784 		if (tcp->tcp_rcv_list != NULL) {
4785 			flags |= tcp_rcv_drain(tcp);
4786 
4787 		}
4788 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
4789 		mp1 = tcp->tcp_urp_mark_mp;
4790 		tcp->tcp_urp_mark_mp = NULL;
4791 		if (is_system_labeled())
4792 			tcp_setcred_data(mp1, ira);
4793 
4794 		putnext(connp->conn_rq, mp1);
4795 #ifdef DEBUG
4796 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
4797 		    "tcp_rput: sending zero-length %s %s",
4798 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
4799 		    "MSGNOTMARKNEXT"),
4800 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4801 #endif /* DEBUG */
4802 		flags &= ~TH_SEND_URP_MARK;
4803 	}
4804 	if (flags & TH_ACK_NEEDED) {
4805 		/*
4806 		 * Time to send an ack for some reason.
4807 		 */
4808 		mp1 = tcp_ack_mp(tcp);
4809 
4810 		if (mp1 != NULL) {
4811 			tcp_send_data(tcp, mp1);
4812 			BUMP_LOCAL(tcp->tcp_obsegs);
4813 			TCPS_BUMP_MIB(tcps, tcpOutAck);
4814 		}
4815 		if (tcp->tcp_ack_tid != 0) {
4816 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4817 			tcp->tcp_ack_tid = 0;
4818 		}
4819 	}
4820 	if (flags & TH_ACK_TIMER_NEEDED) {
4821 		/*
4822 		 * Arrange for deferred ACK or push wait timeout.
4823 		 * Start timer if it is not already running.
4824 		 */
4825 		if (tcp->tcp_ack_tid == 0) {
4826 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
4827 			    tcp->tcp_localnet ?
4828 			    tcps->tcps_local_dack_interval :
4829 			    tcps->tcps_deferred_ack_interval);
4830 		}
4831 	}
4832 	if (flags & TH_ORDREL_NEEDED) {
4833 		/*
4834 		 * Notify upper layer about an orderly release. If this is
4835 		 * a non-STREAMS socket, then just make an upcall. For STREAMS
4836 		 * we send up an ordrel_ind, unless this is an eager, in which
4837 		 * case the ordrel will be sent when tcp_accept_finish runs.
4838 		 * Note that for non-STREAMS we make an upcall even if it is an
4839 		 * eager, because we have an upper handle to send it to.
4840 		 */
4841 		ASSERT(IPCL_IS_NONSTR(connp) || tcp->tcp_listener == NULL);
4842 		ASSERT(!tcp->tcp_detached);
4843 
4844 		if (IPCL_IS_NONSTR(connp)) {
4845 			ASSERT(tcp->tcp_ordrel_mp == NULL);
4846 			tcp->tcp_ordrel_done = B_TRUE;
4847 			(*connp->conn_upcalls->su_opctl)
4848 			    (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0);
4849 			goto done;
4850 		}
4851 
4852 		if (tcp->tcp_rcv_list != NULL) {
4853 			/*
4854 			 * Push any mblk(s) enqueued from co processing.
4855 			 */
4856 			flags |= tcp_rcv_drain(tcp);
4857 		}
4858 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
4859 
4860 		mp1 = tcp->tcp_ordrel_mp;
4861 		tcp->tcp_ordrel_mp = NULL;
4862 		tcp->tcp_ordrel_done = B_TRUE;
4863 		putnext(connp->conn_rq, mp1);
4864 	}
4865 done:
4866 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
4867 }
4868 
4869 /*
4870  * Attach ancillary data to a received TCP segments for the
4871  * ancillary pieces requested by the application that are
4872  * different than they were in the previous data segment.
4873  *
4874  * Save the "current" values once memory allocation is ok so that
4875  * when memory allocation fails we can just wait for the next data segment.
4876  */
4877 static mblk_t *
4878 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp,
4879     ip_recv_attr_t *ira)
4880 {
4881 	struct T_optdata_ind *todi;
4882 	int optlen;
4883 	uchar_t *optptr;
4884 	struct T_opthdr *toh;
4885 	crb_t addflag;	/* Which pieces to add */
4886 	mblk_t *mp1;
4887 	conn_t	*connp = tcp->tcp_connp;
4888 
4889 	optlen = 0;
4890 	addflag.crb_all = 0;
4891 	/* If app asked for pktinfo and the index has changed ... */
4892 	if (connp->conn_recv_ancillary.crb_ip_recvpktinfo &&
4893 	    ira->ira_ruifindex != tcp->tcp_recvifindex) {
4894 		optlen += sizeof (struct T_opthdr) +
4895 		    sizeof (struct in6_pktinfo);
4896 		addflag.crb_ip_recvpktinfo = 1;
4897 	}
4898 	/* If app asked for hoplimit and it has changed ... */
4899 	if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit &&
4900 	    ipp->ipp_hoplimit != tcp->tcp_recvhops) {
4901 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
4902 		addflag.crb_ipv6_recvhoplimit = 1;
4903 	}
4904 	/* If app asked for tclass and it has changed ... */
4905 	if (connp->conn_recv_ancillary.crb_ipv6_recvtclass &&
4906 	    ipp->ipp_tclass != tcp->tcp_recvtclass) {
4907 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
4908 		addflag.crb_ipv6_recvtclass = 1;
4909 	}
4910 	/*
4911 	 * If app asked for hopbyhop headers and it has changed ...
4912 	 * For security labels, note that (1) security labels can't change on
4913 	 * a connected socket at all, (2) we're connected to at most one peer,
4914 	 * (3) if anything changes, then it must be some other extra option.
4915 	 */
4916 	if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts &&
4917 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
4918 	    (ipp->ipp_fields & IPPF_HOPOPTS),
4919 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
4920 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen;
4921 		addflag.crb_ipv6_recvhopopts = 1;
4922 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
4923 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
4924 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
4925 			return (mp);
4926 	}
4927 	/* If app asked for dst headers before routing headers ... */
4928 	if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts &&
4929 	    ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen,
4930 	    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
4931 	    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) {
4932 		optlen += sizeof (struct T_opthdr) +
4933 		    ipp->ipp_rthdrdstoptslen;
4934 		addflag.crb_ipv6_recvrthdrdstopts = 1;
4935 		if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts,
4936 		    &tcp->tcp_rthdrdstoptslen,
4937 		    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
4938 		    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen))
4939 			return (mp);
4940 	}
4941 	/* If app asked for routing headers and it has changed ... */
4942 	if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr &&
4943 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
4944 	    (ipp->ipp_fields & IPPF_RTHDR),
4945 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
4946 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
4947 		addflag.crb_ipv6_recvrthdr = 1;
4948 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
4949 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
4950 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
4951 			return (mp);
4952 	}
4953 	/* If app asked for dest headers and it has changed ... */
4954 	if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts ||
4955 	    connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) &&
4956 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
4957 	    (ipp->ipp_fields & IPPF_DSTOPTS),
4958 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
4959 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
4960 		addflag.crb_ipv6_recvdstopts = 1;
4961 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
4962 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
4963 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
4964 			return (mp);
4965 	}
4966 
4967 	if (optlen == 0) {
4968 		/* Nothing to add */
4969 		return (mp);
4970 	}
4971 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
4972 	if (mp1 == NULL) {
4973 		/*
4974 		 * Defer sending ancillary data until the next TCP segment
4975 		 * arrives.
4976 		 */
4977 		return (mp);
4978 	}
4979 	mp1->b_cont = mp;
4980 	mp = mp1;
4981 	mp->b_wptr += sizeof (*todi) + optlen;
4982 	mp->b_datap->db_type = M_PROTO;
4983 	todi = (struct T_optdata_ind *)mp->b_rptr;
4984 	todi->PRIM_type = T_OPTDATA_IND;
4985 	todi->DATA_flag = 1;	/* MORE data */
4986 	todi->OPT_length = optlen;
4987 	todi->OPT_offset = sizeof (*todi);
4988 	optptr = (uchar_t *)&todi[1];
4989 	/*
4990 	 * If app asked for pktinfo and the index has changed ...
4991 	 * Note that the local address never changes for the connection.
4992 	 */
4993 	if (addflag.crb_ip_recvpktinfo) {
4994 		struct in6_pktinfo *pkti;
4995 		uint_t ifindex;
4996 
4997 		ifindex = ira->ira_ruifindex;
4998 		toh = (struct T_opthdr *)optptr;
4999 		toh->level = IPPROTO_IPV6;
5000 		toh->name = IPV6_PKTINFO;
5001 		toh->len = sizeof (*toh) + sizeof (*pkti);
5002 		toh->status = 0;
5003 		optptr += sizeof (*toh);
5004 		pkti = (struct in6_pktinfo *)optptr;
5005 		pkti->ipi6_addr = connp->conn_laddr_v6;
5006 		pkti->ipi6_ifindex = ifindex;
5007 		optptr += sizeof (*pkti);
5008 		ASSERT(OK_32PTR(optptr));
5009 		/* Save as "last" value */
5010 		tcp->tcp_recvifindex = ifindex;
5011 	}
5012 	/* If app asked for hoplimit and it has changed ... */
5013 	if (addflag.crb_ipv6_recvhoplimit) {
5014 		toh = (struct T_opthdr *)optptr;
5015 		toh->level = IPPROTO_IPV6;
5016 		toh->name = IPV6_HOPLIMIT;
5017 		toh->len = sizeof (*toh) + sizeof (uint_t);
5018 		toh->status = 0;
5019 		optptr += sizeof (*toh);
5020 		*(uint_t *)optptr = ipp->ipp_hoplimit;
5021 		optptr += sizeof (uint_t);
5022 		ASSERT(OK_32PTR(optptr));
5023 		/* Save as "last" value */
5024 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
5025 	}
5026 	/* If app asked for tclass and it has changed ... */
5027 	if (addflag.crb_ipv6_recvtclass) {
5028 		toh = (struct T_opthdr *)optptr;
5029 		toh->level = IPPROTO_IPV6;
5030 		toh->name = IPV6_TCLASS;
5031 		toh->len = sizeof (*toh) + sizeof (uint_t);
5032 		toh->status = 0;
5033 		optptr += sizeof (*toh);
5034 		*(uint_t *)optptr = ipp->ipp_tclass;
5035 		optptr += sizeof (uint_t);
5036 		ASSERT(OK_32PTR(optptr));
5037 		/* Save as "last" value */
5038 		tcp->tcp_recvtclass = ipp->ipp_tclass;
5039 	}
5040 	if (addflag.crb_ipv6_recvhopopts) {
5041 		toh = (struct T_opthdr *)optptr;
5042 		toh->level = IPPROTO_IPV6;
5043 		toh->name = IPV6_HOPOPTS;
5044 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen;
5045 		toh->status = 0;
5046 		optptr += sizeof (*toh);
5047 		bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen);
5048 		optptr += ipp->ipp_hopoptslen;
5049 		ASSERT(OK_32PTR(optptr));
5050 		/* Save as last value */
5051 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
5052 		    (ipp->ipp_fields & IPPF_HOPOPTS),
5053 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
5054 	}
5055 	if (addflag.crb_ipv6_recvrthdrdstopts) {
5056 		toh = (struct T_opthdr *)optptr;
5057 		toh->level = IPPROTO_IPV6;
5058 		toh->name = IPV6_RTHDRDSTOPTS;
5059 		toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen;
5060 		toh->status = 0;
5061 		optptr += sizeof (*toh);
5062 		bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen);
5063 		optptr += ipp->ipp_rthdrdstoptslen;
5064 		ASSERT(OK_32PTR(optptr));
5065 		/* Save as last value */
5066 		ip_savebuf((void **)&tcp->tcp_rthdrdstopts,
5067 		    &tcp->tcp_rthdrdstoptslen,
5068 		    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
5069 		    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
5070 	}
5071 	if (addflag.crb_ipv6_recvrthdr) {
5072 		toh = (struct T_opthdr *)optptr;
5073 		toh->level = IPPROTO_IPV6;
5074 		toh->name = IPV6_RTHDR;
5075 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
5076 		toh->status = 0;
5077 		optptr += sizeof (*toh);
5078 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
5079 		optptr += ipp->ipp_rthdrlen;
5080 		ASSERT(OK_32PTR(optptr));
5081 		/* Save as last value */
5082 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
5083 		    (ipp->ipp_fields & IPPF_RTHDR),
5084 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
5085 	}
5086 	if (addflag.crb_ipv6_recvdstopts) {
5087 		toh = (struct T_opthdr *)optptr;
5088 		toh->level = IPPROTO_IPV6;
5089 		toh->name = IPV6_DSTOPTS;
5090 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
5091 		toh->status = 0;
5092 		optptr += sizeof (*toh);
5093 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
5094 		optptr += ipp->ipp_dstoptslen;
5095 		ASSERT(OK_32PTR(optptr));
5096 		/* Save as last value */
5097 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
5098 		    (ipp->ipp_fields & IPPF_DSTOPTS),
5099 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
5100 	}
5101 	ASSERT(optptr == mp->b_wptr);
5102 	return (mp);
5103 }
5104 
5105 /* The minimum of smoothed mean deviation in RTO calculation. */
5106 #define	TCP_SD_MIN	400
5107 
5108 /*
5109  * Set RTO for this connection.  The formula is from Jacobson and Karels'
5110  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
5111  * are the same as those in Appendix A.2 of that paper.
5112  *
5113  * m = new measurement
5114  * sa = smoothed RTT average (8 * average estimates).
5115  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
5116  */
5117 static void
5118 tcp_set_rto(tcp_t *tcp, clock_t rtt)
5119 {
5120 	long m = TICK_TO_MSEC(rtt);
5121 	clock_t sa = tcp->tcp_rtt_sa;
5122 	clock_t sv = tcp->tcp_rtt_sd;
5123 	clock_t rto;
5124 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5125 
5126 	TCPS_BUMP_MIB(tcps, tcpRttUpdate);
5127 	tcp->tcp_rtt_update++;
5128 
5129 	/* tcp_rtt_sa is not 0 means this is a new sample. */
5130 	if (sa != 0) {
5131 		/*
5132 		 * Update average estimator:
5133 		 *	new rtt = 7/8 old rtt + 1/8 Error
5134 		 */
5135 
5136 		/* m is now Error in estimate. */
5137 		m -= sa >> 3;
5138 		if ((sa += m) <= 0) {
5139 			/*
5140 			 * Don't allow the smoothed average to be negative.
5141 			 * We use 0 to denote reinitialization of the
5142 			 * variables.
5143 			 */
5144 			sa = 1;
5145 		}
5146 
5147 		/*
5148 		 * Update deviation estimator:
5149 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
5150 		 */
5151 		if (m < 0)
5152 			m = -m;
5153 		m -= sv >> 2;
5154 		sv += m;
5155 	} else {
5156 		/*
5157 		 * This follows BSD's implementation.  So the reinitialized
5158 		 * RTO is 3 * m.  We cannot go less than 2 because if the
5159 		 * link is bandwidth dominated, doubling the window size
5160 		 * during slow start means doubling the RTT.  We want to be
5161 		 * more conservative when we reinitialize our estimates.  3
5162 		 * is just a convenient number.
5163 		 */
5164 		sa = m << 3;
5165 		sv = m << 1;
5166 	}
5167 	if (sv < TCP_SD_MIN) {
5168 		/*
5169 		 * We do not know that if sa captures the delay ACK
5170 		 * effect as in a long train of segments, a receiver
5171 		 * does not delay its ACKs.  So set the minimum of sv
5172 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
5173 		 * of BSD DATO.  That means the minimum of mean
5174 		 * deviation is 100 ms.
5175 		 *
5176 		 */
5177 		sv = TCP_SD_MIN;
5178 	}
5179 	tcp->tcp_rtt_sa = sa;
5180 	tcp->tcp_rtt_sd = sv;
5181 	/*
5182 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
5183 	 *
5184 	 * Add tcp_rexmit_interval extra in case of extreme environment
5185 	 * where the algorithm fails to work.  The default value of
5186 	 * tcp_rexmit_interval_extra should be 0.
5187 	 *
5188 	 * As we use a finer grained clock than BSD and update
5189 	 * RTO for every ACKs, add in another .25 of RTT to the
5190 	 * deviation of RTO to accomodate burstiness of 1/4 of
5191 	 * window size.
5192 	 */
5193 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
5194 
5195 	TCP_SET_RTO(tcp, rto);
5196 
5197 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
5198 	tcp->tcp_timer_backoff = 0;
5199 }
5200 
5201 /*
5202  * On a labeled system we have some protocols above TCP, such as RPC, which
5203  * appear to assume that every mblk in a chain has a db_credp.
5204  */
5205 static void
5206 tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira)
5207 {
5208 	ASSERT(is_system_labeled());
5209 	ASSERT(ira->ira_cred != NULL);
5210 
5211 	while (mp != NULL) {
5212 		mblk_setcred(mp, ira->ira_cred, NOPID);
5213 		mp = mp->b_cont;
5214 	}
5215 }
5216 
5217 uint_t
5218 tcp_rwnd_reopen(tcp_t *tcp)
5219 {
5220 	uint_t ret = 0;
5221 	uint_t thwin;
5222 	conn_t *connp = tcp->tcp_connp;
5223 
5224 	/* Learn the latest rwnd information that we sent to the other side. */
5225 	thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win))
5226 	    << tcp->tcp_rcv_ws;
5227 	/* This is peer's calculated send window (our receive window). */
5228 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
5229 	/*
5230 	 * Increase the receive window to max.  But we need to do receiver
5231 	 * SWS avoidance.  This means that we need to check the increase of
5232 	 * of receive window is at least 1 MSS.
5233 	 */
5234 	if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) {
5235 		/*
5236 		 * If the window that the other side knows is less than max
5237 		 * deferred acks segments, send an update immediately.
5238 		 */
5239 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
5240 			TCPS_BUMP_MIB(tcp->tcp_tcps, tcpOutWinUpdate);
5241 			ret = TH_ACK_NEEDED;
5242 		}
5243 		tcp->tcp_rwnd = connp->conn_rcvbuf;
5244 	}
5245 	return (ret);
5246 }
5247 
5248 /*
5249  * Handle a packet that has been reclassified by TCP.
5250  * This function drops the ref on connp that the caller had.
5251  */
5252 void
5253 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst)
5254 {
5255 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5256 
5257 	if (connp->conn_incoming_ifindex != 0 &&
5258 	    connp->conn_incoming_ifindex != ira->ira_ruifindex) {
5259 		freemsg(mp);
5260 		CONN_DEC_REF(connp);
5261 		return;
5262 	}
5263 
5264 	if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) ||
5265 	    (ira->ira_flags & IRAF_IPSEC_SECURE)) {
5266 		ip6_t *ip6h;
5267 		ipha_t *ipha;
5268 
5269 		if (ira->ira_flags & IRAF_IS_IPV4) {
5270 			ipha = (ipha_t *)mp->b_rptr;
5271 			ip6h = NULL;
5272 		} else {
5273 			ipha = NULL;
5274 			ip6h = (ip6_t *)mp->b_rptr;
5275 		}
5276 		mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira);
5277 		if (mp == NULL) {
5278 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
5279 			/* Note that mp is NULL */
5280 			ip_drop_input("ipIfStatsInDiscards", mp, NULL);
5281 			CONN_DEC_REF(connp);
5282 			return;
5283 		}
5284 	}
5285 
5286 	if (IPCL_IS_TCP(connp)) {
5287 		/*
5288 		 * do not drain, certain use cases can blow
5289 		 * the stack
5290 		 */
5291 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
5292 		    connp->conn_recv, connp, ira,
5293 		    SQ_NODRAIN, SQTAG_IP_TCP_INPUT);
5294 	} else {
5295 		/* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
5296 		(connp->conn_recv)(connp, mp, NULL,
5297 		    ira);
5298 		CONN_DEC_REF(connp);
5299 	}
5300 
5301 }
5302 
5303 /* ARGSUSED */
5304 static void
5305 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
5306 {
5307 	conn_t	*connp = (conn_t *)arg;
5308 	tcp_t	*tcp = connp->conn_tcp;
5309 	queue_t	*q = connp->conn_rq;
5310 
5311 	ASSERT(!IPCL_IS_NONSTR(connp));
5312 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
5313 	tcp->tcp_rsrv_mp = mp;
5314 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
5315 
5316 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
5317 		return;
5318 	}
5319 
5320 	if (tcp->tcp_fused) {
5321 		tcp_fuse_backenable(tcp);
5322 		return;
5323 	}
5324 
5325 	if (canputnext(q)) {
5326 		/* Not flow-controlled, open rwnd */
5327 		tcp->tcp_rwnd = connp->conn_rcvbuf;
5328 
5329 		/*
5330 		 * Send back a window update immediately if TCP is above
5331 		 * ESTABLISHED state and the increase of the rcv window
5332 		 * that the other side knows is at least 1 MSS after flow
5333 		 * control is lifted.
5334 		 */
5335 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
5336 		    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
5337 			tcp_xmit_ctl(NULL, tcp,
5338 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
5339 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
5340 		}
5341 	}
5342 }
5343 
5344 /*
5345  * The read side service routine is called mostly when we get back-enabled as a
5346  * result of flow control relief.  Since we don't actually queue anything in
5347  * TCP, we have no data to send out of here.  What we do is clear the receive
5348  * window, and send out a window update.
5349  */
5350 void
5351 tcp_rsrv(queue_t *q)
5352 {
5353 	conn_t		*connp = Q_TO_CONN(q);
5354 	tcp_t		*tcp = connp->conn_tcp;
5355 	mblk_t		*mp;
5356 
5357 	/* No code does a putq on the read side */
5358 	ASSERT(q->q_first == NULL);
5359 
5360 	/*
5361 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already
5362 	 * been run.  So just return.
5363 	 */
5364 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
5365 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
5366 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
5367 		return;
5368 	}
5369 	tcp->tcp_rsrv_mp = NULL;
5370 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
5371 
5372 	CONN_INC_REF(connp);
5373 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp,
5374 	    NULL, SQ_PROCESS, SQTAG_TCP_RSRV);
5375 }
5376 
5377 /* At minimum we need 8 bytes in the TCP header for the lookup */
5378 #define	ICMP_MIN_TCP_HDR	8
5379 
5380 /*
5381  * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages
5382  * passed up by IP. The message is always received on the correct tcp_t.
5383  * Assumes that IP has pulled up everything up to and including the ICMP header.
5384  */
5385 /* ARGSUSED2 */
5386 void
5387 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
5388 {
5389 	conn_t		*connp = (conn_t *)arg1;
5390 	icmph_t		*icmph;
5391 	ipha_t		*ipha;
5392 	int		iph_hdr_length;
5393 	tcpha_t		*tcpha;
5394 	uint32_t	seg_seq;
5395 	tcp_t		*tcp = connp->conn_tcp;
5396 
5397 	/* Assume IP provides aligned packets */
5398 	ASSERT(OK_32PTR(mp->b_rptr));
5399 	ASSERT((MBLKL(mp) >= sizeof (ipha_t)));
5400 
5401 	/*
5402 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
5403 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
5404 	 */
5405 	if (!(ira->ira_flags & IRAF_IS_IPV4)) {
5406 		tcp_icmp_error_ipv6(tcp, mp, ira);
5407 		return;
5408 	}
5409 
5410 	/* Skip past the outer IP and ICMP headers */
5411 	iph_hdr_length = ira->ira_ip_hdr_length;
5412 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
5413 	/*
5414 	 * If we don't have the correct outer IP header length
5415 	 * or if we don't have a complete inner IP header
5416 	 * drop it.
5417 	 */
5418 	if (iph_hdr_length < sizeof (ipha_t) ||
5419 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
5420 noticmpv4:
5421 		freemsg(mp);
5422 		return;
5423 	}
5424 	ipha = (ipha_t *)&icmph[1];
5425 
5426 	/* Skip past the inner IP and find the ULP header */
5427 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
5428 	tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length);
5429 	/*
5430 	 * If we don't have the correct inner IP header length or if the ULP
5431 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
5432 	 * bytes of TCP header, drop it.
5433 	 */
5434 	if (iph_hdr_length < sizeof (ipha_t) ||
5435 	    ipha->ipha_protocol != IPPROTO_TCP ||
5436 	    (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) {
5437 		goto noticmpv4;
5438 	}
5439 
5440 	seg_seq = ntohl(tcpha->tha_seq);
5441 	switch (icmph->icmph_type) {
5442 	case ICMP_DEST_UNREACHABLE:
5443 		switch (icmph->icmph_code) {
5444 		case ICMP_FRAGMENTATION_NEEDED:
5445 			/*
5446 			 * Update Path MTU, then try to send something out.
5447 			 */
5448 			tcp_update_pmtu(tcp, B_TRUE);
5449 			tcp_rexmit_after_error(tcp);
5450 			break;
5451 		case ICMP_PORT_UNREACHABLE:
5452 		case ICMP_PROTOCOL_UNREACHABLE:
5453 			switch (tcp->tcp_state) {
5454 			case TCPS_SYN_SENT:
5455 			case TCPS_SYN_RCVD:
5456 				/*
5457 				 * ICMP can snipe away incipient
5458 				 * TCP connections as long as
5459 				 * seq number is same as initial
5460 				 * send seq number.
5461 				 */
5462 				if (seg_seq == tcp->tcp_iss) {
5463 					(void) tcp_clean_death(tcp,
5464 					    ECONNREFUSED);
5465 				}
5466 				break;
5467 			}
5468 			break;
5469 		case ICMP_HOST_UNREACHABLE:
5470 		case ICMP_NET_UNREACHABLE:
5471 			/* Record the error in case we finally time out. */
5472 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
5473 				tcp->tcp_client_errno = EHOSTUNREACH;
5474 			else
5475 				tcp->tcp_client_errno = ENETUNREACH;
5476 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
5477 				if (tcp->tcp_listener != NULL &&
5478 				    tcp->tcp_listener->tcp_syn_defense) {
5479 					/*
5480 					 * Ditch the half-open connection if we
5481 					 * suspect a SYN attack is under way.
5482 					 */
5483 					(void) tcp_clean_death(tcp,
5484 					    tcp->tcp_client_errno);
5485 				}
5486 			}
5487 			break;
5488 		default:
5489 			break;
5490 		}
5491 		break;
5492 	case ICMP_SOURCE_QUENCH: {
5493 		/*
5494 		 * use a global boolean to control
5495 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
5496 		 * The default is false.
5497 		 */
5498 		if (tcp_icmp_source_quench) {
5499 			/*
5500 			 * Reduce the sending rate as if we got a
5501 			 * retransmit timeout
5502 			 */
5503 			uint32_t npkt;
5504 
5505 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
5506 			    tcp->tcp_mss;
5507 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
5508 			tcp->tcp_cwnd = tcp->tcp_mss;
5509 			tcp->tcp_cwnd_cnt = 0;
5510 		}
5511 		break;
5512 	}
5513 	}
5514 	freemsg(mp);
5515 }
5516 
5517 /*
5518  * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6
5519  * error messages passed up by IP.
5520  * Assumes that IP has pulled up all the extension headers as well
5521  * as the ICMPv6 header.
5522  */
5523 static void
5524 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira)
5525 {
5526 	icmp6_t		*icmp6;
5527 	ip6_t		*ip6h;
5528 	uint16_t	iph_hdr_length = ira->ira_ip_hdr_length;
5529 	tcpha_t		*tcpha;
5530 	uint8_t		*nexthdrp;
5531 	uint32_t	seg_seq;
5532 
5533 	/*
5534 	 * Verify that we have a complete IP header.
5535 	 */
5536 	ASSERT((MBLKL(mp) >= sizeof (ip6_t)));
5537 
5538 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
5539 	ip6h = (ip6_t *)&icmp6[1];
5540 	/*
5541 	 * Verify if we have a complete ICMP and inner IP header.
5542 	 */
5543 	if ((uchar_t *)&ip6h[1] > mp->b_wptr) {
5544 noticmpv6:
5545 		freemsg(mp);
5546 		return;
5547 	}
5548 
5549 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
5550 		goto noticmpv6;
5551 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
5552 	/*
5553 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
5554 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
5555 	 * packet.
5556 	 */
5557 	if ((*nexthdrp != IPPROTO_TCP) ||
5558 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
5559 		goto noticmpv6;
5560 	}
5561 
5562 	seg_seq = ntohl(tcpha->tha_seq);
5563 	switch (icmp6->icmp6_type) {
5564 	case ICMP6_PACKET_TOO_BIG:
5565 		/*
5566 		 * Update Path MTU, then try to send something out.
5567 		 */
5568 		tcp_update_pmtu(tcp, B_TRUE);
5569 		tcp_rexmit_after_error(tcp);
5570 		break;
5571 	case ICMP6_DST_UNREACH:
5572 		switch (icmp6->icmp6_code) {
5573 		case ICMP6_DST_UNREACH_NOPORT:
5574 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
5575 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
5576 			    (seg_seq == tcp->tcp_iss)) {
5577 				(void) tcp_clean_death(tcp, ECONNREFUSED);
5578 			}
5579 			break;
5580 		case ICMP6_DST_UNREACH_ADMIN:
5581 		case ICMP6_DST_UNREACH_NOROUTE:
5582 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
5583 		case ICMP6_DST_UNREACH_ADDR:
5584 			/* Record the error in case we finally time out. */
5585 			tcp->tcp_client_errno = EHOSTUNREACH;
5586 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
5587 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
5588 			    (seg_seq == tcp->tcp_iss)) {
5589 				if (tcp->tcp_listener != NULL &&
5590 				    tcp->tcp_listener->tcp_syn_defense) {
5591 					/*
5592 					 * Ditch the half-open connection if we
5593 					 * suspect a SYN attack is under way.
5594 					 */
5595 					(void) tcp_clean_death(tcp,
5596 					    tcp->tcp_client_errno);
5597 				}
5598 			}
5599 
5600 
5601 			break;
5602 		default:
5603 			break;
5604 		}
5605 		break;
5606 	case ICMP6_PARAM_PROB:
5607 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
5608 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
5609 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
5610 		    (uchar_t *)nexthdrp) {
5611 			if (tcp->tcp_state == TCPS_SYN_SENT ||
5612 			    tcp->tcp_state == TCPS_SYN_RCVD) {
5613 				(void) tcp_clean_death(tcp, ECONNREFUSED);
5614 			}
5615 			break;
5616 		}
5617 		break;
5618 
5619 	case ICMP6_TIME_EXCEEDED:
5620 	default:
5621 		break;
5622 	}
5623 	freemsg(mp);
5624 }
5625 
5626 /*
5627  * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might
5628  * change. But it can refer to fields like tcp_suna and tcp_snxt.
5629  *
5630  * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP
5631  * error messages received by IP. The message is always received on the correct
5632  * tcp_t.
5633  */
5634 /* ARGSUSED */
5635 boolean_t
5636 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6,
5637     ip_recv_attr_t *ira)
5638 {
5639 	tcpha_t		*tcpha = (tcpha_t *)arg2;
5640 	uint32_t	seq = ntohl(tcpha->tha_seq);
5641 	tcp_t		*tcp = connp->conn_tcp;
5642 
5643 	/*
5644 	 * TCP sequence number contained in payload of the ICMP error message
5645 	 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise,
5646 	 * the message is either a stale ICMP error, or an attack from the
5647 	 * network. Fail the verification.
5648 	 */
5649 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
5650 		return (B_FALSE);
5651 
5652 	/* For "too big" we also check the ignore flag */
5653 	if (ira->ira_flags & IRAF_IS_IPV4) {
5654 		ASSERT(icmph != NULL);
5655 		if (icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
5656 		    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED &&
5657 		    tcp->tcp_tcps->tcps_ignore_path_mtu)
5658 			return (B_FALSE);
5659 	} else {
5660 		ASSERT(icmp6 != NULL);
5661 		if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG &&
5662 		    tcp->tcp_tcps->tcps_ignore_path_mtu)
5663 			return (B_FALSE);
5664 	}
5665 	return (B_TRUE);
5666 }
5667