xref: /titanic_41/usr/src/uts/common/inet/tcp/tcp_input.c (revision 61d7aa6fb64ef65c47c92904fc9ecb48c64eecf5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2011 Joyent, Inc. All rights reserved.
26  */
27 
28 /* This file contains all TCP input processing functions. */
29 
30 #include <sys/types.h>
31 #include <sys/stream.h>
32 #include <sys/strsun.h>
33 #include <sys/strsubr.h>
34 #include <sys/stropts.h>
35 #include <sys/strlog.h>
36 #define	_SUN_TPI_VERSION 2
37 #include <sys/tihdr.h>
38 #include <sys/suntpi.h>
39 #include <sys/xti_inet.h>
40 #include <sys/squeue_impl.h>
41 #include <sys/squeue.h>
42 #include <sys/tsol/tnet.h>
43 
44 #include <inet/common.h>
45 #include <inet/ip.h>
46 #include <inet/tcp.h>
47 #include <inet/tcp_impl.h>
48 #include <inet/tcp_cluster.h>
49 #include <inet/proto_set.h>
50 #include <inet/ipsec_impl.h>
51 
52 /*
53  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
54  */
55 
56 #ifdef _BIG_ENDIAN
57 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
58 	(TCPOPT_TSTAMP << 8) | 10)
59 #else
60 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
61 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
62 #endif
63 
64 /*
65  * Flags returned from tcp_parse_options.
66  */
67 #define	TCP_OPT_MSS_PRESENT	1
68 #define	TCP_OPT_WSCALE_PRESENT	2
69 #define	TCP_OPT_TSTAMP_PRESENT	4
70 #define	TCP_OPT_SACK_OK_PRESENT	8
71 #define	TCP_OPT_SACK_PRESENT	16
72 
73 /*
74  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
75  */
76 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
77 
78 /*
79  * Since tcp_listener is not cleared atomically with tcp_detached
80  * being cleared we need this extra bit to tell a detached connection
81  * apart from one that is in the process of being accepted.
82  */
83 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
84 	(TCP_IS_DETACHED(tcp) &&	\
85 	    (!(tcp)->tcp_hard_binding))
86 
87 /*
88  * Steps to do when a tcp_t moves to TIME-WAIT state.
89  *
90  * This connection is done, we don't need to account for it.  Decrement
91  * the listener connection counter if needed.
92  *
93  * Decrement the connection counter of the stack.  Note that this counter
94  * is per CPU.  So the total number of connections in a stack is the sum of all
95  * of them.  Since there is no lock for handling all of them exclusively, the
96  * resulting sum is only an approximation.
97  *
98  * Unconditionally clear the exclusive binding bit so this TIME-WAIT
99  * connection won't interfere with new ones.
100  *
101  * Start the TIME-WAIT timer.  If upper layer has not closed the connection,
102  * the timer is handled within the context of this tcp_t.  When the timer
103  * fires, tcp_clean_death() is called.  If upper layer closes the connection
104  * during this period, tcp_time_wait_append() will be called to add this
105  * tcp_t to the global TIME-WAIT list.  Note that this means that the
106  * actual wait time in TIME-WAIT state will be longer than the
107  * tcps_time_wait_interval since the period before upper layer closes the
108  * connection is not accounted for when tcp_time_wait_append() is called.
109  *
110  * If uppser layer has closed the connection, call tcp_time_wait_append()
111  * directly.
112  *
113  */
114 #define	SET_TIME_WAIT(tcps, tcp, connp)				\
115 {								\
116 	(tcp)->tcp_state = TCPS_TIME_WAIT;			\
117 	if ((tcp)->tcp_listen_cnt != NULL)			\
118 		TCP_DECR_LISTEN_CNT(tcp);			\
119 	atomic_dec_64(						\
120 	    (uint64_t *)&(tcps)->tcps_sc[CPU->cpu_seqid]->tcp_sc_conn_cnt); \
121 	(connp)->conn_exclbind = 0;				\
122 	if (!TCP_IS_DETACHED(tcp)) {				\
123 		TCP_TIMER_RESTART(tcp, (tcps)->tcps_time_wait_interval); \
124 	} else {						\
125 		tcp_time_wait_append(tcp);			\
126 		TCP_DBGSTAT(tcps, tcp_rput_time_wait);		\
127 	}							\
128 }
129 
130 /*
131  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
132  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
133  * data, TCP will not respond with an ACK.  RFC 793 requires that
134  * TCP responds with an ACK for such a bogus ACK.  By not following
135  * the RFC, we prevent TCP from getting into an ACK storm if somehow
136  * an attacker successfully spoofs an acceptable segment to our
137  * peer; or when our peer is "confused."
138  */
139 static uint32_t tcp_drop_ack_unsent_cnt = 10;
140 
141 /*
142  * To protect TCP against attacker using a small window and requesting
143  * large amount of data (DoS attack by conuming memory), TCP checks the
144  * window advertised in the last ACK of the 3-way handshake.  TCP uses
145  * the tcp_mss (the size of one packet) value for comparion.  The window
146  * should be larger than tcp_mss.  But while a sane TCP should advertise
147  * a receive window larger than or equal to 4*MSS to avoid stop and go
148  * tarrfic, not all TCP stacks do that.  This is especially true when
149  * tcp_mss is a big value.
150  *
151  * To work around this issue, an additional fixed value for comparison
152  * is also used.  If the advertised window is smaller than both tcp_mss
153  * and tcp_init_wnd_chk, the ACK is considered as invalid.  So for large
154  * tcp_mss value (say, 8K), a window larger than tcp_init_wnd_chk but
155  * smaller than 8K is considered to be OK.
156  */
157 static uint32_t tcp_init_wnd_chk = 4096;
158 
159 /* Process ICMP source quench message or not. */
160 static boolean_t tcp_icmp_source_quench = B_FALSE;
161 
162 static boolean_t tcp_outbound_squeue_switch = B_FALSE;
163 
164 static mblk_t	*tcp_conn_create_v4(conn_t *, conn_t *, mblk_t *,
165 		    ip_recv_attr_t *);
166 static mblk_t	*tcp_conn_create_v6(conn_t *, conn_t *, mblk_t *,
167 		    ip_recv_attr_t *);
168 static boolean_t	tcp_drop_q0(tcp_t *);
169 static void	tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *);
170 static mblk_t	*tcp_input_add_ancillary(tcp_t *, mblk_t *, ip_pkt_t *,
171 		    ip_recv_attr_t *);
172 static void	tcp_input_listener(void *, mblk_t *, void *, ip_recv_attr_t *);
173 static int	tcp_parse_options(tcpha_t *, tcp_opt_t *);
174 static void	tcp_process_options(tcp_t *, tcpha_t *);
175 static mblk_t	*tcp_reass(tcp_t *, mblk_t *, uint32_t);
176 static void	tcp_reass_elim_overlap(tcp_t *, mblk_t *);
177 static void	tcp_rsrv_input(void *, mblk_t *, void *, ip_recv_attr_t *);
178 static void	tcp_set_rto(tcp_t *, time_t);
179 static void	tcp_setcred_data(mblk_t *, ip_recv_attr_t *);
180 
181 /*
182  * Set the MSS associated with a particular tcp based on its current value,
183  * and a new one passed in. Observe minimums and maximums, and reset other
184  * state variables that we want to view as multiples of MSS.
185  *
186  * The value of MSS could be either increased or descreased.
187  */
188 void
189 tcp_mss_set(tcp_t *tcp, uint32_t mss)
190 {
191 	uint32_t	mss_max;
192 	tcp_stack_t	*tcps = tcp->tcp_tcps;
193 	conn_t		*connp = tcp->tcp_connp;
194 
195 	if (connp->conn_ipversion == IPV4_VERSION)
196 		mss_max = tcps->tcps_mss_max_ipv4;
197 	else
198 		mss_max = tcps->tcps_mss_max_ipv6;
199 
200 	if (mss < tcps->tcps_mss_min)
201 		mss = tcps->tcps_mss_min;
202 	if (mss > mss_max)
203 		mss = mss_max;
204 	/*
205 	 * Unless naglim has been set by our client to
206 	 * a non-mss value, force naglim to track mss.
207 	 * This can help to aggregate small writes.
208 	 */
209 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
210 		tcp->tcp_naglim = mss;
211 	/*
212 	 * TCP should be able to buffer at least 4 MSS data for obvious
213 	 * performance reason.
214 	 */
215 	if ((mss << 2) > connp->conn_sndbuf)
216 		connp->conn_sndbuf = mss << 2;
217 
218 	/*
219 	 * Set the send lowater to at least twice of MSS.
220 	 */
221 	if ((mss << 1) > connp->conn_sndlowat)
222 		connp->conn_sndlowat = mss << 1;
223 
224 	/*
225 	 * Update tcp_cwnd according to the new value of MSS. Keep the
226 	 * previous ratio to preserve the transmit rate.
227 	 */
228 	tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
229 	tcp->tcp_cwnd_cnt = 0;
230 
231 	tcp->tcp_mss = mss;
232 	(void) tcp_maxpsz_set(tcp, B_TRUE);
233 }
234 
235 /*
236  * Extract option values from a tcp header.  We put any found values into the
237  * tcpopt struct and return a bitmask saying which options were found.
238  */
239 static int
240 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt)
241 {
242 	uchar_t		*endp;
243 	int		len;
244 	uint32_t	mss;
245 	uchar_t		*up = (uchar_t *)tcpha;
246 	int		found = 0;
247 	int32_t		sack_len;
248 	tcp_seq		sack_begin, sack_end;
249 	tcp_t		*tcp;
250 
251 	endp = up + TCP_HDR_LENGTH(tcpha);
252 	up += TCP_MIN_HEADER_LENGTH;
253 	while (up < endp) {
254 		len = endp - up;
255 		switch (*up) {
256 		case TCPOPT_EOL:
257 			break;
258 
259 		case TCPOPT_NOP:
260 			up++;
261 			continue;
262 
263 		case TCPOPT_MAXSEG:
264 			if (len < TCPOPT_MAXSEG_LEN ||
265 			    up[1] != TCPOPT_MAXSEG_LEN)
266 				break;
267 
268 			mss = BE16_TO_U16(up+2);
269 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
270 			tcpopt->tcp_opt_mss = mss;
271 			found |= TCP_OPT_MSS_PRESENT;
272 
273 			up += TCPOPT_MAXSEG_LEN;
274 			continue;
275 
276 		case TCPOPT_WSCALE:
277 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
278 				break;
279 
280 			if (up[2] > TCP_MAX_WINSHIFT)
281 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
282 			else
283 				tcpopt->tcp_opt_wscale = up[2];
284 			found |= TCP_OPT_WSCALE_PRESENT;
285 
286 			up += TCPOPT_WS_LEN;
287 			continue;
288 
289 		case TCPOPT_SACK_PERMITTED:
290 			if (len < TCPOPT_SACK_OK_LEN ||
291 			    up[1] != TCPOPT_SACK_OK_LEN)
292 				break;
293 			found |= TCP_OPT_SACK_OK_PRESENT;
294 			up += TCPOPT_SACK_OK_LEN;
295 			continue;
296 
297 		case TCPOPT_SACK:
298 			if (len <= 2 || up[1] <= 2 || len < up[1])
299 				break;
300 
301 			/* If TCP is not interested in SACK blks... */
302 			if ((tcp = tcpopt->tcp) == NULL) {
303 				up += up[1];
304 				continue;
305 			}
306 			sack_len = up[1] - TCPOPT_HEADER_LEN;
307 			up += TCPOPT_HEADER_LEN;
308 
309 			/*
310 			 * If the list is empty, allocate one and assume
311 			 * nothing is sack'ed.
312 			 */
313 			if (tcp->tcp_notsack_list == NULL) {
314 				tcp_notsack_update(&(tcp->tcp_notsack_list),
315 				    tcp->tcp_suna, tcp->tcp_snxt,
316 				    &(tcp->tcp_num_notsack_blk),
317 				    &(tcp->tcp_cnt_notsack_list));
318 
319 				/*
320 				 * Make sure tcp_notsack_list is not NULL.
321 				 * This happens when kmem_alloc(KM_NOSLEEP)
322 				 * returns NULL.
323 				 */
324 				if (tcp->tcp_notsack_list == NULL) {
325 					up += sack_len;
326 					continue;
327 				}
328 				tcp->tcp_fack = tcp->tcp_suna;
329 			}
330 
331 			while (sack_len > 0) {
332 				if (up + 8 > endp) {
333 					up = endp;
334 					break;
335 				}
336 				sack_begin = BE32_TO_U32(up);
337 				up += 4;
338 				sack_end = BE32_TO_U32(up);
339 				up += 4;
340 				sack_len -= 8;
341 				/*
342 				 * Bounds checking.  Make sure the SACK
343 				 * info is within tcp_suna and tcp_snxt.
344 				 * If this SACK blk is out of bound, ignore
345 				 * it but continue to parse the following
346 				 * blks.
347 				 */
348 				if (SEQ_LEQ(sack_end, sack_begin) ||
349 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
350 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
351 					continue;
352 				}
353 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
354 				    sack_begin, sack_end,
355 				    &(tcp->tcp_num_notsack_blk),
356 				    &(tcp->tcp_cnt_notsack_list));
357 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
358 					tcp->tcp_fack = sack_end;
359 				}
360 			}
361 			found |= TCP_OPT_SACK_PRESENT;
362 			continue;
363 
364 		case TCPOPT_TSTAMP:
365 			if (len < TCPOPT_TSTAMP_LEN ||
366 			    up[1] != TCPOPT_TSTAMP_LEN)
367 				break;
368 
369 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
370 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
371 
372 			found |= TCP_OPT_TSTAMP_PRESENT;
373 
374 			up += TCPOPT_TSTAMP_LEN;
375 			continue;
376 
377 		default:
378 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
379 				break;
380 			up += up[1];
381 			continue;
382 		}
383 		break;
384 	}
385 	return (found);
386 }
387 
388 /*
389  * Process all TCP option in SYN segment.  Note that this function should
390  * be called after tcp_set_destination() is called so that the necessary info
391  * from IRE is already set in the tcp structure.
392  *
393  * This function sets up the correct tcp_mss value according to the
394  * MSS option value and our header size.  It also sets up the window scale
395  * and timestamp values, and initialize SACK info blocks.  But it does not
396  * change receive window size after setting the tcp_mss value.  The caller
397  * should do the appropriate change.
398  */
399 static void
400 tcp_process_options(tcp_t *tcp, tcpha_t *tcpha)
401 {
402 	int options;
403 	tcp_opt_t tcpopt;
404 	uint32_t mss_max;
405 	char *tmp_tcph;
406 	tcp_stack_t	*tcps = tcp->tcp_tcps;
407 	conn_t		*connp = tcp->tcp_connp;
408 
409 	tcpopt.tcp = NULL;
410 	options = tcp_parse_options(tcpha, &tcpopt);
411 
412 	/*
413 	 * Process MSS option.  Note that MSS option value does not account
414 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
415 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
416 	 * IPv6.
417 	 */
418 	if (!(options & TCP_OPT_MSS_PRESENT)) {
419 		if (connp->conn_ipversion == IPV4_VERSION)
420 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
421 		else
422 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
423 	} else {
424 		if (connp->conn_ipversion == IPV4_VERSION)
425 			mss_max = tcps->tcps_mss_max_ipv4;
426 		else
427 			mss_max = tcps->tcps_mss_max_ipv6;
428 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
429 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
430 		else if (tcpopt.tcp_opt_mss > mss_max)
431 			tcpopt.tcp_opt_mss = mss_max;
432 	}
433 
434 	/* Process Window Scale option. */
435 	if (options & TCP_OPT_WSCALE_PRESENT) {
436 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
437 		tcp->tcp_snd_ws_ok = B_TRUE;
438 	} else {
439 		tcp->tcp_snd_ws = B_FALSE;
440 		tcp->tcp_snd_ws_ok = B_FALSE;
441 		tcp->tcp_rcv_ws = B_FALSE;
442 	}
443 
444 	/* Process Timestamp option. */
445 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
446 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
447 		tmp_tcph = (char *)tcp->tcp_tcpha;
448 
449 		tcp->tcp_snd_ts_ok = B_TRUE;
450 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
451 		tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64();
452 		ASSERT(OK_32PTR(tmp_tcph));
453 		ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH);
454 
455 		/* Fill in our template header with basic timestamp option. */
456 		tmp_tcph += connp->conn_ht_ulp_len;
457 		tmp_tcph[0] = TCPOPT_NOP;
458 		tmp_tcph[1] = TCPOPT_NOP;
459 		tmp_tcph[2] = TCPOPT_TSTAMP;
460 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
461 		connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN;
462 		connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN;
463 		tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4);
464 	} else {
465 		tcp->tcp_snd_ts_ok = B_FALSE;
466 	}
467 
468 	/*
469 	 * Process SACK options.  If SACK is enabled for this connection,
470 	 * then allocate the SACK info structure.  Note the following ways
471 	 * when tcp_snd_sack_ok is set to true.
472 	 *
473 	 * For active connection: in tcp_set_destination() called in
474 	 * tcp_connect().
475 	 *
476 	 * For passive connection: in tcp_set_destination() called in
477 	 * tcp_input_listener().
478 	 *
479 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
480 	 * That check makes sure that if we did not send a SACK OK option,
481 	 * we will not enable SACK for this connection even though the other
482 	 * side sends us SACK OK option.  For active connection, the SACK
483 	 * info structure has already been allocated.  So we need to free
484 	 * it if SACK is disabled.
485 	 */
486 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
487 	    (tcp->tcp_snd_sack_ok ||
488 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
489 		ASSERT(tcp->tcp_num_sack_blk == 0);
490 		ASSERT(tcp->tcp_notsack_list == NULL);
491 
492 		tcp->tcp_snd_sack_ok = B_TRUE;
493 		if (tcp->tcp_snd_ts_ok) {
494 			tcp->tcp_max_sack_blk = 3;
495 		} else {
496 			tcp->tcp_max_sack_blk = 4;
497 		}
498 	} else if (tcp->tcp_snd_sack_ok) {
499 		/*
500 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
501 		 * no SACK info will be used for this
502 		 * connection.  This assumes that SACK usage
503 		 * permission is negotiated.  This may need
504 		 * to be changed once this is clarified.
505 		 */
506 		ASSERT(tcp->tcp_num_sack_blk == 0);
507 		ASSERT(tcp->tcp_notsack_list == NULL);
508 		tcp->tcp_snd_sack_ok = B_FALSE;
509 	}
510 
511 	/*
512 	 * Now we know the exact TCP/IP header length, subtract
513 	 * that from tcp_mss to get our side's MSS.
514 	 */
515 	tcp->tcp_mss -= connp->conn_ht_iphc_len;
516 
517 	/*
518 	 * Here we assume that the other side's header size will be equal to
519 	 * our header size.  We calculate the real MSS accordingly.  Need to
520 	 * take into additional stuffs IPsec puts in.
521 	 *
522 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
523 	 */
524 	tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len +
525 	    tcp->tcp_ipsec_overhead -
526 	    ((connp->conn_ipversion == IPV4_VERSION ?
527 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
528 
529 	/*
530 	 * Set MSS to the smaller one of both ends of the connection.
531 	 * We should not have called tcp_mss_set() before, but our
532 	 * side of the MSS should have been set to a proper value
533 	 * by tcp_set_destination().  tcp_mss_set() will also set up the
534 	 * STREAM head parameters properly.
535 	 *
536 	 * If we have a larger-than-16-bit window but the other side
537 	 * didn't want to do window scale, tcp_rwnd_set() will take
538 	 * care of that.
539 	 */
540 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
541 
542 	/*
543 	 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been
544 	 * updated properly.
545 	 */
546 	TCP_SET_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial);
547 }
548 
549 /*
550  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
551  * is filled, return as much as we can.  The message passed in may be
552  * multi-part, chained using b_cont.  "start" is the starting sequence
553  * number for this piece.
554  */
555 static mblk_t *
556 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
557 {
558 	uint32_t	end;
559 	mblk_t		*mp1;
560 	mblk_t		*mp2;
561 	mblk_t		*next_mp;
562 	uint32_t	u1;
563 	tcp_stack_t	*tcps = tcp->tcp_tcps;
564 
565 
566 	/* Walk through all the new pieces. */
567 	do {
568 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
569 		    (uintptr_t)INT_MAX);
570 		end = start + (int)(mp->b_wptr - mp->b_rptr);
571 		next_mp = mp->b_cont;
572 		if (start == end) {
573 			/* Empty.  Blast it. */
574 			freeb(mp);
575 			continue;
576 		}
577 		mp->b_cont = NULL;
578 		TCP_REASS_SET_SEQ(mp, start);
579 		TCP_REASS_SET_END(mp, end);
580 		mp1 = tcp->tcp_reass_tail;
581 		if (!mp1) {
582 			tcp->tcp_reass_tail = mp;
583 			tcp->tcp_reass_head = mp;
584 			TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs);
585 			TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes,
586 			    end - start);
587 			continue;
588 		}
589 		/* New stuff completely beyond tail? */
590 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
591 			/* Link it on end. */
592 			mp1->b_cont = mp;
593 			tcp->tcp_reass_tail = mp;
594 			TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs);
595 			TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes,
596 			    end - start);
597 			continue;
598 		}
599 		mp1 = tcp->tcp_reass_head;
600 		u1 = TCP_REASS_SEQ(mp1);
601 		/* New stuff at the front? */
602 		if (SEQ_LT(start, u1)) {
603 			/* Yes... Check for overlap. */
604 			mp->b_cont = mp1;
605 			tcp->tcp_reass_head = mp;
606 			tcp_reass_elim_overlap(tcp, mp);
607 			continue;
608 		}
609 		/*
610 		 * The new piece fits somewhere between the head and tail.
611 		 * We find our slot, where mp1 precedes us and mp2 trails.
612 		 */
613 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
614 			u1 = TCP_REASS_SEQ(mp2);
615 			if (SEQ_LEQ(start, u1))
616 				break;
617 		}
618 		/* Link ourselves in */
619 		mp->b_cont = mp2;
620 		mp1->b_cont = mp;
621 
622 		/* Trim overlap with following mblk(s) first */
623 		tcp_reass_elim_overlap(tcp, mp);
624 
625 		/* Trim overlap with preceding mblk */
626 		tcp_reass_elim_overlap(tcp, mp1);
627 
628 	} while (start = end, mp = next_mp);
629 	mp1 = tcp->tcp_reass_head;
630 	/* Anything ready to go? */
631 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
632 		return (NULL);
633 	/* Eat what we can off the queue */
634 	for (;;) {
635 		mp = mp1->b_cont;
636 		end = TCP_REASS_END(mp1);
637 		TCP_REASS_SET_SEQ(mp1, 0);
638 		TCP_REASS_SET_END(mp1, 0);
639 		if (!mp) {
640 			tcp->tcp_reass_tail = NULL;
641 			break;
642 		}
643 		if (end != TCP_REASS_SEQ(mp)) {
644 			mp1->b_cont = NULL;
645 			break;
646 		}
647 		mp1 = mp;
648 	}
649 	mp1 = tcp->tcp_reass_head;
650 	tcp->tcp_reass_head = mp;
651 	return (mp1);
652 }
653 
654 /* Eliminate any overlap that mp may have over later mblks */
655 static void
656 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
657 {
658 	uint32_t	end;
659 	mblk_t		*mp1;
660 	uint32_t	u1;
661 	tcp_stack_t	*tcps = tcp->tcp_tcps;
662 
663 	end = TCP_REASS_END(mp);
664 	while ((mp1 = mp->b_cont) != NULL) {
665 		u1 = TCP_REASS_SEQ(mp1);
666 		if (!SEQ_GT(end, u1))
667 			break;
668 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
669 			mp->b_wptr -= end - u1;
670 			TCP_REASS_SET_END(mp, u1);
671 			TCPS_BUMP_MIB(tcps, tcpInDataPartDupSegs);
672 			TCPS_UPDATE_MIB(tcps, tcpInDataPartDupBytes,
673 			    end - u1);
674 			break;
675 		}
676 		mp->b_cont = mp1->b_cont;
677 		TCP_REASS_SET_SEQ(mp1, 0);
678 		TCP_REASS_SET_END(mp1, 0);
679 		freeb(mp1);
680 		TCPS_BUMP_MIB(tcps, tcpInDataDupSegs);
681 		TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes, end - u1);
682 	}
683 	if (!mp1)
684 		tcp->tcp_reass_tail = mp;
685 }
686 
687 /*
688  * This function does PAWS protection check. Returns B_TRUE if the
689  * segment passes the PAWS test, else returns B_FALSE.
690  */
691 boolean_t
692 tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp)
693 {
694 	uint8_t	flags;
695 	int	options;
696 	uint8_t *up;
697 	conn_t	*connp = tcp->tcp_connp;
698 
699 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
700 	/*
701 	 * If timestamp option is aligned nicely, get values inline,
702 	 * otherwise call general routine to parse.  Only do that
703 	 * if timestamp is the only option.
704 	 */
705 	if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH +
706 	    TCPOPT_REAL_TS_LEN &&
707 	    OK_32PTR((up = ((uint8_t *)tcpha) +
708 	    TCP_MIN_HEADER_LENGTH)) &&
709 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
710 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
711 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
712 
713 		options = TCP_OPT_TSTAMP_PRESENT;
714 	} else {
715 		if (tcp->tcp_snd_sack_ok) {
716 			tcpoptp->tcp = tcp;
717 		} else {
718 			tcpoptp->tcp = NULL;
719 		}
720 		options = tcp_parse_options(tcpha, tcpoptp);
721 	}
722 
723 	if (options & TCP_OPT_TSTAMP_PRESENT) {
724 		/*
725 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
726 		 * regardless of the timestamp, page 18 RFC 1323.bis.
727 		 */
728 		if ((flags & TH_RST) == 0 &&
729 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
730 		    tcp->tcp_ts_recent)) {
731 			if (LBOLT_FASTPATH64 <
732 			    (tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) {
733 				/* This segment is not acceptable. */
734 				return (B_FALSE);
735 			} else {
736 				/*
737 				 * Connection has been idle for
738 				 * too long.  Reset the timestamp
739 				 * and assume the segment is valid.
740 				 */
741 				tcp->tcp_ts_recent =
742 				    tcpoptp->tcp_opt_ts_val;
743 			}
744 		}
745 	} else {
746 		/*
747 		 * If we don't get a timestamp on every packet, we
748 		 * figure we can't really trust 'em, so we stop sending
749 		 * and parsing them.
750 		 */
751 		tcp->tcp_snd_ts_ok = B_FALSE;
752 
753 		connp->conn_ht_iphc_len -= TCPOPT_REAL_TS_LEN;
754 		connp->conn_ht_ulp_len -= TCPOPT_REAL_TS_LEN;
755 		tcp->tcp_tcpha->tha_offset_and_reserved -= (3 << 4);
756 		/*
757 		 * Adjust the tcp_mss and tcp_cwnd accordingly. We avoid
758 		 * doing a slow start here so as to not to lose on the
759 		 * transfer rate built up so far.
760 		 */
761 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN);
762 		if (tcp->tcp_snd_sack_ok)
763 			tcp->tcp_max_sack_blk = 4;
764 	}
765 	return (B_TRUE);
766 }
767 
768 /*
769  * Defense for the SYN attack -
770  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
771  *    one from the list of droppable eagers. This list is a subset of q0.
772  *    see comments before the definition of MAKE_DROPPABLE().
773  * 2. Don't drop a SYN request before its first timeout. This gives every
774  *    request at least til the first timeout to complete its 3-way handshake.
775  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
776  *    requests currently on the queue that has timed out. This will be used
777  *    as an indicator of whether an attack is under way, so that appropriate
778  *    actions can be taken. (It's incremented in tcp_timer() and decremented
779  *    either when eager goes into ESTABLISHED, or gets freed up.)
780  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
781  *    # of timeout drops back to <= q0len/32 => SYN alert off
782  */
783 static boolean_t
784 tcp_drop_q0(tcp_t *tcp)
785 {
786 	tcp_t	*eager;
787 	mblk_t	*mp;
788 	tcp_stack_t	*tcps = tcp->tcp_tcps;
789 
790 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
791 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
792 
793 	/* Pick oldest eager from the list of droppable eagers */
794 	eager = tcp->tcp_eager_prev_drop_q0;
795 
796 	/* If list is empty. return B_FALSE */
797 	if (eager == tcp) {
798 		return (B_FALSE);
799 	}
800 
801 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
802 	if ((mp = allocb(0, BPRI_HI)) == NULL)
803 		return (B_FALSE);
804 
805 	/*
806 	 * Take this eager out from the list of droppable eagers since we are
807 	 * going to drop it.
808 	 */
809 	MAKE_UNDROPPABLE(eager);
810 
811 	if (tcp->tcp_connp->conn_debug) {
812 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
813 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
814 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
815 		    tcp->tcp_conn_req_cnt_q0,
816 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
817 	}
818 
819 	TCPS_BUMP_MIB(tcps, tcpHalfOpenDrop);
820 
821 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
822 	CONN_INC_REF(eager->tcp_connp);
823 
824 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
825 	    tcp_clean_death_wrapper, eager->tcp_connp, NULL,
826 	    SQ_FILL, SQTAG_TCP_DROP_Q0);
827 
828 	return (B_TRUE);
829 }
830 
831 /*
832  * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6
833  */
834 static mblk_t *
835 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
836     ip_recv_attr_t *ira)
837 {
838 	tcp_t 		*ltcp = lconnp->conn_tcp;
839 	tcp_t		*tcp = connp->conn_tcp;
840 	mblk_t		*tpi_mp;
841 	ipha_t		*ipha;
842 	ip6_t		*ip6h;
843 	sin6_t 		sin6;
844 	uint_t		ifindex = ira->ira_ruifindex;
845 	tcp_stack_t	*tcps = tcp->tcp_tcps;
846 
847 	if (ira->ira_flags & IRAF_IS_IPV4) {
848 		ipha = (ipha_t *)mp->b_rptr;
849 
850 		connp->conn_ipversion = IPV4_VERSION;
851 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6);
852 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6);
853 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
854 
855 		sin6 = sin6_null;
856 		sin6.sin6_addr = connp->conn_faddr_v6;
857 		sin6.sin6_port = connp->conn_fport;
858 		sin6.sin6_family = AF_INET6;
859 		sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6,
860 		    IPCL_ZONEID(lconnp), tcps->tcps_netstack);
861 
862 		if (connp->conn_recv_ancillary.crb_recvdstaddr) {
863 			sin6_t	sin6d;
864 
865 			sin6d = sin6_null;
866 			sin6d.sin6_addr = connp->conn_laddr_v6;
867 			sin6d.sin6_port = connp->conn_lport;
868 			sin6d.sin6_family = AF_INET;
869 			tpi_mp = mi_tpi_extconn_ind(NULL,
870 			    (char *)&sin6d, sizeof (sin6_t),
871 			    (char *)&tcp,
872 			    (t_scalar_t)sizeof (intptr_t),
873 			    (char *)&sin6d, sizeof (sin6_t),
874 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
875 		} else {
876 			tpi_mp = mi_tpi_conn_ind(NULL,
877 			    (char *)&sin6, sizeof (sin6_t),
878 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
879 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
880 		}
881 	} else {
882 		ip6h = (ip6_t *)mp->b_rptr;
883 
884 		connp->conn_ipversion = IPV6_VERSION;
885 		connp->conn_laddr_v6 = ip6h->ip6_dst;
886 		connp->conn_faddr_v6 = ip6h->ip6_src;
887 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
888 
889 		sin6 = sin6_null;
890 		sin6.sin6_addr = connp->conn_faddr_v6;
891 		sin6.sin6_port = connp->conn_fport;
892 		sin6.sin6_family = AF_INET6;
893 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
894 		sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6,
895 		    IPCL_ZONEID(lconnp), tcps->tcps_netstack);
896 
897 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
898 			/* Pass up the scope_id of remote addr */
899 			sin6.sin6_scope_id = ifindex;
900 		} else {
901 			sin6.sin6_scope_id = 0;
902 		}
903 		if (connp->conn_recv_ancillary.crb_recvdstaddr) {
904 			sin6_t	sin6d;
905 
906 			sin6d = sin6_null;
907 			sin6.sin6_addr = connp->conn_laddr_v6;
908 			sin6d.sin6_port = connp->conn_lport;
909 			sin6d.sin6_family = AF_INET6;
910 			if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6))
911 				sin6d.sin6_scope_id = ifindex;
912 
913 			tpi_mp = mi_tpi_extconn_ind(NULL,
914 			    (char *)&sin6d, sizeof (sin6_t),
915 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
916 			    (char *)&sin6d, sizeof (sin6_t),
917 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
918 		} else {
919 			tpi_mp = mi_tpi_conn_ind(NULL,
920 			    (char *)&sin6, sizeof (sin6_t),
921 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
922 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
923 		}
924 	}
925 
926 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
927 	return (tpi_mp);
928 }
929 
930 /* Handle a SYN on an AF_INET socket */
931 static mblk_t *
932 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp,
933     ip_recv_attr_t *ira)
934 {
935 	tcp_t 		*ltcp = lconnp->conn_tcp;
936 	tcp_t		*tcp = connp->conn_tcp;
937 	sin_t		sin;
938 	mblk_t		*tpi_mp = NULL;
939 	tcp_stack_t	*tcps = tcp->tcp_tcps;
940 	ipha_t		*ipha;
941 
942 	ASSERT(ira->ira_flags & IRAF_IS_IPV4);
943 	ipha = (ipha_t *)mp->b_rptr;
944 
945 	connp->conn_ipversion = IPV4_VERSION;
946 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6);
947 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6);
948 	connp->conn_saddr_v6 = connp->conn_laddr_v6;
949 
950 	sin = sin_null;
951 	sin.sin_addr.s_addr = connp->conn_faddr_v4;
952 	sin.sin_port = connp->conn_fport;
953 	sin.sin_family = AF_INET;
954 	if (lconnp->conn_recv_ancillary.crb_recvdstaddr) {
955 		sin_t	sind;
956 
957 		sind = sin_null;
958 		sind.sin_addr.s_addr = connp->conn_laddr_v4;
959 		sind.sin_port = connp->conn_lport;
960 		sind.sin_family = AF_INET;
961 		tpi_mp = mi_tpi_extconn_ind(NULL,
962 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
963 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
964 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
965 	} else {
966 		tpi_mp = mi_tpi_conn_ind(NULL,
967 		    (char *)&sin, sizeof (sin_t),
968 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
969 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
970 	}
971 
972 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
973 	return (tpi_mp);
974 }
975 
976 /*
977  * Called via squeue to get on to eager's perimeter. It sends a
978  * TH_RST if eager is in the fanout table. The listener wants the
979  * eager to disappear either by means of tcp_eager_blowoff() or
980  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
981  * called (via squeue) if the eager cannot be inserted in the
982  * fanout table in tcp_input_listener().
983  */
984 /* ARGSUSED */
985 void
986 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
987 {
988 	conn_t	*econnp = (conn_t *)arg;
989 	tcp_t	*eager = econnp->conn_tcp;
990 	tcp_t	*listener = eager->tcp_listener;
991 
992 	/*
993 	 * We could be called because listener is closing. Since
994 	 * the eager was using listener's queue's, we avoid
995 	 * using the listeners queues from now on.
996 	 */
997 	ASSERT(eager->tcp_detached);
998 	econnp->conn_rq = NULL;
999 	econnp->conn_wq = NULL;
1000 
1001 	/*
1002 	 * An eager's conn_fanout will be NULL if it's a duplicate
1003 	 * for an existing 4-tuples in the conn fanout table.
1004 	 * We don't want to send an RST out in such case.
1005 	 */
1006 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
1007 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
1008 		    eager, eager->tcp_snxt, 0, TH_RST);
1009 	}
1010 
1011 	/* We are here because listener wants this eager gone */
1012 	if (listener != NULL) {
1013 		mutex_enter(&listener->tcp_eager_lock);
1014 		tcp_eager_unlink(eager);
1015 		if (eager->tcp_tconnind_started) {
1016 			/*
1017 			 * The eager has sent a conn_ind up to the
1018 			 * listener but listener decides to close
1019 			 * instead. We need to drop the extra ref
1020 			 * placed on eager in tcp_input_data() before
1021 			 * sending the conn_ind to listener.
1022 			 */
1023 			CONN_DEC_REF(econnp);
1024 		}
1025 		mutex_exit(&listener->tcp_eager_lock);
1026 		CONN_DEC_REF(listener->tcp_connp);
1027 	}
1028 
1029 	if (eager->tcp_state != TCPS_CLOSED)
1030 		tcp_close_detached(eager);
1031 }
1032 
1033 /*
1034  * Reset any eager connection hanging off this listener marked
1035  * with 'seqnum' and then reclaim it's resources.
1036  */
1037 boolean_t
1038 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
1039 {
1040 	tcp_t	*eager;
1041 	mblk_t 	*mp;
1042 
1043 	eager = listener;
1044 	mutex_enter(&listener->tcp_eager_lock);
1045 	do {
1046 		eager = eager->tcp_eager_next_q;
1047 		if (eager == NULL) {
1048 			mutex_exit(&listener->tcp_eager_lock);
1049 			return (B_FALSE);
1050 		}
1051 	} while (eager->tcp_conn_req_seqnum != seqnum);
1052 
1053 	if (eager->tcp_closemp_used) {
1054 		mutex_exit(&listener->tcp_eager_lock);
1055 		return (B_TRUE);
1056 	}
1057 	eager->tcp_closemp_used = B_TRUE;
1058 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1059 	CONN_INC_REF(eager->tcp_connp);
1060 	mutex_exit(&listener->tcp_eager_lock);
1061 	mp = &eager->tcp_closemp;
1062 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
1063 	    eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF);
1064 	return (B_TRUE);
1065 }
1066 
1067 /*
1068  * Reset any eager connection hanging off this listener
1069  * and then reclaim it's resources.
1070  */
1071 void
1072 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
1073 {
1074 	tcp_t	*eager;
1075 	mblk_t	*mp;
1076 	tcp_stack_t	*tcps = listener->tcp_tcps;
1077 
1078 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
1079 
1080 	if (!q0_only) {
1081 		/* First cleanup q */
1082 		TCP_STAT(tcps, tcp_eager_blowoff_q);
1083 		eager = listener->tcp_eager_next_q;
1084 		while (eager != NULL) {
1085 			if (!eager->tcp_closemp_used) {
1086 				eager->tcp_closemp_used = B_TRUE;
1087 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1088 				CONN_INC_REF(eager->tcp_connp);
1089 				mp = &eager->tcp_closemp;
1090 				SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
1091 				    tcp_eager_kill, eager->tcp_connp, NULL,
1092 				    SQ_FILL, SQTAG_TCP_EAGER_CLEANUP);
1093 			}
1094 			eager = eager->tcp_eager_next_q;
1095 		}
1096 	}
1097 	/* Then cleanup q0 */
1098 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
1099 	eager = listener->tcp_eager_next_q0;
1100 	while (eager != listener) {
1101 		if (!eager->tcp_closemp_used) {
1102 			eager->tcp_closemp_used = B_TRUE;
1103 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1104 			CONN_INC_REF(eager->tcp_connp);
1105 			mp = &eager->tcp_closemp;
1106 			SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
1107 			    tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL,
1108 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
1109 		}
1110 		eager = eager->tcp_eager_next_q0;
1111 	}
1112 }
1113 
1114 /*
1115  * If we are an eager connection hanging off a listener that hasn't
1116  * formally accepted the connection yet, get off his list and blow off
1117  * any data that we have accumulated.
1118  */
1119 void
1120 tcp_eager_unlink(tcp_t *tcp)
1121 {
1122 	tcp_t	*listener = tcp->tcp_listener;
1123 
1124 	ASSERT(listener != NULL);
1125 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
1126 	if (tcp->tcp_eager_next_q0 != NULL) {
1127 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
1128 
1129 		/* Remove the eager tcp from q0 */
1130 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
1131 		    tcp->tcp_eager_prev_q0;
1132 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
1133 		    tcp->tcp_eager_next_q0;
1134 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
1135 		listener->tcp_conn_req_cnt_q0--;
1136 
1137 		tcp->tcp_eager_next_q0 = NULL;
1138 		tcp->tcp_eager_prev_q0 = NULL;
1139 
1140 		/*
1141 		 * Take the eager out, if it is in the list of droppable
1142 		 * eagers.
1143 		 */
1144 		MAKE_UNDROPPABLE(tcp);
1145 
1146 		if (tcp->tcp_syn_rcvd_timeout != 0) {
1147 			/* we have timed out before */
1148 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
1149 			listener->tcp_syn_rcvd_timeout--;
1150 		}
1151 	} else {
1152 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
1153 		tcp_t	*prev = NULL;
1154 
1155 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
1156 			if (tcpp[0] == tcp) {
1157 				if (listener->tcp_eager_last_q == tcp) {
1158 					/*
1159 					 * If we are unlinking the last
1160 					 * element on the list, adjust
1161 					 * tail pointer. Set tail pointer
1162 					 * to nil when list is empty.
1163 					 */
1164 					ASSERT(tcp->tcp_eager_next_q == NULL);
1165 					if (listener->tcp_eager_last_q ==
1166 					    listener->tcp_eager_next_q) {
1167 						listener->tcp_eager_last_q =
1168 						    NULL;
1169 					} else {
1170 						/*
1171 						 * We won't get here if there
1172 						 * is only one eager in the
1173 						 * list.
1174 						 */
1175 						ASSERT(prev != NULL);
1176 						listener->tcp_eager_last_q =
1177 						    prev;
1178 					}
1179 				}
1180 				tcpp[0] = tcp->tcp_eager_next_q;
1181 				tcp->tcp_eager_next_q = NULL;
1182 				tcp->tcp_eager_last_q = NULL;
1183 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
1184 				listener->tcp_conn_req_cnt_q--;
1185 				break;
1186 			}
1187 			prev = tcpp[0];
1188 		}
1189 	}
1190 	tcp->tcp_listener = NULL;
1191 }
1192 
1193 /* BEGIN CSTYLED */
1194 /*
1195  *
1196  * The sockfs ACCEPT path:
1197  * =======================
1198  *
1199  * The eager is now established in its own perimeter as soon as SYN is
1200  * received in tcp_input_listener(). When sockfs receives conn_ind, it
1201  * completes the accept processing on the acceptor STREAM. The sending
1202  * of conn_ind part is common for both sockfs listener and a TLI/XTI
1203  * listener but a TLI/XTI listener completes the accept processing
1204  * on the listener perimeter.
1205  *
1206  * Common control flow for 3 way handshake:
1207  * ----------------------------------------
1208  *
1209  * incoming SYN (listener perimeter)	-> tcp_input_listener()
1210  *
1211  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_input_data()
1212  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
1213  *
1214  * Sockfs ACCEPT Path:
1215  * -------------------
1216  *
1217  * open acceptor stream (tcp_open allocates tcp_tli_accept()
1218  * as STREAM entry point)
1219  *
1220  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept()
1221  *
1222  * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager
1223  * association (we are not behind eager's squeue but sockfs is protecting us
1224  * and no one knows about this stream yet. The STREAMS entry point q->q_info
1225  * is changed to point at tcp_wput().
1226  *
1227  * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to
1228  * listener (done on listener's perimeter).
1229  *
1230  * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish
1231  * accept.
1232  *
1233  * TLI/XTI client ACCEPT path:
1234  * ---------------------------
1235  *
1236  * soaccept() sends T_CONN_RES on the listener STREAM.
1237  *
1238  * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send
1239  * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()).
1240  *
1241  * Locks:
1242  * ======
1243  *
1244  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
1245  * and listeners->tcp_eager_next_q.
1246  *
1247  * Referencing:
1248  * ============
1249  *
1250  * 1) We start out in tcp_input_listener by eager placing a ref on
1251  * listener and listener adding eager to listeners->tcp_eager_next_q0.
1252  *
1253  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
1254  * doing so we place a ref on the eager. This ref is finally dropped at the
1255  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
1256  * reference is dropped by the squeue framework.
1257  *
1258  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
1259  *
1260  * The reference must be released by the same entity that added the reference
1261  * In the above scheme, the eager is the entity that adds and releases the
1262  * references. Note that tcp_accept_finish executes in the squeue of the eager
1263  * (albeit after it is attached to the acceptor stream). Though 1. executes
1264  * in the listener's squeue, the eager is nascent at this point and the
1265  * reference can be considered to have been added on behalf of the eager.
1266  *
1267  * Eager getting a Reset or listener closing:
1268  * ==========================================
1269  *
1270  * Once the listener and eager are linked, the listener never does the unlink.
1271  * If the listener needs to close, tcp_eager_cleanup() is called which queues
1272  * a message on all eager perimeter. The eager then does the unlink, clears
1273  * any pointers to the listener's queue and drops the reference to the
1274  * listener. The listener waits in tcp_close outside the squeue until its
1275  * refcount has dropped to 1. This ensures that the listener has waited for
1276  * all eagers to clear their association with the listener.
1277  *
1278  * Similarly, if eager decides to go away, it can unlink itself and close.
1279  * When the T_CONN_RES comes down, we check if eager has closed. Note that
1280  * the reference to eager is still valid because of the extra ref we put
1281  * in tcp_send_conn_ind.
1282  *
1283  * Listener can always locate the eager under the protection
1284  * of the listener->tcp_eager_lock, and then do a refhold
1285  * on the eager during the accept processing.
1286  *
1287  * The acceptor stream accesses the eager in the accept processing
1288  * based on the ref placed on eager before sending T_conn_ind.
1289  * The only entity that can negate this refhold is a listener close
1290  * which is mutually exclusive with an active acceptor stream.
1291  *
1292  * Eager's reference on the listener
1293  * ===================================
1294  *
1295  * If the accept happens (even on a closed eager) the eager drops its
1296  * reference on the listener at the start of tcp_accept_finish. If the
1297  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
1298  * the reference is dropped in tcp_closei_local. If the listener closes,
1299  * the reference is dropped in tcp_eager_kill. In all cases the reference
1300  * is dropped while executing in the eager's context (squeue).
1301  */
1302 /* END CSTYLED */
1303 
1304 /* Process the SYN packet, mp, directed at the listener 'tcp' */
1305 
1306 /*
1307  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
1308  * tcp_input_data will not see any packets for listeners since the listener
1309  * has conn_recv set to tcp_input_listener.
1310  */
1311 /* ARGSUSED */
1312 static void
1313 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
1314 {
1315 	tcpha_t		*tcpha;
1316 	uint32_t	seg_seq;
1317 	tcp_t		*eager;
1318 	int		err;
1319 	conn_t		*econnp = NULL;
1320 	squeue_t	*new_sqp;
1321 	mblk_t		*mp1;
1322 	uint_t 		ip_hdr_len;
1323 	conn_t		*lconnp = (conn_t *)arg;
1324 	tcp_t		*listener = lconnp->conn_tcp;
1325 	tcp_stack_t	*tcps = listener->tcp_tcps;
1326 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
1327 	uint_t		flags;
1328 	mblk_t		*tpi_mp;
1329 	uint_t		ifindex = ira->ira_ruifindex;
1330 	boolean_t	tlc_set = B_FALSE;
1331 
1332 	ip_hdr_len = ira->ira_ip_hdr_length;
1333 	tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len];
1334 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
1335 
1336 	DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, lconnp->conn_ixa,
1337 	    __dtrace_tcp_void_ip_t *, mp->b_rptr, tcp_t *, listener,
1338 	    __dtrace_tcp_tcph_t *, tcpha);
1339 
1340 	if (!(flags & TH_SYN)) {
1341 		if ((flags & TH_RST) || (flags & TH_URG)) {
1342 			freemsg(mp);
1343 			return;
1344 		}
1345 		if (flags & TH_ACK) {
1346 			/* Note this executes in listener's squeue */
1347 			tcp_xmit_listeners_reset(mp, ira, ipst, lconnp);
1348 			return;
1349 		}
1350 
1351 		freemsg(mp);
1352 		return;
1353 	}
1354 
1355 	if (listener->tcp_state != TCPS_LISTEN)
1356 		goto error2;
1357 
1358 	ASSERT(IPCL_IS_BOUND(lconnp));
1359 
1360 	mutex_enter(&listener->tcp_eager_lock);
1361 
1362 	/*
1363 	 * The system is under memory pressure, so we need to do our part
1364 	 * to relieve the pressure.  So we only accept new request if there
1365 	 * is nothing waiting to be accepted or waiting to complete the 3-way
1366 	 * handshake.  This means that busy listener will not get too many
1367 	 * new requests which they cannot handle in time while non-busy
1368 	 * listener is still functioning properly.
1369 	 */
1370 	if (tcps->tcps_reclaim && (listener->tcp_conn_req_cnt_q > 0 ||
1371 	    listener->tcp_conn_req_cnt_q0 > 0)) {
1372 		mutex_exit(&listener->tcp_eager_lock);
1373 		TCP_STAT(tcps, tcp_listen_mem_drop);
1374 		goto error2;
1375 	}
1376 
1377 	if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) {
1378 		mutex_exit(&listener->tcp_eager_lock);
1379 		TCP_STAT(tcps, tcp_listendrop);
1380 		TCPS_BUMP_MIB(tcps, tcpListenDrop);
1381 		if (lconnp->conn_debug) {
1382 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
1383 			    "tcp_input_listener: listen backlog (max=%d) "
1384 			    "overflow (%d pending) on %s",
1385 			    listener->tcp_conn_req_max,
1386 			    listener->tcp_conn_req_cnt_q,
1387 			    tcp_display(listener, NULL, DISP_PORT_ONLY));
1388 		}
1389 		goto error2;
1390 	}
1391 
1392 	if (listener->tcp_conn_req_cnt_q0 >=
1393 	    listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
1394 		/*
1395 		 * Q0 is full. Drop a pending half-open req from the queue
1396 		 * to make room for the new SYN req. Also mark the time we
1397 		 * drop a SYN.
1398 		 *
1399 		 * A more aggressive defense against SYN attack will
1400 		 * be to set the "tcp_syn_defense" flag now.
1401 		 */
1402 		TCP_STAT(tcps, tcp_listendropq0);
1403 		listener->tcp_last_rcv_lbolt = ddi_get_lbolt64();
1404 		if (!tcp_drop_q0(listener)) {
1405 			mutex_exit(&listener->tcp_eager_lock);
1406 			TCPS_BUMP_MIB(tcps, tcpListenDropQ0);
1407 			if (lconnp->conn_debug) {
1408 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
1409 				    "tcp_input_listener: listen half-open "
1410 				    "queue (max=%d) full (%d pending) on %s",
1411 				    tcps->tcps_conn_req_max_q0,
1412 				    listener->tcp_conn_req_cnt_q0,
1413 				    tcp_display(listener, NULL,
1414 				    DISP_PORT_ONLY));
1415 			}
1416 			goto error2;
1417 		}
1418 	}
1419 
1420 	/*
1421 	 * Enforce the limit set on the number of connections per listener.
1422 	 * Note that tlc_cnt starts with 1.  So need to add 1 to tlc_max
1423 	 * for comparison.
1424 	 */
1425 	if (listener->tcp_listen_cnt != NULL) {
1426 		tcp_listen_cnt_t *tlc = listener->tcp_listen_cnt;
1427 		int64_t now;
1428 
1429 		if (atomic_add_32_nv(&tlc->tlc_cnt, 1) > tlc->tlc_max + 1) {
1430 			mutex_exit(&listener->tcp_eager_lock);
1431 			now = ddi_get_lbolt64();
1432 			atomic_add_32(&tlc->tlc_cnt, -1);
1433 			TCP_STAT(tcps, tcp_listen_cnt_drop);
1434 			tlc->tlc_drop++;
1435 			if (now - tlc->tlc_report_time >
1436 			    MSEC_TO_TICK(TCP_TLC_REPORT_INTERVAL)) {
1437 				zcmn_err(lconnp->conn_zoneid, CE_WARN,
1438 				    "Listener (port %d) connection max (%u) "
1439 				    "reached: %u attempts dropped total\n",
1440 				    ntohs(listener->tcp_connp->conn_lport),
1441 				    tlc->tlc_max, tlc->tlc_drop);
1442 				tlc->tlc_report_time = now;
1443 			}
1444 			goto error2;
1445 		}
1446 		tlc_set = B_TRUE;
1447 	}
1448 
1449 	mutex_exit(&listener->tcp_eager_lock);
1450 
1451 	/*
1452 	 * IP sets ira_sqp to either the senders conn_sqp (for loopback)
1453 	 * or based on the ring (for packets from GLD). Otherwise it is
1454 	 * set based on lbolt i.e., a somewhat random number.
1455 	 */
1456 	ASSERT(ira->ira_sqp != NULL);
1457 	new_sqp = ira->ira_sqp;
1458 
1459 	econnp = (conn_t *)tcp_get_conn(arg2, tcps);
1460 	if (econnp == NULL)
1461 		goto error2;
1462 
1463 	ASSERT(econnp->conn_netstack == lconnp->conn_netstack);
1464 	econnp->conn_sqp = new_sqp;
1465 	econnp->conn_initial_sqp = new_sqp;
1466 	econnp->conn_ixa->ixa_sqp = new_sqp;
1467 
1468 	econnp->conn_fport = tcpha->tha_lport;
1469 	econnp->conn_lport = tcpha->tha_fport;
1470 
1471 	err = conn_inherit_parent(lconnp, econnp);
1472 	if (err != 0)
1473 		goto error3;
1474 
1475 	/* We already know the laddr of the new connection is ours */
1476 	econnp->conn_ixa->ixa_src_generation = ipst->ips_src_generation;
1477 
1478 	ASSERT(OK_32PTR(mp->b_rptr));
1479 	ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION ||
1480 	    IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
1481 
1482 	if (lconnp->conn_family == AF_INET) {
1483 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION);
1484 		tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira);
1485 	} else {
1486 		tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira);
1487 	}
1488 
1489 	if (tpi_mp == NULL)
1490 		goto error3;
1491 
1492 	eager = econnp->conn_tcp;
1493 	eager->tcp_detached = B_TRUE;
1494 	SOCK_CONNID_INIT(eager->tcp_connid);
1495 
1496 	/*
1497 	 * Initialize the eager's tcp_t and inherit some parameters from
1498 	 * the listener.
1499 	 */
1500 	tcp_init_values(eager, listener);
1501 
1502 	ASSERT((econnp->conn_ixa->ixa_flags &
1503 	    (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
1504 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) ==
1505 	    (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
1506 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO));
1507 
1508 	if (!tcps->tcps_dev_flow_ctl)
1509 		econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
1510 
1511 	/* Prepare for diffing against previous packets */
1512 	eager->tcp_recvifindex = 0;
1513 	eager->tcp_recvhops = 0xffffffffU;
1514 
1515 	if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) {
1516 		if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) ||
1517 		    IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) {
1518 			econnp->conn_incoming_ifindex = ifindex;
1519 			econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
1520 			econnp->conn_ixa->ixa_scopeid = ifindex;
1521 		}
1522 	}
1523 
1524 	if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) ==
1525 	    (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) &&
1526 	    tcps->tcps_rev_src_routes) {
1527 		ipha_t *ipha = (ipha_t *)mp->b_rptr;
1528 		ip_pkt_t *ipp = &econnp->conn_xmit_ipp;
1529 
1530 		/* Source routing option copyover (reverse it) */
1531 		err = ip_find_hdr_v4(ipha, ipp, B_TRUE);
1532 		if (err != 0) {
1533 			freemsg(tpi_mp);
1534 			goto error3;
1535 		}
1536 		ip_pkt_source_route_reverse_v4(ipp);
1537 	}
1538 
1539 	ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL);
1540 	ASSERT(!eager->tcp_tconnind_started);
1541 	/*
1542 	 * If the SYN came with a credential, it's a loopback packet or a
1543 	 * labeled packet; attach the credential to the TPI message.
1544 	 */
1545 	if (ira->ira_cred != NULL)
1546 		mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid);
1547 
1548 	eager->tcp_conn.tcp_eager_conn_ind = tpi_mp;
1549 	ASSERT(eager->tcp_ordrel_mp == NULL);
1550 
1551 	/* Inherit the listener's non-STREAMS flag */
1552 	if (IPCL_IS_NONSTR(lconnp)) {
1553 		econnp->conn_flags |= IPCL_NONSTR;
1554 		/* All non-STREAMS tcp_ts are sockets */
1555 		eager->tcp_issocket = B_TRUE;
1556 	} else {
1557 		/*
1558 		 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that
1559 		 * at close time, we will always have that to send up.
1560 		 * Otherwise, we need to do special handling in case the
1561 		 * allocation fails at that time.
1562 		 */
1563 		if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL)
1564 			goto error3;
1565 	}
1566 	/*
1567 	 * Now that the IP addresses and ports are setup in econnp we
1568 	 * can do the IPsec policy work.
1569 	 */
1570 	if (ira->ira_flags & IRAF_IPSEC_SECURE) {
1571 		if (lconnp->conn_policy != NULL) {
1572 			/*
1573 			 * Inherit the policy from the listener; use
1574 			 * actions from ira
1575 			 */
1576 			if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) {
1577 				CONN_DEC_REF(econnp);
1578 				freemsg(mp);
1579 				goto error3;
1580 			}
1581 		}
1582 	}
1583 
1584 	/*
1585 	 * tcp_set_destination() may set tcp_rwnd according to the route
1586 	 * metrics. If it does not, the eager's receive window will be set
1587 	 * to the listener's receive window later in this function.
1588 	 */
1589 	eager->tcp_rwnd = 0;
1590 
1591 	if (is_system_labeled()) {
1592 		ip_xmit_attr_t *ixa = econnp->conn_ixa;
1593 
1594 		ASSERT(ira->ira_tsl != NULL);
1595 		/* Discard any old label */
1596 		if (ixa->ixa_free_flags & IXA_FREE_TSL) {
1597 			ASSERT(ixa->ixa_tsl != NULL);
1598 			label_rele(ixa->ixa_tsl);
1599 			ixa->ixa_free_flags &= ~IXA_FREE_TSL;
1600 			ixa->ixa_tsl = NULL;
1601 		}
1602 		if ((lconnp->conn_mlp_type != mlptSingle ||
1603 		    lconnp->conn_mac_mode != CONN_MAC_DEFAULT) &&
1604 		    ira->ira_tsl != NULL) {
1605 			/*
1606 			 * If this is an MLP connection or a MAC-Exempt
1607 			 * connection with an unlabeled node, packets are to be
1608 			 * exchanged using the security label of the received
1609 			 * SYN packet instead of the server application's label.
1610 			 * tsol_check_dest called from ip_set_destination
1611 			 * might later update TSF_UNLABELED by replacing
1612 			 * ixa_tsl with a new label.
1613 			 */
1614 			label_hold(ira->ira_tsl);
1615 			ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl);
1616 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
1617 			    econnp, ts_label_t *, ixa->ixa_tsl)
1618 		} else {
1619 			ixa->ixa_tsl = crgetlabel(econnp->conn_cred);
1620 			DTRACE_PROBE2(syn_accept, conn_t *,
1621 			    econnp, ts_label_t *, ixa->ixa_tsl)
1622 		}
1623 		/*
1624 		 * conn_connect() called from tcp_set_destination will verify
1625 		 * the destination is allowed to receive packets at the
1626 		 * security label of the SYN-ACK we are generating. As part of
1627 		 * that, tsol_check_dest() may create a new effective label for
1628 		 * this connection.
1629 		 * Finally conn_connect() will call conn_update_label.
1630 		 * All that remains for TCP to do is to call
1631 		 * conn_build_hdr_template which is done as part of
1632 		 * tcp_set_destination.
1633 		 */
1634 	}
1635 
1636 	/*
1637 	 * Since we will clear tcp_listener before we clear tcp_detached
1638 	 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress
1639 	 * so we can tell a TCP_IS_DETACHED_NONEAGER apart.
1640 	 */
1641 	eager->tcp_hard_binding = B_TRUE;
1642 
1643 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
1644 	    TCP_BIND_HASH(econnp->conn_lport)], eager, 0);
1645 
1646 	CL_INET_CONNECT(econnp, B_FALSE, err);
1647 	if (err != 0) {
1648 		tcp_bind_hash_remove(eager);
1649 		goto error3;
1650 	}
1651 
1652 	SOCK_CONNID_BUMP(eager->tcp_connid);
1653 
1654 	/*
1655 	 * Adapt our mss, ttl, ... based on the remote address.
1656 	 */
1657 
1658 	if (tcp_set_destination(eager) != 0) {
1659 		TCPS_BUMP_MIB(tcps, tcpAttemptFails);
1660 		/* Undo the bind_hash_insert */
1661 		tcp_bind_hash_remove(eager);
1662 		goto error3;
1663 	}
1664 
1665 	/* Process all TCP options. */
1666 	tcp_process_options(eager, tcpha);
1667 
1668 	/* Is the other end ECN capable? */
1669 	if (tcps->tcps_ecn_permitted >= 1 &&
1670 	    (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
1671 		eager->tcp_ecn_ok = B_TRUE;
1672 	}
1673 
1674 	/*
1675 	 * The listener's conn_rcvbuf should be the default window size or a
1676 	 * window size changed via SO_RCVBUF option. First round up the
1677 	 * eager's tcp_rwnd to the nearest MSS. Then find out the window
1678 	 * scale option value if needed. Call tcp_rwnd_set() to finish the
1679 	 * setting.
1680 	 *
1681 	 * Note if there is a rpipe metric associated with the remote host,
1682 	 * we should not inherit receive window size from listener.
1683 	 */
1684 	eager->tcp_rwnd = MSS_ROUNDUP(
1685 	    (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf :
1686 	    eager->tcp_rwnd), eager->tcp_mss);
1687 	if (eager->tcp_snd_ws_ok)
1688 		tcp_set_ws_value(eager);
1689 	/*
1690 	 * Note that this is the only place tcp_rwnd_set() is called for
1691 	 * accepting a connection.  We need to call it here instead of
1692 	 * after the 3-way handshake because we need to tell the other
1693 	 * side our rwnd in the SYN-ACK segment.
1694 	 */
1695 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
1696 
1697 	ASSERT(eager->tcp_connp->conn_rcvbuf != 0 &&
1698 	    eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd);
1699 
1700 	ASSERT(econnp->conn_rcvbuf != 0 &&
1701 	    econnp->conn_rcvbuf == eager->tcp_rwnd);
1702 
1703 	/* Put a ref on the listener for the eager. */
1704 	CONN_INC_REF(lconnp);
1705 	mutex_enter(&listener->tcp_eager_lock);
1706 	listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
1707 	eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0;
1708 	listener->tcp_eager_next_q0 = eager;
1709 	eager->tcp_eager_prev_q0 = listener;
1710 
1711 	/* Set tcp_listener before adding it to tcp_conn_fanout */
1712 	eager->tcp_listener = listener;
1713 	eager->tcp_saved_listener = listener;
1714 
1715 	/*
1716 	 * Set tcp_listen_cnt so that when the connection is done, the counter
1717 	 * is decremented.
1718 	 */
1719 	eager->tcp_listen_cnt = listener->tcp_listen_cnt;
1720 
1721 	/*
1722 	 * Tag this detached tcp vector for later retrieval
1723 	 * by our listener client in tcp_accept().
1724 	 */
1725 	eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum;
1726 	listener->tcp_conn_req_cnt_q0++;
1727 	if (++listener->tcp_conn_req_seqnum == -1) {
1728 		/*
1729 		 * -1 is "special" and defined in TPI as something
1730 		 * that should never be used in T_CONN_IND
1731 		 */
1732 		++listener->tcp_conn_req_seqnum;
1733 	}
1734 	mutex_exit(&listener->tcp_eager_lock);
1735 
1736 	if (listener->tcp_syn_defense) {
1737 		/* Don't drop the SYN that comes from a good IP source */
1738 		ipaddr_t *addr_cache;
1739 
1740 		addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
1741 		if (addr_cache != NULL && econnp->conn_faddr_v4 ==
1742 		    addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) {
1743 			eager->tcp_dontdrop = B_TRUE;
1744 		}
1745 	}
1746 
1747 	/*
1748 	 * We need to insert the eager in its own perimeter but as soon
1749 	 * as we do that, we expose the eager to the classifier and
1750 	 * should not touch any field outside the eager's perimeter.
1751 	 * So do all the work necessary before inserting the eager
1752 	 * in its own perimeter. Be optimistic that conn_connect()
1753 	 * will succeed but undo everything if it fails.
1754 	 */
1755 	seg_seq = ntohl(tcpha->tha_seq);
1756 	eager->tcp_irs = seg_seq;
1757 	eager->tcp_rack = seg_seq;
1758 	eager->tcp_rnxt = seg_seq + 1;
1759 	eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt);
1760 	TCPS_BUMP_MIB(tcps, tcpPassiveOpens);
1761 	eager->tcp_state = TCPS_SYN_RCVD;
1762 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1763 	    econnp->conn_ixa, void, NULL, tcp_t *, eager, void, NULL,
1764 	    int32_t, TCPS_LISTEN);
1765 
1766 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
1767 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
1768 	if (mp1 == NULL) {
1769 		/*
1770 		 * Increment the ref count as we are going to
1771 		 * enqueueing an mp in squeue
1772 		 */
1773 		CONN_INC_REF(econnp);
1774 		goto error;
1775 	}
1776 
1777 	/*
1778 	 * We need to start the rto timer. In normal case, we start
1779 	 * the timer after sending the packet on the wire (or at
1780 	 * least believing that packet was sent by waiting for
1781 	 * conn_ip_output() to return). Since this is the first packet
1782 	 * being sent on the wire for the eager, our initial tcp_rto
1783 	 * is at least tcp_rexmit_interval_min which is a fairly
1784 	 * large value to allow the algorithm to adjust slowly to large
1785 	 * fluctuations of RTT during first few transmissions.
1786 	 *
1787 	 * Starting the timer first and then sending the packet in this
1788 	 * case shouldn't make much difference since tcp_rexmit_interval_min
1789 	 * is of the order of several 100ms and starting the timer
1790 	 * first and then sending the packet will result in difference
1791 	 * of few micro seconds.
1792 	 *
1793 	 * Without this optimization, we are forced to hold the fanout
1794 	 * lock across the ipcl_bind_insert() and sending the packet
1795 	 * so that we don't race against an incoming packet (maybe RST)
1796 	 * for this eager.
1797 	 *
1798 	 * It is necessary to acquire an extra reference on the eager
1799 	 * at this point and hold it until after tcp_send_data() to
1800 	 * ensure against an eager close race.
1801 	 */
1802 
1803 	CONN_INC_REF(econnp);
1804 
1805 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
1806 
1807 	/*
1808 	 * Insert the eager in its own perimeter now. We are ready to deal
1809 	 * with any packets on eager.
1810 	 */
1811 	if (ipcl_conn_insert(econnp) != 0)
1812 		goto error;
1813 
1814 	ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp);
1815 	freemsg(mp);
1816 	/*
1817 	 * Send the SYN-ACK. Use the right squeue so that conn_ixa is
1818 	 * only used by one thread at a time.
1819 	 */
1820 	if (econnp->conn_sqp == lconnp->conn_sqp) {
1821 		DTRACE_TCP5(send, mblk_t *, NULL, ip_xmit_attr_t *,
1822 		    econnp->conn_ixa, __dtrace_tcp_void_ip_t *, mp1->b_rptr,
1823 		    tcp_t *, eager, __dtrace_tcp_tcph_t *,
1824 		    &mp1->b_rptr[econnp->conn_ixa->ixa_ip_hdr_length]);
1825 		(void) conn_ip_output(mp1, econnp->conn_ixa);
1826 		CONN_DEC_REF(econnp);
1827 	} else {
1828 		SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_send_synack,
1829 		    econnp, NULL, SQ_PROCESS, SQTAG_TCP_SEND_SYNACK);
1830 	}
1831 	return;
1832 error:
1833 	freemsg(mp1);
1834 	eager->tcp_closemp_used = B_TRUE;
1835 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1836 	mp1 = &eager->tcp_closemp;
1837 	SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill,
1838 	    econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2);
1839 
1840 	/*
1841 	 * If a connection already exists, send the mp to that connections so
1842 	 * that it can be appropriately dealt with.
1843 	 */
1844 	ipst = tcps->tcps_netstack->netstack_ip;
1845 
1846 	if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) {
1847 		if (!IPCL_IS_CONNECTED(econnp)) {
1848 			/*
1849 			 * Something bad happened. ipcl_conn_insert()
1850 			 * failed because a connection already existed
1851 			 * in connected hash but we can't find it
1852 			 * anymore (someone blew it away). Just
1853 			 * free this message and hopefully remote
1854 			 * will retransmit at which time the SYN can be
1855 			 * treated as a new connection or dealth with
1856 			 * a TH_RST if a connection already exists.
1857 			 */
1858 			CONN_DEC_REF(econnp);
1859 			freemsg(mp);
1860 		} else {
1861 			SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data,
1862 			    econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1);
1863 		}
1864 	} else {
1865 		/* Nobody wants this packet */
1866 		freemsg(mp);
1867 	}
1868 	return;
1869 error3:
1870 	CONN_DEC_REF(econnp);
1871 error2:
1872 	freemsg(mp);
1873 	if (tlc_set)
1874 		atomic_add_32(&listener->tcp_listen_cnt->tlc_cnt, -1);
1875 }
1876 
1877 /*
1878  * In an ideal case of vertical partition in NUMA architecture, its
1879  * beneficial to have the listener and all the incoming connections
1880  * tied to the same squeue. The other constraint is that incoming
1881  * connections should be tied to the squeue attached to interrupted
1882  * CPU for obvious locality reason so this leaves the listener to
1883  * be tied to the same squeue. Our only problem is that when listener
1884  * is binding, the CPU that will get interrupted by the NIC whose
1885  * IP address the listener is binding to is not even known. So
1886  * the code below allows us to change that binding at the time the
1887  * CPU is interrupted by virtue of incoming connection's squeue.
1888  *
1889  * This is usefull only in case of a listener bound to a specific IP
1890  * address. For other kind of listeners, they get bound the
1891  * very first time and there is no attempt to rebind them.
1892  */
1893 void
1894 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2,
1895     ip_recv_attr_t *ira)
1896 {
1897 	conn_t		*connp = (conn_t *)arg;
1898 	squeue_t	*sqp = (squeue_t *)arg2;
1899 	squeue_t	*new_sqp;
1900 	uint32_t	conn_flags;
1901 
1902 	/*
1903 	 * IP sets ira_sqp to either the senders conn_sqp (for loopback)
1904 	 * or based on the ring (for packets from GLD). Otherwise it is
1905 	 * set based on lbolt i.e., a somewhat random number.
1906 	 */
1907 	ASSERT(ira->ira_sqp != NULL);
1908 	new_sqp = ira->ira_sqp;
1909 
1910 	if (connp->conn_fanout == NULL)
1911 		goto done;
1912 
1913 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
1914 		mutex_enter(&connp->conn_fanout->connf_lock);
1915 		mutex_enter(&connp->conn_lock);
1916 		/*
1917 		 * No one from read or write side can access us now
1918 		 * except for already queued packets on this squeue.
1919 		 * But since we haven't changed the squeue yet, they
1920 		 * can't execute. If they are processed after we have
1921 		 * changed the squeue, they are sent back to the
1922 		 * correct squeue down below.
1923 		 * But a listner close can race with processing of
1924 		 * incoming SYN. If incoming SYN processing changes
1925 		 * the squeue then the listener close which is waiting
1926 		 * to enter the squeue would operate on the wrong
1927 		 * squeue. Hence we don't change the squeue here unless
1928 		 * the refcount is exactly the minimum refcount. The
1929 		 * minimum refcount of 4 is counted as - 1 each for
1930 		 * TCP and IP, 1 for being in the classifier hash, and
1931 		 * 1 for the mblk being processed.
1932 		 */
1933 
1934 		if (connp->conn_ref != 4 ||
1935 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
1936 			mutex_exit(&connp->conn_lock);
1937 			mutex_exit(&connp->conn_fanout->connf_lock);
1938 			goto done;
1939 		}
1940 		if (connp->conn_sqp != new_sqp) {
1941 			while (connp->conn_sqp != new_sqp)
1942 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
1943 			/* No special MT issues for outbound ixa_sqp hint */
1944 			connp->conn_ixa->ixa_sqp = new_sqp;
1945 		}
1946 
1947 		do {
1948 			conn_flags = connp->conn_flags;
1949 			conn_flags |= IPCL_FULLY_BOUND;
1950 			(void) cas32(&connp->conn_flags, connp->conn_flags,
1951 			    conn_flags);
1952 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
1953 
1954 		mutex_exit(&connp->conn_fanout->connf_lock);
1955 		mutex_exit(&connp->conn_lock);
1956 
1957 		/*
1958 		 * Assume we have picked a good squeue for the listener. Make
1959 		 * subsequent SYNs not try to change the squeue.
1960 		 */
1961 		connp->conn_recv = tcp_input_listener;
1962 	}
1963 
1964 done:
1965 	if (connp->conn_sqp != sqp) {
1966 		CONN_INC_REF(connp);
1967 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
1968 		    ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND);
1969 	} else {
1970 		tcp_input_listener(connp, mp, sqp, ira);
1971 	}
1972 }
1973 
1974 /*
1975  * Send up all messages queued on tcp_rcv_list.
1976  */
1977 uint_t
1978 tcp_rcv_drain(tcp_t *tcp)
1979 {
1980 	mblk_t *mp;
1981 	uint_t ret = 0;
1982 #ifdef DEBUG
1983 	uint_t cnt = 0;
1984 #endif
1985 	queue_t	*q = tcp->tcp_connp->conn_rq;
1986 
1987 	/* Can't drain on an eager connection */
1988 	if (tcp->tcp_listener != NULL)
1989 		return (ret);
1990 
1991 	/* Can't be a non-STREAMS connection */
1992 	ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1993 
1994 	/* No need for the push timer now. */
1995 	if (tcp->tcp_push_tid != 0) {
1996 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
1997 		tcp->tcp_push_tid = 0;
1998 	}
1999 
2000 	/*
2001 	 * Handle two cases here: we are currently fused or we were
2002 	 * previously fused and have some urgent data to be delivered
2003 	 * upstream.  The latter happens because we either ran out of
2004 	 * memory or were detached and therefore sending the SIGURG was
2005 	 * deferred until this point.  In either case we pass control
2006 	 * over to tcp_fuse_rcv_drain() since it may need to complete
2007 	 * some work.
2008 	 */
2009 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
2010 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
2011 		    &tcp->tcp_fused_sigurg_mp))
2012 			return (ret);
2013 	}
2014 
2015 	while ((mp = tcp->tcp_rcv_list) != NULL) {
2016 		tcp->tcp_rcv_list = mp->b_next;
2017 		mp->b_next = NULL;
2018 #ifdef DEBUG
2019 		cnt += msgdsize(mp);
2020 #endif
2021 		putnext(q, mp);
2022 	}
2023 #ifdef DEBUG
2024 	ASSERT(cnt == tcp->tcp_rcv_cnt);
2025 #endif
2026 	tcp->tcp_rcv_last_head = NULL;
2027 	tcp->tcp_rcv_last_tail = NULL;
2028 	tcp->tcp_rcv_cnt = 0;
2029 
2030 	if (canputnext(q))
2031 		return (tcp_rwnd_reopen(tcp));
2032 
2033 	return (ret);
2034 }
2035 
2036 /*
2037  * Queue data on tcp_rcv_list which is a b_next chain.
2038  * tcp_rcv_last_head/tail is the last element of this chain.
2039  * Each element of the chain is a b_cont chain.
2040  *
2041  * M_DATA messages are added to the current element.
2042  * Other messages are added as new (b_next) elements.
2043  */
2044 void
2045 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr)
2046 {
2047 	ASSERT(seg_len == msgdsize(mp));
2048 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
2049 
2050 	if (is_system_labeled()) {
2051 		ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL);
2052 		/*
2053 		 * Provide for protocols above TCP such as RPC. NOPID leaves
2054 		 * db_cpid unchanged.
2055 		 * The cred could have already been set.
2056 		 */
2057 		if (cr != NULL)
2058 			mblk_setcred(mp, cr, NOPID);
2059 	}
2060 
2061 	if (tcp->tcp_rcv_list == NULL) {
2062 		ASSERT(tcp->tcp_rcv_last_head == NULL);
2063 		tcp->tcp_rcv_list = mp;
2064 		tcp->tcp_rcv_last_head = mp;
2065 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
2066 		tcp->tcp_rcv_last_tail->b_cont = mp;
2067 	} else {
2068 		tcp->tcp_rcv_last_head->b_next = mp;
2069 		tcp->tcp_rcv_last_head = mp;
2070 	}
2071 
2072 	while (mp->b_cont)
2073 		mp = mp->b_cont;
2074 
2075 	tcp->tcp_rcv_last_tail = mp;
2076 	tcp->tcp_rcv_cnt += seg_len;
2077 	tcp->tcp_rwnd -= seg_len;
2078 }
2079 
2080 /* Generate an ACK-only (no data) segment for a TCP endpoint */
2081 mblk_t *
2082 tcp_ack_mp(tcp_t *tcp)
2083 {
2084 	uint32_t	seq_no;
2085 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2086 	conn_t		*connp = tcp->tcp_connp;
2087 
2088 	/*
2089 	 * There are a few cases to be considered while setting the sequence no.
2090 	 * Essentially, we can come here while processing an unacceptable pkt
2091 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
2092 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
2093 	 * If we are here for a zero window probe, stick with suna. In all
2094 	 * other cases, we check if suna + swnd encompasses snxt and set
2095 	 * the sequence number to snxt, if so. If snxt falls outside the
2096 	 * window (the receiver probably shrunk its window), we will go with
2097 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
2098 	 * receiver.
2099 	 */
2100 	if (tcp->tcp_zero_win_probe) {
2101 		seq_no = tcp->tcp_suna;
2102 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
2103 		ASSERT(tcp->tcp_swnd == 0);
2104 		seq_no = tcp->tcp_snxt;
2105 	} else {
2106 		seq_no = SEQ_GT(tcp->tcp_snxt,
2107 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
2108 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
2109 	}
2110 
2111 	if (tcp->tcp_valid_bits) {
2112 		/*
2113 		 * For the complex case where we have to send some
2114 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
2115 		 */
2116 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
2117 		    NULL, B_FALSE));
2118 	} else {
2119 		/* Generate a simple ACK */
2120 		int	data_length;
2121 		uchar_t	*rptr;
2122 		tcpha_t	*tcpha;
2123 		mblk_t	*mp1;
2124 		int32_t	total_hdr_len;
2125 		int32_t	tcp_hdr_len;
2126 		int32_t	num_sack_blk = 0;
2127 		int32_t sack_opt_len;
2128 		ip_xmit_attr_t *ixa = connp->conn_ixa;
2129 
2130 		/*
2131 		 * Allocate space for TCP + IP headers
2132 		 * and link-level header
2133 		 */
2134 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
2135 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
2136 			    tcp->tcp_num_sack_blk);
2137 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
2138 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
2139 			total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len;
2140 			tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len;
2141 		} else {
2142 			total_hdr_len = connp->conn_ht_iphc_len;
2143 			tcp_hdr_len = connp->conn_ht_ulp_len;
2144 		}
2145 		mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
2146 		if (!mp1)
2147 			return (NULL);
2148 
2149 		/* Update the latest receive window size in TCP header. */
2150 		tcp->tcp_tcpha->tha_win =
2151 		    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
2152 		/* copy in prototype TCP + IP header */
2153 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
2154 		mp1->b_rptr = rptr;
2155 		mp1->b_wptr = rptr + total_hdr_len;
2156 		bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len);
2157 
2158 		tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length];
2159 
2160 		/* Set the TCP sequence number. */
2161 		tcpha->tha_seq = htonl(seq_no);
2162 
2163 		/* Set up the TCP flag field. */
2164 		tcpha->tha_flags = (uchar_t)TH_ACK;
2165 		if (tcp->tcp_ecn_echo_on)
2166 			tcpha->tha_flags |= TH_ECE;
2167 
2168 		tcp->tcp_rack = tcp->tcp_rnxt;
2169 		tcp->tcp_rack_cnt = 0;
2170 
2171 		/* fill in timestamp option if in use */
2172 		if (tcp->tcp_snd_ts_ok) {
2173 			uint32_t llbolt = (uint32_t)LBOLT_FASTPATH;
2174 
2175 			U32_TO_BE32(llbolt,
2176 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+4);
2177 			U32_TO_BE32(tcp->tcp_ts_recent,
2178 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+8);
2179 		}
2180 
2181 		/* Fill in SACK options */
2182 		if (num_sack_blk > 0) {
2183 			uchar_t *wptr = (uchar_t *)tcpha +
2184 			    connp->conn_ht_ulp_len;
2185 			sack_blk_t *tmp;
2186 			int32_t	i;
2187 
2188 			wptr[0] = TCPOPT_NOP;
2189 			wptr[1] = TCPOPT_NOP;
2190 			wptr[2] = TCPOPT_SACK;
2191 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
2192 			    sizeof (sack_blk_t);
2193 			wptr += TCPOPT_REAL_SACK_LEN;
2194 
2195 			tmp = tcp->tcp_sack_list;
2196 			for (i = 0; i < num_sack_blk; i++) {
2197 				U32_TO_BE32(tmp[i].begin, wptr);
2198 				wptr += sizeof (tcp_seq);
2199 				U32_TO_BE32(tmp[i].end, wptr);
2200 				wptr += sizeof (tcp_seq);
2201 			}
2202 			tcpha->tha_offset_and_reserved +=
2203 			    ((num_sack_blk * 2 + 1) << 4);
2204 		}
2205 
2206 		ixa->ixa_pktlen = total_hdr_len;
2207 
2208 		if (ixa->ixa_flags & IXAF_IS_IPV4) {
2209 			((ipha_t *)rptr)->ipha_length = htons(total_hdr_len);
2210 		} else {
2211 			ip6_t *ip6 = (ip6_t *)rptr;
2212 
2213 			ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN);
2214 		}
2215 
2216 		/*
2217 		 * Prime pump for checksum calculation in IP.  Include the
2218 		 * adjustment for a source route if any.
2219 		 */
2220 		data_length = tcp_hdr_len + connp->conn_sum;
2221 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
2222 		tcpha->tha_sum = htons(data_length);
2223 
2224 		if (tcp->tcp_ip_forward_progress) {
2225 			tcp->tcp_ip_forward_progress = B_FALSE;
2226 			connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF;
2227 		} else {
2228 			connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF;
2229 		}
2230 		return (mp1);
2231 	}
2232 }
2233 
2234 /*
2235  * Dummy socket upcalls for if/when the conn_t gets detached from a
2236  * direct-callback sonode via a user-driven close().  Easy to catch with
2237  * DTrace FBT, and should be mostly harmless.
2238  */
2239 
2240 /* ARGSUSED */
2241 static sock_upper_handle_t
2242 tcp_dummy_newconn(sock_upper_handle_t x, sock_lower_handle_t y,
2243     sock_downcalls_t *z, cred_t *cr, pid_t pid, sock_upcalls_t **ignored)
2244 {
2245 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2246 	return (NULL);
2247 }
2248 
2249 /* ARGSUSED */
2250 static void
2251 tcp_dummy_connected(sock_upper_handle_t x, sock_connid_t y, cred_t *cr,
2252     pid_t pid)
2253 {
2254 	ASSERT(x == NULL);
2255 	/* Normally we'd crhold(cr) and attach it to socket state. */
2256 	/* LINTED */
2257 }
2258 
2259 /* ARGSUSED */
2260 static int
2261 tcp_dummy_disconnected(sock_upper_handle_t x, sock_connid_t y, int blah)
2262 {
2263 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2264 	return (-1);
2265 }
2266 
2267 /* ARGSUSED */
2268 static void
2269 tcp_dummy_opctl(sock_upper_handle_t x, sock_opctl_action_t y, uintptr_t blah)
2270 {
2271 	ASSERT(x == NULL);
2272 	/* We really want this one to be a harmless NOP for now. */
2273 	/* LINTED */
2274 }
2275 
2276 /* ARGSUSED */
2277 static ssize_t
2278 tcp_dummy_recv(sock_upper_handle_t x, mblk_t *mp, size_t len, int flags,
2279     int *error, boolean_t *push)
2280 {
2281 	ASSERT(x == NULL);
2282 
2283 	/*
2284 	 * Consume the message, set ESHUTDOWN, and return an error.
2285 	 * Nobody's home!
2286 	 */
2287 	freemsg(mp);
2288 	*error = ESHUTDOWN;
2289 	return (-1);
2290 }
2291 
2292 /* ARGSUSED */
2293 static void
2294 tcp_dummy_set_proto_props(sock_upper_handle_t x, struct sock_proto_props *y)
2295 {
2296 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2297 }
2298 
2299 /* ARGSUSED */
2300 static void
2301 tcp_dummy_txq_full(sock_upper_handle_t x, boolean_t y)
2302 {
2303 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2304 }
2305 
2306 /* ARGSUSED */
2307 static void
2308 tcp_dummy_signal_oob(sock_upper_handle_t x, ssize_t len)
2309 {
2310 	ASSERT(x == NULL);
2311 	/* Otherwise, this would signal socket state about OOB data. */
2312 }
2313 
2314 /* ARGSUSED */
2315 static void
2316 tcp_dummy_set_error(sock_upper_handle_t x, int err)
2317 {
2318 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2319 }
2320 
2321 /* ARGSUSED */
2322 static void
2323 tcp_dummy_onearg(sock_upper_handle_t x)
2324 {
2325 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2326 }
2327 
2328 static sock_upcalls_t tcp_dummy_upcalls = {
2329 	tcp_dummy_newconn,
2330 	tcp_dummy_connected,
2331 	tcp_dummy_disconnected,
2332 	tcp_dummy_opctl,
2333 	tcp_dummy_recv,
2334 	tcp_dummy_set_proto_props,
2335 	tcp_dummy_txq_full,
2336 	tcp_dummy_signal_oob,
2337 	tcp_dummy_onearg,
2338 	tcp_dummy_set_error,
2339 	tcp_dummy_onearg
2340 };
2341 
2342 /*
2343  * Handle M_DATA messages from IP. Its called directly from IP via
2344  * squeue for received IP packets.
2345  *
2346  * The first argument is always the connp/tcp to which the mp belongs.
2347  * There are no exceptions to this rule. The caller has already put
2348  * a reference on this connp/tcp and once tcp_input_data() returns,
2349  * the squeue will do the refrele.
2350  *
2351  * The TH_SYN for the listener directly go to tcp_input_listener via
2352  * squeue. ICMP errors go directly to tcp_icmp_input().
2353  *
2354  * sqp: NULL = recursive, sqp != NULL means called from squeue
2355  */
2356 void
2357 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
2358 {
2359 	int32_t		bytes_acked;
2360 	int32_t		gap;
2361 	mblk_t		*mp1;
2362 	uint_t		flags;
2363 	uint32_t	new_swnd = 0;
2364 	uchar_t		*iphdr;
2365 	uchar_t		*rptr;
2366 	int32_t		rgap;
2367 	uint32_t	seg_ack;
2368 	int		seg_len;
2369 	uint_t		ip_hdr_len;
2370 	uint32_t	seg_seq;
2371 	tcpha_t		*tcpha;
2372 	int		urp;
2373 	tcp_opt_t	tcpopt;
2374 	ip_pkt_t	ipp;
2375 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
2376 	uint32_t	cwnd;
2377 	uint32_t	add;
2378 	int		npkt;
2379 	int		mss;
2380 	conn_t		*connp = (conn_t *)arg;
2381 	squeue_t	*sqp = (squeue_t *)arg2;
2382 	tcp_t		*tcp = connp->conn_tcp;
2383 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2384 	sock_upcalls_t	*sockupcalls;
2385 
2386 	/*
2387 	 * RST from fused tcp loopback peer should trigger an unfuse.
2388 	 */
2389 	if (tcp->tcp_fused) {
2390 		TCP_STAT(tcps, tcp_fusion_aborted);
2391 		tcp_unfuse(tcp);
2392 	}
2393 
2394 	iphdr = mp->b_rptr;
2395 	rptr = mp->b_rptr;
2396 	ASSERT(OK_32PTR(rptr));
2397 
2398 	ip_hdr_len = ira->ira_ip_hdr_length;
2399 	if (connp->conn_recv_ancillary.crb_all != 0) {
2400 		/*
2401 		 * Record packet information in the ip_pkt_t
2402 		 */
2403 		ipp.ipp_fields = 0;
2404 		if (ira->ira_flags & IRAF_IS_IPV4) {
2405 			(void) ip_find_hdr_v4((ipha_t *)rptr, &ipp,
2406 			    B_FALSE);
2407 		} else {
2408 			uint8_t nexthdrp;
2409 
2410 			/*
2411 			 * IPv6 packets can only be received by applications
2412 			 * that are prepared to receive IPv6 addresses.
2413 			 * The IP fanout must ensure this.
2414 			 */
2415 			ASSERT(connp->conn_family == AF_INET6);
2416 
2417 			(void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp,
2418 			    &nexthdrp);
2419 			ASSERT(nexthdrp == IPPROTO_TCP);
2420 
2421 			/* Could have caused a pullup? */
2422 			iphdr = mp->b_rptr;
2423 			rptr = mp->b_rptr;
2424 		}
2425 	}
2426 	ASSERT(DB_TYPE(mp) == M_DATA);
2427 	ASSERT(mp->b_next == NULL);
2428 
2429 	tcpha = (tcpha_t *)&rptr[ip_hdr_len];
2430 	seg_seq = ntohl(tcpha->tha_seq);
2431 	seg_ack = ntohl(tcpha->tha_ack);
2432 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
2433 	seg_len = (int)(mp->b_wptr - rptr) -
2434 	    (ip_hdr_len + TCP_HDR_LENGTH(tcpha));
2435 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
2436 		do {
2437 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
2438 			    (uintptr_t)INT_MAX);
2439 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
2440 		} while ((mp1 = mp1->b_cont) != NULL &&
2441 		    mp1->b_datap->db_type == M_DATA);
2442 	}
2443 
2444 	DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, connp->conn_ixa,
2445 	    __dtrace_tcp_void_ip_t *, iphdr, tcp_t *, tcp,
2446 	    __dtrace_tcp_tcph_t *, tcpha);
2447 
2448 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
2449 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
2450 		    seg_len, tcpha, ira);
2451 		return;
2452 	}
2453 
2454 	if (sqp != NULL) {
2455 		/*
2456 		 * This is the correct place to update tcp_last_recv_time. Note
2457 		 * that it is also updated for tcp structure that belongs to
2458 		 * global and listener queues which do not really need updating.
2459 		 * But that should not cause any harm.  And it is updated for
2460 		 * all kinds of incoming segments, not only for data segments.
2461 		 */
2462 		tcp->tcp_last_recv_time = LBOLT_FASTPATH;
2463 	}
2464 
2465 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
2466 
2467 	BUMP_LOCAL(tcp->tcp_ibsegs);
2468 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
2469 
2470 	if ((flags & TH_URG) && sqp != NULL) {
2471 		/*
2472 		 * TCP can't handle urgent pointers that arrive before
2473 		 * the connection has been accept()ed since it can't
2474 		 * buffer OOB data.  Discard segment if this happens.
2475 		 *
2476 		 * We can't just rely on a non-null tcp_listener to indicate
2477 		 * that the accept() has completed since unlinking of the
2478 		 * eager and completion of the accept are not atomic.
2479 		 * tcp_detached, when it is not set (B_FALSE) indicates
2480 		 * that the accept() has completed.
2481 		 *
2482 		 * Nor can it reassemble urgent pointers, so discard
2483 		 * if it's not the next segment expected.
2484 		 *
2485 		 * Otherwise, collapse chain into one mblk (discard if
2486 		 * that fails).  This makes sure the headers, retransmitted
2487 		 * data, and new data all are in the same mblk.
2488 		 */
2489 		ASSERT(mp != NULL);
2490 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
2491 			freemsg(mp);
2492 			return;
2493 		}
2494 		/* Update pointers into message */
2495 		iphdr = rptr = mp->b_rptr;
2496 		tcpha = (tcpha_t *)&rptr[ip_hdr_len];
2497 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
2498 			/*
2499 			 * Since we can't handle any data with this urgent
2500 			 * pointer that is out of sequence, we expunge
2501 			 * the data.  This allows us to still register
2502 			 * the urgent mark and generate the M_PCSIG,
2503 			 * which we can do.
2504 			 */
2505 			mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha);
2506 			seg_len = 0;
2507 		}
2508 	}
2509 
2510 	sockupcalls = connp->conn_upcalls;
2511 	/* A conn_t may have belonged to a now-closed socket.  Be careful. */
2512 	if (sockupcalls == NULL)
2513 		sockupcalls = &tcp_dummy_upcalls;
2514 
2515 	switch (tcp->tcp_state) {
2516 	case TCPS_SYN_SENT:
2517 		if (connp->conn_final_sqp == NULL &&
2518 		    tcp_outbound_squeue_switch && sqp != NULL) {
2519 			ASSERT(connp->conn_initial_sqp == connp->conn_sqp);
2520 			connp->conn_final_sqp = sqp;
2521 			if (connp->conn_final_sqp != connp->conn_sqp) {
2522 				DTRACE_PROBE1(conn__final__sqp__switch,
2523 				    conn_t *, connp);
2524 				CONN_INC_REF(connp);
2525 				SQUEUE_SWITCH(connp, connp->conn_final_sqp);
2526 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2527 				    tcp_input_data, connp, ira, ip_squeue_flag,
2528 				    SQTAG_CONNECT_FINISH);
2529 				return;
2530 			}
2531 			DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp);
2532 		}
2533 		if (flags & TH_ACK) {
2534 			/*
2535 			 * Note that our stack cannot send data before a
2536 			 * connection is established, therefore the
2537 			 * following check is valid.  Otherwise, it has
2538 			 * to be changed.
2539 			 */
2540 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
2541 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
2542 				freemsg(mp);
2543 				if (flags & TH_RST)
2544 					return;
2545 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
2546 				    tcp, seg_ack, 0, TH_RST);
2547 				return;
2548 			}
2549 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
2550 		}
2551 		if (flags & TH_RST) {
2552 			if (flags & TH_ACK) {
2553 				DTRACE_TCP5(connect__refused, mblk_t *, NULL,
2554 				    ip_xmit_attr_t *, connp->conn_ixa,
2555 				    void_ip_t *, iphdr, tcp_t *, tcp,
2556 				    tcph_t *, tcpha);
2557 				(void) tcp_clean_death(tcp, ECONNREFUSED);
2558 			}
2559 			freemsg(mp);
2560 			return;
2561 		}
2562 		if (!(flags & TH_SYN)) {
2563 			freemsg(mp);
2564 			return;
2565 		}
2566 
2567 		/* Process all TCP options. */
2568 		tcp_process_options(tcp, tcpha);
2569 		/*
2570 		 * The following changes our rwnd to be a multiple of the
2571 		 * MIN(peer MSS, our MSS) for performance reason.
2572 		 */
2573 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf,
2574 		    tcp->tcp_mss));
2575 
2576 		/* Is the other end ECN capable? */
2577 		if (tcp->tcp_ecn_ok) {
2578 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
2579 				tcp->tcp_ecn_ok = B_FALSE;
2580 			}
2581 		}
2582 		/*
2583 		 * Clear ECN flags because it may interfere with later
2584 		 * processing.
2585 		 */
2586 		flags &= ~(TH_ECE|TH_CWR);
2587 
2588 		tcp->tcp_irs = seg_seq;
2589 		tcp->tcp_rack = seg_seq;
2590 		tcp->tcp_rnxt = seg_seq + 1;
2591 		tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt);
2592 		if (!TCP_IS_DETACHED(tcp)) {
2593 			/* Allocate room for SACK options if needed. */
2594 			connp->conn_wroff = connp->conn_ht_iphc_len;
2595 			if (tcp->tcp_snd_sack_ok)
2596 				connp->conn_wroff += TCPOPT_MAX_SACK_LEN;
2597 			if (!tcp->tcp_loopback)
2598 				connp->conn_wroff += tcps->tcps_wroff_xtra;
2599 
2600 			(void) proto_set_tx_wroff(connp->conn_rq, connp,
2601 			    connp->conn_wroff);
2602 		}
2603 		if (flags & TH_ACK) {
2604 			/*
2605 			 * If we can't get the confirmation upstream, pretend
2606 			 * we didn't even see this one.
2607 			 *
2608 			 * XXX: how can we pretend we didn't see it if we
2609 			 * have updated rnxt et. al.
2610 			 *
2611 			 * For loopback we defer sending up the T_CONN_CON
2612 			 * until after some checks below.
2613 			 */
2614 			mp1 = NULL;
2615 			/*
2616 			 * tcp_sendmsg() checks tcp_state without entering
2617 			 * the squeue so tcp_state should be updated before
2618 			 * sending up connection confirmation.  Probe the
2619 			 * state change below when we are sure the connection
2620 			 * confirmation has been sent.
2621 			 */
2622 			tcp->tcp_state = TCPS_ESTABLISHED;
2623 			if (!tcp_conn_con(tcp, iphdr, mp,
2624 			    tcp->tcp_loopback ? &mp1 : NULL, ira)) {
2625 				tcp->tcp_state = TCPS_SYN_SENT;
2626 				freemsg(mp);
2627 				return;
2628 			}
2629 			TCPS_CONN_INC(tcps);
2630 			/* SYN was acked - making progress */
2631 			tcp->tcp_ip_forward_progress = B_TRUE;
2632 
2633 			/* One for the SYN */
2634 			tcp->tcp_suna = tcp->tcp_iss + 1;
2635 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
2636 
2637 			/*
2638 			 * If SYN was retransmitted, need to reset all
2639 			 * retransmission info.  This is because this
2640 			 * segment will be treated as a dup ACK.
2641 			 */
2642 			if (tcp->tcp_rexmit) {
2643 				tcp->tcp_rexmit = B_FALSE;
2644 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
2645 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
2646 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
2647 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
2648 				tcp->tcp_ms_we_have_waited = 0;
2649 
2650 				/*
2651 				 * Set tcp_cwnd back to 1 MSS, per
2652 				 * recommendation from
2653 				 * draft-floyd-incr-init-win-01.txt,
2654 				 * Increasing TCP's Initial Window.
2655 				 */
2656 				tcp->tcp_cwnd = tcp->tcp_mss;
2657 			}
2658 
2659 			tcp->tcp_swl1 = seg_seq;
2660 			tcp->tcp_swl2 = seg_ack;
2661 
2662 			new_swnd = ntohs(tcpha->tha_win);
2663 			tcp->tcp_swnd = new_swnd;
2664 			if (new_swnd > tcp->tcp_max_swnd)
2665 				tcp->tcp_max_swnd = new_swnd;
2666 
2667 			/*
2668 			 * Always send the three-way handshake ack immediately
2669 			 * in order to make the connection complete as soon as
2670 			 * possible on the accepting host.
2671 			 */
2672 			flags |= TH_ACK_NEEDED;
2673 
2674 			/*
2675 			 * Trace connect-established here.
2676 			 */
2677 			DTRACE_TCP5(connect__established, mblk_t *, NULL,
2678 			    ip_xmit_attr_t *, tcp->tcp_connp->conn_ixa,
2679 			    void_ip_t *, iphdr, tcp_t *, tcp, tcph_t *, tcpha);
2680 
2681 			/* Trace change from SYN_SENT -> ESTABLISHED here */
2682 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2683 			    connp->conn_ixa, void, NULL, tcp_t *, tcp,
2684 			    void, NULL, int32_t, TCPS_SYN_SENT);
2685 
2686 			/*
2687 			 * Special case for loopback.  At this point we have
2688 			 * received SYN-ACK from the remote endpoint.  In
2689 			 * order to ensure that both endpoints reach the
2690 			 * fused state prior to any data exchange, the final
2691 			 * ACK needs to be sent before we indicate T_CONN_CON
2692 			 * to the module upstream.
2693 			 */
2694 			if (tcp->tcp_loopback) {
2695 				mblk_t *ack_mp;
2696 
2697 				ASSERT(!tcp->tcp_unfusable);
2698 				ASSERT(mp1 != NULL);
2699 				/*
2700 				 * For loopback, we always get a pure SYN-ACK
2701 				 * and only need to send back the final ACK
2702 				 * with no data (this is because the other
2703 				 * tcp is ours and we don't do T/TCP).  This
2704 				 * final ACK triggers the passive side to
2705 				 * perform fusion in ESTABLISHED state.
2706 				 */
2707 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
2708 					if (tcp->tcp_ack_tid != 0) {
2709 						(void) TCP_TIMER_CANCEL(tcp,
2710 						    tcp->tcp_ack_tid);
2711 						tcp->tcp_ack_tid = 0;
2712 					}
2713 					tcp_send_data(tcp, ack_mp);
2714 					BUMP_LOCAL(tcp->tcp_obsegs);
2715 					TCPS_BUMP_MIB(tcps, tcpOutAck);
2716 
2717 					if (!IPCL_IS_NONSTR(connp)) {
2718 						/* Send up T_CONN_CON */
2719 						if (ira->ira_cred != NULL) {
2720 							mblk_setcred(mp1,
2721 							    ira->ira_cred,
2722 							    ira->ira_cpid);
2723 						}
2724 						putnext(connp->conn_rq, mp1);
2725 					} else {
2726 						(*sockupcalls->su_connected)
2727 						    (connp->conn_upper_handle,
2728 						    tcp->tcp_connid,
2729 						    ira->ira_cred,
2730 						    ira->ira_cpid);
2731 						freemsg(mp1);
2732 					}
2733 
2734 					freemsg(mp);
2735 					return;
2736 				}
2737 				/*
2738 				 * Forget fusion; we need to handle more
2739 				 * complex cases below.  Send the deferred
2740 				 * T_CONN_CON message upstream and proceed
2741 				 * as usual.  Mark this tcp as not capable
2742 				 * of fusion.
2743 				 */
2744 				TCP_STAT(tcps, tcp_fusion_unfusable);
2745 				tcp->tcp_unfusable = B_TRUE;
2746 				if (!IPCL_IS_NONSTR(connp)) {
2747 					if (ira->ira_cred != NULL) {
2748 						mblk_setcred(mp1, ira->ira_cred,
2749 						    ira->ira_cpid);
2750 					}
2751 					putnext(connp->conn_rq, mp1);
2752 				} else {
2753 					(*sockupcalls->su_connected)
2754 					    (connp->conn_upper_handle,
2755 					    tcp->tcp_connid, ira->ira_cred,
2756 					    ira->ira_cpid);
2757 					freemsg(mp1);
2758 				}
2759 			}
2760 
2761 			/*
2762 			 * Check to see if there is data to be sent.  If
2763 			 * yes, set the transmit flag.  Then check to see
2764 			 * if received data processing needs to be done.
2765 			 * If not, go straight to xmit_check.  This short
2766 			 * cut is OK as we don't support T/TCP.
2767 			 */
2768 			if (tcp->tcp_unsent)
2769 				flags |= TH_XMIT_NEEDED;
2770 
2771 			if (seg_len == 0 && !(flags & TH_URG)) {
2772 				freemsg(mp);
2773 				goto xmit_check;
2774 			}
2775 
2776 			flags &= ~TH_SYN;
2777 			seg_seq++;
2778 			break;
2779 		}
2780 		tcp->tcp_state = TCPS_SYN_RCVD;
2781 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2782 		    connp->conn_ixa, void_ip_t *, NULL, tcp_t *, tcp,
2783 		    tcph_t *, NULL, int32_t, TCPS_SYN_SENT);
2784 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
2785 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
2786 		if (mp1 != NULL) {
2787 			tcp_send_data(tcp, mp1);
2788 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
2789 		}
2790 		freemsg(mp);
2791 		return;
2792 	case TCPS_SYN_RCVD:
2793 		if (flags & TH_ACK) {
2794 			uint32_t pinit_wnd;
2795 
2796 			/*
2797 			 * In this state, a SYN|ACK packet is either bogus
2798 			 * because the other side must be ACKing our SYN which
2799 			 * indicates it has seen the ACK for their SYN and
2800 			 * shouldn't retransmit it or we're crossing SYNs
2801 			 * on active open.
2802 			 */
2803 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
2804 				freemsg(mp);
2805 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
2806 				    tcp, seg_ack, 0, TH_RST);
2807 				return;
2808 			}
2809 			/*
2810 			 * NOTE: RFC 793 pg. 72 says this should be
2811 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
2812 			 * but that would mean we have an ack that ignored
2813 			 * our SYN.
2814 			 */
2815 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
2816 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
2817 				freemsg(mp);
2818 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
2819 				    tcp, seg_ack, 0, TH_RST);
2820 				return;
2821 			}
2822 			/*
2823 			 * No sane TCP stack will send such a small window
2824 			 * without receiving any data.  Just drop this invalid
2825 			 * ACK.  We also shorten the abort timeout in case
2826 			 * this is an attack.
2827 			 */
2828 			pinit_wnd = ntohs(tcpha->tha_win) << tcp->tcp_snd_ws;
2829 			if (pinit_wnd < tcp->tcp_mss &&
2830 			    pinit_wnd < tcp_init_wnd_chk) {
2831 				freemsg(mp);
2832 				TCP_STAT(tcps, tcp_zwin_ack_syn);
2833 				tcp->tcp_second_ctimer_threshold =
2834 				    tcp_early_abort * SECONDS;
2835 				return;
2836 			}
2837 		}
2838 		break;
2839 	case TCPS_LISTEN:
2840 		/*
2841 		 * Only a TLI listener can come through this path when a
2842 		 * acceptor is going back to be a listener and a packet
2843 		 * for the acceptor hits the classifier. For a socket
2844 		 * listener, this can never happen because a listener
2845 		 * can never accept connection on itself and hence a
2846 		 * socket acceptor can not go back to being a listener.
2847 		 */
2848 		ASSERT(!TCP_IS_SOCKET(tcp));
2849 		/*FALLTHRU*/
2850 	case TCPS_CLOSED:
2851 	case TCPS_BOUND: {
2852 		conn_t	*new_connp;
2853 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
2854 
2855 		/*
2856 		 * Don't accept any input on a closed tcp as this TCP logically
2857 		 * does not exist on the system. Don't proceed further with
2858 		 * this TCP. For instance, this packet could trigger another
2859 		 * close of this tcp which would be disastrous for tcp_refcnt.
2860 		 * tcp_close_detached / tcp_clean_death / tcp_closei_local must
2861 		 * be called at most once on a TCP. In this case we need to
2862 		 * refeed the packet into the classifier and figure out where
2863 		 * the packet should go.
2864 		 */
2865 		new_connp = ipcl_classify(mp, ira, ipst);
2866 		if (new_connp != NULL) {
2867 			/* Drops ref on new_connp */
2868 			tcp_reinput(new_connp, mp, ira, ipst);
2869 			return;
2870 		}
2871 		/* We failed to classify. For now just drop the packet */
2872 		freemsg(mp);
2873 		return;
2874 	}
2875 	case TCPS_IDLE:
2876 		/*
2877 		 * Handle the case where the tcp_clean_death() has happened
2878 		 * on a connection (application hasn't closed yet) but a packet
2879 		 * was already queued on squeue before tcp_clean_death()
2880 		 * was processed. Calling tcp_clean_death() twice on same
2881 		 * connection can result in weird behaviour.
2882 		 */
2883 		freemsg(mp);
2884 		return;
2885 	default:
2886 		break;
2887 	}
2888 
2889 	/*
2890 	 * Already on the correct queue/perimeter.
2891 	 * If this is a detached connection and not an eager
2892 	 * connection hanging off a listener then new data
2893 	 * (past the FIN) will cause a reset.
2894 	 * We do a special check here where it
2895 	 * is out of the main line, rather than check
2896 	 * if we are detached every time we see new
2897 	 * data down below.
2898 	 */
2899 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
2900 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
2901 		TCPS_BUMP_MIB(tcps, tcpInClosed);
2902 		DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
2903 		freemsg(mp);
2904 		tcp_xmit_ctl("new data when detached", tcp,
2905 		    tcp->tcp_snxt, 0, TH_RST);
2906 		(void) tcp_clean_death(tcp, EPROTO);
2907 		return;
2908 	}
2909 
2910 	mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha);
2911 	urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION;
2912 	new_swnd = ntohs(tcpha->tha_win) <<
2913 	    ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws);
2914 
2915 	if (tcp->tcp_snd_ts_ok) {
2916 		if (!tcp_paws_check(tcp, tcpha, &tcpopt)) {
2917 			/*
2918 			 * This segment is not acceptable.
2919 			 * Drop it and send back an ACK.
2920 			 */
2921 			freemsg(mp);
2922 			flags |= TH_ACK_NEEDED;
2923 			goto ack_check;
2924 		}
2925 	} else if (tcp->tcp_snd_sack_ok) {
2926 		tcpopt.tcp = tcp;
2927 		/*
2928 		 * SACK info in already updated in tcp_parse_options.  Ignore
2929 		 * all other TCP options...
2930 		 */
2931 		(void) tcp_parse_options(tcpha, &tcpopt);
2932 	}
2933 try_again:;
2934 	mss = tcp->tcp_mss;
2935 	gap = seg_seq - tcp->tcp_rnxt;
2936 	rgap = tcp->tcp_rwnd - (gap + seg_len);
2937 	/*
2938 	 * gap is the amount of sequence space between what we expect to see
2939 	 * and what we got for seg_seq.  A positive value for gap means
2940 	 * something got lost.  A negative value means we got some old stuff.
2941 	 */
2942 	if (gap < 0) {
2943 		/* Old stuff present.  Is the SYN in there? */
2944 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
2945 		    (seg_len != 0)) {
2946 			flags &= ~TH_SYN;
2947 			seg_seq++;
2948 			urp--;
2949 			/* Recompute the gaps after noting the SYN. */
2950 			goto try_again;
2951 		}
2952 		TCPS_BUMP_MIB(tcps, tcpInDataDupSegs);
2953 		TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes,
2954 		    (seg_len > -gap ? -gap : seg_len));
2955 		/* Remove the old stuff from seg_len. */
2956 		seg_len += gap;
2957 		/*
2958 		 * Anything left?
2959 		 * Make sure to check for unack'd FIN when rest of data
2960 		 * has been previously ack'd.
2961 		 */
2962 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
2963 			/*
2964 			 * Resets are only valid if they lie within our offered
2965 			 * window.  If the RST bit is set, we just ignore this
2966 			 * segment.
2967 			 */
2968 			if (flags & TH_RST) {
2969 				freemsg(mp);
2970 				return;
2971 			}
2972 
2973 			/*
2974 			 * The arriving of dup data packets indicate that we
2975 			 * may have postponed an ack for too long, or the other
2976 			 * side's RTT estimate is out of shape. Start acking
2977 			 * more often.
2978 			 */
2979 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
2980 			    tcp->tcp_rack_cnt >= 1 &&
2981 			    tcp->tcp_rack_abs_max > 2) {
2982 				tcp->tcp_rack_abs_max--;
2983 			}
2984 			tcp->tcp_rack_cur_max = 1;
2985 
2986 			/*
2987 			 * This segment is "unacceptable".  None of its
2988 			 * sequence space lies within our advertized window.
2989 			 *
2990 			 * Adjust seg_len to the original value for tracing.
2991 			 */
2992 			seg_len -= gap;
2993 			if (connp->conn_debug) {
2994 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
2995 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
2996 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
2997 				    "seg_len %d, rnxt %u, snxt %u, %s",
2998 				    gap, rgap, flags, seg_seq, seg_ack,
2999 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
3000 				    tcp_display(tcp, NULL,
3001 				    DISP_ADDR_AND_PORT));
3002 			}
3003 
3004 			/*
3005 			 * Arrange to send an ACK in response to the
3006 			 * unacceptable segment per RFC 793 page 69. There
3007 			 * is only one small difference between ours and the
3008 			 * acceptability test in the RFC - we accept ACK-only
3009 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
3010 			 * will be generated.
3011 			 *
3012 			 * Note that we have to ACK an ACK-only packet at least
3013 			 * for stacks that send 0-length keep-alives with
3014 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
3015 			 * section 4.2.3.6. As long as we don't ever generate
3016 			 * an unacceptable packet in response to an incoming
3017 			 * packet that is unacceptable, it should not cause
3018 			 * "ACK wars".
3019 			 */
3020 			flags |=  TH_ACK_NEEDED;
3021 
3022 			/*
3023 			 * Continue processing this segment in order to use the
3024 			 * ACK information it contains, but skip all other
3025 			 * sequence-number processing.	Processing the ACK
3026 			 * information is necessary in order to
3027 			 * re-synchronize connections that may have lost
3028 			 * synchronization.
3029 			 *
3030 			 * We clear seg_len and flag fields related to
3031 			 * sequence number processing as they are not
3032 			 * to be trusted for an unacceptable segment.
3033 			 */
3034 			seg_len = 0;
3035 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
3036 			goto process_ack;
3037 		}
3038 
3039 		/* Fix seg_seq, and chew the gap off the front. */
3040 		seg_seq = tcp->tcp_rnxt;
3041 		urp += gap;
3042 		do {
3043 			mblk_t	*mp2;
3044 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
3045 			    (uintptr_t)UINT_MAX);
3046 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
3047 			if (gap > 0) {
3048 				mp->b_rptr = mp->b_wptr - gap;
3049 				break;
3050 			}
3051 			mp2 = mp;
3052 			mp = mp->b_cont;
3053 			freeb(mp2);
3054 		} while (gap < 0);
3055 		/*
3056 		 * If the urgent data has already been acknowledged, we
3057 		 * should ignore TH_URG below
3058 		 */
3059 		if (urp < 0)
3060 			flags &= ~TH_URG;
3061 	}
3062 	/*
3063 	 * rgap is the amount of stuff received out of window.  A negative
3064 	 * value is the amount out of window.
3065 	 */
3066 	if (rgap < 0) {
3067 		mblk_t	*mp2;
3068 
3069 		if (tcp->tcp_rwnd == 0) {
3070 			TCPS_BUMP_MIB(tcps, tcpInWinProbe);
3071 		} else {
3072 			TCPS_BUMP_MIB(tcps, tcpInDataPastWinSegs);
3073 			TCPS_UPDATE_MIB(tcps, tcpInDataPastWinBytes, -rgap);
3074 		}
3075 
3076 		/*
3077 		 * seg_len does not include the FIN, so if more than
3078 		 * just the FIN is out of window, we act like we don't
3079 		 * see it.  (If just the FIN is out of window, rgap
3080 		 * will be zero and we will go ahead and acknowledge
3081 		 * the FIN.)
3082 		 */
3083 		flags &= ~TH_FIN;
3084 
3085 		/* Fix seg_len and make sure there is something left. */
3086 		seg_len += rgap;
3087 		if (seg_len <= 0) {
3088 			/*
3089 			 * Resets are only valid if they lie within our offered
3090 			 * window.  If the RST bit is set, we just ignore this
3091 			 * segment.
3092 			 */
3093 			if (flags & TH_RST) {
3094 				freemsg(mp);
3095 				return;
3096 			}
3097 
3098 			/* Per RFC 793, we need to send back an ACK. */
3099 			flags |= TH_ACK_NEEDED;
3100 
3101 			/*
3102 			 * Send SIGURG as soon as possible i.e. even
3103 			 * if the TH_URG was delivered in a window probe
3104 			 * packet (which will be unacceptable).
3105 			 *
3106 			 * We generate a signal if none has been generated
3107 			 * for this connection or if this is a new urgent
3108 			 * byte. Also send a zero-length "unmarked" message
3109 			 * to inform SIOCATMARK that this is not the mark.
3110 			 *
3111 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
3112 			 * is sent up. This plus the check for old data
3113 			 * (gap >= 0) handles the wraparound of the sequence
3114 			 * number space without having to always track the
3115 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
3116 			 * this max in its rcv_up variable).
3117 			 *
3118 			 * This prevents duplicate SIGURGS due to a "late"
3119 			 * zero-window probe when the T_EXDATA_IND has already
3120 			 * been sent up.
3121 			 */
3122 			if ((flags & TH_URG) &&
3123 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
3124 			    tcp->tcp_urp_last))) {
3125 				if (IPCL_IS_NONSTR(connp)) {
3126 					if (!TCP_IS_DETACHED(tcp)) {
3127 						(*sockupcalls->su_signal_oob)
3128 						    (connp->conn_upper_handle,
3129 						    urp);
3130 					}
3131 				} else {
3132 					mp1 = allocb(0, BPRI_MED);
3133 					if (mp1 == NULL) {
3134 						freemsg(mp);
3135 						return;
3136 					}
3137 					if (!TCP_IS_DETACHED(tcp) &&
3138 					    !putnextctl1(connp->conn_rq,
3139 					    M_PCSIG, SIGURG)) {
3140 						/* Try again on the rexmit. */
3141 						freemsg(mp1);
3142 						freemsg(mp);
3143 						return;
3144 					}
3145 					/*
3146 					 * If the next byte would be the mark
3147 					 * then mark with MARKNEXT else mark
3148 					 * with NOTMARKNEXT.
3149 					 */
3150 					if (gap == 0 && urp == 0)
3151 						mp1->b_flag |= MSGMARKNEXT;
3152 					else
3153 						mp1->b_flag |= MSGNOTMARKNEXT;
3154 					freemsg(tcp->tcp_urp_mark_mp);
3155 					tcp->tcp_urp_mark_mp = mp1;
3156 					flags |= TH_SEND_URP_MARK;
3157 				}
3158 				tcp->tcp_urp_last_valid = B_TRUE;
3159 				tcp->tcp_urp_last = urp + seg_seq;
3160 			}
3161 			/*
3162 			 * If this is a zero window probe, continue to
3163 			 * process the ACK part.  But we need to set seg_len
3164 			 * to 0 to avoid data processing.  Otherwise just
3165 			 * drop the segment and send back an ACK.
3166 			 */
3167 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
3168 				flags &= ~(TH_SYN | TH_URG);
3169 				seg_len = 0;
3170 				goto process_ack;
3171 			} else {
3172 				freemsg(mp);
3173 				goto ack_check;
3174 			}
3175 		}
3176 		/* Pitch out of window stuff off the end. */
3177 		rgap = seg_len;
3178 		mp2 = mp;
3179 		do {
3180 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
3181 			    (uintptr_t)INT_MAX);
3182 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
3183 			if (rgap < 0) {
3184 				mp2->b_wptr += rgap;
3185 				if ((mp1 = mp2->b_cont) != NULL) {
3186 					mp2->b_cont = NULL;
3187 					freemsg(mp1);
3188 				}
3189 				break;
3190 			}
3191 		} while ((mp2 = mp2->b_cont) != NULL);
3192 	}
3193 ok:;
3194 	/*
3195 	 * TCP should check ECN info for segments inside the window only.
3196 	 * Therefore the check should be done here.
3197 	 */
3198 	if (tcp->tcp_ecn_ok) {
3199 		if (flags & TH_CWR) {
3200 			tcp->tcp_ecn_echo_on = B_FALSE;
3201 		}
3202 		/*
3203 		 * Note that both ECN_CE and CWR can be set in the
3204 		 * same segment.  In this case, we once again turn
3205 		 * on ECN_ECHO.
3206 		 */
3207 		if (connp->conn_ipversion == IPV4_VERSION) {
3208 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
3209 
3210 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
3211 				tcp->tcp_ecn_echo_on = B_TRUE;
3212 			}
3213 		} else {
3214 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
3215 
3216 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
3217 			    htonl(IPH_ECN_CE << 20)) {
3218 				tcp->tcp_ecn_echo_on = B_TRUE;
3219 			}
3220 		}
3221 	}
3222 
3223 	/*
3224 	 * Check whether we can update tcp_ts_recent.  This test is
3225 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
3226 	 * Extensions for High Performance: An Update", Internet Draft.
3227 	 */
3228 	if (tcp->tcp_snd_ts_ok &&
3229 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
3230 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
3231 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
3232 		tcp->tcp_last_rcv_lbolt = LBOLT_FASTPATH64;
3233 	}
3234 
3235 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
3236 		/*
3237 		 * FIN in an out of order segment.  We record this in
3238 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
3239 		 * Clear the FIN so that any check on FIN flag will fail.
3240 		 * Remember that FIN also counts in the sequence number
3241 		 * space.  So we need to ack out of order FIN only segments.
3242 		 */
3243 		if (flags & TH_FIN) {
3244 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
3245 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
3246 			flags &= ~TH_FIN;
3247 			flags |= TH_ACK_NEEDED;
3248 		}
3249 		if (seg_len > 0) {
3250 			/* Fill in the SACK blk list. */
3251 			if (tcp->tcp_snd_sack_ok) {
3252 				tcp_sack_insert(tcp->tcp_sack_list,
3253 				    seg_seq, seg_seq + seg_len,
3254 				    &(tcp->tcp_num_sack_blk));
3255 			}
3256 
3257 			/*
3258 			 * Attempt reassembly and see if we have something
3259 			 * ready to go.
3260 			 */
3261 			mp = tcp_reass(tcp, mp, seg_seq);
3262 			/* Always ack out of order packets */
3263 			flags |= TH_ACK_NEEDED | TH_PUSH;
3264 			if (mp) {
3265 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
3266 				    (uintptr_t)INT_MAX);
3267 				seg_len = mp->b_cont ? msgdsize(mp) :
3268 				    (int)(mp->b_wptr - mp->b_rptr);
3269 				seg_seq = tcp->tcp_rnxt;
3270 				/*
3271 				 * A gap is filled and the seq num and len
3272 				 * of the gap match that of a previously
3273 				 * received FIN, put the FIN flag back in.
3274 				 */
3275 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
3276 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
3277 					flags |= TH_FIN;
3278 					tcp->tcp_valid_bits &=
3279 					    ~TCP_OFO_FIN_VALID;
3280 				}
3281 				if (tcp->tcp_reass_tid != 0) {
3282 					(void) TCP_TIMER_CANCEL(tcp,
3283 					    tcp->tcp_reass_tid);
3284 					/*
3285 					 * Restart the timer if there is still
3286 					 * data in the reassembly queue.
3287 					 */
3288 					if (tcp->tcp_reass_head != NULL) {
3289 						tcp->tcp_reass_tid = TCP_TIMER(
3290 						    tcp, tcp_reass_timer,
3291 						    tcps->tcps_reass_timeout);
3292 					} else {
3293 						tcp->tcp_reass_tid = 0;
3294 					}
3295 				}
3296 			} else {
3297 				/*
3298 				 * Keep going even with NULL mp.
3299 				 * There may be a useful ACK or something else
3300 				 * we don't want to miss.
3301 				 *
3302 				 * But TCP should not perform fast retransmit
3303 				 * because of the ack number.  TCP uses
3304 				 * seg_len == 0 to determine if it is a pure
3305 				 * ACK.  And this is not a pure ACK.
3306 				 */
3307 				seg_len = 0;
3308 				ofo_seg = B_TRUE;
3309 
3310 				if (tcps->tcps_reass_timeout != 0 &&
3311 				    tcp->tcp_reass_tid == 0) {
3312 					tcp->tcp_reass_tid = TCP_TIMER(tcp,
3313 					    tcp_reass_timer,
3314 					    tcps->tcps_reass_timeout);
3315 				}
3316 			}
3317 		}
3318 	} else if (seg_len > 0) {
3319 		TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs);
3320 		TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, seg_len);
3321 		/*
3322 		 * If an out of order FIN was received before, and the seq
3323 		 * num and len of the new segment match that of the FIN,
3324 		 * put the FIN flag back in.
3325 		 */
3326 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
3327 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
3328 			flags |= TH_FIN;
3329 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
3330 		}
3331 	}
3332 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
3333 	if (flags & TH_RST) {
3334 		freemsg(mp);
3335 		switch (tcp->tcp_state) {
3336 		case TCPS_SYN_RCVD:
3337 			(void) tcp_clean_death(tcp, ECONNREFUSED);
3338 			break;
3339 		case TCPS_ESTABLISHED:
3340 		case TCPS_FIN_WAIT_1:
3341 		case TCPS_FIN_WAIT_2:
3342 		case TCPS_CLOSE_WAIT:
3343 			(void) tcp_clean_death(tcp, ECONNRESET);
3344 			break;
3345 		case TCPS_CLOSING:
3346 		case TCPS_LAST_ACK:
3347 			(void) tcp_clean_death(tcp, 0);
3348 			break;
3349 		default:
3350 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
3351 			(void) tcp_clean_death(tcp, ENXIO);
3352 			break;
3353 		}
3354 		return;
3355 	}
3356 	if (flags & TH_SYN) {
3357 		/*
3358 		 * See RFC 793, Page 71
3359 		 *
3360 		 * The seq number must be in the window as it should
3361 		 * be "fixed" above.  If it is outside window, it should
3362 		 * be already rejected.  Note that we allow seg_seq to be
3363 		 * rnxt + rwnd because we want to accept 0 window probe.
3364 		 */
3365 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
3366 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
3367 		freemsg(mp);
3368 		/*
3369 		 * If the ACK flag is not set, just use our snxt as the
3370 		 * seq number of the RST segment.
3371 		 */
3372 		if (!(flags & TH_ACK)) {
3373 			seg_ack = tcp->tcp_snxt;
3374 		}
3375 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
3376 		    TH_RST|TH_ACK);
3377 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
3378 		(void) tcp_clean_death(tcp, ECONNRESET);
3379 		return;
3380 	}
3381 	/*
3382 	 * urp could be -1 when the urp field in the packet is 0
3383 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
3384 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
3385 	 */
3386 	if (flags & TH_URG && urp >= 0) {
3387 		if (!tcp->tcp_urp_last_valid ||
3388 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
3389 			/*
3390 			 * Non-STREAMS sockets handle the urgent data a litte
3391 			 * differently from STREAMS based sockets. There is no
3392 			 * need to mark any mblks with the MSG{NOT,}MARKNEXT
3393 			 * flags to keep SIOCATMARK happy. Instead a
3394 			 * su_signal_oob upcall is made to update the mark.
3395 			 * Neither is a T_EXDATA_IND mblk needed to be
3396 			 * prepended to the urgent data. The urgent data is
3397 			 * delivered using the su_recv upcall, where we set
3398 			 * the MSG_OOB flag to indicate that it is urg data.
3399 			 *
3400 			 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED
3401 			 * are used by non-STREAMS sockets.
3402 			 */
3403 			if (IPCL_IS_NONSTR(connp)) {
3404 				if (!TCP_IS_DETACHED(tcp)) {
3405 					(*sockupcalls->su_signal_oob)
3406 					    (connp->conn_upper_handle, urp);
3407 				}
3408 			} else {
3409 				/*
3410 				 * If we haven't generated the signal yet for
3411 				 * this urgent pointer value, do it now.  Also,
3412 				 * send up a zero-length M_DATA indicating
3413 				 * whether or not this is the mark. The latter
3414 				 * is not needed when a T_EXDATA_IND is sent up.
3415 				 * However, if there are allocation failures
3416 				 * this code relies on the sender retransmitting
3417 				 * and the socket code for determining the mark
3418 				 * should not block waiting for the peer to
3419 				 * transmit. Thus, for simplicity we always
3420 				 * send up the mark indication.
3421 				 */
3422 				mp1 = allocb(0, BPRI_MED);
3423 				if (mp1 == NULL) {
3424 					freemsg(mp);
3425 					return;
3426 				}
3427 				if (!TCP_IS_DETACHED(tcp) &&
3428 				    !putnextctl1(connp->conn_rq, M_PCSIG,
3429 				    SIGURG)) {
3430 					/* Try again on the rexmit. */
3431 					freemsg(mp1);
3432 					freemsg(mp);
3433 					return;
3434 				}
3435 				/*
3436 				 * Mark with NOTMARKNEXT for now.
3437 				 * The code below will change this to MARKNEXT
3438 				 * if we are at the mark.
3439 				 *
3440 				 * If there are allocation failures (e.g. in
3441 				 * dupmsg below) the next time tcp_input_data
3442 				 * sees the urgent segment it will send up the
3443 				 * MSGMARKNEXT message.
3444 				 */
3445 				mp1->b_flag |= MSGNOTMARKNEXT;
3446 				freemsg(tcp->tcp_urp_mark_mp);
3447 				tcp->tcp_urp_mark_mp = mp1;
3448 				flags |= TH_SEND_URP_MARK;
3449 #ifdef DEBUG
3450 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3451 				    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
3452 				    "last %x, %s",
3453 				    seg_seq, urp, tcp->tcp_urp_last,
3454 				    tcp_display(tcp, NULL, DISP_PORT_ONLY));
3455 #endif /* DEBUG */
3456 			}
3457 			tcp->tcp_urp_last_valid = B_TRUE;
3458 			tcp->tcp_urp_last = urp + seg_seq;
3459 		} else if (tcp->tcp_urp_mark_mp != NULL) {
3460 			/*
3461 			 * An allocation failure prevented the previous
3462 			 * tcp_input_data from sending up the allocated
3463 			 * MSG*MARKNEXT message - send it up this time
3464 			 * around.
3465 			 */
3466 			flags |= TH_SEND_URP_MARK;
3467 		}
3468 
3469 		/*
3470 		 * If the urgent byte is in this segment, make sure that it is
3471 		 * all by itself.  This makes it much easier to deal with the
3472 		 * possibility of an allocation failure on the T_exdata_ind.
3473 		 * Note that seg_len is the number of bytes in the segment, and
3474 		 * urp is the offset into the segment of the urgent byte.
3475 		 * urp < seg_len means that the urgent byte is in this segment.
3476 		 */
3477 		if (urp < seg_len) {
3478 			if (seg_len != 1) {
3479 				uint32_t  tmp_rnxt;
3480 				/*
3481 				 * Break it up and feed it back in.
3482 				 * Re-attach the IP header.
3483 				 */
3484 				mp->b_rptr = iphdr;
3485 				if (urp > 0) {
3486 					/*
3487 					 * There is stuff before the urgent
3488 					 * byte.
3489 					 */
3490 					mp1 = dupmsg(mp);
3491 					if (!mp1) {
3492 						/*
3493 						 * Trim from urgent byte on.
3494 						 * The rest will come back.
3495 						 */
3496 						(void) adjmsg(mp,
3497 						    urp - seg_len);
3498 						tcp_input_data(connp,
3499 						    mp, NULL, ira);
3500 						return;
3501 					}
3502 					(void) adjmsg(mp1, urp - seg_len);
3503 					/* Feed this piece back in. */
3504 					tmp_rnxt = tcp->tcp_rnxt;
3505 					tcp_input_data(connp, mp1, NULL, ira);
3506 					/*
3507 					 * If the data passed back in was not
3508 					 * processed (ie: bad ACK) sending
3509 					 * the remainder back in will cause a
3510 					 * loop. In this case, drop the
3511 					 * packet and let the sender try
3512 					 * sending a good packet.
3513 					 */
3514 					if (tmp_rnxt == tcp->tcp_rnxt) {
3515 						freemsg(mp);
3516 						return;
3517 					}
3518 				}
3519 				if (urp != seg_len - 1) {
3520 					uint32_t  tmp_rnxt;
3521 					/*
3522 					 * There is stuff after the urgent
3523 					 * byte.
3524 					 */
3525 					mp1 = dupmsg(mp);
3526 					if (!mp1) {
3527 						/*
3528 						 * Trim everything beyond the
3529 						 * urgent byte.  The rest will
3530 						 * come back.
3531 						 */
3532 						(void) adjmsg(mp,
3533 						    urp + 1 - seg_len);
3534 						tcp_input_data(connp,
3535 						    mp, NULL, ira);
3536 						return;
3537 					}
3538 					(void) adjmsg(mp1, urp + 1 - seg_len);
3539 					tmp_rnxt = tcp->tcp_rnxt;
3540 					tcp_input_data(connp, mp1, NULL, ira);
3541 					/*
3542 					 * If the data passed back in was not
3543 					 * processed (ie: bad ACK) sending
3544 					 * the remainder back in will cause a
3545 					 * loop. In this case, drop the
3546 					 * packet and let the sender try
3547 					 * sending a good packet.
3548 					 */
3549 					if (tmp_rnxt == tcp->tcp_rnxt) {
3550 						freemsg(mp);
3551 						return;
3552 					}
3553 				}
3554 				tcp_input_data(connp, mp, NULL, ira);
3555 				return;
3556 			}
3557 			/*
3558 			 * This segment contains only the urgent byte.  We
3559 			 * have to allocate the T_exdata_ind, if we can.
3560 			 */
3561 			if (IPCL_IS_NONSTR(connp)) {
3562 				int error;
3563 
3564 				(*sockupcalls->su_recv)
3565 				    (connp->conn_upper_handle, mp, seg_len,
3566 				    MSG_OOB, &error, NULL);
3567 				/*
3568 				 * We should never be in middle of a
3569 				 * fallback, the squeue guarantees that.
3570 				 */
3571 				ASSERT(error != EOPNOTSUPP);
3572 				mp = NULL;
3573 				goto update_ack;
3574 			} else if (!tcp->tcp_urp_mp) {
3575 				struct T_exdata_ind *tei;
3576 				mp1 = allocb(sizeof (struct T_exdata_ind),
3577 				    BPRI_MED);
3578 				if (!mp1) {
3579 					/*
3580 					 * Sigh... It'll be back.
3581 					 * Generate any MSG*MARK message now.
3582 					 */
3583 					freemsg(mp);
3584 					seg_len = 0;
3585 					if (flags & TH_SEND_URP_MARK) {
3586 
3587 
3588 						ASSERT(tcp->tcp_urp_mark_mp);
3589 						tcp->tcp_urp_mark_mp->b_flag &=
3590 						    ~MSGNOTMARKNEXT;
3591 						tcp->tcp_urp_mark_mp->b_flag |=
3592 						    MSGMARKNEXT;
3593 					}
3594 					goto ack_check;
3595 				}
3596 				mp1->b_datap->db_type = M_PROTO;
3597 				tei = (struct T_exdata_ind *)mp1->b_rptr;
3598 				tei->PRIM_type = T_EXDATA_IND;
3599 				tei->MORE_flag = 0;
3600 				mp1->b_wptr = (uchar_t *)&tei[1];
3601 				tcp->tcp_urp_mp = mp1;
3602 #ifdef DEBUG
3603 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3604 				    "tcp_rput: allocated exdata_ind %s",
3605 				    tcp_display(tcp, NULL,
3606 				    DISP_PORT_ONLY));
3607 #endif /* DEBUG */
3608 				/*
3609 				 * There is no need to send a separate MSG*MARK
3610 				 * message since the T_EXDATA_IND will be sent
3611 				 * now.
3612 				 */
3613 				flags &= ~TH_SEND_URP_MARK;
3614 				freemsg(tcp->tcp_urp_mark_mp);
3615 				tcp->tcp_urp_mark_mp = NULL;
3616 			}
3617 			/*
3618 			 * Now we are all set.  On the next putnext upstream,
3619 			 * tcp_urp_mp will be non-NULL and will get prepended
3620 			 * to what has to be this piece containing the urgent
3621 			 * byte.  If for any reason we abort this segment below,
3622 			 * if it comes back, we will have this ready, or it
3623 			 * will get blown off in close.
3624 			 */
3625 		} else if (urp == seg_len) {
3626 			/*
3627 			 * The urgent byte is the next byte after this sequence
3628 			 * number. If this endpoint is non-STREAMS, then there
3629 			 * is nothing to do here since the socket has already
3630 			 * been notified about the urg pointer by the
3631 			 * su_signal_oob call above.
3632 			 *
3633 			 * In case of STREAMS, some more work might be needed.
3634 			 * If there is data it is marked with MSGMARKNEXT and
3635 			 * and any tcp_urp_mark_mp is discarded since it is not
3636 			 * needed. Otherwise, if the code above just allocated
3637 			 * a zero-length tcp_urp_mark_mp message, that message
3638 			 * is tagged with MSGMARKNEXT. Sending up these
3639 			 * MSGMARKNEXT messages makes SIOCATMARK work correctly
3640 			 * even though the T_EXDATA_IND will not be sent up
3641 			 * until the urgent byte arrives.
3642 			 */
3643 			if (!IPCL_IS_NONSTR(tcp->tcp_connp)) {
3644 				if (seg_len != 0) {
3645 					flags |= TH_MARKNEXT_NEEDED;
3646 					freemsg(tcp->tcp_urp_mark_mp);
3647 					tcp->tcp_urp_mark_mp = NULL;
3648 					flags &= ~TH_SEND_URP_MARK;
3649 				} else if (tcp->tcp_urp_mark_mp != NULL) {
3650 					flags |= TH_SEND_URP_MARK;
3651 					tcp->tcp_urp_mark_mp->b_flag &=
3652 					    ~MSGNOTMARKNEXT;
3653 					tcp->tcp_urp_mark_mp->b_flag |=
3654 					    MSGMARKNEXT;
3655 				}
3656 			}
3657 #ifdef DEBUG
3658 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3659 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
3660 			    seg_len, flags,
3661 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
3662 #endif /* DEBUG */
3663 		}
3664 #ifdef DEBUG
3665 		else {
3666 			/* Data left until we hit mark */
3667 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3668 			    "tcp_rput: URP %d bytes left, %s",
3669 			    urp - seg_len, tcp_display(tcp, NULL,
3670 			    DISP_PORT_ONLY));
3671 		}
3672 #endif /* DEBUG */
3673 	}
3674 
3675 process_ack:
3676 	if (!(flags & TH_ACK)) {
3677 		freemsg(mp);
3678 		goto xmit_check;
3679 	}
3680 	}
3681 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
3682 
3683 	if (bytes_acked > 0)
3684 		tcp->tcp_ip_forward_progress = B_TRUE;
3685 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
3686 		/*
3687 		 * tcp_sendmsg() checks tcp_state without entering
3688 		 * the squeue so tcp_state should be updated before
3689 		 * sending up a connection confirmation or a new
3690 		 * connection indication.
3691 		 */
3692 		tcp->tcp_state = TCPS_ESTABLISHED;
3693 
3694 		/*
3695 		 * We are seeing the final ack in the three way
3696 		 * hand shake of a active open'ed connection
3697 		 * so we must send up a T_CONN_CON
3698 		 */
3699 		if (tcp->tcp_active_open) {
3700 			if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) {
3701 				freemsg(mp);
3702 				tcp->tcp_state = TCPS_SYN_RCVD;
3703 				return;
3704 			}
3705 			/*
3706 			 * Don't fuse the loopback endpoints for
3707 			 * simultaneous active opens.
3708 			 */
3709 			if (tcp->tcp_loopback) {
3710 				TCP_STAT(tcps, tcp_fusion_unfusable);
3711 				tcp->tcp_unfusable = B_TRUE;
3712 			}
3713 			/*
3714 			 * For simultaneous active open, trace receipt of final
3715 			 * ACK as tcp:::connect-established.
3716 			 */
3717 			DTRACE_TCP5(connect__established, mblk_t *, NULL,
3718 			    ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *,
3719 			    iphdr, tcp_t *, tcp, tcph_t *, tcpha);
3720 		} else if (IPCL_IS_NONSTR(connp)) {
3721 			/*
3722 			 * 3-way handshake has completed, so notify socket
3723 			 * of the new connection.
3724 			 *
3725 			 * We are here means eager is fine but it can
3726 			 * get a TH_RST at any point between now and till
3727 			 * accept completes and disappear. We need to
3728 			 * ensure that reference to eager is valid after
3729 			 * we get out of eager's perimeter. So we do
3730 			 * an extra refhold.
3731 			 */
3732 			CONN_INC_REF(connp);
3733 
3734 			if (!tcp_newconn_notify(tcp, ira)) {
3735 				/*
3736 				 * The state-change probe for SYN_RCVD ->
3737 				 * ESTABLISHED has not fired yet. We reset
3738 				 * the state to SYN_RCVD so that future
3739 				 * state-change probes report correct state
3740 				 * transistions.
3741 				 */
3742 				tcp->tcp_state = TCPS_SYN_RCVD;
3743 				freemsg(mp);
3744 				/* notification did not go up, so drop ref */
3745 				CONN_DEC_REF(connp);
3746 				/* ... and close the eager */
3747 				ASSERT(TCP_IS_DETACHED(tcp));
3748 				(void) tcp_close_detached(tcp);
3749 				return;
3750 			}
3751 			/*
3752 			 * tcp_newconn_notify() changes conn_upcalls and
3753 			 * connp->conn_upper_handle.  Fix things now, in case
3754 			 * there's data attached to this ack.
3755 			 */
3756 			if (connp->conn_upcalls != NULL)
3757 				sockupcalls = connp->conn_upcalls;
3758 			/*
3759 			 * For passive open, trace receipt of final ACK as
3760 			 * tcp:::accept-established.
3761 			 */
3762 			DTRACE_TCP5(accept__established, mlbk_t *, NULL,
3763 			    ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *,
3764 			    iphdr, tcp_t *, tcp, tcph_t *, tcpha);
3765 		} else {
3766 			/*
3767 			 * 3-way handshake complete - this is a STREAMS based
3768 			 * socket, so pass up the T_CONN_IND.
3769 			 */
3770 			tcp_t	*listener = tcp->tcp_listener;
3771 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
3772 
3773 			tcp->tcp_tconnind_started = B_TRUE;
3774 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
3775 			ASSERT(mp != NULL);
3776 			/*
3777 			 * We are here means eager is fine but it can
3778 			 * get a TH_RST at any point between now and till
3779 			 * accept completes and disappear. We need to
3780 			 * ensure that reference to eager is valid after
3781 			 * we get out of eager's perimeter. So we do
3782 			 * an extra refhold.
3783 			 */
3784 			CONN_INC_REF(connp);
3785 
3786 			/*
3787 			 * The listener also exists because of the refhold
3788 			 * done in tcp_input_listener. Its possible that it
3789 			 * might have closed. We will check that once we
3790 			 * get inside listeners context.
3791 			 */
3792 			CONN_INC_REF(listener->tcp_connp);
3793 			if (listener->tcp_connp->conn_sqp ==
3794 			    connp->conn_sqp) {
3795 				/*
3796 				 * We optimize by not calling an SQUEUE_ENTER
3797 				 * on the listener since we know that the
3798 				 * listener and eager squeues are the same.
3799 				 * We are able to make this check safely only
3800 				 * because neither the eager nor the listener
3801 				 * can change its squeue. Only an active connect
3802 				 * can change its squeue
3803 				 */
3804 				tcp_send_conn_ind(listener->tcp_connp, mp,
3805 				    listener->tcp_connp->conn_sqp);
3806 				CONN_DEC_REF(listener->tcp_connp);
3807 			} else if (!tcp->tcp_loopback) {
3808 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
3809 				    mp, tcp_send_conn_ind,
3810 				    listener->tcp_connp, NULL, SQ_FILL,
3811 				    SQTAG_TCP_CONN_IND);
3812 			} else {
3813 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
3814 				    mp, tcp_send_conn_ind,
3815 				    listener->tcp_connp, NULL, SQ_NODRAIN,
3816 				    SQTAG_TCP_CONN_IND);
3817 			}
3818 			/*
3819 			 * For passive open, trace receipt of final ACK as
3820 			 * tcp:::accept-established.
3821 			 */
3822 			DTRACE_TCP5(accept__established, mlbk_t *, NULL,
3823 			    ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *,
3824 			    iphdr, tcp_t *, tcp, tcph_t *, tcpha);
3825 		}
3826 		TCPS_CONN_INC(tcps);
3827 
3828 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
3829 		bytes_acked--;
3830 		/* SYN was acked - making progress */
3831 		tcp->tcp_ip_forward_progress = B_TRUE;
3832 
3833 		/*
3834 		 * If SYN was retransmitted, need to reset all
3835 		 * retransmission info as this segment will be
3836 		 * treated as a dup ACK.
3837 		 */
3838 		if (tcp->tcp_rexmit) {
3839 			tcp->tcp_rexmit = B_FALSE;
3840 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
3841 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
3842 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
3843 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
3844 			tcp->tcp_ms_we_have_waited = 0;
3845 			tcp->tcp_cwnd = mss;
3846 		}
3847 
3848 		/*
3849 		 * We set the send window to zero here.
3850 		 * This is needed if there is data to be
3851 		 * processed already on the queue.
3852 		 * Later (at swnd_update label), the
3853 		 * "new_swnd > tcp_swnd" condition is satisfied
3854 		 * the XMIT_NEEDED flag is set in the current
3855 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
3856 		 * called if there is already data on queue in
3857 		 * this state.
3858 		 */
3859 		tcp->tcp_swnd = 0;
3860 
3861 		if (new_swnd > tcp->tcp_max_swnd)
3862 			tcp->tcp_max_swnd = new_swnd;
3863 		tcp->tcp_swl1 = seg_seq;
3864 		tcp->tcp_swl2 = seg_ack;
3865 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
3866 
3867 		/* Trace change from SYN_RCVD -> ESTABLISHED here */
3868 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
3869 		    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
3870 		    int32_t, TCPS_SYN_RCVD);
3871 
3872 		/* Fuse when both sides are in ESTABLISHED state */
3873 		if (tcp->tcp_loopback && do_tcp_fusion)
3874 			tcp_fuse(tcp, iphdr, tcpha);
3875 
3876 	}
3877 	/* This code follows 4.4BSD-Lite2 mostly. */
3878 	if (bytes_acked < 0)
3879 		goto est;
3880 
3881 	/*
3882 	 * If TCP is ECN capable and the congestion experience bit is
3883 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
3884 	 * done once per window (or more loosely, per RTT).
3885 	 */
3886 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
3887 		tcp->tcp_cwr = B_FALSE;
3888 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
3889 		if (!tcp->tcp_cwr) {
3890 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
3891 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
3892 			tcp->tcp_cwnd = npkt * mss;
3893 			/*
3894 			 * If the cwnd is 0, use the timer to clock out
3895 			 * new segments.  This is required by the ECN spec.
3896 			 */
3897 			if (npkt == 0) {
3898 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
3899 				/*
3900 				 * This makes sure that when the ACK comes
3901 				 * back, we will increase tcp_cwnd by 1 MSS.
3902 				 */
3903 				tcp->tcp_cwnd_cnt = 0;
3904 			}
3905 			tcp->tcp_cwr = B_TRUE;
3906 			/*
3907 			 * This marks the end of the current window of in
3908 			 * flight data.  That is why we don't use
3909 			 * tcp_suna + tcp_swnd.  Only data in flight can
3910 			 * provide ECN info.
3911 			 */
3912 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
3913 			tcp->tcp_ecn_cwr_sent = B_FALSE;
3914 		}
3915 	}
3916 
3917 	mp1 = tcp->tcp_xmit_head;
3918 	if (bytes_acked == 0) {
3919 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
3920 			int dupack_cnt;
3921 
3922 			TCPS_BUMP_MIB(tcps, tcpInDupAck);
3923 			/*
3924 			 * Fast retransmit.  When we have seen exactly three
3925 			 * identical ACKs while we have unacked data
3926 			 * outstanding we take it as a hint that our peer
3927 			 * dropped something.
3928 			 *
3929 			 * If TCP is retransmitting, don't do fast retransmit.
3930 			 */
3931 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
3932 			    ! tcp->tcp_rexmit) {
3933 				/* Do Limited Transmit */
3934 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
3935 				    tcps->tcps_dupack_fast_retransmit) {
3936 					/*
3937 					 * RFC 3042
3938 					 *
3939 					 * What we need to do is temporarily
3940 					 * increase tcp_cwnd so that new
3941 					 * data can be sent if it is allowed
3942 					 * by the receive window (tcp_rwnd).
3943 					 * tcp_wput_data() will take care of
3944 					 * the rest.
3945 					 *
3946 					 * If the connection is SACK capable,
3947 					 * only do limited xmit when there
3948 					 * is SACK info.
3949 					 *
3950 					 * Note how tcp_cwnd is incremented.
3951 					 * The first dup ACK will increase
3952 					 * it by 1 MSS.  The second dup ACK
3953 					 * will increase it by 2 MSS.  This
3954 					 * means that only 1 new segment will
3955 					 * be sent for each dup ACK.
3956 					 */
3957 					if (tcp->tcp_unsent > 0 &&
3958 					    (!tcp->tcp_snd_sack_ok ||
3959 					    (tcp->tcp_snd_sack_ok &&
3960 					    tcp->tcp_notsack_list != NULL))) {
3961 						tcp->tcp_cwnd += mss <<
3962 						    (tcp->tcp_dupack_cnt - 1);
3963 						flags |= TH_LIMIT_XMIT;
3964 					}
3965 				} else if (dupack_cnt ==
3966 				    tcps->tcps_dupack_fast_retransmit) {
3967 
3968 				/*
3969 				 * If we have reduced tcp_ssthresh
3970 				 * because of ECN, do not reduce it again
3971 				 * unless it is already one window of data
3972 				 * away.  After one window of data, tcp_cwr
3973 				 * should then be cleared.  Note that
3974 				 * for non ECN capable connection, tcp_cwr
3975 				 * should always be false.
3976 				 *
3977 				 * Adjust cwnd since the duplicate
3978 				 * ack indicates that a packet was
3979 				 * dropped (due to congestion.)
3980 				 */
3981 				if (!tcp->tcp_cwr) {
3982 					npkt = ((tcp->tcp_snxt -
3983 					    tcp->tcp_suna) >> 1) / mss;
3984 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
3985 					    mss;
3986 					tcp->tcp_cwnd = (npkt +
3987 					    tcp->tcp_dupack_cnt) * mss;
3988 				}
3989 				if (tcp->tcp_ecn_ok) {
3990 					tcp->tcp_cwr = B_TRUE;
3991 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
3992 					tcp->tcp_ecn_cwr_sent = B_FALSE;
3993 				}
3994 
3995 				/*
3996 				 * We do Hoe's algorithm.  Refer to her
3997 				 * paper "Improving the Start-up Behavior
3998 				 * of a Congestion Control Scheme for TCP,"
3999 				 * appeared in SIGCOMM'96.
4000 				 *
4001 				 * Save highest seq no we have sent so far.
4002 				 * Be careful about the invisible FIN byte.
4003 				 */
4004 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
4005 				    (tcp->tcp_unsent == 0)) {
4006 					tcp->tcp_rexmit_max = tcp->tcp_fss;
4007 				} else {
4008 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
4009 				}
4010 
4011 				/*
4012 				 * Do not allow bursty traffic during.
4013 				 * fast recovery.  Refer to Fall and Floyd's
4014 				 * paper "Simulation-based Comparisons of
4015 				 * Tahoe, Reno and SACK TCP" (in CCR?)
4016 				 * This is a best current practise.
4017 				 */
4018 				tcp->tcp_snd_burst = TCP_CWND_SS;
4019 
4020 				/*
4021 				 * For SACK:
4022 				 * Calculate tcp_pipe, which is the
4023 				 * estimated number of bytes in
4024 				 * network.
4025 				 *
4026 				 * tcp_fack is the highest sack'ed seq num
4027 				 * TCP has received.
4028 				 *
4029 				 * tcp_pipe is explained in the above quoted
4030 				 * Fall and Floyd's paper.  tcp_fack is
4031 				 * explained in Mathis and Mahdavi's
4032 				 * "Forward Acknowledgment: Refining TCP
4033 				 * Congestion Control" in SIGCOMM '96.
4034 				 */
4035 				if (tcp->tcp_snd_sack_ok) {
4036 					if (tcp->tcp_notsack_list != NULL) {
4037 						tcp->tcp_pipe = tcp->tcp_snxt -
4038 						    tcp->tcp_fack;
4039 						tcp->tcp_sack_snxt = seg_ack;
4040 						flags |= TH_NEED_SACK_REXMIT;
4041 					} else {
4042 						/*
4043 						 * Always initialize tcp_pipe
4044 						 * even though we don't have
4045 						 * any SACK info.  If later
4046 						 * we get SACK info and
4047 						 * tcp_pipe is not initialized,
4048 						 * funny things will happen.
4049 						 */
4050 						tcp->tcp_pipe =
4051 						    tcp->tcp_cwnd_ssthresh;
4052 					}
4053 				} else {
4054 					flags |= TH_REXMIT_NEEDED;
4055 				} /* tcp_snd_sack_ok */
4056 
4057 				} else {
4058 					/*
4059 					 * Here we perform congestion
4060 					 * avoidance, but NOT slow start.
4061 					 * This is known as the Fast
4062 					 * Recovery Algorithm.
4063 					 */
4064 					if (tcp->tcp_snd_sack_ok &&
4065 					    tcp->tcp_notsack_list != NULL) {
4066 						flags |= TH_NEED_SACK_REXMIT;
4067 						tcp->tcp_pipe -= mss;
4068 						if (tcp->tcp_pipe < 0)
4069 							tcp->tcp_pipe = 0;
4070 					} else {
4071 					/*
4072 					 * We know that one more packet has
4073 					 * left the pipe thus we can update
4074 					 * cwnd.
4075 					 */
4076 					cwnd = tcp->tcp_cwnd + mss;
4077 					if (cwnd > tcp->tcp_cwnd_max)
4078 						cwnd = tcp->tcp_cwnd_max;
4079 					tcp->tcp_cwnd = cwnd;
4080 					if (tcp->tcp_unsent > 0)
4081 						flags |= TH_XMIT_NEEDED;
4082 					}
4083 				}
4084 			}
4085 		} else if (tcp->tcp_zero_win_probe) {
4086 			/*
4087 			 * If the window has opened, need to arrange
4088 			 * to send additional data.
4089 			 */
4090 			if (new_swnd != 0) {
4091 				/* tcp_suna != tcp_snxt */
4092 				/* Packet contains a window update */
4093 				TCPS_BUMP_MIB(tcps, tcpInWinUpdate);
4094 				tcp->tcp_zero_win_probe = 0;
4095 				tcp->tcp_timer_backoff = 0;
4096 				tcp->tcp_ms_we_have_waited = 0;
4097 
4098 				/*
4099 				 * Transmit starting with tcp_suna since
4100 				 * the one byte probe is not ack'ed.
4101 				 * If TCP has sent more than one identical
4102 				 * probe, tcp_rexmit will be set.  That means
4103 				 * tcp_ss_rexmit() will send out the one
4104 				 * byte along with new data.  Otherwise,
4105 				 * fake the retransmission.
4106 				 */
4107 				flags |= TH_XMIT_NEEDED;
4108 				if (!tcp->tcp_rexmit) {
4109 					tcp->tcp_rexmit = B_TRUE;
4110 					tcp->tcp_dupack_cnt = 0;
4111 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
4112 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
4113 				}
4114 			}
4115 		}
4116 		goto swnd_update;
4117 	}
4118 
4119 	/*
4120 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
4121 	 * If the ACK value acks something that we have not yet sent, it might
4122 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
4123 	 * other side.
4124 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
4125 	 * state is handled above, so we can always just drop the segment and
4126 	 * send an ACK here.
4127 	 *
4128 	 * In the case where the peer shrinks the window, we see the new window
4129 	 * update, but all the data sent previously is queued up by the peer.
4130 	 * To account for this, in tcp_process_shrunk_swnd(), the sequence
4131 	 * number, which was already sent, and within window, is recorded.
4132 	 * tcp_snxt is then updated.
4133 	 *
4134 	 * If the window has previously shrunk, and an ACK for data not yet
4135 	 * sent, according to tcp_snxt is recieved, it may still be valid. If
4136 	 * the ACK is for data within the window at the time the window was
4137 	 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to
4138 	 * the sequence number ACK'ed.
4139 	 *
4140 	 * If the ACK covers all the data sent at the time the window was
4141 	 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE.
4142 	 *
4143 	 * Should we send ACKs in response to ACK only segments?
4144 	 */
4145 
4146 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
4147 		if ((tcp->tcp_is_wnd_shrnk) &&
4148 		    (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) {
4149 			uint32_t data_acked_ahead_snxt;
4150 
4151 			data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt;
4152 			tcp_update_xmit_tail(tcp, seg_ack);
4153 			tcp->tcp_unsent -= data_acked_ahead_snxt;
4154 		} else {
4155 			TCPS_BUMP_MIB(tcps, tcpInAckUnsent);
4156 			/* drop the received segment */
4157 			freemsg(mp);
4158 
4159 			/*
4160 			 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
4161 			 * greater than 0, check if the number of such
4162 			 * bogus ACks is greater than that count.  If yes,
4163 			 * don't send back any ACK.  This prevents TCP from
4164 			 * getting into an ACK storm if somehow an attacker
4165 			 * successfully spoofs an acceptable segment to our
4166 			 * peer.  If this continues (count > 2 X threshold),
4167 			 * we should abort this connection.
4168 			 */
4169 			if (tcp_drop_ack_unsent_cnt > 0 &&
4170 			    ++tcp->tcp_in_ack_unsent >
4171 			    tcp_drop_ack_unsent_cnt) {
4172 				TCP_STAT(tcps, tcp_in_ack_unsent_drop);
4173 				if (tcp->tcp_in_ack_unsent > 2 *
4174 				    tcp_drop_ack_unsent_cnt) {
4175 					(void) tcp_clean_death(tcp, EPROTO);
4176 				}
4177 				return;
4178 			}
4179 			mp = tcp_ack_mp(tcp);
4180 			if (mp != NULL) {
4181 				BUMP_LOCAL(tcp->tcp_obsegs);
4182 				TCPS_BUMP_MIB(tcps, tcpOutAck);
4183 				tcp_send_data(tcp, mp);
4184 			}
4185 			return;
4186 		}
4187 	} else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack,
4188 	    tcp->tcp_snxt_shrunk)) {
4189 			tcp->tcp_is_wnd_shrnk = B_FALSE;
4190 	}
4191 
4192 	/*
4193 	 * TCP gets a new ACK, update the notsack'ed list to delete those
4194 	 * blocks that are covered by this ACK.
4195 	 */
4196 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
4197 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
4198 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
4199 	}
4200 
4201 	/*
4202 	 * If we got an ACK after fast retransmit, check to see
4203 	 * if it is a partial ACK.  If it is not and the congestion
4204 	 * window was inflated to account for the other side's
4205 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
4206 	 */
4207 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
4208 		ASSERT(tcp->tcp_rexmit == B_FALSE);
4209 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
4210 			tcp->tcp_dupack_cnt = 0;
4211 			/*
4212 			 * Restore the orig tcp_cwnd_ssthresh after
4213 			 * fast retransmit phase.
4214 			 */
4215 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
4216 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
4217 			}
4218 			tcp->tcp_rexmit_max = seg_ack;
4219 			tcp->tcp_cwnd_cnt = 0;
4220 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
4221 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
4222 
4223 			/*
4224 			 * Remove all notsack info to avoid confusion with
4225 			 * the next fast retrasnmit/recovery phase.
4226 			 */
4227 			if (tcp->tcp_snd_sack_ok) {
4228 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list,
4229 				    tcp);
4230 			}
4231 		} else {
4232 			if (tcp->tcp_snd_sack_ok &&
4233 			    tcp->tcp_notsack_list != NULL) {
4234 				flags |= TH_NEED_SACK_REXMIT;
4235 				tcp->tcp_pipe -= mss;
4236 				if (tcp->tcp_pipe < 0)
4237 					tcp->tcp_pipe = 0;
4238 			} else {
4239 				/*
4240 				 * Hoe's algorithm:
4241 				 *
4242 				 * Retransmit the unack'ed segment and
4243 				 * restart fast recovery.  Note that we
4244 				 * need to scale back tcp_cwnd to the
4245 				 * original value when we started fast
4246 				 * recovery.  This is to prevent overly
4247 				 * aggressive behaviour in sending new
4248 				 * segments.
4249 				 */
4250 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
4251 				    tcps->tcps_dupack_fast_retransmit * mss;
4252 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
4253 				flags |= TH_REXMIT_NEEDED;
4254 			}
4255 		}
4256 	} else {
4257 		tcp->tcp_dupack_cnt = 0;
4258 		if (tcp->tcp_rexmit) {
4259 			/*
4260 			 * TCP is retranmitting.  If the ACK ack's all
4261 			 * outstanding data, update tcp_rexmit_max and
4262 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
4263 			 * to the correct value.
4264 			 *
4265 			 * Note that SEQ_LEQ() is used.  This is to avoid
4266 			 * unnecessary fast retransmit caused by dup ACKs
4267 			 * received when TCP does slow start retransmission
4268 			 * after a time out.  During this phase, TCP may
4269 			 * send out segments which are already received.
4270 			 * This causes dup ACKs to be sent back.
4271 			 */
4272 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
4273 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
4274 					tcp->tcp_rexmit_nxt = seg_ack;
4275 				}
4276 				if (seg_ack != tcp->tcp_rexmit_max) {
4277 					flags |= TH_XMIT_NEEDED;
4278 				}
4279 			} else {
4280 				tcp->tcp_rexmit = B_FALSE;
4281 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
4282 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
4283 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
4284 			}
4285 			tcp->tcp_ms_we_have_waited = 0;
4286 		}
4287 	}
4288 
4289 	TCPS_BUMP_MIB(tcps, tcpInAckSegs);
4290 	TCPS_UPDATE_MIB(tcps, tcpInAckBytes, bytes_acked);
4291 	tcp->tcp_suna = seg_ack;
4292 	if (tcp->tcp_zero_win_probe != 0) {
4293 		tcp->tcp_zero_win_probe = 0;
4294 		tcp->tcp_timer_backoff = 0;
4295 	}
4296 
4297 	/*
4298 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
4299 	 * Note that it cannot be the SYN being ack'ed.  The code flow
4300 	 * will not reach here.
4301 	 */
4302 	if (mp1 == NULL) {
4303 		goto fin_acked;
4304 	}
4305 
4306 	/*
4307 	 * Update the congestion window.
4308 	 *
4309 	 * If TCP is not ECN capable or TCP is ECN capable but the
4310 	 * congestion experience bit is not set, increase the tcp_cwnd as
4311 	 * usual.
4312 	 */
4313 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
4314 		cwnd = tcp->tcp_cwnd;
4315 		add = mss;
4316 
4317 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
4318 			/*
4319 			 * This is to prevent an increase of less than 1 MSS of
4320 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
4321 			 * may send out tinygrams in order to preserve mblk
4322 			 * boundaries.
4323 			 *
4324 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
4325 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
4326 			 * increased by 1 MSS for every RTTs.
4327 			 */
4328 			if (tcp->tcp_cwnd_cnt <= 0) {
4329 				tcp->tcp_cwnd_cnt = cwnd + add;
4330 			} else {
4331 				tcp->tcp_cwnd_cnt -= add;
4332 				add = 0;
4333 			}
4334 		}
4335 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
4336 	}
4337 
4338 	/* See if the latest urgent data has been acknowledged */
4339 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
4340 	    SEQ_GT(seg_ack, tcp->tcp_urg))
4341 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
4342 
4343 	/* Can we update the RTT estimates? */
4344 	if (tcp->tcp_snd_ts_ok) {
4345 		/* Ignore zero timestamp echo-reply. */
4346 		if (tcpopt.tcp_opt_ts_ecr != 0) {
4347 			tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH -
4348 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
4349 		}
4350 
4351 		/* If needed, restart the timer. */
4352 		if (tcp->tcp_set_timer == 1) {
4353 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4354 			tcp->tcp_set_timer = 0;
4355 		}
4356 		/*
4357 		 * Update tcp_csuna in case the other side stops sending
4358 		 * us timestamps.
4359 		 */
4360 		tcp->tcp_csuna = tcp->tcp_snxt;
4361 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
4362 		/*
4363 		 * An ACK sequence we haven't seen before, so get the RTT
4364 		 * and update the RTO. But first check if the timestamp is
4365 		 * valid to use.
4366 		 */
4367 		if ((mp1->b_next != NULL) &&
4368 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
4369 			tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH -
4370 			    (int32_t)(intptr_t)mp1->b_prev);
4371 		else
4372 			TCPS_BUMP_MIB(tcps, tcpRttNoUpdate);
4373 
4374 		/* Remeber the last sequence to be ACKed */
4375 		tcp->tcp_csuna = seg_ack;
4376 		if (tcp->tcp_set_timer == 1) {
4377 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4378 			tcp->tcp_set_timer = 0;
4379 		}
4380 	} else {
4381 		TCPS_BUMP_MIB(tcps, tcpRttNoUpdate);
4382 	}
4383 
4384 	/* Eat acknowledged bytes off the xmit queue. */
4385 	for (;;) {
4386 		mblk_t	*mp2;
4387 		uchar_t	*wptr;
4388 
4389 		wptr = mp1->b_wptr;
4390 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
4391 		bytes_acked -= (int)(wptr - mp1->b_rptr);
4392 		if (bytes_acked < 0) {
4393 			mp1->b_rptr = wptr + bytes_acked;
4394 			/*
4395 			 * Set a new timestamp if all the bytes timed by the
4396 			 * old timestamp have been ack'ed.
4397 			 */
4398 			if (SEQ_GT(seg_ack,
4399 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
4400 				mp1->b_prev =
4401 				    (mblk_t *)(uintptr_t)LBOLT_FASTPATH;
4402 				mp1->b_next = NULL;
4403 			}
4404 			break;
4405 		}
4406 		mp1->b_next = NULL;
4407 		mp1->b_prev = NULL;
4408 		mp2 = mp1;
4409 		mp1 = mp1->b_cont;
4410 
4411 		/*
4412 		 * This notification is required for some zero-copy
4413 		 * clients to maintain a copy semantic. After the data
4414 		 * is ack'ed, client is safe to modify or reuse the buffer.
4415 		 */
4416 		if (tcp->tcp_snd_zcopy_aware &&
4417 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
4418 			tcp_zcopy_notify(tcp);
4419 		freeb(mp2);
4420 		if (bytes_acked == 0) {
4421 			if (mp1 == NULL) {
4422 				/* Everything is ack'ed, clear the tail. */
4423 				tcp->tcp_xmit_tail = NULL;
4424 				/*
4425 				 * Cancel the timer unless we are still
4426 				 * waiting for an ACK for the FIN packet.
4427 				 */
4428 				if (tcp->tcp_timer_tid != 0 &&
4429 				    tcp->tcp_snxt == tcp->tcp_suna) {
4430 					(void) TCP_TIMER_CANCEL(tcp,
4431 					    tcp->tcp_timer_tid);
4432 					tcp->tcp_timer_tid = 0;
4433 				}
4434 				goto pre_swnd_update;
4435 			}
4436 			if (mp2 != tcp->tcp_xmit_tail)
4437 				break;
4438 			tcp->tcp_xmit_tail = mp1;
4439 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
4440 			    (uintptr_t)INT_MAX);
4441 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
4442 			    mp1->b_rptr);
4443 			break;
4444 		}
4445 		if (mp1 == NULL) {
4446 			/*
4447 			 * More was acked but there is nothing more
4448 			 * outstanding.  This means that the FIN was
4449 			 * just acked or that we're talking to a clown.
4450 			 */
4451 fin_acked:
4452 			ASSERT(tcp->tcp_fin_sent);
4453 			tcp->tcp_xmit_tail = NULL;
4454 			if (tcp->tcp_fin_sent) {
4455 				/* FIN was acked - making progress */
4456 				if (!tcp->tcp_fin_acked)
4457 					tcp->tcp_ip_forward_progress = B_TRUE;
4458 				tcp->tcp_fin_acked = B_TRUE;
4459 				if (tcp->tcp_linger_tid != 0 &&
4460 				    TCP_TIMER_CANCEL(tcp,
4461 				    tcp->tcp_linger_tid) >= 0) {
4462 					tcp_stop_lingering(tcp);
4463 					freemsg(mp);
4464 					mp = NULL;
4465 				}
4466 			} else {
4467 				/*
4468 				 * We should never get here because
4469 				 * we have already checked that the
4470 				 * number of bytes ack'ed should be
4471 				 * smaller than or equal to what we
4472 				 * have sent so far (it is the
4473 				 * acceptability check of the ACK).
4474 				 * We can only get here if the send
4475 				 * queue is corrupted.
4476 				 *
4477 				 * Terminate the connection and
4478 				 * panic the system.  It is better
4479 				 * for us to panic instead of
4480 				 * continuing to avoid other disaster.
4481 				 */
4482 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
4483 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
4484 				panic("Memory corruption "
4485 				    "detected for connection %s.",
4486 				    tcp_display(tcp, NULL,
4487 				    DISP_ADDR_AND_PORT));
4488 				/*NOTREACHED*/
4489 			}
4490 			goto pre_swnd_update;
4491 		}
4492 		ASSERT(mp2 != tcp->tcp_xmit_tail);
4493 	}
4494 	if (tcp->tcp_unsent) {
4495 		flags |= TH_XMIT_NEEDED;
4496 	}
4497 pre_swnd_update:
4498 	tcp->tcp_xmit_head = mp1;
4499 swnd_update:
4500 	/*
4501 	 * The following check is different from most other implementations.
4502 	 * For bi-directional transfer, when segments are dropped, the
4503 	 * "normal" check will not accept a window update in those
4504 	 * retransmitted segemnts.  Failing to do that, TCP may send out
4505 	 * segments which are outside receiver's window.  As TCP accepts
4506 	 * the ack in those retransmitted segments, if the window update in
4507 	 * the same segment is not accepted, TCP will incorrectly calculates
4508 	 * that it can send more segments.  This can create a deadlock
4509 	 * with the receiver if its window becomes zero.
4510 	 */
4511 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
4512 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
4513 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
4514 		/*
4515 		 * The criteria for update is:
4516 		 *
4517 		 * 1. the segment acknowledges some data.  Or
4518 		 * 2. the segment is new, i.e. it has a higher seq num. Or
4519 		 * 3. the segment is not old and the advertised window is
4520 		 * larger than the previous advertised window.
4521 		 */
4522 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
4523 			flags |= TH_XMIT_NEEDED;
4524 		tcp->tcp_swnd = new_swnd;
4525 		if (new_swnd > tcp->tcp_max_swnd)
4526 			tcp->tcp_max_swnd = new_swnd;
4527 		tcp->tcp_swl1 = seg_seq;
4528 		tcp->tcp_swl2 = seg_ack;
4529 	}
4530 est:
4531 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
4532 
4533 		switch (tcp->tcp_state) {
4534 		case TCPS_FIN_WAIT_1:
4535 			if (tcp->tcp_fin_acked) {
4536 				tcp->tcp_state = TCPS_FIN_WAIT_2;
4537 				DTRACE_TCP6(state__change, void, NULL,
4538 				    ip_xmit_attr_t *, connp->conn_ixa,
4539 				    void, NULL, tcp_t *, tcp, void, NULL,
4540 				    int32_t, TCPS_FIN_WAIT_1);
4541 				/*
4542 				 * We implement the non-standard BSD/SunOS
4543 				 * FIN_WAIT_2 flushing algorithm.
4544 				 * If there is no user attached to this
4545 				 * TCP endpoint, then this TCP struct
4546 				 * could hang around forever in FIN_WAIT_2
4547 				 * state if the peer forgets to send us
4548 				 * a FIN.  To prevent this, we wait only
4549 				 * 2*MSL (a convenient time value) for
4550 				 * the FIN to arrive.  If it doesn't show up,
4551 				 * we flush the TCP endpoint.  This algorithm,
4552 				 * though a violation of RFC-793, has worked
4553 				 * for over 10 years in BSD systems.
4554 				 * Note: SunOS 4.x waits 675 seconds before
4555 				 * flushing the FIN_WAIT_2 connection.
4556 				 */
4557 				TCP_TIMER_RESTART(tcp,
4558 				    tcp->tcp_fin_wait_2_flush_interval);
4559 			}
4560 			break;
4561 		case TCPS_FIN_WAIT_2:
4562 			break;	/* Shutdown hook? */
4563 		case TCPS_LAST_ACK:
4564 			freemsg(mp);
4565 			if (tcp->tcp_fin_acked) {
4566 				(void) tcp_clean_death(tcp, 0);
4567 				return;
4568 			}
4569 			goto xmit_check;
4570 		case TCPS_CLOSING:
4571 			if (tcp->tcp_fin_acked) {
4572 				SET_TIME_WAIT(tcps, tcp, connp);
4573 				DTRACE_TCP6(state__change, void, NULL,
4574 				    ip_xmit_attr_t *, connp->conn_ixa, void,
4575 				    NULL, tcp_t *, tcp, void, NULL, int32_t,
4576 				    TCPS_CLOSING);
4577 			}
4578 			/*FALLTHRU*/
4579 		case TCPS_CLOSE_WAIT:
4580 			freemsg(mp);
4581 			goto xmit_check;
4582 		default:
4583 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
4584 			break;
4585 		}
4586 	}
4587 	if (flags & TH_FIN) {
4588 		/* Make sure we ack the fin */
4589 		flags |= TH_ACK_NEEDED;
4590 		if (!tcp->tcp_fin_rcvd) {
4591 			tcp->tcp_fin_rcvd = B_TRUE;
4592 			tcp->tcp_rnxt++;
4593 			tcpha = tcp->tcp_tcpha;
4594 			tcpha->tha_ack = htonl(tcp->tcp_rnxt);
4595 
4596 			/*
4597 			 * Generate the ordrel_ind at the end unless the
4598 			 * conn is detached or it is a STREAMS based eager.
4599 			 * In the eager case we defer the notification until
4600 			 * tcp_accept_finish has run.
4601 			 */
4602 			if (!TCP_IS_DETACHED(tcp) && (IPCL_IS_NONSTR(connp) ||
4603 			    (tcp->tcp_listener == NULL &&
4604 			    !tcp->tcp_hard_binding)))
4605 				flags |= TH_ORDREL_NEEDED;
4606 			switch (tcp->tcp_state) {
4607 			case TCPS_SYN_RCVD:
4608 				tcp->tcp_state = TCPS_CLOSE_WAIT;
4609 				DTRACE_TCP6(state__change, void, NULL,
4610 				    ip_xmit_attr_t *, connp->conn_ixa,
4611 				    void, NULL, tcp_t *, tcp, void, NULL,
4612 				    int32_t, TCPS_SYN_RCVD);
4613 				/* Keepalive? */
4614 				break;
4615 			case TCPS_ESTABLISHED:
4616 				tcp->tcp_state = TCPS_CLOSE_WAIT;
4617 				DTRACE_TCP6(state__change, void, NULL,
4618 				    ip_xmit_attr_t *, connp->conn_ixa,
4619 				    void, NULL, tcp_t *, tcp, void, NULL,
4620 				    int32_t, TCPS_ESTABLISHED);
4621 				/* Keepalive? */
4622 				break;
4623 			case TCPS_FIN_WAIT_1:
4624 				if (!tcp->tcp_fin_acked) {
4625 					tcp->tcp_state = TCPS_CLOSING;
4626 					DTRACE_TCP6(state__change, void, NULL,
4627 					    ip_xmit_attr_t *, connp->conn_ixa,
4628 					    void, NULL, tcp_t *, tcp, void,
4629 					    NULL, int32_t, TCPS_FIN_WAIT_1);
4630 					break;
4631 				}
4632 				/* FALLTHRU */
4633 			case TCPS_FIN_WAIT_2:
4634 				SET_TIME_WAIT(tcps, tcp, connp);
4635 				DTRACE_TCP6(state__change, void, NULL,
4636 				    ip_xmit_attr_t *, connp->conn_ixa, void,
4637 				    NULL, tcp_t *, tcp, void, NULL, int32_t,
4638 				    TCPS_FIN_WAIT_2);
4639 				if (seg_len) {
4640 					/*
4641 					 * implies data piggybacked on FIN.
4642 					 * break to handle data.
4643 					 */
4644 					break;
4645 				}
4646 				freemsg(mp);
4647 				goto ack_check;
4648 			}
4649 		}
4650 	}
4651 	if (mp == NULL)
4652 		goto xmit_check;
4653 	if (seg_len == 0) {
4654 		freemsg(mp);
4655 		goto xmit_check;
4656 	}
4657 	if (mp->b_rptr == mp->b_wptr) {
4658 		/*
4659 		 * The header has been consumed, so we remove the
4660 		 * zero-length mblk here.
4661 		 */
4662 		mp1 = mp;
4663 		mp = mp->b_cont;
4664 		freeb(mp1);
4665 	}
4666 update_ack:
4667 	tcpha = tcp->tcp_tcpha;
4668 	tcp->tcp_rack_cnt++;
4669 	{
4670 		uint32_t cur_max;
4671 
4672 		cur_max = tcp->tcp_rack_cur_max;
4673 		if (tcp->tcp_rack_cnt >= cur_max) {
4674 			/*
4675 			 * We have more unacked data than we should - send
4676 			 * an ACK now.
4677 			 */
4678 			flags |= TH_ACK_NEEDED;
4679 			cur_max++;
4680 			if (cur_max > tcp->tcp_rack_abs_max)
4681 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
4682 			else
4683 				tcp->tcp_rack_cur_max = cur_max;
4684 		} else if (TCP_IS_DETACHED(tcp)) {
4685 			/* We don't have an ACK timer for detached TCP. */
4686 			flags |= TH_ACK_NEEDED;
4687 		} else if (seg_len < mss) {
4688 			/*
4689 			 * If we get a segment that is less than an mss, and we
4690 			 * already have unacknowledged data, and the amount
4691 			 * unacknowledged is not a multiple of mss, then we
4692 			 * better generate an ACK now.  Otherwise, this may be
4693 			 * the tail piece of a transaction, and we would rather
4694 			 * wait for the response.
4695 			 */
4696 			uint32_t udif;
4697 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
4698 			    (uintptr_t)INT_MAX);
4699 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
4700 			if (udif && (udif % mss))
4701 				flags |= TH_ACK_NEEDED;
4702 			else
4703 				flags |= TH_ACK_TIMER_NEEDED;
4704 		} else {
4705 			/* Start delayed ack timer */
4706 			flags |= TH_ACK_TIMER_NEEDED;
4707 		}
4708 	}
4709 	tcp->tcp_rnxt += seg_len;
4710 	tcpha->tha_ack = htonl(tcp->tcp_rnxt);
4711 
4712 	if (mp == NULL)
4713 		goto xmit_check;
4714 
4715 	/* Update SACK list */
4716 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
4717 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
4718 		    &(tcp->tcp_num_sack_blk));
4719 	}
4720 
4721 	if (tcp->tcp_urp_mp) {
4722 		tcp->tcp_urp_mp->b_cont = mp;
4723 		mp = tcp->tcp_urp_mp;
4724 		tcp->tcp_urp_mp = NULL;
4725 		/* Ready for a new signal. */
4726 		tcp->tcp_urp_last_valid = B_FALSE;
4727 #ifdef DEBUG
4728 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
4729 		    "tcp_rput: sending exdata_ind %s",
4730 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4731 #endif /* DEBUG */
4732 	}
4733 
4734 	/*
4735 	 * Check for ancillary data changes compared to last segment.
4736 	 */
4737 	if (connp->conn_recv_ancillary.crb_all != 0) {
4738 		mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira);
4739 		if (mp == NULL)
4740 			return;
4741 	}
4742 
4743 	if (IPCL_IS_NONSTR(connp)) {
4744 		/*
4745 		 * Non-STREAMS socket
4746 		 */
4747 		boolean_t push = flags & (TH_PUSH|TH_FIN);
4748 		int error;
4749 
4750 		if ((*sockupcalls->su_recv)(connp->conn_upper_handle,
4751 		    mp, seg_len, 0, &error, &push) <= 0) {
4752 			/*
4753 			 * We should never be in middle of a
4754 			 * fallback, the squeue guarantees that.
4755 			 */
4756 			ASSERT(error != EOPNOTSUPP);
4757 			if (error == ENOSPC)
4758 				tcp->tcp_rwnd -= seg_len;
4759 		} else if (push) {
4760 			/* PUSH bit set and sockfs is not flow controlled */
4761 			flags |= tcp_rwnd_reopen(tcp);
4762 		}
4763 	} else if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) {
4764 		/*
4765 		 * Side queue inbound data until the accept happens.
4766 		 * tcp_accept/tcp_rput drains this when the accept happens.
4767 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
4768 		 * T_EXDATA_IND) it is queued on b_next.
4769 		 * XXX Make urgent data use this. Requires:
4770 		 *	Removing tcp_listener check for TH_URG
4771 		 *	Making M_PCPROTO and MARK messages skip the eager case
4772 		 */
4773 
4774 		tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred);
4775 	} else {
4776 		/* Active STREAMS socket */
4777 		if (mp->b_datap->db_type != M_DATA ||
4778 		    (flags & TH_MARKNEXT_NEEDED)) {
4779 			if (tcp->tcp_rcv_list != NULL) {
4780 				flags |= tcp_rcv_drain(tcp);
4781 			}
4782 			ASSERT(tcp->tcp_rcv_list == NULL ||
4783 			    tcp->tcp_fused_sigurg);
4784 
4785 			if (flags & TH_MARKNEXT_NEEDED) {
4786 #ifdef DEBUG
4787 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
4788 				    "tcp_rput: sending MSGMARKNEXT %s",
4789 				    tcp_display(tcp, NULL,
4790 				    DISP_PORT_ONLY));
4791 #endif /* DEBUG */
4792 				mp->b_flag |= MSGMARKNEXT;
4793 				flags &= ~TH_MARKNEXT_NEEDED;
4794 			}
4795 
4796 			if (is_system_labeled())
4797 				tcp_setcred_data(mp, ira);
4798 
4799 			putnext(connp->conn_rq, mp);
4800 			if (!canputnext(connp->conn_rq))
4801 				tcp->tcp_rwnd -= seg_len;
4802 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
4803 		    tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) {
4804 			if (tcp->tcp_rcv_list != NULL) {
4805 				/*
4806 				 * Enqueue the new segment first and then
4807 				 * call tcp_rcv_drain() to send all data
4808 				 * up.  The other way to do this is to
4809 				 * send all queued data up and then call
4810 				 * putnext() to send the new segment up.
4811 				 * This way can remove the else part later
4812 				 * on.
4813 				 *
4814 				 * We don't do this to avoid one more call to
4815 				 * canputnext() as tcp_rcv_drain() needs to
4816 				 * call canputnext().
4817 				 */
4818 				tcp_rcv_enqueue(tcp, mp, seg_len,
4819 				    ira->ira_cred);
4820 				flags |= tcp_rcv_drain(tcp);
4821 			} else {
4822 				if (is_system_labeled())
4823 					tcp_setcred_data(mp, ira);
4824 
4825 				putnext(connp->conn_rq, mp);
4826 				if (!canputnext(connp->conn_rq))
4827 					tcp->tcp_rwnd -= seg_len;
4828 			}
4829 		} else {
4830 			/*
4831 			 * Enqueue all packets when processing an mblk
4832 			 * from the co queue and also enqueue normal packets.
4833 			 */
4834 			tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred);
4835 		}
4836 		/*
4837 		 * Make sure the timer is running if we have data waiting
4838 		 * for a push bit. This provides resiliency against
4839 		 * implementations that do not correctly generate push bits.
4840 		 */
4841 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
4842 			/*
4843 			 * The connection may be closed at this point, so don't
4844 			 * do anything for a detached tcp.
4845 			 */
4846 			if (!TCP_IS_DETACHED(tcp))
4847 				tcp->tcp_push_tid = TCP_TIMER(tcp,
4848 				    tcp_push_timer,
4849 				    tcps->tcps_push_timer_interval);
4850 		}
4851 	}
4852 
4853 xmit_check:
4854 	/* Is there anything left to do? */
4855 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
4856 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
4857 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
4858 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
4859 		goto done;
4860 
4861 	/* Any transmit work to do and a non-zero window? */
4862 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
4863 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
4864 		if (flags & TH_REXMIT_NEEDED) {
4865 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
4866 
4867 			TCPS_BUMP_MIB(tcps, tcpOutFastRetrans);
4868 			if (snd_size > mss)
4869 				snd_size = mss;
4870 			if (snd_size > tcp->tcp_swnd)
4871 				snd_size = tcp->tcp_swnd;
4872 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
4873 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
4874 			    B_TRUE);
4875 
4876 			if (mp1 != NULL) {
4877 				tcp->tcp_xmit_head->b_prev =
4878 				    (mblk_t *)LBOLT_FASTPATH;
4879 				tcp->tcp_csuna = tcp->tcp_snxt;
4880 				TCPS_BUMP_MIB(tcps, tcpRetransSegs);
4881 				TCPS_UPDATE_MIB(tcps, tcpRetransBytes,
4882 				    snd_size);
4883 				tcp_send_data(tcp, mp1);
4884 			}
4885 		}
4886 		if (flags & TH_NEED_SACK_REXMIT) {
4887 			tcp_sack_rexmit(tcp, &flags);
4888 		}
4889 		/*
4890 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
4891 		 * out new segment.  Note that tcp_rexmit should not be
4892 		 * set, otherwise TH_LIMIT_XMIT should not be set.
4893 		 */
4894 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
4895 			if (!tcp->tcp_rexmit) {
4896 				tcp_wput_data(tcp, NULL, B_FALSE);
4897 			} else {
4898 				tcp_ss_rexmit(tcp);
4899 			}
4900 		}
4901 		/*
4902 		 * Adjust tcp_cwnd back to normal value after sending
4903 		 * new data segments.
4904 		 */
4905 		if (flags & TH_LIMIT_XMIT) {
4906 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
4907 			/*
4908 			 * This will restart the timer.  Restarting the
4909 			 * timer is used to avoid a timeout before the
4910 			 * limited transmitted segment's ACK gets back.
4911 			 */
4912 			if (tcp->tcp_xmit_head != NULL)
4913 				tcp->tcp_xmit_head->b_prev =
4914 				    (mblk_t *)LBOLT_FASTPATH;
4915 		}
4916 
4917 		/* Anything more to do? */
4918 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
4919 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
4920 			goto done;
4921 	}
4922 ack_check:
4923 	if (flags & TH_SEND_URP_MARK) {
4924 		ASSERT(tcp->tcp_urp_mark_mp);
4925 		ASSERT(!IPCL_IS_NONSTR(connp));
4926 		/*
4927 		 * Send up any queued data and then send the mark message
4928 		 */
4929 		if (tcp->tcp_rcv_list != NULL) {
4930 			flags |= tcp_rcv_drain(tcp);
4931 
4932 		}
4933 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
4934 		mp1 = tcp->tcp_urp_mark_mp;
4935 		tcp->tcp_urp_mark_mp = NULL;
4936 		if (is_system_labeled())
4937 			tcp_setcred_data(mp1, ira);
4938 
4939 		putnext(connp->conn_rq, mp1);
4940 #ifdef DEBUG
4941 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
4942 		    "tcp_rput: sending zero-length %s %s",
4943 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
4944 		    "MSGNOTMARKNEXT"),
4945 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4946 #endif /* DEBUG */
4947 		flags &= ~TH_SEND_URP_MARK;
4948 	}
4949 	if (flags & TH_ACK_NEEDED) {
4950 		/*
4951 		 * Time to send an ack for some reason.
4952 		 */
4953 		mp1 = tcp_ack_mp(tcp);
4954 
4955 		if (mp1 != NULL) {
4956 			tcp_send_data(tcp, mp1);
4957 			BUMP_LOCAL(tcp->tcp_obsegs);
4958 			TCPS_BUMP_MIB(tcps, tcpOutAck);
4959 		}
4960 		if (tcp->tcp_ack_tid != 0) {
4961 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4962 			tcp->tcp_ack_tid = 0;
4963 		}
4964 	}
4965 	if (flags & TH_ACK_TIMER_NEEDED) {
4966 		/*
4967 		 * Arrange for deferred ACK or push wait timeout.
4968 		 * Start timer if it is not already running.
4969 		 */
4970 		if (tcp->tcp_ack_tid == 0) {
4971 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
4972 			    tcp->tcp_localnet ?
4973 			    tcps->tcps_local_dack_interval :
4974 			    tcps->tcps_deferred_ack_interval);
4975 		}
4976 	}
4977 	if (flags & TH_ORDREL_NEEDED) {
4978 		/*
4979 		 * Notify upper layer about an orderly release. If this is
4980 		 * a non-STREAMS socket, then just make an upcall. For STREAMS
4981 		 * we send up an ordrel_ind, unless this is an eager, in which
4982 		 * case the ordrel will be sent when tcp_accept_finish runs.
4983 		 * Note that for non-STREAMS we make an upcall even if it is an
4984 		 * eager, because we have an upper handle to send it to.
4985 		 */
4986 		ASSERT(IPCL_IS_NONSTR(connp) || tcp->tcp_listener == NULL);
4987 		ASSERT(!tcp->tcp_detached);
4988 
4989 		if (IPCL_IS_NONSTR(connp)) {
4990 			ASSERT(tcp->tcp_ordrel_mp == NULL);
4991 			tcp->tcp_ordrel_done = B_TRUE;
4992 			(*sockupcalls->su_opctl)(connp->conn_upper_handle,
4993 			    SOCK_OPCTL_SHUT_RECV, 0);
4994 			goto done;
4995 		}
4996 
4997 		if (tcp->tcp_rcv_list != NULL) {
4998 			/*
4999 			 * Push any mblk(s) enqueued from co processing.
5000 			 */
5001 			flags |= tcp_rcv_drain(tcp);
5002 		}
5003 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
5004 
5005 		mp1 = tcp->tcp_ordrel_mp;
5006 		tcp->tcp_ordrel_mp = NULL;
5007 		tcp->tcp_ordrel_done = B_TRUE;
5008 		putnext(connp->conn_rq, mp1);
5009 	}
5010 done:
5011 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
5012 }
5013 
5014 /*
5015  * Attach ancillary data to a received TCP segments for the
5016  * ancillary pieces requested by the application that are
5017  * different than they were in the previous data segment.
5018  *
5019  * Save the "current" values once memory allocation is ok so that
5020  * when memory allocation fails we can just wait for the next data segment.
5021  */
5022 static mblk_t *
5023 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp,
5024     ip_recv_attr_t *ira)
5025 {
5026 	struct T_optdata_ind *todi;
5027 	int optlen;
5028 	uchar_t *optptr;
5029 	struct T_opthdr *toh;
5030 	crb_t addflag;	/* Which pieces to add */
5031 	mblk_t *mp1;
5032 	conn_t	*connp = tcp->tcp_connp;
5033 
5034 	optlen = 0;
5035 	addflag.crb_all = 0;
5036 	/* If app asked for pktinfo and the index has changed ... */
5037 	if (connp->conn_recv_ancillary.crb_ip_recvpktinfo &&
5038 	    ira->ira_ruifindex != tcp->tcp_recvifindex) {
5039 		optlen += sizeof (struct T_opthdr) +
5040 		    sizeof (struct in6_pktinfo);
5041 		addflag.crb_ip_recvpktinfo = 1;
5042 	}
5043 	/* If app asked for hoplimit and it has changed ... */
5044 	if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit &&
5045 	    ipp->ipp_hoplimit != tcp->tcp_recvhops) {
5046 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
5047 		addflag.crb_ipv6_recvhoplimit = 1;
5048 	}
5049 	/* If app asked for tclass and it has changed ... */
5050 	if (connp->conn_recv_ancillary.crb_ipv6_recvtclass &&
5051 	    ipp->ipp_tclass != tcp->tcp_recvtclass) {
5052 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
5053 		addflag.crb_ipv6_recvtclass = 1;
5054 	}
5055 	/*
5056 	 * If app asked for hopbyhop headers and it has changed ...
5057 	 * For security labels, note that (1) security labels can't change on
5058 	 * a connected socket at all, (2) we're connected to at most one peer,
5059 	 * (3) if anything changes, then it must be some other extra option.
5060 	 */
5061 	if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts &&
5062 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
5063 	    (ipp->ipp_fields & IPPF_HOPOPTS),
5064 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
5065 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen;
5066 		addflag.crb_ipv6_recvhopopts = 1;
5067 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
5068 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
5069 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
5070 			return (mp);
5071 	}
5072 	/* If app asked for dst headers before routing headers ... */
5073 	if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts &&
5074 	    ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen,
5075 	    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
5076 	    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) {
5077 		optlen += sizeof (struct T_opthdr) +
5078 		    ipp->ipp_rthdrdstoptslen;
5079 		addflag.crb_ipv6_recvrthdrdstopts = 1;
5080 		if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts,
5081 		    &tcp->tcp_rthdrdstoptslen,
5082 		    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
5083 		    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen))
5084 			return (mp);
5085 	}
5086 	/* If app asked for routing headers and it has changed ... */
5087 	if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr &&
5088 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
5089 	    (ipp->ipp_fields & IPPF_RTHDR),
5090 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
5091 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
5092 		addflag.crb_ipv6_recvrthdr = 1;
5093 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
5094 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
5095 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
5096 			return (mp);
5097 	}
5098 	/* If app asked for dest headers and it has changed ... */
5099 	if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts ||
5100 	    connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) &&
5101 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
5102 	    (ipp->ipp_fields & IPPF_DSTOPTS),
5103 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
5104 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
5105 		addflag.crb_ipv6_recvdstopts = 1;
5106 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
5107 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
5108 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
5109 			return (mp);
5110 	}
5111 
5112 	if (optlen == 0) {
5113 		/* Nothing to add */
5114 		return (mp);
5115 	}
5116 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
5117 	if (mp1 == NULL) {
5118 		/*
5119 		 * Defer sending ancillary data until the next TCP segment
5120 		 * arrives.
5121 		 */
5122 		return (mp);
5123 	}
5124 	mp1->b_cont = mp;
5125 	mp = mp1;
5126 	mp->b_wptr += sizeof (*todi) + optlen;
5127 	mp->b_datap->db_type = M_PROTO;
5128 	todi = (struct T_optdata_ind *)mp->b_rptr;
5129 	todi->PRIM_type = T_OPTDATA_IND;
5130 	todi->DATA_flag = 1;	/* MORE data */
5131 	todi->OPT_length = optlen;
5132 	todi->OPT_offset = sizeof (*todi);
5133 	optptr = (uchar_t *)&todi[1];
5134 	/*
5135 	 * If app asked for pktinfo and the index has changed ...
5136 	 * Note that the local address never changes for the connection.
5137 	 */
5138 	if (addflag.crb_ip_recvpktinfo) {
5139 		struct in6_pktinfo *pkti;
5140 		uint_t ifindex;
5141 
5142 		ifindex = ira->ira_ruifindex;
5143 		toh = (struct T_opthdr *)optptr;
5144 		toh->level = IPPROTO_IPV6;
5145 		toh->name = IPV6_PKTINFO;
5146 		toh->len = sizeof (*toh) + sizeof (*pkti);
5147 		toh->status = 0;
5148 		optptr += sizeof (*toh);
5149 		pkti = (struct in6_pktinfo *)optptr;
5150 		pkti->ipi6_addr = connp->conn_laddr_v6;
5151 		pkti->ipi6_ifindex = ifindex;
5152 		optptr += sizeof (*pkti);
5153 		ASSERT(OK_32PTR(optptr));
5154 		/* Save as "last" value */
5155 		tcp->tcp_recvifindex = ifindex;
5156 	}
5157 	/* If app asked for hoplimit and it has changed ... */
5158 	if (addflag.crb_ipv6_recvhoplimit) {
5159 		toh = (struct T_opthdr *)optptr;
5160 		toh->level = IPPROTO_IPV6;
5161 		toh->name = IPV6_HOPLIMIT;
5162 		toh->len = sizeof (*toh) + sizeof (uint_t);
5163 		toh->status = 0;
5164 		optptr += sizeof (*toh);
5165 		*(uint_t *)optptr = ipp->ipp_hoplimit;
5166 		optptr += sizeof (uint_t);
5167 		ASSERT(OK_32PTR(optptr));
5168 		/* Save as "last" value */
5169 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
5170 	}
5171 	/* If app asked for tclass and it has changed ... */
5172 	if (addflag.crb_ipv6_recvtclass) {
5173 		toh = (struct T_opthdr *)optptr;
5174 		toh->level = IPPROTO_IPV6;
5175 		toh->name = IPV6_TCLASS;
5176 		toh->len = sizeof (*toh) + sizeof (uint_t);
5177 		toh->status = 0;
5178 		optptr += sizeof (*toh);
5179 		*(uint_t *)optptr = ipp->ipp_tclass;
5180 		optptr += sizeof (uint_t);
5181 		ASSERT(OK_32PTR(optptr));
5182 		/* Save as "last" value */
5183 		tcp->tcp_recvtclass = ipp->ipp_tclass;
5184 	}
5185 	if (addflag.crb_ipv6_recvhopopts) {
5186 		toh = (struct T_opthdr *)optptr;
5187 		toh->level = IPPROTO_IPV6;
5188 		toh->name = IPV6_HOPOPTS;
5189 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen;
5190 		toh->status = 0;
5191 		optptr += sizeof (*toh);
5192 		bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen);
5193 		optptr += ipp->ipp_hopoptslen;
5194 		ASSERT(OK_32PTR(optptr));
5195 		/* Save as last value */
5196 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
5197 		    (ipp->ipp_fields & IPPF_HOPOPTS),
5198 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
5199 	}
5200 	if (addflag.crb_ipv6_recvrthdrdstopts) {
5201 		toh = (struct T_opthdr *)optptr;
5202 		toh->level = IPPROTO_IPV6;
5203 		toh->name = IPV6_RTHDRDSTOPTS;
5204 		toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen;
5205 		toh->status = 0;
5206 		optptr += sizeof (*toh);
5207 		bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen);
5208 		optptr += ipp->ipp_rthdrdstoptslen;
5209 		ASSERT(OK_32PTR(optptr));
5210 		/* Save as last value */
5211 		ip_savebuf((void **)&tcp->tcp_rthdrdstopts,
5212 		    &tcp->tcp_rthdrdstoptslen,
5213 		    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
5214 		    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
5215 	}
5216 	if (addflag.crb_ipv6_recvrthdr) {
5217 		toh = (struct T_opthdr *)optptr;
5218 		toh->level = IPPROTO_IPV6;
5219 		toh->name = IPV6_RTHDR;
5220 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
5221 		toh->status = 0;
5222 		optptr += sizeof (*toh);
5223 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
5224 		optptr += ipp->ipp_rthdrlen;
5225 		ASSERT(OK_32PTR(optptr));
5226 		/* Save as last value */
5227 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
5228 		    (ipp->ipp_fields & IPPF_RTHDR),
5229 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
5230 	}
5231 	if (addflag.crb_ipv6_recvdstopts) {
5232 		toh = (struct T_opthdr *)optptr;
5233 		toh->level = IPPROTO_IPV6;
5234 		toh->name = IPV6_DSTOPTS;
5235 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
5236 		toh->status = 0;
5237 		optptr += sizeof (*toh);
5238 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
5239 		optptr += ipp->ipp_dstoptslen;
5240 		ASSERT(OK_32PTR(optptr));
5241 		/* Save as last value */
5242 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
5243 		    (ipp->ipp_fields & IPPF_DSTOPTS),
5244 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
5245 	}
5246 	ASSERT(optptr == mp->b_wptr);
5247 	return (mp);
5248 }
5249 
5250 /* The minimum of smoothed mean deviation in RTO calculation. */
5251 #define	TCP_SD_MIN	400
5252 
5253 /*
5254  * Set RTO for this connection.  The formula is from Jacobson and Karels'
5255  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
5256  * are the same as those in Appendix A.2 of that paper.
5257  *
5258  * m = new measurement
5259  * sa = smoothed RTT average (8 * average estimates).
5260  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
5261  */
5262 static void
5263 tcp_set_rto(tcp_t *tcp, clock_t rtt)
5264 {
5265 	long m = TICK_TO_MSEC(rtt);
5266 	clock_t sa = tcp->tcp_rtt_sa;
5267 	clock_t sv = tcp->tcp_rtt_sd;
5268 	clock_t rto;
5269 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5270 
5271 	TCPS_BUMP_MIB(tcps, tcpRttUpdate);
5272 	tcp->tcp_rtt_update++;
5273 
5274 	/* tcp_rtt_sa is not 0 means this is a new sample. */
5275 	if (sa != 0) {
5276 		/*
5277 		 * Update average estimator:
5278 		 *	new rtt = 7/8 old rtt + 1/8 Error
5279 		 */
5280 
5281 		/* m is now Error in estimate. */
5282 		m -= sa >> 3;
5283 		if ((sa += m) <= 0) {
5284 			/*
5285 			 * Don't allow the smoothed average to be negative.
5286 			 * We use 0 to denote reinitialization of the
5287 			 * variables.
5288 			 */
5289 			sa = 1;
5290 		}
5291 
5292 		/*
5293 		 * Update deviation estimator:
5294 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
5295 		 */
5296 		if (m < 0)
5297 			m = -m;
5298 		m -= sv >> 2;
5299 		sv += m;
5300 	} else {
5301 		/*
5302 		 * This follows BSD's implementation.  So the reinitialized
5303 		 * RTO is 3 * m.  We cannot go less than 2 because if the
5304 		 * link is bandwidth dominated, doubling the window size
5305 		 * during slow start means doubling the RTT.  We want to be
5306 		 * more conservative when we reinitialize our estimates.  3
5307 		 * is just a convenient number.
5308 		 */
5309 		sa = m << 3;
5310 		sv = m << 1;
5311 	}
5312 	if (sv < TCP_SD_MIN) {
5313 		/*
5314 		 * We do not know that if sa captures the delay ACK
5315 		 * effect as in a long train of segments, a receiver
5316 		 * does not delay its ACKs.  So set the minimum of sv
5317 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
5318 		 * of BSD DATO.  That means the minimum of mean
5319 		 * deviation is 100 ms.
5320 		 *
5321 		 */
5322 		sv = TCP_SD_MIN;
5323 	}
5324 	tcp->tcp_rtt_sa = sa;
5325 	tcp->tcp_rtt_sd = sv;
5326 	/*
5327 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
5328 	 *
5329 	 * Add tcp_rexmit_interval extra in case of extreme environment
5330 	 * where the algorithm fails to work.  The default value of
5331 	 * tcp_rexmit_interval_extra should be 0.
5332 	 *
5333 	 * As we use a finer grained clock than BSD and update
5334 	 * RTO for every ACKs, add in another .25 of RTT to the
5335 	 * deviation of RTO to accomodate burstiness of 1/4 of
5336 	 * window size.
5337 	 */
5338 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
5339 
5340 	TCP_SET_RTO(tcp, rto);
5341 
5342 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
5343 	tcp->tcp_timer_backoff = 0;
5344 }
5345 
5346 /*
5347  * On a labeled system we have some protocols above TCP, such as RPC, which
5348  * appear to assume that every mblk in a chain has a db_credp.
5349  */
5350 static void
5351 tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira)
5352 {
5353 	ASSERT(is_system_labeled());
5354 	ASSERT(ira->ira_cred != NULL);
5355 
5356 	while (mp != NULL) {
5357 		mblk_setcred(mp, ira->ira_cred, NOPID);
5358 		mp = mp->b_cont;
5359 	}
5360 }
5361 
5362 uint_t
5363 tcp_rwnd_reopen(tcp_t *tcp)
5364 {
5365 	uint_t ret = 0;
5366 	uint_t thwin;
5367 	conn_t *connp = tcp->tcp_connp;
5368 
5369 	/* Learn the latest rwnd information that we sent to the other side. */
5370 	thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win))
5371 	    << tcp->tcp_rcv_ws;
5372 	/* This is peer's calculated send window (our receive window). */
5373 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
5374 	/*
5375 	 * Increase the receive window to max.  But we need to do receiver
5376 	 * SWS avoidance.  This means that we need to check the increase of
5377 	 * of receive window is at least 1 MSS.
5378 	 */
5379 	if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) {
5380 		/*
5381 		 * If the window that the other side knows is less than max
5382 		 * deferred acks segments, send an update immediately.
5383 		 */
5384 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
5385 			TCPS_BUMP_MIB(tcp->tcp_tcps, tcpOutWinUpdate);
5386 			ret = TH_ACK_NEEDED;
5387 		}
5388 		tcp->tcp_rwnd = connp->conn_rcvbuf;
5389 	}
5390 	return (ret);
5391 }
5392 
5393 /*
5394  * Handle a packet that has been reclassified by TCP.
5395  * This function drops the ref on connp that the caller had.
5396  */
5397 void
5398 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst)
5399 {
5400 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5401 
5402 	if (connp->conn_incoming_ifindex != 0 &&
5403 	    connp->conn_incoming_ifindex != ira->ira_ruifindex) {
5404 		freemsg(mp);
5405 		CONN_DEC_REF(connp);
5406 		return;
5407 	}
5408 
5409 	if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) ||
5410 	    (ira->ira_flags & IRAF_IPSEC_SECURE)) {
5411 		ip6_t *ip6h;
5412 		ipha_t *ipha;
5413 
5414 		if (ira->ira_flags & IRAF_IS_IPV4) {
5415 			ipha = (ipha_t *)mp->b_rptr;
5416 			ip6h = NULL;
5417 		} else {
5418 			ipha = NULL;
5419 			ip6h = (ip6_t *)mp->b_rptr;
5420 		}
5421 		mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira);
5422 		if (mp == NULL) {
5423 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
5424 			/* Note that mp is NULL */
5425 			ip_drop_input("ipIfStatsInDiscards", mp, NULL);
5426 			CONN_DEC_REF(connp);
5427 			return;
5428 		}
5429 	}
5430 
5431 	if (IPCL_IS_TCP(connp)) {
5432 		/*
5433 		 * do not drain, certain use cases can blow
5434 		 * the stack
5435 		 */
5436 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
5437 		    connp->conn_recv, connp, ira,
5438 		    SQ_NODRAIN, SQTAG_IP_TCP_INPUT);
5439 	} else {
5440 		/* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
5441 		(connp->conn_recv)(connp, mp, NULL,
5442 		    ira);
5443 		CONN_DEC_REF(connp);
5444 	}
5445 
5446 }
5447 
5448 /* ARGSUSED */
5449 static void
5450 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
5451 {
5452 	conn_t	*connp = (conn_t *)arg;
5453 	tcp_t	*tcp = connp->conn_tcp;
5454 	queue_t	*q = connp->conn_rq;
5455 
5456 	ASSERT(!IPCL_IS_NONSTR(connp));
5457 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
5458 	tcp->tcp_rsrv_mp = mp;
5459 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
5460 
5461 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
5462 		return;
5463 	}
5464 
5465 	if (tcp->tcp_fused) {
5466 		tcp_fuse_backenable(tcp);
5467 		return;
5468 	}
5469 
5470 	if (canputnext(q)) {
5471 		/* Not flow-controlled, open rwnd */
5472 		tcp->tcp_rwnd = connp->conn_rcvbuf;
5473 
5474 		/*
5475 		 * Send back a window update immediately if TCP is above
5476 		 * ESTABLISHED state and the increase of the rcv window
5477 		 * that the other side knows is at least 1 MSS after flow
5478 		 * control is lifted.
5479 		 */
5480 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
5481 		    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
5482 			tcp_xmit_ctl(NULL, tcp,
5483 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
5484 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
5485 		}
5486 	}
5487 }
5488 
5489 /*
5490  * The read side service routine is called mostly when we get back-enabled as a
5491  * result of flow control relief.  Since we don't actually queue anything in
5492  * TCP, we have no data to send out of here.  What we do is clear the receive
5493  * window, and send out a window update.
5494  */
5495 void
5496 tcp_rsrv(queue_t *q)
5497 {
5498 	conn_t		*connp = Q_TO_CONN(q);
5499 	tcp_t		*tcp = connp->conn_tcp;
5500 	mblk_t		*mp;
5501 
5502 	/* No code does a putq on the read side */
5503 	ASSERT(q->q_first == NULL);
5504 
5505 	/*
5506 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already
5507 	 * been run.  So just return.
5508 	 */
5509 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
5510 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
5511 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
5512 		return;
5513 	}
5514 	tcp->tcp_rsrv_mp = NULL;
5515 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
5516 
5517 	CONN_INC_REF(connp);
5518 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp,
5519 	    NULL, SQ_PROCESS, SQTAG_TCP_RSRV);
5520 }
5521 
5522 /* At minimum we need 8 bytes in the TCP header for the lookup */
5523 #define	ICMP_MIN_TCP_HDR	8
5524 
5525 /*
5526  * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages
5527  * passed up by IP. The message is always received on the correct tcp_t.
5528  * Assumes that IP has pulled up everything up to and including the ICMP header.
5529  */
5530 /* ARGSUSED2 */
5531 void
5532 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
5533 {
5534 	conn_t		*connp = (conn_t *)arg1;
5535 	icmph_t		*icmph;
5536 	ipha_t		*ipha;
5537 	int		iph_hdr_length;
5538 	tcpha_t		*tcpha;
5539 	uint32_t	seg_seq;
5540 	tcp_t		*tcp = connp->conn_tcp;
5541 
5542 	/* Assume IP provides aligned packets */
5543 	ASSERT(OK_32PTR(mp->b_rptr));
5544 	ASSERT((MBLKL(mp) >= sizeof (ipha_t)));
5545 
5546 	/*
5547 	 * It's possible we have a closed, but not yet destroyed, TCP
5548 	 * connection. Several fields (e.g. conn_ixa->ixa_ire) are invalid
5549 	 * in the closed state, so don't take any chances and drop the packet.
5550 	 */
5551 	if (tcp->tcp_state == TCPS_CLOSED) {
5552 		freemsg(mp);
5553 		return;
5554 	}
5555 
5556 	/*
5557 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
5558 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
5559 	 */
5560 	if (!(ira->ira_flags & IRAF_IS_IPV4)) {
5561 		tcp_icmp_error_ipv6(tcp, mp, ira);
5562 		return;
5563 	}
5564 
5565 	/* Skip past the outer IP and ICMP headers */
5566 	iph_hdr_length = ira->ira_ip_hdr_length;
5567 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
5568 	/*
5569 	 * If we don't have the correct outer IP header length
5570 	 * or if we don't have a complete inner IP header
5571 	 * drop it.
5572 	 */
5573 	if (iph_hdr_length < sizeof (ipha_t) ||
5574 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
5575 noticmpv4:
5576 		freemsg(mp);
5577 		return;
5578 	}
5579 	ipha = (ipha_t *)&icmph[1];
5580 
5581 	/* Skip past the inner IP and find the ULP header */
5582 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
5583 	tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length);
5584 	/*
5585 	 * If we don't have the correct inner IP header length or if the ULP
5586 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
5587 	 * bytes of TCP header, drop it.
5588 	 */
5589 	if (iph_hdr_length < sizeof (ipha_t) ||
5590 	    ipha->ipha_protocol != IPPROTO_TCP ||
5591 	    (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) {
5592 		goto noticmpv4;
5593 	}
5594 
5595 	seg_seq = ntohl(tcpha->tha_seq);
5596 	switch (icmph->icmph_type) {
5597 	case ICMP_DEST_UNREACHABLE:
5598 		switch (icmph->icmph_code) {
5599 		case ICMP_FRAGMENTATION_NEEDED:
5600 			/*
5601 			 * Update Path MTU, then try to send something out.
5602 			 */
5603 			tcp_update_pmtu(tcp, B_TRUE);
5604 			tcp_rexmit_after_error(tcp);
5605 			break;
5606 		case ICMP_PORT_UNREACHABLE:
5607 		case ICMP_PROTOCOL_UNREACHABLE:
5608 			switch (tcp->tcp_state) {
5609 			case TCPS_SYN_SENT:
5610 			case TCPS_SYN_RCVD:
5611 				/*
5612 				 * ICMP can snipe away incipient
5613 				 * TCP connections as long as
5614 				 * seq number is same as initial
5615 				 * send seq number.
5616 				 */
5617 				if (seg_seq == tcp->tcp_iss) {
5618 					(void) tcp_clean_death(tcp,
5619 					    ECONNREFUSED);
5620 				}
5621 				break;
5622 			}
5623 			break;
5624 		case ICMP_HOST_UNREACHABLE:
5625 		case ICMP_NET_UNREACHABLE:
5626 			/* Record the error in case we finally time out. */
5627 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
5628 				tcp->tcp_client_errno = EHOSTUNREACH;
5629 			else
5630 				tcp->tcp_client_errno = ENETUNREACH;
5631 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
5632 				if (tcp->tcp_listener != NULL &&
5633 				    tcp->tcp_listener->tcp_syn_defense) {
5634 					/*
5635 					 * Ditch the half-open connection if we
5636 					 * suspect a SYN attack is under way.
5637 					 */
5638 					(void) tcp_clean_death(tcp,
5639 					    tcp->tcp_client_errno);
5640 				}
5641 			}
5642 			break;
5643 		default:
5644 			break;
5645 		}
5646 		break;
5647 	case ICMP_SOURCE_QUENCH: {
5648 		/*
5649 		 * use a global boolean to control
5650 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
5651 		 * The default is false.
5652 		 */
5653 		if (tcp_icmp_source_quench) {
5654 			/*
5655 			 * Reduce the sending rate as if we got a
5656 			 * retransmit timeout
5657 			 */
5658 			uint32_t npkt;
5659 
5660 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
5661 			    tcp->tcp_mss;
5662 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
5663 			tcp->tcp_cwnd = tcp->tcp_mss;
5664 			tcp->tcp_cwnd_cnt = 0;
5665 		}
5666 		break;
5667 	}
5668 	}
5669 	freemsg(mp);
5670 }
5671 
5672 /*
5673  * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6
5674  * error messages passed up by IP.
5675  * Assumes that IP has pulled up all the extension headers as well
5676  * as the ICMPv6 header.
5677  */
5678 static void
5679 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira)
5680 {
5681 	icmp6_t		*icmp6;
5682 	ip6_t		*ip6h;
5683 	uint16_t	iph_hdr_length = ira->ira_ip_hdr_length;
5684 	tcpha_t		*tcpha;
5685 	uint8_t		*nexthdrp;
5686 	uint32_t	seg_seq;
5687 
5688 	/*
5689 	 * Verify that we have a complete IP header.
5690 	 */
5691 	ASSERT((MBLKL(mp) >= sizeof (ip6_t)));
5692 
5693 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
5694 	ip6h = (ip6_t *)&icmp6[1];
5695 	/*
5696 	 * Verify if we have a complete ICMP and inner IP header.
5697 	 */
5698 	if ((uchar_t *)&ip6h[1] > mp->b_wptr) {
5699 noticmpv6:
5700 		freemsg(mp);
5701 		return;
5702 	}
5703 
5704 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
5705 		goto noticmpv6;
5706 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
5707 	/*
5708 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
5709 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
5710 	 * packet.
5711 	 */
5712 	if ((*nexthdrp != IPPROTO_TCP) ||
5713 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
5714 		goto noticmpv6;
5715 	}
5716 
5717 	seg_seq = ntohl(tcpha->tha_seq);
5718 	switch (icmp6->icmp6_type) {
5719 	case ICMP6_PACKET_TOO_BIG:
5720 		/*
5721 		 * Update Path MTU, then try to send something out.
5722 		 */
5723 		tcp_update_pmtu(tcp, B_TRUE);
5724 		tcp_rexmit_after_error(tcp);
5725 		break;
5726 	case ICMP6_DST_UNREACH:
5727 		switch (icmp6->icmp6_code) {
5728 		case ICMP6_DST_UNREACH_NOPORT:
5729 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
5730 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
5731 			    (seg_seq == tcp->tcp_iss)) {
5732 				(void) tcp_clean_death(tcp, ECONNREFUSED);
5733 			}
5734 			break;
5735 		case ICMP6_DST_UNREACH_ADMIN:
5736 		case ICMP6_DST_UNREACH_NOROUTE:
5737 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
5738 		case ICMP6_DST_UNREACH_ADDR:
5739 			/* Record the error in case we finally time out. */
5740 			tcp->tcp_client_errno = EHOSTUNREACH;
5741 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
5742 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
5743 			    (seg_seq == tcp->tcp_iss)) {
5744 				if (tcp->tcp_listener != NULL &&
5745 				    tcp->tcp_listener->tcp_syn_defense) {
5746 					/*
5747 					 * Ditch the half-open connection if we
5748 					 * suspect a SYN attack is under way.
5749 					 */
5750 					(void) tcp_clean_death(tcp,
5751 					    tcp->tcp_client_errno);
5752 				}
5753 			}
5754 
5755 
5756 			break;
5757 		default:
5758 			break;
5759 		}
5760 		break;
5761 	case ICMP6_PARAM_PROB:
5762 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
5763 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
5764 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
5765 		    (uchar_t *)nexthdrp) {
5766 			if (tcp->tcp_state == TCPS_SYN_SENT ||
5767 			    tcp->tcp_state == TCPS_SYN_RCVD) {
5768 				(void) tcp_clean_death(tcp, ECONNREFUSED);
5769 			}
5770 			break;
5771 		}
5772 		break;
5773 
5774 	case ICMP6_TIME_EXCEEDED:
5775 	default:
5776 		break;
5777 	}
5778 	freemsg(mp);
5779 }
5780 
5781 /*
5782  * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might
5783  * change. But it can refer to fields like tcp_suna and tcp_snxt.
5784  *
5785  * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP
5786  * error messages received by IP. The message is always received on the correct
5787  * tcp_t.
5788  */
5789 /* ARGSUSED */
5790 boolean_t
5791 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6,
5792     ip_recv_attr_t *ira)
5793 {
5794 	tcpha_t		*tcpha = (tcpha_t *)arg2;
5795 	uint32_t	seq = ntohl(tcpha->tha_seq);
5796 	tcp_t		*tcp = connp->conn_tcp;
5797 
5798 	/*
5799 	 * TCP sequence number contained in payload of the ICMP error message
5800 	 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise,
5801 	 * the message is either a stale ICMP error, or an attack from the
5802 	 * network. Fail the verification.
5803 	 */
5804 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
5805 		return (B_FALSE);
5806 
5807 	/* For "too big" we also check the ignore flag */
5808 	if (ira->ira_flags & IRAF_IS_IPV4) {
5809 		ASSERT(icmph != NULL);
5810 		if (icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
5811 		    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED &&
5812 		    tcp->tcp_tcps->tcps_ignore_path_mtu)
5813 			return (B_FALSE);
5814 	} else {
5815 		ASSERT(icmp6 != NULL);
5816 		if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG &&
5817 		    tcp->tcp_tcps->tcps_ignore_path_mtu)
5818 			return (B_FALSE);
5819 	}
5820 	return (B_TRUE);
5821 }
5822