1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/stream.h> 28 #include <sys/strsun.h> 29 #include <sys/strsubr.h> 30 #include <sys/debug.h> 31 #include <sys/sdt.h> 32 #include <sys/cmn_err.h> 33 #include <sys/tihdr.h> 34 35 #include <inet/common.h> 36 #include <inet/optcom.h> 37 #include <inet/ip.h> 38 #include <inet/ip_impl.h> 39 #include <inet/tcp.h> 40 #include <inet/tcp_impl.h> 41 #include <inet/ipsec_impl.h> 42 #include <inet/ipclassifier.h> 43 #include <inet/ipp_common.h> 44 #include <inet/ip_if.h> 45 46 /* 47 * This file implements TCP fusion - a protocol-less data path for TCP 48 * loopback connections. The fusion of two local TCP endpoints occurs 49 * at connection establishment time. Various conditions (see details 50 * in tcp_fuse()) need to be met for fusion to be successful. If it 51 * fails, we fall back to the regular TCP data path; if it succeeds, 52 * both endpoints proceed to use tcp_fuse_output() as the transmit path. 53 * tcp_fuse_output() enqueues application data directly onto the peer's 54 * receive queue; no protocol processing is involved. After enqueueing 55 * the data, the sender can either push (putnext) data up the receiver's 56 * read queue; or the sender can simply return and let the receiver 57 * retrieve the enqueued data via the synchronous streams entry point 58 * tcp_fuse_rrw(). The latter path is taken if synchronous streams is 59 * enabled (the default). It is disabled if sockfs no longer resides 60 * directly on top of tcp module due to a module insertion or removal. 61 * It also needs to be temporarily disabled when sending urgent data 62 * because the tcp_fuse_rrw() path bypasses the M_PROTO processing done 63 * by strsock_proto() hook. 64 * 65 * Sychronization is handled by squeue and the mutex tcp_non_sq_lock. 66 * One of the requirements for fusion to succeed is that both endpoints 67 * need to be using the same squeue. This ensures that neither side 68 * can disappear while the other side is still sending data. By itself, 69 * squeue is not sufficient for guaranteeing safety when synchronous 70 * streams is enabled. The reason is that tcp_fuse_rrw() doesn't enter 71 * the squeue and its access to tcp_rcv_list and other fusion-related 72 * fields needs to be sychronized with the sender. tcp_non_sq_lock is 73 * used for this purpose. When there is urgent data, the sender needs 74 * to push the data up the receiver's streams read queue. In order to 75 * avoid holding the tcp_non_sq_lock across putnext(), the sender sets 76 * the peer tcp's tcp_fuse_syncstr_plugged bit and releases tcp_non_sq_lock 77 * (see macro TCP_FUSE_SYNCSTR_PLUG_DRAIN()). If tcp_fuse_rrw() enters 78 * after this point, it will see that synchronous streams is plugged and 79 * will wait on tcp_fuse_plugcv. After the sender has finished pushing up 80 * all urgent data, it will clear the tcp_fuse_syncstr_plugged bit using 81 * TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(). This will cause any threads waiting 82 * on tcp_fuse_plugcv to return EBUSY, and in turn cause strget() to call 83 * getq_noenab() to dequeue data from the stream head instead. Once the 84 * data on the stream head has been consumed, tcp_fuse_rrw() may again 85 * be used to process tcp_rcv_list. However, if TCP_FUSE_SYNCSTR_STOP() 86 * has been called, all future calls to tcp_fuse_rrw() will return EBUSY, 87 * effectively disabling synchronous streams. 88 * 89 * The following note applies only to the synchronous streams mode. 90 * 91 * Flow control is done by checking the size of receive buffer and 92 * the number of data blocks, both set to different limits. This is 93 * different than regular streams flow control where cumulative size 94 * check dominates block count check -- streams queue high water mark 95 * typically represents bytes. Each enqueue triggers notifications 96 * to the receiving process; a build up of data blocks indicates a 97 * slow receiver and the sender should be blocked or informed at the 98 * earliest moment instead of further wasting system resources. In 99 * effect, this is equivalent to limiting the number of outstanding 100 * segments in flight. 101 */ 102 103 /* 104 * Setting this to false means we disable fusion altogether and 105 * loopback connections would go through the protocol paths. 106 */ 107 boolean_t do_tcp_fusion = B_TRUE; 108 109 /* 110 * Enabling this flag allows sockfs to retrieve data directly 111 * from a fused tcp endpoint using synchronous streams interface. 112 */ 113 boolean_t do_tcp_direct_sockfs = B_TRUE; 114 115 /* 116 * This is the minimum amount of outstanding writes allowed on 117 * a synchronous streams-enabled receiving endpoint before the 118 * sender gets flow-controlled. Setting this value to 0 means 119 * that the data block limit is equivalent to the byte count 120 * limit, which essentially disables the check. 121 */ 122 #define TCP_FUSION_RCV_UNREAD_MIN 8 123 uint_t tcp_fusion_rcv_unread_min = TCP_FUSION_RCV_UNREAD_MIN; 124 125 static void tcp_fuse_syncstr_enable(tcp_t *); 126 static void tcp_fuse_syncstr_disable(tcp_t *); 127 static boolean_t strrput_sig(queue_t *, boolean_t); 128 129 /* 130 * Return true if this connection needs some IP functionality 131 */ 132 static boolean_t 133 tcp_loopback_needs_ip(tcp_t *tcp, netstack_t *ns) 134 { 135 ipsec_stack_t *ipss = ns->netstack_ipsec; 136 137 /* 138 * If ire is not cached, do not use fusion 139 */ 140 if (tcp->tcp_connp->conn_ire_cache == NULL) { 141 /* 142 * There is no need to hold conn_lock here because when called 143 * from tcp_fuse() there can be no window where conn_ire_cache 144 * can change. This is not true when called from 145 * tcp_fuse_output() as conn_ire_cache can become null just 146 * after the check. It will be necessary to recheck for a NULL 147 * conn_ire_cache in tcp_fuse_output() to avoid passing a 148 * stale ill pointer to FW_HOOKS. 149 */ 150 return (B_TRUE); 151 } 152 if (tcp->tcp_ipversion == IPV4_VERSION) { 153 if (tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) 154 return (B_TRUE); 155 if (CONN_OUTBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss)) 156 return (B_TRUE); 157 if (CONN_INBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss)) 158 return (B_TRUE); 159 } else { 160 if (tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) 161 return (B_TRUE); 162 if (CONN_OUTBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss)) 163 return (B_TRUE); 164 if (CONN_INBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss)) 165 return (B_TRUE); 166 } 167 if (!CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)) 168 return (B_TRUE); 169 return (B_FALSE); 170 } 171 172 173 /* 174 * This routine gets called by the eager tcp upon changing state from 175 * SYN_RCVD to ESTABLISHED. It fuses a direct path between itself 176 * and the active connect tcp such that the regular tcp processings 177 * may be bypassed under allowable circumstances. Because the fusion 178 * requires both endpoints to be in the same squeue, it does not work 179 * for simultaneous active connects because there is no easy way to 180 * switch from one squeue to another once the connection is created. 181 * This is different from the eager tcp case where we assign it the 182 * same squeue as the one given to the active connect tcp during open. 183 */ 184 void 185 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph) 186 { 187 conn_t *peer_connp, *connp = tcp->tcp_connp; 188 tcp_t *peer_tcp; 189 tcp_stack_t *tcps = tcp->tcp_tcps; 190 netstack_t *ns; 191 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 192 193 ASSERT(!tcp->tcp_fused); 194 ASSERT(tcp->tcp_loopback); 195 ASSERT(tcp->tcp_loopback_peer == NULL); 196 /* 197 * We need to inherit q_hiwat of the listener tcp, but we can't 198 * really use tcp_listener since we get here after sending up 199 * T_CONN_IND and tcp_wput_accept() may be called independently, 200 * at which point tcp_listener is cleared; this is why we use 201 * tcp_saved_listener. The listener itself is guaranteed to be 202 * around until tcp_accept_finish() is called on this eager -- 203 * this won't happen until we're done since we're inside the 204 * eager's perimeter now. 205 */ 206 ASSERT(tcp->tcp_saved_listener != NULL); 207 208 /* 209 * Lookup peer endpoint; search for the remote endpoint having 210 * the reversed address-port quadruplet in ESTABLISHED state, 211 * which is guaranteed to be unique in the system. Zone check 212 * is applied accordingly for loopback address, but not for 213 * local address since we want fusion to happen across Zones. 214 */ 215 if (tcp->tcp_ipversion == IPV4_VERSION) { 216 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp, 217 (ipha_t *)iphdr, tcph, ipst); 218 } else { 219 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp, 220 (ip6_t *)iphdr, tcph, ipst); 221 } 222 223 /* 224 * We can only proceed if peer exists, resides in the same squeue 225 * as our conn and is not raw-socket. The squeue assignment of 226 * this eager tcp was done earlier at the time of SYN processing 227 * in ip_fanout_tcp{_v6}. Note that similar squeues by itself 228 * doesn't guarantee a safe condition to fuse, hence we perform 229 * additional tests below. 230 */ 231 ASSERT(peer_connp == NULL || peer_connp != connp); 232 if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp || 233 !IPCL_IS_TCP(peer_connp)) { 234 if (peer_connp != NULL) { 235 TCP_STAT(tcps, tcp_fusion_unqualified); 236 CONN_DEC_REF(peer_connp); 237 } 238 return; 239 } 240 peer_tcp = peer_connp->conn_tcp; /* active connect tcp */ 241 242 ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused); 243 ASSERT(peer_tcp->tcp_loopback && peer_tcp->tcp_loopback_peer == NULL); 244 ASSERT(peer_connp->conn_sqp == connp->conn_sqp); 245 246 /* 247 * Fuse the endpoints; we perform further checks against both 248 * tcp endpoints to ensure that a fusion is allowed to happen. 249 * In particular we bail out for non-simple TCP/IP or if IPsec/ 250 * IPQoS policy/kernel SSL exists. 251 */ 252 ns = tcps->tcps_netstack; 253 ipst = ns->netstack_ip; 254 255 if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable && 256 !tcp_loopback_needs_ip(tcp, ns) && 257 !tcp_loopback_needs_ip(peer_tcp, ns) && 258 tcp->tcp_kssl_ent == NULL && 259 !IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst)) { 260 mblk_t *mp; 261 struct stroptions *stropt; 262 queue_t *peer_rq = peer_tcp->tcp_rq; 263 264 ASSERT(!TCP_IS_DETACHED(peer_tcp) && peer_rq != NULL); 265 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 266 ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL); 267 ASSERT(tcp->tcp_kssl_ctx == NULL); 268 269 /* 270 * We need to drain data on both endpoints during unfuse. 271 * If we need to send up SIGURG at the time of draining, 272 * we want to be sure that an mblk is readily available. 273 * This is why we pre-allocate the M_PCSIG mblks for both 274 * endpoints which will only be used during/after unfuse. 275 */ 276 if ((mp = allocb(1, BPRI_HI)) == NULL) 277 goto failed; 278 279 tcp->tcp_fused_sigurg_mp = mp; 280 281 if ((mp = allocb(1, BPRI_HI)) == NULL) 282 goto failed; 283 284 peer_tcp->tcp_fused_sigurg_mp = mp; 285 286 /* Allocate M_SETOPTS mblk */ 287 if ((mp = allocb(sizeof (*stropt), BPRI_HI)) == NULL) 288 goto failed; 289 290 /* If either tcp or peer_tcp sodirect enabled then disable */ 291 if (tcp->tcp_sodirect != NULL) { 292 mutex_enter(tcp->tcp_sodirect->sod_lockp); 293 SOD_DISABLE(tcp->tcp_sodirect); 294 mutex_exit(tcp->tcp_sodirect->sod_lockp); 295 tcp->tcp_sodirect = NULL; 296 } 297 if (peer_tcp->tcp_sodirect != NULL) { 298 mutex_enter(peer_tcp->tcp_sodirect->sod_lockp); 299 SOD_DISABLE(peer_tcp->tcp_sodirect); 300 mutex_exit(peer_tcp->tcp_sodirect->sod_lockp); 301 peer_tcp->tcp_sodirect = NULL; 302 } 303 304 /* Fuse both endpoints */ 305 peer_tcp->tcp_loopback_peer = tcp; 306 tcp->tcp_loopback_peer = peer_tcp; 307 peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE; 308 309 /* 310 * We never use regular tcp paths in fusion and should 311 * therefore clear tcp_unsent on both endpoints. Having 312 * them set to non-zero values means asking for trouble 313 * especially after unfuse, where we may end up sending 314 * through regular tcp paths which expect xmit_list and 315 * friends to be correctly setup. 316 */ 317 peer_tcp->tcp_unsent = tcp->tcp_unsent = 0; 318 319 tcp_timers_stop(tcp); 320 tcp_timers_stop(peer_tcp); 321 322 /* 323 * At this point we are a detached eager tcp and therefore 324 * don't have a queue assigned to us until accept happens. 325 * In the mean time the peer endpoint may immediately send 326 * us data as soon as fusion is finished, and we need to be 327 * able to flow control it in case it sends down huge amount 328 * of data while we're still detached. To prevent that we 329 * inherit the listener's q_hiwat value; this is temporary 330 * since we'll repeat the process in tcp_accept_finish(). 331 */ 332 (void) tcp_fuse_set_rcv_hiwat(tcp, 333 tcp->tcp_saved_listener->tcp_rq->q_hiwat); 334 335 /* 336 * Set the stream head's write offset value to zero since we 337 * won't be needing any room for TCP/IP headers; tell it to 338 * not break up the writes (this would reduce the amount of 339 * work done by kmem); and configure our receive buffer. 340 * Note that we can only do this for the active connect tcp 341 * since our eager is still detached; it will be dealt with 342 * later in tcp_accept_finish(). 343 */ 344 DB_TYPE(mp) = M_SETOPTS; 345 mp->b_wptr += sizeof (*stropt); 346 347 stropt = (struct stroptions *)mp->b_rptr; 348 stropt->so_flags = SO_MAXBLK | SO_WROFF | SO_HIWAT; 349 stropt->so_maxblk = tcp_maxpsz_set(peer_tcp, B_FALSE); 350 stropt->so_wroff = 0; 351 352 /* 353 * Record the stream head's high water mark for 354 * peer endpoint; this is used for flow-control 355 * purposes in tcp_fuse_output(). 356 */ 357 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(peer_tcp, 358 peer_rq->q_hiwat); 359 360 /* Send the options up */ 361 putnext(peer_rq, mp); 362 } else { 363 TCP_STAT(tcps, tcp_fusion_unqualified); 364 } 365 CONN_DEC_REF(peer_connp); 366 return; 367 368 failed: 369 if (tcp->tcp_fused_sigurg_mp != NULL) { 370 freeb(tcp->tcp_fused_sigurg_mp); 371 tcp->tcp_fused_sigurg_mp = NULL; 372 } 373 if (peer_tcp->tcp_fused_sigurg_mp != NULL) { 374 freeb(peer_tcp->tcp_fused_sigurg_mp); 375 peer_tcp->tcp_fused_sigurg_mp = NULL; 376 } 377 CONN_DEC_REF(peer_connp); 378 } 379 380 /* 381 * Unfuse a previously-fused pair of tcp loopback endpoints. 382 */ 383 void 384 tcp_unfuse(tcp_t *tcp) 385 { 386 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 387 388 ASSERT(tcp->tcp_fused && peer_tcp != NULL); 389 ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp); 390 ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); 391 ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0); 392 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 393 ASSERT(peer_tcp->tcp_fused_sigurg_mp != NULL); 394 395 /* 396 * We disable synchronous streams, drain any queued data and 397 * clear tcp_direct_sockfs. The synchronous streams entry 398 * points will become no-ops after this point. 399 */ 400 tcp_fuse_disable_pair(tcp, B_TRUE); 401 402 /* 403 * Update th_seq and th_ack in the header template 404 */ 405 U32_TO_ABE32(tcp->tcp_snxt, tcp->tcp_tcph->th_seq); 406 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 407 U32_TO_ABE32(peer_tcp->tcp_snxt, peer_tcp->tcp_tcph->th_seq); 408 U32_TO_ABE32(peer_tcp->tcp_rnxt, peer_tcp->tcp_tcph->th_ack); 409 410 /* Unfuse the endpoints */ 411 peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE; 412 peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL; 413 } 414 415 /* 416 * Fusion output routine for urgent data. This routine is called by 417 * tcp_fuse_output() for handling non-M_DATA mblks. 418 */ 419 void 420 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp) 421 { 422 mblk_t *mp1; 423 struct T_exdata_ind *tei; 424 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 425 mblk_t *head, *prev_head = NULL; 426 tcp_stack_t *tcps = tcp->tcp_tcps; 427 428 ASSERT(tcp->tcp_fused); 429 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 430 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 431 ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA); 432 ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0); 433 434 /* 435 * Urgent data arrives in the form of T_EXDATA_REQ from above. 436 * Each occurence denotes a new urgent pointer. For each new 437 * urgent pointer we signal (SIGURG) the receiving app to indicate 438 * that it needs to go into urgent mode. This is similar to the 439 * urgent data handling in the regular tcp. We don't need to keep 440 * track of where the urgent pointer is, because each T_EXDATA_REQ 441 * "advances" the urgent pointer for us. 442 * 443 * The actual urgent data carried by T_EXDATA_REQ is then prepended 444 * by a T_EXDATA_IND before being enqueued behind any existing data 445 * destined for the receiving app. There is only a single urgent 446 * pointer (out-of-band mark) for a given tcp. If the new urgent 447 * data arrives before the receiving app reads some existing urgent 448 * data, the previous marker is lost. This behavior is emulated 449 * accordingly below, by removing any existing T_EXDATA_IND messages 450 * and essentially converting old urgent data into non-urgent. 451 */ 452 ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID); 453 /* Let sender get out of urgent mode */ 454 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 455 456 /* 457 * This flag indicates that a signal needs to be sent up. 458 * This flag will only get cleared once SIGURG is delivered and 459 * is not affected by the tcp_fused flag -- delivery will still 460 * happen even after an endpoint is unfused, to handle the case 461 * where the sending endpoint immediately closes/unfuses after 462 * sending urgent data and the accept is not yet finished. 463 */ 464 peer_tcp->tcp_fused_sigurg = B_TRUE; 465 466 /* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */ 467 DB_TYPE(mp) = M_PROTO; 468 tei = (struct T_exdata_ind *)mp->b_rptr; 469 tei->PRIM_type = T_EXDATA_IND; 470 tei->MORE_flag = 0; 471 mp->b_wptr = (uchar_t *)&tei[1]; 472 473 TCP_STAT(tcps, tcp_fusion_urg); 474 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 475 476 head = peer_tcp->tcp_rcv_list; 477 while (head != NULL) { 478 /* 479 * Remove existing T_EXDATA_IND, keep the data which follows 480 * it and relink our list. Note that we don't modify the 481 * tcp_rcv_last_tail since it never points to T_EXDATA_IND. 482 */ 483 if (DB_TYPE(head) != M_DATA) { 484 mp1 = head; 485 486 ASSERT(DB_TYPE(mp1->b_cont) == M_DATA); 487 head = mp1->b_cont; 488 mp1->b_cont = NULL; 489 head->b_next = mp1->b_next; 490 mp1->b_next = NULL; 491 if (prev_head != NULL) 492 prev_head->b_next = head; 493 if (peer_tcp->tcp_rcv_list == mp1) 494 peer_tcp->tcp_rcv_list = head; 495 if (peer_tcp->tcp_rcv_last_head == mp1) 496 peer_tcp->tcp_rcv_last_head = head; 497 freeb(mp1); 498 } 499 prev_head = head; 500 head = head->b_next; 501 } 502 } 503 504 /* 505 * Fusion output routine, called by tcp_output() and tcp_wput_proto(). 506 * If we are modifying any member that can be changed outside the squeue, 507 * like tcp_flow_stopped, we need to take tcp_non_sq_lock. 508 */ 509 boolean_t 510 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size) 511 { 512 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 513 uint_t max_unread; 514 boolean_t flow_stopped, peer_data_queued = B_FALSE; 515 boolean_t urgent = (DB_TYPE(mp) != M_DATA); 516 mblk_t *mp1 = mp; 517 ill_t *ilp, *olp; 518 ipif_t *iifp, *oifp; 519 ipha_t *ipha; 520 ip6_t *ip6h; 521 tcph_t *tcph; 522 uint_t ip_hdr_len; 523 uint32_t seq; 524 uint32_t recv_size = send_size; 525 tcp_stack_t *tcps = tcp->tcp_tcps; 526 netstack_t *ns = tcps->tcps_netstack; 527 ip_stack_t *ipst = ns->netstack_ip; 528 529 ASSERT(tcp->tcp_fused); 530 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 531 ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); 532 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO || 533 DB_TYPE(mp) == M_PCPROTO); 534 535 536 /* If this connection requires IP, unfuse and use regular path */ 537 if (tcp_loopback_needs_ip(tcp, ns) || 538 tcp_loopback_needs_ip(peer_tcp, ns) || 539 IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst)) { 540 TCP_STAT(tcps, tcp_fusion_aborted); 541 goto unfuse; 542 } 543 544 if (send_size == 0) { 545 freemsg(mp); 546 return (B_TRUE); 547 } 548 max_unread = peer_tcp->tcp_fuse_rcv_unread_hiwater; 549 550 /* 551 * Handle urgent data; we either send up SIGURG to the peer now 552 * or do it later when we drain, in case the peer is detached 553 * or if we're short of memory for M_PCSIG mblk. 554 */ 555 if (urgent) { 556 /* 557 * We stop synchronous streams when we have urgent data 558 * queued to prevent tcp_fuse_rrw() from pulling it. If 559 * for some reasons the urgent data can't be delivered 560 * below, synchronous streams will remain stopped until 561 * someone drains the tcp_rcv_list. 562 */ 563 TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp); 564 tcp_fuse_output_urg(tcp, mp); 565 566 mp1 = mp->b_cont; 567 } 568 569 if (tcp->tcp_ipversion == IPV4_VERSION && 570 (HOOKS4_INTERESTED_LOOPBACK_IN(ipst) || 571 HOOKS4_INTERESTED_LOOPBACK_OUT(ipst)) || 572 tcp->tcp_ipversion == IPV6_VERSION && 573 (HOOKS6_INTERESTED_LOOPBACK_IN(ipst) || 574 HOOKS6_INTERESTED_LOOPBACK_OUT(ipst))) { 575 /* 576 * Build ip and tcp header to satisfy FW_HOOKS. 577 * We only build it when any hook is present. 578 */ 579 if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL, 580 tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL) 581 /* If tcp_xmit_mp fails, use regular path */ 582 goto unfuse; 583 584 /* 585 * The ipif and ill can be safely referenced under the 586 * protection of conn_lock - see head of function comment for 587 * conn_get_held_ipif(). It is necessary to check that both 588 * the ipif and ill can be looked up (i.e. not condemned). If 589 * not, bail out and unfuse this connection. 590 */ 591 mutex_enter(&peer_tcp->tcp_connp->conn_lock); 592 if ((peer_tcp->tcp_connp->conn_ire_cache == NULL) || 593 (peer_tcp->tcp_connp->conn_ire_cache->ire_marks & 594 IRE_MARK_CONDEMNED) || 595 ((oifp = peer_tcp->tcp_connp->conn_ire_cache->ire_ipif) 596 == NULL) || 597 (!IPIF_CAN_LOOKUP(oifp)) || 598 ((olp = oifp->ipif_ill) == NULL) || 599 (ill_check_and_refhold(olp) != 0)) { 600 mutex_exit(&peer_tcp->tcp_connp->conn_lock); 601 goto unfuse; 602 } 603 mutex_exit(&peer_tcp->tcp_connp->conn_lock); 604 605 /* PFHooks: LOOPBACK_OUT */ 606 if (tcp->tcp_ipversion == IPV4_VERSION) { 607 ipha = (ipha_t *)mp1->b_rptr; 608 609 DTRACE_PROBE4(ip4__loopback__out__start, 610 ill_t *, NULL, ill_t *, olp, 611 ipha_t *, ipha, mblk_t *, mp1); 612 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 613 ipst->ips_ipv4firewall_loopback_out, 614 NULL, olp, ipha, mp1, mp1, 0, ipst); 615 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, mp1); 616 } else { 617 ip6h = (ip6_t *)mp1->b_rptr; 618 619 DTRACE_PROBE4(ip6__loopback__out__start, 620 ill_t *, NULL, ill_t *, olp, 621 ip6_t *, ip6h, mblk_t *, mp1); 622 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 623 ipst->ips_ipv6firewall_loopback_out, 624 NULL, olp, ip6h, mp1, mp1, 0, ipst); 625 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, mp1); 626 } 627 ill_refrele(olp); 628 629 if (mp1 == NULL) 630 goto unfuse; 631 632 /* 633 * The ipif and ill can be safely referenced under the 634 * protection of conn_lock - see head of function comment for 635 * conn_get_held_ipif(). It is necessary to check that both 636 * the ipif and ill can be looked up (i.e. not condemned). If 637 * not, bail out and unfuse this connection. 638 */ 639 mutex_enter(&tcp->tcp_connp->conn_lock); 640 if ((tcp->tcp_connp->conn_ire_cache == NULL) || 641 (tcp->tcp_connp->conn_ire_cache->ire_marks & 642 IRE_MARK_CONDEMNED) || 643 ((iifp = tcp->tcp_connp->conn_ire_cache->ire_ipif) 644 == NULL) || 645 (!IPIF_CAN_LOOKUP(iifp)) || 646 ((ilp = iifp->ipif_ill) == NULL) || 647 (ill_check_and_refhold(ilp) != 0)) { 648 mutex_exit(&tcp->tcp_connp->conn_lock); 649 goto unfuse; 650 } 651 mutex_exit(&tcp->tcp_connp->conn_lock); 652 653 /* PFHooks: LOOPBACK_IN */ 654 if (tcp->tcp_ipversion == IPV4_VERSION) { 655 DTRACE_PROBE4(ip4__loopback__in__start, 656 ill_t *, ilp, ill_t *, NULL, 657 ipha_t *, ipha, mblk_t *, mp1); 658 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 659 ipst->ips_ipv4firewall_loopback_in, 660 ilp, NULL, ipha, mp1, mp1, 0, ipst); 661 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, mp1); 662 ill_refrele(ilp); 663 if (mp1 == NULL) 664 goto unfuse; 665 666 ip_hdr_len = IPH_HDR_LENGTH(ipha); 667 } else { 668 DTRACE_PROBE4(ip6__loopback__in__start, 669 ill_t *, ilp, ill_t *, NULL, 670 ip6_t *, ip6h, mblk_t *, mp1); 671 FW_HOOKS6(ipst->ips_ip6_loopback_in_event, 672 ipst->ips_ipv6firewall_loopback_in, 673 ilp, NULL, ip6h, mp1, mp1, 0, ipst); 674 DTRACE_PROBE1(ip6__loopback__in__end, mblk_t *, mp1); 675 ill_refrele(ilp); 676 if (mp1 == NULL) 677 goto unfuse; 678 679 ip_hdr_len = ip_hdr_length_v6(mp1, ip6h); 680 } 681 682 /* Data length might be changed by FW_HOOKS */ 683 tcph = (tcph_t *)&mp1->b_rptr[ip_hdr_len]; 684 seq = ABE32_TO_U32(tcph->th_seq); 685 recv_size += seq - tcp->tcp_snxt; 686 687 /* 688 * The message duplicated by tcp_xmit_mp is freed. 689 * Note: the original message passed in remains unchanged. 690 */ 691 freemsg(mp1); 692 } 693 694 mutex_enter(&peer_tcp->tcp_non_sq_lock); 695 /* 696 * Wake up and signal the peer; it is okay to do this before 697 * enqueueing because we are holding the lock. One of the 698 * advantages of synchronous streams is the ability for us to 699 * find out when the application performs a read on the socket, 700 * by way of tcp_fuse_rrw() entry point being called. Every 701 * data that gets enqueued onto the receiver is treated as if 702 * it has arrived at the receiving endpoint, thus generating 703 * SIGPOLL/SIGIO for asynchronous socket just as in the strrput() 704 * case. However, we only wake up the application when necessary, 705 * i.e. during the first enqueue. When tcp_fuse_rrw() is called 706 * it will send everything upstream. 707 */ 708 if (peer_tcp->tcp_direct_sockfs && !urgent && 709 !TCP_IS_DETACHED(peer_tcp)) { 710 /* Update poll events and send SIGPOLL/SIGIO if necessary */ 711 STR_WAKEUP_SENDSIG(STREAM(peer_tcp->tcp_rq), 712 peer_tcp->tcp_rcv_list); 713 } 714 715 /* 716 * Enqueue data into the peer's receive list; we may or may not 717 * drain the contents depending on the conditions below. 718 */ 719 tcp_rcv_enqueue(peer_tcp, mp, recv_size); 720 721 /* In case it wrapped around and also to keep it constant */ 722 peer_tcp->tcp_rwnd += recv_size; 723 /* 724 * We increase the peer's unread message count here whilst still 725 * holding it's tcp_non_sq_lock. This ensures that the increment 726 * occurs in the same lock acquisition perimeter as the enqueue. 727 * Depending on lock hierarchy, we can release these locks which 728 * creates a window in which we can race with tcp_fuse_rrw() 729 */ 730 peer_tcp->tcp_fuse_rcv_unread_cnt++; 731 732 /* 733 * Exercise flow-control when needed; we will get back-enabled 734 * in either tcp_accept_finish(), tcp_unfuse(), or tcp_fuse_rrw(). 735 * If tcp_direct_sockfs is on or if the peer endpoint is detached, 736 * we emulate streams flow control by checking the peer's queue 737 * size and high water mark; otherwise we simply use canputnext() 738 * to decide if we need to stop our flow. 739 * 740 * The outstanding unread data block check does not apply for a 741 * detached receiver; this is to avoid unnecessary blocking of the 742 * sender while the accept is currently in progress and is quite 743 * similar to the regular tcp. 744 */ 745 if (TCP_IS_DETACHED(peer_tcp) || max_unread == 0) 746 max_unread = UINT_MAX; 747 748 /* 749 * Since we are accessing our tcp_flow_stopped and might modify it, 750 * we need to take tcp->tcp_non_sq_lock. The lock for the highest 751 * address is held first. Dropping peer_tcp->tcp_non_sq_lock should 752 * not be an issue here since we are within the squeue and the peer 753 * won't disappear. 754 */ 755 if (tcp > peer_tcp) { 756 mutex_exit(&peer_tcp->tcp_non_sq_lock); 757 mutex_enter(&tcp->tcp_non_sq_lock); 758 mutex_enter(&peer_tcp->tcp_non_sq_lock); 759 } else { 760 mutex_enter(&tcp->tcp_non_sq_lock); 761 } 762 flow_stopped = tcp->tcp_flow_stopped; 763 if (((peer_tcp->tcp_direct_sockfs || TCP_IS_DETACHED(peer_tcp)) && 764 (peer_tcp->tcp_rcv_cnt >= peer_tcp->tcp_fuse_rcv_hiwater || 765 peer_tcp->tcp_fuse_rcv_unread_cnt >= max_unread)) || 766 (!peer_tcp->tcp_direct_sockfs && !TCP_IS_DETACHED(peer_tcp) && 767 !canputnext(peer_tcp->tcp_rq))) { 768 peer_data_queued = B_TRUE; 769 } 770 771 if (!flow_stopped && (peer_data_queued || 772 (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater))) { 773 tcp_setqfull(tcp); 774 flow_stopped = B_TRUE; 775 TCP_STAT(tcps, tcp_fusion_flowctl); 776 DTRACE_PROBE4(tcp__fuse__output__flowctl, tcp_t *, tcp, 777 uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt, 778 uint_t, peer_tcp->tcp_fuse_rcv_unread_cnt); 779 } else if (flow_stopped && !peer_data_queued && 780 (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater)) { 781 tcp_clrqfull(tcp); 782 TCP_STAT(tcps, tcp_fusion_backenabled); 783 flow_stopped = B_FALSE; 784 } 785 mutex_exit(&tcp->tcp_non_sq_lock); 786 787 /* 788 * If we are in synchronous streams mode and the peer read queue is 789 * not full then schedule a push timer if one is not scheduled 790 * already. This is needed for applications which use MSG_PEEK to 791 * determine the number of bytes available before issuing a 'real' 792 * read. It also makes flow control more deterministic, particularly 793 * for smaller message sizes. 794 */ 795 if (!urgent && peer_tcp->tcp_direct_sockfs && 796 peer_tcp->tcp_push_tid == 0 && !TCP_IS_DETACHED(peer_tcp) && 797 canputnext(peer_tcp->tcp_rq)) { 798 peer_tcp->tcp_push_tid = TCP_TIMER(peer_tcp, tcp_push_timer, 799 MSEC_TO_TICK(tcps->tcps_push_timer_interval)); 800 } 801 mutex_exit(&peer_tcp->tcp_non_sq_lock); 802 ipst->ips_loopback_packets++; 803 tcp->tcp_last_sent_len = send_size; 804 805 /* Need to adjust the following SNMP MIB-related variables */ 806 tcp->tcp_snxt += send_size; 807 tcp->tcp_suna = tcp->tcp_snxt; 808 peer_tcp->tcp_rnxt += recv_size; 809 peer_tcp->tcp_rack = peer_tcp->tcp_rnxt; 810 811 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 812 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, send_size); 813 814 BUMP_MIB(&tcps->tcps_mib, tcpInSegs); 815 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 816 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, send_size); 817 818 BUMP_LOCAL(tcp->tcp_obsegs); 819 BUMP_LOCAL(peer_tcp->tcp_ibsegs); 820 821 DTRACE_PROBE2(tcp__fuse__output, tcp_t *, tcp, uint_t, send_size); 822 823 if (!TCP_IS_DETACHED(peer_tcp)) { 824 /* 825 * Drain the peer's receive queue it has urgent data or if 826 * we're not flow-controlled. There is no need for draining 827 * normal data when tcp_direct_sockfs is on because the peer 828 * will pull the data via tcp_fuse_rrw(). 829 */ 830 if (urgent || (!flow_stopped && !peer_tcp->tcp_direct_sockfs)) { 831 ASSERT(peer_tcp->tcp_rcv_list != NULL); 832 /* 833 * For TLI-based streams, a thread in tcp_accept_swap() 834 * can race with us. That thread will ensure that the 835 * correct peer_tcp->tcp_rq is globally visible before 836 * peer_tcp->tcp_detached is visible as clear, but we 837 * must also ensure that the load of tcp_rq cannot be 838 * reordered to be before the tcp_detached check. 839 */ 840 membar_consumer(); 841 (void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp, 842 NULL); 843 /* 844 * If synchronous streams was stopped above due 845 * to the presence of urgent data, re-enable it. 846 */ 847 if (urgent) 848 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp); 849 } 850 } 851 return (B_TRUE); 852 unfuse: 853 tcp_unfuse(tcp); 854 return (B_FALSE); 855 } 856 857 /* 858 * This routine gets called to deliver data upstream on a fused or 859 * previously fused tcp loopback endpoint; the latter happens only 860 * when there is a pending SIGURG signal plus urgent data that can't 861 * be sent upstream in the past. 862 */ 863 boolean_t 864 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp) 865 { 866 mblk_t *mp; 867 #ifdef DEBUG 868 uint_t cnt = 0; 869 #endif 870 tcp_stack_t *tcps = tcp->tcp_tcps; 871 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 872 boolean_t sd_rd_eof = B_FALSE; 873 874 ASSERT(tcp->tcp_loopback); 875 ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg); 876 ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL); 877 ASSERT(sigurg_mpp != NULL || tcp->tcp_fused); 878 879 /* No need for the push timer now, in case it was scheduled */ 880 if (tcp->tcp_push_tid != 0) { 881 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 882 tcp->tcp_push_tid = 0; 883 } 884 /* 885 * If there's urgent data sitting in receive list and we didn't 886 * get a chance to send up a SIGURG signal, make sure we send 887 * it first before draining in order to ensure that SIOCATMARK 888 * works properly. 889 */ 890 if (tcp->tcp_fused_sigurg) { 891 /* 892 * sigurg_mpp is normally NULL, i.e. when we're still 893 * fused and didn't get here because of tcp_unfuse(). 894 * In this case try hard to allocate the M_PCSIG mblk. 895 */ 896 if (sigurg_mpp == NULL && 897 (mp = allocb(1, BPRI_HI)) == NULL && 898 (mp = allocb_tryhard(1)) == NULL) { 899 /* Alloc failed; try again next time */ 900 tcp->tcp_push_tid = TCP_TIMER(tcp, tcp_push_timer, 901 MSEC_TO_TICK(tcps->tcps_push_timer_interval)); 902 return (B_TRUE); 903 } else if (sigurg_mpp != NULL) { 904 /* 905 * Use the supplied M_PCSIG mblk; it means we're 906 * either unfused or in the process of unfusing, 907 * and the drain must happen now. 908 */ 909 mp = *sigurg_mpp; 910 *sigurg_mpp = NULL; 911 } 912 ASSERT(mp != NULL); 913 914 tcp->tcp_fused_sigurg = B_FALSE; 915 /* Send up the signal */ 916 DB_TYPE(mp) = M_PCSIG; 917 *mp->b_wptr++ = (uchar_t)SIGURG; 918 putnext(q, mp); 919 /* 920 * Let the regular tcp_rcv_drain() path handle 921 * draining the data if we're no longer fused. 922 */ 923 if (!tcp->tcp_fused) 924 return (B_FALSE); 925 } 926 927 /* 928 * In the synchronous streams case, we generate SIGPOLL/SIGIO for 929 * each M_DATA that gets enqueued onto the receiver. At this point 930 * we are about to drain any queued data via putnext(). In order 931 * to avoid extraneous signal generation from strrput(), we set 932 * STRGETINPROG flag at the stream head prior to the draining and 933 * restore it afterwards. This masks out signal generation only 934 * for M_DATA messages and does not affect urgent data. We only do 935 * this if the STREOF flag is not set which can happen if the 936 * application shuts down the read side of a stream. In this case 937 * we simply free these messages to approximate the flushq behavior 938 * which normally occurs when STREOF is on the stream head read queue. 939 */ 940 if (tcp->tcp_direct_sockfs) 941 sd_rd_eof = strrput_sig(q, B_FALSE); 942 943 /* Drain the data */ 944 while ((mp = tcp->tcp_rcv_list) != NULL) { 945 tcp->tcp_rcv_list = mp->b_next; 946 mp->b_next = NULL; 947 #ifdef DEBUG 948 cnt += msgdsize(mp); 949 #endif 950 if (sd_rd_eof) { 951 freemsg(mp); 952 } else { 953 putnext(q, mp); 954 TCP_STAT(tcps, tcp_fusion_putnext); 955 } 956 } 957 958 if (tcp->tcp_direct_sockfs && !sd_rd_eof) 959 (void) strrput_sig(q, B_TRUE); 960 961 ASSERT(cnt == tcp->tcp_rcv_cnt); 962 tcp->tcp_rcv_last_head = NULL; 963 tcp->tcp_rcv_last_tail = NULL; 964 tcp->tcp_rcv_cnt = 0; 965 tcp->tcp_fuse_rcv_unread_cnt = 0; 966 tcp->tcp_rwnd = q->q_hiwat; 967 968 if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <= 969 peer_tcp->tcp_xmit_lowater)) { 970 tcp_clrqfull(peer_tcp); 971 TCP_STAT(tcps, tcp_fusion_backenabled); 972 } 973 974 return (B_TRUE); 975 } 976 977 /* 978 * Synchronous stream entry point for sockfs to retrieve 979 * data directly from tcp_rcv_list. 980 * tcp_fuse_rrw() might end up modifying the peer's tcp_flow_stopped, 981 * for which it must take the tcp_non_sq_lock of the peer as well 982 * making any change. The order of taking the locks is based on 983 * the TCP pointer itself. Before we get the peer we need to take 984 * our tcp_non_sq_lock so that the peer doesn't disappear. However, 985 * we cannot drop the lock if we have to grab the peer's lock (because 986 * of ordering), since the peer might disappear in the interim. So, 987 * we take our tcp_non_sq_lock, get the peer, increment the ref on the 988 * peer's conn, drop all the locks and then take the tcp_non_sq_lock in the 989 * desired order. Incrementing the conn ref on the peer means that the 990 * peer won't disappear when we drop our tcp_non_sq_lock. 991 */ 992 int 993 tcp_fuse_rrw(queue_t *q, struiod_t *dp) 994 { 995 tcp_t *tcp = Q_TO_CONN(q)->conn_tcp; 996 mblk_t *mp; 997 tcp_t *peer_tcp; 998 tcp_stack_t *tcps = tcp->tcp_tcps; 999 1000 mutex_enter(&tcp->tcp_non_sq_lock); 1001 1002 /* 1003 * If tcp_fuse_syncstr_plugged is set, then another thread is moving 1004 * the underlying data to the stream head. We need to wait until it's 1005 * done, then return EBUSY so that strget() will dequeue data from the 1006 * stream head to ensure data is drained in-order. 1007 */ 1008 plugged: 1009 if (tcp->tcp_fuse_syncstr_plugged) { 1010 do { 1011 cv_wait(&tcp->tcp_fuse_plugcv, &tcp->tcp_non_sq_lock); 1012 } while (tcp->tcp_fuse_syncstr_plugged); 1013 1014 mutex_exit(&tcp->tcp_non_sq_lock); 1015 TCP_STAT(tcps, tcp_fusion_rrw_plugged); 1016 TCP_STAT(tcps, tcp_fusion_rrw_busy); 1017 return (EBUSY); 1018 } 1019 1020 peer_tcp = tcp->tcp_loopback_peer; 1021 1022 /* 1023 * If someone had turned off tcp_direct_sockfs or if synchronous 1024 * streams is stopped, we return EBUSY. This causes strget() to 1025 * dequeue data from the stream head instead. 1026 */ 1027 if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) { 1028 mutex_exit(&tcp->tcp_non_sq_lock); 1029 TCP_STAT(tcps, tcp_fusion_rrw_busy); 1030 return (EBUSY); 1031 } 1032 1033 /* 1034 * Grab lock in order. The highest addressed tcp is locked first. 1035 * We don't do this within the tcp_rcv_list check since if we 1036 * have to drop the lock, for ordering, then the tcp_rcv_list 1037 * could change. 1038 */ 1039 if (peer_tcp > tcp) { 1040 CONN_INC_REF(peer_tcp->tcp_connp); 1041 mutex_exit(&tcp->tcp_non_sq_lock); 1042 mutex_enter(&peer_tcp->tcp_non_sq_lock); 1043 mutex_enter(&tcp->tcp_non_sq_lock); 1044 /* 1045 * This might have changed in the interim 1046 * Once read-side tcp_non_sq_lock is dropped above 1047 * anything can happen, we need to check all 1048 * known conditions again once we reaquire 1049 * read-side tcp_non_sq_lock. 1050 */ 1051 if (tcp->tcp_fuse_syncstr_plugged) { 1052 mutex_exit(&peer_tcp->tcp_non_sq_lock); 1053 CONN_DEC_REF(peer_tcp->tcp_connp); 1054 goto plugged; 1055 } 1056 if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) { 1057 mutex_exit(&tcp->tcp_non_sq_lock); 1058 mutex_exit(&peer_tcp->tcp_non_sq_lock); 1059 CONN_DEC_REF(peer_tcp->tcp_connp); 1060 TCP_STAT(tcps, tcp_fusion_rrw_busy); 1061 return (EBUSY); 1062 } 1063 CONN_DEC_REF(peer_tcp->tcp_connp); 1064 } else { 1065 mutex_enter(&peer_tcp->tcp_non_sq_lock); 1066 } 1067 1068 if ((mp = tcp->tcp_rcv_list) != NULL) { 1069 1070 DTRACE_PROBE3(tcp__fuse__rrw, tcp_t *, tcp, 1071 uint32_t, tcp->tcp_rcv_cnt, ssize_t, dp->d_uio.uio_resid); 1072 1073 tcp->tcp_rcv_list = NULL; 1074 TCP_STAT(tcps, tcp_fusion_rrw_msgcnt); 1075 1076 /* 1077 * At this point nothing should be left in tcp_rcv_list. 1078 * The only possible case where we would have a chain of 1079 * b_next-linked messages is urgent data, but we wouldn't 1080 * be here if that's true since urgent data is delivered 1081 * via putnext() and synchronous streams is stopped until 1082 * tcp_fuse_rcv_drain() is finished. 1083 */ 1084 ASSERT(DB_TYPE(mp) == M_DATA && mp->b_next == NULL); 1085 1086 tcp->tcp_rcv_last_head = NULL; 1087 tcp->tcp_rcv_last_tail = NULL; 1088 tcp->tcp_rcv_cnt = 0; 1089 tcp->tcp_fuse_rcv_unread_cnt = 0; 1090 1091 if (peer_tcp->tcp_flow_stopped && 1092 (TCP_UNSENT_BYTES(peer_tcp) <= 1093 peer_tcp->tcp_xmit_lowater)) { 1094 tcp_clrqfull(peer_tcp); 1095 TCP_STAT(tcps, tcp_fusion_backenabled); 1096 } 1097 } 1098 mutex_exit(&peer_tcp->tcp_non_sq_lock); 1099 /* 1100 * Either we just dequeued everything or we get here from sockfs 1101 * and have nothing to return; in this case clear RSLEEP. 1102 */ 1103 ASSERT(tcp->tcp_rcv_last_head == NULL); 1104 ASSERT(tcp->tcp_rcv_last_tail == NULL); 1105 ASSERT(tcp->tcp_rcv_cnt == 0); 1106 ASSERT(tcp->tcp_fuse_rcv_unread_cnt == 0); 1107 STR_WAKEUP_CLEAR(STREAM(q)); 1108 1109 mutex_exit(&tcp->tcp_non_sq_lock); 1110 dp->d_mp = mp; 1111 return (0); 1112 } 1113 1114 /* 1115 * Synchronous stream entry point used by certain ioctls to retrieve 1116 * information about or peek into the tcp_rcv_list. 1117 */ 1118 int 1119 tcp_fuse_rinfop(queue_t *q, infod_t *dp) 1120 { 1121 tcp_t *tcp = Q_TO_CONN(q)->conn_tcp; 1122 mblk_t *mp; 1123 uint_t cmd = dp->d_cmd; 1124 int res = 0; 1125 int error = 0; 1126 struct stdata *stp = STREAM(q); 1127 1128 mutex_enter(&tcp->tcp_non_sq_lock); 1129 /* If shutdown on read has happened, return nothing */ 1130 mutex_enter(&stp->sd_lock); 1131 if (stp->sd_flag & STREOF) { 1132 mutex_exit(&stp->sd_lock); 1133 goto done; 1134 } 1135 mutex_exit(&stp->sd_lock); 1136 1137 /* 1138 * It is OK not to return an answer if tcp_rcv_list is 1139 * currently not accessible. 1140 */ 1141 if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped || 1142 tcp->tcp_fuse_syncstr_plugged || (mp = tcp->tcp_rcv_list) == NULL) 1143 goto done; 1144 1145 if (cmd & INFOD_COUNT) { 1146 /* 1147 * We have at least one message and 1148 * could return only one at a time. 1149 */ 1150 dp->d_count++; 1151 res |= INFOD_COUNT; 1152 } 1153 if (cmd & INFOD_BYTES) { 1154 /* 1155 * Return size of all data messages. 1156 */ 1157 dp->d_bytes += tcp->tcp_rcv_cnt; 1158 res |= INFOD_BYTES; 1159 } 1160 if (cmd & INFOD_FIRSTBYTES) { 1161 /* 1162 * Return size of first data message. 1163 */ 1164 dp->d_bytes = msgdsize(mp); 1165 res |= INFOD_FIRSTBYTES; 1166 dp->d_cmd &= ~INFOD_FIRSTBYTES; 1167 } 1168 if (cmd & INFOD_COPYOUT) { 1169 mblk_t *mp1; 1170 int n; 1171 1172 if (DB_TYPE(mp) == M_DATA) { 1173 mp1 = mp; 1174 } else { 1175 mp1 = mp->b_cont; 1176 ASSERT(mp1 != NULL); 1177 } 1178 1179 /* 1180 * Return data contents of first message. 1181 */ 1182 ASSERT(DB_TYPE(mp1) == M_DATA); 1183 while (mp1 != NULL && dp->d_uiop->uio_resid > 0) { 1184 n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1)); 1185 if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n, 1186 UIO_READ, dp->d_uiop)) != 0) { 1187 goto done; 1188 } 1189 mp1 = mp1->b_cont; 1190 } 1191 res |= INFOD_COPYOUT; 1192 dp->d_cmd &= ~INFOD_COPYOUT; 1193 } 1194 done: 1195 mutex_exit(&tcp->tcp_non_sq_lock); 1196 1197 dp->d_res |= res; 1198 1199 return (error); 1200 } 1201 1202 /* 1203 * Enable synchronous streams on a fused tcp loopback endpoint. 1204 */ 1205 static void 1206 tcp_fuse_syncstr_enable(tcp_t *tcp) 1207 { 1208 queue_t *rq = tcp->tcp_rq; 1209 struct stdata *stp = STREAM(rq); 1210 1211 /* We can only enable synchronous streams for sockfs mode */ 1212 tcp->tcp_direct_sockfs = tcp->tcp_issocket && do_tcp_direct_sockfs; 1213 1214 if (!tcp->tcp_direct_sockfs) 1215 return; 1216 1217 mutex_enter(&stp->sd_lock); 1218 mutex_enter(QLOCK(rq)); 1219 1220 /* 1221 * We replace our q_qinfo with one that has the qi_rwp entry point. 1222 * Clear SR_SIGALLDATA because we generate the equivalent signal(s) 1223 * for every enqueued data in tcp_fuse_output(). 1224 */ 1225 rq->q_qinfo = &tcp_loopback_rinit; 1226 rq->q_struiot = tcp_loopback_rinit.qi_struiot; 1227 stp->sd_struiordq = rq; 1228 stp->sd_rput_opt &= ~SR_SIGALLDATA; 1229 1230 mutex_exit(QLOCK(rq)); 1231 mutex_exit(&stp->sd_lock); 1232 } 1233 1234 /* 1235 * Disable synchronous streams on a fused tcp loopback endpoint. 1236 */ 1237 static void 1238 tcp_fuse_syncstr_disable(tcp_t *tcp) 1239 { 1240 queue_t *rq = tcp->tcp_rq; 1241 struct stdata *stp = STREAM(rq); 1242 1243 if (!tcp->tcp_direct_sockfs) 1244 return; 1245 1246 mutex_enter(&stp->sd_lock); 1247 mutex_enter(QLOCK(rq)); 1248 1249 /* 1250 * Reset q_qinfo to point to the default tcp entry points. 1251 * Also restore SR_SIGALLDATA so that strrput() can generate 1252 * the signals again for future M_DATA messages. 1253 */ 1254 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 1255 rq->q_struiot = tcp_rinitv4.qi_struiot; 1256 stp->sd_struiordq = NULL; 1257 stp->sd_rput_opt |= SR_SIGALLDATA; 1258 tcp->tcp_direct_sockfs = B_FALSE; 1259 1260 mutex_exit(QLOCK(rq)); 1261 mutex_exit(&stp->sd_lock); 1262 } 1263 1264 /* 1265 * Enable synchronous streams on a pair of fused tcp endpoints. 1266 */ 1267 void 1268 tcp_fuse_syncstr_enable_pair(tcp_t *tcp) 1269 { 1270 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 1271 1272 ASSERT(tcp->tcp_fused); 1273 ASSERT(peer_tcp != NULL); 1274 1275 tcp_fuse_syncstr_enable(tcp); 1276 tcp_fuse_syncstr_enable(peer_tcp); 1277 } 1278 1279 /* 1280 * Used to enable/disable signal generation at the stream head. We already 1281 * generated the signal(s) for these messages when they were enqueued on the 1282 * receiver. We also check if STREOF is set here. If it is, we return false 1283 * and let the caller decide what to do. 1284 */ 1285 static boolean_t 1286 strrput_sig(queue_t *q, boolean_t on) 1287 { 1288 struct stdata *stp = STREAM(q); 1289 1290 mutex_enter(&stp->sd_lock); 1291 if (stp->sd_flag == STREOF) { 1292 mutex_exit(&stp->sd_lock); 1293 return (B_TRUE); 1294 } 1295 if (on) 1296 stp->sd_flag &= ~STRGETINPROG; 1297 else 1298 stp->sd_flag |= STRGETINPROG; 1299 mutex_exit(&stp->sd_lock); 1300 1301 return (B_FALSE); 1302 } 1303 1304 /* 1305 * Disable synchronous streams on a pair of fused tcp endpoints and drain 1306 * any queued data; called either during unfuse or upon transitioning from 1307 * a socket to a stream endpoint due to _SIOCSOCKFALLBACK. 1308 */ 1309 void 1310 tcp_fuse_disable_pair(tcp_t *tcp, boolean_t unfusing) 1311 { 1312 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 1313 tcp_stack_t *tcps = tcp->tcp_tcps; 1314 1315 ASSERT(tcp->tcp_fused); 1316 ASSERT(peer_tcp != NULL); 1317 1318 /* 1319 * Force any tcp_fuse_rrw() calls to block until we've moved the data 1320 * onto the stream head. 1321 */ 1322 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 1323 TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp); 1324 1325 /* 1326 * Cancel any pending push timers. 1327 */ 1328 if (tcp->tcp_push_tid != 0) { 1329 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 1330 tcp->tcp_push_tid = 0; 1331 } 1332 if (peer_tcp->tcp_push_tid != 0) { 1333 (void) TCP_TIMER_CANCEL(peer_tcp, peer_tcp->tcp_push_tid); 1334 peer_tcp->tcp_push_tid = 0; 1335 } 1336 1337 /* 1338 * Drain any pending data; the detached check is needed because 1339 * we may be called as a result of a tcp_unfuse() triggered by 1340 * tcp_fuse_output(). Note that in case of a detached tcp, the 1341 * draining will happen later after the tcp is unfused. For non- 1342 * urgent data, this can be handled by the regular tcp_rcv_drain(). 1343 * If we have urgent data sitting in the receive list, we will 1344 * need to send up a SIGURG signal first before draining the data. 1345 * All of these will be handled by the code in tcp_fuse_rcv_drain() 1346 * when called from tcp_rcv_drain(). 1347 */ 1348 if (!TCP_IS_DETACHED(tcp)) { 1349 (void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp, 1350 (unfusing ? &tcp->tcp_fused_sigurg_mp : NULL)); 1351 } 1352 if (!TCP_IS_DETACHED(peer_tcp)) { 1353 (void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp, 1354 (unfusing ? &peer_tcp->tcp_fused_sigurg_mp : NULL)); 1355 } 1356 1357 /* 1358 * Make all current and future tcp_fuse_rrw() calls fail with EBUSY. 1359 * To ensure threads don't sneak past the checks in tcp_fuse_rrw(), 1360 * a given stream must be stopped prior to being unplugged (but the 1361 * ordering of operations between the streams is unimportant). 1362 */ 1363 TCP_FUSE_SYNCSTR_STOP(tcp); 1364 TCP_FUSE_SYNCSTR_STOP(peer_tcp); 1365 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 1366 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp); 1367 1368 /* Lift up any flow-control conditions */ 1369 if (tcp->tcp_flow_stopped) { 1370 tcp_clrqfull(tcp); 1371 TCP_STAT(tcps, tcp_fusion_backenabled); 1372 } 1373 if (peer_tcp->tcp_flow_stopped) { 1374 tcp_clrqfull(peer_tcp); 1375 TCP_STAT(tcps, tcp_fusion_backenabled); 1376 } 1377 1378 /* Disable synchronous streams */ 1379 tcp_fuse_syncstr_disable(tcp); 1380 tcp_fuse_syncstr_disable(peer_tcp); 1381 } 1382 1383 /* 1384 * Calculate the size of receive buffer for a fused tcp endpoint. 1385 */ 1386 size_t 1387 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd) 1388 { 1389 tcp_stack_t *tcps = tcp->tcp_tcps; 1390 1391 ASSERT(tcp->tcp_fused); 1392 1393 /* Ensure that value is within the maximum upper bound */ 1394 if (rwnd > tcps->tcps_max_buf) 1395 rwnd = tcps->tcps_max_buf; 1396 1397 /* Obey the absolute minimum tcp receive high water mark */ 1398 if (rwnd < tcps->tcps_sth_rcv_hiwat) 1399 rwnd = tcps->tcps_sth_rcv_hiwat; 1400 1401 /* 1402 * Round up to system page size in case SO_RCVBUF is modified 1403 * after SO_SNDBUF; the latter is also similarly rounded up. 1404 */ 1405 rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t); 1406 tcp->tcp_fuse_rcv_hiwater = rwnd; 1407 return (rwnd); 1408 } 1409 1410 /* 1411 * Calculate the maximum outstanding unread data block for a fused tcp endpoint. 1412 */ 1413 int 1414 tcp_fuse_maxpsz_set(tcp_t *tcp) 1415 { 1416 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 1417 uint_t sndbuf = tcp->tcp_xmit_hiwater; 1418 uint_t maxpsz = sndbuf; 1419 1420 ASSERT(tcp->tcp_fused); 1421 ASSERT(peer_tcp != NULL); 1422 ASSERT(peer_tcp->tcp_fuse_rcv_hiwater != 0); 1423 /* 1424 * In the fused loopback case, we want the stream head to split 1425 * up larger writes into smaller chunks for a more accurate flow- 1426 * control accounting. Our maxpsz is half of the sender's send 1427 * buffer or the receiver's receive buffer, whichever is smaller. 1428 * We round up the buffer to system page size due to the lack of 1429 * TCP MSS concept in Fusion. 1430 */ 1431 if (maxpsz > peer_tcp->tcp_fuse_rcv_hiwater) 1432 maxpsz = peer_tcp->tcp_fuse_rcv_hiwater; 1433 maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1; 1434 1435 /* 1436 * Calculate the peer's limit for the number of outstanding unread 1437 * data block. This is the amount of data blocks that are allowed 1438 * to reside in the receiver's queue before the sender gets flow 1439 * controlled. It is used only in the synchronous streams mode as 1440 * a way to throttle the sender when it performs consecutive writes 1441 * faster than can be read. The value is derived from SO_SNDBUF in 1442 * order to give the sender some control; we divide it with a large 1443 * value (16KB) to produce a fairly low initial limit. 1444 */ 1445 if (tcp_fusion_rcv_unread_min == 0) { 1446 /* A value of 0 means that we disable the check */ 1447 peer_tcp->tcp_fuse_rcv_unread_hiwater = 0; 1448 } else { 1449 peer_tcp->tcp_fuse_rcv_unread_hiwater = 1450 MAX(sndbuf >> 14, tcp_fusion_rcv_unread_min); 1451 } 1452 return (maxpsz); 1453 } 1454