1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/stream.h> 28 #include <sys/strsun.h> 29 #include <sys/strsubr.h> 30 #include <sys/debug.h> 31 #include <sys/sdt.h> 32 #include <sys/cmn_err.h> 33 #include <sys/tihdr.h> 34 35 #include <inet/common.h> 36 #include <inet/optcom.h> 37 #include <inet/ip.h> 38 #include <inet/ip_if.h> 39 #include <inet/ip_impl.h> 40 #include <inet/tcp.h> 41 #include <inet/tcp_impl.h> 42 #include <inet/ipsec_impl.h> 43 #include <inet/ipclassifier.h> 44 #include <inet/ipp_common.h> 45 #include <inet/ip_if.h> 46 47 /* 48 * This file implements TCP fusion - a protocol-less data path for TCP 49 * loopback connections. The fusion of two local TCP endpoints occurs 50 * at connection establishment time. Various conditions (see details 51 * in tcp_fuse()) need to be met for fusion to be successful. If it 52 * fails, we fall back to the regular TCP data path; if it succeeds, 53 * both endpoints proceed to use tcp_fuse_output() as the transmit path. 54 * tcp_fuse_output() enqueues application data directly onto the peer's 55 * receive queue; no protocol processing is involved. After enqueueing 56 * the data, the sender can either push (putnext) data up the receiver's 57 * read queue; or the sender can simply return and let the receiver 58 * retrieve the enqueued data via the synchronous streams entry point 59 * tcp_fuse_rrw(). The latter path is taken if synchronous streams is 60 * enabled (the default). It is disabled if sockfs no longer resides 61 * directly on top of tcp module due to a module insertion or removal. 62 * It also needs to be temporarily disabled when sending urgent data 63 * because the tcp_fuse_rrw() path bypasses the M_PROTO processing done 64 * by strsock_proto() hook. 65 * 66 * Sychronization is handled by squeue and the mutex tcp_non_sq_lock. 67 * One of the requirements for fusion to succeed is that both endpoints 68 * need to be using the same squeue. This ensures that neither side 69 * can disappear while the other side is still sending data. By itself, 70 * squeue is not sufficient for guaranteeing safety when synchronous 71 * streams is enabled. The reason is that tcp_fuse_rrw() doesn't enter 72 * the squeue and its access to tcp_rcv_list and other fusion-related 73 * fields needs to be sychronized with the sender. tcp_non_sq_lock is 74 * used for this purpose. When there is urgent data, the sender needs 75 * to push the data up the receiver's streams read queue. In order to 76 * avoid holding the tcp_non_sq_lock across putnext(), the sender sets 77 * the peer tcp's tcp_fuse_syncstr_plugged bit and releases tcp_non_sq_lock 78 * (see macro TCP_FUSE_SYNCSTR_PLUG_DRAIN()). If tcp_fuse_rrw() enters 79 * after this point, it will see that synchronous streams is plugged and 80 * will wait on tcp_fuse_plugcv. After the sender has finished pushing up 81 * all urgent data, it will clear the tcp_fuse_syncstr_plugged bit using 82 * TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(). This will cause any threads waiting 83 * on tcp_fuse_plugcv to return EBUSY, and in turn cause strget() to call 84 * getq_noenab() to dequeue data from the stream head instead. Once the 85 * data on the stream head has been consumed, tcp_fuse_rrw() may again 86 * be used to process tcp_rcv_list. However, if TCP_FUSE_SYNCSTR_STOP() 87 * has been called, all future calls to tcp_fuse_rrw() will return EBUSY, 88 * effectively disabling synchronous streams. 89 * 90 * The following note applies only to the synchronous streams mode. 91 * 92 * Flow control is done by checking the size of receive buffer and 93 * the number of data blocks, both set to different limits. This is 94 * different than regular streams flow control where cumulative size 95 * check dominates block count check -- streams queue high water mark 96 * typically represents bytes. Each enqueue triggers notifications 97 * to the receiving process; a build up of data blocks indicates a 98 * slow receiver and the sender should be blocked or informed at the 99 * earliest moment instead of further wasting system resources. In 100 * effect, this is equivalent to limiting the number of outstanding 101 * segments in flight. 102 */ 103 104 /* 105 * Setting this to false means we disable fusion altogether and 106 * loopback connections would go through the protocol paths. 107 */ 108 boolean_t do_tcp_fusion = B_TRUE; 109 110 /* 111 * Enabling this flag allows sockfs to retrieve data directly 112 * from a fused tcp endpoint using synchronous streams interface. 113 */ 114 boolean_t do_tcp_direct_sockfs = B_FALSE; 115 116 /* 117 * This is the minimum amount of outstanding writes allowed on 118 * a synchronous streams-enabled receiving endpoint before the 119 * sender gets flow-controlled. Setting this value to 0 means 120 * that the data block limit is equivalent to the byte count 121 * limit, which essentially disables the check. 122 */ 123 #define TCP_FUSION_RCV_UNREAD_MIN 8 124 uint_t tcp_fusion_rcv_unread_min = TCP_FUSION_RCV_UNREAD_MIN; 125 126 static void tcp_fuse_syncstr_enable(tcp_t *); 127 static void tcp_fuse_syncstr_disable(tcp_t *); 128 static boolean_t strrput_sig(queue_t *, boolean_t); 129 130 /* 131 * Return true if this connection needs some IP functionality 132 */ 133 static boolean_t 134 tcp_loopback_needs_ip(tcp_t *tcp, netstack_t *ns) 135 { 136 ipsec_stack_t *ipss = ns->netstack_ipsec; 137 138 /* 139 * If ire is not cached, do not use fusion 140 */ 141 if (tcp->tcp_connp->conn_ire_cache == NULL) { 142 /* 143 * There is no need to hold conn_lock here because when called 144 * from tcp_fuse() there can be no window where conn_ire_cache 145 * can change. This is not true when called from 146 * tcp_fuse_output() as conn_ire_cache can become null just 147 * after the check. It will be necessary to recheck for a NULL 148 * conn_ire_cache in tcp_fuse_output() to avoid passing a 149 * stale ill pointer to FW_HOOKS. 150 */ 151 return (B_TRUE); 152 } 153 if (tcp->tcp_ipversion == IPV4_VERSION) { 154 if (tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) 155 return (B_TRUE); 156 if (CONN_OUTBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss)) 157 return (B_TRUE); 158 if (CONN_INBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss)) 159 return (B_TRUE); 160 } else { 161 if (tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) 162 return (B_TRUE); 163 if (CONN_OUTBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss)) 164 return (B_TRUE); 165 if (CONN_INBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss)) 166 return (B_TRUE); 167 } 168 if (!CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)) 169 return (B_TRUE); 170 return (B_FALSE); 171 } 172 173 174 /* 175 * This routine gets called by the eager tcp upon changing state from 176 * SYN_RCVD to ESTABLISHED. It fuses a direct path between itself 177 * and the active connect tcp such that the regular tcp processings 178 * may be bypassed under allowable circumstances. Because the fusion 179 * requires both endpoints to be in the same squeue, it does not work 180 * for simultaneous active connects because there is no easy way to 181 * switch from one squeue to another once the connection is created. 182 * This is different from the eager tcp case where we assign it the 183 * same squeue as the one given to the active connect tcp during open. 184 */ 185 void 186 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph) 187 { 188 conn_t *peer_connp, *connp = tcp->tcp_connp; 189 tcp_t *peer_tcp; 190 tcp_stack_t *tcps = tcp->tcp_tcps; 191 netstack_t *ns; 192 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 193 194 ASSERT(!tcp->tcp_fused); 195 ASSERT(tcp->tcp_loopback); 196 ASSERT(tcp->tcp_loopback_peer == NULL); 197 /* 198 * We need to inherit q_hiwat of the listener tcp, but we can't 199 * really use tcp_listener since we get here after sending up 200 * T_CONN_IND and tcp_wput_accept() may be called independently, 201 * at which point tcp_listener is cleared; this is why we use 202 * tcp_saved_listener. The listener itself is guaranteed to be 203 * around until tcp_accept_finish() is called on this eager -- 204 * this won't happen until we're done since we're inside the 205 * eager's perimeter now. 206 * 207 * We can also get called in the case were a connection needs 208 * to be re-fused. In this case tcp_saved_listener will be 209 * NULL but tcp_refuse will be true. 210 */ 211 ASSERT(tcp->tcp_saved_listener != NULL || tcp->tcp_refuse); 212 /* 213 * Lookup peer endpoint; search for the remote endpoint having 214 * the reversed address-port quadruplet in ESTABLISHED state, 215 * which is guaranteed to be unique in the system. Zone check 216 * is applied accordingly for loopback address, but not for 217 * local address since we want fusion to happen across Zones. 218 */ 219 if (tcp->tcp_ipversion == IPV4_VERSION) { 220 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp, 221 (ipha_t *)iphdr, tcph, ipst); 222 } else { 223 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp, 224 (ip6_t *)iphdr, tcph, ipst); 225 } 226 227 /* 228 * We can only proceed if peer exists, resides in the same squeue 229 * as our conn and is not raw-socket. The squeue assignment of 230 * this eager tcp was done earlier at the time of SYN processing 231 * in ip_fanout_tcp{_v6}. Note that similar squeues by itself 232 * doesn't guarantee a safe condition to fuse, hence we perform 233 * additional tests below. 234 */ 235 ASSERT(peer_connp == NULL || peer_connp != connp); 236 if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp || 237 !IPCL_IS_TCP(peer_connp)) { 238 if (peer_connp != NULL) { 239 TCP_STAT(tcps, tcp_fusion_unqualified); 240 CONN_DEC_REF(peer_connp); 241 } 242 return; 243 } 244 peer_tcp = peer_connp->conn_tcp; /* active connect tcp */ 245 246 ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused); 247 ASSERT(peer_tcp->tcp_loopback_peer == NULL); 248 ASSERT(peer_connp->conn_sqp == connp->conn_sqp); 249 250 /* 251 * Due to IRE changes the peer and us might not agree on tcp_loopback. 252 * We bail in that case. 253 */ 254 if (!peer_tcp->tcp_loopback) { 255 TCP_STAT(tcps, tcp_fusion_unqualified); 256 CONN_DEC_REF(peer_connp); 257 return; 258 } 259 /* 260 * Fuse the endpoints; we perform further checks against both 261 * tcp endpoints to ensure that a fusion is allowed to happen. 262 * In particular we bail out for non-simple TCP/IP or if IPsec/ 263 * IPQoS policy/kernel SSL exists. We also need to check if 264 * the connection is quiescent to cover the case when we are 265 * trying to re-enable fusion after IPobservability is turned off. 266 */ 267 ns = tcps->tcps_netstack; 268 ipst = ns->netstack_ip; 269 270 if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable && 271 !tcp_loopback_needs_ip(tcp, ns) && 272 !tcp_loopback_needs_ip(peer_tcp, ns) && 273 tcp->tcp_kssl_ent == NULL && 274 tcp->tcp_xmit_head == NULL && peer_tcp->tcp_xmit_head == NULL && 275 !IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst)) { 276 mblk_t *mp; 277 queue_t *peer_rq = peer_tcp->tcp_rq; 278 279 ASSERT(!TCP_IS_DETACHED(peer_tcp)); 280 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 281 ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL); 282 ASSERT(tcp->tcp_kssl_ctx == NULL); 283 284 /* 285 * We need to drain data on both endpoints during unfuse. 286 * If we need to send up SIGURG at the time of draining, 287 * we want to be sure that an mblk is readily available. 288 * This is why we pre-allocate the M_PCSIG mblks for both 289 * endpoints which will only be used during/after unfuse. 290 */ 291 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 292 if ((mp = allocb(1, BPRI_HI)) == NULL) 293 goto failed; 294 295 tcp->tcp_fused_sigurg_mp = mp; 296 } 297 298 if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) { 299 if ((mp = allocb(1, BPRI_HI)) == NULL) 300 goto failed; 301 302 peer_tcp->tcp_fused_sigurg_mp = mp; 303 } 304 305 if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp) && 306 (mp = allocb(sizeof (struct stroptions), 307 BPRI_HI)) == NULL) { 308 goto failed; 309 } 310 311 /* Fuse both endpoints */ 312 peer_tcp->tcp_loopback_peer = tcp; 313 tcp->tcp_loopback_peer = peer_tcp; 314 peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE; 315 316 /* 317 * We never use regular tcp paths in fusion and should 318 * therefore clear tcp_unsent on both endpoints. Having 319 * them set to non-zero values means asking for trouble 320 * especially after unfuse, where we may end up sending 321 * through regular tcp paths which expect xmit_list and 322 * friends to be correctly setup. 323 */ 324 peer_tcp->tcp_unsent = tcp->tcp_unsent = 0; 325 326 tcp_timers_stop(tcp); 327 tcp_timers_stop(peer_tcp); 328 329 /* 330 * At this point we are a detached eager tcp and therefore 331 * don't have a queue assigned to us until accept happens. 332 * In the mean time the peer endpoint may immediately send 333 * us data as soon as fusion is finished, and we need to be 334 * able to flow control it in case it sends down huge amount 335 * of data while we're still detached. To prevent that we 336 * inherit the listener's recv_hiwater value; this is temporary 337 * since we'll repeat the process intcp_accept_finish(). 338 */ 339 if (!tcp->tcp_refuse) { 340 (void) tcp_fuse_set_rcv_hiwat(tcp, 341 tcp->tcp_saved_listener->tcp_recv_hiwater); 342 343 /* 344 * Set the stream head's write offset value to zero 345 * since we won't be needing any room for TCP/IP 346 * headers; tell it to not break up the writes (this 347 * would reduce the amount of work done by kmem); and 348 * configure our receive buffer. Note that we can only 349 * do this for the active connect tcp since our eager is 350 * still detached; it will be dealt with later in 351 * tcp_accept_finish(). 352 */ 353 if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) { 354 struct stroptions *stropt; 355 356 DB_TYPE(mp) = M_SETOPTS; 357 mp->b_wptr += sizeof (*stropt); 358 359 stropt = (struct stroptions *)mp->b_rptr; 360 stropt->so_flags = SO_MAXBLK|SO_WROFF|SO_HIWAT; 361 stropt->so_maxblk = tcp_maxpsz_set(peer_tcp, 362 B_FALSE); 363 stropt->so_wroff = 0; 364 365 /* 366 * Record the stream head's high water mark for 367 * peer endpoint; this is used for flow-control 368 * purposes in tcp_fuse_output(). 369 */ 370 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat( 371 peer_tcp, peer_rq->q_hiwat); 372 373 tcp->tcp_refuse = B_FALSE; 374 peer_tcp->tcp_refuse = B_FALSE; 375 /* Send the options up */ 376 putnext(peer_rq, mp); 377 } else { 378 struct sock_proto_props sopp; 379 380 /* The peer is a non-STREAMS end point */ 381 ASSERT(IPCL_IS_TCP(peer_connp)); 382 383 (void) tcp_fuse_set_rcv_hiwat(tcp, 384 tcp->tcp_saved_listener->tcp_recv_hiwater); 385 386 sopp.sopp_flags = SOCKOPT_MAXBLK | 387 SOCKOPT_WROFF | SOCKOPT_RCVHIWAT; 388 sopp.sopp_maxblk = tcp_maxpsz_set(peer_tcp, 389 B_FALSE); 390 sopp.sopp_wroff = 0; 391 sopp.sopp_rxhiwat = tcp_fuse_set_rcv_hiwat( 392 peer_tcp, peer_tcp->tcp_recv_hiwater); 393 (*peer_connp->conn_upcalls->su_set_proto_props) 394 (peer_connp->conn_upper_handle, &sopp); 395 } 396 } 397 tcp->tcp_refuse = B_FALSE; 398 peer_tcp->tcp_refuse = B_FALSE; 399 } else { 400 TCP_STAT(tcps, tcp_fusion_unqualified); 401 } 402 CONN_DEC_REF(peer_connp); 403 return; 404 405 failed: 406 if (tcp->tcp_fused_sigurg_mp != NULL) { 407 freeb(tcp->tcp_fused_sigurg_mp); 408 tcp->tcp_fused_sigurg_mp = NULL; 409 } 410 if (peer_tcp->tcp_fused_sigurg_mp != NULL) { 411 freeb(peer_tcp->tcp_fused_sigurg_mp); 412 peer_tcp->tcp_fused_sigurg_mp = NULL; 413 } 414 CONN_DEC_REF(peer_connp); 415 } 416 417 /* 418 * Unfuse a previously-fused pair of tcp loopback endpoints. 419 */ 420 void 421 tcp_unfuse(tcp_t *tcp) 422 { 423 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 424 425 ASSERT(tcp->tcp_fused && peer_tcp != NULL); 426 ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp); 427 ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); 428 ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0); 429 430 /* 431 * We disable synchronous streams, drain any queued data and 432 * clear tcp_direct_sockfs. The synchronous streams entry 433 * points will become no-ops after this point. 434 */ 435 tcp_fuse_disable_pair(tcp, B_TRUE); 436 437 /* 438 * Update th_seq and th_ack in the header template 439 */ 440 U32_TO_ABE32(tcp->tcp_snxt, tcp->tcp_tcph->th_seq); 441 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 442 U32_TO_ABE32(peer_tcp->tcp_snxt, peer_tcp->tcp_tcph->th_seq); 443 U32_TO_ABE32(peer_tcp->tcp_rnxt, peer_tcp->tcp_tcph->th_ack); 444 445 /* Unfuse the endpoints */ 446 peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE; 447 peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL; 448 if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) { 449 ASSERT(peer_tcp->tcp_fused_sigurg_mp != NULL); 450 freeb(peer_tcp->tcp_fused_sigurg_mp); 451 peer_tcp->tcp_fused_sigurg_mp = NULL; 452 } 453 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 454 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 455 freeb(tcp->tcp_fused_sigurg_mp); 456 tcp->tcp_fused_sigurg_mp = NULL; 457 } 458 } 459 460 /* 461 * Fusion output routine for urgent data. This routine is called by 462 * tcp_fuse_output() for handling non-M_DATA mblks. 463 */ 464 void 465 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp) 466 { 467 mblk_t *mp1; 468 struct T_exdata_ind *tei; 469 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 470 mblk_t *head, *prev_head = NULL; 471 tcp_stack_t *tcps = tcp->tcp_tcps; 472 473 ASSERT(tcp->tcp_fused); 474 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 475 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 476 ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA); 477 ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0); 478 479 /* 480 * Urgent data arrives in the form of T_EXDATA_REQ from above. 481 * Each occurence denotes a new urgent pointer. For each new 482 * urgent pointer we signal (SIGURG) the receiving app to indicate 483 * that it needs to go into urgent mode. This is similar to the 484 * urgent data handling in the regular tcp. We don't need to keep 485 * track of where the urgent pointer is, because each T_EXDATA_REQ 486 * "advances" the urgent pointer for us. 487 * 488 * The actual urgent data carried by T_EXDATA_REQ is then prepended 489 * by a T_EXDATA_IND before being enqueued behind any existing data 490 * destined for the receiving app. There is only a single urgent 491 * pointer (out-of-band mark) for a given tcp. If the new urgent 492 * data arrives before the receiving app reads some existing urgent 493 * data, the previous marker is lost. This behavior is emulated 494 * accordingly below, by removing any existing T_EXDATA_IND messages 495 * and essentially converting old urgent data into non-urgent. 496 */ 497 ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID); 498 /* Let sender get out of urgent mode */ 499 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 500 501 /* 502 * This flag indicates that a signal needs to be sent up. 503 * This flag will only get cleared once SIGURG is delivered and 504 * is not affected by the tcp_fused flag -- delivery will still 505 * happen even after an endpoint is unfused, to handle the case 506 * where the sending endpoint immediately closes/unfuses after 507 * sending urgent data and the accept is not yet finished. 508 */ 509 peer_tcp->tcp_fused_sigurg = B_TRUE; 510 511 /* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */ 512 DB_TYPE(mp) = M_PROTO; 513 tei = (struct T_exdata_ind *)mp->b_rptr; 514 tei->PRIM_type = T_EXDATA_IND; 515 tei->MORE_flag = 0; 516 mp->b_wptr = (uchar_t *)&tei[1]; 517 518 TCP_STAT(tcps, tcp_fusion_urg); 519 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 520 521 head = peer_tcp->tcp_rcv_list; 522 while (head != NULL) { 523 /* 524 * Remove existing T_EXDATA_IND, keep the data which follows 525 * it and relink our list. Note that we don't modify the 526 * tcp_rcv_last_tail since it never points to T_EXDATA_IND. 527 */ 528 if (DB_TYPE(head) != M_DATA) { 529 mp1 = head; 530 531 ASSERT(DB_TYPE(mp1->b_cont) == M_DATA); 532 head = mp1->b_cont; 533 mp1->b_cont = NULL; 534 head->b_next = mp1->b_next; 535 mp1->b_next = NULL; 536 if (prev_head != NULL) 537 prev_head->b_next = head; 538 if (peer_tcp->tcp_rcv_list == mp1) 539 peer_tcp->tcp_rcv_list = head; 540 if (peer_tcp->tcp_rcv_last_head == mp1) 541 peer_tcp->tcp_rcv_last_head = head; 542 freeb(mp1); 543 } 544 prev_head = head; 545 head = head->b_next; 546 } 547 } 548 549 /* 550 * Fusion output routine, called by tcp_output() and tcp_wput_proto(). 551 * If we are modifying any member that can be changed outside the squeue, 552 * like tcp_flow_stopped, we need to take tcp_non_sq_lock. 553 */ 554 boolean_t 555 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size) 556 { 557 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 558 uint_t max_unread; 559 boolean_t flow_stopped, peer_data_queued = B_FALSE; 560 boolean_t urgent = (DB_TYPE(mp) != M_DATA); 561 boolean_t push = B_TRUE; 562 mblk_t *mp1 = mp; 563 ill_t *ilp, *olp; 564 ipif_t *iifp, *oifp; 565 ipha_t *ipha; 566 ip6_t *ip6h; 567 tcph_t *tcph; 568 uint_t ip_hdr_len; 569 uint32_t seq; 570 uint32_t recv_size = send_size; 571 tcp_stack_t *tcps = tcp->tcp_tcps; 572 netstack_t *ns = tcps->tcps_netstack; 573 ip_stack_t *ipst = ns->netstack_ip; 574 575 ASSERT(tcp->tcp_fused); 576 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 577 ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); 578 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO || 579 DB_TYPE(mp) == M_PCPROTO); 580 581 /* If this connection requires IP, unfuse and use regular path */ 582 if (tcp_loopback_needs_ip(tcp, ns) || 583 tcp_loopback_needs_ip(peer_tcp, ns) || 584 IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst) || 585 list_head(&ipst->ips_ipobs_cb_list) != NULL) { 586 TCP_STAT(tcps, tcp_fusion_aborted); 587 tcp->tcp_refuse = B_TRUE; 588 peer_tcp->tcp_refuse = B_TRUE; 589 590 bcopy(peer_tcp->tcp_tcph, &tcp->tcp_saved_tcph, 591 sizeof (tcph_t)); 592 bcopy(tcp->tcp_tcph, &peer_tcp->tcp_saved_tcph, 593 sizeof (tcph_t)); 594 if (tcp->tcp_ipversion == IPV4_VERSION) { 595 bcopy(peer_tcp->tcp_ipha, &tcp->tcp_saved_ipha, 596 sizeof (ipha_t)); 597 bcopy(tcp->tcp_ipha, &peer_tcp->tcp_saved_ipha, 598 sizeof (ipha_t)); 599 } else { 600 bcopy(peer_tcp->tcp_ip6h, &tcp->tcp_saved_ip6h, 601 sizeof (ip6_t)); 602 bcopy(tcp->tcp_ip6h, &peer_tcp->tcp_saved_ip6h, 603 sizeof (ip6_t)); 604 } 605 goto unfuse; 606 } 607 608 if (send_size == 0) { 609 freemsg(mp); 610 return (B_TRUE); 611 } 612 max_unread = peer_tcp->tcp_fuse_rcv_unread_hiwater; 613 614 /* 615 * Handle urgent data; we either send up SIGURG to the peer now 616 * or do it later when we drain, in case the peer is detached 617 * or if we're short of memory for M_PCSIG mblk. 618 */ 619 if (urgent) { 620 /* 621 * We stop synchronous streams when we have urgent data 622 * queued to prevent tcp_fuse_rrw() from pulling it. If 623 * for some reasons the urgent data can't be delivered 624 * below, synchronous streams will remain stopped until 625 * someone drains the tcp_rcv_list. 626 */ 627 TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp); 628 tcp_fuse_output_urg(tcp, mp); 629 630 mp1 = mp->b_cont; 631 } 632 633 if (tcp->tcp_ipversion == IPV4_VERSION && 634 (HOOKS4_INTERESTED_LOOPBACK_IN(ipst) || 635 HOOKS4_INTERESTED_LOOPBACK_OUT(ipst)) || 636 tcp->tcp_ipversion == IPV6_VERSION && 637 (HOOKS6_INTERESTED_LOOPBACK_IN(ipst) || 638 HOOKS6_INTERESTED_LOOPBACK_OUT(ipst))) { 639 /* 640 * Build ip and tcp header to satisfy FW_HOOKS. 641 * We only build it when any hook is present. 642 */ 643 if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL, 644 tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL) 645 /* If tcp_xmit_mp fails, use regular path */ 646 goto unfuse; 647 648 /* 649 * The ipif and ill can be safely referenced under the 650 * protection of conn_lock - see head of function comment for 651 * conn_get_held_ipif(). It is necessary to check that both 652 * the ipif and ill can be looked up (i.e. not condemned). If 653 * not, bail out and unfuse this connection. 654 */ 655 mutex_enter(&peer_tcp->tcp_connp->conn_lock); 656 if ((peer_tcp->tcp_connp->conn_ire_cache == NULL) || 657 (peer_tcp->tcp_connp->conn_ire_cache->ire_marks & 658 IRE_MARK_CONDEMNED) || 659 ((oifp = peer_tcp->tcp_connp->conn_ire_cache->ire_ipif) 660 == NULL) || 661 (!IPIF_CAN_LOOKUP(oifp)) || 662 ((olp = oifp->ipif_ill) == NULL) || 663 (ill_check_and_refhold(olp) != 0)) { 664 mutex_exit(&peer_tcp->tcp_connp->conn_lock); 665 goto unfuse; 666 } 667 mutex_exit(&peer_tcp->tcp_connp->conn_lock); 668 669 /* PFHooks: LOOPBACK_OUT */ 670 if (tcp->tcp_ipversion == IPV4_VERSION) { 671 ipha = (ipha_t *)mp1->b_rptr; 672 673 DTRACE_PROBE4(ip4__loopback__out__start, 674 ill_t *, NULL, ill_t *, olp, 675 ipha_t *, ipha, mblk_t *, mp1); 676 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 677 ipst->ips_ipv4firewall_loopback_out, 678 NULL, olp, ipha, mp1, mp1, 0, ipst); 679 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, mp1); 680 } else { 681 ip6h = (ip6_t *)mp1->b_rptr; 682 683 DTRACE_PROBE4(ip6__loopback__out__start, 684 ill_t *, NULL, ill_t *, olp, 685 ip6_t *, ip6h, mblk_t *, mp1); 686 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 687 ipst->ips_ipv6firewall_loopback_out, 688 NULL, olp, ip6h, mp1, mp1, 0, ipst); 689 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, mp1); 690 } 691 ill_refrele(olp); 692 693 if (mp1 == NULL) 694 goto unfuse; 695 696 /* 697 * The ipif and ill can be safely referenced under the 698 * protection of conn_lock - see head of function comment for 699 * conn_get_held_ipif(). It is necessary to check that both 700 * the ipif and ill can be looked up (i.e. not condemned). If 701 * not, bail out and unfuse this connection. 702 */ 703 mutex_enter(&tcp->tcp_connp->conn_lock); 704 if ((tcp->tcp_connp->conn_ire_cache == NULL) || 705 (tcp->tcp_connp->conn_ire_cache->ire_marks & 706 IRE_MARK_CONDEMNED) || 707 ((iifp = tcp->tcp_connp->conn_ire_cache->ire_ipif) 708 == NULL) || 709 (!IPIF_CAN_LOOKUP(iifp)) || 710 ((ilp = iifp->ipif_ill) == NULL) || 711 (ill_check_and_refhold(ilp) != 0)) { 712 mutex_exit(&tcp->tcp_connp->conn_lock); 713 goto unfuse; 714 } 715 mutex_exit(&tcp->tcp_connp->conn_lock); 716 717 /* PFHooks: LOOPBACK_IN */ 718 if (tcp->tcp_ipversion == IPV4_VERSION) { 719 DTRACE_PROBE4(ip4__loopback__in__start, 720 ill_t *, ilp, ill_t *, NULL, 721 ipha_t *, ipha, mblk_t *, mp1); 722 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 723 ipst->ips_ipv4firewall_loopback_in, 724 ilp, NULL, ipha, mp1, mp1, 0, ipst); 725 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, mp1); 726 ill_refrele(ilp); 727 if (mp1 == NULL) 728 goto unfuse; 729 730 ip_hdr_len = IPH_HDR_LENGTH(ipha); 731 } else { 732 DTRACE_PROBE4(ip6__loopback__in__start, 733 ill_t *, ilp, ill_t *, NULL, 734 ip6_t *, ip6h, mblk_t *, mp1); 735 FW_HOOKS6(ipst->ips_ip6_loopback_in_event, 736 ipst->ips_ipv6firewall_loopback_in, 737 ilp, NULL, ip6h, mp1, mp1, 0, ipst); 738 DTRACE_PROBE1(ip6__loopback__in__end, mblk_t *, mp1); 739 ill_refrele(ilp); 740 if (mp1 == NULL) 741 goto unfuse; 742 743 ip_hdr_len = ip_hdr_length_v6(mp1, ip6h); 744 } 745 746 /* Data length might be changed by FW_HOOKS */ 747 tcph = (tcph_t *)&mp1->b_rptr[ip_hdr_len]; 748 seq = ABE32_TO_U32(tcph->th_seq); 749 recv_size += seq - tcp->tcp_snxt; 750 751 /* 752 * The message duplicated by tcp_xmit_mp is freed. 753 * Note: the original message passed in remains unchanged. 754 */ 755 freemsg(mp1); 756 } 757 758 mutex_enter(&peer_tcp->tcp_non_sq_lock); 759 /* 760 * Wake up and signal the peer; it is okay to do this before 761 * enqueueing because we are holding the lock. One of the 762 * advantages of synchronous streams is the ability for us to 763 * find out when the application performs a read on the socket, 764 * by way of tcp_fuse_rrw() entry point being called. Every 765 * data that gets enqueued onto the receiver is treated as if 766 * it has arrived at the receiving endpoint, thus generating 767 * SIGPOLL/SIGIO for asynchronous socket just as in the strrput() 768 * case. However, we only wake up the application when necessary, 769 * i.e. during the first enqueue. When tcp_fuse_rrw() is called 770 * it will send everything upstream. 771 */ 772 if (peer_tcp->tcp_direct_sockfs && !urgent && 773 !TCP_IS_DETACHED(peer_tcp)) { 774 /* Update poll events and send SIGPOLL/SIGIO if necessary */ 775 STR_WAKEUP_SENDSIG(STREAM(peer_tcp->tcp_rq), 776 peer_tcp->tcp_rcv_list); 777 } 778 779 /* 780 * Enqueue data into the peer's receive list; we may or may not 781 * drain the contents depending on the conditions below. 782 * 783 * tcp_hard_binding indicates that accept has not yet completed, 784 * in which case we use tcp_rcv_enqueue() instead of calling 785 * su_recv directly. Queued data will be drained when the accept 786 * completes (in tcp_accept_finish()). 787 */ 788 if (IPCL_IS_NONSTR(peer_tcp->tcp_connp) && 789 !peer_tcp->tcp_hard_binding) { 790 int error; 791 int flags = 0; 792 793 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 794 (tcp->tcp_urg == tcp->tcp_snxt)) { 795 flags = MSG_OOB; 796 (*peer_tcp->tcp_connp->conn_upcalls->su_signal_oob) 797 (peer_tcp->tcp_connp->conn_upper_handle, 0); 798 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 799 } 800 if ((*peer_tcp->tcp_connp->conn_upcalls->su_recv)( 801 peer_tcp->tcp_connp->conn_upper_handle, mp, recv_size, 802 flags, &error, &push) < 0) { 803 ASSERT(error != EOPNOTSUPP); 804 peer_data_queued = B_TRUE; 805 } 806 } else { 807 if (IPCL_IS_NONSTR(peer_tcp->tcp_connp) && 808 (tcp->tcp_valid_bits & TCP_URG_VALID) && 809 (tcp->tcp_urg == tcp->tcp_snxt)) { 810 /* 811 * Can not deal with urgent pointers 812 * that arrive before the connection has been 813 * accept()ed. 814 */ 815 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 816 freemsg(mp); 817 mutex_exit(&peer_tcp->tcp_non_sq_lock); 818 return (B_TRUE); 819 } 820 821 tcp_rcv_enqueue(peer_tcp, mp, recv_size); 822 } 823 824 /* In case it wrapped around and also to keep it constant */ 825 peer_tcp->tcp_rwnd += recv_size; 826 /* 827 * We increase the peer's unread message count here whilst still 828 * holding it's tcp_non_sq_lock. This ensures that the increment 829 * occurs in the same lock acquisition perimeter as the enqueue. 830 * Depending on lock hierarchy, we can release these locks which 831 * creates a window in which we can race with tcp_fuse_rrw() 832 */ 833 peer_tcp->tcp_fuse_rcv_unread_cnt++; 834 835 /* 836 * Exercise flow-control when needed; we will get back-enabled 837 * in either tcp_accept_finish(), tcp_unfuse(), or tcp_fuse_rrw(). 838 * If tcp_direct_sockfs is on or if the peer endpoint is detached, 839 * we emulate streams flow control by checking the peer's queue 840 * size and high water mark; otherwise we simply use canputnext() 841 * to decide if we need to stop our flow. 842 * 843 * The outstanding unread data block check does not apply for a 844 * detached receiver; this is to avoid unnecessary blocking of the 845 * sender while the accept is currently in progress and is quite 846 * similar to the regular tcp. 847 */ 848 if (TCP_IS_DETACHED(peer_tcp) || max_unread == 0) 849 max_unread = UINT_MAX; 850 851 /* 852 * Since we are accessing our tcp_flow_stopped and might modify it, 853 * we need to take tcp->tcp_non_sq_lock. The lock for the highest 854 * address is held first. Dropping peer_tcp->tcp_non_sq_lock should 855 * not be an issue here since we are within the squeue and the peer 856 * won't disappear. 857 */ 858 if (tcp > peer_tcp) { 859 mutex_exit(&peer_tcp->tcp_non_sq_lock); 860 mutex_enter(&tcp->tcp_non_sq_lock); 861 mutex_enter(&peer_tcp->tcp_non_sq_lock); 862 } else { 863 mutex_enter(&tcp->tcp_non_sq_lock); 864 } 865 flow_stopped = tcp->tcp_flow_stopped; 866 if (((peer_tcp->tcp_direct_sockfs || TCP_IS_DETACHED(peer_tcp)) && 867 (peer_tcp->tcp_rcv_cnt >= peer_tcp->tcp_fuse_rcv_hiwater || 868 peer_tcp->tcp_fuse_rcv_unread_cnt >= max_unread)) || 869 (!peer_tcp->tcp_direct_sockfs && !TCP_IS_DETACHED(peer_tcp) && 870 !IPCL_IS_NONSTR(peer_tcp->tcp_connp) && 871 !canputnext(peer_tcp->tcp_rq))) { 872 peer_data_queued = B_TRUE; 873 } 874 875 if (!flow_stopped && (peer_data_queued || 876 (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater))) { 877 tcp_setqfull(tcp); 878 flow_stopped = B_TRUE; 879 TCP_STAT(tcps, tcp_fusion_flowctl); 880 DTRACE_PROBE4(tcp__fuse__output__flowctl, tcp_t *, tcp, 881 uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt, 882 uint_t, peer_tcp->tcp_fuse_rcv_unread_cnt); 883 } else if (flow_stopped && !peer_data_queued && 884 (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater)) { 885 tcp_clrqfull(tcp); 886 TCP_STAT(tcps, tcp_fusion_backenabled); 887 flow_stopped = B_FALSE; 888 } 889 mutex_exit(&tcp->tcp_non_sq_lock); 890 891 /* 892 * If we are in synchronous streams mode and the peer read queue is 893 * not full then schedule a push timer if one is not scheduled 894 * already. This is needed for applications which use MSG_PEEK to 895 * determine the number of bytes available before issuing a 'real' 896 * read. It also makes flow control more deterministic, particularly 897 * for smaller message sizes. 898 */ 899 if (!urgent && peer_tcp->tcp_direct_sockfs && 900 peer_tcp->tcp_push_tid == 0 && !TCP_IS_DETACHED(peer_tcp) && 901 canputnext(peer_tcp->tcp_rq)) { 902 peer_tcp->tcp_push_tid = TCP_TIMER(peer_tcp, tcp_push_timer, 903 MSEC_TO_TICK(tcps->tcps_push_timer_interval)); 904 } 905 mutex_exit(&peer_tcp->tcp_non_sq_lock); 906 ipst->ips_loopback_packets++; 907 tcp->tcp_last_sent_len = send_size; 908 909 /* Need to adjust the following SNMP MIB-related variables */ 910 tcp->tcp_snxt += send_size; 911 tcp->tcp_suna = tcp->tcp_snxt; 912 peer_tcp->tcp_rnxt += recv_size; 913 peer_tcp->tcp_rack = peer_tcp->tcp_rnxt; 914 915 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 916 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, send_size); 917 918 BUMP_MIB(&tcps->tcps_mib, tcpInSegs); 919 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 920 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, send_size); 921 922 BUMP_LOCAL(tcp->tcp_obsegs); 923 BUMP_LOCAL(peer_tcp->tcp_ibsegs); 924 925 DTRACE_PROBE2(tcp__fuse__output, tcp_t *, tcp, uint_t, send_size); 926 927 if (!TCP_IS_DETACHED(peer_tcp)) { 928 /* 929 * Drain the peer's receive queue it has urgent data or if 930 * we're not flow-controlled. There is no need for draining 931 * normal data when tcp_direct_sockfs is on because the peer 932 * will pull the data via tcp_fuse_rrw(). 933 */ 934 if (urgent || (!flow_stopped && !peer_tcp->tcp_direct_sockfs)) { 935 ASSERT(IPCL_IS_NONSTR(peer_tcp->tcp_connp) || 936 peer_tcp->tcp_rcv_list != NULL); 937 /* 938 * For TLI-based streams, a thread in tcp_accept_swap() 939 * can race with us. That thread will ensure that the 940 * correct peer_tcp->tcp_rq is globally visible before 941 * peer_tcp->tcp_detached is visible as clear, but we 942 * must also ensure that the load of tcp_rq cannot be 943 * reordered to be before the tcp_detached check. 944 */ 945 membar_consumer(); 946 (void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp, 947 NULL); 948 /* 949 * If synchronous streams was stopped above due 950 * to the presence of urgent data, re-enable it. 951 */ 952 if (urgent) 953 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp); 954 } 955 } 956 return (B_TRUE); 957 unfuse: 958 tcp_unfuse(tcp); 959 return (B_FALSE); 960 } 961 962 /* 963 * This routine gets called to deliver data upstream on a fused or 964 * previously fused tcp loopback endpoint; the latter happens only 965 * when there is a pending SIGURG signal plus urgent data that can't 966 * be sent upstream in the past. 967 */ 968 boolean_t 969 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp) 970 { 971 mblk_t *mp; 972 conn_t *connp = tcp->tcp_connp; 973 974 #ifdef DEBUG 975 uint_t cnt = 0; 976 #endif 977 tcp_stack_t *tcps = tcp->tcp_tcps; 978 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 979 boolean_t sd_rd_eof = B_FALSE; 980 981 ASSERT(tcp->tcp_loopback); 982 ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg); 983 ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL); 984 ASSERT(IPCL_IS_NONSTR(connp) || sigurg_mpp != NULL || tcp->tcp_fused); 985 986 /* No need for the push timer now, in case it was scheduled */ 987 if (tcp->tcp_push_tid != 0) { 988 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 989 tcp->tcp_push_tid = 0; 990 } 991 /* 992 * If there's urgent data sitting in receive list and we didn't 993 * get a chance to send up a SIGURG signal, make sure we send 994 * it first before draining in order to ensure that SIOCATMARK 995 * works properly. 996 */ 997 if (tcp->tcp_fused_sigurg) { 998 tcp->tcp_fused_sigurg = B_FALSE; 999 if (IPCL_IS_NONSTR(connp)) { 1000 (*connp->conn_upcalls->su_signal_oob) 1001 (connp->conn_upper_handle, 0); 1002 } else { 1003 /* 1004 * sigurg_mpp is normally NULL, i.e. when we're still 1005 * fused and didn't get here because of tcp_unfuse(). 1006 * In this case try hard to allocate the M_PCSIG mblk. 1007 */ 1008 if (sigurg_mpp == NULL && 1009 (mp = allocb(1, BPRI_HI)) == NULL && 1010 (mp = allocb_tryhard(1)) == NULL) { 1011 /* Alloc failed; try again next time */ 1012 tcp->tcp_push_tid = TCP_TIMER(tcp, 1013 tcp_push_timer, 1014 MSEC_TO_TICK( 1015 tcps->tcps_push_timer_interval)); 1016 return (B_TRUE); 1017 } else if (sigurg_mpp != NULL) { 1018 /* 1019 * Use the supplied M_PCSIG mblk; it means we're 1020 * either unfused or in the process of unfusing, 1021 * and the drain must happen now. 1022 */ 1023 mp = *sigurg_mpp; 1024 *sigurg_mpp = NULL; 1025 } 1026 ASSERT(mp != NULL); 1027 1028 /* Send up the signal */ 1029 DB_TYPE(mp) = M_PCSIG; 1030 *mp->b_wptr++ = (uchar_t)SIGURG; 1031 putnext(q, mp); 1032 } 1033 /* 1034 * Let the regular tcp_rcv_drain() path handle 1035 * draining the data if we're no longer fused. 1036 */ 1037 if (!tcp->tcp_fused) 1038 return (B_FALSE); 1039 } 1040 1041 /* 1042 * In the synchronous streams case, we generate SIGPOLL/SIGIO for 1043 * each M_DATA that gets enqueued onto the receiver. At this point 1044 * we are about to drain any queued data via putnext(). In order 1045 * to avoid extraneous signal generation from strrput(), we set 1046 * STRGETINPROG flag at the stream head prior to the draining and 1047 * restore it afterwards. This masks out signal generation only 1048 * for M_DATA messages and does not affect urgent data. We only do 1049 * this if the STREOF flag is not set which can happen if the 1050 * application shuts down the read side of a stream. In this case 1051 * we simply free these messages to approximate the flushq behavior 1052 * which normally occurs when STREOF is on the stream head read queue. 1053 */ 1054 if (tcp->tcp_direct_sockfs) 1055 sd_rd_eof = strrput_sig(q, B_FALSE); 1056 1057 /* Drain the data */ 1058 while ((mp = tcp->tcp_rcv_list) != NULL) { 1059 tcp->tcp_rcv_list = mp->b_next; 1060 mp->b_next = NULL; 1061 #ifdef DEBUG 1062 cnt += msgdsize(mp); 1063 #endif 1064 ASSERT(!IPCL_IS_NONSTR(connp)); 1065 if (sd_rd_eof) { 1066 freemsg(mp); 1067 } else { 1068 putnext(q, mp); 1069 TCP_STAT(tcps, tcp_fusion_putnext); 1070 } 1071 } 1072 1073 if (tcp->tcp_direct_sockfs && !sd_rd_eof) 1074 (void) strrput_sig(q, B_TRUE); 1075 1076 #ifdef DEBUG 1077 ASSERT(cnt == tcp->tcp_rcv_cnt); 1078 #endif 1079 tcp->tcp_rcv_last_head = NULL; 1080 tcp->tcp_rcv_last_tail = NULL; 1081 tcp->tcp_rcv_cnt = 0; 1082 tcp->tcp_fuse_rcv_unread_cnt = 0; 1083 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 1084 1085 if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <= 1086 peer_tcp->tcp_xmit_lowater)) { 1087 tcp_clrqfull(peer_tcp); 1088 TCP_STAT(tcps, tcp_fusion_backenabled); 1089 } 1090 1091 return (B_TRUE); 1092 } 1093 1094 /* 1095 * Synchronous stream entry point for sockfs to retrieve 1096 * data directly from tcp_rcv_list. 1097 * tcp_fuse_rrw() might end up modifying the peer's tcp_flow_stopped, 1098 * for which it must take the tcp_non_sq_lock of the peer as well 1099 * making any change. The order of taking the locks is based on 1100 * the TCP pointer itself. Before we get the peer we need to take 1101 * our tcp_non_sq_lock so that the peer doesn't disappear. However, 1102 * we cannot drop the lock if we have to grab the peer's lock (because 1103 * of ordering), since the peer might disappear in the interim. So, 1104 * we take our tcp_non_sq_lock, get the peer, increment the ref on the 1105 * peer's conn, drop all the locks and then take the tcp_non_sq_lock in the 1106 * desired order. Incrementing the conn ref on the peer means that the 1107 * peer won't disappear when we drop our tcp_non_sq_lock. 1108 */ 1109 int 1110 tcp_fuse_rrw(queue_t *q, struiod_t *dp) 1111 { 1112 tcp_t *tcp = Q_TO_CONN(q)->conn_tcp; 1113 mblk_t *mp; 1114 tcp_t *peer_tcp; 1115 tcp_stack_t *tcps = tcp->tcp_tcps; 1116 1117 mutex_enter(&tcp->tcp_non_sq_lock); 1118 1119 /* 1120 * If tcp_fuse_syncstr_plugged is set, then another thread is moving 1121 * the underlying data to the stream head. We need to wait until it's 1122 * done, then return EBUSY so that strget() will dequeue data from the 1123 * stream head to ensure data is drained in-order. 1124 */ 1125 plugged: 1126 if (tcp->tcp_fuse_syncstr_plugged) { 1127 do { 1128 cv_wait(&tcp->tcp_fuse_plugcv, &tcp->tcp_non_sq_lock); 1129 } while (tcp->tcp_fuse_syncstr_plugged); 1130 1131 mutex_exit(&tcp->tcp_non_sq_lock); 1132 TCP_STAT(tcps, tcp_fusion_rrw_plugged); 1133 TCP_STAT(tcps, tcp_fusion_rrw_busy); 1134 return (EBUSY); 1135 } 1136 1137 peer_tcp = tcp->tcp_loopback_peer; 1138 1139 /* 1140 * If someone had turned off tcp_direct_sockfs or if synchronous 1141 * streams is stopped, we return EBUSY. This causes strget() to 1142 * dequeue data from the stream head instead. 1143 */ 1144 if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) { 1145 mutex_exit(&tcp->tcp_non_sq_lock); 1146 TCP_STAT(tcps, tcp_fusion_rrw_busy); 1147 return (EBUSY); 1148 } 1149 1150 /* 1151 * Grab lock in order. The highest addressed tcp is locked first. 1152 * We don't do this within the tcp_rcv_list check since if we 1153 * have to drop the lock, for ordering, then the tcp_rcv_list 1154 * could change. 1155 */ 1156 if (peer_tcp > tcp) { 1157 CONN_INC_REF(peer_tcp->tcp_connp); 1158 mutex_exit(&tcp->tcp_non_sq_lock); 1159 mutex_enter(&peer_tcp->tcp_non_sq_lock); 1160 mutex_enter(&tcp->tcp_non_sq_lock); 1161 /* 1162 * This might have changed in the interim 1163 * Once read-side tcp_non_sq_lock is dropped above 1164 * anything can happen, we need to check all 1165 * known conditions again once we reaquire 1166 * read-side tcp_non_sq_lock. 1167 */ 1168 if (tcp->tcp_fuse_syncstr_plugged) { 1169 mutex_exit(&peer_tcp->tcp_non_sq_lock); 1170 CONN_DEC_REF(peer_tcp->tcp_connp); 1171 goto plugged; 1172 } 1173 if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) { 1174 mutex_exit(&tcp->tcp_non_sq_lock); 1175 mutex_exit(&peer_tcp->tcp_non_sq_lock); 1176 CONN_DEC_REF(peer_tcp->tcp_connp); 1177 TCP_STAT(tcps, tcp_fusion_rrw_busy); 1178 return (EBUSY); 1179 } 1180 CONN_DEC_REF(peer_tcp->tcp_connp); 1181 } else { 1182 mutex_enter(&peer_tcp->tcp_non_sq_lock); 1183 } 1184 1185 if ((mp = tcp->tcp_rcv_list) != NULL) { 1186 1187 DTRACE_PROBE3(tcp__fuse__rrw, tcp_t *, tcp, 1188 uint32_t, tcp->tcp_rcv_cnt, ssize_t, dp->d_uio.uio_resid); 1189 1190 tcp->tcp_rcv_list = NULL; 1191 TCP_STAT(tcps, tcp_fusion_rrw_msgcnt); 1192 1193 /* 1194 * At this point nothing should be left in tcp_rcv_list. 1195 * The only possible case where we would have a chain of 1196 * b_next-linked messages is urgent data, but we wouldn't 1197 * be here if that's true since urgent data is delivered 1198 * via putnext() and synchronous streams is stopped until 1199 * tcp_fuse_rcv_drain() is finished. 1200 */ 1201 ASSERT(DB_TYPE(mp) == M_DATA && mp->b_next == NULL); 1202 1203 tcp->tcp_rcv_last_head = NULL; 1204 tcp->tcp_rcv_last_tail = NULL; 1205 tcp->tcp_rcv_cnt = 0; 1206 tcp->tcp_fuse_rcv_unread_cnt = 0; 1207 1208 if (peer_tcp->tcp_flow_stopped && 1209 (TCP_UNSENT_BYTES(peer_tcp) <= 1210 peer_tcp->tcp_xmit_lowater)) { 1211 tcp_clrqfull(peer_tcp); 1212 TCP_STAT(tcps, tcp_fusion_backenabled); 1213 } 1214 } 1215 mutex_exit(&peer_tcp->tcp_non_sq_lock); 1216 /* 1217 * Either we just dequeued everything or we get here from sockfs 1218 * and have nothing to return; in this case clear RSLEEP. 1219 */ 1220 ASSERT(tcp->tcp_rcv_last_head == NULL); 1221 ASSERT(tcp->tcp_rcv_last_tail == NULL); 1222 ASSERT(tcp->tcp_rcv_cnt == 0); 1223 ASSERT(tcp->tcp_fuse_rcv_unread_cnt == 0); 1224 STR_WAKEUP_CLEAR(STREAM(q)); 1225 1226 mutex_exit(&tcp->tcp_non_sq_lock); 1227 dp->d_mp = mp; 1228 return (0); 1229 } 1230 1231 /* 1232 * Synchronous stream entry point used by certain ioctls to retrieve 1233 * information about or peek into the tcp_rcv_list. 1234 */ 1235 int 1236 tcp_fuse_rinfop(queue_t *q, infod_t *dp) 1237 { 1238 tcp_t *tcp = Q_TO_CONN(q)->conn_tcp; 1239 mblk_t *mp; 1240 uint_t cmd = dp->d_cmd; 1241 int res = 0; 1242 int error = 0; 1243 struct stdata *stp = STREAM(q); 1244 1245 mutex_enter(&tcp->tcp_non_sq_lock); 1246 /* If shutdown on read has happened, return nothing */ 1247 mutex_enter(&stp->sd_lock); 1248 if (stp->sd_flag & STREOF) { 1249 mutex_exit(&stp->sd_lock); 1250 goto done; 1251 } 1252 mutex_exit(&stp->sd_lock); 1253 1254 /* 1255 * It is OK not to return an answer if tcp_rcv_list is 1256 * currently not accessible. 1257 */ 1258 if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped || 1259 tcp->tcp_fuse_syncstr_plugged || (mp = tcp->tcp_rcv_list) == NULL) 1260 goto done; 1261 1262 if (cmd & INFOD_COUNT) { 1263 /* 1264 * We have at least one message and 1265 * could return only one at a time. 1266 */ 1267 dp->d_count++; 1268 res |= INFOD_COUNT; 1269 } 1270 if (cmd & INFOD_BYTES) { 1271 /* 1272 * Return size of all data messages. 1273 */ 1274 dp->d_bytes += tcp->tcp_rcv_cnt; 1275 res |= INFOD_BYTES; 1276 } 1277 if (cmd & INFOD_FIRSTBYTES) { 1278 /* 1279 * Return size of first data message. 1280 */ 1281 dp->d_bytes = msgdsize(mp); 1282 res |= INFOD_FIRSTBYTES; 1283 dp->d_cmd &= ~INFOD_FIRSTBYTES; 1284 } 1285 if (cmd & INFOD_COPYOUT) { 1286 mblk_t *mp1; 1287 int n; 1288 1289 if (DB_TYPE(mp) == M_DATA) { 1290 mp1 = mp; 1291 } else { 1292 mp1 = mp->b_cont; 1293 ASSERT(mp1 != NULL); 1294 } 1295 1296 /* 1297 * Return data contents of first message. 1298 */ 1299 ASSERT(DB_TYPE(mp1) == M_DATA); 1300 while (mp1 != NULL && dp->d_uiop->uio_resid > 0) { 1301 n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1)); 1302 if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n, 1303 UIO_READ, dp->d_uiop)) != 0) { 1304 goto done; 1305 } 1306 mp1 = mp1->b_cont; 1307 } 1308 res |= INFOD_COPYOUT; 1309 dp->d_cmd &= ~INFOD_COPYOUT; 1310 } 1311 done: 1312 mutex_exit(&tcp->tcp_non_sq_lock); 1313 1314 dp->d_res |= res; 1315 1316 return (error); 1317 } 1318 1319 /* 1320 * Enable synchronous streams on a fused tcp loopback endpoint. 1321 */ 1322 static void 1323 tcp_fuse_syncstr_enable(tcp_t *tcp) 1324 { 1325 queue_t *rq = tcp->tcp_rq; 1326 struct stdata *stp = STREAM(rq); 1327 1328 /* We can only enable synchronous streams for sockfs mode */ 1329 tcp->tcp_direct_sockfs = tcp->tcp_issocket && do_tcp_direct_sockfs; 1330 1331 if (!tcp->tcp_direct_sockfs) 1332 return; 1333 1334 mutex_enter(&stp->sd_lock); 1335 mutex_enter(QLOCK(rq)); 1336 1337 /* 1338 * We replace our q_qinfo with one that has the qi_rwp entry point. 1339 * Clear SR_SIGALLDATA because we generate the equivalent signal(s) 1340 * for every enqueued data in tcp_fuse_output(). 1341 */ 1342 rq->q_qinfo = &tcp_loopback_rinit; 1343 rq->q_struiot = tcp_loopback_rinit.qi_struiot; 1344 stp->sd_struiordq = rq; 1345 stp->sd_rput_opt &= ~SR_SIGALLDATA; 1346 1347 mutex_exit(QLOCK(rq)); 1348 mutex_exit(&stp->sd_lock); 1349 } 1350 1351 /* 1352 * Disable synchronous streams on a fused tcp loopback endpoint. 1353 */ 1354 static void 1355 tcp_fuse_syncstr_disable(tcp_t *tcp) 1356 { 1357 queue_t *rq = tcp->tcp_rq; 1358 struct stdata *stp = STREAM(rq); 1359 1360 if (!tcp->tcp_direct_sockfs) 1361 return; 1362 1363 mutex_enter(&stp->sd_lock); 1364 mutex_enter(QLOCK(rq)); 1365 1366 /* 1367 * Reset q_qinfo to point to the default tcp entry points. 1368 * Also restore SR_SIGALLDATA so that strrput() can generate 1369 * the signals again for future M_DATA messages. 1370 */ 1371 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 1372 rq->q_struiot = tcp_rinitv4.qi_struiot; 1373 stp->sd_struiordq = NULL; 1374 stp->sd_rput_opt |= SR_SIGALLDATA; 1375 tcp->tcp_direct_sockfs = B_FALSE; 1376 1377 mutex_exit(QLOCK(rq)); 1378 mutex_exit(&stp->sd_lock); 1379 } 1380 1381 /* 1382 * Enable synchronous streams on a pair of fused tcp endpoints. 1383 */ 1384 void 1385 tcp_fuse_syncstr_enable_pair(tcp_t *tcp) 1386 { 1387 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 1388 1389 ASSERT(tcp->tcp_fused); 1390 ASSERT(peer_tcp != NULL); 1391 1392 tcp_fuse_syncstr_enable(tcp); 1393 tcp_fuse_syncstr_enable(peer_tcp); 1394 } 1395 1396 /* 1397 * Used to enable/disable signal generation at the stream head. We already 1398 * generated the signal(s) for these messages when they were enqueued on the 1399 * receiver. We also check if STREOF is set here. If it is, we return false 1400 * and let the caller decide what to do. 1401 */ 1402 static boolean_t 1403 strrput_sig(queue_t *q, boolean_t on) 1404 { 1405 struct stdata *stp = STREAM(q); 1406 1407 mutex_enter(&stp->sd_lock); 1408 if (stp->sd_flag == STREOF) { 1409 mutex_exit(&stp->sd_lock); 1410 return (B_TRUE); 1411 } 1412 if (on) 1413 stp->sd_flag &= ~STRGETINPROG; 1414 else 1415 stp->sd_flag |= STRGETINPROG; 1416 mutex_exit(&stp->sd_lock); 1417 1418 return (B_FALSE); 1419 } 1420 1421 /* 1422 * Disable synchronous streams on a pair of fused tcp endpoints and drain 1423 * any queued data; called either during unfuse or upon transitioning from 1424 * a socket to a stream endpoint due to _SIOCSOCKFALLBACK. 1425 */ 1426 void 1427 tcp_fuse_disable_pair(tcp_t *tcp, boolean_t unfusing) 1428 { 1429 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 1430 tcp_stack_t *tcps = tcp->tcp_tcps; 1431 1432 ASSERT(tcp->tcp_fused); 1433 ASSERT(peer_tcp != NULL); 1434 1435 /* 1436 * Force any tcp_fuse_rrw() calls to block until we've moved the data 1437 * onto the stream head. 1438 */ 1439 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 1440 TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp); 1441 1442 /* 1443 * Cancel any pending push timers. 1444 */ 1445 if (tcp->tcp_push_tid != 0) { 1446 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 1447 tcp->tcp_push_tid = 0; 1448 } 1449 if (peer_tcp->tcp_push_tid != 0) { 1450 (void) TCP_TIMER_CANCEL(peer_tcp, peer_tcp->tcp_push_tid); 1451 peer_tcp->tcp_push_tid = 0; 1452 } 1453 1454 /* 1455 * Drain any pending data; the detached check is needed because 1456 * we may be called as a result of a tcp_unfuse() triggered by 1457 * tcp_fuse_output(). Note that in case of a detached tcp, the 1458 * draining will happen later after the tcp is unfused. For non- 1459 * urgent data, this can be handled by the regular tcp_rcv_drain(). 1460 * If we have urgent data sitting in the receive list, we will 1461 * need to send up a SIGURG signal first before draining the data. 1462 * All of these will be handled by the code in tcp_fuse_rcv_drain() 1463 * when called from tcp_rcv_drain(). 1464 */ 1465 if (!TCP_IS_DETACHED(tcp)) { 1466 (void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp, 1467 (unfusing ? &tcp->tcp_fused_sigurg_mp : NULL)); 1468 } 1469 if (!TCP_IS_DETACHED(peer_tcp)) { 1470 (void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp, 1471 (unfusing ? &peer_tcp->tcp_fused_sigurg_mp : NULL)); 1472 } 1473 1474 /* 1475 * Make all current and future tcp_fuse_rrw() calls fail with EBUSY. 1476 * To ensure threads don't sneak past the checks in tcp_fuse_rrw(), 1477 * a given stream must be stopped prior to being unplugged (but the 1478 * ordering of operations between the streams is unimportant). 1479 */ 1480 TCP_FUSE_SYNCSTR_STOP(tcp); 1481 TCP_FUSE_SYNCSTR_STOP(peer_tcp); 1482 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 1483 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp); 1484 1485 /* Lift up any flow-control conditions */ 1486 if (tcp->tcp_flow_stopped) { 1487 tcp_clrqfull(tcp); 1488 TCP_STAT(tcps, tcp_fusion_backenabled); 1489 } 1490 if (peer_tcp->tcp_flow_stopped) { 1491 tcp_clrqfull(peer_tcp); 1492 TCP_STAT(tcps, tcp_fusion_backenabled); 1493 } 1494 1495 /* Disable synchronous streams */ 1496 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) 1497 tcp_fuse_syncstr_disable(tcp); 1498 if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) 1499 tcp_fuse_syncstr_disable(peer_tcp); 1500 } 1501 1502 /* 1503 * Calculate the size of receive buffer for a fused tcp endpoint. 1504 */ 1505 size_t 1506 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd) 1507 { 1508 tcp_stack_t *tcps = tcp->tcp_tcps; 1509 1510 ASSERT(tcp->tcp_fused); 1511 1512 /* Ensure that value is within the maximum upper bound */ 1513 if (rwnd > tcps->tcps_max_buf) 1514 rwnd = tcps->tcps_max_buf; 1515 1516 /* Obey the absolute minimum tcp receive high water mark */ 1517 if (rwnd < tcps->tcps_sth_rcv_hiwat) 1518 rwnd = tcps->tcps_sth_rcv_hiwat; 1519 1520 /* 1521 * Round up to system page size in case SO_RCVBUF is modified 1522 * after SO_SNDBUF; the latter is also similarly rounded up. 1523 */ 1524 rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t); 1525 tcp->tcp_fuse_rcv_hiwater = rwnd; 1526 return (rwnd); 1527 } 1528 1529 /* 1530 * Calculate the maximum outstanding unread data block for a fused tcp endpoint. 1531 */ 1532 int 1533 tcp_fuse_maxpsz_set(tcp_t *tcp) 1534 { 1535 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 1536 uint_t sndbuf = tcp->tcp_xmit_hiwater; 1537 uint_t maxpsz = sndbuf; 1538 1539 ASSERT(tcp->tcp_fused); 1540 ASSERT(peer_tcp != NULL); 1541 ASSERT(peer_tcp->tcp_fuse_rcv_hiwater != 0); 1542 /* 1543 * In the fused loopback case, we want the stream head to split 1544 * up larger writes into smaller chunks for a more accurate flow- 1545 * control accounting. Our maxpsz is half of the sender's send 1546 * buffer or the receiver's receive buffer, whichever is smaller. 1547 * We round up the buffer to system page size due to the lack of 1548 * TCP MSS concept in Fusion. 1549 */ 1550 if (maxpsz > peer_tcp->tcp_fuse_rcv_hiwater) 1551 maxpsz = peer_tcp->tcp_fuse_rcv_hiwater; 1552 maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1; 1553 1554 /* 1555 * Calculate the peer's limit for the number of outstanding unread 1556 * data block. This is the amount of data blocks that are allowed 1557 * to reside in the receiver's queue before the sender gets flow 1558 * controlled. It is used only in the synchronous streams mode as 1559 * a way to throttle the sender when it performs consecutive writes 1560 * faster than can be read. The value is derived from SO_SNDBUF in 1561 * order to give the sender some control; we divide it with a large 1562 * value (16KB) to produce a fairly low initial limit. 1563 */ 1564 if (tcp_fusion_rcv_unread_min == 0) { 1565 /* A value of 0 means that we disable the check */ 1566 peer_tcp->tcp_fuse_rcv_unread_hiwater = 0; 1567 } else { 1568 peer_tcp->tcp_fuse_rcv_unread_hiwater = 1569 MAX(sndbuf >> 14, tcp_fusion_rcv_unread_min); 1570 } 1571 return (maxpsz); 1572 } 1573 1574 /* 1575 * Called to release flow control. 1576 */ 1577 void 1578 tcp_fuse_backenable(tcp_t *tcp) 1579 { 1580 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 1581 1582 ASSERT(tcp->tcp_fused); 1583 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 1584 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 1585 ASSERT(!TCP_IS_DETACHED(tcp)); 1586 ASSERT(tcp->tcp_connp->conn_sqp == 1587 peer_tcp->tcp_connp->conn_sqp); 1588 1589 /* 1590 * Normally we would not get backenabled in synchronous 1591 * streams mode, but in case this happens, we need to plug 1592 * synchronous streams during our drain to prevent a race 1593 * with tcp_fuse_rrw() or tcp_fuse_rinfop(). 1594 */ 1595 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 1596 if (tcp->tcp_rcv_list != NULL) 1597 (void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp, NULL); 1598 1599 if (peer_tcp > tcp) { 1600 mutex_enter(&peer_tcp->tcp_non_sq_lock); 1601 mutex_enter(&tcp->tcp_non_sq_lock); 1602 } else { 1603 mutex_enter(&tcp->tcp_non_sq_lock); 1604 mutex_enter(&peer_tcp->tcp_non_sq_lock); 1605 } 1606 1607 if (peer_tcp->tcp_flow_stopped && 1608 (TCP_UNSENT_BYTES(peer_tcp) <= 1609 peer_tcp->tcp_xmit_lowater)) { 1610 tcp_clrqfull(peer_tcp); 1611 } 1612 mutex_exit(&peer_tcp->tcp_non_sq_lock); 1613 mutex_exit(&tcp->tcp_non_sq_lock); 1614 1615 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 1616 TCP_STAT(tcp->tcp_tcps, tcp_fusion_backenabled); 1617 } 1618