1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/debug.h> 33 #include <sys/sdt.h> 34 #include <sys/cmn_err.h> 35 #include <sys/tihdr.h> 36 37 #include <inet/common.h> 38 #include <inet/optcom.h> 39 #include <inet/ip.h> 40 #include <inet/ip_impl.h> 41 #include <inet/tcp.h> 42 #include <inet/tcp_impl.h> 43 #include <inet/ipsec_impl.h> 44 #include <inet/ipclassifier.h> 45 #include <inet/ipp_common.h> 46 47 /* 48 * This file implements TCP fusion - a protocol-less data path for TCP 49 * loopback connections. The fusion of two local TCP endpoints occurs 50 * at connection establishment time. Various conditions (see details 51 * in tcp_fuse()) need to be met for fusion to be successful. If it 52 * fails, we fall back to the regular TCP data path; if it succeeds, 53 * both endpoints proceed to use tcp_fuse_output() as the transmit path. 54 * tcp_fuse_output() enqueues application data directly onto the peer's 55 * receive queue; no protocol processing is involved. After enqueueing 56 * the data, the sender can either push (putnext) data up the receiver's 57 * read queue; or the sender can simply return and let the receiver 58 * retrieve the enqueued data via the synchronous streams entry point 59 * tcp_fuse_rrw(). The latter path is taken if synchronous streams is 60 * enabled (the default). It is disabled if sockfs no longer resides 61 * directly on top of tcp module due to a module insertion or removal. 62 * It also needs to be temporarily disabled when sending urgent data 63 * because the tcp_fuse_rrw() path bypasses the M_PROTO processing done 64 * by strsock_proto() hook. 65 * 66 * Sychronization is handled by squeue and the mutex tcp_non_sq_lock. 67 * One of the requirements for fusion to succeed is that both endpoints 68 * need to be using the same squeue. This ensures that neither side 69 * can disappear while the other side is still sending data. By itself, 70 * squeue is not sufficient for guaranteeing safety when synchronous 71 * streams is enabled. The reason is that tcp_fuse_rrw() doesn't enter 72 * the squeue and its access to tcp_rcv_list and other fusion-related 73 * fields needs to be sychronized with the sender. tcp_non_sq_lock is 74 * used for this purpose. When there is urgent data, the sender needs 75 * to push the data up the receiver's streams read queue. In order to 76 * avoid holding the tcp_non_sq_lock across putnext(), the sender sets 77 * the peer tcp's tcp_fuse_syncstr_plugged bit and releases tcp_non_sq_lock 78 * (see macro TCP_FUSE_SYNCSTR_PLUG_DRAIN()). If tcp_fuse_rrw() enters 79 * after this point, it will see that synchronous streams is plugged and 80 * will wait on tcp_fuse_plugcv. After the sender has finished pushing up 81 * all urgent data, it will clear the tcp_fuse_syncstr_plugged bit using 82 * TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(). This will cause any threads waiting 83 * on tcp_fuse_plugcv to return EBUSY, and in turn cause strget() to call 84 * getq_noenab() to dequeue data from the stream head instead. Once the 85 * data on the stream head has been consumed, tcp_fuse_rrw() may again 86 * be used to process tcp_rcv_list. However, if TCP_FUSE_SYNCSTR_STOP() 87 * has been called, all future calls to tcp_fuse_rrw() will return EBUSY, 88 * effectively disabling synchronous streams. 89 * 90 * The following note applies only to the synchronous streams mode. 91 * 92 * Flow control is done by checking the size of receive buffer and 93 * the number of data blocks, both set to different limits. This is 94 * different than regular streams flow control where cumulative size 95 * check dominates block count check -- streams queue high water mark 96 * typically represents bytes. Each enqueue triggers notifications 97 * to the receiving process; a build up of data blocks indicates a 98 * slow receiver and the sender should be blocked or informed at the 99 * earliest moment instead of further wasting system resources. In 100 * effect, this is equivalent to limiting the number of outstanding 101 * segments in flight. 102 */ 103 104 /* 105 * Setting this to false means we disable fusion altogether and 106 * loopback connections would go through the protocol paths. 107 */ 108 boolean_t do_tcp_fusion = B_TRUE; 109 110 /* 111 * Enabling this flag allows sockfs to retrieve data directly 112 * from a fused tcp endpoint using synchronous streams interface. 113 */ 114 boolean_t do_tcp_direct_sockfs = B_TRUE; 115 116 /* 117 * This is the minimum amount of outstanding writes allowed on 118 * a synchronous streams-enabled receiving endpoint before the 119 * sender gets flow-controlled. Setting this value to 0 means 120 * that the data block limit is equivalent to the byte count 121 * limit, which essentially disables the check. 122 */ 123 #define TCP_FUSION_RCV_UNREAD_MIN 8 124 uint_t tcp_fusion_rcv_unread_min = TCP_FUSION_RCV_UNREAD_MIN; 125 126 static void tcp_fuse_syncstr_enable(tcp_t *); 127 static void tcp_fuse_syncstr_disable(tcp_t *); 128 static boolean_t strrput_sig(queue_t *, boolean_t); 129 130 /* 131 * Return true if this connection needs some IP functionality 132 */ 133 static boolean_t 134 tcp_loopback_needs_ip(tcp_t *tcp, netstack_t *ns) 135 { 136 ipsec_stack_t *ipss = ns->netstack_ipsec; 137 138 /* 139 * If ire is not cached, do not use fusion 140 */ 141 if (tcp->tcp_connp->conn_ire_cache == NULL) { 142 /* 143 * There is no need to hold conn_lock here because when called 144 * from tcp_fuse() there can be no window where conn_ire_cache 145 * can change. This is not true whe called from 146 * tcp_fuse_output(). conn_ire_cache can become null just 147 * after the check, but it's ok if a few packets are delivered 148 * in the fused state. 149 */ 150 return (B_TRUE); 151 } 152 if (tcp->tcp_ipversion == IPV4_VERSION) { 153 if (tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) 154 return (B_TRUE); 155 if (CONN_OUTBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss)) 156 return (B_TRUE); 157 if (CONN_INBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss)) 158 return (B_TRUE); 159 } else { 160 if (tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) 161 return (B_TRUE); 162 if (CONN_OUTBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss)) 163 return (B_TRUE); 164 if (CONN_INBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss)) 165 return (B_TRUE); 166 } 167 if (!CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)) 168 return (B_TRUE); 169 return (B_FALSE); 170 } 171 172 173 /* 174 * This routine gets called by the eager tcp upon changing state from 175 * SYN_RCVD to ESTABLISHED. It fuses a direct path between itself 176 * and the active connect tcp such that the regular tcp processings 177 * may be bypassed under allowable circumstances. Because the fusion 178 * requires both endpoints to be in the same squeue, it does not work 179 * for simultaneous active connects because there is no easy way to 180 * switch from one squeue to another once the connection is created. 181 * This is different from the eager tcp case where we assign it the 182 * same squeue as the one given to the active connect tcp during open. 183 */ 184 void 185 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph) 186 { 187 conn_t *peer_connp, *connp = tcp->tcp_connp; 188 tcp_t *peer_tcp; 189 tcp_stack_t *tcps = tcp->tcp_tcps; 190 netstack_t *ns; 191 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 192 193 ASSERT(!tcp->tcp_fused); 194 ASSERT(tcp->tcp_loopback); 195 ASSERT(tcp->tcp_loopback_peer == NULL); 196 /* 197 * We need to inherit q_hiwat of the listener tcp, but we can't 198 * really use tcp_listener since we get here after sending up 199 * T_CONN_IND and tcp_wput_accept() may be called independently, 200 * at which point tcp_listener is cleared; this is why we use 201 * tcp_saved_listener. The listener itself is guaranteed to be 202 * around until tcp_accept_finish() is called on this eager -- 203 * this won't happen until we're done since we're inside the 204 * eager's perimeter now. 205 */ 206 ASSERT(tcp->tcp_saved_listener != NULL); 207 208 /* 209 * Lookup peer endpoint; search for the remote endpoint having 210 * the reversed address-port quadruplet in ESTABLISHED state, 211 * which is guaranteed to be unique in the system. Zone check 212 * is applied accordingly for loopback address, but not for 213 * local address since we want fusion to happen across Zones. 214 */ 215 if (tcp->tcp_ipversion == IPV4_VERSION) { 216 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp, 217 (ipha_t *)iphdr, tcph, ipst); 218 } else { 219 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp, 220 (ip6_t *)iphdr, tcph, ipst); 221 } 222 223 /* 224 * We can only proceed if peer exists, resides in the same squeue 225 * as our conn and is not raw-socket. The squeue assignment of 226 * this eager tcp was done earlier at the time of SYN processing 227 * in ip_fanout_tcp{_v6}. Note that similar squeues by itself 228 * doesn't guarantee a safe condition to fuse, hence we perform 229 * additional tests below. 230 */ 231 ASSERT(peer_connp == NULL || peer_connp != connp); 232 if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp || 233 !IPCL_IS_TCP(peer_connp)) { 234 if (peer_connp != NULL) { 235 TCP_STAT(tcps, tcp_fusion_unqualified); 236 CONN_DEC_REF(peer_connp); 237 } 238 return; 239 } 240 peer_tcp = peer_connp->conn_tcp; /* active connect tcp */ 241 242 ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused); 243 ASSERT(peer_tcp->tcp_loopback && peer_tcp->tcp_loopback_peer == NULL); 244 ASSERT(peer_connp->conn_sqp == connp->conn_sqp); 245 246 /* 247 * Fuse the endpoints; we perform further checks against both 248 * tcp endpoints to ensure that a fusion is allowed to happen. 249 * In particular we bail out for non-simple TCP/IP or if IPsec/ 250 * IPQoS policy/kernel SSL exists. 251 */ 252 ns = tcps->tcps_netstack; 253 ipst = ns->netstack_ip; 254 255 if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable && 256 !tcp_loopback_needs_ip(tcp, ns) && 257 !tcp_loopback_needs_ip(peer_tcp, ns) && 258 tcp->tcp_kssl_ent == NULL && 259 !IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst)) { 260 mblk_t *mp; 261 struct stroptions *stropt; 262 queue_t *peer_rq = peer_tcp->tcp_rq; 263 264 ASSERT(!TCP_IS_DETACHED(peer_tcp) && peer_rq != NULL); 265 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 266 ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL); 267 ASSERT(tcp->tcp_kssl_ctx == NULL); 268 269 /* 270 * We need to drain data on both endpoints during unfuse. 271 * If we need to send up SIGURG at the time of draining, 272 * we want to be sure that an mblk is readily available. 273 * This is why we pre-allocate the M_PCSIG mblks for both 274 * endpoints which will only be used during/after unfuse. 275 */ 276 if ((mp = allocb(1, BPRI_HI)) == NULL) 277 goto failed; 278 279 tcp->tcp_fused_sigurg_mp = mp; 280 281 if ((mp = allocb(1, BPRI_HI)) == NULL) 282 goto failed; 283 284 peer_tcp->tcp_fused_sigurg_mp = mp; 285 286 /* Allocate M_SETOPTS mblk */ 287 if ((mp = allocb(sizeof (*stropt), BPRI_HI)) == NULL) 288 goto failed; 289 290 /* If either tcp or peer_tcp sodirect enabled then disable */ 291 if (tcp->tcp_sodirect != NULL) { 292 mutex_enter(tcp->tcp_sodirect->sod_lock); 293 SOD_DISABLE(tcp->tcp_sodirect); 294 mutex_exit(tcp->tcp_sodirect->sod_lock); 295 tcp->tcp_sodirect = NULL; 296 } 297 if (peer_tcp->tcp_sodirect != NULL) { 298 mutex_enter(peer_tcp->tcp_sodirect->sod_lock); 299 SOD_DISABLE(peer_tcp->tcp_sodirect); 300 mutex_exit(peer_tcp->tcp_sodirect->sod_lock); 301 peer_tcp->tcp_sodirect = NULL; 302 } 303 304 /* Fuse both endpoints */ 305 peer_tcp->tcp_loopback_peer = tcp; 306 tcp->tcp_loopback_peer = peer_tcp; 307 peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE; 308 309 /* 310 * We never use regular tcp paths in fusion and should 311 * therefore clear tcp_unsent on both endpoints. Having 312 * them set to non-zero values means asking for trouble 313 * especially after unfuse, where we may end up sending 314 * through regular tcp paths which expect xmit_list and 315 * friends to be correctly setup. 316 */ 317 peer_tcp->tcp_unsent = tcp->tcp_unsent = 0; 318 319 tcp_timers_stop(tcp); 320 tcp_timers_stop(peer_tcp); 321 322 /* 323 * At this point we are a detached eager tcp and therefore 324 * don't have a queue assigned to us until accept happens. 325 * In the mean time the peer endpoint may immediately send 326 * us data as soon as fusion is finished, and we need to be 327 * able to flow control it in case it sends down huge amount 328 * of data while we're still detached. To prevent that we 329 * inherit the listener's q_hiwat value; this is temporary 330 * since we'll repeat the process in tcp_accept_finish(). 331 */ 332 (void) tcp_fuse_set_rcv_hiwat(tcp, 333 tcp->tcp_saved_listener->tcp_rq->q_hiwat); 334 335 /* 336 * Set the stream head's write offset value to zero since we 337 * won't be needing any room for TCP/IP headers; tell it to 338 * not break up the writes (this would reduce the amount of 339 * work done by kmem); and configure our receive buffer. 340 * Note that we can only do this for the active connect tcp 341 * since our eager is still detached; it will be dealt with 342 * later in tcp_accept_finish(). 343 */ 344 DB_TYPE(mp) = M_SETOPTS; 345 mp->b_wptr += sizeof (*stropt); 346 347 stropt = (struct stroptions *)mp->b_rptr; 348 stropt->so_flags = SO_MAXBLK | SO_WROFF | SO_HIWAT; 349 stropt->so_maxblk = tcp_maxpsz_set(peer_tcp, B_FALSE); 350 stropt->so_wroff = 0; 351 352 /* 353 * Record the stream head's high water mark for 354 * peer endpoint; this is used for flow-control 355 * purposes in tcp_fuse_output(). 356 */ 357 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(peer_tcp, 358 peer_rq->q_hiwat); 359 360 /* Send the options up */ 361 putnext(peer_rq, mp); 362 } else { 363 TCP_STAT(tcps, tcp_fusion_unqualified); 364 } 365 CONN_DEC_REF(peer_connp); 366 return; 367 368 failed: 369 if (tcp->tcp_fused_sigurg_mp != NULL) { 370 freeb(tcp->tcp_fused_sigurg_mp); 371 tcp->tcp_fused_sigurg_mp = NULL; 372 } 373 if (peer_tcp->tcp_fused_sigurg_mp != NULL) { 374 freeb(peer_tcp->tcp_fused_sigurg_mp); 375 peer_tcp->tcp_fused_sigurg_mp = NULL; 376 } 377 CONN_DEC_REF(peer_connp); 378 } 379 380 /* 381 * Unfuse a previously-fused pair of tcp loopback endpoints. 382 */ 383 void 384 tcp_unfuse(tcp_t *tcp) 385 { 386 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 387 388 ASSERT(tcp->tcp_fused && peer_tcp != NULL); 389 ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp); 390 ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); 391 ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0); 392 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 393 ASSERT(peer_tcp->tcp_fused_sigurg_mp != NULL); 394 395 /* 396 * We disable synchronous streams, drain any queued data and 397 * clear tcp_direct_sockfs. The synchronous streams entry 398 * points will become no-ops after this point. 399 */ 400 tcp_fuse_disable_pair(tcp, B_TRUE); 401 402 /* 403 * Update th_seq and th_ack in the header template 404 */ 405 U32_TO_ABE32(tcp->tcp_snxt, tcp->tcp_tcph->th_seq); 406 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 407 U32_TO_ABE32(peer_tcp->tcp_snxt, peer_tcp->tcp_tcph->th_seq); 408 U32_TO_ABE32(peer_tcp->tcp_rnxt, peer_tcp->tcp_tcph->th_ack); 409 410 /* Unfuse the endpoints */ 411 peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE; 412 peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL; 413 } 414 415 /* 416 * Fusion output routine for urgent data. This routine is called by 417 * tcp_fuse_output() for handling non-M_DATA mblks. 418 */ 419 void 420 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp) 421 { 422 mblk_t *mp1; 423 struct T_exdata_ind *tei; 424 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 425 mblk_t *head, *prev_head = NULL; 426 tcp_stack_t *tcps = tcp->tcp_tcps; 427 428 ASSERT(tcp->tcp_fused); 429 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 430 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 431 ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA); 432 ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0); 433 434 /* 435 * Urgent data arrives in the form of T_EXDATA_REQ from above. 436 * Each occurence denotes a new urgent pointer. For each new 437 * urgent pointer we signal (SIGURG) the receiving app to indicate 438 * that it needs to go into urgent mode. This is similar to the 439 * urgent data handling in the regular tcp. We don't need to keep 440 * track of where the urgent pointer is, because each T_EXDATA_REQ 441 * "advances" the urgent pointer for us. 442 * 443 * The actual urgent data carried by T_EXDATA_REQ is then prepended 444 * by a T_EXDATA_IND before being enqueued behind any existing data 445 * destined for the receiving app. There is only a single urgent 446 * pointer (out-of-band mark) for a given tcp. If the new urgent 447 * data arrives before the receiving app reads some existing urgent 448 * data, the previous marker is lost. This behavior is emulated 449 * accordingly below, by removing any existing T_EXDATA_IND messages 450 * and essentially converting old urgent data into non-urgent. 451 */ 452 ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID); 453 /* Let sender get out of urgent mode */ 454 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 455 456 /* 457 * This flag indicates that a signal needs to be sent up. 458 * This flag will only get cleared once SIGURG is delivered and 459 * is not affected by the tcp_fused flag -- delivery will still 460 * happen even after an endpoint is unfused, to handle the case 461 * where the sending endpoint immediately closes/unfuses after 462 * sending urgent data and the accept is not yet finished. 463 */ 464 peer_tcp->tcp_fused_sigurg = B_TRUE; 465 466 /* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */ 467 DB_TYPE(mp) = M_PROTO; 468 tei = (struct T_exdata_ind *)mp->b_rptr; 469 tei->PRIM_type = T_EXDATA_IND; 470 tei->MORE_flag = 0; 471 mp->b_wptr = (uchar_t *)&tei[1]; 472 473 TCP_STAT(tcps, tcp_fusion_urg); 474 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 475 476 head = peer_tcp->tcp_rcv_list; 477 while (head != NULL) { 478 /* 479 * Remove existing T_EXDATA_IND, keep the data which follows 480 * it and relink our list. Note that we don't modify the 481 * tcp_rcv_last_tail since it never points to T_EXDATA_IND. 482 */ 483 if (DB_TYPE(head) != M_DATA) { 484 mp1 = head; 485 486 ASSERT(DB_TYPE(mp1->b_cont) == M_DATA); 487 head = mp1->b_cont; 488 mp1->b_cont = NULL; 489 head->b_next = mp1->b_next; 490 mp1->b_next = NULL; 491 if (prev_head != NULL) 492 prev_head->b_next = head; 493 if (peer_tcp->tcp_rcv_list == mp1) 494 peer_tcp->tcp_rcv_list = head; 495 if (peer_tcp->tcp_rcv_last_head == mp1) 496 peer_tcp->tcp_rcv_last_head = head; 497 freeb(mp1); 498 } 499 prev_head = head; 500 head = head->b_next; 501 } 502 } 503 504 /* 505 * Fusion output routine, called by tcp_output() and tcp_wput_proto(). 506 * If we are modifying any member that can be changed outside the squeue, 507 * like tcp_flow_stopped, we need to take tcp_non_sq_lock. 508 */ 509 boolean_t 510 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size) 511 { 512 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 513 uint_t max_unread; 514 boolean_t flow_stopped, peer_data_queued = B_FALSE; 515 boolean_t urgent = (DB_TYPE(mp) != M_DATA); 516 mblk_t *mp1 = mp; 517 ill_t *ilp, *olp; 518 ipha_t *ipha; 519 ip6_t *ip6h; 520 tcph_t *tcph; 521 uint_t ip_hdr_len; 522 uint32_t seq; 523 uint32_t recv_size = send_size; 524 tcp_stack_t *tcps = tcp->tcp_tcps; 525 netstack_t *ns = tcps->tcps_netstack; 526 ip_stack_t *ipst = ns->netstack_ip; 527 528 ASSERT(tcp->tcp_fused); 529 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 530 ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); 531 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO || 532 DB_TYPE(mp) == M_PCPROTO); 533 534 535 /* If this connection requires IP, unfuse and use regular path */ 536 if (tcp_loopback_needs_ip(tcp, ns) || 537 tcp_loopback_needs_ip(peer_tcp, ns) || 538 IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst)) { 539 TCP_STAT(tcps, tcp_fusion_aborted); 540 goto unfuse; 541 } 542 543 if (send_size == 0) { 544 freemsg(mp); 545 return (B_TRUE); 546 } 547 max_unread = peer_tcp->tcp_fuse_rcv_unread_hiwater; 548 549 /* 550 * Handle urgent data; we either send up SIGURG to the peer now 551 * or do it later when we drain, in case the peer is detached 552 * or if we're short of memory for M_PCSIG mblk. 553 */ 554 if (urgent) { 555 /* 556 * We stop synchronous streams when we have urgent data 557 * queued to prevent tcp_fuse_rrw() from pulling it. If 558 * for some reasons the urgent data can't be delivered 559 * below, synchronous streams will remain stopped until 560 * someone drains the tcp_rcv_list. 561 */ 562 TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp); 563 tcp_fuse_output_urg(tcp, mp); 564 565 mp1 = mp->b_cont; 566 } 567 568 if (tcp->tcp_ipversion == IPV4_VERSION && 569 (HOOKS4_INTERESTED_LOOPBACK_IN(ipst) || 570 HOOKS4_INTERESTED_LOOPBACK_OUT(ipst)) || 571 tcp->tcp_ipversion == IPV6_VERSION && 572 (HOOKS6_INTERESTED_LOOPBACK_IN(ipst) || 573 HOOKS6_INTERESTED_LOOPBACK_OUT(ipst))) { 574 /* 575 * Build ip and tcp header to satisfy FW_HOOKS. 576 * We only build it when any hook is present. 577 */ 578 if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL, 579 tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL) 580 /* If tcp_xmit_mp fails, use regular path */ 581 goto unfuse; 582 583 ASSERT(peer_tcp->tcp_connp->conn_ire_cache->ire_ipif != NULL); 584 olp = peer_tcp->tcp_connp->conn_ire_cache->ire_ipif->ipif_ill; 585 /* PFHooks: LOOPBACK_OUT */ 586 if (tcp->tcp_ipversion == IPV4_VERSION) { 587 ipha = (ipha_t *)mp1->b_rptr; 588 589 DTRACE_PROBE4(ip4__loopback__out__start, 590 ill_t *, NULL, ill_t *, olp, 591 ipha_t *, ipha, mblk_t *, mp1); 592 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 593 ipst->ips_ipv4firewall_loopback_out, 594 NULL, olp, ipha, mp1, mp1, 0, ipst); 595 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, mp1); 596 } else { 597 ip6h = (ip6_t *)mp1->b_rptr; 598 599 DTRACE_PROBE4(ip6__loopback__out__start, 600 ill_t *, NULL, ill_t *, olp, 601 ip6_t *, ip6h, mblk_t *, mp1); 602 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 603 ipst->ips_ipv6firewall_loopback_out, 604 NULL, olp, ip6h, mp1, mp1, 0, ipst); 605 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, mp1); 606 } 607 if (mp1 == NULL) 608 goto unfuse; 609 610 611 /* PFHooks: LOOPBACK_IN */ 612 ASSERT(tcp->tcp_connp->conn_ire_cache->ire_ipif != NULL); 613 ilp = tcp->tcp_connp->conn_ire_cache->ire_ipif->ipif_ill; 614 615 if (tcp->tcp_ipversion == IPV4_VERSION) { 616 DTRACE_PROBE4(ip4__loopback__in__start, 617 ill_t *, ilp, ill_t *, NULL, 618 ipha_t *, ipha, mblk_t *, mp1); 619 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 620 ipst->ips_ipv4firewall_loopback_in, 621 ilp, NULL, ipha, mp1, mp1, 0, ipst); 622 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, mp1); 623 if (mp1 == NULL) 624 goto unfuse; 625 626 ip_hdr_len = IPH_HDR_LENGTH(ipha); 627 } else { 628 DTRACE_PROBE4(ip6__loopback__in__start, 629 ill_t *, ilp, ill_t *, NULL, 630 ip6_t *, ip6h, mblk_t *, mp1); 631 FW_HOOKS6(ipst->ips_ip6_loopback_in_event, 632 ipst->ips_ipv6firewall_loopback_in, 633 ilp, NULL, ip6h, mp1, mp1, 0, ipst); 634 DTRACE_PROBE1(ip6__loopback__in__end, mblk_t *, mp1); 635 if (mp1 == NULL) 636 goto unfuse; 637 638 ip_hdr_len = ip_hdr_length_v6(mp1, ip6h); 639 } 640 641 /* Data length might be changed by FW_HOOKS */ 642 tcph = (tcph_t *)&mp1->b_rptr[ip_hdr_len]; 643 seq = ABE32_TO_U32(tcph->th_seq); 644 recv_size += seq - tcp->tcp_snxt; 645 646 /* 647 * The message duplicated by tcp_xmit_mp is freed. 648 * Note: the original message passed in remains unchanged. 649 */ 650 freemsg(mp1); 651 } 652 653 mutex_enter(&peer_tcp->tcp_non_sq_lock); 654 /* 655 * Wake up and signal the peer; it is okay to do this before 656 * enqueueing because we are holding the lock. One of the 657 * advantages of synchronous streams is the ability for us to 658 * find out when the application performs a read on the socket, 659 * by way of tcp_fuse_rrw() entry point being called. Every 660 * data that gets enqueued onto the receiver is treated as if 661 * it has arrived at the receiving endpoint, thus generating 662 * SIGPOLL/SIGIO for asynchronous socket just as in the strrput() 663 * case. However, we only wake up the application when necessary, 664 * i.e. during the first enqueue. When tcp_fuse_rrw() is called 665 * it will send everything upstream. 666 */ 667 if (peer_tcp->tcp_direct_sockfs && !urgent && 668 !TCP_IS_DETACHED(peer_tcp)) { 669 /* Update poll events and send SIGPOLL/SIGIO if necessary */ 670 STR_WAKEUP_SENDSIG(STREAM(peer_tcp->tcp_rq), 671 peer_tcp->tcp_rcv_list); 672 } 673 674 /* 675 * Enqueue data into the peer's receive list; we may or may not 676 * drain the contents depending on the conditions below. 677 */ 678 tcp_rcv_enqueue(peer_tcp, mp, recv_size); 679 680 /* In case it wrapped around and also to keep it constant */ 681 peer_tcp->tcp_rwnd += recv_size; 682 /* 683 * We increase the peer's unread message count here whilst still 684 * holding it's tcp_non_sq_lock. This ensures that the increment 685 * occurs in the same lock acquisition perimeter as the enqueue. 686 * Depending on lock hierarchy, we can release these locks which 687 * creates a window in which we can race with tcp_fuse_rrw() 688 */ 689 peer_tcp->tcp_fuse_rcv_unread_cnt++; 690 691 /* 692 * Exercise flow-control when needed; we will get back-enabled 693 * in either tcp_accept_finish(), tcp_unfuse(), or tcp_fuse_rrw(). 694 * If tcp_direct_sockfs is on or if the peer endpoint is detached, 695 * we emulate streams flow control by checking the peer's queue 696 * size and high water mark; otherwise we simply use canputnext() 697 * to decide if we need to stop our flow. 698 * 699 * The outstanding unread data block check does not apply for a 700 * detached receiver; this is to avoid unnecessary blocking of the 701 * sender while the accept is currently in progress and is quite 702 * similar to the regular tcp. 703 */ 704 if (TCP_IS_DETACHED(peer_tcp) || max_unread == 0) 705 max_unread = UINT_MAX; 706 707 /* 708 * Since we are accessing our tcp_flow_stopped and might modify it, 709 * we need to take tcp->tcp_non_sq_lock. The lock for the highest 710 * address is held first. Dropping peer_tcp->tcp_non_sq_lock should 711 * not be an issue here since we are within the squeue and the peer 712 * won't disappear. 713 */ 714 if (tcp > peer_tcp) { 715 mutex_exit(&peer_tcp->tcp_non_sq_lock); 716 mutex_enter(&tcp->tcp_non_sq_lock); 717 mutex_enter(&peer_tcp->tcp_non_sq_lock); 718 } else { 719 mutex_enter(&tcp->tcp_non_sq_lock); 720 } 721 flow_stopped = tcp->tcp_flow_stopped; 722 if (((peer_tcp->tcp_direct_sockfs || TCP_IS_DETACHED(peer_tcp)) && 723 (peer_tcp->tcp_rcv_cnt >= peer_tcp->tcp_fuse_rcv_hiwater || 724 peer_tcp->tcp_fuse_rcv_unread_cnt >= max_unread)) || 725 (!peer_tcp->tcp_direct_sockfs && !TCP_IS_DETACHED(peer_tcp) && 726 !canputnext(peer_tcp->tcp_rq))) { 727 peer_data_queued = B_TRUE; 728 } 729 730 if (!flow_stopped && (peer_data_queued || 731 (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater))) { 732 tcp_setqfull(tcp); 733 flow_stopped = B_TRUE; 734 TCP_STAT(tcps, tcp_fusion_flowctl); 735 DTRACE_PROBE4(tcp__fuse__output__flowctl, tcp_t *, tcp, 736 uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt, 737 uint_t, peer_tcp->tcp_fuse_rcv_unread_cnt); 738 } else if (flow_stopped && !peer_data_queued && 739 (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater)) { 740 tcp_clrqfull(tcp); 741 TCP_STAT(tcps, tcp_fusion_backenabled); 742 flow_stopped = B_FALSE; 743 } 744 mutex_exit(&tcp->tcp_non_sq_lock); 745 746 /* 747 * If we are in synchronous streams mode and the peer read queue is 748 * not full then schedule a push timer if one is not scheduled 749 * already. This is needed for applications which use MSG_PEEK to 750 * determine the number of bytes available before issuing a 'real' 751 * read. It also makes flow control more deterministic, particularly 752 * for smaller message sizes. 753 */ 754 if (!urgent && peer_tcp->tcp_direct_sockfs && 755 peer_tcp->tcp_push_tid == 0 && !TCP_IS_DETACHED(peer_tcp) && 756 canputnext(peer_tcp->tcp_rq)) { 757 peer_tcp->tcp_push_tid = TCP_TIMER(peer_tcp, tcp_push_timer, 758 MSEC_TO_TICK(tcps->tcps_push_timer_interval)); 759 } 760 mutex_exit(&peer_tcp->tcp_non_sq_lock); 761 ipst->ips_loopback_packets++; 762 tcp->tcp_last_sent_len = send_size; 763 764 /* Need to adjust the following SNMP MIB-related variables */ 765 tcp->tcp_snxt += send_size; 766 tcp->tcp_suna = tcp->tcp_snxt; 767 peer_tcp->tcp_rnxt += recv_size; 768 peer_tcp->tcp_rack = peer_tcp->tcp_rnxt; 769 770 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 771 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, send_size); 772 773 BUMP_MIB(&tcps->tcps_mib, tcpInSegs); 774 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 775 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, send_size); 776 777 BUMP_LOCAL(tcp->tcp_obsegs); 778 BUMP_LOCAL(peer_tcp->tcp_ibsegs); 779 780 DTRACE_PROBE2(tcp__fuse__output, tcp_t *, tcp, uint_t, send_size); 781 782 if (!TCP_IS_DETACHED(peer_tcp)) { 783 /* 784 * Drain the peer's receive queue it has urgent data or if 785 * we're not flow-controlled. There is no need for draining 786 * normal data when tcp_direct_sockfs is on because the peer 787 * will pull the data via tcp_fuse_rrw(). 788 */ 789 if (urgent || (!flow_stopped && !peer_tcp->tcp_direct_sockfs)) { 790 ASSERT(peer_tcp->tcp_rcv_list != NULL); 791 /* 792 * For TLI-based streams, a thread in tcp_accept_swap() 793 * can race with us. That thread will ensure that the 794 * correct peer_tcp->tcp_rq is globally visible before 795 * peer_tcp->tcp_detached is visible as clear, but we 796 * must also ensure that the load of tcp_rq cannot be 797 * reordered to be before the tcp_detached check. 798 */ 799 membar_consumer(); 800 (void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp, 801 NULL); 802 /* 803 * If synchronous streams was stopped above due 804 * to the presence of urgent data, re-enable it. 805 */ 806 if (urgent) 807 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp); 808 } 809 } 810 return (B_TRUE); 811 unfuse: 812 tcp_unfuse(tcp); 813 return (B_FALSE); 814 } 815 816 /* 817 * This routine gets called to deliver data upstream on a fused or 818 * previously fused tcp loopback endpoint; the latter happens only 819 * when there is a pending SIGURG signal plus urgent data that can't 820 * be sent upstream in the past. 821 */ 822 boolean_t 823 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp) 824 { 825 mblk_t *mp; 826 #ifdef DEBUG 827 uint_t cnt = 0; 828 #endif 829 tcp_stack_t *tcps = tcp->tcp_tcps; 830 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 831 boolean_t sd_rd_eof = B_FALSE; 832 833 ASSERT(tcp->tcp_loopback); 834 ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg); 835 ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL); 836 ASSERT(sigurg_mpp != NULL || tcp->tcp_fused); 837 838 /* No need for the push timer now, in case it was scheduled */ 839 if (tcp->tcp_push_tid != 0) { 840 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 841 tcp->tcp_push_tid = 0; 842 } 843 /* 844 * If there's urgent data sitting in receive list and we didn't 845 * get a chance to send up a SIGURG signal, make sure we send 846 * it first before draining in order to ensure that SIOCATMARK 847 * works properly. 848 */ 849 if (tcp->tcp_fused_sigurg) { 850 /* 851 * sigurg_mpp is normally NULL, i.e. when we're still 852 * fused and didn't get here because of tcp_unfuse(). 853 * In this case try hard to allocate the M_PCSIG mblk. 854 */ 855 if (sigurg_mpp == NULL && 856 (mp = allocb(1, BPRI_HI)) == NULL && 857 (mp = allocb_tryhard(1)) == NULL) { 858 /* Alloc failed; try again next time */ 859 tcp->tcp_push_tid = TCP_TIMER(tcp, tcp_push_timer, 860 MSEC_TO_TICK(tcps->tcps_push_timer_interval)); 861 return (B_TRUE); 862 } else if (sigurg_mpp != NULL) { 863 /* 864 * Use the supplied M_PCSIG mblk; it means we're 865 * either unfused or in the process of unfusing, 866 * and the drain must happen now. 867 */ 868 mp = *sigurg_mpp; 869 *sigurg_mpp = NULL; 870 } 871 ASSERT(mp != NULL); 872 873 tcp->tcp_fused_sigurg = B_FALSE; 874 /* Send up the signal */ 875 DB_TYPE(mp) = M_PCSIG; 876 *mp->b_wptr++ = (uchar_t)SIGURG; 877 putnext(q, mp); 878 /* 879 * Let the regular tcp_rcv_drain() path handle 880 * draining the data if we're no longer fused. 881 */ 882 if (!tcp->tcp_fused) 883 return (B_FALSE); 884 } 885 886 /* 887 * In the synchronous streams case, we generate SIGPOLL/SIGIO for 888 * each M_DATA that gets enqueued onto the receiver. At this point 889 * we are about to drain any queued data via putnext(). In order 890 * to avoid extraneous signal generation from strrput(), we set 891 * STRGETINPROG flag at the stream head prior to the draining and 892 * restore it afterwards. This masks out signal generation only 893 * for M_DATA messages and does not affect urgent data. We only do 894 * this if the STREOF flag is not set which can happen if the 895 * application shuts down the read side of a stream. In this case 896 * we simply free these messages to approximate the flushq behavior 897 * which normally occurs when STREOF is on the stream head read queue. 898 */ 899 if (tcp->tcp_direct_sockfs) 900 sd_rd_eof = strrput_sig(q, B_FALSE); 901 902 /* Drain the data */ 903 while ((mp = tcp->tcp_rcv_list) != NULL) { 904 tcp->tcp_rcv_list = mp->b_next; 905 mp->b_next = NULL; 906 #ifdef DEBUG 907 cnt += msgdsize(mp); 908 #endif 909 if (sd_rd_eof) { 910 freemsg(mp); 911 } else { 912 putnext(q, mp); 913 TCP_STAT(tcps, tcp_fusion_putnext); 914 } 915 } 916 917 if (tcp->tcp_direct_sockfs && !sd_rd_eof) 918 (void) strrput_sig(q, B_TRUE); 919 920 ASSERT(cnt == tcp->tcp_rcv_cnt); 921 tcp->tcp_rcv_last_head = NULL; 922 tcp->tcp_rcv_last_tail = NULL; 923 tcp->tcp_rcv_cnt = 0; 924 tcp->tcp_fuse_rcv_unread_cnt = 0; 925 tcp->tcp_rwnd = q->q_hiwat; 926 927 if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <= 928 peer_tcp->tcp_xmit_lowater)) { 929 tcp_clrqfull(peer_tcp); 930 TCP_STAT(tcps, tcp_fusion_backenabled); 931 } 932 933 return (B_TRUE); 934 } 935 936 /* 937 * Synchronous stream entry point for sockfs to retrieve 938 * data directly from tcp_rcv_list. 939 * tcp_fuse_rrw() might end up modifying the peer's tcp_flow_stopped, 940 * for which it must take the tcp_non_sq_lock of the peer as well 941 * making any change. The order of taking the locks is based on 942 * the TCP pointer itself. Before we get the peer we need to take 943 * our tcp_non_sq_lock so that the peer doesn't disappear. However, 944 * we cannot drop the lock if we have to grab the peer's lock (because 945 * of ordering), since the peer might disappear in the interim. So, 946 * we take our tcp_non_sq_lock, get the peer, increment the ref on the 947 * peer's conn, drop all the locks and then take the tcp_non_sq_lock in the 948 * desired order. Incrementing the conn ref on the peer means that the 949 * peer won't disappear when we drop our tcp_non_sq_lock. 950 */ 951 int 952 tcp_fuse_rrw(queue_t *q, struiod_t *dp) 953 { 954 tcp_t *tcp = Q_TO_CONN(q)->conn_tcp; 955 mblk_t *mp; 956 tcp_t *peer_tcp; 957 tcp_stack_t *tcps = tcp->tcp_tcps; 958 959 mutex_enter(&tcp->tcp_non_sq_lock); 960 961 /* 962 * If tcp_fuse_syncstr_plugged is set, then another thread is moving 963 * the underlying data to the stream head. We need to wait until it's 964 * done, then return EBUSY so that strget() will dequeue data from the 965 * stream head to ensure data is drained in-order. 966 */ 967 plugged: 968 if (tcp->tcp_fuse_syncstr_plugged) { 969 do { 970 cv_wait(&tcp->tcp_fuse_plugcv, &tcp->tcp_non_sq_lock); 971 } while (tcp->tcp_fuse_syncstr_plugged); 972 973 mutex_exit(&tcp->tcp_non_sq_lock); 974 TCP_STAT(tcps, tcp_fusion_rrw_plugged); 975 TCP_STAT(tcps, tcp_fusion_rrw_busy); 976 return (EBUSY); 977 } 978 979 peer_tcp = tcp->tcp_loopback_peer; 980 981 /* 982 * If someone had turned off tcp_direct_sockfs or if synchronous 983 * streams is stopped, we return EBUSY. This causes strget() to 984 * dequeue data from the stream head instead. 985 */ 986 if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) { 987 mutex_exit(&tcp->tcp_non_sq_lock); 988 TCP_STAT(tcps, tcp_fusion_rrw_busy); 989 return (EBUSY); 990 } 991 992 /* 993 * Grab lock in order. The highest addressed tcp is locked first. 994 * We don't do this within the tcp_rcv_list check since if we 995 * have to drop the lock, for ordering, then the tcp_rcv_list 996 * could change. 997 */ 998 if (peer_tcp > tcp) { 999 CONN_INC_REF(peer_tcp->tcp_connp); 1000 mutex_exit(&tcp->tcp_non_sq_lock); 1001 mutex_enter(&peer_tcp->tcp_non_sq_lock); 1002 mutex_enter(&tcp->tcp_non_sq_lock); 1003 /* 1004 * This might have changed in the interim 1005 * Once read-side tcp_non_sq_lock is dropped above 1006 * anything can happen, we need to check all 1007 * known conditions again once we reaquire 1008 * read-side tcp_non_sq_lock. 1009 */ 1010 if (tcp->tcp_fuse_syncstr_plugged) { 1011 mutex_exit(&peer_tcp->tcp_non_sq_lock); 1012 CONN_DEC_REF(peer_tcp->tcp_connp); 1013 goto plugged; 1014 } 1015 if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) { 1016 mutex_exit(&tcp->tcp_non_sq_lock); 1017 mutex_exit(&peer_tcp->tcp_non_sq_lock); 1018 CONN_DEC_REF(peer_tcp->tcp_connp); 1019 TCP_STAT(tcps, tcp_fusion_rrw_busy); 1020 return (EBUSY); 1021 } 1022 CONN_DEC_REF(peer_tcp->tcp_connp); 1023 } else { 1024 mutex_enter(&peer_tcp->tcp_non_sq_lock); 1025 } 1026 1027 if ((mp = tcp->tcp_rcv_list) != NULL) { 1028 1029 DTRACE_PROBE3(tcp__fuse__rrw, tcp_t *, tcp, 1030 uint32_t, tcp->tcp_rcv_cnt, ssize_t, dp->d_uio.uio_resid); 1031 1032 tcp->tcp_rcv_list = NULL; 1033 TCP_STAT(tcps, tcp_fusion_rrw_msgcnt); 1034 1035 /* 1036 * At this point nothing should be left in tcp_rcv_list. 1037 * The only possible case where we would have a chain of 1038 * b_next-linked messages is urgent data, but we wouldn't 1039 * be here if that's true since urgent data is delivered 1040 * via putnext() and synchronous streams is stopped until 1041 * tcp_fuse_rcv_drain() is finished. 1042 */ 1043 ASSERT(DB_TYPE(mp) == M_DATA && mp->b_next == NULL); 1044 1045 tcp->tcp_rcv_last_head = NULL; 1046 tcp->tcp_rcv_last_tail = NULL; 1047 tcp->tcp_rcv_cnt = 0; 1048 tcp->tcp_fuse_rcv_unread_cnt = 0; 1049 1050 if (peer_tcp->tcp_flow_stopped && 1051 (TCP_UNSENT_BYTES(peer_tcp) <= 1052 peer_tcp->tcp_xmit_lowater)) { 1053 tcp_clrqfull(peer_tcp); 1054 TCP_STAT(tcps, tcp_fusion_backenabled); 1055 } 1056 } 1057 mutex_exit(&peer_tcp->tcp_non_sq_lock); 1058 /* 1059 * Either we just dequeued everything or we get here from sockfs 1060 * and have nothing to return; in this case clear RSLEEP. 1061 */ 1062 ASSERT(tcp->tcp_rcv_last_head == NULL); 1063 ASSERT(tcp->tcp_rcv_last_tail == NULL); 1064 ASSERT(tcp->tcp_rcv_cnt == 0); 1065 ASSERT(tcp->tcp_fuse_rcv_unread_cnt == 0); 1066 STR_WAKEUP_CLEAR(STREAM(q)); 1067 1068 mutex_exit(&tcp->tcp_non_sq_lock); 1069 dp->d_mp = mp; 1070 return (0); 1071 } 1072 1073 /* 1074 * Synchronous stream entry point used by certain ioctls to retrieve 1075 * information about or peek into the tcp_rcv_list. 1076 */ 1077 int 1078 tcp_fuse_rinfop(queue_t *q, infod_t *dp) 1079 { 1080 tcp_t *tcp = Q_TO_CONN(q)->conn_tcp; 1081 mblk_t *mp; 1082 uint_t cmd = dp->d_cmd; 1083 int res = 0; 1084 int error = 0; 1085 struct stdata *stp = STREAM(q); 1086 1087 mutex_enter(&tcp->tcp_non_sq_lock); 1088 /* If shutdown on read has happened, return nothing */ 1089 mutex_enter(&stp->sd_lock); 1090 if (stp->sd_flag & STREOF) { 1091 mutex_exit(&stp->sd_lock); 1092 goto done; 1093 } 1094 mutex_exit(&stp->sd_lock); 1095 1096 /* 1097 * It is OK not to return an answer if tcp_rcv_list is 1098 * currently not accessible. 1099 */ 1100 if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped || 1101 tcp->tcp_fuse_syncstr_plugged || (mp = tcp->tcp_rcv_list) == NULL) 1102 goto done; 1103 1104 if (cmd & INFOD_COUNT) { 1105 /* 1106 * We have at least one message and 1107 * could return only one at a time. 1108 */ 1109 dp->d_count++; 1110 res |= INFOD_COUNT; 1111 } 1112 if (cmd & INFOD_BYTES) { 1113 /* 1114 * Return size of all data messages. 1115 */ 1116 dp->d_bytes += tcp->tcp_rcv_cnt; 1117 res |= INFOD_BYTES; 1118 } 1119 if (cmd & INFOD_FIRSTBYTES) { 1120 /* 1121 * Return size of first data message. 1122 */ 1123 dp->d_bytes = msgdsize(mp); 1124 res |= INFOD_FIRSTBYTES; 1125 dp->d_cmd &= ~INFOD_FIRSTBYTES; 1126 } 1127 if (cmd & INFOD_COPYOUT) { 1128 mblk_t *mp1; 1129 int n; 1130 1131 if (DB_TYPE(mp) == M_DATA) { 1132 mp1 = mp; 1133 } else { 1134 mp1 = mp->b_cont; 1135 ASSERT(mp1 != NULL); 1136 } 1137 1138 /* 1139 * Return data contents of first message. 1140 */ 1141 ASSERT(DB_TYPE(mp1) == M_DATA); 1142 while (mp1 != NULL && dp->d_uiop->uio_resid > 0) { 1143 n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1)); 1144 if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n, 1145 UIO_READ, dp->d_uiop)) != 0) { 1146 goto done; 1147 } 1148 mp1 = mp1->b_cont; 1149 } 1150 res |= INFOD_COPYOUT; 1151 dp->d_cmd &= ~INFOD_COPYOUT; 1152 } 1153 done: 1154 mutex_exit(&tcp->tcp_non_sq_lock); 1155 1156 dp->d_res |= res; 1157 1158 return (error); 1159 } 1160 1161 /* 1162 * Enable synchronous streams on a fused tcp loopback endpoint. 1163 */ 1164 static void 1165 tcp_fuse_syncstr_enable(tcp_t *tcp) 1166 { 1167 queue_t *rq = tcp->tcp_rq; 1168 struct stdata *stp = STREAM(rq); 1169 1170 /* We can only enable synchronous streams for sockfs mode */ 1171 tcp->tcp_direct_sockfs = tcp->tcp_issocket && do_tcp_direct_sockfs; 1172 1173 if (!tcp->tcp_direct_sockfs) 1174 return; 1175 1176 mutex_enter(&stp->sd_lock); 1177 mutex_enter(QLOCK(rq)); 1178 1179 /* 1180 * We replace our q_qinfo with one that has the qi_rwp entry point. 1181 * Clear SR_SIGALLDATA because we generate the equivalent signal(s) 1182 * for every enqueued data in tcp_fuse_output(). 1183 */ 1184 rq->q_qinfo = &tcp_loopback_rinit; 1185 rq->q_struiot = tcp_loopback_rinit.qi_struiot; 1186 stp->sd_struiordq = rq; 1187 stp->sd_rput_opt &= ~SR_SIGALLDATA; 1188 1189 mutex_exit(QLOCK(rq)); 1190 mutex_exit(&stp->sd_lock); 1191 } 1192 1193 /* 1194 * Disable synchronous streams on a fused tcp loopback endpoint. 1195 */ 1196 static void 1197 tcp_fuse_syncstr_disable(tcp_t *tcp) 1198 { 1199 queue_t *rq = tcp->tcp_rq; 1200 struct stdata *stp = STREAM(rq); 1201 1202 if (!tcp->tcp_direct_sockfs) 1203 return; 1204 1205 mutex_enter(&stp->sd_lock); 1206 mutex_enter(QLOCK(rq)); 1207 1208 /* 1209 * Reset q_qinfo to point to the default tcp entry points. 1210 * Also restore SR_SIGALLDATA so that strrput() can generate 1211 * the signals again for future M_DATA messages. 1212 */ 1213 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 1214 rq->q_struiot = tcp_rinitv4.qi_struiot; 1215 stp->sd_struiordq = NULL; 1216 stp->sd_rput_opt |= SR_SIGALLDATA; 1217 tcp->tcp_direct_sockfs = B_FALSE; 1218 1219 mutex_exit(QLOCK(rq)); 1220 mutex_exit(&stp->sd_lock); 1221 } 1222 1223 /* 1224 * Enable synchronous streams on a pair of fused tcp endpoints. 1225 */ 1226 void 1227 tcp_fuse_syncstr_enable_pair(tcp_t *tcp) 1228 { 1229 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 1230 1231 ASSERT(tcp->tcp_fused); 1232 ASSERT(peer_tcp != NULL); 1233 1234 tcp_fuse_syncstr_enable(tcp); 1235 tcp_fuse_syncstr_enable(peer_tcp); 1236 } 1237 1238 /* 1239 * Used to enable/disable signal generation at the stream head. We already 1240 * generated the signal(s) for these messages when they were enqueued on the 1241 * receiver. We also check if STREOF is set here. If it is, we return false 1242 * and let the caller decide what to do. 1243 */ 1244 static boolean_t 1245 strrput_sig(queue_t *q, boolean_t on) 1246 { 1247 struct stdata *stp = STREAM(q); 1248 1249 mutex_enter(&stp->sd_lock); 1250 if (stp->sd_flag == STREOF) { 1251 mutex_exit(&stp->sd_lock); 1252 return (B_TRUE); 1253 } 1254 if (on) 1255 stp->sd_flag &= ~STRGETINPROG; 1256 else 1257 stp->sd_flag |= STRGETINPROG; 1258 mutex_exit(&stp->sd_lock); 1259 1260 return (B_FALSE); 1261 } 1262 1263 /* 1264 * Disable synchronous streams on a pair of fused tcp endpoints and drain 1265 * any queued data; called either during unfuse or upon transitioning from 1266 * a socket to a stream endpoint due to _SIOCSOCKFALLBACK. 1267 */ 1268 void 1269 tcp_fuse_disable_pair(tcp_t *tcp, boolean_t unfusing) 1270 { 1271 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 1272 tcp_stack_t *tcps = tcp->tcp_tcps; 1273 1274 ASSERT(tcp->tcp_fused); 1275 ASSERT(peer_tcp != NULL); 1276 1277 /* 1278 * Force any tcp_fuse_rrw() calls to block until we've moved the data 1279 * onto the stream head. 1280 */ 1281 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 1282 TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp); 1283 1284 /* 1285 * Cancel any pending push timers. 1286 */ 1287 if (tcp->tcp_push_tid != 0) { 1288 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 1289 tcp->tcp_push_tid = 0; 1290 } 1291 if (peer_tcp->tcp_push_tid != 0) { 1292 (void) TCP_TIMER_CANCEL(peer_tcp, peer_tcp->tcp_push_tid); 1293 peer_tcp->tcp_push_tid = 0; 1294 } 1295 1296 /* 1297 * Drain any pending data; the detached check is needed because 1298 * we may be called as a result of a tcp_unfuse() triggered by 1299 * tcp_fuse_output(). Note that in case of a detached tcp, the 1300 * draining will happen later after the tcp is unfused. For non- 1301 * urgent data, this can be handled by the regular tcp_rcv_drain(). 1302 * If we have urgent data sitting in the receive list, we will 1303 * need to send up a SIGURG signal first before draining the data. 1304 * All of these will be handled by the code in tcp_fuse_rcv_drain() 1305 * when called from tcp_rcv_drain(). 1306 */ 1307 if (!TCP_IS_DETACHED(tcp)) { 1308 (void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp, 1309 (unfusing ? &tcp->tcp_fused_sigurg_mp : NULL)); 1310 } 1311 if (!TCP_IS_DETACHED(peer_tcp)) { 1312 (void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp, 1313 (unfusing ? &peer_tcp->tcp_fused_sigurg_mp : NULL)); 1314 } 1315 1316 /* 1317 * Make all current and future tcp_fuse_rrw() calls fail with EBUSY. 1318 * To ensure threads don't sneak past the checks in tcp_fuse_rrw(), 1319 * a given stream must be stopped prior to being unplugged (but the 1320 * ordering of operations between the streams is unimportant). 1321 */ 1322 TCP_FUSE_SYNCSTR_STOP(tcp); 1323 TCP_FUSE_SYNCSTR_STOP(peer_tcp); 1324 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 1325 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp); 1326 1327 /* Lift up any flow-control conditions */ 1328 if (tcp->tcp_flow_stopped) { 1329 tcp_clrqfull(tcp); 1330 TCP_STAT(tcps, tcp_fusion_backenabled); 1331 } 1332 if (peer_tcp->tcp_flow_stopped) { 1333 tcp_clrqfull(peer_tcp); 1334 TCP_STAT(tcps, tcp_fusion_backenabled); 1335 } 1336 1337 /* Disable synchronous streams */ 1338 tcp_fuse_syncstr_disable(tcp); 1339 tcp_fuse_syncstr_disable(peer_tcp); 1340 } 1341 1342 /* 1343 * Calculate the size of receive buffer for a fused tcp endpoint. 1344 */ 1345 size_t 1346 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd) 1347 { 1348 tcp_stack_t *tcps = tcp->tcp_tcps; 1349 1350 ASSERT(tcp->tcp_fused); 1351 1352 /* Ensure that value is within the maximum upper bound */ 1353 if (rwnd > tcps->tcps_max_buf) 1354 rwnd = tcps->tcps_max_buf; 1355 1356 /* Obey the absolute minimum tcp receive high water mark */ 1357 if (rwnd < tcps->tcps_sth_rcv_hiwat) 1358 rwnd = tcps->tcps_sth_rcv_hiwat; 1359 1360 /* 1361 * Round up to system page size in case SO_RCVBUF is modified 1362 * after SO_SNDBUF; the latter is also similarly rounded up. 1363 */ 1364 rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t); 1365 tcp->tcp_fuse_rcv_hiwater = rwnd; 1366 return (rwnd); 1367 } 1368 1369 /* 1370 * Calculate the maximum outstanding unread data block for a fused tcp endpoint. 1371 */ 1372 int 1373 tcp_fuse_maxpsz_set(tcp_t *tcp) 1374 { 1375 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 1376 uint_t sndbuf = tcp->tcp_xmit_hiwater; 1377 uint_t maxpsz = sndbuf; 1378 1379 ASSERT(tcp->tcp_fused); 1380 ASSERT(peer_tcp != NULL); 1381 ASSERT(peer_tcp->tcp_fuse_rcv_hiwater != 0); 1382 /* 1383 * In the fused loopback case, we want the stream head to split 1384 * up larger writes into smaller chunks for a more accurate flow- 1385 * control accounting. Our maxpsz is half of the sender's send 1386 * buffer or the receiver's receive buffer, whichever is smaller. 1387 * We round up the buffer to system page size due to the lack of 1388 * TCP MSS concept in Fusion. 1389 */ 1390 if (maxpsz > peer_tcp->tcp_fuse_rcv_hiwater) 1391 maxpsz = peer_tcp->tcp_fuse_rcv_hiwater; 1392 maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1; 1393 1394 /* 1395 * Calculate the peer's limit for the number of outstanding unread 1396 * data block. This is the amount of data blocks that are allowed 1397 * to reside in the receiver's queue before the sender gets flow 1398 * controlled. It is used only in the synchronous streams mode as 1399 * a way to throttle the sender when it performs consecutive writes 1400 * faster than can be read. The value is derived from SO_SNDBUF in 1401 * order to give the sender some control; we divide it with a large 1402 * value (16KB) to produce a fairly low initial limit. 1403 */ 1404 if (tcp_fusion_rcv_unread_min == 0) { 1405 /* A value of 0 means that we disable the check */ 1406 peer_tcp->tcp_fuse_rcv_unread_hiwater = 0; 1407 } else { 1408 peer_tcp->tcp_fuse_rcv_unread_hiwater = 1409 MAX(sndbuf >> 14, tcp_fusion_rcv_unread_min); 1410 } 1411 return (maxpsz); 1412 } 1413