1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/stream.h> 28 #include <sys/strsun.h> 29 #include <sys/strsubr.h> 30 #include <sys/debug.h> 31 #include <sys/sdt.h> 32 #include <sys/cmn_err.h> 33 #include <sys/tihdr.h> 34 35 #include <inet/common.h> 36 #include <inet/optcom.h> 37 #include <inet/ip.h> 38 #include <inet/ip_if.h> 39 #include <inet/ip_impl.h> 40 #include <inet/tcp.h> 41 #include <inet/tcp_impl.h> 42 #include <inet/ipsec_impl.h> 43 #include <inet/ipclassifier.h> 44 #include <inet/ipp_common.h> 45 #include <inet/ip_if.h> 46 47 /* 48 * This file implements TCP fusion - a protocol-less data path for TCP 49 * loopback connections. The fusion of two local TCP endpoints occurs 50 * at connection establishment time. Various conditions (see details 51 * in tcp_fuse()) need to be met for fusion to be successful. If it 52 * fails, we fall back to the regular TCP data path; if it succeeds, 53 * both endpoints proceed to use tcp_fuse_output() as the transmit path. 54 * tcp_fuse_output() enqueues application data directly onto the peer's 55 * receive queue; no protocol processing is involved. After enqueueing 56 * the data, the sender can either push (putnext) data up the receiver's 57 * read queue; or the sender can simply return and let the receiver 58 * retrieve the enqueued data via the synchronous streams entry point 59 * tcp_fuse_rrw(). The latter path is taken if synchronous streams is 60 * enabled (the default). It is disabled if sockfs no longer resides 61 * directly on top of tcp module due to a module insertion or removal. 62 * It also needs to be temporarily disabled when sending urgent data 63 * because the tcp_fuse_rrw() path bypasses the M_PROTO processing done 64 * by strsock_proto() hook. 65 * 66 * Sychronization is handled by squeue and the mutex tcp_non_sq_lock. 67 * One of the requirements for fusion to succeed is that both endpoints 68 * need to be using the same squeue. This ensures that neither side 69 * can disappear while the other side is still sending data. By itself, 70 * squeue is not sufficient for guaranteeing safety when synchronous 71 * streams is enabled. The reason is that tcp_fuse_rrw() doesn't enter 72 * the squeue and its access to tcp_rcv_list and other fusion-related 73 * fields needs to be sychronized with the sender. tcp_non_sq_lock is 74 * used for this purpose. When there is urgent data, the sender needs 75 * to push the data up the receiver's streams read queue. In order to 76 * avoid holding the tcp_non_sq_lock across putnext(), the sender sets 77 * the peer tcp's tcp_fuse_syncstr_plugged bit and releases tcp_non_sq_lock 78 * (see macro TCP_FUSE_SYNCSTR_PLUG_DRAIN()). If tcp_fuse_rrw() enters 79 * after this point, it will see that synchronous streams is plugged and 80 * will wait on tcp_fuse_plugcv. After the sender has finished pushing up 81 * all urgent data, it will clear the tcp_fuse_syncstr_plugged bit using 82 * TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(). This will cause any threads waiting 83 * on tcp_fuse_plugcv to return EBUSY, and in turn cause strget() to call 84 * getq_noenab() to dequeue data from the stream head instead. Once the 85 * data on the stream head has been consumed, tcp_fuse_rrw() may again 86 * be used to process tcp_rcv_list. However, if TCP_FUSE_SYNCSTR_STOP() 87 * has been called, all future calls to tcp_fuse_rrw() will return EBUSY, 88 * effectively disabling synchronous streams. 89 * 90 * The following note applies only to the synchronous streams mode. 91 * 92 * Flow control is done by checking the size of receive buffer and 93 * the number of data blocks, both set to different limits. This is 94 * different than regular streams flow control where cumulative size 95 * check dominates block count check -- streams queue high water mark 96 * typically represents bytes. Each enqueue triggers notifications 97 * to the receiving process; a build up of data blocks indicates a 98 * slow receiver and the sender should be blocked or informed at the 99 * earliest moment instead of further wasting system resources. In 100 * effect, this is equivalent to limiting the number of outstanding 101 * segments in flight. 102 */ 103 104 /* 105 * Setting this to false means we disable fusion altogether and 106 * loopback connections would go through the protocol paths. 107 */ 108 boolean_t do_tcp_fusion = B_TRUE; 109 110 /* 111 * Enabling this flag allows sockfs to retrieve data directly 112 * from a fused tcp endpoint using synchronous streams interface. 113 */ 114 boolean_t do_tcp_direct_sockfs = B_TRUE; 115 116 /* 117 * This is the minimum amount of outstanding writes allowed on 118 * a synchronous streams-enabled receiving endpoint before the 119 * sender gets flow-controlled. Setting this value to 0 means 120 * that the data block limit is equivalent to the byte count 121 * limit, which essentially disables the check. 122 */ 123 #define TCP_FUSION_RCV_UNREAD_MIN 8 124 uint_t tcp_fusion_rcv_unread_min = TCP_FUSION_RCV_UNREAD_MIN; 125 126 static void tcp_fuse_syncstr_enable(tcp_t *); 127 static void tcp_fuse_syncstr_disable(tcp_t *); 128 static boolean_t strrput_sig(queue_t *, boolean_t); 129 130 /* 131 * Return true if this connection needs some IP functionality 132 */ 133 static boolean_t 134 tcp_loopback_needs_ip(tcp_t *tcp, netstack_t *ns) 135 { 136 ipsec_stack_t *ipss = ns->netstack_ipsec; 137 138 /* 139 * If ire is not cached, do not use fusion 140 */ 141 if (tcp->tcp_connp->conn_ire_cache == NULL) { 142 /* 143 * There is no need to hold conn_lock here because when called 144 * from tcp_fuse() there can be no window where conn_ire_cache 145 * can change. This is not true when called from 146 * tcp_fuse_output() as conn_ire_cache can become null just 147 * after the check. It will be necessary to recheck for a NULL 148 * conn_ire_cache in tcp_fuse_output() to avoid passing a 149 * stale ill pointer to FW_HOOKS. 150 */ 151 return (B_TRUE); 152 } 153 if (tcp->tcp_ipversion == IPV4_VERSION) { 154 if (tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) 155 return (B_TRUE); 156 if (CONN_OUTBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss)) 157 return (B_TRUE); 158 if (CONN_INBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss)) 159 return (B_TRUE); 160 } else { 161 if (tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) 162 return (B_TRUE); 163 if (CONN_OUTBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss)) 164 return (B_TRUE); 165 if (CONN_INBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss)) 166 return (B_TRUE); 167 } 168 if (!CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)) 169 return (B_TRUE); 170 return (B_FALSE); 171 } 172 173 174 /* 175 * This routine gets called by the eager tcp upon changing state from 176 * SYN_RCVD to ESTABLISHED. It fuses a direct path between itself 177 * and the active connect tcp such that the regular tcp processings 178 * may be bypassed under allowable circumstances. Because the fusion 179 * requires both endpoints to be in the same squeue, it does not work 180 * for simultaneous active connects because there is no easy way to 181 * switch from one squeue to another once the connection is created. 182 * This is different from the eager tcp case where we assign it the 183 * same squeue as the one given to the active connect tcp during open. 184 */ 185 void 186 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph) 187 { 188 conn_t *peer_connp, *connp = tcp->tcp_connp; 189 tcp_t *peer_tcp; 190 tcp_stack_t *tcps = tcp->tcp_tcps; 191 netstack_t *ns; 192 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 193 194 ASSERT(!tcp->tcp_fused); 195 ASSERT(tcp->tcp_loopback); 196 ASSERT(tcp->tcp_loopback_peer == NULL); 197 /* 198 * We need to inherit q_hiwat of the listener tcp, but we can't 199 * really use tcp_listener since we get here after sending up 200 * T_CONN_IND and tcp_wput_accept() may be called independently, 201 * at which point tcp_listener is cleared; this is why we use 202 * tcp_saved_listener. The listener itself is guaranteed to be 203 * around until tcp_accept_finish() is called on this eager -- 204 * this won't happen until we're done since we're inside the 205 * eager's perimeter now. 206 * 207 * We can also get called in the case were a connection needs 208 * to be re-fused. In this case tcp_saved_listener will be 209 * NULL but tcp_refuse will be true. 210 */ 211 ASSERT(tcp->tcp_saved_listener != NULL || tcp->tcp_refuse); 212 /* 213 * Lookup peer endpoint; search for the remote endpoint having 214 * the reversed address-port quadruplet in ESTABLISHED state, 215 * which is guaranteed to be unique in the system. Zone check 216 * is applied accordingly for loopback address, but not for 217 * local address since we want fusion to happen across Zones. 218 */ 219 if (tcp->tcp_ipversion == IPV4_VERSION) { 220 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp, 221 (ipha_t *)iphdr, tcph, ipst); 222 } else { 223 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp, 224 (ip6_t *)iphdr, tcph, ipst); 225 } 226 227 /* 228 * We can only proceed if peer exists, resides in the same squeue 229 * as our conn and is not raw-socket. The squeue assignment of 230 * this eager tcp was done earlier at the time of SYN processing 231 * in ip_fanout_tcp{_v6}. Note that similar squeues by itself 232 * doesn't guarantee a safe condition to fuse, hence we perform 233 * additional tests below. 234 */ 235 ASSERT(peer_connp == NULL || peer_connp != connp); 236 if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp || 237 !IPCL_IS_TCP(peer_connp)) { 238 if (peer_connp != NULL) { 239 TCP_STAT(tcps, tcp_fusion_unqualified); 240 CONN_DEC_REF(peer_connp); 241 } 242 return; 243 } 244 peer_tcp = peer_connp->conn_tcp; /* active connect tcp */ 245 246 ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused); 247 ASSERT(peer_tcp->tcp_loopback && peer_tcp->tcp_loopback_peer == NULL); 248 ASSERT(peer_connp->conn_sqp == connp->conn_sqp); 249 250 /* 251 * Fuse the endpoints; we perform further checks against both 252 * tcp endpoints to ensure that a fusion is allowed to happen. 253 * In particular we bail out for non-simple TCP/IP or if IPsec/ 254 * IPQoS policy/kernel SSL exists. We also need to check if 255 * the connection is quiescent to cover the case when we are 256 * trying to re-enable fusion after IPobservability is turned off. 257 */ 258 ns = tcps->tcps_netstack; 259 ipst = ns->netstack_ip; 260 261 if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable && 262 !tcp_loopback_needs_ip(tcp, ns) && 263 !tcp_loopback_needs_ip(peer_tcp, ns) && 264 tcp->tcp_kssl_ent == NULL && 265 tcp->tcp_xmit_head == NULL && peer_tcp->tcp_xmit_head == NULL && 266 !IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst)) { 267 mblk_t *mp; 268 queue_t *peer_rq = peer_tcp->tcp_rq; 269 270 ASSERT(!TCP_IS_DETACHED(peer_tcp)); 271 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 272 ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL); 273 ASSERT(tcp->tcp_kssl_ctx == NULL); 274 275 /* 276 * We need to drain data on both endpoints during unfuse. 277 * If we need to send up SIGURG at the time of draining, 278 * we want to be sure that an mblk is readily available. 279 * This is why we pre-allocate the M_PCSIG mblks for both 280 * endpoints which will only be used during/after unfuse. 281 */ 282 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 283 if ((mp = allocb(1, BPRI_HI)) == NULL) 284 goto failed; 285 286 tcp->tcp_fused_sigurg_mp = mp; 287 } 288 289 if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) { 290 if ((mp = allocb(1, BPRI_HI)) == NULL) 291 goto failed; 292 293 peer_tcp->tcp_fused_sigurg_mp = mp; 294 } 295 296 if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp) && 297 (mp = allocb(sizeof (struct stroptions), 298 BPRI_HI)) == NULL) { 299 goto failed; 300 } 301 302 /* If either tcp or peer_tcp sodirect enabled then disable */ 303 if (tcp->tcp_sodirect != NULL) { 304 mutex_enter(tcp->tcp_sodirect->sod_lockp); 305 SOD_DISABLE(tcp->tcp_sodirect); 306 mutex_exit(tcp->tcp_sodirect->sod_lockp); 307 tcp->tcp_sodirect = NULL; 308 } 309 if (peer_tcp->tcp_sodirect != NULL) { 310 mutex_enter(peer_tcp->tcp_sodirect->sod_lockp); 311 SOD_DISABLE(peer_tcp->tcp_sodirect); 312 mutex_exit(peer_tcp->tcp_sodirect->sod_lockp); 313 peer_tcp->tcp_sodirect = NULL; 314 } 315 316 /* Fuse both endpoints */ 317 peer_tcp->tcp_loopback_peer = tcp; 318 tcp->tcp_loopback_peer = peer_tcp; 319 peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE; 320 321 /* 322 * We never use regular tcp paths in fusion and should 323 * therefore clear tcp_unsent on both endpoints. Having 324 * them set to non-zero values means asking for trouble 325 * especially after unfuse, where we may end up sending 326 * through regular tcp paths which expect xmit_list and 327 * friends to be correctly setup. 328 */ 329 peer_tcp->tcp_unsent = tcp->tcp_unsent = 0; 330 331 tcp_timers_stop(tcp); 332 tcp_timers_stop(peer_tcp); 333 334 /* 335 * At this point we are a detached eager tcp and therefore 336 * don't have a queue assigned to us until accept happens. 337 * In the mean time the peer endpoint may immediately send 338 * us data as soon as fusion is finished, and we need to be 339 * able to flow control it in case it sends down huge amount 340 * of data while we're still detached. To prevent that we 341 * inherit the listener's recv_hiwater value; this is temporary 342 * since we'll repeat the process intcp_accept_finish(). 343 */ 344 if (!tcp->tcp_refuse) { 345 (void) tcp_fuse_set_rcv_hiwat(tcp, 346 tcp->tcp_saved_listener->tcp_recv_hiwater); 347 348 /* 349 * Set the stream head's write offset value to zero 350 * since we won't be needing any room for TCP/IP 351 * headers; tell it to not break up the writes (this 352 * would reduce the amount of work done by kmem); and 353 * configure our receive buffer. Note that we can only 354 * do this for the active connect tcp since our eager is 355 * still detached; it will be dealt with later in 356 * tcp_accept_finish(). 357 */ 358 if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) { 359 struct stroptions *stropt; 360 361 DB_TYPE(mp) = M_SETOPTS; 362 mp->b_wptr += sizeof (*stropt); 363 364 stropt = (struct stroptions *)mp->b_rptr; 365 stropt->so_flags = SO_MAXBLK|SO_WROFF|SO_HIWAT; 366 stropt->so_maxblk = tcp_maxpsz_set(peer_tcp, 367 B_FALSE); 368 stropt->so_wroff = 0; 369 370 /* 371 * Record the stream head's high water mark for 372 * peer endpoint; this is used for flow-control 373 * purposes in tcp_fuse_output(). 374 */ 375 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat( 376 peer_tcp, peer_rq->q_hiwat); 377 378 tcp->tcp_refuse = B_FALSE; 379 peer_tcp->tcp_refuse = B_FALSE; 380 /* Send the options up */ 381 putnext(peer_rq, mp); 382 } else { 383 struct sock_proto_props sopp; 384 385 /* The peer is a non-STREAMS end point */ 386 ASSERT(IPCL_IS_TCP(peer_connp)); 387 388 (void) tcp_fuse_set_rcv_hiwat(tcp, 389 tcp->tcp_saved_listener->tcp_recv_hiwater); 390 391 sopp.sopp_flags = SOCKOPT_MAXBLK | 392 SOCKOPT_WROFF | SOCKOPT_RCVHIWAT; 393 sopp.sopp_maxblk = tcp_maxpsz_set(peer_tcp, 394 B_FALSE); 395 sopp.sopp_wroff = 0; 396 sopp.sopp_rxhiwat = tcp_fuse_set_rcv_hiwat( 397 peer_tcp, peer_tcp->tcp_recv_hiwater); 398 (*peer_connp->conn_upcalls->su_set_proto_props) 399 (peer_connp->conn_upper_handle, &sopp); 400 } 401 } 402 tcp->tcp_refuse = B_FALSE; 403 peer_tcp->tcp_refuse = B_FALSE; 404 } else { 405 TCP_STAT(tcps, tcp_fusion_unqualified); 406 } 407 CONN_DEC_REF(peer_connp); 408 return; 409 410 failed: 411 if (tcp->tcp_fused_sigurg_mp != NULL) { 412 freeb(tcp->tcp_fused_sigurg_mp); 413 tcp->tcp_fused_sigurg_mp = NULL; 414 } 415 if (peer_tcp->tcp_fused_sigurg_mp != NULL) { 416 freeb(peer_tcp->tcp_fused_sigurg_mp); 417 peer_tcp->tcp_fused_sigurg_mp = NULL; 418 } 419 CONN_DEC_REF(peer_connp); 420 } 421 422 /* 423 * Unfuse a previously-fused pair of tcp loopback endpoints. 424 */ 425 void 426 tcp_unfuse(tcp_t *tcp) 427 { 428 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 429 430 ASSERT(tcp->tcp_fused && peer_tcp != NULL); 431 ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp); 432 ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); 433 ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0); 434 435 /* 436 * We disable synchronous streams, drain any queued data and 437 * clear tcp_direct_sockfs. The synchronous streams entry 438 * points will become no-ops after this point. 439 */ 440 tcp_fuse_disable_pair(tcp, B_TRUE); 441 442 /* 443 * Update th_seq and th_ack in the header template 444 */ 445 U32_TO_ABE32(tcp->tcp_snxt, tcp->tcp_tcph->th_seq); 446 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 447 U32_TO_ABE32(peer_tcp->tcp_snxt, peer_tcp->tcp_tcph->th_seq); 448 U32_TO_ABE32(peer_tcp->tcp_rnxt, peer_tcp->tcp_tcph->th_ack); 449 450 /* Unfuse the endpoints */ 451 peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE; 452 peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL; 453 if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) { 454 ASSERT(peer_tcp->tcp_fused_sigurg_mp != NULL); 455 freeb(peer_tcp->tcp_fused_sigurg_mp); 456 peer_tcp->tcp_fused_sigurg_mp = NULL; 457 } 458 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 459 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 460 freeb(tcp->tcp_fused_sigurg_mp); 461 tcp->tcp_fused_sigurg_mp = NULL; 462 } 463 } 464 465 /* 466 * Fusion output routine for urgent data. This routine is called by 467 * tcp_fuse_output() for handling non-M_DATA mblks. 468 */ 469 void 470 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp) 471 { 472 mblk_t *mp1; 473 struct T_exdata_ind *tei; 474 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 475 mblk_t *head, *prev_head = NULL; 476 tcp_stack_t *tcps = tcp->tcp_tcps; 477 478 ASSERT(tcp->tcp_fused); 479 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 480 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 481 ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA); 482 ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0); 483 484 /* 485 * Urgent data arrives in the form of T_EXDATA_REQ from above. 486 * Each occurence denotes a new urgent pointer. For each new 487 * urgent pointer we signal (SIGURG) the receiving app to indicate 488 * that it needs to go into urgent mode. This is similar to the 489 * urgent data handling in the regular tcp. We don't need to keep 490 * track of where the urgent pointer is, because each T_EXDATA_REQ 491 * "advances" the urgent pointer for us. 492 * 493 * The actual urgent data carried by T_EXDATA_REQ is then prepended 494 * by a T_EXDATA_IND before being enqueued behind any existing data 495 * destined for the receiving app. There is only a single urgent 496 * pointer (out-of-band mark) for a given tcp. If the new urgent 497 * data arrives before the receiving app reads some existing urgent 498 * data, the previous marker is lost. This behavior is emulated 499 * accordingly below, by removing any existing T_EXDATA_IND messages 500 * and essentially converting old urgent data into non-urgent. 501 */ 502 ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID); 503 /* Let sender get out of urgent mode */ 504 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 505 506 /* 507 * This flag indicates that a signal needs to be sent up. 508 * This flag will only get cleared once SIGURG is delivered and 509 * is not affected by the tcp_fused flag -- delivery will still 510 * happen even after an endpoint is unfused, to handle the case 511 * where the sending endpoint immediately closes/unfuses after 512 * sending urgent data and the accept is not yet finished. 513 */ 514 peer_tcp->tcp_fused_sigurg = B_TRUE; 515 516 /* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */ 517 DB_TYPE(mp) = M_PROTO; 518 tei = (struct T_exdata_ind *)mp->b_rptr; 519 tei->PRIM_type = T_EXDATA_IND; 520 tei->MORE_flag = 0; 521 mp->b_wptr = (uchar_t *)&tei[1]; 522 523 TCP_STAT(tcps, tcp_fusion_urg); 524 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 525 526 head = peer_tcp->tcp_rcv_list; 527 while (head != NULL) { 528 /* 529 * Remove existing T_EXDATA_IND, keep the data which follows 530 * it and relink our list. Note that we don't modify the 531 * tcp_rcv_last_tail since it never points to T_EXDATA_IND. 532 */ 533 if (DB_TYPE(head) != M_DATA) { 534 mp1 = head; 535 536 ASSERT(DB_TYPE(mp1->b_cont) == M_DATA); 537 head = mp1->b_cont; 538 mp1->b_cont = NULL; 539 head->b_next = mp1->b_next; 540 mp1->b_next = NULL; 541 if (prev_head != NULL) 542 prev_head->b_next = head; 543 if (peer_tcp->tcp_rcv_list == mp1) 544 peer_tcp->tcp_rcv_list = head; 545 if (peer_tcp->tcp_rcv_last_head == mp1) 546 peer_tcp->tcp_rcv_last_head = head; 547 freeb(mp1); 548 } 549 prev_head = head; 550 head = head->b_next; 551 } 552 } 553 554 /* 555 * Fusion output routine, called by tcp_output() and tcp_wput_proto(). 556 * If we are modifying any member that can be changed outside the squeue, 557 * like tcp_flow_stopped, we need to take tcp_non_sq_lock. 558 */ 559 boolean_t 560 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size) 561 { 562 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 563 uint_t max_unread; 564 boolean_t flow_stopped, peer_data_queued = B_FALSE; 565 boolean_t urgent = (DB_TYPE(mp) != M_DATA); 566 boolean_t push = B_TRUE; 567 mblk_t *mp1 = mp; 568 ill_t *ilp, *olp; 569 ipif_t *iifp, *oifp; 570 ipha_t *ipha; 571 ip6_t *ip6h; 572 tcph_t *tcph; 573 uint_t ip_hdr_len; 574 uint32_t seq; 575 uint32_t recv_size = send_size; 576 tcp_stack_t *tcps = tcp->tcp_tcps; 577 netstack_t *ns = tcps->tcps_netstack; 578 ip_stack_t *ipst = ns->netstack_ip; 579 580 ASSERT(tcp->tcp_fused); 581 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 582 ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); 583 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO || 584 DB_TYPE(mp) == M_PCPROTO); 585 586 /* If this connection requires IP, unfuse and use regular path */ 587 if (tcp_loopback_needs_ip(tcp, ns) || 588 tcp_loopback_needs_ip(peer_tcp, ns) || 589 IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst) || 590 list_head(&ipst->ips_ipobs_cb_list) != NULL) { 591 TCP_STAT(tcps, tcp_fusion_aborted); 592 tcp->tcp_refuse = B_TRUE; 593 peer_tcp->tcp_refuse = B_TRUE; 594 595 bcopy(peer_tcp->tcp_tcph, &tcp->tcp_saved_tcph, 596 sizeof (tcph_t)); 597 bcopy(tcp->tcp_tcph, &peer_tcp->tcp_saved_tcph, 598 sizeof (tcph_t)); 599 if (tcp->tcp_ipversion == IPV4_VERSION) { 600 bcopy(peer_tcp->tcp_ipha, &tcp->tcp_saved_ipha, 601 sizeof (ipha_t)); 602 bcopy(tcp->tcp_ipha, &peer_tcp->tcp_saved_ipha, 603 sizeof (ipha_t)); 604 } else { 605 bcopy(peer_tcp->tcp_ip6h, &tcp->tcp_saved_ip6h, 606 sizeof (ip6_t)); 607 bcopy(tcp->tcp_ip6h, &peer_tcp->tcp_saved_ip6h, 608 sizeof (ip6_t)); 609 } 610 goto unfuse; 611 } 612 613 if (send_size == 0) { 614 freemsg(mp); 615 return (B_TRUE); 616 } 617 max_unread = peer_tcp->tcp_fuse_rcv_unread_hiwater; 618 619 /* 620 * Handle urgent data; we either send up SIGURG to the peer now 621 * or do it later when we drain, in case the peer is detached 622 * or if we're short of memory for M_PCSIG mblk. 623 */ 624 if (urgent) { 625 /* 626 * We stop synchronous streams when we have urgent data 627 * queued to prevent tcp_fuse_rrw() from pulling it. If 628 * for some reasons the urgent data can't be delivered 629 * below, synchronous streams will remain stopped until 630 * someone drains the tcp_rcv_list. 631 */ 632 TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp); 633 tcp_fuse_output_urg(tcp, mp); 634 635 mp1 = mp->b_cont; 636 } 637 638 if (tcp->tcp_ipversion == IPV4_VERSION && 639 (HOOKS4_INTERESTED_LOOPBACK_IN(ipst) || 640 HOOKS4_INTERESTED_LOOPBACK_OUT(ipst)) || 641 tcp->tcp_ipversion == IPV6_VERSION && 642 (HOOKS6_INTERESTED_LOOPBACK_IN(ipst) || 643 HOOKS6_INTERESTED_LOOPBACK_OUT(ipst))) { 644 /* 645 * Build ip and tcp header to satisfy FW_HOOKS. 646 * We only build it when any hook is present. 647 */ 648 if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL, 649 tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL) 650 /* If tcp_xmit_mp fails, use regular path */ 651 goto unfuse; 652 653 /* 654 * The ipif and ill can be safely referenced under the 655 * protection of conn_lock - see head of function comment for 656 * conn_get_held_ipif(). It is necessary to check that both 657 * the ipif and ill can be looked up (i.e. not condemned). If 658 * not, bail out and unfuse this connection. 659 */ 660 mutex_enter(&peer_tcp->tcp_connp->conn_lock); 661 if ((peer_tcp->tcp_connp->conn_ire_cache == NULL) || 662 (peer_tcp->tcp_connp->conn_ire_cache->ire_marks & 663 IRE_MARK_CONDEMNED) || 664 ((oifp = peer_tcp->tcp_connp->conn_ire_cache->ire_ipif) 665 == NULL) || 666 (!IPIF_CAN_LOOKUP(oifp)) || 667 ((olp = oifp->ipif_ill) == NULL) || 668 (ill_check_and_refhold(olp) != 0)) { 669 mutex_exit(&peer_tcp->tcp_connp->conn_lock); 670 goto unfuse; 671 } 672 mutex_exit(&peer_tcp->tcp_connp->conn_lock); 673 674 /* PFHooks: LOOPBACK_OUT */ 675 if (tcp->tcp_ipversion == IPV4_VERSION) { 676 ipha = (ipha_t *)mp1->b_rptr; 677 678 DTRACE_PROBE4(ip4__loopback__out__start, 679 ill_t *, NULL, ill_t *, olp, 680 ipha_t *, ipha, mblk_t *, mp1); 681 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 682 ipst->ips_ipv4firewall_loopback_out, 683 NULL, olp, ipha, mp1, mp1, 0, ipst); 684 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, mp1); 685 } else { 686 ip6h = (ip6_t *)mp1->b_rptr; 687 688 DTRACE_PROBE4(ip6__loopback__out__start, 689 ill_t *, NULL, ill_t *, olp, 690 ip6_t *, ip6h, mblk_t *, mp1); 691 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 692 ipst->ips_ipv6firewall_loopback_out, 693 NULL, olp, ip6h, mp1, mp1, 0, ipst); 694 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, mp1); 695 } 696 ill_refrele(olp); 697 698 if (mp1 == NULL) 699 goto unfuse; 700 701 /* 702 * The ipif and ill can be safely referenced under the 703 * protection of conn_lock - see head of function comment for 704 * conn_get_held_ipif(). It is necessary to check that both 705 * the ipif and ill can be looked up (i.e. not condemned). If 706 * not, bail out and unfuse this connection. 707 */ 708 mutex_enter(&tcp->tcp_connp->conn_lock); 709 if ((tcp->tcp_connp->conn_ire_cache == NULL) || 710 (tcp->tcp_connp->conn_ire_cache->ire_marks & 711 IRE_MARK_CONDEMNED) || 712 ((iifp = tcp->tcp_connp->conn_ire_cache->ire_ipif) 713 == NULL) || 714 (!IPIF_CAN_LOOKUP(iifp)) || 715 ((ilp = iifp->ipif_ill) == NULL) || 716 (ill_check_and_refhold(ilp) != 0)) { 717 mutex_exit(&tcp->tcp_connp->conn_lock); 718 goto unfuse; 719 } 720 mutex_exit(&tcp->tcp_connp->conn_lock); 721 722 /* PFHooks: LOOPBACK_IN */ 723 if (tcp->tcp_ipversion == IPV4_VERSION) { 724 DTRACE_PROBE4(ip4__loopback__in__start, 725 ill_t *, ilp, ill_t *, NULL, 726 ipha_t *, ipha, mblk_t *, mp1); 727 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 728 ipst->ips_ipv4firewall_loopback_in, 729 ilp, NULL, ipha, mp1, mp1, 0, ipst); 730 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, mp1); 731 ill_refrele(ilp); 732 if (mp1 == NULL) 733 goto unfuse; 734 735 ip_hdr_len = IPH_HDR_LENGTH(ipha); 736 } else { 737 DTRACE_PROBE4(ip6__loopback__in__start, 738 ill_t *, ilp, ill_t *, NULL, 739 ip6_t *, ip6h, mblk_t *, mp1); 740 FW_HOOKS6(ipst->ips_ip6_loopback_in_event, 741 ipst->ips_ipv6firewall_loopback_in, 742 ilp, NULL, ip6h, mp1, mp1, 0, ipst); 743 DTRACE_PROBE1(ip6__loopback__in__end, mblk_t *, mp1); 744 ill_refrele(ilp); 745 if (mp1 == NULL) 746 goto unfuse; 747 748 ip_hdr_len = ip_hdr_length_v6(mp1, ip6h); 749 } 750 751 /* Data length might be changed by FW_HOOKS */ 752 tcph = (tcph_t *)&mp1->b_rptr[ip_hdr_len]; 753 seq = ABE32_TO_U32(tcph->th_seq); 754 recv_size += seq - tcp->tcp_snxt; 755 756 /* 757 * The message duplicated by tcp_xmit_mp is freed. 758 * Note: the original message passed in remains unchanged. 759 */ 760 freemsg(mp1); 761 } 762 763 mutex_enter(&peer_tcp->tcp_non_sq_lock); 764 /* 765 * Wake up and signal the peer; it is okay to do this before 766 * enqueueing because we are holding the lock. One of the 767 * advantages of synchronous streams is the ability for us to 768 * find out when the application performs a read on the socket, 769 * by way of tcp_fuse_rrw() entry point being called. Every 770 * data that gets enqueued onto the receiver is treated as if 771 * it has arrived at the receiving endpoint, thus generating 772 * SIGPOLL/SIGIO for asynchronous socket just as in the strrput() 773 * case. However, we only wake up the application when necessary, 774 * i.e. during the first enqueue. When tcp_fuse_rrw() is called 775 * it will send everything upstream. 776 */ 777 if (peer_tcp->tcp_direct_sockfs && !urgent && 778 !TCP_IS_DETACHED(peer_tcp)) { 779 /* Update poll events and send SIGPOLL/SIGIO if necessary */ 780 STR_WAKEUP_SENDSIG(STREAM(peer_tcp->tcp_rq), 781 peer_tcp->tcp_rcv_list); 782 } 783 784 /* 785 * Enqueue data into the peer's receive list; we may or may not 786 * drain the contents depending on the conditions below. 787 * 788 * tcp_hard_binding indicates that accept has not yet completed, 789 * in which case we use tcp_rcv_enqueue() instead of calling 790 * su_recv directly. Queued data will be drained when the accept 791 * completes (in tcp_accept_finish()). 792 */ 793 if (IPCL_IS_NONSTR(peer_tcp->tcp_connp) && 794 !peer_tcp->tcp_hard_binding) { 795 int error; 796 int flags = 0; 797 798 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 799 (tcp->tcp_urg == tcp->tcp_snxt)) { 800 flags = MSG_OOB; 801 (*peer_tcp->tcp_connp->conn_upcalls->su_signal_oob) 802 (peer_tcp->tcp_connp->conn_upper_handle, 0); 803 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 804 } 805 (*peer_tcp->tcp_connp->conn_upcalls->su_recv)( 806 peer_tcp->tcp_connp->conn_upper_handle, mp, recv_size, 807 flags, &error, &push); 808 } else { 809 if (IPCL_IS_NONSTR(peer_tcp->tcp_connp) && 810 (tcp->tcp_valid_bits & TCP_URG_VALID) && 811 (tcp->tcp_urg == tcp->tcp_snxt)) { 812 /* 813 * Can not deal with urgent pointers 814 * that arrive before the connection has been 815 * accept()ed. 816 */ 817 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 818 freemsg(mp); 819 mutex_exit(&peer_tcp->tcp_non_sq_lock); 820 return (B_TRUE); 821 } 822 823 tcp_rcv_enqueue(peer_tcp, mp, recv_size); 824 } 825 826 /* In case it wrapped around and also to keep it constant */ 827 peer_tcp->tcp_rwnd += recv_size; 828 /* 829 * We increase the peer's unread message count here whilst still 830 * holding it's tcp_non_sq_lock. This ensures that the increment 831 * occurs in the same lock acquisition perimeter as the enqueue. 832 * Depending on lock hierarchy, we can release these locks which 833 * creates a window in which we can race with tcp_fuse_rrw() 834 */ 835 peer_tcp->tcp_fuse_rcv_unread_cnt++; 836 837 /* 838 * Exercise flow-control when needed; we will get back-enabled 839 * in either tcp_accept_finish(), tcp_unfuse(), or tcp_fuse_rrw(). 840 * If tcp_direct_sockfs is on or if the peer endpoint is detached, 841 * we emulate streams flow control by checking the peer's queue 842 * size and high water mark; otherwise we simply use canputnext() 843 * to decide if we need to stop our flow. 844 * 845 * The outstanding unread data block check does not apply for a 846 * detached receiver; this is to avoid unnecessary blocking of the 847 * sender while the accept is currently in progress and is quite 848 * similar to the regular tcp. 849 */ 850 if (TCP_IS_DETACHED(peer_tcp) || max_unread == 0) 851 max_unread = UINT_MAX; 852 853 /* 854 * Since we are accessing our tcp_flow_stopped and might modify it, 855 * we need to take tcp->tcp_non_sq_lock. The lock for the highest 856 * address is held first. Dropping peer_tcp->tcp_non_sq_lock should 857 * not be an issue here since we are within the squeue and the peer 858 * won't disappear. 859 */ 860 if (tcp > peer_tcp) { 861 mutex_exit(&peer_tcp->tcp_non_sq_lock); 862 mutex_enter(&tcp->tcp_non_sq_lock); 863 mutex_enter(&peer_tcp->tcp_non_sq_lock); 864 } else { 865 mutex_enter(&tcp->tcp_non_sq_lock); 866 } 867 flow_stopped = tcp->tcp_flow_stopped; 868 if (((peer_tcp->tcp_direct_sockfs || TCP_IS_DETACHED(peer_tcp)) && 869 (peer_tcp->tcp_rcv_cnt >= peer_tcp->tcp_fuse_rcv_hiwater || 870 peer_tcp->tcp_fuse_rcv_unread_cnt >= max_unread)) || 871 (!peer_tcp->tcp_direct_sockfs && !TCP_IS_DETACHED(peer_tcp) && 872 !IPCL_IS_NONSTR(peer_tcp->tcp_connp) && 873 !canputnext(peer_tcp->tcp_rq))) { 874 peer_data_queued = B_TRUE; 875 } 876 877 if (!flow_stopped && (peer_data_queued || 878 (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater))) { 879 tcp_setqfull(tcp); 880 flow_stopped = B_TRUE; 881 TCP_STAT(tcps, tcp_fusion_flowctl); 882 DTRACE_PROBE4(tcp__fuse__output__flowctl, tcp_t *, tcp, 883 uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt, 884 uint_t, peer_tcp->tcp_fuse_rcv_unread_cnt); 885 } else if (flow_stopped && !peer_data_queued && 886 (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater)) { 887 tcp_clrqfull(tcp); 888 TCP_STAT(tcps, tcp_fusion_backenabled); 889 flow_stopped = B_FALSE; 890 } 891 mutex_exit(&tcp->tcp_non_sq_lock); 892 893 /* 894 * If we are in synchronous streams mode and the peer read queue is 895 * not full then schedule a push timer if one is not scheduled 896 * already. This is needed for applications which use MSG_PEEK to 897 * determine the number of bytes available before issuing a 'real' 898 * read. It also makes flow control more deterministic, particularly 899 * for smaller message sizes. 900 */ 901 if (!urgent && peer_tcp->tcp_direct_sockfs && 902 peer_tcp->tcp_push_tid == 0 && !TCP_IS_DETACHED(peer_tcp) && 903 canputnext(peer_tcp->tcp_rq)) { 904 peer_tcp->tcp_push_tid = TCP_TIMER(peer_tcp, tcp_push_timer, 905 MSEC_TO_TICK(tcps->tcps_push_timer_interval)); 906 } 907 mutex_exit(&peer_tcp->tcp_non_sq_lock); 908 ipst->ips_loopback_packets++; 909 tcp->tcp_last_sent_len = send_size; 910 911 /* Need to adjust the following SNMP MIB-related variables */ 912 tcp->tcp_snxt += send_size; 913 tcp->tcp_suna = tcp->tcp_snxt; 914 peer_tcp->tcp_rnxt += recv_size; 915 peer_tcp->tcp_rack = peer_tcp->tcp_rnxt; 916 917 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 918 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, send_size); 919 920 BUMP_MIB(&tcps->tcps_mib, tcpInSegs); 921 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 922 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, send_size); 923 924 BUMP_LOCAL(tcp->tcp_obsegs); 925 BUMP_LOCAL(peer_tcp->tcp_ibsegs); 926 927 DTRACE_PROBE2(tcp__fuse__output, tcp_t *, tcp, uint_t, send_size); 928 929 if (!TCP_IS_DETACHED(peer_tcp)) { 930 /* 931 * Drain the peer's receive queue it has urgent data or if 932 * we're not flow-controlled. There is no need for draining 933 * normal data when tcp_direct_sockfs is on because the peer 934 * will pull the data via tcp_fuse_rrw(). 935 */ 936 if (urgent || (!flow_stopped && !peer_tcp->tcp_direct_sockfs)) { 937 ASSERT(IPCL_IS_NONSTR(peer_tcp->tcp_connp) || 938 peer_tcp->tcp_rcv_list != NULL); 939 /* 940 * For TLI-based streams, a thread in tcp_accept_swap() 941 * can race with us. That thread will ensure that the 942 * correct peer_tcp->tcp_rq is globally visible before 943 * peer_tcp->tcp_detached is visible as clear, but we 944 * must also ensure that the load of tcp_rq cannot be 945 * reordered to be before the tcp_detached check. 946 */ 947 membar_consumer(); 948 (void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp, 949 NULL); 950 /* 951 * If synchronous streams was stopped above due 952 * to the presence of urgent data, re-enable it. 953 */ 954 if (urgent) 955 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp); 956 } 957 } 958 return (B_TRUE); 959 unfuse: 960 tcp_unfuse(tcp); 961 return (B_FALSE); 962 } 963 964 /* 965 * This routine gets called to deliver data upstream on a fused or 966 * previously fused tcp loopback endpoint; the latter happens only 967 * when there is a pending SIGURG signal plus urgent data that can't 968 * be sent upstream in the past. 969 */ 970 boolean_t 971 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp) 972 { 973 mblk_t *mp; 974 conn_t *connp = tcp->tcp_connp; 975 976 #ifdef DEBUG 977 uint_t cnt = 0; 978 #endif 979 tcp_stack_t *tcps = tcp->tcp_tcps; 980 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 981 boolean_t sd_rd_eof = B_FALSE; 982 983 ASSERT(tcp->tcp_loopback); 984 ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg); 985 ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL); 986 ASSERT(IPCL_IS_NONSTR(connp) || sigurg_mpp != NULL || tcp->tcp_fused); 987 988 /* No need for the push timer now, in case it was scheduled */ 989 if (tcp->tcp_push_tid != 0) { 990 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 991 tcp->tcp_push_tid = 0; 992 } 993 /* 994 * If there's urgent data sitting in receive list and we didn't 995 * get a chance to send up a SIGURG signal, make sure we send 996 * it first before draining in order to ensure that SIOCATMARK 997 * works properly. 998 */ 999 if (tcp->tcp_fused_sigurg) { 1000 tcp->tcp_fused_sigurg = B_FALSE; 1001 if (IPCL_IS_NONSTR(connp)) { 1002 (*connp->conn_upcalls->su_signal_oob) 1003 (connp->conn_upper_handle, 0); 1004 } else { 1005 /* 1006 * sigurg_mpp is normally NULL, i.e. when we're still 1007 * fused and didn't get here because of tcp_unfuse(). 1008 * In this case try hard to allocate the M_PCSIG mblk. 1009 */ 1010 if (sigurg_mpp == NULL && 1011 (mp = allocb(1, BPRI_HI)) == NULL && 1012 (mp = allocb_tryhard(1)) == NULL) { 1013 /* Alloc failed; try again next time */ 1014 tcp->tcp_push_tid = TCP_TIMER(tcp, 1015 tcp_push_timer, 1016 MSEC_TO_TICK( 1017 tcps->tcps_push_timer_interval)); 1018 return (B_TRUE); 1019 } else if (sigurg_mpp != NULL) { 1020 /* 1021 * Use the supplied M_PCSIG mblk; it means we're 1022 * either unfused or in the process of unfusing, 1023 * and the drain must happen now. 1024 */ 1025 mp = *sigurg_mpp; 1026 *sigurg_mpp = NULL; 1027 } 1028 ASSERT(mp != NULL); 1029 1030 /* Send up the signal */ 1031 DB_TYPE(mp) = M_PCSIG; 1032 *mp->b_wptr++ = (uchar_t)SIGURG; 1033 putnext(q, mp); 1034 } 1035 /* 1036 * Let the regular tcp_rcv_drain() path handle 1037 * draining the data if we're no longer fused. 1038 */ 1039 if (!tcp->tcp_fused) 1040 return (B_FALSE); 1041 } 1042 1043 /* 1044 * In the synchronous streams case, we generate SIGPOLL/SIGIO for 1045 * each M_DATA that gets enqueued onto the receiver. At this point 1046 * we are about to drain any queued data via putnext(). In order 1047 * to avoid extraneous signal generation from strrput(), we set 1048 * STRGETINPROG flag at the stream head prior to the draining and 1049 * restore it afterwards. This masks out signal generation only 1050 * for M_DATA messages and does not affect urgent data. We only do 1051 * this if the STREOF flag is not set which can happen if the 1052 * application shuts down the read side of a stream. In this case 1053 * we simply free these messages to approximate the flushq behavior 1054 * which normally occurs when STREOF is on the stream head read queue. 1055 */ 1056 if (tcp->tcp_direct_sockfs) 1057 sd_rd_eof = strrput_sig(q, B_FALSE); 1058 1059 /* Drain the data */ 1060 while ((mp = tcp->tcp_rcv_list) != NULL) { 1061 tcp->tcp_rcv_list = mp->b_next; 1062 mp->b_next = NULL; 1063 #ifdef DEBUG 1064 cnt += msgdsize(mp); 1065 #endif 1066 ASSERT(!IPCL_IS_NONSTR(connp)); 1067 if (sd_rd_eof) { 1068 freemsg(mp); 1069 } else { 1070 putnext(q, mp); 1071 TCP_STAT(tcps, tcp_fusion_putnext); 1072 } 1073 } 1074 1075 if (tcp->tcp_direct_sockfs && !sd_rd_eof) 1076 (void) strrput_sig(q, B_TRUE); 1077 1078 #ifdef DEBUG 1079 ASSERT(cnt == tcp->tcp_rcv_cnt); 1080 #endif 1081 tcp->tcp_rcv_last_head = NULL; 1082 tcp->tcp_rcv_last_tail = NULL; 1083 tcp->tcp_rcv_cnt = 0; 1084 tcp->tcp_fuse_rcv_unread_cnt = 0; 1085 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 1086 1087 if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <= 1088 peer_tcp->tcp_xmit_lowater)) { 1089 tcp_clrqfull(peer_tcp); 1090 TCP_STAT(tcps, tcp_fusion_backenabled); 1091 } 1092 1093 return (B_TRUE); 1094 } 1095 1096 /* 1097 * Synchronous stream entry point for sockfs to retrieve 1098 * data directly from tcp_rcv_list. 1099 * tcp_fuse_rrw() might end up modifying the peer's tcp_flow_stopped, 1100 * for which it must take the tcp_non_sq_lock of the peer as well 1101 * making any change. The order of taking the locks is based on 1102 * the TCP pointer itself. Before we get the peer we need to take 1103 * our tcp_non_sq_lock so that the peer doesn't disappear. However, 1104 * we cannot drop the lock if we have to grab the peer's lock (because 1105 * of ordering), since the peer might disappear in the interim. So, 1106 * we take our tcp_non_sq_lock, get the peer, increment the ref on the 1107 * peer's conn, drop all the locks and then take the tcp_non_sq_lock in the 1108 * desired order. Incrementing the conn ref on the peer means that the 1109 * peer won't disappear when we drop our tcp_non_sq_lock. 1110 */ 1111 int 1112 tcp_fuse_rrw(queue_t *q, struiod_t *dp) 1113 { 1114 tcp_t *tcp = Q_TO_CONN(q)->conn_tcp; 1115 mblk_t *mp; 1116 tcp_t *peer_tcp; 1117 tcp_stack_t *tcps = tcp->tcp_tcps; 1118 1119 mutex_enter(&tcp->tcp_non_sq_lock); 1120 1121 /* 1122 * If tcp_fuse_syncstr_plugged is set, then another thread is moving 1123 * the underlying data to the stream head. We need to wait until it's 1124 * done, then return EBUSY so that strget() will dequeue data from the 1125 * stream head to ensure data is drained in-order. 1126 */ 1127 plugged: 1128 if (tcp->tcp_fuse_syncstr_plugged) { 1129 do { 1130 cv_wait(&tcp->tcp_fuse_plugcv, &tcp->tcp_non_sq_lock); 1131 } while (tcp->tcp_fuse_syncstr_plugged); 1132 1133 mutex_exit(&tcp->tcp_non_sq_lock); 1134 TCP_STAT(tcps, tcp_fusion_rrw_plugged); 1135 TCP_STAT(tcps, tcp_fusion_rrw_busy); 1136 return (EBUSY); 1137 } 1138 1139 peer_tcp = tcp->tcp_loopback_peer; 1140 1141 /* 1142 * If someone had turned off tcp_direct_sockfs or if synchronous 1143 * streams is stopped, we return EBUSY. This causes strget() to 1144 * dequeue data from the stream head instead. 1145 */ 1146 if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) { 1147 mutex_exit(&tcp->tcp_non_sq_lock); 1148 TCP_STAT(tcps, tcp_fusion_rrw_busy); 1149 return (EBUSY); 1150 } 1151 1152 /* 1153 * Grab lock in order. The highest addressed tcp is locked first. 1154 * We don't do this within the tcp_rcv_list check since if we 1155 * have to drop the lock, for ordering, then the tcp_rcv_list 1156 * could change. 1157 */ 1158 if (peer_tcp > tcp) { 1159 CONN_INC_REF(peer_tcp->tcp_connp); 1160 mutex_exit(&tcp->tcp_non_sq_lock); 1161 mutex_enter(&peer_tcp->tcp_non_sq_lock); 1162 mutex_enter(&tcp->tcp_non_sq_lock); 1163 /* 1164 * This might have changed in the interim 1165 * Once read-side tcp_non_sq_lock is dropped above 1166 * anything can happen, we need to check all 1167 * known conditions again once we reaquire 1168 * read-side tcp_non_sq_lock. 1169 */ 1170 if (tcp->tcp_fuse_syncstr_plugged) { 1171 mutex_exit(&peer_tcp->tcp_non_sq_lock); 1172 CONN_DEC_REF(peer_tcp->tcp_connp); 1173 goto plugged; 1174 } 1175 if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) { 1176 mutex_exit(&tcp->tcp_non_sq_lock); 1177 mutex_exit(&peer_tcp->tcp_non_sq_lock); 1178 CONN_DEC_REF(peer_tcp->tcp_connp); 1179 TCP_STAT(tcps, tcp_fusion_rrw_busy); 1180 return (EBUSY); 1181 } 1182 CONN_DEC_REF(peer_tcp->tcp_connp); 1183 } else { 1184 mutex_enter(&peer_tcp->tcp_non_sq_lock); 1185 } 1186 1187 if ((mp = tcp->tcp_rcv_list) != NULL) { 1188 1189 DTRACE_PROBE3(tcp__fuse__rrw, tcp_t *, tcp, 1190 uint32_t, tcp->tcp_rcv_cnt, ssize_t, dp->d_uio.uio_resid); 1191 1192 tcp->tcp_rcv_list = NULL; 1193 TCP_STAT(tcps, tcp_fusion_rrw_msgcnt); 1194 1195 /* 1196 * At this point nothing should be left in tcp_rcv_list. 1197 * The only possible case where we would have a chain of 1198 * b_next-linked messages is urgent data, but we wouldn't 1199 * be here if that's true since urgent data is delivered 1200 * via putnext() and synchronous streams is stopped until 1201 * tcp_fuse_rcv_drain() is finished. 1202 */ 1203 ASSERT(DB_TYPE(mp) == M_DATA && mp->b_next == NULL); 1204 1205 tcp->tcp_rcv_last_head = NULL; 1206 tcp->tcp_rcv_last_tail = NULL; 1207 tcp->tcp_rcv_cnt = 0; 1208 tcp->tcp_fuse_rcv_unread_cnt = 0; 1209 1210 if (peer_tcp->tcp_flow_stopped && 1211 (TCP_UNSENT_BYTES(peer_tcp) <= 1212 peer_tcp->tcp_xmit_lowater)) { 1213 tcp_clrqfull(peer_tcp); 1214 TCP_STAT(tcps, tcp_fusion_backenabled); 1215 } 1216 } 1217 mutex_exit(&peer_tcp->tcp_non_sq_lock); 1218 /* 1219 * Either we just dequeued everything or we get here from sockfs 1220 * and have nothing to return; in this case clear RSLEEP. 1221 */ 1222 ASSERT(tcp->tcp_rcv_last_head == NULL); 1223 ASSERT(tcp->tcp_rcv_last_tail == NULL); 1224 ASSERT(tcp->tcp_rcv_cnt == 0); 1225 ASSERT(tcp->tcp_fuse_rcv_unread_cnt == 0); 1226 STR_WAKEUP_CLEAR(STREAM(q)); 1227 1228 mutex_exit(&tcp->tcp_non_sq_lock); 1229 dp->d_mp = mp; 1230 return (0); 1231 } 1232 1233 /* 1234 * Synchronous stream entry point used by certain ioctls to retrieve 1235 * information about or peek into the tcp_rcv_list. 1236 */ 1237 int 1238 tcp_fuse_rinfop(queue_t *q, infod_t *dp) 1239 { 1240 tcp_t *tcp = Q_TO_CONN(q)->conn_tcp; 1241 mblk_t *mp; 1242 uint_t cmd = dp->d_cmd; 1243 int res = 0; 1244 int error = 0; 1245 struct stdata *stp = STREAM(q); 1246 1247 mutex_enter(&tcp->tcp_non_sq_lock); 1248 /* If shutdown on read has happened, return nothing */ 1249 mutex_enter(&stp->sd_lock); 1250 if (stp->sd_flag & STREOF) { 1251 mutex_exit(&stp->sd_lock); 1252 goto done; 1253 } 1254 mutex_exit(&stp->sd_lock); 1255 1256 /* 1257 * It is OK not to return an answer if tcp_rcv_list is 1258 * currently not accessible. 1259 */ 1260 if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped || 1261 tcp->tcp_fuse_syncstr_plugged || (mp = tcp->tcp_rcv_list) == NULL) 1262 goto done; 1263 1264 if (cmd & INFOD_COUNT) { 1265 /* 1266 * We have at least one message and 1267 * could return only one at a time. 1268 */ 1269 dp->d_count++; 1270 res |= INFOD_COUNT; 1271 } 1272 if (cmd & INFOD_BYTES) { 1273 /* 1274 * Return size of all data messages. 1275 */ 1276 dp->d_bytes += tcp->tcp_rcv_cnt; 1277 res |= INFOD_BYTES; 1278 } 1279 if (cmd & INFOD_FIRSTBYTES) { 1280 /* 1281 * Return size of first data message. 1282 */ 1283 dp->d_bytes = msgdsize(mp); 1284 res |= INFOD_FIRSTBYTES; 1285 dp->d_cmd &= ~INFOD_FIRSTBYTES; 1286 } 1287 if (cmd & INFOD_COPYOUT) { 1288 mblk_t *mp1; 1289 int n; 1290 1291 if (DB_TYPE(mp) == M_DATA) { 1292 mp1 = mp; 1293 } else { 1294 mp1 = mp->b_cont; 1295 ASSERT(mp1 != NULL); 1296 } 1297 1298 /* 1299 * Return data contents of first message. 1300 */ 1301 ASSERT(DB_TYPE(mp1) == M_DATA); 1302 while (mp1 != NULL && dp->d_uiop->uio_resid > 0) { 1303 n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1)); 1304 if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n, 1305 UIO_READ, dp->d_uiop)) != 0) { 1306 goto done; 1307 } 1308 mp1 = mp1->b_cont; 1309 } 1310 res |= INFOD_COPYOUT; 1311 dp->d_cmd &= ~INFOD_COPYOUT; 1312 } 1313 done: 1314 mutex_exit(&tcp->tcp_non_sq_lock); 1315 1316 dp->d_res |= res; 1317 1318 return (error); 1319 } 1320 1321 /* 1322 * Enable synchronous streams on a fused tcp loopback endpoint. 1323 */ 1324 static void 1325 tcp_fuse_syncstr_enable(tcp_t *tcp) 1326 { 1327 queue_t *rq = tcp->tcp_rq; 1328 struct stdata *stp = STREAM(rq); 1329 1330 /* We can only enable synchronous streams for sockfs mode */ 1331 tcp->tcp_direct_sockfs = tcp->tcp_issocket && do_tcp_direct_sockfs; 1332 1333 if (!tcp->tcp_direct_sockfs) 1334 return; 1335 1336 mutex_enter(&stp->sd_lock); 1337 mutex_enter(QLOCK(rq)); 1338 1339 /* 1340 * We replace our q_qinfo with one that has the qi_rwp entry point. 1341 * Clear SR_SIGALLDATA because we generate the equivalent signal(s) 1342 * for every enqueued data in tcp_fuse_output(). 1343 */ 1344 rq->q_qinfo = &tcp_loopback_rinit; 1345 rq->q_struiot = tcp_loopback_rinit.qi_struiot; 1346 stp->sd_struiordq = rq; 1347 stp->sd_rput_opt &= ~SR_SIGALLDATA; 1348 1349 mutex_exit(QLOCK(rq)); 1350 mutex_exit(&stp->sd_lock); 1351 } 1352 1353 /* 1354 * Disable synchronous streams on a fused tcp loopback endpoint. 1355 */ 1356 static void 1357 tcp_fuse_syncstr_disable(tcp_t *tcp) 1358 { 1359 queue_t *rq = tcp->tcp_rq; 1360 struct stdata *stp = STREAM(rq); 1361 1362 if (!tcp->tcp_direct_sockfs) 1363 return; 1364 1365 mutex_enter(&stp->sd_lock); 1366 mutex_enter(QLOCK(rq)); 1367 1368 /* 1369 * Reset q_qinfo to point to the default tcp entry points. 1370 * Also restore SR_SIGALLDATA so that strrput() can generate 1371 * the signals again for future M_DATA messages. 1372 */ 1373 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 1374 rq->q_struiot = tcp_rinitv4.qi_struiot; 1375 stp->sd_struiordq = NULL; 1376 stp->sd_rput_opt |= SR_SIGALLDATA; 1377 tcp->tcp_direct_sockfs = B_FALSE; 1378 1379 mutex_exit(QLOCK(rq)); 1380 mutex_exit(&stp->sd_lock); 1381 } 1382 1383 /* 1384 * Enable synchronous streams on a pair of fused tcp endpoints. 1385 */ 1386 void 1387 tcp_fuse_syncstr_enable_pair(tcp_t *tcp) 1388 { 1389 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 1390 1391 ASSERT(tcp->tcp_fused); 1392 ASSERT(peer_tcp != NULL); 1393 1394 tcp_fuse_syncstr_enable(tcp); 1395 tcp_fuse_syncstr_enable(peer_tcp); 1396 } 1397 1398 /* 1399 * Used to enable/disable signal generation at the stream head. We already 1400 * generated the signal(s) for these messages when they were enqueued on the 1401 * receiver. We also check if STREOF is set here. If it is, we return false 1402 * and let the caller decide what to do. 1403 */ 1404 static boolean_t 1405 strrput_sig(queue_t *q, boolean_t on) 1406 { 1407 struct stdata *stp = STREAM(q); 1408 1409 mutex_enter(&stp->sd_lock); 1410 if (stp->sd_flag == STREOF) { 1411 mutex_exit(&stp->sd_lock); 1412 return (B_TRUE); 1413 } 1414 if (on) 1415 stp->sd_flag &= ~STRGETINPROG; 1416 else 1417 stp->sd_flag |= STRGETINPROG; 1418 mutex_exit(&stp->sd_lock); 1419 1420 return (B_FALSE); 1421 } 1422 1423 /* 1424 * Disable synchronous streams on a pair of fused tcp endpoints and drain 1425 * any queued data; called either during unfuse or upon transitioning from 1426 * a socket to a stream endpoint due to _SIOCSOCKFALLBACK. 1427 */ 1428 void 1429 tcp_fuse_disable_pair(tcp_t *tcp, boolean_t unfusing) 1430 { 1431 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 1432 tcp_stack_t *tcps = tcp->tcp_tcps; 1433 1434 ASSERT(tcp->tcp_fused); 1435 ASSERT(peer_tcp != NULL); 1436 1437 /* 1438 * Force any tcp_fuse_rrw() calls to block until we've moved the data 1439 * onto the stream head. 1440 */ 1441 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 1442 TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp); 1443 1444 /* 1445 * Cancel any pending push timers. 1446 */ 1447 if (tcp->tcp_push_tid != 0) { 1448 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 1449 tcp->tcp_push_tid = 0; 1450 } 1451 if (peer_tcp->tcp_push_tid != 0) { 1452 (void) TCP_TIMER_CANCEL(peer_tcp, peer_tcp->tcp_push_tid); 1453 peer_tcp->tcp_push_tid = 0; 1454 } 1455 1456 /* 1457 * Drain any pending data; the detached check is needed because 1458 * we may be called as a result of a tcp_unfuse() triggered by 1459 * tcp_fuse_output(). Note that in case of a detached tcp, the 1460 * draining will happen later after the tcp is unfused. For non- 1461 * urgent data, this can be handled by the regular tcp_rcv_drain(). 1462 * If we have urgent data sitting in the receive list, we will 1463 * need to send up a SIGURG signal first before draining the data. 1464 * All of these will be handled by the code in tcp_fuse_rcv_drain() 1465 * when called from tcp_rcv_drain(). 1466 */ 1467 if (!TCP_IS_DETACHED(tcp)) { 1468 (void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp, 1469 (unfusing ? &tcp->tcp_fused_sigurg_mp : NULL)); 1470 } 1471 if (!TCP_IS_DETACHED(peer_tcp)) { 1472 (void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp, 1473 (unfusing ? &peer_tcp->tcp_fused_sigurg_mp : NULL)); 1474 } 1475 1476 /* 1477 * Make all current and future tcp_fuse_rrw() calls fail with EBUSY. 1478 * To ensure threads don't sneak past the checks in tcp_fuse_rrw(), 1479 * a given stream must be stopped prior to being unplugged (but the 1480 * ordering of operations between the streams is unimportant). 1481 */ 1482 TCP_FUSE_SYNCSTR_STOP(tcp); 1483 TCP_FUSE_SYNCSTR_STOP(peer_tcp); 1484 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 1485 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp); 1486 1487 /* Lift up any flow-control conditions */ 1488 if (tcp->tcp_flow_stopped) { 1489 tcp_clrqfull(tcp); 1490 TCP_STAT(tcps, tcp_fusion_backenabled); 1491 } 1492 if (peer_tcp->tcp_flow_stopped) { 1493 tcp_clrqfull(peer_tcp); 1494 TCP_STAT(tcps, tcp_fusion_backenabled); 1495 } 1496 1497 /* Disable synchronous streams */ 1498 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) 1499 tcp_fuse_syncstr_disable(tcp); 1500 if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) 1501 tcp_fuse_syncstr_disable(peer_tcp); 1502 } 1503 1504 /* 1505 * Calculate the size of receive buffer for a fused tcp endpoint. 1506 */ 1507 size_t 1508 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd) 1509 { 1510 tcp_stack_t *tcps = tcp->tcp_tcps; 1511 1512 ASSERT(tcp->tcp_fused); 1513 1514 /* Ensure that value is within the maximum upper bound */ 1515 if (rwnd > tcps->tcps_max_buf) 1516 rwnd = tcps->tcps_max_buf; 1517 1518 /* Obey the absolute minimum tcp receive high water mark */ 1519 if (rwnd < tcps->tcps_sth_rcv_hiwat) 1520 rwnd = tcps->tcps_sth_rcv_hiwat; 1521 1522 /* 1523 * Round up to system page size in case SO_RCVBUF is modified 1524 * after SO_SNDBUF; the latter is also similarly rounded up. 1525 */ 1526 rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t); 1527 tcp->tcp_fuse_rcv_hiwater = rwnd; 1528 return (rwnd); 1529 } 1530 1531 /* 1532 * Calculate the maximum outstanding unread data block for a fused tcp endpoint. 1533 */ 1534 int 1535 tcp_fuse_maxpsz_set(tcp_t *tcp) 1536 { 1537 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 1538 uint_t sndbuf = tcp->tcp_xmit_hiwater; 1539 uint_t maxpsz = sndbuf; 1540 1541 ASSERT(tcp->tcp_fused); 1542 ASSERT(peer_tcp != NULL); 1543 ASSERT(peer_tcp->tcp_fuse_rcv_hiwater != 0); 1544 /* 1545 * In the fused loopback case, we want the stream head to split 1546 * up larger writes into smaller chunks for a more accurate flow- 1547 * control accounting. Our maxpsz is half of the sender's send 1548 * buffer or the receiver's receive buffer, whichever is smaller. 1549 * We round up the buffer to system page size due to the lack of 1550 * TCP MSS concept in Fusion. 1551 */ 1552 if (maxpsz > peer_tcp->tcp_fuse_rcv_hiwater) 1553 maxpsz = peer_tcp->tcp_fuse_rcv_hiwater; 1554 maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1; 1555 1556 /* 1557 * Calculate the peer's limit for the number of outstanding unread 1558 * data block. This is the amount of data blocks that are allowed 1559 * to reside in the receiver's queue before the sender gets flow 1560 * controlled. It is used only in the synchronous streams mode as 1561 * a way to throttle the sender when it performs consecutive writes 1562 * faster than can be read. The value is derived from SO_SNDBUF in 1563 * order to give the sender some control; we divide it with a large 1564 * value (16KB) to produce a fairly low initial limit. 1565 */ 1566 if (tcp_fusion_rcv_unread_min == 0) { 1567 /* A value of 0 means that we disable the check */ 1568 peer_tcp->tcp_fuse_rcv_unread_hiwater = 0; 1569 } else { 1570 peer_tcp->tcp_fuse_rcv_unread_hiwater = 1571 MAX(sndbuf >> 14, tcp_fusion_rcv_unread_min); 1572 } 1573 return (maxpsz); 1574 } 1575