1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/stream.h> 28 #include <sys/strsun.h> 29 #include <sys/strsubr.h> 30 #include <sys/debug.h> 31 #include <sys/sdt.h> 32 #include <sys/cmn_err.h> 33 #include <sys/tihdr.h> 34 35 #include <inet/common.h> 36 #include <inet/optcom.h> 37 #include <inet/ip.h> 38 #include <inet/ip_if.h> 39 #include <inet/ip_impl.h> 40 #include <inet/tcp.h> 41 #include <inet/tcp_impl.h> 42 #include <inet/ipsec_impl.h> 43 #include <inet/ipclassifier.h> 44 #include <inet/ipp_common.h> 45 #include <inet/ip_if.h> 46 47 /* 48 * This file implements TCP fusion - a protocol-less data path for TCP 49 * loopback connections. The fusion of two local TCP endpoints occurs 50 * at connection establishment time. Various conditions (see details 51 * in tcp_fuse()) need to be met for fusion to be successful. If it 52 * fails, we fall back to the regular TCP data path; if it succeeds, 53 * both endpoints proceed to use tcp_fuse_output() as the transmit path. 54 * tcp_fuse_output() enqueues application data directly onto the peer's 55 * receive queue; no protocol processing is involved. 56 * 57 * Sychronization is handled by squeue and the mutex tcp_non_sq_lock. 58 * One of the requirements for fusion to succeed is that both endpoints 59 * need to be using the same squeue. This ensures that neither side 60 * can disappear while the other side is still sending data. Flow 61 * control information is manipulated outside the squeue, so the 62 * tcp_non_sq_lock must be held when touching tcp_flow_stopped. 63 */ 64 65 /* 66 * Setting this to false means we disable fusion altogether and 67 * loopback connections would go through the protocol paths. 68 */ 69 boolean_t do_tcp_fusion = B_TRUE; 70 71 /* 72 * This routine gets called by the eager tcp upon changing state from 73 * SYN_RCVD to ESTABLISHED. It fuses a direct path between itself 74 * and the active connect tcp such that the regular tcp processings 75 * may be bypassed under allowable circumstances. Because the fusion 76 * requires both endpoints to be in the same squeue, it does not work 77 * for simultaneous active connects because there is no easy way to 78 * switch from one squeue to another once the connection is created. 79 * This is different from the eager tcp case where we assign it the 80 * same squeue as the one given to the active connect tcp during open. 81 */ 82 void 83 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcpha_t *tcpha) 84 { 85 conn_t *peer_connp, *connp = tcp->tcp_connp; 86 tcp_t *peer_tcp; 87 tcp_stack_t *tcps = tcp->tcp_tcps; 88 netstack_t *ns; 89 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 90 91 ASSERT(!tcp->tcp_fused); 92 ASSERT(tcp->tcp_loopback); 93 ASSERT(tcp->tcp_loopback_peer == NULL); 94 /* 95 * We need to inherit conn_rcvbuf of the listener tcp, 96 * but we can't really use tcp_listener since we get here after 97 * sending up T_CONN_IND and tcp_tli_accept() may be called 98 * independently, at which point tcp_listener is cleared; 99 * this is why we use tcp_saved_listener. The listener itself 100 * is guaranteed to be around until tcp_accept_finish() is called 101 * on this eager -- this won't happen until we're done since we're 102 * inside the eager's perimeter now. 103 */ 104 ASSERT(tcp->tcp_saved_listener != NULL); 105 /* 106 * Lookup peer endpoint; search for the remote endpoint having 107 * the reversed address-port quadruplet in ESTABLISHED state, 108 * which is guaranteed to be unique in the system. Zone check 109 * is applied accordingly for loopback address, but not for 110 * local address since we want fusion to happen across Zones. 111 */ 112 if (connp->conn_ipversion == IPV4_VERSION) { 113 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp, 114 (ipha_t *)iphdr, tcpha, ipst); 115 } else { 116 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp, 117 (ip6_t *)iphdr, tcpha, ipst); 118 } 119 120 /* 121 * We can only proceed if peer exists, resides in the same squeue 122 * as our conn and is not raw-socket. We also restrict fusion to 123 * endpoints of the same type (STREAMS or non-STREAMS). The squeue 124 * assignment of this eager tcp was done earlier at the time of SYN 125 * processing in ip_fanout_tcp{_v6}. Note that similar squeues by 126 * itself doesn't guarantee a safe condition to fuse, hence we perform 127 * additional tests below. 128 */ 129 ASSERT(peer_connp == NULL || peer_connp != connp); 130 if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp || 131 !IPCL_IS_TCP(peer_connp) || 132 IPCL_IS_NONSTR(connp) != IPCL_IS_NONSTR(peer_connp)) { 133 if (peer_connp != NULL) { 134 TCP_STAT(tcps, tcp_fusion_unqualified); 135 CONN_DEC_REF(peer_connp); 136 } 137 return; 138 } 139 peer_tcp = peer_connp->conn_tcp; /* active connect tcp */ 140 141 ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused); 142 ASSERT(peer_tcp->tcp_loopback_peer == NULL); 143 ASSERT(peer_connp->conn_sqp == connp->conn_sqp); 144 145 /* 146 * Due to IRE changes the peer and us might not agree on tcp_loopback. 147 * We bail in that case. 148 */ 149 if (!peer_tcp->tcp_loopback) { 150 TCP_STAT(tcps, tcp_fusion_unqualified); 151 CONN_DEC_REF(peer_connp); 152 return; 153 } 154 /* 155 * Fuse the endpoints; we perform further checks against both 156 * tcp endpoints to ensure that a fusion is allowed to happen. 157 * In particular we bail out if kernel SSL exists. 158 */ 159 ns = tcps->tcps_netstack; 160 ipst = ns->netstack_ip; 161 162 if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable && 163 (tcp->tcp_kssl_ent == NULL) && (tcp->tcp_xmit_head == NULL) && 164 (peer_tcp->tcp_xmit_head == NULL)) { 165 mblk_t *mp; 166 queue_t *peer_rq = peer_connp->conn_rq; 167 168 ASSERT(!TCP_IS_DETACHED(peer_tcp)); 169 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 170 ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL); 171 ASSERT(tcp->tcp_kssl_ctx == NULL); 172 173 /* 174 * We need to drain data on both endpoints during unfuse. 175 * If we need to send up SIGURG at the time of draining, 176 * we want to be sure that an mblk is readily available. 177 * This is why we pre-allocate the M_PCSIG mblks for both 178 * endpoints which will only be used during/after unfuse. 179 * The mblk might already exist if we are doing a re-fuse. 180 */ 181 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 182 ASSERT(!IPCL_IS_NONSTR(peer_tcp->tcp_connp)); 183 184 if (tcp->tcp_fused_sigurg_mp == NULL) { 185 if ((mp = allocb(1, BPRI_HI)) == NULL) 186 goto failed; 187 tcp->tcp_fused_sigurg_mp = mp; 188 } 189 190 if (peer_tcp->tcp_fused_sigurg_mp == NULL) { 191 if ((mp = allocb(1, BPRI_HI)) == NULL) 192 goto failed; 193 peer_tcp->tcp_fused_sigurg_mp = mp; 194 } 195 196 if ((mp = allocb(sizeof (struct stroptions), 197 BPRI_HI)) == NULL) 198 goto failed; 199 } 200 201 /* Fuse both endpoints */ 202 peer_tcp->tcp_loopback_peer = tcp; 203 tcp->tcp_loopback_peer = peer_tcp; 204 peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE; 205 206 /* 207 * We never use regular tcp paths in fusion and should 208 * therefore clear tcp_unsent on both endpoints. Having 209 * them set to non-zero values means asking for trouble 210 * especially after unfuse, where we may end up sending 211 * through regular tcp paths which expect xmit_list and 212 * friends to be correctly setup. 213 */ 214 peer_tcp->tcp_unsent = tcp->tcp_unsent = 0; 215 216 tcp_timers_stop(tcp); 217 tcp_timers_stop(peer_tcp); 218 219 /* 220 * Set receive buffer and max packet size for the 221 * active open tcp. 222 * eager's values will be set in tcp_accept_finish. 223 */ 224 (void) tcp_rwnd_set(peer_tcp, peer_tcp->tcp_connp->conn_rcvbuf); 225 226 /* 227 * Set the write offset value to zero since we won't 228 * be needing any room for TCP/IP headers. 229 */ 230 if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) { 231 struct stroptions *stropt; 232 233 DB_TYPE(mp) = M_SETOPTS; 234 mp->b_wptr += sizeof (*stropt); 235 236 stropt = (struct stroptions *)mp->b_rptr; 237 stropt->so_flags = SO_WROFF; 238 stropt->so_wroff = 0; 239 240 /* Send the options up */ 241 putnext(peer_rq, mp); 242 } else { 243 struct sock_proto_props sopp; 244 245 /* The peer is a non-STREAMS end point */ 246 ASSERT(IPCL_IS_TCP(peer_connp)); 247 248 sopp.sopp_flags = SOCKOPT_WROFF; 249 sopp.sopp_wroff = 0; 250 (*peer_connp->conn_upcalls->su_set_proto_props) 251 (peer_connp->conn_upper_handle, &sopp); 252 } 253 } else { 254 TCP_STAT(tcps, tcp_fusion_unqualified); 255 } 256 CONN_DEC_REF(peer_connp); 257 return; 258 259 failed: 260 if (tcp->tcp_fused_sigurg_mp != NULL) { 261 freeb(tcp->tcp_fused_sigurg_mp); 262 tcp->tcp_fused_sigurg_mp = NULL; 263 } 264 if (peer_tcp->tcp_fused_sigurg_mp != NULL) { 265 freeb(peer_tcp->tcp_fused_sigurg_mp); 266 peer_tcp->tcp_fused_sigurg_mp = NULL; 267 } 268 CONN_DEC_REF(peer_connp); 269 } 270 271 /* 272 * Unfuse a previously-fused pair of tcp loopback endpoints. 273 */ 274 void 275 tcp_unfuse(tcp_t *tcp) 276 { 277 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 278 tcp_stack_t *tcps = tcp->tcp_tcps; 279 280 ASSERT(tcp->tcp_fused && peer_tcp != NULL); 281 ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp); 282 ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); 283 ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0); 284 285 /* 286 * Cancel any pending push timers. 287 */ 288 if (tcp->tcp_push_tid != 0) { 289 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 290 tcp->tcp_push_tid = 0; 291 } 292 if (peer_tcp->tcp_push_tid != 0) { 293 (void) TCP_TIMER_CANCEL(peer_tcp, peer_tcp->tcp_push_tid); 294 peer_tcp->tcp_push_tid = 0; 295 } 296 297 /* 298 * Drain any pending data; Note that in case of a detached tcp, the 299 * draining will happen later after the tcp is unfused. For non- 300 * urgent data, this can be handled by the regular tcp_rcv_drain(). 301 * If we have urgent data sitting in the receive list, we will 302 * need to send up a SIGURG signal first before draining the data. 303 * All of these will be handled by the code in tcp_fuse_rcv_drain() 304 * when called from tcp_rcv_drain(). 305 */ 306 if (!TCP_IS_DETACHED(tcp)) { 307 (void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp, 308 &tcp->tcp_fused_sigurg_mp); 309 } 310 if (!TCP_IS_DETACHED(peer_tcp)) { 311 (void) tcp_fuse_rcv_drain(peer_tcp->tcp_connp->conn_rq, 312 peer_tcp, &peer_tcp->tcp_fused_sigurg_mp); 313 } 314 315 /* Lift up any flow-control conditions */ 316 mutex_enter(&tcp->tcp_non_sq_lock); 317 if (tcp->tcp_flow_stopped) { 318 tcp_clrqfull(tcp); 319 TCP_STAT(tcps, tcp_fusion_backenabled); 320 } 321 mutex_exit(&tcp->tcp_non_sq_lock); 322 323 mutex_enter(&peer_tcp->tcp_non_sq_lock); 324 if (peer_tcp->tcp_flow_stopped) { 325 tcp_clrqfull(peer_tcp); 326 TCP_STAT(tcps, tcp_fusion_backenabled); 327 } 328 mutex_exit(&peer_tcp->tcp_non_sq_lock); 329 330 /* 331 * Update tha_seq and tha_ack in the header template 332 */ 333 tcp->tcp_tcpha->tha_seq = htonl(tcp->tcp_snxt); 334 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 335 peer_tcp->tcp_tcpha->tha_seq = htonl(peer_tcp->tcp_snxt); 336 peer_tcp->tcp_tcpha->tha_ack = htonl(peer_tcp->tcp_rnxt); 337 338 /* Unfuse the endpoints */ 339 peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE; 340 peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL; 341 } 342 343 /* 344 * Fusion output routine used to handle urgent data sent by STREAMS based 345 * endpoints. This routine is called by tcp_fuse_output() for handling 346 * non-M_DATA mblks. 347 */ 348 void 349 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp) 350 { 351 mblk_t *mp1; 352 struct T_exdata_ind *tei; 353 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 354 mblk_t *head, *prev_head = NULL; 355 tcp_stack_t *tcps = tcp->tcp_tcps; 356 357 ASSERT(tcp->tcp_fused); 358 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 359 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 360 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 361 ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA); 362 ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0); 363 364 /* 365 * Urgent data arrives in the form of T_EXDATA_REQ from above. 366 * Each occurence denotes a new urgent pointer. For each new 367 * urgent pointer we signal (SIGURG) the receiving app to indicate 368 * that it needs to go into urgent mode. This is similar to the 369 * urgent data handling in the regular tcp. We don't need to keep 370 * track of where the urgent pointer is, because each T_EXDATA_REQ 371 * "advances" the urgent pointer for us. 372 * 373 * The actual urgent data carried by T_EXDATA_REQ is then prepended 374 * by a T_EXDATA_IND before being enqueued behind any existing data 375 * destined for the receiving app. There is only a single urgent 376 * pointer (out-of-band mark) for a given tcp. If the new urgent 377 * data arrives before the receiving app reads some existing urgent 378 * data, the previous marker is lost. This behavior is emulated 379 * accordingly below, by removing any existing T_EXDATA_IND messages 380 * and essentially converting old urgent data into non-urgent. 381 */ 382 ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID); 383 /* Let sender get out of urgent mode */ 384 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 385 386 /* 387 * This flag indicates that a signal needs to be sent up. 388 * This flag will only get cleared once SIGURG is delivered and 389 * is not affected by the tcp_fused flag -- delivery will still 390 * happen even after an endpoint is unfused, to handle the case 391 * where the sending endpoint immediately closes/unfuses after 392 * sending urgent data and the accept is not yet finished. 393 */ 394 peer_tcp->tcp_fused_sigurg = B_TRUE; 395 396 /* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */ 397 DB_TYPE(mp) = M_PROTO; 398 tei = (struct T_exdata_ind *)mp->b_rptr; 399 tei->PRIM_type = T_EXDATA_IND; 400 tei->MORE_flag = 0; 401 mp->b_wptr = (uchar_t *)&tei[1]; 402 403 TCP_STAT(tcps, tcp_fusion_urg); 404 TCPS_BUMP_MIB(tcps, tcpOutUrg); 405 406 head = peer_tcp->tcp_rcv_list; 407 while (head != NULL) { 408 /* 409 * Remove existing T_EXDATA_IND, keep the data which follows 410 * it and relink our list. Note that we don't modify the 411 * tcp_rcv_last_tail since it never points to T_EXDATA_IND. 412 */ 413 if (DB_TYPE(head) != M_DATA) { 414 mp1 = head; 415 416 ASSERT(DB_TYPE(mp1->b_cont) == M_DATA); 417 head = mp1->b_cont; 418 mp1->b_cont = NULL; 419 head->b_next = mp1->b_next; 420 mp1->b_next = NULL; 421 if (prev_head != NULL) 422 prev_head->b_next = head; 423 if (peer_tcp->tcp_rcv_list == mp1) 424 peer_tcp->tcp_rcv_list = head; 425 if (peer_tcp->tcp_rcv_last_head == mp1) 426 peer_tcp->tcp_rcv_last_head = head; 427 freeb(mp1); 428 } 429 prev_head = head; 430 head = head->b_next; 431 } 432 } 433 434 /* 435 * Fusion output routine, called by tcp_output() and tcp_wput_proto(). 436 * If we are modifying any member that can be changed outside the squeue, 437 * like tcp_flow_stopped, we need to take tcp_non_sq_lock. 438 */ 439 boolean_t 440 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size) 441 { 442 conn_t *connp = tcp->tcp_connp; 443 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 444 conn_t *peer_connp = peer_tcp->tcp_connp; 445 boolean_t flow_stopped, peer_data_queued = B_FALSE; 446 boolean_t urgent = (DB_TYPE(mp) != M_DATA); 447 boolean_t push = B_TRUE; 448 mblk_t *mp1 = mp; 449 uint_t ip_hdr_len; 450 uint32_t recv_size = send_size; 451 tcp_stack_t *tcps = tcp->tcp_tcps; 452 netstack_t *ns = tcps->tcps_netstack; 453 ip_stack_t *ipst = ns->netstack_ip; 454 ipsec_stack_t *ipss = ns->netstack_ipsec; 455 iaflags_t ixaflags = connp->conn_ixa->ixa_flags; 456 boolean_t do_ipsec, hooks_out, hooks_in, ipobs_enabled; 457 458 ASSERT(tcp->tcp_fused); 459 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 460 ASSERT(connp->conn_sqp == peer_connp->conn_sqp); 461 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO || 462 DB_TYPE(mp) == M_PCPROTO); 463 464 if (send_size == 0) { 465 freemsg(mp); 466 return (B_TRUE); 467 } 468 469 /* 470 * Handle urgent data; we either send up SIGURG to the peer now 471 * or do it later when we drain, in case the peer is detached 472 * or if we're short of memory for M_PCSIG mblk. 473 */ 474 if (urgent) { 475 tcp_fuse_output_urg(tcp, mp); 476 477 mp1 = mp->b_cont; 478 } 479 480 /* 481 * Check that we are still using an IRE_LOCAL or IRE_LOOPBACK before 482 * further processes. 483 */ 484 if (!ip_output_verify_local(connp->conn_ixa)) 485 goto unfuse; 486 487 /* 488 * Build IP and TCP header in case we have something that needs the 489 * headers. Those cases are: 490 * 1. IPsec 491 * 2. IPobs 492 * 3. FW_HOOKS 493 * 494 * If tcp_xmit_mp() fails to dupb() the message, unfuse the connection 495 * and back to regular path. 496 */ 497 if (ixaflags & IXAF_IS_IPV4) { 498 do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) || 499 CONN_INBOUND_POLICY_PRESENT(peer_connp, ipss); 500 501 hooks_out = HOOKS4_INTERESTED_LOOPBACK_OUT(ipst); 502 hooks_in = HOOKS4_INTERESTED_LOOPBACK_IN(ipst); 503 ipobs_enabled = (ipst->ips_ip4_observe.he_interested != 0); 504 } else { 505 do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) || 506 CONN_INBOUND_POLICY_PRESENT_V6(peer_connp, ipss); 507 508 hooks_out = HOOKS6_INTERESTED_LOOPBACK_OUT(ipst); 509 hooks_in = HOOKS6_INTERESTED_LOOPBACK_IN(ipst); 510 ipobs_enabled = (ipst->ips_ip6_observe.he_interested != 0); 511 } 512 513 /* We do logical 'or' for efficiency */ 514 if (ipobs_enabled | do_ipsec | hooks_in | hooks_out) { 515 if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL, 516 tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL) 517 /* If tcp_xmit_mp fails, use regular path */ 518 goto unfuse; 519 520 /* 521 * Leave all IP relevant processes to ip_output_process_local(), 522 * which handles IPsec, IPobs, and FW_HOOKS. 523 */ 524 mp1 = ip_output_process_local(mp1, connp->conn_ixa, hooks_out, 525 hooks_in, do_ipsec ? peer_connp : NULL); 526 527 /* If the message is dropped for any reason. */ 528 if (mp1 == NULL) 529 goto unfuse; 530 531 /* 532 * Data length might have been changed by FW_HOOKS. 533 * We assume that the first mblk contains the TCP/IP headers. 534 */ 535 if (hooks_in || hooks_out) { 536 tcpha_t *tcpha; 537 538 ip_hdr_len = (ixaflags & IXAF_IS_IPV4) ? 539 IPH_HDR_LENGTH((ipha_t *)mp1->b_rptr) : 540 ip_hdr_length_v6(mp1, (ip6_t *)mp1->b_rptr); 541 542 tcpha = (tcpha_t *)&mp1->b_rptr[ip_hdr_len]; 543 ASSERT((uchar_t *)tcpha + sizeof (tcpha_t) <= 544 mp1->b_wptr); 545 recv_size += htonl(tcpha->tha_seq) - tcp->tcp_snxt; 546 547 } 548 549 /* 550 * The message duplicated by tcp_xmit_mp is freed. 551 * Note: the original message passed in remains unchanged. 552 */ 553 freemsg(mp1); 554 } 555 556 /* 557 * Enqueue data into the peer's receive list; we may or may not 558 * drain the contents depending on the conditions below. 559 * 560 * For non-STREAMS sockets we normally queue data directly in the 561 * socket by calling the su_recv upcall. However, if the peer is 562 * detached we use tcp_rcv_enqueue() instead. Queued data will be 563 * drained when the accept completes (in tcp_accept_finish()). 564 */ 565 if (IPCL_IS_NONSTR(peer_connp) && 566 !TCP_IS_DETACHED(peer_tcp)) { 567 int error; 568 int flags = 0; 569 570 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 571 (tcp->tcp_urg == tcp->tcp_snxt)) { 572 flags = MSG_OOB; 573 (*peer_connp->conn_upcalls->su_signal_oob) 574 (peer_connp->conn_upper_handle, 0); 575 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 576 } 577 if ((*peer_connp->conn_upcalls->su_recv)( 578 peer_connp->conn_upper_handle, mp, recv_size, 579 flags, &error, &push) < 0) { 580 ASSERT(error != EOPNOTSUPP); 581 peer_data_queued = B_TRUE; 582 } 583 } else { 584 if (IPCL_IS_NONSTR(peer_connp) && 585 (tcp->tcp_valid_bits & TCP_URG_VALID) && 586 (tcp->tcp_urg == tcp->tcp_snxt)) { 587 /* 588 * Can not deal with urgent pointers 589 * that arrive before the connection has been 590 * accept()ed. 591 */ 592 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 593 freemsg(mp); 594 return (B_TRUE); 595 } 596 597 tcp_rcv_enqueue(peer_tcp, mp, recv_size, 598 tcp->tcp_connp->conn_cred); 599 600 /* In case it wrapped around and also to keep it constant */ 601 peer_tcp->tcp_rwnd += recv_size; 602 } 603 604 /* 605 * Exercise flow-control when needed; we will get back-enabled 606 * in either tcp_accept_finish(), tcp_unfuse(), or when data is 607 * consumed. If peer endpoint is detached, we emulate streams flow 608 * control by checking the peer's queue size and high water mark; 609 * otherwise we simply use canputnext() to decide if we need to stop 610 * our flow. 611 * 612 * Since we are accessing our tcp_flow_stopped and might modify it, 613 * we need to take tcp->tcp_non_sq_lock. 614 */ 615 mutex_enter(&tcp->tcp_non_sq_lock); 616 flow_stopped = tcp->tcp_flow_stopped; 617 if ((TCP_IS_DETACHED(peer_tcp) && 618 (peer_tcp->tcp_rcv_cnt >= peer_connp->conn_rcvbuf)) || 619 (!TCP_IS_DETACHED(peer_tcp) && 620 !IPCL_IS_NONSTR(peer_connp) && !canputnext(peer_connp->conn_rq))) { 621 peer_data_queued = B_TRUE; 622 } 623 624 if (!flow_stopped && (peer_data_queued || 625 (TCP_UNSENT_BYTES(tcp) >= connp->conn_sndbuf))) { 626 tcp_setqfull(tcp); 627 flow_stopped = B_TRUE; 628 TCP_STAT(tcps, tcp_fusion_flowctl); 629 DTRACE_PROBE3(tcp__fuse__output__flowctl, tcp_t *, tcp, 630 uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt); 631 } else if (flow_stopped && !peer_data_queued && 632 (TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat)) { 633 tcp_clrqfull(tcp); 634 TCP_STAT(tcps, tcp_fusion_backenabled); 635 flow_stopped = B_FALSE; 636 } 637 mutex_exit(&tcp->tcp_non_sq_lock); 638 639 ipst->ips_loopback_packets++; 640 tcp->tcp_last_sent_len = send_size; 641 642 /* Need to adjust the following SNMP MIB-related variables */ 643 tcp->tcp_snxt += send_size; 644 tcp->tcp_suna = tcp->tcp_snxt; 645 peer_tcp->tcp_rnxt += recv_size; 646 peer_tcp->tcp_rack = peer_tcp->tcp_rnxt; 647 648 TCPS_BUMP_MIB(tcps, tcpOutDataSegs); 649 TCPS_UPDATE_MIB(tcps, tcpOutDataBytes, send_size); 650 651 TCPS_BUMP_MIB(tcps, tcpHCInSegs); 652 TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs); 653 TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, send_size); 654 655 BUMP_LOCAL(tcp->tcp_obsegs); 656 BUMP_LOCAL(peer_tcp->tcp_ibsegs); 657 658 DTRACE_PROBE2(tcp__fuse__output, tcp_t *, tcp, uint_t, send_size); 659 660 if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp) && 661 !TCP_IS_DETACHED(peer_tcp)) { 662 /* 663 * Drain the peer's receive queue it has urgent data or if 664 * we're not flow-controlled. 665 */ 666 if (urgent || !flow_stopped) { 667 ASSERT(peer_tcp->tcp_rcv_list != NULL); 668 /* 669 * For TLI-based streams, a thread in tcp_accept_swap() 670 * can race with us. That thread will ensure that the 671 * correct peer_connp->conn_rq is globally visible 672 * before peer_tcp->tcp_detached is visible as clear, 673 * but we must also ensure that the load of conn_rq 674 * cannot be reordered to be before the tcp_detached 675 * check. 676 */ 677 membar_consumer(); 678 (void) tcp_fuse_rcv_drain(peer_connp->conn_rq, peer_tcp, 679 NULL); 680 } 681 } 682 return (B_TRUE); 683 unfuse: 684 tcp_unfuse(tcp); 685 return (B_FALSE); 686 } 687 688 /* 689 * This routine gets called to deliver data upstream on a fused or 690 * previously fused tcp loopback endpoint; the latter happens only 691 * when there is a pending SIGURG signal plus urgent data that can't 692 * be sent upstream in the past. 693 */ 694 boolean_t 695 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp) 696 { 697 mblk_t *mp; 698 conn_t *connp = tcp->tcp_connp; 699 700 #ifdef DEBUG 701 uint_t cnt = 0; 702 #endif 703 tcp_stack_t *tcps = tcp->tcp_tcps; 704 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 705 706 ASSERT(tcp->tcp_loopback); 707 ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg); 708 ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL); 709 ASSERT(IPCL_IS_NONSTR(connp) || sigurg_mpp != NULL || tcp->tcp_fused); 710 711 /* No need for the push timer now, in case it was scheduled */ 712 if (tcp->tcp_push_tid != 0) { 713 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 714 tcp->tcp_push_tid = 0; 715 } 716 /* 717 * If there's urgent data sitting in receive list and we didn't 718 * get a chance to send up a SIGURG signal, make sure we send 719 * it first before draining in order to ensure that SIOCATMARK 720 * works properly. 721 */ 722 if (tcp->tcp_fused_sigurg) { 723 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 724 725 tcp->tcp_fused_sigurg = B_FALSE; 726 /* 727 * sigurg_mpp is normally NULL, i.e. when we're still 728 * fused and didn't get here because of tcp_unfuse(). 729 * In this case try hard to allocate the M_PCSIG mblk. 730 */ 731 if (sigurg_mpp == NULL && 732 (mp = allocb(1, BPRI_HI)) == NULL && 733 (mp = allocb_tryhard(1)) == NULL) { 734 /* Alloc failed; try again next time */ 735 tcp->tcp_push_tid = TCP_TIMER(tcp, 736 tcp_push_timer, 737 MSEC_TO_TICK( 738 tcps->tcps_push_timer_interval)); 739 return (B_TRUE); 740 } else if (sigurg_mpp != NULL) { 741 /* 742 * Use the supplied M_PCSIG mblk; it means we're 743 * either unfused or in the process of unfusing, 744 * and the drain must happen now. 745 */ 746 mp = *sigurg_mpp; 747 *sigurg_mpp = NULL; 748 } 749 ASSERT(mp != NULL); 750 751 /* Send up the signal */ 752 DB_TYPE(mp) = M_PCSIG; 753 *mp->b_wptr++ = (uchar_t)SIGURG; 754 putnext(q, mp); 755 756 /* 757 * Let the regular tcp_rcv_drain() path handle 758 * draining the data if we're no longer fused. 759 */ 760 if (!tcp->tcp_fused) 761 return (B_FALSE); 762 } 763 764 /* Drain the data */ 765 while ((mp = tcp->tcp_rcv_list) != NULL) { 766 tcp->tcp_rcv_list = mp->b_next; 767 mp->b_next = NULL; 768 #ifdef DEBUG 769 cnt += msgdsize(mp); 770 #endif 771 ASSERT(!IPCL_IS_NONSTR(connp)); 772 putnext(q, mp); 773 TCP_STAT(tcps, tcp_fusion_putnext); 774 } 775 776 #ifdef DEBUG 777 ASSERT(cnt == tcp->tcp_rcv_cnt); 778 #endif 779 tcp->tcp_rcv_last_head = NULL; 780 tcp->tcp_rcv_last_tail = NULL; 781 tcp->tcp_rcv_cnt = 0; 782 tcp->tcp_rwnd = tcp->tcp_connp->conn_rcvbuf; 783 784 mutex_enter(&peer_tcp->tcp_non_sq_lock); 785 if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <= 786 peer_tcp->tcp_connp->conn_sndlowat)) { 787 tcp_clrqfull(peer_tcp); 788 TCP_STAT(tcps, tcp_fusion_backenabled); 789 } 790 mutex_exit(&peer_tcp->tcp_non_sq_lock); 791 792 return (B_TRUE); 793 } 794 795 /* 796 * Calculate the size of receive buffer for a fused tcp endpoint. 797 */ 798 size_t 799 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd) 800 { 801 tcp_stack_t *tcps = tcp->tcp_tcps; 802 uint32_t max_win; 803 804 ASSERT(tcp->tcp_fused); 805 806 /* Ensure that value is within the maximum upper bound */ 807 if (rwnd > tcps->tcps_max_buf) 808 rwnd = tcps->tcps_max_buf; 809 /* 810 * Round up to system page size in case SO_RCVBUF is modified 811 * after SO_SNDBUF; the latter is also similarly rounded up. 812 */ 813 rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t); 814 max_win = TCP_MAXWIN << tcp->tcp_rcv_ws; 815 if (rwnd > max_win) { 816 rwnd = max_win - (max_win % tcp->tcp_mss); 817 if (rwnd < tcp->tcp_mss) 818 rwnd = max_win; 819 } 820 821 /* 822 * Record high water mark, this is used for flow-control 823 * purposes in tcp_fuse_output(). 824 */ 825 tcp->tcp_connp->conn_rcvbuf = rwnd; 826 tcp->tcp_rwnd = rwnd; 827 return (rwnd); 828 } 829 830 /* 831 * Calculate the maximum outstanding unread data block for a fused tcp endpoint. 832 */ 833 int 834 tcp_fuse_maxpsz(tcp_t *tcp) 835 { 836 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 837 conn_t *connp = tcp->tcp_connp; 838 uint_t sndbuf = connp->conn_sndbuf; 839 uint_t maxpsz = sndbuf; 840 841 ASSERT(tcp->tcp_fused); 842 ASSERT(peer_tcp != NULL); 843 ASSERT(peer_tcp->tcp_connp->conn_rcvbuf != 0); 844 /* 845 * In the fused loopback case, we want the stream head to split 846 * up larger writes into smaller chunks for a more accurate flow- 847 * control accounting. Our maxpsz is half of the sender's send 848 * buffer or the receiver's receive buffer, whichever is smaller. 849 * We round up the buffer to system page size due to the lack of 850 * TCP MSS concept in Fusion. 851 */ 852 if (maxpsz > peer_tcp->tcp_connp->conn_rcvbuf) 853 maxpsz = peer_tcp->tcp_connp->conn_rcvbuf; 854 maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1; 855 856 return (maxpsz); 857 } 858 859 /* 860 * Called to release flow control. 861 */ 862 void 863 tcp_fuse_backenable(tcp_t *tcp) 864 { 865 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 866 867 ASSERT(tcp->tcp_fused); 868 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 869 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 870 ASSERT(!TCP_IS_DETACHED(tcp)); 871 ASSERT(tcp->tcp_connp->conn_sqp == 872 peer_tcp->tcp_connp->conn_sqp); 873 874 if (tcp->tcp_rcv_list != NULL) 875 (void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp, NULL); 876 877 mutex_enter(&peer_tcp->tcp_non_sq_lock); 878 if (peer_tcp->tcp_flow_stopped && 879 (TCP_UNSENT_BYTES(peer_tcp) <= 880 peer_tcp->tcp_connp->conn_sndlowat)) { 881 tcp_clrqfull(peer_tcp); 882 } 883 mutex_exit(&peer_tcp->tcp_non_sq_lock); 884 885 TCP_STAT(tcp->tcp_tcps, tcp_fusion_backenabled); 886 } 887