1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/stream.h> 28 #include <sys/strsun.h> 29 #include <sys/strsubr.h> 30 #include <sys/debug.h> 31 #include <sys/sdt.h> 32 #include <sys/cmn_err.h> 33 #include <sys/tihdr.h> 34 35 #include <inet/common.h> 36 #include <inet/optcom.h> 37 #include <inet/ip.h> 38 #include <inet/ip_impl.h> 39 #include <inet/tcp.h> 40 #include <inet/tcp_impl.h> 41 #include <inet/ipsec_impl.h> 42 #include <inet/ipclassifier.h> 43 #include <inet/ipp_common.h> 44 45 /* 46 * This file implements TCP fusion - a protocol-less data path for TCP 47 * loopback connections. The fusion of two local TCP endpoints occurs 48 * at connection establishment time. Various conditions (see details 49 * in tcp_fuse()) need to be met for fusion to be successful. If it 50 * fails, we fall back to the regular TCP data path; if it succeeds, 51 * both endpoints proceed to use tcp_fuse_output() as the transmit path. 52 * tcp_fuse_output() enqueues application data directly onto the peer's 53 * receive queue; no protocol processing is involved. After enqueueing 54 * the data, the sender can either push (putnext) data up the receiver's 55 * read queue; or the sender can simply return and let the receiver 56 * retrieve the enqueued data via the synchronous streams entry point 57 * tcp_fuse_rrw(). The latter path is taken if synchronous streams is 58 * enabled (the default). It is disabled if sockfs no longer resides 59 * directly on top of tcp module due to a module insertion or removal. 60 * It also needs to be temporarily disabled when sending urgent data 61 * because the tcp_fuse_rrw() path bypasses the M_PROTO processing done 62 * by strsock_proto() hook. 63 * 64 * Sychronization is handled by squeue and the mutex tcp_non_sq_lock. 65 * One of the requirements for fusion to succeed is that both endpoints 66 * need to be using the same squeue. This ensures that neither side 67 * can disappear while the other side is still sending data. By itself, 68 * squeue is not sufficient for guaranteeing safety when synchronous 69 * streams is enabled. The reason is that tcp_fuse_rrw() doesn't enter 70 * the squeue and its access to tcp_rcv_list and other fusion-related 71 * fields needs to be sychronized with the sender. tcp_non_sq_lock is 72 * used for this purpose. When there is urgent data, the sender needs 73 * to push the data up the receiver's streams read queue. In order to 74 * avoid holding the tcp_non_sq_lock across putnext(), the sender sets 75 * the peer tcp's tcp_fuse_syncstr_plugged bit and releases tcp_non_sq_lock 76 * (see macro TCP_FUSE_SYNCSTR_PLUG_DRAIN()). If tcp_fuse_rrw() enters 77 * after this point, it will see that synchronous streams is plugged and 78 * will wait on tcp_fuse_plugcv. After the sender has finished pushing up 79 * all urgent data, it will clear the tcp_fuse_syncstr_plugged bit using 80 * TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(). This will cause any threads waiting 81 * on tcp_fuse_plugcv to return EBUSY, and in turn cause strget() to call 82 * getq_noenab() to dequeue data from the stream head instead. Once the 83 * data on the stream head has been consumed, tcp_fuse_rrw() may again 84 * be used to process tcp_rcv_list. However, if TCP_FUSE_SYNCSTR_STOP() 85 * has been called, all future calls to tcp_fuse_rrw() will return EBUSY, 86 * effectively disabling synchronous streams. 87 * 88 * The following note applies only to the synchronous streams mode. 89 * 90 * Flow control is done by checking the size of receive buffer and 91 * the number of data blocks, both set to different limits. This is 92 * different than regular streams flow control where cumulative size 93 * check dominates block count check -- streams queue high water mark 94 * typically represents bytes. Each enqueue triggers notifications 95 * to the receiving process; a build up of data blocks indicates a 96 * slow receiver and the sender should be blocked or informed at the 97 * earliest moment instead of further wasting system resources. In 98 * effect, this is equivalent to limiting the number of outstanding 99 * segments in flight. 100 */ 101 102 /* 103 * Setting this to false means we disable fusion altogether and 104 * loopback connections would go through the protocol paths. 105 */ 106 boolean_t do_tcp_fusion = B_TRUE; 107 108 /* 109 * Enabling this flag allows sockfs to retrieve data directly 110 * from a fused tcp endpoint using synchronous streams interface. 111 */ 112 boolean_t do_tcp_direct_sockfs = B_TRUE; 113 114 /* 115 * This is the minimum amount of outstanding writes allowed on 116 * a synchronous streams-enabled receiving endpoint before the 117 * sender gets flow-controlled. Setting this value to 0 means 118 * that the data block limit is equivalent to the byte count 119 * limit, which essentially disables the check. 120 */ 121 #define TCP_FUSION_RCV_UNREAD_MIN 8 122 uint_t tcp_fusion_rcv_unread_min = TCP_FUSION_RCV_UNREAD_MIN; 123 124 static void tcp_fuse_syncstr_enable(tcp_t *); 125 static void tcp_fuse_syncstr_disable(tcp_t *); 126 static boolean_t strrput_sig(queue_t *, boolean_t); 127 128 /* 129 * Return true if this connection needs some IP functionality 130 */ 131 static boolean_t 132 tcp_loopback_needs_ip(tcp_t *tcp, netstack_t *ns) 133 { 134 ipsec_stack_t *ipss = ns->netstack_ipsec; 135 136 /* 137 * If ire is not cached, do not use fusion 138 */ 139 if (tcp->tcp_connp->conn_ire_cache == NULL) { 140 /* 141 * There is no need to hold conn_lock here because when called 142 * from tcp_fuse() there can be no window where conn_ire_cache 143 * can change. This is not true whe called from 144 * tcp_fuse_output(). conn_ire_cache can become null just 145 * after the check, but it's ok if a few packets are delivered 146 * in the fused state. 147 */ 148 return (B_TRUE); 149 } 150 if (tcp->tcp_ipversion == IPV4_VERSION) { 151 if (tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) 152 return (B_TRUE); 153 if (CONN_OUTBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss)) 154 return (B_TRUE); 155 if (CONN_INBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss)) 156 return (B_TRUE); 157 } else { 158 if (tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) 159 return (B_TRUE); 160 if (CONN_OUTBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss)) 161 return (B_TRUE); 162 if (CONN_INBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss)) 163 return (B_TRUE); 164 } 165 if (!CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)) 166 return (B_TRUE); 167 return (B_FALSE); 168 } 169 170 171 /* 172 * This routine gets called by the eager tcp upon changing state from 173 * SYN_RCVD to ESTABLISHED. It fuses a direct path between itself 174 * and the active connect tcp such that the regular tcp processings 175 * may be bypassed under allowable circumstances. Because the fusion 176 * requires both endpoints to be in the same squeue, it does not work 177 * for simultaneous active connects because there is no easy way to 178 * switch from one squeue to another once the connection is created. 179 * This is different from the eager tcp case where we assign it the 180 * same squeue as the one given to the active connect tcp during open. 181 */ 182 void 183 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph) 184 { 185 conn_t *peer_connp, *connp = tcp->tcp_connp; 186 tcp_t *peer_tcp; 187 tcp_stack_t *tcps = tcp->tcp_tcps; 188 netstack_t *ns; 189 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 190 191 ASSERT(!tcp->tcp_fused); 192 ASSERT(tcp->tcp_loopback); 193 ASSERT(tcp->tcp_loopback_peer == NULL); 194 /* 195 * We need to inherit q_hiwat of the listener tcp, but we can't 196 * really use tcp_listener since we get here after sending up 197 * T_CONN_IND and tcp_wput_accept() may be called independently, 198 * at which point tcp_listener is cleared; this is why we use 199 * tcp_saved_listener. The listener itself is guaranteed to be 200 * around until tcp_accept_finish() is called on this eager -- 201 * this won't happen until we're done since we're inside the 202 * eager's perimeter now. 203 */ 204 ASSERT(tcp->tcp_saved_listener != NULL); 205 206 /* 207 * Lookup peer endpoint; search for the remote endpoint having 208 * the reversed address-port quadruplet in ESTABLISHED state, 209 * which is guaranteed to be unique in the system. Zone check 210 * is applied accordingly for loopback address, but not for 211 * local address since we want fusion to happen across Zones. 212 */ 213 if (tcp->tcp_ipversion == IPV4_VERSION) { 214 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp, 215 (ipha_t *)iphdr, tcph, ipst); 216 } else { 217 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp, 218 (ip6_t *)iphdr, tcph, ipst); 219 } 220 221 /* 222 * We can only proceed if peer exists, resides in the same squeue 223 * as our conn and is not raw-socket. The squeue assignment of 224 * this eager tcp was done earlier at the time of SYN processing 225 * in ip_fanout_tcp{_v6}. Note that similar squeues by itself 226 * doesn't guarantee a safe condition to fuse, hence we perform 227 * additional tests below. 228 */ 229 ASSERT(peer_connp == NULL || peer_connp != connp); 230 if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp || 231 !IPCL_IS_TCP(peer_connp)) { 232 if (peer_connp != NULL) { 233 TCP_STAT(tcps, tcp_fusion_unqualified); 234 CONN_DEC_REF(peer_connp); 235 } 236 return; 237 } 238 peer_tcp = peer_connp->conn_tcp; /* active connect tcp */ 239 240 ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused); 241 ASSERT(peer_tcp->tcp_loopback && peer_tcp->tcp_loopback_peer == NULL); 242 ASSERT(peer_connp->conn_sqp == connp->conn_sqp); 243 244 /* 245 * Fuse the endpoints; we perform further checks against both 246 * tcp endpoints to ensure that a fusion is allowed to happen. 247 * In particular we bail out for non-simple TCP/IP or if IPsec/ 248 * IPQoS policy/kernel SSL exists. 249 */ 250 ns = tcps->tcps_netstack; 251 ipst = ns->netstack_ip; 252 253 if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable && 254 !tcp_loopback_needs_ip(tcp, ns) && 255 !tcp_loopback_needs_ip(peer_tcp, ns) && 256 tcp->tcp_kssl_ent == NULL && 257 !IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst)) { 258 mblk_t *mp; 259 struct stroptions *stropt; 260 queue_t *peer_rq = peer_tcp->tcp_rq; 261 262 ASSERT(!TCP_IS_DETACHED(peer_tcp) && peer_rq != NULL); 263 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 264 ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL); 265 ASSERT(tcp->tcp_kssl_ctx == NULL); 266 267 /* 268 * We need to drain data on both endpoints during unfuse. 269 * If we need to send up SIGURG at the time of draining, 270 * we want to be sure that an mblk is readily available. 271 * This is why we pre-allocate the M_PCSIG mblks for both 272 * endpoints which will only be used during/after unfuse. 273 */ 274 if ((mp = allocb(1, BPRI_HI)) == NULL) 275 goto failed; 276 277 tcp->tcp_fused_sigurg_mp = mp; 278 279 if ((mp = allocb(1, BPRI_HI)) == NULL) 280 goto failed; 281 282 peer_tcp->tcp_fused_sigurg_mp = mp; 283 284 /* Allocate M_SETOPTS mblk */ 285 if ((mp = allocb(sizeof (*stropt), BPRI_HI)) == NULL) 286 goto failed; 287 288 /* If either tcp or peer_tcp sodirect enabled then disable */ 289 if (tcp->tcp_sodirect != NULL) { 290 mutex_enter(tcp->tcp_sodirect->sod_lockp); 291 SOD_DISABLE(tcp->tcp_sodirect); 292 mutex_exit(tcp->tcp_sodirect->sod_lockp); 293 tcp->tcp_sodirect = NULL; 294 } 295 if (peer_tcp->tcp_sodirect != NULL) { 296 mutex_enter(peer_tcp->tcp_sodirect->sod_lockp); 297 SOD_DISABLE(peer_tcp->tcp_sodirect); 298 mutex_exit(peer_tcp->tcp_sodirect->sod_lockp); 299 peer_tcp->tcp_sodirect = NULL; 300 } 301 302 /* Fuse both endpoints */ 303 peer_tcp->tcp_loopback_peer = tcp; 304 tcp->tcp_loopback_peer = peer_tcp; 305 peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE; 306 307 /* 308 * We never use regular tcp paths in fusion and should 309 * therefore clear tcp_unsent on both endpoints. Having 310 * them set to non-zero values means asking for trouble 311 * especially after unfuse, where we may end up sending 312 * through regular tcp paths which expect xmit_list and 313 * friends to be correctly setup. 314 */ 315 peer_tcp->tcp_unsent = tcp->tcp_unsent = 0; 316 317 tcp_timers_stop(tcp); 318 tcp_timers_stop(peer_tcp); 319 320 /* 321 * At this point we are a detached eager tcp and therefore 322 * don't have a queue assigned to us until accept happens. 323 * In the mean time the peer endpoint may immediately send 324 * us data as soon as fusion is finished, and we need to be 325 * able to flow control it in case it sends down huge amount 326 * of data while we're still detached. To prevent that we 327 * inherit the listener's q_hiwat value; this is temporary 328 * since we'll repeat the process in tcp_accept_finish(). 329 */ 330 (void) tcp_fuse_set_rcv_hiwat(tcp, 331 tcp->tcp_saved_listener->tcp_rq->q_hiwat); 332 333 /* 334 * Set the stream head's write offset value to zero since we 335 * won't be needing any room for TCP/IP headers; tell it to 336 * not break up the writes (this would reduce the amount of 337 * work done by kmem); and configure our receive buffer. 338 * Note that we can only do this for the active connect tcp 339 * since our eager is still detached; it will be dealt with 340 * later in tcp_accept_finish(). 341 */ 342 DB_TYPE(mp) = M_SETOPTS; 343 mp->b_wptr += sizeof (*stropt); 344 345 stropt = (struct stroptions *)mp->b_rptr; 346 stropt->so_flags = SO_MAXBLK | SO_WROFF | SO_HIWAT; 347 stropt->so_maxblk = tcp_maxpsz_set(peer_tcp, B_FALSE); 348 stropt->so_wroff = 0; 349 350 /* 351 * Record the stream head's high water mark for 352 * peer endpoint; this is used for flow-control 353 * purposes in tcp_fuse_output(). 354 */ 355 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(peer_tcp, 356 peer_rq->q_hiwat); 357 358 /* Send the options up */ 359 putnext(peer_rq, mp); 360 } else { 361 TCP_STAT(tcps, tcp_fusion_unqualified); 362 } 363 CONN_DEC_REF(peer_connp); 364 return; 365 366 failed: 367 if (tcp->tcp_fused_sigurg_mp != NULL) { 368 freeb(tcp->tcp_fused_sigurg_mp); 369 tcp->tcp_fused_sigurg_mp = NULL; 370 } 371 if (peer_tcp->tcp_fused_sigurg_mp != NULL) { 372 freeb(peer_tcp->tcp_fused_sigurg_mp); 373 peer_tcp->tcp_fused_sigurg_mp = NULL; 374 } 375 CONN_DEC_REF(peer_connp); 376 } 377 378 /* 379 * Unfuse a previously-fused pair of tcp loopback endpoints. 380 */ 381 void 382 tcp_unfuse(tcp_t *tcp) 383 { 384 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 385 386 ASSERT(tcp->tcp_fused && peer_tcp != NULL); 387 ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp); 388 ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); 389 ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0); 390 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 391 ASSERT(peer_tcp->tcp_fused_sigurg_mp != NULL); 392 393 /* 394 * We disable synchronous streams, drain any queued data and 395 * clear tcp_direct_sockfs. The synchronous streams entry 396 * points will become no-ops after this point. 397 */ 398 tcp_fuse_disable_pair(tcp, B_TRUE); 399 400 /* 401 * Update th_seq and th_ack in the header template 402 */ 403 U32_TO_ABE32(tcp->tcp_snxt, tcp->tcp_tcph->th_seq); 404 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 405 U32_TO_ABE32(peer_tcp->tcp_snxt, peer_tcp->tcp_tcph->th_seq); 406 U32_TO_ABE32(peer_tcp->tcp_rnxt, peer_tcp->tcp_tcph->th_ack); 407 408 /* Unfuse the endpoints */ 409 peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE; 410 peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL; 411 } 412 413 /* 414 * Fusion output routine for urgent data. This routine is called by 415 * tcp_fuse_output() for handling non-M_DATA mblks. 416 */ 417 void 418 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp) 419 { 420 mblk_t *mp1; 421 struct T_exdata_ind *tei; 422 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 423 mblk_t *head, *prev_head = NULL; 424 tcp_stack_t *tcps = tcp->tcp_tcps; 425 426 ASSERT(tcp->tcp_fused); 427 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 428 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 429 ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA); 430 ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0); 431 432 /* 433 * Urgent data arrives in the form of T_EXDATA_REQ from above. 434 * Each occurence denotes a new urgent pointer. For each new 435 * urgent pointer we signal (SIGURG) the receiving app to indicate 436 * that it needs to go into urgent mode. This is similar to the 437 * urgent data handling in the regular tcp. We don't need to keep 438 * track of where the urgent pointer is, because each T_EXDATA_REQ 439 * "advances" the urgent pointer for us. 440 * 441 * The actual urgent data carried by T_EXDATA_REQ is then prepended 442 * by a T_EXDATA_IND before being enqueued behind any existing data 443 * destined for the receiving app. There is only a single urgent 444 * pointer (out-of-band mark) for a given tcp. If the new urgent 445 * data arrives before the receiving app reads some existing urgent 446 * data, the previous marker is lost. This behavior is emulated 447 * accordingly below, by removing any existing T_EXDATA_IND messages 448 * and essentially converting old urgent data into non-urgent. 449 */ 450 ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID); 451 /* Let sender get out of urgent mode */ 452 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 453 454 /* 455 * This flag indicates that a signal needs to be sent up. 456 * This flag will only get cleared once SIGURG is delivered and 457 * is not affected by the tcp_fused flag -- delivery will still 458 * happen even after an endpoint is unfused, to handle the case 459 * where the sending endpoint immediately closes/unfuses after 460 * sending urgent data and the accept is not yet finished. 461 */ 462 peer_tcp->tcp_fused_sigurg = B_TRUE; 463 464 /* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */ 465 DB_TYPE(mp) = M_PROTO; 466 tei = (struct T_exdata_ind *)mp->b_rptr; 467 tei->PRIM_type = T_EXDATA_IND; 468 tei->MORE_flag = 0; 469 mp->b_wptr = (uchar_t *)&tei[1]; 470 471 TCP_STAT(tcps, tcp_fusion_urg); 472 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 473 474 head = peer_tcp->tcp_rcv_list; 475 while (head != NULL) { 476 /* 477 * Remove existing T_EXDATA_IND, keep the data which follows 478 * it and relink our list. Note that we don't modify the 479 * tcp_rcv_last_tail since it never points to T_EXDATA_IND. 480 */ 481 if (DB_TYPE(head) != M_DATA) { 482 mp1 = head; 483 484 ASSERT(DB_TYPE(mp1->b_cont) == M_DATA); 485 head = mp1->b_cont; 486 mp1->b_cont = NULL; 487 head->b_next = mp1->b_next; 488 mp1->b_next = NULL; 489 if (prev_head != NULL) 490 prev_head->b_next = head; 491 if (peer_tcp->tcp_rcv_list == mp1) 492 peer_tcp->tcp_rcv_list = head; 493 if (peer_tcp->tcp_rcv_last_head == mp1) 494 peer_tcp->tcp_rcv_last_head = head; 495 freeb(mp1); 496 } 497 prev_head = head; 498 head = head->b_next; 499 } 500 } 501 502 /* 503 * Fusion output routine, called by tcp_output() and tcp_wput_proto(). 504 * If we are modifying any member that can be changed outside the squeue, 505 * like tcp_flow_stopped, we need to take tcp_non_sq_lock. 506 */ 507 boolean_t 508 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size) 509 { 510 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 511 uint_t max_unread; 512 boolean_t flow_stopped, peer_data_queued = B_FALSE; 513 boolean_t urgent = (DB_TYPE(mp) != M_DATA); 514 mblk_t *mp1 = mp; 515 ill_t *ilp, *olp; 516 ipha_t *ipha; 517 ip6_t *ip6h; 518 tcph_t *tcph; 519 uint_t ip_hdr_len; 520 uint32_t seq; 521 uint32_t recv_size = send_size; 522 tcp_stack_t *tcps = tcp->tcp_tcps; 523 netstack_t *ns = tcps->tcps_netstack; 524 ip_stack_t *ipst = ns->netstack_ip; 525 526 ASSERT(tcp->tcp_fused); 527 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 528 ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); 529 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO || 530 DB_TYPE(mp) == M_PCPROTO); 531 532 533 /* If this connection requires IP, unfuse and use regular path */ 534 if (tcp_loopback_needs_ip(tcp, ns) || 535 tcp_loopback_needs_ip(peer_tcp, ns) || 536 IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst)) { 537 TCP_STAT(tcps, tcp_fusion_aborted); 538 goto unfuse; 539 } 540 541 if (send_size == 0) { 542 freemsg(mp); 543 return (B_TRUE); 544 } 545 max_unread = peer_tcp->tcp_fuse_rcv_unread_hiwater; 546 547 /* 548 * Handle urgent data; we either send up SIGURG to the peer now 549 * or do it later when we drain, in case the peer is detached 550 * or if we're short of memory for M_PCSIG mblk. 551 */ 552 if (urgent) { 553 /* 554 * We stop synchronous streams when we have urgent data 555 * queued to prevent tcp_fuse_rrw() from pulling it. If 556 * for some reasons the urgent data can't be delivered 557 * below, synchronous streams will remain stopped until 558 * someone drains the tcp_rcv_list. 559 */ 560 TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp); 561 tcp_fuse_output_urg(tcp, mp); 562 563 mp1 = mp->b_cont; 564 } 565 566 if (tcp->tcp_ipversion == IPV4_VERSION && 567 (HOOKS4_INTERESTED_LOOPBACK_IN(ipst) || 568 HOOKS4_INTERESTED_LOOPBACK_OUT(ipst)) || 569 tcp->tcp_ipversion == IPV6_VERSION && 570 (HOOKS6_INTERESTED_LOOPBACK_IN(ipst) || 571 HOOKS6_INTERESTED_LOOPBACK_OUT(ipst))) { 572 /* 573 * Build ip and tcp header to satisfy FW_HOOKS. 574 * We only build it when any hook is present. 575 */ 576 if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL, 577 tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL) 578 /* If tcp_xmit_mp fails, use regular path */ 579 goto unfuse; 580 581 ASSERT(peer_tcp->tcp_connp->conn_ire_cache->ire_ipif != NULL); 582 olp = peer_tcp->tcp_connp->conn_ire_cache->ire_ipif->ipif_ill; 583 /* PFHooks: LOOPBACK_OUT */ 584 if (tcp->tcp_ipversion == IPV4_VERSION) { 585 ipha = (ipha_t *)mp1->b_rptr; 586 587 DTRACE_PROBE4(ip4__loopback__out__start, 588 ill_t *, NULL, ill_t *, olp, 589 ipha_t *, ipha, mblk_t *, mp1); 590 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 591 ipst->ips_ipv4firewall_loopback_out, 592 NULL, olp, ipha, mp1, mp1, 0, ipst); 593 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, mp1); 594 } else { 595 ip6h = (ip6_t *)mp1->b_rptr; 596 597 DTRACE_PROBE4(ip6__loopback__out__start, 598 ill_t *, NULL, ill_t *, olp, 599 ip6_t *, ip6h, mblk_t *, mp1); 600 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 601 ipst->ips_ipv6firewall_loopback_out, 602 NULL, olp, ip6h, mp1, mp1, 0, ipst); 603 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, mp1); 604 } 605 if (mp1 == NULL) 606 goto unfuse; 607 608 609 /* PFHooks: LOOPBACK_IN */ 610 ASSERT(tcp->tcp_connp->conn_ire_cache->ire_ipif != NULL); 611 ilp = tcp->tcp_connp->conn_ire_cache->ire_ipif->ipif_ill; 612 613 if (tcp->tcp_ipversion == IPV4_VERSION) { 614 DTRACE_PROBE4(ip4__loopback__in__start, 615 ill_t *, ilp, ill_t *, NULL, 616 ipha_t *, ipha, mblk_t *, mp1); 617 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 618 ipst->ips_ipv4firewall_loopback_in, 619 ilp, NULL, ipha, mp1, mp1, 0, ipst); 620 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, mp1); 621 if (mp1 == NULL) 622 goto unfuse; 623 624 ip_hdr_len = IPH_HDR_LENGTH(ipha); 625 } else { 626 DTRACE_PROBE4(ip6__loopback__in__start, 627 ill_t *, ilp, ill_t *, NULL, 628 ip6_t *, ip6h, mblk_t *, mp1); 629 FW_HOOKS6(ipst->ips_ip6_loopback_in_event, 630 ipst->ips_ipv6firewall_loopback_in, 631 ilp, NULL, ip6h, mp1, mp1, 0, ipst); 632 DTRACE_PROBE1(ip6__loopback__in__end, mblk_t *, mp1); 633 if (mp1 == NULL) 634 goto unfuse; 635 636 ip_hdr_len = ip_hdr_length_v6(mp1, ip6h); 637 } 638 639 /* Data length might be changed by FW_HOOKS */ 640 tcph = (tcph_t *)&mp1->b_rptr[ip_hdr_len]; 641 seq = ABE32_TO_U32(tcph->th_seq); 642 recv_size += seq - tcp->tcp_snxt; 643 644 /* 645 * The message duplicated by tcp_xmit_mp is freed. 646 * Note: the original message passed in remains unchanged. 647 */ 648 freemsg(mp1); 649 } 650 651 mutex_enter(&peer_tcp->tcp_non_sq_lock); 652 /* 653 * Wake up and signal the peer; it is okay to do this before 654 * enqueueing because we are holding the lock. One of the 655 * advantages of synchronous streams is the ability for us to 656 * find out when the application performs a read on the socket, 657 * by way of tcp_fuse_rrw() entry point being called. Every 658 * data that gets enqueued onto the receiver is treated as if 659 * it has arrived at the receiving endpoint, thus generating 660 * SIGPOLL/SIGIO for asynchronous socket just as in the strrput() 661 * case. However, we only wake up the application when necessary, 662 * i.e. during the first enqueue. When tcp_fuse_rrw() is called 663 * it will send everything upstream. 664 */ 665 if (peer_tcp->tcp_direct_sockfs && !urgent && 666 !TCP_IS_DETACHED(peer_tcp)) { 667 /* Update poll events and send SIGPOLL/SIGIO if necessary */ 668 STR_WAKEUP_SENDSIG(STREAM(peer_tcp->tcp_rq), 669 peer_tcp->tcp_rcv_list); 670 } 671 672 /* 673 * Enqueue data into the peer's receive list; we may or may not 674 * drain the contents depending on the conditions below. 675 */ 676 tcp_rcv_enqueue(peer_tcp, mp, recv_size); 677 678 /* In case it wrapped around and also to keep it constant */ 679 peer_tcp->tcp_rwnd += recv_size; 680 /* 681 * We increase the peer's unread message count here whilst still 682 * holding it's tcp_non_sq_lock. This ensures that the increment 683 * occurs in the same lock acquisition perimeter as the enqueue. 684 * Depending on lock hierarchy, we can release these locks which 685 * creates a window in which we can race with tcp_fuse_rrw() 686 */ 687 peer_tcp->tcp_fuse_rcv_unread_cnt++; 688 689 /* 690 * Exercise flow-control when needed; we will get back-enabled 691 * in either tcp_accept_finish(), tcp_unfuse(), or tcp_fuse_rrw(). 692 * If tcp_direct_sockfs is on or if the peer endpoint is detached, 693 * we emulate streams flow control by checking the peer's queue 694 * size and high water mark; otherwise we simply use canputnext() 695 * to decide if we need to stop our flow. 696 * 697 * The outstanding unread data block check does not apply for a 698 * detached receiver; this is to avoid unnecessary blocking of the 699 * sender while the accept is currently in progress and is quite 700 * similar to the regular tcp. 701 */ 702 if (TCP_IS_DETACHED(peer_tcp) || max_unread == 0) 703 max_unread = UINT_MAX; 704 705 /* 706 * Since we are accessing our tcp_flow_stopped and might modify it, 707 * we need to take tcp->tcp_non_sq_lock. The lock for the highest 708 * address is held first. Dropping peer_tcp->tcp_non_sq_lock should 709 * not be an issue here since we are within the squeue and the peer 710 * won't disappear. 711 */ 712 if (tcp > peer_tcp) { 713 mutex_exit(&peer_tcp->tcp_non_sq_lock); 714 mutex_enter(&tcp->tcp_non_sq_lock); 715 mutex_enter(&peer_tcp->tcp_non_sq_lock); 716 } else { 717 mutex_enter(&tcp->tcp_non_sq_lock); 718 } 719 flow_stopped = tcp->tcp_flow_stopped; 720 if (((peer_tcp->tcp_direct_sockfs || TCP_IS_DETACHED(peer_tcp)) && 721 (peer_tcp->tcp_rcv_cnt >= peer_tcp->tcp_fuse_rcv_hiwater || 722 peer_tcp->tcp_fuse_rcv_unread_cnt >= max_unread)) || 723 (!peer_tcp->tcp_direct_sockfs && !TCP_IS_DETACHED(peer_tcp) && 724 !canputnext(peer_tcp->tcp_rq))) { 725 peer_data_queued = B_TRUE; 726 } 727 728 if (!flow_stopped && (peer_data_queued || 729 (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater))) { 730 tcp_setqfull(tcp); 731 flow_stopped = B_TRUE; 732 TCP_STAT(tcps, tcp_fusion_flowctl); 733 DTRACE_PROBE4(tcp__fuse__output__flowctl, tcp_t *, tcp, 734 uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt, 735 uint_t, peer_tcp->tcp_fuse_rcv_unread_cnt); 736 } else if (flow_stopped && !peer_data_queued && 737 (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater)) { 738 tcp_clrqfull(tcp); 739 TCP_STAT(tcps, tcp_fusion_backenabled); 740 flow_stopped = B_FALSE; 741 } 742 mutex_exit(&tcp->tcp_non_sq_lock); 743 744 /* 745 * If we are in synchronous streams mode and the peer read queue is 746 * not full then schedule a push timer if one is not scheduled 747 * already. This is needed for applications which use MSG_PEEK to 748 * determine the number of bytes available before issuing a 'real' 749 * read. It also makes flow control more deterministic, particularly 750 * for smaller message sizes. 751 */ 752 if (!urgent && peer_tcp->tcp_direct_sockfs && 753 peer_tcp->tcp_push_tid == 0 && !TCP_IS_DETACHED(peer_tcp) && 754 canputnext(peer_tcp->tcp_rq)) { 755 peer_tcp->tcp_push_tid = TCP_TIMER(peer_tcp, tcp_push_timer, 756 MSEC_TO_TICK(tcps->tcps_push_timer_interval)); 757 } 758 mutex_exit(&peer_tcp->tcp_non_sq_lock); 759 ipst->ips_loopback_packets++; 760 tcp->tcp_last_sent_len = send_size; 761 762 /* Need to adjust the following SNMP MIB-related variables */ 763 tcp->tcp_snxt += send_size; 764 tcp->tcp_suna = tcp->tcp_snxt; 765 peer_tcp->tcp_rnxt += recv_size; 766 peer_tcp->tcp_rack = peer_tcp->tcp_rnxt; 767 768 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 769 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, send_size); 770 771 BUMP_MIB(&tcps->tcps_mib, tcpInSegs); 772 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 773 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, send_size); 774 775 BUMP_LOCAL(tcp->tcp_obsegs); 776 BUMP_LOCAL(peer_tcp->tcp_ibsegs); 777 778 DTRACE_PROBE2(tcp__fuse__output, tcp_t *, tcp, uint_t, send_size); 779 780 if (!TCP_IS_DETACHED(peer_tcp)) { 781 /* 782 * Drain the peer's receive queue it has urgent data or if 783 * we're not flow-controlled. There is no need for draining 784 * normal data when tcp_direct_sockfs is on because the peer 785 * will pull the data via tcp_fuse_rrw(). 786 */ 787 if (urgent || (!flow_stopped && !peer_tcp->tcp_direct_sockfs)) { 788 ASSERT(peer_tcp->tcp_rcv_list != NULL); 789 /* 790 * For TLI-based streams, a thread in tcp_accept_swap() 791 * can race with us. That thread will ensure that the 792 * correct peer_tcp->tcp_rq is globally visible before 793 * peer_tcp->tcp_detached is visible as clear, but we 794 * must also ensure that the load of tcp_rq cannot be 795 * reordered to be before the tcp_detached check. 796 */ 797 membar_consumer(); 798 (void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp, 799 NULL); 800 /* 801 * If synchronous streams was stopped above due 802 * to the presence of urgent data, re-enable it. 803 */ 804 if (urgent) 805 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp); 806 } 807 } 808 return (B_TRUE); 809 unfuse: 810 tcp_unfuse(tcp); 811 return (B_FALSE); 812 } 813 814 /* 815 * This routine gets called to deliver data upstream on a fused or 816 * previously fused tcp loopback endpoint; the latter happens only 817 * when there is a pending SIGURG signal plus urgent data that can't 818 * be sent upstream in the past. 819 */ 820 boolean_t 821 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp) 822 { 823 mblk_t *mp; 824 #ifdef DEBUG 825 uint_t cnt = 0; 826 #endif 827 tcp_stack_t *tcps = tcp->tcp_tcps; 828 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 829 boolean_t sd_rd_eof = B_FALSE; 830 831 ASSERT(tcp->tcp_loopback); 832 ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg); 833 ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL); 834 ASSERT(sigurg_mpp != NULL || tcp->tcp_fused); 835 836 /* No need for the push timer now, in case it was scheduled */ 837 if (tcp->tcp_push_tid != 0) { 838 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 839 tcp->tcp_push_tid = 0; 840 } 841 /* 842 * If there's urgent data sitting in receive list and we didn't 843 * get a chance to send up a SIGURG signal, make sure we send 844 * it first before draining in order to ensure that SIOCATMARK 845 * works properly. 846 */ 847 if (tcp->tcp_fused_sigurg) { 848 /* 849 * sigurg_mpp is normally NULL, i.e. when we're still 850 * fused and didn't get here because of tcp_unfuse(). 851 * In this case try hard to allocate the M_PCSIG mblk. 852 */ 853 if (sigurg_mpp == NULL && 854 (mp = allocb(1, BPRI_HI)) == NULL && 855 (mp = allocb_tryhard(1)) == NULL) { 856 /* Alloc failed; try again next time */ 857 tcp->tcp_push_tid = TCP_TIMER(tcp, tcp_push_timer, 858 MSEC_TO_TICK(tcps->tcps_push_timer_interval)); 859 return (B_TRUE); 860 } else if (sigurg_mpp != NULL) { 861 /* 862 * Use the supplied M_PCSIG mblk; it means we're 863 * either unfused or in the process of unfusing, 864 * and the drain must happen now. 865 */ 866 mp = *sigurg_mpp; 867 *sigurg_mpp = NULL; 868 } 869 ASSERT(mp != NULL); 870 871 tcp->tcp_fused_sigurg = B_FALSE; 872 /* Send up the signal */ 873 DB_TYPE(mp) = M_PCSIG; 874 *mp->b_wptr++ = (uchar_t)SIGURG; 875 putnext(q, mp); 876 /* 877 * Let the regular tcp_rcv_drain() path handle 878 * draining the data if we're no longer fused. 879 */ 880 if (!tcp->tcp_fused) 881 return (B_FALSE); 882 } 883 884 /* 885 * In the synchronous streams case, we generate SIGPOLL/SIGIO for 886 * each M_DATA that gets enqueued onto the receiver. At this point 887 * we are about to drain any queued data via putnext(). In order 888 * to avoid extraneous signal generation from strrput(), we set 889 * STRGETINPROG flag at the stream head prior to the draining and 890 * restore it afterwards. This masks out signal generation only 891 * for M_DATA messages and does not affect urgent data. We only do 892 * this if the STREOF flag is not set which can happen if the 893 * application shuts down the read side of a stream. In this case 894 * we simply free these messages to approximate the flushq behavior 895 * which normally occurs when STREOF is on the stream head read queue. 896 */ 897 if (tcp->tcp_direct_sockfs) 898 sd_rd_eof = strrput_sig(q, B_FALSE); 899 900 /* Drain the data */ 901 while ((mp = tcp->tcp_rcv_list) != NULL) { 902 tcp->tcp_rcv_list = mp->b_next; 903 mp->b_next = NULL; 904 #ifdef DEBUG 905 cnt += msgdsize(mp); 906 #endif 907 if (sd_rd_eof) { 908 freemsg(mp); 909 } else { 910 putnext(q, mp); 911 TCP_STAT(tcps, tcp_fusion_putnext); 912 } 913 } 914 915 if (tcp->tcp_direct_sockfs && !sd_rd_eof) 916 (void) strrput_sig(q, B_TRUE); 917 918 ASSERT(cnt == tcp->tcp_rcv_cnt); 919 tcp->tcp_rcv_last_head = NULL; 920 tcp->tcp_rcv_last_tail = NULL; 921 tcp->tcp_rcv_cnt = 0; 922 tcp->tcp_fuse_rcv_unread_cnt = 0; 923 tcp->tcp_rwnd = q->q_hiwat; 924 925 if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <= 926 peer_tcp->tcp_xmit_lowater)) { 927 tcp_clrqfull(peer_tcp); 928 TCP_STAT(tcps, tcp_fusion_backenabled); 929 } 930 931 return (B_TRUE); 932 } 933 934 /* 935 * Synchronous stream entry point for sockfs to retrieve 936 * data directly from tcp_rcv_list. 937 * tcp_fuse_rrw() might end up modifying the peer's tcp_flow_stopped, 938 * for which it must take the tcp_non_sq_lock of the peer as well 939 * making any change. The order of taking the locks is based on 940 * the TCP pointer itself. Before we get the peer we need to take 941 * our tcp_non_sq_lock so that the peer doesn't disappear. However, 942 * we cannot drop the lock if we have to grab the peer's lock (because 943 * of ordering), since the peer might disappear in the interim. So, 944 * we take our tcp_non_sq_lock, get the peer, increment the ref on the 945 * peer's conn, drop all the locks and then take the tcp_non_sq_lock in the 946 * desired order. Incrementing the conn ref on the peer means that the 947 * peer won't disappear when we drop our tcp_non_sq_lock. 948 */ 949 int 950 tcp_fuse_rrw(queue_t *q, struiod_t *dp) 951 { 952 tcp_t *tcp = Q_TO_CONN(q)->conn_tcp; 953 mblk_t *mp; 954 tcp_t *peer_tcp; 955 tcp_stack_t *tcps = tcp->tcp_tcps; 956 957 mutex_enter(&tcp->tcp_non_sq_lock); 958 959 /* 960 * If tcp_fuse_syncstr_plugged is set, then another thread is moving 961 * the underlying data to the stream head. We need to wait until it's 962 * done, then return EBUSY so that strget() will dequeue data from the 963 * stream head to ensure data is drained in-order. 964 */ 965 plugged: 966 if (tcp->tcp_fuse_syncstr_plugged) { 967 do { 968 cv_wait(&tcp->tcp_fuse_plugcv, &tcp->tcp_non_sq_lock); 969 } while (tcp->tcp_fuse_syncstr_plugged); 970 971 mutex_exit(&tcp->tcp_non_sq_lock); 972 TCP_STAT(tcps, tcp_fusion_rrw_plugged); 973 TCP_STAT(tcps, tcp_fusion_rrw_busy); 974 return (EBUSY); 975 } 976 977 peer_tcp = tcp->tcp_loopback_peer; 978 979 /* 980 * If someone had turned off tcp_direct_sockfs or if synchronous 981 * streams is stopped, we return EBUSY. This causes strget() to 982 * dequeue data from the stream head instead. 983 */ 984 if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) { 985 mutex_exit(&tcp->tcp_non_sq_lock); 986 TCP_STAT(tcps, tcp_fusion_rrw_busy); 987 return (EBUSY); 988 } 989 990 /* 991 * Grab lock in order. The highest addressed tcp is locked first. 992 * We don't do this within the tcp_rcv_list check since if we 993 * have to drop the lock, for ordering, then the tcp_rcv_list 994 * could change. 995 */ 996 if (peer_tcp > tcp) { 997 CONN_INC_REF(peer_tcp->tcp_connp); 998 mutex_exit(&tcp->tcp_non_sq_lock); 999 mutex_enter(&peer_tcp->tcp_non_sq_lock); 1000 mutex_enter(&tcp->tcp_non_sq_lock); 1001 /* 1002 * This might have changed in the interim 1003 * Once read-side tcp_non_sq_lock is dropped above 1004 * anything can happen, we need to check all 1005 * known conditions again once we reaquire 1006 * read-side tcp_non_sq_lock. 1007 */ 1008 if (tcp->tcp_fuse_syncstr_plugged) { 1009 mutex_exit(&peer_tcp->tcp_non_sq_lock); 1010 CONN_DEC_REF(peer_tcp->tcp_connp); 1011 goto plugged; 1012 } 1013 if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) { 1014 mutex_exit(&tcp->tcp_non_sq_lock); 1015 mutex_exit(&peer_tcp->tcp_non_sq_lock); 1016 CONN_DEC_REF(peer_tcp->tcp_connp); 1017 TCP_STAT(tcps, tcp_fusion_rrw_busy); 1018 return (EBUSY); 1019 } 1020 CONN_DEC_REF(peer_tcp->tcp_connp); 1021 } else { 1022 mutex_enter(&peer_tcp->tcp_non_sq_lock); 1023 } 1024 1025 if ((mp = tcp->tcp_rcv_list) != NULL) { 1026 1027 DTRACE_PROBE3(tcp__fuse__rrw, tcp_t *, tcp, 1028 uint32_t, tcp->tcp_rcv_cnt, ssize_t, dp->d_uio.uio_resid); 1029 1030 tcp->tcp_rcv_list = NULL; 1031 TCP_STAT(tcps, tcp_fusion_rrw_msgcnt); 1032 1033 /* 1034 * At this point nothing should be left in tcp_rcv_list. 1035 * The only possible case where we would have a chain of 1036 * b_next-linked messages is urgent data, but we wouldn't 1037 * be here if that's true since urgent data is delivered 1038 * via putnext() and synchronous streams is stopped until 1039 * tcp_fuse_rcv_drain() is finished. 1040 */ 1041 ASSERT(DB_TYPE(mp) == M_DATA && mp->b_next == NULL); 1042 1043 tcp->tcp_rcv_last_head = NULL; 1044 tcp->tcp_rcv_last_tail = NULL; 1045 tcp->tcp_rcv_cnt = 0; 1046 tcp->tcp_fuse_rcv_unread_cnt = 0; 1047 1048 if (peer_tcp->tcp_flow_stopped && 1049 (TCP_UNSENT_BYTES(peer_tcp) <= 1050 peer_tcp->tcp_xmit_lowater)) { 1051 tcp_clrqfull(peer_tcp); 1052 TCP_STAT(tcps, tcp_fusion_backenabled); 1053 } 1054 } 1055 mutex_exit(&peer_tcp->tcp_non_sq_lock); 1056 /* 1057 * Either we just dequeued everything or we get here from sockfs 1058 * and have nothing to return; in this case clear RSLEEP. 1059 */ 1060 ASSERT(tcp->tcp_rcv_last_head == NULL); 1061 ASSERT(tcp->tcp_rcv_last_tail == NULL); 1062 ASSERT(tcp->tcp_rcv_cnt == 0); 1063 ASSERT(tcp->tcp_fuse_rcv_unread_cnt == 0); 1064 STR_WAKEUP_CLEAR(STREAM(q)); 1065 1066 mutex_exit(&tcp->tcp_non_sq_lock); 1067 dp->d_mp = mp; 1068 return (0); 1069 } 1070 1071 /* 1072 * Synchronous stream entry point used by certain ioctls to retrieve 1073 * information about or peek into the tcp_rcv_list. 1074 */ 1075 int 1076 tcp_fuse_rinfop(queue_t *q, infod_t *dp) 1077 { 1078 tcp_t *tcp = Q_TO_CONN(q)->conn_tcp; 1079 mblk_t *mp; 1080 uint_t cmd = dp->d_cmd; 1081 int res = 0; 1082 int error = 0; 1083 struct stdata *stp = STREAM(q); 1084 1085 mutex_enter(&tcp->tcp_non_sq_lock); 1086 /* If shutdown on read has happened, return nothing */ 1087 mutex_enter(&stp->sd_lock); 1088 if (stp->sd_flag & STREOF) { 1089 mutex_exit(&stp->sd_lock); 1090 goto done; 1091 } 1092 mutex_exit(&stp->sd_lock); 1093 1094 /* 1095 * It is OK not to return an answer if tcp_rcv_list is 1096 * currently not accessible. 1097 */ 1098 if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped || 1099 tcp->tcp_fuse_syncstr_plugged || (mp = tcp->tcp_rcv_list) == NULL) 1100 goto done; 1101 1102 if (cmd & INFOD_COUNT) { 1103 /* 1104 * We have at least one message and 1105 * could return only one at a time. 1106 */ 1107 dp->d_count++; 1108 res |= INFOD_COUNT; 1109 } 1110 if (cmd & INFOD_BYTES) { 1111 /* 1112 * Return size of all data messages. 1113 */ 1114 dp->d_bytes += tcp->tcp_rcv_cnt; 1115 res |= INFOD_BYTES; 1116 } 1117 if (cmd & INFOD_FIRSTBYTES) { 1118 /* 1119 * Return size of first data message. 1120 */ 1121 dp->d_bytes = msgdsize(mp); 1122 res |= INFOD_FIRSTBYTES; 1123 dp->d_cmd &= ~INFOD_FIRSTBYTES; 1124 } 1125 if (cmd & INFOD_COPYOUT) { 1126 mblk_t *mp1; 1127 int n; 1128 1129 if (DB_TYPE(mp) == M_DATA) { 1130 mp1 = mp; 1131 } else { 1132 mp1 = mp->b_cont; 1133 ASSERT(mp1 != NULL); 1134 } 1135 1136 /* 1137 * Return data contents of first message. 1138 */ 1139 ASSERT(DB_TYPE(mp1) == M_DATA); 1140 while (mp1 != NULL && dp->d_uiop->uio_resid > 0) { 1141 n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1)); 1142 if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n, 1143 UIO_READ, dp->d_uiop)) != 0) { 1144 goto done; 1145 } 1146 mp1 = mp1->b_cont; 1147 } 1148 res |= INFOD_COPYOUT; 1149 dp->d_cmd &= ~INFOD_COPYOUT; 1150 } 1151 done: 1152 mutex_exit(&tcp->tcp_non_sq_lock); 1153 1154 dp->d_res |= res; 1155 1156 return (error); 1157 } 1158 1159 /* 1160 * Enable synchronous streams on a fused tcp loopback endpoint. 1161 */ 1162 static void 1163 tcp_fuse_syncstr_enable(tcp_t *tcp) 1164 { 1165 queue_t *rq = tcp->tcp_rq; 1166 struct stdata *stp = STREAM(rq); 1167 1168 /* We can only enable synchronous streams for sockfs mode */ 1169 tcp->tcp_direct_sockfs = tcp->tcp_issocket && do_tcp_direct_sockfs; 1170 1171 if (!tcp->tcp_direct_sockfs) 1172 return; 1173 1174 mutex_enter(&stp->sd_lock); 1175 mutex_enter(QLOCK(rq)); 1176 1177 /* 1178 * We replace our q_qinfo with one that has the qi_rwp entry point. 1179 * Clear SR_SIGALLDATA because we generate the equivalent signal(s) 1180 * for every enqueued data in tcp_fuse_output(). 1181 */ 1182 rq->q_qinfo = &tcp_loopback_rinit; 1183 rq->q_struiot = tcp_loopback_rinit.qi_struiot; 1184 stp->sd_struiordq = rq; 1185 stp->sd_rput_opt &= ~SR_SIGALLDATA; 1186 1187 mutex_exit(QLOCK(rq)); 1188 mutex_exit(&stp->sd_lock); 1189 } 1190 1191 /* 1192 * Disable synchronous streams on a fused tcp loopback endpoint. 1193 */ 1194 static void 1195 tcp_fuse_syncstr_disable(tcp_t *tcp) 1196 { 1197 queue_t *rq = tcp->tcp_rq; 1198 struct stdata *stp = STREAM(rq); 1199 1200 if (!tcp->tcp_direct_sockfs) 1201 return; 1202 1203 mutex_enter(&stp->sd_lock); 1204 mutex_enter(QLOCK(rq)); 1205 1206 /* 1207 * Reset q_qinfo to point to the default tcp entry points. 1208 * Also restore SR_SIGALLDATA so that strrput() can generate 1209 * the signals again for future M_DATA messages. 1210 */ 1211 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 1212 rq->q_struiot = tcp_rinitv4.qi_struiot; 1213 stp->sd_struiordq = NULL; 1214 stp->sd_rput_opt |= SR_SIGALLDATA; 1215 tcp->tcp_direct_sockfs = B_FALSE; 1216 1217 mutex_exit(QLOCK(rq)); 1218 mutex_exit(&stp->sd_lock); 1219 } 1220 1221 /* 1222 * Enable synchronous streams on a pair of fused tcp endpoints. 1223 */ 1224 void 1225 tcp_fuse_syncstr_enable_pair(tcp_t *tcp) 1226 { 1227 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 1228 1229 ASSERT(tcp->tcp_fused); 1230 ASSERT(peer_tcp != NULL); 1231 1232 tcp_fuse_syncstr_enable(tcp); 1233 tcp_fuse_syncstr_enable(peer_tcp); 1234 } 1235 1236 /* 1237 * Used to enable/disable signal generation at the stream head. We already 1238 * generated the signal(s) for these messages when they were enqueued on the 1239 * receiver. We also check if STREOF is set here. If it is, we return false 1240 * and let the caller decide what to do. 1241 */ 1242 static boolean_t 1243 strrput_sig(queue_t *q, boolean_t on) 1244 { 1245 struct stdata *stp = STREAM(q); 1246 1247 mutex_enter(&stp->sd_lock); 1248 if (stp->sd_flag == STREOF) { 1249 mutex_exit(&stp->sd_lock); 1250 return (B_TRUE); 1251 } 1252 if (on) 1253 stp->sd_flag &= ~STRGETINPROG; 1254 else 1255 stp->sd_flag |= STRGETINPROG; 1256 mutex_exit(&stp->sd_lock); 1257 1258 return (B_FALSE); 1259 } 1260 1261 /* 1262 * Disable synchronous streams on a pair of fused tcp endpoints and drain 1263 * any queued data; called either during unfuse or upon transitioning from 1264 * a socket to a stream endpoint due to _SIOCSOCKFALLBACK. 1265 */ 1266 void 1267 tcp_fuse_disable_pair(tcp_t *tcp, boolean_t unfusing) 1268 { 1269 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 1270 tcp_stack_t *tcps = tcp->tcp_tcps; 1271 1272 ASSERT(tcp->tcp_fused); 1273 ASSERT(peer_tcp != NULL); 1274 1275 /* 1276 * Force any tcp_fuse_rrw() calls to block until we've moved the data 1277 * onto the stream head. 1278 */ 1279 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 1280 TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp); 1281 1282 /* 1283 * Cancel any pending push timers. 1284 */ 1285 if (tcp->tcp_push_tid != 0) { 1286 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 1287 tcp->tcp_push_tid = 0; 1288 } 1289 if (peer_tcp->tcp_push_tid != 0) { 1290 (void) TCP_TIMER_CANCEL(peer_tcp, peer_tcp->tcp_push_tid); 1291 peer_tcp->tcp_push_tid = 0; 1292 } 1293 1294 /* 1295 * Drain any pending data; the detached check is needed because 1296 * we may be called as a result of a tcp_unfuse() triggered by 1297 * tcp_fuse_output(). Note that in case of a detached tcp, the 1298 * draining will happen later after the tcp is unfused. For non- 1299 * urgent data, this can be handled by the regular tcp_rcv_drain(). 1300 * If we have urgent data sitting in the receive list, we will 1301 * need to send up a SIGURG signal first before draining the data. 1302 * All of these will be handled by the code in tcp_fuse_rcv_drain() 1303 * when called from tcp_rcv_drain(). 1304 */ 1305 if (!TCP_IS_DETACHED(tcp)) { 1306 (void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp, 1307 (unfusing ? &tcp->tcp_fused_sigurg_mp : NULL)); 1308 } 1309 if (!TCP_IS_DETACHED(peer_tcp)) { 1310 (void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp, 1311 (unfusing ? &peer_tcp->tcp_fused_sigurg_mp : NULL)); 1312 } 1313 1314 /* 1315 * Make all current and future tcp_fuse_rrw() calls fail with EBUSY. 1316 * To ensure threads don't sneak past the checks in tcp_fuse_rrw(), 1317 * a given stream must be stopped prior to being unplugged (but the 1318 * ordering of operations between the streams is unimportant). 1319 */ 1320 TCP_FUSE_SYNCSTR_STOP(tcp); 1321 TCP_FUSE_SYNCSTR_STOP(peer_tcp); 1322 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 1323 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp); 1324 1325 /* Lift up any flow-control conditions */ 1326 if (tcp->tcp_flow_stopped) { 1327 tcp_clrqfull(tcp); 1328 TCP_STAT(tcps, tcp_fusion_backenabled); 1329 } 1330 if (peer_tcp->tcp_flow_stopped) { 1331 tcp_clrqfull(peer_tcp); 1332 TCP_STAT(tcps, tcp_fusion_backenabled); 1333 } 1334 1335 /* Disable synchronous streams */ 1336 tcp_fuse_syncstr_disable(tcp); 1337 tcp_fuse_syncstr_disable(peer_tcp); 1338 } 1339 1340 /* 1341 * Calculate the size of receive buffer for a fused tcp endpoint. 1342 */ 1343 size_t 1344 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd) 1345 { 1346 tcp_stack_t *tcps = tcp->tcp_tcps; 1347 1348 ASSERT(tcp->tcp_fused); 1349 1350 /* Ensure that value is within the maximum upper bound */ 1351 if (rwnd > tcps->tcps_max_buf) 1352 rwnd = tcps->tcps_max_buf; 1353 1354 /* Obey the absolute minimum tcp receive high water mark */ 1355 if (rwnd < tcps->tcps_sth_rcv_hiwat) 1356 rwnd = tcps->tcps_sth_rcv_hiwat; 1357 1358 /* 1359 * Round up to system page size in case SO_RCVBUF is modified 1360 * after SO_SNDBUF; the latter is also similarly rounded up. 1361 */ 1362 rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t); 1363 tcp->tcp_fuse_rcv_hiwater = rwnd; 1364 return (rwnd); 1365 } 1366 1367 /* 1368 * Calculate the maximum outstanding unread data block for a fused tcp endpoint. 1369 */ 1370 int 1371 tcp_fuse_maxpsz_set(tcp_t *tcp) 1372 { 1373 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 1374 uint_t sndbuf = tcp->tcp_xmit_hiwater; 1375 uint_t maxpsz = sndbuf; 1376 1377 ASSERT(tcp->tcp_fused); 1378 ASSERT(peer_tcp != NULL); 1379 ASSERT(peer_tcp->tcp_fuse_rcv_hiwater != 0); 1380 /* 1381 * In the fused loopback case, we want the stream head to split 1382 * up larger writes into smaller chunks for a more accurate flow- 1383 * control accounting. Our maxpsz is half of the sender's send 1384 * buffer or the receiver's receive buffer, whichever is smaller. 1385 * We round up the buffer to system page size due to the lack of 1386 * TCP MSS concept in Fusion. 1387 */ 1388 if (maxpsz > peer_tcp->tcp_fuse_rcv_hiwater) 1389 maxpsz = peer_tcp->tcp_fuse_rcv_hiwater; 1390 maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1; 1391 1392 /* 1393 * Calculate the peer's limit for the number of outstanding unread 1394 * data block. This is the amount of data blocks that are allowed 1395 * to reside in the receiver's queue before the sender gets flow 1396 * controlled. It is used only in the synchronous streams mode as 1397 * a way to throttle the sender when it performs consecutive writes 1398 * faster than can be read. The value is derived from SO_SNDBUF in 1399 * order to give the sender some control; we divide it with a large 1400 * value (16KB) to produce a fairly low initial limit. 1401 */ 1402 if (tcp_fusion_rcv_unread_min == 0) { 1403 /* A value of 0 means that we disable the check */ 1404 peer_tcp->tcp_fuse_rcv_unread_hiwater = 0; 1405 } else { 1406 peer_tcp->tcp_fuse_rcv_unread_hiwater = 1407 MAX(sndbuf >> 14, tcp_fusion_rcv_unread_min); 1408 } 1409 return (maxpsz); 1410 } 1411