xref: /titanic_41/usr/src/uts/common/inet/tcp/tcp.c (revision f63f7506be0210195779706f51c58646e568cc40)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 const char tcp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/strsun.h>
35 #include <sys/strsubr.h>
36 #include <sys/stropts.h>
37 #include <sys/strlog.h>
38 #include <sys/strsun.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/suntpi.h>
45 #include <sys/xti_inet.h>
46 #include <sys/cmn_err.h>
47 #include <sys/debug.h>
48 #include <sys/vtrace.h>
49 #include <sys/kmem.h>
50 #include <sys/ethernet.h>
51 #include <sys/cpuvar.h>
52 #include <sys/dlpi.h>
53 #include <sys/multidata.h>
54 #include <sys/multidata_impl.h>
55 #include <sys/pattr.h>
56 #include <sys/policy.h>
57 #include <sys/priv.h>
58 #include <sys/zone.h>
59 
60 #include <sys/errno.h>
61 #include <sys/signal.h>
62 #include <sys/socket.h>
63 #include <sys/sockio.h>
64 #include <sys/isa_defs.h>
65 #include <sys/md5.h>
66 #include <sys/random.h>
67 #include <netinet/in.h>
68 #include <netinet/tcp.h>
69 #include <netinet/ip6.h>
70 #include <netinet/icmp6.h>
71 #include <net/if.h>
72 #include <net/route.h>
73 #include <inet/ipsec_impl.h>
74 
75 #include <inet/common.h>
76 #include <inet/ip.h>
77 #include <inet/ip_impl.h>
78 #include <inet/ip6.h>
79 #include <inet/ip_ndp.h>
80 #include <inet/mi.h>
81 #include <inet/mib2.h>
82 #include <inet/nd.h>
83 #include <inet/optcom.h>
84 #include <inet/snmpcom.h>
85 #include <inet/kstatcom.h>
86 #include <inet/tcp.h>
87 #include <inet/tcp_impl.h>
88 #include <net/pfkeyv2.h>
89 #include <inet/ipsec_info.h>
90 #include <inet/ipdrop.h>
91 #include <inet/tcp_trace.h>
92 
93 #include <inet/ipclassifier.h>
94 #include <inet/ip_ire.h>
95 #include <inet/ip_ftable.h>
96 #include <inet/ip_if.h>
97 #include <inet/ipp_common.h>
98 #include <sys/squeue.h>
99 #include <inet/kssl/ksslapi.h>
100 #include <sys/tsol/label.h>
101 #include <sys/tsol/tnet.h>
102 #include <sys/sdt.h>
103 #include <rpc/pmap_prot.h>
104 
105 /*
106  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
107  *
108  * (Read the detailed design doc in PSARC case directory)
109  *
110  * The entire tcp state is contained in tcp_t and conn_t structure
111  * which are allocated in tandem using ipcl_conn_create() and passing
112  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
113  * the references on the tcp_t. The tcp_t structure is never compressed
114  * and packets always land on the correct TCP perimeter from the time
115  * eager is created till the time tcp_t dies (as such the old mentat
116  * TCP global queue is not used for detached state and no IPSEC checking
117  * is required). The global queue is still allocated to send out resets
118  * for connection which have no listeners and IP directly calls
119  * tcp_xmit_listeners_reset() which does any policy check.
120  *
121  * Protection and Synchronisation mechanism:
122  *
123  * The tcp data structure does not use any kind of lock for protecting
124  * its state but instead uses 'squeues' for mutual exclusion from various
125  * read and write side threads. To access a tcp member, the thread should
126  * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or
127  * squeue_fill). Since the squeues allow a direct function call, caller
128  * can pass any tcp function having prototype of edesc_t as argument
129  * (different from traditional STREAMs model where packets come in only
130  * designated entry points). The list of functions that can be directly
131  * called via squeue are listed before the usual function prototype.
132  *
133  * Referencing:
134  *
135  * TCP is MT-Hot and we use a reference based scheme to make sure that the
136  * tcp structure doesn't disappear when its needed. When the application
137  * creates an outgoing connection or accepts an incoming connection, we
138  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
139  * The IP reference is just a symbolic reference since ip_tcpclose()
140  * looks at tcp structure after tcp_close_output() returns which could
141  * have dropped the last TCP reference. So as long as the connection is
142  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
143  * conn_t. The classifier puts its own reference when the connection is
144  * inserted in listen or connected hash. Anytime a thread needs to enter
145  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
146  * on write side or by doing a classify on read side and then puts a
147  * reference on the conn before doing squeue_enter/tryenter/fill. For
148  * read side, the classifier itself puts the reference under fanout lock
149  * to make sure that tcp can't disappear before it gets processed. The
150  * squeue will drop this reference automatically so the called function
151  * doesn't have to do a DEC_REF.
152  *
153  * Opening a new connection:
154  *
155  * The outgoing connection open is pretty simple. ip_tcpopen() does the
156  * work in creating the conn/tcp structure and initializing it. The
157  * squeue assignment is done based on the CPU the application
158  * is running on. So for outbound connections, processing is always done
159  * on application CPU which might be different from the incoming CPU
160  * being interrupted by the NIC. An optimal way would be to figure out
161  * the NIC <-> CPU binding at listen time, and assign the outgoing
162  * connection to the squeue attached to the CPU that will be interrupted
163  * for incoming packets (we know the NIC based on the bind IP address).
164  * This might seem like a problem if more data is going out but the
165  * fact is that in most cases the transmit is ACK driven transmit where
166  * the outgoing data normally sits on TCP's xmit queue waiting to be
167  * transmitted.
168  *
169  * Accepting a connection:
170  *
171  * This is a more interesting case because of various races involved in
172  * establishing a eager in its own perimeter. Read the meta comment on
173  * top of tcp_conn_request(). But briefly, the squeue is picked by
174  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
175  *
176  * Closing a connection:
177  *
178  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
179  * via squeue to do the close and mark the tcp as detached if the connection
180  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
181  * reference but tcp_close() drop IP's reference always. So if tcp was
182  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
183  * and 1 because it is in classifier's connected hash. This is the condition
184  * we use to determine that its OK to clean up the tcp outside of squeue
185  * when time wait expires (check the ref under fanout and conn_lock and
186  * if it is 2, remove it from fanout hash and kill it).
187  *
188  * Although close just drops the necessary references and marks the
189  * tcp_detached state, tcp_close needs to know the tcp_detached has been
190  * set (under squeue) before letting the STREAM go away (because a
191  * inbound packet might attempt to go up the STREAM while the close
192  * has happened and tcp_detached is not set). So a special lock and
193  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
194  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
195  * tcp_detached.
196  *
197  * Special provisions and fast paths:
198  *
199  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
200  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
201  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
202  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
203  * check to send packets directly to tcp_rput_data via squeue. Everyone
204  * else comes through tcp_input() on the read side.
205  *
206  * We also make special provisions for sockfs by marking tcp_issocket
207  * whenever we have only sockfs on top of TCP. This allows us to skip
208  * putting the tcp in acceptor hash since a sockfs listener can never
209  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
210  * since eager has already been allocated and the accept now happens
211  * on acceptor STREAM. There is a big blob of comment on top of
212  * tcp_conn_request explaining the new accept. When socket is POP'd,
213  * sockfs sends us an ioctl to mark the fact and we go back to old
214  * behaviour. Once tcp_issocket is unset, its never set for the
215  * life of that connection.
216  *
217  * IPsec notes :
218  *
219  * Since a packet is always executed on the correct TCP perimeter
220  * all IPsec processing is defered to IP including checking new
221  * connections and setting IPSEC policies for new connection. The
222  * only exception is tcp_xmit_listeners_reset() which is called
223  * directly from IP and needs to policy check to see if TH_RST
224  * can be sent out.
225  */
226 
227 extern major_t TCP6_MAJ;
228 
229 /*
230  * Values for squeue switch:
231  * 1: squeue_enter_nodrain
232  * 2: squeue_enter
233  * 3: squeue_fill
234  */
235 int tcp_squeue_close = 2;
236 int tcp_squeue_wput = 2;
237 
238 squeue_func_t tcp_squeue_close_proc;
239 squeue_func_t tcp_squeue_wput_proc;
240 
241 /*
242  * This controls how tiny a write must be before we try to copy it
243  * into the the mblk on the tail of the transmit queue.  Not much
244  * speedup is observed for values larger than sixteen.  Zero will
245  * disable the optimisation.
246  */
247 int tcp_tx_pull_len = 16;
248 
249 /*
250  * TCP Statistics.
251  *
252  * How TCP statistics work.
253  *
254  * There are two types of statistics invoked by two macros.
255  *
256  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
257  * supposed to be used in non MT-hot paths of the code.
258  *
259  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
260  * supposed to be used for DEBUG purposes and may be used on a hot path.
261  *
262  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
263  * (use "kstat tcp" to get them).
264  *
265  * There is also additional debugging facility that marks tcp_clean_death()
266  * instances and saves them in tcp_t structure. It is triggered by
267  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
268  * tcp_clean_death() calls that counts the number of times each tag was hit. It
269  * is triggered by TCP_CLD_COUNTERS define.
270  *
271  * How to add new counters.
272  *
273  * 1) Add a field in the tcp_stat structure describing your counter.
274  * 2) Add a line in tcp_statistics with the name of the counter.
275  *
276  *    IMPORTANT!! - make sure that both are in sync !!
277  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
278  *
279  * Please avoid using private counters which are not kstat-exported.
280  *
281  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
282  * in tcp_t structure.
283  *
284  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
285  */
286 
287 #ifndef TCP_DEBUG_COUNTER
288 #ifdef DEBUG
289 #define	TCP_DEBUG_COUNTER 1
290 #else
291 #define	TCP_DEBUG_COUNTER 0
292 #endif
293 #endif
294 
295 #define	TCP_CLD_COUNTERS 0
296 
297 #define	TCP_TAG_CLEAN_DEATH 1
298 #define	TCP_MAX_CLEAN_DEATH_TAG 32
299 
300 #ifdef lint
301 static int _lint_dummy_;
302 #endif
303 
304 #if TCP_CLD_COUNTERS
305 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
306 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
307 #elif defined(lint)
308 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
309 #else
310 #define	TCP_CLD_STAT(x)
311 #endif
312 
313 #if TCP_DEBUG_COUNTER
314 #define	TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1)
315 #elif defined(lint)
316 #define	TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
317 #else
318 #define	TCP_DBGSTAT(x)
319 #endif
320 
321 tcp_stat_t tcp_statistics = {
322 	{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
323 	{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
324 	{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
325 	{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
326 	{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
327 	{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
328 	{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
329 	{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
330 	{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
331 	{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
332 	{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
333 	{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
334 	{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
335 	{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
336 	{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
337 	{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
338 	{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
339 	{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
340 	{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
341 	{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
342 	{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
343 	{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
344 	{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
345 	{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
346 	{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
347 	{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
348 	{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
349 	{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
350 	{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
351 	{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
352 	{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
353 	{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
354 	{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
355 	{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
356 	{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
357 	{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
358 	{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
359 	{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
360 	{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
361 	{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
362 	{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
363 	{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
364 	{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
365 	{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
366 	{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
367 	{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
368 	{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
369 	{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
370 	{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
371 	{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
372 	{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
373 	{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
374 	{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
375 	{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
376 	{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
377 	{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
378 	{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
379 	{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
380 	{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
381 	{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
382 	{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
383 	{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
384 	{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
385 	{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
386 	{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
387 	{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
388 	{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
389 	{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
390 	{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
391 	{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
392 	{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
393 	{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
394 	{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
395 	{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
396 	{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
397 	{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
398 	{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
399 	{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
400 	{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
401 	{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
402 	{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
403 	{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
404 	{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
405 	{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
406 	{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
407 	{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
408 	{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
409 	{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
410 	{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
411 	{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
412 };
413 
414 static kstat_t *tcp_kstat;
415 
416 /*
417  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
418  * tcp write side.
419  */
420 #define	CALL_IP_WPUT(connp, q, mp) {					\
421 	ASSERT(((q)->q_flag & QREADR) == 0);				\
422 	TCP_DBGSTAT(tcp_ip_output);					\
423 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
424 }
425 
426 /* Macros for timestamp comparisons */
427 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
428 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
429 
430 /*
431  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
432  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
433  * by adding three components: a time component which grows by 1 every 4096
434  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
435  * a per-connection component which grows by 125000 for every new connection;
436  * and an "extra" component that grows by a random amount centered
437  * approximately on 64000.  This causes the the ISS generator to cycle every
438  * 4.89 hours if no TCP connections are made, and faster if connections are
439  * made.
440  *
441  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
442  * components: a time component which grows by 250000 every second; and
443  * a per-connection component which grows by 125000 for every new connections.
444  *
445  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
446  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
447  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
448  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
449  * password.
450  */
451 #define	ISS_INCR	250000
452 #define	ISS_NSEC_SHT	12
453 
454 static uint32_t tcp_iss_incr_extra;	/* Incremented for each connection */
455 static kmutex_t tcp_iss_key_lock;
456 static MD5_CTX tcp_iss_key;
457 static sin_t	sin_null;	/* Zero address for quick clears */
458 static sin6_t	sin6_null;	/* Zero address for quick clears */
459 
460 /* Packet dropper for TCP IPsec policy drops. */
461 static ipdropper_t tcp_dropper;
462 
463 /*
464  * This implementation follows the 4.3BSD interpretation of the urgent
465  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
466  * incompatible changes in protocols like telnet and rlogin.
467  */
468 #define	TCP_OLD_URP_INTERPRETATION	1
469 
470 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
471 	(TCP_IS_DETACHED(tcp) && \
472 	    (!(tcp)->tcp_hard_binding))
473 
474 /*
475  * TCP reassembly macros.  We hide starting and ending sequence numbers in
476  * b_next and b_prev of messages on the reassembly queue.  The messages are
477  * chained using b_cont.  These macros are used in tcp_reass() so we don't
478  * have to see the ugly casts and assignments.
479  */
480 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
481 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
482 					(mblk_t *)(uintptr_t)(u))
483 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
484 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
485 					(mblk_t *)(uintptr_t)(u))
486 
487 /*
488  * Implementation of TCP Timers.
489  * =============================
490  *
491  * INTERFACE:
492  *
493  * There are two basic functions dealing with tcp timers:
494  *
495  *	timeout_id_t	tcp_timeout(connp, func, time)
496  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
497  *	TCP_TIMER_RESTART(tcp, intvl)
498  *
499  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
500  * after 'time' ticks passed. The function called by timeout() must adhere to
501  * the same restrictions as a driver soft interrupt handler - it must not sleep
502  * or call other functions that might sleep. The value returned is the opaque
503  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
504  * cancel the request. The call to tcp_timeout() may fail in which case it
505  * returns zero. This is different from the timeout(9F) function which never
506  * fails.
507  *
508  * The call-back function 'func' always receives 'connp' as its single
509  * argument. It is always executed in the squeue corresponding to the tcp
510  * structure. The tcp structure is guaranteed to be present at the time the
511  * call-back is called.
512  *
513  * NOTE: The call-back function 'func' is never called if tcp is in
514  * 	the TCPS_CLOSED state.
515  *
516  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
517  * request. locks acquired by the call-back routine should not be held across
518  * the call to tcp_timeout_cancel() or a deadlock may result.
519  *
520  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
521  * Otherwise, it returns an integer value greater than or equal to 0. In
522  * particular, if the call-back function is already placed on the squeue, it can
523  * not be canceled.
524  *
525  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
526  * 	within squeue context corresponding to the tcp instance. Since the
527  *	call-back is also called via the same squeue, there are no race
528  *	conditions described in untimeout(9F) manual page since all calls are
529  *	strictly serialized.
530  *
531  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
532  *	stored in tcp_timer_tid and starts a new one using
533  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
534  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
535  *	field.
536  *
537  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
538  *	call-back may still be called, so it is possible tcp_timer() will be
539  *	called several times. This should not be a problem since tcp_timer()
540  *	should always check the tcp instance state.
541  *
542  *
543  * IMPLEMENTATION:
544  *
545  * TCP timers are implemented using three-stage process. The call to
546  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
547  * when the timer expires. The tcp_timer_callback() arranges the call of the
548  * tcp_timer_handler() function via squeue corresponding to the tcp
549  * instance. The tcp_timer_handler() calls actual requested timeout call-back
550  * and passes tcp instance as an argument to it. Information is passed between
551  * stages using the tcp_timer_t structure which contains the connp pointer, the
552  * tcp call-back to call and the timeout id returned by the timeout(9F).
553  *
554  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
555  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
556  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
557  * returns the pointer to this mblk.
558  *
559  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
560  * looks like a normal mblk without actual dblk attached to it.
561  *
562  * To optimize performance each tcp instance holds a small cache of timer
563  * mblocks. In the current implementation it caches up to two timer mblocks per
564  * tcp instance. The cache is preserved over tcp frees and is only freed when
565  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
566  * timer processing happens on a corresponding squeue, the cache manipulation
567  * does not require any locks. Experiments show that majority of timer mblocks
568  * allocations are satisfied from the tcp cache and do not involve kmem calls.
569  *
570  * The tcp_timeout() places a refhold on the connp instance which guarantees
571  * that it will be present at the time the call-back function fires. The
572  * tcp_timer_handler() drops the reference after calling the call-back, so the
573  * call-back function does not need to manipulate the references explicitly.
574  */
575 
576 typedef struct tcp_timer_s {
577 	conn_t	*connp;
578 	void 	(*tcpt_proc)(void *);
579 	timeout_id_t   tcpt_tid;
580 } tcp_timer_t;
581 
582 static kmem_cache_t *tcp_timercache;
583 kmem_cache_t	*tcp_sack_info_cache;
584 kmem_cache_t	*tcp_iphc_cache;
585 
586 /*
587  * For scalability, we must not run a timer for every TCP connection
588  * in TIME_WAIT state.  To see why, consider (for time wait interval of
589  * 4 minutes):
590  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
591  *
592  * This list is ordered by time, so you need only delete from the head
593  * until you get to entries which aren't old enough to delete yet.
594  * The list consists of only the detached TIME_WAIT connections.
595  *
596  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
597  * becomes detached TIME_WAIT (either by changing the state and already
598  * being detached or the other way around). This means that the TIME_WAIT
599  * state can be extended (up to doubled) if the connection doesn't become
600  * detached for a long time.
601  *
602  * The list manipulations (including tcp_time_wait_next/prev)
603  * are protected by the tcp_time_wait_lock. The content of the
604  * detached TIME_WAIT connections is protected by the normal perimeters.
605  */
606 
607 typedef struct tcp_squeue_priv_s {
608 	kmutex_t	tcp_time_wait_lock;
609 				/* Protects the next 3 globals */
610 	timeout_id_t	tcp_time_wait_tid;
611 	tcp_t		*tcp_time_wait_head;
612 	tcp_t		*tcp_time_wait_tail;
613 	tcp_t		*tcp_free_list;
614 	uint_t		tcp_free_list_cnt;
615 } tcp_squeue_priv_t;
616 
617 /*
618  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
619  * Running it every 5 seconds seems to give the best results.
620  */
621 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
622 
623 /*
624  * To prevent memory hog, limit the number of entries in tcp_free_list
625  * to 1% of available memory / number of cpus
626  */
627 uint_t tcp_free_list_max_cnt = 0;
628 
629 #define	TCP_XMIT_LOWATER	4096
630 #define	TCP_XMIT_HIWATER	49152
631 #define	TCP_RECV_LOWATER	2048
632 #define	TCP_RECV_HIWATER	49152
633 
634 /*
635  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
636  */
637 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
638 
639 #define	TIDUSZ	4096	/* transport interface data unit size */
640 
641 /*
642  * Bind hash list size and has function.  It has to be a power of 2 for
643  * hashing.
644  */
645 #define	TCP_BIND_FANOUT_SIZE	512
646 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
647 /*
648  * Size of listen and acceptor hash list.  It has to be a power of 2 for
649  * hashing.
650  */
651 #define	TCP_FANOUT_SIZE		256
652 
653 #ifdef	_ILP32
654 #define	TCP_ACCEPTOR_HASH(accid)					\
655 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
656 #else
657 #define	TCP_ACCEPTOR_HASH(accid)					\
658 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
659 #endif	/* _ILP32 */
660 
661 #define	IP_ADDR_CACHE_SIZE	2048
662 #define	IP_ADDR_CACHE_HASH(faddr)					\
663 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
664 
665 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
666 #define	TCP_HSP_HASH_SIZE 256
667 
668 #define	TCP_HSP_HASH(addr)					\
669 	(((addr>>24) ^ (addr >>16) ^			\
670 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
671 
672 /*
673  * TCP options struct returned from tcp_parse_options.
674  */
675 typedef struct tcp_opt_s {
676 	uint32_t	tcp_opt_mss;
677 	uint32_t	tcp_opt_wscale;
678 	uint32_t	tcp_opt_ts_val;
679 	uint32_t	tcp_opt_ts_ecr;
680 	tcp_t		*tcp;
681 } tcp_opt_t;
682 
683 /*
684  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
685  */
686 
687 #ifdef _BIG_ENDIAN
688 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
689 	(TCPOPT_TSTAMP << 8) | 10)
690 #else
691 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
692 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
693 #endif
694 
695 /*
696  * Flags returned from tcp_parse_options.
697  */
698 #define	TCP_OPT_MSS_PRESENT	1
699 #define	TCP_OPT_WSCALE_PRESENT	2
700 #define	TCP_OPT_TSTAMP_PRESENT	4
701 #define	TCP_OPT_SACK_OK_PRESENT	8
702 #define	TCP_OPT_SACK_PRESENT	16
703 
704 /* TCP option length */
705 #define	TCPOPT_NOP_LEN		1
706 #define	TCPOPT_MAXSEG_LEN	4
707 #define	TCPOPT_WS_LEN		3
708 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
709 #define	TCPOPT_TSTAMP_LEN	10
710 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
711 #define	TCPOPT_SACK_OK_LEN	2
712 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
713 #define	TCPOPT_REAL_SACK_LEN	4
714 #define	TCPOPT_MAX_SACK_LEN	36
715 #define	TCPOPT_HEADER_LEN	2
716 
717 /* TCP cwnd burst factor. */
718 #define	TCP_CWND_INFINITE	65535
719 #define	TCP_CWND_SS		3
720 #define	TCP_CWND_NORMAL		5
721 
722 /* Maximum TCP initial cwin (start/restart). */
723 #define	TCP_MAX_INIT_CWND	8
724 
725 /*
726  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
727  * either tcp_slow_start_initial or tcp_slow_start_after idle
728  * depending on the caller.  If the upper layer has not used the
729  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
730  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
731  * If the upper layer has changed set the tcp_init_cwnd, just use
732  * it to calculate the tcp_cwnd.
733  */
734 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
735 {									\
736 	if ((tcp)->tcp_init_cwnd == 0) {				\
737 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
738 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
739 	} else {							\
740 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
741 	}								\
742 	tcp->tcp_cwnd_cnt = 0;						\
743 }
744 
745 /* TCP Timer control structure */
746 typedef struct tcpt_s {
747 	pfv_t	tcpt_pfv;	/* The routine we are to call */
748 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
749 } tcpt_t;
750 
751 /* Host Specific Parameter structure */
752 typedef struct tcp_hsp {
753 	struct tcp_hsp	*tcp_hsp_next;
754 	in6_addr_t	tcp_hsp_addr_v6;
755 	in6_addr_t	tcp_hsp_subnet_v6;
756 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
757 	int32_t		tcp_hsp_sendspace;
758 	int32_t		tcp_hsp_recvspace;
759 	int32_t		tcp_hsp_tstamp;
760 } tcp_hsp_t;
761 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
762 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
763 
764 /*
765  * Functions called directly via squeue having a prototype of edesc_t.
766  */
767 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
768 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
769 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
770 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
771 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
772 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
773 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
774 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
775 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
776 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
777 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
778 
779 
780 /* Prototype for TCP functions */
781 static void	tcp_random_init(void);
782 int		tcp_random(void);
783 static void	tcp_accept(tcp_t *tcp, mblk_t *mp);
784 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
785 		    tcp_t *eager);
786 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
787 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
788     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
789     boolean_t user_specified);
790 static void	tcp_closei_local(tcp_t *tcp);
791 static void	tcp_close_detached(tcp_t *tcp);
792 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
793 			mblk_t *idmp, mblk_t **defermp);
794 static void	tcp_connect(tcp_t *tcp, mblk_t *mp);
795 static void	tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp,
796 		    in_port_t dstport, uint_t srcid);
797 static void	tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
798 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
799 		    uint32_t scope_id);
800 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
801 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
802 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
803 static char	*tcp_display(tcp_t *tcp, char *, char);
804 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
805 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
806 static void	tcp_eager_unlink(tcp_t *tcp);
807 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
808 		    int unixerr);
809 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
810 		    int tlierr, int unixerr);
811 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
812 		    cred_t *cr);
813 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
814 		    char *value, caddr_t cp, cred_t *cr);
815 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
816 		    char *value, caddr_t cp, cred_t *cr);
817 static int	tcp_tpistate(tcp_t *tcp);
818 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
819     int caller_holds_lock);
820 static void	tcp_bind_hash_remove(tcp_t *tcp);
821 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id);
822 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
823 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
824 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
825 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
826 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
827 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
828 static int	tcp_header_init_ipv4(tcp_t *tcp);
829 static int	tcp_header_init_ipv6(tcp_t *tcp);
830 int		tcp_init(tcp_t *tcp, queue_t *q);
831 static int	tcp_init_values(tcp_t *tcp);
832 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
833 static mblk_t	*tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim,
834 		    t_scalar_t addr_length);
835 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
836 static void	tcp_ip_notify(tcp_t *tcp);
837 static mblk_t	*tcp_ire_mp(mblk_t *mp);
838 static void	tcp_iss_init(tcp_t *tcp);
839 static void	tcp_keepalive_killer(void *arg);
840 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
841 static void	tcp_mss_set(tcp_t *tcp, uint32_t size);
842 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
843 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
844 static boolean_t tcp_allow_connopt_set(int level, int name);
845 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
846 int		tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
847 int		tcp_opt_set(queue_t *q, uint_t optset_context, int level,
848 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
849 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
850 		    mblk_t *mblk);
851 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
852 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
853 		    uchar_t *ptr, uint_t len);
854 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
855 static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt);
856 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
857 		    caddr_t cp, cred_t *cr);
858 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
859 		    caddr_t cp, cred_t *cr);
860 static void	tcp_iss_key_init(uint8_t *phrase, int len);
861 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
862 		    caddr_t cp, cred_t *cr);
863 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
864 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
865 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
866 static void	tcp_reinit(tcp_t *tcp);
867 static void	tcp_reinit_values(tcp_t *tcp);
868 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
869 		    tcp_t *thisstream, cred_t *cr);
870 
871 static uint_t	tcp_rcv_drain(queue_t *q, tcp_t *tcp);
872 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
873 static boolean_t tcp_send_rst_chk(void);
874 static void	tcp_ss_rexmit(tcp_t *tcp);
875 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
876 static void	tcp_process_options(tcp_t *, tcph_t *);
877 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
878 static void	tcp_rsrv(queue_t *q);
879 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
880 static int	tcp_snmp_state(tcp_t *tcp);
881 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
882 		    cred_t *cr);
883 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
884 		    cred_t *cr);
885 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
886 		    cred_t *cr);
887 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
888 		    cred_t *cr);
889 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
890 		    cred_t *cr);
891 static int	tcp_host_param_set(queue_t *q, mblk_t *mp, char *value,
892 		    caddr_t cp, cred_t *cr);
893 static int	tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value,
894 		    caddr_t cp, cred_t *cr);
895 static int	tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp,
896 		    cred_t *cr);
897 static void	tcp_timer(void *arg);
898 static void	tcp_timer_callback(void *);
899 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
900     boolean_t random);
901 static in_port_t tcp_get_next_priv_port(const tcp_t *);
902 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
903 void		tcp_wput_accept(queue_t *q, mblk_t *mp);
904 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
905 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
906 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
907 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
908 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
909 		    const int num_sack_blk, int *usable, uint_t *snxt,
910 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
911 		    const int mdt_thres);
912 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
913 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
914 		    const int num_sack_blk, int *usable, uint_t *snxt,
915 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
916 		    const int mdt_thres);
917 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
918 		    int num_sack_blk);
919 static void	tcp_wsrv(queue_t *q);
920 static int	tcp_xmit_end(tcp_t *tcp);
921 static mblk_t	*tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send,
922 		    int32_t *offset, mblk_t **end_mp, uint32_t seq,
923 		    boolean_t sendall, uint32_t *seg_len, boolean_t rexmit);
924 static void	tcp_ack_timer(void *arg);
925 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
926 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
927 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
928 		    zoneid_t zoneid);
929 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
930 		    uint32_t ack, int ctl);
931 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr);
932 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr);
933 static int	setmaxps(queue_t *q, int maxpsz);
934 static void	tcp_set_rto(tcp_t *, time_t);
935 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
936 		    boolean_t, boolean_t);
937 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
938 		    boolean_t ipsec_mctl);
939 static mblk_t	*tcp_setsockopt_mp(int level, int cmd,
940 		    char *opt, int optlen);
941 static int	tcp_build_hdrs(queue_t *, tcp_t *);
942 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
943 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
944 		    tcph_t *tcph);
945 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
946 boolean_t	tcp_reserved_port_add(int, in_port_t *, in_port_t *);
947 boolean_t	tcp_reserved_port_del(in_port_t, in_port_t);
948 boolean_t	tcp_reserved_port_check(in_port_t);
949 static tcp_t	*tcp_alloc_temp_tcp(in_port_t);
950 static int	tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *);
951 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
952 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
953 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
954 		    const boolean_t, const uint32_t, const uint32_t,
955 		    const uint32_t, const uint32_t);
956 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
957 		    const uint_t, const uint_t, boolean_t *);
958 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
959 extern mblk_t	*tcp_timermp_alloc(int);
960 extern void	tcp_timermp_free(tcp_t *);
961 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
962 static void	tcp_stop_lingering(tcp_t *tcp);
963 static void	tcp_close_linger_timeout(void *arg);
964 void		tcp_ddi_init(void);
965 void		tcp_ddi_destroy(void);
966 static void	tcp_kstat_init(void);
967 static void	tcp_kstat_fini(void);
968 static int	tcp_kstat_update(kstat_t *kp, int rw);
969 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
970 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
971 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
972 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
973 			tcph_t *tcph, mblk_t *idmp);
974 static squeue_func_t tcp_squeue_switch(int);
975 
976 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *);
977 static int	tcp_close(queue_t *, int);
978 static int	tcpclose_accept(queue_t *);
979 static int	tcp_modclose(queue_t *);
980 static void	tcp_wput_mod(queue_t *, mblk_t *);
981 
982 static void	tcp_squeue_add(squeue_t *);
983 static boolean_t tcp_zcopy_check(tcp_t *);
984 static void	tcp_zcopy_notify(tcp_t *);
985 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
986 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
987 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
988 
989 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
990 
991 /*
992  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
993  *
994  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
995  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
996  * (defined in tcp.h) needs to be filled in and passed into the kernel
997  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
998  * structure contains the four-tuple of a TCP connection and a range of TCP
999  * states (specified by ac_start and ac_end). The use of wildcard addresses
1000  * and ports is allowed. Connections with a matching four tuple and a state
1001  * within the specified range will be aborted. The valid states for the
1002  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
1003  * inclusive.
1004  *
1005  * An application which has its connection aborted by this ioctl will receive
1006  * an error that is dependent on the connection state at the time of the abort.
1007  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
1008  * though a RST packet has been received.  If the connection state is equal to
1009  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
1010  * and all resources associated with the connection will be freed.
1011  */
1012 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
1013 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
1014 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
1015 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *);
1016 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
1017 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
1018     boolean_t);
1019 
1020 static struct module_info tcp_rinfo =  {
1021 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
1022 };
1023 
1024 static struct module_info tcp_winfo =  {
1025 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
1026 };
1027 
1028 /*
1029  * Entry points for TCP as a module. It only allows SNMP requests
1030  * to pass through.
1031  */
1032 struct qinit tcp_mod_rinit = {
1033 	(pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo,
1034 };
1035 
1036 struct qinit tcp_mod_winit = {
1037 	(pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL,
1038 	&tcp_rinfo
1039 };
1040 
1041 /*
1042  * Entry points for TCP as a device. The normal case which supports
1043  * the TCP functionality.
1044  */
1045 struct qinit tcp_rinit = {
1046 	NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo
1047 };
1048 
1049 struct qinit tcp_winit = {
1050 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1051 };
1052 
1053 /* Initial entry point for TCP in socket mode. */
1054 struct qinit tcp_sock_winit = {
1055 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1056 };
1057 
1058 /*
1059  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
1060  * an accept. Avoid allocating data structures since eager has already
1061  * been created.
1062  */
1063 struct qinit tcp_acceptor_rinit = {
1064 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
1065 };
1066 
1067 struct qinit tcp_acceptor_winit = {
1068 	(pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo
1069 };
1070 
1071 /*
1072  * Entry points for TCP loopback (read side only)
1073  */
1074 struct qinit tcp_loopback_rinit = {
1075 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0,
1076 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1077 };
1078 
1079 struct streamtab tcpinfo = {
1080 	&tcp_rinit, &tcp_winit
1081 };
1082 
1083 extern squeue_func_t tcp_squeue_wput_proc;
1084 extern squeue_func_t tcp_squeue_timer_proc;
1085 
1086 /* Protected by tcp_g_q_lock */
1087 static queue_t	*tcp_g_q;	/* Default queue used during detached closes */
1088 kmutex_t tcp_g_q_lock;
1089 
1090 /* Protected by tcp_hsp_lock */
1091 /*
1092  * XXX The host param mechanism should go away and instead we should use
1093  * the metrics associated with the routes to determine the default sndspace
1094  * and rcvspace.
1095  */
1096 static tcp_hsp_t	**tcp_hsp_hash;	/* Hash table for HSPs */
1097 krwlock_t tcp_hsp_lock;
1098 
1099 /*
1100  * Extra privileged ports. In host byte order.
1101  * Protected by tcp_epriv_port_lock.
1102  */
1103 #define	TCP_NUM_EPRIV_PORTS	64
1104 static int	tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
1105 static uint16_t	tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 };
1106 kmutex_t tcp_epriv_port_lock;
1107 
1108 /*
1109  * The smallest anonymous port in the privileged port range which TCP
1110  * looks for free port.  Use in the option TCP_ANONPRIVBIND.
1111  */
1112 static in_port_t tcp_min_anonpriv_port = 512;
1113 
1114 /* Only modified during _init and _fini thus no locking is needed. */
1115 static caddr_t	tcp_g_nd;	/* Head of 'named dispatch' variable list */
1116 
1117 /* Hint not protected by any lock */
1118 static uint_t	tcp_next_port_to_try;
1119 
1120 
1121 /* TCP bind hash list - all tcp_t with state >= BOUND. */
1122 tf_t	tcp_bind_fanout[TCP_BIND_FANOUT_SIZE];
1123 
1124 /* TCP queue hash list - all tcp_t in case they will be an acceptor. */
1125 static tf_t	tcp_acceptor_fanout[TCP_FANOUT_SIZE];
1126 
1127 /*
1128  * TCP has a private interface for other kernel modules to reserve a
1129  * port range for them to use.  Once reserved, TCP will not use any ports
1130  * in the range.  This interface relies on the TCP_EXCLBIND feature.  If
1131  * the semantics of TCP_EXCLBIND is changed, implementation of this interface
1132  * has to be verified.
1133  *
1134  * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges.  Each port
1135  * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports.  A port
1136  * range is [port a, port b] inclusive.  And each port range is between
1137  * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive.
1138  *
1139  * Note that the default anonymous port range starts from 32768.  There is
1140  * no port "collision" between that and the reserved port range.  If there
1141  * is port collision (because the default smallest anonymous port is lowered
1142  * or some apps specifically bind to ports in the reserved port range), the
1143  * system may not be able to reserve a port range even there are enough
1144  * unbound ports as a reserved port range contains consecutive ports .
1145  */
1146 #define	TCP_RESERVED_PORTS_ARRAY_MAX_SIZE	5
1147 #define	TCP_RESERVED_PORTS_RANGE_MAX		1000
1148 #define	TCP_SMALLEST_RESERVED_PORT		10240
1149 #define	TCP_LARGEST_RESERVED_PORT		20480
1150 
1151 /* Structure to represent those reserved port ranges. */
1152 typedef struct tcp_rport_s {
1153 	in_port_t	lo_port;
1154 	in_port_t	hi_port;
1155 	tcp_t		**temp_tcp_array;
1156 } tcp_rport_t;
1157 
1158 /* The reserved port array. */
1159 static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
1160 
1161 /* Locks to protect the tcp_reserved_ports array. */
1162 static krwlock_t tcp_reserved_port_lock;
1163 
1164 /* The number of ranges in the array. */
1165 uint32_t tcp_reserved_port_array_size = 0;
1166 
1167 /*
1168  * MIB-2 stuff for SNMP
1169  * Note: tcpInErrs {tcp 15} is accumulated in ip.c
1170  */
1171 mib2_tcp_t	tcp_mib;	/* SNMP fixed size info */
1172 kstat_t		*tcp_mibkp;	/* kstat exporting tcp_mib data */
1173 
1174 boolean_t tcp_icmp_source_quench = B_FALSE;
1175 /*
1176  * Following assumes TPI alignment requirements stay along 32 bit
1177  * boundaries
1178  */
1179 #define	ROUNDUP32(x) \
1180 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1181 
1182 /* Template for response to info request. */
1183 static struct T_info_ack tcp_g_t_info_ack = {
1184 	T_INFO_ACK,		/* PRIM_type */
1185 	0,			/* TSDU_size */
1186 	T_INFINITE,		/* ETSDU_size */
1187 	T_INVALID,		/* CDATA_size */
1188 	T_INVALID,		/* DDATA_size */
1189 	sizeof (sin_t),		/* ADDR_size */
1190 	0,			/* OPT_size - not initialized here */
1191 	TIDUSZ,			/* TIDU_size */
1192 	T_COTS_ORD,		/* SERV_type */
1193 	TCPS_IDLE,		/* CURRENT_state */
1194 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1195 };
1196 
1197 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1198 	T_INFO_ACK,		/* PRIM_type */
1199 	0,			/* TSDU_size */
1200 	T_INFINITE,		/* ETSDU_size */
1201 	T_INVALID,		/* CDATA_size */
1202 	T_INVALID,		/* DDATA_size */
1203 	sizeof (sin6_t),	/* ADDR_size */
1204 	0,			/* OPT_size - not initialized here */
1205 	TIDUSZ,		/* TIDU_size */
1206 	T_COTS_ORD,		/* SERV_type */
1207 	TCPS_IDLE,		/* CURRENT_state */
1208 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1209 };
1210 
1211 #define	MS	1L
1212 #define	SECONDS	(1000 * MS)
1213 #define	MINUTES	(60 * SECONDS)
1214 #define	HOURS	(60 * MINUTES)
1215 #define	DAYS	(24 * HOURS)
1216 
1217 #define	PARAM_MAX (~(uint32_t)0)
1218 
1219 /* Max size IP datagram is 64k - 1 */
1220 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1221 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1222 /* Max of the above */
1223 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1224 
1225 /* Largest TCP port number */
1226 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1227 
1228 /*
1229  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1230  * layer header.  It has to be a multiple of 4.
1231  */
1232 static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1233 #define	tcp_wroff_xtra	tcp_wroff_xtra_param.tcp_param_val
1234 
1235 /*
1236  * All of these are alterable, within the min/max values given, at run time.
1237  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1238  * per the TCP spec.
1239  */
1240 /* BEGIN CSTYLED */
1241 tcpparam_t	tcp_param_arr[] = {
1242  /*min		max		value		name */
1243  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1244  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1245  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1246  { 1,		1024,		1,		"tcp_conn_req_min" },
1247  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1248  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1249  { 0,		10,		0,		"tcp_debug" },
1250  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1251  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1252  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1253  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1254  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1255  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1256  { 1,		255,		64,		"tcp_ipv4_ttl"},
1257  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1258  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1259  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1260  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1261  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1262  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1263  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1264  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1265  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1266  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1267  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1268  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1269  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1270  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1271  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1272  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1273  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1274  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1275  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1276  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1277  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1278  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1279  { 0,		TCP_MSS_MAX,	64,		"tcp_co_min"},
1280  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1281 /*
1282  * Question:  What default value should I set for tcp_strong_iss?
1283  */
1284  { 0,		2,		1,		"tcp_strong_iss"},
1285  { 0,		65536,		20,		"tcp_rtt_updates"},
1286  { 0,		1,		1,		"tcp_wscale_always"},
1287  { 0,		1,		0,		"tcp_tstamp_always"},
1288  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1289  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1290  { 0,		16,		2,		"tcp_deferred_acks_max"},
1291  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1292  { 1,		4,		4,		"tcp_slow_start_initial"},
1293  { 10*MS,	50*MS,		20*MS,		"tcp_co_timer_interval"},
1294  { 0,		2,		2,		"tcp_sack_permitted"},
1295  { 0,		1,		0,		"tcp_trace"},
1296  { 0,		1,		1,		"tcp_compression_enabled"},
1297  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1298  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1299  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1300  { 0,		1,		0,		"tcp_rev_src_routes"},
1301  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1302  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1303  { 0,		16,		8,		"tcp_local_dacks_max"},
1304  { 0,		2,		1,		"tcp_ecn_permitted"},
1305  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1306  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1307  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1308  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1309  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1310 };
1311 /* END CSTYLED */
1312 
1313 /*
1314  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1315  * each header fragment in the header buffer.  Each parameter value has
1316  * to be a multiple of 4 (32-bit aligned).
1317  */
1318 static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" };
1319 static tcpparam_t tcp_mdt_tail_param = { 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1320 #define	tcp_mdt_hdr_head_min	tcp_mdt_head_param.tcp_param_val
1321 #define	tcp_mdt_hdr_tail_min	tcp_mdt_tail_param.tcp_param_val
1322 
1323 /*
1324  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1325  * the maximum number of payload buffers associated per Multidata.
1326  */
1327 static tcpparam_t tcp_mdt_max_pbufs_param =
1328 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1329 #define	tcp_mdt_max_pbufs	tcp_mdt_max_pbufs_param.tcp_param_val
1330 
1331 /* Round up the value to the nearest mss. */
1332 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1333 
1334 /*
1335  * Set ECN capable transport (ECT) code point in IP header.
1336  *
1337  * Note that there are 2 ECT code points '01' and '10', which are called
1338  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1339  * point ECT(0) for TCP as described in RFC 2481.
1340  */
1341 #define	SET_ECT(tcp, iph) \
1342 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1343 		/* We need to clear the code point first. */ \
1344 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1345 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1346 	} else { \
1347 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1348 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1349 	}
1350 
1351 /*
1352  * The format argument to pass to tcp_display().
1353  * DISP_PORT_ONLY means that the returned string has only port info.
1354  * DISP_ADDR_AND_PORT means that the returned string also contains the
1355  * remote and local IP address.
1356  */
1357 #define	DISP_PORT_ONLY		1
1358 #define	DISP_ADDR_AND_PORT	2
1359 
1360 /*
1361  * This controls the rate some ndd info report functions can be used
1362  * by non-privileged users.  It stores the last time such info is
1363  * requested.  When those report functions are called again, this
1364  * is checked with the current time and compare with the ndd param
1365  * tcp_ndd_get_info_interval.
1366  */
1367 static clock_t tcp_last_ndd_get_info_time = 0;
1368 #define	NDD_TOO_QUICK_MSG \
1369 	"ndd get info rate too high for non-privileged users, try again " \
1370 	"later.\n"
1371 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1372 
1373 #define	IS_VMLOANED_MBLK(mp) \
1374 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1375 
1376 /*
1377  * These two variables control the rate for TCP to generate RSTs in
1378  * response to segments not belonging to any connections.  We limit
1379  * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in
1380  * each 1 second interval.  This is to protect TCP against DoS attack.
1381  */
1382 static clock_t tcp_last_rst_intrvl;
1383 static uint32_t tcp_rst_cnt;
1384 
1385 /* The number of RST not sent because of the rate limit. */
1386 static uint32_t tcp_rst_unsent;
1387 
1388 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1389 boolean_t tcp_mdt_chain = B_TRUE;
1390 
1391 /*
1392  * MDT threshold in the form of effective send MSS multiplier; we take
1393  * the MDT path if the amount of unsent data exceeds the threshold value
1394  * (default threshold is 1*SMSS).
1395  */
1396 uint_t tcp_mdt_smss_threshold = 1;
1397 
1398 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1399 
1400 /*
1401  * Forces all connections to obey the value of the tcp_maxpsz_multiplier
1402  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1403  * determined dynamically during tcp_adapt_ire(), which is the default.
1404  */
1405 boolean_t tcp_static_maxpsz = B_FALSE;
1406 
1407 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1408 uint32_t tcp_random_anon_port = 1;
1409 
1410 /*
1411  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1412  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1413  * data, TCP will not respond with an ACK.  RFC 793 requires that
1414  * TCP responds with an ACK for such a bogus ACK.  By not following
1415  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1416  * an attacker successfully spoofs an acceptable segment to our
1417  * peer; or when our peer is "confused."
1418  */
1419 uint32_t tcp_drop_ack_unsent_cnt = 10;
1420 
1421 /*
1422  * Hook functions to enable cluster networking
1423  * On non-clustered systems these vectors must always be NULL.
1424  */
1425 
1426 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family,
1427 			    uint8_t *laddrp, in_port_t lport) = NULL;
1428 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family,
1429 			    uint8_t *laddrp, in_port_t lport) = NULL;
1430 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family,
1431 			    uint8_t *laddrp, in_port_t lport,
1432 			    uint8_t *faddrp, in_port_t fport) = NULL;
1433 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family,
1434 			    uint8_t *laddrp, in_port_t lport,
1435 			    uint8_t *faddrp, in_port_t fport) = NULL;
1436 
1437 /*
1438  * The following are defined in ip.c
1439  */
1440 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family,
1441 				uint8_t *laddrp);
1442 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
1443 				uint8_t *laddrp, uint8_t *faddrp);
1444 
1445 #define	CL_INET_CONNECT(tcp)		{			\
1446 	if (cl_inet_connect != NULL) {				\
1447 		/*						\
1448 		 * Running in cluster mode - register active connection	\
1449 		 * information						\
1450 		 */							\
1451 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1452 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1453 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET,\
1454 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1455 				    (in_port_t)(tcp)->tcp_lport,	\
1456 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1457 				    (in_port_t)(tcp)->tcp_fport);	\
1458 			}						\
1459 		} else {						\
1460 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1461 			    &(tcp)->tcp_ip6h->ip6_src)) {\
1462 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\
1463 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1464 				    (in_port_t)(tcp)->tcp_lport,	\
1465 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1466 				    (in_port_t)(tcp)->tcp_fport);	\
1467 			}						\
1468 		}							\
1469 	}								\
1470 }
1471 
1472 #define	CL_INET_DISCONNECT(tcp)	{				\
1473 	if (cl_inet_disconnect != NULL) {				\
1474 		/*							\
1475 		 * Running in cluster mode - deregister active		\
1476 		 * connection information				\
1477 		 */							\
1478 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1479 			if ((tcp)->tcp_ip_src != 0) {			\
1480 				(*cl_inet_disconnect)(IPPROTO_TCP,	\
1481 				    AF_INET,				\
1482 				    (uint8_t *)(&((tcp)->tcp_ip_src)),\
1483 				    (in_port_t)(tcp)->tcp_lport,	\
1484 				    (uint8_t *)				\
1485 				    (&((tcp)->tcp_ipha->ipha_dst)),\
1486 				    (in_port_t)(tcp)->tcp_fport);	\
1487 			}						\
1488 		} else {						\
1489 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1490 			    &(tcp)->tcp_ip_src_v6)) {			\
1491 				(*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\
1492 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1493 				    (in_port_t)(tcp)->tcp_lport,	\
1494 				    (uint8_t *)				\
1495 				    (&((tcp)->tcp_ip6h->ip6_dst)),\
1496 				    (in_port_t)(tcp)->tcp_fport);	\
1497 			}						\
1498 		}							\
1499 	}								\
1500 }
1501 
1502 /*
1503  * Cluster networking hook for traversing current connection list.
1504  * This routine is used to extract the current list of live connections
1505  * which must continue to to be dispatched to this node.
1506  */
1507 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg);
1508 
1509 /*
1510  * Figure out the value of window scale opton.  Note that the rwnd is
1511  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1512  * We cannot find the scale value and then do a round up of tcp_rwnd
1513  * because the scale value may not be correct after that.
1514  *
1515  * Set the compiler flag to make this function inline.
1516  */
1517 static void
1518 tcp_set_ws_value(tcp_t *tcp)
1519 {
1520 	int i;
1521 	uint32_t rwnd = tcp->tcp_rwnd;
1522 
1523 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1524 	    i++, rwnd >>= 1)
1525 		;
1526 	tcp->tcp_rcv_ws = i;
1527 }
1528 
1529 /*
1530  * Remove a connection from the list of detached TIME_WAIT connections.
1531  */
1532 static void
1533 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1534 {
1535 	boolean_t	locked = B_FALSE;
1536 
1537 	if (tcp_time_wait == NULL) {
1538 		tcp_time_wait = *((tcp_squeue_priv_t **)
1539 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1540 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1541 		locked = B_TRUE;
1542 	}
1543 
1544 	if (tcp->tcp_time_wait_expire == 0) {
1545 		ASSERT(tcp->tcp_time_wait_next == NULL);
1546 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1547 		if (locked)
1548 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1549 		return;
1550 	}
1551 	ASSERT(TCP_IS_DETACHED(tcp));
1552 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1553 
1554 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1555 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1556 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1557 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1558 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1559 			    NULL;
1560 		} else {
1561 			tcp_time_wait->tcp_time_wait_tail = NULL;
1562 		}
1563 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1564 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1565 		ASSERT(tcp->tcp_time_wait_next == NULL);
1566 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1567 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1568 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1569 	} else {
1570 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1571 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1572 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1573 		    tcp->tcp_time_wait_next;
1574 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1575 		    tcp->tcp_time_wait_prev;
1576 	}
1577 	tcp->tcp_time_wait_next = NULL;
1578 	tcp->tcp_time_wait_prev = NULL;
1579 	tcp->tcp_time_wait_expire = 0;
1580 
1581 	if (locked)
1582 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1583 }
1584 
1585 /*
1586  * Add a connection to the list of detached TIME_WAIT connections
1587  * and set its time to expire.
1588  */
1589 static void
1590 tcp_time_wait_append(tcp_t *tcp)
1591 {
1592 	tcp_squeue_priv_t *tcp_time_wait =
1593 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1594 		SQPRIVATE_TCP));
1595 
1596 	tcp_timers_stop(tcp);
1597 
1598 	/* Freed above */
1599 	ASSERT(tcp->tcp_timer_tid == 0);
1600 	ASSERT(tcp->tcp_ack_tid == 0);
1601 
1602 	/* must have happened at the time of detaching the tcp */
1603 	ASSERT(tcp->tcp_ptpahn == NULL);
1604 	ASSERT(tcp->tcp_flow_stopped == 0);
1605 	ASSERT(tcp->tcp_time_wait_next == NULL);
1606 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1607 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1608 	ASSERT(tcp->tcp_listener == NULL);
1609 
1610 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1611 	/*
1612 	 * The value computed below in tcp->tcp_time_wait_expire may
1613 	 * appear negative or wrap around. That is ok since our
1614 	 * interest is only in the difference between the current lbolt
1615 	 * value and tcp->tcp_time_wait_expire. But the value should not
1616 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1617 	 * The corresponding comparison in tcp_time_wait_collector() uses
1618 	 * modular arithmetic.
1619 	 */
1620 	tcp->tcp_time_wait_expire +=
1621 	    drv_usectohz(tcp_time_wait_interval * 1000);
1622 	if (tcp->tcp_time_wait_expire == 0)
1623 		tcp->tcp_time_wait_expire = 1;
1624 
1625 	ASSERT(TCP_IS_DETACHED(tcp));
1626 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1627 	ASSERT(tcp->tcp_time_wait_next == NULL);
1628 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1629 	TCP_DBGSTAT(tcp_time_wait);
1630 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1631 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1632 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1633 		tcp_time_wait->tcp_time_wait_head = tcp;
1634 	} else {
1635 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1636 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1637 		    TCPS_TIME_WAIT);
1638 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1639 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1640 	}
1641 	tcp_time_wait->tcp_time_wait_tail = tcp;
1642 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1643 }
1644 
1645 /* ARGSUSED */
1646 void
1647 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1648 {
1649 	conn_t	*connp = (conn_t *)arg;
1650 	tcp_t	*tcp = connp->conn_tcp;
1651 
1652 	ASSERT(tcp != NULL);
1653 	if (tcp->tcp_state == TCPS_CLOSED) {
1654 		return;
1655 	}
1656 
1657 	ASSERT((tcp->tcp_family == AF_INET &&
1658 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1659 	    (tcp->tcp_family == AF_INET6 &&
1660 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1661 	    tcp->tcp_ipversion == IPV6_VERSION)));
1662 	ASSERT(!tcp->tcp_listener);
1663 
1664 	TCP_STAT(tcp_time_wait_reap);
1665 	ASSERT(TCP_IS_DETACHED(tcp));
1666 
1667 	/*
1668 	 * Because they have no upstream client to rebind or tcp_close()
1669 	 * them later, we axe the connection here and now.
1670 	 */
1671 	tcp_close_detached(tcp);
1672 }
1673 
1674 void
1675 tcp_cleanup(tcp_t *tcp)
1676 {
1677 	mblk_t		*mp;
1678 	char		*tcp_iphc;
1679 	int		tcp_iphc_len;
1680 	int		tcp_hdr_grown;
1681 	tcp_sack_info_t	*tcp_sack_info;
1682 	conn_t		*connp = tcp->tcp_connp;
1683 
1684 	tcp_bind_hash_remove(tcp);
1685 	tcp_free(tcp);
1686 
1687 	/* Release any SSL context */
1688 	if (tcp->tcp_kssl_ent != NULL) {
1689 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1690 		tcp->tcp_kssl_ent = NULL;
1691 	}
1692 
1693 	if (tcp->tcp_kssl_ctx != NULL) {
1694 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1695 		tcp->tcp_kssl_ctx = NULL;
1696 	}
1697 	tcp->tcp_kssl_pending = B_FALSE;
1698 
1699 	conn_delete_ire(connp, NULL);
1700 	if (connp->conn_flags & IPCL_TCPCONN) {
1701 		if (connp->conn_latch != NULL)
1702 			IPLATCH_REFRELE(connp->conn_latch);
1703 		if (connp->conn_policy != NULL)
1704 			IPPH_REFRELE(connp->conn_policy);
1705 	}
1706 
1707 	/*
1708 	 * Since we will bzero the entire structure, we need to
1709 	 * remove it and reinsert it in global hash list. We
1710 	 * know the walkers can't get to this conn because we
1711 	 * had set CONDEMNED flag earlier and checked reference
1712 	 * under conn_lock so walker won't pick it and when we
1713 	 * go the ipcl_globalhash_remove() below, no walker
1714 	 * can get to it.
1715 	 */
1716 	ipcl_globalhash_remove(connp);
1717 
1718 	/* Save some state */
1719 	mp = tcp->tcp_timercache;
1720 
1721 	tcp_sack_info = tcp->tcp_sack_info;
1722 	tcp_iphc = tcp->tcp_iphc;
1723 	tcp_iphc_len = tcp->tcp_iphc_len;
1724 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1725 
1726 	if (connp->conn_cred != NULL)
1727 		crfree(connp->conn_cred);
1728 	if (connp->conn_peercred != NULL)
1729 		crfree(connp->conn_peercred);
1730 	bzero(connp, sizeof (conn_t));
1731 	bzero(tcp, sizeof (tcp_t));
1732 
1733 	/* restore the state */
1734 	tcp->tcp_timercache = mp;
1735 
1736 	tcp->tcp_sack_info = tcp_sack_info;
1737 	tcp->tcp_iphc = tcp_iphc;
1738 	tcp->tcp_iphc_len = tcp_iphc_len;
1739 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1740 
1741 
1742 	tcp->tcp_connp = connp;
1743 
1744 	connp->conn_tcp = tcp;
1745 	connp->conn_flags = IPCL_TCPCONN;
1746 	connp->conn_state_flags = CONN_INCIPIENT;
1747 	connp->conn_ulp = IPPROTO_TCP;
1748 	connp->conn_ref = 1;
1749 
1750 	ipcl_globalhash_insert(connp);
1751 }
1752 
1753 /*
1754  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1755  * is done forwards from the head.
1756  */
1757 /* ARGSUSED */
1758 void
1759 tcp_time_wait_collector(void *arg)
1760 {
1761 	tcp_t *tcp;
1762 	clock_t now;
1763 	mblk_t *mp;
1764 	conn_t *connp;
1765 	kmutex_t *lock;
1766 
1767 	squeue_t *sqp = (squeue_t *)arg;
1768 	tcp_squeue_priv_t *tcp_time_wait =
1769 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1770 
1771 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1772 	tcp_time_wait->tcp_time_wait_tid = 0;
1773 
1774 	if (tcp_time_wait->tcp_free_list != NULL &&
1775 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1776 		TCP_STAT(tcp_freelist_cleanup);
1777 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1778 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1779 			CONN_DEC_REF(tcp->tcp_connp);
1780 		}
1781 		tcp_time_wait->tcp_free_list_cnt = 0;
1782 	}
1783 
1784 	/*
1785 	 * In order to reap time waits reliably, we should use a
1786 	 * source of time that is not adjustable by the user -- hence
1787 	 * the call to ddi_get_lbolt().
1788 	 */
1789 	now = ddi_get_lbolt();
1790 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1791 		/*
1792 		 * Compare times using modular arithmetic, since
1793 		 * lbolt can wrapover.
1794 		 */
1795 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1796 			break;
1797 		}
1798 
1799 		tcp_time_wait_remove(tcp, tcp_time_wait);
1800 
1801 		connp = tcp->tcp_connp;
1802 		ASSERT(connp->conn_fanout != NULL);
1803 		lock = &connp->conn_fanout->connf_lock;
1804 		/*
1805 		 * This is essentially a TW reclaim fast path optimization for
1806 		 * performance where the timewait collector checks under the
1807 		 * fanout lock (so that no one else can get access to the
1808 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1809 		 * the classifier hash list. If ref count is indeed 2, we can
1810 		 * just remove the conn under the fanout lock and avoid
1811 		 * cleaning up the conn under the squeue, provided that
1812 		 * clustering callbacks are not enabled. If clustering is
1813 		 * enabled, we need to make the clustering callback before
1814 		 * setting the CONDEMNED flag and after dropping all locks and
1815 		 * so we forego this optimization and fall back to the slow
1816 		 * path. Also please see the comments in tcp_closei_local
1817 		 * regarding the refcnt logic.
1818 		 *
1819 		 * Since we are holding the tcp_time_wait_lock, its better
1820 		 * not to block on the fanout_lock because other connections
1821 		 * can't add themselves to time_wait list. So we do a
1822 		 * tryenter instead of mutex_enter.
1823 		 */
1824 		if (mutex_tryenter(lock)) {
1825 			mutex_enter(&connp->conn_lock);
1826 			if ((connp->conn_ref == 2) &&
1827 			    (cl_inet_disconnect == NULL)) {
1828 				ipcl_hash_remove_locked(connp,
1829 				    connp->conn_fanout);
1830 				/*
1831 				 * Set the CONDEMNED flag now itself so that
1832 				 * the refcnt cannot increase due to any
1833 				 * walker. But we have still not cleaned up
1834 				 * conn_ire_cache. This is still ok since
1835 				 * we are going to clean it up in tcp_cleanup
1836 				 * immediately and any interface unplumb
1837 				 * thread will wait till the ire is blown away
1838 				 */
1839 				connp->conn_state_flags |= CONN_CONDEMNED;
1840 				mutex_exit(lock);
1841 				mutex_exit(&connp->conn_lock);
1842 				if (tcp_time_wait->tcp_free_list_cnt <
1843 				    tcp_free_list_max_cnt) {
1844 					/* Add to head of tcp_free_list */
1845 					mutex_exit(
1846 					    &tcp_time_wait->tcp_time_wait_lock);
1847 					tcp_cleanup(tcp);
1848 					mutex_enter(
1849 					    &tcp_time_wait->tcp_time_wait_lock);
1850 					tcp->tcp_time_wait_next =
1851 					    tcp_time_wait->tcp_free_list;
1852 					tcp_time_wait->tcp_free_list = tcp;
1853 					tcp_time_wait->tcp_free_list_cnt++;
1854 					continue;
1855 				} else {
1856 					/* Do not add to tcp_free_list */
1857 					mutex_exit(
1858 					    &tcp_time_wait->tcp_time_wait_lock);
1859 					tcp_bind_hash_remove(tcp);
1860 					conn_delete_ire(tcp->tcp_connp, NULL);
1861 					CONN_DEC_REF(tcp->tcp_connp);
1862 				}
1863 			} else {
1864 				CONN_INC_REF_LOCKED(connp);
1865 				mutex_exit(lock);
1866 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1867 				mutex_exit(&connp->conn_lock);
1868 				/*
1869 				 * We can reuse the closemp here since conn has
1870 				 * detached (otherwise we wouldn't even be in
1871 				 * time_wait list).
1872 				 */
1873 				mp = &tcp->tcp_closemp;
1874 				squeue_fill(connp->conn_sqp, mp,
1875 				    tcp_timewait_output, connp,
1876 				    SQTAG_TCP_TIMEWAIT);
1877 			}
1878 		} else {
1879 			mutex_enter(&connp->conn_lock);
1880 			CONN_INC_REF_LOCKED(connp);
1881 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1882 			mutex_exit(&connp->conn_lock);
1883 			/*
1884 			 * We can reuse the closemp here since conn has
1885 			 * detached (otherwise we wouldn't even be in
1886 			 * time_wait list).
1887 			 */
1888 			mp = &tcp->tcp_closemp;
1889 			squeue_fill(connp->conn_sqp, mp,
1890 			    tcp_timewait_output, connp, 0);
1891 		}
1892 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1893 	}
1894 
1895 	if (tcp_time_wait->tcp_free_list != NULL)
1896 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1897 
1898 	tcp_time_wait->tcp_time_wait_tid =
1899 	    timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY);
1900 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1901 }
1902 
1903 /*
1904  * Reply to a clients T_CONN_RES TPI message. This function
1905  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1906  * on the acceptor STREAM and processed in tcp_wput_accept().
1907  * Read the block comment on top of tcp_conn_request().
1908  */
1909 static void
1910 tcp_accept(tcp_t *listener, mblk_t *mp)
1911 {
1912 	tcp_t	*acceptor;
1913 	tcp_t	*eager;
1914 	tcp_t   *tcp;
1915 	struct T_conn_res	*tcr;
1916 	t_uscalar_t	acceptor_id;
1917 	t_scalar_t	seqnum;
1918 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1919 	mblk_t	*ok_mp;
1920 	mblk_t	*mp1;
1921 
1922 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1923 		tcp_err_ack(listener, mp, TPROTO, 0);
1924 		return;
1925 	}
1926 	tcr = (struct T_conn_res *)mp->b_rptr;
1927 
1928 	/*
1929 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1930 	 * read side queue of the streams device underneath us i.e. the
1931 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1932 	 * look it up in the queue_hash.  Under LP64 it sends down the
1933 	 * minor_t of the accepting endpoint.
1934 	 *
1935 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1936 	 * fanout hash lock is held.
1937 	 * This prevents any thread from entering the acceptor queue from
1938 	 * below (since it has not been hard bound yet i.e. any inbound
1939 	 * packets will arrive on the listener or default tcp queue and
1940 	 * go through tcp_lookup).
1941 	 * The CONN_INC_REF will prevent the acceptor from closing.
1942 	 *
1943 	 * XXX It is still possible for a tli application to send down data
1944 	 * on the accepting stream while another thread calls t_accept.
1945 	 * This should not be a problem for well-behaved applications since
1946 	 * the T_OK_ACK is sent after the queue swapping is completed.
1947 	 *
1948 	 * If the accepting fd is the same as the listening fd, avoid
1949 	 * queue hash lookup since that will return an eager listener in a
1950 	 * already established state.
1951 	 */
1952 	acceptor_id = tcr->ACCEPTOR_id;
1953 	mutex_enter(&listener->tcp_eager_lock);
1954 	if (listener->tcp_acceptor_id == acceptor_id) {
1955 		eager = listener->tcp_eager_next_q;
1956 		/* only count how many T_CONN_INDs so don't count q0 */
1957 		if ((listener->tcp_conn_req_cnt_q != 1) ||
1958 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
1959 			mutex_exit(&listener->tcp_eager_lock);
1960 			tcp_err_ack(listener, mp, TBADF, 0);
1961 			return;
1962 		}
1963 		if (listener->tcp_conn_req_cnt_q0 != 0) {
1964 			/* Throw away all the eagers on q0. */
1965 			tcp_eager_cleanup(listener, 1);
1966 		}
1967 		if (listener->tcp_syn_defense) {
1968 			listener->tcp_syn_defense = B_FALSE;
1969 			if (listener->tcp_ip_addr_cache != NULL) {
1970 				kmem_free(listener->tcp_ip_addr_cache,
1971 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1972 				listener->tcp_ip_addr_cache = NULL;
1973 			}
1974 		}
1975 		/*
1976 		 * Transfer tcp_conn_req_max to the eager so that when
1977 		 * a disconnect occurs we can revert the endpoint to the
1978 		 * listen state.
1979 		 */
1980 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
1981 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
1982 		/*
1983 		 * Get a reference on the acceptor just like the
1984 		 * tcp_acceptor_hash_lookup below.
1985 		 */
1986 		acceptor = listener;
1987 		CONN_INC_REF(acceptor->tcp_connp);
1988 	} else {
1989 		acceptor = tcp_acceptor_hash_lookup(acceptor_id);
1990 		if (acceptor == NULL) {
1991 			if (listener->tcp_debug) {
1992 				(void) strlog(TCP_MOD_ID, 0, 1,
1993 				    SL_ERROR|SL_TRACE,
1994 				    "tcp_accept: did not find acceptor 0x%x\n",
1995 				    acceptor_id);
1996 			}
1997 			mutex_exit(&listener->tcp_eager_lock);
1998 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
1999 			return;
2000 		}
2001 		/*
2002 		 * Verify acceptor state. The acceptable states for an acceptor
2003 		 * include TCPS_IDLE and TCPS_BOUND.
2004 		 */
2005 		switch (acceptor->tcp_state) {
2006 		case TCPS_IDLE:
2007 			/* FALLTHRU */
2008 		case TCPS_BOUND:
2009 			break;
2010 		default:
2011 			CONN_DEC_REF(acceptor->tcp_connp);
2012 			mutex_exit(&listener->tcp_eager_lock);
2013 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2014 			return;
2015 		}
2016 	}
2017 
2018 	/* The listener must be in TCPS_LISTEN */
2019 	if (listener->tcp_state != TCPS_LISTEN) {
2020 		CONN_DEC_REF(acceptor->tcp_connp);
2021 		mutex_exit(&listener->tcp_eager_lock);
2022 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2023 		return;
2024 	}
2025 
2026 	/*
2027 	 * Rendezvous with an eager connection request packet hanging off
2028 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2029 	 * tcp structure when the connection packet arrived in
2030 	 * tcp_conn_request().
2031 	 */
2032 	seqnum = tcr->SEQ_number;
2033 	eager = listener;
2034 	do {
2035 		eager = eager->tcp_eager_next_q;
2036 		if (eager == NULL) {
2037 			CONN_DEC_REF(acceptor->tcp_connp);
2038 			mutex_exit(&listener->tcp_eager_lock);
2039 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2040 			return;
2041 		}
2042 	} while (eager->tcp_conn_req_seqnum != seqnum);
2043 	mutex_exit(&listener->tcp_eager_lock);
2044 
2045 	/*
2046 	 * At this point, both acceptor and listener have 2 ref
2047 	 * that they begin with. Acceptor has one additional ref
2048 	 * we placed in lookup while listener has 3 additional
2049 	 * ref for being behind the squeue (tcp_accept() is
2050 	 * done on listener's squeue); being in classifier hash;
2051 	 * and eager's ref on listener.
2052 	 */
2053 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2054 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2055 
2056 	/*
2057 	 * The eager at this point is set in its own squeue and
2058 	 * could easily have been killed (tcp_accept_finish will
2059 	 * deal with that) because of a TH_RST so we can only
2060 	 * ASSERT for a single ref.
2061 	 */
2062 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2063 
2064 	/* Pre allocate the stroptions mblk also */
2065 	opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
2066 	if (opt_mp == NULL) {
2067 		CONN_DEC_REF(acceptor->tcp_connp);
2068 		CONN_DEC_REF(eager->tcp_connp);
2069 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2070 		return;
2071 	}
2072 	DB_TYPE(opt_mp) = M_SETOPTS;
2073 	opt_mp->b_wptr += sizeof (struct stroptions);
2074 
2075 	/*
2076 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2077 	 * from listener to acceptor. The message is chained on opt_mp
2078 	 * which will be sent onto eager's squeue.
2079 	 */
2080 	if (listener->tcp_bound_if != 0) {
2081 		/* allocate optmgmt req */
2082 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2083 		    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
2084 		    sizeof (int));
2085 		if (mp1 != NULL)
2086 			linkb(opt_mp, mp1);
2087 	}
2088 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2089 		uint_t on = 1;
2090 
2091 		/* allocate optmgmt req */
2092 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2093 		    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
2094 		if (mp1 != NULL)
2095 			linkb(opt_mp, mp1);
2096 	}
2097 
2098 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2099 	if ((mp1 = copymsg(mp)) == NULL) {
2100 		CONN_DEC_REF(acceptor->tcp_connp);
2101 		CONN_DEC_REF(eager->tcp_connp);
2102 		freemsg(opt_mp);
2103 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2104 		return;
2105 	}
2106 
2107 	tcr = (struct T_conn_res *)mp1->b_rptr;
2108 
2109 	/*
2110 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2111 	 * which allocates a larger mblk and appends the new
2112 	 * local address to the ok_ack.  The address is copied by
2113 	 * soaccept() for getsockname().
2114 	 */
2115 	{
2116 		int extra;
2117 
2118 		extra = (eager->tcp_family == AF_INET) ?
2119 		    sizeof (sin_t) : sizeof (sin6_t);
2120 
2121 		/*
2122 		 * Try to re-use mp, if possible.  Otherwise, allocate
2123 		 * an mblk and return it as ok_mp.  In any case, mp
2124 		 * is no longer usable upon return.
2125 		 */
2126 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2127 			CONN_DEC_REF(acceptor->tcp_connp);
2128 			CONN_DEC_REF(eager->tcp_connp);
2129 			freemsg(opt_mp);
2130 			/* Original mp has been freed by now, so use mp1 */
2131 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2132 			return;
2133 		}
2134 
2135 		mp = NULL;	/* We should never use mp after this point */
2136 
2137 		switch (extra) {
2138 		case sizeof (sin_t): {
2139 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2140 
2141 				ok_mp->b_wptr += extra;
2142 				sin->sin_family = AF_INET;
2143 				sin->sin_port = eager->tcp_lport;
2144 				sin->sin_addr.s_addr =
2145 				    eager->tcp_ipha->ipha_src;
2146 				break;
2147 			}
2148 		case sizeof (sin6_t): {
2149 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2150 
2151 				ok_mp->b_wptr += extra;
2152 				sin6->sin6_family = AF_INET6;
2153 				sin6->sin6_port = eager->tcp_lport;
2154 				if (eager->tcp_ipversion == IPV4_VERSION) {
2155 					sin6->sin6_flowinfo = 0;
2156 					IN6_IPADDR_TO_V4MAPPED(
2157 					    eager->tcp_ipha->ipha_src,
2158 					    &sin6->sin6_addr);
2159 				} else {
2160 					ASSERT(eager->tcp_ip6h != NULL);
2161 					sin6->sin6_flowinfo =
2162 					    eager->tcp_ip6h->ip6_vcf &
2163 					    ~IPV6_VERS_AND_FLOW_MASK;
2164 					sin6->sin6_addr =
2165 					    eager->tcp_ip6h->ip6_src;
2166 				}
2167 				break;
2168 			}
2169 		default:
2170 			break;
2171 		}
2172 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2173 	}
2174 
2175 	/*
2176 	 * If there are no options we know that the T_CONN_RES will
2177 	 * succeed. However, we can't send the T_OK_ACK upstream until
2178 	 * the tcp_accept_swap is done since it would be dangerous to
2179 	 * let the application start using the new fd prior to the swap.
2180 	 */
2181 	tcp_accept_swap(listener, acceptor, eager);
2182 
2183 	/*
2184 	 * tcp_accept_swap unlinks eager from listener but does not drop
2185 	 * the eager's reference on the listener.
2186 	 */
2187 	ASSERT(eager->tcp_listener == NULL);
2188 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2189 
2190 	/*
2191 	 * The eager is now associated with its own queue. Insert in
2192 	 * the hash so that the connection can be reused for a future
2193 	 * T_CONN_RES.
2194 	 */
2195 	tcp_acceptor_hash_insert(acceptor_id, eager);
2196 
2197 	/*
2198 	 * We now do the processing of options with T_CONN_RES.
2199 	 * We delay till now since we wanted to have queue to pass to
2200 	 * option processing routines that points back to the right
2201 	 * instance structure which does not happen until after
2202 	 * tcp_accept_swap().
2203 	 *
2204 	 * Note:
2205 	 * The sanity of the logic here assumes that whatever options
2206 	 * are appropriate to inherit from listner=>eager are done
2207 	 * before this point, and whatever were to be overridden (or not)
2208 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2209 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2210 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2211 	 * This may not be true at this point in time but can be fixed
2212 	 * independently. This option processing code starts with
2213 	 * the instantiated acceptor instance and the final queue at
2214 	 * this point.
2215 	 */
2216 
2217 	if (tcr->OPT_length != 0) {
2218 		/* Options to process */
2219 		int t_error = 0;
2220 		int sys_error = 0;
2221 		int do_disconnect = 0;
2222 
2223 		if (tcp_conprim_opt_process(eager, mp1,
2224 		    &do_disconnect, &t_error, &sys_error) < 0) {
2225 			eager->tcp_accept_error = 1;
2226 			if (do_disconnect) {
2227 				/*
2228 				 * An option failed which does not allow
2229 				 * connection to be accepted.
2230 				 *
2231 				 * We allow T_CONN_RES to succeed and
2232 				 * put a T_DISCON_IND on the eager queue.
2233 				 */
2234 				ASSERT(t_error == 0 && sys_error == 0);
2235 				eager->tcp_send_discon_ind = 1;
2236 			} else {
2237 				ASSERT(t_error != 0);
2238 				freemsg(ok_mp);
2239 				/*
2240 				 * Original mp was either freed or set
2241 				 * to ok_mp above, so use mp1 instead.
2242 				 */
2243 				tcp_err_ack(listener, mp1, t_error, sys_error);
2244 				goto finish;
2245 			}
2246 		}
2247 		/*
2248 		 * Most likely success in setting options (except if
2249 		 * eager->tcp_send_discon_ind set).
2250 		 * mp1 option buffer represented by OPT_length/offset
2251 		 * potentially modified and contains results of setting
2252 		 * options at this point
2253 		 */
2254 	}
2255 
2256 	/* We no longer need mp1, since all options processing has passed */
2257 	freemsg(mp1);
2258 
2259 	putnext(listener->tcp_rq, ok_mp);
2260 
2261 	mutex_enter(&listener->tcp_eager_lock);
2262 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2263 		tcp_t	*tail;
2264 		mblk_t	*conn_ind;
2265 
2266 		/*
2267 		 * This path should not be executed if listener and
2268 		 * acceptor streams are the same.
2269 		 */
2270 		ASSERT(listener != acceptor);
2271 
2272 		tcp = listener->tcp_eager_prev_q0;
2273 		/*
2274 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2275 		 * deferred T_conn_ind queue. We need to get to the head of
2276 		 * the queue in order to send up T_conn_ind the same order as
2277 		 * how the 3WHS is completed.
2278 		 */
2279 		while (tcp != listener) {
2280 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2281 				break;
2282 			else
2283 				tcp = tcp->tcp_eager_prev_q0;
2284 		}
2285 		ASSERT(tcp != listener);
2286 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2287 		ASSERT(conn_ind != NULL);
2288 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2289 
2290 		/* Move from q0 to q */
2291 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2292 		listener->tcp_conn_req_cnt_q0--;
2293 		listener->tcp_conn_req_cnt_q++;
2294 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2295 		    tcp->tcp_eager_prev_q0;
2296 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2297 		    tcp->tcp_eager_next_q0;
2298 		tcp->tcp_eager_prev_q0 = NULL;
2299 		tcp->tcp_eager_next_q0 = NULL;
2300 		tcp->tcp_conn_def_q0 = B_FALSE;
2301 
2302 		/*
2303 		 * Insert at end of the queue because sockfs sends
2304 		 * down T_CONN_RES in chronological order. Leaving
2305 		 * the older conn indications at front of the queue
2306 		 * helps reducing search time.
2307 		 */
2308 		tail = listener->tcp_eager_last_q;
2309 		if (tail != NULL)
2310 			tail->tcp_eager_next_q = tcp;
2311 		else
2312 			listener->tcp_eager_next_q = tcp;
2313 		listener->tcp_eager_last_q = tcp;
2314 		tcp->tcp_eager_next_q = NULL;
2315 		mutex_exit(&listener->tcp_eager_lock);
2316 		putnext(tcp->tcp_rq, conn_ind);
2317 	} else {
2318 		mutex_exit(&listener->tcp_eager_lock);
2319 	}
2320 
2321 	/*
2322 	 * Done with the acceptor - free it
2323 	 *
2324 	 * Note: from this point on, no access to listener should be made
2325 	 * as listener can be equal to acceptor.
2326 	 */
2327 finish:
2328 	ASSERT(acceptor->tcp_detached);
2329 	acceptor->tcp_rq = tcp_g_q;
2330 	acceptor->tcp_wq = WR(tcp_g_q);
2331 	(void) tcp_clean_death(acceptor, 0, 2);
2332 	CONN_DEC_REF(acceptor->tcp_connp);
2333 
2334 	/*
2335 	 * In case we already received a FIN we have to make tcp_rput send
2336 	 * the ordrel_ind. This will also send up a window update if the window
2337 	 * has opened up.
2338 	 *
2339 	 * In the normal case of a successful connection acceptance
2340 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2341 	 * indication that this was just accepted. This tells tcp_rput to
2342 	 * pass up any data queued in tcp_rcv_list.
2343 	 *
2344 	 * In the fringe case where options sent with T_CONN_RES failed and
2345 	 * we required, we would be indicating a T_DISCON_IND to blow
2346 	 * away this connection.
2347 	 */
2348 
2349 	/*
2350 	 * XXX: we currently have a problem if XTI application closes the
2351 	 * acceptor stream in between. This problem exists in on10-gate also
2352 	 * and is well know but nothing can be done short of major rewrite
2353 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2354 	 * eager same squeue as listener (we can distinguish non socket
2355 	 * listeners at the time of handling a SYN in tcp_conn_request)
2356 	 * and do most of the work that tcp_accept_finish does here itself
2357 	 * and then get behind the acceptor squeue to access the acceptor
2358 	 * queue.
2359 	 */
2360 	/*
2361 	 * We already have a ref on tcp so no need to do one before squeue_fill
2362 	 */
2363 	squeue_fill(eager->tcp_connp->conn_sqp, opt_mp,
2364 	    tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH);
2365 }
2366 
2367 /*
2368  * Swap information between the eager and acceptor for a TLI/XTI client.
2369  * The sockfs accept is done on the acceptor stream and control goes
2370  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2371  * called. In either case, both the eager and listener are in their own
2372  * perimeter (squeue) and the code has to deal with potential race.
2373  *
2374  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2375  */
2376 static void
2377 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2378 {
2379 	conn_t	*econnp, *aconnp;
2380 
2381 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2382 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2383 	ASSERT(!eager->tcp_hard_bound);
2384 	ASSERT(!TCP_IS_SOCKET(acceptor));
2385 	ASSERT(!TCP_IS_SOCKET(eager));
2386 	ASSERT(!TCP_IS_SOCKET(listener));
2387 
2388 	acceptor->tcp_detached = B_TRUE;
2389 	/*
2390 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2391 	 * the acceptor id.
2392 	 */
2393 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2394 
2395 	/* remove eager from listen list... */
2396 	mutex_enter(&listener->tcp_eager_lock);
2397 	tcp_eager_unlink(eager);
2398 	ASSERT(eager->tcp_eager_next_q == NULL &&
2399 	    eager->tcp_eager_last_q == NULL);
2400 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2401 	    eager->tcp_eager_prev_q0 == NULL);
2402 	mutex_exit(&listener->tcp_eager_lock);
2403 	eager->tcp_rq = acceptor->tcp_rq;
2404 	eager->tcp_wq = acceptor->tcp_wq;
2405 
2406 	econnp = eager->tcp_connp;
2407 	aconnp = acceptor->tcp_connp;
2408 
2409 	eager->tcp_rq->q_ptr = econnp;
2410 	eager->tcp_wq->q_ptr = econnp;
2411 
2412 	/*
2413 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2414 	 * which might be a different squeue from our peer TCP instance.
2415 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2416 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2417 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2418 	 * above reach global visibility prior to the clearing of tcp_detached.
2419 	 */
2420 	membar_producer();
2421 	eager->tcp_detached = B_FALSE;
2422 
2423 	ASSERT(eager->tcp_ack_tid == 0);
2424 
2425 	econnp->conn_dev = aconnp->conn_dev;
2426 	if (eager->tcp_cred != NULL)
2427 		crfree(eager->tcp_cred);
2428 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2429 	aconnp->conn_cred = NULL;
2430 
2431 	econnp->conn_zoneid = aconnp->conn_zoneid;
2432 	econnp->conn_allzones = aconnp->conn_allzones;
2433 
2434 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2435 	aconnp->conn_mac_exempt = B_FALSE;
2436 
2437 	ASSERT(aconnp->conn_peercred == NULL);
2438 
2439 	/* Do the IPC initialization */
2440 	CONN_INC_REF(econnp);
2441 
2442 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2443 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2444 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2445 	econnp->conn_ulp = aconnp->conn_ulp;
2446 
2447 	/* Done with old IPC. Drop its ref on its connp */
2448 	CONN_DEC_REF(aconnp);
2449 }
2450 
2451 
2452 /*
2453  * Adapt to the information, such as rtt and rtt_sd, provided from the
2454  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2455  *
2456  * Checks for multicast and broadcast destination address.
2457  * Returns zero on failure; non-zero if ok.
2458  *
2459  * Note that the MSS calculation here is based on the info given in
2460  * the IRE.  We do not do any calculation based on TCP options.  They
2461  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2462  * knows which options to use.
2463  *
2464  * Note on how TCP gets its parameters for a connection.
2465  *
2466  * When a tcp_t structure is allocated, it gets all the default parameters.
2467  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2468  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2469  * default.  But if there is an associated tcp_host_param, it will override
2470  * the metrics.
2471  *
2472  * An incoming SYN with a multicast or broadcast destination address, is dropped
2473  * in 1 of 2 places.
2474  *
2475  * 1. If the packet was received over the wire it is dropped in
2476  * ip_rput_process_broadcast()
2477  *
2478  * 2. If the packet was received through internal IP loopback, i.e. the packet
2479  * was generated and received on the same machine, it is dropped in
2480  * ip_wput_local()
2481  *
2482  * An incoming SYN with a multicast or broadcast source address is always
2483  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2484  * reject an attempt to connect to a broadcast or multicast (destination)
2485  * address.
2486  */
2487 static int
2488 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2489 {
2490 	tcp_hsp_t	*hsp;
2491 	ire_t		*ire;
2492 	ire_t		*sire = NULL;
2493 	iulp_t		*ire_uinfo = NULL;
2494 	uint32_t	mss_max;
2495 	uint32_t	mss;
2496 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2497 	conn_t		*connp = tcp->tcp_connp;
2498 	boolean_t	ire_cacheable = B_FALSE;
2499 	zoneid_t	zoneid = connp->conn_zoneid;
2500 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2501 			    MATCH_IRE_SECATTR;
2502 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2503 	ill_t		*ill = NULL;
2504 	boolean_t	incoming = (ire_mp == NULL);
2505 
2506 	ASSERT(connp->conn_ire_cache == NULL);
2507 
2508 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2509 
2510 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2511 			BUMP_MIB(&ip_mib, ipInDiscards);
2512 			return (0);
2513 		}
2514 		/*
2515 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2516 		 * for the destination with the nexthop as gateway.
2517 		 * ire_ctable_lookup() is used because this particular
2518 		 * ire, if it exists, will be marked private.
2519 		 * If that is not available, use the interface ire
2520 		 * for the nexthop.
2521 		 *
2522 		 * TSol: tcp_update_label will detect label mismatches based
2523 		 * only on the destination's label, but that would not
2524 		 * detect label mismatches based on the security attributes
2525 		 * of routes or next hop gateway. Hence we need to pass the
2526 		 * label to ire_ftable_lookup below in order to locate the
2527 		 * right prefix (and/or) ire cache. Similarly we also need
2528 		 * pass the label to the ire_cache_lookup below to locate
2529 		 * the right ire that also matches on the label.
2530 		 */
2531 		if (tcp->tcp_connp->conn_nexthop_set) {
2532 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2533 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2534 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW);
2535 			if (ire == NULL) {
2536 				ire = ire_ftable_lookup(
2537 				    tcp->tcp_connp->conn_nexthop_v4,
2538 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2539 				    tsl, match_flags);
2540 				if (ire == NULL)
2541 					return (0);
2542 			} else {
2543 				ire_uinfo = &ire->ire_uinfo;
2544 			}
2545 		} else {
2546 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2547 			    zoneid, tsl);
2548 			if (ire != NULL) {
2549 				ire_cacheable = B_TRUE;
2550 				ire_uinfo = (ire_mp != NULL) ?
2551 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2552 				    &ire->ire_uinfo;
2553 
2554 			} else {
2555 				if (ire_mp == NULL) {
2556 					ire = ire_ftable_lookup(
2557 					    tcp->tcp_connp->conn_rem,
2558 					    0, 0, 0, NULL, &sire, zoneid, 0,
2559 					    tsl, (MATCH_IRE_RECURSIVE |
2560 					    MATCH_IRE_DEFAULT));
2561 					if (ire == NULL)
2562 						return (0);
2563 					ire_uinfo = (sire != NULL) ?
2564 					    &sire->ire_uinfo :
2565 					    &ire->ire_uinfo;
2566 				} else {
2567 					ire = (ire_t *)ire_mp->b_rptr;
2568 					ire_uinfo =
2569 					    &((ire_t *)
2570 					    ire_mp->b_rptr)->ire_uinfo;
2571 				}
2572 			}
2573 		}
2574 		ASSERT(ire != NULL);
2575 
2576 		if ((ire->ire_src_addr == INADDR_ANY) ||
2577 		    (ire->ire_type & IRE_BROADCAST)) {
2578 			/*
2579 			 * ire->ire_mp is non null when ire_mp passed in is used
2580 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2581 			 */
2582 			if (ire->ire_mp == NULL)
2583 				ire_refrele(ire);
2584 			if (sire != NULL)
2585 				ire_refrele(sire);
2586 			return (0);
2587 		}
2588 
2589 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2590 			ipaddr_t src_addr;
2591 
2592 			/*
2593 			 * ip_bind_connected() has stored the correct source
2594 			 * address in conn_src.
2595 			 */
2596 			src_addr = tcp->tcp_connp->conn_src;
2597 			tcp->tcp_ipha->ipha_src = src_addr;
2598 			/*
2599 			 * Copy of the src addr. in tcp_t is needed
2600 			 * for the lookup funcs.
2601 			 */
2602 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2603 		}
2604 		/*
2605 		 * Set the fragment bit so that IP will tell us if the MTU
2606 		 * should change. IP tells us the latest setting of
2607 		 * ip_path_mtu_discovery through ire_frag_flag.
2608 		 */
2609 		if (ip_path_mtu_discovery) {
2610 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2611 			    htons(IPH_DF);
2612 		}
2613 		/*
2614 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2615 		 * for IP_NEXTHOP. No cache ire has been found for the
2616 		 * destination and we are working with the nexthop's
2617 		 * interface ire. Since we need to forward all packets
2618 		 * to the nexthop first, we "blindly" set tcp_localnet
2619 		 * to false, eventhough the destination may also be
2620 		 * onlink.
2621 		 */
2622 		if (ire_uinfo == NULL)
2623 			tcp->tcp_localnet = 0;
2624 		else
2625 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2626 	} else {
2627 		/*
2628 		 * For incoming connection ire_mp = NULL
2629 		 * For outgoing connection ire_mp != NULL
2630 		 * Technically we should check conn_incoming_ill
2631 		 * when ire_mp is NULL and conn_outgoing_ill when
2632 		 * ire_mp is non-NULL. But this is performance
2633 		 * critical path and for IPV*_BOUND_IF, outgoing
2634 		 * and incoming ill are always set to the same value.
2635 		 */
2636 		ill_t	*dst_ill = NULL;
2637 		ipif_t  *dst_ipif = NULL;
2638 
2639 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2640 
2641 		if (connp->conn_outgoing_ill != NULL) {
2642 			/* Outgoing or incoming path */
2643 			int   err;
2644 
2645 			dst_ill = conn_get_held_ill(connp,
2646 			    &connp->conn_outgoing_ill, &err);
2647 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2648 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2649 				return (0);
2650 			}
2651 			match_flags |= MATCH_IRE_ILL;
2652 			dst_ipif = dst_ill->ill_ipif;
2653 		}
2654 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2655 		    0, 0, dst_ipif, zoneid, tsl, match_flags);
2656 
2657 		if (ire != NULL) {
2658 			ire_cacheable = B_TRUE;
2659 			ire_uinfo = (ire_mp != NULL) ?
2660 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2661 			    &ire->ire_uinfo;
2662 		} else {
2663 			if (ire_mp == NULL) {
2664 				ire = ire_ftable_lookup_v6(
2665 				    &tcp->tcp_connp->conn_remv6,
2666 				    0, 0, 0, dst_ipif, &sire, zoneid,
2667 				    0, tsl, match_flags);
2668 				if (ire == NULL) {
2669 					if (dst_ill != NULL)
2670 						ill_refrele(dst_ill);
2671 					return (0);
2672 				}
2673 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2674 				    &ire->ire_uinfo;
2675 			} else {
2676 				ire = (ire_t *)ire_mp->b_rptr;
2677 				ire_uinfo =
2678 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2679 			}
2680 		}
2681 		if (dst_ill != NULL)
2682 			ill_refrele(dst_ill);
2683 
2684 		ASSERT(ire != NULL);
2685 		ASSERT(ire_uinfo != NULL);
2686 
2687 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2688 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2689 			/*
2690 			 * ire->ire_mp is non null when ire_mp passed in is used
2691 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2692 			 */
2693 			if (ire->ire_mp == NULL)
2694 				ire_refrele(ire);
2695 			if (sire != NULL)
2696 				ire_refrele(sire);
2697 			return (0);
2698 		}
2699 
2700 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2701 			in6_addr_t	src_addr;
2702 
2703 			/*
2704 			 * ip_bind_connected_v6() has stored the correct source
2705 			 * address per IPv6 addr. selection policy in
2706 			 * conn_src_v6.
2707 			 */
2708 			src_addr = tcp->tcp_connp->conn_srcv6;
2709 
2710 			tcp->tcp_ip6h->ip6_src = src_addr;
2711 			/*
2712 			 * Copy of the src addr. in tcp_t is needed
2713 			 * for the lookup funcs.
2714 			 */
2715 			tcp->tcp_ip_src_v6 = src_addr;
2716 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2717 			    &connp->conn_srcv6));
2718 		}
2719 		tcp->tcp_localnet =
2720 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2721 	}
2722 
2723 	/*
2724 	 * This allows applications to fail quickly when connections are made
2725 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2726 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2727 	 */
2728 	if ((ire->ire_flags & RTF_REJECT) &&
2729 	    (ire->ire_flags & RTF_PRIVATE))
2730 		goto error;
2731 
2732 	/*
2733 	 * Make use of the cached rtt and rtt_sd values to calculate the
2734 	 * initial RTO.  Note that they are already initialized in
2735 	 * tcp_init_values().
2736 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2737 	 * IP_NEXTHOP, but instead are using the interface ire for the
2738 	 * nexthop, then we do not use the ire_uinfo from that ire to
2739 	 * do any initializations.
2740 	 */
2741 	if (ire_uinfo != NULL) {
2742 		if (ire_uinfo->iulp_rtt != 0) {
2743 			clock_t	rto;
2744 
2745 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2746 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2747 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2748 			    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5);
2749 
2750 			if (rto > tcp_rexmit_interval_max) {
2751 				tcp->tcp_rto = tcp_rexmit_interval_max;
2752 			} else if (rto < tcp_rexmit_interval_min) {
2753 				tcp->tcp_rto = tcp_rexmit_interval_min;
2754 			} else {
2755 				tcp->tcp_rto = rto;
2756 			}
2757 		}
2758 		if (ire_uinfo->iulp_ssthresh != 0)
2759 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2760 		else
2761 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2762 		if (ire_uinfo->iulp_spipe > 0) {
2763 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2764 			    tcp_max_buf);
2765 			if (tcp_snd_lowat_fraction != 0)
2766 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2767 				    tcp_snd_lowat_fraction;
2768 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2769 		}
2770 		/*
2771 		 * Note that up till now, acceptor always inherits receive
2772 		 * window from the listener.  But if there is a metrics
2773 		 * associated with a host, we should use that instead of
2774 		 * inheriting it from listener. Thus we need to pass this
2775 		 * info back to the caller.
2776 		 */
2777 		if (ire_uinfo->iulp_rpipe > 0) {
2778 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf);
2779 		}
2780 
2781 		if (ire_uinfo->iulp_rtomax > 0) {
2782 			tcp->tcp_second_timer_threshold =
2783 			    ire_uinfo->iulp_rtomax;
2784 		}
2785 
2786 		/*
2787 		 * Use the metric option settings, iulp_tstamp_ok and
2788 		 * iulp_wscale_ok, only for active open. What this means
2789 		 * is that if the other side uses timestamp or window
2790 		 * scale option, TCP will also use those options. That
2791 		 * is for passive open.  If the application sets a
2792 		 * large window, window scale is enabled regardless of
2793 		 * the value in iulp_wscale_ok.  This is the behavior
2794 		 * since 2.6.  So we keep it.
2795 		 * The only case left in passive open processing is the
2796 		 * check for SACK.
2797 		 * For ECN, it should probably be like SACK.  But the
2798 		 * current value is binary, so we treat it like the other
2799 		 * cases.  The metric only controls active open.For passive
2800 		 * open, the ndd param, tcp_ecn_permitted, controls the
2801 		 * behavior.
2802 		 */
2803 		if (!tcp_detached) {
2804 			/*
2805 			 * The if check means that the following can only
2806 			 * be turned on by the metrics only IRE, but not off.
2807 			 */
2808 			if (ire_uinfo->iulp_tstamp_ok)
2809 				tcp->tcp_snd_ts_ok = B_TRUE;
2810 			if (ire_uinfo->iulp_wscale_ok)
2811 				tcp->tcp_snd_ws_ok = B_TRUE;
2812 			if (ire_uinfo->iulp_sack == 2)
2813 				tcp->tcp_snd_sack_ok = B_TRUE;
2814 			if (ire_uinfo->iulp_ecn_ok)
2815 				tcp->tcp_ecn_ok = B_TRUE;
2816 		} else {
2817 			/*
2818 			 * Passive open.
2819 			 *
2820 			 * As above, the if check means that SACK can only be
2821 			 * turned on by the metric only IRE.
2822 			 */
2823 			if (ire_uinfo->iulp_sack > 0) {
2824 				tcp->tcp_snd_sack_ok = B_TRUE;
2825 			}
2826 		}
2827 	}
2828 
2829 
2830 	/*
2831 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2832 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2833 	 * length of all those options exceeds 28 bytes.  But because
2834 	 * of the tcp_mss_min check below, we may not have a problem if
2835 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2836 	 * the negative problem still exists.  And the check defeats PMTUd.
2837 	 * In fact, if PMTUd finds that the MSS should be smaller than
2838 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2839 	 * value.
2840 	 *
2841 	 * We do not deal with that now.  All those problems related to
2842 	 * PMTUd will be fixed later.
2843 	 */
2844 	ASSERT(ire->ire_max_frag != 0);
2845 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2846 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2847 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2848 			mss = MIN(mss, IPV6_MIN_MTU);
2849 		}
2850 	}
2851 
2852 	/* Sanity check for MSS value. */
2853 	if (tcp->tcp_ipversion == IPV4_VERSION)
2854 		mss_max = tcp_mss_max_ipv4;
2855 	else
2856 		mss_max = tcp_mss_max_ipv6;
2857 
2858 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2859 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2860 		/*
2861 		 * After receiving an ICMPv6 "packet too big" message with a
2862 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2863 		 * will insert a 8-byte fragment header in every packet; we
2864 		 * reduce the MSS by that amount here.
2865 		 */
2866 		mss -= sizeof (ip6_frag_t);
2867 	}
2868 
2869 	if (tcp->tcp_ipsec_overhead == 0)
2870 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2871 
2872 	mss -= tcp->tcp_ipsec_overhead;
2873 
2874 	if (mss < tcp_mss_min)
2875 		mss = tcp_mss_min;
2876 	if (mss > mss_max)
2877 		mss = mss_max;
2878 
2879 	/* Note that this is the maximum MSS, excluding all options. */
2880 	tcp->tcp_mss = mss;
2881 
2882 	/*
2883 	 * Initialize the ISS here now that we have the full connection ID.
2884 	 * The RFC 1948 method of initial sequence number generation requires
2885 	 * knowledge of the full connection ID before setting the ISS.
2886 	 */
2887 
2888 	tcp_iss_init(tcp);
2889 
2890 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2891 		tcp->tcp_loopback = B_TRUE;
2892 
2893 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2894 		hsp = tcp_hsp_lookup(tcp->tcp_remote);
2895 	} else {
2896 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6);
2897 	}
2898 
2899 	if (hsp != NULL) {
2900 		/* Only modify if we're going to make them bigger */
2901 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2902 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2903 			if (tcp_snd_lowat_fraction != 0)
2904 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2905 					tcp_snd_lowat_fraction;
2906 		}
2907 
2908 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2909 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2910 		}
2911 
2912 		/* Copy timestamp flag only for active open */
2913 		if (!tcp_detached)
2914 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
2915 	}
2916 
2917 	if (sire != NULL)
2918 		IRE_REFRELE(sire);
2919 
2920 	/*
2921 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2922 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2923 	 */
2924 	if (tcp->tcp_loopback ||
2925 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2926 		/*
2927 		 * For incoming, see if this tcp may be MDT-capable.  For
2928 		 * outgoing, this process has been taken care of through
2929 		 * tcp_rput_other.
2930 		 */
2931 		tcp_ire_ill_check(tcp, ire, ill, incoming);
2932 		tcp->tcp_ire_ill_check_done = B_TRUE;
2933 	}
2934 
2935 	mutex_enter(&connp->conn_lock);
2936 	/*
2937 	 * Make sure that conn is not marked incipient
2938 	 * for incoming connections. A blind
2939 	 * removal of incipient flag is cheaper than
2940 	 * check and removal.
2941 	 */
2942 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2943 
2944 	/* Must not cache forwarding table routes. */
2945 	if (ire_cacheable) {
2946 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
2947 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
2948 			connp->conn_ire_cache = ire;
2949 			IRE_UNTRACE_REF(ire);
2950 			rw_exit(&ire->ire_bucket->irb_lock);
2951 			mutex_exit(&connp->conn_lock);
2952 			return (1);
2953 		}
2954 		rw_exit(&ire->ire_bucket->irb_lock);
2955 	}
2956 	mutex_exit(&connp->conn_lock);
2957 
2958 	if (ire->ire_mp == NULL)
2959 		ire_refrele(ire);
2960 	return (1);
2961 
2962 error:
2963 	if (ire->ire_mp == NULL)
2964 		ire_refrele(ire);
2965 	if (sire != NULL)
2966 		ire_refrele(sire);
2967 	return (0);
2968 }
2969 
2970 /*
2971  * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a
2972  * O_T_BIND_REQ/T_BIND_REQ message.
2973  */
2974 static void
2975 tcp_bind(tcp_t *tcp, mblk_t *mp)
2976 {
2977 	sin_t	*sin;
2978 	sin6_t	*sin6;
2979 	mblk_t	*mp1;
2980 	in_port_t requested_port;
2981 	in_port_t allocated_port;
2982 	struct T_bind_req *tbr;
2983 	boolean_t	bind_to_req_port_only;
2984 	boolean_t	backlog_update = B_FALSE;
2985 	boolean_t	user_specified;
2986 	in6_addr_t	v6addr;
2987 	ipaddr_t	v4addr;
2988 	uint_t	origipversion;
2989 	int	err;
2990 	queue_t *q = tcp->tcp_wq;
2991 	conn_t	*connp;
2992 	mlp_type_t addrtype, mlptype;
2993 	zone_t	*zone;
2994 	cred_t	*cr;
2995 	in_port_t mlp_port;
2996 
2997 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
2998 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
2999 		if (tcp->tcp_debug) {
3000 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3001 			    "tcp_bind: bad req, len %u",
3002 			    (uint_t)(mp->b_wptr - mp->b_rptr));
3003 		}
3004 		tcp_err_ack(tcp, mp, TPROTO, 0);
3005 		return;
3006 	}
3007 	/* Make sure the largest address fits */
3008 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3009 	if (mp1 == NULL) {
3010 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3011 		return;
3012 	}
3013 	mp = mp1;
3014 	tbr = (struct T_bind_req *)mp->b_rptr;
3015 	if (tcp->tcp_state >= TCPS_BOUND) {
3016 		if ((tcp->tcp_state == TCPS_BOUND ||
3017 		    tcp->tcp_state == TCPS_LISTEN) &&
3018 		    tcp->tcp_conn_req_max != tbr->CONIND_number &&
3019 		    tbr->CONIND_number > 0) {
3020 			/*
3021 			 * Handle listen() increasing CONIND_number.
3022 			 * This is more "liberal" then what the TPI spec
3023 			 * requires but is needed to avoid a t_unbind
3024 			 * when handling listen() since the port number
3025 			 * might be "stolen" between the unbind and bind.
3026 			 */
3027 			backlog_update = B_TRUE;
3028 			goto do_bind;
3029 		}
3030 		if (tcp->tcp_debug) {
3031 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3032 			    "tcp_bind: bad state, %d", tcp->tcp_state);
3033 		}
3034 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
3035 		return;
3036 	}
3037 	origipversion = tcp->tcp_ipversion;
3038 
3039 	switch (tbr->ADDR_length) {
3040 	case 0:			/* request for a generic port */
3041 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3042 		if (tcp->tcp_family == AF_INET) {
3043 			tbr->ADDR_length = sizeof (sin_t);
3044 			sin = (sin_t *)&tbr[1];
3045 			*sin = sin_null;
3046 			sin->sin_family = AF_INET;
3047 			mp->b_wptr = (uchar_t *)&sin[1];
3048 			tcp->tcp_ipversion = IPV4_VERSION;
3049 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
3050 		} else {
3051 			ASSERT(tcp->tcp_family == AF_INET6);
3052 			tbr->ADDR_length = sizeof (sin6_t);
3053 			sin6 = (sin6_t *)&tbr[1];
3054 			*sin6 = sin6_null;
3055 			sin6->sin6_family = AF_INET6;
3056 			mp->b_wptr = (uchar_t *)&sin6[1];
3057 			tcp->tcp_ipversion = IPV6_VERSION;
3058 			V6_SET_ZERO(v6addr);
3059 		}
3060 		requested_port = 0;
3061 		break;
3062 
3063 	case sizeof (sin_t):	/* Complete IPv4 address */
3064 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
3065 		    sizeof (sin_t));
3066 		if (sin == NULL || !OK_32PTR((char *)sin)) {
3067 			if (tcp->tcp_debug) {
3068 				(void) strlog(TCP_MOD_ID, 0, 1,
3069 				    SL_ERROR|SL_TRACE,
3070 				    "tcp_bind: bad address parameter, "
3071 				    "offset %d, len %d",
3072 				    tbr->ADDR_offset, tbr->ADDR_length);
3073 			}
3074 			tcp_err_ack(tcp, mp, TPROTO, 0);
3075 			return;
3076 		}
3077 		/*
3078 		 * With sockets sockfs will accept bogus sin_family in
3079 		 * bind() and replace it with the family used in the socket
3080 		 * call.
3081 		 */
3082 		if (sin->sin_family != AF_INET ||
3083 		    tcp->tcp_family != AF_INET) {
3084 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3085 			return;
3086 		}
3087 		requested_port = ntohs(sin->sin_port);
3088 		tcp->tcp_ipversion = IPV4_VERSION;
3089 		v4addr = sin->sin_addr.s_addr;
3090 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
3091 		break;
3092 
3093 	case sizeof (sin6_t): /* Complete IPv6 address */
3094 		sin6 = (sin6_t *)mi_offset_param(mp,
3095 		    tbr->ADDR_offset, sizeof (sin6_t));
3096 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
3097 			if (tcp->tcp_debug) {
3098 				(void) strlog(TCP_MOD_ID, 0, 1,
3099 				    SL_ERROR|SL_TRACE,
3100 				    "tcp_bind: bad IPv6 address parameter, "
3101 				    "offset %d, len %d", tbr->ADDR_offset,
3102 				    tbr->ADDR_length);
3103 			}
3104 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3105 			return;
3106 		}
3107 		if (sin6->sin6_family != AF_INET6 ||
3108 		    tcp->tcp_family != AF_INET6) {
3109 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3110 			return;
3111 		}
3112 		requested_port = ntohs(sin6->sin6_port);
3113 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
3114 		    IPV4_VERSION : IPV6_VERSION;
3115 		v6addr = sin6->sin6_addr;
3116 		break;
3117 
3118 	default:
3119 		if (tcp->tcp_debug) {
3120 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3121 			    "tcp_bind: bad address length, %d",
3122 			    tbr->ADDR_length);
3123 		}
3124 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3125 		return;
3126 	}
3127 	tcp->tcp_bound_source_v6 = v6addr;
3128 
3129 	/* Check for change in ipversion */
3130 	if (origipversion != tcp->tcp_ipversion) {
3131 		ASSERT(tcp->tcp_family == AF_INET6);
3132 		err = tcp->tcp_ipversion == IPV6_VERSION ?
3133 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
3134 		if (err) {
3135 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3136 			return;
3137 		}
3138 	}
3139 
3140 	/*
3141 	 * Initialize family specific fields. Copy of the src addr.
3142 	 * in tcp_t is needed for the lookup funcs.
3143 	 */
3144 	if (tcp->tcp_ipversion == IPV6_VERSION) {
3145 		tcp->tcp_ip6h->ip6_src = v6addr;
3146 	} else {
3147 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
3148 	}
3149 	tcp->tcp_ip_src_v6 = v6addr;
3150 
3151 	/*
3152 	 * For O_T_BIND_REQ:
3153 	 * Verify that the target port/addr is available, or choose
3154 	 * another.
3155 	 * For  T_BIND_REQ:
3156 	 * Verify that the target port/addr is available or fail.
3157 	 * In both cases when it succeeds the tcp is inserted in the
3158 	 * bind hash table. This ensures that the operation is atomic
3159 	 * under the lock on the hash bucket.
3160 	 */
3161 	bind_to_req_port_only = requested_port != 0 &&
3162 	    tbr->PRIM_type != O_T_BIND_REQ;
3163 	/*
3164 	 * Get a valid port (within the anonymous range and should not
3165 	 * be a privileged one) to use if the user has not given a port.
3166 	 * If multiple threads are here, they may all start with
3167 	 * with the same initial port. But, it should be fine as long as
3168 	 * tcp_bindi will ensure that no two threads will be assigned
3169 	 * the same port.
3170 	 *
3171 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
3172 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
3173 	 * unless TCP_ANONPRIVBIND option is set.
3174 	 */
3175 	mlptype = mlptSingle;
3176 	mlp_port = requested_port;
3177 	if (requested_port == 0) {
3178 		requested_port = tcp->tcp_anon_priv_bind ?
3179 		    tcp_get_next_priv_port(tcp) :
3180 		    tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE);
3181 		if (requested_port == 0) {
3182 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3183 			return;
3184 		}
3185 		user_specified = B_FALSE;
3186 
3187 		/*
3188 		 * If the user went through one of the RPC interfaces to create
3189 		 * this socket and RPC is MLP in this zone, then give him an
3190 		 * anonymous MLP.
3191 		 */
3192 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3193 		connp = tcp->tcp_connp;
3194 		if (connp->conn_anon_mlp && is_system_labeled()) {
3195 			zone = crgetzone(cr);
3196 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3197 			    IPV6_VERSION, &v6addr);
3198 			if (addrtype == mlptSingle) {
3199 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3200 				return;
3201 			}
3202 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3203 			    PMAPPORT, addrtype);
3204 			mlp_port = PMAPPORT;
3205 		}
3206 	} else {
3207 		int i;
3208 		boolean_t priv = B_FALSE;
3209 
3210 		/*
3211 		 * If the requested_port is in the well-known privileged range,
3212 		 * verify that the stream was opened by a privileged user.
3213 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
3214 		 * but instead the code relies on:
3215 		 * - the fact that the address of the array and its size never
3216 		 *   changes
3217 		 * - the atomic assignment of the elements of the array
3218 		 */
3219 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3220 		if (requested_port < tcp_smallest_nonpriv_port) {
3221 			priv = B_TRUE;
3222 		} else {
3223 			for (i = 0; i < tcp_g_num_epriv_ports; i++) {
3224 				if (requested_port ==
3225 				    tcp_g_epriv_ports[i]) {
3226 					priv = B_TRUE;
3227 					break;
3228 				}
3229 			}
3230 		}
3231 		if (priv) {
3232 			if (secpolicy_net_privaddr(cr, requested_port) != 0) {
3233 				if (tcp->tcp_debug) {
3234 					(void) strlog(TCP_MOD_ID, 0, 1,
3235 					    SL_ERROR|SL_TRACE,
3236 					    "tcp_bind: no priv for port %d",
3237 					    requested_port);
3238 				}
3239 				tcp_err_ack(tcp, mp, TACCES, 0);
3240 				return;
3241 			}
3242 		}
3243 		user_specified = B_TRUE;
3244 
3245 		connp = tcp->tcp_connp;
3246 		if (is_system_labeled()) {
3247 			zone = crgetzone(cr);
3248 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3249 			    IPV6_VERSION, &v6addr);
3250 			if (addrtype == mlptSingle) {
3251 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3252 				return;
3253 			}
3254 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3255 			    requested_port, addrtype);
3256 		}
3257 	}
3258 
3259 	if (mlptype != mlptSingle) {
3260 		if (secpolicy_net_bindmlp(cr) != 0) {
3261 			if (tcp->tcp_debug) {
3262 				(void) strlog(TCP_MOD_ID, 0, 1,
3263 				    SL_ERROR|SL_TRACE,
3264 				    "tcp_bind: no priv for multilevel port %d",
3265 				    requested_port);
3266 			}
3267 			tcp_err_ack(tcp, mp, TACCES, 0);
3268 			return;
3269 		}
3270 
3271 		/*
3272 		 * If we're specifically binding a shared IP address and the
3273 		 * port is MLP on shared addresses, then check to see if this
3274 		 * zone actually owns the MLP.  Reject if not.
3275 		 */
3276 		if (mlptype == mlptShared && addrtype == mlptShared) {
3277 			zoneid_t mlpzone;
3278 
3279 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
3280 			    htons(mlp_port));
3281 			if (connp->conn_zoneid != mlpzone) {
3282 				if (tcp->tcp_debug) {
3283 					(void) strlog(TCP_MOD_ID, 0, 1,
3284 					    SL_ERROR|SL_TRACE,
3285 					    "tcp_bind: attempt to bind port "
3286 					    "%d on shared addr in zone %d "
3287 					    "(should be %d)",
3288 					    mlp_port, connp->conn_zoneid,
3289 					    mlpzone);
3290 				}
3291 				tcp_err_ack(tcp, mp, TACCES, 0);
3292 				return;
3293 			}
3294 		}
3295 
3296 		if (!user_specified) {
3297 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3298 			    requested_port, B_TRUE);
3299 			if (err != 0) {
3300 				if (tcp->tcp_debug) {
3301 					(void) strlog(TCP_MOD_ID, 0, 1,
3302 					    SL_ERROR|SL_TRACE,
3303 					    "tcp_bind: cannot establish anon "
3304 					    "MLP for port %d",
3305 					    requested_port);
3306 				}
3307 				tcp_err_ack(tcp, mp, TSYSERR, err);
3308 				return;
3309 			}
3310 			connp->conn_anon_port = B_TRUE;
3311 		}
3312 		connp->conn_mlp_type = mlptype;
3313 	}
3314 
3315 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
3316 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
3317 
3318 	if (allocated_port == 0) {
3319 		connp->conn_mlp_type = mlptSingle;
3320 		if (connp->conn_anon_port) {
3321 			connp->conn_anon_port = B_FALSE;
3322 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3323 			    requested_port, B_FALSE);
3324 		}
3325 		if (bind_to_req_port_only) {
3326 			if (tcp->tcp_debug) {
3327 				(void) strlog(TCP_MOD_ID, 0, 1,
3328 				    SL_ERROR|SL_TRACE,
3329 				    "tcp_bind: requested addr busy");
3330 			}
3331 			tcp_err_ack(tcp, mp, TADDRBUSY, 0);
3332 		} else {
3333 			/* If we are out of ports, fail the bind. */
3334 			if (tcp->tcp_debug) {
3335 				(void) strlog(TCP_MOD_ID, 0, 1,
3336 				    SL_ERROR|SL_TRACE,
3337 				    "tcp_bind: out of ports?");
3338 			}
3339 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3340 		}
3341 		return;
3342 	}
3343 	ASSERT(tcp->tcp_state == TCPS_BOUND);
3344 do_bind:
3345 	if (!backlog_update) {
3346 		if (tcp->tcp_family == AF_INET)
3347 			sin->sin_port = htons(allocated_port);
3348 		else
3349 			sin6->sin6_port = htons(allocated_port);
3350 	}
3351 	if (tcp->tcp_family == AF_INET) {
3352 		if (tbr->CONIND_number != 0) {
3353 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3354 			    sizeof (sin_t));
3355 		} else {
3356 			/* Just verify the local IP address */
3357 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN);
3358 		}
3359 	} else {
3360 		if (tbr->CONIND_number != 0) {
3361 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3362 			    sizeof (sin6_t));
3363 		} else {
3364 			/* Just verify the local IP address */
3365 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3366 			    IPV6_ADDR_LEN);
3367 		}
3368 	}
3369 	if (mp1 == NULL) {
3370 		if (connp->conn_anon_port) {
3371 			connp->conn_anon_port = B_FALSE;
3372 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3373 			    requested_port, B_FALSE);
3374 		}
3375 		connp->conn_mlp_type = mlptSingle;
3376 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3377 		return;
3378 	}
3379 
3380 	tbr->PRIM_type = T_BIND_ACK;
3381 	mp->b_datap->db_type = M_PCPROTO;
3382 
3383 	/* Chain in the reply mp for tcp_rput() */
3384 	mp1->b_cont = mp;
3385 	mp = mp1;
3386 
3387 	tcp->tcp_conn_req_max = tbr->CONIND_number;
3388 	if (tcp->tcp_conn_req_max) {
3389 		if (tcp->tcp_conn_req_max < tcp_conn_req_min)
3390 			tcp->tcp_conn_req_max = tcp_conn_req_min;
3391 		if (tcp->tcp_conn_req_max > tcp_conn_req_max_q)
3392 			tcp->tcp_conn_req_max = tcp_conn_req_max_q;
3393 		/*
3394 		 * If this is a listener, do not reset the eager list
3395 		 * and other stuffs.  Note that we don't check if the
3396 		 * existing eager list meets the new tcp_conn_req_max
3397 		 * requirement.
3398 		 */
3399 		if (tcp->tcp_state != TCPS_LISTEN) {
3400 			tcp->tcp_state = TCPS_LISTEN;
3401 			/* Initialize the chain. Don't need the eager_lock */
3402 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
3403 			tcp->tcp_second_ctimer_threshold =
3404 			    tcp_ip_abort_linterval;
3405 		}
3406 	}
3407 
3408 	/*
3409 	 * We can call ip_bind directly which returns a T_BIND_ACK mp. The
3410 	 * processing continues in tcp_rput_other().
3411 	 */
3412 	if (tcp->tcp_family == AF_INET6) {
3413 		ASSERT(tcp->tcp_connp->conn_af_isv6);
3414 		mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp);
3415 	} else {
3416 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
3417 		mp = ip_bind_v4(q, mp, tcp->tcp_connp);
3418 	}
3419 	/*
3420 	 * If the bind cannot complete immediately
3421 	 * IP will arrange to call tcp_rput_other
3422 	 * when the bind completes.
3423 	 */
3424 	if (mp != NULL) {
3425 		tcp_rput_other(tcp, mp);
3426 	} else {
3427 		/*
3428 		 * Bind will be resumed later. Need to ensure
3429 		 * that conn doesn't disappear when that happens.
3430 		 * This will be decremented in ip_resume_tcp_bind().
3431 		 */
3432 		CONN_INC_REF(tcp->tcp_connp);
3433 	}
3434 }
3435 
3436 
3437 /*
3438  * If the "bind_to_req_port_only" parameter is set, if the requested port
3439  * number is available, return it, If not return 0
3440  *
3441  * If "bind_to_req_port_only" parameter is not set and
3442  * If the requested port number is available, return it.  If not, return
3443  * the first anonymous port we happen across.  If no anonymous ports are
3444  * available, return 0. addr is the requested local address, if any.
3445  *
3446  * In either case, when succeeding update the tcp_t to record the port number
3447  * and insert it in the bind hash table.
3448  *
3449  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3450  * without setting SO_REUSEADDR. This is needed so that they
3451  * can be viewed as two independent transport protocols.
3452  */
3453 static in_port_t
3454 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3455     int reuseaddr, boolean_t quick_connect,
3456     boolean_t bind_to_req_port_only, boolean_t user_specified)
3457 {
3458 	/* number of times we have run around the loop */
3459 	int count = 0;
3460 	/* maximum number of times to run around the loop */
3461 	int loopmax;
3462 	conn_t *connp = tcp->tcp_connp;
3463 	zoneid_t zoneid = connp->conn_zoneid;
3464 
3465 	/*
3466 	 * Lookup for free addresses is done in a loop and "loopmax"
3467 	 * influences how long we spin in the loop
3468 	 */
3469 	if (bind_to_req_port_only) {
3470 		/*
3471 		 * If the requested port is busy, don't bother to look
3472 		 * for a new one. Setting loop maximum count to 1 has
3473 		 * that effect.
3474 		 */
3475 		loopmax = 1;
3476 	} else {
3477 		/*
3478 		 * If the requested port is busy, look for a free one
3479 		 * in the anonymous port range.
3480 		 * Set loopmax appropriately so that one does not look
3481 		 * forever in the case all of the anonymous ports are in use.
3482 		 */
3483 		if (tcp->tcp_anon_priv_bind) {
3484 			/*
3485 			 * loopmax =
3486 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3487 			 */
3488 			loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port;
3489 		} else {
3490 			loopmax = (tcp_largest_anon_port -
3491 			    tcp_smallest_anon_port + 1);
3492 		}
3493 	}
3494 	do {
3495 		uint16_t	lport;
3496 		tf_t		*tbf;
3497 		tcp_t		*ltcp;
3498 		conn_t		*lconnp;
3499 
3500 		lport = htons(port);
3501 
3502 		/*
3503 		 * Ensure that the tcp_t is not currently in the bind hash.
3504 		 * Hold the lock on the hash bucket to ensure that
3505 		 * the duplicate check plus the insertion is an atomic
3506 		 * operation.
3507 		 *
3508 		 * This function does an inline lookup on the bind hash list
3509 		 * Make sure that we access only members of tcp_t
3510 		 * and that we don't look at tcp_tcp, since we are not
3511 		 * doing a CONN_INC_REF.
3512 		 */
3513 		tcp_bind_hash_remove(tcp);
3514 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)];
3515 		mutex_enter(&tbf->tf_lock);
3516 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3517 		    ltcp = ltcp->tcp_bind_hash) {
3518 			boolean_t not_socket;
3519 			boolean_t exclbind;
3520 
3521 			if (lport != ltcp->tcp_lport)
3522 				continue;
3523 
3524 			lconnp = ltcp->tcp_connp;
3525 
3526 			/*
3527 			 * On a labeled system, we must treat bindings to ports
3528 			 * on shared IP addresses by sockets with MAC exemption
3529 			 * privilege as being in all zones, as there's
3530 			 * otherwise no way to identify the right receiver.
3531 			 */
3532 			if (!IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) &&
3533 			    !lconnp->conn_mac_exempt &&
3534 			    !connp->conn_mac_exempt)
3535 				continue;
3536 
3537 			/*
3538 			 * If TCP_EXCLBIND is set for either the bound or
3539 			 * binding endpoint, the semantics of bind
3540 			 * is changed according to the following.
3541 			 *
3542 			 * spec = specified address (v4 or v6)
3543 			 * unspec = unspecified address (v4 or v6)
3544 			 * A = specified addresses are different for endpoints
3545 			 *
3546 			 * bound	bind to		allowed
3547 			 * -------------------------------------
3548 			 * unspec	unspec		no
3549 			 * unspec	spec		no
3550 			 * spec		unspec		no
3551 			 * spec		spec		yes if A
3552 			 *
3553 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3554 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3555 			 *
3556 			 * Note:
3557 			 *
3558 			 * 1. Because of TLI semantics, an endpoint can go
3559 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3560 			 * TCPS_BOUND, depending on whether it is originally
3561 			 * a listener or not.  That is why we need to check
3562 			 * for states greater than or equal to TCPS_BOUND
3563 			 * here.
3564 			 *
3565 			 * 2. Ideally, we should only check for state equals
3566 			 * to TCPS_LISTEN. And the following check should be
3567 			 * added.
3568 			 *
3569 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3570 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3571 			 *		...
3572 			 * }
3573 			 *
3574 			 * The semantics will be changed to this.  If the
3575 			 * endpoint on the list is in state not equal to
3576 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3577 			 * set, let the bind succeed.
3578 			 *
3579 			 * Because of (1), we cannot do that for TLI
3580 			 * endpoints.  But we can do that for socket endpoints.
3581 			 * If in future, we can change this going back
3582 			 * semantics, we can use the above check for TLI also.
3583 			 */
3584 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3585 			    TCP_IS_SOCKET(tcp));
3586 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3587 
3588 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3589 			    (exclbind && (not_socket ||
3590 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3591 				if (V6_OR_V4_INADDR_ANY(
3592 				    ltcp->tcp_bound_source_v6) ||
3593 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3594 				    IN6_ARE_ADDR_EQUAL(laddr,
3595 				    &ltcp->tcp_bound_source_v6)) {
3596 					break;
3597 				}
3598 				continue;
3599 			}
3600 
3601 			/*
3602 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3603 			 * have disjoint port number spaces, if *_EXCLBIND
3604 			 * is not set and only if the application binds to a
3605 			 * specific port. We use the same autoassigned port
3606 			 * number space for IPv4 and IPv6 sockets.
3607 			 */
3608 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3609 			    bind_to_req_port_only)
3610 				continue;
3611 
3612 			/*
3613 			 * Ideally, we should make sure that the source
3614 			 * address, remote address, and remote port in the
3615 			 * four tuple for this tcp-connection is unique.
3616 			 * However, trying to find out the local source
3617 			 * address would require too much code duplication
3618 			 * with IP, since IP needs needs to have that code
3619 			 * to support userland TCP implementations.
3620 			 */
3621 			if (quick_connect &&
3622 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3623 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3624 				!IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3625 				    &ltcp->tcp_remote_v6)))
3626 				continue;
3627 
3628 			if (!reuseaddr) {
3629 				/*
3630 				 * No socket option SO_REUSEADDR.
3631 				 * If existing port is bound to
3632 				 * a non-wildcard IP address
3633 				 * and the requesting stream is
3634 				 * bound to a distinct
3635 				 * different IP addresses
3636 				 * (non-wildcard, also), keep
3637 				 * going.
3638 				 */
3639 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3640 				    !V6_OR_V4_INADDR_ANY(
3641 				    ltcp->tcp_bound_source_v6) &&
3642 				    !IN6_ARE_ADDR_EQUAL(laddr,
3643 					&ltcp->tcp_bound_source_v6))
3644 					continue;
3645 				if (ltcp->tcp_state >= TCPS_BOUND) {
3646 					/*
3647 					 * This port is being used and
3648 					 * its state is >= TCPS_BOUND,
3649 					 * so we can't bind to it.
3650 					 */
3651 					break;
3652 				}
3653 			} else {
3654 				/*
3655 				 * socket option SO_REUSEADDR is set on the
3656 				 * binding tcp_t.
3657 				 *
3658 				 * If two streams are bound to
3659 				 * same IP address or both addr
3660 				 * and bound source are wildcards
3661 				 * (INADDR_ANY), we want to stop
3662 				 * searching.
3663 				 * We have found a match of IP source
3664 				 * address and source port, which is
3665 				 * refused regardless of the
3666 				 * SO_REUSEADDR setting, so we break.
3667 				 */
3668 				if (IN6_ARE_ADDR_EQUAL(laddr,
3669 				    &ltcp->tcp_bound_source_v6) &&
3670 				    (ltcp->tcp_state == TCPS_LISTEN ||
3671 					ltcp->tcp_state == TCPS_BOUND))
3672 					break;
3673 			}
3674 		}
3675 		if (ltcp != NULL) {
3676 			/* The port number is busy */
3677 			mutex_exit(&tbf->tf_lock);
3678 		} else {
3679 			/*
3680 			 * This port is ours. Insert in fanout and mark as
3681 			 * bound to prevent others from getting the port
3682 			 * number.
3683 			 */
3684 			tcp->tcp_state = TCPS_BOUND;
3685 			tcp->tcp_lport = htons(port);
3686 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3687 
3688 			ASSERT(&tcp_bind_fanout[TCP_BIND_HASH(
3689 			    tcp->tcp_lport)] == tbf);
3690 			tcp_bind_hash_insert(tbf, tcp, 1);
3691 
3692 			mutex_exit(&tbf->tf_lock);
3693 
3694 			/*
3695 			 * We don't want tcp_next_port_to_try to "inherit"
3696 			 * a port number supplied by the user in a bind.
3697 			 */
3698 			if (user_specified)
3699 				return (port);
3700 
3701 			/*
3702 			 * This is the only place where tcp_next_port_to_try
3703 			 * is updated. After the update, it may or may not
3704 			 * be in the valid range.
3705 			 */
3706 			if (!tcp->tcp_anon_priv_bind)
3707 				tcp_next_port_to_try = port + 1;
3708 			return (port);
3709 		}
3710 
3711 		if (tcp->tcp_anon_priv_bind) {
3712 			port = tcp_get_next_priv_port(tcp);
3713 		} else {
3714 			if (count == 0 && user_specified) {
3715 				/*
3716 				 * We may have to return an anonymous port. So
3717 				 * get one to start with.
3718 				 */
3719 				port =
3720 				    tcp_update_next_port(tcp_next_port_to_try,
3721 					tcp, B_TRUE);
3722 				user_specified = B_FALSE;
3723 			} else {
3724 				port = tcp_update_next_port(port + 1, tcp,
3725 				    B_FALSE);
3726 			}
3727 		}
3728 		if (port == 0)
3729 			break;
3730 
3731 		/*
3732 		 * Don't let this loop run forever in the case where
3733 		 * all of the anonymous ports are in use.
3734 		 */
3735 	} while (++count < loopmax);
3736 	return (0);
3737 }
3738 
3739 /*
3740  * We are dying for some reason.  Try to do it gracefully.  (May be called
3741  * as writer.)
3742  *
3743  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3744  * done by a service procedure).
3745  * TBD - Should the return value distinguish between the tcp_t being
3746  * freed and it being reinitialized?
3747  */
3748 static int
3749 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3750 {
3751 	mblk_t	*mp;
3752 	queue_t	*q;
3753 
3754 	TCP_CLD_STAT(tag);
3755 
3756 #if TCP_TAG_CLEAN_DEATH
3757 	tcp->tcp_cleandeathtag = tag;
3758 #endif
3759 
3760 	if (tcp->tcp_fused)
3761 		tcp_unfuse(tcp);
3762 
3763 	if (tcp->tcp_linger_tid != 0 &&
3764 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3765 		tcp_stop_lingering(tcp);
3766 	}
3767 
3768 	ASSERT(tcp != NULL);
3769 	ASSERT((tcp->tcp_family == AF_INET &&
3770 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3771 	    (tcp->tcp_family == AF_INET6 &&
3772 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3773 	    tcp->tcp_ipversion == IPV6_VERSION)));
3774 
3775 	if (TCP_IS_DETACHED(tcp)) {
3776 		if (tcp->tcp_hard_binding) {
3777 			/*
3778 			 * Its an eager that we are dealing with. We close the
3779 			 * eager but in case a conn_ind has already gone to the
3780 			 * listener, let tcp_accept_finish() send a discon_ind
3781 			 * to the listener and drop the last reference. If the
3782 			 * listener doesn't even know about the eager i.e. the
3783 			 * conn_ind hasn't gone up, blow away the eager and drop
3784 			 * the last reference as well. If the conn_ind has gone
3785 			 * up, state should be BOUND. tcp_accept_finish
3786 			 * will figure out that the connection has received a
3787 			 * RST and will send a DISCON_IND to the application.
3788 			 */
3789 			tcp_closei_local(tcp);
3790 			if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) {
3791 				CONN_DEC_REF(tcp->tcp_connp);
3792 			} else {
3793 				tcp->tcp_state = TCPS_BOUND;
3794 			}
3795 		} else {
3796 			tcp_close_detached(tcp);
3797 		}
3798 		return (0);
3799 	}
3800 
3801 	TCP_STAT(tcp_clean_death_nondetached);
3802 
3803 	/*
3804 	 * If T_ORDREL_IND has not been sent yet (done when service routine
3805 	 * is run) postpone cleaning up the endpoint until service routine
3806 	 * has sent up the T_ORDREL_IND. Avoid clearing out an existing
3807 	 * client_errno since tcp_close uses the client_errno field.
3808 	 */
3809 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
3810 		if (err != 0)
3811 			tcp->tcp_client_errno = err;
3812 
3813 		tcp->tcp_deferred_clean_death = B_TRUE;
3814 		return (-1);
3815 	}
3816 
3817 	q = tcp->tcp_rq;
3818 
3819 	/* Trash all inbound data */
3820 	flushq(q, FLUSHALL);
3821 
3822 	/*
3823 	 * If we are at least part way open and there is error
3824 	 * (err==0 implies no error)
3825 	 * notify our client by a T_DISCON_IND.
3826 	 */
3827 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3828 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3829 		    !TCP_IS_SOCKET(tcp)) {
3830 			/*
3831 			 * Send M_FLUSH according to TPI. Because sockets will
3832 			 * (and must) ignore FLUSHR we do that only for TPI
3833 			 * endpoints and sockets in STREAMS mode.
3834 			 */
3835 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3836 		}
3837 		if (tcp->tcp_debug) {
3838 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3839 			    "tcp_clean_death: discon err %d", err);
3840 		}
3841 		mp = mi_tpi_discon_ind(NULL, err, 0);
3842 		if (mp != NULL) {
3843 			putnext(q, mp);
3844 		} else {
3845 			if (tcp->tcp_debug) {
3846 				(void) strlog(TCP_MOD_ID, 0, 1,
3847 				    SL_ERROR|SL_TRACE,
3848 				    "tcp_clean_death, sending M_ERROR");
3849 			}
3850 			(void) putnextctl1(q, M_ERROR, EPROTO);
3851 		}
3852 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3853 			/* SYN_SENT or SYN_RCVD */
3854 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
3855 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3856 			/* ESTABLISHED or CLOSE_WAIT */
3857 			BUMP_MIB(&tcp_mib, tcpEstabResets);
3858 		}
3859 	}
3860 
3861 	tcp_reinit(tcp);
3862 	return (-1);
3863 }
3864 
3865 /*
3866  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3867  * to expire, stop the wait and finish the close.
3868  */
3869 static void
3870 tcp_stop_lingering(tcp_t *tcp)
3871 {
3872 	clock_t	delta = 0;
3873 
3874 	tcp->tcp_linger_tid = 0;
3875 	if (tcp->tcp_state > TCPS_LISTEN) {
3876 		tcp_acceptor_hash_remove(tcp);
3877 		if (tcp->tcp_flow_stopped) {
3878 			tcp_clrqfull(tcp);
3879 		}
3880 
3881 		if (tcp->tcp_timer_tid != 0) {
3882 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3883 			tcp->tcp_timer_tid = 0;
3884 		}
3885 		/*
3886 		 * Need to cancel those timers which will not be used when
3887 		 * TCP is detached.  This has to be done before the tcp_wq
3888 		 * is set to the global queue.
3889 		 */
3890 		tcp_timers_stop(tcp);
3891 
3892 
3893 		tcp->tcp_detached = B_TRUE;
3894 		tcp->tcp_rq = tcp_g_q;
3895 		tcp->tcp_wq = WR(tcp_g_q);
3896 
3897 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3898 			tcp_time_wait_append(tcp);
3899 			TCP_DBGSTAT(tcp_detach_time_wait);
3900 			goto finish;
3901 		}
3902 
3903 		/*
3904 		 * If delta is zero the timer event wasn't executed and was
3905 		 * successfully canceled. In this case we need to restart it
3906 		 * with the minimal delta possible.
3907 		 */
3908 		if (delta >= 0) {
3909 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3910 			    delta ? delta : 1);
3911 		}
3912 	} else {
3913 		tcp_closei_local(tcp);
3914 		CONN_DEC_REF(tcp->tcp_connp);
3915 	}
3916 finish:
3917 	/* Signal closing thread that it can complete close */
3918 	mutex_enter(&tcp->tcp_closelock);
3919 	tcp->tcp_detached = B_TRUE;
3920 	tcp->tcp_rq = tcp_g_q;
3921 	tcp->tcp_wq = WR(tcp_g_q);
3922 	tcp->tcp_closed = 1;
3923 	cv_signal(&tcp->tcp_closecv);
3924 	mutex_exit(&tcp->tcp_closelock);
3925 }
3926 
3927 /*
3928  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3929  * expires.
3930  */
3931 static void
3932 tcp_close_linger_timeout(void *arg)
3933 {
3934 	conn_t	*connp = (conn_t *)arg;
3935 	tcp_t 	*tcp = connp->conn_tcp;
3936 
3937 	tcp->tcp_client_errno = ETIMEDOUT;
3938 	tcp_stop_lingering(tcp);
3939 }
3940 
3941 static int
3942 tcp_close(queue_t *q, int flags)
3943 {
3944 	conn_t		*connp = Q_TO_CONN(q);
3945 	tcp_t		*tcp = connp->conn_tcp;
3946 	mblk_t 		*mp = &tcp->tcp_closemp;
3947 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
3948 
3949 	ASSERT(WR(q)->q_next == NULL);
3950 	ASSERT(connp->conn_ref >= 2);
3951 	ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0);
3952 
3953 	/*
3954 	 * We are being closed as /dev/tcp or /dev/tcp6.
3955 	 *
3956 	 * Mark the conn as closing. ill_pending_mp_add will not
3957 	 * add any mp to the pending mp list, after this conn has
3958 	 * started closing. Same for sq_pending_mp_add
3959 	 */
3960 	mutex_enter(&connp->conn_lock);
3961 	connp->conn_state_flags |= CONN_CLOSING;
3962 	if (connp->conn_oper_pending_ill != NULL)
3963 		conn_ioctl_cleanup_reqd = B_TRUE;
3964 	CONN_INC_REF_LOCKED(connp);
3965 	mutex_exit(&connp->conn_lock);
3966 	tcp->tcp_closeflags = (uint8_t)flags;
3967 	ASSERT(connp->conn_ref >= 3);
3968 
3969 	(*tcp_squeue_close_proc)(connp->conn_sqp, mp,
3970 	    tcp_close_output, connp, SQTAG_IP_TCP_CLOSE);
3971 
3972 	mutex_enter(&tcp->tcp_closelock);
3973 
3974 	while (!tcp->tcp_closed)
3975 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
3976 	mutex_exit(&tcp->tcp_closelock);
3977 	/*
3978 	 * In the case of listener streams that have eagers in the q or q0
3979 	 * we wait for the eagers to drop their reference to us. tcp_rq and
3980 	 * tcp_wq of the eagers point to our queues. By waiting for the
3981 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
3982 	 * up their queue pointers and also dropped their references to us.
3983 	 */
3984 	if (tcp->tcp_wait_for_eagers) {
3985 		mutex_enter(&connp->conn_lock);
3986 		while (connp->conn_ref != 1) {
3987 			cv_wait(&connp->conn_cv, &connp->conn_lock);
3988 		}
3989 		mutex_exit(&connp->conn_lock);
3990 	}
3991 	/*
3992 	 * ioctl cleanup. The mp is queued in the
3993 	 * ill_pending_mp or in the sq_pending_mp.
3994 	 */
3995 	if (conn_ioctl_cleanup_reqd)
3996 		conn_ioctl_cleanup(connp);
3997 
3998 	qprocsoff(q);
3999 	inet_minor_free(ip_minor_arena, connp->conn_dev);
4000 
4001 	tcp->tcp_cpid = -1;
4002 
4003 	/*
4004 	 * Drop IP's reference on the conn. This is the last reference
4005 	 * on the connp if the state was less than established. If the
4006 	 * connection has gone into timewait state, then we will have
4007 	 * one ref for the TCP and one more ref (total of two) for the
4008 	 * classifier connected hash list (a timewait connections stays
4009 	 * in connected hash till closed).
4010 	 *
4011 	 * We can't assert the references because there might be other
4012 	 * transient reference places because of some walkers or queued
4013 	 * packets in squeue for the timewait state.
4014 	 */
4015 	CONN_DEC_REF(connp);
4016 	q->q_ptr = WR(q)->q_ptr = NULL;
4017 	return (0);
4018 }
4019 
4020 static int
4021 tcpclose_accept(queue_t *q)
4022 {
4023 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
4024 
4025 	/*
4026 	 * We had opened an acceptor STREAM for sockfs which is
4027 	 * now being closed due to some error.
4028 	 */
4029 	qprocsoff(q);
4030 	inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr);
4031 	q->q_ptr = WR(q)->q_ptr = NULL;
4032 	return (0);
4033 }
4034 
4035 
4036 /*
4037  * Called by streams close routine via squeues when our client blows off her
4038  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
4039  * connection politely" When SO_LINGER is set (with a non-zero linger time and
4040  * it is not a nonblocking socket) then this routine sleeps until the FIN is
4041  * acked.
4042  *
4043  * NOTE: tcp_close potentially returns error when lingering.
4044  * However, the stream head currently does not pass these errors
4045  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
4046  * errors to the application (from tsleep()) and not errors
4047  * like ECONNRESET caused by receiving a reset packet.
4048  */
4049 
4050 /* ARGSUSED */
4051 static void
4052 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
4053 {
4054 	char	*msg;
4055 	conn_t	*connp = (conn_t *)arg;
4056 	tcp_t	*tcp = connp->conn_tcp;
4057 	clock_t	delta = 0;
4058 
4059 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
4060 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
4061 
4062 	/* Cancel any pending timeout */
4063 	if (tcp->tcp_ordrelid != 0) {
4064 		if (tcp->tcp_timeout) {
4065 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid);
4066 		}
4067 		tcp->tcp_ordrelid = 0;
4068 		tcp->tcp_timeout = B_FALSE;
4069 	}
4070 
4071 	mutex_enter(&tcp->tcp_eager_lock);
4072 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
4073 		/* Cleanup for listener */
4074 		tcp_eager_cleanup(tcp, 0);
4075 		tcp->tcp_wait_for_eagers = 1;
4076 	}
4077 	mutex_exit(&tcp->tcp_eager_lock);
4078 
4079 	connp->conn_mdt_ok = B_FALSE;
4080 	tcp->tcp_mdt = B_FALSE;
4081 
4082 	msg = NULL;
4083 	switch (tcp->tcp_state) {
4084 	case TCPS_CLOSED:
4085 	case TCPS_IDLE:
4086 	case TCPS_BOUND:
4087 	case TCPS_LISTEN:
4088 		break;
4089 	case TCPS_SYN_SENT:
4090 		msg = "tcp_close, during connect";
4091 		break;
4092 	case TCPS_SYN_RCVD:
4093 		/*
4094 		 * Close during the connect 3-way handshake
4095 		 * but here there may or may not be pending data
4096 		 * already on queue. Process almost same as in
4097 		 * the ESTABLISHED state.
4098 		 */
4099 		/* FALLTHRU */
4100 	default:
4101 		if (tcp->tcp_fused)
4102 			tcp_unfuse(tcp);
4103 
4104 		/*
4105 		 * If SO_LINGER has set a zero linger time, abort the
4106 		 * connection with a reset.
4107 		 */
4108 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
4109 			msg = "tcp_close, zero lingertime";
4110 			break;
4111 		}
4112 
4113 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
4114 		/*
4115 		 * Abort connection if there is unread data queued.
4116 		 */
4117 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
4118 			msg = "tcp_close, unread data";
4119 			break;
4120 		}
4121 		/*
4122 		 * tcp_hard_bound is now cleared thus all packets go through
4123 		 * tcp_lookup. This fact is used by tcp_detach below.
4124 		 *
4125 		 * We have done a qwait() above which could have possibly
4126 		 * drained more messages in turn causing transition to a
4127 		 * different state. Check whether we have to do the rest
4128 		 * of the processing or not.
4129 		 */
4130 		if (tcp->tcp_state <= TCPS_LISTEN)
4131 			break;
4132 
4133 		/*
4134 		 * Transmit the FIN before detaching the tcp_t.
4135 		 * After tcp_detach returns this queue/perimeter
4136 		 * no longer owns the tcp_t thus others can modify it.
4137 		 */
4138 		(void) tcp_xmit_end(tcp);
4139 
4140 		/*
4141 		 * If lingering on close then wait until the fin is acked,
4142 		 * the SO_LINGER time passes, or a reset is sent/received.
4143 		 */
4144 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
4145 		    !(tcp->tcp_fin_acked) &&
4146 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
4147 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
4148 				tcp->tcp_client_errno = EWOULDBLOCK;
4149 			} else if (tcp->tcp_client_errno == 0) {
4150 
4151 				ASSERT(tcp->tcp_linger_tid == 0);
4152 
4153 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
4154 				    tcp_close_linger_timeout,
4155 				    tcp->tcp_lingertime * hz);
4156 
4157 				/* tcp_close_linger_timeout will finish close */
4158 				if (tcp->tcp_linger_tid == 0)
4159 					tcp->tcp_client_errno = ENOSR;
4160 				else
4161 					return;
4162 			}
4163 
4164 			/*
4165 			 * Check if we need to detach or just close
4166 			 * the instance.
4167 			 */
4168 			if (tcp->tcp_state <= TCPS_LISTEN)
4169 				break;
4170 		}
4171 
4172 		/*
4173 		 * Make sure that no other thread will access the tcp_rq of
4174 		 * this instance (through lookups etc.) as tcp_rq will go
4175 		 * away shortly.
4176 		 */
4177 		tcp_acceptor_hash_remove(tcp);
4178 
4179 		if (tcp->tcp_flow_stopped) {
4180 			tcp_clrqfull(tcp);
4181 		}
4182 
4183 		if (tcp->tcp_timer_tid != 0) {
4184 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4185 			tcp->tcp_timer_tid = 0;
4186 		}
4187 		/*
4188 		 * Need to cancel those timers which will not be used when
4189 		 * TCP is detached.  This has to be done before the tcp_wq
4190 		 * is set to the global queue.
4191 		 */
4192 		tcp_timers_stop(tcp);
4193 
4194 		tcp->tcp_detached = B_TRUE;
4195 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4196 			tcp_time_wait_append(tcp);
4197 			TCP_DBGSTAT(tcp_detach_time_wait);
4198 			ASSERT(connp->conn_ref >= 3);
4199 			goto finish;
4200 		}
4201 
4202 		/*
4203 		 * If delta is zero the timer event wasn't executed and was
4204 		 * successfully canceled. In this case we need to restart it
4205 		 * with the minimal delta possible.
4206 		 */
4207 		if (delta >= 0)
4208 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4209 			    delta ? delta : 1);
4210 
4211 		ASSERT(connp->conn_ref >= 3);
4212 		goto finish;
4213 	}
4214 
4215 	/* Detach did not complete. Still need to remove q from stream. */
4216 	if (msg) {
4217 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4218 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4219 			BUMP_MIB(&tcp_mib, tcpEstabResets);
4220 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4221 		    tcp->tcp_state == TCPS_SYN_RCVD)
4222 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
4223 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4224 	}
4225 
4226 	tcp_closei_local(tcp);
4227 	CONN_DEC_REF(connp);
4228 	ASSERT(connp->conn_ref >= 2);
4229 
4230 finish:
4231 	/*
4232 	 * Although packets are always processed on the correct
4233 	 * tcp's perimeter and access is serialized via squeue's,
4234 	 * IP still needs a queue when sending packets in time_wait
4235 	 * state so use WR(tcp_g_q) till ip_output() can be
4236 	 * changed to deal with just connp. For read side, we
4237 	 * could have set tcp_rq to NULL but there are some cases
4238 	 * in tcp_rput_data() from early days of this code which
4239 	 * do a putnext without checking if tcp is closed. Those
4240 	 * need to be identified before both tcp_rq and tcp_wq
4241 	 * can be set to NULL and tcp_q_q can disappear forever.
4242 	 */
4243 	mutex_enter(&tcp->tcp_closelock);
4244 	/*
4245 	 * Don't change the queues in the case of a listener that has
4246 	 * eagers in its q or q0. It could surprise the eagers.
4247 	 * Instead wait for the eagers outside the squeue.
4248 	 */
4249 	if (!tcp->tcp_wait_for_eagers) {
4250 		tcp->tcp_detached = B_TRUE;
4251 		tcp->tcp_rq = tcp_g_q;
4252 		tcp->tcp_wq = WR(tcp_g_q);
4253 	}
4254 
4255 	/* Signal tcp_close() to finish closing. */
4256 	tcp->tcp_closed = 1;
4257 	cv_signal(&tcp->tcp_closecv);
4258 	mutex_exit(&tcp->tcp_closelock);
4259 }
4260 
4261 
4262 /*
4263  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4264  * Some stream heads get upset if they see these later on as anything but NULL.
4265  */
4266 static void
4267 tcp_close_mpp(mblk_t **mpp)
4268 {
4269 	mblk_t	*mp;
4270 
4271 	if ((mp = *mpp) != NULL) {
4272 		do {
4273 			mp->b_next = NULL;
4274 			mp->b_prev = NULL;
4275 		} while ((mp = mp->b_cont) != NULL);
4276 
4277 		mp = *mpp;
4278 		*mpp = NULL;
4279 		freemsg(mp);
4280 	}
4281 }
4282 
4283 /* Do detached close. */
4284 static void
4285 tcp_close_detached(tcp_t *tcp)
4286 {
4287 	if (tcp->tcp_fused)
4288 		tcp_unfuse(tcp);
4289 
4290 	/*
4291 	 * Clustering code serializes TCP disconnect callbacks and
4292 	 * cluster tcp list walks by blocking a TCP disconnect callback
4293 	 * if a cluster tcp list walk is in progress. This ensures
4294 	 * accurate accounting of TCPs in the cluster code even though
4295 	 * the TCP list walk itself is not atomic.
4296 	 */
4297 	tcp_closei_local(tcp);
4298 	CONN_DEC_REF(tcp->tcp_connp);
4299 }
4300 
4301 /*
4302  * Stop all TCP timers, and free the timer mblks if requested.
4303  */
4304 void
4305 tcp_timers_stop(tcp_t *tcp)
4306 {
4307 	if (tcp->tcp_timer_tid != 0) {
4308 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4309 		tcp->tcp_timer_tid = 0;
4310 	}
4311 	if (tcp->tcp_ka_tid != 0) {
4312 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4313 		tcp->tcp_ka_tid = 0;
4314 	}
4315 	if (tcp->tcp_ack_tid != 0) {
4316 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4317 		tcp->tcp_ack_tid = 0;
4318 	}
4319 	if (tcp->tcp_push_tid != 0) {
4320 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4321 		tcp->tcp_push_tid = 0;
4322 	}
4323 }
4324 
4325 /*
4326  * The tcp_t is going away. Remove it from all lists and set it
4327  * to TCPS_CLOSED. The freeing up of memory is deferred until
4328  * tcp_inactive. This is needed since a thread in tcp_rput might have
4329  * done a CONN_INC_REF on this structure before it was removed from the
4330  * hashes.
4331  */
4332 static void
4333 tcp_closei_local(tcp_t *tcp)
4334 {
4335 	ire_t 	*ire;
4336 	conn_t	*connp = tcp->tcp_connp;
4337 
4338 	if (!TCP_IS_SOCKET(tcp))
4339 		tcp_acceptor_hash_remove(tcp);
4340 
4341 	UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
4342 	tcp->tcp_ibsegs = 0;
4343 	UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
4344 	tcp->tcp_obsegs = 0;
4345 
4346 	/*
4347 	 * If we are an eager connection hanging off a listener that
4348 	 * hasn't formally accepted the connection yet, get off his
4349 	 * list and blow off any data that we have accumulated.
4350 	 */
4351 	if (tcp->tcp_listener != NULL) {
4352 		tcp_t	*listener = tcp->tcp_listener;
4353 		mutex_enter(&listener->tcp_eager_lock);
4354 		/*
4355 		 * tcp_eager_conn_ind == NULL means that the
4356 		 * conn_ind has already gone to listener. At
4357 		 * this point, eager will be closed but we
4358 		 * leave it in listeners eager list so that
4359 		 * if listener decides to close without doing
4360 		 * accept, we can clean this up. In tcp_wput_accept
4361 		 * we take case of the case of accept on closed
4362 		 * eager.
4363 		 */
4364 		if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) {
4365 			tcp_eager_unlink(tcp);
4366 			mutex_exit(&listener->tcp_eager_lock);
4367 			/*
4368 			 * We don't want to have any pointers to the
4369 			 * listener queue, after we have released our
4370 			 * reference on the listener
4371 			 */
4372 			tcp->tcp_rq = tcp_g_q;
4373 			tcp->tcp_wq = WR(tcp_g_q);
4374 			CONN_DEC_REF(listener->tcp_connp);
4375 		} else {
4376 			mutex_exit(&listener->tcp_eager_lock);
4377 		}
4378 	}
4379 
4380 	/* Stop all the timers */
4381 	tcp_timers_stop(tcp);
4382 
4383 	if (tcp->tcp_state == TCPS_LISTEN) {
4384 		if (tcp->tcp_ip_addr_cache) {
4385 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4386 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4387 			tcp->tcp_ip_addr_cache = NULL;
4388 		}
4389 	}
4390 	if (tcp->tcp_flow_stopped)
4391 		tcp_clrqfull(tcp);
4392 
4393 	tcp_bind_hash_remove(tcp);
4394 	/*
4395 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4396 	 * is trying to remove this tcp from the time wait list, we will
4397 	 * block in tcp_time_wait_remove while trying to acquire the
4398 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4399 	 * requires the ipcl_hash_remove to be ordered after the
4400 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4401 	 */
4402 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4403 		tcp_time_wait_remove(tcp, NULL);
4404 	CL_INET_DISCONNECT(tcp);
4405 	ipcl_hash_remove(connp);
4406 
4407 	/*
4408 	 * Delete the cached ire in conn_ire_cache and also mark
4409 	 * the conn as CONDEMNED
4410 	 */
4411 	mutex_enter(&connp->conn_lock);
4412 	connp->conn_state_flags |= CONN_CONDEMNED;
4413 	ire = connp->conn_ire_cache;
4414 	connp->conn_ire_cache = NULL;
4415 	mutex_exit(&connp->conn_lock);
4416 	if (ire != NULL)
4417 		IRE_REFRELE_NOTR(ire);
4418 
4419 	/* Need to cleanup any pending ioctls */
4420 	ASSERT(tcp->tcp_time_wait_next == NULL);
4421 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4422 	ASSERT(tcp->tcp_time_wait_expire == 0);
4423 	tcp->tcp_state = TCPS_CLOSED;
4424 
4425 	/* Release any SSL context */
4426 	if (tcp->tcp_kssl_ent != NULL) {
4427 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4428 		tcp->tcp_kssl_ent = NULL;
4429 	}
4430 	if (tcp->tcp_kssl_ctx != NULL) {
4431 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4432 		tcp->tcp_kssl_ctx = NULL;
4433 	}
4434 	tcp->tcp_kssl_pending = B_FALSE;
4435 }
4436 
4437 /*
4438  * tcp is dying (called from ipcl_conn_destroy and error cases).
4439  * Free the tcp_t in either case.
4440  */
4441 void
4442 tcp_free(tcp_t *tcp)
4443 {
4444 	mblk_t	*mp;
4445 	ip6_pkt_t	*ipp;
4446 
4447 	ASSERT(tcp != NULL);
4448 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4449 
4450 	tcp->tcp_rq = NULL;
4451 	tcp->tcp_wq = NULL;
4452 
4453 	tcp_close_mpp(&tcp->tcp_xmit_head);
4454 	tcp_close_mpp(&tcp->tcp_reass_head);
4455 	if (tcp->tcp_rcv_list != NULL) {
4456 		/* Free b_next chain */
4457 		tcp_close_mpp(&tcp->tcp_rcv_list);
4458 	}
4459 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4460 		freemsg(mp);
4461 	}
4462 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4463 		freemsg(mp);
4464 	}
4465 
4466 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4467 		freeb(tcp->tcp_fused_sigurg_mp);
4468 		tcp->tcp_fused_sigurg_mp = NULL;
4469 	}
4470 
4471 	if (tcp->tcp_sack_info != NULL) {
4472 		if (tcp->tcp_notsack_list != NULL) {
4473 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4474 		}
4475 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4476 	}
4477 
4478 	if (tcp->tcp_hopopts != NULL) {
4479 		mi_free(tcp->tcp_hopopts);
4480 		tcp->tcp_hopopts = NULL;
4481 		tcp->tcp_hopoptslen = 0;
4482 	}
4483 	ASSERT(tcp->tcp_hopoptslen == 0);
4484 	if (tcp->tcp_dstopts != NULL) {
4485 		mi_free(tcp->tcp_dstopts);
4486 		tcp->tcp_dstopts = NULL;
4487 		tcp->tcp_dstoptslen = 0;
4488 	}
4489 	ASSERT(tcp->tcp_dstoptslen == 0);
4490 	if (tcp->tcp_rtdstopts != NULL) {
4491 		mi_free(tcp->tcp_rtdstopts);
4492 		tcp->tcp_rtdstopts = NULL;
4493 		tcp->tcp_rtdstoptslen = 0;
4494 	}
4495 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4496 	if (tcp->tcp_rthdr != NULL) {
4497 		mi_free(tcp->tcp_rthdr);
4498 		tcp->tcp_rthdr = NULL;
4499 		tcp->tcp_rthdrlen = 0;
4500 	}
4501 	ASSERT(tcp->tcp_rthdrlen == 0);
4502 
4503 	ipp = &tcp->tcp_sticky_ipp;
4504 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4505 	    IPPF_RTHDR))
4506 		ip6_pkt_free(ipp);
4507 
4508 	/*
4509 	 * Free memory associated with the tcp/ip header template.
4510 	 */
4511 
4512 	if (tcp->tcp_iphc != NULL)
4513 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4514 
4515 	/*
4516 	 * Following is really a blowing away a union.
4517 	 * It happens to have exactly two members of identical size
4518 	 * the following code is enough.
4519 	 */
4520 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4521 
4522 	if (tcp->tcp_tracebuf != NULL) {
4523 		kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t));
4524 		tcp->tcp_tracebuf = NULL;
4525 	}
4526 }
4527 
4528 
4529 /*
4530  * Put a connection confirmation message upstream built from the
4531  * address information within 'iph' and 'tcph'.  Report our success or failure.
4532  */
4533 static boolean_t
4534 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4535     mblk_t **defermp)
4536 {
4537 	sin_t	sin;
4538 	sin6_t	sin6;
4539 	mblk_t	*mp;
4540 	char	*optp = NULL;
4541 	int	optlen = 0;
4542 	cred_t	*cr;
4543 
4544 	if (defermp != NULL)
4545 		*defermp = NULL;
4546 
4547 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4548 		/*
4549 		 * Return in T_CONN_CON results of option negotiation through
4550 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4551 		 * negotiation, then what is received from remote end needs
4552 		 * to be taken into account but there is no such thing (yet?)
4553 		 * in our TCP/IP.
4554 		 * Note: We do not use mi_offset_param() here as
4555 		 * tcp_opts_conn_req contents do not directly come from
4556 		 * an application and are either generated in kernel or
4557 		 * from user input that was already verified.
4558 		 */
4559 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4560 		optp = (char *)(mp->b_rptr +
4561 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4562 		optlen = (int)
4563 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4564 	}
4565 
4566 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4567 		ipha_t *ipha = (ipha_t *)iphdr;
4568 
4569 		/* packet is IPv4 */
4570 		if (tcp->tcp_family == AF_INET) {
4571 			sin = sin_null;
4572 			sin.sin_addr.s_addr = ipha->ipha_src;
4573 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4574 			sin.sin_family = AF_INET;
4575 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4576 			    (int)sizeof (sin_t), optp, optlen);
4577 		} else {
4578 			sin6 = sin6_null;
4579 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4580 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4581 			sin6.sin6_family = AF_INET6;
4582 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4583 			    (int)sizeof (sin6_t), optp, optlen);
4584 
4585 		}
4586 	} else {
4587 		ip6_t	*ip6h = (ip6_t *)iphdr;
4588 
4589 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4590 		ASSERT(tcp->tcp_family == AF_INET6);
4591 		sin6 = sin6_null;
4592 		sin6.sin6_addr = ip6h->ip6_src;
4593 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4594 		sin6.sin6_family = AF_INET6;
4595 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4596 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4597 		    (int)sizeof (sin6_t), optp, optlen);
4598 	}
4599 
4600 	if (!mp)
4601 		return (B_FALSE);
4602 
4603 	if ((cr = DB_CRED(idmp)) != NULL) {
4604 		mblk_setcred(mp, cr);
4605 		DB_CPID(mp) = DB_CPID(idmp);
4606 	}
4607 
4608 	if (defermp == NULL)
4609 		putnext(tcp->tcp_rq, mp);
4610 	else
4611 		*defermp = mp;
4612 
4613 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4614 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4615 	return (B_TRUE);
4616 }
4617 
4618 /*
4619  * Defense for the SYN attack -
4620  * 1. When q0 is full, drop from the tail (tcp_eager_prev_q0) the oldest
4621  *    one that doesn't have the dontdrop bit set.
4622  * 2. Don't drop a SYN request before its first timeout. This gives every
4623  *    request at least til the first timeout to complete its 3-way handshake.
4624  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4625  *    requests currently on the queue that has timed out. This will be used
4626  *    as an indicator of whether an attack is under way, so that appropriate
4627  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4628  *    either when eager goes into ESTABLISHED, or gets freed up.)
4629  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4630  *    # of timeout drops back to <= q0len/32 => SYN alert off
4631  */
4632 static boolean_t
4633 tcp_drop_q0(tcp_t *tcp)
4634 {
4635 	tcp_t	*eager;
4636 
4637 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4638 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4639 	/*
4640 	 * New one is added after next_q0 so prev_q0 points to the oldest
4641 	 * Also do not drop any established connections that are deferred on
4642 	 * q0 due to q being full
4643 	 */
4644 
4645 	eager = tcp->tcp_eager_prev_q0;
4646 	while (eager->tcp_dontdrop || eager->tcp_conn_def_q0) {
4647 		eager = eager->tcp_eager_prev_q0;
4648 		if (eager == tcp) {
4649 			eager = tcp->tcp_eager_prev_q0;
4650 			break;
4651 		}
4652 	}
4653 	if (eager->tcp_syn_rcvd_timeout == 0)
4654 		return (B_FALSE);
4655 
4656 	if (tcp->tcp_debug) {
4657 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4658 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4659 		    " (%d pending) on %s, drop one", tcp_conn_req_max_q0,
4660 		    tcp->tcp_conn_req_cnt_q0,
4661 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4662 	}
4663 
4664 	BUMP_MIB(&tcp_mib, tcpHalfOpenDrop);
4665 
4666 	/*
4667 	 * need to do refhold here because the selected eager could
4668 	 * be removed by someone else if we release the eager lock.
4669 	 */
4670 	CONN_INC_REF(eager->tcp_connp);
4671 	mutex_exit(&tcp->tcp_eager_lock);
4672 
4673 	/* Mark the IRE created for this SYN request temporary */
4674 	tcp_ip_ire_mark_advice(eager);
4675 	(void) tcp_clean_death(eager, ETIMEDOUT, 5);
4676 	CONN_DEC_REF(eager->tcp_connp);
4677 
4678 	mutex_enter(&tcp->tcp_eager_lock);
4679 	return (B_TRUE);
4680 }
4681 
4682 int
4683 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4684     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4685 {
4686 	tcp_t 		*ltcp = lconnp->conn_tcp;
4687 	tcp_t		*tcp = connp->conn_tcp;
4688 	mblk_t		*tpi_mp;
4689 	ipha_t		*ipha;
4690 	ip6_t		*ip6h;
4691 	sin6_t 		sin6;
4692 	in6_addr_t 	v6dst;
4693 	int		err;
4694 	int		ifindex = 0;
4695 	cred_t		*cr;
4696 
4697 	if (ipvers == IPV4_VERSION) {
4698 		ipha = (ipha_t *)mp->b_rptr;
4699 
4700 		connp->conn_send = ip_output;
4701 		connp->conn_recv = tcp_input;
4702 
4703 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4704 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4705 
4706 		sin6 = sin6_null;
4707 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4708 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4709 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4710 		sin6.sin6_family = AF_INET6;
4711 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4712 		    lconnp->conn_zoneid);
4713 		if (tcp->tcp_recvdstaddr) {
4714 			sin6_t	sin6d;
4715 
4716 			sin6d = sin6_null;
4717 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4718 			    &sin6d.sin6_addr);
4719 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4720 			sin6d.sin6_family = AF_INET;
4721 			tpi_mp = mi_tpi_extconn_ind(NULL,
4722 			    (char *)&sin6d, sizeof (sin6_t),
4723 			    (char *)&tcp,
4724 			    (t_scalar_t)sizeof (intptr_t),
4725 			    (char *)&sin6d, sizeof (sin6_t),
4726 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4727 		} else {
4728 			tpi_mp = mi_tpi_conn_ind(NULL,
4729 			    (char *)&sin6, sizeof (sin6_t),
4730 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4731 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4732 		}
4733 	} else {
4734 		ip6h = (ip6_t *)mp->b_rptr;
4735 
4736 		connp->conn_send = ip_output_v6;
4737 		connp->conn_recv = tcp_input;
4738 
4739 		connp->conn_srcv6 = ip6h->ip6_dst;
4740 		connp->conn_remv6 = ip6h->ip6_src;
4741 
4742 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4743 		ifindex = (int)DB_CKSUMSTUFF(mp);
4744 		DB_CKSUMSTUFF(mp) = 0;
4745 
4746 		sin6 = sin6_null;
4747 		sin6.sin6_addr = ip6h->ip6_src;
4748 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4749 		sin6.sin6_family = AF_INET6;
4750 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4751 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4752 		    lconnp->conn_zoneid);
4753 
4754 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4755 			/* Pass up the scope_id of remote addr */
4756 			sin6.sin6_scope_id = ifindex;
4757 		} else {
4758 			sin6.sin6_scope_id = 0;
4759 		}
4760 		if (tcp->tcp_recvdstaddr) {
4761 			sin6_t	sin6d;
4762 
4763 			sin6d = sin6_null;
4764 			sin6.sin6_addr = ip6h->ip6_dst;
4765 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4766 			sin6d.sin6_family = AF_INET;
4767 			tpi_mp = mi_tpi_extconn_ind(NULL,
4768 			    (char *)&sin6d, sizeof (sin6_t),
4769 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4770 			    (char *)&sin6d, sizeof (sin6_t),
4771 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4772 		} else {
4773 			tpi_mp = mi_tpi_conn_ind(NULL,
4774 			    (char *)&sin6, sizeof (sin6_t),
4775 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4776 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4777 		}
4778 	}
4779 
4780 	if (tpi_mp == NULL)
4781 		return (ENOMEM);
4782 
4783 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4784 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4785 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4786 	connp->conn_fully_bound = B_FALSE;
4787 
4788 	if (tcp_trace)
4789 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
4790 
4791 	/* Inherit information from the "parent" */
4792 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4793 	tcp->tcp_family = ltcp->tcp_family;
4794 	tcp->tcp_wq = ltcp->tcp_wq;
4795 	tcp->tcp_rq = ltcp->tcp_rq;
4796 	tcp->tcp_mss = tcp_mss_def_ipv6;
4797 	tcp->tcp_detached = B_TRUE;
4798 	if ((err = tcp_init_values(tcp)) != 0) {
4799 		freemsg(tpi_mp);
4800 		return (err);
4801 	}
4802 
4803 	if (ipvers == IPV4_VERSION) {
4804 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4805 			freemsg(tpi_mp);
4806 			return (err);
4807 		}
4808 		ASSERT(tcp->tcp_ipha != NULL);
4809 	} else {
4810 		/* ifindex must be already set */
4811 		ASSERT(ifindex != 0);
4812 
4813 		if (ltcp->tcp_bound_if != 0) {
4814 			/*
4815 			 * Set newtcp's bound_if equal to
4816 			 * listener's value. If ifindex is
4817 			 * not the same as ltcp->tcp_bound_if,
4818 			 * it must be a packet for the ipmp group
4819 			 * of interfaces
4820 			 */
4821 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4822 		} else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4823 			tcp->tcp_bound_if = ifindex;
4824 		}
4825 
4826 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4827 		tcp->tcp_recvifindex = 0;
4828 		tcp->tcp_recvhops = 0xffffffffU;
4829 		ASSERT(tcp->tcp_ip6h != NULL);
4830 	}
4831 
4832 	tcp->tcp_lport = ltcp->tcp_lport;
4833 
4834 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4835 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4836 			/*
4837 			 * Listener had options of some sort; eager inherits.
4838 			 * Free up the eager template and allocate one
4839 			 * of the right size.
4840 			 */
4841 			if (tcp->tcp_hdr_grown) {
4842 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
4843 			} else {
4844 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4845 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
4846 			}
4847 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
4848 			    KM_NOSLEEP);
4849 			if (tcp->tcp_iphc == NULL) {
4850 				tcp->tcp_iphc_len = 0;
4851 				freemsg(tpi_mp);
4852 				return (ENOMEM);
4853 			}
4854 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
4855 			tcp->tcp_hdr_grown = B_TRUE;
4856 		}
4857 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4858 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
4859 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4860 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
4861 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
4862 
4863 		/*
4864 		 * Copy the IP+TCP header template from listener to eager
4865 		 */
4866 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
4867 		if (tcp->tcp_ipversion == IPV6_VERSION) {
4868 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
4869 			    IPPROTO_RAW) {
4870 				tcp->tcp_ip6h =
4871 				    (ip6_t *)(tcp->tcp_iphc +
4872 					sizeof (ip6i_t));
4873 			} else {
4874 				tcp->tcp_ip6h =
4875 				    (ip6_t *)(tcp->tcp_iphc);
4876 			}
4877 			tcp->tcp_ipha = NULL;
4878 		} else {
4879 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
4880 			tcp->tcp_ip6h = NULL;
4881 		}
4882 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
4883 		    tcp->tcp_ip_hdr_len);
4884 	} else {
4885 		/*
4886 		 * only valid case when ipversion of listener and
4887 		 * eager differ is when listener is IPv6 and
4888 		 * eager is IPv4.
4889 		 * Eager header template has been initialized to the
4890 		 * maximum v4 header sizes, which includes space for
4891 		 * TCP and IP options.
4892 		 */
4893 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
4894 		    (tcp->tcp_ipversion == IPV4_VERSION));
4895 		ASSERT(tcp->tcp_iphc_len >=
4896 		    TCP_MAX_COMBINED_HEADER_LENGTH);
4897 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4898 		/* copy IP header fields individually */
4899 		tcp->tcp_ipha->ipha_ttl =
4900 		    ltcp->tcp_ip6h->ip6_hops;
4901 		bcopy(ltcp->tcp_tcph->th_lport,
4902 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
4903 	}
4904 
4905 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
4906 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
4907 	    sizeof (in_port_t));
4908 
4909 	if (ltcp->tcp_lport == 0) {
4910 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
4911 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
4912 		    sizeof (in_port_t));
4913 	}
4914 
4915 	if (tcp->tcp_ipversion == IPV4_VERSION) {
4916 		ASSERT(ipha != NULL);
4917 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
4918 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
4919 
4920 		/* Source routing option copyover (reverse it) */
4921 		if (tcp_rev_src_routes)
4922 			tcp_opt_reverse(tcp, ipha);
4923 	} else {
4924 		ASSERT(ip6h != NULL);
4925 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
4926 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
4927 	}
4928 
4929 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
4930 	/*
4931 	 * If the SYN contains a credential, it's a loopback packet; attach
4932 	 * the credential to the TPI message.
4933 	 */
4934 	if ((cr = DB_CRED(idmp)) != NULL) {
4935 		mblk_setcred(tpi_mp, cr);
4936 		DB_CPID(tpi_mp) = DB_CPID(idmp);
4937 	}
4938 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
4939 
4940 	/* Inherit the listener's SSL protection state */
4941 
4942 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
4943 		kssl_hold_ent(tcp->tcp_kssl_ent);
4944 		tcp->tcp_kssl_pending = B_TRUE;
4945 	}
4946 
4947 	return (0);
4948 }
4949 
4950 
4951 int
4952 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
4953     tcph_t *tcph, mblk_t *idmp)
4954 {
4955 	tcp_t 		*ltcp = lconnp->conn_tcp;
4956 	tcp_t		*tcp = connp->conn_tcp;
4957 	sin_t		sin;
4958 	mblk_t		*tpi_mp = NULL;
4959 	int		err;
4960 	cred_t		*cr;
4961 
4962 	sin = sin_null;
4963 	sin.sin_addr.s_addr = ipha->ipha_src;
4964 	sin.sin_port = *(uint16_t *)tcph->th_lport;
4965 	sin.sin_family = AF_INET;
4966 	if (ltcp->tcp_recvdstaddr) {
4967 		sin_t	sind;
4968 
4969 		sind = sin_null;
4970 		sind.sin_addr.s_addr = ipha->ipha_dst;
4971 		sind.sin_port = *(uint16_t *)tcph->th_fport;
4972 		sind.sin_family = AF_INET;
4973 		tpi_mp = mi_tpi_extconn_ind(NULL,
4974 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
4975 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
4976 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4977 	} else {
4978 		tpi_mp = mi_tpi_conn_ind(NULL,
4979 		    (char *)&sin, sizeof (sin_t),
4980 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4981 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4982 	}
4983 
4984 	if (tpi_mp == NULL) {
4985 		return (ENOMEM);
4986 	}
4987 
4988 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
4989 	connp->conn_send = ip_output;
4990 	connp->conn_recv = tcp_input;
4991 	connp->conn_fully_bound = B_FALSE;
4992 
4993 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4994 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4995 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4996 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4997 
4998 	if (tcp_trace) {
4999 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
5000 	}
5001 
5002 	/* Inherit information from the "parent" */
5003 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
5004 	tcp->tcp_family = ltcp->tcp_family;
5005 	tcp->tcp_wq = ltcp->tcp_wq;
5006 	tcp->tcp_rq = ltcp->tcp_rq;
5007 	tcp->tcp_mss = tcp_mss_def_ipv4;
5008 	tcp->tcp_detached = B_TRUE;
5009 	if ((err = tcp_init_values(tcp)) != 0) {
5010 		freemsg(tpi_mp);
5011 		return (err);
5012 	}
5013 
5014 	/*
5015 	 * Let's make sure that eager tcp template has enough space to
5016 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
5017 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
5018 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
5019 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
5020 	 * extension headers or with ip6i_t struct). Note that bcopy() below
5021 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
5022 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
5023 	 */
5024 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
5025 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
5026 
5027 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5028 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5029 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5030 	tcp->tcp_ttl = ltcp->tcp_ttl;
5031 	tcp->tcp_tos = ltcp->tcp_tos;
5032 
5033 	/* Copy the IP+TCP header template from listener to eager */
5034 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5035 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5036 	tcp->tcp_ip6h = NULL;
5037 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5038 	    tcp->tcp_ip_hdr_len);
5039 
5040 	/* Initialize the IP addresses and Ports */
5041 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5042 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5043 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5044 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
5045 
5046 	/* Source routing option copyover (reverse it) */
5047 	if (tcp_rev_src_routes)
5048 		tcp_opt_reverse(tcp, ipha);
5049 
5050 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5051 
5052 	/*
5053 	 * If the SYN contains a credential, it's a loopback packet; attach
5054 	 * the credential to the TPI message.
5055 	 */
5056 	if ((cr = DB_CRED(idmp)) != NULL) {
5057 		mblk_setcred(tpi_mp, cr);
5058 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5059 	}
5060 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5061 
5062 	/* Inherit the listener's SSL protection state */
5063 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5064 		kssl_hold_ent(tcp->tcp_kssl_ent);
5065 		tcp->tcp_kssl_pending = B_TRUE;
5066 	}
5067 
5068 	return (0);
5069 }
5070 
5071 /*
5072  * sets up conn for ipsec.
5073  * if the first mblk is M_CTL it is consumed and mpp is updated.
5074  * in case of error mpp is freed.
5075  */
5076 conn_t *
5077 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
5078 {
5079 	conn_t 		*connp = tcp->tcp_connp;
5080 	conn_t 		*econnp;
5081 	squeue_t 	*new_sqp;
5082 	mblk_t 		*first_mp = *mpp;
5083 	mblk_t		*mp = *mpp;
5084 	boolean_t	mctl_present = B_FALSE;
5085 	uint_t		ipvers;
5086 
5087 	econnp = tcp_get_conn(sqp);
5088 	if (econnp == NULL) {
5089 		freemsg(first_mp);
5090 		return (NULL);
5091 	}
5092 	if (DB_TYPE(mp) == M_CTL) {
5093 		if (mp->b_cont == NULL ||
5094 		    mp->b_cont->b_datap->db_type != M_DATA) {
5095 			freemsg(first_mp);
5096 			return (NULL);
5097 		}
5098 		mp = mp->b_cont;
5099 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
5100 			freemsg(first_mp);
5101 			return (NULL);
5102 		}
5103 
5104 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5105 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5106 		mctl_present = B_TRUE;
5107 	} else {
5108 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
5109 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5110 	}
5111 
5112 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5113 	DB_CKSUMSTART(mp) = 0;
5114 
5115 	ASSERT(OK_32PTR(mp->b_rptr));
5116 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5117 	if (ipvers == IPV4_VERSION) {
5118 		uint16_t  	*up;
5119 		uint32_t	ports;
5120 		ipha_t		*ipha;
5121 
5122 		ipha = (ipha_t *)mp->b_rptr;
5123 		up = (uint16_t *)((uchar_t *)ipha +
5124 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5125 		ports = *(uint32_t *)up;
5126 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5127 		    ipha->ipha_dst, ipha->ipha_src, ports);
5128 	} else {
5129 		uint16_t  	*up;
5130 		uint32_t	ports;
5131 		uint16_t	ip_hdr_len;
5132 		uint8_t		*nexthdrp;
5133 		ip6_t 		*ip6h;
5134 		tcph_t		*tcph;
5135 
5136 		ip6h = (ip6_t *)mp->b_rptr;
5137 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5138 			ip_hdr_len = IPV6_HDR_LEN;
5139 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5140 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5141 			CONN_DEC_REF(econnp);
5142 			freemsg(first_mp);
5143 			return (NULL);
5144 		}
5145 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5146 		up = (uint16_t *)tcph->th_lport;
5147 		ports = *(uint32_t *)up;
5148 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5149 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5150 	}
5151 
5152 	/*
5153 	 * The caller already ensured that there is a sqp present.
5154 	 */
5155 	econnp->conn_sqp = new_sqp;
5156 
5157 	if (connp->conn_policy != NULL) {
5158 		ipsec_in_t *ii;
5159 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5160 		ASSERT(ii->ipsec_in_policy == NULL);
5161 		IPPH_REFHOLD(connp->conn_policy);
5162 		ii->ipsec_in_policy = connp->conn_policy;
5163 
5164 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5165 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5166 			CONN_DEC_REF(econnp);
5167 			freemsg(first_mp);
5168 			return (NULL);
5169 		}
5170 	}
5171 
5172 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5173 		CONN_DEC_REF(econnp);
5174 		freemsg(first_mp);
5175 		return (NULL);
5176 	}
5177 
5178 	/*
5179 	 * If we know we have some policy, pass the "IPSEC"
5180 	 * options size TCP uses this adjust the MSS.
5181 	 */
5182 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5183 	if (mctl_present) {
5184 		freeb(first_mp);
5185 		*mpp = mp;
5186 	}
5187 
5188 	return (econnp);
5189 }
5190 
5191 /*
5192  * tcp_get_conn/tcp_free_conn
5193  *
5194  * tcp_get_conn is used to get a clean tcp connection structure.
5195  * It tries to reuse the connections put on the freelist by the
5196  * time_wait_collector failing which it goes to kmem_cache. This
5197  * way has two benefits compared to just allocating from and
5198  * freeing to kmem_cache.
5199  * 1) The time_wait_collector can free (which includes the cleanup)
5200  * outside the squeue. So when the interrupt comes, we have a clean
5201  * connection sitting in the freelist. Obviously, this buys us
5202  * performance.
5203  *
5204  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5205  * has multiple disadvantages - tying up the squeue during alloc, and the
5206  * fact that IPSec policy initialization has to happen here which
5207  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5208  * But allocating the conn/tcp in IP land is also not the best since
5209  * we can't check the 'q' and 'q0' which are protected by squeue and
5210  * blindly allocate memory which might have to be freed here if we are
5211  * not allowed to accept the connection. By using the freelist and
5212  * putting the conn/tcp back in freelist, we don't pay a penalty for
5213  * allocating memory without checking 'q/q0' and freeing it if we can't
5214  * accept the connection.
5215  *
5216  * Care should be taken to put the conn back in the same squeue's freelist
5217  * from which it was allocated. Best results are obtained if conn is
5218  * allocated from listener's squeue and freed to the same. Time wait
5219  * collector will free up the freelist is the connection ends up sitting
5220  * there for too long.
5221  */
5222 void *
5223 tcp_get_conn(void *arg)
5224 {
5225 	tcp_t			*tcp = NULL;
5226 	conn_t			*connp = NULL;
5227 	squeue_t		*sqp = (squeue_t *)arg;
5228 	tcp_squeue_priv_t 	*tcp_time_wait;
5229 
5230 	tcp_time_wait =
5231 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5232 
5233 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5234 	tcp = tcp_time_wait->tcp_free_list;
5235 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5236 	if (tcp != NULL) {
5237 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5238 		tcp_time_wait->tcp_free_list_cnt--;
5239 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5240 		tcp->tcp_time_wait_next = NULL;
5241 		connp = tcp->tcp_connp;
5242 		connp->conn_flags |= IPCL_REUSED;
5243 		return ((void *)connp);
5244 	}
5245 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5246 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL)
5247 		return (NULL);
5248 	return ((void *)connp);
5249 }
5250 
5251 /*
5252  * Update the cached label for the given tcp_t.  This should be called once per
5253  * connection, and before any packets are sent or tcp_process_options is
5254  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5255  */
5256 static boolean_t
5257 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5258 {
5259 	conn_t *connp = tcp->tcp_connp;
5260 
5261 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5262 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5263 		int added;
5264 
5265 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5266 		    connp->conn_mac_exempt) != 0)
5267 			return (B_FALSE);
5268 
5269 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5270 		if (added == -1)
5271 			return (B_FALSE);
5272 		tcp->tcp_hdr_len += added;
5273 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5274 		tcp->tcp_ip_hdr_len += added;
5275 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5276 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5277 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5278 			    tcp->tcp_hdr_len);
5279 			if (added == -1)
5280 				return (B_FALSE);
5281 			tcp->tcp_hdr_len += added;
5282 			tcp->tcp_tcph = (tcph_t *)
5283 			    ((uchar_t *)tcp->tcp_tcph + added);
5284 			tcp->tcp_ip_hdr_len += added;
5285 		}
5286 	} else {
5287 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5288 
5289 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5290 		    connp->conn_mac_exempt) != 0)
5291 			return (B_FALSE);
5292 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5293 		    &tcp->tcp_label_len, optbuf) != 0)
5294 			return (B_FALSE);
5295 		if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0)
5296 			return (B_FALSE);
5297 	}
5298 
5299 	connp->conn_ulp_labeled = 1;
5300 
5301 	return (B_TRUE);
5302 }
5303 
5304 /* BEGIN CSTYLED */
5305 /*
5306  *
5307  * The sockfs ACCEPT path:
5308  * =======================
5309  *
5310  * The eager is now established in its own perimeter as soon as SYN is
5311  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5312  * completes the accept processing on the acceptor STREAM. The sending
5313  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5314  * listener but a TLI/XTI listener completes the accept processing
5315  * on the listener perimeter.
5316  *
5317  * Common control flow for 3 way handshake:
5318  * ----------------------------------------
5319  *
5320  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5321  *					-> tcp_conn_request()
5322  *
5323  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5324  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5325  *
5326  * Sockfs ACCEPT Path:
5327  * -------------------
5328  *
5329  * open acceptor stream (ip_tcpopen allocates tcp_wput_accept()
5330  * as STREAM entry point)
5331  *
5332  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5333  *
5334  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5335  * association (we are not behind eager's squeue but sockfs is protecting us
5336  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5337  * is changed to point at tcp_wput().
5338  *
5339  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5340  * listener (done on listener's perimeter).
5341  *
5342  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5343  * accept.
5344  *
5345  * TLI/XTI client ACCEPT path:
5346  * ---------------------------
5347  *
5348  * soaccept() sends T_CONN_RES on the listener STREAM.
5349  *
5350  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5351  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5352  *
5353  * Locks:
5354  * ======
5355  *
5356  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5357  * and listeners->tcp_eager_next_q.
5358  *
5359  * Referencing:
5360  * ============
5361  *
5362  * 1) We start out in tcp_conn_request by eager placing a ref on
5363  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5364  *
5365  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5366  * doing so we place a ref on the eager. This ref is finally dropped at the
5367  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5368  * reference is dropped by the squeue framework.
5369  *
5370  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5371  *
5372  * The reference must be released by the same entity that added the reference
5373  * In the above scheme, the eager is the entity that adds and releases the
5374  * references. Note that tcp_accept_finish executes in the squeue of the eager
5375  * (albeit after it is attached to the acceptor stream). Though 1. executes
5376  * in the listener's squeue, the eager is nascent at this point and the
5377  * reference can be considered to have been added on behalf of the eager.
5378  *
5379  * Eager getting a Reset or listener closing:
5380  * ==========================================
5381  *
5382  * Once the listener and eager are linked, the listener never does the unlink.
5383  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5384  * a message on all eager perimeter. The eager then does the unlink, clears
5385  * any pointers to the listener's queue and drops the reference to the
5386  * listener. The listener waits in tcp_close outside the squeue until its
5387  * refcount has dropped to 1. This ensures that the listener has waited for
5388  * all eagers to clear their association with the listener.
5389  *
5390  * Similarly, if eager decides to go away, it can unlink itself and close.
5391  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5392  * the reference to eager is still valid because of the extra ref we put
5393  * in tcp_send_conn_ind.
5394  *
5395  * Listener can always locate the eager under the protection
5396  * of the listener->tcp_eager_lock, and then do a refhold
5397  * on the eager during the accept processing.
5398  *
5399  * The acceptor stream accesses the eager in the accept processing
5400  * based on the ref placed on eager before sending T_conn_ind.
5401  * The only entity that can negate this refhold is a listener close
5402  * which is mutually exclusive with an active acceptor stream.
5403  *
5404  * Eager's reference on the listener
5405  * ===================================
5406  *
5407  * If the accept happens (even on a closed eager) the eager drops its
5408  * reference on the listener at the start of tcp_accept_finish. If the
5409  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5410  * the reference is dropped in tcp_closei_local. If the listener closes,
5411  * the reference is dropped in tcp_eager_kill. In all cases the reference
5412  * is dropped while executing in the eager's context (squeue).
5413  */
5414 /* END CSTYLED */
5415 
5416 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5417 
5418 /*
5419  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5420  * tcp_rput_data will not see any SYN packets.
5421  */
5422 /* ARGSUSED */
5423 void
5424 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5425 {
5426 	tcph_t		*tcph;
5427 	uint32_t	seg_seq;
5428 	tcp_t		*eager;
5429 	uint_t		ipvers;
5430 	ipha_t		*ipha;
5431 	ip6_t		*ip6h;
5432 	int		err;
5433 	conn_t		*econnp = NULL;
5434 	squeue_t	*new_sqp;
5435 	mblk_t		*mp1;
5436 	uint_t 		ip_hdr_len;
5437 	conn_t		*connp = (conn_t *)arg;
5438 	tcp_t		*tcp = connp->conn_tcp;
5439 	ire_t		*ire;
5440 	cred_t		*credp;
5441 
5442 	if (tcp->tcp_state != TCPS_LISTEN)
5443 		goto error2;
5444 
5445 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5446 
5447 	mutex_enter(&tcp->tcp_eager_lock);
5448 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5449 		mutex_exit(&tcp->tcp_eager_lock);
5450 		TCP_STAT(tcp_listendrop);
5451 		BUMP_MIB(&tcp_mib, tcpListenDrop);
5452 		if (tcp->tcp_debug) {
5453 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5454 			    "tcp_conn_request: listen backlog (max=%d) "
5455 			    "overflow (%d pending) on %s",
5456 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5457 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5458 		}
5459 		goto error2;
5460 	}
5461 
5462 	if (tcp->tcp_conn_req_cnt_q0 >=
5463 	    tcp->tcp_conn_req_max + tcp_conn_req_max_q0) {
5464 		/*
5465 		 * Q0 is full. Drop a pending half-open req from the queue
5466 		 * to make room for the new SYN req. Also mark the time we
5467 		 * drop a SYN.
5468 		 *
5469 		 * A more aggressive defense against SYN attack will
5470 		 * be to set the "tcp_syn_defense" flag now.
5471 		 */
5472 		TCP_STAT(tcp_listendropq0);
5473 		tcp->tcp_last_rcv_lbolt = lbolt64;
5474 		if (!tcp_drop_q0(tcp)) {
5475 			mutex_exit(&tcp->tcp_eager_lock);
5476 			BUMP_MIB(&tcp_mib, tcpListenDropQ0);
5477 			if (tcp->tcp_debug) {
5478 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5479 				    "tcp_conn_request: listen half-open queue "
5480 				    "(max=%d) full (%d pending) on %s",
5481 				    tcp_conn_req_max_q0,
5482 				    tcp->tcp_conn_req_cnt_q0,
5483 				    tcp_display(tcp, NULL,
5484 				    DISP_PORT_ONLY));
5485 			}
5486 			goto error2;
5487 		}
5488 	}
5489 	mutex_exit(&tcp->tcp_eager_lock);
5490 
5491 	/*
5492 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5493 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5494 	 * link local address.  If IPSec is enabled, db_struioflag has
5495 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5496 	 * otherwise an error case if neither of them is set.
5497 	 */
5498 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5499 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5500 		DB_CKSUMSTART(mp) = 0;
5501 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5502 		econnp = (conn_t *)tcp_get_conn(arg2);
5503 		if (econnp == NULL)
5504 			goto error2;
5505 		econnp->conn_sqp = new_sqp;
5506 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5507 		/*
5508 		 * mp is updated in tcp_get_ipsec_conn().
5509 		 */
5510 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5511 		if (econnp == NULL) {
5512 			/*
5513 			 * mp freed by tcp_get_ipsec_conn.
5514 			 */
5515 			return;
5516 		}
5517 	} else {
5518 		goto error2;
5519 	}
5520 
5521 	ASSERT(DB_TYPE(mp) == M_DATA);
5522 
5523 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5524 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5525 	ASSERT(OK_32PTR(mp->b_rptr));
5526 	if (ipvers == IPV4_VERSION) {
5527 		ipha = (ipha_t *)mp->b_rptr;
5528 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5529 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5530 	} else {
5531 		ip6h = (ip6_t *)mp->b_rptr;
5532 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5533 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5534 	}
5535 
5536 	if (tcp->tcp_family == AF_INET) {
5537 		ASSERT(ipvers == IPV4_VERSION);
5538 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5539 	} else {
5540 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5541 	}
5542 
5543 	if (err)
5544 		goto error3;
5545 
5546 	eager = econnp->conn_tcp;
5547 
5548 	/* Inherit various TCP parameters from the listener */
5549 	eager->tcp_naglim = tcp->tcp_naglim;
5550 	eager->tcp_first_timer_threshold =
5551 	    tcp->tcp_first_timer_threshold;
5552 	eager->tcp_second_timer_threshold =
5553 	    tcp->tcp_second_timer_threshold;
5554 
5555 	eager->tcp_first_ctimer_threshold =
5556 	    tcp->tcp_first_ctimer_threshold;
5557 	eager->tcp_second_ctimer_threshold =
5558 	    tcp->tcp_second_ctimer_threshold;
5559 
5560 	/*
5561 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5562 	 * If it does not, the eager's receive window will be set to the
5563 	 * listener's receive window later in this function.
5564 	 */
5565 	eager->tcp_rwnd = 0;
5566 
5567 	/*
5568 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5569 	 * calling tcp_process_options() where tcp_mss_set() is called
5570 	 * to set the initial cwnd.
5571 	 */
5572 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5573 
5574 	/*
5575 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5576 	 * zone id before the accept is completed in tcp_wput_accept().
5577 	 */
5578 	econnp->conn_zoneid = connp->conn_zoneid;
5579 	econnp->conn_allzones = connp->conn_allzones;
5580 
5581 	/* Copy nexthop information from listener to eager */
5582 	if (connp->conn_nexthop_set) {
5583 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5584 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5585 	}
5586 
5587 	/*
5588 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5589 	 * eager is accepted
5590 	 */
5591 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5592 	crhold(credp);
5593 
5594 	/*
5595 	 * If the caller has the process-wide flag set, then default to MAC
5596 	 * exempt mode.  This allows read-down to unlabeled hosts.
5597 	 */
5598 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5599 		econnp->conn_mac_exempt = B_TRUE;
5600 
5601 	if (is_system_labeled()) {
5602 		cred_t *cr;
5603 
5604 		if (connp->conn_mlp_type != mlptSingle) {
5605 			cr = econnp->conn_peercred = DB_CRED(mp);
5606 			if (cr != NULL)
5607 				crhold(cr);
5608 			else
5609 				cr = econnp->conn_cred;
5610 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5611 			    econnp, cred_t *, cr)
5612 		} else {
5613 			cr = econnp->conn_cred;
5614 			DTRACE_PROBE2(syn_accept, conn_t *,
5615 			    econnp, cred_t *, cr)
5616 		}
5617 
5618 		if (!tcp_update_label(eager, cr)) {
5619 			DTRACE_PROBE3(
5620 			    tx__ip__log__error__connrequest__tcp,
5621 			    char *, "eager connp(1) label on SYN mp(2) failed",
5622 			    conn_t *, econnp, mblk_t *, mp);
5623 			goto error3;
5624 		}
5625 	}
5626 
5627 	eager->tcp_hard_binding = B_TRUE;
5628 
5629 	tcp_bind_hash_insert(&tcp_bind_fanout[
5630 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5631 
5632 	CL_INET_CONNECT(eager);
5633 
5634 	/*
5635 	 * No need to check for multicast destination since ip will only pass
5636 	 * up multicasts to those that have expressed interest
5637 	 * TODO: what about rejecting broadcasts?
5638 	 * Also check that source is not a multicast or broadcast address.
5639 	 */
5640 	eager->tcp_state = TCPS_SYN_RCVD;
5641 
5642 
5643 	/*
5644 	 * There should be no ire in the mp as we are being called after
5645 	 * receiving the SYN.
5646 	 */
5647 	ASSERT(tcp_ire_mp(mp) == NULL);
5648 
5649 	/*
5650 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5651 	 */
5652 
5653 	if (tcp_adapt_ire(eager, NULL) == 0) {
5654 		/* Undo the bind_hash_insert */
5655 		tcp_bind_hash_remove(eager);
5656 		goto error3;
5657 	}
5658 
5659 	/* Process all TCP options. */
5660 	tcp_process_options(eager, tcph);
5661 
5662 	/* Is the other end ECN capable? */
5663 	if (tcp_ecn_permitted >= 1 &&
5664 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5665 		eager->tcp_ecn_ok = B_TRUE;
5666 	}
5667 
5668 	/*
5669 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5670 	 * window size changed via SO_RCVBUF option.  First round up the
5671 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5672 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5673 	 * setting.
5674 	 *
5675 	 * Note if there is a rpipe metric associated with the remote host,
5676 	 * we should not inherit receive window size from listener.
5677 	 */
5678 	eager->tcp_rwnd = MSS_ROUNDUP(
5679 	    (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat :
5680 	    eager->tcp_rwnd), eager->tcp_mss);
5681 	if (eager->tcp_snd_ws_ok)
5682 		tcp_set_ws_value(eager);
5683 	/*
5684 	 * Note that this is the only place tcp_rwnd_set() is called for
5685 	 * accepting a connection.  We need to call it here instead of
5686 	 * after the 3-way handshake because we need to tell the other
5687 	 * side our rwnd in the SYN-ACK segment.
5688 	 */
5689 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5690 
5691 	/*
5692 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5693 	 * via soaccept()->soinheritoptions() which essentially applies
5694 	 * all the listener options to the new STREAM. The options that we
5695 	 * need to take care of are:
5696 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5697 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5698 	 * SO_SNDBUF, SO_RCVBUF.
5699 	 *
5700 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5701 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5702 	 *		tcp_maxpsz_set() gets called later from
5703 	 *		tcp_accept_finish(), the option takes effect.
5704 	 *
5705 	 */
5706 	/* Set the TCP options */
5707 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5708 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5709 	eager->tcp_oobinline = tcp->tcp_oobinline;
5710 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5711 	eager->tcp_broadcast = tcp->tcp_broadcast;
5712 	eager->tcp_useloopback = tcp->tcp_useloopback;
5713 	eager->tcp_dontroute = tcp->tcp_dontroute;
5714 	eager->tcp_linger = tcp->tcp_linger;
5715 	eager->tcp_lingertime = tcp->tcp_lingertime;
5716 	if (tcp->tcp_ka_enabled)
5717 		eager->tcp_ka_enabled = 1;
5718 
5719 	/* Set the IP options */
5720 	econnp->conn_broadcast = connp->conn_broadcast;
5721 	econnp->conn_loopback = connp->conn_loopback;
5722 	econnp->conn_dontroute = connp->conn_dontroute;
5723 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5724 
5725 	/* Put a ref on the listener for the eager. */
5726 	CONN_INC_REF(connp);
5727 	mutex_enter(&tcp->tcp_eager_lock);
5728 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5729 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5730 	tcp->tcp_eager_next_q0 = eager;
5731 	eager->tcp_eager_prev_q0 = tcp;
5732 
5733 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5734 	eager->tcp_listener = tcp;
5735 	eager->tcp_saved_listener = tcp;
5736 
5737 	/*
5738 	 * Tag this detached tcp vector for later retrieval
5739 	 * by our listener client in tcp_accept().
5740 	 */
5741 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5742 	tcp->tcp_conn_req_cnt_q0++;
5743 	if (++tcp->tcp_conn_req_seqnum == -1) {
5744 		/*
5745 		 * -1 is "special" and defined in TPI as something
5746 		 * that should never be used in T_CONN_IND
5747 		 */
5748 		++tcp->tcp_conn_req_seqnum;
5749 	}
5750 	mutex_exit(&tcp->tcp_eager_lock);
5751 
5752 	if (tcp->tcp_syn_defense) {
5753 		/* Don't drop the SYN that comes from a good IP source */
5754 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5755 		if (addr_cache != NULL && eager->tcp_remote ==
5756 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5757 			eager->tcp_dontdrop = B_TRUE;
5758 		}
5759 	}
5760 
5761 	/*
5762 	 * We need to insert the eager in its own perimeter but as soon
5763 	 * as we do that, we expose the eager to the classifier and
5764 	 * should not touch any field outside the eager's perimeter.
5765 	 * So do all the work necessary before inserting the eager
5766 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5767 	 * will succeed but undo everything if it fails.
5768 	 */
5769 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5770 	eager->tcp_irs = seg_seq;
5771 	eager->tcp_rack = seg_seq;
5772 	eager->tcp_rnxt = seg_seq + 1;
5773 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5774 	BUMP_MIB(&tcp_mib, tcpPassiveOpens);
5775 	eager->tcp_state = TCPS_SYN_RCVD;
5776 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5777 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5778 	if (mp1 == NULL)
5779 		goto error1;
5780 	DB_CPID(mp1) = tcp->tcp_cpid;
5781 
5782 	/*
5783 	 * We need to start the rto timer. In normal case, we start
5784 	 * the timer after sending the packet on the wire (or at
5785 	 * least believing that packet was sent by waiting for
5786 	 * CALL_IP_WPUT() to return). Since this is the first packet
5787 	 * being sent on the wire for the eager, our initial tcp_rto
5788 	 * is at least tcp_rexmit_interval_min which is a fairly
5789 	 * large value to allow the algorithm to adjust slowly to large
5790 	 * fluctuations of RTT during first few transmissions.
5791 	 *
5792 	 * Starting the timer first and then sending the packet in this
5793 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5794 	 * is of the order of several 100ms and starting the timer
5795 	 * first and then sending the packet will result in difference
5796 	 * of few micro seconds.
5797 	 *
5798 	 * Without this optimization, we are forced to hold the fanout
5799 	 * lock across the ipcl_bind_insert() and sending the packet
5800 	 * so that we don't race against an incoming packet (maybe RST)
5801 	 * for this eager.
5802 	 */
5803 
5804 	TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT);
5805 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5806 
5807 
5808 	/*
5809 	 * Insert the eager in its own perimeter now. We are ready to deal
5810 	 * with any packets on eager.
5811 	 */
5812 	if (eager->tcp_ipversion == IPV4_VERSION) {
5813 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
5814 			goto error;
5815 		}
5816 	} else {
5817 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
5818 			goto error;
5819 		}
5820 	}
5821 
5822 	/* mark conn as fully-bound */
5823 	econnp->conn_fully_bound = B_TRUE;
5824 
5825 	/* Send the SYN-ACK */
5826 	tcp_send_data(eager, eager->tcp_wq, mp1);
5827 	freemsg(mp);
5828 
5829 	return;
5830 error:
5831 	(void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid);
5832 	freemsg(mp1);
5833 error1:
5834 	/* Undo what we did above */
5835 	mutex_enter(&tcp->tcp_eager_lock);
5836 	tcp_eager_unlink(eager);
5837 	mutex_exit(&tcp->tcp_eager_lock);
5838 	/* Drop eager's reference on the listener */
5839 	CONN_DEC_REF(connp);
5840 
5841 	/*
5842 	 * Delete the cached ire in conn_ire_cache and also mark
5843 	 * the conn as CONDEMNED
5844 	 */
5845 	mutex_enter(&econnp->conn_lock);
5846 	econnp->conn_state_flags |= CONN_CONDEMNED;
5847 	ire = econnp->conn_ire_cache;
5848 	econnp->conn_ire_cache = NULL;
5849 	mutex_exit(&econnp->conn_lock);
5850 	if (ire != NULL)
5851 		IRE_REFRELE_NOTR(ire);
5852 
5853 	/*
5854 	 * tcp_accept_comm inserts the eager to the bind_hash
5855 	 * we need to remove it from the hash if ipcl_conn_insert
5856 	 * fails.
5857 	 */
5858 	tcp_bind_hash_remove(eager);
5859 	/* Drop the eager ref placed in tcp_open_detached */
5860 	CONN_DEC_REF(econnp);
5861 
5862 	/*
5863 	 * If a connection already exists, send the mp to that connections so
5864 	 * that it can be appropriately dealt with.
5865 	 */
5866 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) {
5867 		if (!IPCL_IS_CONNECTED(econnp)) {
5868 			/*
5869 			 * Something bad happened. ipcl_conn_insert()
5870 			 * failed because a connection already existed
5871 			 * in connected hash but we can't find it
5872 			 * anymore (someone blew it away). Just
5873 			 * free this message and hopefully remote
5874 			 * will retransmit at which time the SYN can be
5875 			 * treated as a new connection or dealth with
5876 			 * a TH_RST if a connection already exists.
5877 			 */
5878 			freemsg(mp);
5879 		} else {
5880 			squeue_fill(econnp->conn_sqp, mp, tcp_input,
5881 			    econnp, SQTAG_TCP_CONN_REQ);
5882 		}
5883 	} else {
5884 		/* Nobody wants this packet */
5885 		freemsg(mp);
5886 	}
5887 	return;
5888 error2:
5889 	freemsg(mp);
5890 	return;
5891 error3:
5892 	CONN_DEC_REF(econnp);
5893 	freemsg(mp);
5894 }
5895 
5896 /*
5897  * In an ideal case of vertical partition in NUMA architecture, its
5898  * beneficial to have the listener and all the incoming connections
5899  * tied to the same squeue. The other constraint is that incoming
5900  * connections should be tied to the squeue attached to interrupted
5901  * CPU for obvious locality reason so this leaves the listener to
5902  * be tied to the same squeue. Our only problem is that when listener
5903  * is binding, the CPU that will get interrupted by the NIC whose
5904  * IP address the listener is binding to is not even known. So
5905  * the code below allows us to change that binding at the time the
5906  * CPU is interrupted by virtue of incoming connection's squeue.
5907  *
5908  * This is usefull only in case of a listener bound to a specific IP
5909  * address. For other kind of listeners, they get bound the
5910  * very first time and there is no attempt to rebind them.
5911  */
5912 void
5913 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
5914 {
5915 	conn_t		*connp = (conn_t *)arg;
5916 	squeue_t	*sqp = (squeue_t *)arg2;
5917 	squeue_t	*new_sqp;
5918 	uint32_t	conn_flags;
5919 
5920 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5921 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5922 	} else {
5923 		goto done;
5924 	}
5925 
5926 	if (connp->conn_fanout == NULL)
5927 		goto done;
5928 
5929 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
5930 		mutex_enter(&connp->conn_fanout->connf_lock);
5931 		mutex_enter(&connp->conn_lock);
5932 		/*
5933 		 * No one from read or write side can access us now
5934 		 * except for already queued packets on this squeue.
5935 		 * But since we haven't changed the squeue yet, they
5936 		 * can't execute. If they are processed after we have
5937 		 * changed the squeue, they are sent back to the
5938 		 * correct squeue down below.
5939 		 */
5940 		if (connp->conn_sqp != new_sqp) {
5941 			while (connp->conn_sqp != new_sqp)
5942 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
5943 		}
5944 
5945 		do {
5946 			conn_flags = connp->conn_flags;
5947 			conn_flags |= IPCL_FULLY_BOUND;
5948 			(void) cas32(&connp->conn_flags, connp->conn_flags,
5949 			    conn_flags);
5950 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
5951 
5952 		mutex_exit(&connp->conn_fanout->connf_lock);
5953 		mutex_exit(&connp->conn_lock);
5954 	}
5955 
5956 done:
5957 	if (connp->conn_sqp != sqp) {
5958 		CONN_INC_REF(connp);
5959 		squeue_fill(connp->conn_sqp, mp,
5960 		    connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND);
5961 	} else {
5962 		tcp_conn_request(connp, mp, sqp);
5963 	}
5964 }
5965 
5966 /*
5967  * Successful connect request processing begins when our client passes
5968  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
5969  * our T_OK_ACK reply message upstream.  The control flow looks like this:
5970  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP
5971  *   upstream <- tcp_rput()                <- IP
5972  * After various error checks are completed, tcp_connect() lays
5973  * the target address and port into the composite header template,
5974  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
5975  * request followed by an IRE request, and passes the three mblk message
5976  * down to IP looking like this:
5977  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
5978  * Processing continues in tcp_rput() when we receive the following message:
5979  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
5980  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
5981  * to fire off the connection request, and then passes the T_OK_ACK mblk
5982  * upstream that we filled in below.  There are, of course, numerous
5983  * error conditions along the way which truncate the processing described
5984  * above.
5985  */
5986 static void
5987 tcp_connect(tcp_t *tcp, mblk_t *mp)
5988 {
5989 	sin_t		*sin;
5990 	sin6_t		*sin6;
5991 	queue_t		*q = tcp->tcp_wq;
5992 	struct T_conn_req	*tcr;
5993 	ipaddr_t	*dstaddrp;
5994 	in_port_t	dstport;
5995 	uint_t		srcid;
5996 
5997 	tcr = (struct T_conn_req *)mp->b_rptr;
5998 
5999 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6000 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
6001 		tcp_err_ack(tcp, mp, TPROTO, 0);
6002 		return;
6003 	}
6004 
6005 	/*
6006 	 * Determine packet type based on type of address passed in
6007 	 * the request should contain an IPv4 or IPv6 address.
6008 	 * Make sure that address family matches the type of
6009 	 * family of the the address passed down
6010 	 */
6011 	switch (tcr->DEST_length) {
6012 	default:
6013 		tcp_err_ack(tcp, mp, TBADADDR, 0);
6014 		return;
6015 
6016 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
6017 		/*
6018 		 * XXX: The check for valid DEST_length was not there
6019 		 * in earlier releases and some buggy
6020 		 * TLI apps (e.g Sybase) got away with not feeding
6021 		 * in sin_zero part of address.
6022 		 * We allow that bug to keep those buggy apps humming.
6023 		 * Test suites require the check on DEST_length.
6024 		 * We construct a new mblk with valid DEST_length
6025 		 * free the original so the rest of the code does
6026 		 * not have to keep track of this special shorter
6027 		 * length address case.
6028 		 */
6029 		mblk_t *nmp;
6030 		struct T_conn_req *ntcr;
6031 		sin_t *nsin;
6032 
6033 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
6034 		    tcr->OPT_length, BPRI_HI);
6035 		if (nmp == NULL) {
6036 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6037 			return;
6038 		}
6039 		ntcr = (struct T_conn_req *)nmp->b_rptr;
6040 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
6041 		ntcr->PRIM_type = T_CONN_REQ;
6042 		ntcr->DEST_length = sizeof (sin_t);
6043 		ntcr->DEST_offset = sizeof (struct T_conn_req);
6044 
6045 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
6046 		*nsin = sin_null;
6047 		/* Get pointer to shorter address to copy from original mp */
6048 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6049 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
6050 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6051 			freemsg(nmp);
6052 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6053 			return;
6054 		}
6055 		nsin->sin_family = sin->sin_family;
6056 		nsin->sin_port = sin->sin_port;
6057 		nsin->sin_addr = sin->sin_addr;
6058 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6059 		nmp->b_wptr = (uchar_t *)&nsin[1];
6060 		if (tcr->OPT_length != 0) {
6061 			ntcr->OPT_length = tcr->OPT_length;
6062 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6063 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6064 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6065 			    tcr->OPT_length);
6066 			nmp->b_wptr += tcr->OPT_length;
6067 		}
6068 		freemsg(mp);	/* original mp freed */
6069 		mp = nmp;	/* re-initialize original variables */
6070 		tcr = ntcr;
6071 	}
6072 	/* FALLTHRU */
6073 
6074 	case sizeof (sin_t):
6075 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6076 		    sizeof (sin_t));
6077 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6078 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6079 			return;
6080 		}
6081 		if (tcp->tcp_family != AF_INET ||
6082 		    sin->sin_family != AF_INET) {
6083 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6084 			return;
6085 		}
6086 		if (sin->sin_port == 0) {
6087 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6088 			return;
6089 		}
6090 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
6091 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6092 			return;
6093 		}
6094 
6095 		break;
6096 
6097 	case sizeof (sin6_t):
6098 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
6099 		    sizeof (sin6_t));
6100 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
6101 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6102 			return;
6103 		}
6104 		if (tcp->tcp_family != AF_INET6 ||
6105 		    sin6->sin6_family != AF_INET6) {
6106 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6107 			return;
6108 		}
6109 		if (sin6->sin6_port == 0) {
6110 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6111 			return;
6112 		}
6113 		break;
6114 	}
6115 	/*
6116 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6117 	 * should key on their sequence number and cut them loose.
6118 	 */
6119 
6120 	/*
6121 	 * If options passed in, feed it for verification and handling
6122 	 */
6123 	if (tcr->OPT_length != 0) {
6124 		mblk_t	*ok_mp;
6125 		mblk_t	*discon_mp;
6126 		mblk_t  *conn_opts_mp;
6127 		int t_error, sys_error, do_disconnect;
6128 
6129 		conn_opts_mp = NULL;
6130 
6131 		if (tcp_conprim_opt_process(tcp, mp,
6132 			&do_disconnect, &t_error, &sys_error) < 0) {
6133 			if (do_disconnect) {
6134 				ASSERT(t_error == 0 && sys_error == 0);
6135 				discon_mp = mi_tpi_discon_ind(NULL,
6136 				    ECONNREFUSED, 0);
6137 				if (!discon_mp) {
6138 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6139 					    TSYSERR, ENOMEM);
6140 					return;
6141 				}
6142 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6143 				if (!ok_mp) {
6144 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6145 					    TSYSERR, ENOMEM);
6146 					return;
6147 				}
6148 				qreply(q, ok_mp);
6149 				qreply(q, discon_mp); /* no flush! */
6150 			} else {
6151 				ASSERT(t_error != 0);
6152 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6153 				    sys_error);
6154 			}
6155 			return;
6156 		}
6157 		/*
6158 		 * Success in setting options, the mp option buffer represented
6159 		 * by OPT_length/offset has been potentially modified and
6160 		 * contains results of option processing. We copy it in
6161 		 * another mp to save it for potentially influencing returning
6162 		 * it in T_CONN_CONN.
6163 		 */
6164 		if (tcr->OPT_length != 0) { /* there are resulting options */
6165 			conn_opts_mp = copyb(mp);
6166 			if (!conn_opts_mp) {
6167 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6168 				    TSYSERR, ENOMEM);
6169 				return;
6170 			}
6171 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6172 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6173 			/*
6174 			 * Note:
6175 			 * These resulting option negotiation can include any
6176 			 * end-to-end negotiation options but there no such
6177 			 * thing (yet?) in our TCP/IP.
6178 			 */
6179 		}
6180 	}
6181 
6182 	/*
6183 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
6184 	 * make sure that the template IP header in the tcp structure is an
6185 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
6186 	 * need to this before we call tcp_bindi() so that the port lookup
6187 	 * code will look for ports in the correct port space (IPv4 and
6188 	 * IPv6 have separate port spaces).
6189 	 */
6190 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
6191 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6192 		int err = 0;
6193 
6194 		err = tcp_header_init_ipv4(tcp);
6195 		if (err != 0) {
6196 			mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6197 			goto connect_failed;
6198 		}
6199 		if (tcp->tcp_lport != 0)
6200 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
6201 	}
6202 
6203 	switch (tcp->tcp_state) {
6204 	case TCPS_IDLE:
6205 		/*
6206 		 * We support quick connect, refer to comments in
6207 		 * tcp_connect_*()
6208 		 */
6209 		/* FALLTHRU */
6210 	case TCPS_BOUND:
6211 	case TCPS_LISTEN:
6212 		if (tcp->tcp_family == AF_INET6) {
6213 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6214 				tcp_connect_ipv6(tcp, mp,
6215 				    &sin6->sin6_addr,
6216 				    sin6->sin6_port, sin6->sin6_flowinfo,
6217 				    sin6->__sin6_src_id, sin6->sin6_scope_id);
6218 				return;
6219 			}
6220 			/*
6221 			 * Destination adress is mapped IPv6 address.
6222 			 * Source bound address should be unspecified or
6223 			 * IPv6 mapped address as well.
6224 			 */
6225 			if (!IN6_IS_ADDR_UNSPECIFIED(
6226 			    &tcp->tcp_bound_source_v6) &&
6227 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
6228 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR,
6229 				    EADDRNOTAVAIL);
6230 				break;
6231 			}
6232 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
6233 			dstport = sin6->sin6_port;
6234 			srcid = sin6->__sin6_src_id;
6235 		} else {
6236 			dstaddrp = &sin->sin_addr.s_addr;
6237 			dstport = sin->sin_port;
6238 			srcid = 0;
6239 		}
6240 
6241 		tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid);
6242 		return;
6243 	default:
6244 		mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0);
6245 		break;
6246 	}
6247 	/*
6248 	 * Note: Code below is the "failure" case
6249 	 */
6250 	/* return error ack and blow away saved option results if any */
6251 connect_failed:
6252 	if (mp != NULL)
6253 		putnext(tcp->tcp_rq, mp);
6254 	else {
6255 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6256 		    TSYSERR, ENOMEM);
6257 	}
6258 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6259 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6260 }
6261 
6262 /*
6263  * Handle connect to IPv4 destinations, including connections for AF_INET6
6264  * sockets connecting to IPv4 mapped IPv6 destinations.
6265  */
6266 static void
6267 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport,
6268     uint_t srcid)
6269 {
6270 	tcph_t	*tcph;
6271 	mblk_t	*mp1;
6272 	ipaddr_t dstaddr = *dstaddrp;
6273 	int32_t	oldstate;
6274 	uint16_t lport;
6275 
6276 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6277 
6278 	/* Check for attempt to connect to INADDR_ANY */
6279 	if (dstaddr == INADDR_ANY)  {
6280 		/*
6281 		 * SunOS 4.x and 4.3 BSD allow an application
6282 		 * to connect a TCP socket to INADDR_ANY.
6283 		 * When they do this, the kernel picks the
6284 		 * address of one interface and uses it
6285 		 * instead.  The kernel usually ends up
6286 		 * picking the address of the loopback
6287 		 * interface.  This is an undocumented feature.
6288 		 * However, we provide the same thing here
6289 		 * in order to have source and binary
6290 		 * compatibility with SunOS 4.x.
6291 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6292 		 * generate the T_CONN_CON.
6293 		 */
6294 		dstaddr = htonl(INADDR_LOOPBACK);
6295 		*dstaddrp = dstaddr;
6296 	}
6297 
6298 	/* Handle __sin6_src_id if socket not bound to an IP address */
6299 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6300 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6301 		    tcp->tcp_connp->conn_zoneid);
6302 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6303 		    tcp->tcp_ipha->ipha_src);
6304 	}
6305 
6306 	/*
6307 	 * Don't let an endpoint connect to itself.  Note that
6308 	 * the test here does not catch the case where the
6309 	 * source IP addr was left unspecified by the user. In
6310 	 * this case, the source addr is set in tcp_adapt_ire()
6311 	 * using the reply to the T_BIND message that we send
6312 	 * down to IP here and the check is repeated in tcp_rput_other.
6313 	 */
6314 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6315 	    dstport == tcp->tcp_lport) {
6316 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6317 		goto failed;
6318 	}
6319 
6320 	tcp->tcp_ipha->ipha_dst = dstaddr;
6321 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6322 
6323 	/*
6324 	 * Massage a source route if any putting the first hop
6325 	 * in iph_dst. Compute a starting value for the checksum which
6326 	 * takes into account that the original iph_dst should be
6327 	 * included in the checksum but that ip will include the
6328 	 * first hop in the source route in the tcp checksum.
6329 	 */
6330 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha);
6331 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6332 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6333 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6334 	if ((int)tcp->tcp_sum < 0)
6335 		tcp->tcp_sum--;
6336 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6337 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6338 	    (tcp->tcp_sum >> 16));
6339 	tcph = tcp->tcp_tcph;
6340 	*(uint16_t *)tcph->th_fport = dstport;
6341 	tcp->tcp_fport = dstport;
6342 
6343 	oldstate = tcp->tcp_state;
6344 	/*
6345 	 * At this point the remote destination address and remote port fields
6346 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6347 	 * have to see which state tcp was in so we can take apropriate action.
6348 	 */
6349 	if (oldstate == TCPS_IDLE) {
6350 		/*
6351 		 * We support a quick connect capability here, allowing
6352 		 * clients to transition directly from IDLE to SYN_SENT
6353 		 * tcp_bindi will pick an unused port, insert the connection
6354 		 * in the bind hash and transition to BOUND state.
6355 		 */
6356 		lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE);
6357 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6358 		    B_FALSE, B_FALSE);
6359 		if (lport == 0) {
6360 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6361 			goto failed;
6362 		}
6363 	}
6364 	tcp->tcp_state = TCPS_SYN_SENT;
6365 
6366 	/*
6367 	 * TODO: allow data with connect requests
6368 	 * by unlinking M_DATA trailers here and
6369 	 * linking them in behind the T_OK_ACK mblk.
6370 	 * The tcp_rput() bind ack handler would then
6371 	 * feed them to tcp_wput_data() rather than call
6372 	 * tcp_timer().
6373 	 */
6374 	mp = mi_tpi_ok_ack_alloc(mp);
6375 	if (!mp) {
6376 		tcp->tcp_state = oldstate;
6377 		goto failed;
6378 	}
6379 	if (tcp->tcp_family == AF_INET) {
6380 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6381 		    sizeof (ipa_conn_t));
6382 	} else {
6383 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6384 		    sizeof (ipa6_conn_t));
6385 	}
6386 	if (mp1) {
6387 		/* Hang onto the T_OK_ACK for later. */
6388 		linkb(mp1, mp);
6389 		mblk_setcred(mp1, tcp->tcp_cred);
6390 		if (tcp->tcp_family == AF_INET)
6391 			mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp);
6392 		else {
6393 			mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6394 			    &tcp->tcp_sticky_ipp);
6395 		}
6396 		BUMP_MIB(&tcp_mib, tcpActiveOpens);
6397 		tcp->tcp_active_open = 1;
6398 		/*
6399 		 * If the bind cannot complete immediately
6400 		 * IP will arrange to call tcp_rput_other
6401 		 * when the bind completes.
6402 		 */
6403 		if (mp1 != NULL)
6404 			tcp_rput_other(tcp, mp1);
6405 		return;
6406 	}
6407 	/* Error case */
6408 	tcp->tcp_state = oldstate;
6409 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6410 
6411 failed:
6412 	/* return error ack and blow away saved option results if any */
6413 	if (mp != NULL)
6414 		putnext(tcp->tcp_rq, mp);
6415 	else {
6416 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6417 		    TSYSERR, ENOMEM);
6418 	}
6419 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6420 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6421 
6422 }
6423 
6424 /*
6425  * Handle connect to IPv6 destinations.
6426  */
6427 static void
6428 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
6429     in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
6430 {
6431 	tcph_t	*tcph;
6432 	mblk_t	*mp1;
6433 	ip6_rthdr_t *rth;
6434 	int32_t  oldstate;
6435 	uint16_t lport;
6436 
6437 	ASSERT(tcp->tcp_family == AF_INET6);
6438 
6439 	/*
6440 	 * If we're here, it means that the destination address is a native
6441 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6442 	 * reason why it might not be IPv6 is if the socket was bound to an
6443 	 * IPv4-mapped IPv6 address.
6444 	 */
6445 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6446 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6447 		goto failed;
6448 	}
6449 
6450 	/*
6451 	 * Interpret a zero destination to mean loopback.
6452 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6453 	 * generate the T_CONN_CON.
6454 	 */
6455 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6456 		*dstaddrp = ipv6_loopback;
6457 	}
6458 
6459 	/* Handle __sin6_src_id if socket not bound to an IP address */
6460 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6461 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6462 		    tcp->tcp_connp->conn_zoneid);
6463 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6464 	}
6465 
6466 	/*
6467 	 * Take care of the scope_id now and add ip6i_t
6468 	 * if ip6i_t is not already allocated through TCP
6469 	 * sticky options. At this point tcp_ip6h does not
6470 	 * have dst info, thus use dstaddrp.
6471 	 */
6472 	if (scope_id != 0 &&
6473 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6474 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6475 		ip6i_t  *ip6i;
6476 
6477 		ipp->ipp_ifindex = scope_id;
6478 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6479 
6480 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6481 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6482 			/* Already allocated */
6483 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6484 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6485 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6486 		} else {
6487 			int reterr;
6488 
6489 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6490 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6491 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6492 			reterr = tcp_build_hdrs(tcp->tcp_rq, tcp);
6493 			if (reterr != 0)
6494 				goto failed;
6495 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6496 		}
6497 	}
6498 
6499 	/*
6500 	 * Don't let an endpoint connect to itself.  Note that
6501 	 * the test here does not catch the case where the
6502 	 * source IP addr was left unspecified by the user. In
6503 	 * this case, the source addr is set in tcp_adapt_ire()
6504 	 * using the reply to the T_BIND message that we send
6505 	 * down to IP here and the check is repeated in tcp_rput_other.
6506 	 */
6507 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6508 	    (dstport == tcp->tcp_lport)) {
6509 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6510 		goto failed;
6511 	}
6512 
6513 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6514 	tcp->tcp_remote_v6 = *dstaddrp;
6515 	tcp->tcp_ip6h->ip6_vcf =
6516 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6517 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6518 
6519 
6520 	/*
6521 	 * Massage a routing header (if present) putting the first hop
6522 	 * in ip6_dst. Compute a starting value for the checksum which
6523 	 * takes into account that the original ip6_dst should be
6524 	 * included in the checksum but that ip will include the
6525 	 * first hop in the source route in the tcp checksum.
6526 	 */
6527 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6528 	if (rth != NULL) {
6529 
6530 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth);
6531 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6532 		    (tcp->tcp_sum >> 16));
6533 	} else {
6534 		tcp->tcp_sum = 0;
6535 	}
6536 
6537 	tcph = tcp->tcp_tcph;
6538 	*(uint16_t *)tcph->th_fport = dstport;
6539 	tcp->tcp_fport = dstport;
6540 
6541 	oldstate = tcp->tcp_state;
6542 	/*
6543 	 * At this point the remote destination address and remote port fields
6544 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6545 	 * have to see which state tcp was in so we can take apropriate action.
6546 	 */
6547 	if (oldstate == TCPS_IDLE) {
6548 		/*
6549 		 * We support a quick connect capability here, allowing
6550 		 * clients to transition directly from IDLE to SYN_SENT
6551 		 * tcp_bindi will pick an unused port, insert the connection
6552 		 * in the bind hash and transition to BOUND state.
6553 		 */
6554 		lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE);
6555 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6556 		    B_FALSE, B_FALSE);
6557 		if (lport == 0) {
6558 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6559 			goto failed;
6560 		}
6561 	}
6562 	tcp->tcp_state = TCPS_SYN_SENT;
6563 	/*
6564 	 * TODO: allow data with connect requests
6565 	 * by unlinking M_DATA trailers here and
6566 	 * linking them in behind the T_OK_ACK mblk.
6567 	 * The tcp_rput() bind ack handler would then
6568 	 * feed them to tcp_wput_data() rather than call
6569 	 * tcp_timer().
6570 	 */
6571 	mp = mi_tpi_ok_ack_alloc(mp);
6572 	if (!mp) {
6573 		tcp->tcp_state = oldstate;
6574 		goto failed;
6575 	}
6576 	mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
6577 	if (mp1) {
6578 		/* Hang onto the T_OK_ACK for later. */
6579 		linkb(mp1, mp);
6580 		mblk_setcred(mp1, tcp->tcp_cred);
6581 		mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6582 		    &tcp->tcp_sticky_ipp);
6583 		BUMP_MIB(&tcp_mib, tcpActiveOpens);
6584 		tcp->tcp_active_open = 1;
6585 		/* ip_bind_v6() may return ACK or ERROR */
6586 		if (mp1 != NULL)
6587 			tcp_rput_other(tcp, mp1);
6588 		return;
6589 	}
6590 	/* Error case */
6591 	tcp->tcp_state = oldstate;
6592 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6593 
6594 failed:
6595 	/* return error ack and blow away saved option results if any */
6596 	if (mp != NULL)
6597 		putnext(tcp->tcp_rq, mp);
6598 	else {
6599 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6600 		    TSYSERR, ENOMEM);
6601 	}
6602 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6603 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6604 }
6605 
6606 /*
6607  * We need a stream q for detached closing tcp connections
6608  * to use.  Our client hereby indicates that this q is the
6609  * one to use.
6610  */
6611 static void
6612 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6613 {
6614 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6615 	queue_t	*q = tcp->tcp_wq;
6616 
6617 	mp->b_datap->db_type = M_IOCACK;
6618 	iocp->ioc_count = 0;
6619 	mutex_enter(&tcp_g_q_lock);
6620 	if (tcp_g_q != NULL) {
6621 		mutex_exit(&tcp_g_q_lock);
6622 		iocp->ioc_error = EALREADY;
6623 	} else {
6624 		mblk_t *mp1;
6625 
6626 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0);
6627 		if (mp1 == NULL) {
6628 			mutex_exit(&tcp_g_q_lock);
6629 			iocp->ioc_error = ENOMEM;
6630 		} else {
6631 			tcp_g_q = tcp->tcp_rq;
6632 			mutex_exit(&tcp_g_q_lock);
6633 			iocp->ioc_error = 0;
6634 			iocp->ioc_rval = 0;
6635 			/*
6636 			 * We are passing tcp_sticky_ipp as NULL
6637 			 * as it is not useful for tcp_default queue
6638 			 */
6639 			mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL);
6640 			if (mp1 != NULL)
6641 				tcp_rput_other(tcp, mp1);
6642 		}
6643 	}
6644 	qreply(q, mp);
6645 }
6646 
6647 /*
6648  * Our client hereby directs us to reject the connection request
6649  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6650  * of sending the appropriate RST, not an ICMP error.
6651  */
6652 static void
6653 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6654 {
6655 	tcp_t	*ltcp = NULL;
6656 	t_scalar_t seqnum;
6657 	conn_t	*connp;
6658 
6659 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6660 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6661 		tcp_err_ack(tcp, mp, TPROTO, 0);
6662 		return;
6663 	}
6664 
6665 	/*
6666 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6667 	 * when the stream is in BOUND state. Do not send a reset,
6668 	 * since the destination IP address is not valid, and it can
6669 	 * be the initialized value of all zeros (broadcast address).
6670 	 *
6671 	 * If TCP has sent down a bind request to IP and has not
6672 	 * received the reply, reject the request.  Otherwise, TCP
6673 	 * will be confused.
6674 	 */
6675 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
6676 		if (tcp->tcp_debug) {
6677 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6678 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6679 		}
6680 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
6681 		return;
6682 	}
6683 
6684 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6685 
6686 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6687 
6688 		/*
6689 		 * According to TPI, for non-listeners, ignore seqnum
6690 		 * and disconnect.
6691 		 * Following interpretation of -1 seqnum is historical
6692 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6693 		 * a valid seqnum should not be -1).
6694 		 *
6695 		 *	-1 means disconnect everything
6696 		 *	regardless even on a listener.
6697 		 */
6698 
6699 		int old_state = tcp->tcp_state;
6700 
6701 		/*
6702 		 * The connection can't be on the tcp_time_wait_head list
6703 		 * since it is not detached.
6704 		 */
6705 		ASSERT(tcp->tcp_time_wait_next == NULL);
6706 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6707 		ASSERT(tcp->tcp_time_wait_expire == 0);
6708 		ltcp = NULL;
6709 		/*
6710 		 * If it used to be a listener, check to make sure no one else
6711 		 * has taken the port before switching back to LISTEN state.
6712 		 */
6713 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6714 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6715 			    tcp->tcp_ipha->ipha_src,
6716 			    tcp->tcp_connp->conn_zoneid);
6717 			if (connp != NULL)
6718 				ltcp = connp->conn_tcp;
6719 		} else {
6720 			/* Allow tcp_bound_if listeners? */
6721 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6722 			    &tcp->tcp_ip6h->ip6_src, 0,
6723 			    tcp->tcp_connp->conn_zoneid);
6724 			if (connp != NULL)
6725 				ltcp = connp->conn_tcp;
6726 		}
6727 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6728 			tcp->tcp_state = TCPS_LISTEN;
6729 		} else if (old_state > TCPS_BOUND) {
6730 			tcp->tcp_conn_req_max = 0;
6731 			tcp->tcp_state = TCPS_BOUND;
6732 		}
6733 		if (ltcp != NULL)
6734 			CONN_DEC_REF(ltcp->tcp_connp);
6735 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6736 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
6737 		} else if (old_state == TCPS_ESTABLISHED ||
6738 		    old_state == TCPS_CLOSE_WAIT) {
6739 			BUMP_MIB(&tcp_mib, tcpEstabResets);
6740 		}
6741 
6742 		if (tcp->tcp_fused)
6743 			tcp_unfuse(tcp);
6744 
6745 		mutex_enter(&tcp->tcp_eager_lock);
6746 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6747 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6748 			tcp_eager_cleanup(tcp, 0);
6749 		}
6750 		mutex_exit(&tcp->tcp_eager_lock);
6751 
6752 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6753 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6754 
6755 		tcp_reinit(tcp);
6756 
6757 		if (old_state >= TCPS_ESTABLISHED) {
6758 			/* Send M_FLUSH according to TPI */
6759 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6760 		}
6761 		mp = mi_tpi_ok_ack_alloc(mp);
6762 		if (mp)
6763 			putnext(tcp->tcp_rq, mp);
6764 		return;
6765 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
6766 		tcp_err_ack(tcp, mp, TBADSEQ, 0);
6767 		return;
6768 	}
6769 	if (tcp->tcp_state >= TCPS_ESTABLISHED) {
6770 		/* Send M_FLUSH according to TPI */
6771 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6772 	}
6773 	mp = mi_tpi_ok_ack_alloc(mp);
6774 	if (mp)
6775 		putnext(tcp->tcp_rq, mp);
6776 }
6777 
6778 /*
6779  * Diagnostic routine used to return a string associated with the tcp state.
6780  * Note that if the caller does not supply a buffer, it will use an internal
6781  * static string.  This means that if multiple threads call this function at
6782  * the same time, output can be corrupted...  Note also that this function
6783  * does not check the size of the supplied buffer.  The caller has to make
6784  * sure that it is big enough.
6785  */
6786 static char *
6787 tcp_display(tcp_t *tcp, char *sup_buf, char format)
6788 {
6789 	char		buf1[30];
6790 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
6791 	char		*buf;
6792 	char		*cp;
6793 	in6_addr_t	local, remote;
6794 	char		local_addrbuf[INET6_ADDRSTRLEN];
6795 	char		remote_addrbuf[INET6_ADDRSTRLEN];
6796 
6797 	if (sup_buf != NULL)
6798 		buf = sup_buf;
6799 	else
6800 		buf = priv_buf;
6801 
6802 	if (tcp == NULL)
6803 		return ("NULL_TCP");
6804 	switch (tcp->tcp_state) {
6805 	case TCPS_CLOSED:
6806 		cp = "TCP_CLOSED";
6807 		break;
6808 	case TCPS_IDLE:
6809 		cp = "TCP_IDLE";
6810 		break;
6811 	case TCPS_BOUND:
6812 		cp = "TCP_BOUND";
6813 		break;
6814 	case TCPS_LISTEN:
6815 		cp = "TCP_LISTEN";
6816 		break;
6817 	case TCPS_SYN_SENT:
6818 		cp = "TCP_SYN_SENT";
6819 		break;
6820 	case TCPS_SYN_RCVD:
6821 		cp = "TCP_SYN_RCVD";
6822 		break;
6823 	case TCPS_ESTABLISHED:
6824 		cp = "TCP_ESTABLISHED";
6825 		break;
6826 	case TCPS_CLOSE_WAIT:
6827 		cp = "TCP_CLOSE_WAIT";
6828 		break;
6829 	case TCPS_FIN_WAIT_1:
6830 		cp = "TCP_FIN_WAIT_1";
6831 		break;
6832 	case TCPS_CLOSING:
6833 		cp = "TCP_CLOSING";
6834 		break;
6835 	case TCPS_LAST_ACK:
6836 		cp = "TCP_LAST_ACK";
6837 		break;
6838 	case TCPS_FIN_WAIT_2:
6839 		cp = "TCP_FIN_WAIT_2";
6840 		break;
6841 	case TCPS_TIME_WAIT:
6842 		cp = "TCP_TIME_WAIT";
6843 		break;
6844 	default:
6845 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
6846 		cp = buf1;
6847 		break;
6848 	}
6849 	switch (format) {
6850 	case DISP_ADDR_AND_PORT:
6851 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6852 			/*
6853 			 * Note that we use the remote address in the tcp_b
6854 			 * structure.  This means that it will print out
6855 			 * the real destination address, not the next hop's
6856 			 * address if source routing is used.
6857 			 */
6858 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
6859 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
6860 
6861 		} else {
6862 			local = tcp->tcp_ip_src_v6;
6863 			remote = tcp->tcp_remote_v6;
6864 		}
6865 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
6866 		    sizeof (local_addrbuf));
6867 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
6868 		    sizeof (remote_addrbuf));
6869 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
6870 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
6871 		    ntohs(tcp->tcp_fport), cp);
6872 		break;
6873 	case DISP_PORT_ONLY:
6874 	default:
6875 		(void) mi_sprintf(buf, "[%u, %u] %s",
6876 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
6877 		break;
6878 	}
6879 
6880 	return (buf);
6881 }
6882 
6883 /*
6884  * Called via squeue to get on to eager's perimeter to send a
6885  * TH_RST. The listener wants the eager to disappear either
6886  * by means of tcp_eager_blowoff() or tcp_eager_cleanup()
6887  * being called.
6888  */
6889 /* ARGSUSED */
6890 void
6891 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
6892 {
6893 	conn_t	*econnp = (conn_t *)arg;
6894 	tcp_t	*eager = econnp->conn_tcp;
6895 	tcp_t	*listener = eager->tcp_listener;
6896 
6897 	/*
6898 	 * We could be called because listener is closing. Since
6899 	 * the eager is using listener's queue's, its not safe.
6900 	 * Better use the default queue just to send the TH_RST
6901 	 * out.
6902 	 */
6903 	eager->tcp_rq = tcp_g_q;
6904 	eager->tcp_wq = WR(tcp_g_q);
6905 
6906 	if (eager->tcp_state > TCPS_LISTEN) {
6907 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
6908 		    eager, eager->tcp_snxt, 0, TH_RST);
6909 	}
6910 
6911 	/* We are here because listener wants this eager gone */
6912 	if (listener != NULL) {
6913 		mutex_enter(&listener->tcp_eager_lock);
6914 		tcp_eager_unlink(eager);
6915 		if (eager->tcp_conn.tcp_eager_conn_ind == NULL) {
6916 			/*
6917 			 * The eager has sent a conn_ind up to the
6918 			 * listener but listener decides to close
6919 			 * instead. We need to drop the extra ref
6920 			 * placed on eager in tcp_rput_data() before
6921 			 * sending the conn_ind to listener.
6922 			 */
6923 			CONN_DEC_REF(econnp);
6924 		}
6925 		mutex_exit(&listener->tcp_eager_lock);
6926 		CONN_DEC_REF(listener->tcp_connp);
6927 	}
6928 
6929 	if (eager->tcp_state > TCPS_BOUND)
6930 		tcp_close_detached(eager);
6931 }
6932 
6933 /*
6934  * Reset any eager connection hanging off this listener marked
6935  * with 'seqnum' and then reclaim it's resources.
6936  */
6937 static boolean_t
6938 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
6939 {
6940 	tcp_t	*eager;
6941 	mblk_t 	*mp;
6942 
6943 	TCP_STAT(tcp_eager_blowoff_calls);
6944 	eager = listener;
6945 	mutex_enter(&listener->tcp_eager_lock);
6946 	do {
6947 		eager = eager->tcp_eager_next_q;
6948 		if (eager == NULL) {
6949 			mutex_exit(&listener->tcp_eager_lock);
6950 			return (B_FALSE);
6951 		}
6952 	} while (eager->tcp_conn_req_seqnum != seqnum);
6953 	CONN_INC_REF(eager->tcp_connp);
6954 	mutex_exit(&listener->tcp_eager_lock);
6955 	mp = &eager->tcp_closemp;
6956 	squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
6957 	    eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF);
6958 	return (B_TRUE);
6959 }
6960 
6961 /*
6962  * Reset any eager connection hanging off this listener
6963  * and then reclaim it's resources.
6964  */
6965 static void
6966 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
6967 {
6968 	tcp_t	*eager;
6969 	mblk_t	*mp;
6970 
6971 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
6972 
6973 	if (!q0_only) {
6974 		/* First cleanup q */
6975 		TCP_STAT(tcp_eager_blowoff_q);
6976 		eager = listener->tcp_eager_next_q;
6977 		while (eager != NULL) {
6978 			CONN_INC_REF(eager->tcp_connp);
6979 			mp = &eager->tcp_closemp;
6980 			squeue_fill(eager->tcp_connp->conn_sqp, mp,
6981 			    tcp_eager_kill, eager->tcp_connp,
6982 			    SQTAG_TCP_EAGER_CLEANUP);
6983 			eager = eager->tcp_eager_next_q;
6984 		}
6985 	}
6986 	/* Then cleanup q0 */
6987 	TCP_STAT(tcp_eager_blowoff_q0);
6988 	eager = listener->tcp_eager_next_q0;
6989 	while (eager != listener) {
6990 		CONN_INC_REF(eager->tcp_connp);
6991 		mp = &eager->tcp_closemp;
6992 		squeue_fill(eager->tcp_connp->conn_sqp, mp,
6993 		    tcp_eager_kill, eager->tcp_connp,
6994 		    SQTAG_TCP_EAGER_CLEANUP_Q0);
6995 		eager = eager->tcp_eager_next_q0;
6996 	}
6997 }
6998 
6999 /*
7000  * If we are an eager connection hanging off a listener that hasn't
7001  * formally accepted the connection yet, get off his list and blow off
7002  * any data that we have accumulated.
7003  */
7004 static void
7005 tcp_eager_unlink(tcp_t *tcp)
7006 {
7007 	tcp_t	*listener = tcp->tcp_listener;
7008 
7009 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7010 	ASSERT(listener != NULL);
7011 	if (tcp->tcp_eager_next_q0 != NULL) {
7012 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
7013 
7014 		/* Remove the eager tcp from q0 */
7015 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
7016 		    tcp->tcp_eager_prev_q0;
7017 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
7018 		    tcp->tcp_eager_next_q0;
7019 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
7020 		listener->tcp_conn_req_cnt_q0--;
7021 
7022 		tcp->tcp_eager_next_q0 = NULL;
7023 		tcp->tcp_eager_prev_q0 = NULL;
7024 
7025 		if (tcp->tcp_syn_rcvd_timeout != 0) {
7026 			/* we have timed out before */
7027 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
7028 			listener->tcp_syn_rcvd_timeout--;
7029 		}
7030 	} else {
7031 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
7032 		tcp_t	*prev = NULL;
7033 
7034 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
7035 			if (tcpp[0] == tcp) {
7036 				if (listener->tcp_eager_last_q == tcp) {
7037 					/*
7038 					 * If we are unlinking the last
7039 					 * element on the list, adjust
7040 					 * tail pointer. Set tail pointer
7041 					 * to nil when list is empty.
7042 					 */
7043 					ASSERT(tcp->tcp_eager_next_q == NULL);
7044 					if (listener->tcp_eager_last_q ==
7045 					    listener->tcp_eager_next_q) {
7046 						listener->tcp_eager_last_q =
7047 						NULL;
7048 					} else {
7049 						/*
7050 						 * We won't get here if there
7051 						 * is only one eager in the
7052 						 * list.
7053 						 */
7054 						ASSERT(prev != NULL);
7055 						listener->tcp_eager_last_q =
7056 						    prev;
7057 					}
7058 				}
7059 				tcpp[0] = tcp->tcp_eager_next_q;
7060 				tcp->tcp_eager_next_q = NULL;
7061 				tcp->tcp_eager_last_q = NULL;
7062 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
7063 				listener->tcp_conn_req_cnt_q--;
7064 				break;
7065 			}
7066 			prev = tcpp[0];
7067 		}
7068 	}
7069 	tcp->tcp_listener = NULL;
7070 }
7071 
7072 /* Shorthand to generate and send TPI error acks to our client */
7073 static void
7074 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7075 {
7076 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7077 		putnext(tcp->tcp_rq, mp);
7078 }
7079 
7080 /* Shorthand to generate and send TPI error acks to our client */
7081 static void
7082 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7083     int t_error, int sys_error)
7084 {
7085 	struct T_error_ack	*teackp;
7086 
7087 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7088 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7089 		teackp = (struct T_error_ack *)mp->b_rptr;
7090 		teackp->ERROR_prim = primitive;
7091 		teackp->TLI_error = t_error;
7092 		teackp->UNIX_error = sys_error;
7093 		putnext(tcp->tcp_rq, mp);
7094 	}
7095 }
7096 
7097 /*
7098  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7099  * but instead the code relies on:
7100  * - the fact that the address of the array and its size never changes
7101  * - the atomic assignment of the elements of the array
7102  */
7103 /* ARGSUSED */
7104 static int
7105 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7106 {
7107 	int i;
7108 
7109 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7110 		if (tcp_g_epriv_ports[i] != 0)
7111 			(void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]);
7112 	}
7113 	return (0);
7114 }
7115 
7116 /*
7117  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7118  * threads from changing it at the same time.
7119  */
7120 /* ARGSUSED */
7121 static int
7122 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7123     cred_t *cr)
7124 {
7125 	long	new_value;
7126 	int	i;
7127 
7128 	/*
7129 	 * Fail the request if the new value does not lie within the
7130 	 * port number limits.
7131 	 */
7132 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7133 	    new_value <= 0 || new_value >= 65536) {
7134 		return (EINVAL);
7135 	}
7136 
7137 	mutex_enter(&tcp_epriv_port_lock);
7138 	/* Check if the value is already in the list */
7139 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7140 		if (new_value == tcp_g_epriv_ports[i]) {
7141 			mutex_exit(&tcp_epriv_port_lock);
7142 			return (EEXIST);
7143 		}
7144 	}
7145 	/* Find an empty slot */
7146 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7147 		if (tcp_g_epriv_ports[i] == 0)
7148 			break;
7149 	}
7150 	if (i == tcp_g_num_epriv_ports) {
7151 		mutex_exit(&tcp_epriv_port_lock);
7152 		return (EOVERFLOW);
7153 	}
7154 	/* Set the new value */
7155 	tcp_g_epriv_ports[i] = (uint16_t)new_value;
7156 	mutex_exit(&tcp_epriv_port_lock);
7157 	return (0);
7158 }
7159 
7160 /*
7161  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7162  * threads from changing it at the same time.
7163  */
7164 /* ARGSUSED */
7165 static int
7166 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7167     cred_t *cr)
7168 {
7169 	long	new_value;
7170 	int	i;
7171 
7172 	/*
7173 	 * Fail the request if the new value does not lie within the
7174 	 * port number limits.
7175 	 */
7176 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7177 	    new_value >= 65536) {
7178 		return (EINVAL);
7179 	}
7180 
7181 	mutex_enter(&tcp_epriv_port_lock);
7182 	/* Check that the value is already in the list */
7183 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7184 		if (tcp_g_epriv_ports[i] == new_value)
7185 			break;
7186 	}
7187 	if (i == tcp_g_num_epriv_ports) {
7188 		mutex_exit(&tcp_epriv_port_lock);
7189 		return (ESRCH);
7190 	}
7191 	/* Clear the value */
7192 	tcp_g_epriv_ports[i] = 0;
7193 	mutex_exit(&tcp_epriv_port_lock);
7194 	return (0);
7195 }
7196 
7197 /* Return the TPI/TLI equivalent of our current tcp_state */
7198 static int
7199 tcp_tpistate(tcp_t *tcp)
7200 {
7201 	switch (tcp->tcp_state) {
7202 	case TCPS_IDLE:
7203 		return (TS_UNBND);
7204 	case TCPS_LISTEN:
7205 		/*
7206 		 * Return whether there are outstanding T_CONN_IND waiting
7207 		 * for the matching T_CONN_RES. Therefore don't count q0.
7208 		 */
7209 		if (tcp->tcp_conn_req_cnt_q > 0)
7210 			return (TS_WRES_CIND);
7211 		else
7212 			return (TS_IDLE);
7213 	case TCPS_BOUND:
7214 		return (TS_IDLE);
7215 	case TCPS_SYN_SENT:
7216 		return (TS_WCON_CREQ);
7217 	case TCPS_SYN_RCVD:
7218 		/*
7219 		 * Note: assumption: this has to the active open SYN_RCVD.
7220 		 * The passive instance is detached in SYN_RCVD stage of
7221 		 * incoming connection processing so we cannot get request
7222 		 * for T_info_ack on it.
7223 		 */
7224 		return (TS_WACK_CRES);
7225 	case TCPS_ESTABLISHED:
7226 		return (TS_DATA_XFER);
7227 	case TCPS_CLOSE_WAIT:
7228 		return (TS_WREQ_ORDREL);
7229 	case TCPS_FIN_WAIT_1:
7230 		return (TS_WIND_ORDREL);
7231 	case TCPS_FIN_WAIT_2:
7232 		return (TS_WIND_ORDREL);
7233 
7234 	case TCPS_CLOSING:
7235 	case TCPS_LAST_ACK:
7236 	case TCPS_TIME_WAIT:
7237 	case TCPS_CLOSED:
7238 		/*
7239 		 * Following TS_WACK_DREQ7 is a rendition of "not
7240 		 * yet TS_IDLE" TPI state. There is no best match to any
7241 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7242 		 * choose a value chosen that will map to TLI/XTI level
7243 		 * state of TSTATECHNG (state is process of changing) which
7244 		 * captures what this dummy state represents.
7245 		 */
7246 		return (TS_WACK_DREQ7);
7247 	default:
7248 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7249 		    tcp->tcp_state, tcp_display(tcp, NULL,
7250 		    DISP_PORT_ONLY));
7251 		return (TS_UNBND);
7252 	}
7253 }
7254 
7255 static void
7256 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7257 {
7258 	if (tcp->tcp_family == AF_INET6)
7259 		*tia = tcp_g_t_info_ack_v6;
7260 	else
7261 		*tia = tcp_g_t_info_ack;
7262 	tia->CURRENT_state = tcp_tpistate(tcp);
7263 	tia->OPT_size = tcp_max_optsize;
7264 	if (tcp->tcp_mss == 0) {
7265 		/* Not yet set - tcp_open does not set mss */
7266 		if (tcp->tcp_ipversion == IPV4_VERSION)
7267 			tia->TIDU_size = tcp_mss_def_ipv4;
7268 		else
7269 			tia->TIDU_size = tcp_mss_def_ipv6;
7270 	} else {
7271 		tia->TIDU_size = tcp->tcp_mss;
7272 	}
7273 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7274 }
7275 
7276 /*
7277  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7278  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7279  * tcp_g_t_info_ack.  The current state of the stream is copied from
7280  * tcp_state.
7281  */
7282 static void
7283 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7284 {
7285 	t_uscalar_t		cap_bits1;
7286 	struct T_capability_ack	*tcap;
7287 
7288 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7289 		freemsg(mp);
7290 		return;
7291 	}
7292 
7293 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7294 
7295 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7296 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7297 	if (mp == NULL)
7298 		return;
7299 
7300 	tcap = (struct T_capability_ack *)mp->b_rptr;
7301 	tcap->CAP_bits1 = 0;
7302 
7303 	if (cap_bits1 & TC1_INFO) {
7304 		tcp_copy_info(&tcap->INFO_ack, tcp);
7305 		tcap->CAP_bits1 |= TC1_INFO;
7306 	}
7307 
7308 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7309 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7310 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7311 	}
7312 
7313 	putnext(tcp->tcp_rq, mp);
7314 }
7315 
7316 /*
7317  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7318  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7319  * The current state of the stream is copied from tcp_state.
7320  */
7321 static void
7322 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7323 {
7324 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7325 	    T_INFO_ACK);
7326 	if (!mp) {
7327 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7328 		return;
7329 	}
7330 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7331 	putnext(tcp->tcp_rq, mp);
7332 }
7333 
7334 /* Respond to the TPI addr request */
7335 static void
7336 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7337 {
7338 	sin_t	*sin;
7339 	mblk_t	*ackmp;
7340 	struct T_addr_ack *taa;
7341 
7342 	/* Make it large enough for worst case */
7343 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7344 	    2 * sizeof (sin6_t), 1);
7345 	if (ackmp == NULL) {
7346 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7347 		return;
7348 	}
7349 
7350 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7351 		tcp_addr_req_ipv6(tcp, ackmp);
7352 		return;
7353 	}
7354 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7355 
7356 	bzero(taa, sizeof (struct T_addr_ack));
7357 	ackmp->b_wptr = (uchar_t *)&taa[1];
7358 
7359 	taa->PRIM_type = T_ADDR_ACK;
7360 	ackmp->b_datap->db_type = M_PCPROTO;
7361 
7362 	/*
7363 	 * Note: Following code assumes 32 bit alignment of basic
7364 	 * data structures like sin_t and struct T_addr_ack.
7365 	 */
7366 	if (tcp->tcp_state >= TCPS_BOUND) {
7367 		/*
7368 		 * Fill in local address
7369 		 */
7370 		taa->LOCADDR_length = sizeof (sin_t);
7371 		taa->LOCADDR_offset = sizeof (*taa);
7372 
7373 		sin = (sin_t *)&taa[1];
7374 
7375 		/* Fill zeroes and then intialize non-zero fields */
7376 		*sin = sin_null;
7377 
7378 		sin->sin_family = AF_INET;
7379 
7380 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7381 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7382 
7383 		ackmp->b_wptr = (uchar_t *)&sin[1];
7384 
7385 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7386 			/*
7387 			 * Fill in Remote address
7388 			 */
7389 			taa->REMADDR_length = sizeof (sin_t);
7390 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7391 						taa->LOCADDR_length);
7392 
7393 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7394 			*sin = sin_null;
7395 			sin->sin_family = AF_INET;
7396 			sin->sin_addr.s_addr = tcp->tcp_remote;
7397 			sin->sin_port = tcp->tcp_fport;
7398 
7399 			ackmp->b_wptr = (uchar_t *)&sin[1];
7400 		}
7401 	}
7402 	putnext(tcp->tcp_rq, ackmp);
7403 }
7404 
7405 /* Assumes that tcp_addr_req gets enough space and alignment */
7406 static void
7407 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7408 {
7409 	sin6_t	*sin6;
7410 	struct T_addr_ack *taa;
7411 
7412 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7413 	ASSERT(OK_32PTR(ackmp->b_rptr));
7414 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7415 	    2 * sizeof (sin6_t));
7416 
7417 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7418 
7419 	bzero(taa, sizeof (struct T_addr_ack));
7420 	ackmp->b_wptr = (uchar_t *)&taa[1];
7421 
7422 	taa->PRIM_type = T_ADDR_ACK;
7423 	ackmp->b_datap->db_type = M_PCPROTO;
7424 
7425 	/*
7426 	 * Note: Following code assumes 32 bit alignment of basic
7427 	 * data structures like sin6_t and struct T_addr_ack.
7428 	 */
7429 	if (tcp->tcp_state >= TCPS_BOUND) {
7430 		/*
7431 		 * Fill in local address
7432 		 */
7433 		taa->LOCADDR_length = sizeof (sin6_t);
7434 		taa->LOCADDR_offset = sizeof (*taa);
7435 
7436 		sin6 = (sin6_t *)&taa[1];
7437 		*sin6 = sin6_null;
7438 
7439 		sin6->sin6_family = AF_INET6;
7440 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7441 		sin6->sin6_port = tcp->tcp_lport;
7442 
7443 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7444 
7445 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7446 			/*
7447 			 * Fill in Remote address
7448 			 */
7449 			taa->REMADDR_length = sizeof (sin6_t);
7450 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7451 						taa->LOCADDR_length);
7452 
7453 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7454 			*sin6 = sin6_null;
7455 			sin6->sin6_family = AF_INET6;
7456 			sin6->sin6_flowinfo =
7457 			    tcp->tcp_ip6h->ip6_vcf &
7458 			    ~IPV6_VERS_AND_FLOW_MASK;
7459 			sin6->sin6_addr = tcp->tcp_remote_v6;
7460 			sin6->sin6_port = tcp->tcp_fport;
7461 
7462 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7463 		}
7464 	}
7465 	putnext(tcp->tcp_rq, ackmp);
7466 }
7467 
7468 /*
7469  * Handle reinitialization of a tcp structure.
7470  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7471  */
7472 static void
7473 tcp_reinit(tcp_t *tcp)
7474 {
7475 	mblk_t	*mp;
7476 	int 	err;
7477 
7478 	TCP_STAT(tcp_reinit_calls);
7479 
7480 	/* tcp_reinit should never be called for detached tcp_t's */
7481 	ASSERT(tcp->tcp_listener == NULL);
7482 	ASSERT((tcp->tcp_family == AF_INET &&
7483 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7484 	    (tcp->tcp_family == AF_INET6 &&
7485 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7486 	    tcp->tcp_ipversion == IPV6_VERSION)));
7487 
7488 	/* Cancel outstanding timers */
7489 	tcp_timers_stop(tcp);
7490 
7491 	/*
7492 	 * Reset everything in the state vector, after updating global
7493 	 * MIB data from instance counters.
7494 	 */
7495 	UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
7496 	tcp->tcp_ibsegs = 0;
7497 	UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
7498 	tcp->tcp_obsegs = 0;
7499 
7500 	tcp_close_mpp(&tcp->tcp_xmit_head);
7501 	if (tcp->tcp_snd_zcopy_aware)
7502 		tcp_zcopy_notify(tcp);
7503 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7504 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7505 	if (tcp->tcp_flow_stopped &&
7506 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7507 		tcp_clrqfull(tcp);
7508 	}
7509 	tcp_close_mpp(&tcp->tcp_reass_head);
7510 	tcp->tcp_reass_tail = NULL;
7511 	if (tcp->tcp_rcv_list != NULL) {
7512 		/* Free b_next chain */
7513 		tcp_close_mpp(&tcp->tcp_rcv_list);
7514 		tcp->tcp_rcv_last_head = NULL;
7515 		tcp->tcp_rcv_last_tail = NULL;
7516 		tcp->tcp_rcv_cnt = 0;
7517 	}
7518 	tcp->tcp_rcv_last_tail = NULL;
7519 
7520 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7521 		freemsg(mp);
7522 		tcp->tcp_urp_mp = NULL;
7523 	}
7524 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7525 		freemsg(mp);
7526 		tcp->tcp_urp_mark_mp = NULL;
7527 	}
7528 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7529 		freeb(tcp->tcp_fused_sigurg_mp);
7530 		tcp->tcp_fused_sigurg_mp = NULL;
7531 	}
7532 
7533 	/*
7534 	 * Following is a union with two members which are
7535 	 * identical types and size so the following cleanup
7536 	 * is enough.
7537 	 */
7538 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7539 
7540 	CL_INET_DISCONNECT(tcp);
7541 
7542 	/*
7543 	 * The connection can't be on the tcp_time_wait_head list
7544 	 * since it is not detached.
7545 	 */
7546 	ASSERT(tcp->tcp_time_wait_next == NULL);
7547 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7548 	ASSERT(tcp->tcp_time_wait_expire == 0);
7549 
7550 	if (tcp->tcp_kssl_pending) {
7551 		tcp->tcp_kssl_pending = B_FALSE;
7552 
7553 		/* Don't reset if the initialized by bind. */
7554 		if (tcp->tcp_kssl_ent != NULL) {
7555 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7556 			    KSSL_NO_PROXY);
7557 		}
7558 	}
7559 	if (tcp->tcp_kssl_ctx != NULL) {
7560 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7561 		tcp->tcp_kssl_ctx = NULL;
7562 	}
7563 
7564 	/*
7565 	 * Reset/preserve other values
7566 	 */
7567 	tcp_reinit_values(tcp);
7568 	ipcl_hash_remove(tcp->tcp_connp);
7569 	conn_delete_ire(tcp->tcp_connp, NULL);
7570 
7571 	if (tcp->tcp_conn_req_max != 0) {
7572 		/*
7573 		 * This is the case when a TLI program uses the same
7574 		 * transport end point to accept a connection.  This
7575 		 * makes the TCP both a listener and acceptor.  When
7576 		 * this connection is closed, we need to set the state
7577 		 * back to TCPS_LISTEN.  Make sure that the eager list
7578 		 * is reinitialized.
7579 		 *
7580 		 * Note that this stream is still bound to the four
7581 		 * tuples of the previous connection in IP.  If a new
7582 		 * SYN with different foreign address comes in, IP will
7583 		 * not find it and will send it to the global queue.  In
7584 		 * the global queue, TCP will do a tcp_lookup_listener()
7585 		 * to find this stream.  This works because this stream
7586 		 * is only removed from connected hash.
7587 		 *
7588 		 */
7589 		tcp->tcp_state = TCPS_LISTEN;
7590 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7591 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7592 		if (tcp->tcp_family == AF_INET6) {
7593 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7594 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7595 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7596 		} else {
7597 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7598 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7599 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7600 		}
7601 	} else {
7602 		tcp->tcp_state = TCPS_BOUND;
7603 	}
7604 
7605 	/*
7606 	 * Initialize to default values
7607 	 * Can't fail since enough header template space already allocated
7608 	 * at open().
7609 	 */
7610 	err = tcp_init_values(tcp);
7611 	ASSERT(err == 0);
7612 	/* Restore state in tcp_tcph */
7613 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7614 	if (tcp->tcp_ipversion == IPV4_VERSION)
7615 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7616 	else
7617 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7618 	/*
7619 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7620 	 * since the lookup funcs can only lookup on tcp_t
7621 	 */
7622 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7623 
7624 	ASSERT(tcp->tcp_ptpbhn != NULL);
7625 	tcp->tcp_rq->q_hiwat = tcp_recv_hiwat;
7626 	tcp->tcp_rwnd = tcp_recv_hiwat;
7627 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7628 	    tcp_mss_def_ipv6 : tcp_mss_def_ipv4;
7629 }
7630 
7631 /*
7632  * Force values to zero that need be zero.
7633  * Do not touch values asociated with the BOUND or LISTEN state
7634  * since the connection will end up in that state after the reinit.
7635  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7636  * structure!
7637  */
7638 static void
7639 tcp_reinit_values(tcp)
7640 	tcp_t *tcp;
7641 {
7642 #ifndef	lint
7643 #define	DONTCARE(x)
7644 #define	PRESERVE(x)
7645 #else
7646 #define	DONTCARE(x)	((x) = (x))
7647 #define	PRESERVE(x)	((x) = (x))
7648 #endif	/* lint */
7649 
7650 	PRESERVE(tcp->tcp_bind_hash);
7651 	PRESERVE(tcp->tcp_ptpbhn);
7652 	PRESERVE(tcp->tcp_acceptor_hash);
7653 	PRESERVE(tcp->tcp_ptpahn);
7654 
7655 	/* Should be ASSERT NULL on these with new code! */
7656 	ASSERT(tcp->tcp_time_wait_next == NULL);
7657 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7658 	ASSERT(tcp->tcp_time_wait_expire == 0);
7659 	PRESERVE(tcp->tcp_state);
7660 	PRESERVE(tcp->tcp_rq);
7661 	PRESERVE(tcp->tcp_wq);
7662 
7663 	ASSERT(tcp->tcp_xmit_head == NULL);
7664 	ASSERT(tcp->tcp_xmit_last == NULL);
7665 	ASSERT(tcp->tcp_unsent == 0);
7666 	ASSERT(tcp->tcp_xmit_tail == NULL);
7667 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7668 
7669 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7670 	tcp->tcp_suna = 0;			/* Displayed in mib */
7671 	tcp->tcp_swnd = 0;
7672 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7673 
7674 	ASSERT(tcp->tcp_ibsegs == 0);
7675 	ASSERT(tcp->tcp_obsegs == 0);
7676 
7677 	if (tcp->tcp_iphc != NULL) {
7678 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7679 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7680 	}
7681 
7682 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7683 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7684 	DONTCARE(tcp->tcp_ipha);
7685 	DONTCARE(tcp->tcp_ip6h);
7686 	DONTCARE(tcp->tcp_ip_hdr_len);
7687 	DONTCARE(tcp->tcp_tcph);
7688 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7689 	tcp->tcp_valid_bits = 0;
7690 
7691 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7692 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7693 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7694 	tcp->tcp_last_rcv_lbolt = 0;
7695 
7696 	tcp->tcp_init_cwnd = 0;
7697 
7698 	tcp->tcp_urp_last_valid = 0;
7699 	tcp->tcp_hard_binding = 0;
7700 	tcp->tcp_hard_bound = 0;
7701 	PRESERVE(tcp->tcp_cred);
7702 	PRESERVE(tcp->tcp_cpid);
7703 	PRESERVE(tcp->tcp_exclbind);
7704 
7705 	tcp->tcp_fin_acked = 0;
7706 	tcp->tcp_fin_rcvd = 0;
7707 	tcp->tcp_fin_sent = 0;
7708 	tcp->tcp_ordrel_done = 0;
7709 
7710 	tcp->tcp_debug = 0;
7711 	tcp->tcp_dontroute = 0;
7712 	tcp->tcp_broadcast = 0;
7713 
7714 	tcp->tcp_useloopback = 0;
7715 	tcp->tcp_reuseaddr = 0;
7716 	tcp->tcp_oobinline = 0;
7717 	tcp->tcp_dgram_errind = 0;
7718 
7719 	tcp->tcp_detached = 0;
7720 	tcp->tcp_bind_pending = 0;
7721 	tcp->tcp_unbind_pending = 0;
7722 	tcp->tcp_deferred_clean_death = 0;
7723 
7724 	tcp->tcp_snd_ws_ok = B_FALSE;
7725 	tcp->tcp_snd_ts_ok = B_FALSE;
7726 	tcp->tcp_linger = 0;
7727 	tcp->tcp_ka_enabled = 0;
7728 	tcp->tcp_zero_win_probe = 0;
7729 
7730 	tcp->tcp_loopback = 0;
7731 	tcp->tcp_localnet = 0;
7732 	tcp->tcp_syn_defense = 0;
7733 	tcp->tcp_set_timer = 0;
7734 
7735 	tcp->tcp_active_open = 0;
7736 	ASSERT(tcp->tcp_timeout == B_FALSE);
7737 	tcp->tcp_rexmit = B_FALSE;
7738 	tcp->tcp_xmit_zc_clean = B_FALSE;
7739 
7740 	tcp->tcp_snd_sack_ok = B_FALSE;
7741 	PRESERVE(tcp->tcp_recvdstaddr);
7742 	tcp->tcp_hwcksum = B_FALSE;
7743 
7744 	tcp->tcp_ire_ill_check_done = B_FALSE;
7745 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
7746 
7747 	tcp->tcp_mdt = B_FALSE;
7748 	tcp->tcp_mdt_hdr_head = 0;
7749 	tcp->tcp_mdt_hdr_tail = 0;
7750 
7751 	tcp->tcp_conn_def_q0 = 0;
7752 	tcp->tcp_ip_forward_progress = B_FALSE;
7753 	tcp->tcp_anon_priv_bind = 0;
7754 	tcp->tcp_ecn_ok = B_FALSE;
7755 
7756 	tcp->tcp_cwr = B_FALSE;
7757 	tcp->tcp_ecn_echo_on = B_FALSE;
7758 
7759 	if (tcp->tcp_sack_info != NULL) {
7760 		if (tcp->tcp_notsack_list != NULL) {
7761 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
7762 		}
7763 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
7764 		tcp->tcp_sack_info = NULL;
7765 	}
7766 
7767 	tcp->tcp_rcv_ws = 0;
7768 	tcp->tcp_snd_ws = 0;
7769 	tcp->tcp_ts_recent = 0;
7770 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
7771 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
7772 	tcp->tcp_if_mtu = 0;
7773 
7774 	ASSERT(tcp->tcp_reass_head == NULL);
7775 	ASSERT(tcp->tcp_reass_tail == NULL);
7776 
7777 	tcp->tcp_cwnd_cnt = 0;
7778 
7779 	ASSERT(tcp->tcp_rcv_list == NULL);
7780 	ASSERT(tcp->tcp_rcv_last_head == NULL);
7781 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
7782 	ASSERT(tcp->tcp_rcv_cnt == 0);
7783 
7784 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
7785 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
7786 	tcp->tcp_csuna = 0;
7787 
7788 	tcp->tcp_rto = 0;			/* Displayed in MIB */
7789 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
7790 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
7791 	tcp->tcp_rtt_update = 0;
7792 
7793 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7794 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7795 
7796 	tcp->tcp_rack = 0;			/* Displayed in mib */
7797 	tcp->tcp_rack_cnt = 0;
7798 	tcp->tcp_rack_cur_max = 0;
7799 	tcp->tcp_rack_abs_max = 0;
7800 
7801 	tcp->tcp_max_swnd = 0;
7802 
7803 	ASSERT(tcp->tcp_listener == NULL);
7804 
7805 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
7806 
7807 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
7808 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
7809 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
7810 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
7811 
7812 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
7813 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
7814 	PRESERVE(tcp->tcp_conn_req_max);
7815 	PRESERVE(tcp->tcp_conn_req_seqnum);
7816 
7817 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
7818 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
7819 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
7820 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
7821 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
7822 
7823 	tcp->tcp_lingertime = 0;
7824 
7825 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
7826 	ASSERT(tcp->tcp_urp_mp == NULL);
7827 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
7828 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
7829 
7830 	ASSERT(tcp->tcp_eager_next_q == NULL);
7831 	ASSERT(tcp->tcp_eager_last_q == NULL);
7832 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
7833 	    tcp->tcp_eager_prev_q0 == NULL) ||
7834 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
7835 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
7836 
7837 	tcp->tcp_client_errno = 0;
7838 
7839 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
7840 
7841 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
7842 
7843 	PRESERVE(tcp->tcp_bound_source_v6);
7844 	tcp->tcp_last_sent_len = 0;
7845 	tcp->tcp_dupack_cnt = 0;
7846 
7847 	tcp->tcp_fport = 0;			/* Displayed in MIB */
7848 	PRESERVE(tcp->tcp_lport);
7849 
7850 	PRESERVE(tcp->tcp_acceptor_lockp);
7851 
7852 	ASSERT(tcp->tcp_ordrelid == 0);
7853 	PRESERVE(tcp->tcp_acceptor_id);
7854 	DONTCARE(tcp->tcp_ipsec_overhead);
7855 
7856 	/*
7857 	 * If tcp_tracing flag is ON (i.e. We have a trace buffer
7858 	 * in tcp structure and now tracing), Re-initialize all
7859 	 * members of tcp_traceinfo.
7860 	 */
7861 	if (tcp->tcp_tracebuf != NULL) {
7862 		bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t));
7863 	}
7864 
7865 	PRESERVE(tcp->tcp_family);
7866 	if (tcp->tcp_family == AF_INET6) {
7867 		tcp->tcp_ipversion = IPV6_VERSION;
7868 		tcp->tcp_mss = tcp_mss_def_ipv6;
7869 	} else {
7870 		tcp->tcp_ipversion = IPV4_VERSION;
7871 		tcp->tcp_mss = tcp_mss_def_ipv4;
7872 	}
7873 
7874 	tcp->tcp_bound_if = 0;
7875 	tcp->tcp_ipv6_recvancillary = 0;
7876 	tcp->tcp_recvifindex = 0;
7877 	tcp->tcp_recvhops = 0;
7878 	tcp->tcp_closed = 0;
7879 	tcp->tcp_cleandeathtag = 0;
7880 	if (tcp->tcp_hopopts != NULL) {
7881 		mi_free(tcp->tcp_hopopts);
7882 		tcp->tcp_hopopts = NULL;
7883 		tcp->tcp_hopoptslen = 0;
7884 	}
7885 	ASSERT(tcp->tcp_hopoptslen == 0);
7886 	if (tcp->tcp_dstopts != NULL) {
7887 		mi_free(tcp->tcp_dstopts);
7888 		tcp->tcp_dstopts = NULL;
7889 		tcp->tcp_dstoptslen = 0;
7890 	}
7891 	ASSERT(tcp->tcp_dstoptslen == 0);
7892 	if (tcp->tcp_rtdstopts != NULL) {
7893 		mi_free(tcp->tcp_rtdstopts);
7894 		tcp->tcp_rtdstopts = NULL;
7895 		tcp->tcp_rtdstoptslen = 0;
7896 	}
7897 	ASSERT(tcp->tcp_rtdstoptslen == 0);
7898 	if (tcp->tcp_rthdr != NULL) {
7899 		mi_free(tcp->tcp_rthdr);
7900 		tcp->tcp_rthdr = NULL;
7901 		tcp->tcp_rthdrlen = 0;
7902 	}
7903 	ASSERT(tcp->tcp_rthdrlen == 0);
7904 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
7905 
7906 	/* Reset fusion-related fields */
7907 	tcp->tcp_fused = B_FALSE;
7908 	tcp->tcp_unfusable = B_FALSE;
7909 	tcp->tcp_fused_sigurg = B_FALSE;
7910 	tcp->tcp_direct_sockfs = B_FALSE;
7911 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
7912 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
7913 	tcp->tcp_loopback_peer = NULL;
7914 	tcp->tcp_fuse_rcv_hiwater = 0;
7915 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
7916 	tcp->tcp_fuse_rcv_unread_cnt = 0;
7917 
7918 	tcp->tcp_in_ack_unsent = 0;
7919 	tcp->tcp_cork = B_FALSE;
7920 
7921 	PRESERVE(tcp->tcp_squeue_bytes);
7922 
7923 	ASSERT(tcp->tcp_kssl_ctx == NULL);
7924 	ASSERT(!tcp->tcp_kssl_pending);
7925 	PRESERVE(tcp->tcp_kssl_ent);
7926 
7927 #undef	DONTCARE
7928 #undef	PRESERVE
7929 }
7930 
7931 /*
7932  * Allocate necessary resources and initialize state vector.
7933  * Guaranteed not to fail so that when an error is returned,
7934  * the caller doesn't need to do any additional cleanup.
7935  */
7936 int
7937 tcp_init(tcp_t *tcp, queue_t *q)
7938 {
7939 	int	err;
7940 
7941 	tcp->tcp_rq = q;
7942 	tcp->tcp_wq = WR(q);
7943 	tcp->tcp_state = TCPS_IDLE;
7944 	if ((err = tcp_init_values(tcp)) != 0)
7945 		tcp_timers_stop(tcp);
7946 	return (err);
7947 }
7948 
7949 static int
7950 tcp_init_values(tcp_t *tcp)
7951 {
7952 	int	err;
7953 
7954 	ASSERT((tcp->tcp_family == AF_INET &&
7955 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7956 	    (tcp->tcp_family == AF_INET6 &&
7957 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7958 	    tcp->tcp_ipversion == IPV6_VERSION)));
7959 
7960 	/*
7961 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
7962 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
7963 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
7964 	 * during first few transmissions of a connection as seen in slow
7965 	 * links.
7966 	 */
7967 	tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2;
7968 	tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1;
7969 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
7970 	    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
7971 	    tcp_conn_grace_period;
7972 	if (tcp->tcp_rto < tcp_rexmit_interval_min)
7973 		tcp->tcp_rto = tcp_rexmit_interval_min;
7974 	tcp->tcp_timer_backoff = 0;
7975 	tcp->tcp_ms_we_have_waited = 0;
7976 	tcp->tcp_last_recv_time = lbolt;
7977 	tcp->tcp_cwnd_max = tcp_cwnd_max_;
7978 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
7979 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
7980 
7981 	tcp->tcp_maxpsz = tcp_maxpsz_multiplier;
7982 
7983 	tcp->tcp_first_timer_threshold = tcp_ip_notify_interval;
7984 	tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval;
7985 	tcp->tcp_second_timer_threshold = tcp_ip_abort_interval;
7986 	/*
7987 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
7988 	 * passive open.
7989 	 */
7990 	tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval;
7991 
7992 	tcp->tcp_naglim = tcp_naglim_def;
7993 
7994 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
7995 
7996 	tcp->tcp_mdt_hdr_head = 0;
7997 	tcp->tcp_mdt_hdr_tail = 0;
7998 
7999 	/* Reset fusion-related fields */
8000 	tcp->tcp_fused = B_FALSE;
8001 	tcp->tcp_unfusable = B_FALSE;
8002 	tcp->tcp_fused_sigurg = B_FALSE;
8003 	tcp->tcp_direct_sockfs = B_FALSE;
8004 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8005 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8006 	tcp->tcp_loopback_peer = NULL;
8007 	tcp->tcp_fuse_rcv_hiwater = 0;
8008 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8009 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8010 
8011 	/* Initialize the header template */
8012 	if (tcp->tcp_ipversion == IPV4_VERSION) {
8013 		err = tcp_header_init_ipv4(tcp);
8014 	} else {
8015 		err = tcp_header_init_ipv6(tcp);
8016 	}
8017 	if (err)
8018 		return (err);
8019 
8020 	/*
8021 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
8022 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
8023 	 */
8024 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
8025 	tcp->tcp_xmit_lowater = tcp_xmit_lowat;
8026 	tcp->tcp_xmit_hiwater = tcp_xmit_hiwat;
8027 
8028 	tcp->tcp_cork = B_FALSE;
8029 	/*
8030 	 * Init the tcp_debug option.  This value determines whether TCP
8031 	 * calls strlog() to print out debug messages.  Doing this
8032 	 * initialization here means that this value is not inherited thru
8033 	 * tcp_reinit().
8034 	 */
8035 	tcp->tcp_debug = tcp_dbg;
8036 
8037 	tcp->tcp_ka_interval = tcp_keepalive_interval;
8038 	tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval;
8039 
8040 	return (0);
8041 }
8042 
8043 /*
8044  * Initialize the IPv4 header. Loses any record of any IP options.
8045  */
8046 static int
8047 tcp_header_init_ipv4(tcp_t *tcp)
8048 {
8049 	tcph_t		*tcph;
8050 	uint32_t	sum;
8051 	conn_t		*connp;
8052 
8053 	/*
8054 	 * This is a simple initialization. If there's
8055 	 * already a template, it should never be too small,
8056 	 * so reuse it.  Otherwise, allocate space for the new one.
8057 	 */
8058 	if (tcp->tcp_iphc == NULL) {
8059 		ASSERT(tcp->tcp_iphc_len == 0);
8060 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8061 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8062 		if (tcp->tcp_iphc == NULL) {
8063 			tcp->tcp_iphc_len = 0;
8064 			return (ENOMEM);
8065 		}
8066 	}
8067 
8068 	/* options are gone; may need a new label */
8069 	connp = tcp->tcp_connp;
8070 	connp->conn_mlp_type = mlptSingle;
8071 	connp->conn_ulp_labeled = !is_system_labeled();
8072 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8073 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8074 	tcp->tcp_ip6h = NULL;
8075 	tcp->tcp_ipversion = IPV4_VERSION;
8076 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8077 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8078 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8079 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8080 	tcp->tcp_ipha->ipha_version_and_hdr_length
8081 		= (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8082 	tcp->tcp_ipha->ipha_ident = 0;
8083 
8084 	tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl;
8085 	tcp->tcp_tos = 0;
8086 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8087 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl;
8088 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8089 
8090 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8091 	tcp->tcp_tcph = tcph;
8092 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8093 	/*
8094 	 * IP wants our header length in the checksum field to
8095 	 * allow it to perform a single pseudo-header+checksum
8096 	 * calculation on behalf of TCP.
8097 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8098 	 */
8099 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8100 	sum = (sum >> 16) + (sum & 0xFFFF);
8101 	U16_TO_ABE16(sum, tcph->th_sum);
8102 	return (0);
8103 }
8104 
8105 /*
8106  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8107  */
8108 static int
8109 tcp_header_init_ipv6(tcp_t *tcp)
8110 {
8111 	tcph_t	*tcph;
8112 	uint32_t	sum;
8113 	conn_t	*connp;
8114 
8115 	/*
8116 	 * This is a simple initialization. If there's
8117 	 * already a template, it should never be too small,
8118 	 * so reuse it. Otherwise, allocate space for the new one.
8119 	 * Ensure that there is enough space to "downgrade" the tcp_t
8120 	 * to an IPv4 tcp_t. This requires having space for a full load
8121 	 * of IPv4 options, as well as a full load of TCP options
8122 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8123 	 * than a v6 header and a TCP header with a full load of TCP options
8124 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8125 	 * We want to avoid reallocation in the "downgraded" case when
8126 	 * processing outbound IPv4 options.
8127 	 */
8128 	if (tcp->tcp_iphc == NULL) {
8129 		ASSERT(tcp->tcp_iphc_len == 0);
8130 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8131 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8132 		if (tcp->tcp_iphc == NULL) {
8133 			tcp->tcp_iphc_len = 0;
8134 			return (ENOMEM);
8135 		}
8136 	}
8137 
8138 	/* options are gone; may need a new label */
8139 	connp = tcp->tcp_connp;
8140 	connp->conn_mlp_type = mlptSingle;
8141 	connp->conn_ulp_labeled = !is_system_labeled();
8142 
8143 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8144 	tcp->tcp_ipversion = IPV6_VERSION;
8145 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8146 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8147 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8148 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8149 	tcp->tcp_ipha = NULL;
8150 
8151 	/* Initialize the header template */
8152 
8153 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8154 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8155 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8156 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit;
8157 
8158 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8159 	tcp->tcp_tcph = tcph;
8160 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8161 	/*
8162 	 * IP wants our header length in the checksum field to
8163 	 * allow it to perform a single psuedo-header+checksum
8164 	 * calculation on behalf of TCP.
8165 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8166 	 */
8167 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8168 	sum = (sum >> 16) + (sum & 0xFFFF);
8169 	U16_TO_ABE16(sum, tcph->th_sum);
8170 	return (0);
8171 }
8172 
8173 /* At minimum we need 4 bytes in the TCP header for the lookup */
8174 #define	ICMP_MIN_TCP_HDR	12
8175 
8176 /*
8177  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8178  * passed up by IP. The message is always received on the correct tcp_t.
8179  * Assumes that IP has pulled up everything up to and including the ICMP header.
8180  */
8181 void
8182 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8183 {
8184 	icmph_t *icmph;
8185 	ipha_t	*ipha;
8186 	int	iph_hdr_length;
8187 	tcph_t	*tcph;
8188 	boolean_t ipsec_mctl = B_FALSE;
8189 	boolean_t secure;
8190 	mblk_t *first_mp = mp;
8191 	uint32_t new_mss;
8192 	uint32_t ratio;
8193 	size_t mp_size = MBLKL(mp);
8194 	uint32_t seg_ack;
8195 	uint32_t seg_seq;
8196 
8197 	/* Assume IP provides aligned packets - otherwise toss */
8198 	if (!OK_32PTR(mp->b_rptr)) {
8199 		freemsg(mp);
8200 		return;
8201 	}
8202 
8203 	/*
8204 	 * Since ICMP errors are normal data marked with M_CTL when sent
8205 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8206 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8207 	 */
8208 	if ((mp_size == sizeof (ipsec_info_t)) &&
8209 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8210 		ASSERT(mp->b_cont != NULL);
8211 		mp = mp->b_cont;
8212 		/* IP should have done this */
8213 		ASSERT(OK_32PTR(mp->b_rptr));
8214 		mp_size = MBLKL(mp);
8215 		ipsec_mctl = B_TRUE;
8216 	}
8217 
8218 	/*
8219 	 * Verify that we have a complete outer IP header. If not, drop it.
8220 	 */
8221 	if (mp_size < sizeof (ipha_t)) {
8222 noticmpv4:
8223 		freemsg(first_mp);
8224 		return;
8225 	}
8226 
8227 	ipha = (ipha_t *)mp->b_rptr;
8228 	/*
8229 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8230 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8231 	 */
8232 	switch (IPH_HDR_VERSION(ipha)) {
8233 	case IPV6_VERSION:
8234 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8235 		return;
8236 	case IPV4_VERSION:
8237 		break;
8238 	default:
8239 		goto noticmpv4;
8240 	}
8241 
8242 	/* Skip past the outer IP and ICMP headers */
8243 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8244 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8245 	/*
8246 	 * If we don't have the correct outer IP header length or if the ULP
8247 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8248 	 * send it upstream.
8249 	 */
8250 	if (iph_hdr_length < sizeof (ipha_t) ||
8251 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8252 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8253 		goto noticmpv4;
8254 	}
8255 	ipha = (ipha_t *)&icmph[1];
8256 
8257 	/* Skip past the inner IP and find the ULP header */
8258 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8259 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8260 	/*
8261 	 * If we don't have the correct inner IP header length or if the ULP
8262 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8263 	 * bytes of TCP header, drop it.
8264 	 */
8265 	if (iph_hdr_length < sizeof (ipha_t) ||
8266 	    ipha->ipha_protocol != IPPROTO_TCP ||
8267 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8268 		goto noticmpv4;
8269 	}
8270 
8271 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8272 		if (ipsec_mctl) {
8273 			secure = ipsec_in_is_secure(first_mp);
8274 		} else {
8275 			secure = B_FALSE;
8276 		}
8277 		if (secure) {
8278 			/*
8279 			 * If we are willing to accept this in clear
8280 			 * we don't have to verify policy.
8281 			 */
8282 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8283 				if (!tcp_check_policy(tcp, first_mp,
8284 				    ipha, NULL, secure, ipsec_mctl)) {
8285 					/*
8286 					 * tcp_check_policy called
8287 					 * ip_drop_packet() on failure.
8288 					 */
8289 					return;
8290 				}
8291 			}
8292 		}
8293 	} else if (ipsec_mctl) {
8294 		/*
8295 		 * This is a hard_bound connection. IP has already
8296 		 * verified policy. We don't have to do it again.
8297 		 */
8298 		freeb(first_mp);
8299 		first_mp = mp;
8300 		ipsec_mctl = B_FALSE;
8301 	}
8302 
8303 	seg_ack = ABE32_TO_U32(tcph->th_ack);
8304 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8305 	/*
8306 	 * TCP SHOULD check that the TCP sequence number contained in
8307 	 * payload of the ICMP error message is within the range
8308 	 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT
8309 	 */
8310 	if (SEQ_LT(seg_seq, tcp->tcp_suna) ||
8311 		SEQ_GEQ(seg_seq, tcp->tcp_snxt) ||
8312 		SEQ_GT(seg_ack, tcp->tcp_rnxt)) {
8313 		/*
8314 		 * If the ICMP message is bogus, should we kill the
8315 		 * connection, or should we just drop the bogus ICMP
8316 		 * message? It would probably make more sense to just
8317 		 * drop the message so that if this one managed to get
8318 		 * in, the real connection should not suffer.
8319 		 */
8320 		goto noticmpv4;
8321 	}
8322 
8323 	switch (icmph->icmph_type) {
8324 	case ICMP_DEST_UNREACHABLE:
8325 		switch (icmph->icmph_code) {
8326 		case ICMP_FRAGMENTATION_NEEDED:
8327 			/*
8328 			 * Reduce the MSS based on the new MTU.  This will
8329 			 * eliminate any fragmentation locally.
8330 			 * N.B.  There may well be some funny side-effects on
8331 			 * the local send policy and the remote receive policy.
8332 			 * Pending further research, we provide
8333 			 * tcp_ignore_path_mtu just in case this proves
8334 			 * disastrous somewhere.
8335 			 *
8336 			 * After updating the MSS, retransmit part of the
8337 			 * dropped segment using the new mss by calling
8338 			 * tcp_wput_data().  Need to adjust all those
8339 			 * params to make sure tcp_wput_data() work properly.
8340 			 */
8341 			if (tcp_ignore_path_mtu)
8342 				break;
8343 
8344 			/*
8345 			 * Decrease the MSS by time stamp options
8346 			 * IP options and IPSEC options. tcp_hdr_len
8347 			 * includes time stamp option and IP option
8348 			 * length.
8349 			 */
8350 
8351 			new_mss = ntohs(icmph->icmph_du_mtu) -
8352 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8353 
8354 			/*
8355 			 * Only update the MSS if the new one is
8356 			 * smaller than the previous one.  This is
8357 			 * to avoid problems when getting multiple
8358 			 * ICMP errors for the same MTU.
8359 			 */
8360 			if (new_mss >= tcp->tcp_mss)
8361 				break;
8362 
8363 			/*
8364 			 * Stop doing PMTU if new_mss is less than 68
8365 			 * or less than tcp_mss_min.
8366 			 * The value 68 comes from rfc 1191.
8367 			 */
8368 			if (new_mss < MAX(68, tcp_mss_min))
8369 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8370 				    0;
8371 
8372 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8373 			ASSERT(ratio >= 1);
8374 			tcp_mss_set(tcp, new_mss);
8375 
8376 			/*
8377 			 * Make sure we have something to
8378 			 * send.
8379 			 */
8380 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8381 			    (tcp->tcp_xmit_head != NULL)) {
8382 				/*
8383 				 * Shrink tcp_cwnd in
8384 				 * proportion to the old MSS/new MSS.
8385 				 */
8386 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8387 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8388 				    (tcp->tcp_unsent == 0)) {
8389 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8390 				} else {
8391 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8392 				}
8393 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8394 				tcp->tcp_rexmit = B_TRUE;
8395 				tcp->tcp_dupack_cnt = 0;
8396 				tcp->tcp_snd_burst = TCP_CWND_SS;
8397 				tcp_ss_rexmit(tcp);
8398 			}
8399 			break;
8400 		case ICMP_PORT_UNREACHABLE:
8401 		case ICMP_PROTOCOL_UNREACHABLE:
8402 			switch (tcp->tcp_state) {
8403 			case TCPS_SYN_SENT:
8404 			case TCPS_SYN_RCVD:
8405 				/*
8406 				 * ICMP can snipe away incipient
8407 				 * TCP connections as long as
8408 				 * seq number is same as initial
8409 				 * send seq number.
8410 				 */
8411 				if (seg_seq == tcp->tcp_iss) {
8412 					(void) tcp_clean_death(tcp,
8413 					    ECONNREFUSED, 6);
8414 				}
8415 				break;
8416 			}
8417 			break;
8418 		case ICMP_HOST_UNREACHABLE:
8419 		case ICMP_NET_UNREACHABLE:
8420 			/* Record the error in case we finally time out. */
8421 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8422 				tcp->tcp_client_errno = EHOSTUNREACH;
8423 			else
8424 				tcp->tcp_client_errno = ENETUNREACH;
8425 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8426 				if (tcp->tcp_listener != NULL &&
8427 				    tcp->tcp_listener->tcp_syn_defense) {
8428 					/*
8429 					 * Ditch the half-open connection if we
8430 					 * suspect a SYN attack is under way.
8431 					 */
8432 					tcp_ip_ire_mark_advice(tcp);
8433 					(void) tcp_clean_death(tcp,
8434 					    tcp->tcp_client_errno, 7);
8435 				}
8436 			}
8437 			break;
8438 		default:
8439 			break;
8440 		}
8441 		break;
8442 	case ICMP_SOURCE_QUENCH: {
8443 		/*
8444 		 * use a global boolean to control
8445 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8446 		 * The default is false.
8447 		 */
8448 		if (tcp_icmp_source_quench) {
8449 			/*
8450 			 * Reduce the sending rate as if we got a
8451 			 * retransmit timeout
8452 			 */
8453 			uint32_t npkt;
8454 
8455 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8456 			    tcp->tcp_mss;
8457 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8458 			tcp->tcp_cwnd = tcp->tcp_mss;
8459 			tcp->tcp_cwnd_cnt = 0;
8460 		}
8461 		break;
8462 	}
8463 	}
8464 	freemsg(first_mp);
8465 }
8466 
8467 /*
8468  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8469  * error messages passed up by IP.
8470  * Assumes that IP has pulled up all the extension headers as well
8471  * as the ICMPv6 header.
8472  */
8473 static void
8474 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8475 {
8476 	icmp6_t *icmp6;
8477 	ip6_t	*ip6h;
8478 	uint16_t	iph_hdr_length;
8479 	tcpha_t	*tcpha;
8480 	uint8_t	*nexthdrp;
8481 	uint32_t new_mss;
8482 	uint32_t ratio;
8483 	boolean_t secure;
8484 	mblk_t *first_mp = mp;
8485 	size_t mp_size;
8486 	uint32_t seg_ack;
8487 	uint32_t seg_seq;
8488 
8489 	/*
8490 	 * The caller has determined if this is an IPSEC_IN packet and
8491 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8492 	 */
8493 	if (ipsec_mctl)
8494 		mp = mp->b_cont;
8495 
8496 	mp_size = MBLKL(mp);
8497 
8498 	/*
8499 	 * Verify that we have a complete IP header. If not, send it upstream.
8500 	 */
8501 	if (mp_size < sizeof (ip6_t)) {
8502 noticmpv6:
8503 		freemsg(first_mp);
8504 		return;
8505 	}
8506 
8507 	/*
8508 	 * Verify this is an ICMPV6 packet, else send it upstream.
8509 	 */
8510 	ip6h = (ip6_t *)mp->b_rptr;
8511 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8512 		iph_hdr_length = IPV6_HDR_LEN;
8513 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8514 	    &nexthdrp) ||
8515 	    *nexthdrp != IPPROTO_ICMPV6) {
8516 		goto noticmpv6;
8517 	}
8518 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8519 	ip6h = (ip6_t *)&icmp6[1];
8520 	/*
8521 	 * Verify if we have a complete ICMP and inner IP header.
8522 	 */
8523 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8524 		goto noticmpv6;
8525 
8526 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8527 		goto noticmpv6;
8528 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8529 	/*
8530 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8531 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8532 	 * packet.
8533 	 */
8534 	if ((*nexthdrp != IPPROTO_TCP) ||
8535 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8536 		goto noticmpv6;
8537 	}
8538 
8539 	/*
8540 	 * ICMP errors come on the right queue or come on
8541 	 * listener/global queue for detached connections and
8542 	 * get switched to the right queue. If it comes on the
8543 	 * right queue, policy check has already been done by IP
8544 	 * and thus free the first_mp without verifying the policy.
8545 	 * If it has come for a non-hard bound connection, we need
8546 	 * to verify policy as IP may not have done it.
8547 	 */
8548 	if (!tcp->tcp_hard_bound) {
8549 		if (ipsec_mctl) {
8550 			secure = ipsec_in_is_secure(first_mp);
8551 		} else {
8552 			secure = B_FALSE;
8553 		}
8554 		if (secure) {
8555 			/*
8556 			 * If we are willing to accept this in clear
8557 			 * we don't have to verify policy.
8558 			 */
8559 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8560 				if (!tcp_check_policy(tcp, first_mp,
8561 				    NULL, ip6h, secure, ipsec_mctl)) {
8562 					/*
8563 					 * tcp_check_policy called
8564 					 * ip_drop_packet() on failure.
8565 					 */
8566 					return;
8567 				}
8568 			}
8569 		}
8570 	} else if (ipsec_mctl) {
8571 		/*
8572 		 * This is a hard_bound connection. IP has already
8573 		 * verified policy. We don't have to do it again.
8574 		 */
8575 		freeb(first_mp);
8576 		first_mp = mp;
8577 		ipsec_mctl = B_FALSE;
8578 	}
8579 
8580 	seg_ack = ntohl(tcpha->tha_ack);
8581 	seg_seq = ntohl(tcpha->tha_seq);
8582 	/*
8583 	 * TCP SHOULD check that the TCP sequence number contained in
8584 	 * payload of the ICMP error message is within the range
8585 	 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT
8586 	 */
8587 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt) ||
8588 	    SEQ_GT(seg_ack, tcp->tcp_rnxt)) {
8589 		/*
8590 		 * If the ICMP message is bogus, should we kill the
8591 		 * connection, or should we just drop the bogus ICMP
8592 		 * message? It would probably make more sense to just
8593 		 * drop the message so that if this one managed to get
8594 		 * in, the real connection should not suffer.
8595 		 */
8596 		goto noticmpv6;
8597 	}
8598 
8599 	switch (icmp6->icmp6_type) {
8600 	case ICMP6_PACKET_TOO_BIG:
8601 		/*
8602 		 * Reduce the MSS based on the new MTU.  This will
8603 		 * eliminate any fragmentation locally.
8604 		 * N.B.  There may well be some funny side-effects on
8605 		 * the local send policy and the remote receive policy.
8606 		 * Pending further research, we provide
8607 		 * tcp_ignore_path_mtu just in case this proves
8608 		 * disastrous somewhere.
8609 		 *
8610 		 * After updating the MSS, retransmit part of the
8611 		 * dropped segment using the new mss by calling
8612 		 * tcp_wput_data().  Need to adjust all those
8613 		 * params to make sure tcp_wput_data() work properly.
8614 		 */
8615 		if (tcp_ignore_path_mtu)
8616 			break;
8617 
8618 		/*
8619 		 * Decrease the MSS by time stamp options
8620 		 * IP options and IPSEC options. tcp_hdr_len
8621 		 * includes time stamp option and IP option
8622 		 * length.
8623 		 */
8624 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8625 			    tcp->tcp_ipsec_overhead;
8626 
8627 		/*
8628 		 * Only update the MSS if the new one is
8629 		 * smaller than the previous one.  This is
8630 		 * to avoid problems when getting multiple
8631 		 * ICMP errors for the same MTU.
8632 		 */
8633 		if (new_mss >= tcp->tcp_mss)
8634 			break;
8635 
8636 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8637 		ASSERT(ratio >= 1);
8638 		tcp_mss_set(tcp, new_mss);
8639 
8640 		/*
8641 		 * Make sure we have something to
8642 		 * send.
8643 		 */
8644 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8645 		    (tcp->tcp_xmit_head != NULL)) {
8646 			/*
8647 			 * Shrink tcp_cwnd in
8648 			 * proportion to the old MSS/new MSS.
8649 			 */
8650 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8651 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8652 			    (tcp->tcp_unsent == 0)) {
8653 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8654 			} else {
8655 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8656 			}
8657 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8658 			tcp->tcp_rexmit = B_TRUE;
8659 			tcp->tcp_dupack_cnt = 0;
8660 			tcp->tcp_snd_burst = TCP_CWND_SS;
8661 			tcp_ss_rexmit(tcp);
8662 		}
8663 		break;
8664 
8665 	case ICMP6_DST_UNREACH:
8666 		switch (icmp6->icmp6_code) {
8667 		case ICMP6_DST_UNREACH_NOPORT:
8668 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8669 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8670 			    (seg_seq == tcp->tcp_iss)) {
8671 				(void) tcp_clean_death(tcp,
8672 				    ECONNREFUSED, 8);
8673 			}
8674 			break;
8675 
8676 		case ICMP6_DST_UNREACH_ADMIN:
8677 		case ICMP6_DST_UNREACH_NOROUTE:
8678 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8679 		case ICMP6_DST_UNREACH_ADDR:
8680 			/* Record the error in case we finally time out. */
8681 			tcp->tcp_client_errno = EHOSTUNREACH;
8682 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8683 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8684 			    (seg_seq == tcp->tcp_iss)) {
8685 				if (tcp->tcp_listener != NULL &&
8686 				    tcp->tcp_listener->tcp_syn_defense) {
8687 					/*
8688 					 * Ditch the half-open connection if we
8689 					 * suspect a SYN attack is under way.
8690 					 */
8691 					tcp_ip_ire_mark_advice(tcp);
8692 					(void) tcp_clean_death(tcp,
8693 					    tcp->tcp_client_errno, 9);
8694 				}
8695 			}
8696 
8697 
8698 			break;
8699 		default:
8700 			break;
8701 		}
8702 		break;
8703 
8704 	case ICMP6_PARAM_PROB:
8705 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
8706 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
8707 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
8708 		    (uchar_t *)nexthdrp) {
8709 			if (tcp->tcp_state == TCPS_SYN_SENT ||
8710 			    tcp->tcp_state == TCPS_SYN_RCVD) {
8711 				(void) tcp_clean_death(tcp,
8712 				    ECONNREFUSED, 10);
8713 			}
8714 			break;
8715 		}
8716 		break;
8717 
8718 	case ICMP6_TIME_EXCEEDED:
8719 	default:
8720 		break;
8721 	}
8722 	freemsg(first_mp);
8723 }
8724 
8725 /*
8726  * IP recognizes seven kinds of bind requests:
8727  *
8728  * - A zero-length address binds only to the protocol number.
8729  *
8730  * - A 4-byte address is treated as a request to
8731  * validate that the address is a valid local IPv4
8732  * address, appropriate for an application to bind to.
8733  * IP does the verification, but does not make any note
8734  * of the address at this time.
8735  *
8736  * - A 16-byte address contains is treated as a request
8737  * to validate a local IPv6 address, as the 4-byte
8738  * address case above.
8739  *
8740  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
8741  * use it for the inbound fanout of packets.
8742  *
8743  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
8744  * use it for the inbound fanout of packets.
8745  *
8746  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
8747  * information consisting of local and remote addresses
8748  * and ports.  In this case, the addresses are both
8749  * validated as appropriate for this operation, and, if
8750  * so, the information is retained for use in the
8751  * inbound fanout.
8752  *
8753  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
8754  * fanout information, like the 12-byte case above.
8755  *
8756  * IP will also fill in the IRE request mblk with information
8757  * regarding our peer.  In all cases, we notify IP of our protocol
8758  * type by appending a single protocol byte to the bind request.
8759  */
8760 static mblk_t *
8761 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length)
8762 {
8763 	char	*cp;
8764 	mblk_t	*mp;
8765 	struct T_bind_req *tbr;
8766 	ipa_conn_t	*ac;
8767 	ipa6_conn_t	*ac6;
8768 	sin_t		*sin;
8769 	sin6_t		*sin6;
8770 
8771 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
8772 	ASSERT((tcp->tcp_family == AF_INET &&
8773 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8774 	    (tcp->tcp_family == AF_INET6 &&
8775 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8776 	    tcp->tcp_ipversion == IPV6_VERSION)));
8777 
8778 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
8779 	if (!mp)
8780 		return (mp);
8781 	mp->b_datap->db_type = M_PROTO;
8782 	tbr = (struct T_bind_req *)mp->b_rptr;
8783 	tbr->PRIM_type = bind_prim;
8784 	tbr->ADDR_offset = sizeof (*tbr);
8785 	tbr->CONIND_number = 0;
8786 	tbr->ADDR_length = addr_length;
8787 	cp = (char *)&tbr[1];
8788 	switch (addr_length) {
8789 	case sizeof (ipa_conn_t):
8790 		ASSERT(tcp->tcp_family == AF_INET);
8791 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
8792 
8793 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
8794 		if (mp->b_cont == NULL) {
8795 			freemsg(mp);
8796 			return (NULL);
8797 		}
8798 		mp->b_cont->b_wptr += sizeof (ire_t);
8799 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
8800 
8801 		/* cp known to be 32 bit aligned */
8802 		ac = (ipa_conn_t *)cp;
8803 		ac->ac_laddr = tcp->tcp_ipha->ipha_src;
8804 		ac->ac_faddr = tcp->tcp_remote;
8805 		ac->ac_fport = tcp->tcp_fport;
8806 		ac->ac_lport = tcp->tcp_lport;
8807 		tcp->tcp_hard_binding = 1;
8808 		break;
8809 
8810 	case sizeof (ipa6_conn_t):
8811 		ASSERT(tcp->tcp_family == AF_INET6);
8812 
8813 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
8814 		if (mp->b_cont == NULL) {
8815 			freemsg(mp);
8816 			return (NULL);
8817 		}
8818 		mp->b_cont->b_wptr += sizeof (ire_t);
8819 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
8820 
8821 		/* cp known to be 32 bit aligned */
8822 		ac6 = (ipa6_conn_t *)cp;
8823 		if (tcp->tcp_ipversion == IPV4_VERSION) {
8824 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
8825 			    &ac6->ac6_laddr);
8826 		} else {
8827 			ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src;
8828 		}
8829 		ac6->ac6_faddr = tcp->tcp_remote_v6;
8830 		ac6->ac6_fport = tcp->tcp_fport;
8831 		ac6->ac6_lport = tcp->tcp_lport;
8832 		tcp->tcp_hard_binding = 1;
8833 		break;
8834 
8835 	case sizeof (sin_t):
8836 		/*
8837 		 * NOTE: IPV6_ADDR_LEN also has same size.
8838 		 * Use family to discriminate.
8839 		 */
8840 		if (tcp->tcp_family == AF_INET) {
8841 			sin = (sin_t *)cp;
8842 
8843 			*sin = sin_null;
8844 			sin->sin_family = AF_INET;
8845 			sin->sin_addr.s_addr = tcp->tcp_bound_source;
8846 			sin->sin_port = tcp->tcp_lport;
8847 			break;
8848 		} else {
8849 			*(in6_addr_t *)cp = tcp->tcp_bound_source_v6;
8850 		}
8851 		break;
8852 
8853 	case sizeof (sin6_t):
8854 		ASSERT(tcp->tcp_family == AF_INET6);
8855 		sin6 = (sin6_t *)cp;
8856 
8857 		*sin6 = sin6_null;
8858 		sin6->sin6_family = AF_INET6;
8859 		sin6->sin6_addr = tcp->tcp_bound_source_v6;
8860 		sin6->sin6_port = tcp->tcp_lport;
8861 		break;
8862 
8863 	case IP_ADDR_LEN:
8864 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
8865 		*(uint32_t *)cp = tcp->tcp_ipha->ipha_src;
8866 		break;
8867 
8868 	}
8869 	/* Add protocol number to end */
8870 	cp[addr_length] = (char)IPPROTO_TCP;
8871 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
8872 	return (mp);
8873 }
8874 
8875 /*
8876  * Notify IP that we are having trouble with this connection.  IP should
8877  * blow the IRE away and start over.
8878  */
8879 static void
8880 tcp_ip_notify(tcp_t *tcp)
8881 {
8882 	struct iocblk	*iocp;
8883 	ipid_t	*ipid;
8884 	mblk_t	*mp;
8885 
8886 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
8887 	if (tcp->tcp_ipversion == IPV6_VERSION)
8888 		return;
8889 
8890 	mp = mkiocb(IP_IOCTL);
8891 	if (mp == NULL)
8892 		return;
8893 
8894 	iocp = (struct iocblk *)mp->b_rptr;
8895 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
8896 
8897 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
8898 	if (!mp->b_cont) {
8899 		freeb(mp);
8900 		return;
8901 	}
8902 
8903 	ipid = (ipid_t *)mp->b_cont->b_rptr;
8904 	mp->b_cont->b_wptr += iocp->ioc_count;
8905 	bzero(ipid, sizeof (*ipid));
8906 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
8907 	ipid->ipid_ire_type = IRE_CACHE;
8908 	ipid->ipid_addr_offset = sizeof (ipid_t);
8909 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
8910 	/*
8911 	 * Note: in the case of source routing we want to blow away the
8912 	 * route to the first source route hop.
8913 	 */
8914 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
8915 	    sizeof (tcp->tcp_ipha->ipha_dst));
8916 
8917 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
8918 }
8919 
8920 /* Unlink and return any mblk that looks like it contains an ire */
8921 static mblk_t *
8922 tcp_ire_mp(mblk_t *mp)
8923 {
8924 	mblk_t	*prev_mp;
8925 
8926 	for (;;) {
8927 		prev_mp = mp;
8928 		mp = mp->b_cont;
8929 		if (mp == NULL)
8930 			break;
8931 		switch (DB_TYPE(mp)) {
8932 		case IRE_DB_TYPE:
8933 		case IRE_DB_REQ_TYPE:
8934 			if (prev_mp != NULL)
8935 				prev_mp->b_cont = mp->b_cont;
8936 			mp->b_cont = NULL;
8937 			return (mp);
8938 		default:
8939 			break;
8940 		}
8941 	}
8942 	return (mp);
8943 }
8944 
8945 /*
8946  * Timer callback routine for keepalive probe.  We do a fake resend of
8947  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
8948  * check to see if we have heard anything from the other end for the last
8949  * RTO period.  If we have, set the timer to expire for another
8950  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
8951  * RTO << 1 and check again when it expires.  Keep exponentially increasing
8952  * the timeout if we have not heard from the other side.  If for more than
8953  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
8954  * kill the connection unless the keepalive abort threshold is 0.  In
8955  * that case, we will probe "forever."
8956  */
8957 static void
8958 tcp_keepalive_killer(void *arg)
8959 {
8960 	mblk_t	*mp;
8961 	conn_t	*connp = (conn_t *)arg;
8962 	tcp_t  	*tcp = connp->conn_tcp;
8963 	int32_t	firetime;
8964 	int32_t	idletime;
8965 	int32_t	ka_intrvl;
8966 
8967 	tcp->tcp_ka_tid = 0;
8968 
8969 	if (tcp->tcp_fused)
8970 		return;
8971 
8972 	BUMP_MIB(&tcp_mib, tcpTimKeepalive);
8973 	ka_intrvl = tcp->tcp_ka_interval;
8974 
8975 	/*
8976 	 * Keepalive probe should only be sent if the application has not
8977 	 * done a close on the connection.
8978 	 */
8979 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
8980 		return;
8981 	}
8982 	/* Timer fired too early, restart it. */
8983 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
8984 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
8985 		    MSEC_TO_TICK(ka_intrvl));
8986 		return;
8987 	}
8988 
8989 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
8990 	/*
8991 	 * If we have not heard from the other side for a long
8992 	 * time, kill the connection unless the keepalive abort
8993 	 * threshold is 0.  In that case, we will probe "forever."
8994 	 */
8995 	if (tcp->tcp_ka_abort_thres != 0 &&
8996 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
8997 		BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop);
8998 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
8999 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
9000 		return;
9001 	}
9002 
9003 	if (tcp->tcp_snxt == tcp->tcp_suna &&
9004 	    idletime >= ka_intrvl) {
9005 		/* Fake resend of last ACKed byte. */
9006 		mblk_t	*mp1 = allocb(1, BPRI_LO);
9007 
9008 		if (mp1 != NULL) {
9009 			*mp1->b_wptr++ = '\0';
9010 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
9011 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
9012 			freeb(mp1);
9013 			/*
9014 			 * if allocation failed, fall through to start the
9015 			 * timer back.
9016 			 */
9017 			if (mp != NULL) {
9018 				TCP_RECORD_TRACE(tcp, mp,
9019 				    TCP_TRACE_SEND_PKT);
9020 				tcp_send_data(tcp, tcp->tcp_wq, mp);
9021 				BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe);
9022 				if (tcp->tcp_ka_last_intrvl != 0) {
9023 					/*
9024 					 * We should probe again at least
9025 					 * in ka_intrvl, but not more than
9026 					 * tcp_rexmit_interval_max.
9027 					 */
9028 					firetime = MIN(ka_intrvl - 1,
9029 					    tcp->tcp_ka_last_intrvl << 1);
9030 					if (firetime > tcp_rexmit_interval_max)
9031 						firetime =
9032 						    tcp_rexmit_interval_max;
9033 				} else {
9034 					firetime = tcp->tcp_rto;
9035 				}
9036 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9037 				    tcp_keepalive_killer,
9038 				    MSEC_TO_TICK(firetime));
9039 				tcp->tcp_ka_last_intrvl = firetime;
9040 				return;
9041 			}
9042 		}
9043 	} else {
9044 		tcp->tcp_ka_last_intrvl = 0;
9045 	}
9046 
9047 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
9048 	if ((firetime = ka_intrvl - idletime) < 0) {
9049 		firetime = ka_intrvl;
9050 	}
9051 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9052 	    MSEC_TO_TICK(firetime));
9053 }
9054 
9055 int
9056 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
9057 {
9058 	queue_t	*q = tcp->tcp_rq;
9059 	int32_t	mss = tcp->tcp_mss;
9060 	int	maxpsz;
9061 
9062 	if (TCP_IS_DETACHED(tcp))
9063 		return (mss);
9064 
9065 	if (tcp->tcp_fused) {
9066 		maxpsz = tcp_fuse_maxpsz_set(tcp);
9067 		mss = INFPSZ;
9068 	} else if (tcp->tcp_mdt || tcp->tcp_maxpsz == 0) {
9069 		/*
9070 		 * Set the sd_qn_maxpsz according to the socket send buffer
9071 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
9072 		 * instruct the stream head to copyin user data into contiguous
9073 		 * kernel-allocated buffers without breaking it up into smaller
9074 		 * chunks.  We round up the buffer size to the nearest SMSS.
9075 		 */
9076 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
9077 		if (tcp->tcp_kssl_ctx == NULL)
9078 			mss = INFPSZ;
9079 		else
9080 			mss = SSL3_MAX_RECORD_LEN;
9081 	} else {
9082 		/*
9083 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
9084 		 * (and a multiple of the mss).  This instructs the stream
9085 		 * head to break down larger than SMSS writes into SMSS-
9086 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
9087 		 */
9088 		maxpsz = tcp->tcp_maxpsz * mss;
9089 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
9090 			maxpsz = tcp->tcp_xmit_hiwater/2;
9091 			/* Round up to nearest mss */
9092 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
9093 		}
9094 	}
9095 	(void) setmaxps(q, maxpsz);
9096 	tcp->tcp_wq->q_maxpsz = maxpsz;
9097 
9098 	if (set_maxblk)
9099 		(void) mi_set_sth_maxblk(q, mss);
9100 
9101 	return (mss);
9102 }
9103 
9104 /*
9105  * Extract option values from a tcp header.  We put any found values into the
9106  * tcpopt struct and return a bitmask saying which options were found.
9107  */
9108 static int
9109 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
9110 {
9111 	uchar_t		*endp;
9112 	int		len;
9113 	uint32_t	mss;
9114 	uchar_t		*up = (uchar_t *)tcph;
9115 	int		found = 0;
9116 	int32_t		sack_len;
9117 	tcp_seq		sack_begin, sack_end;
9118 	tcp_t		*tcp;
9119 
9120 	endp = up + TCP_HDR_LENGTH(tcph);
9121 	up += TCP_MIN_HEADER_LENGTH;
9122 	while (up < endp) {
9123 		len = endp - up;
9124 		switch (*up) {
9125 		case TCPOPT_EOL:
9126 			break;
9127 
9128 		case TCPOPT_NOP:
9129 			up++;
9130 			continue;
9131 
9132 		case TCPOPT_MAXSEG:
9133 			if (len < TCPOPT_MAXSEG_LEN ||
9134 			    up[1] != TCPOPT_MAXSEG_LEN)
9135 				break;
9136 
9137 			mss = BE16_TO_U16(up+2);
9138 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9139 			tcpopt->tcp_opt_mss = mss;
9140 			found |= TCP_OPT_MSS_PRESENT;
9141 
9142 			up += TCPOPT_MAXSEG_LEN;
9143 			continue;
9144 
9145 		case TCPOPT_WSCALE:
9146 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9147 				break;
9148 
9149 			if (up[2] > TCP_MAX_WINSHIFT)
9150 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9151 			else
9152 				tcpopt->tcp_opt_wscale = up[2];
9153 			found |= TCP_OPT_WSCALE_PRESENT;
9154 
9155 			up += TCPOPT_WS_LEN;
9156 			continue;
9157 
9158 		case TCPOPT_SACK_PERMITTED:
9159 			if (len < TCPOPT_SACK_OK_LEN ||
9160 			    up[1] != TCPOPT_SACK_OK_LEN)
9161 				break;
9162 			found |= TCP_OPT_SACK_OK_PRESENT;
9163 			up += TCPOPT_SACK_OK_LEN;
9164 			continue;
9165 
9166 		case TCPOPT_SACK:
9167 			if (len <= 2 || up[1] <= 2 || len < up[1])
9168 				break;
9169 
9170 			/* If TCP is not interested in SACK blks... */
9171 			if ((tcp = tcpopt->tcp) == NULL) {
9172 				up += up[1];
9173 				continue;
9174 			}
9175 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9176 			up += TCPOPT_HEADER_LEN;
9177 
9178 			/*
9179 			 * If the list is empty, allocate one and assume
9180 			 * nothing is sack'ed.
9181 			 */
9182 			ASSERT(tcp->tcp_sack_info != NULL);
9183 			if (tcp->tcp_notsack_list == NULL) {
9184 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9185 				    tcp->tcp_suna, tcp->tcp_snxt,
9186 				    &(tcp->tcp_num_notsack_blk),
9187 				    &(tcp->tcp_cnt_notsack_list));
9188 
9189 				/*
9190 				 * Make sure tcp_notsack_list is not NULL.
9191 				 * This happens when kmem_alloc(KM_NOSLEEP)
9192 				 * returns NULL.
9193 				 */
9194 				if (tcp->tcp_notsack_list == NULL) {
9195 					up += sack_len;
9196 					continue;
9197 				}
9198 				tcp->tcp_fack = tcp->tcp_suna;
9199 			}
9200 
9201 			while (sack_len > 0) {
9202 				if (up + 8 > endp) {
9203 					up = endp;
9204 					break;
9205 				}
9206 				sack_begin = BE32_TO_U32(up);
9207 				up += 4;
9208 				sack_end = BE32_TO_U32(up);
9209 				up += 4;
9210 				sack_len -= 8;
9211 				/*
9212 				 * Bounds checking.  Make sure the SACK
9213 				 * info is within tcp_suna and tcp_snxt.
9214 				 * If this SACK blk is out of bound, ignore
9215 				 * it but continue to parse the following
9216 				 * blks.
9217 				 */
9218 				if (SEQ_LEQ(sack_end, sack_begin) ||
9219 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9220 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9221 					continue;
9222 				}
9223 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9224 				    sack_begin, sack_end,
9225 				    &(tcp->tcp_num_notsack_blk),
9226 				    &(tcp->tcp_cnt_notsack_list));
9227 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9228 					tcp->tcp_fack = sack_end;
9229 				}
9230 			}
9231 			found |= TCP_OPT_SACK_PRESENT;
9232 			continue;
9233 
9234 		case TCPOPT_TSTAMP:
9235 			if (len < TCPOPT_TSTAMP_LEN ||
9236 			    up[1] != TCPOPT_TSTAMP_LEN)
9237 				break;
9238 
9239 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9240 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9241 
9242 			found |= TCP_OPT_TSTAMP_PRESENT;
9243 
9244 			up += TCPOPT_TSTAMP_LEN;
9245 			continue;
9246 
9247 		default:
9248 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9249 				break;
9250 			up += up[1];
9251 			continue;
9252 		}
9253 		break;
9254 	}
9255 	return (found);
9256 }
9257 
9258 /*
9259  * Set the mss associated with a particular tcp based on its current value,
9260  * and a new one passed in. Observe minimums and maximums, and reset
9261  * other state variables that we want to view as multiples of mss.
9262  *
9263  * This function is called in various places mainly because
9264  * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the
9265  *    other side's SYN/SYN-ACK packet arrives.
9266  * 2) PMTUd may get us a new MSS.
9267  * 3) If the other side stops sending us timestamp option, we need to
9268  *    increase the MSS size to use the extra bytes available.
9269  */
9270 static void
9271 tcp_mss_set(tcp_t *tcp, uint32_t mss)
9272 {
9273 	uint32_t	mss_max;
9274 
9275 	if (tcp->tcp_ipversion == IPV4_VERSION)
9276 		mss_max = tcp_mss_max_ipv4;
9277 	else
9278 		mss_max = tcp_mss_max_ipv6;
9279 
9280 	if (mss < tcp_mss_min)
9281 		mss = tcp_mss_min;
9282 	if (mss > mss_max)
9283 		mss = mss_max;
9284 	/*
9285 	 * Unless naglim has been set by our client to
9286 	 * a non-mss value, force naglim to track mss.
9287 	 * This can help to aggregate small writes.
9288 	 */
9289 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9290 		tcp->tcp_naglim = mss;
9291 	/*
9292 	 * TCP should be able to buffer at least 4 MSS data for obvious
9293 	 * performance reason.
9294 	 */
9295 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9296 		tcp->tcp_xmit_hiwater = mss << 2;
9297 
9298 	/*
9299 	 * Check if we need to apply the tcp_init_cwnd here.  If
9300 	 * it is set and the MSS gets bigger (should not happen
9301 	 * normally), we need to adjust the resulting tcp_cwnd properly.
9302 	 * The new tcp_cwnd should not get bigger.
9303 	 */
9304 	if (tcp->tcp_init_cwnd == 0) {
9305 		tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss,
9306 		    MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss)));
9307 	} else {
9308 		if (tcp->tcp_mss < mss) {
9309 			tcp->tcp_cwnd = MAX(1,
9310 			    (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss;
9311 		} else {
9312 			tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss;
9313 		}
9314 	}
9315 	tcp->tcp_mss = mss;
9316 	tcp->tcp_cwnd_cnt = 0;
9317 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9318 }
9319 
9320 static int
9321 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9322 {
9323 	tcp_t		*tcp = NULL;
9324 	conn_t		*connp;
9325 	int		err;
9326 	dev_t		conn_dev;
9327 	zoneid_t	zoneid = getzoneid();
9328 
9329 	/*
9330 	 * Special case for install: miniroot needs to be able to access files
9331 	 * via NFS as though it were always in the global zone.
9332 	 */
9333 	if (credp == kcred && nfs_global_client_only != 0)
9334 		zoneid = GLOBAL_ZONEID;
9335 
9336 	if (q->q_ptr != NULL)
9337 		return (0);
9338 
9339 	if (sflag == MODOPEN) {
9340 		/*
9341 		 * This is a special case. The purpose of a modopen
9342 		 * is to allow just the T_SVR4_OPTMGMT_REQ to pass
9343 		 * through for MIB browsers. Everything else is failed.
9344 		 */
9345 		connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt));
9346 
9347 		if (connp == NULL)
9348 			return (ENOMEM);
9349 
9350 		connp->conn_flags |= IPCL_TCPMOD;
9351 		connp->conn_cred = credp;
9352 		connp->conn_zoneid = zoneid;
9353 		q->q_ptr = WR(q)->q_ptr = connp;
9354 		crhold(credp);
9355 		q->q_qinfo = &tcp_mod_rinit;
9356 		WR(q)->q_qinfo = &tcp_mod_winit;
9357 		qprocson(q);
9358 		return (0);
9359 	}
9360 
9361 	if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0)
9362 		return (EBUSY);
9363 
9364 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
9365 
9366 	if (flag & SO_ACCEPTOR) {
9367 		q->q_qinfo = &tcp_acceptor_rinit;
9368 		q->q_ptr = (void *)conn_dev;
9369 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9370 		WR(q)->q_ptr = (void *)conn_dev;
9371 		qprocson(q);
9372 		return (0);
9373 	}
9374 
9375 	connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt));
9376 	if (connp == NULL) {
9377 		inet_minor_free(ip_minor_arena, conn_dev);
9378 		q->q_ptr = NULL;
9379 		return (ENOSR);
9380 	}
9381 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
9382 	tcp = connp->conn_tcp;
9383 
9384 	q->q_ptr = WR(q)->q_ptr = connp;
9385 	if (getmajor(*devp) == TCP6_MAJ) {
9386 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9387 		connp->conn_send = ip_output_v6;
9388 		connp->conn_af_isv6 = B_TRUE;
9389 		connp->conn_pkt_isv6 = B_TRUE;
9390 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9391 		tcp->tcp_ipversion = IPV6_VERSION;
9392 		tcp->tcp_family = AF_INET6;
9393 		tcp->tcp_mss = tcp_mss_def_ipv6;
9394 	} else {
9395 		connp->conn_flags |= IPCL_TCP4;
9396 		connp->conn_send = ip_output;
9397 		connp->conn_af_isv6 = B_FALSE;
9398 		connp->conn_pkt_isv6 = B_FALSE;
9399 		tcp->tcp_ipversion = IPV4_VERSION;
9400 		tcp->tcp_family = AF_INET;
9401 		tcp->tcp_mss = tcp_mss_def_ipv4;
9402 	}
9403 
9404 	/*
9405 	 * TCP keeps a copy of cred for cache locality reasons but
9406 	 * we put a reference only once. If connp->conn_cred
9407 	 * becomes invalid, tcp_cred should also be set to NULL.
9408 	 */
9409 	tcp->tcp_cred = connp->conn_cred = credp;
9410 	crhold(connp->conn_cred);
9411 	tcp->tcp_cpid = curproc->p_pid;
9412 	connp->conn_zoneid = zoneid;
9413 	connp->conn_mlp_type = mlptSingle;
9414 	connp->conn_ulp_labeled = !is_system_labeled();
9415 
9416 	/*
9417 	 * If the caller has the process-wide flag set, then default to MAC
9418 	 * exempt mode.  This allows read-down to unlabeled hosts.
9419 	 */
9420 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9421 		connp->conn_mac_exempt = B_TRUE;
9422 
9423 	connp->conn_dev = conn_dev;
9424 
9425 	ASSERT(q->q_qinfo == &tcp_rinit);
9426 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9427 
9428 	if (flag & SO_SOCKSTR) {
9429 		/*
9430 		 * No need to insert a socket in tcp acceptor hash.
9431 		 * If it was a socket acceptor stream, we dealt with
9432 		 * it above. A socket listener can never accept a
9433 		 * connection and doesn't need acceptor_id.
9434 		 */
9435 		connp->conn_flags |= IPCL_SOCKET;
9436 		tcp->tcp_issocket = 1;
9437 		WR(q)->q_qinfo = &tcp_sock_winit;
9438 	} else {
9439 #ifdef	_ILP32
9440 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9441 #else
9442 		tcp->tcp_acceptor_id = conn_dev;
9443 #endif	/* _ILP32 */
9444 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9445 	}
9446 
9447 	if (tcp_trace)
9448 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP);
9449 
9450 	err = tcp_init(tcp, q);
9451 	if (err != 0) {
9452 		inet_minor_free(ip_minor_arena, connp->conn_dev);
9453 		tcp_acceptor_hash_remove(tcp);
9454 		CONN_DEC_REF(connp);
9455 		q->q_ptr = WR(q)->q_ptr = NULL;
9456 		return (err);
9457 	}
9458 
9459 	RD(q)->q_hiwat = tcp_recv_hiwat;
9460 	tcp->tcp_rwnd = tcp_recv_hiwat;
9461 
9462 	/* Non-zero default values */
9463 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9464 	/*
9465 	 * Put the ref for TCP. Ref for IP was already put
9466 	 * by ipcl_conn_create. Also Make the conn_t globally
9467 	 * visible to walkers
9468 	 */
9469 	mutex_enter(&connp->conn_lock);
9470 	CONN_INC_REF_LOCKED(connp);
9471 	ASSERT(connp->conn_ref == 2);
9472 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9473 	mutex_exit(&connp->conn_lock);
9474 
9475 	qprocson(q);
9476 	return (0);
9477 }
9478 
9479 /*
9480  * Some TCP options can be "set" by requesting them in the option
9481  * buffer. This is needed for XTI feature test though we do not
9482  * allow it in general. We interpret that this mechanism is more
9483  * applicable to OSI protocols and need not be allowed in general.
9484  * This routine filters out options for which it is not allowed (most)
9485  * and lets through those (few) for which it is. [ The XTI interface
9486  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9487  * ever implemented will have to be allowed here ].
9488  */
9489 static boolean_t
9490 tcp_allow_connopt_set(int level, int name)
9491 {
9492 
9493 	switch (level) {
9494 	case IPPROTO_TCP:
9495 		switch (name) {
9496 		case TCP_NODELAY:
9497 			return (B_TRUE);
9498 		default:
9499 			return (B_FALSE);
9500 		}
9501 		/*NOTREACHED*/
9502 	default:
9503 		return (B_FALSE);
9504 	}
9505 	/*NOTREACHED*/
9506 }
9507 
9508 /*
9509  * This routine gets default values of certain options whose default
9510  * values are maintained by protocol specific code
9511  */
9512 /* ARGSUSED */
9513 int
9514 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9515 {
9516 	int32_t	*i1 = (int32_t *)ptr;
9517 
9518 	switch (level) {
9519 	case IPPROTO_TCP:
9520 		switch (name) {
9521 		case TCP_NOTIFY_THRESHOLD:
9522 			*i1 = tcp_ip_notify_interval;
9523 			break;
9524 		case TCP_ABORT_THRESHOLD:
9525 			*i1 = tcp_ip_abort_interval;
9526 			break;
9527 		case TCP_CONN_NOTIFY_THRESHOLD:
9528 			*i1 = tcp_ip_notify_cinterval;
9529 			break;
9530 		case TCP_CONN_ABORT_THRESHOLD:
9531 			*i1 = tcp_ip_abort_cinterval;
9532 			break;
9533 		default:
9534 			return (-1);
9535 		}
9536 		break;
9537 	case IPPROTO_IP:
9538 		switch (name) {
9539 		case IP_TTL:
9540 			*i1 = tcp_ipv4_ttl;
9541 			break;
9542 		default:
9543 			return (-1);
9544 		}
9545 		break;
9546 	case IPPROTO_IPV6:
9547 		switch (name) {
9548 		case IPV6_UNICAST_HOPS:
9549 			*i1 = tcp_ipv6_hoplimit;
9550 			break;
9551 		default:
9552 			return (-1);
9553 		}
9554 		break;
9555 	default:
9556 		return (-1);
9557 	}
9558 	return (sizeof (int));
9559 }
9560 
9561 
9562 /*
9563  * TCP routine to get the values of options.
9564  */
9565 int
9566 tcp_opt_get(queue_t *q, int level, int	name, uchar_t *ptr)
9567 {
9568 	int		*i1 = (int *)ptr;
9569 	conn_t		*connp = Q_TO_CONN(q);
9570 	tcp_t		*tcp = connp->conn_tcp;
9571 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9572 
9573 	switch (level) {
9574 	case SOL_SOCKET:
9575 		switch (name) {
9576 		case SO_LINGER:	{
9577 			struct linger *lgr = (struct linger *)ptr;
9578 
9579 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9580 			lgr->l_linger = tcp->tcp_lingertime;
9581 			}
9582 			return (sizeof (struct linger));
9583 		case SO_DEBUG:
9584 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9585 			break;
9586 		case SO_KEEPALIVE:
9587 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9588 			break;
9589 		case SO_DONTROUTE:
9590 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9591 			break;
9592 		case SO_USELOOPBACK:
9593 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9594 			break;
9595 		case SO_BROADCAST:
9596 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9597 			break;
9598 		case SO_REUSEADDR:
9599 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9600 			break;
9601 		case SO_OOBINLINE:
9602 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9603 			break;
9604 		case SO_DGRAM_ERRIND:
9605 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9606 			break;
9607 		case SO_TYPE:
9608 			*i1 = SOCK_STREAM;
9609 			break;
9610 		case SO_SNDBUF:
9611 			*i1 = tcp->tcp_xmit_hiwater;
9612 			break;
9613 		case SO_RCVBUF:
9614 			*i1 = RD(q)->q_hiwat;
9615 			break;
9616 		case SO_SND_COPYAVOID:
9617 			*i1 = tcp->tcp_snd_zcopy_on ?
9618 			    SO_SND_COPYAVOID : 0;
9619 			break;
9620 		case SO_ALLZONES:
9621 			*i1 = connp->conn_allzones ? 1 : 0;
9622 			break;
9623 		case SO_ANON_MLP:
9624 			*i1 = connp->conn_anon_mlp;
9625 			break;
9626 		case SO_MAC_EXEMPT:
9627 			*i1 = connp->conn_mac_exempt;
9628 			break;
9629 		case SO_EXCLBIND:
9630 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
9631 			break;
9632 		default:
9633 			return (-1);
9634 		}
9635 		break;
9636 	case IPPROTO_TCP:
9637 		switch (name) {
9638 		case TCP_NODELAY:
9639 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
9640 			break;
9641 		case TCP_MAXSEG:
9642 			*i1 = tcp->tcp_mss;
9643 			break;
9644 		case TCP_NOTIFY_THRESHOLD:
9645 			*i1 = (int)tcp->tcp_first_timer_threshold;
9646 			break;
9647 		case TCP_ABORT_THRESHOLD:
9648 			*i1 = tcp->tcp_second_timer_threshold;
9649 			break;
9650 		case TCP_CONN_NOTIFY_THRESHOLD:
9651 			*i1 = tcp->tcp_first_ctimer_threshold;
9652 			break;
9653 		case TCP_CONN_ABORT_THRESHOLD:
9654 			*i1 = tcp->tcp_second_ctimer_threshold;
9655 			break;
9656 		case TCP_RECVDSTADDR:
9657 			*i1 = tcp->tcp_recvdstaddr;
9658 			break;
9659 		case TCP_ANONPRIVBIND:
9660 			*i1 = tcp->tcp_anon_priv_bind;
9661 			break;
9662 		case TCP_EXCLBIND:
9663 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
9664 			break;
9665 		case TCP_INIT_CWND:
9666 			*i1 = tcp->tcp_init_cwnd;
9667 			break;
9668 		case TCP_KEEPALIVE_THRESHOLD:
9669 			*i1 = tcp->tcp_ka_interval;
9670 			break;
9671 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
9672 			*i1 = tcp->tcp_ka_abort_thres;
9673 			break;
9674 		case TCP_CORK:
9675 			*i1 = tcp->tcp_cork;
9676 			break;
9677 		default:
9678 			return (-1);
9679 		}
9680 		break;
9681 	case IPPROTO_IP:
9682 		if (tcp->tcp_family != AF_INET)
9683 			return (-1);
9684 		switch (name) {
9685 		case IP_OPTIONS:
9686 		case T_IP_OPTIONS: {
9687 			/*
9688 			 * This is compatible with BSD in that in only return
9689 			 * the reverse source route with the final destination
9690 			 * as the last entry. The first 4 bytes of the option
9691 			 * will contain the final destination.
9692 			 */
9693 			int	opt_len;
9694 
9695 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
9696 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
9697 			ASSERT(opt_len >= 0);
9698 			/* Caller ensures enough space */
9699 			if (opt_len > 0) {
9700 				/*
9701 				 * TODO: Do we have to handle getsockopt on an
9702 				 * initiator as well?
9703 				 */
9704 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
9705 			}
9706 			return (0);
9707 			}
9708 		case IP_TOS:
9709 		case T_IP_TOS:
9710 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
9711 			break;
9712 		case IP_TTL:
9713 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
9714 			break;
9715 		case IP_NEXTHOP:
9716 			/* Handled at IP level */
9717 			return (-EINVAL);
9718 		default:
9719 			return (-1);
9720 		}
9721 		break;
9722 	case IPPROTO_IPV6:
9723 		/*
9724 		 * IPPROTO_IPV6 options are only supported for sockets
9725 		 * that are using IPv6 on the wire.
9726 		 */
9727 		if (tcp->tcp_ipversion != IPV6_VERSION) {
9728 			return (-1);
9729 		}
9730 		switch (name) {
9731 		case IPV6_UNICAST_HOPS:
9732 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
9733 			break;	/* goto sizeof (int) option return */
9734 		case IPV6_BOUND_IF:
9735 			/* Zero if not set */
9736 			*i1 = tcp->tcp_bound_if;
9737 			break;	/* goto sizeof (int) option return */
9738 		case IPV6_RECVPKTINFO:
9739 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
9740 				*i1 = 1;
9741 			else
9742 				*i1 = 0;
9743 			break;	/* goto sizeof (int) option return */
9744 		case IPV6_RECVTCLASS:
9745 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
9746 				*i1 = 1;
9747 			else
9748 				*i1 = 0;
9749 			break;	/* goto sizeof (int) option return */
9750 		case IPV6_RECVHOPLIMIT:
9751 			if (tcp->tcp_ipv6_recvancillary &
9752 			    TCP_IPV6_RECVHOPLIMIT)
9753 				*i1 = 1;
9754 			else
9755 				*i1 = 0;
9756 			break;	/* goto sizeof (int) option return */
9757 		case IPV6_RECVHOPOPTS:
9758 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
9759 				*i1 = 1;
9760 			else
9761 				*i1 = 0;
9762 			break;	/* goto sizeof (int) option return */
9763 		case IPV6_RECVDSTOPTS:
9764 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
9765 				*i1 = 1;
9766 			else
9767 				*i1 = 0;
9768 			break;	/* goto sizeof (int) option return */
9769 		case _OLD_IPV6_RECVDSTOPTS:
9770 			if (tcp->tcp_ipv6_recvancillary &
9771 			    TCP_OLD_IPV6_RECVDSTOPTS)
9772 				*i1 = 1;
9773 			else
9774 				*i1 = 0;
9775 			break;	/* goto sizeof (int) option return */
9776 		case IPV6_RECVRTHDR:
9777 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
9778 				*i1 = 1;
9779 			else
9780 				*i1 = 0;
9781 			break;	/* goto sizeof (int) option return */
9782 		case IPV6_RECVRTHDRDSTOPTS:
9783 			if (tcp->tcp_ipv6_recvancillary &
9784 			    TCP_IPV6_RECVRTDSTOPTS)
9785 				*i1 = 1;
9786 			else
9787 				*i1 = 0;
9788 			break;	/* goto sizeof (int) option return */
9789 		case IPV6_PKTINFO: {
9790 			/* XXX assumes that caller has room for max size! */
9791 			struct in6_pktinfo *pkti;
9792 
9793 			pkti = (struct in6_pktinfo *)ptr;
9794 			if (ipp->ipp_fields & IPPF_IFINDEX)
9795 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
9796 			else
9797 				pkti->ipi6_ifindex = 0;
9798 			if (ipp->ipp_fields & IPPF_ADDR)
9799 				pkti->ipi6_addr = ipp->ipp_addr;
9800 			else
9801 				pkti->ipi6_addr = ipv6_all_zeros;
9802 			return (sizeof (struct in6_pktinfo));
9803 		}
9804 		case IPV6_TCLASS:
9805 			if (ipp->ipp_fields & IPPF_TCLASS)
9806 				*i1 = ipp->ipp_tclass;
9807 			else
9808 				*i1 = IPV6_FLOW_TCLASS(
9809 				    IPV6_DEFAULT_VERS_AND_FLOW);
9810 			break;	/* goto sizeof (int) option return */
9811 		case IPV6_NEXTHOP: {
9812 			sin6_t *sin6 = (sin6_t *)ptr;
9813 
9814 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
9815 				return (0);
9816 			*sin6 = sin6_null;
9817 			sin6->sin6_family = AF_INET6;
9818 			sin6->sin6_addr = ipp->ipp_nexthop;
9819 			return (sizeof (sin6_t));
9820 		}
9821 		case IPV6_HOPOPTS:
9822 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
9823 				return (0);
9824 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
9825 				return (0);
9826 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
9827 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
9828 			if (tcp->tcp_label_len > 0) {
9829 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
9830 				ptr[1] = (ipp->ipp_hopoptslen -
9831 				    tcp->tcp_label_len + 7) / 8 - 1;
9832 			}
9833 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
9834 		case IPV6_RTHDRDSTOPTS:
9835 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
9836 				return (0);
9837 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
9838 			return (ipp->ipp_rtdstoptslen);
9839 		case IPV6_RTHDR:
9840 			if (!(ipp->ipp_fields & IPPF_RTHDR))
9841 				return (0);
9842 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
9843 			return (ipp->ipp_rthdrlen);
9844 		case IPV6_DSTOPTS:
9845 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
9846 				return (0);
9847 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
9848 			return (ipp->ipp_dstoptslen);
9849 		case IPV6_SRC_PREFERENCES:
9850 			return (ip6_get_src_preferences(connp,
9851 			    (uint32_t *)ptr));
9852 		case IPV6_PATHMTU: {
9853 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
9854 
9855 			if (tcp->tcp_state < TCPS_ESTABLISHED)
9856 				return (-1);
9857 
9858 			return (ip_fill_mtuinfo(&connp->conn_remv6,
9859 				connp->conn_fport, mtuinfo));
9860 		}
9861 		default:
9862 			return (-1);
9863 		}
9864 		break;
9865 	default:
9866 		return (-1);
9867 	}
9868 	return (sizeof (int));
9869 }
9870 
9871 /*
9872  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
9873  * Parameters are assumed to be verified by the caller.
9874  */
9875 /* ARGSUSED */
9876 int
9877 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name,
9878     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
9879     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
9880 {
9881 	conn_t	*connp = Q_TO_CONN(q);
9882 	tcp_t	*tcp = connp->conn_tcp;
9883 	int	*i1 = (int *)invalp;
9884 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
9885 	boolean_t checkonly;
9886 	int	reterr;
9887 
9888 	switch (optset_context) {
9889 	case SETFN_OPTCOM_CHECKONLY:
9890 		checkonly = B_TRUE;
9891 		/*
9892 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
9893 		 * inlen != 0 implies value supplied and
9894 		 * 	we have to "pretend" to set it.
9895 		 * inlen == 0 implies that there is no
9896 		 * 	value part in T_CHECK request and just validation
9897 		 * done elsewhere should be enough, we just return here.
9898 		 */
9899 		if (inlen == 0) {
9900 			*outlenp = 0;
9901 			return (0);
9902 		}
9903 		break;
9904 	case SETFN_OPTCOM_NEGOTIATE:
9905 		checkonly = B_FALSE;
9906 		break;
9907 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
9908 	case SETFN_CONN_NEGOTIATE:
9909 		checkonly = B_FALSE;
9910 		/*
9911 		 * Negotiating local and "association-related" options
9912 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
9913 		 * primitives is allowed by XTI, but we choose
9914 		 * to not implement this style negotiation for Internet
9915 		 * protocols (We interpret it is a must for OSI world but
9916 		 * optional for Internet protocols) for all options.
9917 		 * [ Will do only for the few options that enable test
9918 		 * suites that our XTI implementation of this feature
9919 		 * works for transports that do allow it ]
9920 		 */
9921 		if (!tcp_allow_connopt_set(level, name)) {
9922 			*outlenp = 0;
9923 			return (EINVAL);
9924 		}
9925 		break;
9926 	default:
9927 		/*
9928 		 * We should never get here
9929 		 */
9930 		*outlenp = 0;
9931 		return (EINVAL);
9932 	}
9933 
9934 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
9935 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
9936 
9937 	/*
9938 	 * For TCP, we should have no ancillary data sent down
9939 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
9940 	 * has to be zero.
9941 	 */
9942 	ASSERT(thisdg_attrs == NULL);
9943 
9944 	/*
9945 	 * For fixed length options, no sanity check
9946 	 * of passed in length is done. It is assumed *_optcom_req()
9947 	 * routines do the right thing.
9948 	 */
9949 
9950 	switch (level) {
9951 	case SOL_SOCKET:
9952 		switch (name) {
9953 		case SO_LINGER: {
9954 			struct linger *lgr = (struct linger *)invalp;
9955 
9956 			if (!checkonly) {
9957 				if (lgr->l_onoff) {
9958 					tcp->tcp_linger = 1;
9959 					tcp->tcp_lingertime = lgr->l_linger;
9960 				} else {
9961 					tcp->tcp_linger = 0;
9962 					tcp->tcp_lingertime = 0;
9963 				}
9964 				/* struct copy */
9965 				*(struct linger *)outvalp = *lgr;
9966 			} else {
9967 				if (!lgr->l_onoff) {
9968 				    ((struct linger *)outvalp)->l_onoff = 0;
9969 				    ((struct linger *)outvalp)->l_linger = 0;
9970 				} else {
9971 				    /* struct copy */
9972 				    *(struct linger *)outvalp = *lgr;
9973 				}
9974 			}
9975 			*outlenp = sizeof (struct linger);
9976 			return (0);
9977 		}
9978 		case SO_DEBUG:
9979 			if (!checkonly)
9980 				tcp->tcp_debug = onoff;
9981 			break;
9982 		case SO_KEEPALIVE:
9983 			if (checkonly) {
9984 				/* T_CHECK case */
9985 				break;
9986 			}
9987 
9988 			if (!onoff) {
9989 				if (tcp->tcp_ka_enabled) {
9990 					if (tcp->tcp_ka_tid != 0) {
9991 						(void) TCP_TIMER_CANCEL(tcp,
9992 						    tcp->tcp_ka_tid);
9993 						tcp->tcp_ka_tid = 0;
9994 					}
9995 					tcp->tcp_ka_enabled = 0;
9996 				}
9997 				break;
9998 			}
9999 			if (!tcp->tcp_ka_enabled) {
10000 				/* Crank up the keepalive timer */
10001 				tcp->tcp_ka_last_intrvl = 0;
10002 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
10003 				    tcp_keepalive_killer,
10004 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
10005 				tcp->tcp_ka_enabled = 1;
10006 			}
10007 			break;
10008 		case SO_DONTROUTE:
10009 			/*
10010 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10011 			 * only of interest to IP.  We track them here only so
10012 			 * that we can report their current value.
10013 			 */
10014 			if (!checkonly) {
10015 				tcp->tcp_dontroute = onoff;
10016 				tcp->tcp_connp->conn_dontroute = onoff;
10017 			}
10018 			break;
10019 		case SO_USELOOPBACK:
10020 			if (!checkonly) {
10021 				tcp->tcp_useloopback = onoff;
10022 				tcp->tcp_connp->conn_loopback = onoff;
10023 			}
10024 			break;
10025 		case SO_BROADCAST:
10026 			if (!checkonly) {
10027 				tcp->tcp_broadcast = onoff;
10028 				tcp->tcp_connp->conn_broadcast = onoff;
10029 			}
10030 			break;
10031 		case SO_REUSEADDR:
10032 			if (!checkonly) {
10033 				tcp->tcp_reuseaddr = onoff;
10034 				tcp->tcp_connp->conn_reuseaddr = onoff;
10035 			}
10036 			break;
10037 		case SO_OOBINLINE:
10038 			if (!checkonly)
10039 				tcp->tcp_oobinline = onoff;
10040 			break;
10041 		case SO_DGRAM_ERRIND:
10042 			if (!checkonly)
10043 				tcp->tcp_dgram_errind = onoff;
10044 			break;
10045 		case SO_SNDBUF: {
10046 			tcp_t *peer_tcp;
10047 
10048 			if (*i1 > tcp_max_buf) {
10049 				*outlenp = 0;
10050 				return (ENOBUFS);
10051 			}
10052 			if (checkonly)
10053 				break;
10054 
10055 			tcp->tcp_xmit_hiwater = *i1;
10056 			if (tcp_snd_lowat_fraction != 0)
10057 				tcp->tcp_xmit_lowater =
10058 				    tcp->tcp_xmit_hiwater /
10059 				    tcp_snd_lowat_fraction;
10060 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10061 			/*
10062 			 * If we are flow-controlled, recheck the condition.
10063 			 * There are apps that increase SO_SNDBUF size when
10064 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10065 			 * control condition to be lifted right away.
10066 			 *
10067 			 * For the fused tcp loopback case, in order to avoid
10068 			 * a race with the peer's tcp_fuse_rrw() we need to
10069 			 * hold its fuse_lock while accessing tcp_flow_stopped.
10070 			 */
10071 			peer_tcp = tcp->tcp_loopback_peer;
10072 			ASSERT(!tcp->tcp_fused || peer_tcp != NULL);
10073 			if (tcp->tcp_fused)
10074 				mutex_enter(&peer_tcp->tcp_fuse_lock);
10075 
10076 			if (tcp->tcp_flow_stopped &&
10077 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10078 				tcp_clrqfull(tcp);
10079 			}
10080 			if (tcp->tcp_fused)
10081 				mutex_exit(&peer_tcp->tcp_fuse_lock);
10082 			break;
10083 		}
10084 		case SO_RCVBUF:
10085 			if (*i1 > tcp_max_buf) {
10086 				*outlenp = 0;
10087 				return (ENOBUFS);
10088 			}
10089 			/* Silently ignore zero */
10090 			if (!checkonly && *i1 != 0) {
10091 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10092 				(void) tcp_rwnd_set(tcp, *i1);
10093 			}
10094 			/*
10095 			 * XXX should we return the rwnd here
10096 			 * and tcp_opt_get ?
10097 			 */
10098 			break;
10099 		case SO_SND_COPYAVOID:
10100 			if (!checkonly) {
10101 				/* we only allow enable at most once for now */
10102 				if (tcp->tcp_loopback ||
10103 				    (!tcp->tcp_snd_zcopy_aware &&
10104 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10105 					*outlenp = 0;
10106 					return (EOPNOTSUPP);
10107 				}
10108 				tcp->tcp_snd_zcopy_aware = 1;
10109 			}
10110 			break;
10111 		case SO_ALLZONES:
10112 			/* Handled at the IP level */
10113 			return (-EINVAL);
10114 		case SO_ANON_MLP:
10115 			if (!checkonly) {
10116 				mutex_enter(&connp->conn_lock);
10117 				connp->conn_anon_mlp = onoff;
10118 				mutex_exit(&connp->conn_lock);
10119 			}
10120 			break;
10121 		case SO_MAC_EXEMPT:
10122 			if (secpolicy_net_mac_aware(cr) != 0 ||
10123 			    IPCL_IS_BOUND(connp))
10124 				return (EACCES);
10125 			if (!checkonly) {
10126 				mutex_enter(&connp->conn_lock);
10127 				connp->conn_mac_exempt = onoff;
10128 				mutex_exit(&connp->conn_lock);
10129 			}
10130 			break;
10131 		case SO_EXCLBIND:
10132 			if (!checkonly)
10133 				tcp->tcp_exclbind = onoff;
10134 			break;
10135 		default:
10136 			*outlenp = 0;
10137 			return (EINVAL);
10138 		}
10139 		break;
10140 	case IPPROTO_TCP:
10141 		switch (name) {
10142 		case TCP_NODELAY:
10143 			if (!checkonly)
10144 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10145 			break;
10146 		case TCP_NOTIFY_THRESHOLD:
10147 			if (!checkonly)
10148 				tcp->tcp_first_timer_threshold = *i1;
10149 			break;
10150 		case TCP_ABORT_THRESHOLD:
10151 			if (!checkonly)
10152 				tcp->tcp_second_timer_threshold = *i1;
10153 			break;
10154 		case TCP_CONN_NOTIFY_THRESHOLD:
10155 			if (!checkonly)
10156 				tcp->tcp_first_ctimer_threshold = *i1;
10157 			break;
10158 		case TCP_CONN_ABORT_THRESHOLD:
10159 			if (!checkonly)
10160 				tcp->tcp_second_ctimer_threshold = *i1;
10161 			break;
10162 		case TCP_RECVDSTADDR:
10163 			if (tcp->tcp_state > TCPS_LISTEN)
10164 				return (EOPNOTSUPP);
10165 			if (!checkonly)
10166 				tcp->tcp_recvdstaddr = onoff;
10167 			break;
10168 		case TCP_ANONPRIVBIND:
10169 			if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) {
10170 				*outlenp = 0;
10171 				return (reterr);
10172 			}
10173 			if (!checkonly) {
10174 				tcp->tcp_anon_priv_bind = onoff;
10175 			}
10176 			break;
10177 		case TCP_EXCLBIND:
10178 			if (!checkonly)
10179 				tcp->tcp_exclbind = onoff;
10180 			break;	/* goto sizeof (int) option return */
10181 		case TCP_INIT_CWND: {
10182 			uint32_t init_cwnd = *((uint32_t *)invalp);
10183 
10184 			if (checkonly)
10185 				break;
10186 
10187 			/*
10188 			 * Only allow socket with network configuration
10189 			 * privilege to set the initial cwnd to be larger
10190 			 * than allowed by RFC 3390.
10191 			 */
10192 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10193 				tcp->tcp_init_cwnd = init_cwnd;
10194 				break;
10195 			}
10196 			if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) {
10197 				*outlenp = 0;
10198 				return (reterr);
10199 			}
10200 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10201 				*outlenp = 0;
10202 				return (EINVAL);
10203 			}
10204 			tcp->tcp_init_cwnd = init_cwnd;
10205 			break;
10206 		}
10207 		case TCP_KEEPALIVE_THRESHOLD:
10208 			if (checkonly)
10209 				break;
10210 
10211 			if (*i1 < tcp_keepalive_interval_low ||
10212 			    *i1 > tcp_keepalive_interval_high) {
10213 				*outlenp = 0;
10214 				return (EINVAL);
10215 			}
10216 			if (*i1 != tcp->tcp_ka_interval) {
10217 				tcp->tcp_ka_interval = *i1;
10218 				/*
10219 				 * Check if we need to restart the
10220 				 * keepalive timer.
10221 				 */
10222 				if (tcp->tcp_ka_tid != 0) {
10223 					ASSERT(tcp->tcp_ka_enabled);
10224 					(void) TCP_TIMER_CANCEL(tcp,
10225 					    tcp->tcp_ka_tid);
10226 					tcp->tcp_ka_last_intrvl = 0;
10227 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10228 					    tcp_keepalive_killer,
10229 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10230 				}
10231 			}
10232 			break;
10233 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10234 			if (!checkonly) {
10235 				if (*i1 < tcp_keepalive_abort_interval_low ||
10236 				    *i1 > tcp_keepalive_abort_interval_high) {
10237 					*outlenp = 0;
10238 					return (EINVAL);
10239 				}
10240 				tcp->tcp_ka_abort_thres = *i1;
10241 			}
10242 			break;
10243 		case TCP_CORK:
10244 			if (!checkonly) {
10245 				/*
10246 				 * if tcp->tcp_cork was set and is now
10247 				 * being unset, we have to make sure that
10248 				 * the remaining data gets sent out. Also
10249 				 * unset tcp->tcp_cork so that tcp_wput_data()
10250 				 * can send data even if it is less than mss
10251 				 */
10252 				if (tcp->tcp_cork && onoff == 0 &&
10253 				    tcp->tcp_unsent > 0) {
10254 					tcp->tcp_cork = B_FALSE;
10255 					tcp_wput_data(tcp, NULL, B_FALSE);
10256 				}
10257 				tcp->tcp_cork = onoff;
10258 			}
10259 			break;
10260 		default:
10261 			*outlenp = 0;
10262 			return (EINVAL);
10263 		}
10264 		break;
10265 	case IPPROTO_IP:
10266 		if (tcp->tcp_family != AF_INET) {
10267 			*outlenp = 0;
10268 			return (ENOPROTOOPT);
10269 		}
10270 		switch (name) {
10271 		case IP_OPTIONS:
10272 		case T_IP_OPTIONS:
10273 			reterr = tcp_opt_set_header(tcp, checkonly,
10274 			    invalp, inlen);
10275 			if (reterr) {
10276 				*outlenp = 0;
10277 				return (reterr);
10278 			}
10279 			/* OK return - copy input buffer into output buffer */
10280 			if (invalp != outvalp) {
10281 				/* don't trust bcopy for identical src/dst */
10282 				bcopy(invalp, outvalp, inlen);
10283 			}
10284 			*outlenp = inlen;
10285 			return (0);
10286 		case IP_TOS:
10287 		case T_IP_TOS:
10288 			if (!checkonly) {
10289 				tcp->tcp_ipha->ipha_type_of_service =
10290 				    (uchar_t)*i1;
10291 				tcp->tcp_tos = (uchar_t)*i1;
10292 			}
10293 			break;
10294 		case IP_TTL:
10295 			if (!checkonly) {
10296 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10297 				tcp->tcp_ttl = (uchar_t)*i1;
10298 			}
10299 			break;
10300 		case IP_BOUND_IF:
10301 		case IP_NEXTHOP:
10302 			/* Handled at the IP level */
10303 			return (-EINVAL);
10304 		case IP_SEC_OPT:
10305 			/*
10306 			 * We should not allow policy setting after
10307 			 * we start listening for connections.
10308 			 */
10309 			if (tcp->tcp_state == TCPS_LISTEN) {
10310 				return (EINVAL);
10311 			} else {
10312 				/* Handled at the IP level */
10313 				return (-EINVAL);
10314 			}
10315 		default:
10316 			*outlenp = 0;
10317 			return (EINVAL);
10318 		}
10319 		break;
10320 	case IPPROTO_IPV6: {
10321 		ip6_pkt_t		*ipp;
10322 
10323 		/*
10324 		 * IPPROTO_IPV6 options are only supported for sockets
10325 		 * that are using IPv6 on the wire.
10326 		 */
10327 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10328 			*outlenp = 0;
10329 			return (ENOPROTOOPT);
10330 		}
10331 		/*
10332 		 * Only sticky options; no ancillary data
10333 		 */
10334 		ASSERT(thisdg_attrs == NULL);
10335 		ipp = &tcp->tcp_sticky_ipp;
10336 
10337 		switch (name) {
10338 		case IPV6_UNICAST_HOPS:
10339 			/* -1 means use default */
10340 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10341 				*outlenp = 0;
10342 				return (EINVAL);
10343 			}
10344 			if (!checkonly) {
10345 				if (*i1 == -1) {
10346 					tcp->tcp_ip6h->ip6_hops =
10347 					    ipp->ipp_unicast_hops =
10348 					    (uint8_t)tcp_ipv6_hoplimit;
10349 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10350 					/* Pass modified value to IP. */
10351 					*i1 = tcp->tcp_ip6h->ip6_hops;
10352 				} else {
10353 					tcp->tcp_ip6h->ip6_hops =
10354 					    ipp->ipp_unicast_hops =
10355 					    (uint8_t)*i1;
10356 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10357 				}
10358 				reterr = tcp_build_hdrs(q, tcp);
10359 				if (reterr != 0)
10360 					return (reterr);
10361 			}
10362 			break;
10363 		case IPV6_BOUND_IF:
10364 			if (!checkonly) {
10365 				int error = 0;
10366 
10367 				tcp->tcp_bound_if = *i1;
10368 				error = ip_opt_set_ill(tcp->tcp_connp, *i1,
10369 				    B_TRUE, checkonly, level, name, mblk);
10370 				if (error != 0) {
10371 					*outlenp = 0;
10372 					return (error);
10373 				}
10374 			}
10375 			break;
10376 		/*
10377 		 * Set boolean switches for ancillary data delivery
10378 		 */
10379 		case IPV6_RECVPKTINFO:
10380 			if (!checkonly) {
10381 				if (onoff)
10382 					tcp->tcp_ipv6_recvancillary |=
10383 					    TCP_IPV6_RECVPKTINFO;
10384 				else
10385 					tcp->tcp_ipv6_recvancillary &=
10386 					    ~TCP_IPV6_RECVPKTINFO;
10387 				/* Force it to be sent up with the next msg */
10388 				tcp->tcp_recvifindex = 0;
10389 			}
10390 			break;
10391 		case IPV6_RECVTCLASS:
10392 			if (!checkonly) {
10393 				if (onoff)
10394 					tcp->tcp_ipv6_recvancillary |=
10395 					    TCP_IPV6_RECVTCLASS;
10396 				else
10397 					tcp->tcp_ipv6_recvancillary &=
10398 					    ~TCP_IPV6_RECVTCLASS;
10399 			}
10400 			break;
10401 		case IPV6_RECVHOPLIMIT:
10402 			if (!checkonly) {
10403 				if (onoff)
10404 					tcp->tcp_ipv6_recvancillary |=
10405 					    TCP_IPV6_RECVHOPLIMIT;
10406 				else
10407 					tcp->tcp_ipv6_recvancillary &=
10408 					    ~TCP_IPV6_RECVHOPLIMIT;
10409 				/* Force it to be sent up with the next msg */
10410 				tcp->tcp_recvhops = 0xffffffffU;
10411 			}
10412 			break;
10413 		case IPV6_RECVHOPOPTS:
10414 			if (!checkonly) {
10415 				if (onoff)
10416 					tcp->tcp_ipv6_recvancillary |=
10417 					    TCP_IPV6_RECVHOPOPTS;
10418 				else
10419 					tcp->tcp_ipv6_recvancillary &=
10420 					    ~TCP_IPV6_RECVHOPOPTS;
10421 			}
10422 			break;
10423 		case IPV6_RECVDSTOPTS:
10424 			if (!checkonly) {
10425 				if (onoff)
10426 					tcp->tcp_ipv6_recvancillary |=
10427 					    TCP_IPV6_RECVDSTOPTS;
10428 				else
10429 					tcp->tcp_ipv6_recvancillary &=
10430 					    ~TCP_IPV6_RECVDSTOPTS;
10431 			}
10432 			break;
10433 		case _OLD_IPV6_RECVDSTOPTS:
10434 			if (!checkonly) {
10435 				if (onoff)
10436 					tcp->tcp_ipv6_recvancillary |=
10437 					    TCP_OLD_IPV6_RECVDSTOPTS;
10438 				else
10439 					tcp->tcp_ipv6_recvancillary &=
10440 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10441 			}
10442 			break;
10443 		case IPV6_RECVRTHDR:
10444 			if (!checkonly) {
10445 				if (onoff)
10446 					tcp->tcp_ipv6_recvancillary |=
10447 					    TCP_IPV6_RECVRTHDR;
10448 				else
10449 					tcp->tcp_ipv6_recvancillary &=
10450 					    ~TCP_IPV6_RECVRTHDR;
10451 			}
10452 			break;
10453 		case IPV6_RECVRTHDRDSTOPTS:
10454 			if (!checkonly) {
10455 				if (onoff)
10456 					tcp->tcp_ipv6_recvancillary |=
10457 					    TCP_IPV6_RECVRTDSTOPTS;
10458 				else
10459 					tcp->tcp_ipv6_recvancillary &=
10460 					    ~TCP_IPV6_RECVRTDSTOPTS;
10461 			}
10462 			break;
10463 		case IPV6_PKTINFO:
10464 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10465 				return (EINVAL);
10466 			if (checkonly)
10467 				break;
10468 
10469 			if (inlen == 0) {
10470 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10471 			} else {
10472 				struct in6_pktinfo *pkti;
10473 
10474 				pkti = (struct in6_pktinfo *)invalp;
10475 				/*
10476 				 * RFC 3542 states that ipi6_addr must be
10477 				 * the unspecified address when setting the
10478 				 * IPV6_PKTINFO sticky socket option on a
10479 				 * TCP socket.
10480 				 */
10481 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10482 					return (EINVAL);
10483 				/*
10484 				 * ip6_set_pktinfo() validates the source
10485 				 * address and interface index.
10486 				 */
10487 				reterr = ip6_set_pktinfo(cr, tcp->tcp_connp,
10488 				    pkti, mblk);
10489 				if (reterr != 0)
10490 					return (reterr);
10491 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10492 				ipp->ipp_addr = pkti->ipi6_addr;
10493 				if (ipp->ipp_ifindex != 0)
10494 					ipp->ipp_fields |= IPPF_IFINDEX;
10495 				else
10496 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10497 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10498 					ipp->ipp_fields |= IPPF_ADDR;
10499 				else
10500 					ipp->ipp_fields &= ~IPPF_ADDR;
10501 			}
10502 			reterr = tcp_build_hdrs(q, tcp);
10503 			if (reterr != 0)
10504 				return (reterr);
10505 			break;
10506 		case IPV6_TCLASS:
10507 			if (inlen != 0 && inlen != sizeof (int))
10508 				return (EINVAL);
10509 			if (checkonly)
10510 				break;
10511 
10512 			if (inlen == 0) {
10513 				ipp->ipp_fields &= ~IPPF_TCLASS;
10514 			} else {
10515 				if (*i1 > 255 || *i1 < -1)
10516 					return (EINVAL);
10517 				if (*i1 == -1) {
10518 					ipp->ipp_tclass = 0;
10519 					*i1 = 0;
10520 				} else {
10521 					ipp->ipp_tclass = *i1;
10522 				}
10523 				ipp->ipp_fields |= IPPF_TCLASS;
10524 			}
10525 			reterr = tcp_build_hdrs(q, tcp);
10526 			if (reterr != 0)
10527 				return (reterr);
10528 			break;
10529 		case IPV6_NEXTHOP:
10530 			/*
10531 			 * IP will verify that the nexthop is reachable
10532 			 * and fail for sticky options.
10533 			 */
10534 			if (inlen != 0 && inlen != sizeof (sin6_t))
10535 				return (EINVAL);
10536 			if (checkonly)
10537 				break;
10538 
10539 			if (inlen == 0) {
10540 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10541 			} else {
10542 				sin6_t *sin6 = (sin6_t *)invalp;
10543 
10544 				if (sin6->sin6_family != AF_INET6)
10545 					return (EAFNOSUPPORT);
10546 				if (IN6_IS_ADDR_V4MAPPED(
10547 				    &sin6->sin6_addr))
10548 					return (EADDRNOTAVAIL);
10549 				ipp->ipp_nexthop = sin6->sin6_addr;
10550 				if (!IN6_IS_ADDR_UNSPECIFIED(
10551 				    &ipp->ipp_nexthop))
10552 					ipp->ipp_fields |= IPPF_NEXTHOP;
10553 				else
10554 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10555 			}
10556 			reterr = tcp_build_hdrs(q, tcp);
10557 			if (reterr != 0)
10558 				return (reterr);
10559 			break;
10560 		case IPV6_HOPOPTS: {
10561 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10562 
10563 			/*
10564 			 * Sanity checks - minimum size, size a multiple of
10565 			 * eight bytes, and matching size passed in.
10566 			 */
10567 			if (inlen != 0 &&
10568 			    inlen != (8 * (hopts->ip6h_len + 1)))
10569 				return (EINVAL);
10570 
10571 			if (checkonly)
10572 				break;
10573 
10574 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10575 			    (uchar_t **)&ipp->ipp_hopopts,
10576 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10577 			if (reterr != 0)
10578 				return (reterr);
10579 			if (ipp->ipp_hopoptslen == 0)
10580 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10581 			else
10582 				ipp->ipp_fields |= IPPF_HOPOPTS;
10583 			reterr = tcp_build_hdrs(q, tcp);
10584 			if (reterr != 0)
10585 				return (reterr);
10586 			break;
10587 		}
10588 		case IPV6_RTHDRDSTOPTS: {
10589 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10590 
10591 			/*
10592 			 * Sanity checks - minimum size, size a multiple of
10593 			 * eight bytes, and matching size passed in.
10594 			 */
10595 			if (inlen != 0 &&
10596 			    inlen != (8 * (dopts->ip6d_len + 1)))
10597 				return (EINVAL);
10598 
10599 			if (checkonly)
10600 				break;
10601 
10602 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10603 			    (uchar_t **)&ipp->ipp_rtdstopts,
10604 			    &ipp->ipp_rtdstoptslen, 0);
10605 			if (reterr != 0)
10606 				return (reterr);
10607 			if (ipp->ipp_rtdstoptslen == 0)
10608 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10609 			else
10610 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10611 			reterr = tcp_build_hdrs(q, tcp);
10612 			if (reterr != 0)
10613 				return (reterr);
10614 			break;
10615 		}
10616 		case IPV6_DSTOPTS: {
10617 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10618 
10619 			/*
10620 			 * Sanity checks - minimum size, size a multiple of
10621 			 * eight bytes, and matching size passed in.
10622 			 */
10623 			if (inlen != 0 &&
10624 			    inlen != (8 * (dopts->ip6d_len + 1)))
10625 				return (EINVAL);
10626 
10627 			if (checkonly)
10628 				break;
10629 
10630 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10631 			    (uchar_t **)&ipp->ipp_dstopts,
10632 			    &ipp->ipp_dstoptslen, 0);
10633 			if (reterr != 0)
10634 				return (reterr);
10635 			if (ipp->ipp_dstoptslen == 0)
10636 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10637 			else
10638 				ipp->ipp_fields |= IPPF_DSTOPTS;
10639 			reterr = tcp_build_hdrs(q, tcp);
10640 			if (reterr != 0)
10641 				return (reterr);
10642 			break;
10643 		}
10644 		case IPV6_RTHDR: {
10645 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
10646 
10647 			/*
10648 			 * Sanity checks - minimum size, size a multiple of
10649 			 * eight bytes, and matching size passed in.
10650 			 */
10651 			if (inlen != 0 &&
10652 			    inlen != (8 * (rt->ip6r_len + 1)))
10653 				return (EINVAL);
10654 
10655 			if (checkonly)
10656 				break;
10657 
10658 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10659 			    (uchar_t **)&ipp->ipp_rthdr,
10660 			    &ipp->ipp_rthdrlen, 0);
10661 			if (reterr != 0)
10662 				return (reterr);
10663 			if (ipp->ipp_rthdrlen == 0)
10664 				ipp->ipp_fields &= ~IPPF_RTHDR;
10665 			else
10666 				ipp->ipp_fields |= IPPF_RTHDR;
10667 			reterr = tcp_build_hdrs(q, tcp);
10668 			if (reterr != 0)
10669 				return (reterr);
10670 			break;
10671 		}
10672 		case IPV6_V6ONLY:
10673 			if (!checkonly)
10674 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
10675 			break;
10676 		case IPV6_USE_MIN_MTU:
10677 			if (inlen != sizeof (int))
10678 				return (EINVAL);
10679 
10680 			if (*i1 < -1 || *i1 > 1)
10681 				return (EINVAL);
10682 
10683 			if (checkonly)
10684 				break;
10685 
10686 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
10687 			ipp->ipp_use_min_mtu = *i1;
10688 			break;
10689 		case IPV6_BOUND_PIF:
10690 			/* Handled at the IP level */
10691 			return (-EINVAL);
10692 		case IPV6_SEC_OPT:
10693 			/*
10694 			 * We should not allow policy setting after
10695 			 * we start listening for connections.
10696 			 */
10697 			if (tcp->tcp_state == TCPS_LISTEN) {
10698 				return (EINVAL);
10699 			} else {
10700 				/* Handled at the IP level */
10701 				return (-EINVAL);
10702 			}
10703 		case IPV6_SRC_PREFERENCES:
10704 			if (inlen != sizeof (uint32_t))
10705 				return (EINVAL);
10706 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
10707 			    *(uint32_t *)invalp);
10708 			if (reterr != 0) {
10709 				*outlenp = 0;
10710 				return (reterr);
10711 			}
10712 			break;
10713 		default:
10714 			*outlenp = 0;
10715 			return (EINVAL);
10716 		}
10717 		break;
10718 	}		/* end IPPROTO_IPV6 */
10719 	default:
10720 		*outlenp = 0;
10721 		return (EINVAL);
10722 	}
10723 	/*
10724 	 * Common case of OK return with outval same as inval
10725 	 */
10726 	if (invalp != outvalp) {
10727 		/* don't trust bcopy for identical src/dst */
10728 		(void) bcopy(invalp, outvalp, inlen);
10729 	}
10730 	*outlenp = inlen;
10731 	return (0);
10732 }
10733 
10734 /*
10735  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
10736  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
10737  * headers, and the maximum size tcp header (to avoid reallocation
10738  * on the fly for additional tcp options).
10739  * Returns failure if can't allocate memory.
10740  */
10741 static int
10742 tcp_build_hdrs(queue_t *q, tcp_t *tcp)
10743 {
10744 	char	*hdrs;
10745 	uint_t	hdrs_len;
10746 	ip6i_t	*ip6i;
10747 	char	buf[TCP_MAX_HDR_LENGTH];
10748 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
10749 	in6_addr_t src, dst;
10750 
10751 	/*
10752 	 * save the existing tcp header and source/dest IP addresses
10753 	 */
10754 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
10755 	src = tcp->tcp_ip6h->ip6_src;
10756 	dst = tcp->tcp_ip6h->ip6_dst;
10757 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
10758 	ASSERT(hdrs_len != 0);
10759 	if (hdrs_len > tcp->tcp_iphc_len) {
10760 		/* Need to reallocate */
10761 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
10762 		if (hdrs == NULL)
10763 			return (ENOMEM);
10764 		if (tcp->tcp_iphc != NULL) {
10765 			if (tcp->tcp_hdr_grown) {
10766 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
10767 			} else {
10768 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
10769 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
10770 			}
10771 			tcp->tcp_iphc_len = 0;
10772 		}
10773 		ASSERT(tcp->tcp_iphc_len == 0);
10774 		tcp->tcp_iphc = hdrs;
10775 		tcp->tcp_iphc_len = hdrs_len;
10776 		tcp->tcp_hdr_grown = B_TRUE;
10777 	}
10778 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
10779 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
10780 
10781 	/* Set header fields not in ipp */
10782 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
10783 		ip6i = (ip6i_t *)tcp->tcp_iphc;
10784 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
10785 	} else {
10786 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
10787 	}
10788 	/*
10789 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
10790 	 *
10791 	 * tcp->tcp_tcp_hdr_len doesn't change here.
10792 	 */
10793 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
10794 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
10795 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
10796 
10797 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
10798 
10799 	tcp->tcp_ip6h->ip6_src = src;
10800 	tcp->tcp_ip6h->ip6_dst = dst;
10801 
10802 	/*
10803 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
10804 	 * the default value for TCP.
10805 	 */
10806 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
10807 		tcp->tcp_ip6h->ip6_hops = tcp_ipv6_hoplimit;
10808 
10809 	/*
10810 	 * If we're setting extension headers after a connection
10811 	 * has been established, and if we have a routing header
10812 	 * among the extension headers, call ip_massage_options_v6 to
10813 	 * manipulate the routing header/ip6_dst set the checksum
10814 	 * difference in the tcp header template.
10815 	 * (This happens in tcp_connect_ipv6 if the routing header
10816 	 * is set prior to the connect.)
10817 	 * Set the tcp_sum to zero first in case we've cleared a
10818 	 * routing header or don't have one at all.
10819 	 */
10820 	tcp->tcp_sum = 0;
10821 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
10822 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
10823 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
10824 		    (uint8_t *)tcp->tcp_tcph);
10825 		if (rth != NULL) {
10826 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
10827 			    rth);
10828 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
10829 			    (tcp->tcp_sum >> 16));
10830 		}
10831 	}
10832 
10833 	/* Try to get everything in a single mblk */
10834 	(void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra);
10835 	return (0);
10836 }
10837 
10838 /*
10839  * Transfer any source route option from ipha to buf/dst in reversed form.
10840  */
10841 static int
10842 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
10843 {
10844 	ipoptp_t	opts;
10845 	uchar_t		*opt;
10846 	uint8_t		optval;
10847 	uint8_t		optlen;
10848 	uint32_t	len = 0;
10849 
10850 	for (optval = ipoptp_first(&opts, ipha);
10851 	    optval != IPOPT_EOL;
10852 	    optval = ipoptp_next(&opts)) {
10853 		opt = opts.ipoptp_cur;
10854 		optlen = opts.ipoptp_len;
10855 		switch (optval) {
10856 			int	off1, off2;
10857 		case IPOPT_SSRR:
10858 		case IPOPT_LSRR:
10859 
10860 			/* Reverse source route */
10861 			/*
10862 			 * First entry should be the next to last one in the
10863 			 * current source route (the last entry is our
10864 			 * address.)
10865 			 * The last entry should be the final destination.
10866 			 */
10867 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
10868 			buf[IPOPT_OLEN] = (uint8_t)optlen;
10869 			off1 = IPOPT_MINOFF_SR - 1;
10870 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
10871 			if (off2 < 0) {
10872 				/* No entries in source route */
10873 				break;
10874 			}
10875 			bcopy(opt + off2, dst, IP_ADDR_LEN);
10876 			/*
10877 			 * Note: use src since ipha has not had its src
10878 			 * and dst reversed (it is in the state it was
10879 			 * received.
10880 			 */
10881 			bcopy(&ipha->ipha_src, buf + off2,
10882 			    IP_ADDR_LEN);
10883 			off2 -= IP_ADDR_LEN;
10884 
10885 			while (off2 > 0) {
10886 				bcopy(opt + off2, buf + off1,
10887 				    IP_ADDR_LEN);
10888 				off1 += IP_ADDR_LEN;
10889 				off2 -= IP_ADDR_LEN;
10890 			}
10891 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
10892 			buf += optlen;
10893 			len += optlen;
10894 			break;
10895 		}
10896 	}
10897 done:
10898 	/* Pad the resulting options */
10899 	while (len & 0x3) {
10900 		*buf++ = IPOPT_EOL;
10901 		len++;
10902 	}
10903 	return (len);
10904 }
10905 
10906 
10907 /*
10908  * Extract and revert a source route from ipha (if any)
10909  * and then update the relevant fields in both tcp_t and the standard header.
10910  */
10911 static void
10912 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
10913 {
10914 	char	buf[TCP_MAX_HDR_LENGTH];
10915 	uint_t	tcph_len;
10916 	int	len;
10917 
10918 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
10919 	len = IPH_HDR_LENGTH(ipha);
10920 	if (len == IP_SIMPLE_HDR_LENGTH)
10921 		/* Nothing to do */
10922 		return;
10923 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
10924 	    (len & 0x3))
10925 		return;
10926 
10927 	tcph_len = tcp->tcp_tcp_hdr_len;
10928 	bcopy(tcp->tcp_tcph, buf, tcph_len);
10929 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
10930 		(tcp->tcp_ipha->ipha_dst & 0xffff);
10931 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
10932 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
10933 	len += IP_SIMPLE_HDR_LENGTH;
10934 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
10935 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
10936 	if ((int)tcp->tcp_sum < 0)
10937 		tcp->tcp_sum--;
10938 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
10939 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
10940 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
10941 	bcopy(buf, tcp->tcp_tcph, tcph_len);
10942 	tcp->tcp_ip_hdr_len = len;
10943 	tcp->tcp_ipha->ipha_version_and_hdr_length =
10944 	    (IP_VERSION << 4) | (len >> 2);
10945 	len += tcph_len;
10946 	tcp->tcp_hdr_len = len;
10947 }
10948 
10949 /*
10950  * Copy the standard header into its new location,
10951  * lay in the new options and then update the relevant
10952  * fields in both tcp_t and the standard header.
10953  */
10954 static int
10955 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
10956 {
10957 	uint_t	tcph_len;
10958 	uint8_t	*ip_optp;
10959 	tcph_t	*new_tcph;
10960 
10961 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
10962 		return (EINVAL);
10963 
10964 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
10965 		return (EINVAL);
10966 
10967 	if (checkonly) {
10968 		/*
10969 		 * do not really set, just pretend to - T_CHECK
10970 		 */
10971 		return (0);
10972 	}
10973 
10974 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
10975 	if (tcp->tcp_label_len > 0) {
10976 		int padlen;
10977 		uint8_t opt;
10978 
10979 		/* convert list termination to no-ops */
10980 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
10981 		ip_optp += ip_optp[IPOPT_OLEN];
10982 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
10983 		while (--padlen >= 0)
10984 			*ip_optp++ = opt;
10985 	}
10986 	tcph_len = tcp->tcp_tcp_hdr_len;
10987 	new_tcph = (tcph_t *)(ip_optp + len);
10988 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
10989 	tcp->tcp_tcph = new_tcph;
10990 	bcopy(ptr, ip_optp, len);
10991 
10992 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
10993 
10994 	tcp->tcp_ip_hdr_len = len;
10995 	tcp->tcp_ipha->ipha_version_and_hdr_length =
10996 	    (IP_VERSION << 4) | (len >> 2);
10997 	tcp->tcp_hdr_len = len + tcph_len;
10998 	if (!TCP_IS_DETACHED(tcp)) {
10999 		/* Always allocate room for all options. */
11000 		(void) mi_set_sth_wroff(tcp->tcp_rq,
11001 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra);
11002 	}
11003 	return (0);
11004 }
11005 
11006 /* Get callback routine passed to nd_load by tcp_param_register */
11007 /* ARGSUSED */
11008 static int
11009 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11010 {
11011 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11012 
11013 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11014 	return (0);
11015 }
11016 
11017 /*
11018  * Walk through the param array specified registering each element with the
11019  * named dispatch handler.
11020  */
11021 static boolean_t
11022 tcp_param_register(tcpparam_t *tcppa, int cnt)
11023 {
11024 	for (; cnt-- > 0; tcppa++) {
11025 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11026 			if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name,
11027 			    tcp_param_get, tcp_param_set,
11028 			    (caddr_t)tcppa)) {
11029 				nd_free(&tcp_g_nd);
11030 				return (B_FALSE);
11031 			}
11032 		}
11033 	}
11034 	if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name,
11035 	    tcp_param_get, tcp_param_set_aligned,
11036 	    (caddr_t)&tcp_wroff_xtra_param)) {
11037 		nd_free(&tcp_g_nd);
11038 		return (B_FALSE);
11039 	}
11040 	if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name,
11041 	    tcp_param_get, tcp_param_set_aligned,
11042 	    (caddr_t)&tcp_mdt_head_param)) {
11043 		nd_free(&tcp_g_nd);
11044 		return (B_FALSE);
11045 	}
11046 	if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name,
11047 	    tcp_param_get, tcp_param_set_aligned,
11048 	    (caddr_t)&tcp_mdt_tail_param)) {
11049 		nd_free(&tcp_g_nd);
11050 		return (B_FALSE);
11051 	}
11052 	if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name,
11053 	    tcp_param_get, tcp_param_set,
11054 	    (caddr_t)&tcp_mdt_max_pbufs_param)) {
11055 		nd_free(&tcp_g_nd);
11056 		return (B_FALSE);
11057 	}
11058 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports",
11059 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11060 		nd_free(&tcp_g_nd);
11061 		return (B_FALSE);
11062 	}
11063 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add",
11064 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11065 		nd_free(&tcp_g_nd);
11066 		return (B_FALSE);
11067 	}
11068 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del",
11069 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11070 		nd_free(&tcp_g_nd);
11071 		return (B_FALSE);
11072 	}
11073 	if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL,
11074 	    NULL)) {
11075 		nd_free(&tcp_g_nd);
11076 		return (B_FALSE);
11077 	}
11078 	if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report,
11079 	    NULL, NULL)) {
11080 		nd_free(&tcp_g_nd);
11081 		return (B_FALSE);
11082 	}
11083 	if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report,
11084 	    NULL, NULL)) {
11085 		nd_free(&tcp_g_nd);
11086 		return (B_FALSE);
11087 	}
11088 	if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report,
11089 	    NULL, NULL)) {
11090 		nd_free(&tcp_g_nd);
11091 		return (B_FALSE);
11092 	}
11093 	if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report,
11094 	    NULL, NULL)) {
11095 		nd_free(&tcp_g_nd);
11096 		return (B_FALSE);
11097 	}
11098 	if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report,
11099 	    tcp_host_param_set, NULL)) {
11100 		nd_free(&tcp_g_nd);
11101 		return (B_FALSE);
11102 	}
11103 	if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report,
11104 	    tcp_host_param_set_ipv6, NULL)) {
11105 		nd_free(&tcp_g_nd);
11106 		return (B_FALSE);
11107 	}
11108 	if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set,
11109 	    NULL)) {
11110 		nd_free(&tcp_g_nd);
11111 		return (B_FALSE);
11112 	}
11113 	if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list",
11114 	    tcp_reserved_port_list, NULL, NULL)) {
11115 		nd_free(&tcp_g_nd);
11116 		return (B_FALSE);
11117 	}
11118 	/*
11119 	 * Dummy ndd variables - only to convey obsolescence information
11120 	 * through printing of their name (no get or set routines)
11121 	 * XXX Remove in future releases ?
11122 	 */
11123 	if (!nd_load(&tcp_g_nd,
11124 	    "tcp_close_wait_interval(obsoleted - "
11125 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11126 		nd_free(&tcp_g_nd);
11127 		return (B_FALSE);
11128 	}
11129 	return (B_TRUE);
11130 }
11131 
11132 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11133 /* ARGSUSED */
11134 static int
11135 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11136     cred_t *cr)
11137 {
11138 	long new_value;
11139 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11140 
11141 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11142 	    new_value < tcppa->tcp_param_min ||
11143 	    new_value > tcppa->tcp_param_max) {
11144 		return (EINVAL);
11145 	}
11146 	/*
11147 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11148 	 * round it up.  For future 64 bit requirement, we actually make it
11149 	 * a multiple of 8.
11150 	 */
11151 	if (new_value & 0x7) {
11152 		new_value = (new_value & ~0x7) + 0x8;
11153 	}
11154 	tcppa->tcp_param_val = new_value;
11155 	return (0);
11156 }
11157 
11158 /* Set callback routine passed to nd_load by tcp_param_register */
11159 /* ARGSUSED */
11160 static int
11161 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11162 {
11163 	long	new_value;
11164 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11165 
11166 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11167 	    new_value < tcppa->tcp_param_min ||
11168 	    new_value > tcppa->tcp_param_max) {
11169 		return (EINVAL);
11170 	}
11171 	tcppa->tcp_param_val = new_value;
11172 	return (0);
11173 }
11174 
11175 /*
11176  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11177  * is filled, return as much as we can.  The message passed in may be
11178  * multi-part, chained using b_cont.  "start" is the starting sequence
11179  * number for this piece.
11180  */
11181 static mblk_t *
11182 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11183 {
11184 	uint32_t	end;
11185 	mblk_t		*mp1;
11186 	mblk_t		*mp2;
11187 	mblk_t		*next_mp;
11188 	uint32_t	u1;
11189 
11190 	/* Walk through all the new pieces. */
11191 	do {
11192 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11193 		    (uintptr_t)INT_MAX);
11194 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11195 		next_mp = mp->b_cont;
11196 		if (start == end) {
11197 			/* Empty.  Blast it. */
11198 			freeb(mp);
11199 			continue;
11200 		}
11201 		mp->b_cont = NULL;
11202 		TCP_REASS_SET_SEQ(mp, start);
11203 		TCP_REASS_SET_END(mp, end);
11204 		mp1 = tcp->tcp_reass_tail;
11205 		if (!mp1) {
11206 			tcp->tcp_reass_tail = mp;
11207 			tcp->tcp_reass_head = mp;
11208 			BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs);
11209 			UPDATE_MIB(&tcp_mib,
11210 			    tcpInDataUnorderBytes, end - start);
11211 			continue;
11212 		}
11213 		/* New stuff completely beyond tail? */
11214 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11215 			/* Link it on end. */
11216 			mp1->b_cont = mp;
11217 			tcp->tcp_reass_tail = mp;
11218 			BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs);
11219 			UPDATE_MIB(&tcp_mib,
11220 			    tcpInDataUnorderBytes, end - start);
11221 			continue;
11222 		}
11223 		mp1 = tcp->tcp_reass_head;
11224 		u1 = TCP_REASS_SEQ(mp1);
11225 		/* New stuff at the front? */
11226 		if (SEQ_LT(start, u1)) {
11227 			/* Yes... Check for overlap. */
11228 			mp->b_cont = mp1;
11229 			tcp->tcp_reass_head = mp;
11230 			tcp_reass_elim_overlap(tcp, mp);
11231 			continue;
11232 		}
11233 		/*
11234 		 * The new piece fits somewhere between the head and tail.
11235 		 * We find our slot, where mp1 precedes us and mp2 trails.
11236 		 */
11237 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11238 			u1 = TCP_REASS_SEQ(mp2);
11239 			if (SEQ_LEQ(start, u1))
11240 				break;
11241 		}
11242 		/* Link ourselves in */
11243 		mp->b_cont = mp2;
11244 		mp1->b_cont = mp;
11245 
11246 		/* Trim overlap with following mblk(s) first */
11247 		tcp_reass_elim_overlap(tcp, mp);
11248 
11249 		/* Trim overlap with preceding mblk */
11250 		tcp_reass_elim_overlap(tcp, mp1);
11251 
11252 	} while (start = end, mp = next_mp);
11253 	mp1 = tcp->tcp_reass_head;
11254 	/* Anything ready to go? */
11255 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11256 		return (NULL);
11257 	/* Eat what we can off the queue */
11258 	for (;;) {
11259 		mp = mp1->b_cont;
11260 		end = TCP_REASS_END(mp1);
11261 		TCP_REASS_SET_SEQ(mp1, 0);
11262 		TCP_REASS_SET_END(mp1, 0);
11263 		if (!mp) {
11264 			tcp->tcp_reass_tail = NULL;
11265 			break;
11266 		}
11267 		if (end != TCP_REASS_SEQ(mp)) {
11268 			mp1->b_cont = NULL;
11269 			break;
11270 		}
11271 		mp1 = mp;
11272 	}
11273 	mp1 = tcp->tcp_reass_head;
11274 	tcp->tcp_reass_head = mp;
11275 	return (mp1);
11276 }
11277 
11278 /* Eliminate any overlap that mp may have over later mblks */
11279 static void
11280 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11281 {
11282 	uint32_t	end;
11283 	mblk_t		*mp1;
11284 	uint32_t	u1;
11285 
11286 	end = TCP_REASS_END(mp);
11287 	while ((mp1 = mp->b_cont) != NULL) {
11288 		u1 = TCP_REASS_SEQ(mp1);
11289 		if (!SEQ_GT(end, u1))
11290 			break;
11291 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11292 			mp->b_wptr -= end - u1;
11293 			TCP_REASS_SET_END(mp, u1);
11294 			BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs);
11295 			UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1);
11296 			break;
11297 		}
11298 		mp->b_cont = mp1->b_cont;
11299 		TCP_REASS_SET_SEQ(mp1, 0);
11300 		TCP_REASS_SET_END(mp1, 0);
11301 		freeb(mp1);
11302 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
11303 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1);
11304 	}
11305 	if (!mp1)
11306 		tcp->tcp_reass_tail = mp;
11307 }
11308 
11309 /*
11310  * Send up all messages queued on tcp_rcv_list.
11311  */
11312 static uint_t
11313 tcp_rcv_drain(queue_t *q, tcp_t *tcp)
11314 {
11315 	mblk_t *mp;
11316 	uint_t ret = 0;
11317 	uint_t thwin;
11318 #ifdef DEBUG
11319 	uint_t cnt = 0;
11320 #endif
11321 	/* Can't drain on an eager connection */
11322 	if (tcp->tcp_listener != NULL)
11323 		return (ret);
11324 
11325 	/*
11326 	 * Handle two cases here: we are currently fused or we were
11327 	 * previously fused and have some urgent data to be delivered
11328 	 * upstream.  The latter happens because we either ran out of
11329 	 * memory or were detached and therefore sending the SIGURG was
11330 	 * deferred until this point.  In either case we pass control
11331 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11332 	 * some work.
11333 	 */
11334 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11335 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
11336 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11337 		    &tcp->tcp_fused_sigurg_mp))
11338 			return (ret);
11339 	}
11340 
11341 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11342 		tcp->tcp_rcv_list = mp->b_next;
11343 		mp->b_next = NULL;
11344 #ifdef DEBUG
11345 		cnt += msgdsize(mp);
11346 #endif
11347 		/* Does this need SSL processing first? */
11348 		if ((tcp->tcp_kssl_ctx  != NULL) && (DB_TYPE(mp) == M_DATA)) {
11349 			tcp_kssl_input(tcp, mp);
11350 			continue;
11351 		}
11352 		putnext(q, mp);
11353 	}
11354 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11355 	tcp->tcp_rcv_last_head = NULL;
11356 	tcp->tcp_rcv_last_tail = NULL;
11357 	tcp->tcp_rcv_cnt = 0;
11358 
11359 	/* Learn the latest rwnd information that we sent to the other side. */
11360 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11361 	    << tcp->tcp_rcv_ws;
11362 	/* This is peer's calculated send window (our receive window). */
11363 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11364 	/*
11365 	 * Increase the receive window to max.  But we need to do receiver
11366 	 * SWS avoidance.  This means that we need to check the increase of
11367 	 * of receive window is at least 1 MSS.
11368 	 */
11369 	if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11370 		/*
11371 		 * If the window that the other side knows is less than max
11372 		 * deferred acks segments, send an update immediately.
11373 		 */
11374 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11375 			BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
11376 			ret = TH_ACK_NEEDED;
11377 		}
11378 		tcp->tcp_rwnd = q->q_hiwat;
11379 	}
11380 	/* No need for the push timer now. */
11381 	if (tcp->tcp_push_tid != 0) {
11382 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11383 		tcp->tcp_push_tid = 0;
11384 	}
11385 	return (ret);
11386 }
11387 
11388 /*
11389  * Queue data on tcp_rcv_list which is a b_next chain.
11390  * tcp_rcv_last_head/tail is the last element of this chain.
11391  * Each element of the chain is a b_cont chain.
11392  *
11393  * M_DATA messages are added to the current element.
11394  * Other messages are added as new (b_next) elements.
11395  */
11396 void
11397 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11398 {
11399 	ASSERT(seg_len == msgdsize(mp));
11400 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11401 
11402 	if (tcp->tcp_rcv_list == NULL) {
11403 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11404 		tcp->tcp_rcv_list = mp;
11405 		tcp->tcp_rcv_last_head = mp;
11406 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11407 		tcp->tcp_rcv_last_tail->b_cont = mp;
11408 	} else {
11409 		tcp->tcp_rcv_last_head->b_next = mp;
11410 		tcp->tcp_rcv_last_head = mp;
11411 	}
11412 
11413 	while (mp->b_cont)
11414 		mp = mp->b_cont;
11415 
11416 	tcp->tcp_rcv_last_tail = mp;
11417 	tcp->tcp_rcv_cnt += seg_len;
11418 	tcp->tcp_rwnd -= seg_len;
11419 }
11420 
11421 /*
11422  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11423  *
11424  * This is the default entry function into TCP on the read side. TCP is
11425  * always entered via squeue i.e. using squeue's for mutual exclusion.
11426  * When classifier does a lookup to find the tcp, it also puts a reference
11427  * on the conn structure associated so the tcp is guaranteed to exist
11428  * when we come here. We still need to check the state because it might
11429  * as well has been closed. The squeue processing function i.e. squeue_enter,
11430  * squeue_enter_nodrain, or squeue_drain is responsible for doing the
11431  * CONN_DEC_REF.
11432  *
11433  * Apart from the default entry point, IP also sends packets directly to
11434  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11435  * connections.
11436  */
11437 void
11438 tcp_input(void *arg, mblk_t *mp, void *arg2)
11439 {
11440 	conn_t	*connp = (conn_t *)arg;
11441 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11442 
11443 	/* arg2 is the sqp */
11444 	ASSERT(arg2 != NULL);
11445 	ASSERT(mp != NULL);
11446 
11447 	/*
11448 	 * Don't accept any input on a closed tcp as this TCP logically does
11449 	 * not exist on the system. Don't proceed further with this TCP.
11450 	 * For eg. this packet could trigger another close of this tcp
11451 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11452 	 * tcp_clean_death / tcp_closei_local must be called at most once
11453 	 * on a TCP. In this case we need to refeed the packet into the
11454 	 * classifier and figure out where the packet should go. Need to
11455 	 * preserve the recv_ill somehow. Until we figure that out, for
11456 	 * now just drop the packet if we can't classify the packet.
11457 	 */
11458 	if (tcp->tcp_state == TCPS_CLOSED ||
11459 	    tcp->tcp_state == TCPS_BOUND) {
11460 		conn_t	*new_connp;
11461 
11462 		new_connp = ipcl_classify(mp, connp->conn_zoneid);
11463 		if (new_connp != NULL) {
11464 			tcp_reinput(new_connp, mp, arg2);
11465 			return;
11466 		}
11467 		/* We failed to classify. For now just drop the packet */
11468 		freemsg(mp);
11469 		return;
11470 	}
11471 
11472 	if (DB_TYPE(mp) == M_DATA)
11473 		tcp_rput_data(connp, mp, arg2);
11474 	else
11475 		tcp_rput_common(tcp, mp);
11476 }
11477 
11478 /*
11479  * The read side put procedure.
11480  * The packets passed up by ip are assume to be aligned according to
11481  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11482  */
11483 static void
11484 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11485 {
11486 	/*
11487 	 * tcp_rput_data() does not expect M_CTL except for the case
11488 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11489 	 * type. Need to make sure that any other M_CTLs don't make
11490 	 * it to tcp_rput_data since it is not expecting any and doesn't
11491 	 * check for it.
11492 	 */
11493 	if (DB_TYPE(mp) == M_CTL) {
11494 		switch (*(uint32_t *)(mp->b_rptr)) {
11495 		case TCP_IOC_ABORT_CONN:
11496 			/*
11497 			 * Handle connection abort request.
11498 			 */
11499 			tcp_ioctl_abort_handler(tcp, mp);
11500 			return;
11501 		case IPSEC_IN:
11502 			/*
11503 			 * Only secure icmp arrive in TCP and they
11504 			 * don't go through data path.
11505 			 */
11506 			tcp_icmp_error(tcp, mp);
11507 			return;
11508 		case IN_PKTINFO:
11509 			/*
11510 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
11511 			 * sockets that are receiving IPv4 traffic. tcp
11512 			 */
11513 			ASSERT(tcp->tcp_family == AF_INET6);
11514 			ASSERT(tcp->tcp_ipv6_recvancillary &
11515 			    TCP_IPV6_RECVPKTINFO);
11516 			tcp_rput_data(tcp->tcp_connp, mp,
11517 			    tcp->tcp_connp->conn_sqp);
11518 			return;
11519 		case MDT_IOC_INFO_UPDATE:
11520 			/*
11521 			 * Handle Multidata information update; the
11522 			 * following routine will free the message.
11523 			 */
11524 			if (tcp->tcp_connp->conn_mdt_ok) {
11525 				tcp_mdt_update(tcp,
11526 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
11527 				    B_FALSE);
11528 			}
11529 			freemsg(mp);
11530 			return;
11531 		default:
11532 			break;
11533 		}
11534 	}
11535 
11536 	/* No point processing the message if tcp is already closed */
11537 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
11538 		freemsg(mp);
11539 		return;
11540 	}
11541 
11542 	tcp_rput_other(tcp, mp);
11543 }
11544 
11545 
11546 /* The minimum of smoothed mean deviation in RTO calculation. */
11547 #define	TCP_SD_MIN	400
11548 
11549 /*
11550  * Set RTO for this connection.  The formula is from Jacobson and Karels'
11551  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
11552  * are the same as those in Appendix A.2 of that paper.
11553  *
11554  * m = new measurement
11555  * sa = smoothed RTT average (8 * average estimates).
11556  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
11557  */
11558 static void
11559 tcp_set_rto(tcp_t *tcp, clock_t rtt)
11560 {
11561 	long m = TICK_TO_MSEC(rtt);
11562 	clock_t sa = tcp->tcp_rtt_sa;
11563 	clock_t sv = tcp->tcp_rtt_sd;
11564 	clock_t rto;
11565 
11566 	BUMP_MIB(&tcp_mib, tcpRttUpdate);
11567 	tcp->tcp_rtt_update++;
11568 
11569 	/* tcp_rtt_sa is not 0 means this is a new sample. */
11570 	if (sa != 0) {
11571 		/*
11572 		 * Update average estimator:
11573 		 *	new rtt = 7/8 old rtt + 1/8 Error
11574 		 */
11575 
11576 		/* m is now Error in estimate. */
11577 		m -= sa >> 3;
11578 		if ((sa += m) <= 0) {
11579 			/*
11580 			 * Don't allow the smoothed average to be negative.
11581 			 * We use 0 to denote reinitialization of the
11582 			 * variables.
11583 			 */
11584 			sa = 1;
11585 		}
11586 
11587 		/*
11588 		 * Update deviation estimator:
11589 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
11590 		 */
11591 		if (m < 0)
11592 			m = -m;
11593 		m -= sv >> 2;
11594 		sv += m;
11595 	} else {
11596 		/*
11597 		 * This follows BSD's implementation.  So the reinitialized
11598 		 * RTO is 3 * m.  We cannot go less than 2 because if the
11599 		 * link is bandwidth dominated, doubling the window size
11600 		 * during slow start means doubling the RTT.  We want to be
11601 		 * more conservative when we reinitialize our estimates.  3
11602 		 * is just a convenient number.
11603 		 */
11604 		sa = m << 3;
11605 		sv = m << 1;
11606 	}
11607 	if (sv < TCP_SD_MIN) {
11608 		/*
11609 		 * We do not know that if sa captures the delay ACK
11610 		 * effect as in a long train of segments, a receiver
11611 		 * does not delay its ACKs.  So set the minimum of sv
11612 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
11613 		 * of BSD DATO.  That means the minimum of mean
11614 		 * deviation is 100 ms.
11615 		 *
11616 		 */
11617 		sv = TCP_SD_MIN;
11618 	}
11619 	tcp->tcp_rtt_sa = sa;
11620 	tcp->tcp_rtt_sd = sv;
11621 	/*
11622 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
11623 	 *
11624 	 * Add tcp_rexmit_interval extra in case of extreme environment
11625 	 * where the algorithm fails to work.  The default value of
11626 	 * tcp_rexmit_interval_extra should be 0.
11627 	 *
11628 	 * As we use a finer grained clock than BSD and update
11629 	 * RTO for every ACKs, add in another .25 of RTT to the
11630 	 * deviation of RTO to accomodate burstiness of 1/4 of
11631 	 * window size.
11632 	 */
11633 	rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5);
11634 
11635 	if (rto > tcp_rexmit_interval_max) {
11636 		tcp->tcp_rto = tcp_rexmit_interval_max;
11637 	} else if (rto < tcp_rexmit_interval_min) {
11638 		tcp->tcp_rto = tcp_rexmit_interval_min;
11639 	} else {
11640 		tcp->tcp_rto = rto;
11641 	}
11642 
11643 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
11644 	tcp->tcp_timer_backoff = 0;
11645 }
11646 
11647 /*
11648  * tcp_get_seg_mp() is called to get the pointer to a segment in the
11649  * send queue which starts at the given seq. no.
11650  *
11651  * Parameters:
11652  *	tcp_t *tcp: the tcp instance pointer.
11653  *	uint32_t seq: the starting seq. no of the requested segment.
11654  *	int32_t *off: after the execution, *off will be the offset to
11655  *		the returned mblk which points to the requested seq no.
11656  *		It is the caller's responsibility to send in a non-null off.
11657  *
11658  * Return:
11659  *	A mblk_t pointer pointing to the requested segment in send queue.
11660  */
11661 static mblk_t *
11662 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
11663 {
11664 	int32_t	cnt;
11665 	mblk_t	*mp;
11666 
11667 	/* Defensive coding.  Make sure we don't send incorrect data. */
11668 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
11669 		return (NULL);
11670 
11671 	cnt = seq - tcp->tcp_suna;
11672 	mp = tcp->tcp_xmit_head;
11673 	while (cnt > 0 && mp != NULL) {
11674 		cnt -= mp->b_wptr - mp->b_rptr;
11675 		if (cnt < 0) {
11676 			cnt += mp->b_wptr - mp->b_rptr;
11677 			break;
11678 		}
11679 		mp = mp->b_cont;
11680 	}
11681 	ASSERT(mp != NULL);
11682 	*off = cnt;
11683 	return (mp);
11684 }
11685 
11686 /*
11687  * This function handles all retransmissions if SACK is enabled for this
11688  * connection.  First it calculates how many segments can be retransmitted
11689  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
11690  * segments.  A segment is eligible if sack_cnt for that segment is greater
11691  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
11692  * all eligible segments, it checks to see if TCP can send some new segments
11693  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
11694  *
11695  * Parameters:
11696  *	tcp_t *tcp: the tcp structure of the connection.
11697  *	uint_t *flags: in return, appropriate value will be set for
11698  *	tcp_rput_data().
11699  */
11700 static void
11701 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
11702 {
11703 	notsack_blk_t	*notsack_blk;
11704 	int32_t		usable_swnd;
11705 	int32_t		mss;
11706 	uint32_t	seg_len;
11707 	mblk_t		*xmit_mp;
11708 
11709 	ASSERT(tcp->tcp_sack_info != NULL);
11710 	ASSERT(tcp->tcp_notsack_list != NULL);
11711 	ASSERT(tcp->tcp_rexmit == B_FALSE);
11712 
11713 	/* Defensive coding in case there is a bug... */
11714 	if (tcp->tcp_notsack_list == NULL) {
11715 		return;
11716 	}
11717 	notsack_blk = tcp->tcp_notsack_list;
11718 	mss = tcp->tcp_mss;
11719 
11720 	/*
11721 	 * Limit the num of outstanding data in the network to be
11722 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
11723 	 */
11724 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
11725 
11726 	/* At least retransmit 1 MSS of data. */
11727 	if (usable_swnd <= 0) {
11728 		usable_swnd = mss;
11729 	}
11730 
11731 	/* Make sure no new RTT samples will be taken. */
11732 	tcp->tcp_csuna = tcp->tcp_snxt;
11733 
11734 	notsack_blk = tcp->tcp_notsack_list;
11735 	while (usable_swnd > 0) {
11736 		mblk_t		*snxt_mp, *tmp_mp;
11737 		tcp_seq		begin = tcp->tcp_sack_snxt;
11738 		tcp_seq		end;
11739 		int32_t		off;
11740 
11741 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
11742 			if (SEQ_GT(notsack_blk->end, begin) &&
11743 			    (notsack_blk->sack_cnt >=
11744 			    tcp_dupack_fast_retransmit)) {
11745 				end = notsack_blk->end;
11746 				if (SEQ_LT(begin, notsack_blk->begin)) {
11747 					begin = notsack_blk->begin;
11748 				}
11749 				break;
11750 			}
11751 		}
11752 		/*
11753 		 * All holes are filled.  Manipulate tcp_cwnd to send more
11754 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
11755 		 * set to tcp_cwnd_ssthresh.
11756 		 */
11757 		if (notsack_blk == NULL) {
11758 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
11759 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
11760 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
11761 				ASSERT(tcp->tcp_cwnd > 0);
11762 				return;
11763 			} else {
11764 				usable_swnd = usable_swnd / mss;
11765 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
11766 				    MAX(usable_swnd * mss, mss);
11767 				*flags |= TH_XMIT_NEEDED;
11768 				return;
11769 			}
11770 		}
11771 
11772 		/*
11773 		 * Note that we may send more than usable_swnd allows here
11774 		 * because of round off, but no more than 1 MSS of data.
11775 		 */
11776 		seg_len = end - begin;
11777 		if (seg_len > mss)
11778 			seg_len = mss;
11779 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
11780 		ASSERT(snxt_mp != NULL);
11781 		/* This should not happen.  Defensive coding again... */
11782 		if (snxt_mp == NULL) {
11783 			return;
11784 		}
11785 
11786 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
11787 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
11788 		if (xmit_mp == NULL)
11789 			return;
11790 
11791 		usable_swnd -= seg_len;
11792 		tcp->tcp_pipe += seg_len;
11793 		tcp->tcp_sack_snxt = begin + seg_len;
11794 		TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT);
11795 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
11796 
11797 		/*
11798 		 * Update the send timestamp to avoid false retransmission.
11799 		 */
11800 		snxt_mp->b_prev = (mblk_t *)lbolt;
11801 
11802 		BUMP_MIB(&tcp_mib, tcpRetransSegs);
11803 		UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len);
11804 		BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs);
11805 		/*
11806 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
11807 		 * This happens when new data sent during fast recovery is
11808 		 * also lost.  If TCP retransmits those new data, it needs
11809 		 * to extend SACK recover phase to avoid starting another
11810 		 * fast retransmit/recovery unnecessarily.
11811 		 */
11812 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
11813 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
11814 		}
11815 	}
11816 }
11817 
11818 /*
11819  * This function handles policy checking at TCP level for non-hard_bound/
11820  * detached connections.
11821  */
11822 static boolean_t
11823 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
11824     boolean_t secure, boolean_t mctl_present)
11825 {
11826 	ipsec_latch_t *ipl = NULL;
11827 	ipsec_action_t *act = NULL;
11828 	mblk_t *data_mp;
11829 	ipsec_in_t *ii;
11830 	const char *reason;
11831 	kstat_named_t *counter;
11832 
11833 	ASSERT(mctl_present || !secure);
11834 
11835 	ASSERT((ipha == NULL && ip6h != NULL) ||
11836 	    (ip6h == NULL && ipha != NULL));
11837 
11838 	/*
11839 	 * We don't necessarily have an ipsec_in_act action to verify
11840 	 * policy because of assymetrical policy where we have only
11841 	 * outbound policy and no inbound policy (possible with global
11842 	 * policy).
11843 	 */
11844 	if (!secure) {
11845 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
11846 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
11847 			return (B_TRUE);
11848 		ipsec_log_policy_failure(tcp->tcp_wq, IPSEC_POLICY_MISMATCH,
11849 		    "tcp_check_policy", ipha, ip6h, secure);
11850 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
11851 		    &ipdrops_tcp_clear, &tcp_dropper);
11852 		return (B_FALSE);
11853 	}
11854 
11855 	/*
11856 	 * We have a secure packet.
11857 	 */
11858 	if (act == NULL) {
11859 		ipsec_log_policy_failure(tcp->tcp_wq,
11860 		    IPSEC_POLICY_NOT_NEEDED, "tcp_check_policy", ipha, ip6h,
11861 		    secure);
11862 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
11863 		    &ipdrops_tcp_secure, &tcp_dropper);
11864 		return (B_FALSE);
11865 	}
11866 
11867 	/*
11868 	 * XXX This whole routine is currently incorrect.  ipl should
11869 	 * be set to the latch pointer, but is currently not set, so
11870 	 * we initialize it to NULL to avoid picking up random garbage.
11871 	 */
11872 	if (ipl == NULL)
11873 		return (B_TRUE);
11874 
11875 	data_mp = first_mp->b_cont;
11876 
11877 	ii = (ipsec_in_t *)first_mp->b_rptr;
11878 
11879 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
11880 	    &counter)) {
11881 		BUMP_MIB(&ip_mib, ipsecInSucceeded);
11882 		return (B_TRUE);
11883 	}
11884 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
11885 	    "tcp inbound policy mismatch: %s, packet dropped\n",
11886 	    reason);
11887 	BUMP_MIB(&ip_mib, ipsecInFailed);
11888 
11889 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper);
11890 	return (B_FALSE);
11891 }
11892 
11893 /*
11894  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
11895  * retransmission after a timeout.
11896  *
11897  * To limit the number of duplicate segments, we limit the number of segment
11898  * to be sent in one time to tcp_snd_burst, the burst variable.
11899  */
11900 static void
11901 tcp_ss_rexmit(tcp_t *tcp)
11902 {
11903 	uint32_t	snxt;
11904 	uint32_t	smax;
11905 	int32_t		win;
11906 	int32_t		mss;
11907 	int32_t		off;
11908 	int32_t		burst = tcp->tcp_snd_burst;
11909 	mblk_t		*snxt_mp;
11910 
11911 	/*
11912 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
11913 	 * all unack'ed segments.
11914 	 */
11915 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
11916 		smax = tcp->tcp_rexmit_max;
11917 		snxt = tcp->tcp_rexmit_nxt;
11918 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
11919 			snxt = tcp->tcp_suna;
11920 		}
11921 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
11922 		win -= snxt - tcp->tcp_suna;
11923 		mss = tcp->tcp_mss;
11924 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
11925 
11926 		while (SEQ_LT(snxt, smax) && (win > 0) &&
11927 		    (burst > 0) && (snxt_mp != NULL)) {
11928 			mblk_t	*xmit_mp;
11929 			mblk_t	*old_snxt_mp = snxt_mp;
11930 			uint32_t cnt = mss;
11931 
11932 			if (win < cnt) {
11933 				cnt = win;
11934 			}
11935 			if (SEQ_GT(snxt + cnt, smax)) {
11936 				cnt = smax - snxt;
11937 			}
11938 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
11939 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
11940 			if (xmit_mp == NULL)
11941 				return;
11942 
11943 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
11944 
11945 			snxt += cnt;
11946 			win -= cnt;
11947 			/*
11948 			 * Update the send timestamp to avoid false
11949 			 * retransmission.
11950 			 */
11951 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
11952 			BUMP_MIB(&tcp_mib, tcpRetransSegs);
11953 			UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt);
11954 
11955 			tcp->tcp_rexmit_nxt = snxt;
11956 			burst--;
11957 		}
11958 		/*
11959 		 * If we have transmitted all we have at the time
11960 		 * we started the retranmission, we can leave
11961 		 * the rest of the job to tcp_wput_data().  But we
11962 		 * need to check the send window first.  If the
11963 		 * win is not 0, go on with tcp_wput_data().
11964 		 */
11965 		if (SEQ_LT(snxt, smax) || win == 0) {
11966 			return;
11967 		}
11968 	}
11969 	/* Only call tcp_wput_data() if there is data to be sent. */
11970 	if (tcp->tcp_unsent) {
11971 		tcp_wput_data(tcp, NULL, B_FALSE);
11972 	}
11973 }
11974 
11975 /*
11976  * Process all TCP option in SYN segment.  Note that this function should
11977  * be called after tcp_adapt_ire() is called so that the necessary info
11978  * from IRE is already set in the tcp structure.
11979  *
11980  * This function sets up the correct tcp_mss value according to the
11981  * MSS option value and our header size.  It also sets up the window scale
11982  * and timestamp values, and initialize SACK info blocks.  But it does not
11983  * change receive window size after setting the tcp_mss value.  The caller
11984  * should do the appropriate change.
11985  */
11986 void
11987 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
11988 {
11989 	int options;
11990 	tcp_opt_t tcpopt;
11991 	uint32_t mss_max;
11992 	char *tmp_tcph;
11993 
11994 	tcpopt.tcp = NULL;
11995 	options = tcp_parse_options(tcph, &tcpopt);
11996 
11997 	/*
11998 	 * Process MSS option.  Note that MSS option value does not account
11999 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12000 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12001 	 * IPv6.
12002 	 */
12003 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12004 		if (tcp->tcp_ipversion == IPV4_VERSION)
12005 			tcpopt.tcp_opt_mss = tcp_mss_def_ipv4;
12006 		else
12007 			tcpopt.tcp_opt_mss = tcp_mss_def_ipv6;
12008 	} else {
12009 		if (tcp->tcp_ipversion == IPV4_VERSION)
12010 			mss_max = tcp_mss_max_ipv4;
12011 		else
12012 			mss_max = tcp_mss_max_ipv6;
12013 		if (tcpopt.tcp_opt_mss < tcp_mss_min)
12014 			tcpopt.tcp_opt_mss = tcp_mss_min;
12015 		else if (tcpopt.tcp_opt_mss > mss_max)
12016 			tcpopt.tcp_opt_mss = mss_max;
12017 	}
12018 
12019 	/* Process Window Scale option. */
12020 	if (options & TCP_OPT_WSCALE_PRESENT) {
12021 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12022 		tcp->tcp_snd_ws_ok = B_TRUE;
12023 	} else {
12024 		tcp->tcp_snd_ws = B_FALSE;
12025 		tcp->tcp_snd_ws_ok = B_FALSE;
12026 		tcp->tcp_rcv_ws = B_FALSE;
12027 	}
12028 
12029 	/* Process Timestamp option. */
12030 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12031 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12032 		tmp_tcph = (char *)tcp->tcp_tcph;
12033 
12034 		tcp->tcp_snd_ts_ok = B_TRUE;
12035 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12036 		tcp->tcp_last_rcv_lbolt = lbolt64;
12037 		ASSERT(OK_32PTR(tmp_tcph));
12038 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12039 
12040 		/* Fill in our template header with basic timestamp option. */
12041 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12042 		tmp_tcph[0] = TCPOPT_NOP;
12043 		tmp_tcph[1] = TCPOPT_NOP;
12044 		tmp_tcph[2] = TCPOPT_TSTAMP;
12045 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12046 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12047 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12048 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12049 	} else {
12050 		tcp->tcp_snd_ts_ok = B_FALSE;
12051 	}
12052 
12053 	/*
12054 	 * Process SACK options.  If SACK is enabled for this connection,
12055 	 * then allocate the SACK info structure.  Note the following ways
12056 	 * when tcp_snd_sack_ok is set to true.
12057 	 *
12058 	 * For active connection: in tcp_adapt_ire() called in
12059 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12060 	 * is checked.
12061 	 *
12062 	 * For passive connection: in tcp_adapt_ire() called in
12063 	 * tcp_accept_comm().
12064 	 *
12065 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12066 	 * That check makes sure that if we did not send a SACK OK option,
12067 	 * we will not enable SACK for this connection even though the other
12068 	 * side sends us SACK OK option.  For active connection, the SACK
12069 	 * info structure has already been allocated.  So we need to free
12070 	 * it if SACK is disabled.
12071 	 */
12072 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12073 	    (tcp->tcp_snd_sack_ok ||
12074 	    (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12075 		/* This should be true only in the passive case. */
12076 		if (tcp->tcp_sack_info == NULL) {
12077 			ASSERT(TCP_IS_DETACHED(tcp));
12078 			tcp->tcp_sack_info =
12079 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12080 		}
12081 		if (tcp->tcp_sack_info == NULL) {
12082 			tcp->tcp_snd_sack_ok = B_FALSE;
12083 		} else {
12084 			tcp->tcp_snd_sack_ok = B_TRUE;
12085 			if (tcp->tcp_snd_ts_ok) {
12086 				tcp->tcp_max_sack_blk = 3;
12087 			} else {
12088 				tcp->tcp_max_sack_blk = 4;
12089 			}
12090 		}
12091 	} else {
12092 		/*
12093 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12094 		 * no SACK info will be used for this
12095 		 * connection.  This assumes that SACK usage
12096 		 * permission is negotiated.  This may need
12097 		 * to be changed once this is clarified.
12098 		 */
12099 		if (tcp->tcp_sack_info != NULL) {
12100 			ASSERT(tcp->tcp_notsack_list == NULL);
12101 			kmem_cache_free(tcp_sack_info_cache,
12102 			    tcp->tcp_sack_info);
12103 			tcp->tcp_sack_info = NULL;
12104 		}
12105 		tcp->tcp_snd_sack_ok = B_FALSE;
12106 	}
12107 
12108 	/*
12109 	 * Now we know the exact TCP/IP header length, subtract
12110 	 * that from tcp_mss to get our side's MSS.
12111 	 */
12112 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12113 	/*
12114 	 * Here we assume that the other side's header size will be equal to
12115 	 * our header size.  We calculate the real MSS accordingly.  Need to
12116 	 * take into additional stuffs IPsec puts in.
12117 	 *
12118 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12119 	 */
12120 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12121 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12122 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12123 
12124 	/*
12125 	 * Set MSS to the smaller one of both ends of the connection.
12126 	 * We should not have called tcp_mss_set() before, but our
12127 	 * side of the MSS should have been set to a proper value
12128 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12129 	 * STREAM head parameters properly.
12130 	 *
12131 	 * If we have a larger-than-16-bit window but the other side
12132 	 * didn't want to do window scale, tcp_rwnd_set() will take
12133 	 * care of that.
12134 	 */
12135 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
12136 }
12137 
12138 /*
12139  * Sends the T_CONN_IND to the listener. The caller calls this
12140  * functions via squeue to get inside the listener's perimeter
12141  * once the 3 way hand shake is done a T_CONN_IND needs to be
12142  * sent. As an optimization, the caller can call this directly
12143  * if listener's perimeter is same as eager's.
12144  */
12145 /* ARGSUSED */
12146 void
12147 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12148 {
12149 	conn_t			*lconnp = (conn_t *)arg;
12150 	tcp_t			*listener = lconnp->conn_tcp;
12151 	tcp_t			*tcp;
12152 	struct T_conn_ind	*conn_ind;
12153 	ipaddr_t 		*addr_cache;
12154 	boolean_t		need_send_conn_ind = B_FALSE;
12155 
12156 	/* retrieve the eager */
12157 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12158 	ASSERT(conn_ind->OPT_offset != 0 &&
12159 	    conn_ind->OPT_length == sizeof (intptr_t));
12160 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12161 		conn_ind->OPT_length);
12162 
12163 	/*
12164 	 * TLI/XTI applications will get confused by
12165 	 * sending eager as an option since it violates
12166 	 * the option semantics. So remove the eager as
12167 	 * option since TLI/XTI app doesn't need it anyway.
12168 	 */
12169 	if (!TCP_IS_SOCKET(listener)) {
12170 		conn_ind->OPT_length = 0;
12171 		conn_ind->OPT_offset = 0;
12172 	}
12173 	if (listener->tcp_state == TCPS_CLOSED ||
12174 	    TCP_IS_DETACHED(listener)) {
12175 		/*
12176 		 * If listener has closed, it would have caused a
12177 		 * a cleanup/blowoff to happen for the eager. We
12178 		 * just need to return.
12179 		 */
12180 		freemsg(mp);
12181 		return;
12182 	}
12183 
12184 
12185 	/*
12186 	 * if the conn_req_q is full defer passing up the
12187 	 * T_CONN_IND until space is availabe after t_accept()
12188 	 * processing
12189 	 */
12190 	mutex_enter(&listener->tcp_eager_lock);
12191 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12192 		tcp_t *tail;
12193 
12194 		/*
12195 		 * The eager already has an extra ref put in tcp_rput_data
12196 		 * so that it stays till accept comes back even though it
12197 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12198 		 */
12199 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12200 		listener->tcp_conn_req_cnt_q0--;
12201 		listener->tcp_conn_req_cnt_q++;
12202 
12203 		/* Move from SYN_RCVD to ESTABLISHED list  */
12204 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12205 		    tcp->tcp_eager_prev_q0;
12206 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12207 		    tcp->tcp_eager_next_q0;
12208 		tcp->tcp_eager_prev_q0 = NULL;
12209 		tcp->tcp_eager_next_q0 = NULL;
12210 
12211 		/*
12212 		 * Insert at end of the queue because sockfs
12213 		 * sends down T_CONN_RES in chronological
12214 		 * order. Leaving the older conn indications
12215 		 * at front of the queue helps reducing search
12216 		 * time.
12217 		 */
12218 		tail = listener->tcp_eager_last_q;
12219 		if (tail != NULL)
12220 			tail->tcp_eager_next_q = tcp;
12221 		else
12222 			listener->tcp_eager_next_q = tcp;
12223 		listener->tcp_eager_last_q = tcp;
12224 		tcp->tcp_eager_next_q = NULL;
12225 		/*
12226 		 * Delay sending up the T_conn_ind until we are
12227 		 * done with the eager. Once we have have sent up
12228 		 * the T_conn_ind, the accept can potentially complete
12229 		 * any time and release the refhold we have on the eager.
12230 		 */
12231 		need_send_conn_ind = B_TRUE;
12232 	} else {
12233 		/*
12234 		 * Defer connection on q0 and set deferred
12235 		 * connection bit true
12236 		 */
12237 		tcp->tcp_conn_def_q0 = B_TRUE;
12238 
12239 		/* take tcp out of q0 ... */
12240 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12241 		    tcp->tcp_eager_next_q0;
12242 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12243 		    tcp->tcp_eager_prev_q0;
12244 
12245 		/* ... and place it at the end of q0 */
12246 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12247 		tcp->tcp_eager_next_q0 = listener;
12248 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12249 		listener->tcp_eager_prev_q0 = tcp;
12250 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12251 	}
12252 
12253 	/* we have timed out before */
12254 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12255 		tcp->tcp_syn_rcvd_timeout = 0;
12256 		listener->tcp_syn_rcvd_timeout--;
12257 		if (listener->tcp_syn_defense &&
12258 		    listener->tcp_syn_rcvd_timeout <=
12259 		    (tcp_conn_req_max_q0 >> 5) &&
12260 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12261 			listener->tcp_last_rcv_lbolt)) {
12262 			/*
12263 			 * Turn off the defense mode if we
12264 			 * believe the SYN attack is over.
12265 			 */
12266 			listener->tcp_syn_defense = B_FALSE;
12267 			if (listener->tcp_ip_addr_cache) {
12268 				kmem_free((void *)listener->tcp_ip_addr_cache,
12269 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12270 				listener->tcp_ip_addr_cache = NULL;
12271 			}
12272 		}
12273 	}
12274 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12275 	if (addr_cache != NULL) {
12276 		/*
12277 		 * We have finished a 3-way handshake with this
12278 		 * remote host. This proves the IP addr is good.
12279 		 * Cache it!
12280 		 */
12281 		addr_cache[IP_ADDR_CACHE_HASH(
12282 			tcp->tcp_remote)] = tcp->tcp_remote;
12283 	}
12284 	mutex_exit(&listener->tcp_eager_lock);
12285 	if (need_send_conn_ind)
12286 		putnext(listener->tcp_rq, mp);
12287 }
12288 
12289 mblk_t *
12290 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12291     uint_t *ifindexp, ip6_pkt_t *ippp)
12292 {
12293 	in_pktinfo_t	*pinfo;
12294 	ip6_t		*ip6h;
12295 	uchar_t		*rptr;
12296 	mblk_t		*first_mp = mp;
12297 	boolean_t	mctl_present = B_FALSE;
12298 	uint_t 		ifindex = 0;
12299 	ip6_pkt_t	ipp;
12300 	uint_t		ipvers;
12301 	uint_t		ip_hdr_len;
12302 
12303 	rptr = mp->b_rptr;
12304 	ASSERT(OK_32PTR(rptr));
12305 	ASSERT(tcp != NULL);
12306 	ipp.ipp_fields = 0;
12307 
12308 	switch DB_TYPE(mp) {
12309 	case M_CTL:
12310 		mp = mp->b_cont;
12311 		if (mp == NULL) {
12312 			freemsg(first_mp);
12313 			return (NULL);
12314 		}
12315 		if (DB_TYPE(mp) != M_DATA) {
12316 			freemsg(first_mp);
12317 			return (NULL);
12318 		}
12319 		mctl_present = B_TRUE;
12320 		break;
12321 	case M_DATA:
12322 		break;
12323 	default:
12324 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12325 		freemsg(mp);
12326 		return (NULL);
12327 	}
12328 	ipvers = IPH_HDR_VERSION(rptr);
12329 	if (ipvers == IPV4_VERSION) {
12330 		if (tcp == NULL) {
12331 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12332 			goto done;
12333 		}
12334 
12335 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12336 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12337 
12338 		/*
12339 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12340 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12341 		 */
12342 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12343 		    mctl_present) {
12344 			pinfo = (in_pktinfo_t *)first_mp->b_rptr;
12345 			if ((MBLKL(first_mp) == sizeof (in_pktinfo_t)) &&
12346 			    (pinfo->in_pkt_ulp_type == IN_PKTINFO) &&
12347 			    (pinfo->in_pkt_flags & IPF_RECVIF)) {
12348 				ipp.ipp_fields |= IPPF_IFINDEX;
12349 				ipp.ipp_ifindex = pinfo->in_pkt_ifindex;
12350 				ifindex = pinfo->in_pkt_ifindex;
12351 			}
12352 			freeb(first_mp);
12353 			mctl_present = B_FALSE;
12354 		}
12355 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12356 	} else {
12357 		ip6h = (ip6_t *)rptr;
12358 
12359 		ASSERT(ipvers == IPV6_VERSION);
12360 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12361 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12362 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12363 
12364 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12365 			uint8_t	nexthdrp;
12366 
12367 			/* Look for ifindex information */
12368 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12369 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12370 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12371 					BUMP_MIB(&ip_mib, tcpInErrs);
12372 					freemsg(first_mp);
12373 					return (NULL);
12374 				}
12375 
12376 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12377 					ASSERT(ip6i->ip6i_ifindex != 0);
12378 					ipp.ipp_fields |= IPPF_IFINDEX;
12379 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12380 					ifindex = ip6i->ip6i_ifindex;
12381 				}
12382 				rptr = (uchar_t *)&ip6i[1];
12383 				mp->b_rptr = rptr;
12384 				if (rptr == mp->b_wptr) {
12385 					mblk_t *mp1;
12386 					mp1 = mp->b_cont;
12387 					freeb(mp);
12388 					mp = mp1;
12389 					rptr = mp->b_rptr;
12390 				}
12391 				if (MBLKL(mp) < IPV6_HDR_LEN +
12392 				    sizeof (tcph_t)) {
12393 					BUMP_MIB(&ip_mib, tcpInErrs);
12394 					freemsg(first_mp);
12395 					return (NULL);
12396 				}
12397 				ip6h = (ip6_t *)rptr;
12398 			}
12399 
12400 			/*
12401 			 * Find any potentially interesting extension headers
12402 			 * as well as the length of the IPv6 + extension
12403 			 * headers.
12404 			 */
12405 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12406 			/* Verify if this is a TCP packet */
12407 			if (nexthdrp != IPPROTO_TCP) {
12408 				BUMP_MIB(&ip_mib, tcpInErrs);
12409 				freemsg(first_mp);
12410 				return (NULL);
12411 			}
12412 		} else {
12413 			ip_hdr_len = IPV6_HDR_LEN;
12414 		}
12415 	}
12416 
12417 done:
12418 	if (ipversp != NULL)
12419 		*ipversp = ipvers;
12420 	if (ip_hdr_lenp != NULL)
12421 		*ip_hdr_lenp = ip_hdr_len;
12422 	if (ippp != NULL)
12423 		*ippp = ipp;
12424 	if (ifindexp != NULL)
12425 		*ifindexp = ifindex;
12426 	if (mctl_present) {
12427 		freeb(first_mp);
12428 	}
12429 	return (mp);
12430 }
12431 
12432 /*
12433  * Handle M_DATA messages from IP. Its called directly from IP via
12434  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12435  * in this path.
12436  *
12437  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12438  * v4 and v6), we are called through tcp_input() and a M_CTL can
12439  * be present for options but tcp_find_pktinfo() deals with it. We
12440  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12441  *
12442  * The first argument is always the connp/tcp to which the mp belongs.
12443  * There are no exceptions to this rule. The caller has already put
12444  * a reference on this connp/tcp and once tcp_rput_data() returns,
12445  * the squeue will do the refrele.
12446  *
12447  * The TH_SYN for the listener directly go to tcp_conn_request via
12448  * squeue.
12449  *
12450  * sqp: NULL = recursive, sqp != NULL means called from squeue
12451  */
12452 void
12453 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12454 {
12455 	int32_t		bytes_acked;
12456 	int32_t		gap;
12457 	mblk_t		*mp1;
12458 	uint_t		flags;
12459 	uint32_t	new_swnd = 0;
12460 	uchar_t		*iphdr;
12461 	uchar_t		*rptr;
12462 	int32_t		rgap;
12463 	uint32_t	seg_ack;
12464 	int		seg_len;
12465 	uint_t		ip_hdr_len;
12466 	uint32_t	seg_seq;
12467 	tcph_t		*tcph;
12468 	int		urp;
12469 	tcp_opt_t	tcpopt;
12470 	uint_t		ipvers;
12471 	ip6_pkt_t	ipp;
12472 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12473 	uint32_t	cwnd;
12474 	uint32_t	add;
12475 	int		npkt;
12476 	int		mss;
12477 	conn_t		*connp = (conn_t *)arg;
12478 	squeue_t	*sqp = (squeue_t *)arg2;
12479 	tcp_t		*tcp = connp->conn_tcp;
12480 
12481 	/*
12482 	 * RST from fused tcp loopback peer should trigger an unfuse.
12483 	 */
12484 	if (tcp->tcp_fused) {
12485 		TCP_STAT(tcp_fusion_aborted);
12486 		tcp_unfuse(tcp);
12487 	}
12488 
12489 	iphdr = mp->b_rptr;
12490 	rptr = mp->b_rptr;
12491 	ASSERT(OK_32PTR(rptr));
12492 
12493 	/*
12494 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12495 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12496 	 * necessary information.
12497 	 */
12498 	if (IPCL_IS_TCP4(connp)) {
12499 		ipvers = IPV4_VERSION;
12500 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12501 	} else {
12502 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
12503 		    NULL, &ipp);
12504 		if (mp == NULL) {
12505 			TCP_STAT(tcp_rput_v6_error);
12506 			return;
12507 		}
12508 		iphdr = mp->b_rptr;
12509 		rptr = mp->b_rptr;
12510 	}
12511 	ASSERT(DB_TYPE(mp) == M_DATA);
12512 
12513 	tcph = (tcph_t *)&rptr[ip_hdr_len];
12514 	seg_seq = ABE32_TO_U32(tcph->th_seq);
12515 	seg_ack = ABE32_TO_U32(tcph->th_ack);
12516 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
12517 	seg_len = (int)(mp->b_wptr - rptr) -
12518 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
12519 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
12520 		do {
12521 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
12522 			    (uintptr_t)INT_MAX);
12523 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
12524 		} while ((mp1 = mp1->b_cont) != NULL &&
12525 		    mp1->b_datap->db_type == M_DATA);
12526 	}
12527 
12528 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
12529 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
12530 		    seg_len, tcph);
12531 		return;
12532 	}
12533 
12534 	if (sqp != NULL) {
12535 		/*
12536 		 * This is the correct place to update tcp_last_recv_time. Note
12537 		 * that it is also updated for tcp structure that belongs to
12538 		 * global and listener queues which do not really need updating.
12539 		 * But that should not cause any harm.  And it is updated for
12540 		 * all kinds of incoming segments, not only for data segments.
12541 		 */
12542 		tcp->tcp_last_recv_time = lbolt;
12543 	}
12544 
12545 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
12546 
12547 	BUMP_LOCAL(tcp->tcp_ibsegs);
12548 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
12549 
12550 	if ((flags & TH_URG) && sqp != NULL) {
12551 		/*
12552 		 * TCP can't handle urgent pointers that arrive before
12553 		 * the connection has been accept()ed since it can't
12554 		 * buffer OOB data.  Discard segment if this happens.
12555 		 *
12556 		 * Nor can it reassemble urgent pointers, so discard
12557 		 * if it's not the next segment expected.
12558 		 *
12559 		 * Otherwise, collapse chain into one mblk (discard if
12560 		 * that fails).  This makes sure the headers, retransmitted
12561 		 * data, and new data all are in the same mblk.
12562 		 */
12563 		ASSERT(mp != NULL);
12564 		if (tcp->tcp_listener || !pullupmsg(mp, -1)) {
12565 			freemsg(mp);
12566 			return;
12567 		}
12568 		/* Update pointers into message */
12569 		iphdr = rptr = mp->b_rptr;
12570 		tcph = (tcph_t *)&rptr[ip_hdr_len];
12571 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
12572 			/*
12573 			 * Since we can't handle any data with this urgent
12574 			 * pointer that is out of sequence, we expunge
12575 			 * the data.  This allows us to still register
12576 			 * the urgent mark and generate the M_PCSIG,
12577 			 * which we can do.
12578 			 */
12579 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
12580 			seg_len = 0;
12581 		}
12582 	}
12583 
12584 	switch (tcp->tcp_state) {
12585 	case TCPS_SYN_SENT:
12586 		if (flags & TH_ACK) {
12587 			/*
12588 			 * Note that our stack cannot send data before a
12589 			 * connection is established, therefore the
12590 			 * following check is valid.  Otherwise, it has
12591 			 * to be changed.
12592 			 */
12593 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
12594 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
12595 				freemsg(mp);
12596 				if (flags & TH_RST)
12597 					return;
12598 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
12599 				    tcp, seg_ack, 0, TH_RST);
12600 				return;
12601 			}
12602 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
12603 		}
12604 		if (flags & TH_RST) {
12605 			freemsg(mp);
12606 			if (flags & TH_ACK)
12607 				(void) tcp_clean_death(tcp,
12608 				    ECONNREFUSED, 13);
12609 			return;
12610 		}
12611 		if (!(flags & TH_SYN)) {
12612 			freemsg(mp);
12613 			return;
12614 		}
12615 
12616 		/* Process all TCP options. */
12617 		tcp_process_options(tcp, tcph);
12618 		/*
12619 		 * The following changes our rwnd to be a multiple of the
12620 		 * MIN(peer MSS, our MSS) for performance reason.
12621 		 */
12622 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat,
12623 		    tcp->tcp_mss));
12624 
12625 		/* Is the other end ECN capable? */
12626 		if (tcp->tcp_ecn_ok) {
12627 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
12628 				tcp->tcp_ecn_ok = B_FALSE;
12629 			}
12630 		}
12631 		/*
12632 		 * Clear ECN flags because it may interfere with later
12633 		 * processing.
12634 		 */
12635 		flags &= ~(TH_ECE|TH_CWR);
12636 
12637 		tcp->tcp_irs = seg_seq;
12638 		tcp->tcp_rack = seg_seq;
12639 		tcp->tcp_rnxt = seg_seq + 1;
12640 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
12641 		if (!TCP_IS_DETACHED(tcp)) {
12642 			/* Allocate room for SACK options if needed. */
12643 			if (tcp->tcp_snd_sack_ok) {
12644 				(void) mi_set_sth_wroff(tcp->tcp_rq,
12645 				    tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
12646 				    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra));
12647 			} else {
12648 				(void) mi_set_sth_wroff(tcp->tcp_rq,
12649 				    tcp->tcp_hdr_len +
12650 				    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra));
12651 			}
12652 		}
12653 		if (flags & TH_ACK) {
12654 			/*
12655 			 * If we can't get the confirmation upstream, pretend
12656 			 * we didn't even see this one.
12657 			 *
12658 			 * XXX: how can we pretend we didn't see it if we
12659 			 * have updated rnxt et. al.
12660 			 *
12661 			 * For loopback we defer sending up the T_CONN_CON
12662 			 * until after some checks below.
12663 			 */
12664 			mp1 = NULL;
12665 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
12666 			    tcp->tcp_loopback ? &mp1 : NULL)) {
12667 				freemsg(mp);
12668 				return;
12669 			}
12670 			/* SYN was acked - making progress */
12671 			if (tcp->tcp_ipversion == IPV6_VERSION)
12672 				tcp->tcp_ip_forward_progress = B_TRUE;
12673 
12674 			/* One for the SYN */
12675 			tcp->tcp_suna = tcp->tcp_iss + 1;
12676 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
12677 			tcp->tcp_state = TCPS_ESTABLISHED;
12678 
12679 			/*
12680 			 * If SYN was retransmitted, need to reset all
12681 			 * retransmission info.  This is because this
12682 			 * segment will be treated as a dup ACK.
12683 			 */
12684 			if (tcp->tcp_rexmit) {
12685 				tcp->tcp_rexmit = B_FALSE;
12686 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
12687 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
12688 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
12689 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
12690 				tcp->tcp_ms_we_have_waited = 0;
12691 
12692 				/*
12693 				 * Set tcp_cwnd back to 1 MSS, per
12694 				 * recommendation from
12695 				 * draft-floyd-incr-init-win-01.txt,
12696 				 * Increasing TCP's Initial Window.
12697 				 */
12698 				tcp->tcp_cwnd = tcp->tcp_mss;
12699 			}
12700 
12701 			tcp->tcp_swl1 = seg_seq;
12702 			tcp->tcp_swl2 = seg_ack;
12703 
12704 			new_swnd = BE16_TO_U16(tcph->th_win);
12705 			tcp->tcp_swnd = new_swnd;
12706 			if (new_swnd > tcp->tcp_max_swnd)
12707 				tcp->tcp_max_swnd = new_swnd;
12708 
12709 			/*
12710 			 * Always send the three-way handshake ack immediately
12711 			 * in order to make the connection complete as soon as
12712 			 * possible on the accepting host.
12713 			 */
12714 			flags |= TH_ACK_NEEDED;
12715 
12716 			/*
12717 			 * Special case for loopback.  At this point we have
12718 			 * received SYN-ACK from the remote endpoint.  In
12719 			 * order to ensure that both endpoints reach the
12720 			 * fused state prior to any data exchange, the final
12721 			 * ACK needs to be sent before we indicate T_CONN_CON
12722 			 * to the module upstream.
12723 			 */
12724 			if (tcp->tcp_loopback) {
12725 				mblk_t *ack_mp;
12726 
12727 				ASSERT(!tcp->tcp_unfusable);
12728 				ASSERT(mp1 != NULL);
12729 				/*
12730 				 * For loopback, we always get a pure SYN-ACK
12731 				 * and only need to send back the final ACK
12732 				 * with no data (this is because the other
12733 				 * tcp is ours and we don't do T/TCP).  This
12734 				 * final ACK triggers the passive side to
12735 				 * perform fusion in ESTABLISHED state.
12736 				 */
12737 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
12738 					if (tcp->tcp_ack_tid != 0) {
12739 						(void) TCP_TIMER_CANCEL(tcp,
12740 						    tcp->tcp_ack_tid);
12741 						tcp->tcp_ack_tid = 0;
12742 					}
12743 					TCP_RECORD_TRACE(tcp, ack_mp,
12744 					    TCP_TRACE_SEND_PKT);
12745 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
12746 					BUMP_LOCAL(tcp->tcp_obsegs);
12747 					BUMP_MIB(&tcp_mib, tcpOutAck);
12748 
12749 					/* Send up T_CONN_CON */
12750 					putnext(tcp->tcp_rq, mp1);
12751 
12752 					freemsg(mp);
12753 					return;
12754 				}
12755 				/*
12756 				 * Forget fusion; we need to handle more
12757 				 * complex cases below.  Send the deferred
12758 				 * T_CONN_CON message upstream and proceed
12759 				 * as usual.  Mark this tcp as not capable
12760 				 * of fusion.
12761 				 */
12762 				TCP_STAT(tcp_fusion_unfusable);
12763 				tcp->tcp_unfusable = B_TRUE;
12764 				putnext(tcp->tcp_rq, mp1);
12765 			}
12766 
12767 			/*
12768 			 * Check to see if there is data to be sent.  If
12769 			 * yes, set the transmit flag.  Then check to see
12770 			 * if received data processing needs to be done.
12771 			 * If not, go straight to xmit_check.  This short
12772 			 * cut is OK as we don't support T/TCP.
12773 			 */
12774 			if (tcp->tcp_unsent)
12775 				flags |= TH_XMIT_NEEDED;
12776 
12777 			if (seg_len == 0 && !(flags & TH_URG)) {
12778 				freemsg(mp);
12779 				goto xmit_check;
12780 			}
12781 
12782 			flags &= ~TH_SYN;
12783 			seg_seq++;
12784 			break;
12785 		}
12786 		tcp->tcp_state = TCPS_SYN_RCVD;
12787 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
12788 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
12789 		if (mp1) {
12790 			DB_CPID(mp1) = tcp->tcp_cpid;
12791 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
12792 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
12793 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
12794 		}
12795 		freemsg(mp);
12796 		return;
12797 	case TCPS_SYN_RCVD:
12798 		if (flags & TH_ACK) {
12799 			/*
12800 			 * In this state, a SYN|ACK packet is either bogus
12801 			 * because the other side must be ACKing our SYN which
12802 			 * indicates it has seen the ACK for their SYN and
12803 			 * shouldn't retransmit it or we're crossing SYNs
12804 			 * on active open.
12805 			 */
12806 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
12807 				freemsg(mp);
12808 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
12809 				    tcp, seg_ack, 0, TH_RST);
12810 				return;
12811 			}
12812 			/*
12813 			 * NOTE: RFC 793 pg. 72 says this should be
12814 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
12815 			 * but that would mean we have an ack that ignored
12816 			 * our SYN.
12817 			 */
12818 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
12819 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
12820 				freemsg(mp);
12821 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
12822 				    tcp, seg_ack, 0, TH_RST);
12823 				return;
12824 			}
12825 		}
12826 		break;
12827 	case TCPS_LISTEN:
12828 		/*
12829 		 * Only a TLI listener can come through this path when a
12830 		 * acceptor is going back to be a listener and a packet
12831 		 * for the acceptor hits the classifier. For a socket
12832 		 * listener, this can never happen because a listener
12833 		 * can never accept connection on itself and hence a
12834 		 * socket acceptor can not go back to being a listener.
12835 		 */
12836 		ASSERT(!TCP_IS_SOCKET(tcp));
12837 		/*FALLTHRU*/
12838 	case TCPS_CLOSED:
12839 	case TCPS_BOUND: {
12840 		conn_t	*new_connp;
12841 
12842 		new_connp = ipcl_classify(mp, connp->conn_zoneid);
12843 		if (new_connp != NULL) {
12844 			tcp_reinput(new_connp, mp, connp->conn_sqp);
12845 			return;
12846 		}
12847 		/* We failed to classify. For now just drop the packet */
12848 		freemsg(mp);
12849 		return;
12850 	}
12851 	case TCPS_IDLE:
12852 		/*
12853 		 * Handle the case where the tcp_clean_death() has happened
12854 		 * on a connection (application hasn't closed yet) but a packet
12855 		 * was already queued on squeue before tcp_clean_death()
12856 		 * was processed. Calling tcp_clean_death() twice on same
12857 		 * connection can result in weird behaviour.
12858 		 */
12859 		freemsg(mp);
12860 		return;
12861 	default:
12862 		break;
12863 	}
12864 
12865 	/*
12866 	 * Already on the correct queue/perimeter.
12867 	 * If this is a detached connection and not an eager
12868 	 * connection hanging off a listener then new data
12869 	 * (past the FIN) will cause a reset.
12870 	 * We do a special check here where it
12871 	 * is out of the main line, rather than check
12872 	 * if we are detached every time we see new
12873 	 * data down below.
12874 	 */
12875 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
12876 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
12877 		BUMP_MIB(&tcp_mib, tcpInClosed);
12878 		TCP_RECORD_TRACE(tcp,
12879 		    mp, TCP_TRACE_RECV_PKT);
12880 
12881 		freemsg(mp);
12882 		/*
12883 		 * This could be an SSL closure alert. We're detached so just
12884 		 * acknowledge it this last time.
12885 		 */
12886 		if (tcp->tcp_kssl_ctx != NULL) {
12887 			kssl_release_ctx(tcp->tcp_kssl_ctx);
12888 			tcp->tcp_kssl_ctx = NULL;
12889 
12890 			tcp->tcp_rnxt += seg_len;
12891 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
12892 			flags |= TH_ACK_NEEDED;
12893 			goto ack_check;
12894 		}
12895 
12896 		tcp_xmit_ctl("new data when detached", tcp,
12897 		    tcp->tcp_snxt, 0, TH_RST);
12898 		(void) tcp_clean_death(tcp, EPROTO, 12);
12899 		return;
12900 	}
12901 
12902 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
12903 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
12904 	new_swnd = BE16_TO_U16(tcph->th_win) <<
12905 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
12906 	mss = tcp->tcp_mss;
12907 
12908 	if (tcp->tcp_snd_ts_ok) {
12909 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
12910 			/*
12911 			 * This segment is not acceptable.
12912 			 * Drop it and send back an ACK.
12913 			 */
12914 			freemsg(mp);
12915 			flags |= TH_ACK_NEEDED;
12916 			goto ack_check;
12917 		}
12918 	} else if (tcp->tcp_snd_sack_ok) {
12919 		ASSERT(tcp->tcp_sack_info != NULL);
12920 		tcpopt.tcp = tcp;
12921 		/*
12922 		 * SACK info in already updated in tcp_parse_options.  Ignore
12923 		 * all other TCP options...
12924 		 */
12925 		(void) tcp_parse_options(tcph, &tcpopt);
12926 	}
12927 try_again:;
12928 	gap = seg_seq - tcp->tcp_rnxt;
12929 	rgap = tcp->tcp_rwnd - (gap + seg_len);
12930 	/*
12931 	 * gap is the amount of sequence space between what we expect to see
12932 	 * and what we got for seg_seq.  A positive value for gap means
12933 	 * something got lost.  A negative value means we got some old stuff.
12934 	 */
12935 	if (gap < 0) {
12936 		/* Old stuff present.  Is the SYN in there? */
12937 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
12938 		    (seg_len != 0)) {
12939 			flags &= ~TH_SYN;
12940 			seg_seq++;
12941 			urp--;
12942 			/* Recompute the gaps after noting the SYN. */
12943 			goto try_again;
12944 		}
12945 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
12946 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes,
12947 		    (seg_len > -gap ? -gap : seg_len));
12948 		/* Remove the old stuff from seg_len. */
12949 		seg_len += gap;
12950 		/*
12951 		 * Anything left?
12952 		 * Make sure to check for unack'd FIN when rest of data
12953 		 * has been previously ack'd.
12954 		 */
12955 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
12956 			/*
12957 			 * Resets are only valid if they lie within our offered
12958 			 * window.  If the RST bit is set, we just ignore this
12959 			 * segment.
12960 			 */
12961 			if (flags & TH_RST) {
12962 				freemsg(mp);
12963 				return;
12964 			}
12965 
12966 			/*
12967 			 * The arriving of dup data packets indicate that we
12968 			 * may have postponed an ack for too long, or the other
12969 			 * side's RTT estimate is out of shape. Start acking
12970 			 * more often.
12971 			 */
12972 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
12973 			    tcp->tcp_rack_cnt >= 1 &&
12974 			    tcp->tcp_rack_abs_max > 2) {
12975 				tcp->tcp_rack_abs_max--;
12976 			}
12977 			tcp->tcp_rack_cur_max = 1;
12978 
12979 			/*
12980 			 * This segment is "unacceptable".  None of its
12981 			 * sequence space lies within our advertized window.
12982 			 *
12983 			 * Adjust seg_len to the original value for tracing.
12984 			 */
12985 			seg_len -= gap;
12986 			if (tcp->tcp_debug) {
12987 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
12988 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
12989 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
12990 				    "seg_len %d, rnxt %u, snxt %u, %s",
12991 				    gap, rgap, flags, seg_seq, seg_ack,
12992 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
12993 				    tcp_display(tcp, NULL,
12994 				    DISP_ADDR_AND_PORT));
12995 			}
12996 
12997 			/*
12998 			 * Arrange to send an ACK in response to the
12999 			 * unacceptable segment per RFC 793 page 69. There
13000 			 * is only one small difference between ours and the
13001 			 * acceptability test in the RFC - we accept ACK-only
13002 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13003 			 * will be generated.
13004 			 *
13005 			 * Note that we have to ACK an ACK-only packet at least
13006 			 * for stacks that send 0-length keep-alives with
13007 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13008 			 * section 4.2.3.6. As long as we don't ever generate
13009 			 * an unacceptable packet in response to an incoming
13010 			 * packet that is unacceptable, it should not cause
13011 			 * "ACK wars".
13012 			 */
13013 			flags |=  TH_ACK_NEEDED;
13014 
13015 			/*
13016 			 * Continue processing this segment in order to use the
13017 			 * ACK information it contains, but skip all other
13018 			 * sequence-number processing.	Processing the ACK
13019 			 * information is necessary in order to
13020 			 * re-synchronize connections that may have lost
13021 			 * synchronization.
13022 			 *
13023 			 * We clear seg_len and flag fields related to
13024 			 * sequence number processing as they are not
13025 			 * to be trusted for an unacceptable segment.
13026 			 */
13027 			seg_len = 0;
13028 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13029 			goto process_ack;
13030 		}
13031 
13032 		/* Fix seg_seq, and chew the gap off the front. */
13033 		seg_seq = tcp->tcp_rnxt;
13034 		urp += gap;
13035 		do {
13036 			mblk_t	*mp2;
13037 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13038 			    (uintptr_t)UINT_MAX);
13039 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13040 			if (gap > 0) {
13041 				mp->b_rptr = mp->b_wptr - gap;
13042 				break;
13043 			}
13044 			mp2 = mp;
13045 			mp = mp->b_cont;
13046 			freeb(mp2);
13047 		} while (gap < 0);
13048 		/*
13049 		 * If the urgent data has already been acknowledged, we
13050 		 * should ignore TH_URG below
13051 		 */
13052 		if (urp < 0)
13053 			flags &= ~TH_URG;
13054 	}
13055 	/*
13056 	 * rgap is the amount of stuff received out of window.  A negative
13057 	 * value is the amount out of window.
13058 	 */
13059 	if (rgap < 0) {
13060 		mblk_t	*mp2;
13061 
13062 		if (tcp->tcp_rwnd == 0) {
13063 			BUMP_MIB(&tcp_mib, tcpInWinProbe);
13064 		} else {
13065 			BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs);
13066 			UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap);
13067 		}
13068 
13069 		/*
13070 		 * seg_len does not include the FIN, so if more than
13071 		 * just the FIN is out of window, we act like we don't
13072 		 * see it.  (If just the FIN is out of window, rgap
13073 		 * will be zero and we will go ahead and acknowledge
13074 		 * the FIN.)
13075 		 */
13076 		flags &= ~TH_FIN;
13077 
13078 		/* Fix seg_len and make sure there is something left. */
13079 		seg_len += rgap;
13080 		if (seg_len <= 0) {
13081 			/*
13082 			 * Resets are only valid if they lie within our offered
13083 			 * window.  If the RST bit is set, we just ignore this
13084 			 * segment.
13085 			 */
13086 			if (flags & TH_RST) {
13087 				freemsg(mp);
13088 				return;
13089 			}
13090 
13091 			/* Per RFC 793, we need to send back an ACK. */
13092 			flags |= TH_ACK_NEEDED;
13093 
13094 			/*
13095 			 * Send SIGURG as soon as possible i.e. even
13096 			 * if the TH_URG was delivered in a window probe
13097 			 * packet (which will be unacceptable).
13098 			 *
13099 			 * We generate a signal if none has been generated
13100 			 * for this connection or if this is a new urgent
13101 			 * byte. Also send a zero-length "unmarked" message
13102 			 * to inform SIOCATMARK that this is not the mark.
13103 			 *
13104 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13105 			 * is sent up. This plus the check for old data
13106 			 * (gap >= 0) handles the wraparound of the sequence
13107 			 * number space without having to always track the
13108 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13109 			 * this max in its rcv_up variable).
13110 			 *
13111 			 * This prevents duplicate SIGURGS due to a "late"
13112 			 * zero-window probe when the T_EXDATA_IND has already
13113 			 * been sent up.
13114 			 */
13115 			if ((flags & TH_URG) &&
13116 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13117 			    tcp->tcp_urp_last))) {
13118 				mp1 = allocb(0, BPRI_MED);
13119 				if (mp1 == NULL) {
13120 					freemsg(mp);
13121 					return;
13122 				}
13123 				if (!TCP_IS_DETACHED(tcp) &&
13124 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13125 				    SIGURG)) {
13126 					/* Try again on the rexmit. */
13127 					freemsg(mp1);
13128 					freemsg(mp);
13129 					return;
13130 				}
13131 				/*
13132 				 * If the next byte would be the mark
13133 				 * then mark with MARKNEXT else mark
13134 				 * with NOTMARKNEXT.
13135 				 */
13136 				if (gap == 0 && urp == 0)
13137 					mp1->b_flag |= MSGMARKNEXT;
13138 				else
13139 					mp1->b_flag |= MSGNOTMARKNEXT;
13140 				freemsg(tcp->tcp_urp_mark_mp);
13141 				tcp->tcp_urp_mark_mp = mp1;
13142 				flags |= TH_SEND_URP_MARK;
13143 				tcp->tcp_urp_last_valid = B_TRUE;
13144 				tcp->tcp_urp_last = urp + seg_seq;
13145 			}
13146 			/*
13147 			 * If this is a zero window probe, continue to
13148 			 * process the ACK part.  But we need to set seg_len
13149 			 * to 0 to avoid data processing.  Otherwise just
13150 			 * drop the segment and send back an ACK.
13151 			 */
13152 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13153 				flags &= ~(TH_SYN | TH_URG);
13154 				seg_len = 0;
13155 				goto process_ack;
13156 			} else {
13157 				freemsg(mp);
13158 				goto ack_check;
13159 			}
13160 		}
13161 		/* Pitch out of window stuff off the end. */
13162 		rgap = seg_len;
13163 		mp2 = mp;
13164 		do {
13165 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13166 			    (uintptr_t)INT_MAX);
13167 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13168 			if (rgap < 0) {
13169 				mp2->b_wptr += rgap;
13170 				if ((mp1 = mp2->b_cont) != NULL) {
13171 					mp2->b_cont = NULL;
13172 					freemsg(mp1);
13173 				}
13174 				break;
13175 			}
13176 		} while ((mp2 = mp2->b_cont) != NULL);
13177 	}
13178 ok:;
13179 	/*
13180 	 * TCP should check ECN info for segments inside the window only.
13181 	 * Therefore the check should be done here.
13182 	 */
13183 	if (tcp->tcp_ecn_ok) {
13184 		if (flags & TH_CWR) {
13185 			tcp->tcp_ecn_echo_on = B_FALSE;
13186 		}
13187 		/*
13188 		 * Note that both ECN_CE and CWR can be set in the
13189 		 * same segment.  In this case, we once again turn
13190 		 * on ECN_ECHO.
13191 		 */
13192 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13193 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13194 
13195 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13196 				tcp->tcp_ecn_echo_on = B_TRUE;
13197 			}
13198 		} else {
13199 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13200 
13201 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13202 			    htonl(IPH_ECN_CE << 20)) {
13203 				tcp->tcp_ecn_echo_on = B_TRUE;
13204 			}
13205 		}
13206 	}
13207 
13208 	/*
13209 	 * Check whether we can update tcp_ts_recent.  This test is
13210 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13211 	 * Extensions for High Performance: An Update", Internet Draft.
13212 	 */
13213 	if (tcp->tcp_snd_ts_ok &&
13214 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13215 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13216 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13217 		tcp->tcp_last_rcv_lbolt = lbolt64;
13218 	}
13219 
13220 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13221 		/*
13222 		 * FIN in an out of order segment.  We record this in
13223 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13224 		 * Clear the FIN so that any check on FIN flag will fail.
13225 		 * Remember that FIN also counts in the sequence number
13226 		 * space.  So we need to ack out of order FIN only segments.
13227 		 */
13228 		if (flags & TH_FIN) {
13229 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13230 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13231 			flags &= ~TH_FIN;
13232 			flags |= TH_ACK_NEEDED;
13233 		}
13234 		if (seg_len > 0) {
13235 			/* Fill in the SACK blk list. */
13236 			if (tcp->tcp_snd_sack_ok) {
13237 				ASSERT(tcp->tcp_sack_info != NULL);
13238 				tcp_sack_insert(tcp->tcp_sack_list,
13239 				    seg_seq, seg_seq + seg_len,
13240 				    &(tcp->tcp_num_sack_blk));
13241 			}
13242 
13243 			/*
13244 			 * Attempt reassembly and see if we have something
13245 			 * ready to go.
13246 			 */
13247 			mp = tcp_reass(tcp, mp, seg_seq);
13248 			/* Always ack out of order packets */
13249 			flags |= TH_ACK_NEEDED | TH_PUSH;
13250 			if (mp) {
13251 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13252 				    (uintptr_t)INT_MAX);
13253 				seg_len = mp->b_cont ? msgdsize(mp) :
13254 					(int)(mp->b_wptr - mp->b_rptr);
13255 				seg_seq = tcp->tcp_rnxt;
13256 				/*
13257 				 * A gap is filled and the seq num and len
13258 				 * of the gap match that of a previously
13259 				 * received FIN, put the FIN flag back in.
13260 				 */
13261 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13262 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13263 					flags |= TH_FIN;
13264 					tcp->tcp_valid_bits &=
13265 					    ~TCP_OFO_FIN_VALID;
13266 				}
13267 			} else {
13268 				/*
13269 				 * Keep going even with NULL mp.
13270 				 * There may be a useful ACK or something else
13271 				 * we don't want to miss.
13272 				 *
13273 				 * But TCP should not perform fast retransmit
13274 				 * because of the ack number.  TCP uses
13275 				 * seg_len == 0 to determine if it is a pure
13276 				 * ACK.  And this is not a pure ACK.
13277 				 */
13278 				seg_len = 0;
13279 				ofo_seg = B_TRUE;
13280 			}
13281 		}
13282 	} else if (seg_len > 0) {
13283 		BUMP_MIB(&tcp_mib, tcpInDataInorderSegs);
13284 		UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len);
13285 		/*
13286 		 * If an out of order FIN was received before, and the seq
13287 		 * num and len of the new segment match that of the FIN,
13288 		 * put the FIN flag back in.
13289 		 */
13290 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13291 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13292 			flags |= TH_FIN;
13293 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13294 		}
13295 	}
13296 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13297 	if (flags & TH_RST) {
13298 		freemsg(mp);
13299 		switch (tcp->tcp_state) {
13300 		case TCPS_SYN_RCVD:
13301 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13302 			break;
13303 		case TCPS_ESTABLISHED:
13304 		case TCPS_FIN_WAIT_1:
13305 		case TCPS_FIN_WAIT_2:
13306 		case TCPS_CLOSE_WAIT:
13307 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13308 			break;
13309 		case TCPS_CLOSING:
13310 		case TCPS_LAST_ACK:
13311 			(void) tcp_clean_death(tcp, 0, 16);
13312 			break;
13313 		default:
13314 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13315 			(void) tcp_clean_death(tcp, ENXIO, 17);
13316 			break;
13317 		}
13318 		return;
13319 	}
13320 	if (flags & TH_SYN) {
13321 		/*
13322 		 * See RFC 793, Page 71
13323 		 *
13324 		 * The seq number must be in the window as it should
13325 		 * be "fixed" above.  If it is outside window, it should
13326 		 * be already rejected.  Note that we allow seg_seq to be
13327 		 * rnxt + rwnd because we want to accept 0 window probe.
13328 		 */
13329 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13330 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13331 		freemsg(mp);
13332 		/*
13333 		 * If the ACK flag is not set, just use our snxt as the
13334 		 * seq number of the RST segment.
13335 		 */
13336 		if (!(flags & TH_ACK)) {
13337 			seg_ack = tcp->tcp_snxt;
13338 		}
13339 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13340 		    TH_RST|TH_ACK);
13341 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13342 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13343 		return;
13344 	}
13345 	/*
13346 	 * urp could be -1 when the urp field in the packet is 0
13347 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13348 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13349 	 */
13350 	if (flags & TH_URG && urp >= 0) {
13351 		if (!tcp->tcp_urp_last_valid ||
13352 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13353 			/*
13354 			 * If we haven't generated the signal yet for this
13355 			 * urgent pointer value, do it now.  Also, send up a
13356 			 * zero-length M_DATA indicating whether or not this is
13357 			 * the mark. The latter is not needed when a
13358 			 * T_EXDATA_IND is sent up. However, if there are
13359 			 * allocation failures this code relies on the sender
13360 			 * retransmitting and the socket code for determining
13361 			 * the mark should not block waiting for the peer to
13362 			 * transmit. Thus, for simplicity we always send up the
13363 			 * mark indication.
13364 			 */
13365 			mp1 = allocb(0, BPRI_MED);
13366 			if (mp1 == NULL) {
13367 				freemsg(mp);
13368 				return;
13369 			}
13370 			if (!TCP_IS_DETACHED(tcp) &&
13371 			    !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) {
13372 				/* Try again on the rexmit. */
13373 				freemsg(mp1);
13374 				freemsg(mp);
13375 				return;
13376 			}
13377 			/*
13378 			 * Mark with NOTMARKNEXT for now.
13379 			 * The code below will change this to MARKNEXT
13380 			 * if we are at the mark.
13381 			 *
13382 			 * If there are allocation failures (e.g. in dupmsg
13383 			 * below) the next time tcp_rput_data sees the urgent
13384 			 * segment it will send up the MSG*MARKNEXT message.
13385 			 */
13386 			mp1->b_flag |= MSGNOTMARKNEXT;
13387 			freemsg(tcp->tcp_urp_mark_mp);
13388 			tcp->tcp_urp_mark_mp = mp1;
13389 			flags |= TH_SEND_URP_MARK;
13390 #ifdef DEBUG
13391 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13392 			    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13393 			    "last %x, %s",
13394 			    seg_seq, urp, tcp->tcp_urp_last,
13395 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13396 #endif /* DEBUG */
13397 			tcp->tcp_urp_last_valid = B_TRUE;
13398 			tcp->tcp_urp_last = urp + seg_seq;
13399 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13400 			/*
13401 			 * An allocation failure prevented the previous
13402 			 * tcp_rput_data from sending up the allocated
13403 			 * MSG*MARKNEXT message - send it up this time
13404 			 * around.
13405 			 */
13406 			flags |= TH_SEND_URP_MARK;
13407 		}
13408 
13409 		/*
13410 		 * If the urgent byte is in this segment, make sure that it is
13411 		 * all by itself.  This makes it much easier to deal with the
13412 		 * possibility of an allocation failure on the T_exdata_ind.
13413 		 * Note that seg_len is the number of bytes in the segment, and
13414 		 * urp is the offset into the segment of the urgent byte.
13415 		 * urp < seg_len means that the urgent byte is in this segment.
13416 		 */
13417 		if (urp < seg_len) {
13418 			if (seg_len != 1) {
13419 				uint32_t  tmp_rnxt;
13420 				/*
13421 				 * Break it up and feed it back in.
13422 				 * Re-attach the IP header.
13423 				 */
13424 				mp->b_rptr = iphdr;
13425 				if (urp > 0) {
13426 					/*
13427 					 * There is stuff before the urgent
13428 					 * byte.
13429 					 */
13430 					mp1 = dupmsg(mp);
13431 					if (!mp1) {
13432 						/*
13433 						 * Trim from urgent byte on.
13434 						 * The rest will come back.
13435 						 */
13436 						(void) adjmsg(mp,
13437 						    urp - seg_len);
13438 						tcp_rput_data(connp,
13439 						    mp, NULL);
13440 						return;
13441 					}
13442 					(void) adjmsg(mp1, urp - seg_len);
13443 					/* Feed this piece back in. */
13444 					tmp_rnxt = tcp->tcp_rnxt;
13445 					tcp_rput_data(connp, mp1, NULL);
13446 					/*
13447 					 * If the data passed back in was not
13448 					 * processed (ie: bad ACK) sending
13449 					 * the remainder back in will cause a
13450 					 * loop. In this case, drop the
13451 					 * packet and let the sender try
13452 					 * sending a good packet.
13453 					 */
13454 					if (tmp_rnxt == tcp->tcp_rnxt) {
13455 						freemsg(mp);
13456 						return;
13457 					}
13458 				}
13459 				if (urp != seg_len - 1) {
13460 					uint32_t  tmp_rnxt;
13461 					/*
13462 					 * There is stuff after the urgent
13463 					 * byte.
13464 					 */
13465 					mp1 = dupmsg(mp);
13466 					if (!mp1) {
13467 						/*
13468 						 * Trim everything beyond the
13469 						 * urgent byte.  The rest will
13470 						 * come back.
13471 						 */
13472 						(void) adjmsg(mp,
13473 						    urp + 1 - seg_len);
13474 						tcp_rput_data(connp,
13475 						    mp, NULL);
13476 						return;
13477 					}
13478 					(void) adjmsg(mp1, urp + 1 - seg_len);
13479 					tmp_rnxt = tcp->tcp_rnxt;
13480 					tcp_rput_data(connp, mp1, NULL);
13481 					/*
13482 					 * If the data passed back in was not
13483 					 * processed (ie: bad ACK) sending
13484 					 * the remainder back in will cause a
13485 					 * loop. In this case, drop the
13486 					 * packet and let the sender try
13487 					 * sending a good packet.
13488 					 */
13489 					if (tmp_rnxt == tcp->tcp_rnxt) {
13490 						freemsg(mp);
13491 						return;
13492 					}
13493 				}
13494 				tcp_rput_data(connp, mp, NULL);
13495 				return;
13496 			}
13497 			/*
13498 			 * This segment contains only the urgent byte.  We
13499 			 * have to allocate the T_exdata_ind, if we can.
13500 			 */
13501 			if (!tcp->tcp_urp_mp) {
13502 				struct T_exdata_ind *tei;
13503 				mp1 = allocb(sizeof (struct T_exdata_ind),
13504 				    BPRI_MED);
13505 				if (!mp1) {
13506 					/*
13507 					 * Sigh... It'll be back.
13508 					 * Generate any MSG*MARK message now.
13509 					 */
13510 					freemsg(mp);
13511 					seg_len = 0;
13512 					if (flags & TH_SEND_URP_MARK) {
13513 
13514 
13515 						ASSERT(tcp->tcp_urp_mark_mp);
13516 						tcp->tcp_urp_mark_mp->b_flag &=
13517 							~MSGNOTMARKNEXT;
13518 						tcp->tcp_urp_mark_mp->b_flag |=
13519 							MSGMARKNEXT;
13520 					}
13521 					goto ack_check;
13522 				}
13523 				mp1->b_datap->db_type = M_PROTO;
13524 				tei = (struct T_exdata_ind *)mp1->b_rptr;
13525 				tei->PRIM_type = T_EXDATA_IND;
13526 				tei->MORE_flag = 0;
13527 				mp1->b_wptr = (uchar_t *)&tei[1];
13528 				tcp->tcp_urp_mp = mp1;
13529 #ifdef DEBUG
13530 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13531 				    "tcp_rput: allocated exdata_ind %s",
13532 				    tcp_display(tcp, NULL,
13533 				    DISP_PORT_ONLY));
13534 #endif /* DEBUG */
13535 				/*
13536 				 * There is no need to send a separate MSG*MARK
13537 				 * message since the T_EXDATA_IND will be sent
13538 				 * now.
13539 				 */
13540 				flags &= ~TH_SEND_URP_MARK;
13541 				freemsg(tcp->tcp_urp_mark_mp);
13542 				tcp->tcp_urp_mark_mp = NULL;
13543 			}
13544 			/*
13545 			 * Now we are all set.  On the next putnext upstream,
13546 			 * tcp_urp_mp will be non-NULL and will get prepended
13547 			 * to what has to be this piece containing the urgent
13548 			 * byte.  If for any reason we abort this segment below,
13549 			 * if it comes back, we will have this ready, or it
13550 			 * will get blown off in close.
13551 			 */
13552 		} else if (urp == seg_len) {
13553 			/*
13554 			 * The urgent byte is the next byte after this sequence
13555 			 * number. If there is data it is marked with
13556 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
13557 			 * since it is not needed. Otherwise, if the code
13558 			 * above just allocated a zero-length tcp_urp_mark_mp
13559 			 * message, that message is tagged with MSGMARKNEXT.
13560 			 * Sending up these MSGMARKNEXT messages makes
13561 			 * SIOCATMARK work correctly even though
13562 			 * the T_EXDATA_IND will not be sent up until the
13563 			 * urgent byte arrives.
13564 			 */
13565 			if (seg_len != 0) {
13566 				flags |= TH_MARKNEXT_NEEDED;
13567 				freemsg(tcp->tcp_urp_mark_mp);
13568 				tcp->tcp_urp_mark_mp = NULL;
13569 				flags &= ~TH_SEND_URP_MARK;
13570 			} else if (tcp->tcp_urp_mark_mp != NULL) {
13571 				flags |= TH_SEND_URP_MARK;
13572 				tcp->tcp_urp_mark_mp->b_flag &=
13573 					~MSGNOTMARKNEXT;
13574 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
13575 			}
13576 #ifdef DEBUG
13577 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13578 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
13579 			    seg_len, flags,
13580 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13581 #endif /* DEBUG */
13582 		} else {
13583 			/* Data left until we hit mark */
13584 #ifdef DEBUG
13585 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13586 			    "tcp_rput: URP %d bytes left, %s",
13587 			    urp - seg_len, tcp_display(tcp, NULL,
13588 			    DISP_PORT_ONLY));
13589 #endif /* DEBUG */
13590 		}
13591 	}
13592 
13593 process_ack:
13594 	if (!(flags & TH_ACK)) {
13595 		freemsg(mp);
13596 		goto xmit_check;
13597 	}
13598 	}
13599 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
13600 
13601 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
13602 		tcp->tcp_ip_forward_progress = B_TRUE;
13603 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
13604 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
13605 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
13606 			/* 3-way handshake complete - pass up the T_CONN_IND */
13607 			tcp_t	*listener = tcp->tcp_listener;
13608 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
13609 
13610 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
13611 			/*
13612 			 * We are here means eager is fine but it can
13613 			 * get a TH_RST at any point between now and till
13614 			 * accept completes and disappear. We need to
13615 			 * ensure that reference to eager is valid after
13616 			 * we get out of eager's perimeter. So we do
13617 			 * an extra refhold.
13618 			 */
13619 			CONN_INC_REF(connp);
13620 
13621 			/*
13622 			 * The listener also exists because of the refhold
13623 			 * done in tcp_conn_request. Its possible that it
13624 			 * might have closed. We will check that once we
13625 			 * get inside listeners context.
13626 			 */
13627 			CONN_INC_REF(listener->tcp_connp);
13628 			if (listener->tcp_connp->conn_sqp ==
13629 			    connp->conn_sqp) {
13630 				tcp_send_conn_ind(listener->tcp_connp, mp,
13631 				    listener->tcp_connp->conn_sqp);
13632 				CONN_DEC_REF(listener->tcp_connp);
13633 			} else if (!tcp->tcp_loopback) {
13634 				squeue_fill(listener->tcp_connp->conn_sqp, mp,
13635 				    tcp_send_conn_ind,
13636 				    listener->tcp_connp, SQTAG_TCP_CONN_IND);
13637 			} else {
13638 				squeue_enter(listener->tcp_connp->conn_sqp, mp,
13639 				    tcp_send_conn_ind, listener->tcp_connp,
13640 				    SQTAG_TCP_CONN_IND);
13641 			}
13642 		}
13643 
13644 		if (tcp->tcp_active_open) {
13645 			/*
13646 			 * We are seeing the final ack in the three way
13647 			 * hand shake of a active open'ed connection
13648 			 * so we must send up a T_CONN_CON
13649 			 */
13650 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
13651 				freemsg(mp);
13652 				return;
13653 			}
13654 			/*
13655 			 * Don't fuse the loopback endpoints for
13656 			 * simultaneous active opens.
13657 			 */
13658 			if (tcp->tcp_loopback) {
13659 				TCP_STAT(tcp_fusion_unfusable);
13660 				tcp->tcp_unfusable = B_TRUE;
13661 			}
13662 		}
13663 
13664 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
13665 		bytes_acked--;
13666 		/* SYN was acked - making progress */
13667 		if (tcp->tcp_ipversion == IPV6_VERSION)
13668 			tcp->tcp_ip_forward_progress = B_TRUE;
13669 
13670 		/*
13671 		 * If SYN was retransmitted, need to reset all
13672 		 * retransmission info as this segment will be
13673 		 * treated as a dup ACK.
13674 		 */
13675 		if (tcp->tcp_rexmit) {
13676 			tcp->tcp_rexmit = B_FALSE;
13677 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13678 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
13679 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
13680 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13681 			tcp->tcp_ms_we_have_waited = 0;
13682 			tcp->tcp_cwnd = mss;
13683 		}
13684 
13685 		/*
13686 		 * We set the send window to zero here.
13687 		 * This is needed if there is data to be
13688 		 * processed already on the queue.
13689 		 * Later (at swnd_update label), the
13690 		 * "new_swnd > tcp_swnd" condition is satisfied
13691 		 * the XMIT_NEEDED flag is set in the current
13692 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
13693 		 * called if there is already data on queue in
13694 		 * this state.
13695 		 */
13696 		tcp->tcp_swnd = 0;
13697 
13698 		if (new_swnd > tcp->tcp_max_swnd)
13699 			tcp->tcp_max_swnd = new_swnd;
13700 		tcp->tcp_swl1 = seg_seq;
13701 		tcp->tcp_swl2 = seg_ack;
13702 		tcp->tcp_state = TCPS_ESTABLISHED;
13703 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13704 
13705 		/* Fuse when both sides are in ESTABLISHED state */
13706 		if (tcp->tcp_loopback && do_tcp_fusion)
13707 			tcp_fuse(tcp, iphdr, tcph);
13708 
13709 	}
13710 	/* This code follows 4.4BSD-Lite2 mostly. */
13711 	if (bytes_acked < 0)
13712 		goto est;
13713 
13714 	/*
13715 	 * If TCP is ECN capable and the congestion experience bit is
13716 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
13717 	 * done once per window (or more loosely, per RTT).
13718 	 */
13719 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
13720 		tcp->tcp_cwr = B_FALSE;
13721 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
13722 		if (!tcp->tcp_cwr) {
13723 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
13724 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
13725 			tcp->tcp_cwnd = npkt * mss;
13726 			/*
13727 			 * If the cwnd is 0, use the timer to clock out
13728 			 * new segments.  This is required by the ECN spec.
13729 			 */
13730 			if (npkt == 0) {
13731 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13732 				/*
13733 				 * This makes sure that when the ACK comes
13734 				 * back, we will increase tcp_cwnd by 1 MSS.
13735 				 */
13736 				tcp->tcp_cwnd_cnt = 0;
13737 			}
13738 			tcp->tcp_cwr = B_TRUE;
13739 			/*
13740 			 * This marks the end of the current window of in
13741 			 * flight data.  That is why we don't use
13742 			 * tcp_suna + tcp_swnd.  Only data in flight can
13743 			 * provide ECN info.
13744 			 */
13745 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
13746 			tcp->tcp_ecn_cwr_sent = B_FALSE;
13747 		}
13748 	}
13749 
13750 	mp1 = tcp->tcp_xmit_head;
13751 	if (bytes_acked == 0) {
13752 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
13753 			int dupack_cnt;
13754 
13755 			BUMP_MIB(&tcp_mib, tcpInDupAck);
13756 			/*
13757 			 * Fast retransmit.  When we have seen exactly three
13758 			 * identical ACKs while we have unacked data
13759 			 * outstanding we take it as a hint that our peer
13760 			 * dropped something.
13761 			 *
13762 			 * If TCP is retransmitting, don't do fast retransmit.
13763 			 */
13764 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
13765 			    ! tcp->tcp_rexmit) {
13766 				/* Do Limited Transmit */
13767 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
13768 				    tcp_dupack_fast_retransmit) {
13769 					/*
13770 					 * RFC 3042
13771 					 *
13772 					 * What we need to do is temporarily
13773 					 * increase tcp_cwnd so that new
13774 					 * data can be sent if it is allowed
13775 					 * by the receive window (tcp_rwnd).
13776 					 * tcp_wput_data() will take care of
13777 					 * the rest.
13778 					 *
13779 					 * If the connection is SACK capable,
13780 					 * only do limited xmit when there
13781 					 * is SACK info.
13782 					 *
13783 					 * Note how tcp_cwnd is incremented.
13784 					 * The first dup ACK will increase
13785 					 * it by 1 MSS.  The second dup ACK
13786 					 * will increase it by 2 MSS.  This
13787 					 * means that only 1 new segment will
13788 					 * be sent for each dup ACK.
13789 					 */
13790 					if (tcp->tcp_unsent > 0 &&
13791 					    (!tcp->tcp_snd_sack_ok ||
13792 					    (tcp->tcp_snd_sack_ok &&
13793 					    tcp->tcp_notsack_list != NULL))) {
13794 						tcp->tcp_cwnd += mss <<
13795 						    (tcp->tcp_dupack_cnt - 1);
13796 						flags |= TH_LIMIT_XMIT;
13797 					}
13798 				} else if (dupack_cnt ==
13799 				    tcp_dupack_fast_retransmit) {
13800 
13801 				/*
13802 				 * If we have reduced tcp_ssthresh
13803 				 * because of ECN, do not reduce it again
13804 				 * unless it is already one window of data
13805 				 * away.  After one window of data, tcp_cwr
13806 				 * should then be cleared.  Note that
13807 				 * for non ECN capable connection, tcp_cwr
13808 				 * should always be false.
13809 				 *
13810 				 * Adjust cwnd since the duplicate
13811 				 * ack indicates that a packet was
13812 				 * dropped (due to congestion.)
13813 				 */
13814 				if (!tcp->tcp_cwr) {
13815 					npkt = ((tcp->tcp_snxt -
13816 					    tcp->tcp_suna) >> 1) / mss;
13817 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
13818 					    mss;
13819 					tcp->tcp_cwnd = (npkt +
13820 					    tcp->tcp_dupack_cnt) * mss;
13821 				}
13822 				if (tcp->tcp_ecn_ok) {
13823 					tcp->tcp_cwr = B_TRUE;
13824 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
13825 					tcp->tcp_ecn_cwr_sent = B_FALSE;
13826 				}
13827 
13828 				/*
13829 				 * We do Hoe's algorithm.  Refer to her
13830 				 * paper "Improving the Start-up Behavior
13831 				 * of a Congestion Control Scheme for TCP,"
13832 				 * appeared in SIGCOMM'96.
13833 				 *
13834 				 * Save highest seq no we have sent so far.
13835 				 * Be careful about the invisible FIN byte.
13836 				 */
13837 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
13838 				    (tcp->tcp_unsent == 0)) {
13839 					tcp->tcp_rexmit_max = tcp->tcp_fss;
13840 				} else {
13841 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
13842 				}
13843 
13844 				/*
13845 				 * Do not allow bursty traffic during.
13846 				 * fast recovery.  Refer to Fall and Floyd's
13847 				 * paper "Simulation-based Comparisons of
13848 				 * Tahoe, Reno and SACK TCP" (in CCR?)
13849 				 * This is a best current practise.
13850 				 */
13851 				tcp->tcp_snd_burst = TCP_CWND_SS;
13852 
13853 				/*
13854 				 * For SACK:
13855 				 * Calculate tcp_pipe, which is the
13856 				 * estimated number of bytes in
13857 				 * network.
13858 				 *
13859 				 * tcp_fack is the highest sack'ed seq num
13860 				 * TCP has received.
13861 				 *
13862 				 * tcp_pipe is explained in the above quoted
13863 				 * Fall and Floyd's paper.  tcp_fack is
13864 				 * explained in Mathis and Mahdavi's
13865 				 * "Forward Acknowledgment: Refining TCP
13866 				 * Congestion Control" in SIGCOMM '96.
13867 				 */
13868 				if (tcp->tcp_snd_sack_ok) {
13869 					ASSERT(tcp->tcp_sack_info != NULL);
13870 					if (tcp->tcp_notsack_list != NULL) {
13871 						tcp->tcp_pipe = tcp->tcp_snxt -
13872 						    tcp->tcp_fack;
13873 						tcp->tcp_sack_snxt = seg_ack;
13874 						flags |= TH_NEED_SACK_REXMIT;
13875 					} else {
13876 						/*
13877 						 * Always initialize tcp_pipe
13878 						 * even though we don't have
13879 						 * any SACK info.  If later
13880 						 * we get SACK info and
13881 						 * tcp_pipe is not initialized,
13882 						 * funny things will happen.
13883 						 */
13884 						tcp->tcp_pipe =
13885 						    tcp->tcp_cwnd_ssthresh;
13886 					}
13887 				} else {
13888 					flags |= TH_REXMIT_NEEDED;
13889 				} /* tcp_snd_sack_ok */
13890 
13891 				} else {
13892 					/*
13893 					 * Here we perform congestion
13894 					 * avoidance, but NOT slow start.
13895 					 * This is known as the Fast
13896 					 * Recovery Algorithm.
13897 					 */
13898 					if (tcp->tcp_snd_sack_ok &&
13899 					    tcp->tcp_notsack_list != NULL) {
13900 						flags |= TH_NEED_SACK_REXMIT;
13901 						tcp->tcp_pipe -= mss;
13902 						if (tcp->tcp_pipe < 0)
13903 							tcp->tcp_pipe = 0;
13904 					} else {
13905 					/*
13906 					 * We know that one more packet has
13907 					 * left the pipe thus we can update
13908 					 * cwnd.
13909 					 */
13910 					cwnd = tcp->tcp_cwnd + mss;
13911 					if (cwnd > tcp->tcp_cwnd_max)
13912 						cwnd = tcp->tcp_cwnd_max;
13913 					tcp->tcp_cwnd = cwnd;
13914 					if (tcp->tcp_unsent > 0)
13915 						flags |= TH_XMIT_NEEDED;
13916 					}
13917 				}
13918 			}
13919 		} else if (tcp->tcp_zero_win_probe) {
13920 			/*
13921 			 * If the window has opened, need to arrange
13922 			 * to send additional data.
13923 			 */
13924 			if (new_swnd != 0) {
13925 				/* tcp_suna != tcp_snxt */
13926 				/* Packet contains a window update */
13927 				BUMP_MIB(&tcp_mib, tcpInWinUpdate);
13928 				tcp->tcp_zero_win_probe = 0;
13929 				tcp->tcp_timer_backoff = 0;
13930 				tcp->tcp_ms_we_have_waited = 0;
13931 
13932 				/*
13933 				 * Transmit starting with tcp_suna since
13934 				 * the one byte probe is not ack'ed.
13935 				 * If TCP has sent more than one identical
13936 				 * probe, tcp_rexmit will be set.  That means
13937 				 * tcp_ss_rexmit() will send out the one
13938 				 * byte along with new data.  Otherwise,
13939 				 * fake the retransmission.
13940 				 */
13941 				flags |= TH_XMIT_NEEDED;
13942 				if (!tcp->tcp_rexmit) {
13943 					tcp->tcp_rexmit = B_TRUE;
13944 					tcp->tcp_dupack_cnt = 0;
13945 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
13946 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
13947 				}
13948 			}
13949 		}
13950 		goto swnd_update;
13951 	}
13952 
13953 	/*
13954 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
13955 	 * If the ACK value acks something that we have not yet sent, it might
13956 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
13957 	 * other side.
13958 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
13959 	 * state is handled above, so we can always just drop the segment and
13960 	 * send an ACK here.
13961 	 *
13962 	 * Should we send ACKs in response to ACK only segments?
13963 	 */
13964 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13965 		BUMP_MIB(&tcp_mib, tcpInAckUnsent);
13966 		/* drop the received segment */
13967 		freemsg(mp);
13968 
13969 		/*
13970 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
13971 		 * greater than 0, check if the number of such
13972 		 * bogus ACks is greater than that count.  If yes,
13973 		 * don't send back any ACK.  This prevents TCP from
13974 		 * getting into an ACK storm if somehow an attacker
13975 		 * successfully spoofs an acceptable segment to our
13976 		 * peer.
13977 		 */
13978 		if (tcp_drop_ack_unsent_cnt > 0 &&
13979 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
13980 			TCP_STAT(tcp_in_ack_unsent_drop);
13981 			return;
13982 		}
13983 		mp = tcp_ack_mp(tcp);
13984 		if (mp != NULL) {
13985 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
13986 			BUMP_LOCAL(tcp->tcp_obsegs);
13987 			BUMP_MIB(&tcp_mib, tcpOutAck);
13988 			tcp_send_data(tcp, tcp->tcp_wq, mp);
13989 		}
13990 		return;
13991 	}
13992 
13993 	/*
13994 	 * TCP gets a new ACK, update the notsack'ed list to delete those
13995 	 * blocks that are covered by this ACK.
13996 	 */
13997 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
13998 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
13999 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14000 	}
14001 
14002 	/*
14003 	 * If we got an ACK after fast retransmit, check to see
14004 	 * if it is a partial ACK.  If it is not and the congestion
14005 	 * window was inflated to account for the other side's
14006 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14007 	 */
14008 	if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) {
14009 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14010 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14011 			tcp->tcp_dupack_cnt = 0;
14012 			/*
14013 			 * Restore the orig tcp_cwnd_ssthresh after
14014 			 * fast retransmit phase.
14015 			 */
14016 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14017 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14018 			}
14019 			tcp->tcp_rexmit_max = seg_ack;
14020 			tcp->tcp_cwnd_cnt = 0;
14021 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14022 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14023 
14024 			/*
14025 			 * Remove all notsack info to avoid confusion with
14026 			 * the next fast retrasnmit/recovery phase.
14027 			 */
14028 			if (tcp->tcp_snd_sack_ok &&
14029 			    tcp->tcp_notsack_list != NULL) {
14030 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14031 			}
14032 		} else {
14033 			if (tcp->tcp_snd_sack_ok &&
14034 			    tcp->tcp_notsack_list != NULL) {
14035 				flags |= TH_NEED_SACK_REXMIT;
14036 				tcp->tcp_pipe -= mss;
14037 				if (tcp->tcp_pipe < 0)
14038 					tcp->tcp_pipe = 0;
14039 			} else {
14040 				/*
14041 				 * Hoe's algorithm:
14042 				 *
14043 				 * Retransmit the unack'ed segment and
14044 				 * restart fast recovery.  Note that we
14045 				 * need to scale back tcp_cwnd to the
14046 				 * original value when we started fast
14047 				 * recovery.  This is to prevent overly
14048 				 * aggressive behaviour in sending new
14049 				 * segments.
14050 				 */
14051 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14052 					tcp_dupack_fast_retransmit * mss;
14053 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14054 				flags |= TH_REXMIT_NEEDED;
14055 			}
14056 		}
14057 	} else {
14058 		tcp->tcp_dupack_cnt = 0;
14059 		if (tcp->tcp_rexmit) {
14060 			/*
14061 			 * TCP is retranmitting.  If the ACK ack's all
14062 			 * outstanding data, update tcp_rexmit_max and
14063 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14064 			 * to the correct value.
14065 			 *
14066 			 * Note that SEQ_LEQ() is used.  This is to avoid
14067 			 * unnecessary fast retransmit caused by dup ACKs
14068 			 * received when TCP does slow start retransmission
14069 			 * after a time out.  During this phase, TCP may
14070 			 * send out segments which are already received.
14071 			 * This causes dup ACKs to be sent back.
14072 			 */
14073 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14074 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14075 					tcp->tcp_rexmit_nxt = seg_ack;
14076 				}
14077 				if (seg_ack != tcp->tcp_rexmit_max) {
14078 					flags |= TH_XMIT_NEEDED;
14079 				}
14080 			} else {
14081 				tcp->tcp_rexmit = B_FALSE;
14082 				tcp->tcp_xmit_zc_clean = B_FALSE;
14083 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14084 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14085 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14086 			}
14087 			tcp->tcp_ms_we_have_waited = 0;
14088 		}
14089 	}
14090 
14091 	BUMP_MIB(&tcp_mib, tcpInAckSegs);
14092 	UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked);
14093 	tcp->tcp_suna = seg_ack;
14094 	if (tcp->tcp_zero_win_probe != 0) {
14095 		tcp->tcp_zero_win_probe = 0;
14096 		tcp->tcp_timer_backoff = 0;
14097 	}
14098 
14099 	/*
14100 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14101 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14102 	 * will not reach here.
14103 	 */
14104 	if (mp1 == NULL) {
14105 		goto fin_acked;
14106 	}
14107 
14108 	/*
14109 	 * Update the congestion window.
14110 	 *
14111 	 * If TCP is not ECN capable or TCP is ECN capable but the
14112 	 * congestion experience bit is not set, increase the tcp_cwnd as
14113 	 * usual.
14114 	 */
14115 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14116 		cwnd = tcp->tcp_cwnd;
14117 		add = mss;
14118 
14119 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14120 			/*
14121 			 * This is to prevent an increase of less than 1 MSS of
14122 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14123 			 * may send out tinygrams in order to preserve mblk
14124 			 * boundaries.
14125 			 *
14126 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14127 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14128 			 * increased by 1 MSS for every RTTs.
14129 			 */
14130 			if (tcp->tcp_cwnd_cnt <= 0) {
14131 				tcp->tcp_cwnd_cnt = cwnd + add;
14132 			} else {
14133 				tcp->tcp_cwnd_cnt -= add;
14134 				add = 0;
14135 			}
14136 		}
14137 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14138 	}
14139 
14140 	/* See if the latest urgent data has been acknowledged */
14141 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14142 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14143 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14144 
14145 	/* Can we update the RTT estimates? */
14146 	if (tcp->tcp_snd_ts_ok) {
14147 		/* Ignore zero timestamp echo-reply. */
14148 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14149 			tcp_set_rto(tcp, (int32_t)lbolt -
14150 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14151 		}
14152 
14153 		/* If needed, restart the timer. */
14154 		if (tcp->tcp_set_timer == 1) {
14155 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14156 			tcp->tcp_set_timer = 0;
14157 		}
14158 		/*
14159 		 * Update tcp_csuna in case the other side stops sending
14160 		 * us timestamps.
14161 		 */
14162 		tcp->tcp_csuna = tcp->tcp_snxt;
14163 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14164 		/*
14165 		 * An ACK sequence we haven't seen before, so get the RTT
14166 		 * and update the RTO. But first check if the timestamp is
14167 		 * valid to use.
14168 		 */
14169 		if ((mp1->b_next != NULL) &&
14170 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14171 			tcp_set_rto(tcp, (int32_t)lbolt -
14172 			    (int32_t)(intptr_t)mp1->b_prev);
14173 		else
14174 			BUMP_MIB(&tcp_mib, tcpRttNoUpdate);
14175 
14176 		/* Remeber the last sequence to be ACKed */
14177 		tcp->tcp_csuna = seg_ack;
14178 		if (tcp->tcp_set_timer == 1) {
14179 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14180 			tcp->tcp_set_timer = 0;
14181 		}
14182 	} else {
14183 		BUMP_MIB(&tcp_mib, tcpRttNoUpdate);
14184 	}
14185 
14186 	/* Eat acknowledged bytes off the xmit queue. */
14187 	for (;;) {
14188 		mblk_t	*mp2;
14189 		uchar_t	*wptr;
14190 
14191 		wptr = mp1->b_wptr;
14192 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14193 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14194 		if (bytes_acked < 0) {
14195 			mp1->b_rptr = wptr + bytes_acked;
14196 			/*
14197 			 * Set a new timestamp if all the bytes timed by the
14198 			 * old timestamp have been ack'ed.
14199 			 */
14200 			if (SEQ_GT(seg_ack,
14201 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14202 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14203 				mp1->b_next = NULL;
14204 			}
14205 			break;
14206 		}
14207 		mp1->b_next = NULL;
14208 		mp1->b_prev = NULL;
14209 		mp2 = mp1;
14210 		mp1 = mp1->b_cont;
14211 
14212 		/*
14213 		 * This notification is required for some zero-copy
14214 		 * clients to maintain a copy semantic. After the data
14215 		 * is ack'ed, client is safe to modify or reuse the buffer.
14216 		 */
14217 		if (tcp->tcp_snd_zcopy_aware &&
14218 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14219 			tcp_zcopy_notify(tcp);
14220 		freeb(mp2);
14221 		if (bytes_acked == 0) {
14222 			if (mp1 == NULL) {
14223 				/* Everything is ack'ed, clear the tail. */
14224 				tcp->tcp_xmit_tail = NULL;
14225 				/*
14226 				 * Cancel the timer unless we are still
14227 				 * waiting for an ACK for the FIN packet.
14228 				 */
14229 				if (tcp->tcp_timer_tid != 0 &&
14230 				    tcp->tcp_snxt == tcp->tcp_suna) {
14231 					(void) TCP_TIMER_CANCEL(tcp,
14232 					    tcp->tcp_timer_tid);
14233 					tcp->tcp_timer_tid = 0;
14234 				}
14235 				goto pre_swnd_update;
14236 			}
14237 			if (mp2 != tcp->tcp_xmit_tail)
14238 				break;
14239 			tcp->tcp_xmit_tail = mp1;
14240 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14241 			    (uintptr_t)INT_MAX);
14242 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14243 			    mp1->b_rptr);
14244 			break;
14245 		}
14246 		if (mp1 == NULL) {
14247 			/*
14248 			 * More was acked but there is nothing more
14249 			 * outstanding.  This means that the FIN was
14250 			 * just acked or that we're talking to a clown.
14251 			 */
14252 fin_acked:
14253 			ASSERT(tcp->tcp_fin_sent);
14254 			tcp->tcp_xmit_tail = NULL;
14255 			if (tcp->tcp_fin_sent) {
14256 				/* FIN was acked - making progress */
14257 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14258 				    !tcp->tcp_fin_acked)
14259 					tcp->tcp_ip_forward_progress = B_TRUE;
14260 				tcp->tcp_fin_acked = B_TRUE;
14261 				if (tcp->tcp_linger_tid != 0 &&
14262 				    TCP_TIMER_CANCEL(tcp,
14263 					tcp->tcp_linger_tid) >= 0) {
14264 					tcp_stop_lingering(tcp);
14265 				}
14266 			} else {
14267 				/*
14268 				 * We should never get here because
14269 				 * we have already checked that the
14270 				 * number of bytes ack'ed should be
14271 				 * smaller than or equal to what we
14272 				 * have sent so far (it is the
14273 				 * acceptability check of the ACK).
14274 				 * We can only get here if the send
14275 				 * queue is corrupted.
14276 				 *
14277 				 * Terminate the connection and
14278 				 * panic the system.  It is better
14279 				 * for us to panic instead of
14280 				 * continuing to avoid other disaster.
14281 				 */
14282 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14283 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14284 				panic("Memory corruption "
14285 				    "detected for connection %s.",
14286 				    tcp_display(tcp, NULL,
14287 					DISP_ADDR_AND_PORT));
14288 				/*NOTREACHED*/
14289 			}
14290 			goto pre_swnd_update;
14291 		}
14292 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14293 	}
14294 	if (tcp->tcp_unsent) {
14295 		flags |= TH_XMIT_NEEDED;
14296 	}
14297 pre_swnd_update:
14298 	tcp->tcp_xmit_head = mp1;
14299 swnd_update:
14300 	/*
14301 	 * The following check is different from most other implementations.
14302 	 * For bi-directional transfer, when segments are dropped, the
14303 	 * "normal" check will not accept a window update in those
14304 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14305 	 * segments which are outside receiver's window.  As TCP accepts
14306 	 * the ack in those retransmitted segments, if the window update in
14307 	 * the same segment is not accepted, TCP will incorrectly calculates
14308 	 * that it can send more segments.  This can create a deadlock
14309 	 * with the receiver if its window becomes zero.
14310 	 */
14311 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14312 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14313 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14314 		/*
14315 		 * The criteria for update is:
14316 		 *
14317 		 * 1. the segment acknowledges some data.  Or
14318 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14319 		 * 3. the segment is not old and the advertised window is
14320 		 * larger than the previous advertised window.
14321 		 */
14322 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14323 			flags |= TH_XMIT_NEEDED;
14324 		tcp->tcp_swnd = new_swnd;
14325 		if (new_swnd > tcp->tcp_max_swnd)
14326 			tcp->tcp_max_swnd = new_swnd;
14327 		tcp->tcp_swl1 = seg_seq;
14328 		tcp->tcp_swl2 = seg_ack;
14329 	}
14330 est:
14331 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14332 
14333 		switch (tcp->tcp_state) {
14334 		case TCPS_FIN_WAIT_1:
14335 			if (tcp->tcp_fin_acked) {
14336 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14337 				/*
14338 				 * We implement the non-standard BSD/SunOS
14339 				 * FIN_WAIT_2 flushing algorithm.
14340 				 * If there is no user attached to this
14341 				 * TCP endpoint, then this TCP struct
14342 				 * could hang around forever in FIN_WAIT_2
14343 				 * state if the peer forgets to send us
14344 				 * a FIN.  To prevent this, we wait only
14345 				 * 2*MSL (a convenient time value) for
14346 				 * the FIN to arrive.  If it doesn't show up,
14347 				 * we flush the TCP endpoint.  This algorithm,
14348 				 * though a violation of RFC-793, has worked
14349 				 * for over 10 years in BSD systems.
14350 				 * Note: SunOS 4.x waits 675 seconds before
14351 				 * flushing the FIN_WAIT_2 connection.
14352 				 */
14353 				TCP_TIMER_RESTART(tcp,
14354 				    tcp_fin_wait_2_flush_interval);
14355 			}
14356 			break;
14357 		case TCPS_FIN_WAIT_2:
14358 			break;	/* Shutdown hook? */
14359 		case TCPS_LAST_ACK:
14360 			freemsg(mp);
14361 			if (tcp->tcp_fin_acked) {
14362 				(void) tcp_clean_death(tcp, 0, 19);
14363 				return;
14364 			}
14365 			goto xmit_check;
14366 		case TCPS_CLOSING:
14367 			if (tcp->tcp_fin_acked) {
14368 				tcp->tcp_state = TCPS_TIME_WAIT;
14369 				/*
14370 				 * Unconditionally clear the exclusive binding
14371 				 * bit so this TIME-WAIT connection won't
14372 				 * interfere with new ones.
14373 				 */
14374 				tcp->tcp_exclbind = 0;
14375 				if (!TCP_IS_DETACHED(tcp)) {
14376 					TCP_TIMER_RESTART(tcp,
14377 					    tcp_time_wait_interval);
14378 				} else {
14379 					tcp_time_wait_append(tcp);
14380 					TCP_DBGSTAT(tcp_rput_time_wait);
14381 				}
14382 			}
14383 			/*FALLTHRU*/
14384 		case TCPS_CLOSE_WAIT:
14385 			freemsg(mp);
14386 			goto xmit_check;
14387 		default:
14388 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14389 			break;
14390 		}
14391 	}
14392 	if (flags & TH_FIN) {
14393 		/* Make sure we ack the fin */
14394 		flags |= TH_ACK_NEEDED;
14395 		if (!tcp->tcp_fin_rcvd) {
14396 			tcp->tcp_fin_rcvd = B_TRUE;
14397 			tcp->tcp_rnxt++;
14398 			tcph = tcp->tcp_tcph;
14399 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14400 
14401 			/*
14402 			 * Generate the ordrel_ind at the end unless we
14403 			 * are an eager guy.
14404 			 * In the eager case tcp_rsrv will do this when run
14405 			 * after tcp_accept is done.
14406 			 */
14407 			if (tcp->tcp_listener == NULL &&
14408 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14409 				flags |= TH_ORDREL_NEEDED;
14410 			switch (tcp->tcp_state) {
14411 			case TCPS_SYN_RCVD:
14412 			case TCPS_ESTABLISHED:
14413 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14414 				/* Keepalive? */
14415 				break;
14416 			case TCPS_FIN_WAIT_1:
14417 				if (!tcp->tcp_fin_acked) {
14418 					tcp->tcp_state = TCPS_CLOSING;
14419 					break;
14420 				}
14421 				/* FALLTHRU */
14422 			case TCPS_FIN_WAIT_2:
14423 				tcp->tcp_state = TCPS_TIME_WAIT;
14424 				/*
14425 				 * Unconditionally clear the exclusive binding
14426 				 * bit so this TIME-WAIT connection won't
14427 				 * interfere with new ones.
14428 				 */
14429 				tcp->tcp_exclbind = 0;
14430 				if (!TCP_IS_DETACHED(tcp)) {
14431 					TCP_TIMER_RESTART(tcp,
14432 					    tcp_time_wait_interval);
14433 				} else {
14434 					tcp_time_wait_append(tcp);
14435 					TCP_DBGSTAT(tcp_rput_time_wait);
14436 				}
14437 				if (seg_len) {
14438 					/*
14439 					 * implies data piggybacked on FIN.
14440 					 * break to handle data.
14441 					 */
14442 					break;
14443 				}
14444 				freemsg(mp);
14445 				goto ack_check;
14446 			}
14447 		}
14448 	}
14449 	if (mp == NULL)
14450 		goto xmit_check;
14451 	if (seg_len == 0) {
14452 		freemsg(mp);
14453 		goto xmit_check;
14454 	}
14455 	if (mp->b_rptr == mp->b_wptr) {
14456 		/*
14457 		 * The header has been consumed, so we remove the
14458 		 * zero-length mblk here.
14459 		 */
14460 		mp1 = mp;
14461 		mp = mp->b_cont;
14462 		freeb(mp1);
14463 	}
14464 	tcph = tcp->tcp_tcph;
14465 	tcp->tcp_rack_cnt++;
14466 	{
14467 		uint32_t cur_max;
14468 
14469 		cur_max = tcp->tcp_rack_cur_max;
14470 		if (tcp->tcp_rack_cnt >= cur_max) {
14471 			/*
14472 			 * We have more unacked data than we should - send
14473 			 * an ACK now.
14474 			 */
14475 			flags |= TH_ACK_NEEDED;
14476 			cur_max++;
14477 			if (cur_max > tcp->tcp_rack_abs_max)
14478 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
14479 			else
14480 				tcp->tcp_rack_cur_max = cur_max;
14481 		} else if (TCP_IS_DETACHED(tcp)) {
14482 			/* We don't have an ACK timer for detached TCP. */
14483 			flags |= TH_ACK_NEEDED;
14484 		} else if (seg_len < mss) {
14485 			/*
14486 			 * If we get a segment that is less than an mss, and we
14487 			 * already have unacknowledged data, and the amount
14488 			 * unacknowledged is not a multiple of mss, then we
14489 			 * better generate an ACK now.  Otherwise, this may be
14490 			 * the tail piece of a transaction, and we would rather
14491 			 * wait for the response.
14492 			 */
14493 			uint32_t udif;
14494 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
14495 			    (uintptr_t)INT_MAX);
14496 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
14497 			if (udif && (udif % mss))
14498 				flags |= TH_ACK_NEEDED;
14499 			else
14500 				flags |= TH_ACK_TIMER_NEEDED;
14501 		} else {
14502 			/* Start delayed ack timer */
14503 			flags |= TH_ACK_TIMER_NEEDED;
14504 		}
14505 	}
14506 	tcp->tcp_rnxt += seg_len;
14507 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14508 
14509 	/* Update SACK list */
14510 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
14511 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
14512 		    &(tcp->tcp_num_sack_blk));
14513 	}
14514 
14515 	if (tcp->tcp_urp_mp) {
14516 		tcp->tcp_urp_mp->b_cont = mp;
14517 		mp = tcp->tcp_urp_mp;
14518 		tcp->tcp_urp_mp = NULL;
14519 		/* Ready for a new signal. */
14520 		tcp->tcp_urp_last_valid = B_FALSE;
14521 #ifdef DEBUG
14522 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14523 		    "tcp_rput: sending exdata_ind %s",
14524 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14525 #endif /* DEBUG */
14526 	}
14527 
14528 	/*
14529 	 * Check for ancillary data changes compared to last segment.
14530 	 */
14531 	if (tcp->tcp_ipv6_recvancillary != 0) {
14532 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
14533 		if (mp == NULL)
14534 			return;
14535 	}
14536 
14537 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
14538 		/*
14539 		 * Side queue inbound data until the accept happens.
14540 		 * tcp_accept/tcp_rput drains this when the accept happens.
14541 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
14542 		 * T_EXDATA_IND) it is queued on b_next.
14543 		 * XXX Make urgent data use this. Requires:
14544 		 *	Removing tcp_listener check for TH_URG
14545 		 *	Making M_PCPROTO and MARK messages skip the eager case
14546 		 */
14547 
14548 		if (tcp->tcp_kssl_pending) {
14549 			tcp_kssl_input(tcp, mp);
14550 		} else {
14551 			tcp_rcv_enqueue(tcp, mp, seg_len);
14552 		}
14553 	} else {
14554 		if (mp->b_datap->db_type != M_DATA ||
14555 		    (flags & TH_MARKNEXT_NEEDED)) {
14556 			if (tcp->tcp_rcv_list != NULL) {
14557 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14558 			}
14559 			ASSERT(tcp->tcp_rcv_list == NULL ||
14560 			    tcp->tcp_fused_sigurg);
14561 			if (flags & TH_MARKNEXT_NEEDED) {
14562 #ifdef DEBUG
14563 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14564 				    "tcp_rput: sending MSGMARKNEXT %s",
14565 				    tcp_display(tcp, NULL,
14566 				    DISP_PORT_ONLY));
14567 #endif /* DEBUG */
14568 				mp->b_flag |= MSGMARKNEXT;
14569 				flags &= ~TH_MARKNEXT_NEEDED;
14570 			}
14571 
14572 			/* Does this need SSL processing first? */
14573 			if ((tcp->tcp_kssl_ctx  != NULL) &&
14574 			    (DB_TYPE(mp) == M_DATA)) {
14575 				tcp_kssl_input(tcp, mp);
14576 			} else {
14577 				putnext(tcp->tcp_rq, mp);
14578 				if (!canputnext(tcp->tcp_rq))
14579 					tcp->tcp_rwnd -= seg_len;
14580 			}
14581 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
14582 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
14583 			if (tcp->tcp_rcv_list != NULL) {
14584 				/*
14585 				 * Enqueue the new segment first and then
14586 				 * call tcp_rcv_drain() to send all data
14587 				 * up.  The other way to do this is to
14588 				 * send all queued data up and then call
14589 				 * putnext() to send the new segment up.
14590 				 * This way can remove the else part later
14591 				 * on.
14592 				 *
14593 				 * We don't this to avoid one more call to
14594 				 * canputnext() as tcp_rcv_drain() needs to
14595 				 * call canputnext().
14596 				 */
14597 				tcp_rcv_enqueue(tcp, mp, seg_len);
14598 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14599 			} else {
14600 				/* Does this need SSL processing first? */
14601 				if ((tcp->tcp_kssl_ctx  != NULL) &&
14602 				    (DB_TYPE(mp) == M_DATA)) {
14603 					tcp_kssl_input(tcp, mp);
14604 				} else {
14605 					putnext(tcp->tcp_rq, mp);
14606 					if (!canputnext(tcp->tcp_rq))
14607 						tcp->tcp_rwnd -= seg_len;
14608 				}
14609 			}
14610 		} else {
14611 			/*
14612 			 * Enqueue all packets when processing an mblk
14613 			 * from the co queue and also enqueue normal packets.
14614 			 */
14615 			tcp_rcv_enqueue(tcp, mp, seg_len);
14616 		}
14617 		/*
14618 		 * Make sure the timer is running if we have data waiting
14619 		 * for a push bit. This provides resiliency against
14620 		 * implementations that do not correctly generate push bits.
14621 		 */
14622 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
14623 			/*
14624 			 * The connection may be closed at this point, so don't
14625 			 * do anything for a detached tcp.
14626 			 */
14627 			if (!TCP_IS_DETACHED(tcp))
14628 				tcp->tcp_push_tid = TCP_TIMER(tcp,
14629 				    tcp_push_timer,
14630 				    MSEC_TO_TICK(tcp_push_timer_interval));
14631 		}
14632 	}
14633 xmit_check:
14634 	/* Is there anything left to do? */
14635 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
14636 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
14637 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
14638 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
14639 		goto done;
14640 
14641 	/* Any transmit work to do and a non-zero window? */
14642 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
14643 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
14644 		if (flags & TH_REXMIT_NEEDED) {
14645 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
14646 
14647 			BUMP_MIB(&tcp_mib, tcpOutFastRetrans);
14648 			if (snd_size > mss)
14649 				snd_size = mss;
14650 			if (snd_size > tcp->tcp_swnd)
14651 				snd_size = tcp->tcp_swnd;
14652 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
14653 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
14654 			    B_TRUE);
14655 
14656 			if (mp1 != NULL) {
14657 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
14658 				tcp->tcp_csuna = tcp->tcp_snxt;
14659 				BUMP_MIB(&tcp_mib, tcpRetransSegs);
14660 				UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size);
14661 				TCP_RECORD_TRACE(tcp, mp1,
14662 				    TCP_TRACE_SEND_PKT);
14663 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
14664 			}
14665 		}
14666 		if (flags & TH_NEED_SACK_REXMIT) {
14667 			tcp_sack_rxmit(tcp, &flags);
14668 		}
14669 		/*
14670 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
14671 		 * out new segment.  Note that tcp_rexmit should not be
14672 		 * set, otherwise TH_LIMIT_XMIT should not be set.
14673 		 */
14674 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
14675 			if (!tcp->tcp_rexmit) {
14676 				tcp_wput_data(tcp, NULL, B_FALSE);
14677 			} else {
14678 				tcp_ss_rexmit(tcp);
14679 			}
14680 		}
14681 		/*
14682 		 * Adjust tcp_cwnd back to normal value after sending
14683 		 * new data segments.
14684 		 */
14685 		if (flags & TH_LIMIT_XMIT) {
14686 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
14687 			/*
14688 			 * This will restart the timer.  Restarting the
14689 			 * timer is used to avoid a timeout before the
14690 			 * limited transmitted segment's ACK gets back.
14691 			 */
14692 			if (tcp->tcp_xmit_head != NULL)
14693 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
14694 		}
14695 
14696 		/* Anything more to do? */
14697 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
14698 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
14699 			goto done;
14700 	}
14701 ack_check:
14702 	if (flags & TH_SEND_URP_MARK) {
14703 		ASSERT(tcp->tcp_urp_mark_mp);
14704 		/*
14705 		 * Send up any queued data and then send the mark message
14706 		 */
14707 		if (tcp->tcp_rcv_list != NULL) {
14708 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14709 		}
14710 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
14711 
14712 		mp1 = tcp->tcp_urp_mark_mp;
14713 		tcp->tcp_urp_mark_mp = NULL;
14714 #ifdef DEBUG
14715 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14716 		    "tcp_rput: sending zero-length %s %s",
14717 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
14718 		    "MSGNOTMARKNEXT"),
14719 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14720 #endif /* DEBUG */
14721 		putnext(tcp->tcp_rq, mp1);
14722 		flags &= ~TH_SEND_URP_MARK;
14723 	}
14724 	if (flags & TH_ACK_NEEDED) {
14725 		/*
14726 		 * Time to send an ack for some reason.
14727 		 */
14728 		mp1 = tcp_ack_mp(tcp);
14729 
14730 		if (mp1 != NULL) {
14731 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
14732 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
14733 			BUMP_LOCAL(tcp->tcp_obsegs);
14734 			BUMP_MIB(&tcp_mib, tcpOutAck);
14735 		}
14736 		if (tcp->tcp_ack_tid != 0) {
14737 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
14738 			tcp->tcp_ack_tid = 0;
14739 		}
14740 	}
14741 	if (flags & TH_ACK_TIMER_NEEDED) {
14742 		/*
14743 		 * Arrange for deferred ACK or push wait timeout.
14744 		 * Start timer if it is not already running.
14745 		 */
14746 		if (tcp->tcp_ack_tid == 0) {
14747 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
14748 			    MSEC_TO_TICK(tcp->tcp_localnet ?
14749 			    (clock_t)tcp_local_dack_interval :
14750 			    (clock_t)tcp_deferred_ack_interval));
14751 		}
14752 	}
14753 	if (flags & TH_ORDREL_NEEDED) {
14754 		/*
14755 		 * Send up the ordrel_ind unless we are an eager guy.
14756 		 * In the eager case tcp_rsrv will do this when run
14757 		 * after tcp_accept is done.
14758 		 */
14759 		ASSERT(tcp->tcp_listener == NULL);
14760 		if (tcp->tcp_rcv_list != NULL) {
14761 			/*
14762 			 * Push any mblk(s) enqueued from co processing.
14763 			 */
14764 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14765 		}
14766 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
14767 		if ((mp1 = mi_tpi_ordrel_ind()) != NULL) {
14768 			tcp->tcp_ordrel_done = B_TRUE;
14769 			putnext(tcp->tcp_rq, mp1);
14770 			if (tcp->tcp_deferred_clean_death) {
14771 				/*
14772 				 * tcp_clean_death was deferred
14773 				 * for T_ORDREL_IND - do it now
14774 				 */
14775 				(void) tcp_clean_death(tcp,
14776 				    tcp->tcp_client_errno, 20);
14777 				tcp->tcp_deferred_clean_death =	B_FALSE;
14778 			}
14779 		} else {
14780 			/*
14781 			 * Run the orderly release in the
14782 			 * service routine.
14783 			 */
14784 			qenable(tcp->tcp_rq);
14785 			/*
14786 			 * Caveat(XXX): The machine may be so
14787 			 * overloaded that tcp_rsrv() is not scheduled
14788 			 * until after the endpoint has transitioned
14789 			 * to TCPS_TIME_WAIT
14790 			 * and tcp_time_wait_interval expires. Then
14791 			 * tcp_timer() will blow away state in tcp_t
14792 			 * and T_ORDREL_IND will never be delivered
14793 			 * upstream. Unlikely but potentially
14794 			 * a problem.
14795 			 */
14796 		}
14797 	}
14798 done:
14799 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
14800 }
14801 
14802 /*
14803  * This function does PAWS protection check. Returns B_TRUE if the
14804  * segment passes the PAWS test, else returns B_FALSE.
14805  */
14806 boolean_t
14807 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
14808 {
14809 	uint8_t	flags;
14810 	int	options;
14811 	uint8_t *up;
14812 
14813 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
14814 	/*
14815 	 * If timestamp option is aligned nicely, get values inline,
14816 	 * otherwise call general routine to parse.  Only do that
14817 	 * if timestamp is the only option.
14818 	 */
14819 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
14820 	    TCPOPT_REAL_TS_LEN &&
14821 	    OK_32PTR((up = ((uint8_t *)tcph) +
14822 	    TCP_MIN_HEADER_LENGTH)) &&
14823 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
14824 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
14825 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
14826 
14827 		options = TCP_OPT_TSTAMP_PRESENT;
14828 	} else {
14829 		if (tcp->tcp_snd_sack_ok) {
14830 			tcpoptp->tcp = tcp;
14831 		} else {
14832 			tcpoptp->tcp = NULL;
14833 		}
14834 		options = tcp_parse_options(tcph, tcpoptp);
14835 	}
14836 
14837 	if (options & TCP_OPT_TSTAMP_PRESENT) {
14838 		/*
14839 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
14840 		 * regardless of the timestamp, page 18 RFC 1323.bis.
14841 		 */
14842 		if ((flags & TH_RST) == 0 &&
14843 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
14844 		    tcp->tcp_ts_recent)) {
14845 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
14846 			    PAWS_TIMEOUT)) {
14847 				/* This segment is not acceptable. */
14848 				return (B_FALSE);
14849 			} else {
14850 				/*
14851 				 * Connection has been idle for
14852 				 * too long.  Reset the timestamp
14853 				 * and assume the segment is valid.
14854 				 */
14855 				tcp->tcp_ts_recent =
14856 				    tcpoptp->tcp_opt_ts_val;
14857 			}
14858 		}
14859 	} else {
14860 		/*
14861 		 * If we don't get a timestamp on every packet, we
14862 		 * figure we can't really trust 'em, so we stop sending
14863 		 * and parsing them.
14864 		 */
14865 		tcp->tcp_snd_ts_ok = B_FALSE;
14866 
14867 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
14868 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
14869 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
14870 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN);
14871 		if (tcp->tcp_snd_sack_ok) {
14872 			ASSERT(tcp->tcp_sack_info != NULL);
14873 			tcp->tcp_max_sack_blk = 4;
14874 		}
14875 	}
14876 	return (B_TRUE);
14877 }
14878 
14879 /*
14880  * Attach ancillary data to a received TCP segments for the
14881  * ancillary pieces requested by the application that are
14882  * different than they were in the previous data segment.
14883  *
14884  * Save the "current" values once memory allocation is ok so that
14885  * when memory allocation fails we can just wait for the next data segment.
14886  */
14887 static mblk_t *
14888 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
14889 {
14890 	struct T_optdata_ind *todi;
14891 	int optlen;
14892 	uchar_t *optptr;
14893 	struct T_opthdr *toh;
14894 	uint_t addflag;	/* Which pieces to add */
14895 	mblk_t *mp1;
14896 
14897 	optlen = 0;
14898 	addflag = 0;
14899 	/* If app asked for pktinfo and the index has changed ... */
14900 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
14901 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
14902 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
14903 		optlen += sizeof (struct T_opthdr) +
14904 		    sizeof (struct in6_pktinfo);
14905 		addflag |= TCP_IPV6_RECVPKTINFO;
14906 	}
14907 	/* If app asked for hoplimit and it has changed ... */
14908 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
14909 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
14910 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
14911 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
14912 		addflag |= TCP_IPV6_RECVHOPLIMIT;
14913 	}
14914 	/* If app asked for tclass and it has changed ... */
14915 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
14916 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
14917 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
14918 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
14919 		addflag |= TCP_IPV6_RECVTCLASS;
14920 	}
14921 	/*
14922 	 * If app asked for hopbyhop headers and it has changed ...
14923 	 * For security labels, note that (1) security labels can't change on
14924 	 * a connected socket at all, (2) we're connected to at most one peer,
14925 	 * (3) if anything changes, then it must be some other extra option.
14926 	 */
14927 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
14928 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
14929 	    (ipp->ipp_fields & IPPF_HOPOPTS),
14930 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
14931 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
14932 		    tcp->tcp_label_len;
14933 		addflag |= TCP_IPV6_RECVHOPOPTS;
14934 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
14935 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
14936 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
14937 			return (mp);
14938 	}
14939 	/* If app asked for dst headers before routing headers ... */
14940 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
14941 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
14942 		(ipp->ipp_fields & IPPF_RTDSTOPTS),
14943 		ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
14944 		optlen += sizeof (struct T_opthdr) +
14945 		    ipp->ipp_rtdstoptslen;
14946 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
14947 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
14948 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
14949 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
14950 			return (mp);
14951 	}
14952 	/* If app asked for routing headers and it has changed ... */
14953 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
14954 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
14955 	    (ipp->ipp_fields & IPPF_RTHDR),
14956 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
14957 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
14958 		addflag |= TCP_IPV6_RECVRTHDR;
14959 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
14960 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
14961 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
14962 			return (mp);
14963 	}
14964 	/* If app asked for dest headers and it has changed ... */
14965 	if ((tcp->tcp_ipv6_recvancillary &
14966 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
14967 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
14968 	    (ipp->ipp_fields & IPPF_DSTOPTS),
14969 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
14970 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
14971 		addflag |= TCP_IPV6_RECVDSTOPTS;
14972 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
14973 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
14974 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
14975 			return (mp);
14976 	}
14977 
14978 	if (optlen == 0) {
14979 		/* Nothing to add */
14980 		return (mp);
14981 	}
14982 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
14983 	if (mp1 == NULL) {
14984 		/*
14985 		 * Defer sending ancillary data until the next TCP segment
14986 		 * arrives.
14987 		 */
14988 		return (mp);
14989 	}
14990 	mp1->b_cont = mp;
14991 	mp = mp1;
14992 	mp->b_wptr += sizeof (*todi) + optlen;
14993 	mp->b_datap->db_type = M_PROTO;
14994 	todi = (struct T_optdata_ind *)mp->b_rptr;
14995 	todi->PRIM_type = T_OPTDATA_IND;
14996 	todi->DATA_flag = 1;	/* MORE data */
14997 	todi->OPT_length = optlen;
14998 	todi->OPT_offset = sizeof (*todi);
14999 	optptr = (uchar_t *)&todi[1];
15000 	/*
15001 	 * If app asked for pktinfo and the index has changed ...
15002 	 * Note that the local address never changes for the connection.
15003 	 */
15004 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15005 		struct in6_pktinfo *pkti;
15006 
15007 		toh = (struct T_opthdr *)optptr;
15008 		toh->level = IPPROTO_IPV6;
15009 		toh->name = IPV6_PKTINFO;
15010 		toh->len = sizeof (*toh) + sizeof (*pkti);
15011 		toh->status = 0;
15012 		optptr += sizeof (*toh);
15013 		pkti = (struct in6_pktinfo *)optptr;
15014 		if (tcp->tcp_ipversion == IPV6_VERSION)
15015 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15016 		else
15017 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15018 			    &pkti->ipi6_addr);
15019 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15020 		optptr += sizeof (*pkti);
15021 		ASSERT(OK_32PTR(optptr));
15022 		/* Save as "last" value */
15023 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15024 	}
15025 	/* If app asked for hoplimit and it has changed ... */
15026 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15027 		toh = (struct T_opthdr *)optptr;
15028 		toh->level = IPPROTO_IPV6;
15029 		toh->name = IPV6_HOPLIMIT;
15030 		toh->len = sizeof (*toh) + sizeof (uint_t);
15031 		toh->status = 0;
15032 		optptr += sizeof (*toh);
15033 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15034 		optptr += sizeof (uint_t);
15035 		ASSERT(OK_32PTR(optptr));
15036 		/* Save as "last" value */
15037 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15038 	}
15039 	/* If app asked for tclass and it has changed ... */
15040 	if (addflag & TCP_IPV6_RECVTCLASS) {
15041 		toh = (struct T_opthdr *)optptr;
15042 		toh->level = IPPROTO_IPV6;
15043 		toh->name = IPV6_TCLASS;
15044 		toh->len = sizeof (*toh) + sizeof (uint_t);
15045 		toh->status = 0;
15046 		optptr += sizeof (*toh);
15047 		*(uint_t *)optptr = ipp->ipp_tclass;
15048 		optptr += sizeof (uint_t);
15049 		ASSERT(OK_32PTR(optptr));
15050 		/* Save as "last" value */
15051 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15052 	}
15053 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15054 		toh = (struct T_opthdr *)optptr;
15055 		toh->level = IPPROTO_IPV6;
15056 		toh->name = IPV6_HOPOPTS;
15057 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15058 		    tcp->tcp_label_len;
15059 		toh->status = 0;
15060 		optptr += sizeof (*toh);
15061 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15062 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15063 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15064 		ASSERT(OK_32PTR(optptr));
15065 		/* Save as last value */
15066 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15067 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15068 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15069 	}
15070 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15071 		toh = (struct T_opthdr *)optptr;
15072 		toh->level = IPPROTO_IPV6;
15073 		toh->name = IPV6_RTHDRDSTOPTS;
15074 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15075 		toh->status = 0;
15076 		optptr += sizeof (*toh);
15077 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15078 		optptr += ipp->ipp_rtdstoptslen;
15079 		ASSERT(OK_32PTR(optptr));
15080 		/* Save as last value */
15081 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15082 		    &tcp->tcp_rtdstoptslen,
15083 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15084 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15085 	}
15086 	if (addflag & TCP_IPV6_RECVRTHDR) {
15087 		toh = (struct T_opthdr *)optptr;
15088 		toh->level = IPPROTO_IPV6;
15089 		toh->name = IPV6_RTHDR;
15090 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15091 		toh->status = 0;
15092 		optptr += sizeof (*toh);
15093 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15094 		optptr += ipp->ipp_rthdrlen;
15095 		ASSERT(OK_32PTR(optptr));
15096 		/* Save as last value */
15097 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15098 		    (ipp->ipp_fields & IPPF_RTHDR),
15099 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15100 	}
15101 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15102 		toh = (struct T_opthdr *)optptr;
15103 		toh->level = IPPROTO_IPV6;
15104 		toh->name = IPV6_DSTOPTS;
15105 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15106 		toh->status = 0;
15107 		optptr += sizeof (*toh);
15108 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15109 		optptr += ipp->ipp_dstoptslen;
15110 		ASSERT(OK_32PTR(optptr));
15111 		/* Save as last value */
15112 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15113 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15114 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15115 	}
15116 	ASSERT(optptr == mp->b_wptr);
15117 	return (mp);
15118 }
15119 
15120 
15121 /*
15122  * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK
15123  * or a "bad" IRE detected by tcp_adapt_ire.
15124  * We can't tell if the failure was due to the laddr or the faddr
15125  * thus we clear out all addresses and ports.
15126  */
15127 static void
15128 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error)
15129 {
15130 	queue_t	*q = tcp->tcp_rq;
15131 	tcph_t	*tcph;
15132 	struct T_error_ack *tea;
15133 	conn_t	*connp = tcp->tcp_connp;
15134 
15135 
15136 	ASSERT(mp->b_datap->db_type == M_PCPROTO);
15137 
15138 	if (mp->b_cont) {
15139 		freemsg(mp->b_cont);
15140 		mp->b_cont = NULL;
15141 	}
15142 	tea = (struct T_error_ack *)mp->b_rptr;
15143 	switch (tea->PRIM_type) {
15144 	case T_BIND_ACK:
15145 		/*
15146 		 * Need to unbind with classifier since we were just told that
15147 		 * our bind succeeded.
15148 		 */
15149 		tcp->tcp_hard_bound = B_FALSE;
15150 		tcp->tcp_hard_binding = B_FALSE;
15151 
15152 		ipcl_hash_remove(connp);
15153 		/* Reuse the mblk if possible */
15154 		ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
15155 			sizeof (*tea));
15156 		mp->b_rptr = mp->b_datap->db_base;
15157 		mp->b_wptr = mp->b_rptr + sizeof (*tea);
15158 		tea = (struct T_error_ack *)mp->b_rptr;
15159 		tea->PRIM_type = T_ERROR_ACK;
15160 		tea->TLI_error = TSYSERR;
15161 		tea->UNIX_error = error;
15162 		if (tcp->tcp_state >= TCPS_SYN_SENT) {
15163 			tea->ERROR_prim = T_CONN_REQ;
15164 		} else {
15165 			tea->ERROR_prim = O_T_BIND_REQ;
15166 		}
15167 		break;
15168 
15169 	case T_ERROR_ACK:
15170 		if (tcp->tcp_state >= TCPS_SYN_SENT)
15171 			tea->ERROR_prim = T_CONN_REQ;
15172 		break;
15173 	default:
15174 		panic("tcp_bind_failed: unexpected TPI type");
15175 		/*NOTREACHED*/
15176 	}
15177 
15178 	tcp->tcp_state = TCPS_IDLE;
15179 	if (tcp->tcp_ipversion == IPV4_VERSION)
15180 		tcp->tcp_ipha->ipha_src = 0;
15181 	else
15182 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
15183 	/*
15184 	 * Copy of the src addr. in tcp_t is needed since
15185 	 * the lookup funcs. can only look at tcp_t
15186 	 */
15187 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
15188 
15189 	tcph = tcp->tcp_tcph;
15190 	tcph->th_lport[0] = 0;
15191 	tcph->th_lport[1] = 0;
15192 	tcp_bind_hash_remove(tcp);
15193 	bzero(&connp->u_port, sizeof (connp->u_port));
15194 	/* blow away saved option results if any */
15195 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
15196 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
15197 
15198 	conn_delete_ire(tcp->tcp_connp, NULL);
15199 	putnext(q, mp);
15200 }
15201 
15202 /*
15203  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15204  * messages.
15205  */
15206 void
15207 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15208 {
15209 	mblk_t	*mp1;
15210 	uchar_t	*rptr = mp->b_rptr;
15211 	queue_t	*q = tcp->tcp_rq;
15212 	struct T_error_ack *tea;
15213 	uint32_t mss;
15214 	mblk_t *syn_mp;
15215 	mblk_t *mdti;
15216 	int	retval;
15217 	mblk_t *ire_mp;
15218 
15219 	switch (mp->b_datap->db_type) {
15220 	case M_PROTO:
15221 	case M_PCPROTO:
15222 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15223 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15224 			break;
15225 		tea = (struct T_error_ack *)rptr;
15226 		switch (tea->PRIM_type) {
15227 		case T_BIND_ACK:
15228 			/*
15229 			 * Adapt Multidata information, if any.  The
15230 			 * following tcp_mdt_update routine will free
15231 			 * the message.
15232 			 */
15233 			if ((mdti = tcp_mdt_info_mp(mp)) != NULL) {
15234 				tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
15235 				    b_rptr)->mdt_capab, B_TRUE);
15236 				freemsg(mdti);
15237 			}
15238 
15239 			/* Get the IRE, if we had requested for it */
15240 			ire_mp = tcp_ire_mp(mp);
15241 
15242 			if (tcp->tcp_hard_binding) {
15243 				tcp->tcp_hard_binding = B_FALSE;
15244 				tcp->tcp_hard_bound = B_TRUE;
15245 				CL_INET_CONNECT(tcp);
15246 			} else {
15247 				if (ire_mp != NULL)
15248 					freeb(ire_mp);
15249 				goto after_syn_sent;
15250 			}
15251 
15252 			retval = tcp_adapt_ire(tcp, ire_mp);
15253 			if (ire_mp != NULL)
15254 				freeb(ire_mp);
15255 			if (retval == 0) {
15256 				tcp_bind_failed(tcp, mp,
15257 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15258 				    ENETUNREACH : EADDRNOTAVAIL));
15259 				return;
15260 			}
15261 			/*
15262 			 * Don't let an endpoint connect to itself.
15263 			 * Also checked in tcp_connect() but that
15264 			 * check can't handle the case when the
15265 			 * local IP address is INADDR_ANY.
15266 			 */
15267 			if (tcp->tcp_ipversion == IPV4_VERSION) {
15268 				if ((tcp->tcp_ipha->ipha_dst ==
15269 				    tcp->tcp_ipha->ipha_src) &&
15270 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15271 				    tcp->tcp_tcph->th_fport))) {
15272 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15273 					return;
15274 				}
15275 			} else {
15276 				if (IN6_ARE_ADDR_EQUAL(
15277 				    &tcp->tcp_ip6h->ip6_dst,
15278 				    &tcp->tcp_ip6h->ip6_src) &&
15279 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15280 				    tcp->tcp_tcph->th_fport))) {
15281 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15282 					return;
15283 				}
15284 			}
15285 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
15286 			/*
15287 			 * This should not be possible!  Just for
15288 			 * defensive coding...
15289 			 */
15290 			if (tcp->tcp_state != TCPS_SYN_SENT)
15291 				goto after_syn_sent;
15292 
15293 			if (is_system_labeled() &&
15294 			    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
15295 				tcp_bind_failed(tcp, mp, EHOSTUNREACH);
15296 				return;
15297 			}
15298 
15299 			ASSERT(q == tcp->tcp_rq);
15300 			/*
15301 			 * tcp_adapt_ire() does not adjust
15302 			 * for TCP/IP header length.
15303 			 */
15304 			mss = tcp->tcp_mss - tcp->tcp_hdr_len;
15305 
15306 			/*
15307 			 * Just make sure our rwnd is at
15308 			 * least tcp_recv_hiwat_mss * MSS
15309 			 * large, and round up to the nearest
15310 			 * MSS.
15311 			 *
15312 			 * We do the round up here because
15313 			 * we need to get the interface
15314 			 * MTU first before we can do the
15315 			 * round up.
15316 			 */
15317 			tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
15318 			    tcp_recv_hiwat_minmss * mss);
15319 			q->q_hiwat = tcp->tcp_rwnd;
15320 			tcp_set_ws_value(tcp);
15321 			U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
15322 			    tcp->tcp_tcph->th_win);
15323 			if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always)
15324 				tcp->tcp_snd_ws_ok = B_TRUE;
15325 
15326 			/*
15327 			 * Set tcp_snd_ts_ok to true
15328 			 * so that tcp_xmit_mp will
15329 			 * include the timestamp
15330 			 * option in the SYN segment.
15331 			 */
15332 			if (tcp_tstamp_always ||
15333 			    (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) {
15334 				tcp->tcp_snd_ts_ok = B_TRUE;
15335 			}
15336 
15337 			/*
15338 			 * tcp_snd_sack_ok can be set in
15339 			 * tcp_adapt_ire() if the sack metric
15340 			 * is set.  So check it here also.
15341 			 */
15342 			if (tcp_sack_permitted == 2 ||
15343 			    tcp->tcp_snd_sack_ok) {
15344 				if (tcp->tcp_sack_info == NULL) {
15345 					tcp->tcp_sack_info =
15346 					kmem_cache_alloc(tcp_sack_info_cache,
15347 					    KM_SLEEP);
15348 				}
15349 				tcp->tcp_snd_sack_ok = B_TRUE;
15350 			}
15351 
15352 			/*
15353 			 * Should we use ECN?  Note that the current
15354 			 * default value (SunOS 5.9) of tcp_ecn_permitted
15355 			 * is 1.  The reason for doing this is that there
15356 			 * are equipments out there that will drop ECN
15357 			 * enabled IP packets.  Setting it to 1 avoids
15358 			 * compatibility problems.
15359 			 */
15360 			if (tcp_ecn_permitted == 2)
15361 				tcp->tcp_ecn_ok = B_TRUE;
15362 
15363 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15364 			syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
15365 			    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
15366 			if (syn_mp) {
15367 				cred_t *cr;
15368 				pid_t pid;
15369 
15370 				/*
15371 				 * Obtain the credential from the
15372 				 * thread calling connect(); the credential
15373 				 * lives on in the second mblk which
15374 				 * originated from T_CONN_REQ and is echoed
15375 				 * with the T_BIND_ACK from ip.  If none
15376 				 * can be found, default to the creator
15377 				 * of the socket.
15378 				 */
15379 				if (mp->b_cont == NULL ||
15380 				    (cr = DB_CRED(mp->b_cont)) == NULL) {
15381 					cr = tcp->tcp_cred;
15382 					pid = tcp->tcp_cpid;
15383 				} else {
15384 					pid = DB_CPID(mp->b_cont);
15385 				}
15386 
15387 				TCP_RECORD_TRACE(tcp, syn_mp,
15388 				    TCP_TRACE_SEND_PKT);
15389 				mblk_setcred(syn_mp, cr);
15390 				DB_CPID(syn_mp) = pid;
15391 				tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
15392 			}
15393 		after_syn_sent:
15394 			/*
15395 			 * A trailer mblk indicates a waiting client upstream.
15396 			 * We complete here the processing begun in
15397 			 * either tcp_bind() or tcp_connect() by passing
15398 			 * upstream the reply message they supplied.
15399 			 */
15400 			mp1 = mp;
15401 			mp = mp->b_cont;
15402 			freeb(mp1);
15403 			if (mp)
15404 				break;
15405 			return;
15406 		case T_ERROR_ACK:
15407 			if (tcp->tcp_debug) {
15408 				(void) strlog(TCP_MOD_ID, 0, 1,
15409 				    SL_TRACE|SL_ERROR,
15410 				    "tcp_rput_other: case T_ERROR_ACK, "
15411 				    "ERROR_prim == %d",
15412 				    tea->ERROR_prim);
15413 			}
15414 			switch (tea->ERROR_prim) {
15415 			case O_T_BIND_REQ:
15416 			case T_BIND_REQ:
15417 				tcp_bind_failed(tcp, mp,
15418 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15419 				    ENETUNREACH : EADDRNOTAVAIL));
15420 				return;
15421 			case T_UNBIND_REQ:
15422 				tcp->tcp_hard_binding = B_FALSE;
15423 				tcp->tcp_hard_bound = B_FALSE;
15424 				if (mp->b_cont) {
15425 					freemsg(mp->b_cont);
15426 					mp->b_cont = NULL;
15427 				}
15428 				if (tcp->tcp_unbind_pending)
15429 					tcp->tcp_unbind_pending = 0;
15430 				else {
15431 					/* From tcp_ip_unbind() - free */
15432 					freemsg(mp);
15433 					return;
15434 				}
15435 				break;
15436 			case T_SVR4_OPTMGMT_REQ:
15437 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15438 					/* T_OPTMGMT_REQ generated by TCP */
15439 					printf("T_SVR4_OPTMGMT_REQ failed "
15440 					    "%d/%d - dropped (cnt %d)\n",
15441 					    tea->TLI_error, tea->UNIX_error,
15442 					    tcp->tcp_drop_opt_ack_cnt);
15443 					freemsg(mp);
15444 					tcp->tcp_drop_opt_ack_cnt--;
15445 					return;
15446 				}
15447 				break;
15448 			}
15449 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15450 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15451 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15452 				    "- dropped (cnt %d)\n",
15453 				    tea->TLI_error, tea->UNIX_error,
15454 				    tcp->tcp_drop_opt_ack_cnt);
15455 				freemsg(mp);
15456 				tcp->tcp_drop_opt_ack_cnt--;
15457 				return;
15458 			}
15459 			break;
15460 		case T_OPTMGMT_ACK:
15461 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15462 				/* T_OPTMGMT_REQ generated by TCP */
15463 				freemsg(mp);
15464 				tcp->tcp_drop_opt_ack_cnt--;
15465 				return;
15466 			}
15467 			break;
15468 		default:
15469 			break;
15470 		}
15471 		break;
15472 	case M_CTL:
15473 		/*
15474 		 * ICMP messages.
15475 		 */
15476 		tcp_icmp_error(tcp, mp);
15477 		return;
15478 	case M_FLUSH:
15479 		if (*rptr & FLUSHR)
15480 			flushq(q, FLUSHDATA);
15481 		break;
15482 	default:
15483 		break;
15484 	}
15485 	/*
15486 	 * Make sure we set this bit before sending the ACK for
15487 	 * bind. Otherwise accept could possibly run and free
15488 	 * this tcp struct.
15489 	 */
15490 	putnext(q, mp);
15491 }
15492 
15493 /*
15494  * Called as the result of a qbufcall or a qtimeout to remedy a failure
15495  * to allocate a T_ordrel_ind in tcp_rsrv().  qenable(q) will make
15496  * tcp_rsrv() try again.
15497  */
15498 static void
15499 tcp_ordrel_kick(void *arg)
15500 {
15501 	conn_t 	*connp = (conn_t *)arg;
15502 	tcp_t	*tcp = connp->conn_tcp;
15503 
15504 	tcp->tcp_ordrelid = 0;
15505 	tcp->tcp_timeout = B_FALSE;
15506 	if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL &&
15507 	    tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15508 		qenable(tcp->tcp_rq);
15509 	}
15510 }
15511 
15512 /* ARGSUSED */
15513 static void
15514 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15515 {
15516 	conn_t	*connp = (conn_t *)arg;
15517 	tcp_t	*tcp = connp->conn_tcp;
15518 	queue_t	*q = tcp->tcp_rq;
15519 	uint_t	thwin;
15520 
15521 	freeb(mp);
15522 
15523 	TCP_STAT(tcp_rsrv_calls);
15524 
15525 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15526 		return;
15527 	}
15528 
15529 	if (tcp->tcp_fused) {
15530 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15531 
15532 		ASSERT(tcp->tcp_fused);
15533 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
15534 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
15535 		ASSERT(!TCP_IS_DETACHED(tcp));
15536 		ASSERT(tcp->tcp_connp->conn_sqp ==
15537 		    peer_tcp->tcp_connp->conn_sqp);
15538 
15539 		/*
15540 		 * Normally we would not get backenabled in synchronous
15541 		 * streams mode, but in case this happens, we need to plug
15542 		 * synchronous streams during our drain to prevent a race
15543 		 * with tcp_fuse_rrw() or tcp_fuse_rinfop().
15544 		 */
15545 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
15546 		if (tcp->tcp_rcv_list != NULL)
15547 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
15548 
15549 		tcp_clrqfull(peer_tcp);
15550 		TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
15551 		TCP_STAT(tcp_fusion_backenabled);
15552 		return;
15553 	}
15554 
15555 	if (canputnext(q)) {
15556 		tcp->tcp_rwnd = q->q_hiwat;
15557 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
15558 		    << tcp->tcp_rcv_ws;
15559 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
15560 		/*
15561 		 * Send back a window update immediately if TCP is above
15562 		 * ESTABLISHED state and the increase of the rcv window
15563 		 * that the other side knows is at least 1 MSS after flow
15564 		 * control is lifted.
15565 		 */
15566 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
15567 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
15568 			tcp_xmit_ctl(NULL, tcp,
15569 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
15570 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
15571 			BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
15572 		}
15573 	}
15574 	/* Handle a failure to allocate a T_ORDREL_IND here */
15575 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15576 		ASSERT(tcp->tcp_listener == NULL);
15577 		if (tcp->tcp_rcv_list != NULL) {
15578 			(void) tcp_rcv_drain(q, tcp);
15579 		}
15580 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15581 		mp = mi_tpi_ordrel_ind();
15582 		if (mp) {
15583 			tcp->tcp_ordrel_done = B_TRUE;
15584 			putnext(q, mp);
15585 			if (tcp->tcp_deferred_clean_death) {
15586 				/*
15587 				 * tcp_clean_death was deferred for
15588 				 * T_ORDREL_IND - do it now
15589 				 */
15590 				tcp->tcp_deferred_clean_death = B_FALSE;
15591 				(void) tcp_clean_death(tcp,
15592 				    tcp->tcp_client_errno, 22);
15593 			}
15594 		} else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
15595 			/*
15596 			 * If there isn't already a timer running
15597 			 * start one.  Use a 4 second
15598 			 * timer as a fallback since it can't fail.
15599 			 */
15600 			tcp->tcp_timeout = B_TRUE;
15601 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
15602 			    MSEC_TO_TICK(4000));
15603 		}
15604 	}
15605 }
15606 
15607 /*
15608  * The read side service routine is called mostly when we get back-enabled as a
15609  * result of flow control relief.  Since we don't actually queue anything in
15610  * TCP, we have no data to send out of here.  What we do is clear the receive
15611  * window, and send out a window update.
15612  * This routine is also called to drive an orderly release message upstream
15613  * if the attempt in tcp_rput failed.
15614  */
15615 static void
15616 tcp_rsrv(queue_t *q)
15617 {
15618 	conn_t *connp = Q_TO_CONN(q);
15619 	tcp_t	*tcp = connp->conn_tcp;
15620 	mblk_t	*mp;
15621 
15622 	/* No code does a putq on the read side */
15623 	ASSERT(q->q_first == NULL);
15624 
15625 	/* Nothing to do for the default queue */
15626 	if (q == tcp_g_q) {
15627 		return;
15628 	}
15629 
15630 	mp = allocb(0, BPRI_HI);
15631 	if (mp == NULL) {
15632 		/*
15633 		 * We are under memory pressure. Return for now and we
15634 		 * we will be called again later.
15635 		 */
15636 		if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
15637 			/*
15638 			 * If there isn't already a timer running
15639 			 * start one.  Use a 4 second
15640 			 * timer as a fallback since it can't fail.
15641 			 */
15642 			tcp->tcp_timeout = B_TRUE;
15643 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
15644 			    MSEC_TO_TICK(4000));
15645 		}
15646 		return;
15647 	}
15648 	CONN_INC_REF(connp);
15649 	squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp,
15650 	    SQTAG_TCP_RSRV);
15651 }
15652 
15653 /*
15654  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
15655  * We do not allow the receive window to shrink.  After setting rwnd,
15656  * set the flow control hiwat of the stream.
15657  *
15658  * This function is called in 2 cases:
15659  *
15660  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
15661  *    connection (passive open) and in tcp_rput_data() for active connect.
15662  *    This is called after tcp_mss_set() when the desired MSS value is known.
15663  *    This makes sure that our window size is a mutiple of the other side's
15664  *    MSS.
15665  * 2) Handling SO_RCVBUF option.
15666  *
15667  * It is ASSUMED that the requested size is a multiple of the current MSS.
15668  *
15669  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
15670  * user requests so.
15671  */
15672 static int
15673 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
15674 {
15675 	uint32_t	mss = tcp->tcp_mss;
15676 	uint32_t	old_max_rwnd;
15677 	uint32_t	max_transmittable_rwnd;
15678 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
15679 
15680 	if (tcp->tcp_fused) {
15681 		size_t sth_hiwat;
15682 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15683 
15684 		ASSERT(peer_tcp != NULL);
15685 		/*
15686 		 * Record the stream head's high water mark for
15687 		 * this endpoint; this is used for flow-control
15688 		 * purposes in tcp_fuse_output().
15689 		 */
15690 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
15691 		if (!tcp_detached)
15692 			(void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat);
15693 
15694 		/*
15695 		 * In the fusion case, the maxpsz stream head value of
15696 		 * our peer is set according to its send buffer size
15697 		 * and our receive buffer size; since the latter may
15698 		 * have changed we need to update the peer's maxpsz.
15699 		 */
15700 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
15701 		return (rwnd);
15702 	}
15703 
15704 	if (tcp_detached)
15705 		old_max_rwnd = tcp->tcp_rwnd;
15706 	else
15707 		old_max_rwnd = tcp->tcp_rq->q_hiwat;
15708 
15709 	/*
15710 	 * Insist on a receive window that is at least
15711 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
15712 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
15713 	 * and delayed acknowledgement.
15714 	 */
15715 	rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss);
15716 
15717 	/*
15718 	 * If window size info has already been exchanged, TCP should not
15719 	 * shrink the window.  Shrinking window is doable if done carefully.
15720 	 * We may add that support later.  But so far there is not a real
15721 	 * need to do that.
15722 	 */
15723 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
15724 		/* MSS may have changed, do a round up again. */
15725 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
15726 	}
15727 
15728 	/*
15729 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
15730 	 * can be applied even before the window scale option is decided.
15731 	 */
15732 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
15733 	if (rwnd > max_transmittable_rwnd) {
15734 		rwnd = max_transmittable_rwnd -
15735 		    (max_transmittable_rwnd % mss);
15736 		if (rwnd < mss)
15737 			rwnd = max_transmittable_rwnd;
15738 		/*
15739 		 * If we're over the limit we may have to back down tcp_rwnd.
15740 		 * The increment below won't work for us. So we set all three
15741 		 * here and the increment below will have no effect.
15742 		 */
15743 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
15744 	}
15745 	if (tcp->tcp_localnet) {
15746 		tcp->tcp_rack_abs_max =
15747 		    MIN(tcp_local_dacks_max, rwnd / mss / 2);
15748 	} else {
15749 		/*
15750 		 * For a remote host on a different subnet (through a router),
15751 		 * we ack every other packet to be conforming to RFC1122.
15752 		 * tcp_deferred_acks_max is default to 2.
15753 		 */
15754 		tcp->tcp_rack_abs_max =
15755 		    MIN(tcp_deferred_acks_max, rwnd / mss / 2);
15756 	}
15757 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
15758 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
15759 	else
15760 		tcp->tcp_rack_cur_max = 0;
15761 	/*
15762 	 * Increment the current rwnd by the amount the maximum grew (we
15763 	 * can not overwrite it since we might be in the middle of a
15764 	 * connection.)
15765 	 */
15766 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
15767 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
15768 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
15769 		tcp->tcp_cwnd_max = rwnd;
15770 
15771 	if (tcp_detached)
15772 		return (rwnd);
15773 	/*
15774 	 * We set the maximum receive window into rq->q_hiwat.
15775 	 * This is not actually used for flow control.
15776 	 */
15777 	tcp->tcp_rq->q_hiwat = rwnd;
15778 	/*
15779 	 * Set the Stream head high water mark. This doesn't have to be
15780 	 * here, since we are simply using default values, but we would
15781 	 * prefer to choose these values algorithmically, with a likely
15782 	 * relationship to rwnd.
15783 	 */
15784 	(void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd, tcp_sth_rcv_hiwat));
15785 	return (rwnd);
15786 }
15787 
15788 /*
15789  * Return SNMP stuff in buffer in mpdata.
15790  */
15791 int
15792 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
15793 {
15794 	mblk_t			*mpdata;
15795 	mblk_t			*mp_conn_ctl = NULL;
15796 	mblk_t			*mp_conn_tail;
15797 	mblk_t			*mp_attr_ctl = NULL;
15798 	mblk_t			*mp_attr_tail;
15799 	mblk_t			*mp6_conn_ctl = NULL;
15800 	mblk_t			*mp6_conn_tail;
15801 	mblk_t			*mp6_attr_ctl = NULL;
15802 	mblk_t			*mp6_attr_tail;
15803 	struct opthdr		*optp;
15804 	mib2_tcpConnEntry_t	tce;
15805 	mib2_tcp6ConnEntry_t	tce6;
15806 	mib2_transportMLPEntry_t mlp;
15807 	connf_t			*connfp;
15808 	conn_t			*connp;
15809 	int			i;
15810 	boolean_t 		ispriv;
15811 	zoneid_t 		zoneid;
15812 	int			v4_conn_idx;
15813 	int			v6_conn_idx;
15814 
15815 	if (mpctl == NULL ||
15816 	    (mpdata = mpctl->b_cont) == NULL ||
15817 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
15818 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
15819 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
15820 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
15821 		freemsg(mp_conn_ctl);
15822 		freemsg(mp_attr_ctl);
15823 		freemsg(mp6_conn_ctl);
15824 		freemsg(mp6_attr_ctl);
15825 		return (0);
15826 	}
15827 
15828 	/* build table of connections -- need count in fixed part */
15829 	SET_MIB(tcp_mib.tcpRtoAlgorithm, 4);   /* vanj */
15830 	SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min);
15831 	SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max);
15832 	SET_MIB(tcp_mib.tcpMaxConn, -1);
15833 	SET_MIB(tcp_mib.tcpCurrEstab, 0);
15834 
15835 	ispriv =
15836 	    secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
15837 	zoneid = Q_TO_CONN(q)->conn_zoneid;
15838 
15839 	v4_conn_idx = v6_conn_idx = 0;
15840 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
15841 
15842 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
15843 
15844 		connfp = &ipcl_globalhash_fanout[i];
15845 
15846 		connp = NULL;
15847 
15848 		while ((connp =
15849 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
15850 			tcp_t *tcp;
15851 			boolean_t needattr;
15852 
15853 			if (connp->conn_zoneid != zoneid)
15854 				continue;	/* not in this zone */
15855 
15856 			tcp = connp->conn_tcp;
15857 			UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
15858 			tcp->tcp_ibsegs = 0;
15859 			UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
15860 			tcp->tcp_obsegs = 0;
15861 
15862 			tce6.tcp6ConnState = tce.tcpConnState =
15863 			    tcp_snmp_state(tcp);
15864 			if (tce.tcpConnState == MIB2_TCP_established ||
15865 			    tce.tcpConnState == MIB2_TCP_closeWait)
15866 				BUMP_MIB(&tcp_mib, tcpCurrEstab);
15867 
15868 			needattr = B_FALSE;
15869 			bzero(&mlp, sizeof (mlp));
15870 			if (connp->conn_mlp_type != mlptSingle) {
15871 				if (connp->conn_mlp_type == mlptShared ||
15872 				    connp->conn_mlp_type == mlptBoth)
15873 					mlp.tme_flags |= MIB2_TMEF_SHARED;
15874 				if (connp->conn_mlp_type == mlptPrivate ||
15875 				    connp->conn_mlp_type == mlptBoth)
15876 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
15877 				needattr = B_TRUE;
15878 			}
15879 			if (connp->conn_peercred != NULL) {
15880 				ts_label_t *tsl;
15881 
15882 				tsl = crgetlabel(connp->conn_peercred);
15883 				mlp.tme_doi = label2doi(tsl);
15884 				mlp.tme_label = *label2bslabel(tsl);
15885 				needattr = B_TRUE;
15886 			}
15887 
15888 			/* Create a message to report on IPv6 entries */
15889 			if (tcp->tcp_ipversion == IPV6_VERSION) {
15890 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
15891 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
15892 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
15893 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
15894 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
15895 			/* Don't want just anybody seeing these... */
15896 			if (ispriv) {
15897 				tce6.tcp6ConnEntryInfo.ce_snxt =
15898 				    tcp->tcp_snxt;
15899 				tce6.tcp6ConnEntryInfo.ce_suna =
15900 				    tcp->tcp_suna;
15901 				tce6.tcp6ConnEntryInfo.ce_rnxt =
15902 				    tcp->tcp_rnxt;
15903 				tce6.tcp6ConnEntryInfo.ce_rack =
15904 				    tcp->tcp_rack;
15905 			} else {
15906 				/*
15907 				 * Netstat, unfortunately, uses this to
15908 				 * get send/receive queue sizes.  How to fix?
15909 				 * Why not compute the difference only?
15910 				 */
15911 				tce6.tcp6ConnEntryInfo.ce_snxt =
15912 				    tcp->tcp_snxt - tcp->tcp_suna;
15913 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
15914 				tce6.tcp6ConnEntryInfo.ce_rnxt =
15915 				    tcp->tcp_rnxt - tcp->tcp_rack;
15916 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
15917 			}
15918 
15919 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
15920 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
15921 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
15922 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
15923 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
15924 
15925 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
15926 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
15927 
15928 			mlp.tme_connidx = v6_conn_idx++;
15929 			if (needattr)
15930 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
15931 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
15932 			}
15933 			/*
15934 			 * Create an IPv4 table entry for IPv4 entries and also
15935 			 * for IPv6 entries which are bound to in6addr_any
15936 			 * but don't have IPV6_V6ONLY set.
15937 			 * (i.e. anything an IPv4 peer could connect to)
15938 			 */
15939 			if (tcp->tcp_ipversion == IPV4_VERSION ||
15940 			    (tcp->tcp_state <= TCPS_LISTEN &&
15941 			    !tcp->tcp_connp->conn_ipv6_v6only &&
15942 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
15943 				if (tcp->tcp_ipversion == IPV6_VERSION) {
15944 					tce.tcpConnRemAddress = INADDR_ANY;
15945 					tce.tcpConnLocalAddress = INADDR_ANY;
15946 				} else {
15947 					tce.tcpConnRemAddress =
15948 					    tcp->tcp_remote;
15949 					tce.tcpConnLocalAddress =
15950 					    tcp->tcp_ip_src;
15951 				}
15952 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
15953 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
15954 				/* Don't want just anybody seeing these... */
15955 				if (ispriv) {
15956 					tce.tcpConnEntryInfo.ce_snxt =
15957 					    tcp->tcp_snxt;
15958 					tce.tcpConnEntryInfo.ce_suna =
15959 					    tcp->tcp_suna;
15960 					tce.tcpConnEntryInfo.ce_rnxt =
15961 					    tcp->tcp_rnxt;
15962 					tce.tcpConnEntryInfo.ce_rack =
15963 					    tcp->tcp_rack;
15964 				} else {
15965 					/*
15966 					 * Netstat, unfortunately, uses this to
15967 					 * get send/receive queue sizes.  How
15968 					 * to fix?
15969 					 * Why not compute the difference only?
15970 					 */
15971 					tce.tcpConnEntryInfo.ce_snxt =
15972 					    tcp->tcp_snxt - tcp->tcp_suna;
15973 					tce.tcpConnEntryInfo.ce_suna = 0;
15974 					tce.tcpConnEntryInfo.ce_rnxt =
15975 					    tcp->tcp_rnxt - tcp->tcp_rack;
15976 					tce.tcpConnEntryInfo.ce_rack = 0;
15977 				}
15978 
15979 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
15980 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
15981 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
15982 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
15983 				tce.tcpConnEntryInfo.ce_state =
15984 				    tcp->tcp_state;
15985 
15986 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
15987 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
15988 
15989 				mlp.tme_connidx = v4_conn_idx++;
15990 				if (needattr)
15991 					(void) snmp_append_data2(
15992 					    mp_attr_ctl->b_cont,
15993 					    &mp_attr_tail, (char *)&mlp,
15994 					    sizeof (mlp));
15995 			}
15996 		}
15997 	}
15998 
15999 	/* fixed length structure for IPv4 and IPv6 counters */
16000 	SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
16001 	SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t));
16002 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16003 	optp->level = MIB2_TCP;
16004 	optp->name = 0;
16005 	(void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib));
16006 	optp->len = msgdsize(mpdata);
16007 	qreply(q, mpctl);
16008 
16009 	/* table of connections... */
16010 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16011 	    sizeof (struct T_optmgmt_ack)];
16012 	optp->level = MIB2_TCP;
16013 	optp->name = MIB2_TCP_CONN;
16014 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16015 	qreply(q, mp_conn_ctl);
16016 
16017 	/* table of MLP attributes... */
16018 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16019 	    sizeof (struct T_optmgmt_ack)];
16020 	optp->level = MIB2_TCP;
16021 	optp->name = EXPER_XPORT_MLP;
16022 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16023 	if (optp->len == 0)
16024 		freemsg(mp_attr_ctl);
16025 	else
16026 		qreply(q, mp_attr_ctl);
16027 
16028 	/* table of IPv6 connections... */
16029 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16030 	    sizeof (struct T_optmgmt_ack)];
16031 	optp->level = MIB2_TCP6;
16032 	optp->name = MIB2_TCP6_CONN;
16033 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16034 	qreply(q, mp6_conn_ctl);
16035 
16036 	/* table of IPv6 MLP attributes... */
16037 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16038 	    sizeof (struct T_optmgmt_ack)];
16039 	optp->level = MIB2_TCP6;
16040 	optp->name = EXPER_XPORT_MLP;
16041 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16042 	if (optp->len == 0)
16043 		freemsg(mp6_attr_ctl);
16044 	else
16045 		qreply(q, mp6_attr_ctl);
16046 	return (1);
16047 }
16048 
16049 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16050 /* ARGSUSED */
16051 int
16052 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16053 {
16054 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16055 
16056 	switch (level) {
16057 	case MIB2_TCP:
16058 		switch (name) {
16059 		case 13:
16060 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16061 				return (0);
16062 			/* TODO: delete entry defined by tce */
16063 			return (1);
16064 		default:
16065 			return (0);
16066 		}
16067 	default:
16068 		return (1);
16069 	}
16070 }
16071 
16072 /* Translate TCP state to MIB2 TCP state. */
16073 static int
16074 tcp_snmp_state(tcp_t *tcp)
16075 {
16076 	if (tcp == NULL)
16077 		return (0);
16078 
16079 	switch (tcp->tcp_state) {
16080 	case TCPS_CLOSED:
16081 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16082 	case TCPS_BOUND:
16083 		return (MIB2_TCP_closed);
16084 	case TCPS_LISTEN:
16085 		return (MIB2_TCP_listen);
16086 	case TCPS_SYN_SENT:
16087 		return (MIB2_TCP_synSent);
16088 	case TCPS_SYN_RCVD:
16089 		return (MIB2_TCP_synReceived);
16090 	case TCPS_ESTABLISHED:
16091 		return (MIB2_TCP_established);
16092 	case TCPS_CLOSE_WAIT:
16093 		return (MIB2_TCP_closeWait);
16094 	case TCPS_FIN_WAIT_1:
16095 		return (MIB2_TCP_finWait1);
16096 	case TCPS_CLOSING:
16097 		return (MIB2_TCP_closing);
16098 	case TCPS_LAST_ACK:
16099 		return (MIB2_TCP_lastAck);
16100 	case TCPS_FIN_WAIT_2:
16101 		return (MIB2_TCP_finWait2);
16102 	case TCPS_TIME_WAIT:
16103 		return (MIB2_TCP_timeWait);
16104 	default:
16105 		return (0);
16106 	}
16107 }
16108 
16109 static char tcp_report_header[] =
16110 	"TCP     " MI_COL_HDRPAD_STR
16111 	"zone dest            snxt     suna     "
16112 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
16113 	"recent   [lport,fport] state";
16114 
16115 /*
16116  * TCP status report triggered via the Named Dispatch mechanism.
16117  */
16118 /* ARGSUSED */
16119 static void
16120 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
16121     cred_t *cr)
16122 {
16123 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
16124 	boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0;
16125 	char cflag;
16126 	in6_addr_t	v6dst;
16127 	char buf[80];
16128 	uint_t print_len, buf_len;
16129 
16130 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16131 	if (buf_len <= 0)
16132 		return;
16133 
16134 	if (hashval >= 0)
16135 		(void) sprintf(hash, "%03d ", hashval);
16136 	else
16137 		hash[0] = '\0';
16138 
16139 	/*
16140 	 * Note that we use the remote address in the tcp_b  structure.
16141 	 * This means that it will print out the real destination address,
16142 	 * not the next hop's address if source routing is used.  This
16143 	 * avoid the confusion on the output because user may not
16144 	 * know that source routing is used for a connection.
16145 	 */
16146 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16147 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
16148 	} else {
16149 		v6dst = tcp->tcp_remote_v6;
16150 	}
16151 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16152 	/*
16153 	 * the ispriv checks are so that normal users cannot determine
16154 	 * sequence number information using NDD.
16155 	 */
16156 
16157 	if (TCP_IS_DETACHED(tcp))
16158 		cflag = '*';
16159 	else
16160 		cflag = ' ';
16161 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16162 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
16163 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
16164 	    hash,
16165 	    (void *)tcp,
16166 	    tcp->tcp_connp->conn_zoneid,
16167 	    addrbuf,
16168 	    (ispriv) ? tcp->tcp_snxt : 0,
16169 	    (ispriv) ? tcp->tcp_suna : 0,
16170 	    tcp->tcp_swnd,
16171 	    (ispriv) ? tcp->tcp_rnxt : 0,
16172 	    (ispriv) ? tcp->tcp_rack : 0,
16173 	    tcp->tcp_rwnd,
16174 	    tcp->tcp_rto,
16175 	    tcp->tcp_mss,
16176 	    tcp->tcp_snd_ws_ok,
16177 	    tcp->tcp_snd_ws,
16178 	    tcp->tcp_rcv_ws,
16179 	    tcp->tcp_snd_ts_ok,
16180 	    tcp->tcp_ts_recent,
16181 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
16182 	if (print_len < buf_len) {
16183 		((mblk_t *)mp)->b_wptr += print_len;
16184 	} else {
16185 		((mblk_t *)mp)->b_wptr += buf_len;
16186 	}
16187 }
16188 
16189 /*
16190  * TCP status report (for listeners only) triggered via the Named Dispatch
16191  * mechanism.
16192  */
16193 /* ARGSUSED */
16194 static void
16195 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
16196 {
16197 	char addrbuf[INET6_ADDRSTRLEN];
16198 	in6_addr_t	v6dst;
16199 	uint_t print_len, buf_len;
16200 
16201 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16202 	if (buf_len <= 0)
16203 		return;
16204 
16205 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16206 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
16207 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16208 	} else {
16209 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
16210 		    addrbuf, sizeof (addrbuf));
16211 	}
16212 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16213 	    "%03d "
16214 	    MI_COL_PTRFMT_STR
16215 	    "%d %s %05u %08u %d/%d/%d%c\n",
16216 	    hashval, (void *)tcp,
16217 	    tcp->tcp_connp->conn_zoneid,
16218 	    addrbuf,
16219 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
16220 	    tcp->tcp_conn_req_seqnum,
16221 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
16222 	    tcp->tcp_conn_req_max,
16223 	    tcp->tcp_syn_defense ? '*' : ' ');
16224 	if (print_len < buf_len) {
16225 		((mblk_t *)mp)->b_wptr += print_len;
16226 	} else {
16227 		((mblk_t *)mp)->b_wptr += buf_len;
16228 	}
16229 }
16230 
16231 /* TCP status report triggered via the Named Dispatch mechanism. */
16232 /* ARGSUSED */
16233 static int
16234 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16235 {
16236 	tcp_t	*tcp;
16237 	int	i;
16238 	conn_t	*connp;
16239 	connf_t	*connfp;
16240 	zoneid_t zoneid;
16241 
16242 	/*
16243 	 * Because of the ndd constraint, at most we can have 64K buffer
16244 	 * to put in all TCP info.  So to be more efficient, just
16245 	 * allocate a 64K buffer here, assuming we need that large buffer.
16246 	 * This may be a problem as any user can read tcp_status.  Therefore
16247 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
16248 	 * This should be OK as normal users should not do this too often.
16249 	 */
16250 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16251 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16252 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16253 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16254 			return (0);
16255 		}
16256 	}
16257 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16258 		/* The following may work even if we cannot get a large buf. */
16259 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16260 		return (0);
16261 	}
16262 
16263 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
16264 
16265 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16266 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16267 
16268 		connfp = &ipcl_globalhash_fanout[i];
16269 
16270 		connp = NULL;
16271 
16272 		while ((connp =
16273 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16274 			tcp = connp->conn_tcp;
16275 			if (zoneid != GLOBAL_ZONEID &&
16276 			    zoneid != connp->conn_zoneid)
16277 				continue;
16278 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
16279 			    cr);
16280 		}
16281 
16282 	}
16283 
16284 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16285 	return (0);
16286 }
16287 
16288 /* TCP status report triggered via the Named Dispatch mechanism. */
16289 /* ARGSUSED */
16290 static int
16291 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16292 {
16293 	tf_t	*tbf;
16294 	tcp_t	*tcp;
16295 	int	i;
16296 	zoneid_t zoneid;
16297 
16298 	/* Refer to comments in tcp_status_report(). */
16299 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16300 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16301 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16302 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16303 			return (0);
16304 		}
16305 	}
16306 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16307 		/* The following may work even if we cannot get a large buf. */
16308 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16309 		return (0);
16310 	}
16311 
16312 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16313 
16314 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16315 
16316 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
16317 		tbf = &tcp_bind_fanout[i];
16318 		mutex_enter(&tbf->tf_lock);
16319 		for (tcp = tbf->tf_tcp; tcp != NULL;
16320 		    tcp = tcp->tcp_bind_hash) {
16321 			if (zoneid != GLOBAL_ZONEID &&
16322 			    zoneid != tcp->tcp_connp->conn_zoneid)
16323 				continue;
16324 			CONN_INC_REF(tcp->tcp_connp);
16325 			tcp_report_item(mp->b_cont, tcp, i,
16326 			    Q_TO_TCP(q), cr);
16327 			CONN_DEC_REF(tcp->tcp_connp);
16328 		}
16329 		mutex_exit(&tbf->tf_lock);
16330 	}
16331 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16332 	return (0);
16333 }
16334 
16335 /* TCP status report triggered via the Named Dispatch mechanism. */
16336 /* ARGSUSED */
16337 static int
16338 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16339 {
16340 	connf_t	*connfp;
16341 	conn_t	*connp;
16342 	tcp_t	*tcp;
16343 	int	i;
16344 	zoneid_t zoneid;
16345 
16346 	/* Refer to comments in tcp_status_report(). */
16347 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16348 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16349 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16350 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16351 			return (0);
16352 		}
16353 	}
16354 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16355 		/* The following may work even if we cannot get a large buf. */
16356 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16357 		return (0);
16358 	}
16359 
16360 	(void) mi_mpprintf(mp,
16361 	    "    TCP    " MI_COL_HDRPAD_STR
16362 	    "zone IP addr         port  seqnum   backlog (q0/q/max)");
16363 
16364 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16365 
16366 	for (i = 0; i < ipcl_bind_fanout_size; i++) {
16367 		connfp =  &ipcl_bind_fanout[i];
16368 		connp = NULL;
16369 		while ((connp =
16370 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16371 			tcp = connp->conn_tcp;
16372 			if (zoneid != GLOBAL_ZONEID &&
16373 			    zoneid != connp->conn_zoneid)
16374 				continue;
16375 			tcp_report_listener(mp->b_cont, tcp, i);
16376 		}
16377 	}
16378 
16379 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16380 	return (0);
16381 }
16382 
16383 /* TCP status report triggered via the Named Dispatch mechanism. */
16384 /* ARGSUSED */
16385 static int
16386 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16387 {
16388 	connf_t	*connfp;
16389 	conn_t	*connp;
16390 	tcp_t	*tcp;
16391 	int	i;
16392 	zoneid_t zoneid;
16393 
16394 	/* Refer to comments in tcp_status_report(). */
16395 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16396 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16397 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16398 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16399 			return (0);
16400 		}
16401 	}
16402 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16403 		/* The following may work even if we cannot get a large buf. */
16404 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16405 		return (0);
16406 	}
16407 
16408 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
16409 	    ipcl_conn_fanout_size);
16410 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16411 
16412 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16413 
16414 	for (i = 0; i < ipcl_conn_fanout_size; i++) {
16415 		connfp =  &ipcl_conn_fanout[i];
16416 		connp = NULL;
16417 		while ((connp =
16418 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16419 			tcp = connp->conn_tcp;
16420 			if (zoneid != GLOBAL_ZONEID &&
16421 			    zoneid != connp->conn_zoneid)
16422 				continue;
16423 			tcp_report_item(mp->b_cont, tcp, i,
16424 			    Q_TO_TCP(q), cr);
16425 		}
16426 	}
16427 
16428 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16429 	return (0);
16430 }
16431 
16432 /* TCP status report triggered via the Named Dispatch mechanism. */
16433 /* ARGSUSED */
16434 static int
16435 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16436 {
16437 	tf_t	*tf;
16438 	tcp_t	*tcp;
16439 	int	i;
16440 	zoneid_t zoneid;
16441 
16442 	/* Refer to comments in tcp_status_report(). */
16443 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16444 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16445 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16446 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16447 			return (0);
16448 		}
16449 	}
16450 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16451 		/* The following may work even if we cannot get a large buf. */
16452 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16453 		return (0);
16454 	}
16455 
16456 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16457 
16458 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16459 
16460 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
16461 		tf = &tcp_acceptor_fanout[i];
16462 		mutex_enter(&tf->tf_lock);
16463 		for (tcp = tf->tf_tcp; tcp != NULL;
16464 		    tcp = tcp->tcp_acceptor_hash) {
16465 			if (zoneid != GLOBAL_ZONEID &&
16466 			    zoneid != tcp->tcp_connp->conn_zoneid)
16467 				continue;
16468 			tcp_report_item(mp->b_cont, tcp, i,
16469 			    Q_TO_TCP(q), cr);
16470 		}
16471 		mutex_exit(&tf->tf_lock);
16472 	}
16473 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16474 	return (0);
16475 }
16476 
16477 /*
16478  * tcp_timer is the timer service routine.  It handles the retransmission,
16479  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
16480  * from the state of the tcp instance what kind of action needs to be done
16481  * at the time it is called.
16482  */
16483 static void
16484 tcp_timer(void *arg)
16485 {
16486 	mblk_t		*mp;
16487 	clock_t		first_threshold;
16488 	clock_t		second_threshold;
16489 	clock_t		ms;
16490 	uint32_t	mss;
16491 	conn_t		*connp = (conn_t *)arg;
16492 	tcp_t		*tcp = connp->conn_tcp;
16493 
16494 	tcp->tcp_timer_tid = 0;
16495 
16496 	if (tcp->tcp_fused)
16497 		return;
16498 
16499 	first_threshold =  tcp->tcp_first_timer_threshold;
16500 	second_threshold = tcp->tcp_second_timer_threshold;
16501 	switch (tcp->tcp_state) {
16502 	case TCPS_IDLE:
16503 	case TCPS_BOUND:
16504 	case TCPS_LISTEN:
16505 		return;
16506 	case TCPS_SYN_RCVD: {
16507 		tcp_t	*listener = tcp->tcp_listener;
16508 
16509 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
16510 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
16511 			/* it's our first timeout */
16512 			tcp->tcp_syn_rcvd_timeout = 1;
16513 			mutex_enter(&listener->tcp_eager_lock);
16514 			listener->tcp_syn_rcvd_timeout++;
16515 			if (!listener->tcp_syn_defense &&
16516 			    (listener->tcp_syn_rcvd_timeout >
16517 			    (tcp_conn_req_max_q0 >> 2)) &&
16518 			    (tcp_conn_req_max_q0 > 200)) {
16519 				/* We may be under attack. Put on a defense. */
16520 				listener->tcp_syn_defense = B_TRUE;
16521 				cmn_err(CE_WARN, "High TCP connect timeout "
16522 				    "rate! System (port %d) may be under a "
16523 				    "SYN flood attack!",
16524 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
16525 
16526 				listener->tcp_ip_addr_cache = kmem_zalloc(
16527 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
16528 				    KM_NOSLEEP);
16529 			}
16530 			mutex_exit(&listener->tcp_eager_lock);
16531 		}
16532 	}
16533 		/* FALLTHRU */
16534 	case TCPS_SYN_SENT:
16535 		first_threshold =  tcp->tcp_first_ctimer_threshold;
16536 		second_threshold = tcp->tcp_second_ctimer_threshold;
16537 		break;
16538 	case TCPS_ESTABLISHED:
16539 	case TCPS_FIN_WAIT_1:
16540 	case TCPS_CLOSING:
16541 	case TCPS_CLOSE_WAIT:
16542 	case TCPS_LAST_ACK:
16543 		/* If we have data to rexmit */
16544 		if (tcp->tcp_suna != tcp->tcp_snxt) {
16545 			clock_t	time_to_wait;
16546 
16547 			BUMP_MIB(&tcp_mib, tcpTimRetrans);
16548 			if (!tcp->tcp_xmit_head)
16549 				break;
16550 			time_to_wait = lbolt -
16551 			    (clock_t)tcp->tcp_xmit_head->b_prev;
16552 			time_to_wait = tcp->tcp_rto -
16553 			    TICK_TO_MSEC(time_to_wait);
16554 			/*
16555 			 * If the timer fires too early, 1 clock tick earlier,
16556 			 * restart the timer.
16557 			 */
16558 			if (time_to_wait > msec_per_tick) {
16559 				TCP_STAT(tcp_timer_fire_early);
16560 				TCP_TIMER_RESTART(tcp, time_to_wait);
16561 				return;
16562 			}
16563 			/*
16564 			 * When we probe zero windows, we force the swnd open.
16565 			 * If our peer acks with a closed window swnd will be
16566 			 * set to zero by tcp_rput(). As long as we are
16567 			 * receiving acks tcp_rput will
16568 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
16569 			 * first and second interval actions.  NOTE: the timer
16570 			 * interval is allowed to continue its exponential
16571 			 * backoff.
16572 			 */
16573 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
16574 				if (tcp->tcp_debug) {
16575 					(void) strlog(TCP_MOD_ID, 0, 1,
16576 					    SL_TRACE, "tcp_timer: zero win");
16577 				}
16578 			} else {
16579 				/*
16580 				 * After retransmission, we need to do
16581 				 * slow start.  Set the ssthresh to one
16582 				 * half of current effective window and
16583 				 * cwnd to one MSS.  Also reset
16584 				 * tcp_cwnd_cnt.
16585 				 *
16586 				 * Note that if tcp_ssthresh is reduced because
16587 				 * of ECN, do not reduce it again unless it is
16588 				 * already one window of data away (tcp_cwr
16589 				 * should then be cleared) or this is a
16590 				 * timeout for a retransmitted segment.
16591 				 */
16592 				uint32_t npkt;
16593 
16594 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
16595 					npkt = ((tcp->tcp_timer_backoff ?
16596 					    tcp->tcp_cwnd_ssthresh :
16597 					    tcp->tcp_snxt -
16598 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
16599 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
16600 					    tcp->tcp_mss;
16601 				}
16602 				tcp->tcp_cwnd = tcp->tcp_mss;
16603 				tcp->tcp_cwnd_cnt = 0;
16604 				if (tcp->tcp_ecn_ok) {
16605 					tcp->tcp_cwr = B_TRUE;
16606 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
16607 					tcp->tcp_ecn_cwr_sent = B_FALSE;
16608 				}
16609 			}
16610 			break;
16611 		}
16612 		/*
16613 		 * We have something to send yet we cannot send.  The
16614 		 * reason can be:
16615 		 *
16616 		 * 1. Zero send window: we need to do zero window probe.
16617 		 * 2. Zero cwnd: because of ECN, we need to "clock out
16618 		 * segments.
16619 		 * 3. SWS avoidance: receiver may have shrunk window,
16620 		 * reset our knowledge.
16621 		 *
16622 		 * Note that condition 2 can happen with either 1 or
16623 		 * 3.  But 1 and 3 are exclusive.
16624 		 */
16625 		if (tcp->tcp_unsent != 0) {
16626 			if (tcp->tcp_cwnd == 0) {
16627 				/*
16628 				 * Set tcp_cwnd to 1 MSS so that a
16629 				 * new segment can be sent out.  We
16630 				 * are "clocking out" new data when
16631 				 * the network is really congested.
16632 				 */
16633 				ASSERT(tcp->tcp_ecn_ok);
16634 				tcp->tcp_cwnd = tcp->tcp_mss;
16635 			}
16636 			if (tcp->tcp_swnd == 0) {
16637 				/* Extend window for zero window probe */
16638 				tcp->tcp_swnd++;
16639 				tcp->tcp_zero_win_probe = B_TRUE;
16640 				BUMP_MIB(&tcp_mib, tcpOutWinProbe);
16641 			} else {
16642 				/*
16643 				 * Handle timeout from sender SWS avoidance.
16644 				 * Reset our knowledge of the max send window
16645 				 * since the receiver might have reduced its
16646 				 * receive buffer.  Avoid setting tcp_max_swnd
16647 				 * to one since that will essentially disable
16648 				 * the SWS checks.
16649 				 *
16650 				 * Note that since we don't have a SWS
16651 				 * state variable, if the timeout is set
16652 				 * for ECN but not for SWS, this
16653 				 * code will also be executed.  This is
16654 				 * fine as tcp_max_swnd is updated
16655 				 * constantly and it will not affect
16656 				 * anything.
16657 				 */
16658 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
16659 			}
16660 			tcp_wput_data(tcp, NULL, B_FALSE);
16661 			return;
16662 		}
16663 		/* Is there a FIN that needs to be to re retransmitted? */
16664 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
16665 		    !tcp->tcp_fin_acked)
16666 			break;
16667 		/* Nothing to do, return without restarting timer. */
16668 		TCP_STAT(tcp_timer_fire_miss);
16669 		return;
16670 	case TCPS_FIN_WAIT_2:
16671 		/*
16672 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
16673 		 * We waited some time for for peer's FIN, but it hasn't
16674 		 * arrived.  We flush the connection now to avoid
16675 		 * case where the peer has rebooted.
16676 		 */
16677 		if (TCP_IS_DETACHED(tcp)) {
16678 			(void) tcp_clean_death(tcp, 0, 23);
16679 		} else {
16680 			TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval);
16681 		}
16682 		return;
16683 	case TCPS_TIME_WAIT:
16684 		(void) tcp_clean_death(tcp, 0, 24);
16685 		return;
16686 	default:
16687 		if (tcp->tcp_debug) {
16688 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
16689 			    "tcp_timer: strange state (%d) %s",
16690 			    tcp->tcp_state, tcp_display(tcp, NULL,
16691 			    DISP_PORT_ONLY));
16692 		}
16693 		return;
16694 	}
16695 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
16696 		/*
16697 		 * For zero window probe, we need to send indefinitely,
16698 		 * unless we have not heard from the other side for some
16699 		 * time...
16700 		 */
16701 		if ((tcp->tcp_zero_win_probe == 0) ||
16702 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
16703 		    second_threshold)) {
16704 			BUMP_MIB(&tcp_mib, tcpTimRetransDrop);
16705 			/*
16706 			 * If TCP is in SYN_RCVD state, send back a
16707 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
16708 			 * should be zero in TCPS_SYN_RCVD state.
16709 			 */
16710 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
16711 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
16712 				    "in SYN_RCVD",
16713 				    tcp, tcp->tcp_snxt,
16714 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
16715 			}
16716 			(void) tcp_clean_death(tcp,
16717 			    tcp->tcp_client_errno ?
16718 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
16719 			return;
16720 		} else {
16721 			/*
16722 			 * Set tcp_ms_we_have_waited to second_threshold
16723 			 * so that in next timeout, we will do the above
16724 			 * check (lbolt - tcp_last_recv_time).  This is
16725 			 * also to avoid overflow.
16726 			 *
16727 			 * We don't need to decrement tcp_timer_backoff
16728 			 * to avoid overflow because it will be decremented
16729 			 * later if new timeout value is greater than
16730 			 * tcp_rexmit_interval_max.  In the case when
16731 			 * tcp_rexmit_interval_max is greater than
16732 			 * second_threshold, it means that we will wait
16733 			 * longer than second_threshold to send the next
16734 			 * window probe.
16735 			 */
16736 			tcp->tcp_ms_we_have_waited = second_threshold;
16737 		}
16738 	} else if (ms > first_threshold) {
16739 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
16740 		    tcp->tcp_xmit_head != NULL) {
16741 			tcp->tcp_xmit_head =
16742 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
16743 		}
16744 		/*
16745 		 * We have been retransmitting for too long...  The RTT
16746 		 * we calculated is probably incorrect.  Reinitialize it.
16747 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
16748 		 * tcp_rtt_update so that we won't accidentally cache a
16749 		 * bad value.  But only do this if this is not a zero
16750 		 * window probe.
16751 		 */
16752 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
16753 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
16754 			    (tcp->tcp_rtt_sa >> 5);
16755 			tcp->tcp_rtt_sa = 0;
16756 			tcp_ip_notify(tcp);
16757 			tcp->tcp_rtt_update = 0;
16758 		}
16759 	}
16760 	tcp->tcp_timer_backoff++;
16761 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
16762 	    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
16763 	    tcp_rexmit_interval_min) {
16764 		/*
16765 		 * This means the original RTO is tcp_rexmit_interval_min.
16766 		 * So we will use tcp_rexmit_interval_min as the RTO value
16767 		 * and do the backoff.
16768 		 */
16769 		ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff;
16770 	} else {
16771 		ms <<= tcp->tcp_timer_backoff;
16772 	}
16773 	if (ms > tcp_rexmit_interval_max) {
16774 		ms = tcp_rexmit_interval_max;
16775 		/*
16776 		 * ms is at max, decrement tcp_timer_backoff to avoid
16777 		 * overflow.
16778 		 */
16779 		tcp->tcp_timer_backoff--;
16780 	}
16781 	tcp->tcp_ms_we_have_waited += ms;
16782 	if (tcp->tcp_zero_win_probe == 0) {
16783 		tcp->tcp_rto = ms;
16784 	}
16785 	TCP_TIMER_RESTART(tcp, ms);
16786 	/*
16787 	 * This is after a timeout and tcp_rto is backed off.  Set
16788 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
16789 	 * restart the timer with a correct value.
16790 	 */
16791 	tcp->tcp_set_timer = 1;
16792 	mss = tcp->tcp_snxt - tcp->tcp_suna;
16793 	if (mss > tcp->tcp_mss)
16794 		mss = tcp->tcp_mss;
16795 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
16796 		mss = tcp->tcp_swnd;
16797 
16798 	if ((mp = tcp->tcp_xmit_head) != NULL)
16799 		mp->b_prev = (mblk_t *)lbolt;
16800 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
16801 	    B_TRUE);
16802 
16803 	/*
16804 	 * When slow start after retransmission begins, start with
16805 	 * this seq no.  tcp_rexmit_max marks the end of special slow
16806 	 * start phase.  tcp_snd_burst controls how many segments
16807 	 * can be sent because of an ack.
16808 	 */
16809 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
16810 	tcp->tcp_snd_burst = TCP_CWND_SS;
16811 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
16812 	    (tcp->tcp_unsent == 0)) {
16813 		tcp->tcp_rexmit_max = tcp->tcp_fss;
16814 	} else {
16815 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
16816 	}
16817 	tcp->tcp_rexmit = B_TRUE;
16818 	tcp->tcp_dupack_cnt = 0;
16819 
16820 	/*
16821 	 * Remove all rexmit SACK blk to start from fresh.
16822 	 */
16823 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
16824 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
16825 		tcp->tcp_num_notsack_blk = 0;
16826 		tcp->tcp_cnt_notsack_list = 0;
16827 	}
16828 	if (mp == NULL) {
16829 		return;
16830 	}
16831 	/* Attach credentials to retransmitted initial SYNs. */
16832 	if (tcp->tcp_state == TCPS_SYN_SENT) {
16833 		mblk_setcred(mp, tcp->tcp_cred);
16834 		DB_CPID(mp) = tcp->tcp_cpid;
16835 	}
16836 
16837 	tcp->tcp_csuna = tcp->tcp_snxt;
16838 	BUMP_MIB(&tcp_mib, tcpRetransSegs);
16839 	UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss);
16840 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
16841 	tcp_send_data(tcp, tcp->tcp_wq, mp);
16842 
16843 }
16844 
16845 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
16846 static void
16847 tcp_unbind(tcp_t *tcp, mblk_t *mp)
16848 {
16849 	conn_t	*connp;
16850 
16851 	switch (tcp->tcp_state) {
16852 	case TCPS_BOUND:
16853 	case TCPS_LISTEN:
16854 		break;
16855 	default:
16856 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
16857 		return;
16858 	}
16859 
16860 	/*
16861 	 * Need to clean up all the eagers since after the unbind, segments
16862 	 * will no longer be delivered to this listener stream.
16863 	 */
16864 	mutex_enter(&tcp->tcp_eager_lock);
16865 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
16866 		tcp_eager_cleanup(tcp, 0);
16867 	}
16868 	mutex_exit(&tcp->tcp_eager_lock);
16869 
16870 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16871 		tcp->tcp_ipha->ipha_src = 0;
16872 	} else {
16873 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
16874 	}
16875 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
16876 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
16877 	tcp_bind_hash_remove(tcp);
16878 	tcp->tcp_state = TCPS_IDLE;
16879 	tcp->tcp_mdt = B_FALSE;
16880 	/* Send M_FLUSH according to TPI */
16881 	(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
16882 	connp = tcp->tcp_connp;
16883 	connp->conn_mdt_ok = B_FALSE;
16884 	ipcl_hash_remove(connp);
16885 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
16886 	mp = mi_tpi_ok_ack_alloc(mp);
16887 	putnext(tcp->tcp_rq, mp);
16888 }
16889 
16890 /*
16891  * Don't let port fall into the privileged range.
16892  * Since the extra privileged ports can be arbitrary we also
16893  * ensure that we exclude those from consideration.
16894  * tcp_g_epriv_ports is not sorted thus we loop over it until
16895  * there are no changes.
16896  *
16897  * Note: No locks are held when inspecting tcp_g_*epriv_ports
16898  * but instead the code relies on:
16899  * - the fact that the address of the array and its size never changes
16900  * - the atomic assignment of the elements of the array
16901  *
16902  * Returns 0 if there are no more ports available.
16903  *
16904  * TS note: skip multilevel ports.
16905  */
16906 static in_port_t
16907 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
16908 {
16909 	int i;
16910 	boolean_t restart = B_FALSE;
16911 
16912 	if (random && tcp_random_anon_port != 0) {
16913 		(void) random_get_pseudo_bytes((uint8_t *)&port,
16914 		    sizeof (in_port_t));
16915 		/*
16916 		 * Unless changed by a sys admin, the smallest anon port
16917 		 * is 32768 and the largest anon port is 65535.  It is
16918 		 * very likely (50%) for the random port to be smaller
16919 		 * than the smallest anon port.  When that happens,
16920 		 * add port % (anon port range) to the smallest anon
16921 		 * port to get the random port.  It should fall into the
16922 		 * valid anon port range.
16923 		 */
16924 		if (port < tcp_smallest_anon_port) {
16925 			port = tcp_smallest_anon_port +
16926 			    port % (tcp_largest_anon_port -
16927 				tcp_smallest_anon_port);
16928 		}
16929 	}
16930 
16931 retry:
16932 	if (port < tcp_smallest_anon_port)
16933 		port = (in_port_t)tcp_smallest_anon_port;
16934 
16935 	if (port > tcp_largest_anon_port) {
16936 		if (restart)
16937 			return (0);
16938 		restart = B_TRUE;
16939 		port = (in_port_t)tcp_smallest_anon_port;
16940 	}
16941 
16942 	if (port < tcp_smallest_nonpriv_port)
16943 		port = (in_port_t)tcp_smallest_nonpriv_port;
16944 
16945 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
16946 		if (port == tcp_g_epriv_ports[i]) {
16947 			port++;
16948 			/*
16949 			 * Make sure whether the port is in the
16950 			 * valid range.
16951 			 */
16952 			goto retry;
16953 		}
16954 	}
16955 	if (is_system_labeled() &&
16956 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
16957 	    IPPROTO_TCP, B_TRUE)) != 0) {
16958 		port = i;
16959 		goto retry;
16960 	}
16961 	return (port);
16962 }
16963 
16964 /*
16965  * Return the next anonymous port in the privileged port range for
16966  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
16967  * downwards.  This is the same behavior as documented in the userland
16968  * library call rresvport(3N).
16969  *
16970  * TS note: skip multilevel ports.
16971  */
16972 static in_port_t
16973 tcp_get_next_priv_port(const tcp_t *tcp)
16974 {
16975 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
16976 	in_port_t nextport;
16977 	boolean_t restart = B_FALSE;
16978 
16979 retry:
16980 	if (next_priv_port < tcp_min_anonpriv_port ||
16981 	    next_priv_port >= IPPORT_RESERVED) {
16982 		next_priv_port = IPPORT_RESERVED - 1;
16983 		if (restart)
16984 			return (0);
16985 		restart = B_TRUE;
16986 	}
16987 	if (is_system_labeled() &&
16988 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
16989 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
16990 		next_priv_port = nextport;
16991 		goto retry;
16992 	}
16993 	return (next_priv_port--);
16994 }
16995 
16996 /* The write side r/w procedure. */
16997 
16998 #if CCS_STATS
16999 struct {
17000 	struct {
17001 		int64_t count, bytes;
17002 	} tot, hit;
17003 } wrw_stats;
17004 #endif
17005 
17006 /*
17007  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17008  * messages.
17009  */
17010 /* ARGSUSED */
17011 static void
17012 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17013 {
17014 	conn_t	*connp = (conn_t *)arg;
17015 	tcp_t	*tcp = connp->conn_tcp;
17016 	queue_t	*q = tcp->tcp_wq;
17017 
17018 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17019 	/*
17020 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17021 	 * Once the close starts, streamhead and sockfs will not let any data
17022 	 * packets come down (close ensures that there are no threads using the
17023 	 * queue and no new threads will come down) but since qprocsoff()
17024 	 * hasn't happened yet, a M_FLUSH or some non data message might
17025 	 * get reflected back (in response to our own FLUSHRW) and get
17026 	 * processed after tcp_close() is done. The conn would still be valid
17027 	 * because a ref would have added but we need to check the state
17028 	 * before actually processing the packet.
17029 	 */
17030 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
17031 		freemsg(mp);
17032 		return;
17033 	}
17034 
17035 	switch (DB_TYPE(mp)) {
17036 	case M_IOCDATA:
17037 		tcp_wput_iocdata(tcp, mp);
17038 		break;
17039 	case M_FLUSH:
17040 		tcp_wput_flush(tcp, mp);
17041 		break;
17042 	default:
17043 		CALL_IP_WPUT(connp, q, mp);
17044 		break;
17045 	}
17046 }
17047 
17048 /*
17049  * The TCP fast path write put procedure.
17050  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
17051  */
17052 /* ARGSUSED */
17053 void
17054 tcp_output(void *arg, mblk_t *mp, void *arg2)
17055 {
17056 	int		len;
17057 	int		hdrlen;
17058 	int		plen;
17059 	mblk_t		*mp1;
17060 	uchar_t		*rptr;
17061 	uint32_t	snxt;
17062 	tcph_t		*tcph;
17063 	struct datab	*db;
17064 	uint32_t	suna;
17065 	uint32_t	mss;
17066 	ipaddr_t	*dst;
17067 	ipaddr_t	*src;
17068 	uint32_t	sum;
17069 	int		usable;
17070 	conn_t		*connp = (conn_t *)arg;
17071 	tcp_t		*tcp = connp->conn_tcp;
17072 	uint32_t	msize;
17073 
17074 	/*
17075 	 * Try and ASSERT the minimum possible references on the
17076 	 * conn early enough. Since we are executing on write side,
17077 	 * the connection is obviously not detached and that means
17078 	 * there is a ref each for TCP and IP. Since we are behind
17079 	 * the squeue, the minimum references needed are 3. If the
17080 	 * conn is in classifier hash list, there should be an
17081 	 * extra ref for that (we check both the possibilities).
17082 	 */
17083 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17084 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17085 
17086 	ASSERT(DB_TYPE(mp) == M_DATA);
17087 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
17088 
17089 	mutex_enter(&connp->conn_lock);
17090 	tcp->tcp_squeue_bytes -= msize;
17091 	mutex_exit(&connp->conn_lock);
17092 
17093 	/* Bypass tcp protocol for fused tcp loopback */
17094 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
17095 		return;
17096 
17097 	mss = tcp->tcp_mss;
17098 	if (tcp->tcp_xmit_zc_clean)
17099 		mp = tcp_zcopy_backoff(tcp, mp, 0);
17100 
17101 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17102 	len = (int)(mp->b_wptr - mp->b_rptr);
17103 
17104 	/*
17105 	 * Criteria for fast path:
17106 	 *
17107 	 *   1. no unsent data
17108 	 *   2. single mblk in request
17109 	 *   3. connection established
17110 	 *   4. data in mblk
17111 	 *   5. len <= mss
17112 	 *   6. no tcp_valid bits
17113 	 */
17114 	if ((tcp->tcp_unsent != 0) ||
17115 	    (tcp->tcp_cork) ||
17116 	    (mp->b_cont != NULL) ||
17117 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
17118 	    (len == 0) ||
17119 	    (len > mss) ||
17120 	    (tcp->tcp_valid_bits != 0)) {
17121 		tcp_wput_data(tcp, mp, B_FALSE);
17122 		return;
17123 	}
17124 
17125 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
17126 	ASSERT(tcp->tcp_fin_sent == 0);
17127 
17128 	/* queue new packet onto retransmission queue */
17129 	if (tcp->tcp_xmit_head == NULL) {
17130 		tcp->tcp_xmit_head = mp;
17131 	} else {
17132 		tcp->tcp_xmit_last->b_cont = mp;
17133 	}
17134 	tcp->tcp_xmit_last = mp;
17135 	tcp->tcp_xmit_tail = mp;
17136 
17137 	/* find out how much we can send */
17138 	/* BEGIN CSTYLED */
17139 	/*
17140 	 *    un-acked           usable
17141 	 *  |--------------|-----------------|
17142 	 *  tcp_suna       tcp_snxt          tcp_suna+tcp_swnd
17143 	 */
17144 	/* END CSTYLED */
17145 
17146 	/* start sending from tcp_snxt */
17147 	snxt = tcp->tcp_snxt;
17148 
17149 	/*
17150 	 * Check to see if this connection has been idled for some
17151 	 * time and no ACK is expected.  If it is, we need to slow
17152 	 * start again to get back the connection's "self-clock" as
17153 	 * described in VJ's paper.
17154 	 *
17155 	 * Refer to the comment in tcp_mss_set() for the calculation
17156 	 * of tcp_cwnd after idle.
17157 	 */
17158 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
17159 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
17160 		SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle);
17161 	}
17162 
17163 	usable = tcp->tcp_swnd;		/* tcp window size */
17164 	if (usable > tcp->tcp_cwnd)
17165 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
17166 	usable -= snxt;		/* subtract stuff already sent */
17167 	suna = tcp->tcp_suna;
17168 	usable += suna;
17169 	/* usable can be < 0 if the congestion window is smaller */
17170 	if (len > usable) {
17171 		/* Can't send complete M_DATA in one shot */
17172 		goto slow;
17173 	}
17174 
17175 	if (tcp->tcp_flow_stopped &&
17176 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
17177 		tcp_clrqfull(tcp);
17178 	}
17179 
17180 	/*
17181 	 * determine if anything to send (Nagle).
17182 	 *
17183 	 *   1. len < tcp_mss (i.e. small)
17184 	 *   2. unacknowledged data present
17185 	 *   3. len < nagle limit
17186 	 *   4. last packet sent < nagle limit (previous packet sent)
17187 	 */
17188 	if ((len < mss) && (snxt != suna) &&
17189 	    (len < (int)tcp->tcp_naglim) &&
17190 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
17191 		/*
17192 		 * This was the first unsent packet and normally
17193 		 * mss < xmit_hiwater so there is no need to worry
17194 		 * about flow control. The next packet will go
17195 		 * through the flow control check in tcp_wput_data().
17196 		 */
17197 		/* leftover work from above */
17198 		tcp->tcp_unsent = len;
17199 		tcp->tcp_xmit_tail_unsent = len;
17200 
17201 		return;
17202 	}
17203 
17204 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
17205 
17206 	if (snxt == suna) {
17207 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17208 	}
17209 
17210 	/* we have always sent something */
17211 	tcp->tcp_rack_cnt = 0;
17212 
17213 	tcp->tcp_snxt = snxt + len;
17214 	tcp->tcp_rack = tcp->tcp_rnxt;
17215 
17216 	if ((mp1 = dupb(mp)) == 0)
17217 		goto no_memory;
17218 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
17219 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
17220 
17221 	/* adjust tcp header information */
17222 	tcph = tcp->tcp_tcph;
17223 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
17224 
17225 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
17226 	sum = (sum >> 16) + (sum & 0xFFFF);
17227 	U16_TO_ABE16(sum, tcph->th_sum);
17228 
17229 	U32_TO_ABE32(snxt, tcph->th_seq);
17230 
17231 	BUMP_MIB(&tcp_mib, tcpOutDataSegs);
17232 	UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
17233 	BUMP_LOCAL(tcp->tcp_obsegs);
17234 
17235 	/* Update the latest receive window size in TCP header. */
17236 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
17237 	    tcph->th_win);
17238 
17239 	tcp->tcp_last_sent_len = (ushort_t)len;
17240 
17241 	plen = len + tcp->tcp_hdr_len;
17242 
17243 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17244 		tcp->tcp_ipha->ipha_length = htons(plen);
17245 	} else {
17246 		tcp->tcp_ip6h->ip6_plen = htons(plen -
17247 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
17248 	}
17249 
17250 	/* see if we need to allocate a mblk for the headers */
17251 	hdrlen = tcp->tcp_hdr_len;
17252 	rptr = mp1->b_rptr - hdrlen;
17253 	db = mp1->b_datap;
17254 	if ((db->db_ref != 2) || rptr < db->db_base ||
17255 	    (!OK_32PTR(rptr))) {
17256 		/* NOTE: we assume allocb returns an OK_32PTR */
17257 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
17258 		    tcp_wroff_xtra, BPRI_MED);
17259 		if (!mp) {
17260 			freemsg(mp1);
17261 			goto no_memory;
17262 		}
17263 		mp->b_cont = mp1;
17264 		mp1 = mp;
17265 		/* Leave room for Link Level header */
17266 		/* hdrlen = tcp->tcp_hdr_len; */
17267 		rptr = &mp1->b_rptr[tcp_wroff_xtra];
17268 		mp1->b_wptr = &rptr[hdrlen];
17269 	}
17270 	mp1->b_rptr = rptr;
17271 
17272 	/* Fill in the timestamp option. */
17273 	if (tcp->tcp_snd_ts_ok) {
17274 		U32_TO_BE32((uint32_t)lbolt,
17275 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
17276 		U32_TO_BE32(tcp->tcp_ts_recent,
17277 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
17278 	} else {
17279 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
17280 	}
17281 
17282 	/* copy header into outgoing packet */
17283 	dst = (ipaddr_t *)rptr;
17284 	src = (ipaddr_t *)tcp->tcp_iphc;
17285 	dst[0] = src[0];
17286 	dst[1] = src[1];
17287 	dst[2] = src[2];
17288 	dst[3] = src[3];
17289 	dst[4] = src[4];
17290 	dst[5] = src[5];
17291 	dst[6] = src[6];
17292 	dst[7] = src[7];
17293 	dst[8] = src[8];
17294 	dst[9] = src[9];
17295 	if (hdrlen -= 40) {
17296 		hdrlen >>= 2;
17297 		dst += 10;
17298 		src += 10;
17299 		do {
17300 			*dst++ = *src++;
17301 		} while (--hdrlen);
17302 	}
17303 
17304 	/*
17305 	 * Set the ECN info in the TCP header.  Note that this
17306 	 * is not the template header.
17307 	 */
17308 	if (tcp->tcp_ecn_ok) {
17309 		SET_ECT(tcp, rptr);
17310 
17311 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
17312 		if (tcp->tcp_ecn_echo_on)
17313 			tcph->th_flags[0] |= TH_ECE;
17314 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17315 			tcph->th_flags[0] |= TH_CWR;
17316 			tcp->tcp_ecn_cwr_sent = B_TRUE;
17317 		}
17318 	}
17319 
17320 	if (tcp->tcp_ip_forward_progress) {
17321 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
17322 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
17323 		tcp->tcp_ip_forward_progress = B_FALSE;
17324 	}
17325 	TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
17326 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
17327 	return;
17328 
17329 	/*
17330 	 * If we ran out of memory, we pretend to have sent the packet
17331 	 * and that it was lost on the wire.
17332 	 */
17333 no_memory:
17334 	return;
17335 
17336 slow:
17337 	/* leftover work from above */
17338 	tcp->tcp_unsent = len;
17339 	tcp->tcp_xmit_tail_unsent = len;
17340 	tcp_wput_data(tcp, NULL, B_FALSE);
17341 }
17342 
17343 /*
17344  * The function called through squeue to get behind eager's perimeter to
17345  * finish the accept processing.
17346  */
17347 /* ARGSUSED */
17348 void
17349 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
17350 {
17351 	conn_t			*connp = (conn_t *)arg;
17352 	tcp_t			*tcp = connp->conn_tcp;
17353 	queue_t			*q = tcp->tcp_rq;
17354 	mblk_t			*mp1;
17355 	mblk_t			*stropt_mp = mp;
17356 	struct  stroptions	*stropt;
17357 	uint_t			thwin;
17358 
17359 	/*
17360 	 * Drop the eager's ref on the listener, that was placed when
17361 	 * this eager began life in tcp_conn_request.
17362 	 */
17363 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17364 
17365 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17366 		/*
17367 		 * Someone blewoff the eager before we could finish
17368 		 * the accept.
17369 		 *
17370 		 * The only reason eager exists it because we put in
17371 		 * a ref on it when conn ind went up. We need to send
17372 		 * a disconnect indication up while the last reference
17373 		 * on the eager will be dropped by the squeue when we
17374 		 * return.
17375 		 */
17376 		ASSERT(tcp->tcp_listener == NULL);
17377 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17378 			struct	T_discon_ind	*tdi;
17379 
17380 			(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17381 			/*
17382 			 * Let us reuse the incoming mblk to avoid memory
17383 			 * allocation failure problems. We know that the
17384 			 * size of the incoming mblk i.e. stroptions is greater
17385 			 * than sizeof T_discon_ind. So the reallocb below
17386 			 * can't fail.
17387 			 */
17388 			freemsg(mp->b_cont);
17389 			mp->b_cont = NULL;
17390 			ASSERT(DB_REF(mp) == 1);
17391 			mp = reallocb(mp, sizeof (struct T_discon_ind),
17392 			    B_FALSE);
17393 			ASSERT(mp != NULL);
17394 			DB_TYPE(mp) = M_PROTO;
17395 			((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND;
17396 			tdi = (struct T_discon_ind *)mp->b_rptr;
17397 			if (tcp->tcp_issocket) {
17398 				tdi->DISCON_reason = ECONNREFUSED;
17399 				tdi->SEQ_number = 0;
17400 			} else {
17401 				tdi->DISCON_reason = ENOPROTOOPT;
17402 				tdi->SEQ_number =
17403 				    tcp->tcp_conn_req_seqnum;
17404 			}
17405 			mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
17406 			putnext(q, mp);
17407 		} else {
17408 			freemsg(mp);
17409 		}
17410 		if (tcp->tcp_hard_binding) {
17411 			tcp->tcp_hard_binding = B_FALSE;
17412 			tcp->tcp_hard_bound = B_TRUE;
17413 		}
17414 		tcp->tcp_detached = B_FALSE;
17415 		return;
17416 	}
17417 
17418 	mp1 = stropt_mp->b_cont;
17419 	stropt_mp->b_cont = NULL;
17420 	ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS);
17421 	stropt = (struct stroptions *)stropt_mp->b_rptr;
17422 
17423 	while (mp1 != NULL) {
17424 		mp = mp1;
17425 		mp1 = mp1->b_cont;
17426 		mp->b_cont = NULL;
17427 		tcp->tcp_drop_opt_ack_cnt++;
17428 		CALL_IP_WPUT(connp, tcp->tcp_wq, mp);
17429 	}
17430 	mp = NULL;
17431 
17432 	/*
17433 	 * For a loopback connection with tcp_direct_sockfs on, note that
17434 	 * we don't have to protect tcp_rcv_list yet because synchronous
17435 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
17436 	 * possibly race with us.
17437 	 */
17438 
17439 	/*
17440 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
17441 	 * properly.  This is the first time we know of the acceptor'
17442 	 * queue.  So we do it here.
17443 	 */
17444 	if (tcp->tcp_rcv_list == NULL) {
17445 		/*
17446 		 * Recv queue is empty, tcp_rwnd should not have changed.
17447 		 * That means it should be equal to the listener's tcp_rwnd.
17448 		 */
17449 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
17450 	} else {
17451 #ifdef DEBUG
17452 		uint_t cnt = 0;
17453 
17454 		mp1 = tcp->tcp_rcv_list;
17455 		while ((mp = mp1) != NULL) {
17456 			mp1 = mp->b_next;
17457 			cnt += msgdsize(mp);
17458 		}
17459 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
17460 #endif
17461 		/* There is some data, add them back to get the max. */
17462 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17463 	}
17464 
17465 	stropt->so_flags = SO_HIWAT;
17466 	stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat);
17467 
17468 	stropt->so_flags |= SO_MAXBLK;
17469 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
17470 
17471 	/*
17472 	 * This is the first time we run on the correct
17473 	 * queue after tcp_accept. So fix all the q parameters
17474 	 * here.
17475 	 */
17476 	/* Allocate room for SACK options if needed. */
17477 	stropt->so_flags |= SO_WROFF;
17478 	if (tcp->tcp_fused) {
17479 		ASSERT(tcp->tcp_loopback);
17480 		ASSERT(tcp->tcp_loopback_peer != NULL);
17481 		/*
17482 		 * For fused tcp loopback, set the stream head's write
17483 		 * offset value to zero since we won't be needing any room
17484 		 * for TCP/IP headers.  This would also improve performance
17485 		 * since it would reduce the amount of work done by kmem.
17486 		 * Non-fused tcp loopback case is handled separately below.
17487 		 */
17488 		stropt->so_wroff = 0;
17489 		/*
17490 		 * Record the stream head's high water mark for this endpoint;
17491 		 * this is used for flow-control purposes in tcp_fuse_output().
17492 		 */
17493 		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat);
17494 		/*
17495 		 * Update the peer's transmit parameters according to
17496 		 * our recently calculated high water mark value.
17497 		 */
17498 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
17499 	} else if (tcp->tcp_snd_sack_ok) {
17500 		stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
17501 		    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra);
17502 	} else {
17503 		stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
17504 		    tcp_wroff_xtra);
17505 	}
17506 
17507 	/*
17508 	 * If this is endpoint is handling SSL, then reserve extra
17509 	 * offset and space at the end.
17510 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
17511 	 * overriding the previous setting. The extra cost of signing and
17512 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
17513 	 * instead of a single contiguous one by the stream head
17514 	 * largely outweighs the statistical reduction of ACKs, when
17515 	 * applicable. The peer will also save on decyption and verification
17516 	 * costs.
17517 	 */
17518 	if (tcp->tcp_kssl_ctx != NULL) {
17519 		stropt->so_wroff += SSL3_WROFFSET;
17520 
17521 		stropt->so_flags |= SO_TAIL;
17522 		stropt->so_tail = SSL3_MAX_TAIL_LEN;
17523 
17524 		stropt->so_maxblk = SSL3_MAX_RECORD_LEN;
17525 	}
17526 
17527 	/* Send the options up */
17528 	putnext(q, stropt_mp);
17529 
17530 	/*
17531 	 * Pass up any data and/or a fin that has been received.
17532 	 *
17533 	 * Adjust receive window in case it had decreased
17534 	 * (because there is data <=> tcp_rcv_list != NULL)
17535 	 * while the connection was detached. Note that
17536 	 * in case the eager was flow-controlled, w/o this
17537 	 * code, the rwnd may never open up again!
17538 	 */
17539 	if (tcp->tcp_rcv_list != NULL) {
17540 		/* We drain directly in case of fused tcp loopback */
17541 		if (!tcp->tcp_fused && canputnext(q)) {
17542 			tcp->tcp_rwnd = q->q_hiwat;
17543 			thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
17544 			    << tcp->tcp_rcv_ws;
17545 			thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
17546 			if (tcp->tcp_state >= TCPS_ESTABLISHED &&
17547 			    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
17548 				tcp_xmit_ctl(NULL,
17549 				    tcp, (tcp->tcp_swnd == 0) ?
17550 				    tcp->tcp_suna : tcp->tcp_snxt,
17551 				    tcp->tcp_rnxt, TH_ACK);
17552 				BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
17553 			}
17554 
17555 		}
17556 		(void) tcp_rcv_drain(q, tcp);
17557 
17558 		/*
17559 		 * For fused tcp loopback, back-enable peer endpoint
17560 		 * if it's currently flow-controlled.
17561 		 */
17562 		if (tcp->tcp_fused &&
17563 		    tcp->tcp_loopback_peer->tcp_flow_stopped) {
17564 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
17565 
17566 			ASSERT(peer_tcp != NULL);
17567 			ASSERT(peer_tcp->tcp_fused);
17568 
17569 			tcp_clrqfull(peer_tcp);
17570 			TCP_STAT(tcp_fusion_backenabled);
17571 		}
17572 	}
17573 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
17574 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
17575 		mp = mi_tpi_ordrel_ind();
17576 		if (mp) {
17577 			tcp->tcp_ordrel_done = B_TRUE;
17578 			putnext(q, mp);
17579 			if (tcp->tcp_deferred_clean_death) {
17580 				/*
17581 				 * tcp_clean_death was deferred
17582 				 * for T_ORDREL_IND - do it now
17583 				 */
17584 				(void) tcp_clean_death(tcp,
17585 				    tcp->tcp_client_errno, 21);
17586 				tcp->tcp_deferred_clean_death = B_FALSE;
17587 			}
17588 		} else {
17589 			/*
17590 			 * Run the orderly release in the
17591 			 * service routine.
17592 			 */
17593 			qenable(q);
17594 		}
17595 	}
17596 	if (tcp->tcp_hard_binding) {
17597 		tcp->tcp_hard_binding = B_FALSE;
17598 		tcp->tcp_hard_bound = B_TRUE;
17599 	}
17600 
17601 	tcp->tcp_detached = B_FALSE;
17602 
17603 	/* We can enable synchronous streams now */
17604 	if (tcp->tcp_fused) {
17605 		tcp_fuse_syncstr_enable_pair(tcp);
17606 	}
17607 
17608 	if (tcp->tcp_ka_enabled) {
17609 		tcp->tcp_ka_last_intrvl = 0;
17610 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
17611 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
17612 	}
17613 
17614 	/*
17615 	 * At this point, eager is fully established and will
17616 	 * have the following references -
17617 	 *
17618 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
17619 	 * 1 reference for the squeue which will be dropped by the squeue as
17620 	 *	soon as this function returns.
17621 	 * There will be 1 additonal reference for being in classifier
17622 	 *	hash list provided something bad hasn't happened.
17623 	 */
17624 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17625 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17626 }
17627 
17628 /*
17629  * The function called through squeue to get behind listener's perimeter to
17630  * send a deffered conn_ind.
17631  */
17632 /* ARGSUSED */
17633 void
17634 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
17635 {
17636 	conn_t	*connp = (conn_t *)arg;
17637 	tcp_t *listener = connp->conn_tcp;
17638 
17639 	if (listener->tcp_state == TCPS_CLOSED ||
17640 	    TCP_IS_DETACHED(listener)) {
17641 		/*
17642 		 * If listener has closed, it would have caused a
17643 		 * a cleanup/blowoff to happen for the eager.
17644 		 */
17645 		tcp_t *tcp;
17646 		struct T_conn_ind	*conn_ind;
17647 
17648 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
17649 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
17650 		    conn_ind->OPT_length);
17651 		/*
17652 		 * We need to drop the ref on eager that was put
17653 		 * tcp_rput_data() before trying to send the conn_ind
17654 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
17655 		 * and tcp_wput_accept() is sending this deferred conn_ind but
17656 		 * listener is closed so we drop the ref.
17657 		 */
17658 		CONN_DEC_REF(tcp->tcp_connp);
17659 		freemsg(mp);
17660 		return;
17661 	}
17662 	putnext(listener->tcp_rq, mp);
17663 }
17664 
17665 
17666 /*
17667  * This is the STREAMS entry point for T_CONN_RES coming down on
17668  * Acceptor STREAM when  sockfs listener does accept processing.
17669  * Read the block comment on top pf tcp_conn_request().
17670  */
17671 void
17672 tcp_wput_accept(queue_t *q, mblk_t *mp)
17673 {
17674 	queue_t *rq = RD(q);
17675 	struct T_conn_res *conn_res;
17676 	tcp_t *eager;
17677 	tcp_t *listener;
17678 	struct T_ok_ack *ok;
17679 	t_scalar_t PRIM_type;
17680 	mblk_t *opt_mp;
17681 	conn_t *econnp;
17682 
17683 	ASSERT(DB_TYPE(mp) == M_PROTO);
17684 
17685 	conn_res = (struct T_conn_res *)mp->b_rptr;
17686 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17687 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
17688 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
17689 		if (mp != NULL)
17690 			putnext(rq, mp);
17691 		return;
17692 	}
17693 	switch (conn_res->PRIM_type) {
17694 	case O_T_CONN_RES:
17695 	case T_CONN_RES:
17696 		/*
17697 		 * We pass up an err ack if allocb fails. This will
17698 		 * cause sockfs to issue a T_DISCON_REQ which will cause
17699 		 * tcp_eager_blowoff to be called. sockfs will then call
17700 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
17701 		 * we need to do the allocb up here because we have to
17702 		 * make sure rq->q_qinfo->qi_qclose still points to the
17703 		 * correct function (tcpclose_accept) in case allocb
17704 		 * fails.
17705 		 */
17706 		opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
17707 		if (opt_mp == NULL) {
17708 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
17709 			if (mp != NULL)
17710 				putnext(rq, mp);
17711 			return;
17712 		}
17713 
17714 		bcopy(mp->b_rptr + conn_res->OPT_offset,
17715 		    &eager, conn_res->OPT_length);
17716 		PRIM_type = conn_res->PRIM_type;
17717 		mp->b_datap->db_type = M_PCPROTO;
17718 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
17719 		ok = (struct T_ok_ack *)mp->b_rptr;
17720 		ok->PRIM_type = T_OK_ACK;
17721 		ok->CORRECT_prim = PRIM_type;
17722 		econnp = eager->tcp_connp;
17723 		econnp->conn_dev = (dev_t)q->q_ptr;
17724 		eager->tcp_rq = rq;
17725 		eager->tcp_wq = q;
17726 		rq->q_ptr = econnp;
17727 		rq->q_qinfo = &tcp_rinit;
17728 		q->q_ptr = econnp;
17729 		q->q_qinfo = &tcp_winit;
17730 		listener = eager->tcp_listener;
17731 		eager->tcp_issocket = B_TRUE;
17732 
17733 		econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
17734 		econnp->conn_allzones = listener->tcp_connp->conn_allzones;
17735 
17736 		/* Put the ref for IP */
17737 		CONN_INC_REF(econnp);
17738 
17739 		/*
17740 		 * We should have minimum of 3 references on the conn
17741 		 * at this point. One each for TCP and IP and one for
17742 		 * the T_conn_ind that was sent up when the 3-way handshake
17743 		 * completed. In the normal case we would also have another
17744 		 * reference (making a total of 4) for the conn being in the
17745 		 * classifier hash list. However the eager could have received
17746 		 * an RST subsequently and tcp_closei_local could have removed
17747 		 * the eager from the classifier hash list, hence we can't
17748 		 * assert that reference.
17749 		 */
17750 		ASSERT(econnp->conn_ref >= 3);
17751 
17752 		/*
17753 		 * Send the new local address also up to sockfs. There
17754 		 * should already be enough space in the mp that came
17755 		 * down from soaccept().
17756 		 */
17757 		if (eager->tcp_family == AF_INET) {
17758 			sin_t *sin;
17759 
17760 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
17761 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
17762 			sin = (sin_t *)mp->b_wptr;
17763 			mp->b_wptr += sizeof (sin_t);
17764 			sin->sin_family = AF_INET;
17765 			sin->sin_port = eager->tcp_lport;
17766 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
17767 		} else {
17768 			sin6_t *sin6;
17769 
17770 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
17771 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
17772 			sin6 = (sin6_t *)mp->b_wptr;
17773 			mp->b_wptr += sizeof (sin6_t);
17774 			sin6->sin6_family = AF_INET6;
17775 			sin6->sin6_port = eager->tcp_lport;
17776 			if (eager->tcp_ipversion == IPV4_VERSION) {
17777 				sin6->sin6_flowinfo = 0;
17778 				IN6_IPADDR_TO_V4MAPPED(
17779 					eager->tcp_ipha->ipha_src,
17780 					    &sin6->sin6_addr);
17781 			} else {
17782 				ASSERT(eager->tcp_ip6h != NULL);
17783 				sin6->sin6_flowinfo =
17784 				    eager->tcp_ip6h->ip6_vcf &
17785 				    ~IPV6_VERS_AND_FLOW_MASK;
17786 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
17787 			}
17788 			sin6->sin6_scope_id = 0;
17789 			sin6->__sin6_src_id = 0;
17790 		}
17791 
17792 		putnext(rq, mp);
17793 
17794 		opt_mp->b_datap->db_type = M_SETOPTS;
17795 		opt_mp->b_wptr += sizeof (struct stroptions);
17796 
17797 		/*
17798 		 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
17799 		 * from listener to acceptor. The message is chained on the
17800 		 * bind_mp which tcp_rput_other will send down to IP.
17801 		 */
17802 		if (listener->tcp_bound_if != 0) {
17803 			/* allocate optmgmt req */
17804 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
17805 			    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
17806 			    sizeof (int));
17807 			if (mp != NULL)
17808 				linkb(opt_mp, mp);
17809 		}
17810 		if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
17811 			uint_t on = 1;
17812 
17813 			/* allocate optmgmt req */
17814 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
17815 			    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
17816 			if (mp != NULL)
17817 				linkb(opt_mp, mp);
17818 		}
17819 
17820 
17821 		mutex_enter(&listener->tcp_eager_lock);
17822 
17823 		if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
17824 
17825 			tcp_t *tail;
17826 			tcp_t *tcp;
17827 			mblk_t *mp1;
17828 
17829 			tcp = listener->tcp_eager_prev_q0;
17830 			/*
17831 			 * listener->tcp_eager_prev_q0 points to the TAIL of the
17832 			 * deferred T_conn_ind queue. We need to get to the head
17833 			 * of the queue in order to send up T_conn_ind the same
17834 			 * order as how the 3WHS is completed.
17835 			 */
17836 			while (tcp != listener) {
17837 				if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
17838 				    !tcp->tcp_kssl_pending)
17839 					break;
17840 				else
17841 					tcp = tcp->tcp_eager_prev_q0;
17842 			}
17843 			/* None of the pending eagers can be sent up now */
17844 			if (tcp == listener)
17845 				goto no_more_eagers;
17846 
17847 			mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
17848 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
17849 			/* Move from q0 to q */
17850 			ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
17851 			listener->tcp_conn_req_cnt_q0--;
17852 			listener->tcp_conn_req_cnt_q++;
17853 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
17854 			    tcp->tcp_eager_prev_q0;
17855 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
17856 			    tcp->tcp_eager_next_q0;
17857 			tcp->tcp_eager_prev_q0 = NULL;
17858 			tcp->tcp_eager_next_q0 = NULL;
17859 			tcp->tcp_conn_def_q0 = B_FALSE;
17860 
17861 			/*
17862 			 * Insert at end of the queue because sockfs sends
17863 			 * down T_CONN_RES in chronological order. Leaving
17864 			 * the older conn indications at front of the queue
17865 			 * helps reducing search time.
17866 			 */
17867 			tail = listener->tcp_eager_last_q;
17868 			if (tail != NULL) {
17869 				tail->tcp_eager_next_q = tcp;
17870 			} else {
17871 				listener->tcp_eager_next_q = tcp;
17872 			}
17873 			listener->tcp_eager_last_q = tcp;
17874 			tcp->tcp_eager_next_q = NULL;
17875 
17876 			/* Need to get inside the listener perimeter */
17877 			CONN_INC_REF(listener->tcp_connp);
17878 			squeue_fill(listener->tcp_connp->conn_sqp, mp1,
17879 			    tcp_send_pending, listener->tcp_connp,
17880 			    SQTAG_TCP_SEND_PENDING);
17881 		}
17882 no_more_eagers:
17883 		tcp_eager_unlink(eager);
17884 		mutex_exit(&listener->tcp_eager_lock);
17885 
17886 		/*
17887 		 * At this point, the eager is detached from the listener
17888 		 * but we still have an extra refs on eager (apart from the
17889 		 * usual tcp references). The ref was placed in tcp_rput_data
17890 		 * before sending the conn_ind in tcp_send_conn_ind.
17891 		 * The ref will be dropped in tcp_accept_finish().
17892 		 */
17893 		squeue_enter_nodrain(econnp->conn_sqp, opt_mp,
17894 		    tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0);
17895 		return;
17896 	default:
17897 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
17898 		if (mp != NULL)
17899 			putnext(rq, mp);
17900 		return;
17901 	}
17902 }
17903 
17904 void
17905 tcp_wput(queue_t *q, mblk_t *mp)
17906 {
17907 	conn_t	*connp = Q_TO_CONN(q);
17908 	tcp_t	*tcp;
17909 	void (*output_proc)();
17910 	t_scalar_t type;
17911 	uchar_t *rptr;
17912 	struct iocblk	*iocp;
17913 	uint32_t	msize;
17914 
17915 	ASSERT(connp->conn_ref >= 2);
17916 
17917 	switch (DB_TYPE(mp)) {
17918 	case M_DATA:
17919 		tcp = connp->conn_tcp;
17920 		ASSERT(tcp != NULL);
17921 
17922 		msize = msgdsize(mp);
17923 
17924 		mutex_enter(&connp->conn_lock);
17925 		CONN_INC_REF_LOCKED(connp);
17926 
17927 		tcp->tcp_squeue_bytes += msize;
17928 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
17929 			mutex_exit(&connp->conn_lock);
17930 			tcp_setqfull(tcp);
17931 		} else
17932 			mutex_exit(&connp->conn_lock);
17933 
17934 		(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
17935 		    tcp_output, connp, SQTAG_TCP_OUTPUT);
17936 		return;
17937 	case M_PROTO:
17938 	case M_PCPROTO:
17939 		/*
17940 		 * if it is a snmp message, don't get behind the squeue
17941 		 */
17942 		tcp = connp->conn_tcp;
17943 		rptr = mp->b_rptr;
17944 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
17945 			type = ((union T_primitives *)rptr)->type;
17946 		} else {
17947 			if (tcp->tcp_debug) {
17948 				(void) strlog(TCP_MOD_ID, 0, 1,
17949 				    SL_ERROR|SL_TRACE,
17950 				    "tcp_wput_proto, dropping one...");
17951 			}
17952 			freemsg(mp);
17953 			return;
17954 		}
17955 		if (type == T_SVR4_OPTMGMT_REQ) {
17956 			cred_t	*cr = DB_CREDDEF(mp, tcp->tcp_cred);
17957 			if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get,
17958 			    cr)) {
17959 				/*
17960 				 * This was a SNMP request
17961 				 */
17962 				return;
17963 			} else {
17964 				output_proc = tcp_wput_proto;
17965 			}
17966 		} else {
17967 			output_proc = tcp_wput_proto;
17968 		}
17969 		break;
17970 	case M_IOCTL:
17971 		/*
17972 		 * Most ioctls can be processed right away without going via
17973 		 * squeues - process them right here. Those that do require
17974 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
17975 		 * are processed by tcp_wput_ioctl().
17976 		 */
17977 		iocp = (struct iocblk *)mp->b_rptr;
17978 		tcp = connp->conn_tcp;
17979 
17980 		switch (iocp->ioc_cmd) {
17981 		case TCP_IOC_ABORT_CONN:
17982 			tcp_ioctl_abort_conn(q, mp);
17983 			return;
17984 		case TI_GETPEERNAME:
17985 			if (tcp->tcp_state < TCPS_SYN_RCVD) {
17986 				iocp->ioc_error = ENOTCONN;
17987 				iocp->ioc_count = 0;
17988 				mp->b_datap->db_type = M_IOCACK;
17989 				qreply(q, mp);
17990 				return;
17991 			}
17992 			/* FALLTHRU */
17993 		case TI_GETMYNAME:
17994 			mi_copyin(q, mp, NULL,
17995 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
17996 			return;
17997 		case ND_SET:
17998 			/* nd_getset does the necessary checks */
17999 		case ND_GET:
18000 			if (!nd_getset(q, tcp_g_nd, mp)) {
18001 				CALL_IP_WPUT(connp, q, mp);
18002 				return;
18003 			}
18004 			qreply(q, mp);
18005 			return;
18006 		case TCP_IOC_DEFAULT_Q:
18007 			/*
18008 			 * Wants to be the default wq. Check the credentials
18009 			 * first, the rest is executed via squeue.
18010 			 */
18011 			if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
18012 				iocp->ioc_error = EPERM;
18013 				iocp->ioc_count = 0;
18014 				mp->b_datap->db_type = M_IOCACK;
18015 				qreply(q, mp);
18016 				return;
18017 			}
18018 			output_proc = tcp_wput_ioctl;
18019 			break;
18020 		default:
18021 			output_proc = tcp_wput_ioctl;
18022 			break;
18023 		}
18024 		break;
18025 	default:
18026 		output_proc = tcp_wput_nondata;
18027 		break;
18028 	}
18029 
18030 	CONN_INC_REF(connp);
18031 	(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18032 	    output_proc, connp, SQTAG_TCP_WPUT_OTHER);
18033 }
18034 
18035 /*
18036  * Initial STREAMS write side put() procedure for sockets. It tries to
18037  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18038  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18039  * are handled by tcp_wput() as usual.
18040  *
18041  * All further messages will also be handled by tcp_wput() because we cannot
18042  * be sure that the above short cut is safe later.
18043  */
18044 static void
18045 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18046 {
18047 	conn_t			*connp = Q_TO_CONN(wq);
18048 	tcp_t			*tcp = connp->conn_tcp;
18049 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
18050 
18051 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
18052 	wq->q_qinfo = &tcp_winit;
18053 
18054 	ASSERT(IPCL_IS_TCP(connp));
18055 	ASSERT(TCP_IS_SOCKET(tcp));
18056 
18057 	if (DB_TYPE(mp) == M_PCPROTO &&
18058 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
18059 	    car->PRIM_type == T_CAPABILITY_REQ) {
18060 		tcp_capability_req(tcp, mp);
18061 		return;
18062 	}
18063 
18064 	tcp_wput(wq, mp);
18065 }
18066 
18067 static boolean_t
18068 tcp_zcopy_check(tcp_t *tcp)
18069 {
18070 	conn_t	*connp = tcp->tcp_connp;
18071 	ire_t	*ire;
18072 	boolean_t	zc_enabled = B_FALSE;
18073 
18074 	if (do_tcpzcopy == 2)
18075 		zc_enabled = B_TRUE;
18076 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
18077 	    IPCL_IS_CONNECTED(connp) &&
18078 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
18079 	    connp->conn_dontroute == 0 &&
18080 	    !connp->conn_nexthop_set &&
18081 	    connp->conn_xmit_if_ill == NULL &&
18082 	    connp->conn_nofailover_ill == NULL &&
18083 	    do_tcpzcopy == 1) {
18084 		/*
18085 		 * the checks above  closely resemble the fast path checks
18086 		 * in tcp_send_data().
18087 		 */
18088 		mutex_enter(&connp->conn_lock);
18089 		ire = connp->conn_ire_cache;
18090 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18091 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18092 			IRE_REFHOLD(ire);
18093 			if (ire->ire_stq != NULL) {
18094 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
18095 
18096 				zc_enabled = ill && (ill->ill_capabilities &
18097 				    ILL_CAPAB_ZEROCOPY) &&
18098 				    (ill->ill_zerocopy_capab->
18099 				    ill_zerocopy_flags != 0);
18100 			}
18101 			IRE_REFRELE(ire);
18102 		}
18103 		mutex_exit(&connp->conn_lock);
18104 	}
18105 	tcp->tcp_snd_zcopy_on = zc_enabled;
18106 	if (!TCP_IS_DETACHED(tcp)) {
18107 		if (zc_enabled) {
18108 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE);
18109 			TCP_STAT(tcp_zcopy_on);
18110 		} else {
18111 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18112 			TCP_STAT(tcp_zcopy_off);
18113 		}
18114 	}
18115 	return (zc_enabled);
18116 }
18117 
18118 static mblk_t *
18119 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
18120 {
18121 	if (do_tcpzcopy == 2)
18122 		return (bp);
18123 	else if (tcp->tcp_snd_zcopy_on) {
18124 		tcp->tcp_snd_zcopy_on = B_FALSE;
18125 		if (!TCP_IS_DETACHED(tcp)) {
18126 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18127 			TCP_STAT(tcp_zcopy_disable);
18128 		}
18129 	}
18130 	return (tcp_zcopy_backoff(tcp, bp, 0));
18131 }
18132 
18133 /*
18134  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
18135  * the original desballoca'ed segmapped mblk.
18136  */
18137 static mblk_t *
18138 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
18139 {
18140 	mblk_t *head, *tail, *nbp;
18141 	if (IS_VMLOANED_MBLK(bp)) {
18142 		TCP_STAT(tcp_zcopy_backoff);
18143 		if ((head = copyb(bp)) == NULL) {
18144 			/* fail to backoff; leave it for the next backoff */
18145 			tcp->tcp_xmit_zc_clean = B_FALSE;
18146 			return (bp);
18147 		}
18148 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18149 			if (fix_xmitlist)
18150 				tcp_zcopy_notify(tcp);
18151 			else
18152 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18153 		}
18154 		nbp = bp->b_cont;
18155 		if (fix_xmitlist) {
18156 			head->b_prev = bp->b_prev;
18157 			head->b_next = bp->b_next;
18158 			if (tcp->tcp_xmit_tail == bp)
18159 				tcp->tcp_xmit_tail = head;
18160 		}
18161 		bp->b_next = NULL;
18162 		bp->b_prev = NULL;
18163 		freeb(bp);
18164 	} else {
18165 		head = bp;
18166 		nbp = bp->b_cont;
18167 	}
18168 	tail = head;
18169 	while (nbp) {
18170 		if (IS_VMLOANED_MBLK(nbp)) {
18171 			TCP_STAT(tcp_zcopy_backoff);
18172 			if ((tail->b_cont = copyb(nbp)) == NULL) {
18173 				tcp->tcp_xmit_zc_clean = B_FALSE;
18174 				tail->b_cont = nbp;
18175 				return (head);
18176 			}
18177 			tail = tail->b_cont;
18178 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18179 				if (fix_xmitlist)
18180 					tcp_zcopy_notify(tcp);
18181 				else
18182 					tail->b_datap->db_struioflag |=
18183 					    STRUIO_ZCNOTIFY;
18184 			}
18185 			bp = nbp;
18186 			nbp = nbp->b_cont;
18187 			if (fix_xmitlist) {
18188 				tail->b_prev = bp->b_prev;
18189 				tail->b_next = bp->b_next;
18190 				if (tcp->tcp_xmit_tail == bp)
18191 					tcp->tcp_xmit_tail = tail;
18192 			}
18193 			bp->b_next = NULL;
18194 			bp->b_prev = NULL;
18195 			freeb(bp);
18196 		} else {
18197 			tail->b_cont = nbp;
18198 			tail = nbp;
18199 			nbp = nbp->b_cont;
18200 		}
18201 	}
18202 	if (fix_xmitlist) {
18203 		tcp->tcp_xmit_last = tail;
18204 		tcp->tcp_xmit_zc_clean = B_TRUE;
18205 	}
18206 	return (head);
18207 }
18208 
18209 static void
18210 tcp_zcopy_notify(tcp_t *tcp)
18211 {
18212 	struct stdata	*stp;
18213 
18214 	if (tcp->tcp_detached)
18215 		return;
18216 	stp = STREAM(tcp->tcp_rq);
18217 	mutex_enter(&stp->sd_lock);
18218 	stp->sd_flag |= STZCNOTIFY;
18219 	cv_broadcast(&stp->sd_zcopy_wait);
18220 	mutex_exit(&stp->sd_lock);
18221 }
18222 
18223 static void
18224 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
18225 {
18226 	ipha_t		*ipha;
18227 	ipaddr_t	src;
18228 	ipaddr_t	dst;
18229 	uint32_t	cksum;
18230 	ire_t		*ire;
18231 	uint16_t	*up;
18232 	ill_t		*ill;
18233 	conn_t		*connp = tcp->tcp_connp;
18234 	uint32_t	hcksum_txflags = 0;
18235 	mblk_t		*ire_fp_mp;
18236 	uint_t		ire_fp_mp_len;
18237 
18238 	ASSERT(DB_TYPE(mp) == M_DATA);
18239 
18240 	if (DB_CRED(mp) == NULL)
18241 		mblk_setcred(mp, CONN_CRED(connp));
18242 
18243 	ipha = (ipha_t *)mp->b_rptr;
18244 	src = ipha->ipha_src;
18245 	dst = ipha->ipha_dst;
18246 
18247 	/*
18248 	 * Drop off fast path for IPv6 and also if options are present or
18249 	 * we need to resolve a TS label.
18250 	 */
18251 	if (tcp->tcp_ipversion != IPV4_VERSION ||
18252 	    !IPCL_IS_CONNECTED(connp) ||
18253 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
18254 	    connp->conn_dontroute ||
18255 	    connp->conn_nexthop_set ||
18256 	    connp->conn_xmit_if_ill != NULL ||
18257 	    connp->conn_nofailover_ill != NULL ||
18258 	    !connp->conn_ulp_labeled ||
18259 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
18260 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
18261 	    IPP_ENABLED(IPP_LOCAL_OUT)) {
18262 		if (tcp->tcp_snd_zcopy_aware)
18263 			mp = tcp_zcopy_disable(tcp, mp);
18264 		TCP_STAT(tcp_ip_send);
18265 		CALL_IP_WPUT(connp, q, mp);
18266 		return;
18267 	}
18268 
18269 	mutex_enter(&connp->conn_lock);
18270 	ire = connp->conn_ire_cache;
18271 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18272 	if (ire != NULL && ire->ire_addr == dst &&
18273 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18274 		IRE_REFHOLD(ire);
18275 		mutex_exit(&connp->conn_lock);
18276 	} else {
18277 		boolean_t cached = B_FALSE;
18278 
18279 		/* force a recheck later on */
18280 		tcp->tcp_ire_ill_check_done = B_FALSE;
18281 
18282 		TCP_DBGSTAT(tcp_ire_null1);
18283 		connp->conn_ire_cache = NULL;
18284 		mutex_exit(&connp->conn_lock);
18285 		if (ire != NULL)
18286 			IRE_REFRELE_NOTR(ire);
18287 		ire = ire_cache_lookup(dst, connp->conn_zoneid,
18288 		    MBLK_GETLABEL(mp));
18289 		if (ire == NULL) {
18290 			if (tcp->tcp_snd_zcopy_aware)
18291 				mp = tcp_zcopy_backoff(tcp, mp, 0);
18292 			TCP_STAT(tcp_ire_null);
18293 			CALL_IP_WPUT(connp, q, mp);
18294 			return;
18295 		}
18296 		IRE_REFHOLD_NOTR(ire);
18297 		/*
18298 		 * Since we are inside the squeue, there cannot be another
18299 		 * thread in TCP trying to set the conn_ire_cache now.  The
18300 		 * check for IRE_MARK_CONDEMNED ensures that an interface
18301 		 * unplumb thread has not yet started cleaning up the conns.
18302 		 * Hence we don't need to grab the conn lock.
18303 		 */
18304 		if (!(connp->conn_state_flags & CONN_CLOSING)) {
18305 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
18306 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18307 				connp->conn_ire_cache = ire;
18308 				cached = B_TRUE;
18309 			}
18310 			rw_exit(&ire->ire_bucket->irb_lock);
18311 		}
18312 
18313 		/*
18314 		 * We can continue to use the ire but since it was
18315 		 * not cached, we should drop the extra reference.
18316 		 */
18317 		if (!cached)
18318 			IRE_REFRELE_NOTR(ire);
18319 
18320 		/*
18321 		 * Rampart note: no need to select a new label here, since
18322 		 * labels are not allowed to change during the life of a TCP
18323 		 * connection.
18324 		 */
18325 	}
18326 
18327 	/*
18328 	 * The following if case identifies whether or not
18329 	 * we are forced to take the slowpath.
18330 	 */
18331 	if (ire->ire_flags & RTF_MULTIRT ||
18332 	    ire->ire_stq == NULL ||
18333 	    ire->ire_max_frag < ntohs(ipha->ipha_length) ||
18334 	    (ire->ire_nce != NULL &&
18335 	    (ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
18336 	    (ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp)) {
18337 		if (tcp->tcp_snd_zcopy_aware)
18338 			mp = tcp_zcopy_disable(tcp, mp);
18339 		TCP_STAT(tcp_ip_ire_send);
18340 		IRE_REFRELE(ire);
18341 		CALL_IP_WPUT(connp, q, mp);
18342 		return;
18343 	}
18344 
18345 	ill = ire_to_ill(ire);
18346 	if (connp->conn_outgoing_ill != NULL) {
18347 		ill_t *conn_outgoing_ill = NULL;
18348 		/*
18349 		 * Choose a good ill in the group to send the packets on.
18350 		 */
18351 		ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill);
18352 		ill = ire_to_ill(ire);
18353 	}
18354 	ASSERT(ill != NULL);
18355 
18356 	if (!tcp->tcp_ire_ill_check_done) {
18357 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
18358 		tcp->tcp_ire_ill_check_done = B_TRUE;
18359 	}
18360 
18361 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
18362 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
18363 #ifndef _BIG_ENDIAN
18364 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
18365 #endif
18366 
18367 	/*
18368 	 * Check to see if we need to re-enable MDT for this connection
18369 	 * because it was previously disabled due to changes in the ill;
18370 	 * note that by doing it here, this re-enabling only applies when
18371 	 * the packet is not dispatched through CALL_IP_WPUT().
18372 	 *
18373 	 * That means for IPv4, it is worth re-enabling MDT for the fastpath
18374 	 * case, since that's how we ended up here.  For IPv6, we do the
18375 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
18376 	 */
18377 	if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
18378 		/*
18379 		 * Restore MDT for this connection, so that next time around
18380 		 * it is eligible to go through tcp_multisend() path again.
18381 		 */
18382 		TCP_STAT(tcp_mdt_conn_resumed1);
18383 		tcp->tcp_mdt = B_TRUE;
18384 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
18385 		    "interface %s\n", (void *)connp, ill->ill_name));
18386 	}
18387 
18388 	if (tcp->tcp_snd_zcopy_aware) {
18389 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
18390 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
18391 			mp = tcp_zcopy_disable(tcp, mp);
18392 		/*
18393 		 * we shouldn't need to reset ipha as the mp containing
18394 		 * ipha should never be a zero-copy mp.
18395 		 */
18396 	}
18397 
18398 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
18399 		ASSERT(ill->ill_hcksum_capab != NULL);
18400 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
18401 	}
18402 
18403 	/* pseudo-header checksum (do it in parts for IP header checksum) */
18404 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
18405 
18406 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
18407 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
18408 
18409 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
18410 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
18411 
18412 	/* Software checksum? */
18413 	if (DB_CKSUMFLAGS(mp) == 0) {
18414 		TCP_STAT(tcp_out_sw_cksum);
18415 		TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes,
18416 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
18417 	}
18418 
18419 	ipha->ipha_fragment_offset_and_flags |=
18420 	    (uint32_t)htons(ire->ire_frag_flag);
18421 
18422 	/* Calculate IP header checksum if hardware isn't capable */
18423 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
18424 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
18425 		    ((uint16_t *)ipha)[4]);
18426 	}
18427 
18428 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
18429 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
18430 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
18431 
18432 	UPDATE_OB_PKT_COUNT(ire);
18433 	ire->ire_last_used_time = lbolt;
18434 	BUMP_MIB(&ip_mib, ipOutRequests);
18435 
18436 	if (ILL_DLS_CAPABLE(ill)) {
18437 		/*
18438 		 * Send the packet directly to DLD, where it may be queued
18439 		 * depending on the availability of transmit resources at
18440 		 * the media layer.
18441 		 */
18442 		IP_DLS_ILL_TX(ill, mp);
18443 	} else {
18444 		putnext(ire->ire_stq, mp);
18445 	}
18446 	IRE_REFRELE(ire);
18447 }
18448 
18449 /*
18450  * This handles the case when the receiver has shrunk its win. Per RFC 1122
18451  * if the receiver shrinks the window, i.e. moves the right window to the
18452  * left, the we should not send new data, but should retransmit normally the
18453  * old unacked data between suna and suna + swnd. We might has sent data
18454  * that is now outside the new window, pretend that we didn't send  it.
18455  */
18456 static void
18457 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
18458 {
18459 	uint32_t	snxt = tcp->tcp_snxt;
18460 	mblk_t		*xmit_tail;
18461 	int32_t		offset;
18462 
18463 	ASSERT(shrunk_count > 0);
18464 
18465 	/* Pretend we didn't send the data outside the window */
18466 	snxt -= shrunk_count;
18467 
18468 	/* Get the mblk and the offset in it per the shrunk window */
18469 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
18470 
18471 	ASSERT(xmit_tail != NULL);
18472 
18473 	/* Reset all the values per the now shrunk window */
18474 	tcp->tcp_snxt = snxt;
18475 	tcp->tcp_xmit_tail = xmit_tail;
18476 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
18477 	    offset;
18478 	tcp->tcp_unsent += shrunk_count;
18479 
18480 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
18481 		/*
18482 		 * Make sure the timer is running so that we will probe a zero
18483 		 * window.
18484 		 */
18485 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18486 }
18487 
18488 
18489 /*
18490  * The TCP normal data output path.
18491  * NOTE: the logic of the fast path is duplicated from this function.
18492  */
18493 static void
18494 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
18495 {
18496 	int		len;
18497 	mblk_t		*local_time;
18498 	mblk_t		*mp1;
18499 	uint32_t	snxt;
18500 	int		tail_unsent;
18501 	int		tcpstate;
18502 	int		usable = 0;
18503 	mblk_t		*xmit_tail;
18504 	queue_t		*q = tcp->tcp_wq;
18505 	int32_t		mss;
18506 	int32_t		num_sack_blk = 0;
18507 	int32_t		tcp_hdr_len;
18508 	int32_t		tcp_tcp_hdr_len;
18509 	int		mdt_thres;
18510 	int		rc;
18511 
18512 	tcpstate = tcp->tcp_state;
18513 	if (mp == NULL) {
18514 		/*
18515 		 * tcp_wput_data() with NULL mp should only be called when
18516 		 * there is unsent data.
18517 		 */
18518 		ASSERT(tcp->tcp_unsent > 0);
18519 		/* Really tacky... but we need this for detached closes. */
18520 		len = tcp->tcp_unsent;
18521 		goto data_null;
18522 	}
18523 
18524 #if CCS_STATS
18525 	wrw_stats.tot.count++;
18526 	wrw_stats.tot.bytes += msgdsize(mp);
18527 #endif
18528 	ASSERT(mp->b_datap->db_type == M_DATA);
18529 	/*
18530 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
18531 	 * or before a connection attempt has begun.
18532 	 */
18533 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
18534 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18535 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18536 #ifdef DEBUG
18537 			cmn_err(CE_WARN,
18538 			    "tcp_wput_data: data after ordrel, %s",
18539 			    tcp_display(tcp, NULL,
18540 			    DISP_ADDR_AND_PORT));
18541 #else
18542 			if (tcp->tcp_debug) {
18543 				(void) strlog(TCP_MOD_ID, 0, 1,
18544 				    SL_TRACE|SL_ERROR,
18545 				    "tcp_wput_data: data after ordrel, %s\n",
18546 				    tcp_display(tcp, NULL,
18547 				    DISP_ADDR_AND_PORT));
18548 			}
18549 #endif /* DEBUG */
18550 		}
18551 		if (tcp->tcp_snd_zcopy_aware &&
18552 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
18553 			tcp_zcopy_notify(tcp);
18554 		freemsg(mp);
18555 		if (tcp->tcp_flow_stopped &&
18556 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
18557 			tcp_clrqfull(tcp);
18558 		}
18559 		return;
18560 	}
18561 
18562 	/* Strip empties */
18563 	for (;;) {
18564 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
18565 		    (uintptr_t)INT_MAX);
18566 		len = (int)(mp->b_wptr - mp->b_rptr);
18567 		if (len > 0)
18568 			break;
18569 		mp1 = mp;
18570 		mp = mp->b_cont;
18571 		freeb(mp1);
18572 		if (!mp) {
18573 			return;
18574 		}
18575 	}
18576 
18577 	/* If we are the first on the list ... */
18578 	if (tcp->tcp_xmit_head == NULL) {
18579 		tcp->tcp_xmit_head = mp;
18580 		tcp->tcp_xmit_tail = mp;
18581 		tcp->tcp_xmit_tail_unsent = len;
18582 	} else {
18583 		/* If tiny tx and room in txq tail, pullup to save mblks. */
18584 		struct datab *dp;
18585 
18586 		mp1 = tcp->tcp_xmit_last;
18587 		if (len < tcp_tx_pull_len &&
18588 		    (dp = mp1->b_datap)->db_ref == 1 &&
18589 		    dp->db_lim - mp1->b_wptr >= len) {
18590 			ASSERT(len > 0);
18591 			ASSERT(!mp1->b_cont);
18592 			if (len == 1) {
18593 				*mp1->b_wptr++ = *mp->b_rptr;
18594 			} else {
18595 				bcopy(mp->b_rptr, mp1->b_wptr, len);
18596 				mp1->b_wptr += len;
18597 			}
18598 			if (mp1 == tcp->tcp_xmit_tail)
18599 				tcp->tcp_xmit_tail_unsent += len;
18600 			mp1->b_cont = mp->b_cont;
18601 			if (tcp->tcp_snd_zcopy_aware &&
18602 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
18603 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18604 			freeb(mp);
18605 			mp = mp1;
18606 		} else {
18607 			tcp->tcp_xmit_last->b_cont = mp;
18608 		}
18609 		len += tcp->tcp_unsent;
18610 	}
18611 
18612 	/* Tack on however many more positive length mblks we have */
18613 	if ((mp1 = mp->b_cont) != NULL) {
18614 		do {
18615 			int tlen;
18616 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
18617 			    (uintptr_t)INT_MAX);
18618 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
18619 			if (tlen <= 0) {
18620 				mp->b_cont = mp1->b_cont;
18621 				freeb(mp1);
18622 			} else {
18623 				len += tlen;
18624 				mp = mp1;
18625 			}
18626 		} while ((mp1 = mp->b_cont) != NULL);
18627 	}
18628 	tcp->tcp_xmit_last = mp;
18629 	tcp->tcp_unsent = len;
18630 
18631 	if (urgent)
18632 		usable = 1;
18633 
18634 data_null:
18635 	snxt = tcp->tcp_snxt;
18636 	xmit_tail = tcp->tcp_xmit_tail;
18637 	tail_unsent = tcp->tcp_xmit_tail_unsent;
18638 
18639 	/*
18640 	 * Note that tcp_mss has been adjusted to take into account the
18641 	 * timestamp option if applicable.  Because SACK options do not
18642 	 * appear in every TCP segments and they are of variable lengths,
18643 	 * they cannot be included in tcp_mss.  Thus we need to calculate
18644 	 * the actual segment length when we need to send a segment which
18645 	 * includes SACK options.
18646 	 */
18647 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
18648 		int32_t	opt_len;
18649 
18650 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
18651 		    tcp->tcp_num_sack_blk);
18652 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
18653 		    2 + TCPOPT_HEADER_LEN;
18654 		mss = tcp->tcp_mss - opt_len;
18655 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
18656 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
18657 	} else {
18658 		mss = tcp->tcp_mss;
18659 		tcp_hdr_len = tcp->tcp_hdr_len;
18660 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
18661 	}
18662 
18663 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
18664 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
18665 		SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle);
18666 	}
18667 	if (tcpstate == TCPS_SYN_RCVD) {
18668 		/*
18669 		 * The three-way connection establishment handshake is not
18670 		 * complete yet. We want to queue the data for transmission
18671 		 * after entering ESTABLISHED state (RFC793). A jump to
18672 		 * "done" label effectively leaves data on the queue.
18673 		 */
18674 		goto done;
18675 	} else {
18676 		int usable_r;
18677 
18678 		/*
18679 		 * In the special case when cwnd is zero, which can only
18680 		 * happen if the connection is ECN capable, return now.
18681 		 * New segments is sent using tcp_timer().  The timer
18682 		 * is set in tcp_rput_data().
18683 		 */
18684 		if (tcp->tcp_cwnd == 0) {
18685 			/*
18686 			 * Note that tcp_cwnd is 0 before 3-way handshake is
18687 			 * finished.
18688 			 */
18689 			ASSERT(tcp->tcp_ecn_ok ||
18690 			    tcp->tcp_state < TCPS_ESTABLISHED);
18691 			return;
18692 		}
18693 
18694 		/* NOTE: trouble if xmitting while SYN not acked? */
18695 		usable_r = snxt - tcp->tcp_suna;
18696 		usable_r = tcp->tcp_swnd - usable_r;
18697 
18698 		/*
18699 		 * Check if the receiver has shrunk the window.  If
18700 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
18701 		 * cannot be set as there is unsent data, so FIN cannot
18702 		 * be sent out.  Otherwise, we need to take into account
18703 		 * of FIN as it consumes an "invisible" sequence number.
18704 		 */
18705 		ASSERT(tcp->tcp_fin_sent == 0);
18706 		if (usable_r < 0) {
18707 			/*
18708 			 * The receiver has shrunk the window and we have sent
18709 			 * -usable_r date beyond the window, re-adjust.
18710 			 *
18711 			 * If TCP window scaling is enabled, there can be
18712 			 * round down error as the advertised receive window
18713 			 * is actually right shifted n bits.  This means that
18714 			 * the lower n bits info is wiped out.  It will look
18715 			 * like the window is shrunk.  Do a check here to
18716 			 * see if the shrunk amount is actually within the
18717 			 * error in window calculation.  If it is, just
18718 			 * return.  Note that this check is inside the
18719 			 * shrunk window check.  This makes sure that even
18720 			 * though tcp_process_shrunk_swnd() is not called,
18721 			 * we will stop further processing.
18722 			 */
18723 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
18724 				tcp_process_shrunk_swnd(tcp, -usable_r);
18725 			}
18726 			return;
18727 		}
18728 
18729 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
18730 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
18731 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
18732 
18733 		/* usable = MIN(usable, unsent) */
18734 		if (usable_r > len)
18735 			usable_r = len;
18736 
18737 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
18738 		if (usable_r > 0) {
18739 			usable = usable_r;
18740 		} else {
18741 			/* Bypass all other unnecessary processing. */
18742 			goto done;
18743 		}
18744 	}
18745 
18746 	local_time = (mblk_t *)lbolt;
18747 
18748 	/*
18749 	 * "Our" Nagle Algorithm.  This is not the same as in the old
18750 	 * BSD.  This is more in line with the true intent of Nagle.
18751 	 *
18752 	 * The conditions are:
18753 	 * 1. The amount of unsent data (or amount of data which can be
18754 	 *    sent, whichever is smaller) is less than Nagle limit.
18755 	 * 2. The last sent size is also less than Nagle limit.
18756 	 * 3. There is unack'ed data.
18757 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
18758 	 *    Nagle algorithm.  This reduces the probability that urgent
18759 	 *    bytes get "merged" together.
18760 	 * 5. The app has not closed the connection.  This eliminates the
18761 	 *    wait time of the receiving side waiting for the last piece of
18762 	 *    (small) data.
18763 	 *
18764 	 * If all are satisified, exit without sending anything.  Note
18765 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
18766 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
18767 	 * 4095).
18768 	 */
18769 	if (usable < (int)tcp->tcp_naglim &&
18770 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
18771 	    snxt != tcp->tcp_suna &&
18772 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
18773 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
18774 		goto done;
18775 	}
18776 
18777 	if (tcp->tcp_cork) {
18778 		/*
18779 		 * if the tcp->tcp_cork option is set, then we have to force
18780 		 * TCP not to send partial segment (smaller than MSS bytes).
18781 		 * We are calculating the usable now based on full mss and
18782 		 * will save the rest of remaining data for later.
18783 		 */
18784 		if (usable < mss)
18785 			goto done;
18786 		usable = (usable / mss) * mss;
18787 	}
18788 
18789 	/* Update the latest receive window size in TCP header. */
18790 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
18791 	    tcp->tcp_tcph->th_win);
18792 
18793 	/*
18794 	 * Determine if it's worthwhile to attempt MDT, based on:
18795 	 *
18796 	 * 1. Simple TCP/IP{v4,v6} (no options).
18797 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
18798 	 * 3. If the TCP connection is in ESTABLISHED state.
18799 	 * 4. The TCP is not detached.
18800 	 *
18801 	 * If any of the above conditions have changed during the
18802 	 * connection, stop using MDT and restore the stream head
18803 	 * parameters accordingly.
18804 	 */
18805 	if (tcp->tcp_mdt &&
18806 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
18807 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
18808 	    (tcp->tcp_ipversion == IPV6_VERSION &&
18809 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
18810 	    tcp->tcp_state != TCPS_ESTABLISHED ||
18811 	    TCP_IS_DETACHED(tcp) || !CONN_IS_MD_FASTPATH(tcp->tcp_connp) ||
18812 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
18813 	    IPP_ENABLED(IPP_LOCAL_OUT))) {
18814 		tcp->tcp_connp->conn_mdt_ok = B_FALSE;
18815 		tcp->tcp_mdt = B_FALSE;
18816 
18817 		/* Anything other than detached is considered pathological */
18818 		if (!TCP_IS_DETACHED(tcp)) {
18819 			TCP_STAT(tcp_mdt_conn_halted1);
18820 			(void) tcp_maxpsz_set(tcp, B_TRUE);
18821 		}
18822 	}
18823 
18824 	/* Use MDT if sendable amount is greater than the threshold */
18825 	if (tcp->tcp_mdt &&
18826 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
18827 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
18828 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
18829 	    (tcp->tcp_valid_bits == 0 ||
18830 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
18831 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
18832 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
18833 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
18834 		    local_time, mdt_thres);
18835 	} else {
18836 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
18837 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
18838 		    local_time, INT_MAX);
18839 	}
18840 
18841 	/* Pretend that all we were trying to send really got sent */
18842 	if (rc < 0 && tail_unsent < 0) {
18843 		do {
18844 			xmit_tail = xmit_tail->b_cont;
18845 			xmit_tail->b_prev = local_time;
18846 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
18847 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
18848 			tail_unsent += (int)(xmit_tail->b_wptr -
18849 			    xmit_tail->b_rptr);
18850 		} while (tail_unsent < 0);
18851 	}
18852 done:;
18853 	tcp->tcp_xmit_tail = xmit_tail;
18854 	tcp->tcp_xmit_tail_unsent = tail_unsent;
18855 	len = tcp->tcp_snxt - snxt;
18856 	if (len) {
18857 		/*
18858 		 * If new data was sent, need to update the notsack
18859 		 * list, which is, afterall, data blocks that have
18860 		 * not been sack'ed by the receiver.  New data is
18861 		 * not sack'ed.
18862 		 */
18863 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
18864 			/* len is a negative value. */
18865 			tcp->tcp_pipe -= len;
18866 			tcp_notsack_update(&(tcp->tcp_notsack_list),
18867 			    tcp->tcp_snxt, snxt,
18868 			    &(tcp->tcp_num_notsack_blk),
18869 			    &(tcp->tcp_cnt_notsack_list));
18870 		}
18871 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
18872 		tcp->tcp_rack = tcp->tcp_rnxt;
18873 		tcp->tcp_rack_cnt = 0;
18874 		if ((snxt + len) == tcp->tcp_suna) {
18875 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18876 		}
18877 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
18878 		/*
18879 		 * Didn't send anything. Make sure the timer is running
18880 		 * so that we will probe a zero window.
18881 		 */
18882 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18883 	}
18884 	/* Note that len is the amount we just sent but with a negative sign */
18885 	tcp->tcp_unsent += len;
18886 	if (tcp->tcp_flow_stopped) {
18887 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
18888 			tcp_clrqfull(tcp);
18889 		}
18890 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
18891 		tcp_setqfull(tcp);
18892 	}
18893 }
18894 
18895 /*
18896  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
18897  * outgoing TCP header with the template header, as well as other
18898  * options such as time-stamp, ECN and/or SACK.
18899  */
18900 static void
18901 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
18902 {
18903 	tcph_t *tcp_tmpl, *tcp_h;
18904 	uint32_t *dst, *src;
18905 	int hdrlen;
18906 
18907 	ASSERT(OK_32PTR(rptr));
18908 
18909 	/* Template header */
18910 	tcp_tmpl = tcp->tcp_tcph;
18911 
18912 	/* Header of outgoing packet */
18913 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
18914 
18915 	/* dst and src are opaque 32-bit fields, used for copying */
18916 	dst = (uint32_t *)rptr;
18917 	src = (uint32_t *)tcp->tcp_iphc;
18918 	hdrlen = tcp->tcp_hdr_len;
18919 
18920 	/* Fill time-stamp option if needed */
18921 	if (tcp->tcp_snd_ts_ok) {
18922 		U32_TO_BE32((uint32_t)now,
18923 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
18924 		U32_TO_BE32(tcp->tcp_ts_recent,
18925 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
18926 	} else {
18927 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
18928 	}
18929 
18930 	/*
18931 	 * Copy the template header; is this really more efficient than
18932 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
18933 	 * but perhaps not for other scenarios.
18934 	 */
18935 	dst[0] = src[0];
18936 	dst[1] = src[1];
18937 	dst[2] = src[2];
18938 	dst[3] = src[3];
18939 	dst[4] = src[4];
18940 	dst[5] = src[5];
18941 	dst[6] = src[6];
18942 	dst[7] = src[7];
18943 	dst[8] = src[8];
18944 	dst[9] = src[9];
18945 	if (hdrlen -= 40) {
18946 		hdrlen >>= 2;
18947 		dst += 10;
18948 		src += 10;
18949 		do {
18950 			*dst++ = *src++;
18951 		} while (--hdrlen);
18952 	}
18953 
18954 	/*
18955 	 * Set the ECN info in the TCP header if it is not a zero
18956 	 * window probe.  Zero window probe is only sent in
18957 	 * tcp_wput_data() and tcp_timer().
18958 	 */
18959 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
18960 		SET_ECT(tcp, rptr);
18961 
18962 		if (tcp->tcp_ecn_echo_on)
18963 			tcp_h->th_flags[0] |= TH_ECE;
18964 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
18965 			tcp_h->th_flags[0] |= TH_CWR;
18966 			tcp->tcp_ecn_cwr_sent = B_TRUE;
18967 		}
18968 	}
18969 
18970 	/* Fill in SACK options */
18971 	if (num_sack_blk > 0) {
18972 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
18973 		sack_blk_t *tmp;
18974 		int32_t	i;
18975 
18976 		wptr[0] = TCPOPT_NOP;
18977 		wptr[1] = TCPOPT_NOP;
18978 		wptr[2] = TCPOPT_SACK;
18979 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
18980 		    sizeof (sack_blk_t);
18981 		wptr += TCPOPT_REAL_SACK_LEN;
18982 
18983 		tmp = tcp->tcp_sack_list;
18984 		for (i = 0; i < num_sack_blk; i++) {
18985 			U32_TO_BE32(tmp[i].begin, wptr);
18986 			wptr += sizeof (tcp_seq);
18987 			U32_TO_BE32(tmp[i].end, wptr);
18988 			wptr += sizeof (tcp_seq);
18989 		}
18990 		tcp_h->th_offset_and_rsrvd[0] +=
18991 		    ((num_sack_blk * 2 + 1) << 4);
18992 	}
18993 }
18994 
18995 /*
18996  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
18997  * the destination address and SAP attribute, and if necessary, the
18998  * hardware checksum offload attribute to a Multidata message.
18999  */
19000 static int
19001 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
19002     const uint32_t start, const uint32_t stuff, const uint32_t end,
19003     const uint32_t flags)
19004 {
19005 	/* Add global destination address & SAP attribute */
19006 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
19007 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
19008 		    "destination address+SAP\n"));
19009 
19010 		if (dlmp != NULL)
19011 			TCP_STAT(tcp_mdt_allocfail);
19012 		return (-1);
19013 	}
19014 
19015 	/* Add global hwcksum attribute */
19016 	if (hwcksum &&
19017 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
19018 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
19019 		    "checksum attribute\n"));
19020 
19021 		TCP_STAT(tcp_mdt_allocfail);
19022 		return (-1);
19023 	}
19024 
19025 	return (0);
19026 }
19027 
19028 /*
19029  * Smaller and private version of pdescinfo_t used specifically for TCP,
19030  * which allows for only two payload spans per packet.
19031  */
19032 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
19033 
19034 /*
19035  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
19036  * scheme, and returns one the following:
19037  *
19038  * -1 = failed allocation.
19039  *  0 = success; burst count reached, or usable send window is too small,
19040  *      and that we'd rather wait until later before sending again.
19041  */
19042 static int
19043 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
19044     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
19045     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
19046     const int mdt_thres)
19047 {
19048 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
19049 	multidata_t	*mmd;
19050 	uint_t		obsegs, obbytes, hdr_frag_sz;
19051 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
19052 	int		num_burst_seg, max_pld;
19053 	pdesc_t		*pkt;
19054 	tcp_pdescinfo_t	tcp_pkt_info;
19055 	pdescinfo_t	*pkt_info;
19056 	int		pbuf_idx, pbuf_idx_nxt;
19057 	int		seg_len, len, spill, af;
19058 	boolean_t	add_buffer, zcopy, clusterwide;
19059 	boolean_t	rconfirm = B_FALSE;
19060 	boolean_t	done = B_FALSE;
19061 	uint32_t	cksum;
19062 	uint32_t	hwcksum_flags;
19063 	ire_t		*ire;
19064 	ill_t		*ill;
19065 	ipha_t		*ipha;
19066 	ip6_t		*ip6h;
19067 	ipaddr_t	src, dst;
19068 	ill_zerocopy_capab_t *zc_cap = NULL;
19069 	uint16_t	*up;
19070 	int		err;
19071 	conn_t		*connp;
19072 
19073 #ifdef	_BIG_ENDIAN
19074 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
19075 #else
19076 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
19077 #endif
19078 
19079 #define	PREP_NEW_MULTIDATA() {			\
19080 	mmd = NULL;				\
19081 	md_mp = md_hbuf = NULL;			\
19082 	cur_hdr_off = 0;			\
19083 	max_pld = tcp->tcp_mdt_max_pld;		\
19084 	pbuf_idx = pbuf_idx_nxt = -1;		\
19085 	add_buffer = B_TRUE;			\
19086 	zcopy = B_FALSE;			\
19087 }
19088 
19089 #define	PREP_NEW_PBUF() {			\
19090 	md_pbuf = md_pbuf_nxt = NULL;		\
19091 	pbuf_idx = pbuf_idx_nxt = -1;		\
19092 	cur_pld_off = 0;			\
19093 	first_snxt = *snxt;			\
19094 	ASSERT(*tail_unsent > 0);		\
19095 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
19096 }
19097 
19098 	ASSERT(mdt_thres >= mss);
19099 	ASSERT(*usable > 0 && *usable > mdt_thres);
19100 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
19101 	ASSERT(!TCP_IS_DETACHED(tcp));
19102 	ASSERT(tcp->tcp_valid_bits == 0 ||
19103 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
19104 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
19105 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
19106 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19107 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
19108 
19109 	connp = tcp->tcp_connp;
19110 	ASSERT(connp != NULL);
19111 	ASSERT(CONN_IS_MD_FASTPATH(connp));
19112 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
19113 
19114 	/*
19115 	 * Note that tcp will only declare at most 2 payload spans per
19116 	 * packet, which is much lower than the maximum allowable number
19117 	 * of packet spans per Multidata.  For this reason, we use the
19118 	 * privately declared and smaller descriptor info structure, in
19119 	 * order to save some stack space.
19120 	 */
19121 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
19122 
19123 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
19124 	if (af == AF_INET) {
19125 		dst = tcp->tcp_ipha->ipha_dst;
19126 		src = tcp->tcp_ipha->ipha_src;
19127 		ASSERT(!CLASSD(dst));
19128 	}
19129 	ASSERT(af == AF_INET ||
19130 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
19131 
19132 	obsegs = obbytes = 0;
19133 	num_burst_seg = tcp->tcp_snd_burst;
19134 	md_mp_head = NULL;
19135 	PREP_NEW_MULTIDATA();
19136 
19137 	/*
19138 	 * Before we go on further, make sure there is an IRE that we can
19139 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
19140 	 * in proceeding any further, and we should just hand everything
19141 	 * off to the legacy path.
19142 	 */
19143 	mutex_enter(&connp->conn_lock);
19144 	ire = connp->conn_ire_cache;
19145 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
19146 	if (ire != NULL && ((af == AF_INET && ire->ire_addr == dst) ||
19147 	    (af == AF_INET6 && IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6,
19148 	    &tcp->tcp_ip6h->ip6_dst))) &&
19149 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19150 		IRE_REFHOLD(ire);
19151 		mutex_exit(&connp->conn_lock);
19152 	} else {
19153 		boolean_t cached = B_FALSE;
19154 		ts_label_t *tsl;
19155 
19156 		/* force a recheck later on */
19157 		tcp->tcp_ire_ill_check_done = B_FALSE;
19158 
19159 		TCP_DBGSTAT(tcp_ire_null1);
19160 		connp->conn_ire_cache = NULL;
19161 		mutex_exit(&connp->conn_lock);
19162 
19163 		/* Release the old ire */
19164 		if (ire != NULL)
19165 			IRE_REFRELE_NOTR(ire);
19166 
19167 		tsl = crgetlabel(CONN_CRED(connp));
19168 		ire = (af == AF_INET) ?
19169 		    ire_cache_lookup(dst, connp->conn_zoneid, tsl) :
19170 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
19171 		    connp->conn_zoneid, tsl);
19172 
19173 		if (ire == NULL) {
19174 			TCP_STAT(tcp_ire_null);
19175 			goto legacy_send_no_md;
19176 		}
19177 
19178 		IRE_REFHOLD_NOTR(ire);
19179 		/*
19180 		 * Since we are inside the squeue, there cannot be another
19181 		 * thread in TCP trying to set the conn_ire_cache now. The
19182 		 * check for IRE_MARK_CONDEMNED ensures that an interface
19183 		 * unplumb thread has not yet started cleaning up the conns.
19184 		 * Hence we don't need to grab the conn lock.
19185 		 */
19186 		if (!(connp->conn_state_flags & CONN_CLOSING)) {
19187 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
19188 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19189 				connp->conn_ire_cache = ire;
19190 				cached = B_TRUE;
19191 			}
19192 			rw_exit(&ire->ire_bucket->irb_lock);
19193 		}
19194 
19195 		/*
19196 		 * We can continue to use the ire but since it was not
19197 		 * cached, we should drop the extra reference.
19198 		 */
19199 		if (!cached)
19200 			IRE_REFRELE_NOTR(ire);
19201 	}
19202 
19203 	ASSERT(ire != NULL);
19204 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
19205 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
19206 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
19207 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
19208 	/*
19209 	 * If we do support loopback for MDT (which requires modifications
19210 	 * to the receiving paths), the following assertions should go away,
19211 	 * and we would be sending the Multidata to loopback conn later on.
19212 	 */
19213 	ASSERT(!IRE_IS_LOCAL(ire));
19214 	ASSERT(ire->ire_stq != NULL);
19215 
19216 	ill = ire_to_ill(ire);
19217 	ASSERT(ill != NULL);
19218 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
19219 
19220 	if (!tcp->tcp_ire_ill_check_done) {
19221 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19222 		tcp->tcp_ire_ill_check_done = B_TRUE;
19223 	}
19224 
19225 	/*
19226 	 * If the underlying interface conditions have changed, or if the
19227 	 * new interface does not support MDT, go back to legacy path.
19228 	 */
19229 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
19230 		/* don't go through this path anymore for this connection */
19231 		TCP_STAT(tcp_mdt_conn_halted2);
19232 		tcp->tcp_mdt = B_FALSE;
19233 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
19234 		    "interface %s\n", (void *)connp, ill->ill_name));
19235 		/* IRE will be released prior to returning */
19236 		goto legacy_send_no_md;
19237 	}
19238 
19239 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
19240 		zc_cap = ill->ill_zerocopy_capab;
19241 
19242 	/*
19243 	 * Check if we can take tcp fast-path. Note that "incomplete"
19244 	 * ire's (where the link-layer for next hop is not resolved
19245 	 * or where the fast-path header in nce_fp_mp is not available
19246 	 * yet) are sent down the legacy (slow) path.
19247 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
19248 	 */
19249 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
19250 		/* IRE will be released prior to returning */
19251 		goto legacy_send_no_md;
19252 	}
19253 
19254 	/* go to legacy path if interface doesn't support zerocopy */
19255 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
19256 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
19257 		/* IRE will be released prior to returning */
19258 		goto legacy_send_no_md;
19259 	}
19260 
19261 	/* does the interface support hardware checksum offload? */
19262 	hwcksum_flags = 0;
19263 	if (ILL_HCKSUM_CAPABLE(ill) &&
19264 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
19265 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
19266 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
19267 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19268 		    HCKSUM_IPHDRCKSUM)
19269 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
19270 
19271 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19272 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
19273 			hwcksum_flags |= HCK_FULLCKSUM;
19274 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19275 		    HCKSUM_INET_PARTIAL)
19276 			hwcksum_flags |= HCK_PARTIALCKSUM;
19277 	}
19278 
19279 	/*
19280 	 * Each header fragment consists of the leading extra space,
19281 	 * followed by the TCP/IP header, and the trailing extra space.
19282 	 * We make sure that each header fragment begins on a 32-bit
19283 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
19284 	 * aligned in tcp_mdt_update).
19285 	 */
19286 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
19287 	    tcp->tcp_mdt_hdr_tail), 4);
19288 
19289 	/* are we starting from the beginning of data block? */
19290 	if (*tail_unsent == 0) {
19291 		*xmit_tail = (*xmit_tail)->b_cont;
19292 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
19293 		*tail_unsent = (int)MBLKL(*xmit_tail);
19294 	}
19295 
19296 	/*
19297 	 * Here we create one or more Multidata messages, each made up of
19298 	 * one header buffer and up to N payload buffers.  This entire
19299 	 * operation is done within two loops:
19300 	 *
19301 	 * The outer loop mostly deals with creating the Multidata message,
19302 	 * as well as the header buffer that gets added to it.  It also
19303 	 * links the Multidata messages together such that all of them can
19304 	 * be sent down to the lower layer in a single putnext call; this
19305 	 * linking behavior depends on the tcp_mdt_chain tunable.
19306 	 *
19307 	 * The inner loop takes an existing Multidata message, and adds
19308 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
19309 	 * packetizes those buffers by filling up the corresponding header
19310 	 * buffer fragments with the proper IP and TCP headers, and by
19311 	 * describing the layout of each packet in the packet descriptors
19312 	 * that get added to the Multidata.
19313 	 */
19314 	do {
19315 		/*
19316 		 * If usable send window is too small, or data blocks in
19317 		 * transmit list are smaller than our threshold (i.e. app
19318 		 * performs large writes followed by small ones), we hand
19319 		 * off the control over to the legacy path.  Note that we'll
19320 		 * get back the control once it encounters a large block.
19321 		 */
19322 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
19323 		    (*xmit_tail)->b_cont != NULL &&
19324 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
19325 			/* send down what we've got so far */
19326 			if (md_mp_head != NULL) {
19327 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
19328 				    obsegs, obbytes, &rconfirm);
19329 			}
19330 			/*
19331 			 * Pass control over to tcp_send(), but tell it to
19332 			 * return to us once a large-size transmission is
19333 			 * possible.
19334 			 */
19335 			TCP_STAT(tcp_mdt_legacy_small);
19336 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
19337 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
19338 			    tail_unsent, xmit_tail, local_time,
19339 			    mdt_thres)) <= 0) {
19340 				/* burst count reached, or alloc failed */
19341 				IRE_REFRELE(ire);
19342 				return (err);
19343 			}
19344 
19345 			/* tcp_send() may have sent everything, so check */
19346 			if (*usable <= 0) {
19347 				IRE_REFRELE(ire);
19348 				return (0);
19349 			}
19350 
19351 			TCP_STAT(tcp_mdt_legacy_ret);
19352 			/*
19353 			 * We may have delivered the Multidata, so make sure
19354 			 * to re-initialize before the next round.
19355 			 */
19356 			md_mp_head = NULL;
19357 			obsegs = obbytes = 0;
19358 			num_burst_seg = tcp->tcp_snd_burst;
19359 			PREP_NEW_MULTIDATA();
19360 
19361 			/* are we starting from the beginning of data block? */
19362 			if (*tail_unsent == 0) {
19363 				*xmit_tail = (*xmit_tail)->b_cont;
19364 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19365 				    (uintptr_t)INT_MAX);
19366 				*tail_unsent = (int)MBLKL(*xmit_tail);
19367 			}
19368 		}
19369 
19370 		/*
19371 		 * max_pld limits the number of mblks in tcp's transmit
19372 		 * queue that can be added to a Multidata message.  Once
19373 		 * this counter reaches zero, no more additional mblks
19374 		 * can be added to it.  What happens afterwards depends
19375 		 * on whether or not we are set to chain the Multidata
19376 		 * messages.  If we are to link them together, reset
19377 		 * max_pld to its original value (tcp_mdt_max_pld) and
19378 		 * prepare to create a new Multidata message which will
19379 		 * get linked to md_mp_head.  Else, leave it alone and
19380 		 * let the inner loop break on its own.
19381 		 */
19382 		if (tcp_mdt_chain && max_pld == 0)
19383 			PREP_NEW_MULTIDATA();
19384 
19385 		/* adding a payload buffer; re-initialize values */
19386 		if (add_buffer)
19387 			PREP_NEW_PBUF();
19388 
19389 		/*
19390 		 * If we don't have a Multidata, either because we just
19391 		 * (re)entered this outer loop, or after we branched off
19392 		 * to tcp_send above, setup the Multidata and header
19393 		 * buffer to be used.
19394 		 */
19395 		if (md_mp == NULL) {
19396 			int md_hbuflen;
19397 			uint32_t start, stuff;
19398 
19399 			/*
19400 			 * Calculate Multidata header buffer size large enough
19401 			 * to hold all of the headers that can possibly be
19402 			 * sent at this moment.  We'd rather over-estimate
19403 			 * the size than running out of space; this is okay
19404 			 * since this buffer is small anyway.
19405 			 */
19406 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
19407 
19408 			/*
19409 			 * Start and stuff offset for partial hardware
19410 			 * checksum offload; these are currently for IPv4.
19411 			 * For full checksum offload, they are set to zero.
19412 			 */
19413 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
19414 				if (af == AF_INET) {
19415 					start = IP_SIMPLE_HDR_LENGTH;
19416 					stuff = IP_SIMPLE_HDR_LENGTH +
19417 					    TCP_CHECKSUM_OFFSET;
19418 				} else {
19419 					start = IPV6_HDR_LEN;
19420 					stuff = IPV6_HDR_LEN +
19421 					    TCP_CHECKSUM_OFFSET;
19422 				}
19423 			} else {
19424 				start = stuff = 0;
19425 			}
19426 
19427 			/*
19428 			 * Create the header buffer, Multidata, as well as
19429 			 * any necessary attributes (destination address,
19430 			 * SAP and hardware checksum offload) that should
19431 			 * be associated with the Multidata message.
19432 			 */
19433 			ASSERT(cur_hdr_off == 0);
19434 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
19435 			    ((md_hbuf->b_wptr += md_hbuflen),
19436 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
19437 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
19438 			    /* fastpath mblk */
19439 			    ire->ire_nce->nce_res_mp,
19440 			    /* hardware checksum enabled */
19441 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
19442 			    /* hardware checksum offsets */
19443 			    start, stuff, 0,
19444 			    /* hardware checksum flag */
19445 			    hwcksum_flags) != 0)) {
19446 legacy_send:
19447 				if (md_mp != NULL) {
19448 					/* Unlink message from the chain */
19449 					if (md_mp_head != NULL) {
19450 						err = (intptr_t)rmvb(md_mp_head,
19451 						    md_mp);
19452 						/*
19453 						 * We can't assert that rmvb
19454 						 * did not return -1, since we
19455 						 * may get here before linkb
19456 						 * happens.  We do, however,
19457 						 * check if we just removed the
19458 						 * only element in the list.
19459 						 */
19460 						if (err == 0)
19461 							md_mp_head = NULL;
19462 					}
19463 					/* md_hbuf gets freed automatically */
19464 					TCP_STAT(tcp_mdt_discarded);
19465 					freeb(md_mp);
19466 				} else {
19467 					/* Either allocb or mmd_alloc failed */
19468 					TCP_STAT(tcp_mdt_allocfail);
19469 					if (md_hbuf != NULL)
19470 						freeb(md_hbuf);
19471 				}
19472 
19473 				/* send down what we've got so far */
19474 				if (md_mp_head != NULL) {
19475 					tcp_multisend_data(tcp, ire, ill,
19476 					    md_mp_head, obsegs, obbytes,
19477 					    &rconfirm);
19478 				}
19479 legacy_send_no_md:
19480 				if (ire != NULL)
19481 					IRE_REFRELE(ire);
19482 				/*
19483 				 * Too bad; let the legacy path handle this.
19484 				 * We specify INT_MAX for the threshold, since
19485 				 * we gave up with the Multidata processings
19486 				 * and let the old path have it all.
19487 				 */
19488 				TCP_STAT(tcp_mdt_legacy_all);
19489 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
19490 				    tcp_tcp_hdr_len, num_sack_blk, usable,
19491 				    snxt, tail_unsent, xmit_tail, local_time,
19492 				    INT_MAX));
19493 			}
19494 
19495 			/* link to any existing ones, if applicable */
19496 			TCP_STAT(tcp_mdt_allocd);
19497 			if (md_mp_head == NULL) {
19498 				md_mp_head = md_mp;
19499 			} else if (tcp_mdt_chain) {
19500 				TCP_STAT(tcp_mdt_linked);
19501 				linkb(md_mp_head, md_mp);
19502 			}
19503 		}
19504 
19505 		ASSERT(md_mp_head != NULL);
19506 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
19507 		ASSERT(md_mp != NULL && mmd != NULL);
19508 		ASSERT(md_hbuf != NULL);
19509 
19510 		/*
19511 		 * Packetize the transmittable portion of the data block;
19512 		 * each data block is essentially added to the Multidata
19513 		 * as a payload buffer.  We also deal with adding more
19514 		 * than one payload buffers, which happens when the remaining
19515 		 * packetized portion of the current payload buffer is less
19516 		 * than MSS, while the next data block in transmit queue
19517 		 * has enough data to make up for one.  This "spillover"
19518 		 * case essentially creates a split-packet, where portions
19519 		 * of the packet's payload fragments may span across two
19520 		 * virtually discontiguous address blocks.
19521 		 */
19522 		seg_len = mss;
19523 		do {
19524 			len = seg_len;
19525 
19526 			ASSERT(len > 0);
19527 			ASSERT(max_pld >= 0);
19528 			ASSERT(!add_buffer || cur_pld_off == 0);
19529 
19530 			/*
19531 			 * First time around for this payload buffer; note
19532 			 * in the case of a spillover, the following has
19533 			 * been done prior to adding the split-packet
19534 			 * descriptor to Multidata, and we don't want to
19535 			 * repeat the process.
19536 			 */
19537 			if (add_buffer) {
19538 				ASSERT(mmd != NULL);
19539 				ASSERT(md_pbuf == NULL);
19540 				ASSERT(md_pbuf_nxt == NULL);
19541 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
19542 
19543 				/*
19544 				 * Have we reached the limit?  We'd get to
19545 				 * this case when we're not chaining the
19546 				 * Multidata messages together, and since
19547 				 * we're done, terminate this loop.
19548 				 */
19549 				if (max_pld == 0)
19550 					break; /* done */
19551 
19552 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
19553 					TCP_STAT(tcp_mdt_allocfail);
19554 					goto legacy_send; /* out_of_mem */
19555 				}
19556 
19557 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
19558 				    zc_cap != NULL) {
19559 					if (!ip_md_zcopy_attr(mmd, NULL,
19560 					    zc_cap->ill_zerocopy_flags)) {
19561 						freeb(md_pbuf);
19562 						TCP_STAT(tcp_mdt_allocfail);
19563 						/* out_of_mem */
19564 						goto legacy_send;
19565 					}
19566 					zcopy = B_TRUE;
19567 				}
19568 
19569 				md_pbuf->b_rptr += base_pld_off;
19570 
19571 				/*
19572 				 * Add a payload buffer to the Multidata; this
19573 				 * operation must not fail, or otherwise our
19574 				 * logic in this routine is broken.  There
19575 				 * is no memory allocation done by the
19576 				 * routine, so any returned failure simply
19577 				 * tells us that we've done something wrong.
19578 				 *
19579 				 * A failure tells us that either we're adding
19580 				 * the same payload buffer more than once, or
19581 				 * we're trying to add more buffers than
19582 				 * allowed (max_pld calculation is wrong).
19583 				 * None of the above cases should happen, and
19584 				 * we panic because either there's horrible
19585 				 * heap corruption, and/or programming mistake.
19586 				 */
19587 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
19588 				if (pbuf_idx < 0) {
19589 					cmn_err(CE_PANIC, "tcp_multisend: "
19590 					    "payload buffer logic error "
19591 					    "detected for tcp %p mmd %p "
19592 					    "pbuf %p (%d)\n",
19593 					    (void *)tcp, (void *)mmd,
19594 					    (void *)md_pbuf, pbuf_idx);
19595 				}
19596 
19597 				ASSERT(max_pld > 0);
19598 				--max_pld;
19599 				add_buffer = B_FALSE;
19600 			}
19601 
19602 			ASSERT(md_mp_head != NULL);
19603 			ASSERT(md_pbuf != NULL);
19604 			ASSERT(md_pbuf_nxt == NULL);
19605 			ASSERT(pbuf_idx != -1);
19606 			ASSERT(pbuf_idx_nxt == -1);
19607 			ASSERT(*usable > 0);
19608 
19609 			/*
19610 			 * We spillover to the next payload buffer only
19611 			 * if all of the following is true:
19612 			 *
19613 			 *   1. There is not enough data on the current
19614 			 *	payload buffer to make up `len',
19615 			 *   2. We are allowed to send `len',
19616 			 *   3. The next payload buffer length is large
19617 			 *	enough to accomodate `spill'.
19618 			 */
19619 			if ((spill = len - *tail_unsent) > 0 &&
19620 			    *usable >= len &&
19621 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
19622 			    max_pld > 0) {
19623 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
19624 				if (md_pbuf_nxt == NULL) {
19625 					TCP_STAT(tcp_mdt_allocfail);
19626 					goto legacy_send; /* out_of_mem */
19627 				}
19628 
19629 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
19630 				    zc_cap != NULL) {
19631 					if (!ip_md_zcopy_attr(mmd, NULL,
19632 					    zc_cap->ill_zerocopy_flags)) {
19633 						freeb(md_pbuf_nxt);
19634 						TCP_STAT(tcp_mdt_allocfail);
19635 						/* out_of_mem */
19636 						goto legacy_send;
19637 					}
19638 					zcopy = B_TRUE;
19639 				}
19640 
19641 				/*
19642 				 * See comments above on the first call to
19643 				 * mmd_addpldbuf for explanation on the panic.
19644 				 */
19645 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
19646 				if (pbuf_idx_nxt < 0) {
19647 					panic("tcp_multisend: "
19648 					    "next payload buffer logic error "
19649 					    "detected for tcp %p mmd %p "
19650 					    "pbuf %p (%d)\n",
19651 					    (void *)tcp, (void *)mmd,
19652 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
19653 				}
19654 
19655 				ASSERT(max_pld > 0);
19656 				--max_pld;
19657 			} else if (spill > 0) {
19658 				/*
19659 				 * If there's a spillover, but the following
19660 				 * xmit_tail couldn't give us enough octets
19661 				 * to reach "len", then stop the current
19662 				 * Multidata creation and let the legacy
19663 				 * tcp_send() path take over.  We don't want
19664 				 * to send the tiny segment as part of this
19665 				 * Multidata for performance reasons; instead,
19666 				 * we let the legacy path deal with grouping
19667 				 * it with the subsequent small mblks.
19668 				 */
19669 				if (*usable >= len &&
19670 				    MBLKL((*xmit_tail)->b_cont) < spill) {
19671 					max_pld = 0;
19672 					break;	/* done */
19673 				}
19674 
19675 				/*
19676 				 * We can't spillover, and we are near
19677 				 * the end of the current payload buffer,
19678 				 * so send what's left.
19679 				 */
19680 				ASSERT(*tail_unsent > 0);
19681 				len = *tail_unsent;
19682 			}
19683 
19684 			/* tail_unsent is negated if there is a spillover */
19685 			*tail_unsent -= len;
19686 			*usable -= len;
19687 			ASSERT(*usable >= 0);
19688 
19689 			if (*usable < mss)
19690 				seg_len = *usable;
19691 			/*
19692 			 * Sender SWS avoidance; see comments in tcp_send();
19693 			 * everything else is the same, except that we only
19694 			 * do this here if there is no more data to be sent
19695 			 * following the current xmit_tail.  We don't check
19696 			 * for 1-byte urgent data because we shouldn't get
19697 			 * here if TCP_URG_VALID is set.
19698 			 */
19699 			if (*usable > 0 && *usable < mss &&
19700 			    ((md_pbuf_nxt == NULL &&
19701 			    (*xmit_tail)->b_cont == NULL) ||
19702 			    (md_pbuf_nxt != NULL &&
19703 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
19704 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
19705 			    (tcp->tcp_unsent -
19706 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
19707 			    !tcp->tcp_zero_win_probe) {
19708 				if ((*snxt + len) == tcp->tcp_snxt &&
19709 				    (*snxt + len) == tcp->tcp_suna) {
19710 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19711 				}
19712 				done = B_TRUE;
19713 			}
19714 
19715 			/*
19716 			 * Prime pump for IP's checksumming on our behalf;
19717 			 * include the adjustment for a source route if any.
19718 			 * Do this only for software/partial hardware checksum
19719 			 * offload, as this field gets zeroed out later for
19720 			 * the full hardware checksum offload case.
19721 			 */
19722 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
19723 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
19724 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
19725 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
19726 			}
19727 
19728 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
19729 			*snxt += len;
19730 
19731 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
19732 			/*
19733 			 * We set the PUSH bit only if TCP has no more buffered
19734 			 * data to be transmitted (or if sender SWS avoidance
19735 			 * takes place), as opposed to setting it for every
19736 			 * last packet in the burst.
19737 			 */
19738 			if (done ||
19739 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
19740 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
19741 
19742 			/*
19743 			 * Set FIN bit if this is our last segment; snxt
19744 			 * already includes its length, and it will not
19745 			 * be adjusted after this point.
19746 			 */
19747 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
19748 			    *snxt == tcp->tcp_fss) {
19749 				if (!tcp->tcp_fin_acked) {
19750 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
19751 					BUMP_MIB(&tcp_mib, tcpOutControl);
19752 				}
19753 				if (!tcp->tcp_fin_sent) {
19754 					tcp->tcp_fin_sent = B_TRUE;
19755 					/*
19756 					 * tcp state must be ESTABLISHED
19757 					 * in order for us to get here in
19758 					 * the first place.
19759 					 */
19760 					tcp->tcp_state = TCPS_FIN_WAIT_1;
19761 
19762 					/*
19763 					 * Upon returning from this routine,
19764 					 * tcp_wput_data() will set tcp_snxt
19765 					 * to be equal to snxt + tcp_fin_sent.
19766 					 * This is essentially the same as
19767 					 * setting it to tcp_fss + 1.
19768 					 */
19769 				}
19770 			}
19771 
19772 			tcp->tcp_last_sent_len = (ushort_t)len;
19773 
19774 			len += tcp_hdr_len;
19775 			if (tcp->tcp_ipversion == IPV4_VERSION)
19776 				tcp->tcp_ipha->ipha_length = htons(len);
19777 			else
19778 				tcp->tcp_ip6h->ip6_plen = htons(len -
19779 				    ((char *)&tcp->tcp_ip6h[1] -
19780 				    tcp->tcp_iphc));
19781 
19782 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
19783 
19784 			/* setup header fragment */
19785 			PDESC_HDR_ADD(pkt_info,
19786 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
19787 			    tcp->tcp_mdt_hdr_head,		/* head room */
19788 			    tcp_hdr_len,			/* len */
19789 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
19790 
19791 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
19792 			    hdr_frag_sz);
19793 			ASSERT(MBLKIN(md_hbuf,
19794 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
19795 			    PDESC_HDRSIZE(pkt_info)));
19796 
19797 			/* setup first payload fragment */
19798 			PDESC_PLD_INIT(pkt_info);
19799 			PDESC_PLD_SPAN_ADD(pkt_info,
19800 			    pbuf_idx,				/* index */
19801 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
19802 			    tcp->tcp_last_sent_len);		/* len */
19803 
19804 			/* create a split-packet in case of a spillover */
19805 			if (md_pbuf_nxt != NULL) {
19806 				ASSERT(spill > 0);
19807 				ASSERT(pbuf_idx_nxt > pbuf_idx);
19808 				ASSERT(!add_buffer);
19809 
19810 				md_pbuf = md_pbuf_nxt;
19811 				md_pbuf_nxt = NULL;
19812 				pbuf_idx = pbuf_idx_nxt;
19813 				pbuf_idx_nxt = -1;
19814 				cur_pld_off = spill;
19815 
19816 				/* trim out first payload fragment */
19817 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
19818 
19819 				/* setup second payload fragment */
19820 				PDESC_PLD_SPAN_ADD(pkt_info,
19821 				    pbuf_idx,			/* index */
19822 				    md_pbuf->b_rptr,		/* start */
19823 				    spill);			/* len */
19824 
19825 				if ((*xmit_tail)->b_next == NULL) {
19826 					/*
19827 					 * Store the lbolt used for RTT
19828 					 * estimation. We can only record one
19829 					 * timestamp per mblk so we do it when
19830 					 * we reach the end of the payload
19831 					 * buffer.  Also we only take a new
19832 					 * timestamp sample when the previous
19833 					 * timed data from the same mblk has
19834 					 * been ack'ed.
19835 					 */
19836 					(*xmit_tail)->b_prev = local_time;
19837 					(*xmit_tail)->b_next =
19838 					    (mblk_t *)(uintptr_t)first_snxt;
19839 				}
19840 
19841 				first_snxt = *snxt - spill;
19842 
19843 				/*
19844 				 * Advance xmit_tail; usable could be 0 by
19845 				 * the time we got here, but we made sure
19846 				 * above that we would only spillover to
19847 				 * the next data block if usable includes
19848 				 * the spilled-over amount prior to the
19849 				 * subtraction.  Therefore, we are sure
19850 				 * that xmit_tail->b_cont can't be NULL.
19851 				 */
19852 				ASSERT((*xmit_tail)->b_cont != NULL);
19853 				*xmit_tail = (*xmit_tail)->b_cont;
19854 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19855 				    (uintptr_t)INT_MAX);
19856 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
19857 			} else {
19858 				cur_pld_off += tcp->tcp_last_sent_len;
19859 			}
19860 
19861 			/*
19862 			 * Fill in the header using the template header, and
19863 			 * add options such as time-stamp, ECN and/or SACK,
19864 			 * as needed.
19865 			 */
19866 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
19867 			    (clock_t)local_time, num_sack_blk);
19868 
19869 			/* take care of some IP header businesses */
19870 			if (af == AF_INET) {
19871 				ipha = (ipha_t *)pkt_info->hdr_rptr;
19872 
19873 				ASSERT(OK_32PTR((uchar_t *)ipha));
19874 				ASSERT(PDESC_HDRL(pkt_info) >=
19875 				    IP_SIMPLE_HDR_LENGTH);
19876 				ASSERT(ipha->ipha_version_and_hdr_length ==
19877 				    IP_SIMPLE_HDR_VERSION);
19878 
19879 				/*
19880 				 * Assign ident value for current packet; see
19881 				 * related comments in ip_wput_ire() about the
19882 				 * contract private interface with clustering
19883 				 * group.
19884 				 */
19885 				clusterwide = B_FALSE;
19886 				if (cl_inet_ipident != NULL) {
19887 					ASSERT(cl_inet_isclusterwide != NULL);
19888 					if ((*cl_inet_isclusterwide)(IPPROTO_IP,
19889 					    AF_INET,
19890 					    (uint8_t *)(uintptr_t)src)) {
19891 						ipha->ipha_ident =
19892 						    (*cl_inet_ipident)
19893 						    (IPPROTO_IP, AF_INET,
19894 						    (uint8_t *)(uintptr_t)src,
19895 						    (uint8_t *)(uintptr_t)dst);
19896 						clusterwide = B_TRUE;
19897 					}
19898 				}
19899 
19900 				if (!clusterwide) {
19901 					ipha->ipha_ident = (uint16_t)
19902 					    atomic_add_32_nv(
19903 						&ire->ire_ident, 1);
19904 				}
19905 #ifndef _BIG_ENDIAN
19906 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
19907 				    (ipha->ipha_ident >> 8);
19908 #endif
19909 			} else {
19910 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
19911 
19912 				ASSERT(OK_32PTR((uchar_t *)ip6h));
19913 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
19914 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
19915 				ASSERT(PDESC_HDRL(pkt_info) >=
19916 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
19917 				    TCP_CHECKSUM_SIZE));
19918 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
19919 
19920 				if (tcp->tcp_ip_forward_progress) {
19921 					rconfirm = B_TRUE;
19922 					tcp->tcp_ip_forward_progress = B_FALSE;
19923 				}
19924 			}
19925 
19926 			/* at least one payload span, and at most two */
19927 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
19928 
19929 			/* add the packet descriptor to Multidata */
19930 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
19931 			    KM_NOSLEEP)) == NULL) {
19932 				/*
19933 				 * Any failure other than ENOMEM indicates
19934 				 * that we have passed in invalid pkt_info
19935 				 * or parameters to mmd_addpdesc, which must
19936 				 * not happen.
19937 				 *
19938 				 * EINVAL is a result of failure on boundary
19939 				 * checks against the pkt_info contents.  It
19940 				 * should not happen, and we panic because
19941 				 * either there's horrible heap corruption,
19942 				 * and/or programming mistake.
19943 				 */
19944 				if (err != ENOMEM) {
19945 					cmn_err(CE_PANIC, "tcp_multisend: "
19946 					    "pdesc logic error detected for "
19947 					    "tcp %p mmd %p pinfo %p (%d)\n",
19948 					    (void *)tcp, (void *)mmd,
19949 					    (void *)pkt_info, err);
19950 				}
19951 				TCP_STAT(tcp_mdt_addpdescfail);
19952 				goto legacy_send; /* out_of_mem */
19953 			}
19954 			ASSERT(pkt != NULL);
19955 
19956 			/* calculate IP header and TCP checksums */
19957 			if (af == AF_INET) {
19958 				/* calculate pseudo-header checksum */
19959 				cksum = (dst >> 16) + (dst & 0xFFFF) +
19960 				    (src >> 16) + (src & 0xFFFF);
19961 
19962 				/* offset for TCP header checksum */
19963 				up = IPH_TCPH_CHECKSUMP(ipha,
19964 				    IP_SIMPLE_HDR_LENGTH);
19965 			} else {
19966 				up = (uint16_t *)&ip6h->ip6_src;
19967 
19968 				/* calculate pseudo-header checksum */
19969 				cksum = up[0] + up[1] + up[2] + up[3] +
19970 				    up[4] + up[5] + up[6] + up[7] +
19971 				    up[8] + up[9] + up[10] + up[11] +
19972 				    up[12] + up[13] + up[14] + up[15];
19973 
19974 				/* Fold the initial sum */
19975 				cksum = (cksum & 0xffff) + (cksum >> 16);
19976 
19977 				up = (uint16_t *)(((uchar_t *)ip6h) +
19978 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
19979 			}
19980 
19981 			if (hwcksum_flags & HCK_FULLCKSUM) {
19982 				/* clear checksum field for hardware */
19983 				*up = 0;
19984 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
19985 				uint32_t sum;
19986 
19987 				/* pseudo-header checksumming */
19988 				sum = *up + cksum + IP_TCP_CSUM_COMP;
19989 				sum = (sum & 0xFFFF) + (sum >> 16);
19990 				*up = (sum & 0xFFFF) + (sum >> 16);
19991 			} else {
19992 				/* software checksumming */
19993 				TCP_STAT(tcp_out_sw_cksum);
19994 				TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes,
19995 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
19996 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
19997 				    cksum + IP_TCP_CSUM_COMP);
19998 				if (*up == 0)
19999 					*up = 0xFFFF;
20000 			}
20001 
20002 			/* IPv4 header checksum */
20003 			if (af == AF_INET) {
20004 				ipha->ipha_fragment_offset_and_flags |=
20005 				    (uint32_t)htons(ire->ire_frag_flag);
20006 
20007 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
20008 					ipha->ipha_hdr_checksum = 0;
20009 				} else {
20010 					IP_HDR_CKSUM(ipha, cksum,
20011 					    ((uint32_t *)ipha)[0],
20012 					    ((uint16_t *)ipha)[4]);
20013 				}
20014 			}
20015 
20016 			/* advance header offset */
20017 			cur_hdr_off += hdr_frag_sz;
20018 
20019 			obbytes += tcp->tcp_last_sent_len;
20020 			++obsegs;
20021 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
20022 		    *tail_unsent > 0);
20023 
20024 		if ((*xmit_tail)->b_next == NULL) {
20025 			/*
20026 			 * Store the lbolt used for RTT estimation. We can only
20027 			 * record one timestamp per mblk so we do it when we
20028 			 * reach the end of the payload buffer. Also we only
20029 			 * take a new timestamp sample when the previous timed
20030 			 * data from the same mblk has been ack'ed.
20031 			 */
20032 			(*xmit_tail)->b_prev = local_time;
20033 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
20034 		}
20035 
20036 		ASSERT(*tail_unsent >= 0);
20037 		if (*tail_unsent > 0) {
20038 			/*
20039 			 * We got here because we broke out of the above
20040 			 * loop due to of one of the following cases:
20041 			 *
20042 			 *   1. len < adjusted MSS (i.e. small),
20043 			 *   2. Sender SWS avoidance,
20044 			 *   3. max_pld is zero.
20045 			 *
20046 			 * We are done for this Multidata, so trim our
20047 			 * last payload buffer (if any) accordingly.
20048 			 */
20049 			if (md_pbuf != NULL)
20050 				md_pbuf->b_wptr -= *tail_unsent;
20051 		} else if (*usable > 0) {
20052 			*xmit_tail = (*xmit_tail)->b_cont;
20053 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20054 			    (uintptr_t)INT_MAX);
20055 			*tail_unsent = (int)MBLKL(*xmit_tail);
20056 			add_buffer = B_TRUE;
20057 		}
20058 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
20059 	    (tcp_mdt_chain || max_pld > 0));
20060 
20061 	/* send everything down */
20062 	tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
20063 	    &rconfirm);
20064 
20065 #undef PREP_NEW_MULTIDATA
20066 #undef PREP_NEW_PBUF
20067 #undef IPVER
20068 
20069 	IRE_REFRELE(ire);
20070 	return (0);
20071 }
20072 
20073 /*
20074  * A wrapper function for sending one or more Multidata messages down to
20075  * the module below ip; this routine does not release the reference of the
20076  * IRE (caller does that).  This routine is analogous to tcp_send_data().
20077  */
20078 static void
20079 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
20080     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
20081 {
20082 	uint64_t delta;
20083 	nce_t *nce;
20084 
20085 	ASSERT(ire != NULL && ill != NULL);
20086 	ASSERT(ire->ire_stq != NULL);
20087 	ASSERT(md_mp_head != NULL);
20088 	ASSERT(rconfirm != NULL);
20089 
20090 	/* adjust MIBs and IRE timestamp */
20091 	TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT);
20092 	tcp->tcp_obsegs += obsegs;
20093 	UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs);
20094 	UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes);
20095 	TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs);
20096 
20097 	if (tcp->tcp_ipversion == IPV4_VERSION) {
20098 		TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs);
20099 		UPDATE_MIB(&ip_mib, ipOutRequests, obsegs);
20100 	} else {
20101 		TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs);
20102 		UPDATE_MIB(&ip6_mib, ipv6OutRequests, obsegs);
20103 	}
20104 
20105 	ire->ire_ob_pkt_count += obsegs;
20106 	if (ire->ire_ipif != NULL)
20107 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
20108 	ire->ire_last_used_time = lbolt;
20109 
20110 	/* send it down */
20111 	putnext(ire->ire_stq, md_mp_head);
20112 
20113 	/* we're done for TCP/IPv4 */
20114 	if (tcp->tcp_ipversion == IPV4_VERSION)
20115 		return;
20116 
20117 	nce = ire->ire_nce;
20118 
20119 	ASSERT(nce != NULL);
20120 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
20121 	ASSERT(nce->nce_state != ND_INCOMPLETE);
20122 
20123 	/* reachability confirmation? */
20124 	if (*rconfirm) {
20125 		nce->nce_last = TICK_TO_MSEC(lbolt64);
20126 		if (nce->nce_state != ND_REACHABLE) {
20127 			mutex_enter(&nce->nce_lock);
20128 			nce->nce_state = ND_REACHABLE;
20129 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
20130 			mutex_exit(&nce->nce_lock);
20131 			(void) untimeout(nce->nce_timeout_id);
20132 			if (ip_debug > 2) {
20133 				/* ip1dbg */
20134 				pr_addr_dbg("tcp_multisend_data: state "
20135 				    "for %s changed to REACHABLE\n",
20136 				    AF_INET6, &ire->ire_addr_v6);
20137 			}
20138 		}
20139 		/* reset transport reachability confirmation */
20140 		*rconfirm = B_FALSE;
20141 	}
20142 
20143 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
20144 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
20145 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
20146 
20147 	if (delta > (uint64_t)ill->ill_reachable_time) {
20148 		mutex_enter(&nce->nce_lock);
20149 		switch (nce->nce_state) {
20150 		case ND_REACHABLE:
20151 		case ND_STALE:
20152 			/*
20153 			 * ND_REACHABLE is identical to ND_STALE in this
20154 			 * specific case. If reachable time has expired for
20155 			 * this neighbor (delta is greater than reachable
20156 			 * time), conceptually, the neighbor cache is no
20157 			 * longer in REACHABLE state, but already in STALE
20158 			 * state.  So the correct transition here is to
20159 			 * ND_DELAY.
20160 			 */
20161 			nce->nce_state = ND_DELAY;
20162 			mutex_exit(&nce->nce_lock);
20163 			NDP_RESTART_TIMER(nce, delay_first_probe_time);
20164 			if (ip_debug > 3) {
20165 				/* ip2dbg */
20166 				pr_addr_dbg("tcp_multisend_data: state "
20167 				    "for %s changed to DELAY\n",
20168 				    AF_INET6, &ire->ire_addr_v6);
20169 			}
20170 			break;
20171 		case ND_DELAY:
20172 		case ND_PROBE:
20173 			mutex_exit(&nce->nce_lock);
20174 			/* Timers have already started */
20175 			break;
20176 		case ND_UNREACHABLE:
20177 			/*
20178 			 * ndp timer has detected that this nce is
20179 			 * unreachable and initiated deleting this nce
20180 			 * and all its associated IREs. This is a race
20181 			 * where we found the ire before it was deleted
20182 			 * and have just sent out a packet using this
20183 			 * unreachable nce.
20184 			 */
20185 			mutex_exit(&nce->nce_lock);
20186 			break;
20187 		default:
20188 			ASSERT(0);
20189 		}
20190 	}
20191 }
20192 
20193 /*
20194  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
20195  * scheme, and returns one of the following:
20196  *
20197  * -1 = failed allocation.
20198  *  0 = success; burst count reached, or usable send window is too small,
20199  *      and that we'd rather wait until later before sending again.
20200  *  1 = success; we are called from tcp_multisend(), and both usable send
20201  *      window and tail_unsent are greater than the MDT threshold, and thus
20202  *      Multidata Transmit should be used instead.
20203  */
20204 static int
20205 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
20206     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
20207     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
20208     const int mdt_thres)
20209 {
20210 	int num_burst_seg = tcp->tcp_snd_burst;
20211 
20212 	for (;;) {
20213 		struct datab	*db;
20214 		tcph_t		*tcph;
20215 		uint32_t	sum;
20216 		mblk_t		*mp, *mp1;
20217 		uchar_t		*rptr;
20218 		int		len;
20219 
20220 		/*
20221 		 * If we're called by tcp_multisend(), and the amount of
20222 		 * sendable data as well as the size of current xmit_tail
20223 		 * is beyond the MDT threshold, return to the caller and
20224 		 * let the large data transmit be done using MDT.
20225 		 */
20226 		if (*usable > 0 && *usable > mdt_thres &&
20227 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
20228 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
20229 			ASSERT(tcp->tcp_mdt);
20230 			return (1);	/* success; do large send */
20231 		}
20232 
20233 		if (num_burst_seg-- == 0)
20234 			break;		/* success; burst count reached */
20235 
20236 		len = mss;
20237 		if (len > *usable) {
20238 			len = *usable;
20239 			if (len <= 0) {
20240 				/* Terminate the loop */
20241 				break;	/* success; too small */
20242 			}
20243 			/*
20244 			 * Sender silly-window avoidance.
20245 			 * Ignore this if we are going to send a
20246 			 * zero window probe out.
20247 			 *
20248 			 * TODO: force data into microscopic window?
20249 			 *	==> (!pushed || (unsent > usable))
20250 			 */
20251 			if (len < (tcp->tcp_max_swnd >> 1) &&
20252 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
20253 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
20254 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
20255 				/*
20256 				 * If the retransmit timer is not running
20257 				 * we start it so that we will retransmit
20258 				 * in the case when the the receiver has
20259 				 * decremented the window.
20260 				 */
20261 				if (*snxt == tcp->tcp_snxt &&
20262 				    *snxt == tcp->tcp_suna) {
20263 					/*
20264 					 * We are not supposed to send
20265 					 * anything.  So let's wait a little
20266 					 * bit longer before breaking SWS
20267 					 * avoidance.
20268 					 *
20269 					 * What should the value be?
20270 					 * Suggestion: MAX(init rexmit time,
20271 					 * tcp->tcp_rto)
20272 					 */
20273 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20274 				}
20275 				break;	/* success; too small */
20276 			}
20277 		}
20278 
20279 		tcph = tcp->tcp_tcph;
20280 
20281 		*usable -= len; /* Approximate - can be adjusted later */
20282 		if (*usable > 0)
20283 			tcph->th_flags[0] = TH_ACK;
20284 		else
20285 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
20286 
20287 		/*
20288 		 * Prime pump for IP's checksumming on our behalf
20289 		 * Include the adjustment for a source route if any.
20290 		 */
20291 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20292 		sum = (sum >> 16) + (sum & 0xFFFF);
20293 		U16_TO_ABE16(sum, tcph->th_sum);
20294 
20295 		U32_TO_ABE32(*snxt, tcph->th_seq);
20296 
20297 		/*
20298 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
20299 		 * set.  For the case when TCP_FSS_VALID is the only valid
20300 		 * bit (normal active close), branch off only when we think
20301 		 * that the FIN flag needs to be set.  Note for this case,
20302 		 * that (snxt + len) may not reflect the actual seg_len,
20303 		 * as len may be further reduced in tcp_xmit_mp().  If len
20304 		 * gets modified, we will end up here again.
20305 		 */
20306 		if (tcp->tcp_valid_bits != 0 &&
20307 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
20308 		    ((*snxt + len) == tcp->tcp_fss))) {
20309 			uchar_t		*prev_rptr;
20310 			uint32_t	prev_snxt = tcp->tcp_snxt;
20311 
20312 			if (*tail_unsent == 0) {
20313 				ASSERT((*xmit_tail)->b_cont != NULL);
20314 				*xmit_tail = (*xmit_tail)->b_cont;
20315 				prev_rptr = (*xmit_tail)->b_rptr;
20316 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
20317 				    (*xmit_tail)->b_rptr);
20318 			} else {
20319 				prev_rptr = (*xmit_tail)->b_rptr;
20320 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
20321 				    *tail_unsent;
20322 			}
20323 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
20324 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
20325 			/* Restore tcp_snxt so we get amount sent right. */
20326 			tcp->tcp_snxt = prev_snxt;
20327 			if (prev_rptr == (*xmit_tail)->b_rptr) {
20328 				/*
20329 				 * If the previous timestamp is still in use,
20330 				 * don't stomp on it.
20331 				 */
20332 				if ((*xmit_tail)->b_next == NULL) {
20333 					(*xmit_tail)->b_prev = local_time;
20334 					(*xmit_tail)->b_next =
20335 					    (mblk_t *)(uintptr_t)(*snxt);
20336 				}
20337 			} else
20338 				(*xmit_tail)->b_rptr = prev_rptr;
20339 
20340 			if (mp == NULL)
20341 				return (-1);
20342 			mp1 = mp->b_cont;
20343 
20344 			tcp->tcp_last_sent_len = (ushort_t)len;
20345 			while (mp1->b_cont) {
20346 				*xmit_tail = (*xmit_tail)->b_cont;
20347 				(*xmit_tail)->b_prev = local_time;
20348 				(*xmit_tail)->b_next =
20349 				    (mblk_t *)(uintptr_t)(*snxt);
20350 				mp1 = mp1->b_cont;
20351 			}
20352 			*snxt += len;
20353 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
20354 			BUMP_LOCAL(tcp->tcp_obsegs);
20355 			BUMP_MIB(&tcp_mib, tcpOutDataSegs);
20356 			UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
20357 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
20358 			tcp_send_data(tcp, q, mp);
20359 			continue;
20360 		}
20361 
20362 		*snxt += len;	/* Adjust later if we don't send all of len */
20363 		BUMP_MIB(&tcp_mib, tcpOutDataSegs);
20364 		UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
20365 
20366 		if (*tail_unsent) {
20367 			/* Are the bytes above us in flight? */
20368 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
20369 			if (rptr != (*xmit_tail)->b_rptr) {
20370 				*tail_unsent -= len;
20371 				tcp->tcp_last_sent_len = (ushort_t)len;
20372 				len += tcp_hdr_len;
20373 				if (tcp->tcp_ipversion == IPV4_VERSION)
20374 					tcp->tcp_ipha->ipha_length = htons(len);
20375 				else
20376 					tcp->tcp_ip6h->ip6_plen =
20377 					    htons(len -
20378 					    ((char *)&tcp->tcp_ip6h[1] -
20379 					    tcp->tcp_iphc));
20380 				mp = dupb(*xmit_tail);
20381 				if (!mp)
20382 					return (-1);	/* out_of_mem */
20383 				mp->b_rptr = rptr;
20384 				/*
20385 				 * If the old timestamp is no longer in use,
20386 				 * sample a new timestamp now.
20387 				 */
20388 				if ((*xmit_tail)->b_next == NULL) {
20389 					(*xmit_tail)->b_prev = local_time;
20390 					(*xmit_tail)->b_next =
20391 					    (mblk_t *)(uintptr_t)(*snxt-len);
20392 				}
20393 				goto must_alloc;
20394 			}
20395 		} else {
20396 			*xmit_tail = (*xmit_tail)->b_cont;
20397 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
20398 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
20399 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
20400 			    (*xmit_tail)->b_rptr);
20401 		}
20402 
20403 		(*xmit_tail)->b_prev = local_time;
20404 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
20405 
20406 		*tail_unsent -= len;
20407 		tcp->tcp_last_sent_len = (ushort_t)len;
20408 
20409 		len += tcp_hdr_len;
20410 		if (tcp->tcp_ipversion == IPV4_VERSION)
20411 			tcp->tcp_ipha->ipha_length = htons(len);
20412 		else
20413 			tcp->tcp_ip6h->ip6_plen = htons(len -
20414 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
20415 
20416 		mp = dupb(*xmit_tail);
20417 		if (!mp)
20418 			return (-1);	/* out_of_mem */
20419 
20420 		len = tcp_hdr_len;
20421 		/*
20422 		 * There are four reasons to allocate a new hdr mblk:
20423 		 *  1) The bytes above us are in use by another packet
20424 		 *  2) We don't have good alignment
20425 		 *  3) The mblk is being shared
20426 		 *  4) We don't have enough room for a header
20427 		 */
20428 		rptr = mp->b_rptr - len;
20429 		if (!OK_32PTR(rptr) ||
20430 		    ((db = mp->b_datap), db->db_ref != 2) ||
20431 		    rptr < db->db_base) {
20432 			/* NOTE: we assume allocb returns an OK_32PTR */
20433 
20434 		must_alloc:;
20435 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
20436 			    tcp_wroff_xtra, BPRI_MED);
20437 			if (!mp1) {
20438 				freemsg(mp);
20439 				return (-1);	/* out_of_mem */
20440 			}
20441 			mp1->b_cont = mp;
20442 			mp = mp1;
20443 			/* Leave room for Link Level header */
20444 			len = tcp_hdr_len;
20445 			rptr = &mp->b_rptr[tcp_wroff_xtra];
20446 			mp->b_wptr = &rptr[len];
20447 		}
20448 
20449 		/*
20450 		 * Fill in the header using the template header, and add
20451 		 * options such as time-stamp, ECN and/or SACK, as needed.
20452 		 */
20453 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
20454 
20455 		mp->b_rptr = rptr;
20456 
20457 		if (*tail_unsent) {
20458 			int spill = *tail_unsent;
20459 
20460 			mp1 = mp->b_cont;
20461 			if (!mp1)
20462 				mp1 = mp;
20463 
20464 			/*
20465 			 * If we're a little short, tack on more mblks until
20466 			 * there is no more spillover.
20467 			 */
20468 			while (spill < 0) {
20469 				mblk_t *nmp;
20470 				int nmpsz;
20471 
20472 				nmp = (*xmit_tail)->b_cont;
20473 				nmpsz = MBLKL(nmp);
20474 
20475 				/*
20476 				 * Excess data in mblk; can we split it?
20477 				 * If MDT is enabled for the connection,
20478 				 * keep on splitting as this is a transient
20479 				 * send path.
20480 				 */
20481 				if (!tcp->tcp_mdt && (spill + nmpsz > 0)) {
20482 					/*
20483 					 * Don't split if stream head was
20484 					 * told to break up larger writes
20485 					 * into smaller ones.
20486 					 */
20487 					if (tcp->tcp_maxpsz > 0)
20488 						break;
20489 
20490 					/*
20491 					 * Next mblk is less than SMSS/2
20492 					 * rounded up to nearest 64-byte;
20493 					 * let it get sent as part of the
20494 					 * next segment.
20495 					 */
20496 					if (tcp->tcp_localnet &&
20497 					    !tcp->tcp_cork &&
20498 					    (nmpsz < roundup((mss >> 1), 64)))
20499 						break;
20500 				}
20501 
20502 				*xmit_tail = nmp;
20503 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
20504 				/* Stash for rtt use later */
20505 				(*xmit_tail)->b_prev = local_time;
20506 				(*xmit_tail)->b_next =
20507 				    (mblk_t *)(uintptr_t)(*snxt - len);
20508 				mp1->b_cont = dupb(*xmit_tail);
20509 				mp1 = mp1->b_cont;
20510 
20511 				spill += nmpsz;
20512 				if (mp1 == NULL) {
20513 					*tail_unsent = spill;
20514 					freemsg(mp);
20515 					return (-1);	/* out_of_mem */
20516 				}
20517 			}
20518 
20519 			/* Trim back any surplus on the last mblk */
20520 			if (spill >= 0) {
20521 				mp1->b_wptr -= spill;
20522 				*tail_unsent = spill;
20523 			} else {
20524 				/*
20525 				 * We did not send everything we could in
20526 				 * order to remain within the b_cont limit.
20527 				 */
20528 				*usable -= spill;
20529 				*snxt += spill;
20530 				tcp->tcp_last_sent_len += spill;
20531 				UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill);
20532 				/*
20533 				 * Adjust the checksum
20534 				 */
20535 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
20536 				sum += spill;
20537 				sum = (sum >> 16) + (sum & 0xFFFF);
20538 				U16_TO_ABE16(sum, tcph->th_sum);
20539 				if (tcp->tcp_ipversion == IPV4_VERSION) {
20540 					sum = ntohs(
20541 					    ((ipha_t *)rptr)->ipha_length) +
20542 					    spill;
20543 					((ipha_t *)rptr)->ipha_length =
20544 					    htons(sum);
20545 				} else {
20546 					sum = ntohs(
20547 					    ((ip6_t *)rptr)->ip6_plen) +
20548 					    spill;
20549 					((ip6_t *)rptr)->ip6_plen =
20550 					    htons(sum);
20551 				}
20552 				*tail_unsent = 0;
20553 			}
20554 		}
20555 		if (tcp->tcp_ip_forward_progress) {
20556 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20557 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
20558 			tcp->tcp_ip_forward_progress = B_FALSE;
20559 		}
20560 
20561 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
20562 		tcp_send_data(tcp, q, mp);
20563 		BUMP_LOCAL(tcp->tcp_obsegs);
20564 	}
20565 
20566 	return (0);
20567 }
20568 
20569 /* Unlink and return any mblk that looks like it contains a MDT info */
20570 static mblk_t *
20571 tcp_mdt_info_mp(mblk_t *mp)
20572 {
20573 	mblk_t	*prev_mp;
20574 
20575 	for (;;) {
20576 		prev_mp = mp;
20577 		/* no more to process? */
20578 		if ((mp = mp->b_cont) == NULL)
20579 			break;
20580 
20581 		switch (DB_TYPE(mp)) {
20582 		case M_CTL:
20583 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
20584 				continue;
20585 			ASSERT(prev_mp != NULL);
20586 			prev_mp->b_cont = mp->b_cont;
20587 			mp->b_cont = NULL;
20588 			return (mp);
20589 		default:
20590 			break;
20591 		}
20592 	}
20593 	return (mp);
20594 }
20595 
20596 /* MDT info update routine, called when IP notifies us about MDT */
20597 static void
20598 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
20599 {
20600 	boolean_t prev_state;
20601 
20602 	/*
20603 	 * IP is telling us to abort MDT on this connection?  We know
20604 	 * this because the capability is only turned off when IP
20605 	 * encounters some pathological cases, e.g. link-layer change
20606 	 * where the new driver doesn't support MDT, or in situation
20607 	 * where MDT usage on the link-layer has been switched off.
20608 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
20609 	 * if the link-layer doesn't support MDT, and if it does, it
20610 	 * will indicate that the feature is to be turned on.
20611 	 */
20612 	prev_state = tcp->tcp_mdt;
20613 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
20614 	if (!tcp->tcp_mdt && !first) {
20615 		TCP_STAT(tcp_mdt_conn_halted3);
20616 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
20617 		    (void *)tcp->tcp_connp));
20618 	}
20619 
20620 	/*
20621 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
20622 	 * so disable MDT otherwise.  The checks are done here
20623 	 * and in tcp_wput_data().
20624 	 */
20625 	if (tcp->tcp_mdt &&
20626 	    (tcp->tcp_ipversion == IPV4_VERSION &&
20627 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
20628 	    (tcp->tcp_ipversion == IPV6_VERSION &&
20629 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
20630 		tcp->tcp_mdt = B_FALSE;
20631 
20632 	if (tcp->tcp_mdt) {
20633 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
20634 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
20635 			    "version (%d), expected version is %d",
20636 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
20637 			tcp->tcp_mdt = B_FALSE;
20638 			return;
20639 		}
20640 
20641 		/*
20642 		 * We need the driver to be able to handle at least three
20643 		 * spans per packet in order for tcp MDT to be utilized.
20644 		 * The first is for the header portion, while the rest are
20645 		 * needed to handle a packet that straddles across two
20646 		 * virtually non-contiguous buffers; a typical tcp packet
20647 		 * therefore consists of only two spans.  Note that we take
20648 		 * a zero as "don't care".
20649 		 */
20650 		if (mdt_capab->ill_mdt_span_limit > 0 &&
20651 		    mdt_capab->ill_mdt_span_limit < 3) {
20652 			tcp->tcp_mdt = B_FALSE;
20653 			return;
20654 		}
20655 
20656 		/* a zero means driver wants default value */
20657 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
20658 		    tcp_mdt_max_pbufs);
20659 		if (tcp->tcp_mdt_max_pld == 0)
20660 			tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs;
20661 
20662 		/* ensure 32-bit alignment */
20663 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min,
20664 		    mdt_capab->ill_mdt_hdr_head), 4);
20665 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min,
20666 		    mdt_capab->ill_mdt_hdr_tail), 4);
20667 
20668 		if (!first && !prev_state) {
20669 			TCP_STAT(tcp_mdt_conn_resumed2);
20670 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
20671 			    (void *)tcp->tcp_connp));
20672 		}
20673 	}
20674 }
20675 
20676 static void
20677 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_mdt)
20678 {
20679 	conn_t *connp = tcp->tcp_connp;
20680 
20681 	ASSERT(ire != NULL);
20682 
20683 	/*
20684 	 * We may be in the fastpath here, and although we essentially do
20685 	 * similar checks as in ip_bind_connected{_v6}/ip_mdinfo_return,
20686 	 * we try to keep things as brief as possible.  After all, these
20687 	 * are only best-effort checks, and we do more thorough ones prior
20688 	 * to calling tcp_multisend().
20689 	 */
20690 	if (ip_multidata_outbound && check_mdt &&
20691 	    !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
20692 	    ill != NULL && ILL_MDT_CAPABLE(ill) &&
20693 	    !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
20694 	    !(ire->ire_flags & RTF_MULTIRT) &&
20695 	    !IPP_ENABLED(IPP_LOCAL_OUT) &&
20696 	    CONN_IS_MD_FASTPATH(connp)) {
20697 		/* Remember the result */
20698 		connp->conn_mdt_ok = B_TRUE;
20699 
20700 		ASSERT(ill->ill_mdt_capab != NULL);
20701 		if (!ill->ill_mdt_capab->ill_mdt_on) {
20702 			/*
20703 			 * If MDT has been previously turned off in the past,
20704 			 * and we currently can do MDT (due to IPQoS policy
20705 			 * removal, etc.) then enable it for this interface.
20706 			 */
20707 			ill->ill_mdt_capab->ill_mdt_on = 1;
20708 			ip1dbg(("tcp_ire_ill_check: connp %p enables MDT for "
20709 			    "interface %s\n", (void *)connp, ill->ill_name));
20710 		}
20711 		tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
20712 	}
20713 
20714 	/*
20715 	 * The goal is to reduce the number of generated tcp segments by
20716 	 * setting the maxpsz multiplier to 0; this will have an affect on
20717 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
20718 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
20719 	 * of outbound segments and incoming ACKs, thus allowing for better
20720 	 * network and system performance.  In contrast the legacy behavior
20721 	 * may result in sending less than SMSS size, because the last mblk
20722 	 * for some packets may have more data than needed to make up SMSS,
20723 	 * and the legacy code refused to "split" it.
20724 	 *
20725 	 * We apply the new behavior on following situations:
20726 	 *
20727 	 *   1) Loopback connections,
20728 	 *   2) Connections in which the remote peer is not on local subnet,
20729 	 *   3) Local subnet connections over the bge interface (see below).
20730 	 *
20731 	 * Ideally, we would like this behavior to apply for interfaces other
20732 	 * than bge.  However, doing so would negatively impact drivers which
20733 	 * perform dynamic mapping and unmapping of DMA resources, which are
20734 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
20735 	 * packet will be generated by tcp).  The bge driver does not suffer
20736 	 * from this, as it copies the mblks into pre-mapped buffers, and
20737 	 * therefore does not require more I/O resources than before.
20738 	 *
20739 	 * Otherwise, this behavior is present on all network interfaces when
20740 	 * the destination endpoint is non-local, since reducing the number
20741 	 * of packets in general is good for the network.
20742 	 *
20743 	 * TODO We need to remove this hard-coded conditional for bge once
20744 	 *	a better "self-tuning" mechanism, or a way to comprehend
20745 	 *	the driver transmit strategy is devised.  Until the solution
20746 	 *	is found and well understood, we live with this hack.
20747 	 */
20748 	if (!tcp_static_maxpsz &&
20749 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
20750 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
20751 		/* override the default value */
20752 		tcp->tcp_maxpsz = 0;
20753 
20754 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
20755 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
20756 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
20757 	}
20758 
20759 	/* set the stream head parameters accordingly */
20760 	(void) tcp_maxpsz_set(tcp, B_TRUE);
20761 }
20762 
20763 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
20764 static void
20765 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
20766 {
20767 	uchar_t	fval = *mp->b_rptr;
20768 	mblk_t	*tail;
20769 	queue_t	*q = tcp->tcp_wq;
20770 
20771 	/* TODO: How should flush interact with urgent data? */
20772 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
20773 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
20774 		/*
20775 		 * Flush only data that has not yet been put on the wire.  If
20776 		 * we flush data that we have already transmitted, life, as we
20777 		 * know it, may come to an end.
20778 		 */
20779 		tail = tcp->tcp_xmit_tail;
20780 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
20781 		tcp->tcp_xmit_tail_unsent = 0;
20782 		tcp->tcp_unsent = 0;
20783 		if (tail->b_wptr != tail->b_rptr)
20784 			tail = tail->b_cont;
20785 		if (tail) {
20786 			mblk_t **excess = &tcp->tcp_xmit_head;
20787 			for (;;) {
20788 				mblk_t *mp1 = *excess;
20789 				if (mp1 == tail)
20790 					break;
20791 				tcp->tcp_xmit_tail = mp1;
20792 				tcp->tcp_xmit_last = mp1;
20793 				excess = &mp1->b_cont;
20794 			}
20795 			*excess = NULL;
20796 			tcp_close_mpp(&tail);
20797 			if (tcp->tcp_snd_zcopy_aware)
20798 				tcp_zcopy_notify(tcp);
20799 		}
20800 		/*
20801 		 * We have no unsent data, so unsent must be less than
20802 		 * tcp_xmit_lowater, so re-enable flow.
20803 		 */
20804 		if (tcp->tcp_flow_stopped) {
20805 			tcp_clrqfull(tcp);
20806 		}
20807 	}
20808 	/*
20809 	 * TODO: you can't just flush these, you have to increase rwnd for one
20810 	 * thing.  For another, how should urgent data interact?
20811 	 */
20812 	if (fval & FLUSHR) {
20813 		*mp->b_rptr = fval & ~FLUSHW;
20814 		/* XXX */
20815 		qreply(q, mp);
20816 		return;
20817 	}
20818 	freemsg(mp);
20819 }
20820 
20821 /*
20822  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
20823  * messages.
20824  */
20825 static void
20826 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
20827 {
20828 	mblk_t	*mp1;
20829 	STRUCT_HANDLE(strbuf, sb);
20830 	uint16_t port;
20831 	queue_t 	*q = tcp->tcp_wq;
20832 	in6_addr_t	v6addr;
20833 	ipaddr_t	v4addr;
20834 	uint32_t	flowinfo = 0;
20835 	int		addrlen;
20836 
20837 	/* Make sure it is one of ours. */
20838 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
20839 	case TI_GETMYNAME:
20840 	case TI_GETPEERNAME:
20841 		break;
20842 	default:
20843 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
20844 		return;
20845 	}
20846 	switch (mi_copy_state(q, mp, &mp1)) {
20847 	case -1:
20848 		return;
20849 	case MI_COPY_CASE(MI_COPY_IN, 1):
20850 		break;
20851 	case MI_COPY_CASE(MI_COPY_OUT, 1):
20852 		/* Copy out the strbuf. */
20853 		mi_copyout(q, mp);
20854 		return;
20855 	case MI_COPY_CASE(MI_COPY_OUT, 2):
20856 		/* All done. */
20857 		mi_copy_done(q, mp, 0);
20858 		return;
20859 	default:
20860 		mi_copy_done(q, mp, EPROTO);
20861 		return;
20862 	}
20863 	/* Check alignment of the strbuf */
20864 	if (!OK_32PTR(mp1->b_rptr)) {
20865 		mi_copy_done(q, mp, EINVAL);
20866 		return;
20867 	}
20868 
20869 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
20870 	    (void *)mp1->b_rptr);
20871 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
20872 
20873 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
20874 		mi_copy_done(q, mp, EINVAL);
20875 		return;
20876 	}
20877 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
20878 	case TI_GETMYNAME:
20879 		if (tcp->tcp_family == AF_INET) {
20880 			if (tcp->tcp_ipversion == IPV4_VERSION) {
20881 				v4addr = tcp->tcp_ipha->ipha_src;
20882 			} else {
20883 				/* can't return an address in this case */
20884 				v4addr = 0;
20885 			}
20886 		} else {
20887 			/* tcp->tcp_family == AF_INET6 */
20888 			if (tcp->tcp_ipversion == IPV4_VERSION) {
20889 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
20890 				    &v6addr);
20891 			} else {
20892 				v6addr = tcp->tcp_ip6h->ip6_src;
20893 			}
20894 		}
20895 		port = tcp->tcp_lport;
20896 		break;
20897 	case TI_GETPEERNAME:
20898 		if (tcp->tcp_family == AF_INET) {
20899 			if (tcp->tcp_ipversion == IPV4_VERSION) {
20900 				IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
20901 				    v4addr);
20902 			} else {
20903 				/* can't return an address in this case */
20904 				v4addr = 0;
20905 			}
20906 		} else {
20907 			/* tcp->tcp_family == AF_INET6) */
20908 			v6addr = tcp->tcp_remote_v6;
20909 			if (tcp->tcp_ipversion == IPV6_VERSION) {
20910 				/*
20911 				 * No flowinfo if tcp->tcp_ipversion is v4.
20912 				 *
20913 				 * flowinfo was already initialized to zero
20914 				 * where it was declared above, so only
20915 				 * set it if ipversion is v6.
20916 				 */
20917 				flowinfo = tcp->tcp_ip6h->ip6_vcf &
20918 				    ~IPV6_VERS_AND_FLOW_MASK;
20919 			}
20920 		}
20921 		port = tcp->tcp_fport;
20922 		break;
20923 	default:
20924 		mi_copy_done(q, mp, EPROTO);
20925 		return;
20926 	}
20927 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
20928 	if (!mp1)
20929 		return;
20930 
20931 	if (tcp->tcp_family == AF_INET) {
20932 		sin_t *sin;
20933 
20934 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
20935 		sin = (sin_t *)mp1->b_rptr;
20936 		mp1->b_wptr = (uchar_t *)&sin[1];
20937 		*sin = sin_null;
20938 		sin->sin_family = AF_INET;
20939 		sin->sin_addr.s_addr = v4addr;
20940 		sin->sin_port = port;
20941 	} else {
20942 		/* tcp->tcp_family == AF_INET6 */
20943 		sin6_t *sin6;
20944 
20945 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
20946 		sin6 = (sin6_t *)mp1->b_rptr;
20947 		mp1->b_wptr = (uchar_t *)&sin6[1];
20948 		*sin6 = sin6_null;
20949 		sin6->sin6_family = AF_INET6;
20950 		sin6->sin6_flowinfo = flowinfo;
20951 		sin6->sin6_addr = v6addr;
20952 		sin6->sin6_port = port;
20953 	}
20954 	/* Copy out the address */
20955 	mi_copyout(q, mp);
20956 }
20957 
20958 /*
20959  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
20960  * messages.
20961  */
20962 /* ARGSUSED */
20963 static void
20964 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
20965 {
20966 	conn_t 	*connp = (conn_t *)arg;
20967 	tcp_t	*tcp = connp->conn_tcp;
20968 	queue_t	*q = tcp->tcp_wq;
20969 	struct iocblk	*iocp;
20970 
20971 	ASSERT(DB_TYPE(mp) == M_IOCTL);
20972 	/*
20973 	 * Try and ASSERT the minimum possible references on the
20974 	 * conn early enough. Since we are executing on write side,
20975 	 * the connection is obviously not detached and that means
20976 	 * there is a ref each for TCP and IP. Since we are behind
20977 	 * the squeue, the minimum references needed are 3. If the
20978 	 * conn is in classifier hash list, there should be an
20979 	 * extra ref for that (we check both the possibilities).
20980 	 */
20981 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
20982 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
20983 
20984 	iocp = (struct iocblk *)mp->b_rptr;
20985 	switch (iocp->ioc_cmd) {
20986 	case TCP_IOC_DEFAULT_Q:
20987 		/* Wants to be the default wq. */
20988 		if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
20989 			iocp->ioc_error = EPERM;
20990 			iocp->ioc_count = 0;
20991 			mp->b_datap->db_type = M_IOCACK;
20992 			qreply(q, mp);
20993 			return;
20994 		}
20995 		tcp_def_q_set(tcp, mp);
20996 		return;
20997 	case _SIOCSOCKFALLBACK:
20998 		/*
20999 		 * Either sockmod is about to be popped and the socket
21000 		 * would now be treated as a plain stream, or a module
21001 		 * is about to be pushed so we could no longer use read-
21002 		 * side synchronous streams for fused loopback tcp.
21003 		 * Drain any queued data and disable direct sockfs
21004 		 * interface from now on.
21005 		 */
21006 		if (!tcp->tcp_issocket) {
21007 			DB_TYPE(mp) = M_IOCNAK;
21008 			iocp->ioc_error = EINVAL;
21009 		} else {
21010 #ifdef	_ILP32
21011 			tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
21012 #else
21013 			tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
21014 #endif
21015 			/*
21016 			 * Insert this socket into the acceptor hash.
21017 			 * We might need it for T_CONN_RES message
21018 			 */
21019 			tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
21020 
21021 			if (tcp->tcp_fused) {
21022 				/*
21023 				 * This is a fused loopback tcp; disable
21024 				 * read-side synchronous streams interface
21025 				 * and drain any queued data.  It is okay
21026 				 * to do this for non-synchronous streams
21027 				 * fused tcp as well.
21028 				 */
21029 				tcp_fuse_disable_pair(tcp, B_FALSE);
21030 			}
21031 			tcp->tcp_issocket = B_FALSE;
21032 			TCP_STAT(tcp_sock_fallback);
21033 
21034 			DB_TYPE(mp) = M_IOCACK;
21035 			iocp->ioc_error = 0;
21036 		}
21037 		iocp->ioc_count = 0;
21038 		iocp->ioc_rval = 0;
21039 		qreply(q, mp);
21040 		return;
21041 	}
21042 	CALL_IP_WPUT(connp, q, mp);
21043 }
21044 
21045 /*
21046  * This routine is called by tcp_wput() to handle all TPI requests.
21047  */
21048 /* ARGSUSED */
21049 static void
21050 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
21051 {
21052 	conn_t 	*connp = (conn_t *)arg;
21053 	tcp_t	*tcp = connp->conn_tcp;
21054 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
21055 	uchar_t *rptr;
21056 	t_scalar_t type;
21057 	int len;
21058 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
21059 
21060 	/*
21061 	 * Try and ASSERT the minimum possible references on the
21062 	 * conn early enough. Since we are executing on write side,
21063 	 * the connection is obviously not detached and that means
21064 	 * there is a ref each for TCP and IP. Since we are behind
21065 	 * the squeue, the minimum references needed are 3. If the
21066 	 * conn is in classifier hash list, there should be an
21067 	 * extra ref for that (we check both the possibilities).
21068 	 */
21069 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21070 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21071 
21072 	rptr = mp->b_rptr;
21073 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
21074 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
21075 		type = ((union T_primitives *)rptr)->type;
21076 		if (type == T_EXDATA_REQ) {
21077 			uint32_t msize = msgdsize(mp->b_cont);
21078 
21079 			len = msize - 1;
21080 			if (len < 0) {
21081 				freemsg(mp);
21082 				return;
21083 			}
21084 			/*
21085 			 * Try to force urgent data out on the wire.
21086 			 * Even if we have unsent data this will
21087 			 * at least send the urgent flag.
21088 			 * XXX does not handle more flag correctly.
21089 			 */
21090 			len += tcp->tcp_unsent;
21091 			len += tcp->tcp_snxt;
21092 			tcp->tcp_urg = len;
21093 			tcp->tcp_valid_bits |= TCP_URG_VALID;
21094 
21095 			/* Bypass tcp protocol for fused tcp loopback */
21096 			if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
21097 				return;
21098 		} else if (type != T_DATA_REQ) {
21099 			goto non_urgent_data;
21100 		}
21101 		/* TODO: options, flags, ... from user */
21102 		/* Set length to zero for reclamation below */
21103 		tcp_wput_data(tcp, mp->b_cont, B_TRUE);
21104 		freeb(mp);
21105 		return;
21106 	} else {
21107 		if (tcp->tcp_debug) {
21108 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21109 			    "tcp_wput_proto, dropping one...");
21110 		}
21111 		freemsg(mp);
21112 		return;
21113 	}
21114 
21115 non_urgent_data:
21116 
21117 	switch ((int)tprim->type) {
21118 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
21119 		/*
21120 		 * save the kssl_ent_t from the next block, and convert this
21121 		 * back to a normal bind_req.
21122 		 */
21123 		if (mp->b_cont != NULL) {
21124 		    ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
21125 
21126 			if (tcp->tcp_kssl_ent != NULL) {
21127 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
21128 				    KSSL_NO_PROXY);
21129 				tcp->tcp_kssl_ent = NULL;
21130 			}
21131 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
21132 			    sizeof (kssl_ent_t));
21133 			kssl_hold_ent(tcp->tcp_kssl_ent);
21134 			freemsg(mp->b_cont);
21135 			mp->b_cont = NULL;
21136 		}
21137 		tprim->type = T_BIND_REQ;
21138 
21139 	/* FALLTHROUGH */
21140 	case O_T_BIND_REQ:	/* bind request */
21141 	case T_BIND_REQ:	/* new semantics bind request */
21142 		tcp_bind(tcp, mp);
21143 		break;
21144 	case T_UNBIND_REQ:	/* unbind request */
21145 		tcp_unbind(tcp, mp);
21146 		break;
21147 	case O_T_CONN_RES:	/* old connection response XXX */
21148 	case T_CONN_RES:	/* connection response */
21149 		tcp_accept(tcp, mp);
21150 		break;
21151 	case T_CONN_REQ:	/* connection request */
21152 		tcp_connect(tcp, mp);
21153 		break;
21154 	case T_DISCON_REQ:	/* disconnect request */
21155 		tcp_disconnect(tcp, mp);
21156 		break;
21157 	case T_CAPABILITY_REQ:
21158 		tcp_capability_req(tcp, mp);	/* capability request */
21159 		break;
21160 	case T_INFO_REQ:	/* information request */
21161 		tcp_info_req(tcp, mp);
21162 		break;
21163 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
21164 		/* Only IP is allowed to return meaningful value */
21165 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
21166 		break;
21167 	case T_OPTMGMT_REQ:
21168 		/*
21169 		 * Note:  no support for snmpcom_req() through new
21170 		 * T_OPTMGMT_REQ. See comments in ip.c
21171 		 */
21172 		/* Only IP is allowed to return meaningful value */
21173 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
21174 		break;
21175 
21176 	case T_UNITDATA_REQ:	/* unitdata request */
21177 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21178 		break;
21179 	case T_ORDREL_REQ:	/* orderly release req */
21180 		freemsg(mp);
21181 
21182 		if (tcp->tcp_fused)
21183 			tcp_unfuse(tcp);
21184 
21185 		if (tcp_xmit_end(tcp) != 0) {
21186 			/*
21187 			 * We were crossing FINs and got a reset from
21188 			 * the other side. Just ignore it.
21189 			 */
21190 			if (tcp->tcp_debug) {
21191 				(void) strlog(TCP_MOD_ID, 0, 1,
21192 				    SL_ERROR|SL_TRACE,
21193 				    "tcp_wput_proto, T_ORDREL_REQ out of "
21194 				    "state %s",
21195 				    tcp_display(tcp, NULL,
21196 				    DISP_ADDR_AND_PORT));
21197 			}
21198 		}
21199 		break;
21200 	case T_ADDR_REQ:
21201 		tcp_addr_req(tcp, mp);
21202 		break;
21203 	default:
21204 		if (tcp->tcp_debug) {
21205 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21206 			    "tcp_wput_proto, bogus TPI msg, type %d",
21207 			    tprim->type);
21208 		}
21209 		/*
21210 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
21211 		 * to recover.
21212 		 */
21213 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21214 		break;
21215 	}
21216 }
21217 
21218 /*
21219  * The TCP write service routine should never be called...
21220  */
21221 /* ARGSUSED */
21222 static void
21223 tcp_wsrv(queue_t *q)
21224 {
21225 	TCP_STAT(tcp_wsrv_called);
21226 }
21227 
21228 /* Non overlapping byte exchanger */
21229 static void
21230 tcp_xchg(uchar_t *a, uchar_t *b, int len)
21231 {
21232 	uchar_t	uch;
21233 
21234 	while (len-- > 0) {
21235 		uch = a[len];
21236 		a[len] = b[len];
21237 		b[len] = uch;
21238 	}
21239 }
21240 
21241 /*
21242  * Send out a control packet on the tcp connection specified.  This routine
21243  * is typically called where we need a simple ACK or RST generated.
21244  */
21245 static void
21246 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
21247 {
21248 	uchar_t		*rptr;
21249 	tcph_t		*tcph;
21250 	ipha_t		*ipha = NULL;
21251 	ip6_t		*ip6h = NULL;
21252 	uint32_t	sum;
21253 	int		tcp_hdr_len;
21254 	int		tcp_ip_hdr_len;
21255 	mblk_t		*mp;
21256 
21257 	/*
21258 	 * Save sum for use in source route later.
21259 	 */
21260 	ASSERT(tcp != NULL);
21261 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
21262 	tcp_hdr_len = tcp->tcp_hdr_len;
21263 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
21264 
21265 	/* If a text string is passed in with the request, pass it to strlog. */
21266 	if (str != NULL && tcp->tcp_debug) {
21267 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
21268 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
21269 		    str, seq, ack, ctl);
21270 	}
21271 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra,
21272 	    BPRI_MED);
21273 	if (mp == NULL) {
21274 		return;
21275 	}
21276 	rptr = &mp->b_rptr[tcp_wroff_xtra];
21277 	mp->b_rptr = rptr;
21278 	mp->b_wptr = &rptr[tcp_hdr_len];
21279 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
21280 
21281 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21282 		ipha = (ipha_t *)rptr;
21283 		ipha->ipha_length = htons(tcp_hdr_len);
21284 	} else {
21285 		ip6h = (ip6_t *)rptr;
21286 		ASSERT(tcp != NULL);
21287 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
21288 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21289 	}
21290 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
21291 	tcph->th_flags[0] = (uint8_t)ctl;
21292 	if (ctl & TH_RST) {
21293 		BUMP_MIB(&tcp_mib, tcpOutRsts);
21294 		BUMP_MIB(&tcp_mib, tcpOutControl);
21295 		/*
21296 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
21297 		 */
21298 		if (tcp->tcp_snd_ts_ok &&
21299 		    tcp->tcp_state > TCPS_SYN_SENT) {
21300 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
21301 			*(mp->b_wptr) = TCPOPT_EOL;
21302 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21303 				ipha->ipha_length = htons(tcp_hdr_len -
21304 				    TCPOPT_REAL_TS_LEN);
21305 			} else {
21306 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
21307 				    TCPOPT_REAL_TS_LEN);
21308 			}
21309 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
21310 			sum -= TCPOPT_REAL_TS_LEN;
21311 		}
21312 	}
21313 	if (ctl & TH_ACK) {
21314 		if (tcp->tcp_snd_ts_ok) {
21315 			U32_TO_BE32(lbolt,
21316 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
21317 			U32_TO_BE32(tcp->tcp_ts_recent,
21318 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
21319 		}
21320 
21321 		/* Update the latest receive window size in TCP header. */
21322 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
21323 		    tcph->th_win);
21324 		tcp->tcp_rack = ack;
21325 		tcp->tcp_rack_cnt = 0;
21326 		BUMP_MIB(&tcp_mib, tcpOutAck);
21327 	}
21328 	BUMP_LOCAL(tcp->tcp_obsegs);
21329 	U32_TO_BE32(seq, tcph->th_seq);
21330 	U32_TO_BE32(ack, tcph->th_ack);
21331 	/*
21332 	 * Include the adjustment for a source route if any.
21333 	 */
21334 	sum = (sum >> 16) + (sum & 0xFFFF);
21335 	U16_TO_BE16(sum, tcph->th_sum);
21336 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21337 	tcp_send_data(tcp, tcp->tcp_wq, mp);
21338 }
21339 
21340 /*
21341  * If this routine returns B_TRUE, TCP can generate a RST in response
21342  * to a segment.  If it returns B_FALSE, TCP should not respond.
21343  */
21344 static boolean_t
21345 tcp_send_rst_chk(void)
21346 {
21347 	clock_t	now;
21348 
21349 	/*
21350 	 * TCP needs to protect itself from generating too many RSTs.
21351 	 * This can be a DoS attack by sending us random segments
21352 	 * soliciting RSTs.
21353 	 *
21354 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
21355 	 * in each 1 second interval.  In this way, TCP still generate
21356 	 * RSTs in normal cases but when under attack, the impact is
21357 	 * limited.
21358 	 */
21359 	if (tcp_rst_sent_rate_enabled != 0) {
21360 		now = lbolt;
21361 		/* lbolt can wrap around. */
21362 		if ((tcp_last_rst_intrvl > now) ||
21363 		    (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) {
21364 			tcp_last_rst_intrvl = now;
21365 			tcp_rst_cnt = 1;
21366 		} else if (++tcp_rst_cnt > tcp_rst_sent_rate) {
21367 			return (B_FALSE);
21368 		}
21369 	}
21370 	return (B_TRUE);
21371 }
21372 
21373 /*
21374  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
21375  */
21376 static void
21377 tcp_ip_ire_mark_advice(tcp_t *tcp)
21378 {
21379 	mblk_t *mp;
21380 	ipic_t *ipic;
21381 
21382 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21383 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
21384 		    &ipic);
21385 	} else {
21386 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
21387 		    &ipic);
21388 	}
21389 	if (mp == NULL)
21390 		return;
21391 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
21392 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
21393 }
21394 
21395 /*
21396  * Return an IP advice ioctl mblk and set ipic to be the pointer
21397  * to the advice structure.
21398  */
21399 static mblk_t *
21400 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
21401 {
21402 	struct iocblk *ioc;
21403 	mblk_t *mp, *mp1;
21404 
21405 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
21406 	if (mp == NULL)
21407 		return (NULL);
21408 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
21409 	*ipic = (ipic_t *)mp->b_rptr;
21410 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
21411 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
21412 
21413 	bcopy(addr, *ipic + 1, addr_len);
21414 
21415 	(*ipic)->ipic_addr_length = addr_len;
21416 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
21417 
21418 	mp1 = mkiocb(IP_IOCTL);
21419 	if (mp1 == NULL) {
21420 		freemsg(mp);
21421 		return (NULL);
21422 	}
21423 	mp1->b_cont = mp;
21424 	ioc = (struct iocblk *)mp1->b_rptr;
21425 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
21426 
21427 	return (mp1);
21428 }
21429 
21430 /*
21431  * Generate a reset based on an inbound packet for which there is no active
21432  * tcp state that we can find.
21433  *
21434  * IPSEC NOTE : Try to send the reply with the same protection as it came
21435  * in.  We still have the ipsec_mp that the packet was attached to. Thus
21436  * the packet will go out at the same level of protection as it came in by
21437  * converting the IPSEC_IN to IPSEC_OUT.
21438  */
21439 static void
21440 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
21441     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid)
21442 {
21443 	ipha_t		*ipha = NULL;
21444 	ip6_t		*ip6h = NULL;
21445 	ushort_t	len;
21446 	tcph_t		*tcph;
21447 	int		i;
21448 	mblk_t		*ipsec_mp;
21449 	boolean_t	mctl_present;
21450 	ipic_t		*ipic;
21451 	ipaddr_t	v4addr;
21452 	in6_addr_t	v6addr;
21453 	int		addr_len;
21454 	void		*addr;
21455 	queue_t		*q = tcp_g_q;
21456 	tcp_t		*tcp = Q_TO_TCP(q);
21457 	cred_t		*cr;
21458 	mblk_t		*nmp;
21459 
21460 	if (!tcp_send_rst_chk()) {
21461 		tcp_rst_unsent++;
21462 		freemsg(mp);
21463 		return;
21464 	}
21465 
21466 	if (mp->b_datap->db_type == M_CTL) {
21467 		ipsec_mp = mp;
21468 		mp = mp->b_cont;
21469 		mctl_present = B_TRUE;
21470 	} else {
21471 		ipsec_mp = mp;
21472 		mctl_present = B_FALSE;
21473 	}
21474 
21475 	if (str && q && tcp_dbg) {
21476 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
21477 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
21478 		    "flags 0x%x",
21479 		    str, seq, ack, ctl);
21480 	}
21481 	if (mp->b_datap->db_ref != 1) {
21482 		mblk_t *mp1 = copyb(mp);
21483 		freemsg(mp);
21484 		mp = mp1;
21485 		if (!mp) {
21486 			if (mctl_present)
21487 				freeb(ipsec_mp);
21488 			return;
21489 		} else {
21490 			if (mctl_present) {
21491 				ipsec_mp->b_cont = mp;
21492 			} else {
21493 				ipsec_mp = mp;
21494 			}
21495 		}
21496 	} else if (mp->b_cont) {
21497 		freemsg(mp->b_cont);
21498 		mp->b_cont = NULL;
21499 	}
21500 	/*
21501 	 * We skip reversing source route here.
21502 	 * (for now we replace all IP options with EOL)
21503 	 */
21504 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21505 		ipha = (ipha_t *)mp->b_rptr;
21506 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
21507 			mp->b_rptr[i] = IPOPT_EOL;
21508 		/*
21509 		 * Make sure that src address isn't flagrantly invalid.
21510 		 * Not all broadcast address checking for the src address
21511 		 * is possible, since we don't know the netmask of the src
21512 		 * addr.  No check for destination address is done, since
21513 		 * IP will not pass up a packet with a broadcast dest
21514 		 * address to TCP.  Similar checks are done below for IPv6.
21515 		 */
21516 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
21517 		    CLASSD(ipha->ipha_src)) {
21518 			freemsg(ipsec_mp);
21519 			BUMP_MIB(&ip_mib, ipInDiscards);
21520 			return;
21521 		}
21522 	} else {
21523 		ip6h = (ip6_t *)mp->b_rptr;
21524 
21525 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
21526 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
21527 			freemsg(ipsec_mp);
21528 			BUMP_MIB(&ip6_mib, ipv6InDiscards);
21529 			return;
21530 		}
21531 
21532 		/* Remove any extension headers assuming partial overlay */
21533 		if (ip_hdr_len > IPV6_HDR_LEN) {
21534 			uint8_t *to;
21535 
21536 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
21537 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
21538 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
21539 			ip_hdr_len = IPV6_HDR_LEN;
21540 			ip6h = (ip6_t *)mp->b_rptr;
21541 			ip6h->ip6_nxt = IPPROTO_TCP;
21542 		}
21543 	}
21544 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
21545 	if (tcph->th_flags[0] & TH_RST) {
21546 		freemsg(ipsec_mp);
21547 		return;
21548 	}
21549 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
21550 	len = ip_hdr_len + sizeof (tcph_t);
21551 	mp->b_wptr = &mp->b_rptr[len];
21552 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21553 		ipha->ipha_length = htons(len);
21554 		/* Swap addresses */
21555 		v4addr = ipha->ipha_src;
21556 		ipha->ipha_src = ipha->ipha_dst;
21557 		ipha->ipha_dst = v4addr;
21558 		ipha->ipha_ident = 0;
21559 		ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl;
21560 		addr_len = IP_ADDR_LEN;
21561 		addr = &v4addr;
21562 	} else {
21563 		/* No ip6i_t in this case */
21564 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
21565 		/* Swap addresses */
21566 		v6addr = ip6h->ip6_src;
21567 		ip6h->ip6_src = ip6h->ip6_dst;
21568 		ip6h->ip6_dst = v6addr;
21569 		ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit;
21570 		addr_len = IPV6_ADDR_LEN;
21571 		addr = &v6addr;
21572 	}
21573 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
21574 	U32_TO_BE32(ack, tcph->th_ack);
21575 	U32_TO_BE32(seq, tcph->th_seq);
21576 	U16_TO_BE16(0, tcph->th_win);
21577 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
21578 	tcph->th_flags[0] = (uint8_t)ctl;
21579 	if (ctl & TH_RST) {
21580 		BUMP_MIB(&tcp_mib, tcpOutRsts);
21581 		BUMP_MIB(&tcp_mib, tcpOutControl);
21582 	}
21583 
21584 	/* IP trusts us to set up labels when required. */
21585 	if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL &&
21586 	    crgetlabel(cr) != NULL) {
21587 		int err, adjust;
21588 
21589 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
21590 			err = tsol_check_label(cr, &mp, &adjust,
21591 			    tcp->tcp_connp->conn_mac_exempt);
21592 		else
21593 			err = tsol_check_label_v6(cr, &mp, &adjust,
21594 			    tcp->tcp_connp->conn_mac_exempt);
21595 		if (mctl_present)
21596 			ipsec_mp->b_cont = mp;
21597 		else
21598 			ipsec_mp = mp;
21599 		if (err != 0) {
21600 			freemsg(ipsec_mp);
21601 			return;
21602 		}
21603 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21604 			ipha = (ipha_t *)mp->b_rptr;
21605 			adjust += ntohs(ipha->ipha_length);
21606 			ipha->ipha_length = htons(adjust);
21607 		} else {
21608 			ip6h = (ip6_t *)mp->b_rptr;
21609 		}
21610 	}
21611 
21612 	if (mctl_present) {
21613 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
21614 
21615 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
21616 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
21617 			return;
21618 		}
21619 	}
21620 	if (zoneid == ALL_ZONES)
21621 		zoneid = GLOBAL_ZONEID;
21622 
21623 	/* Add the zoneid so ip_output routes it properly */
21624 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid)) == NULL) {
21625 		freemsg(ipsec_mp);
21626 		return;
21627 	}
21628 	ipsec_mp = nmp;
21629 
21630 	/*
21631 	 * NOTE:  one might consider tracing a TCP packet here, but
21632 	 * this function has no active TCP state and no tcp structure
21633 	 * that has a trace buffer.  If we traced here, we would have
21634 	 * to keep a local trace buffer in tcp_record_trace().
21635 	 *
21636 	 * TSol note: The mblk that contains the incoming packet was
21637 	 * reused by tcp_xmit_listener_reset, so it already contains
21638 	 * the right credentials and we don't need to call mblk_setcred.
21639 	 * Also the conn's cred is not right since it is associated
21640 	 * with tcp_g_q.
21641 	 */
21642 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
21643 
21644 	/*
21645 	 * Tell IP to mark the IRE used for this destination temporary.
21646 	 * This way, we can limit our exposure to DoS attack because IP
21647 	 * creates an IRE for each destination.  If there are too many,
21648 	 * the time to do any routing lookup will be extremely long.  And
21649 	 * the lookup can be in interrupt context.
21650 	 *
21651 	 * Note that in normal circumstances, this marking should not
21652 	 * affect anything.  It would be nice if only 1 message is
21653 	 * needed to inform IP that the IRE created for this RST should
21654 	 * not be added to the cache table.  But there is currently
21655 	 * not such communication mechanism between TCP and IP.  So
21656 	 * the best we can do now is to send the advice ioctl to IP
21657 	 * to mark the IRE temporary.
21658 	 */
21659 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
21660 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
21661 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
21662 	}
21663 }
21664 
21665 /*
21666  * Initiate closedown sequence on an active connection.  (May be called as
21667  * writer.)  Return value zero for OK return, non-zero for error return.
21668  */
21669 static int
21670 tcp_xmit_end(tcp_t *tcp)
21671 {
21672 	ipic_t	*ipic;
21673 	mblk_t	*mp;
21674 
21675 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
21676 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
21677 		/*
21678 		 * Invalid state, only states TCPS_SYN_RCVD,
21679 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
21680 		 */
21681 		return (-1);
21682 	}
21683 
21684 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
21685 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
21686 	/*
21687 	 * If there is nothing more unsent, send the FIN now.
21688 	 * Otherwise, it will go out with the last segment.
21689 	 */
21690 	if (tcp->tcp_unsent == 0) {
21691 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
21692 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
21693 
21694 		if (mp) {
21695 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21696 			tcp_send_data(tcp, tcp->tcp_wq, mp);
21697 		} else {
21698 			/*
21699 			 * Couldn't allocate msg.  Pretend we got it out.
21700 			 * Wait for rexmit timeout.
21701 			 */
21702 			tcp->tcp_snxt = tcp->tcp_fss + 1;
21703 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
21704 		}
21705 
21706 		/*
21707 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
21708 		 * changed.
21709 		 */
21710 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
21711 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
21712 		}
21713 	} else {
21714 		/*
21715 		 * If tcp->tcp_cork is set, then the data will not get sent,
21716 		 * so we have to check that and unset it first.
21717 		 */
21718 		if (tcp->tcp_cork)
21719 			tcp->tcp_cork = B_FALSE;
21720 		tcp_wput_data(tcp, NULL, B_FALSE);
21721 	}
21722 
21723 	/*
21724 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
21725 	 * is 0, don't update the cache.
21726 	 */
21727 	if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates)
21728 		return (0);
21729 
21730 	/*
21731 	 * NOTE: should not update if source routes i.e. if tcp_remote if
21732 	 * different from the destination.
21733 	 */
21734 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21735 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
21736 			return (0);
21737 		}
21738 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
21739 		    &ipic);
21740 	} else {
21741 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
21742 		    &tcp->tcp_ip6h->ip6_dst))) {
21743 			return (0);
21744 		}
21745 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
21746 		    &ipic);
21747 	}
21748 
21749 	/* Record route attributes in the IRE for use by future connections. */
21750 	if (mp == NULL)
21751 		return (0);
21752 
21753 	/*
21754 	 * We do not have a good algorithm to update ssthresh at this time.
21755 	 * So don't do any update.
21756 	 */
21757 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
21758 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
21759 
21760 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
21761 	return (0);
21762 }
21763 
21764 /*
21765  * Generate a "no listener here" RST in response to an "unknown" segment.
21766  * Note that we are reusing the incoming mp to construct the outgoing
21767  * RST.
21768  */
21769 void
21770 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid)
21771 {
21772 	uchar_t		*rptr;
21773 	uint32_t	seg_len;
21774 	tcph_t		*tcph;
21775 	uint32_t	seg_seq;
21776 	uint32_t	seg_ack;
21777 	uint_t		flags;
21778 	mblk_t		*ipsec_mp;
21779 	ipha_t 		*ipha;
21780 	ip6_t 		*ip6h;
21781 	boolean_t	mctl_present = B_FALSE;
21782 	boolean_t	check = B_TRUE;
21783 	boolean_t	policy_present;
21784 
21785 	TCP_STAT(tcp_no_listener);
21786 
21787 	ipsec_mp = mp;
21788 
21789 	if (mp->b_datap->db_type == M_CTL) {
21790 		ipsec_in_t *ii;
21791 
21792 		mctl_present = B_TRUE;
21793 		mp = mp->b_cont;
21794 
21795 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
21796 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
21797 		if (ii->ipsec_in_dont_check) {
21798 			check = B_FALSE;
21799 			if (!ii->ipsec_in_secure) {
21800 				freeb(ipsec_mp);
21801 				mctl_present = B_FALSE;
21802 				ipsec_mp = mp;
21803 			}
21804 		}
21805 	}
21806 
21807 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21808 		policy_present = ipsec_inbound_v4_policy_present;
21809 		ipha = (ipha_t *)mp->b_rptr;
21810 		ip6h = NULL;
21811 	} else {
21812 		policy_present = ipsec_inbound_v6_policy_present;
21813 		ipha = NULL;
21814 		ip6h = (ip6_t *)mp->b_rptr;
21815 	}
21816 
21817 	if (check && policy_present) {
21818 		/*
21819 		 * The conn_t parameter is NULL because we already know
21820 		 * nobody's home.
21821 		 */
21822 		ipsec_mp = ipsec_check_global_policy(
21823 			ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present);
21824 		if (ipsec_mp == NULL)
21825 			return;
21826 	}
21827 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
21828 		DTRACE_PROBE2(
21829 		    tx__ip__log__error__nolistener__tcp,
21830 		    char *, "Could not reply with RST to mp(1)",
21831 		    mblk_t *, mp);
21832 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
21833 		freemsg(ipsec_mp);
21834 		return;
21835 	}
21836 
21837 	rptr = mp->b_rptr;
21838 
21839 	tcph = (tcph_t *)&rptr[ip_hdr_len];
21840 	seg_seq = BE32_TO_U32(tcph->th_seq);
21841 	seg_ack = BE32_TO_U32(tcph->th_ack);
21842 	flags = tcph->th_flags[0];
21843 
21844 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
21845 	if (flags & TH_RST) {
21846 		freemsg(ipsec_mp);
21847 	} else if (flags & TH_ACK) {
21848 		tcp_xmit_early_reset("no tcp, reset",
21849 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid);
21850 	} else {
21851 		if (flags & TH_SYN) {
21852 			seg_len++;
21853 		} else {
21854 			/*
21855 			 * Here we violate the RFC.  Note that a normal
21856 			 * TCP will never send a segment without the ACK
21857 			 * flag, except for RST or SYN segment.  This
21858 			 * segment is neither.  Just drop it on the
21859 			 * floor.
21860 			 */
21861 			freemsg(ipsec_mp);
21862 			tcp_rst_unsent++;
21863 			return;
21864 		}
21865 
21866 		tcp_xmit_early_reset("no tcp, reset/ack",
21867 		    ipsec_mp, 0, seg_seq + seg_len,
21868 		    TH_RST | TH_ACK, ip_hdr_len, zoneid);
21869 	}
21870 }
21871 
21872 /*
21873  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
21874  * ip and tcp header ready to pass down to IP.  If the mp passed in is
21875  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
21876  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
21877  * otherwise it will dup partial mblks.)
21878  * Otherwise, an appropriate ACK packet will be generated.  This
21879  * routine is not usually called to send new data for the first time.  It
21880  * is mostly called out of the timer for retransmits, and to generate ACKs.
21881  *
21882  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
21883  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
21884  * of the original mblk chain will be returned in *offset and *end_mp.
21885  */
21886 static mblk_t *
21887 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
21888     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
21889     boolean_t rexmit)
21890 {
21891 	int	data_length;
21892 	int32_t	off = 0;
21893 	uint_t	flags;
21894 	mblk_t	*mp1;
21895 	mblk_t	*mp2;
21896 	uchar_t	*rptr;
21897 	tcph_t	*tcph;
21898 	int32_t	num_sack_blk = 0;
21899 	int32_t	sack_opt_len = 0;
21900 
21901 	/* Allocate for our maximum TCP header + link-level */
21902 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra,
21903 	    BPRI_MED);
21904 	if (!mp1)
21905 		return (NULL);
21906 	data_length = 0;
21907 
21908 	/*
21909 	 * Note that tcp_mss has been adjusted to take into account the
21910 	 * timestamp option if applicable.  Because SACK options do not
21911 	 * appear in every TCP segments and they are of variable lengths,
21912 	 * they cannot be included in tcp_mss.  Thus we need to calculate
21913 	 * the actual segment length when we need to send a segment which
21914 	 * includes SACK options.
21915 	 */
21916 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
21917 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
21918 		    tcp->tcp_num_sack_blk);
21919 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
21920 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
21921 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
21922 			max_to_send -= sack_opt_len;
21923 	}
21924 
21925 	if (offset != NULL) {
21926 		off = *offset;
21927 		/* We use offset as an indicator that end_mp is not NULL. */
21928 		*end_mp = NULL;
21929 	}
21930 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
21931 		/* This could be faster with cooperation from downstream */
21932 		if (mp2 != mp1 && !sendall &&
21933 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
21934 		    max_to_send)
21935 			/*
21936 			 * Don't send the next mblk since the whole mblk
21937 			 * does not fit.
21938 			 */
21939 			break;
21940 		mp2->b_cont = dupb(mp);
21941 		mp2 = mp2->b_cont;
21942 		if (!mp2) {
21943 			freemsg(mp1);
21944 			return (NULL);
21945 		}
21946 		mp2->b_rptr += off;
21947 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
21948 		    (uintptr_t)INT_MAX);
21949 
21950 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
21951 		if (data_length > max_to_send) {
21952 			mp2->b_wptr -= data_length - max_to_send;
21953 			data_length = max_to_send;
21954 			off = mp2->b_wptr - mp->b_rptr;
21955 			break;
21956 		} else {
21957 			off = 0;
21958 		}
21959 	}
21960 	if (offset != NULL) {
21961 		*offset = off;
21962 		*end_mp = mp;
21963 	}
21964 	if (seg_len != NULL) {
21965 		*seg_len = data_length;
21966 	}
21967 
21968 	/* Update the latest receive window size in TCP header. */
21969 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
21970 	    tcp->tcp_tcph->th_win);
21971 
21972 	rptr = mp1->b_rptr + tcp_wroff_xtra;
21973 	mp1->b_rptr = rptr;
21974 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
21975 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
21976 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
21977 	U32_TO_ABE32(seq, tcph->th_seq);
21978 
21979 	/*
21980 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
21981 	 * that this function was called from tcp_wput_data. Thus, when called
21982 	 * to retransmit data the setting of the PUSH bit may appear some
21983 	 * what random in that it might get set when it should not. This
21984 	 * should not pose any performance issues.
21985 	 */
21986 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
21987 	    tcp->tcp_unsent == data_length)) {
21988 		flags = TH_ACK | TH_PUSH;
21989 	} else {
21990 		flags = TH_ACK;
21991 	}
21992 
21993 	if (tcp->tcp_ecn_ok) {
21994 		if (tcp->tcp_ecn_echo_on)
21995 			flags |= TH_ECE;
21996 
21997 		/*
21998 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
21999 		 * There is no TCP flow control for non-data segments, and
22000 		 * only data segment is transmitted reliably.
22001 		 */
22002 		if (data_length > 0 && !rexmit) {
22003 			SET_ECT(tcp, rptr);
22004 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
22005 				flags |= TH_CWR;
22006 				tcp->tcp_ecn_cwr_sent = B_TRUE;
22007 			}
22008 		}
22009 	}
22010 
22011 	if (tcp->tcp_valid_bits) {
22012 		uint32_t u1;
22013 
22014 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
22015 		    seq == tcp->tcp_iss) {
22016 			uchar_t	*wptr;
22017 
22018 			/*
22019 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
22020 			 * TCP can only be in SYN-SENT, SYN-RCVD or
22021 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
22022 			 * our SYN is not ack'ed but the app closes this
22023 			 * TCP connection.
22024 			 */
22025 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
22026 			    tcp->tcp_state == TCPS_SYN_RCVD ||
22027 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
22028 
22029 			/*
22030 			 * Tack on the MSS option.  It is always needed
22031 			 * for both active and passive open.
22032 			 *
22033 			 * MSS option value should be interface MTU - MIN
22034 			 * TCP/IP header according to RFC 793 as it means
22035 			 * the maximum segment size TCP can receive.  But
22036 			 * to get around some broken middle boxes/end hosts
22037 			 * out there, we allow the option value to be the
22038 			 * same as the MSS option size on the peer side.
22039 			 * In this way, the other side will not send
22040 			 * anything larger than they can receive.
22041 			 *
22042 			 * Note that for SYN_SENT state, the ndd param
22043 			 * tcp_use_smss_as_mss_opt has no effect as we
22044 			 * don't know the peer's MSS option value. So
22045 			 * the only case we need to take care of is in
22046 			 * SYN_RCVD state, which is done later.
22047 			 */
22048 			wptr = mp1->b_wptr;
22049 			wptr[0] = TCPOPT_MAXSEG;
22050 			wptr[1] = TCPOPT_MAXSEG_LEN;
22051 			wptr += 2;
22052 			u1 = tcp->tcp_if_mtu -
22053 			    (tcp->tcp_ipversion == IPV4_VERSION ?
22054 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
22055 			    TCP_MIN_HEADER_LENGTH;
22056 			U16_TO_BE16(u1, wptr);
22057 			mp1->b_wptr = wptr + 2;
22058 			/* Update the offset to cover the additional word */
22059 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
22060 
22061 			/*
22062 			 * Note that the following way of filling in
22063 			 * TCP options are not optimal.  Some NOPs can
22064 			 * be saved.  But there is no need at this time
22065 			 * to optimize it.  When it is needed, we will
22066 			 * do it.
22067 			 */
22068 			switch (tcp->tcp_state) {
22069 			case TCPS_SYN_SENT:
22070 				flags = TH_SYN;
22071 
22072 				if (tcp->tcp_snd_ts_ok) {
22073 					uint32_t llbolt = (uint32_t)lbolt;
22074 
22075 					wptr = mp1->b_wptr;
22076 					wptr[0] = TCPOPT_NOP;
22077 					wptr[1] = TCPOPT_NOP;
22078 					wptr[2] = TCPOPT_TSTAMP;
22079 					wptr[3] = TCPOPT_TSTAMP_LEN;
22080 					wptr += 4;
22081 					U32_TO_BE32(llbolt, wptr);
22082 					wptr += 4;
22083 					ASSERT(tcp->tcp_ts_recent == 0);
22084 					U32_TO_BE32(0L, wptr);
22085 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
22086 					tcph->th_offset_and_rsrvd[0] +=
22087 					    (3 << 4);
22088 				}
22089 
22090 				/*
22091 				 * Set up all the bits to tell other side
22092 				 * we are ECN capable.
22093 				 */
22094 				if (tcp->tcp_ecn_ok) {
22095 					flags |= (TH_ECE | TH_CWR);
22096 				}
22097 				break;
22098 			case TCPS_SYN_RCVD:
22099 				flags |= TH_SYN;
22100 
22101 				/*
22102 				 * Reset the MSS option value to be SMSS
22103 				 * We should probably add back the bytes
22104 				 * for timestamp option and IPsec.  We
22105 				 * don't do that as this is a workaround
22106 				 * for broken middle boxes/end hosts, it
22107 				 * is better for us to be more cautious.
22108 				 * They may not take these things into
22109 				 * account in their SMSS calculation.  Thus
22110 				 * the peer's calculated SMSS may be smaller
22111 				 * than what it can be.  This should be OK.
22112 				 */
22113 				if (tcp_use_smss_as_mss_opt) {
22114 					u1 = tcp->tcp_mss;
22115 					U16_TO_BE16(u1, wptr);
22116 				}
22117 
22118 				/*
22119 				 * If the other side is ECN capable, reply
22120 				 * that we are also ECN capable.
22121 				 */
22122 				if (tcp->tcp_ecn_ok)
22123 					flags |= TH_ECE;
22124 				break;
22125 			default:
22126 				/*
22127 				 * The above ASSERT() makes sure that this
22128 				 * must be FIN-WAIT-1 state.  Our SYN has
22129 				 * not been ack'ed so retransmit it.
22130 				 */
22131 				flags |= TH_SYN;
22132 				break;
22133 			}
22134 
22135 			if (tcp->tcp_snd_ws_ok) {
22136 				wptr = mp1->b_wptr;
22137 				wptr[0] =  TCPOPT_NOP;
22138 				wptr[1] =  TCPOPT_WSCALE;
22139 				wptr[2] =  TCPOPT_WS_LEN;
22140 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
22141 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
22142 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22143 			}
22144 
22145 			if (tcp->tcp_snd_sack_ok) {
22146 				wptr = mp1->b_wptr;
22147 				wptr[0] = TCPOPT_NOP;
22148 				wptr[1] = TCPOPT_NOP;
22149 				wptr[2] = TCPOPT_SACK_PERMITTED;
22150 				wptr[3] = TCPOPT_SACK_OK_LEN;
22151 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
22152 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22153 			}
22154 
22155 			/* allocb() of adequate mblk assures space */
22156 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
22157 			    (uintptr_t)INT_MAX);
22158 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
22159 			/*
22160 			 * Get IP set to checksum on our behalf
22161 			 * Include the adjustment for a source route if any.
22162 			 */
22163 			u1 += tcp->tcp_sum;
22164 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
22165 			U16_TO_BE16(u1, tcph->th_sum);
22166 			BUMP_MIB(&tcp_mib, tcpOutControl);
22167 		}
22168 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
22169 		    (seq + data_length) == tcp->tcp_fss) {
22170 			if (!tcp->tcp_fin_acked) {
22171 				flags |= TH_FIN;
22172 				BUMP_MIB(&tcp_mib, tcpOutControl);
22173 			}
22174 			if (!tcp->tcp_fin_sent) {
22175 				tcp->tcp_fin_sent = B_TRUE;
22176 				switch (tcp->tcp_state) {
22177 				case TCPS_SYN_RCVD:
22178 				case TCPS_ESTABLISHED:
22179 					tcp->tcp_state = TCPS_FIN_WAIT_1;
22180 					break;
22181 				case TCPS_CLOSE_WAIT:
22182 					tcp->tcp_state = TCPS_LAST_ACK;
22183 					break;
22184 				}
22185 				if (tcp->tcp_suna == tcp->tcp_snxt)
22186 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22187 				tcp->tcp_snxt = tcp->tcp_fss + 1;
22188 			}
22189 		}
22190 		/*
22191 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
22192 		 * is smaller than seq, u1 will become a very huge value.
22193 		 * So the comparison will fail.  Also note that tcp_urp
22194 		 * should be positive, see RFC 793 page 17.
22195 		 */
22196 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
22197 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
22198 		    u1 < (uint32_t)(64 * 1024)) {
22199 			flags |= TH_URG;
22200 			BUMP_MIB(&tcp_mib, tcpOutUrg);
22201 			U32_TO_ABE16(u1, tcph->th_urp);
22202 		}
22203 	}
22204 	tcph->th_flags[0] = (uchar_t)flags;
22205 	tcp->tcp_rack = tcp->tcp_rnxt;
22206 	tcp->tcp_rack_cnt = 0;
22207 
22208 	if (tcp->tcp_snd_ts_ok) {
22209 		if (tcp->tcp_state != TCPS_SYN_SENT) {
22210 			uint32_t llbolt = (uint32_t)lbolt;
22211 
22212 			U32_TO_BE32(llbolt,
22213 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22214 			U32_TO_BE32(tcp->tcp_ts_recent,
22215 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22216 		}
22217 	}
22218 
22219 	if (num_sack_blk > 0) {
22220 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
22221 		sack_blk_t *tmp;
22222 		int32_t	i;
22223 
22224 		wptr[0] = TCPOPT_NOP;
22225 		wptr[1] = TCPOPT_NOP;
22226 		wptr[2] = TCPOPT_SACK;
22227 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
22228 		    sizeof (sack_blk_t);
22229 		wptr += TCPOPT_REAL_SACK_LEN;
22230 
22231 		tmp = tcp->tcp_sack_list;
22232 		for (i = 0; i < num_sack_blk; i++) {
22233 			U32_TO_BE32(tmp[i].begin, wptr);
22234 			wptr += sizeof (tcp_seq);
22235 			U32_TO_BE32(tmp[i].end, wptr);
22236 			wptr += sizeof (tcp_seq);
22237 		}
22238 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
22239 	}
22240 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22241 	data_length += (int)(mp1->b_wptr - rptr);
22242 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22243 		((ipha_t *)rptr)->ipha_length = htons(data_length);
22244 	} else {
22245 		ip6_t *ip6 = (ip6_t *)(rptr +
22246 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
22247 		    sizeof (ip6i_t) : 0));
22248 
22249 		ip6->ip6_plen = htons(data_length -
22250 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22251 	}
22252 
22253 	/*
22254 	 * Prime pump for IP
22255 	 * Include the adjustment for a source route if any.
22256 	 */
22257 	data_length -= tcp->tcp_ip_hdr_len;
22258 	data_length += tcp->tcp_sum;
22259 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
22260 	U16_TO_ABE16(data_length, tcph->th_sum);
22261 	if (tcp->tcp_ip_forward_progress) {
22262 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
22263 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
22264 		tcp->tcp_ip_forward_progress = B_FALSE;
22265 	}
22266 	return (mp1);
22267 }
22268 
22269 /* This function handles the push timeout. */
22270 void
22271 tcp_push_timer(void *arg)
22272 {
22273 	conn_t	*connp = (conn_t *)arg;
22274 	tcp_t *tcp = connp->conn_tcp;
22275 
22276 	TCP_DBGSTAT(tcp_push_timer_cnt);
22277 
22278 	ASSERT(tcp->tcp_listener == NULL);
22279 
22280 	/*
22281 	 * We need to plug synchronous streams during our drain to prevent
22282 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
22283 	 */
22284 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
22285 	tcp->tcp_push_tid = 0;
22286 	if ((tcp->tcp_rcv_list != NULL) &&
22287 	    (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED))
22288 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
22289 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
22290 }
22291 
22292 /*
22293  * This function handles delayed ACK timeout.
22294  */
22295 static void
22296 tcp_ack_timer(void *arg)
22297 {
22298 	conn_t	*connp = (conn_t *)arg;
22299 	tcp_t *tcp = connp->conn_tcp;
22300 	mblk_t *mp;
22301 
22302 	TCP_DBGSTAT(tcp_ack_timer_cnt);
22303 
22304 	tcp->tcp_ack_tid = 0;
22305 
22306 	if (tcp->tcp_fused)
22307 		return;
22308 
22309 	/*
22310 	 * Do not send ACK if there is no outstanding unack'ed data.
22311 	 */
22312 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
22313 		return;
22314 	}
22315 
22316 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
22317 		/*
22318 		 * Make sure we don't allow deferred ACKs to result in
22319 		 * timer-based ACKing.  If we have held off an ACK
22320 		 * when there was more than an mss here, and the timer
22321 		 * goes off, we have to worry about the possibility
22322 		 * that the sender isn't doing slow-start, or is out
22323 		 * of step with us for some other reason.  We fall
22324 		 * permanently back in the direction of
22325 		 * ACK-every-other-packet as suggested in RFC 1122.
22326 		 */
22327 		if (tcp->tcp_rack_abs_max > 2)
22328 			tcp->tcp_rack_abs_max--;
22329 		tcp->tcp_rack_cur_max = 2;
22330 	}
22331 	mp = tcp_ack_mp(tcp);
22332 
22333 	if (mp != NULL) {
22334 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22335 		BUMP_LOCAL(tcp->tcp_obsegs);
22336 		BUMP_MIB(&tcp_mib, tcpOutAck);
22337 		BUMP_MIB(&tcp_mib, tcpOutAckDelayed);
22338 		tcp_send_data(tcp, tcp->tcp_wq, mp);
22339 	}
22340 }
22341 
22342 
22343 /* Generate an ACK-only (no data) segment for a TCP endpoint */
22344 static mblk_t *
22345 tcp_ack_mp(tcp_t *tcp)
22346 {
22347 	uint32_t	seq_no;
22348 
22349 	/*
22350 	 * There are a few cases to be considered while setting the sequence no.
22351 	 * Essentially, we can come here while processing an unacceptable pkt
22352 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
22353 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
22354 	 * If we are here for a zero window probe, stick with suna. In all
22355 	 * other cases, we check if suna + swnd encompasses snxt and set
22356 	 * the sequence number to snxt, if so. If snxt falls outside the
22357 	 * window (the receiver probably shrunk its window), we will go with
22358 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
22359 	 * receiver.
22360 	 */
22361 	if (tcp->tcp_zero_win_probe) {
22362 		seq_no = tcp->tcp_suna;
22363 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
22364 		ASSERT(tcp->tcp_swnd == 0);
22365 		seq_no = tcp->tcp_snxt;
22366 	} else {
22367 		seq_no = SEQ_GT(tcp->tcp_snxt,
22368 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
22369 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
22370 	}
22371 
22372 	if (tcp->tcp_valid_bits) {
22373 		/*
22374 		 * For the complex case where we have to send some
22375 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
22376 		 */
22377 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
22378 		    NULL, B_FALSE));
22379 	} else {
22380 		/* Generate a simple ACK */
22381 		int	data_length;
22382 		uchar_t	*rptr;
22383 		tcph_t	*tcph;
22384 		mblk_t	*mp1;
22385 		int32_t	tcp_hdr_len;
22386 		int32_t	tcp_tcp_hdr_len;
22387 		int32_t	num_sack_blk = 0;
22388 		int32_t sack_opt_len;
22389 
22390 		/*
22391 		 * Allocate space for TCP + IP headers
22392 		 * and link-level header
22393 		 */
22394 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
22395 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
22396 			    tcp->tcp_num_sack_blk);
22397 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
22398 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
22399 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
22400 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
22401 		} else {
22402 			tcp_hdr_len = tcp->tcp_hdr_len;
22403 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
22404 		}
22405 		mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED);
22406 		if (!mp1)
22407 			return (NULL);
22408 
22409 		/* Update the latest receive window size in TCP header. */
22410 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22411 		    tcp->tcp_tcph->th_win);
22412 		/* copy in prototype TCP + IP header */
22413 		rptr = mp1->b_rptr + tcp_wroff_xtra;
22414 		mp1->b_rptr = rptr;
22415 		mp1->b_wptr = rptr + tcp_hdr_len;
22416 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
22417 
22418 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
22419 
22420 		/* Set the TCP sequence number. */
22421 		U32_TO_ABE32(seq_no, tcph->th_seq);
22422 
22423 		/* Set up the TCP flag field. */
22424 		tcph->th_flags[0] = (uchar_t)TH_ACK;
22425 		if (tcp->tcp_ecn_echo_on)
22426 			tcph->th_flags[0] |= TH_ECE;
22427 
22428 		tcp->tcp_rack = tcp->tcp_rnxt;
22429 		tcp->tcp_rack_cnt = 0;
22430 
22431 		/* fill in timestamp option if in use */
22432 		if (tcp->tcp_snd_ts_ok) {
22433 			uint32_t llbolt = (uint32_t)lbolt;
22434 
22435 			U32_TO_BE32(llbolt,
22436 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22437 			U32_TO_BE32(tcp->tcp_ts_recent,
22438 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22439 		}
22440 
22441 		/* Fill in SACK options */
22442 		if (num_sack_blk > 0) {
22443 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
22444 			sack_blk_t *tmp;
22445 			int32_t	i;
22446 
22447 			wptr[0] = TCPOPT_NOP;
22448 			wptr[1] = TCPOPT_NOP;
22449 			wptr[2] = TCPOPT_SACK;
22450 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
22451 			    sizeof (sack_blk_t);
22452 			wptr += TCPOPT_REAL_SACK_LEN;
22453 
22454 			tmp = tcp->tcp_sack_list;
22455 			for (i = 0; i < num_sack_blk; i++) {
22456 				U32_TO_BE32(tmp[i].begin, wptr);
22457 				wptr += sizeof (tcp_seq);
22458 				U32_TO_BE32(tmp[i].end, wptr);
22459 				wptr += sizeof (tcp_seq);
22460 			}
22461 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
22462 			    << 4);
22463 		}
22464 
22465 		if (tcp->tcp_ipversion == IPV4_VERSION) {
22466 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
22467 		} else {
22468 			/* Check for ip6i_t header in sticky hdrs */
22469 			ip6_t *ip6 = (ip6_t *)(rptr +
22470 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
22471 			    sizeof (ip6i_t) : 0));
22472 
22473 			ip6->ip6_plen = htons(tcp_hdr_len -
22474 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22475 		}
22476 
22477 		/*
22478 		 * Prime pump for checksum calculation in IP.  Include the
22479 		 * adjustment for a source route if any.
22480 		 */
22481 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
22482 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
22483 		U16_TO_ABE16(data_length, tcph->th_sum);
22484 
22485 		if (tcp->tcp_ip_forward_progress) {
22486 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
22487 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
22488 			tcp->tcp_ip_forward_progress = B_FALSE;
22489 		}
22490 		return (mp1);
22491 	}
22492 }
22493 
22494 /*
22495  * To create a temporary tcp structure for inserting into bind hash list.
22496  * The parameter is assumed to be in network byte order, ready for use.
22497  */
22498 /* ARGSUSED */
22499 static tcp_t *
22500 tcp_alloc_temp_tcp(in_port_t port)
22501 {
22502 	conn_t	*connp;
22503 	tcp_t	*tcp;
22504 
22505 	connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP);
22506 	if (connp == NULL)
22507 		return (NULL);
22508 
22509 	tcp = connp->conn_tcp;
22510 
22511 	/*
22512 	 * Only initialize the necessary info in those structures.  Note
22513 	 * that since INADDR_ANY is all 0, we do not need to set
22514 	 * tcp_bound_source to INADDR_ANY here.
22515 	 */
22516 	tcp->tcp_state = TCPS_BOUND;
22517 	tcp->tcp_lport = port;
22518 	tcp->tcp_exclbind = 1;
22519 	tcp->tcp_reserved_port = 1;
22520 
22521 	/* Just for place holding... */
22522 	tcp->tcp_ipversion = IPV4_VERSION;
22523 
22524 	return (tcp);
22525 }
22526 
22527 /*
22528  * To remove a port range specified by lo_port and hi_port from the
22529  * reserved port ranges.  This is one of the three public functions of
22530  * the reserved port interface.  Note that a port range has to be removed
22531  * as a whole.  Ports in a range cannot be removed individually.
22532  *
22533  * Params:
22534  *	in_port_t lo_port: the beginning port of the reserved port range to
22535  *		be deleted.
22536  *	in_port_t hi_port: the ending port of the reserved port range to
22537  *		be deleted.
22538  *
22539  * Return:
22540  *	B_TRUE if the deletion is successful, B_FALSE otherwise.
22541  */
22542 boolean_t
22543 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port)
22544 {
22545 	int	i, j;
22546 	int	size;
22547 	tcp_t	**temp_tcp_array;
22548 	tcp_t	*tcp;
22549 
22550 	rw_enter(&tcp_reserved_port_lock, RW_WRITER);
22551 
22552 	/* First make sure that the port ranage is indeed reserved. */
22553 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
22554 		if (tcp_reserved_port[i].lo_port == lo_port) {
22555 			hi_port = tcp_reserved_port[i].hi_port;
22556 			temp_tcp_array = tcp_reserved_port[i].temp_tcp_array;
22557 			break;
22558 		}
22559 	}
22560 	if (i == tcp_reserved_port_array_size) {
22561 		rw_exit(&tcp_reserved_port_lock);
22562 		return (B_FALSE);
22563 	}
22564 
22565 	/*
22566 	 * Remove the range from the array.  This simple loop is possible
22567 	 * because port ranges are inserted in ascending order.
22568 	 */
22569 	for (j = i; j < tcp_reserved_port_array_size - 1; j++) {
22570 		tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port;
22571 		tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port;
22572 		tcp_reserved_port[j].temp_tcp_array =
22573 		    tcp_reserved_port[j+1].temp_tcp_array;
22574 	}
22575 
22576 	/* Remove all the temporary tcp structures. */
22577 	size = hi_port - lo_port + 1;
22578 	while (size > 0) {
22579 		tcp = temp_tcp_array[size - 1];
22580 		ASSERT(tcp != NULL);
22581 		tcp_bind_hash_remove(tcp);
22582 		CONN_DEC_REF(tcp->tcp_connp);
22583 		size--;
22584 	}
22585 	kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *));
22586 	tcp_reserved_port_array_size--;
22587 	rw_exit(&tcp_reserved_port_lock);
22588 	return (B_TRUE);
22589 }
22590 
22591 /*
22592  * Macro to remove temporary tcp structure from the bind hash list.  The
22593  * first parameter is the list of tcp to be removed.  The second parameter
22594  * is the number of tcps in the array.
22595  */
22596 #define	TCP_TMP_TCP_REMOVE(tcp_array, num) \
22597 { \
22598 	while ((num) > 0) { \
22599 		tcp_t *tcp = (tcp_array)[(num) - 1]; \
22600 		tf_t *tbf; \
22601 		tcp_t *tcpnext; \
22602 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \
22603 		mutex_enter(&tbf->tf_lock); \
22604 		tcpnext = tcp->tcp_bind_hash; \
22605 		if (tcpnext) { \
22606 			tcpnext->tcp_ptpbhn = \
22607 				tcp->tcp_ptpbhn; \
22608 		} \
22609 		*tcp->tcp_ptpbhn = tcpnext; \
22610 		mutex_exit(&tbf->tf_lock); \
22611 		kmem_free(tcp, sizeof (tcp_t)); \
22612 		(tcp_array)[(num) - 1] = NULL; \
22613 		(num)--; \
22614 	} \
22615 }
22616 
22617 /*
22618  * The public interface for other modules to call to reserve a port range
22619  * in TCP.  The caller passes in how large a port range it wants.  TCP
22620  * will try to find a range and return it via lo_port and hi_port.  This is
22621  * used by NCA's nca_conn_init.
22622  * NCA can only be used in the global zone so this only affects the global
22623  * zone's ports.
22624  *
22625  * Params:
22626  *	int size: the size of the port range to be reserved.
22627  *	in_port_t *lo_port (referenced): returns the beginning port of the
22628  *		reserved port range added.
22629  *	in_port_t *hi_port (referenced): returns the ending port of the
22630  *		reserved port range added.
22631  *
22632  * Return:
22633  *	B_TRUE if the port reservation is successful, B_FALSE otherwise.
22634  */
22635 boolean_t
22636 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port)
22637 {
22638 	tcp_t		*tcp;
22639 	tcp_t		*tmp_tcp;
22640 	tcp_t		**temp_tcp_array;
22641 	tf_t		*tbf;
22642 	in_port_t	net_port;
22643 	in_port_t	port;
22644 	int32_t		cur_size;
22645 	int		i, j;
22646 	boolean_t	used;
22647 	tcp_rport_t 	tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
22648 	zoneid_t	zoneid = GLOBAL_ZONEID;
22649 
22650 	/* Sanity check. */
22651 	if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) {
22652 		return (B_FALSE);
22653 	}
22654 
22655 	rw_enter(&tcp_reserved_port_lock, RW_WRITER);
22656 	if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) {
22657 		rw_exit(&tcp_reserved_port_lock);
22658 		return (B_FALSE);
22659 	}
22660 
22661 	/*
22662 	 * Find the starting port to try.  Since the port ranges are ordered
22663 	 * in the reserved port array, we can do a simple search here.
22664 	 */
22665 	*lo_port = TCP_SMALLEST_RESERVED_PORT;
22666 	*hi_port = TCP_LARGEST_RESERVED_PORT;
22667 	for (i = 0; i < tcp_reserved_port_array_size;
22668 	    *lo_port = tcp_reserved_port[i].hi_port + 1, i++) {
22669 		if (tcp_reserved_port[i].lo_port - *lo_port >= size) {
22670 			*hi_port = tcp_reserved_port[i].lo_port - 1;
22671 			break;
22672 		}
22673 	}
22674 	/* No available port range. */
22675 	if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) {
22676 		rw_exit(&tcp_reserved_port_lock);
22677 		return (B_FALSE);
22678 	}
22679 
22680 	temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP);
22681 	if (temp_tcp_array == NULL) {
22682 		rw_exit(&tcp_reserved_port_lock);
22683 		return (B_FALSE);
22684 	}
22685 
22686 	/* Go thru the port range to see if some ports are already bound. */
22687 	for (port = *lo_port, cur_size = 0;
22688 	    cur_size < size && port <= *hi_port;
22689 	    cur_size++, port++) {
22690 		used = B_FALSE;
22691 		net_port = htons(port);
22692 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)];
22693 		mutex_enter(&tbf->tf_lock);
22694 		for (tcp = tbf->tf_tcp; tcp != NULL;
22695 		    tcp = tcp->tcp_bind_hash) {
22696 			if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) &&
22697 			    net_port == tcp->tcp_lport) {
22698 				/*
22699 				 * A port is already bound.  Search again
22700 				 * starting from port + 1.  Release all
22701 				 * temporary tcps.
22702 				 */
22703 				mutex_exit(&tbf->tf_lock);
22704 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
22705 				*lo_port = port + 1;
22706 				cur_size = -1;
22707 				used = B_TRUE;
22708 				break;
22709 			}
22710 		}
22711 		if (!used) {
22712 			if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) {
22713 				/*
22714 				 * Allocation failure.  Just fail the request.
22715 				 * Need to remove all those temporary tcp
22716 				 * structures.
22717 				 */
22718 				mutex_exit(&tbf->tf_lock);
22719 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
22720 				rw_exit(&tcp_reserved_port_lock);
22721 				kmem_free(temp_tcp_array,
22722 				    (hi_port - lo_port + 1) *
22723 				    sizeof (tcp_t *));
22724 				return (B_FALSE);
22725 			}
22726 			temp_tcp_array[cur_size] = tmp_tcp;
22727 			tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE);
22728 			mutex_exit(&tbf->tf_lock);
22729 		}
22730 	}
22731 
22732 	/*
22733 	 * The current range is not large enough.  We can actually do another
22734 	 * search if this search is done between 2 reserved port ranges.  But
22735 	 * for first release, we just stop here and return saying that no port
22736 	 * range is available.
22737 	 */
22738 	if (cur_size < size) {
22739 		TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
22740 		rw_exit(&tcp_reserved_port_lock);
22741 		kmem_free(temp_tcp_array, size * sizeof (tcp_t *));
22742 		return (B_FALSE);
22743 	}
22744 	*hi_port = port - 1;
22745 
22746 	/*
22747 	 * Insert range into array in ascending order.  Since this function
22748 	 * must not be called often, we choose to use the simplest method.
22749 	 * The above array should not consume excessive stack space as
22750 	 * the size must be very small.  If in future releases, we find
22751 	 * that we should provide more reserved port ranges, this function
22752 	 * has to be modified to be more efficient.
22753 	 */
22754 	if (tcp_reserved_port_array_size == 0) {
22755 		tcp_reserved_port[0].lo_port = *lo_port;
22756 		tcp_reserved_port[0].hi_port = *hi_port;
22757 		tcp_reserved_port[0].temp_tcp_array = temp_tcp_array;
22758 	} else {
22759 		for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) {
22760 			if (*lo_port < tcp_reserved_port[i].lo_port && i == j) {
22761 				tmp_ports[j].lo_port = *lo_port;
22762 				tmp_ports[j].hi_port = *hi_port;
22763 				tmp_ports[j].temp_tcp_array = temp_tcp_array;
22764 				j++;
22765 			}
22766 			tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port;
22767 			tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port;
22768 			tmp_ports[j].temp_tcp_array =
22769 			    tcp_reserved_port[i].temp_tcp_array;
22770 		}
22771 		if (j == i) {
22772 			tmp_ports[j].lo_port = *lo_port;
22773 			tmp_ports[j].hi_port = *hi_port;
22774 			tmp_ports[j].temp_tcp_array = temp_tcp_array;
22775 		}
22776 		bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports));
22777 	}
22778 	tcp_reserved_port_array_size++;
22779 	rw_exit(&tcp_reserved_port_lock);
22780 	return (B_TRUE);
22781 }
22782 
22783 /*
22784  * Check to see if a port is in any reserved port range.
22785  *
22786  * Params:
22787  *	in_port_t port: the port to be verified.
22788  *
22789  * Return:
22790  *	B_TRUE is the port is inside a reserved port range, B_FALSE otherwise.
22791  */
22792 boolean_t
22793 tcp_reserved_port_check(in_port_t port)
22794 {
22795 	int i;
22796 
22797 	rw_enter(&tcp_reserved_port_lock, RW_READER);
22798 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
22799 		if (port >= tcp_reserved_port[i].lo_port ||
22800 		    port <= tcp_reserved_port[i].hi_port) {
22801 			rw_exit(&tcp_reserved_port_lock);
22802 			return (B_TRUE);
22803 		}
22804 	}
22805 	rw_exit(&tcp_reserved_port_lock);
22806 	return (B_FALSE);
22807 }
22808 
22809 /*
22810  * To list all reserved port ranges.  This is the function to handle
22811  * ndd tcp_reserved_port_list.
22812  */
22813 /* ARGSUSED */
22814 static int
22815 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
22816 {
22817 	int i;
22818 
22819 	rw_enter(&tcp_reserved_port_lock, RW_READER);
22820 	if (tcp_reserved_port_array_size > 0)
22821 		(void) mi_mpprintf(mp, "The following ports are reserved:");
22822 	else
22823 		(void) mi_mpprintf(mp, "No port is reserved.");
22824 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
22825 		(void) mi_mpprintf(mp, "%d-%d",
22826 		    tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port);
22827 	}
22828 	rw_exit(&tcp_reserved_port_lock);
22829 	return (0);
22830 }
22831 
22832 /*
22833  * Hash list insertion routine for tcp_t structures.
22834  * Inserts entries with the ones bound to a specific IP address first
22835  * followed by those bound to INADDR_ANY.
22836  */
22837 static void
22838 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
22839 {
22840 	tcp_t	**tcpp;
22841 	tcp_t	*tcpnext;
22842 
22843 	if (tcp->tcp_ptpbhn != NULL) {
22844 		ASSERT(!caller_holds_lock);
22845 		tcp_bind_hash_remove(tcp);
22846 	}
22847 	tcpp = &tbf->tf_tcp;
22848 	if (!caller_holds_lock) {
22849 		mutex_enter(&tbf->tf_lock);
22850 	} else {
22851 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
22852 	}
22853 	tcpnext = tcpp[0];
22854 	if (tcpnext) {
22855 		/*
22856 		 * If the new tcp bound to the INADDR_ANY address
22857 		 * and the first one in the list is not bound to
22858 		 * INADDR_ANY we skip all entries until we find the
22859 		 * first one bound to INADDR_ANY.
22860 		 * This makes sure that applications binding to a
22861 		 * specific address get preference over those binding to
22862 		 * INADDR_ANY.
22863 		 */
22864 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
22865 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
22866 			while ((tcpnext = tcpp[0]) != NULL &&
22867 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
22868 				tcpp = &(tcpnext->tcp_bind_hash);
22869 			if (tcpnext)
22870 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
22871 		} else
22872 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
22873 	}
22874 	tcp->tcp_bind_hash = tcpnext;
22875 	tcp->tcp_ptpbhn = tcpp;
22876 	tcpp[0] = tcp;
22877 	if (!caller_holds_lock)
22878 		mutex_exit(&tbf->tf_lock);
22879 }
22880 
22881 /*
22882  * Hash list removal routine for tcp_t structures.
22883  */
22884 static void
22885 tcp_bind_hash_remove(tcp_t *tcp)
22886 {
22887 	tcp_t	*tcpnext;
22888 	kmutex_t *lockp;
22889 
22890 	if (tcp->tcp_ptpbhn == NULL)
22891 		return;
22892 
22893 	/*
22894 	 * Extract the lock pointer in case there are concurrent
22895 	 * hash_remove's for this instance.
22896 	 */
22897 	ASSERT(tcp->tcp_lport != 0);
22898 	lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
22899 
22900 	ASSERT(lockp != NULL);
22901 	mutex_enter(lockp);
22902 	if (tcp->tcp_ptpbhn) {
22903 		tcpnext = tcp->tcp_bind_hash;
22904 		if (tcpnext) {
22905 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
22906 			tcp->tcp_bind_hash = NULL;
22907 		}
22908 		*tcp->tcp_ptpbhn = tcpnext;
22909 		tcp->tcp_ptpbhn = NULL;
22910 	}
22911 	mutex_exit(lockp);
22912 }
22913 
22914 
22915 /*
22916  * Hash list lookup routine for tcp_t structures.
22917  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
22918  */
22919 static tcp_t *
22920 tcp_acceptor_hash_lookup(t_uscalar_t id)
22921 {
22922 	tf_t	*tf;
22923 	tcp_t	*tcp;
22924 
22925 	tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
22926 	mutex_enter(&tf->tf_lock);
22927 	for (tcp = tf->tf_tcp; tcp != NULL;
22928 	    tcp = tcp->tcp_acceptor_hash) {
22929 		if (tcp->tcp_acceptor_id == id) {
22930 			CONN_INC_REF(tcp->tcp_connp);
22931 			mutex_exit(&tf->tf_lock);
22932 			return (tcp);
22933 		}
22934 	}
22935 	mutex_exit(&tf->tf_lock);
22936 	return (NULL);
22937 }
22938 
22939 
22940 /*
22941  * Hash list insertion routine for tcp_t structures.
22942  */
22943 void
22944 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
22945 {
22946 	tf_t	*tf;
22947 	tcp_t	**tcpp;
22948 	tcp_t	*tcpnext;
22949 
22950 	tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
22951 
22952 	if (tcp->tcp_ptpahn != NULL)
22953 		tcp_acceptor_hash_remove(tcp);
22954 	tcpp = &tf->tf_tcp;
22955 	mutex_enter(&tf->tf_lock);
22956 	tcpnext = tcpp[0];
22957 	if (tcpnext)
22958 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
22959 	tcp->tcp_acceptor_hash = tcpnext;
22960 	tcp->tcp_ptpahn = tcpp;
22961 	tcpp[0] = tcp;
22962 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
22963 	mutex_exit(&tf->tf_lock);
22964 }
22965 
22966 /*
22967  * Hash list removal routine for tcp_t structures.
22968  */
22969 static void
22970 tcp_acceptor_hash_remove(tcp_t *tcp)
22971 {
22972 	tcp_t	*tcpnext;
22973 	kmutex_t *lockp;
22974 
22975 	/*
22976 	 * Extract the lock pointer in case there are concurrent
22977 	 * hash_remove's for this instance.
22978 	 */
22979 	lockp = tcp->tcp_acceptor_lockp;
22980 
22981 	if (tcp->tcp_ptpahn == NULL)
22982 		return;
22983 
22984 	ASSERT(lockp != NULL);
22985 	mutex_enter(lockp);
22986 	if (tcp->tcp_ptpahn) {
22987 		tcpnext = tcp->tcp_acceptor_hash;
22988 		if (tcpnext) {
22989 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
22990 			tcp->tcp_acceptor_hash = NULL;
22991 		}
22992 		*tcp->tcp_ptpahn = tcpnext;
22993 		tcp->tcp_ptpahn = NULL;
22994 	}
22995 	mutex_exit(lockp);
22996 	tcp->tcp_acceptor_lockp = NULL;
22997 }
22998 
22999 /* ARGSUSED */
23000 static int
23001 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af)
23002 {
23003 	int error = 0;
23004 	int retval;
23005 	char *end;
23006 
23007 	tcp_hsp_t *hsp;
23008 	tcp_hsp_t *hspprev;
23009 
23010 	ipaddr_t addr = 0;		/* Address we're looking for */
23011 	in6_addr_t v6addr;		/* Address we're looking for */
23012 	uint32_t hash;			/* Hash of that address */
23013 
23014 	/*
23015 	 * If the following variables are still zero after parsing the input
23016 	 * string, the user didn't specify them and we don't change them in
23017 	 * the HSP.
23018 	 */
23019 
23020 	ipaddr_t mask = 0;		/* Subnet mask */
23021 	in6_addr_t v6mask;
23022 	long sendspace = 0;		/* Send buffer size */
23023 	long recvspace = 0;		/* Receive buffer size */
23024 	long timestamp = 0;	/* Originate TCP TSTAMP option, 1 = yes */
23025 	boolean_t delete = B_FALSE;	/* User asked to delete this HSP */
23026 
23027 	rw_enter(&tcp_hsp_lock, RW_WRITER);
23028 
23029 	/* Parse and validate address */
23030 	if (af == AF_INET) {
23031 		retval = inet_pton(af, value, &addr);
23032 		if (retval == 1)
23033 			IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
23034 	} else if (af == AF_INET6) {
23035 		retval = inet_pton(af, value, &v6addr);
23036 	} else {
23037 		error = EINVAL;
23038 		goto done;
23039 	}
23040 	if (retval == 0) {
23041 		error = EINVAL;
23042 		goto done;
23043 	}
23044 
23045 	while ((*value) && *value != ' ')
23046 		value++;
23047 
23048 	/* Parse individual keywords, set variables if found */
23049 	while (*value) {
23050 		/* Skip leading blanks */
23051 
23052 		while (*value == ' ' || *value == '\t')
23053 			value++;
23054 
23055 		/* If at end of string, we're done */
23056 
23057 		if (!*value)
23058 			break;
23059 
23060 		/* We have a word, figure out what it is */
23061 
23062 		if (strncmp("mask", value, 4) == 0) {
23063 			value += 4;
23064 			while (*value == ' ' || *value == '\t')
23065 				value++;
23066 			/* Parse subnet mask */
23067 			if (af == AF_INET) {
23068 				retval = inet_pton(af, value, &mask);
23069 				if (retval == 1) {
23070 					V4MASK_TO_V6(mask, v6mask);
23071 				}
23072 			} else if (af == AF_INET6) {
23073 				retval = inet_pton(af, value, &v6mask);
23074 			}
23075 			if (retval != 1) {
23076 				error = EINVAL;
23077 				goto done;
23078 			}
23079 			while ((*value) && *value != ' ')
23080 				value++;
23081 		} else if (strncmp("sendspace", value, 9) == 0) {
23082 			value += 9;
23083 
23084 			if (ddi_strtol(value, &end, 0, &sendspace) != 0 ||
23085 			    sendspace < TCP_XMIT_HIWATER ||
23086 			    sendspace >= (1L<<30)) {
23087 				error = EINVAL;
23088 				goto done;
23089 			}
23090 			value = end;
23091 		} else if (strncmp("recvspace", value, 9) == 0) {
23092 			value += 9;
23093 
23094 			if (ddi_strtol(value, &end, 0, &recvspace) != 0 ||
23095 			    recvspace < TCP_RECV_HIWATER ||
23096 			    recvspace >= (1L<<30)) {
23097 				error = EINVAL;
23098 				goto done;
23099 			}
23100 			value = end;
23101 		} else if (strncmp("timestamp", value, 9) == 0) {
23102 			value += 9;
23103 
23104 			if (ddi_strtol(value, &end, 0, &timestamp) != 0 ||
23105 			    timestamp < 0 || timestamp > 1) {
23106 				error = EINVAL;
23107 				goto done;
23108 			}
23109 
23110 			/*
23111 			 * We increment timestamp so we know it's been set;
23112 			 * this is undone when we put it in the HSP
23113 			 */
23114 			timestamp++;
23115 			value = end;
23116 		} else if (strncmp("delete", value, 6) == 0) {
23117 			value += 6;
23118 			delete = B_TRUE;
23119 		} else {
23120 			error = EINVAL;
23121 			goto done;
23122 		}
23123 	}
23124 
23125 	/* Hash address for lookup */
23126 
23127 	hash = TCP_HSP_HASH(addr);
23128 
23129 	if (delete) {
23130 		/*
23131 		 * Note that deletes don't return an error if the thing
23132 		 * we're trying to delete isn't there.
23133 		 */
23134 		if (tcp_hsp_hash == NULL)
23135 			goto done;
23136 		hsp = tcp_hsp_hash[hash];
23137 
23138 		if (hsp) {
23139 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
23140 			    &v6addr)) {
23141 				tcp_hsp_hash[hash] = hsp->tcp_hsp_next;
23142 				mi_free((char *)hsp);
23143 			} else {
23144 				hspprev = hsp;
23145 				while ((hsp = hsp->tcp_hsp_next) != NULL) {
23146 					if (IN6_ARE_ADDR_EQUAL(
23147 					    &hsp->tcp_hsp_addr_v6, &v6addr)) {
23148 						hspprev->tcp_hsp_next =
23149 						    hsp->tcp_hsp_next;
23150 						mi_free((char *)hsp);
23151 						break;
23152 					}
23153 					hspprev = hsp;
23154 				}
23155 			}
23156 		}
23157 	} else {
23158 		/*
23159 		 * We're adding/modifying an HSP.  If we haven't already done
23160 		 * so, allocate the hash table.
23161 		 */
23162 
23163 		if (!tcp_hsp_hash) {
23164 			tcp_hsp_hash = (tcp_hsp_t **)
23165 			    mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE);
23166 			if (!tcp_hsp_hash) {
23167 				error = EINVAL;
23168 				goto done;
23169 			}
23170 		}
23171 
23172 		/* Get head of hash chain */
23173 
23174 		hsp = tcp_hsp_hash[hash];
23175 
23176 		/* Try to find pre-existing hsp on hash chain */
23177 		/* Doesn't handle CIDR prefixes. */
23178 		while (hsp) {
23179 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr))
23180 				break;
23181 			hsp = hsp->tcp_hsp_next;
23182 		}
23183 
23184 		/*
23185 		 * If we didn't, create one with default values and put it
23186 		 * at head of hash chain
23187 		 */
23188 
23189 		if (!hsp) {
23190 			hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t));
23191 			if (!hsp) {
23192 				error = EINVAL;
23193 				goto done;
23194 			}
23195 			hsp->tcp_hsp_next = tcp_hsp_hash[hash];
23196 			tcp_hsp_hash[hash] = hsp;
23197 		}
23198 
23199 		/* Set values that the user asked us to change */
23200 
23201 		hsp->tcp_hsp_addr_v6 = v6addr;
23202 		if (IN6_IS_ADDR_V4MAPPED(&v6addr))
23203 			hsp->tcp_hsp_vers = IPV4_VERSION;
23204 		else
23205 			hsp->tcp_hsp_vers = IPV6_VERSION;
23206 		hsp->tcp_hsp_subnet_v6 = v6mask;
23207 		if (sendspace > 0)
23208 			hsp->tcp_hsp_sendspace = sendspace;
23209 		if (recvspace > 0)
23210 			hsp->tcp_hsp_recvspace = recvspace;
23211 		if (timestamp > 0)
23212 			hsp->tcp_hsp_tstamp = timestamp - 1;
23213 	}
23214 
23215 done:
23216 	rw_exit(&tcp_hsp_lock);
23217 	return (error);
23218 }
23219 
23220 /* Set callback routine passed to nd_load by tcp_param_register. */
23221 /* ARGSUSED */
23222 static int
23223 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
23224 {
23225 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET));
23226 }
23227 /* ARGSUSED */
23228 static int
23229 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
23230     cred_t *cr)
23231 {
23232 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6));
23233 }
23234 
23235 /* TCP host parameters report triggered via the Named Dispatch mechanism. */
23236 /* ARGSUSED */
23237 static int
23238 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
23239 {
23240 	tcp_hsp_t *hsp;
23241 	int i;
23242 	char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN];
23243 
23244 	rw_enter(&tcp_hsp_lock, RW_READER);
23245 	(void) mi_mpprintf(mp,
23246 	    "Hash HSP     " MI_COL_HDRPAD_STR
23247 	    "Address         Subnet Mask     Send       Receive    TStamp");
23248 	if (tcp_hsp_hash) {
23249 		for (i = 0; i < TCP_HSP_HASH_SIZE; i++) {
23250 			hsp = tcp_hsp_hash[i];
23251 			while (hsp) {
23252 				if (hsp->tcp_hsp_vers == IPV4_VERSION) {
23253 					(void) inet_ntop(AF_INET,
23254 					    &hsp->tcp_hsp_addr,
23255 					    addrbuf, sizeof (addrbuf));
23256 					(void) inet_ntop(AF_INET,
23257 					    &hsp->tcp_hsp_subnet,
23258 					    subnetbuf, sizeof (subnetbuf));
23259 				} else {
23260 					(void) inet_ntop(AF_INET6,
23261 					    &hsp->tcp_hsp_addr_v6,
23262 					    addrbuf, sizeof (addrbuf));
23263 					(void) inet_ntop(AF_INET6,
23264 					    &hsp->tcp_hsp_subnet_v6,
23265 					    subnetbuf, sizeof (subnetbuf));
23266 				}
23267 				(void) mi_mpprintf(mp,
23268 				    " %03d " MI_COL_PTRFMT_STR
23269 				    "%s %s %010d %010d      %d",
23270 				    i,
23271 				    (void *)hsp,
23272 				    addrbuf,
23273 				    subnetbuf,
23274 				    hsp->tcp_hsp_sendspace,
23275 				    hsp->tcp_hsp_recvspace,
23276 				    hsp->tcp_hsp_tstamp);
23277 
23278 				hsp = hsp->tcp_hsp_next;
23279 			}
23280 		}
23281 	}
23282 	rw_exit(&tcp_hsp_lock);
23283 	return (0);
23284 }
23285 
23286 
23287 /* Data for fast netmask macro used by tcp_hsp_lookup */
23288 
23289 static ipaddr_t netmasks[] = {
23290 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
23291 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
23292 };
23293 
23294 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
23295 
23296 /*
23297  * XXX This routine should go away and instead we should use the metrics
23298  * associated with the routes to determine the default sndspace and rcvspace.
23299  */
23300 static tcp_hsp_t *
23301 tcp_hsp_lookup(ipaddr_t addr)
23302 {
23303 	tcp_hsp_t *hsp = NULL;
23304 
23305 	/* Quick check without acquiring the lock. */
23306 	if (tcp_hsp_hash == NULL)
23307 		return (NULL);
23308 
23309 	rw_enter(&tcp_hsp_lock, RW_READER);
23310 
23311 	/* This routine finds the best-matching HSP for address addr. */
23312 
23313 	if (tcp_hsp_hash) {
23314 		int i;
23315 		ipaddr_t srchaddr;
23316 		tcp_hsp_t *hsp_net;
23317 
23318 		/* We do three passes: host, network, and subnet. */
23319 
23320 		srchaddr = addr;
23321 
23322 		for (i = 1; i <= 3; i++) {
23323 			/* Look for exact match on srchaddr */
23324 
23325 			hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)];
23326 			while (hsp) {
23327 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
23328 				    hsp->tcp_hsp_addr == srchaddr)
23329 					break;
23330 				hsp = hsp->tcp_hsp_next;
23331 			}
23332 			ASSERT(hsp == NULL ||
23333 			    hsp->tcp_hsp_vers == IPV4_VERSION);
23334 
23335 			/*
23336 			 * If this is the first pass:
23337 			 *   If we found a match, great, return it.
23338 			 *   If not, search for the network on the second pass.
23339 			 */
23340 
23341 			if (i == 1)
23342 				if (hsp)
23343 					break;
23344 				else
23345 				{
23346 					srchaddr = addr & netmask(addr);
23347 					continue;
23348 				}
23349 
23350 			/*
23351 			 * If this is the second pass:
23352 			 *   If we found a match, but there's a subnet mask,
23353 			 *    save the match but try again using the subnet
23354 			 *    mask on the third pass.
23355 			 *   Otherwise, return whatever we found.
23356 			 */
23357 
23358 			if (i == 2) {
23359 				if (hsp && hsp->tcp_hsp_subnet) {
23360 					hsp_net = hsp;
23361 					srchaddr = addr & hsp->tcp_hsp_subnet;
23362 					continue;
23363 				} else {
23364 					break;
23365 				}
23366 			}
23367 
23368 			/*
23369 			 * This must be the third pass.  If we didn't find
23370 			 * anything, return the saved network HSP instead.
23371 			 */
23372 
23373 			if (!hsp)
23374 				hsp = hsp_net;
23375 		}
23376 	}
23377 
23378 	rw_exit(&tcp_hsp_lock);
23379 	return (hsp);
23380 }
23381 
23382 /*
23383  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
23384  * match lookup.
23385  */
23386 static tcp_hsp_t *
23387 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr)
23388 {
23389 	tcp_hsp_t *hsp = NULL;
23390 
23391 	/* Quick check without acquiring the lock. */
23392 	if (tcp_hsp_hash == NULL)
23393 		return (NULL);
23394 
23395 	rw_enter(&tcp_hsp_lock, RW_READER);
23396 
23397 	/* This routine finds the best-matching HSP for address addr. */
23398 
23399 	if (tcp_hsp_hash) {
23400 		int i;
23401 		in6_addr_t v6srchaddr;
23402 		tcp_hsp_t *hsp_net;
23403 
23404 		/* We do three passes: host, network, and subnet. */
23405 
23406 		v6srchaddr = *v6addr;
23407 
23408 		for (i = 1; i <= 3; i++) {
23409 			/* Look for exact match on srchaddr */
23410 
23411 			hsp = tcp_hsp_hash[TCP_HSP_HASH(
23412 			    V4_PART_OF_V6(v6srchaddr))];
23413 			while (hsp) {
23414 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
23415 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
23416 				    &v6srchaddr))
23417 					break;
23418 				hsp = hsp->tcp_hsp_next;
23419 			}
23420 
23421 			/*
23422 			 * If this is the first pass:
23423 			 *   If we found a match, great, return it.
23424 			 *   If not, search for the network on the second pass.
23425 			 */
23426 
23427 			if (i == 1)
23428 				if (hsp)
23429 					break;
23430 				else {
23431 					/* Assume a 64 bit mask */
23432 					v6srchaddr.s6_addr32[0] =
23433 					    v6addr->s6_addr32[0];
23434 					v6srchaddr.s6_addr32[1] =
23435 					    v6addr->s6_addr32[1];
23436 					v6srchaddr.s6_addr32[2] = 0;
23437 					v6srchaddr.s6_addr32[3] = 0;
23438 					continue;
23439 				}
23440 
23441 			/*
23442 			 * If this is the second pass:
23443 			 *   If we found a match, but there's a subnet mask,
23444 			 *    save the match but try again using the subnet
23445 			 *    mask on the third pass.
23446 			 *   Otherwise, return whatever we found.
23447 			 */
23448 
23449 			if (i == 2) {
23450 				ASSERT(hsp == NULL ||
23451 				    hsp->tcp_hsp_vers == IPV6_VERSION);
23452 				if (hsp &&
23453 				    !IN6_IS_ADDR_UNSPECIFIED(
23454 				    &hsp->tcp_hsp_subnet_v6)) {
23455 					hsp_net = hsp;
23456 					V6_MASK_COPY(*v6addr,
23457 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
23458 					continue;
23459 				} else {
23460 					break;
23461 				}
23462 			}
23463 
23464 			/*
23465 			 * This must be the third pass.  If we didn't find
23466 			 * anything, return the saved network HSP instead.
23467 			 */
23468 
23469 			if (!hsp)
23470 				hsp = hsp_net;
23471 		}
23472 	}
23473 
23474 	rw_exit(&tcp_hsp_lock);
23475 	return (hsp);
23476 }
23477 
23478 /*
23479  * Type three generator adapted from the random() function in 4.4 BSD:
23480  */
23481 
23482 /*
23483  * Copyright (c) 1983, 1993
23484  *	The Regents of the University of California.  All rights reserved.
23485  *
23486  * Redistribution and use in source and binary forms, with or without
23487  * modification, are permitted provided that the following conditions
23488  * are met:
23489  * 1. Redistributions of source code must retain the above copyright
23490  *    notice, this list of conditions and the following disclaimer.
23491  * 2. Redistributions in binary form must reproduce the above copyright
23492  *    notice, this list of conditions and the following disclaimer in the
23493  *    documentation and/or other materials provided with the distribution.
23494  * 3. All advertising materials mentioning features or use of this software
23495  *    must display the following acknowledgement:
23496  *	This product includes software developed by the University of
23497  *	California, Berkeley and its contributors.
23498  * 4. Neither the name of the University nor the names of its contributors
23499  *    may be used to endorse or promote products derived from this software
23500  *    without specific prior written permission.
23501  *
23502  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23503  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23504  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23505  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23506  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23507  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23508  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23509  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23510  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23511  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23512  * SUCH DAMAGE.
23513  */
23514 
23515 /* Type 3 -- x**31 + x**3 + 1 */
23516 #define	DEG_3		31
23517 #define	SEP_3		3
23518 
23519 
23520 /* Protected by tcp_random_lock */
23521 static int tcp_randtbl[DEG_3 + 1];
23522 
23523 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
23524 static int *tcp_random_rptr = &tcp_randtbl[1];
23525 
23526 static int *tcp_random_state = &tcp_randtbl[1];
23527 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
23528 
23529 kmutex_t tcp_random_lock;
23530 
23531 void
23532 tcp_random_init(void)
23533 {
23534 	int i;
23535 	hrtime_t hrt;
23536 	time_t wallclock;
23537 	uint64_t result;
23538 
23539 	/*
23540 	 * Use high-res timer and current time for seed.  Gethrtime() returns
23541 	 * a longlong, which may contain resolution down to nanoseconds.
23542 	 * The current time will either be a 32-bit or a 64-bit quantity.
23543 	 * XOR the two together in a 64-bit result variable.
23544 	 * Convert the result to a 32-bit value by multiplying the high-order
23545 	 * 32-bits by the low-order 32-bits.
23546 	 */
23547 
23548 	hrt = gethrtime();
23549 	(void) drv_getparm(TIME, &wallclock);
23550 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
23551 	mutex_enter(&tcp_random_lock);
23552 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
23553 	    (result & 0xffffffff);
23554 
23555 	for (i = 1; i < DEG_3; i++)
23556 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
23557 			+ 12345;
23558 	tcp_random_fptr = &tcp_random_state[SEP_3];
23559 	tcp_random_rptr = &tcp_random_state[0];
23560 	mutex_exit(&tcp_random_lock);
23561 	for (i = 0; i < 10 * DEG_3; i++)
23562 		(void) tcp_random();
23563 }
23564 
23565 /*
23566  * tcp_random: Return a random number in the range [1 - (128K + 1)].
23567  * This range is selected to be approximately centered on TCP_ISS / 2,
23568  * and easy to compute. We get this value by generating a 32-bit random
23569  * number, selecting out the high-order 17 bits, and then adding one so
23570  * that we never return zero.
23571  */
23572 int
23573 tcp_random(void)
23574 {
23575 	int i;
23576 
23577 	mutex_enter(&tcp_random_lock);
23578 	*tcp_random_fptr += *tcp_random_rptr;
23579 
23580 	/*
23581 	 * The high-order bits are more random than the low-order bits,
23582 	 * so we select out the high-order 17 bits and add one so that
23583 	 * we never return zero.
23584 	 */
23585 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
23586 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
23587 		tcp_random_fptr = tcp_random_state;
23588 		++tcp_random_rptr;
23589 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
23590 		tcp_random_rptr = tcp_random_state;
23591 
23592 	mutex_exit(&tcp_random_lock);
23593 	return (i);
23594 }
23595 
23596 /*
23597  * XXX This will go away when TPI is extended to send
23598  * info reqs to sockfs/timod .....
23599  * Given a queue, set the max packet size for the write
23600  * side of the queue below stream head.  This value is
23601  * cached on the stream head.
23602  * Returns 1 on success, 0 otherwise.
23603  */
23604 static int
23605 setmaxps(queue_t *q, int maxpsz)
23606 {
23607 	struct stdata	*stp;
23608 	queue_t		*wq;
23609 	stp = STREAM(q);
23610 
23611 	/*
23612 	 * At this point change of a queue parameter is not allowed
23613 	 * when a multiplexor is sitting on top.
23614 	 */
23615 	if (stp->sd_flag & STPLEX)
23616 		return (0);
23617 
23618 	claimstr(stp->sd_wrq);
23619 	wq = stp->sd_wrq->q_next;
23620 	ASSERT(wq != NULL);
23621 	(void) strqset(wq, QMAXPSZ, 0, maxpsz);
23622 	releasestr(stp->sd_wrq);
23623 	return (1);
23624 }
23625 
23626 static int
23627 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
23628     int *t_errorp, int *sys_errorp)
23629 {
23630 	int error;
23631 	int is_absreq_failure;
23632 	t_scalar_t *opt_lenp;
23633 	t_scalar_t opt_offset;
23634 	int prim_type;
23635 	struct T_conn_req *tcreqp;
23636 	struct T_conn_res *tcresp;
23637 	cred_t *cr;
23638 
23639 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
23640 
23641 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
23642 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
23643 	    prim_type == T_CONN_RES);
23644 
23645 	switch (prim_type) {
23646 	case T_CONN_REQ:
23647 		tcreqp = (struct T_conn_req *)mp->b_rptr;
23648 		opt_offset = tcreqp->OPT_offset;
23649 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
23650 		break;
23651 	case O_T_CONN_RES:
23652 	case T_CONN_RES:
23653 		tcresp = (struct T_conn_res *)mp->b_rptr;
23654 		opt_offset = tcresp->OPT_offset;
23655 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
23656 		break;
23657 	}
23658 
23659 	*t_errorp = 0;
23660 	*sys_errorp = 0;
23661 	*do_disconnectp = 0;
23662 
23663 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
23664 	    opt_offset, cr, &tcp_opt_obj,
23665 	    NULL, &is_absreq_failure);
23666 
23667 	switch (error) {
23668 	case  0:		/* no error */
23669 		ASSERT(is_absreq_failure == 0);
23670 		return (0);
23671 	case ENOPROTOOPT:
23672 		*t_errorp = TBADOPT;
23673 		break;
23674 	case EACCES:
23675 		*t_errorp = TACCES;
23676 		break;
23677 	default:
23678 		*t_errorp = TSYSERR; *sys_errorp = error;
23679 		break;
23680 	}
23681 	if (is_absreq_failure != 0) {
23682 		/*
23683 		 * The connection request should get the local ack
23684 		 * T_OK_ACK and then a T_DISCON_IND.
23685 		 */
23686 		*do_disconnectp = 1;
23687 	}
23688 	return (-1);
23689 }
23690 
23691 /*
23692  * Split this function out so that if the secret changes, I'm okay.
23693  *
23694  * Initialize the tcp_iss_cookie and tcp_iss_key.
23695  */
23696 
23697 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
23698 
23699 static void
23700 tcp_iss_key_init(uint8_t *phrase, int len)
23701 {
23702 	struct {
23703 		int32_t current_time;
23704 		uint32_t randnum;
23705 		uint16_t pad;
23706 		uint8_t ether[6];
23707 		uint8_t passwd[PASSWD_SIZE];
23708 	} tcp_iss_cookie;
23709 	time_t t;
23710 
23711 	/*
23712 	 * Start with the current absolute time.
23713 	 */
23714 	(void) drv_getparm(TIME, &t);
23715 	tcp_iss_cookie.current_time = t;
23716 
23717 	/*
23718 	 * XXX - Need a more random number per RFC 1750, not this crap.
23719 	 * OTOH, if what follows is pretty random, then I'm in better shape.
23720 	 */
23721 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
23722 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
23723 
23724 	/*
23725 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
23726 	 * as a good template.
23727 	 */
23728 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
23729 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
23730 
23731 	/*
23732 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
23733 	 */
23734 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
23735 
23736 	/*
23737 	 * See 4010593 if this section becomes a problem again,
23738 	 * but the local ethernet address is useful here.
23739 	 */
23740 	(void) localetheraddr(NULL,
23741 	    (struct ether_addr *)&tcp_iss_cookie.ether);
23742 
23743 	/*
23744 	 * Hash 'em all together.  The MD5Final is called per-connection.
23745 	 */
23746 	mutex_enter(&tcp_iss_key_lock);
23747 	MD5Init(&tcp_iss_key);
23748 	MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie,
23749 	    sizeof (tcp_iss_cookie));
23750 	mutex_exit(&tcp_iss_key_lock);
23751 }
23752 
23753 /*
23754  * Set the RFC 1948 pass phrase
23755  */
23756 /* ARGSUSED */
23757 static int
23758 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
23759     cred_t *cr)
23760 {
23761 	/*
23762 	 * Basically, value contains a new pass phrase.  Pass it along!
23763 	 */
23764 	tcp_iss_key_init((uint8_t *)value, strlen(value));
23765 	return (0);
23766 }
23767 
23768 /* ARGSUSED */
23769 static int
23770 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
23771 {
23772 	bzero(buf, sizeof (tcp_sack_info_t));
23773 	return (0);
23774 }
23775 
23776 /* ARGSUSED */
23777 static int
23778 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
23779 {
23780 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
23781 	return (0);
23782 }
23783 
23784 void
23785 tcp_ddi_init(void)
23786 {
23787 	int i;
23788 
23789 	/* Initialize locks */
23790 	rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL);
23791 	mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
23792 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
23793 	mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
23794 	mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
23795 	rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL);
23796 
23797 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
23798 		mutex_init(&tcp_bind_fanout[i].tf_lock, NULL,
23799 		    MUTEX_DEFAULT, NULL);
23800 	}
23801 
23802 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
23803 		mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL,
23804 		    MUTEX_DEFAULT, NULL);
23805 	}
23806 
23807 	/* TCP's IPsec code calls the packet dropper. */
23808 	ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement");
23809 
23810 	if (!tcp_g_nd) {
23811 		if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) {
23812 			nd_free(&tcp_g_nd);
23813 		}
23814 	}
23815 
23816 	/*
23817 	 * Note: To really walk the device tree you need the devinfo
23818 	 * pointer to your device which is only available after probe/attach.
23819 	 * The following is safe only because it uses ddi_root_node()
23820 	 */
23821 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
23822 	    tcp_opt_obj.odb_opt_arr_cnt);
23823 
23824 	tcp_timercache = kmem_cache_create("tcp_timercache",
23825 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
23826 	    NULL, NULL, NULL, NULL, NULL, 0);
23827 
23828 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
23829 	    sizeof (tcp_sack_info_t), 0,
23830 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
23831 
23832 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
23833 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
23834 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
23835 
23836 	tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput);
23837 	tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close);
23838 
23839 	ip_squeue_init(tcp_squeue_add);
23840 
23841 	/* Initialize the random number generator */
23842 	tcp_random_init();
23843 
23844 	/*
23845 	 * Initialize RFC 1948 secret values.  This will probably be reset once
23846 	 * by the boot scripts.
23847 	 *
23848 	 * Use NULL name, as the name is caught by the new lockstats.
23849 	 *
23850 	 * Initialize with some random, non-guessable string, like the global
23851 	 * T_INFO_ACK.
23852 	 */
23853 
23854 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
23855 	    sizeof (tcp_g_t_info_ack));
23856 
23857 	if ((tcp_kstat = kstat_create(TCP_MOD_NAME, 0, "tcpstat",
23858 		"net", KSTAT_TYPE_NAMED,
23859 		sizeof (tcp_statistics) / sizeof (kstat_named_t),
23860 		KSTAT_FLAG_VIRTUAL)) != NULL) {
23861 		tcp_kstat->ks_data = &tcp_statistics;
23862 		kstat_install(tcp_kstat);
23863 	}
23864 
23865 	tcp_kstat_init();
23866 }
23867 
23868 void
23869 tcp_ddi_destroy(void)
23870 {
23871 	int i;
23872 
23873 	nd_free(&tcp_g_nd);
23874 
23875 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
23876 		mutex_destroy(&tcp_bind_fanout[i].tf_lock);
23877 	}
23878 
23879 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
23880 		mutex_destroy(&tcp_acceptor_fanout[i].tf_lock);
23881 	}
23882 
23883 	mutex_destroy(&tcp_iss_key_lock);
23884 	rw_destroy(&tcp_hsp_lock);
23885 	mutex_destroy(&tcp_g_q_lock);
23886 	mutex_destroy(&tcp_random_lock);
23887 	mutex_destroy(&tcp_epriv_port_lock);
23888 	rw_destroy(&tcp_reserved_port_lock);
23889 
23890 	ip_drop_unregister(&tcp_dropper);
23891 
23892 	kmem_cache_destroy(tcp_timercache);
23893 	kmem_cache_destroy(tcp_sack_info_cache);
23894 	kmem_cache_destroy(tcp_iphc_cache);
23895 
23896 	tcp_kstat_fini();
23897 }
23898 
23899 /*
23900  * Generate ISS, taking into account NDD changes may happen halfway through.
23901  * (If the iss is not zero, set it.)
23902  */
23903 
23904 static void
23905 tcp_iss_init(tcp_t *tcp)
23906 {
23907 	MD5_CTX context;
23908 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
23909 	uint32_t answer[4];
23910 
23911 	tcp_iss_incr_extra += (ISS_INCR >> 1);
23912 	tcp->tcp_iss = tcp_iss_incr_extra;
23913 	switch (tcp_strong_iss) {
23914 	case 2:
23915 		mutex_enter(&tcp_iss_key_lock);
23916 		context = tcp_iss_key;
23917 		mutex_exit(&tcp_iss_key_lock);
23918 		arg.ports = tcp->tcp_ports;
23919 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23920 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
23921 			    &arg.src);
23922 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
23923 			    &arg.dst);
23924 		} else {
23925 			arg.src = tcp->tcp_ip6h->ip6_src;
23926 			arg.dst = tcp->tcp_ip6h->ip6_dst;
23927 		}
23928 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
23929 		MD5Final((uchar_t *)answer, &context);
23930 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
23931 		/*
23932 		 * Now that we've hashed into a unique per-connection sequence
23933 		 * space, add a random increment per strong_iss == 1.  So I
23934 		 * guess we'll have to...
23935 		 */
23936 		/* FALLTHRU */
23937 	case 1:
23938 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
23939 		break;
23940 	default:
23941 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
23942 		break;
23943 	}
23944 	tcp->tcp_valid_bits = TCP_ISS_VALID;
23945 	tcp->tcp_fss = tcp->tcp_iss - 1;
23946 	tcp->tcp_suna = tcp->tcp_iss;
23947 	tcp->tcp_snxt = tcp->tcp_iss + 1;
23948 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
23949 	tcp->tcp_csuna = tcp->tcp_snxt;
23950 }
23951 
23952 /*
23953  * Exported routine for extracting active tcp connection status.
23954  *
23955  * This is used by the Solaris Cluster Networking software to
23956  * gather a list of connections that need to be forwarded to
23957  * specific nodes in the cluster when configuration changes occur.
23958  *
23959  * The callback is invoked for each tcp_t structure. Returning
23960  * non-zero from the callback routine terminates the search.
23961  */
23962 int
23963 cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg)
23964 {
23965 	tcp_t *tcp;
23966 	cl_tcp_info_t	cl_tcpi;
23967 	connf_t	*connfp;
23968 	conn_t	*connp;
23969 	int	i;
23970 
23971 	ASSERT(callback != NULL);
23972 
23973 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
23974 
23975 		connfp = &ipcl_globalhash_fanout[i];
23976 		connp = NULL;
23977 
23978 		while ((connp =
23979 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
23980 
23981 			tcp = connp->conn_tcp;
23982 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
23983 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
23984 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
23985 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
23986 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
23987 			/*
23988 			 * The macros tcp_laddr and tcp_faddr give the IPv4
23989 			 * addresses. They are copied implicitly below as
23990 			 * mapped addresses.
23991 			 */
23992 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
23993 			if (tcp->tcp_ipversion == IPV4_VERSION) {
23994 				cl_tcpi.cl_tcpi_faddr =
23995 				    tcp->tcp_ipha->ipha_dst;
23996 			} else {
23997 				cl_tcpi.cl_tcpi_faddr_v6 =
23998 				    tcp->tcp_ip6h->ip6_dst;
23999 			}
24000 
24001 			/*
24002 			 * If the callback returns non-zero
24003 			 * we terminate the traversal.
24004 			 */
24005 			if ((*callback)(&cl_tcpi, arg) != 0) {
24006 				CONN_DEC_REF(tcp->tcp_connp);
24007 				return (1);
24008 			}
24009 		}
24010 	}
24011 
24012 	return (0);
24013 }
24014 
24015 /*
24016  * Macros used for accessing the different types of sockaddr
24017  * structures inside a tcp_ioc_abort_conn_t.
24018  */
24019 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
24020 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
24021 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
24022 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
24023 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
24024 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
24025 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
24026 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
24027 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
24028 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
24029 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
24030 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
24031 
24032 /*
24033  * Return the correct error code to mimic the behavior
24034  * of a connection reset.
24035  */
24036 #define	TCP_AC_GET_ERRCODE(state, err) {	\
24037 		switch ((state)) {		\
24038 		case TCPS_SYN_SENT:		\
24039 		case TCPS_SYN_RCVD:		\
24040 			(err) = ECONNREFUSED;	\
24041 			break;			\
24042 		case TCPS_ESTABLISHED:		\
24043 		case TCPS_FIN_WAIT_1:		\
24044 		case TCPS_FIN_WAIT_2:		\
24045 		case TCPS_CLOSE_WAIT:		\
24046 			(err) = ECONNRESET;	\
24047 			break;			\
24048 		case TCPS_CLOSING:		\
24049 		case TCPS_LAST_ACK:		\
24050 		case TCPS_TIME_WAIT:		\
24051 			(err) = 0;		\
24052 			break;			\
24053 		default:			\
24054 			(err) = ENXIO;		\
24055 		}				\
24056 	}
24057 
24058 /*
24059  * Check if a tcp structure matches the info in acp.
24060  */
24061 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
24062 	(((acp)->ac_local.ss_family == AF_INET) ?		\
24063 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
24064 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
24065 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
24066 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
24067 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
24068 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
24069 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
24070 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
24071 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24072 	(acp)->ac_end >= (tcp)->tcp_state) :		\
24073 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
24074 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
24075 	&(tcp)->tcp_ip_src_v6)) &&				\
24076 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
24077 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
24078 	&(tcp)->tcp_remote_v6)) &&				\
24079 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
24080 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
24081 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
24082 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
24083 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24084 	(acp)->ac_end >= (tcp)->tcp_state))
24085 
24086 #define	TCP_AC_MATCH(acp, tcp)					\
24087 	(((acp)->ac_zoneid == ALL_ZONES ||			\
24088 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
24089 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
24090 
24091 /*
24092  * Build a message containing a tcp_ioc_abort_conn_t structure
24093  * which is filled in with information from acp and tp.
24094  */
24095 static mblk_t *
24096 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
24097 {
24098 	mblk_t *mp;
24099 	tcp_ioc_abort_conn_t *tacp;
24100 
24101 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
24102 	if (mp == NULL)
24103 		return (NULL);
24104 
24105 	mp->b_datap->db_type = M_CTL;
24106 
24107 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
24108 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
24109 		sizeof (uint32_t));
24110 
24111 	tacp->ac_start = acp->ac_start;
24112 	tacp->ac_end = acp->ac_end;
24113 	tacp->ac_zoneid = acp->ac_zoneid;
24114 
24115 	if (acp->ac_local.ss_family == AF_INET) {
24116 		tacp->ac_local.ss_family = AF_INET;
24117 		tacp->ac_remote.ss_family = AF_INET;
24118 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
24119 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
24120 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
24121 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
24122 	} else {
24123 		tacp->ac_local.ss_family = AF_INET6;
24124 		tacp->ac_remote.ss_family = AF_INET6;
24125 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
24126 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
24127 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
24128 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
24129 	}
24130 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
24131 	return (mp);
24132 }
24133 
24134 /*
24135  * Print a tcp_ioc_abort_conn_t structure.
24136  */
24137 static void
24138 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
24139 {
24140 	char lbuf[128];
24141 	char rbuf[128];
24142 	sa_family_t af;
24143 	in_port_t lport, rport;
24144 	ushort_t logflags;
24145 
24146 	af = acp->ac_local.ss_family;
24147 
24148 	if (af == AF_INET) {
24149 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
24150 				lbuf, 128);
24151 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
24152 				rbuf, 128);
24153 		lport = ntohs(TCP_AC_V4LPORT(acp));
24154 		rport = ntohs(TCP_AC_V4RPORT(acp));
24155 	} else {
24156 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
24157 				lbuf, 128);
24158 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
24159 				rbuf, 128);
24160 		lport = ntohs(TCP_AC_V6LPORT(acp));
24161 		rport = ntohs(TCP_AC_V6RPORT(acp));
24162 	}
24163 
24164 	logflags = SL_TRACE | SL_NOTE;
24165 	/*
24166 	 * Don't print this message to the console if the operation was done
24167 	 * to a non-global zone.
24168 	 */
24169 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
24170 		logflags |= SL_CONSOLE;
24171 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
24172 		"TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
24173 		"start = %d, end = %d\n", lbuf, lport, rbuf, rport,
24174 		acp->ac_start, acp->ac_end);
24175 }
24176 
24177 /*
24178  * Called inside tcp_rput when a message built using
24179  * tcp_ioctl_abort_build_msg is put into a queue.
24180  * Note that when we get here there is no wildcard in acp any more.
24181  */
24182 static void
24183 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
24184 {
24185 	tcp_ioc_abort_conn_t *acp;
24186 
24187 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
24188 	if (tcp->tcp_state <= acp->ac_end) {
24189 		/*
24190 		 * If we get here, we are already on the correct
24191 		 * squeue. This ioctl follows the following path
24192 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
24193 		 * ->tcp_ioctl_abort->squeue_fill (if on a
24194 		 * different squeue)
24195 		 */
24196 		int errcode;
24197 
24198 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
24199 		(void) tcp_clean_death(tcp, errcode, 26);
24200 	}
24201 	freemsg(mp);
24202 }
24203 
24204 /*
24205  * Abort all matching connections on a hash chain.
24206  */
24207 static int
24208 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
24209     boolean_t exact)
24210 {
24211 	int nmatch, err = 0;
24212 	tcp_t *tcp;
24213 	MBLKP mp, last, listhead = NULL;
24214 	conn_t	*tconnp;
24215 	connf_t	*connfp = &ipcl_conn_fanout[index];
24216 
24217 startover:
24218 	nmatch = 0;
24219 
24220 	mutex_enter(&connfp->connf_lock);
24221 	for (tconnp = connfp->connf_head; tconnp != NULL;
24222 	    tconnp = tconnp->conn_next) {
24223 		tcp = tconnp->conn_tcp;
24224 		if (TCP_AC_MATCH(acp, tcp)) {
24225 			CONN_INC_REF(tcp->tcp_connp);
24226 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
24227 			if (mp == NULL) {
24228 				err = ENOMEM;
24229 				CONN_DEC_REF(tcp->tcp_connp);
24230 				break;
24231 			}
24232 			mp->b_prev = (mblk_t *)tcp;
24233 
24234 			if (listhead == NULL) {
24235 				listhead = mp;
24236 				last = mp;
24237 			} else {
24238 				last->b_next = mp;
24239 				last = mp;
24240 			}
24241 			nmatch++;
24242 			if (exact)
24243 				break;
24244 		}
24245 
24246 		/* Avoid holding lock for too long. */
24247 		if (nmatch >= 500)
24248 			break;
24249 	}
24250 	mutex_exit(&connfp->connf_lock);
24251 
24252 	/* Pass mp into the correct tcp */
24253 	while ((mp = listhead) != NULL) {
24254 		listhead = listhead->b_next;
24255 		tcp = (tcp_t *)mp->b_prev;
24256 		mp->b_next = mp->b_prev = NULL;
24257 		squeue_fill(tcp->tcp_connp->conn_sqp, mp,
24258 		    tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET);
24259 	}
24260 
24261 	*count += nmatch;
24262 	if (nmatch >= 500 && err == 0)
24263 		goto startover;
24264 	return (err);
24265 }
24266 
24267 /*
24268  * Abort all connections that matches the attributes specified in acp.
24269  */
24270 static int
24271 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp)
24272 {
24273 	sa_family_t af;
24274 	uint32_t  ports;
24275 	uint16_t *pports;
24276 	int err = 0, count = 0;
24277 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
24278 	int index = -1;
24279 	ushort_t logflags;
24280 
24281 	af = acp->ac_local.ss_family;
24282 
24283 	if (af == AF_INET) {
24284 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
24285 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
24286 			pports = (uint16_t *)&ports;
24287 			pports[1] = TCP_AC_V4LPORT(acp);
24288 			pports[0] = TCP_AC_V4RPORT(acp);
24289 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
24290 		}
24291 	} else {
24292 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
24293 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
24294 			pports = (uint16_t *)&ports;
24295 			pports[1] = TCP_AC_V6LPORT(acp);
24296 			pports[0] = TCP_AC_V6RPORT(acp);
24297 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
24298 		}
24299 	}
24300 
24301 	/*
24302 	 * For cases where remote addr, local port, and remote port are non-
24303 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
24304 	 */
24305 	if (index != -1) {
24306 		err = tcp_ioctl_abort_bucket(acp, index,
24307 			    &count, exact);
24308 	} else {
24309 		/*
24310 		 * loop through all entries for wildcard case
24311 		 */
24312 		for (index = 0; index < ipcl_conn_fanout_size; index++) {
24313 			err = tcp_ioctl_abort_bucket(acp, index,
24314 			    &count, exact);
24315 			if (err != 0)
24316 				break;
24317 		}
24318 	}
24319 
24320 	logflags = SL_TRACE | SL_NOTE;
24321 	/*
24322 	 * Don't print this message to the console if the operation was done
24323 	 * to a non-global zone.
24324 	 */
24325 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
24326 		logflags |= SL_CONSOLE;
24327 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
24328 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
24329 	if (err == 0 && count == 0)
24330 		err = ENOENT;
24331 	return (err);
24332 }
24333 
24334 /*
24335  * Process the TCP_IOC_ABORT_CONN ioctl request.
24336  */
24337 static void
24338 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
24339 {
24340 	int	err;
24341 	IOCP    iocp;
24342 	MBLKP   mp1;
24343 	sa_family_t laf, raf;
24344 	tcp_ioc_abort_conn_t *acp;
24345 	zone_t *zptr;
24346 	zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid;
24347 
24348 	iocp = (IOCP)mp->b_rptr;
24349 
24350 	if ((mp1 = mp->b_cont) == NULL ||
24351 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
24352 		err = EINVAL;
24353 		goto out;
24354 	}
24355 
24356 	/* check permissions */
24357 	if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
24358 		err = EPERM;
24359 		goto out;
24360 	}
24361 
24362 	if (mp1->b_cont != NULL) {
24363 		freemsg(mp1->b_cont);
24364 		mp1->b_cont = NULL;
24365 	}
24366 
24367 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
24368 	laf = acp->ac_local.ss_family;
24369 	raf = acp->ac_remote.ss_family;
24370 
24371 	/* check that a zone with the supplied zoneid exists */
24372 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
24373 		zptr = zone_find_by_id(zoneid);
24374 		if (zptr != NULL) {
24375 			zone_rele(zptr);
24376 		} else {
24377 			err = EINVAL;
24378 			goto out;
24379 		}
24380 	}
24381 
24382 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
24383 	    acp->ac_start > acp->ac_end || laf != raf ||
24384 	    (laf != AF_INET && laf != AF_INET6)) {
24385 		err = EINVAL;
24386 		goto out;
24387 	}
24388 
24389 	tcp_ioctl_abort_dump(acp);
24390 	err = tcp_ioctl_abort(acp);
24391 
24392 out:
24393 	if (mp1 != NULL) {
24394 		freemsg(mp1);
24395 		mp->b_cont = NULL;
24396 	}
24397 
24398 	if (err != 0)
24399 		miocnak(q, mp, 0, err);
24400 	else
24401 		miocack(q, mp, 0, 0);
24402 }
24403 
24404 /*
24405  * tcp_time_wait_processing() handles processing of incoming packets when
24406  * the tcp is in the TIME_WAIT state.
24407  * A TIME_WAIT tcp that has an associated open TCP stream is never put
24408  * on the time wait list.
24409  */
24410 void
24411 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
24412     uint32_t seg_ack, int seg_len, tcph_t *tcph)
24413 {
24414 	int32_t		bytes_acked;
24415 	int32_t		gap;
24416 	int32_t		rgap;
24417 	tcp_opt_t	tcpopt;
24418 	uint_t		flags;
24419 	uint32_t	new_swnd = 0;
24420 	conn_t		*connp;
24421 
24422 	BUMP_LOCAL(tcp->tcp_ibsegs);
24423 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
24424 
24425 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
24426 	new_swnd = BE16_TO_U16(tcph->th_win) <<
24427 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
24428 	if (tcp->tcp_snd_ts_ok) {
24429 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
24430 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24431 			    tcp->tcp_rnxt, TH_ACK);
24432 			goto done;
24433 		}
24434 	}
24435 	gap = seg_seq - tcp->tcp_rnxt;
24436 	rgap = tcp->tcp_rwnd - (gap + seg_len);
24437 	if (gap < 0) {
24438 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
24439 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes,
24440 		    (seg_len > -gap ? -gap : seg_len));
24441 		seg_len += gap;
24442 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
24443 			if (flags & TH_RST) {
24444 				goto done;
24445 			}
24446 			if ((flags & TH_FIN) && seg_len == -1) {
24447 				/*
24448 				 * When TCP receives a duplicate FIN in
24449 				 * TIME_WAIT state, restart the 2 MSL timer.
24450 				 * See page 73 in RFC 793. Make sure this TCP
24451 				 * is already on the TIME_WAIT list. If not,
24452 				 * just restart the timer.
24453 				 */
24454 				if (TCP_IS_DETACHED(tcp)) {
24455 					tcp_time_wait_remove(tcp, NULL);
24456 					tcp_time_wait_append(tcp);
24457 					TCP_DBGSTAT(tcp_rput_time_wait);
24458 				} else {
24459 					ASSERT(tcp != NULL);
24460 					TCP_TIMER_RESTART(tcp,
24461 					    tcp_time_wait_interval);
24462 				}
24463 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24464 				    tcp->tcp_rnxt, TH_ACK);
24465 				goto done;
24466 			}
24467 			flags |=  TH_ACK_NEEDED;
24468 			seg_len = 0;
24469 			goto process_ack;
24470 		}
24471 
24472 		/* Fix seg_seq, and chew the gap off the front. */
24473 		seg_seq = tcp->tcp_rnxt;
24474 	}
24475 
24476 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
24477 		/*
24478 		 * Make sure that when we accept the connection, pick
24479 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
24480 		 * old connection.
24481 		 *
24482 		 * The next ISS generated is equal to tcp_iss_incr_extra
24483 		 * + ISS_INCR/2 + other components depending on the
24484 		 * value of tcp_strong_iss.  We pre-calculate the new
24485 		 * ISS here and compare with tcp_snxt to determine if
24486 		 * we need to make adjustment to tcp_iss_incr_extra.
24487 		 *
24488 		 * The above calculation is ugly and is a
24489 		 * waste of CPU cycles...
24490 		 */
24491 		uint32_t new_iss = tcp_iss_incr_extra;
24492 		int32_t adj;
24493 
24494 		switch (tcp_strong_iss) {
24495 		case 2: {
24496 			/* Add time and MD5 components. */
24497 			uint32_t answer[4];
24498 			struct {
24499 				uint32_t ports;
24500 				in6_addr_t src;
24501 				in6_addr_t dst;
24502 			} arg;
24503 			MD5_CTX context;
24504 
24505 			mutex_enter(&tcp_iss_key_lock);
24506 			context = tcp_iss_key;
24507 			mutex_exit(&tcp_iss_key_lock);
24508 			arg.ports = tcp->tcp_ports;
24509 			/* We use MAPPED addresses in tcp_iss_init */
24510 			arg.src = tcp->tcp_ip_src_v6;
24511 			if (tcp->tcp_ipversion == IPV4_VERSION) {
24512 				IN6_IPADDR_TO_V4MAPPED(
24513 					tcp->tcp_ipha->ipha_dst,
24514 					    &arg.dst);
24515 			} else {
24516 				arg.dst =
24517 				    tcp->tcp_ip6h->ip6_dst;
24518 			}
24519 			MD5Update(&context, (uchar_t *)&arg,
24520 			    sizeof (arg));
24521 			MD5Final((uchar_t *)answer, &context);
24522 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
24523 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
24524 			break;
24525 		}
24526 		case 1:
24527 			/* Add time component and min random (i.e. 1). */
24528 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
24529 			break;
24530 		default:
24531 			/* Add only time component. */
24532 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
24533 			break;
24534 		}
24535 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
24536 			/*
24537 			 * New ISS not guaranteed to be ISS_INCR/2
24538 			 * ahead of the current tcp_snxt, so add the
24539 			 * difference to tcp_iss_incr_extra.
24540 			 */
24541 			tcp_iss_incr_extra += adj;
24542 		}
24543 		/*
24544 		 * If tcp_clean_death() can not perform the task now,
24545 		 * drop the SYN packet and let the other side re-xmit.
24546 		 * Otherwise pass the SYN packet back in, since the
24547 		 * old tcp state has been cleaned up or freed.
24548 		 */
24549 		if (tcp_clean_death(tcp, 0, 27) == -1)
24550 			goto done;
24551 		/*
24552 		 * We will come back to tcp_rput_data
24553 		 * on the global queue. Packets destined
24554 		 * for the global queue will be checked
24555 		 * with global policy. But the policy for
24556 		 * this packet has already been checked as
24557 		 * this was destined for the detached
24558 		 * connection. We need to bypass policy
24559 		 * check this time by attaching a dummy
24560 		 * ipsec_in with ipsec_in_dont_check set.
24561 		 */
24562 		if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) !=
24563 		    NULL) {
24564 			TCP_STAT(tcp_time_wait_syn_success);
24565 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
24566 			return;
24567 		}
24568 		goto done;
24569 	}
24570 
24571 	/*
24572 	 * rgap is the amount of stuff received out of window.  A negative
24573 	 * value is the amount out of window.
24574 	 */
24575 	if (rgap < 0) {
24576 		BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs);
24577 		UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap);
24578 		/* Fix seg_len and make sure there is something left. */
24579 		seg_len += rgap;
24580 		if (seg_len <= 0) {
24581 			if (flags & TH_RST) {
24582 				goto done;
24583 			}
24584 			flags |=  TH_ACK_NEEDED;
24585 			seg_len = 0;
24586 			goto process_ack;
24587 		}
24588 	}
24589 	/*
24590 	 * Check whether we can update tcp_ts_recent.  This test is
24591 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
24592 	 * Extensions for High Performance: An Update", Internet Draft.
24593 	 */
24594 	if (tcp->tcp_snd_ts_ok &&
24595 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
24596 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
24597 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
24598 		tcp->tcp_last_rcv_lbolt = lbolt64;
24599 	}
24600 
24601 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
24602 		/* Always ack out of order packets */
24603 		flags |= TH_ACK_NEEDED;
24604 		seg_len = 0;
24605 	} else if (seg_len > 0) {
24606 		BUMP_MIB(&tcp_mib, tcpInClosed);
24607 		BUMP_MIB(&tcp_mib, tcpInDataInorderSegs);
24608 		UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len);
24609 	}
24610 	if (flags & TH_RST) {
24611 		(void) tcp_clean_death(tcp, 0, 28);
24612 		goto done;
24613 	}
24614 	if (flags & TH_SYN) {
24615 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
24616 		    TH_RST|TH_ACK);
24617 		/*
24618 		 * Do not delete the TCP structure if it is in
24619 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
24620 		 */
24621 		goto done;
24622 	}
24623 process_ack:
24624 	if (flags & TH_ACK) {
24625 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
24626 		if (bytes_acked <= 0) {
24627 			if (bytes_acked == 0 && seg_len == 0 &&
24628 			    new_swnd == tcp->tcp_swnd)
24629 				BUMP_MIB(&tcp_mib, tcpInDupAck);
24630 		} else {
24631 			/* Acks something not sent */
24632 			flags |= TH_ACK_NEEDED;
24633 		}
24634 	}
24635 	if (flags & TH_ACK_NEEDED) {
24636 		/*
24637 		 * Time to send an ack for some reason.
24638 		 */
24639 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24640 		    tcp->tcp_rnxt, TH_ACK);
24641 	}
24642 done:
24643 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
24644 		DB_CKSUMSTART(mp) = 0;
24645 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
24646 		TCP_STAT(tcp_time_wait_syn_fail);
24647 	}
24648 	freemsg(mp);
24649 }
24650 
24651 /*
24652  * Allocate a T_SVR4_OPTMGMT_REQ.
24653  * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so
24654  * that tcp_rput_other can drop the acks.
24655  */
24656 static mblk_t *
24657 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen)
24658 {
24659 	mblk_t *mp;
24660 	struct T_optmgmt_req *tor;
24661 	struct opthdr *oh;
24662 	uint_t size;
24663 	char *optptr;
24664 
24665 	size = sizeof (*tor) + sizeof (*oh) + optlen;
24666 	mp = allocb(size, BPRI_MED);
24667 	if (mp == NULL)
24668 		return (NULL);
24669 
24670 	mp->b_wptr += size;
24671 	mp->b_datap->db_type = M_PROTO;
24672 	tor = (struct T_optmgmt_req *)mp->b_rptr;
24673 	tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
24674 	tor->MGMT_flags = T_NEGOTIATE;
24675 	tor->OPT_length = sizeof (*oh) + optlen;
24676 	tor->OPT_offset = (t_scalar_t)sizeof (*tor);
24677 
24678 	oh = (struct opthdr *)&tor[1];
24679 	oh->level = level;
24680 	oh->name = cmd;
24681 	oh->len = optlen;
24682 	if (optlen != 0) {
24683 		optptr = (char *)&oh[1];
24684 		bcopy(opt, optptr, optlen);
24685 	}
24686 	return (mp);
24687 }
24688 
24689 /*
24690  * TCP Timers Implementation.
24691  */
24692 timeout_id_t
24693 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
24694 {
24695 	mblk_t *mp;
24696 	tcp_timer_t *tcpt;
24697 	tcp_t *tcp = connp->conn_tcp;
24698 
24699 	ASSERT(connp->conn_sqp != NULL);
24700 
24701 	TCP_DBGSTAT(tcp_timeout_calls);
24702 
24703 	if (tcp->tcp_timercache == NULL) {
24704 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
24705 	} else {
24706 		TCP_DBGSTAT(tcp_timeout_cached_alloc);
24707 		mp = tcp->tcp_timercache;
24708 		tcp->tcp_timercache = mp->b_next;
24709 		mp->b_next = NULL;
24710 		ASSERT(mp->b_wptr == NULL);
24711 	}
24712 
24713 	CONN_INC_REF(connp);
24714 	tcpt = (tcp_timer_t *)mp->b_rptr;
24715 	tcpt->connp = connp;
24716 	tcpt->tcpt_proc = f;
24717 	tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim);
24718 	return ((timeout_id_t)mp);
24719 }
24720 
24721 static void
24722 tcp_timer_callback(void *arg)
24723 {
24724 	mblk_t *mp = (mblk_t *)arg;
24725 	tcp_timer_t *tcpt;
24726 	conn_t	*connp;
24727 
24728 	tcpt = (tcp_timer_t *)mp->b_rptr;
24729 	connp = tcpt->connp;
24730 	squeue_fill(connp->conn_sqp, mp,
24731 	    tcp_timer_handler, connp, SQTAG_TCP_TIMER);
24732 }
24733 
24734 static void
24735 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
24736 {
24737 	tcp_timer_t *tcpt;
24738 	conn_t *connp = (conn_t *)arg;
24739 	tcp_t *tcp = connp->conn_tcp;
24740 
24741 	tcpt = (tcp_timer_t *)mp->b_rptr;
24742 	ASSERT(connp == tcpt->connp);
24743 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
24744 
24745 	/*
24746 	 * If the TCP has reached the closed state, don't proceed any
24747 	 * further. This TCP logically does not exist on the system.
24748 	 * tcpt_proc could for example access queues, that have already
24749 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
24750 	 */
24751 	if (tcp->tcp_state != TCPS_CLOSED) {
24752 		(*tcpt->tcpt_proc)(connp);
24753 	} else {
24754 		tcp->tcp_timer_tid = 0;
24755 	}
24756 	tcp_timer_free(connp->conn_tcp, mp);
24757 }
24758 
24759 /*
24760  * There is potential race with untimeout and the handler firing at the same
24761  * time. The mblock may be freed by the handler while we are trying to use
24762  * it. But since both should execute on the same squeue, this race should not
24763  * occur.
24764  */
24765 clock_t
24766 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
24767 {
24768 	mblk_t	*mp = (mblk_t *)id;
24769 	tcp_timer_t *tcpt;
24770 	clock_t delta;
24771 
24772 	TCP_DBGSTAT(tcp_timeout_cancel_reqs);
24773 
24774 	if (mp == NULL)
24775 		return (-1);
24776 
24777 	tcpt = (tcp_timer_t *)mp->b_rptr;
24778 	ASSERT(tcpt->connp == connp);
24779 
24780 	delta = untimeout(tcpt->tcpt_tid);
24781 
24782 	if (delta >= 0) {
24783 		TCP_DBGSTAT(tcp_timeout_canceled);
24784 		tcp_timer_free(connp->conn_tcp, mp);
24785 		CONN_DEC_REF(connp);
24786 	}
24787 
24788 	return (delta);
24789 }
24790 
24791 /*
24792  * Allocate space for the timer event. The allocation looks like mblk, but it is
24793  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
24794  *
24795  * Dealing with failures: If we can't allocate from the timer cache we try
24796  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
24797  * points to b_rptr.
24798  * If we can't allocate anything using allocb_tryhard(), we perform a last
24799  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
24800  * save the actual allocation size in b_datap.
24801  */
24802 mblk_t *
24803 tcp_timermp_alloc(int kmflags)
24804 {
24805 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
24806 	    kmflags & ~KM_PANIC);
24807 
24808 	if (mp != NULL) {
24809 		mp->b_next = mp->b_prev = NULL;
24810 		mp->b_rptr = (uchar_t *)(&mp[1]);
24811 		mp->b_wptr = NULL;
24812 		mp->b_datap = NULL;
24813 		mp->b_queue = NULL;
24814 	} else if (kmflags & KM_PANIC) {
24815 		/*
24816 		 * Failed to allocate memory for the timer. Try allocating from
24817 		 * dblock caches.
24818 		 */
24819 		TCP_STAT(tcp_timermp_allocfail);
24820 		mp = allocb_tryhard(sizeof (tcp_timer_t));
24821 		if (mp == NULL) {
24822 			size_t size = 0;
24823 			/*
24824 			 * Memory is really low. Try tryhard allocation.
24825 			 */
24826 			TCP_STAT(tcp_timermp_allocdblfail);
24827 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
24828 			    sizeof (tcp_timer_t), &size, kmflags);
24829 			mp->b_rptr = (uchar_t *)(&mp[1]);
24830 			mp->b_next = mp->b_prev = NULL;
24831 			mp->b_wptr = (uchar_t *)-1;
24832 			mp->b_datap = (dblk_t *)size;
24833 			mp->b_queue = NULL;
24834 		}
24835 		ASSERT(mp->b_wptr != NULL);
24836 	}
24837 	TCP_DBGSTAT(tcp_timermp_alloced);
24838 
24839 	return (mp);
24840 }
24841 
24842 /*
24843  * Free per-tcp timer cache.
24844  * It can only contain entries from tcp_timercache.
24845  */
24846 void
24847 tcp_timermp_free(tcp_t *tcp)
24848 {
24849 	mblk_t *mp;
24850 
24851 	while ((mp = tcp->tcp_timercache) != NULL) {
24852 		ASSERT(mp->b_wptr == NULL);
24853 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
24854 		kmem_cache_free(tcp_timercache, mp);
24855 	}
24856 }
24857 
24858 /*
24859  * Free timer event. Put it on the per-tcp timer cache if there is not too many
24860  * events there already (currently at most two events are cached).
24861  * If the event is not allocated from the timer cache, free it right away.
24862  */
24863 static void
24864 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
24865 {
24866 	mblk_t *mp1 = tcp->tcp_timercache;
24867 
24868 	if (mp->b_wptr != NULL) {
24869 		/*
24870 		 * This allocation is not from a timer cache, free it right
24871 		 * away.
24872 		 */
24873 		if (mp->b_wptr != (uchar_t *)-1)
24874 			freeb(mp);
24875 		else
24876 			kmem_free(mp, (size_t)mp->b_datap);
24877 	} else if (mp1 == NULL || mp1->b_next == NULL) {
24878 		/* Cache this timer block for future allocations */
24879 		mp->b_rptr = (uchar_t *)(&mp[1]);
24880 		mp->b_next = mp1;
24881 		tcp->tcp_timercache = mp;
24882 	} else {
24883 		kmem_cache_free(tcp_timercache, mp);
24884 		TCP_DBGSTAT(tcp_timermp_freed);
24885 	}
24886 }
24887 
24888 /*
24889  * End of TCP Timers implementation.
24890  */
24891 
24892 /*
24893  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
24894  * on the specified backing STREAMS q. Note, the caller may make the
24895  * decision to call based on the tcp_t.tcp_flow_stopped value which
24896  * when check outside the q's lock is only an advisory check ...
24897  */
24898 
24899 void
24900 tcp_setqfull(tcp_t *tcp)
24901 {
24902 	queue_t *q = tcp->tcp_wq;
24903 
24904 	if (!(q->q_flag & QFULL)) {
24905 		mutex_enter(QLOCK(q));
24906 		if (!(q->q_flag & QFULL)) {
24907 			/* still need to set QFULL */
24908 			q->q_flag |= QFULL;
24909 			tcp->tcp_flow_stopped = B_TRUE;
24910 			mutex_exit(QLOCK(q));
24911 			TCP_STAT(tcp_flwctl_on);
24912 		} else {
24913 			mutex_exit(QLOCK(q));
24914 		}
24915 	}
24916 }
24917 
24918 void
24919 tcp_clrqfull(tcp_t *tcp)
24920 {
24921 	queue_t *q = tcp->tcp_wq;
24922 
24923 	if (q->q_flag & QFULL) {
24924 		mutex_enter(QLOCK(q));
24925 		if (q->q_flag & QFULL) {
24926 			q->q_flag &= ~QFULL;
24927 			tcp->tcp_flow_stopped = B_FALSE;
24928 			mutex_exit(QLOCK(q));
24929 			if (q->q_flag & QWANTW)
24930 				qbackenable(q, 0);
24931 		} else {
24932 			mutex_exit(QLOCK(q));
24933 		}
24934 	}
24935 }
24936 
24937 /*
24938  * TCP Kstats implementation
24939  */
24940 static void
24941 tcp_kstat_init(void)
24942 {
24943 	tcp_named_kstat_t template = {
24944 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
24945 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
24946 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
24947 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
24948 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
24949 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
24950 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
24951 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
24952 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
24953 		{ "inSegs",		KSTAT_DATA_UINT32, 0 },
24954 		{ "outSegs",		KSTAT_DATA_UINT32, 0 },
24955 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
24956 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
24957 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
24958 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
24959 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
24960 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
24961 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
24962 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
24963 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
24964 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
24965 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
24966 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
24967 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
24968 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
24969 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
24970 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
24971 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
24972 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
24973 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
24974 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
24975 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
24976 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
24977 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
24978 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
24979 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
24980 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
24981 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
24982 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
24983 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
24984 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
24985 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
24986 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
24987 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
24988 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
24989 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
24990 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
24991 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
24992 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
24993 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
24994 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
24995 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
24996 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
24997 	};
24998 
24999 	tcp_mibkp = kstat_create(TCP_MOD_NAME, 0, TCP_MOD_NAME,
25000 	    "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0);
25001 
25002 	if (tcp_mibkp == NULL)
25003 		return;
25004 
25005 	template.rtoAlgorithm.value.ui32 = 4;
25006 	template.rtoMin.value.ui32 = tcp_rexmit_interval_min;
25007 	template.rtoMax.value.ui32 = tcp_rexmit_interval_max;
25008 	template.maxConn.value.i32 = -1;
25009 
25010 	bcopy(&template, tcp_mibkp->ks_data, sizeof (template));
25011 
25012 	tcp_mibkp->ks_update = tcp_kstat_update;
25013 
25014 	kstat_install(tcp_mibkp);
25015 }
25016 
25017 static void
25018 tcp_kstat_fini(void)
25019 {
25020 
25021 	if (tcp_mibkp != NULL) {
25022 		kstat_delete(tcp_mibkp);
25023 		tcp_mibkp = NULL;
25024 	}
25025 }
25026 
25027 static int
25028 tcp_kstat_update(kstat_t *kp, int rw)
25029 {
25030 	tcp_named_kstat_t	*tcpkp;
25031 	tcp_t			*tcp;
25032 	connf_t			*connfp;
25033 	conn_t			*connp;
25034 	int 			i;
25035 
25036 	if (!kp || !kp->ks_data)
25037 		return (EIO);
25038 
25039 	if (rw == KSTAT_WRITE)
25040 		return (EACCES);
25041 
25042 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
25043 
25044 	tcpkp->currEstab.value.ui32 = 0;
25045 
25046 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25047 		connfp = &ipcl_globalhash_fanout[i];
25048 		connp = NULL;
25049 		while ((connp =
25050 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25051 			tcp = connp->conn_tcp;
25052 			switch (tcp_snmp_state(tcp)) {
25053 			case MIB2_TCP_established:
25054 			case MIB2_TCP_closeWait:
25055 				tcpkp->currEstab.value.ui32++;
25056 				break;
25057 			}
25058 		}
25059 	}
25060 
25061 	tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens;
25062 	tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens;
25063 	tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails;
25064 	tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets;
25065 	tcpkp->inSegs.value.ui32 = tcp_mib.tcpInSegs;
25066 	tcpkp->outSegs.value.ui32 = tcp_mib.tcpOutSegs;
25067 	tcpkp->retransSegs.value.ui32 =	tcp_mib.tcpRetransSegs;
25068 	tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize;
25069 	tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts;
25070 	tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs;
25071 	tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes;
25072 	tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes;
25073 	tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck;
25074 	tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed;
25075 	tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg;
25076 	tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate;
25077 	tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe;
25078 	tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl;
25079 	tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans;
25080 	tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs;
25081 	tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes;
25082 	tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck;
25083 	tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent;
25084 	tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs;
25085 	tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes;
25086 	tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs;
25087 	tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes;
25088 	tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs;
25089 	tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes;
25090 	tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs;
25091 	tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes;
25092 	tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs;
25093 	tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes;
25094 	tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe;
25095 	tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate;
25096 	tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed;
25097 	tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate;
25098 	tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate;
25099 	tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans;
25100 	tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop;
25101 	tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive;
25102 	tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe;
25103 	tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop;
25104 	tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop;
25105 	tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0;
25106 	tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop;
25107 	tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs;
25108 	tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize;
25109 
25110 	return (0);
25111 }
25112 
25113 void
25114 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
25115 {
25116 	uint16_t	hdr_len;
25117 	ipha_t		*ipha;
25118 	uint8_t		*nexthdrp;
25119 	tcph_t		*tcph;
25120 
25121 	/* Already has an eager */
25122 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
25123 		TCP_STAT(tcp_reinput_syn);
25124 		squeue_enter(connp->conn_sqp, mp, connp->conn_recv,
25125 		    connp, SQTAG_TCP_REINPUT_EAGER);
25126 		return;
25127 	}
25128 
25129 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
25130 	case IPV4_VERSION:
25131 		ipha = (ipha_t *)mp->b_rptr;
25132 		hdr_len = IPH_HDR_LENGTH(ipha);
25133 		break;
25134 	case IPV6_VERSION:
25135 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
25136 		    &hdr_len, &nexthdrp)) {
25137 			CONN_DEC_REF(connp);
25138 			freemsg(mp);
25139 			return;
25140 		}
25141 		break;
25142 	}
25143 
25144 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
25145 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
25146 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
25147 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
25148 	}
25149 
25150 	squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp,
25151 	    SQTAG_TCP_REINPUT);
25152 }
25153 
25154 static squeue_func_t
25155 tcp_squeue_switch(int val)
25156 {
25157 	squeue_func_t rval = squeue_fill;
25158 
25159 	switch (val) {
25160 	case 1:
25161 		rval = squeue_enter_nodrain;
25162 		break;
25163 	case 2:
25164 		rval = squeue_enter;
25165 		break;
25166 	default:
25167 		break;
25168 	}
25169 	return (rval);
25170 }
25171 
25172 static void
25173 tcp_squeue_add(squeue_t *sqp)
25174 {
25175 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
25176 		sizeof (tcp_squeue_priv_t), KM_SLEEP);
25177 
25178 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
25179 	tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector,
25180 	    sqp, TCP_TIME_WAIT_DELAY);
25181 	if (tcp_free_list_max_cnt == 0) {
25182 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
25183 			max_ncpus : boot_max_ncpus);
25184 
25185 		/*
25186 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
25187 		 */
25188 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
25189 			(tcp_ncpus * sizeof (tcp_t) * 100);
25190 	}
25191 	tcp_time_wait->tcp_free_list_cnt = 0;
25192 }
25193