1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #include <sys/types.h> 28 #include <sys/stream.h> 29 #include <sys/strsun.h> 30 #include <sys/strsubr.h> 31 #include <sys/stropts.h> 32 #include <sys/strlog.h> 33 #define _SUN_TPI_VERSION 2 34 #include <sys/tihdr.h> 35 #include <sys/timod.h> 36 #include <sys/ddi.h> 37 #include <sys/sunddi.h> 38 #include <sys/suntpi.h> 39 #include <sys/xti_inet.h> 40 #include <sys/cmn_err.h> 41 #include <sys/debug.h> 42 #include <sys/sdt.h> 43 #include <sys/vtrace.h> 44 #include <sys/kmem.h> 45 #include <sys/ethernet.h> 46 #include <sys/cpuvar.h> 47 #include <sys/dlpi.h> 48 #include <sys/pattr.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 #include <sys/zone.h> 52 #include <sys/sunldi.h> 53 54 #include <sys/errno.h> 55 #include <sys/signal.h> 56 #include <sys/socket.h> 57 #include <sys/socketvar.h> 58 #include <sys/sockio.h> 59 #include <sys/isa_defs.h> 60 #include <sys/md5.h> 61 #include <sys/random.h> 62 #include <sys/uio.h> 63 #include <sys/systm.h> 64 #include <netinet/in.h> 65 #include <netinet/tcp.h> 66 #include <netinet/ip6.h> 67 #include <netinet/icmp6.h> 68 #include <net/if.h> 69 #include <net/route.h> 70 #include <inet/ipsec_impl.h> 71 72 #include <inet/common.h> 73 #include <inet/ip.h> 74 #include <inet/ip_impl.h> 75 #include <inet/ip6.h> 76 #include <inet/ip_ndp.h> 77 #include <inet/proto_set.h> 78 #include <inet/mib2.h> 79 #include <inet/optcom.h> 80 #include <inet/snmpcom.h> 81 #include <inet/kstatcom.h> 82 #include <inet/tcp.h> 83 #include <inet/tcp_impl.h> 84 #include <inet/tcp_cluster.h> 85 #include <inet/udp_impl.h> 86 #include <net/pfkeyv2.h> 87 #include <inet/ipdrop.h> 88 89 #include <inet/ipclassifier.h> 90 #include <inet/ip_ire.h> 91 #include <inet/ip_ftable.h> 92 #include <inet/ip_if.h> 93 #include <inet/ipp_common.h> 94 #include <inet/ip_rts.h> 95 #include <inet/ip_netinfo.h> 96 #include <sys/squeue_impl.h> 97 #include <sys/squeue.h> 98 #include <sys/tsol/label.h> 99 #include <sys/tsol/tnet.h> 100 #include <rpc/pmap_prot.h> 101 #include <sys/callo.h> 102 103 /* 104 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 105 * 106 * (Read the detailed design doc in PSARC case directory) 107 * 108 * The entire tcp state is contained in tcp_t and conn_t structure 109 * which are allocated in tandem using ipcl_conn_create() and passing 110 * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect 111 * the references on the tcp_t. The tcp_t structure is never compressed 112 * and packets always land on the correct TCP perimeter from the time 113 * eager is created till the time tcp_t dies (as such the old mentat 114 * TCP global queue is not used for detached state and no IPSEC checking 115 * is required). The global queue is still allocated to send out resets 116 * for connection which have no listeners and IP directly calls 117 * tcp_xmit_listeners_reset() which does any policy check. 118 * 119 * Protection and Synchronisation mechanism: 120 * 121 * The tcp data structure does not use any kind of lock for protecting 122 * its state but instead uses 'squeues' for mutual exclusion from various 123 * read and write side threads. To access a tcp member, the thread should 124 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 125 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 126 * can pass any tcp function having prototype of edesc_t as argument 127 * (different from traditional STREAMs model where packets come in only 128 * designated entry points). The list of functions that can be directly 129 * called via squeue are listed before the usual function prototype. 130 * 131 * Referencing: 132 * 133 * TCP is MT-Hot and we use a reference based scheme to make sure that the 134 * tcp structure doesn't disappear when its needed. When the application 135 * creates an outgoing connection or accepts an incoming connection, we 136 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 137 * The IP reference is just a symbolic reference since ip_tcpclose() 138 * looks at tcp structure after tcp_close_output() returns which could 139 * have dropped the last TCP reference. So as long as the connection is 140 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 141 * conn_t. The classifier puts its own reference when the connection is 142 * inserted in listen or connected hash. Anytime a thread needs to enter 143 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 144 * on write side or by doing a classify on read side and then puts a 145 * reference on the conn before doing squeue_enter/tryenter/fill. For 146 * read side, the classifier itself puts the reference under fanout lock 147 * to make sure that tcp can't disappear before it gets processed. The 148 * squeue will drop this reference automatically so the called function 149 * doesn't have to do a DEC_REF. 150 * 151 * Opening a new connection: 152 * 153 * The outgoing connection open is pretty simple. tcp_open() does the 154 * work in creating the conn/tcp structure and initializing it. The 155 * squeue assignment is done based on the CPU the application 156 * is running on. So for outbound connections, processing is always done 157 * on application CPU which might be different from the incoming CPU 158 * being interrupted by the NIC. An optimal way would be to figure out 159 * the NIC <-> CPU binding at listen time, and assign the outgoing 160 * connection to the squeue attached to the CPU that will be interrupted 161 * for incoming packets (we know the NIC based on the bind IP address). 162 * This might seem like a problem if more data is going out but the 163 * fact is that in most cases the transmit is ACK driven transmit where 164 * the outgoing data normally sits on TCP's xmit queue waiting to be 165 * transmitted. 166 * 167 * Accepting a connection: 168 * 169 * This is a more interesting case because of various races involved in 170 * establishing a eager in its own perimeter. Read the meta comment on 171 * top of tcp_input_listener(). But briefly, the squeue is picked by 172 * ip_fanout based on the ring or the sender (if loopback). 173 * 174 * Closing a connection: 175 * 176 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 177 * via squeue to do the close and mark the tcp as detached if the connection 178 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 179 * reference but tcp_close() drop IP's reference always. So if tcp was 180 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 181 * and 1 because it is in classifier's connected hash. This is the condition 182 * we use to determine that its OK to clean up the tcp outside of squeue 183 * when time wait expires (check the ref under fanout and conn_lock and 184 * if it is 2, remove it from fanout hash and kill it). 185 * 186 * Although close just drops the necessary references and marks the 187 * tcp_detached state, tcp_close needs to know the tcp_detached has been 188 * set (under squeue) before letting the STREAM go away (because a 189 * inbound packet might attempt to go up the STREAM while the close 190 * has happened and tcp_detached is not set). So a special lock and 191 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 192 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 193 * tcp_detached. 194 * 195 * Special provisions and fast paths: 196 * 197 * We make special provisions for sockfs by marking tcp_issocket 198 * whenever we have only sockfs on top of TCP. This allows us to skip 199 * putting the tcp in acceptor hash since a sockfs listener can never 200 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 201 * since eager has already been allocated and the accept now happens 202 * on acceptor STREAM. There is a big blob of comment on top of 203 * tcp_input_listener explaining the new accept. When socket is POP'd, 204 * sockfs sends us an ioctl to mark the fact and we go back to old 205 * behaviour. Once tcp_issocket is unset, its never set for the 206 * life of that connection. 207 * 208 * IPsec notes : 209 * 210 * Since a packet is always executed on the correct TCP perimeter 211 * all IPsec processing is defered to IP including checking new 212 * connections and setting IPSEC policies for new connection. The 213 * only exception is tcp_xmit_listeners_reset() which is called 214 * directly from IP and needs to policy check to see if TH_RST 215 * can be sent out. 216 */ 217 218 /* 219 * Values for squeue switch: 220 * 1: SQ_NODRAIN 221 * 2: SQ_PROCESS 222 * 3: SQ_FILL 223 */ 224 int tcp_squeue_wput = 2; /* /etc/systems */ 225 int tcp_squeue_flag; 226 227 /* 228 * To prevent memory hog, limit the number of entries in tcp_free_list 229 * to 1% of available memory / number of cpus 230 */ 231 uint_t tcp_free_list_max_cnt = 0; 232 233 #define TCP_XMIT_LOWATER 4096 234 #define TCP_XMIT_HIWATER 49152 235 #define TCP_RECV_LOWATER 2048 236 #define TCP_RECV_HIWATER 128000 237 238 #define TIDUSZ 4096 /* transport interface data unit size */ 239 240 /* 241 * Size of acceptor hash list. It has to be a power of 2 for hashing. 242 */ 243 #define TCP_ACCEPTOR_FANOUT_SIZE 256 244 245 #ifdef _ILP32 246 #define TCP_ACCEPTOR_HASH(accid) \ 247 (((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 248 #else 249 #define TCP_ACCEPTOR_HASH(accid) \ 250 ((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 251 #endif /* _ILP32 */ 252 253 /* Minimum number of connections per listener. */ 254 static uint32_t tcp_min_conn_listener = 2; 255 256 uint32_t tcp_early_abort = 30; 257 258 /* TCP Timer control structure */ 259 typedef struct tcpt_s { 260 pfv_t tcpt_pfv; /* The routine we are to call */ 261 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 262 } tcpt_t; 263 264 /* 265 * Functions called directly via squeue having a prototype of edesc_t. 266 */ 267 void tcp_input_listener(void *arg, mblk_t *mp, void *arg2, 268 ip_recv_attr_t *ira); 269 void tcp_input_data(void *arg, mblk_t *mp, void *arg2, 270 ip_recv_attr_t *ira); 271 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, 272 ip_recv_attr_t *dummy); 273 274 275 /* Prototype for TCP functions */ 276 static void tcp_random_init(void); 277 int tcp_random(void); 278 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 279 in_port_t dstport, uint_t srcid); 280 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 281 in_port_t dstport, uint32_t flowinfo, 282 uint_t srcid, uint32_t scope_id); 283 static void tcp_iss_init(tcp_t *tcp); 284 static void tcp_reinit(tcp_t *tcp); 285 static void tcp_reinit_values(tcp_t *tcp); 286 287 static void tcp_wsrv(queue_t *q); 288 static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa); 289 static void tcp_update_zcopy(tcp_t *tcp); 290 static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t, 291 ixa_notify_arg_t); 292 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 293 static void tcp_stack_fini(netstackid_t stackid, void *arg); 294 295 static int tcp_squeue_switch(int); 296 297 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 298 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 299 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 300 301 static void tcp_squeue_add(squeue_t *); 302 303 struct module_info tcp_rinfo = { 304 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 305 }; 306 307 static struct module_info tcp_winfo = { 308 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 309 }; 310 311 /* 312 * Entry points for TCP as a device. The normal case which supports 313 * the TCP functionality. 314 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 315 */ 316 struct qinit tcp_rinitv4 = { 317 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 318 }; 319 320 struct qinit tcp_rinitv6 = { 321 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 322 }; 323 324 struct qinit tcp_winit = { 325 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 326 }; 327 328 /* Initial entry point for TCP in socket mode. */ 329 struct qinit tcp_sock_winit = { 330 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 331 }; 332 333 /* TCP entry point during fallback */ 334 struct qinit tcp_fallback_sock_winit = { 335 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 336 }; 337 338 /* 339 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 340 * an accept. Avoid allocating data structures since eager has already 341 * been created. 342 */ 343 struct qinit tcp_acceptor_rinit = { 344 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 345 }; 346 347 struct qinit tcp_acceptor_winit = { 348 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 349 }; 350 351 /* For AF_INET aka /dev/tcp */ 352 struct streamtab tcpinfov4 = { 353 &tcp_rinitv4, &tcp_winit 354 }; 355 356 /* For AF_INET6 aka /dev/tcp6 */ 357 struct streamtab tcpinfov6 = { 358 &tcp_rinitv6, &tcp_winit 359 }; 360 361 /* 362 * Following assumes TPI alignment requirements stay along 32 bit 363 * boundaries 364 */ 365 #define ROUNDUP32(x) \ 366 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 367 368 /* Template for response to info request. */ 369 struct T_info_ack tcp_g_t_info_ack = { 370 T_INFO_ACK, /* PRIM_type */ 371 0, /* TSDU_size */ 372 T_INFINITE, /* ETSDU_size */ 373 T_INVALID, /* CDATA_size */ 374 T_INVALID, /* DDATA_size */ 375 sizeof (sin_t), /* ADDR_size */ 376 0, /* OPT_size - not initialized here */ 377 TIDUSZ, /* TIDU_size */ 378 T_COTS_ORD, /* SERV_type */ 379 TCPS_IDLE, /* CURRENT_state */ 380 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 381 }; 382 383 struct T_info_ack tcp_g_t_info_ack_v6 = { 384 T_INFO_ACK, /* PRIM_type */ 385 0, /* TSDU_size */ 386 T_INFINITE, /* ETSDU_size */ 387 T_INVALID, /* CDATA_size */ 388 T_INVALID, /* DDATA_size */ 389 sizeof (sin6_t), /* ADDR_size */ 390 0, /* OPT_size - not initialized here */ 391 TIDUSZ, /* TIDU_size */ 392 T_COTS_ORD, /* SERV_type */ 393 TCPS_IDLE, /* CURRENT_state */ 394 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 395 }; 396 397 /* 398 * TCP tunables related declarations. Definitions are in tcp_tunables.c 399 */ 400 extern mod_prop_info_t tcp_propinfo_tbl[]; 401 extern int tcp_propinfo_count; 402 403 #define MB (1024 * 1024) 404 405 #define IS_VMLOANED_MBLK(mp) \ 406 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 407 408 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 409 410 /* 411 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 412 * tunable settable via NDD. Otherwise, the per-connection behavior is 413 * determined dynamically during tcp_set_destination(), which is the default. 414 */ 415 boolean_t tcp_static_maxpsz = B_FALSE; 416 417 /* 418 * If the receive buffer size is changed, this function is called to update 419 * the upper socket layer on the new delayed receive wake up threshold. 420 */ 421 static void 422 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh) 423 { 424 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3; 425 426 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 427 conn_t *connp = tcp->tcp_connp; 428 struct sock_proto_props sopp; 429 430 /* 431 * only increase rcvthresh upto default_threshold 432 */ 433 if (new_rcvthresh > default_threshold) 434 new_rcvthresh = default_threshold; 435 436 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 437 sopp.sopp_rcvthresh = new_rcvthresh; 438 439 (*connp->conn_upcalls->su_set_proto_props) 440 (connp->conn_upper_handle, &sopp); 441 } 442 } 443 444 /* 445 * Figure out the value of window scale opton. Note that the rwnd is 446 * ASSUMED to be rounded up to the nearest MSS before the calculation. 447 * We cannot find the scale value and then do a round up of tcp_rwnd 448 * because the scale value may not be correct after that. 449 * 450 * Set the compiler flag to make this function inline. 451 */ 452 void 453 tcp_set_ws_value(tcp_t *tcp) 454 { 455 int i; 456 uint32_t rwnd = tcp->tcp_rwnd; 457 458 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 459 i++, rwnd >>= 1) 460 ; 461 tcp->tcp_rcv_ws = i; 462 } 463 464 /* 465 * Remove cached/latched IPsec references. 466 */ 467 void 468 tcp_ipsec_cleanup(tcp_t *tcp) 469 { 470 conn_t *connp = tcp->tcp_connp; 471 472 ASSERT(connp->conn_flags & IPCL_TCPCONN); 473 474 if (connp->conn_latch != NULL) { 475 IPLATCH_REFRELE(connp->conn_latch); 476 connp->conn_latch = NULL; 477 } 478 if (connp->conn_latch_in_policy != NULL) { 479 IPPOL_REFRELE(connp->conn_latch_in_policy); 480 connp->conn_latch_in_policy = NULL; 481 } 482 if (connp->conn_latch_in_action != NULL) { 483 IPACT_REFRELE(connp->conn_latch_in_action); 484 connp->conn_latch_in_action = NULL; 485 } 486 if (connp->conn_policy != NULL) { 487 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 488 connp->conn_policy = NULL; 489 } 490 } 491 492 /* 493 * Cleaup before placing on free list. 494 * Disassociate from the netstack/tcp_stack_t since the freelist 495 * is per squeue and not per netstack. 496 */ 497 void 498 tcp_cleanup(tcp_t *tcp) 499 { 500 mblk_t *mp; 501 conn_t *connp = tcp->tcp_connp; 502 tcp_stack_t *tcps = tcp->tcp_tcps; 503 netstack_t *ns = tcps->tcps_netstack; 504 mblk_t *tcp_rsrv_mp; 505 506 tcp_bind_hash_remove(tcp); 507 508 /* Cleanup that which needs the netstack first */ 509 tcp_ipsec_cleanup(tcp); 510 ixa_cleanup(connp->conn_ixa); 511 512 if (connp->conn_ht_iphc != NULL) { 513 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 514 connp->conn_ht_iphc = NULL; 515 connp->conn_ht_iphc_allocated = 0; 516 connp->conn_ht_iphc_len = 0; 517 connp->conn_ht_ulp = NULL; 518 connp->conn_ht_ulp_len = 0; 519 tcp->tcp_ipha = NULL; 520 tcp->tcp_ip6h = NULL; 521 tcp->tcp_tcpha = NULL; 522 } 523 524 /* We clear any IP_OPTIONS and extension headers */ 525 ip_pkt_free(&connp->conn_xmit_ipp); 526 527 tcp_free(tcp); 528 529 /* 530 * Since we will bzero the entire structure, we need to 531 * remove it and reinsert it in global hash list. We 532 * know the walkers can't get to this conn because we 533 * had set CONDEMNED flag earlier and checked reference 534 * under conn_lock so walker won't pick it and when we 535 * go the ipcl_globalhash_remove() below, no walker 536 * can get to it. 537 */ 538 ipcl_globalhash_remove(connp); 539 540 /* Save some state */ 541 mp = tcp->tcp_timercache; 542 543 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 544 545 if (connp->conn_cred != NULL) { 546 crfree(connp->conn_cred); 547 connp->conn_cred = NULL; 548 } 549 ipcl_conn_cleanup(connp); 550 connp->conn_flags = IPCL_TCPCONN; 551 552 /* 553 * Now it is safe to decrement the reference counts. 554 * This might be the last reference on the netstack 555 * in which case it will cause the freeing of the IP Instance. 556 */ 557 connp->conn_netstack = NULL; 558 connp->conn_ixa->ixa_ipst = NULL; 559 netstack_rele(ns); 560 ASSERT(tcps != NULL); 561 tcp->tcp_tcps = NULL; 562 563 bzero(tcp, sizeof (tcp_t)); 564 565 /* restore the state */ 566 tcp->tcp_timercache = mp; 567 568 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 569 570 tcp->tcp_connp = connp; 571 572 ASSERT(connp->conn_tcp == tcp); 573 ASSERT(connp->conn_flags & IPCL_TCPCONN); 574 connp->conn_state_flags = CONN_INCIPIENT; 575 ASSERT(connp->conn_proto == IPPROTO_TCP); 576 ASSERT(connp->conn_ref == 1); 577 } 578 579 /* 580 * Adapt to the information, such as rtt and rtt_sd, provided from the 581 * DCE and IRE maintained by IP. 582 * 583 * Checks for multicast and broadcast destination address. 584 * Returns zero if ok; an errno on failure. 585 * 586 * Note that the MSS calculation here is based on the info given in 587 * the DCE and IRE. We do not do any calculation based on TCP options. They 588 * will be handled in tcp_input_data() when TCP knows which options to use. 589 * 590 * Note on how TCP gets its parameters for a connection. 591 * 592 * When a tcp_t structure is allocated, it gets all the default parameters. 593 * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd, 594 * spipe, rpipe, ... from the route metrics. Route metric overrides the 595 * default. 596 * 597 * An incoming SYN with a multicast or broadcast destination address is dropped 598 * in ip_fanout_v4/v6. 599 * 600 * An incoming SYN with a multicast or broadcast source address is always 601 * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in 602 * conn_connect. 603 * The same logic in tcp_set_destination also serves to 604 * reject an attempt to connect to a broadcast or multicast (destination) 605 * address. 606 */ 607 int 608 tcp_set_destination(tcp_t *tcp) 609 { 610 uint32_t mss_max; 611 uint32_t mss; 612 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 613 conn_t *connp = tcp->tcp_connp; 614 tcp_stack_t *tcps = tcp->tcp_tcps; 615 iulp_t uinfo; 616 int error; 617 uint32_t flags; 618 619 flags = IPDF_LSO | IPDF_ZCOPY; 620 /* 621 * Make sure we have a dce for the destination to avoid dce_ident 622 * contention for connected sockets. 623 */ 624 flags |= IPDF_UNIQUE_DCE; 625 626 if (!tcps->tcps_ignore_path_mtu) 627 connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY; 628 629 /* Use conn_lock to satify ASSERT; tcp is already serialized */ 630 mutex_enter(&connp->conn_lock); 631 error = conn_connect(connp, &uinfo, flags); 632 mutex_exit(&connp->conn_lock); 633 if (error != 0) 634 return (error); 635 636 error = tcp_build_hdrs(tcp); 637 if (error != 0) 638 return (error); 639 640 tcp->tcp_localnet = uinfo.iulp_localnet; 641 642 if (uinfo.iulp_rtt != 0) { 643 clock_t rto; 644 645 tcp->tcp_rtt_sa = uinfo.iulp_rtt; 646 tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd; 647 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 648 tcps->tcps_rexmit_interval_extra + 649 (tcp->tcp_rtt_sa >> 5); 650 651 TCP_SET_RTO(tcp, rto); 652 } 653 if (uinfo.iulp_ssthresh != 0) 654 tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh; 655 else 656 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 657 if (uinfo.iulp_spipe > 0) { 658 connp->conn_sndbuf = MIN(uinfo.iulp_spipe, 659 tcps->tcps_max_buf); 660 if (tcps->tcps_snd_lowat_fraction != 0) { 661 connp->conn_sndlowat = connp->conn_sndbuf / 662 tcps->tcps_snd_lowat_fraction; 663 } 664 (void) tcp_maxpsz_set(tcp, B_TRUE); 665 } 666 /* 667 * Note that up till now, acceptor always inherits receive 668 * window from the listener. But if there is a metrics 669 * associated with a host, we should use that instead of 670 * inheriting it from listener. Thus we need to pass this 671 * info back to the caller. 672 */ 673 if (uinfo.iulp_rpipe > 0) { 674 tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe, 675 tcps->tcps_max_buf); 676 } 677 678 if (uinfo.iulp_rtomax > 0) { 679 tcp->tcp_second_timer_threshold = 680 uinfo.iulp_rtomax; 681 } 682 683 /* 684 * Use the metric option settings, iulp_tstamp_ok and 685 * iulp_wscale_ok, only for active open. What this means 686 * is that if the other side uses timestamp or window 687 * scale option, TCP will also use those options. That 688 * is for passive open. If the application sets a 689 * large window, window scale is enabled regardless of 690 * the value in iulp_wscale_ok. This is the behavior 691 * since 2.6. So we keep it. 692 * The only case left in passive open processing is the 693 * check for SACK. 694 * For ECN, it should probably be like SACK. But the 695 * current value is binary, so we treat it like the other 696 * cases. The metric only controls active open.For passive 697 * open, the ndd param, tcp_ecn_permitted, controls the 698 * behavior. 699 */ 700 if (!tcp_detached) { 701 /* 702 * The if check means that the following can only 703 * be turned on by the metrics only IRE, but not off. 704 */ 705 if (uinfo.iulp_tstamp_ok) 706 tcp->tcp_snd_ts_ok = B_TRUE; 707 if (uinfo.iulp_wscale_ok) 708 tcp->tcp_snd_ws_ok = B_TRUE; 709 if (uinfo.iulp_sack == 2) 710 tcp->tcp_snd_sack_ok = B_TRUE; 711 if (uinfo.iulp_ecn_ok) 712 tcp->tcp_ecn_ok = B_TRUE; 713 } else { 714 /* 715 * Passive open. 716 * 717 * As above, the if check means that SACK can only be 718 * turned on by the metric only IRE. 719 */ 720 if (uinfo.iulp_sack > 0) { 721 tcp->tcp_snd_sack_ok = B_TRUE; 722 } 723 } 724 725 /* 726 * XXX Note that currently, iulp_mtu can be as small as 68 727 * because of PMTUd. So tcp_mss may go to negative if combined 728 * length of all those options exceeds 28 bytes. But because 729 * of the tcp_mss_min check below, we may not have a problem if 730 * tcp_mss_min is of a reasonable value. The default is 1 so 731 * the negative problem still exists. And the check defeats PMTUd. 732 * In fact, if PMTUd finds that the MSS should be smaller than 733 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 734 * value. 735 * 736 * We do not deal with that now. All those problems related to 737 * PMTUd will be fixed later. 738 */ 739 ASSERT(uinfo.iulp_mtu != 0); 740 mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu; 741 742 /* Sanity check for MSS value. */ 743 if (connp->conn_ipversion == IPV4_VERSION) 744 mss_max = tcps->tcps_mss_max_ipv4; 745 else 746 mss_max = tcps->tcps_mss_max_ipv6; 747 748 if (tcp->tcp_ipsec_overhead == 0) 749 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 750 751 mss -= tcp->tcp_ipsec_overhead; 752 753 if (mss < tcps->tcps_mss_min) 754 mss = tcps->tcps_mss_min; 755 if (mss > mss_max) 756 mss = mss_max; 757 758 /* Note that this is the maximum MSS, excluding all options. */ 759 tcp->tcp_mss = mss; 760 761 /* 762 * Update the tcp connection with LSO capability. 763 */ 764 tcp_update_lso(tcp, connp->conn_ixa); 765 766 /* 767 * Initialize the ISS here now that we have the full connection ID. 768 * The RFC 1948 method of initial sequence number generation requires 769 * knowledge of the full connection ID before setting the ISS. 770 */ 771 tcp_iss_init(tcp); 772 773 tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local); 774 775 /* 776 * Make sure that conn is not marked incipient 777 * for incoming connections. A blind 778 * removal of incipient flag is cheaper than 779 * check and removal. 780 */ 781 mutex_enter(&connp->conn_lock); 782 connp->conn_state_flags &= ~CONN_INCIPIENT; 783 mutex_exit(&connp->conn_lock); 784 return (0); 785 } 786 787 /* 788 * tcp_clean_death / tcp_close_detached must not be called more than once 789 * on a tcp. Thus every function that potentially calls tcp_clean_death 790 * must check for the tcp state before calling tcp_clean_death. 791 * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper, 792 * tcp_timer_handler, all check for the tcp state. 793 */ 794 /* ARGSUSED */ 795 void 796 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 797 ip_recv_attr_t *dummy) 798 { 799 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 800 801 freemsg(mp); 802 if (tcp->tcp_state > TCPS_BOUND) 803 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT); 804 } 805 806 /* 807 * We are dying for some reason. Try to do it gracefully. (May be called 808 * as writer.) 809 * 810 * Return -1 if the structure was not cleaned up (if the cleanup had to be 811 * done by a service procedure). 812 * TBD - Should the return value distinguish between the tcp_t being 813 * freed and it being reinitialized? 814 */ 815 int 816 tcp_clean_death(tcp_t *tcp, int err) 817 { 818 mblk_t *mp; 819 queue_t *q; 820 conn_t *connp = tcp->tcp_connp; 821 tcp_stack_t *tcps = tcp->tcp_tcps; 822 823 if (tcp->tcp_fused) 824 tcp_unfuse(tcp); 825 826 if (tcp->tcp_linger_tid != 0 && 827 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 828 tcp_stop_lingering(tcp); 829 } 830 831 ASSERT(tcp != NULL); 832 ASSERT((connp->conn_family == AF_INET && 833 connp->conn_ipversion == IPV4_VERSION) || 834 (connp->conn_family == AF_INET6 && 835 (connp->conn_ipversion == IPV4_VERSION || 836 connp->conn_ipversion == IPV6_VERSION))); 837 838 if (TCP_IS_DETACHED(tcp)) { 839 if (tcp->tcp_hard_binding) { 840 /* 841 * Its an eager that we are dealing with. We close the 842 * eager but in case a conn_ind has already gone to the 843 * listener, let tcp_accept_finish() send a discon_ind 844 * to the listener and drop the last reference. If the 845 * listener doesn't even know about the eager i.e. the 846 * conn_ind hasn't gone up, blow away the eager and drop 847 * the last reference as well. If the conn_ind has gone 848 * up, state should be BOUND. tcp_accept_finish 849 * will figure out that the connection has received a 850 * RST and will send a DISCON_IND to the application. 851 */ 852 tcp_closei_local(tcp); 853 if (!tcp->tcp_tconnind_started) { 854 CONN_DEC_REF(connp); 855 } else { 856 int32_t oldstate = tcp->tcp_state; 857 858 tcp->tcp_state = TCPS_BOUND; 859 DTRACE_TCP6(state__change, void, NULL, 860 ip_xmit_attr_t *, connp->conn_ixa, 861 void, NULL, tcp_t *, tcp, void, NULL, 862 int32_t, oldstate); 863 } 864 } else { 865 tcp_close_detached(tcp); 866 } 867 return (0); 868 } 869 870 TCP_STAT(tcps, tcp_clean_death_nondetached); 871 872 /* 873 * The connection is dead. Decrement listener connection counter if 874 * necessary. 875 */ 876 if (tcp->tcp_listen_cnt != NULL) 877 TCP_DECR_LISTEN_CNT(tcp); 878 879 /* 880 * When a connection is moved to TIME_WAIT state, the connection 881 * counter is already decremented. So no need to decrement here 882 * again. See SET_TIME_WAIT() macro. 883 */ 884 if (tcp->tcp_state >= TCPS_ESTABLISHED && 885 tcp->tcp_state < TCPS_TIME_WAIT) { 886 TCPS_CONN_DEC(tcps); 887 } 888 889 q = connp->conn_rq; 890 891 /* Trash all inbound data */ 892 if (!IPCL_IS_NONSTR(connp)) { 893 ASSERT(q != NULL); 894 flushq(q, FLUSHALL); 895 } 896 897 /* 898 * If we are at least part way open and there is error 899 * (err==0 implies no error) 900 * notify our client by a T_DISCON_IND. 901 */ 902 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 903 if (tcp->tcp_state >= TCPS_ESTABLISHED && 904 !TCP_IS_SOCKET(tcp)) { 905 /* 906 * Send M_FLUSH according to TPI. Because sockets will 907 * (and must) ignore FLUSHR we do that only for TPI 908 * endpoints and sockets in STREAMS mode. 909 */ 910 (void) putnextctl1(q, M_FLUSH, FLUSHR); 911 } 912 if (connp->conn_debug) { 913 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 914 "tcp_clean_death: discon err %d", err); 915 } 916 if (IPCL_IS_NONSTR(connp)) { 917 /* Direct socket, use upcall */ 918 (*connp->conn_upcalls->su_disconnected)( 919 connp->conn_upper_handle, tcp->tcp_connid, err); 920 } else { 921 mp = mi_tpi_discon_ind(NULL, err, 0); 922 if (mp != NULL) { 923 putnext(q, mp); 924 } else { 925 if (connp->conn_debug) { 926 (void) strlog(TCP_MOD_ID, 0, 1, 927 SL_ERROR|SL_TRACE, 928 "tcp_clean_death, sending M_ERROR"); 929 } 930 (void) putnextctl1(q, M_ERROR, EPROTO); 931 } 932 } 933 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 934 /* SYN_SENT or SYN_RCVD */ 935 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 936 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 937 /* ESTABLISHED or CLOSE_WAIT */ 938 TCPS_BUMP_MIB(tcps, tcpEstabResets); 939 } 940 } 941 942 /* 943 * ESTABLISHED non-STREAMS eagers are not 'detached' because 944 * an upper handle is obtained when the SYN-ACK comes in. So it 945 * should receive the 'disconnected' upcall, but tcp_reinit should 946 * not be called since this is an eager. 947 */ 948 if (tcp->tcp_listener != NULL && IPCL_IS_NONSTR(connp)) { 949 tcp_closei_local(tcp); 950 tcp->tcp_state = TCPS_BOUND; 951 return (0); 952 } 953 954 tcp_reinit(tcp); 955 if (IPCL_IS_NONSTR(connp)) 956 (void) tcp_do_unbind(connp); 957 958 return (-1); 959 } 960 961 /* 962 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 963 * to expire, stop the wait and finish the close. 964 */ 965 void 966 tcp_stop_lingering(tcp_t *tcp) 967 { 968 clock_t delta = 0; 969 tcp_stack_t *tcps = tcp->tcp_tcps; 970 conn_t *connp = tcp->tcp_connp; 971 972 tcp->tcp_linger_tid = 0; 973 if (tcp->tcp_state > TCPS_LISTEN) { 974 tcp_acceptor_hash_remove(tcp); 975 mutex_enter(&tcp->tcp_non_sq_lock); 976 if (tcp->tcp_flow_stopped) { 977 tcp_clrqfull(tcp); 978 } 979 mutex_exit(&tcp->tcp_non_sq_lock); 980 981 if (tcp->tcp_timer_tid != 0) { 982 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 983 tcp->tcp_timer_tid = 0; 984 } 985 /* 986 * Need to cancel those timers which will not be used when 987 * TCP is detached. This has to be done before the conn_wq 988 * is cleared. 989 */ 990 tcp_timers_stop(tcp); 991 992 tcp->tcp_detached = B_TRUE; 993 connp->conn_rq = NULL; 994 connp->conn_wq = NULL; 995 996 if (tcp->tcp_state == TCPS_TIME_WAIT) { 997 tcp_time_wait_append(tcp); 998 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 999 goto finish; 1000 } 1001 1002 /* 1003 * If delta is zero the timer event wasn't executed and was 1004 * successfully canceled. In this case we need to restart it 1005 * with the minimal delta possible. 1006 */ 1007 if (delta >= 0) { 1008 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 1009 delta ? delta : 1); 1010 } 1011 } else { 1012 tcp_closei_local(tcp); 1013 CONN_DEC_REF(connp); 1014 } 1015 finish: 1016 tcp->tcp_detached = B_TRUE; 1017 connp->conn_rq = NULL; 1018 connp->conn_wq = NULL; 1019 1020 /* Signal closing thread that it can complete close */ 1021 mutex_enter(&tcp->tcp_closelock); 1022 tcp->tcp_closed = 1; 1023 cv_signal(&tcp->tcp_closecv); 1024 mutex_exit(&tcp->tcp_closelock); 1025 1026 /* If we have an upper handle (socket), release it */ 1027 if (IPCL_IS_NONSTR(connp)) { 1028 ASSERT(connp->conn_upper_handle != NULL); 1029 (*connp->conn_upcalls->su_closed)(connp->conn_upper_handle); 1030 connp->conn_upper_handle = NULL; 1031 connp->conn_upcalls = NULL; 1032 } 1033 } 1034 1035 void 1036 tcp_close_common(conn_t *connp, int flags) 1037 { 1038 tcp_t *tcp = connp->conn_tcp; 1039 mblk_t *mp = &tcp->tcp_closemp; 1040 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 1041 mblk_t *bp; 1042 1043 ASSERT(connp->conn_ref >= 2); 1044 1045 /* 1046 * Mark the conn as closing. ipsq_pending_mp_add will not 1047 * add any mp to the pending mp list, after this conn has 1048 * started closing. 1049 */ 1050 mutex_enter(&connp->conn_lock); 1051 connp->conn_state_flags |= CONN_CLOSING; 1052 if (connp->conn_oper_pending_ill != NULL) 1053 conn_ioctl_cleanup_reqd = B_TRUE; 1054 CONN_INC_REF_LOCKED(connp); 1055 mutex_exit(&connp->conn_lock); 1056 tcp->tcp_closeflags = (uint8_t)flags; 1057 ASSERT(connp->conn_ref >= 3); 1058 1059 /* 1060 * tcp_closemp_used is used below without any protection of a lock 1061 * as we don't expect any one else to use it concurrently at this 1062 * point otherwise it would be a major defect. 1063 */ 1064 1065 if (mp->b_prev == NULL) 1066 tcp->tcp_closemp_used = B_TRUE; 1067 else 1068 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 1069 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 1070 1071 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1072 1073 /* 1074 * Cleanup any queued ioctls here. This must be done before the wq/rq 1075 * are re-written by tcp_close_output(). 1076 */ 1077 if (conn_ioctl_cleanup_reqd) 1078 conn_ioctl_cleanup(connp); 1079 1080 /* 1081 * As CONN_CLOSING is set, no further ioctls should be passed down to 1082 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and 1083 * tcp_wput_iocdata). If the ioctl was queued on an ipsq, 1084 * conn_ioctl_cleanup should have found it and removed it. If the ioctl 1085 * was still in flight at the time, we wait for it here. See comments 1086 * for CONN_INC_IOCTLREF in ip.h for details. 1087 */ 1088 mutex_enter(&connp->conn_lock); 1089 while (connp->conn_ioctlref > 0) 1090 cv_wait(&connp->conn_cv, &connp->conn_lock); 1091 ASSERT(connp->conn_ioctlref == 0); 1092 ASSERT(connp->conn_oper_pending_ill == NULL); 1093 mutex_exit(&connp->conn_lock); 1094 1095 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 1096 NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 1097 1098 /* 1099 * For non-STREAMS sockets, the normal case is that the conn makes 1100 * an upcall when it's finally closed, so there is no need to wait 1101 * in the protocol. But in case of SO_LINGER the thread sleeps here 1102 * so it can properly deal with the thread being interrupted. 1103 */ 1104 if (IPCL_IS_NONSTR(connp) && connp->conn_linger == 0) 1105 goto nowait; 1106 1107 mutex_enter(&tcp->tcp_closelock); 1108 while (!tcp->tcp_closed) { 1109 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 1110 /* 1111 * The cv_wait_sig() was interrupted. We now do the 1112 * following: 1113 * 1114 * 1) If the endpoint was lingering, we allow this 1115 * to be interrupted by cancelling the linger timeout 1116 * and closing normally. 1117 * 1118 * 2) Revert to calling cv_wait() 1119 * 1120 * We revert to using cv_wait() to avoid an 1121 * infinite loop which can occur if the calling 1122 * thread is higher priority than the squeue worker 1123 * thread and is bound to the same cpu. 1124 */ 1125 if (connp->conn_linger && connp->conn_lingertime > 0) { 1126 mutex_exit(&tcp->tcp_closelock); 1127 /* Entering squeue, bump ref count. */ 1128 CONN_INC_REF(connp); 1129 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 1130 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 1131 tcp_linger_interrupted, connp, NULL, 1132 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 1133 mutex_enter(&tcp->tcp_closelock); 1134 } 1135 break; 1136 } 1137 } 1138 while (!tcp->tcp_closed) 1139 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 1140 mutex_exit(&tcp->tcp_closelock); 1141 1142 /* 1143 * In the case of listener streams that have eagers in the q or q0 1144 * we wait for the eagers to drop their reference to us. conn_rq and 1145 * conn_wq of the eagers point to our queues. By waiting for the 1146 * refcnt to drop to 1, we are sure that the eagers have cleaned 1147 * up their queue pointers and also dropped their references to us. 1148 * 1149 * For non-STREAMS sockets we do not have to wait here; the 1150 * listener will instead make a su_closed upcall when the last 1151 * reference is dropped. 1152 */ 1153 if (tcp->tcp_wait_for_eagers && !IPCL_IS_NONSTR(connp)) { 1154 mutex_enter(&connp->conn_lock); 1155 while (connp->conn_ref != 1) { 1156 cv_wait(&connp->conn_cv, &connp->conn_lock); 1157 } 1158 mutex_exit(&connp->conn_lock); 1159 } 1160 1161 nowait: 1162 connp->conn_cpid = NOPID; 1163 } 1164 1165 /* 1166 * Called by tcp_close() routine via squeue when lingering is 1167 * interrupted by a signal. 1168 */ 1169 1170 /* ARGSUSED */ 1171 static void 1172 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 1173 { 1174 conn_t *connp = (conn_t *)arg; 1175 tcp_t *tcp = connp->conn_tcp; 1176 1177 freeb(mp); 1178 if (tcp->tcp_linger_tid != 0 && 1179 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 1180 tcp_stop_lingering(tcp); 1181 tcp->tcp_client_errno = EINTR; 1182 } 1183 } 1184 1185 /* 1186 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 1187 * Some stream heads get upset if they see these later on as anything but NULL. 1188 */ 1189 void 1190 tcp_close_mpp(mblk_t **mpp) 1191 { 1192 mblk_t *mp; 1193 1194 if ((mp = *mpp) != NULL) { 1195 do { 1196 mp->b_next = NULL; 1197 mp->b_prev = NULL; 1198 } while ((mp = mp->b_cont) != NULL); 1199 1200 mp = *mpp; 1201 *mpp = NULL; 1202 freemsg(mp); 1203 } 1204 } 1205 1206 /* Do detached close. */ 1207 void 1208 tcp_close_detached(tcp_t *tcp) 1209 { 1210 if (tcp->tcp_fused) 1211 tcp_unfuse(tcp); 1212 1213 /* 1214 * Clustering code serializes TCP disconnect callbacks and 1215 * cluster tcp list walks by blocking a TCP disconnect callback 1216 * if a cluster tcp list walk is in progress. This ensures 1217 * accurate accounting of TCPs in the cluster code even though 1218 * the TCP list walk itself is not atomic. 1219 */ 1220 tcp_closei_local(tcp); 1221 CONN_DEC_REF(tcp->tcp_connp); 1222 } 1223 1224 /* 1225 * The tcp_t is going away. Remove it from all lists and set it 1226 * to TCPS_CLOSED. The freeing up of memory is deferred until 1227 * tcp_inactive. This is needed since a thread in tcp_rput might have 1228 * done a CONN_INC_REF on this structure before it was removed from the 1229 * hashes. 1230 */ 1231 void 1232 tcp_closei_local(tcp_t *tcp) 1233 { 1234 conn_t *connp = tcp->tcp_connp; 1235 tcp_stack_t *tcps = tcp->tcp_tcps; 1236 int32_t oldstate; 1237 1238 if (!TCP_IS_SOCKET(tcp)) 1239 tcp_acceptor_hash_remove(tcp); 1240 1241 TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs); 1242 tcp->tcp_ibsegs = 0; 1243 TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs); 1244 tcp->tcp_obsegs = 0; 1245 1246 /* 1247 * This can be called via tcp_time_wait_processing() if TCP gets a 1248 * SYN with sequence number outside the TIME-WAIT connection's 1249 * window. So we need to check for TIME-WAIT state here as the 1250 * connection counter is already decremented. See SET_TIME_WAIT() 1251 * macro 1252 */ 1253 if (tcp->tcp_state >= TCPS_ESTABLISHED && 1254 tcp->tcp_state < TCPS_TIME_WAIT) { 1255 TCPS_CONN_DEC(tcps); 1256 } 1257 1258 /* 1259 * If we are an eager connection hanging off a listener that 1260 * hasn't formally accepted the connection yet, get off his 1261 * list and blow off any data that we have accumulated. 1262 */ 1263 if (tcp->tcp_listener != NULL) { 1264 tcp_t *listener = tcp->tcp_listener; 1265 mutex_enter(&listener->tcp_eager_lock); 1266 /* 1267 * tcp_tconnind_started == B_TRUE means that the 1268 * conn_ind has already gone to listener. At 1269 * this point, eager will be closed but we 1270 * leave it in listeners eager list so that 1271 * if listener decides to close without doing 1272 * accept, we can clean this up. In tcp_tli_accept 1273 * we take care of the case of accept on closed 1274 * eager. 1275 */ 1276 if (!tcp->tcp_tconnind_started) { 1277 tcp_eager_unlink(tcp); 1278 mutex_exit(&listener->tcp_eager_lock); 1279 /* 1280 * We don't want to have any pointers to the 1281 * listener queue, after we have released our 1282 * reference on the listener 1283 */ 1284 ASSERT(tcp->tcp_detached); 1285 connp->conn_rq = NULL; 1286 connp->conn_wq = NULL; 1287 CONN_DEC_REF(listener->tcp_connp); 1288 } else { 1289 mutex_exit(&listener->tcp_eager_lock); 1290 } 1291 } 1292 1293 /* Stop all the timers */ 1294 tcp_timers_stop(tcp); 1295 1296 if (tcp->tcp_state == TCPS_LISTEN) { 1297 if (tcp->tcp_ip_addr_cache) { 1298 kmem_free((void *)tcp->tcp_ip_addr_cache, 1299 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1300 tcp->tcp_ip_addr_cache = NULL; 1301 } 1302 } 1303 1304 /* Decrement listerner connection counter if necessary. */ 1305 if (tcp->tcp_listen_cnt != NULL) 1306 TCP_DECR_LISTEN_CNT(tcp); 1307 1308 mutex_enter(&tcp->tcp_non_sq_lock); 1309 if (tcp->tcp_flow_stopped) 1310 tcp_clrqfull(tcp); 1311 mutex_exit(&tcp->tcp_non_sq_lock); 1312 1313 tcp_bind_hash_remove(tcp); 1314 /* 1315 * If the tcp_time_wait_collector (which runs outside the squeue) 1316 * is trying to remove this tcp from the time wait list, we will 1317 * block in tcp_time_wait_remove while trying to acquire the 1318 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 1319 * requires the ipcl_hash_remove to be ordered after the 1320 * tcp_time_wait_remove for the refcnt checks to work correctly. 1321 */ 1322 if (tcp->tcp_state == TCPS_TIME_WAIT) 1323 (void) tcp_time_wait_remove(tcp, NULL); 1324 CL_INET_DISCONNECT(connp); 1325 ipcl_hash_remove(connp); 1326 oldstate = tcp->tcp_state; 1327 tcp->tcp_state = TCPS_CLOSED; 1328 /* Need to probe before ixa_cleanup() is called */ 1329 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1330 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 1331 int32_t, oldstate); 1332 ixa_cleanup(connp->conn_ixa); 1333 1334 /* 1335 * Mark the conn as CONDEMNED 1336 */ 1337 mutex_enter(&connp->conn_lock); 1338 connp->conn_state_flags |= CONN_CONDEMNED; 1339 mutex_exit(&connp->conn_lock); 1340 1341 ASSERT(tcp->tcp_time_wait_next == NULL); 1342 ASSERT(tcp->tcp_time_wait_prev == NULL); 1343 ASSERT(tcp->tcp_time_wait_expire == 0); 1344 1345 tcp_ipsec_cleanup(tcp); 1346 } 1347 1348 /* 1349 * tcp is dying (called from ipcl_conn_destroy and error cases). 1350 * Free the tcp_t in either case. 1351 */ 1352 void 1353 tcp_free(tcp_t *tcp) 1354 { 1355 mblk_t *mp; 1356 conn_t *connp = tcp->tcp_connp; 1357 1358 ASSERT(tcp != NULL); 1359 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 1360 1361 connp->conn_rq = NULL; 1362 connp->conn_wq = NULL; 1363 1364 tcp_close_mpp(&tcp->tcp_xmit_head); 1365 tcp_close_mpp(&tcp->tcp_reass_head); 1366 if (tcp->tcp_rcv_list != NULL) { 1367 /* Free b_next chain */ 1368 tcp_close_mpp(&tcp->tcp_rcv_list); 1369 } 1370 if ((mp = tcp->tcp_urp_mp) != NULL) { 1371 freemsg(mp); 1372 } 1373 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 1374 freemsg(mp); 1375 } 1376 1377 if (tcp->tcp_fused_sigurg_mp != NULL) { 1378 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1379 freeb(tcp->tcp_fused_sigurg_mp); 1380 tcp->tcp_fused_sigurg_mp = NULL; 1381 } 1382 1383 if (tcp->tcp_ordrel_mp != NULL) { 1384 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1385 freeb(tcp->tcp_ordrel_mp); 1386 tcp->tcp_ordrel_mp = NULL; 1387 } 1388 1389 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 1390 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 1391 1392 if (tcp->tcp_hopopts != NULL) { 1393 mi_free(tcp->tcp_hopopts); 1394 tcp->tcp_hopopts = NULL; 1395 tcp->tcp_hopoptslen = 0; 1396 } 1397 ASSERT(tcp->tcp_hopoptslen == 0); 1398 if (tcp->tcp_dstopts != NULL) { 1399 mi_free(tcp->tcp_dstopts); 1400 tcp->tcp_dstopts = NULL; 1401 tcp->tcp_dstoptslen = 0; 1402 } 1403 ASSERT(tcp->tcp_dstoptslen == 0); 1404 if (tcp->tcp_rthdrdstopts != NULL) { 1405 mi_free(tcp->tcp_rthdrdstopts); 1406 tcp->tcp_rthdrdstopts = NULL; 1407 tcp->tcp_rthdrdstoptslen = 0; 1408 } 1409 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 1410 if (tcp->tcp_rthdr != NULL) { 1411 mi_free(tcp->tcp_rthdr); 1412 tcp->tcp_rthdr = NULL; 1413 tcp->tcp_rthdrlen = 0; 1414 } 1415 ASSERT(tcp->tcp_rthdrlen == 0); 1416 1417 /* 1418 * Following is really a blowing away a union. 1419 * It happens to have exactly two members of identical size 1420 * the following code is enough. 1421 */ 1422 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 1423 1424 /* 1425 * If this is a non-STREAM socket still holding on to an upper 1426 * handle, release it. As a result of fallback we might also see 1427 * STREAMS based conns with upper handles, in which case there is 1428 * nothing to do other than clearing the field. 1429 */ 1430 if (connp->conn_upper_handle != NULL) { 1431 if (IPCL_IS_NONSTR(connp)) { 1432 (*connp->conn_upcalls->su_closed)( 1433 connp->conn_upper_handle); 1434 tcp->tcp_detached = B_TRUE; 1435 } 1436 connp->conn_upper_handle = NULL; 1437 connp->conn_upcalls = NULL; 1438 } 1439 } 1440 1441 /* 1442 * tcp_get_conn/tcp_free_conn 1443 * 1444 * tcp_get_conn is used to get a clean tcp connection structure. 1445 * It tries to reuse the connections put on the freelist by the 1446 * time_wait_collector failing which it goes to kmem_cache. This 1447 * way has two benefits compared to just allocating from and 1448 * freeing to kmem_cache. 1449 * 1) The time_wait_collector can free (which includes the cleanup) 1450 * outside the squeue. So when the interrupt comes, we have a clean 1451 * connection sitting in the freelist. Obviously, this buys us 1452 * performance. 1453 * 1454 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener 1455 * has multiple disadvantages - tying up the squeue during alloc. 1456 * But allocating the conn/tcp in IP land is also not the best since 1457 * we can't check the 'q' and 'q0' which are protected by squeue and 1458 * blindly allocate memory which might have to be freed here if we are 1459 * not allowed to accept the connection. By using the freelist and 1460 * putting the conn/tcp back in freelist, we don't pay a penalty for 1461 * allocating memory without checking 'q/q0' and freeing it if we can't 1462 * accept the connection. 1463 * 1464 * Care should be taken to put the conn back in the same squeue's freelist 1465 * from which it was allocated. Best results are obtained if conn is 1466 * allocated from listener's squeue and freed to the same. Time wait 1467 * collector will free up the freelist is the connection ends up sitting 1468 * there for too long. 1469 */ 1470 void * 1471 tcp_get_conn(void *arg, tcp_stack_t *tcps) 1472 { 1473 tcp_t *tcp = NULL; 1474 conn_t *connp = NULL; 1475 squeue_t *sqp = (squeue_t *)arg; 1476 tcp_squeue_priv_t *tcp_time_wait; 1477 netstack_t *ns; 1478 mblk_t *tcp_rsrv_mp = NULL; 1479 1480 tcp_time_wait = 1481 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1482 1483 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1484 tcp = tcp_time_wait->tcp_free_list; 1485 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 1486 if (tcp != NULL) { 1487 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1488 tcp_time_wait->tcp_free_list_cnt--; 1489 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1490 tcp->tcp_time_wait_next = NULL; 1491 connp = tcp->tcp_connp; 1492 connp->conn_flags |= IPCL_REUSED; 1493 1494 ASSERT(tcp->tcp_tcps == NULL); 1495 ASSERT(connp->conn_netstack == NULL); 1496 ASSERT(tcp->tcp_rsrv_mp != NULL); 1497 ns = tcps->tcps_netstack; 1498 netstack_hold(ns); 1499 connp->conn_netstack = ns; 1500 connp->conn_ixa->ixa_ipst = ns->netstack_ip; 1501 tcp->tcp_tcps = tcps; 1502 ipcl_globalhash_insert(connp); 1503 1504 connp->conn_ixa->ixa_notify_cookie = tcp; 1505 ASSERT(connp->conn_ixa->ixa_notify == tcp_notify); 1506 connp->conn_recv = tcp_input_data; 1507 ASSERT(connp->conn_recvicmp == tcp_icmp_input); 1508 ASSERT(connp->conn_verifyicmp == tcp_verifyicmp); 1509 return ((void *)connp); 1510 } 1511 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1512 /* 1513 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 1514 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 1515 */ 1516 tcp_rsrv_mp = allocb(0, BPRI_HI); 1517 if (tcp_rsrv_mp == NULL) 1518 return (NULL); 1519 1520 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 1521 tcps->tcps_netstack)) == NULL) { 1522 freeb(tcp_rsrv_mp); 1523 return (NULL); 1524 } 1525 1526 tcp = connp->conn_tcp; 1527 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1528 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 1529 1530 tcp->tcp_tcps = tcps; 1531 1532 connp->conn_recv = tcp_input_data; 1533 connp->conn_recvicmp = tcp_icmp_input; 1534 connp->conn_verifyicmp = tcp_verifyicmp; 1535 1536 /* 1537 * Register tcp_notify to listen to capability changes detected by IP. 1538 * This upcall is made in the context of the call to conn_ip_output 1539 * thus it is inside the squeue. 1540 */ 1541 connp->conn_ixa->ixa_notify = tcp_notify; 1542 connp->conn_ixa->ixa_notify_cookie = tcp; 1543 1544 return ((void *)connp); 1545 } 1546 1547 /* 1548 * Handle connect to IPv4 destinations, including connections for AF_INET6 1549 * sockets connecting to IPv4 mapped IPv6 destinations. 1550 * Returns zero if OK, a positive errno, or a negative TLI error. 1551 */ 1552 static int 1553 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 1554 uint_t srcid) 1555 { 1556 ipaddr_t dstaddr = *dstaddrp; 1557 uint16_t lport; 1558 conn_t *connp = tcp->tcp_connp; 1559 tcp_stack_t *tcps = tcp->tcp_tcps; 1560 int error; 1561 1562 ASSERT(connp->conn_ipversion == IPV4_VERSION); 1563 1564 /* Check for attempt to connect to INADDR_ANY */ 1565 if (dstaddr == INADDR_ANY) { 1566 /* 1567 * SunOS 4.x and 4.3 BSD allow an application 1568 * to connect a TCP socket to INADDR_ANY. 1569 * When they do this, the kernel picks the 1570 * address of one interface and uses it 1571 * instead. The kernel usually ends up 1572 * picking the address of the loopback 1573 * interface. This is an undocumented feature. 1574 * However, we provide the same thing here 1575 * in order to have source and binary 1576 * compatibility with SunOS 4.x. 1577 * Update the T_CONN_REQ (sin/sin6) since it is used to 1578 * generate the T_CONN_CON. 1579 */ 1580 dstaddr = htonl(INADDR_LOOPBACK); 1581 *dstaddrp = dstaddr; 1582 } 1583 1584 /* Handle __sin6_src_id if socket not bound to an IP address */ 1585 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) { 1586 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 1587 IPCL_ZONEID(connp), tcps->tcps_netstack); 1588 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1589 } 1590 1591 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6); 1592 connp->conn_fport = dstport; 1593 1594 /* 1595 * At this point the remote destination address and remote port fields 1596 * in the tcp-four-tuple have been filled in the tcp structure. Now we 1597 * have to see which state tcp was in so we can take appropriate action. 1598 */ 1599 if (tcp->tcp_state == TCPS_IDLE) { 1600 /* 1601 * We support a quick connect capability here, allowing 1602 * clients to transition directly from IDLE to SYN_SENT 1603 * tcp_bindi will pick an unused port, insert the connection 1604 * in the bind hash and transition to BOUND state. 1605 */ 1606 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 1607 tcp, B_TRUE); 1608 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 1609 B_FALSE, B_FALSE); 1610 if (lport == 0) 1611 return (-TNOADDR); 1612 } 1613 1614 /* 1615 * Lookup the route to determine a source address and the uinfo. 1616 * Setup TCP parameters based on the metrics/DCE. 1617 */ 1618 error = tcp_set_destination(tcp); 1619 if (error != 0) 1620 return (error); 1621 1622 /* 1623 * Don't let an endpoint connect to itself. 1624 */ 1625 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 && 1626 connp->conn_fport == connp->conn_lport) 1627 return (-TBADADDR); 1628 1629 tcp->tcp_state = TCPS_SYN_SENT; 1630 1631 return (ipcl_conn_insert_v4(connp)); 1632 } 1633 1634 /* 1635 * Handle connect to IPv6 destinations. 1636 * Returns zero if OK, a positive errno, or a negative TLI error. 1637 */ 1638 static int 1639 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 1640 uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 1641 { 1642 uint16_t lport; 1643 conn_t *connp = tcp->tcp_connp; 1644 tcp_stack_t *tcps = tcp->tcp_tcps; 1645 int error; 1646 1647 ASSERT(connp->conn_family == AF_INET6); 1648 1649 /* 1650 * If we're here, it means that the destination address is a native 1651 * IPv6 address. Return an error if conn_ipversion is not IPv6. A 1652 * reason why it might not be IPv6 is if the socket was bound to an 1653 * IPv4-mapped IPv6 address. 1654 */ 1655 if (connp->conn_ipversion != IPV6_VERSION) 1656 return (-TBADADDR); 1657 1658 /* 1659 * Interpret a zero destination to mean loopback. 1660 * Update the T_CONN_REQ (sin/sin6) since it is used to 1661 * generate the T_CONN_CON. 1662 */ 1663 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) 1664 *dstaddrp = ipv6_loopback; 1665 1666 /* Handle __sin6_src_id if socket not bound to an IP address */ 1667 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) { 1668 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 1669 IPCL_ZONEID(connp), tcps->tcps_netstack); 1670 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1671 } 1672 1673 /* 1674 * Take care of the scope_id now. 1675 */ 1676 if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 1677 connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 1678 connp->conn_ixa->ixa_scopeid = scope_id; 1679 } else { 1680 connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 1681 } 1682 1683 connp->conn_flowinfo = flowinfo; 1684 connp->conn_faddr_v6 = *dstaddrp; 1685 connp->conn_fport = dstport; 1686 1687 /* 1688 * At this point the remote destination address and remote port fields 1689 * in the tcp-four-tuple have been filled in the tcp structure. Now we 1690 * have to see which state tcp was in so we can take appropriate action. 1691 */ 1692 if (tcp->tcp_state == TCPS_IDLE) { 1693 /* 1694 * We support a quick connect capability here, allowing 1695 * clients to transition directly from IDLE to SYN_SENT 1696 * tcp_bindi will pick an unused port, insert the connection 1697 * in the bind hash and transition to BOUND state. 1698 */ 1699 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 1700 tcp, B_TRUE); 1701 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 1702 B_FALSE, B_FALSE); 1703 if (lport == 0) 1704 return (-TNOADDR); 1705 } 1706 1707 /* 1708 * Lookup the route to determine a source address and the uinfo. 1709 * Setup TCP parameters based on the metrics/DCE. 1710 */ 1711 error = tcp_set_destination(tcp); 1712 if (error != 0) 1713 return (error); 1714 1715 /* 1716 * Don't let an endpoint connect to itself. 1717 */ 1718 if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) && 1719 connp->conn_fport == connp->conn_lport) 1720 return (-TBADADDR); 1721 1722 tcp->tcp_state = TCPS_SYN_SENT; 1723 1724 return (ipcl_conn_insert_v6(connp)); 1725 } 1726 1727 /* 1728 * Disconnect 1729 * Note that unlike other functions this returns a positive tli error 1730 * when it fails; it never returns an errno. 1731 */ 1732 static int 1733 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 1734 { 1735 conn_t *lconnp; 1736 tcp_stack_t *tcps = tcp->tcp_tcps; 1737 conn_t *connp = tcp->tcp_connp; 1738 1739 /* 1740 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 1741 * when the stream is in BOUND state. Do not send a reset, 1742 * since the destination IP address is not valid, and it can 1743 * be the initialized value of all zeros (broadcast address). 1744 */ 1745 if (tcp->tcp_state <= TCPS_BOUND) { 1746 if (connp->conn_debug) { 1747 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 1748 "tcp_disconnect: bad state, %d", tcp->tcp_state); 1749 } 1750 return (TOUTSTATE); 1751 } else if (tcp->tcp_state >= TCPS_ESTABLISHED) { 1752 TCPS_CONN_DEC(tcps); 1753 } 1754 1755 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 1756 1757 /* 1758 * According to TPI, for non-listeners, ignore seqnum 1759 * and disconnect. 1760 * Following interpretation of -1 seqnum is historical 1761 * and implied TPI ? (TPI only states that for T_CONN_IND, 1762 * a valid seqnum should not be -1). 1763 * 1764 * -1 means disconnect everything 1765 * regardless even on a listener. 1766 */ 1767 1768 int old_state = tcp->tcp_state; 1769 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 1770 1771 /* 1772 * The connection can't be on the tcp_time_wait_head list 1773 * since it is not detached. 1774 */ 1775 ASSERT(tcp->tcp_time_wait_next == NULL); 1776 ASSERT(tcp->tcp_time_wait_prev == NULL); 1777 ASSERT(tcp->tcp_time_wait_expire == 0); 1778 /* 1779 * If it used to be a listener, check to make sure no one else 1780 * has taken the port before switching back to LISTEN state. 1781 */ 1782 if (connp->conn_ipversion == IPV4_VERSION) { 1783 lconnp = ipcl_lookup_listener_v4(connp->conn_lport, 1784 connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst); 1785 } else { 1786 uint_t ifindex = 0; 1787 1788 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) 1789 ifindex = connp->conn_ixa->ixa_scopeid; 1790 1791 /* Allow conn_bound_if listeners? */ 1792 lconnp = ipcl_lookup_listener_v6(connp->conn_lport, 1793 &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp), 1794 ipst); 1795 } 1796 if (tcp->tcp_conn_req_max && lconnp == NULL) { 1797 tcp->tcp_state = TCPS_LISTEN; 1798 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1799 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, 1800 NULL, int32_t, old_state); 1801 } else if (old_state > TCPS_BOUND) { 1802 tcp->tcp_conn_req_max = 0; 1803 tcp->tcp_state = TCPS_BOUND; 1804 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1805 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, 1806 NULL, int32_t, old_state); 1807 1808 /* 1809 * If this end point is not going to become a listener, 1810 * decrement the listener connection count if 1811 * necessary. Note that we do not do this if it is 1812 * going to be a listner (the above if case) since 1813 * then it may remove the counter struct. 1814 */ 1815 if (tcp->tcp_listen_cnt != NULL) 1816 TCP_DECR_LISTEN_CNT(tcp); 1817 } 1818 if (lconnp != NULL) 1819 CONN_DEC_REF(lconnp); 1820 switch (old_state) { 1821 case TCPS_SYN_SENT: 1822 case TCPS_SYN_RCVD: 1823 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 1824 break; 1825 case TCPS_ESTABLISHED: 1826 case TCPS_CLOSE_WAIT: 1827 TCPS_BUMP_MIB(tcps, tcpEstabResets); 1828 break; 1829 } 1830 1831 if (tcp->tcp_fused) 1832 tcp_unfuse(tcp); 1833 1834 mutex_enter(&tcp->tcp_eager_lock); 1835 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 1836 (tcp->tcp_conn_req_cnt_q != 0)) { 1837 tcp_eager_cleanup(tcp, 0); 1838 } 1839 mutex_exit(&tcp->tcp_eager_lock); 1840 1841 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 1842 tcp->tcp_rnxt, TH_RST | TH_ACK); 1843 1844 tcp_reinit(tcp); 1845 1846 return (0); 1847 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 1848 return (TBADSEQ); 1849 } 1850 return (0); 1851 } 1852 1853 /* 1854 * Our client hereby directs us to reject the connection request 1855 * that tcp_input_listener() marked with 'seqnum'. Rejection consists 1856 * of sending the appropriate RST, not an ICMP error. 1857 */ 1858 void 1859 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 1860 { 1861 t_scalar_t seqnum; 1862 int error; 1863 conn_t *connp = tcp->tcp_connp; 1864 1865 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 1866 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 1867 tcp_err_ack(tcp, mp, TPROTO, 0); 1868 return; 1869 } 1870 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 1871 error = tcp_disconnect_common(tcp, seqnum); 1872 if (error != 0) 1873 tcp_err_ack(tcp, mp, error, 0); 1874 else { 1875 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 1876 /* Send M_FLUSH according to TPI */ 1877 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 1878 } 1879 mp = mi_tpi_ok_ack_alloc(mp); 1880 if (mp != NULL) 1881 putnext(connp->conn_rq, mp); 1882 } 1883 } 1884 1885 /* 1886 * Handle reinitialization of a tcp structure. 1887 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 1888 */ 1889 static void 1890 tcp_reinit(tcp_t *tcp) 1891 { 1892 mblk_t *mp; 1893 tcp_stack_t *tcps = tcp->tcp_tcps; 1894 conn_t *connp = tcp->tcp_connp; 1895 int32_t oldstate; 1896 1897 /* tcp_reinit should never be called for detached tcp_t's */ 1898 ASSERT(tcp->tcp_listener == NULL); 1899 ASSERT((connp->conn_family == AF_INET && 1900 connp->conn_ipversion == IPV4_VERSION) || 1901 (connp->conn_family == AF_INET6 && 1902 (connp->conn_ipversion == IPV4_VERSION || 1903 connp->conn_ipversion == IPV6_VERSION))); 1904 1905 /* Cancel outstanding timers */ 1906 tcp_timers_stop(tcp); 1907 1908 /* 1909 * Reset everything in the state vector, after updating global 1910 * MIB data from instance counters. 1911 */ 1912 TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs); 1913 tcp->tcp_ibsegs = 0; 1914 TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs); 1915 tcp->tcp_obsegs = 0; 1916 1917 tcp_close_mpp(&tcp->tcp_xmit_head); 1918 if (tcp->tcp_snd_zcopy_aware) 1919 tcp_zcopy_notify(tcp); 1920 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 1921 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 1922 mutex_enter(&tcp->tcp_non_sq_lock); 1923 if (tcp->tcp_flow_stopped && 1924 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 1925 tcp_clrqfull(tcp); 1926 } 1927 mutex_exit(&tcp->tcp_non_sq_lock); 1928 tcp_close_mpp(&tcp->tcp_reass_head); 1929 tcp->tcp_reass_tail = NULL; 1930 if (tcp->tcp_rcv_list != NULL) { 1931 /* Free b_next chain */ 1932 tcp_close_mpp(&tcp->tcp_rcv_list); 1933 tcp->tcp_rcv_last_head = NULL; 1934 tcp->tcp_rcv_last_tail = NULL; 1935 tcp->tcp_rcv_cnt = 0; 1936 } 1937 tcp->tcp_rcv_last_tail = NULL; 1938 1939 if ((mp = tcp->tcp_urp_mp) != NULL) { 1940 freemsg(mp); 1941 tcp->tcp_urp_mp = NULL; 1942 } 1943 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 1944 freemsg(mp); 1945 tcp->tcp_urp_mark_mp = NULL; 1946 } 1947 if (tcp->tcp_fused_sigurg_mp != NULL) { 1948 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1949 freeb(tcp->tcp_fused_sigurg_mp); 1950 tcp->tcp_fused_sigurg_mp = NULL; 1951 } 1952 if (tcp->tcp_ordrel_mp != NULL) { 1953 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1954 freeb(tcp->tcp_ordrel_mp); 1955 tcp->tcp_ordrel_mp = NULL; 1956 } 1957 1958 /* 1959 * Following is a union with two members which are 1960 * identical types and size so the following cleanup 1961 * is enough. 1962 */ 1963 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 1964 1965 CL_INET_DISCONNECT(connp); 1966 1967 /* 1968 * The connection can't be on the tcp_time_wait_head list 1969 * since it is not detached. 1970 */ 1971 ASSERT(tcp->tcp_time_wait_next == NULL); 1972 ASSERT(tcp->tcp_time_wait_prev == NULL); 1973 ASSERT(tcp->tcp_time_wait_expire == 0); 1974 1975 /* 1976 * Reset/preserve other values 1977 */ 1978 tcp_reinit_values(tcp); 1979 ipcl_hash_remove(connp); 1980 /* Note that ixa_cred gets cleared in ixa_cleanup */ 1981 ixa_cleanup(connp->conn_ixa); 1982 tcp_ipsec_cleanup(tcp); 1983 1984 connp->conn_laddr_v6 = connp->conn_bound_addr_v6; 1985 connp->conn_saddr_v6 = connp->conn_bound_addr_v6; 1986 oldstate = tcp->tcp_state; 1987 1988 if (tcp->tcp_conn_req_max != 0) { 1989 /* 1990 * This is the case when a TLI program uses the same 1991 * transport end point to accept a connection. This 1992 * makes the TCP both a listener and acceptor. When 1993 * this connection is closed, we need to set the state 1994 * back to TCPS_LISTEN. Make sure that the eager list 1995 * is reinitialized. 1996 * 1997 * Note that this stream is still bound to the four 1998 * tuples of the previous connection in IP. If a new 1999 * SYN with different foreign address comes in, IP will 2000 * not find it and will send it to the global queue. In 2001 * the global queue, TCP will do a tcp_lookup_listener() 2002 * to find this stream. This works because this stream 2003 * is only removed from connected hash. 2004 * 2005 */ 2006 tcp->tcp_state = TCPS_LISTEN; 2007 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 2008 tcp->tcp_eager_next_drop_q0 = tcp; 2009 tcp->tcp_eager_prev_drop_q0 = tcp; 2010 /* 2011 * Initially set conn_recv to tcp_input_listener_unbound to try 2012 * to pick a good squeue for the listener when the first SYN 2013 * arrives. tcp_input_listener_unbound sets it to 2014 * tcp_input_listener on that first SYN. 2015 */ 2016 connp->conn_recv = tcp_input_listener_unbound; 2017 2018 connp->conn_proto = IPPROTO_TCP; 2019 connp->conn_faddr_v6 = ipv6_all_zeros; 2020 connp->conn_fport = 0; 2021 2022 (void) ipcl_bind_insert(connp); 2023 } else { 2024 tcp->tcp_state = TCPS_BOUND; 2025 } 2026 2027 /* 2028 * Initialize to default values 2029 */ 2030 tcp_init_values(tcp, NULL); 2031 2032 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 2033 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 2034 int32_t, oldstate); 2035 2036 ASSERT(tcp->tcp_ptpbhn != NULL); 2037 tcp->tcp_rwnd = connp->conn_rcvbuf; 2038 tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ? 2039 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 2040 } 2041 2042 /* 2043 * Force values to zero that need be zero. 2044 * Do not touch values asociated with the BOUND or LISTEN state 2045 * since the connection will end up in that state after the reinit. 2046 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 2047 * structure! 2048 */ 2049 static void 2050 tcp_reinit_values(tcp) 2051 tcp_t *tcp; 2052 { 2053 tcp_stack_t *tcps = tcp->tcp_tcps; 2054 conn_t *connp = tcp->tcp_connp; 2055 2056 #ifndef lint 2057 #define DONTCARE(x) 2058 #define PRESERVE(x) 2059 #else 2060 #define DONTCARE(x) ((x) = (x)) 2061 #define PRESERVE(x) ((x) = (x)) 2062 #endif /* lint */ 2063 2064 PRESERVE(tcp->tcp_bind_hash_port); 2065 PRESERVE(tcp->tcp_bind_hash); 2066 PRESERVE(tcp->tcp_ptpbhn); 2067 PRESERVE(tcp->tcp_acceptor_hash); 2068 PRESERVE(tcp->tcp_ptpahn); 2069 2070 /* Should be ASSERT NULL on these with new code! */ 2071 ASSERT(tcp->tcp_time_wait_next == NULL); 2072 ASSERT(tcp->tcp_time_wait_prev == NULL); 2073 ASSERT(tcp->tcp_time_wait_expire == 0); 2074 PRESERVE(tcp->tcp_state); 2075 PRESERVE(connp->conn_rq); 2076 PRESERVE(connp->conn_wq); 2077 2078 ASSERT(tcp->tcp_xmit_head == NULL); 2079 ASSERT(tcp->tcp_xmit_last == NULL); 2080 ASSERT(tcp->tcp_unsent == 0); 2081 ASSERT(tcp->tcp_xmit_tail == NULL); 2082 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 2083 2084 tcp->tcp_snxt = 0; /* Displayed in mib */ 2085 tcp->tcp_suna = 0; /* Displayed in mib */ 2086 tcp->tcp_swnd = 0; 2087 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */ 2088 2089 ASSERT(tcp->tcp_ibsegs == 0); 2090 ASSERT(tcp->tcp_obsegs == 0); 2091 2092 if (connp->conn_ht_iphc != NULL) { 2093 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 2094 connp->conn_ht_iphc = NULL; 2095 connp->conn_ht_iphc_allocated = 0; 2096 connp->conn_ht_iphc_len = 0; 2097 connp->conn_ht_ulp = NULL; 2098 connp->conn_ht_ulp_len = 0; 2099 tcp->tcp_ipha = NULL; 2100 tcp->tcp_ip6h = NULL; 2101 tcp->tcp_tcpha = NULL; 2102 } 2103 2104 /* We clear any IP_OPTIONS and extension headers */ 2105 ip_pkt_free(&connp->conn_xmit_ipp); 2106 2107 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 2108 DONTCARE(tcp->tcp_ipha); 2109 DONTCARE(tcp->tcp_ip6h); 2110 DONTCARE(tcp->tcp_tcpha); 2111 tcp->tcp_valid_bits = 0; 2112 2113 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 2114 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 2115 tcp->tcp_last_rcv_lbolt = 0; 2116 2117 tcp->tcp_init_cwnd = 0; 2118 2119 tcp->tcp_urp_last_valid = 0; 2120 tcp->tcp_hard_binding = 0; 2121 2122 tcp->tcp_fin_acked = 0; 2123 tcp->tcp_fin_rcvd = 0; 2124 tcp->tcp_fin_sent = 0; 2125 tcp->tcp_ordrel_done = 0; 2126 2127 tcp->tcp_detached = 0; 2128 2129 tcp->tcp_snd_ws_ok = B_FALSE; 2130 tcp->tcp_snd_ts_ok = B_FALSE; 2131 tcp->tcp_zero_win_probe = 0; 2132 2133 tcp->tcp_loopback = 0; 2134 tcp->tcp_localnet = 0; 2135 tcp->tcp_syn_defense = 0; 2136 tcp->tcp_set_timer = 0; 2137 2138 tcp->tcp_active_open = 0; 2139 tcp->tcp_rexmit = B_FALSE; 2140 tcp->tcp_xmit_zc_clean = B_FALSE; 2141 2142 tcp->tcp_snd_sack_ok = B_FALSE; 2143 tcp->tcp_hwcksum = B_FALSE; 2144 2145 DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */ 2146 2147 tcp->tcp_conn_def_q0 = 0; 2148 tcp->tcp_ip_forward_progress = B_FALSE; 2149 tcp->tcp_ecn_ok = B_FALSE; 2150 2151 tcp->tcp_cwr = B_FALSE; 2152 tcp->tcp_ecn_echo_on = B_FALSE; 2153 tcp->tcp_is_wnd_shrnk = B_FALSE; 2154 2155 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 2156 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 2157 2158 tcp->tcp_rcv_ws = 0; 2159 tcp->tcp_snd_ws = 0; 2160 tcp->tcp_ts_recent = 0; 2161 tcp->tcp_rnxt = 0; /* Displayed in mib */ 2162 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 2163 tcp->tcp_initial_pmtu = 0; 2164 2165 ASSERT(tcp->tcp_reass_head == NULL); 2166 ASSERT(tcp->tcp_reass_tail == NULL); 2167 2168 tcp->tcp_cwnd_cnt = 0; 2169 2170 ASSERT(tcp->tcp_rcv_list == NULL); 2171 ASSERT(tcp->tcp_rcv_last_head == NULL); 2172 ASSERT(tcp->tcp_rcv_last_tail == NULL); 2173 ASSERT(tcp->tcp_rcv_cnt == 0); 2174 2175 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */ 2176 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 2177 tcp->tcp_csuna = 0; 2178 2179 tcp->tcp_rto = 0; /* Displayed in MIB */ 2180 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 2181 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 2182 tcp->tcp_rtt_update = 0; 2183 2184 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 2185 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 2186 2187 tcp->tcp_rack = 0; /* Displayed in mib */ 2188 tcp->tcp_rack_cnt = 0; 2189 tcp->tcp_rack_cur_max = 0; 2190 tcp->tcp_rack_abs_max = 0; 2191 2192 tcp->tcp_max_swnd = 0; 2193 2194 ASSERT(tcp->tcp_listener == NULL); 2195 2196 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 2197 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 2198 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 2199 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 2200 2201 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 2202 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 2203 PRESERVE(tcp->tcp_conn_req_max); 2204 PRESERVE(tcp->tcp_conn_req_seqnum); 2205 2206 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 2207 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 2208 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 2209 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 2210 2211 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 2212 ASSERT(tcp->tcp_urp_mp == NULL); 2213 ASSERT(tcp->tcp_urp_mark_mp == NULL); 2214 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 2215 2216 ASSERT(tcp->tcp_eager_next_q == NULL); 2217 ASSERT(tcp->tcp_eager_last_q == NULL); 2218 ASSERT((tcp->tcp_eager_next_q0 == NULL && 2219 tcp->tcp_eager_prev_q0 == NULL) || 2220 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 2221 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 2222 2223 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 2224 tcp->tcp_eager_prev_drop_q0 == NULL) || 2225 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 2226 2227 tcp->tcp_client_errno = 0; 2228 2229 DONTCARE(connp->conn_sum); /* Init in tcp_init_values */ 2230 2231 connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */ 2232 2233 PRESERVE(connp->conn_bound_addr_v6); 2234 tcp->tcp_last_sent_len = 0; 2235 tcp->tcp_dupack_cnt = 0; 2236 2237 connp->conn_fport = 0; /* Displayed in MIB */ 2238 PRESERVE(connp->conn_lport); 2239 2240 PRESERVE(tcp->tcp_acceptor_lockp); 2241 2242 ASSERT(tcp->tcp_ordrel_mp == NULL); 2243 PRESERVE(tcp->tcp_acceptor_id); 2244 DONTCARE(tcp->tcp_ipsec_overhead); 2245 2246 PRESERVE(connp->conn_family); 2247 /* Remove any remnants of mapped address binding */ 2248 if (connp->conn_family == AF_INET6) { 2249 connp->conn_ipversion = IPV6_VERSION; 2250 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 2251 } else { 2252 connp->conn_ipversion = IPV4_VERSION; 2253 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 2254 } 2255 2256 connp->conn_bound_if = 0; 2257 connp->conn_recv_ancillary.crb_all = 0; 2258 tcp->tcp_recvifindex = 0; 2259 tcp->tcp_recvhops = 0; 2260 tcp->tcp_closed = 0; 2261 if (tcp->tcp_hopopts != NULL) { 2262 mi_free(tcp->tcp_hopopts); 2263 tcp->tcp_hopopts = NULL; 2264 tcp->tcp_hopoptslen = 0; 2265 } 2266 ASSERT(tcp->tcp_hopoptslen == 0); 2267 if (tcp->tcp_dstopts != NULL) { 2268 mi_free(tcp->tcp_dstopts); 2269 tcp->tcp_dstopts = NULL; 2270 tcp->tcp_dstoptslen = 0; 2271 } 2272 ASSERT(tcp->tcp_dstoptslen == 0); 2273 if (tcp->tcp_rthdrdstopts != NULL) { 2274 mi_free(tcp->tcp_rthdrdstopts); 2275 tcp->tcp_rthdrdstopts = NULL; 2276 tcp->tcp_rthdrdstoptslen = 0; 2277 } 2278 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 2279 if (tcp->tcp_rthdr != NULL) { 2280 mi_free(tcp->tcp_rthdr); 2281 tcp->tcp_rthdr = NULL; 2282 tcp->tcp_rthdrlen = 0; 2283 } 2284 ASSERT(tcp->tcp_rthdrlen == 0); 2285 2286 /* Reset fusion-related fields */ 2287 tcp->tcp_fused = B_FALSE; 2288 tcp->tcp_unfusable = B_FALSE; 2289 tcp->tcp_fused_sigurg = B_FALSE; 2290 tcp->tcp_loopback_peer = NULL; 2291 2292 tcp->tcp_lso = B_FALSE; 2293 2294 tcp->tcp_in_ack_unsent = 0; 2295 tcp->tcp_cork = B_FALSE; 2296 tcp->tcp_tconnind_started = B_FALSE; 2297 2298 PRESERVE(tcp->tcp_squeue_bytes); 2299 2300 tcp->tcp_closemp_used = B_FALSE; 2301 2302 PRESERVE(tcp->tcp_rsrv_mp); 2303 PRESERVE(tcp->tcp_rsrv_mp_lock); 2304 2305 #ifdef DEBUG 2306 DONTCARE(tcp->tcmp_stk[0]); 2307 #endif 2308 2309 PRESERVE(tcp->tcp_connid); 2310 2311 ASSERT(tcp->tcp_listen_cnt == NULL); 2312 ASSERT(tcp->tcp_reass_tid == 0); 2313 2314 #undef DONTCARE 2315 #undef PRESERVE 2316 } 2317 2318 /* 2319 * Initialize the various fields in tcp_t. If parent (the listener) is non 2320 * NULL, certain values will be inheritted from it. 2321 */ 2322 void 2323 tcp_init_values(tcp_t *tcp, tcp_t *parent) 2324 { 2325 tcp_stack_t *tcps = tcp->tcp_tcps; 2326 conn_t *connp = tcp->tcp_connp; 2327 clock_t rto; 2328 2329 ASSERT((connp->conn_family == AF_INET && 2330 connp->conn_ipversion == IPV4_VERSION) || 2331 (connp->conn_family == AF_INET6 && 2332 (connp->conn_ipversion == IPV4_VERSION || 2333 connp->conn_ipversion == IPV6_VERSION))); 2334 2335 if (parent == NULL) { 2336 tcp->tcp_naglim = tcps->tcps_naglim_def; 2337 2338 tcp->tcp_rto_initial = tcps->tcps_rexmit_interval_initial; 2339 tcp->tcp_rto_min = tcps->tcps_rexmit_interval_min; 2340 tcp->tcp_rto_max = tcps->tcps_rexmit_interval_max; 2341 2342 tcp->tcp_first_ctimer_threshold = 2343 tcps->tcps_ip_notify_cinterval; 2344 tcp->tcp_second_ctimer_threshold = 2345 tcps->tcps_ip_abort_cinterval; 2346 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 2347 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 2348 2349 tcp->tcp_fin_wait_2_flush_interval = 2350 tcps->tcps_fin_wait_2_flush_interval; 2351 2352 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 2353 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 2354 2355 /* 2356 * Default value of tcp_init_cwnd is 0, so no need to set here 2357 * if parent is NULL. But we need to inherit it from parent. 2358 */ 2359 } else { 2360 /* Inherit various TCP parameters from the parent. */ 2361 tcp->tcp_naglim = parent->tcp_naglim; 2362 2363 tcp->tcp_rto_initial = parent->tcp_rto_initial; 2364 tcp->tcp_rto_min = parent->tcp_rto_min; 2365 tcp->tcp_rto_max = parent->tcp_rto_max; 2366 2367 tcp->tcp_first_ctimer_threshold = 2368 parent->tcp_first_ctimer_threshold; 2369 tcp->tcp_second_ctimer_threshold = 2370 parent->tcp_second_ctimer_threshold; 2371 tcp->tcp_first_timer_threshold = 2372 parent->tcp_first_timer_threshold; 2373 tcp->tcp_second_timer_threshold = 2374 parent->tcp_second_timer_threshold; 2375 2376 tcp->tcp_fin_wait_2_flush_interval = 2377 parent->tcp_fin_wait_2_flush_interval; 2378 2379 tcp->tcp_ka_interval = parent->tcp_ka_interval; 2380 tcp->tcp_ka_abort_thres = parent->tcp_ka_abort_thres; 2381 2382 tcp->tcp_init_cwnd = parent->tcp_init_cwnd; 2383 } 2384 2385 /* 2386 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 2387 * will be close to tcp_rexmit_interval_initial. By doing this, we 2388 * allow the algorithm to adjust slowly to large fluctuations of RTT 2389 * during first few transmissions of a connection as seen in slow 2390 * links. 2391 */ 2392 tcp->tcp_rtt_sa = tcp->tcp_rto_initial << 2; 2393 tcp->tcp_rtt_sd = tcp->tcp_rto_initial >> 1; 2394 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2395 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 2396 tcps->tcps_conn_grace_period; 2397 TCP_SET_RTO(tcp, rto); 2398 2399 tcp->tcp_timer_backoff = 0; 2400 tcp->tcp_ms_we_have_waited = 0; 2401 tcp->tcp_last_recv_time = ddi_get_lbolt(); 2402 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 2403 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2404 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 2405 2406 tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier; 2407 2408 /* NOTE: ISS is now set in tcp_set_destination(). */ 2409 2410 /* Reset fusion-related fields */ 2411 tcp->tcp_fused = B_FALSE; 2412 tcp->tcp_unfusable = B_FALSE; 2413 tcp->tcp_fused_sigurg = B_FALSE; 2414 tcp->tcp_loopback_peer = NULL; 2415 2416 /* We rebuild the header template on the next connect/conn_request */ 2417 2418 connp->conn_mlp_type = mlptSingle; 2419 2420 /* 2421 * Init the window scale to the max so tcp_rwnd_set() won't pare 2422 * down tcp_rwnd. tcp_set_destination() will set the right value later. 2423 */ 2424 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 2425 tcp->tcp_rwnd = connp->conn_rcvbuf; 2426 2427 tcp->tcp_cork = B_FALSE; 2428 /* 2429 * Init the tcp_debug option if it wasn't already set. This value 2430 * determines whether TCP 2431 * calls strlog() to print out debug messages. Doing this 2432 * initialization here means that this value is not inherited thru 2433 * tcp_reinit(). 2434 */ 2435 if (!connp->conn_debug) 2436 connp->conn_debug = tcps->tcps_dbg; 2437 } 2438 2439 /* 2440 * Update the TCP connection according to change of PMTU. 2441 * 2442 * Path MTU might have changed by either increase or decrease, so need to 2443 * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny 2444 * or negative MSS, since tcp_mss_set() will do it. 2445 */ 2446 void 2447 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only) 2448 { 2449 uint32_t pmtu; 2450 int32_t mss; 2451 conn_t *connp = tcp->tcp_connp; 2452 ip_xmit_attr_t *ixa = connp->conn_ixa; 2453 iaflags_t ixaflags; 2454 2455 if (tcp->tcp_tcps->tcps_ignore_path_mtu) 2456 return; 2457 2458 if (tcp->tcp_state < TCPS_ESTABLISHED) 2459 return; 2460 2461 /* 2462 * Always call ip_get_pmtu() to make sure that IP has updated 2463 * ixa_flags properly. 2464 */ 2465 pmtu = ip_get_pmtu(ixa); 2466 ixaflags = ixa->ixa_flags; 2467 2468 /* 2469 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and 2470 * IPsec overhead if applied. Make sure to use the most recent 2471 * IPsec information. 2472 */ 2473 mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp); 2474 2475 /* 2476 * Nothing to change, so just return. 2477 */ 2478 if (mss == tcp->tcp_mss) 2479 return; 2480 2481 /* 2482 * Currently, for ICMP errors, only PMTU decrease is handled. 2483 */ 2484 if (mss > tcp->tcp_mss && decrease_only) 2485 return; 2486 2487 DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss); 2488 2489 /* 2490 * Update ixa_fragsize and ixa_pmtu. 2491 */ 2492 ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu; 2493 2494 /* 2495 * Adjust MSS and all relevant variables. 2496 */ 2497 tcp_mss_set(tcp, mss); 2498 2499 /* 2500 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu 2501 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP 2502 * has a (potentially different) min size we do the same. Make sure to 2503 * clear IXAF_DONTFRAG, which is used by IP to decide whether to 2504 * fragment the packet. 2505 * 2506 * LSO over IPv6 can not be fragmented. So need to disable LSO 2507 * when IPv6 fragmentation is needed. 2508 */ 2509 if (mss < tcp->tcp_tcps->tcps_mss_min) 2510 ixaflags |= IXAF_PMTU_TOO_SMALL; 2511 2512 if (ixaflags & IXAF_PMTU_TOO_SMALL) 2513 ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF); 2514 2515 if ((connp->conn_ipversion == IPV4_VERSION) && 2516 !(ixaflags & IXAF_PMTU_IPV4_DF)) { 2517 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 2518 } 2519 ixa->ixa_flags = ixaflags; 2520 } 2521 2522 int 2523 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 2524 { 2525 conn_t *connp = tcp->tcp_connp; 2526 queue_t *q = connp->conn_rq; 2527 int32_t mss = tcp->tcp_mss; 2528 int maxpsz; 2529 2530 if (TCP_IS_DETACHED(tcp)) 2531 return (mss); 2532 if (tcp->tcp_fused) { 2533 maxpsz = tcp_fuse_maxpsz(tcp); 2534 mss = INFPSZ; 2535 } else if (tcp->tcp_maxpsz_multiplier == 0) { 2536 /* 2537 * Set the sd_qn_maxpsz according to the socket send buffer 2538 * size, and sd_maxblk to INFPSZ (-1). This will essentially 2539 * instruct the stream head to copyin user data into contiguous 2540 * kernel-allocated buffers without breaking it up into smaller 2541 * chunks. We round up the buffer size to the nearest SMSS. 2542 */ 2543 maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss); 2544 mss = INFPSZ; 2545 } else { 2546 /* 2547 * Set sd_qn_maxpsz to approx half the (receivers) buffer 2548 * (and a multiple of the mss). This instructs the stream 2549 * head to break down larger than SMSS writes into SMSS- 2550 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 2551 */ 2552 maxpsz = tcp->tcp_maxpsz_multiplier * mss; 2553 if (maxpsz > connp->conn_sndbuf / 2) { 2554 maxpsz = connp->conn_sndbuf / 2; 2555 /* Round up to nearest mss */ 2556 maxpsz = MSS_ROUNDUP(maxpsz, mss); 2557 } 2558 } 2559 2560 (void) proto_set_maxpsz(q, connp, maxpsz); 2561 if (!(IPCL_IS_NONSTR(connp))) 2562 connp->conn_wq->q_maxpsz = maxpsz; 2563 if (set_maxblk) 2564 (void) proto_set_tx_maxblk(q, connp, mss); 2565 return (mss); 2566 } 2567 2568 /* For /dev/tcp aka AF_INET open */ 2569 static int 2570 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2571 { 2572 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 2573 } 2574 2575 /* For /dev/tcp6 aka AF_INET6 open */ 2576 static int 2577 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2578 { 2579 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 2580 } 2581 2582 conn_t * 2583 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket, 2584 int *errorp) 2585 { 2586 tcp_t *tcp = NULL; 2587 conn_t *connp; 2588 zoneid_t zoneid; 2589 tcp_stack_t *tcps; 2590 squeue_t *sqp; 2591 2592 ASSERT(errorp != NULL); 2593 /* 2594 * Find the proper zoneid and netstack. 2595 */ 2596 /* 2597 * Special case for install: miniroot needs to be able to 2598 * access files via NFS as though it were always in the 2599 * global zone. 2600 */ 2601 if (credp == kcred && nfs_global_client_only != 0) { 2602 zoneid = GLOBAL_ZONEID; 2603 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 2604 netstack_tcp; 2605 ASSERT(tcps != NULL); 2606 } else { 2607 netstack_t *ns; 2608 int err; 2609 2610 if ((err = secpolicy_basic_net_access(credp)) != 0) { 2611 *errorp = err; 2612 return (NULL); 2613 } 2614 2615 ns = netstack_find_by_cred(credp); 2616 ASSERT(ns != NULL); 2617 tcps = ns->netstack_tcp; 2618 ASSERT(tcps != NULL); 2619 2620 /* 2621 * For exclusive stacks we set the zoneid to zero 2622 * to make TCP operate as if in the global zone. 2623 */ 2624 if (tcps->tcps_netstack->netstack_stackid != 2625 GLOBAL_NETSTACKID) 2626 zoneid = GLOBAL_ZONEID; 2627 else 2628 zoneid = crgetzoneid(credp); 2629 } 2630 2631 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 2632 connp = (conn_t *)tcp_get_conn(sqp, tcps); 2633 /* 2634 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 2635 * so we drop it by one. 2636 */ 2637 netstack_rele(tcps->tcps_netstack); 2638 if (connp == NULL) { 2639 *errorp = ENOSR; 2640 return (NULL); 2641 } 2642 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto); 2643 2644 connp->conn_sqp = sqp; 2645 connp->conn_initial_sqp = connp->conn_sqp; 2646 connp->conn_ixa->ixa_sqp = connp->conn_sqp; 2647 tcp = connp->conn_tcp; 2648 2649 /* 2650 * Besides asking IP to set the checksum for us, have conn_ip_output 2651 * to do the following checks when necessary: 2652 * 2653 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid 2654 * IXAF_VERIFY_PMTU: verify PMTU changes 2655 * IXAF_VERIFY_LSO: verify LSO capability changes 2656 */ 2657 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 2658 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO; 2659 2660 if (!tcps->tcps_dev_flow_ctl) 2661 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 2662 2663 if (isv6) { 2664 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 2665 connp->conn_ipversion = IPV6_VERSION; 2666 connp->conn_family = AF_INET6; 2667 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 2668 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit; 2669 } else { 2670 connp->conn_ipversion = IPV4_VERSION; 2671 connp->conn_family = AF_INET; 2672 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 2673 connp->conn_default_ttl = tcps->tcps_ipv4_ttl; 2674 } 2675 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl; 2676 2677 crhold(credp); 2678 connp->conn_cred = credp; 2679 connp->conn_cpid = curproc->p_pid; 2680 connp->conn_open_time = ddi_get_lbolt64(); 2681 2682 /* Cache things in the ixa without any refhold */ 2683 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 2684 connp->conn_ixa->ixa_cred = credp; 2685 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 2686 2687 connp->conn_zoneid = zoneid; 2688 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 2689 connp->conn_ixa->ixa_zoneid = zoneid; 2690 connp->conn_mlp_type = mlptSingle; 2691 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 2692 ASSERT(tcp->tcp_tcps == tcps); 2693 2694 /* 2695 * If the caller has the process-wide flag set, then default to MAC 2696 * exempt mode. This allows read-down to unlabeled hosts. 2697 */ 2698 if (getpflags(NET_MAC_AWARE, credp) != 0) 2699 connp->conn_mac_mode = CONN_MAC_AWARE; 2700 2701 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 2702 2703 if (issocket) { 2704 tcp->tcp_issocket = 1; 2705 } 2706 2707 connp->conn_rcvbuf = tcps->tcps_recv_hiwat; 2708 connp->conn_sndbuf = tcps->tcps_xmit_hiwat; 2709 connp->conn_sndlowat = tcps->tcps_xmit_lowat; 2710 connp->conn_so_type = SOCK_STREAM; 2711 connp->conn_wroff = connp->conn_ht_iphc_allocated + 2712 tcps->tcps_wroff_xtra; 2713 2714 SOCK_CONNID_INIT(tcp->tcp_connid); 2715 /* DTrace ignores this - it isn't a tcp:::state-change */ 2716 tcp->tcp_state = TCPS_IDLE; 2717 tcp_init_values(tcp, NULL); 2718 return (connp); 2719 } 2720 2721 static int 2722 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 2723 boolean_t isv6) 2724 { 2725 tcp_t *tcp = NULL; 2726 conn_t *connp = NULL; 2727 int err; 2728 vmem_t *minor_arena = NULL; 2729 dev_t conn_dev; 2730 boolean_t issocket; 2731 2732 if (q->q_ptr != NULL) 2733 return (0); 2734 2735 if (sflag == MODOPEN) 2736 return (EINVAL); 2737 2738 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 2739 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 2740 minor_arena = ip_minor_arena_la; 2741 } else { 2742 /* 2743 * Either minor numbers in the large arena were exhausted 2744 * or a non socket application is doing the open. 2745 * Try to allocate from the small arena. 2746 */ 2747 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 2748 return (EBUSY); 2749 } 2750 minor_arena = ip_minor_arena_sa; 2751 } 2752 2753 ASSERT(minor_arena != NULL); 2754 2755 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 2756 2757 if (flag & SO_FALLBACK) { 2758 /* 2759 * Non streams socket needs a stream to fallback to 2760 */ 2761 RD(q)->q_ptr = (void *)conn_dev; 2762 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 2763 WR(q)->q_ptr = (void *)minor_arena; 2764 qprocson(q); 2765 return (0); 2766 } else if (flag & SO_ACCEPTOR) { 2767 q->q_qinfo = &tcp_acceptor_rinit; 2768 /* 2769 * the conn_dev and minor_arena will be subsequently used by 2770 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out 2771 * the minor device number for this connection from the q_ptr. 2772 */ 2773 RD(q)->q_ptr = (void *)conn_dev; 2774 WR(q)->q_qinfo = &tcp_acceptor_winit; 2775 WR(q)->q_ptr = (void *)minor_arena; 2776 qprocson(q); 2777 return (0); 2778 } 2779 2780 issocket = flag & SO_SOCKSTR; 2781 connp = tcp_create_common(credp, isv6, issocket, &err); 2782 2783 if (connp == NULL) { 2784 inet_minor_free(minor_arena, conn_dev); 2785 q->q_ptr = WR(q)->q_ptr = NULL; 2786 return (err); 2787 } 2788 2789 connp->conn_rq = q; 2790 connp->conn_wq = WR(q); 2791 q->q_ptr = WR(q)->q_ptr = connp; 2792 2793 connp->conn_dev = conn_dev; 2794 connp->conn_minor_arena = minor_arena; 2795 2796 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 2797 ASSERT(WR(q)->q_qinfo == &tcp_winit); 2798 2799 tcp = connp->conn_tcp; 2800 2801 if (issocket) { 2802 WR(q)->q_qinfo = &tcp_sock_winit; 2803 } else { 2804 #ifdef _ILP32 2805 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 2806 #else 2807 tcp->tcp_acceptor_id = conn_dev; 2808 #endif /* _ILP32 */ 2809 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 2810 } 2811 2812 /* 2813 * Put the ref for TCP. Ref for IP was already put 2814 * by ipcl_conn_create. Also Make the conn_t globally 2815 * visible to walkers 2816 */ 2817 mutex_enter(&connp->conn_lock); 2818 CONN_INC_REF_LOCKED(connp); 2819 ASSERT(connp->conn_ref == 2); 2820 connp->conn_state_flags &= ~CONN_INCIPIENT; 2821 mutex_exit(&connp->conn_lock); 2822 2823 qprocson(q); 2824 return (0); 2825 } 2826 2827 /* 2828 * Build/update the tcp header template (in conn_ht_iphc) based on 2829 * conn_xmit_ipp. The headers include ip6_t, any extension 2830 * headers, and the maximum size tcp header (to avoid reallocation 2831 * on the fly for additional tcp options). 2832 * 2833 * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}. 2834 * Returns failure if can't allocate memory. 2835 */ 2836 int 2837 tcp_build_hdrs(tcp_t *tcp) 2838 { 2839 tcp_stack_t *tcps = tcp->tcp_tcps; 2840 conn_t *connp = tcp->tcp_connp; 2841 char buf[TCP_MAX_HDR_LENGTH]; 2842 uint_t buflen; 2843 uint_t ulplen = TCP_MIN_HEADER_LENGTH; 2844 uint_t extralen = TCP_MAX_TCP_OPTIONS_LENGTH; 2845 tcpha_t *tcpha; 2846 uint32_t cksum; 2847 int error; 2848 2849 /* 2850 * We might be called after the connection is set up, and we might 2851 * have TS options already in the TCP header. Thus we save any 2852 * existing tcp header. 2853 */ 2854 buflen = connp->conn_ht_ulp_len; 2855 if (buflen != 0) { 2856 bcopy(connp->conn_ht_ulp, buf, buflen); 2857 extralen -= buflen - ulplen; 2858 ulplen = buflen; 2859 } 2860 2861 /* Grab lock to satisfy ASSERT; TCP is serialized using squeue */ 2862 mutex_enter(&connp->conn_lock); 2863 error = conn_build_hdr_template(connp, ulplen, extralen, 2864 &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo); 2865 mutex_exit(&connp->conn_lock); 2866 if (error != 0) 2867 return (error); 2868 2869 /* 2870 * Any routing header/option has been massaged. The checksum difference 2871 * is stored in conn_sum for later use. 2872 */ 2873 tcpha = (tcpha_t *)connp->conn_ht_ulp; 2874 tcp->tcp_tcpha = tcpha; 2875 2876 /* restore any old tcp header */ 2877 if (buflen != 0) { 2878 bcopy(buf, connp->conn_ht_ulp, buflen); 2879 } else { 2880 tcpha->tha_sum = 0; 2881 tcpha->tha_urp = 0; 2882 tcpha->tha_ack = 0; 2883 tcpha->tha_offset_and_reserved = (5 << 4); 2884 tcpha->tha_lport = connp->conn_lport; 2885 tcpha->tha_fport = connp->conn_fport; 2886 } 2887 2888 /* 2889 * IP wants our header length in the checksum field to 2890 * allow it to perform a single pseudo-header+checksum 2891 * calculation on behalf of TCP. 2892 * Include the adjustment for a source route once IP_OPTIONS is set. 2893 */ 2894 cksum = sizeof (tcpha_t) + connp->conn_sum; 2895 cksum = (cksum >> 16) + (cksum & 0xFFFF); 2896 ASSERT(cksum < 0x10000); 2897 tcpha->tha_sum = htons(cksum); 2898 2899 if (connp->conn_ipversion == IPV4_VERSION) 2900 tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc; 2901 else 2902 tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc; 2903 2904 if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra > 2905 connp->conn_wroff) { 2906 connp->conn_wroff = connp->conn_ht_iphc_allocated + 2907 tcps->tcps_wroff_xtra; 2908 (void) proto_set_tx_wroff(connp->conn_rq, connp, 2909 connp->conn_wroff); 2910 } 2911 return (0); 2912 } 2913 2914 /* 2915 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 2916 * We do not allow the receive window to shrink. After setting rwnd, 2917 * set the flow control hiwat of the stream. 2918 * 2919 * This function is called in 2 cases: 2920 * 2921 * 1) Before data transfer begins, in tcp_input_listener() for accepting a 2922 * connection (passive open) and in tcp_input_data() for active connect. 2923 * This is called after tcp_mss_set() when the desired MSS value is known. 2924 * This makes sure that our window size is a mutiple of the other side's 2925 * MSS. 2926 * 2) Handling SO_RCVBUF option. 2927 * 2928 * It is ASSUMED that the requested size is a multiple of the current MSS. 2929 * 2930 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 2931 * user requests so. 2932 */ 2933 int 2934 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 2935 { 2936 uint32_t mss = tcp->tcp_mss; 2937 uint32_t old_max_rwnd; 2938 uint32_t max_transmittable_rwnd; 2939 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2940 tcp_stack_t *tcps = tcp->tcp_tcps; 2941 conn_t *connp = tcp->tcp_connp; 2942 2943 /* 2944 * Insist on a receive window that is at least 2945 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 2946 * funny TCP interactions of Nagle algorithm, SWS avoidance 2947 * and delayed acknowledgement. 2948 */ 2949 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 2950 2951 if (tcp->tcp_fused) { 2952 size_t sth_hiwat; 2953 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 2954 2955 ASSERT(peer_tcp != NULL); 2956 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 2957 if (!tcp_detached) { 2958 (void) proto_set_rx_hiwat(connp->conn_rq, connp, 2959 sth_hiwat); 2960 tcp_set_recv_threshold(tcp, sth_hiwat >> 3); 2961 } 2962 2963 /* Caller could have changed tcp_rwnd; update tha_win */ 2964 if (tcp->tcp_tcpha != NULL) { 2965 tcp->tcp_tcpha->tha_win = 2966 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 2967 } 2968 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 2969 tcp->tcp_cwnd_max = rwnd; 2970 2971 /* 2972 * In the fusion case, the maxpsz stream head value of 2973 * our peer is set according to its send buffer size 2974 * and our receive buffer size; since the latter may 2975 * have changed we need to update the peer's maxpsz. 2976 */ 2977 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 2978 return (sth_hiwat); 2979 } 2980 2981 if (tcp_detached) 2982 old_max_rwnd = tcp->tcp_rwnd; 2983 else 2984 old_max_rwnd = connp->conn_rcvbuf; 2985 2986 2987 /* 2988 * If window size info has already been exchanged, TCP should not 2989 * shrink the window. Shrinking window is doable if done carefully. 2990 * We may add that support later. But so far there is not a real 2991 * need to do that. 2992 */ 2993 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 2994 /* MSS may have changed, do a round up again. */ 2995 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 2996 } 2997 2998 /* 2999 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 3000 * can be applied even before the window scale option is decided. 3001 */ 3002 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 3003 if (rwnd > max_transmittable_rwnd) { 3004 rwnd = max_transmittable_rwnd - 3005 (max_transmittable_rwnd % mss); 3006 if (rwnd < mss) 3007 rwnd = max_transmittable_rwnd; 3008 /* 3009 * If we're over the limit we may have to back down tcp_rwnd. 3010 * The increment below won't work for us. So we set all three 3011 * here and the increment below will have no effect. 3012 */ 3013 tcp->tcp_rwnd = old_max_rwnd = rwnd; 3014 } 3015 if (tcp->tcp_localnet) { 3016 tcp->tcp_rack_abs_max = 3017 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 3018 } else { 3019 /* 3020 * For a remote host on a different subnet (through a router), 3021 * we ack every other packet to be conforming to RFC1122. 3022 * tcp_deferred_acks_max is default to 2. 3023 */ 3024 tcp->tcp_rack_abs_max = 3025 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 3026 } 3027 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 3028 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 3029 else 3030 tcp->tcp_rack_cur_max = 0; 3031 /* 3032 * Increment the current rwnd by the amount the maximum grew (we 3033 * can not overwrite it since we might be in the middle of a 3034 * connection.) 3035 */ 3036 tcp->tcp_rwnd += rwnd - old_max_rwnd; 3037 connp->conn_rcvbuf = rwnd; 3038 3039 /* Are we already connected? */ 3040 if (tcp->tcp_tcpha != NULL) { 3041 tcp->tcp_tcpha->tha_win = 3042 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 3043 } 3044 3045 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 3046 tcp->tcp_cwnd_max = rwnd; 3047 3048 if (tcp_detached) 3049 return (rwnd); 3050 3051 tcp_set_recv_threshold(tcp, rwnd >> 3); 3052 3053 (void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd); 3054 return (rwnd); 3055 } 3056 3057 int 3058 tcp_do_unbind(conn_t *connp) 3059 { 3060 tcp_t *tcp = connp->conn_tcp; 3061 int32_t oldstate; 3062 3063 switch (tcp->tcp_state) { 3064 case TCPS_BOUND: 3065 case TCPS_LISTEN: 3066 break; 3067 default: 3068 return (-TOUTSTATE); 3069 } 3070 3071 /* 3072 * Need to clean up all the eagers since after the unbind, segments 3073 * will no longer be delivered to this listener stream. 3074 */ 3075 mutex_enter(&tcp->tcp_eager_lock); 3076 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3077 tcp_eager_cleanup(tcp, 0); 3078 } 3079 mutex_exit(&tcp->tcp_eager_lock); 3080 3081 /* Clean up the listener connection counter if necessary. */ 3082 if (tcp->tcp_listen_cnt != NULL) 3083 TCP_DECR_LISTEN_CNT(tcp); 3084 connp->conn_laddr_v6 = ipv6_all_zeros; 3085 connp->conn_saddr_v6 = ipv6_all_zeros; 3086 tcp_bind_hash_remove(tcp); 3087 oldstate = tcp->tcp_state; 3088 tcp->tcp_state = TCPS_IDLE; 3089 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 3090 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 3091 int32_t, oldstate); 3092 3093 ip_unbind(connp); 3094 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 3095 3096 return (0); 3097 } 3098 3099 /* 3100 * Collect protocol properties to send to the upper handle. 3101 */ 3102 void 3103 tcp_get_proto_props(tcp_t *tcp, struct sock_proto_props *sopp) 3104 { 3105 conn_t *connp = tcp->tcp_connp; 3106 3107 sopp->sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 3108 sopp->sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 3109 3110 sopp->sopp_rxhiwat = tcp->tcp_fused ? 3111 tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) : 3112 connp->conn_rcvbuf; 3113 /* 3114 * Determine what write offset value to use depending on SACK and 3115 * whether the endpoint is fused or not. 3116 */ 3117 if (tcp->tcp_fused) { 3118 ASSERT(tcp->tcp_loopback); 3119 ASSERT(tcp->tcp_loopback_peer != NULL); 3120 /* 3121 * For fused tcp loopback, set the stream head's write 3122 * offset value to zero since we won't be needing any room 3123 * for TCP/IP headers. This would also improve performance 3124 * since it would reduce the amount of work done by kmem. 3125 * Non-fused tcp loopback case is handled separately below. 3126 */ 3127 sopp->sopp_wroff = 0; 3128 /* 3129 * Update the peer's transmit parameters according to 3130 * our recently calculated high water mark value. 3131 */ 3132 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 3133 } else if (tcp->tcp_snd_sack_ok) { 3134 sopp->sopp_wroff = connp->conn_ht_iphc_allocated + 3135 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra); 3136 } else { 3137 sopp->sopp_wroff = connp->conn_ht_iphc_len + 3138 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra); 3139 } 3140 3141 if (tcp->tcp_loopback) { 3142 sopp->sopp_flags |= SOCKOPT_LOOPBACK; 3143 sopp->sopp_loopback = B_TRUE; 3144 } 3145 } 3146 3147 /* 3148 * Check the usability of ZEROCOPY. It's instead checking the flag set by IP. 3149 */ 3150 boolean_t 3151 tcp_zcopy_check(tcp_t *tcp) 3152 { 3153 conn_t *connp = tcp->tcp_connp; 3154 ip_xmit_attr_t *ixa = connp->conn_ixa; 3155 boolean_t zc_enabled = B_FALSE; 3156 tcp_stack_t *tcps = tcp->tcp_tcps; 3157 3158 if (do_tcpzcopy == 2) 3159 zc_enabled = B_TRUE; 3160 else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB)) 3161 zc_enabled = B_TRUE; 3162 3163 tcp->tcp_snd_zcopy_on = zc_enabled; 3164 if (!TCP_IS_DETACHED(tcp)) { 3165 if (zc_enabled) { 3166 ixa->ixa_flags |= IXAF_VERIFY_ZCOPY; 3167 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3168 ZCVMSAFE); 3169 TCP_STAT(tcps, tcp_zcopy_on); 3170 } else { 3171 ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY; 3172 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3173 ZCVMUNSAFE); 3174 TCP_STAT(tcps, tcp_zcopy_off); 3175 } 3176 } 3177 return (zc_enabled); 3178 } 3179 3180 /* 3181 * Backoff from a zero-copy message by copying data to a new allocated 3182 * message and freeing the original desballoca'ed segmapped message. 3183 * 3184 * This function is called by following two callers: 3185 * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free 3186 * the origial desballoca'ed message and notify sockfs. This is in re- 3187 * transmit state. 3188 * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need 3189 * to be copied to new message. 3190 */ 3191 mblk_t * 3192 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist) 3193 { 3194 mblk_t *nbp; 3195 mblk_t *head = NULL; 3196 mblk_t *tail = NULL; 3197 tcp_stack_t *tcps = tcp->tcp_tcps; 3198 3199 ASSERT(bp != NULL); 3200 while (bp != NULL) { 3201 if (IS_VMLOANED_MBLK(bp)) { 3202 TCP_STAT(tcps, tcp_zcopy_backoff); 3203 if ((nbp = copyb(bp)) == NULL) { 3204 tcp->tcp_xmit_zc_clean = B_FALSE; 3205 if (tail != NULL) 3206 tail->b_cont = bp; 3207 return ((head == NULL) ? bp : head); 3208 } 3209 3210 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 3211 if (fix_xmitlist) 3212 tcp_zcopy_notify(tcp); 3213 else 3214 nbp->b_datap->db_struioflag |= 3215 STRUIO_ZCNOTIFY; 3216 } 3217 nbp->b_cont = bp->b_cont; 3218 3219 /* 3220 * Copy saved information and adjust tcp_xmit_tail 3221 * if needed. 3222 */ 3223 if (fix_xmitlist) { 3224 nbp->b_prev = bp->b_prev; 3225 nbp->b_next = bp->b_next; 3226 3227 if (tcp->tcp_xmit_tail == bp) 3228 tcp->tcp_xmit_tail = nbp; 3229 } 3230 3231 /* Free the original message. */ 3232 bp->b_prev = NULL; 3233 bp->b_next = NULL; 3234 freeb(bp); 3235 3236 bp = nbp; 3237 } 3238 3239 if (head == NULL) { 3240 head = bp; 3241 } 3242 if (tail == NULL) { 3243 tail = bp; 3244 } else { 3245 tail->b_cont = bp; 3246 tail = bp; 3247 } 3248 3249 /* Move forward. */ 3250 bp = bp->b_cont; 3251 } 3252 3253 if (fix_xmitlist) { 3254 tcp->tcp_xmit_last = tail; 3255 tcp->tcp_xmit_zc_clean = B_TRUE; 3256 } 3257 3258 return (head); 3259 } 3260 3261 void 3262 tcp_zcopy_notify(tcp_t *tcp) 3263 { 3264 struct stdata *stp; 3265 conn_t *connp; 3266 3267 if (tcp->tcp_detached) 3268 return; 3269 connp = tcp->tcp_connp; 3270 if (IPCL_IS_NONSTR(connp)) { 3271 (*connp->conn_upcalls->su_zcopy_notify) 3272 (connp->conn_upper_handle); 3273 return; 3274 } 3275 stp = STREAM(connp->conn_rq); 3276 mutex_enter(&stp->sd_lock); 3277 stp->sd_flag |= STZCNOTIFY; 3278 cv_broadcast(&stp->sd_zcopy_wait); 3279 mutex_exit(&stp->sd_lock); 3280 } 3281 3282 /* 3283 * Update the TCP connection according to change of LSO capability. 3284 */ 3285 static void 3286 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa) 3287 { 3288 /* 3289 * We check against IPv4 header length to preserve the old behavior 3290 * of only enabling LSO when there are no IP options. 3291 * But this restriction might not be necessary at all. Before removing 3292 * it, need to verify how LSO is handled for source routing case, with 3293 * which IP does software checksum. 3294 * 3295 * For IPv6, whenever any extension header is needed, LSO is supressed. 3296 */ 3297 if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ? 3298 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN)) 3299 return; 3300 3301 /* 3302 * Either the LSO capability newly became usable, or it has changed. 3303 */ 3304 if (ixa->ixa_flags & IXAF_LSO_CAPAB) { 3305 ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab; 3306 3307 ASSERT(lsoc->ill_lso_max > 0); 3308 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max); 3309 3310 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 3311 boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max); 3312 3313 /* 3314 * If LSO to be enabled, notify the STREAM header with larger 3315 * data block. 3316 */ 3317 if (!tcp->tcp_lso) 3318 tcp->tcp_maxpsz_multiplier = 0; 3319 3320 tcp->tcp_lso = B_TRUE; 3321 TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled); 3322 } else { /* LSO capability is not usable any more. */ 3323 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 3324 boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max); 3325 3326 /* 3327 * If LSO to be disabled, notify the STREAM header with smaller 3328 * data block. And need to restore fragsize to PMTU. 3329 */ 3330 if (tcp->tcp_lso) { 3331 tcp->tcp_maxpsz_multiplier = 3332 tcp->tcp_tcps->tcps_maxpsz_multiplier; 3333 ixa->ixa_fragsize = ixa->ixa_pmtu; 3334 tcp->tcp_lso = B_FALSE; 3335 TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled); 3336 } 3337 } 3338 3339 (void) tcp_maxpsz_set(tcp, B_TRUE); 3340 } 3341 3342 /* 3343 * Update the TCP connection according to change of ZEROCOPY capability. 3344 */ 3345 static void 3346 tcp_update_zcopy(tcp_t *tcp) 3347 { 3348 conn_t *connp = tcp->tcp_connp; 3349 tcp_stack_t *tcps = tcp->tcp_tcps; 3350 3351 if (tcp->tcp_snd_zcopy_on) { 3352 tcp->tcp_snd_zcopy_on = B_FALSE; 3353 if (!TCP_IS_DETACHED(tcp)) { 3354 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3355 ZCVMUNSAFE); 3356 TCP_STAT(tcps, tcp_zcopy_off); 3357 } 3358 } else { 3359 tcp->tcp_snd_zcopy_on = B_TRUE; 3360 if (!TCP_IS_DETACHED(tcp)) { 3361 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3362 ZCVMSAFE); 3363 TCP_STAT(tcps, tcp_zcopy_on); 3364 } 3365 } 3366 } 3367 3368 /* 3369 * Notify function registered with ip_xmit_attr_t. It's called in the squeue 3370 * so it's safe to update the TCP connection. 3371 */ 3372 /* ARGSUSED1 */ 3373 static void 3374 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype, 3375 ixa_notify_arg_t narg) 3376 { 3377 tcp_t *tcp = (tcp_t *)arg; 3378 conn_t *connp = tcp->tcp_connp; 3379 3380 switch (ntype) { 3381 case IXAN_LSO: 3382 tcp_update_lso(tcp, connp->conn_ixa); 3383 break; 3384 case IXAN_PMTU: 3385 tcp_update_pmtu(tcp, B_FALSE); 3386 break; 3387 case IXAN_ZCOPY: 3388 tcp_update_zcopy(tcp); 3389 break; 3390 default: 3391 break; 3392 } 3393 } 3394 3395 /* 3396 * The TCP write service routine should never be called... 3397 */ 3398 /* ARGSUSED */ 3399 static void 3400 tcp_wsrv(queue_t *q) 3401 { 3402 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 3403 3404 TCP_STAT(tcps, tcp_wsrv_called); 3405 } 3406 3407 /* 3408 * Hash list lookup routine for tcp_t structures. 3409 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 3410 */ 3411 tcp_t * 3412 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 3413 { 3414 tf_t *tf; 3415 tcp_t *tcp; 3416 3417 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 3418 mutex_enter(&tf->tf_lock); 3419 for (tcp = tf->tf_tcp; tcp != NULL; 3420 tcp = tcp->tcp_acceptor_hash) { 3421 if (tcp->tcp_acceptor_id == id) { 3422 CONN_INC_REF(tcp->tcp_connp); 3423 mutex_exit(&tf->tf_lock); 3424 return (tcp); 3425 } 3426 } 3427 mutex_exit(&tf->tf_lock); 3428 return (NULL); 3429 } 3430 3431 /* 3432 * Hash list insertion routine for tcp_t structures. 3433 */ 3434 void 3435 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 3436 { 3437 tf_t *tf; 3438 tcp_t **tcpp; 3439 tcp_t *tcpnext; 3440 tcp_stack_t *tcps = tcp->tcp_tcps; 3441 3442 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 3443 3444 if (tcp->tcp_ptpahn != NULL) 3445 tcp_acceptor_hash_remove(tcp); 3446 tcpp = &tf->tf_tcp; 3447 mutex_enter(&tf->tf_lock); 3448 tcpnext = tcpp[0]; 3449 if (tcpnext) 3450 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 3451 tcp->tcp_acceptor_hash = tcpnext; 3452 tcp->tcp_ptpahn = tcpp; 3453 tcpp[0] = tcp; 3454 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 3455 mutex_exit(&tf->tf_lock); 3456 } 3457 3458 /* 3459 * Hash list removal routine for tcp_t structures. 3460 */ 3461 void 3462 tcp_acceptor_hash_remove(tcp_t *tcp) 3463 { 3464 tcp_t *tcpnext; 3465 kmutex_t *lockp; 3466 3467 /* 3468 * Extract the lock pointer in case there are concurrent 3469 * hash_remove's for this instance. 3470 */ 3471 lockp = tcp->tcp_acceptor_lockp; 3472 3473 if (tcp->tcp_ptpahn == NULL) 3474 return; 3475 3476 ASSERT(lockp != NULL); 3477 mutex_enter(lockp); 3478 if (tcp->tcp_ptpahn) { 3479 tcpnext = tcp->tcp_acceptor_hash; 3480 if (tcpnext) { 3481 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 3482 tcp->tcp_acceptor_hash = NULL; 3483 } 3484 *tcp->tcp_ptpahn = tcpnext; 3485 tcp->tcp_ptpahn = NULL; 3486 } 3487 mutex_exit(lockp); 3488 tcp->tcp_acceptor_lockp = NULL; 3489 } 3490 3491 /* 3492 * Type three generator adapted from the random() function in 4.4 BSD: 3493 */ 3494 3495 /* 3496 * Copyright (c) 1983, 1993 3497 * The Regents of the University of California. All rights reserved. 3498 * 3499 * Redistribution and use in source and binary forms, with or without 3500 * modification, are permitted provided that the following conditions 3501 * are met: 3502 * 1. Redistributions of source code must retain the above copyright 3503 * notice, this list of conditions and the following disclaimer. 3504 * 2. Redistributions in binary form must reproduce the above copyright 3505 * notice, this list of conditions and the following disclaimer in the 3506 * documentation and/or other materials provided with the distribution. 3507 * 3. All advertising materials mentioning features or use of this software 3508 * must display the following acknowledgement: 3509 * This product includes software developed by the University of 3510 * California, Berkeley and its contributors. 3511 * 4. Neither the name of the University nor the names of its contributors 3512 * may be used to endorse or promote products derived from this software 3513 * without specific prior written permission. 3514 * 3515 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 3516 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 3517 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 3518 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 3519 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 3520 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 3521 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 3522 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 3523 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 3524 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 3525 * SUCH DAMAGE. 3526 */ 3527 3528 /* Type 3 -- x**31 + x**3 + 1 */ 3529 #define DEG_3 31 3530 #define SEP_3 3 3531 3532 3533 /* Protected by tcp_random_lock */ 3534 static int tcp_randtbl[DEG_3 + 1]; 3535 3536 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 3537 static int *tcp_random_rptr = &tcp_randtbl[1]; 3538 3539 static int *tcp_random_state = &tcp_randtbl[1]; 3540 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 3541 3542 kmutex_t tcp_random_lock; 3543 3544 void 3545 tcp_random_init(void) 3546 { 3547 int i; 3548 hrtime_t hrt; 3549 time_t wallclock; 3550 uint64_t result; 3551 3552 /* 3553 * Use high-res timer and current time for seed. Gethrtime() returns 3554 * a longlong, which may contain resolution down to nanoseconds. 3555 * The current time will either be a 32-bit or a 64-bit quantity. 3556 * XOR the two together in a 64-bit result variable. 3557 * Convert the result to a 32-bit value by multiplying the high-order 3558 * 32-bits by the low-order 32-bits. 3559 */ 3560 3561 hrt = gethrtime(); 3562 (void) drv_getparm(TIME, &wallclock); 3563 result = (uint64_t)wallclock ^ (uint64_t)hrt; 3564 mutex_enter(&tcp_random_lock); 3565 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 3566 (result & 0xffffffff); 3567 3568 for (i = 1; i < DEG_3; i++) 3569 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 3570 + 12345; 3571 tcp_random_fptr = &tcp_random_state[SEP_3]; 3572 tcp_random_rptr = &tcp_random_state[0]; 3573 mutex_exit(&tcp_random_lock); 3574 for (i = 0; i < 10 * DEG_3; i++) 3575 (void) tcp_random(); 3576 } 3577 3578 /* 3579 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 3580 * This range is selected to be approximately centered on TCP_ISS / 2, 3581 * and easy to compute. We get this value by generating a 32-bit random 3582 * number, selecting out the high-order 17 bits, and then adding one so 3583 * that we never return zero. 3584 */ 3585 int 3586 tcp_random(void) 3587 { 3588 int i; 3589 3590 mutex_enter(&tcp_random_lock); 3591 *tcp_random_fptr += *tcp_random_rptr; 3592 3593 /* 3594 * The high-order bits are more random than the low-order bits, 3595 * so we select out the high-order 17 bits and add one so that 3596 * we never return zero. 3597 */ 3598 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 3599 if (++tcp_random_fptr >= tcp_random_end_ptr) { 3600 tcp_random_fptr = tcp_random_state; 3601 ++tcp_random_rptr; 3602 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 3603 tcp_random_rptr = tcp_random_state; 3604 3605 mutex_exit(&tcp_random_lock); 3606 return (i); 3607 } 3608 3609 /* 3610 * Split this function out so that if the secret changes, I'm okay. 3611 * 3612 * Initialize the tcp_iss_cookie and tcp_iss_key. 3613 */ 3614 3615 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 3616 3617 void 3618 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 3619 { 3620 struct { 3621 int32_t current_time; 3622 uint32_t randnum; 3623 uint16_t pad; 3624 uint8_t ether[6]; 3625 uint8_t passwd[PASSWD_SIZE]; 3626 } tcp_iss_cookie; 3627 time_t t; 3628 3629 /* 3630 * Start with the current absolute time. 3631 */ 3632 (void) drv_getparm(TIME, &t); 3633 tcp_iss_cookie.current_time = t; 3634 3635 /* 3636 * XXX - Need a more random number per RFC 1750, not this crap. 3637 * OTOH, if what follows is pretty random, then I'm in better shape. 3638 */ 3639 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 3640 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 3641 3642 /* 3643 * The cpu_type_info is pretty non-random. Ugggh. It does serve 3644 * as a good template. 3645 */ 3646 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 3647 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 3648 3649 /* 3650 * The pass-phrase. Normally this is supplied by user-called NDD. 3651 */ 3652 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 3653 3654 /* 3655 * See 4010593 if this section becomes a problem again, 3656 * but the local ethernet address is useful here. 3657 */ 3658 (void) localetheraddr(NULL, 3659 (struct ether_addr *)&tcp_iss_cookie.ether); 3660 3661 /* 3662 * Hash 'em all together. The MD5Final is called per-connection. 3663 */ 3664 mutex_enter(&tcps->tcps_iss_key_lock); 3665 MD5Init(&tcps->tcps_iss_key); 3666 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 3667 sizeof (tcp_iss_cookie)); 3668 mutex_exit(&tcps->tcps_iss_key_lock); 3669 } 3670 3671 /* 3672 * Called by IP when IP is loaded into the kernel 3673 */ 3674 void 3675 tcp_ddi_g_init(void) 3676 { 3677 tcp_timercache = kmem_cache_create("tcp_timercache", 3678 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 3679 NULL, NULL, NULL, NULL, NULL, 0); 3680 3681 tcp_notsack_blk_cache = kmem_cache_create("tcp_notsack_blk_cache", 3682 sizeof (notsack_blk_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 3683 3684 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 3685 3686 /* Initialize the random number generator */ 3687 tcp_random_init(); 3688 3689 /* A single callback independently of how many netstacks we have */ 3690 ip_squeue_init(tcp_squeue_add); 3691 3692 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 3693 3694 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 3695 3696 /* 3697 * We want to be informed each time a stack is created or 3698 * destroyed in the kernel, so we can maintain the 3699 * set of tcp_stack_t's. 3700 */ 3701 netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini); 3702 3703 mutex_enter(&cpu_lock); 3704 register_cpu_setup_func(tcp_cpu_update, NULL); 3705 mutex_exit(&cpu_lock); 3706 } 3707 3708 3709 #define INET_NAME "ip" 3710 3711 /* 3712 * Initialize the TCP stack instance. 3713 */ 3714 static void * 3715 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 3716 { 3717 tcp_stack_t *tcps; 3718 int i; 3719 int error = 0; 3720 major_t major; 3721 size_t arrsz; 3722 3723 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 3724 tcps->tcps_netstack = ns; 3725 3726 /* Initialize locks */ 3727 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 3728 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 3729 3730 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 3731 tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1; 3732 tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2; 3733 tcps->tcps_min_anonpriv_port = 512; 3734 3735 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 3736 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 3737 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 3738 TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP); 3739 3740 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 3741 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 3742 MUTEX_DEFAULT, NULL); 3743 } 3744 3745 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 3746 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 3747 MUTEX_DEFAULT, NULL); 3748 } 3749 3750 /* TCP's IPsec code calls the packet dropper. */ 3751 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 3752 3753 arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t); 3754 tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, 3755 KM_SLEEP); 3756 bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz); 3757 3758 /* 3759 * Note: To really walk the device tree you need the devinfo 3760 * pointer to your device which is only available after probe/attach. 3761 * The following is safe only because it uses ddi_root_node() 3762 */ 3763 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 3764 tcp_opt_obj.odb_opt_arr_cnt); 3765 3766 /* 3767 * Initialize RFC 1948 secret values. This will probably be reset once 3768 * by the boot scripts. 3769 * 3770 * Use NULL name, as the name is caught by the new lockstats. 3771 * 3772 * Initialize with some random, non-guessable string, like the global 3773 * T_INFO_ACK. 3774 */ 3775 3776 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 3777 sizeof (tcp_g_t_info_ack), tcps); 3778 3779 tcps->tcps_kstat = tcp_kstat2_init(stackid); 3780 tcps->tcps_mibkp = tcp_kstat_init(stackid); 3781 3782 major = mod_name_to_major(INET_NAME); 3783 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 3784 ASSERT(error == 0); 3785 tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL); 3786 ASSERT(tcps->tcps_ixa_cleanup_mp != NULL); 3787 cv_init(&tcps->tcps_ixa_cleanup_cv, NULL, CV_DEFAULT, NULL); 3788 mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL); 3789 3790 mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 3791 tcps->tcps_reclaim = B_FALSE; 3792 tcps->tcps_reclaim_tid = 0; 3793 tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max; 3794 3795 /* 3796 * ncpus is the current number of CPUs, which can be bigger than 3797 * boot_ncpus. But we don't want to use ncpus to allocate all the 3798 * tcp_stats_cpu_t at system boot up time since it will be 1. While 3799 * we handle adding CPU in tcp_cpu_update(), it will be slow if 3800 * there are many CPUs as we will be adding them 1 by 1. 3801 * 3802 * Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers 3803 * are not freed until the stack is going away. So there is no need 3804 * to grab a lock to access the per CPU tcps_sc[x] pointer. 3805 */ 3806 tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus); 3807 tcps->tcps_sc = kmem_zalloc(max_ncpus * sizeof (tcp_stats_cpu_t *), 3808 KM_SLEEP); 3809 for (i = 0; i < tcps->tcps_sc_cnt; i++) { 3810 tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t), 3811 KM_SLEEP); 3812 } 3813 3814 mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL); 3815 list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t), 3816 offsetof(tcp_listener_t, tl_link)); 3817 3818 return (tcps); 3819 } 3820 3821 /* 3822 * Called when the IP module is about to be unloaded. 3823 */ 3824 void 3825 tcp_ddi_g_destroy(void) 3826 { 3827 mutex_enter(&cpu_lock); 3828 unregister_cpu_setup_func(tcp_cpu_update, NULL); 3829 mutex_exit(&cpu_lock); 3830 3831 tcp_g_kstat_fini(tcp_g_kstat); 3832 tcp_g_kstat = NULL; 3833 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 3834 3835 mutex_destroy(&tcp_random_lock); 3836 3837 kmem_cache_destroy(tcp_timercache); 3838 kmem_cache_destroy(tcp_notsack_blk_cache); 3839 3840 netstack_unregister(NS_TCP); 3841 } 3842 3843 /* 3844 * Free the TCP stack instance. 3845 */ 3846 static void 3847 tcp_stack_fini(netstackid_t stackid, void *arg) 3848 { 3849 tcp_stack_t *tcps = (tcp_stack_t *)arg; 3850 int i; 3851 3852 freeb(tcps->tcps_ixa_cleanup_mp); 3853 tcps->tcps_ixa_cleanup_mp = NULL; 3854 cv_destroy(&tcps->tcps_ixa_cleanup_cv); 3855 mutex_destroy(&tcps->tcps_ixa_cleanup_lock); 3856 3857 /* 3858 * Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart 3859 * the timer. 3860 */ 3861 mutex_enter(&tcps->tcps_reclaim_lock); 3862 tcps->tcps_reclaim = B_FALSE; 3863 mutex_exit(&tcps->tcps_reclaim_lock); 3864 if (tcps->tcps_reclaim_tid != 0) 3865 (void) untimeout(tcps->tcps_reclaim_tid); 3866 mutex_destroy(&tcps->tcps_reclaim_lock); 3867 3868 tcp_listener_conf_cleanup(tcps); 3869 3870 for (i = 0; i < tcps->tcps_sc_cnt; i++) 3871 kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t)); 3872 kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *)); 3873 3874 kmem_free(tcps->tcps_propinfo_tbl, 3875 tcp_propinfo_count * sizeof (mod_prop_info_t)); 3876 tcps->tcps_propinfo_tbl = NULL; 3877 3878 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 3879 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 3880 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 3881 } 3882 3883 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 3884 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 3885 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 3886 } 3887 3888 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 3889 tcps->tcps_bind_fanout = NULL; 3890 3891 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * 3892 TCP_ACCEPTOR_FANOUT_SIZE); 3893 tcps->tcps_acceptor_fanout = NULL; 3894 3895 mutex_destroy(&tcps->tcps_iss_key_lock); 3896 mutex_destroy(&tcps->tcps_epriv_port_lock); 3897 3898 ip_drop_unregister(&tcps->tcps_dropper); 3899 3900 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 3901 tcps->tcps_kstat = NULL; 3902 3903 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 3904 tcps->tcps_mibkp = NULL; 3905 3906 ldi_ident_release(tcps->tcps_ldi_ident); 3907 kmem_free(tcps, sizeof (*tcps)); 3908 } 3909 3910 /* 3911 * Generate ISS, taking into account NDD changes may happen halfway through. 3912 * (If the iss is not zero, set it.) 3913 */ 3914 3915 static void 3916 tcp_iss_init(tcp_t *tcp) 3917 { 3918 MD5_CTX context; 3919 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 3920 uint32_t answer[4]; 3921 tcp_stack_t *tcps = tcp->tcp_tcps; 3922 conn_t *connp = tcp->tcp_connp; 3923 3924 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 3925 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 3926 switch (tcps->tcps_strong_iss) { 3927 case 2: 3928 mutex_enter(&tcps->tcps_iss_key_lock); 3929 context = tcps->tcps_iss_key; 3930 mutex_exit(&tcps->tcps_iss_key_lock); 3931 arg.ports = connp->conn_ports; 3932 arg.src = connp->conn_laddr_v6; 3933 arg.dst = connp->conn_faddr_v6; 3934 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 3935 MD5Final((uchar_t *)answer, &context); 3936 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 3937 /* 3938 * Now that we've hashed into a unique per-connection sequence 3939 * space, add a random increment per strong_iss == 1. So I 3940 * guess we'll have to... 3941 */ 3942 /* FALLTHRU */ 3943 case 1: 3944 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 3945 break; 3946 default: 3947 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 3948 break; 3949 } 3950 tcp->tcp_valid_bits = TCP_ISS_VALID; 3951 tcp->tcp_fss = tcp->tcp_iss - 1; 3952 tcp->tcp_suna = tcp->tcp_iss; 3953 tcp->tcp_snxt = tcp->tcp_iss + 1; 3954 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 3955 tcp->tcp_csuna = tcp->tcp_snxt; 3956 } 3957 3958 /* 3959 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 3960 * on the specified backing STREAMS q. Note, the caller may make the 3961 * decision to call based on the tcp_t.tcp_flow_stopped value which 3962 * when check outside the q's lock is only an advisory check ... 3963 */ 3964 void 3965 tcp_setqfull(tcp_t *tcp) 3966 { 3967 tcp_stack_t *tcps = tcp->tcp_tcps; 3968 conn_t *connp = tcp->tcp_connp; 3969 3970 if (tcp->tcp_closed) 3971 return; 3972 3973 conn_setqfull(connp, &tcp->tcp_flow_stopped); 3974 if (tcp->tcp_flow_stopped) 3975 TCP_STAT(tcps, tcp_flwctl_on); 3976 } 3977 3978 void 3979 tcp_clrqfull(tcp_t *tcp) 3980 { 3981 conn_t *connp = tcp->tcp_connp; 3982 3983 if (tcp->tcp_closed) 3984 return; 3985 conn_clrqfull(connp, &tcp->tcp_flow_stopped); 3986 } 3987 3988 static int 3989 tcp_squeue_switch(int val) 3990 { 3991 int rval = SQ_FILL; 3992 3993 switch (val) { 3994 case 1: 3995 rval = SQ_NODRAIN; 3996 break; 3997 case 2: 3998 rval = SQ_PROCESS; 3999 break; 4000 default: 4001 break; 4002 } 4003 return (rval); 4004 } 4005 4006 /* 4007 * This is called once for each squeue - globally for all stack 4008 * instances. 4009 */ 4010 static void 4011 tcp_squeue_add(squeue_t *sqp) 4012 { 4013 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 4014 sizeof (tcp_squeue_priv_t), KM_SLEEP); 4015 4016 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 4017 if (tcp_free_list_max_cnt == 0) { 4018 int tcp_ncpus = ((boot_max_ncpus == -1) ? 4019 max_ncpus : boot_max_ncpus); 4020 4021 /* 4022 * Limit number of entries to 1% of availble memory / tcp_ncpus 4023 */ 4024 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 4025 (tcp_ncpus * sizeof (tcp_t) * 100); 4026 } 4027 tcp_time_wait->tcp_free_list_cnt = 0; 4028 } 4029 /* 4030 * Return unix error is tli error is TSYSERR, otherwise return a negative 4031 * tli error. 4032 */ 4033 int 4034 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 4035 boolean_t bind_to_req_port_only) 4036 { 4037 int error; 4038 tcp_t *tcp = connp->conn_tcp; 4039 4040 if (tcp->tcp_state >= TCPS_BOUND) { 4041 if (connp->conn_debug) { 4042 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 4043 "tcp_bind: bad state, %d", tcp->tcp_state); 4044 } 4045 return (-TOUTSTATE); 4046 } 4047 4048 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 4049 if (error != 0) 4050 return (error); 4051 4052 ASSERT(tcp->tcp_state == TCPS_BOUND); 4053 tcp->tcp_conn_req_max = 0; 4054 return (0); 4055 } 4056 4057 /* 4058 * If the return value from this function is positive, it's a UNIX error. 4059 * Otherwise, if it's negative, then the absolute value is a TLI error. 4060 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 4061 */ 4062 int 4063 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 4064 cred_t *cr, pid_t pid) 4065 { 4066 tcp_t *tcp = connp->conn_tcp; 4067 sin_t *sin = (sin_t *)sa; 4068 sin6_t *sin6 = (sin6_t *)sa; 4069 ipaddr_t *dstaddrp; 4070 in_port_t dstport; 4071 uint_t srcid; 4072 int error; 4073 uint32_t mss; 4074 mblk_t *syn_mp; 4075 tcp_stack_t *tcps = tcp->tcp_tcps; 4076 int32_t oldstate; 4077 ip_xmit_attr_t *ixa = connp->conn_ixa; 4078 4079 oldstate = tcp->tcp_state; 4080 4081 switch (len) { 4082 default: 4083 /* 4084 * Should never happen 4085 */ 4086 return (EINVAL); 4087 4088 case sizeof (sin_t): 4089 sin = (sin_t *)sa; 4090 if (sin->sin_port == 0) { 4091 return (-TBADADDR); 4092 } 4093 if (connp->conn_ipv6_v6only) { 4094 return (EAFNOSUPPORT); 4095 } 4096 break; 4097 4098 case sizeof (sin6_t): 4099 sin6 = (sin6_t *)sa; 4100 if (sin6->sin6_port == 0) { 4101 return (-TBADADDR); 4102 } 4103 break; 4104 } 4105 /* 4106 * If we're connecting to an IPv4-mapped IPv6 address, we need to 4107 * make sure that the conn_ipversion is IPV4_VERSION. We 4108 * need to this before we call tcp_bindi() so that the port lookup 4109 * code will look for ports in the correct port space (IPv4 and 4110 * IPv6 have separate port spaces). 4111 */ 4112 if (connp->conn_family == AF_INET6 && 4113 connp->conn_ipversion == IPV6_VERSION && 4114 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 4115 if (connp->conn_ipv6_v6only) 4116 return (EADDRNOTAVAIL); 4117 4118 connp->conn_ipversion = IPV4_VERSION; 4119 } 4120 4121 switch (tcp->tcp_state) { 4122 case TCPS_LISTEN: 4123 /* 4124 * Listening sockets are not allowed to issue connect(). 4125 */ 4126 if (IPCL_IS_NONSTR(connp)) 4127 return (EOPNOTSUPP); 4128 /* FALLTHRU */ 4129 case TCPS_IDLE: 4130 /* 4131 * We support quick connect, refer to comments in 4132 * tcp_connect_*() 4133 */ 4134 /* FALLTHRU */ 4135 case TCPS_BOUND: 4136 break; 4137 default: 4138 return (-TOUTSTATE); 4139 } 4140 4141 /* 4142 * We update our cred/cpid based on the caller of connect 4143 */ 4144 if (connp->conn_cred != cr) { 4145 crhold(cr); 4146 crfree(connp->conn_cred); 4147 connp->conn_cred = cr; 4148 } 4149 connp->conn_cpid = pid; 4150 4151 /* Cache things in the ixa without any refhold */ 4152 ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); 4153 ixa->ixa_cred = cr; 4154 ixa->ixa_cpid = pid; 4155 if (is_system_labeled()) { 4156 /* We need to restart with a label based on the cred */ 4157 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred); 4158 } 4159 4160 if (connp->conn_family == AF_INET6) { 4161 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 4162 error = tcp_connect_ipv6(tcp, &sin6->sin6_addr, 4163 sin6->sin6_port, sin6->sin6_flowinfo, 4164 sin6->__sin6_src_id, sin6->sin6_scope_id); 4165 } else { 4166 /* 4167 * Destination adress is mapped IPv6 address. 4168 * Source bound address should be unspecified or 4169 * IPv6 mapped address as well. 4170 */ 4171 if (!IN6_IS_ADDR_UNSPECIFIED( 4172 &connp->conn_bound_addr_v6) && 4173 !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) { 4174 return (EADDRNOTAVAIL); 4175 } 4176 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 4177 dstport = sin6->sin6_port; 4178 srcid = sin6->__sin6_src_id; 4179 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, 4180 srcid); 4181 } 4182 } else { 4183 dstaddrp = &sin->sin_addr.s_addr; 4184 dstport = sin->sin_port; 4185 srcid = 0; 4186 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid); 4187 } 4188 4189 if (error != 0) 4190 goto connect_failed; 4191 4192 CL_INET_CONNECT(connp, B_TRUE, error); 4193 if (error != 0) 4194 goto connect_failed; 4195 4196 /* connect succeeded */ 4197 TCPS_BUMP_MIB(tcps, tcpActiveOpens); 4198 tcp->tcp_active_open = 1; 4199 4200 /* 4201 * tcp_set_destination() does not adjust for TCP/IP header length. 4202 */ 4203 mss = tcp->tcp_mss - connp->conn_ht_iphc_len; 4204 4205 /* 4206 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up 4207 * to the nearest MSS. 4208 * 4209 * We do the round up here because we need to get the interface MTU 4210 * first before we can do the round up. 4211 */ 4212 tcp->tcp_rwnd = connp->conn_rcvbuf; 4213 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 4214 tcps->tcps_recv_hiwat_minmss * mss); 4215 connp->conn_rcvbuf = tcp->tcp_rwnd; 4216 tcp_set_ws_value(tcp); 4217 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 4218 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 4219 tcp->tcp_snd_ws_ok = B_TRUE; 4220 4221 /* 4222 * Set tcp_snd_ts_ok to true 4223 * so that tcp_xmit_mp will 4224 * include the timestamp 4225 * option in the SYN segment. 4226 */ 4227 if (tcps->tcps_tstamp_always || 4228 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 4229 tcp->tcp_snd_ts_ok = B_TRUE; 4230 } 4231 4232 /* 4233 * Note that tcp_snd_sack_ok can be set in tcp_set_destination() if 4234 * the SACK metric is set. So here we just check the per stack SACK 4235 * permitted param. 4236 */ 4237 if (tcps->tcps_sack_permitted == 2) { 4238 ASSERT(tcp->tcp_num_sack_blk == 0); 4239 ASSERT(tcp->tcp_notsack_list == NULL); 4240 tcp->tcp_snd_sack_ok = B_TRUE; 4241 } 4242 4243 /* 4244 * Should we use ECN? Note that the current 4245 * default value (SunOS 5.9) of tcp_ecn_permitted 4246 * is 1. The reason for doing this is that there 4247 * are equipments out there that will drop ECN 4248 * enabled IP packets. Setting it to 1 avoids 4249 * compatibility problems. 4250 */ 4251 if (tcps->tcps_ecn_permitted == 2) 4252 tcp->tcp_ecn_ok = B_TRUE; 4253 4254 /* Trace change from BOUND -> SYN_SENT here */ 4255 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4256 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 4257 int32_t, TCPS_BOUND); 4258 4259 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4260 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 4261 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 4262 if (syn_mp != NULL) { 4263 /* 4264 * We must bump the generation before sending the syn 4265 * to ensure that we use the right generation in case 4266 * this thread issues a "connected" up call. 4267 */ 4268 SOCK_CONNID_BUMP(tcp->tcp_connid); 4269 /* 4270 * DTrace sending the first SYN as a 4271 * tcp:::connect-request event. 4272 */ 4273 DTRACE_TCP5(connect__request, mblk_t *, NULL, 4274 ip_xmit_attr_t *, connp->conn_ixa, 4275 void_ip_t *, syn_mp->b_rptr, tcp_t *, tcp, 4276 tcph_t *, 4277 &syn_mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]); 4278 tcp_send_data(tcp, syn_mp); 4279 } 4280 4281 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4282 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4283 return (0); 4284 4285 connect_failed: 4286 connp->conn_faddr_v6 = ipv6_all_zeros; 4287 connp->conn_fport = 0; 4288 tcp->tcp_state = oldstate; 4289 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4290 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4291 return (error); 4292 } 4293 4294 int 4295 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 4296 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 4297 { 4298 tcp_t *tcp = connp->conn_tcp; 4299 int error = 0; 4300 tcp_stack_t *tcps = tcp->tcp_tcps; 4301 int32_t oldstate; 4302 4303 /* All Solaris components should pass a cred for this operation. */ 4304 ASSERT(cr != NULL); 4305 4306 if (tcp->tcp_state >= TCPS_BOUND) { 4307 if ((tcp->tcp_state == TCPS_BOUND || 4308 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 4309 /* 4310 * Handle listen() increasing backlog. 4311 * This is more "liberal" then what the TPI spec 4312 * requires but is needed to avoid a t_unbind 4313 * when handling listen() since the port number 4314 * might be "stolen" between the unbind and bind. 4315 */ 4316 goto do_listen; 4317 } 4318 if (connp->conn_debug) { 4319 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 4320 "tcp_listen: bad state, %d", tcp->tcp_state); 4321 } 4322 return (-TOUTSTATE); 4323 } else { 4324 if (sa == NULL) { 4325 sin6_t addr; 4326 sin_t *sin; 4327 sin6_t *sin6; 4328 4329 ASSERT(IPCL_IS_NONSTR(connp)); 4330 /* Do an implicit bind: Request for a generic port. */ 4331 if (connp->conn_family == AF_INET) { 4332 len = sizeof (sin_t); 4333 sin = (sin_t *)&addr; 4334 *sin = sin_null; 4335 sin->sin_family = AF_INET; 4336 } else { 4337 ASSERT(connp->conn_family == AF_INET6); 4338 len = sizeof (sin6_t); 4339 sin6 = (sin6_t *)&addr; 4340 *sin6 = sin6_null; 4341 sin6->sin6_family = AF_INET6; 4342 } 4343 sa = (struct sockaddr *)&addr; 4344 } 4345 4346 error = tcp_bind_check(connp, sa, len, cr, 4347 bind_to_req_port_only); 4348 if (error) 4349 return (error); 4350 /* Fall through and do the fanout insertion */ 4351 } 4352 4353 do_listen: 4354 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 4355 tcp->tcp_conn_req_max = backlog; 4356 if (tcp->tcp_conn_req_max) { 4357 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 4358 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 4359 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 4360 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 4361 /* 4362 * If this is a listener, do not reset the eager list 4363 * and other stuffs. Note that we don't check if the 4364 * existing eager list meets the new tcp_conn_req_max 4365 * requirement. 4366 */ 4367 if (tcp->tcp_state != TCPS_LISTEN) { 4368 tcp->tcp_state = TCPS_LISTEN; 4369 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4370 connp->conn_ixa, void, NULL, tcp_t *, tcp, 4371 void, NULL, int32_t, TCPS_BOUND); 4372 /* Initialize the chain. Don't need the eager_lock */ 4373 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 4374 tcp->tcp_eager_next_drop_q0 = tcp; 4375 tcp->tcp_eager_prev_drop_q0 = tcp; 4376 tcp->tcp_second_ctimer_threshold = 4377 tcps->tcps_ip_abort_linterval; 4378 } 4379 } 4380 4381 /* 4382 * We need to make sure that the conn_recv is set to a non-null 4383 * value before we insert the conn into the classifier table. 4384 * This is to avoid a race with an incoming packet which does an 4385 * ipcl_classify(). 4386 * We initially set it to tcp_input_listener_unbound to try to 4387 * pick a good squeue for the listener when the first SYN arrives. 4388 * tcp_input_listener_unbound sets it to tcp_input_listener on that 4389 * first SYN. 4390 */ 4391 connp->conn_recv = tcp_input_listener_unbound; 4392 4393 /* Insert the listener in the classifier table */ 4394 error = ip_laddr_fanout_insert(connp); 4395 if (error != 0) { 4396 /* Undo the bind - release the port number */ 4397 oldstate = tcp->tcp_state; 4398 tcp->tcp_state = TCPS_IDLE; 4399 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4400 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 4401 int32_t, oldstate); 4402 connp->conn_bound_addr_v6 = ipv6_all_zeros; 4403 4404 connp->conn_laddr_v6 = ipv6_all_zeros; 4405 connp->conn_saddr_v6 = ipv6_all_zeros; 4406 connp->conn_ports = 0; 4407 4408 if (connp->conn_anon_port) { 4409 zone_t *zone; 4410 4411 zone = crgetzone(cr); 4412 connp->conn_anon_port = B_FALSE; 4413 (void) tsol_mlp_anon(zone, connp->conn_mlp_type, 4414 connp->conn_proto, connp->conn_lport, B_FALSE); 4415 } 4416 connp->conn_mlp_type = mlptSingle; 4417 4418 tcp_bind_hash_remove(tcp); 4419 return (error); 4420 } else { 4421 /* 4422 * If there is a connection limit, allocate and initialize 4423 * the counter struct. Note that since listen can be called 4424 * multiple times, the struct may have been allready allocated. 4425 */ 4426 if (!list_is_empty(&tcps->tcps_listener_conf) && 4427 tcp->tcp_listen_cnt == NULL) { 4428 tcp_listen_cnt_t *tlc; 4429 uint32_t ratio; 4430 4431 ratio = tcp_find_listener_conf(tcps, 4432 ntohs(connp->conn_lport)); 4433 if (ratio != 0) { 4434 uint32_t mem_ratio, tot_buf; 4435 4436 tlc = kmem_alloc(sizeof (tcp_listen_cnt_t), 4437 KM_SLEEP); 4438 /* 4439 * Calculate the connection limit based on 4440 * the configured ratio and maxusers. Maxusers 4441 * are calculated based on memory size, 4442 * ~ 1 user per MB. Note that the conn_rcvbuf 4443 * and conn_sndbuf may change after a 4444 * connection is accepted. So what we have 4445 * is only an approximation. 4446 */ 4447 if ((tot_buf = connp->conn_rcvbuf + 4448 connp->conn_sndbuf) < MB) { 4449 mem_ratio = MB / tot_buf; 4450 tlc->tlc_max = maxusers / ratio * 4451 mem_ratio; 4452 } else { 4453 mem_ratio = tot_buf / MB; 4454 tlc->tlc_max = maxusers / ratio / 4455 mem_ratio; 4456 } 4457 /* At least we should allow two connections! */ 4458 if (tlc->tlc_max <= tcp_min_conn_listener) 4459 tlc->tlc_max = tcp_min_conn_listener; 4460 tlc->tlc_cnt = 1; 4461 tlc->tlc_drop = 0; 4462 tcp->tcp_listen_cnt = tlc; 4463 } 4464 } 4465 } 4466 return (error); 4467 } 4468