1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #define _SUN_TPI_VERSION 2 35 #include <sys/tihdr.h> 36 #include <sys/timod.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #include <sys/suntpi.h> 40 #include <sys/xti_inet.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/sdt.h> 44 #include <sys/vtrace.h> 45 #include <sys/kmem.h> 46 #include <sys/ethernet.h> 47 #include <sys/cpuvar.h> 48 #include <sys/dlpi.h> 49 #include <sys/pattr.h> 50 #include <sys/policy.h> 51 #include <sys/priv.h> 52 #include <sys/zone.h> 53 #include <sys/sunldi.h> 54 55 #include <sys/errno.h> 56 #include <sys/signal.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/sockio.h> 60 #include <sys/isa_defs.h> 61 #include <sys/md5.h> 62 #include <sys/random.h> 63 #include <sys/uio.h> 64 #include <sys/systm.h> 65 #include <netinet/in.h> 66 #include <netinet/tcp.h> 67 #include <netinet/ip6.h> 68 #include <netinet/icmp6.h> 69 #include <net/if.h> 70 #include <net/route.h> 71 #include <inet/ipsec_impl.h> 72 73 #include <inet/common.h> 74 #include <inet/ip.h> 75 #include <inet/ip_impl.h> 76 #include <inet/ip6.h> 77 #include <inet/ip_ndp.h> 78 #include <inet/proto_set.h> 79 #include <inet/mib2.h> 80 #include <inet/nd.h> 81 #include <inet/optcom.h> 82 #include <inet/snmpcom.h> 83 #include <inet/kstatcom.h> 84 #include <inet/tcp.h> 85 #include <inet/tcp_impl.h> 86 #include <inet/udp_impl.h> 87 #include <net/pfkeyv2.h> 88 #include <inet/ipdrop.h> 89 90 #include <inet/ipclassifier.h> 91 #include <inet/ip_ire.h> 92 #include <inet/ip_ftable.h> 93 #include <inet/ip_if.h> 94 #include <inet/ipp_common.h> 95 #include <inet/ip_rts.h> 96 #include <inet/ip_netinfo.h> 97 #include <sys/squeue_impl.h> 98 #include <sys/squeue.h> 99 #include <inet/kssl/ksslapi.h> 100 #include <sys/tsol/label.h> 101 #include <sys/tsol/tnet.h> 102 #include <rpc/pmap_prot.h> 103 #include <sys/callo.h> 104 105 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 129 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. tcp_open() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_input_listener(). But briefly, the squeue is picked by 176 * ip_fanout based on the ring or the sender (if loopback). 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provisions for sockfs by marking tcp_issocket 202 * whenever we have only sockfs on top of TCP. This allows us to skip 203 * putting the tcp in acceptor hash since a sockfs listener can never 204 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 205 * since eager has already been allocated and the accept now happens 206 * on acceptor STREAM. There is a big blob of comment on top of 207 * tcp_input_listener explaining the new accept. When socket is POP'd, 208 * sockfs sends us an ioctl to mark the fact and we go back to old 209 * behaviour. Once tcp_issocket is unset, its never set for the 210 * life of that connection. 211 * 212 * IPsec notes : 213 * 214 * Since a packet is always executed on the correct TCP perimeter 215 * all IPsec processing is defered to IP including checking new 216 * connections and setting IPSEC policies for new connection. The 217 * only exception is tcp_xmit_listeners_reset() which is called 218 * directly from IP and needs to policy check to see if TH_RST 219 * can be sent out. 220 */ 221 222 /* 223 * Values for squeue switch: 224 * 1: SQ_NODRAIN 225 * 2: SQ_PROCESS 226 * 3: SQ_FILL 227 */ 228 int tcp_squeue_wput = 2; /* /etc/systems */ 229 int tcp_squeue_flag; 230 231 /* 232 * This controls how tiny a write must be before we try to copy it 233 * into the mblk on the tail of the transmit queue. Not much 234 * speedup is observed for values larger than sixteen. Zero will 235 * disable the optimisation. 236 */ 237 int tcp_tx_pull_len = 16; 238 239 /* 240 * TCP Statistics. 241 * 242 * How TCP statistics work. 243 * 244 * There are two types of statistics invoked by two macros. 245 * 246 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 247 * supposed to be used in non MT-hot paths of the code. 248 * 249 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 250 * supposed to be used for DEBUG purposes and may be used on a hot path. 251 * 252 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 253 * (use "kstat tcp" to get them). 254 * 255 * There is also additional debugging facility that marks tcp_clean_death() 256 * instances and saves them in tcp_t structure. It is triggered by 257 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 258 * tcp_clean_death() calls that counts the number of times each tag was hit. It 259 * is triggered by TCP_CLD_COUNTERS define. 260 * 261 * How to add new counters. 262 * 263 * 1) Add a field in the tcp_stat structure describing your counter. 264 * 2) Add a line in the template in tcp_kstat2_init() with the name 265 * of the counter. 266 * 267 * IMPORTANT!! - make sure that both are in sync !! 268 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 269 * 270 * Please avoid using private counters which are not kstat-exported. 271 * 272 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 273 * in tcp_t structure. 274 * 275 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 276 */ 277 278 #ifndef TCP_DEBUG_COUNTER 279 #ifdef DEBUG 280 #define TCP_DEBUG_COUNTER 1 281 #else 282 #define TCP_DEBUG_COUNTER 0 283 #endif 284 #endif 285 286 #define TCP_CLD_COUNTERS 0 287 288 #define TCP_TAG_CLEAN_DEATH 1 289 #define TCP_MAX_CLEAN_DEATH_TAG 32 290 291 #ifdef lint 292 static int _lint_dummy_; 293 #endif 294 295 #if TCP_CLD_COUNTERS 296 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 297 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 298 #elif defined(lint) 299 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 300 #else 301 #define TCP_CLD_STAT(x) 302 #endif 303 304 #if TCP_DEBUG_COUNTER 305 #define TCP_DBGSTAT(tcps, x) \ 306 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 307 #define TCP_G_DBGSTAT(x) \ 308 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 309 #elif defined(lint) 310 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 311 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 312 #else 313 #define TCP_DBGSTAT(tcps, x) 314 #define TCP_G_DBGSTAT(x) 315 #endif 316 317 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 318 319 tcp_g_stat_t tcp_g_statistics; 320 kstat_t *tcp_g_kstat; 321 322 /* Macros for timestamp comparisons */ 323 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 324 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 325 326 /* 327 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 328 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 329 * by adding three components: a time component which grows by 1 every 4096 330 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 331 * a per-connection component which grows by 125000 for every new connection; 332 * and an "extra" component that grows by a random amount centered 333 * approximately on 64000. This causes the ISS generator to cycle every 334 * 4.89 hours if no TCP connections are made, and faster if connections are 335 * made. 336 * 337 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 338 * components: a time component which grows by 250000 every second; and 339 * a per-connection component which grows by 125000 for every new connections. 340 * 341 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 342 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 343 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 344 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 345 * password. 346 */ 347 #define ISS_INCR 250000 348 #define ISS_NSEC_SHT 12 349 350 static sin_t sin_null; /* Zero address for quick clears */ 351 static sin6_t sin6_null; /* Zero address for quick clears */ 352 353 /* 354 * This implementation follows the 4.3BSD interpretation of the urgent 355 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 356 * incompatible changes in protocols like telnet and rlogin. 357 */ 358 #define TCP_OLD_URP_INTERPRETATION 1 359 360 /* 361 * Since tcp_listener is not cleared atomically with tcp_detached 362 * being cleared we need this extra bit to tell a detached connection 363 * apart from one that is in the process of being accepted. 364 */ 365 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 366 (TCP_IS_DETACHED(tcp) && \ 367 (!(tcp)->tcp_hard_binding)) 368 369 /* 370 * TCP reassembly macros. We hide starting and ending sequence numbers in 371 * b_next and b_prev of messages on the reassembly queue. The messages are 372 * chained using b_cont. These macros are used in tcp_reass() so we don't 373 * have to see the ugly casts and assignments. 374 */ 375 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 376 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 377 (mblk_t *)(uintptr_t)(u)) 378 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 379 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 380 (mblk_t *)(uintptr_t)(u)) 381 382 /* 383 * Implementation of TCP Timers. 384 * ============================= 385 * 386 * INTERFACE: 387 * 388 * There are two basic functions dealing with tcp timers: 389 * 390 * timeout_id_t tcp_timeout(connp, func, time) 391 * clock_t tcp_timeout_cancel(connp, timeout_id) 392 * TCP_TIMER_RESTART(tcp, intvl) 393 * 394 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 395 * after 'time' ticks passed. The function called by timeout() must adhere to 396 * the same restrictions as a driver soft interrupt handler - it must not sleep 397 * or call other functions that might sleep. The value returned is the opaque 398 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 399 * cancel the request. The call to tcp_timeout() may fail in which case it 400 * returns zero. This is different from the timeout(9F) function which never 401 * fails. 402 * 403 * The call-back function 'func' always receives 'connp' as its single 404 * argument. It is always executed in the squeue corresponding to the tcp 405 * structure. The tcp structure is guaranteed to be present at the time the 406 * call-back is called. 407 * 408 * NOTE: The call-back function 'func' is never called if tcp is in 409 * the TCPS_CLOSED state. 410 * 411 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 412 * request. locks acquired by the call-back routine should not be held across 413 * the call to tcp_timeout_cancel() or a deadlock may result. 414 * 415 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 416 * Otherwise, it returns an integer value greater than or equal to 0. In 417 * particular, if the call-back function is already placed on the squeue, it can 418 * not be canceled. 419 * 420 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 421 * within squeue context corresponding to the tcp instance. Since the 422 * call-back is also called via the same squeue, there are no race 423 * conditions described in untimeout(9F) manual page since all calls are 424 * strictly serialized. 425 * 426 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 427 * stored in tcp_timer_tid and starts a new one using 428 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 429 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 430 * field. 431 * 432 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 433 * call-back may still be called, so it is possible tcp_timer() will be 434 * called several times. This should not be a problem since tcp_timer() 435 * should always check the tcp instance state. 436 * 437 * 438 * IMPLEMENTATION: 439 * 440 * TCP timers are implemented using three-stage process. The call to 441 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 442 * when the timer expires. The tcp_timer_callback() arranges the call of the 443 * tcp_timer_handler() function via squeue corresponding to the tcp 444 * instance. The tcp_timer_handler() calls actual requested timeout call-back 445 * and passes tcp instance as an argument to it. Information is passed between 446 * stages using the tcp_timer_t structure which contains the connp pointer, the 447 * tcp call-back to call and the timeout id returned by the timeout(9F). 448 * 449 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 450 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 451 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 452 * returns the pointer to this mblk. 453 * 454 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 455 * looks like a normal mblk without actual dblk attached to it. 456 * 457 * To optimize performance each tcp instance holds a small cache of timer 458 * mblocks. In the current implementation it caches up to two timer mblocks per 459 * tcp instance. The cache is preserved over tcp frees and is only freed when 460 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 461 * timer processing happens on a corresponding squeue, the cache manipulation 462 * does not require any locks. Experiments show that majority of timer mblocks 463 * allocations are satisfied from the tcp cache and do not involve kmem calls. 464 * 465 * The tcp_timeout() places a refhold on the connp instance which guarantees 466 * that it will be present at the time the call-back function fires. The 467 * tcp_timer_handler() drops the reference after calling the call-back, so the 468 * call-back function does not need to manipulate the references explicitly. 469 */ 470 471 typedef struct tcp_timer_s { 472 conn_t *connp; 473 void (*tcpt_proc)(void *); 474 callout_id_t tcpt_tid; 475 } tcp_timer_t; 476 477 static kmem_cache_t *tcp_timercache; 478 kmem_cache_t *tcp_sack_info_cache; 479 480 /* 481 * For scalability, we must not run a timer for every TCP connection 482 * in TIME_WAIT state. To see why, consider (for time wait interval of 483 * 4 minutes): 484 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 485 * 486 * This list is ordered by time, so you need only delete from the head 487 * until you get to entries which aren't old enough to delete yet. 488 * The list consists of only the detached TIME_WAIT connections. 489 * 490 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 491 * becomes detached TIME_WAIT (either by changing the state and already 492 * being detached or the other way around). This means that the TIME_WAIT 493 * state can be extended (up to doubled) if the connection doesn't become 494 * detached for a long time. 495 * 496 * The list manipulations (including tcp_time_wait_next/prev) 497 * are protected by the tcp_time_wait_lock. The content of the 498 * detached TIME_WAIT connections is protected by the normal perimeters. 499 * 500 * This list is per squeue and squeues are shared across the tcp_stack_t's. 501 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 502 * and conn_netstack. 503 * The tcp_t's that are added to tcp_free_list are disassociated and 504 * have NULL tcp_tcps and conn_netstack pointers. 505 */ 506 typedef struct tcp_squeue_priv_s { 507 kmutex_t tcp_time_wait_lock; 508 callout_id_t tcp_time_wait_tid; 509 tcp_t *tcp_time_wait_head; 510 tcp_t *tcp_time_wait_tail; 511 tcp_t *tcp_free_list; 512 uint_t tcp_free_list_cnt; 513 } tcp_squeue_priv_t; 514 515 /* 516 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 517 * Running it every 5 seconds seems to give the best results. 518 */ 519 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 520 521 /* 522 * To prevent memory hog, limit the number of entries in tcp_free_list 523 * to 1% of available memory / number of cpus 524 */ 525 uint_t tcp_free_list_max_cnt = 0; 526 527 #define TCP_XMIT_LOWATER 4096 528 #define TCP_XMIT_HIWATER 49152 529 #define TCP_RECV_LOWATER 2048 530 #define TCP_RECV_HIWATER 128000 531 532 /* 533 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 534 */ 535 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 536 537 #define TIDUSZ 4096 /* transport interface data unit size */ 538 539 /* 540 * Bind hash list size and has function. It has to be a power of 2 for 541 * hashing. 542 */ 543 #define TCP_BIND_FANOUT_SIZE 512 544 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 545 546 /* 547 * Size of acceptor hash list. It has to be a power of 2 for hashing. 548 */ 549 #define TCP_ACCEPTOR_FANOUT_SIZE 256 550 551 #ifdef _ILP32 552 #define TCP_ACCEPTOR_HASH(accid) \ 553 (((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 554 #else 555 #define TCP_ACCEPTOR_HASH(accid) \ 556 ((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 557 #endif /* _ILP32 */ 558 559 #define IP_ADDR_CACHE_SIZE 2048 560 #define IP_ADDR_CACHE_HASH(faddr) \ 561 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 562 563 /* 564 * If there is a limit set on the number of connections allowed per each 565 * listener, the following struct is used to store that counter. This needs 566 * to be separated from the listener since the listener can go away before 567 * all the connections are gone. When the struct is allocated, tlc_cnt is set 568 * to 1. When the listener goes away, tlc_cnt is decremented by one. And 569 * the last connection (or the listener) which decrements tlc_cnt to zero 570 * frees the struct. 571 * 572 * tlc_max is the threshold value tcps_conn_listen_port. It is set when the 573 * tcp_listen_cnt_t is allocated. 574 * 575 * tlc_report_time stores the time when cmn_err() is called to report that the 576 * max has been exceeeded. Report is done at most once every 577 * TCP_TLC_REPORT_INTERVAL mins for a listener. 578 * 579 * tlc_drop stores the number of connection attempt dropped because the 580 * limit has reached. 581 */ 582 typedef struct tcp_listen_cnt_s { 583 uint32_t tlc_max; 584 uint32_t tlc_cnt; 585 int64_t tlc_report_time; 586 uint32_t tlc_drop; 587 } tcp_listen_cnt_t; 588 589 #define TCP_TLC_REPORT_INTERVAL (1 * MINUTES) 590 591 #define TCP_DECR_LISTEN_CNT(tcp) \ 592 { \ 593 ASSERT((tcp)->tcp_listen_cnt->tlc_cnt > 0); \ 594 if (atomic_add_32_nv(&(tcp)->tcp_listen_cnt->tlc_cnt, -1) == 0) \ 595 kmem_free((tcp)->tcp_listen_cnt, sizeof (tcp_listen_cnt_t)); \ 596 (tcp)->tcp_listen_cnt = NULL; \ 597 } 598 599 /* Minimum number of connections per listener. */ 600 uint32_t tcp_min_conn_listener = 2; 601 602 /* 603 * Linked list struct to store listener connection limit configuration per 604 * IP stack. 605 */ 606 typedef struct tcp_listener_s { 607 in_port_t tl_port; 608 uint32_t tl_ratio; 609 list_node_t tl_link; 610 } tcp_listener_t; 611 612 /* 613 * The shift factor applied to tcp_mss to decide if the peer sends us a 614 * valid initial receive window. By default, if the peer receive window 615 * is smaller than 1 MSS (shift factor is 0), it is considered as invalid. 616 */ 617 uint32_t tcp_init_wnd_shft = 0; 618 619 /* 620 * When the system is under memory pressure, stack variable tcps_reclaim is 621 * true, we shorten the connection timeout abort interval to tcp_early_abort 622 * seconds. 623 */ 624 uint32_t tcp_early_abort = 30; 625 626 /* 627 * TCP options struct returned from tcp_parse_options. 628 */ 629 typedef struct tcp_opt_s { 630 uint32_t tcp_opt_mss; 631 uint32_t tcp_opt_wscale; 632 uint32_t tcp_opt_ts_val; 633 uint32_t tcp_opt_ts_ecr; 634 tcp_t *tcp; 635 } tcp_opt_t; 636 637 /* 638 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 639 */ 640 641 #ifdef _BIG_ENDIAN 642 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 643 (TCPOPT_TSTAMP << 8) | 10) 644 #else 645 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 646 (TCPOPT_NOP << 8) | TCPOPT_NOP) 647 #endif 648 649 /* 650 * Flags returned from tcp_parse_options. 651 */ 652 #define TCP_OPT_MSS_PRESENT 1 653 #define TCP_OPT_WSCALE_PRESENT 2 654 #define TCP_OPT_TSTAMP_PRESENT 4 655 #define TCP_OPT_SACK_OK_PRESENT 8 656 #define TCP_OPT_SACK_PRESENT 16 657 658 /* TCP option length */ 659 #define TCPOPT_NOP_LEN 1 660 #define TCPOPT_MAXSEG_LEN 4 661 #define TCPOPT_WS_LEN 3 662 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 663 #define TCPOPT_TSTAMP_LEN 10 664 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 665 #define TCPOPT_SACK_OK_LEN 2 666 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 667 #define TCPOPT_REAL_SACK_LEN 4 668 #define TCPOPT_MAX_SACK_LEN 36 669 #define TCPOPT_HEADER_LEN 2 670 671 /* TCP cwnd burst factor. */ 672 #define TCP_CWND_INFINITE 65535 673 #define TCP_CWND_SS 3 674 #define TCP_CWND_NORMAL 5 675 676 /* Maximum TCP initial cwin (start/restart). */ 677 #define TCP_MAX_INIT_CWND 8 678 679 /* 680 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 681 * either tcp_slow_start_initial or tcp_slow_start_after idle 682 * depending on the caller. If the upper layer has not used the 683 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 684 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 685 * If the upper layer has changed set the tcp_init_cwnd, just use 686 * it to calculate the tcp_cwnd. 687 */ 688 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 689 { \ 690 if ((tcp)->tcp_init_cwnd == 0) { \ 691 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 692 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 693 } else { \ 694 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 695 } \ 696 tcp->tcp_cwnd_cnt = 0; \ 697 } 698 699 /* TCP Timer control structure */ 700 typedef struct tcpt_s { 701 pfv_t tcpt_pfv; /* The routine we are to call */ 702 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 703 } tcpt_t; 704 705 /* 706 * Functions called directly via squeue having a prototype of edesc_t. 707 */ 708 void tcp_input_listener(void *arg, mblk_t *mp, void *arg2, 709 ip_recv_attr_t *ira); 710 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2, 711 ip_recv_attr_t *dummy); 712 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, 713 ip_recv_attr_t *dummy); 714 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2, 715 ip_recv_attr_t *dummy); 716 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2, 717 ip_recv_attr_t *dummy); 718 void tcp_input_data(void *arg, mblk_t *mp, void *arg2, 719 ip_recv_attr_t *ira); 720 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2, 721 ip_recv_attr_t *dummy); 722 void tcp_output(void *arg, mblk_t *mp, void *arg2, 723 ip_recv_attr_t *dummy); 724 void tcp_output_urgent(void *arg, mblk_t *mp, void *arg2, 725 ip_recv_attr_t *dummy); 726 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, 727 ip_recv_attr_t *dummy); 728 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2, 729 ip_recv_attr_t *dummy); 730 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, 731 ip_recv_attr_t *dummy); 732 static void tcp_send_synack(void *arg, mblk_t *mp, void *arg2, 733 ip_recv_attr_t *dummy); 734 735 736 /* Prototype for TCP functions */ 737 static void tcp_random_init(void); 738 int tcp_random(void); 739 static void tcp_tli_accept(tcp_t *tcp, mblk_t *mp); 740 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 741 tcp_t *eager); 742 static int tcp_set_destination(tcp_t *tcp); 743 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 744 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 745 boolean_t user_specified); 746 static void tcp_closei_local(tcp_t *tcp); 747 static void tcp_close_detached(tcp_t *tcp); 748 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, 749 mblk_t *idmp, mblk_t **defermp, ip_recv_attr_t *ira); 750 static void tcp_tpi_connect(tcp_t *tcp, mblk_t *mp); 751 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 752 in_port_t dstport, uint_t srcid); 753 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 754 in_port_t dstport, uint32_t flowinfo, 755 uint_t srcid, uint32_t scope_id); 756 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 757 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 758 static char *tcp_display(tcp_t *tcp, char *, char); 759 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 760 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 761 static void tcp_eager_unlink(tcp_t *tcp); 762 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 763 int unixerr); 764 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 765 int tlierr, int unixerr); 766 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 767 cred_t *cr); 768 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 769 char *value, caddr_t cp, cred_t *cr); 770 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 771 char *value, caddr_t cp, cred_t *cr); 772 static int tcp_tpistate(tcp_t *tcp); 773 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 774 int caller_holds_lock); 775 static void tcp_bind_hash_remove(tcp_t *tcp); 776 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 777 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 778 static void tcp_acceptor_hash_remove(tcp_t *tcp); 779 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 780 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 781 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 782 static void tcp_init_values(tcp_t *tcp); 783 static void tcp_ip_notify(tcp_t *tcp); 784 static void tcp_iss_init(tcp_t *tcp); 785 static void tcp_keepalive_killer(void *arg); 786 static int tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt); 787 static void tcp_mss_set(tcp_t *tcp, uint32_t size); 788 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 789 int *do_disconnectp, int *t_errorp, int *sys_errorp); 790 static boolean_t tcp_allow_connopt_set(int level, int name); 791 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 792 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 793 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 794 tcp_stack_t *); 795 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 796 caddr_t cp, cred_t *cr); 797 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 798 caddr_t cp, cred_t *cr); 799 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 800 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 801 caddr_t cp, cred_t *cr); 802 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 803 static void tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt); 804 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 805 static void tcp_reass_timer(void *arg); 806 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 807 static void tcp_reinit(tcp_t *tcp); 808 static void tcp_reinit_values(tcp_t *tcp); 809 810 static uint_t tcp_rwnd_reopen(tcp_t *tcp); 811 static uint_t tcp_rcv_drain(tcp_t *tcp); 812 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 813 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 814 static void tcp_ss_rexmit(tcp_t *tcp); 815 static mblk_t *tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, 816 ip_recv_attr_t *); 817 static void tcp_process_options(tcp_t *, tcpha_t *); 818 static void tcp_rsrv(queue_t *q); 819 static int tcp_snmp_state(tcp_t *tcp); 820 static void tcp_timer(void *arg); 821 static void tcp_timer_callback(void *); 822 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 823 boolean_t random); 824 static in_port_t tcp_get_next_priv_port(const tcp_t *); 825 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 826 static void tcp_wput_fallback(queue_t *q, mblk_t *mp); 827 void tcp_tpi_accept(queue_t *q, mblk_t *mp); 828 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 829 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 830 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 831 static int tcp_send(tcp_t *tcp, const int mss, 832 const int total_hdr_len, const int tcp_hdr_len, 833 const int num_sack_blk, int *usable, uint_t *snxt, 834 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time); 835 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 836 int num_sack_blk); 837 static void tcp_wsrv(queue_t *q); 838 static int tcp_xmit_end(tcp_t *tcp); 839 static void tcp_ack_timer(void *arg); 840 static mblk_t *tcp_ack_mp(tcp_t *tcp); 841 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 842 uint32_t seq, uint32_t ack, int ctl, ip_recv_attr_t *, 843 ip_stack_t *, conn_t *); 844 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 845 uint32_t ack, int ctl); 846 static void tcp_set_rto(tcp_t *, time_t); 847 static void tcp_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *); 848 static void tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *); 849 static boolean_t tcp_verifyicmp(conn_t *, void *, icmph_t *, icmp6_t *, 850 ip_recv_attr_t *); 851 static int tcp_build_hdrs(tcp_t *); 852 static void tcp_time_wait_append(tcp_t *tcp); 853 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 854 uint32_t seg_seq, uint32_t seg_ack, int seg_len, tcpha_t *tcpha, 855 ip_recv_attr_t *ira); 856 boolean_t tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp); 857 static boolean_t tcp_zcopy_check(tcp_t *); 858 static void tcp_zcopy_notify(tcp_t *); 859 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, boolean_t); 860 static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa); 861 static void tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only); 862 static void tcp_update_zcopy(tcp_t *tcp); 863 static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t, 864 ixa_notify_arg_t); 865 static void tcp_rexmit_after_error(tcp_t *tcp); 866 static void tcp_send_data(tcp_t *, mblk_t *); 867 extern mblk_t *tcp_timermp_alloc(int); 868 extern void tcp_timermp_free(tcp_t *); 869 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 870 static void tcp_stop_lingering(tcp_t *tcp); 871 static void tcp_close_linger_timeout(void *arg); 872 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 873 static void tcp_stack_fini(netstackid_t stackid, void *arg); 874 static void *tcp_g_kstat_init(tcp_g_stat_t *); 875 static void tcp_g_kstat_fini(kstat_t *); 876 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 877 static void tcp_kstat_fini(netstackid_t, kstat_t *); 878 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 879 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 880 static int tcp_kstat_update(kstat_t *kp, int rw); 881 static mblk_t *tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 882 ip_recv_attr_t *ira); 883 static mblk_t *tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, 884 ip_recv_attr_t *ira); 885 static int tcp_squeue_switch(int); 886 887 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 888 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 889 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 890 static int tcp_tpi_close(queue_t *, int); 891 static int tcp_tpi_close_accept(queue_t *); 892 893 static void tcp_squeue_add(squeue_t *); 894 static void tcp_setcred_data(mblk_t *, ip_recv_attr_t *); 895 896 extern void tcp_kssl_input(tcp_t *, mblk_t *, cred_t *); 897 898 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy); 899 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 900 ip_recv_attr_t *dummy); 901 902 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t, 903 sock_upper_handle_t, cred_t *); 904 static int tcp_listen(sock_lower_handle_t, int, cred_t *); 905 static int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int, cred_t *, 906 boolean_t); 907 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t, 908 cred_t *, pid_t); 909 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *, 910 boolean_t); 911 static int tcp_do_unbind(conn_t *); 912 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *, 913 boolean_t); 914 915 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *); 916 917 static uint32_t tcp_find_listener_conf(tcp_stack_t *, in_port_t); 918 static int tcp_listener_conf_get(queue_t *, mblk_t *, caddr_t, cred_t *); 919 static int tcp_listener_conf_add(queue_t *, mblk_t *, char *, caddr_t, 920 cred_t *); 921 static int tcp_listener_conf_del(queue_t *, mblk_t *, char *, caddr_t, 922 cred_t *); 923 static void tcp_listener_conf_cleanup(tcp_stack_t *); 924 925 /* 926 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 927 * 928 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 929 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 930 * (defined in tcp.h) needs to be filled in and passed into the kernel 931 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 932 * structure contains the four-tuple of a TCP connection and a range of TCP 933 * states (specified by ac_start and ac_end). The use of wildcard addresses 934 * and ports is allowed. Connections with a matching four tuple and a state 935 * within the specified range will be aborted. The valid states for the 936 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 937 * inclusive. 938 * 939 * An application which has its connection aborted by this ioctl will receive 940 * an error that is dependent on the connection state at the time of the abort. 941 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 942 * though a RST packet has been received. If the connection state is equal to 943 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 944 * and all resources associated with the connection will be freed. 945 */ 946 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 947 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 948 static void tcp_ioctl_abort_handler(void *arg, mblk_t *mp, void *arg2, 949 ip_recv_attr_t *dummy); 950 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 951 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 952 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 953 boolean_t, tcp_stack_t *); 954 955 static struct module_info tcp_rinfo = { 956 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 957 }; 958 959 static struct module_info tcp_winfo = { 960 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 961 }; 962 963 /* 964 * Entry points for TCP as a device. The normal case which supports 965 * the TCP functionality. 966 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 967 */ 968 struct qinit tcp_rinitv4 = { 969 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 970 }; 971 972 struct qinit tcp_rinitv6 = { 973 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 974 }; 975 976 struct qinit tcp_winit = { 977 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 978 }; 979 980 /* Initial entry point for TCP in socket mode. */ 981 struct qinit tcp_sock_winit = { 982 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 983 }; 984 985 /* TCP entry point during fallback */ 986 struct qinit tcp_fallback_sock_winit = { 987 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 988 }; 989 990 /* 991 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 992 * an accept. Avoid allocating data structures since eager has already 993 * been created. 994 */ 995 struct qinit tcp_acceptor_rinit = { 996 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 997 }; 998 999 struct qinit tcp_acceptor_winit = { 1000 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1001 }; 1002 1003 /* For AF_INET aka /dev/tcp */ 1004 struct streamtab tcpinfov4 = { 1005 &tcp_rinitv4, &tcp_winit 1006 }; 1007 1008 /* For AF_INET6 aka /dev/tcp6 */ 1009 struct streamtab tcpinfov6 = { 1010 &tcp_rinitv6, &tcp_winit 1011 }; 1012 1013 sock_downcalls_t sock_tcp_downcalls; 1014 1015 /* Setable only in /etc/system. Move to ndd? */ 1016 boolean_t tcp_icmp_source_quench = B_FALSE; 1017 1018 /* 1019 * Following assumes TPI alignment requirements stay along 32 bit 1020 * boundaries 1021 */ 1022 #define ROUNDUP32(x) \ 1023 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1024 1025 /* Template for response to info request. */ 1026 static struct T_info_ack tcp_g_t_info_ack = { 1027 T_INFO_ACK, /* PRIM_type */ 1028 0, /* TSDU_size */ 1029 T_INFINITE, /* ETSDU_size */ 1030 T_INVALID, /* CDATA_size */ 1031 T_INVALID, /* DDATA_size */ 1032 sizeof (sin_t), /* ADDR_size */ 1033 0, /* OPT_size - not initialized here */ 1034 TIDUSZ, /* TIDU_size */ 1035 T_COTS_ORD, /* SERV_type */ 1036 TCPS_IDLE, /* CURRENT_state */ 1037 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1038 }; 1039 1040 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1041 T_INFO_ACK, /* PRIM_type */ 1042 0, /* TSDU_size */ 1043 T_INFINITE, /* ETSDU_size */ 1044 T_INVALID, /* CDATA_size */ 1045 T_INVALID, /* DDATA_size */ 1046 sizeof (sin6_t), /* ADDR_size */ 1047 0, /* OPT_size - not initialized here */ 1048 TIDUSZ, /* TIDU_size */ 1049 T_COTS_ORD, /* SERV_type */ 1050 TCPS_IDLE, /* CURRENT_state */ 1051 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1052 }; 1053 1054 #define MS 1L 1055 #define SECONDS (1000 * MS) 1056 #define MINUTES (60 * SECONDS) 1057 #define HOURS (60 * MINUTES) 1058 #define DAYS (24 * HOURS) 1059 1060 #define PARAM_MAX (~(uint32_t)0) 1061 1062 /* Max size IP datagram is 64k - 1 */ 1063 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcpha_t))) 1064 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcpha_t))) 1065 /* Max of the above */ 1066 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1067 1068 /* Largest TCP port number */ 1069 #define TCP_MAX_PORT (64 * 1024 - 1) 1070 1071 /* 1072 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1073 * layer header. It has to be a multiple of 4. 1074 */ 1075 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1076 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1077 1078 #define MB (1024 * 1024) 1079 1080 /* 1081 * All of these are alterable, within the min/max values given, at run time. 1082 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1083 * per the TCP spec. 1084 */ 1085 /* BEGIN CSTYLED */ 1086 static tcpparam_t lcl_tcp_param_arr[] = { 1087 /*min max value name */ 1088 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1089 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1090 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1091 { 1, 1024, 1, "tcp_conn_req_min" }, 1092 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1093 { 128, (1<<30), 1*MB, "tcp_cwnd_max" }, 1094 { 0, 10, 0, "tcp_debug" }, 1095 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1096 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1097 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1098 { 500*MS, PARAM_MAX, 5*MINUTES, "tcp_ip_abort_interval"}, 1099 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1100 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1101 { 1, 255, 64, "tcp_ipv4_ttl"}, 1102 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1103 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1104 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1105 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1106 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1107 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1108 { 1*MS, 20*SECONDS, 1*SECONDS, "tcp_rexmit_interval_initial"}, 1109 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1110 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1111 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1112 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1113 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1114 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1115 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1116 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1117 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1118 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1119 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1120 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1121 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1122 { 8192, (1<<30), 1*MB, "tcp_max_buf"}, 1123 /* 1124 * Question: What default value should I set for tcp_strong_iss? 1125 */ 1126 { 0, 2, 1, "tcp_strong_iss"}, 1127 { 0, 65536, 20, "tcp_rtt_updates"}, 1128 { 0, 1, 1, "tcp_wscale_always"}, 1129 { 0, 1, 0, "tcp_tstamp_always"}, 1130 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1131 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1132 { 0, 16, 2, "tcp_deferred_acks_max"}, 1133 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1134 { 1, 4, 4, "tcp_slow_start_initial"}, 1135 { 0, 2, 2, "tcp_sack_permitted"}, 1136 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1137 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1138 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1139 { 0, 1, 0, "tcp_rev_src_routes"}, 1140 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1141 { 0, 16, 8, "tcp_local_dacks_max"}, 1142 { 0, 2, 1, "tcp_ecn_permitted"}, 1143 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1144 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1145 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1146 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1147 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1148 { 0, 1, 0, "tcp_dev_flow_ctl"}, 1149 { 0, PARAM_MAX, 100*SECONDS, "tcp_reass_timeout"} 1150 }; 1151 /* END CSTYLED */ 1152 1153 /* Round up the value to the nearest mss. */ 1154 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1155 1156 /* 1157 * Set ECN capable transport (ECT) code point in IP header. 1158 * 1159 * Note that there are 2 ECT code points '01' and '10', which are called 1160 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1161 * point ECT(0) for TCP as described in RFC 2481. 1162 */ 1163 #define SET_ECT(tcp, iph) \ 1164 if ((tcp)->tcp_connp->conn_ipversion == IPV4_VERSION) { \ 1165 /* We need to clear the code point first. */ \ 1166 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1167 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1168 } else { \ 1169 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1170 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1171 } 1172 1173 /* 1174 * The format argument to pass to tcp_display(). 1175 * DISP_PORT_ONLY means that the returned string has only port info. 1176 * DISP_ADDR_AND_PORT means that the returned string also contains the 1177 * remote and local IP address. 1178 */ 1179 #define DISP_PORT_ONLY 1 1180 #define DISP_ADDR_AND_PORT 2 1181 1182 #define IS_VMLOANED_MBLK(mp) \ 1183 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1184 1185 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1186 1187 /* 1188 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1189 * tunable settable via NDD. Otherwise, the per-connection behavior is 1190 * determined dynamically during tcp_set_destination(), which is the default. 1191 */ 1192 boolean_t tcp_static_maxpsz = B_FALSE; 1193 1194 /* Setable in /etc/system */ 1195 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1196 uint32_t tcp_random_anon_port = 1; 1197 1198 /* 1199 * To reach to an eager in Q0 which can be dropped due to an incoming 1200 * new SYN request when Q0 is full, a new doubly linked list is 1201 * introduced. This list allows to select an eager from Q0 in O(1) time. 1202 * This is needed to avoid spending too much time walking through the 1203 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1204 * this new list has to be a member of Q0. 1205 * This list is headed by listener's tcp_t. When the list is empty, 1206 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1207 * of listener's tcp_t point to listener's tcp_t itself. 1208 * 1209 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1210 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1211 * These macros do not affect the eager's membership to Q0. 1212 */ 1213 1214 1215 #define MAKE_DROPPABLE(listener, eager) \ 1216 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1217 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1218 = (eager); \ 1219 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1220 (eager)->tcp_eager_next_drop_q0 = \ 1221 (listener)->tcp_eager_next_drop_q0; \ 1222 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1223 } 1224 1225 #define MAKE_UNDROPPABLE(eager) \ 1226 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1227 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1228 = (eager)->tcp_eager_prev_drop_q0; \ 1229 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1230 = (eager)->tcp_eager_next_drop_q0; \ 1231 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1232 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1233 } 1234 1235 /* 1236 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1237 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1238 * data, TCP will not respond with an ACK. RFC 793 requires that 1239 * TCP responds with an ACK for such a bogus ACK. By not following 1240 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1241 * an attacker successfully spoofs an acceptable segment to our 1242 * peer; or when our peer is "confused." 1243 */ 1244 uint32_t tcp_drop_ack_unsent_cnt = 10; 1245 1246 /* 1247 * Hook functions to enable cluster networking 1248 * On non-clustered systems these vectors must always be NULL. 1249 */ 1250 1251 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol, 1252 sa_family_t addr_family, uint8_t *laddrp, 1253 in_port_t lport, void *args) = NULL; 1254 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol, 1255 sa_family_t addr_family, uint8_t *laddrp, 1256 in_port_t lport, void *args) = NULL; 1257 1258 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol, 1259 boolean_t is_outgoing, 1260 sa_family_t addr_family, 1261 uint8_t *laddrp, in_port_t lport, 1262 uint8_t *faddrp, in_port_t fport, 1263 void *args) = NULL; 1264 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol, 1265 sa_family_t addr_family, uint8_t *laddrp, 1266 in_port_t lport, uint8_t *faddrp, 1267 in_port_t fport, void *args) = NULL; 1268 1269 1270 /* 1271 * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err) 1272 */ 1273 #define CL_INET_CONNECT(connp, is_outgoing, err) { \ 1274 (err) = 0; \ 1275 if (cl_inet_connect2 != NULL) { \ 1276 /* \ 1277 * Running in cluster mode - register active connection \ 1278 * information \ 1279 */ \ 1280 if ((connp)->conn_ipversion == IPV4_VERSION) { \ 1281 if ((connp)->conn_laddr_v4 != 0) { \ 1282 (err) = (*cl_inet_connect2)( \ 1283 (connp)->conn_netstack->netstack_stackid,\ 1284 IPPROTO_TCP, is_outgoing, AF_INET, \ 1285 (uint8_t *)(&((connp)->conn_laddr_v4)),\ 1286 (in_port_t)(connp)->conn_lport, \ 1287 (uint8_t *)(&((connp)->conn_faddr_v4)),\ 1288 (in_port_t)(connp)->conn_fport, NULL); \ 1289 } \ 1290 } else { \ 1291 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1292 &(connp)->conn_laddr_v6)) { \ 1293 (err) = (*cl_inet_connect2)( \ 1294 (connp)->conn_netstack->netstack_stackid,\ 1295 IPPROTO_TCP, is_outgoing, AF_INET6, \ 1296 (uint8_t *)(&((connp)->conn_laddr_v6)),\ 1297 (in_port_t)(connp)->conn_lport, \ 1298 (uint8_t *)(&((connp)->conn_faddr_v6)), \ 1299 (in_port_t)(connp)->conn_fport, NULL); \ 1300 } \ 1301 } \ 1302 } \ 1303 } 1304 1305 #define CL_INET_DISCONNECT(connp) { \ 1306 if (cl_inet_disconnect != NULL) { \ 1307 /* \ 1308 * Running in cluster mode - deregister active \ 1309 * connection information \ 1310 */ \ 1311 if ((connp)->conn_ipversion == IPV4_VERSION) { \ 1312 if ((connp)->conn_laddr_v4 != 0) { \ 1313 (*cl_inet_disconnect)( \ 1314 (connp)->conn_netstack->netstack_stackid,\ 1315 IPPROTO_TCP, AF_INET, \ 1316 (uint8_t *)(&((connp)->conn_laddr_v4)),\ 1317 (in_port_t)(connp)->conn_lport, \ 1318 (uint8_t *)(&((connp)->conn_faddr_v4)),\ 1319 (in_port_t)(connp)->conn_fport, NULL); \ 1320 } \ 1321 } else { \ 1322 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1323 &(connp)->conn_laddr_v6)) { \ 1324 (*cl_inet_disconnect)( \ 1325 (connp)->conn_netstack->netstack_stackid,\ 1326 IPPROTO_TCP, AF_INET6, \ 1327 (uint8_t *)(&((connp)->conn_laddr_v6)),\ 1328 (in_port_t)(connp)->conn_lport, \ 1329 (uint8_t *)(&((connp)->conn_faddr_v6)), \ 1330 (in_port_t)(connp)->conn_fport, NULL); \ 1331 } \ 1332 } \ 1333 } \ 1334 } 1335 1336 /* 1337 * Steps to do when a tcp_t moves to TIME-WAIT state. 1338 * 1339 * This connection is done, we don't need to account for it. Decrement 1340 * the listener connection counter if needed. 1341 * 1342 * Unconditionally clear the exclusive binding bit so this TIME-WAIT 1343 * connection won't interfere with new ones. 1344 * 1345 * Start the TIME-WAIT timer. If upper layer has not closed the connection, 1346 * the timer is handled within the context of this tcp_t. When the timer 1347 * fires, tcp_clean_death() is called. If upper layer closes the connection 1348 * during this period, tcp_time_wait_append() will be called to add this 1349 * tcp_t to the global TIME-WAIT list. Note that this means that the 1350 * actual wait time in TIME-WAIT state will be longer than the 1351 * tcps_time_wait_interval since the period before upper layer closes the 1352 * connection is not accounted for when tcp_time_wait_append() is called. 1353 * 1354 * If uppser layer has closed the connection, call tcp_time_wait_append() 1355 * directly. 1356 */ 1357 #define SET_TIME_WAIT(tcps, tcp, connp) \ 1358 { \ 1359 (tcp)->tcp_state = TCPS_TIME_WAIT; \ 1360 if ((tcp)->tcp_listen_cnt != NULL) \ 1361 TCP_DECR_LISTEN_CNT(tcp); \ 1362 (connp)->conn_exclbind = 0; \ 1363 if (!TCP_IS_DETACHED(tcp)) { \ 1364 TCP_TIMER_RESTART(tcp, (tcps)->tcps_time_wait_interval); \ 1365 } else { \ 1366 tcp_time_wait_append(tcp); \ 1367 TCP_DBGSTAT(tcps, tcp_rput_time_wait); \ 1368 } \ 1369 } 1370 1371 /* 1372 * Cluster networking hook for traversing current connection list. 1373 * This routine is used to extract the current list of live connections 1374 * which must continue to to be dispatched to this node. 1375 */ 1376 int cl_tcp_walk_list(netstackid_t stack_id, 1377 int (*callback)(cl_tcp_info_t *, void *), void *arg); 1378 1379 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1380 void *arg, tcp_stack_t *tcps); 1381 1382 static void 1383 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh) 1384 { 1385 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3; 1386 1387 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 1388 conn_t *connp = tcp->tcp_connp; 1389 struct sock_proto_props sopp; 1390 1391 /* 1392 * only increase rcvthresh upto default_threshold 1393 */ 1394 if (new_rcvthresh > default_threshold) 1395 new_rcvthresh = default_threshold; 1396 1397 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 1398 sopp.sopp_rcvthresh = new_rcvthresh; 1399 1400 (*connp->conn_upcalls->su_set_proto_props) 1401 (connp->conn_upper_handle, &sopp); 1402 } 1403 } 1404 /* 1405 * Figure out the value of window scale opton. Note that the rwnd is 1406 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1407 * We cannot find the scale value and then do a round up of tcp_rwnd 1408 * because the scale value may not be correct after that. 1409 * 1410 * Set the compiler flag to make this function inline. 1411 */ 1412 static void 1413 tcp_set_ws_value(tcp_t *tcp) 1414 { 1415 int i; 1416 uint32_t rwnd = tcp->tcp_rwnd; 1417 1418 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1419 i++, rwnd >>= 1) 1420 ; 1421 tcp->tcp_rcv_ws = i; 1422 } 1423 1424 /* 1425 * Remove a connection from the list of detached TIME_WAIT connections. 1426 * It returns B_FALSE if it can't remove the connection from the list 1427 * as the connection has already been removed from the list due to an 1428 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1429 */ 1430 static boolean_t 1431 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1432 { 1433 boolean_t locked = B_FALSE; 1434 1435 if (tcp_time_wait == NULL) { 1436 tcp_time_wait = *((tcp_squeue_priv_t **) 1437 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1438 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1439 locked = B_TRUE; 1440 } else { 1441 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1442 } 1443 1444 if (tcp->tcp_time_wait_expire == 0) { 1445 ASSERT(tcp->tcp_time_wait_next == NULL); 1446 ASSERT(tcp->tcp_time_wait_prev == NULL); 1447 if (locked) 1448 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1449 return (B_FALSE); 1450 } 1451 ASSERT(TCP_IS_DETACHED(tcp)); 1452 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1453 1454 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1455 ASSERT(tcp->tcp_time_wait_prev == NULL); 1456 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1457 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1458 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1459 NULL; 1460 } else { 1461 tcp_time_wait->tcp_time_wait_tail = NULL; 1462 } 1463 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1464 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1465 ASSERT(tcp->tcp_time_wait_next == NULL); 1466 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1467 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1468 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1469 } else { 1470 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1471 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1472 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1473 tcp->tcp_time_wait_next; 1474 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1475 tcp->tcp_time_wait_prev; 1476 } 1477 tcp->tcp_time_wait_next = NULL; 1478 tcp->tcp_time_wait_prev = NULL; 1479 tcp->tcp_time_wait_expire = 0; 1480 1481 if (locked) 1482 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1483 return (B_TRUE); 1484 } 1485 1486 /* 1487 * Add a connection to the list of detached TIME_WAIT connections 1488 * and set its time to expire. 1489 */ 1490 static void 1491 tcp_time_wait_append(tcp_t *tcp) 1492 { 1493 tcp_stack_t *tcps = tcp->tcp_tcps; 1494 tcp_squeue_priv_t *tcp_time_wait = 1495 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1496 SQPRIVATE_TCP)); 1497 1498 tcp_timers_stop(tcp); 1499 1500 /* Freed above */ 1501 ASSERT(tcp->tcp_timer_tid == 0); 1502 ASSERT(tcp->tcp_ack_tid == 0); 1503 1504 /* must have happened at the time of detaching the tcp */ 1505 ASSERT(tcp->tcp_ptpahn == NULL); 1506 ASSERT(tcp->tcp_flow_stopped == 0); 1507 ASSERT(tcp->tcp_time_wait_next == NULL); 1508 ASSERT(tcp->tcp_time_wait_prev == NULL); 1509 ASSERT(tcp->tcp_time_wait_expire == NULL); 1510 ASSERT(tcp->tcp_listener == NULL); 1511 1512 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1513 /* 1514 * The value computed below in tcp->tcp_time_wait_expire may 1515 * appear negative or wrap around. That is ok since our 1516 * interest is only in the difference between the current lbolt 1517 * value and tcp->tcp_time_wait_expire. But the value should not 1518 * be zero, since it means the tcp is not in the TIME_WAIT list. 1519 * The corresponding comparison in tcp_time_wait_collector() uses 1520 * modular arithmetic. 1521 */ 1522 tcp->tcp_time_wait_expire += 1523 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1524 if (tcp->tcp_time_wait_expire == 0) 1525 tcp->tcp_time_wait_expire = 1; 1526 1527 ASSERT(TCP_IS_DETACHED(tcp)); 1528 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1529 ASSERT(tcp->tcp_time_wait_next == NULL); 1530 ASSERT(tcp->tcp_time_wait_prev == NULL); 1531 TCP_DBGSTAT(tcps, tcp_time_wait); 1532 1533 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1534 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1535 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1536 tcp_time_wait->tcp_time_wait_head = tcp; 1537 } else { 1538 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1539 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1540 TCPS_TIME_WAIT); 1541 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1542 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1543 } 1544 tcp_time_wait->tcp_time_wait_tail = tcp; 1545 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1546 } 1547 1548 /* ARGSUSED */ 1549 void 1550 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 1551 { 1552 conn_t *connp = (conn_t *)arg; 1553 tcp_t *tcp = connp->conn_tcp; 1554 tcp_stack_t *tcps = tcp->tcp_tcps; 1555 1556 ASSERT(tcp != NULL); 1557 if (tcp->tcp_state == TCPS_CLOSED) { 1558 return; 1559 } 1560 1561 ASSERT((connp->conn_family == AF_INET && 1562 connp->conn_ipversion == IPV4_VERSION) || 1563 (connp->conn_family == AF_INET6 && 1564 (connp->conn_ipversion == IPV4_VERSION || 1565 connp->conn_ipversion == IPV6_VERSION))); 1566 ASSERT(!tcp->tcp_listener); 1567 1568 TCP_STAT(tcps, tcp_time_wait_reap); 1569 ASSERT(TCP_IS_DETACHED(tcp)); 1570 1571 /* 1572 * Because they have no upstream client to rebind or tcp_close() 1573 * them later, we axe the connection here and now. 1574 */ 1575 tcp_close_detached(tcp); 1576 } 1577 1578 /* 1579 * Remove cached/latched IPsec references. 1580 */ 1581 void 1582 tcp_ipsec_cleanup(tcp_t *tcp) 1583 { 1584 conn_t *connp = tcp->tcp_connp; 1585 1586 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1587 1588 if (connp->conn_latch != NULL) { 1589 IPLATCH_REFRELE(connp->conn_latch); 1590 connp->conn_latch = NULL; 1591 } 1592 if (connp->conn_latch_in_policy != NULL) { 1593 IPPOL_REFRELE(connp->conn_latch_in_policy); 1594 connp->conn_latch_in_policy = NULL; 1595 } 1596 if (connp->conn_latch_in_action != NULL) { 1597 IPACT_REFRELE(connp->conn_latch_in_action); 1598 connp->conn_latch_in_action = NULL; 1599 } 1600 if (connp->conn_policy != NULL) { 1601 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1602 connp->conn_policy = NULL; 1603 } 1604 } 1605 1606 /* 1607 * Cleaup before placing on free list. 1608 * Disassociate from the netstack/tcp_stack_t since the freelist 1609 * is per squeue and not per netstack. 1610 */ 1611 void 1612 tcp_cleanup(tcp_t *tcp) 1613 { 1614 mblk_t *mp; 1615 tcp_sack_info_t *tcp_sack_info; 1616 conn_t *connp = tcp->tcp_connp; 1617 tcp_stack_t *tcps = tcp->tcp_tcps; 1618 netstack_t *ns = tcps->tcps_netstack; 1619 mblk_t *tcp_rsrv_mp; 1620 1621 tcp_bind_hash_remove(tcp); 1622 1623 /* Cleanup that which needs the netstack first */ 1624 tcp_ipsec_cleanup(tcp); 1625 ixa_cleanup(connp->conn_ixa); 1626 1627 if (connp->conn_ht_iphc != NULL) { 1628 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 1629 connp->conn_ht_iphc = NULL; 1630 connp->conn_ht_iphc_allocated = 0; 1631 connp->conn_ht_iphc_len = 0; 1632 connp->conn_ht_ulp = NULL; 1633 connp->conn_ht_ulp_len = 0; 1634 tcp->tcp_ipha = NULL; 1635 tcp->tcp_ip6h = NULL; 1636 tcp->tcp_tcpha = NULL; 1637 } 1638 1639 /* We clear any IP_OPTIONS and extension headers */ 1640 ip_pkt_free(&connp->conn_xmit_ipp); 1641 1642 tcp_free(tcp); 1643 1644 /* Release any SSL context */ 1645 if (tcp->tcp_kssl_ent != NULL) { 1646 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1647 tcp->tcp_kssl_ent = NULL; 1648 } 1649 1650 if (tcp->tcp_kssl_ctx != NULL) { 1651 kssl_release_ctx(tcp->tcp_kssl_ctx); 1652 tcp->tcp_kssl_ctx = NULL; 1653 } 1654 tcp->tcp_kssl_pending = B_FALSE; 1655 1656 /* 1657 * Since we will bzero the entire structure, we need to 1658 * remove it and reinsert it in global hash list. We 1659 * know the walkers can't get to this conn because we 1660 * had set CONDEMNED flag earlier and checked reference 1661 * under conn_lock so walker won't pick it and when we 1662 * go the ipcl_globalhash_remove() below, no walker 1663 * can get to it. 1664 */ 1665 ipcl_globalhash_remove(connp); 1666 1667 /* Save some state */ 1668 mp = tcp->tcp_timercache; 1669 1670 tcp_sack_info = tcp->tcp_sack_info; 1671 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 1672 1673 if (connp->conn_cred != NULL) { 1674 crfree(connp->conn_cred); 1675 connp->conn_cred = NULL; 1676 } 1677 ipcl_conn_cleanup(connp); 1678 connp->conn_flags = IPCL_TCPCONN; 1679 1680 /* 1681 * Now it is safe to decrement the reference counts. 1682 * This might be the last reference on the netstack 1683 * in which case it will cause the freeing of the IP Instance. 1684 */ 1685 connp->conn_netstack = NULL; 1686 connp->conn_ixa->ixa_ipst = NULL; 1687 netstack_rele(ns); 1688 ASSERT(tcps != NULL); 1689 tcp->tcp_tcps = NULL; 1690 1691 bzero(tcp, sizeof (tcp_t)); 1692 1693 /* restore the state */ 1694 tcp->tcp_timercache = mp; 1695 1696 tcp->tcp_sack_info = tcp_sack_info; 1697 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1698 1699 tcp->tcp_connp = connp; 1700 1701 ASSERT(connp->conn_tcp == tcp); 1702 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1703 connp->conn_state_flags = CONN_INCIPIENT; 1704 ASSERT(connp->conn_proto == IPPROTO_TCP); 1705 ASSERT(connp->conn_ref == 1); 1706 } 1707 1708 /* 1709 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1710 * is done forwards from the head. 1711 * This walks all stack instances since 1712 * tcp_time_wait remains global across all stacks. 1713 */ 1714 /* ARGSUSED */ 1715 void 1716 tcp_time_wait_collector(void *arg) 1717 { 1718 tcp_t *tcp; 1719 clock_t now; 1720 mblk_t *mp; 1721 conn_t *connp; 1722 kmutex_t *lock; 1723 boolean_t removed; 1724 1725 squeue_t *sqp = (squeue_t *)arg; 1726 tcp_squeue_priv_t *tcp_time_wait = 1727 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1728 1729 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1730 tcp_time_wait->tcp_time_wait_tid = 0; 1731 1732 if (tcp_time_wait->tcp_free_list != NULL && 1733 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1734 TCP_G_STAT(tcp_freelist_cleanup); 1735 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1736 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1737 tcp->tcp_time_wait_next = NULL; 1738 tcp_time_wait->tcp_free_list_cnt--; 1739 ASSERT(tcp->tcp_tcps == NULL); 1740 CONN_DEC_REF(tcp->tcp_connp); 1741 } 1742 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1743 } 1744 1745 /* 1746 * In order to reap time waits reliably, we should use a 1747 * source of time that is not adjustable by the user -- hence 1748 * the call to ddi_get_lbolt(). 1749 */ 1750 now = ddi_get_lbolt(); 1751 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1752 /* 1753 * Compare times using modular arithmetic, since 1754 * lbolt can wrapover. 1755 */ 1756 if ((now - tcp->tcp_time_wait_expire) < 0) { 1757 break; 1758 } 1759 1760 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1761 ASSERT(removed); 1762 1763 connp = tcp->tcp_connp; 1764 ASSERT(connp->conn_fanout != NULL); 1765 lock = &connp->conn_fanout->connf_lock; 1766 /* 1767 * This is essentially a TW reclaim fast path optimization for 1768 * performance where the timewait collector checks under the 1769 * fanout lock (so that no one else can get access to the 1770 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1771 * the classifier hash list. If ref count is indeed 2, we can 1772 * just remove the conn under the fanout lock and avoid 1773 * cleaning up the conn under the squeue, provided that 1774 * clustering callbacks are not enabled. If clustering is 1775 * enabled, we need to make the clustering callback before 1776 * setting the CONDEMNED flag and after dropping all locks and 1777 * so we forego this optimization and fall back to the slow 1778 * path. Also please see the comments in tcp_closei_local 1779 * regarding the refcnt logic. 1780 * 1781 * Since we are holding the tcp_time_wait_lock, its better 1782 * not to block on the fanout_lock because other connections 1783 * can't add themselves to time_wait list. So we do a 1784 * tryenter instead of mutex_enter. 1785 */ 1786 if (mutex_tryenter(lock)) { 1787 mutex_enter(&connp->conn_lock); 1788 if ((connp->conn_ref == 2) && 1789 (cl_inet_disconnect == NULL)) { 1790 ipcl_hash_remove_locked(connp, 1791 connp->conn_fanout); 1792 /* 1793 * Set the CONDEMNED flag now itself so that 1794 * the refcnt cannot increase due to any 1795 * walker. 1796 */ 1797 connp->conn_state_flags |= CONN_CONDEMNED; 1798 mutex_exit(lock); 1799 mutex_exit(&connp->conn_lock); 1800 if (tcp_time_wait->tcp_free_list_cnt < 1801 tcp_free_list_max_cnt) { 1802 /* Add to head of tcp_free_list */ 1803 mutex_exit( 1804 &tcp_time_wait->tcp_time_wait_lock); 1805 tcp_cleanup(tcp); 1806 ASSERT(connp->conn_latch == NULL); 1807 ASSERT(connp->conn_policy == NULL); 1808 ASSERT(tcp->tcp_tcps == NULL); 1809 ASSERT(connp->conn_netstack == NULL); 1810 1811 mutex_enter( 1812 &tcp_time_wait->tcp_time_wait_lock); 1813 tcp->tcp_time_wait_next = 1814 tcp_time_wait->tcp_free_list; 1815 tcp_time_wait->tcp_free_list = tcp; 1816 tcp_time_wait->tcp_free_list_cnt++; 1817 continue; 1818 } else { 1819 /* Do not add to tcp_free_list */ 1820 mutex_exit( 1821 &tcp_time_wait->tcp_time_wait_lock); 1822 tcp_bind_hash_remove(tcp); 1823 ixa_cleanup(tcp->tcp_connp->conn_ixa); 1824 tcp_ipsec_cleanup(tcp); 1825 CONN_DEC_REF(tcp->tcp_connp); 1826 } 1827 } else { 1828 CONN_INC_REF_LOCKED(connp); 1829 mutex_exit(lock); 1830 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1831 mutex_exit(&connp->conn_lock); 1832 /* 1833 * We can reuse the closemp here since conn has 1834 * detached (otherwise we wouldn't even be in 1835 * time_wait list). tcp_closemp_used can safely 1836 * be changed without taking a lock as no other 1837 * thread can concurrently access it at this 1838 * point in the connection lifecycle. 1839 */ 1840 1841 if (tcp->tcp_closemp.b_prev == NULL) 1842 tcp->tcp_closemp_used = B_TRUE; 1843 else 1844 cmn_err(CE_PANIC, 1845 "tcp_timewait_collector: " 1846 "concurrent use of tcp_closemp: " 1847 "connp %p tcp %p\n", (void *)connp, 1848 (void *)tcp); 1849 1850 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1851 mp = &tcp->tcp_closemp; 1852 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1853 tcp_timewait_output, connp, NULL, 1854 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1855 } 1856 } else { 1857 mutex_enter(&connp->conn_lock); 1858 CONN_INC_REF_LOCKED(connp); 1859 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1860 mutex_exit(&connp->conn_lock); 1861 /* 1862 * We can reuse the closemp here since conn has 1863 * detached (otherwise we wouldn't even be in 1864 * time_wait list). tcp_closemp_used can safely 1865 * be changed without taking a lock as no other 1866 * thread can concurrently access it at this 1867 * point in the connection lifecycle. 1868 */ 1869 1870 if (tcp->tcp_closemp.b_prev == NULL) 1871 tcp->tcp_closemp_used = B_TRUE; 1872 else 1873 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1874 "concurrent use of tcp_closemp: " 1875 "connp %p tcp %p\n", (void *)connp, 1876 (void *)tcp); 1877 1878 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1879 mp = &tcp->tcp_closemp; 1880 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1881 tcp_timewait_output, connp, NULL, 1882 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1883 } 1884 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1885 } 1886 1887 if (tcp_time_wait->tcp_free_list != NULL) 1888 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1889 1890 tcp_time_wait->tcp_time_wait_tid = 1891 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 1892 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 1893 CALLOUT_FLAG_ROUNDUP); 1894 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1895 } 1896 1897 /* 1898 * Reply to a clients T_CONN_RES TPI message. This function 1899 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1900 * on the acceptor STREAM and processed in tcp_accept_common(). 1901 * Read the block comment on top of tcp_input_listener(). 1902 */ 1903 static void 1904 tcp_tli_accept(tcp_t *listener, mblk_t *mp) 1905 { 1906 tcp_t *acceptor; 1907 tcp_t *eager; 1908 tcp_t *tcp; 1909 struct T_conn_res *tcr; 1910 t_uscalar_t acceptor_id; 1911 t_scalar_t seqnum; 1912 mblk_t *discon_mp = NULL; 1913 mblk_t *ok_mp; 1914 mblk_t *mp1; 1915 tcp_stack_t *tcps = listener->tcp_tcps; 1916 conn_t *econnp; 1917 1918 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1919 tcp_err_ack(listener, mp, TPROTO, 0); 1920 return; 1921 } 1922 tcr = (struct T_conn_res *)mp->b_rptr; 1923 1924 /* 1925 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1926 * read side queue of the streams device underneath us i.e. the 1927 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1928 * look it up in the queue_hash. Under LP64 it sends down the 1929 * minor_t of the accepting endpoint. 1930 * 1931 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1932 * fanout hash lock is held. 1933 * This prevents any thread from entering the acceptor queue from 1934 * below (since it has not been hard bound yet i.e. any inbound 1935 * packets will arrive on the listener conn_t and 1936 * go through the classifier). 1937 * The CONN_INC_REF will prevent the acceptor from closing. 1938 * 1939 * XXX It is still possible for a tli application to send down data 1940 * on the accepting stream while another thread calls t_accept. 1941 * This should not be a problem for well-behaved applications since 1942 * the T_OK_ACK is sent after the queue swapping is completed. 1943 * 1944 * If the accepting fd is the same as the listening fd, avoid 1945 * queue hash lookup since that will return an eager listener in a 1946 * already established state. 1947 */ 1948 acceptor_id = tcr->ACCEPTOR_id; 1949 mutex_enter(&listener->tcp_eager_lock); 1950 if (listener->tcp_acceptor_id == acceptor_id) { 1951 eager = listener->tcp_eager_next_q; 1952 /* only count how many T_CONN_INDs so don't count q0 */ 1953 if ((listener->tcp_conn_req_cnt_q != 1) || 1954 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1955 mutex_exit(&listener->tcp_eager_lock); 1956 tcp_err_ack(listener, mp, TBADF, 0); 1957 return; 1958 } 1959 if (listener->tcp_conn_req_cnt_q0 != 0) { 1960 /* Throw away all the eagers on q0. */ 1961 tcp_eager_cleanup(listener, 1); 1962 } 1963 if (listener->tcp_syn_defense) { 1964 listener->tcp_syn_defense = B_FALSE; 1965 if (listener->tcp_ip_addr_cache != NULL) { 1966 kmem_free(listener->tcp_ip_addr_cache, 1967 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1968 listener->tcp_ip_addr_cache = NULL; 1969 } 1970 } 1971 /* 1972 * Transfer tcp_conn_req_max to the eager so that when 1973 * a disconnect occurs we can revert the endpoint to the 1974 * listen state. 1975 */ 1976 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1977 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1978 /* 1979 * Get a reference on the acceptor just like the 1980 * tcp_acceptor_hash_lookup below. 1981 */ 1982 acceptor = listener; 1983 CONN_INC_REF(acceptor->tcp_connp); 1984 } else { 1985 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 1986 if (acceptor == NULL) { 1987 if (listener->tcp_connp->conn_debug) { 1988 (void) strlog(TCP_MOD_ID, 0, 1, 1989 SL_ERROR|SL_TRACE, 1990 "tcp_accept: did not find acceptor 0x%x\n", 1991 acceptor_id); 1992 } 1993 mutex_exit(&listener->tcp_eager_lock); 1994 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1995 return; 1996 } 1997 /* 1998 * Verify acceptor state. The acceptable states for an acceptor 1999 * include TCPS_IDLE and TCPS_BOUND. 2000 */ 2001 switch (acceptor->tcp_state) { 2002 case TCPS_IDLE: 2003 /* FALLTHRU */ 2004 case TCPS_BOUND: 2005 break; 2006 default: 2007 CONN_DEC_REF(acceptor->tcp_connp); 2008 mutex_exit(&listener->tcp_eager_lock); 2009 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2010 return; 2011 } 2012 } 2013 2014 /* The listener must be in TCPS_LISTEN */ 2015 if (listener->tcp_state != TCPS_LISTEN) { 2016 CONN_DEC_REF(acceptor->tcp_connp); 2017 mutex_exit(&listener->tcp_eager_lock); 2018 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2019 return; 2020 } 2021 2022 /* 2023 * Rendezvous with an eager connection request packet hanging off 2024 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2025 * tcp structure when the connection packet arrived in 2026 * tcp_input_listener(). 2027 */ 2028 seqnum = tcr->SEQ_number; 2029 eager = listener; 2030 do { 2031 eager = eager->tcp_eager_next_q; 2032 if (eager == NULL) { 2033 CONN_DEC_REF(acceptor->tcp_connp); 2034 mutex_exit(&listener->tcp_eager_lock); 2035 tcp_err_ack(listener, mp, TBADSEQ, 0); 2036 return; 2037 } 2038 } while (eager->tcp_conn_req_seqnum != seqnum); 2039 mutex_exit(&listener->tcp_eager_lock); 2040 2041 /* 2042 * At this point, both acceptor and listener have 2 ref 2043 * that they begin with. Acceptor has one additional ref 2044 * we placed in lookup while listener has 3 additional 2045 * ref for being behind the squeue (tcp_accept() is 2046 * done on listener's squeue); being in classifier hash; 2047 * and eager's ref on listener. 2048 */ 2049 ASSERT(listener->tcp_connp->conn_ref >= 5); 2050 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2051 2052 /* 2053 * The eager at this point is set in its own squeue and 2054 * could easily have been killed (tcp_accept_finish will 2055 * deal with that) because of a TH_RST so we can only 2056 * ASSERT for a single ref. 2057 */ 2058 ASSERT(eager->tcp_connp->conn_ref >= 1); 2059 2060 /* 2061 * Pre allocate the discon_ind mblk also. tcp_accept_finish will 2062 * use it if something failed. 2063 */ 2064 discon_mp = allocb(MAX(sizeof (struct T_discon_ind), 2065 sizeof (struct stroptions)), BPRI_HI); 2066 if (discon_mp == NULL) { 2067 CONN_DEC_REF(acceptor->tcp_connp); 2068 CONN_DEC_REF(eager->tcp_connp); 2069 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2070 return; 2071 } 2072 2073 econnp = eager->tcp_connp; 2074 2075 /* Hold a copy of mp, in case reallocb fails */ 2076 if ((mp1 = copymsg(mp)) == NULL) { 2077 CONN_DEC_REF(acceptor->tcp_connp); 2078 CONN_DEC_REF(eager->tcp_connp); 2079 freemsg(discon_mp); 2080 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2081 return; 2082 } 2083 2084 tcr = (struct T_conn_res *)mp1->b_rptr; 2085 2086 /* 2087 * This is an expanded version of mi_tpi_ok_ack_alloc() 2088 * which allocates a larger mblk and appends the new 2089 * local address to the ok_ack. The address is copied by 2090 * soaccept() for getsockname(). 2091 */ 2092 { 2093 int extra; 2094 2095 extra = (econnp->conn_family == AF_INET) ? 2096 sizeof (sin_t) : sizeof (sin6_t); 2097 2098 /* 2099 * Try to re-use mp, if possible. Otherwise, allocate 2100 * an mblk and return it as ok_mp. In any case, mp 2101 * is no longer usable upon return. 2102 */ 2103 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2104 CONN_DEC_REF(acceptor->tcp_connp); 2105 CONN_DEC_REF(eager->tcp_connp); 2106 freemsg(discon_mp); 2107 /* Original mp has been freed by now, so use mp1 */ 2108 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2109 return; 2110 } 2111 2112 mp = NULL; /* We should never use mp after this point */ 2113 2114 switch (extra) { 2115 case sizeof (sin_t): { 2116 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2117 2118 ok_mp->b_wptr += extra; 2119 sin->sin_family = AF_INET; 2120 sin->sin_port = econnp->conn_lport; 2121 sin->sin_addr.s_addr = econnp->conn_laddr_v4; 2122 break; 2123 } 2124 case sizeof (sin6_t): { 2125 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2126 2127 ok_mp->b_wptr += extra; 2128 sin6->sin6_family = AF_INET6; 2129 sin6->sin6_port = econnp->conn_lport; 2130 sin6->sin6_addr = econnp->conn_laddr_v6; 2131 sin6->sin6_flowinfo = econnp->conn_flowinfo; 2132 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6) && 2133 (econnp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) { 2134 sin6->sin6_scope_id = 2135 econnp->conn_ixa->ixa_scopeid; 2136 } else { 2137 sin6->sin6_scope_id = 0; 2138 } 2139 sin6->__sin6_src_id = 0; 2140 break; 2141 } 2142 default: 2143 break; 2144 } 2145 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2146 } 2147 2148 /* 2149 * If there are no options we know that the T_CONN_RES will 2150 * succeed. However, we can't send the T_OK_ACK upstream until 2151 * the tcp_accept_swap is done since it would be dangerous to 2152 * let the application start using the new fd prior to the swap. 2153 */ 2154 tcp_accept_swap(listener, acceptor, eager); 2155 2156 /* 2157 * tcp_accept_swap unlinks eager from listener but does not drop 2158 * the eager's reference on the listener. 2159 */ 2160 ASSERT(eager->tcp_listener == NULL); 2161 ASSERT(listener->tcp_connp->conn_ref >= 5); 2162 2163 /* 2164 * The eager is now associated with its own queue. Insert in 2165 * the hash so that the connection can be reused for a future 2166 * T_CONN_RES. 2167 */ 2168 tcp_acceptor_hash_insert(acceptor_id, eager); 2169 2170 /* 2171 * We now do the processing of options with T_CONN_RES. 2172 * We delay till now since we wanted to have queue to pass to 2173 * option processing routines that points back to the right 2174 * instance structure which does not happen until after 2175 * tcp_accept_swap(). 2176 * 2177 * Note: 2178 * The sanity of the logic here assumes that whatever options 2179 * are appropriate to inherit from listner=>eager are done 2180 * before this point, and whatever were to be overridden (or not) 2181 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2182 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2183 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2184 * This may not be true at this point in time but can be fixed 2185 * independently. This option processing code starts with 2186 * the instantiated acceptor instance and the final queue at 2187 * this point. 2188 */ 2189 2190 if (tcr->OPT_length != 0) { 2191 /* Options to process */ 2192 int t_error = 0; 2193 int sys_error = 0; 2194 int do_disconnect = 0; 2195 2196 if (tcp_conprim_opt_process(eager, mp1, 2197 &do_disconnect, &t_error, &sys_error) < 0) { 2198 eager->tcp_accept_error = 1; 2199 if (do_disconnect) { 2200 /* 2201 * An option failed which does not allow 2202 * connection to be accepted. 2203 * 2204 * We allow T_CONN_RES to succeed and 2205 * put a T_DISCON_IND on the eager queue. 2206 */ 2207 ASSERT(t_error == 0 && sys_error == 0); 2208 eager->tcp_send_discon_ind = 1; 2209 } else { 2210 ASSERT(t_error != 0); 2211 freemsg(ok_mp); 2212 /* 2213 * Original mp was either freed or set 2214 * to ok_mp above, so use mp1 instead. 2215 */ 2216 tcp_err_ack(listener, mp1, t_error, sys_error); 2217 goto finish; 2218 } 2219 } 2220 /* 2221 * Most likely success in setting options (except if 2222 * eager->tcp_send_discon_ind set). 2223 * mp1 option buffer represented by OPT_length/offset 2224 * potentially modified and contains results of setting 2225 * options at this point 2226 */ 2227 } 2228 2229 /* We no longer need mp1, since all options processing has passed */ 2230 freemsg(mp1); 2231 2232 putnext(listener->tcp_connp->conn_rq, ok_mp); 2233 2234 mutex_enter(&listener->tcp_eager_lock); 2235 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2236 tcp_t *tail; 2237 mblk_t *conn_ind; 2238 2239 /* 2240 * This path should not be executed if listener and 2241 * acceptor streams are the same. 2242 */ 2243 ASSERT(listener != acceptor); 2244 2245 tcp = listener->tcp_eager_prev_q0; 2246 /* 2247 * listener->tcp_eager_prev_q0 points to the TAIL of the 2248 * deferred T_conn_ind queue. We need to get to the head of 2249 * the queue in order to send up T_conn_ind the same order as 2250 * how the 3WHS is completed. 2251 */ 2252 while (tcp != listener) { 2253 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2254 break; 2255 else 2256 tcp = tcp->tcp_eager_prev_q0; 2257 } 2258 ASSERT(tcp != listener); 2259 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2260 ASSERT(conn_ind != NULL); 2261 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2262 2263 /* Move from q0 to q */ 2264 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2265 listener->tcp_conn_req_cnt_q0--; 2266 listener->tcp_conn_req_cnt_q++; 2267 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2268 tcp->tcp_eager_prev_q0; 2269 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2270 tcp->tcp_eager_next_q0; 2271 tcp->tcp_eager_prev_q0 = NULL; 2272 tcp->tcp_eager_next_q0 = NULL; 2273 tcp->tcp_conn_def_q0 = B_FALSE; 2274 2275 /* Make sure the tcp isn't in the list of droppables */ 2276 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2277 tcp->tcp_eager_prev_drop_q0 == NULL); 2278 2279 /* 2280 * Insert at end of the queue because sockfs sends 2281 * down T_CONN_RES in chronological order. Leaving 2282 * the older conn indications at front of the queue 2283 * helps reducing search time. 2284 */ 2285 tail = listener->tcp_eager_last_q; 2286 if (tail != NULL) 2287 tail->tcp_eager_next_q = tcp; 2288 else 2289 listener->tcp_eager_next_q = tcp; 2290 listener->tcp_eager_last_q = tcp; 2291 tcp->tcp_eager_next_q = NULL; 2292 mutex_exit(&listener->tcp_eager_lock); 2293 putnext(tcp->tcp_connp->conn_rq, conn_ind); 2294 } else { 2295 mutex_exit(&listener->tcp_eager_lock); 2296 } 2297 2298 /* 2299 * Done with the acceptor - free it 2300 * 2301 * Note: from this point on, no access to listener should be made 2302 * as listener can be equal to acceptor. 2303 */ 2304 finish: 2305 ASSERT(acceptor->tcp_detached); 2306 acceptor->tcp_connp->conn_rq = NULL; 2307 ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp)); 2308 acceptor->tcp_connp->conn_wq = NULL; 2309 (void) tcp_clean_death(acceptor, 0, 2); 2310 CONN_DEC_REF(acceptor->tcp_connp); 2311 2312 /* 2313 * We pass discon_mp to tcp_accept_finish to get on the right squeue. 2314 * 2315 * It will update the setting for sockfs/stream head and also take 2316 * care of any data that arrived before accept() wad called. 2317 * In case we already received a FIN then tcp_accept_finish will send up 2318 * the ordrel. It will also send up a window update if the window 2319 * has opened up. 2320 */ 2321 2322 /* 2323 * XXX: we currently have a problem if XTI application closes the 2324 * acceptor stream in between. This problem exists in on10-gate also 2325 * and is well know but nothing can be done short of major rewrite 2326 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2327 * eager same squeue as listener (we can distinguish non socket 2328 * listeners at the time of handling a SYN in tcp_input_listener) 2329 * and do most of the work that tcp_accept_finish does here itself 2330 * and then get behind the acceptor squeue to access the acceptor 2331 * queue. 2332 */ 2333 /* 2334 * We already have a ref on tcp so no need to do one before squeue_enter 2335 */ 2336 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, discon_mp, 2337 tcp_accept_finish, eager->tcp_connp, NULL, SQ_FILL, 2338 SQTAG_TCP_ACCEPT_FINISH); 2339 } 2340 2341 /* 2342 * Swap information between the eager and acceptor for a TLI/XTI client. 2343 * The sockfs accept is done on the acceptor stream and control goes 2344 * through tcp_tli_accept() and tcp_accept()/tcp_accept_swap() is not 2345 * called. In either case, both the eager and listener are in their own 2346 * perimeter (squeue) and the code has to deal with potential race. 2347 * 2348 * See the block comment on top of tcp_accept() and tcp_tli_accept(). 2349 */ 2350 static void 2351 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2352 { 2353 conn_t *econnp, *aconnp; 2354 2355 ASSERT(eager->tcp_connp->conn_rq == listener->tcp_connp->conn_rq); 2356 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2357 ASSERT(!TCP_IS_SOCKET(acceptor)); 2358 ASSERT(!TCP_IS_SOCKET(eager)); 2359 ASSERT(!TCP_IS_SOCKET(listener)); 2360 2361 /* 2362 * Trusted Extensions may need to use a security label that is 2363 * different from the acceptor's label on MLP and MAC-Exempt 2364 * sockets. If this is the case, the required security label 2365 * already exists in econnp->conn_ixa->ixa_tsl. Since we make the 2366 * acceptor stream refer to econnp we atomatically get that label. 2367 */ 2368 2369 acceptor->tcp_detached = B_TRUE; 2370 /* 2371 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2372 * the acceptor id. 2373 */ 2374 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2375 2376 /* remove eager from listen list... */ 2377 mutex_enter(&listener->tcp_eager_lock); 2378 tcp_eager_unlink(eager); 2379 ASSERT(eager->tcp_eager_next_q == NULL && 2380 eager->tcp_eager_last_q == NULL); 2381 ASSERT(eager->tcp_eager_next_q0 == NULL && 2382 eager->tcp_eager_prev_q0 == NULL); 2383 mutex_exit(&listener->tcp_eager_lock); 2384 2385 econnp = eager->tcp_connp; 2386 aconnp = acceptor->tcp_connp; 2387 econnp->conn_rq = aconnp->conn_rq; 2388 econnp->conn_wq = aconnp->conn_wq; 2389 econnp->conn_rq->q_ptr = econnp; 2390 econnp->conn_wq->q_ptr = econnp; 2391 2392 /* 2393 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2394 * which might be a different squeue from our peer TCP instance. 2395 * For TCP Fusion, the peer expects that whenever tcp_detached is 2396 * clear, our TCP queues point to the acceptor's queues. Thus, use 2397 * membar_producer() to ensure that the assignments of conn_rq/conn_wq 2398 * above reach global visibility prior to the clearing of tcp_detached. 2399 */ 2400 membar_producer(); 2401 eager->tcp_detached = B_FALSE; 2402 2403 ASSERT(eager->tcp_ack_tid == 0); 2404 2405 econnp->conn_dev = aconnp->conn_dev; 2406 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2407 2408 ASSERT(econnp->conn_minor_arena != NULL); 2409 if (econnp->conn_cred != NULL) 2410 crfree(econnp->conn_cred); 2411 econnp->conn_cred = aconnp->conn_cred; 2412 aconnp->conn_cred = NULL; 2413 econnp->conn_cpid = aconnp->conn_cpid; 2414 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2415 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2416 2417 econnp->conn_zoneid = aconnp->conn_zoneid; 2418 econnp->conn_allzones = aconnp->conn_allzones; 2419 econnp->conn_ixa->ixa_zoneid = aconnp->conn_ixa->ixa_zoneid; 2420 2421 econnp->conn_mac_mode = aconnp->conn_mac_mode; 2422 econnp->conn_zone_is_global = aconnp->conn_zone_is_global; 2423 aconnp->conn_mac_mode = CONN_MAC_DEFAULT; 2424 2425 /* Do the IPC initialization */ 2426 CONN_INC_REF(econnp); 2427 2428 /* Done with old IPC. Drop its ref on its connp */ 2429 CONN_DEC_REF(aconnp); 2430 } 2431 2432 2433 /* 2434 * Adapt to the information, such as rtt and rtt_sd, provided from the 2435 * DCE and IRE maintained by IP. 2436 * 2437 * Checks for multicast and broadcast destination address. 2438 * Returns zero if ok; an errno on failure. 2439 * 2440 * Note that the MSS calculation here is based on the info given in 2441 * the DCE and IRE. We do not do any calculation based on TCP options. They 2442 * will be handled in tcp_input_data() when TCP knows which options to use. 2443 * 2444 * Note on how TCP gets its parameters for a connection. 2445 * 2446 * When a tcp_t structure is allocated, it gets all the default parameters. 2447 * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd, 2448 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2449 * default. 2450 * 2451 * An incoming SYN with a multicast or broadcast destination address is dropped 2452 * in ip_fanout_v4/v6. 2453 * 2454 * An incoming SYN with a multicast or broadcast source address is always 2455 * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in 2456 * conn_connect. 2457 * The same logic in tcp_set_destination also serves to 2458 * reject an attempt to connect to a broadcast or multicast (destination) 2459 * address. 2460 */ 2461 static int 2462 tcp_set_destination(tcp_t *tcp) 2463 { 2464 uint32_t mss_max; 2465 uint32_t mss; 2466 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2467 conn_t *connp = tcp->tcp_connp; 2468 tcp_stack_t *tcps = tcp->tcp_tcps; 2469 iulp_t uinfo; 2470 int error; 2471 uint32_t flags; 2472 2473 flags = IPDF_LSO | IPDF_ZCOPY; 2474 /* 2475 * Make sure we have a dce for the destination to avoid dce_ident 2476 * contention for connected sockets. 2477 */ 2478 flags |= IPDF_UNIQUE_DCE; 2479 2480 if (!tcps->tcps_ignore_path_mtu) 2481 connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY; 2482 2483 /* Use conn_lock to satify ASSERT; tcp is already serialized */ 2484 mutex_enter(&connp->conn_lock); 2485 error = conn_connect(connp, &uinfo, flags); 2486 mutex_exit(&connp->conn_lock); 2487 if (error != 0) 2488 return (error); 2489 2490 error = tcp_build_hdrs(tcp); 2491 if (error != 0) 2492 return (error); 2493 2494 tcp->tcp_localnet = uinfo.iulp_localnet; 2495 2496 if (uinfo.iulp_rtt != 0) { 2497 clock_t rto; 2498 2499 tcp->tcp_rtt_sa = uinfo.iulp_rtt; 2500 tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd; 2501 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2502 tcps->tcps_rexmit_interval_extra + 2503 (tcp->tcp_rtt_sa >> 5); 2504 2505 if (rto > tcps->tcps_rexmit_interval_max) { 2506 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2507 } else if (rto < tcps->tcps_rexmit_interval_min) { 2508 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2509 } else { 2510 tcp->tcp_rto = rto; 2511 } 2512 } 2513 if (uinfo.iulp_ssthresh != 0) 2514 tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh; 2515 else 2516 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2517 if (uinfo.iulp_spipe > 0) { 2518 connp->conn_sndbuf = MIN(uinfo.iulp_spipe, 2519 tcps->tcps_max_buf); 2520 if (tcps->tcps_snd_lowat_fraction != 0) { 2521 connp->conn_sndlowat = connp->conn_sndbuf / 2522 tcps->tcps_snd_lowat_fraction; 2523 } 2524 (void) tcp_maxpsz_set(tcp, B_TRUE); 2525 } 2526 /* 2527 * Note that up till now, acceptor always inherits receive 2528 * window from the listener. But if there is a metrics 2529 * associated with a host, we should use that instead of 2530 * inheriting it from listener. Thus we need to pass this 2531 * info back to the caller. 2532 */ 2533 if (uinfo.iulp_rpipe > 0) { 2534 tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe, 2535 tcps->tcps_max_buf); 2536 } 2537 2538 if (uinfo.iulp_rtomax > 0) { 2539 tcp->tcp_second_timer_threshold = 2540 uinfo.iulp_rtomax; 2541 } 2542 2543 /* 2544 * Use the metric option settings, iulp_tstamp_ok and 2545 * iulp_wscale_ok, only for active open. What this means 2546 * is that if the other side uses timestamp or window 2547 * scale option, TCP will also use those options. That 2548 * is for passive open. If the application sets a 2549 * large window, window scale is enabled regardless of 2550 * the value in iulp_wscale_ok. This is the behavior 2551 * since 2.6. So we keep it. 2552 * The only case left in passive open processing is the 2553 * check for SACK. 2554 * For ECN, it should probably be like SACK. But the 2555 * current value is binary, so we treat it like the other 2556 * cases. The metric only controls active open.For passive 2557 * open, the ndd param, tcp_ecn_permitted, controls the 2558 * behavior. 2559 */ 2560 if (!tcp_detached) { 2561 /* 2562 * The if check means that the following can only 2563 * be turned on by the metrics only IRE, but not off. 2564 */ 2565 if (uinfo.iulp_tstamp_ok) 2566 tcp->tcp_snd_ts_ok = B_TRUE; 2567 if (uinfo.iulp_wscale_ok) 2568 tcp->tcp_snd_ws_ok = B_TRUE; 2569 if (uinfo.iulp_sack == 2) 2570 tcp->tcp_snd_sack_ok = B_TRUE; 2571 if (uinfo.iulp_ecn_ok) 2572 tcp->tcp_ecn_ok = B_TRUE; 2573 } else { 2574 /* 2575 * Passive open. 2576 * 2577 * As above, the if check means that SACK can only be 2578 * turned on by the metric only IRE. 2579 */ 2580 if (uinfo.iulp_sack > 0) { 2581 tcp->tcp_snd_sack_ok = B_TRUE; 2582 } 2583 } 2584 2585 /* 2586 * XXX Note that currently, iulp_mtu can be as small as 68 2587 * because of PMTUd. So tcp_mss may go to negative if combined 2588 * length of all those options exceeds 28 bytes. But because 2589 * of the tcp_mss_min check below, we may not have a problem if 2590 * tcp_mss_min is of a reasonable value. The default is 1 so 2591 * the negative problem still exists. And the check defeats PMTUd. 2592 * In fact, if PMTUd finds that the MSS should be smaller than 2593 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2594 * value. 2595 * 2596 * We do not deal with that now. All those problems related to 2597 * PMTUd will be fixed later. 2598 */ 2599 ASSERT(uinfo.iulp_mtu != 0); 2600 mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu; 2601 2602 /* Sanity check for MSS value. */ 2603 if (connp->conn_ipversion == IPV4_VERSION) 2604 mss_max = tcps->tcps_mss_max_ipv4; 2605 else 2606 mss_max = tcps->tcps_mss_max_ipv6; 2607 2608 if (tcp->tcp_ipsec_overhead == 0) 2609 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2610 2611 mss -= tcp->tcp_ipsec_overhead; 2612 2613 if (mss < tcps->tcps_mss_min) 2614 mss = tcps->tcps_mss_min; 2615 if (mss > mss_max) 2616 mss = mss_max; 2617 2618 /* Note that this is the maximum MSS, excluding all options. */ 2619 tcp->tcp_mss = mss; 2620 2621 /* 2622 * Update the tcp connection with LSO capability. 2623 */ 2624 tcp_update_lso(tcp, connp->conn_ixa); 2625 2626 /* 2627 * Initialize the ISS here now that we have the full connection ID. 2628 * The RFC 1948 method of initial sequence number generation requires 2629 * knowledge of the full connection ID before setting the ISS. 2630 */ 2631 tcp_iss_init(tcp); 2632 2633 tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local); 2634 2635 /* 2636 * Make sure that conn is not marked incipient 2637 * for incoming connections. A blind 2638 * removal of incipient flag is cheaper than 2639 * check and removal. 2640 */ 2641 mutex_enter(&connp->conn_lock); 2642 connp->conn_state_flags &= ~CONN_INCIPIENT; 2643 mutex_exit(&connp->conn_lock); 2644 return (0); 2645 } 2646 2647 static void 2648 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp) 2649 { 2650 int error; 2651 conn_t *connp = tcp->tcp_connp; 2652 struct sockaddr *sa; 2653 mblk_t *mp1; 2654 struct T_bind_req *tbr; 2655 int backlog; 2656 socklen_t len; 2657 sin_t *sin; 2658 sin6_t *sin6; 2659 cred_t *cr; 2660 2661 /* 2662 * All Solaris components should pass a db_credp 2663 * for this TPI message, hence we ASSERT. 2664 * But in case there is some other M_PROTO that looks 2665 * like a TPI message sent by some other kernel 2666 * component, we check and return an error. 2667 */ 2668 cr = msg_getcred(mp, NULL); 2669 ASSERT(cr != NULL); 2670 if (cr == NULL) { 2671 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 2672 return; 2673 } 2674 2675 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 2676 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 2677 if (connp->conn_debug) { 2678 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2679 "tcp_tpi_bind: bad req, len %u", 2680 (uint_t)(mp->b_wptr - mp->b_rptr)); 2681 } 2682 tcp_err_ack(tcp, mp, TPROTO, 0); 2683 return; 2684 } 2685 /* Make sure the largest address fits */ 2686 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t), 1); 2687 if (mp1 == NULL) { 2688 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 2689 return; 2690 } 2691 mp = mp1; 2692 tbr = (struct T_bind_req *)mp->b_rptr; 2693 2694 backlog = tbr->CONIND_number; 2695 len = tbr->ADDR_length; 2696 2697 switch (len) { 2698 case 0: /* request for a generic port */ 2699 tbr->ADDR_offset = sizeof (struct T_bind_req); 2700 if (connp->conn_family == AF_INET) { 2701 tbr->ADDR_length = sizeof (sin_t); 2702 sin = (sin_t *)&tbr[1]; 2703 *sin = sin_null; 2704 sin->sin_family = AF_INET; 2705 sa = (struct sockaddr *)sin; 2706 len = sizeof (sin_t); 2707 mp->b_wptr = (uchar_t *)&sin[1]; 2708 } else { 2709 ASSERT(connp->conn_family == AF_INET6); 2710 tbr->ADDR_length = sizeof (sin6_t); 2711 sin6 = (sin6_t *)&tbr[1]; 2712 *sin6 = sin6_null; 2713 sin6->sin6_family = AF_INET6; 2714 sa = (struct sockaddr *)sin6; 2715 len = sizeof (sin6_t); 2716 mp->b_wptr = (uchar_t *)&sin6[1]; 2717 } 2718 break; 2719 2720 case sizeof (sin_t): /* Complete IPv4 address */ 2721 sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset, 2722 sizeof (sin_t)); 2723 break; 2724 2725 case sizeof (sin6_t): /* Complete IPv6 address */ 2726 sa = (struct sockaddr *)mi_offset_param(mp, 2727 tbr->ADDR_offset, sizeof (sin6_t)); 2728 break; 2729 2730 default: 2731 if (connp->conn_debug) { 2732 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2733 "tcp_tpi_bind: bad address length, %d", 2734 tbr->ADDR_length); 2735 } 2736 tcp_err_ack(tcp, mp, TBADADDR, 0); 2737 return; 2738 } 2739 2740 if (backlog > 0) { 2741 error = tcp_do_listen(connp, sa, len, backlog, DB_CRED(mp), 2742 tbr->PRIM_type != O_T_BIND_REQ); 2743 } else { 2744 error = tcp_do_bind(connp, sa, len, DB_CRED(mp), 2745 tbr->PRIM_type != O_T_BIND_REQ); 2746 } 2747 done: 2748 if (error > 0) { 2749 tcp_err_ack(tcp, mp, TSYSERR, error); 2750 } else if (error < 0) { 2751 tcp_err_ack(tcp, mp, -error, 0); 2752 } else { 2753 /* 2754 * Update port information as sockfs/tpi needs it for checking 2755 */ 2756 if (connp->conn_family == AF_INET) { 2757 sin = (sin_t *)sa; 2758 sin->sin_port = connp->conn_lport; 2759 } else { 2760 sin6 = (sin6_t *)sa; 2761 sin6->sin6_port = connp->conn_lport; 2762 } 2763 mp->b_datap->db_type = M_PCPROTO; 2764 tbr->PRIM_type = T_BIND_ACK; 2765 putnext(connp->conn_rq, mp); 2766 } 2767 } 2768 2769 /* 2770 * If the "bind_to_req_port_only" parameter is set, if the requested port 2771 * number is available, return it, If not return 0 2772 * 2773 * If "bind_to_req_port_only" parameter is not set and 2774 * If the requested port number is available, return it. If not, return 2775 * the first anonymous port we happen across. If no anonymous ports are 2776 * available, return 0. addr is the requested local address, if any. 2777 * 2778 * In either case, when succeeding update the tcp_t to record the port number 2779 * and insert it in the bind hash table. 2780 * 2781 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 2782 * without setting SO_REUSEADDR. This is needed so that they 2783 * can be viewed as two independent transport protocols. 2784 */ 2785 static in_port_t 2786 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 2787 int reuseaddr, boolean_t quick_connect, 2788 boolean_t bind_to_req_port_only, boolean_t user_specified) 2789 { 2790 /* number of times we have run around the loop */ 2791 int count = 0; 2792 /* maximum number of times to run around the loop */ 2793 int loopmax; 2794 conn_t *connp = tcp->tcp_connp; 2795 tcp_stack_t *tcps = tcp->tcp_tcps; 2796 2797 /* 2798 * Lookup for free addresses is done in a loop and "loopmax" 2799 * influences how long we spin in the loop 2800 */ 2801 if (bind_to_req_port_only) { 2802 /* 2803 * If the requested port is busy, don't bother to look 2804 * for a new one. Setting loop maximum count to 1 has 2805 * that effect. 2806 */ 2807 loopmax = 1; 2808 } else { 2809 /* 2810 * If the requested port is busy, look for a free one 2811 * in the anonymous port range. 2812 * Set loopmax appropriately so that one does not look 2813 * forever in the case all of the anonymous ports are in use. 2814 */ 2815 if (connp->conn_anon_priv_bind) { 2816 /* 2817 * loopmax = 2818 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 2819 */ 2820 loopmax = IPPORT_RESERVED - 2821 tcps->tcps_min_anonpriv_port; 2822 } else { 2823 loopmax = (tcps->tcps_largest_anon_port - 2824 tcps->tcps_smallest_anon_port + 1); 2825 } 2826 } 2827 do { 2828 uint16_t lport; 2829 tf_t *tbf; 2830 tcp_t *ltcp; 2831 conn_t *lconnp; 2832 2833 lport = htons(port); 2834 2835 /* 2836 * Ensure that the tcp_t is not currently in the bind hash. 2837 * Hold the lock on the hash bucket to ensure that 2838 * the duplicate check plus the insertion is an atomic 2839 * operation. 2840 * 2841 * This function does an inline lookup on the bind hash list 2842 * Make sure that we access only members of tcp_t 2843 * and that we don't look at tcp_tcp, since we are not 2844 * doing a CONN_INC_REF. 2845 */ 2846 tcp_bind_hash_remove(tcp); 2847 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 2848 mutex_enter(&tbf->tf_lock); 2849 for (ltcp = tbf->tf_tcp; ltcp != NULL; 2850 ltcp = ltcp->tcp_bind_hash) { 2851 if (lport == ltcp->tcp_connp->conn_lport) 2852 break; 2853 } 2854 2855 for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) { 2856 boolean_t not_socket; 2857 boolean_t exclbind; 2858 2859 lconnp = ltcp->tcp_connp; 2860 2861 /* 2862 * On a labeled system, we must treat bindings to ports 2863 * on shared IP addresses by sockets with MAC exemption 2864 * privilege as being in all zones, as there's 2865 * otherwise no way to identify the right receiver. 2866 */ 2867 if (!IPCL_BIND_ZONE_MATCH(lconnp, connp)) 2868 continue; 2869 2870 /* 2871 * If TCP_EXCLBIND is set for either the bound or 2872 * binding endpoint, the semantics of bind 2873 * is changed according to the following. 2874 * 2875 * spec = specified address (v4 or v6) 2876 * unspec = unspecified address (v4 or v6) 2877 * A = specified addresses are different for endpoints 2878 * 2879 * bound bind to allowed 2880 * ------------------------------------- 2881 * unspec unspec no 2882 * unspec spec no 2883 * spec unspec no 2884 * spec spec yes if A 2885 * 2886 * For labeled systems, SO_MAC_EXEMPT behaves the same 2887 * as TCP_EXCLBIND, except that zoneid is ignored. 2888 * 2889 * Note: 2890 * 2891 * 1. Because of TLI semantics, an endpoint can go 2892 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 2893 * TCPS_BOUND, depending on whether it is originally 2894 * a listener or not. That is why we need to check 2895 * for states greater than or equal to TCPS_BOUND 2896 * here. 2897 * 2898 * 2. Ideally, we should only check for state equals 2899 * to TCPS_LISTEN. And the following check should be 2900 * added. 2901 * 2902 * if (ltcp->tcp_state == TCPS_LISTEN || 2903 * !reuseaddr || !lconnp->conn_reuseaddr) { 2904 * ... 2905 * } 2906 * 2907 * The semantics will be changed to this. If the 2908 * endpoint on the list is in state not equal to 2909 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 2910 * set, let the bind succeed. 2911 * 2912 * Because of (1), we cannot do that for TLI 2913 * endpoints. But we can do that for socket endpoints. 2914 * If in future, we can change this going back 2915 * semantics, we can use the above check for TLI also. 2916 */ 2917 not_socket = !(TCP_IS_SOCKET(ltcp) && 2918 TCP_IS_SOCKET(tcp)); 2919 exclbind = lconnp->conn_exclbind || 2920 connp->conn_exclbind; 2921 2922 if ((lconnp->conn_mac_mode != CONN_MAC_DEFAULT) || 2923 (connp->conn_mac_mode != CONN_MAC_DEFAULT) || 2924 (exclbind && (not_socket || 2925 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 2926 if (V6_OR_V4_INADDR_ANY( 2927 lconnp->conn_bound_addr_v6) || 2928 V6_OR_V4_INADDR_ANY(*laddr) || 2929 IN6_ARE_ADDR_EQUAL(laddr, 2930 &lconnp->conn_bound_addr_v6)) { 2931 break; 2932 } 2933 continue; 2934 } 2935 2936 /* 2937 * Check ipversion to allow IPv4 and IPv6 sockets to 2938 * have disjoint port number spaces, if *_EXCLBIND 2939 * is not set and only if the application binds to a 2940 * specific port. We use the same autoassigned port 2941 * number space for IPv4 and IPv6 sockets. 2942 */ 2943 if (connp->conn_ipversion != lconnp->conn_ipversion && 2944 bind_to_req_port_only) 2945 continue; 2946 2947 /* 2948 * Ideally, we should make sure that the source 2949 * address, remote address, and remote port in the 2950 * four tuple for this tcp-connection is unique. 2951 * However, trying to find out the local source 2952 * address would require too much code duplication 2953 * with IP, since IP needs needs to have that code 2954 * to support userland TCP implementations. 2955 */ 2956 if (quick_connect && 2957 (ltcp->tcp_state > TCPS_LISTEN) && 2958 ((connp->conn_fport != lconnp->conn_fport) || 2959 !IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, 2960 &lconnp->conn_faddr_v6))) 2961 continue; 2962 2963 if (!reuseaddr) { 2964 /* 2965 * No socket option SO_REUSEADDR. 2966 * If existing port is bound to 2967 * a non-wildcard IP address 2968 * and the requesting stream is 2969 * bound to a distinct 2970 * different IP addresses 2971 * (non-wildcard, also), keep 2972 * going. 2973 */ 2974 if (!V6_OR_V4_INADDR_ANY(*laddr) && 2975 !V6_OR_V4_INADDR_ANY( 2976 lconnp->conn_bound_addr_v6) && 2977 !IN6_ARE_ADDR_EQUAL(laddr, 2978 &lconnp->conn_bound_addr_v6)) 2979 continue; 2980 if (ltcp->tcp_state >= TCPS_BOUND) { 2981 /* 2982 * This port is being used and 2983 * its state is >= TCPS_BOUND, 2984 * so we can't bind to it. 2985 */ 2986 break; 2987 } 2988 } else { 2989 /* 2990 * socket option SO_REUSEADDR is set on the 2991 * binding tcp_t. 2992 * 2993 * If two streams are bound to 2994 * same IP address or both addr 2995 * and bound source are wildcards 2996 * (INADDR_ANY), we want to stop 2997 * searching. 2998 * We have found a match of IP source 2999 * address and source port, which is 3000 * refused regardless of the 3001 * SO_REUSEADDR setting, so we break. 3002 */ 3003 if (IN6_ARE_ADDR_EQUAL(laddr, 3004 &lconnp->conn_bound_addr_v6) && 3005 (ltcp->tcp_state == TCPS_LISTEN || 3006 ltcp->tcp_state == TCPS_BOUND)) 3007 break; 3008 } 3009 } 3010 if (ltcp != NULL) { 3011 /* The port number is busy */ 3012 mutex_exit(&tbf->tf_lock); 3013 } else { 3014 /* 3015 * This port is ours. Insert in fanout and mark as 3016 * bound to prevent others from getting the port 3017 * number. 3018 */ 3019 tcp->tcp_state = TCPS_BOUND; 3020 connp->conn_lport = htons(port); 3021 3022 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3023 connp->conn_lport)] == tbf); 3024 tcp_bind_hash_insert(tbf, tcp, 1); 3025 3026 mutex_exit(&tbf->tf_lock); 3027 3028 /* 3029 * We don't want tcp_next_port_to_try to "inherit" 3030 * a port number supplied by the user in a bind. 3031 */ 3032 if (user_specified) 3033 return (port); 3034 3035 /* 3036 * This is the only place where tcp_next_port_to_try 3037 * is updated. After the update, it may or may not 3038 * be in the valid range. 3039 */ 3040 if (!connp->conn_anon_priv_bind) 3041 tcps->tcps_next_port_to_try = port + 1; 3042 return (port); 3043 } 3044 3045 if (connp->conn_anon_priv_bind) { 3046 port = tcp_get_next_priv_port(tcp); 3047 } else { 3048 if (count == 0 && user_specified) { 3049 /* 3050 * We may have to return an anonymous port. So 3051 * get one to start with. 3052 */ 3053 port = 3054 tcp_update_next_port( 3055 tcps->tcps_next_port_to_try, 3056 tcp, B_TRUE); 3057 user_specified = B_FALSE; 3058 } else { 3059 port = tcp_update_next_port(port + 1, tcp, 3060 B_FALSE); 3061 } 3062 } 3063 if (port == 0) 3064 break; 3065 3066 /* 3067 * Don't let this loop run forever in the case where 3068 * all of the anonymous ports are in use. 3069 */ 3070 } while (++count < loopmax); 3071 return (0); 3072 } 3073 3074 /* 3075 * tcp_clean_death / tcp_close_detached must not be called more than once 3076 * on a tcp. Thus every function that potentially calls tcp_clean_death 3077 * must check for the tcp state before calling tcp_clean_death. 3078 * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper, 3079 * tcp_timer_handler, all check for the tcp state. 3080 */ 3081 /* ARGSUSED */ 3082 void 3083 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 3084 ip_recv_attr_t *dummy) 3085 { 3086 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3087 3088 freemsg(mp); 3089 if (tcp->tcp_state > TCPS_BOUND) 3090 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3091 ETIMEDOUT, 5); 3092 } 3093 3094 /* 3095 * We are dying for some reason. Try to do it gracefully. (May be called 3096 * as writer.) 3097 * 3098 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3099 * done by a service procedure). 3100 * TBD - Should the return value distinguish between the tcp_t being 3101 * freed and it being reinitialized? 3102 */ 3103 static int 3104 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3105 { 3106 mblk_t *mp; 3107 queue_t *q; 3108 conn_t *connp = tcp->tcp_connp; 3109 tcp_stack_t *tcps = tcp->tcp_tcps; 3110 3111 TCP_CLD_STAT(tag); 3112 3113 #if TCP_TAG_CLEAN_DEATH 3114 tcp->tcp_cleandeathtag = tag; 3115 #endif 3116 3117 if (tcp->tcp_fused) 3118 tcp_unfuse(tcp); 3119 3120 if (tcp->tcp_linger_tid != 0 && 3121 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3122 tcp_stop_lingering(tcp); 3123 } 3124 3125 ASSERT(tcp != NULL); 3126 ASSERT((connp->conn_family == AF_INET && 3127 connp->conn_ipversion == IPV4_VERSION) || 3128 (connp->conn_family == AF_INET6 && 3129 (connp->conn_ipversion == IPV4_VERSION || 3130 connp->conn_ipversion == IPV6_VERSION))); 3131 3132 if (TCP_IS_DETACHED(tcp)) { 3133 if (tcp->tcp_hard_binding) { 3134 /* 3135 * Its an eager that we are dealing with. We close the 3136 * eager but in case a conn_ind has already gone to the 3137 * listener, let tcp_accept_finish() send a discon_ind 3138 * to the listener and drop the last reference. If the 3139 * listener doesn't even know about the eager i.e. the 3140 * conn_ind hasn't gone up, blow away the eager and drop 3141 * the last reference as well. If the conn_ind has gone 3142 * up, state should be BOUND. tcp_accept_finish 3143 * will figure out that the connection has received a 3144 * RST and will send a DISCON_IND to the application. 3145 */ 3146 tcp_closei_local(tcp); 3147 if (!tcp->tcp_tconnind_started) { 3148 CONN_DEC_REF(connp); 3149 } else { 3150 tcp->tcp_state = TCPS_BOUND; 3151 } 3152 } else { 3153 tcp_close_detached(tcp); 3154 } 3155 return (0); 3156 } 3157 3158 TCP_STAT(tcps, tcp_clean_death_nondetached); 3159 3160 /* 3161 * The connection is dead. Decrement listener connection counter if 3162 * necessary. 3163 */ 3164 if (tcp->tcp_listen_cnt != NULL) 3165 TCP_DECR_LISTEN_CNT(tcp); 3166 3167 q = connp->conn_rq; 3168 3169 /* Trash all inbound data */ 3170 if (!IPCL_IS_NONSTR(connp)) { 3171 ASSERT(q != NULL); 3172 flushq(q, FLUSHALL); 3173 } 3174 3175 /* 3176 * If we are at least part way open and there is error 3177 * (err==0 implies no error) 3178 * notify our client by a T_DISCON_IND. 3179 */ 3180 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3181 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3182 !TCP_IS_SOCKET(tcp)) { 3183 /* 3184 * Send M_FLUSH according to TPI. Because sockets will 3185 * (and must) ignore FLUSHR we do that only for TPI 3186 * endpoints and sockets in STREAMS mode. 3187 */ 3188 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3189 } 3190 if (connp->conn_debug) { 3191 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3192 "tcp_clean_death: discon err %d", err); 3193 } 3194 if (IPCL_IS_NONSTR(connp)) { 3195 /* Direct socket, use upcall */ 3196 (*connp->conn_upcalls->su_disconnected)( 3197 connp->conn_upper_handle, tcp->tcp_connid, err); 3198 } else { 3199 mp = mi_tpi_discon_ind(NULL, err, 0); 3200 if (mp != NULL) { 3201 putnext(q, mp); 3202 } else { 3203 if (connp->conn_debug) { 3204 (void) strlog(TCP_MOD_ID, 0, 1, 3205 SL_ERROR|SL_TRACE, 3206 "tcp_clean_death, sending M_ERROR"); 3207 } 3208 (void) putnextctl1(q, M_ERROR, EPROTO); 3209 } 3210 } 3211 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3212 /* SYN_SENT or SYN_RCVD */ 3213 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3214 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3215 /* ESTABLISHED or CLOSE_WAIT */ 3216 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3217 } 3218 } 3219 3220 tcp_reinit(tcp); 3221 if (IPCL_IS_NONSTR(connp)) 3222 (void) tcp_do_unbind(connp); 3223 3224 return (-1); 3225 } 3226 3227 /* 3228 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3229 * to expire, stop the wait and finish the close. 3230 */ 3231 static void 3232 tcp_stop_lingering(tcp_t *tcp) 3233 { 3234 clock_t delta = 0; 3235 tcp_stack_t *tcps = tcp->tcp_tcps; 3236 conn_t *connp = tcp->tcp_connp; 3237 3238 tcp->tcp_linger_tid = 0; 3239 if (tcp->tcp_state > TCPS_LISTEN) { 3240 tcp_acceptor_hash_remove(tcp); 3241 mutex_enter(&tcp->tcp_non_sq_lock); 3242 if (tcp->tcp_flow_stopped) { 3243 tcp_clrqfull(tcp); 3244 } 3245 mutex_exit(&tcp->tcp_non_sq_lock); 3246 3247 if (tcp->tcp_timer_tid != 0) { 3248 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3249 tcp->tcp_timer_tid = 0; 3250 } 3251 /* 3252 * Need to cancel those timers which will not be used when 3253 * TCP is detached. This has to be done before the conn_wq 3254 * is cleared. 3255 */ 3256 tcp_timers_stop(tcp); 3257 3258 tcp->tcp_detached = B_TRUE; 3259 connp->conn_rq = NULL; 3260 connp->conn_wq = NULL; 3261 3262 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3263 tcp_time_wait_append(tcp); 3264 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3265 goto finish; 3266 } 3267 3268 /* 3269 * If delta is zero the timer event wasn't executed and was 3270 * successfully canceled. In this case we need to restart it 3271 * with the minimal delta possible. 3272 */ 3273 if (delta >= 0) { 3274 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3275 delta ? delta : 1); 3276 } 3277 } else { 3278 tcp_closei_local(tcp); 3279 CONN_DEC_REF(connp); 3280 } 3281 finish: 3282 /* Signal closing thread that it can complete close */ 3283 mutex_enter(&tcp->tcp_closelock); 3284 tcp->tcp_detached = B_TRUE; 3285 connp->conn_rq = NULL; 3286 connp->conn_wq = NULL; 3287 3288 tcp->tcp_closed = 1; 3289 cv_signal(&tcp->tcp_closecv); 3290 mutex_exit(&tcp->tcp_closelock); 3291 } 3292 3293 /* 3294 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3295 * expires. 3296 */ 3297 static void 3298 tcp_close_linger_timeout(void *arg) 3299 { 3300 conn_t *connp = (conn_t *)arg; 3301 tcp_t *tcp = connp->conn_tcp; 3302 3303 tcp->tcp_client_errno = ETIMEDOUT; 3304 tcp_stop_lingering(tcp); 3305 } 3306 3307 static void 3308 tcp_close_common(conn_t *connp, int flags) 3309 { 3310 tcp_t *tcp = connp->conn_tcp; 3311 mblk_t *mp = &tcp->tcp_closemp; 3312 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3313 mblk_t *bp; 3314 3315 ASSERT(connp->conn_ref >= 2); 3316 3317 /* 3318 * Mark the conn as closing. ipsq_pending_mp_add will not 3319 * add any mp to the pending mp list, after this conn has 3320 * started closing. 3321 */ 3322 mutex_enter(&connp->conn_lock); 3323 connp->conn_state_flags |= CONN_CLOSING; 3324 if (connp->conn_oper_pending_ill != NULL) 3325 conn_ioctl_cleanup_reqd = B_TRUE; 3326 CONN_INC_REF_LOCKED(connp); 3327 mutex_exit(&connp->conn_lock); 3328 tcp->tcp_closeflags = (uint8_t)flags; 3329 ASSERT(connp->conn_ref >= 3); 3330 3331 /* 3332 * tcp_closemp_used is used below without any protection of a lock 3333 * as we don't expect any one else to use it concurrently at this 3334 * point otherwise it would be a major defect. 3335 */ 3336 3337 if (mp->b_prev == NULL) 3338 tcp->tcp_closemp_used = B_TRUE; 3339 else 3340 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 3341 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 3342 3343 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 3344 3345 /* 3346 * Cleanup any queued ioctls here. This must be done before the wq/rq 3347 * are re-written by tcp_close_output(). 3348 */ 3349 if (conn_ioctl_cleanup_reqd) 3350 conn_ioctl_cleanup(connp); 3351 3352 /* 3353 * As CONN_CLOSING is set, no further ioctls should be passed down to 3354 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and 3355 * tcp_wput_iocdata). If the ioctl was queued on an ipsq, 3356 * conn_ioctl_cleanup should have found it and removed it. If the ioctl 3357 * was still in flight at the time, we wait for it here. See comments 3358 * for CONN_INC_IOCTLREF in ip.h for details. 3359 */ 3360 mutex_enter(&connp->conn_lock); 3361 while (connp->conn_ioctlref > 0) 3362 cv_wait(&connp->conn_cv, &connp->conn_lock); 3363 ASSERT(connp->conn_ioctlref == 0); 3364 ASSERT(connp->conn_oper_pending_ill == NULL); 3365 mutex_exit(&connp->conn_lock); 3366 3367 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 3368 NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3369 3370 mutex_enter(&tcp->tcp_closelock); 3371 while (!tcp->tcp_closed) { 3372 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 3373 /* 3374 * The cv_wait_sig() was interrupted. We now do the 3375 * following: 3376 * 3377 * 1) If the endpoint was lingering, we allow this 3378 * to be interrupted by cancelling the linger timeout 3379 * and closing normally. 3380 * 3381 * 2) Revert to calling cv_wait() 3382 * 3383 * We revert to using cv_wait() to avoid an 3384 * infinite loop which can occur if the calling 3385 * thread is higher priority than the squeue worker 3386 * thread and is bound to the same cpu. 3387 */ 3388 if (connp->conn_linger && connp->conn_lingertime > 0) { 3389 mutex_exit(&tcp->tcp_closelock); 3390 /* Entering squeue, bump ref count. */ 3391 CONN_INC_REF(connp); 3392 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 3393 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 3394 tcp_linger_interrupted, connp, NULL, 3395 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3396 mutex_enter(&tcp->tcp_closelock); 3397 } 3398 break; 3399 } 3400 } 3401 while (!tcp->tcp_closed) 3402 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3403 mutex_exit(&tcp->tcp_closelock); 3404 3405 /* 3406 * In the case of listener streams that have eagers in the q or q0 3407 * we wait for the eagers to drop their reference to us. conn_rq and 3408 * conn_wq of the eagers point to our queues. By waiting for the 3409 * refcnt to drop to 1, we are sure that the eagers have cleaned 3410 * up their queue pointers and also dropped their references to us. 3411 */ 3412 if (tcp->tcp_wait_for_eagers) { 3413 mutex_enter(&connp->conn_lock); 3414 while (connp->conn_ref != 1) { 3415 cv_wait(&connp->conn_cv, &connp->conn_lock); 3416 } 3417 mutex_exit(&connp->conn_lock); 3418 } 3419 3420 connp->conn_cpid = NOPID; 3421 } 3422 3423 static int 3424 tcp_tpi_close(queue_t *q, int flags) 3425 { 3426 conn_t *connp; 3427 3428 ASSERT(WR(q)->q_next == NULL); 3429 3430 if (flags & SO_FALLBACK) { 3431 /* 3432 * stream is being closed while in fallback 3433 * simply free the resources that were allocated 3434 */ 3435 inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr)); 3436 qprocsoff(q); 3437 goto done; 3438 } 3439 3440 connp = Q_TO_CONN(q); 3441 /* 3442 * We are being closed as /dev/tcp or /dev/tcp6. 3443 */ 3444 tcp_close_common(connp, flags); 3445 3446 qprocsoff(q); 3447 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 3448 3449 /* 3450 * Drop IP's reference on the conn. This is the last reference 3451 * on the connp if the state was less than established. If the 3452 * connection has gone into timewait state, then we will have 3453 * one ref for the TCP and one more ref (total of two) for the 3454 * classifier connected hash list (a timewait connections stays 3455 * in connected hash till closed). 3456 * 3457 * We can't assert the references because there might be other 3458 * transient reference places because of some walkers or queued 3459 * packets in squeue for the timewait state. 3460 */ 3461 CONN_DEC_REF(connp); 3462 done: 3463 q->q_ptr = WR(q)->q_ptr = NULL; 3464 return (0); 3465 } 3466 3467 static int 3468 tcp_tpi_close_accept(queue_t *q) 3469 { 3470 vmem_t *minor_arena; 3471 dev_t conn_dev; 3472 3473 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3474 3475 /* 3476 * We had opened an acceptor STREAM for sockfs which is 3477 * now being closed due to some error. 3478 */ 3479 qprocsoff(q); 3480 3481 minor_arena = (vmem_t *)WR(q)->q_ptr; 3482 conn_dev = (dev_t)RD(q)->q_ptr; 3483 ASSERT(minor_arena != NULL); 3484 ASSERT(conn_dev != 0); 3485 inet_minor_free(minor_arena, conn_dev); 3486 q->q_ptr = WR(q)->q_ptr = NULL; 3487 return (0); 3488 } 3489 3490 /* 3491 * Called by tcp_close() routine via squeue when lingering is 3492 * interrupted by a signal. 3493 */ 3494 3495 /* ARGSUSED */ 3496 static void 3497 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 3498 { 3499 conn_t *connp = (conn_t *)arg; 3500 tcp_t *tcp = connp->conn_tcp; 3501 3502 freeb(mp); 3503 if (tcp->tcp_linger_tid != 0 && 3504 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3505 tcp_stop_lingering(tcp); 3506 tcp->tcp_client_errno = EINTR; 3507 } 3508 } 3509 3510 /* 3511 * Called by streams close routine via squeues when our client blows off her 3512 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3513 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3514 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3515 * acked. 3516 * 3517 * NOTE: tcp_close potentially returns error when lingering. 3518 * However, the stream head currently does not pass these errors 3519 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3520 * errors to the application (from tsleep()) and not errors 3521 * like ECONNRESET caused by receiving a reset packet. 3522 */ 3523 3524 /* ARGSUSED */ 3525 static void 3526 tcp_close_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 3527 { 3528 char *msg; 3529 conn_t *connp = (conn_t *)arg; 3530 tcp_t *tcp = connp->conn_tcp; 3531 clock_t delta = 0; 3532 tcp_stack_t *tcps = tcp->tcp_tcps; 3533 3534 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3535 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3536 3537 mutex_enter(&tcp->tcp_eager_lock); 3538 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3539 /* Cleanup for listener */ 3540 tcp_eager_cleanup(tcp, 0); 3541 tcp->tcp_wait_for_eagers = 1; 3542 } 3543 mutex_exit(&tcp->tcp_eager_lock); 3544 3545 tcp->tcp_lso = B_FALSE; 3546 3547 msg = NULL; 3548 switch (tcp->tcp_state) { 3549 case TCPS_CLOSED: 3550 case TCPS_IDLE: 3551 case TCPS_BOUND: 3552 case TCPS_LISTEN: 3553 break; 3554 case TCPS_SYN_SENT: 3555 msg = "tcp_close, during connect"; 3556 break; 3557 case TCPS_SYN_RCVD: 3558 /* 3559 * Close during the connect 3-way handshake 3560 * but here there may or may not be pending data 3561 * already on queue. Process almost same as in 3562 * the ESTABLISHED state. 3563 */ 3564 /* FALLTHRU */ 3565 default: 3566 if (tcp->tcp_fused) 3567 tcp_unfuse(tcp); 3568 3569 /* 3570 * If SO_LINGER has set a zero linger time, abort the 3571 * connection with a reset. 3572 */ 3573 if (connp->conn_linger && connp->conn_lingertime == 0) { 3574 msg = "tcp_close, zero lingertime"; 3575 break; 3576 } 3577 3578 /* 3579 * Abort connection if there is unread data queued. 3580 */ 3581 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3582 msg = "tcp_close, unread data"; 3583 break; 3584 } 3585 /* 3586 * We have done a qwait() above which could have possibly 3587 * drained more messages in turn causing transition to a 3588 * different state. Check whether we have to do the rest 3589 * of the processing or not. 3590 */ 3591 if (tcp->tcp_state <= TCPS_LISTEN) 3592 break; 3593 3594 /* 3595 * Transmit the FIN before detaching the tcp_t. 3596 * After tcp_detach returns this queue/perimeter 3597 * no longer owns the tcp_t thus others can modify it. 3598 */ 3599 (void) tcp_xmit_end(tcp); 3600 3601 /* 3602 * If lingering on close then wait until the fin is acked, 3603 * the SO_LINGER time passes, or a reset is sent/received. 3604 */ 3605 if (connp->conn_linger && connp->conn_lingertime > 0 && 3606 !(tcp->tcp_fin_acked) && 3607 tcp->tcp_state >= TCPS_ESTABLISHED) { 3608 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3609 tcp->tcp_client_errno = EWOULDBLOCK; 3610 } else if (tcp->tcp_client_errno == 0) { 3611 3612 ASSERT(tcp->tcp_linger_tid == 0); 3613 3614 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3615 tcp_close_linger_timeout, 3616 connp->conn_lingertime * hz); 3617 3618 /* tcp_close_linger_timeout will finish close */ 3619 if (tcp->tcp_linger_tid == 0) 3620 tcp->tcp_client_errno = ENOSR; 3621 else 3622 return; 3623 } 3624 3625 /* 3626 * Check if we need to detach or just close 3627 * the instance. 3628 */ 3629 if (tcp->tcp_state <= TCPS_LISTEN) 3630 break; 3631 } 3632 3633 /* 3634 * Make sure that no other thread will access the conn_rq of 3635 * this instance (through lookups etc.) as conn_rq will go 3636 * away shortly. 3637 */ 3638 tcp_acceptor_hash_remove(tcp); 3639 3640 mutex_enter(&tcp->tcp_non_sq_lock); 3641 if (tcp->tcp_flow_stopped) { 3642 tcp_clrqfull(tcp); 3643 } 3644 mutex_exit(&tcp->tcp_non_sq_lock); 3645 3646 if (tcp->tcp_timer_tid != 0) { 3647 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3648 tcp->tcp_timer_tid = 0; 3649 } 3650 /* 3651 * Need to cancel those timers which will not be used when 3652 * TCP is detached. This has to be done before the conn_wq 3653 * is set to NULL. 3654 */ 3655 tcp_timers_stop(tcp); 3656 3657 tcp->tcp_detached = B_TRUE; 3658 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3659 tcp_time_wait_append(tcp); 3660 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3661 ASSERT(connp->conn_ref >= 3); 3662 goto finish; 3663 } 3664 3665 /* 3666 * If delta is zero the timer event wasn't executed and was 3667 * successfully canceled. In this case we need to restart it 3668 * with the minimal delta possible. 3669 */ 3670 if (delta >= 0) 3671 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3672 delta ? delta : 1); 3673 3674 ASSERT(connp->conn_ref >= 3); 3675 goto finish; 3676 } 3677 3678 /* Detach did not complete. Still need to remove q from stream. */ 3679 if (msg) { 3680 if (tcp->tcp_state == TCPS_ESTABLISHED || 3681 tcp->tcp_state == TCPS_CLOSE_WAIT) 3682 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3683 if (tcp->tcp_state == TCPS_SYN_SENT || 3684 tcp->tcp_state == TCPS_SYN_RCVD) 3685 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3686 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 3687 } 3688 3689 tcp_closei_local(tcp); 3690 CONN_DEC_REF(connp); 3691 ASSERT(connp->conn_ref >= 2); 3692 3693 finish: 3694 mutex_enter(&tcp->tcp_closelock); 3695 /* 3696 * Don't change the queues in the case of a listener that has 3697 * eagers in its q or q0. It could surprise the eagers. 3698 * Instead wait for the eagers outside the squeue. 3699 */ 3700 if (!tcp->tcp_wait_for_eagers) { 3701 tcp->tcp_detached = B_TRUE; 3702 connp->conn_rq = NULL; 3703 connp->conn_wq = NULL; 3704 } 3705 3706 /* Signal tcp_close() to finish closing. */ 3707 tcp->tcp_closed = 1; 3708 cv_signal(&tcp->tcp_closecv); 3709 mutex_exit(&tcp->tcp_closelock); 3710 } 3711 3712 /* 3713 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 3714 * Some stream heads get upset if they see these later on as anything but NULL. 3715 */ 3716 static void 3717 tcp_close_mpp(mblk_t **mpp) 3718 { 3719 mblk_t *mp; 3720 3721 if ((mp = *mpp) != NULL) { 3722 do { 3723 mp->b_next = NULL; 3724 mp->b_prev = NULL; 3725 } while ((mp = mp->b_cont) != NULL); 3726 3727 mp = *mpp; 3728 *mpp = NULL; 3729 freemsg(mp); 3730 } 3731 } 3732 3733 /* Do detached close. */ 3734 static void 3735 tcp_close_detached(tcp_t *tcp) 3736 { 3737 if (tcp->tcp_fused) 3738 tcp_unfuse(tcp); 3739 3740 /* 3741 * Clustering code serializes TCP disconnect callbacks and 3742 * cluster tcp list walks by blocking a TCP disconnect callback 3743 * if a cluster tcp list walk is in progress. This ensures 3744 * accurate accounting of TCPs in the cluster code even though 3745 * the TCP list walk itself is not atomic. 3746 */ 3747 tcp_closei_local(tcp); 3748 CONN_DEC_REF(tcp->tcp_connp); 3749 } 3750 3751 /* 3752 * Stop all TCP timers, and free the timer mblks if requested. 3753 */ 3754 void 3755 tcp_timers_stop(tcp_t *tcp) 3756 { 3757 if (tcp->tcp_timer_tid != 0) { 3758 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3759 tcp->tcp_timer_tid = 0; 3760 } 3761 if (tcp->tcp_ka_tid != 0) { 3762 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 3763 tcp->tcp_ka_tid = 0; 3764 } 3765 if (tcp->tcp_ack_tid != 0) { 3766 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 3767 tcp->tcp_ack_tid = 0; 3768 } 3769 if (tcp->tcp_push_tid != 0) { 3770 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 3771 tcp->tcp_push_tid = 0; 3772 } 3773 if (tcp->tcp_reass_tid != 0) { 3774 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_reass_tid); 3775 tcp->tcp_reass_tid = 0; 3776 } 3777 } 3778 3779 /* 3780 * The tcp_t is going away. Remove it from all lists and set it 3781 * to TCPS_CLOSED. The freeing up of memory is deferred until 3782 * tcp_inactive. This is needed since a thread in tcp_rput might have 3783 * done a CONN_INC_REF on this structure before it was removed from the 3784 * hashes. 3785 */ 3786 static void 3787 tcp_closei_local(tcp_t *tcp) 3788 { 3789 conn_t *connp = tcp->tcp_connp; 3790 tcp_stack_t *tcps = tcp->tcp_tcps; 3791 3792 if (!TCP_IS_SOCKET(tcp)) 3793 tcp_acceptor_hash_remove(tcp); 3794 3795 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 3796 tcp->tcp_ibsegs = 0; 3797 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 3798 tcp->tcp_obsegs = 0; 3799 3800 /* 3801 * If we are an eager connection hanging off a listener that 3802 * hasn't formally accepted the connection yet, get off his 3803 * list and blow off any data that we have accumulated. 3804 */ 3805 if (tcp->tcp_listener != NULL) { 3806 tcp_t *listener = tcp->tcp_listener; 3807 mutex_enter(&listener->tcp_eager_lock); 3808 /* 3809 * tcp_tconnind_started == B_TRUE means that the 3810 * conn_ind has already gone to listener. At 3811 * this point, eager will be closed but we 3812 * leave it in listeners eager list so that 3813 * if listener decides to close without doing 3814 * accept, we can clean this up. In tcp_tli_accept 3815 * we take care of the case of accept on closed 3816 * eager. 3817 */ 3818 if (!tcp->tcp_tconnind_started) { 3819 tcp_eager_unlink(tcp); 3820 mutex_exit(&listener->tcp_eager_lock); 3821 /* 3822 * We don't want to have any pointers to the 3823 * listener queue, after we have released our 3824 * reference on the listener 3825 */ 3826 ASSERT(tcp->tcp_detached); 3827 connp->conn_rq = NULL; 3828 connp->conn_wq = NULL; 3829 CONN_DEC_REF(listener->tcp_connp); 3830 } else { 3831 mutex_exit(&listener->tcp_eager_lock); 3832 } 3833 } 3834 3835 /* Stop all the timers */ 3836 tcp_timers_stop(tcp); 3837 3838 if (tcp->tcp_state == TCPS_LISTEN) { 3839 if (tcp->tcp_ip_addr_cache) { 3840 kmem_free((void *)tcp->tcp_ip_addr_cache, 3841 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 3842 tcp->tcp_ip_addr_cache = NULL; 3843 } 3844 } 3845 3846 /* Decrement listerner connection counter if necessary. */ 3847 if (tcp->tcp_listen_cnt != NULL) 3848 TCP_DECR_LISTEN_CNT(tcp); 3849 3850 mutex_enter(&tcp->tcp_non_sq_lock); 3851 if (tcp->tcp_flow_stopped) 3852 tcp_clrqfull(tcp); 3853 mutex_exit(&tcp->tcp_non_sq_lock); 3854 3855 tcp_bind_hash_remove(tcp); 3856 /* 3857 * If the tcp_time_wait_collector (which runs outside the squeue) 3858 * is trying to remove this tcp from the time wait list, we will 3859 * block in tcp_time_wait_remove while trying to acquire the 3860 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 3861 * requires the ipcl_hash_remove to be ordered after the 3862 * tcp_time_wait_remove for the refcnt checks to work correctly. 3863 */ 3864 if (tcp->tcp_state == TCPS_TIME_WAIT) 3865 (void) tcp_time_wait_remove(tcp, NULL); 3866 CL_INET_DISCONNECT(connp); 3867 ipcl_hash_remove(connp); 3868 ixa_cleanup(connp->conn_ixa); 3869 3870 /* 3871 * Mark the conn as CONDEMNED 3872 */ 3873 mutex_enter(&connp->conn_lock); 3874 connp->conn_state_flags |= CONN_CONDEMNED; 3875 mutex_exit(&connp->conn_lock); 3876 3877 ASSERT(tcp->tcp_time_wait_next == NULL); 3878 ASSERT(tcp->tcp_time_wait_prev == NULL); 3879 ASSERT(tcp->tcp_time_wait_expire == 0); 3880 tcp->tcp_state = TCPS_CLOSED; 3881 3882 /* Release any SSL context */ 3883 if (tcp->tcp_kssl_ent != NULL) { 3884 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 3885 tcp->tcp_kssl_ent = NULL; 3886 } 3887 if (tcp->tcp_kssl_ctx != NULL) { 3888 kssl_release_ctx(tcp->tcp_kssl_ctx); 3889 tcp->tcp_kssl_ctx = NULL; 3890 } 3891 tcp->tcp_kssl_pending = B_FALSE; 3892 3893 tcp_ipsec_cleanup(tcp); 3894 } 3895 3896 /* 3897 * tcp is dying (called from ipcl_conn_destroy and error cases). 3898 * Free the tcp_t in either case. 3899 */ 3900 void 3901 tcp_free(tcp_t *tcp) 3902 { 3903 mblk_t *mp; 3904 conn_t *connp = tcp->tcp_connp; 3905 3906 ASSERT(tcp != NULL); 3907 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 3908 3909 connp->conn_rq = NULL; 3910 connp->conn_wq = NULL; 3911 3912 tcp_close_mpp(&tcp->tcp_xmit_head); 3913 tcp_close_mpp(&tcp->tcp_reass_head); 3914 if (tcp->tcp_rcv_list != NULL) { 3915 /* Free b_next chain */ 3916 tcp_close_mpp(&tcp->tcp_rcv_list); 3917 } 3918 if ((mp = tcp->tcp_urp_mp) != NULL) { 3919 freemsg(mp); 3920 } 3921 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 3922 freemsg(mp); 3923 } 3924 3925 if (tcp->tcp_fused_sigurg_mp != NULL) { 3926 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 3927 freeb(tcp->tcp_fused_sigurg_mp); 3928 tcp->tcp_fused_sigurg_mp = NULL; 3929 } 3930 3931 if (tcp->tcp_ordrel_mp != NULL) { 3932 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 3933 freeb(tcp->tcp_ordrel_mp); 3934 tcp->tcp_ordrel_mp = NULL; 3935 } 3936 3937 if (tcp->tcp_sack_info != NULL) { 3938 if (tcp->tcp_notsack_list != NULL) { 3939 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 3940 tcp); 3941 } 3942 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 3943 } 3944 3945 if (tcp->tcp_hopopts != NULL) { 3946 mi_free(tcp->tcp_hopopts); 3947 tcp->tcp_hopopts = NULL; 3948 tcp->tcp_hopoptslen = 0; 3949 } 3950 ASSERT(tcp->tcp_hopoptslen == 0); 3951 if (tcp->tcp_dstopts != NULL) { 3952 mi_free(tcp->tcp_dstopts); 3953 tcp->tcp_dstopts = NULL; 3954 tcp->tcp_dstoptslen = 0; 3955 } 3956 ASSERT(tcp->tcp_dstoptslen == 0); 3957 if (tcp->tcp_rthdrdstopts != NULL) { 3958 mi_free(tcp->tcp_rthdrdstopts); 3959 tcp->tcp_rthdrdstopts = NULL; 3960 tcp->tcp_rthdrdstoptslen = 0; 3961 } 3962 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 3963 if (tcp->tcp_rthdr != NULL) { 3964 mi_free(tcp->tcp_rthdr); 3965 tcp->tcp_rthdr = NULL; 3966 tcp->tcp_rthdrlen = 0; 3967 } 3968 ASSERT(tcp->tcp_rthdrlen == 0); 3969 3970 /* 3971 * Following is really a blowing away a union. 3972 * It happens to have exactly two members of identical size 3973 * the following code is enough. 3974 */ 3975 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 3976 } 3977 3978 3979 /* 3980 * Put a connection confirmation message upstream built from the 3981 * address/flowid information with the conn and iph. Report our success or 3982 * failure. 3983 */ 3984 static boolean_t 3985 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, mblk_t *idmp, 3986 mblk_t **defermp, ip_recv_attr_t *ira) 3987 { 3988 sin_t sin; 3989 sin6_t sin6; 3990 mblk_t *mp; 3991 char *optp = NULL; 3992 int optlen = 0; 3993 conn_t *connp = tcp->tcp_connp; 3994 3995 if (defermp != NULL) 3996 *defermp = NULL; 3997 3998 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 3999 /* 4000 * Return in T_CONN_CON results of option negotiation through 4001 * the T_CONN_REQ. Note: If there is an real end-to-end option 4002 * negotiation, then what is received from remote end needs 4003 * to be taken into account but there is no such thing (yet?) 4004 * in our TCP/IP. 4005 * Note: We do not use mi_offset_param() here as 4006 * tcp_opts_conn_req contents do not directly come from 4007 * an application and are either generated in kernel or 4008 * from user input that was already verified. 4009 */ 4010 mp = tcp->tcp_conn.tcp_opts_conn_req; 4011 optp = (char *)(mp->b_rptr + 4012 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4013 optlen = (int) 4014 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4015 } 4016 4017 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4018 4019 /* packet is IPv4 */ 4020 if (connp->conn_family == AF_INET) { 4021 sin = sin_null; 4022 sin.sin_addr.s_addr = connp->conn_faddr_v4; 4023 sin.sin_port = connp->conn_fport; 4024 sin.sin_family = AF_INET; 4025 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4026 (int)sizeof (sin_t), optp, optlen); 4027 } else { 4028 sin6 = sin6_null; 4029 sin6.sin6_addr = connp->conn_faddr_v6; 4030 sin6.sin6_port = connp->conn_fport; 4031 sin6.sin6_family = AF_INET6; 4032 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4033 (int)sizeof (sin6_t), optp, optlen); 4034 4035 } 4036 } else { 4037 ip6_t *ip6h = (ip6_t *)iphdr; 4038 4039 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4040 ASSERT(connp->conn_family == AF_INET6); 4041 sin6 = sin6_null; 4042 sin6.sin6_addr = connp->conn_faddr_v6; 4043 sin6.sin6_port = connp->conn_fport; 4044 sin6.sin6_family = AF_INET6; 4045 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4046 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4047 (int)sizeof (sin6_t), optp, optlen); 4048 } 4049 4050 if (!mp) 4051 return (B_FALSE); 4052 4053 mblk_copycred(mp, idmp); 4054 4055 if (defermp == NULL) { 4056 conn_t *connp = tcp->tcp_connp; 4057 if (IPCL_IS_NONSTR(connp)) { 4058 (*connp->conn_upcalls->su_connected) 4059 (connp->conn_upper_handle, tcp->tcp_connid, 4060 ira->ira_cred, ira->ira_cpid); 4061 freemsg(mp); 4062 } else { 4063 if (ira->ira_cred != NULL) { 4064 /* So that getpeerucred works for TPI sockfs */ 4065 mblk_setcred(mp, ira->ira_cred, ira->ira_cpid); 4066 } 4067 putnext(connp->conn_rq, mp); 4068 } 4069 } else { 4070 *defermp = mp; 4071 } 4072 4073 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4074 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4075 return (B_TRUE); 4076 } 4077 4078 /* 4079 * Defense for the SYN attack - 4080 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4081 * one from the list of droppable eagers. This list is a subset of q0. 4082 * see comments before the definition of MAKE_DROPPABLE(). 4083 * 2. Don't drop a SYN request before its first timeout. This gives every 4084 * request at least til the first timeout to complete its 3-way handshake. 4085 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4086 * requests currently on the queue that has timed out. This will be used 4087 * as an indicator of whether an attack is under way, so that appropriate 4088 * actions can be taken. (It's incremented in tcp_timer() and decremented 4089 * either when eager goes into ESTABLISHED, or gets freed up.) 4090 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4091 * # of timeout drops back to <= q0len/32 => SYN alert off 4092 */ 4093 static boolean_t 4094 tcp_drop_q0(tcp_t *tcp) 4095 { 4096 tcp_t *eager; 4097 mblk_t *mp; 4098 tcp_stack_t *tcps = tcp->tcp_tcps; 4099 4100 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4101 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4102 4103 /* Pick oldest eager from the list of droppable eagers */ 4104 eager = tcp->tcp_eager_prev_drop_q0; 4105 4106 /* If list is empty. return B_FALSE */ 4107 if (eager == tcp) { 4108 return (B_FALSE); 4109 } 4110 4111 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4112 if ((mp = allocb(0, BPRI_HI)) == NULL) 4113 return (B_FALSE); 4114 4115 /* 4116 * Take this eager out from the list of droppable eagers since we are 4117 * going to drop it. 4118 */ 4119 MAKE_UNDROPPABLE(eager); 4120 4121 if (tcp->tcp_connp->conn_debug) { 4122 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4123 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4124 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4125 tcp->tcp_conn_req_cnt_q0, 4126 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4127 } 4128 4129 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4130 4131 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4132 CONN_INC_REF(eager->tcp_connp); 4133 4134 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 4135 tcp_clean_death_wrapper, eager->tcp_connp, NULL, 4136 SQ_FILL, SQTAG_TCP_DROP_Q0); 4137 4138 return (B_TRUE); 4139 } 4140 4141 /* 4142 * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6 4143 */ 4144 static mblk_t * 4145 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4146 ip_recv_attr_t *ira) 4147 { 4148 tcp_t *ltcp = lconnp->conn_tcp; 4149 tcp_t *tcp = connp->conn_tcp; 4150 mblk_t *tpi_mp; 4151 ipha_t *ipha; 4152 ip6_t *ip6h; 4153 sin6_t sin6; 4154 uint_t ifindex = ira->ira_ruifindex; 4155 tcp_stack_t *tcps = tcp->tcp_tcps; 4156 4157 if (ira->ira_flags & IRAF_IS_IPV4) { 4158 ipha = (ipha_t *)mp->b_rptr; 4159 4160 connp->conn_ipversion = IPV4_VERSION; 4161 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 4162 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 4163 connp->conn_saddr_v6 = connp->conn_laddr_v6; 4164 4165 sin6 = sin6_null; 4166 sin6.sin6_addr = connp->conn_faddr_v6; 4167 sin6.sin6_port = connp->conn_fport; 4168 sin6.sin6_family = AF_INET6; 4169 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 4170 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 4171 4172 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 4173 sin6_t sin6d; 4174 4175 sin6d = sin6_null; 4176 sin6d.sin6_addr = connp->conn_laddr_v6; 4177 sin6d.sin6_port = connp->conn_lport; 4178 sin6d.sin6_family = AF_INET; 4179 tpi_mp = mi_tpi_extconn_ind(NULL, 4180 (char *)&sin6d, sizeof (sin6_t), 4181 (char *)&tcp, 4182 (t_scalar_t)sizeof (intptr_t), 4183 (char *)&sin6d, sizeof (sin6_t), 4184 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4185 } else { 4186 tpi_mp = mi_tpi_conn_ind(NULL, 4187 (char *)&sin6, sizeof (sin6_t), 4188 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4189 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4190 } 4191 } else { 4192 ip6h = (ip6_t *)mp->b_rptr; 4193 4194 connp->conn_ipversion = IPV6_VERSION; 4195 connp->conn_laddr_v6 = ip6h->ip6_dst; 4196 connp->conn_faddr_v6 = ip6h->ip6_src; 4197 connp->conn_saddr_v6 = connp->conn_laddr_v6; 4198 4199 sin6 = sin6_null; 4200 sin6.sin6_addr = connp->conn_faddr_v6; 4201 sin6.sin6_port = connp->conn_fport; 4202 sin6.sin6_family = AF_INET6; 4203 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4204 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 4205 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 4206 4207 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4208 /* Pass up the scope_id of remote addr */ 4209 sin6.sin6_scope_id = ifindex; 4210 } else { 4211 sin6.sin6_scope_id = 0; 4212 } 4213 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 4214 sin6_t sin6d; 4215 4216 sin6d = sin6_null; 4217 sin6.sin6_addr = connp->conn_laddr_v6; 4218 sin6d.sin6_port = connp->conn_lport; 4219 sin6d.sin6_family = AF_INET6; 4220 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6)) 4221 sin6d.sin6_scope_id = ifindex; 4222 4223 tpi_mp = mi_tpi_extconn_ind(NULL, 4224 (char *)&sin6d, sizeof (sin6_t), 4225 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4226 (char *)&sin6d, sizeof (sin6_t), 4227 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4228 } else { 4229 tpi_mp = mi_tpi_conn_ind(NULL, 4230 (char *)&sin6, sizeof (sin6_t), 4231 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4232 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4233 } 4234 } 4235 4236 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4237 return (tpi_mp); 4238 } 4239 4240 /* Handle a SYN on an AF_INET socket */ 4241 mblk_t * 4242 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4243 ip_recv_attr_t *ira) 4244 { 4245 tcp_t *ltcp = lconnp->conn_tcp; 4246 tcp_t *tcp = connp->conn_tcp; 4247 sin_t sin; 4248 mblk_t *tpi_mp = NULL; 4249 tcp_stack_t *tcps = tcp->tcp_tcps; 4250 ipha_t *ipha; 4251 4252 ASSERT(ira->ira_flags & IRAF_IS_IPV4); 4253 ipha = (ipha_t *)mp->b_rptr; 4254 4255 connp->conn_ipversion = IPV4_VERSION; 4256 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 4257 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 4258 connp->conn_saddr_v6 = connp->conn_laddr_v6; 4259 4260 sin = sin_null; 4261 sin.sin_addr.s_addr = connp->conn_faddr_v4; 4262 sin.sin_port = connp->conn_fport; 4263 sin.sin_family = AF_INET; 4264 if (lconnp->conn_recv_ancillary.crb_recvdstaddr) { 4265 sin_t sind; 4266 4267 sind = sin_null; 4268 sind.sin_addr.s_addr = connp->conn_laddr_v4; 4269 sind.sin_port = connp->conn_lport; 4270 sind.sin_family = AF_INET; 4271 tpi_mp = mi_tpi_extconn_ind(NULL, 4272 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4273 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4274 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4275 } else { 4276 tpi_mp = mi_tpi_conn_ind(NULL, 4277 (char *)&sin, sizeof (sin_t), 4278 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4279 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4280 } 4281 4282 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 4283 return (tpi_mp); 4284 } 4285 4286 /* 4287 * tcp_get_conn/tcp_free_conn 4288 * 4289 * tcp_get_conn is used to get a clean tcp connection structure. 4290 * It tries to reuse the connections put on the freelist by the 4291 * time_wait_collector failing which it goes to kmem_cache. This 4292 * way has two benefits compared to just allocating from and 4293 * freeing to kmem_cache. 4294 * 1) The time_wait_collector can free (which includes the cleanup) 4295 * outside the squeue. So when the interrupt comes, we have a clean 4296 * connection sitting in the freelist. Obviously, this buys us 4297 * performance. 4298 * 4299 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener 4300 * has multiple disadvantages - tying up the squeue during alloc. 4301 * But allocating the conn/tcp in IP land is also not the best since 4302 * we can't check the 'q' and 'q0' which are protected by squeue and 4303 * blindly allocate memory which might have to be freed here if we are 4304 * not allowed to accept the connection. By using the freelist and 4305 * putting the conn/tcp back in freelist, we don't pay a penalty for 4306 * allocating memory without checking 'q/q0' and freeing it if we can't 4307 * accept the connection. 4308 * 4309 * Care should be taken to put the conn back in the same squeue's freelist 4310 * from which it was allocated. Best results are obtained if conn is 4311 * allocated from listener's squeue and freed to the same. Time wait 4312 * collector will free up the freelist is the connection ends up sitting 4313 * there for too long. 4314 */ 4315 void * 4316 tcp_get_conn(void *arg, tcp_stack_t *tcps) 4317 { 4318 tcp_t *tcp = NULL; 4319 conn_t *connp = NULL; 4320 squeue_t *sqp = (squeue_t *)arg; 4321 tcp_squeue_priv_t *tcp_time_wait; 4322 netstack_t *ns; 4323 mblk_t *tcp_rsrv_mp = NULL; 4324 4325 tcp_time_wait = 4326 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 4327 4328 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 4329 tcp = tcp_time_wait->tcp_free_list; 4330 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 4331 if (tcp != NULL) { 4332 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 4333 tcp_time_wait->tcp_free_list_cnt--; 4334 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 4335 tcp->tcp_time_wait_next = NULL; 4336 connp = tcp->tcp_connp; 4337 connp->conn_flags |= IPCL_REUSED; 4338 4339 ASSERT(tcp->tcp_tcps == NULL); 4340 ASSERT(connp->conn_netstack == NULL); 4341 ASSERT(tcp->tcp_rsrv_mp != NULL); 4342 ns = tcps->tcps_netstack; 4343 netstack_hold(ns); 4344 connp->conn_netstack = ns; 4345 connp->conn_ixa->ixa_ipst = ns->netstack_ip; 4346 tcp->tcp_tcps = tcps; 4347 ipcl_globalhash_insert(connp); 4348 4349 connp->conn_ixa->ixa_notify_cookie = tcp; 4350 ASSERT(connp->conn_ixa->ixa_notify == tcp_notify); 4351 connp->conn_recv = tcp_input_data; 4352 ASSERT(connp->conn_recvicmp == tcp_icmp_input); 4353 ASSERT(connp->conn_verifyicmp == tcp_verifyicmp); 4354 return ((void *)connp); 4355 } 4356 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 4357 /* 4358 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 4359 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 4360 */ 4361 tcp_rsrv_mp = allocb(0, BPRI_HI); 4362 if (tcp_rsrv_mp == NULL) 4363 return (NULL); 4364 4365 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 4366 tcps->tcps_netstack)) == NULL) { 4367 freeb(tcp_rsrv_mp); 4368 return (NULL); 4369 } 4370 4371 tcp = connp->conn_tcp; 4372 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 4373 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 4374 4375 tcp->tcp_tcps = tcps; 4376 4377 connp->conn_recv = tcp_input_data; 4378 connp->conn_recvicmp = tcp_icmp_input; 4379 connp->conn_verifyicmp = tcp_verifyicmp; 4380 4381 /* 4382 * Register tcp_notify to listen to capability changes detected by IP. 4383 * This upcall is made in the context of the call to conn_ip_output 4384 * thus it is inside the squeue. 4385 */ 4386 connp->conn_ixa->ixa_notify = tcp_notify; 4387 connp->conn_ixa->ixa_notify_cookie = tcp; 4388 4389 return ((void *)connp); 4390 } 4391 4392 /* BEGIN CSTYLED */ 4393 /* 4394 * 4395 * The sockfs ACCEPT path: 4396 * ======================= 4397 * 4398 * The eager is now established in its own perimeter as soon as SYN is 4399 * received in tcp_input_listener(). When sockfs receives conn_ind, it 4400 * completes the accept processing on the acceptor STREAM. The sending 4401 * of conn_ind part is common for both sockfs listener and a TLI/XTI 4402 * listener but a TLI/XTI listener completes the accept processing 4403 * on the listener perimeter. 4404 * 4405 * Common control flow for 3 way handshake: 4406 * ---------------------------------------- 4407 * 4408 * incoming SYN (listener perimeter) -> tcp_input_listener() 4409 * 4410 * incoming SYN-ACK-ACK (eager perim) -> tcp_input_data() 4411 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 4412 * 4413 * Sockfs ACCEPT Path: 4414 * ------------------- 4415 * 4416 * open acceptor stream (tcp_open allocates tcp_tli_accept() 4417 * as STREAM entry point) 4418 * 4419 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept() 4420 * 4421 * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager 4422 * association (we are not behind eager's squeue but sockfs is protecting us 4423 * and no one knows about this stream yet. The STREAMS entry point q->q_info 4424 * is changed to point at tcp_wput(). 4425 * 4426 * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to 4427 * listener (done on listener's perimeter). 4428 * 4429 * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish 4430 * accept. 4431 * 4432 * TLI/XTI client ACCEPT path: 4433 * --------------------------- 4434 * 4435 * soaccept() sends T_CONN_RES on the listener STREAM. 4436 * 4437 * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send 4438 * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()). 4439 * 4440 * Locks: 4441 * ====== 4442 * 4443 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 4444 * and listeners->tcp_eager_next_q. 4445 * 4446 * Referencing: 4447 * ============ 4448 * 4449 * 1) We start out in tcp_input_listener by eager placing a ref on 4450 * listener and listener adding eager to listeners->tcp_eager_next_q0. 4451 * 4452 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 4453 * doing so we place a ref on the eager. This ref is finally dropped at the 4454 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 4455 * reference is dropped by the squeue framework. 4456 * 4457 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 4458 * 4459 * The reference must be released by the same entity that added the reference 4460 * In the above scheme, the eager is the entity that adds and releases the 4461 * references. Note that tcp_accept_finish executes in the squeue of the eager 4462 * (albeit after it is attached to the acceptor stream). Though 1. executes 4463 * in the listener's squeue, the eager is nascent at this point and the 4464 * reference can be considered to have been added on behalf of the eager. 4465 * 4466 * Eager getting a Reset or listener closing: 4467 * ========================================== 4468 * 4469 * Once the listener and eager are linked, the listener never does the unlink. 4470 * If the listener needs to close, tcp_eager_cleanup() is called which queues 4471 * a message on all eager perimeter. The eager then does the unlink, clears 4472 * any pointers to the listener's queue and drops the reference to the 4473 * listener. The listener waits in tcp_close outside the squeue until its 4474 * refcount has dropped to 1. This ensures that the listener has waited for 4475 * all eagers to clear their association with the listener. 4476 * 4477 * Similarly, if eager decides to go away, it can unlink itself and close. 4478 * When the T_CONN_RES comes down, we check if eager has closed. Note that 4479 * the reference to eager is still valid because of the extra ref we put 4480 * in tcp_send_conn_ind. 4481 * 4482 * Listener can always locate the eager under the protection 4483 * of the listener->tcp_eager_lock, and then do a refhold 4484 * on the eager during the accept processing. 4485 * 4486 * The acceptor stream accesses the eager in the accept processing 4487 * based on the ref placed on eager before sending T_conn_ind. 4488 * The only entity that can negate this refhold is a listener close 4489 * which is mutually exclusive with an active acceptor stream. 4490 * 4491 * Eager's reference on the listener 4492 * =================================== 4493 * 4494 * If the accept happens (even on a closed eager) the eager drops its 4495 * reference on the listener at the start of tcp_accept_finish. If the 4496 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 4497 * the reference is dropped in tcp_closei_local. If the listener closes, 4498 * the reference is dropped in tcp_eager_kill. In all cases the reference 4499 * is dropped while executing in the eager's context (squeue). 4500 */ 4501 /* END CSTYLED */ 4502 4503 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 4504 4505 /* 4506 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 4507 * tcp_input_data will not see any packets for listeners since the listener 4508 * has conn_recv set to tcp_input_listener. 4509 */ 4510 /* ARGSUSED */ 4511 void 4512 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4513 { 4514 tcpha_t *tcpha; 4515 uint32_t seg_seq; 4516 tcp_t *eager; 4517 int err; 4518 conn_t *econnp = NULL; 4519 squeue_t *new_sqp; 4520 mblk_t *mp1; 4521 uint_t ip_hdr_len; 4522 conn_t *lconnp = (conn_t *)arg; 4523 tcp_t *listener = lconnp->conn_tcp; 4524 tcp_stack_t *tcps = listener->tcp_tcps; 4525 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 4526 uint_t flags; 4527 mblk_t *tpi_mp; 4528 uint_t ifindex = ira->ira_ruifindex; 4529 boolean_t tlc_set = B_FALSE; 4530 4531 ip_hdr_len = ira->ira_ip_hdr_length; 4532 tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; 4533 flags = (unsigned int)tcpha->tha_flags & 0xFF; 4534 4535 if (!(flags & TH_SYN)) { 4536 if ((flags & TH_RST) || (flags & TH_URG)) { 4537 freemsg(mp); 4538 return; 4539 } 4540 if (flags & TH_ACK) { 4541 /* Note this executes in listener's squeue */ 4542 tcp_xmit_listeners_reset(mp, ira, ipst, lconnp); 4543 return; 4544 } 4545 4546 freemsg(mp); 4547 return; 4548 } 4549 4550 if (listener->tcp_state != TCPS_LISTEN) 4551 goto error2; 4552 4553 ASSERT(IPCL_IS_BOUND(lconnp)); 4554 4555 mutex_enter(&listener->tcp_eager_lock); 4556 4557 /* 4558 * The system is under memory pressure, so we need to do our part 4559 * to relieve the pressure. So we only accept new request if there 4560 * is nothing waiting to be accepted or waiting to complete the 3-way 4561 * handshake. This means that busy listener will not get too many 4562 * new requests which they cannot handle in time while non-busy 4563 * listener is still functioning properly. 4564 */ 4565 if (tcps->tcps_reclaim && (listener->tcp_conn_req_cnt_q > 0 || 4566 listener->tcp_conn_req_cnt_q0 > 0)) { 4567 mutex_exit(&listener->tcp_eager_lock); 4568 TCP_STAT(tcps, tcp_listen_mem_drop); 4569 goto error2; 4570 } 4571 4572 if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) { 4573 mutex_exit(&listener->tcp_eager_lock); 4574 TCP_STAT(tcps, tcp_listendrop); 4575 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 4576 if (lconnp->conn_debug) { 4577 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 4578 "tcp_input_listener: listen backlog (max=%d) " 4579 "overflow (%d pending) on %s", 4580 listener->tcp_conn_req_max, 4581 listener->tcp_conn_req_cnt_q, 4582 tcp_display(listener, NULL, DISP_PORT_ONLY)); 4583 } 4584 goto error2; 4585 } 4586 4587 if (listener->tcp_conn_req_cnt_q0 >= 4588 listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 4589 /* 4590 * Q0 is full. Drop a pending half-open req from the queue 4591 * to make room for the new SYN req. Also mark the time we 4592 * drop a SYN. 4593 * 4594 * A more aggressive defense against SYN attack will 4595 * be to set the "tcp_syn_defense" flag now. 4596 */ 4597 TCP_STAT(tcps, tcp_listendropq0); 4598 listener->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 4599 if (!tcp_drop_q0(listener)) { 4600 mutex_exit(&listener->tcp_eager_lock); 4601 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 4602 if (lconnp->conn_debug) { 4603 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4604 "tcp_input_listener: listen half-open " 4605 "queue (max=%d) full (%d pending) on %s", 4606 tcps->tcps_conn_req_max_q0, 4607 listener->tcp_conn_req_cnt_q0, 4608 tcp_display(listener, NULL, 4609 DISP_PORT_ONLY)); 4610 } 4611 goto error2; 4612 } 4613 } 4614 4615 /* 4616 * Enforce the limit set on the number of connections per listener. 4617 * Note that tlc_cnt starts with 1. So need to add 1 to tlc_max 4618 * for comparison. 4619 */ 4620 if (listener->tcp_listen_cnt != NULL) { 4621 tcp_listen_cnt_t *tlc = listener->tcp_listen_cnt; 4622 int64_t now; 4623 4624 if (atomic_add_32_nv(&tlc->tlc_cnt, 1) > tlc->tlc_max + 1) { 4625 mutex_exit(&listener->tcp_eager_lock); 4626 now = ddi_get_lbolt64(); 4627 atomic_add_32(&tlc->tlc_cnt, -1); 4628 TCP_STAT(tcps, tcp_listen_cnt_drop); 4629 tlc->tlc_drop++; 4630 if (now - tlc->tlc_report_time > 4631 MSEC_TO_TICK(TCP_TLC_REPORT_INTERVAL)) { 4632 zcmn_err(lconnp->conn_zoneid, CE_WARN, 4633 "Listener (port %d) connection max (%u) " 4634 "reached: %u attempts dropped total\n", 4635 ntohs(listener->tcp_connp->conn_lport), 4636 tlc->tlc_max, tlc->tlc_drop); 4637 tlc->tlc_report_time = now; 4638 } 4639 goto error2; 4640 } 4641 tlc_set = B_TRUE; 4642 } 4643 4644 mutex_exit(&listener->tcp_eager_lock); 4645 4646 /* 4647 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 4648 * or based on the ring (for packets from GLD). Otherwise it is 4649 * set based on lbolt i.e., a somewhat random number. 4650 */ 4651 ASSERT(ira->ira_sqp != NULL); 4652 new_sqp = ira->ira_sqp; 4653 4654 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 4655 if (econnp == NULL) 4656 goto error2; 4657 4658 ASSERT(econnp->conn_netstack == lconnp->conn_netstack); 4659 econnp->conn_sqp = new_sqp; 4660 econnp->conn_initial_sqp = new_sqp; 4661 econnp->conn_ixa->ixa_sqp = new_sqp; 4662 4663 econnp->conn_fport = tcpha->tha_lport; 4664 econnp->conn_lport = tcpha->tha_fport; 4665 4666 err = conn_inherit_parent(lconnp, econnp); 4667 if (err != 0) 4668 goto error3; 4669 4670 /* We already know the laddr of the new connection is ours */ 4671 econnp->conn_ixa->ixa_src_generation = ipst->ips_src_generation; 4672 4673 ASSERT(OK_32PTR(mp->b_rptr)); 4674 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION || 4675 IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 4676 4677 if (lconnp->conn_family == AF_INET) { 4678 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 4679 tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira); 4680 } else { 4681 tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira); 4682 } 4683 4684 if (tpi_mp == NULL) 4685 goto error3; 4686 4687 eager = econnp->conn_tcp; 4688 eager->tcp_detached = B_TRUE; 4689 SOCK_CONNID_INIT(eager->tcp_connid); 4690 4691 tcp_init_values(eager); 4692 4693 ASSERT((econnp->conn_ixa->ixa_flags & 4694 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 4695 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) == 4696 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 4697 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)); 4698 4699 if (!tcps->tcps_dev_flow_ctl) 4700 econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 4701 4702 /* Prepare for diffing against previous packets */ 4703 eager->tcp_recvifindex = 0; 4704 eager->tcp_recvhops = 0xffffffffU; 4705 4706 if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) { 4707 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) || 4708 IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) { 4709 econnp->conn_incoming_ifindex = ifindex; 4710 econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 4711 econnp->conn_ixa->ixa_scopeid = ifindex; 4712 } 4713 } 4714 4715 if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) == 4716 (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) && 4717 tcps->tcps_rev_src_routes) { 4718 ipha_t *ipha = (ipha_t *)mp->b_rptr; 4719 ip_pkt_t *ipp = &econnp->conn_xmit_ipp; 4720 4721 /* Source routing option copyover (reverse it) */ 4722 err = ip_find_hdr_v4(ipha, ipp, B_TRUE); 4723 if (err != 0) { 4724 freemsg(tpi_mp); 4725 goto error3; 4726 } 4727 ip_pkt_source_route_reverse_v4(ipp); 4728 } 4729 4730 ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL); 4731 ASSERT(!eager->tcp_tconnind_started); 4732 /* 4733 * If the SYN came with a credential, it's a loopback packet or a 4734 * labeled packet; attach the credential to the TPI message. 4735 */ 4736 if (ira->ira_cred != NULL) 4737 mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid); 4738 4739 eager->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4740 4741 /* Inherit the listener's SSL protection state */ 4742 if ((eager->tcp_kssl_ent = listener->tcp_kssl_ent) != NULL) { 4743 kssl_hold_ent(eager->tcp_kssl_ent); 4744 eager->tcp_kssl_pending = B_TRUE; 4745 } 4746 4747 /* Inherit the listener's non-STREAMS flag */ 4748 if (IPCL_IS_NONSTR(lconnp)) { 4749 econnp->conn_flags |= IPCL_NONSTR; 4750 } 4751 4752 ASSERT(eager->tcp_ordrel_mp == NULL); 4753 4754 if (!IPCL_IS_NONSTR(econnp)) { 4755 /* 4756 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that 4757 * at close time, we will always have that to send up. 4758 * Otherwise, we need to do special handling in case the 4759 * allocation fails at that time. 4760 */ 4761 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 4762 goto error3; 4763 } 4764 /* 4765 * Now that the IP addresses and ports are setup in econnp we 4766 * can do the IPsec policy work. 4767 */ 4768 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 4769 if (lconnp->conn_policy != NULL) { 4770 /* 4771 * Inherit the policy from the listener; use 4772 * actions from ira 4773 */ 4774 if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) { 4775 CONN_DEC_REF(econnp); 4776 freemsg(mp); 4777 goto error3; 4778 } 4779 } 4780 } 4781 4782 /* Inherit various TCP parameters from the listener */ 4783 eager->tcp_naglim = listener->tcp_naglim; 4784 eager->tcp_first_timer_threshold = listener->tcp_first_timer_threshold; 4785 eager->tcp_second_timer_threshold = 4786 listener->tcp_second_timer_threshold; 4787 eager->tcp_first_ctimer_threshold = 4788 listener->tcp_first_ctimer_threshold; 4789 eager->tcp_second_ctimer_threshold = 4790 listener->tcp_second_ctimer_threshold; 4791 4792 /* 4793 * tcp_set_destination() may set tcp_rwnd according to the route 4794 * metrics. If it does not, the eager's receive window will be set 4795 * to the listener's receive window later in this function. 4796 */ 4797 eager->tcp_rwnd = 0; 4798 4799 /* 4800 * Inherit listener's tcp_init_cwnd. Need to do this before 4801 * calling tcp_process_options() which set the initial cwnd. 4802 */ 4803 eager->tcp_init_cwnd = listener->tcp_init_cwnd; 4804 4805 if (is_system_labeled()) { 4806 ip_xmit_attr_t *ixa = econnp->conn_ixa; 4807 4808 ASSERT(ira->ira_tsl != NULL); 4809 /* Discard any old label */ 4810 if (ixa->ixa_free_flags & IXA_FREE_TSL) { 4811 ASSERT(ixa->ixa_tsl != NULL); 4812 label_rele(ixa->ixa_tsl); 4813 ixa->ixa_free_flags &= ~IXA_FREE_TSL; 4814 ixa->ixa_tsl = NULL; 4815 } 4816 if ((lconnp->conn_mlp_type != mlptSingle || 4817 lconnp->conn_mac_mode != CONN_MAC_DEFAULT) && 4818 ira->ira_tsl != NULL) { 4819 /* 4820 * If this is an MLP connection or a MAC-Exempt 4821 * connection with an unlabeled node, packets are to be 4822 * exchanged using the security label of the received 4823 * SYN packet instead of the server application's label. 4824 * tsol_check_dest called from ip_set_destination 4825 * might later update TSF_UNLABELED by replacing 4826 * ixa_tsl with a new label. 4827 */ 4828 label_hold(ira->ira_tsl); 4829 ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl); 4830 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 4831 econnp, ts_label_t *, ixa->ixa_tsl) 4832 } else { 4833 ixa->ixa_tsl = crgetlabel(econnp->conn_cred); 4834 DTRACE_PROBE2(syn_accept, conn_t *, 4835 econnp, ts_label_t *, ixa->ixa_tsl) 4836 } 4837 /* 4838 * conn_connect() called from tcp_set_destination will verify 4839 * the destination is allowed to receive packets at the 4840 * security label of the SYN-ACK we are generating. As part of 4841 * that, tsol_check_dest() may create a new effective label for 4842 * this connection. 4843 * Finally conn_connect() will call conn_update_label. 4844 * All that remains for TCP to do is to call 4845 * conn_build_hdr_template which is done as part of 4846 * tcp_set_destination. 4847 */ 4848 } 4849 4850 /* 4851 * Since we will clear tcp_listener before we clear tcp_detached 4852 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress 4853 * so we can tell a TCP_DETACHED_NONEAGER apart. 4854 */ 4855 eager->tcp_hard_binding = B_TRUE; 4856 4857 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 4858 TCP_BIND_HASH(econnp->conn_lport)], eager, 0); 4859 4860 CL_INET_CONNECT(econnp, B_FALSE, err); 4861 if (err != 0) { 4862 tcp_bind_hash_remove(eager); 4863 goto error3; 4864 } 4865 4866 /* 4867 * No need to check for multicast destination since ip will only pass 4868 * up multicasts to those that have expressed interest 4869 * TODO: what about rejecting broadcasts? 4870 * Also check that source is not a multicast or broadcast address. 4871 */ 4872 eager->tcp_state = TCPS_SYN_RCVD; 4873 SOCK_CONNID_BUMP(eager->tcp_connid); 4874 4875 /* 4876 * Adapt our mss, ttl, ... based on the remote address. 4877 */ 4878 4879 if (tcp_set_destination(eager) != 0) { 4880 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4881 /* Undo the bind_hash_insert */ 4882 tcp_bind_hash_remove(eager); 4883 goto error3; 4884 } 4885 4886 /* Process all TCP options. */ 4887 tcp_process_options(eager, tcpha); 4888 4889 /* Is the other end ECN capable? */ 4890 if (tcps->tcps_ecn_permitted >= 1 && 4891 (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 4892 eager->tcp_ecn_ok = B_TRUE; 4893 } 4894 4895 /* 4896 * The listener's conn_rcvbuf should be the default window size or a 4897 * window size changed via SO_RCVBUF option. First round up the 4898 * eager's tcp_rwnd to the nearest MSS. Then find out the window 4899 * scale option value if needed. Call tcp_rwnd_set() to finish the 4900 * setting. 4901 * 4902 * Note if there is a rpipe metric associated with the remote host, 4903 * we should not inherit receive window size from listener. 4904 */ 4905 eager->tcp_rwnd = MSS_ROUNDUP( 4906 (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf : 4907 eager->tcp_rwnd), eager->tcp_mss); 4908 if (eager->tcp_snd_ws_ok) 4909 tcp_set_ws_value(eager); 4910 /* 4911 * Note that this is the only place tcp_rwnd_set() is called for 4912 * accepting a connection. We need to call it here instead of 4913 * after the 3-way handshake because we need to tell the other 4914 * side our rwnd in the SYN-ACK segment. 4915 */ 4916 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 4917 4918 ASSERT(eager->tcp_connp->conn_rcvbuf != 0 && 4919 eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd); 4920 4921 ASSERT(econnp->conn_rcvbuf != 0 && 4922 econnp->conn_rcvbuf == eager->tcp_rwnd); 4923 4924 /* Put a ref on the listener for the eager. */ 4925 CONN_INC_REF(lconnp); 4926 mutex_enter(&listener->tcp_eager_lock); 4927 listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 4928 eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0; 4929 listener->tcp_eager_next_q0 = eager; 4930 eager->tcp_eager_prev_q0 = listener; 4931 4932 /* Set tcp_listener before adding it to tcp_conn_fanout */ 4933 eager->tcp_listener = listener; 4934 eager->tcp_saved_listener = listener; 4935 4936 /* 4937 * Set tcp_listen_cnt so that when the connection is done, the counter 4938 * is decremented. 4939 */ 4940 eager->tcp_listen_cnt = listener->tcp_listen_cnt; 4941 4942 /* 4943 * Tag this detached tcp vector for later retrieval 4944 * by our listener client in tcp_accept(). 4945 */ 4946 eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum; 4947 listener->tcp_conn_req_cnt_q0++; 4948 if (++listener->tcp_conn_req_seqnum == -1) { 4949 /* 4950 * -1 is "special" and defined in TPI as something 4951 * that should never be used in T_CONN_IND 4952 */ 4953 ++listener->tcp_conn_req_seqnum; 4954 } 4955 mutex_exit(&listener->tcp_eager_lock); 4956 4957 if (listener->tcp_syn_defense) { 4958 /* Don't drop the SYN that comes from a good IP source */ 4959 ipaddr_t *addr_cache; 4960 4961 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 4962 if (addr_cache != NULL && econnp->conn_faddr_v4 == 4963 addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) { 4964 eager->tcp_dontdrop = B_TRUE; 4965 } 4966 } 4967 4968 /* 4969 * We need to insert the eager in its own perimeter but as soon 4970 * as we do that, we expose the eager to the classifier and 4971 * should not touch any field outside the eager's perimeter. 4972 * So do all the work necessary before inserting the eager 4973 * in its own perimeter. Be optimistic that conn_connect() 4974 * will succeed but undo everything if it fails. 4975 */ 4976 seg_seq = ntohl(tcpha->tha_seq); 4977 eager->tcp_irs = seg_seq; 4978 eager->tcp_rack = seg_seq; 4979 eager->tcp_rnxt = seg_seq + 1; 4980 eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt); 4981 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 4982 eager->tcp_state = TCPS_SYN_RCVD; 4983 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 4984 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 4985 if (mp1 == NULL) { 4986 /* 4987 * Increment the ref count as we are going to 4988 * enqueueing an mp in squeue 4989 */ 4990 CONN_INC_REF(econnp); 4991 goto error; 4992 } 4993 4994 /* 4995 * We need to start the rto timer. In normal case, we start 4996 * the timer after sending the packet on the wire (or at 4997 * least believing that packet was sent by waiting for 4998 * conn_ip_output() to return). Since this is the first packet 4999 * being sent on the wire for the eager, our initial tcp_rto 5000 * is at least tcp_rexmit_interval_min which is a fairly 5001 * large value to allow the algorithm to adjust slowly to large 5002 * fluctuations of RTT during first few transmissions. 5003 * 5004 * Starting the timer first and then sending the packet in this 5005 * case shouldn't make much difference since tcp_rexmit_interval_min 5006 * is of the order of several 100ms and starting the timer 5007 * first and then sending the packet will result in difference 5008 * of few micro seconds. 5009 * 5010 * Without this optimization, we are forced to hold the fanout 5011 * lock across the ipcl_bind_insert() and sending the packet 5012 * so that we don't race against an incoming packet (maybe RST) 5013 * for this eager. 5014 * 5015 * It is necessary to acquire an extra reference on the eager 5016 * at this point and hold it until after tcp_send_data() to 5017 * ensure against an eager close race. 5018 */ 5019 5020 CONN_INC_REF(econnp); 5021 5022 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5023 5024 /* 5025 * Insert the eager in its own perimeter now. We are ready to deal 5026 * with any packets on eager. 5027 */ 5028 if (ipcl_conn_insert(econnp) != 0) 5029 goto error; 5030 5031 ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp); 5032 freemsg(mp); 5033 /* 5034 * Send the SYN-ACK. Use the right squeue so that conn_ixa is 5035 * only used by one thread at a time. 5036 */ 5037 if (econnp->conn_sqp == lconnp->conn_sqp) { 5038 (void) conn_ip_output(mp1, econnp->conn_ixa); 5039 CONN_DEC_REF(econnp); 5040 } else { 5041 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_send_synack, 5042 econnp, NULL, SQ_PROCESS, SQTAG_TCP_SEND_SYNACK); 5043 } 5044 return; 5045 error: 5046 freemsg(mp1); 5047 eager->tcp_closemp_used = B_TRUE; 5048 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5049 mp1 = &eager->tcp_closemp; 5050 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 5051 econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 5052 5053 /* 5054 * If a connection already exists, send the mp to that connections so 5055 * that it can be appropriately dealt with. 5056 */ 5057 ipst = tcps->tcps_netstack->netstack_ip; 5058 5059 if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) { 5060 if (!IPCL_IS_CONNECTED(econnp)) { 5061 /* 5062 * Something bad happened. ipcl_conn_insert() 5063 * failed because a connection already existed 5064 * in connected hash but we can't find it 5065 * anymore (someone blew it away). Just 5066 * free this message and hopefully remote 5067 * will retransmit at which time the SYN can be 5068 * treated as a new connection or dealth with 5069 * a TH_RST if a connection already exists. 5070 */ 5071 CONN_DEC_REF(econnp); 5072 freemsg(mp); 5073 } else { 5074 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data, 5075 econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 5076 } 5077 } else { 5078 /* Nobody wants this packet */ 5079 freemsg(mp); 5080 } 5081 return; 5082 error3: 5083 CONN_DEC_REF(econnp); 5084 error2: 5085 freemsg(mp); 5086 if (tlc_set) 5087 atomic_add_32(&listener->tcp_listen_cnt->tlc_cnt, -1); 5088 } 5089 5090 /* ARGSUSED2 */ 5091 void 5092 tcp_send_synack(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 5093 { 5094 conn_t *econnp = (conn_t *)arg; 5095 tcp_t *tcp = econnp->conn_tcp; 5096 5097 /* Guard against a RST having blown it away while on the squeue */ 5098 if (tcp->tcp_state == TCPS_CLOSED) { 5099 freemsg(mp); 5100 return; 5101 } 5102 5103 (void) conn_ip_output(mp, econnp->conn_ixa); 5104 } 5105 5106 /* 5107 * In an ideal case of vertical partition in NUMA architecture, its 5108 * beneficial to have the listener and all the incoming connections 5109 * tied to the same squeue. The other constraint is that incoming 5110 * connections should be tied to the squeue attached to interrupted 5111 * CPU for obvious locality reason so this leaves the listener to 5112 * be tied to the same squeue. Our only problem is that when listener 5113 * is binding, the CPU that will get interrupted by the NIC whose 5114 * IP address the listener is binding to is not even known. So 5115 * the code below allows us to change that binding at the time the 5116 * CPU is interrupted by virtue of incoming connection's squeue. 5117 * 5118 * This is usefull only in case of a listener bound to a specific IP 5119 * address. For other kind of listeners, they get bound the 5120 * very first time and there is no attempt to rebind them. 5121 */ 5122 void 5123 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2, 5124 ip_recv_attr_t *ira) 5125 { 5126 conn_t *connp = (conn_t *)arg; 5127 squeue_t *sqp = (squeue_t *)arg2; 5128 squeue_t *new_sqp; 5129 uint32_t conn_flags; 5130 5131 /* 5132 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 5133 * or based on the ring (for packets from GLD). Otherwise it is 5134 * set based on lbolt i.e., a somewhat random number. 5135 */ 5136 ASSERT(ira->ira_sqp != NULL); 5137 new_sqp = ira->ira_sqp; 5138 5139 if (connp->conn_fanout == NULL) 5140 goto done; 5141 5142 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5143 mutex_enter(&connp->conn_fanout->connf_lock); 5144 mutex_enter(&connp->conn_lock); 5145 /* 5146 * No one from read or write side can access us now 5147 * except for already queued packets on this squeue. 5148 * But since we haven't changed the squeue yet, they 5149 * can't execute. If they are processed after we have 5150 * changed the squeue, they are sent back to the 5151 * correct squeue down below. 5152 * But a listner close can race with processing of 5153 * incoming SYN. If incoming SYN processing changes 5154 * the squeue then the listener close which is waiting 5155 * to enter the squeue would operate on the wrong 5156 * squeue. Hence we don't change the squeue here unless 5157 * the refcount is exactly the minimum refcount. The 5158 * minimum refcount of 4 is counted as - 1 each for 5159 * TCP and IP, 1 for being in the classifier hash, and 5160 * 1 for the mblk being processed. 5161 */ 5162 5163 if (connp->conn_ref != 4 || 5164 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 5165 mutex_exit(&connp->conn_lock); 5166 mutex_exit(&connp->conn_fanout->connf_lock); 5167 goto done; 5168 } 5169 if (connp->conn_sqp != new_sqp) { 5170 while (connp->conn_sqp != new_sqp) 5171 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5172 /* No special MT issues for outbound ixa_sqp hint */ 5173 connp->conn_ixa->ixa_sqp = new_sqp; 5174 } 5175 5176 do { 5177 conn_flags = connp->conn_flags; 5178 conn_flags |= IPCL_FULLY_BOUND; 5179 (void) cas32(&connp->conn_flags, connp->conn_flags, 5180 conn_flags); 5181 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5182 5183 mutex_exit(&connp->conn_fanout->connf_lock); 5184 mutex_exit(&connp->conn_lock); 5185 5186 /* 5187 * Assume we have picked a good squeue for the listener. Make 5188 * subsequent SYNs not try to change the squeue. 5189 */ 5190 connp->conn_recv = tcp_input_listener; 5191 } 5192 5193 done: 5194 if (connp->conn_sqp != sqp) { 5195 CONN_INC_REF(connp); 5196 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 5197 ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 5198 } else { 5199 tcp_input_listener(connp, mp, sqp, ira); 5200 } 5201 } 5202 5203 /* 5204 * Successful connect request processing begins when our client passes 5205 * a T_CONN_REQ message into tcp_wput(), which performs function calls into 5206 * IP and the passes a T_OK_ACK (or T_ERROR_ACK upstream). 5207 * 5208 * After various error checks are completed, tcp_tpi_connect() lays 5209 * the target address and port into the composite header template. 5210 * Then we ask IP for information, including a source address if we didn't 5211 * already have one. Finally we prepare to send the SYN packet, and then 5212 * send up the T_OK_ACK reply message. 5213 */ 5214 static void 5215 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp) 5216 { 5217 sin_t *sin; 5218 struct T_conn_req *tcr; 5219 struct sockaddr *sa; 5220 socklen_t len; 5221 int error; 5222 cred_t *cr; 5223 pid_t cpid; 5224 conn_t *connp = tcp->tcp_connp; 5225 queue_t *q = connp->conn_wq; 5226 5227 /* 5228 * All Solaris components should pass a db_credp 5229 * for this TPI message, hence we ASSERT. 5230 * But in case there is some other M_PROTO that looks 5231 * like a TPI message sent by some other kernel 5232 * component, we check and return an error. 5233 */ 5234 cr = msg_getcred(mp, &cpid); 5235 ASSERT(cr != NULL); 5236 if (cr == NULL) { 5237 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5238 return; 5239 } 5240 5241 tcr = (struct T_conn_req *)mp->b_rptr; 5242 5243 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5244 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5245 tcp_err_ack(tcp, mp, TPROTO, 0); 5246 return; 5247 } 5248 5249 /* 5250 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 5251 * will always have that to send up. Otherwise, we need to do 5252 * special handling in case the allocation fails at that time. 5253 * If the end point is TPI, the tcp_t can be reused and the 5254 * tcp_ordrel_mp may be allocated already. 5255 */ 5256 if (tcp->tcp_ordrel_mp == NULL) { 5257 if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) { 5258 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5259 return; 5260 } 5261 } 5262 5263 /* 5264 * Determine packet type based on type of address passed in 5265 * the request should contain an IPv4 or IPv6 address. 5266 * Make sure that address family matches the type of 5267 * family of the address passed down. 5268 */ 5269 switch (tcr->DEST_length) { 5270 default: 5271 tcp_err_ack(tcp, mp, TBADADDR, 0); 5272 return; 5273 5274 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5275 /* 5276 * XXX: The check for valid DEST_length was not there 5277 * in earlier releases and some buggy 5278 * TLI apps (e.g Sybase) got away with not feeding 5279 * in sin_zero part of address. 5280 * We allow that bug to keep those buggy apps humming. 5281 * Test suites require the check on DEST_length. 5282 * We construct a new mblk with valid DEST_length 5283 * free the original so the rest of the code does 5284 * not have to keep track of this special shorter 5285 * length address case. 5286 */ 5287 mblk_t *nmp; 5288 struct T_conn_req *ntcr; 5289 sin_t *nsin; 5290 5291 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5292 tcr->OPT_length, BPRI_HI); 5293 if (nmp == NULL) { 5294 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5295 return; 5296 } 5297 ntcr = (struct T_conn_req *)nmp->b_rptr; 5298 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5299 ntcr->PRIM_type = T_CONN_REQ; 5300 ntcr->DEST_length = sizeof (sin_t); 5301 ntcr->DEST_offset = sizeof (struct T_conn_req); 5302 5303 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 5304 *nsin = sin_null; 5305 /* Get pointer to shorter address to copy from original mp */ 5306 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5307 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 5308 if (sin == NULL || !OK_32PTR((char *)sin)) { 5309 freemsg(nmp); 5310 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5311 return; 5312 } 5313 nsin->sin_family = sin->sin_family; 5314 nsin->sin_port = sin->sin_port; 5315 nsin->sin_addr = sin->sin_addr; 5316 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 5317 nmp->b_wptr = (uchar_t *)&nsin[1]; 5318 if (tcr->OPT_length != 0) { 5319 ntcr->OPT_length = tcr->OPT_length; 5320 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 5321 bcopy((uchar_t *)tcr + tcr->OPT_offset, 5322 (uchar_t *)ntcr + ntcr->OPT_offset, 5323 tcr->OPT_length); 5324 nmp->b_wptr += tcr->OPT_length; 5325 } 5326 freemsg(mp); /* original mp freed */ 5327 mp = nmp; /* re-initialize original variables */ 5328 tcr = ntcr; 5329 } 5330 /* FALLTHRU */ 5331 5332 case sizeof (sin_t): 5333 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 5334 sizeof (sin_t)); 5335 len = sizeof (sin_t); 5336 break; 5337 5338 case sizeof (sin6_t): 5339 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 5340 sizeof (sin6_t)); 5341 len = sizeof (sin6_t); 5342 break; 5343 } 5344 5345 error = proto_verify_ip_addr(connp->conn_family, sa, len); 5346 if (error != 0) { 5347 tcp_err_ack(tcp, mp, TSYSERR, error); 5348 return; 5349 } 5350 5351 /* 5352 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 5353 * should key on their sequence number and cut them loose. 5354 */ 5355 5356 /* 5357 * If options passed in, feed it for verification and handling 5358 */ 5359 if (tcr->OPT_length != 0) { 5360 mblk_t *ok_mp; 5361 mblk_t *discon_mp; 5362 mblk_t *conn_opts_mp; 5363 int t_error, sys_error, do_disconnect; 5364 5365 conn_opts_mp = NULL; 5366 5367 if (tcp_conprim_opt_process(tcp, mp, 5368 &do_disconnect, &t_error, &sys_error) < 0) { 5369 if (do_disconnect) { 5370 ASSERT(t_error == 0 && sys_error == 0); 5371 discon_mp = mi_tpi_discon_ind(NULL, 5372 ECONNREFUSED, 0); 5373 if (!discon_mp) { 5374 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5375 TSYSERR, ENOMEM); 5376 return; 5377 } 5378 ok_mp = mi_tpi_ok_ack_alloc(mp); 5379 if (!ok_mp) { 5380 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 5381 TSYSERR, ENOMEM); 5382 return; 5383 } 5384 qreply(q, ok_mp); 5385 qreply(q, discon_mp); /* no flush! */ 5386 } else { 5387 ASSERT(t_error != 0); 5388 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 5389 sys_error); 5390 } 5391 return; 5392 } 5393 /* 5394 * Success in setting options, the mp option buffer represented 5395 * by OPT_length/offset has been potentially modified and 5396 * contains results of option processing. We copy it in 5397 * another mp to save it for potentially influencing returning 5398 * it in T_CONN_CONN. 5399 */ 5400 if (tcr->OPT_length != 0) { /* there are resulting options */ 5401 conn_opts_mp = copyb(mp); 5402 if (!conn_opts_mp) { 5403 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5404 TSYSERR, ENOMEM); 5405 return; 5406 } 5407 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 5408 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 5409 /* 5410 * Note: 5411 * These resulting option negotiation can include any 5412 * end-to-end negotiation options but there no such 5413 * thing (yet?) in our TCP/IP. 5414 */ 5415 } 5416 } 5417 5418 /* call the non-TPI version */ 5419 error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid); 5420 if (error < 0) { 5421 mp = mi_tpi_err_ack_alloc(mp, -error, 0); 5422 } else if (error > 0) { 5423 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 5424 } else { 5425 mp = mi_tpi_ok_ack_alloc(mp); 5426 } 5427 5428 /* 5429 * Note: Code below is the "failure" case 5430 */ 5431 /* return error ack and blow away saved option results if any */ 5432 connect_failed: 5433 if (mp != NULL) 5434 putnext(connp->conn_rq, mp); 5435 else { 5436 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 5437 TSYSERR, ENOMEM); 5438 } 5439 } 5440 5441 /* 5442 * Handle connect to IPv4 destinations, including connections for AF_INET6 5443 * sockets connecting to IPv4 mapped IPv6 destinations. 5444 * Returns zero if OK, a positive errno, or a negative TLI error. 5445 */ 5446 static int 5447 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 5448 uint_t srcid) 5449 { 5450 ipaddr_t dstaddr = *dstaddrp; 5451 uint16_t lport; 5452 conn_t *connp = tcp->tcp_connp; 5453 tcp_stack_t *tcps = tcp->tcp_tcps; 5454 int error; 5455 5456 ASSERT(connp->conn_ipversion == IPV4_VERSION); 5457 5458 /* Check for attempt to connect to INADDR_ANY */ 5459 if (dstaddr == INADDR_ANY) { 5460 /* 5461 * SunOS 4.x and 4.3 BSD allow an application 5462 * to connect a TCP socket to INADDR_ANY. 5463 * When they do this, the kernel picks the 5464 * address of one interface and uses it 5465 * instead. The kernel usually ends up 5466 * picking the address of the loopback 5467 * interface. This is an undocumented feature. 5468 * However, we provide the same thing here 5469 * in order to have source and binary 5470 * compatibility with SunOS 4.x. 5471 * Update the T_CONN_REQ (sin/sin6) since it is used to 5472 * generate the T_CONN_CON. 5473 */ 5474 dstaddr = htonl(INADDR_LOOPBACK); 5475 *dstaddrp = dstaddr; 5476 } 5477 5478 /* Handle __sin6_src_id if socket not bound to an IP address */ 5479 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) { 5480 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 5481 IPCL_ZONEID(connp), tcps->tcps_netstack); 5482 connp->conn_saddr_v6 = connp->conn_laddr_v6; 5483 } 5484 5485 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6); 5486 connp->conn_fport = dstport; 5487 5488 /* 5489 * At this point the remote destination address and remote port fields 5490 * in the tcp-four-tuple have been filled in the tcp structure. Now we 5491 * have to see which state tcp was in so we can take appropriate action. 5492 */ 5493 if (tcp->tcp_state == TCPS_IDLE) { 5494 /* 5495 * We support a quick connect capability here, allowing 5496 * clients to transition directly from IDLE to SYN_SENT 5497 * tcp_bindi will pick an unused port, insert the connection 5498 * in the bind hash and transition to BOUND state. 5499 */ 5500 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 5501 tcp, B_TRUE); 5502 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 5503 B_FALSE, B_FALSE); 5504 if (lport == 0) 5505 return (-TNOADDR); 5506 } 5507 5508 /* 5509 * Lookup the route to determine a source address and the uinfo. 5510 * Setup TCP parameters based on the metrics/DCE. 5511 */ 5512 error = tcp_set_destination(tcp); 5513 if (error != 0) 5514 return (error); 5515 5516 /* 5517 * Don't let an endpoint connect to itself. 5518 */ 5519 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 && 5520 connp->conn_fport == connp->conn_lport) 5521 return (-TBADADDR); 5522 5523 tcp->tcp_state = TCPS_SYN_SENT; 5524 5525 return (ipcl_conn_insert_v4(connp)); 5526 } 5527 5528 /* 5529 * Handle connect to IPv6 destinations. 5530 * Returns zero if OK, a positive errno, or a negative TLI error. 5531 */ 5532 static int 5533 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 5534 uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 5535 { 5536 uint16_t lport; 5537 conn_t *connp = tcp->tcp_connp; 5538 tcp_stack_t *tcps = tcp->tcp_tcps; 5539 int error; 5540 5541 ASSERT(connp->conn_family == AF_INET6); 5542 5543 /* 5544 * If we're here, it means that the destination address is a native 5545 * IPv6 address. Return an error if conn_ipversion is not IPv6. A 5546 * reason why it might not be IPv6 is if the socket was bound to an 5547 * IPv4-mapped IPv6 address. 5548 */ 5549 if (connp->conn_ipversion != IPV6_VERSION) 5550 return (-TBADADDR); 5551 5552 /* 5553 * Interpret a zero destination to mean loopback. 5554 * Update the T_CONN_REQ (sin/sin6) since it is used to 5555 * generate the T_CONN_CON. 5556 */ 5557 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) 5558 *dstaddrp = ipv6_loopback; 5559 5560 /* Handle __sin6_src_id if socket not bound to an IP address */ 5561 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) { 5562 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 5563 IPCL_ZONEID(connp), tcps->tcps_netstack); 5564 connp->conn_saddr_v6 = connp->conn_laddr_v6; 5565 } 5566 5567 /* 5568 * Take care of the scope_id now. 5569 */ 5570 if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 5571 connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 5572 connp->conn_ixa->ixa_scopeid = scope_id; 5573 } else { 5574 connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 5575 } 5576 5577 connp->conn_flowinfo = flowinfo; 5578 connp->conn_faddr_v6 = *dstaddrp; 5579 connp->conn_fport = dstport; 5580 5581 /* 5582 * At this point the remote destination address and remote port fields 5583 * in the tcp-four-tuple have been filled in the tcp structure. Now we 5584 * have to see which state tcp was in so we can take appropriate action. 5585 */ 5586 if (tcp->tcp_state == TCPS_IDLE) { 5587 /* 5588 * We support a quick connect capability here, allowing 5589 * clients to transition directly from IDLE to SYN_SENT 5590 * tcp_bindi will pick an unused port, insert the connection 5591 * in the bind hash and transition to BOUND state. 5592 */ 5593 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 5594 tcp, B_TRUE); 5595 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 5596 B_FALSE, B_FALSE); 5597 if (lport == 0) 5598 return (-TNOADDR); 5599 } 5600 5601 /* 5602 * Lookup the route to determine a source address and the uinfo. 5603 * Setup TCP parameters based on the metrics/DCE. 5604 */ 5605 error = tcp_set_destination(tcp); 5606 if (error != 0) 5607 return (error); 5608 5609 /* 5610 * Don't let an endpoint connect to itself. 5611 */ 5612 if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) && 5613 connp->conn_fport == connp->conn_lport) 5614 return (-TBADADDR); 5615 5616 tcp->tcp_state = TCPS_SYN_SENT; 5617 5618 return (ipcl_conn_insert_v6(connp)); 5619 } 5620 5621 /* 5622 * Disconnect 5623 * Note that unlike other functions this returns a positive tli error 5624 * when it fails; it never returns an errno. 5625 */ 5626 static int 5627 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 5628 { 5629 conn_t *lconnp; 5630 tcp_stack_t *tcps = tcp->tcp_tcps; 5631 conn_t *connp = tcp->tcp_connp; 5632 5633 /* 5634 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 5635 * when the stream is in BOUND state. Do not send a reset, 5636 * since the destination IP address is not valid, and it can 5637 * be the initialized value of all zeros (broadcast address). 5638 */ 5639 if (tcp->tcp_state <= TCPS_BOUND) { 5640 if (connp->conn_debug) { 5641 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 5642 "tcp_disconnect: bad state, %d", tcp->tcp_state); 5643 } 5644 return (TOUTSTATE); 5645 } 5646 5647 5648 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 5649 5650 /* 5651 * According to TPI, for non-listeners, ignore seqnum 5652 * and disconnect. 5653 * Following interpretation of -1 seqnum is historical 5654 * and implied TPI ? (TPI only states that for T_CONN_IND, 5655 * a valid seqnum should not be -1). 5656 * 5657 * -1 means disconnect everything 5658 * regardless even on a listener. 5659 */ 5660 5661 int old_state = tcp->tcp_state; 5662 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 5663 5664 /* 5665 * The connection can't be on the tcp_time_wait_head list 5666 * since it is not detached. 5667 */ 5668 ASSERT(tcp->tcp_time_wait_next == NULL); 5669 ASSERT(tcp->tcp_time_wait_prev == NULL); 5670 ASSERT(tcp->tcp_time_wait_expire == 0); 5671 /* 5672 * If it used to be a listener, check to make sure no one else 5673 * has taken the port before switching back to LISTEN state. 5674 */ 5675 if (connp->conn_ipversion == IPV4_VERSION) { 5676 lconnp = ipcl_lookup_listener_v4(connp->conn_lport, 5677 connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst); 5678 } else { 5679 uint_t ifindex = 0; 5680 5681 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) 5682 ifindex = connp->conn_ixa->ixa_scopeid; 5683 5684 /* Allow conn_bound_if listeners? */ 5685 lconnp = ipcl_lookup_listener_v6(connp->conn_lport, 5686 &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp), 5687 ipst); 5688 } 5689 if (tcp->tcp_conn_req_max && lconnp == NULL) { 5690 tcp->tcp_state = TCPS_LISTEN; 5691 } else if (old_state > TCPS_BOUND) { 5692 tcp->tcp_conn_req_max = 0; 5693 tcp->tcp_state = TCPS_BOUND; 5694 5695 /* 5696 * If this end point is not going to become a listener, 5697 * decrement the listener connection count if 5698 * necessary. Note that we do not do this if it is 5699 * going to be a listner (the above if case) since 5700 * then it may remove the counter struct. 5701 */ 5702 if (tcp->tcp_listen_cnt != NULL) 5703 TCP_DECR_LISTEN_CNT(tcp); 5704 } 5705 if (lconnp != NULL) 5706 CONN_DEC_REF(lconnp); 5707 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 5708 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 5709 } else if (old_state == TCPS_ESTABLISHED || 5710 old_state == TCPS_CLOSE_WAIT) { 5711 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 5712 } 5713 5714 if (tcp->tcp_fused) 5715 tcp_unfuse(tcp); 5716 5717 mutex_enter(&tcp->tcp_eager_lock); 5718 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 5719 (tcp->tcp_conn_req_cnt_q != 0)) { 5720 tcp_eager_cleanup(tcp, 0); 5721 } 5722 mutex_exit(&tcp->tcp_eager_lock); 5723 5724 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 5725 tcp->tcp_rnxt, TH_RST | TH_ACK); 5726 5727 tcp_reinit(tcp); 5728 5729 return (0); 5730 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 5731 return (TBADSEQ); 5732 } 5733 return (0); 5734 } 5735 5736 /* 5737 * Our client hereby directs us to reject the connection request 5738 * that tcp_input_listener() marked with 'seqnum'. Rejection consists 5739 * of sending the appropriate RST, not an ICMP error. 5740 */ 5741 static void 5742 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 5743 { 5744 t_scalar_t seqnum; 5745 int error; 5746 conn_t *connp = tcp->tcp_connp; 5747 5748 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5749 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 5750 tcp_err_ack(tcp, mp, TPROTO, 0); 5751 return; 5752 } 5753 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 5754 error = tcp_disconnect_common(tcp, seqnum); 5755 if (error != 0) 5756 tcp_err_ack(tcp, mp, error, 0); 5757 else { 5758 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 5759 /* Send M_FLUSH according to TPI */ 5760 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 5761 } 5762 mp = mi_tpi_ok_ack_alloc(mp); 5763 if (mp != NULL) 5764 putnext(connp->conn_rq, mp); 5765 } 5766 } 5767 5768 /* 5769 * Diagnostic routine used to return a string associated with the tcp state. 5770 * Note that if the caller does not supply a buffer, it will use an internal 5771 * static string. This means that if multiple threads call this function at 5772 * the same time, output can be corrupted... Note also that this function 5773 * does not check the size of the supplied buffer. The caller has to make 5774 * sure that it is big enough. 5775 */ 5776 static char * 5777 tcp_display(tcp_t *tcp, char *sup_buf, char format) 5778 { 5779 char buf1[30]; 5780 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 5781 char *buf; 5782 char *cp; 5783 in6_addr_t local, remote; 5784 char local_addrbuf[INET6_ADDRSTRLEN]; 5785 char remote_addrbuf[INET6_ADDRSTRLEN]; 5786 conn_t *connp; 5787 5788 if (sup_buf != NULL) 5789 buf = sup_buf; 5790 else 5791 buf = priv_buf; 5792 5793 if (tcp == NULL) 5794 return ("NULL_TCP"); 5795 5796 connp = tcp->tcp_connp; 5797 switch (tcp->tcp_state) { 5798 case TCPS_CLOSED: 5799 cp = "TCP_CLOSED"; 5800 break; 5801 case TCPS_IDLE: 5802 cp = "TCP_IDLE"; 5803 break; 5804 case TCPS_BOUND: 5805 cp = "TCP_BOUND"; 5806 break; 5807 case TCPS_LISTEN: 5808 cp = "TCP_LISTEN"; 5809 break; 5810 case TCPS_SYN_SENT: 5811 cp = "TCP_SYN_SENT"; 5812 break; 5813 case TCPS_SYN_RCVD: 5814 cp = "TCP_SYN_RCVD"; 5815 break; 5816 case TCPS_ESTABLISHED: 5817 cp = "TCP_ESTABLISHED"; 5818 break; 5819 case TCPS_CLOSE_WAIT: 5820 cp = "TCP_CLOSE_WAIT"; 5821 break; 5822 case TCPS_FIN_WAIT_1: 5823 cp = "TCP_FIN_WAIT_1"; 5824 break; 5825 case TCPS_CLOSING: 5826 cp = "TCP_CLOSING"; 5827 break; 5828 case TCPS_LAST_ACK: 5829 cp = "TCP_LAST_ACK"; 5830 break; 5831 case TCPS_FIN_WAIT_2: 5832 cp = "TCP_FIN_WAIT_2"; 5833 break; 5834 case TCPS_TIME_WAIT: 5835 cp = "TCP_TIME_WAIT"; 5836 break; 5837 default: 5838 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 5839 cp = buf1; 5840 break; 5841 } 5842 switch (format) { 5843 case DISP_ADDR_AND_PORT: 5844 if (connp->conn_ipversion == IPV4_VERSION) { 5845 /* 5846 * Note that we use the remote address in the tcp_b 5847 * structure. This means that it will print out 5848 * the real destination address, not the next hop's 5849 * address if source routing is used. 5850 */ 5851 IN6_IPADDR_TO_V4MAPPED(connp->conn_laddr_v4, &local); 5852 IN6_IPADDR_TO_V4MAPPED(connp->conn_faddr_v4, &remote); 5853 5854 } else { 5855 local = connp->conn_laddr_v6; 5856 remote = connp->conn_faddr_v6; 5857 } 5858 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 5859 sizeof (local_addrbuf)); 5860 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 5861 sizeof (remote_addrbuf)); 5862 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 5863 local_addrbuf, ntohs(connp->conn_lport), remote_addrbuf, 5864 ntohs(connp->conn_fport), cp); 5865 break; 5866 case DISP_PORT_ONLY: 5867 default: 5868 (void) mi_sprintf(buf, "[%u, %u] %s", 5869 ntohs(connp->conn_lport), ntohs(connp->conn_fport), cp); 5870 break; 5871 } 5872 5873 return (buf); 5874 } 5875 5876 /* 5877 * Called via squeue to get on to eager's perimeter. It sends a 5878 * TH_RST if eager is in the fanout table. The listener wants the 5879 * eager to disappear either by means of tcp_eager_blowoff() or 5880 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 5881 * called (via squeue) if the eager cannot be inserted in the 5882 * fanout table in tcp_input_listener(). 5883 */ 5884 /* ARGSUSED */ 5885 void 5886 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 5887 { 5888 conn_t *econnp = (conn_t *)arg; 5889 tcp_t *eager = econnp->conn_tcp; 5890 tcp_t *listener = eager->tcp_listener; 5891 5892 /* 5893 * We could be called because listener is closing. Since 5894 * the eager was using listener's queue's, we avoid 5895 * using the listeners queues from now on. 5896 */ 5897 ASSERT(eager->tcp_detached); 5898 econnp->conn_rq = NULL; 5899 econnp->conn_wq = NULL; 5900 5901 /* 5902 * An eager's conn_fanout will be NULL if it's a duplicate 5903 * for an existing 4-tuples in the conn fanout table. 5904 * We don't want to send an RST out in such case. 5905 */ 5906 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 5907 tcp_xmit_ctl("tcp_eager_kill, can't wait", 5908 eager, eager->tcp_snxt, 0, TH_RST); 5909 } 5910 5911 /* We are here because listener wants this eager gone */ 5912 if (listener != NULL) { 5913 mutex_enter(&listener->tcp_eager_lock); 5914 tcp_eager_unlink(eager); 5915 if (eager->tcp_tconnind_started) { 5916 /* 5917 * The eager has sent a conn_ind up to the 5918 * listener but listener decides to close 5919 * instead. We need to drop the extra ref 5920 * placed on eager in tcp_input_data() before 5921 * sending the conn_ind to listener. 5922 */ 5923 CONN_DEC_REF(econnp); 5924 } 5925 mutex_exit(&listener->tcp_eager_lock); 5926 CONN_DEC_REF(listener->tcp_connp); 5927 } 5928 5929 if (eager->tcp_state != TCPS_CLOSED) 5930 tcp_close_detached(eager); 5931 } 5932 5933 /* 5934 * Reset any eager connection hanging off this listener marked 5935 * with 'seqnum' and then reclaim it's resources. 5936 */ 5937 static boolean_t 5938 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 5939 { 5940 tcp_t *eager; 5941 mblk_t *mp; 5942 tcp_stack_t *tcps = listener->tcp_tcps; 5943 5944 TCP_STAT(tcps, tcp_eager_blowoff_calls); 5945 eager = listener; 5946 mutex_enter(&listener->tcp_eager_lock); 5947 do { 5948 eager = eager->tcp_eager_next_q; 5949 if (eager == NULL) { 5950 mutex_exit(&listener->tcp_eager_lock); 5951 return (B_FALSE); 5952 } 5953 } while (eager->tcp_conn_req_seqnum != seqnum); 5954 5955 if (eager->tcp_closemp_used) { 5956 mutex_exit(&listener->tcp_eager_lock); 5957 return (B_TRUE); 5958 } 5959 eager->tcp_closemp_used = B_TRUE; 5960 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5961 CONN_INC_REF(eager->tcp_connp); 5962 mutex_exit(&listener->tcp_eager_lock); 5963 mp = &eager->tcp_closemp; 5964 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 5965 eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 5966 return (B_TRUE); 5967 } 5968 5969 /* 5970 * Reset any eager connection hanging off this listener 5971 * and then reclaim it's resources. 5972 */ 5973 static void 5974 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 5975 { 5976 tcp_t *eager; 5977 mblk_t *mp; 5978 tcp_stack_t *tcps = listener->tcp_tcps; 5979 5980 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 5981 5982 if (!q0_only) { 5983 /* First cleanup q */ 5984 TCP_STAT(tcps, tcp_eager_blowoff_q); 5985 eager = listener->tcp_eager_next_q; 5986 while (eager != NULL) { 5987 if (!eager->tcp_closemp_used) { 5988 eager->tcp_closemp_used = B_TRUE; 5989 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5990 CONN_INC_REF(eager->tcp_connp); 5991 mp = &eager->tcp_closemp; 5992 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 5993 tcp_eager_kill, eager->tcp_connp, NULL, 5994 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 5995 } 5996 eager = eager->tcp_eager_next_q; 5997 } 5998 } 5999 /* Then cleanup q0 */ 6000 TCP_STAT(tcps, tcp_eager_blowoff_q0); 6001 eager = listener->tcp_eager_next_q0; 6002 while (eager != listener) { 6003 if (!eager->tcp_closemp_used) { 6004 eager->tcp_closemp_used = B_TRUE; 6005 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6006 CONN_INC_REF(eager->tcp_connp); 6007 mp = &eager->tcp_closemp; 6008 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6009 tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL, 6010 SQTAG_TCP_EAGER_CLEANUP_Q0); 6011 } 6012 eager = eager->tcp_eager_next_q0; 6013 } 6014 } 6015 6016 /* 6017 * If we are an eager connection hanging off a listener that hasn't 6018 * formally accepted the connection yet, get off his list and blow off 6019 * any data that we have accumulated. 6020 */ 6021 static void 6022 tcp_eager_unlink(tcp_t *tcp) 6023 { 6024 tcp_t *listener = tcp->tcp_listener; 6025 6026 ASSERT(listener != NULL); 6027 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6028 if (tcp->tcp_eager_next_q0 != NULL) { 6029 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 6030 6031 /* Remove the eager tcp from q0 */ 6032 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 6033 tcp->tcp_eager_prev_q0; 6034 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 6035 tcp->tcp_eager_next_q0; 6036 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 6037 listener->tcp_conn_req_cnt_q0--; 6038 6039 tcp->tcp_eager_next_q0 = NULL; 6040 tcp->tcp_eager_prev_q0 = NULL; 6041 6042 /* 6043 * Take the eager out, if it is in the list of droppable 6044 * eagers. 6045 */ 6046 MAKE_UNDROPPABLE(tcp); 6047 6048 if (tcp->tcp_syn_rcvd_timeout != 0) { 6049 /* we have timed out before */ 6050 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 6051 listener->tcp_syn_rcvd_timeout--; 6052 } 6053 } else { 6054 tcp_t **tcpp = &listener->tcp_eager_next_q; 6055 tcp_t *prev = NULL; 6056 6057 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 6058 if (tcpp[0] == tcp) { 6059 if (listener->tcp_eager_last_q == tcp) { 6060 /* 6061 * If we are unlinking the last 6062 * element on the list, adjust 6063 * tail pointer. Set tail pointer 6064 * to nil when list is empty. 6065 */ 6066 ASSERT(tcp->tcp_eager_next_q == NULL); 6067 if (listener->tcp_eager_last_q == 6068 listener->tcp_eager_next_q) { 6069 listener->tcp_eager_last_q = 6070 NULL; 6071 } else { 6072 /* 6073 * We won't get here if there 6074 * is only one eager in the 6075 * list. 6076 */ 6077 ASSERT(prev != NULL); 6078 listener->tcp_eager_last_q = 6079 prev; 6080 } 6081 } 6082 tcpp[0] = tcp->tcp_eager_next_q; 6083 tcp->tcp_eager_next_q = NULL; 6084 tcp->tcp_eager_last_q = NULL; 6085 ASSERT(listener->tcp_conn_req_cnt_q > 0); 6086 listener->tcp_conn_req_cnt_q--; 6087 break; 6088 } 6089 prev = tcpp[0]; 6090 } 6091 } 6092 tcp->tcp_listener = NULL; 6093 } 6094 6095 /* Shorthand to generate and send TPI error acks to our client */ 6096 static void 6097 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 6098 { 6099 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 6100 putnext(tcp->tcp_connp->conn_rq, mp); 6101 } 6102 6103 /* Shorthand to generate and send TPI error acks to our client */ 6104 static void 6105 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 6106 int t_error, int sys_error) 6107 { 6108 struct T_error_ack *teackp; 6109 6110 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 6111 M_PCPROTO, T_ERROR_ACK)) != NULL) { 6112 teackp = (struct T_error_ack *)mp->b_rptr; 6113 teackp->ERROR_prim = primitive; 6114 teackp->TLI_error = t_error; 6115 teackp->UNIX_error = sys_error; 6116 putnext(tcp->tcp_connp->conn_rq, mp); 6117 } 6118 } 6119 6120 /* 6121 * Note: No locks are held when inspecting tcp_g_*epriv_ports 6122 * but instead the code relies on: 6123 * - the fact that the address of the array and its size never changes 6124 * - the atomic assignment of the elements of the array 6125 */ 6126 /* ARGSUSED */ 6127 static int 6128 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 6129 { 6130 int i; 6131 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 6132 6133 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 6134 if (tcps->tcps_g_epriv_ports[i] != 0) 6135 (void) mi_mpprintf(mp, "%d ", 6136 tcps->tcps_g_epriv_ports[i]); 6137 } 6138 return (0); 6139 } 6140 6141 /* 6142 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 6143 * threads from changing it at the same time. 6144 */ 6145 /* ARGSUSED */ 6146 static int 6147 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 6148 cred_t *cr) 6149 { 6150 long new_value; 6151 int i; 6152 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 6153 6154 /* 6155 * Fail the request if the new value does not lie within the 6156 * port number limits. 6157 */ 6158 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 6159 new_value <= 0 || new_value >= 65536) { 6160 return (EINVAL); 6161 } 6162 6163 mutex_enter(&tcps->tcps_epriv_port_lock); 6164 /* Check if the value is already in the list */ 6165 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 6166 if (new_value == tcps->tcps_g_epriv_ports[i]) { 6167 mutex_exit(&tcps->tcps_epriv_port_lock); 6168 return (EEXIST); 6169 } 6170 } 6171 /* Find an empty slot */ 6172 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 6173 if (tcps->tcps_g_epriv_ports[i] == 0) 6174 break; 6175 } 6176 if (i == tcps->tcps_g_num_epriv_ports) { 6177 mutex_exit(&tcps->tcps_epriv_port_lock); 6178 return (EOVERFLOW); 6179 } 6180 /* Set the new value */ 6181 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 6182 mutex_exit(&tcps->tcps_epriv_port_lock); 6183 return (0); 6184 } 6185 6186 /* 6187 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 6188 * threads from changing it at the same time. 6189 */ 6190 /* ARGSUSED */ 6191 static int 6192 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 6193 cred_t *cr) 6194 { 6195 long new_value; 6196 int i; 6197 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 6198 6199 /* 6200 * Fail the request if the new value does not lie within the 6201 * port number limits. 6202 */ 6203 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 6204 new_value >= 65536) { 6205 return (EINVAL); 6206 } 6207 6208 mutex_enter(&tcps->tcps_epriv_port_lock); 6209 /* Check that the value is already in the list */ 6210 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 6211 if (tcps->tcps_g_epriv_ports[i] == new_value) 6212 break; 6213 } 6214 if (i == tcps->tcps_g_num_epriv_ports) { 6215 mutex_exit(&tcps->tcps_epriv_port_lock); 6216 return (ESRCH); 6217 } 6218 /* Clear the value */ 6219 tcps->tcps_g_epriv_ports[i] = 0; 6220 mutex_exit(&tcps->tcps_epriv_port_lock); 6221 return (0); 6222 } 6223 6224 /* Return the TPI/TLI equivalent of our current tcp_state */ 6225 static int 6226 tcp_tpistate(tcp_t *tcp) 6227 { 6228 switch (tcp->tcp_state) { 6229 case TCPS_IDLE: 6230 return (TS_UNBND); 6231 case TCPS_LISTEN: 6232 /* 6233 * Return whether there are outstanding T_CONN_IND waiting 6234 * for the matching T_CONN_RES. Therefore don't count q0. 6235 */ 6236 if (tcp->tcp_conn_req_cnt_q > 0) 6237 return (TS_WRES_CIND); 6238 else 6239 return (TS_IDLE); 6240 case TCPS_BOUND: 6241 return (TS_IDLE); 6242 case TCPS_SYN_SENT: 6243 return (TS_WCON_CREQ); 6244 case TCPS_SYN_RCVD: 6245 /* 6246 * Note: assumption: this has to the active open SYN_RCVD. 6247 * The passive instance is detached in SYN_RCVD stage of 6248 * incoming connection processing so we cannot get request 6249 * for T_info_ack on it. 6250 */ 6251 return (TS_WACK_CRES); 6252 case TCPS_ESTABLISHED: 6253 return (TS_DATA_XFER); 6254 case TCPS_CLOSE_WAIT: 6255 return (TS_WREQ_ORDREL); 6256 case TCPS_FIN_WAIT_1: 6257 return (TS_WIND_ORDREL); 6258 case TCPS_FIN_WAIT_2: 6259 return (TS_WIND_ORDREL); 6260 6261 case TCPS_CLOSING: 6262 case TCPS_LAST_ACK: 6263 case TCPS_TIME_WAIT: 6264 case TCPS_CLOSED: 6265 /* 6266 * Following TS_WACK_DREQ7 is a rendition of "not 6267 * yet TS_IDLE" TPI state. There is no best match to any 6268 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 6269 * choose a value chosen that will map to TLI/XTI level 6270 * state of TSTATECHNG (state is process of changing) which 6271 * captures what this dummy state represents. 6272 */ 6273 return (TS_WACK_DREQ7); 6274 default: 6275 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 6276 tcp->tcp_state, tcp_display(tcp, NULL, 6277 DISP_PORT_ONLY)); 6278 return (TS_UNBND); 6279 } 6280 } 6281 6282 static void 6283 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 6284 { 6285 tcp_stack_t *tcps = tcp->tcp_tcps; 6286 conn_t *connp = tcp->tcp_connp; 6287 6288 if (connp->conn_family == AF_INET6) 6289 *tia = tcp_g_t_info_ack_v6; 6290 else 6291 *tia = tcp_g_t_info_ack; 6292 tia->CURRENT_state = tcp_tpistate(tcp); 6293 tia->OPT_size = tcp_max_optsize; 6294 if (tcp->tcp_mss == 0) { 6295 /* Not yet set - tcp_open does not set mss */ 6296 if (connp->conn_ipversion == IPV4_VERSION) 6297 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 6298 else 6299 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 6300 } else { 6301 tia->TIDU_size = tcp->tcp_mss; 6302 } 6303 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 6304 } 6305 6306 static void 6307 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap, 6308 t_uscalar_t cap_bits1) 6309 { 6310 tcap->CAP_bits1 = 0; 6311 6312 if (cap_bits1 & TC1_INFO) { 6313 tcp_copy_info(&tcap->INFO_ack, tcp); 6314 tcap->CAP_bits1 |= TC1_INFO; 6315 } 6316 6317 if (cap_bits1 & TC1_ACCEPTOR_ID) { 6318 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 6319 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 6320 } 6321 6322 } 6323 6324 /* 6325 * This routine responds to T_CAPABILITY_REQ messages. It is called by 6326 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 6327 * tcp_g_t_info_ack. The current state of the stream is copied from 6328 * tcp_state. 6329 */ 6330 static void 6331 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 6332 { 6333 t_uscalar_t cap_bits1; 6334 struct T_capability_ack *tcap; 6335 6336 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 6337 freemsg(mp); 6338 return; 6339 } 6340 6341 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 6342 6343 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 6344 mp->b_datap->db_type, T_CAPABILITY_ACK); 6345 if (mp == NULL) 6346 return; 6347 6348 tcap = (struct T_capability_ack *)mp->b_rptr; 6349 tcp_do_capability_ack(tcp, tcap, cap_bits1); 6350 6351 putnext(tcp->tcp_connp->conn_rq, mp); 6352 } 6353 6354 /* 6355 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 6356 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 6357 * The current state of the stream is copied from tcp_state. 6358 */ 6359 static void 6360 tcp_info_req(tcp_t *tcp, mblk_t *mp) 6361 { 6362 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 6363 T_INFO_ACK); 6364 if (!mp) { 6365 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6366 return; 6367 } 6368 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 6369 putnext(tcp->tcp_connp->conn_rq, mp); 6370 } 6371 6372 /* Respond to the TPI addr request */ 6373 static void 6374 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 6375 { 6376 struct sockaddr *sa; 6377 mblk_t *ackmp; 6378 struct T_addr_ack *taa; 6379 conn_t *connp = tcp->tcp_connp; 6380 uint_t addrlen; 6381 6382 /* Make it large enough for worst case */ 6383 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 6384 2 * sizeof (sin6_t), 1); 6385 if (ackmp == NULL) { 6386 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6387 return; 6388 } 6389 6390 taa = (struct T_addr_ack *)ackmp->b_rptr; 6391 6392 bzero(taa, sizeof (struct T_addr_ack)); 6393 ackmp->b_wptr = (uchar_t *)&taa[1]; 6394 6395 taa->PRIM_type = T_ADDR_ACK; 6396 ackmp->b_datap->db_type = M_PCPROTO; 6397 6398 if (connp->conn_family == AF_INET) 6399 addrlen = sizeof (sin_t); 6400 else 6401 addrlen = sizeof (sin6_t); 6402 6403 /* 6404 * Note: Following code assumes 32 bit alignment of basic 6405 * data structures like sin_t and struct T_addr_ack. 6406 */ 6407 if (tcp->tcp_state >= TCPS_BOUND) { 6408 /* 6409 * Fill in local address first 6410 */ 6411 taa->LOCADDR_offset = sizeof (*taa); 6412 taa->LOCADDR_length = addrlen; 6413 sa = (struct sockaddr *)&taa[1]; 6414 (void) conn_getsockname(connp, sa, &addrlen); 6415 ackmp->b_wptr += addrlen; 6416 } 6417 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 6418 /* 6419 * Fill in Remote address 6420 */ 6421 taa->REMADDR_length = addrlen; 6422 /* assumed 32-bit alignment */ 6423 taa->REMADDR_offset = taa->LOCADDR_offset + taa->LOCADDR_length; 6424 sa = (struct sockaddr *)(ackmp->b_rptr + taa->REMADDR_offset); 6425 (void) conn_getpeername(connp, sa, &addrlen); 6426 ackmp->b_wptr += addrlen; 6427 } 6428 ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim); 6429 putnext(tcp->tcp_connp->conn_rq, ackmp); 6430 } 6431 6432 /* 6433 * Handle reinitialization of a tcp structure. 6434 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 6435 */ 6436 static void 6437 tcp_reinit(tcp_t *tcp) 6438 { 6439 mblk_t *mp; 6440 tcp_stack_t *tcps = tcp->tcp_tcps; 6441 conn_t *connp = tcp->tcp_connp; 6442 6443 TCP_STAT(tcps, tcp_reinit_calls); 6444 6445 /* tcp_reinit should never be called for detached tcp_t's */ 6446 ASSERT(tcp->tcp_listener == NULL); 6447 ASSERT((connp->conn_family == AF_INET && 6448 connp->conn_ipversion == IPV4_VERSION) || 6449 (connp->conn_family == AF_INET6 && 6450 (connp->conn_ipversion == IPV4_VERSION || 6451 connp->conn_ipversion == IPV6_VERSION))); 6452 6453 /* Cancel outstanding timers */ 6454 tcp_timers_stop(tcp); 6455 6456 /* 6457 * Reset everything in the state vector, after updating global 6458 * MIB data from instance counters. 6459 */ 6460 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 6461 tcp->tcp_ibsegs = 0; 6462 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 6463 tcp->tcp_obsegs = 0; 6464 6465 tcp_close_mpp(&tcp->tcp_xmit_head); 6466 if (tcp->tcp_snd_zcopy_aware) 6467 tcp_zcopy_notify(tcp); 6468 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 6469 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 6470 mutex_enter(&tcp->tcp_non_sq_lock); 6471 if (tcp->tcp_flow_stopped && 6472 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 6473 tcp_clrqfull(tcp); 6474 } 6475 mutex_exit(&tcp->tcp_non_sq_lock); 6476 tcp_close_mpp(&tcp->tcp_reass_head); 6477 tcp->tcp_reass_tail = NULL; 6478 if (tcp->tcp_rcv_list != NULL) { 6479 /* Free b_next chain */ 6480 tcp_close_mpp(&tcp->tcp_rcv_list); 6481 tcp->tcp_rcv_last_head = NULL; 6482 tcp->tcp_rcv_last_tail = NULL; 6483 tcp->tcp_rcv_cnt = 0; 6484 } 6485 tcp->tcp_rcv_last_tail = NULL; 6486 6487 if ((mp = tcp->tcp_urp_mp) != NULL) { 6488 freemsg(mp); 6489 tcp->tcp_urp_mp = NULL; 6490 } 6491 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 6492 freemsg(mp); 6493 tcp->tcp_urp_mark_mp = NULL; 6494 } 6495 if (tcp->tcp_fused_sigurg_mp != NULL) { 6496 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 6497 freeb(tcp->tcp_fused_sigurg_mp); 6498 tcp->tcp_fused_sigurg_mp = NULL; 6499 } 6500 if (tcp->tcp_ordrel_mp != NULL) { 6501 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 6502 freeb(tcp->tcp_ordrel_mp); 6503 tcp->tcp_ordrel_mp = NULL; 6504 } 6505 6506 /* 6507 * Following is a union with two members which are 6508 * identical types and size so the following cleanup 6509 * is enough. 6510 */ 6511 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 6512 6513 CL_INET_DISCONNECT(connp); 6514 6515 /* 6516 * The connection can't be on the tcp_time_wait_head list 6517 * since it is not detached. 6518 */ 6519 ASSERT(tcp->tcp_time_wait_next == NULL); 6520 ASSERT(tcp->tcp_time_wait_prev == NULL); 6521 ASSERT(tcp->tcp_time_wait_expire == 0); 6522 6523 if (tcp->tcp_kssl_pending) { 6524 tcp->tcp_kssl_pending = B_FALSE; 6525 6526 /* Don't reset if the initialized by bind. */ 6527 if (tcp->tcp_kssl_ent != NULL) { 6528 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 6529 KSSL_NO_PROXY); 6530 } 6531 } 6532 if (tcp->tcp_kssl_ctx != NULL) { 6533 kssl_release_ctx(tcp->tcp_kssl_ctx); 6534 tcp->tcp_kssl_ctx = NULL; 6535 } 6536 6537 /* 6538 * Reset/preserve other values 6539 */ 6540 tcp_reinit_values(tcp); 6541 ipcl_hash_remove(connp); 6542 ixa_cleanup(connp->conn_ixa); 6543 tcp_ipsec_cleanup(tcp); 6544 6545 connp->conn_laddr_v6 = connp->conn_bound_addr_v6; 6546 connp->conn_saddr_v6 = connp->conn_bound_addr_v6; 6547 6548 if (tcp->tcp_conn_req_max != 0) { 6549 /* 6550 * This is the case when a TLI program uses the same 6551 * transport end point to accept a connection. This 6552 * makes the TCP both a listener and acceptor. When 6553 * this connection is closed, we need to set the state 6554 * back to TCPS_LISTEN. Make sure that the eager list 6555 * is reinitialized. 6556 * 6557 * Note that this stream is still bound to the four 6558 * tuples of the previous connection in IP. If a new 6559 * SYN with different foreign address comes in, IP will 6560 * not find it and will send it to the global queue. In 6561 * the global queue, TCP will do a tcp_lookup_listener() 6562 * to find this stream. This works because this stream 6563 * is only removed from connected hash. 6564 * 6565 */ 6566 tcp->tcp_state = TCPS_LISTEN; 6567 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 6568 tcp->tcp_eager_next_drop_q0 = tcp; 6569 tcp->tcp_eager_prev_drop_q0 = tcp; 6570 /* 6571 * Initially set conn_recv to tcp_input_listener_unbound to try 6572 * to pick a good squeue for the listener when the first SYN 6573 * arrives. tcp_input_listener_unbound sets it to 6574 * tcp_input_listener on that first SYN. 6575 */ 6576 connp->conn_recv = tcp_input_listener_unbound; 6577 6578 connp->conn_proto = IPPROTO_TCP; 6579 connp->conn_faddr_v6 = ipv6_all_zeros; 6580 connp->conn_fport = 0; 6581 6582 (void) ipcl_bind_insert(connp); 6583 } else { 6584 tcp->tcp_state = TCPS_BOUND; 6585 } 6586 6587 /* 6588 * Initialize to default values 6589 */ 6590 tcp_init_values(tcp); 6591 6592 ASSERT(tcp->tcp_ptpbhn != NULL); 6593 tcp->tcp_rwnd = connp->conn_rcvbuf; 6594 tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ? 6595 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 6596 } 6597 6598 /* 6599 * Force values to zero that need be zero. 6600 * Do not touch values asociated with the BOUND or LISTEN state 6601 * since the connection will end up in that state after the reinit. 6602 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 6603 * structure! 6604 */ 6605 static void 6606 tcp_reinit_values(tcp) 6607 tcp_t *tcp; 6608 { 6609 tcp_stack_t *tcps = tcp->tcp_tcps; 6610 conn_t *connp = tcp->tcp_connp; 6611 6612 #ifndef lint 6613 #define DONTCARE(x) 6614 #define PRESERVE(x) 6615 #else 6616 #define DONTCARE(x) ((x) = (x)) 6617 #define PRESERVE(x) ((x) = (x)) 6618 #endif /* lint */ 6619 6620 PRESERVE(tcp->tcp_bind_hash_port); 6621 PRESERVE(tcp->tcp_bind_hash); 6622 PRESERVE(tcp->tcp_ptpbhn); 6623 PRESERVE(tcp->tcp_acceptor_hash); 6624 PRESERVE(tcp->tcp_ptpahn); 6625 6626 /* Should be ASSERT NULL on these with new code! */ 6627 ASSERT(tcp->tcp_time_wait_next == NULL); 6628 ASSERT(tcp->tcp_time_wait_prev == NULL); 6629 ASSERT(tcp->tcp_time_wait_expire == 0); 6630 PRESERVE(tcp->tcp_state); 6631 PRESERVE(connp->conn_rq); 6632 PRESERVE(connp->conn_wq); 6633 6634 ASSERT(tcp->tcp_xmit_head == NULL); 6635 ASSERT(tcp->tcp_xmit_last == NULL); 6636 ASSERT(tcp->tcp_unsent == 0); 6637 ASSERT(tcp->tcp_xmit_tail == NULL); 6638 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 6639 6640 tcp->tcp_snxt = 0; /* Displayed in mib */ 6641 tcp->tcp_suna = 0; /* Displayed in mib */ 6642 tcp->tcp_swnd = 0; 6643 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */ 6644 6645 ASSERT(tcp->tcp_ibsegs == 0); 6646 ASSERT(tcp->tcp_obsegs == 0); 6647 6648 if (connp->conn_ht_iphc != NULL) { 6649 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 6650 connp->conn_ht_iphc = NULL; 6651 connp->conn_ht_iphc_allocated = 0; 6652 connp->conn_ht_iphc_len = 0; 6653 connp->conn_ht_ulp = NULL; 6654 connp->conn_ht_ulp_len = 0; 6655 tcp->tcp_ipha = NULL; 6656 tcp->tcp_ip6h = NULL; 6657 tcp->tcp_tcpha = NULL; 6658 } 6659 6660 /* We clear any IP_OPTIONS and extension headers */ 6661 ip_pkt_free(&connp->conn_xmit_ipp); 6662 6663 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 6664 DONTCARE(tcp->tcp_ipha); 6665 DONTCARE(tcp->tcp_ip6h); 6666 DONTCARE(tcp->tcp_tcpha); 6667 tcp->tcp_valid_bits = 0; 6668 6669 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 6670 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 6671 tcp->tcp_last_rcv_lbolt = 0; 6672 6673 tcp->tcp_init_cwnd = 0; 6674 6675 tcp->tcp_urp_last_valid = 0; 6676 tcp->tcp_hard_binding = 0; 6677 6678 tcp->tcp_fin_acked = 0; 6679 tcp->tcp_fin_rcvd = 0; 6680 tcp->tcp_fin_sent = 0; 6681 tcp->tcp_ordrel_done = 0; 6682 6683 tcp->tcp_detached = 0; 6684 6685 tcp->tcp_snd_ws_ok = B_FALSE; 6686 tcp->tcp_snd_ts_ok = B_FALSE; 6687 tcp->tcp_zero_win_probe = 0; 6688 6689 tcp->tcp_loopback = 0; 6690 tcp->tcp_localnet = 0; 6691 tcp->tcp_syn_defense = 0; 6692 tcp->tcp_set_timer = 0; 6693 6694 tcp->tcp_active_open = 0; 6695 tcp->tcp_rexmit = B_FALSE; 6696 tcp->tcp_xmit_zc_clean = B_FALSE; 6697 6698 tcp->tcp_snd_sack_ok = B_FALSE; 6699 tcp->tcp_hwcksum = B_FALSE; 6700 6701 DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */ 6702 6703 tcp->tcp_conn_def_q0 = 0; 6704 tcp->tcp_ip_forward_progress = B_FALSE; 6705 tcp->tcp_ecn_ok = B_FALSE; 6706 6707 tcp->tcp_cwr = B_FALSE; 6708 tcp->tcp_ecn_echo_on = B_FALSE; 6709 tcp->tcp_is_wnd_shrnk = B_FALSE; 6710 6711 if (tcp->tcp_sack_info != NULL) { 6712 if (tcp->tcp_notsack_list != NULL) { 6713 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 6714 tcp); 6715 } 6716 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 6717 tcp->tcp_sack_info = NULL; 6718 } 6719 6720 tcp->tcp_rcv_ws = 0; 6721 tcp->tcp_snd_ws = 0; 6722 tcp->tcp_ts_recent = 0; 6723 tcp->tcp_rnxt = 0; /* Displayed in mib */ 6724 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 6725 tcp->tcp_initial_pmtu = 0; 6726 6727 ASSERT(tcp->tcp_reass_head == NULL); 6728 ASSERT(tcp->tcp_reass_tail == NULL); 6729 6730 tcp->tcp_cwnd_cnt = 0; 6731 6732 ASSERT(tcp->tcp_rcv_list == NULL); 6733 ASSERT(tcp->tcp_rcv_last_head == NULL); 6734 ASSERT(tcp->tcp_rcv_last_tail == NULL); 6735 ASSERT(tcp->tcp_rcv_cnt == 0); 6736 6737 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */ 6738 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 6739 tcp->tcp_csuna = 0; 6740 6741 tcp->tcp_rto = 0; /* Displayed in MIB */ 6742 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 6743 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 6744 tcp->tcp_rtt_update = 0; 6745 6746 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 6747 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 6748 6749 tcp->tcp_rack = 0; /* Displayed in mib */ 6750 tcp->tcp_rack_cnt = 0; 6751 tcp->tcp_rack_cur_max = 0; 6752 tcp->tcp_rack_abs_max = 0; 6753 6754 tcp->tcp_max_swnd = 0; 6755 6756 ASSERT(tcp->tcp_listener == NULL); 6757 6758 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 6759 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 6760 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 6761 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 6762 6763 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 6764 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 6765 PRESERVE(tcp->tcp_conn_req_max); 6766 PRESERVE(tcp->tcp_conn_req_seqnum); 6767 6768 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 6769 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 6770 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 6771 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 6772 6773 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 6774 ASSERT(tcp->tcp_urp_mp == NULL); 6775 ASSERT(tcp->tcp_urp_mark_mp == NULL); 6776 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 6777 6778 ASSERT(tcp->tcp_eager_next_q == NULL); 6779 ASSERT(tcp->tcp_eager_last_q == NULL); 6780 ASSERT((tcp->tcp_eager_next_q0 == NULL && 6781 tcp->tcp_eager_prev_q0 == NULL) || 6782 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 6783 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 6784 6785 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 6786 tcp->tcp_eager_prev_drop_q0 == NULL) || 6787 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 6788 6789 tcp->tcp_client_errno = 0; 6790 6791 DONTCARE(connp->conn_sum); /* Init in tcp_init_values */ 6792 6793 connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */ 6794 6795 PRESERVE(connp->conn_bound_addr_v6); 6796 tcp->tcp_last_sent_len = 0; 6797 tcp->tcp_dupack_cnt = 0; 6798 6799 connp->conn_fport = 0; /* Displayed in MIB */ 6800 PRESERVE(connp->conn_lport); 6801 6802 PRESERVE(tcp->tcp_acceptor_lockp); 6803 6804 ASSERT(tcp->tcp_ordrel_mp == NULL); 6805 PRESERVE(tcp->tcp_acceptor_id); 6806 DONTCARE(tcp->tcp_ipsec_overhead); 6807 6808 PRESERVE(connp->conn_family); 6809 /* Remove any remnants of mapped address binding */ 6810 if (connp->conn_family == AF_INET6) { 6811 connp->conn_ipversion = IPV6_VERSION; 6812 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 6813 } else { 6814 connp->conn_ipversion = IPV4_VERSION; 6815 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 6816 } 6817 6818 connp->conn_bound_if = 0; 6819 connp->conn_recv_ancillary.crb_all = 0; 6820 tcp->tcp_recvifindex = 0; 6821 tcp->tcp_recvhops = 0; 6822 tcp->tcp_closed = 0; 6823 tcp->tcp_cleandeathtag = 0; 6824 if (tcp->tcp_hopopts != NULL) { 6825 mi_free(tcp->tcp_hopopts); 6826 tcp->tcp_hopopts = NULL; 6827 tcp->tcp_hopoptslen = 0; 6828 } 6829 ASSERT(tcp->tcp_hopoptslen == 0); 6830 if (tcp->tcp_dstopts != NULL) { 6831 mi_free(tcp->tcp_dstopts); 6832 tcp->tcp_dstopts = NULL; 6833 tcp->tcp_dstoptslen = 0; 6834 } 6835 ASSERT(tcp->tcp_dstoptslen == 0); 6836 if (tcp->tcp_rthdrdstopts != NULL) { 6837 mi_free(tcp->tcp_rthdrdstopts); 6838 tcp->tcp_rthdrdstopts = NULL; 6839 tcp->tcp_rthdrdstoptslen = 0; 6840 } 6841 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 6842 if (tcp->tcp_rthdr != NULL) { 6843 mi_free(tcp->tcp_rthdr); 6844 tcp->tcp_rthdr = NULL; 6845 tcp->tcp_rthdrlen = 0; 6846 } 6847 ASSERT(tcp->tcp_rthdrlen == 0); 6848 6849 /* Reset fusion-related fields */ 6850 tcp->tcp_fused = B_FALSE; 6851 tcp->tcp_unfusable = B_FALSE; 6852 tcp->tcp_fused_sigurg = B_FALSE; 6853 tcp->tcp_loopback_peer = NULL; 6854 6855 tcp->tcp_lso = B_FALSE; 6856 6857 tcp->tcp_in_ack_unsent = 0; 6858 tcp->tcp_cork = B_FALSE; 6859 tcp->tcp_tconnind_started = B_FALSE; 6860 6861 PRESERVE(tcp->tcp_squeue_bytes); 6862 6863 ASSERT(tcp->tcp_kssl_ctx == NULL); 6864 ASSERT(!tcp->tcp_kssl_pending); 6865 PRESERVE(tcp->tcp_kssl_ent); 6866 6867 tcp->tcp_closemp_used = B_FALSE; 6868 6869 PRESERVE(tcp->tcp_rsrv_mp); 6870 PRESERVE(tcp->tcp_rsrv_mp_lock); 6871 6872 #ifdef DEBUG 6873 DONTCARE(tcp->tcmp_stk[0]); 6874 #endif 6875 6876 PRESERVE(tcp->tcp_connid); 6877 6878 ASSERT(tcp->tcp_listen_cnt == NULL); 6879 ASSERT(tcp->tcp_reass_tid == 0); 6880 6881 #undef DONTCARE 6882 #undef PRESERVE 6883 } 6884 6885 static void 6886 tcp_init_values(tcp_t *tcp) 6887 { 6888 tcp_stack_t *tcps = tcp->tcp_tcps; 6889 conn_t *connp = tcp->tcp_connp; 6890 6891 ASSERT((connp->conn_family == AF_INET && 6892 connp->conn_ipversion == IPV4_VERSION) || 6893 (connp->conn_family == AF_INET6 && 6894 (connp->conn_ipversion == IPV4_VERSION || 6895 connp->conn_ipversion == IPV6_VERSION))); 6896 6897 /* 6898 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 6899 * will be close to tcp_rexmit_interval_initial. By doing this, we 6900 * allow the algorithm to adjust slowly to large fluctuations of RTT 6901 * during first few transmissions of a connection as seen in slow 6902 * links. 6903 */ 6904 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 6905 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 6906 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 6907 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 6908 tcps->tcps_conn_grace_period; 6909 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 6910 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 6911 tcp->tcp_timer_backoff = 0; 6912 tcp->tcp_ms_we_have_waited = 0; 6913 tcp->tcp_last_recv_time = ddi_get_lbolt(); 6914 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 6915 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 6916 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 6917 6918 tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier; 6919 6920 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 6921 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 6922 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 6923 /* 6924 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 6925 * passive open. 6926 */ 6927 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 6928 6929 tcp->tcp_naglim = tcps->tcps_naglim_def; 6930 6931 /* NOTE: ISS is now set in tcp_set_destination(). */ 6932 6933 /* Reset fusion-related fields */ 6934 tcp->tcp_fused = B_FALSE; 6935 tcp->tcp_unfusable = B_FALSE; 6936 tcp->tcp_fused_sigurg = B_FALSE; 6937 tcp->tcp_loopback_peer = NULL; 6938 6939 /* We rebuild the header template on the next connect/conn_request */ 6940 6941 connp->conn_mlp_type = mlptSingle; 6942 6943 /* 6944 * Init the window scale to the max so tcp_rwnd_set() won't pare 6945 * down tcp_rwnd. tcp_set_destination() will set the right value later. 6946 */ 6947 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 6948 tcp->tcp_rwnd = connp->conn_rcvbuf; 6949 6950 tcp->tcp_cork = B_FALSE; 6951 /* 6952 * Init the tcp_debug option if it wasn't already set. This value 6953 * determines whether TCP 6954 * calls strlog() to print out debug messages. Doing this 6955 * initialization here means that this value is not inherited thru 6956 * tcp_reinit(). 6957 */ 6958 if (!connp->conn_debug) 6959 connp->conn_debug = tcps->tcps_dbg; 6960 6961 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 6962 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 6963 } 6964 6965 /* At minimum we need 8 bytes in the TCP header for the lookup */ 6966 #define ICMP_MIN_TCP_HDR 8 6967 6968 /* 6969 * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages 6970 * passed up by IP. The message is always received on the correct tcp_t. 6971 * Assumes that IP has pulled up everything up to and including the ICMP header. 6972 */ 6973 /* ARGSUSED2 */ 6974 static void 6975 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 6976 { 6977 conn_t *connp = (conn_t *)arg1; 6978 icmph_t *icmph; 6979 ipha_t *ipha; 6980 int iph_hdr_length; 6981 tcpha_t *tcpha; 6982 uint32_t seg_seq; 6983 tcp_t *tcp = connp->conn_tcp; 6984 6985 /* Assume IP provides aligned packets */ 6986 ASSERT(OK_32PTR(mp->b_rptr)); 6987 ASSERT((MBLKL(mp) >= sizeof (ipha_t))); 6988 6989 /* 6990 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 6991 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 6992 */ 6993 if (!(ira->ira_flags & IRAF_IS_IPV4)) { 6994 tcp_icmp_error_ipv6(tcp, mp, ira); 6995 return; 6996 } 6997 6998 /* Skip past the outer IP and ICMP headers */ 6999 iph_hdr_length = ira->ira_ip_hdr_length; 7000 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 7001 /* 7002 * If we don't have the correct outer IP header length 7003 * or if we don't have a complete inner IP header 7004 * drop it. 7005 */ 7006 if (iph_hdr_length < sizeof (ipha_t) || 7007 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 7008 noticmpv4: 7009 freemsg(mp); 7010 return; 7011 } 7012 ipha = (ipha_t *)&icmph[1]; 7013 7014 /* Skip past the inner IP and find the ULP header */ 7015 iph_hdr_length = IPH_HDR_LENGTH(ipha); 7016 tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length); 7017 /* 7018 * If we don't have the correct inner IP header length or if the ULP 7019 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 7020 * bytes of TCP header, drop it. 7021 */ 7022 if (iph_hdr_length < sizeof (ipha_t) || 7023 ipha->ipha_protocol != IPPROTO_TCP || 7024 (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) { 7025 goto noticmpv4; 7026 } 7027 7028 seg_seq = ntohl(tcpha->tha_seq); 7029 switch (icmph->icmph_type) { 7030 case ICMP_DEST_UNREACHABLE: 7031 switch (icmph->icmph_code) { 7032 case ICMP_FRAGMENTATION_NEEDED: 7033 /* 7034 * Update Path MTU, then try to send something out. 7035 */ 7036 tcp_update_pmtu(tcp, B_TRUE); 7037 tcp_rexmit_after_error(tcp); 7038 break; 7039 case ICMP_PORT_UNREACHABLE: 7040 case ICMP_PROTOCOL_UNREACHABLE: 7041 switch (tcp->tcp_state) { 7042 case TCPS_SYN_SENT: 7043 case TCPS_SYN_RCVD: 7044 /* 7045 * ICMP can snipe away incipient 7046 * TCP connections as long as 7047 * seq number is same as initial 7048 * send seq number. 7049 */ 7050 if (seg_seq == tcp->tcp_iss) { 7051 (void) tcp_clean_death(tcp, 7052 ECONNREFUSED, 6); 7053 } 7054 break; 7055 } 7056 break; 7057 case ICMP_HOST_UNREACHABLE: 7058 case ICMP_NET_UNREACHABLE: 7059 /* Record the error in case we finally time out. */ 7060 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 7061 tcp->tcp_client_errno = EHOSTUNREACH; 7062 else 7063 tcp->tcp_client_errno = ENETUNREACH; 7064 if (tcp->tcp_state == TCPS_SYN_RCVD) { 7065 if (tcp->tcp_listener != NULL && 7066 tcp->tcp_listener->tcp_syn_defense) { 7067 /* 7068 * Ditch the half-open connection if we 7069 * suspect a SYN attack is under way. 7070 */ 7071 (void) tcp_clean_death(tcp, 7072 tcp->tcp_client_errno, 7); 7073 } 7074 } 7075 break; 7076 default: 7077 break; 7078 } 7079 break; 7080 case ICMP_SOURCE_QUENCH: { 7081 /* 7082 * use a global boolean to control 7083 * whether TCP should respond to ICMP_SOURCE_QUENCH. 7084 * The default is false. 7085 */ 7086 if (tcp_icmp_source_quench) { 7087 /* 7088 * Reduce the sending rate as if we got a 7089 * retransmit timeout 7090 */ 7091 uint32_t npkt; 7092 7093 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 7094 tcp->tcp_mss; 7095 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 7096 tcp->tcp_cwnd = tcp->tcp_mss; 7097 tcp->tcp_cwnd_cnt = 0; 7098 } 7099 break; 7100 } 7101 } 7102 freemsg(mp); 7103 } 7104 7105 /* 7106 * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might 7107 * change. But it can refer to fields like tcp_suna and tcp_snxt. 7108 * 7109 * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP 7110 * error messages received by IP. The message is always received on the correct 7111 * tcp_t. 7112 */ 7113 /* ARGSUSED */ 7114 static boolean_t 7115 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6, 7116 ip_recv_attr_t *ira) 7117 { 7118 tcpha_t *tcpha = (tcpha_t *)arg2; 7119 uint32_t seq = ntohl(tcpha->tha_seq); 7120 tcp_t *tcp = connp->conn_tcp; 7121 7122 /* 7123 * TCP sequence number contained in payload of the ICMP error message 7124 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise, 7125 * the message is either a stale ICMP error, or an attack from the 7126 * network. Fail the verification. 7127 */ 7128 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 7129 return (B_FALSE); 7130 7131 /* For "too big" we also check the ignore flag */ 7132 if (ira->ira_flags & IRAF_IS_IPV4) { 7133 ASSERT(icmph != NULL); 7134 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 7135 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 7136 tcp->tcp_tcps->tcps_ignore_path_mtu) 7137 return (B_FALSE); 7138 } else { 7139 ASSERT(icmp6 != NULL); 7140 if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG && 7141 tcp->tcp_tcps->tcps_ignore_path_mtu) 7142 return (B_FALSE); 7143 } 7144 return (B_TRUE); 7145 } 7146 7147 /* 7148 * Update the TCP connection according to change of PMTU. 7149 * 7150 * Path MTU might have changed by either increase or decrease, so need to 7151 * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny 7152 * or negative MSS, since tcp_mss_set() will do it. 7153 */ 7154 static void 7155 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only) 7156 { 7157 uint32_t pmtu; 7158 int32_t mss; 7159 conn_t *connp = tcp->tcp_connp; 7160 ip_xmit_attr_t *ixa = connp->conn_ixa; 7161 iaflags_t ixaflags; 7162 7163 if (tcp->tcp_tcps->tcps_ignore_path_mtu) 7164 return; 7165 7166 if (tcp->tcp_state < TCPS_ESTABLISHED) 7167 return; 7168 7169 /* 7170 * Always call ip_get_pmtu() to make sure that IP has updated 7171 * ixa_flags properly. 7172 */ 7173 pmtu = ip_get_pmtu(ixa); 7174 ixaflags = ixa->ixa_flags; 7175 7176 /* 7177 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and 7178 * IPsec overhead if applied. Make sure to use the most recent 7179 * IPsec information. 7180 */ 7181 mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp); 7182 7183 /* 7184 * Nothing to change, so just return. 7185 */ 7186 if (mss == tcp->tcp_mss) 7187 return; 7188 7189 /* 7190 * Currently, for ICMP errors, only PMTU decrease is handled. 7191 */ 7192 if (mss > tcp->tcp_mss && decrease_only) 7193 return; 7194 7195 DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss); 7196 7197 /* 7198 * Update ixa_fragsize and ixa_pmtu. 7199 */ 7200 ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu; 7201 7202 /* 7203 * Adjust MSS and all relevant variables. 7204 */ 7205 tcp_mss_set(tcp, mss); 7206 7207 /* 7208 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu 7209 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP 7210 * has a (potentially different) min size we do the same. Make sure to 7211 * clear IXAF_DONTFRAG, which is used by IP to decide whether to 7212 * fragment the packet. 7213 * 7214 * LSO over IPv6 can not be fragmented. So need to disable LSO 7215 * when IPv6 fragmentation is needed. 7216 */ 7217 if (mss < tcp->tcp_tcps->tcps_mss_min) 7218 ixaflags |= IXAF_PMTU_TOO_SMALL; 7219 7220 if (ixaflags & IXAF_PMTU_TOO_SMALL) 7221 ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF); 7222 7223 if ((connp->conn_ipversion == IPV4_VERSION) && 7224 !(ixaflags & IXAF_PMTU_IPV4_DF)) { 7225 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 7226 } 7227 ixa->ixa_flags = ixaflags; 7228 } 7229 7230 /* 7231 * Do slow start retransmission after ICMP errors of PMTU changes. 7232 */ 7233 static void 7234 tcp_rexmit_after_error(tcp_t *tcp) 7235 { 7236 /* 7237 * All sent data has been acknowledged or no data left to send, just 7238 * to return. 7239 */ 7240 if (!SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) || 7241 (tcp->tcp_xmit_head == NULL)) 7242 return; 7243 7244 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && (tcp->tcp_unsent == 0)) 7245 tcp->tcp_rexmit_max = tcp->tcp_fss; 7246 else 7247 tcp->tcp_rexmit_max = tcp->tcp_snxt; 7248 7249 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 7250 tcp->tcp_rexmit = B_TRUE; 7251 tcp->tcp_dupack_cnt = 0; 7252 tcp->tcp_snd_burst = TCP_CWND_SS; 7253 tcp_ss_rexmit(tcp); 7254 } 7255 7256 /* 7257 * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6 7258 * error messages passed up by IP. 7259 * Assumes that IP has pulled up all the extension headers as well 7260 * as the ICMPv6 header. 7261 */ 7262 static void 7263 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira) 7264 { 7265 icmp6_t *icmp6; 7266 ip6_t *ip6h; 7267 uint16_t iph_hdr_length = ira->ira_ip_hdr_length; 7268 tcpha_t *tcpha; 7269 uint8_t *nexthdrp; 7270 uint32_t seg_seq; 7271 7272 /* 7273 * Verify that we have a complete IP header. 7274 */ 7275 ASSERT((MBLKL(mp) >= sizeof (ip6_t))); 7276 7277 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 7278 ip6h = (ip6_t *)&icmp6[1]; 7279 /* 7280 * Verify if we have a complete ICMP and inner IP header. 7281 */ 7282 if ((uchar_t *)&ip6h[1] > mp->b_wptr) { 7283 noticmpv6: 7284 freemsg(mp); 7285 return; 7286 } 7287 7288 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 7289 goto noticmpv6; 7290 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 7291 /* 7292 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 7293 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 7294 * packet. 7295 */ 7296 if ((*nexthdrp != IPPROTO_TCP) || 7297 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 7298 goto noticmpv6; 7299 } 7300 7301 seg_seq = ntohl(tcpha->tha_seq); 7302 switch (icmp6->icmp6_type) { 7303 case ICMP6_PACKET_TOO_BIG: 7304 /* 7305 * Update Path MTU, then try to send something out. 7306 */ 7307 tcp_update_pmtu(tcp, B_TRUE); 7308 tcp_rexmit_after_error(tcp); 7309 break; 7310 case ICMP6_DST_UNREACH: 7311 switch (icmp6->icmp6_code) { 7312 case ICMP6_DST_UNREACH_NOPORT: 7313 if (((tcp->tcp_state == TCPS_SYN_SENT) || 7314 (tcp->tcp_state == TCPS_SYN_RCVD)) && 7315 (seg_seq == tcp->tcp_iss)) { 7316 (void) tcp_clean_death(tcp, 7317 ECONNREFUSED, 8); 7318 } 7319 break; 7320 case ICMP6_DST_UNREACH_ADMIN: 7321 case ICMP6_DST_UNREACH_NOROUTE: 7322 case ICMP6_DST_UNREACH_BEYONDSCOPE: 7323 case ICMP6_DST_UNREACH_ADDR: 7324 /* Record the error in case we finally time out. */ 7325 tcp->tcp_client_errno = EHOSTUNREACH; 7326 if (((tcp->tcp_state == TCPS_SYN_SENT) || 7327 (tcp->tcp_state == TCPS_SYN_RCVD)) && 7328 (seg_seq == tcp->tcp_iss)) { 7329 if (tcp->tcp_listener != NULL && 7330 tcp->tcp_listener->tcp_syn_defense) { 7331 /* 7332 * Ditch the half-open connection if we 7333 * suspect a SYN attack is under way. 7334 */ 7335 (void) tcp_clean_death(tcp, 7336 tcp->tcp_client_errno, 9); 7337 } 7338 } 7339 7340 7341 break; 7342 default: 7343 break; 7344 } 7345 break; 7346 case ICMP6_PARAM_PROB: 7347 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 7348 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 7349 (uchar_t *)ip6h + icmp6->icmp6_pptr == 7350 (uchar_t *)nexthdrp) { 7351 if (tcp->tcp_state == TCPS_SYN_SENT || 7352 tcp->tcp_state == TCPS_SYN_RCVD) { 7353 (void) tcp_clean_death(tcp, 7354 ECONNREFUSED, 10); 7355 } 7356 break; 7357 } 7358 break; 7359 7360 case ICMP6_TIME_EXCEEDED: 7361 default: 7362 break; 7363 } 7364 freemsg(mp); 7365 } 7366 7367 /* 7368 * Notify IP that we are having trouble with this connection. IP should 7369 * make note so it can potentially use a different IRE. 7370 */ 7371 static void 7372 tcp_ip_notify(tcp_t *tcp) 7373 { 7374 conn_t *connp = tcp->tcp_connp; 7375 ire_t *ire; 7376 7377 /* 7378 * Note: in the case of source routing we want to blow away the 7379 * route to the first source route hop. 7380 */ 7381 ire = connp->conn_ixa->ixa_ire; 7382 if (ire != NULL && !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 7383 if (ire->ire_ipversion == IPV4_VERSION) { 7384 /* 7385 * As per RFC 1122, we send an RTM_LOSING to inform 7386 * routing protocols. 7387 */ 7388 ip_rts_change(RTM_LOSING, ire->ire_addr, 7389 ire->ire_gateway_addr, ire->ire_mask, 7390 connp->conn_laddr_v4, 0, 0, 0, 7391 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), 7392 ire->ire_ipst); 7393 } 7394 (void) ire_no_good(ire); 7395 } 7396 } 7397 7398 #pragma inline(tcp_send_data) 7399 7400 /* 7401 * Timer callback routine for keepalive probe. We do a fake resend of 7402 * last ACKed byte. Then set a timer using RTO. When the timer expires, 7403 * check to see if we have heard anything from the other end for the last 7404 * RTO period. If we have, set the timer to expire for another 7405 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 7406 * RTO << 1 and check again when it expires. Keep exponentially increasing 7407 * the timeout if we have not heard from the other side. If for more than 7408 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 7409 * kill the connection unless the keepalive abort threshold is 0. In 7410 * that case, we will probe "forever." 7411 */ 7412 static void 7413 tcp_keepalive_killer(void *arg) 7414 { 7415 mblk_t *mp; 7416 conn_t *connp = (conn_t *)arg; 7417 tcp_t *tcp = connp->conn_tcp; 7418 int32_t firetime; 7419 int32_t idletime; 7420 int32_t ka_intrvl; 7421 tcp_stack_t *tcps = tcp->tcp_tcps; 7422 7423 tcp->tcp_ka_tid = 0; 7424 7425 if (tcp->tcp_fused) 7426 return; 7427 7428 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 7429 ka_intrvl = tcp->tcp_ka_interval; 7430 7431 /* 7432 * Keepalive probe should only be sent if the application has not 7433 * done a close on the connection. 7434 */ 7435 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 7436 return; 7437 } 7438 /* Timer fired too early, restart it. */ 7439 if (tcp->tcp_state < TCPS_ESTABLISHED) { 7440 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 7441 MSEC_TO_TICK(ka_intrvl)); 7442 return; 7443 } 7444 7445 idletime = TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time); 7446 /* 7447 * If we have not heard from the other side for a long 7448 * time, kill the connection unless the keepalive abort 7449 * threshold is 0. In that case, we will probe "forever." 7450 */ 7451 if (tcp->tcp_ka_abort_thres != 0 && 7452 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 7453 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 7454 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 7455 tcp->tcp_client_errno : ETIMEDOUT, 11); 7456 return; 7457 } 7458 7459 if (tcp->tcp_snxt == tcp->tcp_suna && 7460 idletime >= ka_intrvl) { 7461 /* Fake resend of last ACKed byte. */ 7462 mblk_t *mp1 = allocb(1, BPRI_LO); 7463 7464 if (mp1 != NULL) { 7465 *mp1->b_wptr++ = '\0'; 7466 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 7467 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 7468 freeb(mp1); 7469 /* 7470 * if allocation failed, fall through to start the 7471 * timer back. 7472 */ 7473 if (mp != NULL) { 7474 tcp_send_data(tcp, mp); 7475 BUMP_MIB(&tcps->tcps_mib, 7476 tcpTimKeepaliveProbe); 7477 if (tcp->tcp_ka_last_intrvl != 0) { 7478 int max; 7479 /* 7480 * We should probe again at least 7481 * in ka_intrvl, but not more than 7482 * tcp_rexmit_interval_max. 7483 */ 7484 max = tcps->tcps_rexmit_interval_max; 7485 firetime = MIN(ka_intrvl - 1, 7486 tcp->tcp_ka_last_intrvl << 1); 7487 if (firetime > max) 7488 firetime = max; 7489 } else { 7490 firetime = tcp->tcp_rto; 7491 } 7492 tcp->tcp_ka_tid = TCP_TIMER(tcp, 7493 tcp_keepalive_killer, 7494 MSEC_TO_TICK(firetime)); 7495 tcp->tcp_ka_last_intrvl = firetime; 7496 return; 7497 } 7498 } 7499 } else { 7500 tcp->tcp_ka_last_intrvl = 0; 7501 } 7502 7503 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 7504 if ((firetime = ka_intrvl - idletime) < 0) { 7505 firetime = ka_intrvl; 7506 } 7507 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 7508 MSEC_TO_TICK(firetime)); 7509 } 7510 7511 int 7512 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 7513 { 7514 conn_t *connp = tcp->tcp_connp; 7515 queue_t *q = connp->conn_rq; 7516 int32_t mss = tcp->tcp_mss; 7517 int maxpsz; 7518 7519 if (TCP_IS_DETACHED(tcp)) 7520 return (mss); 7521 if (tcp->tcp_fused) { 7522 maxpsz = tcp_fuse_maxpsz(tcp); 7523 mss = INFPSZ; 7524 } else if (tcp->tcp_maxpsz_multiplier == 0) { 7525 /* 7526 * Set the sd_qn_maxpsz according to the socket send buffer 7527 * size, and sd_maxblk to INFPSZ (-1). This will essentially 7528 * instruct the stream head to copyin user data into contiguous 7529 * kernel-allocated buffers without breaking it up into smaller 7530 * chunks. We round up the buffer size to the nearest SMSS. 7531 */ 7532 maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss); 7533 if (tcp->tcp_kssl_ctx == NULL) 7534 mss = INFPSZ; 7535 else 7536 mss = SSL3_MAX_RECORD_LEN; 7537 } else { 7538 /* 7539 * Set sd_qn_maxpsz to approx half the (receivers) buffer 7540 * (and a multiple of the mss). This instructs the stream 7541 * head to break down larger than SMSS writes into SMSS- 7542 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 7543 */ 7544 maxpsz = tcp->tcp_maxpsz_multiplier * mss; 7545 if (maxpsz > connp->conn_sndbuf / 2) { 7546 maxpsz = connp->conn_sndbuf / 2; 7547 /* Round up to nearest mss */ 7548 maxpsz = MSS_ROUNDUP(maxpsz, mss); 7549 } 7550 } 7551 7552 (void) proto_set_maxpsz(q, connp, maxpsz); 7553 if (!(IPCL_IS_NONSTR(connp))) 7554 connp->conn_wq->q_maxpsz = maxpsz; 7555 if (set_maxblk) 7556 (void) proto_set_tx_maxblk(q, connp, mss); 7557 return (mss); 7558 } 7559 7560 /* 7561 * Extract option values from a tcp header. We put any found values into the 7562 * tcpopt struct and return a bitmask saying which options were found. 7563 */ 7564 static int 7565 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt) 7566 { 7567 uchar_t *endp; 7568 int len; 7569 uint32_t mss; 7570 uchar_t *up = (uchar_t *)tcpha; 7571 int found = 0; 7572 int32_t sack_len; 7573 tcp_seq sack_begin, sack_end; 7574 tcp_t *tcp; 7575 7576 endp = up + TCP_HDR_LENGTH(tcpha); 7577 up += TCP_MIN_HEADER_LENGTH; 7578 while (up < endp) { 7579 len = endp - up; 7580 switch (*up) { 7581 case TCPOPT_EOL: 7582 break; 7583 7584 case TCPOPT_NOP: 7585 up++; 7586 continue; 7587 7588 case TCPOPT_MAXSEG: 7589 if (len < TCPOPT_MAXSEG_LEN || 7590 up[1] != TCPOPT_MAXSEG_LEN) 7591 break; 7592 7593 mss = BE16_TO_U16(up+2); 7594 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 7595 tcpopt->tcp_opt_mss = mss; 7596 found |= TCP_OPT_MSS_PRESENT; 7597 7598 up += TCPOPT_MAXSEG_LEN; 7599 continue; 7600 7601 case TCPOPT_WSCALE: 7602 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 7603 break; 7604 7605 if (up[2] > TCP_MAX_WINSHIFT) 7606 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 7607 else 7608 tcpopt->tcp_opt_wscale = up[2]; 7609 found |= TCP_OPT_WSCALE_PRESENT; 7610 7611 up += TCPOPT_WS_LEN; 7612 continue; 7613 7614 case TCPOPT_SACK_PERMITTED: 7615 if (len < TCPOPT_SACK_OK_LEN || 7616 up[1] != TCPOPT_SACK_OK_LEN) 7617 break; 7618 found |= TCP_OPT_SACK_OK_PRESENT; 7619 up += TCPOPT_SACK_OK_LEN; 7620 continue; 7621 7622 case TCPOPT_SACK: 7623 if (len <= 2 || up[1] <= 2 || len < up[1]) 7624 break; 7625 7626 /* If TCP is not interested in SACK blks... */ 7627 if ((tcp = tcpopt->tcp) == NULL) { 7628 up += up[1]; 7629 continue; 7630 } 7631 sack_len = up[1] - TCPOPT_HEADER_LEN; 7632 up += TCPOPT_HEADER_LEN; 7633 7634 /* 7635 * If the list is empty, allocate one and assume 7636 * nothing is sack'ed. 7637 */ 7638 ASSERT(tcp->tcp_sack_info != NULL); 7639 if (tcp->tcp_notsack_list == NULL) { 7640 tcp_notsack_update(&(tcp->tcp_notsack_list), 7641 tcp->tcp_suna, tcp->tcp_snxt, 7642 &(tcp->tcp_num_notsack_blk), 7643 &(tcp->tcp_cnt_notsack_list)); 7644 7645 /* 7646 * Make sure tcp_notsack_list is not NULL. 7647 * This happens when kmem_alloc(KM_NOSLEEP) 7648 * returns NULL. 7649 */ 7650 if (tcp->tcp_notsack_list == NULL) { 7651 up += sack_len; 7652 continue; 7653 } 7654 tcp->tcp_fack = tcp->tcp_suna; 7655 } 7656 7657 while (sack_len > 0) { 7658 if (up + 8 > endp) { 7659 up = endp; 7660 break; 7661 } 7662 sack_begin = BE32_TO_U32(up); 7663 up += 4; 7664 sack_end = BE32_TO_U32(up); 7665 up += 4; 7666 sack_len -= 8; 7667 /* 7668 * Bounds checking. Make sure the SACK 7669 * info is within tcp_suna and tcp_snxt. 7670 * If this SACK blk is out of bound, ignore 7671 * it but continue to parse the following 7672 * blks. 7673 */ 7674 if (SEQ_LEQ(sack_end, sack_begin) || 7675 SEQ_LT(sack_begin, tcp->tcp_suna) || 7676 SEQ_GT(sack_end, tcp->tcp_snxt)) { 7677 continue; 7678 } 7679 tcp_notsack_insert(&(tcp->tcp_notsack_list), 7680 sack_begin, sack_end, 7681 &(tcp->tcp_num_notsack_blk), 7682 &(tcp->tcp_cnt_notsack_list)); 7683 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 7684 tcp->tcp_fack = sack_end; 7685 } 7686 } 7687 found |= TCP_OPT_SACK_PRESENT; 7688 continue; 7689 7690 case TCPOPT_TSTAMP: 7691 if (len < TCPOPT_TSTAMP_LEN || 7692 up[1] != TCPOPT_TSTAMP_LEN) 7693 break; 7694 7695 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 7696 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 7697 7698 found |= TCP_OPT_TSTAMP_PRESENT; 7699 7700 up += TCPOPT_TSTAMP_LEN; 7701 continue; 7702 7703 default: 7704 if (len <= 1 || len < (int)up[1] || up[1] == 0) 7705 break; 7706 up += up[1]; 7707 continue; 7708 } 7709 break; 7710 } 7711 return (found); 7712 } 7713 7714 /* 7715 * Set the MSS associated with a particular tcp based on its current value, 7716 * and a new one passed in. Observe minimums and maximums, and reset other 7717 * state variables that we want to view as multiples of MSS. 7718 * 7719 * The value of MSS could be either increased or descreased. 7720 */ 7721 static void 7722 tcp_mss_set(tcp_t *tcp, uint32_t mss) 7723 { 7724 uint32_t mss_max; 7725 tcp_stack_t *tcps = tcp->tcp_tcps; 7726 conn_t *connp = tcp->tcp_connp; 7727 7728 if (connp->conn_ipversion == IPV4_VERSION) 7729 mss_max = tcps->tcps_mss_max_ipv4; 7730 else 7731 mss_max = tcps->tcps_mss_max_ipv6; 7732 7733 if (mss < tcps->tcps_mss_min) 7734 mss = tcps->tcps_mss_min; 7735 if (mss > mss_max) 7736 mss = mss_max; 7737 /* 7738 * Unless naglim has been set by our client to 7739 * a non-mss value, force naglim to track mss. 7740 * This can help to aggregate small writes. 7741 */ 7742 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 7743 tcp->tcp_naglim = mss; 7744 /* 7745 * TCP should be able to buffer at least 4 MSS data for obvious 7746 * performance reason. 7747 */ 7748 if ((mss << 2) > connp->conn_sndbuf) 7749 connp->conn_sndbuf = mss << 2; 7750 7751 /* 7752 * Set the send lowater to at least twice of MSS. 7753 */ 7754 if ((mss << 1) > connp->conn_sndlowat) 7755 connp->conn_sndlowat = mss << 1; 7756 7757 /* 7758 * Update tcp_cwnd according to the new value of MSS. Keep the 7759 * previous ratio to preserve the transmit rate. 7760 */ 7761 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 7762 tcp->tcp_cwnd_cnt = 0; 7763 7764 tcp->tcp_mss = mss; 7765 (void) tcp_maxpsz_set(tcp, B_TRUE); 7766 } 7767 7768 /* For /dev/tcp aka AF_INET open */ 7769 static int 7770 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 7771 { 7772 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 7773 } 7774 7775 /* For /dev/tcp6 aka AF_INET6 open */ 7776 static int 7777 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 7778 { 7779 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 7780 } 7781 7782 static conn_t * 7783 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket, 7784 int *errorp) 7785 { 7786 tcp_t *tcp = NULL; 7787 conn_t *connp; 7788 zoneid_t zoneid; 7789 tcp_stack_t *tcps; 7790 squeue_t *sqp; 7791 7792 ASSERT(errorp != NULL); 7793 /* 7794 * Find the proper zoneid and netstack. 7795 */ 7796 /* 7797 * Special case for install: miniroot needs to be able to 7798 * access files via NFS as though it were always in the 7799 * global zone. 7800 */ 7801 if (credp == kcred && nfs_global_client_only != 0) { 7802 zoneid = GLOBAL_ZONEID; 7803 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 7804 netstack_tcp; 7805 ASSERT(tcps != NULL); 7806 } else { 7807 netstack_t *ns; 7808 7809 ns = netstack_find_by_cred(credp); 7810 ASSERT(ns != NULL); 7811 tcps = ns->netstack_tcp; 7812 ASSERT(tcps != NULL); 7813 7814 /* 7815 * For exclusive stacks we set the zoneid to zero 7816 * to make TCP operate as if in the global zone. 7817 */ 7818 if (tcps->tcps_netstack->netstack_stackid != 7819 GLOBAL_NETSTACKID) 7820 zoneid = GLOBAL_ZONEID; 7821 else 7822 zoneid = crgetzoneid(credp); 7823 } 7824 7825 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 7826 connp = (conn_t *)tcp_get_conn(sqp, tcps); 7827 /* 7828 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 7829 * so we drop it by one. 7830 */ 7831 netstack_rele(tcps->tcps_netstack); 7832 if (connp == NULL) { 7833 *errorp = ENOSR; 7834 return (NULL); 7835 } 7836 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto); 7837 7838 connp->conn_sqp = sqp; 7839 connp->conn_initial_sqp = connp->conn_sqp; 7840 connp->conn_ixa->ixa_sqp = connp->conn_sqp; 7841 tcp = connp->conn_tcp; 7842 7843 /* 7844 * Besides asking IP to set the checksum for us, have conn_ip_output 7845 * to do the following checks when necessary: 7846 * 7847 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid 7848 * IXAF_VERIFY_PMTU: verify PMTU changes 7849 * IXAF_VERIFY_LSO: verify LSO capability changes 7850 */ 7851 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 7852 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO; 7853 7854 if (!tcps->tcps_dev_flow_ctl) 7855 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 7856 7857 if (isv6) { 7858 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 7859 connp->conn_ipversion = IPV6_VERSION; 7860 connp->conn_family = AF_INET6; 7861 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 7862 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit; 7863 } else { 7864 connp->conn_ipversion = IPV4_VERSION; 7865 connp->conn_family = AF_INET; 7866 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 7867 connp->conn_default_ttl = tcps->tcps_ipv4_ttl; 7868 } 7869 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl; 7870 7871 crhold(credp); 7872 connp->conn_cred = credp; 7873 connp->conn_cpid = curproc->p_pid; 7874 connp->conn_open_time = ddi_get_lbolt64(); 7875 7876 connp->conn_zoneid = zoneid; 7877 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 7878 connp->conn_ixa->ixa_zoneid = zoneid; 7879 connp->conn_mlp_type = mlptSingle; 7880 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 7881 ASSERT(tcp->tcp_tcps == tcps); 7882 7883 /* 7884 * If the caller has the process-wide flag set, then default to MAC 7885 * exempt mode. This allows read-down to unlabeled hosts. 7886 */ 7887 if (getpflags(NET_MAC_AWARE, credp) != 0) 7888 connp->conn_mac_mode = CONN_MAC_AWARE; 7889 7890 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 7891 7892 if (issocket) { 7893 tcp->tcp_issocket = 1; 7894 } 7895 7896 connp->conn_rcvbuf = tcps->tcps_recv_hiwat; 7897 connp->conn_sndbuf = tcps->tcps_xmit_hiwat; 7898 connp->conn_sndlowat = tcps->tcps_xmit_lowat; 7899 connp->conn_so_type = SOCK_STREAM; 7900 connp->conn_wroff = connp->conn_ht_iphc_allocated + 7901 tcps->tcps_wroff_xtra; 7902 7903 SOCK_CONNID_INIT(tcp->tcp_connid); 7904 tcp->tcp_state = TCPS_IDLE; 7905 tcp_init_values(tcp); 7906 return (connp); 7907 } 7908 7909 static int 7910 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 7911 boolean_t isv6) 7912 { 7913 tcp_t *tcp = NULL; 7914 conn_t *connp = NULL; 7915 int err; 7916 vmem_t *minor_arena = NULL; 7917 dev_t conn_dev; 7918 boolean_t issocket; 7919 7920 if (q->q_ptr != NULL) 7921 return (0); 7922 7923 if (sflag == MODOPEN) 7924 return (EINVAL); 7925 7926 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 7927 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 7928 minor_arena = ip_minor_arena_la; 7929 } else { 7930 /* 7931 * Either minor numbers in the large arena were exhausted 7932 * or a non socket application is doing the open. 7933 * Try to allocate from the small arena. 7934 */ 7935 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 7936 return (EBUSY); 7937 } 7938 minor_arena = ip_minor_arena_sa; 7939 } 7940 7941 ASSERT(minor_arena != NULL); 7942 7943 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 7944 7945 if (flag & SO_FALLBACK) { 7946 /* 7947 * Non streams socket needs a stream to fallback to 7948 */ 7949 RD(q)->q_ptr = (void *)conn_dev; 7950 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 7951 WR(q)->q_ptr = (void *)minor_arena; 7952 qprocson(q); 7953 return (0); 7954 } else if (flag & SO_ACCEPTOR) { 7955 q->q_qinfo = &tcp_acceptor_rinit; 7956 /* 7957 * the conn_dev and minor_arena will be subsequently used by 7958 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out 7959 * the minor device number for this connection from the q_ptr. 7960 */ 7961 RD(q)->q_ptr = (void *)conn_dev; 7962 WR(q)->q_qinfo = &tcp_acceptor_winit; 7963 WR(q)->q_ptr = (void *)minor_arena; 7964 qprocson(q); 7965 return (0); 7966 } 7967 7968 issocket = flag & SO_SOCKSTR; 7969 connp = tcp_create_common(credp, isv6, issocket, &err); 7970 7971 if (connp == NULL) { 7972 inet_minor_free(minor_arena, conn_dev); 7973 q->q_ptr = WR(q)->q_ptr = NULL; 7974 return (err); 7975 } 7976 7977 connp->conn_rq = q; 7978 connp->conn_wq = WR(q); 7979 q->q_ptr = WR(q)->q_ptr = connp; 7980 7981 connp->conn_dev = conn_dev; 7982 connp->conn_minor_arena = minor_arena; 7983 7984 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 7985 ASSERT(WR(q)->q_qinfo == &tcp_winit); 7986 7987 tcp = connp->conn_tcp; 7988 7989 if (issocket) { 7990 WR(q)->q_qinfo = &tcp_sock_winit; 7991 } else { 7992 #ifdef _ILP32 7993 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 7994 #else 7995 tcp->tcp_acceptor_id = conn_dev; 7996 #endif /* _ILP32 */ 7997 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 7998 } 7999 8000 /* 8001 * Put the ref for TCP. Ref for IP was already put 8002 * by ipcl_conn_create. Also Make the conn_t globally 8003 * visible to walkers 8004 */ 8005 mutex_enter(&connp->conn_lock); 8006 CONN_INC_REF_LOCKED(connp); 8007 ASSERT(connp->conn_ref == 2); 8008 connp->conn_state_flags &= ~CONN_INCIPIENT; 8009 mutex_exit(&connp->conn_lock); 8010 8011 qprocson(q); 8012 return (0); 8013 } 8014 8015 /* 8016 * Some TCP options can be "set" by requesting them in the option 8017 * buffer. This is needed for XTI feature test though we do not 8018 * allow it in general. We interpret that this mechanism is more 8019 * applicable to OSI protocols and need not be allowed in general. 8020 * This routine filters out options for which it is not allowed (most) 8021 * and lets through those (few) for which it is. [ The XTI interface 8022 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 8023 * ever implemented will have to be allowed here ]. 8024 */ 8025 static boolean_t 8026 tcp_allow_connopt_set(int level, int name) 8027 { 8028 8029 switch (level) { 8030 case IPPROTO_TCP: 8031 switch (name) { 8032 case TCP_NODELAY: 8033 return (B_TRUE); 8034 default: 8035 return (B_FALSE); 8036 } 8037 /*NOTREACHED*/ 8038 default: 8039 return (B_FALSE); 8040 } 8041 /*NOTREACHED*/ 8042 } 8043 8044 /* 8045 * This routine gets default values of certain options whose default 8046 * values are maintained by protocol specific code 8047 */ 8048 /* ARGSUSED */ 8049 int 8050 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 8051 { 8052 int32_t *i1 = (int32_t *)ptr; 8053 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 8054 8055 switch (level) { 8056 case IPPROTO_TCP: 8057 switch (name) { 8058 case TCP_NOTIFY_THRESHOLD: 8059 *i1 = tcps->tcps_ip_notify_interval; 8060 break; 8061 case TCP_ABORT_THRESHOLD: 8062 *i1 = tcps->tcps_ip_abort_interval; 8063 break; 8064 case TCP_CONN_NOTIFY_THRESHOLD: 8065 *i1 = tcps->tcps_ip_notify_cinterval; 8066 break; 8067 case TCP_CONN_ABORT_THRESHOLD: 8068 *i1 = tcps->tcps_ip_abort_cinterval; 8069 break; 8070 default: 8071 return (-1); 8072 } 8073 break; 8074 case IPPROTO_IP: 8075 switch (name) { 8076 case IP_TTL: 8077 *i1 = tcps->tcps_ipv4_ttl; 8078 break; 8079 default: 8080 return (-1); 8081 } 8082 break; 8083 case IPPROTO_IPV6: 8084 switch (name) { 8085 case IPV6_UNICAST_HOPS: 8086 *i1 = tcps->tcps_ipv6_hoplimit; 8087 break; 8088 default: 8089 return (-1); 8090 } 8091 break; 8092 default: 8093 return (-1); 8094 } 8095 return (sizeof (int)); 8096 } 8097 8098 /* 8099 * TCP routine to get the values of options. 8100 */ 8101 static int 8102 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 8103 { 8104 int *i1 = (int *)ptr; 8105 tcp_t *tcp = connp->conn_tcp; 8106 conn_opt_arg_t coas; 8107 int retval; 8108 8109 coas.coa_connp = connp; 8110 coas.coa_ixa = connp->conn_ixa; 8111 coas.coa_ipp = &connp->conn_xmit_ipp; 8112 coas.coa_ancillary = B_FALSE; 8113 coas.coa_changed = 0; 8114 8115 switch (level) { 8116 case SOL_SOCKET: 8117 switch (name) { 8118 case SO_SND_COPYAVOID: 8119 *i1 = tcp->tcp_snd_zcopy_on ? 8120 SO_SND_COPYAVOID : 0; 8121 return (sizeof (int)); 8122 case SO_ACCEPTCONN: 8123 *i1 = (tcp->tcp_state == TCPS_LISTEN); 8124 return (sizeof (int)); 8125 } 8126 break; 8127 case IPPROTO_TCP: 8128 switch (name) { 8129 case TCP_NODELAY: 8130 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 8131 return (sizeof (int)); 8132 case TCP_MAXSEG: 8133 *i1 = tcp->tcp_mss; 8134 return (sizeof (int)); 8135 case TCP_NOTIFY_THRESHOLD: 8136 *i1 = (int)tcp->tcp_first_timer_threshold; 8137 return (sizeof (int)); 8138 case TCP_ABORT_THRESHOLD: 8139 *i1 = tcp->tcp_second_timer_threshold; 8140 return (sizeof (int)); 8141 case TCP_CONN_NOTIFY_THRESHOLD: 8142 *i1 = tcp->tcp_first_ctimer_threshold; 8143 return (sizeof (int)); 8144 case TCP_CONN_ABORT_THRESHOLD: 8145 *i1 = tcp->tcp_second_ctimer_threshold; 8146 return (sizeof (int)); 8147 case TCP_INIT_CWND: 8148 *i1 = tcp->tcp_init_cwnd; 8149 return (sizeof (int)); 8150 case TCP_KEEPALIVE_THRESHOLD: 8151 *i1 = tcp->tcp_ka_interval; 8152 return (sizeof (int)); 8153 case TCP_KEEPALIVE_ABORT_THRESHOLD: 8154 *i1 = tcp->tcp_ka_abort_thres; 8155 return (sizeof (int)); 8156 case TCP_CORK: 8157 *i1 = tcp->tcp_cork; 8158 return (sizeof (int)); 8159 } 8160 break; 8161 case IPPROTO_IP: 8162 if (connp->conn_family != AF_INET) 8163 return (-1); 8164 switch (name) { 8165 case IP_OPTIONS: 8166 case T_IP_OPTIONS: 8167 /* Caller ensures enough space */ 8168 return (ip_opt_get_user(connp, ptr)); 8169 default: 8170 break; 8171 } 8172 break; 8173 8174 case IPPROTO_IPV6: 8175 /* 8176 * IPPROTO_IPV6 options are only supported for sockets 8177 * that are using IPv6 on the wire. 8178 */ 8179 if (connp->conn_ipversion != IPV6_VERSION) { 8180 return (-1); 8181 } 8182 switch (name) { 8183 case IPV6_PATHMTU: 8184 if (tcp->tcp_state < TCPS_ESTABLISHED) 8185 return (-1); 8186 break; 8187 } 8188 break; 8189 } 8190 mutex_enter(&connp->conn_lock); 8191 retval = conn_opt_get(&coas, level, name, ptr); 8192 mutex_exit(&connp->conn_lock); 8193 return (retval); 8194 } 8195 8196 /* 8197 * TCP routine to get the values of options. 8198 */ 8199 int 8200 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 8201 { 8202 return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr)); 8203 } 8204 8205 /* returns UNIX error, the optlen is a value-result arg */ 8206 int 8207 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 8208 void *optvalp, socklen_t *optlen, cred_t *cr) 8209 { 8210 conn_t *connp = (conn_t *)proto_handle; 8211 squeue_t *sqp = connp->conn_sqp; 8212 int error; 8213 t_uscalar_t max_optbuf_len; 8214 void *optvalp_buf; 8215 int len; 8216 8217 ASSERT(connp->conn_upper_handle != NULL); 8218 8219 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 8220 tcp_opt_obj.odb_opt_des_arr, 8221 tcp_opt_obj.odb_opt_arr_cnt, 8222 B_FALSE, B_TRUE, cr); 8223 if (error != 0) { 8224 if (error < 0) { 8225 error = proto_tlitosyserr(-error); 8226 } 8227 return (error); 8228 } 8229 8230 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 8231 8232 error = squeue_synch_enter(sqp, connp, NULL); 8233 if (error == ENOMEM) { 8234 kmem_free(optvalp_buf, max_optbuf_len); 8235 return (ENOMEM); 8236 } 8237 8238 len = tcp_opt_get(connp, level, option_name, optvalp_buf); 8239 squeue_synch_exit(sqp, connp); 8240 8241 if (len == -1) { 8242 kmem_free(optvalp_buf, max_optbuf_len); 8243 return (EINVAL); 8244 } 8245 8246 /* 8247 * update optlen and copy option value 8248 */ 8249 t_uscalar_t size = MIN(len, *optlen); 8250 8251 bcopy(optvalp_buf, optvalp, size); 8252 bcopy(&size, optlen, sizeof (size)); 8253 8254 kmem_free(optvalp_buf, max_optbuf_len); 8255 return (0); 8256 } 8257 8258 /* 8259 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 8260 * Parameters are assumed to be verified by the caller. 8261 */ 8262 /* ARGSUSED */ 8263 int 8264 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 8265 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 8266 void *thisdg_attrs, cred_t *cr) 8267 { 8268 tcp_t *tcp = connp->conn_tcp; 8269 int *i1 = (int *)invalp; 8270 boolean_t onoff = (*i1 == 0) ? 0 : 1; 8271 boolean_t checkonly; 8272 int reterr; 8273 tcp_stack_t *tcps = tcp->tcp_tcps; 8274 conn_opt_arg_t coas; 8275 8276 coas.coa_connp = connp; 8277 coas.coa_ixa = connp->conn_ixa; 8278 coas.coa_ipp = &connp->conn_xmit_ipp; 8279 coas.coa_ancillary = B_FALSE; 8280 coas.coa_changed = 0; 8281 8282 switch (optset_context) { 8283 case SETFN_OPTCOM_CHECKONLY: 8284 checkonly = B_TRUE; 8285 /* 8286 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 8287 * inlen != 0 implies value supplied and 8288 * we have to "pretend" to set it. 8289 * inlen == 0 implies that there is no 8290 * value part in T_CHECK request and just validation 8291 * done elsewhere should be enough, we just return here. 8292 */ 8293 if (inlen == 0) { 8294 *outlenp = 0; 8295 return (0); 8296 } 8297 break; 8298 case SETFN_OPTCOM_NEGOTIATE: 8299 checkonly = B_FALSE; 8300 break; 8301 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 8302 case SETFN_CONN_NEGOTIATE: 8303 checkonly = B_FALSE; 8304 /* 8305 * Negotiating local and "association-related" options 8306 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 8307 * primitives is allowed by XTI, but we choose 8308 * to not implement this style negotiation for Internet 8309 * protocols (We interpret it is a must for OSI world but 8310 * optional for Internet protocols) for all options. 8311 * [ Will do only for the few options that enable test 8312 * suites that our XTI implementation of this feature 8313 * works for transports that do allow it ] 8314 */ 8315 if (!tcp_allow_connopt_set(level, name)) { 8316 *outlenp = 0; 8317 return (EINVAL); 8318 } 8319 break; 8320 default: 8321 /* 8322 * We should never get here 8323 */ 8324 *outlenp = 0; 8325 return (EINVAL); 8326 } 8327 8328 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 8329 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 8330 8331 /* 8332 * For TCP, we should have no ancillary data sent down 8333 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 8334 * has to be zero. 8335 */ 8336 ASSERT(thisdg_attrs == NULL); 8337 8338 /* 8339 * For fixed length options, no sanity check 8340 * of passed in length is done. It is assumed *_optcom_req() 8341 * routines do the right thing. 8342 */ 8343 switch (level) { 8344 case SOL_SOCKET: 8345 switch (name) { 8346 case SO_KEEPALIVE: 8347 if (checkonly) { 8348 /* check only case */ 8349 break; 8350 } 8351 8352 if (!onoff) { 8353 if (connp->conn_keepalive) { 8354 if (tcp->tcp_ka_tid != 0) { 8355 (void) TCP_TIMER_CANCEL(tcp, 8356 tcp->tcp_ka_tid); 8357 tcp->tcp_ka_tid = 0; 8358 } 8359 connp->conn_keepalive = 0; 8360 } 8361 break; 8362 } 8363 if (!connp->conn_keepalive) { 8364 /* Crank up the keepalive timer */ 8365 tcp->tcp_ka_last_intrvl = 0; 8366 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8367 tcp_keepalive_killer, 8368 MSEC_TO_TICK(tcp->tcp_ka_interval)); 8369 connp->conn_keepalive = 1; 8370 } 8371 break; 8372 case SO_SNDBUF: { 8373 if (*i1 > tcps->tcps_max_buf) { 8374 *outlenp = 0; 8375 return (ENOBUFS); 8376 } 8377 if (checkonly) 8378 break; 8379 8380 connp->conn_sndbuf = *i1; 8381 if (tcps->tcps_snd_lowat_fraction != 0) { 8382 connp->conn_sndlowat = connp->conn_sndbuf / 8383 tcps->tcps_snd_lowat_fraction; 8384 } 8385 (void) tcp_maxpsz_set(tcp, B_TRUE); 8386 /* 8387 * If we are flow-controlled, recheck the condition. 8388 * There are apps that increase SO_SNDBUF size when 8389 * flow-controlled (EWOULDBLOCK), and expect the flow 8390 * control condition to be lifted right away. 8391 */ 8392 mutex_enter(&tcp->tcp_non_sq_lock); 8393 if (tcp->tcp_flow_stopped && 8394 TCP_UNSENT_BYTES(tcp) < connp->conn_sndbuf) { 8395 tcp_clrqfull(tcp); 8396 } 8397 mutex_exit(&tcp->tcp_non_sq_lock); 8398 *outlenp = inlen; 8399 return (0); 8400 } 8401 case SO_RCVBUF: 8402 if (*i1 > tcps->tcps_max_buf) { 8403 *outlenp = 0; 8404 return (ENOBUFS); 8405 } 8406 /* Silently ignore zero */ 8407 if (!checkonly && *i1 != 0) { 8408 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 8409 (void) tcp_rwnd_set(tcp, *i1); 8410 } 8411 /* 8412 * XXX should we return the rwnd here 8413 * and tcp_opt_get ? 8414 */ 8415 *outlenp = inlen; 8416 return (0); 8417 case SO_SND_COPYAVOID: 8418 if (!checkonly) { 8419 if (tcp->tcp_loopback || 8420 (tcp->tcp_kssl_ctx != NULL) || 8421 (onoff != 1) || !tcp_zcopy_check(tcp)) { 8422 *outlenp = 0; 8423 return (EOPNOTSUPP); 8424 } 8425 tcp->tcp_snd_zcopy_aware = 1; 8426 } 8427 *outlenp = inlen; 8428 return (0); 8429 } 8430 break; 8431 case IPPROTO_TCP: 8432 switch (name) { 8433 case TCP_NODELAY: 8434 if (!checkonly) 8435 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 8436 break; 8437 case TCP_NOTIFY_THRESHOLD: 8438 if (!checkonly) 8439 tcp->tcp_first_timer_threshold = *i1; 8440 break; 8441 case TCP_ABORT_THRESHOLD: 8442 if (!checkonly) 8443 tcp->tcp_second_timer_threshold = *i1; 8444 break; 8445 case TCP_CONN_NOTIFY_THRESHOLD: 8446 if (!checkonly) 8447 tcp->tcp_first_ctimer_threshold = *i1; 8448 break; 8449 case TCP_CONN_ABORT_THRESHOLD: 8450 if (!checkonly) 8451 tcp->tcp_second_ctimer_threshold = *i1; 8452 break; 8453 case TCP_RECVDSTADDR: 8454 if (tcp->tcp_state > TCPS_LISTEN) { 8455 *outlenp = 0; 8456 return (EOPNOTSUPP); 8457 } 8458 /* Setting done in conn_opt_set */ 8459 break; 8460 case TCP_INIT_CWND: { 8461 uint32_t init_cwnd = *((uint32_t *)invalp); 8462 8463 if (checkonly) 8464 break; 8465 8466 /* 8467 * Only allow socket with network configuration 8468 * privilege to set the initial cwnd to be larger 8469 * than allowed by RFC 3390. 8470 */ 8471 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 8472 tcp->tcp_init_cwnd = init_cwnd; 8473 break; 8474 } 8475 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 8476 *outlenp = 0; 8477 return (reterr); 8478 } 8479 if (init_cwnd > TCP_MAX_INIT_CWND) { 8480 *outlenp = 0; 8481 return (EINVAL); 8482 } 8483 tcp->tcp_init_cwnd = init_cwnd; 8484 break; 8485 } 8486 case TCP_KEEPALIVE_THRESHOLD: 8487 if (checkonly) 8488 break; 8489 8490 if (*i1 < tcps->tcps_keepalive_interval_low || 8491 *i1 > tcps->tcps_keepalive_interval_high) { 8492 *outlenp = 0; 8493 return (EINVAL); 8494 } 8495 if (*i1 != tcp->tcp_ka_interval) { 8496 tcp->tcp_ka_interval = *i1; 8497 /* 8498 * Check if we need to restart the 8499 * keepalive timer. 8500 */ 8501 if (tcp->tcp_ka_tid != 0) { 8502 ASSERT(connp->conn_keepalive); 8503 (void) TCP_TIMER_CANCEL(tcp, 8504 tcp->tcp_ka_tid); 8505 tcp->tcp_ka_last_intrvl = 0; 8506 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8507 tcp_keepalive_killer, 8508 MSEC_TO_TICK(tcp->tcp_ka_interval)); 8509 } 8510 } 8511 break; 8512 case TCP_KEEPALIVE_ABORT_THRESHOLD: 8513 if (!checkonly) { 8514 if (*i1 < 8515 tcps->tcps_keepalive_abort_interval_low || 8516 *i1 > 8517 tcps->tcps_keepalive_abort_interval_high) { 8518 *outlenp = 0; 8519 return (EINVAL); 8520 } 8521 tcp->tcp_ka_abort_thres = *i1; 8522 } 8523 break; 8524 case TCP_CORK: 8525 if (!checkonly) { 8526 /* 8527 * if tcp->tcp_cork was set and is now 8528 * being unset, we have to make sure that 8529 * the remaining data gets sent out. Also 8530 * unset tcp->tcp_cork so that tcp_wput_data() 8531 * can send data even if it is less than mss 8532 */ 8533 if (tcp->tcp_cork && onoff == 0 && 8534 tcp->tcp_unsent > 0) { 8535 tcp->tcp_cork = B_FALSE; 8536 tcp_wput_data(tcp, NULL, B_FALSE); 8537 } 8538 tcp->tcp_cork = onoff; 8539 } 8540 break; 8541 default: 8542 break; 8543 } 8544 break; 8545 case IPPROTO_IP: 8546 if (connp->conn_family != AF_INET) { 8547 *outlenp = 0; 8548 return (EINVAL); 8549 } 8550 switch (name) { 8551 case IP_SEC_OPT: 8552 /* 8553 * We should not allow policy setting after 8554 * we start listening for connections. 8555 */ 8556 if (tcp->tcp_state == TCPS_LISTEN) { 8557 return (EINVAL); 8558 } 8559 break; 8560 } 8561 break; 8562 case IPPROTO_IPV6: 8563 /* 8564 * IPPROTO_IPV6 options are only supported for sockets 8565 * that are using IPv6 on the wire. 8566 */ 8567 if (connp->conn_ipversion != IPV6_VERSION) { 8568 *outlenp = 0; 8569 return (EINVAL); 8570 } 8571 8572 switch (name) { 8573 case IPV6_RECVPKTINFO: 8574 if (!checkonly) { 8575 /* Force it to be sent up with the next msg */ 8576 tcp->tcp_recvifindex = 0; 8577 } 8578 break; 8579 case IPV6_RECVTCLASS: 8580 if (!checkonly) { 8581 /* Force it to be sent up with the next msg */ 8582 tcp->tcp_recvtclass = 0xffffffffU; 8583 } 8584 break; 8585 case IPV6_RECVHOPLIMIT: 8586 if (!checkonly) { 8587 /* Force it to be sent up with the next msg */ 8588 tcp->tcp_recvhops = 0xffffffffU; 8589 } 8590 break; 8591 case IPV6_PKTINFO: 8592 /* This is an extra check for TCP */ 8593 if (inlen == sizeof (struct in6_pktinfo)) { 8594 struct in6_pktinfo *pkti; 8595 8596 pkti = (struct in6_pktinfo *)invalp; 8597 /* 8598 * RFC 3542 states that ipi6_addr must be 8599 * the unspecified address when setting the 8600 * IPV6_PKTINFO sticky socket option on a 8601 * TCP socket. 8602 */ 8603 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 8604 return (EINVAL); 8605 } 8606 break; 8607 case IPV6_SEC_OPT: 8608 /* 8609 * We should not allow policy setting after 8610 * we start listening for connections. 8611 */ 8612 if (tcp->tcp_state == TCPS_LISTEN) { 8613 return (EINVAL); 8614 } 8615 break; 8616 } 8617 break; 8618 } 8619 reterr = conn_opt_set(&coas, level, name, inlen, invalp, 8620 checkonly, cr); 8621 if (reterr != 0) { 8622 *outlenp = 0; 8623 return (reterr); 8624 } 8625 8626 /* 8627 * Common case of OK return with outval same as inval 8628 */ 8629 if (invalp != outvalp) { 8630 /* don't trust bcopy for identical src/dst */ 8631 (void) bcopy(invalp, outvalp, inlen); 8632 } 8633 *outlenp = inlen; 8634 8635 if (coas.coa_changed & COA_HEADER_CHANGED) { 8636 /* If we are connected we rebuilt the headers */ 8637 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) && 8638 !IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) { 8639 reterr = tcp_build_hdrs(tcp); 8640 if (reterr != 0) 8641 return (reterr); 8642 } 8643 } 8644 if (coas.coa_changed & COA_ROUTE_CHANGED) { 8645 in6_addr_t nexthop; 8646 8647 /* 8648 * If we are connected we re-cache the information. 8649 * We ignore errors to preserve BSD behavior. 8650 * Note that we don't redo IPsec policy lookup here 8651 * since the final destination (or source) didn't change. 8652 */ 8653 ip_attr_nexthop(&connp->conn_xmit_ipp, connp->conn_ixa, 8654 &connp->conn_faddr_v6, &nexthop); 8655 8656 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) && 8657 !IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) { 8658 (void) ip_attr_connect(connp, connp->conn_ixa, 8659 &connp->conn_laddr_v6, &connp->conn_faddr_v6, 8660 &nexthop, connp->conn_fport, NULL, NULL, 8661 IPDF_VERIFY_DST); 8662 } 8663 } 8664 if ((coas.coa_changed & COA_SNDBUF_CHANGED) && !IPCL_IS_NONSTR(connp)) { 8665 connp->conn_wq->q_hiwat = connp->conn_sndbuf; 8666 } 8667 if (coas.coa_changed & COA_WROFF_CHANGED) { 8668 connp->conn_wroff = connp->conn_ht_iphc_allocated + 8669 tcps->tcps_wroff_xtra; 8670 (void) proto_set_tx_wroff(connp->conn_rq, connp, 8671 connp->conn_wroff); 8672 } 8673 if (coas.coa_changed & COA_OOBINLINE_CHANGED) { 8674 if (IPCL_IS_NONSTR(connp)) 8675 proto_set_rx_oob_opt(connp, onoff); 8676 } 8677 return (0); 8678 } 8679 8680 /* ARGSUSED */ 8681 int 8682 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name, 8683 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 8684 void *thisdg_attrs, cred_t *cr) 8685 { 8686 conn_t *connp = Q_TO_CONN(q); 8687 8688 return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp, 8689 outlenp, outvalp, thisdg_attrs, cr)); 8690 } 8691 8692 int 8693 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 8694 const void *optvalp, socklen_t optlen, cred_t *cr) 8695 { 8696 conn_t *connp = (conn_t *)proto_handle; 8697 squeue_t *sqp = connp->conn_sqp; 8698 int error; 8699 8700 ASSERT(connp->conn_upper_handle != NULL); 8701 /* 8702 * Entering the squeue synchronously can result in a context switch, 8703 * which can cause a rather sever performance degradation. So we try to 8704 * handle whatever options we can without entering the squeue. 8705 */ 8706 if (level == IPPROTO_TCP) { 8707 switch (option_name) { 8708 case TCP_NODELAY: 8709 if (optlen != sizeof (int32_t)) 8710 return (EINVAL); 8711 mutex_enter(&connp->conn_tcp->tcp_non_sq_lock); 8712 connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 : 8713 connp->conn_tcp->tcp_mss; 8714 mutex_exit(&connp->conn_tcp->tcp_non_sq_lock); 8715 return (0); 8716 default: 8717 break; 8718 } 8719 } 8720 8721 error = squeue_synch_enter(sqp, connp, NULL); 8722 if (error == ENOMEM) { 8723 return (ENOMEM); 8724 } 8725 8726 error = proto_opt_check(level, option_name, optlen, NULL, 8727 tcp_opt_obj.odb_opt_des_arr, 8728 tcp_opt_obj.odb_opt_arr_cnt, 8729 B_TRUE, B_FALSE, cr); 8730 8731 if (error != 0) { 8732 if (error < 0) { 8733 error = proto_tlitosyserr(-error); 8734 } 8735 squeue_synch_exit(sqp, connp); 8736 return (error); 8737 } 8738 8739 error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 8740 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 8741 NULL, cr); 8742 squeue_synch_exit(sqp, connp); 8743 8744 ASSERT(error >= 0); 8745 8746 return (error); 8747 } 8748 8749 /* 8750 * Build/update the tcp header template (in conn_ht_iphc) based on 8751 * conn_xmit_ipp. The headers include ip6_t, any extension 8752 * headers, and the maximum size tcp header (to avoid reallocation 8753 * on the fly for additional tcp options). 8754 * 8755 * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}. 8756 * Returns failure if can't allocate memory. 8757 */ 8758 static int 8759 tcp_build_hdrs(tcp_t *tcp) 8760 { 8761 tcp_stack_t *tcps = tcp->tcp_tcps; 8762 conn_t *connp = tcp->tcp_connp; 8763 char buf[TCP_MAX_HDR_LENGTH]; 8764 uint_t buflen; 8765 uint_t ulplen = TCP_MIN_HEADER_LENGTH; 8766 uint_t extralen = TCP_MAX_TCP_OPTIONS_LENGTH; 8767 tcpha_t *tcpha; 8768 uint32_t cksum; 8769 int error; 8770 8771 /* 8772 * We might be called after the connection is set up, and we might 8773 * have TS options already in the TCP header. Thus we save any 8774 * existing tcp header. 8775 */ 8776 buflen = connp->conn_ht_ulp_len; 8777 if (buflen != 0) { 8778 bcopy(connp->conn_ht_ulp, buf, buflen); 8779 extralen -= buflen - ulplen; 8780 ulplen = buflen; 8781 } 8782 8783 /* Grab lock to satisfy ASSERT; TCP is serialized using squeue */ 8784 mutex_enter(&connp->conn_lock); 8785 error = conn_build_hdr_template(connp, ulplen, extralen, 8786 &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo); 8787 mutex_exit(&connp->conn_lock); 8788 if (error != 0) 8789 return (error); 8790 8791 /* 8792 * Any routing header/option has been massaged. The checksum difference 8793 * is stored in conn_sum for later use. 8794 */ 8795 tcpha = (tcpha_t *)connp->conn_ht_ulp; 8796 tcp->tcp_tcpha = tcpha; 8797 8798 /* restore any old tcp header */ 8799 if (buflen != 0) { 8800 bcopy(buf, connp->conn_ht_ulp, buflen); 8801 } else { 8802 tcpha->tha_sum = 0; 8803 tcpha->tha_urp = 0; 8804 tcpha->tha_ack = 0; 8805 tcpha->tha_offset_and_reserved = (5 << 4); 8806 tcpha->tha_lport = connp->conn_lport; 8807 tcpha->tha_fport = connp->conn_fport; 8808 } 8809 8810 /* 8811 * IP wants our header length in the checksum field to 8812 * allow it to perform a single pseudo-header+checksum 8813 * calculation on behalf of TCP. 8814 * Include the adjustment for a source route once IP_OPTIONS is set. 8815 */ 8816 cksum = sizeof (tcpha_t) + connp->conn_sum; 8817 cksum = (cksum >> 16) + (cksum & 0xFFFF); 8818 ASSERT(cksum < 0x10000); 8819 tcpha->tha_sum = htons(cksum); 8820 8821 if (connp->conn_ipversion == IPV4_VERSION) 8822 tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc; 8823 else 8824 tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc; 8825 8826 if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra > 8827 connp->conn_wroff) { 8828 connp->conn_wroff = connp->conn_ht_iphc_allocated + 8829 tcps->tcps_wroff_xtra; 8830 (void) proto_set_tx_wroff(connp->conn_rq, connp, 8831 connp->conn_wroff); 8832 } 8833 return (0); 8834 } 8835 8836 /* Get callback routine passed to nd_load by tcp_param_register */ 8837 /* ARGSUSED */ 8838 static int 8839 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 8840 { 8841 tcpparam_t *tcppa = (tcpparam_t *)cp; 8842 8843 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 8844 return (0); 8845 } 8846 8847 /* 8848 * Walk through the param array specified registering each element with the 8849 * named dispatch handler. 8850 */ 8851 static boolean_t 8852 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 8853 { 8854 for (; cnt-- > 0; tcppa++) { 8855 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 8856 if (!nd_load(ndp, tcppa->tcp_param_name, 8857 tcp_param_get, tcp_param_set, 8858 (caddr_t)tcppa)) { 8859 nd_free(ndp); 8860 return (B_FALSE); 8861 } 8862 } 8863 } 8864 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 8865 KM_SLEEP); 8866 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 8867 sizeof (tcpparam_t)); 8868 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 8869 tcp_param_get, tcp_param_set_aligned, 8870 (caddr_t)tcps->tcps_wroff_xtra_param)) { 8871 nd_free(ndp); 8872 return (B_FALSE); 8873 } 8874 if (!nd_load(ndp, "tcp_extra_priv_ports", 8875 tcp_extra_priv_ports_get, NULL, NULL)) { 8876 nd_free(ndp); 8877 return (B_FALSE); 8878 } 8879 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 8880 NULL, tcp_extra_priv_ports_add, NULL)) { 8881 nd_free(ndp); 8882 return (B_FALSE); 8883 } 8884 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 8885 NULL, tcp_extra_priv_ports_del, NULL)) { 8886 nd_free(ndp); 8887 return (B_FALSE); 8888 } 8889 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 8890 tcp_1948_phrase_set, NULL)) { 8891 nd_free(ndp); 8892 return (B_FALSE); 8893 } 8894 8895 8896 if (!nd_load(ndp, "tcp_listener_limit_conf", 8897 tcp_listener_conf_get, NULL, NULL)) { 8898 nd_free(ndp); 8899 return (B_FALSE); 8900 } 8901 if (!nd_load(ndp, "tcp_listener_limit_conf_add", 8902 NULL, tcp_listener_conf_add, NULL)) { 8903 nd_free(ndp); 8904 return (B_FALSE); 8905 } 8906 if (!nd_load(ndp, "tcp_listener_limit_conf_del", 8907 NULL, tcp_listener_conf_del, NULL)) { 8908 nd_free(ndp); 8909 return (B_FALSE); 8910 } 8911 8912 /* 8913 * Dummy ndd variables - only to convey obsolescence information 8914 * through printing of their name (no get or set routines) 8915 * XXX Remove in future releases ? 8916 */ 8917 if (!nd_load(ndp, 8918 "tcp_close_wait_interval(obsoleted - " 8919 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 8920 nd_free(ndp); 8921 return (B_FALSE); 8922 } 8923 return (B_TRUE); 8924 } 8925 8926 /* ndd set routine for tcp_wroff_xtra. */ 8927 /* ARGSUSED */ 8928 static int 8929 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 8930 cred_t *cr) 8931 { 8932 long new_value; 8933 tcpparam_t *tcppa = (tcpparam_t *)cp; 8934 8935 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 8936 new_value < tcppa->tcp_param_min || 8937 new_value > tcppa->tcp_param_max) { 8938 return (EINVAL); 8939 } 8940 /* 8941 * Need to make sure new_value is a multiple of 4. If it is not, 8942 * round it up. For future 64 bit requirement, we actually make it 8943 * a multiple of 8. 8944 */ 8945 if (new_value & 0x7) { 8946 new_value = (new_value & ~0x7) + 0x8; 8947 } 8948 tcppa->tcp_param_val = new_value; 8949 return (0); 8950 } 8951 8952 /* Set callback routine passed to nd_load by tcp_param_register */ 8953 /* ARGSUSED */ 8954 static int 8955 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 8956 { 8957 long new_value; 8958 tcpparam_t *tcppa = (tcpparam_t *)cp; 8959 8960 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 8961 new_value < tcppa->tcp_param_min || 8962 new_value > tcppa->tcp_param_max) { 8963 return (EINVAL); 8964 } 8965 tcppa->tcp_param_val = new_value; 8966 return (0); 8967 } 8968 8969 static void 8970 tcp_reass_timer(void *arg) 8971 { 8972 conn_t *connp = (conn_t *)arg; 8973 tcp_t *tcp = connp->conn_tcp; 8974 8975 tcp->tcp_reass_tid = 0; 8976 if (tcp->tcp_reass_head == NULL) 8977 return; 8978 ASSERT(tcp->tcp_reass_tail != NULL); 8979 tcp_sack_remove(tcp->tcp_sack_list, TCP_REASS_END(tcp->tcp_reass_tail), 8980 &tcp->tcp_num_sack_blk); 8981 tcp_close_mpp(&tcp->tcp_reass_head); 8982 tcp->tcp_reass_tail = NULL; 8983 } 8984 8985 /* 8986 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 8987 * is filled, return as much as we can. The message passed in may be 8988 * multi-part, chained using b_cont. "start" is the starting sequence 8989 * number for this piece. 8990 */ 8991 static mblk_t * 8992 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 8993 { 8994 uint32_t end; 8995 mblk_t *mp1; 8996 mblk_t *mp2; 8997 mblk_t *next_mp; 8998 uint32_t u1; 8999 tcp_stack_t *tcps = tcp->tcp_tcps; 9000 9001 9002 /* Walk through all the new pieces. */ 9003 do { 9004 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 9005 (uintptr_t)INT_MAX); 9006 end = start + (int)(mp->b_wptr - mp->b_rptr); 9007 next_mp = mp->b_cont; 9008 if (start == end) { 9009 /* Empty. Blast it. */ 9010 freeb(mp); 9011 continue; 9012 } 9013 mp->b_cont = NULL; 9014 TCP_REASS_SET_SEQ(mp, start); 9015 TCP_REASS_SET_END(mp, end); 9016 mp1 = tcp->tcp_reass_tail; 9017 if (!mp1) { 9018 tcp->tcp_reass_tail = mp; 9019 tcp->tcp_reass_head = mp; 9020 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 9021 UPDATE_MIB(&tcps->tcps_mib, 9022 tcpInDataUnorderBytes, end - start); 9023 continue; 9024 } 9025 /* New stuff completely beyond tail? */ 9026 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 9027 /* Link it on end. */ 9028 mp1->b_cont = mp; 9029 tcp->tcp_reass_tail = mp; 9030 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 9031 UPDATE_MIB(&tcps->tcps_mib, 9032 tcpInDataUnorderBytes, end - start); 9033 continue; 9034 } 9035 mp1 = tcp->tcp_reass_head; 9036 u1 = TCP_REASS_SEQ(mp1); 9037 /* New stuff at the front? */ 9038 if (SEQ_LT(start, u1)) { 9039 /* Yes... Check for overlap. */ 9040 mp->b_cont = mp1; 9041 tcp->tcp_reass_head = mp; 9042 tcp_reass_elim_overlap(tcp, mp); 9043 continue; 9044 } 9045 /* 9046 * The new piece fits somewhere between the head and tail. 9047 * We find our slot, where mp1 precedes us and mp2 trails. 9048 */ 9049 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 9050 u1 = TCP_REASS_SEQ(mp2); 9051 if (SEQ_LEQ(start, u1)) 9052 break; 9053 } 9054 /* Link ourselves in */ 9055 mp->b_cont = mp2; 9056 mp1->b_cont = mp; 9057 9058 /* Trim overlap with following mblk(s) first */ 9059 tcp_reass_elim_overlap(tcp, mp); 9060 9061 /* Trim overlap with preceding mblk */ 9062 tcp_reass_elim_overlap(tcp, mp1); 9063 9064 } while (start = end, mp = next_mp); 9065 mp1 = tcp->tcp_reass_head; 9066 /* Anything ready to go? */ 9067 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 9068 return (NULL); 9069 /* Eat what we can off the queue */ 9070 for (;;) { 9071 mp = mp1->b_cont; 9072 end = TCP_REASS_END(mp1); 9073 TCP_REASS_SET_SEQ(mp1, 0); 9074 TCP_REASS_SET_END(mp1, 0); 9075 if (!mp) { 9076 tcp->tcp_reass_tail = NULL; 9077 break; 9078 } 9079 if (end != TCP_REASS_SEQ(mp)) { 9080 mp1->b_cont = NULL; 9081 break; 9082 } 9083 mp1 = mp; 9084 } 9085 mp1 = tcp->tcp_reass_head; 9086 tcp->tcp_reass_head = mp; 9087 return (mp1); 9088 } 9089 9090 /* Eliminate any overlap that mp may have over later mblks */ 9091 static void 9092 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 9093 { 9094 uint32_t end; 9095 mblk_t *mp1; 9096 uint32_t u1; 9097 tcp_stack_t *tcps = tcp->tcp_tcps; 9098 9099 end = TCP_REASS_END(mp); 9100 while ((mp1 = mp->b_cont) != NULL) { 9101 u1 = TCP_REASS_SEQ(mp1); 9102 if (!SEQ_GT(end, u1)) 9103 break; 9104 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 9105 mp->b_wptr -= end - u1; 9106 TCP_REASS_SET_END(mp, u1); 9107 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 9108 UPDATE_MIB(&tcps->tcps_mib, 9109 tcpInDataPartDupBytes, end - u1); 9110 break; 9111 } 9112 mp->b_cont = mp1->b_cont; 9113 TCP_REASS_SET_SEQ(mp1, 0); 9114 TCP_REASS_SET_END(mp1, 0); 9115 freeb(mp1); 9116 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 9117 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 9118 } 9119 if (!mp1) 9120 tcp->tcp_reass_tail = mp; 9121 } 9122 9123 static uint_t 9124 tcp_rwnd_reopen(tcp_t *tcp) 9125 { 9126 uint_t ret = 0; 9127 uint_t thwin; 9128 conn_t *connp = tcp->tcp_connp; 9129 9130 /* Learn the latest rwnd information that we sent to the other side. */ 9131 thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win)) 9132 << tcp->tcp_rcv_ws; 9133 /* This is peer's calculated send window (our receive window). */ 9134 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 9135 /* 9136 * Increase the receive window to max. But we need to do receiver 9137 * SWS avoidance. This means that we need to check the increase of 9138 * of receive window is at least 1 MSS. 9139 */ 9140 if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) { 9141 /* 9142 * If the window that the other side knows is less than max 9143 * deferred acks segments, send an update immediately. 9144 */ 9145 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 9146 BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate); 9147 ret = TH_ACK_NEEDED; 9148 } 9149 tcp->tcp_rwnd = connp->conn_rcvbuf; 9150 } 9151 return (ret); 9152 } 9153 9154 /* 9155 * Send up all messages queued on tcp_rcv_list. 9156 */ 9157 static uint_t 9158 tcp_rcv_drain(tcp_t *tcp) 9159 { 9160 mblk_t *mp; 9161 uint_t ret = 0; 9162 #ifdef DEBUG 9163 uint_t cnt = 0; 9164 #endif 9165 queue_t *q = tcp->tcp_connp->conn_rq; 9166 9167 /* Can't drain on an eager connection */ 9168 if (tcp->tcp_listener != NULL) 9169 return (ret); 9170 9171 /* Can't be a non-STREAMS connection */ 9172 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 9173 9174 /* No need for the push timer now. */ 9175 if (tcp->tcp_push_tid != 0) { 9176 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 9177 tcp->tcp_push_tid = 0; 9178 } 9179 9180 /* 9181 * Handle two cases here: we are currently fused or we were 9182 * previously fused and have some urgent data to be delivered 9183 * upstream. The latter happens because we either ran out of 9184 * memory or were detached and therefore sending the SIGURG was 9185 * deferred until this point. In either case we pass control 9186 * over to tcp_fuse_rcv_drain() since it may need to complete 9187 * some work. 9188 */ 9189 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 9190 ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) || 9191 tcp->tcp_fused_sigurg_mp != NULL); 9192 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 9193 &tcp->tcp_fused_sigurg_mp)) 9194 return (ret); 9195 } 9196 9197 while ((mp = tcp->tcp_rcv_list) != NULL) { 9198 tcp->tcp_rcv_list = mp->b_next; 9199 mp->b_next = NULL; 9200 #ifdef DEBUG 9201 cnt += msgdsize(mp); 9202 #endif 9203 /* Does this need SSL processing first? */ 9204 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 9205 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 9206 mblk_t *, mp); 9207 tcp_kssl_input(tcp, mp, NULL); 9208 continue; 9209 } 9210 putnext(q, mp); 9211 } 9212 #ifdef DEBUG 9213 ASSERT(cnt == tcp->tcp_rcv_cnt); 9214 #endif 9215 tcp->tcp_rcv_last_head = NULL; 9216 tcp->tcp_rcv_last_tail = NULL; 9217 tcp->tcp_rcv_cnt = 0; 9218 9219 if (canputnext(q)) 9220 return (tcp_rwnd_reopen(tcp)); 9221 9222 return (ret); 9223 } 9224 9225 /* 9226 * Queue data on tcp_rcv_list which is a b_next chain. 9227 * tcp_rcv_last_head/tail is the last element of this chain. 9228 * Each element of the chain is a b_cont chain. 9229 * 9230 * M_DATA messages are added to the current element. 9231 * Other messages are added as new (b_next) elements. 9232 */ 9233 void 9234 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr) 9235 { 9236 ASSERT(seg_len == msgdsize(mp)); 9237 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 9238 9239 if (is_system_labeled()) { 9240 ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL); 9241 /* 9242 * Provide for protocols above TCP such as RPC. NOPID leaves 9243 * db_cpid unchanged. 9244 * The cred could have already been set. 9245 */ 9246 if (cr != NULL) 9247 mblk_setcred(mp, cr, NOPID); 9248 } 9249 9250 if (tcp->tcp_rcv_list == NULL) { 9251 ASSERT(tcp->tcp_rcv_last_head == NULL); 9252 tcp->tcp_rcv_list = mp; 9253 tcp->tcp_rcv_last_head = mp; 9254 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 9255 tcp->tcp_rcv_last_tail->b_cont = mp; 9256 } else { 9257 tcp->tcp_rcv_last_head->b_next = mp; 9258 tcp->tcp_rcv_last_head = mp; 9259 } 9260 9261 while (mp->b_cont) 9262 mp = mp->b_cont; 9263 9264 tcp->tcp_rcv_last_tail = mp; 9265 tcp->tcp_rcv_cnt += seg_len; 9266 tcp->tcp_rwnd -= seg_len; 9267 } 9268 9269 /* The minimum of smoothed mean deviation in RTO calculation. */ 9270 #define TCP_SD_MIN 400 9271 9272 /* 9273 * Set RTO for this connection. The formula is from Jacobson and Karels' 9274 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 9275 * are the same as those in Appendix A.2 of that paper. 9276 * 9277 * m = new measurement 9278 * sa = smoothed RTT average (8 * average estimates). 9279 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 9280 */ 9281 static void 9282 tcp_set_rto(tcp_t *tcp, clock_t rtt) 9283 { 9284 long m = TICK_TO_MSEC(rtt); 9285 clock_t sa = tcp->tcp_rtt_sa; 9286 clock_t sv = tcp->tcp_rtt_sd; 9287 clock_t rto; 9288 tcp_stack_t *tcps = tcp->tcp_tcps; 9289 9290 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 9291 tcp->tcp_rtt_update++; 9292 9293 /* tcp_rtt_sa is not 0 means this is a new sample. */ 9294 if (sa != 0) { 9295 /* 9296 * Update average estimator: 9297 * new rtt = 7/8 old rtt + 1/8 Error 9298 */ 9299 9300 /* m is now Error in estimate. */ 9301 m -= sa >> 3; 9302 if ((sa += m) <= 0) { 9303 /* 9304 * Don't allow the smoothed average to be negative. 9305 * We use 0 to denote reinitialization of the 9306 * variables. 9307 */ 9308 sa = 1; 9309 } 9310 9311 /* 9312 * Update deviation estimator: 9313 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 9314 */ 9315 if (m < 0) 9316 m = -m; 9317 m -= sv >> 2; 9318 sv += m; 9319 } else { 9320 /* 9321 * This follows BSD's implementation. So the reinitialized 9322 * RTO is 3 * m. We cannot go less than 2 because if the 9323 * link is bandwidth dominated, doubling the window size 9324 * during slow start means doubling the RTT. We want to be 9325 * more conservative when we reinitialize our estimates. 3 9326 * is just a convenient number. 9327 */ 9328 sa = m << 3; 9329 sv = m << 1; 9330 } 9331 if (sv < TCP_SD_MIN) { 9332 /* 9333 * We do not know that if sa captures the delay ACK 9334 * effect as in a long train of segments, a receiver 9335 * does not delay its ACKs. So set the minimum of sv 9336 * to be TCP_SD_MIN, which is default to 400 ms, twice 9337 * of BSD DATO. That means the minimum of mean 9338 * deviation is 100 ms. 9339 * 9340 */ 9341 sv = TCP_SD_MIN; 9342 } 9343 tcp->tcp_rtt_sa = sa; 9344 tcp->tcp_rtt_sd = sv; 9345 /* 9346 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 9347 * 9348 * Add tcp_rexmit_interval extra in case of extreme environment 9349 * where the algorithm fails to work. The default value of 9350 * tcp_rexmit_interval_extra should be 0. 9351 * 9352 * As we use a finer grained clock than BSD and update 9353 * RTO for every ACKs, add in another .25 of RTT to the 9354 * deviation of RTO to accomodate burstiness of 1/4 of 9355 * window size. 9356 */ 9357 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 9358 9359 if (rto > tcps->tcps_rexmit_interval_max) { 9360 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 9361 } else if (rto < tcps->tcps_rexmit_interval_min) { 9362 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 9363 } else { 9364 tcp->tcp_rto = rto; 9365 } 9366 9367 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 9368 tcp->tcp_timer_backoff = 0; 9369 } 9370 9371 /* 9372 * tcp_get_seg_mp() is called to get the pointer to a segment in the 9373 * send queue which starts at the given sequence number. If the given 9374 * sequence number is equal to last valid sequence number (tcp_snxt), the 9375 * returned mblk is the last valid mblk, and off is set to the length of 9376 * that mblk. 9377 * 9378 * send queue which starts at the given seq. no. 9379 * 9380 * Parameters: 9381 * tcp_t *tcp: the tcp instance pointer. 9382 * uint32_t seq: the starting seq. no of the requested segment. 9383 * int32_t *off: after the execution, *off will be the offset to 9384 * the returned mblk which points to the requested seq no. 9385 * It is the caller's responsibility to send in a non-null off. 9386 * 9387 * Return: 9388 * A mblk_t pointer pointing to the requested segment in send queue. 9389 */ 9390 static mblk_t * 9391 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 9392 { 9393 int32_t cnt; 9394 mblk_t *mp; 9395 9396 /* Defensive coding. Make sure we don't send incorrect data. */ 9397 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GT(seq, tcp->tcp_snxt)) 9398 return (NULL); 9399 9400 cnt = seq - tcp->tcp_suna; 9401 mp = tcp->tcp_xmit_head; 9402 while (cnt > 0 && mp != NULL) { 9403 cnt -= mp->b_wptr - mp->b_rptr; 9404 if (cnt <= 0) { 9405 cnt += mp->b_wptr - mp->b_rptr; 9406 break; 9407 } 9408 mp = mp->b_cont; 9409 } 9410 ASSERT(mp != NULL); 9411 *off = cnt; 9412 return (mp); 9413 } 9414 9415 /* 9416 * This function handles all retransmissions if SACK is enabled for this 9417 * connection. First it calculates how many segments can be retransmitted 9418 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 9419 * segments. A segment is eligible if sack_cnt for that segment is greater 9420 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 9421 * all eligible segments, it checks to see if TCP can send some new segments 9422 * (fast recovery). If it can, set the appropriate flag for tcp_input_data(). 9423 * 9424 * Parameters: 9425 * tcp_t *tcp: the tcp structure of the connection. 9426 * uint_t *flags: in return, appropriate value will be set for 9427 * tcp_input_data(). 9428 */ 9429 static void 9430 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 9431 { 9432 notsack_blk_t *notsack_blk; 9433 int32_t usable_swnd; 9434 int32_t mss; 9435 uint32_t seg_len; 9436 mblk_t *xmit_mp; 9437 tcp_stack_t *tcps = tcp->tcp_tcps; 9438 9439 ASSERT(tcp->tcp_sack_info != NULL); 9440 ASSERT(tcp->tcp_notsack_list != NULL); 9441 ASSERT(tcp->tcp_rexmit == B_FALSE); 9442 9443 /* Defensive coding in case there is a bug... */ 9444 if (tcp->tcp_notsack_list == NULL) { 9445 return; 9446 } 9447 notsack_blk = tcp->tcp_notsack_list; 9448 mss = tcp->tcp_mss; 9449 9450 /* 9451 * Limit the num of outstanding data in the network to be 9452 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 9453 */ 9454 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 9455 9456 /* At least retransmit 1 MSS of data. */ 9457 if (usable_swnd <= 0) { 9458 usable_swnd = mss; 9459 } 9460 9461 /* Make sure no new RTT samples will be taken. */ 9462 tcp->tcp_csuna = tcp->tcp_snxt; 9463 9464 notsack_blk = tcp->tcp_notsack_list; 9465 while (usable_swnd > 0) { 9466 mblk_t *snxt_mp, *tmp_mp; 9467 tcp_seq begin = tcp->tcp_sack_snxt; 9468 tcp_seq end; 9469 int32_t off; 9470 9471 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 9472 if (SEQ_GT(notsack_blk->end, begin) && 9473 (notsack_blk->sack_cnt >= 9474 tcps->tcps_dupack_fast_retransmit)) { 9475 end = notsack_blk->end; 9476 if (SEQ_LT(begin, notsack_blk->begin)) { 9477 begin = notsack_blk->begin; 9478 } 9479 break; 9480 } 9481 } 9482 /* 9483 * All holes are filled. Manipulate tcp_cwnd to send more 9484 * if we can. Note that after the SACK recovery, tcp_cwnd is 9485 * set to tcp_cwnd_ssthresh. 9486 */ 9487 if (notsack_blk == NULL) { 9488 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 9489 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 9490 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 9491 ASSERT(tcp->tcp_cwnd > 0); 9492 return; 9493 } else { 9494 usable_swnd = usable_swnd / mss; 9495 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 9496 MAX(usable_swnd * mss, mss); 9497 *flags |= TH_XMIT_NEEDED; 9498 return; 9499 } 9500 } 9501 9502 /* 9503 * Note that we may send more than usable_swnd allows here 9504 * because of round off, but no more than 1 MSS of data. 9505 */ 9506 seg_len = end - begin; 9507 if (seg_len > mss) 9508 seg_len = mss; 9509 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 9510 ASSERT(snxt_mp != NULL); 9511 /* This should not happen. Defensive coding again... */ 9512 if (snxt_mp == NULL) { 9513 return; 9514 } 9515 9516 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 9517 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 9518 if (xmit_mp == NULL) 9519 return; 9520 9521 usable_swnd -= seg_len; 9522 tcp->tcp_pipe += seg_len; 9523 tcp->tcp_sack_snxt = begin + seg_len; 9524 9525 tcp_send_data(tcp, xmit_mp); 9526 9527 /* 9528 * Update the send timestamp to avoid false retransmission. 9529 */ 9530 snxt_mp->b_prev = (mblk_t *)ddi_get_lbolt(); 9531 9532 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 9533 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 9534 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 9535 /* 9536 * Update tcp_rexmit_max to extend this SACK recovery phase. 9537 * This happens when new data sent during fast recovery is 9538 * also lost. If TCP retransmits those new data, it needs 9539 * to extend SACK recover phase to avoid starting another 9540 * fast retransmit/recovery unnecessarily. 9541 */ 9542 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 9543 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 9544 } 9545 } 9546 } 9547 9548 /* 9549 * tcp_ss_rexmit() is called to do slow start retransmission after a timeout 9550 * or ICMP errors. 9551 * 9552 * To limit the number of duplicate segments, we limit the number of segment 9553 * to be sent in one time to tcp_snd_burst, the burst variable. 9554 */ 9555 static void 9556 tcp_ss_rexmit(tcp_t *tcp) 9557 { 9558 uint32_t snxt; 9559 uint32_t smax; 9560 int32_t win; 9561 int32_t mss; 9562 int32_t off; 9563 int32_t burst = tcp->tcp_snd_burst; 9564 mblk_t *snxt_mp; 9565 tcp_stack_t *tcps = tcp->tcp_tcps; 9566 9567 /* 9568 * Note that tcp_rexmit can be set even though TCP has retransmitted 9569 * all unack'ed segments. 9570 */ 9571 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 9572 smax = tcp->tcp_rexmit_max; 9573 snxt = tcp->tcp_rexmit_nxt; 9574 if (SEQ_LT(snxt, tcp->tcp_suna)) { 9575 snxt = tcp->tcp_suna; 9576 } 9577 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 9578 win -= snxt - tcp->tcp_suna; 9579 mss = tcp->tcp_mss; 9580 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 9581 9582 while (SEQ_LT(snxt, smax) && (win > 0) && 9583 (burst > 0) && (snxt_mp != NULL)) { 9584 mblk_t *xmit_mp; 9585 mblk_t *old_snxt_mp = snxt_mp; 9586 uint32_t cnt = mss; 9587 9588 if (win < cnt) { 9589 cnt = win; 9590 } 9591 if (SEQ_GT(snxt + cnt, smax)) { 9592 cnt = smax - snxt; 9593 } 9594 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 9595 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 9596 if (xmit_mp == NULL) 9597 return; 9598 9599 tcp_send_data(tcp, xmit_mp); 9600 9601 snxt += cnt; 9602 win -= cnt; 9603 /* 9604 * Update the send timestamp to avoid false 9605 * retransmission. 9606 */ 9607 old_snxt_mp->b_prev = (mblk_t *)ddi_get_lbolt(); 9608 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 9609 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 9610 9611 tcp->tcp_rexmit_nxt = snxt; 9612 burst--; 9613 } 9614 /* 9615 * If we have transmitted all we have at the time 9616 * we started the retranmission, we can leave 9617 * the rest of the job to tcp_wput_data(). But we 9618 * need to check the send window first. If the 9619 * win is not 0, go on with tcp_wput_data(). 9620 */ 9621 if (SEQ_LT(snxt, smax) || win == 0) { 9622 return; 9623 } 9624 } 9625 /* Only call tcp_wput_data() if there is data to be sent. */ 9626 if (tcp->tcp_unsent) { 9627 tcp_wput_data(tcp, NULL, B_FALSE); 9628 } 9629 } 9630 9631 /* 9632 * Process all TCP option in SYN segment. Note that this function should 9633 * be called after tcp_set_destination() is called so that the necessary info 9634 * from IRE is already set in the tcp structure. 9635 * 9636 * This function sets up the correct tcp_mss value according to the 9637 * MSS option value and our header size. It also sets up the window scale 9638 * and timestamp values, and initialize SACK info blocks. But it does not 9639 * change receive window size after setting the tcp_mss value. The caller 9640 * should do the appropriate change. 9641 */ 9642 void 9643 tcp_process_options(tcp_t *tcp, tcpha_t *tcpha) 9644 { 9645 int options; 9646 tcp_opt_t tcpopt; 9647 uint32_t mss_max; 9648 char *tmp_tcph; 9649 tcp_stack_t *tcps = tcp->tcp_tcps; 9650 conn_t *connp = tcp->tcp_connp; 9651 9652 tcpopt.tcp = NULL; 9653 options = tcp_parse_options(tcpha, &tcpopt); 9654 9655 /* 9656 * Process MSS option. Note that MSS option value does not account 9657 * for IP or TCP options. This means that it is equal to MTU - minimum 9658 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 9659 * IPv6. 9660 */ 9661 if (!(options & TCP_OPT_MSS_PRESENT)) { 9662 if (connp->conn_ipversion == IPV4_VERSION) 9663 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 9664 else 9665 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 9666 } else { 9667 if (connp->conn_ipversion == IPV4_VERSION) 9668 mss_max = tcps->tcps_mss_max_ipv4; 9669 else 9670 mss_max = tcps->tcps_mss_max_ipv6; 9671 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 9672 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 9673 else if (tcpopt.tcp_opt_mss > mss_max) 9674 tcpopt.tcp_opt_mss = mss_max; 9675 } 9676 9677 /* Process Window Scale option. */ 9678 if (options & TCP_OPT_WSCALE_PRESENT) { 9679 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 9680 tcp->tcp_snd_ws_ok = B_TRUE; 9681 } else { 9682 tcp->tcp_snd_ws = B_FALSE; 9683 tcp->tcp_snd_ws_ok = B_FALSE; 9684 tcp->tcp_rcv_ws = B_FALSE; 9685 } 9686 9687 /* Process Timestamp option. */ 9688 if ((options & TCP_OPT_TSTAMP_PRESENT) && 9689 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 9690 tmp_tcph = (char *)tcp->tcp_tcpha; 9691 9692 tcp->tcp_snd_ts_ok = B_TRUE; 9693 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 9694 tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 9695 ASSERT(OK_32PTR(tmp_tcph)); 9696 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 9697 9698 /* Fill in our template header with basic timestamp option. */ 9699 tmp_tcph += connp->conn_ht_ulp_len; 9700 tmp_tcph[0] = TCPOPT_NOP; 9701 tmp_tcph[1] = TCPOPT_NOP; 9702 tmp_tcph[2] = TCPOPT_TSTAMP; 9703 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 9704 connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN; 9705 connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN; 9706 tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4); 9707 } else { 9708 tcp->tcp_snd_ts_ok = B_FALSE; 9709 } 9710 9711 /* 9712 * Process SACK options. If SACK is enabled for this connection, 9713 * then allocate the SACK info structure. Note the following ways 9714 * when tcp_snd_sack_ok is set to true. 9715 * 9716 * For active connection: in tcp_set_destination() called in 9717 * tcp_connect(). 9718 * 9719 * For passive connection: in tcp_set_destination() called in 9720 * tcp_input_listener(). 9721 * 9722 * That's the reason why the extra TCP_IS_DETACHED() check is there. 9723 * That check makes sure that if we did not send a SACK OK option, 9724 * we will not enable SACK for this connection even though the other 9725 * side sends us SACK OK option. For active connection, the SACK 9726 * info structure has already been allocated. So we need to free 9727 * it if SACK is disabled. 9728 */ 9729 if ((options & TCP_OPT_SACK_OK_PRESENT) && 9730 (tcp->tcp_snd_sack_ok || 9731 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 9732 /* This should be true only in the passive case. */ 9733 if (tcp->tcp_sack_info == NULL) { 9734 ASSERT(TCP_IS_DETACHED(tcp)); 9735 tcp->tcp_sack_info = 9736 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 9737 } 9738 if (tcp->tcp_sack_info == NULL) { 9739 tcp->tcp_snd_sack_ok = B_FALSE; 9740 } else { 9741 tcp->tcp_snd_sack_ok = B_TRUE; 9742 if (tcp->tcp_snd_ts_ok) { 9743 tcp->tcp_max_sack_blk = 3; 9744 } else { 9745 tcp->tcp_max_sack_blk = 4; 9746 } 9747 } 9748 } else { 9749 /* 9750 * Resetting tcp_snd_sack_ok to B_FALSE so that 9751 * no SACK info will be used for this 9752 * connection. This assumes that SACK usage 9753 * permission is negotiated. This may need 9754 * to be changed once this is clarified. 9755 */ 9756 if (tcp->tcp_sack_info != NULL) { 9757 ASSERT(tcp->tcp_notsack_list == NULL); 9758 kmem_cache_free(tcp_sack_info_cache, 9759 tcp->tcp_sack_info); 9760 tcp->tcp_sack_info = NULL; 9761 } 9762 tcp->tcp_snd_sack_ok = B_FALSE; 9763 } 9764 9765 /* 9766 * Now we know the exact TCP/IP header length, subtract 9767 * that from tcp_mss to get our side's MSS. 9768 */ 9769 tcp->tcp_mss -= connp->conn_ht_iphc_len; 9770 9771 /* 9772 * Here we assume that the other side's header size will be equal to 9773 * our header size. We calculate the real MSS accordingly. Need to 9774 * take into additional stuffs IPsec puts in. 9775 * 9776 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 9777 */ 9778 tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len + 9779 tcp->tcp_ipsec_overhead - 9780 ((connp->conn_ipversion == IPV4_VERSION ? 9781 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 9782 9783 /* 9784 * Set MSS to the smaller one of both ends of the connection. 9785 * We should not have called tcp_mss_set() before, but our 9786 * side of the MSS should have been set to a proper value 9787 * by tcp_set_destination(). tcp_mss_set() will also set up the 9788 * STREAM head parameters properly. 9789 * 9790 * If we have a larger-than-16-bit window but the other side 9791 * didn't want to do window scale, tcp_rwnd_set() will take 9792 * care of that. 9793 */ 9794 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 9795 9796 /* 9797 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been 9798 * updated properly. 9799 */ 9800 SET_TCP_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial); 9801 } 9802 9803 /* 9804 * Sends the T_CONN_IND to the listener. The caller calls this 9805 * functions via squeue to get inside the listener's perimeter 9806 * once the 3 way hand shake is done a T_CONN_IND needs to be 9807 * sent. As an optimization, the caller can call this directly 9808 * if listener's perimeter is same as eager's. 9809 */ 9810 /* ARGSUSED */ 9811 void 9812 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 9813 { 9814 conn_t *lconnp = (conn_t *)arg; 9815 tcp_t *listener = lconnp->conn_tcp; 9816 tcp_t *tcp; 9817 struct T_conn_ind *conn_ind; 9818 ipaddr_t *addr_cache; 9819 boolean_t need_send_conn_ind = B_FALSE; 9820 tcp_stack_t *tcps = listener->tcp_tcps; 9821 9822 /* retrieve the eager */ 9823 conn_ind = (struct T_conn_ind *)mp->b_rptr; 9824 ASSERT(conn_ind->OPT_offset != 0 && 9825 conn_ind->OPT_length == sizeof (intptr_t)); 9826 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 9827 conn_ind->OPT_length); 9828 9829 /* 9830 * TLI/XTI applications will get confused by 9831 * sending eager as an option since it violates 9832 * the option semantics. So remove the eager as 9833 * option since TLI/XTI app doesn't need it anyway. 9834 */ 9835 if (!TCP_IS_SOCKET(listener)) { 9836 conn_ind->OPT_length = 0; 9837 conn_ind->OPT_offset = 0; 9838 } 9839 if (listener->tcp_state != TCPS_LISTEN) { 9840 /* 9841 * If listener has closed, it would have caused a 9842 * a cleanup/blowoff to happen for the eager. We 9843 * just need to return. 9844 */ 9845 freemsg(mp); 9846 return; 9847 } 9848 9849 9850 /* 9851 * if the conn_req_q is full defer passing up the 9852 * T_CONN_IND until space is availabe after t_accept() 9853 * processing 9854 */ 9855 mutex_enter(&listener->tcp_eager_lock); 9856 9857 /* 9858 * Take the eager out, if it is in the list of droppable eagers 9859 * as we are here because the 3W handshake is over. 9860 */ 9861 MAKE_UNDROPPABLE(tcp); 9862 9863 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 9864 tcp_t *tail; 9865 9866 /* 9867 * The eager already has an extra ref put in tcp_input_data 9868 * so that it stays till accept comes back even though it 9869 * might get into TCPS_CLOSED as a result of a TH_RST etc. 9870 */ 9871 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 9872 listener->tcp_conn_req_cnt_q0--; 9873 listener->tcp_conn_req_cnt_q++; 9874 9875 /* Move from SYN_RCVD to ESTABLISHED list */ 9876 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 9877 tcp->tcp_eager_prev_q0; 9878 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 9879 tcp->tcp_eager_next_q0; 9880 tcp->tcp_eager_prev_q0 = NULL; 9881 tcp->tcp_eager_next_q0 = NULL; 9882 9883 /* 9884 * Insert at end of the queue because sockfs 9885 * sends down T_CONN_RES in chronological 9886 * order. Leaving the older conn indications 9887 * at front of the queue helps reducing search 9888 * time. 9889 */ 9890 tail = listener->tcp_eager_last_q; 9891 if (tail != NULL) 9892 tail->tcp_eager_next_q = tcp; 9893 else 9894 listener->tcp_eager_next_q = tcp; 9895 listener->tcp_eager_last_q = tcp; 9896 tcp->tcp_eager_next_q = NULL; 9897 /* 9898 * Delay sending up the T_conn_ind until we are 9899 * done with the eager. Once we have have sent up 9900 * the T_conn_ind, the accept can potentially complete 9901 * any time and release the refhold we have on the eager. 9902 */ 9903 need_send_conn_ind = B_TRUE; 9904 } else { 9905 /* 9906 * Defer connection on q0 and set deferred 9907 * connection bit true 9908 */ 9909 tcp->tcp_conn_def_q0 = B_TRUE; 9910 9911 /* take tcp out of q0 ... */ 9912 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 9913 tcp->tcp_eager_next_q0; 9914 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 9915 tcp->tcp_eager_prev_q0; 9916 9917 /* ... and place it at the end of q0 */ 9918 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 9919 tcp->tcp_eager_next_q0 = listener; 9920 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 9921 listener->tcp_eager_prev_q0 = tcp; 9922 tcp->tcp_conn.tcp_eager_conn_ind = mp; 9923 } 9924 9925 /* we have timed out before */ 9926 if (tcp->tcp_syn_rcvd_timeout != 0) { 9927 tcp->tcp_syn_rcvd_timeout = 0; 9928 listener->tcp_syn_rcvd_timeout--; 9929 if (listener->tcp_syn_defense && 9930 listener->tcp_syn_rcvd_timeout <= 9931 (tcps->tcps_conn_req_max_q0 >> 5) && 9932 10*MINUTES < TICK_TO_MSEC(ddi_get_lbolt64() - 9933 listener->tcp_last_rcv_lbolt)) { 9934 /* 9935 * Turn off the defense mode if we 9936 * believe the SYN attack is over. 9937 */ 9938 listener->tcp_syn_defense = B_FALSE; 9939 if (listener->tcp_ip_addr_cache) { 9940 kmem_free((void *)listener->tcp_ip_addr_cache, 9941 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 9942 listener->tcp_ip_addr_cache = NULL; 9943 } 9944 } 9945 } 9946 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 9947 if (addr_cache != NULL) { 9948 /* 9949 * We have finished a 3-way handshake with this 9950 * remote host. This proves the IP addr is good. 9951 * Cache it! 9952 */ 9953 addr_cache[IP_ADDR_CACHE_HASH(tcp->tcp_connp->conn_faddr_v4)] = 9954 tcp->tcp_connp->conn_faddr_v4; 9955 } 9956 mutex_exit(&listener->tcp_eager_lock); 9957 if (need_send_conn_ind) 9958 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 9959 } 9960 9961 /* 9962 * Send the newconn notification to ulp. The eager is blown off if the 9963 * notification fails. 9964 */ 9965 static void 9966 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp) 9967 { 9968 if (IPCL_IS_NONSTR(lconnp)) { 9969 cred_t *cr; 9970 pid_t cpid = NOPID; 9971 9972 ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp); 9973 ASSERT(econnp->conn_tcp->tcp_saved_listener == 9974 lconnp->conn_tcp); 9975 9976 cr = msg_getcred(mp, &cpid); 9977 9978 /* Keep the message around in case of a fallback to TPI */ 9979 econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp; 9980 /* 9981 * Notify the ULP about the newconn. It is guaranteed that no 9982 * tcp_accept() call will be made for the eager if the 9983 * notification fails, so it's safe to blow it off in that 9984 * case. 9985 * 9986 * The upper handle will be assigned when tcp_accept() is 9987 * called. 9988 */ 9989 if ((*lconnp->conn_upcalls->su_newconn) 9990 (lconnp->conn_upper_handle, 9991 (sock_lower_handle_t)econnp, 9992 &sock_tcp_downcalls, cr, cpid, 9993 &econnp->conn_upcalls) == NULL) { 9994 /* Failed to allocate a socket */ 9995 BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib, 9996 tcpEstabResets); 9997 (void) tcp_eager_blowoff(lconnp->conn_tcp, 9998 econnp->conn_tcp->tcp_conn_req_seqnum); 9999 } 10000 } else { 10001 putnext(lconnp->conn_rq, mp); 10002 } 10003 } 10004 10005 /* 10006 * Handle a packet that has been reclassified by TCP. 10007 * This function drops the ref on connp that the caller had. 10008 */ 10009 static void 10010 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst) 10011 { 10012 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 10013 10014 if (connp->conn_incoming_ifindex != 0 && 10015 connp->conn_incoming_ifindex != ira->ira_ruifindex) { 10016 freemsg(mp); 10017 CONN_DEC_REF(connp); 10018 return; 10019 } 10020 10021 if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) || 10022 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 10023 ip6_t *ip6h; 10024 ipha_t *ipha; 10025 10026 if (ira->ira_flags & IRAF_IS_IPV4) { 10027 ipha = (ipha_t *)mp->b_rptr; 10028 ip6h = NULL; 10029 } else { 10030 ipha = NULL; 10031 ip6h = (ip6_t *)mp->b_rptr; 10032 } 10033 mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira); 10034 if (mp == NULL) { 10035 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 10036 /* Note that mp is NULL */ 10037 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 10038 CONN_DEC_REF(connp); 10039 return; 10040 } 10041 } 10042 10043 if (IPCL_IS_TCP(connp)) { 10044 /* 10045 * do not drain, certain use cases can blow 10046 * the stack 10047 */ 10048 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 10049 connp->conn_recv, connp, ira, 10050 SQ_NODRAIN, SQTAG_IP_TCP_INPUT); 10051 } else { 10052 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 10053 (connp->conn_recv)(connp, mp, NULL, 10054 ira); 10055 CONN_DEC_REF(connp); 10056 } 10057 10058 } 10059 10060 boolean_t tcp_outbound_squeue_switch = B_FALSE; 10061 10062 /* 10063 * Handle M_DATA messages from IP. Its called directly from IP via 10064 * squeue for received IP packets. 10065 * 10066 * The first argument is always the connp/tcp to which the mp belongs. 10067 * There are no exceptions to this rule. The caller has already put 10068 * a reference on this connp/tcp and once tcp_input_data() returns, 10069 * the squeue will do the refrele. 10070 * 10071 * The TH_SYN for the listener directly go to tcp_input_listener via 10072 * squeue. ICMP errors go directly to tcp_icmp_input(). 10073 * 10074 * sqp: NULL = recursive, sqp != NULL means called from squeue 10075 */ 10076 void 10077 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 10078 { 10079 int32_t bytes_acked; 10080 int32_t gap; 10081 mblk_t *mp1; 10082 uint_t flags; 10083 uint32_t new_swnd = 0; 10084 uchar_t *iphdr; 10085 uchar_t *rptr; 10086 int32_t rgap; 10087 uint32_t seg_ack; 10088 int seg_len; 10089 uint_t ip_hdr_len; 10090 uint32_t seg_seq; 10091 tcpha_t *tcpha; 10092 int urp; 10093 tcp_opt_t tcpopt; 10094 ip_pkt_t ipp; 10095 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 10096 uint32_t cwnd; 10097 uint32_t add; 10098 int npkt; 10099 int mss; 10100 conn_t *connp = (conn_t *)arg; 10101 squeue_t *sqp = (squeue_t *)arg2; 10102 tcp_t *tcp = connp->conn_tcp; 10103 tcp_stack_t *tcps = tcp->tcp_tcps; 10104 10105 /* 10106 * RST from fused tcp loopback peer should trigger an unfuse. 10107 */ 10108 if (tcp->tcp_fused) { 10109 TCP_STAT(tcps, tcp_fusion_aborted); 10110 tcp_unfuse(tcp); 10111 } 10112 10113 iphdr = mp->b_rptr; 10114 rptr = mp->b_rptr; 10115 ASSERT(OK_32PTR(rptr)); 10116 10117 ip_hdr_len = ira->ira_ip_hdr_length; 10118 if (connp->conn_recv_ancillary.crb_all != 0) { 10119 /* 10120 * Record packet information in the ip_pkt_t 10121 */ 10122 ipp.ipp_fields = 0; 10123 if (ira->ira_flags & IRAF_IS_IPV4) { 10124 (void) ip_find_hdr_v4((ipha_t *)rptr, &ipp, 10125 B_FALSE); 10126 } else { 10127 uint8_t nexthdrp; 10128 10129 /* 10130 * IPv6 packets can only be received by applications 10131 * that are prepared to receive IPv6 addresses. 10132 * The IP fanout must ensure this. 10133 */ 10134 ASSERT(connp->conn_family == AF_INET6); 10135 10136 (void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp, 10137 &nexthdrp); 10138 ASSERT(nexthdrp == IPPROTO_TCP); 10139 10140 /* Could have caused a pullup? */ 10141 iphdr = mp->b_rptr; 10142 rptr = mp->b_rptr; 10143 } 10144 } 10145 ASSERT(DB_TYPE(mp) == M_DATA); 10146 ASSERT(mp->b_next == NULL); 10147 10148 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 10149 seg_seq = ntohl(tcpha->tha_seq); 10150 seg_ack = ntohl(tcpha->tha_ack); 10151 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 10152 seg_len = (int)(mp->b_wptr - rptr) - 10153 (ip_hdr_len + TCP_HDR_LENGTH(tcpha)); 10154 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 10155 do { 10156 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 10157 (uintptr_t)INT_MAX); 10158 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 10159 } while ((mp1 = mp1->b_cont) != NULL && 10160 mp1->b_datap->db_type == M_DATA); 10161 } 10162 10163 if (tcp->tcp_state == TCPS_TIME_WAIT) { 10164 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 10165 seg_len, tcpha, ira); 10166 return; 10167 } 10168 10169 if (sqp != NULL) { 10170 /* 10171 * This is the correct place to update tcp_last_recv_time. Note 10172 * that it is also updated for tcp structure that belongs to 10173 * global and listener queues which do not really need updating. 10174 * But that should not cause any harm. And it is updated for 10175 * all kinds of incoming segments, not only for data segments. 10176 */ 10177 tcp->tcp_last_recv_time = LBOLT_FASTPATH; 10178 } 10179 10180 flags = (unsigned int)tcpha->tha_flags & 0xFF; 10181 10182 BUMP_LOCAL(tcp->tcp_ibsegs); 10183 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 10184 10185 if ((flags & TH_URG) && sqp != NULL) { 10186 /* 10187 * TCP can't handle urgent pointers that arrive before 10188 * the connection has been accept()ed since it can't 10189 * buffer OOB data. Discard segment if this happens. 10190 * 10191 * We can't just rely on a non-null tcp_listener to indicate 10192 * that the accept() has completed since unlinking of the 10193 * eager and completion of the accept are not atomic. 10194 * tcp_detached, when it is not set (B_FALSE) indicates 10195 * that the accept() has completed. 10196 * 10197 * Nor can it reassemble urgent pointers, so discard 10198 * if it's not the next segment expected. 10199 * 10200 * Otherwise, collapse chain into one mblk (discard if 10201 * that fails). This makes sure the headers, retransmitted 10202 * data, and new data all are in the same mblk. 10203 */ 10204 ASSERT(mp != NULL); 10205 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 10206 freemsg(mp); 10207 return; 10208 } 10209 /* Update pointers into message */ 10210 iphdr = rptr = mp->b_rptr; 10211 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 10212 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 10213 /* 10214 * Since we can't handle any data with this urgent 10215 * pointer that is out of sequence, we expunge 10216 * the data. This allows us to still register 10217 * the urgent mark and generate the M_PCSIG, 10218 * which we can do. 10219 */ 10220 mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 10221 seg_len = 0; 10222 } 10223 } 10224 10225 switch (tcp->tcp_state) { 10226 case TCPS_SYN_SENT: 10227 if (connp->conn_final_sqp == NULL && 10228 tcp_outbound_squeue_switch && sqp != NULL) { 10229 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 10230 connp->conn_final_sqp = sqp; 10231 if (connp->conn_final_sqp != connp->conn_sqp) { 10232 DTRACE_PROBE1(conn__final__sqp__switch, 10233 conn_t *, connp); 10234 CONN_INC_REF(connp); 10235 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 10236 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 10237 tcp_input_data, connp, ira, ip_squeue_flag, 10238 SQTAG_CONNECT_FINISH); 10239 return; 10240 } 10241 DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp); 10242 } 10243 if (flags & TH_ACK) { 10244 /* 10245 * Note that our stack cannot send data before a 10246 * connection is established, therefore the 10247 * following check is valid. Otherwise, it has 10248 * to be changed. 10249 */ 10250 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 10251 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 10252 freemsg(mp); 10253 if (flags & TH_RST) 10254 return; 10255 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 10256 tcp, seg_ack, 0, TH_RST); 10257 return; 10258 } 10259 ASSERT(tcp->tcp_suna + 1 == seg_ack); 10260 } 10261 if (flags & TH_RST) { 10262 freemsg(mp); 10263 if (flags & TH_ACK) 10264 (void) tcp_clean_death(tcp, 10265 ECONNREFUSED, 13); 10266 return; 10267 } 10268 if (!(flags & TH_SYN)) { 10269 freemsg(mp); 10270 return; 10271 } 10272 10273 /* Process all TCP options. */ 10274 tcp_process_options(tcp, tcpha); 10275 /* 10276 * The following changes our rwnd to be a multiple of the 10277 * MIN(peer MSS, our MSS) for performance reason. 10278 */ 10279 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf, 10280 tcp->tcp_mss)); 10281 10282 /* Is the other end ECN capable? */ 10283 if (tcp->tcp_ecn_ok) { 10284 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 10285 tcp->tcp_ecn_ok = B_FALSE; 10286 } 10287 } 10288 /* 10289 * Clear ECN flags because it may interfere with later 10290 * processing. 10291 */ 10292 flags &= ~(TH_ECE|TH_CWR); 10293 10294 tcp->tcp_irs = seg_seq; 10295 tcp->tcp_rack = seg_seq; 10296 tcp->tcp_rnxt = seg_seq + 1; 10297 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 10298 if (!TCP_IS_DETACHED(tcp)) { 10299 /* Allocate room for SACK options if needed. */ 10300 connp->conn_wroff = connp->conn_ht_iphc_len; 10301 if (tcp->tcp_snd_sack_ok) 10302 connp->conn_wroff += TCPOPT_MAX_SACK_LEN; 10303 if (!tcp->tcp_loopback) 10304 connp->conn_wroff += tcps->tcps_wroff_xtra; 10305 10306 (void) proto_set_tx_wroff(connp->conn_rq, connp, 10307 connp->conn_wroff); 10308 } 10309 if (flags & TH_ACK) { 10310 /* 10311 * If we can't get the confirmation upstream, pretend 10312 * we didn't even see this one. 10313 * 10314 * XXX: how can we pretend we didn't see it if we 10315 * have updated rnxt et. al. 10316 * 10317 * For loopback we defer sending up the T_CONN_CON 10318 * until after some checks below. 10319 */ 10320 mp1 = NULL; 10321 /* 10322 * tcp_sendmsg() checks tcp_state without entering 10323 * the squeue so tcp_state should be updated before 10324 * sending up connection confirmation 10325 */ 10326 tcp->tcp_state = TCPS_ESTABLISHED; 10327 if (!tcp_conn_con(tcp, iphdr, mp, 10328 tcp->tcp_loopback ? &mp1 : NULL, ira)) { 10329 tcp->tcp_state = TCPS_SYN_SENT; 10330 freemsg(mp); 10331 return; 10332 } 10333 /* SYN was acked - making progress */ 10334 tcp->tcp_ip_forward_progress = B_TRUE; 10335 10336 /* One for the SYN */ 10337 tcp->tcp_suna = tcp->tcp_iss + 1; 10338 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 10339 10340 /* 10341 * If SYN was retransmitted, need to reset all 10342 * retransmission info. This is because this 10343 * segment will be treated as a dup ACK. 10344 */ 10345 if (tcp->tcp_rexmit) { 10346 tcp->tcp_rexmit = B_FALSE; 10347 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 10348 tcp->tcp_rexmit_max = tcp->tcp_snxt; 10349 tcp->tcp_snd_burst = tcp->tcp_localnet ? 10350 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 10351 tcp->tcp_ms_we_have_waited = 0; 10352 10353 /* 10354 * Set tcp_cwnd back to 1 MSS, per 10355 * recommendation from 10356 * draft-floyd-incr-init-win-01.txt, 10357 * Increasing TCP's Initial Window. 10358 */ 10359 tcp->tcp_cwnd = tcp->tcp_mss; 10360 } 10361 10362 tcp->tcp_swl1 = seg_seq; 10363 tcp->tcp_swl2 = seg_ack; 10364 10365 new_swnd = ntohs(tcpha->tha_win); 10366 tcp->tcp_swnd = new_swnd; 10367 if (new_swnd > tcp->tcp_max_swnd) 10368 tcp->tcp_max_swnd = new_swnd; 10369 10370 /* 10371 * Always send the three-way handshake ack immediately 10372 * in order to make the connection complete as soon as 10373 * possible on the accepting host. 10374 */ 10375 flags |= TH_ACK_NEEDED; 10376 10377 /* 10378 * Special case for loopback. At this point we have 10379 * received SYN-ACK from the remote endpoint. In 10380 * order to ensure that both endpoints reach the 10381 * fused state prior to any data exchange, the final 10382 * ACK needs to be sent before we indicate T_CONN_CON 10383 * to the module upstream. 10384 */ 10385 if (tcp->tcp_loopback) { 10386 mblk_t *ack_mp; 10387 10388 ASSERT(!tcp->tcp_unfusable); 10389 ASSERT(mp1 != NULL); 10390 /* 10391 * For loopback, we always get a pure SYN-ACK 10392 * and only need to send back the final ACK 10393 * with no data (this is because the other 10394 * tcp is ours and we don't do T/TCP). This 10395 * final ACK triggers the passive side to 10396 * perform fusion in ESTABLISHED state. 10397 */ 10398 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 10399 if (tcp->tcp_ack_tid != 0) { 10400 (void) TCP_TIMER_CANCEL(tcp, 10401 tcp->tcp_ack_tid); 10402 tcp->tcp_ack_tid = 0; 10403 } 10404 tcp_send_data(tcp, ack_mp); 10405 BUMP_LOCAL(tcp->tcp_obsegs); 10406 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 10407 10408 if (!IPCL_IS_NONSTR(connp)) { 10409 /* Send up T_CONN_CON */ 10410 if (ira->ira_cred != NULL) { 10411 mblk_setcred(mp1, 10412 ira->ira_cred, 10413 ira->ira_cpid); 10414 } 10415 putnext(connp->conn_rq, mp1); 10416 } else { 10417 (*connp->conn_upcalls-> 10418 su_connected) 10419 (connp->conn_upper_handle, 10420 tcp->tcp_connid, 10421 ira->ira_cred, 10422 ira->ira_cpid); 10423 freemsg(mp1); 10424 } 10425 10426 freemsg(mp); 10427 return; 10428 } 10429 /* 10430 * Forget fusion; we need to handle more 10431 * complex cases below. Send the deferred 10432 * T_CONN_CON message upstream and proceed 10433 * as usual. Mark this tcp as not capable 10434 * of fusion. 10435 */ 10436 TCP_STAT(tcps, tcp_fusion_unfusable); 10437 tcp->tcp_unfusable = B_TRUE; 10438 if (!IPCL_IS_NONSTR(connp)) { 10439 if (ira->ira_cred != NULL) { 10440 mblk_setcred(mp1, ira->ira_cred, 10441 ira->ira_cpid); 10442 } 10443 putnext(connp->conn_rq, mp1); 10444 } else { 10445 (*connp->conn_upcalls->su_connected) 10446 (connp->conn_upper_handle, 10447 tcp->tcp_connid, ira->ira_cred, 10448 ira->ira_cpid); 10449 freemsg(mp1); 10450 } 10451 } 10452 10453 /* 10454 * Check to see if there is data to be sent. If 10455 * yes, set the transmit flag. Then check to see 10456 * if received data processing needs to be done. 10457 * If not, go straight to xmit_check. This short 10458 * cut is OK as we don't support T/TCP. 10459 */ 10460 if (tcp->tcp_unsent) 10461 flags |= TH_XMIT_NEEDED; 10462 10463 if (seg_len == 0 && !(flags & TH_URG)) { 10464 freemsg(mp); 10465 goto xmit_check; 10466 } 10467 10468 flags &= ~TH_SYN; 10469 seg_seq++; 10470 break; 10471 } 10472 tcp->tcp_state = TCPS_SYN_RCVD; 10473 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 10474 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 10475 if (mp1 != NULL) { 10476 tcp_send_data(tcp, mp1); 10477 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 10478 } 10479 freemsg(mp); 10480 return; 10481 case TCPS_SYN_RCVD: 10482 if (flags & TH_ACK) { 10483 /* 10484 * In this state, a SYN|ACK packet is either bogus 10485 * because the other side must be ACKing our SYN which 10486 * indicates it has seen the ACK for their SYN and 10487 * shouldn't retransmit it or we're crossing SYNs 10488 * on active open. 10489 */ 10490 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 10491 freemsg(mp); 10492 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 10493 tcp, seg_ack, 0, TH_RST); 10494 return; 10495 } 10496 /* 10497 * NOTE: RFC 793 pg. 72 says this should be 10498 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 10499 * but that would mean we have an ack that ignored 10500 * our SYN. 10501 */ 10502 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 10503 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 10504 freemsg(mp); 10505 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 10506 tcp, seg_ack, 0, TH_RST); 10507 return; 10508 } 10509 /* 10510 * No sane TCP stack will send such a small window 10511 * without receiving any data. Just drop this invalid 10512 * ACK. We also shorten the abort timeout in case 10513 * this is an attack. 10514 */ 10515 if ((ntohs(tcpha->tha_win) << tcp->tcp_snd_ws) < 10516 (tcp->tcp_mss >> tcp_init_wnd_shft)) { 10517 freemsg(mp); 10518 TCP_STAT(tcps, tcp_zwin_ack_syn); 10519 tcp->tcp_second_ctimer_threshold = 10520 tcp_early_abort * SECONDS; 10521 return; 10522 } 10523 } 10524 break; 10525 case TCPS_LISTEN: 10526 /* 10527 * Only a TLI listener can come through this path when a 10528 * acceptor is going back to be a listener and a packet 10529 * for the acceptor hits the classifier. For a socket 10530 * listener, this can never happen because a listener 10531 * can never accept connection on itself and hence a 10532 * socket acceptor can not go back to being a listener. 10533 */ 10534 ASSERT(!TCP_IS_SOCKET(tcp)); 10535 /*FALLTHRU*/ 10536 case TCPS_CLOSED: 10537 case TCPS_BOUND: { 10538 conn_t *new_connp; 10539 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 10540 10541 /* 10542 * Don't accept any input on a closed tcp as this TCP logically 10543 * does not exist on the system. Don't proceed further with 10544 * this TCP. For instance, this packet could trigger another 10545 * close of this tcp which would be disastrous for tcp_refcnt. 10546 * tcp_close_detached / tcp_clean_death / tcp_closei_local must 10547 * be called at most once on a TCP. In this case we need to 10548 * refeed the packet into the classifier and figure out where 10549 * the packet should go. 10550 */ 10551 new_connp = ipcl_classify(mp, ira, ipst); 10552 if (new_connp != NULL) { 10553 /* Drops ref on new_connp */ 10554 tcp_reinput(new_connp, mp, ira, ipst); 10555 return; 10556 } 10557 /* We failed to classify. For now just drop the packet */ 10558 freemsg(mp); 10559 return; 10560 } 10561 case TCPS_IDLE: 10562 /* 10563 * Handle the case where the tcp_clean_death() has happened 10564 * on a connection (application hasn't closed yet) but a packet 10565 * was already queued on squeue before tcp_clean_death() 10566 * was processed. Calling tcp_clean_death() twice on same 10567 * connection can result in weird behaviour. 10568 */ 10569 freemsg(mp); 10570 return; 10571 default: 10572 break; 10573 } 10574 10575 /* 10576 * Already on the correct queue/perimeter. 10577 * If this is a detached connection and not an eager 10578 * connection hanging off a listener then new data 10579 * (past the FIN) will cause a reset. 10580 * We do a special check here where it 10581 * is out of the main line, rather than check 10582 * if we are detached every time we see new 10583 * data down below. 10584 */ 10585 if (TCP_IS_DETACHED_NONEAGER(tcp) && 10586 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 10587 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 10588 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 10589 10590 freemsg(mp); 10591 /* 10592 * This could be an SSL closure alert. We're detached so just 10593 * acknowledge it this last time. 10594 */ 10595 if (tcp->tcp_kssl_ctx != NULL) { 10596 kssl_release_ctx(tcp->tcp_kssl_ctx); 10597 tcp->tcp_kssl_ctx = NULL; 10598 10599 tcp->tcp_rnxt += seg_len; 10600 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 10601 flags |= TH_ACK_NEEDED; 10602 goto ack_check; 10603 } 10604 10605 tcp_xmit_ctl("new data when detached", tcp, 10606 tcp->tcp_snxt, 0, TH_RST); 10607 (void) tcp_clean_death(tcp, EPROTO, 12); 10608 return; 10609 } 10610 10611 mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 10612 urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION; 10613 new_swnd = ntohs(tcpha->tha_win) << 10614 ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); 10615 10616 if (tcp->tcp_snd_ts_ok) { 10617 if (!tcp_paws_check(tcp, tcpha, &tcpopt)) { 10618 /* 10619 * This segment is not acceptable. 10620 * Drop it and send back an ACK. 10621 */ 10622 freemsg(mp); 10623 flags |= TH_ACK_NEEDED; 10624 goto ack_check; 10625 } 10626 } else if (tcp->tcp_snd_sack_ok) { 10627 ASSERT(tcp->tcp_sack_info != NULL); 10628 tcpopt.tcp = tcp; 10629 /* 10630 * SACK info in already updated in tcp_parse_options. Ignore 10631 * all other TCP options... 10632 */ 10633 (void) tcp_parse_options(tcpha, &tcpopt); 10634 } 10635 try_again:; 10636 mss = tcp->tcp_mss; 10637 gap = seg_seq - tcp->tcp_rnxt; 10638 rgap = tcp->tcp_rwnd - (gap + seg_len); 10639 /* 10640 * gap is the amount of sequence space between what we expect to see 10641 * and what we got for seg_seq. A positive value for gap means 10642 * something got lost. A negative value means we got some old stuff. 10643 */ 10644 if (gap < 0) { 10645 /* Old stuff present. Is the SYN in there? */ 10646 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 10647 (seg_len != 0)) { 10648 flags &= ~TH_SYN; 10649 seg_seq++; 10650 urp--; 10651 /* Recompute the gaps after noting the SYN. */ 10652 goto try_again; 10653 } 10654 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 10655 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 10656 (seg_len > -gap ? -gap : seg_len)); 10657 /* Remove the old stuff from seg_len. */ 10658 seg_len += gap; 10659 /* 10660 * Anything left? 10661 * Make sure to check for unack'd FIN when rest of data 10662 * has been previously ack'd. 10663 */ 10664 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 10665 /* 10666 * Resets are only valid if they lie within our offered 10667 * window. If the RST bit is set, we just ignore this 10668 * segment. 10669 */ 10670 if (flags & TH_RST) { 10671 freemsg(mp); 10672 return; 10673 } 10674 10675 /* 10676 * The arriving of dup data packets indicate that we 10677 * may have postponed an ack for too long, or the other 10678 * side's RTT estimate is out of shape. Start acking 10679 * more often. 10680 */ 10681 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 10682 tcp->tcp_rack_cnt >= 1 && 10683 tcp->tcp_rack_abs_max > 2) { 10684 tcp->tcp_rack_abs_max--; 10685 } 10686 tcp->tcp_rack_cur_max = 1; 10687 10688 /* 10689 * This segment is "unacceptable". None of its 10690 * sequence space lies within our advertized window. 10691 * 10692 * Adjust seg_len to the original value for tracing. 10693 */ 10694 seg_len -= gap; 10695 if (connp->conn_debug) { 10696 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 10697 "tcp_rput: unacceptable, gap %d, rgap %d, " 10698 "flags 0x%x, seg_seq %u, seg_ack %u, " 10699 "seg_len %d, rnxt %u, snxt %u, %s", 10700 gap, rgap, flags, seg_seq, seg_ack, 10701 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 10702 tcp_display(tcp, NULL, 10703 DISP_ADDR_AND_PORT)); 10704 } 10705 10706 /* 10707 * Arrange to send an ACK in response to the 10708 * unacceptable segment per RFC 793 page 69. There 10709 * is only one small difference between ours and the 10710 * acceptability test in the RFC - we accept ACK-only 10711 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 10712 * will be generated. 10713 * 10714 * Note that we have to ACK an ACK-only packet at least 10715 * for stacks that send 0-length keep-alives with 10716 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 10717 * section 4.2.3.6. As long as we don't ever generate 10718 * an unacceptable packet in response to an incoming 10719 * packet that is unacceptable, it should not cause 10720 * "ACK wars". 10721 */ 10722 flags |= TH_ACK_NEEDED; 10723 10724 /* 10725 * Continue processing this segment in order to use the 10726 * ACK information it contains, but skip all other 10727 * sequence-number processing. Processing the ACK 10728 * information is necessary in order to 10729 * re-synchronize connections that may have lost 10730 * synchronization. 10731 * 10732 * We clear seg_len and flag fields related to 10733 * sequence number processing as they are not 10734 * to be trusted for an unacceptable segment. 10735 */ 10736 seg_len = 0; 10737 flags &= ~(TH_SYN | TH_FIN | TH_URG); 10738 goto process_ack; 10739 } 10740 10741 /* Fix seg_seq, and chew the gap off the front. */ 10742 seg_seq = tcp->tcp_rnxt; 10743 urp += gap; 10744 do { 10745 mblk_t *mp2; 10746 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 10747 (uintptr_t)UINT_MAX); 10748 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 10749 if (gap > 0) { 10750 mp->b_rptr = mp->b_wptr - gap; 10751 break; 10752 } 10753 mp2 = mp; 10754 mp = mp->b_cont; 10755 freeb(mp2); 10756 } while (gap < 0); 10757 /* 10758 * If the urgent data has already been acknowledged, we 10759 * should ignore TH_URG below 10760 */ 10761 if (urp < 0) 10762 flags &= ~TH_URG; 10763 } 10764 /* 10765 * rgap is the amount of stuff received out of window. A negative 10766 * value is the amount out of window. 10767 */ 10768 if (rgap < 0) { 10769 mblk_t *mp2; 10770 10771 if (tcp->tcp_rwnd == 0) { 10772 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 10773 } else { 10774 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 10775 UPDATE_MIB(&tcps->tcps_mib, 10776 tcpInDataPastWinBytes, -rgap); 10777 } 10778 10779 /* 10780 * seg_len does not include the FIN, so if more than 10781 * just the FIN is out of window, we act like we don't 10782 * see it. (If just the FIN is out of window, rgap 10783 * will be zero and we will go ahead and acknowledge 10784 * the FIN.) 10785 */ 10786 flags &= ~TH_FIN; 10787 10788 /* Fix seg_len and make sure there is something left. */ 10789 seg_len += rgap; 10790 if (seg_len <= 0) { 10791 /* 10792 * Resets are only valid if they lie within our offered 10793 * window. If the RST bit is set, we just ignore this 10794 * segment. 10795 */ 10796 if (flags & TH_RST) { 10797 freemsg(mp); 10798 return; 10799 } 10800 10801 /* Per RFC 793, we need to send back an ACK. */ 10802 flags |= TH_ACK_NEEDED; 10803 10804 /* 10805 * Send SIGURG as soon as possible i.e. even 10806 * if the TH_URG was delivered in a window probe 10807 * packet (which will be unacceptable). 10808 * 10809 * We generate a signal if none has been generated 10810 * for this connection or if this is a new urgent 10811 * byte. Also send a zero-length "unmarked" message 10812 * to inform SIOCATMARK that this is not the mark. 10813 * 10814 * tcp_urp_last_valid is cleared when the T_exdata_ind 10815 * is sent up. This plus the check for old data 10816 * (gap >= 0) handles the wraparound of the sequence 10817 * number space without having to always track the 10818 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 10819 * this max in its rcv_up variable). 10820 * 10821 * This prevents duplicate SIGURGS due to a "late" 10822 * zero-window probe when the T_EXDATA_IND has already 10823 * been sent up. 10824 */ 10825 if ((flags & TH_URG) && 10826 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 10827 tcp->tcp_urp_last))) { 10828 if (IPCL_IS_NONSTR(connp)) { 10829 if (!TCP_IS_DETACHED(tcp)) { 10830 (*connp->conn_upcalls-> 10831 su_signal_oob) 10832 (connp->conn_upper_handle, 10833 urp); 10834 } 10835 } else { 10836 mp1 = allocb(0, BPRI_MED); 10837 if (mp1 == NULL) { 10838 freemsg(mp); 10839 return; 10840 } 10841 if (!TCP_IS_DETACHED(tcp) && 10842 !putnextctl1(connp->conn_rq, 10843 M_PCSIG, SIGURG)) { 10844 /* Try again on the rexmit. */ 10845 freemsg(mp1); 10846 freemsg(mp); 10847 return; 10848 } 10849 /* 10850 * If the next byte would be the mark 10851 * then mark with MARKNEXT else mark 10852 * with NOTMARKNEXT. 10853 */ 10854 if (gap == 0 && urp == 0) 10855 mp1->b_flag |= MSGMARKNEXT; 10856 else 10857 mp1->b_flag |= MSGNOTMARKNEXT; 10858 freemsg(tcp->tcp_urp_mark_mp); 10859 tcp->tcp_urp_mark_mp = mp1; 10860 flags |= TH_SEND_URP_MARK; 10861 } 10862 tcp->tcp_urp_last_valid = B_TRUE; 10863 tcp->tcp_urp_last = urp + seg_seq; 10864 } 10865 /* 10866 * If this is a zero window probe, continue to 10867 * process the ACK part. But we need to set seg_len 10868 * to 0 to avoid data processing. Otherwise just 10869 * drop the segment and send back an ACK. 10870 */ 10871 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 10872 flags &= ~(TH_SYN | TH_URG); 10873 seg_len = 0; 10874 goto process_ack; 10875 } else { 10876 freemsg(mp); 10877 goto ack_check; 10878 } 10879 } 10880 /* Pitch out of window stuff off the end. */ 10881 rgap = seg_len; 10882 mp2 = mp; 10883 do { 10884 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 10885 (uintptr_t)INT_MAX); 10886 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 10887 if (rgap < 0) { 10888 mp2->b_wptr += rgap; 10889 if ((mp1 = mp2->b_cont) != NULL) { 10890 mp2->b_cont = NULL; 10891 freemsg(mp1); 10892 } 10893 break; 10894 } 10895 } while ((mp2 = mp2->b_cont) != NULL); 10896 } 10897 ok:; 10898 /* 10899 * TCP should check ECN info for segments inside the window only. 10900 * Therefore the check should be done here. 10901 */ 10902 if (tcp->tcp_ecn_ok) { 10903 if (flags & TH_CWR) { 10904 tcp->tcp_ecn_echo_on = B_FALSE; 10905 } 10906 /* 10907 * Note that both ECN_CE and CWR can be set in the 10908 * same segment. In this case, we once again turn 10909 * on ECN_ECHO. 10910 */ 10911 if (connp->conn_ipversion == IPV4_VERSION) { 10912 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 10913 10914 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 10915 tcp->tcp_ecn_echo_on = B_TRUE; 10916 } 10917 } else { 10918 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 10919 10920 if ((vcf & htonl(IPH_ECN_CE << 20)) == 10921 htonl(IPH_ECN_CE << 20)) { 10922 tcp->tcp_ecn_echo_on = B_TRUE; 10923 } 10924 } 10925 } 10926 10927 /* 10928 * Check whether we can update tcp_ts_recent. This test is 10929 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 10930 * Extensions for High Performance: An Update", Internet Draft. 10931 */ 10932 if (tcp->tcp_snd_ts_ok && 10933 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 10934 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 10935 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 10936 tcp->tcp_last_rcv_lbolt = LBOLT_FASTPATH64; 10937 } 10938 10939 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 10940 /* 10941 * FIN in an out of order segment. We record this in 10942 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 10943 * Clear the FIN so that any check on FIN flag will fail. 10944 * Remember that FIN also counts in the sequence number 10945 * space. So we need to ack out of order FIN only segments. 10946 */ 10947 if (flags & TH_FIN) { 10948 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 10949 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 10950 flags &= ~TH_FIN; 10951 flags |= TH_ACK_NEEDED; 10952 } 10953 if (seg_len > 0) { 10954 /* Fill in the SACK blk list. */ 10955 if (tcp->tcp_snd_sack_ok) { 10956 ASSERT(tcp->tcp_sack_info != NULL); 10957 tcp_sack_insert(tcp->tcp_sack_list, 10958 seg_seq, seg_seq + seg_len, 10959 &(tcp->tcp_num_sack_blk)); 10960 } 10961 10962 /* 10963 * Attempt reassembly and see if we have something 10964 * ready to go. 10965 */ 10966 mp = tcp_reass(tcp, mp, seg_seq); 10967 /* Always ack out of order packets */ 10968 flags |= TH_ACK_NEEDED | TH_PUSH; 10969 if (mp) { 10970 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 10971 (uintptr_t)INT_MAX); 10972 seg_len = mp->b_cont ? msgdsize(mp) : 10973 (int)(mp->b_wptr - mp->b_rptr); 10974 seg_seq = tcp->tcp_rnxt; 10975 /* 10976 * A gap is filled and the seq num and len 10977 * of the gap match that of a previously 10978 * received FIN, put the FIN flag back in. 10979 */ 10980 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 10981 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 10982 flags |= TH_FIN; 10983 tcp->tcp_valid_bits &= 10984 ~TCP_OFO_FIN_VALID; 10985 } 10986 if (tcp->tcp_reass_tid != 0) { 10987 (void) TCP_TIMER_CANCEL(tcp, 10988 tcp->tcp_reass_tid); 10989 /* 10990 * Restart the timer if there is still 10991 * data in the reassembly queue. 10992 */ 10993 if (tcp->tcp_reass_head != NULL) { 10994 tcp->tcp_reass_tid = TCP_TIMER( 10995 tcp, tcp_reass_timer, 10996 MSEC_TO_TICK( 10997 tcps->tcps_reass_timeout)); 10998 } else { 10999 tcp->tcp_reass_tid = 0; 11000 } 11001 } 11002 } else { 11003 /* 11004 * Keep going even with NULL mp. 11005 * There may be a useful ACK or something else 11006 * we don't want to miss. 11007 * 11008 * But TCP should not perform fast retransmit 11009 * because of the ack number. TCP uses 11010 * seg_len == 0 to determine if it is a pure 11011 * ACK. And this is not a pure ACK. 11012 */ 11013 seg_len = 0; 11014 ofo_seg = B_TRUE; 11015 11016 if (tcps->tcps_reass_timeout != 0 && 11017 tcp->tcp_reass_tid == 0) { 11018 tcp->tcp_reass_tid = TCP_TIMER(tcp, 11019 tcp_reass_timer, MSEC_TO_TICK( 11020 tcps->tcps_reass_timeout)); 11021 } 11022 } 11023 } 11024 } else if (seg_len > 0) { 11025 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 11026 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 11027 /* 11028 * If an out of order FIN was received before, and the seq 11029 * num and len of the new segment match that of the FIN, 11030 * put the FIN flag back in. 11031 */ 11032 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 11033 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 11034 flags |= TH_FIN; 11035 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 11036 } 11037 } 11038 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 11039 if (flags & TH_RST) { 11040 freemsg(mp); 11041 switch (tcp->tcp_state) { 11042 case TCPS_SYN_RCVD: 11043 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 11044 break; 11045 case TCPS_ESTABLISHED: 11046 case TCPS_FIN_WAIT_1: 11047 case TCPS_FIN_WAIT_2: 11048 case TCPS_CLOSE_WAIT: 11049 (void) tcp_clean_death(tcp, ECONNRESET, 15); 11050 break; 11051 case TCPS_CLOSING: 11052 case TCPS_LAST_ACK: 11053 (void) tcp_clean_death(tcp, 0, 16); 11054 break; 11055 default: 11056 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 11057 (void) tcp_clean_death(tcp, ENXIO, 17); 11058 break; 11059 } 11060 return; 11061 } 11062 if (flags & TH_SYN) { 11063 /* 11064 * See RFC 793, Page 71 11065 * 11066 * The seq number must be in the window as it should 11067 * be "fixed" above. If it is outside window, it should 11068 * be already rejected. Note that we allow seg_seq to be 11069 * rnxt + rwnd because we want to accept 0 window probe. 11070 */ 11071 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 11072 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 11073 freemsg(mp); 11074 /* 11075 * If the ACK flag is not set, just use our snxt as the 11076 * seq number of the RST segment. 11077 */ 11078 if (!(flags & TH_ACK)) { 11079 seg_ack = tcp->tcp_snxt; 11080 } 11081 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 11082 TH_RST|TH_ACK); 11083 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 11084 (void) tcp_clean_death(tcp, ECONNRESET, 18); 11085 return; 11086 } 11087 /* 11088 * urp could be -1 when the urp field in the packet is 0 11089 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 11090 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 11091 */ 11092 if (flags & TH_URG && urp >= 0) { 11093 if (!tcp->tcp_urp_last_valid || 11094 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 11095 /* 11096 * Non-STREAMS sockets handle the urgent data a litte 11097 * differently from STREAMS based sockets. There is no 11098 * need to mark any mblks with the MSG{NOT,}MARKNEXT 11099 * flags to keep SIOCATMARK happy. Instead a 11100 * su_signal_oob upcall is made to update the mark. 11101 * Neither is a T_EXDATA_IND mblk needed to be 11102 * prepended to the urgent data. The urgent data is 11103 * delivered using the su_recv upcall, where we set 11104 * the MSG_OOB flag to indicate that it is urg data. 11105 * 11106 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED 11107 * are used by non-STREAMS sockets. 11108 */ 11109 if (IPCL_IS_NONSTR(connp)) { 11110 if (!TCP_IS_DETACHED(tcp)) { 11111 (*connp->conn_upcalls->su_signal_oob) 11112 (connp->conn_upper_handle, urp); 11113 } 11114 } else { 11115 /* 11116 * If we haven't generated the signal yet for 11117 * this urgent pointer value, do it now. Also, 11118 * send up a zero-length M_DATA indicating 11119 * whether or not this is the mark. The latter 11120 * is not needed when a T_EXDATA_IND is sent up. 11121 * However, if there are allocation failures 11122 * this code relies on the sender retransmitting 11123 * and the socket code for determining the mark 11124 * should not block waiting for the peer to 11125 * transmit. Thus, for simplicity we always 11126 * send up the mark indication. 11127 */ 11128 mp1 = allocb(0, BPRI_MED); 11129 if (mp1 == NULL) { 11130 freemsg(mp); 11131 return; 11132 } 11133 if (!TCP_IS_DETACHED(tcp) && 11134 !putnextctl1(connp->conn_rq, M_PCSIG, 11135 SIGURG)) { 11136 /* Try again on the rexmit. */ 11137 freemsg(mp1); 11138 freemsg(mp); 11139 return; 11140 } 11141 /* 11142 * Mark with NOTMARKNEXT for now. 11143 * The code below will change this to MARKNEXT 11144 * if we are at the mark. 11145 * 11146 * If there are allocation failures (e.g. in 11147 * dupmsg below) the next time tcp_input_data 11148 * sees the urgent segment it will send up the 11149 * MSGMARKNEXT message. 11150 */ 11151 mp1->b_flag |= MSGNOTMARKNEXT; 11152 freemsg(tcp->tcp_urp_mark_mp); 11153 tcp->tcp_urp_mark_mp = mp1; 11154 flags |= TH_SEND_URP_MARK; 11155 #ifdef DEBUG 11156 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11157 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 11158 "last %x, %s", 11159 seg_seq, urp, tcp->tcp_urp_last, 11160 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 11161 #endif /* DEBUG */ 11162 } 11163 tcp->tcp_urp_last_valid = B_TRUE; 11164 tcp->tcp_urp_last = urp + seg_seq; 11165 } else if (tcp->tcp_urp_mark_mp != NULL) { 11166 /* 11167 * An allocation failure prevented the previous 11168 * tcp_input_data from sending up the allocated 11169 * MSG*MARKNEXT message - send it up this time 11170 * around. 11171 */ 11172 flags |= TH_SEND_URP_MARK; 11173 } 11174 11175 /* 11176 * If the urgent byte is in this segment, make sure that it is 11177 * all by itself. This makes it much easier to deal with the 11178 * possibility of an allocation failure on the T_exdata_ind. 11179 * Note that seg_len is the number of bytes in the segment, and 11180 * urp is the offset into the segment of the urgent byte. 11181 * urp < seg_len means that the urgent byte is in this segment. 11182 */ 11183 if (urp < seg_len) { 11184 if (seg_len != 1) { 11185 uint32_t tmp_rnxt; 11186 /* 11187 * Break it up and feed it back in. 11188 * Re-attach the IP header. 11189 */ 11190 mp->b_rptr = iphdr; 11191 if (urp > 0) { 11192 /* 11193 * There is stuff before the urgent 11194 * byte. 11195 */ 11196 mp1 = dupmsg(mp); 11197 if (!mp1) { 11198 /* 11199 * Trim from urgent byte on. 11200 * The rest will come back. 11201 */ 11202 (void) adjmsg(mp, 11203 urp - seg_len); 11204 tcp_input_data(connp, 11205 mp, NULL, ira); 11206 return; 11207 } 11208 (void) adjmsg(mp1, urp - seg_len); 11209 /* Feed this piece back in. */ 11210 tmp_rnxt = tcp->tcp_rnxt; 11211 tcp_input_data(connp, mp1, NULL, ira); 11212 /* 11213 * If the data passed back in was not 11214 * processed (ie: bad ACK) sending 11215 * the remainder back in will cause a 11216 * loop. In this case, drop the 11217 * packet and let the sender try 11218 * sending a good packet. 11219 */ 11220 if (tmp_rnxt == tcp->tcp_rnxt) { 11221 freemsg(mp); 11222 return; 11223 } 11224 } 11225 if (urp != seg_len - 1) { 11226 uint32_t tmp_rnxt; 11227 /* 11228 * There is stuff after the urgent 11229 * byte. 11230 */ 11231 mp1 = dupmsg(mp); 11232 if (!mp1) { 11233 /* 11234 * Trim everything beyond the 11235 * urgent byte. The rest will 11236 * come back. 11237 */ 11238 (void) adjmsg(mp, 11239 urp + 1 - seg_len); 11240 tcp_input_data(connp, 11241 mp, NULL, ira); 11242 return; 11243 } 11244 (void) adjmsg(mp1, urp + 1 - seg_len); 11245 tmp_rnxt = tcp->tcp_rnxt; 11246 tcp_input_data(connp, mp1, NULL, ira); 11247 /* 11248 * If the data passed back in was not 11249 * processed (ie: bad ACK) sending 11250 * the remainder back in will cause a 11251 * loop. In this case, drop the 11252 * packet and let the sender try 11253 * sending a good packet. 11254 */ 11255 if (tmp_rnxt == tcp->tcp_rnxt) { 11256 freemsg(mp); 11257 return; 11258 } 11259 } 11260 tcp_input_data(connp, mp, NULL, ira); 11261 return; 11262 } 11263 /* 11264 * This segment contains only the urgent byte. We 11265 * have to allocate the T_exdata_ind, if we can. 11266 */ 11267 if (IPCL_IS_NONSTR(connp)) { 11268 int error; 11269 11270 (*connp->conn_upcalls->su_recv) 11271 (connp->conn_upper_handle, mp, seg_len, 11272 MSG_OOB, &error, NULL); 11273 /* 11274 * We should never be in middle of a 11275 * fallback, the squeue guarantees that. 11276 */ 11277 ASSERT(error != EOPNOTSUPP); 11278 mp = NULL; 11279 goto update_ack; 11280 } else if (!tcp->tcp_urp_mp) { 11281 struct T_exdata_ind *tei; 11282 mp1 = allocb(sizeof (struct T_exdata_ind), 11283 BPRI_MED); 11284 if (!mp1) { 11285 /* 11286 * Sigh... It'll be back. 11287 * Generate any MSG*MARK message now. 11288 */ 11289 freemsg(mp); 11290 seg_len = 0; 11291 if (flags & TH_SEND_URP_MARK) { 11292 11293 11294 ASSERT(tcp->tcp_urp_mark_mp); 11295 tcp->tcp_urp_mark_mp->b_flag &= 11296 ~MSGNOTMARKNEXT; 11297 tcp->tcp_urp_mark_mp->b_flag |= 11298 MSGMARKNEXT; 11299 } 11300 goto ack_check; 11301 } 11302 mp1->b_datap->db_type = M_PROTO; 11303 tei = (struct T_exdata_ind *)mp1->b_rptr; 11304 tei->PRIM_type = T_EXDATA_IND; 11305 tei->MORE_flag = 0; 11306 mp1->b_wptr = (uchar_t *)&tei[1]; 11307 tcp->tcp_urp_mp = mp1; 11308 #ifdef DEBUG 11309 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11310 "tcp_rput: allocated exdata_ind %s", 11311 tcp_display(tcp, NULL, 11312 DISP_PORT_ONLY)); 11313 #endif /* DEBUG */ 11314 /* 11315 * There is no need to send a separate MSG*MARK 11316 * message since the T_EXDATA_IND will be sent 11317 * now. 11318 */ 11319 flags &= ~TH_SEND_URP_MARK; 11320 freemsg(tcp->tcp_urp_mark_mp); 11321 tcp->tcp_urp_mark_mp = NULL; 11322 } 11323 /* 11324 * Now we are all set. On the next putnext upstream, 11325 * tcp_urp_mp will be non-NULL and will get prepended 11326 * to what has to be this piece containing the urgent 11327 * byte. If for any reason we abort this segment below, 11328 * if it comes back, we will have this ready, or it 11329 * will get blown off in close. 11330 */ 11331 } else if (urp == seg_len) { 11332 /* 11333 * The urgent byte is the next byte after this sequence 11334 * number. If this endpoint is non-STREAMS, then there 11335 * is nothing to do here since the socket has already 11336 * been notified about the urg pointer by the 11337 * su_signal_oob call above. 11338 * 11339 * In case of STREAMS, some more work might be needed. 11340 * If there is data it is marked with MSGMARKNEXT and 11341 * and any tcp_urp_mark_mp is discarded since it is not 11342 * needed. Otherwise, if the code above just allocated 11343 * a zero-length tcp_urp_mark_mp message, that message 11344 * is tagged with MSGMARKNEXT. Sending up these 11345 * MSGMARKNEXT messages makes SIOCATMARK work correctly 11346 * even though the T_EXDATA_IND will not be sent up 11347 * until the urgent byte arrives. 11348 */ 11349 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 11350 if (seg_len != 0) { 11351 flags |= TH_MARKNEXT_NEEDED; 11352 freemsg(tcp->tcp_urp_mark_mp); 11353 tcp->tcp_urp_mark_mp = NULL; 11354 flags &= ~TH_SEND_URP_MARK; 11355 } else if (tcp->tcp_urp_mark_mp != NULL) { 11356 flags |= TH_SEND_URP_MARK; 11357 tcp->tcp_urp_mark_mp->b_flag &= 11358 ~MSGNOTMARKNEXT; 11359 tcp->tcp_urp_mark_mp->b_flag |= 11360 MSGMARKNEXT; 11361 } 11362 } 11363 #ifdef DEBUG 11364 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11365 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 11366 seg_len, flags, 11367 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 11368 #endif /* DEBUG */ 11369 } 11370 #ifdef DEBUG 11371 else { 11372 /* Data left until we hit mark */ 11373 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11374 "tcp_rput: URP %d bytes left, %s", 11375 urp - seg_len, tcp_display(tcp, NULL, 11376 DISP_PORT_ONLY)); 11377 } 11378 #endif /* DEBUG */ 11379 } 11380 11381 process_ack: 11382 if (!(flags & TH_ACK)) { 11383 freemsg(mp); 11384 goto xmit_check; 11385 } 11386 } 11387 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 11388 11389 if (bytes_acked > 0) 11390 tcp->tcp_ip_forward_progress = B_TRUE; 11391 if (tcp->tcp_state == TCPS_SYN_RCVD) { 11392 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 11393 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 11394 /* 3-way handshake complete - pass up the T_CONN_IND */ 11395 tcp_t *listener = tcp->tcp_listener; 11396 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 11397 11398 tcp->tcp_tconnind_started = B_TRUE; 11399 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 11400 /* 11401 * We are here means eager is fine but it can 11402 * get a TH_RST at any point between now and till 11403 * accept completes and disappear. We need to 11404 * ensure that reference to eager is valid after 11405 * we get out of eager's perimeter. So we do 11406 * an extra refhold. 11407 */ 11408 CONN_INC_REF(connp); 11409 11410 /* 11411 * The listener also exists because of the refhold 11412 * done in tcp_input_listener. Its possible that it 11413 * might have closed. We will check that once we 11414 * get inside listeners context. 11415 */ 11416 CONN_INC_REF(listener->tcp_connp); 11417 if (listener->tcp_connp->conn_sqp == 11418 connp->conn_sqp) { 11419 /* 11420 * We optimize by not calling an SQUEUE_ENTER 11421 * on the listener since we know that the 11422 * listener and eager squeues are the same. 11423 * We are able to make this check safely only 11424 * because neither the eager nor the listener 11425 * can change its squeue. Only an active connect 11426 * can change its squeue 11427 */ 11428 tcp_send_conn_ind(listener->tcp_connp, mp, 11429 listener->tcp_connp->conn_sqp); 11430 CONN_DEC_REF(listener->tcp_connp); 11431 } else if (!tcp->tcp_loopback) { 11432 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 11433 mp, tcp_send_conn_ind, 11434 listener->tcp_connp, NULL, SQ_FILL, 11435 SQTAG_TCP_CONN_IND); 11436 } else { 11437 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 11438 mp, tcp_send_conn_ind, 11439 listener->tcp_connp, NULL, SQ_PROCESS, 11440 SQTAG_TCP_CONN_IND); 11441 } 11442 } 11443 11444 /* 11445 * We are seeing the final ack in the three way 11446 * hand shake of a active open'ed connection 11447 * so we must send up a T_CONN_CON 11448 * 11449 * tcp_sendmsg() checks tcp_state without entering 11450 * the squeue so tcp_state should be updated before 11451 * sending up connection confirmation. 11452 */ 11453 tcp->tcp_state = TCPS_ESTABLISHED; 11454 if (tcp->tcp_active_open) { 11455 if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) { 11456 freemsg(mp); 11457 tcp->tcp_state = TCPS_SYN_RCVD; 11458 return; 11459 } 11460 /* 11461 * Don't fuse the loopback endpoints for 11462 * simultaneous active opens. 11463 */ 11464 if (tcp->tcp_loopback) { 11465 TCP_STAT(tcps, tcp_fusion_unfusable); 11466 tcp->tcp_unfusable = B_TRUE; 11467 } 11468 } 11469 11470 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 11471 bytes_acked--; 11472 /* SYN was acked - making progress */ 11473 tcp->tcp_ip_forward_progress = B_TRUE; 11474 11475 /* 11476 * If SYN was retransmitted, need to reset all 11477 * retransmission info as this segment will be 11478 * treated as a dup ACK. 11479 */ 11480 if (tcp->tcp_rexmit) { 11481 tcp->tcp_rexmit = B_FALSE; 11482 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 11483 tcp->tcp_rexmit_max = tcp->tcp_snxt; 11484 tcp->tcp_snd_burst = tcp->tcp_localnet ? 11485 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 11486 tcp->tcp_ms_we_have_waited = 0; 11487 tcp->tcp_cwnd = mss; 11488 } 11489 11490 /* 11491 * We set the send window to zero here. 11492 * This is needed if there is data to be 11493 * processed already on the queue. 11494 * Later (at swnd_update label), the 11495 * "new_swnd > tcp_swnd" condition is satisfied 11496 * the XMIT_NEEDED flag is set in the current 11497 * (SYN_RCVD) state. This ensures tcp_wput_data() is 11498 * called if there is already data on queue in 11499 * this state. 11500 */ 11501 tcp->tcp_swnd = 0; 11502 11503 if (new_swnd > tcp->tcp_max_swnd) 11504 tcp->tcp_max_swnd = new_swnd; 11505 tcp->tcp_swl1 = seg_seq; 11506 tcp->tcp_swl2 = seg_ack; 11507 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 11508 11509 /* Fuse when both sides are in ESTABLISHED state */ 11510 if (tcp->tcp_loopback && do_tcp_fusion) 11511 tcp_fuse(tcp, iphdr, tcpha); 11512 11513 } 11514 /* This code follows 4.4BSD-Lite2 mostly. */ 11515 if (bytes_acked < 0) 11516 goto est; 11517 11518 /* 11519 * If TCP is ECN capable and the congestion experience bit is 11520 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 11521 * done once per window (or more loosely, per RTT). 11522 */ 11523 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 11524 tcp->tcp_cwr = B_FALSE; 11525 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 11526 if (!tcp->tcp_cwr) { 11527 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 11528 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 11529 tcp->tcp_cwnd = npkt * mss; 11530 /* 11531 * If the cwnd is 0, use the timer to clock out 11532 * new segments. This is required by the ECN spec. 11533 */ 11534 if (npkt == 0) { 11535 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 11536 /* 11537 * This makes sure that when the ACK comes 11538 * back, we will increase tcp_cwnd by 1 MSS. 11539 */ 11540 tcp->tcp_cwnd_cnt = 0; 11541 } 11542 tcp->tcp_cwr = B_TRUE; 11543 /* 11544 * This marks the end of the current window of in 11545 * flight data. That is why we don't use 11546 * tcp_suna + tcp_swnd. Only data in flight can 11547 * provide ECN info. 11548 */ 11549 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 11550 tcp->tcp_ecn_cwr_sent = B_FALSE; 11551 } 11552 } 11553 11554 mp1 = tcp->tcp_xmit_head; 11555 if (bytes_acked == 0) { 11556 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 11557 int dupack_cnt; 11558 11559 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 11560 /* 11561 * Fast retransmit. When we have seen exactly three 11562 * identical ACKs while we have unacked data 11563 * outstanding we take it as a hint that our peer 11564 * dropped something. 11565 * 11566 * If TCP is retransmitting, don't do fast retransmit. 11567 */ 11568 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 11569 ! tcp->tcp_rexmit) { 11570 /* Do Limited Transmit */ 11571 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 11572 tcps->tcps_dupack_fast_retransmit) { 11573 /* 11574 * RFC 3042 11575 * 11576 * What we need to do is temporarily 11577 * increase tcp_cwnd so that new 11578 * data can be sent if it is allowed 11579 * by the receive window (tcp_rwnd). 11580 * tcp_wput_data() will take care of 11581 * the rest. 11582 * 11583 * If the connection is SACK capable, 11584 * only do limited xmit when there 11585 * is SACK info. 11586 * 11587 * Note how tcp_cwnd is incremented. 11588 * The first dup ACK will increase 11589 * it by 1 MSS. The second dup ACK 11590 * will increase it by 2 MSS. This 11591 * means that only 1 new segment will 11592 * be sent for each dup ACK. 11593 */ 11594 if (tcp->tcp_unsent > 0 && 11595 (!tcp->tcp_snd_sack_ok || 11596 (tcp->tcp_snd_sack_ok && 11597 tcp->tcp_notsack_list != NULL))) { 11598 tcp->tcp_cwnd += mss << 11599 (tcp->tcp_dupack_cnt - 1); 11600 flags |= TH_LIMIT_XMIT; 11601 } 11602 } else if (dupack_cnt == 11603 tcps->tcps_dupack_fast_retransmit) { 11604 11605 /* 11606 * If we have reduced tcp_ssthresh 11607 * because of ECN, do not reduce it again 11608 * unless it is already one window of data 11609 * away. After one window of data, tcp_cwr 11610 * should then be cleared. Note that 11611 * for non ECN capable connection, tcp_cwr 11612 * should always be false. 11613 * 11614 * Adjust cwnd since the duplicate 11615 * ack indicates that a packet was 11616 * dropped (due to congestion.) 11617 */ 11618 if (!tcp->tcp_cwr) { 11619 npkt = ((tcp->tcp_snxt - 11620 tcp->tcp_suna) >> 1) / mss; 11621 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 11622 mss; 11623 tcp->tcp_cwnd = (npkt + 11624 tcp->tcp_dupack_cnt) * mss; 11625 } 11626 if (tcp->tcp_ecn_ok) { 11627 tcp->tcp_cwr = B_TRUE; 11628 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 11629 tcp->tcp_ecn_cwr_sent = B_FALSE; 11630 } 11631 11632 /* 11633 * We do Hoe's algorithm. Refer to her 11634 * paper "Improving the Start-up Behavior 11635 * of a Congestion Control Scheme for TCP," 11636 * appeared in SIGCOMM'96. 11637 * 11638 * Save highest seq no we have sent so far. 11639 * Be careful about the invisible FIN byte. 11640 */ 11641 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 11642 (tcp->tcp_unsent == 0)) { 11643 tcp->tcp_rexmit_max = tcp->tcp_fss; 11644 } else { 11645 tcp->tcp_rexmit_max = tcp->tcp_snxt; 11646 } 11647 11648 /* 11649 * Do not allow bursty traffic during. 11650 * fast recovery. Refer to Fall and Floyd's 11651 * paper "Simulation-based Comparisons of 11652 * Tahoe, Reno and SACK TCP" (in CCR?) 11653 * This is a best current practise. 11654 */ 11655 tcp->tcp_snd_burst = TCP_CWND_SS; 11656 11657 /* 11658 * For SACK: 11659 * Calculate tcp_pipe, which is the 11660 * estimated number of bytes in 11661 * network. 11662 * 11663 * tcp_fack is the highest sack'ed seq num 11664 * TCP has received. 11665 * 11666 * tcp_pipe is explained in the above quoted 11667 * Fall and Floyd's paper. tcp_fack is 11668 * explained in Mathis and Mahdavi's 11669 * "Forward Acknowledgment: Refining TCP 11670 * Congestion Control" in SIGCOMM '96. 11671 */ 11672 if (tcp->tcp_snd_sack_ok) { 11673 ASSERT(tcp->tcp_sack_info != NULL); 11674 if (tcp->tcp_notsack_list != NULL) { 11675 tcp->tcp_pipe = tcp->tcp_snxt - 11676 tcp->tcp_fack; 11677 tcp->tcp_sack_snxt = seg_ack; 11678 flags |= TH_NEED_SACK_REXMIT; 11679 } else { 11680 /* 11681 * Always initialize tcp_pipe 11682 * even though we don't have 11683 * any SACK info. If later 11684 * we get SACK info and 11685 * tcp_pipe is not initialized, 11686 * funny things will happen. 11687 */ 11688 tcp->tcp_pipe = 11689 tcp->tcp_cwnd_ssthresh; 11690 } 11691 } else { 11692 flags |= TH_REXMIT_NEEDED; 11693 } /* tcp_snd_sack_ok */ 11694 11695 } else { 11696 /* 11697 * Here we perform congestion 11698 * avoidance, but NOT slow start. 11699 * This is known as the Fast 11700 * Recovery Algorithm. 11701 */ 11702 if (tcp->tcp_snd_sack_ok && 11703 tcp->tcp_notsack_list != NULL) { 11704 flags |= TH_NEED_SACK_REXMIT; 11705 tcp->tcp_pipe -= mss; 11706 if (tcp->tcp_pipe < 0) 11707 tcp->tcp_pipe = 0; 11708 } else { 11709 /* 11710 * We know that one more packet has 11711 * left the pipe thus we can update 11712 * cwnd. 11713 */ 11714 cwnd = tcp->tcp_cwnd + mss; 11715 if (cwnd > tcp->tcp_cwnd_max) 11716 cwnd = tcp->tcp_cwnd_max; 11717 tcp->tcp_cwnd = cwnd; 11718 if (tcp->tcp_unsent > 0) 11719 flags |= TH_XMIT_NEEDED; 11720 } 11721 } 11722 } 11723 } else if (tcp->tcp_zero_win_probe) { 11724 /* 11725 * If the window has opened, need to arrange 11726 * to send additional data. 11727 */ 11728 if (new_swnd != 0) { 11729 /* tcp_suna != tcp_snxt */ 11730 /* Packet contains a window update */ 11731 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 11732 tcp->tcp_zero_win_probe = 0; 11733 tcp->tcp_timer_backoff = 0; 11734 tcp->tcp_ms_we_have_waited = 0; 11735 11736 /* 11737 * Transmit starting with tcp_suna since 11738 * the one byte probe is not ack'ed. 11739 * If TCP has sent more than one identical 11740 * probe, tcp_rexmit will be set. That means 11741 * tcp_ss_rexmit() will send out the one 11742 * byte along with new data. Otherwise, 11743 * fake the retransmission. 11744 */ 11745 flags |= TH_XMIT_NEEDED; 11746 if (!tcp->tcp_rexmit) { 11747 tcp->tcp_rexmit = B_TRUE; 11748 tcp->tcp_dupack_cnt = 0; 11749 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 11750 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 11751 } 11752 } 11753 } 11754 goto swnd_update; 11755 } 11756 11757 /* 11758 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 11759 * If the ACK value acks something that we have not yet sent, it might 11760 * be an old duplicate segment. Send an ACK to re-synchronize the 11761 * other side. 11762 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 11763 * state is handled above, so we can always just drop the segment and 11764 * send an ACK here. 11765 * 11766 * In the case where the peer shrinks the window, we see the new window 11767 * update, but all the data sent previously is queued up by the peer. 11768 * To account for this, in tcp_process_shrunk_swnd(), the sequence 11769 * number, which was already sent, and within window, is recorded. 11770 * tcp_snxt is then updated. 11771 * 11772 * If the window has previously shrunk, and an ACK for data not yet 11773 * sent, according to tcp_snxt is recieved, it may still be valid. If 11774 * the ACK is for data within the window at the time the window was 11775 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to 11776 * the sequence number ACK'ed. 11777 * 11778 * If the ACK covers all the data sent at the time the window was 11779 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE. 11780 * 11781 * Should we send ACKs in response to ACK only segments? 11782 */ 11783 11784 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 11785 if ((tcp->tcp_is_wnd_shrnk) && 11786 (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) { 11787 uint32_t data_acked_ahead_snxt; 11788 11789 data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt; 11790 tcp_update_xmit_tail(tcp, seg_ack); 11791 tcp->tcp_unsent -= data_acked_ahead_snxt; 11792 } else { 11793 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 11794 /* drop the received segment */ 11795 freemsg(mp); 11796 11797 /* 11798 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 11799 * greater than 0, check if the number of such 11800 * bogus ACks is greater than that count. If yes, 11801 * don't send back any ACK. This prevents TCP from 11802 * getting into an ACK storm if somehow an attacker 11803 * successfully spoofs an acceptable segment to our 11804 * peer. If this continues (count > 2 X threshold), 11805 * we should abort this connection. 11806 */ 11807 if (tcp_drop_ack_unsent_cnt > 0 && 11808 ++tcp->tcp_in_ack_unsent > 11809 tcp_drop_ack_unsent_cnt) { 11810 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 11811 if (tcp->tcp_in_ack_unsent > 2 * 11812 tcp_drop_ack_unsent_cnt) { 11813 (void) tcp_clean_death(tcp, EPROTO, 20); 11814 } 11815 return; 11816 } 11817 mp = tcp_ack_mp(tcp); 11818 if (mp != NULL) { 11819 BUMP_LOCAL(tcp->tcp_obsegs); 11820 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 11821 tcp_send_data(tcp, mp); 11822 } 11823 return; 11824 } 11825 } else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack, 11826 tcp->tcp_snxt_shrunk)) { 11827 tcp->tcp_is_wnd_shrnk = B_FALSE; 11828 } 11829 11830 /* 11831 * TCP gets a new ACK, update the notsack'ed list to delete those 11832 * blocks that are covered by this ACK. 11833 */ 11834 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 11835 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 11836 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 11837 } 11838 11839 /* 11840 * If we got an ACK after fast retransmit, check to see 11841 * if it is a partial ACK. If it is not and the congestion 11842 * window was inflated to account for the other side's 11843 * cached packets, retract it. If it is, do Hoe's algorithm. 11844 */ 11845 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 11846 ASSERT(tcp->tcp_rexmit == B_FALSE); 11847 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 11848 tcp->tcp_dupack_cnt = 0; 11849 /* 11850 * Restore the orig tcp_cwnd_ssthresh after 11851 * fast retransmit phase. 11852 */ 11853 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 11854 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 11855 } 11856 tcp->tcp_rexmit_max = seg_ack; 11857 tcp->tcp_cwnd_cnt = 0; 11858 tcp->tcp_snd_burst = tcp->tcp_localnet ? 11859 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 11860 11861 /* 11862 * Remove all notsack info to avoid confusion with 11863 * the next fast retrasnmit/recovery phase. 11864 */ 11865 if (tcp->tcp_snd_sack_ok && 11866 tcp->tcp_notsack_list != NULL) { 11867 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 11868 tcp); 11869 } 11870 } else { 11871 if (tcp->tcp_snd_sack_ok && 11872 tcp->tcp_notsack_list != NULL) { 11873 flags |= TH_NEED_SACK_REXMIT; 11874 tcp->tcp_pipe -= mss; 11875 if (tcp->tcp_pipe < 0) 11876 tcp->tcp_pipe = 0; 11877 } else { 11878 /* 11879 * Hoe's algorithm: 11880 * 11881 * Retransmit the unack'ed segment and 11882 * restart fast recovery. Note that we 11883 * need to scale back tcp_cwnd to the 11884 * original value when we started fast 11885 * recovery. This is to prevent overly 11886 * aggressive behaviour in sending new 11887 * segments. 11888 */ 11889 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 11890 tcps->tcps_dupack_fast_retransmit * mss; 11891 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 11892 flags |= TH_REXMIT_NEEDED; 11893 } 11894 } 11895 } else { 11896 tcp->tcp_dupack_cnt = 0; 11897 if (tcp->tcp_rexmit) { 11898 /* 11899 * TCP is retranmitting. If the ACK ack's all 11900 * outstanding data, update tcp_rexmit_max and 11901 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 11902 * to the correct value. 11903 * 11904 * Note that SEQ_LEQ() is used. This is to avoid 11905 * unnecessary fast retransmit caused by dup ACKs 11906 * received when TCP does slow start retransmission 11907 * after a time out. During this phase, TCP may 11908 * send out segments which are already received. 11909 * This causes dup ACKs to be sent back. 11910 */ 11911 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 11912 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 11913 tcp->tcp_rexmit_nxt = seg_ack; 11914 } 11915 if (seg_ack != tcp->tcp_rexmit_max) { 11916 flags |= TH_XMIT_NEEDED; 11917 } 11918 } else { 11919 tcp->tcp_rexmit = B_FALSE; 11920 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 11921 tcp->tcp_snd_burst = tcp->tcp_localnet ? 11922 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 11923 } 11924 tcp->tcp_ms_we_have_waited = 0; 11925 } 11926 } 11927 11928 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 11929 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 11930 tcp->tcp_suna = seg_ack; 11931 if (tcp->tcp_zero_win_probe != 0) { 11932 tcp->tcp_zero_win_probe = 0; 11933 tcp->tcp_timer_backoff = 0; 11934 } 11935 11936 /* 11937 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 11938 * Note that it cannot be the SYN being ack'ed. The code flow 11939 * will not reach here. 11940 */ 11941 if (mp1 == NULL) { 11942 goto fin_acked; 11943 } 11944 11945 /* 11946 * Update the congestion window. 11947 * 11948 * If TCP is not ECN capable or TCP is ECN capable but the 11949 * congestion experience bit is not set, increase the tcp_cwnd as 11950 * usual. 11951 */ 11952 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 11953 cwnd = tcp->tcp_cwnd; 11954 add = mss; 11955 11956 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 11957 /* 11958 * This is to prevent an increase of less than 1 MSS of 11959 * tcp_cwnd. With partial increase, tcp_wput_data() 11960 * may send out tinygrams in order to preserve mblk 11961 * boundaries. 11962 * 11963 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 11964 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 11965 * increased by 1 MSS for every RTTs. 11966 */ 11967 if (tcp->tcp_cwnd_cnt <= 0) { 11968 tcp->tcp_cwnd_cnt = cwnd + add; 11969 } else { 11970 tcp->tcp_cwnd_cnt -= add; 11971 add = 0; 11972 } 11973 } 11974 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 11975 } 11976 11977 /* See if the latest urgent data has been acknowledged */ 11978 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 11979 SEQ_GT(seg_ack, tcp->tcp_urg)) 11980 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 11981 11982 /* Can we update the RTT estimates? */ 11983 if (tcp->tcp_snd_ts_ok) { 11984 /* Ignore zero timestamp echo-reply. */ 11985 if (tcpopt.tcp_opt_ts_ecr != 0) { 11986 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - 11987 (int32_t)tcpopt.tcp_opt_ts_ecr); 11988 } 11989 11990 /* If needed, restart the timer. */ 11991 if (tcp->tcp_set_timer == 1) { 11992 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 11993 tcp->tcp_set_timer = 0; 11994 } 11995 /* 11996 * Update tcp_csuna in case the other side stops sending 11997 * us timestamps. 11998 */ 11999 tcp->tcp_csuna = tcp->tcp_snxt; 12000 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 12001 /* 12002 * An ACK sequence we haven't seen before, so get the RTT 12003 * and update the RTO. But first check if the timestamp is 12004 * valid to use. 12005 */ 12006 if ((mp1->b_next != NULL) && 12007 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 12008 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - 12009 (int32_t)(intptr_t)mp1->b_prev); 12010 else 12011 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 12012 12013 /* Remeber the last sequence to be ACKed */ 12014 tcp->tcp_csuna = seg_ack; 12015 if (tcp->tcp_set_timer == 1) { 12016 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 12017 tcp->tcp_set_timer = 0; 12018 } 12019 } else { 12020 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 12021 } 12022 12023 /* Eat acknowledged bytes off the xmit queue. */ 12024 for (;;) { 12025 mblk_t *mp2; 12026 uchar_t *wptr; 12027 12028 wptr = mp1->b_wptr; 12029 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 12030 bytes_acked -= (int)(wptr - mp1->b_rptr); 12031 if (bytes_acked < 0) { 12032 mp1->b_rptr = wptr + bytes_acked; 12033 /* 12034 * Set a new timestamp if all the bytes timed by the 12035 * old timestamp have been ack'ed. 12036 */ 12037 if (SEQ_GT(seg_ack, 12038 (uint32_t)(uintptr_t)(mp1->b_next))) { 12039 mp1->b_prev = 12040 (mblk_t *)(uintptr_t)LBOLT_FASTPATH; 12041 mp1->b_next = NULL; 12042 } 12043 break; 12044 } 12045 mp1->b_next = NULL; 12046 mp1->b_prev = NULL; 12047 mp2 = mp1; 12048 mp1 = mp1->b_cont; 12049 12050 /* 12051 * This notification is required for some zero-copy 12052 * clients to maintain a copy semantic. After the data 12053 * is ack'ed, client is safe to modify or reuse the buffer. 12054 */ 12055 if (tcp->tcp_snd_zcopy_aware && 12056 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 12057 tcp_zcopy_notify(tcp); 12058 freeb(mp2); 12059 if (bytes_acked == 0) { 12060 if (mp1 == NULL) { 12061 /* Everything is ack'ed, clear the tail. */ 12062 tcp->tcp_xmit_tail = NULL; 12063 /* 12064 * Cancel the timer unless we are still 12065 * waiting for an ACK for the FIN packet. 12066 */ 12067 if (tcp->tcp_timer_tid != 0 && 12068 tcp->tcp_snxt == tcp->tcp_suna) { 12069 (void) TCP_TIMER_CANCEL(tcp, 12070 tcp->tcp_timer_tid); 12071 tcp->tcp_timer_tid = 0; 12072 } 12073 goto pre_swnd_update; 12074 } 12075 if (mp2 != tcp->tcp_xmit_tail) 12076 break; 12077 tcp->tcp_xmit_tail = mp1; 12078 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12079 (uintptr_t)INT_MAX); 12080 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 12081 mp1->b_rptr); 12082 break; 12083 } 12084 if (mp1 == NULL) { 12085 /* 12086 * More was acked but there is nothing more 12087 * outstanding. This means that the FIN was 12088 * just acked or that we're talking to a clown. 12089 */ 12090 fin_acked: 12091 ASSERT(tcp->tcp_fin_sent); 12092 tcp->tcp_xmit_tail = NULL; 12093 if (tcp->tcp_fin_sent) { 12094 /* FIN was acked - making progress */ 12095 if (!tcp->tcp_fin_acked) 12096 tcp->tcp_ip_forward_progress = B_TRUE; 12097 tcp->tcp_fin_acked = B_TRUE; 12098 if (tcp->tcp_linger_tid != 0 && 12099 TCP_TIMER_CANCEL(tcp, 12100 tcp->tcp_linger_tid) >= 0) { 12101 tcp_stop_lingering(tcp); 12102 freemsg(mp); 12103 mp = NULL; 12104 } 12105 } else { 12106 /* 12107 * We should never get here because 12108 * we have already checked that the 12109 * number of bytes ack'ed should be 12110 * smaller than or equal to what we 12111 * have sent so far (it is the 12112 * acceptability check of the ACK). 12113 * We can only get here if the send 12114 * queue is corrupted. 12115 * 12116 * Terminate the connection and 12117 * panic the system. It is better 12118 * for us to panic instead of 12119 * continuing to avoid other disaster. 12120 */ 12121 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 12122 tcp->tcp_rnxt, TH_RST|TH_ACK); 12123 panic("Memory corruption " 12124 "detected for connection %s.", 12125 tcp_display(tcp, NULL, 12126 DISP_ADDR_AND_PORT)); 12127 /*NOTREACHED*/ 12128 } 12129 goto pre_swnd_update; 12130 } 12131 ASSERT(mp2 != tcp->tcp_xmit_tail); 12132 } 12133 if (tcp->tcp_unsent) { 12134 flags |= TH_XMIT_NEEDED; 12135 } 12136 pre_swnd_update: 12137 tcp->tcp_xmit_head = mp1; 12138 swnd_update: 12139 /* 12140 * The following check is different from most other implementations. 12141 * For bi-directional transfer, when segments are dropped, the 12142 * "normal" check will not accept a window update in those 12143 * retransmitted segemnts. Failing to do that, TCP may send out 12144 * segments which are outside receiver's window. As TCP accepts 12145 * the ack in those retransmitted segments, if the window update in 12146 * the same segment is not accepted, TCP will incorrectly calculates 12147 * that it can send more segments. This can create a deadlock 12148 * with the receiver if its window becomes zero. 12149 */ 12150 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 12151 SEQ_LT(tcp->tcp_swl1, seg_seq) || 12152 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 12153 /* 12154 * The criteria for update is: 12155 * 12156 * 1. the segment acknowledges some data. Or 12157 * 2. the segment is new, i.e. it has a higher seq num. Or 12158 * 3. the segment is not old and the advertised window is 12159 * larger than the previous advertised window. 12160 */ 12161 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 12162 flags |= TH_XMIT_NEEDED; 12163 tcp->tcp_swnd = new_swnd; 12164 if (new_swnd > tcp->tcp_max_swnd) 12165 tcp->tcp_max_swnd = new_swnd; 12166 tcp->tcp_swl1 = seg_seq; 12167 tcp->tcp_swl2 = seg_ack; 12168 } 12169 est: 12170 if (tcp->tcp_state > TCPS_ESTABLISHED) { 12171 12172 switch (tcp->tcp_state) { 12173 case TCPS_FIN_WAIT_1: 12174 if (tcp->tcp_fin_acked) { 12175 tcp->tcp_state = TCPS_FIN_WAIT_2; 12176 /* 12177 * We implement the non-standard BSD/SunOS 12178 * FIN_WAIT_2 flushing algorithm. 12179 * If there is no user attached to this 12180 * TCP endpoint, then this TCP struct 12181 * could hang around forever in FIN_WAIT_2 12182 * state if the peer forgets to send us 12183 * a FIN. To prevent this, we wait only 12184 * 2*MSL (a convenient time value) for 12185 * the FIN to arrive. If it doesn't show up, 12186 * we flush the TCP endpoint. This algorithm, 12187 * though a violation of RFC-793, has worked 12188 * for over 10 years in BSD systems. 12189 * Note: SunOS 4.x waits 675 seconds before 12190 * flushing the FIN_WAIT_2 connection. 12191 */ 12192 TCP_TIMER_RESTART(tcp, 12193 tcps->tcps_fin_wait_2_flush_interval); 12194 } 12195 break; 12196 case TCPS_FIN_WAIT_2: 12197 break; /* Shutdown hook? */ 12198 case TCPS_LAST_ACK: 12199 freemsg(mp); 12200 if (tcp->tcp_fin_acked) { 12201 (void) tcp_clean_death(tcp, 0, 19); 12202 return; 12203 } 12204 goto xmit_check; 12205 case TCPS_CLOSING: 12206 if (tcp->tcp_fin_acked) 12207 SET_TIME_WAIT(tcps, tcp, connp); 12208 /*FALLTHRU*/ 12209 case TCPS_CLOSE_WAIT: 12210 freemsg(mp); 12211 goto xmit_check; 12212 default: 12213 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 12214 break; 12215 } 12216 } 12217 if (flags & TH_FIN) { 12218 /* Make sure we ack the fin */ 12219 flags |= TH_ACK_NEEDED; 12220 if (!tcp->tcp_fin_rcvd) { 12221 tcp->tcp_fin_rcvd = B_TRUE; 12222 tcp->tcp_rnxt++; 12223 tcpha = tcp->tcp_tcpha; 12224 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 12225 12226 /* 12227 * Generate the ordrel_ind at the end unless we 12228 * are an eager guy. 12229 * In the eager case tcp_rsrv will do this when run 12230 * after tcp_accept is done. 12231 */ 12232 if (tcp->tcp_listener == NULL && 12233 !TCP_IS_DETACHED(tcp) && !tcp->tcp_hard_binding) 12234 flags |= TH_ORDREL_NEEDED; 12235 switch (tcp->tcp_state) { 12236 case TCPS_SYN_RCVD: 12237 case TCPS_ESTABLISHED: 12238 tcp->tcp_state = TCPS_CLOSE_WAIT; 12239 /* Keepalive? */ 12240 break; 12241 case TCPS_FIN_WAIT_1: 12242 if (!tcp->tcp_fin_acked) { 12243 tcp->tcp_state = TCPS_CLOSING; 12244 break; 12245 } 12246 /* FALLTHRU */ 12247 case TCPS_FIN_WAIT_2: 12248 SET_TIME_WAIT(tcps, tcp, connp); 12249 if (seg_len) { 12250 /* 12251 * implies data piggybacked on FIN. 12252 * break to handle data. 12253 */ 12254 break; 12255 } 12256 freemsg(mp); 12257 goto ack_check; 12258 } 12259 } 12260 } 12261 if (mp == NULL) 12262 goto xmit_check; 12263 if (seg_len == 0) { 12264 freemsg(mp); 12265 goto xmit_check; 12266 } 12267 if (mp->b_rptr == mp->b_wptr) { 12268 /* 12269 * The header has been consumed, so we remove the 12270 * zero-length mblk here. 12271 */ 12272 mp1 = mp; 12273 mp = mp->b_cont; 12274 freeb(mp1); 12275 } 12276 update_ack: 12277 tcpha = tcp->tcp_tcpha; 12278 tcp->tcp_rack_cnt++; 12279 { 12280 uint32_t cur_max; 12281 12282 cur_max = tcp->tcp_rack_cur_max; 12283 if (tcp->tcp_rack_cnt >= cur_max) { 12284 /* 12285 * We have more unacked data than we should - send 12286 * an ACK now. 12287 */ 12288 flags |= TH_ACK_NEEDED; 12289 cur_max++; 12290 if (cur_max > tcp->tcp_rack_abs_max) 12291 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 12292 else 12293 tcp->tcp_rack_cur_max = cur_max; 12294 } else if (TCP_IS_DETACHED(tcp)) { 12295 /* We don't have an ACK timer for detached TCP. */ 12296 flags |= TH_ACK_NEEDED; 12297 } else if (seg_len < mss) { 12298 /* 12299 * If we get a segment that is less than an mss, and we 12300 * already have unacknowledged data, and the amount 12301 * unacknowledged is not a multiple of mss, then we 12302 * better generate an ACK now. Otherwise, this may be 12303 * the tail piece of a transaction, and we would rather 12304 * wait for the response. 12305 */ 12306 uint32_t udif; 12307 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 12308 (uintptr_t)INT_MAX); 12309 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 12310 if (udif && (udif % mss)) 12311 flags |= TH_ACK_NEEDED; 12312 else 12313 flags |= TH_ACK_TIMER_NEEDED; 12314 } else { 12315 /* Start delayed ack timer */ 12316 flags |= TH_ACK_TIMER_NEEDED; 12317 } 12318 } 12319 tcp->tcp_rnxt += seg_len; 12320 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 12321 12322 if (mp == NULL) 12323 goto xmit_check; 12324 12325 /* Update SACK list */ 12326 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 12327 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 12328 &(tcp->tcp_num_sack_blk)); 12329 } 12330 12331 if (tcp->tcp_urp_mp) { 12332 tcp->tcp_urp_mp->b_cont = mp; 12333 mp = tcp->tcp_urp_mp; 12334 tcp->tcp_urp_mp = NULL; 12335 /* Ready for a new signal. */ 12336 tcp->tcp_urp_last_valid = B_FALSE; 12337 #ifdef DEBUG 12338 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12339 "tcp_rput: sending exdata_ind %s", 12340 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 12341 #endif /* DEBUG */ 12342 } 12343 12344 /* 12345 * Check for ancillary data changes compared to last segment. 12346 */ 12347 if (connp->conn_recv_ancillary.crb_all != 0) { 12348 mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira); 12349 if (mp == NULL) 12350 return; 12351 } 12352 12353 if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) { 12354 /* 12355 * Side queue inbound data until the accept happens. 12356 * tcp_accept/tcp_rput drains this when the accept happens. 12357 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 12358 * T_EXDATA_IND) it is queued on b_next. 12359 * XXX Make urgent data use this. Requires: 12360 * Removing tcp_listener check for TH_URG 12361 * Making M_PCPROTO and MARK messages skip the eager case 12362 */ 12363 12364 if (tcp->tcp_kssl_pending) { 12365 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 12366 mblk_t *, mp); 12367 tcp_kssl_input(tcp, mp, ira->ira_cred); 12368 } else { 12369 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 12370 } 12371 } else if (IPCL_IS_NONSTR(connp)) { 12372 /* 12373 * Non-STREAMS socket 12374 * 12375 * Note that no KSSL processing is done here, because 12376 * KSSL is not supported for non-STREAMS sockets. 12377 */ 12378 boolean_t push = flags & (TH_PUSH|TH_FIN); 12379 int error; 12380 12381 if ((*connp->conn_upcalls->su_recv)( 12382 connp->conn_upper_handle, 12383 mp, seg_len, 0, &error, &push) <= 0) { 12384 /* 12385 * We should never be in middle of a 12386 * fallback, the squeue guarantees that. 12387 */ 12388 ASSERT(error != EOPNOTSUPP); 12389 if (error == ENOSPC) 12390 tcp->tcp_rwnd -= seg_len; 12391 } else if (push) { 12392 /* PUSH bit set and sockfs is not flow controlled */ 12393 flags |= tcp_rwnd_reopen(tcp); 12394 } 12395 } else { 12396 /* STREAMS socket */ 12397 if (mp->b_datap->db_type != M_DATA || 12398 (flags & TH_MARKNEXT_NEEDED)) { 12399 if (tcp->tcp_rcv_list != NULL) { 12400 flags |= tcp_rcv_drain(tcp); 12401 } 12402 ASSERT(tcp->tcp_rcv_list == NULL || 12403 tcp->tcp_fused_sigurg); 12404 12405 if (flags & TH_MARKNEXT_NEEDED) { 12406 #ifdef DEBUG 12407 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12408 "tcp_rput: sending MSGMARKNEXT %s", 12409 tcp_display(tcp, NULL, 12410 DISP_PORT_ONLY)); 12411 #endif /* DEBUG */ 12412 mp->b_flag |= MSGMARKNEXT; 12413 flags &= ~TH_MARKNEXT_NEEDED; 12414 } 12415 12416 /* Does this need SSL processing first? */ 12417 if ((tcp->tcp_kssl_ctx != NULL) && 12418 (DB_TYPE(mp) == M_DATA)) { 12419 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 12420 mblk_t *, mp); 12421 tcp_kssl_input(tcp, mp, ira->ira_cred); 12422 } else { 12423 if (is_system_labeled()) 12424 tcp_setcred_data(mp, ira); 12425 12426 putnext(connp->conn_rq, mp); 12427 if (!canputnext(connp->conn_rq)) 12428 tcp->tcp_rwnd -= seg_len; 12429 } 12430 } else if ((tcp->tcp_kssl_ctx != NULL) && 12431 (DB_TYPE(mp) == M_DATA)) { 12432 /* Does this need SSL processing first? */ 12433 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp); 12434 tcp_kssl_input(tcp, mp, ira->ira_cred); 12435 } else if ((flags & (TH_PUSH|TH_FIN)) || 12436 tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) { 12437 if (tcp->tcp_rcv_list != NULL) { 12438 /* 12439 * Enqueue the new segment first and then 12440 * call tcp_rcv_drain() to send all data 12441 * up. The other way to do this is to 12442 * send all queued data up and then call 12443 * putnext() to send the new segment up. 12444 * This way can remove the else part later 12445 * on. 12446 * 12447 * We don't do this to avoid one more call to 12448 * canputnext() as tcp_rcv_drain() needs to 12449 * call canputnext(). 12450 */ 12451 tcp_rcv_enqueue(tcp, mp, seg_len, 12452 ira->ira_cred); 12453 flags |= tcp_rcv_drain(tcp); 12454 } else { 12455 if (is_system_labeled()) 12456 tcp_setcred_data(mp, ira); 12457 12458 putnext(connp->conn_rq, mp); 12459 if (!canputnext(connp->conn_rq)) 12460 tcp->tcp_rwnd -= seg_len; 12461 } 12462 } else { 12463 /* 12464 * Enqueue all packets when processing an mblk 12465 * from the co queue and also enqueue normal packets. 12466 */ 12467 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 12468 } 12469 /* 12470 * Make sure the timer is running if we have data waiting 12471 * for a push bit. This provides resiliency against 12472 * implementations that do not correctly generate push bits. 12473 */ 12474 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 12475 /* 12476 * The connection may be closed at this point, so don't 12477 * do anything for a detached tcp. 12478 */ 12479 if (!TCP_IS_DETACHED(tcp)) 12480 tcp->tcp_push_tid = TCP_TIMER(tcp, 12481 tcp_push_timer, 12482 MSEC_TO_TICK( 12483 tcps->tcps_push_timer_interval)); 12484 } 12485 } 12486 12487 xmit_check: 12488 /* Is there anything left to do? */ 12489 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 12490 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 12491 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 12492 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 12493 goto done; 12494 12495 /* Any transmit work to do and a non-zero window? */ 12496 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 12497 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 12498 if (flags & TH_REXMIT_NEEDED) { 12499 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 12500 12501 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 12502 if (snd_size > mss) 12503 snd_size = mss; 12504 if (snd_size > tcp->tcp_swnd) 12505 snd_size = tcp->tcp_swnd; 12506 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 12507 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 12508 B_TRUE); 12509 12510 if (mp1 != NULL) { 12511 tcp->tcp_xmit_head->b_prev = 12512 (mblk_t *)LBOLT_FASTPATH; 12513 tcp->tcp_csuna = tcp->tcp_snxt; 12514 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12515 UPDATE_MIB(&tcps->tcps_mib, 12516 tcpRetransBytes, snd_size); 12517 tcp_send_data(tcp, mp1); 12518 } 12519 } 12520 if (flags & TH_NEED_SACK_REXMIT) { 12521 tcp_sack_rxmit(tcp, &flags); 12522 } 12523 /* 12524 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 12525 * out new segment. Note that tcp_rexmit should not be 12526 * set, otherwise TH_LIMIT_XMIT should not be set. 12527 */ 12528 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 12529 if (!tcp->tcp_rexmit) { 12530 tcp_wput_data(tcp, NULL, B_FALSE); 12531 } else { 12532 tcp_ss_rexmit(tcp); 12533 } 12534 } 12535 /* 12536 * Adjust tcp_cwnd back to normal value after sending 12537 * new data segments. 12538 */ 12539 if (flags & TH_LIMIT_XMIT) { 12540 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 12541 /* 12542 * This will restart the timer. Restarting the 12543 * timer is used to avoid a timeout before the 12544 * limited transmitted segment's ACK gets back. 12545 */ 12546 if (tcp->tcp_xmit_head != NULL) 12547 tcp->tcp_xmit_head->b_prev = 12548 (mblk_t *)LBOLT_FASTPATH; 12549 } 12550 12551 /* Anything more to do? */ 12552 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 12553 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 12554 goto done; 12555 } 12556 ack_check: 12557 if (flags & TH_SEND_URP_MARK) { 12558 ASSERT(tcp->tcp_urp_mark_mp); 12559 ASSERT(!IPCL_IS_NONSTR(connp)); 12560 /* 12561 * Send up any queued data and then send the mark message 12562 */ 12563 if (tcp->tcp_rcv_list != NULL) { 12564 flags |= tcp_rcv_drain(tcp); 12565 12566 } 12567 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 12568 mp1 = tcp->tcp_urp_mark_mp; 12569 tcp->tcp_urp_mark_mp = NULL; 12570 if (is_system_labeled()) 12571 tcp_setcred_data(mp1, ira); 12572 12573 putnext(connp->conn_rq, mp1); 12574 #ifdef DEBUG 12575 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12576 "tcp_rput: sending zero-length %s %s", 12577 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 12578 "MSGNOTMARKNEXT"), 12579 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 12580 #endif /* DEBUG */ 12581 flags &= ~TH_SEND_URP_MARK; 12582 } 12583 if (flags & TH_ACK_NEEDED) { 12584 /* 12585 * Time to send an ack for some reason. 12586 */ 12587 mp1 = tcp_ack_mp(tcp); 12588 12589 if (mp1 != NULL) { 12590 tcp_send_data(tcp, mp1); 12591 BUMP_LOCAL(tcp->tcp_obsegs); 12592 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 12593 } 12594 if (tcp->tcp_ack_tid != 0) { 12595 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 12596 tcp->tcp_ack_tid = 0; 12597 } 12598 } 12599 if (flags & TH_ACK_TIMER_NEEDED) { 12600 /* 12601 * Arrange for deferred ACK or push wait timeout. 12602 * Start timer if it is not already running. 12603 */ 12604 if (tcp->tcp_ack_tid == 0) { 12605 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 12606 MSEC_TO_TICK(tcp->tcp_localnet ? 12607 (clock_t)tcps->tcps_local_dack_interval : 12608 (clock_t)tcps->tcps_deferred_ack_interval)); 12609 } 12610 } 12611 if (flags & TH_ORDREL_NEEDED) { 12612 /* 12613 * Send up the ordrel_ind unless we are an eager guy. 12614 * In the eager case tcp_rsrv will do this when run 12615 * after tcp_accept is done. 12616 */ 12617 ASSERT(tcp->tcp_listener == NULL); 12618 ASSERT(!tcp->tcp_detached); 12619 12620 if (IPCL_IS_NONSTR(connp)) { 12621 ASSERT(tcp->tcp_ordrel_mp == NULL); 12622 tcp->tcp_ordrel_done = B_TRUE; 12623 (*connp->conn_upcalls->su_opctl) 12624 (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); 12625 goto done; 12626 } 12627 12628 if (tcp->tcp_rcv_list != NULL) { 12629 /* 12630 * Push any mblk(s) enqueued from co processing. 12631 */ 12632 flags |= tcp_rcv_drain(tcp); 12633 } 12634 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 12635 12636 mp1 = tcp->tcp_ordrel_mp; 12637 tcp->tcp_ordrel_mp = NULL; 12638 tcp->tcp_ordrel_done = B_TRUE; 12639 putnext(connp->conn_rq, mp1); 12640 } 12641 done: 12642 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 12643 } 12644 12645 /* 12646 * This routine adjusts next-to-send sequence number variables, in the 12647 * case where the reciever has shrunk it's window. 12648 */ 12649 static void 12650 tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt) 12651 { 12652 mblk_t *xmit_tail; 12653 int32_t offset; 12654 12655 tcp->tcp_snxt = snxt; 12656 12657 /* Get the mblk, and the offset in it, as per the shrunk window */ 12658 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 12659 ASSERT(xmit_tail != NULL); 12660 tcp->tcp_xmit_tail = xmit_tail; 12661 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - 12662 xmit_tail->b_rptr - offset; 12663 } 12664 12665 /* 12666 * This function does PAWS protection check. Returns B_TRUE if the 12667 * segment passes the PAWS test, else returns B_FALSE. 12668 */ 12669 boolean_t 12670 tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp) 12671 { 12672 uint8_t flags; 12673 int options; 12674 uint8_t *up; 12675 conn_t *connp = tcp->tcp_connp; 12676 12677 flags = (unsigned int)tcpha->tha_flags & 0xFF; 12678 /* 12679 * If timestamp option is aligned nicely, get values inline, 12680 * otherwise call general routine to parse. Only do that 12681 * if timestamp is the only option. 12682 */ 12683 if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH + 12684 TCPOPT_REAL_TS_LEN && 12685 OK_32PTR((up = ((uint8_t *)tcpha) + 12686 TCP_MIN_HEADER_LENGTH)) && 12687 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 12688 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 12689 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 12690 12691 options = TCP_OPT_TSTAMP_PRESENT; 12692 } else { 12693 if (tcp->tcp_snd_sack_ok) { 12694 tcpoptp->tcp = tcp; 12695 } else { 12696 tcpoptp->tcp = NULL; 12697 } 12698 options = tcp_parse_options(tcpha, tcpoptp); 12699 } 12700 12701 if (options & TCP_OPT_TSTAMP_PRESENT) { 12702 /* 12703 * Do PAWS per RFC 1323 section 4.2. Accept RST 12704 * regardless of the timestamp, page 18 RFC 1323.bis. 12705 */ 12706 if ((flags & TH_RST) == 0 && 12707 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 12708 tcp->tcp_ts_recent)) { 12709 if (TSTMP_LT(LBOLT_FASTPATH64, 12710 tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) { 12711 /* This segment is not acceptable. */ 12712 return (B_FALSE); 12713 } else { 12714 /* 12715 * Connection has been idle for 12716 * too long. Reset the timestamp 12717 * and assume the segment is valid. 12718 */ 12719 tcp->tcp_ts_recent = 12720 tcpoptp->tcp_opt_ts_val; 12721 } 12722 } 12723 } else { 12724 /* 12725 * If we don't get a timestamp on every packet, we 12726 * figure we can't really trust 'em, so we stop sending 12727 * and parsing them. 12728 */ 12729 tcp->tcp_snd_ts_ok = B_FALSE; 12730 12731 connp->conn_ht_iphc_len -= TCPOPT_REAL_TS_LEN; 12732 connp->conn_ht_ulp_len -= TCPOPT_REAL_TS_LEN; 12733 tcp->tcp_tcpha->tha_offset_and_reserved -= (3 << 4); 12734 /* 12735 * Adjust the tcp_mss and tcp_cwnd accordingly. We avoid 12736 * doing a slow start here so as to not to lose on the 12737 * transfer rate built up so far. 12738 */ 12739 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 12740 if (tcp->tcp_snd_sack_ok) { 12741 ASSERT(tcp->tcp_sack_info != NULL); 12742 tcp->tcp_max_sack_blk = 4; 12743 } 12744 } 12745 return (B_TRUE); 12746 } 12747 12748 /* 12749 * Attach ancillary data to a received TCP segments for the 12750 * ancillary pieces requested by the application that are 12751 * different than they were in the previous data segment. 12752 * 12753 * Save the "current" values once memory allocation is ok so that 12754 * when memory allocation fails we can just wait for the next data segment. 12755 */ 12756 static mblk_t * 12757 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, 12758 ip_recv_attr_t *ira) 12759 { 12760 struct T_optdata_ind *todi; 12761 int optlen; 12762 uchar_t *optptr; 12763 struct T_opthdr *toh; 12764 crb_t addflag; /* Which pieces to add */ 12765 mblk_t *mp1; 12766 conn_t *connp = tcp->tcp_connp; 12767 12768 optlen = 0; 12769 addflag.crb_all = 0; 12770 /* If app asked for pktinfo and the index has changed ... */ 12771 if (connp->conn_recv_ancillary.crb_ip_recvpktinfo && 12772 ira->ira_ruifindex != tcp->tcp_recvifindex) { 12773 optlen += sizeof (struct T_opthdr) + 12774 sizeof (struct in6_pktinfo); 12775 addflag.crb_ip_recvpktinfo = 1; 12776 } 12777 /* If app asked for hoplimit and it has changed ... */ 12778 if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit && 12779 ipp->ipp_hoplimit != tcp->tcp_recvhops) { 12780 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 12781 addflag.crb_ipv6_recvhoplimit = 1; 12782 } 12783 /* If app asked for tclass and it has changed ... */ 12784 if (connp->conn_recv_ancillary.crb_ipv6_recvtclass && 12785 ipp->ipp_tclass != tcp->tcp_recvtclass) { 12786 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 12787 addflag.crb_ipv6_recvtclass = 1; 12788 } 12789 /* 12790 * If app asked for hopbyhop headers and it has changed ... 12791 * For security labels, note that (1) security labels can't change on 12792 * a connected socket at all, (2) we're connected to at most one peer, 12793 * (3) if anything changes, then it must be some other extra option. 12794 */ 12795 if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts && 12796 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 12797 (ipp->ipp_fields & IPPF_HOPOPTS), 12798 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 12799 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen; 12800 addflag.crb_ipv6_recvhopopts = 1; 12801 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 12802 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 12803 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 12804 return (mp); 12805 } 12806 /* If app asked for dst headers before routing headers ... */ 12807 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts && 12808 ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen, 12809 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 12810 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) { 12811 optlen += sizeof (struct T_opthdr) + 12812 ipp->ipp_rthdrdstoptslen; 12813 addflag.crb_ipv6_recvrthdrdstopts = 1; 12814 if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts, 12815 &tcp->tcp_rthdrdstoptslen, 12816 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 12817 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) 12818 return (mp); 12819 } 12820 /* If app asked for routing headers and it has changed ... */ 12821 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr && 12822 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 12823 (ipp->ipp_fields & IPPF_RTHDR), 12824 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 12825 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 12826 addflag.crb_ipv6_recvrthdr = 1; 12827 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 12828 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 12829 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 12830 return (mp); 12831 } 12832 /* If app asked for dest headers and it has changed ... */ 12833 if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts || 12834 connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) && 12835 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 12836 (ipp->ipp_fields & IPPF_DSTOPTS), 12837 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 12838 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 12839 addflag.crb_ipv6_recvdstopts = 1; 12840 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 12841 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 12842 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 12843 return (mp); 12844 } 12845 12846 if (optlen == 0) { 12847 /* Nothing to add */ 12848 return (mp); 12849 } 12850 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 12851 if (mp1 == NULL) { 12852 /* 12853 * Defer sending ancillary data until the next TCP segment 12854 * arrives. 12855 */ 12856 return (mp); 12857 } 12858 mp1->b_cont = mp; 12859 mp = mp1; 12860 mp->b_wptr += sizeof (*todi) + optlen; 12861 mp->b_datap->db_type = M_PROTO; 12862 todi = (struct T_optdata_ind *)mp->b_rptr; 12863 todi->PRIM_type = T_OPTDATA_IND; 12864 todi->DATA_flag = 1; /* MORE data */ 12865 todi->OPT_length = optlen; 12866 todi->OPT_offset = sizeof (*todi); 12867 optptr = (uchar_t *)&todi[1]; 12868 /* 12869 * If app asked for pktinfo and the index has changed ... 12870 * Note that the local address never changes for the connection. 12871 */ 12872 if (addflag.crb_ip_recvpktinfo) { 12873 struct in6_pktinfo *pkti; 12874 uint_t ifindex; 12875 12876 ifindex = ira->ira_ruifindex; 12877 toh = (struct T_opthdr *)optptr; 12878 toh->level = IPPROTO_IPV6; 12879 toh->name = IPV6_PKTINFO; 12880 toh->len = sizeof (*toh) + sizeof (*pkti); 12881 toh->status = 0; 12882 optptr += sizeof (*toh); 12883 pkti = (struct in6_pktinfo *)optptr; 12884 pkti->ipi6_addr = connp->conn_laddr_v6; 12885 pkti->ipi6_ifindex = ifindex; 12886 optptr += sizeof (*pkti); 12887 ASSERT(OK_32PTR(optptr)); 12888 /* Save as "last" value */ 12889 tcp->tcp_recvifindex = ifindex; 12890 } 12891 /* If app asked for hoplimit and it has changed ... */ 12892 if (addflag.crb_ipv6_recvhoplimit) { 12893 toh = (struct T_opthdr *)optptr; 12894 toh->level = IPPROTO_IPV6; 12895 toh->name = IPV6_HOPLIMIT; 12896 toh->len = sizeof (*toh) + sizeof (uint_t); 12897 toh->status = 0; 12898 optptr += sizeof (*toh); 12899 *(uint_t *)optptr = ipp->ipp_hoplimit; 12900 optptr += sizeof (uint_t); 12901 ASSERT(OK_32PTR(optptr)); 12902 /* Save as "last" value */ 12903 tcp->tcp_recvhops = ipp->ipp_hoplimit; 12904 } 12905 /* If app asked for tclass and it has changed ... */ 12906 if (addflag.crb_ipv6_recvtclass) { 12907 toh = (struct T_opthdr *)optptr; 12908 toh->level = IPPROTO_IPV6; 12909 toh->name = IPV6_TCLASS; 12910 toh->len = sizeof (*toh) + sizeof (uint_t); 12911 toh->status = 0; 12912 optptr += sizeof (*toh); 12913 *(uint_t *)optptr = ipp->ipp_tclass; 12914 optptr += sizeof (uint_t); 12915 ASSERT(OK_32PTR(optptr)); 12916 /* Save as "last" value */ 12917 tcp->tcp_recvtclass = ipp->ipp_tclass; 12918 } 12919 if (addflag.crb_ipv6_recvhopopts) { 12920 toh = (struct T_opthdr *)optptr; 12921 toh->level = IPPROTO_IPV6; 12922 toh->name = IPV6_HOPOPTS; 12923 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen; 12924 toh->status = 0; 12925 optptr += sizeof (*toh); 12926 bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); 12927 optptr += ipp->ipp_hopoptslen; 12928 ASSERT(OK_32PTR(optptr)); 12929 /* Save as last value */ 12930 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 12931 (ipp->ipp_fields & IPPF_HOPOPTS), 12932 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 12933 } 12934 if (addflag.crb_ipv6_recvrthdrdstopts) { 12935 toh = (struct T_opthdr *)optptr; 12936 toh->level = IPPROTO_IPV6; 12937 toh->name = IPV6_RTHDRDSTOPTS; 12938 toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen; 12939 toh->status = 0; 12940 optptr += sizeof (*toh); 12941 bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen); 12942 optptr += ipp->ipp_rthdrdstoptslen; 12943 ASSERT(OK_32PTR(optptr)); 12944 /* Save as last value */ 12945 ip_savebuf((void **)&tcp->tcp_rthdrdstopts, 12946 &tcp->tcp_rthdrdstoptslen, 12947 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 12948 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 12949 } 12950 if (addflag.crb_ipv6_recvrthdr) { 12951 toh = (struct T_opthdr *)optptr; 12952 toh->level = IPPROTO_IPV6; 12953 toh->name = IPV6_RTHDR; 12954 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 12955 toh->status = 0; 12956 optptr += sizeof (*toh); 12957 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 12958 optptr += ipp->ipp_rthdrlen; 12959 ASSERT(OK_32PTR(optptr)); 12960 /* Save as last value */ 12961 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 12962 (ipp->ipp_fields & IPPF_RTHDR), 12963 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 12964 } 12965 if (addflag.crb_ipv6_recvdstopts) { 12966 toh = (struct T_opthdr *)optptr; 12967 toh->level = IPPROTO_IPV6; 12968 toh->name = IPV6_DSTOPTS; 12969 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 12970 toh->status = 0; 12971 optptr += sizeof (*toh); 12972 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 12973 optptr += ipp->ipp_dstoptslen; 12974 ASSERT(OK_32PTR(optptr)); 12975 /* Save as last value */ 12976 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 12977 (ipp->ipp_fields & IPPF_DSTOPTS), 12978 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 12979 } 12980 ASSERT(optptr == mp->b_wptr); 12981 return (mp); 12982 } 12983 12984 /* ARGSUSED */ 12985 static void 12986 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 12987 { 12988 conn_t *connp = (conn_t *)arg; 12989 tcp_t *tcp = connp->conn_tcp; 12990 queue_t *q = connp->conn_rq; 12991 tcp_stack_t *tcps = tcp->tcp_tcps; 12992 12993 ASSERT(!IPCL_IS_NONSTR(connp)); 12994 mutex_enter(&tcp->tcp_rsrv_mp_lock); 12995 tcp->tcp_rsrv_mp = mp; 12996 mutex_exit(&tcp->tcp_rsrv_mp_lock); 12997 12998 TCP_STAT(tcps, tcp_rsrv_calls); 12999 13000 if (TCP_IS_DETACHED(tcp) || q == NULL) { 13001 return; 13002 } 13003 13004 if (tcp->tcp_fused) { 13005 tcp_fuse_backenable(tcp); 13006 return; 13007 } 13008 13009 if (canputnext(q)) { 13010 /* Not flow-controlled, open rwnd */ 13011 tcp->tcp_rwnd = connp->conn_rcvbuf; 13012 13013 /* 13014 * Send back a window update immediately if TCP is above 13015 * ESTABLISHED state and the increase of the rcv window 13016 * that the other side knows is at least 1 MSS after flow 13017 * control is lifted. 13018 */ 13019 if (tcp->tcp_state >= TCPS_ESTABLISHED && 13020 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 13021 tcp_xmit_ctl(NULL, tcp, 13022 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 13023 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 13024 } 13025 } 13026 } 13027 13028 /* 13029 * The read side service routine is called mostly when we get back-enabled as a 13030 * result of flow control relief. Since we don't actually queue anything in 13031 * TCP, we have no data to send out of here. What we do is clear the receive 13032 * window, and send out a window update. 13033 */ 13034 static void 13035 tcp_rsrv(queue_t *q) 13036 { 13037 conn_t *connp = Q_TO_CONN(q); 13038 tcp_t *tcp = connp->conn_tcp; 13039 mblk_t *mp; 13040 13041 /* No code does a putq on the read side */ 13042 ASSERT(q->q_first == NULL); 13043 13044 /* 13045 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 13046 * been run. So just return. 13047 */ 13048 mutex_enter(&tcp->tcp_rsrv_mp_lock); 13049 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 13050 mutex_exit(&tcp->tcp_rsrv_mp_lock); 13051 return; 13052 } 13053 tcp->tcp_rsrv_mp = NULL; 13054 mutex_exit(&tcp->tcp_rsrv_mp_lock); 13055 13056 CONN_INC_REF(connp); 13057 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 13058 NULL, SQ_PROCESS, SQTAG_TCP_RSRV); 13059 } 13060 13061 /* 13062 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 13063 * We do not allow the receive window to shrink. After setting rwnd, 13064 * set the flow control hiwat of the stream. 13065 * 13066 * This function is called in 2 cases: 13067 * 13068 * 1) Before data transfer begins, in tcp_input_listener() for accepting a 13069 * connection (passive open) and in tcp_input_data() for active connect. 13070 * This is called after tcp_mss_set() when the desired MSS value is known. 13071 * This makes sure that our window size is a mutiple of the other side's 13072 * MSS. 13073 * 2) Handling SO_RCVBUF option. 13074 * 13075 * It is ASSUMED that the requested size is a multiple of the current MSS. 13076 * 13077 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 13078 * user requests so. 13079 */ 13080 int 13081 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 13082 { 13083 uint32_t mss = tcp->tcp_mss; 13084 uint32_t old_max_rwnd; 13085 uint32_t max_transmittable_rwnd; 13086 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 13087 tcp_stack_t *tcps = tcp->tcp_tcps; 13088 conn_t *connp = tcp->tcp_connp; 13089 13090 /* 13091 * Insist on a receive window that is at least 13092 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 13093 * funny TCP interactions of Nagle algorithm, SWS avoidance 13094 * and delayed acknowledgement. 13095 */ 13096 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 13097 13098 if (tcp->tcp_fused) { 13099 size_t sth_hiwat; 13100 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 13101 13102 ASSERT(peer_tcp != NULL); 13103 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 13104 if (!tcp_detached) { 13105 (void) proto_set_rx_hiwat(connp->conn_rq, connp, 13106 sth_hiwat); 13107 tcp_set_recv_threshold(tcp, sth_hiwat >> 3); 13108 } 13109 13110 /* Caller could have changed tcp_rwnd; update tha_win */ 13111 if (tcp->tcp_tcpha != NULL) { 13112 tcp->tcp_tcpha->tha_win = 13113 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 13114 } 13115 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 13116 tcp->tcp_cwnd_max = rwnd; 13117 13118 /* 13119 * In the fusion case, the maxpsz stream head value of 13120 * our peer is set according to its send buffer size 13121 * and our receive buffer size; since the latter may 13122 * have changed we need to update the peer's maxpsz. 13123 */ 13124 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 13125 return (sth_hiwat); 13126 } 13127 13128 if (tcp_detached) 13129 old_max_rwnd = tcp->tcp_rwnd; 13130 else 13131 old_max_rwnd = connp->conn_rcvbuf; 13132 13133 13134 /* 13135 * If window size info has already been exchanged, TCP should not 13136 * shrink the window. Shrinking window is doable if done carefully. 13137 * We may add that support later. But so far there is not a real 13138 * need to do that. 13139 */ 13140 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 13141 /* MSS may have changed, do a round up again. */ 13142 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 13143 } 13144 13145 /* 13146 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 13147 * can be applied even before the window scale option is decided. 13148 */ 13149 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 13150 if (rwnd > max_transmittable_rwnd) { 13151 rwnd = max_transmittable_rwnd - 13152 (max_transmittable_rwnd % mss); 13153 if (rwnd < mss) 13154 rwnd = max_transmittable_rwnd; 13155 /* 13156 * If we're over the limit we may have to back down tcp_rwnd. 13157 * The increment below won't work for us. So we set all three 13158 * here and the increment below will have no effect. 13159 */ 13160 tcp->tcp_rwnd = old_max_rwnd = rwnd; 13161 } 13162 if (tcp->tcp_localnet) { 13163 tcp->tcp_rack_abs_max = 13164 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 13165 } else { 13166 /* 13167 * For a remote host on a different subnet (through a router), 13168 * we ack every other packet to be conforming to RFC1122. 13169 * tcp_deferred_acks_max is default to 2. 13170 */ 13171 tcp->tcp_rack_abs_max = 13172 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 13173 } 13174 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 13175 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 13176 else 13177 tcp->tcp_rack_cur_max = 0; 13178 /* 13179 * Increment the current rwnd by the amount the maximum grew (we 13180 * can not overwrite it since we might be in the middle of a 13181 * connection.) 13182 */ 13183 tcp->tcp_rwnd += rwnd - old_max_rwnd; 13184 connp->conn_rcvbuf = rwnd; 13185 13186 /* Are we already connected? */ 13187 if (tcp->tcp_tcpha != NULL) { 13188 tcp->tcp_tcpha->tha_win = 13189 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 13190 } 13191 13192 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 13193 tcp->tcp_cwnd_max = rwnd; 13194 13195 if (tcp_detached) 13196 return (rwnd); 13197 13198 tcp_set_recv_threshold(tcp, rwnd >> 3); 13199 13200 (void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd); 13201 return (rwnd); 13202 } 13203 13204 /* 13205 * Return SNMP stuff in buffer in mpdata. 13206 */ 13207 mblk_t * 13208 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 13209 { 13210 mblk_t *mpdata; 13211 mblk_t *mp_conn_ctl = NULL; 13212 mblk_t *mp_conn_tail; 13213 mblk_t *mp_attr_ctl = NULL; 13214 mblk_t *mp_attr_tail; 13215 mblk_t *mp6_conn_ctl = NULL; 13216 mblk_t *mp6_conn_tail; 13217 mblk_t *mp6_attr_ctl = NULL; 13218 mblk_t *mp6_attr_tail; 13219 struct opthdr *optp; 13220 mib2_tcpConnEntry_t tce; 13221 mib2_tcp6ConnEntry_t tce6; 13222 mib2_transportMLPEntry_t mlp; 13223 connf_t *connfp; 13224 int i; 13225 boolean_t ispriv; 13226 zoneid_t zoneid; 13227 int v4_conn_idx; 13228 int v6_conn_idx; 13229 conn_t *connp = Q_TO_CONN(q); 13230 tcp_stack_t *tcps; 13231 ip_stack_t *ipst; 13232 mblk_t *mp2ctl; 13233 13234 /* 13235 * make a copy of the original message 13236 */ 13237 mp2ctl = copymsg(mpctl); 13238 13239 if (mpctl == NULL || 13240 (mpdata = mpctl->b_cont) == NULL || 13241 (mp_conn_ctl = copymsg(mpctl)) == NULL || 13242 (mp_attr_ctl = copymsg(mpctl)) == NULL || 13243 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 13244 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 13245 freemsg(mp_conn_ctl); 13246 freemsg(mp_attr_ctl); 13247 freemsg(mp6_conn_ctl); 13248 freemsg(mp6_attr_ctl); 13249 freemsg(mpctl); 13250 freemsg(mp2ctl); 13251 return (NULL); 13252 } 13253 13254 ipst = connp->conn_netstack->netstack_ip; 13255 tcps = connp->conn_netstack->netstack_tcp; 13256 13257 /* build table of connections -- need count in fixed part */ 13258 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 13259 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 13260 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 13261 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 13262 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 13263 13264 ispriv = 13265 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 13266 zoneid = Q_TO_CONN(q)->conn_zoneid; 13267 13268 v4_conn_idx = v6_conn_idx = 0; 13269 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 13270 13271 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 13272 ipst = tcps->tcps_netstack->netstack_ip; 13273 13274 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 13275 13276 connp = NULL; 13277 13278 while ((connp = 13279 ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { 13280 tcp_t *tcp; 13281 boolean_t needattr; 13282 13283 if (connp->conn_zoneid != zoneid) 13284 continue; /* not in this zone */ 13285 13286 tcp = connp->conn_tcp; 13287 UPDATE_MIB(&tcps->tcps_mib, 13288 tcpHCInSegs, tcp->tcp_ibsegs); 13289 tcp->tcp_ibsegs = 0; 13290 UPDATE_MIB(&tcps->tcps_mib, 13291 tcpHCOutSegs, tcp->tcp_obsegs); 13292 tcp->tcp_obsegs = 0; 13293 13294 tce6.tcp6ConnState = tce.tcpConnState = 13295 tcp_snmp_state(tcp); 13296 if (tce.tcpConnState == MIB2_TCP_established || 13297 tce.tcpConnState == MIB2_TCP_closeWait) 13298 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 13299 13300 needattr = B_FALSE; 13301 bzero(&mlp, sizeof (mlp)); 13302 if (connp->conn_mlp_type != mlptSingle) { 13303 if (connp->conn_mlp_type == mlptShared || 13304 connp->conn_mlp_type == mlptBoth) 13305 mlp.tme_flags |= MIB2_TMEF_SHARED; 13306 if (connp->conn_mlp_type == mlptPrivate || 13307 connp->conn_mlp_type == mlptBoth) 13308 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 13309 needattr = B_TRUE; 13310 } 13311 if (connp->conn_anon_mlp) { 13312 mlp.tme_flags |= MIB2_TMEF_ANONMLP; 13313 needattr = B_TRUE; 13314 } 13315 switch (connp->conn_mac_mode) { 13316 case CONN_MAC_DEFAULT: 13317 break; 13318 case CONN_MAC_AWARE: 13319 mlp.tme_flags |= MIB2_TMEF_MACEXEMPT; 13320 needattr = B_TRUE; 13321 break; 13322 case CONN_MAC_IMPLICIT: 13323 mlp.tme_flags |= MIB2_TMEF_MACIMPLICIT; 13324 needattr = B_TRUE; 13325 break; 13326 } 13327 if (connp->conn_ixa->ixa_tsl != NULL) { 13328 ts_label_t *tsl; 13329 13330 tsl = connp->conn_ixa->ixa_tsl; 13331 mlp.tme_flags |= MIB2_TMEF_IS_LABELED; 13332 mlp.tme_doi = label2doi(tsl); 13333 mlp.tme_label = *label2bslabel(tsl); 13334 needattr = B_TRUE; 13335 } 13336 13337 /* Create a message to report on IPv6 entries */ 13338 if (connp->conn_ipversion == IPV6_VERSION) { 13339 tce6.tcp6ConnLocalAddress = connp->conn_laddr_v6; 13340 tce6.tcp6ConnRemAddress = connp->conn_faddr_v6; 13341 tce6.tcp6ConnLocalPort = ntohs(connp->conn_lport); 13342 tce6.tcp6ConnRemPort = ntohs(connp->conn_fport); 13343 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) { 13344 tce6.tcp6ConnIfIndex = 13345 connp->conn_ixa->ixa_scopeid; 13346 } else { 13347 tce6.tcp6ConnIfIndex = connp->conn_bound_if; 13348 } 13349 /* Don't want just anybody seeing these... */ 13350 if (ispriv) { 13351 tce6.tcp6ConnEntryInfo.ce_snxt = 13352 tcp->tcp_snxt; 13353 tce6.tcp6ConnEntryInfo.ce_suna = 13354 tcp->tcp_suna; 13355 tce6.tcp6ConnEntryInfo.ce_rnxt = 13356 tcp->tcp_rnxt; 13357 tce6.tcp6ConnEntryInfo.ce_rack = 13358 tcp->tcp_rack; 13359 } else { 13360 /* 13361 * Netstat, unfortunately, uses this to 13362 * get send/receive queue sizes. How to fix? 13363 * Why not compute the difference only? 13364 */ 13365 tce6.tcp6ConnEntryInfo.ce_snxt = 13366 tcp->tcp_snxt - tcp->tcp_suna; 13367 tce6.tcp6ConnEntryInfo.ce_suna = 0; 13368 tce6.tcp6ConnEntryInfo.ce_rnxt = 13369 tcp->tcp_rnxt - tcp->tcp_rack; 13370 tce6.tcp6ConnEntryInfo.ce_rack = 0; 13371 } 13372 13373 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 13374 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 13375 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 13376 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 13377 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 13378 13379 tce6.tcp6ConnCreationProcess = 13380 (connp->conn_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 13381 connp->conn_cpid; 13382 tce6.tcp6ConnCreationTime = connp->conn_open_time; 13383 13384 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 13385 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 13386 13387 mlp.tme_connidx = v6_conn_idx++; 13388 if (needattr) 13389 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 13390 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 13391 } 13392 /* 13393 * Create an IPv4 table entry for IPv4 entries and also 13394 * for IPv6 entries which are bound to in6addr_any 13395 * but don't have IPV6_V6ONLY set. 13396 * (i.e. anything an IPv4 peer could connect to) 13397 */ 13398 if (connp->conn_ipversion == IPV4_VERSION || 13399 (tcp->tcp_state <= TCPS_LISTEN && 13400 !connp->conn_ipv6_v6only && 13401 IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6))) { 13402 if (connp->conn_ipversion == IPV6_VERSION) { 13403 tce.tcpConnRemAddress = INADDR_ANY; 13404 tce.tcpConnLocalAddress = INADDR_ANY; 13405 } else { 13406 tce.tcpConnRemAddress = 13407 connp->conn_faddr_v4; 13408 tce.tcpConnLocalAddress = 13409 connp->conn_laddr_v4; 13410 } 13411 tce.tcpConnLocalPort = ntohs(connp->conn_lport); 13412 tce.tcpConnRemPort = ntohs(connp->conn_fport); 13413 /* Don't want just anybody seeing these... */ 13414 if (ispriv) { 13415 tce.tcpConnEntryInfo.ce_snxt = 13416 tcp->tcp_snxt; 13417 tce.tcpConnEntryInfo.ce_suna = 13418 tcp->tcp_suna; 13419 tce.tcpConnEntryInfo.ce_rnxt = 13420 tcp->tcp_rnxt; 13421 tce.tcpConnEntryInfo.ce_rack = 13422 tcp->tcp_rack; 13423 } else { 13424 /* 13425 * Netstat, unfortunately, uses this to 13426 * get send/receive queue sizes. How 13427 * to fix? 13428 * Why not compute the difference only? 13429 */ 13430 tce.tcpConnEntryInfo.ce_snxt = 13431 tcp->tcp_snxt - tcp->tcp_suna; 13432 tce.tcpConnEntryInfo.ce_suna = 0; 13433 tce.tcpConnEntryInfo.ce_rnxt = 13434 tcp->tcp_rnxt - tcp->tcp_rack; 13435 tce.tcpConnEntryInfo.ce_rack = 0; 13436 } 13437 13438 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 13439 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 13440 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 13441 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 13442 tce.tcpConnEntryInfo.ce_state = 13443 tcp->tcp_state; 13444 13445 tce.tcpConnCreationProcess = 13446 (connp->conn_cpid < 0) ? 13447 MIB2_UNKNOWN_PROCESS : 13448 connp->conn_cpid; 13449 tce.tcpConnCreationTime = connp->conn_open_time; 13450 13451 (void) snmp_append_data2(mp_conn_ctl->b_cont, 13452 &mp_conn_tail, (char *)&tce, sizeof (tce)); 13453 13454 mlp.tme_connidx = v4_conn_idx++; 13455 if (needattr) 13456 (void) snmp_append_data2( 13457 mp_attr_ctl->b_cont, 13458 &mp_attr_tail, (char *)&mlp, 13459 sizeof (mlp)); 13460 } 13461 } 13462 } 13463 13464 /* fixed length structure for IPv4 and IPv6 counters */ 13465 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 13466 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 13467 sizeof (mib2_tcp6ConnEntry_t)); 13468 /* synchronize 32- and 64-bit counters */ 13469 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 13470 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 13471 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 13472 optp->level = MIB2_TCP; 13473 optp->name = 0; 13474 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 13475 sizeof (tcps->tcps_mib)); 13476 optp->len = msgdsize(mpdata); 13477 qreply(q, mpctl); 13478 13479 /* table of connections... */ 13480 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 13481 sizeof (struct T_optmgmt_ack)]; 13482 optp->level = MIB2_TCP; 13483 optp->name = MIB2_TCP_CONN; 13484 optp->len = msgdsize(mp_conn_ctl->b_cont); 13485 qreply(q, mp_conn_ctl); 13486 13487 /* table of MLP attributes... */ 13488 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 13489 sizeof (struct T_optmgmt_ack)]; 13490 optp->level = MIB2_TCP; 13491 optp->name = EXPER_XPORT_MLP; 13492 optp->len = msgdsize(mp_attr_ctl->b_cont); 13493 if (optp->len == 0) 13494 freemsg(mp_attr_ctl); 13495 else 13496 qreply(q, mp_attr_ctl); 13497 13498 /* table of IPv6 connections... */ 13499 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 13500 sizeof (struct T_optmgmt_ack)]; 13501 optp->level = MIB2_TCP6; 13502 optp->name = MIB2_TCP6_CONN; 13503 optp->len = msgdsize(mp6_conn_ctl->b_cont); 13504 qreply(q, mp6_conn_ctl); 13505 13506 /* table of IPv6 MLP attributes... */ 13507 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 13508 sizeof (struct T_optmgmt_ack)]; 13509 optp->level = MIB2_TCP6; 13510 optp->name = EXPER_XPORT_MLP; 13511 optp->len = msgdsize(mp6_attr_ctl->b_cont); 13512 if (optp->len == 0) 13513 freemsg(mp6_attr_ctl); 13514 else 13515 qreply(q, mp6_attr_ctl); 13516 return (mp2ctl); 13517 } 13518 13519 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 13520 /* ARGSUSED */ 13521 int 13522 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 13523 { 13524 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 13525 13526 switch (level) { 13527 case MIB2_TCP: 13528 switch (name) { 13529 case 13: 13530 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 13531 return (0); 13532 /* TODO: delete entry defined by tce */ 13533 return (1); 13534 default: 13535 return (0); 13536 } 13537 default: 13538 return (1); 13539 } 13540 } 13541 13542 /* Translate TCP state to MIB2 TCP state. */ 13543 static int 13544 tcp_snmp_state(tcp_t *tcp) 13545 { 13546 if (tcp == NULL) 13547 return (0); 13548 13549 switch (tcp->tcp_state) { 13550 case TCPS_CLOSED: 13551 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 13552 case TCPS_BOUND: 13553 return (MIB2_TCP_closed); 13554 case TCPS_LISTEN: 13555 return (MIB2_TCP_listen); 13556 case TCPS_SYN_SENT: 13557 return (MIB2_TCP_synSent); 13558 case TCPS_SYN_RCVD: 13559 return (MIB2_TCP_synReceived); 13560 case TCPS_ESTABLISHED: 13561 return (MIB2_TCP_established); 13562 case TCPS_CLOSE_WAIT: 13563 return (MIB2_TCP_closeWait); 13564 case TCPS_FIN_WAIT_1: 13565 return (MIB2_TCP_finWait1); 13566 case TCPS_CLOSING: 13567 return (MIB2_TCP_closing); 13568 case TCPS_LAST_ACK: 13569 return (MIB2_TCP_lastAck); 13570 case TCPS_FIN_WAIT_2: 13571 return (MIB2_TCP_finWait2); 13572 case TCPS_TIME_WAIT: 13573 return (MIB2_TCP_timeWait); 13574 default: 13575 return (0); 13576 } 13577 } 13578 13579 /* 13580 * tcp_timer is the timer service routine. It handles the retransmission, 13581 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 13582 * from the state of the tcp instance what kind of action needs to be done 13583 * at the time it is called. 13584 */ 13585 static void 13586 tcp_timer(void *arg) 13587 { 13588 mblk_t *mp; 13589 clock_t first_threshold; 13590 clock_t second_threshold; 13591 clock_t ms; 13592 uint32_t mss; 13593 conn_t *connp = (conn_t *)arg; 13594 tcp_t *tcp = connp->conn_tcp; 13595 tcp_stack_t *tcps = tcp->tcp_tcps; 13596 13597 tcp->tcp_timer_tid = 0; 13598 13599 if (tcp->tcp_fused) 13600 return; 13601 13602 first_threshold = tcp->tcp_first_timer_threshold; 13603 second_threshold = tcp->tcp_second_timer_threshold; 13604 switch (tcp->tcp_state) { 13605 case TCPS_IDLE: 13606 case TCPS_BOUND: 13607 case TCPS_LISTEN: 13608 return; 13609 case TCPS_SYN_RCVD: { 13610 tcp_t *listener = tcp->tcp_listener; 13611 13612 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 13613 /* it's our first timeout */ 13614 tcp->tcp_syn_rcvd_timeout = 1; 13615 mutex_enter(&listener->tcp_eager_lock); 13616 listener->tcp_syn_rcvd_timeout++; 13617 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 13618 /* 13619 * Make this eager available for drop if we 13620 * need to drop one to accomodate a new 13621 * incoming SYN request. 13622 */ 13623 MAKE_DROPPABLE(listener, tcp); 13624 } 13625 if (!listener->tcp_syn_defense && 13626 (listener->tcp_syn_rcvd_timeout > 13627 (tcps->tcps_conn_req_max_q0 >> 2)) && 13628 (tcps->tcps_conn_req_max_q0 > 200)) { 13629 /* We may be under attack. Put on a defense. */ 13630 listener->tcp_syn_defense = B_TRUE; 13631 cmn_err(CE_WARN, "High TCP connect timeout " 13632 "rate! System (port %d) may be under a " 13633 "SYN flood attack!", 13634 ntohs(listener->tcp_connp->conn_lport)); 13635 13636 listener->tcp_ip_addr_cache = kmem_zalloc( 13637 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 13638 KM_NOSLEEP); 13639 } 13640 mutex_exit(&listener->tcp_eager_lock); 13641 } else if (listener != NULL) { 13642 mutex_enter(&listener->tcp_eager_lock); 13643 tcp->tcp_syn_rcvd_timeout++; 13644 if (tcp->tcp_syn_rcvd_timeout > 1 && 13645 !tcp->tcp_closemp_used) { 13646 /* 13647 * This is our second timeout. Put the tcp in 13648 * the list of droppable eagers to allow it to 13649 * be dropped, if needed. We don't check 13650 * whether tcp_dontdrop is set or not to 13651 * protect ourselve from a SYN attack where a 13652 * remote host can spoof itself as one of the 13653 * good IP source and continue to hold 13654 * resources too long. 13655 */ 13656 MAKE_DROPPABLE(listener, tcp); 13657 } 13658 mutex_exit(&listener->tcp_eager_lock); 13659 } 13660 } 13661 /* FALLTHRU */ 13662 case TCPS_SYN_SENT: 13663 first_threshold = tcp->tcp_first_ctimer_threshold; 13664 second_threshold = tcp->tcp_second_ctimer_threshold; 13665 break; 13666 case TCPS_ESTABLISHED: 13667 case TCPS_FIN_WAIT_1: 13668 case TCPS_CLOSING: 13669 case TCPS_CLOSE_WAIT: 13670 case TCPS_LAST_ACK: 13671 /* If we have data to rexmit */ 13672 if (tcp->tcp_suna != tcp->tcp_snxt) { 13673 clock_t time_to_wait; 13674 13675 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 13676 if (!tcp->tcp_xmit_head) 13677 break; 13678 time_to_wait = ddi_get_lbolt() - 13679 (clock_t)tcp->tcp_xmit_head->b_prev; 13680 time_to_wait = tcp->tcp_rto - 13681 TICK_TO_MSEC(time_to_wait); 13682 /* 13683 * If the timer fires too early, 1 clock tick earlier, 13684 * restart the timer. 13685 */ 13686 if (time_to_wait > msec_per_tick) { 13687 TCP_STAT(tcps, tcp_timer_fire_early); 13688 TCP_TIMER_RESTART(tcp, time_to_wait); 13689 return; 13690 } 13691 /* 13692 * When we probe zero windows, we force the swnd open. 13693 * If our peer acks with a closed window swnd will be 13694 * set to zero by tcp_rput(). As long as we are 13695 * receiving acks tcp_rput will 13696 * reset 'tcp_ms_we_have_waited' so as not to trip the 13697 * first and second interval actions. NOTE: the timer 13698 * interval is allowed to continue its exponential 13699 * backoff. 13700 */ 13701 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 13702 if (connp->conn_debug) { 13703 (void) strlog(TCP_MOD_ID, 0, 1, 13704 SL_TRACE, "tcp_timer: zero win"); 13705 } 13706 } else { 13707 /* 13708 * After retransmission, we need to do 13709 * slow start. Set the ssthresh to one 13710 * half of current effective window and 13711 * cwnd to one MSS. Also reset 13712 * tcp_cwnd_cnt. 13713 * 13714 * Note that if tcp_ssthresh is reduced because 13715 * of ECN, do not reduce it again unless it is 13716 * already one window of data away (tcp_cwr 13717 * should then be cleared) or this is a 13718 * timeout for a retransmitted segment. 13719 */ 13720 uint32_t npkt; 13721 13722 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 13723 npkt = ((tcp->tcp_timer_backoff ? 13724 tcp->tcp_cwnd_ssthresh : 13725 tcp->tcp_snxt - 13726 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 13727 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 13728 tcp->tcp_mss; 13729 } 13730 tcp->tcp_cwnd = tcp->tcp_mss; 13731 tcp->tcp_cwnd_cnt = 0; 13732 if (tcp->tcp_ecn_ok) { 13733 tcp->tcp_cwr = B_TRUE; 13734 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13735 tcp->tcp_ecn_cwr_sent = B_FALSE; 13736 } 13737 } 13738 break; 13739 } 13740 /* 13741 * We have something to send yet we cannot send. The 13742 * reason can be: 13743 * 13744 * 1. Zero send window: we need to do zero window probe. 13745 * 2. Zero cwnd: because of ECN, we need to "clock out 13746 * segments. 13747 * 3. SWS avoidance: receiver may have shrunk window, 13748 * reset our knowledge. 13749 * 13750 * Note that condition 2 can happen with either 1 or 13751 * 3. But 1 and 3 are exclusive. 13752 */ 13753 if (tcp->tcp_unsent != 0) { 13754 /* 13755 * Should not hold the zero-copy messages for too long. 13756 */ 13757 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 13758 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 13759 tcp->tcp_xmit_head, B_TRUE); 13760 13761 if (tcp->tcp_cwnd == 0) { 13762 /* 13763 * Set tcp_cwnd to 1 MSS so that a 13764 * new segment can be sent out. We 13765 * are "clocking out" new data when 13766 * the network is really congested. 13767 */ 13768 ASSERT(tcp->tcp_ecn_ok); 13769 tcp->tcp_cwnd = tcp->tcp_mss; 13770 } 13771 if (tcp->tcp_swnd == 0) { 13772 /* Extend window for zero window probe */ 13773 tcp->tcp_swnd++; 13774 tcp->tcp_zero_win_probe = B_TRUE; 13775 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 13776 } else { 13777 /* 13778 * Handle timeout from sender SWS avoidance. 13779 * Reset our knowledge of the max send window 13780 * since the receiver might have reduced its 13781 * receive buffer. Avoid setting tcp_max_swnd 13782 * to one since that will essentially disable 13783 * the SWS checks. 13784 * 13785 * Note that since we don't have a SWS 13786 * state variable, if the timeout is set 13787 * for ECN but not for SWS, this 13788 * code will also be executed. This is 13789 * fine as tcp_max_swnd is updated 13790 * constantly and it will not affect 13791 * anything. 13792 */ 13793 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 13794 } 13795 tcp_wput_data(tcp, NULL, B_FALSE); 13796 return; 13797 } 13798 /* Is there a FIN that needs to be to re retransmitted? */ 13799 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 13800 !tcp->tcp_fin_acked) 13801 break; 13802 /* Nothing to do, return without restarting timer. */ 13803 TCP_STAT(tcps, tcp_timer_fire_miss); 13804 return; 13805 case TCPS_FIN_WAIT_2: 13806 /* 13807 * User closed the TCP endpoint and peer ACK'ed our FIN. 13808 * We waited some time for for peer's FIN, but it hasn't 13809 * arrived. We flush the connection now to avoid 13810 * case where the peer has rebooted. 13811 */ 13812 if (TCP_IS_DETACHED(tcp)) { 13813 (void) tcp_clean_death(tcp, 0, 23); 13814 } else { 13815 TCP_TIMER_RESTART(tcp, 13816 tcps->tcps_fin_wait_2_flush_interval); 13817 } 13818 return; 13819 case TCPS_TIME_WAIT: 13820 (void) tcp_clean_death(tcp, 0, 24); 13821 return; 13822 default: 13823 if (connp->conn_debug) { 13824 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 13825 "tcp_timer: strange state (%d) %s", 13826 tcp->tcp_state, tcp_display(tcp, NULL, 13827 DISP_PORT_ONLY)); 13828 } 13829 return; 13830 } 13831 13832 /* 13833 * If the system is under memory pressure or the max number of 13834 * connections have been established for the listener, be more 13835 * aggressive in aborting connections. 13836 */ 13837 if (tcps->tcps_reclaim || (tcp->tcp_listen_cnt != NULL && 13838 tcp->tcp_listen_cnt->tlc_cnt > tcp->tcp_listen_cnt->tlc_max)) { 13839 second_threshold = tcp_early_abort * SECONDS; 13840 } 13841 13842 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 13843 /* 13844 * Should not hold the zero-copy messages for too long. 13845 */ 13846 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 13847 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 13848 tcp->tcp_xmit_head, B_TRUE); 13849 13850 /* 13851 * For zero window probe, we need to send indefinitely, 13852 * unless we have not heard from the other side for some 13853 * time... 13854 */ 13855 if ((tcp->tcp_zero_win_probe == 0) || 13856 (TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time) > 13857 second_threshold)) { 13858 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 13859 /* 13860 * If TCP is in SYN_RCVD state, send back a 13861 * RST|ACK as BSD does. Note that tcp_zero_win_probe 13862 * should be zero in TCPS_SYN_RCVD state. 13863 */ 13864 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13865 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 13866 "in SYN_RCVD", 13867 tcp, tcp->tcp_snxt, 13868 tcp->tcp_rnxt, TH_RST | TH_ACK); 13869 } 13870 (void) tcp_clean_death(tcp, 13871 tcp->tcp_client_errno ? 13872 tcp->tcp_client_errno : ETIMEDOUT, 25); 13873 return; 13874 } else { 13875 /* 13876 * If the system is under memory pressure, we also 13877 * abort connection in zero window probing. 13878 */ 13879 if (tcps->tcps_reclaim) { 13880 (void) tcp_clean_death(tcp, 13881 tcp->tcp_client_errno ? 13882 tcp->tcp_client_errno : ETIMEDOUT, 25); 13883 return; 13884 } 13885 /* 13886 * Set tcp_ms_we_have_waited to second_threshold 13887 * so that in next timeout, we will do the above 13888 * check (ddi_get_lbolt() - tcp_last_recv_time). 13889 * This is also to avoid overflow. 13890 * 13891 * We don't need to decrement tcp_timer_backoff 13892 * to avoid overflow because it will be decremented 13893 * later if new timeout value is greater than 13894 * tcp_rexmit_interval_max. In the case when 13895 * tcp_rexmit_interval_max is greater than 13896 * second_threshold, it means that we will wait 13897 * longer than second_threshold to send the next 13898 * window probe. 13899 */ 13900 tcp->tcp_ms_we_have_waited = second_threshold; 13901 } 13902 } else if (ms > first_threshold) { 13903 /* 13904 * Should not hold the zero-copy messages for too long. 13905 */ 13906 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 13907 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 13908 tcp->tcp_xmit_head, B_TRUE); 13909 13910 /* 13911 * We have been retransmitting for too long... The RTT 13912 * we calculated is probably incorrect. Reinitialize it. 13913 * Need to compensate for 0 tcp_rtt_sa. Reset 13914 * tcp_rtt_update so that we won't accidentally cache a 13915 * bad value. But only do this if this is not a zero 13916 * window probe. 13917 */ 13918 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 13919 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 13920 (tcp->tcp_rtt_sa >> 5); 13921 tcp->tcp_rtt_sa = 0; 13922 tcp_ip_notify(tcp); 13923 tcp->tcp_rtt_update = 0; 13924 } 13925 } 13926 tcp->tcp_timer_backoff++; 13927 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 13928 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 13929 tcps->tcps_rexmit_interval_min) { 13930 /* 13931 * This means the original RTO is tcp_rexmit_interval_min. 13932 * So we will use tcp_rexmit_interval_min as the RTO value 13933 * and do the backoff. 13934 */ 13935 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 13936 } else { 13937 ms <<= tcp->tcp_timer_backoff; 13938 } 13939 if (ms > tcps->tcps_rexmit_interval_max) { 13940 ms = tcps->tcps_rexmit_interval_max; 13941 /* 13942 * ms is at max, decrement tcp_timer_backoff to avoid 13943 * overflow. 13944 */ 13945 tcp->tcp_timer_backoff--; 13946 } 13947 tcp->tcp_ms_we_have_waited += ms; 13948 if (tcp->tcp_zero_win_probe == 0) { 13949 tcp->tcp_rto = ms; 13950 } 13951 TCP_TIMER_RESTART(tcp, ms); 13952 /* 13953 * This is after a timeout and tcp_rto is backed off. Set 13954 * tcp_set_timer to 1 so that next time RTO is updated, we will 13955 * restart the timer with a correct value. 13956 */ 13957 tcp->tcp_set_timer = 1; 13958 mss = tcp->tcp_snxt - tcp->tcp_suna; 13959 if (mss > tcp->tcp_mss) 13960 mss = tcp->tcp_mss; 13961 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 13962 mss = tcp->tcp_swnd; 13963 13964 if ((mp = tcp->tcp_xmit_head) != NULL) 13965 mp->b_prev = (mblk_t *)ddi_get_lbolt(); 13966 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 13967 B_TRUE); 13968 13969 /* 13970 * When slow start after retransmission begins, start with 13971 * this seq no. tcp_rexmit_max marks the end of special slow 13972 * start phase. tcp_snd_burst controls how many segments 13973 * can be sent because of an ack. 13974 */ 13975 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 13976 tcp->tcp_snd_burst = TCP_CWND_SS; 13977 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 13978 (tcp->tcp_unsent == 0)) { 13979 tcp->tcp_rexmit_max = tcp->tcp_fss; 13980 } else { 13981 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13982 } 13983 tcp->tcp_rexmit = B_TRUE; 13984 tcp->tcp_dupack_cnt = 0; 13985 13986 /* 13987 * Remove all rexmit SACK blk to start from fresh. 13988 */ 13989 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) 13990 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 13991 if (mp == NULL) { 13992 return; 13993 } 13994 13995 tcp->tcp_csuna = tcp->tcp_snxt; 13996 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 13997 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 13998 tcp_send_data(tcp, mp); 13999 14000 } 14001 14002 static int 14003 tcp_do_unbind(conn_t *connp) 14004 { 14005 tcp_t *tcp = connp->conn_tcp; 14006 14007 switch (tcp->tcp_state) { 14008 case TCPS_BOUND: 14009 case TCPS_LISTEN: 14010 break; 14011 default: 14012 return (-TOUTSTATE); 14013 } 14014 14015 /* 14016 * Need to clean up all the eagers since after the unbind, segments 14017 * will no longer be delivered to this listener stream. 14018 */ 14019 mutex_enter(&tcp->tcp_eager_lock); 14020 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 14021 tcp_eager_cleanup(tcp, 0); 14022 } 14023 mutex_exit(&tcp->tcp_eager_lock); 14024 14025 /* Clean up the listener connection counter if necessary. */ 14026 if (tcp->tcp_listen_cnt != NULL) 14027 TCP_DECR_LISTEN_CNT(tcp); 14028 connp->conn_laddr_v6 = ipv6_all_zeros; 14029 connp->conn_saddr_v6 = ipv6_all_zeros; 14030 tcp_bind_hash_remove(tcp); 14031 tcp->tcp_state = TCPS_IDLE; 14032 14033 ip_unbind(connp); 14034 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 14035 14036 return (0); 14037 } 14038 14039 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 14040 static void 14041 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp) 14042 { 14043 conn_t *connp = tcp->tcp_connp; 14044 int error; 14045 14046 error = tcp_do_unbind(connp); 14047 if (error > 0) { 14048 tcp_err_ack(tcp, mp, TSYSERR, error); 14049 } else if (error < 0) { 14050 tcp_err_ack(tcp, mp, -error, 0); 14051 } else { 14052 /* Send M_FLUSH according to TPI */ 14053 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 14054 14055 mp = mi_tpi_ok_ack_alloc(mp); 14056 if (mp != NULL) 14057 putnext(connp->conn_rq, mp); 14058 } 14059 } 14060 14061 /* 14062 * Don't let port fall into the privileged range. 14063 * Since the extra privileged ports can be arbitrary we also 14064 * ensure that we exclude those from consideration. 14065 * tcp_g_epriv_ports is not sorted thus we loop over it until 14066 * there are no changes. 14067 * 14068 * Note: No locks are held when inspecting tcp_g_*epriv_ports 14069 * but instead the code relies on: 14070 * - the fact that the address of the array and its size never changes 14071 * - the atomic assignment of the elements of the array 14072 * 14073 * Returns 0 if there are no more ports available. 14074 * 14075 * TS note: skip multilevel ports. 14076 */ 14077 static in_port_t 14078 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 14079 { 14080 int i; 14081 boolean_t restart = B_FALSE; 14082 tcp_stack_t *tcps = tcp->tcp_tcps; 14083 14084 if (random && tcp_random_anon_port != 0) { 14085 (void) random_get_pseudo_bytes((uint8_t *)&port, 14086 sizeof (in_port_t)); 14087 /* 14088 * Unless changed by a sys admin, the smallest anon port 14089 * is 32768 and the largest anon port is 65535. It is 14090 * very likely (50%) for the random port to be smaller 14091 * than the smallest anon port. When that happens, 14092 * add port % (anon port range) to the smallest anon 14093 * port to get the random port. It should fall into the 14094 * valid anon port range. 14095 */ 14096 if (port < tcps->tcps_smallest_anon_port) { 14097 port = tcps->tcps_smallest_anon_port + 14098 port % (tcps->tcps_largest_anon_port - 14099 tcps->tcps_smallest_anon_port); 14100 } 14101 } 14102 14103 retry: 14104 if (port < tcps->tcps_smallest_anon_port) 14105 port = (in_port_t)tcps->tcps_smallest_anon_port; 14106 14107 if (port > tcps->tcps_largest_anon_port) { 14108 if (restart) 14109 return (0); 14110 restart = B_TRUE; 14111 port = (in_port_t)tcps->tcps_smallest_anon_port; 14112 } 14113 14114 if (port < tcps->tcps_smallest_nonpriv_port) 14115 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 14116 14117 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 14118 if (port == tcps->tcps_g_epriv_ports[i]) { 14119 port++; 14120 /* 14121 * Make sure whether the port is in the 14122 * valid range. 14123 */ 14124 goto retry; 14125 } 14126 } 14127 if (is_system_labeled() && 14128 (i = tsol_next_port(crgetzone(tcp->tcp_connp->conn_cred), port, 14129 IPPROTO_TCP, B_TRUE)) != 0) { 14130 port = i; 14131 goto retry; 14132 } 14133 return (port); 14134 } 14135 14136 /* 14137 * Return the next anonymous port in the privileged port range for 14138 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 14139 * downwards. This is the same behavior as documented in the userland 14140 * library call rresvport(3N). 14141 * 14142 * TS note: skip multilevel ports. 14143 */ 14144 static in_port_t 14145 tcp_get_next_priv_port(const tcp_t *tcp) 14146 { 14147 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 14148 in_port_t nextport; 14149 boolean_t restart = B_FALSE; 14150 tcp_stack_t *tcps = tcp->tcp_tcps; 14151 retry: 14152 if (next_priv_port < tcps->tcps_min_anonpriv_port || 14153 next_priv_port >= IPPORT_RESERVED) { 14154 next_priv_port = IPPORT_RESERVED - 1; 14155 if (restart) 14156 return (0); 14157 restart = B_TRUE; 14158 } 14159 if (is_system_labeled() && 14160 (nextport = tsol_next_port(crgetzone(tcp->tcp_connp->conn_cred), 14161 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 14162 next_priv_port = nextport; 14163 goto retry; 14164 } 14165 return (next_priv_port--); 14166 } 14167 14168 /* The write side r/w procedure. */ 14169 14170 #if CCS_STATS 14171 struct { 14172 struct { 14173 int64_t count, bytes; 14174 } tot, hit; 14175 } wrw_stats; 14176 #endif 14177 14178 /* 14179 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 14180 * messages. 14181 */ 14182 /* ARGSUSED */ 14183 static void 14184 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14185 { 14186 conn_t *connp = (conn_t *)arg; 14187 tcp_t *tcp = connp->conn_tcp; 14188 14189 ASSERT(DB_TYPE(mp) != M_IOCTL); 14190 /* 14191 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 14192 * Once the close starts, streamhead and sockfs will not let any data 14193 * packets come down (close ensures that there are no threads using the 14194 * queue and no new threads will come down) but since qprocsoff() 14195 * hasn't happened yet, a M_FLUSH or some non data message might 14196 * get reflected back (in response to our own FLUSHRW) and get 14197 * processed after tcp_close() is done. The conn would still be valid 14198 * because a ref would have added but we need to check the state 14199 * before actually processing the packet. 14200 */ 14201 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 14202 freemsg(mp); 14203 return; 14204 } 14205 14206 switch (DB_TYPE(mp)) { 14207 case M_IOCDATA: 14208 tcp_wput_iocdata(tcp, mp); 14209 break; 14210 case M_FLUSH: 14211 tcp_wput_flush(tcp, mp); 14212 break; 14213 default: 14214 ip_wput_nondata(connp->conn_wq, mp); 14215 break; 14216 } 14217 } 14218 14219 /* 14220 * The TCP fast path write put procedure. 14221 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 14222 */ 14223 /* ARGSUSED */ 14224 void 14225 tcp_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14226 { 14227 int len; 14228 int hdrlen; 14229 int plen; 14230 mblk_t *mp1; 14231 uchar_t *rptr; 14232 uint32_t snxt; 14233 tcpha_t *tcpha; 14234 struct datab *db; 14235 uint32_t suna; 14236 uint32_t mss; 14237 ipaddr_t *dst; 14238 ipaddr_t *src; 14239 uint32_t sum; 14240 int usable; 14241 conn_t *connp = (conn_t *)arg; 14242 tcp_t *tcp = connp->conn_tcp; 14243 uint32_t msize; 14244 tcp_stack_t *tcps = tcp->tcp_tcps; 14245 ip_xmit_attr_t *ixa; 14246 clock_t now; 14247 14248 /* 14249 * Try and ASSERT the minimum possible references on the 14250 * conn early enough. Since we are executing on write side, 14251 * the connection is obviously not detached and that means 14252 * there is a ref each for TCP and IP. Since we are behind 14253 * the squeue, the minimum references needed are 3. If the 14254 * conn is in classifier hash list, there should be an 14255 * extra ref for that (we check both the possibilities). 14256 */ 14257 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 14258 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 14259 14260 ASSERT(DB_TYPE(mp) == M_DATA); 14261 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 14262 14263 mutex_enter(&tcp->tcp_non_sq_lock); 14264 tcp->tcp_squeue_bytes -= msize; 14265 mutex_exit(&tcp->tcp_non_sq_lock); 14266 14267 /* Bypass tcp protocol for fused tcp loopback */ 14268 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 14269 return; 14270 14271 mss = tcp->tcp_mss; 14272 /* 14273 * If ZEROCOPY has turned off, try not to send any zero-copy message 14274 * down. Do backoff, now. 14275 */ 14276 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_snd_zcopy_on) 14277 mp = tcp_zcopy_backoff(tcp, mp, B_FALSE); 14278 14279 14280 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 14281 len = (int)(mp->b_wptr - mp->b_rptr); 14282 14283 /* 14284 * Criteria for fast path: 14285 * 14286 * 1. no unsent data 14287 * 2. single mblk in request 14288 * 3. connection established 14289 * 4. data in mblk 14290 * 5. len <= mss 14291 * 6. no tcp_valid bits 14292 */ 14293 if ((tcp->tcp_unsent != 0) || 14294 (tcp->tcp_cork) || 14295 (mp->b_cont != NULL) || 14296 (tcp->tcp_state != TCPS_ESTABLISHED) || 14297 (len == 0) || 14298 (len > mss) || 14299 (tcp->tcp_valid_bits != 0)) { 14300 tcp_wput_data(tcp, mp, B_FALSE); 14301 return; 14302 } 14303 14304 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 14305 ASSERT(tcp->tcp_fin_sent == 0); 14306 14307 /* queue new packet onto retransmission queue */ 14308 if (tcp->tcp_xmit_head == NULL) { 14309 tcp->tcp_xmit_head = mp; 14310 } else { 14311 tcp->tcp_xmit_last->b_cont = mp; 14312 } 14313 tcp->tcp_xmit_last = mp; 14314 tcp->tcp_xmit_tail = mp; 14315 14316 /* find out how much we can send */ 14317 /* BEGIN CSTYLED */ 14318 /* 14319 * un-acked usable 14320 * |--------------|-----------------| 14321 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 14322 */ 14323 /* END CSTYLED */ 14324 14325 /* start sending from tcp_snxt */ 14326 snxt = tcp->tcp_snxt; 14327 14328 /* 14329 * Check to see if this connection has been idled for some 14330 * time and no ACK is expected. If it is, we need to slow 14331 * start again to get back the connection's "self-clock" as 14332 * described in VJ's paper. 14333 * 14334 * Reinitialize tcp_cwnd after idle. 14335 */ 14336 now = LBOLT_FASTPATH; 14337 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 14338 (TICK_TO_MSEC(now - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 14339 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 14340 } 14341 14342 usable = tcp->tcp_swnd; /* tcp window size */ 14343 if (usable > tcp->tcp_cwnd) 14344 usable = tcp->tcp_cwnd; /* congestion window smaller */ 14345 usable -= snxt; /* subtract stuff already sent */ 14346 suna = tcp->tcp_suna; 14347 usable += suna; 14348 /* usable can be < 0 if the congestion window is smaller */ 14349 if (len > usable) { 14350 /* Can't send complete M_DATA in one shot */ 14351 goto slow; 14352 } 14353 14354 mutex_enter(&tcp->tcp_non_sq_lock); 14355 if (tcp->tcp_flow_stopped && 14356 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 14357 tcp_clrqfull(tcp); 14358 } 14359 mutex_exit(&tcp->tcp_non_sq_lock); 14360 14361 /* 14362 * determine if anything to send (Nagle). 14363 * 14364 * 1. len < tcp_mss (i.e. small) 14365 * 2. unacknowledged data present 14366 * 3. len < nagle limit 14367 * 4. last packet sent < nagle limit (previous packet sent) 14368 */ 14369 if ((len < mss) && (snxt != suna) && 14370 (len < (int)tcp->tcp_naglim) && 14371 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 14372 /* 14373 * This was the first unsent packet and normally 14374 * mss < xmit_hiwater so there is no need to worry 14375 * about flow control. The next packet will go 14376 * through the flow control check in tcp_wput_data(). 14377 */ 14378 /* leftover work from above */ 14379 tcp->tcp_unsent = len; 14380 tcp->tcp_xmit_tail_unsent = len; 14381 14382 return; 14383 } 14384 14385 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 14386 14387 if (snxt == suna) { 14388 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14389 } 14390 14391 /* we have always sent something */ 14392 tcp->tcp_rack_cnt = 0; 14393 14394 tcp->tcp_snxt = snxt + len; 14395 tcp->tcp_rack = tcp->tcp_rnxt; 14396 14397 if ((mp1 = dupb(mp)) == 0) 14398 goto no_memory; 14399 mp->b_prev = (mblk_t *)(uintptr_t)now; 14400 mp->b_next = (mblk_t *)(uintptr_t)snxt; 14401 14402 /* adjust tcp header information */ 14403 tcpha = tcp->tcp_tcpha; 14404 tcpha->tha_flags = (TH_ACK|TH_PUSH); 14405 14406 sum = len + connp->conn_ht_ulp_len + connp->conn_sum; 14407 sum = (sum >> 16) + (sum & 0xFFFF); 14408 tcpha->tha_sum = htons(sum); 14409 14410 tcpha->tha_seq = htonl(snxt); 14411 14412 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 14413 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 14414 BUMP_LOCAL(tcp->tcp_obsegs); 14415 14416 /* Update the latest receive window size in TCP header. */ 14417 tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 14418 14419 tcp->tcp_last_sent_len = (ushort_t)len; 14420 14421 plen = len + connp->conn_ht_iphc_len; 14422 14423 ixa = connp->conn_ixa; 14424 ixa->ixa_pktlen = plen; 14425 14426 if (ixa->ixa_flags & IXAF_IS_IPV4) { 14427 tcp->tcp_ipha->ipha_length = htons(plen); 14428 } else { 14429 tcp->tcp_ip6h->ip6_plen = htons(plen - IPV6_HDR_LEN); 14430 } 14431 14432 /* see if we need to allocate a mblk for the headers */ 14433 hdrlen = connp->conn_ht_iphc_len; 14434 rptr = mp1->b_rptr - hdrlen; 14435 db = mp1->b_datap; 14436 if ((db->db_ref != 2) || rptr < db->db_base || 14437 (!OK_32PTR(rptr))) { 14438 /* NOTE: we assume allocb returns an OK_32PTR */ 14439 mp = allocb(hdrlen + tcps->tcps_wroff_xtra, BPRI_MED); 14440 if (!mp) { 14441 freemsg(mp1); 14442 goto no_memory; 14443 } 14444 mp->b_cont = mp1; 14445 mp1 = mp; 14446 /* Leave room for Link Level header */ 14447 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 14448 mp1->b_wptr = &rptr[hdrlen]; 14449 } 14450 mp1->b_rptr = rptr; 14451 14452 /* Fill in the timestamp option. */ 14453 if (tcp->tcp_snd_ts_ok) { 14454 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 14455 14456 U32_TO_BE32(llbolt, 14457 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 14458 U32_TO_BE32(tcp->tcp_ts_recent, 14459 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 14460 } else { 14461 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 14462 } 14463 14464 /* copy header into outgoing packet */ 14465 dst = (ipaddr_t *)rptr; 14466 src = (ipaddr_t *)connp->conn_ht_iphc; 14467 dst[0] = src[0]; 14468 dst[1] = src[1]; 14469 dst[2] = src[2]; 14470 dst[3] = src[3]; 14471 dst[4] = src[4]; 14472 dst[5] = src[5]; 14473 dst[6] = src[6]; 14474 dst[7] = src[7]; 14475 dst[8] = src[8]; 14476 dst[9] = src[9]; 14477 if (hdrlen -= 40) { 14478 hdrlen >>= 2; 14479 dst += 10; 14480 src += 10; 14481 do { 14482 *dst++ = *src++; 14483 } while (--hdrlen); 14484 } 14485 14486 /* 14487 * Set the ECN info in the TCP header. Note that this 14488 * is not the template header. 14489 */ 14490 if (tcp->tcp_ecn_ok) { 14491 SET_ECT(tcp, rptr); 14492 14493 tcpha = (tcpha_t *)(rptr + ixa->ixa_ip_hdr_length); 14494 if (tcp->tcp_ecn_echo_on) 14495 tcpha->tha_flags |= TH_ECE; 14496 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 14497 tcpha->tha_flags |= TH_CWR; 14498 tcp->tcp_ecn_cwr_sent = B_TRUE; 14499 } 14500 } 14501 14502 if (tcp->tcp_ip_forward_progress) { 14503 tcp->tcp_ip_forward_progress = B_FALSE; 14504 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 14505 } else { 14506 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 14507 } 14508 tcp_send_data(tcp, mp1); 14509 return; 14510 14511 /* 14512 * If we ran out of memory, we pretend to have sent the packet 14513 * and that it was lost on the wire. 14514 */ 14515 no_memory: 14516 return; 14517 14518 slow: 14519 /* leftover work from above */ 14520 tcp->tcp_unsent = len; 14521 tcp->tcp_xmit_tail_unsent = len; 14522 tcp_wput_data(tcp, NULL, B_FALSE); 14523 } 14524 14525 /* 14526 * This runs at the tail end of accept processing on the squeue of the 14527 * new connection. 14528 */ 14529 /* ARGSUSED */ 14530 void 14531 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14532 { 14533 conn_t *connp = (conn_t *)arg; 14534 tcp_t *tcp = connp->conn_tcp; 14535 queue_t *q = connp->conn_rq; 14536 tcp_stack_t *tcps = tcp->tcp_tcps; 14537 /* socket options */ 14538 struct sock_proto_props sopp; 14539 14540 /* We should just receive a single mblk that fits a T_discon_ind */ 14541 ASSERT(mp->b_cont == NULL); 14542 14543 /* 14544 * Drop the eager's ref on the listener, that was placed when 14545 * this eager began life in tcp_input_listener. 14546 */ 14547 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 14548 if (IPCL_IS_NONSTR(connp)) { 14549 /* Safe to free conn_ind message */ 14550 freemsg(tcp->tcp_conn.tcp_eager_conn_ind); 14551 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14552 } 14553 14554 tcp->tcp_detached = B_FALSE; 14555 14556 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 14557 /* 14558 * Someone blewoff the eager before we could finish 14559 * the accept. 14560 * 14561 * The only reason eager exists it because we put in 14562 * a ref on it when conn ind went up. We need to send 14563 * a disconnect indication up while the last reference 14564 * on the eager will be dropped by the squeue when we 14565 * return. 14566 */ 14567 ASSERT(tcp->tcp_listener == NULL); 14568 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 14569 if (IPCL_IS_NONSTR(connp)) { 14570 ASSERT(tcp->tcp_issocket); 14571 (*connp->conn_upcalls->su_disconnected)( 14572 connp->conn_upper_handle, tcp->tcp_connid, 14573 ECONNREFUSED); 14574 freemsg(mp); 14575 } else { 14576 struct T_discon_ind *tdi; 14577 14578 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 14579 /* 14580 * Let us reuse the incoming mblk to avoid 14581 * memory allocation failure problems. We know 14582 * that the size of the incoming mblk i.e. 14583 * stroptions is greater than sizeof 14584 * T_discon_ind. 14585 */ 14586 ASSERT(DB_REF(mp) == 1); 14587 ASSERT(MBLKSIZE(mp) >= 14588 sizeof (struct T_discon_ind)); 14589 14590 DB_TYPE(mp) = M_PROTO; 14591 ((union T_primitives *)mp->b_rptr)->type = 14592 T_DISCON_IND; 14593 tdi = (struct T_discon_ind *)mp->b_rptr; 14594 if (tcp->tcp_issocket) { 14595 tdi->DISCON_reason = ECONNREFUSED; 14596 tdi->SEQ_number = 0; 14597 } else { 14598 tdi->DISCON_reason = ENOPROTOOPT; 14599 tdi->SEQ_number = 14600 tcp->tcp_conn_req_seqnum; 14601 } 14602 mp->b_wptr = mp->b_rptr + 14603 sizeof (struct T_discon_ind); 14604 putnext(q, mp); 14605 } 14606 } 14607 tcp->tcp_hard_binding = B_FALSE; 14608 return; 14609 } 14610 14611 /* 14612 * This is the first time we run on the correct 14613 * queue after tcp_accept. So fix all the q parameters 14614 * here. 14615 */ 14616 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 14617 sopp.sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 14618 14619 sopp.sopp_rxhiwat = tcp->tcp_fused ? 14620 tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) : 14621 connp->conn_rcvbuf; 14622 14623 /* 14624 * Determine what write offset value to use depending on SACK and 14625 * whether the endpoint is fused or not. 14626 */ 14627 if (tcp->tcp_fused) { 14628 ASSERT(tcp->tcp_loopback); 14629 ASSERT(tcp->tcp_loopback_peer != NULL); 14630 /* 14631 * For fused tcp loopback, set the stream head's write 14632 * offset value to zero since we won't be needing any room 14633 * for TCP/IP headers. This would also improve performance 14634 * since it would reduce the amount of work done by kmem. 14635 * Non-fused tcp loopback case is handled separately below. 14636 */ 14637 sopp.sopp_wroff = 0; 14638 /* 14639 * Update the peer's transmit parameters according to 14640 * our recently calculated high water mark value. 14641 */ 14642 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 14643 } else if (tcp->tcp_snd_sack_ok) { 14644 sopp.sopp_wroff = connp->conn_ht_iphc_allocated + 14645 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 14646 } else { 14647 sopp.sopp_wroff = connp->conn_ht_iphc_len + 14648 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 14649 } 14650 14651 /* 14652 * If this is endpoint is handling SSL, then reserve extra 14653 * offset and space at the end. 14654 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 14655 * overriding the previous setting. The extra cost of signing and 14656 * encrypting multiple MSS-size records (12 of them with Ethernet), 14657 * instead of a single contiguous one by the stream head 14658 * largely outweighs the statistical reduction of ACKs, when 14659 * applicable. The peer will also save on decryption and verification 14660 * costs. 14661 */ 14662 if (tcp->tcp_kssl_ctx != NULL) { 14663 sopp.sopp_wroff += SSL3_WROFFSET; 14664 14665 sopp.sopp_flags |= SOCKOPT_TAIL; 14666 sopp.sopp_tail = SSL3_MAX_TAIL_LEN; 14667 14668 sopp.sopp_flags |= SOCKOPT_ZCOPY; 14669 sopp.sopp_zcopyflag = ZCVMUNSAFE; 14670 14671 sopp.sopp_maxblk = SSL3_MAX_RECORD_LEN; 14672 } 14673 14674 /* Send the options up */ 14675 if (IPCL_IS_NONSTR(connp)) { 14676 if (sopp.sopp_flags & SOCKOPT_TAIL) { 14677 ASSERT(tcp->tcp_kssl_ctx != NULL); 14678 ASSERT(sopp.sopp_flags & SOCKOPT_ZCOPY); 14679 } 14680 if (tcp->tcp_loopback) { 14681 sopp.sopp_flags |= SOCKOPT_LOOPBACK; 14682 sopp.sopp_loopback = B_TRUE; 14683 } 14684 (*connp->conn_upcalls->su_set_proto_props) 14685 (connp->conn_upper_handle, &sopp); 14686 freemsg(mp); 14687 } else { 14688 /* 14689 * Let us reuse the incoming mblk to avoid 14690 * memory allocation failure problems. We know 14691 * that the size of the incoming mblk is at least 14692 * stroptions 14693 */ 14694 struct stroptions *stropt; 14695 14696 ASSERT(DB_REF(mp) == 1); 14697 ASSERT(MBLKSIZE(mp) >= sizeof (struct stroptions)); 14698 14699 DB_TYPE(mp) = M_SETOPTS; 14700 stropt = (struct stroptions *)mp->b_rptr; 14701 mp->b_wptr = mp->b_rptr + sizeof (struct stroptions); 14702 stropt = (struct stroptions *)mp->b_rptr; 14703 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 14704 stropt->so_hiwat = sopp.sopp_rxhiwat; 14705 stropt->so_wroff = sopp.sopp_wroff; 14706 stropt->so_maxblk = sopp.sopp_maxblk; 14707 14708 if (sopp.sopp_flags & SOCKOPT_TAIL) { 14709 ASSERT(tcp->tcp_kssl_ctx != NULL); 14710 14711 stropt->so_flags |= SO_TAIL | SO_COPYOPT; 14712 stropt->so_tail = sopp.sopp_tail; 14713 stropt->so_copyopt = sopp.sopp_zcopyflag; 14714 } 14715 14716 /* Send the options up */ 14717 putnext(q, mp); 14718 } 14719 14720 /* 14721 * Pass up any data and/or a fin that has been received. 14722 * 14723 * Adjust receive window in case it had decreased 14724 * (because there is data <=> tcp_rcv_list != NULL) 14725 * while the connection was detached. Note that 14726 * in case the eager was flow-controlled, w/o this 14727 * code, the rwnd may never open up again! 14728 */ 14729 if (tcp->tcp_rcv_list != NULL) { 14730 if (IPCL_IS_NONSTR(connp)) { 14731 mblk_t *mp; 14732 int space_left; 14733 int error; 14734 boolean_t push = B_TRUE; 14735 14736 if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv) 14737 (connp->conn_upper_handle, NULL, 0, 0, &error, 14738 &push) >= 0) { 14739 tcp->tcp_rwnd = connp->conn_rcvbuf; 14740 if (tcp->tcp_state >= TCPS_ESTABLISHED && 14741 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 14742 tcp_xmit_ctl(NULL, 14743 tcp, (tcp->tcp_swnd == 0) ? 14744 tcp->tcp_suna : tcp->tcp_snxt, 14745 tcp->tcp_rnxt, TH_ACK); 14746 } 14747 } 14748 while ((mp = tcp->tcp_rcv_list) != NULL) { 14749 push = B_TRUE; 14750 tcp->tcp_rcv_list = mp->b_next; 14751 mp->b_next = NULL; 14752 space_left = (*connp->conn_upcalls->su_recv) 14753 (connp->conn_upper_handle, mp, msgdsize(mp), 14754 0, &error, &push); 14755 if (space_left < 0) { 14756 /* 14757 * We should never be in middle of a 14758 * fallback, the squeue guarantees that. 14759 */ 14760 ASSERT(error != EOPNOTSUPP); 14761 } 14762 } 14763 tcp->tcp_rcv_last_head = NULL; 14764 tcp->tcp_rcv_last_tail = NULL; 14765 tcp->tcp_rcv_cnt = 0; 14766 } else { 14767 /* We drain directly in case of fused tcp loopback */ 14768 14769 if (!tcp->tcp_fused && canputnext(q)) { 14770 tcp->tcp_rwnd = connp->conn_rcvbuf; 14771 if (tcp->tcp_state >= TCPS_ESTABLISHED && 14772 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 14773 tcp_xmit_ctl(NULL, 14774 tcp, (tcp->tcp_swnd == 0) ? 14775 tcp->tcp_suna : tcp->tcp_snxt, 14776 tcp->tcp_rnxt, TH_ACK); 14777 } 14778 } 14779 14780 (void) tcp_rcv_drain(tcp); 14781 } 14782 14783 /* 14784 * For fused tcp loopback, back-enable peer endpoint 14785 * if it's currently flow-controlled. 14786 */ 14787 if (tcp->tcp_fused) { 14788 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 14789 14790 ASSERT(peer_tcp != NULL); 14791 ASSERT(peer_tcp->tcp_fused); 14792 14793 mutex_enter(&peer_tcp->tcp_non_sq_lock); 14794 if (peer_tcp->tcp_flow_stopped) { 14795 tcp_clrqfull(peer_tcp); 14796 TCP_STAT(tcps, tcp_fusion_backenabled); 14797 } 14798 mutex_exit(&peer_tcp->tcp_non_sq_lock); 14799 } 14800 } 14801 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14802 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 14803 tcp->tcp_ordrel_done = B_TRUE; 14804 if (IPCL_IS_NONSTR(connp)) { 14805 ASSERT(tcp->tcp_ordrel_mp == NULL); 14806 (*connp->conn_upcalls->su_opctl)( 14807 connp->conn_upper_handle, 14808 SOCK_OPCTL_SHUT_RECV, 0); 14809 } else { 14810 mp = tcp->tcp_ordrel_mp; 14811 tcp->tcp_ordrel_mp = NULL; 14812 putnext(q, mp); 14813 } 14814 } 14815 tcp->tcp_hard_binding = B_FALSE; 14816 14817 if (connp->conn_keepalive) { 14818 tcp->tcp_ka_last_intrvl = 0; 14819 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 14820 MSEC_TO_TICK(tcp->tcp_ka_interval)); 14821 } 14822 14823 /* 14824 * At this point, eager is fully established and will 14825 * have the following references - 14826 * 14827 * 2 references for connection to exist (1 for TCP and 1 for IP). 14828 * 1 reference for the squeue which will be dropped by the squeue as 14829 * soon as this function returns. 14830 * There will be 1 additonal reference for being in classifier 14831 * hash list provided something bad hasn't happened. 14832 */ 14833 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 14834 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 14835 } 14836 14837 /* 14838 * The function called through squeue to get behind listener's perimeter to 14839 * send a deferred conn_ind. 14840 */ 14841 /* ARGSUSED */ 14842 void 14843 tcp_send_pending(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14844 { 14845 conn_t *lconnp = (conn_t *)arg; 14846 tcp_t *listener = lconnp->conn_tcp; 14847 struct T_conn_ind *conn_ind; 14848 tcp_t *tcp; 14849 14850 conn_ind = (struct T_conn_ind *)mp->b_rptr; 14851 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 14852 conn_ind->OPT_length); 14853 14854 if (listener->tcp_state != TCPS_LISTEN) { 14855 /* 14856 * If listener has closed, it would have caused a 14857 * a cleanup/blowoff to happen for the eager, so 14858 * we don't need to do anything more. 14859 */ 14860 freemsg(mp); 14861 return; 14862 } 14863 14864 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 14865 } 14866 14867 /* 14868 * Common to TPI and sockfs accept code. 14869 */ 14870 /* ARGSUSED2 */ 14871 static int 14872 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr) 14873 { 14874 tcp_t *listener, *eager; 14875 mblk_t *discon_mp; 14876 14877 listener = lconnp->conn_tcp; 14878 ASSERT(listener->tcp_state == TCPS_LISTEN); 14879 eager = econnp->conn_tcp; 14880 ASSERT(eager->tcp_listener != NULL); 14881 14882 /* 14883 * Pre allocate the discon_ind mblk also. tcp_accept_finish will 14884 * use it if something failed. 14885 */ 14886 discon_mp = allocb(MAX(sizeof (struct T_discon_ind), 14887 sizeof (struct stroptions)), BPRI_HI); 14888 14889 if (discon_mp == NULL) { 14890 return (-TPROTO); 14891 } 14892 eager->tcp_issocket = B_TRUE; 14893 14894 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 14895 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 14896 ASSERT(econnp->conn_netstack == 14897 listener->tcp_connp->conn_netstack); 14898 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 14899 14900 /* Put the ref for IP */ 14901 CONN_INC_REF(econnp); 14902 14903 /* 14904 * We should have minimum of 3 references on the conn 14905 * at this point. One each for TCP and IP and one for 14906 * the T_conn_ind that was sent up when the 3-way handshake 14907 * completed. In the normal case we would also have another 14908 * reference (making a total of 4) for the conn being in the 14909 * classifier hash list. However the eager could have received 14910 * an RST subsequently and tcp_closei_local could have removed 14911 * the eager from the classifier hash list, hence we can't 14912 * assert that reference. 14913 */ 14914 ASSERT(econnp->conn_ref >= 3); 14915 14916 mutex_enter(&listener->tcp_eager_lock); 14917 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 14918 14919 tcp_t *tail; 14920 tcp_t *tcp; 14921 mblk_t *mp1; 14922 14923 tcp = listener->tcp_eager_prev_q0; 14924 /* 14925 * listener->tcp_eager_prev_q0 points to the TAIL of the 14926 * deferred T_conn_ind queue. We need to get to the head 14927 * of the queue in order to send up T_conn_ind the same 14928 * order as how the 3WHS is completed. 14929 */ 14930 while (tcp != listener) { 14931 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 14932 !tcp->tcp_kssl_pending) 14933 break; 14934 else 14935 tcp = tcp->tcp_eager_prev_q0; 14936 } 14937 /* None of the pending eagers can be sent up now */ 14938 if (tcp == listener) 14939 goto no_more_eagers; 14940 14941 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 14942 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14943 /* Move from q0 to q */ 14944 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 14945 listener->tcp_conn_req_cnt_q0--; 14946 listener->tcp_conn_req_cnt_q++; 14947 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 14948 tcp->tcp_eager_prev_q0; 14949 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 14950 tcp->tcp_eager_next_q0; 14951 tcp->tcp_eager_prev_q0 = NULL; 14952 tcp->tcp_eager_next_q0 = NULL; 14953 tcp->tcp_conn_def_q0 = B_FALSE; 14954 14955 /* Make sure the tcp isn't in the list of droppables */ 14956 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 14957 tcp->tcp_eager_prev_drop_q0 == NULL); 14958 14959 /* 14960 * Insert at end of the queue because sockfs sends 14961 * down T_CONN_RES in chronological order. Leaving 14962 * the older conn indications at front of the queue 14963 * helps reducing search time. 14964 */ 14965 tail = listener->tcp_eager_last_q; 14966 if (tail != NULL) { 14967 tail->tcp_eager_next_q = tcp; 14968 } else { 14969 listener->tcp_eager_next_q = tcp; 14970 } 14971 listener->tcp_eager_last_q = tcp; 14972 tcp->tcp_eager_next_q = NULL; 14973 14974 /* Need to get inside the listener perimeter */ 14975 CONN_INC_REF(listener->tcp_connp); 14976 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, 14977 tcp_send_pending, listener->tcp_connp, NULL, SQ_FILL, 14978 SQTAG_TCP_SEND_PENDING); 14979 } 14980 no_more_eagers: 14981 tcp_eager_unlink(eager); 14982 mutex_exit(&listener->tcp_eager_lock); 14983 14984 /* 14985 * At this point, the eager is detached from the listener 14986 * but we still have an extra refs on eager (apart from the 14987 * usual tcp references). The ref was placed in tcp_input_data 14988 * before sending the conn_ind in tcp_send_conn_ind. 14989 * The ref will be dropped in tcp_accept_finish(). 14990 */ 14991 SQUEUE_ENTER_ONE(econnp->conn_sqp, discon_mp, tcp_accept_finish, 14992 econnp, NULL, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); 14993 return (0); 14994 } 14995 14996 int 14997 tcp_accept(sock_lower_handle_t lproto_handle, 14998 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 14999 cred_t *cr) 15000 { 15001 conn_t *lconnp, *econnp; 15002 tcp_t *listener, *eager; 15003 15004 lconnp = (conn_t *)lproto_handle; 15005 listener = lconnp->conn_tcp; 15006 ASSERT(listener->tcp_state == TCPS_LISTEN); 15007 econnp = (conn_t *)eproto_handle; 15008 eager = econnp->conn_tcp; 15009 ASSERT(eager->tcp_listener != NULL); 15010 15011 /* 15012 * It is OK to manipulate these fields outside the eager's squeue 15013 * because they will not start being used until tcp_accept_finish 15014 * has been called. 15015 */ 15016 ASSERT(lconnp->conn_upper_handle != NULL); 15017 ASSERT(econnp->conn_upper_handle == NULL); 15018 econnp->conn_upper_handle = sock_handle; 15019 econnp->conn_upcalls = lconnp->conn_upcalls; 15020 ASSERT(IPCL_IS_NONSTR(econnp)); 15021 return (tcp_accept_common(lconnp, econnp, cr)); 15022 } 15023 15024 15025 /* 15026 * This is the STREAMS entry point for T_CONN_RES coming down on 15027 * Acceptor STREAM when sockfs listener does accept processing. 15028 * Read the block comment on top of tcp_input_listener(). 15029 */ 15030 void 15031 tcp_tpi_accept(queue_t *q, mblk_t *mp) 15032 { 15033 queue_t *rq = RD(q); 15034 struct T_conn_res *conn_res; 15035 tcp_t *eager; 15036 tcp_t *listener; 15037 struct T_ok_ack *ok; 15038 t_scalar_t PRIM_type; 15039 conn_t *econnp; 15040 cred_t *cr; 15041 15042 ASSERT(DB_TYPE(mp) == M_PROTO); 15043 15044 /* 15045 * All Solaris components should pass a db_credp 15046 * for this TPI message, hence we ASSERT. 15047 * But in case there is some other M_PROTO that looks 15048 * like a TPI message sent by some other kernel 15049 * component, we check and return an error. 15050 */ 15051 cr = msg_getcred(mp, NULL); 15052 ASSERT(cr != NULL); 15053 if (cr == NULL) { 15054 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 15055 if (mp != NULL) 15056 putnext(rq, mp); 15057 return; 15058 } 15059 conn_res = (struct T_conn_res *)mp->b_rptr; 15060 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 15061 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 15062 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 15063 if (mp != NULL) 15064 putnext(rq, mp); 15065 return; 15066 } 15067 switch (conn_res->PRIM_type) { 15068 case O_T_CONN_RES: 15069 case T_CONN_RES: 15070 /* 15071 * We pass up an err ack if allocb fails. This will 15072 * cause sockfs to issue a T_DISCON_REQ which will cause 15073 * tcp_eager_blowoff to be called. sockfs will then call 15074 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 15075 * we need to do the allocb up here because we have to 15076 * make sure rq->q_qinfo->qi_qclose still points to the 15077 * correct function (tcp_tpi_close_accept) in case allocb 15078 * fails. 15079 */ 15080 bcopy(mp->b_rptr + conn_res->OPT_offset, 15081 &eager, conn_res->OPT_length); 15082 PRIM_type = conn_res->PRIM_type; 15083 mp->b_datap->db_type = M_PCPROTO; 15084 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 15085 ok = (struct T_ok_ack *)mp->b_rptr; 15086 ok->PRIM_type = T_OK_ACK; 15087 ok->CORRECT_prim = PRIM_type; 15088 econnp = eager->tcp_connp; 15089 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 15090 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 15091 econnp->conn_rq = rq; 15092 econnp->conn_wq = q; 15093 rq->q_ptr = econnp; 15094 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 15095 q->q_ptr = econnp; 15096 q->q_qinfo = &tcp_winit; 15097 listener = eager->tcp_listener; 15098 15099 if (tcp_accept_common(listener->tcp_connp, 15100 econnp, cr) < 0) { 15101 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 15102 if (mp != NULL) 15103 putnext(rq, mp); 15104 return; 15105 } 15106 15107 /* 15108 * Send the new local address also up to sockfs. There 15109 * should already be enough space in the mp that came 15110 * down from soaccept(). 15111 */ 15112 if (econnp->conn_family == AF_INET) { 15113 sin_t *sin; 15114 15115 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 15116 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 15117 sin = (sin_t *)mp->b_wptr; 15118 mp->b_wptr += sizeof (sin_t); 15119 sin->sin_family = AF_INET; 15120 sin->sin_port = econnp->conn_lport; 15121 sin->sin_addr.s_addr = econnp->conn_laddr_v4; 15122 } else { 15123 sin6_t *sin6; 15124 15125 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 15126 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 15127 sin6 = (sin6_t *)mp->b_wptr; 15128 mp->b_wptr += sizeof (sin6_t); 15129 sin6->sin6_family = AF_INET6; 15130 sin6->sin6_port = econnp->conn_lport; 15131 sin6->sin6_addr = econnp->conn_laddr_v6; 15132 if (econnp->conn_ipversion == IPV4_VERSION) 15133 sin6->sin6_flowinfo = 0; 15134 else 15135 sin6->sin6_flowinfo = econnp->conn_flowinfo; 15136 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6) && 15137 (econnp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) { 15138 sin6->sin6_scope_id = 15139 econnp->conn_ixa->ixa_scopeid; 15140 } else { 15141 sin6->sin6_scope_id = 0; 15142 } 15143 sin6->__sin6_src_id = 0; 15144 } 15145 15146 putnext(rq, mp); 15147 return; 15148 default: 15149 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 15150 if (mp != NULL) 15151 putnext(rq, mp); 15152 return; 15153 } 15154 } 15155 15156 /* 15157 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 15158 */ 15159 static void 15160 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 15161 { 15162 void *data; 15163 mblk_t *datamp = mp->b_cont; 15164 conn_t *connp = Q_TO_CONN(q); 15165 tcp_t *tcp = connp->conn_tcp; 15166 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 15167 15168 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 15169 cmdp->cb_error = EPROTO; 15170 qreply(q, mp); 15171 return; 15172 } 15173 15174 data = datamp->b_rptr; 15175 15176 switch (cmdp->cb_cmd) { 15177 case TI_GETPEERNAME: 15178 if (tcp->tcp_state < TCPS_SYN_RCVD) 15179 cmdp->cb_error = ENOTCONN; 15180 else 15181 cmdp->cb_error = conn_getpeername(connp, data, 15182 &cmdp->cb_len); 15183 break; 15184 case TI_GETMYNAME: 15185 cmdp->cb_error = conn_getsockname(connp, data, &cmdp->cb_len); 15186 break; 15187 default: 15188 cmdp->cb_error = EINVAL; 15189 break; 15190 } 15191 15192 qreply(q, mp); 15193 } 15194 15195 void 15196 tcp_wput(queue_t *q, mblk_t *mp) 15197 { 15198 conn_t *connp = Q_TO_CONN(q); 15199 tcp_t *tcp; 15200 void (*output_proc)(); 15201 t_scalar_t type; 15202 uchar_t *rptr; 15203 struct iocblk *iocp; 15204 size_t size; 15205 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 15206 15207 ASSERT(connp->conn_ref >= 2); 15208 15209 switch (DB_TYPE(mp)) { 15210 case M_DATA: 15211 tcp = connp->conn_tcp; 15212 ASSERT(tcp != NULL); 15213 15214 size = msgdsize(mp); 15215 15216 mutex_enter(&tcp->tcp_non_sq_lock); 15217 tcp->tcp_squeue_bytes += size; 15218 if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) { 15219 tcp_setqfull(tcp); 15220 } 15221 mutex_exit(&tcp->tcp_non_sq_lock); 15222 15223 CONN_INC_REF(connp); 15224 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp, 15225 NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 15226 return; 15227 15228 case M_CMD: 15229 tcp_wput_cmdblk(q, mp); 15230 return; 15231 15232 case M_PROTO: 15233 case M_PCPROTO: 15234 /* 15235 * if it is a snmp message, don't get behind the squeue 15236 */ 15237 tcp = connp->conn_tcp; 15238 rptr = mp->b_rptr; 15239 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 15240 type = ((union T_primitives *)rptr)->type; 15241 } else { 15242 if (connp->conn_debug) { 15243 (void) strlog(TCP_MOD_ID, 0, 1, 15244 SL_ERROR|SL_TRACE, 15245 "tcp_wput_proto, dropping one..."); 15246 } 15247 freemsg(mp); 15248 return; 15249 } 15250 if (type == T_SVR4_OPTMGMT_REQ) { 15251 /* 15252 * All Solaris components should pass a db_credp 15253 * for this TPI message, hence we ASSERT. 15254 * But in case there is some other M_PROTO that looks 15255 * like a TPI message sent by some other kernel 15256 * component, we check and return an error. 15257 */ 15258 cred_t *cr = msg_getcred(mp, NULL); 15259 15260 ASSERT(cr != NULL); 15261 if (cr == NULL) { 15262 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 15263 return; 15264 } 15265 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 15266 cr)) { 15267 /* 15268 * This was a SNMP request 15269 */ 15270 return; 15271 } else { 15272 output_proc = tcp_wput_proto; 15273 } 15274 } else { 15275 output_proc = tcp_wput_proto; 15276 } 15277 break; 15278 case M_IOCTL: 15279 /* 15280 * Most ioctls can be processed right away without going via 15281 * squeues - process them right here. Those that do require 15282 * squeue (currently _SIOCSOCKFALLBACK) 15283 * are processed by tcp_wput_ioctl(). 15284 */ 15285 iocp = (struct iocblk *)mp->b_rptr; 15286 tcp = connp->conn_tcp; 15287 15288 switch (iocp->ioc_cmd) { 15289 case TCP_IOC_ABORT_CONN: 15290 tcp_ioctl_abort_conn(q, mp); 15291 return; 15292 case TI_GETPEERNAME: 15293 case TI_GETMYNAME: 15294 mi_copyin(q, mp, NULL, 15295 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 15296 return; 15297 case ND_SET: 15298 /* nd_getset does the necessary checks */ 15299 case ND_GET: 15300 if (nd_getset(q, tcps->tcps_g_nd, mp)) { 15301 qreply(q, mp); 15302 return; 15303 } 15304 CONN_INC_IOCTLREF(connp); 15305 ip_wput_nondata(q, mp); 15306 CONN_DEC_IOCTLREF(connp); 15307 return; 15308 15309 default: 15310 output_proc = tcp_wput_ioctl; 15311 break; 15312 } 15313 break; 15314 default: 15315 output_proc = tcp_wput_nondata; 15316 break; 15317 } 15318 15319 CONN_INC_REF(connp); 15320 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp, 15321 NULL, tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER); 15322 } 15323 15324 /* 15325 * Initial STREAMS write side put() procedure for sockets. It tries to 15326 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 15327 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 15328 * are handled by tcp_wput() as usual. 15329 * 15330 * All further messages will also be handled by tcp_wput() because we cannot 15331 * be sure that the above short cut is safe later. 15332 */ 15333 static void 15334 tcp_wput_sock(queue_t *wq, mblk_t *mp) 15335 { 15336 conn_t *connp = Q_TO_CONN(wq); 15337 tcp_t *tcp = connp->conn_tcp; 15338 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 15339 15340 ASSERT(wq->q_qinfo == &tcp_sock_winit); 15341 wq->q_qinfo = &tcp_winit; 15342 15343 ASSERT(IPCL_IS_TCP(connp)); 15344 ASSERT(TCP_IS_SOCKET(tcp)); 15345 15346 if (DB_TYPE(mp) == M_PCPROTO && 15347 MBLKL(mp) == sizeof (struct T_capability_req) && 15348 car->PRIM_type == T_CAPABILITY_REQ) { 15349 tcp_capability_req(tcp, mp); 15350 return; 15351 } 15352 15353 tcp_wput(wq, mp); 15354 } 15355 15356 /* ARGSUSED */ 15357 static void 15358 tcp_wput_fallback(queue_t *wq, mblk_t *mp) 15359 { 15360 #ifdef DEBUG 15361 cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n"); 15362 #endif 15363 freemsg(mp); 15364 } 15365 15366 /* 15367 * Check the usability of ZEROCOPY. It's instead checking the flag set by IP. 15368 */ 15369 static boolean_t 15370 tcp_zcopy_check(tcp_t *tcp) 15371 { 15372 conn_t *connp = tcp->tcp_connp; 15373 ip_xmit_attr_t *ixa = connp->conn_ixa; 15374 boolean_t zc_enabled = B_FALSE; 15375 tcp_stack_t *tcps = tcp->tcp_tcps; 15376 15377 if (do_tcpzcopy == 2) 15378 zc_enabled = B_TRUE; 15379 else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB)) 15380 zc_enabled = B_TRUE; 15381 15382 tcp->tcp_snd_zcopy_on = zc_enabled; 15383 if (!TCP_IS_DETACHED(tcp)) { 15384 if (zc_enabled) { 15385 ixa->ixa_flags |= IXAF_VERIFY_ZCOPY; 15386 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15387 ZCVMSAFE); 15388 TCP_STAT(tcps, tcp_zcopy_on); 15389 } else { 15390 ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY; 15391 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15392 ZCVMUNSAFE); 15393 TCP_STAT(tcps, tcp_zcopy_off); 15394 } 15395 } 15396 return (zc_enabled); 15397 } 15398 15399 /* 15400 * Backoff from a zero-copy message by copying data to a new allocated 15401 * message and freeing the original desballoca'ed segmapped message. 15402 * 15403 * This function is called by following two callers: 15404 * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free 15405 * the origial desballoca'ed message and notify sockfs. This is in re- 15406 * transmit state. 15407 * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need 15408 * to be copied to new message. 15409 */ 15410 static mblk_t * 15411 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist) 15412 { 15413 mblk_t *nbp; 15414 mblk_t *head = NULL; 15415 mblk_t *tail = NULL; 15416 tcp_stack_t *tcps = tcp->tcp_tcps; 15417 15418 ASSERT(bp != NULL); 15419 while (bp != NULL) { 15420 if (IS_VMLOANED_MBLK(bp)) { 15421 TCP_STAT(tcps, tcp_zcopy_backoff); 15422 if ((nbp = copyb(bp)) == NULL) { 15423 tcp->tcp_xmit_zc_clean = B_FALSE; 15424 if (tail != NULL) 15425 tail->b_cont = bp; 15426 return ((head == NULL) ? bp : head); 15427 } 15428 15429 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 15430 if (fix_xmitlist) 15431 tcp_zcopy_notify(tcp); 15432 else 15433 nbp->b_datap->db_struioflag |= 15434 STRUIO_ZCNOTIFY; 15435 } 15436 nbp->b_cont = bp->b_cont; 15437 15438 /* 15439 * Copy saved information and adjust tcp_xmit_tail 15440 * if needed. 15441 */ 15442 if (fix_xmitlist) { 15443 nbp->b_prev = bp->b_prev; 15444 nbp->b_next = bp->b_next; 15445 15446 if (tcp->tcp_xmit_tail == bp) 15447 tcp->tcp_xmit_tail = nbp; 15448 } 15449 15450 /* Free the original message. */ 15451 bp->b_prev = NULL; 15452 bp->b_next = NULL; 15453 freeb(bp); 15454 15455 bp = nbp; 15456 } 15457 15458 if (head == NULL) { 15459 head = bp; 15460 } 15461 if (tail == NULL) { 15462 tail = bp; 15463 } else { 15464 tail->b_cont = bp; 15465 tail = bp; 15466 } 15467 15468 /* Move forward. */ 15469 bp = bp->b_cont; 15470 } 15471 15472 if (fix_xmitlist) { 15473 tcp->tcp_xmit_last = tail; 15474 tcp->tcp_xmit_zc_clean = B_TRUE; 15475 } 15476 15477 return (head); 15478 } 15479 15480 static void 15481 tcp_zcopy_notify(tcp_t *tcp) 15482 { 15483 struct stdata *stp; 15484 conn_t *connp; 15485 15486 if (tcp->tcp_detached) 15487 return; 15488 connp = tcp->tcp_connp; 15489 if (IPCL_IS_NONSTR(connp)) { 15490 (*connp->conn_upcalls->su_zcopy_notify) 15491 (connp->conn_upper_handle); 15492 return; 15493 } 15494 stp = STREAM(connp->conn_rq); 15495 mutex_enter(&stp->sd_lock); 15496 stp->sd_flag |= STZCNOTIFY; 15497 cv_broadcast(&stp->sd_zcopy_wait); 15498 mutex_exit(&stp->sd_lock); 15499 } 15500 15501 /* 15502 * Update the TCP connection according to change of LSO capability. 15503 */ 15504 static void 15505 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa) 15506 { 15507 /* 15508 * We check against IPv4 header length to preserve the old behavior 15509 * of only enabling LSO when there are no IP options. 15510 * But this restriction might not be necessary at all. Before removing 15511 * it, need to verify how LSO is handled for source routing case, with 15512 * which IP does software checksum. 15513 * 15514 * For IPv6, whenever any extension header is needed, LSO is supressed. 15515 */ 15516 if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ? 15517 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN)) 15518 return; 15519 15520 /* 15521 * Either the LSO capability newly became usable, or it has changed. 15522 */ 15523 if (ixa->ixa_flags & IXAF_LSO_CAPAB) { 15524 ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab; 15525 15526 ASSERT(lsoc->ill_lso_max > 0); 15527 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max); 15528 15529 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 15530 boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max); 15531 15532 /* 15533 * If LSO to be enabled, notify the STREAM header with larger 15534 * data block. 15535 */ 15536 if (!tcp->tcp_lso) 15537 tcp->tcp_maxpsz_multiplier = 0; 15538 15539 tcp->tcp_lso = B_TRUE; 15540 TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled); 15541 } else { /* LSO capability is not usable any more. */ 15542 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 15543 boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max); 15544 15545 /* 15546 * If LSO to be disabled, notify the STREAM header with smaller 15547 * data block. And need to restore fragsize to PMTU. 15548 */ 15549 if (tcp->tcp_lso) { 15550 tcp->tcp_maxpsz_multiplier = 15551 tcp->tcp_tcps->tcps_maxpsz_multiplier; 15552 ixa->ixa_fragsize = ixa->ixa_pmtu; 15553 tcp->tcp_lso = B_FALSE; 15554 TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled); 15555 } 15556 } 15557 15558 (void) tcp_maxpsz_set(tcp, B_TRUE); 15559 } 15560 15561 /* 15562 * Update the TCP connection according to change of ZEROCOPY capability. 15563 */ 15564 static void 15565 tcp_update_zcopy(tcp_t *tcp) 15566 { 15567 conn_t *connp = tcp->tcp_connp; 15568 tcp_stack_t *tcps = tcp->tcp_tcps; 15569 15570 if (tcp->tcp_snd_zcopy_on) { 15571 tcp->tcp_snd_zcopy_on = B_FALSE; 15572 if (!TCP_IS_DETACHED(tcp)) { 15573 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15574 ZCVMUNSAFE); 15575 TCP_STAT(tcps, tcp_zcopy_off); 15576 } 15577 } else { 15578 tcp->tcp_snd_zcopy_on = B_TRUE; 15579 if (!TCP_IS_DETACHED(tcp)) { 15580 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15581 ZCVMSAFE); 15582 TCP_STAT(tcps, tcp_zcopy_on); 15583 } 15584 } 15585 } 15586 15587 /* 15588 * Notify function registered with ip_xmit_attr_t. It's called in the squeue 15589 * so it's safe to update the TCP connection. 15590 */ 15591 /* ARGSUSED1 */ 15592 static void 15593 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype, 15594 ixa_notify_arg_t narg) 15595 { 15596 tcp_t *tcp = (tcp_t *)arg; 15597 conn_t *connp = tcp->tcp_connp; 15598 15599 switch (ntype) { 15600 case IXAN_LSO: 15601 tcp_update_lso(tcp, connp->conn_ixa); 15602 break; 15603 case IXAN_PMTU: 15604 tcp_update_pmtu(tcp, B_FALSE); 15605 break; 15606 case IXAN_ZCOPY: 15607 tcp_update_zcopy(tcp); 15608 break; 15609 default: 15610 break; 15611 } 15612 } 15613 15614 static void 15615 tcp_send_data(tcp_t *tcp, mblk_t *mp) 15616 { 15617 conn_t *connp = tcp->tcp_connp; 15618 15619 /* 15620 * Check here to avoid sending zero-copy message down to IP when 15621 * ZEROCOPY capability has turned off. We only need to deal with 15622 * the race condition between sockfs and the notification here. 15623 * Since we have tried to backoff the tcp_xmit_head when turning 15624 * zero-copy off and new messages in tcp_output(), we simply drop 15625 * the dup'ed packet here and let tcp retransmit, if tcp_xmit_zc_clean 15626 * is not true. 15627 */ 15628 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_snd_zcopy_on && 15629 !tcp->tcp_xmit_zc_clean) { 15630 ip_drop_output("TCP ZC was disabled but not clean", mp, NULL); 15631 freemsg(mp); 15632 return; 15633 } 15634 15635 ASSERT(connp->conn_ixa->ixa_notify_cookie == connp->conn_tcp); 15636 (void) conn_ip_output(mp, connp->conn_ixa); 15637 } 15638 15639 /* 15640 * This handles the case when the receiver has shrunk its win. Per RFC 1122 15641 * if the receiver shrinks the window, i.e. moves the right window to the 15642 * left, the we should not send new data, but should retransmit normally the 15643 * old unacked data between suna and suna + swnd. We might has sent data 15644 * that is now outside the new window, pretend that we didn't send it. 15645 */ 15646 static void 15647 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 15648 { 15649 uint32_t snxt = tcp->tcp_snxt; 15650 15651 ASSERT(shrunk_count > 0); 15652 15653 if (!tcp->tcp_is_wnd_shrnk) { 15654 tcp->tcp_snxt_shrunk = snxt; 15655 tcp->tcp_is_wnd_shrnk = B_TRUE; 15656 } else if (SEQ_GT(snxt, tcp->tcp_snxt_shrunk)) { 15657 tcp->tcp_snxt_shrunk = snxt; 15658 } 15659 15660 /* Pretend we didn't send the data outside the window */ 15661 snxt -= shrunk_count; 15662 15663 /* Reset all the values per the now shrunk window */ 15664 tcp_update_xmit_tail(tcp, snxt); 15665 tcp->tcp_unsent += shrunk_count; 15666 15667 /* 15668 * If the SACK option is set, delete the entire list of 15669 * notsack'ed blocks. 15670 */ 15671 if (tcp->tcp_sack_info != NULL) { 15672 if (tcp->tcp_notsack_list != NULL) 15673 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 15674 } 15675 15676 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 15677 /* 15678 * Make sure the timer is running so that we will probe a zero 15679 * window. 15680 */ 15681 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15682 } 15683 15684 15685 /* 15686 * The TCP normal data output path. 15687 * NOTE: the logic of the fast path is duplicated from this function. 15688 */ 15689 static void 15690 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 15691 { 15692 int len; 15693 mblk_t *local_time; 15694 mblk_t *mp1; 15695 uint32_t snxt; 15696 int tail_unsent; 15697 int tcpstate; 15698 int usable = 0; 15699 mblk_t *xmit_tail; 15700 int32_t mss; 15701 int32_t num_sack_blk = 0; 15702 int32_t total_hdr_len; 15703 int32_t tcp_hdr_len; 15704 int rc; 15705 tcp_stack_t *tcps = tcp->tcp_tcps; 15706 conn_t *connp = tcp->tcp_connp; 15707 clock_t now = LBOLT_FASTPATH; 15708 15709 tcpstate = tcp->tcp_state; 15710 if (mp == NULL) { 15711 /* 15712 * tcp_wput_data() with NULL mp should only be called when 15713 * there is unsent data. 15714 */ 15715 ASSERT(tcp->tcp_unsent > 0); 15716 /* Really tacky... but we need this for detached closes. */ 15717 len = tcp->tcp_unsent; 15718 goto data_null; 15719 } 15720 15721 #if CCS_STATS 15722 wrw_stats.tot.count++; 15723 wrw_stats.tot.bytes += msgdsize(mp); 15724 #endif 15725 ASSERT(mp->b_datap->db_type == M_DATA); 15726 /* 15727 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 15728 * or before a connection attempt has begun. 15729 */ 15730 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 15731 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 15732 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 15733 #ifdef DEBUG 15734 cmn_err(CE_WARN, 15735 "tcp_wput_data: data after ordrel, %s", 15736 tcp_display(tcp, NULL, 15737 DISP_ADDR_AND_PORT)); 15738 #else 15739 if (connp->conn_debug) { 15740 (void) strlog(TCP_MOD_ID, 0, 1, 15741 SL_TRACE|SL_ERROR, 15742 "tcp_wput_data: data after ordrel, %s\n", 15743 tcp_display(tcp, NULL, 15744 DISP_ADDR_AND_PORT)); 15745 } 15746 #endif /* DEBUG */ 15747 } 15748 if (tcp->tcp_snd_zcopy_aware && 15749 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 15750 tcp_zcopy_notify(tcp); 15751 freemsg(mp); 15752 mutex_enter(&tcp->tcp_non_sq_lock); 15753 if (tcp->tcp_flow_stopped && 15754 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 15755 tcp_clrqfull(tcp); 15756 } 15757 mutex_exit(&tcp->tcp_non_sq_lock); 15758 return; 15759 } 15760 15761 /* Strip empties */ 15762 for (;;) { 15763 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 15764 (uintptr_t)INT_MAX); 15765 len = (int)(mp->b_wptr - mp->b_rptr); 15766 if (len > 0) 15767 break; 15768 mp1 = mp; 15769 mp = mp->b_cont; 15770 freeb(mp1); 15771 if (!mp) { 15772 return; 15773 } 15774 } 15775 15776 /* If we are the first on the list ... */ 15777 if (tcp->tcp_xmit_head == NULL) { 15778 tcp->tcp_xmit_head = mp; 15779 tcp->tcp_xmit_tail = mp; 15780 tcp->tcp_xmit_tail_unsent = len; 15781 } else { 15782 /* If tiny tx and room in txq tail, pullup to save mblks. */ 15783 struct datab *dp; 15784 15785 mp1 = tcp->tcp_xmit_last; 15786 if (len < tcp_tx_pull_len && 15787 (dp = mp1->b_datap)->db_ref == 1 && 15788 dp->db_lim - mp1->b_wptr >= len) { 15789 ASSERT(len > 0); 15790 ASSERT(!mp1->b_cont); 15791 if (len == 1) { 15792 *mp1->b_wptr++ = *mp->b_rptr; 15793 } else { 15794 bcopy(mp->b_rptr, mp1->b_wptr, len); 15795 mp1->b_wptr += len; 15796 } 15797 if (mp1 == tcp->tcp_xmit_tail) 15798 tcp->tcp_xmit_tail_unsent += len; 15799 mp1->b_cont = mp->b_cont; 15800 if (tcp->tcp_snd_zcopy_aware && 15801 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 15802 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 15803 freeb(mp); 15804 mp = mp1; 15805 } else { 15806 tcp->tcp_xmit_last->b_cont = mp; 15807 } 15808 len += tcp->tcp_unsent; 15809 } 15810 15811 /* Tack on however many more positive length mblks we have */ 15812 if ((mp1 = mp->b_cont) != NULL) { 15813 do { 15814 int tlen; 15815 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 15816 (uintptr_t)INT_MAX); 15817 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 15818 if (tlen <= 0) { 15819 mp->b_cont = mp1->b_cont; 15820 freeb(mp1); 15821 } else { 15822 len += tlen; 15823 mp = mp1; 15824 } 15825 } while ((mp1 = mp->b_cont) != NULL); 15826 } 15827 tcp->tcp_xmit_last = mp; 15828 tcp->tcp_unsent = len; 15829 15830 if (urgent) 15831 usable = 1; 15832 15833 data_null: 15834 snxt = tcp->tcp_snxt; 15835 xmit_tail = tcp->tcp_xmit_tail; 15836 tail_unsent = tcp->tcp_xmit_tail_unsent; 15837 15838 /* 15839 * Note that tcp_mss has been adjusted to take into account the 15840 * timestamp option if applicable. Because SACK options do not 15841 * appear in every TCP segments and they are of variable lengths, 15842 * they cannot be included in tcp_mss. Thus we need to calculate 15843 * the actual segment length when we need to send a segment which 15844 * includes SACK options. 15845 */ 15846 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 15847 int32_t opt_len; 15848 15849 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 15850 tcp->tcp_num_sack_blk); 15851 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 15852 2 + TCPOPT_HEADER_LEN; 15853 mss = tcp->tcp_mss - opt_len; 15854 total_hdr_len = connp->conn_ht_iphc_len + opt_len; 15855 tcp_hdr_len = connp->conn_ht_ulp_len + opt_len; 15856 } else { 15857 mss = tcp->tcp_mss; 15858 total_hdr_len = connp->conn_ht_iphc_len; 15859 tcp_hdr_len = connp->conn_ht_ulp_len; 15860 } 15861 15862 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 15863 (TICK_TO_MSEC(now - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 15864 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 15865 } 15866 if (tcpstate == TCPS_SYN_RCVD) { 15867 /* 15868 * The three-way connection establishment handshake is not 15869 * complete yet. We want to queue the data for transmission 15870 * after entering ESTABLISHED state (RFC793). A jump to 15871 * "done" label effectively leaves data on the queue. 15872 */ 15873 goto done; 15874 } else { 15875 int usable_r; 15876 15877 /* 15878 * In the special case when cwnd is zero, which can only 15879 * happen if the connection is ECN capable, return now. 15880 * New segments is sent using tcp_timer(). The timer 15881 * is set in tcp_input_data(). 15882 */ 15883 if (tcp->tcp_cwnd == 0) { 15884 /* 15885 * Note that tcp_cwnd is 0 before 3-way handshake is 15886 * finished. 15887 */ 15888 ASSERT(tcp->tcp_ecn_ok || 15889 tcp->tcp_state < TCPS_ESTABLISHED); 15890 return; 15891 } 15892 15893 /* NOTE: trouble if xmitting while SYN not acked? */ 15894 usable_r = snxt - tcp->tcp_suna; 15895 usable_r = tcp->tcp_swnd - usable_r; 15896 15897 /* 15898 * Check if the receiver has shrunk the window. If 15899 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 15900 * cannot be set as there is unsent data, so FIN cannot 15901 * be sent out. Otherwise, we need to take into account 15902 * of FIN as it consumes an "invisible" sequence number. 15903 */ 15904 ASSERT(tcp->tcp_fin_sent == 0); 15905 if (usable_r < 0) { 15906 /* 15907 * The receiver has shrunk the window and we have sent 15908 * -usable_r date beyond the window, re-adjust. 15909 * 15910 * If TCP window scaling is enabled, there can be 15911 * round down error as the advertised receive window 15912 * is actually right shifted n bits. This means that 15913 * the lower n bits info is wiped out. It will look 15914 * like the window is shrunk. Do a check here to 15915 * see if the shrunk amount is actually within the 15916 * error in window calculation. If it is, just 15917 * return. Note that this check is inside the 15918 * shrunk window check. This makes sure that even 15919 * though tcp_process_shrunk_swnd() is not called, 15920 * we will stop further processing. 15921 */ 15922 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 15923 tcp_process_shrunk_swnd(tcp, -usable_r); 15924 } 15925 return; 15926 } 15927 15928 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 15929 if (tcp->tcp_swnd > tcp->tcp_cwnd) 15930 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 15931 15932 /* usable = MIN(usable, unsent) */ 15933 if (usable_r > len) 15934 usable_r = len; 15935 15936 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 15937 if (usable_r > 0) { 15938 usable = usable_r; 15939 } else { 15940 /* Bypass all other unnecessary processing. */ 15941 goto done; 15942 } 15943 } 15944 15945 local_time = (mblk_t *)now; 15946 15947 /* 15948 * "Our" Nagle Algorithm. This is not the same as in the old 15949 * BSD. This is more in line with the true intent of Nagle. 15950 * 15951 * The conditions are: 15952 * 1. The amount of unsent data (or amount of data which can be 15953 * sent, whichever is smaller) is less than Nagle limit. 15954 * 2. The last sent size is also less than Nagle limit. 15955 * 3. There is unack'ed data. 15956 * 4. Urgent pointer is not set. Send urgent data ignoring the 15957 * Nagle algorithm. This reduces the probability that urgent 15958 * bytes get "merged" together. 15959 * 5. The app has not closed the connection. This eliminates the 15960 * wait time of the receiving side waiting for the last piece of 15961 * (small) data. 15962 * 15963 * If all are satisified, exit without sending anything. Note 15964 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 15965 * the smaller of 1 MSS and global tcp_naglim_def (default to be 15966 * 4095). 15967 */ 15968 if (usable < (int)tcp->tcp_naglim && 15969 tcp->tcp_naglim > tcp->tcp_last_sent_len && 15970 snxt != tcp->tcp_suna && 15971 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 15972 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 15973 goto done; 15974 } 15975 15976 /* 15977 * If tcp_zero_win_probe is not set and the tcp->tcp_cork option 15978 * is set, then we have to force TCP not to send partial segment 15979 * (smaller than MSS bytes). We are calculating the usable now 15980 * based on full mss and will save the rest of remaining data for 15981 * later. When tcp_zero_win_probe is set, TCP needs to send out 15982 * something to do zero window probe. 15983 */ 15984 if (tcp->tcp_cork && !tcp->tcp_zero_win_probe) { 15985 if (usable < mss) 15986 goto done; 15987 usable = (usable / mss) * mss; 15988 } 15989 15990 /* Update the latest receive window size in TCP header. */ 15991 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 15992 15993 /* Send the packet. */ 15994 rc = tcp_send(tcp, mss, total_hdr_len, tcp_hdr_len, 15995 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 15996 local_time); 15997 15998 /* Pretend that all we were trying to send really got sent */ 15999 if (rc < 0 && tail_unsent < 0) { 16000 do { 16001 xmit_tail = xmit_tail->b_cont; 16002 xmit_tail->b_prev = local_time; 16003 ASSERT((uintptr_t)(xmit_tail->b_wptr - 16004 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 16005 tail_unsent += (int)(xmit_tail->b_wptr - 16006 xmit_tail->b_rptr); 16007 } while (tail_unsent < 0); 16008 } 16009 done:; 16010 tcp->tcp_xmit_tail = xmit_tail; 16011 tcp->tcp_xmit_tail_unsent = tail_unsent; 16012 len = tcp->tcp_snxt - snxt; 16013 if (len) { 16014 /* 16015 * If new data was sent, need to update the notsack 16016 * list, which is, afterall, data blocks that have 16017 * not been sack'ed by the receiver. New data is 16018 * not sack'ed. 16019 */ 16020 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 16021 /* len is a negative value. */ 16022 tcp->tcp_pipe -= len; 16023 tcp_notsack_update(&(tcp->tcp_notsack_list), 16024 tcp->tcp_snxt, snxt, 16025 &(tcp->tcp_num_notsack_blk), 16026 &(tcp->tcp_cnt_notsack_list)); 16027 } 16028 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 16029 tcp->tcp_rack = tcp->tcp_rnxt; 16030 tcp->tcp_rack_cnt = 0; 16031 if ((snxt + len) == tcp->tcp_suna) { 16032 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 16033 } 16034 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 16035 /* 16036 * Didn't send anything. Make sure the timer is running 16037 * so that we will probe a zero window. 16038 */ 16039 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 16040 } 16041 /* Note that len is the amount we just sent but with a negative sign */ 16042 tcp->tcp_unsent += len; 16043 mutex_enter(&tcp->tcp_non_sq_lock); 16044 if (tcp->tcp_flow_stopped) { 16045 if (TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 16046 tcp_clrqfull(tcp); 16047 } 16048 } else if (TCP_UNSENT_BYTES(tcp) >= connp->conn_sndbuf) { 16049 if (!(tcp->tcp_detached)) 16050 tcp_setqfull(tcp); 16051 } 16052 mutex_exit(&tcp->tcp_non_sq_lock); 16053 } 16054 16055 /* 16056 * tcp_fill_header is called by tcp_send() to fill the outgoing TCP header 16057 * with the template header, as well as other options such as time-stamp, 16058 * ECN and/or SACK. 16059 */ 16060 static void 16061 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 16062 { 16063 tcpha_t *tcp_tmpl, *tcpha; 16064 uint32_t *dst, *src; 16065 int hdrlen; 16066 conn_t *connp = tcp->tcp_connp; 16067 16068 ASSERT(OK_32PTR(rptr)); 16069 16070 /* Template header */ 16071 tcp_tmpl = tcp->tcp_tcpha; 16072 16073 /* Header of outgoing packet */ 16074 tcpha = (tcpha_t *)(rptr + connp->conn_ixa->ixa_ip_hdr_length); 16075 16076 /* dst and src are opaque 32-bit fields, used for copying */ 16077 dst = (uint32_t *)rptr; 16078 src = (uint32_t *)connp->conn_ht_iphc; 16079 hdrlen = connp->conn_ht_iphc_len; 16080 16081 /* Fill time-stamp option if needed */ 16082 if (tcp->tcp_snd_ts_ok) { 16083 U32_TO_BE32((uint32_t)now, 16084 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 16085 U32_TO_BE32(tcp->tcp_ts_recent, 16086 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 16087 } else { 16088 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 16089 } 16090 16091 /* 16092 * Copy the template header; is this really more efficient than 16093 * calling bcopy()? For simple IPv4/TCP, it may be the case, 16094 * but perhaps not for other scenarios. 16095 */ 16096 dst[0] = src[0]; 16097 dst[1] = src[1]; 16098 dst[2] = src[2]; 16099 dst[3] = src[3]; 16100 dst[4] = src[4]; 16101 dst[5] = src[5]; 16102 dst[6] = src[6]; 16103 dst[7] = src[7]; 16104 dst[8] = src[8]; 16105 dst[9] = src[9]; 16106 if (hdrlen -= 40) { 16107 hdrlen >>= 2; 16108 dst += 10; 16109 src += 10; 16110 do { 16111 *dst++ = *src++; 16112 } while (--hdrlen); 16113 } 16114 16115 /* 16116 * Set the ECN info in the TCP header if it is not a zero 16117 * window probe. Zero window probe is only sent in 16118 * tcp_wput_data() and tcp_timer(). 16119 */ 16120 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 16121 SET_ECT(tcp, rptr); 16122 16123 if (tcp->tcp_ecn_echo_on) 16124 tcpha->tha_flags |= TH_ECE; 16125 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 16126 tcpha->tha_flags |= TH_CWR; 16127 tcp->tcp_ecn_cwr_sent = B_TRUE; 16128 } 16129 } 16130 16131 /* Fill in SACK options */ 16132 if (num_sack_blk > 0) { 16133 uchar_t *wptr = rptr + connp->conn_ht_iphc_len; 16134 sack_blk_t *tmp; 16135 int32_t i; 16136 16137 wptr[0] = TCPOPT_NOP; 16138 wptr[1] = TCPOPT_NOP; 16139 wptr[2] = TCPOPT_SACK; 16140 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 16141 sizeof (sack_blk_t); 16142 wptr += TCPOPT_REAL_SACK_LEN; 16143 16144 tmp = tcp->tcp_sack_list; 16145 for (i = 0; i < num_sack_blk; i++) { 16146 U32_TO_BE32(tmp[i].begin, wptr); 16147 wptr += sizeof (tcp_seq); 16148 U32_TO_BE32(tmp[i].end, wptr); 16149 wptr += sizeof (tcp_seq); 16150 } 16151 tcpha->tha_offset_and_reserved += 16152 ((num_sack_blk * 2 + 1) << 4); 16153 } 16154 } 16155 16156 /* 16157 * tcp_send() is called by tcp_wput_data() and returns one of the following: 16158 * 16159 * -1 = failed allocation. 16160 * 0 = success; burst count reached, or usable send window is too small, 16161 * and that we'd rather wait until later before sending again. 16162 */ 16163 static int 16164 tcp_send(tcp_t *tcp, const int mss, const int total_hdr_len, 16165 const int tcp_hdr_len, const int num_sack_blk, int *usable, 16166 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time) 16167 { 16168 int num_burst_seg = tcp->tcp_snd_burst; 16169 int num_lso_seg = 1; 16170 uint_t lso_usable; 16171 boolean_t do_lso_send = B_FALSE; 16172 tcp_stack_t *tcps = tcp->tcp_tcps; 16173 conn_t *connp = tcp->tcp_connp; 16174 ip_xmit_attr_t *ixa = connp->conn_ixa; 16175 16176 /* 16177 * Check LSO possibility. The value of tcp->tcp_lso indicates whether 16178 * the underlying connection is LSO capable. Will check whether having 16179 * enough available data to initiate LSO transmission in the for(){} 16180 * loops. 16181 */ 16182 if (tcp->tcp_lso && (tcp->tcp_valid_bits & ~TCP_FSS_VALID) == 0) 16183 do_lso_send = B_TRUE; 16184 16185 for (;;) { 16186 struct datab *db; 16187 tcpha_t *tcpha; 16188 uint32_t sum; 16189 mblk_t *mp, *mp1; 16190 uchar_t *rptr; 16191 int len; 16192 16193 /* 16194 * Burst count reached, return successfully. 16195 */ 16196 if (num_burst_seg == 0) 16197 break; 16198 16199 /* 16200 * Calculate the maximum payload length we can send at one 16201 * time. 16202 */ 16203 if (do_lso_send) { 16204 /* 16205 * Check whether be able to to do LSO for the current 16206 * available data. 16207 */ 16208 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 16209 lso_usable = MIN(tcp->tcp_lso_max, *usable); 16210 lso_usable = MIN(lso_usable, 16211 num_burst_seg * mss); 16212 16213 num_lso_seg = lso_usable / mss; 16214 if (lso_usable % mss) { 16215 num_lso_seg++; 16216 tcp->tcp_last_sent_len = (ushort_t) 16217 (lso_usable % mss); 16218 } else { 16219 tcp->tcp_last_sent_len = (ushort_t)mss; 16220 } 16221 } else { 16222 do_lso_send = B_FALSE; 16223 num_lso_seg = 1; 16224 lso_usable = mss; 16225 } 16226 } 16227 16228 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 16229 #ifdef DEBUG 16230 DTRACE_PROBE2(tcp_send_lso, int, num_lso_seg, boolean_t, 16231 do_lso_send); 16232 #endif 16233 /* 16234 * Adjust num_burst_seg here. 16235 */ 16236 num_burst_seg -= num_lso_seg; 16237 16238 len = mss; 16239 if (len > *usable) { 16240 ASSERT(do_lso_send == B_FALSE); 16241 16242 len = *usable; 16243 if (len <= 0) { 16244 /* Terminate the loop */ 16245 break; /* success; too small */ 16246 } 16247 /* 16248 * Sender silly-window avoidance. 16249 * Ignore this if we are going to send a 16250 * zero window probe out. 16251 * 16252 * TODO: force data into microscopic window? 16253 * ==> (!pushed || (unsent > usable)) 16254 */ 16255 if (len < (tcp->tcp_max_swnd >> 1) && 16256 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 16257 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 16258 len == 1) && (! tcp->tcp_zero_win_probe)) { 16259 /* 16260 * If the retransmit timer is not running 16261 * we start it so that we will retransmit 16262 * in the case when the receiver has 16263 * decremented the window. 16264 */ 16265 if (*snxt == tcp->tcp_snxt && 16266 *snxt == tcp->tcp_suna) { 16267 /* 16268 * We are not supposed to send 16269 * anything. So let's wait a little 16270 * bit longer before breaking SWS 16271 * avoidance. 16272 * 16273 * What should the value be? 16274 * Suggestion: MAX(init rexmit time, 16275 * tcp->tcp_rto) 16276 */ 16277 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 16278 } 16279 break; /* success; too small */ 16280 } 16281 } 16282 16283 tcpha = tcp->tcp_tcpha; 16284 16285 /* 16286 * The reason to adjust len here is that we need to set flags 16287 * and calculate checksum. 16288 */ 16289 if (do_lso_send) 16290 len = lso_usable; 16291 16292 *usable -= len; /* Approximate - can be adjusted later */ 16293 if (*usable > 0) 16294 tcpha->tha_flags = TH_ACK; 16295 else 16296 tcpha->tha_flags = (TH_ACK | TH_PUSH); 16297 16298 /* 16299 * Prime pump for IP's checksumming on our behalf. 16300 * Include the adjustment for a source route if any. 16301 * In case of LSO, the partial pseudo-header checksum should 16302 * exclusive TCP length, so zero tha_sum before IP calculate 16303 * pseudo-header checksum for partial checksum offload. 16304 */ 16305 if (do_lso_send) { 16306 sum = 0; 16307 } else { 16308 sum = len + tcp_hdr_len + connp->conn_sum; 16309 sum = (sum >> 16) + (sum & 0xFFFF); 16310 } 16311 tcpha->tha_sum = htons(sum); 16312 tcpha->tha_seq = htonl(*snxt); 16313 16314 /* 16315 * Branch off to tcp_xmit_mp() if any of the VALID bits is 16316 * set. For the case when TCP_FSS_VALID is the only valid 16317 * bit (normal active close), branch off only when we think 16318 * that the FIN flag needs to be set. Note for this case, 16319 * that (snxt + len) may not reflect the actual seg_len, 16320 * as len may be further reduced in tcp_xmit_mp(). If len 16321 * gets modified, we will end up here again. 16322 */ 16323 if (tcp->tcp_valid_bits != 0 && 16324 (tcp->tcp_valid_bits != TCP_FSS_VALID || 16325 ((*snxt + len) == tcp->tcp_fss))) { 16326 uchar_t *prev_rptr; 16327 uint32_t prev_snxt = tcp->tcp_snxt; 16328 16329 if (*tail_unsent == 0) { 16330 ASSERT((*xmit_tail)->b_cont != NULL); 16331 *xmit_tail = (*xmit_tail)->b_cont; 16332 prev_rptr = (*xmit_tail)->b_rptr; 16333 *tail_unsent = (int)((*xmit_tail)->b_wptr - 16334 (*xmit_tail)->b_rptr); 16335 } else { 16336 prev_rptr = (*xmit_tail)->b_rptr; 16337 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 16338 *tail_unsent; 16339 } 16340 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 16341 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 16342 /* Restore tcp_snxt so we get amount sent right. */ 16343 tcp->tcp_snxt = prev_snxt; 16344 if (prev_rptr == (*xmit_tail)->b_rptr) { 16345 /* 16346 * If the previous timestamp is still in use, 16347 * don't stomp on it. 16348 */ 16349 if ((*xmit_tail)->b_next == NULL) { 16350 (*xmit_tail)->b_prev = local_time; 16351 (*xmit_tail)->b_next = 16352 (mblk_t *)(uintptr_t)(*snxt); 16353 } 16354 } else 16355 (*xmit_tail)->b_rptr = prev_rptr; 16356 16357 if (mp == NULL) { 16358 return (-1); 16359 } 16360 mp1 = mp->b_cont; 16361 16362 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 16363 tcp->tcp_last_sent_len = (ushort_t)len; 16364 while (mp1->b_cont) { 16365 *xmit_tail = (*xmit_tail)->b_cont; 16366 (*xmit_tail)->b_prev = local_time; 16367 (*xmit_tail)->b_next = 16368 (mblk_t *)(uintptr_t)(*snxt); 16369 mp1 = mp1->b_cont; 16370 } 16371 *snxt += len; 16372 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 16373 BUMP_LOCAL(tcp->tcp_obsegs); 16374 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 16375 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 16376 tcp_send_data(tcp, mp); 16377 continue; 16378 } 16379 16380 *snxt += len; /* Adjust later if we don't send all of len */ 16381 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 16382 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 16383 16384 if (*tail_unsent) { 16385 /* Are the bytes above us in flight? */ 16386 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 16387 if (rptr != (*xmit_tail)->b_rptr) { 16388 *tail_unsent -= len; 16389 if (len <= mss) /* LSO is unusable */ 16390 tcp->tcp_last_sent_len = (ushort_t)len; 16391 len += total_hdr_len; 16392 ixa->ixa_pktlen = len; 16393 16394 if (ixa->ixa_flags & IXAF_IS_IPV4) { 16395 tcp->tcp_ipha->ipha_length = htons(len); 16396 } else { 16397 tcp->tcp_ip6h->ip6_plen = 16398 htons(len - IPV6_HDR_LEN); 16399 } 16400 16401 mp = dupb(*xmit_tail); 16402 if (mp == NULL) { 16403 return (-1); /* out_of_mem */ 16404 } 16405 mp->b_rptr = rptr; 16406 /* 16407 * If the old timestamp is no longer in use, 16408 * sample a new timestamp now. 16409 */ 16410 if ((*xmit_tail)->b_next == NULL) { 16411 (*xmit_tail)->b_prev = local_time; 16412 (*xmit_tail)->b_next = 16413 (mblk_t *)(uintptr_t)(*snxt-len); 16414 } 16415 goto must_alloc; 16416 } 16417 } else { 16418 *xmit_tail = (*xmit_tail)->b_cont; 16419 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 16420 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 16421 *tail_unsent = (int)((*xmit_tail)->b_wptr - 16422 (*xmit_tail)->b_rptr); 16423 } 16424 16425 (*xmit_tail)->b_prev = local_time; 16426 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 16427 16428 *tail_unsent -= len; 16429 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 16430 tcp->tcp_last_sent_len = (ushort_t)len; 16431 16432 len += total_hdr_len; 16433 ixa->ixa_pktlen = len; 16434 16435 if (ixa->ixa_flags & IXAF_IS_IPV4) { 16436 tcp->tcp_ipha->ipha_length = htons(len); 16437 } else { 16438 tcp->tcp_ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 16439 } 16440 16441 mp = dupb(*xmit_tail); 16442 if (mp == NULL) { 16443 return (-1); /* out_of_mem */ 16444 } 16445 16446 len = total_hdr_len; 16447 /* 16448 * There are four reasons to allocate a new hdr mblk: 16449 * 1) The bytes above us are in use by another packet 16450 * 2) We don't have good alignment 16451 * 3) The mblk is being shared 16452 * 4) We don't have enough room for a header 16453 */ 16454 rptr = mp->b_rptr - len; 16455 if (!OK_32PTR(rptr) || 16456 ((db = mp->b_datap), db->db_ref != 2) || 16457 rptr < db->db_base) { 16458 /* NOTE: we assume allocb returns an OK_32PTR */ 16459 16460 must_alloc:; 16461 mp1 = allocb(connp->conn_ht_iphc_allocated + 16462 tcps->tcps_wroff_xtra, BPRI_MED); 16463 if (mp1 == NULL) { 16464 freemsg(mp); 16465 return (-1); /* out_of_mem */ 16466 } 16467 mp1->b_cont = mp; 16468 mp = mp1; 16469 /* Leave room for Link Level header */ 16470 len = total_hdr_len; 16471 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 16472 mp->b_wptr = &rptr[len]; 16473 } 16474 16475 /* 16476 * Fill in the header using the template header, and add 16477 * options such as time-stamp, ECN and/or SACK, as needed. 16478 */ 16479 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 16480 16481 mp->b_rptr = rptr; 16482 16483 if (*tail_unsent) { 16484 int spill = *tail_unsent; 16485 16486 mp1 = mp->b_cont; 16487 if (mp1 == NULL) 16488 mp1 = mp; 16489 16490 /* 16491 * If we're a little short, tack on more mblks until 16492 * there is no more spillover. 16493 */ 16494 while (spill < 0) { 16495 mblk_t *nmp; 16496 int nmpsz; 16497 16498 nmp = (*xmit_tail)->b_cont; 16499 nmpsz = MBLKL(nmp); 16500 16501 /* 16502 * Excess data in mblk; can we split it? 16503 * If LSO is enabled for the connection, 16504 * keep on splitting as this is a transient 16505 * send path. 16506 */ 16507 if (!do_lso_send && (spill + nmpsz > 0)) { 16508 /* 16509 * Don't split if stream head was 16510 * told to break up larger writes 16511 * into smaller ones. 16512 */ 16513 if (tcp->tcp_maxpsz_multiplier > 0) 16514 break; 16515 16516 /* 16517 * Next mblk is less than SMSS/2 16518 * rounded up to nearest 64-byte; 16519 * let it get sent as part of the 16520 * next segment. 16521 */ 16522 if (tcp->tcp_localnet && 16523 !tcp->tcp_cork && 16524 (nmpsz < roundup((mss >> 1), 64))) 16525 break; 16526 } 16527 16528 *xmit_tail = nmp; 16529 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 16530 /* Stash for rtt use later */ 16531 (*xmit_tail)->b_prev = local_time; 16532 (*xmit_tail)->b_next = 16533 (mblk_t *)(uintptr_t)(*snxt - len); 16534 mp1->b_cont = dupb(*xmit_tail); 16535 mp1 = mp1->b_cont; 16536 16537 spill += nmpsz; 16538 if (mp1 == NULL) { 16539 *tail_unsent = spill; 16540 freemsg(mp); 16541 return (-1); /* out_of_mem */ 16542 } 16543 } 16544 16545 /* Trim back any surplus on the last mblk */ 16546 if (spill >= 0) { 16547 mp1->b_wptr -= spill; 16548 *tail_unsent = spill; 16549 } else { 16550 /* 16551 * We did not send everything we could in 16552 * order to remain within the b_cont limit. 16553 */ 16554 *usable -= spill; 16555 *snxt += spill; 16556 tcp->tcp_last_sent_len += spill; 16557 UPDATE_MIB(&tcps->tcps_mib, 16558 tcpOutDataBytes, spill); 16559 /* 16560 * Adjust the checksum 16561 */ 16562 tcpha = (tcpha_t *)(rptr + 16563 ixa->ixa_ip_hdr_length); 16564 sum += spill; 16565 sum = (sum >> 16) + (sum & 0xFFFF); 16566 tcpha->tha_sum = htons(sum); 16567 if (connp->conn_ipversion == IPV4_VERSION) { 16568 sum = ntohs( 16569 ((ipha_t *)rptr)->ipha_length) + 16570 spill; 16571 ((ipha_t *)rptr)->ipha_length = 16572 htons(sum); 16573 } else { 16574 sum = ntohs( 16575 ((ip6_t *)rptr)->ip6_plen) + 16576 spill; 16577 ((ip6_t *)rptr)->ip6_plen = 16578 htons(sum); 16579 } 16580 ixa->ixa_pktlen += spill; 16581 *tail_unsent = 0; 16582 } 16583 } 16584 if (tcp->tcp_ip_forward_progress) { 16585 tcp->tcp_ip_forward_progress = B_FALSE; 16586 ixa->ixa_flags |= IXAF_REACH_CONF; 16587 } else { 16588 ixa->ixa_flags &= ~IXAF_REACH_CONF; 16589 } 16590 16591 if (do_lso_send) { 16592 /* Append LSO information to the mp. */ 16593 lso_info_set(mp, mss, HW_LSO); 16594 ixa->ixa_fragsize = IP_MAXPACKET; 16595 ixa->ixa_extra_ident = num_lso_seg - 1; 16596 16597 DTRACE_PROBE2(tcp_send_lso, int, num_lso_seg, 16598 boolean_t, B_TRUE); 16599 16600 tcp_send_data(tcp, mp); 16601 16602 /* 16603 * Restore values of ixa_fragsize and ixa_extra_ident. 16604 */ 16605 ixa->ixa_fragsize = ixa->ixa_pmtu; 16606 ixa->ixa_extra_ident = 0; 16607 tcp->tcp_obsegs += num_lso_seg; 16608 TCP_STAT(tcps, tcp_lso_times); 16609 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 16610 } else { 16611 /* 16612 * Make sure to clean up LSO information. Wherever a 16613 * new mp uses the prepended header room after dupb(), 16614 * lso_info_cleanup() should be called. 16615 */ 16616 lso_info_cleanup(mp); 16617 tcp_send_data(tcp, mp); 16618 BUMP_LOCAL(tcp->tcp_obsegs); 16619 } 16620 } 16621 16622 return (0); 16623 } 16624 16625 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 16626 static void 16627 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 16628 { 16629 uchar_t fval = *mp->b_rptr; 16630 mblk_t *tail; 16631 conn_t *connp = tcp->tcp_connp; 16632 queue_t *q = connp->conn_wq; 16633 16634 /* TODO: How should flush interact with urgent data? */ 16635 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 16636 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 16637 /* 16638 * Flush only data that has not yet been put on the wire. If 16639 * we flush data that we have already transmitted, life, as we 16640 * know it, may come to an end. 16641 */ 16642 tail = tcp->tcp_xmit_tail; 16643 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 16644 tcp->tcp_xmit_tail_unsent = 0; 16645 tcp->tcp_unsent = 0; 16646 if (tail->b_wptr != tail->b_rptr) 16647 tail = tail->b_cont; 16648 if (tail) { 16649 mblk_t **excess = &tcp->tcp_xmit_head; 16650 for (;;) { 16651 mblk_t *mp1 = *excess; 16652 if (mp1 == tail) 16653 break; 16654 tcp->tcp_xmit_tail = mp1; 16655 tcp->tcp_xmit_last = mp1; 16656 excess = &mp1->b_cont; 16657 } 16658 *excess = NULL; 16659 tcp_close_mpp(&tail); 16660 if (tcp->tcp_snd_zcopy_aware) 16661 tcp_zcopy_notify(tcp); 16662 } 16663 /* 16664 * We have no unsent data, so unsent must be less than 16665 * conn_sndlowat, so re-enable flow. 16666 */ 16667 mutex_enter(&tcp->tcp_non_sq_lock); 16668 if (tcp->tcp_flow_stopped) { 16669 tcp_clrqfull(tcp); 16670 } 16671 mutex_exit(&tcp->tcp_non_sq_lock); 16672 } 16673 /* 16674 * TODO: you can't just flush these, you have to increase rwnd for one 16675 * thing. For another, how should urgent data interact? 16676 */ 16677 if (fval & FLUSHR) { 16678 *mp->b_rptr = fval & ~FLUSHW; 16679 /* XXX */ 16680 qreply(q, mp); 16681 return; 16682 } 16683 freemsg(mp); 16684 } 16685 16686 /* 16687 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 16688 * messages. 16689 */ 16690 static void 16691 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 16692 { 16693 mblk_t *mp1; 16694 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 16695 STRUCT_HANDLE(strbuf, sb); 16696 uint_t addrlen; 16697 conn_t *connp = tcp->tcp_connp; 16698 queue_t *q = connp->conn_wq; 16699 16700 /* Make sure it is one of ours. */ 16701 switch (iocp->ioc_cmd) { 16702 case TI_GETMYNAME: 16703 case TI_GETPEERNAME: 16704 break; 16705 default: 16706 /* 16707 * If the conn is closing, then error the ioctl here. Otherwise 16708 * use the CONN_IOCTLREF_* macros to hold off tcp_close until 16709 * we're done here. We also need to decrement the ioctlref which 16710 * was bumped in either tcp_ioctl or tcp_wput_ioctl. 16711 */ 16712 mutex_enter(&connp->conn_lock); 16713 if (connp->conn_state_flags & CONN_CLOSING) { 16714 mutex_exit(&connp->conn_lock); 16715 iocp = (struct iocblk *)mp->b_rptr; 16716 iocp->ioc_error = EINVAL; 16717 mp->b_datap->db_type = M_IOCNAK; 16718 iocp->ioc_count = 0; 16719 qreply(q, mp); 16720 return; 16721 } 16722 16723 CONN_INC_IOCTLREF_LOCKED(connp); 16724 ip_wput_nondata(q, mp); 16725 CONN_DEC_IOCTLREF(connp); 16726 return; 16727 } 16728 switch (mi_copy_state(q, mp, &mp1)) { 16729 case -1: 16730 return; 16731 case MI_COPY_CASE(MI_COPY_IN, 1): 16732 break; 16733 case MI_COPY_CASE(MI_COPY_OUT, 1): 16734 /* Copy out the strbuf. */ 16735 mi_copyout(q, mp); 16736 return; 16737 case MI_COPY_CASE(MI_COPY_OUT, 2): 16738 /* All done. */ 16739 mi_copy_done(q, mp, 0); 16740 return; 16741 default: 16742 mi_copy_done(q, mp, EPROTO); 16743 return; 16744 } 16745 /* Check alignment of the strbuf */ 16746 if (!OK_32PTR(mp1->b_rptr)) { 16747 mi_copy_done(q, mp, EINVAL); 16748 return; 16749 } 16750 16751 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 16752 16753 if (connp->conn_family == AF_INET) 16754 addrlen = sizeof (sin_t); 16755 else 16756 addrlen = sizeof (sin6_t); 16757 16758 if (STRUCT_FGET(sb, maxlen) < addrlen) { 16759 mi_copy_done(q, mp, EINVAL); 16760 return; 16761 } 16762 16763 switch (iocp->ioc_cmd) { 16764 case TI_GETMYNAME: 16765 break; 16766 case TI_GETPEERNAME: 16767 if (tcp->tcp_state < TCPS_SYN_RCVD) { 16768 mi_copy_done(q, mp, ENOTCONN); 16769 return; 16770 } 16771 break; 16772 } 16773 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 16774 if (!mp1) 16775 return; 16776 16777 STRUCT_FSET(sb, len, addrlen); 16778 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 16779 case TI_GETMYNAME: 16780 (void) conn_getsockname(connp, (struct sockaddr *)mp1->b_wptr, 16781 &addrlen); 16782 break; 16783 case TI_GETPEERNAME: 16784 (void) conn_getpeername(connp, (struct sockaddr *)mp1->b_wptr, 16785 &addrlen); 16786 break; 16787 } 16788 mp1->b_wptr += addrlen; 16789 /* Copy out the address */ 16790 mi_copyout(q, mp); 16791 } 16792 16793 static void 16794 tcp_use_pure_tpi(tcp_t *tcp) 16795 { 16796 conn_t *connp = tcp->tcp_connp; 16797 16798 #ifdef _ILP32 16799 tcp->tcp_acceptor_id = (t_uscalar_t)connp->conn_rq; 16800 #else 16801 tcp->tcp_acceptor_id = connp->conn_dev; 16802 #endif 16803 /* 16804 * Insert this socket into the acceptor hash. 16805 * We might need it for T_CONN_RES message 16806 */ 16807 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 16808 16809 tcp->tcp_issocket = B_FALSE; 16810 TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback); 16811 } 16812 16813 /* 16814 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 16815 * messages. 16816 */ 16817 /* ARGSUSED */ 16818 static void 16819 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 16820 { 16821 conn_t *connp = (conn_t *)arg; 16822 tcp_t *tcp = connp->conn_tcp; 16823 queue_t *q = connp->conn_wq; 16824 struct iocblk *iocp; 16825 16826 ASSERT(DB_TYPE(mp) == M_IOCTL); 16827 /* 16828 * Try and ASSERT the minimum possible references on the 16829 * conn early enough. Since we are executing on write side, 16830 * the connection is obviously not detached and that means 16831 * there is a ref each for TCP and IP. Since we are behind 16832 * the squeue, the minimum references needed are 3. If the 16833 * conn is in classifier hash list, there should be an 16834 * extra ref for that (we check both the possibilities). 16835 */ 16836 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16837 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16838 16839 iocp = (struct iocblk *)mp->b_rptr; 16840 switch (iocp->ioc_cmd) { 16841 case _SIOCSOCKFALLBACK: 16842 /* 16843 * Either sockmod is about to be popped and the socket 16844 * would now be treated as a plain stream, or a module 16845 * is about to be pushed so we could no longer use read- 16846 * side synchronous streams for fused loopback tcp. 16847 * Drain any queued data and disable direct sockfs 16848 * interface from now on. 16849 */ 16850 if (!tcp->tcp_issocket) { 16851 DB_TYPE(mp) = M_IOCNAK; 16852 iocp->ioc_error = EINVAL; 16853 } else { 16854 tcp_use_pure_tpi(tcp); 16855 DB_TYPE(mp) = M_IOCACK; 16856 iocp->ioc_error = 0; 16857 } 16858 iocp->ioc_count = 0; 16859 iocp->ioc_rval = 0; 16860 qreply(q, mp); 16861 return; 16862 } 16863 16864 /* 16865 * If the conn is closing, then error the ioctl here. Otherwise bump the 16866 * conn_ioctlref to hold off tcp_close until we're done here. 16867 */ 16868 mutex_enter(&(connp)->conn_lock); 16869 if ((connp)->conn_state_flags & CONN_CLOSING) { 16870 mutex_exit(&(connp)->conn_lock); 16871 iocp->ioc_error = EINVAL; 16872 mp->b_datap->db_type = M_IOCNAK; 16873 iocp->ioc_count = 0; 16874 qreply(q, mp); 16875 return; 16876 } 16877 16878 CONN_INC_IOCTLREF_LOCKED(connp); 16879 ip_wput_nondata(q, mp); 16880 CONN_DEC_IOCTLREF(connp); 16881 } 16882 16883 /* 16884 * This routine is called by tcp_wput() to handle all TPI requests. 16885 */ 16886 /* ARGSUSED */ 16887 static void 16888 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 16889 { 16890 conn_t *connp = (conn_t *)arg; 16891 tcp_t *tcp = connp->conn_tcp; 16892 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 16893 uchar_t *rptr; 16894 t_scalar_t type; 16895 cred_t *cr; 16896 16897 /* 16898 * Try and ASSERT the minimum possible references on the 16899 * conn early enough. Since we are executing on write side, 16900 * the connection is obviously not detached and that means 16901 * there is a ref each for TCP and IP. Since we are behind 16902 * the squeue, the minimum references needed are 3. If the 16903 * conn is in classifier hash list, there should be an 16904 * extra ref for that (we check both the possibilities). 16905 */ 16906 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16907 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16908 16909 rptr = mp->b_rptr; 16910 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 16911 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 16912 type = ((union T_primitives *)rptr)->type; 16913 if (type == T_EXDATA_REQ) { 16914 tcp_output_urgent(connp, mp, arg2, NULL); 16915 } else if (type != T_DATA_REQ) { 16916 goto non_urgent_data; 16917 } else { 16918 /* TODO: options, flags, ... from user */ 16919 /* Set length to zero for reclamation below */ 16920 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 16921 freeb(mp); 16922 } 16923 return; 16924 } else { 16925 if (connp->conn_debug) { 16926 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 16927 "tcp_wput_proto, dropping one..."); 16928 } 16929 freemsg(mp); 16930 return; 16931 } 16932 16933 non_urgent_data: 16934 16935 switch ((int)tprim->type) { 16936 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 16937 /* 16938 * save the kssl_ent_t from the next block, and convert this 16939 * back to a normal bind_req. 16940 */ 16941 if (mp->b_cont != NULL) { 16942 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 16943 16944 if (tcp->tcp_kssl_ent != NULL) { 16945 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 16946 KSSL_NO_PROXY); 16947 tcp->tcp_kssl_ent = NULL; 16948 } 16949 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 16950 sizeof (kssl_ent_t)); 16951 kssl_hold_ent(tcp->tcp_kssl_ent); 16952 freemsg(mp->b_cont); 16953 mp->b_cont = NULL; 16954 } 16955 tprim->type = T_BIND_REQ; 16956 16957 /* FALLTHROUGH */ 16958 case O_T_BIND_REQ: /* bind request */ 16959 case T_BIND_REQ: /* new semantics bind request */ 16960 tcp_tpi_bind(tcp, mp); 16961 break; 16962 case T_UNBIND_REQ: /* unbind request */ 16963 tcp_tpi_unbind(tcp, mp); 16964 break; 16965 case O_T_CONN_RES: /* old connection response XXX */ 16966 case T_CONN_RES: /* connection response */ 16967 tcp_tli_accept(tcp, mp); 16968 break; 16969 case T_CONN_REQ: /* connection request */ 16970 tcp_tpi_connect(tcp, mp); 16971 break; 16972 case T_DISCON_REQ: /* disconnect request */ 16973 tcp_disconnect(tcp, mp); 16974 break; 16975 case T_CAPABILITY_REQ: 16976 tcp_capability_req(tcp, mp); /* capability request */ 16977 break; 16978 case T_INFO_REQ: /* information request */ 16979 tcp_info_req(tcp, mp); 16980 break; 16981 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 16982 case T_OPTMGMT_REQ: 16983 /* 16984 * Note: no support for snmpcom_req() through new 16985 * T_OPTMGMT_REQ. See comments in ip.c 16986 */ 16987 16988 /* 16989 * All Solaris components should pass a db_credp 16990 * for this TPI message, hence we ASSERT. 16991 * But in case there is some other M_PROTO that looks 16992 * like a TPI message sent by some other kernel 16993 * component, we check and return an error. 16994 */ 16995 cr = msg_getcred(mp, NULL); 16996 ASSERT(cr != NULL); 16997 if (cr == NULL) { 16998 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 16999 return; 17000 } 17001 /* 17002 * If EINPROGRESS is returned, the request has been queued 17003 * for subsequent processing by ip_restart_optmgmt(), which 17004 * will do the CONN_DEC_REF(). 17005 */ 17006 if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) { 17007 svr4_optcom_req(connp->conn_wq, mp, cr, &tcp_opt_obj); 17008 } else { 17009 tpi_optcom_req(connp->conn_wq, mp, cr, &tcp_opt_obj); 17010 } 17011 break; 17012 17013 case T_UNITDATA_REQ: /* unitdata request */ 17014 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 17015 break; 17016 case T_ORDREL_REQ: /* orderly release req */ 17017 freemsg(mp); 17018 17019 if (tcp->tcp_fused) 17020 tcp_unfuse(tcp); 17021 17022 if (tcp_xmit_end(tcp) != 0) { 17023 /* 17024 * We were crossing FINs and got a reset from 17025 * the other side. Just ignore it. 17026 */ 17027 if (connp->conn_debug) { 17028 (void) strlog(TCP_MOD_ID, 0, 1, 17029 SL_ERROR|SL_TRACE, 17030 "tcp_wput_proto, T_ORDREL_REQ out of " 17031 "state %s", 17032 tcp_display(tcp, NULL, 17033 DISP_ADDR_AND_PORT)); 17034 } 17035 } 17036 break; 17037 case T_ADDR_REQ: 17038 tcp_addr_req(tcp, mp); 17039 break; 17040 default: 17041 if (connp->conn_debug) { 17042 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 17043 "tcp_wput_proto, bogus TPI msg, type %d", 17044 tprim->type); 17045 } 17046 /* 17047 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 17048 * to recover. 17049 */ 17050 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 17051 break; 17052 } 17053 } 17054 17055 /* 17056 * The TCP write service routine should never be called... 17057 */ 17058 /* ARGSUSED */ 17059 static void 17060 tcp_wsrv(queue_t *q) 17061 { 17062 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 17063 17064 TCP_STAT(tcps, tcp_wsrv_called); 17065 } 17066 17067 /* 17068 * Send out a control packet on the tcp connection specified. This routine 17069 * is typically called where we need a simple ACK or RST generated. 17070 */ 17071 static void 17072 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 17073 { 17074 uchar_t *rptr; 17075 tcpha_t *tcpha; 17076 ipha_t *ipha = NULL; 17077 ip6_t *ip6h = NULL; 17078 uint32_t sum; 17079 int total_hdr_len; 17080 int ip_hdr_len; 17081 mblk_t *mp; 17082 tcp_stack_t *tcps = tcp->tcp_tcps; 17083 conn_t *connp = tcp->tcp_connp; 17084 ip_xmit_attr_t *ixa = connp->conn_ixa; 17085 17086 /* 17087 * Save sum for use in source route later. 17088 */ 17089 sum = connp->conn_ht_ulp_len + connp->conn_sum; 17090 total_hdr_len = connp->conn_ht_iphc_len; 17091 ip_hdr_len = ixa->ixa_ip_hdr_length; 17092 17093 /* If a text string is passed in with the request, pass it to strlog. */ 17094 if (str != NULL && connp->conn_debug) { 17095 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 17096 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 17097 str, seq, ack, ctl); 17098 } 17099 mp = allocb(connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra, 17100 BPRI_MED); 17101 if (mp == NULL) { 17102 return; 17103 } 17104 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 17105 mp->b_rptr = rptr; 17106 mp->b_wptr = &rptr[total_hdr_len]; 17107 bcopy(connp->conn_ht_iphc, rptr, total_hdr_len); 17108 17109 ixa->ixa_pktlen = total_hdr_len; 17110 17111 if (ixa->ixa_flags & IXAF_IS_IPV4) { 17112 ipha = (ipha_t *)rptr; 17113 ipha->ipha_length = htons(total_hdr_len); 17114 } else { 17115 ip6h = (ip6_t *)rptr; 17116 ip6h->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); 17117 } 17118 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 17119 tcpha->tha_flags = (uint8_t)ctl; 17120 if (ctl & TH_RST) { 17121 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 17122 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17123 /* 17124 * Don't send TSopt w/ TH_RST packets per RFC 1323. 17125 */ 17126 if (tcp->tcp_snd_ts_ok && 17127 tcp->tcp_state > TCPS_SYN_SENT) { 17128 mp->b_wptr = &rptr[total_hdr_len - TCPOPT_REAL_TS_LEN]; 17129 *(mp->b_wptr) = TCPOPT_EOL; 17130 17131 ixa->ixa_pktlen = total_hdr_len - TCPOPT_REAL_TS_LEN; 17132 17133 if (connp->conn_ipversion == IPV4_VERSION) { 17134 ipha->ipha_length = htons(total_hdr_len - 17135 TCPOPT_REAL_TS_LEN); 17136 } else { 17137 ip6h->ip6_plen = htons(total_hdr_len - 17138 IPV6_HDR_LEN - TCPOPT_REAL_TS_LEN); 17139 } 17140 tcpha->tha_offset_and_reserved -= (3 << 4); 17141 sum -= TCPOPT_REAL_TS_LEN; 17142 } 17143 } 17144 if (ctl & TH_ACK) { 17145 if (tcp->tcp_snd_ts_ok) { 17146 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 17147 17148 U32_TO_BE32(llbolt, 17149 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 17150 U32_TO_BE32(tcp->tcp_ts_recent, 17151 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 17152 } 17153 17154 /* Update the latest receive window size in TCP header. */ 17155 tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 17156 /* Track what we sent to the peer */ 17157 tcp->tcp_tcpha->tha_win = tcpha->tha_win; 17158 tcp->tcp_rack = ack; 17159 tcp->tcp_rack_cnt = 0; 17160 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 17161 } 17162 BUMP_LOCAL(tcp->tcp_obsegs); 17163 tcpha->tha_seq = htonl(seq); 17164 tcpha->tha_ack = htonl(ack); 17165 /* 17166 * Include the adjustment for a source route if any. 17167 */ 17168 sum = (sum >> 16) + (sum & 0xFFFF); 17169 tcpha->tha_sum = htons(sum); 17170 tcp_send_data(tcp, mp); 17171 } 17172 17173 /* 17174 * If this routine returns B_TRUE, TCP can generate a RST in response 17175 * to a segment. If it returns B_FALSE, TCP should not respond. 17176 */ 17177 static boolean_t 17178 tcp_send_rst_chk(tcp_stack_t *tcps) 17179 { 17180 int64_t now; 17181 17182 /* 17183 * TCP needs to protect itself from generating too many RSTs. 17184 * This can be a DoS attack by sending us random segments 17185 * soliciting RSTs. 17186 * 17187 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 17188 * in each 1 second interval. In this way, TCP still generate 17189 * RSTs in normal cases but when under attack, the impact is 17190 * limited. 17191 */ 17192 if (tcps->tcps_rst_sent_rate_enabled != 0) { 17193 now = ddi_get_lbolt64(); 17194 if (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 17195 1*SECONDS) { 17196 tcps->tcps_last_rst_intrvl = now; 17197 tcps->tcps_rst_cnt = 1; 17198 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 17199 return (B_FALSE); 17200 } 17201 } 17202 return (B_TRUE); 17203 } 17204 17205 /* 17206 * Generate a reset based on an inbound packet, connp is set by caller 17207 * when RST is in response to an unexpected inbound packet for which 17208 * there is active tcp state in the system. 17209 * 17210 * IPSEC NOTE : Try to send the reply with the same protection as it came 17211 * in. We have the ip_recv_attr_t which is reversed to form the ip_xmit_attr_t. 17212 * That way the packet will go out at the same level of protection as it 17213 * came in with. 17214 */ 17215 static void 17216 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, uint32_t ack, int ctl, 17217 ip_recv_attr_t *ira, ip_stack_t *ipst, conn_t *connp) 17218 { 17219 ipha_t *ipha = NULL; 17220 ip6_t *ip6h = NULL; 17221 ushort_t len; 17222 tcpha_t *tcpha; 17223 int i; 17224 ipaddr_t v4addr; 17225 in6_addr_t v6addr; 17226 netstack_t *ns = ipst->ips_netstack; 17227 tcp_stack_t *tcps = ns->netstack_tcp; 17228 ip_xmit_attr_t ixas, *ixa; 17229 uint_t ip_hdr_len = ira->ira_ip_hdr_length; 17230 boolean_t need_refrele = B_FALSE; /* ixa_refrele(ixa) */ 17231 ushort_t port; 17232 17233 if (!tcp_send_rst_chk(tcps)) { 17234 TCP_STAT(tcps, tcp_rst_unsent); 17235 freemsg(mp); 17236 return; 17237 } 17238 17239 /* 17240 * If connp != NULL we use conn_ixa to keep IP_NEXTHOP and other 17241 * options from the listener. In that case the caller must ensure that 17242 * we are running on the listener = connp squeue. 17243 * 17244 * We get a safe copy of conn_ixa so we don't need to restore anything 17245 * we or ip_output_simple might change in the ixa. 17246 */ 17247 if (connp != NULL) { 17248 ASSERT(connp->conn_on_sqp); 17249 17250 ixa = conn_get_ixa_exclusive(connp); 17251 if (ixa == NULL) { 17252 TCP_STAT(tcps, tcp_rst_unsent); 17253 freemsg(mp); 17254 return; 17255 } 17256 need_refrele = B_TRUE; 17257 } else { 17258 bzero(&ixas, sizeof (ixas)); 17259 ixa = &ixas; 17260 /* 17261 * IXAF_VERIFY_SOURCE is overkill since we know the 17262 * packet was for us. 17263 */ 17264 ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE; 17265 ixa->ixa_protocol = IPPROTO_TCP; 17266 ixa->ixa_zoneid = ira->ira_zoneid; 17267 ixa->ixa_ifindex = 0; 17268 ixa->ixa_ipst = ipst; 17269 ixa->ixa_cred = kcred; 17270 ixa->ixa_cpid = NOPID; 17271 } 17272 17273 if (str && tcps->tcps_dbg) { 17274 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 17275 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 17276 "flags 0x%x", 17277 str, seq, ack, ctl); 17278 } 17279 if (mp->b_datap->db_ref != 1) { 17280 mblk_t *mp1 = copyb(mp); 17281 freemsg(mp); 17282 mp = mp1; 17283 if (mp == NULL) 17284 goto done; 17285 } else if (mp->b_cont) { 17286 freemsg(mp->b_cont); 17287 mp->b_cont = NULL; 17288 DB_CKSUMFLAGS(mp) = 0; 17289 } 17290 /* 17291 * We skip reversing source route here. 17292 * (for now we replace all IP options with EOL) 17293 */ 17294 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 17295 ipha = (ipha_t *)mp->b_rptr; 17296 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 17297 mp->b_rptr[i] = IPOPT_EOL; 17298 /* 17299 * Make sure that src address isn't flagrantly invalid. 17300 * Not all broadcast address checking for the src address 17301 * is possible, since we don't know the netmask of the src 17302 * addr. No check for destination address is done, since 17303 * IP will not pass up a packet with a broadcast dest 17304 * address to TCP. Similar checks are done below for IPv6. 17305 */ 17306 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 17307 CLASSD(ipha->ipha_src)) { 17308 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 17309 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 17310 freemsg(mp); 17311 goto done; 17312 } 17313 } else { 17314 ip6h = (ip6_t *)mp->b_rptr; 17315 17316 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 17317 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 17318 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 17319 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 17320 freemsg(mp); 17321 goto done; 17322 } 17323 17324 /* Remove any extension headers assuming partial overlay */ 17325 if (ip_hdr_len > IPV6_HDR_LEN) { 17326 uint8_t *to; 17327 17328 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 17329 ovbcopy(ip6h, to, IPV6_HDR_LEN); 17330 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 17331 ip_hdr_len = IPV6_HDR_LEN; 17332 ip6h = (ip6_t *)mp->b_rptr; 17333 ip6h->ip6_nxt = IPPROTO_TCP; 17334 } 17335 } 17336 tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; 17337 if (tcpha->tha_flags & TH_RST) { 17338 freemsg(mp); 17339 goto done; 17340 } 17341 tcpha->tha_offset_and_reserved = (5 << 4); 17342 len = ip_hdr_len + sizeof (tcpha_t); 17343 mp->b_wptr = &mp->b_rptr[len]; 17344 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 17345 ipha->ipha_length = htons(len); 17346 /* Swap addresses */ 17347 v4addr = ipha->ipha_src; 17348 ipha->ipha_src = ipha->ipha_dst; 17349 ipha->ipha_dst = v4addr; 17350 ipha->ipha_ident = 0; 17351 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 17352 ixa->ixa_flags |= IXAF_IS_IPV4; 17353 ixa->ixa_ip_hdr_length = ip_hdr_len; 17354 } else { 17355 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 17356 /* Swap addresses */ 17357 v6addr = ip6h->ip6_src; 17358 ip6h->ip6_src = ip6h->ip6_dst; 17359 ip6h->ip6_dst = v6addr; 17360 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 17361 ixa->ixa_flags &= ~IXAF_IS_IPV4; 17362 17363 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_dst)) { 17364 ixa->ixa_flags |= IXAF_SCOPEID_SET; 17365 ixa->ixa_scopeid = ira->ira_ruifindex; 17366 } 17367 ixa->ixa_ip_hdr_length = IPV6_HDR_LEN; 17368 } 17369 ixa->ixa_pktlen = len; 17370 17371 /* Swap the ports */ 17372 port = tcpha->tha_fport; 17373 tcpha->tha_fport = tcpha->tha_lport; 17374 tcpha->tha_lport = port; 17375 17376 tcpha->tha_ack = htonl(ack); 17377 tcpha->tha_seq = htonl(seq); 17378 tcpha->tha_win = 0; 17379 tcpha->tha_sum = htons(sizeof (tcpha_t)); 17380 tcpha->tha_flags = (uint8_t)ctl; 17381 if (ctl & TH_RST) { 17382 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 17383 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17384 } 17385 17386 /* Discard any old label */ 17387 if (ixa->ixa_free_flags & IXA_FREE_TSL) { 17388 ASSERT(ixa->ixa_tsl != NULL); 17389 label_rele(ixa->ixa_tsl); 17390 ixa->ixa_free_flags &= ~IXA_FREE_TSL; 17391 } 17392 ixa->ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 17393 17394 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 17395 /* 17396 * Apply IPsec based on how IPsec was applied to 17397 * the packet that caused the RST. 17398 */ 17399 if (!ipsec_in_to_out(ira, ixa, mp, ipha, ip6h)) { 17400 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 17401 /* Note: mp already consumed and ip_drop_packet done */ 17402 goto done; 17403 } 17404 } else { 17405 /* 17406 * This is in clear. The RST message we are building 17407 * here should go out in clear, independent of our policy. 17408 */ 17409 ixa->ixa_flags |= IXAF_NO_IPSEC; 17410 } 17411 17412 /* 17413 * NOTE: one might consider tracing a TCP packet here, but 17414 * this function has no active TCP state and no tcp structure 17415 * that has a trace buffer. If we traced here, we would have 17416 * to keep a local trace buffer in tcp_record_trace(). 17417 */ 17418 17419 (void) ip_output_simple(mp, ixa); 17420 done: 17421 ixa_cleanup(ixa); 17422 if (need_refrele) { 17423 ASSERT(ixa != &ixas); 17424 ixa_refrele(ixa); 17425 } 17426 } 17427 17428 /* 17429 * Initiate closedown sequence on an active connection. (May be called as 17430 * writer.) Return value zero for OK return, non-zero for error return. 17431 */ 17432 static int 17433 tcp_xmit_end(tcp_t *tcp) 17434 { 17435 mblk_t *mp; 17436 tcp_stack_t *tcps = tcp->tcp_tcps; 17437 iulp_t uinfo; 17438 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 17439 conn_t *connp = tcp->tcp_connp; 17440 17441 if (tcp->tcp_state < TCPS_SYN_RCVD || 17442 tcp->tcp_state > TCPS_CLOSE_WAIT) { 17443 /* 17444 * Invalid state, only states TCPS_SYN_RCVD, 17445 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 17446 */ 17447 return (-1); 17448 } 17449 17450 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 17451 tcp->tcp_valid_bits |= TCP_FSS_VALID; 17452 /* 17453 * If there is nothing more unsent, send the FIN now. 17454 * Otherwise, it will go out with the last segment. 17455 */ 17456 if (tcp->tcp_unsent == 0) { 17457 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 17458 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 17459 17460 if (mp) { 17461 tcp_send_data(tcp, mp); 17462 } else { 17463 /* 17464 * Couldn't allocate msg. Pretend we got it out. 17465 * Wait for rexmit timeout. 17466 */ 17467 tcp->tcp_snxt = tcp->tcp_fss + 1; 17468 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17469 } 17470 17471 /* 17472 * If needed, update tcp_rexmit_snxt as tcp_snxt is 17473 * changed. 17474 */ 17475 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 17476 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 17477 } 17478 } else { 17479 /* 17480 * If tcp->tcp_cork is set, then the data will not get sent, 17481 * so we have to check that and unset it first. 17482 */ 17483 if (tcp->tcp_cork) 17484 tcp->tcp_cork = B_FALSE; 17485 tcp_wput_data(tcp, NULL, B_FALSE); 17486 } 17487 17488 /* 17489 * If TCP does not get enough samples of RTT or tcp_rtt_updates 17490 * is 0, don't update the cache. 17491 */ 17492 if (tcps->tcps_rtt_updates == 0 || 17493 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 17494 return (0); 17495 17496 /* 17497 * We do not have a good algorithm to update ssthresh at this time. 17498 * So don't do any update. 17499 */ 17500 bzero(&uinfo, sizeof (uinfo)); 17501 uinfo.iulp_rtt = tcp->tcp_rtt_sa; 17502 uinfo.iulp_rtt_sd = tcp->tcp_rtt_sd; 17503 17504 /* 17505 * Note that uinfo is kept for conn_faddr in the DCE. Could update even 17506 * if source routed but we don't. 17507 */ 17508 if (connp->conn_ipversion == IPV4_VERSION) { 17509 if (connp->conn_faddr_v4 != tcp->tcp_ipha->ipha_dst) { 17510 return (0); 17511 } 17512 (void) dce_update_uinfo_v4(connp->conn_faddr_v4, &uinfo, ipst); 17513 } else { 17514 uint_t ifindex; 17515 17516 if (!(IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, 17517 &tcp->tcp_ip6h->ip6_dst))) { 17518 return (0); 17519 } 17520 ifindex = 0; 17521 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_faddr_v6)) { 17522 ip_xmit_attr_t *ixa = connp->conn_ixa; 17523 17524 /* 17525 * If we are going to create a DCE we'd better have 17526 * an ifindex 17527 */ 17528 if (ixa->ixa_nce != NULL) { 17529 ifindex = ixa->ixa_nce->nce_common->ncec_ill-> 17530 ill_phyint->phyint_ifindex; 17531 } else { 17532 return (0); 17533 } 17534 } 17535 17536 (void) dce_update_uinfo(&connp->conn_faddr_v6, ifindex, &uinfo, 17537 ipst); 17538 } 17539 return (0); 17540 } 17541 17542 /* 17543 * Generate a "no listener here" RST in response to an "unknown" segment. 17544 * connp is set by caller when RST is in response to an unexpected 17545 * inbound packet for which there is active tcp state in the system. 17546 * Note that we are reusing the incoming mp to construct the outgoing RST. 17547 */ 17548 void 17549 tcp_xmit_listeners_reset(mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst, 17550 conn_t *connp) 17551 { 17552 uchar_t *rptr; 17553 uint32_t seg_len; 17554 tcpha_t *tcpha; 17555 uint32_t seg_seq; 17556 uint32_t seg_ack; 17557 uint_t flags; 17558 ipha_t *ipha; 17559 ip6_t *ip6h; 17560 boolean_t policy_present; 17561 netstack_t *ns = ipst->ips_netstack; 17562 tcp_stack_t *tcps = ns->netstack_tcp; 17563 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 17564 uint_t ip_hdr_len = ira->ira_ip_hdr_length; 17565 17566 TCP_STAT(tcps, tcp_no_listener); 17567 17568 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 17569 policy_present = ipss->ipsec_inbound_v4_policy_present; 17570 ipha = (ipha_t *)mp->b_rptr; 17571 ip6h = NULL; 17572 } else { 17573 policy_present = ipss->ipsec_inbound_v6_policy_present; 17574 ipha = NULL; 17575 ip6h = (ip6_t *)mp->b_rptr; 17576 } 17577 17578 if (policy_present) { 17579 /* 17580 * The conn_t parameter is NULL because we already know 17581 * nobody's home. 17582 */ 17583 mp = ipsec_check_global_policy(mp, (conn_t *)NULL, ipha, ip6h, 17584 ira, ns); 17585 if (mp == NULL) 17586 return; 17587 } 17588 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 17589 DTRACE_PROBE2( 17590 tx__ip__log__error__nolistener__tcp, 17591 char *, "Could not reply with RST to mp(1)", 17592 mblk_t *, mp); 17593 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 17594 freemsg(mp); 17595 return; 17596 } 17597 17598 rptr = mp->b_rptr; 17599 17600 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 17601 seg_seq = ntohl(tcpha->tha_seq); 17602 seg_ack = ntohl(tcpha->tha_ack); 17603 flags = tcpha->tha_flags; 17604 17605 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcpha) + ip_hdr_len); 17606 if (flags & TH_RST) { 17607 freemsg(mp); 17608 } else if (flags & TH_ACK) { 17609 tcp_xmit_early_reset("no tcp, reset", mp, seg_ack, 0, TH_RST, 17610 ira, ipst, connp); 17611 } else { 17612 if (flags & TH_SYN) { 17613 seg_len++; 17614 } else { 17615 /* 17616 * Here we violate the RFC. Note that a normal 17617 * TCP will never send a segment without the ACK 17618 * flag, except for RST or SYN segment. This 17619 * segment is neither. Just drop it on the 17620 * floor. 17621 */ 17622 freemsg(mp); 17623 TCP_STAT(tcps, tcp_rst_unsent); 17624 return; 17625 } 17626 17627 tcp_xmit_early_reset("no tcp, reset/ack", mp, 0, 17628 seg_seq + seg_len, TH_RST | TH_ACK, ira, ipst, connp); 17629 } 17630 } 17631 17632 /* 17633 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 17634 * ip and tcp header ready to pass down to IP. If the mp passed in is 17635 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 17636 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 17637 * otherwise it will dup partial mblks.) 17638 * Otherwise, an appropriate ACK packet will be generated. This 17639 * routine is not usually called to send new data for the first time. It 17640 * is mostly called out of the timer for retransmits, and to generate ACKs. 17641 * 17642 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 17643 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 17644 * of the original mblk chain will be returned in *offset and *end_mp. 17645 */ 17646 mblk_t * 17647 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 17648 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 17649 boolean_t rexmit) 17650 { 17651 int data_length; 17652 int32_t off = 0; 17653 uint_t flags; 17654 mblk_t *mp1; 17655 mblk_t *mp2; 17656 uchar_t *rptr; 17657 tcpha_t *tcpha; 17658 int32_t num_sack_blk = 0; 17659 int32_t sack_opt_len = 0; 17660 tcp_stack_t *tcps = tcp->tcp_tcps; 17661 conn_t *connp = tcp->tcp_connp; 17662 ip_xmit_attr_t *ixa = connp->conn_ixa; 17663 17664 /* Allocate for our maximum TCP header + link-level */ 17665 mp1 = allocb(connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra, 17666 BPRI_MED); 17667 if (!mp1) 17668 return (NULL); 17669 data_length = 0; 17670 17671 /* 17672 * Note that tcp_mss has been adjusted to take into account the 17673 * timestamp option if applicable. Because SACK options do not 17674 * appear in every TCP segments and they are of variable lengths, 17675 * they cannot be included in tcp_mss. Thus we need to calculate 17676 * the actual segment length when we need to send a segment which 17677 * includes SACK options. 17678 */ 17679 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 17680 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 17681 tcp->tcp_num_sack_blk); 17682 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 17683 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 17684 if (max_to_send + sack_opt_len > tcp->tcp_mss) 17685 max_to_send -= sack_opt_len; 17686 } 17687 17688 if (offset != NULL) { 17689 off = *offset; 17690 /* We use offset as an indicator that end_mp is not NULL. */ 17691 *end_mp = NULL; 17692 } 17693 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 17694 /* This could be faster with cooperation from downstream */ 17695 if (mp2 != mp1 && !sendall && 17696 data_length + (int)(mp->b_wptr - mp->b_rptr) > 17697 max_to_send) 17698 /* 17699 * Don't send the next mblk since the whole mblk 17700 * does not fit. 17701 */ 17702 break; 17703 mp2->b_cont = dupb(mp); 17704 mp2 = mp2->b_cont; 17705 if (!mp2) { 17706 freemsg(mp1); 17707 return (NULL); 17708 } 17709 mp2->b_rptr += off; 17710 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 17711 (uintptr_t)INT_MAX); 17712 17713 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 17714 if (data_length > max_to_send) { 17715 mp2->b_wptr -= data_length - max_to_send; 17716 data_length = max_to_send; 17717 off = mp2->b_wptr - mp->b_rptr; 17718 break; 17719 } else { 17720 off = 0; 17721 } 17722 } 17723 if (offset != NULL) { 17724 *offset = off; 17725 *end_mp = mp; 17726 } 17727 if (seg_len != NULL) { 17728 *seg_len = data_length; 17729 } 17730 17731 /* Update the latest receive window size in TCP header. */ 17732 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 17733 17734 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 17735 mp1->b_rptr = rptr; 17736 mp1->b_wptr = rptr + connp->conn_ht_iphc_len + sack_opt_len; 17737 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); 17738 tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; 17739 tcpha->tha_seq = htonl(seq); 17740 17741 /* 17742 * Use tcp_unsent to determine if the PUSH bit should be used assumes 17743 * that this function was called from tcp_wput_data. Thus, when called 17744 * to retransmit data the setting of the PUSH bit may appear some 17745 * what random in that it might get set when it should not. This 17746 * should not pose any performance issues. 17747 */ 17748 if (data_length != 0 && (tcp->tcp_unsent == 0 || 17749 tcp->tcp_unsent == data_length)) { 17750 flags = TH_ACK | TH_PUSH; 17751 } else { 17752 flags = TH_ACK; 17753 } 17754 17755 if (tcp->tcp_ecn_ok) { 17756 if (tcp->tcp_ecn_echo_on) 17757 flags |= TH_ECE; 17758 17759 /* 17760 * Only set ECT bit and ECN_CWR if a segment contains new data. 17761 * There is no TCP flow control for non-data segments, and 17762 * only data segment is transmitted reliably. 17763 */ 17764 if (data_length > 0 && !rexmit) { 17765 SET_ECT(tcp, rptr); 17766 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17767 flags |= TH_CWR; 17768 tcp->tcp_ecn_cwr_sent = B_TRUE; 17769 } 17770 } 17771 } 17772 17773 if (tcp->tcp_valid_bits) { 17774 uint32_t u1; 17775 17776 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 17777 seq == tcp->tcp_iss) { 17778 uchar_t *wptr; 17779 17780 /* 17781 * If TCP_ISS_VALID and the seq number is tcp_iss, 17782 * TCP can only be in SYN-SENT, SYN-RCVD or 17783 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 17784 * our SYN is not ack'ed but the app closes this 17785 * TCP connection. 17786 */ 17787 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 17788 tcp->tcp_state == TCPS_SYN_RCVD || 17789 tcp->tcp_state == TCPS_FIN_WAIT_1); 17790 17791 /* 17792 * Tack on the MSS option. It is always needed 17793 * for both active and passive open. 17794 * 17795 * MSS option value should be interface MTU - MIN 17796 * TCP/IP header according to RFC 793 as it means 17797 * the maximum segment size TCP can receive. But 17798 * to get around some broken middle boxes/end hosts 17799 * out there, we allow the option value to be the 17800 * same as the MSS option size on the peer side. 17801 * In this way, the other side will not send 17802 * anything larger than they can receive. 17803 * 17804 * Note that for SYN_SENT state, the ndd param 17805 * tcp_use_smss_as_mss_opt has no effect as we 17806 * don't know the peer's MSS option value. So 17807 * the only case we need to take care of is in 17808 * SYN_RCVD state, which is done later. 17809 */ 17810 wptr = mp1->b_wptr; 17811 wptr[0] = TCPOPT_MAXSEG; 17812 wptr[1] = TCPOPT_MAXSEG_LEN; 17813 wptr += 2; 17814 u1 = tcp->tcp_initial_pmtu - 17815 (connp->conn_ipversion == IPV4_VERSION ? 17816 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 17817 TCP_MIN_HEADER_LENGTH; 17818 U16_TO_BE16(u1, wptr); 17819 mp1->b_wptr = wptr + 2; 17820 /* Update the offset to cover the additional word */ 17821 tcpha->tha_offset_and_reserved += (1 << 4); 17822 17823 /* 17824 * Note that the following way of filling in 17825 * TCP options are not optimal. Some NOPs can 17826 * be saved. But there is no need at this time 17827 * to optimize it. When it is needed, we will 17828 * do it. 17829 */ 17830 switch (tcp->tcp_state) { 17831 case TCPS_SYN_SENT: 17832 flags = TH_SYN; 17833 17834 if (tcp->tcp_snd_ts_ok) { 17835 uint32_t llbolt = 17836 (uint32_t)LBOLT_FASTPATH; 17837 17838 wptr = mp1->b_wptr; 17839 wptr[0] = TCPOPT_NOP; 17840 wptr[1] = TCPOPT_NOP; 17841 wptr[2] = TCPOPT_TSTAMP; 17842 wptr[3] = TCPOPT_TSTAMP_LEN; 17843 wptr += 4; 17844 U32_TO_BE32(llbolt, wptr); 17845 wptr += 4; 17846 ASSERT(tcp->tcp_ts_recent == 0); 17847 U32_TO_BE32(0L, wptr); 17848 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 17849 tcpha->tha_offset_and_reserved += 17850 (3 << 4); 17851 } 17852 17853 /* 17854 * Set up all the bits to tell other side 17855 * we are ECN capable. 17856 */ 17857 if (tcp->tcp_ecn_ok) { 17858 flags |= (TH_ECE | TH_CWR); 17859 } 17860 break; 17861 case TCPS_SYN_RCVD: 17862 flags |= TH_SYN; 17863 17864 /* 17865 * Reset the MSS option value to be SMSS 17866 * We should probably add back the bytes 17867 * for timestamp option and IPsec. We 17868 * don't do that as this is a workaround 17869 * for broken middle boxes/end hosts, it 17870 * is better for us to be more cautious. 17871 * They may not take these things into 17872 * account in their SMSS calculation. Thus 17873 * the peer's calculated SMSS may be smaller 17874 * than what it can be. This should be OK. 17875 */ 17876 if (tcps->tcps_use_smss_as_mss_opt) { 17877 u1 = tcp->tcp_mss; 17878 U16_TO_BE16(u1, wptr); 17879 } 17880 17881 /* 17882 * If the other side is ECN capable, reply 17883 * that we are also ECN capable. 17884 */ 17885 if (tcp->tcp_ecn_ok) 17886 flags |= TH_ECE; 17887 break; 17888 default: 17889 /* 17890 * The above ASSERT() makes sure that this 17891 * must be FIN-WAIT-1 state. Our SYN has 17892 * not been ack'ed so retransmit it. 17893 */ 17894 flags |= TH_SYN; 17895 break; 17896 } 17897 17898 if (tcp->tcp_snd_ws_ok) { 17899 wptr = mp1->b_wptr; 17900 wptr[0] = TCPOPT_NOP; 17901 wptr[1] = TCPOPT_WSCALE; 17902 wptr[2] = TCPOPT_WS_LEN; 17903 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 17904 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 17905 tcpha->tha_offset_and_reserved += (1 << 4); 17906 } 17907 17908 if (tcp->tcp_snd_sack_ok) { 17909 wptr = mp1->b_wptr; 17910 wptr[0] = TCPOPT_NOP; 17911 wptr[1] = TCPOPT_NOP; 17912 wptr[2] = TCPOPT_SACK_PERMITTED; 17913 wptr[3] = TCPOPT_SACK_OK_LEN; 17914 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 17915 tcpha->tha_offset_and_reserved += (1 << 4); 17916 } 17917 17918 /* allocb() of adequate mblk assures space */ 17919 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 17920 (uintptr_t)INT_MAX); 17921 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 17922 /* 17923 * Get IP set to checksum on our behalf 17924 * Include the adjustment for a source route if any. 17925 */ 17926 u1 += connp->conn_sum; 17927 u1 = (u1 >> 16) + (u1 & 0xFFFF); 17928 tcpha->tha_sum = htons(u1); 17929 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17930 } 17931 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17932 (seq + data_length) == tcp->tcp_fss) { 17933 if (!tcp->tcp_fin_acked) { 17934 flags |= TH_FIN; 17935 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17936 } 17937 if (!tcp->tcp_fin_sent) { 17938 tcp->tcp_fin_sent = B_TRUE; 17939 switch (tcp->tcp_state) { 17940 case TCPS_SYN_RCVD: 17941 case TCPS_ESTABLISHED: 17942 tcp->tcp_state = TCPS_FIN_WAIT_1; 17943 break; 17944 case TCPS_CLOSE_WAIT: 17945 tcp->tcp_state = TCPS_LAST_ACK; 17946 break; 17947 } 17948 if (tcp->tcp_suna == tcp->tcp_snxt) 17949 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17950 tcp->tcp_snxt = tcp->tcp_fss + 1; 17951 } 17952 } 17953 /* 17954 * Note the trick here. u1 is unsigned. When tcp_urg 17955 * is smaller than seq, u1 will become a very huge value. 17956 * So the comparison will fail. Also note that tcp_urp 17957 * should be positive, see RFC 793 page 17. 17958 */ 17959 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 17960 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 17961 u1 < (uint32_t)(64 * 1024)) { 17962 flags |= TH_URG; 17963 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 17964 tcpha->tha_urp = htons(u1); 17965 } 17966 } 17967 tcpha->tha_flags = (uchar_t)flags; 17968 tcp->tcp_rack = tcp->tcp_rnxt; 17969 tcp->tcp_rack_cnt = 0; 17970 17971 if (tcp->tcp_snd_ts_ok) { 17972 if (tcp->tcp_state != TCPS_SYN_SENT) { 17973 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 17974 17975 U32_TO_BE32(llbolt, 17976 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 17977 U32_TO_BE32(tcp->tcp_ts_recent, 17978 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 17979 } 17980 } 17981 17982 if (num_sack_blk > 0) { 17983 uchar_t *wptr = (uchar_t *)tcpha + connp->conn_ht_ulp_len; 17984 sack_blk_t *tmp; 17985 int32_t i; 17986 17987 wptr[0] = TCPOPT_NOP; 17988 wptr[1] = TCPOPT_NOP; 17989 wptr[2] = TCPOPT_SACK; 17990 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 17991 sizeof (sack_blk_t); 17992 wptr += TCPOPT_REAL_SACK_LEN; 17993 17994 tmp = tcp->tcp_sack_list; 17995 for (i = 0; i < num_sack_blk; i++) { 17996 U32_TO_BE32(tmp[i].begin, wptr); 17997 wptr += sizeof (tcp_seq); 17998 U32_TO_BE32(tmp[i].end, wptr); 17999 wptr += sizeof (tcp_seq); 18000 } 18001 tcpha->tha_offset_and_reserved += ((num_sack_blk * 2 + 1) << 4); 18002 } 18003 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 18004 data_length += (int)(mp1->b_wptr - rptr); 18005 18006 ixa->ixa_pktlen = data_length; 18007 18008 if (ixa->ixa_flags & IXAF_IS_IPV4) { 18009 ((ipha_t *)rptr)->ipha_length = htons(data_length); 18010 } else { 18011 ip6_t *ip6 = (ip6_t *)rptr; 18012 18013 ip6->ip6_plen = htons(data_length - IPV6_HDR_LEN); 18014 } 18015 18016 /* 18017 * Prime pump for IP 18018 * Include the adjustment for a source route if any. 18019 */ 18020 data_length -= ixa->ixa_ip_hdr_length; 18021 data_length += connp->conn_sum; 18022 data_length = (data_length >> 16) + (data_length & 0xFFFF); 18023 tcpha->tha_sum = htons(data_length); 18024 if (tcp->tcp_ip_forward_progress) { 18025 tcp->tcp_ip_forward_progress = B_FALSE; 18026 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 18027 } else { 18028 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 18029 } 18030 return (mp1); 18031 } 18032 18033 /* This function handles the push timeout. */ 18034 void 18035 tcp_push_timer(void *arg) 18036 { 18037 conn_t *connp = (conn_t *)arg; 18038 tcp_t *tcp = connp->conn_tcp; 18039 18040 TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt); 18041 18042 ASSERT(tcp->tcp_listener == NULL); 18043 18044 ASSERT(!IPCL_IS_NONSTR(connp)); 18045 18046 tcp->tcp_push_tid = 0; 18047 18048 if (tcp->tcp_rcv_list != NULL && 18049 tcp_rcv_drain(tcp) == TH_ACK_NEEDED) 18050 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 18051 } 18052 18053 /* 18054 * This function handles delayed ACK timeout. 18055 */ 18056 static void 18057 tcp_ack_timer(void *arg) 18058 { 18059 conn_t *connp = (conn_t *)arg; 18060 tcp_t *tcp = connp->conn_tcp; 18061 mblk_t *mp; 18062 tcp_stack_t *tcps = tcp->tcp_tcps; 18063 18064 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 18065 18066 tcp->tcp_ack_tid = 0; 18067 18068 if (tcp->tcp_fused) 18069 return; 18070 18071 /* 18072 * Do not send ACK if there is no outstanding unack'ed data. 18073 */ 18074 if (tcp->tcp_rnxt == tcp->tcp_rack) { 18075 return; 18076 } 18077 18078 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 18079 /* 18080 * Make sure we don't allow deferred ACKs to result in 18081 * timer-based ACKing. If we have held off an ACK 18082 * when there was more than an mss here, and the timer 18083 * goes off, we have to worry about the possibility 18084 * that the sender isn't doing slow-start, or is out 18085 * of step with us for some other reason. We fall 18086 * permanently back in the direction of 18087 * ACK-every-other-packet as suggested in RFC 1122. 18088 */ 18089 if (tcp->tcp_rack_abs_max > 2) 18090 tcp->tcp_rack_abs_max--; 18091 tcp->tcp_rack_cur_max = 2; 18092 } 18093 mp = tcp_ack_mp(tcp); 18094 18095 if (mp != NULL) { 18096 BUMP_LOCAL(tcp->tcp_obsegs); 18097 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 18098 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 18099 tcp_send_data(tcp, mp); 18100 } 18101 } 18102 18103 18104 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 18105 static mblk_t * 18106 tcp_ack_mp(tcp_t *tcp) 18107 { 18108 uint32_t seq_no; 18109 tcp_stack_t *tcps = tcp->tcp_tcps; 18110 conn_t *connp = tcp->tcp_connp; 18111 18112 /* 18113 * There are a few cases to be considered while setting the sequence no. 18114 * Essentially, we can come here while processing an unacceptable pkt 18115 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 18116 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 18117 * If we are here for a zero window probe, stick with suna. In all 18118 * other cases, we check if suna + swnd encompasses snxt and set 18119 * the sequence number to snxt, if so. If snxt falls outside the 18120 * window (the receiver probably shrunk its window), we will go with 18121 * suna + swnd, otherwise the sequence no will be unacceptable to the 18122 * receiver. 18123 */ 18124 if (tcp->tcp_zero_win_probe) { 18125 seq_no = tcp->tcp_suna; 18126 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 18127 ASSERT(tcp->tcp_swnd == 0); 18128 seq_no = tcp->tcp_snxt; 18129 } else { 18130 seq_no = SEQ_GT(tcp->tcp_snxt, 18131 (tcp->tcp_suna + tcp->tcp_swnd)) ? 18132 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 18133 } 18134 18135 if (tcp->tcp_valid_bits) { 18136 /* 18137 * For the complex case where we have to send some 18138 * controls (FIN or SYN), let tcp_xmit_mp do it. 18139 */ 18140 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 18141 NULL, B_FALSE)); 18142 } else { 18143 /* Generate a simple ACK */ 18144 int data_length; 18145 uchar_t *rptr; 18146 tcpha_t *tcpha; 18147 mblk_t *mp1; 18148 int32_t total_hdr_len; 18149 int32_t tcp_hdr_len; 18150 int32_t num_sack_blk = 0; 18151 int32_t sack_opt_len; 18152 ip_xmit_attr_t *ixa = connp->conn_ixa; 18153 18154 /* 18155 * Allocate space for TCP + IP headers 18156 * and link-level header 18157 */ 18158 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 18159 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 18160 tcp->tcp_num_sack_blk); 18161 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 18162 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 18163 total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len; 18164 tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len; 18165 } else { 18166 total_hdr_len = connp->conn_ht_iphc_len; 18167 tcp_hdr_len = connp->conn_ht_ulp_len; 18168 } 18169 mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 18170 if (!mp1) 18171 return (NULL); 18172 18173 /* Update the latest receive window size in TCP header. */ 18174 tcp->tcp_tcpha->tha_win = 18175 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 18176 /* copy in prototype TCP + IP header */ 18177 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 18178 mp1->b_rptr = rptr; 18179 mp1->b_wptr = rptr + total_hdr_len; 18180 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); 18181 18182 tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; 18183 18184 /* Set the TCP sequence number. */ 18185 tcpha->tha_seq = htonl(seq_no); 18186 18187 /* Set up the TCP flag field. */ 18188 tcpha->tha_flags = (uchar_t)TH_ACK; 18189 if (tcp->tcp_ecn_echo_on) 18190 tcpha->tha_flags |= TH_ECE; 18191 18192 tcp->tcp_rack = tcp->tcp_rnxt; 18193 tcp->tcp_rack_cnt = 0; 18194 18195 /* fill in timestamp option if in use */ 18196 if (tcp->tcp_snd_ts_ok) { 18197 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 18198 18199 U32_TO_BE32(llbolt, 18200 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 18201 U32_TO_BE32(tcp->tcp_ts_recent, 18202 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 18203 } 18204 18205 /* Fill in SACK options */ 18206 if (num_sack_blk > 0) { 18207 uchar_t *wptr = (uchar_t *)tcpha + 18208 connp->conn_ht_ulp_len; 18209 sack_blk_t *tmp; 18210 int32_t i; 18211 18212 wptr[0] = TCPOPT_NOP; 18213 wptr[1] = TCPOPT_NOP; 18214 wptr[2] = TCPOPT_SACK; 18215 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 18216 sizeof (sack_blk_t); 18217 wptr += TCPOPT_REAL_SACK_LEN; 18218 18219 tmp = tcp->tcp_sack_list; 18220 for (i = 0; i < num_sack_blk; i++) { 18221 U32_TO_BE32(tmp[i].begin, wptr); 18222 wptr += sizeof (tcp_seq); 18223 U32_TO_BE32(tmp[i].end, wptr); 18224 wptr += sizeof (tcp_seq); 18225 } 18226 tcpha->tha_offset_and_reserved += 18227 ((num_sack_blk * 2 + 1) << 4); 18228 } 18229 18230 ixa->ixa_pktlen = total_hdr_len; 18231 18232 if (ixa->ixa_flags & IXAF_IS_IPV4) { 18233 ((ipha_t *)rptr)->ipha_length = htons(total_hdr_len); 18234 } else { 18235 ip6_t *ip6 = (ip6_t *)rptr; 18236 18237 ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); 18238 } 18239 18240 /* 18241 * Prime pump for checksum calculation in IP. Include the 18242 * adjustment for a source route if any. 18243 */ 18244 data_length = tcp_hdr_len + connp->conn_sum; 18245 data_length = (data_length >> 16) + (data_length & 0xFFFF); 18246 tcpha->tha_sum = htons(data_length); 18247 18248 if (tcp->tcp_ip_forward_progress) { 18249 tcp->tcp_ip_forward_progress = B_FALSE; 18250 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 18251 } else { 18252 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 18253 } 18254 return (mp1); 18255 } 18256 } 18257 18258 /* 18259 * Hash list insertion routine for tcp_t structures. Each hash bucket 18260 * contains a list of tcp_t entries, and each entry is bound to a unique 18261 * port. If there are multiple tcp_t's that are bound to the same port, then 18262 * one of them will be linked into the hash bucket list, and the rest will 18263 * hang off of that one entry. For each port, entries bound to a specific IP 18264 * address will be inserted before those those bound to INADDR_ANY. 18265 */ 18266 static void 18267 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 18268 { 18269 tcp_t **tcpp; 18270 tcp_t *tcpnext; 18271 tcp_t *tcphash; 18272 conn_t *connp = tcp->tcp_connp; 18273 conn_t *connext; 18274 18275 if (tcp->tcp_ptpbhn != NULL) { 18276 ASSERT(!caller_holds_lock); 18277 tcp_bind_hash_remove(tcp); 18278 } 18279 tcpp = &tbf->tf_tcp; 18280 if (!caller_holds_lock) { 18281 mutex_enter(&tbf->tf_lock); 18282 } else { 18283 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 18284 } 18285 tcphash = tcpp[0]; 18286 tcpnext = NULL; 18287 if (tcphash != NULL) { 18288 /* Look for an entry using the same port */ 18289 while ((tcphash = tcpp[0]) != NULL && 18290 connp->conn_lport != tcphash->tcp_connp->conn_lport) 18291 tcpp = &(tcphash->tcp_bind_hash); 18292 18293 /* The port was not found, just add to the end */ 18294 if (tcphash == NULL) 18295 goto insert; 18296 18297 /* 18298 * OK, there already exists an entry bound to the 18299 * same port. 18300 * 18301 * If the new tcp bound to the INADDR_ANY address 18302 * and the first one in the list is not bound to 18303 * INADDR_ANY we skip all entries until we find the 18304 * first one bound to INADDR_ANY. 18305 * This makes sure that applications binding to a 18306 * specific address get preference over those binding to 18307 * INADDR_ANY. 18308 */ 18309 tcpnext = tcphash; 18310 connext = tcpnext->tcp_connp; 18311 tcphash = NULL; 18312 if (V6_OR_V4_INADDR_ANY(connp->conn_bound_addr_v6) && 18313 !V6_OR_V4_INADDR_ANY(connext->conn_bound_addr_v6)) { 18314 while ((tcpnext = tcpp[0]) != NULL) { 18315 connext = tcpnext->tcp_connp; 18316 if (!V6_OR_V4_INADDR_ANY( 18317 connext->conn_bound_addr_v6)) 18318 tcpp = &(tcpnext->tcp_bind_hash_port); 18319 else 18320 break; 18321 } 18322 if (tcpnext != NULL) { 18323 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 18324 tcphash = tcpnext->tcp_bind_hash; 18325 if (tcphash != NULL) { 18326 tcphash->tcp_ptpbhn = 18327 &(tcp->tcp_bind_hash); 18328 tcpnext->tcp_bind_hash = NULL; 18329 } 18330 } 18331 } else { 18332 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 18333 tcphash = tcpnext->tcp_bind_hash; 18334 if (tcphash != NULL) { 18335 tcphash->tcp_ptpbhn = 18336 &(tcp->tcp_bind_hash); 18337 tcpnext->tcp_bind_hash = NULL; 18338 } 18339 } 18340 } 18341 insert: 18342 tcp->tcp_bind_hash_port = tcpnext; 18343 tcp->tcp_bind_hash = tcphash; 18344 tcp->tcp_ptpbhn = tcpp; 18345 tcpp[0] = tcp; 18346 if (!caller_holds_lock) 18347 mutex_exit(&tbf->tf_lock); 18348 } 18349 18350 /* 18351 * Hash list removal routine for tcp_t structures. 18352 */ 18353 static void 18354 tcp_bind_hash_remove(tcp_t *tcp) 18355 { 18356 tcp_t *tcpnext; 18357 kmutex_t *lockp; 18358 tcp_stack_t *tcps = tcp->tcp_tcps; 18359 conn_t *connp = tcp->tcp_connp; 18360 18361 if (tcp->tcp_ptpbhn == NULL) 18362 return; 18363 18364 /* 18365 * Extract the lock pointer in case there are concurrent 18366 * hash_remove's for this instance. 18367 */ 18368 ASSERT(connp->conn_lport != 0); 18369 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH( 18370 connp->conn_lport)].tf_lock; 18371 18372 ASSERT(lockp != NULL); 18373 mutex_enter(lockp); 18374 if (tcp->tcp_ptpbhn) { 18375 tcpnext = tcp->tcp_bind_hash_port; 18376 if (tcpnext != NULL) { 18377 tcp->tcp_bind_hash_port = NULL; 18378 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 18379 tcpnext->tcp_bind_hash = tcp->tcp_bind_hash; 18380 if (tcpnext->tcp_bind_hash != NULL) { 18381 tcpnext->tcp_bind_hash->tcp_ptpbhn = 18382 &(tcpnext->tcp_bind_hash); 18383 tcp->tcp_bind_hash = NULL; 18384 } 18385 } else if ((tcpnext = tcp->tcp_bind_hash) != NULL) { 18386 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 18387 tcp->tcp_bind_hash = NULL; 18388 } 18389 *tcp->tcp_ptpbhn = tcpnext; 18390 tcp->tcp_ptpbhn = NULL; 18391 } 18392 mutex_exit(lockp); 18393 } 18394 18395 18396 /* 18397 * Hash list lookup routine for tcp_t structures. 18398 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 18399 */ 18400 static tcp_t * 18401 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 18402 { 18403 tf_t *tf; 18404 tcp_t *tcp; 18405 18406 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 18407 mutex_enter(&tf->tf_lock); 18408 for (tcp = tf->tf_tcp; tcp != NULL; 18409 tcp = tcp->tcp_acceptor_hash) { 18410 if (tcp->tcp_acceptor_id == id) { 18411 CONN_INC_REF(tcp->tcp_connp); 18412 mutex_exit(&tf->tf_lock); 18413 return (tcp); 18414 } 18415 } 18416 mutex_exit(&tf->tf_lock); 18417 return (NULL); 18418 } 18419 18420 18421 /* 18422 * Hash list insertion routine for tcp_t structures. 18423 */ 18424 void 18425 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 18426 { 18427 tf_t *tf; 18428 tcp_t **tcpp; 18429 tcp_t *tcpnext; 18430 tcp_stack_t *tcps = tcp->tcp_tcps; 18431 18432 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 18433 18434 if (tcp->tcp_ptpahn != NULL) 18435 tcp_acceptor_hash_remove(tcp); 18436 tcpp = &tf->tf_tcp; 18437 mutex_enter(&tf->tf_lock); 18438 tcpnext = tcpp[0]; 18439 if (tcpnext) 18440 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 18441 tcp->tcp_acceptor_hash = tcpnext; 18442 tcp->tcp_ptpahn = tcpp; 18443 tcpp[0] = tcp; 18444 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 18445 mutex_exit(&tf->tf_lock); 18446 } 18447 18448 /* 18449 * Hash list removal routine for tcp_t structures. 18450 */ 18451 static void 18452 tcp_acceptor_hash_remove(tcp_t *tcp) 18453 { 18454 tcp_t *tcpnext; 18455 kmutex_t *lockp; 18456 18457 /* 18458 * Extract the lock pointer in case there are concurrent 18459 * hash_remove's for this instance. 18460 */ 18461 lockp = tcp->tcp_acceptor_lockp; 18462 18463 if (tcp->tcp_ptpahn == NULL) 18464 return; 18465 18466 ASSERT(lockp != NULL); 18467 mutex_enter(lockp); 18468 if (tcp->tcp_ptpahn) { 18469 tcpnext = tcp->tcp_acceptor_hash; 18470 if (tcpnext) { 18471 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 18472 tcp->tcp_acceptor_hash = NULL; 18473 } 18474 *tcp->tcp_ptpahn = tcpnext; 18475 tcp->tcp_ptpahn = NULL; 18476 } 18477 mutex_exit(lockp); 18478 tcp->tcp_acceptor_lockp = NULL; 18479 } 18480 18481 /* 18482 * Type three generator adapted from the random() function in 4.4 BSD: 18483 */ 18484 18485 /* 18486 * Copyright (c) 1983, 1993 18487 * The Regents of the University of California. All rights reserved. 18488 * 18489 * Redistribution and use in source and binary forms, with or without 18490 * modification, are permitted provided that the following conditions 18491 * are met: 18492 * 1. Redistributions of source code must retain the above copyright 18493 * notice, this list of conditions and the following disclaimer. 18494 * 2. Redistributions in binary form must reproduce the above copyright 18495 * notice, this list of conditions and the following disclaimer in the 18496 * documentation and/or other materials provided with the distribution. 18497 * 3. All advertising materials mentioning features or use of this software 18498 * must display the following acknowledgement: 18499 * This product includes software developed by the University of 18500 * California, Berkeley and its contributors. 18501 * 4. Neither the name of the University nor the names of its contributors 18502 * may be used to endorse or promote products derived from this software 18503 * without specific prior written permission. 18504 * 18505 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18506 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18507 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18508 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 18509 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18510 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 18511 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 18512 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 18513 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 18514 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 18515 * SUCH DAMAGE. 18516 */ 18517 18518 /* Type 3 -- x**31 + x**3 + 1 */ 18519 #define DEG_3 31 18520 #define SEP_3 3 18521 18522 18523 /* Protected by tcp_random_lock */ 18524 static int tcp_randtbl[DEG_3 + 1]; 18525 18526 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 18527 static int *tcp_random_rptr = &tcp_randtbl[1]; 18528 18529 static int *tcp_random_state = &tcp_randtbl[1]; 18530 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 18531 18532 kmutex_t tcp_random_lock; 18533 18534 void 18535 tcp_random_init(void) 18536 { 18537 int i; 18538 hrtime_t hrt; 18539 time_t wallclock; 18540 uint64_t result; 18541 18542 /* 18543 * Use high-res timer and current time for seed. Gethrtime() returns 18544 * a longlong, which may contain resolution down to nanoseconds. 18545 * The current time will either be a 32-bit or a 64-bit quantity. 18546 * XOR the two together in a 64-bit result variable. 18547 * Convert the result to a 32-bit value by multiplying the high-order 18548 * 32-bits by the low-order 32-bits. 18549 */ 18550 18551 hrt = gethrtime(); 18552 (void) drv_getparm(TIME, &wallclock); 18553 result = (uint64_t)wallclock ^ (uint64_t)hrt; 18554 mutex_enter(&tcp_random_lock); 18555 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 18556 (result & 0xffffffff); 18557 18558 for (i = 1; i < DEG_3; i++) 18559 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 18560 + 12345; 18561 tcp_random_fptr = &tcp_random_state[SEP_3]; 18562 tcp_random_rptr = &tcp_random_state[0]; 18563 mutex_exit(&tcp_random_lock); 18564 for (i = 0; i < 10 * DEG_3; i++) 18565 (void) tcp_random(); 18566 } 18567 18568 /* 18569 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 18570 * This range is selected to be approximately centered on TCP_ISS / 2, 18571 * and easy to compute. We get this value by generating a 32-bit random 18572 * number, selecting out the high-order 17 bits, and then adding one so 18573 * that we never return zero. 18574 */ 18575 int 18576 tcp_random(void) 18577 { 18578 int i; 18579 18580 mutex_enter(&tcp_random_lock); 18581 *tcp_random_fptr += *tcp_random_rptr; 18582 18583 /* 18584 * The high-order bits are more random than the low-order bits, 18585 * so we select out the high-order 17 bits and add one so that 18586 * we never return zero. 18587 */ 18588 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 18589 if (++tcp_random_fptr >= tcp_random_end_ptr) { 18590 tcp_random_fptr = tcp_random_state; 18591 ++tcp_random_rptr; 18592 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 18593 tcp_random_rptr = tcp_random_state; 18594 18595 mutex_exit(&tcp_random_lock); 18596 return (i); 18597 } 18598 18599 static int 18600 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 18601 int *t_errorp, int *sys_errorp) 18602 { 18603 int error; 18604 int is_absreq_failure; 18605 t_scalar_t *opt_lenp; 18606 t_scalar_t opt_offset; 18607 int prim_type; 18608 struct T_conn_req *tcreqp; 18609 struct T_conn_res *tcresp; 18610 cred_t *cr; 18611 18612 /* 18613 * All Solaris components should pass a db_credp 18614 * for this TPI message, hence we ASSERT. 18615 * But in case there is some other M_PROTO that looks 18616 * like a TPI message sent by some other kernel 18617 * component, we check and return an error. 18618 */ 18619 cr = msg_getcred(mp, NULL); 18620 ASSERT(cr != NULL); 18621 if (cr == NULL) 18622 return (-1); 18623 18624 prim_type = ((union T_primitives *)mp->b_rptr)->type; 18625 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 18626 prim_type == T_CONN_RES); 18627 18628 switch (prim_type) { 18629 case T_CONN_REQ: 18630 tcreqp = (struct T_conn_req *)mp->b_rptr; 18631 opt_offset = tcreqp->OPT_offset; 18632 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 18633 break; 18634 case O_T_CONN_RES: 18635 case T_CONN_RES: 18636 tcresp = (struct T_conn_res *)mp->b_rptr; 18637 opt_offset = tcresp->OPT_offset; 18638 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 18639 break; 18640 } 18641 18642 *t_errorp = 0; 18643 *sys_errorp = 0; 18644 *do_disconnectp = 0; 18645 18646 error = tpi_optcom_buf(tcp->tcp_connp->conn_wq, mp, opt_lenp, 18647 opt_offset, cr, &tcp_opt_obj, 18648 NULL, &is_absreq_failure); 18649 18650 switch (error) { 18651 case 0: /* no error */ 18652 ASSERT(is_absreq_failure == 0); 18653 return (0); 18654 case ENOPROTOOPT: 18655 *t_errorp = TBADOPT; 18656 break; 18657 case EACCES: 18658 *t_errorp = TACCES; 18659 break; 18660 default: 18661 *t_errorp = TSYSERR; *sys_errorp = error; 18662 break; 18663 } 18664 if (is_absreq_failure != 0) { 18665 /* 18666 * The connection request should get the local ack 18667 * T_OK_ACK and then a T_DISCON_IND. 18668 */ 18669 *do_disconnectp = 1; 18670 } 18671 return (-1); 18672 } 18673 18674 /* 18675 * Split this function out so that if the secret changes, I'm okay. 18676 * 18677 * Initialize the tcp_iss_cookie and tcp_iss_key. 18678 */ 18679 18680 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 18681 18682 static void 18683 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 18684 { 18685 struct { 18686 int32_t current_time; 18687 uint32_t randnum; 18688 uint16_t pad; 18689 uint8_t ether[6]; 18690 uint8_t passwd[PASSWD_SIZE]; 18691 } tcp_iss_cookie; 18692 time_t t; 18693 18694 /* 18695 * Start with the current absolute time. 18696 */ 18697 (void) drv_getparm(TIME, &t); 18698 tcp_iss_cookie.current_time = t; 18699 18700 /* 18701 * XXX - Need a more random number per RFC 1750, not this crap. 18702 * OTOH, if what follows is pretty random, then I'm in better shape. 18703 */ 18704 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 18705 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 18706 18707 /* 18708 * The cpu_type_info is pretty non-random. Ugggh. It does serve 18709 * as a good template. 18710 */ 18711 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 18712 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 18713 18714 /* 18715 * The pass-phrase. Normally this is supplied by user-called NDD. 18716 */ 18717 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 18718 18719 /* 18720 * See 4010593 if this section becomes a problem again, 18721 * but the local ethernet address is useful here. 18722 */ 18723 (void) localetheraddr(NULL, 18724 (struct ether_addr *)&tcp_iss_cookie.ether); 18725 18726 /* 18727 * Hash 'em all together. The MD5Final is called per-connection. 18728 */ 18729 mutex_enter(&tcps->tcps_iss_key_lock); 18730 MD5Init(&tcps->tcps_iss_key); 18731 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 18732 sizeof (tcp_iss_cookie)); 18733 mutex_exit(&tcps->tcps_iss_key_lock); 18734 } 18735 18736 /* 18737 * Set the RFC 1948 pass phrase 18738 */ 18739 /* ARGSUSED */ 18740 static int 18741 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 18742 cred_t *cr) 18743 { 18744 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 18745 18746 /* 18747 * Basically, value contains a new pass phrase. Pass it along! 18748 */ 18749 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 18750 return (0); 18751 } 18752 18753 /* ARGSUSED */ 18754 static int 18755 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 18756 { 18757 bzero(buf, sizeof (tcp_sack_info_t)); 18758 return (0); 18759 } 18760 18761 /* 18762 * Called by IP when IP is loaded into the kernel 18763 */ 18764 void 18765 tcp_ddi_g_init(void) 18766 { 18767 tcp_timercache = kmem_cache_create("tcp_timercache", 18768 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 18769 NULL, NULL, NULL, NULL, NULL, 0); 18770 18771 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 18772 sizeof (tcp_sack_info_t), 0, 18773 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 18774 18775 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 18776 18777 /* Initialize the random number generator */ 18778 tcp_random_init(); 18779 18780 /* A single callback independently of how many netstacks we have */ 18781 ip_squeue_init(tcp_squeue_add); 18782 18783 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 18784 18785 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 18786 18787 /* 18788 * We want to be informed each time a stack is created or 18789 * destroyed in the kernel, so we can maintain the 18790 * set of tcp_stack_t's. 18791 */ 18792 netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini); 18793 } 18794 18795 18796 #define INET_NAME "ip" 18797 18798 /* 18799 * Initialize the TCP stack instance. 18800 */ 18801 static void * 18802 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 18803 { 18804 tcp_stack_t *tcps; 18805 tcpparam_t *pa; 18806 int i; 18807 int error = 0; 18808 major_t major; 18809 18810 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 18811 tcps->tcps_netstack = ns; 18812 18813 /* Initialize locks */ 18814 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 18815 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 18816 18817 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 18818 tcps->tcps_g_epriv_ports[0] = 2049; 18819 tcps->tcps_g_epriv_ports[1] = 4045; 18820 tcps->tcps_min_anonpriv_port = 512; 18821 18822 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 18823 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 18824 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 18825 TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP); 18826 18827 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 18828 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 18829 MUTEX_DEFAULT, NULL); 18830 } 18831 18832 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 18833 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 18834 MUTEX_DEFAULT, NULL); 18835 } 18836 18837 /* TCP's IPsec code calls the packet dropper. */ 18838 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 18839 18840 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 18841 tcps->tcps_params = pa; 18842 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 18843 18844 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 18845 A_CNT(lcl_tcp_param_arr), tcps); 18846 18847 /* 18848 * Note: To really walk the device tree you need the devinfo 18849 * pointer to your device which is only available after probe/attach. 18850 * The following is safe only because it uses ddi_root_node() 18851 */ 18852 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 18853 tcp_opt_obj.odb_opt_arr_cnt); 18854 18855 /* 18856 * Initialize RFC 1948 secret values. This will probably be reset once 18857 * by the boot scripts. 18858 * 18859 * Use NULL name, as the name is caught by the new lockstats. 18860 * 18861 * Initialize with some random, non-guessable string, like the global 18862 * T_INFO_ACK. 18863 */ 18864 18865 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 18866 sizeof (tcp_g_t_info_ack), tcps); 18867 18868 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 18869 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 18870 18871 major = mod_name_to_major(INET_NAME); 18872 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 18873 ASSERT(error == 0); 18874 tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL); 18875 ASSERT(tcps->tcps_ixa_cleanup_mp != NULL); 18876 cv_init(&tcps->tcps_ixa_cleanup_cv, NULL, CV_DEFAULT, NULL); 18877 mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL); 18878 18879 mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 18880 tcps->tcps_reclaim = B_FALSE; 18881 tcps->tcps_reclaim_tid = 0; 18882 tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max * 3; 18883 18884 mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL); 18885 list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t), 18886 offsetof(tcp_listener_t, tl_link)); 18887 18888 return (tcps); 18889 } 18890 18891 /* 18892 * Called when the IP module is about to be unloaded. 18893 */ 18894 void 18895 tcp_ddi_g_destroy(void) 18896 { 18897 tcp_g_kstat_fini(tcp_g_kstat); 18898 tcp_g_kstat = NULL; 18899 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 18900 18901 mutex_destroy(&tcp_random_lock); 18902 18903 kmem_cache_destroy(tcp_timercache); 18904 kmem_cache_destroy(tcp_sack_info_cache); 18905 18906 netstack_unregister(NS_TCP); 18907 } 18908 18909 /* 18910 * Free the TCP stack instance. 18911 */ 18912 static void 18913 tcp_stack_fini(netstackid_t stackid, void *arg) 18914 { 18915 tcp_stack_t *tcps = (tcp_stack_t *)arg; 18916 int i; 18917 18918 freeb(tcps->tcps_ixa_cleanup_mp); 18919 tcps->tcps_ixa_cleanup_mp = NULL; 18920 cv_destroy(&tcps->tcps_ixa_cleanup_cv); 18921 mutex_destroy(&tcps->tcps_ixa_cleanup_lock); 18922 18923 if (tcps->tcps_reclaim_tid != 0) 18924 (void) untimeout(tcps->tcps_reclaim_tid); 18925 mutex_destroy(&tcps->tcps_reclaim_lock); 18926 18927 tcp_listener_conf_cleanup(tcps); 18928 18929 nd_free(&tcps->tcps_g_nd); 18930 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 18931 tcps->tcps_params = NULL; 18932 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 18933 tcps->tcps_wroff_xtra_param = NULL; 18934 18935 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 18936 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 18937 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 18938 } 18939 18940 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 18941 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 18942 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 18943 } 18944 18945 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 18946 tcps->tcps_bind_fanout = NULL; 18947 18948 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * 18949 TCP_ACCEPTOR_FANOUT_SIZE); 18950 tcps->tcps_acceptor_fanout = NULL; 18951 18952 mutex_destroy(&tcps->tcps_iss_key_lock); 18953 mutex_destroy(&tcps->tcps_epriv_port_lock); 18954 18955 ip_drop_unregister(&tcps->tcps_dropper); 18956 18957 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 18958 tcps->tcps_kstat = NULL; 18959 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 18960 18961 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 18962 tcps->tcps_mibkp = NULL; 18963 18964 ldi_ident_release(tcps->tcps_ldi_ident); 18965 kmem_free(tcps, sizeof (*tcps)); 18966 } 18967 18968 /* 18969 * Generate ISS, taking into account NDD changes may happen halfway through. 18970 * (If the iss is not zero, set it.) 18971 */ 18972 18973 static void 18974 tcp_iss_init(tcp_t *tcp) 18975 { 18976 MD5_CTX context; 18977 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 18978 uint32_t answer[4]; 18979 tcp_stack_t *tcps = tcp->tcp_tcps; 18980 conn_t *connp = tcp->tcp_connp; 18981 18982 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 18983 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 18984 switch (tcps->tcps_strong_iss) { 18985 case 2: 18986 mutex_enter(&tcps->tcps_iss_key_lock); 18987 context = tcps->tcps_iss_key; 18988 mutex_exit(&tcps->tcps_iss_key_lock); 18989 arg.ports = connp->conn_ports; 18990 arg.src = connp->conn_laddr_v6; 18991 arg.dst = connp->conn_faddr_v6; 18992 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 18993 MD5Final((uchar_t *)answer, &context); 18994 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 18995 /* 18996 * Now that we've hashed into a unique per-connection sequence 18997 * space, add a random increment per strong_iss == 1. So I 18998 * guess we'll have to... 18999 */ 19000 /* FALLTHRU */ 19001 case 1: 19002 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 19003 break; 19004 default: 19005 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 19006 break; 19007 } 19008 tcp->tcp_valid_bits = TCP_ISS_VALID; 19009 tcp->tcp_fss = tcp->tcp_iss - 1; 19010 tcp->tcp_suna = tcp->tcp_iss; 19011 tcp->tcp_snxt = tcp->tcp_iss + 1; 19012 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 19013 tcp->tcp_csuna = tcp->tcp_snxt; 19014 } 19015 19016 /* 19017 * Exported routine for extracting active tcp connection status. 19018 * 19019 * This is used by the Solaris Cluster Networking software to 19020 * gather a list of connections that need to be forwarded to 19021 * specific nodes in the cluster when configuration changes occur. 19022 * 19023 * The callback is invoked for each tcp_t structure from all netstacks, 19024 * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures 19025 * from the netstack with the specified stack_id. Returning 19026 * non-zero from the callback routine terminates the search. 19027 */ 19028 int 19029 cl_tcp_walk_list(netstackid_t stack_id, 19030 int (*cl_callback)(cl_tcp_info_t *, void *), void *arg) 19031 { 19032 netstack_handle_t nh; 19033 netstack_t *ns; 19034 int ret = 0; 19035 19036 if (stack_id >= 0) { 19037 if ((ns = netstack_find_by_stackid(stack_id)) == NULL) 19038 return (EINVAL); 19039 19040 ret = cl_tcp_walk_list_stack(cl_callback, arg, 19041 ns->netstack_tcp); 19042 netstack_rele(ns); 19043 return (ret); 19044 } 19045 19046 netstack_next_init(&nh); 19047 while ((ns = netstack_next(&nh)) != NULL) { 19048 ret = cl_tcp_walk_list_stack(cl_callback, arg, 19049 ns->netstack_tcp); 19050 netstack_rele(ns); 19051 } 19052 netstack_next_fini(&nh); 19053 return (ret); 19054 } 19055 19056 static int 19057 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 19058 tcp_stack_t *tcps) 19059 { 19060 tcp_t *tcp; 19061 cl_tcp_info_t cl_tcpi; 19062 connf_t *connfp; 19063 conn_t *connp; 19064 int i; 19065 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19066 19067 ASSERT(callback != NULL); 19068 19069 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 19070 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 19071 connp = NULL; 19072 19073 while ((connp = 19074 ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { 19075 19076 tcp = connp->conn_tcp; 19077 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 19078 cl_tcpi.cl_tcpi_ipversion = connp->conn_ipversion; 19079 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 19080 cl_tcpi.cl_tcpi_lport = connp->conn_lport; 19081 cl_tcpi.cl_tcpi_fport = connp->conn_fport; 19082 cl_tcpi.cl_tcpi_laddr_v6 = connp->conn_laddr_v6; 19083 cl_tcpi.cl_tcpi_faddr_v6 = connp->conn_faddr_v6; 19084 19085 /* 19086 * If the callback returns non-zero 19087 * we terminate the traversal. 19088 */ 19089 if ((*callback)(&cl_tcpi, arg) != 0) { 19090 CONN_DEC_REF(tcp->tcp_connp); 19091 return (1); 19092 } 19093 } 19094 } 19095 19096 return (0); 19097 } 19098 19099 /* 19100 * Macros used for accessing the different types of sockaddr 19101 * structures inside a tcp_ioc_abort_conn_t. 19102 */ 19103 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 19104 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 19105 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 19106 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 19107 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 19108 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 19109 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 19110 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 19111 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 19112 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 19113 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 19114 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 19115 19116 /* 19117 * Return the correct error code to mimic the behavior 19118 * of a connection reset. 19119 */ 19120 #define TCP_AC_GET_ERRCODE(state, err) { \ 19121 switch ((state)) { \ 19122 case TCPS_SYN_SENT: \ 19123 case TCPS_SYN_RCVD: \ 19124 (err) = ECONNREFUSED; \ 19125 break; \ 19126 case TCPS_ESTABLISHED: \ 19127 case TCPS_FIN_WAIT_1: \ 19128 case TCPS_FIN_WAIT_2: \ 19129 case TCPS_CLOSE_WAIT: \ 19130 (err) = ECONNRESET; \ 19131 break; \ 19132 case TCPS_CLOSING: \ 19133 case TCPS_LAST_ACK: \ 19134 case TCPS_TIME_WAIT: \ 19135 (err) = 0; \ 19136 break; \ 19137 default: \ 19138 (err) = ENXIO; \ 19139 } \ 19140 } 19141 19142 /* 19143 * Check if a tcp structure matches the info in acp. 19144 */ 19145 #define TCP_AC_ADDR_MATCH(acp, connp, tcp) \ 19146 (((acp)->ac_local.ss_family == AF_INET) ? \ 19147 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 19148 TCP_AC_V4LOCAL((acp)) == (connp)->conn_laddr_v4) && \ 19149 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 19150 TCP_AC_V4REMOTE((acp)) == (connp)->conn_faddr_v4) && \ 19151 (TCP_AC_V4LPORT((acp)) == 0 || \ 19152 TCP_AC_V4LPORT((acp)) == (connp)->conn_lport) && \ 19153 (TCP_AC_V4RPORT((acp)) == 0 || \ 19154 TCP_AC_V4RPORT((acp)) == (connp)->conn_fport) && \ 19155 (acp)->ac_start <= (tcp)->tcp_state && \ 19156 (acp)->ac_end >= (tcp)->tcp_state) : \ 19157 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 19158 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 19159 &(connp)->conn_laddr_v6)) && \ 19160 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 19161 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 19162 &(connp)->conn_faddr_v6)) && \ 19163 (TCP_AC_V6LPORT((acp)) == 0 || \ 19164 TCP_AC_V6LPORT((acp)) == (connp)->conn_lport) && \ 19165 (TCP_AC_V6RPORT((acp)) == 0 || \ 19166 TCP_AC_V6RPORT((acp)) == (connp)->conn_fport) && \ 19167 (acp)->ac_start <= (tcp)->tcp_state && \ 19168 (acp)->ac_end >= (tcp)->tcp_state)) 19169 19170 #define TCP_AC_MATCH(acp, connp, tcp) \ 19171 (((acp)->ac_zoneid == ALL_ZONES || \ 19172 (acp)->ac_zoneid == (connp)->conn_zoneid) ? \ 19173 TCP_AC_ADDR_MATCH(acp, connp, tcp) : 0) 19174 19175 /* 19176 * Build a message containing a tcp_ioc_abort_conn_t structure 19177 * which is filled in with information from acp and tp. 19178 */ 19179 static mblk_t * 19180 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 19181 { 19182 mblk_t *mp; 19183 tcp_ioc_abort_conn_t *tacp; 19184 19185 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 19186 if (mp == NULL) 19187 return (NULL); 19188 19189 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 19190 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 19191 sizeof (uint32_t)); 19192 19193 tacp->ac_start = acp->ac_start; 19194 tacp->ac_end = acp->ac_end; 19195 tacp->ac_zoneid = acp->ac_zoneid; 19196 19197 if (acp->ac_local.ss_family == AF_INET) { 19198 tacp->ac_local.ss_family = AF_INET; 19199 tacp->ac_remote.ss_family = AF_INET; 19200 TCP_AC_V4LOCAL(tacp) = tp->tcp_connp->conn_laddr_v4; 19201 TCP_AC_V4REMOTE(tacp) = tp->tcp_connp->conn_faddr_v4; 19202 TCP_AC_V4LPORT(tacp) = tp->tcp_connp->conn_lport; 19203 TCP_AC_V4RPORT(tacp) = tp->tcp_connp->conn_fport; 19204 } else { 19205 tacp->ac_local.ss_family = AF_INET6; 19206 tacp->ac_remote.ss_family = AF_INET6; 19207 TCP_AC_V6LOCAL(tacp) = tp->tcp_connp->conn_laddr_v6; 19208 TCP_AC_V6REMOTE(tacp) = tp->tcp_connp->conn_faddr_v6; 19209 TCP_AC_V6LPORT(tacp) = tp->tcp_connp->conn_lport; 19210 TCP_AC_V6RPORT(tacp) = tp->tcp_connp->conn_fport; 19211 } 19212 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 19213 return (mp); 19214 } 19215 19216 /* 19217 * Print a tcp_ioc_abort_conn_t structure. 19218 */ 19219 static void 19220 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 19221 { 19222 char lbuf[128]; 19223 char rbuf[128]; 19224 sa_family_t af; 19225 in_port_t lport, rport; 19226 ushort_t logflags; 19227 19228 af = acp->ac_local.ss_family; 19229 19230 if (af == AF_INET) { 19231 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 19232 lbuf, 128); 19233 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 19234 rbuf, 128); 19235 lport = ntohs(TCP_AC_V4LPORT(acp)); 19236 rport = ntohs(TCP_AC_V4RPORT(acp)); 19237 } else { 19238 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 19239 lbuf, 128); 19240 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 19241 rbuf, 128); 19242 lport = ntohs(TCP_AC_V6LPORT(acp)); 19243 rport = ntohs(TCP_AC_V6RPORT(acp)); 19244 } 19245 19246 logflags = SL_TRACE | SL_NOTE; 19247 /* 19248 * Don't print this message to the console if the operation was done 19249 * to a non-global zone. 19250 */ 19251 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 19252 logflags |= SL_CONSOLE; 19253 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 19254 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 19255 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 19256 acp->ac_start, acp->ac_end); 19257 } 19258 19259 /* 19260 * Called using SQ_FILL when a message built using 19261 * tcp_ioctl_abort_build_msg is put into a queue. 19262 * Note that when we get here there is no wildcard in acp any more. 19263 */ 19264 /* ARGSUSED2 */ 19265 static void 19266 tcp_ioctl_abort_handler(void *arg, mblk_t *mp, void *arg2, 19267 ip_recv_attr_t *dummy) 19268 { 19269 conn_t *connp = (conn_t *)arg; 19270 tcp_t *tcp = connp->conn_tcp; 19271 tcp_ioc_abort_conn_t *acp; 19272 19273 /* 19274 * Don't accept any input on a closed tcp as this TCP logically does 19275 * not exist on the system. Don't proceed further with this TCP. 19276 * For eg. this packet could trigger another close of this tcp 19277 * which would be disastrous for tcp_refcnt. tcp_close_detached / 19278 * tcp_clean_death / tcp_closei_local must be called at most once 19279 * on a TCP. 19280 */ 19281 if (tcp->tcp_state == TCPS_CLOSED || 19282 tcp->tcp_state == TCPS_BOUND) { 19283 freemsg(mp); 19284 return; 19285 } 19286 19287 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 19288 if (tcp->tcp_state <= acp->ac_end) { 19289 /* 19290 * If we get here, we are already on the correct 19291 * squeue. This ioctl follows the following path 19292 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 19293 * ->tcp_ioctl_abort->squeue_enter (if on a 19294 * different squeue) 19295 */ 19296 int errcode; 19297 19298 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 19299 (void) tcp_clean_death(tcp, errcode, 26); 19300 } 19301 freemsg(mp); 19302 } 19303 19304 /* 19305 * Abort all matching connections on a hash chain. 19306 */ 19307 static int 19308 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 19309 boolean_t exact, tcp_stack_t *tcps) 19310 { 19311 int nmatch, err = 0; 19312 tcp_t *tcp; 19313 MBLKP mp, last, listhead = NULL; 19314 conn_t *tconnp; 19315 connf_t *connfp; 19316 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19317 19318 connfp = &ipst->ips_ipcl_conn_fanout[index]; 19319 19320 startover: 19321 nmatch = 0; 19322 19323 mutex_enter(&connfp->connf_lock); 19324 for (tconnp = connfp->connf_head; tconnp != NULL; 19325 tconnp = tconnp->conn_next) { 19326 tcp = tconnp->conn_tcp; 19327 /* 19328 * We are missing a check on sin6_scope_id for linklocals here, 19329 * but current usage is just for aborting based on zoneid 19330 * for shared-IP zones. 19331 */ 19332 if (TCP_AC_MATCH(acp, tconnp, tcp)) { 19333 CONN_INC_REF(tconnp); 19334 mp = tcp_ioctl_abort_build_msg(acp, tcp); 19335 if (mp == NULL) { 19336 err = ENOMEM; 19337 CONN_DEC_REF(tconnp); 19338 break; 19339 } 19340 mp->b_prev = (mblk_t *)tcp; 19341 19342 if (listhead == NULL) { 19343 listhead = mp; 19344 last = mp; 19345 } else { 19346 last->b_next = mp; 19347 last = mp; 19348 } 19349 nmatch++; 19350 if (exact) 19351 break; 19352 } 19353 19354 /* Avoid holding lock for too long. */ 19355 if (nmatch >= 500) 19356 break; 19357 } 19358 mutex_exit(&connfp->connf_lock); 19359 19360 /* Pass mp into the correct tcp */ 19361 while ((mp = listhead) != NULL) { 19362 listhead = listhead->b_next; 19363 tcp = (tcp_t *)mp->b_prev; 19364 mp->b_next = mp->b_prev = NULL; 19365 SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, 19366 tcp_ioctl_abort_handler, tcp->tcp_connp, NULL, 19367 SQ_FILL, SQTAG_TCP_ABORT_BUCKET); 19368 } 19369 19370 *count += nmatch; 19371 if (nmatch >= 500 && err == 0) 19372 goto startover; 19373 return (err); 19374 } 19375 19376 /* 19377 * Abort all connections that matches the attributes specified in acp. 19378 */ 19379 static int 19380 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 19381 { 19382 sa_family_t af; 19383 uint32_t ports; 19384 uint16_t *pports; 19385 int err = 0, count = 0; 19386 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 19387 int index = -1; 19388 ushort_t logflags; 19389 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19390 19391 af = acp->ac_local.ss_family; 19392 19393 if (af == AF_INET) { 19394 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 19395 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 19396 pports = (uint16_t *)&ports; 19397 pports[1] = TCP_AC_V4LPORT(acp); 19398 pports[0] = TCP_AC_V4RPORT(acp); 19399 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 19400 } 19401 } else { 19402 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 19403 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 19404 pports = (uint16_t *)&ports; 19405 pports[1] = TCP_AC_V6LPORT(acp); 19406 pports[0] = TCP_AC_V6RPORT(acp); 19407 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 19408 } 19409 } 19410 19411 /* 19412 * For cases where remote addr, local port, and remote port are non- 19413 * wildcards, tcp_ioctl_abort_bucket will only be called once. 19414 */ 19415 if (index != -1) { 19416 err = tcp_ioctl_abort_bucket(acp, index, 19417 &count, exact, tcps); 19418 } else { 19419 /* 19420 * loop through all entries for wildcard case 19421 */ 19422 for (index = 0; 19423 index < ipst->ips_ipcl_conn_fanout_size; 19424 index++) { 19425 err = tcp_ioctl_abort_bucket(acp, index, 19426 &count, exact, tcps); 19427 if (err != 0) 19428 break; 19429 } 19430 } 19431 19432 logflags = SL_TRACE | SL_NOTE; 19433 /* 19434 * Don't print this message to the console if the operation was done 19435 * to a non-global zone. 19436 */ 19437 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 19438 logflags |= SL_CONSOLE; 19439 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 19440 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 19441 if (err == 0 && count == 0) 19442 err = ENOENT; 19443 return (err); 19444 } 19445 19446 /* 19447 * Process the TCP_IOC_ABORT_CONN ioctl request. 19448 */ 19449 static void 19450 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 19451 { 19452 int err; 19453 IOCP iocp; 19454 MBLKP mp1; 19455 sa_family_t laf, raf; 19456 tcp_ioc_abort_conn_t *acp; 19457 zone_t *zptr; 19458 conn_t *connp = Q_TO_CONN(q); 19459 zoneid_t zoneid = connp->conn_zoneid; 19460 tcp_t *tcp = connp->conn_tcp; 19461 tcp_stack_t *tcps = tcp->tcp_tcps; 19462 19463 iocp = (IOCP)mp->b_rptr; 19464 19465 if ((mp1 = mp->b_cont) == NULL || 19466 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 19467 err = EINVAL; 19468 goto out; 19469 } 19470 19471 /* check permissions */ 19472 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 19473 err = EPERM; 19474 goto out; 19475 } 19476 19477 if (mp1->b_cont != NULL) { 19478 freemsg(mp1->b_cont); 19479 mp1->b_cont = NULL; 19480 } 19481 19482 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 19483 laf = acp->ac_local.ss_family; 19484 raf = acp->ac_remote.ss_family; 19485 19486 /* check that a zone with the supplied zoneid exists */ 19487 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 19488 zptr = zone_find_by_id(zoneid); 19489 if (zptr != NULL) { 19490 zone_rele(zptr); 19491 } else { 19492 err = EINVAL; 19493 goto out; 19494 } 19495 } 19496 19497 /* 19498 * For exclusive stacks we set the zoneid to zero 19499 * to make TCP operate as if in the global zone. 19500 */ 19501 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 19502 acp->ac_zoneid = GLOBAL_ZONEID; 19503 19504 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 19505 acp->ac_start > acp->ac_end || laf != raf || 19506 (laf != AF_INET && laf != AF_INET6)) { 19507 err = EINVAL; 19508 goto out; 19509 } 19510 19511 tcp_ioctl_abort_dump(acp); 19512 err = tcp_ioctl_abort(acp, tcps); 19513 19514 out: 19515 if (mp1 != NULL) { 19516 freemsg(mp1); 19517 mp->b_cont = NULL; 19518 } 19519 19520 if (err != 0) 19521 miocnak(q, mp, 0, err); 19522 else 19523 miocack(q, mp, 0, 0); 19524 } 19525 19526 /* 19527 * tcp_time_wait_processing() handles processing of incoming packets when 19528 * the tcp is in the TIME_WAIT state. 19529 * A TIME_WAIT tcp that has an associated open TCP stream is never put 19530 * on the time wait list. 19531 */ 19532 void 19533 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 19534 uint32_t seg_ack, int seg_len, tcpha_t *tcpha, ip_recv_attr_t *ira) 19535 { 19536 int32_t bytes_acked; 19537 int32_t gap; 19538 int32_t rgap; 19539 tcp_opt_t tcpopt; 19540 uint_t flags; 19541 uint32_t new_swnd = 0; 19542 conn_t *nconnp; 19543 conn_t *connp = tcp->tcp_connp; 19544 tcp_stack_t *tcps = tcp->tcp_tcps; 19545 19546 BUMP_LOCAL(tcp->tcp_ibsegs); 19547 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 19548 19549 flags = (unsigned int)tcpha->tha_flags & 0xFF; 19550 new_swnd = ntohs(tcpha->tha_win) << 19551 ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); 19552 if (tcp->tcp_snd_ts_ok) { 19553 if (!tcp_paws_check(tcp, tcpha, &tcpopt)) { 19554 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 19555 tcp->tcp_rnxt, TH_ACK); 19556 goto done; 19557 } 19558 } 19559 gap = seg_seq - tcp->tcp_rnxt; 19560 rgap = tcp->tcp_rwnd - (gap + seg_len); 19561 if (gap < 0) { 19562 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 19563 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 19564 (seg_len > -gap ? -gap : seg_len)); 19565 seg_len += gap; 19566 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 19567 if (flags & TH_RST) { 19568 goto done; 19569 } 19570 if ((flags & TH_FIN) && seg_len == -1) { 19571 /* 19572 * When TCP receives a duplicate FIN in 19573 * TIME_WAIT state, restart the 2 MSL timer. 19574 * See page 73 in RFC 793. Make sure this TCP 19575 * is already on the TIME_WAIT list. If not, 19576 * just restart the timer. 19577 */ 19578 if (TCP_IS_DETACHED(tcp)) { 19579 if (tcp_time_wait_remove(tcp, NULL) == 19580 B_TRUE) { 19581 tcp_time_wait_append(tcp); 19582 TCP_DBGSTAT(tcps, 19583 tcp_rput_time_wait); 19584 } 19585 } else { 19586 ASSERT(tcp != NULL); 19587 TCP_TIMER_RESTART(tcp, 19588 tcps->tcps_time_wait_interval); 19589 } 19590 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 19591 tcp->tcp_rnxt, TH_ACK); 19592 goto done; 19593 } 19594 flags |= TH_ACK_NEEDED; 19595 seg_len = 0; 19596 goto process_ack; 19597 } 19598 19599 /* Fix seg_seq, and chew the gap off the front. */ 19600 seg_seq = tcp->tcp_rnxt; 19601 } 19602 19603 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 19604 /* 19605 * Make sure that when we accept the connection, pick 19606 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 19607 * old connection. 19608 * 19609 * The next ISS generated is equal to tcp_iss_incr_extra 19610 * + ISS_INCR/2 + other components depending on the 19611 * value of tcp_strong_iss. We pre-calculate the new 19612 * ISS here and compare with tcp_snxt to determine if 19613 * we need to make adjustment to tcp_iss_incr_extra. 19614 * 19615 * The above calculation is ugly and is a 19616 * waste of CPU cycles... 19617 */ 19618 uint32_t new_iss = tcps->tcps_iss_incr_extra; 19619 int32_t adj; 19620 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19621 19622 switch (tcps->tcps_strong_iss) { 19623 case 2: { 19624 /* Add time and MD5 components. */ 19625 uint32_t answer[4]; 19626 struct { 19627 uint32_t ports; 19628 in6_addr_t src; 19629 in6_addr_t dst; 19630 } arg; 19631 MD5_CTX context; 19632 19633 mutex_enter(&tcps->tcps_iss_key_lock); 19634 context = tcps->tcps_iss_key; 19635 mutex_exit(&tcps->tcps_iss_key_lock); 19636 arg.ports = connp->conn_ports; 19637 /* We use MAPPED addresses in tcp_iss_init */ 19638 arg.src = connp->conn_laddr_v6; 19639 arg.dst = connp->conn_faddr_v6; 19640 MD5Update(&context, (uchar_t *)&arg, 19641 sizeof (arg)); 19642 MD5Final((uchar_t *)answer, &context); 19643 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 19644 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 19645 break; 19646 } 19647 case 1: 19648 /* Add time component and min random (i.e. 1). */ 19649 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 19650 break; 19651 default: 19652 /* Add only time component. */ 19653 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 19654 break; 19655 } 19656 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 19657 /* 19658 * New ISS not guaranteed to be ISS_INCR/2 19659 * ahead of the current tcp_snxt, so add the 19660 * difference to tcp_iss_incr_extra. 19661 */ 19662 tcps->tcps_iss_incr_extra += adj; 19663 } 19664 /* 19665 * If tcp_clean_death() can not perform the task now, 19666 * drop the SYN packet and let the other side re-xmit. 19667 * Otherwise pass the SYN packet back in, since the 19668 * old tcp state has been cleaned up or freed. 19669 */ 19670 if (tcp_clean_death(tcp, 0, 27) == -1) 19671 goto done; 19672 nconnp = ipcl_classify(mp, ira, ipst); 19673 if (nconnp != NULL) { 19674 TCP_STAT(tcps, tcp_time_wait_syn_success); 19675 /* Drops ref on nconnp */ 19676 tcp_reinput(nconnp, mp, ira, ipst); 19677 return; 19678 } 19679 goto done; 19680 } 19681 19682 /* 19683 * rgap is the amount of stuff received out of window. A negative 19684 * value is the amount out of window. 19685 */ 19686 if (rgap < 0) { 19687 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 19688 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 19689 /* Fix seg_len and make sure there is something left. */ 19690 seg_len += rgap; 19691 if (seg_len <= 0) { 19692 if (flags & TH_RST) { 19693 goto done; 19694 } 19695 flags |= TH_ACK_NEEDED; 19696 seg_len = 0; 19697 goto process_ack; 19698 } 19699 } 19700 /* 19701 * Check whether we can update tcp_ts_recent. This test is 19702 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 19703 * Extensions for High Performance: An Update", Internet Draft. 19704 */ 19705 if (tcp->tcp_snd_ts_ok && 19706 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 19707 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 19708 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 19709 tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 19710 } 19711 19712 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 19713 /* Always ack out of order packets */ 19714 flags |= TH_ACK_NEEDED; 19715 seg_len = 0; 19716 } else if (seg_len > 0) { 19717 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 19718 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 19719 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 19720 } 19721 if (flags & TH_RST) { 19722 (void) tcp_clean_death(tcp, 0, 28); 19723 goto done; 19724 } 19725 if (flags & TH_SYN) { 19726 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 19727 TH_RST|TH_ACK); 19728 /* 19729 * Do not delete the TCP structure if it is in 19730 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 19731 */ 19732 goto done; 19733 } 19734 process_ack: 19735 if (flags & TH_ACK) { 19736 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 19737 if (bytes_acked <= 0) { 19738 if (bytes_acked == 0 && seg_len == 0 && 19739 new_swnd == tcp->tcp_swnd) 19740 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 19741 } else { 19742 /* Acks something not sent */ 19743 flags |= TH_ACK_NEEDED; 19744 } 19745 } 19746 if (flags & TH_ACK_NEEDED) { 19747 /* 19748 * Time to send an ack for some reason. 19749 */ 19750 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 19751 tcp->tcp_rnxt, TH_ACK); 19752 } 19753 done: 19754 freemsg(mp); 19755 } 19756 19757 /* 19758 * TCP Timers Implementation. 19759 */ 19760 timeout_id_t 19761 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 19762 { 19763 mblk_t *mp; 19764 tcp_timer_t *tcpt; 19765 tcp_t *tcp = connp->conn_tcp; 19766 19767 ASSERT(connp->conn_sqp != NULL); 19768 19769 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls); 19770 19771 if (tcp->tcp_timercache == NULL) { 19772 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 19773 } else { 19774 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc); 19775 mp = tcp->tcp_timercache; 19776 tcp->tcp_timercache = mp->b_next; 19777 mp->b_next = NULL; 19778 ASSERT(mp->b_wptr == NULL); 19779 } 19780 19781 CONN_INC_REF(connp); 19782 tcpt = (tcp_timer_t *)mp->b_rptr; 19783 tcpt->connp = connp; 19784 tcpt->tcpt_proc = f; 19785 /* 19786 * TCP timers are normal timeouts. Plus, they do not require more than 19787 * a 10 millisecond resolution. By choosing a coarser resolution and by 19788 * rounding up the expiration to the next resolution boundary, we can 19789 * batch timers in the callout subsystem to make TCP timers more 19790 * efficient. The roundup also protects short timers from expiring too 19791 * early before they have a chance to be cancelled. 19792 */ 19793 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 19794 TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 19795 19796 return ((timeout_id_t)mp); 19797 } 19798 19799 static void 19800 tcp_timer_callback(void *arg) 19801 { 19802 mblk_t *mp = (mblk_t *)arg; 19803 tcp_timer_t *tcpt; 19804 conn_t *connp; 19805 19806 tcpt = (tcp_timer_t *)mp->b_rptr; 19807 connp = tcpt->connp; 19808 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp, 19809 NULL, SQ_FILL, SQTAG_TCP_TIMER); 19810 } 19811 19812 /* ARGSUSED */ 19813 static void 19814 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 19815 { 19816 tcp_timer_t *tcpt; 19817 conn_t *connp = (conn_t *)arg; 19818 tcp_t *tcp = connp->conn_tcp; 19819 19820 tcpt = (tcp_timer_t *)mp->b_rptr; 19821 ASSERT(connp == tcpt->connp); 19822 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 19823 19824 /* 19825 * If the TCP has reached the closed state, don't proceed any 19826 * further. This TCP logically does not exist on the system. 19827 * tcpt_proc could for example access queues, that have already 19828 * been qprocoff'ed off. 19829 */ 19830 if (tcp->tcp_state != TCPS_CLOSED) { 19831 (*tcpt->tcpt_proc)(connp); 19832 } else { 19833 tcp->tcp_timer_tid = 0; 19834 } 19835 tcp_timer_free(connp->conn_tcp, mp); 19836 } 19837 19838 /* 19839 * There is potential race with untimeout and the handler firing at the same 19840 * time. The mblock may be freed by the handler while we are trying to use 19841 * it. But since both should execute on the same squeue, this race should not 19842 * occur. 19843 */ 19844 clock_t 19845 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 19846 { 19847 mblk_t *mp = (mblk_t *)id; 19848 tcp_timer_t *tcpt; 19849 clock_t delta; 19850 19851 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs); 19852 19853 if (mp == NULL) 19854 return (-1); 19855 19856 tcpt = (tcp_timer_t *)mp->b_rptr; 19857 ASSERT(tcpt->connp == connp); 19858 19859 delta = untimeout_default(tcpt->tcpt_tid, 0); 19860 19861 if (delta >= 0) { 19862 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled); 19863 tcp_timer_free(connp->conn_tcp, mp); 19864 CONN_DEC_REF(connp); 19865 } 19866 19867 return (delta); 19868 } 19869 19870 /* 19871 * Allocate space for the timer event. The allocation looks like mblk, but it is 19872 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 19873 * 19874 * Dealing with failures: If we can't allocate from the timer cache we try 19875 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 19876 * points to b_rptr. 19877 * If we can't allocate anything using allocb_tryhard(), we perform a last 19878 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 19879 * save the actual allocation size in b_datap. 19880 */ 19881 mblk_t * 19882 tcp_timermp_alloc(int kmflags) 19883 { 19884 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 19885 kmflags & ~KM_PANIC); 19886 19887 if (mp != NULL) { 19888 mp->b_next = mp->b_prev = NULL; 19889 mp->b_rptr = (uchar_t *)(&mp[1]); 19890 mp->b_wptr = NULL; 19891 mp->b_datap = NULL; 19892 mp->b_queue = NULL; 19893 mp->b_cont = NULL; 19894 } else if (kmflags & KM_PANIC) { 19895 /* 19896 * Failed to allocate memory for the timer. Try allocating from 19897 * dblock caches. 19898 */ 19899 /* ipclassifier calls this from a constructor - hence no tcps */ 19900 TCP_G_STAT(tcp_timermp_allocfail); 19901 mp = allocb_tryhard(sizeof (tcp_timer_t)); 19902 if (mp == NULL) { 19903 size_t size = 0; 19904 /* 19905 * Memory is really low. Try tryhard allocation. 19906 * 19907 * ipclassifier calls this from a constructor - 19908 * hence no tcps 19909 */ 19910 TCP_G_STAT(tcp_timermp_allocdblfail); 19911 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 19912 sizeof (tcp_timer_t), &size, kmflags); 19913 mp->b_rptr = (uchar_t *)(&mp[1]); 19914 mp->b_next = mp->b_prev = NULL; 19915 mp->b_wptr = (uchar_t *)-1; 19916 mp->b_datap = (dblk_t *)size; 19917 mp->b_queue = NULL; 19918 mp->b_cont = NULL; 19919 } 19920 ASSERT(mp->b_wptr != NULL); 19921 } 19922 /* ipclassifier calls this from a constructor - hence no tcps */ 19923 TCP_G_DBGSTAT(tcp_timermp_alloced); 19924 19925 return (mp); 19926 } 19927 19928 /* 19929 * Free per-tcp timer cache. 19930 * It can only contain entries from tcp_timercache. 19931 */ 19932 void 19933 tcp_timermp_free(tcp_t *tcp) 19934 { 19935 mblk_t *mp; 19936 19937 while ((mp = tcp->tcp_timercache) != NULL) { 19938 ASSERT(mp->b_wptr == NULL); 19939 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 19940 kmem_cache_free(tcp_timercache, mp); 19941 } 19942 } 19943 19944 /* 19945 * Free timer event. Put it on the per-tcp timer cache if there is not too many 19946 * events there already (currently at most two events are cached). 19947 * If the event is not allocated from the timer cache, free it right away. 19948 */ 19949 static void 19950 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 19951 { 19952 mblk_t *mp1 = tcp->tcp_timercache; 19953 19954 if (mp->b_wptr != NULL) { 19955 /* 19956 * This allocation is not from a timer cache, free it right 19957 * away. 19958 */ 19959 if (mp->b_wptr != (uchar_t *)-1) 19960 freeb(mp); 19961 else 19962 kmem_free(mp, (size_t)mp->b_datap); 19963 } else if (mp1 == NULL || mp1->b_next == NULL) { 19964 /* Cache this timer block for future allocations */ 19965 mp->b_rptr = (uchar_t *)(&mp[1]); 19966 mp->b_next = mp1; 19967 tcp->tcp_timercache = mp; 19968 } else { 19969 kmem_cache_free(tcp_timercache, mp); 19970 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed); 19971 } 19972 } 19973 19974 /* 19975 * End of TCP Timers implementation. 19976 */ 19977 19978 /* 19979 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 19980 * on the specified backing STREAMS q. Note, the caller may make the 19981 * decision to call based on the tcp_t.tcp_flow_stopped value which 19982 * when check outside the q's lock is only an advisory check ... 19983 */ 19984 void 19985 tcp_setqfull(tcp_t *tcp) 19986 { 19987 tcp_stack_t *tcps = tcp->tcp_tcps; 19988 conn_t *connp = tcp->tcp_connp; 19989 19990 if (tcp->tcp_closed) 19991 return; 19992 19993 conn_setqfull(connp, &tcp->tcp_flow_stopped); 19994 if (tcp->tcp_flow_stopped) 19995 TCP_STAT(tcps, tcp_flwctl_on); 19996 } 19997 19998 void 19999 tcp_clrqfull(tcp_t *tcp) 20000 { 20001 conn_t *connp = tcp->tcp_connp; 20002 20003 if (tcp->tcp_closed) 20004 return; 20005 conn_clrqfull(connp, &tcp->tcp_flow_stopped); 20006 } 20007 20008 /* 20009 * kstats related to squeues i.e. not per IP instance 20010 */ 20011 static void * 20012 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 20013 { 20014 kstat_t *ksp; 20015 20016 tcp_g_stat_t template = { 20017 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 20018 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 20019 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 20020 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 20021 }; 20022 20023 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 20024 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 20025 KSTAT_FLAG_VIRTUAL); 20026 20027 if (ksp == NULL) 20028 return (NULL); 20029 20030 bcopy(&template, tcp_g_statp, sizeof (template)); 20031 ksp->ks_data = (void *)tcp_g_statp; 20032 20033 kstat_install(ksp); 20034 return (ksp); 20035 } 20036 20037 static void 20038 tcp_g_kstat_fini(kstat_t *ksp) 20039 { 20040 if (ksp != NULL) { 20041 kstat_delete(ksp); 20042 } 20043 } 20044 20045 20046 static void * 20047 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 20048 { 20049 kstat_t *ksp; 20050 20051 tcp_stat_t template = { 20052 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 20053 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 20054 { "tcp_time_wait_syn_success", KSTAT_DATA_UINT64 }, 20055 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 20056 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 20057 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 20058 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 20059 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 20060 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 20061 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 20062 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 20063 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 20064 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 20065 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 20066 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 20067 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 20068 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 20069 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 20070 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 20071 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 20072 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 20073 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 20074 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 20075 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 20076 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 20077 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 20078 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 20079 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 20080 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 20081 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 20082 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 20083 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 20084 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 20085 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 20086 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 20087 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 20088 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 20089 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 20090 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 20091 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 20092 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 20093 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 20094 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 20095 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 20096 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 20097 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 20098 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 20099 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 20100 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 20101 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 20102 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 20103 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 20104 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 20105 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 20106 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 20107 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 20108 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 20109 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 20110 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 20111 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 20112 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 20113 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 20114 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 20115 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 20116 { "tcp_listen_cnt_drop", KSTAT_DATA_UINT64 }, 20117 { "tcp_listen_mem_drop", KSTAT_DATA_UINT64 }, 20118 { "tcp_zwin_ack_syn", KSTAT_DATA_UINT64 }, 20119 { "tcp_rst_unsent", KSTAT_DATA_UINT64 } 20120 }; 20121 20122 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 20123 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 20124 KSTAT_FLAG_VIRTUAL, stackid); 20125 20126 if (ksp == NULL) 20127 return (NULL); 20128 20129 bcopy(&template, tcps_statisticsp, sizeof (template)); 20130 ksp->ks_data = (void *)tcps_statisticsp; 20131 ksp->ks_private = (void *)(uintptr_t)stackid; 20132 20133 kstat_install(ksp); 20134 return (ksp); 20135 } 20136 20137 static void 20138 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 20139 { 20140 if (ksp != NULL) { 20141 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 20142 kstat_delete_netstack(ksp, stackid); 20143 } 20144 } 20145 20146 /* 20147 * TCP Kstats implementation 20148 */ 20149 static void * 20150 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 20151 { 20152 kstat_t *ksp; 20153 20154 tcp_named_kstat_t template = { 20155 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 20156 { "rtoMin", KSTAT_DATA_INT32, 0 }, 20157 { "rtoMax", KSTAT_DATA_INT32, 0 }, 20158 { "maxConn", KSTAT_DATA_INT32, 0 }, 20159 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 20160 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 20161 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 20162 { "estabResets", KSTAT_DATA_UINT32, 0 }, 20163 { "currEstab", KSTAT_DATA_UINT32, 0 }, 20164 { "inSegs", KSTAT_DATA_UINT64, 0 }, 20165 { "outSegs", KSTAT_DATA_UINT64, 0 }, 20166 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 20167 { "connTableSize", KSTAT_DATA_INT32, 0 }, 20168 { "outRsts", KSTAT_DATA_UINT32, 0 }, 20169 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 20170 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 20171 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 20172 { "outAck", KSTAT_DATA_UINT32, 0 }, 20173 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 20174 { "outUrg", KSTAT_DATA_UINT32, 0 }, 20175 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 20176 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 20177 { "outControl", KSTAT_DATA_UINT32, 0 }, 20178 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 20179 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 20180 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 20181 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 20182 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 20183 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 20184 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 20185 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 20186 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 20187 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 20188 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 20189 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 20190 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 20191 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 20192 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 20193 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 20194 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 20195 { "inClosed", KSTAT_DATA_UINT32, 0 }, 20196 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 20197 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 20198 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 20199 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 20200 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 20201 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 20202 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 20203 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 20204 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 20205 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 20206 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 20207 { "connTableSize6", KSTAT_DATA_INT32, 0 } 20208 }; 20209 20210 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 20211 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 20212 20213 if (ksp == NULL) 20214 return (NULL); 20215 20216 template.rtoAlgorithm.value.ui32 = 4; 20217 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 20218 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 20219 template.maxConn.value.i32 = -1; 20220 20221 bcopy(&template, ksp->ks_data, sizeof (template)); 20222 ksp->ks_update = tcp_kstat_update; 20223 ksp->ks_private = (void *)(uintptr_t)stackid; 20224 20225 kstat_install(ksp); 20226 return (ksp); 20227 } 20228 20229 static void 20230 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 20231 { 20232 if (ksp != NULL) { 20233 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 20234 kstat_delete_netstack(ksp, stackid); 20235 } 20236 } 20237 20238 static int 20239 tcp_kstat_update(kstat_t *kp, int rw) 20240 { 20241 tcp_named_kstat_t *tcpkp; 20242 tcp_t *tcp; 20243 connf_t *connfp; 20244 conn_t *connp; 20245 int i; 20246 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 20247 netstack_t *ns; 20248 tcp_stack_t *tcps; 20249 ip_stack_t *ipst; 20250 20251 if ((kp == NULL) || (kp->ks_data == NULL)) 20252 return (EIO); 20253 20254 if (rw == KSTAT_WRITE) 20255 return (EACCES); 20256 20257 ns = netstack_find_by_stackid(stackid); 20258 if (ns == NULL) 20259 return (-1); 20260 tcps = ns->netstack_tcp; 20261 if (tcps == NULL) { 20262 netstack_rele(ns); 20263 return (-1); 20264 } 20265 20266 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 20267 20268 tcpkp->currEstab.value.ui32 = 0; 20269 20270 ipst = ns->netstack_ip; 20271 20272 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 20273 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 20274 connp = NULL; 20275 while ((connp = 20276 ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { 20277 tcp = connp->conn_tcp; 20278 switch (tcp_snmp_state(tcp)) { 20279 case MIB2_TCP_established: 20280 case MIB2_TCP_closeWait: 20281 tcpkp->currEstab.value.ui32++; 20282 break; 20283 } 20284 } 20285 } 20286 20287 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 20288 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 20289 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 20290 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 20291 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 20292 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 20293 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 20294 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 20295 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 20296 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 20297 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 20298 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 20299 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 20300 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 20301 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 20302 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 20303 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 20304 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 20305 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 20306 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 20307 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 20308 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 20309 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 20310 tcpkp->inDataInorderSegs.value.ui32 = 20311 tcps->tcps_mib.tcpInDataInorderSegs; 20312 tcpkp->inDataInorderBytes.value.ui32 = 20313 tcps->tcps_mib.tcpInDataInorderBytes; 20314 tcpkp->inDataUnorderSegs.value.ui32 = 20315 tcps->tcps_mib.tcpInDataUnorderSegs; 20316 tcpkp->inDataUnorderBytes.value.ui32 = 20317 tcps->tcps_mib.tcpInDataUnorderBytes; 20318 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 20319 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 20320 tcpkp->inDataPartDupSegs.value.ui32 = 20321 tcps->tcps_mib.tcpInDataPartDupSegs; 20322 tcpkp->inDataPartDupBytes.value.ui32 = 20323 tcps->tcps_mib.tcpInDataPartDupBytes; 20324 tcpkp->inDataPastWinSegs.value.ui32 = 20325 tcps->tcps_mib.tcpInDataPastWinSegs; 20326 tcpkp->inDataPastWinBytes.value.ui32 = 20327 tcps->tcps_mib.tcpInDataPastWinBytes; 20328 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 20329 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 20330 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 20331 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 20332 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 20333 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 20334 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 20335 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 20336 tcpkp->timKeepaliveProbe.value.ui32 = 20337 tcps->tcps_mib.tcpTimKeepaliveProbe; 20338 tcpkp->timKeepaliveDrop.value.ui32 = 20339 tcps->tcps_mib.tcpTimKeepaliveDrop; 20340 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 20341 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 20342 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 20343 tcpkp->outSackRetransSegs.value.ui32 = 20344 tcps->tcps_mib.tcpOutSackRetransSegs; 20345 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 20346 20347 netstack_rele(ns); 20348 return (0); 20349 } 20350 20351 static int 20352 tcp_squeue_switch(int val) 20353 { 20354 int rval = SQ_FILL; 20355 20356 switch (val) { 20357 case 1: 20358 rval = SQ_NODRAIN; 20359 break; 20360 case 2: 20361 rval = SQ_PROCESS; 20362 break; 20363 default: 20364 break; 20365 } 20366 return (rval); 20367 } 20368 20369 /* 20370 * This is called once for each squeue - globally for all stack 20371 * instances. 20372 */ 20373 static void 20374 tcp_squeue_add(squeue_t *sqp) 20375 { 20376 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 20377 sizeof (tcp_squeue_priv_t), KM_SLEEP); 20378 20379 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 20380 tcp_time_wait->tcp_time_wait_tid = 20381 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 20382 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 20383 CALLOUT_FLAG_ROUNDUP); 20384 if (tcp_free_list_max_cnt == 0) { 20385 int tcp_ncpus = ((boot_max_ncpus == -1) ? 20386 max_ncpus : boot_max_ncpus); 20387 20388 /* 20389 * Limit number of entries to 1% of availble memory / tcp_ncpus 20390 */ 20391 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 20392 (tcp_ncpus * sizeof (tcp_t) * 100); 20393 } 20394 tcp_time_wait->tcp_free_list_cnt = 0; 20395 } 20396 20397 /* 20398 * On a labeled system we have some protocols above TCP, such as RPC, which 20399 * appear to assume that every mblk in a chain has a db_credp. 20400 */ 20401 static void 20402 tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira) 20403 { 20404 ASSERT(is_system_labeled()); 20405 ASSERT(ira->ira_cred != NULL); 20406 20407 while (mp != NULL) { 20408 mblk_setcred(mp, ira->ira_cred, NOPID); 20409 mp = mp->b_cont; 20410 } 20411 } 20412 20413 static int 20414 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr, 20415 boolean_t bind_to_req_port_only, cred_t *cr) 20416 { 20417 in_port_t mlp_port; 20418 mlp_type_t addrtype, mlptype; 20419 boolean_t user_specified; 20420 in_port_t allocated_port; 20421 in_port_t requested_port = *requested_port_ptr; 20422 conn_t *connp = tcp->tcp_connp; 20423 zone_t *zone; 20424 tcp_stack_t *tcps = tcp->tcp_tcps; 20425 in6_addr_t v6addr = connp->conn_laddr_v6; 20426 20427 /* 20428 * XXX It's up to the caller to specify bind_to_req_port_only or not. 20429 */ 20430 ASSERT(cr != NULL); 20431 20432 /* 20433 * Get a valid port (within the anonymous range and should not 20434 * be a privileged one) to use if the user has not given a port. 20435 * If multiple threads are here, they may all start with 20436 * with the same initial port. But, it should be fine as long as 20437 * tcp_bindi will ensure that no two threads will be assigned 20438 * the same port. 20439 * 20440 * NOTE: XXX If a privileged process asks for an anonymous port, we 20441 * still check for ports only in the range > tcp_smallest_non_priv_port, 20442 * unless TCP_ANONPRIVBIND option is set. 20443 */ 20444 mlptype = mlptSingle; 20445 mlp_port = requested_port; 20446 if (requested_port == 0) { 20447 requested_port = connp->conn_anon_priv_bind ? 20448 tcp_get_next_priv_port(tcp) : 20449 tcp_update_next_port(tcps->tcps_next_port_to_try, 20450 tcp, B_TRUE); 20451 if (requested_port == 0) { 20452 return (-TNOADDR); 20453 } 20454 user_specified = B_FALSE; 20455 20456 /* 20457 * If the user went through one of the RPC interfaces to create 20458 * this socket and RPC is MLP in this zone, then give him an 20459 * anonymous MLP. 20460 */ 20461 if (connp->conn_anon_mlp && is_system_labeled()) { 20462 zone = crgetzone(cr); 20463 addrtype = tsol_mlp_addr_type( 20464 connp->conn_allzones ? ALL_ZONES : zone->zone_id, 20465 IPV6_VERSION, &v6addr, 20466 tcps->tcps_netstack->netstack_ip); 20467 if (addrtype == mlptSingle) { 20468 return (-TNOADDR); 20469 } 20470 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 20471 PMAPPORT, addrtype); 20472 mlp_port = PMAPPORT; 20473 } 20474 } else { 20475 int i; 20476 boolean_t priv = B_FALSE; 20477 20478 /* 20479 * If the requested_port is in the well-known privileged range, 20480 * verify that the stream was opened by a privileged user. 20481 * Note: No locks are held when inspecting tcp_g_*epriv_ports 20482 * but instead the code relies on: 20483 * - the fact that the address of the array and its size never 20484 * changes 20485 * - the atomic assignment of the elements of the array 20486 */ 20487 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 20488 priv = B_TRUE; 20489 } else { 20490 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 20491 if (requested_port == 20492 tcps->tcps_g_epriv_ports[i]) { 20493 priv = B_TRUE; 20494 break; 20495 } 20496 } 20497 } 20498 if (priv) { 20499 if (secpolicy_net_privaddr(cr, requested_port, 20500 IPPROTO_TCP) != 0) { 20501 if (connp->conn_debug) { 20502 (void) strlog(TCP_MOD_ID, 0, 1, 20503 SL_ERROR|SL_TRACE, 20504 "tcp_bind: no priv for port %d", 20505 requested_port); 20506 } 20507 return (-TACCES); 20508 } 20509 } 20510 user_specified = B_TRUE; 20511 20512 connp = tcp->tcp_connp; 20513 if (is_system_labeled()) { 20514 zone = crgetzone(cr); 20515 addrtype = tsol_mlp_addr_type( 20516 connp->conn_allzones ? ALL_ZONES : zone->zone_id, 20517 IPV6_VERSION, &v6addr, 20518 tcps->tcps_netstack->netstack_ip); 20519 if (addrtype == mlptSingle) { 20520 return (-TNOADDR); 20521 } 20522 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 20523 requested_port, addrtype); 20524 } 20525 } 20526 20527 if (mlptype != mlptSingle) { 20528 if (secpolicy_net_bindmlp(cr) != 0) { 20529 if (connp->conn_debug) { 20530 (void) strlog(TCP_MOD_ID, 0, 1, 20531 SL_ERROR|SL_TRACE, 20532 "tcp_bind: no priv for multilevel port %d", 20533 requested_port); 20534 } 20535 return (-TACCES); 20536 } 20537 20538 /* 20539 * If we're specifically binding a shared IP address and the 20540 * port is MLP on shared addresses, then check to see if this 20541 * zone actually owns the MLP. Reject if not. 20542 */ 20543 if (mlptype == mlptShared && addrtype == mlptShared) { 20544 /* 20545 * No need to handle exclusive-stack zones since 20546 * ALL_ZONES only applies to the shared stack. 20547 */ 20548 zoneid_t mlpzone; 20549 20550 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 20551 htons(mlp_port)); 20552 if (connp->conn_zoneid != mlpzone) { 20553 if (connp->conn_debug) { 20554 (void) strlog(TCP_MOD_ID, 0, 1, 20555 SL_ERROR|SL_TRACE, 20556 "tcp_bind: attempt to bind port " 20557 "%d on shared addr in zone %d " 20558 "(should be %d)", 20559 mlp_port, connp->conn_zoneid, 20560 mlpzone); 20561 } 20562 return (-TACCES); 20563 } 20564 } 20565 20566 if (!user_specified) { 20567 int err; 20568 err = tsol_mlp_anon(zone, mlptype, connp->conn_proto, 20569 requested_port, B_TRUE); 20570 if (err != 0) { 20571 if (connp->conn_debug) { 20572 (void) strlog(TCP_MOD_ID, 0, 1, 20573 SL_ERROR|SL_TRACE, 20574 "tcp_bind: cannot establish anon " 20575 "MLP for port %d", 20576 requested_port); 20577 } 20578 return (err); 20579 } 20580 connp->conn_anon_port = B_TRUE; 20581 } 20582 connp->conn_mlp_type = mlptype; 20583 } 20584 20585 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 20586 connp->conn_reuseaddr, B_FALSE, bind_to_req_port_only, 20587 user_specified); 20588 20589 if (allocated_port == 0) { 20590 connp->conn_mlp_type = mlptSingle; 20591 if (connp->conn_anon_port) { 20592 connp->conn_anon_port = B_FALSE; 20593 (void) tsol_mlp_anon(zone, mlptype, connp->conn_proto, 20594 requested_port, B_FALSE); 20595 } 20596 if (bind_to_req_port_only) { 20597 if (connp->conn_debug) { 20598 (void) strlog(TCP_MOD_ID, 0, 1, 20599 SL_ERROR|SL_TRACE, 20600 "tcp_bind: requested addr busy"); 20601 } 20602 return (-TADDRBUSY); 20603 } else { 20604 /* If we are out of ports, fail the bind. */ 20605 if (connp->conn_debug) { 20606 (void) strlog(TCP_MOD_ID, 0, 1, 20607 SL_ERROR|SL_TRACE, 20608 "tcp_bind: out of ports?"); 20609 } 20610 return (-TNOADDR); 20611 } 20612 } 20613 20614 /* Pass the allocated port back */ 20615 *requested_port_ptr = allocated_port; 20616 return (0); 20617 } 20618 20619 /* 20620 * Check the address and check/pick a local port number. 20621 */ 20622 static int 20623 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 20624 boolean_t bind_to_req_port_only) 20625 { 20626 tcp_t *tcp = connp->conn_tcp; 20627 sin_t *sin; 20628 sin6_t *sin6; 20629 in_port_t requested_port; 20630 ipaddr_t v4addr; 20631 in6_addr_t v6addr; 20632 ip_laddr_t laddr_type = IPVL_UNICAST_UP; /* INADDR_ANY */ 20633 zoneid_t zoneid = IPCL_ZONEID(connp); 20634 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 20635 uint_t scopeid = 0; 20636 int error = 0; 20637 ip_xmit_attr_t *ixa = connp->conn_ixa; 20638 20639 ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX); 20640 20641 if (tcp->tcp_state == TCPS_BOUND) { 20642 return (0); 20643 } else if (tcp->tcp_state > TCPS_BOUND) { 20644 if (connp->conn_debug) { 20645 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20646 "tcp_bind: bad state, %d", tcp->tcp_state); 20647 } 20648 return (-TOUTSTATE); 20649 } 20650 20651 ASSERT(sa != NULL && len != 0); 20652 20653 if (!OK_32PTR((char *)sa)) { 20654 if (connp->conn_debug) { 20655 (void) strlog(TCP_MOD_ID, 0, 1, 20656 SL_ERROR|SL_TRACE, 20657 "tcp_bind: bad address parameter, " 20658 "address %p, len %d", 20659 (void *)sa, len); 20660 } 20661 return (-TPROTO); 20662 } 20663 20664 error = proto_verify_ip_addr(connp->conn_family, sa, len); 20665 if (error != 0) { 20666 return (error); 20667 } 20668 20669 switch (len) { 20670 case sizeof (sin_t): /* Complete IPv4 address */ 20671 sin = (sin_t *)sa; 20672 requested_port = ntohs(sin->sin_port); 20673 v4addr = sin->sin_addr.s_addr; 20674 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 20675 if (v4addr != INADDR_ANY) { 20676 laddr_type = ip_laddr_verify_v4(v4addr, zoneid, ipst, 20677 B_FALSE); 20678 } 20679 break; 20680 20681 case sizeof (sin6_t): /* Complete IPv6 address */ 20682 sin6 = (sin6_t *)sa; 20683 v6addr = sin6->sin6_addr; 20684 requested_port = ntohs(sin6->sin6_port); 20685 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) { 20686 if (connp->conn_ipv6_v6only) 20687 return (EADDRNOTAVAIL); 20688 20689 IN6_V4MAPPED_TO_IPADDR(&v6addr, v4addr); 20690 if (v4addr != INADDR_ANY) { 20691 laddr_type = ip_laddr_verify_v4(v4addr, 20692 zoneid, ipst, B_FALSE); 20693 } 20694 } else { 20695 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) { 20696 if (IN6_IS_ADDR_LINKSCOPE(&v6addr)) 20697 scopeid = sin6->sin6_scope_id; 20698 laddr_type = ip_laddr_verify_v6(&v6addr, 20699 zoneid, ipst, B_FALSE, scopeid); 20700 } 20701 } 20702 break; 20703 20704 default: 20705 if (connp->conn_debug) { 20706 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20707 "tcp_bind: bad address length, %d", len); 20708 } 20709 return (EAFNOSUPPORT); 20710 /* return (-TBADADDR); */ 20711 } 20712 20713 /* Is the local address a valid unicast address? */ 20714 if (laddr_type == IPVL_BAD) 20715 return (EADDRNOTAVAIL); 20716 20717 connp->conn_bound_addr_v6 = v6addr; 20718 if (scopeid != 0) { 20719 ixa->ixa_flags |= IXAF_SCOPEID_SET; 20720 ixa->ixa_scopeid = scopeid; 20721 connp->conn_incoming_ifindex = scopeid; 20722 } else { 20723 ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 20724 connp->conn_incoming_ifindex = connp->conn_bound_if; 20725 } 20726 20727 connp->conn_laddr_v6 = v6addr; 20728 connp->conn_saddr_v6 = v6addr; 20729 20730 bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only; 20731 20732 error = tcp_bind_select_lport(tcp, &requested_port, 20733 bind_to_req_port_only, cr); 20734 if (error != 0) { 20735 connp->conn_laddr_v6 = ipv6_all_zeros; 20736 connp->conn_saddr_v6 = ipv6_all_zeros; 20737 connp->conn_bound_addr_v6 = ipv6_all_zeros; 20738 } 20739 return (error); 20740 } 20741 20742 /* 20743 * Return unix error is tli error is TSYSERR, otherwise return a negative 20744 * tli error. 20745 */ 20746 int 20747 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 20748 boolean_t bind_to_req_port_only) 20749 { 20750 int error; 20751 tcp_t *tcp = connp->conn_tcp; 20752 20753 if (tcp->tcp_state >= TCPS_BOUND) { 20754 if (connp->conn_debug) { 20755 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20756 "tcp_bind: bad state, %d", tcp->tcp_state); 20757 } 20758 return (-TOUTSTATE); 20759 } 20760 20761 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 20762 if (error != 0) 20763 return (error); 20764 20765 ASSERT(tcp->tcp_state == TCPS_BOUND); 20766 tcp->tcp_conn_req_max = 0; 20767 return (0); 20768 } 20769 20770 int 20771 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 20772 socklen_t len, cred_t *cr) 20773 { 20774 int error; 20775 conn_t *connp = (conn_t *)proto_handle; 20776 squeue_t *sqp = connp->conn_sqp; 20777 20778 /* All Solaris components should pass a cred for this operation. */ 20779 ASSERT(cr != NULL); 20780 20781 ASSERT(sqp != NULL); 20782 ASSERT(connp->conn_upper_handle != NULL); 20783 20784 error = squeue_synch_enter(sqp, connp, NULL); 20785 if (error != 0) { 20786 /* failed to enter */ 20787 return (ENOSR); 20788 } 20789 20790 /* binding to a NULL address really means unbind */ 20791 if (sa == NULL) { 20792 if (connp->conn_tcp->tcp_state < TCPS_LISTEN) 20793 error = tcp_do_unbind(connp); 20794 else 20795 error = EINVAL; 20796 } else { 20797 error = tcp_do_bind(connp, sa, len, cr, B_TRUE); 20798 } 20799 20800 squeue_synch_exit(sqp, connp); 20801 20802 if (error < 0) { 20803 if (error == -TOUTSTATE) 20804 error = EINVAL; 20805 else 20806 error = proto_tlitosyserr(-error); 20807 } 20808 20809 return (error); 20810 } 20811 20812 /* 20813 * If the return value from this function is positive, it's a UNIX error. 20814 * Otherwise, if it's negative, then the absolute value is a TLI error. 20815 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 20816 */ 20817 int 20818 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 20819 cred_t *cr, pid_t pid) 20820 { 20821 tcp_t *tcp = connp->conn_tcp; 20822 sin_t *sin = (sin_t *)sa; 20823 sin6_t *sin6 = (sin6_t *)sa; 20824 ipaddr_t *dstaddrp; 20825 in_port_t dstport; 20826 uint_t srcid; 20827 int error; 20828 uint32_t mss; 20829 mblk_t *syn_mp; 20830 tcp_stack_t *tcps = tcp->tcp_tcps; 20831 int32_t oldstate; 20832 ip_xmit_attr_t *ixa = connp->conn_ixa; 20833 20834 oldstate = tcp->tcp_state; 20835 20836 switch (len) { 20837 default: 20838 /* 20839 * Should never happen 20840 */ 20841 return (EINVAL); 20842 20843 case sizeof (sin_t): 20844 sin = (sin_t *)sa; 20845 if (sin->sin_port == 0) { 20846 return (-TBADADDR); 20847 } 20848 if (connp->conn_ipv6_v6only) { 20849 return (EAFNOSUPPORT); 20850 } 20851 break; 20852 20853 case sizeof (sin6_t): 20854 sin6 = (sin6_t *)sa; 20855 if (sin6->sin6_port == 0) { 20856 return (-TBADADDR); 20857 } 20858 break; 20859 } 20860 /* 20861 * If we're connecting to an IPv4-mapped IPv6 address, we need to 20862 * make sure that the conn_ipversion is IPV4_VERSION. We 20863 * need to this before we call tcp_bindi() so that the port lookup 20864 * code will look for ports in the correct port space (IPv4 and 20865 * IPv6 have separate port spaces). 20866 */ 20867 if (connp->conn_family == AF_INET6 && 20868 connp->conn_ipversion == IPV6_VERSION && 20869 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 20870 if (connp->conn_ipv6_v6only) 20871 return (EADDRNOTAVAIL); 20872 20873 connp->conn_ipversion = IPV4_VERSION; 20874 } 20875 20876 switch (tcp->tcp_state) { 20877 case TCPS_LISTEN: 20878 /* 20879 * Listening sockets are not allowed to issue connect(). 20880 */ 20881 if (IPCL_IS_NONSTR(connp)) 20882 return (EOPNOTSUPP); 20883 /* FALLTHRU */ 20884 case TCPS_IDLE: 20885 /* 20886 * We support quick connect, refer to comments in 20887 * tcp_connect_*() 20888 */ 20889 /* FALLTHRU */ 20890 case TCPS_BOUND: 20891 break; 20892 default: 20893 return (-TOUTSTATE); 20894 } 20895 20896 /* 20897 * We update our cred/cpid based on the caller of connect 20898 */ 20899 if (connp->conn_cred != cr) { 20900 crhold(cr); 20901 crfree(connp->conn_cred); 20902 connp->conn_cred = cr; 20903 } 20904 connp->conn_cpid = pid; 20905 20906 /* Cache things in the ixa without any refhold */ 20907 ixa->ixa_cred = cr; 20908 ixa->ixa_cpid = pid; 20909 if (is_system_labeled()) { 20910 /* We need to restart with a label based on the cred */ 20911 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred); 20912 } 20913 20914 if (connp->conn_family == AF_INET6) { 20915 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 20916 error = tcp_connect_ipv6(tcp, &sin6->sin6_addr, 20917 sin6->sin6_port, sin6->sin6_flowinfo, 20918 sin6->__sin6_src_id, sin6->sin6_scope_id); 20919 } else { 20920 /* 20921 * Destination adress is mapped IPv6 address. 20922 * Source bound address should be unspecified or 20923 * IPv6 mapped address as well. 20924 */ 20925 if (!IN6_IS_ADDR_UNSPECIFIED( 20926 &connp->conn_bound_addr_v6) && 20927 !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) { 20928 return (EADDRNOTAVAIL); 20929 } 20930 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 20931 dstport = sin6->sin6_port; 20932 srcid = sin6->__sin6_src_id; 20933 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, 20934 srcid); 20935 } 20936 } else { 20937 dstaddrp = &sin->sin_addr.s_addr; 20938 dstport = sin->sin_port; 20939 srcid = 0; 20940 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid); 20941 } 20942 20943 if (error != 0) 20944 goto connect_failed; 20945 20946 CL_INET_CONNECT(connp, B_TRUE, error); 20947 if (error != 0) 20948 goto connect_failed; 20949 20950 /* connect succeeded */ 20951 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 20952 tcp->tcp_active_open = 1; 20953 20954 /* 20955 * tcp_set_destination() does not adjust for TCP/IP header length. 20956 */ 20957 mss = tcp->tcp_mss - connp->conn_ht_iphc_len; 20958 20959 /* 20960 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up 20961 * to the nearest MSS. 20962 * 20963 * We do the round up here because we need to get the interface MTU 20964 * first before we can do the round up. 20965 */ 20966 tcp->tcp_rwnd = connp->conn_rcvbuf; 20967 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 20968 tcps->tcps_recv_hiwat_minmss * mss); 20969 connp->conn_rcvbuf = tcp->tcp_rwnd; 20970 tcp_set_ws_value(tcp); 20971 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 20972 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 20973 tcp->tcp_snd_ws_ok = B_TRUE; 20974 20975 /* 20976 * Set tcp_snd_ts_ok to true 20977 * so that tcp_xmit_mp will 20978 * include the timestamp 20979 * option in the SYN segment. 20980 */ 20981 if (tcps->tcps_tstamp_always || 20982 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 20983 tcp->tcp_snd_ts_ok = B_TRUE; 20984 } 20985 20986 /* 20987 * tcp_snd_sack_ok can be set in 20988 * tcp_set_destination() if the sack metric 20989 * is set. So check it here also. 20990 */ 20991 if (tcps->tcps_sack_permitted == 2 || 20992 tcp->tcp_snd_sack_ok) { 20993 if (tcp->tcp_sack_info == NULL) { 20994 tcp->tcp_sack_info = kmem_cache_alloc( 20995 tcp_sack_info_cache, KM_SLEEP); 20996 } 20997 tcp->tcp_snd_sack_ok = B_TRUE; 20998 } 20999 21000 /* 21001 * Should we use ECN? Note that the current 21002 * default value (SunOS 5.9) of tcp_ecn_permitted 21003 * is 1. The reason for doing this is that there 21004 * are equipments out there that will drop ECN 21005 * enabled IP packets. Setting it to 1 avoids 21006 * compatibility problems. 21007 */ 21008 if (tcps->tcps_ecn_permitted == 2) 21009 tcp->tcp_ecn_ok = B_TRUE; 21010 21011 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21012 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 21013 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 21014 if (syn_mp != NULL) { 21015 /* 21016 * We must bump the generation before sending the syn 21017 * to ensure that we use the right generation in case 21018 * this thread issues a "connected" up call. 21019 */ 21020 SOCK_CONNID_BUMP(tcp->tcp_connid); 21021 tcp_send_data(tcp, syn_mp); 21022 } 21023 21024 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 21025 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 21026 return (0); 21027 21028 connect_failed: 21029 connp->conn_faddr_v6 = ipv6_all_zeros; 21030 connp->conn_fport = 0; 21031 tcp->tcp_state = oldstate; 21032 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 21033 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 21034 return (error); 21035 } 21036 21037 int 21038 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 21039 socklen_t len, sock_connid_t *id, cred_t *cr) 21040 { 21041 conn_t *connp = (conn_t *)proto_handle; 21042 squeue_t *sqp = connp->conn_sqp; 21043 int error; 21044 21045 ASSERT(connp->conn_upper_handle != NULL); 21046 21047 /* All Solaris components should pass a cred for this operation. */ 21048 ASSERT(cr != NULL); 21049 21050 error = proto_verify_ip_addr(connp->conn_family, sa, len); 21051 if (error != 0) { 21052 return (error); 21053 } 21054 21055 error = squeue_synch_enter(sqp, connp, NULL); 21056 if (error != 0) { 21057 /* failed to enter */ 21058 return (ENOSR); 21059 } 21060 21061 /* 21062 * TCP supports quick connect, so no need to do an implicit bind 21063 */ 21064 error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid); 21065 if (error == 0) { 21066 *id = connp->conn_tcp->tcp_connid; 21067 } else if (error < 0) { 21068 if (error == -TOUTSTATE) { 21069 switch (connp->conn_tcp->tcp_state) { 21070 case TCPS_SYN_SENT: 21071 error = EALREADY; 21072 break; 21073 case TCPS_ESTABLISHED: 21074 error = EISCONN; 21075 break; 21076 case TCPS_LISTEN: 21077 error = EOPNOTSUPP; 21078 break; 21079 default: 21080 error = EINVAL; 21081 break; 21082 } 21083 } else { 21084 error = proto_tlitosyserr(-error); 21085 } 21086 } 21087 21088 if (connp->conn_tcp->tcp_loopback) { 21089 struct sock_proto_props sopp; 21090 21091 sopp.sopp_flags = SOCKOPT_LOOPBACK; 21092 sopp.sopp_loopback = B_TRUE; 21093 21094 (*connp->conn_upcalls->su_set_proto_props)( 21095 connp->conn_upper_handle, &sopp); 21096 } 21097 done: 21098 squeue_synch_exit(sqp, connp); 21099 21100 return ((error == 0) ? EINPROGRESS : error); 21101 } 21102 21103 /* ARGSUSED */ 21104 sock_lower_handle_t 21105 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 21106 uint_t *smodep, int *errorp, int flags, cred_t *credp) 21107 { 21108 conn_t *connp; 21109 boolean_t isv6 = family == AF_INET6; 21110 if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) || 21111 (proto != 0 && proto != IPPROTO_TCP)) { 21112 *errorp = EPROTONOSUPPORT; 21113 return (NULL); 21114 } 21115 21116 connp = tcp_create_common(credp, isv6, B_TRUE, errorp); 21117 if (connp == NULL) { 21118 return (NULL); 21119 } 21120 21121 /* 21122 * Put the ref for TCP. Ref for IP was already put 21123 * by ipcl_conn_create. Also Make the conn_t globally 21124 * visible to walkers 21125 */ 21126 mutex_enter(&connp->conn_lock); 21127 CONN_INC_REF_LOCKED(connp); 21128 ASSERT(connp->conn_ref == 2); 21129 connp->conn_state_flags &= ~CONN_INCIPIENT; 21130 21131 connp->conn_flags |= IPCL_NONSTR; 21132 mutex_exit(&connp->conn_lock); 21133 21134 ASSERT(errorp != NULL); 21135 *errorp = 0; 21136 *sock_downcalls = &sock_tcp_downcalls; 21137 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP | 21138 SM_SENDFILESUPP; 21139 21140 return ((sock_lower_handle_t)connp); 21141 } 21142 21143 /* ARGSUSED */ 21144 void 21145 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 21146 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 21147 { 21148 conn_t *connp = (conn_t *)proto_handle; 21149 struct sock_proto_props sopp; 21150 21151 ASSERT(connp->conn_upper_handle == NULL); 21152 21153 /* All Solaris components should pass a cred for this operation. */ 21154 ASSERT(cr != NULL); 21155 21156 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 21157 SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER | 21158 SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ; 21159 21160 sopp.sopp_rxhiwat = SOCKET_RECVHIWATER; 21161 sopp.sopp_rxlowat = SOCKET_RECVLOWATER; 21162 sopp.sopp_maxpsz = INFPSZ; 21163 sopp.sopp_maxblk = INFPSZ; 21164 sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL; 21165 sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3; 21166 sopp.sopp_maxaddrlen = sizeof (sin6_t); 21167 sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 : 21168 tcp_rinfo.mi_minpsz; 21169 21170 connp->conn_upcalls = sock_upcalls; 21171 connp->conn_upper_handle = sock_handle; 21172 21173 ASSERT(connp->conn_rcvbuf != 0 && 21174 connp->conn_rcvbuf == connp->conn_tcp->tcp_rwnd); 21175 (*sock_upcalls->su_set_proto_props)(sock_handle, &sopp); 21176 } 21177 21178 /* ARGSUSED */ 21179 int 21180 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 21181 { 21182 conn_t *connp = (conn_t *)proto_handle; 21183 21184 ASSERT(connp->conn_upper_handle != NULL); 21185 21186 /* All Solaris components should pass a cred for this operation. */ 21187 ASSERT(cr != NULL); 21188 21189 tcp_close_common(connp, flags); 21190 21191 ip_free_helper_stream(connp); 21192 21193 /* 21194 * Drop IP's reference on the conn. This is the last reference 21195 * on the connp if the state was less than established. If the 21196 * connection has gone into timewait state, then we will have 21197 * one ref for the TCP and one more ref (total of two) for the 21198 * classifier connected hash list (a timewait connections stays 21199 * in connected hash till closed). 21200 * 21201 * We can't assert the references because there might be other 21202 * transient reference places because of some walkers or queued 21203 * packets in squeue for the timewait state. 21204 */ 21205 CONN_DEC_REF(connp); 21206 return (0); 21207 } 21208 21209 /* ARGSUSED */ 21210 int 21211 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg, 21212 cred_t *cr) 21213 { 21214 tcp_t *tcp; 21215 uint32_t msize; 21216 conn_t *connp = (conn_t *)proto_handle; 21217 int32_t tcpstate; 21218 21219 /* All Solaris components should pass a cred for this operation. */ 21220 ASSERT(cr != NULL); 21221 21222 ASSERT(connp->conn_ref >= 2); 21223 ASSERT(connp->conn_upper_handle != NULL); 21224 21225 if (msg->msg_controllen != 0) { 21226 freemsg(mp); 21227 return (EOPNOTSUPP); 21228 } 21229 21230 switch (DB_TYPE(mp)) { 21231 case M_DATA: 21232 tcp = connp->conn_tcp; 21233 ASSERT(tcp != NULL); 21234 21235 tcpstate = tcp->tcp_state; 21236 if (tcpstate < TCPS_ESTABLISHED) { 21237 freemsg(mp); 21238 /* 21239 * We return ENOTCONN if the endpoint is trying to 21240 * connect or has never been connected, and EPIPE if it 21241 * has been disconnected. The connection id helps us 21242 * distinguish between the last two cases. 21243 */ 21244 return ((tcpstate == TCPS_SYN_SENT) ? ENOTCONN : 21245 ((tcp->tcp_connid > 0) ? EPIPE : ENOTCONN)); 21246 } else if (tcpstate > TCPS_CLOSE_WAIT) { 21247 freemsg(mp); 21248 return (EPIPE); 21249 } 21250 21251 msize = msgdsize(mp); 21252 21253 mutex_enter(&tcp->tcp_non_sq_lock); 21254 tcp->tcp_squeue_bytes += msize; 21255 /* 21256 * Squeue Flow Control 21257 */ 21258 if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) { 21259 tcp_setqfull(tcp); 21260 } 21261 mutex_exit(&tcp->tcp_non_sq_lock); 21262 21263 /* 21264 * The application may pass in an address in the msghdr, but 21265 * we ignore the address on connection-oriented sockets. 21266 * Just like BSD this code does not generate an error for 21267 * TCP (a CONNREQUIRED socket) when sending to an address 21268 * passed in with sendto/sendmsg. Instead the data is 21269 * delivered on the connection as if no address had been 21270 * supplied. 21271 */ 21272 CONN_INC_REF(connp); 21273 21274 if (msg->msg_flags & MSG_OOB) { 21275 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output_urgent, 21276 connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 21277 } else { 21278 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, 21279 connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 21280 } 21281 21282 return (0); 21283 21284 default: 21285 ASSERT(0); 21286 } 21287 21288 freemsg(mp); 21289 return (0); 21290 } 21291 21292 /* ARGSUSED2 */ 21293 void 21294 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 21295 { 21296 int len; 21297 uint32_t msize; 21298 conn_t *connp = (conn_t *)arg; 21299 tcp_t *tcp = connp->conn_tcp; 21300 21301 msize = msgdsize(mp); 21302 21303 len = msize - 1; 21304 if (len < 0) { 21305 freemsg(mp); 21306 return; 21307 } 21308 21309 /* 21310 * Try to force urgent data out on the wire. Even if we have unsent 21311 * data this will at least send the urgent flag. 21312 * XXX does not handle more flag correctly. 21313 */ 21314 len += tcp->tcp_unsent; 21315 len += tcp->tcp_snxt; 21316 tcp->tcp_urg = len; 21317 tcp->tcp_valid_bits |= TCP_URG_VALID; 21318 21319 /* Bypass tcp protocol for fused tcp loopback */ 21320 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 21321 return; 21322 21323 /* Strip off the T_EXDATA_REQ if the data is from TPI */ 21324 if (DB_TYPE(mp) != M_DATA) { 21325 mblk_t *mp1 = mp; 21326 ASSERT(!IPCL_IS_NONSTR(connp)); 21327 mp = mp->b_cont; 21328 freeb(mp1); 21329 } 21330 tcp_wput_data(tcp, mp, B_TRUE); 21331 } 21332 21333 /* ARGSUSED3 */ 21334 int 21335 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 21336 socklen_t *addrlenp, cred_t *cr) 21337 { 21338 conn_t *connp = (conn_t *)proto_handle; 21339 tcp_t *tcp = connp->conn_tcp; 21340 21341 ASSERT(connp->conn_upper_handle != NULL); 21342 /* All Solaris components should pass a cred for this operation. */ 21343 ASSERT(cr != NULL); 21344 21345 ASSERT(tcp != NULL); 21346 if (tcp->tcp_state < TCPS_SYN_RCVD) 21347 return (ENOTCONN); 21348 21349 return (conn_getpeername(connp, addr, addrlenp)); 21350 } 21351 21352 /* ARGSUSED3 */ 21353 int 21354 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 21355 socklen_t *addrlenp, cred_t *cr) 21356 { 21357 conn_t *connp = (conn_t *)proto_handle; 21358 21359 /* All Solaris components should pass a cred for this operation. */ 21360 ASSERT(cr != NULL); 21361 21362 ASSERT(connp->conn_upper_handle != NULL); 21363 return (conn_getsockname(connp, addr, addrlenp)); 21364 } 21365 21366 /* 21367 * tcp_fallback 21368 * 21369 * A direct socket is falling back to using STREAMS. The queue 21370 * that is being passed down was created using tcp_open() with 21371 * the SO_FALLBACK flag set. As a result, the queue is not 21372 * associated with a conn, and the q_ptrs instead contain the 21373 * dev and minor area that should be used. 21374 * 21375 * The 'issocket' flag indicates whether the FireEngine 21376 * optimizations should be used. The common case would be that 21377 * optimizations are enabled, and they might be subsequently 21378 * disabled using the _SIOCSOCKFALLBACK ioctl. 21379 */ 21380 21381 /* 21382 * An active connection is falling back to TPI. Gather all the information 21383 * required by the STREAM head and TPI sonode and send it up. 21384 */ 21385 void 21386 tcp_fallback_noneager(tcp_t *tcp, mblk_t *stropt_mp, queue_t *q, 21387 boolean_t issocket, so_proto_quiesced_cb_t quiesced_cb) 21388 { 21389 conn_t *connp = tcp->tcp_connp; 21390 struct stroptions *stropt; 21391 struct T_capability_ack tca; 21392 struct sockaddr_in6 laddr, faddr; 21393 socklen_t laddrlen, faddrlen; 21394 short opts; 21395 int error; 21396 mblk_t *mp; 21397 21398 connp->conn_dev = (dev_t)RD(q)->q_ptr; 21399 connp->conn_minor_arena = WR(q)->q_ptr; 21400 21401 RD(q)->q_ptr = WR(q)->q_ptr = connp; 21402 21403 connp->conn_rq = RD(q); 21404 connp->conn_wq = WR(q); 21405 21406 WR(q)->q_qinfo = &tcp_sock_winit; 21407 21408 if (!issocket) 21409 tcp_use_pure_tpi(tcp); 21410 21411 /* 21412 * free the helper stream 21413 */ 21414 ip_free_helper_stream(connp); 21415 21416 /* 21417 * Notify the STREAM head about options 21418 */ 21419 DB_TYPE(stropt_mp) = M_SETOPTS; 21420 stropt = (struct stroptions *)stropt_mp->b_rptr; 21421 stropt_mp->b_wptr += sizeof (struct stroptions); 21422 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 21423 21424 stropt->so_wroff = connp->conn_ht_iphc_len + (tcp->tcp_loopback ? 0 : 21425 tcp->tcp_tcps->tcps_wroff_xtra); 21426 if (tcp->tcp_snd_sack_ok) 21427 stropt->so_wroff += TCPOPT_MAX_SACK_LEN; 21428 stropt->so_hiwat = connp->conn_rcvbuf; 21429 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 21430 21431 putnext(RD(q), stropt_mp); 21432 21433 /* 21434 * Collect the information needed to sync with the sonode 21435 */ 21436 tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID); 21437 21438 laddrlen = faddrlen = sizeof (sin6_t); 21439 (void) tcp_getsockname((sock_lower_handle_t)connp, 21440 (struct sockaddr *)&laddr, &laddrlen, CRED()); 21441 error = tcp_getpeername((sock_lower_handle_t)connp, 21442 (struct sockaddr *)&faddr, &faddrlen, CRED()); 21443 if (error != 0) 21444 faddrlen = 0; 21445 21446 opts = 0; 21447 if (connp->conn_oobinline) 21448 opts |= SO_OOBINLINE; 21449 if (connp->conn_ixa->ixa_flags & IXAF_DONTROUTE) 21450 opts |= SO_DONTROUTE; 21451 21452 /* 21453 * Notify the socket that the protocol is now quiescent, 21454 * and it's therefore safe move data from the socket 21455 * to the stream head. 21456 */ 21457 (*quiesced_cb)(connp->conn_upper_handle, q, &tca, 21458 (struct sockaddr *)&laddr, laddrlen, 21459 (struct sockaddr *)&faddr, faddrlen, opts); 21460 21461 while ((mp = tcp->tcp_rcv_list) != NULL) { 21462 tcp->tcp_rcv_list = mp->b_next; 21463 mp->b_next = NULL; 21464 /* We never do fallback for kernel RPC */ 21465 putnext(q, mp); 21466 } 21467 tcp->tcp_rcv_last_head = NULL; 21468 tcp->tcp_rcv_last_tail = NULL; 21469 tcp->tcp_rcv_cnt = 0; 21470 } 21471 21472 /* 21473 * An eager is falling back to TPI. All we have to do is send 21474 * up a T_CONN_IND. 21475 */ 21476 void 21477 tcp_fallback_eager(tcp_t *eager, boolean_t direct_sockfs) 21478 { 21479 tcp_t *listener = eager->tcp_listener; 21480 mblk_t *mp = eager->tcp_conn.tcp_eager_conn_ind; 21481 21482 ASSERT(listener != NULL); 21483 ASSERT(mp != NULL); 21484 21485 eager->tcp_conn.tcp_eager_conn_ind = NULL; 21486 21487 /* 21488 * TLI/XTI applications will get confused by 21489 * sending eager as an option since it violates 21490 * the option semantics. So remove the eager as 21491 * option since TLI/XTI app doesn't need it anyway. 21492 */ 21493 if (!direct_sockfs) { 21494 struct T_conn_ind *conn_ind; 21495 21496 conn_ind = (struct T_conn_ind *)mp->b_rptr; 21497 conn_ind->OPT_length = 0; 21498 conn_ind->OPT_offset = 0; 21499 } 21500 21501 /* 21502 * Sockfs guarantees that the listener will not be closed 21503 * during fallback. So we can safely use the listener's queue. 21504 */ 21505 putnext(listener->tcp_connp->conn_rq, mp); 21506 } 21507 21508 int 21509 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q, 21510 boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) 21511 { 21512 tcp_t *tcp; 21513 conn_t *connp = (conn_t *)proto_handle; 21514 int error; 21515 mblk_t *stropt_mp; 21516 mblk_t *ordrel_mp; 21517 21518 tcp = connp->conn_tcp; 21519 21520 stropt_mp = allocb_wait(sizeof (struct stroptions), BPRI_HI, STR_NOSIG, 21521 NULL); 21522 21523 /* Pre-allocate the T_ordrel_ind mblk. */ 21524 ASSERT(tcp->tcp_ordrel_mp == NULL); 21525 ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI, 21526 STR_NOSIG, NULL); 21527 ordrel_mp->b_datap->db_type = M_PROTO; 21528 ((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND; 21529 ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind); 21530 21531 /* 21532 * Enter the squeue so that no new packets can come in 21533 */ 21534 error = squeue_synch_enter(connp->conn_sqp, connp, NULL); 21535 if (error != 0) { 21536 /* failed to enter, free all the pre-allocated messages. */ 21537 freeb(stropt_mp); 21538 freeb(ordrel_mp); 21539 /* 21540 * We cannot process the eager, so at least send out a 21541 * RST so the peer can reconnect. 21542 */ 21543 if (tcp->tcp_listener != NULL) { 21544 (void) tcp_eager_blowoff(tcp->tcp_listener, 21545 tcp->tcp_conn_req_seqnum); 21546 } 21547 return (ENOMEM); 21548 } 21549 21550 /* 21551 * Both endpoints must be of the same type (either STREAMS or 21552 * non-STREAMS) for fusion to be enabled. So if we are fused, 21553 * we have to unfuse. 21554 */ 21555 if (tcp->tcp_fused) 21556 tcp_unfuse(tcp); 21557 21558 /* 21559 * No longer a direct socket 21560 */ 21561 connp->conn_flags &= ~IPCL_NONSTR; 21562 tcp->tcp_ordrel_mp = ordrel_mp; 21563 21564 if (tcp->tcp_listener != NULL) { 21565 /* The eager will deal with opts when accept() is called */ 21566 freeb(stropt_mp); 21567 tcp_fallback_eager(tcp, direct_sockfs); 21568 } else { 21569 tcp_fallback_noneager(tcp, stropt_mp, q, direct_sockfs, 21570 quiesced_cb); 21571 } 21572 21573 /* 21574 * There should be atleast two ref's (IP + TCP) 21575 */ 21576 ASSERT(connp->conn_ref >= 2); 21577 squeue_synch_exit(connp->conn_sqp, connp); 21578 21579 return (0); 21580 } 21581 21582 /* ARGSUSED */ 21583 static void 21584 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 21585 { 21586 conn_t *connp = (conn_t *)arg; 21587 tcp_t *tcp = connp->conn_tcp; 21588 21589 freemsg(mp); 21590 21591 if (tcp->tcp_fused) 21592 tcp_unfuse(tcp); 21593 21594 if (tcp_xmit_end(tcp) != 0) { 21595 /* 21596 * We were crossing FINs and got a reset from 21597 * the other side. Just ignore it. 21598 */ 21599 if (connp->conn_debug) { 21600 (void) strlog(TCP_MOD_ID, 0, 1, 21601 SL_ERROR|SL_TRACE, 21602 "tcp_shutdown_output() out of state %s", 21603 tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); 21604 } 21605 } 21606 } 21607 21608 /* ARGSUSED */ 21609 int 21610 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 21611 { 21612 conn_t *connp = (conn_t *)proto_handle; 21613 tcp_t *tcp = connp->conn_tcp; 21614 21615 ASSERT(connp->conn_upper_handle != NULL); 21616 21617 /* All Solaris components should pass a cred for this operation. */ 21618 ASSERT(cr != NULL); 21619 21620 /* 21621 * X/Open requires that we check the connected state. 21622 */ 21623 if (tcp->tcp_state < TCPS_SYN_SENT) 21624 return (ENOTCONN); 21625 21626 /* shutdown the send side */ 21627 if (how != SHUT_RD) { 21628 mblk_t *bp; 21629 21630 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 21631 CONN_INC_REF(connp); 21632 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output, 21633 connp, NULL, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT); 21634 21635 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 21636 SOCK_OPCTL_SHUT_SEND, 0); 21637 } 21638 21639 /* shutdown the recv side */ 21640 if (how != SHUT_WR) 21641 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 21642 SOCK_OPCTL_SHUT_RECV, 0); 21643 21644 return (0); 21645 } 21646 21647 /* 21648 * SOP_LISTEN() calls into tcp_listen(). 21649 */ 21650 /* ARGSUSED */ 21651 int 21652 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 21653 { 21654 conn_t *connp = (conn_t *)proto_handle; 21655 int error; 21656 squeue_t *sqp = connp->conn_sqp; 21657 21658 ASSERT(connp->conn_upper_handle != NULL); 21659 21660 /* All Solaris components should pass a cred for this operation. */ 21661 ASSERT(cr != NULL); 21662 21663 error = squeue_synch_enter(sqp, connp, NULL); 21664 if (error != 0) { 21665 /* failed to enter */ 21666 return (ENOBUFS); 21667 } 21668 21669 error = tcp_do_listen(connp, NULL, 0, backlog, cr, FALSE); 21670 if (error == 0) { 21671 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 21672 SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog); 21673 } else if (error < 0) { 21674 if (error == -TOUTSTATE) 21675 error = EINVAL; 21676 else 21677 error = proto_tlitosyserr(-error); 21678 } 21679 squeue_synch_exit(sqp, connp); 21680 return (error); 21681 } 21682 21683 static int 21684 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 21685 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 21686 { 21687 tcp_t *tcp = connp->conn_tcp; 21688 int error = 0; 21689 tcp_stack_t *tcps = tcp->tcp_tcps; 21690 21691 /* All Solaris components should pass a cred for this operation. */ 21692 ASSERT(cr != NULL); 21693 21694 if (tcp->tcp_state >= TCPS_BOUND) { 21695 if ((tcp->tcp_state == TCPS_BOUND || 21696 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 21697 /* 21698 * Handle listen() increasing backlog. 21699 * This is more "liberal" then what the TPI spec 21700 * requires but is needed to avoid a t_unbind 21701 * when handling listen() since the port number 21702 * might be "stolen" between the unbind and bind. 21703 */ 21704 goto do_listen; 21705 } 21706 if (connp->conn_debug) { 21707 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21708 "tcp_listen: bad state, %d", tcp->tcp_state); 21709 } 21710 return (-TOUTSTATE); 21711 } else { 21712 if (sa == NULL) { 21713 sin6_t addr; 21714 sin_t *sin; 21715 sin6_t *sin6; 21716 21717 ASSERT(IPCL_IS_NONSTR(connp)); 21718 /* Do an implicit bind: Request for a generic port. */ 21719 if (connp->conn_family == AF_INET) { 21720 len = sizeof (sin_t); 21721 sin = (sin_t *)&addr; 21722 *sin = sin_null; 21723 sin->sin_family = AF_INET; 21724 } else { 21725 ASSERT(connp->conn_family == AF_INET6); 21726 len = sizeof (sin6_t); 21727 sin6 = (sin6_t *)&addr; 21728 *sin6 = sin6_null; 21729 sin6->sin6_family = AF_INET6; 21730 } 21731 sa = (struct sockaddr *)&addr; 21732 } 21733 21734 error = tcp_bind_check(connp, sa, len, cr, 21735 bind_to_req_port_only); 21736 if (error) 21737 return (error); 21738 /* Fall through and do the fanout insertion */ 21739 } 21740 21741 do_listen: 21742 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 21743 tcp->tcp_conn_req_max = backlog; 21744 if (tcp->tcp_conn_req_max) { 21745 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 21746 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 21747 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 21748 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 21749 /* 21750 * If this is a listener, do not reset the eager list 21751 * and other stuffs. Note that we don't check if the 21752 * existing eager list meets the new tcp_conn_req_max 21753 * requirement. 21754 */ 21755 if (tcp->tcp_state != TCPS_LISTEN) { 21756 tcp->tcp_state = TCPS_LISTEN; 21757 /* Initialize the chain. Don't need the eager_lock */ 21758 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 21759 tcp->tcp_eager_next_drop_q0 = tcp; 21760 tcp->tcp_eager_prev_drop_q0 = tcp; 21761 tcp->tcp_second_ctimer_threshold = 21762 tcps->tcps_ip_abort_linterval; 21763 } 21764 } 21765 21766 /* 21767 * We need to make sure that the conn_recv is set to a non-null 21768 * value before we insert the conn into the classifier table. 21769 * This is to avoid a race with an incoming packet which does an 21770 * ipcl_classify(). 21771 * We initially set it to tcp_input_listener_unbound to try to 21772 * pick a good squeue for the listener when the first SYN arrives. 21773 * tcp_input_listener_unbound sets it to tcp_input_listener on that 21774 * first SYN. 21775 */ 21776 connp->conn_recv = tcp_input_listener_unbound; 21777 21778 /* Insert the listener in the classifier table */ 21779 error = ip_laddr_fanout_insert(connp); 21780 if (error != 0) { 21781 /* Undo the bind - release the port number */ 21782 tcp->tcp_state = TCPS_IDLE; 21783 connp->conn_bound_addr_v6 = ipv6_all_zeros; 21784 21785 connp->conn_laddr_v6 = ipv6_all_zeros; 21786 connp->conn_saddr_v6 = ipv6_all_zeros; 21787 connp->conn_ports = 0; 21788 21789 if (connp->conn_anon_port) { 21790 zone_t *zone; 21791 21792 zone = crgetzone(cr); 21793 connp->conn_anon_port = B_FALSE; 21794 (void) tsol_mlp_anon(zone, connp->conn_mlp_type, 21795 connp->conn_proto, connp->conn_lport, B_FALSE); 21796 } 21797 connp->conn_mlp_type = mlptSingle; 21798 21799 tcp_bind_hash_remove(tcp); 21800 return (error); 21801 } else { 21802 /* 21803 * If there is a connection limit, allocate and initialize 21804 * the counter struct. Note that since listen can be called 21805 * multiple times, the struct may have been allready allocated. 21806 */ 21807 if (!list_is_empty(&tcps->tcps_listener_conf) && 21808 tcp->tcp_listen_cnt == NULL) { 21809 tcp_listen_cnt_t *tlc; 21810 uint32_t ratio; 21811 21812 ratio = tcp_find_listener_conf(tcps, 21813 ntohs(connp->conn_lport)); 21814 if (ratio != 0) { 21815 uint32_t mem_ratio, tot_buf; 21816 21817 tlc = kmem_alloc(sizeof (tcp_listen_cnt_t), 21818 KM_SLEEP); 21819 /* 21820 * Calculate the connection limit based on 21821 * the configured ratio and maxusers. Maxusers 21822 * are calculated based on memory size, 21823 * ~ 1 user per MB. Note that the conn_rcvbuf 21824 * and conn_sndbuf may change after a 21825 * connection is accepted. So what we have 21826 * is only an approximation. 21827 */ 21828 if ((tot_buf = connp->conn_rcvbuf + 21829 connp->conn_sndbuf) < MB) { 21830 mem_ratio = MB / tot_buf; 21831 tlc->tlc_max = maxusers / ratio * 21832 mem_ratio; 21833 } else { 21834 mem_ratio = tot_buf / MB; 21835 tlc->tlc_max = maxusers / ratio / 21836 mem_ratio; 21837 } 21838 /* At least we should allow two connections! */ 21839 if (tlc->tlc_max <= tcp_min_conn_listener) 21840 tlc->tlc_max = tcp_min_conn_listener; 21841 tlc->tlc_cnt = 1; 21842 tlc->tlc_drop = 0; 21843 tcp->tcp_listen_cnt = tlc; 21844 } 21845 } 21846 } 21847 return (error); 21848 } 21849 21850 void 21851 tcp_clr_flowctrl(sock_lower_handle_t proto_handle) 21852 { 21853 conn_t *connp = (conn_t *)proto_handle; 21854 tcp_t *tcp = connp->conn_tcp; 21855 mblk_t *mp; 21856 int error; 21857 21858 ASSERT(connp->conn_upper_handle != NULL); 21859 21860 /* 21861 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_clr_flowctrl() 21862 * is currently running. 21863 */ 21864 mutex_enter(&tcp->tcp_rsrv_mp_lock); 21865 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 21866 mutex_exit(&tcp->tcp_rsrv_mp_lock); 21867 return; 21868 } 21869 tcp->tcp_rsrv_mp = NULL; 21870 mutex_exit(&tcp->tcp_rsrv_mp_lock); 21871 21872 error = squeue_synch_enter(connp->conn_sqp, connp, mp); 21873 ASSERT(error == 0); 21874 21875 mutex_enter(&tcp->tcp_rsrv_mp_lock); 21876 tcp->tcp_rsrv_mp = mp; 21877 mutex_exit(&tcp->tcp_rsrv_mp_lock); 21878 21879 if (tcp->tcp_fused) { 21880 tcp_fuse_backenable(tcp); 21881 } else { 21882 tcp->tcp_rwnd = connp->conn_rcvbuf; 21883 /* 21884 * Send back a window update immediately if TCP is above 21885 * ESTABLISHED state and the increase of the rcv window 21886 * that the other side knows is at least 1 MSS after flow 21887 * control is lifted. 21888 */ 21889 if (tcp->tcp_state >= TCPS_ESTABLISHED && 21890 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 21891 tcp_xmit_ctl(NULL, tcp, 21892 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 21893 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 21894 } 21895 } 21896 21897 squeue_synch_exit(connp->conn_sqp, connp); 21898 } 21899 21900 /* ARGSUSED */ 21901 int 21902 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 21903 int mode, int32_t *rvalp, cred_t *cr) 21904 { 21905 conn_t *connp = (conn_t *)proto_handle; 21906 int error; 21907 21908 ASSERT(connp->conn_upper_handle != NULL); 21909 21910 /* All Solaris components should pass a cred for this operation. */ 21911 ASSERT(cr != NULL); 21912 21913 /* 21914 * If we don't have a helper stream then create one. 21915 * ip_create_helper_stream takes care of locking the conn_t, 21916 * so this check for NULL is just a performance optimization. 21917 */ 21918 if (connp->conn_helper_info == NULL) { 21919 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 21920 21921 /* 21922 * Create a helper stream for non-STREAMS socket. 21923 */ 21924 error = ip_create_helper_stream(connp, tcps->tcps_ldi_ident); 21925 if (error != 0) { 21926 ip0dbg(("tcp_ioctl: create of IP helper stream " 21927 "failed %d\n", error)); 21928 return (error); 21929 } 21930 } 21931 21932 switch (cmd) { 21933 case ND_SET: 21934 case ND_GET: 21935 case _SIOCSOCKFALLBACK: 21936 case TCP_IOC_ABORT_CONN: 21937 case TI_GETPEERNAME: 21938 case TI_GETMYNAME: 21939 ip1dbg(("tcp_ioctl: cmd 0x%x on non streams socket", 21940 cmd)); 21941 error = EINVAL; 21942 break; 21943 default: 21944 /* 21945 * If the conn is not closing, pass on to IP using 21946 * helper stream. Bump the ioctlref to prevent tcp_close 21947 * from closing the rq/wq out from underneath the ioctl 21948 * if it ends up queued or aborted/interrupted. 21949 */ 21950 mutex_enter(&connp->conn_lock); 21951 if (connp->conn_state_flags & (CONN_CLOSING)) { 21952 mutex_exit(&connp->conn_lock); 21953 error = EINVAL; 21954 break; 21955 } 21956 CONN_INC_IOCTLREF_LOCKED(connp); 21957 error = ldi_ioctl(connp->conn_helper_info->iphs_handle, 21958 cmd, arg, mode, cr, rvalp); 21959 CONN_DEC_IOCTLREF(connp); 21960 break; 21961 } 21962 return (error); 21963 } 21964 21965 sock_downcalls_t sock_tcp_downcalls = { 21966 tcp_activate, 21967 tcp_accept, 21968 tcp_bind, 21969 tcp_listen, 21970 tcp_connect, 21971 tcp_getpeername, 21972 tcp_getsockname, 21973 tcp_getsockopt, 21974 tcp_setsockopt, 21975 tcp_sendmsg, 21976 NULL, 21977 NULL, 21978 NULL, 21979 tcp_shutdown, 21980 tcp_clr_flowctrl, 21981 tcp_ioctl, 21982 tcp_close, 21983 }; 21984 21985 /* 21986 * Timeout function to reset the TCP stack variable tcps_reclaim to false. 21987 */ 21988 static void 21989 tcp_reclaim_timer(void *arg) 21990 { 21991 tcp_stack_t *tcps = (tcp_stack_t *)arg; 21992 21993 mutex_enter(&tcps->tcps_reclaim_lock); 21994 tcps->tcps_reclaim = B_FALSE; 21995 tcps->tcps_reclaim_tid = 0; 21996 mutex_exit(&tcps->tcps_reclaim_lock); 21997 /* Only need to print this once. */ 21998 if (tcps->tcps_netstack->netstack_stackid == GLOBAL_ZONEID) 21999 cmn_err(CE_WARN, "TCP defensive mode off\n"); 22000 } 22001 22002 /* 22003 * Kmem reclaim call back function. When the system is under memory 22004 * pressure, we set the TCP stack variable tcps_reclaim to true. This 22005 * variable is reset to false after tcps_reclaim_period msecs. During this 22006 * period, TCP will be more aggressive in aborting connections not making 22007 * progress, meaning retransmitting for some time (tcp_early_abort seconds). 22008 * TCP will also not accept new connection request for those listeners whose 22009 * q or q0 is not empty. 22010 */ 22011 /* ARGSUSED */ 22012 void 22013 tcp_conn_reclaim(void *arg) 22014 { 22015 netstack_handle_t nh; 22016 netstack_t *ns; 22017 tcp_stack_t *tcps; 22018 boolean_t new = B_FALSE; 22019 22020 netstack_next_init(&nh); 22021 while ((ns = netstack_next(&nh)) != NULL) { 22022 tcps = ns->netstack_tcp; 22023 mutex_enter(&tcps->tcps_reclaim_lock); 22024 if (!tcps->tcps_reclaim) { 22025 tcps->tcps_reclaim = B_TRUE; 22026 tcps->tcps_reclaim_tid = timeout(tcp_reclaim_timer, 22027 tcps, MSEC_TO_TICK(tcps->tcps_reclaim_period)); 22028 new = B_TRUE; 22029 } 22030 mutex_exit(&tcps->tcps_reclaim_lock); 22031 netstack_rele(ns); 22032 } 22033 netstack_next_fini(&nh); 22034 if (new) 22035 cmn_err(CE_WARN, "Memory pressure: TCP defensive mode on\n"); 22036 } 22037 22038 /* 22039 * Given a tcp_stack_t and a port (in host byte order), find a listener 22040 * configuration for that port and return the ratio. 22041 */ 22042 static uint32_t 22043 tcp_find_listener_conf(tcp_stack_t *tcps, in_port_t port) 22044 { 22045 tcp_listener_t *tl; 22046 uint32_t ratio = 0; 22047 22048 mutex_enter(&tcps->tcps_listener_conf_lock); 22049 for (tl = list_head(&tcps->tcps_listener_conf); tl != NULL; 22050 tl = list_next(&tcps->tcps_listener_conf, tl)) { 22051 if (tl->tl_port == port) { 22052 ratio = tl->tl_ratio; 22053 break; 22054 } 22055 } 22056 mutex_exit(&tcps->tcps_listener_conf_lock); 22057 return (ratio); 22058 } 22059 22060 /* 22061 * Ndd param helper routine to return the current list of listener limit 22062 * configuration. 22063 */ 22064 /* ARGSUSED */ 22065 static int 22066 tcp_listener_conf_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 22067 { 22068 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22069 tcp_listener_t *tl; 22070 22071 mutex_enter(&tcps->tcps_listener_conf_lock); 22072 for (tl = list_head(&tcps->tcps_listener_conf); tl != NULL; 22073 tl = list_next(&tcps->tcps_listener_conf, tl)) { 22074 (void) mi_mpprintf(mp, "%d:%d ", tl->tl_port, tl->tl_ratio); 22075 } 22076 mutex_exit(&tcps->tcps_listener_conf_lock); 22077 return (0); 22078 } 22079 22080 /* 22081 * Ndd param helper routine to add a new listener limit configuration. 22082 */ 22083 /* ARGSUSED */ 22084 static int 22085 tcp_listener_conf_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 22086 cred_t *cr) 22087 { 22088 tcp_listener_t *new_tl; 22089 tcp_listener_t *tl; 22090 long lport; 22091 long ratio; 22092 char *colon; 22093 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22094 22095 if (ddi_strtol(value, &colon, 10, &lport) != 0 || lport <= 0 || 22096 lport > USHRT_MAX || *colon != ':') { 22097 return (EINVAL); 22098 } 22099 if (ddi_strtol(colon + 1, NULL, 10, &ratio) != 0 || ratio <= 0) 22100 return (EINVAL); 22101 22102 mutex_enter(&tcps->tcps_listener_conf_lock); 22103 for (tl = list_head(&tcps->tcps_listener_conf); tl != NULL; 22104 tl = list_next(&tcps->tcps_listener_conf, tl)) { 22105 /* There is an existing entry, so update its ratio value. */ 22106 if (tl->tl_port == lport) { 22107 tl->tl_ratio = ratio; 22108 mutex_exit(&tcps->tcps_listener_conf_lock); 22109 return (0); 22110 } 22111 } 22112 22113 if ((new_tl = kmem_alloc(sizeof (tcp_listener_t), KM_NOSLEEP)) == 22114 NULL) { 22115 mutex_exit(&tcps->tcps_listener_conf_lock); 22116 return (ENOMEM); 22117 } 22118 22119 new_tl->tl_port = lport; 22120 new_tl->tl_ratio = ratio; 22121 list_insert_tail(&tcps->tcps_listener_conf, new_tl); 22122 mutex_exit(&tcps->tcps_listener_conf_lock); 22123 return (0); 22124 } 22125 22126 /* 22127 * Ndd param helper routine to remove a listener limit configuration. 22128 */ 22129 /* ARGSUSED */ 22130 static int 22131 tcp_listener_conf_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 22132 cred_t *cr) 22133 { 22134 tcp_listener_t *tl; 22135 long lport; 22136 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22137 22138 if (ddi_strtol(value, NULL, 10, &lport) != 0 || lport <= 0 || 22139 lport > USHRT_MAX) { 22140 return (EINVAL); 22141 } 22142 mutex_enter(&tcps->tcps_listener_conf_lock); 22143 for (tl = list_head(&tcps->tcps_listener_conf); tl != NULL; 22144 tl = list_next(&tcps->tcps_listener_conf, tl)) { 22145 if (tl->tl_port == lport) { 22146 list_remove(&tcps->tcps_listener_conf, tl); 22147 mutex_exit(&tcps->tcps_listener_conf_lock); 22148 kmem_free(tl, sizeof (tcp_listener_t)); 22149 return (0); 22150 } 22151 } 22152 mutex_exit(&tcps->tcps_listener_conf_lock); 22153 return (ESRCH); 22154 } 22155 22156 /* 22157 * To remove all listener limit configuration in a tcp_stack_t. 22158 */ 22159 static void 22160 tcp_listener_conf_cleanup(tcp_stack_t *tcps) 22161 { 22162 tcp_listener_t *tl; 22163 22164 mutex_enter(&tcps->tcps_listener_conf_lock); 22165 while ((tl = list_head(&tcps->tcps_listener_conf)) != NULL) { 22166 list_remove(&tcps->tcps_listener_conf, tl); 22167 kmem_free(tl, sizeof (tcp_listener_t)); 22168 } 22169 mutex_destroy(&tcps->tcps_listener_conf_lock); 22170 list_destroy(&tcps->tcps_listener_conf); 22171 } 22172