1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #define _SUN_TPI_VERSION 2 35 #include <sys/tihdr.h> 36 #include <sys/timod.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #include <sys/suntpi.h> 40 #include <sys/xti_inet.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/sdt.h> 44 #include <sys/vtrace.h> 45 #include <sys/kmem.h> 46 #include <sys/ethernet.h> 47 #include <sys/cpuvar.h> 48 #include <sys/dlpi.h> 49 #include <sys/pattr.h> 50 #include <sys/policy.h> 51 #include <sys/priv.h> 52 #include <sys/zone.h> 53 #include <sys/sunldi.h> 54 55 #include <sys/errno.h> 56 #include <sys/signal.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/sockio.h> 60 #include <sys/isa_defs.h> 61 #include <sys/md5.h> 62 #include <sys/random.h> 63 #include <sys/uio.h> 64 #include <sys/systm.h> 65 #include <netinet/in.h> 66 #include <netinet/tcp.h> 67 #include <netinet/ip6.h> 68 #include <netinet/icmp6.h> 69 #include <net/if.h> 70 #include <net/route.h> 71 #include <inet/ipsec_impl.h> 72 73 #include <inet/common.h> 74 #include <inet/ip.h> 75 #include <inet/ip_impl.h> 76 #include <inet/ip6.h> 77 #include <inet/ip_ndp.h> 78 #include <inet/proto_set.h> 79 #include <inet/mib2.h> 80 #include <inet/optcom.h> 81 #include <inet/snmpcom.h> 82 #include <inet/kstatcom.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/tcp_cluster.h> 86 #include <inet/udp_impl.h> 87 #include <net/pfkeyv2.h> 88 #include <inet/ipdrop.h> 89 90 #include <inet/ipclassifier.h> 91 #include <inet/ip_ire.h> 92 #include <inet/ip_ftable.h> 93 #include <inet/ip_if.h> 94 #include <inet/ipp_common.h> 95 #include <inet/ip_rts.h> 96 #include <inet/ip_netinfo.h> 97 #include <sys/squeue_impl.h> 98 #include <sys/squeue.h> 99 #include <inet/kssl/ksslapi.h> 100 #include <sys/tsol/label.h> 101 #include <sys/tsol/tnet.h> 102 #include <rpc/pmap_prot.h> 103 #include <sys/callo.h> 104 105 /* 106 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 107 * 108 * (Read the detailed design doc in PSARC case directory) 109 * 110 * The entire tcp state is contained in tcp_t and conn_t structure 111 * which are allocated in tandem using ipcl_conn_create() and passing 112 * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect 113 * the references on the tcp_t. The tcp_t structure is never compressed 114 * and packets always land on the correct TCP perimeter from the time 115 * eager is created till the time tcp_t dies (as such the old mentat 116 * TCP global queue is not used for detached state and no IPSEC checking 117 * is required). The global queue is still allocated to send out resets 118 * for connection which have no listeners and IP directly calls 119 * tcp_xmit_listeners_reset() which does any policy check. 120 * 121 * Protection and Synchronisation mechanism: 122 * 123 * The tcp data structure does not use any kind of lock for protecting 124 * its state but instead uses 'squeues' for mutual exclusion from various 125 * read and write side threads. To access a tcp member, the thread should 126 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 127 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 128 * can pass any tcp function having prototype of edesc_t as argument 129 * (different from traditional STREAMs model where packets come in only 130 * designated entry points). The list of functions that can be directly 131 * called via squeue are listed before the usual function prototype. 132 * 133 * Referencing: 134 * 135 * TCP is MT-Hot and we use a reference based scheme to make sure that the 136 * tcp structure doesn't disappear when its needed. When the application 137 * creates an outgoing connection or accepts an incoming connection, we 138 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 139 * The IP reference is just a symbolic reference since ip_tcpclose() 140 * looks at tcp structure after tcp_close_output() returns which could 141 * have dropped the last TCP reference. So as long as the connection is 142 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 143 * conn_t. The classifier puts its own reference when the connection is 144 * inserted in listen or connected hash. Anytime a thread needs to enter 145 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 146 * on write side or by doing a classify on read side and then puts a 147 * reference on the conn before doing squeue_enter/tryenter/fill. For 148 * read side, the classifier itself puts the reference under fanout lock 149 * to make sure that tcp can't disappear before it gets processed. The 150 * squeue will drop this reference automatically so the called function 151 * doesn't have to do a DEC_REF. 152 * 153 * Opening a new connection: 154 * 155 * The outgoing connection open is pretty simple. tcp_open() does the 156 * work in creating the conn/tcp structure and initializing it. The 157 * squeue assignment is done based on the CPU the application 158 * is running on. So for outbound connections, processing is always done 159 * on application CPU which might be different from the incoming CPU 160 * being interrupted by the NIC. An optimal way would be to figure out 161 * the NIC <-> CPU binding at listen time, and assign the outgoing 162 * connection to the squeue attached to the CPU that will be interrupted 163 * for incoming packets (we know the NIC based on the bind IP address). 164 * This might seem like a problem if more data is going out but the 165 * fact is that in most cases the transmit is ACK driven transmit where 166 * the outgoing data normally sits on TCP's xmit queue waiting to be 167 * transmitted. 168 * 169 * Accepting a connection: 170 * 171 * This is a more interesting case because of various races involved in 172 * establishing a eager in its own perimeter. Read the meta comment on 173 * top of tcp_input_listener(). But briefly, the squeue is picked by 174 * ip_fanout based on the ring or the sender (if loopback). 175 * 176 * Closing a connection: 177 * 178 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 179 * via squeue to do the close and mark the tcp as detached if the connection 180 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 181 * reference but tcp_close() drop IP's reference always. So if tcp was 182 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 183 * and 1 because it is in classifier's connected hash. This is the condition 184 * we use to determine that its OK to clean up the tcp outside of squeue 185 * when time wait expires (check the ref under fanout and conn_lock and 186 * if it is 2, remove it from fanout hash and kill it). 187 * 188 * Although close just drops the necessary references and marks the 189 * tcp_detached state, tcp_close needs to know the tcp_detached has been 190 * set (under squeue) before letting the STREAM go away (because a 191 * inbound packet might attempt to go up the STREAM while the close 192 * has happened and tcp_detached is not set). So a special lock and 193 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 194 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 195 * tcp_detached. 196 * 197 * Special provisions and fast paths: 198 * 199 * We make special provisions for sockfs by marking tcp_issocket 200 * whenever we have only sockfs on top of TCP. This allows us to skip 201 * putting the tcp in acceptor hash since a sockfs listener can never 202 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 203 * since eager has already been allocated and the accept now happens 204 * on acceptor STREAM. There is a big blob of comment on top of 205 * tcp_input_listener explaining the new accept. When socket is POP'd, 206 * sockfs sends us an ioctl to mark the fact and we go back to old 207 * behaviour. Once tcp_issocket is unset, its never set for the 208 * life of that connection. 209 * 210 * IPsec notes : 211 * 212 * Since a packet is always executed on the correct TCP perimeter 213 * all IPsec processing is defered to IP including checking new 214 * connections and setting IPSEC policies for new connection. The 215 * only exception is tcp_xmit_listeners_reset() which is called 216 * directly from IP and needs to policy check to see if TH_RST 217 * can be sent out. 218 */ 219 220 /* 221 * Values for squeue switch: 222 * 1: SQ_NODRAIN 223 * 2: SQ_PROCESS 224 * 3: SQ_FILL 225 */ 226 int tcp_squeue_wput = 2; /* /etc/systems */ 227 int tcp_squeue_flag; 228 229 kmem_cache_t *tcp_sack_info_cache; 230 231 /* 232 * To prevent memory hog, limit the number of entries in tcp_free_list 233 * to 1% of available memory / number of cpus 234 */ 235 uint_t tcp_free_list_max_cnt = 0; 236 237 #define TCP_XMIT_LOWATER 4096 238 #define TCP_XMIT_HIWATER 49152 239 #define TCP_RECV_LOWATER 2048 240 #define TCP_RECV_HIWATER 128000 241 242 #define TIDUSZ 4096 /* transport interface data unit size */ 243 244 /* 245 * Size of acceptor hash list. It has to be a power of 2 for hashing. 246 */ 247 #define TCP_ACCEPTOR_FANOUT_SIZE 256 248 249 #ifdef _ILP32 250 #define TCP_ACCEPTOR_HASH(accid) \ 251 (((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 252 #else 253 #define TCP_ACCEPTOR_HASH(accid) \ 254 ((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 255 #endif /* _ILP32 */ 256 257 /* Minimum number of connections per listener. */ 258 static uint32_t tcp_min_conn_listener = 2; 259 260 uint32_t tcp_early_abort = 30; 261 262 /* TCP Timer control structure */ 263 typedef struct tcpt_s { 264 pfv_t tcpt_pfv; /* The routine we are to call */ 265 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 266 } tcpt_t; 267 268 /* 269 * Functions called directly via squeue having a prototype of edesc_t. 270 */ 271 void tcp_input_listener(void *arg, mblk_t *mp, void *arg2, 272 ip_recv_attr_t *ira); 273 void tcp_input_data(void *arg, mblk_t *mp, void *arg2, 274 ip_recv_attr_t *ira); 275 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, 276 ip_recv_attr_t *dummy); 277 278 279 /* Prototype for TCP functions */ 280 static void tcp_random_init(void); 281 int tcp_random(void); 282 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 283 in_port_t dstport, uint_t srcid); 284 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 285 in_port_t dstport, uint32_t flowinfo, 286 uint_t srcid, uint32_t scope_id); 287 static void tcp_iss_init(tcp_t *tcp); 288 static void tcp_reinit(tcp_t *tcp); 289 static void tcp_reinit_values(tcp_t *tcp); 290 291 static void tcp_wsrv(queue_t *q); 292 static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa); 293 static void tcp_update_zcopy(tcp_t *tcp); 294 static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t, 295 ixa_notify_arg_t); 296 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 297 static void tcp_stack_fini(netstackid_t stackid, void *arg); 298 299 static int tcp_squeue_switch(int); 300 301 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 302 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 303 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 304 305 static void tcp_squeue_add(squeue_t *); 306 307 struct module_info tcp_rinfo = { 308 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 309 }; 310 311 static struct module_info tcp_winfo = { 312 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 313 }; 314 315 /* 316 * Entry points for TCP as a device. The normal case which supports 317 * the TCP functionality. 318 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 319 */ 320 struct qinit tcp_rinitv4 = { 321 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 322 }; 323 324 struct qinit tcp_rinitv6 = { 325 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 326 }; 327 328 struct qinit tcp_winit = { 329 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 330 }; 331 332 /* Initial entry point for TCP in socket mode. */ 333 struct qinit tcp_sock_winit = { 334 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 335 }; 336 337 /* TCP entry point during fallback */ 338 struct qinit tcp_fallback_sock_winit = { 339 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 340 }; 341 342 /* 343 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 344 * an accept. Avoid allocating data structures since eager has already 345 * been created. 346 */ 347 struct qinit tcp_acceptor_rinit = { 348 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 349 }; 350 351 struct qinit tcp_acceptor_winit = { 352 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 353 }; 354 355 /* For AF_INET aka /dev/tcp */ 356 struct streamtab tcpinfov4 = { 357 &tcp_rinitv4, &tcp_winit 358 }; 359 360 /* For AF_INET6 aka /dev/tcp6 */ 361 struct streamtab tcpinfov6 = { 362 &tcp_rinitv6, &tcp_winit 363 }; 364 365 /* 366 * Following assumes TPI alignment requirements stay along 32 bit 367 * boundaries 368 */ 369 #define ROUNDUP32(x) \ 370 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 371 372 /* Template for response to info request. */ 373 struct T_info_ack tcp_g_t_info_ack = { 374 T_INFO_ACK, /* PRIM_type */ 375 0, /* TSDU_size */ 376 T_INFINITE, /* ETSDU_size */ 377 T_INVALID, /* CDATA_size */ 378 T_INVALID, /* DDATA_size */ 379 sizeof (sin_t), /* ADDR_size */ 380 0, /* OPT_size - not initialized here */ 381 TIDUSZ, /* TIDU_size */ 382 T_COTS_ORD, /* SERV_type */ 383 TCPS_IDLE, /* CURRENT_state */ 384 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 385 }; 386 387 struct T_info_ack tcp_g_t_info_ack_v6 = { 388 T_INFO_ACK, /* PRIM_type */ 389 0, /* TSDU_size */ 390 T_INFINITE, /* ETSDU_size */ 391 T_INVALID, /* CDATA_size */ 392 T_INVALID, /* DDATA_size */ 393 sizeof (sin6_t), /* ADDR_size */ 394 0, /* OPT_size - not initialized here */ 395 TIDUSZ, /* TIDU_size */ 396 T_COTS_ORD, /* SERV_type */ 397 TCPS_IDLE, /* CURRENT_state */ 398 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 399 }; 400 401 /* 402 * TCP tunables related declarations. Definitions are in tcp_tunables.c 403 */ 404 extern mod_prop_info_t tcp_propinfo_tbl[]; 405 extern int tcp_propinfo_count; 406 407 #define MB (1024 * 1024) 408 409 #define IS_VMLOANED_MBLK(mp) \ 410 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 411 412 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 413 414 /* 415 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 416 * tunable settable via NDD. Otherwise, the per-connection behavior is 417 * determined dynamically during tcp_set_destination(), which is the default. 418 */ 419 boolean_t tcp_static_maxpsz = B_FALSE; 420 421 /* 422 * If the receive buffer size is changed, this function is called to update 423 * the upper socket layer on the new delayed receive wake up threshold. 424 */ 425 static void 426 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh) 427 { 428 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3; 429 430 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 431 conn_t *connp = tcp->tcp_connp; 432 struct sock_proto_props sopp; 433 434 /* 435 * only increase rcvthresh upto default_threshold 436 */ 437 if (new_rcvthresh > default_threshold) 438 new_rcvthresh = default_threshold; 439 440 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 441 sopp.sopp_rcvthresh = new_rcvthresh; 442 443 (*connp->conn_upcalls->su_set_proto_props) 444 (connp->conn_upper_handle, &sopp); 445 } 446 } 447 448 /* 449 * Figure out the value of window scale opton. Note that the rwnd is 450 * ASSUMED to be rounded up to the nearest MSS before the calculation. 451 * We cannot find the scale value and then do a round up of tcp_rwnd 452 * because the scale value may not be correct after that. 453 * 454 * Set the compiler flag to make this function inline. 455 */ 456 void 457 tcp_set_ws_value(tcp_t *tcp) 458 { 459 int i; 460 uint32_t rwnd = tcp->tcp_rwnd; 461 462 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 463 i++, rwnd >>= 1) 464 ; 465 tcp->tcp_rcv_ws = i; 466 } 467 468 /* 469 * Remove cached/latched IPsec references. 470 */ 471 void 472 tcp_ipsec_cleanup(tcp_t *tcp) 473 { 474 conn_t *connp = tcp->tcp_connp; 475 476 ASSERT(connp->conn_flags & IPCL_TCPCONN); 477 478 if (connp->conn_latch != NULL) { 479 IPLATCH_REFRELE(connp->conn_latch); 480 connp->conn_latch = NULL; 481 } 482 if (connp->conn_latch_in_policy != NULL) { 483 IPPOL_REFRELE(connp->conn_latch_in_policy); 484 connp->conn_latch_in_policy = NULL; 485 } 486 if (connp->conn_latch_in_action != NULL) { 487 IPACT_REFRELE(connp->conn_latch_in_action); 488 connp->conn_latch_in_action = NULL; 489 } 490 if (connp->conn_policy != NULL) { 491 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 492 connp->conn_policy = NULL; 493 } 494 } 495 496 /* 497 * Cleaup before placing on free list. 498 * Disassociate from the netstack/tcp_stack_t since the freelist 499 * is per squeue and not per netstack. 500 */ 501 void 502 tcp_cleanup(tcp_t *tcp) 503 { 504 mblk_t *mp; 505 tcp_sack_info_t *tcp_sack_info; 506 conn_t *connp = tcp->tcp_connp; 507 tcp_stack_t *tcps = tcp->tcp_tcps; 508 netstack_t *ns = tcps->tcps_netstack; 509 mblk_t *tcp_rsrv_mp; 510 511 tcp_bind_hash_remove(tcp); 512 513 /* Cleanup that which needs the netstack first */ 514 tcp_ipsec_cleanup(tcp); 515 ixa_cleanup(connp->conn_ixa); 516 517 if (connp->conn_ht_iphc != NULL) { 518 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 519 connp->conn_ht_iphc = NULL; 520 connp->conn_ht_iphc_allocated = 0; 521 connp->conn_ht_iphc_len = 0; 522 connp->conn_ht_ulp = NULL; 523 connp->conn_ht_ulp_len = 0; 524 tcp->tcp_ipha = NULL; 525 tcp->tcp_ip6h = NULL; 526 tcp->tcp_tcpha = NULL; 527 } 528 529 /* We clear any IP_OPTIONS and extension headers */ 530 ip_pkt_free(&connp->conn_xmit_ipp); 531 532 tcp_free(tcp); 533 534 /* Release any SSL context */ 535 if (tcp->tcp_kssl_ent != NULL) { 536 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 537 tcp->tcp_kssl_ent = NULL; 538 } 539 540 if (tcp->tcp_kssl_ctx != NULL) { 541 kssl_release_ctx(tcp->tcp_kssl_ctx); 542 tcp->tcp_kssl_ctx = NULL; 543 } 544 tcp->tcp_kssl_pending = B_FALSE; 545 546 /* 547 * Since we will bzero the entire structure, we need to 548 * remove it and reinsert it in global hash list. We 549 * know the walkers can't get to this conn because we 550 * had set CONDEMNED flag earlier and checked reference 551 * under conn_lock so walker won't pick it and when we 552 * go the ipcl_globalhash_remove() below, no walker 553 * can get to it. 554 */ 555 ipcl_globalhash_remove(connp); 556 557 /* Save some state */ 558 mp = tcp->tcp_timercache; 559 560 tcp_sack_info = tcp->tcp_sack_info; 561 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 562 563 if (connp->conn_cred != NULL) { 564 crfree(connp->conn_cred); 565 connp->conn_cred = NULL; 566 } 567 ipcl_conn_cleanup(connp); 568 connp->conn_flags = IPCL_TCPCONN; 569 570 /* 571 * Now it is safe to decrement the reference counts. 572 * This might be the last reference on the netstack 573 * in which case it will cause the freeing of the IP Instance. 574 */ 575 connp->conn_netstack = NULL; 576 connp->conn_ixa->ixa_ipst = NULL; 577 netstack_rele(ns); 578 ASSERT(tcps != NULL); 579 tcp->tcp_tcps = NULL; 580 581 bzero(tcp, sizeof (tcp_t)); 582 583 /* restore the state */ 584 tcp->tcp_timercache = mp; 585 586 tcp->tcp_sack_info = tcp_sack_info; 587 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 588 589 tcp->tcp_connp = connp; 590 591 ASSERT(connp->conn_tcp == tcp); 592 ASSERT(connp->conn_flags & IPCL_TCPCONN); 593 connp->conn_state_flags = CONN_INCIPIENT; 594 ASSERT(connp->conn_proto == IPPROTO_TCP); 595 ASSERT(connp->conn_ref == 1); 596 } 597 598 /* 599 * Adapt to the information, such as rtt and rtt_sd, provided from the 600 * DCE and IRE maintained by IP. 601 * 602 * Checks for multicast and broadcast destination address. 603 * Returns zero if ok; an errno on failure. 604 * 605 * Note that the MSS calculation here is based on the info given in 606 * the DCE and IRE. We do not do any calculation based on TCP options. They 607 * will be handled in tcp_input_data() when TCP knows which options to use. 608 * 609 * Note on how TCP gets its parameters for a connection. 610 * 611 * When a tcp_t structure is allocated, it gets all the default parameters. 612 * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd, 613 * spipe, rpipe, ... from the route metrics. Route metric overrides the 614 * default. 615 * 616 * An incoming SYN with a multicast or broadcast destination address is dropped 617 * in ip_fanout_v4/v6. 618 * 619 * An incoming SYN with a multicast or broadcast source address is always 620 * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in 621 * conn_connect. 622 * The same logic in tcp_set_destination also serves to 623 * reject an attempt to connect to a broadcast or multicast (destination) 624 * address. 625 */ 626 int 627 tcp_set_destination(tcp_t *tcp) 628 { 629 uint32_t mss_max; 630 uint32_t mss; 631 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 632 conn_t *connp = tcp->tcp_connp; 633 tcp_stack_t *tcps = tcp->tcp_tcps; 634 iulp_t uinfo; 635 int error; 636 uint32_t flags; 637 638 flags = IPDF_LSO | IPDF_ZCOPY; 639 /* 640 * Make sure we have a dce for the destination to avoid dce_ident 641 * contention for connected sockets. 642 */ 643 flags |= IPDF_UNIQUE_DCE; 644 645 if (!tcps->tcps_ignore_path_mtu) 646 connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY; 647 648 /* Use conn_lock to satify ASSERT; tcp is already serialized */ 649 mutex_enter(&connp->conn_lock); 650 error = conn_connect(connp, &uinfo, flags); 651 mutex_exit(&connp->conn_lock); 652 if (error != 0) 653 return (error); 654 655 error = tcp_build_hdrs(tcp); 656 if (error != 0) 657 return (error); 658 659 tcp->tcp_localnet = uinfo.iulp_localnet; 660 661 if (uinfo.iulp_rtt != 0) { 662 clock_t rto; 663 664 tcp->tcp_rtt_sa = uinfo.iulp_rtt; 665 tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd; 666 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 667 tcps->tcps_rexmit_interval_extra + 668 (tcp->tcp_rtt_sa >> 5); 669 670 if (rto > tcps->tcps_rexmit_interval_max) { 671 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 672 } else if (rto < tcps->tcps_rexmit_interval_min) { 673 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 674 } else { 675 tcp->tcp_rto = rto; 676 } 677 } 678 if (uinfo.iulp_ssthresh != 0) 679 tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh; 680 else 681 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 682 if (uinfo.iulp_spipe > 0) { 683 connp->conn_sndbuf = MIN(uinfo.iulp_spipe, 684 tcps->tcps_max_buf); 685 if (tcps->tcps_snd_lowat_fraction != 0) { 686 connp->conn_sndlowat = connp->conn_sndbuf / 687 tcps->tcps_snd_lowat_fraction; 688 } 689 (void) tcp_maxpsz_set(tcp, B_TRUE); 690 } 691 /* 692 * Note that up till now, acceptor always inherits receive 693 * window from the listener. But if there is a metrics 694 * associated with a host, we should use that instead of 695 * inheriting it from listener. Thus we need to pass this 696 * info back to the caller. 697 */ 698 if (uinfo.iulp_rpipe > 0) { 699 tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe, 700 tcps->tcps_max_buf); 701 } 702 703 if (uinfo.iulp_rtomax > 0) { 704 tcp->tcp_second_timer_threshold = 705 uinfo.iulp_rtomax; 706 } 707 708 /* 709 * Use the metric option settings, iulp_tstamp_ok and 710 * iulp_wscale_ok, only for active open. What this means 711 * is that if the other side uses timestamp or window 712 * scale option, TCP will also use those options. That 713 * is for passive open. If the application sets a 714 * large window, window scale is enabled regardless of 715 * the value in iulp_wscale_ok. This is the behavior 716 * since 2.6. So we keep it. 717 * The only case left in passive open processing is the 718 * check for SACK. 719 * For ECN, it should probably be like SACK. But the 720 * current value is binary, so we treat it like the other 721 * cases. The metric only controls active open.For passive 722 * open, the ndd param, tcp_ecn_permitted, controls the 723 * behavior. 724 */ 725 if (!tcp_detached) { 726 /* 727 * The if check means that the following can only 728 * be turned on by the metrics only IRE, but not off. 729 */ 730 if (uinfo.iulp_tstamp_ok) 731 tcp->tcp_snd_ts_ok = B_TRUE; 732 if (uinfo.iulp_wscale_ok) 733 tcp->tcp_snd_ws_ok = B_TRUE; 734 if (uinfo.iulp_sack == 2) 735 tcp->tcp_snd_sack_ok = B_TRUE; 736 if (uinfo.iulp_ecn_ok) 737 tcp->tcp_ecn_ok = B_TRUE; 738 } else { 739 /* 740 * Passive open. 741 * 742 * As above, the if check means that SACK can only be 743 * turned on by the metric only IRE. 744 */ 745 if (uinfo.iulp_sack > 0) { 746 tcp->tcp_snd_sack_ok = B_TRUE; 747 } 748 } 749 750 /* 751 * XXX Note that currently, iulp_mtu can be as small as 68 752 * because of PMTUd. So tcp_mss may go to negative if combined 753 * length of all those options exceeds 28 bytes. But because 754 * of the tcp_mss_min check below, we may not have a problem if 755 * tcp_mss_min is of a reasonable value. The default is 1 so 756 * the negative problem still exists. And the check defeats PMTUd. 757 * In fact, if PMTUd finds that the MSS should be smaller than 758 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 759 * value. 760 * 761 * We do not deal with that now. All those problems related to 762 * PMTUd will be fixed later. 763 */ 764 ASSERT(uinfo.iulp_mtu != 0); 765 mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu; 766 767 /* Sanity check for MSS value. */ 768 if (connp->conn_ipversion == IPV4_VERSION) 769 mss_max = tcps->tcps_mss_max_ipv4; 770 else 771 mss_max = tcps->tcps_mss_max_ipv6; 772 773 if (tcp->tcp_ipsec_overhead == 0) 774 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 775 776 mss -= tcp->tcp_ipsec_overhead; 777 778 if (mss < tcps->tcps_mss_min) 779 mss = tcps->tcps_mss_min; 780 if (mss > mss_max) 781 mss = mss_max; 782 783 /* Note that this is the maximum MSS, excluding all options. */ 784 tcp->tcp_mss = mss; 785 786 /* 787 * Update the tcp connection with LSO capability. 788 */ 789 tcp_update_lso(tcp, connp->conn_ixa); 790 791 /* 792 * Initialize the ISS here now that we have the full connection ID. 793 * The RFC 1948 method of initial sequence number generation requires 794 * knowledge of the full connection ID before setting the ISS. 795 */ 796 tcp_iss_init(tcp); 797 798 tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local); 799 800 /* 801 * Make sure that conn is not marked incipient 802 * for incoming connections. A blind 803 * removal of incipient flag is cheaper than 804 * check and removal. 805 */ 806 mutex_enter(&connp->conn_lock); 807 connp->conn_state_flags &= ~CONN_INCIPIENT; 808 mutex_exit(&connp->conn_lock); 809 return (0); 810 } 811 812 /* 813 * tcp_clean_death / tcp_close_detached must not be called more than once 814 * on a tcp. Thus every function that potentially calls tcp_clean_death 815 * must check for the tcp state before calling tcp_clean_death. 816 * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper, 817 * tcp_timer_handler, all check for the tcp state. 818 */ 819 /* ARGSUSED */ 820 void 821 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 822 ip_recv_attr_t *dummy) 823 { 824 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 825 826 freemsg(mp); 827 if (tcp->tcp_state > TCPS_BOUND) 828 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT); 829 } 830 831 /* 832 * We are dying for some reason. Try to do it gracefully. (May be called 833 * as writer.) 834 * 835 * Return -1 if the structure was not cleaned up (if the cleanup had to be 836 * done by a service procedure). 837 * TBD - Should the return value distinguish between the tcp_t being 838 * freed and it being reinitialized? 839 */ 840 int 841 tcp_clean_death(tcp_t *tcp, int err) 842 { 843 mblk_t *mp; 844 queue_t *q; 845 conn_t *connp = tcp->tcp_connp; 846 tcp_stack_t *tcps = tcp->tcp_tcps; 847 848 if (tcp->tcp_fused) 849 tcp_unfuse(tcp); 850 851 if (tcp->tcp_linger_tid != 0 && 852 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 853 tcp_stop_lingering(tcp); 854 } 855 856 ASSERT(tcp != NULL); 857 ASSERT((connp->conn_family == AF_INET && 858 connp->conn_ipversion == IPV4_VERSION) || 859 (connp->conn_family == AF_INET6 && 860 (connp->conn_ipversion == IPV4_VERSION || 861 connp->conn_ipversion == IPV6_VERSION))); 862 863 if (TCP_IS_DETACHED(tcp)) { 864 if (tcp->tcp_hard_binding) { 865 /* 866 * Its an eager that we are dealing with. We close the 867 * eager but in case a conn_ind has already gone to the 868 * listener, let tcp_accept_finish() send a discon_ind 869 * to the listener and drop the last reference. If the 870 * listener doesn't even know about the eager i.e. the 871 * conn_ind hasn't gone up, blow away the eager and drop 872 * the last reference as well. If the conn_ind has gone 873 * up, state should be BOUND. tcp_accept_finish 874 * will figure out that the connection has received a 875 * RST and will send a DISCON_IND to the application. 876 */ 877 tcp_closei_local(tcp); 878 if (!tcp->tcp_tconnind_started) { 879 CONN_DEC_REF(connp); 880 } else { 881 tcp->tcp_state = TCPS_BOUND; 882 } 883 } else { 884 tcp_close_detached(tcp); 885 } 886 return (0); 887 } 888 889 TCP_STAT(tcps, tcp_clean_death_nondetached); 890 891 /* 892 * The connection is dead. Decrement listener connection counter if 893 * necessary. 894 */ 895 if (tcp->tcp_listen_cnt != NULL) 896 TCP_DECR_LISTEN_CNT(tcp); 897 898 /* 899 * When a connection is moved to TIME_WAIT state, the connection 900 * counter is already decremented. So no need to decrement here 901 * again. See SET_TIME_WAIT() macro. 902 */ 903 if (tcp->tcp_state >= TCPS_ESTABLISHED && 904 tcp->tcp_state < TCPS_TIME_WAIT) { 905 TCPS_CONN_DEC(tcps); 906 } 907 908 q = connp->conn_rq; 909 910 /* Trash all inbound data */ 911 if (!IPCL_IS_NONSTR(connp)) { 912 ASSERT(q != NULL); 913 flushq(q, FLUSHALL); 914 } 915 916 /* 917 * If we are at least part way open and there is error 918 * (err==0 implies no error) 919 * notify our client by a T_DISCON_IND. 920 */ 921 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 922 if (tcp->tcp_state >= TCPS_ESTABLISHED && 923 !TCP_IS_SOCKET(tcp)) { 924 /* 925 * Send M_FLUSH according to TPI. Because sockets will 926 * (and must) ignore FLUSHR we do that only for TPI 927 * endpoints and sockets in STREAMS mode. 928 */ 929 (void) putnextctl1(q, M_FLUSH, FLUSHR); 930 } 931 if (connp->conn_debug) { 932 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 933 "tcp_clean_death: discon err %d", err); 934 } 935 if (IPCL_IS_NONSTR(connp)) { 936 /* Direct socket, use upcall */ 937 (*connp->conn_upcalls->su_disconnected)( 938 connp->conn_upper_handle, tcp->tcp_connid, err); 939 } else { 940 mp = mi_tpi_discon_ind(NULL, err, 0); 941 if (mp != NULL) { 942 putnext(q, mp); 943 } else { 944 if (connp->conn_debug) { 945 (void) strlog(TCP_MOD_ID, 0, 1, 946 SL_ERROR|SL_TRACE, 947 "tcp_clean_death, sending M_ERROR"); 948 } 949 (void) putnextctl1(q, M_ERROR, EPROTO); 950 } 951 } 952 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 953 /* SYN_SENT or SYN_RCVD */ 954 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 955 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 956 /* ESTABLISHED or CLOSE_WAIT */ 957 TCPS_BUMP_MIB(tcps, tcpEstabResets); 958 } 959 } 960 961 tcp_reinit(tcp); 962 if (IPCL_IS_NONSTR(connp)) 963 (void) tcp_do_unbind(connp); 964 965 return (-1); 966 } 967 968 /* 969 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 970 * to expire, stop the wait and finish the close. 971 */ 972 void 973 tcp_stop_lingering(tcp_t *tcp) 974 { 975 clock_t delta = 0; 976 tcp_stack_t *tcps = tcp->tcp_tcps; 977 conn_t *connp = tcp->tcp_connp; 978 979 tcp->tcp_linger_tid = 0; 980 if (tcp->tcp_state > TCPS_LISTEN) { 981 tcp_acceptor_hash_remove(tcp); 982 mutex_enter(&tcp->tcp_non_sq_lock); 983 if (tcp->tcp_flow_stopped) { 984 tcp_clrqfull(tcp); 985 } 986 mutex_exit(&tcp->tcp_non_sq_lock); 987 988 if (tcp->tcp_timer_tid != 0) { 989 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 990 tcp->tcp_timer_tid = 0; 991 } 992 /* 993 * Need to cancel those timers which will not be used when 994 * TCP is detached. This has to be done before the conn_wq 995 * is cleared. 996 */ 997 tcp_timers_stop(tcp); 998 999 tcp->tcp_detached = B_TRUE; 1000 connp->conn_rq = NULL; 1001 connp->conn_wq = NULL; 1002 1003 if (tcp->tcp_state == TCPS_TIME_WAIT) { 1004 tcp_time_wait_append(tcp); 1005 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 1006 goto finish; 1007 } 1008 1009 /* 1010 * If delta is zero the timer event wasn't executed and was 1011 * successfully canceled. In this case we need to restart it 1012 * with the minimal delta possible. 1013 */ 1014 if (delta >= 0) { 1015 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 1016 delta ? delta : 1); 1017 } 1018 } else { 1019 tcp_closei_local(tcp); 1020 CONN_DEC_REF(connp); 1021 } 1022 finish: 1023 /* Signal closing thread that it can complete close */ 1024 mutex_enter(&tcp->tcp_closelock); 1025 tcp->tcp_detached = B_TRUE; 1026 connp->conn_rq = NULL; 1027 connp->conn_wq = NULL; 1028 1029 tcp->tcp_closed = 1; 1030 cv_signal(&tcp->tcp_closecv); 1031 mutex_exit(&tcp->tcp_closelock); 1032 } 1033 1034 void 1035 tcp_close_common(conn_t *connp, int flags) 1036 { 1037 tcp_t *tcp = connp->conn_tcp; 1038 mblk_t *mp = &tcp->tcp_closemp; 1039 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 1040 mblk_t *bp; 1041 1042 ASSERT(connp->conn_ref >= 2); 1043 1044 /* 1045 * Mark the conn as closing. ipsq_pending_mp_add will not 1046 * add any mp to the pending mp list, after this conn has 1047 * started closing. 1048 */ 1049 mutex_enter(&connp->conn_lock); 1050 connp->conn_state_flags |= CONN_CLOSING; 1051 if (connp->conn_oper_pending_ill != NULL) 1052 conn_ioctl_cleanup_reqd = B_TRUE; 1053 CONN_INC_REF_LOCKED(connp); 1054 mutex_exit(&connp->conn_lock); 1055 tcp->tcp_closeflags = (uint8_t)flags; 1056 ASSERT(connp->conn_ref >= 3); 1057 1058 /* 1059 * tcp_closemp_used is used below without any protection of a lock 1060 * as we don't expect any one else to use it concurrently at this 1061 * point otherwise it would be a major defect. 1062 */ 1063 1064 if (mp->b_prev == NULL) 1065 tcp->tcp_closemp_used = B_TRUE; 1066 else 1067 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 1068 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 1069 1070 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1071 1072 /* 1073 * Cleanup any queued ioctls here. This must be done before the wq/rq 1074 * are re-written by tcp_close_output(). 1075 */ 1076 if (conn_ioctl_cleanup_reqd) 1077 conn_ioctl_cleanup(connp); 1078 1079 /* 1080 * As CONN_CLOSING is set, no further ioctls should be passed down to 1081 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and 1082 * tcp_wput_iocdata). If the ioctl was queued on an ipsq, 1083 * conn_ioctl_cleanup should have found it and removed it. If the ioctl 1084 * was still in flight at the time, we wait for it here. See comments 1085 * for CONN_INC_IOCTLREF in ip.h for details. 1086 */ 1087 mutex_enter(&connp->conn_lock); 1088 while (connp->conn_ioctlref > 0) 1089 cv_wait(&connp->conn_cv, &connp->conn_lock); 1090 ASSERT(connp->conn_ioctlref == 0); 1091 ASSERT(connp->conn_oper_pending_ill == NULL); 1092 mutex_exit(&connp->conn_lock); 1093 1094 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 1095 NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 1096 1097 mutex_enter(&tcp->tcp_closelock); 1098 while (!tcp->tcp_closed) { 1099 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 1100 /* 1101 * The cv_wait_sig() was interrupted. We now do the 1102 * following: 1103 * 1104 * 1) If the endpoint was lingering, we allow this 1105 * to be interrupted by cancelling the linger timeout 1106 * and closing normally. 1107 * 1108 * 2) Revert to calling cv_wait() 1109 * 1110 * We revert to using cv_wait() to avoid an 1111 * infinite loop which can occur if the calling 1112 * thread is higher priority than the squeue worker 1113 * thread and is bound to the same cpu. 1114 */ 1115 if (connp->conn_linger && connp->conn_lingertime > 0) { 1116 mutex_exit(&tcp->tcp_closelock); 1117 /* Entering squeue, bump ref count. */ 1118 CONN_INC_REF(connp); 1119 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 1120 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 1121 tcp_linger_interrupted, connp, NULL, 1122 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 1123 mutex_enter(&tcp->tcp_closelock); 1124 } 1125 break; 1126 } 1127 } 1128 while (!tcp->tcp_closed) 1129 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 1130 mutex_exit(&tcp->tcp_closelock); 1131 1132 /* 1133 * In the case of listener streams that have eagers in the q or q0 1134 * we wait for the eagers to drop their reference to us. conn_rq and 1135 * conn_wq of the eagers point to our queues. By waiting for the 1136 * refcnt to drop to 1, we are sure that the eagers have cleaned 1137 * up their queue pointers and also dropped their references to us. 1138 */ 1139 if (tcp->tcp_wait_for_eagers) { 1140 mutex_enter(&connp->conn_lock); 1141 while (connp->conn_ref != 1) { 1142 cv_wait(&connp->conn_cv, &connp->conn_lock); 1143 } 1144 mutex_exit(&connp->conn_lock); 1145 } 1146 1147 connp->conn_cpid = NOPID; 1148 } 1149 1150 /* 1151 * Called by tcp_close() routine via squeue when lingering is 1152 * interrupted by a signal. 1153 */ 1154 1155 /* ARGSUSED */ 1156 static void 1157 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 1158 { 1159 conn_t *connp = (conn_t *)arg; 1160 tcp_t *tcp = connp->conn_tcp; 1161 1162 freeb(mp); 1163 if (tcp->tcp_linger_tid != 0 && 1164 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 1165 tcp_stop_lingering(tcp); 1166 tcp->tcp_client_errno = EINTR; 1167 } 1168 } 1169 1170 /* 1171 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 1172 * Some stream heads get upset if they see these later on as anything but NULL. 1173 */ 1174 void 1175 tcp_close_mpp(mblk_t **mpp) 1176 { 1177 mblk_t *mp; 1178 1179 if ((mp = *mpp) != NULL) { 1180 do { 1181 mp->b_next = NULL; 1182 mp->b_prev = NULL; 1183 } while ((mp = mp->b_cont) != NULL); 1184 1185 mp = *mpp; 1186 *mpp = NULL; 1187 freemsg(mp); 1188 } 1189 } 1190 1191 /* Do detached close. */ 1192 void 1193 tcp_close_detached(tcp_t *tcp) 1194 { 1195 if (tcp->tcp_fused) 1196 tcp_unfuse(tcp); 1197 1198 /* 1199 * Clustering code serializes TCP disconnect callbacks and 1200 * cluster tcp list walks by blocking a TCP disconnect callback 1201 * if a cluster tcp list walk is in progress. This ensures 1202 * accurate accounting of TCPs in the cluster code even though 1203 * the TCP list walk itself is not atomic. 1204 */ 1205 tcp_closei_local(tcp); 1206 CONN_DEC_REF(tcp->tcp_connp); 1207 } 1208 1209 /* 1210 * The tcp_t is going away. Remove it from all lists and set it 1211 * to TCPS_CLOSED. The freeing up of memory is deferred until 1212 * tcp_inactive. This is needed since a thread in tcp_rput might have 1213 * done a CONN_INC_REF on this structure before it was removed from the 1214 * hashes. 1215 */ 1216 void 1217 tcp_closei_local(tcp_t *tcp) 1218 { 1219 conn_t *connp = tcp->tcp_connp; 1220 tcp_stack_t *tcps = tcp->tcp_tcps; 1221 1222 if (!TCP_IS_SOCKET(tcp)) 1223 tcp_acceptor_hash_remove(tcp); 1224 1225 TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs); 1226 tcp->tcp_ibsegs = 0; 1227 TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs); 1228 tcp->tcp_obsegs = 0; 1229 1230 /* 1231 * This can be called via tcp_time_wait_processing() if TCP gets a 1232 * SYN with sequence number outside the TIME-WAIT connection's 1233 * window. So we need to check for TIME-WAIT state here as the 1234 * connection counter is already decremented. See SET_TIME_WAIT() 1235 * macro 1236 */ 1237 if (tcp->tcp_state >= TCPS_ESTABLISHED && 1238 tcp->tcp_state < TCPS_TIME_WAIT) { 1239 TCPS_CONN_DEC(tcps); 1240 } 1241 1242 /* 1243 * If we are an eager connection hanging off a listener that 1244 * hasn't formally accepted the connection yet, get off his 1245 * list and blow off any data that we have accumulated. 1246 */ 1247 if (tcp->tcp_listener != NULL) { 1248 tcp_t *listener = tcp->tcp_listener; 1249 mutex_enter(&listener->tcp_eager_lock); 1250 /* 1251 * tcp_tconnind_started == B_TRUE means that the 1252 * conn_ind has already gone to listener. At 1253 * this point, eager will be closed but we 1254 * leave it in listeners eager list so that 1255 * if listener decides to close without doing 1256 * accept, we can clean this up. In tcp_tli_accept 1257 * we take care of the case of accept on closed 1258 * eager. 1259 */ 1260 if (!tcp->tcp_tconnind_started) { 1261 tcp_eager_unlink(tcp); 1262 mutex_exit(&listener->tcp_eager_lock); 1263 /* 1264 * We don't want to have any pointers to the 1265 * listener queue, after we have released our 1266 * reference on the listener 1267 */ 1268 ASSERT(tcp->tcp_detached); 1269 connp->conn_rq = NULL; 1270 connp->conn_wq = NULL; 1271 CONN_DEC_REF(listener->tcp_connp); 1272 } else { 1273 mutex_exit(&listener->tcp_eager_lock); 1274 } 1275 } 1276 1277 /* Stop all the timers */ 1278 tcp_timers_stop(tcp); 1279 1280 if (tcp->tcp_state == TCPS_LISTEN) { 1281 if (tcp->tcp_ip_addr_cache) { 1282 kmem_free((void *)tcp->tcp_ip_addr_cache, 1283 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1284 tcp->tcp_ip_addr_cache = NULL; 1285 } 1286 } 1287 1288 /* Decrement listerner connection counter if necessary. */ 1289 if (tcp->tcp_listen_cnt != NULL) 1290 TCP_DECR_LISTEN_CNT(tcp); 1291 1292 mutex_enter(&tcp->tcp_non_sq_lock); 1293 if (tcp->tcp_flow_stopped) 1294 tcp_clrqfull(tcp); 1295 mutex_exit(&tcp->tcp_non_sq_lock); 1296 1297 tcp_bind_hash_remove(tcp); 1298 /* 1299 * If the tcp_time_wait_collector (which runs outside the squeue) 1300 * is trying to remove this tcp from the time wait list, we will 1301 * block in tcp_time_wait_remove while trying to acquire the 1302 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 1303 * requires the ipcl_hash_remove to be ordered after the 1304 * tcp_time_wait_remove for the refcnt checks to work correctly. 1305 */ 1306 if (tcp->tcp_state == TCPS_TIME_WAIT) 1307 (void) tcp_time_wait_remove(tcp, NULL); 1308 CL_INET_DISCONNECT(connp); 1309 ipcl_hash_remove(connp); 1310 ixa_cleanup(connp->conn_ixa); 1311 1312 /* 1313 * Mark the conn as CONDEMNED 1314 */ 1315 mutex_enter(&connp->conn_lock); 1316 connp->conn_state_flags |= CONN_CONDEMNED; 1317 mutex_exit(&connp->conn_lock); 1318 1319 ASSERT(tcp->tcp_time_wait_next == NULL); 1320 ASSERT(tcp->tcp_time_wait_prev == NULL); 1321 ASSERT(tcp->tcp_time_wait_expire == 0); 1322 tcp->tcp_state = TCPS_CLOSED; 1323 1324 /* Release any SSL context */ 1325 if (tcp->tcp_kssl_ent != NULL) { 1326 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1327 tcp->tcp_kssl_ent = NULL; 1328 } 1329 if (tcp->tcp_kssl_ctx != NULL) { 1330 kssl_release_ctx(tcp->tcp_kssl_ctx); 1331 tcp->tcp_kssl_ctx = NULL; 1332 } 1333 tcp->tcp_kssl_pending = B_FALSE; 1334 1335 tcp_ipsec_cleanup(tcp); 1336 } 1337 1338 /* 1339 * tcp is dying (called from ipcl_conn_destroy and error cases). 1340 * Free the tcp_t in either case. 1341 */ 1342 void 1343 tcp_free(tcp_t *tcp) 1344 { 1345 mblk_t *mp; 1346 conn_t *connp = tcp->tcp_connp; 1347 1348 ASSERT(tcp != NULL); 1349 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 1350 1351 connp->conn_rq = NULL; 1352 connp->conn_wq = NULL; 1353 1354 tcp_close_mpp(&tcp->tcp_xmit_head); 1355 tcp_close_mpp(&tcp->tcp_reass_head); 1356 if (tcp->tcp_rcv_list != NULL) { 1357 /* Free b_next chain */ 1358 tcp_close_mpp(&tcp->tcp_rcv_list); 1359 } 1360 if ((mp = tcp->tcp_urp_mp) != NULL) { 1361 freemsg(mp); 1362 } 1363 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 1364 freemsg(mp); 1365 } 1366 1367 if (tcp->tcp_fused_sigurg_mp != NULL) { 1368 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1369 freeb(tcp->tcp_fused_sigurg_mp); 1370 tcp->tcp_fused_sigurg_mp = NULL; 1371 } 1372 1373 if (tcp->tcp_ordrel_mp != NULL) { 1374 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1375 freeb(tcp->tcp_ordrel_mp); 1376 tcp->tcp_ordrel_mp = NULL; 1377 } 1378 1379 if (tcp->tcp_sack_info != NULL) { 1380 if (tcp->tcp_notsack_list != NULL) { 1381 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 1382 tcp); 1383 } 1384 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 1385 } 1386 1387 if (tcp->tcp_hopopts != NULL) { 1388 mi_free(tcp->tcp_hopopts); 1389 tcp->tcp_hopopts = NULL; 1390 tcp->tcp_hopoptslen = 0; 1391 } 1392 ASSERT(tcp->tcp_hopoptslen == 0); 1393 if (tcp->tcp_dstopts != NULL) { 1394 mi_free(tcp->tcp_dstopts); 1395 tcp->tcp_dstopts = NULL; 1396 tcp->tcp_dstoptslen = 0; 1397 } 1398 ASSERT(tcp->tcp_dstoptslen == 0); 1399 if (tcp->tcp_rthdrdstopts != NULL) { 1400 mi_free(tcp->tcp_rthdrdstopts); 1401 tcp->tcp_rthdrdstopts = NULL; 1402 tcp->tcp_rthdrdstoptslen = 0; 1403 } 1404 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 1405 if (tcp->tcp_rthdr != NULL) { 1406 mi_free(tcp->tcp_rthdr); 1407 tcp->tcp_rthdr = NULL; 1408 tcp->tcp_rthdrlen = 0; 1409 } 1410 ASSERT(tcp->tcp_rthdrlen == 0); 1411 1412 /* 1413 * Following is really a blowing away a union. 1414 * It happens to have exactly two members of identical size 1415 * the following code is enough. 1416 */ 1417 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 1418 } 1419 1420 /* 1421 * tcp_get_conn/tcp_free_conn 1422 * 1423 * tcp_get_conn is used to get a clean tcp connection structure. 1424 * It tries to reuse the connections put on the freelist by the 1425 * time_wait_collector failing which it goes to kmem_cache. This 1426 * way has two benefits compared to just allocating from and 1427 * freeing to kmem_cache. 1428 * 1) The time_wait_collector can free (which includes the cleanup) 1429 * outside the squeue. So when the interrupt comes, we have a clean 1430 * connection sitting in the freelist. Obviously, this buys us 1431 * performance. 1432 * 1433 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener 1434 * has multiple disadvantages - tying up the squeue during alloc. 1435 * But allocating the conn/tcp in IP land is also not the best since 1436 * we can't check the 'q' and 'q0' which are protected by squeue and 1437 * blindly allocate memory which might have to be freed here if we are 1438 * not allowed to accept the connection. By using the freelist and 1439 * putting the conn/tcp back in freelist, we don't pay a penalty for 1440 * allocating memory without checking 'q/q0' and freeing it if we can't 1441 * accept the connection. 1442 * 1443 * Care should be taken to put the conn back in the same squeue's freelist 1444 * from which it was allocated. Best results are obtained if conn is 1445 * allocated from listener's squeue and freed to the same. Time wait 1446 * collector will free up the freelist is the connection ends up sitting 1447 * there for too long. 1448 */ 1449 void * 1450 tcp_get_conn(void *arg, tcp_stack_t *tcps) 1451 { 1452 tcp_t *tcp = NULL; 1453 conn_t *connp = NULL; 1454 squeue_t *sqp = (squeue_t *)arg; 1455 tcp_squeue_priv_t *tcp_time_wait; 1456 netstack_t *ns; 1457 mblk_t *tcp_rsrv_mp = NULL; 1458 1459 tcp_time_wait = 1460 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1461 1462 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1463 tcp = tcp_time_wait->tcp_free_list; 1464 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 1465 if (tcp != NULL) { 1466 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1467 tcp_time_wait->tcp_free_list_cnt--; 1468 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1469 tcp->tcp_time_wait_next = NULL; 1470 connp = tcp->tcp_connp; 1471 connp->conn_flags |= IPCL_REUSED; 1472 1473 ASSERT(tcp->tcp_tcps == NULL); 1474 ASSERT(connp->conn_netstack == NULL); 1475 ASSERT(tcp->tcp_rsrv_mp != NULL); 1476 ns = tcps->tcps_netstack; 1477 netstack_hold(ns); 1478 connp->conn_netstack = ns; 1479 connp->conn_ixa->ixa_ipst = ns->netstack_ip; 1480 tcp->tcp_tcps = tcps; 1481 ipcl_globalhash_insert(connp); 1482 1483 connp->conn_ixa->ixa_notify_cookie = tcp; 1484 ASSERT(connp->conn_ixa->ixa_notify == tcp_notify); 1485 connp->conn_recv = tcp_input_data; 1486 ASSERT(connp->conn_recvicmp == tcp_icmp_input); 1487 ASSERT(connp->conn_verifyicmp == tcp_verifyicmp); 1488 return ((void *)connp); 1489 } 1490 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1491 /* 1492 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 1493 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 1494 */ 1495 tcp_rsrv_mp = allocb(0, BPRI_HI); 1496 if (tcp_rsrv_mp == NULL) 1497 return (NULL); 1498 1499 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 1500 tcps->tcps_netstack)) == NULL) { 1501 freeb(tcp_rsrv_mp); 1502 return (NULL); 1503 } 1504 1505 tcp = connp->conn_tcp; 1506 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1507 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 1508 1509 tcp->tcp_tcps = tcps; 1510 1511 connp->conn_recv = tcp_input_data; 1512 connp->conn_recvicmp = tcp_icmp_input; 1513 connp->conn_verifyicmp = tcp_verifyicmp; 1514 1515 /* 1516 * Register tcp_notify to listen to capability changes detected by IP. 1517 * This upcall is made in the context of the call to conn_ip_output 1518 * thus it is inside the squeue. 1519 */ 1520 connp->conn_ixa->ixa_notify = tcp_notify; 1521 connp->conn_ixa->ixa_notify_cookie = tcp; 1522 1523 return ((void *)connp); 1524 } 1525 1526 /* 1527 * Handle connect to IPv4 destinations, including connections for AF_INET6 1528 * sockets connecting to IPv4 mapped IPv6 destinations. 1529 * Returns zero if OK, a positive errno, or a negative TLI error. 1530 */ 1531 static int 1532 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 1533 uint_t srcid) 1534 { 1535 ipaddr_t dstaddr = *dstaddrp; 1536 uint16_t lport; 1537 conn_t *connp = tcp->tcp_connp; 1538 tcp_stack_t *tcps = tcp->tcp_tcps; 1539 int error; 1540 1541 ASSERT(connp->conn_ipversion == IPV4_VERSION); 1542 1543 /* Check for attempt to connect to INADDR_ANY */ 1544 if (dstaddr == INADDR_ANY) { 1545 /* 1546 * SunOS 4.x and 4.3 BSD allow an application 1547 * to connect a TCP socket to INADDR_ANY. 1548 * When they do this, the kernel picks the 1549 * address of one interface and uses it 1550 * instead. The kernel usually ends up 1551 * picking the address of the loopback 1552 * interface. This is an undocumented feature. 1553 * However, we provide the same thing here 1554 * in order to have source and binary 1555 * compatibility with SunOS 4.x. 1556 * Update the T_CONN_REQ (sin/sin6) since it is used to 1557 * generate the T_CONN_CON. 1558 */ 1559 dstaddr = htonl(INADDR_LOOPBACK); 1560 *dstaddrp = dstaddr; 1561 } 1562 1563 /* Handle __sin6_src_id if socket not bound to an IP address */ 1564 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) { 1565 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 1566 IPCL_ZONEID(connp), tcps->tcps_netstack); 1567 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1568 } 1569 1570 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6); 1571 connp->conn_fport = dstport; 1572 1573 /* 1574 * At this point the remote destination address and remote port fields 1575 * in the tcp-four-tuple have been filled in the tcp structure. Now we 1576 * have to see which state tcp was in so we can take appropriate action. 1577 */ 1578 if (tcp->tcp_state == TCPS_IDLE) { 1579 /* 1580 * We support a quick connect capability here, allowing 1581 * clients to transition directly from IDLE to SYN_SENT 1582 * tcp_bindi will pick an unused port, insert the connection 1583 * in the bind hash and transition to BOUND state. 1584 */ 1585 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 1586 tcp, B_TRUE); 1587 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 1588 B_FALSE, B_FALSE); 1589 if (lport == 0) 1590 return (-TNOADDR); 1591 } 1592 1593 /* 1594 * Lookup the route to determine a source address and the uinfo. 1595 * Setup TCP parameters based on the metrics/DCE. 1596 */ 1597 error = tcp_set_destination(tcp); 1598 if (error != 0) 1599 return (error); 1600 1601 /* 1602 * Don't let an endpoint connect to itself. 1603 */ 1604 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 && 1605 connp->conn_fport == connp->conn_lport) 1606 return (-TBADADDR); 1607 1608 tcp->tcp_state = TCPS_SYN_SENT; 1609 1610 return (ipcl_conn_insert_v4(connp)); 1611 } 1612 1613 /* 1614 * Handle connect to IPv6 destinations. 1615 * Returns zero if OK, a positive errno, or a negative TLI error. 1616 */ 1617 static int 1618 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 1619 uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 1620 { 1621 uint16_t lport; 1622 conn_t *connp = tcp->tcp_connp; 1623 tcp_stack_t *tcps = tcp->tcp_tcps; 1624 int error; 1625 1626 ASSERT(connp->conn_family == AF_INET6); 1627 1628 /* 1629 * If we're here, it means that the destination address is a native 1630 * IPv6 address. Return an error if conn_ipversion is not IPv6. A 1631 * reason why it might not be IPv6 is if the socket was bound to an 1632 * IPv4-mapped IPv6 address. 1633 */ 1634 if (connp->conn_ipversion != IPV6_VERSION) 1635 return (-TBADADDR); 1636 1637 /* 1638 * Interpret a zero destination to mean loopback. 1639 * Update the T_CONN_REQ (sin/sin6) since it is used to 1640 * generate the T_CONN_CON. 1641 */ 1642 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) 1643 *dstaddrp = ipv6_loopback; 1644 1645 /* Handle __sin6_src_id if socket not bound to an IP address */ 1646 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) { 1647 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 1648 IPCL_ZONEID(connp), tcps->tcps_netstack); 1649 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1650 } 1651 1652 /* 1653 * Take care of the scope_id now. 1654 */ 1655 if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 1656 connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 1657 connp->conn_ixa->ixa_scopeid = scope_id; 1658 } else { 1659 connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 1660 } 1661 1662 connp->conn_flowinfo = flowinfo; 1663 connp->conn_faddr_v6 = *dstaddrp; 1664 connp->conn_fport = dstport; 1665 1666 /* 1667 * At this point the remote destination address and remote port fields 1668 * in the tcp-four-tuple have been filled in the tcp structure. Now we 1669 * have to see which state tcp was in so we can take appropriate action. 1670 */ 1671 if (tcp->tcp_state == TCPS_IDLE) { 1672 /* 1673 * We support a quick connect capability here, allowing 1674 * clients to transition directly from IDLE to SYN_SENT 1675 * tcp_bindi will pick an unused port, insert the connection 1676 * in the bind hash and transition to BOUND state. 1677 */ 1678 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 1679 tcp, B_TRUE); 1680 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 1681 B_FALSE, B_FALSE); 1682 if (lport == 0) 1683 return (-TNOADDR); 1684 } 1685 1686 /* 1687 * Lookup the route to determine a source address and the uinfo. 1688 * Setup TCP parameters based on the metrics/DCE. 1689 */ 1690 error = tcp_set_destination(tcp); 1691 if (error != 0) 1692 return (error); 1693 1694 /* 1695 * Don't let an endpoint connect to itself. 1696 */ 1697 if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) && 1698 connp->conn_fport == connp->conn_lport) 1699 return (-TBADADDR); 1700 1701 tcp->tcp_state = TCPS_SYN_SENT; 1702 1703 return (ipcl_conn_insert_v6(connp)); 1704 } 1705 1706 /* 1707 * Disconnect 1708 * Note that unlike other functions this returns a positive tli error 1709 * when it fails; it never returns an errno. 1710 */ 1711 static int 1712 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 1713 { 1714 conn_t *lconnp; 1715 tcp_stack_t *tcps = tcp->tcp_tcps; 1716 conn_t *connp = tcp->tcp_connp; 1717 1718 /* 1719 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 1720 * when the stream is in BOUND state. Do not send a reset, 1721 * since the destination IP address is not valid, and it can 1722 * be the initialized value of all zeros (broadcast address). 1723 */ 1724 if (tcp->tcp_state <= TCPS_BOUND) { 1725 if (connp->conn_debug) { 1726 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 1727 "tcp_disconnect: bad state, %d", tcp->tcp_state); 1728 } 1729 return (TOUTSTATE); 1730 } else if (tcp->tcp_state >= TCPS_ESTABLISHED) { 1731 TCPS_CONN_DEC(tcps); 1732 } 1733 1734 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 1735 1736 /* 1737 * According to TPI, for non-listeners, ignore seqnum 1738 * and disconnect. 1739 * Following interpretation of -1 seqnum is historical 1740 * and implied TPI ? (TPI only states that for T_CONN_IND, 1741 * a valid seqnum should not be -1). 1742 * 1743 * -1 means disconnect everything 1744 * regardless even on a listener. 1745 */ 1746 1747 int old_state = tcp->tcp_state; 1748 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 1749 1750 /* 1751 * The connection can't be on the tcp_time_wait_head list 1752 * since it is not detached. 1753 */ 1754 ASSERT(tcp->tcp_time_wait_next == NULL); 1755 ASSERT(tcp->tcp_time_wait_prev == NULL); 1756 ASSERT(tcp->tcp_time_wait_expire == 0); 1757 /* 1758 * If it used to be a listener, check to make sure no one else 1759 * has taken the port before switching back to LISTEN state. 1760 */ 1761 if (connp->conn_ipversion == IPV4_VERSION) { 1762 lconnp = ipcl_lookup_listener_v4(connp->conn_lport, 1763 connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst); 1764 } else { 1765 uint_t ifindex = 0; 1766 1767 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) 1768 ifindex = connp->conn_ixa->ixa_scopeid; 1769 1770 /* Allow conn_bound_if listeners? */ 1771 lconnp = ipcl_lookup_listener_v6(connp->conn_lport, 1772 &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp), 1773 ipst); 1774 } 1775 if (tcp->tcp_conn_req_max && lconnp == NULL) { 1776 tcp->tcp_state = TCPS_LISTEN; 1777 } else if (old_state > TCPS_BOUND) { 1778 tcp->tcp_conn_req_max = 0; 1779 tcp->tcp_state = TCPS_BOUND; 1780 1781 /* 1782 * If this end point is not going to become a listener, 1783 * decrement the listener connection count if 1784 * necessary. Note that we do not do this if it is 1785 * going to be a listner (the above if case) since 1786 * then it may remove the counter struct. 1787 */ 1788 if (tcp->tcp_listen_cnt != NULL) 1789 TCP_DECR_LISTEN_CNT(tcp); 1790 } 1791 if (lconnp != NULL) 1792 CONN_DEC_REF(lconnp); 1793 switch (old_state) { 1794 case TCPS_SYN_SENT: 1795 case TCPS_SYN_RCVD: 1796 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 1797 break; 1798 case TCPS_ESTABLISHED: 1799 case TCPS_CLOSE_WAIT: 1800 TCPS_BUMP_MIB(tcps, tcpEstabResets); 1801 break; 1802 } 1803 1804 if (tcp->tcp_fused) 1805 tcp_unfuse(tcp); 1806 1807 mutex_enter(&tcp->tcp_eager_lock); 1808 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 1809 (tcp->tcp_conn_req_cnt_q != 0)) { 1810 tcp_eager_cleanup(tcp, 0); 1811 } 1812 mutex_exit(&tcp->tcp_eager_lock); 1813 1814 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 1815 tcp->tcp_rnxt, TH_RST | TH_ACK); 1816 1817 tcp_reinit(tcp); 1818 1819 return (0); 1820 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 1821 return (TBADSEQ); 1822 } 1823 return (0); 1824 } 1825 1826 /* 1827 * Our client hereby directs us to reject the connection request 1828 * that tcp_input_listener() marked with 'seqnum'. Rejection consists 1829 * of sending the appropriate RST, not an ICMP error. 1830 */ 1831 void 1832 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 1833 { 1834 t_scalar_t seqnum; 1835 int error; 1836 conn_t *connp = tcp->tcp_connp; 1837 1838 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 1839 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 1840 tcp_err_ack(tcp, mp, TPROTO, 0); 1841 return; 1842 } 1843 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 1844 error = tcp_disconnect_common(tcp, seqnum); 1845 if (error != 0) 1846 tcp_err_ack(tcp, mp, error, 0); 1847 else { 1848 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 1849 /* Send M_FLUSH according to TPI */ 1850 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 1851 } 1852 mp = mi_tpi_ok_ack_alloc(mp); 1853 if (mp != NULL) 1854 putnext(connp->conn_rq, mp); 1855 } 1856 } 1857 1858 /* 1859 * Handle reinitialization of a tcp structure. 1860 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 1861 */ 1862 static void 1863 tcp_reinit(tcp_t *tcp) 1864 { 1865 mblk_t *mp; 1866 tcp_stack_t *tcps = tcp->tcp_tcps; 1867 conn_t *connp = tcp->tcp_connp; 1868 1869 /* tcp_reinit should never be called for detached tcp_t's */ 1870 ASSERT(tcp->tcp_listener == NULL); 1871 ASSERT((connp->conn_family == AF_INET && 1872 connp->conn_ipversion == IPV4_VERSION) || 1873 (connp->conn_family == AF_INET6 && 1874 (connp->conn_ipversion == IPV4_VERSION || 1875 connp->conn_ipversion == IPV6_VERSION))); 1876 1877 /* Cancel outstanding timers */ 1878 tcp_timers_stop(tcp); 1879 1880 /* 1881 * Reset everything in the state vector, after updating global 1882 * MIB data from instance counters. 1883 */ 1884 TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs); 1885 tcp->tcp_ibsegs = 0; 1886 TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs); 1887 tcp->tcp_obsegs = 0; 1888 1889 tcp_close_mpp(&tcp->tcp_xmit_head); 1890 if (tcp->tcp_snd_zcopy_aware) 1891 tcp_zcopy_notify(tcp); 1892 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 1893 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 1894 mutex_enter(&tcp->tcp_non_sq_lock); 1895 if (tcp->tcp_flow_stopped && 1896 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 1897 tcp_clrqfull(tcp); 1898 } 1899 mutex_exit(&tcp->tcp_non_sq_lock); 1900 tcp_close_mpp(&tcp->tcp_reass_head); 1901 tcp->tcp_reass_tail = NULL; 1902 if (tcp->tcp_rcv_list != NULL) { 1903 /* Free b_next chain */ 1904 tcp_close_mpp(&tcp->tcp_rcv_list); 1905 tcp->tcp_rcv_last_head = NULL; 1906 tcp->tcp_rcv_last_tail = NULL; 1907 tcp->tcp_rcv_cnt = 0; 1908 } 1909 tcp->tcp_rcv_last_tail = NULL; 1910 1911 if ((mp = tcp->tcp_urp_mp) != NULL) { 1912 freemsg(mp); 1913 tcp->tcp_urp_mp = NULL; 1914 } 1915 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 1916 freemsg(mp); 1917 tcp->tcp_urp_mark_mp = NULL; 1918 } 1919 if (tcp->tcp_fused_sigurg_mp != NULL) { 1920 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1921 freeb(tcp->tcp_fused_sigurg_mp); 1922 tcp->tcp_fused_sigurg_mp = NULL; 1923 } 1924 if (tcp->tcp_ordrel_mp != NULL) { 1925 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1926 freeb(tcp->tcp_ordrel_mp); 1927 tcp->tcp_ordrel_mp = NULL; 1928 } 1929 1930 /* 1931 * Following is a union with two members which are 1932 * identical types and size so the following cleanup 1933 * is enough. 1934 */ 1935 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 1936 1937 CL_INET_DISCONNECT(connp); 1938 1939 /* 1940 * The connection can't be on the tcp_time_wait_head list 1941 * since it is not detached. 1942 */ 1943 ASSERT(tcp->tcp_time_wait_next == NULL); 1944 ASSERT(tcp->tcp_time_wait_prev == NULL); 1945 ASSERT(tcp->tcp_time_wait_expire == 0); 1946 1947 if (tcp->tcp_kssl_pending) { 1948 tcp->tcp_kssl_pending = B_FALSE; 1949 1950 /* Don't reset if the initialized by bind. */ 1951 if (tcp->tcp_kssl_ent != NULL) { 1952 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 1953 KSSL_NO_PROXY); 1954 } 1955 } 1956 if (tcp->tcp_kssl_ctx != NULL) { 1957 kssl_release_ctx(tcp->tcp_kssl_ctx); 1958 tcp->tcp_kssl_ctx = NULL; 1959 } 1960 1961 /* 1962 * Reset/preserve other values 1963 */ 1964 tcp_reinit_values(tcp); 1965 ipcl_hash_remove(connp); 1966 /* Note that ixa_cred gets cleared in ixa_cleanup */ 1967 ixa_cleanup(connp->conn_ixa); 1968 tcp_ipsec_cleanup(tcp); 1969 1970 connp->conn_laddr_v6 = connp->conn_bound_addr_v6; 1971 connp->conn_saddr_v6 = connp->conn_bound_addr_v6; 1972 1973 if (tcp->tcp_conn_req_max != 0) { 1974 /* 1975 * This is the case when a TLI program uses the same 1976 * transport end point to accept a connection. This 1977 * makes the TCP both a listener and acceptor. When 1978 * this connection is closed, we need to set the state 1979 * back to TCPS_LISTEN. Make sure that the eager list 1980 * is reinitialized. 1981 * 1982 * Note that this stream is still bound to the four 1983 * tuples of the previous connection in IP. If a new 1984 * SYN with different foreign address comes in, IP will 1985 * not find it and will send it to the global queue. In 1986 * the global queue, TCP will do a tcp_lookup_listener() 1987 * to find this stream. This works because this stream 1988 * is only removed from connected hash. 1989 * 1990 */ 1991 tcp->tcp_state = TCPS_LISTEN; 1992 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 1993 tcp->tcp_eager_next_drop_q0 = tcp; 1994 tcp->tcp_eager_prev_drop_q0 = tcp; 1995 /* 1996 * Initially set conn_recv to tcp_input_listener_unbound to try 1997 * to pick a good squeue for the listener when the first SYN 1998 * arrives. tcp_input_listener_unbound sets it to 1999 * tcp_input_listener on that first SYN. 2000 */ 2001 connp->conn_recv = tcp_input_listener_unbound; 2002 2003 connp->conn_proto = IPPROTO_TCP; 2004 connp->conn_faddr_v6 = ipv6_all_zeros; 2005 connp->conn_fport = 0; 2006 2007 (void) ipcl_bind_insert(connp); 2008 } else { 2009 tcp->tcp_state = TCPS_BOUND; 2010 } 2011 2012 /* 2013 * Initialize to default values 2014 */ 2015 tcp_init_values(tcp); 2016 2017 ASSERT(tcp->tcp_ptpbhn != NULL); 2018 tcp->tcp_rwnd = connp->conn_rcvbuf; 2019 tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ? 2020 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 2021 } 2022 2023 /* 2024 * Force values to zero that need be zero. 2025 * Do not touch values asociated with the BOUND or LISTEN state 2026 * since the connection will end up in that state after the reinit. 2027 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 2028 * structure! 2029 */ 2030 static void 2031 tcp_reinit_values(tcp) 2032 tcp_t *tcp; 2033 { 2034 tcp_stack_t *tcps = tcp->tcp_tcps; 2035 conn_t *connp = tcp->tcp_connp; 2036 2037 #ifndef lint 2038 #define DONTCARE(x) 2039 #define PRESERVE(x) 2040 #else 2041 #define DONTCARE(x) ((x) = (x)) 2042 #define PRESERVE(x) ((x) = (x)) 2043 #endif /* lint */ 2044 2045 PRESERVE(tcp->tcp_bind_hash_port); 2046 PRESERVE(tcp->tcp_bind_hash); 2047 PRESERVE(tcp->tcp_ptpbhn); 2048 PRESERVE(tcp->tcp_acceptor_hash); 2049 PRESERVE(tcp->tcp_ptpahn); 2050 2051 /* Should be ASSERT NULL on these with new code! */ 2052 ASSERT(tcp->tcp_time_wait_next == NULL); 2053 ASSERT(tcp->tcp_time_wait_prev == NULL); 2054 ASSERT(tcp->tcp_time_wait_expire == 0); 2055 PRESERVE(tcp->tcp_state); 2056 PRESERVE(connp->conn_rq); 2057 PRESERVE(connp->conn_wq); 2058 2059 ASSERT(tcp->tcp_xmit_head == NULL); 2060 ASSERT(tcp->tcp_xmit_last == NULL); 2061 ASSERT(tcp->tcp_unsent == 0); 2062 ASSERT(tcp->tcp_xmit_tail == NULL); 2063 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 2064 2065 tcp->tcp_snxt = 0; /* Displayed in mib */ 2066 tcp->tcp_suna = 0; /* Displayed in mib */ 2067 tcp->tcp_swnd = 0; 2068 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */ 2069 2070 ASSERT(tcp->tcp_ibsegs == 0); 2071 ASSERT(tcp->tcp_obsegs == 0); 2072 2073 if (connp->conn_ht_iphc != NULL) { 2074 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 2075 connp->conn_ht_iphc = NULL; 2076 connp->conn_ht_iphc_allocated = 0; 2077 connp->conn_ht_iphc_len = 0; 2078 connp->conn_ht_ulp = NULL; 2079 connp->conn_ht_ulp_len = 0; 2080 tcp->tcp_ipha = NULL; 2081 tcp->tcp_ip6h = NULL; 2082 tcp->tcp_tcpha = NULL; 2083 } 2084 2085 /* We clear any IP_OPTIONS and extension headers */ 2086 ip_pkt_free(&connp->conn_xmit_ipp); 2087 2088 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 2089 DONTCARE(tcp->tcp_ipha); 2090 DONTCARE(tcp->tcp_ip6h); 2091 DONTCARE(tcp->tcp_tcpha); 2092 tcp->tcp_valid_bits = 0; 2093 2094 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 2095 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 2096 tcp->tcp_last_rcv_lbolt = 0; 2097 2098 tcp->tcp_init_cwnd = 0; 2099 2100 tcp->tcp_urp_last_valid = 0; 2101 tcp->tcp_hard_binding = 0; 2102 2103 tcp->tcp_fin_acked = 0; 2104 tcp->tcp_fin_rcvd = 0; 2105 tcp->tcp_fin_sent = 0; 2106 tcp->tcp_ordrel_done = 0; 2107 2108 tcp->tcp_detached = 0; 2109 2110 tcp->tcp_snd_ws_ok = B_FALSE; 2111 tcp->tcp_snd_ts_ok = B_FALSE; 2112 tcp->tcp_zero_win_probe = 0; 2113 2114 tcp->tcp_loopback = 0; 2115 tcp->tcp_localnet = 0; 2116 tcp->tcp_syn_defense = 0; 2117 tcp->tcp_set_timer = 0; 2118 2119 tcp->tcp_active_open = 0; 2120 tcp->tcp_rexmit = B_FALSE; 2121 tcp->tcp_xmit_zc_clean = B_FALSE; 2122 2123 tcp->tcp_snd_sack_ok = B_FALSE; 2124 tcp->tcp_hwcksum = B_FALSE; 2125 2126 DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */ 2127 2128 tcp->tcp_conn_def_q0 = 0; 2129 tcp->tcp_ip_forward_progress = B_FALSE; 2130 tcp->tcp_ecn_ok = B_FALSE; 2131 2132 tcp->tcp_cwr = B_FALSE; 2133 tcp->tcp_ecn_echo_on = B_FALSE; 2134 tcp->tcp_is_wnd_shrnk = B_FALSE; 2135 2136 if (tcp->tcp_sack_info != NULL) { 2137 if (tcp->tcp_notsack_list != NULL) { 2138 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 2139 tcp); 2140 } 2141 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 2142 tcp->tcp_sack_info = NULL; 2143 } 2144 2145 tcp->tcp_rcv_ws = 0; 2146 tcp->tcp_snd_ws = 0; 2147 tcp->tcp_ts_recent = 0; 2148 tcp->tcp_rnxt = 0; /* Displayed in mib */ 2149 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 2150 tcp->tcp_initial_pmtu = 0; 2151 2152 ASSERT(tcp->tcp_reass_head == NULL); 2153 ASSERT(tcp->tcp_reass_tail == NULL); 2154 2155 tcp->tcp_cwnd_cnt = 0; 2156 2157 ASSERT(tcp->tcp_rcv_list == NULL); 2158 ASSERT(tcp->tcp_rcv_last_head == NULL); 2159 ASSERT(tcp->tcp_rcv_last_tail == NULL); 2160 ASSERT(tcp->tcp_rcv_cnt == 0); 2161 2162 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */ 2163 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 2164 tcp->tcp_csuna = 0; 2165 2166 tcp->tcp_rto = 0; /* Displayed in MIB */ 2167 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 2168 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 2169 tcp->tcp_rtt_update = 0; 2170 2171 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 2172 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 2173 2174 tcp->tcp_rack = 0; /* Displayed in mib */ 2175 tcp->tcp_rack_cnt = 0; 2176 tcp->tcp_rack_cur_max = 0; 2177 tcp->tcp_rack_abs_max = 0; 2178 2179 tcp->tcp_max_swnd = 0; 2180 2181 ASSERT(tcp->tcp_listener == NULL); 2182 2183 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 2184 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 2185 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 2186 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 2187 2188 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 2189 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 2190 PRESERVE(tcp->tcp_conn_req_max); 2191 PRESERVE(tcp->tcp_conn_req_seqnum); 2192 2193 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 2194 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 2195 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 2196 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 2197 2198 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 2199 ASSERT(tcp->tcp_urp_mp == NULL); 2200 ASSERT(tcp->tcp_urp_mark_mp == NULL); 2201 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 2202 2203 ASSERT(tcp->tcp_eager_next_q == NULL); 2204 ASSERT(tcp->tcp_eager_last_q == NULL); 2205 ASSERT((tcp->tcp_eager_next_q0 == NULL && 2206 tcp->tcp_eager_prev_q0 == NULL) || 2207 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 2208 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 2209 2210 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 2211 tcp->tcp_eager_prev_drop_q0 == NULL) || 2212 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 2213 2214 tcp->tcp_client_errno = 0; 2215 2216 DONTCARE(connp->conn_sum); /* Init in tcp_init_values */ 2217 2218 connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */ 2219 2220 PRESERVE(connp->conn_bound_addr_v6); 2221 tcp->tcp_last_sent_len = 0; 2222 tcp->tcp_dupack_cnt = 0; 2223 2224 connp->conn_fport = 0; /* Displayed in MIB */ 2225 PRESERVE(connp->conn_lport); 2226 2227 PRESERVE(tcp->tcp_acceptor_lockp); 2228 2229 ASSERT(tcp->tcp_ordrel_mp == NULL); 2230 PRESERVE(tcp->tcp_acceptor_id); 2231 DONTCARE(tcp->tcp_ipsec_overhead); 2232 2233 PRESERVE(connp->conn_family); 2234 /* Remove any remnants of mapped address binding */ 2235 if (connp->conn_family == AF_INET6) { 2236 connp->conn_ipversion = IPV6_VERSION; 2237 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 2238 } else { 2239 connp->conn_ipversion = IPV4_VERSION; 2240 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 2241 } 2242 2243 connp->conn_bound_if = 0; 2244 connp->conn_recv_ancillary.crb_all = 0; 2245 tcp->tcp_recvifindex = 0; 2246 tcp->tcp_recvhops = 0; 2247 tcp->tcp_closed = 0; 2248 if (tcp->tcp_hopopts != NULL) { 2249 mi_free(tcp->tcp_hopopts); 2250 tcp->tcp_hopopts = NULL; 2251 tcp->tcp_hopoptslen = 0; 2252 } 2253 ASSERT(tcp->tcp_hopoptslen == 0); 2254 if (tcp->tcp_dstopts != NULL) { 2255 mi_free(tcp->tcp_dstopts); 2256 tcp->tcp_dstopts = NULL; 2257 tcp->tcp_dstoptslen = 0; 2258 } 2259 ASSERT(tcp->tcp_dstoptslen == 0); 2260 if (tcp->tcp_rthdrdstopts != NULL) { 2261 mi_free(tcp->tcp_rthdrdstopts); 2262 tcp->tcp_rthdrdstopts = NULL; 2263 tcp->tcp_rthdrdstoptslen = 0; 2264 } 2265 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 2266 if (tcp->tcp_rthdr != NULL) { 2267 mi_free(tcp->tcp_rthdr); 2268 tcp->tcp_rthdr = NULL; 2269 tcp->tcp_rthdrlen = 0; 2270 } 2271 ASSERT(tcp->tcp_rthdrlen == 0); 2272 2273 /* Reset fusion-related fields */ 2274 tcp->tcp_fused = B_FALSE; 2275 tcp->tcp_unfusable = B_FALSE; 2276 tcp->tcp_fused_sigurg = B_FALSE; 2277 tcp->tcp_loopback_peer = NULL; 2278 2279 tcp->tcp_lso = B_FALSE; 2280 2281 tcp->tcp_in_ack_unsent = 0; 2282 tcp->tcp_cork = B_FALSE; 2283 tcp->tcp_tconnind_started = B_FALSE; 2284 2285 PRESERVE(tcp->tcp_squeue_bytes); 2286 2287 ASSERT(tcp->tcp_kssl_ctx == NULL); 2288 ASSERT(!tcp->tcp_kssl_pending); 2289 PRESERVE(tcp->tcp_kssl_ent); 2290 2291 tcp->tcp_closemp_used = B_FALSE; 2292 2293 PRESERVE(tcp->tcp_rsrv_mp); 2294 PRESERVE(tcp->tcp_rsrv_mp_lock); 2295 2296 #ifdef DEBUG 2297 DONTCARE(tcp->tcmp_stk[0]); 2298 #endif 2299 2300 PRESERVE(tcp->tcp_connid); 2301 2302 ASSERT(tcp->tcp_listen_cnt == NULL); 2303 ASSERT(tcp->tcp_reass_tid == 0); 2304 2305 #undef DONTCARE 2306 #undef PRESERVE 2307 } 2308 2309 void 2310 tcp_init_values(tcp_t *tcp) 2311 { 2312 tcp_stack_t *tcps = tcp->tcp_tcps; 2313 conn_t *connp = tcp->tcp_connp; 2314 2315 ASSERT((connp->conn_family == AF_INET && 2316 connp->conn_ipversion == IPV4_VERSION) || 2317 (connp->conn_family == AF_INET6 && 2318 (connp->conn_ipversion == IPV4_VERSION || 2319 connp->conn_ipversion == IPV6_VERSION))); 2320 2321 /* 2322 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 2323 * will be close to tcp_rexmit_interval_initial. By doing this, we 2324 * allow the algorithm to adjust slowly to large fluctuations of RTT 2325 * during first few transmissions of a connection as seen in slow 2326 * links. 2327 */ 2328 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 2329 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 2330 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2331 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 2332 tcps->tcps_conn_grace_period; 2333 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 2334 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2335 tcp->tcp_timer_backoff = 0; 2336 tcp->tcp_ms_we_have_waited = 0; 2337 tcp->tcp_last_recv_time = ddi_get_lbolt(); 2338 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 2339 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2340 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 2341 2342 tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier; 2343 2344 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 2345 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 2346 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 2347 /* 2348 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 2349 * passive open. 2350 */ 2351 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 2352 2353 tcp->tcp_naglim = tcps->tcps_naglim_def; 2354 2355 /* NOTE: ISS is now set in tcp_set_destination(). */ 2356 2357 /* Reset fusion-related fields */ 2358 tcp->tcp_fused = B_FALSE; 2359 tcp->tcp_unfusable = B_FALSE; 2360 tcp->tcp_fused_sigurg = B_FALSE; 2361 tcp->tcp_loopback_peer = NULL; 2362 2363 /* We rebuild the header template on the next connect/conn_request */ 2364 2365 connp->conn_mlp_type = mlptSingle; 2366 2367 /* 2368 * Init the window scale to the max so tcp_rwnd_set() won't pare 2369 * down tcp_rwnd. tcp_set_destination() will set the right value later. 2370 */ 2371 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 2372 tcp->tcp_rwnd = connp->conn_rcvbuf; 2373 2374 tcp->tcp_cork = B_FALSE; 2375 /* 2376 * Init the tcp_debug option if it wasn't already set. This value 2377 * determines whether TCP 2378 * calls strlog() to print out debug messages. Doing this 2379 * initialization here means that this value is not inherited thru 2380 * tcp_reinit(). 2381 */ 2382 if (!connp->conn_debug) 2383 connp->conn_debug = tcps->tcps_dbg; 2384 2385 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 2386 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 2387 } 2388 2389 /* 2390 * Update the TCP connection according to change of PMTU. 2391 * 2392 * Path MTU might have changed by either increase or decrease, so need to 2393 * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny 2394 * or negative MSS, since tcp_mss_set() will do it. 2395 */ 2396 void 2397 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only) 2398 { 2399 uint32_t pmtu; 2400 int32_t mss; 2401 conn_t *connp = tcp->tcp_connp; 2402 ip_xmit_attr_t *ixa = connp->conn_ixa; 2403 iaflags_t ixaflags; 2404 2405 if (tcp->tcp_tcps->tcps_ignore_path_mtu) 2406 return; 2407 2408 if (tcp->tcp_state < TCPS_ESTABLISHED) 2409 return; 2410 2411 /* 2412 * Always call ip_get_pmtu() to make sure that IP has updated 2413 * ixa_flags properly. 2414 */ 2415 pmtu = ip_get_pmtu(ixa); 2416 ixaflags = ixa->ixa_flags; 2417 2418 /* 2419 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and 2420 * IPsec overhead if applied. Make sure to use the most recent 2421 * IPsec information. 2422 */ 2423 mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp); 2424 2425 /* 2426 * Nothing to change, so just return. 2427 */ 2428 if (mss == tcp->tcp_mss) 2429 return; 2430 2431 /* 2432 * Currently, for ICMP errors, only PMTU decrease is handled. 2433 */ 2434 if (mss > tcp->tcp_mss && decrease_only) 2435 return; 2436 2437 DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss); 2438 2439 /* 2440 * Update ixa_fragsize and ixa_pmtu. 2441 */ 2442 ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu; 2443 2444 /* 2445 * Adjust MSS and all relevant variables. 2446 */ 2447 tcp_mss_set(tcp, mss); 2448 2449 /* 2450 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu 2451 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP 2452 * has a (potentially different) min size we do the same. Make sure to 2453 * clear IXAF_DONTFRAG, which is used by IP to decide whether to 2454 * fragment the packet. 2455 * 2456 * LSO over IPv6 can not be fragmented. So need to disable LSO 2457 * when IPv6 fragmentation is needed. 2458 */ 2459 if (mss < tcp->tcp_tcps->tcps_mss_min) 2460 ixaflags |= IXAF_PMTU_TOO_SMALL; 2461 2462 if (ixaflags & IXAF_PMTU_TOO_SMALL) 2463 ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF); 2464 2465 if ((connp->conn_ipversion == IPV4_VERSION) && 2466 !(ixaflags & IXAF_PMTU_IPV4_DF)) { 2467 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 2468 } 2469 ixa->ixa_flags = ixaflags; 2470 } 2471 2472 int 2473 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 2474 { 2475 conn_t *connp = tcp->tcp_connp; 2476 queue_t *q = connp->conn_rq; 2477 int32_t mss = tcp->tcp_mss; 2478 int maxpsz; 2479 2480 if (TCP_IS_DETACHED(tcp)) 2481 return (mss); 2482 if (tcp->tcp_fused) { 2483 maxpsz = tcp_fuse_maxpsz(tcp); 2484 mss = INFPSZ; 2485 } else if (tcp->tcp_maxpsz_multiplier == 0) { 2486 /* 2487 * Set the sd_qn_maxpsz according to the socket send buffer 2488 * size, and sd_maxblk to INFPSZ (-1). This will essentially 2489 * instruct the stream head to copyin user data into contiguous 2490 * kernel-allocated buffers without breaking it up into smaller 2491 * chunks. We round up the buffer size to the nearest SMSS. 2492 */ 2493 maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss); 2494 if (tcp->tcp_kssl_ctx == NULL) 2495 mss = INFPSZ; 2496 else 2497 mss = SSL3_MAX_RECORD_LEN; 2498 } else { 2499 /* 2500 * Set sd_qn_maxpsz to approx half the (receivers) buffer 2501 * (and a multiple of the mss). This instructs the stream 2502 * head to break down larger than SMSS writes into SMSS- 2503 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 2504 */ 2505 maxpsz = tcp->tcp_maxpsz_multiplier * mss; 2506 if (maxpsz > connp->conn_sndbuf / 2) { 2507 maxpsz = connp->conn_sndbuf / 2; 2508 /* Round up to nearest mss */ 2509 maxpsz = MSS_ROUNDUP(maxpsz, mss); 2510 } 2511 } 2512 2513 (void) proto_set_maxpsz(q, connp, maxpsz); 2514 if (!(IPCL_IS_NONSTR(connp))) 2515 connp->conn_wq->q_maxpsz = maxpsz; 2516 if (set_maxblk) 2517 (void) proto_set_tx_maxblk(q, connp, mss); 2518 return (mss); 2519 } 2520 2521 /* For /dev/tcp aka AF_INET open */ 2522 static int 2523 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2524 { 2525 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 2526 } 2527 2528 /* For /dev/tcp6 aka AF_INET6 open */ 2529 static int 2530 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2531 { 2532 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 2533 } 2534 2535 conn_t * 2536 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket, 2537 int *errorp) 2538 { 2539 tcp_t *tcp = NULL; 2540 conn_t *connp; 2541 zoneid_t zoneid; 2542 tcp_stack_t *tcps; 2543 squeue_t *sqp; 2544 2545 ASSERT(errorp != NULL); 2546 /* 2547 * Find the proper zoneid and netstack. 2548 */ 2549 /* 2550 * Special case for install: miniroot needs to be able to 2551 * access files via NFS as though it were always in the 2552 * global zone. 2553 */ 2554 if (credp == kcred && nfs_global_client_only != 0) { 2555 zoneid = GLOBAL_ZONEID; 2556 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 2557 netstack_tcp; 2558 ASSERT(tcps != NULL); 2559 } else { 2560 netstack_t *ns; 2561 int err; 2562 2563 if ((err = secpolicy_basic_net_access(credp)) != 0) { 2564 *errorp = err; 2565 return (NULL); 2566 } 2567 2568 ns = netstack_find_by_cred(credp); 2569 ASSERT(ns != NULL); 2570 tcps = ns->netstack_tcp; 2571 ASSERT(tcps != NULL); 2572 2573 /* 2574 * For exclusive stacks we set the zoneid to zero 2575 * to make TCP operate as if in the global zone. 2576 */ 2577 if (tcps->tcps_netstack->netstack_stackid != 2578 GLOBAL_NETSTACKID) 2579 zoneid = GLOBAL_ZONEID; 2580 else 2581 zoneid = crgetzoneid(credp); 2582 } 2583 2584 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 2585 connp = (conn_t *)tcp_get_conn(sqp, tcps); 2586 /* 2587 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 2588 * so we drop it by one. 2589 */ 2590 netstack_rele(tcps->tcps_netstack); 2591 if (connp == NULL) { 2592 *errorp = ENOSR; 2593 return (NULL); 2594 } 2595 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto); 2596 2597 connp->conn_sqp = sqp; 2598 connp->conn_initial_sqp = connp->conn_sqp; 2599 connp->conn_ixa->ixa_sqp = connp->conn_sqp; 2600 tcp = connp->conn_tcp; 2601 2602 /* 2603 * Besides asking IP to set the checksum for us, have conn_ip_output 2604 * to do the following checks when necessary: 2605 * 2606 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid 2607 * IXAF_VERIFY_PMTU: verify PMTU changes 2608 * IXAF_VERIFY_LSO: verify LSO capability changes 2609 */ 2610 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 2611 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO; 2612 2613 if (!tcps->tcps_dev_flow_ctl) 2614 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 2615 2616 if (isv6) { 2617 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 2618 connp->conn_ipversion = IPV6_VERSION; 2619 connp->conn_family = AF_INET6; 2620 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 2621 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit; 2622 } else { 2623 connp->conn_ipversion = IPV4_VERSION; 2624 connp->conn_family = AF_INET; 2625 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 2626 connp->conn_default_ttl = tcps->tcps_ipv4_ttl; 2627 } 2628 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl; 2629 2630 crhold(credp); 2631 connp->conn_cred = credp; 2632 connp->conn_cpid = curproc->p_pid; 2633 connp->conn_open_time = ddi_get_lbolt64(); 2634 2635 /* Cache things in the ixa without any refhold */ 2636 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 2637 connp->conn_ixa->ixa_cred = credp; 2638 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 2639 2640 connp->conn_zoneid = zoneid; 2641 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 2642 connp->conn_ixa->ixa_zoneid = zoneid; 2643 connp->conn_mlp_type = mlptSingle; 2644 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 2645 ASSERT(tcp->tcp_tcps == tcps); 2646 2647 /* 2648 * If the caller has the process-wide flag set, then default to MAC 2649 * exempt mode. This allows read-down to unlabeled hosts. 2650 */ 2651 if (getpflags(NET_MAC_AWARE, credp) != 0) 2652 connp->conn_mac_mode = CONN_MAC_AWARE; 2653 2654 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 2655 2656 if (issocket) { 2657 tcp->tcp_issocket = 1; 2658 } 2659 2660 connp->conn_rcvbuf = tcps->tcps_recv_hiwat; 2661 connp->conn_sndbuf = tcps->tcps_xmit_hiwat; 2662 connp->conn_sndlowat = tcps->tcps_xmit_lowat; 2663 connp->conn_so_type = SOCK_STREAM; 2664 connp->conn_wroff = connp->conn_ht_iphc_allocated + 2665 tcps->tcps_wroff_xtra; 2666 2667 SOCK_CONNID_INIT(tcp->tcp_connid); 2668 tcp->tcp_state = TCPS_IDLE; 2669 tcp_init_values(tcp); 2670 return (connp); 2671 } 2672 2673 static int 2674 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 2675 boolean_t isv6) 2676 { 2677 tcp_t *tcp = NULL; 2678 conn_t *connp = NULL; 2679 int err; 2680 vmem_t *minor_arena = NULL; 2681 dev_t conn_dev; 2682 boolean_t issocket; 2683 2684 if (q->q_ptr != NULL) 2685 return (0); 2686 2687 if (sflag == MODOPEN) 2688 return (EINVAL); 2689 2690 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 2691 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 2692 minor_arena = ip_minor_arena_la; 2693 } else { 2694 /* 2695 * Either minor numbers in the large arena were exhausted 2696 * or a non socket application is doing the open. 2697 * Try to allocate from the small arena. 2698 */ 2699 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 2700 return (EBUSY); 2701 } 2702 minor_arena = ip_minor_arena_sa; 2703 } 2704 2705 ASSERT(minor_arena != NULL); 2706 2707 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 2708 2709 if (flag & SO_FALLBACK) { 2710 /* 2711 * Non streams socket needs a stream to fallback to 2712 */ 2713 RD(q)->q_ptr = (void *)conn_dev; 2714 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 2715 WR(q)->q_ptr = (void *)minor_arena; 2716 qprocson(q); 2717 return (0); 2718 } else if (flag & SO_ACCEPTOR) { 2719 q->q_qinfo = &tcp_acceptor_rinit; 2720 /* 2721 * the conn_dev and minor_arena will be subsequently used by 2722 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out 2723 * the minor device number for this connection from the q_ptr. 2724 */ 2725 RD(q)->q_ptr = (void *)conn_dev; 2726 WR(q)->q_qinfo = &tcp_acceptor_winit; 2727 WR(q)->q_ptr = (void *)minor_arena; 2728 qprocson(q); 2729 return (0); 2730 } 2731 2732 issocket = flag & SO_SOCKSTR; 2733 connp = tcp_create_common(credp, isv6, issocket, &err); 2734 2735 if (connp == NULL) { 2736 inet_minor_free(minor_arena, conn_dev); 2737 q->q_ptr = WR(q)->q_ptr = NULL; 2738 return (err); 2739 } 2740 2741 connp->conn_rq = q; 2742 connp->conn_wq = WR(q); 2743 q->q_ptr = WR(q)->q_ptr = connp; 2744 2745 connp->conn_dev = conn_dev; 2746 connp->conn_minor_arena = minor_arena; 2747 2748 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 2749 ASSERT(WR(q)->q_qinfo == &tcp_winit); 2750 2751 tcp = connp->conn_tcp; 2752 2753 if (issocket) { 2754 WR(q)->q_qinfo = &tcp_sock_winit; 2755 } else { 2756 #ifdef _ILP32 2757 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 2758 #else 2759 tcp->tcp_acceptor_id = conn_dev; 2760 #endif /* _ILP32 */ 2761 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 2762 } 2763 2764 /* 2765 * Put the ref for TCP. Ref for IP was already put 2766 * by ipcl_conn_create. Also Make the conn_t globally 2767 * visible to walkers 2768 */ 2769 mutex_enter(&connp->conn_lock); 2770 CONN_INC_REF_LOCKED(connp); 2771 ASSERT(connp->conn_ref == 2); 2772 connp->conn_state_flags &= ~CONN_INCIPIENT; 2773 mutex_exit(&connp->conn_lock); 2774 2775 qprocson(q); 2776 return (0); 2777 } 2778 2779 /* 2780 * Build/update the tcp header template (in conn_ht_iphc) based on 2781 * conn_xmit_ipp. The headers include ip6_t, any extension 2782 * headers, and the maximum size tcp header (to avoid reallocation 2783 * on the fly for additional tcp options). 2784 * 2785 * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}. 2786 * Returns failure if can't allocate memory. 2787 */ 2788 int 2789 tcp_build_hdrs(tcp_t *tcp) 2790 { 2791 tcp_stack_t *tcps = tcp->tcp_tcps; 2792 conn_t *connp = tcp->tcp_connp; 2793 char buf[TCP_MAX_HDR_LENGTH]; 2794 uint_t buflen; 2795 uint_t ulplen = TCP_MIN_HEADER_LENGTH; 2796 uint_t extralen = TCP_MAX_TCP_OPTIONS_LENGTH; 2797 tcpha_t *tcpha; 2798 uint32_t cksum; 2799 int error; 2800 2801 /* 2802 * We might be called after the connection is set up, and we might 2803 * have TS options already in the TCP header. Thus we save any 2804 * existing tcp header. 2805 */ 2806 buflen = connp->conn_ht_ulp_len; 2807 if (buflen != 0) { 2808 bcopy(connp->conn_ht_ulp, buf, buflen); 2809 extralen -= buflen - ulplen; 2810 ulplen = buflen; 2811 } 2812 2813 /* Grab lock to satisfy ASSERT; TCP is serialized using squeue */ 2814 mutex_enter(&connp->conn_lock); 2815 error = conn_build_hdr_template(connp, ulplen, extralen, 2816 &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo); 2817 mutex_exit(&connp->conn_lock); 2818 if (error != 0) 2819 return (error); 2820 2821 /* 2822 * Any routing header/option has been massaged. The checksum difference 2823 * is stored in conn_sum for later use. 2824 */ 2825 tcpha = (tcpha_t *)connp->conn_ht_ulp; 2826 tcp->tcp_tcpha = tcpha; 2827 2828 /* restore any old tcp header */ 2829 if (buflen != 0) { 2830 bcopy(buf, connp->conn_ht_ulp, buflen); 2831 } else { 2832 tcpha->tha_sum = 0; 2833 tcpha->tha_urp = 0; 2834 tcpha->tha_ack = 0; 2835 tcpha->tha_offset_and_reserved = (5 << 4); 2836 tcpha->tha_lport = connp->conn_lport; 2837 tcpha->tha_fport = connp->conn_fport; 2838 } 2839 2840 /* 2841 * IP wants our header length in the checksum field to 2842 * allow it to perform a single pseudo-header+checksum 2843 * calculation on behalf of TCP. 2844 * Include the adjustment for a source route once IP_OPTIONS is set. 2845 */ 2846 cksum = sizeof (tcpha_t) + connp->conn_sum; 2847 cksum = (cksum >> 16) + (cksum & 0xFFFF); 2848 ASSERT(cksum < 0x10000); 2849 tcpha->tha_sum = htons(cksum); 2850 2851 if (connp->conn_ipversion == IPV4_VERSION) 2852 tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc; 2853 else 2854 tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc; 2855 2856 if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra > 2857 connp->conn_wroff) { 2858 connp->conn_wroff = connp->conn_ht_iphc_allocated + 2859 tcps->tcps_wroff_xtra; 2860 (void) proto_set_tx_wroff(connp->conn_rq, connp, 2861 connp->conn_wroff); 2862 } 2863 return (0); 2864 } 2865 2866 /* 2867 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 2868 * We do not allow the receive window to shrink. After setting rwnd, 2869 * set the flow control hiwat of the stream. 2870 * 2871 * This function is called in 2 cases: 2872 * 2873 * 1) Before data transfer begins, in tcp_input_listener() for accepting a 2874 * connection (passive open) and in tcp_input_data() for active connect. 2875 * This is called after tcp_mss_set() when the desired MSS value is known. 2876 * This makes sure that our window size is a mutiple of the other side's 2877 * MSS. 2878 * 2) Handling SO_RCVBUF option. 2879 * 2880 * It is ASSUMED that the requested size is a multiple of the current MSS. 2881 * 2882 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 2883 * user requests so. 2884 */ 2885 int 2886 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 2887 { 2888 uint32_t mss = tcp->tcp_mss; 2889 uint32_t old_max_rwnd; 2890 uint32_t max_transmittable_rwnd; 2891 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2892 tcp_stack_t *tcps = tcp->tcp_tcps; 2893 conn_t *connp = tcp->tcp_connp; 2894 2895 /* 2896 * Insist on a receive window that is at least 2897 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 2898 * funny TCP interactions of Nagle algorithm, SWS avoidance 2899 * and delayed acknowledgement. 2900 */ 2901 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 2902 2903 if (tcp->tcp_fused) { 2904 size_t sth_hiwat; 2905 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 2906 2907 ASSERT(peer_tcp != NULL); 2908 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 2909 if (!tcp_detached) { 2910 (void) proto_set_rx_hiwat(connp->conn_rq, connp, 2911 sth_hiwat); 2912 tcp_set_recv_threshold(tcp, sth_hiwat >> 3); 2913 } 2914 2915 /* Caller could have changed tcp_rwnd; update tha_win */ 2916 if (tcp->tcp_tcpha != NULL) { 2917 tcp->tcp_tcpha->tha_win = 2918 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 2919 } 2920 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 2921 tcp->tcp_cwnd_max = rwnd; 2922 2923 /* 2924 * In the fusion case, the maxpsz stream head value of 2925 * our peer is set according to its send buffer size 2926 * and our receive buffer size; since the latter may 2927 * have changed we need to update the peer's maxpsz. 2928 */ 2929 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 2930 return (sth_hiwat); 2931 } 2932 2933 if (tcp_detached) 2934 old_max_rwnd = tcp->tcp_rwnd; 2935 else 2936 old_max_rwnd = connp->conn_rcvbuf; 2937 2938 2939 /* 2940 * If window size info has already been exchanged, TCP should not 2941 * shrink the window. Shrinking window is doable if done carefully. 2942 * We may add that support later. But so far there is not a real 2943 * need to do that. 2944 */ 2945 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 2946 /* MSS may have changed, do a round up again. */ 2947 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 2948 } 2949 2950 /* 2951 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 2952 * can be applied even before the window scale option is decided. 2953 */ 2954 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 2955 if (rwnd > max_transmittable_rwnd) { 2956 rwnd = max_transmittable_rwnd - 2957 (max_transmittable_rwnd % mss); 2958 if (rwnd < mss) 2959 rwnd = max_transmittable_rwnd; 2960 /* 2961 * If we're over the limit we may have to back down tcp_rwnd. 2962 * The increment below won't work for us. So we set all three 2963 * here and the increment below will have no effect. 2964 */ 2965 tcp->tcp_rwnd = old_max_rwnd = rwnd; 2966 } 2967 if (tcp->tcp_localnet) { 2968 tcp->tcp_rack_abs_max = 2969 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 2970 } else { 2971 /* 2972 * For a remote host on a different subnet (through a router), 2973 * we ack every other packet to be conforming to RFC1122. 2974 * tcp_deferred_acks_max is default to 2. 2975 */ 2976 tcp->tcp_rack_abs_max = 2977 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 2978 } 2979 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 2980 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 2981 else 2982 tcp->tcp_rack_cur_max = 0; 2983 /* 2984 * Increment the current rwnd by the amount the maximum grew (we 2985 * can not overwrite it since we might be in the middle of a 2986 * connection.) 2987 */ 2988 tcp->tcp_rwnd += rwnd - old_max_rwnd; 2989 connp->conn_rcvbuf = rwnd; 2990 2991 /* Are we already connected? */ 2992 if (tcp->tcp_tcpha != NULL) { 2993 tcp->tcp_tcpha->tha_win = 2994 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 2995 } 2996 2997 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 2998 tcp->tcp_cwnd_max = rwnd; 2999 3000 if (tcp_detached) 3001 return (rwnd); 3002 3003 tcp_set_recv_threshold(tcp, rwnd >> 3); 3004 3005 (void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd); 3006 return (rwnd); 3007 } 3008 3009 int 3010 tcp_do_unbind(conn_t *connp) 3011 { 3012 tcp_t *tcp = connp->conn_tcp; 3013 3014 switch (tcp->tcp_state) { 3015 case TCPS_BOUND: 3016 case TCPS_LISTEN: 3017 break; 3018 default: 3019 return (-TOUTSTATE); 3020 } 3021 3022 /* 3023 * Need to clean up all the eagers since after the unbind, segments 3024 * will no longer be delivered to this listener stream. 3025 */ 3026 mutex_enter(&tcp->tcp_eager_lock); 3027 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3028 tcp_eager_cleanup(tcp, 0); 3029 } 3030 mutex_exit(&tcp->tcp_eager_lock); 3031 3032 /* Clean up the listener connection counter if necessary. */ 3033 if (tcp->tcp_listen_cnt != NULL) 3034 TCP_DECR_LISTEN_CNT(tcp); 3035 connp->conn_laddr_v6 = ipv6_all_zeros; 3036 connp->conn_saddr_v6 = ipv6_all_zeros; 3037 tcp_bind_hash_remove(tcp); 3038 tcp->tcp_state = TCPS_IDLE; 3039 3040 ip_unbind(connp); 3041 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 3042 3043 return (0); 3044 } 3045 3046 /* 3047 * This runs at the tail end of accept processing on the squeue of the 3048 * new connection. 3049 */ 3050 /* ARGSUSED */ 3051 void 3052 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 3053 { 3054 conn_t *connp = (conn_t *)arg; 3055 tcp_t *tcp = connp->conn_tcp; 3056 queue_t *q = connp->conn_rq; 3057 tcp_stack_t *tcps = tcp->tcp_tcps; 3058 /* socket options */ 3059 struct sock_proto_props sopp; 3060 3061 /* We should just receive a single mblk that fits a T_discon_ind */ 3062 ASSERT(mp->b_cont == NULL); 3063 3064 /* 3065 * Drop the eager's ref on the listener, that was placed when 3066 * this eager began life in tcp_input_listener. 3067 */ 3068 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 3069 if (IPCL_IS_NONSTR(connp)) { 3070 /* Safe to free conn_ind message */ 3071 freemsg(tcp->tcp_conn.tcp_eager_conn_ind); 3072 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 3073 } 3074 3075 tcp->tcp_detached = B_FALSE; 3076 3077 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 3078 /* 3079 * Someone blewoff the eager before we could finish 3080 * the accept. 3081 * 3082 * The only reason eager exists it because we put in 3083 * a ref on it when conn ind went up. We need to send 3084 * a disconnect indication up while the last reference 3085 * on the eager will be dropped by the squeue when we 3086 * return. 3087 */ 3088 ASSERT(tcp->tcp_listener == NULL); 3089 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 3090 if (IPCL_IS_NONSTR(connp)) { 3091 ASSERT(tcp->tcp_issocket); 3092 (*connp->conn_upcalls->su_disconnected)( 3093 connp->conn_upper_handle, tcp->tcp_connid, 3094 ECONNREFUSED); 3095 freemsg(mp); 3096 } else { 3097 struct T_discon_ind *tdi; 3098 3099 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 3100 /* 3101 * Let us reuse the incoming mblk to avoid 3102 * memory allocation failure problems. We know 3103 * that the size of the incoming mblk i.e. 3104 * stroptions is greater than sizeof 3105 * T_discon_ind. 3106 */ 3107 ASSERT(DB_REF(mp) == 1); 3108 ASSERT(MBLKSIZE(mp) >= 3109 sizeof (struct T_discon_ind)); 3110 3111 DB_TYPE(mp) = M_PROTO; 3112 ((union T_primitives *)mp->b_rptr)->type = 3113 T_DISCON_IND; 3114 tdi = (struct T_discon_ind *)mp->b_rptr; 3115 if (tcp->tcp_issocket) { 3116 tdi->DISCON_reason = ECONNREFUSED; 3117 tdi->SEQ_number = 0; 3118 } else { 3119 tdi->DISCON_reason = ENOPROTOOPT; 3120 tdi->SEQ_number = 3121 tcp->tcp_conn_req_seqnum; 3122 } 3123 mp->b_wptr = mp->b_rptr + 3124 sizeof (struct T_discon_ind); 3125 putnext(q, mp); 3126 } 3127 } 3128 tcp->tcp_hard_binding = B_FALSE; 3129 return; 3130 } 3131 3132 /* 3133 * This is the first time we run on the correct 3134 * queue after tcp_accept. So fix all the q parameters 3135 * here. 3136 */ 3137 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 3138 sopp.sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 3139 3140 sopp.sopp_rxhiwat = tcp->tcp_fused ? 3141 tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) : 3142 connp->conn_rcvbuf; 3143 3144 /* 3145 * Determine what write offset value to use depending on SACK and 3146 * whether the endpoint is fused or not. 3147 */ 3148 if (tcp->tcp_fused) { 3149 ASSERT(tcp->tcp_loopback); 3150 ASSERT(tcp->tcp_loopback_peer != NULL); 3151 /* 3152 * For fused tcp loopback, set the stream head's write 3153 * offset value to zero since we won't be needing any room 3154 * for TCP/IP headers. This would also improve performance 3155 * since it would reduce the amount of work done by kmem. 3156 * Non-fused tcp loopback case is handled separately below. 3157 */ 3158 sopp.sopp_wroff = 0; 3159 /* 3160 * Update the peer's transmit parameters according to 3161 * our recently calculated high water mark value. 3162 */ 3163 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 3164 } else if (tcp->tcp_snd_sack_ok) { 3165 sopp.sopp_wroff = connp->conn_ht_iphc_allocated + 3166 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 3167 } else { 3168 sopp.sopp_wroff = connp->conn_ht_iphc_len + 3169 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 3170 } 3171 3172 /* 3173 * If this is endpoint is handling SSL, then reserve extra 3174 * offset and space at the end. 3175 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 3176 * overriding the previous setting. The extra cost of signing and 3177 * encrypting multiple MSS-size records (12 of them with Ethernet), 3178 * instead of a single contiguous one by the stream head 3179 * largely outweighs the statistical reduction of ACKs, when 3180 * applicable. The peer will also save on decryption and verification 3181 * costs. 3182 */ 3183 if (tcp->tcp_kssl_ctx != NULL) { 3184 sopp.sopp_wroff += SSL3_WROFFSET; 3185 3186 sopp.sopp_flags |= SOCKOPT_TAIL; 3187 sopp.sopp_tail = SSL3_MAX_TAIL_LEN; 3188 3189 sopp.sopp_flags |= SOCKOPT_ZCOPY; 3190 sopp.sopp_zcopyflag = ZCVMUNSAFE; 3191 3192 sopp.sopp_maxblk = SSL3_MAX_RECORD_LEN; 3193 } 3194 3195 /* Send the options up */ 3196 if (IPCL_IS_NONSTR(connp)) { 3197 if (sopp.sopp_flags & SOCKOPT_TAIL) { 3198 ASSERT(tcp->tcp_kssl_ctx != NULL); 3199 ASSERT(sopp.sopp_flags & SOCKOPT_ZCOPY); 3200 } 3201 if (tcp->tcp_loopback) { 3202 sopp.sopp_flags |= SOCKOPT_LOOPBACK; 3203 sopp.sopp_loopback = B_TRUE; 3204 } 3205 (*connp->conn_upcalls->su_set_proto_props) 3206 (connp->conn_upper_handle, &sopp); 3207 freemsg(mp); 3208 } else { 3209 /* 3210 * Let us reuse the incoming mblk to avoid 3211 * memory allocation failure problems. We know 3212 * that the size of the incoming mblk is at least 3213 * stroptions 3214 */ 3215 struct stroptions *stropt; 3216 3217 ASSERT(DB_REF(mp) == 1); 3218 ASSERT(MBLKSIZE(mp) >= sizeof (struct stroptions)); 3219 3220 DB_TYPE(mp) = M_SETOPTS; 3221 stropt = (struct stroptions *)mp->b_rptr; 3222 mp->b_wptr = mp->b_rptr + sizeof (struct stroptions); 3223 stropt = (struct stroptions *)mp->b_rptr; 3224 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 3225 stropt->so_hiwat = sopp.sopp_rxhiwat; 3226 stropt->so_wroff = sopp.sopp_wroff; 3227 stropt->so_maxblk = sopp.sopp_maxblk; 3228 3229 if (sopp.sopp_flags & SOCKOPT_TAIL) { 3230 ASSERT(tcp->tcp_kssl_ctx != NULL); 3231 3232 stropt->so_flags |= SO_TAIL | SO_COPYOPT; 3233 stropt->so_tail = sopp.sopp_tail; 3234 stropt->so_copyopt = sopp.sopp_zcopyflag; 3235 } 3236 3237 /* Send the options up */ 3238 putnext(q, mp); 3239 } 3240 3241 /* 3242 * Pass up any data and/or a fin that has been received. 3243 * 3244 * Adjust receive window in case it had decreased 3245 * (because there is data <=> tcp_rcv_list != NULL) 3246 * while the connection was detached. Note that 3247 * in case the eager was flow-controlled, w/o this 3248 * code, the rwnd may never open up again! 3249 */ 3250 if (tcp->tcp_rcv_list != NULL) { 3251 if (IPCL_IS_NONSTR(connp)) { 3252 mblk_t *mp; 3253 int space_left; 3254 int error; 3255 boolean_t push = B_TRUE; 3256 3257 if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv) 3258 (connp->conn_upper_handle, NULL, 0, 0, &error, 3259 &push) >= 0) { 3260 tcp->tcp_rwnd = connp->conn_rcvbuf; 3261 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3262 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 3263 tcp_xmit_ctl(NULL, 3264 tcp, (tcp->tcp_swnd == 0) ? 3265 tcp->tcp_suna : tcp->tcp_snxt, 3266 tcp->tcp_rnxt, TH_ACK); 3267 } 3268 } 3269 while ((mp = tcp->tcp_rcv_list) != NULL) { 3270 push = B_TRUE; 3271 tcp->tcp_rcv_list = mp->b_next; 3272 mp->b_next = NULL; 3273 space_left = (*connp->conn_upcalls->su_recv) 3274 (connp->conn_upper_handle, mp, msgdsize(mp), 3275 0, &error, &push); 3276 if (space_left < 0) { 3277 /* 3278 * We should never be in middle of a 3279 * fallback, the squeue guarantees that. 3280 */ 3281 ASSERT(error != EOPNOTSUPP); 3282 } 3283 } 3284 tcp->tcp_rcv_last_head = NULL; 3285 tcp->tcp_rcv_last_tail = NULL; 3286 tcp->tcp_rcv_cnt = 0; 3287 } else { 3288 /* We drain directly in case of fused tcp loopback */ 3289 3290 if (!tcp->tcp_fused && canputnext(q)) { 3291 tcp->tcp_rwnd = connp->conn_rcvbuf; 3292 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3293 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 3294 tcp_xmit_ctl(NULL, 3295 tcp, (tcp->tcp_swnd == 0) ? 3296 tcp->tcp_suna : tcp->tcp_snxt, 3297 tcp->tcp_rnxt, TH_ACK); 3298 } 3299 } 3300 3301 (void) tcp_rcv_drain(tcp); 3302 } 3303 3304 /* 3305 * For fused tcp loopback, back-enable peer endpoint 3306 * if it's currently flow-controlled. 3307 */ 3308 if (tcp->tcp_fused) { 3309 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 3310 3311 ASSERT(peer_tcp != NULL); 3312 ASSERT(peer_tcp->tcp_fused); 3313 3314 mutex_enter(&peer_tcp->tcp_non_sq_lock); 3315 if (peer_tcp->tcp_flow_stopped) { 3316 tcp_clrqfull(peer_tcp); 3317 TCP_STAT(tcps, tcp_fusion_backenabled); 3318 } 3319 mutex_exit(&peer_tcp->tcp_non_sq_lock); 3320 } 3321 } 3322 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 3323 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 3324 tcp->tcp_ordrel_done = B_TRUE; 3325 if (IPCL_IS_NONSTR(connp)) { 3326 ASSERT(tcp->tcp_ordrel_mp == NULL); 3327 (*connp->conn_upcalls->su_opctl)( 3328 connp->conn_upper_handle, 3329 SOCK_OPCTL_SHUT_RECV, 0); 3330 } else { 3331 mp = tcp->tcp_ordrel_mp; 3332 tcp->tcp_ordrel_mp = NULL; 3333 putnext(q, mp); 3334 } 3335 } 3336 tcp->tcp_hard_binding = B_FALSE; 3337 3338 if (connp->conn_keepalive) { 3339 tcp->tcp_ka_last_intrvl = 0; 3340 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_timer, 3341 MSEC_TO_TICK(tcp->tcp_ka_interval)); 3342 } 3343 3344 /* 3345 * At this point, eager is fully established and will 3346 * have the following references - 3347 * 3348 * 2 references for connection to exist (1 for TCP and 1 for IP). 3349 * 1 reference for the squeue which will be dropped by the squeue as 3350 * soon as this function returns. 3351 * There will be 1 additonal reference for being in classifier 3352 * hash list provided something bad hasn't happened. 3353 */ 3354 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3355 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3356 } 3357 3358 /* 3359 * Common to TPI and sockfs accept code. 3360 */ 3361 /* ARGSUSED2 */ 3362 int 3363 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr) 3364 { 3365 tcp_t *listener, *eager; 3366 mblk_t *discon_mp; 3367 3368 listener = lconnp->conn_tcp; 3369 ASSERT(listener->tcp_state == TCPS_LISTEN); 3370 eager = econnp->conn_tcp; 3371 ASSERT(eager->tcp_listener != NULL); 3372 3373 /* 3374 * Pre allocate the discon_ind mblk also. tcp_accept_finish will 3375 * use it if something failed. 3376 */ 3377 discon_mp = allocb(MAX(sizeof (struct T_discon_ind), 3378 sizeof (struct stroptions)), BPRI_HI); 3379 3380 if (discon_mp == NULL) { 3381 return (-TPROTO); 3382 } 3383 eager->tcp_issocket = B_TRUE; 3384 3385 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 3386 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 3387 ASSERT(econnp->conn_netstack == 3388 listener->tcp_connp->conn_netstack); 3389 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 3390 3391 /* Put the ref for IP */ 3392 CONN_INC_REF(econnp); 3393 3394 /* 3395 * We should have minimum of 3 references on the conn 3396 * at this point. One each for TCP and IP and one for 3397 * the T_conn_ind that was sent up when the 3-way handshake 3398 * completed. In the normal case we would also have another 3399 * reference (making a total of 4) for the conn being in the 3400 * classifier hash list. However the eager could have received 3401 * an RST subsequently and tcp_closei_local could have removed 3402 * the eager from the classifier hash list, hence we can't 3403 * assert that reference. 3404 */ 3405 ASSERT(econnp->conn_ref >= 3); 3406 3407 mutex_enter(&listener->tcp_eager_lock); 3408 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 3409 3410 tcp_t *tail; 3411 tcp_t *tcp; 3412 mblk_t *mp1; 3413 3414 tcp = listener->tcp_eager_prev_q0; 3415 /* 3416 * listener->tcp_eager_prev_q0 points to the TAIL of the 3417 * deferred T_conn_ind queue. We need to get to the head 3418 * of the queue in order to send up T_conn_ind the same 3419 * order as how the 3WHS is completed. 3420 */ 3421 while (tcp != listener) { 3422 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 3423 !tcp->tcp_kssl_pending) 3424 break; 3425 else 3426 tcp = tcp->tcp_eager_prev_q0; 3427 } 3428 /* None of the pending eagers can be sent up now */ 3429 if (tcp == listener) 3430 goto no_more_eagers; 3431 3432 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 3433 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 3434 /* Move from q0 to q */ 3435 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 3436 listener->tcp_conn_req_cnt_q0--; 3437 listener->tcp_conn_req_cnt_q++; 3438 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 3439 tcp->tcp_eager_prev_q0; 3440 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 3441 tcp->tcp_eager_next_q0; 3442 tcp->tcp_eager_prev_q0 = NULL; 3443 tcp->tcp_eager_next_q0 = NULL; 3444 tcp->tcp_conn_def_q0 = B_FALSE; 3445 3446 /* Make sure the tcp isn't in the list of droppables */ 3447 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 3448 tcp->tcp_eager_prev_drop_q0 == NULL); 3449 3450 /* 3451 * Insert at end of the queue because sockfs sends 3452 * down T_CONN_RES in chronological order. Leaving 3453 * the older conn indications at front of the queue 3454 * helps reducing search time. 3455 */ 3456 tail = listener->tcp_eager_last_q; 3457 if (tail != NULL) { 3458 tail->tcp_eager_next_q = tcp; 3459 } else { 3460 listener->tcp_eager_next_q = tcp; 3461 } 3462 listener->tcp_eager_last_q = tcp; 3463 tcp->tcp_eager_next_q = NULL; 3464 3465 /* Need to get inside the listener perimeter */ 3466 CONN_INC_REF(listener->tcp_connp); 3467 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, 3468 tcp_send_pending, listener->tcp_connp, NULL, SQ_FILL, 3469 SQTAG_TCP_SEND_PENDING); 3470 } 3471 no_more_eagers: 3472 tcp_eager_unlink(eager); 3473 mutex_exit(&listener->tcp_eager_lock); 3474 3475 /* 3476 * At this point, the eager is detached from the listener 3477 * but we still have an extra refs on eager (apart from the 3478 * usual tcp references). The ref was placed in tcp_input_data 3479 * before sending the conn_ind in tcp_send_conn_ind. 3480 * The ref will be dropped in tcp_accept_finish(). 3481 */ 3482 SQUEUE_ENTER_ONE(econnp->conn_sqp, discon_mp, tcp_accept_finish, 3483 econnp, NULL, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); 3484 return (0); 3485 } 3486 3487 /* 3488 * Check the usability of ZEROCOPY. It's instead checking the flag set by IP. 3489 */ 3490 boolean_t 3491 tcp_zcopy_check(tcp_t *tcp) 3492 { 3493 conn_t *connp = tcp->tcp_connp; 3494 ip_xmit_attr_t *ixa = connp->conn_ixa; 3495 boolean_t zc_enabled = B_FALSE; 3496 tcp_stack_t *tcps = tcp->tcp_tcps; 3497 3498 if (do_tcpzcopy == 2) 3499 zc_enabled = B_TRUE; 3500 else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB)) 3501 zc_enabled = B_TRUE; 3502 3503 tcp->tcp_snd_zcopy_on = zc_enabled; 3504 if (!TCP_IS_DETACHED(tcp)) { 3505 if (zc_enabled) { 3506 ixa->ixa_flags |= IXAF_VERIFY_ZCOPY; 3507 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3508 ZCVMSAFE); 3509 TCP_STAT(tcps, tcp_zcopy_on); 3510 } else { 3511 ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY; 3512 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3513 ZCVMUNSAFE); 3514 TCP_STAT(tcps, tcp_zcopy_off); 3515 } 3516 } 3517 return (zc_enabled); 3518 } 3519 3520 /* 3521 * Backoff from a zero-copy message by copying data to a new allocated 3522 * message and freeing the original desballoca'ed segmapped message. 3523 * 3524 * This function is called by following two callers: 3525 * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free 3526 * the origial desballoca'ed message and notify sockfs. This is in re- 3527 * transmit state. 3528 * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need 3529 * to be copied to new message. 3530 */ 3531 mblk_t * 3532 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist) 3533 { 3534 mblk_t *nbp; 3535 mblk_t *head = NULL; 3536 mblk_t *tail = NULL; 3537 tcp_stack_t *tcps = tcp->tcp_tcps; 3538 3539 ASSERT(bp != NULL); 3540 while (bp != NULL) { 3541 if (IS_VMLOANED_MBLK(bp)) { 3542 TCP_STAT(tcps, tcp_zcopy_backoff); 3543 if ((nbp = copyb(bp)) == NULL) { 3544 tcp->tcp_xmit_zc_clean = B_FALSE; 3545 if (tail != NULL) 3546 tail->b_cont = bp; 3547 return ((head == NULL) ? bp : head); 3548 } 3549 3550 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 3551 if (fix_xmitlist) 3552 tcp_zcopy_notify(tcp); 3553 else 3554 nbp->b_datap->db_struioflag |= 3555 STRUIO_ZCNOTIFY; 3556 } 3557 nbp->b_cont = bp->b_cont; 3558 3559 /* 3560 * Copy saved information and adjust tcp_xmit_tail 3561 * if needed. 3562 */ 3563 if (fix_xmitlist) { 3564 nbp->b_prev = bp->b_prev; 3565 nbp->b_next = bp->b_next; 3566 3567 if (tcp->tcp_xmit_tail == bp) 3568 tcp->tcp_xmit_tail = nbp; 3569 } 3570 3571 /* Free the original message. */ 3572 bp->b_prev = NULL; 3573 bp->b_next = NULL; 3574 freeb(bp); 3575 3576 bp = nbp; 3577 } 3578 3579 if (head == NULL) { 3580 head = bp; 3581 } 3582 if (tail == NULL) { 3583 tail = bp; 3584 } else { 3585 tail->b_cont = bp; 3586 tail = bp; 3587 } 3588 3589 /* Move forward. */ 3590 bp = bp->b_cont; 3591 } 3592 3593 if (fix_xmitlist) { 3594 tcp->tcp_xmit_last = tail; 3595 tcp->tcp_xmit_zc_clean = B_TRUE; 3596 } 3597 3598 return (head); 3599 } 3600 3601 void 3602 tcp_zcopy_notify(tcp_t *tcp) 3603 { 3604 struct stdata *stp; 3605 conn_t *connp; 3606 3607 if (tcp->tcp_detached) 3608 return; 3609 connp = tcp->tcp_connp; 3610 if (IPCL_IS_NONSTR(connp)) { 3611 (*connp->conn_upcalls->su_zcopy_notify) 3612 (connp->conn_upper_handle); 3613 return; 3614 } 3615 stp = STREAM(connp->conn_rq); 3616 mutex_enter(&stp->sd_lock); 3617 stp->sd_flag |= STZCNOTIFY; 3618 cv_broadcast(&stp->sd_zcopy_wait); 3619 mutex_exit(&stp->sd_lock); 3620 } 3621 3622 /* 3623 * Update the TCP connection according to change of LSO capability. 3624 */ 3625 static void 3626 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa) 3627 { 3628 /* 3629 * We check against IPv4 header length to preserve the old behavior 3630 * of only enabling LSO when there are no IP options. 3631 * But this restriction might not be necessary at all. Before removing 3632 * it, need to verify how LSO is handled for source routing case, with 3633 * which IP does software checksum. 3634 * 3635 * For IPv6, whenever any extension header is needed, LSO is supressed. 3636 */ 3637 if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ? 3638 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN)) 3639 return; 3640 3641 /* 3642 * Either the LSO capability newly became usable, or it has changed. 3643 */ 3644 if (ixa->ixa_flags & IXAF_LSO_CAPAB) { 3645 ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab; 3646 3647 ASSERT(lsoc->ill_lso_max > 0); 3648 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max); 3649 3650 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 3651 boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max); 3652 3653 /* 3654 * If LSO to be enabled, notify the STREAM header with larger 3655 * data block. 3656 */ 3657 if (!tcp->tcp_lso) 3658 tcp->tcp_maxpsz_multiplier = 0; 3659 3660 tcp->tcp_lso = B_TRUE; 3661 TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled); 3662 } else { /* LSO capability is not usable any more. */ 3663 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 3664 boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max); 3665 3666 /* 3667 * If LSO to be disabled, notify the STREAM header with smaller 3668 * data block. And need to restore fragsize to PMTU. 3669 */ 3670 if (tcp->tcp_lso) { 3671 tcp->tcp_maxpsz_multiplier = 3672 tcp->tcp_tcps->tcps_maxpsz_multiplier; 3673 ixa->ixa_fragsize = ixa->ixa_pmtu; 3674 tcp->tcp_lso = B_FALSE; 3675 TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled); 3676 } 3677 } 3678 3679 (void) tcp_maxpsz_set(tcp, B_TRUE); 3680 } 3681 3682 /* 3683 * Update the TCP connection according to change of ZEROCOPY capability. 3684 */ 3685 static void 3686 tcp_update_zcopy(tcp_t *tcp) 3687 { 3688 conn_t *connp = tcp->tcp_connp; 3689 tcp_stack_t *tcps = tcp->tcp_tcps; 3690 3691 if (tcp->tcp_snd_zcopy_on) { 3692 tcp->tcp_snd_zcopy_on = B_FALSE; 3693 if (!TCP_IS_DETACHED(tcp)) { 3694 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3695 ZCVMUNSAFE); 3696 TCP_STAT(tcps, tcp_zcopy_off); 3697 } 3698 } else { 3699 tcp->tcp_snd_zcopy_on = B_TRUE; 3700 if (!TCP_IS_DETACHED(tcp)) { 3701 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3702 ZCVMSAFE); 3703 TCP_STAT(tcps, tcp_zcopy_on); 3704 } 3705 } 3706 } 3707 3708 /* 3709 * Notify function registered with ip_xmit_attr_t. It's called in the squeue 3710 * so it's safe to update the TCP connection. 3711 */ 3712 /* ARGSUSED1 */ 3713 static void 3714 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype, 3715 ixa_notify_arg_t narg) 3716 { 3717 tcp_t *tcp = (tcp_t *)arg; 3718 conn_t *connp = tcp->tcp_connp; 3719 3720 switch (ntype) { 3721 case IXAN_LSO: 3722 tcp_update_lso(tcp, connp->conn_ixa); 3723 break; 3724 case IXAN_PMTU: 3725 tcp_update_pmtu(tcp, B_FALSE); 3726 break; 3727 case IXAN_ZCOPY: 3728 tcp_update_zcopy(tcp); 3729 break; 3730 default: 3731 break; 3732 } 3733 } 3734 3735 /* 3736 * The TCP write service routine should never be called... 3737 */ 3738 /* ARGSUSED */ 3739 static void 3740 tcp_wsrv(queue_t *q) 3741 { 3742 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 3743 3744 TCP_STAT(tcps, tcp_wsrv_called); 3745 } 3746 3747 /* 3748 * Hash list lookup routine for tcp_t structures. 3749 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 3750 */ 3751 tcp_t * 3752 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 3753 { 3754 tf_t *tf; 3755 tcp_t *tcp; 3756 3757 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 3758 mutex_enter(&tf->tf_lock); 3759 for (tcp = tf->tf_tcp; tcp != NULL; 3760 tcp = tcp->tcp_acceptor_hash) { 3761 if (tcp->tcp_acceptor_id == id) { 3762 CONN_INC_REF(tcp->tcp_connp); 3763 mutex_exit(&tf->tf_lock); 3764 return (tcp); 3765 } 3766 } 3767 mutex_exit(&tf->tf_lock); 3768 return (NULL); 3769 } 3770 3771 /* 3772 * Hash list insertion routine for tcp_t structures. 3773 */ 3774 void 3775 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 3776 { 3777 tf_t *tf; 3778 tcp_t **tcpp; 3779 tcp_t *tcpnext; 3780 tcp_stack_t *tcps = tcp->tcp_tcps; 3781 3782 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 3783 3784 if (tcp->tcp_ptpahn != NULL) 3785 tcp_acceptor_hash_remove(tcp); 3786 tcpp = &tf->tf_tcp; 3787 mutex_enter(&tf->tf_lock); 3788 tcpnext = tcpp[0]; 3789 if (tcpnext) 3790 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 3791 tcp->tcp_acceptor_hash = tcpnext; 3792 tcp->tcp_ptpahn = tcpp; 3793 tcpp[0] = tcp; 3794 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 3795 mutex_exit(&tf->tf_lock); 3796 } 3797 3798 /* 3799 * Hash list removal routine for tcp_t structures. 3800 */ 3801 void 3802 tcp_acceptor_hash_remove(tcp_t *tcp) 3803 { 3804 tcp_t *tcpnext; 3805 kmutex_t *lockp; 3806 3807 /* 3808 * Extract the lock pointer in case there are concurrent 3809 * hash_remove's for this instance. 3810 */ 3811 lockp = tcp->tcp_acceptor_lockp; 3812 3813 if (tcp->tcp_ptpahn == NULL) 3814 return; 3815 3816 ASSERT(lockp != NULL); 3817 mutex_enter(lockp); 3818 if (tcp->tcp_ptpahn) { 3819 tcpnext = tcp->tcp_acceptor_hash; 3820 if (tcpnext) { 3821 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 3822 tcp->tcp_acceptor_hash = NULL; 3823 } 3824 *tcp->tcp_ptpahn = tcpnext; 3825 tcp->tcp_ptpahn = NULL; 3826 } 3827 mutex_exit(lockp); 3828 tcp->tcp_acceptor_lockp = NULL; 3829 } 3830 3831 /* 3832 * Type three generator adapted from the random() function in 4.4 BSD: 3833 */ 3834 3835 /* 3836 * Copyright (c) 1983, 1993 3837 * The Regents of the University of California. All rights reserved. 3838 * 3839 * Redistribution and use in source and binary forms, with or without 3840 * modification, are permitted provided that the following conditions 3841 * are met: 3842 * 1. Redistributions of source code must retain the above copyright 3843 * notice, this list of conditions and the following disclaimer. 3844 * 2. Redistributions in binary form must reproduce the above copyright 3845 * notice, this list of conditions and the following disclaimer in the 3846 * documentation and/or other materials provided with the distribution. 3847 * 3. All advertising materials mentioning features or use of this software 3848 * must display the following acknowledgement: 3849 * This product includes software developed by the University of 3850 * California, Berkeley and its contributors. 3851 * 4. Neither the name of the University nor the names of its contributors 3852 * may be used to endorse or promote products derived from this software 3853 * without specific prior written permission. 3854 * 3855 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 3856 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 3857 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 3858 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 3859 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 3860 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 3861 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 3862 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 3863 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 3864 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 3865 * SUCH DAMAGE. 3866 */ 3867 3868 /* Type 3 -- x**31 + x**3 + 1 */ 3869 #define DEG_3 31 3870 #define SEP_3 3 3871 3872 3873 /* Protected by tcp_random_lock */ 3874 static int tcp_randtbl[DEG_3 + 1]; 3875 3876 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 3877 static int *tcp_random_rptr = &tcp_randtbl[1]; 3878 3879 static int *tcp_random_state = &tcp_randtbl[1]; 3880 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 3881 3882 kmutex_t tcp_random_lock; 3883 3884 void 3885 tcp_random_init(void) 3886 { 3887 int i; 3888 hrtime_t hrt; 3889 time_t wallclock; 3890 uint64_t result; 3891 3892 /* 3893 * Use high-res timer and current time for seed. Gethrtime() returns 3894 * a longlong, which may contain resolution down to nanoseconds. 3895 * The current time will either be a 32-bit or a 64-bit quantity. 3896 * XOR the two together in a 64-bit result variable. 3897 * Convert the result to a 32-bit value by multiplying the high-order 3898 * 32-bits by the low-order 32-bits. 3899 */ 3900 3901 hrt = gethrtime(); 3902 (void) drv_getparm(TIME, &wallclock); 3903 result = (uint64_t)wallclock ^ (uint64_t)hrt; 3904 mutex_enter(&tcp_random_lock); 3905 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 3906 (result & 0xffffffff); 3907 3908 for (i = 1; i < DEG_3; i++) 3909 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 3910 + 12345; 3911 tcp_random_fptr = &tcp_random_state[SEP_3]; 3912 tcp_random_rptr = &tcp_random_state[0]; 3913 mutex_exit(&tcp_random_lock); 3914 for (i = 0; i < 10 * DEG_3; i++) 3915 (void) tcp_random(); 3916 } 3917 3918 /* 3919 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 3920 * This range is selected to be approximately centered on TCP_ISS / 2, 3921 * and easy to compute. We get this value by generating a 32-bit random 3922 * number, selecting out the high-order 17 bits, and then adding one so 3923 * that we never return zero. 3924 */ 3925 int 3926 tcp_random(void) 3927 { 3928 int i; 3929 3930 mutex_enter(&tcp_random_lock); 3931 *tcp_random_fptr += *tcp_random_rptr; 3932 3933 /* 3934 * The high-order bits are more random than the low-order bits, 3935 * so we select out the high-order 17 bits and add one so that 3936 * we never return zero. 3937 */ 3938 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 3939 if (++tcp_random_fptr >= tcp_random_end_ptr) { 3940 tcp_random_fptr = tcp_random_state; 3941 ++tcp_random_rptr; 3942 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 3943 tcp_random_rptr = tcp_random_state; 3944 3945 mutex_exit(&tcp_random_lock); 3946 return (i); 3947 } 3948 3949 /* 3950 * Split this function out so that if the secret changes, I'm okay. 3951 * 3952 * Initialize the tcp_iss_cookie and tcp_iss_key. 3953 */ 3954 3955 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 3956 3957 void 3958 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 3959 { 3960 struct { 3961 int32_t current_time; 3962 uint32_t randnum; 3963 uint16_t pad; 3964 uint8_t ether[6]; 3965 uint8_t passwd[PASSWD_SIZE]; 3966 } tcp_iss_cookie; 3967 time_t t; 3968 3969 /* 3970 * Start with the current absolute time. 3971 */ 3972 (void) drv_getparm(TIME, &t); 3973 tcp_iss_cookie.current_time = t; 3974 3975 /* 3976 * XXX - Need a more random number per RFC 1750, not this crap. 3977 * OTOH, if what follows is pretty random, then I'm in better shape. 3978 */ 3979 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 3980 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 3981 3982 /* 3983 * The cpu_type_info is pretty non-random. Ugggh. It does serve 3984 * as a good template. 3985 */ 3986 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 3987 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 3988 3989 /* 3990 * The pass-phrase. Normally this is supplied by user-called NDD. 3991 */ 3992 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 3993 3994 /* 3995 * See 4010593 if this section becomes a problem again, 3996 * but the local ethernet address is useful here. 3997 */ 3998 (void) localetheraddr(NULL, 3999 (struct ether_addr *)&tcp_iss_cookie.ether); 4000 4001 /* 4002 * Hash 'em all together. The MD5Final is called per-connection. 4003 */ 4004 mutex_enter(&tcps->tcps_iss_key_lock); 4005 MD5Init(&tcps->tcps_iss_key); 4006 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 4007 sizeof (tcp_iss_cookie)); 4008 mutex_exit(&tcps->tcps_iss_key_lock); 4009 } 4010 4011 /* ARGSUSED */ 4012 static int 4013 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 4014 { 4015 bzero(buf, sizeof (tcp_sack_info_t)); 4016 return (0); 4017 } 4018 4019 /* 4020 * Called by IP when IP is loaded into the kernel 4021 */ 4022 void 4023 tcp_ddi_g_init(void) 4024 { 4025 tcp_timercache = kmem_cache_create("tcp_timercache", 4026 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 4027 NULL, NULL, NULL, NULL, NULL, 0); 4028 4029 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 4030 sizeof (tcp_sack_info_t), 0, 4031 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 4032 4033 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 4034 4035 /* Initialize the random number generator */ 4036 tcp_random_init(); 4037 4038 /* A single callback independently of how many netstacks we have */ 4039 ip_squeue_init(tcp_squeue_add); 4040 4041 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 4042 4043 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 4044 4045 /* 4046 * We want to be informed each time a stack is created or 4047 * destroyed in the kernel, so we can maintain the 4048 * set of tcp_stack_t's. 4049 */ 4050 netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini); 4051 4052 mutex_enter(&cpu_lock); 4053 register_cpu_setup_func(tcp_cpu_update, NULL); 4054 mutex_exit(&cpu_lock); 4055 } 4056 4057 4058 #define INET_NAME "ip" 4059 4060 /* 4061 * Initialize the TCP stack instance. 4062 */ 4063 static void * 4064 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 4065 { 4066 tcp_stack_t *tcps; 4067 int i; 4068 int error = 0; 4069 major_t major; 4070 size_t arrsz; 4071 4072 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 4073 tcps->tcps_netstack = ns; 4074 4075 /* Initialize locks */ 4076 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 4077 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 4078 4079 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 4080 tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1; 4081 tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2; 4082 tcps->tcps_min_anonpriv_port = 512; 4083 4084 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 4085 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 4086 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 4087 TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP); 4088 4089 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 4090 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 4091 MUTEX_DEFAULT, NULL); 4092 } 4093 4094 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 4095 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 4096 MUTEX_DEFAULT, NULL); 4097 } 4098 4099 /* TCP's IPsec code calls the packet dropper. */ 4100 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 4101 4102 arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t); 4103 tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, 4104 KM_SLEEP); 4105 bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz); 4106 4107 /* 4108 * Note: To really walk the device tree you need the devinfo 4109 * pointer to your device which is only available after probe/attach. 4110 * The following is safe only because it uses ddi_root_node() 4111 */ 4112 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 4113 tcp_opt_obj.odb_opt_arr_cnt); 4114 4115 /* 4116 * Initialize RFC 1948 secret values. This will probably be reset once 4117 * by the boot scripts. 4118 * 4119 * Use NULL name, as the name is caught by the new lockstats. 4120 * 4121 * Initialize with some random, non-guessable string, like the global 4122 * T_INFO_ACK. 4123 */ 4124 4125 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 4126 sizeof (tcp_g_t_info_ack), tcps); 4127 4128 tcps->tcps_kstat = tcp_kstat2_init(stackid); 4129 tcps->tcps_mibkp = tcp_kstat_init(stackid); 4130 4131 major = mod_name_to_major(INET_NAME); 4132 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 4133 ASSERT(error == 0); 4134 tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL); 4135 ASSERT(tcps->tcps_ixa_cleanup_mp != NULL); 4136 cv_init(&tcps->tcps_ixa_cleanup_cv, NULL, CV_DEFAULT, NULL); 4137 mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL); 4138 4139 mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 4140 tcps->tcps_reclaim = B_FALSE; 4141 tcps->tcps_reclaim_tid = 0; 4142 tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max; 4143 4144 /* 4145 * ncpus is the current number of CPUs, which can be bigger than 4146 * boot_ncpus. But we don't want to use ncpus to allocate all the 4147 * tcp_stats_cpu_t at system boot up time since it will be 1. While 4148 * we handle adding CPU in tcp_cpu_update(), it will be slow if 4149 * there are many CPUs as we will be adding them 1 by 1. 4150 * 4151 * Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers 4152 * are not freed until the stack is going away. So there is no need 4153 * to grab a lock to access the per CPU tcps_sc[x] pointer. 4154 */ 4155 tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus); 4156 tcps->tcps_sc = kmem_zalloc(max_ncpus * sizeof (tcp_stats_cpu_t *), 4157 KM_SLEEP); 4158 for (i = 0; i < tcps->tcps_sc_cnt; i++) { 4159 tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t), 4160 KM_SLEEP); 4161 } 4162 4163 mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL); 4164 list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t), 4165 offsetof(tcp_listener_t, tl_link)); 4166 4167 return (tcps); 4168 } 4169 4170 /* 4171 * Called when the IP module is about to be unloaded. 4172 */ 4173 void 4174 tcp_ddi_g_destroy(void) 4175 { 4176 mutex_enter(&cpu_lock); 4177 unregister_cpu_setup_func(tcp_cpu_update, NULL); 4178 mutex_exit(&cpu_lock); 4179 4180 tcp_g_kstat_fini(tcp_g_kstat); 4181 tcp_g_kstat = NULL; 4182 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 4183 4184 mutex_destroy(&tcp_random_lock); 4185 4186 kmem_cache_destroy(tcp_timercache); 4187 kmem_cache_destroy(tcp_sack_info_cache); 4188 4189 netstack_unregister(NS_TCP); 4190 } 4191 4192 /* 4193 * Free the TCP stack instance. 4194 */ 4195 static void 4196 tcp_stack_fini(netstackid_t stackid, void *arg) 4197 { 4198 tcp_stack_t *tcps = (tcp_stack_t *)arg; 4199 int i; 4200 4201 freeb(tcps->tcps_ixa_cleanup_mp); 4202 tcps->tcps_ixa_cleanup_mp = NULL; 4203 cv_destroy(&tcps->tcps_ixa_cleanup_cv); 4204 mutex_destroy(&tcps->tcps_ixa_cleanup_lock); 4205 4206 /* 4207 * Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart 4208 * the timer. 4209 */ 4210 mutex_enter(&tcps->tcps_reclaim_lock); 4211 tcps->tcps_reclaim = B_FALSE; 4212 mutex_exit(&tcps->tcps_reclaim_lock); 4213 if (tcps->tcps_reclaim_tid != 0) 4214 (void) untimeout(tcps->tcps_reclaim_tid); 4215 mutex_destroy(&tcps->tcps_reclaim_lock); 4216 4217 tcp_listener_conf_cleanup(tcps); 4218 4219 for (i = 0; i < tcps->tcps_sc_cnt; i++) 4220 kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t)); 4221 kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *)); 4222 4223 kmem_free(tcps->tcps_propinfo_tbl, 4224 tcp_propinfo_count * sizeof (mod_prop_info_t)); 4225 tcps->tcps_propinfo_tbl = NULL; 4226 4227 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 4228 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 4229 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 4230 } 4231 4232 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 4233 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 4234 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 4235 } 4236 4237 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 4238 tcps->tcps_bind_fanout = NULL; 4239 4240 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * 4241 TCP_ACCEPTOR_FANOUT_SIZE); 4242 tcps->tcps_acceptor_fanout = NULL; 4243 4244 mutex_destroy(&tcps->tcps_iss_key_lock); 4245 mutex_destroy(&tcps->tcps_epriv_port_lock); 4246 4247 ip_drop_unregister(&tcps->tcps_dropper); 4248 4249 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 4250 tcps->tcps_kstat = NULL; 4251 4252 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 4253 tcps->tcps_mibkp = NULL; 4254 4255 ldi_ident_release(tcps->tcps_ldi_ident); 4256 kmem_free(tcps, sizeof (*tcps)); 4257 } 4258 4259 /* 4260 * Generate ISS, taking into account NDD changes may happen halfway through. 4261 * (If the iss is not zero, set it.) 4262 */ 4263 4264 static void 4265 tcp_iss_init(tcp_t *tcp) 4266 { 4267 MD5_CTX context; 4268 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 4269 uint32_t answer[4]; 4270 tcp_stack_t *tcps = tcp->tcp_tcps; 4271 conn_t *connp = tcp->tcp_connp; 4272 4273 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 4274 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 4275 switch (tcps->tcps_strong_iss) { 4276 case 2: 4277 mutex_enter(&tcps->tcps_iss_key_lock); 4278 context = tcps->tcps_iss_key; 4279 mutex_exit(&tcps->tcps_iss_key_lock); 4280 arg.ports = connp->conn_ports; 4281 arg.src = connp->conn_laddr_v6; 4282 arg.dst = connp->conn_faddr_v6; 4283 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 4284 MD5Final((uchar_t *)answer, &context); 4285 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 4286 /* 4287 * Now that we've hashed into a unique per-connection sequence 4288 * space, add a random increment per strong_iss == 1. So I 4289 * guess we'll have to... 4290 */ 4291 /* FALLTHRU */ 4292 case 1: 4293 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 4294 break; 4295 default: 4296 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 4297 break; 4298 } 4299 tcp->tcp_valid_bits = TCP_ISS_VALID; 4300 tcp->tcp_fss = tcp->tcp_iss - 1; 4301 tcp->tcp_suna = tcp->tcp_iss; 4302 tcp->tcp_snxt = tcp->tcp_iss + 1; 4303 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 4304 tcp->tcp_csuna = tcp->tcp_snxt; 4305 } 4306 4307 /* 4308 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 4309 * on the specified backing STREAMS q. Note, the caller may make the 4310 * decision to call based on the tcp_t.tcp_flow_stopped value which 4311 * when check outside the q's lock is only an advisory check ... 4312 */ 4313 void 4314 tcp_setqfull(tcp_t *tcp) 4315 { 4316 tcp_stack_t *tcps = tcp->tcp_tcps; 4317 conn_t *connp = tcp->tcp_connp; 4318 4319 if (tcp->tcp_closed) 4320 return; 4321 4322 conn_setqfull(connp, &tcp->tcp_flow_stopped); 4323 if (tcp->tcp_flow_stopped) 4324 TCP_STAT(tcps, tcp_flwctl_on); 4325 } 4326 4327 void 4328 tcp_clrqfull(tcp_t *tcp) 4329 { 4330 conn_t *connp = tcp->tcp_connp; 4331 4332 if (tcp->tcp_closed) 4333 return; 4334 conn_clrqfull(connp, &tcp->tcp_flow_stopped); 4335 } 4336 4337 static int 4338 tcp_squeue_switch(int val) 4339 { 4340 int rval = SQ_FILL; 4341 4342 switch (val) { 4343 case 1: 4344 rval = SQ_NODRAIN; 4345 break; 4346 case 2: 4347 rval = SQ_PROCESS; 4348 break; 4349 default: 4350 break; 4351 } 4352 return (rval); 4353 } 4354 4355 /* 4356 * This is called once for each squeue - globally for all stack 4357 * instances. 4358 */ 4359 static void 4360 tcp_squeue_add(squeue_t *sqp) 4361 { 4362 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 4363 sizeof (tcp_squeue_priv_t), KM_SLEEP); 4364 4365 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 4366 /* Kick start the periodic TIME WAIT collector. */ 4367 tcp_time_wait->tcp_time_wait_tid = 4368 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 4369 (hrtime_t)10 * NANOSEC, CALLOUT_TCP_RESOLUTION, 4370 CALLOUT_FLAG_ROUNDUP); 4371 if (tcp_free_list_max_cnt == 0) { 4372 int tcp_ncpus = ((boot_max_ncpus == -1) ? 4373 max_ncpus : boot_max_ncpus); 4374 4375 /* 4376 * Limit number of entries to 1% of availble memory / tcp_ncpus 4377 */ 4378 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 4379 (tcp_ncpus * sizeof (tcp_t) * 100); 4380 } 4381 tcp_time_wait->tcp_free_list_cnt = 0; 4382 } 4383 /* 4384 * Return unix error is tli error is TSYSERR, otherwise return a negative 4385 * tli error. 4386 */ 4387 int 4388 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 4389 boolean_t bind_to_req_port_only) 4390 { 4391 int error; 4392 tcp_t *tcp = connp->conn_tcp; 4393 4394 if (tcp->tcp_state >= TCPS_BOUND) { 4395 if (connp->conn_debug) { 4396 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 4397 "tcp_bind: bad state, %d", tcp->tcp_state); 4398 } 4399 return (-TOUTSTATE); 4400 } 4401 4402 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 4403 if (error != 0) 4404 return (error); 4405 4406 ASSERT(tcp->tcp_state == TCPS_BOUND); 4407 tcp->tcp_conn_req_max = 0; 4408 return (0); 4409 } 4410 4411 /* 4412 * If the return value from this function is positive, it's a UNIX error. 4413 * Otherwise, if it's negative, then the absolute value is a TLI error. 4414 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 4415 */ 4416 int 4417 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 4418 cred_t *cr, pid_t pid) 4419 { 4420 tcp_t *tcp = connp->conn_tcp; 4421 sin_t *sin = (sin_t *)sa; 4422 sin6_t *sin6 = (sin6_t *)sa; 4423 ipaddr_t *dstaddrp; 4424 in_port_t dstport; 4425 uint_t srcid; 4426 int error; 4427 uint32_t mss; 4428 mblk_t *syn_mp; 4429 tcp_stack_t *tcps = tcp->tcp_tcps; 4430 int32_t oldstate; 4431 ip_xmit_attr_t *ixa = connp->conn_ixa; 4432 4433 oldstate = tcp->tcp_state; 4434 4435 switch (len) { 4436 default: 4437 /* 4438 * Should never happen 4439 */ 4440 return (EINVAL); 4441 4442 case sizeof (sin_t): 4443 sin = (sin_t *)sa; 4444 if (sin->sin_port == 0) { 4445 return (-TBADADDR); 4446 } 4447 if (connp->conn_ipv6_v6only) { 4448 return (EAFNOSUPPORT); 4449 } 4450 break; 4451 4452 case sizeof (sin6_t): 4453 sin6 = (sin6_t *)sa; 4454 if (sin6->sin6_port == 0) { 4455 return (-TBADADDR); 4456 } 4457 break; 4458 } 4459 /* 4460 * If we're connecting to an IPv4-mapped IPv6 address, we need to 4461 * make sure that the conn_ipversion is IPV4_VERSION. We 4462 * need to this before we call tcp_bindi() so that the port lookup 4463 * code will look for ports in the correct port space (IPv4 and 4464 * IPv6 have separate port spaces). 4465 */ 4466 if (connp->conn_family == AF_INET6 && 4467 connp->conn_ipversion == IPV6_VERSION && 4468 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 4469 if (connp->conn_ipv6_v6only) 4470 return (EADDRNOTAVAIL); 4471 4472 connp->conn_ipversion = IPV4_VERSION; 4473 } 4474 4475 switch (tcp->tcp_state) { 4476 case TCPS_LISTEN: 4477 /* 4478 * Listening sockets are not allowed to issue connect(). 4479 */ 4480 if (IPCL_IS_NONSTR(connp)) 4481 return (EOPNOTSUPP); 4482 /* FALLTHRU */ 4483 case TCPS_IDLE: 4484 /* 4485 * We support quick connect, refer to comments in 4486 * tcp_connect_*() 4487 */ 4488 /* FALLTHRU */ 4489 case TCPS_BOUND: 4490 break; 4491 default: 4492 return (-TOUTSTATE); 4493 } 4494 4495 /* 4496 * We update our cred/cpid based on the caller of connect 4497 */ 4498 if (connp->conn_cred != cr) { 4499 crhold(cr); 4500 crfree(connp->conn_cred); 4501 connp->conn_cred = cr; 4502 } 4503 connp->conn_cpid = pid; 4504 4505 /* Cache things in the ixa without any refhold */ 4506 ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); 4507 ixa->ixa_cred = cr; 4508 ixa->ixa_cpid = pid; 4509 if (is_system_labeled()) { 4510 /* We need to restart with a label based on the cred */ 4511 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred); 4512 } 4513 4514 if (connp->conn_family == AF_INET6) { 4515 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 4516 error = tcp_connect_ipv6(tcp, &sin6->sin6_addr, 4517 sin6->sin6_port, sin6->sin6_flowinfo, 4518 sin6->__sin6_src_id, sin6->sin6_scope_id); 4519 } else { 4520 /* 4521 * Destination adress is mapped IPv6 address. 4522 * Source bound address should be unspecified or 4523 * IPv6 mapped address as well. 4524 */ 4525 if (!IN6_IS_ADDR_UNSPECIFIED( 4526 &connp->conn_bound_addr_v6) && 4527 !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) { 4528 return (EADDRNOTAVAIL); 4529 } 4530 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 4531 dstport = sin6->sin6_port; 4532 srcid = sin6->__sin6_src_id; 4533 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, 4534 srcid); 4535 } 4536 } else { 4537 dstaddrp = &sin->sin_addr.s_addr; 4538 dstport = sin->sin_port; 4539 srcid = 0; 4540 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid); 4541 } 4542 4543 if (error != 0) 4544 goto connect_failed; 4545 4546 CL_INET_CONNECT(connp, B_TRUE, error); 4547 if (error != 0) 4548 goto connect_failed; 4549 4550 /* connect succeeded */ 4551 TCPS_BUMP_MIB(tcps, tcpActiveOpens); 4552 tcp->tcp_active_open = 1; 4553 4554 /* 4555 * tcp_set_destination() does not adjust for TCP/IP header length. 4556 */ 4557 mss = tcp->tcp_mss - connp->conn_ht_iphc_len; 4558 4559 /* 4560 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up 4561 * to the nearest MSS. 4562 * 4563 * We do the round up here because we need to get the interface MTU 4564 * first before we can do the round up. 4565 */ 4566 tcp->tcp_rwnd = connp->conn_rcvbuf; 4567 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 4568 tcps->tcps_recv_hiwat_minmss * mss); 4569 connp->conn_rcvbuf = tcp->tcp_rwnd; 4570 tcp_set_ws_value(tcp); 4571 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 4572 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 4573 tcp->tcp_snd_ws_ok = B_TRUE; 4574 4575 /* 4576 * Set tcp_snd_ts_ok to true 4577 * so that tcp_xmit_mp will 4578 * include the timestamp 4579 * option in the SYN segment. 4580 */ 4581 if (tcps->tcps_tstamp_always || 4582 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 4583 tcp->tcp_snd_ts_ok = B_TRUE; 4584 } 4585 4586 /* 4587 * tcp_snd_sack_ok can be set in 4588 * tcp_set_destination() if the sack metric 4589 * is set. So check it here also. 4590 */ 4591 if (tcps->tcps_sack_permitted == 2 || 4592 tcp->tcp_snd_sack_ok) { 4593 if (tcp->tcp_sack_info == NULL) { 4594 tcp->tcp_sack_info = kmem_cache_alloc( 4595 tcp_sack_info_cache, KM_SLEEP); 4596 } 4597 tcp->tcp_snd_sack_ok = B_TRUE; 4598 } 4599 4600 /* 4601 * Should we use ECN? Note that the current 4602 * default value (SunOS 5.9) of tcp_ecn_permitted 4603 * is 1. The reason for doing this is that there 4604 * are equipments out there that will drop ECN 4605 * enabled IP packets. Setting it to 1 avoids 4606 * compatibility problems. 4607 */ 4608 if (tcps->tcps_ecn_permitted == 2) 4609 tcp->tcp_ecn_ok = B_TRUE; 4610 4611 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4612 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 4613 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 4614 if (syn_mp != NULL) { 4615 /* 4616 * We must bump the generation before sending the syn 4617 * to ensure that we use the right generation in case 4618 * this thread issues a "connected" up call. 4619 */ 4620 SOCK_CONNID_BUMP(tcp->tcp_connid); 4621 tcp_send_data(tcp, syn_mp); 4622 } 4623 4624 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4625 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4626 return (0); 4627 4628 connect_failed: 4629 connp->conn_faddr_v6 = ipv6_all_zeros; 4630 connp->conn_fport = 0; 4631 tcp->tcp_state = oldstate; 4632 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4633 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4634 return (error); 4635 } 4636 4637 int 4638 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 4639 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 4640 { 4641 tcp_t *tcp = connp->conn_tcp; 4642 int error = 0; 4643 tcp_stack_t *tcps = tcp->tcp_tcps; 4644 4645 /* All Solaris components should pass a cred for this operation. */ 4646 ASSERT(cr != NULL); 4647 4648 if (tcp->tcp_state >= TCPS_BOUND) { 4649 if ((tcp->tcp_state == TCPS_BOUND || 4650 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 4651 /* 4652 * Handle listen() increasing backlog. 4653 * This is more "liberal" then what the TPI spec 4654 * requires but is needed to avoid a t_unbind 4655 * when handling listen() since the port number 4656 * might be "stolen" between the unbind and bind. 4657 */ 4658 goto do_listen; 4659 } 4660 if (connp->conn_debug) { 4661 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 4662 "tcp_listen: bad state, %d", tcp->tcp_state); 4663 } 4664 return (-TOUTSTATE); 4665 } else { 4666 if (sa == NULL) { 4667 sin6_t addr; 4668 sin_t *sin; 4669 sin6_t *sin6; 4670 4671 ASSERT(IPCL_IS_NONSTR(connp)); 4672 /* Do an implicit bind: Request for a generic port. */ 4673 if (connp->conn_family == AF_INET) { 4674 len = sizeof (sin_t); 4675 sin = (sin_t *)&addr; 4676 *sin = sin_null; 4677 sin->sin_family = AF_INET; 4678 } else { 4679 ASSERT(connp->conn_family == AF_INET6); 4680 len = sizeof (sin6_t); 4681 sin6 = (sin6_t *)&addr; 4682 *sin6 = sin6_null; 4683 sin6->sin6_family = AF_INET6; 4684 } 4685 sa = (struct sockaddr *)&addr; 4686 } 4687 4688 error = tcp_bind_check(connp, sa, len, cr, 4689 bind_to_req_port_only); 4690 if (error) 4691 return (error); 4692 /* Fall through and do the fanout insertion */ 4693 } 4694 4695 do_listen: 4696 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 4697 tcp->tcp_conn_req_max = backlog; 4698 if (tcp->tcp_conn_req_max) { 4699 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 4700 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 4701 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 4702 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 4703 /* 4704 * If this is a listener, do not reset the eager list 4705 * and other stuffs. Note that we don't check if the 4706 * existing eager list meets the new tcp_conn_req_max 4707 * requirement. 4708 */ 4709 if (tcp->tcp_state != TCPS_LISTEN) { 4710 tcp->tcp_state = TCPS_LISTEN; 4711 /* Initialize the chain. Don't need the eager_lock */ 4712 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 4713 tcp->tcp_eager_next_drop_q0 = tcp; 4714 tcp->tcp_eager_prev_drop_q0 = tcp; 4715 tcp->tcp_second_ctimer_threshold = 4716 tcps->tcps_ip_abort_linterval; 4717 } 4718 } 4719 4720 /* 4721 * We need to make sure that the conn_recv is set to a non-null 4722 * value before we insert the conn into the classifier table. 4723 * This is to avoid a race with an incoming packet which does an 4724 * ipcl_classify(). 4725 * We initially set it to tcp_input_listener_unbound to try to 4726 * pick a good squeue for the listener when the first SYN arrives. 4727 * tcp_input_listener_unbound sets it to tcp_input_listener on that 4728 * first SYN. 4729 */ 4730 connp->conn_recv = tcp_input_listener_unbound; 4731 4732 /* Insert the listener in the classifier table */ 4733 error = ip_laddr_fanout_insert(connp); 4734 if (error != 0) { 4735 /* Undo the bind - release the port number */ 4736 tcp->tcp_state = TCPS_IDLE; 4737 connp->conn_bound_addr_v6 = ipv6_all_zeros; 4738 4739 connp->conn_laddr_v6 = ipv6_all_zeros; 4740 connp->conn_saddr_v6 = ipv6_all_zeros; 4741 connp->conn_ports = 0; 4742 4743 if (connp->conn_anon_port) { 4744 zone_t *zone; 4745 4746 zone = crgetzone(cr); 4747 connp->conn_anon_port = B_FALSE; 4748 (void) tsol_mlp_anon(zone, connp->conn_mlp_type, 4749 connp->conn_proto, connp->conn_lport, B_FALSE); 4750 } 4751 connp->conn_mlp_type = mlptSingle; 4752 4753 tcp_bind_hash_remove(tcp); 4754 return (error); 4755 } else { 4756 /* 4757 * If there is a connection limit, allocate and initialize 4758 * the counter struct. Note that since listen can be called 4759 * multiple times, the struct may have been allready allocated. 4760 */ 4761 if (!list_is_empty(&tcps->tcps_listener_conf) && 4762 tcp->tcp_listen_cnt == NULL) { 4763 tcp_listen_cnt_t *tlc; 4764 uint32_t ratio; 4765 4766 ratio = tcp_find_listener_conf(tcps, 4767 ntohs(connp->conn_lport)); 4768 if (ratio != 0) { 4769 uint32_t mem_ratio, tot_buf; 4770 4771 tlc = kmem_alloc(sizeof (tcp_listen_cnt_t), 4772 KM_SLEEP); 4773 /* 4774 * Calculate the connection limit based on 4775 * the configured ratio and maxusers. Maxusers 4776 * are calculated based on memory size, 4777 * ~ 1 user per MB. Note that the conn_rcvbuf 4778 * and conn_sndbuf may change after a 4779 * connection is accepted. So what we have 4780 * is only an approximation. 4781 */ 4782 if ((tot_buf = connp->conn_rcvbuf + 4783 connp->conn_sndbuf) < MB) { 4784 mem_ratio = MB / tot_buf; 4785 tlc->tlc_max = maxusers / ratio * 4786 mem_ratio; 4787 } else { 4788 mem_ratio = tot_buf / MB; 4789 tlc->tlc_max = maxusers / ratio / 4790 mem_ratio; 4791 } 4792 /* At least we should allow two connections! */ 4793 if (tlc->tlc_max <= tcp_min_conn_listener) 4794 tlc->tlc_max = tcp_min_conn_listener; 4795 tlc->tlc_cnt = 1; 4796 tlc->tlc_drop = 0; 4797 tcp->tcp_listen_cnt = tlc; 4798 } 4799 } 4800 } 4801 return (error); 4802 } 4803