xref: /titanic_41/usr/src/uts/common/inet/tcp/tcp.c (revision 9622934a862fa39a8e90c816c4136e293d75629d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 const char tcp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/strsun.h>
35 #include <sys/strsubr.h>
36 #include <sys/stropts.h>
37 #include <sys/strlog.h>
38 #include <sys/strsun.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/suntpi.h>
45 #include <sys/xti_inet.h>
46 #include <sys/cmn_err.h>
47 #include <sys/debug.h>
48 #include <sys/sdt.h>
49 #include <sys/vtrace.h>
50 #include <sys/kmem.h>
51 #include <sys/ethernet.h>
52 #include <sys/cpuvar.h>
53 #include <sys/dlpi.h>
54 #include <sys/multidata.h>
55 #include <sys/multidata_impl.h>
56 #include <sys/pattr.h>
57 #include <sys/policy.h>
58 #include <sys/priv.h>
59 #include <sys/zone.h>
60 #include <sys/sunldi.h>
61 
62 #include <sys/errno.h>
63 #include <sys/signal.h>
64 #include <sys/socket.h>
65 #include <sys/sockio.h>
66 #include <sys/isa_defs.h>
67 #include <sys/md5.h>
68 #include <sys/random.h>
69 #include <netinet/in.h>
70 #include <netinet/tcp.h>
71 #include <netinet/ip6.h>
72 #include <netinet/icmp6.h>
73 #include <net/if.h>
74 #include <net/route.h>
75 #include <inet/ipsec_impl.h>
76 
77 #include <inet/common.h>
78 #include <inet/ip.h>
79 #include <inet/ip_impl.h>
80 #include <inet/ip6.h>
81 #include <inet/ip_ndp.h>
82 #include <inet/mi.h>
83 #include <inet/mib2.h>
84 #include <inet/nd.h>
85 #include <inet/optcom.h>
86 #include <inet/snmpcom.h>
87 #include <inet/kstatcom.h>
88 #include <inet/tcp.h>
89 #include <inet/tcp_impl.h>
90 #include <net/pfkeyv2.h>
91 #include <inet/ipsec_info.h>
92 #include <inet/ipdrop.h>
93 #include <inet/tcp_trace.h>
94 
95 #include <inet/ipclassifier.h>
96 #include <inet/ip_ire.h>
97 #include <inet/ip_ftable.h>
98 #include <inet/ip_if.h>
99 #include <inet/ipp_common.h>
100 #include <inet/ip_netinfo.h>
101 #include <sys/squeue.h>
102 #include <inet/kssl/ksslapi.h>
103 #include <sys/tsol/label.h>
104 #include <sys/tsol/tnet.h>
105 #include <rpc/pmap_prot.h>
106 
107 /*
108  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
109  *
110  * (Read the detailed design doc in PSARC case directory)
111  *
112  * The entire tcp state is contained in tcp_t and conn_t structure
113  * which are allocated in tandem using ipcl_conn_create() and passing
114  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
115  * the references on the tcp_t. The tcp_t structure is never compressed
116  * and packets always land on the correct TCP perimeter from the time
117  * eager is created till the time tcp_t dies (as such the old mentat
118  * TCP global queue is not used for detached state and no IPSEC checking
119  * is required). The global queue is still allocated to send out resets
120  * for connection which have no listeners and IP directly calls
121  * tcp_xmit_listeners_reset() which does any policy check.
122  *
123  * Protection and Synchronisation mechanism:
124  *
125  * The tcp data structure does not use any kind of lock for protecting
126  * its state but instead uses 'squeues' for mutual exclusion from various
127  * read and write side threads. To access a tcp member, the thread should
128  * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or
129  * squeue_fill). Since the squeues allow a direct function call, caller
130  * can pass any tcp function having prototype of edesc_t as argument
131  * (different from traditional STREAMs model where packets come in only
132  * designated entry points). The list of functions that can be directly
133  * called via squeue are listed before the usual function prototype.
134  *
135  * Referencing:
136  *
137  * TCP is MT-Hot and we use a reference based scheme to make sure that the
138  * tcp structure doesn't disappear when its needed. When the application
139  * creates an outgoing connection or accepts an incoming connection, we
140  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
141  * The IP reference is just a symbolic reference since ip_tcpclose()
142  * looks at tcp structure after tcp_close_output() returns which could
143  * have dropped the last TCP reference. So as long as the connection is
144  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
145  * conn_t. The classifier puts its own reference when the connection is
146  * inserted in listen or connected hash. Anytime a thread needs to enter
147  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
148  * on write side or by doing a classify on read side and then puts a
149  * reference on the conn before doing squeue_enter/tryenter/fill. For
150  * read side, the classifier itself puts the reference under fanout lock
151  * to make sure that tcp can't disappear before it gets processed. The
152  * squeue will drop this reference automatically so the called function
153  * doesn't have to do a DEC_REF.
154  *
155  * Opening a new connection:
156  *
157  * The outgoing connection open is pretty simple. tcp_open() does the
158  * work in creating the conn/tcp structure and initializing it. The
159  * squeue assignment is done based on the CPU the application
160  * is running on. So for outbound connections, processing is always done
161  * on application CPU which might be different from the incoming CPU
162  * being interrupted by the NIC. An optimal way would be to figure out
163  * the NIC <-> CPU binding at listen time, and assign the outgoing
164  * connection to the squeue attached to the CPU that will be interrupted
165  * for incoming packets (we know the NIC based on the bind IP address).
166  * This might seem like a problem if more data is going out but the
167  * fact is that in most cases the transmit is ACK driven transmit where
168  * the outgoing data normally sits on TCP's xmit queue waiting to be
169  * transmitted.
170  *
171  * Accepting a connection:
172  *
173  * This is a more interesting case because of various races involved in
174  * establishing a eager in its own perimeter. Read the meta comment on
175  * top of tcp_conn_request(). But briefly, the squeue is picked by
176  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
177  *
178  * Closing a connection:
179  *
180  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
181  * via squeue to do the close and mark the tcp as detached if the connection
182  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
183  * reference but tcp_close() drop IP's reference always. So if tcp was
184  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
185  * and 1 because it is in classifier's connected hash. This is the condition
186  * we use to determine that its OK to clean up the tcp outside of squeue
187  * when time wait expires (check the ref under fanout and conn_lock and
188  * if it is 2, remove it from fanout hash and kill it).
189  *
190  * Although close just drops the necessary references and marks the
191  * tcp_detached state, tcp_close needs to know the tcp_detached has been
192  * set (under squeue) before letting the STREAM go away (because a
193  * inbound packet might attempt to go up the STREAM while the close
194  * has happened and tcp_detached is not set). So a special lock and
195  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
196  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
197  * tcp_detached.
198  *
199  * Special provisions and fast paths:
200  *
201  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
202  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
203  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
204  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
205  * check to send packets directly to tcp_rput_data via squeue. Everyone
206  * else comes through tcp_input() on the read side.
207  *
208  * We also make special provisions for sockfs by marking tcp_issocket
209  * whenever we have only sockfs on top of TCP. This allows us to skip
210  * putting the tcp in acceptor hash since a sockfs listener can never
211  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
212  * since eager has already been allocated and the accept now happens
213  * on acceptor STREAM. There is a big blob of comment on top of
214  * tcp_conn_request explaining the new accept. When socket is POP'd,
215  * sockfs sends us an ioctl to mark the fact and we go back to old
216  * behaviour. Once tcp_issocket is unset, its never set for the
217  * life of that connection.
218  *
219  * IPsec notes :
220  *
221  * Since a packet is always executed on the correct TCP perimeter
222  * all IPsec processing is defered to IP including checking new
223  * connections and setting IPSEC policies for new connection. The
224  * only exception is tcp_xmit_listeners_reset() which is called
225  * directly from IP and needs to policy check to see if TH_RST
226  * can be sent out.
227  *
228  * PFHooks notes :
229  *
230  * For mdt case, one meta buffer contains multiple packets. Mblks for every
231  * packet are assembled and passed to the hooks. When packets are blocked,
232  * or boundary of any packet is changed, the mdt processing is stopped, and
233  * packets of the meta buffer are send to the IP path one by one.
234  */
235 
236 /*
237  * Values for squeue switch:
238  * 1: squeue_enter_nodrain
239  * 2: squeue_enter
240  * 3: squeue_fill
241  */
242 int tcp_squeue_close = 2;	/* Setable in /etc/system */
243 int tcp_squeue_wput = 2;
244 
245 squeue_func_t tcp_squeue_close_proc;
246 squeue_func_t tcp_squeue_wput_proc;
247 
248 /*
249  * This controls how tiny a write must be before we try to copy it
250  * into the the mblk on the tail of the transmit queue.  Not much
251  * speedup is observed for values larger than sixteen.  Zero will
252  * disable the optimisation.
253  */
254 int tcp_tx_pull_len = 16;
255 
256 /*
257  * TCP Statistics.
258  *
259  * How TCP statistics work.
260  *
261  * There are two types of statistics invoked by two macros.
262  *
263  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
264  * supposed to be used in non MT-hot paths of the code.
265  *
266  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
267  * supposed to be used for DEBUG purposes and may be used on a hot path.
268  *
269  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
270  * (use "kstat tcp" to get them).
271  *
272  * There is also additional debugging facility that marks tcp_clean_death()
273  * instances and saves them in tcp_t structure. It is triggered by
274  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
275  * tcp_clean_death() calls that counts the number of times each tag was hit. It
276  * is triggered by TCP_CLD_COUNTERS define.
277  *
278  * How to add new counters.
279  *
280  * 1) Add a field in the tcp_stat structure describing your counter.
281  * 2) Add a line in the template in tcp_kstat2_init() with the name
282  *    of the counter.
283  *
284  *    IMPORTANT!! - make sure that both are in sync !!
285  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
286  *
287  * Please avoid using private counters which are not kstat-exported.
288  *
289  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
290  * in tcp_t structure.
291  *
292  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
293  */
294 
295 #ifndef TCP_DEBUG_COUNTER
296 #ifdef DEBUG
297 #define	TCP_DEBUG_COUNTER 1
298 #else
299 #define	TCP_DEBUG_COUNTER 0
300 #endif
301 #endif
302 
303 #define	TCP_CLD_COUNTERS 0
304 
305 #define	TCP_TAG_CLEAN_DEATH 1
306 #define	TCP_MAX_CLEAN_DEATH_TAG 32
307 
308 #ifdef lint
309 static int _lint_dummy_;
310 #endif
311 
312 #if TCP_CLD_COUNTERS
313 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
314 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
315 #elif defined(lint)
316 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
317 #else
318 #define	TCP_CLD_STAT(x)
319 #endif
320 
321 #if TCP_DEBUG_COUNTER
322 #define	TCP_DBGSTAT(tcps, x)	\
323 	atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1)
324 #define	TCP_G_DBGSTAT(x)	\
325 	atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1)
326 #elif defined(lint)
327 #define	TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0);
328 #define	TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
329 #else
330 #define	TCP_DBGSTAT(tcps, x)
331 #define	TCP_G_DBGSTAT(x)
332 #endif
333 
334 #define	TCP_G_STAT(x)	(tcp_g_statistics.x.value.ui64++)
335 
336 tcp_g_stat_t	tcp_g_statistics;
337 kstat_t		*tcp_g_kstat;
338 
339 /*
340  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
341  * tcp write side.
342  */
343 #define	CALL_IP_WPUT(connp, q, mp) {					\
344 	tcp_stack_t	*tcps;						\
345 									\
346 	tcps = connp->conn_netstack->netstack_tcp;			\
347 	ASSERT(((q)->q_flag & QREADR) == 0);				\
348 	TCP_DBGSTAT(tcps, tcp_ip_output);				\
349 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
350 }
351 
352 /* Macros for timestamp comparisons */
353 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
354 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
355 
356 /*
357  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
358  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
359  * by adding three components: a time component which grows by 1 every 4096
360  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
361  * a per-connection component which grows by 125000 for every new connection;
362  * and an "extra" component that grows by a random amount centered
363  * approximately on 64000.  This causes the the ISS generator to cycle every
364  * 4.89 hours if no TCP connections are made, and faster if connections are
365  * made.
366  *
367  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
368  * components: a time component which grows by 250000 every second; and
369  * a per-connection component which grows by 125000 for every new connections.
370  *
371  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
372  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
373  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
374  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
375  * password.
376  */
377 #define	ISS_INCR	250000
378 #define	ISS_NSEC_SHT	12
379 
380 static sin_t	sin_null;	/* Zero address for quick clears */
381 static sin6_t	sin6_null;	/* Zero address for quick clears */
382 
383 /*
384  * This implementation follows the 4.3BSD interpretation of the urgent
385  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
386  * incompatible changes in protocols like telnet and rlogin.
387  */
388 #define	TCP_OLD_URP_INTERPRETATION	1
389 
390 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
391 	(TCP_IS_DETACHED(tcp) && \
392 	    (!(tcp)->tcp_hard_binding))
393 
394 /*
395  * TCP reassembly macros.  We hide starting and ending sequence numbers in
396  * b_next and b_prev of messages on the reassembly queue.  The messages are
397  * chained using b_cont.  These macros are used in tcp_reass() so we don't
398  * have to see the ugly casts and assignments.
399  */
400 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
401 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
402 					(mblk_t *)(uintptr_t)(u))
403 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
404 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
405 					(mblk_t *)(uintptr_t)(u))
406 
407 /*
408  * Implementation of TCP Timers.
409  * =============================
410  *
411  * INTERFACE:
412  *
413  * There are two basic functions dealing with tcp timers:
414  *
415  *	timeout_id_t	tcp_timeout(connp, func, time)
416  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
417  *	TCP_TIMER_RESTART(tcp, intvl)
418  *
419  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
420  * after 'time' ticks passed. The function called by timeout() must adhere to
421  * the same restrictions as a driver soft interrupt handler - it must not sleep
422  * or call other functions that might sleep. The value returned is the opaque
423  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
424  * cancel the request. The call to tcp_timeout() may fail in which case it
425  * returns zero. This is different from the timeout(9F) function which never
426  * fails.
427  *
428  * The call-back function 'func' always receives 'connp' as its single
429  * argument. It is always executed in the squeue corresponding to the tcp
430  * structure. The tcp structure is guaranteed to be present at the time the
431  * call-back is called.
432  *
433  * NOTE: The call-back function 'func' is never called if tcp is in
434  * 	the TCPS_CLOSED state.
435  *
436  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
437  * request. locks acquired by the call-back routine should not be held across
438  * the call to tcp_timeout_cancel() or a deadlock may result.
439  *
440  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
441  * Otherwise, it returns an integer value greater than or equal to 0. In
442  * particular, if the call-back function is already placed on the squeue, it can
443  * not be canceled.
444  *
445  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
446  * 	within squeue context corresponding to the tcp instance. Since the
447  *	call-back is also called via the same squeue, there are no race
448  *	conditions described in untimeout(9F) manual page since all calls are
449  *	strictly serialized.
450  *
451  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
452  *	stored in tcp_timer_tid and starts a new one using
453  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
454  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
455  *	field.
456  *
457  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
458  *	call-back may still be called, so it is possible tcp_timer() will be
459  *	called several times. This should not be a problem since tcp_timer()
460  *	should always check the tcp instance state.
461  *
462  *
463  * IMPLEMENTATION:
464  *
465  * TCP timers are implemented using three-stage process. The call to
466  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
467  * when the timer expires. The tcp_timer_callback() arranges the call of the
468  * tcp_timer_handler() function via squeue corresponding to the tcp
469  * instance. The tcp_timer_handler() calls actual requested timeout call-back
470  * and passes tcp instance as an argument to it. Information is passed between
471  * stages using the tcp_timer_t structure which contains the connp pointer, the
472  * tcp call-back to call and the timeout id returned by the timeout(9F).
473  *
474  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
475  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
476  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
477  * returns the pointer to this mblk.
478  *
479  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
480  * looks like a normal mblk without actual dblk attached to it.
481  *
482  * To optimize performance each tcp instance holds a small cache of timer
483  * mblocks. In the current implementation it caches up to two timer mblocks per
484  * tcp instance. The cache is preserved over tcp frees and is only freed when
485  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
486  * timer processing happens on a corresponding squeue, the cache manipulation
487  * does not require any locks. Experiments show that majority of timer mblocks
488  * allocations are satisfied from the tcp cache and do not involve kmem calls.
489  *
490  * The tcp_timeout() places a refhold on the connp instance which guarantees
491  * that it will be present at the time the call-back function fires. The
492  * tcp_timer_handler() drops the reference after calling the call-back, so the
493  * call-back function does not need to manipulate the references explicitly.
494  */
495 
496 typedef struct tcp_timer_s {
497 	conn_t	*connp;
498 	void 	(*tcpt_proc)(void *);
499 	timeout_id_t   tcpt_tid;
500 } tcp_timer_t;
501 
502 static kmem_cache_t *tcp_timercache;
503 kmem_cache_t	*tcp_sack_info_cache;
504 kmem_cache_t	*tcp_iphc_cache;
505 
506 /*
507  * For scalability, we must not run a timer for every TCP connection
508  * in TIME_WAIT state.  To see why, consider (for time wait interval of
509  * 4 minutes):
510  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
511  *
512  * This list is ordered by time, so you need only delete from the head
513  * until you get to entries which aren't old enough to delete yet.
514  * The list consists of only the detached TIME_WAIT connections.
515  *
516  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
517  * becomes detached TIME_WAIT (either by changing the state and already
518  * being detached or the other way around). This means that the TIME_WAIT
519  * state can be extended (up to doubled) if the connection doesn't become
520  * detached for a long time.
521  *
522  * The list manipulations (including tcp_time_wait_next/prev)
523  * are protected by the tcp_time_wait_lock. The content of the
524  * detached TIME_WAIT connections is protected by the normal perimeters.
525  *
526  * This list is per squeue and squeues are shared across the tcp_stack_t's.
527  * Things on tcp_time_wait_head remain associated with the tcp_stack_t
528  * and conn_netstack.
529  * The tcp_t's that are added to tcp_free_list are disassociated and
530  * have NULL tcp_tcps and conn_netstack pointers.
531  */
532 typedef struct tcp_squeue_priv_s {
533 	kmutex_t	tcp_time_wait_lock;
534 	timeout_id_t	tcp_time_wait_tid;
535 	tcp_t		*tcp_time_wait_head;
536 	tcp_t		*tcp_time_wait_tail;
537 	tcp_t		*tcp_free_list;
538 	uint_t		tcp_free_list_cnt;
539 } tcp_squeue_priv_t;
540 
541 /*
542  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
543  * Running it every 5 seconds seems to give the best results.
544  */
545 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
546 
547 /*
548  * To prevent memory hog, limit the number of entries in tcp_free_list
549  * to 1% of available memory / number of cpus
550  */
551 uint_t tcp_free_list_max_cnt = 0;
552 
553 #define	TCP_XMIT_LOWATER	4096
554 #define	TCP_XMIT_HIWATER	49152
555 #define	TCP_RECV_LOWATER	2048
556 #define	TCP_RECV_HIWATER	49152
557 
558 /*
559  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
560  */
561 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
562 
563 #define	TIDUSZ	4096	/* transport interface data unit size */
564 
565 /*
566  * Bind hash list size and has function.  It has to be a power of 2 for
567  * hashing.
568  */
569 #define	TCP_BIND_FANOUT_SIZE	512
570 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
571 /*
572  * Size of listen and acceptor hash list.  It has to be a power of 2 for
573  * hashing.
574  */
575 #define	TCP_FANOUT_SIZE		256
576 
577 #ifdef	_ILP32
578 #define	TCP_ACCEPTOR_HASH(accid)					\
579 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
580 #else
581 #define	TCP_ACCEPTOR_HASH(accid)					\
582 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
583 #endif	/* _ILP32 */
584 
585 #define	IP_ADDR_CACHE_SIZE	2048
586 #define	IP_ADDR_CACHE_HASH(faddr)					\
587 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
588 
589 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
590 #define	TCP_HSP_HASH_SIZE 256
591 
592 #define	TCP_HSP_HASH(addr)					\
593 	(((addr>>24) ^ (addr >>16) ^			\
594 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
595 
596 /*
597  * TCP options struct returned from tcp_parse_options.
598  */
599 typedef struct tcp_opt_s {
600 	uint32_t	tcp_opt_mss;
601 	uint32_t	tcp_opt_wscale;
602 	uint32_t	tcp_opt_ts_val;
603 	uint32_t	tcp_opt_ts_ecr;
604 	tcp_t		*tcp;
605 } tcp_opt_t;
606 
607 /*
608  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
609  */
610 
611 #ifdef _BIG_ENDIAN
612 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
613 	(TCPOPT_TSTAMP << 8) | 10)
614 #else
615 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
616 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
617 #endif
618 
619 /*
620  * Flags returned from tcp_parse_options.
621  */
622 #define	TCP_OPT_MSS_PRESENT	1
623 #define	TCP_OPT_WSCALE_PRESENT	2
624 #define	TCP_OPT_TSTAMP_PRESENT	4
625 #define	TCP_OPT_SACK_OK_PRESENT	8
626 #define	TCP_OPT_SACK_PRESENT	16
627 
628 /* TCP option length */
629 #define	TCPOPT_NOP_LEN		1
630 #define	TCPOPT_MAXSEG_LEN	4
631 #define	TCPOPT_WS_LEN		3
632 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
633 #define	TCPOPT_TSTAMP_LEN	10
634 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
635 #define	TCPOPT_SACK_OK_LEN	2
636 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
637 #define	TCPOPT_REAL_SACK_LEN	4
638 #define	TCPOPT_MAX_SACK_LEN	36
639 #define	TCPOPT_HEADER_LEN	2
640 
641 /* TCP cwnd burst factor. */
642 #define	TCP_CWND_INFINITE	65535
643 #define	TCP_CWND_SS		3
644 #define	TCP_CWND_NORMAL		5
645 
646 /* Maximum TCP initial cwin (start/restart). */
647 #define	TCP_MAX_INIT_CWND	8
648 
649 /*
650  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
651  * either tcp_slow_start_initial or tcp_slow_start_after idle
652  * depending on the caller.  If the upper layer has not used the
653  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
654  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
655  * If the upper layer has changed set the tcp_init_cwnd, just use
656  * it to calculate the tcp_cwnd.
657  */
658 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
659 {									\
660 	if ((tcp)->tcp_init_cwnd == 0) {				\
661 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
662 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
663 	} else {							\
664 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
665 	}								\
666 	tcp->tcp_cwnd_cnt = 0;						\
667 }
668 
669 /* TCP Timer control structure */
670 typedef struct tcpt_s {
671 	pfv_t	tcpt_pfv;	/* The routine we are to call */
672 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
673 } tcpt_t;
674 
675 /* Host Specific Parameter structure */
676 typedef struct tcp_hsp {
677 	struct tcp_hsp	*tcp_hsp_next;
678 	in6_addr_t	tcp_hsp_addr_v6;
679 	in6_addr_t	tcp_hsp_subnet_v6;
680 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
681 	int32_t		tcp_hsp_sendspace;
682 	int32_t		tcp_hsp_recvspace;
683 	int32_t		tcp_hsp_tstamp;
684 } tcp_hsp_t;
685 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
686 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
687 
688 /*
689  * Functions called directly via squeue having a prototype of edesc_t.
690  */
691 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
692 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
693 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
694 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
695 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
696 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
697 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
698 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
699 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
700 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
701 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
702 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2);
703 
704 
705 /* Prototype for TCP functions */
706 static void	tcp_random_init(void);
707 int		tcp_random(void);
708 static void	tcp_accept(tcp_t *tcp, mblk_t *mp);
709 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
710 		    tcp_t *eager);
711 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
712 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
713     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
714     boolean_t user_specified);
715 static void	tcp_closei_local(tcp_t *tcp);
716 static void	tcp_close_detached(tcp_t *tcp);
717 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
718 			mblk_t *idmp, mblk_t **defermp);
719 static void	tcp_connect(tcp_t *tcp, mblk_t *mp);
720 static void	tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp,
721 		    in_port_t dstport, uint_t srcid);
722 static void	tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
723 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
724 		    uint32_t scope_id);
725 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
726 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
727 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
728 static char	*tcp_display(tcp_t *tcp, char *, char);
729 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
730 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
731 static void	tcp_eager_unlink(tcp_t *tcp);
732 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
733 		    int unixerr);
734 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
735 		    int tlierr, int unixerr);
736 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
737 		    cred_t *cr);
738 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
739 		    char *value, caddr_t cp, cred_t *cr);
740 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
741 		    char *value, caddr_t cp, cred_t *cr);
742 static int	tcp_tpistate(tcp_t *tcp);
743 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
744     int caller_holds_lock);
745 static void	tcp_bind_hash_remove(tcp_t *tcp);
746 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *);
747 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
748 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
749 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
750 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
751 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
752 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
753 void		tcp_g_q_setup(tcp_stack_t *);
754 void		tcp_g_q_create(tcp_stack_t *);
755 void		tcp_g_q_destroy(tcp_stack_t *);
756 static int	tcp_header_init_ipv4(tcp_t *tcp);
757 static int	tcp_header_init_ipv6(tcp_t *tcp);
758 int		tcp_init(tcp_t *tcp, queue_t *q);
759 static int	tcp_init_values(tcp_t *tcp);
760 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
761 static mblk_t	*tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim,
762 		    t_scalar_t addr_length);
763 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
764 static void	tcp_ip_notify(tcp_t *tcp);
765 static mblk_t	*tcp_ire_mp(mblk_t *mp);
766 static void	tcp_iss_init(tcp_t *tcp);
767 static void	tcp_keepalive_killer(void *arg);
768 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
769 static void	tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss);
770 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
771 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
772 static boolean_t tcp_allow_connopt_set(int level, int name);
773 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
774 int		tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
775 int		tcp_opt_set(queue_t *q, uint_t optset_context, int level,
776 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
777 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
778 		    mblk_t *mblk);
779 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
780 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
781 		    uchar_t *ptr, uint_t len);
782 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
783 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt,
784     tcp_stack_t *);
785 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
786 		    caddr_t cp, cred_t *cr);
787 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
788 		    caddr_t cp, cred_t *cr);
789 static void	tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *);
790 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
791 		    caddr_t cp, cred_t *cr);
792 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
793 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
794 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
795 static void	tcp_reinit(tcp_t *tcp);
796 static void	tcp_reinit_values(tcp_t *tcp);
797 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
798 		    tcp_t *thisstream, cred_t *cr);
799 
800 static uint_t	tcp_rcv_drain(queue_t *q, tcp_t *tcp);
801 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
802 static boolean_t tcp_send_rst_chk(tcp_stack_t *);
803 static void	tcp_ss_rexmit(tcp_t *tcp);
804 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
805 static void	tcp_process_options(tcp_t *, tcph_t *);
806 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
807 static void	tcp_rsrv(queue_t *q);
808 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
809 static int	tcp_snmp_state(tcp_t *tcp);
810 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
811 		    cred_t *cr);
812 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
813 		    cred_t *cr);
814 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
815 		    cred_t *cr);
816 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
817 		    cred_t *cr);
818 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
819 		    cred_t *cr);
820 static int	tcp_host_param_set(queue_t *q, mblk_t *mp, char *value,
821 		    caddr_t cp, cred_t *cr);
822 static int	tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value,
823 		    caddr_t cp, cred_t *cr);
824 static int	tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp,
825 		    cred_t *cr);
826 static void	tcp_timer(void *arg);
827 static void	tcp_timer_callback(void *);
828 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
829     boolean_t random);
830 static in_port_t tcp_get_next_priv_port(const tcp_t *);
831 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
832 void		tcp_wput_accept(queue_t *q, mblk_t *mp);
833 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
834 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
835 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
836 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
837 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
838 		    const int num_sack_blk, int *usable, uint_t *snxt,
839 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
840 		    const int mdt_thres);
841 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
842 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
843 		    const int num_sack_blk, int *usable, uint_t *snxt,
844 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
845 		    const int mdt_thres);
846 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
847 		    int num_sack_blk);
848 static void	tcp_wsrv(queue_t *q);
849 static int	tcp_xmit_end(tcp_t *tcp);
850 static void	tcp_ack_timer(void *arg);
851 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
852 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
853 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
854 		    zoneid_t zoneid, tcp_stack_t *, conn_t *connp);
855 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
856 		    uint32_t ack, int ctl);
857 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *);
858 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *);
859 static int	setmaxps(queue_t *q, int maxpsz);
860 static void	tcp_set_rto(tcp_t *, time_t);
861 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
862 		    boolean_t, boolean_t);
863 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
864 		    boolean_t ipsec_mctl);
865 static mblk_t	*tcp_setsockopt_mp(int level, int cmd,
866 		    char *opt, int optlen);
867 static int	tcp_build_hdrs(queue_t *, tcp_t *);
868 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
869 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
870 		    tcph_t *tcph);
871 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
872 boolean_t	tcp_reserved_port_add(int, in_port_t *, in_port_t *);
873 boolean_t	tcp_reserved_port_del(in_port_t, in_port_t);
874 boolean_t	tcp_reserved_port_check(in_port_t, tcp_stack_t *);
875 static tcp_t	*tcp_alloc_temp_tcp(in_port_t, tcp_stack_t *);
876 static int	tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *);
877 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
878 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
879 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
880 		    const boolean_t, const uint32_t, const uint32_t,
881 		    const uint32_t, const uint32_t, tcp_stack_t *);
882 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
883 		    const uint_t, const uint_t, boolean_t *);
884 static mblk_t	*tcp_lso_info_mp(mblk_t *);
885 static void	tcp_lso_update(tcp_t *, ill_lso_capab_t *);
886 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
887 extern mblk_t	*tcp_timermp_alloc(int);
888 extern void	tcp_timermp_free(tcp_t *);
889 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
890 static void	tcp_stop_lingering(tcp_t *tcp);
891 static void	tcp_close_linger_timeout(void *arg);
892 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
893 static void	tcp_stack_shutdown(netstackid_t stackid, void *arg);
894 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
895 static void	*tcp_g_kstat_init(tcp_g_stat_t *);
896 static void	tcp_g_kstat_fini(kstat_t *);
897 static void	*tcp_kstat_init(netstackid_t, tcp_stack_t *);
898 static void	tcp_kstat_fini(netstackid_t, kstat_t *);
899 static void	*tcp_kstat2_init(netstackid_t, tcp_stat_t *);
900 static void	tcp_kstat2_fini(netstackid_t, kstat_t *);
901 static int	tcp_kstat_update(kstat_t *kp, int rw);
902 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
903 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
904 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
905 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
906 			tcph_t *tcph, mblk_t *idmp);
907 static squeue_func_t tcp_squeue_switch(int);
908 
909 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
910 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
911 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
912 static int	tcp_close(queue_t *, int);
913 static int	tcpclose_accept(queue_t *);
914 
915 static void	tcp_squeue_add(squeue_t *);
916 static boolean_t tcp_zcopy_check(tcp_t *);
917 static void	tcp_zcopy_notify(tcp_t *);
918 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
919 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
920 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
921 
922 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
923 
924 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2);
925 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2);
926 
927 /*
928  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
929  *
930  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
931  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
932  * (defined in tcp.h) needs to be filled in and passed into the kernel
933  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
934  * structure contains the four-tuple of a TCP connection and a range of TCP
935  * states (specified by ac_start and ac_end). The use of wildcard addresses
936  * and ports is allowed. Connections with a matching four tuple and a state
937  * within the specified range will be aborted. The valid states for the
938  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
939  * inclusive.
940  *
941  * An application which has its connection aborted by this ioctl will receive
942  * an error that is dependent on the connection state at the time of the abort.
943  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
944  * though a RST packet has been received.  If the connection state is equal to
945  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
946  * and all resources associated with the connection will be freed.
947  */
948 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
949 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
950 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
951 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps);
952 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
953 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
954     boolean_t, tcp_stack_t *);
955 
956 static struct module_info tcp_rinfo =  {
957 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
958 };
959 
960 static struct module_info tcp_winfo =  {
961 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
962 };
963 
964 /*
965  * Entry points for TCP as a device. The normal case which supports
966  * the TCP functionality.
967  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
968  */
969 struct qinit tcp_rinitv4 = {
970 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, NULL, &tcp_rinfo
971 };
972 
973 struct qinit tcp_rinitv6 = {
974 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_close, NULL, &tcp_rinfo
975 };
976 
977 struct qinit tcp_winit = {
978 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
979 };
980 
981 /* Initial entry point for TCP in socket mode. */
982 struct qinit tcp_sock_winit = {
983 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
984 };
985 
986 /*
987  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
988  * an accept. Avoid allocating data structures since eager has already
989  * been created.
990  */
991 struct qinit tcp_acceptor_rinit = {
992 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
993 };
994 
995 struct qinit tcp_acceptor_winit = {
996 	(pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo
997 };
998 
999 /*
1000  * Entry points for TCP loopback (read side only)
1001  * The open routine is only used for reopens, thus no need to
1002  * have a separate one for tcp_openv6.
1003  */
1004 struct qinit tcp_loopback_rinit = {
1005 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, (pfi_t)0,
1006 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1007 };
1008 
1009 /* For AF_INET aka /dev/tcp */
1010 struct streamtab tcpinfov4 = {
1011 	&tcp_rinitv4, &tcp_winit
1012 };
1013 
1014 /* For AF_INET6 aka /dev/tcp6 */
1015 struct streamtab tcpinfov6 = {
1016 	&tcp_rinitv6, &tcp_winit
1017 };
1018 
1019 /*
1020  * Have to ensure that tcp_g_q_close is not done by an
1021  * interrupt thread.
1022  */
1023 static taskq_t *tcp_taskq;
1024 
1025 /*
1026  * TCP has a private interface for other kernel modules to reserve a
1027  * port range for them to use.  Once reserved, TCP will not use any ports
1028  * in the range.  This interface relies on the TCP_EXCLBIND feature.  If
1029  * the semantics of TCP_EXCLBIND is changed, implementation of this interface
1030  * has to be verified.
1031  *
1032  * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges.  Each port
1033  * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports.  A port
1034  * range is [port a, port b] inclusive.  And each port range is between
1035  * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive.
1036  *
1037  * Note that the default anonymous port range starts from 32768.  There is
1038  * no port "collision" between that and the reserved port range.  If there
1039  * is port collision (because the default smallest anonymous port is lowered
1040  * or some apps specifically bind to ports in the reserved port range), the
1041  * system may not be able to reserve a port range even there are enough
1042  * unbound ports as a reserved port range contains consecutive ports .
1043  */
1044 #define	TCP_RESERVED_PORTS_ARRAY_MAX_SIZE	5
1045 #define	TCP_RESERVED_PORTS_RANGE_MAX		1000
1046 #define	TCP_SMALLEST_RESERVED_PORT		10240
1047 #define	TCP_LARGEST_RESERVED_PORT		20480
1048 
1049 /* Structure to represent those reserved port ranges. */
1050 typedef struct tcp_rport_s {
1051 	in_port_t	lo_port;
1052 	in_port_t	hi_port;
1053 	tcp_t		**temp_tcp_array;
1054 } tcp_rport_t;
1055 
1056 /* Setable only in /etc/system. Move to ndd? */
1057 boolean_t tcp_icmp_source_quench = B_FALSE;
1058 
1059 /*
1060  * Following assumes TPI alignment requirements stay along 32 bit
1061  * boundaries
1062  */
1063 #define	ROUNDUP32(x) \
1064 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1065 
1066 /* Template for response to info request. */
1067 static struct T_info_ack tcp_g_t_info_ack = {
1068 	T_INFO_ACK,		/* PRIM_type */
1069 	0,			/* TSDU_size */
1070 	T_INFINITE,		/* ETSDU_size */
1071 	T_INVALID,		/* CDATA_size */
1072 	T_INVALID,		/* DDATA_size */
1073 	sizeof (sin_t),		/* ADDR_size */
1074 	0,			/* OPT_size - not initialized here */
1075 	TIDUSZ,			/* TIDU_size */
1076 	T_COTS_ORD,		/* SERV_type */
1077 	TCPS_IDLE,		/* CURRENT_state */
1078 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1079 };
1080 
1081 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1082 	T_INFO_ACK,		/* PRIM_type */
1083 	0,			/* TSDU_size */
1084 	T_INFINITE,		/* ETSDU_size */
1085 	T_INVALID,		/* CDATA_size */
1086 	T_INVALID,		/* DDATA_size */
1087 	sizeof (sin6_t),	/* ADDR_size */
1088 	0,			/* OPT_size - not initialized here */
1089 	TIDUSZ,		/* TIDU_size */
1090 	T_COTS_ORD,		/* SERV_type */
1091 	TCPS_IDLE,		/* CURRENT_state */
1092 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1093 };
1094 
1095 #define	MS	1L
1096 #define	SECONDS	(1000 * MS)
1097 #define	MINUTES	(60 * SECONDS)
1098 #define	HOURS	(60 * MINUTES)
1099 #define	DAYS	(24 * HOURS)
1100 
1101 #define	PARAM_MAX (~(uint32_t)0)
1102 
1103 /* Max size IP datagram is 64k - 1 */
1104 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1105 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1106 /* Max of the above */
1107 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1108 
1109 /* Largest TCP port number */
1110 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1111 
1112 /*
1113  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1114  * layer header.  It has to be a multiple of 4.
1115  */
1116 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1117 #define	tcps_wroff_xtra	tcps_wroff_xtra_param->tcp_param_val
1118 
1119 /*
1120  * All of these are alterable, within the min/max values given, at run time.
1121  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1122  * per the TCP spec.
1123  */
1124 /* BEGIN CSTYLED */
1125 static tcpparam_t	lcl_tcp_param_arr[] = {
1126  /*min		max		value		name */
1127  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1128  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1129  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1130  { 1,		1024,		1,		"tcp_conn_req_min" },
1131  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1132  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1133  { 0,		10,		0,		"tcp_debug" },
1134  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1135  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1136  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1137  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1138  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1139  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1140  { 1,		255,		64,		"tcp_ipv4_ttl"},
1141  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1142  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1143  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1144  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1145  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1146  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1147  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1148  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1149  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1150  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1151  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1152  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1153  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1154  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1155  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1156  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1157  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1158  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1159  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1160  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1161  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1162  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1163  { 0,		TCP_MSS_MAX,	64,		"tcp_co_min"},
1164  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1165 /*
1166  * Question:  What default value should I set for tcp_strong_iss?
1167  */
1168  { 0,		2,		1,		"tcp_strong_iss"},
1169  { 0,		65536,		20,		"tcp_rtt_updates"},
1170  { 0,		1,		1,		"tcp_wscale_always"},
1171  { 0,		1,		0,		"tcp_tstamp_always"},
1172  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1173  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1174  { 0,		16,		2,		"tcp_deferred_acks_max"},
1175  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1176  { 1,		4,		4,		"tcp_slow_start_initial"},
1177  { 10*MS,	50*MS,		20*MS,		"tcp_co_timer_interval"},
1178  { 0,		2,		2,		"tcp_sack_permitted"},
1179  { 0,		1,		0,		"tcp_trace"},
1180  { 0,		1,		1,		"tcp_compression_enabled"},
1181  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1182  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1183  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1184  { 0,		1,		0,		"tcp_rev_src_routes"},
1185  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1186  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1187  { 0,		16,		8,		"tcp_local_dacks_max"},
1188  { 0,		2,		1,		"tcp_ecn_permitted"},
1189  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1190  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1191  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1192  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1193  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1194 };
1195 /* END CSTYLED */
1196 
1197 /*
1198  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1199  * each header fragment in the header buffer.  Each parameter value has
1200  * to be a multiple of 4 (32-bit aligned).
1201  */
1202 static tcpparam_t lcl_tcp_mdt_head_param =
1203 	{ 32, 256, 32, "tcp_mdt_hdr_head_min" };
1204 static tcpparam_t lcl_tcp_mdt_tail_param =
1205 	{ 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1206 #define	tcps_mdt_hdr_head_min	tcps_mdt_head_param->tcp_param_val
1207 #define	tcps_mdt_hdr_tail_min	tcps_mdt_tail_param->tcp_param_val
1208 
1209 /*
1210  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1211  * the maximum number of payload buffers associated per Multidata.
1212  */
1213 static tcpparam_t lcl_tcp_mdt_max_pbufs_param =
1214 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1215 #define	tcps_mdt_max_pbufs	tcps_mdt_max_pbufs_param->tcp_param_val
1216 
1217 /* Round up the value to the nearest mss. */
1218 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1219 
1220 /*
1221  * Set ECN capable transport (ECT) code point in IP header.
1222  *
1223  * Note that there are 2 ECT code points '01' and '10', which are called
1224  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1225  * point ECT(0) for TCP as described in RFC 2481.
1226  */
1227 #define	SET_ECT(tcp, iph) \
1228 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1229 		/* We need to clear the code point first. */ \
1230 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1231 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1232 	} else { \
1233 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1234 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1235 	}
1236 
1237 /*
1238  * The format argument to pass to tcp_display().
1239  * DISP_PORT_ONLY means that the returned string has only port info.
1240  * DISP_ADDR_AND_PORT means that the returned string also contains the
1241  * remote and local IP address.
1242  */
1243 #define	DISP_PORT_ONLY		1
1244 #define	DISP_ADDR_AND_PORT	2
1245 
1246 #define	NDD_TOO_QUICK_MSG \
1247 	"ndd get info rate too high for non-privileged users, try again " \
1248 	"later.\n"
1249 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1250 
1251 #define	IS_VMLOANED_MBLK(mp) \
1252 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1253 
1254 
1255 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1256 boolean_t tcp_mdt_chain = B_TRUE;
1257 
1258 /*
1259  * MDT threshold in the form of effective send MSS multiplier; we take
1260  * the MDT path if the amount of unsent data exceeds the threshold value
1261  * (default threshold is 1*SMSS).
1262  */
1263 uint_t tcp_mdt_smss_threshold = 1;
1264 
1265 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1266 
1267 /*
1268  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
1269  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1270  * determined dynamically during tcp_adapt_ire(), which is the default.
1271  */
1272 boolean_t tcp_static_maxpsz = B_FALSE;
1273 
1274 /* Setable in /etc/system */
1275 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1276 uint32_t tcp_random_anon_port = 1;
1277 
1278 /*
1279  * To reach to an eager in Q0 which can be dropped due to an incoming
1280  * new SYN request when Q0 is full, a new doubly linked list is
1281  * introduced. This list allows to select an eager from Q0 in O(1) time.
1282  * This is needed to avoid spending too much time walking through the
1283  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1284  * this new list has to be a member of Q0.
1285  * This list is headed by listener's tcp_t. When the list is empty,
1286  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1287  * of listener's tcp_t point to listener's tcp_t itself.
1288  *
1289  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1290  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1291  * These macros do not affect the eager's membership to Q0.
1292  */
1293 
1294 
1295 #define	MAKE_DROPPABLE(listener, eager)					\
1296 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1297 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1298 		    = (eager);						\
1299 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1300 		(eager)->tcp_eager_next_drop_q0 =			\
1301 		    (listener)->tcp_eager_next_drop_q0;			\
1302 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1303 	}
1304 
1305 #define	MAKE_UNDROPPABLE(eager)						\
1306 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1307 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1308 		    = (eager)->tcp_eager_prev_drop_q0;			\
1309 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1310 		    = (eager)->tcp_eager_next_drop_q0;			\
1311 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1312 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1313 	}
1314 
1315 /*
1316  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1317  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1318  * data, TCP will not respond with an ACK.  RFC 793 requires that
1319  * TCP responds with an ACK for such a bogus ACK.  By not following
1320  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1321  * an attacker successfully spoofs an acceptable segment to our
1322  * peer; or when our peer is "confused."
1323  */
1324 uint32_t tcp_drop_ack_unsent_cnt = 10;
1325 
1326 /*
1327  * Hook functions to enable cluster networking
1328  * On non-clustered systems these vectors must always be NULL.
1329  */
1330 
1331 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family,
1332 			    uint8_t *laddrp, in_port_t lport) = NULL;
1333 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family,
1334 			    uint8_t *laddrp, in_port_t lport) = NULL;
1335 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family,
1336 			    uint8_t *laddrp, in_port_t lport,
1337 			    uint8_t *faddrp, in_port_t fport) = NULL;
1338 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family,
1339 			    uint8_t *laddrp, in_port_t lport,
1340 			    uint8_t *faddrp, in_port_t fport) = NULL;
1341 
1342 /*
1343  * The following are defined in ip.c
1344  */
1345 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family,
1346 				uint8_t *laddrp);
1347 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
1348 				uint8_t *laddrp, uint8_t *faddrp);
1349 
1350 #define	CL_INET_CONNECT(tcp)		{			\
1351 	if (cl_inet_connect != NULL) {				\
1352 		/*						\
1353 		 * Running in cluster mode - register active connection	\
1354 		 * information						\
1355 		 */							\
1356 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1357 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1358 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET,\
1359 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1360 				    (in_port_t)(tcp)->tcp_lport,	\
1361 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1362 				    (in_port_t)(tcp)->tcp_fport);	\
1363 			}						\
1364 		} else {						\
1365 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1366 			    &(tcp)->tcp_ip6h->ip6_src)) {\
1367 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\
1368 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1369 				    (in_port_t)(tcp)->tcp_lport,	\
1370 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1371 				    (in_port_t)(tcp)->tcp_fport);	\
1372 			}						\
1373 		}							\
1374 	}								\
1375 }
1376 
1377 #define	CL_INET_DISCONNECT(tcp)	{				\
1378 	if (cl_inet_disconnect != NULL) {				\
1379 		/*							\
1380 		 * Running in cluster mode - deregister active		\
1381 		 * connection information				\
1382 		 */							\
1383 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1384 			if ((tcp)->tcp_ip_src != 0) {			\
1385 				(*cl_inet_disconnect)(IPPROTO_TCP,	\
1386 				    AF_INET,				\
1387 				    (uint8_t *)(&((tcp)->tcp_ip_src)),\
1388 				    (in_port_t)(tcp)->tcp_lport,	\
1389 				    (uint8_t *)				\
1390 				    (&((tcp)->tcp_ipha->ipha_dst)),\
1391 				    (in_port_t)(tcp)->tcp_fport);	\
1392 			}						\
1393 		} else {						\
1394 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1395 			    &(tcp)->tcp_ip_src_v6)) {			\
1396 				(*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\
1397 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1398 				    (in_port_t)(tcp)->tcp_lport,	\
1399 				    (uint8_t *)				\
1400 				    (&((tcp)->tcp_ip6h->ip6_dst)),\
1401 				    (in_port_t)(tcp)->tcp_fport);	\
1402 			}						\
1403 		}							\
1404 	}								\
1405 }
1406 
1407 /*
1408  * Cluster networking hook for traversing current connection list.
1409  * This routine is used to extract the current list of live connections
1410  * which must continue to to be dispatched to this node.
1411  */
1412 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg);
1413 
1414 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *),
1415     void *arg, tcp_stack_t *tcps);
1416 
1417 /*
1418  * Figure out the value of window scale opton.  Note that the rwnd is
1419  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1420  * We cannot find the scale value and then do a round up of tcp_rwnd
1421  * because the scale value may not be correct after that.
1422  *
1423  * Set the compiler flag to make this function inline.
1424  */
1425 static void
1426 tcp_set_ws_value(tcp_t *tcp)
1427 {
1428 	int i;
1429 	uint32_t rwnd = tcp->tcp_rwnd;
1430 
1431 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1432 	    i++, rwnd >>= 1)
1433 		;
1434 	tcp->tcp_rcv_ws = i;
1435 }
1436 
1437 /*
1438  * Remove a connection from the list of detached TIME_WAIT connections.
1439  * It returns B_FALSE if it can't remove the connection from the list
1440  * as the connection has already been removed from the list due to an
1441  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1442  */
1443 static boolean_t
1444 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1445 {
1446 	boolean_t	locked = B_FALSE;
1447 
1448 	if (tcp_time_wait == NULL) {
1449 		tcp_time_wait = *((tcp_squeue_priv_t **)
1450 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1451 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1452 		locked = B_TRUE;
1453 	} else {
1454 		ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock));
1455 	}
1456 
1457 	if (tcp->tcp_time_wait_expire == 0) {
1458 		ASSERT(tcp->tcp_time_wait_next == NULL);
1459 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1460 		if (locked)
1461 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1462 		return (B_FALSE);
1463 	}
1464 	ASSERT(TCP_IS_DETACHED(tcp));
1465 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1466 
1467 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1468 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1469 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1470 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1471 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1472 			    NULL;
1473 		} else {
1474 			tcp_time_wait->tcp_time_wait_tail = NULL;
1475 		}
1476 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1477 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1478 		ASSERT(tcp->tcp_time_wait_next == NULL);
1479 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1480 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1481 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1482 	} else {
1483 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1484 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1485 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1486 		    tcp->tcp_time_wait_next;
1487 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1488 		    tcp->tcp_time_wait_prev;
1489 	}
1490 	tcp->tcp_time_wait_next = NULL;
1491 	tcp->tcp_time_wait_prev = NULL;
1492 	tcp->tcp_time_wait_expire = 0;
1493 
1494 	if (locked)
1495 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1496 	return (B_TRUE);
1497 }
1498 
1499 /*
1500  * Add a connection to the list of detached TIME_WAIT connections
1501  * and set its time to expire.
1502  */
1503 static void
1504 tcp_time_wait_append(tcp_t *tcp)
1505 {
1506 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1507 	tcp_squeue_priv_t *tcp_time_wait =
1508 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1509 	    SQPRIVATE_TCP));
1510 
1511 	tcp_timers_stop(tcp);
1512 
1513 	/* Freed above */
1514 	ASSERT(tcp->tcp_timer_tid == 0);
1515 	ASSERT(tcp->tcp_ack_tid == 0);
1516 
1517 	/* must have happened at the time of detaching the tcp */
1518 	ASSERT(tcp->tcp_ptpahn == NULL);
1519 	ASSERT(tcp->tcp_flow_stopped == 0);
1520 	ASSERT(tcp->tcp_time_wait_next == NULL);
1521 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1522 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1523 	ASSERT(tcp->tcp_listener == NULL);
1524 
1525 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1526 	/*
1527 	 * The value computed below in tcp->tcp_time_wait_expire may
1528 	 * appear negative or wrap around. That is ok since our
1529 	 * interest is only in the difference between the current lbolt
1530 	 * value and tcp->tcp_time_wait_expire. But the value should not
1531 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1532 	 * The corresponding comparison in tcp_time_wait_collector() uses
1533 	 * modular arithmetic.
1534 	 */
1535 	tcp->tcp_time_wait_expire +=
1536 	    drv_usectohz(tcps->tcps_time_wait_interval * 1000);
1537 	if (tcp->tcp_time_wait_expire == 0)
1538 		tcp->tcp_time_wait_expire = 1;
1539 
1540 	ASSERT(TCP_IS_DETACHED(tcp));
1541 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1542 	ASSERT(tcp->tcp_time_wait_next == NULL);
1543 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1544 	TCP_DBGSTAT(tcps, tcp_time_wait);
1545 
1546 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1547 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1548 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1549 		tcp_time_wait->tcp_time_wait_head = tcp;
1550 	} else {
1551 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1552 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1553 		    TCPS_TIME_WAIT);
1554 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1555 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1556 	}
1557 	tcp_time_wait->tcp_time_wait_tail = tcp;
1558 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1559 }
1560 
1561 /* ARGSUSED */
1562 void
1563 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1564 {
1565 	conn_t	*connp = (conn_t *)arg;
1566 	tcp_t	*tcp = connp->conn_tcp;
1567 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1568 
1569 	ASSERT(tcp != NULL);
1570 	if (tcp->tcp_state == TCPS_CLOSED) {
1571 		return;
1572 	}
1573 
1574 	ASSERT((tcp->tcp_family == AF_INET &&
1575 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1576 	    (tcp->tcp_family == AF_INET6 &&
1577 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1578 	    tcp->tcp_ipversion == IPV6_VERSION)));
1579 	ASSERT(!tcp->tcp_listener);
1580 
1581 	TCP_STAT(tcps, tcp_time_wait_reap);
1582 	ASSERT(TCP_IS_DETACHED(tcp));
1583 
1584 	/*
1585 	 * Because they have no upstream client to rebind or tcp_close()
1586 	 * them later, we axe the connection here and now.
1587 	 */
1588 	tcp_close_detached(tcp);
1589 }
1590 
1591 /*
1592  * Remove cached/latched IPsec references.
1593  */
1594 void
1595 tcp_ipsec_cleanup(tcp_t *tcp)
1596 {
1597 	conn_t		*connp = tcp->tcp_connp;
1598 
1599 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1600 
1601 	if (connp->conn_latch != NULL) {
1602 		IPLATCH_REFRELE(connp->conn_latch,
1603 		    connp->conn_netstack);
1604 		connp->conn_latch = NULL;
1605 	}
1606 	if (connp->conn_policy != NULL) {
1607 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
1608 		connp->conn_policy = NULL;
1609 	}
1610 }
1611 
1612 /*
1613  * Cleaup before placing on free list.
1614  * Disassociate from the netstack/tcp_stack_t since the freelist
1615  * is per squeue and not per netstack.
1616  */
1617 void
1618 tcp_cleanup(tcp_t *tcp)
1619 {
1620 	mblk_t		*mp;
1621 	char		*tcp_iphc;
1622 	int		tcp_iphc_len;
1623 	int		tcp_hdr_grown;
1624 	tcp_sack_info_t	*tcp_sack_info;
1625 	conn_t		*connp = tcp->tcp_connp;
1626 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1627 	netstack_t	*ns = tcps->tcps_netstack;
1628 
1629 	tcp_bind_hash_remove(tcp);
1630 
1631 	/* Cleanup that which needs the netstack first */
1632 	tcp_ipsec_cleanup(tcp);
1633 
1634 	tcp_free(tcp);
1635 
1636 	/* Release any SSL context */
1637 	if (tcp->tcp_kssl_ent != NULL) {
1638 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1639 		tcp->tcp_kssl_ent = NULL;
1640 	}
1641 
1642 	if (tcp->tcp_kssl_ctx != NULL) {
1643 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1644 		tcp->tcp_kssl_ctx = NULL;
1645 	}
1646 	tcp->tcp_kssl_pending = B_FALSE;
1647 
1648 	conn_delete_ire(connp, NULL);
1649 
1650 	/*
1651 	 * Since we will bzero the entire structure, we need to
1652 	 * remove it and reinsert it in global hash list. We
1653 	 * know the walkers can't get to this conn because we
1654 	 * had set CONDEMNED flag earlier and checked reference
1655 	 * under conn_lock so walker won't pick it and when we
1656 	 * go the ipcl_globalhash_remove() below, no walker
1657 	 * can get to it.
1658 	 */
1659 	ipcl_globalhash_remove(connp);
1660 
1661 	/*
1662 	 * Now it is safe to decrement the reference counts.
1663 	 * This might be the last reference on the netstack and TCPS
1664 	 * in which case it will cause the tcp_g_q_close and
1665 	 * the freeing of the IP Instance.
1666 	 */
1667 	connp->conn_netstack = NULL;
1668 	netstack_rele(ns);
1669 	ASSERT(tcps != NULL);
1670 	tcp->tcp_tcps = NULL;
1671 	TCPS_REFRELE(tcps);
1672 
1673 	/* Save some state */
1674 	mp = tcp->tcp_timercache;
1675 
1676 	tcp_sack_info = tcp->tcp_sack_info;
1677 	tcp_iphc = tcp->tcp_iphc;
1678 	tcp_iphc_len = tcp->tcp_iphc_len;
1679 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1680 
1681 	if (connp->conn_cred != NULL) {
1682 		crfree(connp->conn_cred);
1683 		connp->conn_cred = NULL;
1684 	}
1685 	if (connp->conn_peercred != NULL) {
1686 		crfree(connp->conn_peercred);
1687 		connp->conn_peercred = NULL;
1688 	}
1689 	ipcl_conn_cleanup(connp);
1690 	connp->conn_flags = IPCL_TCPCONN;
1691 	bzero(tcp, sizeof (tcp_t));
1692 
1693 	/* restore the state */
1694 	tcp->tcp_timercache = mp;
1695 
1696 	tcp->tcp_sack_info = tcp_sack_info;
1697 	tcp->tcp_iphc = tcp_iphc;
1698 	tcp->tcp_iphc_len = tcp_iphc_len;
1699 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1700 
1701 	tcp->tcp_connp = connp;
1702 
1703 	ASSERT(connp->conn_tcp == tcp);
1704 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1705 	connp->conn_state_flags = CONN_INCIPIENT;
1706 	ASSERT(connp->conn_ulp == IPPROTO_TCP);
1707 	ASSERT(connp->conn_ref == 1);
1708 }
1709 
1710 /*
1711  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1712  * is done forwards from the head.
1713  * This walks all stack instances since
1714  * tcp_time_wait remains global across all stacks.
1715  */
1716 /* ARGSUSED */
1717 void
1718 tcp_time_wait_collector(void *arg)
1719 {
1720 	tcp_t *tcp;
1721 	clock_t now;
1722 	mblk_t *mp;
1723 	conn_t *connp;
1724 	kmutex_t *lock;
1725 	boolean_t removed;
1726 
1727 	squeue_t *sqp = (squeue_t *)arg;
1728 	tcp_squeue_priv_t *tcp_time_wait =
1729 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1730 
1731 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1732 	tcp_time_wait->tcp_time_wait_tid = 0;
1733 
1734 	if (tcp_time_wait->tcp_free_list != NULL &&
1735 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1736 		TCP_G_STAT(tcp_freelist_cleanup);
1737 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1738 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1739 			tcp->tcp_time_wait_next = NULL;
1740 			tcp_time_wait->tcp_free_list_cnt--;
1741 			ASSERT(tcp->tcp_tcps == NULL);
1742 			CONN_DEC_REF(tcp->tcp_connp);
1743 		}
1744 		ASSERT(tcp_time_wait->tcp_free_list_cnt == 0);
1745 	}
1746 
1747 	/*
1748 	 * In order to reap time waits reliably, we should use a
1749 	 * source of time that is not adjustable by the user -- hence
1750 	 * the call to ddi_get_lbolt().
1751 	 */
1752 	now = ddi_get_lbolt();
1753 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1754 		/*
1755 		 * Compare times using modular arithmetic, since
1756 		 * lbolt can wrapover.
1757 		 */
1758 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1759 			break;
1760 		}
1761 
1762 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1763 		ASSERT(removed);
1764 
1765 		connp = tcp->tcp_connp;
1766 		ASSERT(connp->conn_fanout != NULL);
1767 		lock = &connp->conn_fanout->connf_lock;
1768 		/*
1769 		 * This is essentially a TW reclaim fast path optimization for
1770 		 * performance where the timewait collector checks under the
1771 		 * fanout lock (so that no one else can get access to the
1772 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1773 		 * the classifier hash list. If ref count is indeed 2, we can
1774 		 * just remove the conn under the fanout lock and avoid
1775 		 * cleaning up the conn under the squeue, provided that
1776 		 * clustering callbacks are not enabled. If clustering is
1777 		 * enabled, we need to make the clustering callback before
1778 		 * setting the CONDEMNED flag and after dropping all locks and
1779 		 * so we forego this optimization and fall back to the slow
1780 		 * path. Also please see the comments in tcp_closei_local
1781 		 * regarding the refcnt logic.
1782 		 *
1783 		 * Since we are holding the tcp_time_wait_lock, its better
1784 		 * not to block on the fanout_lock because other connections
1785 		 * can't add themselves to time_wait list. So we do a
1786 		 * tryenter instead of mutex_enter.
1787 		 */
1788 		if (mutex_tryenter(lock)) {
1789 			mutex_enter(&connp->conn_lock);
1790 			if ((connp->conn_ref == 2) &&
1791 			    (cl_inet_disconnect == NULL)) {
1792 				ipcl_hash_remove_locked(connp,
1793 				    connp->conn_fanout);
1794 				/*
1795 				 * Set the CONDEMNED flag now itself so that
1796 				 * the refcnt cannot increase due to any
1797 				 * walker. But we have still not cleaned up
1798 				 * conn_ire_cache. This is still ok since
1799 				 * we are going to clean it up in tcp_cleanup
1800 				 * immediately and any interface unplumb
1801 				 * thread will wait till the ire is blown away
1802 				 */
1803 				connp->conn_state_flags |= CONN_CONDEMNED;
1804 				mutex_exit(lock);
1805 				mutex_exit(&connp->conn_lock);
1806 				if (tcp_time_wait->tcp_free_list_cnt <
1807 				    tcp_free_list_max_cnt) {
1808 					/* Add to head of tcp_free_list */
1809 					mutex_exit(
1810 					    &tcp_time_wait->tcp_time_wait_lock);
1811 					tcp_cleanup(tcp);
1812 					ASSERT(connp->conn_latch == NULL);
1813 					ASSERT(connp->conn_policy == NULL);
1814 					ASSERT(tcp->tcp_tcps == NULL);
1815 					ASSERT(connp->conn_netstack == NULL);
1816 
1817 					mutex_enter(
1818 					    &tcp_time_wait->tcp_time_wait_lock);
1819 					tcp->tcp_time_wait_next =
1820 					    tcp_time_wait->tcp_free_list;
1821 					tcp_time_wait->tcp_free_list = tcp;
1822 					tcp_time_wait->tcp_free_list_cnt++;
1823 					continue;
1824 				} else {
1825 					/* Do not add to tcp_free_list */
1826 					mutex_exit(
1827 					    &tcp_time_wait->tcp_time_wait_lock);
1828 					tcp_bind_hash_remove(tcp);
1829 					conn_delete_ire(tcp->tcp_connp, NULL);
1830 					tcp_ipsec_cleanup(tcp);
1831 					CONN_DEC_REF(tcp->tcp_connp);
1832 				}
1833 			} else {
1834 				CONN_INC_REF_LOCKED(connp);
1835 				mutex_exit(lock);
1836 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1837 				mutex_exit(&connp->conn_lock);
1838 				/*
1839 				 * We can reuse the closemp here since conn has
1840 				 * detached (otherwise we wouldn't even be in
1841 				 * time_wait list). tcp_closemp_used can safely
1842 				 * be changed without taking a lock as no other
1843 				 * thread can concurrently access it at this
1844 				 * point in the connection lifecycle.
1845 				 */
1846 
1847 				if (tcp->tcp_closemp.b_prev == NULL)
1848 					tcp->tcp_closemp_used = B_TRUE;
1849 				else
1850 					cmn_err(CE_PANIC,
1851 					    "tcp_timewait_collector: "
1852 					    "concurrent use of tcp_closemp: "
1853 					    "connp %p tcp %p\n", (void *)connp,
1854 					    (void *)tcp);
1855 
1856 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1857 				mp = &tcp->tcp_closemp;
1858 				squeue_fill(connp->conn_sqp, mp,
1859 				    tcp_timewait_output, connp,
1860 				    SQTAG_TCP_TIMEWAIT);
1861 			}
1862 		} else {
1863 			mutex_enter(&connp->conn_lock);
1864 			CONN_INC_REF_LOCKED(connp);
1865 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1866 			mutex_exit(&connp->conn_lock);
1867 			/*
1868 			 * We can reuse the closemp here since conn has
1869 			 * detached (otherwise we wouldn't even be in
1870 			 * time_wait list). tcp_closemp_used can safely
1871 			 * be changed without taking a lock as no other
1872 			 * thread can concurrently access it at this
1873 			 * point in the connection lifecycle.
1874 			 */
1875 
1876 			if (tcp->tcp_closemp.b_prev == NULL)
1877 				tcp->tcp_closemp_used = B_TRUE;
1878 			else
1879 				cmn_err(CE_PANIC, "tcp_timewait_collector: "
1880 				    "concurrent use of tcp_closemp: "
1881 				    "connp %p tcp %p\n", (void *)connp,
1882 				    (void *)tcp);
1883 
1884 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1885 			mp = &tcp->tcp_closemp;
1886 			squeue_fill(connp->conn_sqp, mp,
1887 			    tcp_timewait_output, connp, 0);
1888 		}
1889 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1890 	}
1891 
1892 	if (tcp_time_wait->tcp_free_list != NULL)
1893 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1894 
1895 	tcp_time_wait->tcp_time_wait_tid =
1896 	    timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY);
1897 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1898 }
1899 /*
1900  * Reply to a clients T_CONN_RES TPI message. This function
1901  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1902  * on the acceptor STREAM and processed in tcp_wput_accept().
1903  * Read the block comment on top of tcp_conn_request().
1904  */
1905 static void
1906 tcp_accept(tcp_t *listener, mblk_t *mp)
1907 {
1908 	tcp_t	*acceptor;
1909 	tcp_t	*eager;
1910 	tcp_t   *tcp;
1911 	struct T_conn_res	*tcr;
1912 	t_uscalar_t	acceptor_id;
1913 	t_scalar_t	seqnum;
1914 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1915 	mblk_t	*ok_mp;
1916 	mblk_t	*mp1;
1917 	tcp_stack_t	*tcps = listener->tcp_tcps;
1918 
1919 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1920 		tcp_err_ack(listener, mp, TPROTO, 0);
1921 		return;
1922 	}
1923 	tcr = (struct T_conn_res *)mp->b_rptr;
1924 
1925 	/*
1926 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1927 	 * read side queue of the streams device underneath us i.e. the
1928 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1929 	 * look it up in the queue_hash.  Under LP64 it sends down the
1930 	 * minor_t of the accepting endpoint.
1931 	 *
1932 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1933 	 * fanout hash lock is held.
1934 	 * This prevents any thread from entering the acceptor queue from
1935 	 * below (since it has not been hard bound yet i.e. any inbound
1936 	 * packets will arrive on the listener or default tcp queue and
1937 	 * go through tcp_lookup).
1938 	 * The CONN_INC_REF will prevent the acceptor from closing.
1939 	 *
1940 	 * XXX It is still possible for a tli application to send down data
1941 	 * on the accepting stream while another thread calls t_accept.
1942 	 * This should not be a problem for well-behaved applications since
1943 	 * the T_OK_ACK is sent after the queue swapping is completed.
1944 	 *
1945 	 * If the accepting fd is the same as the listening fd, avoid
1946 	 * queue hash lookup since that will return an eager listener in a
1947 	 * already established state.
1948 	 */
1949 	acceptor_id = tcr->ACCEPTOR_id;
1950 	mutex_enter(&listener->tcp_eager_lock);
1951 	if (listener->tcp_acceptor_id == acceptor_id) {
1952 		eager = listener->tcp_eager_next_q;
1953 		/* only count how many T_CONN_INDs so don't count q0 */
1954 		if ((listener->tcp_conn_req_cnt_q != 1) ||
1955 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
1956 			mutex_exit(&listener->tcp_eager_lock);
1957 			tcp_err_ack(listener, mp, TBADF, 0);
1958 			return;
1959 		}
1960 		if (listener->tcp_conn_req_cnt_q0 != 0) {
1961 			/* Throw away all the eagers on q0. */
1962 			tcp_eager_cleanup(listener, 1);
1963 		}
1964 		if (listener->tcp_syn_defense) {
1965 			listener->tcp_syn_defense = B_FALSE;
1966 			if (listener->tcp_ip_addr_cache != NULL) {
1967 				kmem_free(listener->tcp_ip_addr_cache,
1968 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1969 				listener->tcp_ip_addr_cache = NULL;
1970 			}
1971 		}
1972 		/*
1973 		 * Transfer tcp_conn_req_max to the eager so that when
1974 		 * a disconnect occurs we can revert the endpoint to the
1975 		 * listen state.
1976 		 */
1977 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
1978 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
1979 		/*
1980 		 * Get a reference on the acceptor just like the
1981 		 * tcp_acceptor_hash_lookup below.
1982 		 */
1983 		acceptor = listener;
1984 		CONN_INC_REF(acceptor->tcp_connp);
1985 	} else {
1986 		acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps);
1987 		if (acceptor == NULL) {
1988 			if (listener->tcp_debug) {
1989 				(void) strlog(TCP_MOD_ID, 0, 1,
1990 				    SL_ERROR|SL_TRACE,
1991 				    "tcp_accept: did not find acceptor 0x%x\n",
1992 				    acceptor_id);
1993 			}
1994 			mutex_exit(&listener->tcp_eager_lock);
1995 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
1996 			return;
1997 		}
1998 		/*
1999 		 * Verify acceptor state. The acceptable states for an acceptor
2000 		 * include TCPS_IDLE and TCPS_BOUND.
2001 		 */
2002 		switch (acceptor->tcp_state) {
2003 		case TCPS_IDLE:
2004 			/* FALLTHRU */
2005 		case TCPS_BOUND:
2006 			break;
2007 		default:
2008 			CONN_DEC_REF(acceptor->tcp_connp);
2009 			mutex_exit(&listener->tcp_eager_lock);
2010 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2011 			return;
2012 		}
2013 	}
2014 
2015 	/* The listener must be in TCPS_LISTEN */
2016 	if (listener->tcp_state != TCPS_LISTEN) {
2017 		CONN_DEC_REF(acceptor->tcp_connp);
2018 		mutex_exit(&listener->tcp_eager_lock);
2019 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2020 		return;
2021 	}
2022 
2023 	/*
2024 	 * Rendezvous with an eager connection request packet hanging off
2025 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2026 	 * tcp structure when the connection packet arrived in
2027 	 * tcp_conn_request().
2028 	 */
2029 	seqnum = tcr->SEQ_number;
2030 	eager = listener;
2031 	do {
2032 		eager = eager->tcp_eager_next_q;
2033 		if (eager == NULL) {
2034 			CONN_DEC_REF(acceptor->tcp_connp);
2035 			mutex_exit(&listener->tcp_eager_lock);
2036 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2037 			return;
2038 		}
2039 	} while (eager->tcp_conn_req_seqnum != seqnum);
2040 	mutex_exit(&listener->tcp_eager_lock);
2041 
2042 	/*
2043 	 * At this point, both acceptor and listener have 2 ref
2044 	 * that they begin with. Acceptor has one additional ref
2045 	 * we placed in lookup while listener has 3 additional
2046 	 * ref for being behind the squeue (tcp_accept() is
2047 	 * done on listener's squeue); being in classifier hash;
2048 	 * and eager's ref on listener.
2049 	 */
2050 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2051 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2052 
2053 	/*
2054 	 * The eager at this point is set in its own squeue and
2055 	 * could easily have been killed (tcp_accept_finish will
2056 	 * deal with that) because of a TH_RST so we can only
2057 	 * ASSERT for a single ref.
2058 	 */
2059 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2060 
2061 	/* Pre allocate the stroptions mblk also */
2062 	opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
2063 	if (opt_mp == NULL) {
2064 		CONN_DEC_REF(acceptor->tcp_connp);
2065 		CONN_DEC_REF(eager->tcp_connp);
2066 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2067 		return;
2068 	}
2069 	DB_TYPE(opt_mp) = M_SETOPTS;
2070 	opt_mp->b_wptr += sizeof (struct stroptions);
2071 
2072 	/*
2073 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2074 	 * from listener to acceptor. The message is chained on opt_mp
2075 	 * which will be sent onto eager's squeue.
2076 	 */
2077 	if (listener->tcp_bound_if != 0) {
2078 		/* allocate optmgmt req */
2079 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2080 		    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
2081 		    sizeof (int));
2082 		if (mp1 != NULL)
2083 			linkb(opt_mp, mp1);
2084 	}
2085 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2086 		uint_t on = 1;
2087 
2088 		/* allocate optmgmt req */
2089 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2090 		    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
2091 		if (mp1 != NULL)
2092 			linkb(opt_mp, mp1);
2093 	}
2094 
2095 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2096 	if ((mp1 = copymsg(mp)) == NULL) {
2097 		CONN_DEC_REF(acceptor->tcp_connp);
2098 		CONN_DEC_REF(eager->tcp_connp);
2099 		freemsg(opt_mp);
2100 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2101 		return;
2102 	}
2103 
2104 	tcr = (struct T_conn_res *)mp1->b_rptr;
2105 
2106 	/*
2107 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2108 	 * which allocates a larger mblk and appends the new
2109 	 * local address to the ok_ack.  The address is copied by
2110 	 * soaccept() for getsockname().
2111 	 */
2112 	{
2113 		int extra;
2114 
2115 		extra = (eager->tcp_family == AF_INET) ?
2116 		    sizeof (sin_t) : sizeof (sin6_t);
2117 
2118 		/*
2119 		 * Try to re-use mp, if possible.  Otherwise, allocate
2120 		 * an mblk and return it as ok_mp.  In any case, mp
2121 		 * is no longer usable upon return.
2122 		 */
2123 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2124 			CONN_DEC_REF(acceptor->tcp_connp);
2125 			CONN_DEC_REF(eager->tcp_connp);
2126 			freemsg(opt_mp);
2127 			/* Original mp has been freed by now, so use mp1 */
2128 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2129 			return;
2130 		}
2131 
2132 		mp = NULL;	/* We should never use mp after this point */
2133 
2134 		switch (extra) {
2135 		case sizeof (sin_t): {
2136 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2137 
2138 				ok_mp->b_wptr += extra;
2139 				sin->sin_family = AF_INET;
2140 				sin->sin_port = eager->tcp_lport;
2141 				sin->sin_addr.s_addr =
2142 				    eager->tcp_ipha->ipha_src;
2143 				break;
2144 			}
2145 		case sizeof (sin6_t): {
2146 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2147 
2148 				ok_mp->b_wptr += extra;
2149 				sin6->sin6_family = AF_INET6;
2150 				sin6->sin6_port = eager->tcp_lport;
2151 				if (eager->tcp_ipversion == IPV4_VERSION) {
2152 					sin6->sin6_flowinfo = 0;
2153 					IN6_IPADDR_TO_V4MAPPED(
2154 					    eager->tcp_ipha->ipha_src,
2155 					    &sin6->sin6_addr);
2156 				} else {
2157 					ASSERT(eager->tcp_ip6h != NULL);
2158 					sin6->sin6_flowinfo =
2159 					    eager->tcp_ip6h->ip6_vcf &
2160 					    ~IPV6_VERS_AND_FLOW_MASK;
2161 					sin6->sin6_addr =
2162 					    eager->tcp_ip6h->ip6_src;
2163 				}
2164 				sin6->sin6_scope_id = 0;
2165 				sin6->__sin6_src_id = 0;
2166 				break;
2167 			}
2168 		default:
2169 			break;
2170 		}
2171 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2172 	}
2173 
2174 	/*
2175 	 * If there are no options we know that the T_CONN_RES will
2176 	 * succeed. However, we can't send the T_OK_ACK upstream until
2177 	 * the tcp_accept_swap is done since it would be dangerous to
2178 	 * let the application start using the new fd prior to the swap.
2179 	 */
2180 	tcp_accept_swap(listener, acceptor, eager);
2181 
2182 	/*
2183 	 * tcp_accept_swap unlinks eager from listener but does not drop
2184 	 * the eager's reference on the listener.
2185 	 */
2186 	ASSERT(eager->tcp_listener == NULL);
2187 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2188 
2189 	/*
2190 	 * The eager is now associated with its own queue. Insert in
2191 	 * the hash so that the connection can be reused for a future
2192 	 * T_CONN_RES.
2193 	 */
2194 	tcp_acceptor_hash_insert(acceptor_id, eager);
2195 
2196 	/*
2197 	 * We now do the processing of options with T_CONN_RES.
2198 	 * We delay till now since we wanted to have queue to pass to
2199 	 * option processing routines that points back to the right
2200 	 * instance structure which does not happen until after
2201 	 * tcp_accept_swap().
2202 	 *
2203 	 * Note:
2204 	 * The sanity of the logic here assumes that whatever options
2205 	 * are appropriate to inherit from listner=>eager are done
2206 	 * before this point, and whatever were to be overridden (or not)
2207 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2208 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2209 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2210 	 * This may not be true at this point in time but can be fixed
2211 	 * independently. This option processing code starts with
2212 	 * the instantiated acceptor instance and the final queue at
2213 	 * this point.
2214 	 */
2215 
2216 	if (tcr->OPT_length != 0) {
2217 		/* Options to process */
2218 		int t_error = 0;
2219 		int sys_error = 0;
2220 		int do_disconnect = 0;
2221 
2222 		if (tcp_conprim_opt_process(eager, mp1,
2223 		    &do_disconnect, &t_error, &sys_error) < 0) {
2224 			eager->tcp_accept_error = 1;
2225 			if (do_disconnect) {
2226 				/*
2227 				 * An option failed which does not allow
2228 				 * connection to be accepted.
2229 				 *
2230 				 * We allow T_CONN_RES to succeed and
2231 				 * put a T_DISCON_IND on the eager queue.
2232 				 */
2233 				ASSERT(t_error == 0 && sys_error == 0);
2234 				eager->tcp_send_discon_ind = 1;
2235 			} else {
2236 				ASSERT(t_error != 0);
2237 				freemsg(ok_mp);
2238 				/*
2239 				 * Original mp was either freed or set
2240 				 * to ok_mp above, so use mp1 instead.
2241 				 */
2242 				tcp_err_ack(listener, mp1, t_error, sys_error);
2243 				goto finish;
2244 			}
2245 		}
2246 		/*
2247 		 * Most likely success in setting options (except if
2248 		 * eager->tcp_send_discon_ind set).
2249 		 * mp1 option buffer represented by OPT_length/offset
2250 		 * potentially modified and contains results of setting
2251 		 * options at this point
2252 		 */
2253 	}
2254 
2255 	/* We no longer need mp1, since all options processing has passed */
2256 	freemsg(mp1);
2257 
2258 	putnext(listener->tcp_rq, ok_mp);
2259 
2260 	mutex_enter(&listener->tcp_eager_lock);
2261 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2262 		tcp_t	*tail;
2263 		mblk_t	*conn_ind;
2264 
2265 		/*
2266 		 * This path should not be executed if listener and
2267 		 * acceptor streams are the same.
2268 		 */
2269 		ASSERT(listener != acceptor);
2270 
2271 		tcp = listener->tcp_eager_prev_q0;
2272 		/*
2273 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2274 		 * deferred T_conn_ind queue. We need to get to the head of
2275 		 * the queue in order to send up T_conn_ind the same order as
2276 		 * how the 3WHS is completed.
2277 		 */
2278 		while (tcp != listener) {
2279 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2280 				break;
2281 			else
2282 				tcp = tcp->tcp_eager_prev_q0;
2283 		}
2284 		ASSERT(tcp != listener);
2285 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2286 		ASSERT(conn_ind != NULL);
2287 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2288 
2289 		/* Move from q0 to q */
2290 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2291 		listener->tcp_conn_req_cnt_q0--;
2292 		listener->tcp_conn_req_cnt_q++;
2293 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2294 		    tcp->tcp_eager_prev_q0;
2295 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2296 		    tcp->tcp_eager_next_q0;
2297 		tcp->tcp_eager_prev_q0 = NULL;
2298 		tcp->tcp_eager_next_q0 = NULL;
2299 		tcp->tcp_conn_def_q0 = B_FALSE;
2300 
2301 		/* Make sure the tcp isn't in the list of droppables */
2302 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2303 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2304 
2305 		/*
2306 		 * Insert at end of the queue because sockfs sends
2307 		 * down T_CONN_RES in chronological order. Leaving
2308 		 * the older conn indications at front of the queue
2309 		 * helps reducing search time.
2310 		 */
2311 		tail = listener->tcp_eager_last_q;
2312 		if (tail != NULL)
2313 			tail->tcp_eager_next_q = tcp;
2314 		else
2315 			listener->tcp_eager_next_q = tcp;
2316 		listener->tcp_eager_last_q = tcp;
2317 		tcp->tcp_eager_next_q = NULL;
2318 		mutex_exit(&listener->tcp_eager_lock);
2319 		putnext(tcp->tcp_rq, conn_ind);
2320 	} else {
2321 		mutex_exit(&listener->tcp_eager_lock);
2322 	}
2323 
2324 	/*
2325 	 * Done with the acceptor - free it
2326 	 *
2327 	 * Note: from this point on, no access to listener should be made
2328 	 * as listener can be equal to acceptor.
2329 	 */
2330 finish:
2331 	ASSERT(acceptor->tcp_detached);
2332 	ASSERT(tcps->tcps_g_q != NULL);
2333 	acceptor->tcp_rq = tcps->tcps_g_q;
2334 	acceptor->tcp_wq = WR(tcps->tcps_g_q);
2335 	(void) tcp_clean_death(acceptor, 0, 2);
2336 	CONN_DEC_REF(acceptor->tcp_connp);
2337 
2338 	/*
2339 	 * In case we already received a FIN we have to make tcp_rput send
2340 	 * the ordrel_ind. This will also send up a window update if the window
2341 	 * has opened up.
2342 	 *
2343 	 * In the normal case of a successful connection acceptance
2344 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2345 	 * indication that this was just accepted. This tells tcp_rput to
2346 	 * pass up any data queued in tcp_rcv_list.
2347 	 *
2348 	 * In the fringe case where options sent with T_CONN_RES failed and
2349 	 * we required, we would be indicating a T_DISCON_IND to blow
2350 	 * away this connection.
2351 	 */
2352 
2353 	/*
2354 	 * XXX: we currently have a problem if XTI application closes the
2355 	 * acceptor stream in between. This problem exists in on10-gate also
2356 	 * and is well know but nothing can be done short of major rewrite
2357 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2358 	 * eager same squeue as listener (we can distinguish non socket
2359 	 * listeners at the time of handling a SYN in tcp_conn_request)
2360 	 * and do most of the work that tcp_accept_finish does here itself
2361 	 * and then get behind the acceptor squeue to access the acceptor
2362 	 * queue.
2363 	 */
2364 	/*
2365 	 * We already have a ref on tcp so no need to do one before squeue_fill
2366 	 */
2367 	squeue_fill(eager->tcp_connp->conn_sqp, opt_mp,
2368 	    tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH);
2369 }
2370 
2371 /*
2372  * Swap information between the eager and acceptor for a TLI/XTI client.
2373  * The sockfs accept is done on the acceptor stream and control goes
2374  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2375  * called. In either case, both the eager and listener are in their own
2376  * perimeter (squeue) and the code has to deal with potential race.
2377  *
2378  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2379  */
2380 static void
2381 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2382 {
2383 	conn_t	*econnp, *aconnp;
2384 
2385 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2386 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2387 	ASSERT(!eager->tcp_hard_bound);
2388 	ASSERT(!TCP_IS_SOCKET(acceptor));
2389 	ASSERT(!TCP_IS_SOCKET(eager));
2390 	ASSERT(!TCP_IS_SOCKET(listener));
2391 
2392 	acceptor->tcp_detached = B_TRUE;
2393 	/*
2394 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2395 	 * the acceptor id.
2396 	 */
2397 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2398 
2399 	/* remove eager from listen list... */
2400 	mutex_enter(&listener->tcp_eager_lock);
2401 	tcp_eager_unlink(eager);
2402 	ASSERT(eager->tcp_eager_next_q == NULL &&
2403 	    eager->tcp_eager_last_q == NULL);
2404 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2405 	    eager->tcp_eager_prev_q0 == NULL);
2406 	mutex_exit(&listener->tcp_eager_lock);
2407 	eager->tcp_rq = acceptor->tcp_rq;
2408 	eager->tcp_wq = acceptor->tcp_wq;
2409 
2410 	econnp = eager->tcp_connp;
2411 	aconnp = acceptor->tcp_connp;
2412 
2413 	eager->tcp_rq->q_ptr = econnp;
2414 	eager->tcp_wq->q_ptr = econnp;
2415 
2416 	/*
2417 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2418 	 * which might be a different squeue from our peer TCP instance.
2419 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2420 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2421 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2422 	 * above reach global visibility prior to the clearing of tcp_detached.
2423 	 */
2424 	membar_producer();
2425 	eager->tcp_detached = B_FALSE;
2426 
2427 	ASSERT(eager->tcp_ack_tid == 0);
2428 
2429 	econnp->conn_dev = aconnp->conn_dev;
2430 	econnp->conn_minor_arena = aconnp->conn_minor_arena;
2431 	ASSERT(econnp->conn_minor_arena != NULL);
2432 	if (eager->tcp_cred != NULL)
2433 		crfree(eager->tcp_cred);
2434 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2435 	ASSERT(econnp->conn_netstack == aconnp->conn_netstack);
2436 	ASSERT(eager->tcp_tcps == acceptor->tcp_tcps);
2437 
2438 	aconnp->conn_cred = NULL;
2439 
2440 	econnp->conn_zoneid = aconnp->conn_zoneid;
2441 	econnp->conn_allzones = aconnp->conn_allzones;
2442 
2443 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2444 	aconnp->conn_mac_exempt = B_FALSE;
2445 
2446 	ASSERT(aconnp->conn_peercred == NULL);
2447 
2448 	/* Do the IPC initialization */
2449 	CONN_INC_REF(econnp);
2450 
2451 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2452 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2453 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2454 
2455 	/* Done with old IPC. Drop its ref on its connp */
2456 	CONN_DEC_REF(aconnp);
2457 }
2458 
2459 
2460 /*
2461  * Adapt to the information, such as rtt and rtt_sd, provided from the
2462  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2463  *
2464  * Checks for multicast and broadcast destination address.
2465  * Returns zero on failure; non-zero if ok.
2466  *
2467  * Note that the MSS calculation here is based on the info given in
2468  * the IRE.  We do not do any calculation based on TCP options.  They
2469  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2470  * knows which options to use.
2471  *
2472  * Note on how TCP gets its parameters for a connection.
2473  *
2474  * When a tcp_t structure is allocated, it gets all the default parameters.
2475  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2476  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2477  * default.  But if there is an associated tcp_host_param, it will override
2478  * the metrics.
2479  *
2480  * An incoming SYN with a multicast or broadcast destination address, is dropped
2481  * in 1 of 2 places.
2482  *
2483  * 1. If the packet was received over the wire it is dropped in
2484  * ip_rput_process_broadcast()
2485  *
2486  * 2. If the packet was received through internal IP loopback, i.e. the packet
2487  * was generated and received on the same machine, it is dropped in
2488  * ip_wput_local()
2489  *
2490  * An incoming SYN with a multicast or broadcast source address is always
2491  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2492  * reject an attempt to connect to a broadcast or multicast (destination)
2493  * address.
2494  */
2495 static int
2496 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2497 {
2498 	tcp_hsp_t	*hsp;
2499 	ire_t		*ire;
2500 	ire_t		*sire = NULL;
2501 	iulp_t		*ire_uinfo = NULL;
2502 	uint32_t	mss_max;
2503 	uint32_t	mss;
2504 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2505 	conn_t		*connp = tcp->tcp_connp;
2506 	boolean_t	ire_cacheable = B_FALSE;
2507 	zoneid_t	zoneid = connp->conn_zoneid;
2508 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2509 	    MATCH_IRE_SECATTR;
2510 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2511 	ill_t		*ill = NULL;
2512 	boolean_t	incoming = (ire_mp == NULL);
2513 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2514 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
2515 
2516 	ASSERT(connp->conn_ire_cache == NULL);
2517 
2518 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2519 
2520 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2521 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
2522 			return (0);
2523 		}
2524 		/*
2525 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2526 		 * for the destination with the nexthop as gateway.
2527 		 * ire_ctable_lookup() is used because this particular
2528 		 * ire, if it exists, will be marked private.
2529 		 * If that is not available, use the interface ire
2530 		 * for the nexthop.
2531 		 *
2532 		 * TSol: tcp_update_label will detect label mismatches based
2533 		 * only on the destination's label, but that would not
2534 		 * detect label mismatches based on the security attributes
2535 		 * of routes or next hop gateway. Hence we need to pass the
2536 		 * label to ire_ftable_lookup below in order to locate the
2537 		 * right prefix (and/or) ire cache. Similarly we also need
2538 		 * pass the label to the ire_cache_lookup below to locate
2539 		 * the right ire that also matches on the label.
2540 		 */
2541 		if (tcp->tcp_connp->conn_nexthop_set) {
2542 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2543 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2544 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW,
2545 			    ipst);
2546 			if (ire == NULL) {
2547 				ire = ire_ftable_lookup(
2548 				    tcp->tcp_connp->conn_nexthop_v4,
2549 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2550 				    tsl, match_flags, ipst);
2551 				if (ire == NULL)
2552 					return (0);
2553 			} else {
2554 				ire_uinfo = &ire->ire_uinfo;
2555 			}
2556 		} else {
2557 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2558 			    zoneid, tsl, ipst);
2559 			if (ire != NULL) {
2560 				ire_cacheable = B_TRUE;
2561 				ire_uinfo = (ire_mp != NULL) ?
2562 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2563 				    &ire->ire_uinfo;
2564 
2565 			} else {
2566 				if (ire_mp == NULL) {
2567 					ire = ire_ftable_lookup(
2568 					    tcp->tcp_connp->conn_rem,
2569 					    0, 0, 0, NULL, &sire, zoneid, 0,
2570 					    tsl, (MATCH_IRE_RECURSIVE |
2571 					    MATCH_IRE_DEFAULT), ipst);
2572 					if (ire == NULL)
2573 						return (0);
2574 					ire_uinfo = (sire != NULL) ?
2575 					    &sire->ire_uinfo :
2576 					    &ire->ire_uinfo;
2577 				} else {
2578 					ire = (ire_t *)ire_mp->b_rptr;
2579 					ire_uinfo =
2580 					    &((ire_t *)
2581 					    ire_mp->b_rptr)->ire_uinfo;
2582 				}
2583 			}
2584 		}
2585 		ASSERT(ire != NULL);
2586 
2587 		if ((ire->ire_src_addr == INADDR_ANY) ||
2588 		    (ire->ire_type & IRE_BROADCAST)) {
2589 			/*
2590 			 * ire->ire_mp is non null when ire_mp passed in is used
2591 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2592 			 */
2593 			if (ire->ire_mp == NULL)
2594 				ire_refrele(ire);
2595 			if (sire != NULL)
2596 				ire_refrele(sire);
2597 			return (0);
2598 		}
2599 
2600 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2601 			ipaddr_t src_addr;
2602 
2603 			/*
2604 			 * ip_bind_connected() has stored the correct source
2605 			 * address in conn_src.
2606 			 */
2607 			src_addr = tcp->tcp_connp->conn_src;
2608 			tcp->tcp_ipha->ipha_src = src_addr;
2609 			/*
2610 			 * Copy of the src addr. in tcp_t is needed
2611 			 * for the lookup funcs.
2612 			 */
2613 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2614 		}
2615 		/*
2616 		 * Set the fragment bit so that IP will tell us if the MTU
2617 		 * should change. IP tells us the latest setting of
2618 		 * ip_path_mtu_discovery through ire_frag_flag.
2619 		 */
2620 		if (ipst->ips_ip_path_mtu_discovery) {
2621 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2622 			    htons(IPH_DF);
2623 		}
2624 		/*
2625 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2626 		 * for IP_NEXTHOP. No cache ire has been found for the
2627 		 * destination and we are working with the nexthop's
2628 		 * interface ire. Since we need to forward all packets
2629 		 * to the nexthop first, we "blindly" set tcp_localnet
2630 		 * to false, eventhough the destination may also be
2631 		 * onlink.
2632 		 */
2633 		if (ire_uinfo == NULL)
2634 			tcp->tcp_localnet = 0;
2635 		else
2636 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2637 	} else {
2638 		/*
2639 		 * For incoming connection ire_mp = NULL
2640 		 * For outgoing connection ire_mp != NULL
2641 		 * Technically we should check conn_incoming_ill
2642 		 * when ire_mp is NULL and conn_outgoing_ill when
2643 		 * ire_mp is non-NULL. But this is performance
2644 		 * critical path and for IPV*_BOUND_IF, outgoing
2645 		 * and incoming ill are always set to the same value.
2646 		 */
2647 		ill_t	*dst_ill = NULL;
2648 		ipif_t  *dst_ipif = NULL;
2649 
2650 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2651 
2652 		if (connp->conn_outgoing_ill != NULL) {
2653 			/* Outgoing or incoming path */
2654 			int   err;
2655 
2656 			dst_ill = conn_get_held_ill(connp,
2657 			    &connp->conn_outgoing_ill, &err);
2658 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2659 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2660 				return (0);
2661 			}
2662 			match_flags |= MATCH_IRE_ILL;
2663 			dst_ipif = dst_ill->ill_ipif;
2664 		}
2665 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2666 		    0, 0, dst_ipif, zoneid, tsl, match_flags, ipst);
2667 
2668 		if (ire != NULL) {
2669 			ire_cacheable = B_TRUE;
2670 			ire_uinfo = (ire_mp != NULL) ?
2671 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2672 			    &ire->ire_uinfo;
2673 		} else {
2674 			if (ire_mp == NULL) {
2675 				ire = ire_ftable_lookup_v6(
2676 				    &tcp->tcp_connp->conn_remv6,
2677 				    0, 0, 0, dst_ipif, &sire, zoneid,
2678 				    0, tsl, match_flags, ipst);
2679 				if (ire == NULL) {
2680 					if (dst_ill != NULL)
2681 						ill_refrele(dst_ill);
2682 					return (0);
2683 				}
2684 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2685 				    &ire->ire_uinfo;
2686 			} else {
2687 				ire = (ire_t *)ire_mp->b_rptr;
2688 				ire_uinfo =
2689 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2690 			}
2691 		}
2692 		if (dst_ill != NULL)
2693 			ill_refrele(dst_ill);
2694 
2695 		ASSERT(ire != NULL);
2696 		ASSERT(ire_uinfo != NULL);
2697 
2698 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2699 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2700 			/*
2701 			 * ire->ire_mp is non null when ire_mp passed in is used
2702 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2703 			 */
2704 			if (ire->ire_mp == NULL)
2705 				ire_refrele(ire);
2706 			if (sire != NULL)
2707 				ire_refrele(sire);
2708 			return (0);
2709 		}
2710 
2711 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2712 			in6_addr_t	src_addr;
2713 
2714 			/*
2715 			 * ip_bind_connected_v6() has stored the correct source
2716 			 * address per IPv6 addr. selection policy in
2717 			 * conn_src_v6.
2718 			 */
2719 			src_addr = tcp->tcp_connp->conn_srcv6;
2720 
2721 			tcp->tcp_ip6h->ip6_src = src_addr;
2722 			/*
2723 			 * Copy of the src addr. in tcp_t is needed
2724 			 * for the lookup funcs.
2725 			 */
2726 			tcp->tcp_ip_src_v6 = src_addr;
2727 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2728 			    &connp->conn_srcv6));
2729 		}
2730 		tcp->tcp_localnet =
2731 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2732 	}
2733 
2734 	/*
2735 	 * This allows applications to fail quickly when connections are made
2736 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2737 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2738 	 */
2739 	if ((ire->ire_flags & RTF_REJECT) &&
2740 	    (ire->ire_flags & RTF_PRIVATE))
2741 		goto error;
2742 
2743 	/*
2744 	 * Make use of the cached rtt and rtt_sd values to calculate the
2745 	 * initial RTO.  Note that they are already initialized in
2746 	 * tcp_init_values().
2747 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2748 	 * IP_NEXTHOP, but instead are using the interface ire for the
2749 	 * nexthop, then we do not use the ire_uinfo from that ire to
2750 	 * do any initializations.
2751 	 */
2752 	if (ire_uinfo != NULL) {
2753 		if (ire_uinfo->iulp_rtt != 0) {
2754 			clock_t	rto;
2755 
2756 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2757 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2758 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2759 			    tcps->tcps_rexmit_interval_extra +
2760 			    (tcp->tcp_rtt_sa >> 5);
2761 
2762 			if (rto > tcps->tcps_rexmit_interval_max) {
2763 				tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
2764 			} else if (rto < tcps->tcps_rexmit_interval_min) {
2765 				tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
2766 			} else {
2767 				tcp->tcp_rto = rto;
2768 			}
2769 		}
2770 		if (ire_uinfo->iulp_ssthresh != 0)
2771 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2772 		else
2773 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2774 		if (ire_uinfo->iulp_spipe > 0) {
2775 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2776 			    tcps->tcps_max_buf);
2777 			if (tcps->tcps_snd_lowat_fraction != 0)
2778 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2779 				    tcps->tcps_snd_lowat_fraction;
2780 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2781 		}
2782 		/*
2783 		 * Note that up till now, acceptor always inherits receive
2784 		 * window from the listener.  But if there is a metrics
2785 		 * associated with a host, we should use that instead of
2786 		 * inheriting it from listener. Thus we need to pass this
2787 		 * info back to the caller.
2788 		 */
2789 		if (ire_uinfo->iulp_rpipe > 0) {
2790 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe,
2791 			    tcps->tcps_max_buf);
2792 		}
2793 
2794 		if (ire_uinfo->iulp_rtomax > 0) {
2795 			tcp->tcp_second_timer_threshold =
2796 			    ire_uinfo->iulp_rtomax;
2797 		}
2798 
2799 		/*
2800 		 * Use the metric option settings, iulp_tstamp_ok and
2801 		 * iulp_wscale_ok, only for active open. What this means
2802 		 * is that if the other side uses timestamp or window
2803 		 * scale option, TCP will also use those options. That
2804 		 * is for passive open.  If the application sets a
2805 		 * large window, window scale is enabled regardless of
2806 		 * the value in iulp_wscale_ok.  This is the behavior
2807 		 * since 2.6.  So we keep it.
2808 		 * The only case left in passive open processing is the
2809 		 * check for SACK.
2810 		 * For ECN, it should probably be like SACK.  But the
2811 		 * current value is binary, so we treat it like the other
2812 		 * cases.  The metric only controls active open.For passive
2813 		 * open, the ndd param, tcp_ecn_permitted, controls the
2814 		 * behavior.
2815 		 */
2816 		if (!tcp_detached) {
2817 			/*
2818 			 * The if check means that the following can only
2819 			 * be turned on by the metrics only IRE, but not off.
2820 			 */
2821 			if (ire_uinfo->iulp_tstamp_ok)
2822 				tcp->tcp_snd_ts_ok = B_TRUE;
2823 			if (ire_uinfo->iulp_wscale_ok)
2824 				tcp->tcp_snd_ws_ok = B_TRUE;
2825 			if (ire_uinfo->iulp_sack == 2)
2826 				tcp->tcp_snd_sack_ok = B_TRUE;
2827 			if (ire_uinfo->iulp_ecn_ok)
2828 				tcp->tcp_ecn_ok = B_TRUE;
2829 		} else {
2830 			/*
2831 			 * Passive open.
2832 			 *
2833 			 * As above, the if check means that SACK can only be
2834 			 * turned on by the metric only IRE.
2835 			 */
2836 			if (ire_uinfo->iulp_sack > 0) {
2837 				tcp->tcp_snd_sack_ok = B_TRUE;
2838 			}
2839 		}
2840 	}
2841 
2842 
2843 	/*
2844 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2845 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2846 	 * length of all those options exceeds 28 bytes.  But because
2847 	 * of the tcp_mss_min check below, we may not have a problem if
2848 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2849 	 * the negative problem still exists.  And the check defeats PMTUd.
2850 	 * In fact, if PMTUd finds that the MSS should be smaller than
2851 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2852 	 * value.
2853 	 *
2854 	 * We do not deal with that now.  All those problems related to
2855 	 * PMTUd will be fixed later.
2856 	 */
2857 	ASSERT(ire->ire_max_frag != 0);
2858 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2859 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2860 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2861 			mss = MIN(mss, IPV6_MIN_MTU);
2862 		}
2863 	}
2864 
2865 	/* Sanity check for MSS value. */
2866 	if (tcp->tcp_ipversion == IPV4_VERSION)
2867 		mss_max = tcps->tcps_mss_max_ipv4;
2868 	else
2869 		mss_max = tcps->tcps_mss_max_ipv6;
2870 
2871 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2872 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2873 		/*
2874 		 * After receiving an ICMPv6 "packet too big" message with a
2875 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2876 		 * will insert a 8-byte fragment header in every packet; we
2877 		 * reduce the MSS by that amount here.
2878 		 */
2879 		mss -= sizeof (ip6_frag_t);
2880 	}
2881 
2882 	if (tcp->tcp_ipsec_overhead == 0)
2883 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2884 
2885 	mss -= tcp->tcp_ipsec_overhead;
2886 
2887 	if (mss < tcps->tcps_mss_min)
2888 		mss = tcps->tcps_mss_min;
2889 	if (mss > mss_max)
2890 		mss = mss_max;
2891 
2892 	/* Note that this is the maximum MSS, excluding all options. */
2893 	tcp->tcp_mss = mss;
2894 
2895 	/*
2896 	 * Initialize the ISS here now that we have the full connection ID.
2897 	 * The RFC 1948 method of initial sequence number generation requires
2898 	 * knowledge of the full connection ID before setting the ISS.
2899 	 */
2900 
2901 	tcp_iss_init(tcp);
2902 
2903 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2904 		tcp->tcp_loopback = B_TRUE;
2905 
2906 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2907 		hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps);
2908 	} else {
2909 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps);
2910 	}
2911 
2912 	if (hsp != NULL) {
2913 		/* Only modify if we're going to make them bigger */
2914 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2915 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2916 			if (tcps->tcps_snd_lowat_fraction != 0)
2917 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2918 				    tcps->tcps_snd_lowat_fraction;
2919 		}
2920 
2921 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2922 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2923 		}
2924 
2925 		/* Copy timestamp flag only for active open */
2926 		if (!tcp_detached)
2927 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
2928 	}
2929 
2930 	if (sire != NULL)
2931 		IRE_REFRELE(sire);
2932 
2933 	/*
2934 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2935 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2936 	 */
2937 	if (tcp->tcp_loopback ||
2938 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2939 		/*
2940 		 * For incoming, see if this tcp may be MDT-capable.  For
2941 		 * outgoing, this process has been taken care of through
2942 		 * tcp_rput_other.
2943 		 */
2944 		tcp_ire_ill_check(tcp, ire, ill, incoming);
2945 		tcp->tcp_ire_ill_check_done = B_TRUE;
2946 	}
2947 
2948 	mutex_enter(&connp->conn_lock);
2949 	/*
2950 	 * Make sure that conn is not marked incipient
2951 	 * for incoming connections. A blind
2952 	 * removal of incipient flag is cheaper than
2953 	 * check and removal.
2954 	 */
2955 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2956 
2957 	/*
2958 	 * Must not cache forwarding table routes
2959 	 * or recache an IRE after the conn_t has
2960 	 * had conn_ire_cache cleared and is flagged
2961 	 * unusable, (see the CONN_CACHE_IRE() macro).
2962 	 */
2963 	if (ire_cacheable && CONN_CACHE_IRE(connp)) {
2964 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
2965 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
2966 			connp->conn_ire_cache = ire;
2967 			IRE_UNTRACE_REF(ire);
2968 			rw_exit(&ire->ire_bucket->irb_lock);
2969 			mutex_exit(&connp->conn_lock);
2970 			return (1);
2971 		}
2972 		rw_exit(&ire->ire_bucket->irb_lock);
2973 	}
2974 	mutex_exit(&connp->conn_lock);
2975 
2976 	if (ire->ire_mp == NULL)
2977 		ire_refrele(ire);
2978 	return (1);
2979 
2980 error:
2981 	if (ire->ire_mp == NULL)
2982 		ire_refrele(ire);
2983 	if (sire != NULL)
2984 		ire_refrele(sire);
2985 	return (0);
2986 }
2987 
2988 /*
2989  * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a
2990  * O_T_BIND_REQ/T_BIND_REQ message.
2991  */
2992 static void
2993 tcp_bind(tcp_t *tcp, mblk_t *mp)
2994 {
2995 	sin_t	*sin;
2996 	sin6_t	*sin6;
2997 	mblk_t	*mp1;
2998 	in_port_t requested_port;
2999 	in_port_t allocated_port;
3000 	struct T_bind_req *tbr;
3001 	boolean_t	bind_to_req_port_only;
3002 	boolean_t	backlog_update = B_FALSE;
3003 	boolean_t	user_specified;
3004 	in6_addr_t	v6addr;
3005 	ipaddr_t	v4addr;
3006 	uint_t	origipversion;
3007 	int	err;
3008 	queue_t *q = tcp->tcp_wq;
3009 	conn_t	*connp = tcp->tcp_connp;
3010 	mlp_type_t addrtype, mlptype;
3011 	zone_t	*zone;
3012 	cred_t	*cr;
3013 	in_port_t mlp_port;
3014 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3015 
3016 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
3017 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
3018 		if (tcp->tcp_debug) {
3019 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3020 			    "tcp_bind: bad req, len %u",
3021 			    (uint_t)(mp->b_wptr - mp->b_rptr));
3022 		}
3023 		tcp_err_ack(tcp, mp, TPROTO, 0);
3024 		return;
3025 	}
3026 	/* Make sure the largest address fits */
3027 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3028 	if (mp1 == NULL) {
3029 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3030 		return;
3031 	}
3032 	mp = mp1;
3033 	tbr = (struct T_bind_req *)mp->b_rptr;
3034 	if (tcp->tcp_state >= TCPS_BOUND) {
3035 		if ((tcp->tcp_state == TCPS_BOUND ||
3036 		    tcp->tcp_state == TCPS_LISTEN) &&
3037 		    tcp->tcp_conn_req_max != tbr->CONIND_number &&
3038 		    tbr->CONIND_number > 0) {
3039 			/*
3040 			 * Handle listen() increasing CONIND_number.
3041 			 * This is more "liberal" then what the TPI spec
3042 			 * requires but is needed to avoid a t_unbind
3043 			 * when handling listen() since the port number
3044 			 * might be "stolen" between the unbind and bind.
3045 			 */
3046 			backlog_update = B_TRUE;
3047 			goto do_bind;
3048 		}
3049 		if (tcp->tcp_debug) {
3050 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3051 			    "tcp_bind: bad state, %d", tcp->tcp_state);
3052 		}
3053 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
3054 		return;
3055 	}
3056 	origipversion = tcp->tcp_ipversion;
3057 
3058 	switch (tbr->ADDR_length) {
3059 	case 0:			/* request for a generic port */
3060 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3061 		if (tcp->tcp_family == AF_INET) {
3062 			tbr->ADDR_length = sizeof (sin_t);
3063 			sin = (sin_t *)&tbr[1];
3064 			*sin = sin_null;
3065 			sin->sin_family = AF_INET;
3066 			mp->b_wptr = (uchar_t *)&sin[1];
3067 			tcp->tcp_ipversion = IPV4_VERSION;
3068 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
3069 		} else {
3070 			ASSERT(tcp->tcp_family == AF_INET6);
3071 			tbr->ADDR_length = sizeof (sin6_t);
3072 			sin6 = (sin6_t *)&tbr[1];
3073 			*sin6 = sin6_null;
3074 			sin6->sin6_family = AF_INET6;
3075 			mp->b_wptr = (uchar_t *)&sin6[1];
3076 			tcp->tcp_ipversion = IPV6_VERSION;
3077 			V6_SET_ZERO(v6addr);
3078 		}
3079 		requested_port = 0;
3080 		break;
3081 
3082 	case sizeof (sin_t):	/* Complete IPv4 address */
3083 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
3084 		    sizeof (sin_t));
3085 		if (sin == NULL || !OK_32PTR((char *)sin)) {
3086 			if (tcp->tcp_debug) {
3087 				(void) strlog(TCP_MOD_ID, 0, 1,
3088 				    SL_ERROR|SL_TRACE,
3089 				    "tcp_bind: bad address parameter, "
3090 				    "offset %d, len %d",
3091 				    tbr->ADDR_offset, tbr->ADDR_length);
3092 			}
3093 			tcp_err_ack(tcp, mp, TPROTO, 0);
3094 			return;
3095 		}
3096 		/*
3097 		 * With sockets sockfs will accept bogus sin_family in
3098 		 * bind() and replace it with the family used in the socket
3099 		 * call.
3100 		 */
3101 		if (sin->sin_family != AF_INET ||
3102 		    tcp->tcp_family != AF_INET) {
3103 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3104 			return;
3105 		}
3106 		requested_port = ntohs(sin->sin_port);
3107 		tcp->tcp_ipversion = IPV4_VERSION;
3108 		v4addr = sin->sin_addr.s_addr;
3109 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
3110 		break;
3111 
3112 	case sizeof (sin6_t): /* Complete IPv6 address */
3113 		sin6 = (sin6_t *)mi_offset_param(mp,
3114 		    tbr->ADDR_offset, sizeof (sin6_t));
3115 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
3116 			if (tcp->tcp_debug) {
3117 				(void) strlog(TCP_MOD_ID, 0, 1,
3118 				    SL_ERROR|SL_TRACE,
3119 				    "tcp_bind: bad IPv6 address parameter, "
3120 				    "offset %d, len %d", tbr->ADDR_offset,
3121 				    tbr->ADDR_length);
3122 			}
3123 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3124 			return;
3125 		}
3126 		if (sin6->sin6_family != AF_INET6 ||
3127 		    tcp->tcp_family != AF_INET6) {
3128 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3129 			return;
3130 		}
3131 		requested_port = ntohs(sin6->sin6_port);
3132 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
3133 		    IPV4_VERSION : IPV6_VERSION;
3134 		v6addr = sin6->sin6_addr;
3135 		break;
3136 
3137 	default:
3138 		if (tcp->tcp_debug) {
3139 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3140 			    "tcp_bind: bad address length, %d",
3141 			    tbr->ADDR_length);
3142 		}
3143 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3144 		return;
3145 	}
3146 	tcp->tcp_bound_source_v6 = v6addr;
3147 
3148 	/* Check for change in ipversion */
3149 	if (origipversion != tcp->tcp_ipversion) {
3150 		ASSERT(tcp->tcp_family == AF_INET6);
3151 		err = tcp->tcp_ipversion == IPV6_VERSION ?
3152 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
3153 		if (err) {
3154 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3155 			return;
3156 		}
3157 	}
3158 
3159 	/*
3160 	 * Initialize family specific fields. Copy of the src addr.
3161 	 * in tcp_t is needed for the lookup funcs.
3162 	 */
3163 	if (tcp->tcp_ipversion == IPV6_VERSION) {
3164 		tcp->tcp_ip6h->ip6_src = v6addr;
3165 	} else {
3166 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
3167 	}
3168 	tcp->tcp_ip_src_v6 = v6addr;
3169 
3170 	/*
3171 	 * For O_T_BIND_REQ:
3172 	 * Verify that the target port/addr is available, or choose
3173 	 * another.
3174 	 * For  T_BIND_REQ:
3175 	 * Verify that the target port/addr is available or fail.
3176 	 * In both cases when it succeeds the tcp is inserted in the
3177 	 * bind hash table. This ensures that the operation is atomic
3178 	 * under the lock on the hash bucket.
3179 	 */
3180 	bind_to_req_port_only = requested_port != 0 &&
3181 	    tbr->PRIM_type != O_T_BIND_REQ;
3182 	/*
3183 	 * Get a valid port (within the anonymous range and should not
3184 	 * be a privileged one) to use if the user has not given a port.
3185 	 * If multiple threads are here, they may all start with
3186 	 * with the same initial port. But, it should be fine as long as
3187 	 * tcp_bindi will ensure that no two threads will be assigned
3188 	 * the same port.
3189 	 *
3190 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
3191 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
3192 	 * unless TCP_ANONPRIVBIND option is set.
3193 	 */
3194 	mlptype = mlptSingle;
3195 	mlp_port = requested_port;
3196 	if (requested_port == 0) {
3197 		requested_port = tcp->tcp_anon_priv_bind ?
3198 		    tcp_get_next_priv_port(tcp) :
3199 		    tcp_update_next_port(tcps->tcps_next_port_to_try,
3200 		    tcp, B_TRUE);
3201 		if (requested_port == 0) {
3202 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3203 			return;
3204 		}
3205 		user_specified = B_FALSE;
3206 
3207 		/*
3208 		 * If the user went through one of the RPC interfaces to create
3209 		 * this socket and RPC is MLP in this zone, then give him an
3210 		 * anonymous MLP.
3211 		 */
3212 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3213 		if (connp->conn_anon_mlp && is_system_labeled()) {
3214 			zone = crgetzone(cr);
3215 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3216 			    IPV6_VERSION, &v6addr,
3217 			    tcps->tcps_netstack->netstack_ip);
3218 			if (addrtype == mlptSingle) {
3219 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3220 				return;
3221 			}
3222 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3223 			    PMAPPORT, addrtype);
3224 			mlp_port = PMAPPORT;
3225 		}
3226 	} else {
3227 		int i;
3228 		boolean_t priv = B_FALSE;
3229 
3230 		/*
3231 		 * If the requested_port is in the well-known privileged range,
3232 		 * verify that the stream was opened by a privileged user.
3233 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
3234 		 * but instead the code relies on:
3235 		 * - the fact that the address of the array and its size never
3236 		 *   changes
3237 		 * - the atomic assignment of the elements of the array
3238 		 */
3239 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3240 		if (requested_port < tcps->tcps_smallest_nonpriv_port) {
3241 			priv = B_TRUE;
3242 		} else {
3243 			for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
3244 				if (requested_port ==
3245 				    tcps->tcps_g_epriv_ports[i]) {
3246 					priv = B_TRUE;
3247 					break;
3248 				}
3249 			}
3250 		}
3251 		if (priv) {
3252 			if (secpolicy_net_privaddr(cr, requested_port,
3253 			    IPPROTO_TCP) != 0) {
3254 				if (tcp->tcp_debug) {
3255 					(void) strlog(TCP_MOD_ID, 0, 1,
3256 					    SL_ERROR|SL_TRACE,
3257 					    "tcp_bind: no priv for port %d",
3258 					    requested_port);
3259 				}
3260 				tcp_err_ack(tcp, mp, TACCES, 0);
3261 				return;
3262 			}
3263 		}
3264 		user_specified = B_TRUE;
3265 
3266 		if (is_system_labeled()) {
3267 			zone = crgetzone(cr);
3268 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3269 			    IPV6_VERSION, &v6addr,
3270 			    tcps->tcps_netstack->netstack_ip);
3271 			if (addrtype == mlptSingle) {
3272 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3273 				return;
3274 			}
3275 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3276 			    requested_port, addrtype);
3277 		}
3278 	}
3279 
3280 	if (mlptype != mlptSingle) {
3281 		if (secpolicy_net_bindmlp(cr) != 0) {
3282 			if (tcp->tcp_debug) {
3283 				(void) strlog(TCP_MOD_ID, 0, 1,
3284 				    SL_ERROR|SL_TRACE,
3285 				    "tcp_bind: no priv for multilevel port %d",
3286 				    requested_port);
3287 			}
3288 			tcp_err_ack(tcp, mp, TACCES, 0);
3289 			return;
3290 		}
3291 
3292 		/*
3293 		 * If we're specifically binding a shared IP address and the
3294 		 * port is MLP on shared addresses, then check to see if this
3295 		 * zone actually owns the MLP.  Reject if not.
3296 		 */
3297 		if (mlptype == mlptShared && addrtype == mlptShared) {
3298 			/*
3299 			 * No need to handle exclusive-stack zones since
3300 			 * ALL_ZONES only applies to the shared stack.
3301 			 */
3302 			zoneid_t mlpzone;
3303 
3304 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
3305 			    htons(mlp_port));
3306 			if (connp->conn_zoneid != mlpzone) {
3307 				if (tcp->tcp_debug) {
3308 					(void) strlog(TCP_MOD_ID, 0, 1,
3309 					    SL_ERROR|SL_TRACE,
3310 					    "tcp_bind: attempt to bind port "
3311 					    "%d on shared addr in zone %d "
3312 					    "(should be %d)",
3313 					    mlp_port, connp->conn_zoneid,
3314 					    mlpzone);
3315 				}
3316 				tcp_err_ack(tcp, mp, TACCES, 0);
3317 				return;
3318 			}
3319 		}
3320 
3321 		if (!user_specified) {
3322 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3323 			    requested_port, B_TRUE);
3324 			if (err != 0) {
3325 				if (tcp->tcp_debug) {
3326 					(void) strlog(TCP_MOD_ID, 0, 1,
3327 					    SL_ERROR|SL_TRACE,
3328 					    "tcp_bind: cannot establish anon "
3329 					    "MLP for port %d",
3330 					    requested_port);
3331 				}
3332 				tcp_err_ack(tcp, mp, TSYSERR, err);
3333 				return;
3334 			}
3335 			connp->conn_anon_port = B_TRUE;
3336 		}
3337 		connp->conn_mlp_type = mlptype;
3338 	}
3339 
3340 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
3341 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
3342 
3343 	if (allocated_port == 0) {
3344 		connp->conn_mlp_type = mlptSingle;
3345 		if (connp->conn_anon_port) {
3346 			connp->conn_anon_port = B_FALSE;
3347 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3348 			    requested_port, B_FALSE);
3349 		}
3350 		if (bind_to_req_port_only) {
3351 			if (tcp->tcp_debug) {
3352 				(void) strlog(TCP_MOD_ID, 0, 1,
3353 				    SL_ERROR|SL_TRACE,
3354 				    "tcp_bind: requested addr busy");
3355 			}
3356 			tcp_err_ack(tcp, mp, TADDRBUSY, 0);
3357 		} else {
3358 			/* If we are out of ports, fail the bind. */
3359 			if (tcp->tcp_debug) {
3360 				(void) strlog(TCP_MOD_ID, 0, 1,
3361 				    SL_ERROR|SL_TRACE,
3362 				    "tcp_bind: out of ports?");
3363 			}
3364 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3365 		}
3366 		return;
3367 	}
3368 	ASSERT(tcp->tcp_state == TCPS_BOUND);
3369 do_bind:
3370 	if (!backlog_update) {
3371 		if (tcp->tcp_family == AF_INET)
3372 			sin->sin_port = htons(allocated_port);
3373 		else
3374 			sin6->sin6_port = htons(allocated_port);
3375 	}
3376 	if (tcp->tcp_family == AF_INET) {
3377 		if (tbr->CONIND_number != 0) {
3378 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3379 			    sizeof (sin_t));
3380 		} else {
3381 			/* Just verify the local IP address */
3382 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN);
3383 		}
3384 	} else {
3385 		if (tbr->CONIND_number != 0) {
3386 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3387 			    sizeof (sin6_t));
3388 		} else {
3389 			/* Just verify the local IP address */
3390 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3391 			    IPV6_ADDR_LEN);
3392 		}
3393 	}
3394 	if (mp1 == NULL) {
3395 		if (connp->conn_anon_port) {
3396 			connp->conn_anon_port = B_FALSE;
3397 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3398 			    requested_port, B_FALSE);
3399 		}
3400 		connp->conn_mlp_type = mlptSingle;
3401 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3402 		return;
3403 	}
3404 
3405 	tbr->PRIM_type = T_BIND_ACK;
3406 	mp->b_datap->db_type = M_PCPROTO;
3407 
3408 	/* Chain in the reply mp for tcp_rput() */
3409 	mp1->b_cont = mp;
3410 	mp = mp1;
3411 
3412 	tcp->tcp_conn_req_max = tbr->CONIND_number;
3413 	if (tcp->tcp_conn_req_max) {
3414 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
3415 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
3416 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
3417 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
3418 		/*
3419 		 * If this is a listener, do not reset the eager list
3420 		 * and other stuffs.  Note that we don't check if the
3421 		 * existing eager list meets the new tcp_conn_req_max
3422 		 * requirement.
3423 		 */
3424 		if (tcp->tcp_state != TCPS_LISTEN) {
3425 			tcp->tcp_state = TCPS_LISTEN;
3426 			/* Initialize the chain. Don't need the eager_lock */
3427 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
3428 			tcp->tcp_eager_next_drop_q0 = tcp;
3429 			tcp->tcp_eager_prev_drop_q0 = tcp;
3430 			tcp->tcp_second_ctimer_threshold =
3431 			    tcps->tcps_ip_abort_linterval;
3432 		}
3433 	}
3434 
3435 	/*
3436 	 * We can call ip_bind directly which returns a T_BIND_ACK mp. The
3437 	 * processing continues in tcp_rput_other().
3438 	 *
3439 	 * We need to make sure that the conn_recv is set to a non-null
3440 	 * value before we insert the conn into the classifier table.
3441 	 * This is to avoid a race with an incoming packet which does an
3442 	 * ipcl_classify().
3443 	 */
3444 	connp->conn_recv = tcp_conn_request;
3445 	if (tcp->tcp_family == AF_INET6) {
3446 		ASSERT(tcp->tcp_connp->conn_af_isv6);
3447 		mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp);
3448 	} else {
3449 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
3450 		mp = ip_bind_v4(q, mp, tcp->tcp_connp);
3451 	}
3452 	/*
3453 	 * If the bind cannot complete immediately
3454 	 * IP will arrange to call tcp_rput_other
3455 	 * when the bind completes.
3456 	 */
3457 	if (mp != NULL) {
3458 		tcp_rput_other(tcp, mp);
3459 	} else {
3460 		/*
3461 		 * Bind will be resumed later. Need to ensure
3462 		 * that conn doesn't disappear when that happens.
3463 		 * This will be decremented in ip_resume_tcp_bind().
3464 		 */
3465 		CONN_INC_REF(tcp->tcp_connp);
3466 	}
3467 }
3468 
3469 
3470 /*
3471  * If the "bind_to_req_port_only" parameter is set, if the requested port
3472  * number is available, return it, If not return 0
3473  *
3474  * If "bind_to_req_port_only" parameter is not set and
3475  * If the requested port number is available, return it.  If not, return
3476  * the first anonymous port we happen across.  If no anonymous ports are
3477  * available, return 0. addr is the requested local address, if any.
3478  *
3479  * In either case, when succeeding update the tcp_t to record the port number
3480  * and insert it in the bind hash table.
3481  *
3482  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3483  * without setting SO_REUSEADDR. This is needed so that they
3484  * can be viewed as two independent transport protocols.
3485  */
3486 static in_port_t
3487 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3488     int reuseaddr, boolean_t quick_connect,
3489     boolean_t bind_to_req_port_only, boolean_t user_specified)
3490 {
3491 	/* number of times we have run around the loop */
3492 	int count = 0;
3493 	/* maximum number of times to run around the loop */
3494 	int loopmax;
3495 	conn_t *connp = tcp->tcp_connp;
3496 	zoneid_t zoneid = connp->conn_zoneid;
3497 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3498 
3499 	/*
3500 	 * Lookup for free addresses is done in a loop and "loopmax"
3501 	 * influences how long we spin in the loop
3502 	 */
3503 	if (bind_to_req_port_only) {
3504 		/*
3505 		 * If the requested port is busy, don't bother to look
3506 		 * for a new one. Setting loop maximum count to 1 has
3507 		 * that effect.
3508 		 */
3509 		loopmax = 1;
3510 	} else {
3511 		/*
3512 		 * If the requested port is busy, look for a free one
3513 		 * in the anonymous port range.
3514 		 * Set loopmax appropriately so that one does not look
3515 		 * forever in the case all of the anonymous ports are in use.
3516 		 */
3517 		if (tcp->tcp_anon_priv_bind) {
3518 			/*
3519 			 * loopmax =
3520 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3521 			 */
3522 			loopmax = IPPORT_RESERVED -
3523 			    tcps->tcps_min_anonpriv_port;
3524 		} else {
3525 			loopmax = (tcps->tcps_largest_anon_port -
3526 			    tcps->tcps_smallest_anon_port + 1);
3527 		}
3528 	}
3529 	do {
3530 		uint16_t	lport;
3531 		tf_t		*tbf;
3532 		tcp_t		*ltcp;
3533 		conn_t		*lconnp;
3534 
3535 		lport = htons(port);
3536 
3537 		/*
3538 		 * Ensure that the tcp_t is not currently in the bind hash.
3539 		 * Hold the lock on the hash bucket to ensure that
3540 		 * the duplicate check plus the insertion is an atomic
3541 		 * operation.
3542 		 *
3543 		 * This function does an inline lookup on the bind hash list
3544 		 * Make sure that we access only members of tcp_t
3545 		 * and that we don't look at tcp_tcp, since we are not
3546 		 * doing a CONN_INC_REF.
3547 		 */
3548 		tcp_bind_hash_remove(tcp);
3549 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)];
3550 		mutex_enter(&tbf->tf_lock);
3551 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3552 		    ltcp = ltcp->tcp_bind_hash) {
3553 			boolean_t not_socket;
3554 			boolean_t exclbind;
3555 
3556 			if (lport != ltcp->tcp_lport)
3557 				continue;
3558 
3559 			lconnp = ltcp->tcp_connp;
3560 
3561 			/*
3562 			 * On a labeled system, we must treat bindings to ports
3563 			 * on shared IP addresses by sockets with MAC exemption
3564 			 * privilege as being in all zones, as there's
3565 			 * otherwise no way to identify the right receiver.
3566 			 */
3567 			if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) ||
3568 			    IPCL_ZONE_MATCH(connp,
3569 			    ltcp->tcp_connp->conn_zoneid)) &&
3570 			    !lconnp->conn_mac_exempt &&
3571 			    !connp->conn_mac_exempt)
3572 				continue;
3573 
3574 			/*
3575 			 * If TCP_EXCLBIND is set for either the bound or
3576 			 * binding endpoint, the semantics of bind
3577 			 * is changed according to the following.
3578 			 *
3579 			 * spec = specified address (v4 or v6)
3580 			 * unspec = unspecified address (v4 or v6)
3581 			 * A = specified addresses are different for endpoints
3582 			 *
3583 			 * bound	bind to		allowed
3584 			 * -------------------------------------
3585 			 * unspec	unspec		no
3586 			 * unspec	spec		no
3587 			 * spec		unspec		no
3588 			 * spec		spec		yes if A
3589 			 *
3590 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3591 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3592 			 *
3593 			 * Note:
3594 			 *
3595 			 * 1. Because of TLI semantics, an endpoint can go
3596 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3597 			 * TCPS_BOUND, depending on whether it is originally
3598 			 * a listener or not.  That is why we need to check
3599 			 * for states greater than or equal to TCPS_BOUND
3600 			 * here.
3601 			 *
3602 			 * 2. Ideally, we should only check for state equals
3603 			 * to TCPS_LISTEN. And the following check should be
3604 			 * added.
3605 			 *
3606 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3607 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3608 			 *		...
3609 			 * }
3610 			 *
3611 			 * The semantics will be changed to this.  If the
3612 			 * endpoint on the list is in state not equal to
3613 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3614 			 * set, let the bind succeed.
3615 			 *
3616 			 * Because of (1), we cannot do that for TLI
3617 			 * endpoints.  But we can do that for socket endpoints.
3618 			 * If in future, we can change this going back
3619 			 * semantics, we can use the above check for TLI also.
3620 			 */
3621 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3622 			    TCP_IS_SOCKET(tcp));
3623 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3624 
3625 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3626 			    (exclbind && (not_socket ||
3627 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3628 				if (V6_OR_V4_INADDR_ANY(
3629 				    ltcp->tcp_bound_source_v6) ||
3630 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3631 				    IN6_ARE_ADDR_EQUAL(laddr,
3632 				    &ltcp->tcp_bound_source_v6)) {
3633 					break;
3634 				}
3635 				continue;
3636 			}
3637 
3638 			/*
3639 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3640 			 * have disjoint port number spaces, if *_EXCLBIND
3641 			 * is not set and only if the application binds to a
3642 			 * specific port. We use the same autoassigned port
3643 			 * number space for IPv4 and IPv6 sockets.
3644 			 */
3645 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3646 			    bind_to_req_port_only)
3647 				continue;
3648 
3649 			/*
3650 			 * Ideally, we should make sure that the source
3651 			 * address, remote address, and remote port in the
3652 			 * four tuple for this tcp-connection is unique.
3653 			 * However, trying to find out the local source
3654 			 * address would require too much code duplication
3655 			 * with IP, since IP needs needs to have that code
3656 			 * to support userland TCP implementations.
3657 			 */
3658 			if (quick_connect &&
3659 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3660 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3661 			    !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3662 			    &ltcp->tcp_remote_v6)))
3663 				continue;
3664 
3665 			if (!reuseaddr) {
3666 				/*
3667 				 * No socket option SO_REUSEADDR.
3668 				 * If existing port is bound to
3669 				 * a non-wildcard IP address
3670 				 * and the requesting stream is
3671 				 * bound to a distinct
3672 				 * different IP addresses
3673 				 * (non-wildcard, also), keep
3674 				 * going.
3675 				 */
3676 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3677 				    !V6_OR_V4_INADDR_ANY(
3678 				    ltcp->tcp_bound_source_v6) &&
3679 				    !IN6_ARE_ADDR_EQUAL(laddr,
3680 				    &ltcp->tcp_bound_source_v6))
3681 					continue;
3682 				if (ltcp->tcp_state >= TCPS_BOUND) {
3683 					/*
3684 					 * This port is being used and
3685 					 * its state is >= TCPS_BOUND,
3686 					 * so we can't bind to it.
3687 					 */
3688 					break;
3689 				}
3690 			} else {
3691 				/*
3692 				 * socket option SO_REUSEADDR is set on the
3693 				 * binding tcp_t.
3694 				 *
3695 				 * If two streams are bound to
3696 				 * same IP address or both addr
3697 				 * and bound source are wildcards
3698 				 * (INADDR_ANY), we want to stop
3699 				 * searching.
3700 				 * We have found a match of IP source
3701 				 * address and source port, which is
3702 				 * refused regardless of the
3703 				 * SO_REUSEADDR setting, so we break.
3704 				 */
3705 				if (IN6_ARE_ADDR_EQUAL(laddr,
3706 				    &ltcp->tcp_bound_source_v6) &&
3707 				    (ltcp->tcp_state == TCPS_LISTEN ||
3708 				    ltcp->tcp_state == TCPS_BOUND))
3709 					break;
3710 			}
3711 		}
3712 		if (ltcp != NULL) {
3713 			/* The port number is busy */
3714 			mutex_exit(&tbf->tf_lock);
3715 		} else {
3716 			/*
3717 			 * This port is ours. Insert in fanout and mark as
3718 			 * bound to prevent others from getting the port
3719 			 * number.
3720 			 */
3721 			tcp->tcp_state = TCPS_BOUND;
3722 			tcp->tcp_lport = htons(port);
3723 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3724 
3725 			ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH(
3726 			    tcp->tcp_lport)] == tbf);
3727 			tcp_bind_hash_insert(tbf, tcp, 1);
3728 
3729 			mutex_exit(&tbf->tf_lock);
3730 
3731 			/*
3732 			 * We don't want tcp_next_port_to_try to "inherit"
3733 			 * a port number supplied by the user in a bind.
3734 			 */
3735 			if (user_specified)
3736 				return (port);
3737 
3738 			/*
3739 			 * This is the only place where tcp_next_port_to_try
3740 			 * is updated. After the update, it may or may not
3741 			 * be in the valid range.
3742 			 */
3743 			if (!tcp->tcp_anon_priv_bind)
3744 				tcps->tcps_next_port_to_try = port + 1;
3745 			return (port);
3746 		}
3747 
3748 		if (tcp->tcp_anon_priv_bind) {
3749 			port = tcp_get_next_priv_port(tcp);
3750 		} else {
3751 			if (count == 0 && user_specified) {
3752 				/*
3753 				 * We may have to return an anonymous port. So
3754 				 * get one to start with.
3755 				 */
3756 				port =
3757 				    tcp_update_next_port(
3758 				    tcps->tcps_next_port_to_try,
3759 				    tcp, B_TRUE);
3760 				user_specified = B_FALSE;
3761 			} else {
3762 				port = tcp_update_next_port(port + 1, tcp,
3763 				    B_FALSE);
3764 			}
3765 		}
3766 		if (port == 0)
3767 			break;
3768 
3769 		/*
3770 		 * Don't let this loop run forever in the case where
3771 		 * all of the anonymous ports are in use.
3772 		 */
3773 	} while (++count < loopmax);
3774 	return (0);
3775 }
3776 
3777 /*
3778  * tcp_clean_death / tcp_close_detached must not be called more than once
3779  * on a tcp. Thus every function that potentially calls tcp_clean_death
3780  * must check for the tcp state before calling tcp_clean_death.
3781  * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper,
3782  * tcp_timer_handler, all check for the tcp state.
3783  */
3784 /* ARGSUSED */
3785 void
3786 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2)
3787 {
3788 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
3789 
3790 	freemsg(mp);
3791 	if (tcp->tcp_state > TCPS_BOUND)
3792 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp,
3793 		    ETIMEDOUT, 5);
3794 }
3795 
3796 /*
3797  * We are dying for some reason.  Try to do it gracefully.  (May be called
3798  * as writer.)
3799  *
3800  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3801  * done by a service procedure).
3802  * TBD - Should the return value distinguish between the tcp_t being
3803  * freed and it being reinitialized?
3804  */
3805 static int
3806 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3807 {
3808 	mblk_t	*mp;
3809 	queue_t	*q;
3810 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3811 
3812 	TCP_CLD_STAT(tag);
3813 
3814 #if TCP_TAG_CLEAN_DEATH
3815 	tcp->tcp_cleandeathtag = tag;
3816 #endif
3817 
3818 	if (tcp->tcp_fused)
3819 		tcp_unfuse(tcp);
3820 
3821 	if (tcp->tcp_linger_tid != 0 &&
3822 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3823 		tcp_stop_lingering(tcp);
3824 	}
3825 
3826 	ASSERT(tcp != NULL);
3827 	ASSERT((tcp->tcp_family == AF_INET &&
3828 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3829 	    (tcp->tcp_family == AF_INET6 &&
3830 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3831 	    tcp->tcp_ipversion == IPV6_VERSION)));
3832 
3833 	if (TCP_IS_DETACHED(tcp)) {
3834 		if (tcp->tcp_hard_binding) {
3835 			/*
3836 			 * Its an eager that we are dealing with. We close the
3837 			 * eager but in case a conn_ind has already gone to the
3838 			 * listener, let tcp_accept_finish() send a discon_ind
3839 			 * to the listener and drop the last reference. If the
3840 			 * listener doesn't even know about the eager i.e. the
3841 			 * conn_ind hasn't gone up, blow away the eager and drop
3842 			 * the last reference as well. If the conn_ind has gone
3843 			 * up, state should be BOUND. tcp_accept_finish
3844 			 * will figure out that the connection has received a
3845 			 * RST and will send a DISCON_IND to the application.
3846 			 */
3847 			tcp_closei_local(tcp);
3848 			if (!tcp->tcp_tconnind_started) {
3849 				CONN_DEC_REF(tcp->tcp_connp);
3850 			} else {
3851 				tcp->tcp_state = TCPS_BOUND;
3852 			}
3853 		} else {
3854 			tcp_close_detached(tcp);
3855 		}
3856 		return (0);
3857 	}
3858 
3859 	TCP_STAT(tcps, tcp_clean_death_nondetached);
3860 
3861 	/*
3862 	 * If T_ORDREL_IND has not been sent yet (done when service routine
3863 	 * is run) postpone cleaning up the endpoint until service routine
3864 	 * has sent up the T_ORDREL_IND. Avoid clearing out an existing
3865 	 * client_errno since tcp_close uses the client_errno field.
3866 	 */
3867 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
3868 		if (err != 0)
3869 			tcp->tcp_client_errno = err;
3870 
3871 		tcp->tcp_deferred_clean_death = B_TRUE;
3872 		return (-1);
3873 	}
3874 
3875 	q = tcp->tcp_rq;
3876 
3877 	/* Trash all inbound data */
3878 	flushq(q, FLUSHALL);
3879 
3880 	/*
3881 	 * If we are at least part way open and there is error
3882 	 * (err==0 implies no error)
3883 	 * notify our client by a T_DISCON_IND.
3884 	 */
3885 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3886 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3887 		    !TCP_IS_SOCKET(tcp)) {
3888 			/*
3889 			 * Send M_FLUSH according to TPI. Because sockets will
3890 			 * (and must) ignore FLUSHR we do that only for TPI
3891 			 * endpoints and sockets in STREAMS mode.
3892 			 */
3893 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3894 		}
3895 		if (tcp->tcp_debug) {
3896 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3897 			    "tcp_clean_death: discon err %d", err);
3898 		}
3899 		mp = mi_tpi_discon_ind(NULL, err, 0);
3900 		if (mp != NULL) {
3901 			putnext(q, mp);
3902 		} else {
3903 			if (tcp->tcp_debug) {
3904 				(void) strlog(TCP_MOD_ID, 0, 1,
3905 				    SL_ERROR|SL_TRACE,
3906 				    "tcp_clean_death, sending M_ERROR");
3907 			}
3908 			(void) putnextctl1(q, M_ERROR, EPROTO);
3909 		}
3910 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3911 			/* SYN_SENT or SYN_RCVD */
3912 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3913 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3914 			/* ESTABLISHED or CLOSE_WAIT */
3915 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3916 		}
3917 	}
3918 
3919 	tcp_reinit(tcp);
3920 	return (-1);
3921 }
3922 
3923 /*
3924  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3925  * to expire, stop the wait and finish the close.
3926  */
3927 static void
3928 tcp_stop_lingering(tcp_t *tcp)
3929 {
3930 	clock_t	delta = 0;
3931 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3932 
3933 	tcp->tcp_linger_tid = 0;
3934 	if (tcp->tcp_state > TCPS_LISTEN) {
3935 		tcp_acceptor_hash_remove(tcp);
3936 		mutex_enter(&tcp->tcp_non_sq_lock);
3937 		if (tcp->tcp_flow_stopped) {
3938 			tcp_clrqfull(tcp);
3939 		}
3940 		mutex_exit(&tcp->tcp_non_sq_lock);
3941 
3942 		if (tcp->tcp_timer_tid != 0) {
3943 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3944 			tcp->tcp_timer_tid = 0;
3945 		}
3946 		/*
3947 		 * Need to cancel those timers which will not be used when
3948 		 * TCP is detached.  This has to be done before the tcp_wq
3949 		 * is set to the global queue.
3950 		 */
3951 		tcp_timers_stop(tcp);
3952 
3953 
3954 		tcp->tcp_detached = B_TRUE;
3955 		ASSERT(tcps->tcps_g_q != NULL);
3956 		tcp->tcp_rq = tcps->tcps_g_q;
3957 		tcp->tcp_wq = WR(tcps->tcps_g_q);
3958 
3959 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3960 			tcp_time_wait_append(tcp);
3961 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3962 			goto finish;
3963 		}
3964 
3965 		/*
3966 		 * If delta is zero the timer event wasn't executed and was
3967 		 * successfully canceled. In this case we need to restart it
3968 		 * with the minimal delta possible.
3969 		 */
3970 		if (delta >= 0) {
3971 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3972 			    delta ? delta : 1);
3973 		}
3974 	} else {
3975 		tcp_closei_local(tcp);
3976 		CONN_DEC_REF(tcp->tcp_connp);
3977 	}
3978 finish:
3979 	/* Signal closing thread that it can complete close */
3980 	mutex_enter(&tcp->tcp_closelock);
3981 	tcp->tcp_detached = B_TRUE;
3982 	ASSERT(tcps->tcps_g_q != NULL);
3983 	tcp->tcp_rq = tcps->tcps_g_q;
3984 	tcp->tcp_wq = WR(tcps->tcps_g_q);
3985 	tcp->tcp_closed = 1;
3986 	cv_signal(&tcp->tcp_closecv);
3987 	mutex_exit(&tcp->tcp_closelock);
3988 }
3989 
3990 /*
3991  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3992  * expires.
3993  */
3994 static void
3995 tcp_close_linger_timeout(void *arg)
3996 {
3997 	conn_t	*connp = (conn_t *)arg;
3998 	tcp_t 	*tcp = connp->conn_tcp;
3999 
4000 	tcp->tcp_client_errno = ETIMEDOUT;
4001 	tcp_stop_lingering(tcp);
4002 }
4003 
4004 static int
4005 tcp_close(queue_t *q, int flags)
4006 {
4007 	conn_t		*connp = Q_TO_CONN(q);
4008 	tcp_t		*tcp = connp->conn_tcp;
4009 	mblk_t 		*mp = &tcp->tcp_closemp;
4010 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4011 	mblk_t		*bp;
4012 
4013 	ASSERT(WR(q)->q_next == NULL);
4014 	ASSERT(connp->conn_ref >= 2);
4015 
4016 	/*
4017 	 * We are being closed as /dev/tcp or /dev/tcp6.
4018 	 *
4019 	 * Mark the conn as closing. ill_pending_mp_add will not
4020 	 * add any mp to the pending mp list, after this conn has
4021 	 * started closing. Same for sq_pending_mp_add
4022 	 */
4023 	mutex_enter(&connp->conn_lock);
4024 	connp->conn_state_flags |= CONN_CLOSING;
4025 	if (connp->conn_oper_pending_ill != NULL)
4026 		conn_ioctl_cleanup_reqd = B_TRUE;
4027 	CONN_INC_REF_LOCKED(connp);
4028 	mutex_exit(&connp->conn_lock);
4029 	tcp->tcp_closeflags = (uint8_t)flags;
4030 	ASSERT(connp->conn_ref >= 3);
4031 
4032 	/*
4033 	 * tcp_closemp_used is used below without any protection of a lock
4034 	 * as we don't expect any one else to use it concurrently at this
4035 	 * point otherwise it would be a major defect.
4036 	 */
4037 
4038 	if (mp->b_prev == NULL)
4039 		tcp->tcp_closemp_used = B_TRUE;
4040 	else
4041 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
4042 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
4043 
4044 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
4045 
4046 	(*tcp_squeue_close_proc)(connp->conn_sqp, mp,
4047 	    tcp_close_output, connp, SQTAG_IP_TCP_CLOSE);
4048 
4049 	mutex_enter(&tcp->tcp_closelock);
4050 	while (!tcp->tcp_closed) {
4051 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
4052 			/*
4053 			 * The cv_wait_sig() was interrupted. We now do the
4054 			 * following:
4055 			 *
4056 			 * 1) If the endpoint was lingering, we allow this
4057 			 * to be interrupted by cancelling the linger timeout
4058 			 * and closing normally.
4059 			 *
4060 			 * 2) Revert to calling cv_wait()
4061 			 *
4062 			 * We revert to using cv_wait() to avoid an
4063 			 * infinite loop which can occur if the calling
4064 			 * thread is higher priority than the squeue worker
4065 			 * thread and is bound to the same cpu.
4066 			 */
4067 			if (tcp->tcp_linger && tcp->tcp_lingertime > 0) {
4068 				mutex_exit(&tcp->tcp_closelock);
4069 				/* Entering squeue, bump ref count. */
4070 				CONN_INC_REF(connp);
4071 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
4072 				squeue_enter(connp->conn_sqp, bp,
4073 				    tcp_linger_interrupted, connp,
4074 				    SQTAG_IP_TCP_CLOSE);
4075 				mutex_enter(&tcp->tcp_closelock);
4076 			}
4077 			break;
4078 		}
4079 	}
4080 	while (!tcp->tcp_closed)
4081 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
4082 	mutex_exit(&tcp->tcp_closelock);
4083 
4084 	/*
4085 	 * In the case of listener streams that have eagers in the q or q0
4086 	 * we wait for the eagers to drop their reference to us. tcp_rq and
4087 	 * tcp_wq of the eagers point to our queues. By waiting for the
4088 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
4089 	 * up their queue pointers and also dropped their references to us.
4090 	 */
4091 	if (tcp->tcp_wait_for_eagers) {
4092 		mutex_enter(&connp->conn_lock);
4093 		while (connp->conn_ref != 1) {
4094 			cv_wait(&connp->conn_cv, &connp->conn_lock);
4095 		}
4096 		mutex_exit(&connp->conn_lock);
4097 	}
4098 	/*
4099 	 * ioctl cleanup. The mp is queued in the
4100 	 * ill_pending_mp or in the sq_pending_mp.
4101 	 */
4102 	if (conn_ioctl_cleanup_reqd)
4103 		conn_ioctl_cleanup(connp);
4104 
4105 	qprocsoff(q);
4106 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4107 
4108 	tcp->tcp_cpid = -1;
4109 
4110 	/*
4111 	 * Drop IP's reference on the conn. This is the last reference
4112 	 * on the connp if the state was less than established. If the
4113 	 * connection has gone into timewait state, then we will have
4114 	 * one ref for the TCP and one more ref (total of two) for the
4115 	 * classifier connected hash list (a timewait connections stays
4116 	 * in connected hash till closed).
4117 	 *
4118 	 * We can't assert the references because there might be other
4119 	 * transient reference places because of some walkers or queued
4120 	 * packets in squeue for the timewait state.
4121 	 */
4122 	CONN_DEC_REF(connp);
4123 	q->q_ptr = WR(q)->q_ptr = NULL;
4124 	return (0);
4125 }
4126 
4127 static int
4128 tcpclose_accept(queue_t *q)
4129 {
4130 	vmem_t	*minor_arena;
4131 	dev_t	conn_dev;
4132 
4133 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
4134 
4135 	/*
4136 	 * We had opened an acceptor STREAM for sockfs which is
4137 	 * now being closed due to some error.
4138 	 */
4139 	qprocsoff(q);
4140 
4141 	minor_arena = (vmem_t *)WR(q)->q_ptr;
4142 	conn_dev = (dev_t)RD(q)->q_ptr;
4143 	ASSERT(minor_arena != NULL);
4144 	ASSERT(conn_dev != 0);
4145 	inet_minor_free(minor_arena, conn_dev);
4146 	q->q_ptr = WR(q)->q_ptr = NULL;
4147 	return (0);
4148 }
4149 
4150 /*
4151  * Called by tcp_close() routine via squeue when lingering is
4152  * interrupted by a signal.
4153  */
4154 
4155 /* ARGSUSED */
4156 static void
4157 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2)
4158 {
4159 	conn_t	*connp = (conn_t *)arg;
4160 	tcp_t	*tcp = connp->conn_tcp;
4161 
4162 	freeb(mp);
4163 	if (tcp->tcp_linger_tid != 0 &&
4164 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
4165 		tcp_stop_lingering(tcp);
4166 		tcp->tcp_client_errno = EINTR;
4167 	}
4168 }
4169 
4170 /*
4171  * Called by streams close routine via squeues when our client blows off her
4172  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
4173  * connection politely" When SO_LINGER is set (with a non-zero linger time and
4174  * it is not a nonblocking socket) then this routine sleeps until the FIN is
4175  * acked.
4176  *
4177  * NOTE: tcp_close potentially returns error when lingering.
4178  * However, the stream head currently does not pass these errors
4179  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
4180  * errors to the application (from tsleep()) and not errors
4181  * like ECONNRESET caused by receiving a reset packet.
4182  */
4183 
4184 /* ARGSUSED */
4185 static void
4186 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
4187 {
4188 	char	*msg;
4189 	conn_t	*connp = (conn_t *)arg;
4190 	tcp_t	*tcp = connp->conn_tcp;
4191 	clock_t	delta = 0;
4192 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4193 
4194 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
4195 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
4196 
4197 	/* Cancel any pending timeout */
4198 	if (tcp->tcp_ordrelid != 0) {
4199 		if (tcp->tcp_timeout) {
4200 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid);
4201 		}
4202 		tcp->tcp_ordrelid = 0;
4203 		tcp->tcp_timeout = B_FALSE;
4204 	}
4205 
4206 	mutex_enter(&tcp->tcp_eager_lock);
4207 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
4208 		/* Cleanup for listener */
4209 		tcp_eager_cleanup(tcp, 0);
4210 		tcp->tcp_wait_for_eagers = 1;
4211 	}
4212 	mutex_exit(&tcp->tcp_eager_lock);
4213 
4214 	connp->conn_mdt_ok = B_FALSE;
4215 	tcp->tcp_mdt = B_FALSE;
4216 
4217 	connp->conn_lso_ok = B_FALSE;
4218 	tcp->tcp_lso = B_FALSE;
4219 
4220 	msg = NULL;
4221 	switch (tcp->tcp_state) {
4222 	case TCPS_CLOSED:
4223 	case TCPS_IDLE:
4224 	case TCPS_BOUND:
4225 	case TCPS_LISTEN:
4226 		break;
4227 	case TCPS_SYN_SENT:
4228 		msg = "tcp_close, during connect";
4229 		break;
4230 	case TCPS_SYN_RCVD:
4231 		/*
4232 		 * Close during the connect 3-way handshake
4233 		 * but here there may or may not be pending data
4234 		 * already on queue. Process almost same as in
4235 		 * the ESTABLISHED state.
4236 		 */
4237 		/* FALLTHRU */
4238 	default:
4239 		if (tcp->tcp_fused)
4240 			tcp_unfuse(tcp);
4241 
4242 		/*
4243 		 * If SO_LINGER has set a zero linger time, abort the
4244 		 * connection with a reset.
4245 		 */
4246 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
4247 			msg = "tcp_close, zero lingertime";
4248 			break;
4249 		}
4250 
4251 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
4252 		/*
4253 		 * Abort connection if there is unread data queued.
4254 		 */
4255 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
4256 			msg = "tcp_close, unread data";
4257 			break;
4258 		}
4259 		/*
4260 		 * tcp_hard_bound is now cleared thus all packets go through
4261 		 * tcp_lookup. This fact is used by tcp_detach below.
4262 		 *
4263 		 * We have done a qwait() above which could have possibly
4264 		 * drained more messages in turn causing transition to a
4265 		 * different state. Check whether we have to do the rest
4266 		 * of the processing or not.
4267 		 */
4268 		if (tcp->tcp_state <= TCPS_LISTEN)
4269 			break;
4270 
4271 		/*
4272 		 * Transmit the FIN before detaching the tcp_t.
4273 		 * After tcp_detach returns this queue/perimeter
4274 		 * no longer owns the tcp_t thus others can modify it.
4275 		 */
4276 		(void) tcp_xmit_end(tcp);
4277 
4278 		/*
4279 		 * If lingering on close then wait until the fin is acked,
4280 		 * the SO_LINGER time passes, or a reset is sent/received.
4281 		 */
4282 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
4283 		    !(tcp->tcp_fin_acked) &&
4284 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
4285 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
4286 				tcp->tcp_client_errno = EWOULDBLOCK;
4287 			} else if (tcp->tcp_client_errno == 0) {
4288 
4289 				ASSERT(tcp->tcp_linger_tid == 0);
4290 
4291 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
4292 				    tcp_close_linger_timeout,
4293 				    tcp->tcp_lingertime * hz);
4294 
4295 				/* tcp_close_linger_timeout will finish close */
4296 				if (tcp->tcp_linger_tid == 0)
4297 					tcp->tcp_client_errno = ENOSR;
4298 				else
4299 					return;
4300 			}
4301 
4302 			/*
4303 			 * Check if we need to detach or just close
4304 			 * the instance.
4305 			 */
4306 			if (tcp->tcp_state <= TCPS_LISTEN)
4307 				break;
4308 		}
4309 
4310 		/*
4311 		 * Make sure that no other thread will access the tcp_rq of
4312 		 * this instance (through lookups etc.) as tcp_rq will go
4313 		 * away shortly.
4314 		 */
4315 		tcp_acceptor_hash_remove(tcp);
4316 
4317 		mutex_enter(&tcp->tcp_non_sq_lock);
4318 		if (tcp->tcp_flow_stopped) {
4319 			tcp_clrqfull(tcp);
4320 		}
4321 		mutex_exit(&tcp->tcp_non_sq_lock);
4322 
4323 		if (tcp->tcp_timer_tid != 0) {
4324 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4325 			tcp->tcp_timer_tid = 0;
4326 		}
4327 		/*
4328 		 * Need to cancel those timers which will not be used when
4329 		 * TCP is detached.  This has to be done before the tcp_wq
4330 		 * is set to the global queue.
4331 		 */
4332 		tcp_timers_stop(tcp);
4333 
4334 		tcp->tcp_detached = B_TRUE;
4335 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4336 			tcp_time_wait_append(tcp);
4337 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
4338 			ASSERT(connp->conn_ref >= 3);
4339 			goto finish;
4340 		}
4341 
4342 		/*
4343 		 * If delta is zero the timer event wasn't executed and was
4344 		 * successfully canceled. In this case we need to restart it
4345 		 * with the minimal delta possible.
4346 		 */
4347 		if (delta >= 0)
4348 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4349 			    delta ? delta : 1);
4350 
4351 		ASSERT(connp->conn_ref >= 3);
4352 		goto finish;
4353 	}
4354 
4355 	/* Detach did not complete. Still need to remove q from stream. */
4356 	if (msg) {
4357 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4358 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4359 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
4360 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4361 		    tcp->tcp_state == TCPS_SYN_RCVD)
4362 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
4363 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4364 	}
4365 
4366 	tcp_closei_local(tcp);
4367 	CONN_DEC_REF(connp);
4368 	ASSERT(connp->conn_ref >= 2);
4369 
4370 finish:
4371 	/*
4372 	 * Although packets are always processed on the correct
4373 	 * tcp's perimeter and access is serialized via squeue's,
4374 	 * IP still needs a queue when sending packets in time_wait
4375 	 * state so use WR(tcps_g_q) till ip_output() can be
4376 	 * changed to deal with just connp. For read side, we
4377 	 * could have set tcp_rq to NULL but there are some cases
4378 	 * in tcp_rput_data() from early days of this code which
4379 	 * do a putnext without checking if tcp is closed. Those
4380 	 * need to be identified before both tcp_rq and tcp_wq
4381 	 * can be set to NULL and tcps_g_q can disappear forever.
4382 	 */
4383 	mutex_enter(&tcp->tcp_closelock);
4384 	/*
4385 	 * Don't change the queues in the case of a listener that has
4386 	 * eagers in its q or q0. It could surprise the eagers.
4387 	 * Instead wait for the eagers outside the squeue.
4388 	 */
4389 	if (!tcp->tcp_wait_for_eagers) {
4390 		tcp->tcp_detached = B_TRUE;
4391 		/*
4392 		 * When default queue is closing we set tcps_g_q to NULL
4393 		 * after the close is done.
4394 		 */
4395 		ASSERT(tcps->tcps_g_q != NULL);
4396 		tcp->tcp_rq = tcps->tcps_g_q;
4397 		tcp->tcp_wq = WR(tcps->tcps_g_q);
4398 	}
4399 
4400 	/* Signal tcp_close() to finish closing. */
4401 	tcp->tcp_closed = 1;
4402 	cv_signal(&tcp->tcp_closecv);
4403 	mutex_exit(&tcp->tcp_closelock);
4404 }
4405 
4406 
4407 /*
4408  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4409  * Some stream heads get upset if they see these later on as anything but NULL.
4410  */
4411 static void
4412 tcp_close_mpp(mblk_t **mpp)
4413 {
4414 	mblk_t	*mp;
4415 
4416 	if ((mp = *mpp) != NULL) {
4417 		do {
4418 			mp->b_next = NULL;
4419 			mp->b_prev = NULL;
4420 		} while ((mp = mp->b_cont) != NULL);
4421 
4422 		mp = *mpp;
4423 		*mpp = NULL;
4424 		freemsg(mp);
4425 	}
4426 }
4427 
4428 /* Do detached close. */
4429 static void
4430 tcp_close_detached(tcp_t *tcp)
4431 {
4432 	if (tcp->tcp_fused)
4433 		tcp_unfuse(tcp);
4434 
4435 	/*
4436 	 * Clustering code serializes TCP disconnect callbacks and
4437 	 * cluster tcp list walks by blocking a TCP disconnect callback
4438 	 * if a cluster tcp list walk is in progress. This ensures
4439 	 * accurate accounting of TCPs in the cluster code even though
4440 	 * the TCP list walk itself is not atomic.
4441 	 */
4442 	tcp_closei_local(tcp);
4443 	CONN_DEC_REF(tcp->tcp_connp);
4444 }
4445 
4446 /*
4447  * Stop all TCP timers, and free the timer mblks if requested.
4448  */
4449 void
4450 tcp_timers_stop(tcp_t *tcp)
4451 {
4452 	if (tcp->tcp_timer_tid != 0) {
4453 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4454 		tcp->tcp_timer_tid = 0;
4455 	}
4456 	if (tcp->tcp_ka_tid != 0) {
4457 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4458 		tcp->tcp_ka_tid = 0;
4459 	}
4460 	if (tcp->tcp_ack_tid != 0) {
4461 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4462 		tcp->tcp_ack_tid = 0;
4463 	}
4464 	if (tcp->tcp_push_tid != 0) {
4465 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4466 		tcp->tcp_push_tid = 0;
4467 	}
4468 }
4469 
4470 /*
4471  * The tcp_t is going away. Remove it from all lists and set it
4472  * to TCPS_CLOSED. The freeing up of memory is deferred until
4473  * tcp_inactive. This is needed since a thread in tcp_rput might have
4474  * done a CONN_INC_REF on this structure before it was removed from the
4475  * hashes.
4476  */
4477 static void
4478 tcp_closei_local(tcp_t *tcp)
4479 {
4480 	ire_t 	*ire;
4481 	conn_t	*connp = tcp->tcp_connp;
4482 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4483 
4484 	if (!TCP_IS_SOCKET(tcp))
4485 		tcp_acceptor_hash_remove(tcp);
4486 
4487 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
4488 	tcp->tcp_ibsegs = 0;
4489 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
4490 	tcp->tcp_obsegs = 0;
4491 
4492 	/*
4493 	 * If we are an eager connection hanging off a listener that
4494 	 * hasn't formally accepted the connection yet, get off his
4495 	 * list and blow off any data that we have accumulated.
4496 	 */
4497 	if (tcp->tcp_listener != NULL) {
4498 		tcp_t	*listener = tcp->tcp_listener;
4499 		mutex_enter(&listener->tcp_eager_lock);
4500 		/*
4501 		 * tcp_tconnind_started == B_TRUE means that the
4502 		 * conn_ind has already gone to listener. At
4503 		 * this point, eager will be closed but we
4504 		 * leave it in listeners eager list so that
4505 		 * if listener decides to close without doing
4506 		 * accept, we can clean this up. In tcp_wput_accept
4507 		 * we take care of the case of accept on closed
4508 		 * eager.
4509 		 */
4510 		if (!tcp->tcp_tconnind_started) {
4511 			tcp_eager_unlink(tcp);
4512 			mutex_exit(&listener->tcp_eager_lock);
4513 			/*
4514 			 * We don't want to have any pointers to the
4515 			 * listener queue, after we have released our
4516 			 * reference on the listener
4517 			 */
4518 			ASSERT(tcps->tcps_g_q != NULL);
4519 			tcp->tcp_rq = tcps->tcps_g_q;
4520 			tcp->tcp_wq = WR(tcps->tcps_g_q);
4521 			CONN_DEC_REF(listener->tcp_connp);
4522 		} else {
4523 			mutex_exit(&listener->tcp_eager_lock);
4524 		}
4525 	}
4526 
4527 	/* Stop all the timers */
4528 	tcp_timers_stop(tcp);
4529 
4530 	if (tcp->tcp_state == TCPS_LISTEN) {
4531 		if (tcp->tcp_ip_addr_cache) {
4532 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4533 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4534 			tcp->tcp_ip_addr_cache = NULL;
4535 		}
4536 	}
4537 	mutex_enter(&tcp->tcp_non_sq_lock);
4538 	if (tcp->tcp_flow_stopped)
4539 		tcp_clrqfull(tcp);
4540 	mutex_exit(&tcp->tcp_non_sq_lock);
4541 
4542 	tcp_bind_hash_remove(tcp);
4543 	/*
4544 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4545 	 * is trying to remove this tcp from the time wait list, we will
4546 	 * block in tcp_time_wait_remove while trying to acquire the
4547 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4548 	 * requires the ipcl_hash_remove to be ordered after the
4549 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4550 	 */
4551 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4552 		(void) tcp_time_wait_remove(tcp, NULL);
4553 	CL_INET_DISCONNECT(tcp);
4554 	ipcl_hash_remove(connp);
4555 
4556 	/*
4557 	 * Delete the cached ire in conn_ire_cache and also mark
4558 	 * the conn as CONDEMNED
4559 	 */
4560 	mutex_enter(&connp->conn_lock);
4561 	connp->conn_state_flags |= CONN_CONDEMNED;
4562 	ire = connp->conn_ire_cache;
4563 	connp->conn_ire_cache = NULL;
4564 	mutex_exit(&connp->conn_lock);
4565 	if (ire != NULL)
4566 		IRE_REFRELE_NOTR(ire);
4567 
4568 	/* Need to cleanup any pending ioctls */
4569 	ASSERT(tcp->tcp_time_wait_next == NULL);
4570 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4571 	ASSERT(tcp->tcp_time_wait_expire == 0);
4572 	tcp->tcp_state = TCPS_CLOSED;
4573 
4574 	/* Release any SSL context */
4575 	if (tcp->tcp_kssl_ent != NULL) {
4576 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4577 		tcp->tcp_kssl_ent = NULL;
4578 	}
4579 	if (tcp->tcp_kssl_ctx != NULL) {
4580 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4581 		tcp->tcp_kssl_ctx = NULL;
4582 	}
4583 	tcp->tcp_kssl_pending = B_FALSE;
4584 
4585 	tcp_ipsec_cleanup(tcp);
4586 }
4587 
4588 /*
4589  * tcp is dying (called from ipcl_conn_destroy and error cases).
4590  * Free the tcp_t in either case.
4591  */
4592 void
4593 tcp_free(tcp_t *tcp)
4594 {
4595 	mblk_t	*mp;
4596 	ip6_pkt_t	*ipp;
4597 
4598 	ASSERT(tcp != NULL);
4599 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4600 
4601 	tcp->tcp_rq = NULL;
4602 	tcp->tcp_wq = NULL;
4603 
4604 	tcp_close_mpp(&tcp->tcp_xmit_head);
4605 	tcp_close_mpp(&tcp->tcp_reass_head);
4606 	if (tcp->tcp_rcv_list != NULL) {
4607 		/* Free b_next chain */
4608 		tcp_close_mpp(&tcp->tcp_rcv_list);
4609 	}
4610 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4611 		freemsg(mp);
4612 	}
4613 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4614 		freemsg(mp);
4615 	}
4616 
4617 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4618 		freeb(tcp->tcp_fused_sigurg_mp);
4619 		tcp->tcp_fused_sigurg_mp = NULL;
4620 	}
4621 
4622 	if (tcp->tcp_sack_info != NULL) {
4623 		if (tcp->tcp_notsack_list != NULL) {
4624 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4625 		}
4626 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4627 	}
4628 
4629 	if (tcp->tcp_hopopts != NULL) {
4630 		mi_free(tcp->tcp_hopopts);
4631 		tcp->tcp_hopopts = NULL;
4632 		tcp->tcp_hopoptslen = 0;
4633 	}
4634 	ASSERT(tcp->tcp_hopoptslen == 0);
4635 	if (tcp->tcp_dstopts != NULL) {
4636 		mi_free(tcp->tcp_dstopts);
4637 		tcp->tcp_dstopts = NULL;
4638 		tcp->tcp_dstoptslen = 0;
4639 	}
4640 	ASSERT(tcp->tcp_dstoptslen == 0);
4641 	if (tcp->tcp_rtdstopts != NULL) {
4642 		mi_free(tcp->tcp_rtdstopts);
4643 		tcp->tcp_rtdstopts = NULL;
4644 		tcp->tcp_rtdstoptslen = 0;
4645 	}
4646 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4647 	if (tcp->tcp_rthdr != NULL) {
4648 		mi_free(tcp->tcp_rthdr);
4649 		tcp->tcp_rthdr = NULL;
4650 		tcp->tcp_rthdrlen = 0;
4651 	}
4652 	ASSERT(tcp->tcp_rthdrlen == 0);
4653 
4654 	ipp = &tcp->tcp_sticky_ipp;
4655 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4656 	    IPPF_RTHDR))
4657 		ip6_pkt_free(ipp);
4658 
4659 	/*
4660 	 * Free memory associated with the tcp/ip header template.
4661 	 */
4662 
4663 	if (tcp->tcp_iphc != NULL)
4664 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4665 
4666 	/*
4667 	 * Following is really a blowing away a union.
4668 	 * It happens to have exactly two members of identical size
4669 	 * the following code is enough.
4670 	 */
4671 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4672 
4673 	if (tcp->tcp_tracebuf != NULL) {
4674 		kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t));
4675 		tcp->tcp_tracebuf = NULL;
4676 	}
4677 }
4678 
4679 
4680 /*
4681  * Put a connection confirmation message upstream built from the
4682  * address information within 'iph' and 'tcph'.  Report our success or failure.
4683  */
4684 static boolean_t
4685 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4686     mblk_t **defermp)
4687 {
4688 	sin_t	sin;
4689 	sin6_t	sin6;
4690 	mblk_t	*mp;
4691 	char	*optp = NULL;
4692 	int	optlen = 0;
4693 	cred_t	*cr;
4694 
4695 	if (defermp != NULL)
4696 		*defermp = NULL;
4697 
4698 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4699 		/*
4700 		 * Return in T_CONN_CON results of option negotiation through
4701 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4702 		 * negotiation, then what is received from remote end needs
4703 		 * to be taken into account but there is no such thing (yet?)
4704 		 * in our TCP/IP.
4705 		 * Note: We do not use mi_offset_param() here as
4706 		 * tcp_opts_conn_req contents do not directly come from
4707 		 * an application and are either generated in kernel or
4708 		 * from user input that was already verified.
4709 		 */
4710 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4711 		optp = (char *)(mp->b_rptr +
4712 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4713 		optlen = (int)
4714 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4715 	}
4716 
4717 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4718 		ipha_t *ipha = (ipha_t *)iphdr;
4719 
4720 		/* packet is IPv4 */
4721 		if (tcp->tcp_family == AF_INET) {
4722 			sin = sin_null;
4723 			sin.sin_addr.s_addr = ipha->ipha_src;
4724 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4725 			sin.sin_family = AF_INET;
4726 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4727 			    (int)sizeof (sin_t), optp, optlen);
4728 		} else {
4729 			sin6 = sin6_null;
4730 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4731 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4732 			sin6.sin6_family = AF_INET6;
4733 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4734 			    (int)sizeof (sin6_t), optp, optlen);
4735 
4736 		}
4737 	} else {
4738 		ip6_t	*ip6h = (ip6_t *)iphdr;
4739 
4740 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4741 		ASSERT(tcp->tcp_family == AF_INET6);
4742 		sin6 = sin6_null;
4743 		sin6.sin6_addr = ip6h->ip6_src;
4744 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4745 		sin6.sin6_family = AF_INET6;
4746 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4747 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4748 		    (int)sizeof (sin6_t), optp, optlen);
4749 	}
4750 
4751 	if (!mp)
4752 		return (B_FALSE);
4753 
4754 	if ((cr = DB_CRED(idmp)) != NULL) {
4755 		mblk_setcred(mp, cr);
4756 		DB_CPID(mp) = DB_CPID(idmp);
4757 	}
4758 
4759 	if (defermp == NULL)
4760 		putnext(tcp->tcp_rq, mp);
4761 	else
4762 		*defermp = mp;
4763 
4764 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4765 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4766 	return (B_TRUE);
4767 }
4768 
4769 /*
4770  * Defense for the SYN attack -
4771  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
4772  *    one from the list of droppable eagers. This list is a subset of q0.
4773  *    see comments before the definition of MAKE_DROPPABLE().
4774  * 2. Don't drop a SYN request before its first timeout. This gives every
4775  *    request at least til the first timeout to complete its 3-way handshake.
4776  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4777  *    requests currently on the queue that has timed out. This will be used
4778  *    as an indicator of whether an attack is under way, so that appropriate
4779  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4780  *    either when eager goes into ESTABLISHED, or gets freed up.)
4781  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4782  *    # of timeout drops back to <= q0len/32 => SYN alert off
4783  */
4784 static boolean_t
4785 tcp_drop_q0(tcp_t *tcp)
4786 {
4787 	tcp_t	*eager;
4788 	mblk_t	*mp;
4789 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4790 
4791 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4792 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4793 
4794 	/* Pick oldest eager from the list of droppable eagers */
4795 	eager = tcp->tcp_eager_prev_drop_q0;
4796 
4797 	/* If list is empty. return B_FALSE */
4798 	if (eager == tcp) {
4799 		return (B_FALSE);
4800 	}
4801 
4802 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
4803 	if ((mp = allocb(0, BPRI_HI)) == NULL)
4804 		return (B_FALSE);
4805 
4806 	/*
4807 	 * Take this eager out from the list of droppable eagers since we are
4808 	 * going to drop it.
4809 	 */
4810 	MAKE_UNDROPPABLE(eager);
4811 
4812 	if (tcp->tcp_debug) {
4813 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4814 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4815 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
4816 		    tcp->tcp_conn_req_cnt_q0,
4817 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4818 	}
4819 
4820 	BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop);
4821 
4822 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
4823 	CONN_INC_REF(eager->tcp_connp);
4824 
4825 	/* Mark the IRE created for this SYN request temporary */
4826 	tcp_ip_ire_mark_advice(eager);
4827 	squeue_fill(eager->tcp_connp->conn_sqp, mp,
4828 	    tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0);
4829 
4830 	return (B_TRUE);
4831 }
4832 
4833 int
4834 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4835     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4836 {
4837 	tcp_t 		*ltcp = lconnp->conn_tcp;
4838 	tcp_t		*tcp = connp->conn_tcp;
4839 	mblk_t		*tpi_mp;
4840 	ipha_t		*ipha;
4841 	ip6_t		*ip6h;
4842 	sin6_t 		sin6;
4843 	in6_addr_t 	v6dst;
4844 	int		err;
4845 	int		ifindex = 0;
4846 	cred_t		*cr;
4847 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4848 
4849 	if (ipvers == IPV4_VERSION) {
4850 		ipha = (ipha_t *)mp->b_rptr;
4851 
4852 		connp->conn_send = ip_output;
4853 		connp->conn_recv = tcp_input;
4854 
4855 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4856 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4857 
4858 		sin6 = sin6_null;
4859 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4860 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4861 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4862 		sin6.sin6_family = AF_INET6;
4863 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4864 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4865 		if (tcp->tcp_recvdstaddr) {
4866 			sin6_t	sin6d;
4867 
4868 			sin6d = sin6_null;
4869 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4870 			    &sin6d.sin6_addr);
4871 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4872 			sin6d.sin6_family = AF_INET;
4873 			tpi_mp = mi_tpi_extconn_ind(NULL,
4874 			    (char *)&sin6d, sizeof (sin6_t),
4875 			    (char *)&tcp,
4876 			    (t_scalar_t)sizeof (intptr_t),
4877 			    (char *)&sin6d, sizeof (sin6_t),
4878 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4879 		} else {
4880 			tpi_mp = mi_tpi_conn_ind(NULL,
4881 			    (char *)&sin6, sizeof (sin6_t),
4882 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4883 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4884 		}
4885 	} else {
4886 		ip6h = (ip6_t *)mp->b_rptr;
4887 
4888 		connp->conn_send = ip_output_v6;
4889 		connp->conn_recv = tcp_input;
4890 
4891 		connp->conn_srcv6 = ip6h->ip6_dst;
4892 		connp->conn_remv6 = ip6h->ip6_src;
4893 
4894 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4895 		ifindex = (int)DB_CKSUMSTUFF(mp);
4896 		DB_CKSUMSTUFF(mp) = 0;
4897 
4898 		sin6 = sin6_null;
4899 		sin6.sin6_addr = ip6h->ip6_src;
4900 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4901 		sin6.sin6_family = AF_INET6;
4902 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4903 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4904 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4905 
4906 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4907 			/* Pass up the scope_id of remote addr */
4908 			sin6.sin6_scope_id = ifindex;
4909 		} else {
4910 			sin6.sin6_scope_id = 0;
4911 		}
4912 		if (tcp->tcp_recvdstaddr) {
4913 			sin6_t	sin6d;
4914 
4915 			sin6d = sin6_null;
4916 			sin6.sin6_addr = ip6h->ip6_dst;
4917 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4918 			sin6d.sin6_family = AF_INET;
4919 			tpi_mp = mi_tpi_extconn_ind(NULL,
4920 			    (char *)&sin6d, sizeof (sin6_t),
4921 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4922 			    (char *)&sin6d, sizeof (sin6_t),
4923 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4924 		} else {
4925 			tpi_mp = mi_tpi_conn_ind(NULL,
4926 			    (char *)&sin6, sizeof (sin6_t),
4927 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4928 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4929 		}
4930 	}
4931 
4932 	if (tpi_mp == NULL)
4933 		return (ENOMEM);
4934 
4935 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4936 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4937 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4938 	connp->conn_fully_bound = B_FALSE;
4939 
4940 	if (tcps->tcps_trace)
4941 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
4942 
4943 	/* Inherit information from the "parent" */
4944 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4945 	tcp->tcp_family = ltcp->tcp_family;
4946 	tcp->tcp_wq = ltcp->tcp_wq;
4947 	tcp->tcp_rq = ltcp->tcp_rq;
4948 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
4949 	tcp->tcp_detached = B_TRUE;
4950 	if ((err = tcp_init_values(tcp)) != 0) {
4951 		freemsg(tpi_mp);
4952 		return (err);
4953 	}
4954 
4955 	if (ipvers == IPV4_VERSION) {
4956 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4957 			freemsg(tpi_mp);
4958 			return (err);
4959 		}
4960 		ASSERT(tcp->tcp_ipha != NULL);
4961 	} else {
4962 		/* ifindex must be already set */
4963 		ASSERT(ifindex != 0);
4964 
4965 		if (ltcp->tcp_bound_if != 0) {
4966 			/*
4967 			 * Set newtcp's bound_if equal to
4968 			 * listener's value. If ifindex is
4969 			 * not the same as ltcp->tcp_bound_if,
4970 			 * it must be a packet for the ipmp group
4971 			 * of interfaces
4972 			 */
4973 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4974 		} else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4975 			tcp->tcp_bound_if = ifindex;
4976 		}
4977 
4978 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4979 		tcp->tcp_recvifindex = 0;
4980 		tcp->tcp_recvhops = 0xffffffffU;
4981 		ASSERT(tcp->tcp_ip6h != NULL);
4982 	}
4983 
4984 	tcp->tcp_lport = ltcp->tcp_lport;
4985 
4986 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4987 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4988 			/*
4989 			 * Listener had options of some sort; eager inherits.
4990 			 * Free up the eager template and allocate one
4991 			 * of the right size.
4992 			 */
4993 			if (tcp->tcp_hdr_grown) {
4994 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
4995 			} else {
4996 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4997 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
4998 			}
4999 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
5000 			    KM_NOSLEEP);
5001 			if (tcp->tcp_iphc == NULL) {
5002 				tcp->tcp_iphc_len = 0;
5003 				freemsg(tpi_mp);
5004 				return (ENOMEM);
5005 			}
5006 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
5007 			tcp->tcp_hdr_grown = B_TRUE;
5008 		}
5009 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5010 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5011 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5012 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
5013 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
5014 
5015 		/*
5016 		 * Copy the IP+TCP header template from listener to eager
5017 		 */
5018 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5019 		if (tcp->tcp_ipversion == IPV6_VERSION) {
5020 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
5021 			    IPPROTO_RAW) {
5022 				tcp->tcp_ip6h =
5023 				    (ip6_t *)(tcp->tcp_iphc +
5024 				    sizeof (ip6i_t));
5025 			} else {
5026 				tcp->tcp_ip6h =
5027 				    (ip6_t *)(tcp->tcp_iphc);
5028 			}
5029 			tcp->tcp_ipha = NULL;
5030 		} else {
5031 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5032 			tcp->tcp_ip6h = NULL;
5033 		}
5034 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5035 		    tcp->tcp_ip_hdr_len);
5036 	} else {
5037 		/*
5038 		 * only valid case when ipversion of listener and
5039 		 * eager differ is when listener is IPv6 and
5040 		 * eager is IPv4.
5041 		 * Eager header template has been initialized to the
5042 		 * maximum v4 header sizes, which includes space for
5043 		 * TCP and IP options.
5044 		 */
5045 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
5046 		    (tcp->tcp_ipversion == IPV4_VERSION));
5047 		ASSERT(tcp->tcp_iphc_len >=
5048 		    TCP_MAX_COMBINED_HEADER_LENGTH);
5049 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5050 		/* copy IP header fields individually */
5051 		tcp->tcp_ipha->ipha_ttl =
5052 		    ltcp->tcp_ip6h->ip6_hops;
5053 		bcopy(ltcp->tcp_tcph->th_lport,
5054 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
5055 	}
5056 
5057 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5058 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
5059 	    sizeof (in_port_t));
5060 
5061 	if (ltcp->tcp_lport == 0) {
5062 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
5063 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
5064 		    sizeof (in_port_t));
5065 	}
5066 
5067 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5068 		ASSERT(ipha != NULL);
5069 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5070 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5071 
5072 		/* Source routing option copyover (reverse it) */
5073 		if (tcps->tcps_rev_src_routes)
5074 			tcp_opt_reverse(tcp, ipha);
5075 	} else {
5076 		ASSERT(ip6h != NULL);
5077 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
5078 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
5079 	}
5080 
5081 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5082 	ASSERT(!tcp->tcp_tconnind_started);
5083 	/*
5084 	 * If the SYN contains a credential, it's a loopback packet; attach
5085 	 * the credential to the TPI message.
5086 	 */
5087 	if ((cr = DB_CRED(idmp)) != NULL) {
5088 		mblk_setcred(tpi_mp, cr);
5089 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5090 	}
5091 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5092 
5093 	/* Inherit the listener's SSL protection state */
5094 
5095 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5096 		kssl_hold_ent(tcp->tcp_kssl_ent);
5097 		tcp->tcp_kssl_pending = B_TRUE;
5098 	}
5099 
5100 	return (0);
5101 }
5102 
5103 
5104 int
5105 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
5106     tcph_t *tcph, mblk_t *idmp)
5107 {
5108 	tcp_t 		*ltcp = lconnp->conn_tcp;
5109 	tcp_t		*tcp = connp->conn_tcp;
5110 	sin_t		sin;
5111 	mblk_t		*tpi_mp = NULL;
5112 	int		err;
5113 	cred_t		*cr;
5114 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5115 
5116 	sin = sin_null;
5117 	sin.sin_addr.s_addr = ipha->ipha_src;
5118 	sin.sin_port = *(uint16_t *)tcph->th_lport;
5119 	sin.sin_family = AF_INET;
5120 	if (ltcp->tcp_recvdstaddr) {
5121 		sin_t	sind;
5122 
5123 		sind = sin_null;
5124 		sind.sin_addr.s_addr = ipha->ipha_dst;
5125 		sind.sin_port = *(uint16_t *)tcph->th_fport;
5126 		sind.sin_family = AF_INET;
5127 		tpi_mp = mi_tpi_extconn_ind(NULL,
5128 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
5129 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
5130 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5131 	} else {
5132 		tpi_mp = mi_tpi_conn_ind(NULL,
5133 		    (char *)&sin, sizeof (sin_t),
5134 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
5135 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5136 	}
5137 
5138 	if (tpi_mp == NULL) {
5139 		return (ENOMEM);
5140 	}
5141 
5142 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
5143 	connp->conn_send = ip_output;
5144 	connp->conn_recv = tcp_input;
5145 	connp->conn_fully_bound = B_FALSE;
5146 
5147 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
5148 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
5149 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
5150 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
5151 
5152 	if (tcps->tcps_trace) {
5153 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
5154 	}
5155 
5156 	/* Inherit information from the "parent" */
5157 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
5158 	tcp->tcp_family = ltcp->tcp_family;
5159 	tcp->tcp_wq = ltcp->tcp_wq;
5160 	tcp->tcp_rq = ltcp->tcp_rq;
5161 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
5162 	tcp->tcp_detached = B_TRUE;
5163 	if ((err = tcp_init_values(tcp)) != 0) {
5164 		freemsg(tpi_mp);
5165 		return (err);
5166 	}
5167 
5168 	/*
5169 	 * Let's make sure that eager tcp template has enough space to
5170 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
5171 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
5172 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
5173 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
5174 	 * extension headers or with ip6i_t struct). Note that bcopy() below
5175 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
5176 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
5177 	 */
5178 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
5179 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
5180 
5181 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5182 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5183 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5184 	tcp->tcp_ttl = ltcp->tcp_ttl;
5185 	tcp->tcp_tos = ltcp->tcp_tos;
5186 
5187 	/* Copy the IP+TCP header template from listener to eager */
5188 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5189 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5190 	tcp->tcp_ip6h = NULL;
5191 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5192 	    tcp->tcp_ip_hdr_len);
5193 
5194 	/* Initialize the IP addresses and Ports */
5195 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5196 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5197 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5198 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
5199 
5200 	/* Source routing option copyover (reverse it) */
5201 	if (tcps->tcps_rev_src_routes)
5202 		tcp_opt_reverse(tcp, ipha);
5203 
5204 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5205 	ASSERT(!tcp->tcp_tconnind_started);
5206 
5207 	/*
5208 	 * If the SYN contains a credential, it's a loopback packet; attach
5209 	 * the credential to the TPI message.
5210 	 */
5211 	if ((cr = DB_CRED(idmp)) != NULL) {
5212 		mblk_setcred(tpi_mp, cr);
5213 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5214 	}
5215 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5216 
5217 	/* Inherit the listener's SSL protection state */
5218 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5219 		kssl_hold_ent(tcp->tcp_kssl_ent);
5220 		tcp->tcp_kssl_pending = B_TRUE;
5221 	}
5222 
5223 	return (0);
5224 }
5225 
5226 /*
5227  * sets up conn for ipsec.
5228  * if the first mblk is M_CTL it is consumed and mpp is updated.
5229  * in case of error mpp is freed.
5230  */
5231 conn_t *
5232 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
5233 {
5234 	conn_t 		*connp = tcp->tcp_connp;
5235 	conn_t 		*econnp;
5236 	squeue_t 	*new_sqp;
5237 	mblk_t 		*first_mp = *mpp;
5238 	mblk_t		*mp = *mpp;
5239 	boolean_t	mctl_present = B_FALSE;
5240 	uint_t		ipvers;
5241 
5242 	econnp = tcp_get_conn(sqp, tcp->tcp_tcps);
5243 	if (econnp == NULL) {
5244 		freemsg(first_mp);
5245 		return (NULL);
5246 	}
5247 	if (DB_TYPE(mp) == M_CTL) {
5248 		if (mp->b_cont == NULL ||
5249 		    mp->b_cont->b_datap->db_type != M_DATA) {
5250 			freemsg(first_mp);
5251 			return (NULL);
5252 		}
5253 		mp = mp->b_cont;
5254 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
5255 			freemsg(first_mp);
5256 			return (NULL);
5257 		}
5258 
5259 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5260 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5261 		mctl_present = B_TRUE;
5262 	} else {
5263 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
5264 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5265 	}
5266 
5267 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5268 	DB_CKSUMSTART(mp) = 0;
5269 
5270 	ASSERT(OK_32PTR(mp->b_rptr));
5271 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5272 	if (ipvers == IPV4_VERSION) {
5273 		uint16_t  	*up;
5274 		uint32_t	ports;
5275 		ipha_t		*ipha;
5276 
5277 		ipha = (ipha_t *)mp->b_rptr;
5278 		up = (uint16_t *)((uchar_t *)ipha +
5279 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5280 		ports = *(uint32_t *)up;
5281 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5282 		    ipha->ipha_dst, ipha->ipha_src, ports);
5283 	} else {
5284 		uint16_t  	*up;
5285 		uint32_t	ports;
5286 		uint16_t	ip_hdr_len;
5287 		uint8_t		*nexthdrp;
5288 		ip6_t 		*ip6h;
5289 		tcph_t		*tcph;
5290 
5291 		ip6h = (ip6_t *)mp->b_rptr;
5292 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5293 			ip_hdr_len = IPV6_HDR_LEN;
5294 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5295 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5296 			CONN_DEC_REF(econnp);
5297 			freemsg(first_mp);
5298 			return (NULL);
5299 		}
5300 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5301 		up = (uint16_t *)tcph->th_lport;
5302 		ports = *(uint32_t *)up;
5303 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5304 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5305 	}
5306 
5307 	/*
5308 	 * The caller already ensured that there is a sqp present.
5309 	 */
5310 	econnp->conn_sqp = new_sqp;
5311 
5312 	if (connp->conn_policy != NULL) {
5313 		ipsec_in_t *ii;
5314 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5315 		ASSERT(ii->ipsec_in_policy == NULL);
5316 		IPPH_REFHOLD(connp->conn_policy);
5317 		ii->ipsec_in_policy = connp->conn_policy;
5318 
5319 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5320 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5321 			CONN_DEC_REF(econnp);
5322 			freemsg(first_mp);
5323 			return (NULL);
5324 		}
5325 	}
5326 
5327 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5328 		CONN_DEC_REF(econnp);
5329 		freemsg(first_mp);
5330 		return (NULL);
5331 	}
5332 
5333 	/*
5334 	 * If we know we have some policy, pass the "IPSEC"
5335 	 * options size TCP uses this adjust the MSS.
5336 	 */
5337 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5338 	if (mctl_present) {
5339 		freeb(first_mp);
5340 		*mpp = mp;
5341 	}
5342 
5343 	return (econnp);
5344 }
5345 
5346 /*
5347  * tcp_get_conn/tcp_free_conn
5348  *
5349  * tcp_get_conn is used to get a clean tcp connection structure.
5350  * It tries to reuse the connections put on the freelist by the
5351  * time_wait_collector failing which it goes to kmem_cache. This
5352  * way has two benefits compared to just allocating from and
5353  * freeing to kmem_cache.
5354  * 1) The time_wait_collector can free (which includes the cleanup)
5355  * outside the squeue. So when the interrupt comes, we have a clean
5356  * connection sitting in the freelist. Obviously, this buys us
5357  * performance.
5358  *
5359  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5360  * has multiple disadvantages - tying up the squeue during alloc, and the
5361  * fact that IPSec policy initialization has to happen here which
5362  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5363  * But allocating the conn/tcp in IP land is also not the best since
5364  * we can't check the 'q' and 'q0' which are protected by squeue and
5365  * blindly allocate memory which might have to be freed here if we are
5366  * not allowed to accept the connection. By using the freelist and
5367  * putting the conn/tcp back in freelist, we don't pay a penalty for
5368  * allocating memory without checking 'q/q0' and freeing it if we can't
5369  * accept the connection.
5370  *
5371  * Care should be taken to put the conn back in the same squeue's freelist
5372  * from which it was allocated. Best results are obtained if conn is
5373  * allocated from listener's squeue and freed to the same. Time wait
5374  * collector will free up the freelist is the connection ends up sitting
5375  * there for too long.
5376  */
5377 void *
5378 tcp_get_conn(void *arg, tcp_stack_t *tcps)
5379 {
5380 	tcp_t			*tcp = NULL;
5381 	conn_t			*connp = NULL;
5382 	squeue_t		*sqp = (squeue_t *)arg;
5383 	tcp_squeue_priv_t 	*tcp_time_wait;
5384 	netstack_t		*ns;
5385 
5386 	tcp_time_wait =
5387 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5388 
5389 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5390 	tcp = tcp_time_wait->tcp_free_list;
5391 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5392 	if (tcp != NULL) {
5393 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5394 		tcp_time_wait->tcp_free_list_cnt--;
5395 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5396 		tcp->tcp_time_wait_next = NULL;
5397 		connp = tcp->tcp_connp;
5398 		connp->conn_flags |= IPCL_REUSED;
5399 
5400 		ASSERT(tcp->tcp_tcps == NULL);
5401 		ASSERT(connp->conn_netstack == NULL);
5402 		ns = tcps->tcps_netstack;
5403 		netstack_hold(ns);
5404 		connp->conn_netstack = ns;
5405 		tcp->tcp_tcps = tcps;
5406 		TCPS_REFHOLD(tcps);
5407 		ipcl_globalhash_insert(connp);
5408 		return ((void *)connp);
5409 	}
5410 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5411 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
5412 	    tcps->tcps_netstack)) == NULL)
5413 		return (NULL);
5414 	tcp = connp->conn_tcp;
5415 	tcp->tcp_tcps = tcps;
5416 	TCPS_REFHOLD(tcps);
5417 	return ((void *)connp);
5418 }
5419 
5420 /*
5421  * Update the cached label for the given tcp_t.  This should be called once per
5422  * connection, and before any packets are sent or tcp_process_options is
5423  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5424  */
5425 static boolean_t
5426 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5427 {
5428 	conn_t *connp = tcp->tcp_connp;
5429 
5430 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5431 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5432 		int added;
5433 
5434 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5435 		    connp->conn_mac_exempt,
5436 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5437 			return (B_FALSE);
5438 
5439 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5440 		if (added == -1)
5441 			return (B_FALSE);
5442 		tcp->tcp_hdr_len += added;
5443 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5444 		tcp->tcp_ip_hdr_len += added;
5445 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5446 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5447 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5448 			    tcp->tcp_hdr_len);
5449 			if (added == -1)
5450 				return (B_FALSE);
5451 			tcp->tcp_hdr_len += added;
5452 			tcp->tcp_tcph = (tcph_t *)
5453 			    ((uchar_t *)tcp->tcp_tcph + added);
5454 			tcp->tcp_ip_hdr_len += added;
5455 		}
5456 	} else {
5457 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5458 
5459 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5460 		    connp->conn_mac_exempt,
5461 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5462 			return (B_FALSE);
5463 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5464 		    &tcp->tcp_label_len, optbuf) != 0)
5465 			return (B_FALSE);
5466 		if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0)
5467 			return (B_FALSE);
5468 	}
5469 
5470 	connp->conn_ulp_labeled = 1;
5471 
5472 	return (B_TRUE);
5473 }
5474 
5475 /* BEGIN CSTYLED */
5476 /*
5477  *
5478  * The sockfs ACCEPT path:
5479  * =======================
5480  *
5481  * The eager is now established in its own perimeter as soon as SYN is
5482  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5483  * completes the accept processing on the acceptor STREAM. The sending
5484  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5485  * listener but a TLI/XTI listener completes the accept processing
5486  * on the listener perimeter.
5487  *
5488  * Common control flow for 3 way handshake:
5489  * ----------------------------------------
5490  *
5491  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5492  *					-> tcp_conn_request()
5493  *
5494  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5495  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5496  *
5497  * Sockfs ACCEPT Path:
5498  * -------------------
5499  *
5500  * open acceptor stream (tcp_open allocates tcp_wput_accept()
5501  * as STREAM entry point)
5502  *
5503  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5504  *
5505  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5506  * association (we are not behind eager's squeue but sockfs is protecting us
5507  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5508  * is changed to point at tcp_wput().
5509  *
5510  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5511  * listener (done on listener's perimeter).
5512  *
5513  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5514  * accept.
5515  *
5516  * TLI/XTI client ACCEPT path:
5517  * ---------------------------
5518  *
5519  * soaccept() sends T_CONN_RES on the listener STREAM.
5520  *
5521  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5522  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5523  *
5524  * Locks:
5525  * ======
5526  *
5527  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5528  * and listeners->tcp_eager_next_q.
5529  *
5530  * Referencing:
5531  * ============
5532  *
5533  * 1) We start out in tcp_conn_request by eager placing a ref on
5534  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5535  *
5536  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5537  * doing so we place a ref on the eager. This ref is finally dropped at the
5538  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5539  * reference is dropped by the squeue framework.
5540  *
5541  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5542  *
5543  * The reference must be released by the same entity that added the reference
5544  * In the above scheme, the eager is the entity that adds and releases the
5545  * references. Note that tcp_accept_finish executes in the squeue of the eager
5546  * (albeit after it is attached to the acceptor stream). Though 1. executes
5547  * in the listener's squeue, the eager is nascent at this point and the
5548  * reference can be considered to have been added on behalf of the eager.
5549  *
5550  * Eager getting a Reset or listener closing:
5551  * ==========================================
5552  *
5553  * Once the listener and eager are linked, the listener never does the unlink.
5554  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5555  * a message on all eager perimeter. The eager then does the unlink, clears
5556  * any pointers to the listener's queue and drops the reference to the
5557  * listener. The listener waits in tcp_close outside the squeue until its
5558  * refcount has dropped to 1. This ensures that the listener has waited for
5559  * all eagers to clear their association with the listener.
5560  *
5561  * Similarly, if eager decides to go away, it can unlink itself and close.
5562  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5563  * the reference to eager is still valid because of the extra ref we put
5564  * in tcp_send_conn_ind.
5565  *
5566  * Listener can always locate the eager under the protection
5567  * of the listener->tcp_eager_lock, and then do a refhold
5568  * on the eager during the accept processing.
5569  *
5570  * The acceptor stream accesses the eager in the accept processing
5571  * based on the ref placed on eager before sending T_conn_ind.
5572  * The only entity that can negate this refhold is a listener close
5573  * which is mutually exclusive with an active acceptor stream.
5574  *
5575  * Eager's reference on the listener
5576  * ===================================
5577  *
5578  * If the accept happens (even on a closed eager) the eager drops its
5579  * reference on the listener at the start of tcp_accept_finish. If the
5580  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5581  * the reference is dropped in tcp_closei_local. If the listener closes,
5582  * the reference is dropped in tcp_eager_kill. In all cases the reference
5583  * is dropped while executing in the eager's context (squeue).
5584  */
5585 /* END CSTYLED */
5586 
5587 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5588 
5589 /*
5590  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5591  * tcp_rput_data will not see any SYN packets.
5592  */
5593 /* ARGSUSED */
5594 void
5595 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5596 {
5597 	tcph_t		*tcph;
5598 	uint32_t	seg_seq;
5599 	tcp_t		*eager;
5600 	uint_t		ipvers;
5601 	ipha_t		*ipha;
5602 	ip6_t		*ip6h;
5603 	int		err;
5604 	conn_t		*econnp = NULL;
5605 	squeue_t	*new_sqp;
5606 	mblk_t		*mp1;
5607 	uint_t 		ip_hdr_len;
5608 	conn_t		*connp = (conn_t *)arg;
5609 	tcp_t		*tcp = connp->conn_tcp;
5610 	cred_t		*credp;
5611 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5612 	ip_stack_t	*ipst;
5613 
5614 	if (tcp->tcp_state != TCPS_LISTEN)
5615 		goto error2;
5616 
5617 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5618 
5619 	mutex_enter(&tcp->tcp_eager_lock);
5620 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5621 		mutex_exit(&tcp->tcp_eager_lock);
5622 		TCP_STAT(tcps, tcp_listendrop);
5623 		BUMP_MIB(&tcps->tcps_mib, tcpListenDrop);
5624 		if (tcp->tcp_debug) {
5625 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5626 			    "tcp_conn_request: listen backlog (max=%d) "
5627 			    "overflow (%d pending) on %s",
5628 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5629 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5630 		}
5631 		goto error2;
5632 	}
5633 
5634 	if (tcp->tcp_conn_req_cnt_q0 >=
5635 	    tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
5636 		/*
5637 		 * Q0 is full. Drop a pending half-open req from the queue
5638 		 * to make room for the new SYN req. Also mark the time we
5639 		 * drop a SYN.
5640 		 *
5641 		 * A more aggressive defense against SYN attack will
5642 		 * be to set the "tcp_syn_defense" flag now.
5643 		 */
5644 		TCP_STAT(tcps, tcp_listendropq0);
5645 		tcp->tcp_last_rcv_lbolt = lbolt64;
5646 		if (!tcp_drop_q0(tcp)) {
5647 			mutex_exit(&tcp->tcp_eager_lock);
5648 			BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0);
5649 			if (tcp->tcp_debug) {
5650 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5651 				    "tcp_conn_request: listen half-open queue "
5652 				    "(max=%d) full (%d pending) on %s",
5653 				    tcps->tcps_conn_req_max_q0,
5654 				    tcp->tcp_conn_req_cnt_q0,
5655 				    tcp_display(tcp, NULL,
5656 				    DISP_PORT_ONLY));
5657 			}
5658 			goto error2;
5659 		}
5660 	}
5661 	mutex_exit(&tcp->tcp_eager_lock);
5662 
5663 	/*
5664 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5665 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5666 	 * link local address.  If IPSec is enabled, db_struioflag has
5667 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5668 	 * otherwise an error case if neither of them is set.
5669 	 */
5670 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5671 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5672 		DB_CKSUMSTART(mp) = 0;
5673 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5674 		econnp = (conn_t *)tcp_get_conn(arg2, tcps);
5675 		if (econnp == NULL)
5676 			goto error2;
5677 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5678 		econnp->conn_sqp = new_sqp;
5679 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5680 		/*
5681 		 * mp is updated in tcp_get_ipsec_conn().
5682 		 */
5683 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5684 		if (econnp == NULL) {
5685 			/*
5686 			 * mp freed by tcp_get_ipsec_conn.
5687 			 */
5688 			return;
5689 		}
5690 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5691 	} else {
5692 		goto error2;
5693 	}
5694 
5695 	ASSERT(DB_TYPE(mp) == M_DATA);
5696 
5697 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5698 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5699 	ASSERT(OK_32PTR(mp->b_rptr));
5700 	if (ipvers == IPV4_VERSION) {
5701 		ipha = (ipha_t *)mp->b_rptr;
5702 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5703 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5704 	} else {
5705 		ip6h = (ip6_t *)mp->b_rptr;
5706 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5707 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5708 	}
5709 
5710 	if (tcp->tcp_family == AF_INET) {
5711 		ASSERT(ipvers == IPV4_VERSION);
5712 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5713 	} else {
5714 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5715 	}
5716 
5717 	if (err)
5718 		goto error3;
5719 
5720 	eager = econnp->conn_tcp;
5721 
5722 	/* Inherit various TCP parameters from the listener */
5723 	eager->tcp_naglim = tcp->tcp_naglim;
5724 	eager->tcp_first_timer_threshold =
5725 	    tcp->tcp_first_timer_threshold;
5726 	eager->tcp_second_timer_threshold =
5727 	    tcp->tcp_second_timer_threshold;
5728 
5729 	eager->tcp_first_ctimer_threshold =
5730 	    tcp->tcp_first_ctimer_threshold;
5731 	eager->tcp_second_ctimer_threshold =
5732 	    tcp->tcp_second_ctimer_threshold;
5733 
5734 	/*
5735 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5736 	 * If it does not, the eager's receive window will be set to the
5737 	 * listener's receive window later in this function.
5738 	 */
5739 	eager->tcp_rwnd = 0;
5740 
5741 	/*
5742 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5743 	 * calling tcp_process_options() where tcp_mss_set() is called
5744 	 * to set the initial cwnd.
5745 	 */
5746 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5747 
5748 	/*
5749 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5750 	 * zone id before the accept is completed in tcp_wput_accept().
5751 	 */
5752 	econnp->conn_zoneid = connp->conn_zoneid;
5753 	econnp->conn_allzones = connp->conn_allzones;
5754 
5755 	/* Copy nexthop information from listener to eager */
5756 	if (connp->conn_nexthop_set) {
5757 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5758 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5759 	}
5760 
5761 	/*
5762 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5763 	 * eager is accepted
5764 	 */
5765 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5766 	crhold(credp);
5767 
5768 	/*
5769 	 * If the caller has the process-wide flag set, then default to MAC
5770 	 * exempt mode.  This allows read-down to unlabeled hosts.
5771 	 */
5772 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5773 		econnp->conn_mac_exempt = B_TRUE;
5774 
5775 	if (is_system_labeled()) {
5776 		cred_t *cr;
5777 
5778 		if (connp->conn_mlp_type != mlptSingle) {
5779 			cr = econnp->conn_peercred = DB_CRED(mp);
5780 			if (cr != NULL)
5781 				crhold(cr);
5782 			else
5783 				cr = econnp->conn_cred;
5784 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5785 			    econnp, cred_t *, cr)
5786 		} else {
5787 			cr = econnp->conn_cred;
5788 			DTRACE_PROBE2(syn_accept, conn_t *,
5789 			    econnp, cred_t *, cr)
5790 		}
5791 
5792 		if (!tcp_update_label(eager, cr)) {
5793 			DTRACE_PROBE3(
5794 			    tx__ip__log__error__connrequest__tcp,
5795 			    char *, "eager connp(1) label on SYN mp(2) failed",
5796 			    conn_t *, econnp, mblk_t *, mp);
5797 			goto error3;
5798 		}
5799 	}
5800 
5801 	eager->tcp_hard_binding = B_TRUE;
5802 
5803 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
5804 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5805 
5806 	CL_INET_CONNECT(eager);
5807 
5808 	/*
5809 	 * No need to check for multicast destination since ip will only pass
5810 	 * up multicasts to those that have expressed interest
5811 	 * TODO: what about rejecting broadcasts?
5812 	 * Also check that source is not a multicast or broadcast address.
5813 	 */
5814 	eager->tcp_state = TCPS_SYN_RCVD;
5815 
5816 
5817 	/*
5818 	 * There should be no ire in the mp as we are being called after
5819 	 * receiving the SYN.
5820 	 */
5821 	ASSERT(tcp_ire_mp(mp) == NULL);
5822 
5823 	/*
5824 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5825 	 */
5826 
5827 	if (tcp_adapt_ire(eager, NULL) == 0) {
5828 		/* Undo the bind_hash_insert */
5829 		tcp_bind_hash_remove(eager);
5830 		goto error3;
5831 	}
5832 
5833 	/* Process all TCP options. */
5834 	tcp_process_options(eager, tcph);
5835 
5836 	/* Is the other end ECN capable? */
5837 	if (tcps->tcps_ecn_permitted >= 1 &&
5838 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5839 		eager->tcp_ecn_ok = B_TRUE;
5840 	}
5841 
5842 	/*
5843 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5844 	 * window size changed via SO_RCVBUF option.  First round up the
5845 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5846 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5847 	 * setting.
5848 	 *
5849 	 * Note if there is a rpipe metric associated with the remote host,
5850 	 * we should not inherit receive window size from listener.
5851 	 */
5852 	eager->tcp_rwnd = MSS_ROUNDUP(
5853 	    (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat :
5854 	    eager->tcp_rwnd), eager->tcp_mss);
5855 	if (eager->tcp_snd_ws_ok)
5856 		tcp_set_ws_value(eager);
5857 	/*
5858 	 * Note that this is the only place tcp_rwnd_set() is called for
5859 	 * accepting a connection.  We need to call it here instead of
5860 	 * after the 3-way handshake because we need to tell the other
5861 	 * side our rwnd in the SYN-ACK segment.
5862 	 */
5863 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5864 
5865 	/*
5866 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5867 	 * via soaccept()->soinheritoptions() which essentially applies
5868 	 * all the listener options to the new STREAM. The options that we
5869 	 * need to take care of are:
5870 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5871 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5872 	 * SO_SNDBUF, SO_RCVBUF.
5873 	 *
5874 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5875 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5876 	 *		tcp_maxpsz_set() gets called later from
5877 	 *		tcp_accept_finish(), the option takes effect.
5878 	 *
5879 	 */
5880 	/* Set the TCP options */
5881 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5882 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5883 	eager->tcp_oobinline = tcp->tcp_oobinline;
5884 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5885 	eager->tcp_broadcast = tcp->tcp_broadcast;
5886 	eager->tcp_useloopback = tcp->tcp_useloopback;
5887 	eager->tcp_dontroute = tcp->tcp_dontroute;
5888 	eager->tcp_linger = tcp->tcp_linger;
5889 	eager->tcp_lingertime = tcp->tcp_lingertime;
5890 	if (tcp->tcp_ka_enabled)
5891 		eager->tcp_ka_enabled = 1;
5892 
5893 	/* Set the IP options */
5894 	econnp->conn_broadcast = connp->conn_broadcast;
5895 	econnp->conn_loopback = connp->conn_loopback;
5896 	econnp->conn_dontroute = connp->conn_dontroute;
5897 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5898 
5899 	/* Put a ref on the listener for the eager. */
5900 	CONN_INC_REF(connp);
5901 	mutex_enter(&tcp->tcp_eager_lock);
5902 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5903 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5904 	tcp->tcp_eager_next_q0 = eager;
5905 	eager->tcp_eager_prev_q0 = tcp;
5906 
5907 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5908 	eager->tcp_listener = tcp;
5909 	eager->tcp_saved_listener = tcp;
5910 
5911 	/*
5912 	 * Tag this detached tcp vector for later retrieval
5913 	 * by our listener client in tcp_accept().
5914 	 */
5915 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5916 	tcp->tcp_conn_req_cnt_q0++;
5917 	if (++tcp->tcp_conn_req_seqnum == -1) {
5918 		/*
5919 		 * -1 is "special" and defined in TPI as something
5920 		 * that should never be used in T_CONN_IND
5921 		 */
5922 		++tcp->tcp_conn_req_seqnum;
5923 	}
5924 	mutex_exit(&tcp->tcp_eager_lock);
5925 
5926 	if (tcp->tcp_syn_defense) {
5927 		/* Don't drop the SYN that comes from a good IP source */
5928 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5929 		if (addr_cache != NULL && eager->tcp_remote ==
5930 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5931 			eager->tcp_dontdrop = B_TRUE;
5932 		}
5933 	}
5934 
5935 	/*
5936 	 * We need to insert the eager in its own perimeter but as soon
5937 	 * as we do that, we expose the eager to the classifier and
5938 	 * should not touch any field outside the eager's perimeter.
5939 	 * So do all the work necessary before inserting the eager
5940 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5941 	 * will succeed but undo everything if it fails.
5942 	 */
5943 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5944 	eager->tcp_irs = seg_seq;
5945 	eager->tcp_rack = seg_seq;
5946 	eager->tcp_rnxt = seg_seq + 1;
5947 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5948 	BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens);
5949 	eager->tcp_state = TCPS_SYN_RCVD;
5950 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5951 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5952 	if (mp1 == NULL) {
5953 		/*
5954 		 * Increment the ref count as we are going to
5955 		 * enqueueing an mp in squeue
5956 		 */
5957 		CONN_INC_REF(econnp);
5958 		goto error;
5959 	}
5960 	DB_CPID(mp1) = tcp->tcp_cpid;
5961 	eager->tcp_cpid = tcp->tcp_cpid;
5962 	eager->tcp_open_time = lbolt64;
5963 
5964 	/*
5965 	 * We need to start the rto timer. In normal case, we start
5966 	 * the timer after sending the packet on the wire (or at
5967 	 * least believing that packet was sent by waiting for
5968 	 * CALL_IP_WPUT() to return). Since this is the first packet
5969 	 * being sent on the wire for the eager, our initial tcp_rto
5970 	 * is at least tcp_rexmit_interval_min which is a fairly
5971 	 * large value to allow the algorithm to adjust slowly to large
5972 	 * fluctuations of RTT during first few transmissions.
5973 	 *
5974 	 * Starting the timer first and then sending the packet in this
5975 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5976 	 * is of the order of several 100ms and starting the timer
5977 	 * first and then sending the packet will result in difference
5978 	 * of few micro seconds.
5979 	 *
5980 	 * Without this optimization, we are forced to hold the fanout
5981 	 * lock across the ipcl_bind_insert() and sending the packet
5982 	 * so that we don't race against an incoming packet (maybe RST)
5983 	 * for this eager.
5984 	 *
5985 	 * It is necessary to acquire an extra reference on the eager
5986 	 * at this point and hold it until after tcp_send_data() to
5987 	 * ensure against an eager close race.
5988 	 */
5989 
5990 	CONN_INC_REF(eager->tcp_connp);
5991 
5992 	TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT);
5993 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5994 
5995 
5996 	/*
5997 	 * Insert the eager in its own perimeter now. We are ready to deal
5998 	 * with any packets on eager.
5999 	 */
6000 	if (eager->tcp_ipversion == IPV4_VERSION) {
6001 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
6002 			goto error;
6003 		}
6004 	} else {
6005 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
6006 			goto error;
6007 		}
6008 	}
6009 
6010 	/* mark conn as fully-bound */
6011 	econnp->conn_fully_bound = B_TRUE;
6012 
6013 	/* Send the SYN-ACK */
6014 	tcp_send_data(eager, eager->tcp_wq, mp1);
6015 	CONN_DEC_REF(eager->tcp_connp);
6016 	freemsg(mp);
6017 
6018 	return;
6019 error:
6020 	freemsg(mp1);
6021 	eager->tcp_closemp_used = B_TRUE;
6022 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6023 	squeue_fill(econnp->conn_sqp, &eager->tcp_closemp, tcp_eager_kill,
6024 	    econnp, SQTAG_TCP_CONN_REQ_2);
6025 
6026 	/*
6027 	 * If a connection already exists, send the mp to that connections so
6028 	 * that it can be appropriately dealt with.
6029 	 */
6030 	ipst = tcps->tcps_netstack->netstack_ip;
6031 
6032 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) {
6033 		if (!IPCL_IS_CONNECTED(econnp)) {
6034 			/*
6035 			 * Something bad happened. ipcl_conn_insert()
6036 			 * failed because a connection already existed
6037 			 * in connected hash but we can't find it
6038 			 * anymore (someone blew it away). Just
6039 			 * free this message and hopefully remote
6040 			 * will retransmit at which time the SYN can be
6041 			 * treated as a new connection or dealth with
6042 			 * a TH_RST if a connection already exists.
6043 			 */
6044 			CONN_DEC_REF(econnp);
6045 			freemsg(mp);
6046 		} else {
6047 			squeue_fill(econnp->conn_sqp, mp, tcp_input,
6048 			    econnp, SQTAG_TCP_CONN_REQ_1);
6049 		}
6050 	} else {
6051 		/* Nobody wants this packet */
6052 		freemsg(mp);
6053 	}
6054 	return;
6055 error3:
6056 	CONN_DEC_REF(econnp);
6057 error2:
6058 	freemsg(mp);
6059 }
6060 
6061 /*
6062  * In an ideal case of vertical partition in NUMA architecture, its
6063  * beneficial to have the listener and all the incoming connections
6064  * tied to the same squeue. The other constraint is that incoming
6065  * connections should be tied to the squeue attached to interrupted
6066  * CPU for obvious locality reason so this leaves the listener to
6067  * be tied to the same squeue. Our only problem is that when listener
6068  * is binding, the CPU that will get interrupted by the NIC whose
6069  * IP address the listener is binding to is not even known. So
6070  * the code below allows us to change that binding at the time the
6071  * CPU is interrupted by virtue of incoming connection's squeue.
6072  *
6073  * This is usefull only in case of a listener bound to a specific IP
6074  * address. For other kind of listeners, they get bound the
6075  * very first time and there is no attempt to rebind them.
6076  */
6077 void
6078 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
6079 {
6080 	conn_t		*connp = (conn_t *)arg;
6081 	squeue_t	*sqp = (squeue_t *)arg2;
6082 	squeue_t	*new_sqp;
6083 	uint32_t	conn_flags;
6084 
6085 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
6086 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
6087 	} else {
6088 		goto done;
6089 	}
6090 
6091 	if (connp->conn_fanout == NULL)
6092 		goto done;
6093 
6094 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
6095 		mutex_enter(&connp->conn_fanout->connf_lock);
6096 		mutex_enter(&connp->conn_lock);
6097 		/*
6098 		 * No one from read or write side can access us now
6099 		 * except for already queued packets on this squeue.
6100 		 * But since we haven't changed the squeue yet, they
6101 		 * can't execute. If they are processed after we have
6102 		 * changed the squeue, they are sent back to the
6103 		 * correct squeue down below.
6104 		 * But a listner close can race with processing of
6105 		 * incoming SYN. If incoming SYN processing changes
6106 		 * the squeue then the listener close which is waiting
6107 		 * to enter the squeue would operate on the wrong
6108 		 * squeue. Hence we don't change the squeue here unless
6109 		 * the refcount is exactly the minimum refcount. The
6110 		 * minimum refcount of 4 is counted as - 1 each for
6111 		 * TCP and IP, 1 for being in the classifier hash, and
6112 		 * 1 for the mblk being processed.
6113 		 */
6114 
6115 		if (connp->conn_ref != 4 ||
6116 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
6117 			mutex_exit(&connp->conn_lock);
6118 			mutex_exit(&connp->conn_fanout->connf_lock);
6119 			goto done;
6120 		}
6121 		if (connp->conn_sqp != new_sqp) {
6122 			while (connp->conn_sqp != new_sqp)
6123 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
6124 		}
6125 
6126 		do {
6127 			conn_flags = connp->conn_flags;
6128 			conn_flags |= IPCL_FULLY_BOUND;
6129 			(void) cas32(&connp->conn_flags, connp->conn_flags,
6130 			    conn_flags);
6131 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
6132 
6133 		mutex_exit(&connp->conn_fanout->connf_lock);
6134 		mutex_exit(&connp->conn_lock);
6135 	}
6136 
6137 done:
6138 	if (connp->conn_sqp != sqp) {
6139 		CONN_INC_REF(connp);
6140 		squeue_fill(connp->conn_sqp, mp,
6141 		    connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND);
6142 	} else {
6143 		tcp_conn_request(connp, mp, sqp);
6144 	}
6145 }
6146 
6147 /*
6148  * Successful connect request processing begins when our client passes
6149  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
6150  * our T_OK_ACK reply message upstream.  The control flow looks like this:
6151  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP
6152  *   upstream <- tcp_rput()                <- IP
6153  * After various error checks are completed, tcp_connect() lays
6154  * the target address and port into the composite header template,
6155  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
6156  * request followed by an IRE request, and passes the three mblk message
6157  * down to IP looking like this:
6158  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
6159  * Processing continues in tcp_rput() when we receive the following message:
6160  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
6161  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
6162  * to fire off the connection request, and then passes the T_OK_ACK mblk
6163  * upstream that we filled in below.  There are, of course, numerous
6164  * error conditions along the way which truncate the processing described
6165  * above.
6166  */
6167 static void
6168 tcp_connect(tcp_t *tcp, mblk_t *mp)
6169 {
6170 	sin_t		*sin;
6171 	sin6_t		*sin6;
6172 	queue_t		*q = tcp->tcp_wq;
6173 	struct T_conn_req	*tcr;
6174 	ipaddr_t	*dstaddrp;
6175 	in_port_t	dstport;
6176 	uint_t		srcid;
6177 
6178 	tcr = (struct T_conn_req *)mp->b_rptr;
6179 
6180 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6181 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
6182 		tcp_err_ack(tcp, mp, TPROTO, 0);
6183 		return;
6184 	}
6185 
6186 	/*
6187 	 * Determine packet type based on type of address passed in
6188 	 * the request should contain an IPv4 or IPv6 address.
6189 	 * Make sure that address family matches the type of
6190 	 * family of the the address passed down
6191 	 */
6192 	switch (tcr->DEST_length) {
6193 	default:
6194 		tcp_err_ack(tcp, mp, TBADADDR, 0);
6195 		return;
6196 
6197 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
6198 		/*
6199 		 * XXX: The check for valid DEST_length was not there
6200 		 * in earlier releases and some buggy
6201 		 * TLI apps (e.g Sybase) got away with not feeding
6202 		 * in sin_zero part of address.
6203 		 * We allow that bug to keep those buggy apps humming.
6204 		 * Test suites require the check on DEST_length.
6205 		 * We construct a new mblk with valid DEST_length
6206 		 * free the original so the rest of the code does
6207 		 * not have to keep track of this special shorter
6208 		 * length address case.
6209 		 */
6210 		mblk_t *nmp;
6211 		struct T_conn_req *ntcr;
6212 		sin_t *nsin;
6213 
6214 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
6215 		    tcr->OPT_length, BPRI_HI);
6216 		if (nmp == NULL) {
6217 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6218 			return;
6219 		}
6220 		ntcr = (struct T_conn_req *)nmp->b_rptr;
6221 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
6222 		ntcr->PRIM_type = T_CONN_REQ;
6223 		ntcr->DEST_length = sizeof (sin_t);
6224 		ntcr->DEST_offset = sizeof (struct T_conn_req);
6225 
6226 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
6227 		*nsin = sin_null;
6228 		/* Get pointer to shorter address to copy from original mp */
6229 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6230 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
6231 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6232 			freemsg(nmp);
6233 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6234 			return;
6235 		}
6236 		nsin->sin_family = sin->sin_family;
6237 		nsin->sin_port = sin->sin_port;
6238 		nsin->sin_addr = sin->sin_addr;
6239 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6240 		nmp->b_wptr = (uchar_t *)&nsin[1];
6241 		if (tcr->OPT_length != 0) {
6242 			ntcr->OPT_length = tcr->OPT_length;
6243 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6244 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6245 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6246 			    tcr->OPT_length);
6247 			nmp->b_wptr += tcr->OPT_length;
6248 		}
6249 		freemsg(mp);	/* original mp freed */
6250 		mp = nmp;	/* re-initialize original variables */
6251 		tcr = ntcr;
6252 	}
6253 	/* FALLTHRU */
6254 
6255 	case sizeof (sin_t):
6256 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6257 		    sizeof (sin_t));
6258 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6259 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6260 			return;
6261 		}
6262 		if (tcp->tcp_family != AF_INET ||
6263 		    sin->sin_family != AF_INET) {
6264 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6265 			return;
6266 		}
6267 		if (sin->sin_port == 0) {
6268 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6269 			return;
6270 		}
6271 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
6272 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6273 			return;
6274 		}
6275 
6276 		break;
6277 
6278 	case sizeof (sin6_t):
6279 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
6280 		    sizeof (sin6_t));
6281 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
6282 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6283 			return;
6284 		}
6285 		if (tcp->tcp_family != AF_INET6 ||
6286 		    sin6->sin6_family != AF_INET6) {
6287 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6288 			return;
6289 		}
6290 		if (sin6->sin6_port == 0) {
6291 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6292 			return;
6293 		}
6294 		break;
6295 	}
6296 	/*
6297 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6298 	 * should key on their sequence number and cut them loose.
6299 	 */
6300 
6301 	/*
6302 	 * If options passed in, feed it for verification and handling
6303 	 */
6304 	if (tcr->OPT_length != 0) {
6305 		mblk_t	*ok_mp;
6306 		mblk_t	*discon_mp;
6307 		mblk_t  *conn_opts_mp;
6308 		int t_error, sys_error, do_disconnect;
6309 
6310 		conn_opts_mp = NULL;
6311 
6312 		if (tcp_conprim_opt_process(tcp, mp,
6313 		    &do_disconnect, &t_error, &sys_error) < 0) {
6314 			if (do_disconnect) {
6315 				ASSERT(t_error == 0 && sys_error == 0);
6316 				discon_mp = mi_tpi_discon_ind(NULL,
6317 				    ECONNREFUSED, 0);
6318 				if (!discon_mp) {
6319 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6320 					    TSYSERR, ENOMEM);
6321 					return;
6322 				}
6323 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6324 				if (!ok_mp) {
6325 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6326 					    TSYSERR, ENOMEM);
6327 					return;
6328 				}
6329 				qreply(q, ok_mp);
6330 				qreply(q, discon_mp); /* no flush! */
6331 			} else {
6332 				ASSERT(t_error != 0);
6333 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6334 				    sys_error);
6335 			}
6336 			return;
6337 		}
6338 		/*
6339 		 * Success in setting options, the mp option buffer represented
6340 		 * by OPT_length/offset has been potentially modified and
6341 		 * contains results of option processing. We copy it in
6342 		 * another mp to save it for potentially influencing returning
6343 		 * it in T_CONN_CONN.
6344 		 */
6345 		if (tcr->OPT_length != 0) { /* there are resulting options */
6346 			conn_opts_mp = copyb(mp);
6347 			if (!conn_opts_mp) {
6348 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6349 				    TSYSERR, ENOMEM);
6350 				return;
6351 			}
6352 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6353 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6354 			/*
6355 			 * Note:
6356 			 * These resulting option negotiation can include any
6357 			 * end-to-end negotiation options but there no such
6358 			 * thing (yet?) in our TCP/IP.
6359 			 */
6360 		}
6361 	}
6362 
6363 	/*
6364 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
6365 	 * make sure that the template IP header in the tcp structure is an
6366 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
6367 	 * need to this before we call tcp_bindi() so that the port lookup
6368 	 * code will look for ports in the correct port space (IPv4 and
6369 	 * IPv6 have separate port spaces).
6370 	 */
6371 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
6372 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6373 		int err = 0;
6374 
6375 		err = tcp_header_init_ipv4(tcp);
6376 		if (err != 0) {
6377 			mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6378 			goto connect_failed;
6379 		}
6380 		if (tcp->tcp_lport != 0)
6381 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
6382 	}
6383 
6384 	switch (tcp->tcp_state) {
6385 	case TCPS_IDLE:
6386 		/*
6387 		 * We support quick connect, refer to comments in
6388 		 * tcp_connect_*()
6389 		 */
6390 		/* FALLTHRU */
6391 	case TCPS_BOUND:
6392 	case TCPS_LISTEN:
6393 		if (tcp->tcp_family == AF_INET6) {
6394 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6395 				tcp_connect_ipv6(tcp, mp,
6396 				    &sin6->sin6_addr,
6397 				    sin6->sin6_port, sin6->sin6_flowinfo,
6398 				    sin6->__sin6_src_id, sin6->sin6_scope_id);
6399 				return;
6400 			}
6401 			/*
6402 			 * Destination adress is mapped IPv6 address.
6403 			 * Source bound address should be unspecified or
6404 			 * IPv6 mapped address as well.
6405 			 */
6406 			if (!IN6_IS_ADDR_UNSPECIFIED(
6407 			    &tcp->tcp_bound_source_v6) &&
6408 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
6409 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR,
6410 				    EADDRNOTAVAIL);
6411 				break;
6412 			}
6413 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
6414 			dstport = sin6->sin6_port;
6415 			srcid = sin6->__sin6_src_id;
6416 		} else {
6417 			dstaddrp = &sin->sin_addr.s_addr;
6418 			dstport = sin->sin_port;
6419 			srcid = 0;
6420 		}
6421 
6422 		tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid);
6423 		return;
6424 	default:
6425 		mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0);
6426 		break;
6427 	}
6428 	/*
6429 	 * Note: Code below is the "failure" case
6430 	 */
6431 	/* return error ack and blow away saved option results if any */
6432 connect_failed:
6433 	if (mp != NULL)
6434 		putnext(tcp->tcp_rq, mp);
6435 	else {
6436 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6437 		    TSYSERR, ENOMEM);
6438 	}
6439 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6440 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6441 }
6442 
6443 /*
6444  * Handle connect to IPv4 destinations, including connections for AF_INET6
6445  * sockets connecting to IPv4 mapped IPv6 destinations.
6446  */
6447 static void
6448 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport,
6449     uint_t srcid)
6450 {
6451 	tcph_t	*tcph;
6452 	mblk_t	*mp1;
6453 	ipaddr_t dstaddr = *dstaddrp;
6454 	int32_t	oldstate;
6455 	uint16_t lport;
6456 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6457 
6458 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6459 
6460 	/* Check for attempt to connect to INADDR_ANY */
6461 	if (dstaddr == INADDR_ANY)  {
6462 		/*
6463 		 * SunOS 4.x and 4.3 BSD allow an application
6464 		 * to connect a TCP socket to INADDR_ANY.
6465 		 * When they do this, the kernel picks the
6466 		 * address of one interface and uses it
6467 		 * instead.  The kernel usually ends up
6468 		 * picking the address of the loopback
6469 		 * interface.  This is an undocumented feature.
6470 		 * However, we provide the same thing here
6471 		 * in order to have source and binary
6472 		 * compatibility with SunOS 4.x.
6473 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6474 		 * generate the T_CONN_CON.
6475 		 */
6476 		dstaddr = htonl(INADDR_LOOPBACK);
6477 		*dstaddrp = dstaddr;
6478 	}
6479 
6480 	/* Handle __sin6_src_id if socket not bound to an IP address */
6481 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6482 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6483 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6484 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6485 		    tcp->tcp_ipha->ipha_src);
6486 	}
6487 
6488 	/*
6489 	 * Don't let an endpoint connect to itself.  Note that
6490 	 * the test here does not catch the case where the
6491 	 * source IP addr was left unspecified by the user. In
6492 	 * this case, the source addr is set in tcp_adapt_ire()
6493 	 * using the reply to the T_BIND message that we send
6494 	 * down to IP here and the check is repeated in tcp_rput_other.
6495 	 */
6496 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6497 	    dstport == tcp->tcp_lport) {
6498 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6499 		goto failed;
6500 	}
6501 
6502 	tcp->tcp_ipha->ipha_dst = dstaddr;
6503 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6504 
6505 	/*
6506 	 * Massage a source route if any putting the first hop
6507 	 * in iph_dst. Compute a starting value for the checksum which
6508 	 * takes into account that the original iph_dst should be
6509 	 * included in the checksum but that ip will include the
6510 	 * first hop in the source route in the tcp checksum.
6511 	 */
6512 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack);
6513 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6514 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6515 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6516 	if ((int)tcp->tcp_sum < 0)
6517 		tcp->tcp_sum--;
6518 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6519 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6520 	    (tcp->tcp_sum >> 16));
6521 	tcph = tcp->tcp_tcph;
6522 	*(uint16_t *)tcph->th_fport = dstport;
6523 	tcp->tcp_fport = dstport;
6524 
6525 	oldstate = tcp->tcp_state;
6526 	/*
6527 	 * At this point the remote destination address and remote port fields
6528 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6529 	 * have to see which state tcp was in so we can take apropriate action.
6530 	 */
6531 	if (oldstate == TCPS_IDLE) {
6532 		/*
6533 		 * We support a quick connect capability here, allowing
6534 		 * clients to transition directly from IDLE to SYN_SENT
6535 		 * tcp_bindi will pick an unused port, insert the connection
6536 		 * in the bind hash and transition to BOUND state.
6537 		 */
6538 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6539 		    tcp, B_TRUE);
6540 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6541 		    B_FALSE, B_FALSE);
6542 		if (lport == 0) {
6543 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6544 			goto failed;
6545 		}
6546 	}
6547 	tcp->tcp_state = TCPS_SYN_SENT;
6548 
6549 	/*
6550 	 * TODO: allow data with connect requests
6551 	 * by unlinking M_DATA trailers here and
6552 	 * linking them in behind the T_OK_ACK mblk.
6553 	 * The tcp_rput() bind ack handler would then
6554 	 * feed them to tcp_wput_data() rather than call
6555 	 * tcp_timer().
6556 	 */
6557 	mp = mi_tpi_ok_ack_alloc(mp);
6558 	if (!mp) {
6559 		tcp->tcp_state = oldstate;
6560 		goto failed;
6561 	}
6562 	if (tcp->tcp_family == AF_INET) {
6563 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6564 		    sizeof (ipa_conn_t));
6565 	} else {
6566 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6567 		    sizeof (ipa6_conn_t));
6568 	}
6569 	if (mp1) {
6570 		/*
6571 		 * We need to make sure that the conn_recv is set to a non-null
6572 		 * value before we insert the conn_t into the classifier table.
6573 		 * This is to avoid a race with an incoming packet which does
6574 		 * an ipcl_classify().
6575 		 */
6576 		tcp->tcp_connp->conn_recv = tcp_input;
6577 
6578 		/* Hang onto the T_OK_ACK for later. */
6579 		linkb(mp1, mp);
6580 		mblk_setcred(mp1, tcp->tcp_cred);
6581 		if (tcp->tcp_family == AF_INET)
6582 			mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp);
6583 		else {
6584 			mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6585 			    &tcp->tcp_sticky_ipp);
6586 		}
6587 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6588 		tcp->tcp_active_open = 1;
6589 		/*
6590 		 * If the bind cannot complete immediately
6591 		 * IP will arrange to call tcp_rput_other
6592 		 * when the bind completes.
6593 		 */
6594 		if (mp1 != NULL)
6595 			tcp_rput_other(tcp, mp1);
6596 		return;
6597 	}
6598 	/* Error case */
6599 	tcp->tcp_state = oldstate;
6600 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6601 
6602 failed:
6603 	/* return error ack and blow away saved option results if any */
6604 	if (mp != NULL)
6605 		putnext(tcp->tcp_rq, mp);
6606 	else {
6607 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6608 		    TSYSERR, ENOMEM);
6609 	}
6610 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6611 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6612 
6613 }
6614 
6615 /*
6616  * Handle connect to IPv6 destinations.
6617  */
6618 static void
6619 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
6620     in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
6621 {
6622 	tcph_t	*tcph;
6623 	mblk_t	*mp1;
6624 	ip6_rthdr_t *rth;
6625 	int32_t  oldstate;
6626 	uint16_t lport;
6627 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6628 
6629 	ASSERT(tcp->tcp_family == AF_INET6);
6630 
6631 	/*
6632 	 * If we're here, it means that the destination address is a native
6633 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6634 	 * reason why it might not be IPv6 is if the socket was bound to an
6635 	 * IPv4-mapped IPv6 address.
6636 	 */
6637 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6638 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6639 		goto failed;
6640 	}
6641 
6642 	/*
6643 	 * Interpret a zero destination to mean loopback.
6644 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6645 	 * generate the T_CONN_CON.
6646 	 */
6647 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6648 		*dstaddrp = ipv6_loopback;
6649 	}
6650 
6651 	/* Handle __sin6_src_id if socket not bound to an IP address */
6652 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6653 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6654 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6655 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6656 	}
6657 
6658 	/*
6659 	 * Take care of the scope_id now and add ip6i_t
6660 	 * if ip6i_t is not already allocated through TCP
6661 	 * sticky options. At this point tcp_ip6h does not
6662 	 * have dst info, thus use dstaddrp.
6663 	 */
6664 	if (scope_id != 0 &&
6665 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6666 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6667 		ip6i_t  *ip6i;
6668 
6669 		ipp->ipp_ifindex = scope_id;
6670 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6671 
6672 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6673 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6674 			/* Already allocated */
6675 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6676 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6677 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6678 		} else {
6679 			int reterr;
6680 
6681 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6682 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6683 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6684 			reterr = tcp_build_hdrs(tcp->tcp_rq, tcp);
6685 			if (reterr != 0)
6686 				goto failed;
6687 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6688 		}
6689 	}
6690 
6691 	/*
6692 	 * Don't let an endpoint connect to itself.  Note that
6693 	 * the test here does not catch the case where the
6694 	 * source IP addr was left unspecified by the user. In
6695 	 * this case, the source addr is set in tcp_adapt_ire()
6696 	 * using the reply to the T_BIND message that we send
6697 	 * down to IP here and the check is repeated in tcp_rput_other.
6698 	 */
6699 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6700 	    (dstport == tcp->tcp_lport)) {
6701 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6702 		goto failed;
6703 	}
6704 
6705 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6706 	tcp->tcp_remote_v6 = *dstaddrp;
6707 	tcp->tcp_ip6h->ip6_vcf =
6708 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6709 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6710 
6711 
6712 	/*
6713 	 * Massage a routing header (if present) putting the first hop
6714 	 * in ip6_dst. Compute a starting value for the checksum which
6715 	 * takes into account that the original ip6_dst should be
6716 	 * included in the checksum but that ip will include the
6717 	 * first hop in the source route in the tcp checksum.
6718 	 */
6719 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6720 	if (rth != NULL) {
6721 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth,
6722 		    tcps->tcps_netstack);
6723 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6724 		    (tcp->tcp_sum >> 16));
6725 	} else {
6726 		tcp->tcp_sum = 0;
6727 	}
6728 
6729 	tcph = tcp->tcp_tcph;
6730 	*(uint16_t *)tcph->th_fport = dstport;
6731 	tcp->tcp_fport = dstport;
6732 
6733 	oldstate = tcp->tcp_state;
6734 	/*
6735 	 * At this point the remote destination address and remote port fields
6736 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6737 	 * have to see which state tcp was in so we can take apropriate action.
6738 	 */
6739 	if (oldstate == TCPS_IDLE) {
6740 		/*
6741 		 * We support a quick connect capability here, allowing
6742 		 * clients to transition directly from IDLE to SYN_SENT
6743 		 * tcp_bindi will pick an unused port, insert the connection
6744 		 * in the bind hash and transition to BOUND state.
6745 		 */
6746 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6747 		    tcp, B_TRUE);
6748 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6749 		    B_FALSE, B_FALSE);
6750 		if (lport == 0) {
6751 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6752 			goto failed;
6753 		}
6754 	}
6755 	tcp->tcp_state = TCPS_SYN_SENT;
6756 	/*
6757 	 * TODO: allow data with connect requests
6758 	 * by unlinking M_DATA trailers here and
6759 	 * linking them in behind the T_OK_ACK mblk.
6760 	 * The tcp_rput() bind ack handler would then
6761 	 * feed them to tcp_wput_data() rather than call
6762 	 * tcp_timer().
6763 	 */
6764 	mp = mi_tpi_ok_ack_alloc(mp);
6765 	if (!mp) {
6766 		tcp->tcp_state = oldstate;
6767 		goto failed;
6768 	}
6769 	mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
6770 	if (mp1) {
6771 		/*
6772 		 * We need to make sure that the conn_recv is set to a non-null
6773 		 * value before we insert the conn_t into the classifier table.
6774 		 * This is to avoid a race with an incoming packet which does
6775 		 * an ipcl_classify().
6776 		 */
6777 		tcp->tcp_connp->conn_recv = tcp_input;
6778 
6779 		/* Hang onto the T_OK_ACK for later. */
6780 		linkb(mp1, mp);
6781 		mblk_setcred(mp1, tcp->tcp_cred);
6782 		mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6783 		    &tcp->tcp_sticky_ipp);
6784 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6785 		tcp->tcp_active_open = 1;
6786 		/* ip_bind_v6() may return ACK or ERROR */
6787 		if (mp1 != NULL)
6788 			tcp_rput_other(tcp, mp1);
6789 		return;
6790 	}
6791 	/* Error case */
6792 	tcp->tcp_state = oldstate;
6793 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6794 
6795 failed:
6796 	/* return error ack and blow away saved option results if any */
6797 	if (mp != NULL)
6798 		putnext(tcp->tcp_rq, mp);
6799 	else {
6800 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6801 		    TSYSERR, ENOMEM);
6802 	}
6803 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6804 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6805 }
6806 
6807 /*
6808  * We need a stream q for detached closing tcp connections
6809  * to use.  Our client hereby indicates that this q is the
6810  * one to use.
6811  */
6812 static void
6813 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6814 {
6815 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6816 	queue_t	*q = tcp->tcp_wq;
6817 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6818 
6819 #ifdef NS_DEBUG
6820 	(void) printf("TCP_IOC_DEFAULT_Q for stack %d\n",
6821 	    tcps->tcps_netstack->netstack_stackid);
6822 #endif
6823 	mp->b_datap->db_type = M_IOCACK;
6824 	iocp->ioc_count = 0;
6825 	mutex_enter(&tcps->tcps_g_q_lock);
6826 	if (tcps->tcps_g_q != NULL) {
6827 		mutex_exit(&tcps->tcps_g_q_lock);
6828 		iocp->ioc_error = EALREADY;
6829 	} else {
6830 		mblk_t *mp1;
6831 
6832 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0);
6833 		if (mp1 == NULL) {
6834 			mutex_exit(&tcps->tcps_g_q_lock);
6835 			iocp->ioc_error = ENOMEM;
6836 		} else {
6837 			tcps->tcps_g_q = tcp->tcp_rq;
6838 			mutex_exit(&tcps->tcps_g_q_lock);
6839 			iocp->ioc_error = 0;
6840 			iocp->ioc_rval = 0;
6841 			/*
6842 			 * We are passing tcp_sticky_ipp as NULL
6843 			 * as it is not useful for tcp_default queue
6844 			 *
6845 			 * Set conn_recv just in case.
6846 			 */
6847 			tcp->tcp_connp->conn_recv = tcp_conn_request;
6848 
6849 			mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL);
6850 			if (mp1 != NULL)
6851 				tcp_rput_other(tcp, mp1);
6852 		}
6853 	}
6854 	qreply(q, mp);
6855 }
6856 
6857 /*
6858  * Our client hereby directs us to reject the connection request
6859  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6860  * of sending the appropriate RST, not an ICMP error.
6861  */
6862 static void
6863 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6864 {
6865 	tcp_t	*ltcp = NULL;
6866 	t_scalar_t seqnum;
6867 	conn_t	*connp;
6868 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6869 
6870 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6871 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6872 		tcp_err_ack(tcp, mp, TPROTO, 0);
6873 		return;
6874 	}
6875 
6876 	/*
6877 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6878 	 * when the stream is in BOUND state. Do not send a reset,
6879 	 * since the destination IP address is not valid, and it can
6880 	 * be the initialized value of all zeros (broadcast address).
6881 	 *
6882 	 * If TCP has sent down a bind request to IP and has not
6883 	 * received the reply, reject the request.  Otherwise, TCP
6884 	 * will be confused.
6885 	 */
6886 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
6887 		if (tcp->tcp_debug) {
6888 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6889 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6890 		}
6891 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
6892 		return;
6893 	}
6894 
6895 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6896 
6897 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6898 
6899 		/*
6900 		 * According to TPI, for non-listeners, ignore seqnum
6901 		 * and disconnect.
6902 		 * Following interpretation of -1 seqnum is historical
6903 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6904 		 * a valid seqnum should not be -1).
6905 		 *
6906 		 *	-1 means disconnect everything
6907 		 *	regardless even on a listener.
6908 		 */
6909 
6910 		int old_state = tcp->tcp_state;
6911 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
6912 
6913 		/*
6914 		 * The connection can't be on the tcp_time_wait_head list
6915 		 * since it is not detached.
6916 		 */
6917 		ASSERT(tcp->tcp_time_wait_next == NULL);
6918 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6919 		ASSERT(tcp->tcp_time_wait_expire == 0);
6920 		ltcp = NULL;
6921 		/*
6922 		 * If it used to be a listener, check to make sure no one else
6923 		 * has taken the port before switching back to LISTEN state.
6924 		 */
6925 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6926 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6927 			    tcp->tcp_ipha->ipha_src,
6928 			    tcp->tcp_connp->conn_zoneid, ipst);
6929 			if (connp != NULL)
6930 				ltcp = connp->conn_tcp;
6931 		} else {
6932 			/* Allow tcp_bound_if listeners? */
6933 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6934 			    &tcp->tcp_ip6h->ip6_src, 0,
6935 			    tcp->tcp_connp->conn_zoneid, ipst);
6936 			if (connp != NULL)
6937 				ltcp = connp->conn_tcp;
6938 		}
6939 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6940 			tcp->tcp_state = TCPS_LISTEN;
6941 		} else if (old_state > TCPS_BOUND) {
6942 			tcp->tcp_conn_req_max = 0;
6943 			tcp->tcp_state = TCPS_BOUND;
6944 		}
6945 		if (ltcp != NULL)
6946 			CONN_DEC_REF(ltcp->tcp_connp);
6947 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6948 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
6949 		} else if (old_state == TCPS_ESTABLISHED ||
6950 		    old_state == TCPS_CLOSE_WAIT) {
6951 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
6952 		}
6953 
6954 		if (tcp->tcp_fused)
6955 			tcp_unfuse(tcp);
6956 
6957 		mutex_enter(&tcp->tcp_eager_lock);
6958 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6959 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6960 			tcp_eager_cleanup(tcp, 0);
6961 		}
6962 		mutex_exit(&tcp->tcp_eager_lock);
6963 
6964 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6965 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6966 
6967 		tcp_reinit(tcp);
6968 
6969 		if (old_state >= TCPS_ESTABLISHED) {
6970 			/* Send M_FLUSH according to TPI */
6971 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6972 		}
6973 		mp = mi_tpi_ok_ack_alloc(mp);
6974 		if (mp)
6975 			putnext(tcp->tcp_rq, mp);
6976 		return;
6977 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
6978 		tcp_err_ack(tcp, mp, TBADSEQ, 0);
6979 		return;
6980 	}
6981 	if (tcp->tcp_state >= TCPS_ESTABLISHED) {
6982 		/* Send M_FLUSH according to TPI */
6983 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6984 	}
6985 	mp = mi_tpi_ok_ack_alloc(mp);
6986 	if (mp)
6987 		putnext(tcp->tcp_rq, mp);
6988 }
6989 
6990 /*
6991  * Diagnostic routine used to return a string associated with the tcp state.
6992  * Note that if the caller does not supply a buffer, it will use an internal
6993  * static string.  This means that if multiple threads call this function at
6994  * the same time, output can be corrupted...  Note also that this function
6995  * does not check the size of the supplied buffer.  The caller has to make
6996  * sure that it is big enough.
6997  */
6998 static char *
6999 tcp_display(tcp_t *tcp, char *sup_buf, char format)
7000 {
7001 	char		buf1[30];
7002 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
7003 	char		*buf;
7004 	char		*cp;
7005 	in6_addr_t	local, remote;
7006 	char		local_addrbuf[INET6_ADDRSTRLEN];
7007 	char		remote_addrbuf[INET6_ADDRSTRLEN];
7008 
7009 	if (sup_buf != NULL)
7010 		buf = sup_buf;
7011 	else
7012 		buf = priv_buf;
7013 
7014 	if (tcp == NULL)
7015 		return ("NULL_TCP");
7016 	switch (tcp->tcp_state) {
7017 	case TCPS_CLOSED:
7018 		cp = "TCP_CLOSED";
7019 		break;
7020 	case TCPS_IDLE:
7021 		cp = "TCP_IDLE";
7022 		break;
7023 	case TCPS_BOUND:
7024 		cp = "TCP_BOUND";
7025 		break;
7026 	case TCPS_LISTEN:
7027 		cp = "TCP_LISTEN";
7028 		break;
7029 	case TCPS_SYN_SENT:
7030 		cp = "TCP_SYN_SENT";
7031 		break;
7032 	case TCPS_SYN_RCVD:
7033 		cp = "TCP_SYN_RCVD";
7034 		break;
7035 	case TCPS_ESTABLISHED:
7036 		cp = "TCP_ESTABLISHED";
7037 		break;
7038 	case TCPS_CLOSE_WAIT:
7039 		cp = "TCP_CLOSE_WAIT";
7040 		break;
7041 	case TCPS_FIN_WAIT_1:
7042 		cp = "TCP_FIN_WAIT_1";
7043 		break;
7044 	case TCPS_CLOSING:
7045 		cp = "TCP_CLOSING";
7046 		break;
7047 	case TCPS_LAST_ACK:
7048 		cp = "TCP_LAST_ACK";
7049 		break;
7050 	case TCPS_FIN_WAIT_2:
7051 		cp = "TCP_FIN_WAIT_2";
7052 		break;
7053 	case TCPS_TIME_WAIT:
7054 		cp = "TCP_TIME_WAIT";
7055 		break;
7056 	default:
7057 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
7058 		cp = buf1;
7059 		break;
7060 	}
7061 	switch (format) {
7062 	case DISP_ADDR_AND_PORT:
7063 		if (tcp->tcp_ipversion == IPV4_VERSION) {
7064 			/*
7065 			 * Note that we use the remote address in the tcp_b
7066 			 * structure.  This means that it will print out
7067 			 * the real destination address, not the next hop's
7068 			 * address if source routing is used.
7069 			 */
7070 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
7071 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
7072 
7073 		} else {
7074 			local = tcp->tcp_ip_src_v6;
7075 			remote = tcp->tcp_remote_v6;
7076 		}
7077 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
7078 		    sizeof (local_addrbuf));
7079 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
7080 		    sizeof (remote_addrbuf));
7081 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
7082 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
7083 		    ntohs(tcp->tcp_fport), cp);
7084 		break;
7085 	case DISP_PORT_ONLY:
7086 	default:
7087 		(void) mi_sprintf(buf, "[%u, %u] %s",
7088 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
7089 		break;
7090 	}
7091 
7092 	return (buf);
7093 }
7094 
7095 /*
7096  * Called via squeue to get on to eager's perimeter. It sends a
7097  * TH_RST if eager is in the fanout table. The listener wants the
7098  * eager to disappear either by means of tcp_eager_blowoff() or
7099  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
7100  * called (via squeue) if the eager cannot be inserted in the
7101  * fanout table in tcp_conn_request().
7102  */
7103 /* ARGSUSED */
7104 void
7105 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
7106 {
7107 	conn_t	*econnp = (conn_t *)arg;
7108 	tcp_t	*eager = econnp->conn_tcp;
7109 	tcp_t	*listener = eager->tcp_listener;
7110 	tcp_stack_t	*tcps = eager->tcp_tcps;
7111 
7112 	/*
7113 	 * We could be called because listener is closing. Since
7114 	 * the eager is using listener's queue's, its not safe.
7115 	 * Better use the default queue just to send the TH_RST
7116 	 * out.
7117 	 */
7118 	ASSERT(tcps->tcps_g_q != NULL);
7119 	eager->tcp_rq = tcps->tcps_g_q;
7120 	eager->tcp_wq = WR(tcps->tcps_g_q);
7121 
7122 	/*
7123 	 * An eager's conn_fanout will be NULL if it's a duplicate
7124 	 * for an existing 4-tuples in the conn fanout table.
7125 	 * We don't want to send an RST out in such case.
7126 	 */
7127 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
7128 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
7129 		    eager, eager->tcp_snxt, 0, TH_RST);
7130 	}
7131 
7132 	/* We are here because listener wants this eager gone */
7133 	if (listener != NULL) {
7134 		mutex_enter(&listener->tcp_eager_lock);
7135 		tcp_eager_unlink(eager);
7136 		if (eager->tcp_tconnind_started) {
7137 			/*
7138 			 * The eager has sent a conn_ind up to the
7139 			 * listener but listener decides to close
7140 			 * instead. We need to drop the extra ref
7141 			 * placed on eager in tcp_rput_data() before
7142 			 * sending the conn_ind to listener.
7143 			 */
7144 			CONN_DEC_REF(econnp);
7145 		}
7146 		mutex_exit(&listener->tcp_eager_lock);
7147 		CONN_DEC_REF(listener->tcp_connp);
7148 	}
7149 
7150 	if (eager->tcp_state > TCPS_BOUND)
7151 		tcp_close_detached(eager);
7152 }
7153 
7154 /*
7155  * Reset any eager connection hanging off this listener marked
7156  * with 'seqnum' and then reclaim it's resources.
7157  */
7158 static boolean_t
7159 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
7160 {
7161 	tcp_t	*eager;
7162 	mblk_t 	*mp;
7163 	tcp_stack_t	*tcps = listener->tcp_tcps;
7164 
7165 	TCP_STAT(tcps, tcp_eager_blowoff_calls);
7166 	eager = listener;
7167 	mutex_enter(&listener->tcp_eager_lock);
7168 	do {
7169 		eager = eager->tcp_eager_next_q;
7170 		if (eager == NULL) {
7171 			mutex_exit(&listener->tcp_eager_lock);
7172 			return (B_FALSE);
7173 		}
7174 	} while (eager->tcp_conn_req_seqnum != seqnum);
7175 
7176 	if (eager->tcp_closemp_used) {
7177 		mutex_exit(&listener->tcp_eager_lock);
7178 		return (B_TRUE);
7179 	}
7180 	eager->tcp_closemp_used = B_TRUE;
7181 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7182 	CONN_INC_REF(eager->tcp_connp);
7183 	mutex_exit(&listener->tcp_eager_lock);
7184 	mp = &eager->tcp_closemp;
7185 	squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
7186 	    eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF);
7187 	return (B_TRUE);
7188 }
7189 
7190 /*
7191  * Reset any eager connection hanging off this listener
7192  * and then reclaim it's resources.
7193  */
7194 static void
7195 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
7196 {
7197 	tcp_t	*eager;
7198 	mblk_t	*mp;
7199 	tcp_stack_t	*tcps = listener->tcp_tcps;
7200 
7201 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7202 
7203 	if (!q0_only) {
7204 		/* First cleanup q */
7205 		TCP_STAT(tcps, tcp_eager_blowoff_q);
7206 		eager = listener->tcp_eager_next_q;
7207 		while (eager != NULL) {
7208 			if (!eager->tcp_closemp_used) {
7209 				eager->tcp_closemp_used = B_TRUE;
7210 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7211 				CONN_INC_REF(eager->tcp_connp);
7212 				mp = &eager->tcp_closemp;
7213 				squeue_fill(eager->tcp_connp->conn_sqp, mp,
7214 				    tcp_eager_kill, eager->tcp_connp,
7215 				    SQTAG_TCP_EAGER_CLEANUP);
7216 			}
7217 			eager = eager->tcp_eager_next_q;
7218 		}
7219 	}
7220 	/* Then cleanup q0 */
7221 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
7222 	eager = listener->tcp_eager_next_q0;
7223 	while (eager != listener) {
7224 		if (!eager->tcp_closemp_used) {
7225 			eager->tcp_closemp_used = B_TRUE;
7226 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7227 			CONN_INC_REF(eager->tcp_connp);
7228 			mp = &eager->tcp_closemp;
7229 			squeue_fill(eager->tcp_connp->conn_sqp, mp,
7230 			    tcp_eager_kill, eager->tcp_connp,
7231 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
7232 		}
7233 		eager = eager->tcp_eager_next_q0;
7234 	}
7235 }
7236 
7237 /*
7238  * If we are an eager connection hanging off a listener that hasn't
7239  * formally accepted the connection yet, get off his list and blow off
7240  * any data that we have accumulated.
7241  */
7242 static void
7243 tcp_eager_unlink(tcp_t *tcp)
7244 {
7245 	tcp_t	*listener = tcp->tcp_listener;
7246 
7247 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7248 	ASSERT(listener != NULL);
7249 	if (tcp->tcp_eager_next_q0 != NULL) {
7250 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
7251 
7252 		/* Remove the eager tcp from q0 */
7253 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
7254 		    tcp->tcp_eager_prev_q0;
7255 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
7256 		    tcp->tcp_eager_next_q0;
7257 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
7258 		listener->tcp_conn_req_cnt_q0--;
7259 
7260 		tcp->tcp_eager_next_q0 = NULL;
7261 		tcp->tcp_eager_prev_q0 = NULL;
7262 
7263 		/*
7264 		 * Take the eager out, if it is in the list of droppable
7265 		 * eagers.
7266 		 */
7267 		MAKE_UNDROPPABLE(tcp);
7268 
7269 		if (tcp->tcp_syn_rcvd_timeout != 0) {
7270 			/* we have timed out before */
7271 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
7272 			listener->tcp_syn_rcvd_timeout--;
7273 		}
7274 	} else {
7275 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
7276 		tcp_t	*prev = NULL;
7277 
7278 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
7279 			if (tcpp[0] == tcp) {
7280 				if (listener->tcp_eager_last_q == tcp) {
7281 					/*
7282 					 * If we are unlinking the last
7283 					 * element on the list, adjust
7284 					 * tail pointer. Set tail pointer
7285 					 * to nil when list is empty.
7286 					 */
7287 					ASSERT(tcp->tcp_eager_next_q == NULL);
7288 					if (listener->tcp_eager_last_q ==
7289 					    listener->tcp_eager_next_q) {
7290 						listener->tcp_eager_last_q =
7291 						    NULL;
7292 					} else {
7293 						/*
7294 						 * We won't get here if there
7295 						 * is only one eager in the
7296 						 * list.
7297 						 */
7298 						ASSERT(prev != NULL);
7299 						listener->tcp_eager_last_q =
7300 						    prev;
7301 					}
7302 				}
7303 				tcpp[0] = tcp->tcp_eager_next_q;
7304 				tcp->tcp_eager_next_q = NULL;
7305 				tcp->tcp_eager_last_q = NULL;
7306 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
7307 				listener->tcp_conn_req_cnt_q--;
7308 				break;
7309 			}
7310 			prev = tcpp[0];
7311 		}
7312 	}
7313 	tcp->tcp_listener = NULL;
7314 }
7315 
7316 /* Shorthand to generate and send TPI error acks to our client */
7317 static void
7318 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7319 {
7320 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7321 		putnext(tcp->tcp_rq, mp);
7322 }
7323 
7324 /* Shorthand to generate and send TPI error acks to our client */
7325 static void
7326 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7327     int t_error, int sys_error)
7328 {
7329 	struct T_error_ack	*teackp;
7330 
7331 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7332 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7333 		teackp = (struct T_error_ack *)mp->b_rptr;
7334 		teackp->ERROR_prim = primitive;
7335 		teackp->TLI_error = t_error;
7336 		teackp->UNIX_error = sys_error;
7337 		putnext(tcp->tcp_rq, mp);
7338 	}
7339 }
7340 
7341 /*
7342  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7343  * but instead the code relies on:
7344  * - the fact that the address of the array and its size never changes
7345  * - the atomic assignment of the elements of the array
7346  */
7347 /* ARGSUSED */
7348 static int
7349 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7350 {
7351 	int i;
7352 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7353 
7354 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7355 		if (tcps->tcps_g_epriv_ports[i] != 0)
7356 			(void) mi_mpprintf(mp, "%d ",
7357 			    tcps->tcps_g_epriv_ports[i]);
7358 	}
7359 	return (0);
7360 }
7361 
7362 /*
7363  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7364  * threads from changing it at the same time.
7365  */
7366 /* ARGSUSED */
7367 static int
7368 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7369     cred_t *cr)
7370 {
7371 	long	new_value;
7372 	int	i;
7373 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7374 
7375 	/*
7376 	 * Fail the request if the new value does not lie within the
7377 	 * port number limits.
7378 	 */
7379 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7380 	    new_value <= 0 || new_value >= 65536) {
7381 		return (EINVAL);
7382 	}
7383 
7384 	mutex_enter(&tcps->tcps_epriv_port_lock);
7385 	/* Check if the value is already in the list */
7386 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7387 		if (new_value == tcps->tcps_g_epriv_ports[i]) {
7388 			mutex_exit(&tcps->tcps_epriv_port_lock);
7389 			return (EEXIST);
7390 		}
7391 	}
7392 	/* Find an empty slot */
7393 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7394 		if (tcps->tcps_g_epriv_ports[i] == 0)
7395 			break;
7396 	}
7397 	if (i == tcps->tcps_g_num_epriv_ports) {
7398 		mutex_exit(&tcps->tcps_epriv_port_lock);
7399 		return (EOVERFLOW);
7400 	}
7401 	/* Set the new value */
7402 	tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value;
7403 	mutex_exit(&tcps->tcps_epriv_port_lock);
7404 	return (0);
7405 }
7406 
7407 /*
7408  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7409  * threads from changing it at the same time.
7410  */
7411 /* ARGSUSED */
7412 static int
7413 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7414     cred_t *cr)
7415 {
7416 	long	new_value;
7417 	int	i;
7418 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7419 
7420 	/*
7421 	 * Fail the request if the new value does not lie within the
7422 	 * port number limits.
7423 	 */
7424 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7425 	    new_value >= 65536) {
7426 		return (EINVAL);
7427 	}
7428 
7429 	mutex_enter(&tcps->tcps_epriv_port_lock);
7430 	/* Check that the value is already in the list */
7431 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7432 		if (tcps->tcps_g_epriv_ports[i] == new_value)
7433 			break;
7434 	}
7435 	if (i == tcps->tcps_g_num_epriv_ports) {
7436 		mutex_exit(&tcps->tcps_epriv_port_lock);
7437 		return (ESRCH);
7438 	}
7439 	/* Clear the value */
7440 	tcps->tcps_g_epriv_ports[i] = 0;
7441 	mutex_exit(&tcps->tcps_epriv_port_lock);
7442 	return (0);
7443 }
7444 
7445 /* Return the TPI/TLI equivalent of our current tcp_state */
7446 static int
7447 tcp_tpistate(tcp_t *tcp)
7448 {
7449 	switch (tcp->tcp_state) {
7450 	case TCPS_IDLE:
7451 		return (TS_UNBND);
7452 	case TCPS_LISTEN:
7453 		/*
7454 		 * Return whether there are outstanding T_CONN_IND waiting
7455 		 * for the matching T_CONN_RES. Therefore don't count q0.
7456 		 */
7457 		if (tcp->tcp_conn_req_cnt_q > 0)
7458 			return (TS_WRES_CIND);
7459 		else
7460 			return (TS_IDLE);
7461 	case TCPS_BOUND:
7462 		return (TS_IDLE);
7463 	case TCPS_SYN_SENT:
7464 		return (TS_WCON_CREQ);
7465 	case TCPS_SYN_RCVD:
7466 		/*
7467 		 * Note: assumption: this has to the active open SYN_RCVD.
7468 		 * The passive instance is detached in SYN_RCVD stage of
7469 		 * incoming connection processing so we cannot get request
7470 		 * for T_info_ack on it.
7471 		 */
7472 		return (TS_WACK_CRES);
7473 	case TCPS_ESTABLISHED:
7474 		return (TS_DATA_XFER);
7475 	case TCPS_CLOSE_WAIT:
7476 		return (TS_WREQ_ORDREL);
7477 	case TCPS_FIN_WAIT_1:
7478 		return (TS_WIND_ORDREL);
7479 	case TCPS_FIN_WAIT_2:
7480 		return (TS_WIND_ORDREL);
7481 
7482 	case TCPS_CLOSING:
7483 	case TCPS_LAST_ACK:
7484 	case TCPS_TIME_WAIT:
7485 	case TCPS_CLOSED:
7486 		/*
7487 		 * Following TS_WACK_DREQ7 is a rendition of "not
7488 		 * yet TS_IDLE" TPI state. There is no best match to any
7489 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7490 		 * choose a value chosen that will map to TLI/XTI level
7491 		 * state of TSTATECHNG (state is process of changing) which
7492 		 * captures what this dummy state represents.
7493 		 */
7494 		return (TS_WACK_DREQ7);
7495 	default:
7496 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7497 		    tcp->tcp_state, tcp_display(tcp, NULL,
7498 		    DISP_PORT_ONLY));
7499 		return (TS_UNBND);
7500 	}
7501 }
7502 
7503 static void
7504 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7505 {
7506 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7507 
7508 	if (tcp->tcp_family == AF_INET6)
7509 		*tia = tcp_g_t_info_ack_v6;
7510 	else
7511 		*tia = tcp_g_t_info_ack;
7512 	tia->CURRENT_state = tcp_tpistate(tcp);
7513 	tia->OPT_size = tcp_max_optsize;
7514 	if (tcp->tcp_mss == 0) {
7515 		/* Not yet set - tcp_open does not set mss */
7516 		if (tcp->tcp_ipversion == IPV4_VERSION)
7517 			tia->TIDU_size = tcps->tcps_mss_def_ipv4;
7518 		else
7519 			tia->TIDU_size = tcps->tcps_mss_def_ipv6;
7520 	} else {
7521 		tia->TIDU_size = tcp->tcp_mss;
7522 	}
7523 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7524 }
7525 
7526 /*
7527  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7528  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7529  * tcp_g_t_info_ack.  The current state of the stream is copied from
7530  * tcp_state.
7531  */
7532 static void
7533 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7534 {
7535 	t_uscalar_t		cap_bits1;
7536 	struct T_capability_ack	*tcap;
7537 
7538 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7539 		freemsg(mp);
7540 		return;
7541 	}
7542 
7543 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7544 
7545 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7546 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7547 	if (mp == NULL)
7548 		return;
7549 
7550 	tcap = (struct T_capability_ack *)mp->b_rptr;
7551 	tcap->CAP_bits1 = 0;
7552 
7553 	if (cap_bits1 & TC1_INFO) {
7554 		tcp_copy_info(&tcap->INFO_ack, tcp);
7555 		tcap->CAP_bits1 |= TC1_INFO;
7556 	}
7557 
7558 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7559 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7560 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7561 	}
7562 
7563 	putnext(tcp->tcp_rq, mp);
7564 }
7565 
7566 /*
7567  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7568  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7569  * The current state of the stream is copied from tcp_state.
7570  */
7571 static void
7572 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7573 {
7574 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7575 	    T_INFO_ACK);
7576 	if (!mp) {
7577 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7578 		return;
7579 	}
7580 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7581 	putnext(tcp->tcp_rq, mp);
7582 }
7583 
7584 /* Respond to the TPI addr request */
7585 static void
7586 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7587 {
7588 	sin_t	*sin;
7589 	mblk_t	*ackmp;
7590 	struct T_addr_ack *taa;
7591 
7592 	/* Make it large enough for worst case */
7593 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7594 	    2 * sizeof (sin6_t), 1);
7595 	if (ackmp == NULL) {
7596 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7597 		return;
7598 	}
7599 
7600 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7601 		tcp_addr_req_ipv6(tcp, ackmp);
7602 		return;
7603 	}
7604 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7605 
7606 	bzero(taa, sizeof (struct T_addr_ack));
7607 	ackmp->b_wptr = (uchar_t *)&taa[1];
7608 
7609 	taa->PRIM_type = T_ADDR_ACK;
7610 	ackmp->b_datap->db_type = M_PCPROTO;
7611 
7612 	/*
7613 	 * Note: Following code assumes 32 bit alignment of basic
7614 	 * data structures like sin_t and struct T_addr_ack.
7615 	 */
7616 	if (tcp->tcp_state >= TCPS_BOUND) {
7617 		/*
7618 		 * Fill in local address
7619 		 */
7620 		taa->LOCADDR_length = sizeof (sin_t);
7621 		taa->LOCADDR_offset = sizeof (*taa);
7622 
7623 		sin = (sin_t *)&taa[1];
7624 
7625 		/* Fill zeroes and then intialize non-zero fields */
7626 		*sin = sin_null;
7627 
7628 		sin->sin_family = AF_INET;
7629 
7630 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7631 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7632 
7633 		ackmp->b_wptr = (uchar_t *)&sin[1];
7634 
7635 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7636 			/*
7637 			 * Fill in Remote address
7638 			 */
7639 			taa->REMADDR_length = sizeof (sin_t);
7640 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7641 			    taa->LOCADDR_length);
7642 
7643 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7644 			*sin = sin_null;
7645 			sin->sin_family = AF_INET;
7646 			sin->sin_addr.s_addr = tcp->tcp_remote;
7647 			sin->sin_port = tcp->tcp_fport;
7648 
7649 			ackmp->b_wptr = (uchar_t *)&sin[1];
7650 		}
7651 	}
7652 	putnext(tcp->tcp_rq, ackmp);
7653 }
7654 
7655 /* Assumes that tcp_addr_req gets enough space and alignment */
7656 static void
7657 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7658 {
7659 	sin6_t	*sin6;
7660 	struct T_addr_ack *taa;
7661 
7662 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7663 	ASSERT(OK_32PTR(ackmp->b_rptr));
7664 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7665 	    2 * sizeof (sin6_t));
7666 
7667 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7668 
7669 	bzero(taa, sizeof (struct T_addr_ack));
7670 	ackmp->b_wptr = (uchar_t *)&taa[1];
7671 
7672 	taa->PRIM_type = T_ADDR_ACK;
7673 	ackmp->b_datap->db_type = M_PCPROTO;
7674 
7675 	/*
7676 	 * Note: Following code assumes 32 bit alignment of basic
7677 	 * data structures like sin6_t and struct T_addr_ack.
7678 	 */
7679 	if (tcp->tcp_state >= TCPS_BOUND) {
7680 		/*
7681 		 * Fill in local address
7682 		 */
7683 		taa->LOCADDR_length = sizeof (sin6_t);
7684 		taa->LOCADDR_offset = sizeof (*taa);
7685 
7686 		sin6 = (sin6_t *)&taa[1];
7687 		*sin6 = sin6_null;
7688 
7689 		sin6->sin6_family = AF_INET6;
7690 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7691 		sin6->sin6_port = tcp->tcp_lport;
7692 
7693 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7694 
7695 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7696 			/*
7697 			 * Fill in Remote address
7698 			 */
7699 			taa->REMADDR_length = sizeof (sin6_t);
7700 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7701 			    taa->LOCADDR_length);
7702 
7703 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7704 			*sin6 = sin6_null;
7705 			sin6->sin6_family = AF_INET6;
7706 			sin6->sin6_flowinfo =
7707 			    tcp->tcp_ip6h->ip6_vcf &
7708 			    ~IPV6_VERS_AND_FLOW_MASK;
7709 			sin6->sin6_addr = tcp->tcp_remote_v6;
7710 			sin6->sin6_port = tcp->tcp_fport;
7711 
7712 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7713 		}
7714 	}
7715 	putnext(tcp->tcp_rq, ackmp);
7716 }
7717 
7718 /*
7719  * Handle reinitialization of a tcp structure.
7720  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7721  */
7722 static void
7723 tcp_reinit(tcp_t *tcp)
7724 {
7725 	mblk_t	*mp;
7726 	int 	err;
7727 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7728 
7729 	TCP_STAT(tcps, tcp_reinit_calls);
7730 
7731 	/* tcp_reinit should never be called for detached tcp_t's */
7732 	ASSERT(tcp->tcp_listener == NULL);
7733 	ASSERT((tcp->tcp_family == AF_INET &&
7734 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7735 	    (tcp->tcp_family == AF_INET6 &&
7736 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7737 	    tcp->tcp_ipversion == IPV6_VERSION)));
7738 
7739 	/* Cancel outstanding timers */
7740 	tcp_timers_stop(tcp);
7741 
7742 	/*
7743 	 * Reset everything in the state vector, after updating global
7744 	 * MIB data from instance counters.
7745 	 */
7746 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
7747 	tcp->tcp_ibsegs = 0;
7748 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
7749 	tcp->tcp_obsegs = 0;
7750 
7751 	tcp_close_mpp(&tcp->tcp_xmit_head);
7752 	if (tcp->tcp_snd_zcopy_aware)
7753 		tcp_zcopy_notify(tcp);
7754 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7755 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7756 	mutex_enter(&tcp->tcp_non_sq_lock);
7757 	if (tcp->tcp_flow_stopped &&
7758 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7759 		tcp_clrqfull(tcp);
7760 	}
7761 	mutex_exit(&tcp->tcp_non_sq_lock);
7762 	tcp_close_mpp(&tcp->tcp_reass_head);
7763 	tcp->tcp_reass_tail = NULL;
7764 	if (tcp->tcp_rcv_list != NULL) {
7765 		/* Free b_next chain */
7766 		tcp_close_mpp(&tcp->tcp_rcv_list);
7767 		tcp->tcp_rcv_last_head = NULL;
7768 		tcp->tcp_rcv_last_tail = NULL;
7769 		tcp->tcp_rcv_cnt = 0;
7770 	}
7771 	tcp->tcp_rcv_last_tail = NULL;
7772 
7773 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7774 		freemsg(mp);
7775 		tcp->tcp_urp_mp = NULL;
7776 	}
7777 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7778 		freemsg(mp);
7779 		tcp->tcp_urp_mark_mp = NULL;
7780 	}
7781 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7782 		freeb(tcp->tcp_fused_sigurg_mp);
7783 		tcp->tcp_fused_sigurg_mp = NULL;
7784 	}
7785 
7786 	/*
7787 	 * Following is a union with two members which are
7788 	 * identical types and size so the following cleanup
7789 	 * is enough.
7790 	 */
7791 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7792 
7793 	CL_INET_DISCONNECT(tcp);
7794 
7795 	/*
7796 	 * The connection can't be on the tcp_time_wait_head list
7797 	 * since it is not detached.
7798 	 */
7799 	ASSERT(tcp->tcp_time_wait_next == NULL);
7800 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7801 	ASSERT(tcp->tcp_time_wait_expire == 0);
7802 
7803 	if (tcp->tcp_kssl_pending) {
7804 		tcp->tcp_kssl_pending = B_FALSE;
7805 
7806 		/* Don't reset if the initialized by bind. */
7807 		if (tcp->tcp_kssl_ent != NULL) {
7808 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7809 			    KSSL_NO_PROXY);
7810 		}
7811 	}
7812 	if (tcp->tcp_kssl_ctx != NULL) {
7813 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7814 		tcp->tcp_kssl_ctx = NULL;
7815 	}
7816 
7817 	/*
7818 	 * Reset/preserve other values
7819 	 */
7820 	tcp_reinit_values(tcp);
7821 	ipcl_hash_remove(tcp->tcp_connp);
7822 	conn_delete_ire(tcp->tcp_connp, NULL);
7823 	tcp_ipsec_cleanup(tcp);
7824 
7825 	if (tcp->tcp_conn_req_max != 0) {
7826 		/*
7827 		 * This is the case when a TLI program uses the same
7828 		 * transport end point to accept a connection.  This
7829 		 * makes the TCP both a listener and acceptor.  When
7830 		 * this connection is closed, we need to set the state
7831 		 * back to TCPS_LISTEN.  Make sure that the eager list
7832 		 * is reinitialized.
7833 		 *
7834 		 * Note that this stream is still bound to the four
7835 		 * tuples of the previous connection in IP.  If a new
7836 		 * SYN with different foreign address comes in, IP will
7837 		 * not find it and will send it to the global queue.  In
7838 		 * the global queue, TCP will do a tcp_lookup_listener()
7839 		 * to find this stream.  This works because this stream
7840 		 * is only removed from connected hash.
7841 		 *
7842 		 */
7843 		tcp->tcp_state = TCPS_LISTEN;
7844 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7845 		tcp->tcp_eager_next_drop_q0 = tcp;
7846 		tcp->tcp_eager_prev_drop_q0 = tcp;
7847 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7848 		if (tcp->tcp_family == AF_INET6) {
7849 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7850 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7851 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7852 		} else {
7853 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7854 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7855 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7856 		}
7857 	} else {
7858 		tcp->tcp_state = TCPS_BOUND;
7859 	}
7860 
7861 	/*
7862 	 * Initialize to default values
7863 	 * Can't fail since enough header template space already allocated
7864 	 * at open().
7865 	 */
7866 	err = tcp_init_values(tcp);
7867 	ASSERT(err == 0);
7868 	/* Restore state in tcp_tcph */
7869 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7870 	if (tcp->tcp_ipversion == IPV4_VERSION)
7871 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7872 	else
7873 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7874 	/*
7875 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7876 	 * since the lookup funcs can only lookup on tcp_t
7877 	 */
7878 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7879 
7880 	ASSERT(tcp->tcp_ptpbhn != NULL);
7881 	tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat;
7882 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
7883 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7884 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
7885 }
7886 
7887 /*
7888  * Force values to zero that need be zero.
7889  * Do not touch values asociated with the BOUND or LISTEN state
7890  * since the connection will end up in that state after the reinit.
7891  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7892  * structure!
7893  */
7894 static void
7895 tcp_reinit_values(tcp)
7896 	tcp_t *tcp;
7897 {
7898 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7899 
7900 #ifndef	lint
7901 #define	DONTCARE(x)
7902 #define	PRESERVE(x)
7903 #else
7904 #define	DONTCARE(x)	((x) = (x))
7905 #define	PRESERVE(x)	((x) = (x))
7906 #endif	/* lint */
7907 
7908 	PRESERVE(tcp->tcp_bind_hash);
7909 	PRESERVE(tcp->tcp_ptpbhn);
7910 	PRESERVE(tcp->tcp_acceptor_hash);
7911 	PRESERVE(tcp->tcp_ptpahn);
7912 
7913 	/* Should be ASSERT NULL on these with new code! */
7914 	ASSERT(tcp->tcp_time_wait_next == NULL);
7915 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7916 	ASSERT(tcp->tcp_time_wait_expire == 0);
7917 	PRESERVE(tcp->tcp_state);
7918 	PRESERVE(tcp->tcp_rq);
7919 	PRESERVE(tcp->tcp_wq);
7920 
7921 	ASSERT(tcp->tcp_xmit_head == NULL);
7922 	ASSERT(tcp->tcp_xmit_last == NULL);
7923 	ASSERT(tcp->tcp_unsent == 0);
7924 	ASSERT(tcp->tcp_xmit_tail == NULL);
7925 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7926 
7927 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7928 	tcp->tcp_suna = 0;			/* Displayed in mib */
7929 	tcp->tcp_swnd = 0;
7930 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7931 
7932 	ASSERT(tcp->tcp_ibsegs == 0);
7933 	ASSERT(tcp->tcp_obsegs == 0);
7934 
7935 	if (tcp->tcp_iphc != NULL) {
7936 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7937 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7938 	}
7939 
7940 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7941 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7942 	DONTCARE(tcp->tcp_ipha);
7943 	DONTCARE(tcp->tcp_ip6h);
7944 	DONTCARE(tcp->tcp_ip_hdr_len);
7945 	DONTCARE(tcp->tcp_tcph);
7946 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7947 	tcp->tcp_valid_bits = 0;
7948 
7949 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7950 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7951 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7952 	tcp->tcp_last_rcv_lbolt = 0;
7953 
7954 	tcp->tcp_init_cwnd = 0;
7955 
7956 	tcp->tcp_urp_last_valid = 0;
7957 	tcp->tcp_hard_binding = 0;
7958 	tcp->tcp_hard_bound = 0;
7959 	PRESERVE(tcp->tcp_cred);
7960 	PRESERVE(tcp->tcp_cpid);
7961 	PRESERVE(tcp->tcp_open_time);
7962 	PRESERVE(tcp->tcp_exclbind);
7963 
7964 	tcp->tcp_fin_acked = 0;
7965 	tcp->tcp_fin_rcvd = 0;
7966 	tcp->tcp_fin_sent = 0;
7967 	tcp->tcp_ordrel_done = 0;
7968 
7969 	tcp->tcp_debug = 0;
7970 	tcp->tcp_dontroute = 0;
7971 	tcp->tcp_broadcast = 0;
7972 
7973 	tcp->tcp_useloopback = 0;
7974 	tcp->tcp_reuseaddr = 0;
7975 	tcp->tcp_oobinline = 0;
7976 	tcp->tcp_dgram_errind = 0;
7977 
7978 	tcp->tcp_detached = 0;
7979 	tcp->tcp_bind_pending = 0;
7980 	tcp->tcp_unbind_pending = 0;
7981 	tcp->tcp_deferred_clean_death = 0;
7982 
7983 	tcp->tcp_snd_ws_ok = B_FALSE;
7984 	tcp->tcp_snd_ts_ok = B_FALSE;
7985 	tcp->tcp_linger = 0;
7986 	tcp->tcp_ka_enabled = 0;
7987 	tcp->tcp_zero_win_probe = 0;
7988 
7989 	tcp->tcp_loopback = 0;
7990 	tcp->tcp_localnet = 0;
7991 	tcp->tcp_syn_defense = 0;
7992 	tcp->tcp_set_timer = 0;
7993 
7994 	tcp->tcp_active_open = 0;
7995 	ASSERT(tcp->tcp_timeout == B_FALSE);
7996 	tcp->tcp_rexmit = B_FALSE;
7997 	tcp->tcp_xmit_zc_clean = B_FALSE;
7998 
7999 	tcp->tcp_snd_sack_ok = B_FALSE;
8000 	PRESERVE(tcp->tcp_recvdstaddr);
8001 	tcp->tcp_hwcksum = B_FALSE;
8002 
8003 	tcp->tcp_ire_ill_check_done = B_FALSE;
8004 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
8005 
8006 	tcp->tcp_mdt = B_FALSE;
8007 	tcp->tcp_mdt_hdr_head = 0;
8008 	tcp->tcp_mdt_hdr_tail = 0;
8009 
8010 	tcp->tcp_conn_def_q0 = 0;
8011 	tcp->tcp_ip_forward_progress = B_FALSE;
8012 	tcp->tcp_anon_priv_bind = 0;
8013 	tcp->tcp_ecn_ok = B_FALSE;
8014 
8015 	tcp->tcp_cwr = B_FALSE;
8016 	tcp->tcp_ecn_echo_on = B_FALSE;
8017 
8018 	if (tcp->tcp_sack_info != NULL) {
8019 		if (tcp->tcp_notsack_list != NULL) {
8020 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
8021 		}
8022 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
8023 		tcp->tcp_sack_info = NULL;
8024 	}
8025 
8026 	tcp->tcp_rcv_ws = 0;
8027 	tcp->tcp_snd_ws = 0;
8028 	tcp->tcp_ts_recent = 0;
8029 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
8030 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
8031 	tcp->tcp_if_mtu = 0;
8032 
8033 	ASSERT(tcp->tcp_reass_head == NULL);
8034 	ASSERT(tcp->tcp_reass_tail == NULL);
8035 
8036 	tcp->tcp_cwnd_cnt = 0;
8037 
8038 	ASSERT(tcp->tcp_rcv_list == NULL);
8039 	ASSERT(tcp->tcp_rcv_last_head == NULL);
8040 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
8041 	ASSERT(tcp->tcp_rcv_cnt == 0);
8042 
8043 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
8044 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
8045 	tcp->tcp_csuna = 0;
8046 
8047 	tcp->tcp_rto = 0;			/* Displayed in MIB */
8048 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
8049 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
8050 	tcp->tcp_rtt_update = 0;
8051 
8052 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8053 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8054 
8055 	tcp->tcp_rack = 0;			/* Displayed in mib */
8056 	tcp->tcp_rack_cnt = 0;
8057 	tcp->tcp_rack_cur_max = 0;
8058 	tcp->tcp_rack_abs_max = 0;
8059 
8060 	tcp->tcp_max_swnd = 0;
8061 
8062 	ASSERT(tcp->tcp_listener == NULL);
8063 
8064 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
8065 
8066 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
8067 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
8068 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
8069 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
8070 
8071 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
8072 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
8073 	PRESERVE(tcp->tcp_conn_req_max);
8074 	PRESERVE(tcp->tcp_conn_req_seqnum);
8075 
8076 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
8077 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
8078 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
8079 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
8080 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
8081 
8082 	tcp->tcp_lingertime = 0;
8083 
8084 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
8085 	ASSERT(tcp->tcp_urp_mp == NULL);
8086 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
8087 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
8088 
8089 	ASSERT(tcp->tcp_eager_next_q == NULL);
8090 	ASSERT(tcp->tcp_eager_last_q == NULL);
8091 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
8092 	    tcp->tcp_eager_prev_q0 == NULL) ||
8093 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
8094 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
8095 
8096 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
8097 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
8098 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
8099 
8100 	tcp->tcp_client_errno = 0;
8101 
8102 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
8103 
8104 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
8105 
8106 	PRESERVE(tcp->tcp_bound_source_v6);
8107 	tcp->tcp_last_sent_len = 0;
8108 	tcp->tcp_dupack_cnt = 0;
8109 
8110 	tcp->tcp_fport = 0;			/* Displayed in MIB */
8111 	PRESERVE(tcp->tcp_lport);
8112 
8113 	PRESERVE(tcp->tcp_acceptor_lockp);
8114 
8115 	ASSERT(tcp->tcp_ordrelid == 0);
8116 	PRESERVE(tcp->tcp_acceptor_id);
8117 	DONTCARE(tcp->tcp_ipsec_overhead);
8118 
8119 	/*
8120 	 * If tcp_tracing flag is ON (i.e. We have a trace buffer
8121 	 * in tcp structure and now tracing), Re-initialize all
8122 	 * members of tcp_traceinfo.
8123 	 */
8124 	if (tcp->tcp_tracebuf != NULL) {
8125 		bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t));
8126 	}
8127 
8128 	PRESERVE(tcp->tcp_family);
8129 	if (tcp->tcp_family == AF_INET6) {
8130 		tcp->tcp_ipversion = IPV6_VERSION;
8131 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
8132 	} else {
8133 		tcp->tcp_ipversion = IPV4_VERSION;
8134 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
8135 	}
8136 
8137 	tcp->tcp_bound_if = 0;
8138 	tcp->tcp_ipv6_recvancillary = 0;
8139 	tcp->tcp_recvifindex = 0;
8140 	tcp->tcp_recvhops = 0;
8141 	tcp->tcp_closed = 0;
8142 	tcp->tcp_cleandeathtag = 0;
8143 	if (tcp->tcp_hopopts != NULL) {
8144 		mi_free(tcp->tcp_hopopts);
8145 		tcp->tcp_hopopts = NULL;
8146 		tcp->tcp_hopoptslen = 0;
8147 	}
8148 	ASSERT(tcp->tcp_hopoptslen == 0);
8149 	if (tcp->tcp_dstopts != NULL) {
8150 		mi_free(tcp->tcp_dstopts);
8151 		tcp->tcp_dstopts = NULL;
8152 		tcp->tcp_dstoptslen = 0;
8153 	}
8154 	ASSERT(tcp->tcp_dstoptslen == 0);
8155 	if (tcp->tcp_rtdstopts != NULL) {
8156 		mi_free(tcp->tcp_rtdstopts);
8157 		tcp->tcp_rtdstopts = NULL;
8158 		tcp->tcp_rtdstoptslen = 0;
8159 	}
8160 	ASSERT(tcp->tcp_rtdstoptslen == 0);
8161 	if (tcp->tcp_rthdr != NULL) {
8162 		mi_free(tcp->tcp_rthdr);
8163 		tcp->tcp_rthdr = NULL;
8164 		tcp->tcp_rthdrlen = 0;
8165 	}
8166 	ASSERT(tcp->tcp_rthdrlen == 0);
8167 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
8168 
8169 	/* Reset fusion-related fields */
8170 	tcp->tcp_fused = B_FALSE;
8171 	tcp->tcp_unfusable = B_FALSE;
8172 	tcp->tcp_fused_sigurg = B_FALSE;
8173 	tcp->tcp_direct_sockfs = B_FALSE;
8174 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8175 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8176 	tcp->tcp_loopback_peer = NULL;
8177 	tcp->tcp_fuse_rcv_hiwater = 0;
8178 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8179 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8180 
8181 	tcp->tcp_lso = B_FALSE;
8182 
8183 	tcp->tcp_in_ack_unsent = 0;
8184 	tcp->tcp_cork = B_FALSE;
8185 	tcp->tcp_tconnind_started = B_FALSE;
8186 
8187 	PRESERVE(tcp->tcp_squeue_bytes);
8188 
8189 	ASSERT(tcp->tcp_kssl_ctx == NULL);
8190 	ASSERT(!tcp->tcp_kssl_pending);
8191 	PRESERVE(tcp->tcp_kssl_ent);
8192 
8193 	tcp->tcp_closemp_used = B_FALSE;
8194 
8195 #ifdef DEBUG
8196 	DONTCARE(tcp->tcmp_stk[0]);
8197 #endif
8198 
8199 
8200 #undef	DONTCARE
8201 #undef	PRESERVE
8202 }
8203 
8204 /*
8205  * Allocate necessary resources and initialize state vector.
8206  * Guaranteed not to fail so that when an error is returned,
8207  * the caller doesn't need to do any additional cleanup.
8208  */
8209 int
8210 tcp_init(tcp_t *tcp, queue_t *q)
8211 {
8212 	int	err;
8213 
8214 	tcp->tcp_rq = q;
8215 	tcp->tcp_wq = WR(q);
8216 	tcp->tcp_state = TCPS_IDLE;
8217 	if ((err = tcp_init_values(tcp)) != 0)
8218 		tcp_timers_stop(tcp);
8219 	return (err);
8220 }
8221 
8222 static int
8223 tcp_init_values(tcp_t *tcp)
8224 {
8225 	int	err;
8226 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8227 
8228 	ASSERT((tcp->tcp_family == AF_INET &&
8229 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8230 	    (tcp->tcp_family == AF_INET6 &&
8231 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8232 	    tcp->tcp_ipversion == IPV6_VERSION)));
8233 
8234 	/*
8235 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
8236 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
8237 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
8238 	 * during first few transmissions of a connection as seen in slow
8239 	 * links.
8240 	 */
8241 	tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
8242 	tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
8243 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
8244 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
8245 	    tcps->tcps_conn_grace_period;
8246 	if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
8247 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
8248 	tcp->tcp_timer_backoff = 0;
8249 	tcp->tcp_ms_we_have_waited = 0;
8250 	tcp->tcp_last_recv_time = lbolt;
8251 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
8252 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
8253 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
8254 
8255 	tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier;
8256 
8257 	tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
8258 	tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
8259 	tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
8260 	/*
8261 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
8262 	 * passive open.
8263 	 */
8264 	tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
8265 
8266 	tcp->tcp_naglim = tcps->tcps_naglim_def;
8267 
8268 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
8269 
8270 	tcp->tcp_mdt_hdr_head = 0;
8271 	tcp->tcp_mdt_hdr_tail = 0;
8272 
8273 	/* Reset fusion-related fields */
8274 	tcp->tcp_fused = B_FALSE;
8275 	tcp->tcp_unfusable = B_FALSE;
8276 	tcp->tcp_fused_sigurg = B_FALSE;
8277 	tcp->tcp_direct_sockfs = B_FALSE;
8278 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8279 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8280 	tcp->tcp_loopback_peer = NULL;
8281 	tcp->tcp_fuse_rcv_hiwater = 0;
8282 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8283 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8284 
8285 	/* Initialize the header template */
8286 	if (tcp->tcp_ipversion == IPV4_VERSION) {
8287 		err = tcp_header_init_ipv4(tcp);
8288 	} else {
8289 		err = tcp_header_init_ipv6(tcp);
8290 	}
8291 	if (err)
8292 		return (err);
8293 
8294 	/*
8295 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
8296 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
8297 	 */
8298 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
8299 	tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat;
8300 	tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat;
8301 
8302 	tcp->tcp_cork = B_FALSE;
8303 	/*
8304 	 * Init the tcp_debug option.  This value determines whether TCP
8305 	 * calls strlog() to print out debug messages.  Doing this
8306 	 * initialization here means that this value is not inherited thru
8307 	 * tcp_reinit().
8308 	 */
8309 	tcp->tcp_debug = tcps->tcps_dbg;
8310 
8311 	tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
8312 	tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
8313 
8314 	return (0);
8315 }
8316 
8317 /*
8318  * Initialize the IPv4 header. Loses any record of any IP options.
8319  */
8320 static int
8321 tcp_header_init_ipv4(tcp_t *tcp)
8322 {
8323 	tcph_t		*tcph;
8324 	uint32_t	sum;
8325 	conn_t		*connp;
8326 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8327 
8328 	/*
8329 	 * This is a simple initialization. If there's
8330 	 * already a template, it should never be too small,
8331 	 * so reuse it.  Otherwise, allocate space for the new one.
8332 	 */
8333 	if (tcp->tcp_iphc == NULL) {
8334 		ASSERT(tcp->tcp_iphc_len == 0);
8335 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8336 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8337 		if (tcp->tcp_iphc == NULL) {
8338 			tcp->tcp_iphc_len = 0;
8339 			return (ENOMEM);
8340 		}
8341 	}
8342 
8343 	/* options are gone; may need a new label */
8344 	connp = tcp->tcp_connp;
8345 	connp->conn_mlp_type = mlptSingle;
8346 	connp->conn_ulp_labeled = !is_system_labeled();
8347 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8348 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8349 	tcp->tcp_ip6h = NULL;
8350 	tcp->tcp_ipversion = IPV4_VERSION;
8351 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8352 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8353 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8354 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8355 	tcp->tcp_ipha->ipha_version_and_hdr_length
8356 	    = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8357 	tcp->tcp_ipha->ipha_ident = 0;
8358 
8359 	tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8360 	tcp->tcp_tos = 0;
8361 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8362 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8363 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8364 
8365 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8366 	tcp->tcp_tcph = tcph;
8367 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8368 	/*
8369 	 * IP wants our header length in the checksum field to
8370 	 * allow it to perform a single pseudo-header+checksum
8371 	 * calculation on behalf of TCP.
8372 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8373 	 */
8374 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8375 	sum = (sum >> 16) + (sum & 0xFFFF);
8376 	U16_TO_ABE16(sum, tcph->th_sum);
8377 	return (0);
8378 }
8379 
8380 /*
8381  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8382  */
8383 static int
8384 tcp_header_init_ipv6(tcp_t *tcp)
8385 {
8386 	tcph_t	*tcph;
8387 	uint32_t	sum;
8388 	conn_t	*connp;
8389 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8390 
8391 	/*
8392 	 * This is a simple initialization. If there's
8393 	 * already a template, it should never be too small,
8394 	 * so reuse it. Otherwise, allocate space for the new one.
8395 	 * Ensure that there is enough space to "downgrade" the tcp_t
8396 	 * to an IPv4 tcp_t. This requires having space for a full load
8397 	 * of IPv4 options, as well as a full load of TCP options
8398 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8399 	 * than a v6 header and a TCP header with a full load of TCP options
8400 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8401 	 * We want to avoid reallocation in the "downgraded" case when
8402 	 * processing outbound IPv4 options.
8403 	 */
8404 	if (tcp->tcp_iphc == NULL) {
8405 		ASSERT(tcp->tcp_iphc_len == 0);
8406 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8407 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8408 		if (tcp->tcp_iphc == NULL) {
8409 			tcp->tcp_iphc_len = 0;
8410 			return (ENOMEM);
8411 		}
8412 	}
8413 
8414 	/* options are gone; may need a new label */
8415 	connp = tcp->tcp_connp;
8416 	connp->conn_mlp_type = mlptSingle;
8417 	connp->conn_ulp_labeled = !is_system_labeled();
8418 
8419 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8420 	tcp->tcp_ipversion = IPV6_VERSION;
8421 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8422 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8423 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8424 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8425 	tcp->tcp_ipha = NULL;
8426 
8427 	/* Initialize the header template */
8428 
8429 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8430 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8431 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8432 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit;
8433 
8434 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8435 	tcp->tcp_tcph = tcph;
8436 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8437 	/*
8438 	 * IP wants our header length in the checksum field to
8439 	 * allow it to perform a single psuedo-header+checksum
8440 	 * calculation on behalf of TCP.
8441 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8442 	 */
8443 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8444 	sum = (sum >> 16) + (sum & 0xFFFF);
8445 	U16_TO_ABE16(sum, tcph->th_sum);
8446 	return (0);
8447 }
8448 
8449 /* At minimum we need 8 bytes in the TCP header for the lookup */
8450 #define	ICMP_MIN_TCP_HDR	8
8451 
8452 /*
8453  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8454  * passed up by IP. The message is always received on the correct tcp_t.
8455  * Assumes that IP has pulled up everything up to and including the ICMP header.
8456  */
8457 void
8458 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8459 {
8460 	icmph_t *icmph;
8461 	ipha_t	*ipha;
8462 	int	iph_hdr_length;
8463 	tcph_t	*tcph;
8464 	boolean_t ipsec_mctl = B_FALSE;
8465 	boolean_t secure;
8466 	mblk_t *first_mp = mp;
8467 	uint32_t new_mss;
8468 	uint32_t ratio;
8469 	size_t mp_size = MBLKL(mp);
8470 	uint32_t seg_seq;
8471 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8472 
8473 	/* Assume IP provides aligned packets - otherwise toss */
8474 	if (!OK_32PTR(mp->b_rptr)) {
8475 		freemsg(mp);
8476 		return;
8477 	}
8478 
8479 	/*
8480 	 * Since ICMP errors are normal data marked with M_CTL when sent
8481 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8482 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8483 	 */
8484 	if ((mp_size == sizeof (ipsec_info_t)) &&
8485 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8486 		ASSERT(mp->b_cont != NULL);
8487 		mp = mp->b_cont;
8488 		/* IP should have done this */
8489 		ASSERT(OK_32PTR(mp->b_rptr));
8490 		mp_size = MBLKL(mp);
8491 		ipsec_mctl = B_TRUE;
8492 	}
8493 
8494 	/*
8495 	 * Verify that we have a complete outer IP header. If not, drop it.
8496 	 */
8497 	if (mp_size < sizeof (ipha_t)) {
8498 noticmpv4:
8499 		freemsg(first_mp);
8500 		return;
8501 	}
8502 
8503 	ipha = (ipha_t *)mp->b_rptr;
8504 	/*
8505 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8506 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8507 	 */
8508 	switch (IPH_HDR_VERSION(ipha)) {
8509 	case IPV6_VERSION:
8510 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8511 		return;
8512 	case IPV4_VERSION:
8513 		break;
8514 	default:
8515 		goto noticmpv4;
8516 	}
8517 
8518 	/* Skip past the outer IP and ICMP headers */
8519 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8520 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8521 	/*
8522 	 * If we don't have the correct outer IP header length or if the ULP
8523 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8524 	 * send it upstream.
8525 	 */
8526 	if (iph_hdr_length < sizeof (ipha_t) ||
8527 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8528 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8529 		goto noticmpv4;
8530 	}
8531 	ipha = (ipha_t *)&icmph[1];
8532 
8533 	/* Skip past the inner IP and find the ULP header */
8534 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8535 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8536 	/*
8537 	 * If we don't have the correct inner IP header length or if the ULP
8538 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8539 	 * bytes of TCP header, drop it.
8540 	 */
8541 	if (iph_hdr_length < sizeof (ipha_t) ||
8542 	    ipha->ipha_protocol != IPPROTO_TCP ||
8543 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8544 		goto noticmpv4;
8545 	}
8546 
8547 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8548 		if (ipsec_mctl) {
8549 			secure = ipsec_in_is_secure(first_mp);
8550 		} else {
8551 			secure = B_FALSE;
8552 		}
8553 		if (secure) {
8554 			/*
8555 			 * If we are willing to accept this in clear
8556 			 * we don't have to verify policy.
8557 			 */
8558 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8559 				if (!tcp_check_policy(tcp, first_mp,
8560 				    ipha, NULL, secure, ipsec_mctl)) {
8561 					/*
8562 					 * tcp_check_policy called
8563 					 * ip_drop_packet() on failure.
8564 					 */
8565 					return;
8566 				}
8567 			}
8568 		}
8569 	} else if (ipsec_mctl) {
8570 		/*
8571 		 * This is a hard_bound connection. IP has already
8572 		 * verified policy. We don't have to do it again.
8573 		 */
8574 		freeb(first_mp);
8575 		first_mp = mp;
8576 		ipsec_mctl = B_FALSE;
8577 	}
8578 
8579 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8580 	/*
8581 	 * TCP SHOULD check that the TCP sequence number contained in
8582 	 * payload of the ICMP error message is within the range
8583 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8584 	 */
8585 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8586 		/*
8587 		 * If the ICMP message is bogus, should we kill the
8588 		 * connection, or should we just drop the bogus ICMP
8589 		 * message? It would probably make more sense to just
8590 		 * drop the message so that if this one managed to get
8591 		 * in, the real connection should not suffer.
8592 		 */
8593 		goto noticmpv4;
8594 	}
8595 
8596 	switch (icmph->icmph_type) {
8597 	case ICMP_DEST_UNREACHABLE:
8598 		switch (icmph->icmph_code) {
8599 		case ICMP_FRAGMENTATION_NEEDED:
8600 			/*
8601 			 * Reduce the MSS based on the new MTU.  This will
8602 			 * eliminate any fragmentation locally.
8603 			 * N.B.  There may well be some funny side-effects on
8604 			 * the local send policy and the remote receive policy.
8605 			 * Pending further research, we provide
8606 			 * tcp_ignore_path_mtu just in case this proves
8607 			 * disastrous somewhere.
8608 			 *
8609 			 * After updating the MSS, retransmit part of the
8610 			 * dropped segment using the new mss by calling
8611 			 * tcp_wput_data().  Need to adjust all those
8612 			 * params to make sure tcp_wput_data() work properly.
8613 			 */
8614 			if (tcps->tcps_ignore_path_mtu)
8615 				break;
8616 
8617 			/*
8618 			 * Decrease the MSS by time stamp options
8619 			 * IP options and IPSEC options. tcp_hdr_len
8620 			 * includes time stamp option and IP option
8621 			 * length.
8622 			 */
8623 
8624 			new_mss = ntohs(icmph->icmph_du_mtu) -
8625 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8626 
8627 			/*
8628 			 * Only update the MSS if the new one is
8629 			 * smaller than the previous one.  This is
8630 			 * to avoid problems when getting multiple
8631 			 * ICMP errors for the same MTU.
8632 			 */
8633 			if (new_mss >= tcp->tcp_mss)
8634 				break;
8635 
8636 			/*
8637 			 * Stop doing PMTU if new_mss is less than 68
8638 			 * or less than tcp_mss_min.
8639 			 * The value 68 comes from rfc 1191.
8640 			 */
8641 			if (new_mss < MAX(68, tcps->tcps_mss_min))
8642 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8643 				    0;
8644 
8645 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8646 			ASSERT(ratio >= 1);
8647 			tcp_mss_set(tcp, new_mss, B_TRUE);
8648 
8649 			/*
8650 			 * Make sure we have something to
8651 			 * send.
8652 			 */
8653 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8654 			    (tcp->tcp_xmit_head != NULL)) {
8655 				/*
8656 				 * Shrink tcp_cwnd in
8657 				 * proportion to the old MSS/new MSS.
8658 				 */
8659 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8660 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8661 				    (tcp->tcp_unsent == 0)) {
8662 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8663 				} else {
8664 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8665 				}
8666 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8667 				tcp->tcp_rexmit = B_TRUE;
8668 				tcp->tcp_dupack_cnt = 0;
8669 				tcp->tcp_snd_burst = TCP_CWND_SS;
8670 				tcp_ss_rexmit(tcp);
8671 			}
8672 			break;
8673 		case ICMP_PORT_UNREACHABLE:
8674 		case ICMP_PROTOCOL_UNREACHABLE:
8675 			switch (tcp->tcp_state) {
8676 			case TCPS_SYN_SENT:
8677 			case TCPS_SYN_RCVD:
8678 				/*
8679 				 * ICMP can snipe away incipient
8680 				 * TCP connections as long as
8681 				 * seq number is same as initial
8682 				 * send seq number.
8683 				 */
8684 				if (seg_seq == tcp->tcp_iss) {
8685 					(void) tcp_clean_death(tcp,
8686 					    ECONNREFUSED, 6);
8687 				}
8688 				break;
8689 			}
8690 			break;
8691 		case ICMP_HOST_UNREACHABLE:
8692 		case ICMP_NET_UNREACHABLE:
8693 			/* Record the error in case we finally time out. */
8694 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8695 				tcp->tcp_client_errno = EHOSTUNREACH;
8696 			else
8697 				tcp->tcp_client_errno = ENETUNREACH;
8698 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8699 				if (tcp->tcp_listener != NULL &&
8700 				    tcp->tcp_listener->tcp_syn_defense) {
8701 					/*
8702 					 * Ditch the half-open connection if we
8703 					 * suspect a SYN attack is under way.
8704 					 */
8705 					tcp_ip_ire_mark_advice(tcp);
8706 					(void) tcp_clean_death(tcp,
8707 					    tcp->tcp_client_errno, 7);
8708 				}
8709 			}
8710 			break;
8711 		default:
8712 			break;
8713 		}
8714 		break;
8715 	case ICMP_SOURCE_QUENCH: {
8716 		/*
8717 		 * use a global boolean to control
8718 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8719 		 * The default is false.
8720 		 */
8721 		if (tcp_icmp_source_quench) {
8722 			/*
8723 			 * Reduce the sending rate as if we got a
8724 			 * retransmit timeout
8725 			 */
8726 			uint32_t npkt;
8727 
8728 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8729 			    tcp->tcp_mss;
8730 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8731 			tcp->tcp_cwnd = tcp->tcp_mss;
8732 			tcp->tcp_cwnd_cnt = 0;
8733 		}
8734 		break;
8735 	}
8736 	}
8737 	freemsg(first_mp);
8738 }
8739 
8740 /*
8741  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8742  * error messages passed up by IP.
8743  * Assumes that IP has pulled up all the extension headers as well
8744  * as the ICMPv6 header.
8745  */
8746 static void
8747 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8748 {
8749 	icmp6_t *icmp6;
8750 	ip6_t	*ip6h;
8751 	uint16_t	iph_hdr_length;
8752 	tcpha_t	*tcpha;
8753 	uint8_t	*nexthdrp;
8754 	uint32_t new_mss;
8755 	uint32_t ratio;
8756 	boolean_t secure;
8757 	mblk_t *first_mp = mp;
8758 	size_t mp_size;
8759 	uint32_t seg_seq;
8760 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8761 
8762 	/*
8763 	 * The caller has determined if this is an IPSEC_IN packet and
8764 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8765 	 */
8766 	if (ipsec_mctl)
8767 		mp = mp->b_cont;
8768 
8769 	mp_size = MBLKL(mp);
8770 
8771 	/*
8772 	 * Verify that we have a complete IP header. If not, send it upstream.
8773 	 */
8774 	if (mp_size < sizeof (ip6_t)) {
8775 noticmpv6:
8776 		freemsg(first_mp);
8777 		return;
8778 	}
8779 
8780 	/*
8781 	 * Verify this is an ICMPV6 packet, else send it upstream.
8782 	 */
8783 	ip6h = (ip6_t *)mp->b_rptr;
8784 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8785 		iph_hdr_length = IPV6_HDR_LEN;
8786 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8787 	    &nexthdrp) ||
8788 	    *nexthdrp != IPPROTO_ICMPV6) {
8789 		goto noticmpv6;
8790 	}
8791 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8792 	ip6h = (ip6_t *)&icmp6[1];
8793 	/*
8794 	 * Verify if we have a complete ICMP and inner IP header.
8795 	 */
8796 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8797 		goto noticmpv6;
8798 
8799 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8800 		goto noticmpv6;
8801 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8802 	/*
8803 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8804 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8805 	 * packet.
8806 	 */
8807 	if ((*nexthdrp != IPPROTO_TCP) ||
8808 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8809 		goto noticmpv6;
8810 	}
8811 
8812 	/*
8813 	 * ICMP errors come on the right queue or come on
8814 	 * listener/global queue for detached connections and
8815 	 * get switched to the right queue. If it comes on the
8816 	 * right queue, policy check has already been done by IP
8817 	 * and thus free the first_mp without verifying the policy.
8818 	 * If it has come for a non-hard bound connection, we need
8819 	 * to verify policy as IP may not have done it.
8820 	 */
8821 	if (!tcp->tcp_hard_bound) {
8822 		if (ipsec_mctl) {
8823 			secure = ipsec_in_is_secure(first_mp);
8824 		} else {
8825 			secure = B_FALSE;
8826 		}
8827 		if (secure) {
8828 			/*
8829 			 * If we are willing to accept this in clear
8830 			 * we don't have to verify policy.
8831 			 */
8832 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8833 				if (!tcp_check_policy(tcp, first_mp,
8834 				    NULL, ip6h, secure, ipsec_mctl)) {
8835 					/*
8836 					 * tcp_check_policy called
8837 					 * ip_drop_packet() on failure.
8838 					 */
8839 					return;
8840 				}
8841 			}
8842 		}
8843 	} else if (ipsec_mctl) {
8844 		/*
8845 		 * This is a hard_bound connection. IP has already
8846 		 * verified policy. We don't have to do it again.
8847 		 */
8848 		freeb(first_mp);
8849 		first_mp = mp;
8850 		ipsec_mctl = B_FALSE;
8851 	}
8852 
8853 	seg_seq = ntohl(tcpha->tha_seq);
8854 	/*
8855 	 * TCP SHOULD check that the TCP sequence number contained in
8856 	 * payload of the ICMP error message is within the range
8857 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8858 	 */
8859 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8860 		/*
8861 		 * If the ICMP message is bogus, should we kill the
8862 		 * connection, or should we just drop the bogus ICMP
8863 		 * message? It would probably make more sense to just
8864 		 * drop the message so that if this one managed to get
8865 		 * in, the real connection should not suffer.
8866 		 */
8867 		goto noticmpv6;
8868 	}
8869 
8870 	switch (icmp6->icmp6_type) {
8871 	case ICMP6_PACKET_TOO_BIG:
8872 		/*
8873 		 * Reduce the MSS based on the new MTU.  This will
8874 		 * eliminate any fragmentation locally.
8875 		 * N.B.  There may well be some funny side-effects on
8876 		 * the local send policy and the remote receive policy.
8877 		 * Pending further research, we provide
8878 		 * tcp_ignore_path_mtu just in case this proves
8879 		 * disastrous somewhere.
8880 		 *
8881 		 * After updating the MSS, retransmit part of the
8882 		 * dropped segment using the new mss by calling
8883 		 * tcp_wput_data().  Need to adjust all those
8884 		 * params to make sure tcp_wput_data() work properly.
8885 		 */
8886 		if (tcps->tcps_ignore_path_mtu)
8887 			break;
8888 
8889 		/*
8890 		 * Decrease the MSS by time stamp options
8891 		 * IP options and IPSEC options. tcp_hdr_len
8892 		 * includes time stamp option and IP option
8893 		 * length.
8894 		 */
8895 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8896 		    tcp->tcp_ipsec_overhead;
8897 
8898 		/*
8899 		 * Only update the MSS if the new one is
8900 		 * smaller than the previous one.  This is
8901 		 * to avoid problems when getting multiple
8902 		 * ICMP errors for the same MTU.
8903 		 */
8904 		if (new_mss >= tcp->tcp_mss)
8905 			break;
8906 
8907 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8908 		ASSERT(ratio >= 1);
8909 		tcp_mss_set(tcp, new_mss, B_TRUE);
8910 
8911 		/*
8912 		 * Make sure we have something to
8913 		 * send.
8914 		 */
8915 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8916 		    (tcp->tcp_xmit_head != NULL)) {
8917 			/*
8918 			 * Shrink tcp_cwnd in
8919 			 * proportion to the old MSS/new MSS.
8920 			 */
8921 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8922 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8923 			    (tcp->tcp_unsent == 0)) {
8924 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8925 			} else {
8926 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8927 			}
8928 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8929 			tcp->tcp_rexmit = B_TRUE;
8930 			tcp->tcp_dupack_cnt = 0;
8931 			tcp->tcp_snd_burst = TCP_CWND_SS;
8932 			tcp_ss_rexmit(tcp);
8933 		}
8934 		break;
8935 
8936 	case ICMP6_DST_UNREACH:
8937 		switch (icmp6->icmp6_code) {
8938 		case ICMP6_DST_UNREACH_NOPORT:
8939 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8940 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8941 			    (seg_seq == tcp->tcp_iss)) {
8942 				(void) tcp_clean_death(tcp,
8943 				    ECONNREFUSED, 8);
8944 			}
8945 			break;
8946 
8947 		case ICMP6_DST_UNREACH_ADMIN:
8948 		case ICMP6_DST_UNREACH_NOROUTE:
8949 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8950 		case ICMP6_DST_UNREACH_ADDR:
8951 			/* Record the error in case we finally time out. */
8952 			tcp->tcp_client_errno = EHOSTUNREACH;
8953 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8954 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8955 			    (seg_seq == tcp->tcp_iss)) {
8956 				if (tcp->tcp_listener != NULL &&
8957 				    tcp->tcp_listener->tcp_syn_defense) {
8958 					/*
8959 					 * Ditch the half-open connection if we
8960 					 * suspect a SYN attack is under way.
8961 					 */
8962 					tcp_ip_ire_mark_advice(tcp);
8963 					(void) tcp_clean_death(tcp,
8964 					    tcp->tcp_client_errno, 9);
8965 				}
8966 			}
8967 
8968 
8969 			break;
8970 		default:
8971 			break;
8972 		}
8973 		break;
8974 
8975 	case ICMP6_PARAM_PROB:
8976 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
8977 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
8978 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
8979 		    (uchar_t *)nexthdrp) {
8980 			if (tcp->tcp_state == TCPS_SYN_SENT ||
8981 			    tcp->tcp_state == TCPS_SYN_RCVD) {
8982 				(void) tcp_clean_death(tcp,
8983 				    ECONNREFUSED, 10);
8984 			}
8985 			break;
8986 		}
8987 		break;
8988 
8989 	case ICMP6_TIME_EXCEEDED:
8990 	default:
8991 		break;
8992 	}
8993 	freemsg(first_mp);
8994 }
8995 
8996 /*
8997  * IP recognizes seven kinds of bind requests:
8998  *
8999  * - A zero-length address binds only to the protocol number.
9000  *
9001  * - A 4-byte address is treated as a request to
9002  * validate that the address is a valid local IPv4
9003  * address, appropriate for an application to bind to.
9004  * IP does the verification, but does not make any note
9005  * of the address at this time.
9006  *
9007  * - A 16-byte address contains is treated as a request
9008  * to validate a local IPv6 address, as the 4-byte
9009  * address case above.
9010  *
9011  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
9012  * use it for the inbound fanout of packets.
9013  *
9014  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
9015  * use it for the inbound fanout of packets.
9016  *
9017  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
9018  * information consisting of local and remote addresses
9019  * and ports.  In this case, the addresses are both
9020  * validated as appropriate for this operation, and, if
9021  * so, the information is retained for use in the
9022  * inbound fanout.
9023  *
9024  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
9025  * fanout information, like the 12-byte case above.
9026  *
9027  * IP will also fill in the IRE request mblk with information
9028  * regarding our peer.  In all cases, we notify IP of our protocol
9029  * type by appending a single protocol byte to the bind request.
9030  */
9031 static mblk_t *
9032 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length)
9033 {
9034 	char	*cp;
9035 	mblk_t	*mp;
9036 	struct T_bind_req *tbr;
9037 	ipa_conn_t	*ac;
9038 	ipa6_conn_t	*ac6;
9039 	sin_t		*sin;
9040 	sin6_t		*sin6;
9041 
9042 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
9043 	ASSERT((tcp->tcp_family == AF_INET &&
9044 	    tcp->tcp_ipversion == IPV4_VERSION) ||
9045 	    (tcp->tcp_family == AF_INET6 &&
9046 	    (tcp->tcp_ipversion == IPV4_VERSION ||
9047 	    tcp->tcp_ipversion == IPV6_VERSION)));
9048 
9049 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
9050 	if (!mp)
9051 		return (mp);
9052 	mp->b_datap->db_type = M_PROTO;
9053 	tbr = (struct T_bind_req *)mp->b_rptr;
9054 	tbr->PRIM_type = bind_prim;
9055 	tbr->ADDR_offset = sizeof (*tbr);
9056 	tbr->CONIND_number = 0;
9057 	tbr->ADDR_length = addr_length;
9058 	cp = (char *)&tbr[1];
9059 	switch (addr_length) {
9060 	case sizeof (ipa_conn_t):
9061 		ASSERT(tcp->tcp_family == AF_INET);
9062 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9063 
9064 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9065 		if (mp->b_cont == NULL) {
9066 			freemsg(mp);
9067 			return (NULL);
9068 		}
9069 		mp->b_cont->b_wptr += sizeof (ire_t);
9070 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9071 
9072 		/* cp known to be 32 bit aligned */
9073 		ac = (ipa_conn_t *)cp;
9074 		ac->ac_laddr = tcp->tcp_ipha->ipha_src;
9075 		ac->ac_faddr = tcp->tcp_remote;
9076 		ac->ac_fport = tcp->tcp_fport;
9077 		ac->ac_lport = tcp->tcp_lport;
9078 		tcp->tcp_hard_binding = 1;
9079 		break;
9080 
9081 	case sizeof (ipa6_conn_t):
9082 		ASSERT(tcp->tcp_family == AF_INET6);
9083 
9084 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9085 		if (mp->b_cont == NULL) {
9086 			freemsg(mp);
9087 			return (NULL);
9088 		}
9089 		mp->b_cont->b_wptr += sizeof (ire_t);
9090 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9091 
9092 		/* cp known to be 32 bit aligned */
9093 		ac6 = (ipa6_conn_t *)cp;
9094 		if (tcp->tcp_ipversion == IPV4_VERSION) {
9095 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
9096 			    &ac6->ac6_laddr);
9097 		} else {
9098 			ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src;
9099 		}
9100 		ac6->ac6_faddr = tcp->tcp_remote_v6;
9101 		ac6->ac6_fport = tcp->tcp_fport;
9102 		ac6->ac6_lport = tcp->tcp_lport;
9103 		tcp->tcp_hard_binding = 1;
9104 		break;
9105 
9106 	case sizeof (sin_t):
9107 		/*
9108 		 * NOTE: IPV6_ADDR_LEN also has same size.
9109 		 * Use family to discriminate.
9110 		 */
9111 		if (tcp->tcp_family == AF_INET) {
9112 			sin = (sin_t *)cp;
9113 
9114 			*sin = sin_null;
9115 			sin->sin_family = AF_INET;
9116 			sin->sin_addr.s_addr = tcp->tcp_bound_source;
9117 			sin->sin_port = tcp->tcp_lport;
9118 			break;
9119 		} else {
9120 			*(in6_addr_t *)cp = tcp->tcp_bound_source_v6;
9121 		}
9122 		break;
9123 
9124 	case sizeof (sin6_t):
9125 		ASSERT(tcp->tcp_family == AF_INET6);
9126 		sin6 = (sin6_t *)cp;
9127 
9128 		*sin6 = sin6_null;
9129 		sin6->sin6_family = AF_INET6;
9130 		sin6->sin6_addr = tcp->tcp_bound_source_v6;
9131 		sin6->sin6_port = tcp->tcp_lport;
9132 		break;
9133 
9134 	case IP_ADDR_LEN:
9135 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9136 		*(uint32_t *)cp = tcp->tcp_ipha->ipha_src;
9137 		break;
9138 
9139 	}
9140 	/* Add protocol number to end */
9141 	cp[addr_length] = (char)IPPROTO_TCP;
9142 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
9143 	return (mp);
9144 }
9145 
9146 /*
9147  * Notify IP that we are having trouble with this connection.  IP should
9148  * blow the IRE away and start over.
9149  */
9150 static void
9151 tcp_ip_notify(tcp_t *tcp)
9152 {
9153 	struct iocblk	*iocp;
9154 	ipid_t	*ipid;
9155 	mblk_t	*mp;
9156 
9157 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
9158 	if (tcp->tcp_ipversion == IPV6_VERSION)
9159 		return;
9160 
9161 	mp = mkiocb(IP_IOCTL);
9162 	if (mp == NULL)
9163 		return;
9164 
9165 	iocp = (struct iocblk *)mp->b_rptr;
9166 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
9167 
9168 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
9169 	if (!mp->b_cont) {
9170 		freeb(mp);
9171 		return;
9172 	}
9173 
9174 	ipid = (ipid_t *)mp->b_cont->b_rptr;
9175 	mp->b_cont->b_wptr += iocp->ioc_count;
9176 	bzero(ipid, sizeof (*ipid));
9177 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
9178 	ipid->ipid_ire_type = IRE_CACHE;
9179 	ipid->ipid_addr_offset = sizeof (ipid_t);
9180 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
9181 	/*
9182 	 * Note: in the case of source routing we want to blow away the
9183 	 * route to the first source route hop.
9184 	 */
9185 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
9186 	    sizeof (tcp->tcp_ipha->ipha_dst));
9187 
9188 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
9189 }
9190 
9191 /* Unlink and return any mblk that looks like it contains an ire */
9192 static mblk_t *
9193 tcp_ire_mp(mblk_t *mp)
9194 {
9195 	mblk_t	*prev_mp;
9196 
9197 	for (;;) {
9198 		prev_mp = mp;
9199 		mp = mp->b_cont;
9200 		if (mp == NULL)
9201 			break;
9202 		switch (DB_TYPE(mp)) {
9203 		case IRE_DB_TYPE:
9204 		case IRE_DB_REQ_TYPE:
9205 			if (prev_mp != NULL)
9206 				prev_mp->b_cont = mp->b_cont;
9207 			mp->b_cont = NULL;
9208 			return (mp);
9209 		default:
9210 			break;
9211 		}
9212 	}
9213 	return (mp);
9214 }
9215 
9216 /*
9217  * Timer callback routine for keepalive probe.  We do a fake resend of
9218  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
9219  * check to see if we have heard anything from the other end for the last
9220  * RTO period.  If we have, set the timer to expire for another
9221  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
9222  * RTO << 1 and check again when it expires.  Keep exponentially increasing
9223  * the timeout if we have not heard from the other side.  If for more than
9224  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
9225  * kill the connection unless the keepalive abort threshold is 0.  In
9226  * that case, we will probe "forever."
9227  */
9228 static void
9229 tcp_keepalive_killer(void *arg)
9230 {
9231 	mblk_t	*mp;
9232 	conn_t	*connp = (conn_t *)arg;
9233 	tcp_t  	*tcp = connp->conn_tcp;
9234 	int32_t	firetime;
9235 	int32_t	idletime;
9236 	int32_t	ka_intrvl;
9237 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9238 
9239 	tcp->tcp_ka_tid = 0;
9240 
9241 	if (tcp->tcp_fused)
9242 		return;
9243 
9244 	BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive);
9245 	ka_intrvl = tcp->tcp_ka_interval;
9246 
9247 	/*
9248 	 * Keepalive probe should only be sent if the application has not
9249 	 * done a close on the connection.
9250 	 */
9251 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
9252 		return;
9253 	}
9254 	/* Timer fired too early, restart it. */
9255 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
9256 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9257 		    MSEC_TO_TICK(ka_intrvl));
9258 		return;
9259 	}
9260 
9261 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
9262 	/*
9263 	 * If we have not heard from the other side for a long
9264 	 * time, kill the connection unless the keepalive abort
9265 	 * threshold is 0.  In that case, we will probe "forever."
9266 	 */
9267 	if (tcp->tcp_ka_abort_thres != 0 &&
9268 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
9269 		BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop);
9270 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
9271 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
9272 		return;
9273 	}
9274 
9275 	if (tcp->tcp_snxt == tcp->tcp_suna &&
9276 	    idletime >= ka_intrvl) {
9277 		/* Fake resend of last ACKed byte. */
9278 		mblk_t	*mp1 = allocb(1, BPRI_LO);
9279 
9280 		if (mp1 != NULL) {
9281 			*mp1->b_wptr++ = '\0';
9282 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
9283 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
9284 			freeb(mp1);
9285 			/*
9286 			 * if allocation failed, fall through to start the
9287 			 * timer back.
9288 			 */
9289 			if (mp != NULL) {
9290 				TCP_RECORD_TRACE(tcp, mp,
9291 				    TCP_TRACE_SEND_PKT);
9292 				tcp_send_data(tcp, tcp->tcp_wq, mp);
9293 				BUMP_MIB(&tcps->tcps_mib,
9294 				    tcpTimKeepaliveProbe);
9295 				if (tcp->tcp_ka_last_intrvl != 0) {
9296 					int max;
9297 					/*
9298 					 * We should probe again at least
9299 					 * in ka_intrvl, but not more than
9300 					 * tcp_rexmit_interval_max.
9301 					 */
9302 					max = tcps->tcps_rexmit_interval_max;
9303 					firetime = MIN(ka_intrvl - 1,
9304 					    tcp->tcp_ka_last_intrvl << 1);
9305 					if (firetime > max)
9306 						firetime = max;
9307 				} else {
9308 					firetime = tcp->tcp_rto;
9309 				}
9310 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9311 				    tcp_keepalive_killer,
9312 				    MSEC_TO_TICK(firetime));
9313 				tcp->tcp_ka_last_intrvl = firetime;
9314 				return;
9315 			}
9316 		}
9317 	} else {
9318 		tcp->tcp_ka_last_intrvl = 0;
9319 	}
9320 
9321 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
9322 	if ((firetime = ka_intrvl - idletime) < 0) {
9323 		firetime = ka_intrvl;
9324 	}
9325 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9326 	    MSEC_TO_TICK(firetime));
9327 }
9328 
9329 int
9330 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
9331 {
9332 	queue_t	*q = tcp->tcp_rq;
9333 	int32_t	mss = tcp->tcp_mss;
9334 	int	maxpsz;
9335 
9336 	if (TCP_IS_DETACHED(tcp))
9337 		return (mss);
9338 
9339 	if (tcp->tcp_fused) {
9340 		maxpsz = tcp_fuse_maxpsz_set(tcp);
9341 		mss = INFPSZ;
9342 	} else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) {
9343 		/*
9344 		 * Set the sd_qn_maxpsz according to the socket send buffer
9345 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
9346 		 * instruct the stream head to copyin user data into contiguous
9347 		 * kernel-allocated buffers without breaking it up into smaller
9348 		 * chunks.  We round up the buffer size to the nearest SMSS.
9349 		 */
9350 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
9351 		if (tcp->tcp_kssl_ctx == NULL)
9352 			mss = INFPSZ;
9353 		else
9354 			mss = SSL3_MAX_RECORD_LEN;
9355 	} else {
9356 		/*
9357 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
9358 		 * (and a multiple of the mss).  This instructs the stream
9359 		 * head to break down larger than SMSS writes into SMSS-
9360 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
9361 		 */
9362 		maxpsz = tcp->tcp_maxpsz * mss;
9363 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
9364 			maxpsz = tcp->tcp_xmit_hiwater/2;
9365 			/* Round up to nearest mss */
9366 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
9367 		}
9368 	}
9369 	(void) setmaxps(q, maxpsz);
9370 	tcp->tcp_wq->q_maxpsz = maxpsz;
9371 
9372 	if (set_maxblk)
9373 		(void) mi_set_sth_maxblk(q, mss);
9374 
9375 	return (mss);
9376 }
9377 
9378 /*
9379  * Extract option values from a tcp header.  We put any found values into the
9380  * tcpopt struct and return a bitmask saying which options were found.
9381  */
9382 static int
9383 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
9384 {
9385 	uchar_t		*endp;
9386 	int		len;
9387 	uint32_t	mss;
9388 	uchar_t		*up = (uchar_t *)tcph;
9389 	int		found = 0;
9390 	int32_t		sack_len;
9391 	tcp_seq		sack_begin, sack_end;
9392 	tcp_t		*tcp;
9393 
9394 	endp = up + TCP_HDR_LENGTH(tcph);
9395 	up += TCP_MIN_HEADER_LENGTH;
9396 	while (up < endp) {
9397 		len = endp - up;
9398 		switch (*up) {
9399 		case TCPOPT_EOL:
9400 			break;
9401 
9402 		case TCPOPT_NOP:
9403 			up++;
9404 			continue;
9405 
9406 		case TCPOPT_MAXSEG:
9407 			if (len < TCPOPT_MAXSEG_LEN ||
9408 			    up[1] != TCPOPT_MAXSEG_LEN)
9409 				break;
9410 
9411 			mss = BE16_TO_U16(up+2);
9412 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9413 			tcpopt->tcp_opt_mss = mss;
9414 			found |= TCP_OPT_MSS_PRESENT;
9415 
9416 			up += TCPOPT_MAXSEG_LEN;
9417 			continue;
9418 
9419 		case TCPOPT_WSCALE:
9420 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9421 				break;
9422 
9423 			if (up[2] > TCP_MAX_WINSHIFT)
9424 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9425 			else
9426 				tcpopt->tcp_opt_wscale = up[2];
9427 			found |= TCP_OPT_WSCALE_PRESENT;
9428 
9429 			up += TCPOPT_WS_LEN;
9430 			continue;
9431 
9432 		case TCPOPT_SACK_PERMITTED:
9433 			if (len < TCPOPT_SACK_OK_LEN ||
9434 			    up[1] != TCPOPT_SACK_OK_LEN)
9435 				break;
9436 			found |= TCP_OPT_SACK_OK_PRESENT;
9437 			up += TCPOPT_SACK_OK_LEN;
9438 			continue;
9439 
9440 		case TCPOPT_SACK:
9441 			if (len <= 2 || up[1] <= 2 || len < up[1])
9442 				break;
9443 
9444 			/* If TCP is not interested in SACK blks... */
9445 			if ((tcp = tcpopt->tcp) == NULL) {
9446 				up += up[1];
9447 				continue;
9448 			}
9449 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9450 			up += TCPOPT_HEADER_LEN;
9451 
9452 			/*
9453 			 * If the list is empty, allocate one and assume
9454 			 * nothing is sack'ed.
9455 			 */
9456 			ASSERT(tcp->tcp_sack_info != NULL);
9457 			if (tcp->tcp_notsack_list == NULL) {
9458 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9459 				    tcp->tcp_suna, tcp->tcp_snxt,
9460 				    &(tcp->tcp_num_notsack_blk),
9461 				    &(tcp->tcp_cnt_notsack_list));
9462 
9463 				/*
9464 				 * Make sure tcp_notsack_list is not NULL.
9465 				 * This happens when kmem_alloc(KM_NOSLEEP)
9466 				 * returns NULL.
9467 				 */
9468 				if (tcp->tcp_notsack_list == NULL) {
9469 					up += sack_len;
9470 					continue;
9471 				}
9472 				tcp->tcp_fack = tcp->tcp_suna;
9473 			}
9474 
9475 			while (sack_len > 0) {
9476 				if (up + 8 > endp) {
9477 					up = endp;
9478 					break;
9479 				}
9480 				sack_begin = BE32_TO_U32(up);
9481 				up += 4;
9482 				sack_end = BE32_TO_U32(up);
9483 				up += 4;
9484 				sack_len -= 8;
9485 				/*
9486 				 * Bounds checking.  Make sure the SACK
9487 				 * info is within tcp_suna and tcp_snxt.
9488 				 * If this SACK blk is out of bound, ignore
9489 				 * it but continue to parse the following
9490 				 * blks.
9491 				 */
9492 				if (SEQ_LEQ(sack_end, sack_begin) ||
9493 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9494 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9495 					continue;
9496 				}
9497 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9498 				    sack_begin, sack_end,
9499 				    &(tcp->tcp_num_notsack_blk),
9500 				    &(tcp->tcp_cnt_notsack_list));
9501 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9502 					tcp->tcp_fack = sack_end;
9503 				}
9504 			}
9505 			found |= TCP_OPT_SACK_PRESENT;
9506 			continue;
9507 
9508 		case TCPOPT_TSTAMP:
9509 			if (len < TCPOPT_TSTAMP_LEN ||
9510 			    up[1] != TCPOPT_TSTAMP_LEN)
9511 				break;
9512 
9513 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9514 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9515 
9516 			found |= TCP_OPT_TSTAMP_PRESENT;
9517 
9518 			up += TCPOPT_TSTAMP_LEN;
9519 			continue;
9520 
9521 		default:
9522 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9523 				break;
9524 			up += up[1];
9525 			continue;
9526 		}
9527 		break;
9528 	}
9529 	return (found);
9530 }
9531 
9532 /*
9533  * Set the mss associated with a particular tcp based on its current value,
9534  * and a new one passed in. Observe minimums and maximums, and reset
9535  * other state variables that we want to view as multiples of mss.
9536  *
9537  * This function is called in various places mainly because
9538  * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the
9539  *    other side's SYN/SYN-ACK packet arrives.
9540  * 2) PMTUd may get us a new MSS.
9541  * 3) If the other side stops sending us timestamp option, we need to
9542  *    increase the MSS size to use the extra bytes available.
9543  *
9544  * do_ss is used to control whether we will be doing slow start or
9545  * not if there is a change in the mss. Note that for some events like
9546  * tcp_paws_check() we allow the tcp_cwnd to adjust to the new mss but
9547  * do not perform a slow start specifically.
9548  */
9549 static void
9550 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss)
9551 {
9552 	uint32_t	mss_max;
9553 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9554 
9555 	if (tcp->tcp_ipversion == IPV4_VERSION)
9556 		mss_max = tcps->tcps_mss_max_ipv4;
9557 	else
9558 		mss_max = tcps->tcps_mss_max_ipv6;
9559 
9560 	if (mss < tcps->tcps_mss_min)
9561 		mss = tcps->tcps_mss_min;
9562 	if (mss > mss_max)
9563 		mss = mss_max;
9564 	/*
9565 	 * Unless naglim has been set by our client to
9566 	 * a non-mss value, force naglim to track mss.
9567 	 * This can help to aggregate small writes.
9568 	 */
9569 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9570 		tcp->tcp_naglim = mss;
9571 	/*
9572 	 * TCP should be able to buffer at least 4 MSS data for obvious
9573 	 * performance reason.
9574 	 */
9575 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9576 		tcp->tcp_xmit_hiwater = mss << 2;
9577 
9578 	/*
9579 	 * Check if we need to apply the tcp_init_cwnd here.  If
9580 	 * it is set and the MSS gets bigger (should not happen
9581 	 * normally), we need to adjust the resulting tcp_cwnd properly.
9582 	 * The new tcp_cwnd should not get bigger.
9583 	 */
9584 	/*
9585 	 * We need to avoid setting tcp_cwnd to its slow start value
9586 	 * unnecessarily. However we have to let the tcp_cwnd adjust
9587 	 * to the modified mss.
9588 	 */
9589 	if (tcp->tcp_init_cwnd == 0 && do_ss) {
9590 		tcp->tcp_cwnd = MIN(tcps->tcps_slow_start_initial *
9591 		    mss, MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss)));
9592 	} else {
9593 		if (tcp->tcp_mss < mss) {
9594 			tcp->tcp_cwnd = MAX(1,
9595 			    (tcp->tcp_init_cwnd * tcp->tcp_mss /
9596 			    mss)) * mss;
9597 		} else {
9598 			tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss;
9599 		}
9600 	}
9601 	tcp->tcp_mss = mss;
9602 	tcp->tcp_cwnd_cnt = 0;
9603 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9604 }
9605 
9606 /* For /dev/tcp aka AF_INET open */
9607 static int
9608 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9609 {
9610 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
9611 }
9612 
9613 /* For /dev/tcp6 aka AF_INET6 open */
9614 static int
9615 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9616 {
9617 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
9618 }
9619 
9620 static int
9621 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
9622     boolean_t isv6)
9623 {
9624 	tcp_t		*tcp = NULL;
9625 	conn_t		*connp;
9626 	int		err;
9627 	vmem_t		*minor_arena = NULL;
9628 	dev_t		conn_dev;
9629 	zoneid_t	zoneid;
9630 	tcp_stack_t	*tcps = NULL;
9631 
9632 	if (q->q_ptr != NULL)
9633 		return (0);
9634 
9635 	if (sflag == MODOPEN)
9636 		return (EINVAL);
9637 
9638 	if (!(flag & SO_ACCEPTOR)) {
9639 		/*
9640 		 * Special case for install: miniroot needs to be able to
9641 		 * access files via NFS as though it were always in the
9642 		 * global zone.
9643 		 */
9644 		if (credp == kcred && nfs_global_client_only != 0) {
9645 			zoneid = GLOBAL_ZONEID;
9646 			tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
9647 			    netstack_tcp;
9648 			ASSERT(tcps != NULL);
9649 		} else {
9650 			netstack_t *ns;
9651 
9652 			ns = netstack_find_by_cred(credp);
9653 			ASSERT(ns != NULL);
9654 			tcps = ns->netstack_tcp;
9655 			ASSERT(tcps != NULL);
9656 
9657 			/*
9658 			 * For exclusive stacks we set the zoneid to zero
9659 			 * to make TCP operate as if in the global zone.
9660 			 */
9661 			if (tcps->tcps_netstack->netstack_stackid !=
9662 			    GLOBAL_NETSTACKID)
9663 				zoneid = GLOBAL_ZONEID;
9664 			else
9665 				zoneid = crgetzoneid(credp);
9666 		}
9667 		/*
9668 		 * For stackid zero this is done from strplumb.c, but
9669 		 * non-zero stackids are handled here.
9670 		 */
9671 		if (tcps->tcps_g_q == NULL &&
9672 		    tcps->tcps_netstack->netstack_stackid !=
9673 		    GLOBAL_NETSTACKID) {
9674 			tcp_g_q_setup(tcps);
9675 		}
9676 	}
9677 
9678 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
9679 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
9680 		minor_arena = ip_minor_arena_la;
9681 	} else {
9682 		/*
9683 		 * Either minor numbers in the large arena were exhausted
9684 		 * or a non socket application is doing the open.
9685 		 * Try to allocate from the small arena.
9686 		 */
9687 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
9688 			if (tcps != NULL)
9689 				netstack_rele(tcps->tcps_netstack);
9690 			return (EBUSY);
9691 		}
9692 		minor_arena = ip_minor_arena_sa;
9693 	}
9694 	ASSERT(minor_arena != NULL);
9695 
9696 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
9697 
9698 	if (flag & SO_ACCEPTOR) {
9699 		/* No netstack_find_by_cred, hence no netstack_rele needed */
9700 		ASSERT(tcps == NULL);
9701 		q->q_qinfo = &tcp_acceptor_rinit;
9702 		/*
9703 		 * the conn_dev and minor_arena will be subsequently used by
9704 		 * tcp_wput_accept() and tcpclose_accept() to figure out the
9705 		 * minor device number for this connection from the q_ptr.
9706 		 */
9707 		RD(q)->q_ptr = (void *)conn_dev;
9708 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9709 		WR(q)->q_ptr = (void *)minor_arena;
9710 		qprocson(q);
9711 		return (0);
9712 	}
9713 
9714 	connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps);
9715 	/*
9716 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
9717 	 * so we drop it by one.
9718 	 */
9719 	netstack_rele(tcps->tcps_netstack);
9720 	if (connp == NULL) {
9721 		inet_minor_free(minor_arena, conn_dev);
9722 		q->q_ptr = NULL;
9723 		return (ENOSR);
9724 	}
9725 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
9726 	tcp = connp->conn_tcp;
9727 
9728 	q->q_ptr = WR(q)->q_ptr = connp;
9729 	if (isv6) {
9730 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9731 		connp->conn_send = ip_output_v6;
9732 		connp->conn_af_isv6 = B_TRUE;
9733 		connp->conn_pkt_isv6 = B_TRUE;
9734 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9735 		tcp->tcp_ipversion = IPV6_VERSION;
9736 		tcp->tcp_family = AF_INET6;
9737 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
9738 	} else {
9739 		connp->conn_flags |= IPCL_TCP4;
9740 		connp->conn_send = ip_output;
9741 		connp->conn_af_isv6 = B_FALSE;
9742 		connp->conn_pkt_isv6 = B_FALSE;
9743 		tcp->tcp_ipversion = IPV4_VERSION;
9744 		tcp->tcp_family = AF_INET;
9745 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
9746 	}
9747 
9748 	/*
9749 	 * TCP keeps a copy of cred for cache locality reasons but
9750 	 * we put a reference only once. If connp->conn_cred
9751 	 * becomes invalid, tcp_cred should also be set to NULL.
9752 	 */
9753 	tcp->tcp_cred = connp->conn_cred = credp;
9754 	crhold(connp->conn_cred);
9755 	tcp->tcp_cpid = curproc->p_pid;
9756 	tcp->tcp_open_time = lbolt64;
9757 	connp->conn_zoneid = zoneid;
9758 	connp->conn_mlp_type = mlptSingle;
9759 	connp->conn_ulp_labeled = !is_system_labeled();
9760 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
9761 	ASSERT(tcp->tcp_tcps == tcps);
9762 
9763 	/*
9764 	 * If the caller has the process-wide flag set, then default to MAC
9765 	 * exempt mode.  This allows read-down to unlabeled hosts.
9766 	 */
9767 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9768 		connp->conn_mac_exempt = B_TRUE;
9769 
9770 	connp->conn_dev = conn_dev;
9771 	connp->conn_minor_arena = minor_arena;
9772 
9773 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
9774 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9775 
9776 	if (flag & SO_SOCKSTR) {
9777 		/*
9778 		 * No need to insert a socket in tcp acceptor hash.
9779 		 * If it was a socket acceptor stream, we dealt with
9780 		 * it above. A socket listener can never accept a
9781 		 * connection and doesn't need acceptor_id.
9782 		 */
9783 		connp->conn_flags |= IPCL_SOCKET;
9784 		tcp->tcp_issocket = 1;
9785 		WR(q)->q_qinfo = &tcp_sock_winit;
9786 	} else {
9787 #ifdef	_ILP32
9788 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9789 #else
9790 		tcp->tcp_acceptor_id = conn_dev;
9791 #endif	/* _ILP32 */
9792 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9793 	}
9794 
9795 	if (tcps->tcps_trace)
9796 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP);
9797 
9798 	err = tcp_init(tcp, q);
9799 	if (err != 0) {
9800 		inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
9801 		tcp_acceptor_hash_remove(tcp);
9802 		CONN_DEC_REF(connp);
9803 		q->q_ptr = WR(q)->q_ptr = NULL;
9804 		return (err);
9805 	}
9806 
9807 	RD(q)->q_hiwat = tcps->tcps_recv_hiwat;
9808 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
9809 
9810 	/* Non-zero default values */
9811 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9812 	/*
9813 	 * Put the ref for TCP. Ref for IP was already put
9814 	 * by ipcl_conn_create. Also Make the conn_t globally
9815 	 * visible to walkers
9816 	 */
9817 	mutex_enter(&connp->conn_lock);
9818 	CONN_INC_REF_LOCKED(connp);
9819 	ASSERT(connp->conn_ref == 2);
9820 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9821 	mutex_exit(&connp->conn_lock);
9822 
9823 	qprocson(q);
9824 	return (0);
9825 }
9826 
9827 /*
9828  * Some TCP options can be "set" by requesting them in the option
9829  * buffer. This is needed for XTI feature test though we do not
9830  * allow it in general. We interpret that this mechanism is more
9831  * applicable to OSI protocols and need not be allowed in general.
9832  * This routine filters out options for which it is not allowed (most)
9833  * and lets through those (few) for which it is. [ The XTI interface
9834  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9835  * ever implemented will have to be allowed here ].
9836  */
9837 static boolean_t
9838 tcp_allow_connopt_set(int level, int name)
9839 {
9840 
9841 	switch (level) {
9842 	case IPPROTO_TCP:
9843 		switch (name) {
9844 		case TCP_NODELAY:
9845 			return (B_TRUE);
9846 		default:
9847 			return (B_FALSE);
9848 		}
9849 		/*NOTREACHED*/
9850 	default:
9851 		return (B_FALSE);
9852 	}
9853 	/*NOTREACHED*/
9854 }
9855 
9856 /*
9857  * This routine gets default values of certain options whose default
9858  * values are maintained by protocol specific code
9859  */
9860 /* ARGSUSED */
9861 int
9862 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9863 {
9864 	int32_t	*i1 = (int32_t *)ptr;
9865 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
9866 
9867 	switch (level) {
9868 	case IPPROTO_TCP:
9869 		switch (name) {
9870 		case TCP_NOTIFY_THRESHOLD:
9871 			*i1 = tcps->tcps_ip_notify_interval;
9872 			break;
9873 		case TCP_ABORT_THRESHOLD:
9874 			*i1 = tcps->tcps_ip_abort_interval;
9875 			break;
9876 		case TCP_CONN_NOTIFY_THRESHOLD:
9877 			*i1 = tcps->tcps_ip_notify_cinterval;
9878 			break;
9879 		case TCP_CONN_ABORT_THRESHOLD:
9880 			*i1 = tcps->tcps_ip_abort_cinterval;
9881 			break;
9882 		default:
9883 			return (-1);
9884 		}
9885 		break;
9886 	case IPPROTO_IP:
9887 		switch (name) {
9888 		case IP_TTL:
9889 			*i1 = tcps->tcps_ipv4_ttl;
9890 			break;
9891 		default:
9892 			return (-1);
9893 		}
9894 		break;
9895 	case IPPROTO_IPV6:
9896 		switch (name) {
9897 		case IPV6_UNICAST_HOPS:
9898 			*i1 = tcps->tcps_ipv6_hoplimit;
9899 			break;
9900 		default:
9901 			return (-1);
9902 		}
9903 		break;
9904 	default:
9905 		return (-1);
9906 	}
9907 	return (sizeof (int));
9908 }
9909 
9910 
9911 /*
9912  * TCP routine to get the values of options.
9913  */
9914 int
9915 tcp_opt_get(queue_t *q, int level, int	name, uchar_t *ptr)
9916 {
9917 	int		*i1 = (int *)ptr;
9918 	conn_t		*connp = Q_TO_CONN(q);
9919 	tcp_t		*tcp = connp->conn_tcp;
9920 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9921 
9922 	switch (level) {
9923 	case SOL_SOCKET:
9924 		switch (name) {
9925 		case SO_LINGER:	{
9926 			struct linger *lgr = (struct linger *)ptr;
9927 
9928 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9929 			lgr->l_linger = tcp->tcp_lingertime;
9930 			}
9931 			return (sizeof (struct linger));
9932 		case SO_DEBUG:
9933 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9934 			break;
9935 		case SO_KEEPALIVE:
9936 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9937 			break;
9938 		case SO_DONTROUTE:
9939 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9940 			break;
9941 		case SO_USELOOPBACK:
9942 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9943 			break;
9944 		case SO_BROADCAST:
9945 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9946 			break;
9947 		case SO_REUSEADDR:
9948 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9949 			break;
9950 		case SO_OOBINLINE:
9951 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9952 			break;
9953 		case SO_DGRAM_ERRIND:
9954 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9955 			break;
9956 		case SO_TYPE:
9957 			*i1 = SOCK_STREAM;
9958 			break;
9959 		case SO_SNDBUF:
9960 			*i1 = tcp->tcp_xmit_hiwater;
9961 			break;
9962 		case SO_RCVBUF:
9963 			*i1 = RD(q)->q_hiwat;
9964 			break;
9965 		case SO_SND_COPYAVOID:
9966 			*i1 = tcp->tcp_snd_zcopy_on ?
9967 			    SO_SND_COPYAVOID : 0;
9968 			break;
9969 		case SO_ALLZONES:
9970 			*i1 = connp->conn_allzones ? 1 : 0;
9971 			break;
9972 		case SO_ANON_MLP:
9973 			*i1 = connp->conn_anon_mlp;
9974 			break;
9975 		case SO_MAC_EXEMPT:
9976 			*i1 = connp->conn_mac_exempt;
9977 			break;
9978 		case SO_EXCLBIND:
9979 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
9980 			break;
9981 		case SO_PROTOTYPE:
9982 			*i1 = IPPROTO_TCP;
9983 			break;
9984 		case SO_DOMAIN:
9985 			*i1 = tcp->tcp_family;
9986 			break;
9987 		default:
9988 			return (-1);
9989 		}
9990 		break;
9991 	case IPPROTO_TCP:
9992 		switch (name) {
9993 		case TCP_NODELAY:
9994 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
9995 			break;
9996 		case TCP_MAXSEG:
9997 			*i1 = tcp->tcp_mss;
9998 			break;
9999 		case TCP_NOTIFY_THRESHOLD:
10000 			*i1 = (int)tcp->tcp_first_timer_threshold;
10001 			break;
10002 		case TCP_ABORT_THRESHOLD:
10003 			*i1 = tcp->tcp_second_timer_threshold;
10004 			break;
10005 		case TCP_CONN_NOTIFY_THRESHOLD:
10006 			*i1 = tcp->tcp_first_ctimer_threshold;
10007 			break;
10008 		case TCP_CONN_ABORT_THRESHOLD:
10009 			*i1 = tcp->tcp_second_ctimer_threshold;
10010 			break;
10011 		case TCP_RECVDSTADDR:
10012 			*i1 = tcp->tcp_recvdstaddr;
10013 			break;
10014 		case TCP_ANONPRIVBIND:
10015 			*i1 = tcp->tcp_anon_priv_bind;
10016 			break;
10017 		case TCP_EXCLBIND:
10018 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
10019 			break;
10020 		case TCP_INIT_CWND:
10021 			*i1 = tcp->tcp_init_cwnd;
10022 			break;
10023 		case TCP_KEEPALIVE_THRESHOLD:
10024 			*i1 = tcp->tcp_ka_interval;
10025 			break;
10026 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10027 			*i1 = tcp->tcp_ka_abort_thres;
10028 			break;
10029 		case TCP_CORK:
10030 			*i1 = tcp->tcp_cork;
10031 			break;
10032 		default:
10033 			return (-1);
10034 		}
10035 		break;
10036 	case IPPROTO_IP:
10037 		if (tcp->tcp_family != AF_INET)
10038 			return (-1);
10039 		switch (name) {
10040 		case IP_OPTIONS:
10041 		case T_IP_OPTIONS: {
10042 			/*
10043 			 * This is compatible with BSD in that in only return
10044 			 * the reverse source route with the final destination
10045 			 * as the last entry. The first 4 bytes of the option
10046 			 * will contain the final destination.
10047 			 */
10048 			int	opt_len;
10049 
10050 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
10051 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
10052 			ASSERT(opt_len >= 0);
10053 			/* Caller ensures enough space */
10054 			if (opt_len > 0) {
10055 				/*
10056 				 * TODO: Do we have to handle getsockopt on an
10057 				 * initiator as well?
10058 				 */
10059 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
10060 			}
10061 			return (0);
10062 			}
10063 		case IP_TOS:
10064 		case T_IP_TOS:
10065 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
10066 			break;
10067 		case IP_TTL:
10068 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
10069 			break;
10070 		case IP_NEXTHOP:
10071 			/* Handled at IP level */
10072 			return (-EINVAL);
10073 		default:
10074 			return (-1);
10075 		}
10076 		break;
10077 	case IPPROTO_IPV6:
10078 		/*
10079 		 * IPPROTO_IPV6 options are only supported for sockets
10080 		 * that are using IPv6 on the wire.
10081 		 */
10082 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10083 			return (-1);
10084 		}
10085 		switch (name) {
10086 		case IPV6_UNICAST_HOPS:
10087 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
10088 			break;	/* goto sizeof (int) option return */
10089 		case IPV6_BOUND_IF:
10090 			/* Zero if not set */
10091 			*i1 = tcp->tcp_bound_if;
10092 			break;	/* goto sizeof (int) option return */
10093 		case IPV6_RECVPKTINFO:
10094 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
10095 				*i1 = 1;
10096 			else
10097 				*i1 = 0;
10098 			break;	/* goto sizeof (int) option return */
10099 		case IPV6_RECVTCLASS:
10100 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
10101 				*i1 = 1;
10102 			else
10103 				*i1 = 0;
10104 			break;	/* goto sizeof (int) option return */
10105 		case IPV6_RECVHOPLIMIT:
10106 			if (tcp->tcp_ipv6_recvancillary &
10107 			    TCP_IPV6_RECVHOPLIMIT)
10108 				*i1 = 1;
10109 			else
10110 				*i1 = 0;
10111 			break;	/* goto sizeof (int) option return */
10112 		case IPV6_RECVHOPOPTS:
10113 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
10114 				*i1 = 1;
10115 			else
10116 				*i1 = 0;
10117 			break;	/* goto sizeof (int) option return */
10118 		case IPV6_RECVDSTOPTS:
10119 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
10120 				*i1 = 1;
10121 			else
10122 				*i1 = 0;
10123 			break;	/* goto sizeof (int) option return */
10124 		case _OLD_IPV6_RECVDSTOPTS:
10125 			if (tcp->tcp_ipv6_recvancillary &
10126 			    TCP_OLD_IPV6_RECVDSTOPTS)
10127 				*i1 = 1;
10128 			else
10129 				*i1 = 0;
10130 			break;	/* goto sizeof (int) option return */
10131 		case IPV6_RECVRTHDR:
10132 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
10133 				*i1 = 1;
10134 			else
10135 				*i1 = 0;
10136 			break;	/* goto sizeof (int) option return */
10137 		case IPV6_RECVRTHDRDSTOPTS:
10138 			if (tcp->tcp_ipv6_recvancillary &
10139 			    TCP_IPV6_RECVRTDSTOPTS)
10140 				*i1 = 1;
10141 			else
10142 				*i1 = 0;
10143 			break;	/* goto sizeof (int) option return */
10144 		case IPV6_PKTINFO: {
10145 			/* XXX assumes that caller has room for max size! */
10146 			struct in6_pktinfo *pkti;
10147 
10148 			pkti = (struct in6_pktinfo *)ptr;
10149 			if (ipp->ipp_fields & IPPF_IFINDEX)
10150 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
10151 			else
10152 				pkti->ipi6_ifindex = 0;
10153 			if (ipp->ipp_fields & IPPF_ADDR)
10154 				pkti->ipi6_addr = ipp->ipp_addr;
10155 			else
10156 				pkti->ipi6_addr = ipv6_all_zeros;
10157 			return (sizeof (struct in6_pktinfo));
10158 		}
10159 		case IPV6_TCLASS:
10160 			if (ipp->ipp_fields & IPPF_TCLASS)
10161 				*i1 = ipp->ipp_tclass;
10162 			else
10163 				*i1 = IPV6_FLOW_TCLASS(
10164 				    IPV6_DEFAULT_VERS_AND_FLOW);
10165 			break;	/* goto sizeof (int) option return */
10166 		case IPV6_NEXTHOP: {
10167 			sin6_t *sin6 = (sin6_t *)ptr;
10168 
10169 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
10170 				return (0);
10171 			*sin6 = sin6_null;
10172 			sin6->sin6_family = AF_INET6;
10173 			sin6->sin6_addr = ipp->ipp_nexthop;
10174 			return (sizeof (sin6_t));
10175 		}
10176 		case IPV6_HOPOPTS:
10177 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
10178 				return (0);
10179 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
10180 				return (0);
10181 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
10182 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
10183 			if (tcp->tcp_label_len > 0) {
10184 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
10185 				ptr[1] = (ipp->ipp_hopoptslen -
10186 				    tcp->tcp_label_len + 7) / 8 - 1;
10187 			}
10188 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
10189 		case IPV6_RTHDRDSTOPTS:
10190 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
10191 				return (0);
10192 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
10193 			return (ipp->ipp_rtdstoptslen);
10194 		case IPV6_RTHDR:
10195 			if (!(ipp->ipp_fields & IPPF_RTHDR))
10196 				return (0);
10197 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
10198 			return (ipp->ipp_rthdrlen);
10199 		case IPV6_DSTOPTS:
10200 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
10201 				return (0);
10202 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
10203 			return (ipp->ipp_dstoptslen);
10204 		case IPV6_SRC_PREFERENCES:
10205 			return (ip6_get_src_preferences(connp,
10206 			    (uint32_t *)ptr));
10207 		case IPV6_PATHMTU: {
10208 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
10209 
10210 			if (tcp->tcp_state < TCPS_ESTABLISHED)
10211 				return (-1);
10212 
10213 			return (ip_fill_mtuinfo(&connp->conn_remv6,
10214 			    connp->conn_fport, mtuinfo,
10215 			    connp->conn_netstack));
10216 		}
10217 		default:
10218 			return (-1);
10219 		}
10220 		break;
10221 	default:
10222 		return (-1);
10223 	}
10224 	return (sizeof (int));
10225 }
10226 
10227 /*
10228  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
10229  * Parameters are assumed to be verified by the caller.
10230  */
10231 /* ARGSUSED */
10232 int
10233 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10234     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10235     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10236 {
10237 	conn_t	*connp = Q_TO_CONN(q);
10238 	tcp_t	*tcp = connp->conn_tcp;
10239 	int	*i1 = (int *)invalp;
10240 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
10241 	boolean_t checkonly;
10242 	int	reterr;
10243 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
10244 
10245 	switch (optset_context) {
10246 	case SETFN_OPTCOM_CHECKONLY:
10247 		checkonly = B_TRUE;
10248 		/*
10249 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
10250 		 * inlen != 0 implies value supplied and
10251 		 * 	we have to "pretend" to set it.
10252 		 * inlen == 0 implies that there is no
10253 		 * 	value part in T_CHECK request and just validation
10254 		 * done elsewhere should be enough, we just return here.
10255 		 */
10256 		if (inlen == 0) {
10257 			*outlenp = 0;
10258 			return (0);
10259 		}
10260 		break;
10261 	case SETFN_OPTCOM_NEGOTIATE:
10262 		checkonly = B_FALSE;
10263 		break;
10264 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
10265 	case SETFN_CONN_NEGOTIATE:
10266 		checkonly = B_FALSE;
10267 		/*
10268 		 * Negotiating local and "association-related" options
10269 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
10270 		 * primitives is allowed by XTI, but we choose
10271 		 * to not implement this style negotiation for Internet
10272 		 * protocols (We interpret it is a must for OSI world but
10273 		 * optional for Internet protocols) for all options.
10274 		 * [ Will do only for the few options that enable test
10275 		 * suites that our XTI implementation of this feature
10276 		 * works for transports that do allow it ]
10277 		 */
10278 		if (!tcp_allow_connopt_set(level, name)) {
10279 			*outlenp = 0;
10280 			return (EINVAL);
10281 		}
10282 		break;
10283 	default:
10284 		/*
10285 		 * We should never get here
10286 		 */
10287 		*outlenp = 0;
10288 		return (EINVAL);
10289 	}
10290 
10291 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
10292 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
10293 
10294 	/*
10295 	 * For TCP, we should have no ancillary data sent down
10296 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
10297 	 * has to be zero.
10298 	 */
10299 	ASSERT(thisdg_attrs == NULL);
10300 
10301 	/*
10302 	 * For fixed length options, no sanity check
10303 	 * of passed in length is done. It is assumed *_optcom_req()
10304 	 * routines do the right thing.
10305 	 */
10306 
10307 	switch (level) {
10308 	case SOL_SOCKET:
10309 		switch (name) {
10310 		case SO_LINGER: {
10311 			struct linger *lgr = (struct linger *)invalp;
10312 
10313 			if (!checkonly) {
10314 				if (lgr->l_onoff) {
10315 					tcp->tcp_linger = 1;
10316 					tcp->tcp_lingertime = lgr->l_linger;
10317 				} else {
10318 					tcp->tcp_linger = 0;
10319 					tcp->tcp_lingertime = 0;
10320 				}
10321 				/* struct copy */
10322 				*(struct linger *)outvalp = *lgr;
10323 			} else {
10324 				if (!lgr->l_onoff) {
10325 					((struct linger *)
10326 					    outvalp)->l_onoff = 0;
10327 					((struct linger *)
10328 					    outvalp)->l_linger = 0;
10329 				} else {
10330 					/* struct copy */
10331 					*(struct linger *)outvalp = *lgr;
10332 				}
10333 			}
10334 			*outlenp = sizeof (struct linger);
10335 			return (0);
10336 		}
10337 		case SO_DEBUG:
10338 			if (!checkonly)
10339 				tcp->tcp_debug = onoff;
10340 			break;
10341 		case SO_KEEPALIVE:
10342 			if (checkonly) {
10343 				/* T_CHECK case */
10344 				break;
10345 			}
10346 
10347 			if (!onoff) {
10348 				if (tcp->tcp_ka_enabled) {
10349 					if (tcp->tcp_ka_tid != 0) {
10350 						(void) TCP_TIMER_CANCEL(tcp,
10351 						    tcp->tcp_ka_tid);
10352 						tcp->tcp_ka_tid = 0;
10353 					}
10354 					tcp->tcp_ka_enabled = 0;
10355 				}
10356 				break;
10357 			}
10358 			if (!tcp->tcp_ka_enabled) {
10359 				/* Crank up the keepalive timer */
10360 				tcp->tcp_ka_last_intrvl = 0;
10361 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
10362 				    tcp_keepalive_killer,
10363 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
10364 				tcp->tcp_ka_enabled = 1;
10365 			}
10366 			break;
10367 		case SO_DONTROUTE:
10368 			/*
10369 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10370 			 * only of interest to IP.  We track them here only so
10371 			 * that we can report their current value.
10372 			 */
10373 			if (!checkonly) {
10374 				tcp->tcp_dontroute = onoff;
10375 				tcp->tcp_connp->conn_dontroute = onoff;
10376 			}
10377 			break;
10378 		case SO_USELOOPBACK:
10379 			if (!checkonly) {
10380 				tcp->tcp_useloopback = onoff;
10381 				tcp->tcp_connp->conn_loopback = onoff;
10382 			}
10383 			break;
10384 		case SO_BROADCAST:
10385 			if (!checkonly) {
10386 				tcp->tcp_broadcast = onoff;
10387 				tcp->tcp_connp->conn_broadcast = onoff;
10388 			}
10389 			break;
10390 		case SO_REUSEADDR:
10391 			if (!checkonly) {
10392 				tcp->tcp_reuseaddr = onoff;
10393 				tcp->tcp_connp->conn_reuseaddr = onoff;
10394 			}
10395 			break;
10396 		case SO_OOBINLINE:
10397 			if (!checkonly)
10398 				tcp->tcp_oobinline = onoff;
10399 			break;
10400 		case SO_DGRAM_ERRIND:
10401 			if (!checkonly)
10402 				tcp->tcp_dgram_errind = onoff;
10403 			break;
10404 		case SO_SNDBUF: {
10405 			if (*i1 > tcps->tcps_max_buf) {
10406 				*outlenp = 0;
10407 				return (ENOBUFS);
10408 			}
10409 			if (checkonly)
10410 				break;
10411 
10412 			tcp->tcp_xmit_hiwater = *i1;
10413 			if (tcps->tcps_snd_lowat_fraction != 0)
10414 				tcp->tcp_xmit_lowater =
10415 				    tcp->tcp_xmit_hiwater /
10416 				    tcps->tcps_snd_lowat_fraction;
10417 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10418 			/*
10419 			 * If we are flow-controlled, recheck the condition.
10420 			 * There are apps that increase SO_SNDBUF size when
10421 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10422 			 * control condition to be lifted right away.
10423 			 */
10424 			mutex_enter(&tcp->tcp_non_sq_lock);
10425 			if (tcp->tcp_flow_stopped &&
10426 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10427 				tcp_clrqfull(tcp);
10428 			}
10429 			mutex_exit(&tcp->tcp_non_sq_lock);
10430 			break;
10431 		}
10432 		case SO_RCVBUF:
10433 			if (*i1 > tcps->tcps_max_buf) {
10434 				*outlenp = 0;
10435 				return (ENOBUFS);
10436 			}
10437 			/* Silently ignore zero */
10438 			if (!checkonly && *i1 != 0) {
10439 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10440 				(void) tcp_rwnd_set(tcp, *i1);
10441 			}
10442 			/*
10443 			 * XXX should we return the rwnd here
10444 			 * and tcp_opt_get ?
10445 			 */
10446 			break;
10447 		case SO_SND_COPYAVOID:
10448 			if (!checkonly) {
10449 				/* we only allow enable at most once for now */
10450 				if (tcp->tcp_loopback ||
10451 				    (!tcp->tcp_snd_zcopy_aware &&
10452 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10453 					*outlenp = 0;
10454 					return (EOPNOTSUPP);
10455 				}
10456 				tcp->tcp_snd_zcopy_aware = 1;
10457 			}
10458 			break;
10459 		case SO_ALLZONES:
10460 			/* Handled at the IP level */
10461 			return (-EINVAL);
10462 		case SO_ANON_MLP:
10463 			if (!checkonly) {
10464 				mutex_enter(&connp->conn_lock);
10465 				connp->conn_anon_mlp = onoff;
10466 				mutex_exit(&connp->conn_lock);
10467 			}
10468 			break;
10469 		case SO_MAC_EXEMPT:
10470 			if (secpolicy_net_mac_aware(cr) != 0 ||
10471 			    IPCL_IS_BOUND(connp))
10472 				return (EACCES);
10473 			if (!checkonly) {
10474 				mutex_enter(&connp->conn_lock);
10475 				connp->conn_mac_exempt = onoff;
10476 				mutex_exit(&connp->conn_lock);
10477 			}
10478 			break;
10479 		case SO_EXCLBIND:
10480 			if (!checkonly)
10481 				tcp->tcp_exclbind = onoff;
10482 			break;
10483 		default:
10484 			*outlenp = 0;
10485 			return (EINVAL);
10486 		}
10487 		break;
10488 	case IPPROTO_TCP:
10489 		switch (name) {
10490 		case TCP_NODELAY:
10491 			if (!checkonly)
10492 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10493 			break;
10494 		case TCP_NOTIFY_THRESHOLD:
10495 			if (!checkonly)
10496 				tcp->tcp_first_timer_threshold = *i1;
10497 			break;
10498 		case TCP_ABORT_THRESHOLD:
10499 			if (!checkonly)
10500 				tcp->tcp_second_timer_threshold = *i1;
10501 			break;
10502 		case TCP_CONN_NOTIFY_THRESHOLD:
10503 			if (!checkonly)
10504 				tcp->tcp_first_ctimer_threshold = *i1;
10505 			break;
10506 		case TCP_CONN_ABORT_THRESHOLD:
10507 			if (!checkonly)
10508 				tcp->tcp_second_ctimer_threshold = *i1;
10509 			break;
10510 		case TCP_RECVDSTADDR:
10511 			if (tcp->tcp_state > TCPS_LISTEN)
10512 				return (EOPNOTSUPP);
10513 			if (!checkonly)
10514 				tcp->tcp_recvdstaddr = onoff;
10515 			break;
10516 		case TCP_ANONPRIVBIND:
10517 			if ((reterr = secpolicy_net_privaddr(cr, 0,
10518 			    IPPROTO_TCP)) != 0) {
10519 				*outlenp = 0;
10520 				return (reterr);
10521 			}
10522 			if (!checkonly) {
10523 				tcp->tcp_anon_priv_bind = onoff;
10524 			}
10525 			break;
10526 		case TCP_EXCLBIND:
10527 			if (!checkonly)
10528 				tcp->tcp_exclbind = onoff;
10529 			break;	/* goto sizeof (int) option return */
10530 		case TCP_INIT_CWND: {
10531 			uint32_t init_cwnd = *((uint32_t *)invalp);
10532 
10533 			if (checkonly)
10534 				break;
10535 
10536 			/*
10537 			 * Only allow socket with network configuration
10538 			 * privilege to set the initial cwnd to be larger
10539 			 * than allowed by RFC 3390.
10540 			 */
10541 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10542 				tcp->tcp_init_cwnd = init_cwnd;
10543 				break;
10544 			}
10545 			if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) {
10546 				*outlenp = 0;
10547 				return (reterr);
10548 			}
10549 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10550 				*outlenp = 0;
10551 				return (EINVAL);
10552 			}
10553 			tcp->tcp_init_cwnd = init_cwnd;
10554 			break;
10555 		}
10556 		case TCP_KEEPALIVE_THRESHOLD:
10557 			if (checkonly)
10558 				break;
10559 
10560 			if (*i1 < tcps->tcps_keepalive_interval_low ||
10561 			    *i1 > tcps->tcps_keepalive_interval_high) {
10562 				*outlenp = 0;
10563 				return (EINVAL);
10564 			}
10565 			if (*i1 != tcp->tcp_ka_interval) {
10566 				tcp->tcp_ka_interval = *i1;
10567 				/*
10568 				 * Check if we need to restart the
10569 				 * keepalive timer.
10570 				 */
10571 				if (tcp->tcp_ka_tid != 0) {
10572 					ASSERT(tcp->tcp_ka_enabled);
10573 					(void) TCP_TIMER_CANCEL(tcp,
10574 					    tcp->tcp_ka_tid);
10575 					tcp->tcp_ka_last_intrvl = 0;
10576 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10577 					    tcp_keepalive_killer,
10578 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10579 				}
10580 			}
10581 			break;
10582 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10583 			if (!checkonly) {
10584 				if (*i1 <
10585 				    tcps->tcps_keepalive_abort_interval_low ||
10586 				    *i1 >
10587 				    tcps->tcps_keepalive_abort_interval_high) {
10588 					*outlenp = 0;
10589 					return (EINVAL);
10590 				}
10591 				tcp->tcp_ka_abort_thres = *i1;
10592 			}
10593 			break;
10594 		case TCP_CORK:
10595 			if (!checkonly) {
10596 				/*
10597 				 * if tcp->tcp_cork was set and is now
10598 				 * being unset, we have to make sure that
10599 				 * the remaining data gets sent out. Also
10600 				 * unset tcp->tcp_cork so that tcp_wput_data()
10601 				 * can send data even if it is less than mss
10602 				 */
10603 				if (tcp->tcp_cork && onoff == 0 &&
10604 				    tcp->tcp_unsent > 0) {
10605 					tcp->tcp_cork = B_FALSE;
10606 					tcp_wput_data(tcp, NULL, B_FALSE);
10607 				}
10608 				tcp->tcp_cork = onoff;
10609 			}
10610 			break;
10611 		default:
10612 			*outlenp = 0;
10613 			return (EINVAL);
10614 		}
10615 		break;
10616 	case IPPROTO_IP:
10617 		if (tcp->tcp_family != AF_INET) {
10618 			*outlenp = 0;
10619 			return (ENOPROTOOPT);
10620 		}
10621 		switch (name) {
10622 		case IP_OPTIONS:
10623 		case T_IP_OPTIONS:
10624 			reterr = tcp_opt_set_header(tcp, checkonly,
10625 			    invalp, inlen);
10626 			if (reterr) {
10627 				*outlenp = 0;
10628 				return (reterr);
10629 			}
10630 			/* OK return - copy input buffer into output buffer */
10631 			if (invalp != outvalp) {
10632 				/* don't trust bcopy for identical src/dst */
10633 				bcopy(invalp, outvalp, inlen);
10634 			}
10635 			*outlenp = inlen;
10636 			return (0);
10637 		case IP_TOS:
10638 		case T_IP_TOS:
10639 			if (!checkonly) {
10640 				tcp->tcp_ipha->ipha_type_of_service =
10641 				    (uchar_t)*i1;
10642 				tcp->tcp_tos = (uchar_t)*i1;
10643 			}
10644 			break;
10645 		case IP_TTL:
10646 			if (!checkonly) {
10647 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10648 				tcp->tcp_ttl = (uchar_t)*i1;
10649 			}
10650 			break;
10651 		case IP_BOUND_IF:
10652 		case IP_NEXTHOP:
10653 			/* Handled at the IP level */
10654 			return (-EINVAL);
10655 		case IP_SEC_OPT:
10656 			/*
10657 			 * We should not allow policy setting after
10658 			 * we start listening for connections.
10659 			 */
10660 			if (tcp->tcp_state == TCPS_LISTEN) {
10661 				return (EINVAL);
10662 			} else {
10663 				/* Handled at the IP level */
10664 				return (-EINVAL);
10665 			}
10666 		default:
10667 			*outlenp = 0;
10668 			return (EINVAL);
10669 		}
10670 		break;
10671 	case IPPROTO_IPV6: {
10672 		ip6_pkt_t		*ipp;
10673 
10674 		/*
10675 		 * IPPROTO_IPV6 options are only supported for sockets
10676 		 * that are using IPv6 on the wire.
10677 		 */
10678 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10679 			*outlenp = 0;
10680 			return (ENOPROTOOPT);
10681 		}
10682 		/*
10683 		 * Only sticky options; no ancillary data
10684 		 */
10685 		ASSERT(thisdg_attrs == NULL);
10686 		ipp = &tcp->tcp_sticky_ipp;
10687 
10688 		switch (name) {
10689 		case IPV6_UNICAST_HOPS:
10690 			/* -1 means use default */
10691 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10692 				*outlenp = 0;
10693 				return (EINVAL);
10694 			}
10695 			if (!checkonly) {
10696 				if (*i1 == -1) {
10697 					tcp->tcp_ip6h->ip6_hops =
10698 					    ipp->ipp_unicast_hops =
10699 					    (uint8_t)tcps->tcps_ipv6_hoplimit;
10700 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10701 					/* Pass modified value to IP. */
10702 					*i1 = tcp->tcp_ip6h->ip6_hops;
10703 				} else {
10704 					tcp->tcp_ip6h->ip6_hops =
10705 					    ipp->ipp_unicast_hops =
10706 					    (uint8_t)*i1;
10707 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10708 				}
10709 				reterr = tcp_build_hdrs(q, tcp);
10710 				if (reterr != 0)
10711 					return (reterr);
10712 			}
10713 			break;
10714 		case IPV6_BOUND_IF:
10715 			if (!checkonly) {
10716 				int error = 0;
10717 
10718 				tcp->tcp_bound_if = *i1;
10719 				error = ip_opt_set_ill(tcp->tcp_connp, *i1,
10720 				    B_TRUE, checkonly, level, name, mblk);
10721 				if (error != 0) {
10722 					*outlenp = 0;
10723 					return (error);
10724 				}
10725 			}
10726 			break;
10727 		/*
10728 		 * Set boolean switches for ancillary data delivery
10729 		 */
10730 		case IPV6_RECVPKTINFO:
10731 			if (!checkonly) {
10732 				if (onoff)
10733 					tcp->tcp_ipv6_recvancillary |=
10734 					    TCP_IPV6_RECVPKTINFO;
10735 				else
10736 					tcp->tcp_ipv6_recvancillary &=
10737 					    ~TCP_IPV6_RECVPKTINFO;
10738 				/* Force it to be sent up with the next msg */
10739 				tcp->tcp_recvifindex = 0;
10740 			}
10741 			break;
10742 		case IPV6_RECVTCLASS:
10743 			if (!checkonly) {
10744 				if (onoff)
10745 					tcp->tcp_ipv6_recvancillary |=
10746 					    TCP_IPV6_RECVTCLASS;
10747 				else
10748 					tcp->tcp_ipv6_recvancillary &=
10749 					    ~TCP_IPV6_RECVTCLASS;
10750 			}
10751 			break;
10752 		case IPV6_RECVHOPLIMIT:
10753 			if (!checkonly) {
10754 				if (onoff)
10755 					tcp->tcp_ipv6_recvancillary |=
10756 					    TCP_IPV6_RECVHOPLIMIT;
10757 				else
10758 					tcp->tcp_ipv6_recvancillary &=
10759 					    ~TCP_IPV6_RECVHOPLIMIT;
10760 				/* Force it to be sent up with the next msg */
10761 				tcp->tcp_recvhops = 0xffffffffU;
10762 			}
10763 			break;
10764 		case IPV6_RECVHOPOPTS:
10765 			if (!checkonly) {
10766 				if (onoff)
10767 					tcp->tcp_ipv6_recvancillary |=
10768 					    TCP_IPV6_RECVHOPOPTS;
10769 				else
10770 					tcp->tcp_ipv6_recvancillary &=
10771 					    ~TCP_IPV6_RECVHOPOPTS;
10772 			}
10773 			break;
10774 		case IPV6_RECVDSTOPTS:
10775 			if (!checkonly) {
10776 				if (onoff)
10777 					tcp->tcp_ipv6_recvancillary |=
10778 					    TCP_IPV6_RECVDSTOPTS;
10779 				else
10780 					tcp->tcp_ipv6_recvancillary &=
10781 					    ~TCP_IPV6_RECVDSTOPTS;
10782 			}
10783 			break;
10784 		case _OLD_IPV6_RECVDSTOPTS:
10785 			if (!checkonly) {
10786 				if (onoff)
10787 					tcp->tcp_ipv6_recvancillary |=
10788 					    TCP_OLD_IPV6_RECVDSTOPTS;
10789 				else
10790 					tcp->tcp_ipv6_recvancillary &=
10791 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10792 			}
10793 			break;
10794 		case IPV6_RECVRTHDR:
10795 			if (!checkonly) {
10796 				if (onoff)
10797 					tcp->tcp_ipv6_recvancillary |=
10798 					    TCP_IPV6_RECVRTHDR;
10799 				else
10800 					tcp->tcp_ipv6_recvancillary &=
10801 					    ~TCP_IPV6_RECVRTHDR;
10802 			}
10803 			break;
10804 		case IPV6_RECVRTHDRDSTOPTS:
10805 			if (!checkonly) {
10806 				if (onoff)
10807 					tcp->tcp_ipv6_recvancillary |=
10808 					    TCP_IPV6_RECVRTDSTOPTS;
10809 				else
10810 					tcp->tcp_ipv6_recvancillary &=
10811 					    ~TCP_IPV6_RECVRTDSTOPTS;
10812 			}
10813 			break;
10814 		case IPV6_PKTINFO:
10815 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10816 				return (EINVAL);
10817 			if (checkonly)
10818 				break;
10819 
10820 			if (inlen == 0) {
10821 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10822 			} else {
10823 				struct in6_pktinfo *pkti;
10824 
10825 				pkti = (struct in6_pktinfo *)invalp;
10826 				/*
10827 				 * RFC 3542 states that ipi6_addr must be
10828 				 * the unspecified address when setting the
10829 				 * IPV6_PKTINFO sticky socket option on a
10830 				 * TCP socket.
10831 				 */
10832 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10833 					return (EINVAL);
10834 				/*
10835 				 * ip6_set_pktinfo() validates the source
10836 				 * address and interface index.
10837 				 */
10838 				reterr = ip6_set_pktinfo(cr, tcp->tcp_connp,
10839 				    pkti, mblk);
10840 				if (reterr != 0)
10841 					return (reterr);
10842 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10843 				ipp->ipp_addr = pkti->ipi6_addr;
10844 				if (ipp->ipp_ifindex != 0)
10845 					ipp->ipp_fields |= IPPF_IFINDEX;
10846 				else
10847 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10848 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10849 					ipp->ipp_fields |= IPPF_ADDR;
10850 				else
10851 					ipp->ipp_fields &= ~IPPF_ADDR;
10852 			}
10853 			reterr = tcp_build_hdrs(q, tcp);
10854 			if (reterr != 0)
10855 				return (reterr);
10856 			break;
10857 		case IPV6_TCLASS:
10858 			if (inlen != 0 && inlen != sizeof (int))
10859 				return (EINVAL);
10860 			if (checkonly)
10861 				break;
10862 
10863 			if (inlen == 0) {
10864 				ipp->ipp_fields &= ~IPPF_TCLASS;
10865 			} else {
10866 				if (*i1 > 255 || *i1 < -1)
10867 					return (EINVAL);
10868 				if (*i1 == -1) {
10869 					ipp->ipp_tclass = 0;
10870 					*i1 = 0;
10871 				} else {
10872 					ipp->ipp_tclass = *i1;
10873 				}
10874 				ipp->ipp_fields |= IPPF_TCLASS;
10875 			}
10876 			reterr = tcp_build_hdrs(q, tcp);
10877 			if (reterr != 0)
10878 				return (reterr);
10879 			break;
10880 		case IPV6_NEXTHOP:
10881 			/*
10882 			 * IP will verify that the nexthop is reachable
10883 			 * and fail for sticky options.
10884 			 */
10885 			if (inlen != 0 && inlen != sizeof (sin6_t))
10886 				return (EINVAL);
10887 			if (checkonly)
10888 				break;
10889 
10890 			if (inlen == 0) {
10891 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10892 			} else {
10893 				sin6_t *sin6 = (sin6_t *)invalp;
10894 
10895 				if (sin6->sin6_family != AF_INET6)
10896 					return (EAFNOSUPPORT);
10897 				if (IN6_IS_ADDR_V4MAPPED(
10898 				    &sin6->sin6_addr))
10899 					return (EADDRNOTAVAIL);
10900 				ipp->ipp_nexthop = sin6->sin6_addr;
10901 				if (!IN6_IS_ADDR_UNSPECIFIED(
10902 				    &ipp->ipp_nexthop))
10903 					ipp->ipp_fields |= IPPF_NEXTHOP;
10904 				else
10905 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10906 			}
10907 			reterr = tcp_build_hdrs(q, tcp);
10908 			if (reterr != 0)
10909 				return (reterr);
10910 			break;
10911 		case IPV6_HOPOPTS: {
10912 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10913 
10914 			/*
10915 			 * Sanity checks - minimum size, size a multiple of
10916 			 * eight bytes, and matching size passed in.
10917 			 */
10918 			if (inlen != 0 &&
10919 			    inlen != (8 * (hopts->ip6h_len + 1)))
10920 				return (EINVAL);
10921 
10922 			if (checkonly)
10923 				break;
10924 
10925 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10926 			    (uchar_t **)&ipp->ipp_hopopts,
10927 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10928 			if (reterr != 0)
10929 				return (reterr);
10930 			if (ipp->ipp_hopoptslen == 0)
10931 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10932 			else
10933 				ipp->ipp_fields |= IPPF_HOPOPTS;
10934 			reterr = tcp_build_hdrs(q, tcp);
10935 			if (reterr != 0)
10936 				return (reterr);
10937 			break;
10938 		}
10939 		case IPV6_RTHDRDSTOPTS: {
10940 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10941 
10942 			/*
10943 			 * Sanity checks - minimum size, size a multiple of
10944 			 * eight bytes, and matching size passed in.
10945 			 */
10946 			if (inlen != 0 &&
10947 			    inlen != (8 * (dopts->ip6d_len + 1)))
10948 				return (EINVAL);
10949 
10950 			if (checkonly)
10951 				break;
10952 
10953 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10954 			    (uchar_t **)&ipp->ipp_rtdstopts,
10955 			    &ipp->ipp_rtdstoptslen, 0);
10956 			if (reterr != 0)
10957 				return (reterr);
10958 			if (ipp->ipp_rtdstoptslen == 0)
10959 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10960 			else
10961 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10962 			reterr = tcp_build_hdrs(q, tcp);
10963 			if (reterr != 0)
10964 				return (reterr);
10965 			break;
10966 		}
10967 		case IPV6_DSTOPTS: {
10968 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10969 
10970 			/*
10971 			 * Sanity checks - minimum size, size a multiple of
10972 			 * eight bytes, and matching size passed in.
10973 			 */
10974 			if (inlen != 0 &&
10975 			    inlen != (8 * (dopts->ip6d_len + 1)))
10976 				return (EINVAL);
10977 
10978 			if (checkonly)
10979 				break;
10980 
10981 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10982 			    (uchar_t **)&ipp->ipp_dstopts,
10983 			    &ipp->ipp_dstoptslen, 0);
10984 			if (reterr != 0)
10985 				return (reterr);
10986 			if (ipp->ipp_dstoptslen == 0)
10987 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10988 			else
10989 				ipp->ipp_fields |= IPPF_DSTOPTS;
10990 			reterr = tcp_build_hdrs(q, tcp);
10991 			if (reterr != 0)
10992 				return (reterr);
10993 			break;
10994 		}
10995 		case IPV6_RTHDR: {
10996 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
10997 
10998 			/*
10999 			 * Sanity checks - minimum size, size a multiple of
11000 			 * eight bytes, and matching size passed in.
11001 			 */
11002 			if (inlen != 0 &&
11003 			    inlen != (8 * (rt->ip6r_len + 1)))
11004 				return (EINVAL);
11005 
11006 			if (checkonly)
11007 				break;
11008 
11009 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
11010 			    (uchar_t **)&ipp->ipp_rthdr,
11011 			    &ipp->ipp_rthdrlen, 0);
11012 			if (reterr != 0)
11013 				return (reterr);
11014 			if (ipp->ipp_rthdrlen == 0)
11015 				ipp->ipp_fields &= ~IPPF_RTHDR;
11016 			else
11017 				ipp->ipp_fields |= IPPF_RTHDR;
11018 			reterr = tcp_build_hdrs(q, tcp);
11019 			if (reterr != 0)
11020 				return (reterr);
11021 			break;
11022 		}
11023 		case IPV6_V6ONLY:
11024 			if (!checkonly)
11025 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
11026 			break;
11027 		case IPV6_USE_MIN_MTU:
11028 			if (inlen != sizeof (int))
11029 				return (EINVAL);
11030 
11031 			if (*i1 < -1 || *i1 > 1)
11032 				return (EINVAL);
11033 
11034 			if (checkonly)
11035 				break;
11036 
11037 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
11038 			ipp->ipp_use_min_mtu = *i1;
11039 			break;
11040 		case IPV6_BOUND_PIF:
11041 			/* Handled at the IP level */
11042 			return (-EINVAL);
11043 		case IPV6_SEC_OPT:
11044 			/*
11045 			 * We should not allow policy setting after
11046 			 * we start listening for connections.
11047 			 */
11048 			if (tcp->tcp_state == TCPS_LISTEN) {
11049 				return (EINVAL);
11050 			} else {
11051 				/* Handled at the IP level */
11052 				return (-EINVAL);
11053 			}
11054 		case IPV6_SRC_PREFERENCES:
11055 			if (inlen != sizeof (uint32_t))
11056 				return (EINVAL);
11057 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
11058 			    *(uint32_t *)invalp);
11059 			if (reterr != 0) {
11060 				*outlenp = 0;
11061 				return (reterr);
11062 			}
11063 			break;
11064 		default:
11065 			*outlenp = 0;
11066 			return (EINVAL);
11067 		}
11068 		break;
11069 	}		/* end IPPROTO_IPV6 */
11070 	default:
11071 		*outlenp = 0;
11072 		return (EINVAL);
11073 	}
11074 	/*
11075 	 * Common case of OK return with outval same as inval
11076 	 */
11077 	if (invalp != outvalp) {
11078 		/* don't trust bcopy for identical src/dst */
11079 		(void) bcopy(invalp, outvalp, inlen);
11080 	}
11081 	*outlenp = inlen;
11082 	return (0);
11083 }
11084 
11085 /*
11086  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
11087  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
11088  * headers, and the maximum size tcp header (to avoid reallocation
11089  * on the fly for additional tcp options).
11090  * Returns failure if can't allocate memory.
11091  */
11092 static int
11093 tcp_build_hdrs(queue_t *q, tcp_t *tcp)
11094 {
11095 	char	*hdrs;
11096 	uint_t	hdrs_len;
11097 	ip6i_t	*ip6i;
11098 	char	buf[TCP_MAX_HDR_LENGTH];
11099 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
11100 	in6_addr_t src, dst;
11101 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11102 
11103 	/*
11104 	 * save the existing tcp header and source/dest IP addresses
11105 	 */
11106 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
11107 	src = tcp->tcp_ip6h->ip6_src;
11108 	dst = tcp->tcp_ip6h->ip6_dst;
11109 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
11110 	ASSERT(hdrs_len != 0);
11111 	if (hdrs_len > tcp->tcp_iphc_len) {
11112 		/* Need to reallocate */
11113 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
11114 		if (hdrs == NULL)
11115 			return (ENOMEM);
11116 		if (tcp->tcp_iphc != NULL) {
11117 			if (tcp->tcp_hdr_grown) {
11118 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
11119 			} else {
11120 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
11121 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
11122 			}
11123 			tcp->tcp_iphc_len = 0;
11124 		}
11125 		ASSERT(tcp->tcp_iphc_len == 0);
11126 		tcp->tcp_iphc = hdrs;
11127 		tcp->tcp_iphc_len = hdrs_len;
11128 		tcp->tcp_hdr_grown = B_TRUE;
11129 	}
11130 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
11131 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
11132 
11133 	/* Set header fields not in ipp */
11134 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
11135 		ip6i = (ip6i_t *)tcp->tcp_iphc;
11136 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
11137 	} else {
11138 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
11139 	}
11140 	/*
11141 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
11142 	 *
11143 	 * tcp->tcp_tcp_hdr_len doesn't change here.
11144 	 */
11145 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
11146 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
11147 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
11148 
11149 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
11150 
11151 	tcp->tcp_ip6h->ip6_src = src;
11152 	tcp->tcp_ip6h->ip6_dst = dst;
11153 
11154 	/*
11155 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
11156 	 * the default value for TCP.
11157 	 */
11158 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
11159 		tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit;
11160 
11161 	/*
11162 	 * If we're setting extension headers after a connection
11163 	 * has been established, and if we have a routing header
11164 	 * among the extension headers, call ip_massage_options_v6 to
11165 	 * manipulate the routing header/ip6_dst set the checksum
11166 	 * difference in the tcp header template.
11167 	 * (This happens in tcp_connect_ipv6 if the routing header
11168 	 * is set prior to the connect.)
11169 	 * Set the tcp_sum to zero first in case we've cleared a
11170 	 * routing header or don't have one at all.
11171 	 */
11172 	tcp->tcp_sum = 0;
11173 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
11174 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
11175 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
11176 		    (uint8_t *)tcp->tcp_tcph);
11177 		if (rth != NULL) {
11178 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
11179 			    rth, tcps->tcps_netstack);
11180 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
11181 			    (tcp->tcp_sum >> 16));
11182 		}
11183 	}
11184 
11185 	/* Try to get everything in a single mblk */
11186 	(void) mi_set_sth_wroff(RD(q), hdrs_len + tcps->tcps_wroff_xtra);
11187 	return (0);
11188 }
11189 
11190 /*
11191  * Transfer any source route option from ipha to buf/dst in reversed form.
11192  */
11193 static int
11194 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
11195 {
11196 	ipoptp_t	opts;
11197 	uchar_t		*opt;
11198 	uint8_t		optval;
11199 	uint8_t		optlen;
11200 	uint32_t	len = 0;
11201 
11202 	for (optval = ipoptp_first(&opts, ipha);
11203 	    optval != IPOPT_EOL;
11204 	    optval = ipoptp_next(&opts)) {
11205 		opt = opts.ipoptp_cur;
11206 		optlen = opts.ipoptp_len;
11207 		switch (optval) {
11208 			int	off1, off2;
11209 		case IPOPT_SSRR:
11210 		case IPOPT_LSRR:
11211 
11212 			/* Reverse source route */
11213 			/*
11214 			 * First entry should be the next to last one in the
11215 			 * current source route (the last entry is our
11216 			 * address.)
11217 			 * The last entry should be the final destination.
11218 			 */
11219 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
11220 			buf[IPOPT_OLEN] = (uint8_t)optlen;
11221 			off1 = IPOPT_MINOFF_SR - 1;
11222 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
11223 			if (off2 < 0) {
11224 				/* No entries in source route */
11225 				break;
11226 			}
11227 			bcopy(opt + off2, dst, IP_ADDR_LEN);
11228 			/*
11229 			 * Note: use src since ipha has not had its src
11230 			 * and dst reversed (it is in the state it was
11231 			 * received.
11232 			 */
11233 			bcopy(&ipha->ipha_src, buf + off2,
11234 			    IP_ADDR_LEN);
11235 			off2 -= IP_ADDR_LEN;
11236 
11237 			while (off2 > 0) {
11238 				bcopy(opt + off2, buf + off1,
11239 				    IP_ADDR_LEN);
11240 				off1 += IP_ADDR_LEN;
11241 				off2 -= IP_ADDR_LEN;
11242 			}
11243 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
11244 			buf += optlen;
11245 			len += optlen;
11246 			break;
11247 		}
11248 	}
11249 done:
11250 	/* Pad the resulting options */
11251 	while (len & 0x3) {
11252 		*buf++ = IPOPT_EOL;
11253 		len++;
11254 	}
11255 	return (len);
11256 }
11257 
11258 
11259 /*
11260  * Extract and revert a source route from ipha (if any)
11261  * and then update the relevant fields in both tcp_t and the standard header.
11262  */
11263 static void
11264 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
11265 {
11266 	char	buf[TCP_MAX_HDR_LENGTH];
11267 	uint_t	tcph_len;
11268 	int	len;
11269 
11270 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
11271 	len = IPH_HDR_LENGTH(ipha);
11272 	if (len == IP_SIMPLE_HDR_LENGTH)
11273 		/* Nothing to do */
11274 		return;
11275 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
11276 	    (len & 0x3))
11277 		return;
11278 
11279 	tcph_len = tcp->tcp_tcp_hdr_len;
11280 	bcopy(tcp->tcp_tcph, buf, tcph_len);
11281 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
11282 	    (tcp->tcp_ipha->ipha_dst & 0xffff);
11283 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
11284 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
11285 	len += IP_SIMPLE_HDR_LENGTH;
11286 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
11287 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
11288 	if ((int)tcp->tcp_sum < 0)
11289 		tcp->tcp_sum--;
11290 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
11291 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
11292 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
11293 	bcopy(buf, tcp->tcp_tcph, tcph_len);
11294 	tcp->tcp_ip_hdr_len = len;
11295 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11296 	    (IP_VERSION << 4) | (len >> 2);
11297 	len += tcph_len;
11298 	tcp->tcp_hdr_len = len;
11299 }
11300 
11301 /*
11302  * Copy the standard header into its new location,
11303  * lay in the new options and then update the relevant
11304  * fields in both tcp_t and the standard header.
11305  */
11306 static int
11307 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
11308 {
11309 	uint_t	tcph_len;
11310 	uint8_t	*ip_optp;
11311 	tcph_t	*new_tcph;
11312 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11313 
11314 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
11315 		return (EINVAL);
11316 
11317 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
11318 		return (EINVAL);
11319 
11320 	if (checkonly) {
11321 		/*
11322 		 * do not really set, just pretend to - T_CHECK
11323 		 */
11324 		return (0);
11325 	}
11326 
11327 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
11328 	if (tcp->tcp_label_len > 0) {
11329 		int padlen;
11330 		uint8_t opt;
11331 
11332 		/* convert list termination to no-ops */
11333 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
11334 		ip_optp += ip_optp[IPOPT_OLEN];
11335 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
11336 		while (--padlen >= 0)
11337 			*ip_optp++ = opt;
11338 	}
11339 	tcph_len = tcp->tcp_tcp_hdr_len;
11340 	new_tcph = (tcph_t *)(ip_optp + len);
11341 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
11342 	tcp->tcp_tcph = new_tcph;
11343 	bcopy(ptr, ip_optp, len);
11344 
11345 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
11346 
11347 	tcp->tcp_ip_hdr_len = len;
11348 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11349 	    (IP_VERSION << 4) | (len >> 2);
11350 	tcp->tcp_hdr_len = len + tcph_len;
11351 	if (!TCP_IS_DETACHED(tcp)) {
11352 		/* Always allocate room for all options. */
11353 		(void) mi_set_sth_wroff(tcp->tcp_rq,
11354 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra);
11355 	}
11356 	return (0);
11357 }
11358 
11359 /* Get callback routine passed to nd_load by tcp_param_register */
11360 /* ARGSUSED */
11361 static int
11362 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11363 {
11364 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11365 
11366 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11367 	return (0);
11368 }
11369 
11370 /*
11371  * Walk through the param array specified registering each element with the
11372  * named dispatch handler.
11373  */
11374 static boolean_t
11375 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps)
11376 {
11377 	for (; cnt-- > 0; tcppa++) {
11378 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11379 			if (!nd_load(ndp, tcppa->tcp_param_name,
11380 			    tcp_param_get, tcp_param_set,
11381 			    (caddr_t)tcppa)) {
11382 				nd_free(ndp);
11383 				return (B_FALSE);
11384 			}
11385 		}
11386 	}
11387 	tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t),
11388 	    KM_SLEEP);
11389 	bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param,
11390 	    sizeof (tcpparam_t));
11391 	if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name,
11392 	    tcp_param_get, tcp_param_set_aligned,
11393 	    (caddr_t)tcps->tcps_wroff_xtra_param)) {
11394 		nd_free(ndp);
11395 		return (B_FALSE);
11396 	}
11397 	tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t),
11398 	    KM_SLEEP);
11399 	bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param,
11400 	    sizeof (tcpparam_t));
11401 	if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name,
11402 	    tcp_param_get, tcp_param_set_aligned,
11403 	    (caddr_t)tcps->tcps_mdt_head_param)) {
11404 		nd_free(ndp);
11405 		return (B_FALSE);
11406 	}
11407 	tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t),
11408 	    KM_SLEEP);
11409 	bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param,
11410 	    sizeof (tcpparam_t));
11411 	if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name,
11412 	    tcp_param_get, tcp_param_set_aligned,
11413 	    (caddr_t)tcps->tcps_mdt_tail_param)) {
11414 		nd_free(ndp);
11415 		return (B_FALSE);
11416 	}
11417 	tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t),
11418 	    KM_SLEEP);
11419 	bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param,
11420 	    sizeof (tcpparam_t));
11421 	if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name,
11422 	    tcp_param_get, tcp_param_set_aligned,
11423 	    (caddr_t)tcps->tcps_mdt_max_pbufs_param)) {
11424 		nd_free(ndp);
11425 		return (B_FALSE);
11426 	}
11427 	if (!nd_load(ndp, "tcp_extra_priv_ports",
11428 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11429 		nd_free(ndp);
11430 		return (B_FALSE);
11431 	}
11432 	if (!nd_load(ndp, "tcp_extra_priv_ports_add",
11433 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11434 		nd_free(ndp);
11435 		return (B_FALSE);
11436 	}
11437 	if (!nd_load(ndp, "tcp_extra_priv_ports_del",
11438 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11439 		nd_free(ndp);
11440 		return (B_FALSE);
11441 	}
11442 	if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL,
11443 	    NULL)) {
11444 		nd_free(ndp);
11445 		return (B_FALSE);
11446 	}
11447 	if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report,
11448 	    NULL, NULL)) {
11449 		nd_free(ndp);
11450 		return (B_FALSE);
11451 	}
11452 	if (!nd_load(ndp, "tcp_listen_hash",
11453 	    tcp_listen_hash_report, NULL, NULL)) {
11454 		nd_free(ndp);
11455 		return (B_FALSE);
11456 	}
11457 	if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report,
11458 	    NULL, NULL)) {
11459 		nd_free(ndp);
11460 		return (B_FALSE);
11461 	}
11462 	if (!nd_load(ndp, "tcp_acceptor_hash",
11463 	    tcp_acceptor_hash_report, NULL, NULL)) {
11464 		nd_free(ndp);
11465 		return (B_FALSE);
11466 	}
11467 	if (!nd_load(ndp, "tcp_host_param", tcp_host_param_report,
11468 	    tcp_host_param_set, NULL)) {
11469 		nd_free(ndp);
11470 		return (B_FALSE);
11471 	}
11472 	if (!nd_load(ndp, "tcp_host_param_ipv6",
11473 	    tcp_host_param_report, tcp_host_param_set_ipv6, NULL)) {
11474 		nd_free(ndp);
11475 		return (B_FALSE);
11476 	}
11477 	if (!nd_load(ndp, "tcp_1948_phrase", NULL,
11478 	    tcp_1948_phrase_set, NULL)) {
11479 		nd_free(ndp);
11480 		return (B_FALSE);
11481 	}
11482 	if (!nd_load(ndp, "tcp_reserved_port_list",
11483 	    tcp_reserved_port_list, NULL, NULL)) {
11484 		nd_free(ndp);
11485 		return (B_FALSE);
11486 	}
11487 	/*
11488 	 * Dummy ndd variables - only to convey obsolescence information
11489 	 * through printing of their name (no get or set routines)
11490 	 * XXX Remove in future releases ?
11491 	 */
11492 	if (!nd_load(ndp,
11493 	    "tcp_close_wait_interval(obsoleted - "
11494 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11495 		nd_free(ndp);
11496 		return (B_FALSE);
11497 	}
11498 	return (B_TRUE);
11499 }
11500 
11501 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11502 /* ARGSUSED */
11503 static int
11504 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11505     cred_t *cr)
11506 {
11507 	long new_value;
11508 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11509 
11510 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11511 	    new_value < tcppa->tcp_param_min ||
11512 	    new_value > tcppa->tcp_param_max) {
11513 		return (EINVAL);
11514 	}
11515 	/*
11516 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11517 	 * round it up.  For future 64 bit requirement, we actually make it
11518 	 * a multiple of 8.
11519 	 */
11520 	if (new_value & 0x7) {
11521 		new_value = (new_value & ~0x7) + 0x8;
11522 	}
11523 	tcppa->tcp_param_val = new_value;
11524 	return (0);
11525 }
11526 
11527 /* Set callback routine passed to nd_load by tcp_param_register */
11528 /* ARGSUSED */
11529 static int
11530 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11531 {
11532 	long	new_value;
11533 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11534 
11535 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11536 	    new_value < tcppa->tcp_param_min ||
11537 	    new_value > tcppa->tcp_param_max) {
11538 		return (EINVAL);
11539 	}
11540 	tcppa->tcp_param_val = new_value;
11541 	return (0);
11542 }
11543 
11544 /*
11545  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11546  * is filled, return as much as we can.  The message passed in may be
11547  * multi-part, chained using b_cont.  "start" is the starting sequence
11548  * number for this piece.
11549  */
11550 static mblk_t *
11551 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11552 {
11553 	uint32_t	end;
11554 	mblk_t		*mp1;
11555 	mblk_t		*mp2;
11556 	mblk_t		*next_mp;
11557 	uint32_t	u1;
11558 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11559 
11560 	/* Walk through all the new pieces. */
11561 	do {
11562 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11563 		    (uintptr_t)INT_MAX);
11564 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11565 		next_mp = mp->b_cont;
11566 		if (start == end) {
11567 			/* Empty.  Blast it. */
11568 			freeb(mp);
11569 			continue;
11570 		}
11571 		mp->b_cont = NULL;
11572 		TCP_REASS_SET_SEQ(mp, start);
11573 		TCP_REASS_SET_END(mp, end);
11574 		mp1 = tcp->tcp_reass_tail;
11575 		if (!mp1) {
11576 			tcp->tcp_reass_tail = mp;
11577 			tcp->tcp_reass_head = mp;
11578 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11579 			UPDATE_MIB(&tcps->tcps_mib,
11580 			    tcpInDataUnorderBytes, end - start);
11581 			continue;
11582 		}
11583 		/* New stuff completely beyond tail? */
11584 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11585 			/* Link it on end. */
11586 			mp1->b_cont = mp;
11587 			tcp->tcp_reass_tail = mp;
11588 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11589 			UPDATE_MIB(&tcps->tcps_mib,
11590 			    tcpInDataUnorderBytes, end - start);
11591 			continue;
11592 		}
11593 		mp1 = tcp->tcp_reass_head;
11594 		u1 = TCP_REASS_SEQ(mp1);
11595 		/* New stuff at the front? */
11596 		if (SEQ_LT(start, u1)) {
11597 			/* Yes... Check for overlap. */
11598 			mp->b_cont = mp1;
11599 			tcp->tcp_reass_head = mp;
11600 			tcp_reass_elim_overlap(tcp, mp);
11601 			continue;
11602 		}
11603 		/*
11604 		 * The new piece fits somewhere between the head and tail.
11605 		 * We find our slot, where mp1 precedes us and mp2 trails.
11606 		 */
11607 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11608 			u1 = TCP_REASS_SEQ(mp2);
11609 			if (SEQ_LEQ(start, u1))
11610 				break;
11611 		}
11612 		/* Link ourselves in */
11613 		mp->b_cont = mp2;
11614 		mp1->b_cont = mp;
11615 
11616 		/* Trim overlap with following mblk(s) first */
11617 		tcp_reass_elim_overlap(tcp, mp);
11618 
11619 		/* Trim overlap with preceding mblk */
11620 		tcp_reass_elim_overlap(tcp, mp1);
11621 
11622 	} while (start = end, mp = next_mp);
11623 	mp1 = tcp->tcp_reass_head;
11624 	/* Anything ready to go? */
11625 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11626 		return (NULL);
11627 	/* Eat what we can off the queue */
11628 	for (;;) {
11629 		mp = mp1->b_cont;
11630 		end = TCP_REASS_END(mp1);
11631 		TCP_REASS_SET_SEQ(mp1, 0);
11632 		TCP_REASS_SET_END(mp1, 0);
11633 		if (!mp) {
11634 			tcp->tcp_reass_tail = NULL;
11635 			break;
11636 		}
11637 		if (end != TCP_REASS_SEQ(mp)) {
11638 			mp1->b_cont = NULL;
11639 			break;
11640 		}
11641 		mp1 = mp;
11642 	}
11643 	mp1 = tcp->tcp_reass_head;
11644 	tcp->tcp_reass_head = mp;
11645 	return (mp1);
11646 }
11647 
11648 /* Eliminate any overlap that mp may have over later mblks */
11649 static void
11650 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11651 {
11652 	uint32_t	end;
11653 	mblk_t		*mp1;
11654 	uint32_t	u1;
11655 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11656 
11657 	end = TCP_REASS_END(mp);
11658 	while ((mp1 = mp->b_cont) != NULL) {
11659 		u1 = TCP_REASS_SEQ(mp1);
11660 		if (!SEQ_GT(end, u1))
11661 			break;
11662 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11663 			mp->b_wptr -= end - u1;
11664 			TCP_REASS_SET_END(mp, u1);
11665 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs);
11666 			UPDATE_MIB(&tcps->tcps_mib,
11667 			    tcpInDataPartDupBytes, end - u1);
11668 			break;
11669 		}
11670 		mp->b_cont = mp1->b_cont;
11671 		TCP_REASS_SET_SEQ(mp1, 0);
11672 		TCP_REASS_SET_END(mp1, 0);
11673 		freeb(mp1);
11674 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
11675 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1);
11676 	}
11677 	if (!mp1)
11678 		tcp->tcp_reass_tail = mp;
11679 }
11680 
11681 /*
11682  * Send up all messages queued on tcp_rcv_list.
11683  */
11684 static uint_t
11685 tcp_rcv_drain(queue_t *q, tcp_t *tcp)
11686 {
11687 	mblk_t *mp;
11688 	uint_t ret = 0;
11689 	uint_t thwin;
11690 #ifdef DEBUG
11691 	uint_t cnt = 0;
11692 #endif
11693 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11694 
11695 	/* Can't drain on an eager connection */
11696 	if (tcp->tcp_listener != NULL)
11697 		return (ret);
11698 
11699 	/*
11700 	 * Handle two cases here: we are currently fused or we were
11701 	 * previously fused and have some urgent data to be delivered
11702 	 * upstream.  The latter happens because we either ran out of
11703 	 * memory or were detached and therefore sending the SIGURG was
11704 	 * deferred until this point.  In either case we pass control
11705 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11706 	 * some work.
11707 	 */
11708 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11709 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
11710 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11711 		    &tcp->tcp_fused_sigurg_mp))
11712 			return (ret);
11713 	}
11714 
11715 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11716 		tcp->tcp_rcv_list = mp->b_next;
11717 		mp->b_next = NULL;
11718 #ifdef DEBUG
11719 		cnt += msgdsize(mp);
11720 #endif
11721 		/* Does this need SSL processing first? */
11722 		if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) {
11723 			DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain,
11724 			    mblk_t *, mp);
11725 			tcp_kssl_input(tcp, mp);
11726 			continue;
11727 		}
11728 		putnext(q, mp);
11729 	}
11730 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11731 	tcp->tcp_rcv_last_head = NULL;
11732 	tcp->tcp_rcv_last_tail = NULL;
11733 	tcp->tcp_rcv_cnt = 0;
11734 
11735 	/* Learn the latest rwnd information that we sent to the other side. */
11736 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11737 	    << tcp->tcp_rcv_ws;
11738 	/* This is peer's calculated send window (our receive window). */
11739 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11740 	/*
11741 	 * Increase the receive window to max.  But we need to do receiver
11742 	 * SWS avoidance.  This means that we need to check the increase of
11743 	 * of receive window is at least 1 MSS.
11744 	 */
11745 	if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11746 		/*
11747 		 * If the window that the other side knows is less than max
11748 		 * deferred acks segments, send an update immediately.
11749 		 */
11750 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11751 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
11752 			ret = TH_ACK_NEEDED;
11753 		}
11754 		tcp->tcp_rwnd = q->q_hiwat;
11755 	}
11756 	/* No need for the push timer now. */
11757 	if (tcp->tcp_push_tid != 0) {
11758 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11759 		tcp->tcp_push_tid = 0;
11760 	}
11761 	return (ret);
11762 }
11763 
11764 /*
11765  * Queue data on tcp_rcv_list which is a b_next chain.
11766  * tcp_rcv_last_head/tail is the last element of this chain.
11767  * Each element of the chain is a b_cont chain.
11768  *
11769  * M_DATA messages are added to the current element.
11770  * Other messages are added as new (b_next) elements.
11771  */
11772 void
11773 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11774 {
11775 	ASSERT(seg_len == msgdsize(mp));
11776 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11777 
11778 	if (tcp->tcp_rcv_list == NULL) {
11779 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11780 		tcp->tcp_rcv_list = mp;
11781 		tcp->tcp_rcv_last_head = mp;
11782 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11783 		tcp->tcp_rcv_last_tail->b_cont = mp;
11784 	} else {
11785 		tcp->tcp_rcv_last_head->b_next = mp;
11786 		tcp->tcp_rcv_last_head = mp;
11787 	}
11788 
11789 	while (mp->b_cont)
11790 		mp = mp->b_cont;
11791 
11792 	tcp->tcp_rcv_last_tail = mp;
11793 	tcp->tcp_rcv_cnt += seg_len;
11794 	tcp->tcp_rwnd -= seg_len;
11795 }
11796 
11797 /*
11798  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11799  *
11800  * This is the default entry function into TCP on the read side. TCP is
11801  * always entered via squeue i.e. using squeue's for mutual exclusion.
11802  * When classifier does a lookup to find the tcp, it also puts a reference
11803  * on the conn structure associated so the tcp is guaranteed to exist
11804  * when we come here. We still need to check the state because it might
11805  * as well has been closed. The squeue processing function i.e. squeue_enter,
11806  * squeue_enter_nodrain, or squeue_drain is responsible for doing the
11807  * CONN_DEC_REF.
11808  *
11809  * Apart from the default entry point, IP also sends packets directly to
11810  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11811  * connections.
11812  */
11813 void
11814 tcp_input(void *arg, mblk_t *mp, void *arg2)
11815 {
11816 	conn_t	*connp = (conn_t *)arg;
11817 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11818 
11819 	/* arg2 is the sqp */
11820 	ASSERT(arg2 != NULL);
11821 	ASSERT(mp != NULL);
11822 
11823 	/*
11824 	 * Don't accept any input on a closed tcp as this TCP logically does
11825 	 * not exist on the system. Don't proceed further with this TCP.
11826 	 * For eg. this packet could trigger another close of this tcp
11827 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11828 	 * tcp_clean_death / tcp_closei_local must be called at most once
11829 	 * on a TCP. In this case we need to refeed the packet into the
11830 	 * classifier and figure out where the packet should go. Need to
11831 	 * preserve the recv_ill somehow. Until we figure that out, for
11832 	 * now just drop the packet if we can't classify the packet.
11833 	 */
11834 	if (tcp->tcp_state == TCPS_CLOSED ||
11835 	    tcp->tcp_state == TCPS_BOUND) {
11836 		conn_t	*new_connp;
11837 		ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip;
11838 
11839 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
11840 		if (new_connp != NULL) {
11841 			tcp_reinput(new_connp, mp, arg2);
11842 			return;
11843 		}
11844 		/* We failed to classify. For now just drop the packet */
11845 		freemsg(mp);
11846 		return;
11847 	}
11848 
11849 	if (DB_TYPE(mp) == M_DATA)
11850 		tcp_rput_data(connp, mp, arg2);
11851 	else
11852 		tcp_rput_common(tcp, mp);
11853 }
11854 
11855 /*
11856  * The read side put procedure.
11857  * The packets passed up by ip are assume to be aligned according to
11858  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11859  */
11860 static void
11861 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11862 {
11863 	/*
11864 	 * tcp_rput_data() does not expect M_CTL except for the case
11865 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11866 	 * type. Need to make sure that any other M_CTLs don't make
11867 	 * it to tcp_rput_data since it is not expecting any and doesn't
11868 	 * check for it.
11869 	 */
11870 	if (DB_TYPE(mp) == M_CTL) {
11871 		switch (*(uint32_t *)(mp->b_rptr)) {
11872 		case TCP_IOC_ABORT_CONN:
11873 			/*
11874 			 * Handle connection abort request.
11875 			 */
11876 			tcp_ioctl_abort_handler(tcp, mp);
11877 			return;
11878 		case IPSEC_IN:
11879 			/*
11880 			 * Only secure icmp arrive in TCP and they
11881 			 * don't go through data path.
11882 			 */
11883 			tcp_icmp_error(tcp, mp);
11884 			return;
11885 		case IN_PKTINFO:
11886 			/*
11887 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
11888 			 * sockets that are receiving IPv4 traffic. tcp
11889 			 */
11890 			ASSERT(tcp->tcp_family == AF_INET6);
11891 			ASSERT(tcp->tcp_ipv6_recvancillary &
11892 			    TCP_IPV6_RECVPKTINFO);
11893 			tcp_rput_data(tcp->tcp_connp, mp,
11894 			    tcp->tcp_connp->conn_sqp);
11895 			return;
11896 		case MDT_IOC_INFO_UPDATE:
11897 			/*
11898 			 * Handle Multidata information update; the
11899 			 * following routine will free the message.
11900 			 */
11901 			if (tcp->tcp_connp->conn_mdt_ok) {
11902 				tcp_mdt_update(tcp,
11903 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
11904 				    B_FALSE);
11905 			}
11906 			freemsg(mp);
11907 			return;
11908 		case LSO_IOC_INFO_UPDATE:
11909 			/*
11910 			 * Handle LSO information update; the following
11911 			 * routine will free the message.
11912 			 */
11913 			if (tcp->tcp_connp->conn_lso_ok) {
11914 				tcp_lso_update(tcp,
11915 				    &((ip_lso_info_t *)mp->b_rptr)->lso_capab);
11916 			}
11917 			freemsg(mp);
11918 			return;
11919 		default:
11920 			/*
11921 			 * tcp_icmp_err() will process the M_CTL packets.
11922 			 * Non-ICMP packets, if any, will be discarded in
11923 			 * tcp_icmp_err(). We will process the ICMP packet
11924 			 * even if we are TCP_IS_DETACHED_NONEAGER as the
11925 			 * incoming ICMP packet may result in changing
11926 			 * the tcp_mss, which we would need if we have
11927 			 * packets to retransmit.
11928 			 */
11929 			tcp_icmp_error(tcp, mp);
11930 			return;
11931 		}
11932 	}
11933 
11934 	/* No point processing the message if tcp is already closed */
11935 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
11936 		freemsg(mp);
11937 		return;
11938 	}
11939 
11940 	tcp_rput_other(tcp, mp);
11941 }
11942 
11943 
11944 /* The minimum of smoothed mean deviation in RTO calculation. */
11945 #define	TCP_SD_MIN	400
11946 
11947 /*
11948  * Set RTO for this connection.  The formula is from Jacobson and Karels'
11949  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
11950  * are the same as those in Appendix A.2 of that paper.
11951  *
11952  * m = new measurement
11953  * sa = smoothed RTT average (8 * average estimates).
11954  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
11955  */
11956 static void
11957 tcp_set_rto(tcp_t *tcp, clock_t rtt)
11958 {
11959 	long m = TICK_TO_MSEC(rtt);
11960 	clock_t sa = tcp->tcp_rtt_sa;
11961 	clock_t sv = tcp->tcp_rtt_sd;
11962 	clock_t rto;
11963 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11964 
11965 	BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate);
11966 	tcp->tcp_rtt_update++;
11967 
11968 	/* tcp_rtt_sa is not 0 means this is a new sample. */
11969 	if (sa != 0) {
11970 		/*
11971 		 * Update average estimator:
11972 		 *	new rtt = 7/8 old rtt + 1/8 Error
11973 		 */
11974 
11975 		/* m is now Error in estimate. */
11976 		m -= sa >> 3;
11977 		if ((sa += m) <= 0) {
11978 			/*
11979 			 * Don't allow the smoothed average to be negative.
11980 			 * We use 0 to denote reinitialization of the
11981 			 * variables.
11982 			 */
11983 			sa = 1;
11984 		}
11985 
11986 		/*
11987 		 * Update deviation estimator:
11988 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
11989 		 */
11990 		if (m < 0)
11991 			m = -m;
11992 		m -= sv >> 2;
11993 		sv += m;
11994 	} else {
11995 		/*
11996 		 * This follows BSD's implementation.  So the reinitialized
11997 		 * RTO is 3 * m.  We cannot go less than 2 because if the
11998 		 * link is bandwidth dominated, doubling the window size
11999 		 * during slow start means doubling the RTT.  We want to be
12000 		 * more conservative when we reinitialize our estimates.  3
12001 		 * is just a convenient number.
12002 		 */
12003 		sa = m << 3;
12004 		sv = m << 1;
12005 	}
12006 	if (sv < TCP_SD_MIN) {
12007 		/*
12008 		 * We do not know that if sa captures the delay ACK
12009 		 * effect as in a long train of segments, a receiver
12010 		 * does not delay its ACKs.  So set the minimum of sv
12011 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
12012 		 * of BSD DATO.  That means the minimum of mean
12013 		 * deviation is 100 ms.
12014 		 *
12015 		 */
12016 		sv = TCP_SD_MIN;
12017 	}
12018 	tcp->tcp_rtt_sa = sa;
12019 	tcp->tcp_rtt_sd = sv;
12020 	/*
12021 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
12022 	 *
12023 	 * Add tcp_rexmit_interval extra in case of extreme environment
12024 	 * where the algorithm fails to work.  The default value of
12025 	 * tcp_rexmit_interval_extra should be 0.
12026 	 *
12027 	 * As we use a finer grained clock than BSD and update
12028 	 * RTO for every ACKs, add in another .25 of RTT to the
12029 	 * deviation of RTO to accomodate burstiness of 1/4 of
12030 	 * window size.
12031 	 */
12032 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
12033 
12034 	if (rto > tcps->tcps_rexmit_interval_max) {
12035 		tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
12036 	} else if (rto < tcps->tcps_rexmit_interval_min) {
12037 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
12038 	} else {
12039 		tcp->tcp_rto = rto;
12040 	}
12041 
12042 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
12043 	tcp->tcp_timer_backoff = 0;
12044 }
12045 
12046 /*
12047  * tcp_get_seg_mp() is called to get the pointer to a segment in the
12048  * send queue which starts at the given seq. no.
12049  *
12050  * Parameters:
12051  *	tcp_t *tcp: the tcp instance pointer.
12052  *	uint32_t seq: the starting seq. no of the requested segment.
12053  *	int32_t *off: after the execution, *off will be the offset to
12054  *		the returned mblk which points to the requested seq no.
12055  *		It is the caller's responsibility to send in a non-null off.
12056  *
12057  * Return:
12058  *	A mblk_t pointer pointing to the requested segment in send queue.
12059  */
12060 static mblk_t *
12061 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
12062 {
12063 	int32_t	cnt;
12064 	mblk_t	*mp;
12065 
12066 	/* Defensive coding.  Make sure we don't send incorrect data. */
12067 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
12068 		return (NULL);
12069 
12070 	cnt = seq - tcp->tcp_suna;
12071 	mp = tcp->tcp_xmit_head;
12072 	while (cnt > 0 && mp != NULL) {
12073 		cnt -= mp->b_wptr - mp->b_rptr;
12074 		if (cnt < 0) {
12075 			cnt += mp->b_wptr - mp->b_rptr;
12076 			break;
12077 		}
12078 		mp = mp->b_cont;
12079 	}
12080 	ASSERT(mp != NULL);
12081 	*off = cnt;
12082 	return (mp);
12083 }
12084 
12085 /*
12086  * This function handles all retransmissions if SACK is enabled for this
12087  * connection.  First it calculates how many segments can be retransmitted
12088  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
12089  * segments.  A segment is eligible if sack_cnt for that segment is greater
12090  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
12091  * all eligible segments, it checks to see if TCP can send some new segments
12092  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
12093  *
12094  * Parameters:
12095  *	tcp_t *tcp: the tcp structure of the connection.
12096  *	uint_t *flags: in return, appropriate value will be set for
12097  *	tcp_rput_data().
12098  */
12099 static void
12100 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
12101 {
12102 	notsack_blk_t	*notsack_blk;
12103 	int32_t		usable_swnd;
12104 	int32_t		mss;
12105 	uint32_t	seg_len;
12106 	mblk_t		*xmit_mp;
12107 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12108 
12109 	ASSERT(tcp->tcp_sack_info != NULL);
12110 	ASSERT(tcp->tcp_notsack_list != NULL);
12111 	ASSERT(tcp->tcp_rexmit == B_FALSE);
12112 
12113 	/* Defensive coding in case there is a bug... */
12114 	if (tcp->tcp_notsack_list == NULL) {
12115 		return;
12116 	}
12117 	notsack_blk = tcp->tcp_notsack_list;
12118 	mss = tcp->tcp_mss;
12119 
12120 	/*
12121 	 * Limit the num of outstanding data in the network to be
12122 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
12123 	 */
12124 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12125 
12126 	/* At least retransmit 1 MSS of data. */
12127 	if (usable_swnd <= 0) {
12128 		usable_swnd = mss;
12129 	}
12130 
12131 	/* Make sure no new RTT samples will be taken. */
12132 	tcp->tcp_csuna = tcp->tcp_snxt;
12133 
12134 	notsack_blk = tcp->tcp_notsack_list;
12135 	while (usable_swnd > 0) {
12136 		mblk_t		*snxt_mp, *tmp_mp;
12137 		tcp_seq		begin = tcp->tcp_sack_snxt;
12138 		tcp_seq		end;
12139 		int32_t		off;
12140 
12141 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
12142 			if (SEQ_GT(notsack_blk->end, begin) &&
12143 			    (notsack_blk->sack_cnt >=
12144 			    tcps->tcps_dupack_fast_retransmit)) {
12145 				end = notsack_blk->end;
12146 				if (SEQ_LT(begin, notsack_blk->begin)) {
12147 					begin = notsack_blk->begin;
12148 				}
12149 				break;
12150 			}
12151 		}
12152 		/*
12153 		 * All holes are filled.  Manipulate tcp_cwnd to send more
12154 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
12155 		 * set to tcp_cwnd_ssthresh.
12156 		 */
12157 		if (notsack_blk == NULL) {
12158 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12159 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
12160 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
12161 				ASSERT(tcp->tcp_cwnd > 0);
12162 				return;
12163 			} else {
12164 				usable_swnd = usable_swnd / mss;
12165 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
12166 				    MAX(usable_swnd * mss, mss);
12167 				*flags |= TH_XMIT_NEEDED;
12168 				return;
12169 			}
12170 		}
12171 
12172 		/*
12173 		 * Note that we may send more than usable_swnd allows here
12174 		 * because of round off, but no more than 1 MSS of data.
12175 		 */
12176 		seg_len = end - begin;
12177 		if (seg_len > mss)
12178 			seg_len = mss;
12179 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
12180 		ASSERT(snxt_mp != NULL);
12181 		/* This should not happen.  Defensive coding again... */
12182 		if (snxt_mp == NULL) {
12183 			return;
12184 		}
12185 
12186 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
12187 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
12188 		if (xmit_mp == NULL)
12189 			return;
12190 
12191 		usable_swnd -= seg_len;
12192 		tcp->tcp_pipe += seg_len;
12193 		tcp->tcp_sack_snxt = begin + seg_len;
12194 		TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT);
12195 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12196 
12197 		/*
12198 		 * Update the send timestamp to avoid false retransmission.
12199 		 */
12200 		snxt_mp->b_prev = (mblk_t *)lbolt;
12201 
12202 		BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12203 		UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len);
12204 		BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs);
12205 		/*
12206 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
12207 		 * This happens when new data sent during fast recovery is
12208 		 * also lost.  If TCP retransmits those new data, it needs
12209 		 * to extend SACK recover phase to avoid starting another
12210 		 * fast retransmit/recovery unnecessarily.
12211 		 */
12212 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
12213 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
12214 		}
12215 	}
12216 }
12217 
12218 /*
12219  * This function handles policy checking at TCP level for non-hard_bound/
12220  * detached connections.
12221  */
12222 static boolean_t
12223 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
12224     boolean_t secure, boolean_t mctl_present)
12225 {
12226 	ipsec_latch_t *ipl = NULL;
12227 	ipsec_action_t *act = NULL;
12228 	mblk_t *data_mp;
12229 	ipsec_in_t *ii;
12230 	const char *reason;
12231 	kstat_named_t *counter;
12232 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12233 	ipsec_stack_t	*ipss;
12234 	ip_stack_t	*ipst;
12235 
12236 	ASSERT(mctl_present || !secure);
12237 
12238 	ASSERT((ipha == NULL && ip6h != NULL) ||
12239 	    (ip6h == NULL && ipha != NULL));
12240 
12241 	/*
12242 	 * We don't necessarily have an ipsec_in_act action to verify
12243 	 * policy because of assymetrical policy where we have only
12244 	 * outbound policy and no inbound policy (possible with global
12245 	 * policy).
12246 	 */
12247 	if (!secure) {
12248 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
12249 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
12250 			return (B_TRUE);
12251 		ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
12252 		    "tcp_check_policy", ipha, ip6h, secure,
12253 		    tcps->tcps_netstack);
12254 		ipss = tcps->tcps_netstack->netstack_ipsec;
12255 
12256 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12257 		    DROPPER(ipss, ipds_tcp_clear),
12258 		    &tcps->tcps_dropper);
12259 		return (B_FALSE);
12260 	}
12261 
12262 	/*
12263 	 * We have a secure packet.
12264 	 */
12265 	if (act == NULL) {
12266 		ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
12267 		    "tcp_check_policy", ipha, ip6h, secure,
12268 		    tcps->tcps_netstack);
12269 		ipss = tcps->tcps_netstack->netstack_ipsec;
12270 
12271 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12272 		    DROPPER(ipss, ipds_tcp_secure),
12273 		    &tcps->tcps_dropper);
12274 		return (B_FALSE);
12275 	}
12276 
12277 	/*
12278 	 * XXX This whole routine is currently incorrect.  ipl should
12279 	 * be set to the latch pointer, but is currently not set, so
12280 	 * we initialize it to NULL to avoid picking up random garbage.
12281 	 */
12282 	if (ipl == NULL)
12283 		return (B_TRUE);
12284 
12285 	data_mp = first_mp->b_cont;
12286 
12287 	ii = (ipsec_in_t *)first_mp->b_rptr;
12288 
12289 	ipst = tcps->tcps_netstack->netstack_ip;
12290 
12291 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
12292 	    &counter, tcp->tcp_connp)) {
12293 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
12294 		return (B_TRUE);
12295 	}
12296 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
12297 	    "tcp inbound policy mismatch: %s, packet dropped\n",
12298 	    reason);
12299 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
12300 
12301 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
12302 	    &tcps->tcps_dropper);
12303 	return (B_FALSE);
12304 }
12305 
12306 /*
12307  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
12308  * retransmission after a timeout.
12309  *
12310  * To limit the number of duplicate segments, we limit the number of segment
12311  * to be sent in one time to tcp_snd_burst, the burst variable.
12312  */
12313 static void
12314 tcp_ss_rexmit(tcp_t *tcp)
12315 {
12316 	uint32_t	snxt;
12317 	uint32_t	smax;
12318 	int32_t		win;
12319 	int32_t		mss;
12320 	int32_t		off;
12321 	int32_t		burst = tcp->tcp_snd_burst;
12322 	mblk_t		*snxt_mp;
12323 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12324 
12325 	/*
12326 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
12327 	 * all unack'ed segments.
12328 	 */
12329 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
12330 		smax = tcp->tcp_rexmit_max;
12331 		snxt = tcp->tcp_rexmit_nxt;
12332 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
12333 			snxt = tcp->tcp_suna;
12334 		}
12335 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
12336 		win -= snxt - tcp->tcp_suna;
12337 		mss = tcp->tcp_mss;
12338 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
12339 
12340 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12341 		    (burst > 0) && (snxt_mp != NULL)) {
12342 			mblk_t	*xmit_mp;
12343 			mblk_t	*old_snxt_mp = snxt_mp;
12344 			uint32_t cnt = mss;
12345 
12346 			if (win < cnt) {
12347 				cnt = win;
12348 			}
12349 			if (SEQ_GT(snxt + cnt, smax)) {
12350 				cnt = smax - snxt;
12351 			}
12352 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12353 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12354 			if (xmit_mp == NULL)
12355 				return;
12356 
12357 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12358 
12359 			snxt += cnt;
12360 			win -= cnt;
12361 			/*
12362 			 * Update the send timestamp to avoid false
12363 			 * retransmission.
12364 			 */
12365 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12366 			BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12367 			UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt);
12368 
12369 			tcp->tcp_rexmit_nxt = snxt;
12370 			burst--;
12371 		}
12372 		/*
12373 		 * If we have transmitted all we have at the time
12374 		 * we started the retranmission, we can leave
12375 		 * the rest of the job to tcp_wput_data().  But we
12376 		 * need to check the send window first.  If the
12377 		 * win is not 0, go on with tcp_wput_data().
12378 		 */
12379 		if (SEQ_LT(snxt, smax) || win == 0) {
12380 			return;
12381 		}
12382 	}
12383 	/* Only call tcp_wput_data() if there is data to be sent. */
12384 	if (tcp->tcp_unsent) {
12385 		tcp_wput_data(tcp, NULL, B_FALSE);
12386 	}
12387 }
12388 
12389 /*
12390  * Process all TCP option in SYN segment.  Note that this function should
12391  * be called after tcp_adapt_ire() is called so that the necessary info
12392  * from IRE is already set in the tcp structure.
12393  *
12394  * This function sets up the correct tcp_mss value according to the
12395  * MSS option value and our header size.  It also sets up the window scale
12396  * and timestamp values, and initialize SACK info blocks.  But it does not
12397  * change receive window size after setting the tcp_mss value.  The caller
12398  * should do the appropriate change.
12399  */
12400 void
12401 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12402 {
12403 	int options;
12404 	tcp_opt_t tcpopt;
12405 	uint32_t mss_max;
12406 	char *tmp_tcph;
12407 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12408 
12409 	tcpopt.tcp = NULL;
12410 	options = tcp_parse_options(tcph, &tcpopt);
12411 
12412 	/*
12413 	 * Process MSS option.  Note that MSS option value does not account
12414 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12415 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12416 	 * IPv6.
12417 	 */
12418 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12419 		if (tcp->tcp_ipversion == IPV4_VERSION)
12420 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
12421 		else
12422 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
12423 	} else {
12424 		if (tcp->tcp_ipversion == IPV4_VERSION)
12425 			mss_max = tcps->tcps_mss_max_ipv4;
12426 		else
12427 			mss_max = tcps->tcps_mss_max_ipv6;
12428 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
12429 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
12430 		else if (tcpopt.tcp_opt_mss > mss_max)
12431 			tcpopt.tcp_opt_mss = mss_max;
12432 	}
12433 
12434 	/* Process Window Scale option. */
12435 	if (options & TCP_OPT_WSCALE_PRESENT) {
12436 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12437 		tcp->tcp_snd_ws_ok = B_TRUE;
12438 	} else {
12439 		tcp->tcp_snd_ws = B_FALSE;
12440 		tcp->tcp_snd_ws_ok = B_FALSE;
12441 		tcp->tcp_rcv_ws = B_FALSE;
12442 	}
12443 
12444 	/* Process Timestamp option. */
12445 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12446 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12447 		tmp_tcph = (char *)tcp->tcp_tcph;
12448 
12449 		tcp->tcp_snd_ts_ok = B_TRUE;
12450 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12451 		tcp->tcp_last_rcv_lbolt = lbolt64;
12452 		ASSERT(OK_32PTR(tmp_tcph));
12453 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12454 
12455 		/* Fill in our template header with basic timestamp option. */
12456 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12457 		tmp_tcph[0] = TCPOPT_NOP;
12458 		tmp_tcph[1] = TCPOPT_NOP;
12459 		tmp_tcph[2] = TCPOPT_TSTAMP;
12460 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12461 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12462 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12463 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12464 	} else {
12465 		tcp->tcp_snd_ts_ok = B_FALSE;
12466 	}
12467 
12468 	/*
12469 	 * Process SACK options.  If SACK is enabled for this connection,
12470 	 * then allocate the SACK info structure.  Note the following ways
12471 	 * when tcp_snd_sack_ok is set to true.
12472 	 *
12473 	 * For active connection: in tcp_adapt_ire() called in
12474 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12475 	 * is checked.
12476 	 *
12477 	 * For passive connection: in tcp_adapt_ire() called in
12478 	 * tcp_accept_comm().
12479 	 *
12480 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12481 	 * That check makes sure that if we did not send a SACK OK option,
12482 	 * we will not enable SACK for this connection even though the other
12483 	 * side sends us SACK OK option.  For active connection, the SACK
12484 	 * info structure has already been allocated.  So we need to free
12485 	 * it if SACK is disabled.
12486 	 */
12487 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12488 	    (tcp->tcp_snd_sack_ok ||
12489 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12490 		/* This should be true only in the passive case. */
12491 		if (tcp->tcp_sack_info == NULL) {
12492 			ASSERT(TCP_IS_DETACHED(tcp));
12493 			tcp->tcp_sack_info =
12494 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12495 		}
12496 		if (tcp->tcp_sack_info == NULL) {
12497 			tcp->tcp_snd_sack_ok = B_FALSE;
12498 		} else {
12499 			tcp->tcp_snd_sack_ok = B_TRUE;
12500 			if (tcp->tcp_snd_ts_ok) {
12501 				tcp->tcp_max_sack_blk = 3;
12502 			} else {
12503 				tcp->tcp_max_sack_blk = 4;
12504 			}
12505 		}
12506 	} else {
12507 		/*
12508 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12509 		 * no SACK info will be used for this
12510 		 * connection.  This assumes that SACK usage
12511 		 * permission is negotiated.  This may need
12512 		 * to be changed once this is clarified.
12513 		 */
12514 		if (tcp->tcp_sack_info != NULL) {
12515 			ASSERT(tcp->tcp_notsack_list == NULL);
12516 			kmem_cache_free(tcp_sack_info_cache,
12517 			    tcp->tcp_sack_info);
12518 			tcp->tcp_sack_info = NULL;
12519 		}
12520 		tcp->tcp_snd_sack_ok = B_FALSE;
12521 	}
12522 
12523 	/*
12524 	 * Now we know the exact TCP/IP header length, subtract
12525 	 * that from tcp_mss to get our side's MSS.
12526 	 */
12527 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12528 	/*
12529 	 * Here we assume that the other side's header size will be equal to
12530 	 * our header size.  We calculate the real MSS accordingly.  Need to
12531 	 * take into additional stuffs IPsec puts in.
12532 	 *
12533 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12534 	 */
12535 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12536 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12537 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12538 
12539 	/*
12540 	 * Set MSS to the smaller one of both ends of the connection.
12541 	 * We should not have called tcp_mss_set() before, but our
12542 	 * side of the MSS should have been set to a proper value
12543 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12544 	 * STREAM head parameters properly.
12545 	 *
12546 	 * If we have a larger-than-16-bit window but the other side
12547 	 * didn't want to do window scale, tcp_rwnd_set() will take
12548 	 * care of that.
12549 	 */
12550 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE);
12551 }
12552 
12553 /*
12554  * Sends the T_CONN_IND to the listener. The caller calls this
12555  * functions via squeue to get inside the listener's perimeter
12556  * once the 3 way hand shake is done a T_CONN_IND needs to be
12557  * sent. As an optimization, the caller can call this directly
12558  * if listener's perimeter is same as eager's.
12559  */
12560 /* ARGSUSED */
12561 void
12562 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12563 {
12564 	conn_t			*lconnp = (conn_t *)arg;
12565 	tcp_t			*listener = lconnp->conn_tcp;
12566 	tcp_t			*tcp;
12567 	struct T_conn_ind	*conn_ind;
12568 	ipaddr_t 		*addr_cache;
12569 	boolean_t		need_send_conn_ind = B_FALSE;
12570 	tcp_stack_t		*tcps = listener->tcp_tcps;
12571 
12572 	/* retrieve the eager */
12573 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12574 	ASSERT(conn_ind->OPT_offset != 0 &&
12575 	    conn_ind->OPT_length == sizeof (intptr_t));
12576 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12577 	    conn_ind->OPT_length);
12578 
12579 	/*
12580 	 * TLI/XTI applications will get confused by
12581 	 * sending eager as an option since it violates
12582 	 * the option semantics. So remove the eager as
12583 	 * option since TLI/XTI app doesn't need it anyway.
12584 	 */
12585 	if (!TCP_IS_SOCKET(listener)) {
12586 		conn_ind->OPT_length = 0;
12587 		conn_ind->OPT_offset = 0;
12588 	}
12589 	if (listener->tcp_state == TCPS_CLOSED ||
12590 	    TCP_IS_DETACHED(listener)) {
12591 		/*
12592 		 * If listener has closed, it would have caused a
12593 		 * a cleanup/blowoff to happen for the eager. We
12594 		 * just need to return.
12595 		 */
12596 		freemsg(mp);
12597 		return;
12598 	}
12599 
12600 
12601 	/*
12602 	 * if the conn_req_q is full defer passing up the
12603 	 * T_CONN_IND until space is availabe after t_accept()
12604 	 * processing
12605 	 */
12606 	mutex_enter(&listener->tcp_eager_lock);
12607 
12608 	/*
12609 	 * Take the eager out, if it is in the list of droppable eagers
12610 	 * as we are here because the 3W handshake is over.
12611 	 */
12612 	MAKE_UNDROPPABLE(tcp);
12613 
12614 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12615 		tcp_t *tail;
12616 
12617 		/*
12618 		 * The eager already has an extra ref put in tcp_rput_data
12619 		 * so that it stays till accept comes back even though it
12620 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12621 		 */
12622 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12623 		listener->tcp_conn_req_cnt_q0--;
12624 		listener->tcp_conn_req_cnt_q++;
12625 
12626 		/* Move from SYN_RCVD to ESTABLISHED list  */
12627 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12628 		    tcp->tcp_eager_prev_q0;
12629 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12630 		    tcp->tcp_eager_next_q0;
12631 		tcp->tcp_eager_prev_q0 = NULL;
12632 		tcp->tcp_eager_next_q0 = NULL;
12633 
12634 		/*
12635 		 * Insert at end of the queue because sockfs
12636 		 * sends down T_CONN_RES in chronological
12637 		 * order. Leaving the older conn indications
12638 		 * at front of the queue helps reducing search
12639 		 * time.
12640 		 */
12641 		tail = listener->tcp_eager_last_q;
12642 		if (tail != NULL)
12643 			tail->tcp_eager_next_q = tcp;
12644 		else
12645 			listener->tcp_eager_next_q = tcp;
12646 		listener->tcp_eager_last_q = tcp;
12647 		tcp->tcp_eager_next_q = NULL;
12648 		/*
12649 		 * Delay sending up the T_conn_ind until we are
12650 		 * done with the eager. Once we have have sent up
12651 		 * the T_conn_ind, the accept can potentially complete
12652 		 * any time and release the refhold we have on the eager.
12653 		 */
12654 		need_send_conn_ind = B_TRUE;
12655 	} else {
12656 		/*
12657 		 * Defer connection on q0 and set deferred
12658 		 * connection bit true
12659 		 */
12660 		tcp->tcp_conn_def_q0 = B_TRUE;
12661 
12662 		/* take tcp out of q0 ... */
12663 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12664 		    tcp->tcp_eager_next_q0;
12665 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12666 		    tcp->tcp_eager_prev_q0;
12667 
12668 		/* ... and place it at the end of q0 */
12669 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12670 		tcp->tcp_eager_next_q0 = listener;
12671 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12672 		listener->tcp_eager_prev_q0 = tcp;
12673 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12674 	}
12675 
12676 	/* we have timed out before */
12677 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12678 		tcp->tcp_syn_rcvd_timeout = 0;
12679 		listener->tcp_syn_rcvd_timeout--;
12680 		if (listener->tcp_syn_defense &&
12681 		    listener->tcp_syn_rcvd_timeout <=
12682 		    (tcps->tcps_conn_req_max_q0 >> 5) &&
12683 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12684 		    listener->tcp_last_rcv_lbolt)) {
12685 			/*
12686 			 * Turn off the defense mode if we
12687 			 * believe the SYN attack is over.
12688 			 */
12689 			listener->tcp_syn_defense = B_FALSE;
12690 			if (listener->tcp_ip_addr_cache) {
12691 				kmem_free((void *)listener->tcp_ip_addr_cache,
12692 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12693 				listener->tcp_ip_addr_cache = NULL;
12694 			}
12695 		}
12696 	}
12697 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12698 	if (addr_cache != NULL) {
12699 		/*
12700 		 * We have finished a 3-way handshake with this
12701 		 * remote host. This proves the IP addr is good.
12702 		 * Cache it!
12703 		 */
12704 		addr_cache[IP_ADDR_CACHE_HASH(
12705 		    tcp->tcp_remote)] = tcp->tcp_remote;
12706 	}
12707 	mutex_exit(&listener->tcp_eager_lock);
12708 	if (need_send_conn_ind)
12709 		putnext(listener->tcp_rq, mp);
12710 }
12711 
12712 mblk_t *
12713 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12714     uint_t *ifindexp, ip6_pkt_t *ippp)
12715 {
12716 	ip_pktinfo_t	*pinfo;
12717 	ip6_t		*ip6h;
12718 	uchar_t		*rptr;
12719 	mblk_t		*first_mp = mp;
12720 	boolean_t	mctl_present = B_FALSE;
12721 	uint_t 		ifindex = 0;
12722 	ip6_pkt_t	ipp;
12723 	uint_t		ipvers;
12724 	uint_t		ip_hdr_len;
12725 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12726 
12727 	rptr = mp->b_rptr;
12728 	ASSERT(OK_32PTR(rptr));
12729 	ASSERT(tcp != NULL);
12730 	ipp.ipp_fields = 0;
12731 
12732 	switch DB_TYPE(mp) {
12733 	case M_CTL:
12734 		mp = mp->b_cont;
12735 		if (mp == NULL) {
12736 			freemsg(first_mp);
12737 			return (NULL);
12738 		}
12739 		if (DB_TYPE(mp) != M_DATA) {
12740 			freemsg(first_mp);
12741 			return (NULL);
12742 		}
12743 		mctl_present = B_TRUE;
12744 		break;
12745 	case M_DATA:
12746 		break;
12747 	default:
12748 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12749 		freemsg(mp);
12750 		return (NULL);
12751 	}
12752 	ipvers = IPH_HDR_VERSION(rptr);
12753 	if (ipvers == IPV4_VERSION) {
12754 		if (tcp == NULL) {
12755 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12756 			goto done;
12757 		}
12758 
12759 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12760 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12761 
12762 		/*
12763 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12764 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12765 		 */
12766 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12767 		    mctl_present) {
12768 			pinfo = (ip_pktinfo_t *)first_mp->b_rptr;
12769 			if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) &&
12770 			    (pinfo->ip_pkt_ulp_type == IN_PKTINFO) &&
12771 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
12772 				ipp.ipp_fields |= IPPF_IFINDEX;
12773 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
12774 				ifindex = pinfo->ip_pkt_ifindex;
12775 			}
12776 			freeb(first_mp);
12777 			mctl_present = B_FALSE;
12778 		}
12779 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12780 	} else {
12781 		ip6h = (ip6_t *)rptr;
12782 
12783 		ASSERT(ipvers == IPV6_VERSION);
12784 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12785 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12786 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12787 
12788 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12789 			uint8_t	nexthdrp;
12790 			ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
12791 
12792 			/* Look for ifindex information */
12793 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12794 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12795 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12796 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12797 					freemsg(first_mp);
12798 					return (NULL);
12799 				}
12800 
12801 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12802 					ASSERT(ip6i->ip6i_ifindex != 0);
12803 					ipp.ipp_fields |= IPPF_IFINDEX;
12804 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12805 					ifindex = ip6i->ip6i_ifindex;
12806 				}
12807 				rptr = (uchar_t *)&ip6i[1];
12808 				mp->b_rptr = rptr;
12809 				if (rptr == mp->b_wptr) {
12810 					mblk_t *mp1;
12811 					mp1 = mp->b_cont;
12812 					freeb(mp);
12813 					mp = mp1;
12814 					rptr = mp->b_rptr;
12815 				}
12816 				if (MBLKL(mp) < IPV6_HDR_LEN +
12817 				    sizeof (tcph_t)) {
12818 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12819 					freemsg(first_mp);
12820 					return (NULL);
12821 				}
12822 				ip6h = (ip6_t *)rptr;
12823 			}
12824 
12825 			/*
12826 			 * Find any potentially interesting extension headers
12827 			 * as well as the length of the IPv6 + extension
12828 			 * headers.
12829 			 */
12830 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12831 			/* Verify if this is a TCP packet */
12832 			if (nexthdrp != IPPROTO_TCP) {
12833 				BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12834 				freemsg(first_mp);
12835 				return (NULL);
12836 			}
12837 		} else {
12838 			ip_hdr_len = IPV6_HDR_LEN;
12839 		}
12840 	}
12841 
12842 done:
12843 	if (ipversp != NULL)
12844 		*ipversp = ipvers;
12845 	if (ip_hdr_lenp != NULL)
12846 		*ip_hdr_lenp = ip_hdr_len;
12847 	if (ippp != NULL)
12848 		*ippp = ipp;
12849 	if (ifindexp != NULL)
12850 		*ifindexp = ifindex;
12851 	if (mctl_present) {
12852 		freeb(first_mp);
12853 	}
12854 	return (mp);
12855 }
12856 
12857 /*
12858  * Handle M_DATA messages from IP. Its called directly from IP via
12859  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12860  * in this path.
12861  *
12862  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12863  * v4 and v6), we are called through tcp_input() and a M_CTL can
12864  * be present for options but tcp_find_pktinfo() deals with it. We
12865  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12866  *
12867  * The first argument is always the connp/tcp to which the mp belongs.
12868  * There are no exceptions to this rule. The caller has already put
12869  * a reference on this connp/tcp and once tcp_rput_data() returns,
12870  * the squeue will do the refrele.
12871  *
12872  * The TH_SYN for the listener directly go to tcp_conn_request via
12873  * squeue.
12874  *
12875  * sqp: NULL = recursive, sqp != NULL means called from squeue
12876  */
12877 void
12878 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12879 {
12880 	int32_t		bytes_acked;
12881 	int32_t		gap;
12882 	mblk_t		*mp1;
12883 	uint_t		flags;
12884 	uint32_t	new_swnd = 0;
12885 	uchar_t		*iphdr;
12886 	uchar_t		*rptr;
12887 	int32_t		rgap;
12888 	uint32_t	seg_ack;
12889 	int		seg_len;
12890 	uint_t		ip_hdr_len;
12891 	uint32_t	seg_seq;
12892 	tcph_t		*tcph;
12893 	int		urp;
12894 	tcp_opt_t	tcpopt;
12895 	uint_t		ipvers;
12896 	ip6_pkt_t	ipp;
12897 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12898 	uint32_t	cwnd;
12899 	uint32_t	add;
12900 	int		npkt;
12901 	int		mss;
12902 	conn_t		*connp = (conn_t *)arg;
12903 	squeue_t	*sqp = (squeue_t *)arg2;
12904 	tcp_t		*tcp = connp->conn_tcp;
12905 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12906 
12907 	/*
12908 	 * RST from fused tcp loopback peer should trigger an unfuse.
12909 	 */
12910 	if (tcp->tcp_fused) {
12911 		TCP_STAT(tcps, tcp_fusion_aborted);
12912 		tcp_unfuse(tcp);
12913 	}
12914 
12915 	iphdr = mp->b_rptr;
12916 	rptr = mp->b_rptr;
12917 	ASSERT(OK_32PTR(rptr));
12918 
12919 	/*
12920 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12921 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12922 	 * necessary information.
12923 	 */
12924 	if (IPCL_IS_TCP4(connp)) {
12925 		ipvers = IPV4_VERSION;
12926 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12927 	} else {
12928 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
12929 		    NULL, &ipp);
12930 		if (mp == NULL) {
12931 			TCP_STAT(tcps, tcp_rput_v6_error);
12932 			return;
12933 		}
12934 		iphdr = mp->b_rptr;
12935 		rptr = mp->b_rptr;
12936 	}
12937 	ASSERT(DB_TYPE(mp) == M_DATA);
12938 
12939 	tcph = (tcph_t *)&rptr[ip_hdr_len];
12940 	seg_seq = ABE32_TO_U32(tcph->th_seq);
12941 	seg_ack = ABE32_TO_U32(tcph->th_ack);
12942 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
12943 	seg_len = (int)(mp->b_wptr - rptr) -
12944 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
12945 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
12946 		do {
12947 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
12948 			    (uintptr_t)INT_MAX);
12949 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
12950 		} while ((mp1 = mp1->b_cont) != NULL &&
12951 		    mp1->b_datap->db_type == M_DATA);
12952 	}
12953 
12954 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
12955 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
12956 		    seg_len, tcph);
12957 		return;
12958 	}
12959 
12960 	if (sqp != NULL) {
12961 		/*
12962 		 * This is the correct place to update tcp_last_recv_time. Note
12963 		 * that it is also updated for tcp structure that belongs to
12964 		 * global and listener queues which do not really need updating.
12965 		 * But that should not cause any harm.  And it is updated for
12966 		 * all kinds of incoming segments, not only for data segments.
12967 		 */
12968 		tcp->tcp_last_recv_time = lbolt;
12969 	}
12970 
12971 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
12972 
12973 	BUMP_LOCAL(tcp->tcp_ibsegs);
12974 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
12975 
12976 	if ((flags & TH_URG) && sqp != NULL) {
12977 		/*
12978 		 * TCP can't handle urgent pointers that arrive before
12979 		 * the connection has been accept()ed since it can't
12980 		 * buffer OOB data.  Discard segment if this happens.
12981 		 *
12982 		 * We can't just rely on a non-null tcp_listener to indicate
12983 		 * that the accept() has completed since unlinking of the
12984 		 * eager and completion of the accept are not atomic.
12985 		 * tcp_detached, when it is not set (B_FALSE) indicates
12986 		 * that the accept() has completed.
12987 		 *
12988 		 * Nor can it reassemble urgent pointers, so discard
12989 		 * if it's not the next segment expected.
12990 		 *
12991 		 * Otherwise, collapse chain into one mblk (discard if
12992 		 * that fails).  This makes sure the headers, retransmitted
12993 		 * data, and new data all are in the same mblk.
12994 		 */
12995 		ASSERT(mp != NULL);
12996 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
12997 			freemsg(mp);
12998 			return;
12999 		}
13000 		/* Update pointers into message */
13001 		iphdr = rptr = mp->b_rptr;
13002 		tcph = (tcph_t *)&rptr[ip_hdr_len];
13003 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
13004 			/*
13005 			 * Since we can't handle any data with this urgent
13006 			 * pointer that is out of sequence, we expunge
13007 			 * the data.  This allows us to still register
13008 			 * the urgent mark and generate the M_PCSIG,
13009 			 * which we can do.
13010 			 */
13011 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13012 			seg_len = 0;
13013 		}
13014 	}
13015 
13016 	switch (tcp->tcp_state) {
13017 	case TCPS_SYN_SENT:
13018 		if (flags & TH_ACK) {
13019 			/*
13020 			 * Note that our stack cannot send data before a
13021 			 * connection is established, therefore the
13022 			 * following check is valid.  Otherwise, it has
13023 			 * to be changed.
13024 			 */
13025 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
13026 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13027 				freemsg(mp);
13028 				if (flags & TH_RST)
13029 					return;
13030 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
13031 				    tcp, seg_ack, 0, TH_RST);
13032 				return;
13033 			}
13034 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
13035 		}
13036 		if (flags & TH_RST) {
13037 			freemsg(mp);
13038 			if (flags & TH_ACK)
13039 				(void) tcp_clean_death(tcp,
13040 				    ECONNREFUSED, 13);
13041 			return;
13042 		}
13043 		if (!(flags & TH_SYN)) {
13044 			freemsg(mp);
13045 			return;
13046 		}
13047 
13048 		/* Process all TCP options. */
13049 		tcp_process_options(tcp, tcph);
13050 		/*
13051 		 * The following changes our rwnd to be a multiple of the
13052 		 * MIN(peer MSS, our MSS) for performance reason.
13053 		 */
13054 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat,
13055 		    tcp->tcp_mss));
13056 
13057 		/* Is the other end ECN capable? */
13058 		if (tcp->tcp_ecn_ok) {
13059 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
13060 				tcp->tcp_ecn_ok = B_FALSE;
13061 			}
13062 		}
13063 		/*
13064 		 * Clear ECN flags because it may interfere with later
13065 		 * processing.
13066 		 */
13067 		flags &= ~(TH_ECE|TH_CWR);
13068 
13069 		tcp->tcp_irs = seg_seq;
13070 		tcp->tcp_rack = seg_seq;
13071 		tcp->tcp_rnxt = seg_seq + 1;
13072 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13073 		if (!TCP_IS_DETACHED(tcp)) {
13074 			/* Allocate room for SACK options if needed. */
13075 			if (tcp->tcp_snd_sack_ok) {
13076 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13077 				    tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
13078 				    (tcp->tcp_loopback ? 0 :
13079 				    tcps->tcps_wroff_xtra));
13080 			} else {
13081 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13082 				    tcp->tcp_hdr_len +
13083 				    (tcp->tcp_loopback ? 0 :
13084 				    tcps->tcps_wroff_xtra));
13085 			}
13086 		}
13087 		if (flags & TH_ACK) {
13088 			/*
13089 			 * If we can't get the confirmation upstream, pretend
13090 			 * we didn't even see this one.
13091 			 *
13092 			 * XXX: how can we pretend we didn't see it if we
13093 			 * have updated rnxt et. al.
13094 			 *
13095 			 * For loopback we defer sending up the T_CONN_CON
13096 			 * until after some checks below.
13097 			 */
13098 			mp1 = NULL;
13099 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
13100 			    tcp->tcp_loopback ? &mp1 : NULL)) {
13101 				freemsg(mp);
13102 				return;
13103 			}
13104 			/* SYN was acked - making progress */
13105 			if (tcp->tcp_ipversion == IPV6_VERSION)
13106 				tcp->tcp_ip_forward_progress = B_TRUE;
13107 
13108 			/* One for the SYN */
13109 			tcp->tcp_suna = tcp->tcp_iss + 1;
13110 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13111 			tcp->tcp_state = TCPS_ESTABLISHED;
13112 
13113 			/*
13114 			 * If SYN was retransmitted, need to reset all
13115 			 * retransmission info.  This is because this
13116 			 * segment will be treated as a dup ACK.
13117 			 */
13118 			if (tcp->tcp_rexmit) {
13119 				tcp->tcp_rexmit = B_FALSE;
13120 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13121 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
13122 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
13123 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13124 				tcp->tcp_ms_we_have_waited = 0;
13125 
13126 				/*
13127 				 * Set tcp_cwnd back to 1 MSS, per
13128 				 * recommendation from
13129 				 * draft-floyd-incr-init-win-01.txt,
13130 				 * Increasing TCP's Initial Window.
13131 				 */
13132 				tcp->tcp_cwnd = tcp->tcp_mss;
13133 			}
13134 
13135 			tcp->tcp_swl1 = seg_seq;
13136 			tcp->tcp_swl2 = seg_ack;
13137 
13138 			new_swnd = BE16_TO_U16(tcph->th_win);
13139 			tcp->tcp_swnd = new_swnd;
13140 			if (new_swnd > tcp->tcp_max_swnd)
13141 				tcp->tcp_max_swnd = new_swnd;
13142 
13143 			/*
13144 			 * Always send the three-way handshake ack immediately
13145 			 * in order to make the connection complete as soon as
13146 			 * possible on the accepting host.
13147 			 */
13148 			flags |= TH_ACK_NEEDED;
13149 
13150 			/*
13151 			 * Special case for loopback.  At this point we have
13152 			 * received SYN-ACK from the remote endpoint.  In
13153 			 * order to ensure that both endpoints reach the
13154 			 * fused state prior to any data exchange, the final
13155 			 * ACK needs to be sent before we indicate T_CONN_CON
13156 			 * to the module upstream.
13157 			 */
13158 			if (tcp->tcp_loopback) {
13159 				mblk_t *ack_mp;
13160 
13161 				ASSERT(!tcp->tcp_unfusable);
13162 				ASSERT(mp1 != NULL);
13163 				/*
13164 				 * For loopback, we always get a pure SYN-ACK
13165 				 * and only need to send back the final ACK
13166 				 * with no data (this is because the other
13167 				 * tcp is ours and we don't do T/TCP).  This
13168 				 * final ACK triggers the passive side to
13169 				 * perform fusion in ESTABLISHED state.
13170 				 */
13171 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
13172 					if (tcp->tcp_ack_tid != 0) {
13173 						(void) TCP_TIMER_CANCEL(tcp,
13174 						    tcp->tcp_ack_tid);
13175 						tcp->tcp_ack_tid = 0;
13176 					}
13177 					TCP_RECORD_TRACE(tcp, ack_mp,
13178 					    TCP_TRACE_SEND_PKT);
13179 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
13180 					BUMP_LOCAL(tcp->tcp_obsegs);
13181 					BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
13182 
13183 					/* Send up T_CONN_CON */
13184 					putnext(tcp->tcp_rq, mp1);
13185 
13186 					freemsg(mp);
13187 					return;
13188 				}
13189 				/*
13190 				 * Forget fusion; we need to handle more
13191 				 * complex cases below.  Send the deferred
13192 				 * T_CONN_CON message upstream and proceed
13193 				 * as usual.  Mark this tcp as not capable
13194 				 * of fusion.
13195 				 */
13196 				TCP_STAT(tcps, tcp_fusion_unfusable);
13197 				tcp->tcp_unfusable = B_TRUE;
13198 				putnext(tcp->tcp_rq, mp1);
13199 			}
13200 
13201 			/*
13202 			 * Check to see if there is data to be sent.  If
13203 			 * yes, set the transmit flag.  Then check to see
13204 			 * if received data processing needs to be done.
13205 			 * If not, go straight to xmit_check.  This short
13206 			 * cut is OK as we don't support T/TCP.
13207 			 */
13208 			if (tcp->tcp_unsent)
13209 				flags |= TH_XMIT_NEEDED;
13210 
13211 			if (seg_len == 0 && !(flags & TH_URG)) {
13212 				freemsg(mp);
13213 				goto xmit_check;
13214 			}
13215 
13216 			flags &= ~TH_SYN;
13217 			seg_seq++;
13218 			break;
13219 		}
13220 		tcp->tcp_state = TCPS_SYN_RCVD;
13221 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
13222 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
13223 		if (mp1) {
13224 			DB_CPID(mp1) = tcp->tcp_cpid;
13225 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
13226 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
13227 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13228 		}
13229 		freemsg(mp);
13230 		return;
13231 	case TCPS_SYN_RCVD:
13232 		if (flags & TH_ACK) {
13233 			/*
13234 			 * In this state, a SYN|ACK packet is either bogus
13235 			 * because the other side must be ACKing our SYN which
13236 			 * indicates it has seen the ACK for their SYN and
13237 			 * shouldn't retransmit it or we're crossing SYNs
13238 			 * on active open.
13239 			 */
13240 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
13241 				freemsg(mp);
13242 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
13243 				    tcp, seg_ack, 0, TH_RST);
13244 				return;
13245 			}
13246 			/*
13247 			 * NOTE: RFC 793 pg. 72 says this should be
13248 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
13249 			 * but that would mean we have an ack that ignored
13250 			 * our SYN.
13251 			 */
13252 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
13253 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13254 				freemsg(mp);
13255 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
13256 				    tcp, seg_ack, 0, TH_RST);
13257 				return;
13258 			}
13259 		}
13260 		break;
13261 	case TCPS_LISTEN:
13262 		/*
13263 		 * Only a TLI listener can come through this path when a
13264 		 * acceptor is going back to be a listener and a packet
13265 		 * for the acceptor hits the classifier. For a socket
13266 		 * listener, this can never happen because a listener
13267 		 * can never accept connection on itself and hence a
13268 		 * socket acceptor can not go back to being a listener.
13269 		 */
13270 		ASSERT(!TCP_IS_SOCKET(tcp));
13271 		/*FALLTHRU*/
13272 	case TCPS_CLOSED:
13273 	case TCPS_BOUND: {
13274 		conn_t	*new_connp;
13275 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13276 
13277 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
13278 		if (new_connp != NULL) {
13279 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13280 			return;
13281 		}
13282 		/* We failed to classify. For now just drop the packet */
13283 		freemsg(mp);
13284 		return;
13285 	}
13286 	case TCPS_IDLE:
13287 		/*
13288 		 * Handle the case where the tcp_clean_death() has happened
13289 		 * on a connection (application hasn't closed yet) but a packet
13290 		 * was already queued on squeue before tcp_clean_death()
13291 		 * was processed. Calling tcp_clean_death() twice on same
13292 		 * connection can result in weird behaviour.
13293 		 */
13294 		freemsg(mp);
13295 		return;
13296 	default:
13297 		break;
13298 	}
13299 
13300 	/*
13301 	 * Already on the correct queue/perimeter.
13302 	 * If this is a detached connection and not an eager
13303 	 * connection hanging off a listener then new data
13304 	 * (past the FIN) will cause a reset.
13305 	 * We do a special check here where it
13306 	 * is out of the main line, rather than check
13307 	 * if we are detached every time we see new
13308 	 * data down below.
13309 	 */
13310 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13311 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13312 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
13313 		TCP_RECORD_TRACE(tcp,
13314 		    mp, TCP_TRACE_RECV_PKT);
13315 
13316 		freemsg(mp);
13317 		/*
13318 		 * This could be an SSL closure alert. We're detached so just
13319 		 * acknowledge it this last time.
13320 		 */
13321 		if (tcp->tcp_kssl_ctx != NULL) {
13322 			kssl_release_ctx(tcp->tcp_kssl_ctx);
13323 			tcp->tcp_kssl_ctx = NULL;
13324 
13325 			tcp->tcp_rnxt += seg_len;
13326 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13327 			flags |= TH_ACK_NEEDED;
13328 			goto ack_check;
13329 		}
13330 
13331 		tcp_xmit_ctl("new data when detached", tcp,
13332 		    tcp->tcp_snxt, 0, TH_RST);
13333 		(void) tcp_clean_death(tcp, EPROTO, 12);
13334 		return;
13335 	}
13336 
13337 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13338 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13339 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13340 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13341 
13342 	if (tcp->tcp_snd_ts_ok) {
13343 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13344 			/*
13345 			 * This segment is not acceptable.
13346 			 * Drop it and send back an ACK.
13347 			 */
13348 			freemsg(mp);
13349 			flags |= TH_ACK_NEEDED;
13350 			goto ack_check;
13351 		}
13352 	} else if (tcp->tcp_snd_sack_ok) {
13353 		ASSERT(tcp->tcp_sack_info != NULL);
13354 		tcpopt.tcp = tcp;
13355 		/*
13356 		 * SACK info in already updated in tcp_parse_options.  Ignore
13357 		 * all other TCP options...
13358 		 */
13359 		(void) tcp_parse_options(tcph, &tcpopt);
13360 	}
13361 try_again:;
13362 	mss = tcp->tcp_mss;
13363 	gap = seg_seq - tcp->tcp_rnxt;
13364 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13365 	/*
13366 	 * gap is the amount of sequence space between what we expect to see
13367 	 * and what we got for seg_seq.  A positive value for gap means
13368 	 * something got lost.  A negative value means we got some old stuff.
13369 	 */
13370 	if (gap < 0) {
13371 		/* Old stuff present.  Is the SYN in there? */
13372 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13373 		    (seg_len != 0)) {
13374 			flags &= ~TH_SYN;
13375 			seg_seq++;
13376 			urp--;
13377 			/* Recompute the gaps after noting the SYN. */
13378 			goto try_again;
13379 		}
13380 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
13381 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
13382 		    (seg_len > -gap ? -gap : seg_len));
13383 		/* Remove the old stuff from seg_len. */
13384 		seg_len += gap;
13385 		/*
13386 		 * Anything left?
13387 		 * Make sure to check for unack'd FIN when rest of data
13388 		 * has been previously ack'd.
13389 		 */
13390 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13391 			/*
13392 			 * Resets are only valid if they lie within our offered
13393 			 * window.  If the RST bit is set, we just ignore this
13394 			 * segment.
13395 			 */
13396 			if (flags & TH_RST) {
13397 				freemsg(mp);
13398 				return;
13399 			}
13400 
13401 			/*
13402 			 * The arriving of dup data packets indicate that we
13403 			 * may have postponed an ack for too long, or the other
13404 			 * side's RTT estimate is out of shape. Start acking
13405 			 * more often.
13406 			 */
13407 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13408 			    tcp->tcp_rack_cnt >= 1 &&
13409 			    tcp->tcp_rack_abs_max > 2) {
13410 				tcp->tcp_rack_abs_max--;
13411 			}
13412 			tcp->tcp_rack_cur_max = 1;
13413 
13414 			/*
13415 			 * This segment is "unacceptable".  None of its
13416 			 * sequence space lies within our advertized window.
13417 			 *
13418 			 * Adjust seg_len to the original value for tracing.
13419 			 */
13420 			seg_len -= gap;
13421 			if (tcp->tcp_debug) {
13422 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13423 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13424 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13425 				    "seg_len %d, rnxt %u, snxt %u, %s",
13426 				    gap, rgap, flags, seg_seq, seg_ack,
13427 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13428 				    tcp_display(tcp, NULL,
13429 				    DISP_ADDR_AND_PORT));
13430 			}
13431 
13432 			/*
13433 			 * Arrange to send an ACK in response to the
13434 			 * unacceptable segment per RFC 793 page 69. There
13435 			 * is only one small difference between ours and the
13436 			 * acceptability test in the RFC - we accept ACK-only
13437 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13438 			 * will be generated.
13439 			 *
13440 			 * Note that we have to ACK an ACK-only packet at least
13441 			 * for stacks that send 0-length keep-alives with
13442 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13443 			 * section 4.2.3.6. As long as we don't ever generate
13444 			 * an unacceptable packet in response to an incoming
13445 			 * packet that is unacceptable, it should not cause
13446 			 * "ACK wars".
13447 			 */
13448 			flags |=  TH_ACK_NEEDED;
13449 
13450 			/*
13451 			 * Continue processing this segment in order to use the
13452 			 * ACK information it contains, but skip all other
13453 			 * sequence-number processing.	Processing the ACK
13454 			 * information is necessary in order to
13455 			 * re-synchronize connections that may have lost
13456 			 * synchronization.
13457 			 *
13458 			 * We clear seg_len and flag fields related to
13459 			 * sequence number processing as they are not
13460 			 * to be trusted for an unacceptable segment.
13461 			 */
13462 			seg_len = 0;
13463 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13464 			goto process_ack;
13465 		}
13466 
13467 		/* Fix seg_seq, and chew the gap off the front. */
13468 		seg_seq = tcp->tcp_rnxt;
13469 		urp += gap;
13470 		do {
13471 			mblk_t	*mp2;
13472 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13473 			    (uintptr_t)UINT_MAX);
13474 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13475 			if (gap > 0) {
13476 				mp->b_rptr = mp->b_wptr - gap;
13477 				break;
13478 			}
13479 			mp2 = mp;
13480 			mp = mp->b_cont;
13481 			freeb(mp2);
13482 		} while (gap < 0);
13483 		/*
13484 		 * If the urgent data has already been acknowledged, we
13485 		 * should ignore TH_URG below
13486 		 */
13487 		if (urp < 0)
13488 			flags &= ~TH_URG;
13489 	}
13490 	/*
13491 	 * rgap is the amount of stuff received out of window.  A negative
13492 	 * value is the amount out of window.
13493 	 */
13494 	if (rgap < 0) {
13495 		mblk_t	*mp2;
13496 
13497 		if (tcp->tcp_rwnd == 0) {
13498 			BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe);
13499 		} else {
13500 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
13501 			UPDATE_MIB(&tcps->tcps_mib,
13502 			    tcpInDataPastWinBytes, -rgap);
13503 		}
13504 
13505 		/*
13506 		 * seg_len does not include the FIN, so if more than
13507 		 * just the FIN is out of window, we act like we don't
13508 		 * see it.  (If just the FIN is out of window, rgap
13509 		 * will be zero and we will go ahead and acknowledge
13510 		 * the FIN.)
13511 		 */
13512 		flags &= ~TH_FIN;
13513 
13514 		/* Fix seg_len and make sure there is something left. */
13515 		seg_len += rgap;
13516 		if (seg_len <= 0) {
13517 			/*
13518 			 * Resets are only valid if they lie within our offered
13519 			 * window.  If the RST bit is set, we just ignore this
13520 			 * segment.
13521 			 */
13522 			if (flags & TH_RST) {
13523 				freemsg(mp);
13524 				return;
13525 			}
13526 
13527 			/* Per RFC 793, we need to send back an ACK. */
13528 			flags |= TH_ACK_NEEDED;
13529 
13530 			/*
13531 			 * Send SIGURG as soon as possible i.e. even
13532 			 * if the TH_URG was delivered in a window probe
13533 			 * packet (which will be unacceptable).
13534 			 *
13535 			 * We generate a signal if none has been generated
13536 			 * for this connection or if this is a new urgent
13537 			 * byte. Also send a zero-length "unmarked" message
13538 			 * to inform SIOCATMARK that this is not the mark.
13539 			 *
13540 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13541 			 * is sent up. This plus the check for old data
13542 			 * (gap >= 0) handles the wraparound of the sequence
13543 			 * number space without having to always track the
13544 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13545 			 * this max in its rcv_up variable).
13546 			 *
13547 			 * This prevents duplicate SIGURGS due to a "late"
13548 			 * zero-window probe when the T_EXDATA_IND has already
13549 			 * been sent up.
13550 			 */
13551 			if ((flags & TH_URG) &&
13552 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13553 			    tcp->tcp_urp_last))) {
13554 				mp1 = allocb(0, BPRI_MED);
13555 				if (mp1 == NULL) {
13556 					freemsg(mp);
13557 					return;
13558 				}
13559 				if (!TCP_IS_DETACHED(tcp) &&
13560 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13561 				    SIGURG)) {
13562 					/* Try again on the rexmit. */
13563 					freemsg(mp1);
13564 					freemsg(mp);
13565 					return;
13566 				}
13567 				/*
13568 				 * If the next byte would be the mark
13569 				 * then mark with MARKNEXT else mark
13570 				 * with NOTMARKNEXT.
13571 				 */
13572 				if (gap == 0 && urp == 0)
13573 					mp1->b_flag |= MSGMARKNEXT;
13574 				else
13575 					mp1->b_flag |= MSGNOTMARKNEXT;
13576 				freemsg(tcp->tcp_urp_mark_mp);
13577 				tcp->tcp_urp_mark_mp = mp1;
13578 				flags |= TH_SEND_URP_MARK;
13579 				tcp->tcp_urp_last_valid = B_TRUE;
13580 				tcp->tcp_urp_last = urp + seg_seq;
13581 			}
13582 			/*
13583 			 * If this is a zero window probe, continue to
13584 			 * process the ACK part.  But we need to set seg_len
13585 			 * to 0 to avoid data processing.  Otherwise just
13586 			 * drop the segment and send back an ACK.
13587 			 */
13588 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13589 				flags &= ~(TH_SYN | TH_URG);
13590 				seg_len = 0;
13591 				goto process_ack;
13592 			} else {
13593 				freemsg(mp);
13594 				goto ack_check;
13595 			}
13596 		}
13597 		/* Pitch out of window stuff off the end. */
13598 		rgap = seg_len;
13599 		mp2 = mp;
13600 		do {
13601 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13602 			    (uintptr_t)INT_MAX);
13603 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13604 			if (rgap < 0) {
13605 				mp2->b_wptr += rgap;
13606 				if ((mp1 = mp2->b_cont) != NULL) {
13607 					mp2->b_cont = NULL;
13608 					freemsg(mp1);
13609 				}
13610 				break;
13611 			}
13612 		} while ((mp2 = mp2->b_cont) != NULL);
13613 	}
13614 ok:;
13615 	/*
13616 	 * TCP should check ECN info for segments inside the window only.
13617 	 * Therefore the check should be done here.
13618 	 */
13619 	if (tcp->tcp_ecn_ok) {
13620 		if (flags & TH_CWR) {
13621 			tcp->tcp_ecn_echo_on = B_FALSE;
13622 		}
13623 		/*
13624 		 * Note that both ECN_CE and CWR can be set in the
13625 		 * same segment.  In this case, we once again turn
13626 		 * on ECN_ECHO.
13627 		 */
13628 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13629 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13630 
13631 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13632 				tcp->tcp_ecn_echo_on = B_TRUE;
13633 			}
13634 		} else {
13635 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13636 
13637 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13638 			    htonl(IPH_ECN_CE << 20)) {
13639 				tcp->tcp_ecn_echo_on = B_TRUE;
13640 			}
13641 		}
13642 	}
13643 
13644 	/*
13645 	 * Check whether we can update tcp_ts_recent.  This test is
13646 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13647 	 * Extensions for High Performance: An Update", Internet Draft.
13648 	 */
13649 	if (tcp->tcp_snd_ts_ok &&
13650 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13651 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13652 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13653 		tcp->tcp_last_rcv_lbolt = lbolt64;
13654 	}
13655 
13656 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13657 		/*
13658 		 * FIN in an out of order segment.  We record this in
13659 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13660 		 * Clear the FIN so that any check on FIN flag will fail.
13661 		 * Remember that FIN also counts in the sequence number
13662 		 * space.  So we need to ack out of order FIN only segments.
13663 		 */
13664 		if (flags & TH_FIN) {
13665 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13666 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13667 			flags &= ~TH_FIN;
13668 			flags |= TH_ACK_NEEDED;
13669 		}
13670 		if (seg_len > 0) {
13671 			/* Fill in the SACK blk list. */
13672 			if (tcp->tcp_snd_sack_ok) {
13673 				ASSERT(tcp->tcp_sack_info != NULL);
13674 				tcp_sack_insert(tcp->tcp_sack_list,
13675 				    seg_seq, seg_seq + seg_len,
13676 				    &(tcp->tcp_num_sack_blk));
13677 			}
13678 
13679 			/*
13680 			 * Attempt reassembly and see if we have something
13681 			 * ready to go.
13682 			 */
13683 			mp = tcp_reass(tcp, mp, seg_seq);
13684 			/* Always ack out of order packets */
13685 			flags |= TH_ACK_NEEDED | TH_PUSH;
13686 			if (mp) {
13687 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13688 				    (uintptr_t)INT_MAX);
13689 				seg_len = mp->b_cont ? msgdsize(mp) :
13690 				    (int)(mp->b_wptr - mp->b_rptr);
13691 				seg_seq = tcp->tcp_rnxt;
13692 				/*
13693 				 * A gap is filled and the seq num and len
13694 				 * of the gap match that of a previously
13695 				 * received FIN, put the FIN flag back in.
13696 				 */
13697 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13698 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13699 					flags |= TH_FIN;
13700 					tcp->tcp_valid_bits &=
13701 					    ~TCP_OFO_FIN_VALID;
13702 				}
13703 			} else {
13704 				/*
13705 				 * Keep going even with NULL mp.
13706 				 * There may be a useful ACK or something else
13707 				 * we don't want to miss.
13708 				 *
13709 				 * But TCP should not perform fast retransmit
13710 				 * because of the ack number.  TCP uses
13711 				 * seg_len == 0 to determine if it is a pure
13712 				 * ACK.  And this is not a pure ACK.
13713 				 */
13714 				seg_len = 0;
13715 				ofo_seg = B_TRUE;
13716 			}
13717 		}
13718 	} else if (seg_len > 0) {
13719 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
13720 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
13721 		/*
13722 		 * If an out of order FIN was received before, and the seq
13723 		 * num and len of the new segment match that of the FIN,
13724 		 * put the FIN flag back in.
13725 		 */
13726 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13727 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13728 			flags |= TH_FIN;
13729 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13730 		}
13731 	}
13732 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13733 	if (flags & TH_RST) {
13734 		freemsg(mp);
13735 		switch (tcp->tcp_state) {
13736 		case TCPS_SYN_RCVD:
13737 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13738 			break;
13739 		case TCPS_ESTABLISHED:
13740 		case TCPS_FIN_WAIT_1:
13741 		case TCPS_FIN_WAIT_2:
13742 		case TCPS_CLOSE_WAIT:
13743 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13744 			break;
13745 		case TCPS_CLOSING:
13746 		case TCPS_LAST_ACK:
13747 			(void) tcp_clean_death(tcp, 0, 16);
13748 			break;
13749 		default:
13750 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13751 			(void) tcp_clean_death(tcp, ENXIO, 17);
13752 			break;
13753 		}
13754 		return;
13755 	}
13756 	if (flags & TH_SYN) {
13757 		/*
13758 		 * See RFC 793, Page 71
13759 		 *
13760 		 * The seq number must be in the window as it should
13761 		 * be "fixed" above.  If it is outside window, it should
13762 		 * be already rejected.  Note that we allow seg_seq to be
13763 		 * rnxt + rwnd because we want to accept 0 window probe.
13764 		 */
13765 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13766 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13767 		freemsg(mp);
13768 		/*
13769 		 * If the ACK flag is not set, just use our snxt as the
13770 		 * seq number of the RST segment.
13771 		 */
13772 		if (!(flags & TH_ACK)) {
13773 			seg_ack = tcp->tcp_snxt;
13774 		}
13775 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13776 		    TH_RST|TH_ACK);
13777 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13778 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13779 		return;
13780 	}
13781 	/*
13782 	 * urp could be -1 when the urp field in the packet is 0
13783 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13784 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13785 	 */
13786 	if (flags & TH_URG && urp >= 0) {
13787 		if (!tcp->tcp_urp_last_valid ||
13788 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13789 			/*
13790 			 * If we haven't generated the signal yet for this
13791 			 * urgent pointer value, do it now.  Also, send up a
13792 			 * zero-length M_DATA indicating whether or not this is
13793 			 * the mark. The latter is not needed when a
13794 			 * T_EXDATA_IND is sent up. However, if there are
13795 			 * allocation failures this code relies on the sender
13796 			 * retransmitting and the socket code for determining
13797 			 * the mark should not block waiting for the peer to
13798 			 * transmit. Thus, for simplicity we always send up the
13799 			 * mark indication.
13800 			 */
13801 			mp1 = allocb(0, BPRI_MED);
13802 			if (mp1 == NULL) {
13803 				freemsg(mp);
13804 				return;
13805 			}
13806 			if (!TCP_IS_DETACHED(tcp) &&
13807 			    !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) {
13808 				/* Try again on the rexmit. */
13809 				freemsg(mp1);
13810 				freemsg(mp);
13811 				return;
13812 			}
13813 			/*
13814 			 * Mark with NOTMARKNEXT for now.
13815 			 * The code below will change this to MARKNEXT
13816 			 * if we are at the mark.
13817 			 *
13818 			 * If there are allocation failures (e.g. in dupmsg
13819 			 * below) the next time tcp_rput_data sees the urgent
13820 			 * segment it will send up the MSG*MARKNEXT message.
13821 			 */
13822 			mp1->b_flag |= MSGNOTMARKNEXT;
13823 			freemsg(tcp->tcp_urp_mark_mp);
13824 			tcp->tcp_urp_mark_mp = mp1;
13825 			flags |= TH_SEND_URP_MARK;
13826 #ifdef DEBUG
13827 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13828 			    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13829 			    "last %x, %s",
13830 			    seg_seq, urp, tcp->tcp_urp_last,
13831 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13832 #endif /* DEBUG */
13833 			tcp->tcp_urp_last_valid = B_TRUE;
13834 			tcp->tcp_urp_last = urp + seg_seq;
13835 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13836 			/*
13837 			 * An allocation failure prevented the previous
13838 			 * tcp_rput_data from sending up the allocated
13839 			 * MSG*MARKNEXT message - send it up this time
13840 			 * around.
13841 			 */
13842 			flags |= TH_SEND_URP_MARK;
13843 		}
13844 
13845 		/*
13846 		 * If the urgent byte is in this segment, make sure that it is
13847 		 * all by itself.  This makes it much easier to deal with the
13848 		 * possibility of an allocation failure on the T_exdata_ind.
13849 		 * Note that seg_len is the number of bytes in the segment, and
13850 		 * urp is the offset into the segment of the urgent byte.
13851 		 * urp < seg_len means that the urgent byte is in this segment.
13852 		 */
13853 		if (urp < seg_len) {
13854 			if (seg_len != 1) {
13855 				uint32_t  tmp_rnxt;
13856 				/*
13857 				 * Break it up and feed it back in.
13858 				 * Re-attach the IP header.
13859 				 */
13860 				mp->b_rptr = iphdr;
13861 				if (urp > 0) {
13862 					/*
13863 					 * There is stuff before the urgent
13864 					 * byte.
13865 					 */
13866 					mp1 = dupmsg(mp);
13867 					if (!mp1) {
13868 						/*
13869 						 * Trim from urgent byte on.
13870 						 * The rest will come back.
13871 						 */
13872 						(void) adjmsg(mp,
13873 						    urp - seg_len);
13874 						tcp_rput_data(connp,
13875 						    mp, NULL);
13876 						return;
13877 					}
13878 					(void) adjmsg(mp1, urp - seg_len);
13879 					/* Feed this piece back in. */
13880 					tmp_rnxt = tcp->tcp_rnxt;
13881 					tcp_rput_data(connp, mp1, NULL);
13882 					/*
13883 					 * If the data passed back in was not
13884 					 * processed (ie: bad ACK) sending
13885 					 * the remainder back in will cause a
13886 					 * loop. In this case, drop the
13887 					 * packet and let the sender try
13888 					 * sending a good packet.
13889 					 */
13890 					if (tmp_rnxt == tcp->tcp_rnxt) {
13891 						freemsg(mp);
13892 						return;
13893 					}
13894 				}
13895 				if (urp != seg_len - 1) {
13896 					uint32_t  tmp_rnxt;
13897 					/*
13898 					 * There is stuff after the urgent
13899 					 * byte.
13900 					 */
13901 					mp1 = dupmsg(mp);
13902 					if (!mp1) {
13903 						/*
13904 						 * Trim everything beyond the
13905 						 * urgent byte.  The rest will
13906 						 * come back.
13907 						 */
13908 						(void) adjmsg(mp,
13909 						    urp + 1 - seg_len);
13910 						tcp_rput_data(connp,
13911 						    mp, NULL);
13912 						return;
13913 					}
13914 					(void) adjmsg(mp1, urp + 1 - seg_len);
13915 					tmp_rnxt = tcp->tcp_rnxt;
13916 					tcp_rput_data(connp, mp1, NULL);
13917 					/*
13918 					 * If the data passed back in was not
13919 					 * processed (ie: bad ACK) sending
13920 					 * the remainder back in will cause a
13921 					 * loop. In this case, drop the
13922 					 * packet and let the sender try
13923 					 * sending a good packet.
13924 					 */
13925 					if (tmp_rnxt == tcp->tcp_rnxt) {
13926 						freemsg(mp);
13927 						return;
13928 					}
13929 				}
13930 				tcp_rput_data(connp, mp, NULL);
13931 				return;
13932 			}
13933 			/*
13934 			 * This segment contains only the urgent byte.  We
13935 			 * have to allocate the T_exdata_ind, if we can.
13936 			 */
13937 			if (!tcp->tcp_urp_mp) {
13938 				struct T_exdata_ind *tei;
13939 				mp1 = allocb(sizeof (struct T_exdata_ind),
13940 				    BPRI_MED);
13941 				if (!mp1) {
13942 					/*
13943 					 * Sigh... It'll be back.
13944 					 * Generate any MSG*MARK message now.
13945 					 */
13946 					freemsg(mp);
13947 					seg_len = 0;
13948 					if (flags & TH_SEND_URP_MARK) {
13949 
13950 
13951 						ASSERT(tcp->tcp_urp_mark_mp);
13952 						tcp->tcp_urp_mark_mp->b_flag &=
13953 						    ~MSGNOTMARKNEXT;
13954 						tcp->tcp_urp_mark_mp->b_flag |=
13955 						    MSGMARKNEXT;
13956 					}
13957 					goto ack_check;
13958 				}
13959 				mp1->b_datap->db_type = M_PROTO;
13960 				tei = (struct T_exdata_ind *)mp1->b_rptr;
13961 				tei->PRIM_type = T_EXDATA_IND;
13962 				tei->MORE_flag = 0;
13963 				mp1->b_wptr = (uchar_t *)&tei[1];
13964 				tcp->tcp_urp_mp = mp1;
13965 #ifdef DEBUG
13966 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13967 				    "tcp_rput: allocated exdata_ind %s",
13968 				    tcp_display(tcp, NULL,
13969 				    DISP_PORT_ONLY));
13970 #endif /* DEBUG */
13971 				/*
13972 				 * There is no need to send a separate MSG*MARK
13973 				 * message since the T_EXDATA_IND will be sent
13974 				 * now.
13975 				 */
13976 				flags &= ~TH_SEND_URP_MARK;
13977 				freemsg(tcp->tcp_urp_mark_mp);
13978 				tcp->tcp_urp_mark_mp = NULL;
13979 			}
13980 			/*
13981 			 * Now we are all set.  On the next putnext upstream,
13982 			 * tcp_urp_mp will be non-NULL and will get prepended
13983 			 * to what has to be this piece containing the urgent
13984 			 * byte.  If for any reason we abort this segment below,
13985 			 * if it comes back, we will have this ready, or it
13986 			 * will get blown off in close.
13987 			 */
13988 		} else if (urp == seg_len) {
13989 			/*
13990 			 * The urgent byte is the next byte after this sequence
13991 			 * number. If there is data it is marked with
13992 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
13993 			 * since it is not needed. Otherwise, if the code
13994 			 * above just allocated a zero-length tcp_urp_mark_mp
13995 			 * message, that message is tagged with MSGMARKNEXT.
13996 			 * Sending up these MSGMARKNEXT messages makes
13997 			 * SIOCATMARK work correctly even though
13998 			 * the T_EXDATA_IND will not be sent up until the
13999 			 * urgent byte arrives.
14000 			 */
14001 			if (seg_len != 0) {
14002 				flags |= TH_MARKNEXT_NEEDED;
14003 				freemsg(tcp->tcp_urp_mark_mp);
14004 				tcp->tcp_urp_mark_mp = NULL;
14005 				flags &= ~TH_SEND_URP_MARK;
14006 			} else if (tcp->tcp_urp_mark_mp != NULL) {
14007 				flags |= TH_SEND_URP_MARK;
14008 				tcp->tcp_urp_mark_mp->b_flag &=
14009 				    ~MSGNOTMARKNEXT;
14010 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
14011 			}
14012 #ifdef DEBUG
14013 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14014 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
14015 			    seg_len, flags,
14016 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14017 #endif /* DEBUG */
14018 		} else {
14019 			/* Data left until we hit mark */
14020 #ifdef DEBUG
14021 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14022 			    "tcp_rput: URP %d bytes left, %s",
14023 			    urp - seg_len, tcp_display(tcp, NULL,
14024 			    DISP_PORT_ONLY));
14025 #endif /* DEBUG */
14026 		}
14027 	}
14028 
14029 process_ack:
14030 	if (!(flags & TH_ACK)) {
14031 		freemsg(mp);
14032 		goto xmit_check;
14033 	}
14034 	}
14035 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
14036 
14037 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
14038 		tcp->tcp_ip_forward_progress = B_TRUE;
14039 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
14040 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
14041 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
14042 			/* 3-way handshake complete - pass up the T_CONN_IND */
14043 			tcp_t	*listener = tcp->tcp_listener;
14044 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
14045 
14046 			tcp->tcp_tconnind_started = B_TRUE;
14047 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
14048 			/*
14049 			 * We are here means eager is fine but it can
14050 			 * get a TH_RST at any point between now and till
14051 			 * accept completes and disappear. We need to
14052 			 * ensure that reference to eager is valid after
14053 			 * we get out of eager's perimeter. So we do
14054 			 * an extra refhold.
14055 			 */
14056 			CONN_INC_REF(connp);
14057 
14058 			/*
14059 			 * The listener also exists because of the refhold
14060 			 * done in tcp_conn_request. Its possible that it
14061 			 * might have closed. We will check that once we
14062 			 * get inside listeners context.
14063 			 */
14064 			CONN_INC_REF(listener->tcp_connp);
14065 			if (listener->tcp_connp->conn_sqp ==
14066 			    connp->conn_sqp) {
14067 				tcp_send_conn_ind(listener->tcp_connp, mp,
14068 				    listener->tcp_connp->conn_sqp);
14069 				CONN_DEC_REF(listener->tcp_connp);
14070 			} else if (!tcp->tcp_loopback) {
14071 				squeue_fill(listener->tcp_connp->conn_sqp, mp,
14072 				    tcp_send_conn_ind,
14073 				    listener->tcp_connp, SQTAG_TCP_CONN_IND);
14074 			} else {
14075 				squeue_enter(listener->tcp_connp->conn_sqp, mp,
14076 				    tcp_send_conn_ind, listener->tcp_connp,
14077 				    SQTAG_TCP_CONN_IND);
14078 			}
14079 		}
14080 
14081 		if (tcp->tcp_active_open) {
14082 			/*
14083 			 * We are seeing the final ack in the three way
14084 			 * hand shake of a active open'ed connection
14085 			 * so we must send up a T_CONN_CON
14086 			 */
14087 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
14088 				freemsg(mp);
14089 				return;
14090 			}
14091 			/*
14092 			 * Don't fuse the loopback endpoints for
14093 			 * simultaneous active opens.
14094 			 */
14095 			if (tcp->tcp_loopback) {
14096 				TCP_STAT(tcps, tcp_fusion_unfusable);
14097 				tcp->tcp_unfusable = B_TRUE;
14098 			}
14099 		}
14100 
14101 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
14102 		bytes_acked--;
14103 		/* SYN was acked - making progress */
14104 		if (tcp->tcp_ipversion == IPV6_VERSION)
14105 			tcp->tcp_ip_forward_progress = B_TRUE;
14106 
14107 		/*
14108 		 * If SYN was retransmitted, need to reset all
14109 		 * retransmission info as this segment will be
14110 		 * treated as a dup ACK.
14111 		 */
14112 		if (tcp->tcp_rexmit) {
14113 			tcp->tcp_rexmit = B_FALSE;
14114 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14115 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
14116 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14117 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14118 			tcp->tcp_ms_we_have_waited = 0;
14119 			tcp->tcp_cwnd = mss;
14120 		}
14121 
14122 		/*
14123 		 * We set the send window to zero here.
14124 		 * This is needed if there is data to be
14125 		 * processed already on the queue.
14126 		 * Later (at swnd_update label), the
14127 		 * "new_swnd > tcp_swnd" condition is satisfied
14128 		 * the XMIT_NEEDED flag is set in the current
14129 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
14130 		 * called if there is already data on queue in
14131 		 * this state.
14132 		 */
14133 		tcp->tcp_swnd = 0;
14134 
14135 		if (new_swnd > tcp->tcp_max_swnd)
14136 			tcp->tcp_max_swnd = new_swnd;
14137 		tcp->tcp_swl1 = seg_seq;
14138 		tcp->tcp_swl2 = seg_ack;
14139 		tcp->tcp_state = TCPS_ESTABLISHED;
14140 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
14141 
14142 		/* Fuse when both sides are in ESTABLISHED state */
14143 		if (tcp->tcp_loopback && do_tcp_fusion)
14144 			tcp_fuse(tcp, iphdr, tcph);
14145 
14146 	}
14147 	/* This code follows 4.4BSD-Lite2 mostly. */
14148 	if (bytes_acked < 0)
14149 		goto est;
14150 
14151 	/*
14152 	 * If TCP is ECN capable and the congestion experience bit is
14153 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
14154 	 * done once per window (or more loosely, per RTT).
14155 	 */
14156 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
14157 		tcp->tcp_cwr = B_FALSE;
14158 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
14159 		if (!tcp->tcp_cwr) {
14160 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
14161 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
14162 			tcp->tcp_cwnd = npkt * mss;
14163 			/*
14164 			 * If the cwnd is 0, use the timer to clock out
14165 			 * new segments.  This is required by the ECN spec.
14166 			 */
14167 			if (npkt == 0) {
14168 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14169 				/*
14170 				 * This makes sure that when the ACK comes
14171 				 * back, we will increase tcp_cwnd by 1 MSS.
14172 				 */
14173 				tcp->tcp_cwnd_cnt = 0;
14174 			}
14175 			tcp->tcp_cwr = B_TRUE;
14176 			/*
14177 			 * This marks the end of the current window of in
14178 			 * flight data.  That is why we don't use
14179 			 * tcp_suna + tcp_swnd.  Only data in flight can
14180 			 * provide ECN info.
14181 			 */
14182 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14183 			tcp->tcp_ecn_cwr_sent = B_FALSE;
14184 		}
14185 	}
14186 
14187 	mp1 = tcp->tcp_xmit_head;
14188 	if (bytes_acked == 0) {
14189 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
14190 			int dupack_cnt;
14191 
14192 			BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
14193 			/*
14194 			 * Fast retransmit.  When we have seen exactly three
14195 			 * identical ACKs while we have unacked data
14196 			 * outstanding we take it as a hint that our peer
14197 			 * dropped something.
14198 			 *
14199 			 * If TCP is retransmitting, don't do fast retransmit.
14200 			 */
14201 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
14202 			    ! tcp->tcp_rexmit) {
14203 				/* Do Limited Transmit */
14204 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
14205 				    tcps->tcps_dupack_fast_retransmit) {
14206 					/*
14207 					 * RFC 3042
14208 					 *
14209 					 * What we need to do is temporarily
14210 					 * increase tcp_cwnd so that new
14211 					 * data can be sent if it is allowed
14212 					 * by the receive window (tcp_rwnd).
14213 					 * tcp_wput_data() will take care of
14214 					 * the rest.
14215 					 *
14216 					 * If the connection is SACK capable,
14217 					 * only do limited xmit when there
14218 					 * is SACK info.
14219 					 *
14220 					 * Note how tcp_cwnd is incremented.
14221 					 * The first dup ACK will increase
14222 					 * it by 1 MSS.  The second dup ACK
14223 					 * will increase it by 2 MSS.  This
14224 					 * means that only 1 new segment will
14225 					 * be sent for each dup ACK.
14226 					 */
14227 					if (tcp->tcp_unsent > 0 &&
14228 					    (!tcp->tcp_snd_sack_ok ||
14229 					    (tcp->tcp_snd_sack_ok &&
14230 					    tcp->tcp_notsack_list != NULL))) {
14231 						tcp->tcp_cwnd += mss <<
14232 						    (tcp->tcp_dupack_cnt - 1);
14233 						flags |= TH_LIMIT_XMIT;
14234 					}
14235 				} else if (dupack_cnt ==
14236 				    tcps->tcps_dupack_fast_retransmit) {
14237 
14238 				/*
14239 				 * If we have reduced tcp_ssthresh
14240 				 * because of ECN, do not reduce it again
14241 				 * unless it is already one window of data
14242 				 * away.  After one window of data, tcp_cwr
14243 				 * should then be cleared.  Note that
14244 				 * for non ECN capable connection, tcp_cwr
14245 				 * should always be false.
14246 				 *
14247 				 * Adjust cwnd since the duplicate
14248 				 * ack indicates that a packet was
14249 				 * dropped (due to congestion.)
14250 				 */
14251 				if (!tcp->tcp_cwr) {
14252 					npkt = ((tcp->tcp_snxt -
14253 					    tcp->tcp_suna) >> 1) / mss;
14254 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14255 					    mss;
14256 					tcp->tcp_cwnd = (npkt +
14257 					    tcp->tcp_dupack_cnt) * mss;
14258 				}
14259 				if (tcp->tcp_ecn_ok) {
14260 					tcp->tcp_cwr = B_TRUE;
14261 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14262 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14263 				}
14264 
14265 				/*
14266 				 * We do Hoe's algorithm.  Refer to her
14267 				 * paper "Improving the Start-up Behavior
14268 				 * of a Congestion Control Scheme for TCP,"
14269 				 * appeared in SIGCOMM'96.
14270 				 *
14271 				 * Save highest seq no we have sent so far.
14272 				 * Be careful about the invisible FIN byte.
14273 				 */
14274 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14275 				    (tcp->tcp_unsent == 0)) {
14276 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14277 				} else {
14278 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14279 				}
14280 
14281 				/*
14282 				 * Do not allow bursty traffic during.
14283 				 * fast recovery.  Refer to Fall and Floyd's
14284 				 * paper "Simulation-based Comparisons of
14285 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14286 				 * This is a best current practise.
14287 				 */
14288 				tcp->tcp_snd_burst = TCP_CWND_SS;
14289 
14290 				/*
14291 				 * For SACK:
14292 				 * Calculate tcp_pipe, which is the
14293 				 * estimated number of bytes in
14294 				 * network.
14295 				 *
14296 				 * tcp_fack is the highest sack'ed seq num
14297 				 * TCP has received.
14298 				 *
14299 				 * tcp_pipe is explained in the above quoted
14300 				 * Fall and Floyd's paper.  tcp_fack is
14301 				 * explained in Mathis and Mahdavi's
14302 				 * "Forward Acknowledgment: Refining TCP
14303 				 * Congestion Control" in SIGCOMM '96.
14304 				 */
14305 				if (tcp->tcp_snd_sack_ok) {
14306 					ASSERT(tcp->tcp_sack_info != NULL);
14307 					if (tcp->tcp_notsack_list != NULL) {
14308 						tcp->tcp_pipe = tcp->tcp_snxt -
14309 						    tcp->tcp_fack;
14310 						tcp->tcp_sack_snxt = seg_ack;
14311 						flags |= TH_NEED_SACK_REXMIT;
14312 					} else {
14313 						/*
14314 						 * Always initialize tcp_pipe
14315 						 * even though we don't have
14316 						 * any SACK info.  If later
14317 						 * we get SACK info and
14318 						 * tcp_pipe is not initialized,
14319 						 * funny things will happen.
14320 						 */
14321 						tcp->tcp_pipe =
14322 						    tcp->tcp_cwnd_ssthresh;
14323 					}
14324 				} else {
14325 					flags |= TH_REXMIT_NEEDED;
14326 				} /* tcp_snd_sack_ok */
14327 
14328 				} else {
14329 					/*
14330 					 * Here we perform congestion
14331 					 * avoidance, but NOT slow start.
14332 					 * This is known as the Fast
14333 					 * Recovery Algorithm.
14334 					 */
14335 					if (tcp->tcp_snd_sack_ok &&
14336 					    tcp->tcp_notsack_list != NULL) {
14337 						flags |= TH_NEED_SACK_REXMIT;
14338 						tcp->tcp_pipe -= mss;
14339 						if (tcp->tcp_pipe < 0)
14340 							tcp->tcp_pipe = 0;
14341 					} else {
14342 					/*
14343 					 * We know that one more packet has
14344 					 * left the pipe thus we can update
14345 					 * cwnd.
14346 					 */
14347 					cwnd = tcp->tcp_cwnd + mss;
14348 					if (cwnd > tcp->tcp_cwnd_max)
14349 						cwnd = tcp->tcp_cwnd_max;
14350 					tcp->tcp_cwnd = cwnd;
14351 					if (tcp->tcp_unsent > 0)
14352 						flags |= TH_XMIT_NEEDED;
14353 					}
14354 				}
14355 			}
14356 		} else if (tcp->tcp_zero_win_probe) {
14357 			/*
14358 			 * If the window has opened, need to arrange
14359 			 * to send additional data.
14360 			 */
14361 			if (new_swnd != 0) {
14362 				/* tcp_suna != tcp_snxt */
14363 				/* Packet contains a window update */
14364 				BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate);
14365 				tcp->tcp_zero_win_probe = 0;
14366 				tcp->tcp_timer_backoff = 0;
14367 				tcp->tcp_ms_we_have_waited = 0;
14368 
14369 				/*
14370 				 * Transmit starting with tcp_suna since
14371 				 * the one byte probe is not ack'ed.
14372 				 * If TCP has sent more than one identical
14373 				 * probe, tcp_rexmit will be set.  That means
14374 				 * tcp_ss_rexmit() will send out the one
14375 				 * byte along with new data.  Otherwise,
14376 				 * fake the retransmission.
14377 				 */
14378 				flags |= TH_XMIT_NEEDED;
14379 				if (!tcp->tcp_rexmit) {
14380 					tcp->tcp_rexmit = B_TRUE;
14381 					tcp->tcp_dupack_cnt = 0;
14382 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14383 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14384 				}
14385 			}
14386 		}
14387 		goto swnd_update;
14388 	}
14389 
14390 	/*
14391 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14392 	 * If the ACK value acks something that we have not yet sent, it might
14393 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14394 	 * other side.
14395 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14396 	 * state is handled above, so we can always just drop the segment and
14397 	 * send an ACK here.
14398 	 *
14399 	 * Should we send ACKs in response to ACK only segments?
14400 	 */
14401 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14402 		BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent);
14403 		/* drop the received segment */
14404 		freemsg(mp);
14405 
14406 		/*
14407 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14408 		 * greater than 0, check if the number of such
14409 		 * bogus ACks is greater than that count.  If yes,
14410 		 * don't send back any ACK.  This prevents TCP from
14411 		 * getting into an ACK storm if somehow an attacker
14412 		 * successfully spoofs an acceptable segment to our
14413 		 * peer.
14414 		 */
14415 		if (tcp_drop_ack_unsent_cnt > 0 &&
14416 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
14417 			TCP_STAT(tcps, tcp_in_ack_unsent_drop);
14418 			return;
14419 		}
14420 		mp = tcp_ack_mp(tcp);
14421 		if (mp != NULL) {
14422 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
14423 			BUMP_LOCAL(tcp->tcp_obsegs);
14424 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
14425 			tcp_send_data(tcp, tcp->tcp_wq, mp);
14426 		}
14427 		return;
14428 	}
14429 
14430 	/*
14431 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14432 	 * blocks that are covered by this ACK.
14433 	 */
14434 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14435 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14436 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14437 	}
14438 
14439 	/*
14440 	 * If we got an ACK after fast retransmit, check to see
14441 	 * if it is a partial ACK.  If it is not and the congestion
14442 	 * window was inflated to account for the other side's
14443 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14444 	 */
14445 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
14446 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14447 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14448 			tcp->tcp_dupack_cnt = 0;
14449 			/*
14450 			 * Restore the orig tcp_cwnd_ssthresh after
14451 			 * fast retransmit phase.
14452 			 */
14453 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14454 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14455 			}
14456 			tcp->tcp_rexmit_max = seg_ack;
14457 			tcp->tcp_cwnd_cnt = 0;
14458 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14459 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14460 
14461 			/*
14462 			 * Remove all notsack info to avoid confusion with
14463 			 * the next fast retrasnmit/recovery phase.
14464 			 */
14465 			if (tcp->tcp_snd_sack_ok &&
14466 			    tcp->tcp_notsack_list != NULL) {
14467 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14468 			}
14469 		} else {
14470 			if (tcp->tcp_snd_sack_ok &&
14471 			    tcp->tcp_notsack_list != NULL) {
14472 				flags |= TH_NEED_SACK_REXMIT;
14473 				tcp->tcp_pipe -= mss;
14474 				if (tcp->tcp_pipe < 0)
14475 					tcp->tcp_pipe = 0;
14476 			} else {
14477 				/*
14478 				 * Hoe's algorithm:
14479 				 *
14480 				 * Retransmit the unack'ed segment and
14481 				 * restart fast recovery.  Note that we
14482 				 * need to scale back tcp_cwnd to the
14483 				 * original value when we started fast
14484 				 * recovery.  This is to prevent overly
14485 				 * aggressive behaviour in sending new
14486 				 * segments.
14487 				 */
14488 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14489 				    tcps->tcps_dupack_fast_retransmit * mss;
14490 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14491 				flags |= TH_REXMIT_NEEDED;
14492 			}
14493 		}
14494 	} else {
14495 		tcp->tcp_dupack_cnt = 0;
14496 		if (tcp->tcp_rexmit) {
14497 			/*
14498 			 * TCP is retranmitting.  If the ACK ack's all
14499 			 * outstanding data, update tcp_rexmit_max and
14500 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14501 			 * to the correct value.
14502 			 *
14503 			 * Note that SEQ_LEQ() is used.  This is to avoid
14504 			 * unnecessary fast retransmit caused by dup ACKs
14505 			 * received when TCP does slow start retransmission
14506 			 * after a time out.  During this phase, TCP may
14507 			 * send out segments which are already received.
14508 			 * This causes dup ACKs to be sent back.
14509 			 */
14510 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14511 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14512 					tcp->tcp_rexmit_nxt = seg_ack;
14513 				}
14514 				if (seg_ack != tcp->tcp_rexmit_max) {
14515 					flags |= TH_XMIT_NEEDED;
14516 				}
14517 			} else {
14518 				tcp->tcp_rexmit = B_FALSE;
14519 				tcp->tcp_xmit_zc_clean = B_FALSE;
14520 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14521 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14522 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14523 			}
14524 			tcp->tcp_ms_we_have_waited = 0;
14525 		}
14526 	}
14527 
14528 	BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs);
14529 	UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked);
14530 	tcp->tcp_suna = seg_ack;
14531 	if (tcp->tcp_zero_win_probe != 0) {
14532 		tcp->tcp_zero_win_probe = 0;
14533 		tcp->tcp_timer_backoff = 0;
14534 	}
14535 
14536 	/*
14537 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14538 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14539 	 * will not reach here.
14540 	 */
14541 	if (mp1 == NULL) {
14542 		goto fin_acked;
14543 	}
14544 
14545 	/*
14546 	 * Update the congestion window.
14547 	 *
14548 	 * If TCP is not ECN capable or TCP is ECN capable but the
14549 	 * congestion experience bit is not set, increase the tcp_cwnd as
14550 	 * usual.
14551 	 */
14552 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14553 		cwnd = tcp->tcp_cwnd;
14554 		add = mss;
14555 
14556 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14557 			/*
14558 			 * This is to prevent an increase of less than 1 MSS of
14559 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14560 			 * may send out tinygrams in order to preserve mblk
14561 			 * boundaries.
14562 			 *
14563 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14564 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14565 			 * increased by 1 MSS for every RTTs.
14566 			 */
14567 			if (tcp->tcp_cwnd_cnt <= 0) {
14568 				tcp->tcp_cwnd_cnt = cwnd + add;
14569 			} else {
14570 				tcp->tcp_cwnd_cnt -= add;
14571 				add = 0;
14572 			}
14573 		}
14574 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14575 	}
14576 
14577 	/* See if the latest urgent data has been acknowledged */
14578 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14579 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14580 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14581 
14582 	/* Can we update the RTT estimates? */
14583 	if (tcp->tcp_snd_ts_ok) {
14584 		/* Ignore zero timestamp echo-reply. */
14585 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14586 			tcp_set_rto(tcp, (int32_t)lbolt -
14587 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14588 		}
14589 
14590 		/* If needed, restart the timer. */
14591 		if (tcp->tcp_set_timer == 1) {
14592 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14593 			tcp->tcp_set_timer = 0;
14594 		}
14595 		/*
14596 		 * Update tcp_csuna in case the other side stops sending
14597 		 * us timestamps.
14598 		 */
14599 		tcp->tcp_csuna = tcp->tcp_snxt;
14600 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14601 		/*
14602 		 * An ACK sequence we haven't seen before, so get the RTT
14603 		 * and update the RTO. But first check if the timestamp is
14604 		 * valid to use.
14605 		 */
14606 		if ((mp1->b_next != NULL) &&
14607 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14608 			tcp_set_rto(tcp, (int32_t)lbolt -
14609 			    (int32_t)(intptr_t)mp1->b_prev);
14610 		else
14611 			BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14612 
14613 		/* Remeber the last sequence to be ACKed */
14614 		tcp->tcp_csuna = seg_ack;
14615 		if (tcp->tcp_set_timer == 1) {
14616 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14617 			tcp->tcp_set_timer = 0;
14618 		}
14619 	} else {
14620 		BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14621 	}
14622 
14623 	/* Eat acknowledged bytes off the xmit queue. */
14624 	for (;;) {
14625 		mblk_t	*mp2;
14626 		uchar_t	*wptr;
14627 
14628 		wptr = mp1->b_wptr;
14629 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14630 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14631 		if (bytes_acked < 0) {
14632 			mp1->b_rptr = wptr + bytes_acked;
14633 			/*
14634 			 * Set a new timestamp if all the bytes timed by the
14635 			 * old timestamp have been ack'ed.
14636 			 */
14637 			if (SEQ_GT(seg_ack,
14638 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14639 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14640 				mp1->b_next = NULL;
14641 			}
14642 			break;
14643 		}
14644 		mp1->b_next = NULL;
14645 		mp1->b_prev = NULL;
14646 		mp2 = mp1;
14647 		mp1 = mp1->b_cont;
14648 
14649 		/*
14650 		 * This notification is required for some zero-copy
14651 		 * clients to maintain a copy semantic. After the data
14652 		 * is ack'ed, client is safe to modify or reuse the buffer.
14653 		 */
14654 		if (tcp->tcp_snd_zcopy_aware &&
14655 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14656 			tcp_zcopy_notify(tcp);
14657 		freeb(mp2);
14658 		if (bytes_acked == 0) {
14659 			if (mp1 == NULL) {
14660 				/* Everything is ack'ed, clear the tail. */
14661 				tcp->tcp_xmit_tail = NULL;
14662 				/*
14663 				 * Cancel the timer unless we are still
14664 				 * waiting for an ACK for the FIN packet.
14665 				 */
14666 				if (tcp->tcp_timer_tid != 0 &&
14667 				    tcp->tcp_snxt == tcp->tcp_suna) {
14668 					(void) TCP_TIMER_CANCEL(tcp,
14669 					    tcp->tcp_timer_tid);
14670 					tcp->tcp_timer_tid = 0;
14671 				}
14672 				goto pre_swnd_update;
14673 			}
14674 			if (mp2 != tcp->tcp_xmit_tail)
14675 				break;
14676 			tcp->tcp_xmit_tail = mp1;
14677 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14678 			    (uintptr_t)INT_MAX);
14679 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14680 			    mp1->b_rptr);
14681 			break;
14682 		}
14683 		if (mp1 == NULL) {
14684 			/*
14685 			 * More was acked but there is nothing more
14686 			 * outstanding.  This means that the FIN was
14687 			 * just acked or that we're talking to a clown.
14688 			 */
14689 fin_acked:
14690 			ASSERT(tcp->tcp_fin_sent);
14691 			tcp->tcp_xmit_tail = NULL;
14692 			if (tcp->tcp_fin_sent) {
14693 				/* FIN was acked - making progress */
14694 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14695 				    !tcp->tcp_fin_acked)
14696 					tcp->tcp_ip_forward_progress = B_TRUE;
14697 				tcp->tcp_fin_acked = B_TRUE;
14698 				if (tcp->tcp_linger_tid != 0 &&
14699 				    TCP_TIMER_CANCEL(tcp,
14700 				    tcp->tcp_linger_tid) >= 0) {
14701 					tcp_stop_lingering(tcp);
14702 					freemsg(mp);
14703 					mp = NULL;
14704 				}
14705 			} else {
14706 				/*
14707 				 * We should never get here because
14708 				 * we have already checked that the
14709 				 * number of bytes ack'ed should be
14710 				 * smaller than or equal to what we
14711 				 * have sent so far (it is the
14712 				 * acceptability check of the ACK).
14713 				 * We can only get here if the send
14714 				 * queue is corrupted.
14715 				 *
14716 				 * Terminate the connection and
14717 				 * panic the system.  It is better
14718 				 * for us to panic instead of
14719 				 * continuing to avoid other disaster.
14720 				 */
14721 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14722 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14723 				panic("Memory corruption "
14724 				    "detected for connection %s.",
14725 				    tcp_display(tcp, NULL,
14726 				    DISP_ADDR_AND_PORT));
14727 				/*NOTREACHED*/
14728 			}
14729 			goto pre_swnd_update;
14730 		}
14731 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14732 	}
14733 	if (tcp->tcp_unsent) {
14734 		flags |= TH_XMIT_NEEDED;
14735 	}
14736 pre_swnd_update:
14737 	tcp->tcp_xmit_head = mp1;
14738 swnd_update:
14739 	/*
14740 	 * The following check is different from most other implementations.
14741 	 * For bi-directional transfer, when segments are dropped, the
14742 	 * "normal" check will not accept a window update in those
14743 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14744 	 * segments which are outside receiver's window.  As TCP accepts
14745 	 * the ack in those retransmitted segments, if the window update in
14746 	 * the same segment is not accepted, TCP will incorrectly calculates
14747 	 * that it can send more segments.  This can create a deadlock
14748 	 * with the receiver if its window becomes zero.
14749 	 */
14750 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14751 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14752 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14753 		/*
14754 		 * The criteria for update is:
14755 		 *
14756 		 * 1. the segment acknowledges some data.  Or
14757 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14758 		 * 3. the segment is not old and the advertised window is
14759 		 * larger than the previous advertised window.
14760 		 */
14761 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14762 			flags |= TH_XMIT_NEEDED;
14763 		tcp->tcp_swnd = new_swnd;
14764 		if (new_swnd > tcp->tcp_max_swnd)
14765 			tcp->tcp_max_swnd = new_swnd;
14766 		tcp->tcp_swl1 = seg_seq;
14767 		tcp->tcp_swl2 = seg_ack;
14768 	}
14769 est:
14770 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14771 
14772 		switch (tcp->tcp_state) {
14773 		case TCPS_FIN_WAIT_1:
14774 			if (tcp->tcp_fin_acked) {
14775 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14776 				/*
14777 				 * We implement the non-standard BSD/SunOS
14778 				 * FIN_WAIT_2 flushing algorithm.
14779 				 * If there is no user attached to this
14780 				 * TCP endpoint, then this TCP struct
14781 				 * could hang around forever in FIN_WAIT_2
14782 				 * state if the peer forgets to send us
14783 				 * a FIN.  To prevent this, we wait only
14784 				 * 2*MSL (a convenient time value) for
14785 				 * the FIN to arrive.  If it doesn't show up,
14786 				 * we flush the TCP endpoint.  This algorithm,
14787 				 * though a violation of RFC-793, has worked
14788 				 * for over 10 years in BSD systems.
14789 				 * Note: SunOS 4.x waits 675 seconds before
14790 				 * flushing the FIN_WAIT_2 connection.
14791 				 */
14792 				TCP_TIMER_RESTART(tcp,
14793 				    tcps->tcps_fin_wait_2_flush_interval);
14794 			}
14795 			break;
14796 		case TCPS_FIN_WAIT_2:
14797 			break;	/* Shutdown hook? */
14798 		case TCPS_LAST_ACK:
14799 			freemsg(mp);
14800 			if (tcp->tcp_fin_acked) {
14801 				(void) tcp_clean_death(tcp, 0, 19);
14802 				return;
14803 			}
14804 			goto xmit_check;
14805 		case TCPS_CLOSING:
14806 			if (tcp->tcp_fin_acked) {
14807 				tcp->tcp_state = TCPS_TIME_WAIT;
14808 				/*
14809 				 * Unconditionally clear the exclusive binding
14810 				 * bit so this TIME-WAIT connection won't
14811 				 * interfere with new ones.
14812 				 */
14813 				tcp->tcp_exclbind = 0;
14814 				if (!TCP_IS_DETACHED(tcp)) {
14815 					TCP_TIMER_RESTART(tcp,
14816 					    tcps->tcps_time_wait_interval);
14817 				} else {
14818 					tcp_time_wait_append(tcp);
14819 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14820 				}
14821 			}
14822 			/*FALLTHRU*/
14823 		case TCPS_CLOSE_WAIT:
14824 			freemsg(mp);
14825 			goto xmit_check;
14826 		default:
14827 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14828 			break;
14829 		}
14830 	}
14831 	if (flags & TH_FIN) {
14832 		/* Make sure we ack the fin */
14833 		flags |= TH_ACK_NEEDED;
14834 		if (!tcp->tcp_fin_rcvd) {
14835 			tcp->tcp_fin_rcvd = B_TRUE;
14836 			tcp->tcp_rnxt++;
14837 			tcph = tcp->tcp_tcph;
14838 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14839 
14840 			/*
14841 			 * Generate the ordrel_ind at the end unless we
14842 			 * are an eager guy.
14843 			 * In the eager case tcp_rsrv will do this when run
14844 			 * after tcp_accept is done.
14845 			 */
14846 			if (tcp->tcp_listener == NULL &&
14847 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14848 				flags |= TH_ORDREL_NEEDED;
14849 			switch (tcp->tcp_state) {
14850 			case TCPS_SYN_RCVD:
14851 			case TCPS_ESTABLISHED:
14852 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14853 				/* Keepalive? */
14854 				break;
14855 			case TCPS_FIN_WAIT_1:
14856 				if (!tcp->tcp_fin_acked) {
14857 					tcp->tcp_state = TCPS_CLOSING;
14858 					break;
14859 				}
14860 				/* FALLTHRU */
14861 			case TCPS_FIN_WAIT_2:
14862 				tcp->tcp_state = TCPS_TIME_WAIT;
14863 				/*
14864 				 * Unconditionally clear the exclusive binding
14865 				 * bit so this TIME-WAIT connection won't
14866 				 * interfere with new ones.
14867 				 */
14868 				tcp->tcp_exclbind = 0;
14869 				if (!TCP_IS_DETACHED(tcp)) {
14870 					TCP_TIMER_RESTART(tcp,
14871 					    tcps->tcps_time_wait_interval);
14872 				} else {
14873 					tcp_time_wait_append(tcp);
14874 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14875 				}
14876 				if (seg_len) {
14877 					/*
14878 					 * implies data piggybacked on FIN.
14879 					 * break to handle data.
14880 					 */
14881 					break;
14882 				}
14883 				freemsg(mp);
14884 				goto ack_check;
14885 			}
14886 		}
14887 	}
14888 	if (mp == NULL)
14889 		goto xmit_check;
14890 	if (seg_len == 0) {
14891 		freemsg(mp);
14892 		goto xmit_check;
14893 	}
14894 	if (mp->b_rptr == mp->b_wptr) {
14895 		/*
14896 		 * The header has been consumed, so we remove the
14897 		 * zero-length mblk here.
14898 		 */
14899 		mp1 = mp;
14900 		mp = mp->b_cont;
14901 		freeb(mp1);
14902 	}
14903 	tcph = tcp->tcp_tcph;
14904 	tcp->tcp_rack_cnt++;
14905 	{
14906 		uint32_t cur_max;
14907 
14908 		cur_max = tcp->tcp_rack_cur_max;
14909 		if (tcp->tcp_rack_cnt >= cur_max) {
14910 			/*
14911 			 * We have more unacked data than we should - send
14912 			 * an ACK now.
14913 			 */
14914 			flags |= TH_ACK_NEEDED;
14915 			cur_max++;
14916 			if (cur_max > tcp->tcp_rack_abs_max)
14917 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
14918 			else
14919 				tcp->tcp_rack_cur_max = cur_max;
14920 		} else if (TCP_IS_DETACHED(tcp)) {
14921 			/* We don't have an ACK timer for detached TCP. */
14922 			flags |= TH_ACK_NEEDED;
14923 		} else if (seg_len < mss) {
14924 			/*
14925 			 * If we get a segment that is less than an mss, and we
14926 			 * already have unacknowledged data, and the amount
14927 			 * unacknowledged is not a multiple of mss, then we
14928 			 * better generate an ACK now.  Otherwise, this may be
14929 			 * the tail piece of a transaction, and we would rather
14930 			 * wait for the response.
14931 			 */
14932 			uint32_t udif;
14933 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
14934 			    (uintptr_t)INT_MAX);
14935 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
14936 			if (udif && (udif % mss))
14937 				flags |= TH_ACK_NEEDED;
14938 			else
14939 				flags |= TH_ACK_TIMER_NEEDED;
14940 		} else {
14941 			/* Start delayed ack timer */
14942 			flags |= TH_ACK_TIMER_NEEDED;
14943 		}
14944 	}
14945 	tcp->tcp_rnxt += seg_len;
14946 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14947 
14948 	/* Update SACK list */
14949 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
14950 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
14951 		    &(tcp->tcp_num_sack_blk));
14952 	}
14953 
14954 	if (tcp->tcp_urp_mp) {
14955 		tcp->tcp_urp_mp->b_cont = mp;
14956 		mp = tcp->tcp_urp_mp;
14957 		tcp->tcp_urp_mp = NULL;
14958 		/* Ready for a new signal. */
14959 		tcp->tcp_urp_last_valid = B_FALSE;
14960 #ifdef DEBUG
14961 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14962 		    "tcp_rput: sending exdata_ind %s",
14963 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14964 #endif /* DEBUG */
14965 	}
14966 
14967 	/*
14968 	 * Check for ancillary data changes compared to last segment.
14969 	 */
14970 	if (tcp->tcp_ipv6_recvancillary != 0) {
14971 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
14972 		if (mp == NULL)
14973 			return;
14974 	}
14975 
14976 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
14977 		/*
14978 		 * Side queue inbound data until the accept happens.
14979 		 * tcp_accept/tcp_rput drains this when the accept happens.
14980 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
14981 		 * T_EXDATA_IND) it is queued on b_next.
14982 		 * XXX Make urgent data use this. Requires:
14983 		 *	Removing tcp_listener check for TH_URG
14984 		 *	Making M_PCPROTO and MARK messages skip the eager case
14985 		 */
14986 
14987 		if (tcp->tcp_kssl_pending) {
14988 			DTRACE_PROBE1(kssl_mblk__ksslinput_pending,
14989 			    mblk_t *, mp);
14990 			tcp_kssl_input(tcp, mp);
14991 		} else {
14992 			tcp_rcv_enqueue(tcp, mp, seg_len);
14993 		}
14994 	} else {
14995 		if (mp->b_datap->db_type != M_DATA ||
14996 		    (flags & TH_MARKNEXT_NEEDED)) {
14997 			if (tcp->tcp_rcv_list != NULL) {
14998 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14999 			}
15000 			ASSERT(tcp->tcp_rcv_list == NULL ||
15001 			    tcp->tcp_fused_sigurg);
15002 			if (flags & TH_MARKNEXT_NEEDED) {
15003 #ifdef DEBUG
15004 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15005 				    "tcp_rput: sending MSGMARKNEXT %s",
15006 				    tcp_display(tcp, NULL,
15007 				    DISP_PORT_ONLY));
15008 #endif /* DEBUG */
15009 				mp->b_flag |= MSGMARKNEXT;
15010 				flags &= ~TH_MARKNEXT_NEEDED;
15011 			}
15012 
15013 			/* Does this need SSL processing first? */
15014 			if ((tcp->tcp_kssl_ctx != NULL) &&
15015 			    (DB_TYPE(mp) == M_DATA)) {
15016 				DTRACE_PROBE1(kssl_mblk__ksslinput_data1,
15017 				    mblk_t *, mp);
15018 				tcp_kssl_input(tcp, mp);
15019 			} else {
15020 				putnext(tcp->tcp_rq, mp);
15021 				if (!canputnext(tcp->tcp_rq))
15022 					tcp->tcp_rwnd -= seg_len;
15023 			}
15024 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
15025 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
15026 			if (tcp->tcp_rcv_list != NULL) {
15027 				/*
15028 				 * Enqueue the new segment first and then
15029 				 * call tcp_rcv_drain() to send all data
15030 				 * up.  The other way to do this is to
15031 				 * send all queued data up and then call
15032 				 * putnext() to send the new segment up.
15033 				 * This way can remove the else part later
15034 				 * on.
15035 				 *
15036 				 * We don't this to avoid one more call to
15037 				 * canputnext() as tcp_rcv_drain() needs to
15038 				 * call canputnext().
15039 				 */
15040 				tcp_rcv_enqueue(tcp, mp, seg_len);
15041 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15042 			} else {
15043 				/* Does this need SSL processing first? */
15044 				if ((tcp->tcp_kssl_ctx != NULL) &&
15045 				    (DB_TYPE(mp) == M_DATA)) {
15046 					DTRACE_PROBE1(
15047 					    kssl_mblk__ksslinput_data2,
15048 					    mblk_t *, mp);
15049 					tcp_kssl_input(tcp, mp);
15050 				} else {
15051 					putnext(tcp->tcp_rq, mp);
15052 					if (!canputnext(tcp->tcp_rq))
15053 						tcp->tcp_rwnd -= seg_len;
15054 				}
15055 			}
15056 		} else {
15057 			/*
15058 			 * Enqueue all packets when processing an mblk
15059 			 * from the co queue and also enqueue normal packets.
15060 			 * For packets which belong to SSL stream do SSL
15061 			 * processing first.
15062 			 */
15063 			if ((tcp->tcp_kssl_ctx != NULL) &&
15064 			    (DB_TYPE(mp) == M_DATA)) {
15065 				DTRACE_PROBE1(kssl_mblk__tcpksslin3,
15066 				    mblk_t *, mp);
15067 				tcp_kssl_input(tcp, mp);
15068 			} else {
15069 				tcp_rcv_enqueue(tcp, mp, seg_len);
15070 			}
15071 		}
15072 		/*
15073 		 * Make sure the timer is running if we have data waiting
15074 		 * for a push bit. This provides resiliency against
15075 		 * implementations that do not correctly generate push bits.
15076 		 */
15077 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
15078 			/*
15079 			 * The connection may be closed at this point, so don't
15080 			 * do anything for a detached tcp.
15081 			 */
15082 			if (!TCP_IS_DETACHED(tcp))
15083 				tcp->tcp_push_tid = TCP_TIMER(tcp,
15084 				    tcp_push_timer,
15085 				    MSEC_TO_TICK(
15086 				    tcps->tcps_push_timer_interval));
15087 		}
15088 	}
15089 xmit_check:
15090 	/* Is there anything left to do? */
15091 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15092 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
15093 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
15094 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15095 		goto done;
15096 
15097 	/* Any transmit work to do and a non-zero window? */
15098 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
15099 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
15100 		if (flags & TH_REXMIT_NEEDED) {
15101 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
15102 
15103 			BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans);
15104 			if (snd_size > mss)
15105 				snd_size = mss;
15106 			if (snd_size > tcp->tcp_swnd)
15107 				snd_size = tcp->tcp_swnd;
15108 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
15109 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
15110 			    B_TRUE);
15111 
15112 			if (mp1 != NULL) {
15113 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15114 				tcp->tcp_csuna = tcp->tcp_snxt;
15115 				BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
15116 				UPDATE_MIB(&tcps->tcps_mib,
15117 				    tcpRetransBytes, snd_size);
15118 				TCP_RECORD_TRACE(tcp, mp1,
15119 				    TCP_TRACE_SEND_PKT);
15120 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
15121 			}
15122 		}
15123 		if (flags & TH_NEED_SACK_REXMIT) {
15124 			tcp_sack_rxmit(tcp, &flags);
15125 		}
15126 		/*
15127 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
15128 		 * out new segment.  Note that tcp_rexmit should not be
15129 		 * set, otherwise TH_LIMIT_XMIT should not be set.
15130 		 */
15131 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
15132 			if (!tcp->tcp_rexmit) {
15133 				tcp_wput_data(tcp, NULL, B_FALSE);
15134 			} else {
15135 				tcp_ss_rexmit(tcp);
15136 			}
15137 		}
15138 		/*
15139 		 * Adjust tcp_cwnd back to normal value after sending
15140 		 * new data segments.
15141 		 */
15142 		if (flags & TH_LIMIT_XMIT) {
15143 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
15144 			/*
15145 			 * This will restart the timer.  Restarting the
15146 			 * timer is used to avoid a timeout before the
15147 			 * limited transmitted segment's ACK gets back.
15148 			 */
15149 			if (tcp->tcp_xmit_head != NULL)
15150 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15151 		}
15152 
15153 		/* Anything more to do? */
15154 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
15155 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15156 			goto done;
15157 	}
15158 ack_check:
15159 	if (flags & TH_SEND_URP_MARK) {
15160 		ASSERT(tcp->tcp_urp_mark_mp);
15161 		/*
15162 		 * Send up any queued data and then send the mark message
15163 		 */
15164 		if (tcp->tcp_rcv_list != NULL) {
15165 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15166 		}
15167 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15168 
15169 		mp1 = tcp->tcp_urp_mark_mp;
15170 		tcp->tcp_urp_mark_mp = NULL;
15171 #ifdef DEBUG
15172 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15173 		    "tcp_rput: sending zero-length %s %s",
15174 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
15175 		    "MSGNOTMARKNEXT"),
15176 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15177 #endif /* DEBUG */
15178 		putnext(tcp->tcp_rq, mp1);
15179 		flags &= ~TH_SEND_URP_MARK;
15180 	}
15181 	if (flags & TH_ACK_NEEDED) {
15182 		/*
15183 		 * Time to send an ack for some reason.
15184 		 */
15185 		mp1 = tcp_ack_mp(tcp);
15186 
15187 		if (mp1 != NULL) {
15188 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
15189 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
15190 			BUMP_LOCAL(tcp->tcp_obsegs);
15191 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
15192 		}
15193 		if (tcp->tcp_ack_tid != 0) {
15194 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
15195 			tcp->tcp_ack_tid = 0;
15196 		}
15197 	}
15198 	if (flags & TH_ACK_TIMER_NEEDED) {
15199 		/*
15200 		 * Arrange for deferred ACK or push wait timeout.
15201 		 * Start timer if it is not already running.
15202 		 */
15203 		if (tcp->tcp_ack_tid == 0) {
15204 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
15205 			    MSEC_TO_TICK(tcp->tcp_localnet ?
15206 			    (clock_t)tcps->tcps_local_dack_interval :
15207 			    (clock_t)tcps->tcps_deferred_ack_interval));
15208 		}
15209 	}
15210 	if (flags & TH_ORDREL_NEEDED) {
15211 		/*
15212 		 * Send up the ordrel_ind unless we are an eager guy.
15213 		 * In the eager case tcp_rsrv will do this when run
15214 		 * after tcp_accept is done.
15215 		 */
15216 		ASSERT(tcp->tcp_listener == NULL);
15217 		if (tcp->tcp_rcv_list != NULL) {
15218 			/*
15219 			 * Push any mblk(s) enqueued from co processing.
15220 			 */
15221 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15222 		}
15223 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15224 		if ((mp1 = mi_tpi_ordrel_ind()) != NULL) {
15225 			tcp->tcp_ordrel_done = B_TRUE;
15226 			putnext(tcp->tcp_rq, mp1);
15227 			if (tcp->tcp_deferred_clean_death) {
15228 				/*
15229 				 * tcp_clean_death was deferred
15230 				 * for T_ORDREL_IND - do it now
15231 				 */
15232 				(void) tcp_clean_death(tcp,
15233 				    tcp->tcp_client_errno, 20);
15234 				tcp->tcp_deferred_clean_death =	B_FALSE;
15235 			}
15236 		} else {
15237 			/*
15238 			 * Run the orderly release in the
15239 			 * service routine.
15240 			 */
15241 			qenable(tcp->tcp_rq);
15242 			/*
15243 			 * Caveat(XXX): The machine may be so
15244 			 * overloaded that tcp_rsrv() is not scheduled
15245 			 * until after the endpoint has transitioned
15246 			 * to TCPS_TIME_WAIT
15247 			 * and tcp_time_wait_interval expires. Then
15248 			 * tcp_timer() will blow away state in tcp_t
15249 			 * and T_ORDREL_IND will never be delivered
15250 			 * upstream. Unlikely but potentially
15251 			 * a problem.
15252 			 */
15253 		}
15254 	}
15255 done:
15256 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15257 }
15258 
15259 /*
15260  * This function does PAWS protection check. Returns B_TRUE if the
15261  * segment passes the PAWS test, else returns B_FALSE.
15262  */
15263 boolean_t
15264 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15265 {
15266 	uint8_t	flags;
15267 	int	options;
15268 	uint8_t *up;
15269 
15270 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15271 	/*
15272 	 * If timestamp option is aligned nicely, get values inline,
15273 	 * otherwise call general routine to parse.  Only do that
15274 	 * if timestamp is the only option.
15275 	 */
15276 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15277 	    TCPOPT_REAL_TS_LEN &&
15278 	    OK_32PTR((up = ((uint8_t *)tcph) +
15279 	    TCP_MIN_HEADER_LENGTH)) &&
15280 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15281 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15282 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15283 
15284 		options = TCP_OPT_TSTAMP_PRESENT;
15285 	} else {
15286 		if (tcp->tcp_snd_sack_ok) {
15287 			tcpoptp->tcp = tcp;
15288 		} else {
15289 			tcpoptp->tcp = NULL;
15290 		}
15291 		options = tcp_parse_options(tcph, tcpoptp);
15292 	}
15293 
15294 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15295 		/*
15296 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15297 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15298 		 */
15299 		if ((flags & TH_RST) == 0 &&
15300 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15301 		    tcp->tcp_ts_recent)) {
15302 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15303 			    PAWS_TIMEOUT)) {
15304 				/* This segment is not acceptable. */
15305 				return (B_FALSE);
15306 			} else {
15307 				/*
15308 				 * Connection has been idle for
15309 				 * too long.  Reset the timestamp
15310 				 * and assume the segment is valid.
15311 				 */
15312 				tcp->tcp_ts_recent =
15313 				    tcpoptp->tcp_opt_ts_val;
15314 			}
15315 		}
15316 	} else {
15317 		/*
15318 		 * If we don't get a timestamp on every packet, we
15319 		 * figure we can't really trust 'em, so we stop sending
15320 		 * and parsing them.
15321 		 */
15322 		tcp->tcp_snd_ts_ok = B_FALSE;
15323 
15324 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15325 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15326 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15327 		/*
15328 		 * Adjust the tcp_mss accordingly. We also need to
15329 		 * adjust tcp_cwnd here in accordance with the new mss.
15330 		 * But we avoid doing a slow start here so as to not
15331 		 * to lose on the transfer rate built up so far.
15332 		 */
15333 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE);
15334 		if (tcp->tcp_snd_sack_ok) {
15335 			ASSERT(tcp->tcp_sack_info != NULL);
15336 			tcp->tcp_max_sack_blk = 4;
15337 		}
15338 	}
15339 	return (B_TRUE);
15340 }
15341 
15342 /*
15343  * Attach ancillary data to a received TCP segments for the
15344  * ancillary pieces requested by the application that are
15345  * different than they were in the previous data segment.
15346  *
15347  * Save the "current" values once memory allocation is ok so that
15348  * when memory allocation fails we can just wait for the next data segment.
15349  */
15350 static mblk_t *
15351 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15352 {
15353 	struct T_optdata_ind *todi;
15354 	int optlen;
15355 	uchar_t *optptr;
15356 	struct T_opthdr *toh;
15357 	uint_t addflag;	/* Which pieces to add */
15358 	mblk_t *mp1;
15359 
15360 	optlen = 0;
15361 	addflag = 0;
15362 	/* If app asked for pktinfo and the index has changed ... */
15363 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15364 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15365 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15366 		optlen += sizeof (struct T_opthdr) +
15367 		    sizeof (struct in6_pktinfo);
15368 		addflag |= TCP_IPV6_RECVPKTINFO;
15369 	}
15370 	/* If app asked for hoplimit and it has changed ... */
15371 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15372 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15373 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15374 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15375 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15376 	}
15377 	/* If app asked for tclass and it has changed ... */
15378 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15379 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15380 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15381 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15382 		addflag |= TCP_IPV6_RECVTCLASS;
15383 	}
15384 	/*
15385 	 * If app asked for hopbyhop headers and it has changed ...
15386 	 * For security labels, note that (1) security labels can't change on
15387 	 * a connected socket at all, (2) we're connected to at most one peer,
15388 	 * (3) if anything changes, then it must be some other extra option.
15389 	 */
15390 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15391 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15392 	    (ipp->ipp_fields & IPPF_HOPOPTS),
15393 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15394 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
15395 		    tcp->tcp_label_len;
15396 		addflag |= TCP_IPV6_RECVHOPOPTS;
15397 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
15398 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
15399 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15400 			return (mp);
15401 	}
15402 	/* If app asked for dst headers before routing headers ... */
15403 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15404 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15405 	    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15406 	    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15407 		optlen += sizeof (struct T_opthdr) +
15408 		    ipp->ipp_rtdstoptslen;
15409 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15410 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
15411 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
15412 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15413 			return (mp);
15414 	}
15415 	/* If app asked for routing headers and it has changed ... */
15416 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15417 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15418 	    (ipp->ipp_fields & IPPF_RTHDR),
15419 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15420 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15421 		addflag |= TCP_IPV6_RECVRTHDR;
15422 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
15423 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
15424 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15425 			return (mp);
15426 	}
15427 	/* If app asked for dest headers and it has changed ... */
15428 	if ((tcp->tcp_ipv6_recvancillary &
15429 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15430 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15431 	    (ipp->ipp_fields & IPPF_DSTOPTS),
15432 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15433 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15434 		addflag |= TCP_IPV6_RECVDSTOPTS;
15435 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
15436 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
15437 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15438 			return (mp);
15439 	}
15440 
15441 	if (optlen == 0) {
15442 		/* Nothing to add */
15443 		return (mp);
15444 	}
15445 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15446 	if (mp1 == NULL) {
15447 		/*
15448 		 * Defer sending ancillary data until the next TCP segment
15449 		 * arrives.
15450 		 */
15451 		return (mp);
15452 	}
15453 	mp1->b_cont = mp;
15454 	mp = mp1;
15455 	mp->b_wptr += sizeof (*todi) + optlen;
15456 	mp->b_datap->db_type = M_PROTO;
15457 	todi = (struct T_optdata_ind *)mp->b_rptr;
15458 	todi->PRIM_type = T_OPTDATA_IND;
15459 	todi->DATA_flag = 1;	/* MORE data */
15460 	todi->OPT_length = optlen;
15461 	todi->OPT_offset = sizeof (*todi);
15462 	optptr = (uchar_t *)&todi[1];
15463 	/*
15464 	 * If app asked for pktinfo and the index has changed ...
15465 	 * Note that the local address never changes for the connection.
15466 	 */
15467 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15468 		struct in6_pktinfo *pkti;
15469 
15470 		toh = (struct T_opthdr *)optptr;
15471 		toh->level = IPPROTO_IPV6;
15472 		toh->name = IPV6_PKTINFO;
15473 		toh->len = sizeof (*toh) + sizeof (*pkti);
15474 		toh->status = 0;
15475 		optptr += sizeof (*toh);
15476 		pkti = (struct in6_pktinfo *)optptr;
15477 		if (tcp->tcp_ipversion == IPV6_VERSION)
15478 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15479 		else
15480 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15481 			    &pkti->ipi6_addr);
15482 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15483 		optptr += sizeof (*pkti);
15484 		ASSERT(OK_32PTR(optptr));
15485 		/* Save as "last" value */
15486 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15487 	}
15488 	/* If app asked for hoplimit and it has changed ... */
15489 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15490 		toh = (struct T_opthdr *)optptr;
15491 		toh->level = IPPROTO_IPV6;
15492 		toh->name = IPV6_HOPLIMIT;
15493 		toh->len = sizeof (*toh) + sizeof (uint_t);
15494 		toh->status = 0;
15495 		optptr += sizeof (*toh);
15496 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15497 		optptr += sizeof (uint_t);
15498 		ASSERT(OK_32PTR(optptr));
15499 		/* Save as "last" value */
15500 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15501 	}
15502 	/* If app asked for tclass and it has changed ... */
15503 	if (addflag & TCP_IPV6_RECVTCLASS) {
15504 		toh = (struct T_opthdr *)optptr;
15505 		toh->level = IPPROTO_IPV6;
15506 		toh->name = IPV6_TCLASS;
15507 		toh->len = sizeof (*toh) + sizeof (uint_t);
15508 		toh->status = 0;
15509 		optptr += sizeof (*toh);
15510 		*(uint_t *)optptr = ipp->ipp_tclass;
15511 		optptr += sizeof (uint_t);
15512 		ASSERT(OK_32PTR(optptr));
15513 		/* Save as "last" value */
15514 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15515 	}
15516 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15517 		toh = (struct T_opthdr *)optptr;
15518 		toh->level = IPPROTO_IPV6;
15519 		toh->name = IPV6_HOPOPTS;
15520 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15521 		    tcp->tcp_label_len;
15522 		toh->status = 0;
15523 		optptr += sizeof (*toh);
15524 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15525 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15526 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15527 		ASSERT(OK_32PTR(optptr));
15528 		/* Save as last value */
15529 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15530 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15531 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15532 	}
15533 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15534 		toh = (struct T_opthdr *)optptr;
15535 		toh->level = IPPROTO_IPV6;
15536 		toh->name = IPV6_RTHDRDSTOPTS;
15537 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15538 		toh->status = 0;
15539 		optptr += sizeof (*toh);
15540 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15541 		optptr += ipp->ipp_rtdstoptslen;
15542 		ASSERT(OK_32PTR(optptr));
15543 		/* Save as last value */
15544 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15545 		    &tcp->tcp_rtdstoptslen,
15546 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15547 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15548 	}
15549 	if (addflag & TCP_IPV6_RECVRTHDR) {
15550 		toh = (struct T_opthdr *)optptr;
15551 		toh->level = IPPROTO_IPV6;
15552 		toh->name = IPV6_RTHDR;
15553 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15554 		toh->status = 0;
15555 		optptr += sizeof (*toh);
15556 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15557 		optptr += ipp->ipp_rthdrlen;
15558 		ASSERT(OK_32PTR(optptr));
15559 		/* Save as last value */
15560 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15561 		    (ipp->ipp_fields & IPPF_RTHDR),
15562 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15563 	}
15564 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15565 		toh = (struct T_opthdr *)optptr;
15566 		toh->level = IPPROTO_IPV6;
15567 		toh->name = IPV6_DSTOPTS;
15568 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15569 		toh->status = 0;
15570 		optptr += sizeof (*toh);
15571 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15572 		optptr += ipp->ipp_dstoptslen;
15573 		ASSERT(OK_32PTR(optptr));
15574 		/* Save as last value */
15575 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15576 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15577 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15578 	}
15579 	ASSERT(optptr == mp->b_wptr);
15580 	return (mp);
15581 }
15582 
15583 
15584 /*
15585  * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK
15586  * or a "bad" IRE detected by tcp_adapt_ire.
15587  * We can't tell if the failure was due to the laddr or the faddr
15588  * thus we clear out all addresses and ports.
15589  */
15590 static void
15591 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error)
15592 {
15593 	queue_t	*q = tcp->tcp_rq;
15594 	tcph_t	*tcph;
15595 	struct T_error_ack *tea;
15596 	conn_t	*connp = tcp->tcp_connp;
15597 
15598 
15599 	ASSERT(mp->b_datap->db_type == M_PCPROTO);
15600 
15601 	if (mp->b_cont) {
15602 		freemsg(mp->b_cont);
15603 		mp->b_cont = NULL;
15604 	}
15605 	tea = (struct T_error_ack *)mp->b_rptr;
15606 	switch (tea->PRIM_type) {
15607 	case T_BIND_ACK:
15608 		/*
15609 		 * Need to unbind with classifier since we were just told that
15610 		 * our bind succeeded.
15611 		 */
15612 		tcp->tcp_hard_bound = B_FALSE;
15613 		tcp->tcp_hard_binding = B_FALSE;
15614 
15615 		ipcl_hash_remove(connp);
15616 		/* Reuse the mblk if possible */
15617 		ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
15618 		    sizeof (*tea));
15619 		mp->b_rptr = mp->b_datap->db_base;
15620 		mp->b_wptr = mp->b_rptr + sizeof (*tea);
15621 		tea = (struct T_error_ack *)mp->b_rptr;
15622 		tea->PRIM_type = T_ERROR_ACK;
15623 		tea->TLI_error = TSYSERR;
15624 		tea->UNIX_error = error;
15625 		if (tcp->tcp_state >= TCPS_SYN_SENT) {
15626 			tea->ERROR_prim = T_CONN_REQ;
15627 		} else {
15628 			tea->ERROR_prim = O_T_BIND_REQ;
15629 		}
15630 		break;
15631 
15632 	case T_ERROR_ACK:
15633 		if (tcp->tcp_state >= TCPS_SYN_SENT)
15634 			tea->ERROR_prim = T_CONN_REQ;
15635 		break;
15636 	default:
15637 		panic("tcp_bind_failed: unexpected TPI type");
15638 		/*NOTREACHED*/
15639 	}
15640 
15641 	tcp->tcp_state = TCPS_IDLE;
15642 	if (tcp->tcp_ipversion == IPV4_VERSION)
15643 		tcp->tcp_ipha->ipha_src = 0;
15644 	else
15645 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
15646 	/*
15647 	 * Copy of the src addr. in tcp_t is needed since
15648 	 * the lookup funcs. can only look at tcp_t
15649 	 */
15650 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
15651 
15652 	tcph = tcp->tcp_tcph;
15653 	tcph->th_lport[0] = 0;
15654 	tcph->th_lport[1] = 0;
15655 	tcp_bind_hash_remove(tcp);
15656 	bzero(&connp->u_port, sizeof (connp->u_port));
15657 	/* blow away saved option results if any */
15658 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
15659 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
15660 
15661 	conn_delete_ire(tcp->tcp_connp, NULL);
15662 	putnext(q, mp);
15663 }
15664 
15665 /*
15666  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15667  * messages.
15668  */
15669 void
15670 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15671 {
15672 	mblk_t	*mp1;
15673 	uchar_t	*rptr = mp->b_rptr;
15674 	queue_t	*q = tcp->tcp_rq;
15675 	struct T_error_ack *tea;
15676 	uint32_t mss;
15677 	mblk_t *syn_mp;
15678 	mblk_t *mdti;
15679 	mblk_t *lsoi;
15680 	int	retval;
15681 	mblk_t *ire_mp;
15682 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15683 
15684 	switch (mp->b_datap->db_type) {
15685 	case M_PROTO:
15686 	case M_PCPROTO:
15687 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15688 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15689 			break;
15690 		tea = (struct T_error_ack *)rptr;
15691 		switch (tea->PRIM_type) {
15692 		case T_BIND_ACK:
15693 			/*
15694 			 * Adapt Multidata information, if any.  The
15695 			 * following tcp_mdt_update routine will free
15696 			 * the message.
15697 			 */
15698 			if ((mdti = tcp_mdt_info_mp(mp)) != NULL) {
15699 				tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
15700 				    b_rptr)->mdt_capab, B_TRUE);
15701 				freemsg(mdti);
15702 			}
15703 
15704 			/*
15705 			 * Check to update LSO information with tcp, and
15706 			 * tcp_lso_update routine will free the message.
15707 			 */
15708 			if ((lsoi = tcp_lso_info_mp(mp)) != NULL) {
15709 				tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi->
15710 				    b_rptr)->lso_capab);
15711 				freemsg(lsoi);
15712 			}
15713 
15714 			/* Get the IRE, if we had requested for it */
15715 			ire_mp = tcp_ire_mp(mp);
15716 
15717 			if (tcp->tcp_hard_binding) {
15718 				tcp->tcp_hard_binding = B_FALSE;
15719 				tcp->tcp_hard_bound = B_TRUE;
15720 				CL_INET_CONNECT(tcp);
15721 			} else {
15722 				if (ire_mp != NULL)
15723 					freeb(ire_mp);
15724 				goto after_syn_sent;
15725 			}
15726 
15727 			retval = tcp_adapt_ire(tcp, ire_mp);
15728 			if (ire_mp != NULL)
15729 				freeb(ire_mp);
15730 			if (retval == 0) {
15731 				tcp_bind_failed(tcp, mp,
15732 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15733 				    ENETUNREACH : EADDRNOTAVAIL));
15734 				return;
15735 			}
15736 			/*
15737 			 * Don't let an endpoint connect to itself.
15738 			 * Also checked in tcp_connect() but that
15739 			 * check can't handle the case when the
15740 			 * local IP address is INADDR_ANY.
15741 			 */
15742 			if (tcp->tcp_ipversion == IPV4_VERSION) {
15743 				if ((tcp->tcp_ipha->ipha_dst ==
15744 				    tcp->tcp_ipha->ipha_src) &&
15745 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15746 				    tcp->tcp_tcph->th_fport))) {
15747 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15748 					return;
15749 				}
15750 			} else {
15751 				if (IN6_ARE_ADDR_EQUAL(
15752 				    &tcp->tcp_ip6h->ip6_dst,
15753 				    &tcp->tcp_ip6h->ip6_src) &&
15754 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15755 				    tcp->tcp_tcph->th_fport))) {
15756 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15757 					return;
15758 				}
15759 			}
15760 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
15761 			/*
15762 			 * This should not be possible!  Just for
15763 			 * defensive coding...
15764 			 */
15765 			if (tcp->tcp_state != TCPS_SYN_SENT)
15766 				goto after_syn_sent;
15767 
15768 			if (is_system_labeled() &&
15769 			    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
15770 				tcp_bind_failed(tcp, mp, EHOSTUNREACH);
15771 				return;
15772 			}
15773 
15774 			ASSERT(q == tcp->tcp_rq);
15775 			/*
15776 			 * tcp_adapt_ire() does not adjust
15777 			 * for TCP/IP header length.
15778 			 */
15779 			mss = tcp->tcp_mss - tcp->tcp_hdr_len;
15780 
15781 			/*
15782 			 * Just make sure our rwnd is at
15783 			 * least tcp_recv_hiwat_mss * MSS
15784 			 * large, and round up to the nearest
15785 			 * MSS.
15786 			 *
15787 			 * We do the round up here because
15788 			 * we need to get the interface
15789 			 * MTU first before we can do the
15790 			 * round up.
15791 			 */
15792 			tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
15793 			    tcps->tcps_recv_hiwat_minmss * mss);
15794 			q->q_hiwat = tcp->tcp_rwnd;
15795 			tcp_set_ws_value(tcp);
15796 			U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
15797 			    tcp->tcp_tcph->th_win);
15798 			if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
15799 				tcp->tcp_snd_ws_ok = B_TRUE;
15800 
15801 			/*
15802 			 * Set tcp_snd_ts_ok to true
15803 			 * so that tcp_xmit_mp will
15804 			 * include the timestamp
15805 			 * option in the SYN segment.
15806 			 */
15807 			if (tcps->tcps_tstamp_always ||
15808 			    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
15809 				tcp->tcp_snd_ts_ok = B_TRUE;
15810 			}
15811 
15812 			/*
15813 			 * tcp_snd_sack_ok can be set in
15814 			 * tcp_adapt_ire() if the sack metric
15815 			 * is set.  So check it here also.
15816 			 */
15817 			if (tcps->tcps_sack_permitted == 2 ||
15818 			    tcp->tcp_snd_sack_ok) {
15819 				if (tcp->tcp_sack_info == NULL) {
15820 					tcp->tcp_sack_info =
15821 					    kmem_cache_alloc(
15822 					    tcp_sack_info_cache,
15823 					    KM_SLEEP);
15824 				}
15825 				tcp->tcp_snd_sack_ok = B_TRUE;
15826 			}
15827 
15828 			/*
15829 			 * Should we use ECN?  Note that the current
15830 			 * default value (SunOS 5.9) of tcp_ecn_permitted
15831 			 * is 1.  The reason for doing this is that there
15832 			 * are equipments out there that will drop ECN
15833 			 * enabled IP packets.  Setting it to 1 avoids
15834 			 * compatibility problems.
15835 			 */
15836 			if (tcps->tcps_ecn_permitted == 2)
15837 				tcp->tcp_ecn_ok = B_TRUE;
15838 
15839 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15840 			syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
15841 			    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
15842 			if (syn_mp) {
15843 				cred_t *cr;
15844 				pid_t pid;
15845 
15846 				/*
15847 				 * Obtain the credential from the
15848 				 * thread calling connect(); the credential
15849 				 * lives on in the second mblk which
15850 				 * originated from T_CONN_REQ and is echoed
15851 				 * with the T_BIND_ACK from ip.  If none
15852 				 * can be found, default to the creator
15853 				 * of the socket.
15854 				 */
15855 				if (mp->b_cont == NULL ||
15856 				    (cr = DB_CRED(mp->b_cont)) == NULL) {
15857 					cr = tcp->tcp_cred;
15858 					pid = tcp->tcp_cpid;
15859 				} else {
15860 					pid = DB_CPID(mp->b_cont);
15861 				}
15862 
15863 				TCP_RECORD_TRACE(tcp, syn_mp,
15864 				    TCP_TRACE_SEND_PKT);
15865 				mblk_setcred(syn_mp, cr);
15866 				DB_CPID(syn_mp) = pid;
15867 				tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
15868 			}
15869 		after_syn_sent:
15870 			/*
15871 			 * A trailer mblk indicates a waiting client upstream.
15872 			 * We complete here the processing begun in
15873 			 * either tcp_bind() or tcp_connect() by passing
15874 			 * upstream the reply message they supplied.
15875 			 */
15876 			mp1 = mp;
15877 			mp = mp->b_cont;
15878 			freeb(mp1);
15879 			if (mp)
15880 				break;
15881 			return;
15882 		case T_ERROR_ACK:
15883 			if (tcp->tcp_debug) {
15884 				(void) strlog(TCP_MOD_ID, 0, 1,
15885 				    SL_TRACE|SL_ERROR,
15886 				    "tcp_rput_other: case T_ERROR_ACK, "
15887 				    "ERROR_prim == %d",
15888 				    tea->ERROR_prim);
15889 			}
15890 			switch (tea->ERROR_prim) {
15891 			case O_T_BIND_REQ:
15892 			case T_BIND_REQ:
15893 				tcp_bind_failed(tcp, mp,
15894 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15895 				    ENETUNREACH : EADDRNOTAVAIL));
15896 				return;
15897 			case T_UNBIND_REQ:
15898 				tcp->tcp_hard_binding = B_FALSE;
15899 				tcp->tcp_hard_bound = B_FALSE;
15900 				if (mp->b_cont) {
15901 					freemsg(mp->b_cont);
15902 					mp->b_cont = NULL;
15903 				}
15904 				if (tcp->tcp_unbind_pending)
15905 					tcp->tcp_unbind_pending = 0;
15906 				else {
15907 					/* From tcp_ip_unbind() - free */
15908 					freemsg(mp);
15909 					return;
15910 				}
15911 				break;
15912 			case T_SVR4_OPTMGMT_REQ:
15913 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15914 					/* T_OPTMGMT_REQ generated by TCP */
15915 					printf("T_SVR4_OPTMGMT_REQ failed "
15916 					    "%d/%d - dropped (cnt %d)\n",
15917 					    tea->TLI_error, tea->UNIX_error,
15918 					    tcp->tcp_drop_opt_ack_cnt);
15919 					freemsg(mp);
15920 					tcp->tcp_drop_opt_ack_cnt--;
15921 					return;
15922 				}
15923 				break;
15924 			}
15925 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15926 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15927 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15928 				    "- dropped (cnt %d)\n",
15929 				    tea->TLI_error, tea->UNIX_error,
15930 				    tcp->tcp_drop_opt_ack_cnt);
15931 				freemsg(mp);
15932 				tcp->tcp_drop_opt_ack_cnt--;
15933 				return;
15934 			}
15935 			break;
15936 		case T_OPTMGMT_ACK:
15937 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15938 				/* T_OPTMGMT_REQ generated by TCP */
15939 				freemsg(mp);
15940 				tcp->tcp_drop_opt_ack_cnt--;
15941 				return;
15942 			}
15943 			break;
15944 		default:
15945 			break;
15946 		}
15947 		break;
15948 	case M_FLUSH:
15949 		if (*rptr & FLUSHR)
15950 			flushq(q, FLUSHDATA);
15951 		break;
15952 	default:
15953 		/* M_CTL will be directly sent to tcp_icmp_error() */
15954 		ASSERT(DB_TYPE(mp) != M_CTL);
15955 		break;
15956 	}
15957 	/*
15958 	 * Make sure we set this bit before sending the ACK for
15959 	 * bind. Otherwise accept could possibly run and free
15960 	 * this tcp struct.
15961 	 */
15962 	putnext(q, mp);
15963 }
15964 
15965 /*
15966  * Called as the result of a qbufcall or a qtimeout to remedy a failure
15967  * to allocate a T_ordrel_ind in tcp_rsrv().  qenable(q) will make
15968  * tcp_rsrv() try again.
15969  */
15970 static void
15971 tcp_ordrel_kick(void *arg)
15972 {
15973 	conn_t 	*connp = (conn_t *)arg;
15974 	tcp_t	*tcp = connp->conn_tcp;
15975 
15976 	tcp->tcp_ordrelid = 0;
15977 	tcp->tcp_timeout = B_FALSE;
15978 	if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL &&
15979 	    tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15980 		qenable(tcp->tcp_rq);
15981 	}
15982 }
15983 
15984 /* ARGSUSED */
15985 static void
15986 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15987 {
15988 	conn_t	*connp = (conn_t *)arg;
15989 	tcp_t	*tcp = connp->conn_tcp;
15990 	queue_t	*q = tcp->tcp_rq;
15991 	uint_t	thwin;
15992 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15993 
15994 	freeb(mp);
15995 
15996 	TCP_STAT(tcps, tcp_rsrv_calls);
15997 
15998 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15999 		return;
16000 	}
16001 
16002 	if (tcp->tcp_fused) {
16003 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
16004 
16005 		ASSERT(tcp->tcp_fused);
16006 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
16007 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
16008 		ASSERT(!TCP_IS_DETACHED(tcp));
16009 		ASSERT(tcp->tcp_connp->conn_sqp ==
16010 		    peer_tcp->tcp_connp->conn_sqp);
16011 
16012 		/*
16013 		 * Normally we would not get backenabled in synchronous
16014 		 * streams mode, but in case this happens, we need to plug
16015 		 * synchronous streams during our drain to prevent a race
16016 		 * with tcp_fuse_rrw() or tcp_fuse_rinfop().
16017 		 */
16018 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
16019 		if (tcp->tcp_rcv_list != NULL)
16020 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
16021 
16022 		if (peer_tcp > tcp) {
16023 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
16024 			mutex_enter(&tcp->tcp_non_sq_lock);
16025 		} else {
16026 			mutex_enter(&tcp->tcp_non_sq_lock);
16027 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
16028 		}
16029 
16030 		if (peer_tcp->tcp_flow_stopped &&
16031 		    (TCP_UNSENT_BYTES(peer_tcp) <=
16032 		    peer_tcp->tcp_xmit_lowater)) {
16033 			tcp_clrqfull(peer_tcp);
16034 		}
16035 		mutex_exit(&peer_tcp->tcp_non_sq_lock);
16036 		mutex_exit(&tcp->tcp_non_sq_lock);
16037 
16038 		TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
16039 		TCP_STAT(tcps, tcp_fusion_backenabled);
16040 		return;
16041 	}
16042 
16043 	if (canputnext(q)) {
16044 		tcp->tcp_rwnd = q->q_hiwat;
16045 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
16046 		    << tcp->tcp_rcv_ws;
16047 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
16048 		/*
16049 		 * Send back a window update immediately if TCP is above
16050 		 * ESTABLISHED state and the increase of the rcv window
16051 		 * that the other side knows is at least 1 MSS after flow
16052 		 * control is lifted.
16053 		 */
16054 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
16055 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
16056 			tcp_xmit_ctl(NULL, tcp,
16057 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
16058 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
16059 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
16060 		}
16061 	}
16062 	/* Handle a failure to allocate a T_ORDREL_IND here */
16063 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
16064 		ASSERT(tcp->tcp_listener == NULL);
16065 		if (tcp->tcp_rcv_list != NULL) {
16066 			(void) tcp_rcv_drain(q, tcp);
16067 		}
16068 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
16069 		mp = mi_tpi_ordrel_ind();
16070 		if (mp) {
16071 			tcp->tcp_ordrel_done = B_TRUE;
16072 			putnext(q, mp);
16073 			if (tcp->tcp_deferred_clean_death) {
16074 				/*
16075 				 * tcp_clean_death was deferred for
16076 				 * T_ORDREL_IND - do it now
16077 				 */
16078 				tcp->tcp_deferred_clean_death = B_FALSE;
16079 				(void) tcp_clean_death(tcp,
16080 				    tcp->tcp_client_errno, 22);
16081 			}
16082 		} else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
16083 			/*
16084 			 * If there isn't already a timer running
16085 			 * start one.  Use a 4 second
16086 			 * timer as a fallback since it can't fail.
16087 			 */
16088 			tcp->tcp_timeout = B_TRUE;
16089 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
16090 			    MSEC_TO_TICK(4000));
16091 		}
16092 	}
16093 }
16094 
16095 /*
16096  * The read side service routine is called mostly when we get back-enabled as a
16097  * result of flow control relief.  Since we don't actually queue anything in
16098  * TCP, we have no data to send out of here.  What we do is clear the receive
16099  * window, and send out a window update.
16100  * This routine is also called to drive an orderly release message upstream
16101  * if the attempt in tcp_rput failed.
16102  */
16103 static void
16104 tcp_rsrv(queue_t *q)
16105 {
16106 	conn_t *connp = Q_TO_CONN(q);
16107 	tcp_t	*tcp = connp->conn_tcp;
16108 	mblk_t	*mp;
16109 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16110 
16111 	/* No code does a putq on the read side */
16112 	ASSERT(q->q_first == NULL);
16113 
16114 	/* Nothing to do for the default queue */
16115 	if (q == tcps->tcps_g_q) {
16116 		return;
16117 	}
16118 
16119 	mp = allocb(0, BPRI_HI);
16120 	if (mp == NULL) {
16121 		/*
16122 		 * We are under memory pressure. Return for now and we
16123 		 * we will be called again later.
16124 		 */
16125 		if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
16126 			/*
16127 			 * If there isn't already a timer running
16128 			 * start one.  Use a 4 second
16129 			 * timer as a fallback since it can't fail.
16130 			 */
16131 			tcp->tcp_timeout = B_TRUE;
16132 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
16133 			    MSEC_TO_TICK(4000));
16134 		}
16135 		return;
16136 	}
16137 	CONN_INC_REF(connp);
16138 	squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp,
16139 	    SQTAG_TCP_RSRV);
16140 }
16141 
16142 /*
16143  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
16144  * We do not allow the receive window to shrink.  After setting rwnd,
16145  * set the flow control hiwat of the stream.
16146  *
16147  * This function is called in 2 cases:
16148  *
16149  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
16150  *    connection (passive open) and in tcp_rput_data() for active connect.
16151  *    This is called after tcp_mss_set() when the desired MSS value is known.
16152  *    This makes sure that our window size is a mutiple of the other side's
16153  *    MSS.
16154  * 2) Handling SO_RCVBUF option.
16155  *
16156  * It is ASSUMED that the requested size is a multiple of the current MSS.
16157  *
16158  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
16159  * user requests so.
16160  */
16161 static int
16162 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
16163 {
16164 	uint32_t	mss = tcp->tcp_mss;
16165 	uint32_t	old_max_rwnd;
16166 	uint32_t	max_transmittable_rwnd;
16167 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
16168 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16169 
16170 	if (tcp->tcp_fused) {
16171 		size_t sth_hiwat;
16172 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
16173 
16174 		ASSERT(peer_tcp != NULL);
16175 		/*
16176 		 * Record the stream head's high water mark for
16177 		 * this endpoint; this is used for flow-control
16178 		 * purposes in tcp_fuse_output().
16179 		 */
16180 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
16181 		if (!tcp_detached)
16182 			(void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat);
16183 
16184 		/*
16185 		 * In the fusion case, the maxpsz stream head value of
16186 		 * our peer is set according to its send buffer size
16187 		 * and our receive buffer size; since the latter may
16188 		 * have changed we need to update the peer's maxpsz.
16189 		 */
16190 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
16191 		return (rwnd);
16192 	}
16193 
16194 	if (tcp_detached)
16195 		old_max_rwnd = tcp->tcp_rwnd;
16196 	else
16197 		old_max_rwnd = tcp->tcp_rq->q_hiwat;
16198 
16199 	/*
16200 	 * Insist on a receive window that is at least
16201 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
16202 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
16203 	 * and delayed acknowledgement.
16204 	 */
16205 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
16206 
16207 	/*
16208 	 * If window size info has already been exchanged, TCP should not
16209 	 * shrink the window.  Shrinking window is doable if done carefully.
16210 	 * We may add that support later.  But so far there is not a real
16211 	 * need to do that.
16212 	 */
16213 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
16214 		/* MSS may have changed, do a round up again. */
16215 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
16216 	}
16217 
16218 	/*
16219 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
16220 	 * can be applied even before the window scale option is decided.
16221 	 */
16222 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
16223 	if (rwnd > max_transmittable_rwnd) {
16224 		rwnd = max_transmittable_rwnd -
16225 		    (max_transmittable_rwnd % mss);
16226 		if (rwnd < mss)
16227 			rwnd = max_transmittable_rwnd;
16228 		/*
16229 		 * If we're over the limit we may have to back down tcp_rwnd.
16230 		 * The increment below won't work for us. So we set all three
16231 		 * here and the increment below will have no effect.
16232 		 */
16233 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
16234 	}
16235 	if (tcp->tcp_localnet) {
16236 		tcp->tcp_rack_abs_max =
16237 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
16238 	} else {
16239 		/*
16240 		 * For a remote host on a different subnet (through a router),
16241 		 * we ack every other packet to be conforming to RFC1122.
16242 		 * tcp_deferred_acks_max is default to 2.
16243 		 */
16244 		tcp->tcp_rack_abs_max =
16245 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
16246 	}
16247 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
16248 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
16249 	else
16250 		tcp->tcp_rack_cur_max = 0;
16251 	/*
16252 	 * Increment the current rwnd by the amount the maximum grew (we
16253 	 * can not overwrite it since we might be in the middle of a
16254 	 * connection.)
16255 	 */
16256 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
16257 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
16258 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
16259 		tcp->tcp_cwnd_max = rwnd;
16260 
16261 	if (tcp_detached)
16262 		return (rwnd);
16263 	/*
16264 	 * We set the maximum receive window into rq->q_hiwat.
16265 	 * This is not actually used for flow control.
16266 	 */
16267 	tcp->tcp_rq->q_hiwat = rwnd;
16268 	/*
16269 	 * Set the Stream head high water mark. This doesn't have to be
16270 	 * here, since we are simply using default values, but we would
16271 	 * prefer to choose these values algorithmically, with a likely
16272 	 * relationship to rwnd.
16273 	 */
16274 	(void) mi_set_sth_hiwat(tcp->tcp_rq,
16275 	    MAX(rwnd, tcps->tcps_sth_rcv_hiwat));
16276 	return (rwnd);
16277 }
16278 
16279 /*
16280  * Return SNMP stuff in buffer in mpdata.
16281  */
16282 mblk_t *
16283 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
16284 {
16285 	mblk_t			*mpdata;
16286 	mblk_t			*mp_conn_ctl = NULL;
16287 	mblk_t			*mp_conn_tail;
16288 	mblk_t			*mp_attr_ctl = NULL;
16289 	mblk_t			*mp_attr_tail;
16290 	mblk_t			*mp6_conn_ctl = NULL;
16291 	mblk_t			*mp6_conn_tail;
16292 	mblk_t			*mp6_attr_ctl = NULL;
16293 	mblk_t			*mp6_attr_tail;
16294 	struct opthdr		*optp;
16295 	mib2_tcpConnEntry_t	tce;
16296 	mib2_tcp6ConnEntry_t	tce6;
16297 	mib2_transportMLPEntry_t mlp;
16298 	connf_t			*connfp;
16299 	int			i;
16300 	boolean_t 		ispriv;
16301 	zoneid_t 		zoneid;
16302 	int			v4_conn_idx;
16303 	int			v6_conn_idx;
16304 	conn_t			*connp = Q_TO_CONN(q);
16305 	tcp_stack_t		*tcps;
16306 	ip_stack_t		*ipst;
16307 	mblk_t			*mp2ctl;
16308 
16309 	/*
16310 	 * make a copy of the original message
16311 	 */
16312 	mp2ctl = copymsg(mpctl);
16313 
16314 	if (mpctl == NULL ||
16315 	    (mpdata = mpctl->b_cont) == NULL ||
16316 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
16317 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
16318 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
16319 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
16320 		freemsg(mp_conn_ctl);
16321 		freemsg(mp_attr_ctl);
16322 		freemsg(mp6_conn_ctl);
16323 		freemsg(mp6_attr_ctl);
16324 		freemsg(mpctl);
16325 		freemsg(mp2ctl);
16326 		return (NULL);
16327 	}
16328 
16329 	ipst = connp->conn_netstack->netstack_ip;
16330 	tcps = connp->conn_netstack->netstack_tcp;
16331 
16332 	/* build table of connections -- need count in fixed part */
16333 	SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4);   /* vanj */
16334 	SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min);
16335 	SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max);
16336 	SET_MIB(tcps->tcps_mib.tcpMaxConn, -1);
16337 	SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0);
16338 
16339 	ispriv =
16340 	    secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
16341 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16342 
16343 	v4_conn_idx = v6_conn_idx = 0;
16344 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
16345 
16346 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16347 		ipst = tcps->tcps_netstack->netstack_ip;
16348 
16349 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16350 
16351 		connp = NULL;
16352 
16353 		while ((connp =
16354 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16355 			tcp_t *tcp;
16356 			boolean_t needattr;
16357 
16358 			if (connp->conn_zoneid != zoneid)
16359 				continue;	/* not in this zone */
16360 
16361 			tcp = connp->conn_tcp;
16362 			UPDATE_MIB(&tcps->tcps_mib,
16363 			    tcpHCInSegs, tcp->tcp_ibsegs);
16364 			tcp->tcp_ibsegs = 0;
16365 			UPDATE_MIB(&tcps->tcps_mib,
16366 			    tcpHCOutSegs, tcp->tcp_obsegs);
16367 			tcp->tcp_obsegs = 0;
16368 
16369 			tce6.tcp6ConnState = tce.tcpConnState =
16370 			    tcp_snmp_state(tcp);
16371 			if (tce.tcpConnState == MIB2_TCP_established ||
16372 			    tce.tcpConnState == MIB2_TCP_closeWait)
16373 				BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab);
16374 
16375 			needattr = B_FALSE;
16376 			bzero(&mlp, sizeof (mlp));
16377 			if (connp->conn_mlp_type != mlptSingle) {
16378 				if (connp->conn_mlp_type == mlptShared ||
16379 				    connp->conn_mlp_type == mlptBoth)
16380 					mlp.tme_flags |= MIB2_TMEF_SHARED;
16381 				if (connp->conn_mlp_type == mlptPrivate ||
16382 				    connp->conn_mlp_type == mlptBoth)
16383 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
16384 				needattr = B_TRUE;
16385 			}
16386 			if (connp->conn_peercred != NULL) {
16387 				ts_label_t *tsl;
16388 
16389 				tsl = crgetlabel(connp->conn_peercred);
16390 				mlp.tme_doi = label2doi(tsl);
16391 				mlp.tme_label = *label2bslabel(tsl);
16392 				needattr = B_TRUE;
16393 			}
16394 
16395 			/* Create a message to report on IPv6 entries */
16396 			if (tcp->tcp_ipversion == IPV6_VERSION) {
16397 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
16398 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
16399 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
16400 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
16401 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
16402 			/* Don't want just anybody seeing these... */
16403 			if (ispriv) {
16404 				tce6.tcp6ConnEntryInfo.ce_snxt =
16405 				    tcp->tcp_snxt;
16406 				tce6.tcp6ConnEntryInfo.ce_suna =
16407 				    tcp->tcp_suna;
16408 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16409 				    tcp->tcp_rnxt;
16410 				tce6.tcp6ConnEntryInfo.ce_rack =
16411 				    tcp->tcp_rack;
16412 			} else {
16413 				/*
16414 				 * Netstat, unfortunately, uses this to
16415 				 * get send/receive queue sizes.  How to fix?
16416 				 * Why not compute the difference only?
16417 				 */
16418 				tce6.tcp6ConnEntryInfo.ce_snxt =
16419 				    tcp->tcp_snxt - tcp->tcp_suna;
16420 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
16421 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16422 				    tcp->tcp_rnxt - tcp->tcp_rack;
16423 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
16424 			}
16425 
16426 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16427 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16428 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
16429 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
16430 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
16431 
16432 			tce6.tcp6ConnCreationProcess =
16433 			    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16434 			    tcp->tcp_cpid;
16435 			tce6.tcp6ConnCreationTime = tcp->tcp_open_time;
16436 
16437 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
16438 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
16439 
16440 			mlp.tme_connidx = v6_conn_idx++;
16441 			if (needattr)
16442 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
16443 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
16444 			}
16445 			/*
16446 			 * Create an IPv4 table entry for IPv4 entries and also
16447 			 * for IPv6 entries which are bound to in6addr_any
16448 			 * but don't have IPV6_V6ONLY set.
16449 			 * (i.e. anything an IPv4 peer could connect to)
16450 			 */
16451 			if (tcp->tcp_ipversion == IPV4_VERSION ||
16452 			    (tcp->tcp_state <= TCPS_LISTEN &&
16453 			    !tcp->tcp_connp->conn_ipv6_v6only &&
16454 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
16455 				if (tcp->tcp_ipversion == IPV6_VERSION) {
16456 					tce.tcpConnRemAddress = INADDR_ANY;
16457 					tce.tcpConnLocalAddress = INADDR_ANY;
16458 				} else {
16459 					tce.tcpConnRemAddress =
16460 					    tcp->tcp_remote;
16461 					tce.tcpConnLocalAddress =
16462 					    tcp->tcp_ip_src;
16463 				}
16464 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
16465 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
16466 				/* Don't want just anybody seeing these... */
16467 				if (ispriv) {
16468 					tce.tcpConnEntryInfo.ce_snxt =
16469 					    tcp->tcp_snxt;
16470 					tce.tcpConnEntryInfo.ce_suna =
16471 					    tcp->tcp_suna;
16472 					tce.tcpConnEntryInfo.ce_rnxt =
16473 					    tcp->tcp_rnxt;
16474 					tce.tcpConnEntryInfo.ce_rack =
16475 					    tcp->tcp_rack;
16476 				} else {
16477 					/*
16478 					 * Netstat, unfortunately, uses this to
16479 					 * get send/receive queue sizes.  How
16480 					 * to fix?
16481 					 * Why not compute the difference only?
16482 					 */
16483 					tce.tcpConnEntryInfo.ce_snxt =
16484 					    tcp->tcp_snxt - tcp->tcp_suna;
16485 					tce.tcpConnEntryInfo.ce_suna = 0;
16486 					tce.tcpConnEntryInfo.ce_rnxt =
16487 					    tcp->tcp_rnxt - tcp->tcp_rack;
16488 					tce.tcpConnEntryInfo.ce_rack = 0;
16489 				}
16490 
16491 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16492 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16493 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
16494 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
16495 				tce.tcpConnEntryInfo.ce_state =
16496 				    tcp->tcp_state;
16497 
16498 				tce.tcpConnCreationProcess =
16499 				    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16500 				    tcp->tcp_cpid;
16501 				tce.tcpConnCreationTime = tcp->tcp_open_time;
16502 
16503 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
16504 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
16505 
16506 				mlp.tme_connidx = v4_conn_idx++;
16507 				if (needattr)
16508 					(void) snmp_append_data2(
16509 					    mp_attr_ctl->b_cont,
16510 					    &mp_attr_tail, (char *)&mlp,
16511 					    sizeof (mlp));
16512 			}
16513 		}
16514 	}
16515 
16516 	/* fixed length structure for IPv4 and IPv6 counters */
16517 	SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
16518 	SET_MIB(tcps->tcps_mib.tcp6ConnTableSize,
16519 	    sizeof (mib2_tcp6ConnEntry_t));
16520 	/* synchronize 32- and 64-bit counters */
16521 	SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs);
16522 	SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs);
16523 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16524 	optp->level = MIB2_TCP;
16525 	optp->name = 0;
16526 	(void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib,
16527 	    sizeof (tcps->tcps_mib));
16528 	optp->len = msgdsize(mpdata);
16529 	qreply(q, mpctl);
16530 
16531 	/* table of connections... */
16532 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16533 	    sizeof (struct T_optmgmt_ack)];
16534 	optp->level = MIB2_TCP;
16535 	optp->name = MIB2_TCP_CONN;
16536 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16537 	qreply(q, mp_conn_ctl);
16538 
16539 	/* table of MLP attributes... */
16540 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16541 	    sizeof (struct T_optmgmt_ack)];
16542 	optp->level = MIB2_TCP;
16543 	optp->name = EXPER_XPORT_MLP;
16544 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16545 	if (optp->len == 0)
16546 		freemsg(mp_attr_ctl);
16547 	else
16548 		qreply(q, mp_attr_ctl);
16549 
16550 	/* table of IPv6 connections... */
16551 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16552 	    sizeof (struct T_optmgmt_ack)];
16553 	optp->level = MIB2_TCP6;
16554 	optp->name = MIB2_TCP6_CONN;
16555 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16556 	qreply(q, mp6_conn_ctl);
16557 
16558 	/* table of IPv6 MLP attributes... */
16559 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16560 	    sizeof (struct T_optmgmt_ack)];
16561 	optp->level = MIB2_TCP6;
16562 	optp->name = EXPER_XPORT_MLP;
16563 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16564 	if (optp->len == 0)
16565 		freemsg(mp6_attr_ctl);
16566 	else
16567 		qreply(q, mp6_attr_ctl);
16568 	return (mp2ctl);
16569 }
16570 
16571 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16572 /* ARGSUSED */
16573 int
16574 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16575 {
16576 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16577 
16578 	switch (level) {
16579 	case MIB2_TCP:
16580 		switch (name) {
16581 		case 13:
16582 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16583 				return (0);
16584 			/* TODO: delete entry defined by tce */
16585 			return (1);
16586 		default:
16587 			return (0);
16588 		}
16589 	default:
16590 		return (1);
16591 	}
16592 }
16593 
16594 /* Translate TCP state to MIB2 TCP state. */
16595 static int
16596 tcp_snmp_state(tcp_t *tcp)
16597 {
16598 	if (tcp == NULL)
16599 		return (0);
16600 
16601 	switch (tcp->tcp_state) {
16602 	case TCPS_CLOSED:
16603 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16604 	case TCPS_BOUND:
16605 		return (MIB2_TCP_closed);
16606 	case TCPS_LISTEN:
16607 		return (MIB2_TCP_listen);
16608 	case TCPS_SYN_SENT:
16609 		return (MIB2_TCP_synSent);
16610 	case TCPS_SYN_RCVD:
16611 		return (MIB2_TCP_synReceived);
16612 	case TCPS_ESTABLISHED:
16613 		return (MIB2_TCP_established);
16614 	case TCPS_CLOSE_WAIT:
16615 		return (MIB2_TCP_closeWait);
16616 	case TCPS_FIN_WAIT_1:
16617 		return (MIB2_TCP_finWait1);
16618 	case TCPS_CLOSING:
16619 		return (MIB2_TCP_closing);
16620 	case TCPS_LAST_ACK:
16621 		return (MIB2_TCP_lastAck);
16622 	case TCPS_FIN_WAIT_2:
16623 		return (MIB2_TCP_finWait2);
16624 	case TCPS_TIME_WAIT:
16625 		return (MIB2_TCP_timeWait);
16626 	default:
16627 		return (0);
16628 	}
16629 }
16630 
16631 static char tcp_report_header[] =
16632 	"TCP     " MI_COL_HDRPAD_STR
16633 	"zone dest            snxt     suna     "
16634 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
16635 	"recent   [lport,fport] state";
16636 
16637 /*
16638  * TCP status report triggered via the Named Dispatch mechanism.
16639  */
16640 /* ARGSUSED */
16641 static void
16642 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
16643     cred_t *cr)
16644 {
16645 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
16646 	boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0;
16647 	char cflag;
16648 	in6_addr_t	v6dst;
16649 	char buf[80];
16650 	uint_t print_len, buf_len;
16651 
16652 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16653 	if (buf_len <= 0)
16654 		return;
16655 
16656 	if (hashval >= 0)
16657 		(void) sprintf(hash, "%03d ", hashval);
16658 	else
16659 		hash[0] = '\0';
16660 
16661 	/*
16662 	 * Note that we use the remote address in the tcp_b  structure.
16663 	 * This means that it will print out the real destination address,
16664 	 * not the next hop's address if source routing is used.  This
16665 	 * avoid the confusion on the output because user may not
16666 	 * know that source routing is used for a connection.
16667 	 */
16668 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16669 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
16670 	} else {
16671 		v6dst = tcp->tcp_remote_v6;
16672 	}
16673 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16674 	/*
16675 	 * the ispriv checks are so that normal users cannot determine
16676 	 * sequence number information using NDD.
16677 	 */
16678 
16679 	if (TCP_IS_DETACHED(tcp))
16680 		cflag = '*';
16681 	else
16682 		cflag = ' ';
16683 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16684 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
16685 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
16686 	    hash,
16687 	    (void *)tcp,
16688 	    tcp->tcp_connp->conn_zoneid,
16689 	    addrbuf,
16690 	    (ispriv) ? tcp->tcp_snxt : 0,
16691 	    (ispriv) ? tcp->tcp_suna : 0,
16692 	    tcp->tcp_swnd,
16693 	    (ispriv) ? tcp->tcp_rnxt : 0,
16694 	    (ispriv) ? tcp->tcp_rack : 0,
16695 	    tcp->tcp_rwnd,
16696 	    tcp->tcp_rto,
16697 	    tcp->tcp_mss,
16698 	    tcp->tcp_snd_ws_ok,
16699 	    tcp->tcp_snd_ws,
16700 	    tcp->tcp_rcv_ws,
16701 	    tcp->tcp_snd_ts_ok,
16702 	    tcp->tcp_ts_recent,
16703 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
16704 	if (print_len < buf_len) {
16705 		((mblk_t *)mp)->b_wptr += print_len;
16706 	} else {
16707 		((mblk_t *)mp)->b_wptr += buf_len;
16708 	}
16709 }
16710 
16711 /*
16712  * TCP status report (for listeners only) triggered via the Named Dispatch
16713  * mechanism.
16714  */
16715 /* ARGSUSED */
16716 static void
16717 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
16718 {
16719 	char addrbuf[INET6_ADDRSTRLEN];
16720 	in6_addr_t	v6dst;
16721 	uint_t print_len, buf_len;
16722 
16723 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16724 	if (buf_len <= 0)
16725 		return;
16726 
16727 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16728 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
16729 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16730 	} else {
16731 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
16732 		    addrbuf, sizeof (addrbuf));
16733 	}
16734 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16735 	    "%03d "
16736 	    MI_COL_PTRFMT_STR
16737 	    "%d %s %05u %08u %d/%d/%d%c\n",
16738 	    hashval, (void *)tcp,
16739 	    tcp->tcp_connp->conn_zoneid,
16740 	    addrbuf,
16741 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
16742 	    tcp->tcp_conn_req_seqnum,
16743 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
16744 	    tcp->tcp_conn_req_max,
16745 	    tcp->tcp_syn_defense ? '*' : ' ');
16746 	if (print_len < buf_len) {
16747 		((mblk_t *)mp)->b_wptr += print_len;
16748 	} else {
16749 		((mblk_t *)mp)->b_wptr += buf_len;
16750 	}
16751 }
16752 
16753 /* TCP status report triggered via the Named Dispatch mechanism. */
16754 /* ARGSUSED */
16755 static int
16756 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16757 {
16758 	tcp_t	*tcp;
16759 	int	i;
16760 	conn_t	*connp;
16761 	connf_t	*connfp;
16762 	zoneid_t zoneid;
16763 	tcp_stack_t *tcps;
16764 	ip_stack_t *ipst;
16765 
16766 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16767 	tcps = Q_TO_TCP(q)->tcp_tcps;
16768 
16769 	/*
16770 	 * Because of the ndd constraint, at most we can have 64K buffer
16771 	 * to put in all TCP info.  So to be more efficient, just
16772 	 * allocate a 64K buffer here, assuming we need that large buffer.
16773 	 * This may be a problem as any user can read tcp_status.  Therefore
16774 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
16775 	 * This should be OK as normal users should not do this too often.
16776 	 */
16777 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16778 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16779 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16780 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16781 			return (0);
16782 		}
16783 	}
16784 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16785 		/* The following may work even if we cannot get a large buf. */
16786 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16787 		return (0);
16788 	}
16789 
16790 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
16791 
16792 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16793 
16794 		ipst = tcps->tcps_netstack->netstack_ip;
16795 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16796 
16797 		connp = NULL;
16798 
16799 		while ((connp =
16800 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16801 			tcp = connp->conn_tcp;
16802 			if (zoneid != GLOBAL_ZONEID &&
16803 			    zoneid != connp->conn_zoneid)
16804 				continue;
16805 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
16806 			    cr);
16807 		}
16808 
16809 	}
16810 
16811 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16812 	return (0);
16813 }
16814 
16815 /* TCP status report triggered via the Named Dispatch mechanism. */
16816 /* ARGSUSED */
16817 static int
16818 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16819 {
16820 	tf_t	*tbf;
16821 	tcp_t	*tcp;
16822 	int	i;
16823 	zoneid_t zoneid;
16824 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
16825 
16826 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16827 
16828 	/* Refer to comments in tcp_status_report(). */
16829 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16830 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16831 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16832 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16833 			return (0);
16834 		}
16835 	}
16836 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16837 		/* The following may work even if we cannot get a large buf. */
16838 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16839 		return (0);
16840 	}
16841 
16842 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16843 
16844 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
16845 		tbf = &tcps->tcps_bind_fanout[i];
16846 		mutex_enter(&tbf->tf_lock);
16847 		for (tcp = tbf->tf_tcp; tcp != NULL;
16848 		    tcp = tcp->tcp_bind_hash) {
16849 			if (zoneid != GLOBAL_ZONEID &&
16850 			    zoneid != tcp->tcp_connp->conn_zoneid)
16851 				continue;
16852 			CONN_INC_REF(tcp->tcp_connp);
16853 			tcp_report_item(mp->b_cont, tcp, i,
16854 			    Q_TO_TCP(q), cr);
16855 			CONN_DEC_REF(tcp->tcp_connp);
16856 		}
16857 		mutex_exit(&tbf->tf_lock);
16858 	}
16859 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16860 	return (0);
16861 }
16862 
16863 /* TCP status report triggered via the Named Dispatch mechanism. */
16864 /* ARGSUSED */
16865 static int
16866 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16867 {
16868 	connf_t	*connfp;
16869 	conn_t	*connp;
16870 	tcp_t	*tcp;
16871 	int	i;
16872 	zoneid_t zoneid;
16873 	tcp_stack_t *tcps;
16874 	ip_stack_t	*ipst;
16875 
16876 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16877 	tcps = Q_TO_TCP(q)->tcp_tcps;
16878 
16879 	/* Refer to comments in tcp_status_report(). */
16880 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16881 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16882 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16883 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16884 			return (0);
16885 		}
16886 	}
16887 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16888 		/* The following may work even if we cannot get a large buf. */
16889 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16890 		return (0);
16891 	}
16892 
16893 	(void) mi_mpprintf(mp,
16894 	    "    TCP    " MI_COL_HDRPAD_STR
16895 	    "zone IP addr         port  seqnum   backlog (q0/q/max)");
16896 
16897 	ipst = tcps->tcps_netstack->netstack_ip;
16898 
16899 	for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) {
16900 		connfp = &ipst->ips_ipcl_bind_fanout[i];
16901 		connp = NULL;
16902 		while ((connp =
16903 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16904 			tcp = connp->conn_tcp;
16905 			if (zoneid != GLOBAL_ZONEID &&
16906 			    zoneid != connp->conn_zoneid)
16907 				continue;
16908 			tcp_report_listener(mp->b_cont, tcp, i);
16909 		}
16910 	}
16911 
16912 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16913 	return (0);
16914 }
16915 
16916 /* TCP status report triggered via the Named Dispatch mechanism. */
16917 /* ARGSUSED */
16918 static int
16919 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16920 {
16921 	connf_t	*connfp;
16922 	conn_t	*connp;
16923 	tcp_t	*tcp;
16924 	int	i;
16925 	zoneid_t zoneid;
16926 	tcp_stack_t *tcps;
16927 	ip_stack_t *ipst;
16928 
16929 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16930 	tcps = Q_TO_TCP(q)->tcp_tcps;
16931 	ipst = tcps->tcps_netstack->netstack_ip;
16932 
16933 	/* Refer to comments in tcp_status_report(). */
16934 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16935 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16936 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16937 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16938 			return (0);
16939 		}
16940 	}
16941 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16942 		/* The following may work even if we cannot get a large buf. */
16943 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16944 		return (0);
16945 	}
16946 
16947 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
16948 	    ipst->ips_ipcl_conn_fanout_size);
16949 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16950 
16951 	for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) {
16952 		connfp =  &ipst->ips_ipcl_conn_fanout[i];
16953 		connp = NULL;
16954 		while ((connp =
16955 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16956 			tcp = connp->conn_tcp;
16957 			if (zoneid != GLOBAL_ZONEID &&
16958 			    zoneid != connp->conn_zoneid)
16959 				continue;
16960 			tcp_report_item(mp->b_cont, tcp, i,
16961 			    Q_TO_TCP(q), cr);
16962 		}
16963 	}
16964 
16965 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16966 	return (0);
16967 }
16968 
16969 /* TCP status report triggered via the Named Dispatch mechanism. */
16970 /* ARGSUSED */
16971 static int
16972 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16973 {
16974 	tf_t	*tf;
16975 	tcp_t	*tcp;
16976 	int	i;
16977 	zoneid_t zoneid;
16978 	tcp_stack_t	*tcps;
16979 
16980 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16981 	tcps = Q_TO_TCP(q)->tcp_tcps;
16982 
16983 	/* Refer to comments in tcp_status_report(). */
16984 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16985 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16986 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16987 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16988 			return (0);
16989 		}
16990 	}
16991 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16992 		/* The following may work even if we cannot get a large buf. */
16993 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16994 		return (0);
16995 	}
16996 
16997 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16998 
16999 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
17000 		tf = &tcps->tcps_acceptor_fanout[i];
17001 		mutex_enter(&tf->tf_lock);
17002 		for (tcp = tf->tf_tcp; tcp != NULL;
17003 		    tcp = tcp->tcp_acceptor_hash) {
17004 			if (zoneid != GLOBAL_ZONEID &&
17005 			    zoneid != tcp->tcp_connp->conn_zoneid)
17006 				continue;
17007 			tcp_report_item(mp->b_cont, tcp, i,
17008 			    Q_TO_TCP(q), cr);
17009 		}
17010 		mutex_exit(&tf->tf_lock);
17011 	}
17012 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17013 	return (0);
17014 }
17015 
17016 /*
17017  * tcp_timer is the timer service routine.  It handles the retransmission,
17018  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
17019  * from the state of the tcp instance what kind of action needs to be done
17020  * at the time it is called.
17021  */
17022 static void
17023 tcp_timer(void *arg)
17024 {
17025 	mblk_t		*mp;
17026 	clock_t		first_threshold;
17027 	clock_t		second_threshold;
17028 	clock_t		ms;
17029 	uint32_t	mss;
17030 	conn_t		*connp = (conn_t *)arg;
17031 	tcp_t		*tcp = connp->conn_tcp;
17032 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17033 
17034 	tcp->tcp_timer_tid = 0;
17035 
17036 	if (tcp->tcp_fused)
17037 		return;
17038 
17039 	first_threshold =  tcp->tcp_first_timer_threshold;
17040 	second_threshold = tcp->tcp_second_timer_threshold;
17041 	switch (tcp->tcp_state) {
17042 	case TCPS_IDLE:
17043 	case TCPS_BOUND:
17044 	case TCPS_LISTEN:
17045 		return;
17046 	case TCPS_SYN_RCVD: {
17047 		tcp_t	*listener = tcp->tcp_listener;
17048 
17049 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
17050 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
17051 			/* it's our first timeout */
17052 			tcp->tcp_syn_rcvd_timeout = 1;
17053 			mutex_enter(&listener->tcp_eager_lock);
17054 			listener->tcp_syn_rcvd_timeout++;
17055 			if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) {
17056 				/*
17057 				 * Make this eager available for drop if we
17058 				 * need to drop one to accomodate a new
17059 				 * incoming SYN request.
17060 				 */
17061 				MAKE_DROPPABLE(listener, tcp);
17062 			}
17063 			if (!listener->tcp_syn_defense &&
17064 			    (listener->tcp_syn_rcvd_timeout >
17065 			    (tcps->tcps_conn_req_max_q0 >> 2)) &&
17066 			    (tcps->tcps_conn_req_max_q0 > 200)) {
17067 				/* We may be under attack. Put on a defense. */
17068 				listener->tcp_syn_defense = B_TRUE;
17069 				cmn_err(CE_WARN, "High TCP connect timeout "
17070 				    "rate! System (port %d) may be under a "
17071 				    "SYN flood attack!",
17072 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
17073 
17074 				listener->tcp_ip_addr_cache = kmem_zalloc(
17075 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
17076 				    KM_NOSLEEP);
17077 			}
17078 			mutex_exit(&listener->tcp_eager_lock);
17079 		} else if (listener != NULL) {
17080 			mutex_enter(&listener->tcp_eager_lock);
17081 			tcp->tcp_syn_rcvd_timeout++;
17082 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
17083 			    !tcp->tcp_closemp_used) {
17084 				/*
17085 				 * This is our second timeout. Put the tcp in
17086 				 * the list of droppable eagers to allow it to
17087 				 * be dropped, if needed. We don't check
17088 				 * whether tcp_dontdrop is set or not to
17089 				 * protect ourselve from a SYN attack where a
17090 				 * remote host can spoof itself as one of the
17091 				 * good IP source and continue to hold
17092 				 * resources too long.
17093 				 */
17094 				MAKE_DROPPABLE(listener, tcp);
17095 			}
17096 			mutex_exit(&listener->tcp_eager_lock);
17097 		}
17098 	}
17099 		/* FALLTHRU */
17100 	case TCPS_SYN_SENT:
17101 		first_threshold =  tcp->tcp_first_ctimer_threshold;
17102 		second_threshold = tcp->tcp_second_ctimer_threshold;
17103 		break;
17104 	case TCPS_ESTABLISHED:
17105 	case TCPS_FIN_WAIT_1:
17106 	case TCPS_CLOSING:
17107 	case TCPS_CLOSE_WAIT:
17108 	case TCPS_LAST_ACK:
17109 		/* If we have data to rexmit */
17110 		if (tcp->tcp_suna != tcp->tcp_snxt) {
17111 			clock_t	time_to_wait;
17112 
17113 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans);
17114 			if (!tcp->tcp_xmit_head)
17115 				break;
17116 			time_to_wait = lbolt -
17117 			    (clock_t)tcp->tcp_xmit_head->b_prev;
17118 			time_to_wait = tcp->tcp_rto -
17119 			    TICK_TO_MSEC(time_to_wait);
17120 			/*
17121 			 * If the timer fires too early, 1 clock tick earlier,
17122 			 * restart the timer.
17123 			 */
17124 			if (time_to_wait > msec_per_tick) {
17125 				TCP_STAT(tcps, tcp_timer_fire_early);
17126 				TCP_TIMER_RESTART(tcp, time_to_wait);
17127 				return;
17128 			}
17129 			/*
17130 			 * When we probe zero windows, we force the swnd open.
17131 			 * If our peer acks with a closed window swnd will be
17132 			 * set to zero by tcp_rput(). As long as we are
17133 			 * receiving acks tcp_rput will
17134 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
17135 			 * first and second interval actions.  NOTE: the timer
17136 			 * interval is allowed to continue its exponential
17137 			 * backoff.
17138 			 */
17139 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
17140 				if (tcp->tcp_debug) {
17141 					(void) strlog(TCP_MOD_ID, 0, 1,
17142 					    SL_TRACE, "tcp_timer: zero win");
17143 				}
17144 			} else {
17145 				/*
17146 				 * After retransmission, we need to do
17147 				 * slow start.  Set the ssthresh to one
17148 				 * half of current effective window and
17149 				 * cwnd to one MSS.  Also reset
17150 				 * tcp_cwnd_cnt.
17151 				 *
17152 				 * Note that if tcp_ssthresh is reduced because
17153 				 * of ECN, do not reduce it again unless it is
17154 				 * already one window of data away (tcp_cwr
17155 				 * should then be cleared) or this is a
17156 				 * timeout for a retransmitted segment.
17157 				 */
17158 				uint32_t npkt;
17159 
17160 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
17161 					npkt = ((tcp->tcp_timer_backoff ?
17162 					    tcp->tcp_cwnd_ssthresh :
17163 					    tcp->tcp_snxt -
17164 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
17165 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
17166 					    tcp->tcp_mss;
17167 				}
17168 				tcp->tcp_cwnd = tcp->tcp_mss;
17169 				tcp->tcp_cwnd_cnt = 0;
17170 				if (tcp->tcp_ecn_ok) {
17171 					tcp->tcp_cwr = B_TRUE;
17172 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
17173 					tcp->tcp_ecn_cwr_sent = B_FALSE;
17174 				}
17175 			}
17176 			break;
17177 		}
17178 		/*
17179 		 * We have something to send yet we cannot send.  The
17180 		 * reason can be:
17181 		 *
17182 		 * 1. Zero send window: we need to do zero window probe.
17183 		 * 2. Zero cwnd: because of ECN, we need to "clock out
17184 		 * segments.
17185 		 * 3. SWS avoidance: receiver may have shrunk window,
17186 		 * reset our knowledge.
17187 		 *
17188 		 * Note that condition 2 can happen with either 1 or
17189 		 * 3.  But 1 and 3 are exclusive.
17190 		 */
17191 		if (tcp->tcp_unsent != 0) {
17192 			if (tcp->tcp_cwnd == 0) {
17193 				/*
17194 				 * Set tcp_cwnd to 1 MSS so that a
17195 				 * new segment can be sent out.  We
17196 				 * are "clocking out" new data when
17197 				 * the network is really congested.
17198 				 */
17199 				ASSERT(tcp->tcp_ecn_ok);
17200 				tcp->tcp_cwnd = tcp->tcp_mss;
17201 			}
17202 			if (tcp->tcp_swnd == 0) {
17203 				/* Extend window for zero window probe */
17204 				tcp->tcp_swnd++;
17205 				tcp->tcp_zero_win_probe = B_TRUE;
17206 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe);
17207 			} else {
17208 				/*
17209 				 * Handle timeout from sender SWS avoidance.
17210 				 * Reset our knowledge of the max send window
17211 				 * since the receiver might have reduced its
17212 				 * receive buffer.  Avoid setting tcp_max_swnd
17213 				 * to one since that will essentially disable
17214 				 * the SWS checks.
17215 				 *
17216 				 * Note that since we don't have a SWS
17217 				 * state variable, if the timeout is set
17218 				 * for ECN but not for SWS, this
17219 				 * code will also be executed.  This is
17220 				 * fine as tcp_max_swnd is updated
17221 				 * constantly and it will not affect
17222 				 * anything.
17223 				 */
17224 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
17225 			}
17226 			tcp_wput_data(tcp, NULL, B_FALSE);
17227 			return;
17228 		}
17229 		/* Is there a FIN that needs to be to re retransmitted? */
17230 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17231 		    !tcp->tcp_fin_acked)
17232 			break;
17233 		/* Nothing to do, return without restarting timer. */
17234 		TCP_STAT(tcps, tcp_timer_fire_miss);
17235 		return;
17236 	case TCPS_FIN_WAIT_2:
17237 		/*
17238 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
17239 		 * We waited some time for for peer's FIN, but it hasn't
17240 		 * arrived.  We flush the connection now to avoid
17241 		 * case where the peer has rebooted.
17242 		 */
17243 		if (TCP_IS_DETACHED(tcp)) {
17244 			(void) tcp_clean_death(tcp, 0, 23);
17245 		} else {
17246 			TCP_TIMER_RESTART(tcp,
17247 			    tcps->tcps_fin_wait_2_flush_interval);
17248 		}
17249 		return;
17250 	case TCPS_TIME_WAIT:
17251 		(void) tcp_clean_death(tcp, 0, 24);
17252 		return;
17253 	default:
17254 		if (tcp->tcp_debug) {
17255 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
17256 			    "tcp_timer: strange state (%d) %s",
17257 			    tcp->tcp_state, tcp_display(tcp, NULL,
17258 			    DISP_PORT_ONLY));
17259 		}
17260 		return;
17261 	}
17262 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
17263 		/*
17264 		 * For zero window probe, we need to send indefinitely,
17265 		 * unless we have not heard from the other side for some
17266 		 * time...
17267 		 */
17268 		if ((tcp->tcp_zero_win_probe == 0) ||
17269 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
17270 		    second_threshold)) {
17271 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop);
17272 			/*
17273 			 * If TCP is in SYN_RCVD state, send back a
17274 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
17275 			 * should be zero in TCPS_SYN_RCVD state.
17276 			 */
17277 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
17278 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
17279 				    "in SYN_RCVD",
17280 				    tcp, tcp->tcp_snxt,
17281 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
17282 			}
17283 			(void) tcp_clean_death(tcp,
17284 			    tcp->tcp_client_errno ?
17285 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
17286 			return;
17287 		} else {
17288 			/*
17289 			 * Set tcp_ms_we_have_waited to second_threshold
17290 			 * so that in next timeout, we will do the above
17291 			 * check (lbolt - tcp_last_recv_time).  This is
17292 			 * also to avoid overflow.
17293 			 *
17294 			 * We don't need to decrement tcp_timer_backoff
17295 			 * to avoid overflow because it will be decremented
17296 			 * later if new timeout value is greater than
17297 			 * tcp_rexmit_interval_max.  In the case when
17298 			 * tcp_rexmit_interval_max is greater than
17299 			 * second_threshold, it means that we will wait
17300 			 * longer than second_threshold to send the next
17301 			 * window probe.
17302 			 */
17303 			tcp->tcp_ms_we_have_waited = second_threshold;
17304 		}
17305 	} else if (ms > first_threshold) {
17306 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
17307 		    tcp->tcp_xmit_head != NULL) {
17308 			tcp->tcp_xmit_head =
17309 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
17310 		}
17311 		/*
17312 		 * We have been retransmitting for too long...  The RTT
17313 		 * we calculated is probably incorrect.  Reinitialize it.
17314 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
17315 		 * tcp_rtt_update so that we won't accidentally cache a
17316 		 * bad value.  But only do this if this is not a zero
17317 		 * window probe.
17318 		 */
17319 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
17320 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
17321 			    (tcp->tcp_rtt_sa >> 5);
17322 			tcp->tcp_rtt_sa = 0;
17323 			tcp_ip_notify(tcp);
17324 			tcp->tcp_rtt_update = 0;
17325 		}
17326 	}
17327 	tcp->tcp_timer_backoff++;
17328 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
17329 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
17330 	    tcps->tcps_rexmit_interval_min) {
17331 		/*
17332 		 * This means the original RTO is tcp_rexmit_interval_min.
17333 		 * So we will use tcp_rexmit_interval_min as the RTO value
17334 		 * and do the backoff.
17335 		 */
17336 		ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff;
17337 	} else {
17338 		ms <<= tcp->tcp_timer_backoff;
17339 	}
17340 	if (ms > tcps->tcps_rexmit_interval_max) {
17341 		ms = tcps->tcps_rexmit_interval_max;
17342 		/*
17343 		 * ms is at max, decrement tcp_timer_backoff to avoid
17344 		 * overflow.
17345 		 */
17346 		tcp->tcp_timer_backoff--;
17347 	}
17348 	tcp->tcp_ms_we_have_waited += ms;
17349 	if (tcp->tcp_zero_win_probe == 0) {
17350 		tcp->tcp_rto = ms;
17351 	}
17352 	TCP_TIMER_RESTART(tcp, ms);
17353 	/*
17354 	 * This is after a timeout and tcp_rto is backed off.  Set
17355 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
17356 	 * restart the timer with a correct value.
17357 	 */
17358 	tcp->tcp_set_timer = 1;
17359 	mss = tcp->tcp_snxt - tcp->tcp_suna;
17360 	if (mss > tcp->tcp_mss)
17361 		mss = tcp->tcp_mss;
17362 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
17363 		mss = tcp->tcp_swnd;
17364 
17365 	if ((mp = tcp->tcp_xmit_head) != NULL)
17366 		mp->b_prev = (mblk_t *)lbolt;
17367 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
17368 	    B_TRUE);
17369 
17370 	/*
17371 	 * When slow start after retransmission begins, start with
17372 	 * this seq no.  tcp_rexmit_max marks the end of special slow
17373 	 * start phase.  tcp_snd_burst controls how many segments
17374 	 * can be sent because of an ack.
17375 	 */
17376 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
17377 	tcp->tcp_snd_burst = TCP_CWND_SS;
17378 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17379 	    (tcp->tcp_unsent == 0)) {
17380 		tcp->tcp_rexmit_max = tcp->tcp_fss;
17381 	} else {
17382 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
17383 	}
17384 	tcp->tcp_rexmit = B_TRUE;
17385 	tcp->tcp_dupack_cnt = 0;
17386 
17387 	/*
17388 	 * Remove all rexmit SACK blk to start from fresh.
17389 	 */
17390 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
17391 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
17392 		tcp->tcp_num_notsack_blk = 0;
17393 		tcp->tcp_cnt_notsack_list = 0;
17394 	}
17395 	if (mp == NULL) {
17396 		return;
17397 	}
17398 	/* Attach credentials to retransmitted initial SYNs. */
17399 	if (tcp->tcp_state == TCPS_SYN_SENT) {
17400 		mblk_setcred(mp, tcp->tcp_cred);
17401 		DB_CPID(mp) = tcp->tcp_cpid;
17402 	}
17403 
17404 	tcp->tcp_csuna = tcp->tcp_snxt;
17405 	BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
17406 	UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss);
17407 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
17408 	tcp_send_data(tcp, tcp->tcp_wq, mp);
17409 
17410 }
17411 
17412 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
17413 static void
17414 tcp_unbind(tcp_t *tcp, mblk_t *mp)
17415 {
17416 	conn_t	*connp;
17417 
17418 	switch (tcp->tcp_state) {
17419 	case TCPS_BOUND:
17420 	case TCPS_LISTEN:
17421 		break;
17422 	default:
17423 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
17424 		return;
17425 	}
17426 
17427 	/*
17428 	 * Need to clean up all the eagers since after the unbind, segments
17429 	 * will no longer be delivered to this listener stream.
17430 	 */
17431 	mutex_enter(&tcp->tcp_eager_lock);
17432 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
17433 		tcp_eager_cleanup(tcp, 0);
17434 	}
17435 	mutex_exit(&tcp->tcp_eager_lock);
17436 
17437 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17438 		tcp->tcp_ipha->ipha_src = 0;
17439 	} else {
17440 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
17441 	}
17442 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
17443 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
17444 	tcp_bind_hash_remove(tcp);
17445 	tcp->tcp_state = TCPS_IDLE;
17446 	tcp->tcp_mdt = B_FALSE;
17447 	/* Send M_FLUSH according to TPI */
17448 	(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
17449 	connp = tcp->tcp_connp;
17450 	connp->conn_mdt_ok = B_FALSE;
17451 	ipcl_hash_remove(connp);
17452 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
17453 	mp = mi_tpi_ok_ack_alloc(mp);
17454 	putnext(tcp->tcp_rq, mp);
17455 }
17456 
17457 /*
17458  * Don't let port fall into the privileged range.
17459  * Since the extra privileged ports can be arbitrary we also
17460  * ensure that we exclude those from consideration.
17461  * tcp_g_epriv_ports is not sorted thus we loop over it until
17462  * there are no changes.
17463  *
17464  * Note: No locks are held when inspecting tcp_g_*epriv_ports
17465  * but instead the code relies on:
17466  * - the fact that the address of the array and its size never changes
17467  * - the atomic assignment of the elements of the array
17468  *
17469  * Returns 0 if there are no more ports available.
17470  *
17471  * TS note: skip multilevel ports.
17472  */
17473 static in_port_t
17474 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
17475 {
17476 	int i;
17477 	boolean_t restart = B_FALSE;
17478 	tcp_stack_t *tcps = tcp->tcp_tcps;
17479 
17480 	if (random && tcp_random_anon_port != 0) {
17481 		(void) random_get_pseudo_bytes((uint8_t *)&port,
17482 		    sizeof (in_port_t));
17483 		/*
17484 		 * Unless changed by a sys admin, the smallest anon port
17485 		 * is 32768 and the largest anon port is 65535.  It is
17486 		 * very likely (50%) for the random port to be smaller
17487 		 * than the smallest anon port.  When that happens,
17488 		 * add port % (anon port range) to the smallest anon
17489 		 * port to get the random port.  It should fall into the
17490 		 * valid anon port range.
17491 		 */
17492 		if (port < tcps->tcps_smallest_anon_port) {
17493 			port = tcps->tcps_smallest_anon_port +
17494 			    port % (tcps->tcps_largest_anon_port -
17495 			    tcps->tcps_smallest_anon_port);
17496 		}
17497 	}
17498 
17499 retry:
17500 	if (port < tcps->tcps_smallest_anon_port)
17501 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17502 
17503 	if (port > tcps->tcps_largest_anon_port) {
17504 		if (restart)
17505 			return (0);
17506 		restart = B_TRUE;
17507 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17508 	}
17509 
17510 	if (port < tcps->tcps_smallest_nonpriv_port)
17511 		port = (in_port_t)tcps->tcps_smallest_nonpriv_port;
17512 
17513 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
17514 		if (port == tcps->tcps_g_epriv_ports[i]) {
17515 			port++;
17516 			/*
17517 			 * Make sure whether the port is in the
17518 			 * valid range.
17519 			 */
17520 			goto retry;
17521 		}
17522 	}
17523 	if (is_system_labeled() &&
17524 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
17525 	    IPPROTO_TCP, B_TRUE)) != 0) {
17526 		port = i;
17527 		goto retry;
17528 	}
17529 	return (port);
17530 }
17531 
17532 /*
17533  * Return the next anonymous port in the privileged port range for
17534  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
17535  * downwards.  This is the same behavior as documented in the userland
17536  * library call rresvport(3N).
17537  *
17538  * TS note: skip multilevel ports.
17539  */
17540 static in_port_t
17541 tcp_get_next_priv_port(const tcp_t *tcp)
17542 {
17543 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
17544 	in_port_t nextport;
17545 	boolean_t restart = B_FALSE;
17546 	tcp_stack_t *tcps = tcp->tcp_tcps;
17547 retry:
17548 	if (next_priv_port < tcps->tcps_min_anonpriv_port ||
17549 	    next_priv_port >= IPPORT_RESERVED) {
17550 		next_priv_port = IPPORT_RESERVED - 1;
17551 		if (restart)
17552 			return (0);
17553 		restart = B_TRUE;
17554 	}
17555 	if (is_system_labeled() &&
17556 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
17557 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
17558 		next_priv_port = nextport;
17559 		goto retry;
17560 	}
17561 	return (next_priv_port--);
17562 }
17563 
17564 /* The write side r/w procedure. */
17565 
17566 #if CCS_STATS
17567 struct {
17568 	struct {
17569 		int64_t count, bytes;
17570 	} tot, hit;
17571 } wrw_stats;
17572 #endif
17573 
17574 /*
17575  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17576  * messages.
17577  */
17578 /* ARGSUSED */
17579 static void
17580 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17581 {
17582 	conn_t	*connp = (conn_t *)arg;
17583 	tcp_t	*tcp = connp->conn_tcp;
17584 	queue_t	*q = tcp->tcp_wq;
17585 
17586 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17587 	/*
17588 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17589 	 * Once the close starts, streamhead and sockfs will not let any data
17590 	 * packets come down (close ensures that there are no threads using the
17591 	 * queue and no new threads will come down) but since qprocsoff()
17592 	 * hasn't happened yet, a M_FLUSH or some non data message might
17593 	 * get reflected back (in response to our own FLUSHRW) and get
17594 	 * processed after tcp_close() is done. The conn would still be valid
17595 	 * because a ref would have added but we need to check the state
17596 	 * before actually processing the packet.
17597 	 */
17598 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
17599 		freemsg(mp);
17600 		return;
17601 	}
17602 
17603 	switch (DB_TYPE(mp)) {
17604 	case M_IOCDATA:
17605 		tcp_wput_iocdata(tcp, mp);
17606 		break;
17607 	case M_FLUSH:
17608 		tcp_wput_flush(tcp, mp);
17609 		break;
17610 	default:
17611 		CALL_IP_WPUT(connp, q, mp);
17612 		break;
17613 	}
17614 }
17615 
17616 /*
17617  * The TCP fast path write put procedure.
17618  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
17619  */
17620 /* ARGSUSED */
17621 void
17622 tcp_output(void *arg, mblk_t *mp, void *arg2)
17623 {
17624 	int		len;
17625 	int		hdrlen;
17626 	int		plen;
17627 	mblk_t		*mp1;
17628 	uchar_t		*rptr;
17629 	uint32_t	snxt;
17630 	tcph_t		*tcph;
17631 	struct datab	*db;
17632 	uint32_t	suna;
17633 	uint32_t	mss;
17634 	ipaddr_t	*dst;
17635 	ipaddr_t	*src;
17636 	uint32_t	sum;
17637 	int		usable;
17638 	conn_t		*connp = (conn_t *)arg;
17639 	tcp_t		*tcp = connp->conn_tcp;
17640 	uint32_t	msize;
17641 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17642 
17643 	/*
17644 	 * Try and ASSERT the minimum possible references on the
17645 	 * conn early enough. Since we are executing on write side,
17646 	 * the connection is obviously not detached and that means
17647 	 * there is a ref each for TCP and IP. Since we are behind
17648 	 * the squeue, the minimum references needed are 3. If the
17649 	 * conn is in classifier hash list, there should be an
17650 	 * extra ref for that (we check both the possibilities).
17651 	 */
17652 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17653 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17654 
17655 	ASSERT(DB_TYPE(mp) == M_DATA);
17656 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
17657 
17658 	mutex_enter(&tcp->tcp_non_sq_lock);
17659 	tcp->tcp_squeue_bytes -= msize;
17660 	mutex_exit(&tcp->tcp_non_sq_lock);
17661 
17662 	/* Bypass tcp protocol for fused tcp loopback */
17663 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
17664 		return;
17665 
17666 	mss = tcp->tcp_mss;
17667 	if (tcp->tcp_xmit_zc_clean)
17668 		mp = tcp_zcopy_backoff(tcp, mp, 0);
17669 
17670 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17671 	len = (int)(mp->b_wptr - mp->b_rptr);
17672 
17673 	/*
17674 	 * Criteria for fast path:
17675 	 *
17676 	 *   1. no unsent data
17677 	 *   2. single mblk in request
17678 	 *   3. connection established
17679 	 *   4. data in mblk
17680 	 *   5. len <= mss
17681 	 *   6. no tcp_valid bits
17682 	 */
17683 	if ((tcp->tcp_unsent != 0) ||
17684 	    (tcp->tcp_cork) ||
17685 	    (mp->b_cont != NULL) ||
17686 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
17687 	    (len == 0) ||
17688 	    (len > mss) ||
17689 	    (tcp->tcp_valid_bits != 0)) {
17690 		tcp_wput_data(tcp, mp, B_FALSE);
17691 		return;
17692 	}
17693 
17694 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
17695 	ASSERT(tcp->tcp_fin_sent == 0);
17696 
17697 	/* queue new packet onto retransmission queue */
17698 	if (tcp->tcp_xmit_head == NULL) {
17699 		tcp->tcp_xmit_head = mp;
17700 	} else {
17701 		tcp->tcp_xmit_last->b_cont = mp;
17702 	}
17703 	tcp->tcp_xmit_last = mp;
17704 	tcp->tcp_xmit_tail = mp;
17705 
17706 	/* find out how much we can send */
17707 	/* BEGIN CSTYLED */
17708 	/*
17709 	 *    un-acked           usable
17710 	 *  |--------------|-----------------|
17711 	 *  tcp_suna       tcp_snxt          tcp_suna+tcp_swnd
17712 	 */
17713 	/* END CSTYLED */
17714 
17715 	/* start sending from tcp_snxt */
17716 	snxt = tcp->tcp_snxt;
17717 
17718 	/*
17719 	 * Check to see if this connection has been idled for some
17720 	 * time and no ACK is expected.  If it is, we need to slow
17721 	 * start again to get back the connection's "self-clock" as
17722 	 * described in VJ's paper.
17723 	 *
17724 	 * Refer to the comment in tcp_mss_set() for the calculation
17725 	 * of tcp_cwnd after idle.
17726 	 */
17727 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
17728 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
17729 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
17730 	}
17731 
17732 	usable = tcp->tcp_swnd;		/* tcp window size */
17733 	if (usable > tcp->tcp_cwnd)
17734 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
17735 	usable -= snxt;		/* subtract stuff already sent */
17736 	suna = tcp->tcp_suna;
17737 	usable += suna;
17738 	/* usable can be < 0 if the congestion window is smaller */
17739 	if (len > usable) {
17740 		/* Can't send complete M_DATA in one shot */
17741 		goto slow;
17742 	}
17743 
17744 	mutex_enter(&tcp->tcp_non_sq_lock);
17745 	if (tcp->tcp_flow_stopped &&
17746 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
17747 		tcp_clrqfull(tcp);
17748 	}
17749 	mutex_exit(&tcp->tcp_non_sq_lock);
17750 
17751 	/*
17752 	 * determine if anything to send (Nagle).
17753 	 *
17754 	 *   1. len < tcp_mss (i.e. small)
17755 	 *   2. unacknowledged data present
17756 	 *   3. len < nagle limit
17757 	 *   4. last packet sent < nagle limit (previous packet sent)
17758 	 */
17759 	if ((len < mss) && (snxt != suna) &&
17760 	    (len < (int)tcp->tcp_naglim) &&
17761 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
17762 		/*
17763 		 * This was the first unsent packet and normally
17764 		 * mss < xmit_hiwater so there is no need to worry
17765 		 * about flow control. The next packet will go
17766 		 * through the flow control check in tcp_wput_data().
17767 		 */
17768 		/* leftover work from above */
17769 		tcp->tcp_unsent = len;
17770 		tcp->tcp_xmit_tail_unsent = len;
17771 
17772 		return;
17773 	}
17774 
17775 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
17776 
17777 	if (snxt == suna) {
17778 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17779 	}
17780 
17781 	/* we have always sent something */
17782 	tcp->tcp_rack_cnt = 0;
17783 
17784 	tcp->tcp_snxt = snxt + len;
17785 	tcp->tcp_rack = tcp->tcp_rnxt;
17786 
17787 	if ((mp1 = dupb(mp)) == 0)
17788 		goto no_memory;
17789 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
17790 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
17791 
17792 	/* adjust tcp header information */
17793 	tcph = tcp->tcp_tcph;
17794 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
17795 
17796 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
17797 	sum = (sum >> 16) + (sum & 0xFFFF);
17798 	U16_TO_ABE16(sum, tcph->th_sum);
17799 
17800 	U32_TO_ABE32(snxt, tcph->th_seq);
17801 
17802 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
17803 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
17804 	BUMP_LOCAL(tcp->tcp_obsegs);
17805 
17806 	/* Update the latest receive window size in TCP header. */
17807 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
17808 	    tcph->th_win);
17809 
17810 	tcp->tcp_last_sent_len = (ushort_t)len;
17811 
17812 	plen = len + tcp->tcp_hdr_len;
17813 
17814 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17815 		tcp->tcp_ipha->ipha_length = htons(plen);
17816 	} else {
17817 		tcp->tcp_ip6h->ip6_plen = htons(plen -
17818 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
17819 	}
17820 
17821 	/* see if we need to allocate a mblk for the headers */
17822 	hdrlen = tcp->tcp_hdr_len;
17823 	rptr = mp1->b_rptr - hdrlen;
17824 	db = mp1->b_datap;
17825 	if ((db->db_ref != 2) || rptr < db->db_base ||
17826 	    (!OK_32PTR(rptr))) {
17827 		/* NOTE: we assume allocb returns an OK_32PTR */
17828 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
17829 		    tcps->tcps_wroff_xtra, BPRI_MED);
17830 		if (!mp) {
17831 			freemsg(mp1);
17832 			goto no_memory;
17833 		}
17834 		mp->b_cont = mp1;
17835 		mp1 = mp;
17836 		/* Leave room for Link Level header */
17837 		/* hdrlen = tcp->tcp_hdr_len; */
17838 		rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra];
17839 		mp1->b_wptr = &rptr[hdrlen];
17840 	}
17841 	mp1->b_rptr = rptr;
17842 
17843 	/* Fill in the timestamp option. */
17844 	if (tcp->tcp_snd_ts_ok) {
17845 		U32_TO_BE32((uint32_t)lbolt,
17846 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
17847 		U32_TO_BE32(tcp->tcp_ts_recent,
17848 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
17849 	} else {
17850 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
17851 	}
17852 
17853 	/* copy header into outgoing packet */
17854 	dst = (ipaddr_t *)rptr;
17855 	src = (ipaddr_t *)tcp->tcp_iphc;
17856 	dst[0] = src[0];
17857 	dst[1] = src[1];
17858 	dst[2] = src[2];
17859 	dst[3] = src[3];
17860 	dst[4] = src[4];
17861 	dst[5] = src[5];
17862 	dst[6] = src[6];
17863 	dst[7] = src[7];
17864 	dst[8] = src[8];
17865 	dst[9] = src[9];
17866 	if (hdrlen -= 40) {
17867 		hdrlen >>= 2;
17868 		dst += 10;
17869 		src += 10;
17870 		do {
17871 			*dst++ = *src++;
17872 		} while (--hdrlen);
17873 	}
17874 
17875 	/*
17876 	 * Set the ECN info in the TCP header.  Note that this
17877 	 * is not the template header.
17878 	 */
17879 	if (tcp->tcp_ecn_ok) {
17880 		SET_ECT(tcp, rptr);
17881 
17882 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
17883 		if (tcp->tcp_ecn_echo_on)
17884 			tcph->th_flags[0] |= TH_ECE;
17885 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17886 			tcph->th_flags[0] |= TH_CWR;
17887 			tcp->tcp_ecn_cwr_sent = B_TRUE;
17888 		}
17889 	}
17890 
17891 	if (tcp->tcp_ip_forward_progress) {
17892 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
17893 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
17894 		tcp->tcp_ip_forward_progress = B_FALSE;
17895 	}
17896 	TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
17897 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
17898 	return;
17899 
17900 	/*
17901 	 * If we ran out of memory, we pretend to have sent the packet
17902 	 * and that it was lost on the wire.
17903 	 */
17904 no_memory:
17905 	return;
17906 
17907 slow:
17908 	/* leftover work from above */
17909 	tcp->tcp_unsent = len;
17910 	tcp->tcp_xmit_tail_unsent = len;
17911 	tcp_wput_data(tcp, NULL, B_FALSE);
17912 }
17913 
17914 /*
17915  * The function called through squeue to get behind eager's perimeter to
17916  * finish the accept processing.
17917  */
17918 /* ARGSUSED */
17919 void
17920 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
17921 {
17922 	conn_t			*connp = (conn_t *)arg;
17923 	tcp_t			*tcp = connp->conn_tcp;
17924 	queue_t			*q = tcp->tcp_rq;
17925 	mblk_t			*mp1;
17926 	mblk_t			*stropt_mp = mp;
17927 	struct  stroptions	*stropt;
17928 	uint_t			thwin;
17929 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17930 
17931 	/*
17932 	 * Drop the eager's ref on the listener, that was placed when
17933 	 * this eager began life in tcp_conn_request.
17934 	 */
17935 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17936 
17937 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17938 		/*
17939 		 * Someone blewoff the eager before we could finish
17940 		 * the accept.
17941 		 *
17942 		 * The only reason eager exists it because we put in
17943 		 * a ref on it when conn ind went up. We need to send
17944 		 * a disconnect indication up while the last reference
17945 		 * on the eager will be dropped by the squeue when we
17946 		 * return.
17947 		 */
17948 		ASSERT(tcp->tcp_listener == NULL);
17949 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17950 			struct	T_discon_ind	*tdi;
17951 
17952 			(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17953 			/*
17954 			 * Let us reuse the incoming mblk to avoid memory
17955 			 * allocation failure problems. We know that the
17956 			 * size of the incoming mblk i.e. stroptions is greater
17957 			 * than sizeof T_discon_ind. So the reallocb below
17958 			 * can't fail.
17959 			 */
17960 			freemsg(mp->b_cont);
17961 			mp->b_cont = NULL;
17962 			ASSERT(DB_REF(mp) == 1);
17963 			mp = reallocb(mp, sizeof (struct T_discon_ind),
17964 			    B_FALSE);
17965 			ASSERT(mp != NULL);
17966 			DB_TYPE(mp) = M_PROTO;
17967 			((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND;
17968 			tdi = (struct T_discon_ind *)mp->b_rptr;
17969 			if (tcp->tcp_issocket) {
17970 				tdi->DISCON_reason = ECONNREFUSED;
17971 				tdi->SEQ_number = 0;
17972 			} else {
17973 				tdi->DISCON_reason = ENOPROTOOPT;
17974 				tdi->SEQ_number =
17975 				    tcp->tcp_conn_req_seqnum;
17976 			}
17977 			mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
17978 			putnext(q, mp);
17979 		} else {
17980 			freemsg(mp);
17981 		}
17982 		if (tcp->tcp_hard_binding) {
17983 			tcp->tcp_hard_binding = B_FALSE;
17984 			tcp->tcp_hard_bound = B_TRUE;
17985 		}
17986 		tcp->tcp_detached = B_FALSE;
17987 		return;
17988 	}
17989 
17990 	mp1 = stropt_mp->b_cont;
17991 	stropt_mp->b_cont = NULL;
17992 	ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS);
17993 	stropt = (struct stroptions *)stropt_mp->b_rptr;
17994 
17995 	while (mp1 != NULL) {
17996 		mp = mp1;
17997 		mp1 = mp1->b_cont;
17998 		mp->b_cont = NULL;
17999 		tcp->tcp_drop_opt_ack_cnt++;
18000 		CALL_IP_WPUT(connp, tcp->tcp_wq, mp);
18001 	}
18002 	mp = NULL;
18003 
18004 	/*
18005 	 * For a loopback connection with tcp_direct_sockfs on, note that
18006 	 * we don't have to protect tcp_rcv_list yet because synchronous
18007 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
18008 	 * possibly race with us.
18009 	 */
18010 
18011 	/*
18012 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
18013 	 * properly.  This is the first time we know of the acceptor'
18014 	 * queue.  So we do it here.
18015 	 */
18016 	if (tcp->tcp_rcv_list == NULL) {
18017 		/*
18018 		 * Recv queue is empty, tcp_rwnd should not have changed.
18019 		 * That means it should be equal to the listener's tcp_rwnd.
18020 		 */
18021 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
18022 	} else {
18023 #ifdef DEBUG
18024 		uint_t cnt = 0;
18025 
18026 		mp1 = tcp->tcp_rcv_list;
18027 		while ((mp = mp1) != NULL) {
18028 			mp1 = mp->b_next;
18029 			cnt += msgdsize(mp);
18030 		}
18031 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
18032 #endif
18033 		/* There is some data, add them back to get the max. */
18034 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
18035 	}
18036 
18037 	stropt->so_flags = SO_HIWAT;
18038 	stropt->so_hiwat = MAX(q->q_hiwat, tcps->tcps_sth_rcv_hiwat);
18039 
18040 	stropt->so_flags |= SO_MAXBLK;
18041 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
18042 
18043 	/*
18044 	 * This is the first time we run on the correct
18045 	 * queue after tcp_accept. So fix all the q parameters
18046 	 * here.
18047 	 */
18048 	/* Allocate room for SACK options if needed. */
18049 	stropt->so_flags |= SO_WROFF;
18050 	if (tcp->tcp_fused) {
18051 		ASSERT(tcp->tcp_loopback);
18052 		ASSERT(tcp->tcp_loopback_peer != NULL);
18053 		/*
18054 		 * For fused tcp loopback, set the stream head's write
18055 		 * offset value to zero since we won't be needing any room
18056 		 * for TCP/IP headers.  This would also improve performance
18057 		 * since it would reduce the amount of work done by kmem.
18058 		 * Non-fused tcp loopback case is handled separately below.
18059 		 */
18060 		stropt->so_wroff = 0;
18061 		/*
18062 		 * Record the stream head's high water mark for this endpoint;
18063 		 * this is used for flow-control purposes in tcp_fuse_output().
18064 		 */
18065 		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat);
18066 		/*
18067 		 * Update the peer's transmit parameters according to
18068 		 * our recently calculated high water mark value.
18069 		 */
18070 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
18071 	} else if (tcp->tcp_snd_sack_ok) {
18072 		stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
18073 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
18074 	} else {
18075 		stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
18076 		    tcps->tcps_wroff_xtra);
18077 	}
18078 
18079 	/*
18080 	 * If this is endpoint is handling SSL, then reserve extra
18081 	 * offset and space at the end.
18082 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
18083 	 * overriding the previous setting. The extra cost of signing and
18084 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
18085 	 * instead of a single contiguous one by the stream head
18086 	 * largely outweighs the statistical reduction of ACKs, when
18087 	 * applicable. The peer will also save on decryption and verification
18088 	 * costs.
18089 	 */
18090 	if (tcp->tcp_kssl_ctx != NULL) {
18091 		stropt->so_wroff += SSL3_WROFFSET;
18092 
18093 		stropt->so_flags |= SO_TAIL;
18094 		stropt->so_tail = SSL3_MAX_TAIL_LEN;
18095 
18096 		stropt->so_maxblk = SSL3_MAX_RECORD_LEN;
18097 	}
18098 
18099 	/* Send the options up */
18100 	putnext(q, stropt_mp);
18101 
18102 	/*
18103 	 * Pass up any data and/or a fin that has been received.
18104 	 *
18105 	 * Adjust receive window in case it had decreased
18106 	 * (because there is data <=> tcp_rcv_list != NULL)
18107 	 * while the connection was detached. Note that
18108 	 * in case the eager was flow-controlled, w/o this
18109 	 * code, the rwnd may never open up again!
18110 	 */
18111 	if (tcp->tcp_rcv_list != NULL) {
18112 		/* We drain directly in case of fused tcp loopback */
18113 		if (!tcp->tcp_fused && canputnext(q)) {
18114 			tcp->tcp_rwnd = q->q_hiwat;
18115 			thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
18116 			    << tcp->tcp_rcv_ws;
18117 			thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
18118 			if (tcp->tcp_state >= TCPS_ESTABLISHED &&
18119 			    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
18120 				tcp_xmit_ctl(NULL,
18121 				    tcp, (tcp->tcp_swnd == 0) ?
18122 				    tcp->tcp_suna : tcp->tcp_snxt,
18123 				    tcp->tcp_rnxt, TH_ACK);
18124 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
18125 			}
18126 
18127 		}
18128 		(void) tcp_rcv_drain(q, tcp);
18129 
18130 		/*
18131 		 * For fused tcp loopback, back-enable peer endpoint
18132 		 * if it's currently flow-controlled.
18133 		 */
18134 		if (tcp->tcp_fused) {
18135 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
18136 
18137 			ASSERT(peer_tcp != NULL);
18138 			ASSERT(peer_tcp->tcp_fused);
18139 			/*
18140 			 * In order to change the peer's tcp_flow_stopped,
18141 			 * we need to take locks for both end points. The
18142 			 * highest address is taken first.
18143 			 */
18144 			if (peer_tcp > tcp) {
18145 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18146 				mutex_enter(&tcp->tcp_non_sq_lock);
18147 			} else {
18148 				mutex_enter(&tcp->tcp_non_sq_lock);
18149 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18150 			}
18151 			if (peer_tcp->tcp_flow_stopped) {
18152 				tcp_clrqfull(peer_tcp);
18153 				TCP_STAT(tcps, tcp_fusion_backenabled);
18154 			}
18155 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
18156 			mutex_exit(&tcp->tcp_non_sq_lock);
18157 		}
18158 	}
18159 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
18160 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
18161 		mp = mi_tpi_ordrel_ind();
18162 		if (mp) {
18163 			tcp->tcp_ordrel_done = B_TRUE;
18164 			putnext(q, mp);
18165 			if (tcp->tcp_deferred_clean_death) {
18166 				/*
18167 				 * tcp_clean_death was deferred
18168 				 * for T_ORDREL_IND - do it now
18169 				 */
18170 				(void) tcp_clean_death(tcp,
18171 				    tcp->tcp_client_errno, 21);
18172 				tcp->tcp_deferred_clean_death = B_FALSE;
18173 			}
18174 		} else {
18175 			/*
18176 			 * Run the orderly release in the
18177 			 * service routine.
18178 			 */
18179 			qenable(q);
18180 		}
18181 	}
18182 	if (tcp->tcp_hard_binding) {
18183 		tcp->tcp_hard_binding = B_FALSE;
18184 		tcp->tcp_hard_bound = B_TRUE;
18185 	}
18186 
18187 	tcp->tcp_detached = B_FALSE;
18188 
18189 	/* We can enable synchronous streams now */
18190 	if (tcp->tcp_fused) {
18191 		tcp_fuse_syncstr_enable_pair(tcp);
18192 	}
18193 
18194 	if (tcp->tcp_ka_enabled) {
18195 		tcp->tcp_ka_last_intrvl = 0;
18196 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
18197 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
18198 	}
18199 
18200 	/*
18201 	 * At this point, eager is fully established and will
18202 	 * have the following references -
18203 	 *
18204 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
18205 	 * 1 reference for the squeue which will be dropped by the squeue as
18206 	 *	soon as this function returns.
18207 	 * There will be 1 additonal reference for being in classifier
18208 	 *	hash list provided something bad hasn't happened.
18209 	 */
18210 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
18211 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
18212 }
18213 
18214 /*
18215  * The function called through squeue to get behind listener's perimeter to
18216  * send a deffered conn_ind.
18217  */
18218 /* ARGSUSED */
18219 void
18220 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
18221 {
18222 	conn_t	*connp = (conn_t *)arg;
18223 	tcp_t *listener = connp->conn_tcp;
18224 
18225 	if (listener->tcp_state == TCPS_CLOSED ||
18226 	    TCP_IS_DETACHED(listener)) {
18227 		/*
18228 		 * If listener has closed, it would have caused a
18229 		 * a cleanup/blowoff to happen for the eager.
18230 		 */
18231 		tcp_t *tcp;
18232 		struct T_conn_ind	*conn_ind;
18233 
18234 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
18235 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
18236 		    conn_ind->OPT_length);
18237 		/*
18238 		 * We need to drop the ref on eager that was put
18239 		 * tcp_rput_data() before trying to send the conn_ind
18240 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
18241 		 * and tcp_wput_accept() is sending this deferred conn_ind but
18242 		 * listener is closed so we drop the ref.
18243 		 */
18244 		CONN_DEC_REF(tcp->tcp_connp);
18245 		freemsg(mp);
18246 		return;
18247 	}
18248 	putnext(listener->tcp_rq, mp);
18249 }
18250 
18251 
18252 /*
18253  * This is the STREAMS entry point for T_CONN_RES coming down on
18254  * Acceptor STREAM when  sockfs listener does accept processing.
18255  * Read the block comment on top of tcp_conn_request().
18256  */
18257 void
18258 tcp_wput_accept(queue_t *q, mblk_t *mp)
18259 {
18260 	queue_t *rq = RD(q);
18261 	struct T_conn_res *conn_res;
18262 	tcp_t *eager;
18263 	tcp_t *listener;
18264 	struct T_ok_ack *ok;
18265 	t_scalar_t PRIM_type;
18266 	mblk_t *opt_mp;
18267 	conn_t *econnp;
18268 
18269 	ASSERT(DB_TYPE(mp) == M_PROTO);
18270 
18271 	conn_res = (struct T_conn_res *)mp->b_rptr;
18272 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
18273 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
18274 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18275 		if (mp != NULL)
18276 			putnext(rq, mp);
18277 		return;
18278 	}
18279 	switch (conn_res->PRIM_type) {
18280 	case O_T_CONN_RES:
18281 	case T_CONN_RES:
18282 		/*
18283 		 * We pass up an err ack if allocb fails. This will
18284 		 * cause sockfs to issue a T_DISCON_REQ which will cause
18285 		 * tcp_eager_blowoff to be called. sockfs will then call
18286 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
18287 		 * we need to do the allocb up here because we have to
18288 		 * make sure rq->q_qinfo->qi_qclose still points to the
18289 		 * correct function (tcpclose_accept) in case allocb
18290 		 * fails.
18291 		 */
18292 		opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
18293 		if (opt_mp == NULL) {
18294 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18295 			if (mp != NULL)
18296 				putnext(rq, mp);
18297 			return;
18298 		}
18299 
18300 		bcopy(mp->b_rptr + conn_res->OPT_offset,
18301 		    &eager, conn_res->OPT_length);
18302 		PRIM_type = conn_res->PRIM_type;
18303 		mp->b_datap->db_type = M_PCPROTO;
18304 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
18305 		ok = (struct T_ok_ack *)mp->b_rptr;
18306 		ok->PRIM_type = T_OK_ACK;
18307 		ok->CORRECT_prim = PRIM_type;
18308 		econnp = eager->tcp_connp;
18309 		econnp->conn_dev = (dev_t)RD(q)->q_ptr;
18310 		econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr);
18311 		eager->tcp_rq = rq;
18312 		eager->tcp_wq = q;
18313 		rq->q_ptr = econnp;
18314 		rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
18315 		q->q_ptr = econnp;
18316 		q->q_qinfo = &tcp_winit;
18317 		listener = eager->tcp_listener;
18318 		eager->tcp_issocket = B_TRUE;
18319 
18320 		econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
18321 		econnp->conn_allzones = listener->tcp_connp->conn_allzones;
18322 		ASSERT(econnp->conn_netstack ==
18323 		    listener->tcp_connp->conn_netstack);
18324 		ASSERT(eager->tcp_tcps == listener->tcp_tcps);
18325 
18326 		/* Put the ref for IP */
18327 		CONN_INC_REF(econnp);
18328 
18329 		/*
18330 		 * We should have minimum of 3 references on the conn
18331 		 * at this point. One each for TCP and IP and one for
18332 		 * the T_conn_ind that was sent up when the 3-way handshake
18333 		 * completed. In the normal case we would also have another
18334 		 * reference (making a total of 4) for the conn being in the
18335 		 * classifier hash list. However the eager could have received
18336 		 * an RST subsequently and tcp_closei_local could have removed
18337 		 * the eager from the classifier hash list, hence we can't
18338 		 * assert that reference.
18339 		 */
18340 		ASSERT(econnp->conn_ref >= 3);
18341 
18342 		/*
18343 		 * Send the new local address also up to sockfs. There
18344 		 * should already be enough space in the mp that came
18345 		 * down from soaccept().
18346 		 */
18347 		if (eager->tcp_family == AF_INET) {
18348 			sin_t *sin;
18349 
18350 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18351 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
18352 			sin = (sin_t *)mp->b_wptr;
18353 			mp->b_wptr += sizeof (sin_t);
18354 			sin->sin_family = AF_INET;
18355 			sin->sin_port = eager->tcp_lport;
18356 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
18357 		} else {
18358 			sin6_t *sin6;
18359 
18360 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18361 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
18362 			sin6 = (sin6_t *)mp->b_wptr;
18363 			mp->b_wptr += sizeof (sin6_t);
18364 			sin6->sin6_family = AF_INET6;
18365 			sin6->sin6_port = eager->tcp_lport;
18366 			if (eager->tcp_ipversion == IPV4_VERSION) {
18367 				sin6->sin6_flowinfo = 0;
18368 				IN6_IPADDR_TO_V4MAPPED(
18369 				    eager->tcp_ipha->ipha_src,
18370 				    &sin6->sin6_addr);
18371 			} else {
18372 				ASSERT(eager->tcp_ip6h != NULL);
18373 				sin6->sin6_flowinfo =
18374 				    eager->tcp_ip6h->ip6_vcf &
18375 				    ~IPV6_VERS_AND_FLOW_MASK;
18376 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
18377 			}
18378 			sin6->sin6_scope_id = 0;
18379 			sin6->__sin6_src_id = 0;
18380 		}
18381 
18382 		putnext(rq, mp);
18383 
18384 		opt_mp->b_datap->db_type = M_SETOPTS;
18385 		opt_mp->b_wptr += sizeof (struct stroptions);
18386 
18387 		/*
18388 		 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
18389 		 * from listener to acceptor. The message is chained on the
18390 		 * bind_mp which tcp_rput_other will send down to IP.
18391 		 */
18392 		if (listener->tcp_bound_if != 0) {
18393 			/* allocate optmgmt req */
18394 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18395 			    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
18396 			    sizeof (int));
18397 			if (mp != NULL)
18398 				linkb(opt_mp, mp);
18399 		}
18400 		if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
18401 			uint_t on = 1;
18402 
18403 			/* allocate optmgmt req */
18404 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18405 			    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
18406 			if (mp != NULL)
18407 				linkb(opt_mp, mp);
18408 		}
18409 
18410 
18411 		mutex_enter(&listener->tcp_eager_lock);
18412 
18413 		if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
18414 
18415 			tcp_t *tail;
18416 			tcp_t *tcp;
18417 			mblk_t *mp1;
18418 
18419 			tcp = listener->tcp_eager_prev_q0;
18420 			/*
18421 			 * listener->tcp_eager_prev_q0 points to the TAIL of the
18422 			 * deferred T_conn_ind queue. We need to get to the head
18423 			 * of the queue in order to send up T_conn_ind the same
18424 			 * order as how the 3WHS is completed.
18425 			 */
18426 			while (tcp != listener) {
18427 				if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
18428 				    !tcp->tcp_kssl_pending)
18429 					break;
18430 				else
18431 					tcp = tcp->tcp_eager_prev_q0;
18432 			}
18433 			/* None of the pending eagers can be sent up now */
18434 			if (tcp == listener)
18435 				goto no_more_eagers;
18436 
18437 			mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
18438 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
18439 			/* Move from q0 to q */
18440 			ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
18441 			listener->tcp_conn_req_cnt_q0--;
18442 			listener->tcp_conn_req_cnt_q++;
18443 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
18444 			    tcp->tcp_eager_prev_q0;
18445 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
18446 			    tcp->tcp_eager_next_q0;
18447 			tcp->tcp_eager_prev_q0 = NULL;
18448 			tcp->tcp_eager_next_q0 = NULL;
18449 			tcp->tcp_conn_def_q0 = B_FALSE;
18450 
18451 			/* Make sure the tcp isn't in the list of droppables */
18452 			ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
18453 			    tcp->tcp_eager_prev_drop_q0 == NULL);
18454 
18455 			/*
18456 			 * Insert at end of the queue because sockfs sends
18457 			 * down T_CONN_RES in chronological order. Leaving
18458 			 * the older conn indications at front of the queue
18459 			 * helps reducing search time.
18460 			 */
18461 			tail = listener->tcp_eager_last_q;
18462 			if (tail != NULL) {
18463 				tail->tcp_eager_next_q = tcp;
18464 			} else {
18465 				listener->tcp_eager_next_q = tcp;
18466 			}
18467 			listener->tcp_eager_last_q = tcp;
18468 			tcp->tcp_eager_next_q = NULL;
18469 
18470 			/* Need to get inside the listener perimeter */
18471 			CONN_INC_REF(listener->tcp_connp);
18472 			squeue_fill(listener->tcp_connp->conn_sqp, mp1,
18473 			    tcp_send_pending, listener->tcp_connp,
18474 			    SQTAG_TCP_SEND_PENDING);
18475 		}
18476 no_more_eagers:
18477 		tcp_eager_unlink(eager);
18478 		mutex_exit(&listener->tcp_eager_lock);
18479 
18480 		/*
18481 		 * At this point, the eager is detached from the listener
18482 		 * but we still have an extra refs on eager (apart from the
18483 		 * usual tcp references). The ref was placed in tcp_rput_data
18484 		 * before sending the conn_ind in tcp_send_conn_ind.
18485 		 * The ref will be dropped in tcp_accept_finish().
18486 		 */
18487 		squeue_enter_nodrain(econnp->conn_sqp, opt_mp,
18488 		    tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0);
18489 		return;
18490 	default:
18491 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
18492 		if (mp != NULL)
18493 			putnext(rq, mp);
18494 		return;
18495 	}
18496 }
18497 
18498 void
18499 tcp_wput(queue_t *q, mblk_t *mp)
18500 {
18501 	conn_t	*connp = Q_TO_CONN(q);
18502 	tcp_t	*tcp;
18503 	void (*output_proc)();
18504 	t_scalar_t type;
18505 	uchar_t *rptr;
18506 	struct iocblk	*iocp;
18507 	uint32_t	msize;
18508 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
18509 
18510 	ASSERT(connp->conn_ref >= 2);
18511 
18512 	switch (DB_TYPE(mp)) {
18513 	case M_DATA:
18514 		tcp = connp->conn_tcp;
18515 		ASSERT(tcp != NULL);
18516 
18517 		msize = msgdsize(mp);
18518 
18519 		mutex_enter(&tcp->tcp_non_sq_lock);
18520 		tcp->tcp_squeue_bytes += msize;
18521 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
18522 			tcp_setqfull(tcp);
18523 		}
18524 		mutex_exit(&tcp->tcp_non_sq_lock);
18525 
18526 		CONN_INC_REF(connp);
18527 		(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18528 		    tcp_output, connp, SQTAG_TCP_OUTPUT);
18529 		return;
18530 	case M_PROTO:
18531 	case M_PCPROTO:
18532 		/*
18533 		 * if it is a snmp message, don't get behind the squeue
18534 		 */
18535 		tcp = connp->conn_tcp;
18536 		rptr = mp->b_rptr;
18537 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
18538 			type = ((union T_primitives *)rptr)->type;
18539 		} else {
18540 			if (tcp->tcp_debug) {
18541 				(void) strlog(TCP_MOD_ID, 0, 1,
18542 				    SL_ERROR|SL_TRACE,
18543 				    "tcp_wput_proto, dropping one...");
18544 			}
18545 			freemsg(mp);
18546 			return;
18547 		}
18548 		if (type == T_SVR4_OPTMGMT_REQ) {
18549 			cred_t	*cr = DB_CREDDEF(mp, tcp->tcp_cred);
18550 			if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get,
18551 			    cr)) {
18552 				/*
18553 				 * This was a SNMP request
18554 				 */
18555 				return;
18556 			} else {
18557 				output_proc = tcp_wput_proto;
18558 			}
18559 		} else {
18560 			output_proc = tcp_wput_proto;
18561 		}
18562 		break;
18563 	case M_IOCTL:
18564 		/*
18565 		 * Most ioctls can be processed right away without going via
18566 		 * squeues - process them right here. Those that do require
18567 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
18568 		 * are processed by tcp_wput_ioctl().
18569 		 */
18570 		iocp = (struct iocblk *)mp->b_rptr;
18571 		tcp = connp->conn_tcp;
18572 
18573 		switch (iocp->ioc_cmd) {
18574 		case TCP_IOC_ABORT_CONN:
18575 			tcp_ioctl_abort_conn(q, mp);
18576 			return;
18577 		case TI_GETPEERNAME:
18578 			if (tcp->tcp_state < TCPS_SYN_RCVD) {
18579 				iocp->ioc_error = ENOTCONN;
18580 				iocp->ioc_count = 0;
18581 				mp->b_datap->db_type = M_IOCACK;
18582 				qreply(q, mp);
18583 				return;
18584 			}
18585 			/* FALLTHRU */
18586 		case TI_GETMYNAME:
18587 			mi_copyin(q, mp, NULL,
18588 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
18589 			return;
18590 		case ND_SET:
18591 			/* nd_getset does the necessary checks */
18592 		case ND_GET:
18593 			if (!nd_getset(q, tcps->tcps_g_nd, mp)) {
18594 				CALL_IP_WPUT(connp, q, mp);
18595 				return;
18596 			}
18597 			qreply(q, mp);
18598 			return;
18599 		case TCP_IOC_DEFAULT_Q:
18600 			/*
18601 			 * Wants to be the default wq. Check the credentials
18602 			 * first, the rest is executed via squeue.
18603 			 */
18604 			if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
18605 				iocp->ioc_error = EPERM;
18606 				iocp->ioc_count = 0;
18607 				mp->b_datap->db_type = M_IOCACK;
18608 				qreply(q, mp);
18609 				return;
18610 			}
18611 			output_proc = tcp_wput_ioctl;
18612 			break;
18613 		default:
18614 			output_proc = tcp_wput_ioctl;
18615 			break;
18616 		}
18617 		break;
18618 	default:
18619 		output_proc = tcp_wput_nondata;
18620 		break;
18621 	}
18622 
18623 	CONN_INC_REF(connp);
18624 	(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18625 	    output_proc, connp, SQTAG_TCP_WPUT_OTHER);
18626 }
18627 
18628 /*
18629  * Initial STREAMS write side put() procedure for sockets. It tries to
18630  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18631  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18632  * are handled by tcp_wput() as usual.
18633  *
18634  * All further messages will also be handled by tcp_wput() because we cannot
18635  * be sure that the above short cut is safe later.
18636  */
18637 static void
18638 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18639 {
18640 	conn_t			*connp = Q_TO_CONN(wq);
18641 	tcp_t			*tcp = connp->conn_tcp;
18642 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
18643 
18644 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
18645 	wq->q_qinfo = &tcp_winit;
18646 
18647 	ASSERT(IPCL_IS_TCP(connp));
18648 	ASSERT(TCP_IS_SOCKET(tcp));
18649 
18650 	if (DB_TYPE(mp) == M_PCPROTO &&
18651 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
18652 	    car->PRIM_type == T_CAPABILITY_REQ) {
18653 		tcp_capability_req(tcp, mp);
18654 		return;
18655 	}
18656 
18657 	tcp_wput(wq, mp);
18658 }
18659 
18660 static boolean_t
18661 tcp_zcopy_check(tcp_t *tcp)
18662 {
18663 	conn_t	*connp = tcp->tcp_connp;
18664 	ire_t	*ire;
18665 	boolean_t	zc_enabled = B_FALSE;
18666 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18667 
18668 	if (do_tcpzcopy == 2)
18669 		zc_enabled = B_TRUE;
18670 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
18671 	    IPCL_IS_CONNECTED(connp) &&
18672 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
18673 	    connp->conn_dontroute == 0 &&
18674 	    !connp->conn_nexthop_set &&
18675 	    connp->conn_outgoing_ill == NULL &&
18676 	    connp->conn_nofailover_ill == NULL &&
18677 	    do_tcpzcopy == 1) {
18678 		/*
18679 		 * the checks above  closely resemble the fast path checks
18680 		 * in tcp_send_data().
18681 		 */
18682 		mutex_enter(&connp->conn_lock);
18683 		ire = connp->conn_ire_cache;
18684 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18685 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18686 			IRE_REFHOLD(ire);
18687 			if (ire->ire_stq != NULL) {
18688 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
18689 
18690 				zc_enabled = ill && (ill->ill_capabilities &
18691 				    ILL_CAPAB_ZEROCOPY) &&
18692 				    (ill->ill_zerocopy_capab->
18693 				    ill_zerocopy_flags != 0);
18694 			}
18695 			IRE_REFRELE(ire);
18696 		}
18697 		mutex_exit(&connp->conn_lock);
18698 	}
18699 	tcp->tcp_snd_zcopy_on = zc_enabled;
18700 	if (!TCP_IS_DETACHED(tcp)) {
18701 		if (zc_enabled) {
18702 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE);
18703 			TCP_STAT(tcps, tcp_zcopy_on);
18704 		} else {
18705 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18706 			TCP_STAT(tcps, tcp_zcopy_off);
18707 		}
18708 	}
18709 	return (zc_enabled);
18710 }
18711 
18712 static mblk_t *
18713 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
18714 {
18715 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18716 
18717 	if (do_tcpzcopy == 2)
18718 		return (bp);
18719 	else if (tcp->tcp_snd_zcopy_on) {
18720 		tcp->tcp_snd_zcopy_on = B_FALSE;
18721 		if (!TCP_IS_DETACHED(tcp)) {
18722 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18723 			TCP_STAT(tcps, tcp_zcopy_disable);
18724 		}
18725 	}
18726 	return (tcp_zcopy_backoff(tcp, bp, 0));
18727 }
18728 
18729 /*
18730  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
18731  * the original desballoca'ed segmapped mblk.
18732  */
18733 static mblk_t *
18734 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
18735 {
18736 	mblk_t *head, *tail, *nbp;
18737 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18738 
18739 	if (IS_VMLOANED_MBLK(bp)) {
18740 		TCP_STAT(tcps, tcp_zcopy_backoff);
18741 		if ((head = copyb(bp)) == NULL) {
18742 			/* fail to backoff; leave it for the next backoff */
18743 			tcp->tcp_xmit_zc_clean = B_FALSE;
18744 			return (bp);
18745 		}
18746 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18747 			if (fix_xmitlist)
18748 				tcp_zcopy_notify(tcp);
18749 			else
18750 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18751 		}
18752 		nbp = bp->b_cont;
18753 		if (fix_xmitlist) {
18754 			head->b_prev = bp->b_prev;
18755 			head->b_next = bp->b_next;
18756 			if (tcp->tcp_xmit_tail == bp)
18757 				tcp->tcp_xmit_tail = head;
18758 		}
18759 		bp->b_next = NULL;
18760 		bp->b_prev = NULL;
18761 		freeb(bp);
18762 	} else {
18763 		head = bp;
18764 		nbp = bp->b_cont;
18765 	}
18766 	tail = head;
18767 	while (nbp) {
18768 		if (IS_VMLOANED_MBLK(nbp)) {
18769 			TCP_STAT(tcps, tcp_zcopy_backoff);
18770 			if ((tail->b_cont = copyb(nbp)) == NULL) {
18771 				tcp->tcp_xmit_zc_clean = B_FALSE;
18772 				tail->b_cont = nbp;
18773 				return (head);
18774 			}
18775 			tail = tail->b_cont;
18776 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18777 				if (fix_xmitlist)
18778 					tcp_zcopy_notify(tcp);
18779 				else
18780 					tail->b_datap->db_struioflag |=
18781 					    STRUIO_ZCNOTIFY;
18782 			}
18783 			bp = nbp;
18784 			nbp = nbp->b_cont;
18785 			if (fix_xmitlist) {
18786 				tail->b_prev = bp->b_prev;
18787 				tail->b_next = bp->b_next;
18788 				if (tcp->tcp_xmit_tail == bp)
18789 					tcp->tcp_xmit_tail = tail;
18790 			}
18791 			bp->b_next = NULL;
18792 			bp->b_prev = NULL;
18793 			freeb(bp);
18794 		} else {
18795 			tail->b_cont = nbp;
18796 			tail = nbp;
18797 			nbp = nbp->b_cont;
18798 		}
18799 	}
18800 	if (fix_xmitlist) {
18801 		tcp->tcp_xmit_last = tail;
18802 		tcp->tcp_xmit_zc_clean = B_TRUE;
18803 	}
18804 	return (head);
18805 }
18806 
18807 static void
18808 tcp_zcopy_notify(tcp_t *tcp)
18809 {
18810 	struct stdata	*stp;
18811 
18812 	if (tcp->tcp_detached)
18813 		return;
18814 	stp = STREAM(tcp->tcp_rq);
18815 	mutex_enter(&stp->sd_lock);
18816 	stp->sd_flag |= STZCNOTIFY;
18817 	cv_broadcast(&stp->sd_zcopy_wait);
18818 	mutex_exit(&stp->sd_lock);
18819 }
18820 
18821 static boolean_t
18822 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep)
18823 {
18824 	ire_t	*ire;
18825 	conn_t	*connp = tcp->tcp_connp;
18826 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18827 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18828 
18829 	mutex_enter(&connp->conn_lock);
18830 	ire = connp->conn_ire_cache;
18831 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18832 
18833 	if ((ire != NULL) &&
18834 	    (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) &&
18835 	    IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) &&
18836 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18837 		IRE_REFHOLD(ire);
18838 		mutex_exit(&connp->conn_lock);
18839 	} else {
18840 		boolean_t cached = B_FALSE;
18841 		ts_label_t *tsl;
18842 
18843 		/* force a recheck later on */
18844 		tcp->tcp_ire_ill_check_done = B_FALSE;
18845 
18846 		TCP_DBGSTAT(tcps, tcp_ire_null1);
18847 		connp->conn_ire_cache = NULL;
18848 		mutex_exit(&connp->conn_lock);
18849 
18850 		if (ire != NULL)
18851 			IRE_REFRELE_NOTR(ire);
18852 
18853 		tsl = crgetlabel(CONN_CRED(connp));
18854 		ire = (dst ?
18855 		    ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) :
18856 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
18857 		    connp->conn_zoneid, tsl, ipst));
18858 
18859 		if (ire == NULL) {
18860 			TCP_STAT(tcps, tcp_ire_null);
18861 			return (B_FALSE);
18862 		}
18863 
18864 		IRE_REFHOLD_NOTR(ire);
18865 		/*
18866 		 * Since we are inside the squeue, there cannot be another
18867 		 * thread in TCP trying to set the conn_ire_cache now.  The
18868 		 * check for IRE_MARK_CONDEMNED ensures that an interface
18869 		 * unplumb thread has not yet started cleaning up the conns.
18870 		 * Hence we don't need to grab the conn lock.
18871 		 */
18872 		if (CONN_CACHE_IRE(connp)) {
18873 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
18874 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18875 				TCP_CHECK_IREINFO(tcp, ire);
18876 				connp->conn_ire_cache = ire;
18877 				cached = B_TRUE;
18878 			}
18879 			rw_exit(&ire->ire_bucket->irb_lock);
18880 		}
18881 
18882 		/*
18883 		 * We can continue to use the ire but since it was
18884 		 * not cached, we should drop the extra reference.
18885 		 */
18886 		if (!cached)
18887 			IRE_REFRELE_NOTR(ire);
18888 
18889 		/*
18890 		 * Rampart note: no need to select a new label here, since
18891 		 * labels are not allowed to change during the life of a TCP
18892 		 * connection.
18893 		 */
18894 	}
18895 
18896 	*irep = ire;
18897 
18898 	return (B_TRUE);
18899 }
18900 
18901 /*
18902  * Called from tcp_send() or tcp_send_data() to find workable IRE.
18903  *
18904  * 0 = success;
18905  * 1 = failed to find ire and ill.
18906  */
18907 static boolean_t
18908 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp)
18909 {
18910 	ipha_t		*ipha;
18911 	ipaddr_t	dst;
18912 	ire_t		*ire;
18913 	ill_t		*ill;
18914 	conn_t		*connp = tcp->tcp_connp;
18915 	mblk_t		*ire_fp_mp;
18916 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18917 
18918 	if (mp != NULL)
18919 		ipha = (ipha_t *)mp->b_rptr;
18920 	else
18921 		ipha = tcp->tcp_ipha;
18922 	dst = ipha->ipha_dst;
18923 
18924 	if (!tcp_send_find_ire(tcp, &dst, &ire))
18925 		return (B_FALSE);
18926 
18927 	if ((ire->ire_flags & RTF_MULTIRT) ||
18928 	    (ire->ire_stq == NULL) ||
18929 	    (ire->ire_nce == NULL) ||
18930 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
18931 	    ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) ||
18932 	    MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) {
18933 		TCP_STAT(tcps, tcp_ip_ire_send);
18934 		IRE_REFRELE(ire);
18935 		return (B_FALSE);
18936 	}
18937 
18938 	ill = ire_to_ill(ire);
18939 	if (connp->conn_outgoing_ill != NULL) {
18940 		ill_t *conn_outgoing_ill = NULL;
18941 		/*
18942 		 * Choose a good ill in the group to send the packets on.
18943 		 */
18944 		ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill);
18945 		ill = ire_to_ill(ire);
18946 	}
18947 	ASSERT(ill != NULL);
18948 
18949 	if (!tcp->tcp_ire_ill_check_done) {
18950 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
18951 		tcp->tcp_ire_ill_check_done = B_TRUE;
18952 	}
18953 
18954 	*irep = ire;
18955 	*illp = ill;
18956 
18957 	return (B_TRUE);
18958 }
18959 
18960 static void
18961 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
18962 {
18963 	ipha_t		*ipha;
18964 	ipaddr_t	src;
18965 	ipaddr_t	dst;
18966 	uint32_t	cksum;
18967 	ire_t		*ire;
18968 	uint16_t	*up;
18969 	ill_t		*ill;
18970 	conn_t		*connp = tcp->tcp_connp;
18971 	uint32_t	hcksum_txflags = 0;
18972 	mblk_t		*ire_fp_mp;
18973 	uint_t		ire_fp_mp_len;
18974 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18975 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18976 
18977 	ASSERT(DB_TYPE(mp) == M_DATA);
18978 
18979 	if (DB_CRED(mp) == NULL)
18980 		mblk_setcred(mp, CONN_CRED(connp));
18981 
18982 	ipha = (ipha_t *)mp->b_rptr;
18983 	src = ipha->ipha_src;
18984 	dst = ipha->ipha_dst;
18985 
18986 	/*
18987 	 * Drop off fast path for IPv6 and also if options are present or
18988 	 * we need to resolve a TS label.
18989 	 */
18990 	if (tcp->tcp_ipversion != IPV4_VERSION ||
18991 	    !IPCL_IS_CONNECTED(connp) ||
18992 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
18993 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
18994 	    !connp->conn_ulp_labeled ||
18995 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
18996 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
18997 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
18998 		if (tcp->tcp_snd_zcopy_aware)
18999 			mp = tcp_zcopy_disable(tcp, mp);
19000 		TCP_STAT(tcps, tcp_ip_send);
19001 		CALL_IP_WPUT(connp, q, mp);
19002 		return;
19003 	}
19004 
19005 	if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) {
19006 		if (tcp->tcp_snd_zcopy_aware)
19007 			mp = tcp_zcopy_backoff(tcp, mp, 0);
19008 		CALL_IP_WPUT(connp, q, mp);
19009 		return;
19010 	}
19011 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
19012 	ire_fp_mp_len = MBLKL(ire_fp_mp);
19013 
19014 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
19015 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
19016 #ifndef _BIG_ENDIAN
19017 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
19018 #endif
19019 
19020 	/*
19021 	 * Check to see if we need to re-enable LSO/MDT for this connection
19022 	 * because it was previously disabled due to changes in the ill;
19023 	 * note that by doing it here, this re-enabling only applies when
19024 	 * the packet is not dispatched through CALL_IP_WPUT().
19025 	 *
19026 	 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath
19027 	 * case, since that's how we ended up here.  For IPv6, we do the
19028 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
19029 	 */
19030 	if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
19031 		/*
19032 		 * Restore LSO for this connection, so that next time around
19033 		 * it is eligible to go through tcp_lsosend() path again.
19034 		 */
19035 		TCP_STAT(tcps, tcp_lso_enabled);
19036 		tcp->tcp_lso = B_TRUE;
19037 		ip1dbg(("tcp_send_data: reenabling LSO for connp %p on "
19038 		    "interface %s\n", (void *)connp, ill->ill_name));
19039 	} else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
19040 		/*
19041 		 * Restore MDT for this connection, so that next time around
19042 		 * it is eligible to go through tcp_multisend() path again.
19043 		 */
19044 		TCP_STAT(tcps, tcp_mdt_conn_resumed1);
19045 		tcp->tcp_mdt = B_TRUE;
19046 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
19047 		    "interface %s\n", (void *)connp, ill->ill_name));
19048 	}
19049 
19050 	if (tcp->tcp_snd_zcopy_aware) {
19051 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
19052 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
19053 			mp = tcp_zcopy_disable(tcp, mp);
19054 		/*
19055 		 * we shouldn't need to reset ipha as the mp containing
19056 		 * ipha should never be a zero-copy mp.
19057 		 */
19058 	}
19059 
19060 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
19061 		ASSERT(ill->ill_hcksum_capab != NULL);
19062 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
19063 	}
19064 
19065 	/* pseudo-header checksum (do it in parts for IP header checksum) */
19066 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
19067 
19068 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
19069 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
19070 
19071 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
19072 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
19073 
19074 	/* Software checksum? */
19075 	if (DB_CKSUMFLAGS(mp) == 0) {
19076 		TCP_STAT(tcps, tcp_out_sw_cksum);
19077 		TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
19078 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
19079 	}
19080 
19081 	ipha->ipha_fragment_offset_and_flags |=
19082 	    (uint32_t)htons(ire->ire_frag_flag);
19083 
19084 	/* Calculate IP header checksum if hardware isn't capable */
19085 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
19086 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
19087 		    ((uint16_t *)ipha)[4]);
19088 	}
19089 
19090 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
19091 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
19092 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
19093 
19094 	UPDATE_OB_PKT_COUNT(ire);
19095 	ire->ire_last_used_time = lbolt;
19096 
19097 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
19098 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
19099 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
19100 	    ntohs(ipha->ipha_length));
19101 
19102 	if (ILL_DLS_CAPABLE(ill)) {
19103 		/*
19104 		 * Send the packet directly to DLD, where it may be queued
19105 		 * depending on the availability of transmit resources at
19106 		 * the media layer.
19107 		 */
19108 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
19109 	} else {
19110 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
19111 		DTRACE_PROBE4(ip4__physical__out__start,
19112 		    ill_t *, NULL, ill_t *, out_ill,
19113 		    ipha_t *, ipha, mblk_t *, mp);
19114 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
19115 		    ipst->ips_ipv4firewall_physical_out,
19116 		    NULL, out_ill, ipha, mp, mp, 0, ipst);
19117 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
19118 		if (mp != NULL)
19119 			putnext(ire->ire_stq, mp);
19120 	}
19121 	IRE_REFRELE(ire);
19122 }
19123 
19124 /*
19125  * This handles the case when the receiver has shrunk its win. Per RFC 1122
19126  * if the receiver shrinks the window, i.e. moves the right window to the
19127  * left, the we should not send new data, but should retransmit normally the
19128  * old unacked data between suna and suna + swnd. We might has sent data
19129  * that is now outside the new window, pretend that we didn't send  it.
19130  */
19131 static void
19132 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
19133 {
19134 	uint32_t	snxt = tcp->tcp_snxt;
19135 	mblk_t		*xmit_tail;
19136 	int32_t		offset;
19137 
19138 	ASSERT(shrunk_count > 0);
19139 
19140 	/* Pretend we didn't send the data outside the window */
19141 	snxt -= shrunk_count;
19142 
19143 	/* Get the mblk and the offset in it per the shrunk window */
19144 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
19145 
19146 	ASSERT(xmit_tail != NULL);
19147 
19148 	/* Reset all the values per the now shrunk window */
19149 	tcp->tcp_snxt = snxt;
19150 	tcp->tcp_xmit_tail = xmit_tail;
19151 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
19152 	    offset;
19153 	tcp->tcp_unsent += shrunk_count;
19154 
19155 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
19156 		/*
19157 		 * Make sure the timer is running so that we will probe a zero
19158 		 * window.
19159 		 */
19160 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19161 }
19162 
19163 
19164 /*
19165  * The TCP normal data output path.
19166  * NOTE: the logic of the fast path is duplicated from this function.
19167  */
19168 static void
19169 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
19170 {
19171 	int		len;
19172 	mblk_t		*local_time;
19173 	mblk_t		*mp1;
19174 	uint32_t	snxt;
19175 	int		tail_unsent;
19176 	int		tcpstate;
19177 	int		usable = 0;
19178 	mblk_t		*xmit_tail;
19179 	queue_t		*q = tcp->tcp_wq;
19180 	int32_t		mss;
19181 	int32_t		num_sack_blk = 0;
19182 	int32_t		tcp_hdr_len;
19183 	int32_t		tcp_tcp_hdr_len;
19184 	int		mdt_thres;
19185 	int		rc;
19186 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19187 	ip_stack_t	*ipst;
19188 
19189 	tcpstate = tcp->tcp_state;
19190 	if (mp == NULL) {
19191 		/*
19192 		 * tcp_wput_data() with NULL mp should only be called when
19193 		 * there is unsent data.
19194 		 */
19195 		ASSERT(tcp->tcp_unsent > 0);
19196 		/* Really tacky... but we need this for detached closes. */
19197 		len = tcp->tcp_unsent;
19198 		goto data_null;
19199 	}
19200 
19201 #if CCS_STATS
19202 	wrw_stats.tot.count++;
19203 	wrw_stats.tot.bytes += msgdsize(mp);
19204 #endif
19205 	ASSERT(mp->b_datap->db_type == M_DATA);
19206 	/*
19207 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
19208 	 * or before a connection attempt has begun.
19209 	 */
19210 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
19211 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19212 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19213 #ifdef DEBUG
19214 			cmn_err(CE_WARN,
19215 			    "tcp_wput_data: data after ordrel, %s",
19216 			    tcp_display(tcp, NULL,
19217 			    DISP_ADDR_AND_PORT));
19218 #else
19219 			if (tcp->tcp_debug) {
19220 				(void) strlog(TCP_MOD_ID, 0, 1,
19221 				    SL_TRACE|SL_ERROR,
19222 				    "tcp_wput_data: data after ordrel, %s\n",
19223 				    tcp_display(tcp, NULL,
19224 				    DISP_ADDR_AND_PORT));
19225 			}
19226 #endif /* DEBUG */
19227 		}
19228 		if (tcp->tcp_snd_zcopy_aware &&
19229 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
19230 			tcp_zcopy_notify(tcp);
19231 		freemsg(mp);
19232 		mutex_enter(&tcp->tcp_non_sq_lock);
19233 		if (tcp->tcp_flow_stopped &&
19234 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19235 			tcp_clrqfull(tcp);
19236 		}
19237 		mutex_exit(&tcp->tcp_non_sq_lock);
19238 		return;
19239 	}
19240 
19241 	/* Strip empties */
19242 	for (;;) {
19243 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
19244 		    (uintptr_t)INT_MAX);
19245 		len = (int)(mp->b_wptr - mp->b_rptr);
19246 		if (len > 0)
19247 			break;
19248 		mp1 = mp;
19249 		mp = mp->b_cont;
19250 		freeb(mp1);
19251 		if (!mp) {
19252 			return;
19253 		}
19254 	}
19255 
19256 	/* If we are the first on the list ... */
19257 	if (tcp->tcp_xmit_head == NULL) {
19258 		tcp->tcp_xmit_head = mp;
19259 		tcp->tcp_xmit_tail = mp;
19260 		tcp->tcp_xmit_tail_unsent = len;
19261 	} else {
19262 		/* If tiny tx and room in txq tail, pullup to save mblks. */
19263 		struct datab *dp;
19264 
19265 		mp1 = tcp->tcp_xmit_last;
19266 		if (len < tcp_tx_pull_len &&
19267 		    (dp = mp1->b_datap)->db_ref == 1 &&
19268 		    dp->db_lim - mp1->b_wptr >= len) {
19269 			ASSERT(len > 0);
19270 			ASSERT(!mp1->b_cont);
19271 			if (len == 1) {
19272 				*mp1->b_wptr++ = *mp->b_rptr;
19273 			} else {
19274 				bcopy(mp->b_rptr, mp1->b_wptr, len);
19275 				mp1->b_wptr += len;
19276 			}
19277 			if (mp1 == tcp->tcp_xmit_tail)
19278 				tcp->tcp_xmit_tail_unsent += len;
19279 			mp1->b_cont = mp->b_cont;
19280 			if (tcp->tcp_snd_zcopy_aware &&
19281 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
19282 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
19283 			freeb(mp);
19284 			mp = mp1;
19285 		} else {
19286 			tcp->tcp_xmit_last->b_cont = mp;
19287 		}
19288 		len += tcp->tcp_unsent;
19289 	}
19290 
19291 	/* Tack on however many more positive length mblks we have */
19292 	if ((mp1 = mp->b_cont) != NULL) {
19293 		do {
19294 			int tlen;
19295 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
19296 			    (uintptr_t)INT_MAX);
19297 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
19298 			if (tlen <= 0) {
19299 				mp->b_cont = mp1->b_cont;
19300 				freeb(mp1);
19301 			} else {
19302 				len += tlen;
19303 				mp = mp1;
19304 			}
19305 		} while ((mp1 = mp->b_cont) != NULL);
19306 	}
19307 	tcp->tcp_xmit_last = mp;
19308 	tcp->tcp_unsent = len;
19309 
19310 	if (urgent)
19311 		usable = 1;
19312 
19313 data_null:
19314 	snxt = tcp->tcp_snxt;
19315 	xmit_tail = tcp->tcp_xmit_tail;
19316 	tail_unsent = tcp->tcp_xmit_tail_unsent;
19317 
19318 	/*
19319 	 * Note that tcp_mss has been adjusted to take into account the
19320 	 * timestamp option if applicable.  Because SACK options do not
19321 	 * appear in every TCP segments and they are of variable lengths,
19322 	 * they cannot be included in tcp_mss.  Thus we need to calculate
19323 	 * the actual segment length when we need to send a segment which
19324 	 * includes SACK options.
19325 	 */
19326 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
19327 		int32_t	opt_len;
19328 
19329 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
19330 		    tcp->tcp_num_sack_blk);
19331 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
19332 		    2 + TCPOPT_HEADER_LEN;
19333 		mss = tcp->tcp_mss - opt_len;
19334 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
19335 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
19336 	} else {
19337 		mss = tcp->tcp_mss;
19338 		tcp_hdr_len = tcp->tcp_hdr_len;
19339 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
19340 	}
19341 
19342 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
19343 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
19344 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
19345 	}
19346 	if (tcpstate == TCPS_SYN_RCVD) {
19347 		/*
19348 		 * The three-way connection establishment handshake is not
19349 		 * complete yet. We want to queue the data for transmission
19350 		 * after entering ESTABLISHED state (RFC793). A jump to
19351 		 * "done" label effectively leaves data on the queue.
19352 		 */
19353 		goto done;
19354 	} else {
19355 		int usable_r;
19356 
19357 		/*
19358 		 * In the special case when cwnd is zero, which can only
19359 		 * happen if the connection is ECN capable, return now.
19360 		 * New segments is sent using tcp_timer().  The timer
19361 		 * is set in tcp_rput_data().
19362 		 */
19363 		if (tcp->tcp_cwnd == 0) {
19364 			/*
19365 			 * Note that tcp_cwnd is 0 before 3-way handshake is
19366 			 * finished.
19367 			 */
19368 			ASSERT(tcp->tcp_ecn_ok ||
19369 			    tcp->tcp_state < TCPS_ESTABLISHED);
19370 			return;
19371 		}
19372 
19373 		/* NOTE: trouble if xmitting while SYN not acked? */
19374 		usable_r = snxt - tcp->tcp_suna;
19375 		usable_r = tcp->tcp_swnd - usable_r;
19376 
19377 		/*
19378 		 * Check if the receiver has shrunk the window.  If
19379 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
19380 		 * cannot be set as there is unsent data, so FIN cannot
19381 		 * be sent out.  Otherwise, we need to take into account
19382 		 * of FIN as it consumes an "invisible" sequence number.
19383 		 */
19384 		ASSERT(tcp->tcp_fin_sent == 0);
19385 		if (usable_r < 0) {
19386 			/*
19387 			 * The receiver has shrunk the window and we have sent
19388 			 * -usable_r date beyond the window, re-adjust.
19389 			 *
19390 			 * If TCP window scaling is enabled, there can be
19391 			 * round down error as the advertised receive window
19392 			 * is actually right shifted n bits.  This means that
19393 			 * the lower n bits info is wiped out.  It will look
19394 			 * like the window is shrunk.  Do a check here to
19395 			 * see if the shrunk amount is actually within the
19396 			 * error in window calculation.  If it is, just
19397 			 * return.  Note that this check is inside the
19398 			 * shrunk window check.  This makes sure that even
19399 			 * though tcp_process_shrunk_swnd() is not called,
19400 			 * we will stop further processing.
19401 			 */
19402 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
19403 				tcp_process_shrunk_swnd(tcp, -usable_r);
19404 			}
19405 			return;
19406 		}
19407 
19408 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
19409 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
19410 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
19411 
19412 		/* usable = MIN(usable, unsent) */
19413 		if (usable_r > len)
19414 			usable_r = len;
19415 
19416 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
19417 		if (usable_r > 0) {
19418 			usable = usable_r;
19419 		} else {
19420 			/* Bypass all other unnecessary processing. */
19421 			goto done;
19422 		}
19423 	}
19424 
19425 	local_time = (mblk_t *)lbolt;
19426 
19427 	/*
19428 	 * "Our" Nagle Algorithm.  This is not the same as in the old
19429 	 * BSD.  This is more in line with the true intent of Nagle.
19430 	 *
19431 	 * The conditions are:
19432 	 * 1. The amount of unsent data (or amount of data which can be
19433 	 *    sent, whichever is smaller) is less than Nagle limit.
19434 	 * 2. The last sent size is also less than Nagle limit.
19435 	 * 3. There is unack'ed data.
19436 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
19437 	 *    Nagle algorithm.  This reduces the probability that urgent
19438 	 *    bytes get "merged" together.
19439 	 * 5. The app has not closed the connection.  This eliminates the
19440 	 *    wait time of the receiving side waiting for the last piece of
19441 	 *    (small) data.
19442 	 *
19443 	 * If all are satisified, exit without sending anything.  Note
19444 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
19445 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
19446 	 * 4095).
19447 	 */
19448 	if (usable < (int)tcp->tcp_naglim &&
19449 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
19450 	    snxt != tcp->tcp_suna &&
19451 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
19452 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
19453 		goto done;
19454 	}
19455 
19456 	if (tcp->tcp_cork) {
19457 		/*
19458 		 * if the tcp->tcp_cork option is set, then we have to force
19459 		 * TCP not to send partial segment (smaller than MSS bytes).
19460 		 * We are calculating the usable now based on full mss and
19461 		 * will save the rest of remaining data for later.
19462 		 */
19463 		if (usable < mss)
19464 			goto done;
19465 		usable = (usable / mss) * mss;
19466 	}
19467 
19468 	/* Update the latest receive window size in TCP header. */
19469 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
19470 	    tcp->tcp_tcph->th_win);
19471 
19472 	/*
19473 	 * Determine if it's worthwhile to attempt LSO or MDT, based on:
19474 	 *
19475 	 * 1. Simple TCP/IP{v4,v6} (no options).
19476 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
19477 	 * 3. If the TCP connection is in ESTABLISHED state.
19478 	 * 4. The TCP is not detached.
19479 	 *
19480 	 * If any of the above conditions have changed during the
19481 	 * connection, stop using LSO/MDT and restore the stream head
19482 	 * parameters accordingly.
19483 	 */
19484 	ipst = tcps->tcps_netstack->netstack_ip;
19485 
19486 	if ((tcp->tcp_lso || tcp->tcp_mdt) &&
19487 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
19488 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
19489 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19490 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
19491 	    tcp->tcp_state != TCPS_ESTABLISHED ||
19492 	    TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) ||
19493 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
19494 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst))) {
19495 		if (tcp->tcp_lso) {
19496 			tcp->tcp_connp->conn_lso_ok = B_FALSE;
19497 			tcp->tcp_lso = B_FALSE;
19498 		} else {
19499 			tcp->tcp_connp->conn_mdt_ok = B_FALSE;
19500 			tcp->tcp_mdt = B_FALSE;
19501 		}
19502 
19503 		/* Anything other than detached is considered pathological */
19504 		if (!TCP_IS_DETACHED(tcp)) {
19505 			if (tcp->tcp_lso)
19506 				TCP_STAT(tcps, tcp_lso_disabled);
19507 			else
19508 				TCP_STAT(tcps, tcp_mdt_conn_halted1);
19509 			(void) tcp_maxpsz_set(tcp, B_TRUE);
19510 		}
19511 	}
19512 
19513 	/* Use MDT if sendable amount is greater than the threshold */
19514 	if (tcp->tcp_mdt &&
19515 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
19516 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
19517 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
19518 	    (tcp->tcp_valid_bits == 0 ||
19519 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
19520 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
19521 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19522 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19523 		    local_time, mdt_thres);
19524 	} else {
19525 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19526 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19527 		    local_time, INT_MAX);
19528 	}
19529 
19530 	/* Pretend that all we were trying to send really got sent */
19531 	if (rc < 0 && tail_unsent < 0) {
19532 		do {
19533 			xmit_tail = xmit_tail->b_cont;
19534 			xmit_tail->b_prev = local_time;
19535 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
19536 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
19537 			tail_unsent += (int)(xmit_tail->b_wptr -
19538 			    xmit_tail->b_rptr);
19539 		} while (tail_unsent < 0);
19540 	}
19541 done:;
19542 	tcp->tcp_xmit_tail = xmit_tail;
19543 	tcp->tcp_xmit_tail_unsent = tail_unsent;
19544 	len = tcp->tcp_snxt - snxt;
19545 	if (len) {
19546 		/*
19547 		 * If new data was sent, need to update the notsack
19548 		 * list, which is, afterall, data blocks that have
19549 		 * not been sack'ed by the receiver.  New data is
19550 		 * not sack'ed.
19551 		 */
19552 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
19553 			/* len is a negative value. */
19554 			tcp->tcp_pipe -= len;
19555 			tcp_notsack_update(&(tcp->tcp_notsack_list),
19556 			    tcp->tcp_snxt, snxt,
19557 			    &(tcp->tcp_num_notsack_blk),
19558 			    &(tcp->tcp_cnt_notsack_list));
19559 		}
19560 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
19561 		tcp->tcp_rack = tcp->tcp_rnxt;
19562 		tcp->tcp_rack_cnt = 0;
19563 		if ((snxt + len) == tcp->tcp_suna) {
19564 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19565 		}
19566 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
19567 		/*
19568 		 * Didn't send anything. Make sure the timer is running
19569 		 * so that we will probe a zero window.
19570 		 */
19571 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19572 	}
19573 	/* Note that len is the amount we just sent but with a negative sign */
19574 	tcp->tcp_unsent += len;
19575 	mutex_enter(&tcp->tcp_non_sq_lock);
19576 	if (tcp->tcp_flow_stopped) {
19577 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19578 			tcp_clrqfull(tcp);
19579 		}
19580 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
19581 		tcp_setqfull(tcp);
19582 	}
19583 	mutex_exit(&tcp->tcp_non_sq_lock);
19584 }
19585 
19586 /*
19587  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
19588  * outgoing TCP header with the template header, as well as other
19589  * options such as time-stamp, ECN and/or SACK.
19590  */
19591 static void
19592 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
19593 {
19594 	tcph_t *tcp_tmpl, *tcp_h;
19595 	uint32_t *dst, *src;
19596 	int hdrlen;
19597 
19598 	ASSERT(OK_32PTR(rptr));
19599 
19600 	/* Template header */
19601 	tcp_tmpl = tcp->tcp_tcph;
19602 
19603 	/* Header of outgoing packet */
19604 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
19605 
19606 	/* dst and src are opaque 32-bit fields, used for copying */
19607 	dst = (uint32_t *)rptr;
19608 	src = (uint32_t *)tcp->tcp_iphc;
19609 	hdrlen = tcp->tcp_hdr_len;
19610 
19611 	/* Fill time-stamp option if needed */
19612 	if (tcp->tcp_snd_ts_ok) {
19613 		U32_TO_BE32((uint32_t)now,
19614 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
19615 		U32_TO_BE32(tcp->tcp_ts_recent,
19616 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
19617 	} else {
19618 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
19619 	}
19620 
19621 	/*
19622 	 * Copy the template header; is this really more efficient than
19623 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
19624 	 * but perhaps not for other scenarios.
19625 	 */
19626 	dst[0] = src[0];
19627 	dst[1] = src[1];
19628 	dst[2] = src[2];
19629 	dst[3] = src[3];
19630 	dst[4] = src[4];
19631 	dst[5] = src[5];
19632 	dst[6] = src[6];
19633 	dst[7] = src[7];
19634 	dst[8] = src[8];
19635 	dst[9] = src[9];
19636 	if (hdrlen -= 40) {
19637 		hdrlen >>= 2;
19638 		dst += 10;
19639 		src += 10;
19640 		do {
19641 			*dst++ = *src++;
19642 		} while (--hdrlen);
19643 	}
19644 
19645 	/*
19646 	 * Set the ECN info in the TCP header if it is not a zero
19647 	 * window probe.  Zero window probe is only sent in
19648 	 * tcp_wput_data() and tcp_timer().
19649 	 */
19650 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
19651 		SET_ECT(tcp, rptr);
19652 
19653 		if (tcp->tcp_ecn_echo_on)
19654 			tcp_h->th_flags[0] |= TH_ECE;
19655 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
19656 			tcp_h->th_flags[0] |= TH_CWR;
19657 			tcp->tcp_ecn_cwr_sent = B_TRUE;
19658 		}
19659 	}
19660 
19661 	/* Fill in SACK options */
19662 	if (num_sack_blk > 0) {
19663 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
19664 		sack_blk_t *tmp;
19665 		int32_t	i;
19666 
19667 		wptr[0] = TCPOPT_NOP;
19668 		wptr[1] = TCPOPT_NOP;
19669 		wptr[2] = TCPOPT_SACK;
19670 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
19671 		    sizeof (sack_blk_t);
19672 		wptr += TCPOPT_REAL_SACK_LEN;
19673 
19674 		tmp = tcp->tcp_sack_list;
19675 		for (i = 0; i < num_sack_blk; i++) {
19676 			U32_TO_BE32(tmp[i].begin, wptr);
19677 			wptr += sizeof (tcp_seq);
19678 			U32_TO_BE32(tmp[i].end, wptr);
19679 			wptr += sizeof (tcp_seq);
19680 		}
19681 		tcp_h->th_offset_and_rsrvd[0] +=
19682 		    ((num_sack_blk * 2 + 1) << 4);
19683 	}
19684 }
19685 
19686 /*
19687  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
19688  * the destination address and SAP attribute, and if necessary, the
19689  * hardware checksum offload attribute to a Multidata message.
19690  */
19691 static int
19692 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
19693     const uint32_t start, const uint32_t stuff, const uint32_t end,
19694     const uint32_t flags, tcp_stack_t *tcps)
19695 {
19696 	/* Add global destination address & SAP attribute */
19697 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
19698 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
19699 		    "destination address+SAP\n"));
19700 
19701 		if (dlmp != NULL)
19702 			TCP_STAT(tcps, tcp_mdt_allocfail);
19703 		return (-1);
19704 	}
19705 
19706 	/* Add global hwcksum attribute */
19707 	if (hwcksum &&
19708 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
19709 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
19710 		    "checksum attribute\n"));
19711 
19712 		TCP_STAT(tcps, tcp_mdt_allocfail);
19713 		return (-1);
19714 	}
19715 
19716 	return (0);
19717 }
19718 
19719 /*
19720  * Smaller and private version of pdescinfo_t used specifically for TCP,
19721  * which allows for only two payload spans per packet.
19722  */
19723 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
19724 
19725 /*
19726  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
19727  * scheme, and returns one the following:
19728  *
19729  * -1 = failed allocation.
19730  *  0 = success; burst count reached, or usable send window is too small,
19731  *      and that we'd rather wait until later before sending again.
19732  */
19733 static int
19734 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
19735     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
19736     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
19737     const int mdt_thres)
19738 {
19739 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
19740 	multidata_t	*mmd;
19741 	uint_t		obsegs, obbytes, hdr_frag_sz;
19742 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
19743 	int		num_burst_seg, max_pld;
19744 	pdesc_t		*pkt;
19745 	tcp_pdescinfo_t	tcp_pkt_info;
19746 	pdescinfo_t	*pkt_info;
19747 	int		pbuf_idx, pbuf_idx_nxt;
19748 	int		seg_len, len, spill, af;
19749 	boolean_t	add_buffer, zcopy, clusterwide;
19750 	boolean_t	buf_trunked = B_FALSE;
19751 	boolean_t	rconfirm = B_FALSE;
19752 	boolean_t	done = B_FALSE;
19753 	uint32_t	cksum;
19754 	uint32_t	hwcksum_flags;
19755 	ire_t		*ire = NULL;
19756 	ill_t		*ill;
19757 	ipha_t		*ipha;
19758 	ip6_t		*ip6h;
19759 	ipaddr_t	src, dst;
19760 	ill_zerocopy_capab_t *zc_cap = NULL;
19761 	uint16_t	*up;
19762 	int		err;
19763 	conn_t		*connp;
19764 	mblk_t		*mp, *mp1, *fw_mp_head = NULL;
19765 	uchar_t		*pld_start;
19766 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19767 	ip_stack_t 	*ipst = tcps->tcps_netstack->netstack_ip;
19768 
19769 #ifdef	_BIG_ENDIAN
19770 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
19771 #else
19772 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
19773 #endif
19774 
19775 #define	PREP_NEW_MULTIDATA() {			\
19776 	mmd = NULL;				\
19777 	md_mp = md_hbuf = NULL;			\
19778 	cur_hdr_off = 0;			\
19779 	max_pld = tcp->tcp_mdt_max_pld;		\
19780 	pbuf_idx = pbuf_idx_nxt = -1;		\
19781 	add_buffer = B_TRUE;			\
19782 	zcopy = B_FALSE;			\
19783 }
19784 
19785 #define	PREP_NEW_PBUF() {			\
19786 	md_pbuf = md_pbuf_nxt = NULL;		\
19787 	pbuf_idx = pbuf_idx_nxt = -1;		\
19788 	cur_pld_off = 0;			\
19789 	first_snxt = *snxt;			\
19790 	ASSERT(*tail_unsent > 0);		\
19791 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
19792 }
19793 
19794 	ASSERT(mdt_thres >= mss);
19795 	ASSERT(*usable > 0 && *usable > mdt_thres);
19796 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
19797 	ASSERT(!TCP_IS_DETACHED(tcp));
19798 	ASSERT(tcp->tcp_valid_bits == 0 ||
19799 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
19800 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
19801 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
19802 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19803 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
19804 
19805 	connp = tcp->tcp_connp;
19806 	ASSERT(connp != NULL);
19807 	ASSERT(CONN_IS_LSO_MD_FASTPATH(connp));
19808 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
19809 
19810 	/*
19811 	 * Note that tcp will only declare at most 2 payload spans per
19812 	 * packet, which is much lower than the maximum allowable number
19813 	 * of packet spans per Multidata.  For this reason, we use the
19814 	 * privately declared and smaller descriptor info structure, in
19815 	 * order to save some stack space.
19816 	 */
19817 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
19818 
19819 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
19820 	if (af == AF_INET) {
19821 		dst = tcp->tcp_ipha->ipha_dst;
19822 		src = tcp->tcp_ipha->ipha_src;
19823 		ASSERT(!CLASSD(dst));
19824 	}
19825 	ASSERT(af == AF_INET ||
19826 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
19827 
19828 	obsegs = obbytes = 0;
19829 	num_burst_seg = tcp->tcp_snd_burst;
19830 	md_mp_head = NULL;
19831 	PREP_NEW_MULTIDATA();
19832 
19833 	/*
19834 	 * Before we go on further, make sure there is an IRE that we can
19835 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
19836 	 * in proceeding any further, and we should just hand everything
19837 	 * off to the legacy path.
19838 	 */
19839 	if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire))
19840 		goto legacy_send_no_md;
19841 
19842 	ASSERT(ire != NULL);
19843 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
19844 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
19845 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
19846 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
19847 	/*
19848 	 * If we do support loopback for MDT (which requires modifications
19849 	 * to the receiving paths), the following assertions should go away,
19850 	 * and we would be sending the Multidata to loopback conn later on.
19851 	 */
19852 	ASSERT(!IRE_IS_LOCAL(ire));
19853 	ASSERT(ire->ire_stq != NULL);
19854 
19855 	ill = ire_to_ill(ire);
19856 	ASSERT(ill != NULL);
19857 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
19858 
19859 	if (!tcp->tcp_ire_ill_check_done) {
19860 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19861 		tcp->tcp_ire_ill_check_done = B_TRUE;
19862 	}
19863 
19864 	/*
19865 	 * If the underlying interface conditions have changed, or if the
19866 	 * new interface does not support MDT, go back to legacy path.
19867 	 */
19868 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
19869 		/* don't go through this path anymore for this connection */
19870 		TCP_STAT(tcps, tcp_mdt_conn_halted2);
19871 		tcp->tcp_mdt = B_FALSE;
19872 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
19873 		    "interface %s\n", (void *)connp, ill->ill_name));
19874 		/* IRE will be released prior to returning */
19875 		goto legacy_send_no_md;
19876 	}
19877 
19878 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
19879 		zc_cap = ill->ill_zerocopy_capab;
19880 
19881 	/*
19882 	 * Check if we can take tcp fast-path. Note that "incomplete"
19883 	 * ire's (where the link-layer for next hop is not resolved
19884 	 * or where the fast-path header in nce_fp_mp is not available
19885 	 * yet) are sent down the legacy (slow) path.
19886 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
19887 	 */
19888 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
19889 		/* IRE will be released prior to returning */
19890 		goto legacy_send_no_md;
19891 	}
19892 
19893 	/* go to legacy path if interface doesn't support zerocopy */
19894 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
19895 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
19896 		/* IRE will be released prior to returning */
19897 		goto legacy_send_no_md;
19898 	}
19899 
19900 	/* does the interface support hardware checksum offload? */
19901 	hwcksum_flags = 0;
19902 	if (ILL_HCKSUM_CAPABLE(ill) &&
19903 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
19904 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
19905 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
19906 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19907 		    HCKSUM_IPHDRCKSUM)
19908 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
19909 
19910 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19911 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
19912 			hwcksum_flags |= HCK_FULLCKSUM;
19913 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19914 		    HCKSUM_INET_PARTIAL)
19915 			hwcksum_flags |= HCK_PARTIALCKSUM;
19916 	}
19917 
19918 	/*
19919 	 * Each header fragment consists of the leading extra space,
19920 	 * followed by the TCP/IP header, and the trailing extra space.
19921 	 * We make sure that each header fragment begins on a 32-bit
19922 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
19923 	 * aligned in tcp_mdt_update).
19924 	 */
19925 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
19926 	    tcp->tcp_mdt_hdr_tail), 4);
19927 
19928 	/* are we starting from the beginning of data block? */
19929 	if (*tail_unsent == 0) {
19930 		*xmit_tail = (*xmit_tail)->b_cont;
19931 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
19932 		*tail_unsent = (int)MBLKL(*xmit_tail);
19933 	}
19934 
19935 	/*
19936 	 * Here we create one or more Multidata messages, each made up of
19937 	 * one header buffer and up to N payload buffers.  This entire
19938 	 * operation is done within two loops:
19939 	 *
19940 	 * The outer loop mostly deals with creating the Multidata message,
19941 	 * as well as the header buffer that gets added to it.  It also
19942 	 * links the Multidata messages together such that all of them can
19943 	 * be sent down to the lower layer in a single putnext call; this
19944 	 * linking behavior depends on the tcp_mdt_chain tunable.
19945 	 *
19946 	 * The inner loop takes an existing Multidata message, and adds
19947 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
19948 	 * packetizes those buffers by filling up the corresponding header
19949 	 * buffer fragments with the proper IP and TCP headers, and by
19950 	 * describing the layout of each packet in the packet descriptors
19951 	 * that get added to the Multidata.
19952 	 */
19953 	do {
19954 		/*
19955 		 * If usable send window is too small, or data blocks in
19956 		 * transmit list are smaller than our threshold (i.e. app
19957 		 * performs large writes followed by small ones), we hand
19958 		 * off the control over to the legacy path.  Note that we'll
19959 		 * get back the control once it encounters a large block.
19960 		 */
19961 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
19962 		    (*xmit_tail)->b_cont != NULL &&
19963 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
19964 			/* send down what we've got so far */
19965 			if (md_mp_head != NULL) {
19966 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
19967 				    obsegs, obbytes, &rconfirm);
19968 			}
19969 			/*
19970 			 * Pass control over to tcp_send(), but tell it to
19971 			 * return to us once a large-size transmission is
19972 			 * possible.
19973 			 */
19974 			TCP_STAT(tcps, tcp_mdt_legacy_small);
19975 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
19976 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
19977 			    tail_unsent, xmit_tail, local_time,
19978 			    mdt_thres)) <= 0) {
19979 				/* burst count reached, or alloc failed */
19980 				IRE_REFRELE(ire);
19981 				return (err);
19982 			}
19983 
19984 			/* tcp_send() may have sent everything, so check */
19985 			if (*usable <= 0) {
19986 				IRE_REFRELE(ire);
19987 				return (0);
19988 			}
19989 
19990 			TCP_STAT(tcps, tcp_mdt_legacy_ret);
19991 			/*
19992 			 * We may have delivered the Multidata, so make sure
19993 			 * to re-initialize before the next round.
19994 			 */
19995 			md_mp_head = NULL;
19996 			obsegs = obbytes = 0;
19997 			num_burst_seg = tcp->tcp_snd_burst;
19998 			PREP_NEW_MULTIDATA();
19999 
20000 			/* are we starting from the beginning of data block? */
20001 			if (*tail_unsent == 0) {
20002 				*xmit_tail = (*xmit_tail)->b_cont;
20003 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20004 				    (uintptr_t)INT_MAX);
20005 				*tail_unsent = (int)MBLKL(*xmit_tail);
20006 			}
20007 		}
20008 
20009 		/*
20010 		 * max_pld limits the number of mblks in tcp's transmit
20011 		 * queue that can be added to a Multidata message.  Once
20012 		 * this counter reaches zero, no more additional mblks
20013 		 * can be added to it.  What happens afterwards depends
20014 		 * on whether or not we are set to chain the Multidata
20015 		 * messages.  If we are to link them together, reset
20016 		 * max_pld to its original value (tcp_mdt_max_pld) and
20017 		 * prepare to create a new Multidata message which will
20018 		 * get linked to md_mp_head.  Else, leave it alone and
20019 		 * let the inner loop break on its own.
20020 		 */
20021 		if (tcp_mdt_chain && max_pld == 0)
20022 			PREP_NEW_MULTIDATA();
20023 
20024 		/* adding a payload buffer; re-initialize values */
20025 		if (add_buffer)
20026 			PREP_NEW_PBUF();
20027 
20028 		/*
20029 		 * If we don't have a Multidata, either because we just
20030 		 * (re)entered this outer loop, or after we branched off
20031 		 * to tcp_send above, setup the Multidata and header
20032 		 * buffer to be used.
20033 		 */
20034 		if (md_mp == NULL) {
20035 			int md_hbuflen;
20036 			uint32_t start, stuff;
20037 
20038 			/*
20039 			 * Calculate Multidata header buffer size large enough
20040 			 * to hold all of the headers that can possibly be
20041 			 * sent at this moment.  We'd rather over-estimate
20042 			 * the size than running out of space; this is okay
20043 			 * since this buffer is small anyway.
20044 			 */
20045 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
20046 
20047 			/*
20048 			 * Start and stuff offset for partial hardware
20049 			 * checksum offload; these are currently for IPv4.
20050 			 * For full checksum offload, they are set to zero.
20051 			 */
20052 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
20053 				if (af == AF_INET) {
20054 					start = IP_SIMPLE_HDR_LENGTH;
20055 					stuff = IP_SIMPLE_HDR_LENGTH +
20056 					    TCP_CHECKSUM_OFFSET;
20057 				} else {
20058 					start = IPV6_HDR_LEN;
20059 					stuff = IPV6_HDR_LEN +
20060 					    TCP_CHECKSUM_OFFSET;
20061 				}
20062 			} else {
20063 				start = stuff = 0;
20064 			}
20065 
20066 			/*
20067 			 * Create the header buffer, Multidata, as well as
20068 			 * any necessary attributes (destination address,
20069 			 * SAP and hardware checksum offload) that should
20070 			 * be associated with the Multidata message.
20071 			 */
20072 			ASSERT(cur_hdr_off == 0);
20073 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
20074 			    ((md_hbuf->b_wptr += md_hbuflen),
20075 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
20076 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
20077 			    /* fastpath mblk */
20078 			    ire->ire_nce->nce_res_mp,
20079 			    /* hardware checksum enabled */
20080 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
20081 			    /* hardware checksum offsets */
20082 			    start, stuff, 0,
20083 			    /* hardware checksum flag */
20084 			    hwcksum_flags, tcps) != 0)) {
20085 legacy_send:
20086 				if (md_mp != NULL) {
20087 					/* Unlink message from the chain */
20088 					if (md_mp_head != NULL) {
20089 						err = (intptr_t)rmvb(md_mp_head,
20090 						    md_mp);
20091 						/*
20092 						 * We can't assert that rmvb
20093 						 * did not return -1, since we
20094 						 * may get here before linkb
20095 						 * happens.  We do, however,
20096 						 * check if we just removed the
20097 						 * only element in the list.
20098 						 */
20099 						if (err == 0)
20100 							md_mp_head = NULL;
20101 					}
20102 					/* md_hbuf gets freed automatically */
20103 					TCP_STAT(tcps, tcp_mdt_discarded);
20104 					freeb(md_mp);
20105 				} else {
20106 					/* Either allocb or mmd_alloc failed */
20107 					TCP_STAT(tcps, tcp_mdt_allocfail);
20108 					if (md_hbuf != NULL)
20109 						freeb(md_hbuf);
20110 				}
20111 
20112 				/* send down what we've got so far */
20113 				if (md_mp_head != NULL) {
20114 					tcp_multisend_data(tcp, ire, ill,
20115 					    md_mp_head, obsegs, obbytes,
20116 					    &rconfirm);
20117 				}
20118 legacy_send_no_md:
20119 				if (ire != NULL)
20120 					IRE_REFRELE(ire);
20121 				/*
20122 				 * Too bad; let the legacy path handle this.
20123 				 * We specify INT_MAX for the threshold, since
20124 				 * we gave up with the Multidata processings
20125 				 * and let the old path have it all.
20126 				 */
20127 				TCP_STAT(tcps, tcp_mdt_legacy_all);
20128 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
20129 				    tcp_tcp_hdr_len, num_sack_blk, usable,
20130 				    snxt, tail_unsent, xmit_tail, local_time,
20131 				    INT_MAX));
20132 			}
20133 
20134 			/* link to any existing ones, if applicable */
20135 			TCP_STAT(tcps, tcp_mdt_allocd);
20136 			if (md_mp_head == NULL) {
20137 				md_mp_head = md_mp;
20138 			} else if (tcp_mdt_chain) {
20139 				TCP_STAT(tcps, tcp_mdt_linked);
20140 				linkb(md_mp_head, md_mp);
20141 			}
20142 		}
20143 
20144 		ASSERT(md_mp_head != NULL);
20145 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
20146 		ASSERT(md_mp != NULL && mmd != NULL);
20147 		ASSERT(md_hbuf != NULL);
20148 
20149 		/*
20150 		 * Packetize the transmittable portion of the data block;
20151 		 * each data block is essentially added to the Multidata
20152 		 * as a payload buffer.  We also deal with adding more
20153 		 * than one payload buffers, which happens when the remaining
20154 		 * packetized portion of the current payload buffer is less
20155 		 * than MSS, while the next data block in transmit queue
20156 		 * has enough data to make up for one.  This "spillover"
20157 		 * case essentially creates a split-packet, where portions
20158 		 * of the packet's payload fragments may span across two
20159 		 * virtually discontiguous address blocks.
20160 		 */
20161 		seg_len = mss;
20162 		do {
20163 			len = seg_len;
20164 
20165 			ASSERT(len > 0);
20166 			ASSERT(max_pld >= 0);
20167 			ASSERT(!add_buffer || cur_pld_off == 0);
20168 
20169 			/*
20170 			 * First time around for this payload buffer; note
20171 			 * in the case of a spillover, the following has
20172 			 * been done prior to adding the split-packet
20173 			 * descriptor to Multidata, and we don't want to
20174 			 * repeat the process.
20175 			 */
20176 			if (add_buffer) {
20177 				ASSERT(mmd != NULL);
20178 				ASSERT(md_pbuf == NULL);
20179 				ASSERT(md_pbuf_nxt == NULL);
20180 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
20181 
20182 				/*
20183 				 * Have we reached the limit?  We'd get to
20184 				 * this case when we're not chaining the
20185 				 * Multidata messages together, and since
20186 				 * we're done, terminate this loop.
20187 				 */
20188 				if (max_pld == 0)
20189 					break; /* done */
20190 
20191 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
20192 					TCP_STAT(tcps, tcp_mdt_allocfail);
20193 					goto legacy_send; /* out_of_mem */
20194 				}
20195 
20196 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
20197 				    zc_cap != NULL) {
20198 					if (!ip_md_zcopy_attr(mmd, NULL,
20199 					    zc_cap->ill_zerocopy_flags)) {
20200 						freeb(md_pbuf);
20201 						TCP_STAT(tcps,
20202 						    tcp_mdt_allocfail);
20203 						/* out_of_mem */
20204 						goto legacy_send;
20205 					}
20206 					zcopy = B_TRUE;
20207 				}
20208 
20209 				md_pbuf->b_rptr += base_pld_off;
20210 
20211 				/*
20212 				 * Add a payload buffer to the Multidata; this
20213 				 * operation must not fail, or otherwise our
20214 				 * logic in this routine is broken.  There
20215 				 * is no memory allocation done by the
20216 				 * routine, so any returned failure simply
20217 				 * tells us that we've done something wrong.
20218 				 *
20219 				 * A failure tells us that either we're adding
20220 				 * the same payload buffer more than once, or
20221 				 * we're trying to add more buffers than
20222 				 * allowed (max_pld calculation is wrong).
20223 				 * None of the above cases should happen, and
20224 				 * we panic because either there's horrible
20225 				 * heap corruption, and/or programming mistake.
20226 				 */
20227 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
20228 				if (pbuf_idx < 0) {
20229 					cmn_err(CE_PANIC, "tcp_multisend: "
20230 					    "payload buffer logic error "
20231 					    "detected for tcp %p mmd %p "
20232 					    "pbuf %p (%d)\n",
20233 					    (void *)tcp, (void *)mmd,
20234 					    (void *)md_pbuf, pbuf_idx);
20235 				}
20236 
20237 				ASSERT(max_pld > 0);
20238 				--max_pld;
20239 				add_buffer = B_FALSE;
20240 			}
20241 
20242 			ASSERT(md_mp_head != NULL);
20243 			ASSERT(md_pbuf != NULL);
20244 			ASSERT(md_pbuf_nxt == NULL);
20245 			ASSERT(pbuf_idx != -1);
20246 			ASSERT(pbuf_idx_nxt == -1);
20247 			ASSERT(*usable > 0);
20248 
20249 			/*
20250 			 * We spillover to the next payload buffer only
20251 			 * if all of the following is true:
20252 			 *
20253 			 *   1. There is not enough data on the current
20254 			 *	payload buffer to make up `len',
20255 			 *   2. We are allowed to send `len',
20256 			 *   3. The next payload buffer length is large
20257 			 *	enough to accomodate `spill'.
20258 			 */
20259 			if ((spill = len - *tail_unsent) > 0 &&
20260 			    *usable >= len &&
20261 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
20262 			    max_pld > 0) {
20263 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
20264 				if (md_pbuf_nxt == NULL) {
20265 					TCP_STAT(tcps, tcp_mdt_allocfail);
20266 					goto legacy_send; /* out_of_mem */
20267 				}
20268 
20269 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
20270 				    zc_cap != NULL) {
20271 					if (!ip_md_zcopy_attr(mmd, NULL,
20272 					    zc_cap->ill_zerocopy_flags)) {
20273 						freeb(md_pbuf_nxt);
20274 						TCP_STAT(tcps,
20275 						    tcp_mdt_allocfail);
20276 						/* out_of_mem */
20277 						goto legacy_send;
20278 					}
20279 					zcopy = B_TRUE;
20280 				}
20281 
20282 				/*
20283 				 * See comments above on the first call to
20284 				 * mmd_addpldbuf for explanation on the panic.
20285 				 */
20286 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
20287 				if (pbuf_idx_nxt < 0) {
20288 					panic("tcp_multisend: "
20289 					    "next payload buffer logic error "
20290 					    "detected for tcp %p mmd %p "
20291 					    "pbuf %p (%d)\n",
20292 					    (void *)tcp, (void *)mmd,
20293 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
20294 				}
20295 
20296 				ASSERT(max_pld > 0);
20297 				--max_pld;
20298 			} else if (spill > 0) {
20299 				/*
20300 				 * If there's a spillover, but the following
20301 				 * xmit_tail couldn't give us enough octets
20302 				 * to reach "len", then stop the current
20303 				 * Multidata creation and let the legacy
20304 				 * tcp_send() path take over.  We don't want
20305 				 * to send the tiny segment as part of this
20306 				 * Multidata for performance reasons; instead,
20307 				 * we let the legacy path deal with grouping
20308 				 * it with the subsequent small mblks.
20309 				 */
20310 				if (*usable >= len &&
20311 				    MBLKL((*xmit_tail)->b_cont) < spill) {
20312 					max_pld = 0;
20313 					break;	/* done */
20314 				}
20315 
20316 				/*
20317 				 * We can't spillover, and we are near
20318 				 * the end of the current payload buffer,
20319 				 * so send what's left.
20320 				 */
20321 				ASSERT(*tail_unsent > 0);
20322 				len = *tail_unsent;
20323 			}
20324 
20325 			/* tail_unsent is negated if there is a spillover */
20326 			*tail_unsent -= len;
20327 			*usable -= len;
20328 			ASSERT(*usable >= 0);
20329 
20330 			if (*usable < mss)
20331 				seg_len = *usable;
20332 			/*
20333 			 * Sender SWS avoidance; see comments in tcp_send();
20334 			 * everything else is the same, except that we only
20335 			 * do this here if there is no more data to be sent
20336 			 * following the current xmit_tail.  We don't check
20337 			 * for 1-byte urgent data because we shouldn't get
20338 			 * here if TCP_URG_VALID is set.
20339 			 */
20340 			if (*usable > 0 && *usable < mss &&
20341 			    ((md_pbuf_nxt == NULL &&
20342 			    (*xmit_tail)->b_cont == NULL) ||
20343 			    (md_pbuf_nxt != NULL &&
20344 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
20345 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
20346 			    (tcp->tcp_unsent -
20347 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
20348 			    !tcp->tcp_zero_win_probe) {
20349 				if ((*snxt + len) == tcp->tcp_snxt &&
20350 				    (*snxt + len) == tcp->tcp_suna) {
20351 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20352 				}
20353 				done = B_TRUE;
20354 			}
20355 
20356 			/*
20357 			 * Prime pump for IP's checksumming on our behalf;
20358 			 * include the adjustment for a source route if any.
20359 			 * Do this only for software/partial hardware checksum
20360 			 * offload, as this field gets zeroed out later for
20361 			 * the full hardware checksum offload case.
20362 			 */
20363 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
20364 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20365 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
20366 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
20367 			}
20368 
20369 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
20370 			*snxt += len;
20371 
20372 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
20373 			/*
20374 			 * We set the PUSH bit only if TCP has no more buffered
20375 			 * data to be transmitted (or if sender SWS avoidance
20376 			 * takes place), as opposed to setting it for every
20377 			 * last packet in the burst.
20378 			 */
20379 			if (done ||
20380 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
20381 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
20382 
20383 			/*
20384 			 * Set FIN bit if this is our last segment; snxt
20385 			 * already includes its length, and it will not
20386 			 * be adjusted after this point.
20387 			 */
20388 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
20389 			    *snxt == tcp->tcp_fss) {
20390 				if (!tcp->tcp_fin_acked) {
20391 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
20392 					BUMP_MIB(&tcps->tcps_mib,
20393 					    tcpOutControl);
20394 				}
20395 				if (!tcp->tcp_fin_sent) {
20396 					tcp->tcp_fin_sent = B_TRUE;
20397 					/*
20398 					 * tcp state must be ESTABLISHED
20399 					 * in order for us to get here in
20400 					 * the first place.
20401 					 */
20402 					tcp->tcp_state = TCPS_FIN_WAIT_1;
20403 
20404 					/*
20405 					 * Upon returning from this routine,
20406 					 * tcp_wput_data() will set tcp_snxt
20407 					 * to be equal to snxt + tcp_fin_sent.
20408 					 * This is essentially the same as
20409 					 * setting it to tcp_fss + 1.
20410 					 */
20411 				}
20412 			}
20413 
20414 			tcp->tcp_last_sent_len = (ushort_t)len;
20415 
20416 			len += tcp_hdr_len;
20417 			if (tcp->tcp_ipversion == IPV4_VERSION)
20418 				tcp->tcp_ipha->ipha_length = htons(len);
20419 			else
20420 				tcp->tcp_ip6h->ip6_plen = htons(len -
20421 				    ((char *)&tcp->tcp_ip6h[1] -
20422 				    tcp->tcp_iphc));
20423 
20424 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
20425 
20426 			/* setup header fragment */
20427 			PDESC_HDR_ADD(pkt_info,
20428 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
20429 			    tcp->tcp_mdt_hdr_head,		/* head room */
20430 			    tcp_hdr_len,			/* len */
20431 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
20432 
20433 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
20434 			    hdr_frag_sz);
20435 			ASSERT(MBLKIN(md_hbuf,
20436 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
20437 			    PDESC_HDRSIZE(pkt_info)));
20438 
20439 			/* setup first payload fragment */
20440 			PDESC_PLD_INIT(pkt_info);
20441 			PDESC_PLD_SPAN_ADD(pkt_info,
20442 			    pbuf_idx,				/* index */
20443 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
20444 			    tcp->tcp_last_sent_len);		/* len */
20445 
20446 			/* create a split-packet in case of a spillover */
20447 			if (md_pbuf_nxt != NULL) {
20448 				ASSERT(spill > 0);
20449 				ASSERT(pbuf_idx_nxt > pbuf_idx);
20450 				ASSERT(!add_buffer);
20451 
20452 				md_pbuf = md_pbuf_nxt;
20453 				md_pbuf_nxt = NULL;
20454 				pbuf_idx = pbuf_idx_nxt;
20455 				pbuf_idx_nxt = -1;
20456 				cur_pld_off = spill;
20457 
20458 				/* trim out first payload fragment */
20459 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
20460 
20461 				/* setup second payload fragment */
20462 				PDESC_PLD_SPAN_ADD(pkt_info,
20463 				    pbuf_idx,			/* index */
20464 				    md_pbuf->b_rptr,		/* start */
20465 				    spill);			/* len */
20466 
20467 				if ((*xmit_tail)->b_next == NULL) {
20468 					/*
20469 					 * Store the lbolt used for RTT
20470 					 * estimation. We can only record one
20471 					 * timestamp per mblk so we do it when
20472 					 * we reach the end of the payload
20473 					 * buffer.  Also we only take a new
20474 					 * timestamp sample when the previous
20475 					 * timed data from the same mblk has
20476 					 * been ack'ed.
20477 					 */
20478 					(*xmit_tail)->b_prev = local_time;
20479 					(*xmit_tail)->b_next =
20480 					    (mblk_t *)(uintptr_t)first_snxt;
20481 				}
20482 
20483 				first_snxt = *snxt - spill;
20484 
20485 				/*
20486 				 * Advance xmit_tail; usable could be 0 by
20487 				 * the time we got here, but we made sure
20488 				 * above that we would only spillover to
20489 				 * the next data block if usable includes
20490 				 * the spilled-over amount prior to the
20491 				 * subtraction.  Therefore, we are sure
20492 				 * that xmit_tail->b_cont can't be NULL.
20493 				 */
20494 				ASSERT((*xmit_tail)->b_cont != NULL);
20495 				*xmit_tail = (*xmit_tail)->b_cont;
20496 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20497 				    (uintptr_t)INT_MAX);
20498 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
20499 			} else {
20500 				cur_pld_off += tcp->tcp_last_sent_len;
20501 			}
20502 
20503 			/*
20504 			 * Fill in the header using the template header, and
20505 			 * add options such as time-stamp, ECN and/or SACK,
20506 			 * as needed.
20507 			 */
20508 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
20509 			    (clock_t)local_time, num_sack_blk);
20510 
20511 			/* take care of some IP header businesses */
20512 			if (af == AF_INET) {
20513 				ipha = (ipha_t *)pkt_info->hdr_rptr;
20514 
20515 				ASSERT(OK_32PTR((uchar_t *)ipha));
20516 				ASSERT(PDESC_HDRL(pkt_info) >=
20517 				    IP_SIMPLE_HDR_LENGTH);
20518 				ASSERT(ipha->ipha_version_and_hdr_length ==
20519 				    IP_SIMPLE_HDR_VERSION);
20520 
20521 				/*
20522 				 * Assign ident value for current packet; see
20523 				 * related comments in ip_wput_ire() about the
20524 				 * contract private interface with clustering
20525 				 * group.
20526 				 */
20527 				clusterwide = B_FALSE;
20528 				if (cl_inet_ipident != NULL) {
20529 					ASSERT(cl_inet_isclusterwide != NULL);
20530 					if ((*cl_inet_isclusterwide)(IPPROTO_IP,
20531 					    AF_INET,
20532 					    (uint8_t *)(uintptr_t)src)) {
20533 						ipha->ipha_ident =
20534 						    (*cl_inet_ipident)
20535 						    (IPPROTO_IP, AF_INET,
20536 						    (uint8_t *)(uintptr_t)src,
20537 						    (uint8_t *)(uintptr_t)dst);
20538 						clusterwide = B_TRUE;
20539 					}
20540 				}
20541 
20542 				if (!clusterwide) {
20543 					ipha->ipha_ident = (uint16_t)
20544 					    atomic_add_32_nv(
20545 						&ire->ire_ident, 1);
20546 				}
20547 #ifndef _BIG_ENDIAN
20548 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
20549 				    (ipha->ipha_ident >> 8);
20550 #endif
20551 			} else {
20552 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
20553 
20554 				ASSERT(OK_32PTR((uchar_t *)ip6h));
20555 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
20556 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
20557 				ASSERT(PDESC_HDRL(pkt_info) >=
20558 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
20559 				    TCP_CHECKSUM_SIZE));
20560 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20561 
20562 				if (tcp->tcp_ip_forward_progress) {
20563 					rconfirm = B_TRUE;
20564 					tcp->tcp_ip_forward_progress = B_FALSE;
20565 				}
20566 			}
20567 
20568 			/* at least one payload span, and at most two */
20569 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
20570 
20571 			/* add the packet descriptor to Multidata */
20572 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
20573 			    KM_NOSLEEP)) == NULL) {
20574 				/*
20575 				 * Any failure other than ENOMEM indicates
20576 				 * that we have passed in invalid pkt_info
20577 				 * or parameters to mmd_addpdesc, which must
20578 				 * not happen.
20579 				 *
20580 				 * EINVAL is a result of failure on boundary
20581 				 * checks against the pkt_info contents.  It
20582 				 * should not happen, and we panic because
20583 				 * either there's horrible heap corruption,
20584 				 * and/or programming mistake.
20585 				 */
20586 				if (err != ENOMEM) {
20587 					cmn_err(CE_PANIC, "tcp_multisend: "
20588 					    "pdesc logic error detected for "
20589 					    "tcp %p mmd %p pinfo %p (%d)\n",
20590 					    (void *)tcp, (void *)mmd,
20591 					    (void *)pkt_info, err);
20592 				}
20593 				TCP_STAT(tcps, tcp_mdt_addpdescfail);
20594 				goto legacy_send; /* out_of_mem */
20595 			}
20596 			ASSERT(pkt != NULL);
20597 
20598 			/* calculate IP header and TCP checksums */
20599 			if (af == AF_INET) {
20600 				/* calculate pseudo-header checksum */
20601 				cksum = (dst >> 16) + (dst & 0xFFFF) +
20602 				    (src >> 16) + (src & 0xFFFF);
20603 
20604 				/* offset for TCP header checksum */
20605 				up = IPH_TCPH_CHECKSUMP(ipha,
20606 				    IP_SIMPLE_HDR_LENGTH);
20607 			} else {
20608 				up = (uint16_t *)&ip6h->ip6_src;
20609 
20610 				/* calculate pseudo-header checksum */
20611 				cksum = up[0] + up[1] + up[2] + up[3] +
20612 				    up[4] + up[5] + up[6] + up[7] +
20613 				    up[8] + up[9] + up[10] + up[11] +
20614 				    up[12] + up[13] + up[14] + up[15];
20615 
20616 				/* Fold the initial sum */
20617 				cksum = (cksum & 0xffff) + (cksum >> 16);
20618 
20619 				up = (uint16_t *)(((uchar_t *)ip6h) +
20620 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
20621 			}
20622 
20623 			if (hwcksum_flags & HCK_FULLCKSUM) {
20624 				/* clear checksum field for hardware */
20625 				*up = 0;
20626 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
20627 				uint32_t sum;
20628 
20629 				/* pseudo-header checksumming */
20630 				sum = *up + cksum + IP_TCP_CSUM_COMP;
20631 				sum = (sum & 0xFFFF) + (sum >> 16);
20632 				*up = (sum & 0xFFFF) + (sum >> 16);
20633 			} else {
20634 				/* software checksumming */
20635 				TCP_STAT(tcps, tcp_out_sw_cksum);
20636 				TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
20637 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
20638 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
20639 				    cksum + IP_TCP_CSUM_COMP);
20640 				if (*up == 0)
20641 					*up = 0xFFFF;
20642 			}
20643 
20644 			/* IPv4 header checksum */
20645 			if (af == AF_INET) {
20646 				ipha->ipha_fragment_offset_and_flags |=
20647 				    (uint32_t)htons(ire->ire_frag_flag);
20648 
20649 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
20650 					ipha->ipha_hdr_checksum = 0;
20651 				} else {
20652 					IP_HDR_CKSUM(ipha, cksum,
20653 					    ((uint32_t *)ipha)[0],
20654 					    ((uint16_t *)ipha)[4]);
20655 				}
20656 			}
20657 
20658 			if (af == AF_INET &&
20659 			    HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) ||
20660 			    af == AF_INET6 &&
20661 			    HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) {
20662 				/* build header(IP/TCP) mblk for this segment */
20663 				if ((mp = dupb(md_hbuf)) == NULL)
20664 					goto legacy_send;
20665 
20666 				mp->b_rptr = pkt_info->hdr_rptr;
20667 				mp->b_wptr = pkt_info->hdr_wptr;
20668 
20669 				/* build payload mblk for this segment */
20670 				if ((mp1 = dupb(*xmit_tail)) == NULL) {
20671 					freemsg(mp);
20672 					goto legacy_send;
20673 				}
20674 				mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off;
20675 				mp1->b_rptr = mp1->b_wptr -
20676 				    tcp->tcp_last_sent_len;
20677 				linkb(mp, mp1);
20678 
20679 				pld_start = mp1->b_rptr;
20680 
20681 				if (af == AF_INET) {
20682 					DTRACE_PROBE4(
20683 					    ip4__physical__out__start,
20684 					    ill_t *, NULL,
20685 					    ill_t *, ill,
20686 					    ipha_t *, ipha,
20687 					    mblk_t *, mp);
20688 					FW_HOOKS(
20689 					    ipst->ips_ip4_physical_out_event,
20690 					    ipst->ips_ipv4firewall_physical_out,
20691 					    NULL, ill, ipha, mp, mp, 0, ipst);
20692 					DTRACE_PROBE1(
20693 					    ip4__physical__out__end,
20694 					    mblk_t *, mp);
20695 				} else {
20696 					DTRACE_PROBE4(
20697 					    ip6__physical__out_start,
20698 					    ill_t *, NULL,
20699 					    ill_t *, ill,
20700 					    ip6_t *, ip6h,
20701 					    mblk_t *, mp);
20702 					FW_HOOKS6(
20703 					    ipst->ips_ip6_physical_out_event,
20704 					    ipst->ips_ipv6firewall_physical_out,
20705 					    NULL, ill, ip6h, mp, mp, 0, ipst);
20706 					DTRACE_PROBE1(
20707 					    ip6__physical__out__end,
20708 					    mblk_t *, mp);
20709 				}
20710 
20711 				if (buf_trunked && mp != NULL) {
20712 					/*
20713 					 * Need to pass it to normal path.
20714 					 */
20715 					CALL_IP_WPUT(tcp->tcp_connp, q, mp);
20716 				} else if (mp == NULL ||
20717 				    mp->b_rptr != pkt_info->hdr_rptr ||
20718 				    mp->b_wptr != pkt_info->hdr_wptr ||
20719 				    (mp1 = mp->b_cont) == NULL ||
20720 				    mp1->b_rptr != pld_start ||
20721 				    mp1->b_wptr != pld_start +
20722 				    tcp->tcp_last_sent_len ||
20723 				    mp1->b_cont != NULL) {
20724 					/*
20725 					 * Need to pass all packets of this
20726 					 * buffer to normal path, either when
20727 					 * packet is blocked, or when boundary
20728 					 * of header buffer or payload buffer
20729 					 * has been changed by FW_HOOKS[6].
20730 					 */
20731 					buf_trunked = B_TRUE;
20732 					if (md_mp_head != NULL) {
20733 						err = (intptr_t)rmvb(md_mp_head,
20734 						    md_mp);
20735 						if (err == 0)
20736 							md_mp_head = NULL;
20737 					}
20738 
20739 					/* send down what we've got so far */
20740 					if (md_mp_head != NULL) {
20741 						tcp_multisend_data(tcp, ire,
20742 						    ill, md_mp_head, obsegs,
20743 						    obbytes, &rconfirm);
20744 					}
20745 					md_mp_head = NULL;
20746 
20747 					if (mp != NULL)
20748 						CALL_IP_WPUT(tcp->tcp_connp,
20749 						    q, mp);
20750 
20751 					mp1 = fw_mp_head;
20752 					do {
20753 						mp = mp1;
20754 						mp1 = mp1->b_next;
20755 						mp->b_next = NULL;
20756 						mp->b_prev = NULL;
20757 						CALL_IP_WPUT(tcp->tcp_connp,
20758 						    q, mp);
20759 					} while (mp1 != NULL);
20760 
20761 					fw_mp_head = NULL;
20762 				} else {
20763 					if (fw_mp_head == NULL)
20764 						fw_mp_head = mp;
20765 					else
20766 						fw_mp_head->b_prev->b_next = mp;
20767 					fw_mp_head->b_prev = mp;
20768 				}
20769 			}
20770 
20771 			/* advance header offset */
20772 			cur_hdr_off += hdr_frag_sz;
20773 
20774 			obbytes += tcp->tcp_last_sent_len;
20775 			++obsegs;
20776 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
20777 		    *tail_unsent > 0);
20778 
20779 		if ((*xmit_tail)->b_next == NULL) {
20780 			/*
20781 			 * Store the lbolt used for RTT estimation. We can only
20782 			 * record one timestamp per mblk so we do it when we
20783 			 * reach the end of the payload buffer. Also we only
20784 			 * take a new timestamp sample when the previous timed
20785 			 * data from the same mblk has been ack'ed.
20786 			 */
20787 			(*xmit_tail)->b_prev = local_time;
20788 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
20789 		}
20790 
20791 		ASSERT(*tail_unsent >= 0);
20792 		if (*tail_unsent > 0) {
20793 			/*
20794 			 * We got here because we broke out of the above
20795 			 * loop due to of one of the following cases:
20796 			 *
20797 			 *   1. len < adjusted MSS (i.e. small),
20798 			 *   2. Sender SWS avoidance,
20799 			 *   3. max_pld is zero.
20800 			 *
20801 			 * We are done for this Multidata, so trim our
20802 			 * last payload buffer (if any) accordingly.
20803 			 */
20804 			if (md_pbuf != NULL)
20805 				md_pbuf->b_wptr -= *tail_unsent;
20806 		} else if (*usable > 0) {
20807 			*xmit_tail = (*xmit_tail)->b_cont;
20808 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20809 			    (uintptr_t)INT_MAX);
20810 			*tail_unsent = (int)MBLKL(*xmit_tail);
20811 			add_buffer = B_TRUE;
20812 		}
20813 
20814 		while (fw_mp_head) {
20815 			mp = fw_mp_head;
20816 			fw_mp_head = fw_mp_head->b_next;
20817 			mp->b_prev = mp->b_next = NULL;
20818 			freemsg(mp);
20819 		}
20820 		if (buf_trunked) {
20821 			TCP_STAT(tcps, tcp_mdt_discarded);
20822 			freeb(md_mp);
20823 			buf_trunked = B_FALSE;
20824 		}
20825 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
20826 	    (tcp_mdt_chain || max_pld > 0));
20827 
20828 	if (md_mp_head != NULL) {
20829 		/* send everything down */
20830 		tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
20831 		    &rconfirm);
20832 	}
20833 
20834 #undef PREP_NEW_MULTIDATA
20835 #undef PREP_NEW_PBUF
20836 #undef IPVER
20837 
20838 	IRE_REFRELE(ire);
20839 	return (0);
20840 }
20841 
20842 /*
20843  * A wrapper function for sending one or more Multidata messages down to
20844  * the module below ip; this routine does not release the reference of the
20845  * IRE (caller does that).  This routine is analogous to tcp_send_data().
20846  */
20847 static void
20848 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
20849     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
20850 {
20851 	uint64_t delta;
20852 	nce_t *nce;
20853 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20854 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
20855 
20856 	ASSERT(ire != NULL && ill != NULL);
20857 	ASSERT(ire->ire_stq != NULL);
20858 	ASSERT(md_mp_head != NULL);
20859 	ASSERT(rconfirm != NULL);
20860 
20861 	/* adjust MIBs and IRE timestamp */
20862 	TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT);
20863 	tcp->tcp_obsegs += obsegs;
20864 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs);
20865 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes);
20866 	TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs);
20867 
20868 	if (tcp->tcp_ipversion == IPV4_VERSION) {
20869 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs);
20870 	} else {
20871 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs);
20872 	}
20873 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs);
20874 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs);
20875 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes);
20876 
20877 	ire->ire_ob_pkt_count += obsegs;
20878 	if (ire->ire_ipif != NULL)
20879 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
20880 	ire->ire_last_used_time = lbolt;
20881 
20882 	/* send it down */
20883 	if (ILL_DLS_CAPABLE(ill)) {
20884 		ill_dls_capab_t *ill_dls = ill->ill_dls_capab;
20885 		ill_dls->ill_tx(ill_dls->ill_tx_handle, md_mp_head);
20886 	} else {
20887 		putnext(ire->ire_stq, md_mp_head);
20888 	}
20889 
20890 	/* we're done for TCP/IPv4 */
20891 	if (tcp->tcp_ipversion == IPV4_VERSION)
20892 		return;
20893 
20894 	nce = ire->ire_nce;
20895 
20896 	ASSERT(nce != NULL);
20897 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
20898 	ASSERT(nce->nce_state != ND_INCOMPLETE);
20899 
20900 	/* reachability confirmation? */
20901 	if (*rconfirm) {
20902 		nce->nce_last = TICK_TO_MSEC(lbolt64);
20903 		if (nce->nce_state != ND_REACHABLE) {
20904 			mutex_enter(&nce->nce_lock);
20905 			nce->nce_state = ND_REACHABLE;
20906 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
20907 			mutex_exit(&nce->nce_lock);
20908 			(void) untimeout(nce->nce_timeout_id);
20909 			if (ip_debug > 2) {
20910 				/* ip1dbg */
20911 				pr_addr_dbg("tcp_multisend_data: state "
20912 				    "for %s changed to REACHABLE\n",
20913 				    AF_INET6, &ire->ire_addr_v6);
20914 			}
20915 		}
20916 		/* reset transport reachability confirmation */
20917 		*rconfirm = B_FALSE;
20918 	}
20919 
20920 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
20921 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
20922 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
20923 
20924 	if (delta > (uint64_t)ill->ill_reachable_time) {
20925 		mutex_enter(&nce->nce_lock);
20926 		switch (nce->nce_state) {
20927 		case ND_REACHABLE:
20928 		case ND_STALE:
20929 			/*
20930 			 * ND_REACHABLE is identical to ND_STALE in this
20931 			 * specific case. If reachable time has expired for
20932 			 * this neighbor (delta is greater than reachable
20933 			 * time), conceptually, the neighbor cache is no
20934 			 * longer in REACHABLE state, but already in STALE
20935 			 * state.  So the correct transition here is to
20936 			 * ND_DELAY.
20937 			 */
20938 			nce->nce_state = ND_DELAY;
20939 			mutex_exit(&nce->nce_lock);
20940 			NDP_RESTART_TIMER(nce,
20941 			    ipst->ips_delay_first_probe_time);
20942 			if (ip_debug > 3) {
20943 				/* ip2dbg */
20944 				pr_addr_dbg("tcp_multisend_data: state "
20945 				    "for %s changed to DELAY\n",
20946 				    AF_INET6, &ire->ire_addr_v6);
20947 			}
20948 			break;
20949 		case ND_DELAY:
20950 		case ND_PROBE:
20951 			mutex_exit(&nce->nce_lock);
20952 			/* Timers have already started */
20953 			break;
20954 		case ND_UNREACHABLE:
20955 			/*
20956 			 * ndp timer has detected that this nce is
20957 			 * unreachable and initiated deleting this nce
20958 			 * and all its associated IREs. This is a race
20959 			 * where we found the ire before it was deleted
20960 			 * and have just sent out a packet using this
20961 			 * unreachable nce.
20962 			 */
20963 			mutex_exit(&nce->nce_lock);
20964 			break;
20965 		default:
20966 			ASSERT(0);
20967 		}
20968 	}
20969 }
20970 
20971 /*
20972  * Derived from tcp_send_data().
20973  */
20974 static void
20975 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss,
20976     int num_lso_seg)
20977 {
20978 	ipha_t		*ipha;
20979 	mblk_t		*ire_fp_mp;
20980 	uint_t		ire_fp_mp_len;
20981 	uint32_t	hcksum_txflags = 0;
20982 	ipaddr_t	src;
20983 	ipaddr_t	dst;
20984 	uint32_t	cksum;
20985 	uint16_t	*up;
20986 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20987 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
20988 
20989 	ASSERT(DB_TYPE(mp) == M_DATA);
20990 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
20991 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
20992 	ASSERT(tcp->tcp_connp != NULL);
20993 	ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp));
20994 
20995 	ipha = (ipha_t *)mp->b_rptr;
20996 	src = ipha->ipha_src;
20997 	dst = ipha->ipha_dst;
20998 
20999 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
21000 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident,
21001 	    num_lso_seg);
21002 #ifndef _BIG_ENDIAN
21003 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
21004 #endif
21005 	if (tcp->tcp_snd_zcopy_aware) {
21006 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
21007 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
21008 			mp = tcp_zcopy_disable(tcp, mp);
21009 	}
21010 
21011 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
21012 		ASSERT(ill->ill_hcksum_capab != NULL);
21013 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
21014 	}
21015 
21016 	/*
21017 	 * Since the TCP checksum should be recalculated by h/w, we can just
21018 	 * zero the checksum field for HCK_FULLCKSUM, or calculate partial
21019 	 * pseudo-header checksum for HCK_PARTIALCKSUM.
21020 	 * The partial pseudo-header excludes TCP length, that was calculated
21021 	 * in tcp_send(), so to zero *up before further processing.
21022 	 */
21023 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
21024 
21025 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
21026 	*up = 0;
21027 
21028 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
21029 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
21030 
21031 	/*
21032 	 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp).
21033 	 */
21034 	DB_LSOFLAGS(mp) |= HW_LSO;
21035 	DB_LSOMSS(mp) = mss;
21036 
21037 	ipha->ipha_fragment_offset_and_flags |=
21038 	    (uint32_t)htons(ire->ire_frag_flag);
21039 
21040 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
21041 	ire_fp_mp_len = MBLKL(ire_fp_mp);
21042 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
21043 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
21044 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
21045 
21046 	UPDATE_OB_PKT_COUNT(ire);
21047 	ire->ire_last_used_time = lbolt;
21048 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
21049 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
21050 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
21051 	    ntohs(ipha->ipha_length));
21052 
21053 	if (ILL_DLS_CAPABLE(ill)) {
21054 		/*
21055 		 * Send the packet directly to DLD, where it may be queued
21056 		 * depending on the availability of transmit resources at
21057 		 * the media layer.
21058 		 */
21059 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
21060 	} else {
21061 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
21062 		DTRACE_PROBE4(ip4__physical__out__start,
21063 		    ill_t *, NULL, ill_t *, out_ill,
21064 		    ipha_t *, ipha, mblk_t *, mp);
21065 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
21066 		    ipst->ips_ipv4firewall_physical_out,
21067 		    NULL, out_ill, ipha, mp, mp, 0, ipst);
21068 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
21069 		if (mp != NULL)
21070 			putnext(ire->ire_stq, mp);
21071 	}
21072 }
21073 
21074 /*
21075  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
21076  * scheme, and returns one of the following:
21077  *
21078  * -1 = failed allocation.
21079  *  0 = success; burst count reached, or usable send window is too small,
21080  *      and that we'd rather wait until later before sending again.
21081  *  1 = success; we are called from tcp_multisend(), and both usable send
21082  *      window and tail_unsent are greater than the MDT threshold, and thus
21083  *      Multidata Transmit should be used instead.
21084  */
21085 static int
21086 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
21087     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
21088     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
21089     const int mdt_thres)
21090 {
21091 	int num_burst_seg = tcp->tcp_snd_burst;
21092 	ire_t		*ire = NULL;
21093 	ill_t		*ill = NULL;
21094 	mblk_t		*ire_fp_mp = NULL;
21095 	uint_t		ire_fp_mp_len = 0;
21096 	int		num_lso_seg = 1;
21097 	uint_t		lso_usable;
21098 	boolean_t	do_lso_send = B_FALSE;
21099 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21100 
21101 	/*
21102 	 * Check LSO capability before any further work. And the similar check
21103 	 * need to be done in for(;;) loop.
21104 	 * LSO will be deployed when therer is more than one mss of available
21105 	 * data and a burst transmission is allowed.
21106 	 */
21107 	if (tcp->tcp_lso &&
21108 	    (tcp->tcp_valid_bits == 0 ||
21109 	    tcp->tcp_valid_bits == TCP_FSS_VALID) &&
21110 	    num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21111 		/*
21112 		 * Try to find usable IRE/ILL and do basic check to the ILL.
21113 		 */
21114 		if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) {
21115 			/*
21116 			 * Enable LSO with this transmission.
21117 			 * Since IRE has been hold in
21118 			 * tcp_send_find_ire_ill(), IRE_REFRELE(ire)
21119 			 * should be called before return.
21120 			 */
21121 			do_lso_send = B_TRUE;
21122 			ire_fp_mp = ire->ire_nce->nce_fp_mp;
21123 			ire_fp_mp_len = MBLKL(ire_fp_mp);
21124 			/* Round up to multiple of 4 */
21125 			ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4;
21126 		} else {
21127 			do_lso_send = B_FALSE;
21128 			ill = NULL;
21129 		}
21130 	}
21131 
21132 	for (;;) {
21133 		struct datab	*db;
21134 		tcph_t		*tcph;
21135 		uint32_t	sum;
21136 		mblk_t		*mp, *mp1;
21137 		uchar_t		*rptr;
21138 		int		len;
21139 
21140 		/*
21141 		 * If we're called by tcp_multisend(), and the amount of
21142 		 * sendable data as well as the size of current xmit_tail
21143 		 * is beyond the MDT threshold, return to the caller and
21144 		 * let the large data transmit be done using MDT.
21145 		 */
21146 		if (*usable > 0 && *usable > mdt_thres &&
21147 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
21148 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
21149 			ASSERT(tcp->tcp_mdt);
21150 			return (1);	/* success; do large send */
21151 		}
21152 
21153 		if (num_burst_seg == 0)
21154 			break;		/* success; burst count reached */
21155 
21156 		/*
21157 		 * Calculate the maximum payload length we can send in *one*
21158 		 * time.
21159 		 */
21160 		if (do_lso_send) {
21161 			/*
21162 			 * Check whether need to do LSO any more.
21163 			 */
21164 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21165 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
21166 				lso_usable = MIN(lso_usable,
21167 				    num_burst_seg * mss);
21168 
21169 				num_lso_seg = lso_usable / mss;
21170 				if (lso_usable % mss) {
21171 					num_lso_seg++;
21172 					tcp->tcp_last_sent_len = (ushort_t)
21173 					    (lso_usable % mss);
21174 				} else {
21175 					tcp->tcp_last_sent_len = (ushort_t)mss;
21176 				}
21177 			} else {
21178 				do_lso_send = B_FALSE;
21179 				num_lso_seg = 1;
21180 				lso_usable = mss;
21181 			}
21182 		}
21183 
21184 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
21185 
21186 		/*
21187 		 * Adjust num_burst_seg here.
21188 		 */
21189 		num_burst_seg -= num_lso_seg;
21190 
21191 		len = mss;
21192 		if (len > *usable) {
21193 			ASSERT(do_lso_send == B_FALSE);
21194 
21195 			len = *usable;
21196 			if (len <= 0) {
21197 				/* Terminate the loop */
21198 				break;	/* success; too small */
21199 			}
21200 			/*
21201 			 * Sender silly-window avoidance.
21202 			 * Ignore this if we are going to send a
21203 			 * zero window probe out.
21204 			 *
21205 			 * TODO: force data into microscopic window?
21206 			 *	==> (!pushed || (unsent > usable))
21207 			 */
21208 			if (len < (tcp->tcp_max_swnd >> 1) &&
21209 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
21210 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
21211 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
21212 				/*
21213 				 * If the retransmit timer is not running
21214 				 * we start it so that we will retransmit
21215 				 * in the case when the the receiver has
21216 				 * decremented the window.
21217 				 */
21218 				if (*snxt == tcp->tcp_snxt &&
21219 				    *snxt == tcp->tcp_suna) {
21220 					/*
21221 					 * We are not supposed to send
21222 					 * anything.  So let's wait a little
21223 					 * bit longer before breaking SWS
21224 					 * avoidance.
21225 					 *
21226 					 * What should the value be?
21227 					 * Suggestion: MAX(init rexmit time,
21228 					 * tcp->tcp_rto)
21229 					 */
21230 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
21231 				}
21232 				break;	/* success; too small */
21233 			}
21234 		}
21235 
21236 		tcph = tcp->tcp_tcph;
21237 
21238 		/*
21239 		 * The reason to adjust len here is that we need to set flags
21240 		 * and calculate checksum.
21241 		 */
21242 		if (do_lso_send)
21243 			len = lso_usable;
21244 
21245 		*usable -= len; /* Approximate - can be adjusted later */
21246 		if (*usable > 0)
21247 			tcph->th_flags[0] = TH_ACK;
21248 		else
21249 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
21250 
21251 		/*
21252 		 * Prime pump for IP's checksumming on our behalf
21253 		 * Include the adjustment for a source route if any.
21254 		 */
21255 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
21256 		sum = (sum >> 16) + (sum & 0xFFFF);
21257 		U16_TO_ABE16(sum, tcph->th_sum);
21258 
21259 		U32_TO_ABE32(*snxt, tcph->th_seq);
21260 
21261 		/*
21262 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
21263 		 * set.  For the case when TCP_FSS_VALID is the only valid
21264 		 * bit (normal active close), branch off only when we think
21265 		 * that the FIN flag needs to be set.  Note for this case,
21266 		 * that (snxt + len) may not reflect the actual seg_len,
21267 		 * as len may be further reduced in tcp_xmit_mp().  If len
21268 		 * gets modified, we will end up here again.
21269 		 */
21270 		if (tcp->tcp_valid_bits != 0 &&
21271 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
21272 		    ((*snxt + len) == tcp->tcp_fss))) {
21273 			uchar_t		*prev_rptr;
21274 			uint32_t	prev_snxt = tcp->tcp_snxt;
21275 
21276 			if (*tail_unsent == 0) {
21277 				ASSERT((*xmit_tail)->b_cont != NULL);
21278 				*xmit_tail = (*xmit_tail)->b_cont;
21279 				prev_rptr = (*xmit_tail)->b_rptr;
21280 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
21281 				    (*xmit_tail)->b_rptr);
21282 			} else {
21283 				prev_rptr = (*xmit_tail)->b_rptr;
21284 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
21285 				    *tail_unsent;
21286 			}
21287 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
21288 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
21289 			/* Restore tcp_snxt so we get amount sent right. */
21290 			tcp->tcp_snxt = prev_snxt;
21291 			if (prev_rptr == (*xmit_tail)->b_rptr) {
21292 				/*
21293 				 * If the previous timestamp is still in use,
21294 				 * don't stomp on it.
21295 				 */
21296 				if ((*xmit_tail)->b_next == NULL) {
21297 					(*xmit_tail)->b_prev = local_time;
21298 					(*xmit_tail)->b_next =
21299 					    (mblk_t *)(uintptr_t)(*snxt);
21300 				}
21301 			} else
21302 				(*xmit_tail)->b_rptr = prev_rptr;
21303 
21304 			if (mp == NULL) {
21305 				if (ire != NULL)
21306 					IRE_REFRELE(ire);
21307 				return (-1);
21308 			}
21309 			mp1 = mp->b_cont;
21310 
21311 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
21312 				tcp->tcp_last_sent_len = (ushort_t)len;
21313 			while (mp1->b_cont) {
21314 				*xmit_tail = (*xmit_tail)->b_cont;
21315 				(*xmit_tail)->b_prev = local_time;
21316 				(*xmit_tail)->b_next =
21317 				    (mblk_t *)(uintptr_t)(*snxt);
21318 				mp1 = mp1->b_cont;
21319 			}
21320 			*snxt += len;
21321 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
21322 			BUMP_LOCAL(tcp->tcp_obsegs);
21323 			BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21324 			UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21325 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21326 			tcp_send_data(tcp, q, mp);
21327 			continue;
21328 		}
21329 
21330 		*snxt += len;	/* Adjust later if we don't send all of len */
21331 		BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21332 		UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21333 
21334 		if (*tail_unsent) {
21335 			/* Are the bytes above us in flight? */
21336 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
21337 			if (rptr != (*xmit_tail)->b_rptr) {
21338 				*tail_unsent -= len;
21339 				if (len <= mss) /* LSO is unusable */
21340 					tcp->tcp_last_sent_len = (ushort_t)len;
21341 				len += tcp_hdr_len;
21342 				if (tcp->tcp_ipversion == IPV4_VERSION)
21343 					tcp->tcp_ipha->ipha_length = htons(len);
21344 				else
21345 					tcp->tcp_ip6h->ip6_plen =
21346 					    htons(len -
21347 					    ((char *)&tcp->tcp_ip6h[1] -
21348 					    tcp->tcp_iphc));
21349 				mp = dupb(*xmit_tail);
21350 				if (mp == NULL) {
21351 					if (ire != NULL)
21352 						IRE_REFRELE(ire);
21353 					return (-1);	/* out_of_mem */
21354 				}
21355 				mp->b_rptr = rptr;
21356 				/*
21357 				 * If the old timestamp is no longer in use,
21358 				 * sample a new timestamp now.
21359 				 */
21360 				if ((*xmit_tail)->b_next == NULL) {
21361 					(*xmit_tail)->b_prev = local_time;
21362 					(*xmit_tail)->b_next =
21363 					    (mblk_t *)(uintptr_t)(*snxt-len);
21364 				}
21365 				goto must_alloc;
21366 			}
21367 		} else {
21368 			*xmit_tail = (*xmit_tail)->b_cont;
21369 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
21370 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
21371 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
21372 			    (*xmit_tail)->b_rptr);
21373 		}
21374 
21375 		(*xmit_tail)->b_prev = local_time;
21376 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
21377 
21378 		*tail_unsent -= len;
21379 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
21380 			tcp->tcp_last_sent_len = (ushort_t)len;
21381 
21382 		len += tcp_hdr_len;
21383 		if (tcp->tcp_ipversion == IPV4_VERSION)
21384 			tcp->tcp_ipha->ipha_length = htons(len);
21385 		else
21386 			tcp->tcp_ip6h->ip6_plen = htons(len -
21387 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21388 
21389 		mp = dupb(*xmit_tail);
21390 		if (mp == NULL) {
21391 			if (ire != NULL)
21392 				IRE_REFRELE(ire);
21393 			return (-1);	/* out_of_mem */
21394 		}
21395 
21396 		len = tcp_hdr_len;
21397 		/*
21398 		 * There are four reasons to allocate a new hdr mblk:
21399 		 *  1) The bytes above us are in use by another packet
21400 		 *  2) We don't have good alignment
21401 		 *  3) The mblk is being shared
21402 		 *  4) We don't have enough room for a header
21403 		 */
21404 		rptr = mp->b_rptr - len;
21405 		if (!OK_32PTR(rptr) ||
21406 		    ((db = mp->b_datap), db->db_ref != 2) ||
21407 		    rptr < db->db_base + ire_fp_mp_len) {
21408 			/* NOTE: we assume allocb returns an OK_32PTR */
21409 
21410 		must_alloc:;
21411 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
21412 			    tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED);
21413 			if (mp1 == NULL) {
21414 				freemsg(mp);
21415 				if (ire != NULL)
21416 					IRE_REFRELE(ire);
21417 				return (-1);	/* out_of_mem */
21418 			}
21419 			mp1->b_cont = mp;
21420 			mp = mp1;
21421 			/* Leave room for Link Level header */
21422 			len = tcp_hdr_len;
21423 			rptr =
21424 			    &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len];
21425 			mp->b_wptr = &rptr[len];
21426 		}
21427 
21428 		/*
21429 		 * Fill in the header using the template header, and add
21430 		 * options such as time-stamp, ECN and/or SACK, as needed.
21431 		 */
21432 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
21433 
21434 		mp->b_rptr = rptr;
21435 
21436 		if (*tail_unsent) {
21437 			int spill = *tail_unsent;
21438 
21439 			mp1 = mp->b_cont;
21440 			if (mp1 == NULL)
21441 				mp1 = mp;
21442 
21443 			/*
21444 			 * If we're a little short, tack on more mblks until
21445 			 * there is no more spillover.
21446 			 */
21447 			while (spill < 0) {
21448 				mblk_t *nmp;
21449 				int nmpsz;
21450 
21451 				nmp = (*xmit_tail)->b_cont;
21452 				nmpsz = MBLKL(nmp);
21453 
21454 				/*
21455 				 * Excess data in mblk; can we split it?
21456 				 * If MDT is enabled for the connection,
21457 				 * keep on splitting as this is a transient
21458 				 * send path.
21459 				 */
21460 				if (!do_lso_send && !tcp->tcp_mdt &&
21461 				    (spill + nmpsz > 0)) {
21462 					/*
21463 					 * Don't split if stream head was
21464 					 * told to break up larger writes
21465 					 * into smaller ones.
21466 					 */
21467 					if (tcp->tcp_maxpsz > 0)
21468 						break;
21469 
21470 					/*
21471 					 * Next mblk is less than SMSS/2
21472 					 * rounded up to nearest 64-byte;
21473 					 * let it get sent as part of the
21474 					 * next segment.
21475 					 */
21476 					if (tcp->tcp_localnet &&
21477 					    !tcp->tcp_cork &&
21478 					    (nmpsz < roundup((mss >> 1), 64)))
21479 						break;
21480 				}
21481 
21482 				*xmit_tail = nmp;
21483 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
21484 				/* Stash for rtt use later */
21485 				(*xmit_tail)->b_prev = local_time;
21486 				(*xmit_tail)->b_next =
21487 				    (mblk_t *)(uintptr_t)(*snxt - len);
21488 				mp1->b_cont = dupb(*xmit_tail);
21489 				mp1 = mp1->b_cont;
21490 
21491 				spill += nmpsz;
21492 				if (mp1 == NULL) {
21493 					*tail_unsent = spill;
21494 					freemsg(mp);
21495 					if (ire != NULL)
21496 						IRE_REFRELE(ire);
21497 					return (-1);	/* out_of_mem */
21498 				}
21499 			}
21500 
21501 			/* Trim back any surplus on the last mblk */
21502 			if (spill >= 0) {
21503 				mp1->b_wptr -= spill;
21504 				*tail_unsent = spill;
21505 			} else {
21506 				/*
21507 				 * We did not send everything we could in
21508 				 * order to remain within the b_cont limit.
21509 				 */
21510 				*usable -= spill;
21511 				*snxt += spill;
21512 				tcp->tcp_last_sent_len += spill;
21513 				UPDATE_MIB(&tcps->tcps_mib,
21514 				    tcpOutDataBytes, spill);
21515 				/*
21516 				 * Adjust the checksum
21517 				 */
21518 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
21519 				sum += spill;
21520 				sum = (sum >> 16) + (sum & 0xFFFF);
21521 				U16_TO_ABE16(sum, tcph->th_sum);
21522 				if (tcp->tcp_ipversion == IPV4_VERSION) {
21523 					sum = ntohs(
21524 					    ((ipha_t *)rptr)->ipha_length) +
21525 					    spill;
21526 					((ipha_t *)rptr)->ipha_length =
21527 					    htons(sum);
21528 				} else {
21529 					sum = ntohs(
21530 					    ((ip6_t *)rptr)->ip6_plen) +
21531 					    spill;
21532 					((ip6_t *)rptr)->ip6_plen =
21533 					    htons(sum);
21534 				}
21535 				*tail_unsent = 0;
21536 			}
21537 		}
21538 		if (tcp->tcp_ip_forward_progress) {
21539 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
21540 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
21541 			tcp->tcp_ip_forward_progress = B_FALSE;
21542 		}
21543 
21544 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21545 		if (do_lso_send) {
21546 			tcp_lsosend_data(tcp, mp, ire, ill, mss,
21547 			    num_lso_seg);
21548 			tcp->tcp_obsegs += num_lso_seg;
21549 
21550 			TCP_STAT(tcps, tcp_lso_times);
21551 			TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg);
21552 		} else {
21553 			tcp_send_data(tcp, q, mp);
21554 			BUMP_LOCAL(tcp->tcp_obsegs);
21555 		}
21556 	}
21557 
21558 	if (ire != NULL)
21559 		IRE_REFRELE(ire);
21560 	return (0);
21561 }
21562 
21563 /* Unlink and return any mblk that looks like it contains a MDT info */
21564 static mblk_t *
21565 tcp_mdt_info_mp(mblk_t *mp)
21566 {
21567 	mblk_t	*prev_mp;
21568 
21569 	for (;;) {
21570 		prev_mp = mp;
21571 		/* no more to process? */
21572 		if ((mp = mp->b_cont) == NULL)
21573 			break;
21574 
21575 		switch (DB_TYPE(mp)) {
21576 		case M_CTL:
21577 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
21578 				continue;
21579 			ASSERT(prev_mp != NULL);
21580 			prev_mp->b_cont = mp->b_cont;
21581 			mp->b_cont = NULL;
21582 			return (mp);
21583 		default:
21584 			break;
21585 		}
21586 	}
21587 	return (mp);
21588 }
21589 
21590 /* MDT info update routine, called when IP notifies us about MDT */
21591 static void
21592 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
21593 {
21594 	boolean_t prev_state;
21595 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21596 
21597 	/*
21598 	 * IP is telling us to abort MDT on this connection?  We know
21599 	 * this because the capability is only turned off when IP
21600 	 * encounters some pathological cases, e.g. link-layer change
21601 	 * where the new driver doesn't support MDT, or in situation
21602 	 * where MDT usage on the link-layer has been switched off.
21603 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
21604 	 * if the link-layer doesn't support MDT, and if it does, it
21605 	 * will indicate that the feature is to be turned on.
21606 	 */
21607 	prev_state = tcp->tcp_mdt;
21608 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
21609 	if (!tcp->tcp_mdt && !first) {
21610 		TCP_STAT(tcps, tcp_mdt_conn_halted3);
21611 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
21612 		    (void *)tcp->tcp_connp));
21613 	}
21614 
21615 	/*
21616 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
21617 	 * so disable MDT otherwise.  The checks are done here
21618 	 * and in tcp_wput_data().
21619 	 */
21620 	if (tcp->tcp_mdt &&
21621 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21622 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21623 	    (tcp->tcp_ipversion == IPV6_VERSION &&
21624 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
21625 		tcp->tcp_mdt = B_FALSE;
21626 
21627 	if (tcp->tcp_mdt) {
21628 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
21629 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
21630 			    "version (%d), expected version is %d",
21631 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
21632 			tcp->tcp_mdt = B_FALSE;
21633 			return;
21634 		}
21635 
21636 		/*
21637 		 * We need the driver to be able to handle at least three
21638 		 * spans per packet in order for tcp MDT to be utilized.
21639 		 * The first is for the header portion, while the rest are
21640 		 * needed to handle a packet that straddles across two
21641 		 * virtually non-contiguous buffers; a typical tcp packet
21642 		 * therefore consists of only two spans.  Note that we take
21643 		 * a zero as "don't care".
21644 		 */
21645 		if (mdt_capab->ill_mdt_span_limit > 0 &&
21646 		    mdt_capab->ill_mdt_span_limit < 3) {
21647 			tcp->tcp_mdt = B_FALSE;
21648 			return;
21649 		}
21650 
21651 		/* a zero means driver wants default value */
21652 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
21653 		    tcps->tcps_mdt_max_pbufs);
21654 		if (tcp->tcp_mdt_max_pld == 0)
21655 			tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs;
21656 
21657 		/* ensure 32-bit alignment */
21658 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min,
21659 		    mdt_capab->ill_mdt_hdr_head), 4);
21660 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min,
21661 		    mdt_capab->ill_mdt_hdr_tail), 4);
21662 
21663 		if (!first && !prev_state) {
21664 			TCP_STAT(tcps, tcp_mdt_conn_resumed2);
21665 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
21666 			    (void *)tcp->tcp_connp));
21667 		}
21668 	}
21669 }
21670 
21671 /* Unlink and return any mblk that looks like it contains a LSO info */
21672 static mblk_t *
21673 tcp_lso_info_mp(mblk_t *mp)
21674 {
21675 	mblk_t	*prev_mp;
21676 
21677 	for (;;) {
21678 		prev_mp = mp;
21679 		/* no more to process? */
21680 		if ((mp = mp->b_cont) == NULL)
21681 			break;
21682 
21683 		switch (DB_TYPE(mp)) {
21684 		case M_CTL:
21685 			if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE)
21686 				continue;
21687 			ASSERT(prev_mp != NULL);
21688 			prev_mp->b_cont = mp->b_cont;
21689 			mp->b_cont = NULL;
21690 			return (mp);
21691 		default:
21692 			break;
21693 		}
21694 	}
21695 
21696 	return (mp);
21697 }
21698 
21699 /* LSO info update routine, called when IP notifies us about LSO */
21700 static void
21701 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab)
21702 {
21703 	tcp_stack_t *tcps = tcp->tcp_tcps;
21704 
21705 	/*
21706 	 * IP is telling us to abort LSO on this connection?  We know
21707 	 * this because the capability is only turned off when IP
21708 	 * encounters some pathological cases, e.g. link-layer change
21709 	 * where the new NIC/driver doesn't support LSO, or in situation
21710 	 * where LSO usage on the link-layer has been switched off.
21711 	 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE
21712 	 * if the link-layer doesn't support LSO, and if it does, it
21713 	 * will indicate that the feature is to be turned on.
21714 	 */
21715 	tcp->tcp_lso = (lso_capab->ill_lso_on != 0);
21716 	TCP_STAT(tcps, tcp_lso_enabled);
21717 
21718 	/*
21719 	 * We currently only support LSO on simple TCP/IPv4,
21720 	 * so disable LSO otherwise.  The checks are done here
21721 	 * and in tcp_wput_data().
21722 	 */
21723 	if (tcp->tcp_lso &&
21724 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21725 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21726 	    (tcp->tcp_ipversion == IPV6_VERSION)) {
21727 		tcp->tcp_lso = B_FALSE;
21728 		TCP_STAT(tcps, tcp_lso_disabled);
21729 	} else {
21730 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH,
21731 		    lso_capab->ill_lso_max);
21732 	}
21733 }
21734 
21735 static void
21736 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt)
21737 {
21738 	conn_t *connp = tcp->tcp_connp;
21739 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21740 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21741 
21742 	ASSERT(ire != NULL);
21743 
21744 	/*
21745 	 * We may be in the fastpath here, and although we essentially do
21746 	 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return,
21747 	 * we try to keep things as brief as possible.  After all, these
21748 	 * are only best-effort checks, and we do more thorough ones prior
21749 	 * to calling tcp_send()/tcp_multisend().
21750 	 */
21751 	if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) &&
21752 	    check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
21753 	    ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
21754 	    !(ire->ire_flags & RTF_MULTIRT) &&
21755 	    !IPP_ENABLED(IPP_LOCAL_OUT, ipst) &&
21756 	    CONN_IS_LSO_MD_FASTPATH(connp)) {
21757 		if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
21758 			/* Cache the result */
21759 			connp->conn_lso_ok = B_TRUE;
21760 
21761 			ASSERT(ill->ill_lso_capab != NULL);
21762 			if (!ill->ill_lso_capab->ill_lso_on) {
21763 				ill->ill_lso_capab->ill_lso_on = 1;
21764 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21765 				    "LSO for interface %s\n", (void *)connp,
21766 				    ill->ill_name));
21767 			}
21768 			tcp_lso_update(tcp, ill->ill_lso_capab);
21769 		} else if (ipst->ips_ip_multidata_outbound &&
21770 		    ILL_MDT_CAPABLE(ill)) {
21771 			/* Cache the result */
21772 			connp->conn_mdt_ok = B_TRUE;
21773 
21774 			ASSERT(ill->ill_mdt_capab != NULL);
21775 			if (!ill->ill_mdt_capab->ill_mdt_on) {
21776 				ill->ill_mdt_capab->ill_mdt_on = 1;
21777 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21778 				    "MDT for interface %s\n", (void *)connp,
21779 				    ill->ill_name));
21780 			}
21781 			tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
21782 		}
21783 	}
21784 
21785 	/*
21786 	 * The goal is to reduce the number of generated tcp segments by
21787 	 * setting the maxpsz multiplier to 0; this will have an affect on
21788 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
21789 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
21790 	 * of outbound segments and incoming ACKs, thus allowing for better
21791 	 * network and system performance.  In contrast the legacy behavior
21792 	 * may result in sending less than SMSS size, because the last mblk
21793 	 * for some packets may have more data than needed to make up SMSS,
21794 	 * and the legacy code refused to "split" it.
21795 	 *
21796 	 * We apply the new behavior on following situations:
21797 	 *
21798 	 *   1) Loopback connections,
21799 	 *   2) Connections in which the remote peer is not on local subnet,
21800 	 *   3) Local subnet connections over the bge interface (see below).
21801 	 *
21802 	 * Ideally, we would like this behavior to apply for interfaces other
21803 	 * than bge.  However, doing so would negatively impact drivers which
21804 	 * perform dynamic mapping and unmapping of DMA resources, which are
21805 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
21806 	 * packet will be generated by tcp).  The bge driver does not suffer
21807 	 * from this, as it copies the mblks into pre-mapped buffers, and
21808 	 * therefore does not require more I/O resources than before.
21809 	 *
21810 	 * Otherwise, this behavior is present on all network interfaces when
21811 	 * the destination endpoint is non-local, since reducing the number
21812 	 * of packets in general is good for the network.
21813 	 *
21814 	 * TODO We need to remove this hard-coded conditional for bge once
21815 	 *	a better "self-tuning" mechanism, or a way to comprehend
21816 	 *	the driver transmit strategy is devised.  Until the solution
21817 	 *	is found and well understood, we live with this hack.
21818 	 */
21819 	if (!tcp_static_maxpsz &&
21820 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
21821 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
21822 		/* override the default value */
21823 		tcp->tcp_maxpsz = 0;
21824 
21825 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
21826 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
21827 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
21828 	}
21829 
21830 	/* set the stream head parameters accordingly */
21831 	(void) tcp_maxpsz_set(tcp, B_TRUE);
21832 }
21833 
21834 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
21835 static void
21836 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
21837 {
21838 	uchar_t	fval = *mp->b_rptr;
21839 	mblk_t	*tail;
21840 	queue_t	*q = tcp->tcp_wq;
21841 
21842 	/* TODO: How should flush interact with urgent data? */
21843 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
21844 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
21845 		/*
21846 		 * Flush only data that has not yet been put on the wire.  If
21847 		 * we flush data that we have already transmitted, life, as we
21848 		 * know it, may come to an end.
21849 		 */
21850 		tail = tcp->tcp_xmit_tail;
21851 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
21852 		tcp->tcp_xmit_tail_unsent = 0;
21853 		tcp->tcp_unsent = 0;
21854 		if (tail->b_wptr != tail->b_rptr)
21855 			tail = tail->b_cont;
21856 		if (tail) {
21857 			mblk_t **excess = &tcp->tcp_xmit_head;
21858 			for (;;) {
21859 				mblk_t *mp1 = *excess;
21860 				if (mp1 == tail)
21861 					break;
21862 				tcp->tcp_xmit_tail = mp1;
21863 				tcp->tcp_xmit_last = mp1;
21864 				excess = &mp1->b_cont;
21865 			}
21866 			*excess = NULL;
21867 			tcp_close_mpp(&tail);
21868 			if (tcp->tcp_snd_zcopy_aware)
21869 				tcp_zcopy_notify(tcp);
21870 		}
21871 		/*
21872 		 * We have no unsent data, so unsent must be less than
21873 		 * tcp_xmit_lowater, so re-enable flow.
21874 		 */
21875 		mutex_enter(&tcp->tcp_non_sq_lock);
21876 		if (tcp->tcp_flow_stopped) {
21877 			tcp_clrqfull(tcp);
21878 		}
21879 		mutex_exit(&tcp->tcp_non_sq_lock);
21880 	}
21881 	/*
21882 	 * TODO: you can't just flush these, you have to increase rwnd for one
21883 	 * thing.  For another, how should urgent data interact?
21884 	 */
21885 	if (fval & FLUSHR) {
21886 		*mp->b_rptr = fval & ~FLUSHW;
21887 		/* XXX */
21888 		qreply(q, mp);
21889 		return;
21890 	}
21891 	freemsg(mp);
21892 }
21893 
21894 /*
21895  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
21896  * messages.
21897  */
21898 static void
21899 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
21900 {
21901 	mblk_t	*mp1;
21902 	STRUCT_HANDLE(strbuf, sb);
21903 	uint16_t port;
21904 	queue_t 	*q = tcp->tcp_wq;
21905 	in6_addr_t	v6addr;
21906 	ipaddr_t	v4addr;
21907 	uint32_t	flowinfo = 0;
21908 	int		addrlen;
21909 
21910 	/* Make sure it is one of ours. */
21911 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
21912 	case TI_GETMYNAME:
21913 	case TI_GETPEERNAME:
21914 		break;
21915 	default:
21916 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
21917 		return;
21918 	}
21919 	switch (mi_copy_state(q, mp, &mp1)) {
21920 	case -1:
21921 		return;
21922 	case MI_COPY_CASE(MI_COPY_IN, 1):
21923 		break;
21924 	case MI_COPY_CASE(MI_COPY_OUT, 1):
21925 		/* Copy out the strbuf. */
21926 		mi_copyout(q, mp);
21927 		return;
21928 	case MI_COPY_CASE(MI_COPY_OUT, 2):
21929 		/* All done. */
21930 		mi_copy_done(q, mp, 0);
21931 		return;
21932 	default:
21933 		mi_copy_done(q, mp, EPROTO);
21934 		return;
21935 	}
21936 	/* Check alignment of the strbuf */
21937 	if (!OK_32PTR(mp1->b_rptr)) {
21938 		mi_copy_done(q, mp, EINVAL);
21939 		return;
21940 	}
21941 
21942 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
21943 	    (void *)mp1->b_rptr);
21944 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
21945 
21946 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
21947 		mi_copy_done(q, mp, EINVAL);
21948 		return;
21949 	}
21950 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
21951 	case TI_GETMYNAME:
21952 		if (tcp->tcp_family == AF_INET) {
21953 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21954 				v4addr = tcp->tcp_ipha->ipha_src;
21955 			} else {
21956 				/* can't return an address in this case */
21957 				v4addr = 0;
21958 			}
21959 		} else {
21960 			/* tcp->tcp_family == AF_INET6 */
21961 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21962 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
21963 				    &v6addr);
21964 			} else {
21965 				v6addr = tcp->tcp_ip6h->ip6_src;
21966 			}
21967 		}
21968 		port = tcp->tcp_lport;
21969 		break;
21970 	case TI_GETPEERNAME:
21971 		if (tcp->tcp_family == AF_INET) {
21972 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21973 				IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
21974 				    v4addr);
21975 			} else {
21976 				/* can't return an address in this case */
21977 				v4addr = 0;
21978 			}
21979 		} else {
21980 			/* tcp->tcp_family == AF_INET6) */
21981 			v6addr = tcp->tcp_remote_v6;
21982 			if (tcp->tcp_ipversion == IPV6_VERSION) {
21983 				/*
21984 				 * No flowinfo if tcp->tcp_ipversion is v4.
21985 				 *
21986 				 * flowinfo was already initialized to zero
21987 				 * where it was declared above, so only
21988 				 * set it if ipversion is v6.
21989 				 */
21990 				flowinfo = tcp->tcp_ip6h->ip6_vcf &
21991 				    ~IPV6_VERS_AND_FLOW_MASK;
21992 			}
21993 		}
21994 		port = tcp->tcp_fport;
21995 		break;
21996 	default:
21997 		mi_copy_done(q, mp, EPROTO);
21998 		return;
21999 	}
22000 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
22001 	if (!mp1)
22002 		return;
22003 
22004 	if (tcp->tcp_family == AF_INET) {
22005 		sin_t *sin;
22006 
22007 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
22008 		sin = (sin_t *)mp1->b_rptr;
22009 		mp1->b_wptr = (uchar_t *)&sin[1];
22010 		*sin = sin_null;
22011 		sin->sin_family = AF_INET;
22012 		sin->sin_addr.s_addr = v4addr;
22013 		sin->sin_port = port;
22014 	} else {
22015 		/* tcp->tcp_family == AF_INET6 */
22016 		sin6_t *sin6;
22017 
22018 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
22019 		sin6 = (sin6_t *)mp1->b_rptr;
22020 		mp1->b_wptr = (uchar_t *)&sin6[1];
22021 		*sin6 = sin6_null;
22022 		sin6->sin6_family = AF_INET6;
22023 		sin6->sin6_flowinfo = flowinfo;
22024 		sin6->sin6_addr = v6addr;
22025 		sin6->sin6_port = port;
22026 	}
22027 	/* Copy out the address */
22028 	mi_copyout(q, mp);
22029 }
22030 
22031 /*
22032  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
22033  * messages.
22034  */
22035 /* ARGSUSED */
22036 static void
22037 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
22038 {
22039 	conn_t 	*connp = (conn_t *)arg;
22040 	tcp_t	*tcp = connp->conn_tcp;
22041 	queue_t	*q = tcp->tcp_wq;
22042 	struct iocblk	*iocp;
22043 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22044 
22045 	ASSERT(DB_TYPE(mp) == M_IOCTL);
22046 	/*
22047 	 * Try and ASSERT the minimum possible references on the
22048 	 * conn early enough. Since we are executing on write side,
22049 	 * the connection is obviously not detached and that means
22050 	 * there is a ref each for TCP and IP. Since we are behind
22051 	 * the squeue, the minimum references needed are 3. If the
22052 	 * conn is in classifier hash list, there should be an
22053 	 * extra ref for that (we check both the possibilities).
22054 	 */
22055 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22056 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22057 
22058 	iocp = (struct iocblk *)mp->b_rptr;
22059 	switch (iocp->ioc_cmd) {
22060 	case TCP_IOC_DEFAULT_Q:
22061 		/* Wants to be the default wq. */
22062 		if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
22063 			iocp->ioc_error = EPERM;
22064 			iocp->ioc_count = 0;
22065 			mp->b_datap->db_type = M_IOCACK;
22066 			qreply(q, mp);
22067 			return;
22068 		}
22069 		tcp_def_q_set(tcp, mp);
22070 		return;
22071 	case _SIOCSOCKFALLBACK:
22072 		/*
22073 		 * Either sockmod is about to be popped and the socket
22074 		 * would now be treated as a plain stream, or a module
22075 		 * is about to be pushed so we could no longer use read-
22076 		 * side synchronous streams for fused loopback tcp.
22077 		 * Drain any queued data and disable direct sockfs
22078 		 * interface from now on.
22079 		 */
22080 		if (!tcp->tcp_issocket) {
22081 			DB_TYPE(mp) = M_IOCNAK;
22082 			iocp->ioc_error = EINVAL;
22083 		} else {
22084 #ifdef	_ILP32
22085 			tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
22086 #else
22087 			tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
22088 #endif
22089 			/*
22090 			 * Insert this socket into the acceptor hash.
22091 			 * We might need it for T_CONN_RES message
22092 			 */
22093 			tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
22094 
22095 			if (tcp->tcp_fused) {
22096 				/*
22097 				 * This is a fused loopback tcp; disable
22098 				 * read-side synchronous streams interface
22099 				 * and drain any queued data.  It is okay
22100 				 * to do this for non-synchronous streams
22101 				 * fused tcp as well.
22102 				 */
22103 				tcp_fuse_disable_pair(tcp, B_FALSE);
22104 			}
22105 			tcp->tcp_issocket = B_FALSE;
22106 			TCP_STAT(tcps, tcp_sock_fallback);
22107 
22108 			DB_TYPE(mp) = M_IOCACK;
22109 			iocp->ioc_error = 0;
22110 		}
22111 		iocp->ioc_count = 0;
22112 		iocp->ioc_rval = 0;
22113 		qreply(q, mp);
22114 		return;
22115 	}
22116 	CALL_IP_WPUT(connp, q, mp);
22117 }
22118 
22119 /*
22120  * This routine is called by tcp_wput() to handle all TPI requests.
22121  */
22122 /* ARGSUSED */
22123 static void
22124 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
22125 {
22126 	conn_t 	*connp = (conn_t *)arg;
22127 	tcp_t	*tcp = connp->conn_tcp;
22128 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
22129 	uchar_t *rptr;
22130 	t_scalar_t type;
22131 	int len;
22132 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
22133 
22134 	/*
22135 	 * Try and ASSERT the minimum possible references on the
22136 	 * conn early enough. Since we are executing on write side,
22137 	 * the connection is obviously not detached and that means
22138 	 * there is a ref each for TCP and IP. Since we are behind
22139 	 * the squeue, the minimum references needed are 3. If the
22140 	 * conn is in classifier hash list, there should be an
22141 	 * extra ref for that (we check both the possibilities).
22142 	 */
22143 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22144 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22145 
22146 	rptr = mp->b_rptr;
22147 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22148 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
22149 		type = ((union T_primitives *)rptr)->type;
22150 		if (type == T_EXDATA_REQ) {
22151 			uint32_t msize = msgdsize(mp->b_cont);
22152 
22153 			len = msize - 1;
22154 			if (len < 0) {
22155 				freemsg(mp);
22156 				return;
22157 			}
22158 			/*
22159 			 * Try to force urgent data out on the wire.
22160 			 * Even if we have unsent data this will
22161 			 * at least send the urgent flag.
22162 			 * XXX does not handle more flag correctly.
22163 			 */
22164 			len += tcp->tcp_unsent;
22165 			len += tcp->tcp_snxt;
22166 			tcp->tcp_urg = len;
22167 			tcp->tcp_valid_bits |= TCP_URG_VALID;
22168 
22169 			/* Bypass tcp protocol for fused tcp loopback */
22170 			if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
22171 				return;
22172 		} else if (type != T_DATA_REQ) {
22173 			goto non_urgent_data;
22174 		}
22175 		/* TODO: options, flags, ... from user */
22176 		/* Set length to zero for reclamation below */
22177 		tcp_wput_data(tcp, mp->b_cont, B_TRUE);
22178 		freeb(mp);
22179 		return;
22180 	} else {
22181 		if (tcp->tcp_debug) {
22182 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22183 			    "tcp_wput_proto, dropping one...");
22184 		}
22185 		freemsg(mp);
22186 		return;
22187 	}
22188 
22189 non_urgent_data:
22190 
22191 	switch ((int)tprim->type) {
22192 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
22193 		/*
22194 		 * save the kssl_ent_t from the next block, and convert this
22195 		 * back to a normal bind_req.
22196 		 */
22197 		if (mp->b_cont != NULL) {
22198 			ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
22199 
22200 			if (tcp->tcp_kssl_ent != NULL) {
22201 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
22202 				    KSSL_NO_PROXY);
22203 				tcp->tcp_kssl_ent = NULL;
22204 			}
22205 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
22206 			    sizeof (kssl_ent_t));
22207 			kssl_hold_ent(tcp->tcp_kssl_ent);
22208 			freemsg(mp->b_cont);
22209 			mp->b_cont = NULL;
22210 		}
22211 		tprim->type = T_BIND_REQ;
22212 
22213 	/* FALLTHROUGH */
22214 	case O_T_BIND_REQ:	/* bind request */
22215 	case T_BIND_REQ:	/* new semantics bind request */
22216 		tcp_bind(tcp, mp);
22217 		break;
22218 	case T_UNBIND_REQ:	/* unbind request */
22219 		tcp_unbind(tcp, mp);
22220 		break;
22221 	case O_T_CONN_RES:	/* old connection response XXX */
22222 	case T_CONN_RES:	/* connection response */
22223 		tcp_accept(tcp, mp);
22224 		break;
22225 	case T_CONN_REQ:	/* connection request */
22226 		tcp_connect(tcp, mp);
22227 		break;
22228 	case T_DISCON_REQ:	/* disconnect request */
22229 		tcp_disconnect(tcp, mp);
22230 		break;
22231 	case T_CAPABILITY_REQ:
22232 		tcp_capability_req(tcp, mp);	/* capability request */
22233 		break;
22234 	case T_INFO_REQ:	/* information request */
22235 		tcp_info_req(tcp, mp);
22236 		break;
22237 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
22238 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr,
22239 		    &tcp_opt_obj, B_TRUE);
22240 		break;
22241 	case T_OPTMGMT_REQ:
22242 		/*
22243 		 * Note:  no support for snmpcom_req() through new
22244 		 * T_OPTMGMT_REQ. See comments in ip.c
22245 		 */
22246 		/* Only IP is allowed to return meaningful value */
22247 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj,
22248 		    B_TRUE);
22249 		break;
22250 
22251 	case T_UNITDATA_REQ:	/* unitdata request */
22252 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22253 		break;
22254 	case T_ORDREL_REQ:	/* orderly release req */
22255 		freemsg(mp);
22256 
22257 		if (tcp->tcp_fused)
22258 			tcp_unfuse(tcp);
22259 
22260 		if (tcp_xmit_end(tcp) != 0) {
22261 			/*
22262 			 * We were crossing FINs and got a reset from
22263 			 * the other side. Just ignore it.
22264 			 */
22265 			if (tcp->tcp_debug) {
22266 				(void) strlog(TCP_MOD_ID, 0, 1,
22267 				    SL_ERROR|SL_TRACE,
22268 				    "tcp_wput_proto, T_ORDREL_REQ out of "
22269 				    "state %s",
22270 				    tcp_display(tcp, NULL,
22271 				    DISP_ADDR_AND_PORT));
22272 			}
22273 		}
22274 		break;
22275 	case T_ADDR_REQ:
22276 		tcp_addr_req(tcp, mp);
22277 		break;
22278 	default:
22279 		if (tcp->tcp_debug) {
22280 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22281 			    "tcp_wput_proto, bogus TPI msg, type %d",
22282 			    tprim->type);
22283 		}
22284 		/*
22285 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
22286 		 * to recover.
22287 		 */
22288 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22289 		break;
22290 	}
22291 }
22292 
22293 /*
22294  * The TCP write service routine should never be called...
22295  */
22296 /* ARGSUSED */
22297 static void
22298 tcp_wsrv(queue_t *q)
22299 {
22300 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
22301 
22302 	TCP_STAT(tcps, tcp_wsrv_called);
22303 }
22304 
22305 /* Non overlapping byte exchanger */
22306 static void
22307 tcp_xchg(uchar_t *a, uchar_t *b, int len)
22308 {
22309 	uchar_t	uch;
22310 
22311 	while (len-- > 0) {
22312 		uch = a[len];
22313 		a[len] = b[len];
22314 		b[len] = uch;
22315 	}
22316 }
22317 
22318 /*
22319  * Send out a control packet on the tcp connection specified.  This routine
22320  * is typically called where we need a simple ACK or RST generated.
22321  */
22322 static void
22323 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
22324 {
22325 	uchar_t		*rptr;
22326 	tcph_t		*tcph;
22327 	ipha_t		*ipha = NULL;
22328 	ip6_t		*ip6h = NULL;
22329 	uint32_t	sum;
22330 	int		tcp_hdr_len;
22331 	int		tcp_ip_hdr_len;
22332 	mblk_t		*mp;
22333 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22334 
22335 	/*
22336 	 * Save sum for use in source route later.
22337 	 */
22338 	ASSERT(tcp != NULL);
22339 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
22340 	tcp_hdr_len = tcp->tcp_hdr_len;
22341 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
22342 
22343 	/* If a text string is passed in with the request, pass it to strlog. */
22344 	if (str != NULL && tcp->tcp_debug) {
22345 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22346 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
22347 		    str, seq, ack, ctl);
22348 	}
22349 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra,
22350 	    BPRI_MED);
22351 	if (mp == NULL) {
22352 		return;
22353 	}
22354 	rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
22355 	mp->b_rptr = rptr;
22356 	mp->b_wptr = &rptr[tcp_hdr_len];
22357 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
22358 
22359 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22360 		ipha = (ipha_t *)rptr;
22361 		ipha->ipha_length = htons(tcp_hdr_len);
22362 	} else {
22363 		ip6h = (ip6_t *)rptr;
22364 		ASSERT(tcp != NULL);
22365 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
22366 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22367 	}
22368 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
22369 	tcph->th_flags[0] = (uint8_t)ctl;
22370 	if (ctl & TH_RST) {
22371 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22372 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22373 		/*
22374 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
22375 		 */
22376 		if (tcp->tcp_snd_ts_ok &&
22377 		    tcp->tcp_state > TCPS_SYN_SENT) {
22378 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
22379 			*(mp->b_wptr) = TCPOPT_EOL;
22380 			if (tcp->tcp_ipversion == IPV4_VERSION) {
22381 				ipha->ipha_length = htons(tcp_hdr_len -
22382 				    TCPOPT_REAL_TS_LEN);
22383 			} else {
22384 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
22385 				    TCPOPT_REAL_TS_LEN);
22386 			}
22387 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
22388 			sum -= TCPOPT_REAL_TS_LEN;
22389 		}
22390 	}
22391 	if (ctl & TH_ACK) {
22392 		if (tcp->tcp_snd_ts_ok) {
22393 			U32_TO_BE32(lbolt,
22394 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22395 			U32_TO_BE32(tcp->tcp_ts_recent,
22396 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22397 		}
22398 
22399 		/* Update the latest receive window size in TCP header. */
22400 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22401 		    tcph->th_win);
22402 		tcp->tcp_rack = ack;
22403 		tcp->tcp_rack_cnt = 0;
22404 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
22405 	}
22406 	BUMP_LOCAL(tcp->tcp_obsegs);
22407 	U32_TO_BE32(seq, tcph->th_seq);
22408 	U32_TO_BE32(ack, tcph->th_ack);
22409 	/*
22410 	 * Include the adjustment for a source route if any.
22411 	 */
22412 	sum = (sum >> 16) + (sum & 0xFFFF);
22413 	U16_TO_BE16(sum, tcph->th_sum);
22414 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22415 	tcp_send_data(tcp, tcp->tcp_wq, mp);
22416 }
22417 
22418 /*
22419  * If this routine returns B_TRUE, TCP can generate a RST in response
22420  * to a segment.  If it returns B_FALSE, TCP should not respond.
22421  */
22422 static boolean_t
22423 tcp_send_rst_chk(tcp_stack_t *tcps)
22424 {
22425 	clock_t	now;
22426 
22427 	/*
22428 	 * TCP needs to protect itself from generating too many RSTs.
22429 	 * This can be a DoS attack by sending us random segments
22430 	 * soliciting RSTs.
22431 	 *
22432 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
22433 	 * in each 1 second interval.  In this way, TCP still generate
22434 	 * RSTs in normal cases but when under attack, the impact is
22435 	 * limited.
22436 	 */
22437 	if (tcps->tcps_rst_sent_rate_enabled != 0) {
22438 		now = lbolt;
22439 		/* lbolt can wrap around. */
22440 		if ((tcps->tcps_last_rst_intrvl > now) ||
22441 		    (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) >
22442 		    1*SECONDS)) {
22443 			tcps->tcps_last_rst_intrvl = now;
22444 			tcps->tcps_rst_cnt = 1;
22445 		} else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) {
22446 			return (B_FALSE);
22447 		}
22448 	}
22449 	return (B_TRUE);
22450 }
22451 
22452 /*
22453  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
22454  */
22455 static void
22456 tcp_ip_ire_mark_advice(tcp_t *tcp)
22457 {
22458 	mblk_t *mp;
22459 	ipic_t *ipic;
22460 
22461 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22462 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22463 		    &ipic);
22464 	} else {
22465 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22466 		    &ipic);
22467 	}
22468 	if (mp == NULL)
22469 		return;
22470 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22471 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22472 }
22473 
22474 /*
22475  * Return an IP advice ioctl mblk and set ipic to be the pointer
22476  * to the advice structure.
22477  */
22478 static mblk_t *
22479 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
22480 {
22481 	struct iocblk *ioc;
22482 	mblk_t *mp, *mp1;
22483 
22484 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
22485 	if (mp == NULL)
22486 		return (NULL);
22487 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
22488 	*ipic = (ipic_t *)mp->b_rptr;
22489 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
22490 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
22491 
22492 	bcopy(addr, *ipic + 1, addr_len);
22493 
22494 	(*ipic)->ipic_addr_length = addr_len;
22495 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
22496 
22497 	mp1 = mkiocb(IP_IOCTL);
22498 	if (mp1 == NULL) {
22499 		freemsg(mp);
22500 		return (NULL);
22501 	}
22502 	mp1->b_cont = mp;
22503 	ioc = (struct iocblk *)mp1->b_rptr;
22504 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
22505 
22506 	return (mp1);
22507 }
22508 
22509 /*
22510  * Generate a reset based on an inbound packet, connp is set by caller
22511  * when RST is in response to an unexpected inbound packet for which
22512  * there is active tcp state in the system.
22513  *
22514  * IPSEC NOTE : Try to send the reply with the same protection as it came
22515  * in.  We still have the ipsec_mp that the packet was attached to. Thus
22516  * the packet will go out at the same level of protection as it came in by
22517  * converting the IPSEC_IN to IPSEC_OUT.
22518  */
22519 static void
22520 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
22521     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid,
22522     tcp_stack_t *tcps, conn_t *connp)
22523 {
22524 	ipha_t		*ipha = NULL;
22525 	ip6_t		*ip6h = NULL;
22526 	ushort_t	len;
22527 	tcph_t		*tcph;
22528 	int		i;
22529 	mblk_t		*ipsec_mp;
22530 	boolean_t	mctl_present;
22531 	ipic_t		*ipic;
22532 	ipaddr_t	v4addr;
22533 	in6_addr_t	v6addr;
22534 	int		addr_len;
22535 	void		*addr;
22536 	queue_t		*q = tcps->tcps_g_q;
22537 	tcp_t		*tcp;
22538 	cred_t		*cr;
22539 	mblk_t		*nmp;
22540 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
22541 
22542 	if (tcps->tcps_g_q == NULL) {
22543 		/*
22544 		 * For non-zero stackids the default queue isn't created
22545 		 * until the first open, thus there can be a need to send
22546 		 * a reset before then. But we can't do that, hence we just
22547 		 * drop the packet. Later during boot, when the default queue
22548 		 * has been setup, a retransmitted packet from the peer
22549 		 * will result in a reset.
22550 		 */
22551 		ASSERT(tcps->tcps_netstack->netstack_stackid !=
22552 		    GLOBAL_NETSTACKID);
22553 		freemsg(mp);
22554 		return;
22555 	}
22556 
22557 	if (connp != NULL)
22558 		tcp = connp->conn_tcp;
22559 	else
22560 		tcp = Q_TO_TCP(q);
22561 
22562 	if (!tcp_send_rst_chk(tcps)) {
22563 		tcps->tcps_rst_unsent++;
22564 		freemsg(mp);
22565 		return;
22566 	}
22567 
22568 	if (mp->b_datap->db_type == M_CTL) {
22569 		ipsec_mp = mp;
22570 		mp = mp->b_cont;
22571 		mctl_present = B_TRUE;
22572 	} else {
22573 		ipsec_mp = mp;
22574 		mctl_present = B_FALSE;
22575 	}
22576 
22577 	if (str && q && tcps->tcps_dbg) {
22578 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22579 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
22580 		    "flags 0x%x",
22581 		    str, seq, ack, ctl);
22582 	}
22583 	if (mp->b_datap->db_ref != 1) {
22584 		mblk_t *mp1 = copyb(mp);
22585 		freemsg(mp);
22586 		mp = mp1;
22587 		if (!mp) {
22588 			if (mctl_present)
22589 				freeb(ipsec_mp);
22590 			return;
22591 		} else {
22592 			if (mctl_present) {
22593 				ipsec_mp->b_cont = mp;
22594 			} else {
22595 				ipsec_mp = mp;
22596 			}
22597 		}
22598 	} else if (mp->b_cont) {
22599 		freemsg(mp->b_cont);
22600 		mp->b_cont = NULL;
22601 	}
22602 	/*
22603 	 * We skip reversing source route here.
22604 	 * (for now we replace all IP options with EOL)
22605 	 */
22606 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22607 		ipha = (ipha_t *)mp->b_rptr;
22608 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
22609 			mp->b_rptr[i] = IPOPT_EOL;
22610 		/*
22611 		 * Make sure that src address isn't flagrantly invalid.
22612 		 * Not all broadcast address checking for the src address
22613 		 * is possible, since we don't know the netmask of the src
22614 		 * addr.  No check for destination address is done, since
22615 		 * IP will not pass up a packet with a broadcast dest
22616 		 * address to TCP.  Similar checks are done below for IPv6.
22617 		 */
22618 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
22619 		    CLASSD(ipha->ipha_src)) {
22620 			freemsg(ipsec_mp);
22621 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
22622 			return;
22623 		}
22624 	} else {
22625 		ip6h = (ip6_t *)mp->b_rptr;
22626 
22627 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
22628 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
22629 			freemsg(ipsec_mp);
22630 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards);
22631 			return;
22632 		}
22633 
22634 		/* Remove any extension headers assuming partial overlay */
22635 		if (ip_hdr_len > IPV6_HDR_LEN) {
22636 			uint8_t *to;
22637 
22638 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
22639 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
22640 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
22641 			ip_hdr_len = IPV6_HDR_LEN;
22642 			ip6h = (ip6_t *)mp->b_rptr;
22643 			ip6h->ip6_nxt = IPPROTO_TCP;
22644 		}
22645 	}
22646 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
22647 	if (tcph->th_flags[0] & TH_RST) {
22648 		freemsg(ipsec_mp);
22649 		return;
22650 	}
22651 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
22652 	len = ip_hdr_len + sizeof (tcph_t);
22653 	mp->b_wptr = &mp->b_rptr[len];
22654 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22655 		ipha->ipha_length = htons(len);
22656 		/* Swap addresses */
22657 		v4addr = ipha->ipha_src;
22658 		ipha->ipha_src = ipha->ipha_dst;
22659 		ipha->ipha_dst = v4addr;
22660 		ipha->ipha_ident = 0;
22661 		ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
22662 		addr_len = IP_ADDR_LEN;
22663 		addr = &v4addr;
22664 	} else {
22665 		/* No ip6i_t in this case */
22666 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
22667 		/* Swap addresses */
22668 		v6addr = ip6h->ip6_src;
22669 		ip6h->ip6_src = ip6h->ip6_dst;
22670 		ip6h->ip6_dst = v6addr;
22671 		ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit;
22672 		addr_len = IPV6_ADDR_LEN;
22673 		addr = &v6addr;
22674 	}
22675 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
22676 	U32_TO_BE32(ack, tcph->th_ack);
22677 	U32_TO_BE32(seq, tcph->th_seq);
22678 	U16_TO_BE16(0, tcph->th_win);
22679 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
22680 	tcph->th_flags[0] = (uint8_t)ctl;
22681 	if (ctl & TH_RST) {
22682 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22683 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22684 	}
22685 
22686 	/* IP trusts us to set up labels when required. */
22687 	if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL &&
22688 	    crgetlabel(cr) != NULL) {
22689 		int err, adjust;
22690 
22691 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
22692 			err = tsol_check_label(cr, &mp, &adjust,
22693 			    tcp->tcp_connp->conn_mac_exempt,
22694 			    tcps->tcps_netstack->netstack_ip);
22695 		else
22696 			err = tsol_check_label_v6(cr, &mp, &adjust,
22697 			    tcp->tcp_connp->conn_mac_exempt,
22698 			    tcps->tcps_netstack->netstack_ip);
22699 		if (mctl_present)
22700 			ipsec_mp->b_cont = mp;
22701 		else
22702 			ipsec_mp = mp;
22703 		if (err != 0) {
22704 			freemsg(ipsec_mp);
22705 			return;
22706 		}
22707 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22708 			ipha = (ipha_t *)mp->b_rptr;
22709 			adjust += ntohs(ipha->ipha_length);
22710 			ipha->ipha_length = htons(adjust);
22711 		} else {
22712 			ip6h = (ip6_t *)mp->b_rptr;
22713 		}
22714 	}
22715 
22716 	if (mctl_present) {
22717 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22718 
22719 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22720 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
22721 			return;
22722 		}
22723 	}
22724 	if (zoneid == ALL_ZONES)
22725 		zoneid = GLOBAL_ZONEID;
22726 
22727 	/* Add the zoneid so ip_output routes it properly */
22728 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) {
22729 		freemsg(ipsec_mp);
22730 		return;
22731 	}
22732 	ipsec_mp = nmp;
22733 
22734 	/*
22735 	 * NOTE:  one might consider tracing a TCP packet here, but
22736 	 * this function has no active TCP state and no tcp structure
22737 	 * that has a trace buffer.  If we traced here, we would have
22738 	 * to keep a local trace buffer in tcp_record_trace().
22739 	 *
22740 	 * TSol note: The mblk that contains the incoming packet was
22741 	 * reused by tcp_xmit_listener_reset, so it already contains
22742 	 * the right credentials and we don't need to call mblk_setcred.
22743 	 * Also the conn's cred is not right since it is associated
22744 	 * with tcps_g_q.
22745 	 */
22746 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
22747 
22748 	/*
22749 	 * Tell IP to mark the IRE used for this destination temporary.
22750 	 * This way, we can limit our exposure to DoS attack because IP
22751 	 * creates an IRE for each destination.  If there are too many,
22752 	 * the time to do any routing lookup will be extremely long.  And
22753 	 * the lookup can be in interrupt context.
22754 	 *
22755 	 * Note that in normal circumstances, this marking should not
22756 	 * affect anything.  It would be nice if only 1 message is
22757 	 * needed to inform IP that the IRE created for this RST should
22758 	 * not be added to the cache table.  But there is currently
22759 	 * not such communication mechanism between TCP and IP.  So
22760 	 * the best we can do now is to send the advice ioctl to IP
22761 	 * to mark the IRE temporary.
22762 	 */
22763 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
22764 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22765 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22766 	}
22767 }
22768 
22769 /*
22770  * Initiate closedown sequence on an active connection.  (May be called as
22771  * writer.)  Return value zero for OK return, non-zero for error return.
22772  */
22773 static int
22774 tcp_xmit_end(tcp_t *tcp)
22775 {
22776 	ipic_t	*ipic;
22777 	mblk_t	*mp;
22778 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22779 
22780 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
22781 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
22782 		/*
22783 		 * Invalid state, only states TCPS_SYN_RCVD,
22784 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
22785 		 */
22786 		return (-1);
22787 	}
22788 
22789 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
22790 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
22791 	/*
22792 	 * If there is nothing more unsent, send the FIN now.
22793 	 * Otherwise, it will go out with the last segment.
22794 	 */
22795 	if (tcp->tcp_unsent == 0) {
22796 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
22797 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
22798 
22799 		if (mp) {
22800 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22801 			tcp_send_data(tcp, tcp->tcp_wq, mp);
22802 		} else {
22803 			/*
22804 			 * Couldn't allocate msg.  Pretend we got it out.
22805 			 * Wait for rexmit timeout.
22806 			 */
22807 			tcp->tcp_snxt = tcp->tcp_fss + 1;
22808 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22809 		}
22810 
22811 		/*
22812 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
22813 		 * changed.
22814 		 */
22815 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
22816 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
22817 		}
22818 	} else {
22819 		/*
22820 		 * If tcp->tcp_cork is set, then the data will not get sent,
22821 		 * so we have to check that and unset it first.
22822 		 */
22823 		if (tcp->tcp_cork)
22824 			tcp->tcp_cork = B_FALSE;
22825 		tcp_wput_data(tcp, NULL, B_FALSE);
22826 	}
22827 
22828 	/*
22829 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
22830 	 * is 0, don't update the cache.
22831 	 */
22832 	if (tcps->tcps_rtt_updates == 0 ||
22833 	    tcp->tcp_rtt_update < tcps->tcps_rtt_updates)
22834 		return (0);
22835 
22836 	/*
22837 	 * NOTE: should not update if source routes i.e. if tcp_remote if
22838 	 * different from the destination.
22839 	 */
22840 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22841 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
22842 			return (0);
22843 		}
22844 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22845 		    &ipic);
22846 	} else {
22847 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
22848 		    &tcp->tcp_ip6h->ip6_dst))) {
22849 			return (0);
22850 		}
22851 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22852 		    &ipic);
22853 	}
22854 
22855 	/* Record route attributes in the IRE for use by future connections. */
22856 	if (mp == NULL)
22857 		return (0);
22858 
22859 	/*
22860 	 * We do not have a good algorithm to update ssthresh at this time.
22861 	 * So don't do any update.
22862 	 */
22863 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
22864 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
22865 
22866 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22867 	return (0);
22868 }
22869 
22870 /*
22871  * Generate a "no listener here" RST in response to an "unknown" segment.
22872  * connp is set by caller when RST is in response to an unexpected
22873  * inbound packet for which there is active tcp state in the system.
22874  * Note that we are reusing the incoming mp to construct the outgoing RST.
22875  */
22876 void
22877 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid,
22878     tcp_stack_t *tcps, conn_t *connp)
22879 {
22880 	uchar_t		*rptr;
22881 	uint32_t	seg_len;
22882 	tcph_t		*tcph;
22883 	uint32_t	seg_seq;
22884 	uint32_t	seg_ack;
22885 	uint_t		flags;
22886 	mblk_t		*ipsec_mp;
22887 	ipha_t 		*ipha;
22888 	ip6_t 		*ip6h;
22889 	boolean_t	mctl_present = B_FALSE;
22890 	boolean_t	check = B_TRUE;
22891 	boolean_t	policy_present;
22892 	ipsec_stack_t	*ipss = tcps->tcps_netstack->netstack_ipsec;
22893 
22894 	TCP_STAT(tcps, tcp_no_listener);
22895 
22896 	ipsec_mp = mp;
22897 
22898 	if (mp->b_datap->db_type == M_CTL) {
22899 		ipsec_in_t *ii;
22900 
22901 		mctl_present = B_TRUE;
22902 		mp = mp->b_cont;
22903 
22904 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22905 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22906 		if (ii->ipsec_in_dont_check) {
22907 			check = B_FALSE;
22908 			if (!ii->ipsec_in_secure) {
22909 				freeb(ipsec_mp);
22910 				mctl_present = B_FALSE;
22911 				ipsec_mp = mp;
22912 			}
22913 		}
22914 	}
22915 
22916 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22917 		policy_present = ipss->ipsec_inbound_v4_policy_present;
22918 		ipha = (ipha_t *)mp->b_rptr;
22919 		ip6h = NULL;
22920 	} else {
22921 		policy_present = ipss->ipsec_inbound_v6_policy_present;
22922 		ipha = NULL;
22923 		ip6h = (ip6_t *)mp->b_rptr;
22924 	}
22925 
22926 	if (check && policy_present) {
22927 		/*
22928 		 * The conn_t parameter is NULL because we already know
22929 		 * nobody's home.
22930 		 */
22931 		ipsec_mp = ipsec_check_global_policy(
22932 		    ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present,
22933 		    tcps->tcps_netstack);
22934 		if (ipsec_mp == NULL)
22935 			return;
22936 	}
22937 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
22938 		DTRACE_PROBE2(
22939 		    tx__ip__log__error__nolistener__tcp,
22940 		    char *, "Could not reply with RST to mp(1)",
22941 		    mblk_t *, mp);
22942 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
22943 		freemsg(ipsec_mp);
22944 		return;
22945 	}
22946 
22947 	rptr = mp->b_rptr;
22948 
22949 	tcph = (tcph_t *)&rptr[ip_hdr_len];
22950 	seg_seq = BE32_TO_U32(tcph->th_seq);
22951 	seg_ack = BE32_TO_U32(tcph->th_ack);
22952 	flags = tcph->th_flags[0];
22953 
22954 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
22955 	if (flags & TH_RST) {
22956 		freemsg(ipsec_mp);
22957 	} else if (flags & TH_ACK) {
22958 		tcp_xmit_early_reset("no tcp, reset",
22959 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps,
22960 		    connp);
22961 	} else {
22962 		if (flags & TH_SYN) {
22963 			seg_len++;
22964 		} else {
22965 			/*
22966 			 * Here we violate the RFC.  Note that a normal
22967 			 * TCP will never send a segment without the ACK
22968 			 * flag, except for RST or SYN segment.  This
22969 			 * segment is neither.  Just drop it on the
22970 			 * floor.
22971 			 */
22972 			freemsg(ipsec_mp);
22973 			tcps->tcps_rst_unsent++;
22974 			return;
22975 		}
22976 
22977 		tcp_xmit_early_reset("no tcp, reset/ack",
22978 		    ipsec_mp, 0, seg_seq + seg_len,
22979 		    TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp);
22980 	}
22981 }
22982 
22983 /*
22984  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
22985  * ip and tcp header ready to pass down to IP.  If the mp passed in is
22986  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
22987  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
22988  * otherwise it will dup partial mblks.)
22989  * Otherwise, an appropriate ACK packet will be generated.  This
22990  * routine is not usually called to send new data for the first time.  It
22991  * is mostly called out of the timer for retransmits, and to generate ACKs.
22992  *
22993  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
22994  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
22995  * of the original mblk chain will be returned in *offset and *end_mp.
22996  */
22997 mblk_t *
22998 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
22999     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
23000     boolean_t rexmit)
23001 {
23002 	int	data_length;
23003 	int32_t	off = 0;
23004 	uint_t	flags;
23005 	mblk_t	*mp1;
23006 	mblk_t	*mp2;
23007 	uchar_t	*rptr;
23008 	tcph_t	*tcph;
23009 	int32_t	num_sack_blk = 0;
23010 	int32_t	sack_opt_len = 0;
23011 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23012 
23013 	/* Allocate for our maximum TCP header + link-level */
23014 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
23015 	    tcps->tcps_wroff_xtra, BPRI_MED);
23016 	if (!mp1)
23017 		return (NULL);
23018 	data_length = 0;
23019 
23020 	/*
23021 	 * Note that tcp_mss has been adjusted to take into account the
23022 	 * timestamp option if applicable.  Because SACK options do not
23023 	 * appear in every TCP segments and they are of variable lengths,
23024 	 * they cannot be included in tcp_mss.  Thus we need to calculate
23025 	 * the actual segment length when we need to send a segment which
23026 	 * includes SACK options.
23027 	 */
23028 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23029 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23030 		    tcp->tcp_num_sack_blk);
23031 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23032 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23033 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
23034 			max_to_send -= sack_opt_len;
23035 	}
23036 
23037 	if (offset != NULL) {
23038 		off = *offset;
23039 		/* We use offset as an indicator that end_mp is not NULL. */
23040 		*end_mp = NULL;
23041 	}
23042 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
23043 		/* This could be faster with cooperation from downstream */
23044 		if (mp2 != mp1 && !sendall &&
23045 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
23046 		    max_to_send)
23047 			/*
23048 			 * Don't send the next mblk since the whole mblk
23049 			 * does not fit.
23050 			 */
23051 			break;
23052 		mp2->b_cont = dupb(mp);
23053 		mp2 = mp2->b_cont;
23054 		if (!mp2) {
23055 			freemsg(mp1);
23056 			return (NULL);
23057 		}
23058 		mp2->b_rptr += off;
23059 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
23060 		    (uintptr_t)INT_MAX);
23061 
23062 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
23063 		if (data_length > max_to_send) {
23064 			mp2->b_wptr -= data_length - max_to_send;
23065 			data_length = max_to_send;
23066 			off = mp2->b_wptr - mp->b_rptr;
23067 			break;
23068 		} else {
23069 			off = 0;
23070 		}
23071 	}
23072 	if (offset != NULL) {
23073 		*offset = off;
23074 		*end_mp = mp;
23075 	}
23076 	if (seg_len != NULL) {
23077 		*seg_len = data_length;
23078 	}
23079 
23080 	/* Update the latest receive window size in TCP header. */
23081 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23082 	    tcp->tcp_tcph->th_win);
23083 
23084 	rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23085 	mp1->b_rptr = rptr;
23086 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
23087 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23088 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23089 	U32_TO_ABE32(seq, tcph->th_seq);
23090 
23091 	/*
23092 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
23093 	 * that this function was called from tcp_wput_data. Thus, when called
23094 	 * to retransmit data the setting of the PUSH bit may appear some
23095 	 * what random in that it might get set when it should not. This
23096 	 * should not pose any performance issues.
23097 	 */
23098 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
23099 	    tcp->tcp_unsent == data_length)) {
23100 		flags = TH_ACK | TH_PUSH;
23101 	} else {
23102 		flags = TH_ACK;
23103 	}
23104 
23105 	if (tcp->tcp_ecn_ok) {
23106 		if (tcp->tcp_ecn_echo_on)
23107 			flags |= TH_ECE;
23108 
23109 		/*
23110 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
23111 		 * There is no TCP flow control for non-data segments, and
23112 		 * only data segment is transmitted reliably.
23113 		 */
23114 		if (data_length > 0 && !rexmit) {
23115 			SET_ECT(tcp, rptr);
23116 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
23117 				flags |= TH_CWR;
23118 				tcp->tcp_ecn_cwr_sent = B_TRUE;
23119 			}
23120 		}
23121 	}
23122 
23123 	if (tcp->tcp_valid_bits) {
23124 		uint32_t u1;
23125 
23126 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
23127 		    seq == tcp->tcp_iss) {
23128 			uchar_t	*wptr;
23129 
23130 			/*
23131 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
23132 			 * TCP can only be in SYN-SENT, SYN-RCVD or
23133 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
23134 			 * our SYN is not ack'ed but the app closes this
23135 			 * TCP connection.
23136 			 */
23137 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
23138 			    tcp->tcp_state == TCPS_SYN_RCVD ||
23139 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
23140 
23141 			/*
23142 			 * Tack on the MSS option.  It is always needed
23143 			 * for both active and passive open.
23144 			 *
23145 			 * MSS option value should be interface MTU - MIN
23146 			 * TCP/IP header according to RFC 793 as it means
23147 			 * the maximum segment size TCP can receive.  But
23148 			 * to get around some broken middle boxes/end hosts
23149 			 * out there, we allow the option value to be the
23150 			 * same as the MSS option size on the peer side.
23151 			 * In this way, the other side will not send
23152 			 * anything larger than they can receive.
23153 			 *
23154 			 * Note that for SYN_SENT state, the ndd param
23155 			 * tcp_use_smss_as_mss_opt has no effect as we
23156 			 * don't know the peer's MSS option value. So
23157 			 * the only case we need to take care of is in
23158 			 * SYN_RCVD state, which is done later.
23159 			 */
23160 			wptr = mp1->b_wptr;
23161 			wptr[0] = TCPOPT_MAXSEG;
23162 			wptr[1] = TCPOPT_MAXSEG_LEN;
23163 			wptr += 2;
23164 			u1 = tcp->tcp_if_mtu -
23165 			    (tcp->tcp_ipversion == IPV4_VERSION ?
23166 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
23167 			    TCP_MIN_HEADER_LENGTH;
23168 			U16_TO_BE16(u1, wptr);
23169 			mp1->b_wptr = wptr + 2;
23170 			/* Update the offset to cover the additional word */
23171 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
23172 
23173 			/*
23174 			 * Note that the following way of filling in
23175 			 * TCP options are not optimal.  Some NOPs can
23176 			 * be saved.  But there is no need at this time
23177 			 * to optimize it.  When it is needed, we will
23178 			 * do it.
23179 			 */
23180 			switch (tcp->tcp_state) {
23181 			case TCPS_SYN_SENT:
23182 				flags = TH_SYN;
23183 
23184 				if (tcp->tcp_snd_ts_ok) {
23185 					uint32_t llbolt = (uint32_t)lbolt;
23186 
23187 					wptr = mp1->b_wptr;
23188 					wptr[0] = TCPOPT_NOP;
23189 					wptr[1] = TCPOPT_NOP;
23190 					wptr[2] = TCPOPT_TSTAMP;
23191 					wptr[3] = TCPOPT_TSTAMP_LEN;
23192 					wptr += 4;
23193 					U32_TO_BE32(llbolt, wptr);
23194 					wptr += 4;
23195 					ASSERT(tcp->tcp_ts_recent == 0);
23196 					U32_TO_BE32(0L, wptr);
23197 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
23198 					tcph->th_offset_and_rsrvd[0] +=
23199 					    (3 << 4);
23200 				}
23201 
23202 				/*
23203 				 * Set up all the bits to tell other side
23204 				 * we are ECN capable.
23205 				 */
23206 				if (tcp->tcp_ecn_ok) {
23207 					flags |= (TH_ECE | TH_CWR);
23208 				}
23209 				break;
23210 			case TCPS_SYN_RCVD:
23211 				flags |= TH_SYN;
23212 
23213 				/*
23214 				 * Reset the MSS option value to be SMSS
23215 				 * We should probably add back the bytes
23216 				 * for timestamp option and IPsec.  We
23217 				 * don't do that as this is a workaround
23218 				 * for broken middle boxes/end hosts, it
23219 				 * is better for us to be more cautious.
23220 				 * They may not take these things into
23221 				 * account in their SMSS calculation.  Thus
23222 				 * the peer's calculated SMSS may be smaller
23223 				 * than what it can be.  This should be OK.
23224 				 */
23225 				if (tcps->tcps_use_smss_as_mss_opt) {
23226 					u1 = tcp->tcp_mss;
23227 					U16_TO_BE16(u1, wptr);
23228 				}
23229 
23230 				/*
23231 				 * If the other side is ECN capable, reply
23232 				 * that we are also ECN capable.
23233 				 */
23234 				if (tcp->tcp_ecn_ok)
23235 					flags |= TH_ECE;
23236 				break;
23237 			default:
23238 				/*
23239 				 * The above ASSERT() makes sure that this
23240 				 * must be FIN-WAIT-1 state.  Our SYN has
23241 				 * not been ack'ed so retransmit it.
23242 				 */
23243 				flags |= TH_SYN;
23244 				break;
23245 			}
23246 
23247 			if (tcp->tcp_snd_ws_ok) {
23248 				wptr = mp1->b_wptr;
23249 				wptr[0] =  TCPOPT_NOP;
23250 				wptr[1] =  TCPOPT_WSCALE;
23251 				wptr[2] =  TCPOPT_WS_LEN;
23252 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
23253 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
23254 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23255 			}
23256 
23257 			if (tcp->tcp_snd_sack_ok) {
23258 				wptr = mp1->b_wptr;
23259 				wptr[0] = TCPOPT_NOP;
23260 				wptr[1] = TCPOPT_NOP;
23261 				wptr[2] = TCPOPT_SACK_PERMITTED;
23262 				wptr[3] = TCPOPT_SACK_OK_LEN;
23263 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
23264 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23265 			}
23266 
23267 			/* allocb() of adequate mblk assures space */
23268 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
23269 			    (uintptr_t)INT_MAX);
23270 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
23271 			/*
23272 			 * Get IP set to checksum on our behalf
23273 			 * Include the adjustment for a source route if any.
23274 			 */
23275 			u1 += tcp->tcp_sum;
23276 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
23277 			U16_TO_BE16(u1, tcph->th_sum);
23278 			BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23279 		}
23280 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
23281 		    (seq + data_length) == tcp->tcp_fss) {
23282 			if (!tcp->tcp_fin_acked) {
23283 				flags |= TH_FIN;
23284 				BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23285 			}
23286 			if (!tcp->tcp_fin_sent) {
23287 				tcp->tcp_fin_sent = B_TRUE;
23288 				switch (tcp->tcp_state) {
23289 				case TCPS_SYN_RCVD:
23290 				case TCPS_ESTABLISHED:
23291 					tcp->tcp_state = TCPS_FIN_WAIT_1;
23292 					break;
23293 				case TCPS_CLOSE_WAIT:
23294 					tcp->tcp_state = TCPS_LAST_ACK;
23295 					break;
23296 				}
23297 				if (tcp->tcp_suna == tcp->tcp_snxt)
23298 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
23299 				tcp->tcp_snxt = tcp->tcp_fss + 1;
23300 			}
23301 		}
23302 		/*
23303 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
23304 		 * is smaller than seq, u1 will become a very huge value.
23305 		 * So the comparison will fail.  Also note that tcp_urp
23306 		 * should be positive, see RFC 793 page 17.
23307 		 */
23308 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
23309 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
23310 		    u1 < (uint32_t)(64 * 1024)) {
23311 			flags |= TH_URG;
23312 			BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
23313 			U32_TO_ABE16(u1, tcph->th_urp);
23314 		}
23315 	}
23316 	tcph->th_flags[0] = (uchar_t)flags;
23317 	tcp->tcp_rack = tcp->tcp_rnxt;
23318 	tcp->tcp_rack_cnt = 0;
23319 
23320 	if (tcp->tcp_snd_ts_ok) {
23321 		if (tcp->tcp_state != TCPS_SYN_SENT) {
23322 			uint32_t llbolt = (uint32_t)lbolt;
23323 
23324 			U32_TO_BE32(llbolt,
23325 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23326 			U32_TO_BE32(tcp->tcp_ts_recent,
23327 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23328 		}
23329 	}
23330 
23331 	if (num_sack_blk > 0) {
23332 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23333 		sack_blk_t *tmp;
23334 		int32_t	i;
23335 
23336 		wptr[0] = TCPOPT_NOP;
23337 		wptr[1] = TCPOPT_NOP;
23338 		wptr[2] = TCPOPT_SACK;
23339 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23340 		    sizeof (sack_blk_t);
23341 		wptr += TCPOPT_REAL_SACK_LEN;
23342 
23343 		tmp = tcp->tcp_sack_list;
23344 		for (i = 0; i < num_sack_blk; i++) {
23345 			U32_TO_BE32(tmp[i].begin, wptr);
23346 			wptr += sizeof (tcp_seq);
23347 			U32_TO_BE32(tmp[i].end, wptr);
23348 			wptr += sizeof (tcp_seq);
23349 		}
23350 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
23351 	}
23352 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
23353 	data_length += (int)(mp1->b_wptr - rptr);
23354 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23355 		((ipha_t *)rptr)->ipha_length = htons(data_length);
23356 	} else {
23357 		ip6_t *ip6 = (ip6_t *)(rptr +
23358 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23359 		    sizeof (ip6i_t) : 0));
23360 
23361 		ip6->ip6_plen = htons(data_length -
23362 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23363 	}
23364 
23365 	/*
23366 	 * Prime pump for IP
23367 	 * Include the adjustment for a source route if any.
23368 	 */
23369 	data_length -= tcp->tcp_ip_hdr_len;
23370 	data_length += tcp->tcp_sum;
23371 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
23372 	U16_TO_ABE16(data_length, tcph->th_sum);
23373 	if (tcp->tcp_ip_forward_progress) {
23374 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23375 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23376 		tcp->tcp_ip_forward_progress = B_FALSE;
23377 	}
23378 	return (mp1);
23379 }
23380 
23381 /* This function handles the push timeout. */
23382 void
23383 tcp_push_timer(void *arg)
23384 {
23385 	conn_t	*connp = (conn_t *)arg;
23386 	tcp_t *tcp = connp->conn_tcp;
23387 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23388 
23389 	TCP_DBGSTAT(tcps, tcp_push_timer_cnt);
23390 
23391 	ASSERT(tcp->tcp_listener == NULL);
23392 
23393 	/*
23394 	 * We need to plug synchronous streams during our drain to prevent
23395 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
23396 	 */
23397 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
23398 	tcp->tcp_push_tid = 0;
23399 	if ((tcp->tcp_rcv_list != NULL) &&
23400 	    (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED))
23401 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
23402 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
23403 }
23404 
23405 /*
23406  * This function handles delayed ACK timeout.
23407  */
23408 static void
23409 tcp_ack_timer(void *arg)
23410 {
23411 	conn_t	*connp = (conn_t *)arg;
23412 	tcp_t *tcp = connp->conn_tcp;
23413 	mblk_t *mp;
23414 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23415 
23416 	TCP_DBGSTAT(tcps, tcp_ack_timer_cnt);
23417 
23418 	tcp->tcp_ack_tid = 0;
23419 
23420 	if (tcp->tcp_fused)
23421 		return;
23422 
23423 	/*
23424 	 * Do not send ACK if there is no outstanding unack'ed data.
23425 	 */
23426 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
23427 		return;
23428 	}
23429 
23430 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
23431 		/*
23432 		 * Make sure we don't allow deferred ACKs to result in
23433 		 * timer-based ACKing.  If we have held off an ACK
23434 		 * when there was more than an mss here, and the timer
23435 		 * goes off, we have to worry about the possibility
23436 		 * that the sender isn't doing slow-start, or is out
23437 		 * of step with us for some other reason.  We fall
23438 		 * permanently back in the direction of
23439 		 * ACK-every-other-packet as suggested in RFC 1122.
23440 		 */
23441 		if (tcp->tcp_rack_abs_max > 2)
23442 			tcp->tcp_rack_abs_max--;
23443 		tcp->tcp_rack_cur_max = 2;
23444 	}
23445 	mp = tcp_ack_mp(tcp);
23446 
23447 	if (mp != NULL) {
23448 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
23449 		BUMP_LOCAL(tcp->tcp_obsegs);
23450 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
23451 		BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed);
23452 		tcp_send_data(tcp, tcp->tcp_wq, mp);
23453 	}
23454 }
23455 
23456 
23457 /* Generate an ACK-only (no data) segment for a TCP endpoint */
23458 static mblk_t *
23459 tcp_ack_mp(tcp_t *tcp)
23460 {
23461 	uint32_t	seq_no;
23462 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23463 
23464 	/*
23465 	 * There are a few cases to be considered while setting the sequence no.
23466 	 * Essentially, we can come here while processing an unacceptable pkt
23467 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
23468 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
23469 	 * If we are here for a zero window probe, stick with suna. In all
23470 	 * other cases, we check if suna + swnd encompasses snxt and set
23471 	 * the sequence number to snxt, if so. If snxt falls outside the
23472 	 * window (the receiver probably shrunk its window), we will go with
23473 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
23474 	 * receiver.
23475 	 */
23476 	if (tcp->tcp_zero_win_probe) {
23477 		seq_no = tcp->tcp_suna;
23478 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
23479 		ASSERT(tcp->tcp_swnd == 0);
23480 		seq_no = tcp->tcp_snxt;
23481 	} else {
23482 		seq_no = SEQ_GT(tcp->tcp_snxt,
23483 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
23484 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
23485 	}
23486 
23487 	if (tcp->tcp_valid_bits) {
23488 		/*
23489 		 * For the complex case where we have to send some
23490 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
23491 		 */
23492 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
23493 		    NULL, B_FALSE));
23494 	} else {
23495 		/* Generate a simple ACK */
23496 		int	data_length;
23497 		uchar_t	*rptr;
23498 		tcph_t	*tcph;
23499 		mblk_t	*mp1;
23500 		int32_t	tcp_hdr_len;
23501 		int32_t	tcp_tcp_hdr_len;
23502 		int32_t	num_sack_blk = 0;
23503 		int32_t sack_opt_len;
23504 
23505 		/*
23506 		 * Allocate space for TCP + IP headers
23507 		 * and link-level header
23508 		 */
23509 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23510 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23511 			    tcp->tcp_num_sack_blk);
23512 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23513 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23514 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
23515 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
23516 		} else {
23517 			tcp_hdr_len = tcp->tcp_hdr_len;
23518 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
23519 		}
23520 		mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
23521 		if (!mp1)
23522 			return (NULL);
23523 
23524 		/* Update the latest receive window size in TCP header. */
23525 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23526 		    tcp->tcp_tcph->th_win);
23527 		/* copy in prototype TCP + IP header */
23528 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23529 		mp1->b_rptr = rptr;
23530 		mp1->b_wptr = rptr + tcp_hdr_len;
23531 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23532 
23533 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23534 
23535 		/* Set the TCP sequence number. */
23536 		U32_TO_ABE32(seq_no, tcph->th_seq);
23537 
23538 		/* Set up the TCP flag field. */
23539 		tcph->th_flags[0] = (uchar_t)TH_ACK;
23540 		if (tcp->tcp_ecn_echo_on)
23541 			tcph->th_flags[0] |= TH_ECE;
23542 
23543 		tcp->tcp_rack = tcp->tcp_rnxt;
23544 		tcp->tcp_rack_cnt = 0;
23545 
23546 		/* fill in timestamp option if in use */
23547 		if (tcp->tcp_snd_ts_ok) {
23548 			uint32_t llbolt = (uint32_t)lbolt;
23549 
23550 			U32_TO_BE32(llbolt,
23551 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23552 			U32_TO_BE32(tcp->tcp_ts_recent,
23553 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23554 		}
23555 
23556 		/* Fill in SACK options */
23557 		if (num_sack_blk > 0) {
23558 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23559 			sack_blk_t *tmp;
23560 			int32_t	i;
23561 
23562 			wptr[0] = TCPOPT_NOP;
23563 			wptr[1] = TCPOPT_NOP;
23564 			wptr[2] = TCPOPT_SACK;
23565 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23566 			    sizeof (sack_blk_t);
23567 			wptr += TCPOPT_REAL_SACK_LEN;
23568 
23569 			tmp = tcp->tcp_sack_list;
23570 			for (i = 0; i < num_sack_blk; i++) {
23571 				U32_TO_BE32(tmp[i].begin, wptr);
23572 				wptr += sizeof (tcp_seq);
23573 				U32_TO_BE32(tmp[i].end, wptr);
23574 				wptr += sizeof (tcp_seq);
23575 			}
23576 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
23577 			    << 4);
23578 		}
23579 
23580 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23581 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
23582 		} else {
23583 			/* Check for ip6i_t header in sticky hdrs */
23584 			ip6_t *ip6 = (ip6_t *)(rptr +
23585 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23586 			    sizeof (ip6i_t) : 0));
23587 
23588 			ip6->ip6_plen = htons(tcp_hdr_len -
23589 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23590 		}
23591 
23592 		/*
23593 		 * Prime pump for checksum calculation in IP.  Include the
23594 		 * adjustment for a source route if any.
23595 		 */
23596 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
23597 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
23598 		U16_TO_ABE16(data_length, tcph->th_sum);
23599 
23600 		if (tcp->tcp_ip_forward_progress) {
23601 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23602 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23603 			tcp->tcp_ip_forward_progress = B_FALSE;
23604 		}
23605 		return (mp1);
23606 	}
23607 }
23608 
23609 /*
23610  * To create a temporary tcp structure for inserting into bind hash list.
23611  * The parameter is assumed to be in network byte order, ready for use.
23612  */
23613 /* ARGSUSED */
23614 static tcp_t *
23615 tcp_alloc_temp_tcp(in_port_t port, tcp_stack_t *tcps)
23616 {
23617 	conn_t	*connp;
23618 	tcp_t	*tcp;
23619 
23620 	connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP, tcps->tcps_netstack);
23621 	if (connp == NULL)
23622 		return (NULL);
23623 
23624 	tcp = connp->conn_tcp;
23625 	tcp->tcp_tcps = tcps;
23626 	TCPS_REFHOLD(tcps);
23627 
23628 	/*
23629 	 * Only initialize the necessary info in those structures.  Note
23630 	 * that since INADDR_ANY is all 0, we do not need to set
23631 	 * tcp_bound_source to INADDR_ANY here.
23632 	 */
23633 	tcp->tcp_state = TCPS_BOUND;
23634 	tcp->tcp_lport = port;
23635 	tcp->tcp_exclbind = 1;
23636 	tcp->tcp_reserved_port = 1;
23637 
23638 	/* Just for place holding... */
23639 	tcp->tcp_ipversion = IPV4_VERSION;
23640 
23641 	return (tcp);
23642 }
23643 
23644 /*
23645  * To remove a port range specified by lo_port and hi_port from the
23646  * reserved port ranges.  This is one of the three public functions of
23647  * the reserved port interface.  Note that a port range has to be removed
23648  * as a whole.  Ports in a range cannot be removed individually.
23649  *
23650  * Params:
23651  *	in_port_t lo_port: the beginning port of the reserved port range to
23652  *		be deleted.
23653  *	in_port_t hi_port: the ending port of the reserved port range to
23654  *		be deleted.
23655  *
23656  * Return:
23657  *	B_TRUE if the deletion is successful, B_FALSE otherwise.
23658  *
23659  * Assumes that nca is only for zoneid=0
23660  */
23661 boolean_t
23662 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port)
23663 {
23664 	int	i, j;
23665 	int	size;
23666 	tcp_t	**temp_tcp_array;
23667 	tcp_t	*tcp;
23668 	tcp_stack_t	*tcps;
23669 
23670 	tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp;
23671 	ASSERT(tcps != NULL);
23672 
23673 	rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER);
23674 
23675 	/* First make sure that the port ranage is indeed reserved. */
23676 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
23677 		if (tcps->tcps_reserved_port[i].lo_port == lo_port) {
23678 			hi_port = tcps->tcps_reserved_port[i].hi_port;
23679 			temp_tcp_array =
23680 			    tcps->tcps_reserved_port[i].temp_tcp_array;
23681 			break;
23682 		}
23683 	}
23684 	if (i == tcps->tcps_reserved_port_array_size) {
23685 		rw_exit(&tcps->tcps_reserved_port_lock);
23686 		netstack_rele(tcps->tcps_netstack);
23687 		return (B_FALSE);
23688 	}
23689 
23690 	/*
23691 	 * Remove the range from the array.  This simple loop is possible
23692 	 * because port ranges are inserted in ascending order.
23693 	 */
23694 	for (j = i; j < tcps->tcps_reserved_port_array_size - 1; j++) {
23695 		tcps->tcps_reserved_port[j].lo_port =
23696 		    tcps->tcps_reserved_port[j+1].lo_port;
23697 		tcps->tcps_reserved_port[j].hi_port =
23698 		    tcps->tcps_reserved_port[j+1].hi_port;
23699 		tcps->tcps_reserved_port[j].temp_tcp_array =
23700 		    tcps->tcps_reserved_port[j+1].temp_tcp_array;
23701 	}
23702 
23703 	/* Remove all the temporary tcp structures. */
23704 	size = hi_port - lo_port + 1;
23705 	while (size > 0) {
23706 		tcp = temp_tcp_array[size - 1];
23707 		ASSERT(tcp != NULL);
23708 		tcp_bind_hash_remove(tcp);
23709 		CONN_DEC_REF(tcp->tcp_connp);
23710 		size--;
23711 	}
23712 	kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *));
23713 	tcps->tcps_reserved_port_array_size--;
23714 	rw_exit(&tcps->tcps_reserved_port_lock);
23715 	netstack_rele(tcps->tcps_netstack);
23716 	return (B_TRUE);
23717 }
23718 
23719 /*
23720  * Macro to remove temporary tcp structure from the bind hash list.  The
23721  * first parameter is the list of tcp to be removed.  The second parameter
23722  * is the number of tcps in the array.
23723  */
23724 #define	TCP_TMP_TCP_REMOVE(tcp_array, num, tcps) \
23725 { \
23726 	while ((num) > 0) { \
23727 		tcp_t *tcp = (tcp_array)[(num) - 1]; \
23728 		tf_t *tbf; \
23729 		tcp_t *tcpnext; \
23730 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \
23731 		mutex_enter(&tbf->tf_lock); \
23732 		tcpnext = tcp->tcp_bind_hash; \
23733 		if (tcpnext) { \
23734 			tcpnext->tcp_ptpbhn = \
23735 				tcp->tcp_ptpbhn; \
23736 		} \
23737 		*tcp->tcp_ptpbhn = tcpnext; \
23738 		mutex_exit(&tbf->tf_lock); \
23739 		kmem_free(tcp, sizeof (tcp_t)); \
23740 		(tcp_array)[(num) - 1] = NULL; \
23741 		(num)--; \
23742 	} \
23743 }
23744 
23745 /*
23746  * The public interface for other modules to call to reserve a port range
23747  * in TCP.  The caller passes in how large a port range it wants.  TCP
23748  * will try to find a range and return it via lo_port and hi_port.  This is
23749  * used by NCA's nca_conn_init.
23750  * NCA can only be used in the global zone so this only affects the global
23751  * zone's ports.
23752  *
23753  * Params:
23754  *	int size: the size of the port range to be reserved.
23755  *	in_port_t *lo_port (referenced): returns the beginning port of the
23756  *		reserved port range added.
23757  *	in_port_t *hi_port (referenced): returns the ending port of the
23758  *		reserved port range added.
23759  *
23760  * Return:
23761  *	B_TRUE if the port reservation is successful, B_FALSE otherwise.
23762  *
23763  * Assumes that nca is only for zoneid=0
23764  */
23765 boolean_t
23766 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port)
23767 {
23768 	tcp_t		*tcp;
23769 	tcp_t		*tmp_tcp;
23770 	tcp_t		**temp_tcp_array;
23771 	tf_t		*tbf;
23772 	in_port_t	net_port;
23773 	in_port_t	port;
23774 	int32_t		cur_size;
23775 	int		i, j;
23776 	boolean_t	used;
23777 	tcp_rport_t 	tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
23778 	zoneid_t	zoneid = GLOBAL_ZONEID;
23779 	tcp_stack_t	*tcps;
23780 
23781 	/* Sanity check. */
23782 	if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) {
23783 		return (B_FALSE);
23784 	}
23785 
23786 	tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp;
23787 	ASSERT(tcps != NULL);
23788 
23789 	rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER);
23790 	if (tcps->tcps_reserved_port_array_size ==
23791 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) {
23792 		rw_exit(&tcps->tcps_reserved_port_lock);
23793 		netstack_rele(tcps->tcps_netstack);
23794 		return (B_FALSE);
23795 	}
23796 
23797 	/*
23798 	 * Find the starting port to try.  Since the port ranges are ordered
23799 	 * in the reserved port array, we can do a simple search here.
23800 	 */
23801 	*lo_port = TCP_SMALLEST_RESERVED_PORT;
23802 	*hi_port = TCP_LARGEST_RESERVED_PORT;
23803 	for (i = 0; i < tcps->tcps_reserved_port_array_size;
23804 	    *lo_port = tcps->tcps_reserved_port[i].hi_port + 1, i++) {
23805 		if (tcps->tcps_reserved_port[i].lo_port - *lo_port >= size) {
23806 			*hi_port = tcps->tcps_reserved_port[i].lo_port - 1;
23807 			break;
23808 		}
23809 	}
23810 	/* No available port range. */
23811 	if (i == tcps->tcps_reserved_port_array_size &&
23812 	    *hi_port - *lo_port < size) {
23813 		rw_exit(&tcps->tcps_reserved_port_lock);
23814 		netstack_rele(tcps->tcps_netstack);
23815 		return (B_FALSE);
23816 	}
23817 
23818 	temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP);
23819 	if (temp_tcp_array == NULL) {
23820 		rw_exit(&tcps->tcps_reserved_port_lock);
23821 		netstack_rele(tcps->tcps_netstack);
23822 		return (B_FALSE);
23823 	}
23824 
23825 	/* Go thru the port range to see if some ports are already bound. */
23826 	for (port = *lo_port, cur_size = 0;
23827 	    cur_size < size && port <= *hi_port;
23828 	    cur_size++, port++) {
23829 		used = B_FALSE;
23830 		net_port = htons(port);
23831 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(net_port)];
23832 		mutex_enter(&tbf->tf_lock);
23833 		for (tcp = tbf->tf_tcp; tcp != NULL;
23834 		    tcp = tcp->tcp_bind_hash) {
23835 			if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) &&
23836 			    net_port == tcp->tcp_lport) {
23837 				/*
23838 				 * A port is already bound.  Search again
23839 				 * starting from port + 1.  Release all
23840 				 * temporary tcps.
23841 				 */
23842 				mutex_exit(&tbf->tf_lock);
23843 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size,
23844 				    tcps);
23845 				*lo_port = port + 1;
23846 				cur_size = -1;
23847 				used = B_TRUE;
23848 				break;
23849 			}
23850 		}
23851 		if (!used) {
23852 			if ((tmp_tcp = tcp_alloc_temp_tcp(net_port, tcps)) ==
23853 			    NULL) {
23854 				/*
23855 				 * Allocation failure.  Just fail the request.
23856 				 * Need to remove all those temporary tcp
23857 				 * structures.
23858 				 */
23859 				mutex_exit(&tbf->tf_lock);
23860 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size,
23861 				    tcps);
23862 				rw_exit(&tcps->tcps_reserved_port_lock);
23863 				kmem_free(temp_tcp_array,
23864 				    (hi_port - lo_port + 1) *
23865 				    sizeof (tcp_t *));
23866 				netstack_rele(tcps->tcps_netstack);
23867 				return (B_FALSE);
23868 			}
23869 			temp_tcp_array[cur_size] = tmp_tcp;
23870 			tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE);
23871 			mutex_exit(&tbf->tf_lock);
23872 		}
23873 	}
23874 
23875 	/*
23876 	 * The current range is not large enough.  We can actually do another
23877 	 * search if this search is done between 2 reserved port ranges.  But
23878 	 * for first release, we just stop here and return saying that no port
23879 	 * range is available.
23880 	 */
23881 	if (cur_size < size) {
23882 		TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, tcps);
23883 		rw_exit(&tcps->tcps_reserved_port_lock);
23884 		kmem_free(temp_tcp_array, size * sizeof (tcp_t *));
23885 		netstack_rele(tcps->tcps_netstack);
23886 		return (B_FALSE);
23887 	}
23888 	*hi_port = port - 1;
23889 
23890 	/*
23891 	 * Insert range into array in ascending order.  Since this function
23892 	 * must not be called often, we choose to use the simplest method.
23893 	 * The above array should not consume excessive stack space as
23894 	 * the size must be very small.  If in future releases, we find
23895 	 * that we should provide more reserved port ranges, this function
23896 	 * has to be modified to be more efficient.
23897 	 */
23898 	if (tcps->tcps_reserved_port_array_size == 0) {
23899 		tcps->tcps_reserved_port[0].lo_port = *lo_port;
23900 		tcps->tcps_reserved_port[0].hi_port = *hi_port;
23901 		tcps->tcps_reserved_port[0].temp_tcp_array = temp_tcp_array;
23902 	} else {
23903 		for (i = 0, j = 0; i < tcps->tcps_reserved_port_array_size;
23904 		    i++, j++) {
23905 			if (*lo_port < tcps->tcps_reserved_port[i].lo_port &&
23906 			    i == j) {
23907 				tmp_ports[j].lo_port = *lo_port;
23908 				tmp_ports[j].hi_port = *hi_port;
23909 				tmp_ports[j].temp_tcp_array = temp_tcp_array;
23910 				j++;
23911 			}
23912 			tmp_ports[j].lo_port =
23913 			    tcps->tcps_reserved_port[i].lo_port;
23914 			tmp_ports[j].hi_port =
23915 			    tcps->tcps_reserved_port[i].hi_port;
23916 			tmp_ports[j].temp_tcp_array =
23917 			    tcps->tcps_reserved_port[i].temp_tcp_array;
23918 		}
23919 		if (j == i) {
23920 			tmp_ports[j].lo_port = *lo_port;
23921 			tmp_ports[j].hi_port = *hi_port;
23922 			tmp_ports[j].temp_tcp_array = temp_tcp_array;
23923 		}
23924 		bcopy(tmp_ports, tcps->tcps_reserved_port, sizeof (tmp_ports));
23925 	}
23926 	tcps->tcps_reserved_port_array_size++;
23927 	rw_exit(&tcps->tcps_reserved_port_lock);
23928 	netstack_rele(tcps->tcps_netstack);
23929 	return (B_TRUE);
23930 }
23931 
23932 /*
23933  * Check to see if a port is in any reserved port range.
23934  *
23935  * Params:
23936  *	in_port_t port: the port to be verified.
23937  *
23938  * Return:
23939  *	B_TRUE is the port is inside a reserved port range, B_FALSE otherwise.
23940  */
23941 boolean_t
23942 tcp_reserved_port_check(in_port_t port, tcp_stack_t *tcps)
23943 {
23944 	int i;
23945 
23946 	rw_enter(&tcps->tcps_reserved_port_lock, RW_READER);
23947 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
23948 		if (port >= tcps->tcps_reserved_port[i].lo_port ||
23949 		    port <= tcps->tcps_reserved_port[i].hi_port) {
23950 			rw_exit(&tcps->tcps_reserved_port_lock);
23951 			return (B_TRUE);
23952 		}
23953 	}
23954 	rw_exit(&tcps->tcps_reserved_port_lock);
23955 	return (B_FALSE);
23956 }
23957 
23958 /*
23959  * To list all reserved port ranges.  This is the function to handle
23960  * ndd tcp_reserved_port_list.
23961  */
23962 /* ARGSUSED */
23963 static int
23964 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
23965 {
23966 	int i;
23967 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
23968 
23969 	rw_enter(&tcps->tcps_reserved_port_lock, RW_READER);
23970 	if (tcps->tcps_reserved_port_array_size > 0)
23971 		(void) mi_mpprintf(mp, "The following ports are reserved:");
23972 	else
23973 		(void) mi_mpprintf(mp, "No port is reserved.");
23974 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
23975 		(void) mi_mpprintf(mp, "%d-%d",
23976 		    tcps->tcps_reserved_port[i].lo_port,
23977 		    tcps->tcps_reserved_port[i].hi_port);
23978 	}
23979 	rw_exit(&tcps->tcps_reserved_port_lock);
23980 	return (0);
23981 }
23982 
23983 /*
23984  * Hash list insertion routine for tcp_t structures.
23985  * Inserts entries with the ones bound to a specific IP address first
23986  * followed by those bound to INADDR_ANY.
23987  */
23988 static void
23989 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
23990 {
23991 	tcp_t	**tcpp;
23992 	tcp_t	*tcpnext;
23993 
23994 	if (tcp->tcp_ptpbhn != NULL) {
23995 		ASSERT(!caller_holds_lock);
23996 		tcp_bind_hash_remove(tcp);
23997 	}
23998 	tcpp = &tbf->tf_tcp;
23999 	if (!caller_holds_lock) {
24000 		mutex_enter(&tbf->tf_lock);
24001 	} else {
24002 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
24003 	}
24004 	tcpnext = tcpp[0];
24005 	if (tcpnext) {
24006 		/*
24007 		 * If the new tcp bound to the INADDR_ANY address
24008 		 * and the first one in the list is not bound to
24009 		 * INADDR_ANY we skip all entries until we find the
24010 		 * first one bound to INADDR_ANY.
24011 		 * This makes sure that applications binding to a
24012 		 * specific address get preference over those binding to
24013 		 * INADDR_ANY.
24014 		 */
24015 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
24016 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
24017 			while ((tcpnext = tcpp[0]) != NULL &&
24018 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
24019 				tcpp = &(tcpnext->tcp_bind_hash);
24020 			if (tcpnext)
24021 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
24022 		} else
24023 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
24024 	}
24025 	tcp->tcp_bind_hash = tcpnext;
24026 	tcp->tcp_ptpbhn = tcpp;
24027 	tcpp[0] = tcp;
24028 	if (!caller_holds_lock)
24029 		mutex_exit(&tbf->tf_lock);
24030 }
24031 
24032 /*
24033  * Hash list removal routine for tcp_t structures.
24034  */
24035 static void
24036 tcp_bind_hash_remove(tcp_t *tcp)
24037 {
24038 	tcp_t	*tcpnext;
24039 	kmutex_t *lockp;
24040 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24041 
24042 	if (tcp->tcp_ptpbhn == NULL)
24043 		return;
24044 
24045 	/*
24046 	 * Extract the lock pointer in case there are concurrent
24047 	 * hash_remove's for this instance.
24048 	 */
24049 	ASSERT(tcp->tcp_lport != 0);
24050 	lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
24051 
24052 	ASSERT(lockp != NULL);
24053 	mutex_enter(lockp);
24054 	if (tcp->tcp_ptpbhn) {
24055 		tcpnext = tcp->tcp_bind_hash;
24056 		if (tcpnext) {
24057 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
24058 			tcp->tcp_bind_hash = NULL;
24059 		}
24060 		*tcp->tcp_ptpbhn = tcpnext;
24061 		tcp->tcp_ptpbhn = NULL;
24062 	}
24063 	mutex_exit(lockp);
24064 }
24065 
24066 
24067 /*
24068  * Hash list lookup routine for tcp_t structures.
24069  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
24070  */
24071 static tcp_t *
24072 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
24073 {
24074 	tf_t	*tf;
24075 	tcp_t	*tcp;
24076 
24077 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
24078 	mutex_enter(&tf->tf_lock);
24079 	for (tcp = tf->tf_tcp; tcp != NULL;
24080 	    tcp = tcp->tcp_acceptor_hash) {
24081 		if (tcp->tcp_acceptor_id == id) {
24082 			CONN_INC_REF(tcp->tcp_connp);
24083 			mutex_exit(&tf->tf_lock);
24084 			return (tcp);
24085 		}
24086 	}
24087 	mutex_exit(&tf->tf_lock);
24088 	return (NULL);
24089 }
24090 
24091 
24092 /*
24093  * Hash list insertion routine for tcp_t structures.
24094  */
24095 void
24096 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
24097 {
24098 	tf_t	*tf;
24099 	tcp_t	**tcpp;
24100 	tcp_t	*tcpnext;
24101 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24102 
24103 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
24104 
24105 	if (tcp->tcp_ptpahn != NULL)
24106 		tcp_acceptor_hash_remove(tcp);
24107 	tcpp = &tf->tf_tcp;
24108 	mutex_enter(&tf->tf_lock);
24109 	tcpnext = tcpp[0];
24110 	if (tcpnext)
24111 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
24112 	tcp->tcp_acceptor_hash = tcpnext;
24113 	tcp->tcp_ptpahn = tcpp;
24114 	tcpp[0] = tcp;
24115 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
24116 	mutex_exit(&tf->tf_lock);
24117 }
24118 
24119 /*
24120  * Hash list removal routine for tcp_t structures.
24121  */
24122 static void
24123 tcp_acceptor_hash_remove(tcp_t *tcp)
24124 {
24125 	tcp_t	*tcpnext;
24126 	kmutex_t *lockp;
24127 
24128 	/*
24129 	 * Extract the lock pointer in case there are concurrent
24130 	 * hash_remove's for this instance.
24131 	 */
24132 	lockp = tcp->tcp_acceptor_lockp;
24133 
24134 	if (tcp->tcp_ptpahn == NULL)
24135 		return;
24136 
24137 	ASSERT(lockp != NULL);
24138 	mutex_enter(lockp);
24139 	if (tcp->tcp_ptpahn) {
24140 		tcpnext = tcp->tcp_acceptor_hash;
24141 		if (tcpnext) {
24142 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
24143 			tcp->tcp_acceptor_hash = NULL;
24144 		}
24145 		*tcp->tcp_ptpahn = tcpnext;
24146 		tcp->tcp_ptpahn = NULL;
24147 	}
24148 	mutex_exit(lockp);
24149 	tcp->tcp_acceptor_lockp = NULL;
24150 }
24151 
24152 /* ARGSUSED */
24153 static int
24154 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af)
24155 {
24156 	int error = 0;
24157 	int retval;
24158 	char *end;
24159 	tcp_hsp_t *hsp;
24160 	tcp_hsp_t *hspprev;
24161 	ipaddr_t addr = 0;		/* Address we're looking for */
24162 	in6_addr_t v6addr;		/* Address we're looking for */
24163 	uint32_t hash;			/* Hash of that address */
24164 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24165 
24166 	/*
24167 	 * If the following variables are still zero after parsing the input
24168 	 * string, the user didn't specify them and we don't change them in
24169 	 * the HSP.
24170 	 */
24171 
24172 	ipaddr_t mask = 0;		/* Subnet mask */
24173 	in6_addr_t v6mask;
24174 	long sendspace = 0;		/* Send buffer size */
24175 	long recvspace = 0;		/* Receive buffer size */
24176 	long timestamp = 0;	/* Originate TCP TSTAMP option, 1 = yes */
24177 	boolean_t delete = B_FALSE;	/* User asked to delete this HSP */
24178 
24179 	rw_enter(&tcps->tcps_hsp_lock, RW_WRITER);
24180 
24181 	/* Parse and validate address */
24182 	if (af == AF_INET) {
24183 		retval = inet_pton(af, value, &addr);
24184 		if (retval == 1)
24185 			IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
24186 	} else if (af == AF_INET6) {
24187 		retval = inet_pton(af, value, &v6addr);
24188 	} else {
24189 		error = EINVAL;
24190 		goto done;
24191 	}
24192 	if (retval == 0) {
24193 		error = EINVAL;
24194 		goto done;
24195 	}
24196 
24197 	while ((*value) && *value != ' ')
24198 		value++;
24199 
24200 	/* Parse individual keywords, set variables if found */
24201 	while (*value) {
24202 		/* Skip leading blanks */
24203 
24204 		while (*value == ' ' || *value == '\t')
24205 			value++;
24206 
24207 		/* If at end of string, we're done */
24208 
24209 		if (!*value)
24210 			break;
24211 
24212 		/* We have a word, figure out what it is */
24213 
24214 		if (strncmp("mask", value, 4) == 0) {
24215 			value += 4;
24216 			while (*value == ' ' || *value == '\t')
24217 				value++;
24218 			/* Parse subnet mask */
24219 			if (af == AF_INET) {
24220 				retval = inet_pton(af, value, &mask);
24221 				if (retval == 1) {
24222 					V4MASK_TO_V6(mask, v6mask);
24223 				}
24224 			} else if (af == AF_INET6) {
24225 				retval = inet_pton(af, value, &v6mask);
24226 			}
24227 			if (retval != 1) {
24228 				error = EINVAL;
24229 				goto done;
24230 			}
24231 			while ((*value) && *value != ' ')
24232 				value++;
24233 		} else if (strncmp("sendspace", value, 9) == 0) {
24234 			value += 9;
24235 
24236 			if (ddi_strtol(value, &end, 0, &sendspace) != 0 ||
24237 			    sendspace < TCP_XMIT_HIWATER ||
24238 			    sendspace >= (1L<<30)) {
24239 				error = EINVAL;
24240 				goto done;
24241 			}
24242 			value = end;
24243 		} else if (strncmp("recvspace", value, 9) == 0) {
24244 			value += 9;
24245 
24246 			if (ddi_strtol(value, &end, 0, &recvspace) != 0 ||
24247 			    recvspace < TCP_RECV_HIWATER ||
24248 			    recvspace >= (1L<<30)) {
24249 				error = EINVAL;
24250 				goto done;
24251 			}
24252 			value = end;
24253 		} else if (strncmp("timestamp", value, 9) == 0) {
24254 			value += 9;
24255 
24256 			if (ddi_strtol(value, &end, 0, &timestamp) != 0 ||
24257 			    timestamp < 0 || timestamp > 1) {
24258 				error = EINVAL;
24259 				goto done;
24260 			}
24261 
24262 			/*
24263 			 * We increment timestamp so we know it's been set;
24264 			 * this is undone when we put it in the HSP
24265 			 */
24266 			timestamp++;
24267 			value = end;
24268 		} else if (strncmp("delete", value, 6) == 0) {
24269 			value += 6;
24270 			delete = B_TRUE;
24271 		} else {
24272 			error = EINVAL;
24273 			goto done;
24274 		}
24275 	}
24276 
24277 	/* Hash address for lookup */
24278 
24279 	hash = TCP_HSP_HASH(addr);
24280 
24281 	if (delete) {
24282 		/*
24283 		 * Note that deletes don't return an error if the thing
24284 		 * we're trying to delete isn't there.
24285 		 */
24286 		if (tcps->tcps_hsp_hash == NULL)
24287 			goto done;
24288 		hsp = tcps->tcps_hsp_hash[hash];
24289 
24290 		if (hsp) {
24291 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24292 			    &v6addr)) {
24293 				tcps->tcps_hsp_hash[hash] = hsp->tcp_hsp_next;
24294 				mi_free((char *)hsp);
24295 			} else {
24296 				hspprev = hsp;
24297 				while ((hsp = hsp->tcp_hsp_next) != NULL) {
24298 					if (IN6_ARE_ADDR_EQUAL(
24299 					    &hsp->tcp_hsp_addr_v6, &v6addr)) {
24300 						hspprev->tcp_hsp_next =
24301 						    hsp->tcp_hsp_next;
24302 						mi_free((char *)hsp);
24303 						break;
24304 					}
24305 					hspprev = hsp;
24306 				}
24307 			}
24308 		}
24309 	} else {
24310 		/*
24311 		 * We're adding/modifying an HSP.  If we haven't already done
24312 		 * so, allocate the hash table.
24313 		 */
24314 
24315 		if (!tcps->tcps_hsp_hash) {
24316 			tcps->tcps_hsp_hash = (tcp_hsp_t **)
24317 			    mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE);
24318 			if (!tcps->tcps_hsp_hash) {
24319 				error = EINVAL;
24320 				goto done;
24321 			}
24322 		}
24323 
24324 		/* Get head of hash chain */
24325 
24326 		hsp = tcps->tcps_hsp_hash[hash];
24327 
24328 		/* Try to find pre-existing hsp on hash chain */
24329 		/* Doesn't handle CIDR prefixes. */
24330 		while (hsp) {
24331 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr))
24332 				break;
24333 			hsp = hsp->tcp_hsp_next;
24334 		}
24335 
24336 		/*
24337 		 * If we didn't, create one with default values and put it
24338 		 * at head of hash chain
24339 		 */
24340 
24341 		if (!hsp) {
24342 			hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t));
24343 			if (!hsp) {
24344 				error = EINVAL;
24345 				goto done;
24346 			}
24347 			hsp->tcp_hsp_next = tcps->tcps_hsp_hash[hash];
24348 			tcps->tcps_hsp_hash[hash] = hsp;
24349 		}
24350 
24351 		/* Set values that the user asked us to change */
24352 
24353 		hsp->tcp_hsp_addr_v6 = v6addr;
24354 		if (IN6_IS_ADDR_V4MAPPED(&v6addr))
24355 			hsp->tcp_hsp_vers = IPV4_VERSION;
24356 		else
24357 			hsp->tcp_hsp_vers = IPV6_VERSION;
24358 		hsp->tcp_hsp_subnet_v6 = v6mask;
24359 		if (sendspace > 0)
24360 			hsp->tcp_hsp_sendspace = sendspace;
24361 		if (recvspace > 0)
24362 			hsp->tcp_hsp_recvspace = recvspace;
24363 		if (timestamp > 0)
24364 			hsp->tcp_hsp_tstamp = timestamp - 1;
24365 	}
24366 
24367 done:
24368 	rw_exit(&tcps->tcps_hsp_lock);
24369 	return (error);
24370 }
24371 
24372 /* Set callback routine passed to nd_load by tcp_param_register. */
24373 /* ARGSUSED */
24374 static int
24375 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
24376 {
24377 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET));
24378 }
24379 /* ARGSUSED */
24380 static int
24381 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24382     cred_t *cr)
24383 {
24384 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6));
24385 }
24386 
24387 /* TCP host parameters report triggered via the Named Dispatch mechanism. */
24388 /* ARGSUSED */
24389 static int
24390 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
24391 {
24392 	tcp_hsp_t *hsp;
24393 	int i;
24394 	char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN];
24395 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24396 
24397 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24398 	(void) mi_mpprintf(mp,
24399 	    "Hash HSP     " MI_COL_HDRPAD_STR
24400 	    "Address         Subnet Mask     Send       Receive    TStamp");
24401 	if (tcps->tcps_hsp_hash) {
24402 		for (i = 0; i < TCP_HSP_HASH_SIZE; i++) {
24403 			hsp = tcps->tcps_hsp_hash[i];
24404 			while (hsp) {
24405 				if (hsp->tcp_hsp_vers == IPV4_VERSION) {
24406 					(void) inet_ntop(AF_INET,
24407 					    &hsp->tcp_hsp_addr,
24408 					    addrbuf, sizeof (addrbuf));
24409 					(void) inet_ntop(AF_INET,
24410 					    &hsp->tcp_hsp_subnet,
24411 					    subnetbuf, sizeof (subnetbuf));
24412 				} else {
24413 					(void) inet_ntop(AF_INET6,
24414 					    &hsp->tcp_hsp_addr_v6,
24415 					    addrbuf, sizeof (addrbuf));
24416 					(void) inet_ntop(AF_INET6,
24417 					    &hsp->tcp_hsp_subnet_v6,
24418 					    subnetbuf, sizeof (subnetbuf));
24419 				}
24420 				(void) mi_mpprintf(mp,
24421 				    " %03d " MI_COL_PTRFMT_STR
24422 				    "%s %s %010d %010d      %d",
24423 				    i,
24424 				    (void *)hsp,
24425 				    addrbuf,
24426 				    subnetbuf,
24427 				    hsp->tcp_hsp_sendspace,
24428 				    hsp->tcp_hsp_recvspace,
24429 				    hsp->tcp_hsp_tstamp);
24430 
24431 				hsp = hsp->tcp_hsp_next;
24432 			}
24433 		}
24434 	}
24435 	rw_exit(&tcps->tcps_hsp_lock);
24436 	return (0);
24437 }
24438 
24439 
24440 /* Data for fast netmask macro used by tcp_hsp_lookup */
24441 
24442 static ipaddr_t netmasks[] = {
24443 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
24444 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
24445 };
24446 
24447 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
24448 
24449 /*
24450  * XXX This routine should go away and instead we should use the metrics
24451  * associated with the routes to determine the default sndspace and rcvspace.
24452  */
24453 static tcp_hsp_t *
24454 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps)
24455 {
24456 	tcp_hsp_t *hsp = NULL;
24457 
24458 	/* Quick check without acquiring the lock. */
24459 	if (tcps->tcps_hsp_hash == NULL)
24460 		return (NULL);
24461 
24462 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24463 
24464 	/* This routine finds the best-matching HSP for address addr. */
24465 
24466 	if (tcps->tcps_hsp_hash) {
24467 		int i;
24468 		ipaddr_t srchaddr;
24469 		tcp_hsp_t *hsp_net;
24470 
24471 		/* We do three passes: host, network, and subnet. */
24472 
24473 		srchaddr = addr;
24474 
24475 		for (i = 1; i <= 3; i++) {
24476 			/* Look for exact match on srchaddr */
24477 
24478 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)];
24479 			while (hsp) {
24480 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
24481 				    hsp->tcp_hsp_addr == srchaddr)
24482 					break;
24483 				hsp = hsp->tcp_hsp_next;
24484 			}
24485 			ASSERT(hsp == NULL ||
24486 			    hsp->tcp_hsp_vers == IPV4_VERSION);
24487 
24488 			/*
24489 			 * If this is the first pass:
24490 			 *   If we found a match, great, return it.
24491 			 *   If not, search for the network on the second pass.
24492 			 */
24493 
24494 			if (i == 1)
24495 				if (hsp)
24496 					break;
24497 				else
24498 				{
24499 					srchaddr = addr & netmask(addr);
24500 					continue;
24501 				}
24502 
24503 			/*
24504 			 * If this is the second pass:
24505 			 *   If we found a match, but there's a subnet mask,
24506 			 *    save the match but try again using the subnet
24507 			 *    mask on the third pass.
24508 			 *   Otherwise, return whatever we found.
24509 			 */
24510 
24511 			if (i == 2) {
24512 				if (hsp && hsp->tcp_hsp_subnet) {
24513 					hsp_net = hsp;
24514 					srchaddr = addr & hsp->tcp_hsp_subnet;
24515 					continue;
24516 				} else {
24517 					break;
24518 				}
24519 			}
24520 
24521 			/*
24522 			 * This must be the third pass.  If we didn't find
24523 			 * anything, return the saved network HSP instead.
24524 			 */
24525 
24526 			if (!hsp)
24527 				hsp = hsp_net;
24528 		}
24529 	}
24530 
24531 	rw_exit(&tcps->tcps_hsp_lock);
24532 	return (hsp);
24533 }
24534 
24535 /*
24536  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
24537  * match lookup.
24538  */
24539 static tcp_hsp_t *
24540 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps)
24541 {
24542 	tcp_hsp_t *hsp = NULL;
24543 
24544 	/* Quick check without acquiring the lock. */
24545 	if (tcps->tcps_hsp_hash == NULL)
24546 		return (NULL);
24547 
24548 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24549 
24550 	/* This routine finds the best-matching HSP for address addr. */
24551 
24552 	if (tcps->tcps_hsp_hash) {
24553 		int i;
24554 		in6_addr_t v6srchaddr;
24555 		tcp_hsp_t *hsp_net;
24556 
24557 		/* We do three passes: host, network, and subnet. */
24558 
24559 		v6srchaddr = *v6addr;
24560 
24561 		for (i = 1; i <= 3; i++) {
24562 			/* Look for exact match on srchaddr */
24563 
24564 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(
24565 			    V4_PART_OF_V6(v6srchaddr))];
24566 			while (hsp) {
24567 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
24568 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24569 				    &v6srchaddr))
24570 					break;
24571 				hsp = hsp->tcp_hsp_next;
24572 			}
24573 
24574 			/*
24575 			 * If this is the first pass:
24576 			 *   If we found a match, great, return it.
24577 			 *   If not, search for the network on the second pass.
24578 			 */
24579 
24580 			if (i == 1)
24581 				if (hsp)
24582 					break;
24583 				else {
24584 					/* Assume a 64 bit mask */
24585 					v6srchaddr.s6_addr32[0] =
24586 					    v6addr->s6_addr32[0];
24587 					v6srchaddr.s6_addr32[1] =
24588 					    v6addr->s6_addr32[1];
24589 					v6srchaddr.s6_addr32[2] = 0;
24590 					v6srchaddr.s6_addr32[3] = 0;
24591 					continue;
24592 				}
24593 
24594 			/*
24595 			 * If this is the second pass:
24596 			 *   If we found a match, but there's a subnet mask,
24597 			 *    save the match but try again using the subnet
24598 			 *    mask on the third pass.
24599 			 *   Otherwise, return whatever we found.
24600 			 */
24601 
24602 			if (i == 2) {
24603 				ASSERT(hsp == NULL ||
24604 				    hsp->tcp_hsp_vers == IPV6_VERSION);
24605 				if (hsp &&
24606 				    !IN6_IS_ADDR_UNSPECIFIED(
24607 				    &hsp->tcp_hsp_subnet_v6)) {
24608 					hsp_net = hsp;
24609 					V6_MASK_COPY(*v6addr,
24610 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
24611 					continue;
24612 				} else {
24613 					break;
24614 				}
24615 			}
24616 
24617 			/*
24618 			 * This must be the third pass.  If we didn't find
24619 			 * anything, return the saved network HSP instead.
24620 			 */
24621 
24622 			if (!hsp)
24623 				hsp = hsp_net;
24624 		}
24625 	}
24626 
24627 	rw_exit(&tcps->tcps_hsp_lock);
24628 	return (hsp);
24629 }
24630 
24631 /*
24632  * Type three generator adapted from the random() function in 4.4 BSD:
24633  */
24634 
24635 /*
24636  * Copyright (c) 1983, 1993
24637  *	The Regents of the University of California.  All rights reserved.
24638  *
24639  * Redistribution and use in source and binary forms, with or without
24640  * modification, are permitted provided that the following conditions
24641  * are met:
24642  * 1. Redistributions of source code must retain the above copyright
24643  *    notice, this list of conditions and the following disclaimer.
24644  * 2. Redistributions in binary form must reproduce the above copyright
24645  *    notice, this list of conditions and the following disclaimer in the
24646  *    documentation and/or other materials provided with the distribution.
24647  * 3. All advertising materials mentioning features or use of this software
24648  *    must display the following acknowledgement:
24649  *	This product includes software developed by the University of
24650  *	California, Berkeley and its contributors.
24651  * 4. Neither the name of the University nor the names of its contributors
24652  *    may be used to endorse or promote products derived from this software
24653  *    without specific prior written permission.
24654  *
24655  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24656  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24657  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24658  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24659  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24660  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24661  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24662  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24663  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24664  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24665  * SUCH DAMAGE.
24666  */
24667 
24668 /* Type 3 -- x**31 + x**3 + 1 */
24669 #define	DEG_3		31
24670 #define	SEP_3		3
24671 
24672 
24673 /* Protected by tcp_random_lock */
24674 static int tcp_randtbl[DEG_3 + 1];
24675 
24676 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
24677 static int *tcp_random_rptr = &tcp_randtbl[1];
24678 
24679 static int *tcp_random_state = &tcp_randtbl[1];
24680 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
24681 
24682 kmutex_t tcp_random_lock;
24683 
24684 void
24685 tcp_random_init(void)
24686 {
24687 	int i;
24688 	hrtime_t hrt;
24689 	time_t wallclock;
24690 	uint64_t result;
24691 
24692 	/*
24693 	 * Use high-res timer and current time for seed.  Gethrtime() returns
24694 	 * a longlong, which may contain resolution down to nanoseconds.
24695 	 * The current time will either be a 32-bit or a 64-bit quantity.
24696 	 * XOR the two together in a 64-bit result variable.
24697 	 * Convert the result to a 32-bit value by multiplying the high-order
24698 	 * 32-bits by the low-order 32-bits.
24699 	 */
24700 
24701 	hrt = gethrtime();
24702 	(void) drv_getparm(TIME, &wallclock);
24703 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
24704 	mutex_enter(&tcp_random_lock);
24705 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
24706 	    (result & 0xffffffff);
24707 
24708 	for (i = 1; i < DEG_3; i++)
24709 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
24710 		    + 12345;
24711 	tcp_random_fptr = &tcp_random_state[SEP_3];
24712 	tcp_random_rptr = &tcp_random_state[0];
24713 	mutex_exit(&tcp_random_lock);
24714 	for (i = 0; i < 10 * DEG_3; i++)
24715 		(void) tcp_random();
24716 }
24717 
24718 /*
24719  * tcp_random: Return a random number in the range [1 - (128K + 1)].
24720  * This range is selected to be approximately centered on TCP_ISS / 2,
24721  * and easy to compute. We get this value by generating a 32-bit random
24722  * number, selecting out the high-order 17 bits, and then adding one so
24723  * that we never return zero.
24724  */
24725 int
24726 tcp_random(void)
24727 {
24728 	int i;
24729 
24730 	mutex_enter(&tcp_random_lock);
24731 	*tcp_random_fptr += *tcp_random_rptr;
24732 
24733 	/*
24734 	 * The high-order bits are more random than the low-order bits,
24735 	 * so we select out the high-order 17 bits and add one so that
24736 	 * we never return zero.
24737 	 */
24738 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
24739 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
24740 		tcp_random_fptr = tcp_random_state;
24741 		++tcp_random_rptr;
24742 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
24743 		tcp_random_rptr = tcp_random_state;
24744 
24745 	mutex_exit(&tcp_random_lock);
24746 	return (i);
24747 }
24748 
24749 /*
24750  * XXX This will go away when TPI is extended to send
24751  * info reqs to sockfs/timod .....
24752  * Given a queue, set the max packet size for the write
24753  * side of the queue below stream head.  This value is
24754  * cached on the stream head.
24755  * Returns 1 on success, 0 otherwise.
24756  */
24757 static int
24758 setmaxps(queue_t *q, int maxpsz)
24759 {
24760 	struct stdata	*stp;
24761 	queue_t		*wq;
24762 	stp = STREAM(q);
24763 
24764 	/*
24765 	 * At this point change of a queue parameter is not allowed
24766 	 * when a multiplexor is sitting on top.
24767 	 */
24768 	if (stp->sd_flag & STPLEX)
24769 		return (0);
24770 
24771 	claimstr(stp->sd_wrq);
24772 	wq = stp->sd_wrq->q_next;
24773 	ASSERT(wq != NULL);
24774 	(void) strqset(wq, QMAXPSZ, 0, maxpsz);
24775 	releasestr(stp->sd_wrq);
24776 	return (1);
24777 }
24778 
24779 static int
24780 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
24781     int *t_errorp, int *sys_errorp)
24782 {
24783 	int error;
24784 	int is_absreq_failure;
24785 	t_scalar_t *opt_lenp;
24786 	t_scalar_t opt_offset;
24787 	int prim_type;
24788 	struct T_conn_req *tcreqp;
24789 	struct T_conn_res *tcresp;
24790 	cred_t *cr;
24791 
24792 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
24793 
24794 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
24795 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
24796 	    prim_type == T_CONN_RES);
24797 
24798 	switch (prim_type) {
24799 	case T_CONN_REQ:
24800 		tcreqp = (struct T_conn_req *)mp->b_rptr;
24801 		opt_offset = tcreqp->OPT_offset;
24802 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
24803 		break;
24804 	case O_T_CONN_RES:
24805 	case T_CONN_RES:
24806 		tcresp = (struct T_conn_res *)mp->b_rptr;
24807 		opt_offset = tcresp->OPT_offset;
24808 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
24809 		break;
24810 	}
24811 
24812 	*t_errorp = 0;
24813 	*sys_errorp = 0;
24814 	*do_disconnectp = 0;
24815 
24816 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
24817 	    opt_offset, cr, &tcp_opt_obj,
24818 	    NULL, &is_absreq_failure);
24819 
24820 	switch (error) {
24821 	case  0:		/* no error */
24822 		ASSERT(is_absreq_failure == 0);
24823 		return (0);
24824 	case ENOPROTOOPT:
24825 		*t_errorp = TBADOPT;
24826 		break;
24827 	case EACCES:
24828 		*t_errorp = TACCES;
24829 		break;
24830 	default:
24831 		*t_errorp = TSYSERR; *sys_errorp = error;
24832 		break;
24833 	}
24834 	if (is_absreq_failure != 0) {
24835 		/*
24836 		 * The connection request should get the local ack
24837 		 * T_OK_ACK and then a T_DISCON_IND.
24838 		 */
24839 		*do_disconnectp = 1;
24840 	}
24841 	return (-1);
24842 }
24843 
24844 /*
24845  * Split this function out so that if the secret changes, I'm okay.
24846  *
24847  * Initialize the tcp_iss_cookie and tcp_iss_key.
24848  */
24849 
24850 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
24851 
24852 static void
24853 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
24854 {
24855 	struct {
24856 		int32_t current_time;
24857 		uint32_t randnum;
24858 		uint16_t pad;
24859 		uint8_t ether[6];
24860 		uint8_t passwd[PASSWD_SIZE];
24861 	} tcp_iss_cookie;
24862 	time_t t;
24863 
24864 	/*
24865 	 * Start with the current absolute time.
24866 	 */
24867 	(void) drv_getparm(TIME, &t);
24868 	tcp_iss_cookie.current_time = t;
24869 
24870 	/*
24871 	 * XXX - Need a more random number per RFC 1750, not this crap.
24872 	 * OTOH, if what follows is pretty random, then I'm in better shape.
24873 	 */
24874 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
24875 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
24876 
24877 	/*
24878 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
24879 	 * as a good template.
24880 	 */
24881 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
24882 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
24883 
24884 	/*
24885 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
24886 	 */
24887 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
24888 
24889 	/*
24890 	 * See 4010593 if this section becomes a problem again,
24891 	 * but the local ethernet address is useful here.
24892 	 */
24893 	(void) localetheraddr(NULL,
24894 	    (struct ether_addr *)&tcp_iss_cookie.ether);
24895 
24896 	/*
24897 	 * Hash 'em all together.  The MD5Final is called per-connection.
24898 	 */
24899 	mutex_enter(&tcps->tcps_iss_key_lock);
24900 	MD5Init(&tcps->tcps_iss_key);
24901 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
24902 	    sizeof (tcp_iss_cookie));
24903 	mutex_exit(&tcps->tcps_iss_key_lock);
24904 }
24905 
24906 /*
24907  * Set the RFC 1948 pass phrase
24908  */
24909 /* ARGSUSED */
24910 static int
24911 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24912     cred_t *cr)
24913 {
24914 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24915 
24916 	/*
24917 	 * Basically, value contains a new pass phrase.  Pass it along!
24918 	 */
24919 	tcp_iss_key_init((uint8_t *)value, strlen(value), tcps);
24920 	return (0);
24921 }
24922 
24923 /* ARGSUSED */
24924 static int
24925 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
24926 {
24927 	bzero(buf, sizeof (tcp_sack_info_t));
24928 	return (0);
24929 }
24930 
24931 /* ARGSUSED */
24932 static int
24933 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
24934 {
24935 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
24936 	return (0);
24937 }
24938 
24939 /*
24940  * Make sure we wait until the default queue is setup, yet allow
24941  * tcp_g_q_create() to open a TCP stream.
24942  * We need to allow tcp_g_q_create() do do an open
24943  * of tcp, hence we compare curhread.
24944  * All others have to wait until the tcps_g_q has been
24945  * setup.
24946  */
24947 void
24948 tcp_g_q_setup(tcp_stack_t *tcps)
24949 {
24950 	mutex_enter(&tcps->tcps_g_q_lock);
24951 	if (tcps->tcps_g_q != NULL) {
24952 		mutex_exit(&tcps->tcps_g_q_lock);
24953 		return;
24954 	}
24955 	if (tcps->tcps_g_q_creator == NULL) {
24956 		/* This thread will set it up */
24957 		tcps->tcps_g_q_creator = curthread;
24958 		mutex_exit(&tcps->tcps_g_q_lock);
24959 		tcp_g_q_create(tcps);
24960 		mutex_enter(&tcps->tcps_g_q_lock);
24961 		ASSERT(tcps->tcps_g_q_creator == curthread);
24962 		tcps->tcps_g_q_creator = NULL;
24963 		cv_signal(&tcps->tcps_g_q_cv);
24964 		ASSERT(tcps->tcps_g_q != NULL);
24965 		mutex_exit(&tcps->tcps_g_q_lock);
24966 		return;
24967 	}
24968 	/* Everybody but the creator has to wait */
24969 	if (tcps->tcps_g_q_creator != curthread) {
24970 		while (tcps->tcps_g_q == NULL)
24971 			cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock);
24972 	}
24973 	mutex_exit(&tcps->tcps_g_q_lock);
24974 }
24975 
24976 #define	IP	"ip"
24977 
24978 #define	TCP6DEV		"/devices/pseudo/tcp6@0:tcp6"
24979 
24980 /*
24981  * Create a default tcp queue here instead of in strplumb
24982  */
24983 void
24984 tcp_g_q_create(tcp_stack_t *tcps)
24985 {
24986 	int error;
24987 	ldi_handle_t	lh = NULL;
24988 	ldi_ident_t	li = NULL;
24989 	int		rval;
24990 	cred_t		*cr;
24991 	major_t IP_MAJ;
24992 
24993 #ifdef NS_DEBUG
24994 	(void) printf("tcp_g_q_create()\n");
24995 #endif
24996 
24997 	IP_MAJ = ddi_name_to_major(IP);
24998 
24999 	ASSERT(tcps->tcps_g_q_creator == curthread);
25000 
25001 	error = ldi_ident_from_major(IP_MAJ, &li);
25002 	if (error) {
25003 #ifdef DEBUG
25004 		printf("tcp_g_q_create: lyr ident get failed error %d\n",
25005 		    error);
25006 #endif
25007 		return;
25008 	}
25009 
25010 	cr = zone_get_kcred(netstackid_to_zoneid(
25011 	    tcps->tcps_netstack->netstack_stackid));
25012 	ASSERT(cr != NULL);
25013 	/*
25014 	 * We set the tcp default queue to IPv6 because IPv4 falls
25015 	 * back to IPv6 when it can't find a client, but
25016 	 * IPv6 does not fall back to IPv4.
25017 	 */
25018 	error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li);
25019 	if (error) {
25020 #ifdef DEBUG
25021 		printf("tcp_g_q_create: open of TCP6DEV failed error %d\n",
25022 		    error);
25023 #endif
25024 		goto out;
25025 	}
25026 
25027 	/*
25028 	 * This ioctl causes the tcp framework to cache a pointer to
25029 	 * this stream, so we don't want to close the stream after
25030 	 * this operation.
25031 	 * Use the kernel credentials that are for the zone we're in.
25032 	 */
25033 	error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q,
25034 	    (intptr_t)0, FKIOCTL, cr, &rval);
25035 	if (error) {
25036 #ifdef DEBUG
25037 		printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed "
25038 		    "error %d\n", error);
25039 #endif
25040 		goto out;
25041 	}
25042 	tcps->tcps_g_q_lh = lh;	/* For tcp_g_q_close */
25043 	lh = NULL;
25044 out:
25045 	/* Close layered handles */
25046 	if (li)
25047 		ldi_ident_release(li);
25048 	/* Keep cred around until _inactive needs it */
25049 	tcps->tcps_g_q_cr = cr;
25050 }
25051 
25052 /*
25053  * We keep tcp_g_q set until all other tcp_t's in the zone
25054  * has gone away, and then when tcp_g_q_inactive() is called
25055  * we clear it.
25056  */
25057 void
25058 tcp_g_q_destroy(tcp_stack_t *tcps)
25059 {
25060 #ifdef NS_DEBUG
25061 	(void) printf("tcp_g_q_destroy()for stack %d\n",
25062 	    tcps->tcps_netstack->netstack_stackid);
25063 #endif
25064 
25065 	if (tcps->tcps_g_q == NULL) {
25066 		return;	/* Nothing to cleanup */
25067 	}
25068 	/*
25069 	 * Drop reference corresponding to the default queue.
25070 	 * This reference was added from tcp_open when the default queue
25071 	 * was created, hence we compensate for this extra drop in
25072 	 * tcp_g_q_close. If the refcnt drops to zero here it means
25073 	 * the default queue was the last one to be open, in which
25074 	 * case, then tcp_g_q_inactive will be
25075 	 * called as a result of the refrele.
25076 	 */
25077 	TCPS_REFRELE(tcps);
25078 }
25079 
25080 /*
25081  * Called when last tcp_t drops reference count using TCPS_REFRELE.
25082  * Run by tcp_q_q_inactive using a taskq.
25083  */
25084 static void
25085 tcp_g_q_close(void *arg)
25086 {
25087 	tcp_stack_t *tcps = arg;
25088 	int error;
25089 	ldi_handle_t	lh = NULL;
25090 	ldi_ident_t	li = NULL;
25091 	cred_t		*cr;
25092 	major_t IP_MAJ;
25093 
25094 	IP_MAJ = ddi_name_to_major(IP);
25095 
25096 #ifdef NS_DEBUG
25097 	(void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n",
25098 	    tcps->tcps_netstack->netstack_stackid,
25099 	    tcps->tcps_netstack->netstack_refcnt);
25100 #endif
25101 	lh = tcps->tcps_g_q_lh;
25102 	if (lh == NULL)
25103 		return;	/* Nothing to cleanup */
25104 
25105 	ASSERT(tcps->tcps_refcnt == 1);
25106 	ASSERT(tcps->tcps_g_q != NULL);
25107 
25108 	error = ldi_ident_from_major(IP_MAJ, &li);
25109 	if (error) {
25110 #ifdef DEBUG
25111 		printf("tcp_g_q_inactive: lyr ident get failed error %d\n",
25112 		    error);
25113 #endif
25114 		return;
25115 	}
25116 
25117 	cr = tcps->tcps_g_q_cr;
25118 	tcps->tcps_g_q_cr = NULL;
25119 	ASSERT(cr != NULL);
25120 
25121 	/*
25122 	 * Make sure we can break the recursion when tcp_close decrements
25123 	 * the reference count causing g_q_inactive to be called again.
25124 	 */
25125 	tcps->tcps_g_q_lh = NULL;
25126 
25127 	/* close the default queue */
25128 	(void) ldi_close(lh, FREAD|FWRITE, cr);
25129 	/*
25130 	 * At this point in time tcps and the rest of netstack_t might
25131 	 * have been deleted.
25132 	 */
25133 	tcps = NULL;
25134 
25135 	/* Close layered handles */
25136 	ldi_ident_release(li);
25137 	crfree(cr);
25138 }
25139 
25140 /*
25141  * Called when last tcp_t drops reference count using TCPS_REFRELE.
25142  *
25143  * Have to ensure that the ldi routines are not used by an
25144  * interrupt thread by using a taskq.
25145  */
25146 void
25147 tcp_g_q_inactive(tcp_stack_t *tcps)
25148 {
25149 	if (tcps->tcps_g_q_lh == NULL)
25150 		return;	/* Nothing to cleanup */
25151 
25152 	ASSERT(tcps->tcps_refcnt == 0);
25153 	TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */
25154 
25155 	if (servicing_interrupt()) {
25156 		(void) taskq_dispatch(tcp_taskq, tcp_g_q_close,
25157 		    (void *) tcps, TQ_SLEEP);
25158 	} else {
25159 		tcp_g_q_close(tcps);
25160 	}
25161 }
25162 
25163 /*
25164  * Called by IP when IP is loaded into the kernel
25165  */
25166 void
25167 tcp_ddi_g_init(void)
25168 {
25169 	tcp_timercache = kmem_cache_create("tcp_timercache",
25170 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
25171 	    NULL, NULL, NULL, NULL, NULL, 0);
25172 
25173 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
25174 	    sizeof (tcp_sack_info_t), 0,
25175 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
25176 
25177 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
25178 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
25179 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
25180 
25181 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
25182 
25183 	/* Initialize the random number generator */
25184 	tcp_random_init();
25185 
25186 	tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput);
25187 	tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close);
25188 
25189 	/* A single callback independently of how many netstacks we have */
25190 	ip_squeue_init(tcp_squeue_add);
25191 
25192 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
25193 
25194 	tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1,
25195 	    TASKQ_PREPOPULATE);
25196 
25197 	/*
25198 	 * We want to be informed each time a stack is created or
25199 	 * destroyed in the kernel, so we can maintain the
25200 	 * set of tcp_stack_t's.
25201 	 */
25202 	netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown,
25203 	    tcp_stack_fini);
25204 }
25205 
25206 
25207 /*
25208  * Initialize the TCP stack instance.
25209  */
25210 static void *
25211 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
25212 {
25213 	tcp_stack_t	*tcps;
25214 	tcpparam_t	*pa;
25215 	int		i;
25216 
25217 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
25218 	tcps->tcps_netstack = ns;
25219 
25220 	/* Initialize locks */
25221 	rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL);
25222 	mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
25223 	cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL);
25224 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
25225 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
25226 	rw_init(&tcps->tcps_reserved_port_lock, NULL, RW_DEFAULT, NULL);
25227 
25228 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
25229 	tcps->tcps_g_epriv_ports[0] = 2049;
25230 	tcps->tcps_g_epriv_ports[1] = 4045;
25231 	tcps->tcps_min_anonpriv_port = 512;
25232 
25233 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
25234 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
25235 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
25236 	    TCP_FANOUT_SIZE, KM_SLEEP);
25237 	tcps->tcps_reserved_port = kmem_zalloc(sizeof (tcp_rport_t) *
25238 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE, KM_SLEEP);
25239 
25240 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
25241 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
25242 		    MUTEX_DEFAULT, NULL);
25243 	}
25244 
25245 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
25246 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
25247 		    MUTEX_DEFAULT, NULL);
25248 	}
25249 
25250 	/* TCP's IPsec code calls the packet dropper. */
25251 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
25252 
25253 	pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP);
25254 	tcps->tcps_params = pa;
25255 	bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr));
25256 
25257 	(void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params,
25258 	    A_CNT(lcl_tcp_param_arr), tcps);
25259 
25260 	/*
25261 	 * Note: To really walk the device tree you need the devinfo
25262 	 * pointer to your device which is only available after probe/attach.
25263 	 * The following is safe only because it uses ddi_root_node()
25264 	 */
25265 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
25266 	    tcp_opt_obj.odb_opt_arr_cnt);
25267 
25268 	/*
25269 	 * Initialize RFC 1948 secret values.  This will probably be reset once
25270 	 * by the boot scripts.
25271 	 *
25272 	 * Use NULL name, as the name is caught by the new lockstats.
25273 	 *
25274 	 * Initialize with some random, non-guessable string, like the global
25275 	 * T_INFO_ACK.
25276 	 */
25277 
25278 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
25279 	    sizeof (tcp_g_t_info_ack), tcps);
25280 
25281 	tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics);
25282 	tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps);
25283 
25284 	return (tcps);
25285 }
25286 
25287 /*
25288  * Called when the IP module is about to be unloaded.
25289  */
25290 void
25291 tcp_ddi_g_destroy(void)
25292 {
25293 	tcp_g_kstat_fini(tcp_g_kstat);
25294 	tcp_g_kstat = NULL;
25295 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
25296 
25297 	mutex_destroy(&tcp_random_lock);
25298 
25299 	kmem_cache_destroy(tcp_timercache);
25300 	kmem_cache_destroy(tcp_sack_info_cache);
25301 	kmem_cache_destroy(tcp_iphc_cache);
25302 
25303 	netstack_unregister(NS_TCP);
25304 	taskq_destroy(tcp_taskq);
25305 }
25306 
25307 /*
25308  * Shut down the TCP stack instance.
25309  */
25310 /* ARGSUSED */
25311 static void
25312 tcp_stack_shutdown(netstackid_t stackid, void *arg)
25313 {
25314 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25315 
25316 	tcp_g_q_destroy(tcps);
25317 }
25318 
25319 /*
25320  * Free the TCP stack instance.
25321  */
25322 static void
25323 tcp_stack_fini(netstackid_t stackid, void *arg)
25324 {
25325 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25326 	int i;
25327 
25328 	nd_free(&tcps->tcps_g_nd);
25329 	kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr));
25330 	tcps->tcps_params = NULL;
25331 	kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t));
25332 	tcps->tcps_wroff_xtra_param = NULL;
25333 	kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t));
25334 	tcps->tcps_mdt_head_param = NULL;
25335 	kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t));
25336 	tcps->tcps_mdt_tail_param = NULL;
25337 	kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t));
25338 	tcps->tcps_mdt_max_pbufs_param = NULL;
25339 
25340 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
25341 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
25342 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
25343 	}
25344 
25345 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
25346 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
25347 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
25348 	}
25349 
25350 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
25351 	tcps->tcps_bind_fanout = NULL;
25352 
25353 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE);
25354 	tcps->tcps_acceptor_fanout = NULL;
25355 
25356 	kmem_free(tcps->tcps_reserved_port, sizeof (tcp_rport_t) *
25357 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE);
25358 	tcps->tcps_reserved_port = NULL;
25359 
25360 	mutex_destroy(&tcps->tcps_iss_key_lock);
25361 	rw_destroy(&tcps->tcps_hsp_lock);
25362 	mutex_destroy(&tcps->tcps_g_q_lock);
25363 	cv_destroy(&tcps->tcps_g_q_cv);
25364 	mutex_destroy(&tcps->tcps_epriv_port_lock);
25365 	rw_destroy(&tcps->tcps_reserved_port_lock);
25366 
25367 	ip_drop_unregister(&tcps->tcps_dropper);
25368 
25369 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
25370 	tcps->tcps_kstat = NULL;
25371 	bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics));
25372 
25373 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
25374 	tcps->tcps_mibkp = NULL;
25375 
25376 	kmem_free(tcps, sizeof (*tcps));
25377 }
25378 
25379 /*
25380  * Generate ISS, taking into account NDD changes may happen halfway through.
25381  * (If the iss is not zero, set it.)
25382  */
25383 
25384 static void
25385 tcp_iss_init(tcp_t *tcp)
25386 {
25387 	MD5_CTX context;
25388 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
25389 	uint32_t answer[4];
25390 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25391 
25392 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
25393 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
25394 	switch (tcps->tcps_strong_iss) {
25395 	case 2:
25396 		mutex_enter(&tcps->tcps_iss_key_lock);
25397 		context = tcps->tcps_iss_key;
25398 		mutex_exit(&tcps->tcps_iss_key_lock);
25399 		arg.ports = tcp->tcp_ports;
25400 		if (tcp->tcp_ipversion == IPV4_VERSION) {
25401 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
25402 			    &arg.src);
25403 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
25404 			    &arg.dst);
25405 		} else {
25406 			arg.src = tcp->tcp_ip6h->ip6_src;
25407 			arg.dst = tcp->tcp_ip6h->ip6_dst;
25408 		}
25409 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
25410 		MD5Final((uchar_t *)answer, &context);
25411 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
25412 		/*
25413 		 * Now that we've hashed into a unique per-connection sequence
25414 		 * space, add a random increment per strong_iss == 1.  So I
25415 		 * guess we'll have to...
25416 		 */
25417 		/* FALLTHRU */
25418 	case 1:
25419 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
25420 		break;
25421 	default:
25422 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25423 		break;
25424 	}
25425 	tcp->tcp_valid_bits = TCP_ISS_VALID;
25426 	tcp->tcp_fss = tcp->tcp_iss - 1;
25427 	tcp->tcp_suna = tcp->tcp_iss;
25428 	tcp->tcp_snxt = tcp->tcp_iss + 1;
25429 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
25430 	tcp->tcp_csuna = tcp->tcp_snxt;
25431 }
25432 
25433 /*
25434  * Exported routine for extracting active tcp connection status.
25435  *
25436  * This is used by the Solaris Cluster Networking software to
25437  * gather a list of connections that need to be forwarded to
25438  * specific nodes in the cluster when configuration changes occur.
25439  *
25440  * The callback is invoked for each tcp_t structure. Returning
25441  * non-zero from the callback routine terminates the search.
25442  */
25443 int
25444 cl_tcp_walk_list(int (*cl_callback)(cl_tcp_info_t *, void *),
25445     void *arg)
25446 {
25447 	netstack_handle_t nh;
25448 	netstack_t *ns;
25449 	int ret = 0;
25450 
25451 	netstack_next_init(&nh);
25452 	while ((ns = netstack_next(&nh)) != NULL) {
25453 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
25454 		    ns->netstack_tcp);
25455 		netstack_rele(ns);
25456 	}
25457 	netstack_next_fini(&nh);
25458 	return (ret);
25459 }
25460 
25461 static int
25462 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg,
25463     tcp_stack_t *tcps)
25464 {
25465 	tcp_t *tcp;
25466 	cl_tcp_info_t	cl_tcpi;
25467 	connf_t	*connfp;
25468 	conn_t	*connp;
25469 	int	i;
25470 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25471 
25472 	ASSERT(callback != NULL);
25473 
25474 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25475 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
25476 		connp = NULL;
25477 
25478 		while ((connp =
25479 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25480 
25481 			tcp = connp->conn_tcp;
25482 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
25483 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
25484 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
25485 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
25486 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
25487 			/*
25488 			 * The macros tcp_laddr and tcp_faddr give the IPv4
25489 			 * addresses. They are copied implicitly below as
25490 			 * mapped addresses.
25491 			 */
25492 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
25493 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25494 				cl_tcpi.cl_tcpi_faddr =
25495 				    tcp->tcp_ipha->ipha_dst;
25496 			} else {
25497 				cl_tcpi.cl_tcpi_faddr_v6 =
25498 				    tcp->tcp_ip6h->ip6_dst;
25499 			}
25500 
25501 			/*
25502 			 * If the callback returns non-zero
25503 			 * we terminate the traversal.
25504 			 */
25505 			if ((*callback)(&cl_tcpi, arg) != 0) {
25506 				CONN_DEC_REF(tcp->tcp_connp);
25507 				return (1);
25508 			}
25509 		}
25510 	}
25511 
25512 	return (0);
25513 }
25514 
25515 /*
25516  * Macros used for accessing the different types of sockaddr
25517  * structures inside a tcp_ioc_abort_conn_t.
25518  */
25519 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
25520 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
25521 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
25522 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
25523 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
25524 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
25525 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
25526 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
25527 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
25528 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
25529 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
25530 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
25531 
25532 /*
25533  * Return the correct error code to mimic the behavior
25534  * of a connection reset.
25535  */
25536 #define	TCP_AC_GET_ERRCODE(state, err) {	\
25537 		switch ((state)) {		\
25538 		case TCPS_SYN_SENT:		\
25539 		case TCPS_SYN_RCVD:		\
25540 			(err) = ECONNREFUSED;	\
25541 			break;			\
25542 		case TCPS_ESTABLISHED:		\
25543 		case TCPS_FIN_WAIT_1:		\
25544 		case TCPS_FIN_WAIT_2:		\
25545 		case TCPS_CLOSE_WAIT:		\
25546 			(err) = ECONNRESET;	\
25547 			break;			\
25548 		case TCPS_CLOSING:		\
25549 		case TCPS_LAST_ACK:		\
25550 		case TCPS_TIME_WAIT:		\
25551 			(err) = 0;		\
25552 			break;			\
25553 		default:			\
25554 			(err) = ENXIO;		\
25555 		}				\
25556 	}
25557 
25558 /*
25559  * Check if a tcp structure matches the info in acp.
25560  */
25561 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
25562 	(((acp)->ac_local.ss_family == AF_INET) ?		\
25563 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
25564 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
25565 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
25566 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
25567 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
25568 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
25569 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
25570 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
25571 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25572 	(acp)->ac_end >= (tcp)->tcp_state) :		\
25573 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
25574 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
25575 	&(tcp)->tcp_ip_src_v6)) &&				\
25576 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
25577 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
25578 	&(tcp)->tcp_remote_v6)) &&				\
25579 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
25580 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
25581 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
25582 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
25583 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25584 	(acp)->ac_end >= (tcp)->tcp_state))
25585 
25586 #define	TCP_AC_MATCH(acp, tcp)					\
25587 	(((acp)->ac_zoneid == ALL_ZONES ||			\
25588 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
25589 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
25590 
25591 /*
25592  * Build a message containing a tcp_ioc_abort_conn_t structure
25593  * which is filled in with information from acp and tp.
25594  */
25595 static mblk_t *
25596 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
25597 {
25598 	mblk_t *mp;
25599 	tcp_ioc_abort_conn_t *tacp;
25600 
25601 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
25602 	if (mp == NULL)
25603 		return (NULL);
25604 
25605 	mp->b_datap->db_type = M_CTL;
25606 
25607 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
25608 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
25609 	    sizeof (uint32_t));
25610 
25611 	tacp->ac_start = acp->ac_start;
25612 	tacp->ac_end = acp->ac_end;
25613 	tacp->ac_zoneid = acp->ac_zoneid;
25614 
25615 	if (acp->ac_local.ss_family == AF_INET) {
25616 		tacp->ac_local.ss_family = AF_INET;
25617 		tacp->ac_remote.ss_family = AF_INET;
25618 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
25619 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
25620 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
25621 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
25622 	} else {
25623 		tacp->ac_local.ss_family = AF_INET6;
25624 		tacp->ac_remote.ss_family = AF_INET6;
25625 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
25626 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
25627 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
25628 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
25629 	}
25630 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
25631 	return (mp);
25632 }
25633 
25634 /*
25635  * Print a tcp_ioc_abort_conn_t structure.
25636  */
25637 static void
25638 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
25639 {
25640 	char lbuf[128];
25641 	char rbuf[128];
25642 	sa_family_t af;
25643 	in_port_t lport, rport;
25644 	ushort_t logflags;
25645 
25646 	af = acp->ac_local.ss_family;
25647 
25648 	if (af == AF_INET) {
25649 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
25650 		    lbuf, 128);
25651 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
25652 		    rbuf, 128);
25653 		lport = ntohs(TCP_AC_V4LPORT(acp));
25654 		rport = ntohs(TCP_AC_V4RPORT(acp));
25655 	} else {
25656 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
25657 		    lbuf, 128);
25658 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
25659 		    rbuf, 128);
25660 		lport = ntohs(TCP_AC_V6LPORT(acp));
25661 		rport = ntohs(TCP_AC_V6RPORT(acp));
25662 	}
25663 
25664 	logflags = SL_TRACE | SL_NOTE;
25665 	/*
25666 	 * Don't print this message to the console if the operation was done
25667 	 * to a non-global zone.
25668 	 */
25669 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25670 		logflags |= SL_CONSOLE;
25671 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
25672 	    "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
25673 	    "start = %d, end = %d\n", lbuf, lport, rbuf, rport,
25674 	    acp->ac_start, acp->ac_end);
25675 }
25676 
25677 /*
25678  * Called inside tcp_rput when a message built using
25679  * tcp_ioctl_abort_build_msg is put into a queue.
25680  * Note that when we get here there is no wildcard in acp any more.
25681  */
25682 static void
25683 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
25684 {
25685 	tcp_ioc_abort_conn_t *acp;
25686 
25687 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
25688 	if (tcp->tcp_state <= acp->ac_end) {
25689 		/*
25690 		 * If we get here, we are already on the correct
25691 		 * squeue. This ioctl follows the following path
25692 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
25693 		 * ->tcp_ioctl_abort->squeue_fill (if on a
25694 		 * different squeue)
25695 		 */
25696 		int errcode;
25697 
25698 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
25699 		(void) tcp_clean_death(tcp, errcode, 26);
25700 	}
25701 	freemsg(mp);
25702 }
25703 
25704 /*
25705  * Abort all matching connections on a hash chain.
25706  */
25707 static int
25708 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
25709     boolean_t exact, tcp_stack_t *tcps)
25710 {
25711 	int nmatch, err = 0;
25712 	tcp_t *tcp;
25713 	MBLKP mp, last, listhead = NULL;
25714 	conn_t	*tconnp;
25715 	connf_t	*connfp;
25716 	ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25717 
25718 	connfp = &ipst->ips_ipcl_conn_fanout[index];
25719 
25720 startover:
25721 	nmatch = 0;
25722 
25723 	mutex_enter(&connfp->connf_lock);
25724 	for (tconnp = connfp->connf_head; tconnp != NULL;
25725 	    tconnp = tconnp->conn_next) {
25726 		tcp = tconnp->conn_tcp;
25727 		if (TCP_AC_MATCH(acp, tcp)) {
25728 			CONN_INC_REF(tcp->tcp_connp);
25729 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
25730 			if (mp == NULL) {
25731 				err = ENOMEM;
25732 				CONN_DEC_REF(tcp->tcp_connp);
25733 				break;
25734 			}
25735 			mp->b_prev = (mblk_t *)tcp;
25736 
25737 			if (listhead == NULL) {
25738 				listhead = mp;
25739 				last = mp;
25740 			} else {
25741 				last->b_next = mp;
25742 				last = mp;
25743 			}
25744 			nmatch++;
25745 			if (exact)
25746 				break;
25747 		}
25748 
25749 		/* Avoid holding lock for too long. */
25750 		if (nmatch >= 500)
25751 			break;
25752 	}
25753 	mutex_exit(&connfp->connf_lock);
25754 
25755 	/* Pass mp into the correct tcp */
25756 	while ((mp = listhead) != NULL) {
25757 		listhead = listhead->b_next;
25758 		tcp = (tcp_t *)mp->b_prev;
25759 		mp->b_next = mp->b_prev = NULL;
25760 		squeue_fill(tcp->tcp_connp->conn_sqp, mp,
25761 		    tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET);
25762 	}
25763 
25764 	*count += nmatch;
25765 	if (nmatch >= 500 && err == 0)
25766 		goto startover;
25767 	return (err);
25768 }
25769 
25770 /*
25771  * Abort all connections that matches the attributes specified in acp.
25772  */
25773 static int
25774 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps)
25775 {
25776 	sa_family_t af;
25777 	uint32_t  ports;
25778 	uint16_t *pports;
25779 	int err = 0, count = 0;
25780 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
25781 	int index = -1;
25782 	ushort_t logflags;
25783 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25784 
25785 	af = acp->ac_local.ss_family;
25786 
25787 	if (af == AF_INET) {
25788 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
25789 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
25790 			pports = (uint16_t *)&ports;
25791 			pports[1] = TCP_AC_V4LPORT(acp);
25792 			pports[0] = TCP_AC_V4RPORT(acp);
25793 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
25794 		}
25795 	} else {
25796 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
25797 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
25798 			pports = (uint16_t *)&ports;
25799 			pports[1] = TCP_AC_V6LPORT(acp);
25800 			pports[0] = TCP_AC_V6RPORT(acp);
25801 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
25802 		}
25803 	}
25804 
25805 	/*
25806 	 * For cases where remote addr, local port, and remote port are non-
25807 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
25808 	 */
25809 	if (index != -1) {
25810 		err = tcp_ioctl_abort_bucket(acp, index,
25811 		    &count, exact, tcps);
25812 	} else {
25813 		/*
25814 		 * loop through all entries for wildcard case
25815 		 */
25816 		for (index = 0;
25817 		    index < ipst->ips_ipcl_conn_fanout_size;
25818 		    index++) {
25819 			err = tcp_ioctl_abort_bucket(acp, index,
25820 			    &count, exact, tcps);
25821 			if (err != 0)
25822 				break;
25823 		}
25824 	}
25825 
25826 	logflags = SL_TRACE | SL_NOTE;
25827 	/*
25828 	 * Don't print this message to the console if the operation was done
25829 	 * to a non-global zone.
25830 	 */
25831 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25832 		logflags |= SL_CONSOLE;
25833 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
25834 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
25835 	if (err == 0 && count == 0)
25836 		err = ENOENT;
25837 	return (err);
25838 }
25839 
25840 /*
25841  * Process the TCP_IOC_ABORT_CONN ioctl request.
25842  */
25843 static void
25844 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
25845 {
25846 	int	err;
25847 	IOCP    iocp;
25848 	MBLKP   mp1;
25849 	sa_family_t laf, raf;
25850 	tcp_ioc_abort_conn_t *acp;
25851 	zone_t		*zptr;
25852 	conn_t		*connp = Q_TO_CONN(q);
25853 	zoneid_t	zoneid = connp->conn_zoneid;
25854 	tcp_t		*tcp = connp->conn_tcp;
25855 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25856 
25857 	iocp = (IOCP)mp->b_rptr;
25858 
25859 	if ((mp1 = mp->b_cont) == NULL ||
25860 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
25861 		err = EINVAL;
25862 		goto out;
25863 	}
25864 
25865 	/* check permissions */
25866 	if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
25867 		err = EPERM;
25868 		goto out;
25869 	}
25870 
25871 	if (mp1->b_cont != NULL) {
25872 		freemsg(mp1->b_cont);
25873 		mp1->b_cont = NULL;
25874 	}
25875 
25876 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
25877 	laf = acp->ac_local.ss_family;
25878 	raf = acp->ac_remote.ss_family;
25879 
25880 	/* check that a zone with the supplied zoneid exists */
25881 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
25882 		zptr = zone_find_by_id(zoneid);
25883 		if (zptr != NULL) {
25884 			zone_rele(zptr);
25885 		} else {
25886 			err = EINVAL;
25887 			goto out;
25888 		}
25889 	}
25890 
25891 	/*
25892 	 * For exclusive stacks we set the zoneid to zero
25893 	 * to make TCP operate as if in the global zone.
25894 	 */
25895 	if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID)
25896 		acp->ac_zoneid = GLOBAL_ZONEID;
25897 
25898 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
25899 	    acp->ac_start > acp->ac_end || laf != raf ||
25900 	    (laf != AF_INET && laf != AF_INET6)) {
25901 		err = EINVAL;
25902 		goto out;
25903 	}
25904 
25905 	tcp_ioctl_abort_dump(acp);
25906 	err = tcp_ioctl_abort(acp, tcps);
25907 
25908 out:
25909 	if (mp1 != NULL) {
25910 		freemsg(mp1);
25911 		mp->b_cont = NULL;
25912 	}
25913 
25914 	if (err != 0)
25915 		miocnak(q, mp, 0, err);
25916 	else
25917 		miocack(q, mp, 0, 0);
25918 }
25919 
25920 /*
25921  * tcp_time_wait_processing() handles processing of incoming packets when
25922  * the tcp is in the TIME_WAIT state.
25923  * A TIME_WAIT tcp that has an associated open TCP stream is never put
25924  * on the time wait list.
25925  */
25926 void
25927 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
25928     uint32_t seg_ack, int seg_len, tcph_t *tcph)
25929 {
25930 	int32_t		bytes_acked;
25931 	int32_t		gap;
25932 	int32_t		rgap;
25933 	tcp_opt_t	tcpopt;
25934 	uint_t		flags;
25935 	uint32_t	new_swnd = 0;
25936 	conn_t		*connp;
25937 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25938 
25939 	BUMP_LOCAL(tcp->tcp_ibsegs);
25940 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
25941 
25942 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
25943 	new_swnd = BE16_TO_U16(tcph->th_win) <<
25944 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
25945 	if (tcp->tcp_snd_ts_ok) {
25946 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
25947 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25948 			    tcp->tcp_rnxt, TH_ACK);
25949 			goto done;
25950 		}
25951 	}
25952 	gap = seg_seq - tcp->tcp_rnxt;
25953 	rgap = tcp->tcp_rwnd - (gap + seg_len);
25954 	if (gap < 0) {
25955 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
25956 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
25957 		    (seg_len > -gap ? -gap : seg_len));
25958 		seg_len += gap;
25959 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
25960 			if (flags & TH_RST) {
25961 				goto done;
25962 			}
25963 			if ((flags & TH_FIN) && seg_len == -1) {
25964 				/*
25965 				 * When TCP receives a duplicate FIN in
25966 				 * TIME_WAIT state, restart the 2 MSL timer.
25967 				 * See page 73 in RFC 793. Make sure this TCP
25968 				 * is already on the TIME_WAIT list. If not,
25969 				 * just restart the timer.
25970 				 */
25971 				if (TCP_IS_DETACHED(tcp)) {
25972 					if (tcp_time_wait_remove(tcp, NULL) ==
25973 					    B_TRUE) {
25974 						tcp_time_wait_append(tcp);
25975 						TCP_DBGSTAT(tcps,
25976 						    tcp_rput_time_wait);
25977 					}
25978 				} else {
25979 					ASSERT(tcp != NULL);
25980 					TCP_TIMER_RESTART(tcp,
25981 					    tcps->tcps_time_wait_interval);
25982 				}
25983 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25984 				    tcp->tcp_rnxt, TH_ACK);
25985 				goto done;
25986 			}
25987 			flags |=  TH_ACK_NEEDED;
25988 			seg_len = 0;
25989 			goto process_ack;
25990 		}
25991 
25992 		/* Fix seg_seq, and chew the gap off the front. */
25993 		seg_seq = tcp->tcp_rnxt;
25994 	}
25995 
25996 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
25997 		/*
25998 		 * Make sure that when we accept the connection, pick
25999 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
26000 		 * old connection.
26001 		 *
26002 		 * The next ISS generated is equal to tcp_iss_incr_extra
26003 		 * + ISS_INCR/2 + other components depending on the
26004 		 * value of tcp_strong_iss.  We pre-calculate the new
26005 		 * ISS here and compare with tcp_snxt to determine if
26006 		 * we need to make adjustment to tcp_iss_incr_extra.
26007 		 *
26008 		 * The above calculation is ugly and is a
26009 		 * waste of CPU cycles...
26010 		 */
26011 		uint32_t new_iss = tcps->tcps_iss_incr_extra;
26012 		int32_t adj;
26013 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
26014 
26015 		switch (tcps->tcps_strong_iss) {
26016 		case 2: {
26017 			/* Add time and MD5 components. */
26018 			uint32_t answer[4];
26019 			struct {
26020 				uint32_t ports;
26021 				in6_addr_t src;
26022 				in6_addr_t dst;
26023 			} arg;
26024 			MD5_CTX context;
26025 
26026 			mutex_enter(&tcps->tcps_iss_key_lock);
26027 			context = tcps->tcps_iss_key;
26028 			mutex_exit(&tcps->tcps_iss_key_lock);
26029 			arg.ports = tcp->tcp_ports;
26030 			/* We use MAPPED addresses in tcp_iss_init */
26031 			arg.src = tcp->tcp_ip_src_v6;
26032 			if (tcp->tcp_ipversion == IPV4_VERSION) {
26033 				IN6_IPADDR_TO_V4MAPPED(
26034 				    tcp->tcp_ipha->ipha_dst,
26035 				    &arg.dst);
26036 			} else {
26037 				arg.dst =
26038 				    tcp->tcp_ip6h->ip6_dst;
26039 			}
26040 			MD5Update(&context, (uchar_t *)&arg,
26041 			    sizeof (arg));
26042 			MD5Final((uchar_t *)answer, &context);
26043 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
26044 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
26045 			break;
26046 		}
26047 		case 1:
26048 			/* Add time component and min random (i.e. 1). */
26049 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
26050 			break;
26051 		default:
26052 			/* Add only time component. */
26053 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
26054 			break;
26055 		}
26056 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
26057 			/*
26058 			 * New ISS not guaranteed to be ISS_INCR/2
26059 			 * ahead of the current tcp_snxt, so add the
26060 			 * difference to tcp_iss_incr_extra.
26061 			 */
26062 			tcps->tcps_iss_incr_extra += adj;
26063 		}
26064 		/*
26065 		 * If tcp_clean_death() can not perform the task now,
26066 		 * drop the SYN packet and let the other side re-xmit.
26067 		 * Otherwise pass the SYN packet back in, since the
26068 		 * old tcp state has been cleaned up or freed.
26069 		 */
26070 		if (tcp_clean_death(tcp, 0, 27) == -1)
26071 			goto done;
26072 		/*
26073 		 * We will come back to tcp_rput_data
26074 		 * on the global queue. Packets destined
26075 		 * for the global queue will be checked
26076 		 * with global policy. But the policy for
26077 		 * this packet has already been checked as
26078 		 * this was destined for the detached
26079 		 * connection. We need to bypass policy
26080 		 * check this time by attaching a dummy
26081 		 * ipsec_in with ipsec_in_dont_check set.
26082 		 */
26083 		connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst);
26084 		if (connp != NULL) {
26085 			TCP_STAT(tcps, tcp_time_wait_syn_success);
26086 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
26087 			return;
26088 		}
26089 		goto done;
26090 	}
26091 
26092 	/*
26093 	 * rgap is the amount of stuff received out of window.  A negative
26094 	 * value is the amount out of window.
26095 	 */
26096 	if (rgap < 0) {
26097 		BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
26098 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap);
26099 		/* Fix seg_len and make sure there is something left. */
26100 		seg_len += rgap;
26101 		if (seg_len <= 0) {
26102 			if (flags & TH_RST) {
26103 				goto done;
26104 			}
26105 			flags |=  TH_ACK_NEEDED;
26106 			seg_len = 0;
26107 			goto process_ack;
26108 		}
26109 	}
26110 	/*
26111 	 * Check whether we can update tcp_ts_recent.  This test is
26112 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
26113 	 * Extensions for High Performance: An Update", Internet Draft.
26114 	 */
26115 	if (tcp->tcp_snd_ts_ok &&
26116 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
26117 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
26118 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
26119 		tcp->tcp_last_rcv_lbolt = lbolt64;
26120 	}
26121 
26122 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
26123 		/* Always ack out of order packets */
26124 		flags |= TH_ACK_NEEDED;
26125 		seg_len = 0;
26126 	} else if (seg_len > 0) {
26127 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
26128 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
26129 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
26130 	}
26131 	if (flags & TH_RST) {
26132 		(void) tcp_clean_death(tcp, 0, 28);
26133 		goto done;
26134 	}
26135 	if (flags & TH_SYN) {
26136 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
26137 		    TH_RST|TH_ACK);
26138 		/*
26139 		 * Do not delete the TCP structure if it is in
26140 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
26141 		 */
26142 		goto done;
26143 	}
26144 process_ack:
26145 	if (flags & TH_ACK) {
26146 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
26147 		if (bytes_acked <= 0) {
26148 			if (bytes_acked == 0 && seg_len == 0 &&
26149 			    new_swnd == tcp->tcp_swnd)
26150 				BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
26151 		} else {
26152 			/* Acks something not sent */
26153 			flags |= TH_ACK_NEEDED;
26154 		}
26155 	}
26156 	if (flags & TH_ACK_NEEDED) {
26157 		/*
26158 		 * Time to send an ack for some reason.
26159 		 */
26160 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
26161 		    tcp->tcp_rnxt, TH_ACK);
26162 	}
26163 done:
26164 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
26165 		DB_CKSUMSTART(mp) = 0;
26166 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
26167 		TCP_STAT(tcps, tcp_time_wait_syn_fail);
26168 	}
26169 	freemsg(mp);
26170 }
26171 
26172 /*
26173  * Allocate a T_SVR4_OPTMGMT_REQ.
26174  * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so
26175  * that tcp_rput_other can drop the acks.
26176  */
26177 static mblk_t *
26178 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen)
26179 {
26180 	mblk_t *mp;
26181 	struct T_optmgmt_req *tor;
26182 	struct opthdr *oh;
26183 	uint_t size;
26184 	char *optptr;
26185 
26186 	size = sizeof (*tor) + sizeof (*oh) + optlen;
26187 	mp = allocb(size, BPRI_MED);
26188 	if (mp == NULL)
26189 		return (NULL);
26190 
26191 	mp->b_wptr += size;
26192 	mp->b_datap->db_type = M_PROTO;
26193 	tor = (struct T_optmgmt_req *)mp->b_rptr;
26194 	tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
26195 	tor->MGMT_flags = T_NEGOTIATE;
26196 	tor->OPT_length = sizeof (*oh) + optlen;
26197 	tor->OPT_offset = (t_scalar_t)sizeof (*tor);
26198 
26199 	oh = (struct opthdr *)&tor[1];
26200 	oh->level = level;
26201 	oh->name = cmd;
26202 	oh->len = optlen;
26203 	if (optlen != 0) {
26204 		optptr = (char *)&oh[1];
26205 		bcopy(opt, optptr, optlen);
26206 	}
26207 	return (mp);
26208 }
26209 
26210 /*
26211  * TCP Timers Implementation.
26212  */
26213 timeout_id_t
26214 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
26215 {
26216 	mblk_t *mp;
26217 	tcp_timer_t *tcpt;
26218 	tcp_t *tcp = connp->conn_tcp;
26219 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26220 
26221 	ASSERT(connp->conn_sqp != NULL);
26222 
26223 	TCP_DBGSTAT(tcps, tcp_timeout_calls);
26224 
26225 	if (tcp->tcp_timercache == NULL) {
26226 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
26227 	} else {
26228 		TCP_DBGSTAT(tcps, tcp_timeout_cached_alloc);
26229 		mp = tcp->tcp_timercache;
26230 		tcp->tcp_timercache = mp->b_next;
26231 		mp->b_next = NULL;
26232 		ASSERT(mp->b_wptr == NULL);
26233 	}
26234 
26235 	CONN_INC_REF(connp);
26236 	tcpt = (tcp_timer_t *)mp->b_rptr;
26237 	tcpt->connp = connp;
26238 	tcpt->tcpt_proc = f;
26239 	tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim);
26240 	return ((timeout_id_t)mp);
26241 }
26242 
26243 static void
26244 tcp_timer_callback(void *arg)
26245 {
26246 	mblk_t *mp = (mblk_t *)arg;
26247 	tcp_timer_t *tcpt;
26248 	conn_t	*connp;
26249 
26250 	tcpt = (tcp_timer_t *)mp->b_rptr;
26251 	connp = tcpt->connp;
26252 	squeue_fill(connp->conn_sqp, mp,
26253 	    tcp_timer_handler, connp, SQTAG_TCP_TIMER);
26254 }
26255 
26256 static void
26257 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
26258 {
26259 	tcp_timer_t *tcpt;
26260 	conn_t *connp = (conn_t *)arg;
26261 	tcp_t *tcp = connp->conn_tcp;
26262 
26263 	tcpt = (tcp_timer_t *)mp->b_rptr;
26264 	ASSERT(connp == tcpt->connp);
26265 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
26266 
26267 	/*
26268 	 * If the TCP has reached the closed state, don't proceed any
26269 	 * further. This TCP logically does not exist on the system.
26270 	 * tcpt_proc could for example access queues, that have already
26271 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
26272 	 */
26273 	if (tcp->tcp_state != TCPS_CLOSED) {
26274 		(*tcpt->tcpt_proc)(connp);
26275 	} else {
26276 		tcp->tcp_timer_tid = 0;
26277 	}
26278 	tcp_timer_free(connp->conn_tcp, mp);
26279 }
26280 
26281 /*
26282  * There is potential race with untimeout and the handler firing at the same
26283  * time. The mblock may be freed by the handler while we are trying to use
26284  * it. But since both should execute on the same squeue, this race should not
26285  * occur.
26286  */
26287 clock_t
26288 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
26289 {
26290 	mblk_t	*mp = (mblk_t *)id;
26291 	tcp_timer_t *tcpt;
26292 	clock_t delta;
26293 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26294 
26295 	TCP_DBGSTAT(tcps, tcp_timeout_cancel_reqs);
26296 
26297 	if (mp == NULL)
26298 		return (-1);
26299 
26300 	tcpt = (tcp_timer_t *)mp->b_rptr;
26301 	ASSERT(tcpt->connp == connp);
26302 
26303 	delta = untimeout(tcpt->tcpt_tid);
26304 
26305 	if (delta >= 0) {
26306 		TCP_DBGSTAT(tcps, tcp_timeout_canceled);
26307 		tcp_timer_free(connp->conn_tcp, mp);
26308 		CONN_DEC_REF(connp);
26309 	}
26310 
26311 	return (delta);
26312 }
26313 
26314 /*
26315  * Allocate space for the timer event. The allocation looks like mblk, but it is
26316  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
26317  *
26318  * Dealing with failures: If we can't allocate from the timer cache we try
26319  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
26320  * points to b_rptr.
26321  * If we can't allocate anything using allocb_tryhard(), we perform a last
26322  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
26323  * save the actual allocation size in b_datap.
26324  */
26325 mblk_t *
26326 tcp_timermp_alloc(int kmflags)
26327 {
26328 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
26329 	    kmflags & ~KM_PANIC);
26330 
26331 	if (mp != NULL) {
26332 		mp->b_next = mp->b_prev = NULL;
26333 		mp->b_rptr = (uchar_t *)(&mp[1]);
26334 		mp->b_wptr = NULL;
26335 		mp->b_datap = NULL;
26336 		mp->b_queue = NULL;
26337 		mp->b_cont = NULL;
26338 	} else if (kmflags & KM_PANIC) {
26339 		/*
26340 		 * Failed to allocate memory for the timer. Try allocating from
26341 		 * dblock caches.
26342 		 */
26343 		/* ipclassifier calls this from a constructor - hence no tcps */
26344 		TCP_G_STAT(tcp_timermp_allocfail);
26345 		mp = allocb_tryhard(sizeof (tcp_timer_t));
26346 		if (mp == NULL) {
26347 			size_t size = 0;
26348 			/*
26349 			 * Memory is really low. Try tryhard allocation.
26350 			 *
26351 			 * ipclassifier calls this from a constructor -
26352 			 * hence no tcps
26353 			 */
26354 			TCP_G_STAT(tcp_timermp_allocdblfail);
26355 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
26356 			    sizeof (tcp_timer_t), &size, kmflags);
26357 			mp->b_rptr = (uchar_t *)(&mp[1]);
26358 			mp->b_next = mp->b_prev = NULL;
26359 			mp->b_wptr = (uchar_t *)-1;
26360 			mp->b_datap = (dblk_t *)size;
26361 			mp->b_queue = NULL;
26362 			mp->b_cont = NULL;
26363 		}
26364 		ASSERT(mp->b_wptr != NULL);
26365 	}
26366 	/* ipclassifier calls this from a constructor - hence no tcps */
26367 	TCP_G_DBGSTAT(tcp_timermp_alloced);
26368 
26369 	return (mp);
26370 }
26371 
26372 /*
26373  * Free per-tcp timer cache.
26374  * It can only contain entries from tcp_timercache.
26375  */
26376 void
26377 tcp_timermp_free(tcp_t *tcp)
26378 {
26379 	mblk_t *mp;
26380 
26381 	while ((mp = tcp->tcp_timercache) != NULL) {
26382 		ASSERT(mp->b_wptr == NULL);
26383 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
26384 		kmem_cache_free(tcp_timercache, mp);
26385 	}
26386 }
26387 
26388 /*
26389  * Free timer event. Put it on the per-tcp timer cache if there is not too many
26390  * events there already (currently at most two events are cached).
26391  * If the event is not allocated from the timer cache, free it right away.
26392  */
26393 static void
26394 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
26395 {
26396 	mblk_t *mp1 = tcp->tcp_timercache;
26397 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26398 
26399 	if (mp->b_wptr != NULL) {
26400 		/*
26401 		 * This allocation is not from a timer cache, free it right
26402 		 * away.
26403 		 */
26404 		if (mp->b_wptr != (uchar_t *)-1)
26405 			freeb(mp);
26406 		else
26407 			kmem_free(mp, (size_t)mp->b_datap);
26408 	} else if (mp1 == NULL || mp1->b_next == NULL) {
26409 		/* Cache this timer block for future allocations */
26410 		mp->b_rptr = (uchar_t *)(&mp[1]);
26411 		mp->b_next = mp1;
26412 		tcp->tcp_timercache = mp;
26413 	} else {
26414 		kmem_cache_free(tcp_timercache, mp);
26415 		TCP_DBGSTAT(tcps, tcp_timermp_freed);
26416 	}
26417 }
26418 
26419 /*
26420  * End of TCP Timers implementation.
26421  */
26422 
26423 /*
26424  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
26425  * on the specified backing STREAMS q. Note, the caller may make the
26426  * decision to call based on the tcp_t.tcp_flow_stopped value which
26427  * when check outside the q's lock is only an advisory check ...
26428  */
26429 
26430 void
26431 tcp_setqfull(tcp_t *tcp)
26432 {
26433 	queue_t *q = tcp->tcp_wq;
26434 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26435 
26436 	if (!(q->q_flag & QFULL)) {
26437 		mutex_enter(QLOCK(q));
26438 		if (!(q->q_flag & QFULL)) {
26439 			/* still need to set QFULL */
26440 			q->q_flag |= QFULL;
26441 			tcp->tcp_flow_stopped = B_TRUE;
26442 			mutex_exit(QLOCK(q));
26443 			TCP_STAT(tcps, tcp_flwctl_on);
26444 		} else {
26445 			mutex_exit(QLOCK(q));
26446 		}
26447 	}
26448 }
26449 
26450 void
26451 tcp_clrqfull(tcp_t *tcp)
26452 {
26453 	queue_t *q = tcp->tcp_wq;
26454 
26455 	if (q->q_flag & QFULL) {
26456 		mutex_enter(QLOCK(q));
26457 		if (q->q_flag & QFULL) {
26458 			q->q_flag &= ~QFULL;
26459 			tcp->tcp_flow_stopped = B_FALSE;
26460 			mutex_exit(QLOCK(q));
26461 			if (q->q_flag & QWANTW)
26462 				qbackenable(q, 0);
26463 		} else {
26464 			mutex_exit(QLOCK(q));
26465 		}
26466 	}
26467 }
26468 
26469 
26470 /*
26471  * kstats related to squeues i.e. not per IP instance
26472  */
26473 static void *
26474 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp)
26475 {
26476 	kstat_t *ksp;
26477 
26478 	tcp_g_stat_t template = {
26479 		{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
26480 		{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
26481 		{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
26482 		{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
26483 	};
26484 
26485 	ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net",
26486 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26487 	    KSTAT_FLAG_VIRTUAL);
26488 
26489 	if (ksp == NULL)
26490 		return (NULL);
26491 
26492 	bcopy(&template, tcp_g_statp, sizeof (template));
26493 	ksp->ks_data = (void *)tcp_g_statp;
26494 
26495 	kstat_install(ksp);
26496 	return (ksp);
26497 }
26498 
26499 static void
26500 tcp_g_kstat_fini(kstat_t *ksp)
26501 {
26502 	if (ksp != NULL) {
26503 		kstat_delete(ksp);
26504 	}
26505 }
26506 
26507 
26508 static void *
26509 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp)
26510 {
26511 	kstat_t *ksp;
26512 
26513 	tcp_stat_t template = {
26514 		{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
26515 		{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
26516 		{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
26517 		{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
26518 		{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
26519 		{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
26520 		{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
26521 		{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
26522 		{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
26523 		{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
26524 		{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
26525 		{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
26526 		{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
26527 		{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
26528 		{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
26529 		{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
26530 		{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
26531 		{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
26532 		{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
26533 		{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
26534 		{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
26535 		{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
26536 		{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
26537 		{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
26538 		{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
26539 		{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
26540 		{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
26541 		{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
26542 		{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
26543 		{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
26544 		{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
26545 		{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
26546 		{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
26547 		{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
26548 		{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
26549 		{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
26550 		{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
26551 		{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
26552 		{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
26553 		{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
26554 		{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
26555 		{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
26556 		{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
26557 		{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
26558 		{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
26559 		{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
26560 		{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
26561 		{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
26562 		{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
26563 		{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
26564 		{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
26565 		{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
26566 		{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
26567 		{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
26568 		{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
26569 		{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
26570 		{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
26571 		{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
26572 		{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
26573 		{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
26574 		{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
26575 		{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
26576 		{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
26577 		{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
26578 		{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
26579 		{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
26580 		{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
26581 		{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
26582 		{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
26583 		{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
26584 		{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
26585 		{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
26586 		{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
26587 		{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
26588 		{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
26589 		{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
26590 		{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
26591 		{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
26592 		{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
26593 		{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
26594 		{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
26595 		{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
26596 		{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
26597 		{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
26598 		{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
26599 		{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
26600 		{ "tcp_lso_enabled",		KSTAT_DATA_UINT64 },
26601 		{ "tcp_lso_disabled",		KSTAT_DATA_UINT64 },
26602 		{ "tcp_lso_times",		KSTAT_DATA_UINT64 },
26603 		{ "tcp_lso_pkt_out",		KSTAT_DATA_UINT64 },
26604 	};
26605 
26606 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net",
26607 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26608 	    KSTAT_FLAG_VIRTUAL, stackid);
26609 
26610 	if (ksp == NULL)
26611 		return (NULL);
26612 
26613 	bcopy(&template, tcps_statisticsp, sizeof (template));
26614 	ksp->ks_data = (void *)tcps_statisticsp;
26615 	ksp->ks_private = (void *)(uintptr_t)stackid;
26616 
26617 	kstat_install(ksp);
26618 	return (ksp);
26619 }
26620 
26621 static void
26622 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
26623 {
26624 	if (ksp != NULL) {
26625 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26626 		kstat_delete_netstack(ksp, stackid);
26627 	}
26628 }
26629 
26630 /*
26631  * TCP Kstats implementation
26632  */
26633 static void *
26634 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps)
26635 {
26636 	kstat_t	*ksp;
26637 
26638 	tcp_named_kstat_t template = {
26639 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
26640 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
26641 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
26642 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
26643 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
26644 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
26645 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
26646 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
26647 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
26648 		{ "inSegs",		KSTAT_DATA_UINT64, 0 },
26649 		{ "outSegs",		KSTAT_DATA_UINT64, 0 },
26650 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
26651 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
26652 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
26653 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
26654 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
26655 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
26656 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
26657 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
26658 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
26659 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
26660 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
26661 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
26662 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
26663 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
26664 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
26665 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
26666 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
26667 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
26668 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
26669 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
26670 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
26671 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
26672 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
26673 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
26674 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
26675 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
26676 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
26677 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
26678 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
26679 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
26680 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
26681 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
26682 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
26683 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
26684 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
26685 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
26686 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
26687 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
26688 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
26689 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
26690 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
26691 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
26692 	};
26693 
26694 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2",
26695 	    KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid);
26696 
26697 	if (ksp == NULL)
26698 		return (NULL);
26699 
26700 	template.rtoAlgorithm.value.ui32 = 4;
26701 	template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min;
26702 	template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max;
26703 	template.maxConn.value.i32 = -1;
26704 
26705 	bcopy(&template, ksp->ks_data, sizeof (template));
26706 	ksp->ks_update = tcp_kstat_update;
26707 	ksp->ks_private = (void *)(uintptr_t)stackid;
26708 
26709 	kstat_install(ksp);
26710 	return (ksp);
26711 }
26712 
26713 static void
26714 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
26715 {
26716 	if (ksp != NULL) {
26717 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26718 		kstat_delete_netstack(ksp, stackid);
26719 	}
26720 }
26721 
26722 static int
26723 tcp_kstat_update(kstat_t *kp, int rw)
26724 {
26725 	tcp_named_kstat_t *tcpkp;
26726 	tcp_t		*tcp;
26727 	connf_t		*connfp;
26728 	conn_t		*connp;
26729 	int 		i;
26730 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
26731 	netstack_t	*ns;
26732 	tcp_stack_t	*tcps;
26733 	ip_stack_t	*ipst;
26734 
26735 	if ((kp == NULL) || (kp->ks_data == NULL))
26736 		return (EIO);
26737 
26738 	if (rw == KSTAT_WRITE)
26739 		return (EACCES);
26740 
26741 	ns = netstack_find_by_stackid(stackid);
26742 	if (ns == NULL)
26743 		return (-1);
26744 	tcps = ns->netstack_tcp;
26745 	if (tcps == NULL) {
26746 		netstack_rele(ns);
26747 		return (-1);
26748 	}
26749 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
26750 
26751 	tcpkp->currEstab.value.ui32 = 0;
26752 
26753 	ipst = ns->netstack_ip;
26754 
26755 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
26756 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
26757 		connp = NULL;
26758 		while ((connp =
26759 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
26760 			tcp = connp->conn_tcp;
26761 			switch (tcp_snmp_state(tcp)) {
26762 			case MIB2_TCP_established:
26763 			case MIB2_TCP_closeWait:
26764 				tcpkp->currEstab.value.ui32++;
26765 				break;
26766 			}
26767 		}
26768 	}
26769 
26770 	tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens;
26771 	tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens;
26772 	tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails;
26773 	tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets;
26774 	tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs;
26775 	tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs;
26776 	tcpkp->retransSegs.value.ui32 =	tcps->tcps_mib.tcpRetransSegs;
26777 	tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize;
26778 	tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts;
26779 	tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs;
26780 	tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes;
26781 	tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes;
26782 	tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck;
26783 	tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed;
26784 	tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg;
26785 	tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate;
26786 	tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe;
26787 	tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl;
26788 	tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans;
26789 	tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs;
26790 	tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes;
26791 	tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck;
26792 	tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent;
26793 	tcpkp->inDataInorderSegs.value.ui32 =
26794 	    tcps->tcps_mib.tcpInDataInorderSegs;
26795 	tcpkp->inDataInorderBytes.value.ui32 =
26796 	    tcps->tcps_mib.tcpInDataInorderBytes;
26797 	tcpkp->inDataUnorderSegs.value.ui32 =
26798 	    tcps->tcps_mib.tcpInDataUnorderSegs;
26799 	tcpkp->inDataUnorderBytes.value.ui32 =
26800 	    tcps->tcps_mib.tcpInDataUnorderBytes;
26801 	tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs;
26802 	tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes;
26803 	tcpkp->inDataPartDupSegs.value.ui32 =
26804 	    tcps->tcps_mib.tcpInDataPartDupSegs;
26805 	tcpkp->inDataPartDupBytes.value.ui32 =
26806 	    tcps->tcps_mib.tcpInDataPartDupBytes;
26807 	tcpkp->inDataPastWinSegs.value.ui32 =
26808 	    tcps->tcps_mib.tcpInDataPastWinSegs;
26809 	tcpkp->inDataPastWinBytes.value.ui32 =
26810 	    tcps->tcps_mib.tcpInDataPastWinBytes;
26811 	tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe;
26812 	tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate;
26813 	tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed;
26814 	tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate;
26815 	tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate;
26816 	tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans;
26817 	tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop;
26818 	tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive;
26819 	tcpkp->timKeepaliveProbe.value.ui32 =
26820 	    tcps->tcps_mib.tcpTimKeepaliveProbe;
26821 	tcpkp->timKeepaliveDrop.value.ui32 =
26822 	    tcps->tcps_mib.tcpTimKeepaliveDrop;
26823 	tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop;
26824 	tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0;
26825 	tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop;
26826 	tcpkp->outSackRetransSegs.value.ui32 =
26827 	    tcps->tcps_mib.tcpOutSackRetransSegs;
26828 	tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize;
26829 
26830 	netstack_rele(ns);
26831 	return (0);
26832 }
26833 
26834 void
26835 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
26836 {
26837 	uint16_t	hdr_len;
26838 	ipha_t		*ipha;
26839 	uint8_t		*nexthdrp;
26840 	tcph_t		*tcph;
26841 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26842 
26843 	/* Already has an eager */
26844 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
26845 		TCP_STAT(tcps, tcp_reinput_syn);
26846 		squeue_enter(connp->conn_sqp, mp, connp->conn_recv,
26847 		    connp, SQTAG_TCP_REINPUT_EAGER);
26848 		return;
26849 	}
26850 
26851 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
26852 	case IPV4_VERSION:
26853 		ipha = (ipha_t *)mp->b_rptr;
26854 		hdr_len = IPH_HDR_LENGTH(ipha);
26855 		break;
26856 	case IPV6_VERSION:
26857 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
26858 		    &hdr_len, &nexthdrp)) {
26859 			CONN_DEC_REF(connp);
26860 			freemsg(mp);
26861 			return;
26862 		}
26863 		break;
26864 	}
26865 
26866 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
26867 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
26868 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
26869 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
26870 	}
26871 
26872 	squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp,
26873 	    SQTAG_TCP_REINPUT);
26874 }
26875 
26876 static squeue_func_t
26877 tcp_squeue_switch(int val)
26878 {
26879 	squeue_func_t rval = squeue_fill;
26880 
26881 	switch (val) {
26882 	case 1:
26883 		rval = squeue_enter_nodrain;
26884 		break;
26885 	case 2:
26886 		rval = squeue_enter;
26887 		break;
26888 	default:
26889 		break;
26890 	}
26891 	return (rval);
26892 }
26893 
26894 /*
26895  * This is called once for each squeue - globally for all stack
26896  * instances.
26897  */
26898 static void
26899 tcp_squeue_add(squeue_t *sqp)
26900 {
26901 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
26902 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
26903 
26904 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
26905 	tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector,
26906 	    sqp, TCP_TIME_WAIT_DELAY);
26907 	if (tcp_free_list_max_cnt == 0) {
26908 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
26909 		    max_ncpus : boot_max_ncpus);
26910 
26911 		/*
26912 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
26913 		 */
26914 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
26915 		    (tcp_ncpus * sizeof (tcp_t) * 100);
26916 	}
26917 	tcp_time_wait->tcp_free_list_cnt = 0;
26918 }
26919