1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #include <sys/types.h> 28 #include <sys/stream.h> 29 #include <sys/strsun.h> 30 #include <sys/strsubr.h> 31 #include <sys/stropts.h> 32 #include <sys/strlog.h> 33 #define _SUN_TPI_VERSION 2 34 #include <sys/tihdr.h> 35 #include <sys/timod.h> 36 #include <sys/ddi.h> 37 #include <sys/sunddi.h> 38 #include <sys/suntpi.h> 39 #include <sys/xti_inet.h> 40 #include <sys/cmn_err.h> 41 #include <sys/debug.h> 42 #include <sys/sdt.h> 43 #include <sys/vtrace.h> 44 #include <sys/kmem.h> 45 #include <sys/ethernet.h> 46 #include <sys/cpuvar.h> 47 #include <sys/dlpi.h> 48 #include <sys/pattr.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 #include <sys/zone.h> 52 #include <sys/sunldi.h> 53 54 #include <sys/errno.h> 55 #include <sys/signal.h> 56 #include <sys/socket.h> 57 #include <sys/socketvar.h> 58 #include <sys/sockio.h> 59 #include <sys/isa_defs.h> 60 #include <sys/md5.h> 61 #include <sys/random.h> 62 #include <sys/uio.h> 63 #include <sys/systm.h> 64 #include <netinet/in.h> 65 #include <netinet/tcp.h> 66 #include <netinet/ip6.h> 67 #include <netinet/icmp6.h> 68 #include <net/if.h> 69 #include <net/route.h> 70 #include <inet/ipsec_impl.h> 71 72 #include <inet/common.h> 73 #include <inet/ip.h> 74 #include <inet/ip_impl.h> 75 #include <inet/ip6.h> 76 #include <inet/ip_ndp.h> 77 #include <inet/proto_set.h> 78 #include <inet/mib2.h> 79 #include <inet/optcom.h> 80 #include <inet/snmpcom.h> 81 #include <inet/kstatcom.h> 82 #include <inet/tcp.h> 83 #include <inet/tcp_impl.h> 84 #include <inet/tcp_cluster.h> 85 #include <inet/udp_impl.h> 86 #include <net/pfkeyv2.h> 87 #include <inet/ipdrop.h> 88 89 #include <inet/ipclassifier.h> 90 #include <inet/ip_ire.h> 91 #include <inet/ip_ftable.h> 92 #include <inet/ip_if.h> 93 #include <inet/ipp_common.h> 94 #include <inet/ip_rts.h> 95 #include <inet/ip_netinfo.h> 96 #include <sys/squeue_impl.h> 97 #include <sys/squeue.h> 98 #include <inet/kssl/ksslapi.h> 99 #include <sys/tsol/label.h> 100 #include <sys/tsol/tnet.h> 101 #include <rpc/pmap_prot.h> 102 #include <sys/callo.h> 103 104 /* 105 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 106 * 107 * (Read the detailed design doc in PSARC case directory) 108 * 109 * The entire tcp state is contained in tcp_t and conn_t structure 110 * which are allocated in tandem using ipcl_conn_create() and passing 111 * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect 112 * the references on the tcp_t. The tcp_t structure is never compressed 113 * and packets always land on the correct TCP perimeter from the time 114 * eager is created till the time tcp_t dies (as such the old mentat 115 * TCP global queue is not used for detached state and no IPSEC checking 116 * is required). The global queue is still allocated to send out resets 117 * for connection which have no listeners and IP directly calls 118 * tcp_xmit_listeners_reset() which does any policy check. 119 * 120 * Protection and Synchronisation mechanism: 121 * 122 * The tcp data structure does not use any kind of lock for protecting 123 * its state but instead uses 'squeues' for mutual exclusion from various 124 * read and write side threads. To access a tcp member, the thread should 125 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 126 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 127 * can pass any tcp function having prototype of edesc_t as argument 128 * (different from traditional STREAMs model where packets come in only 129 * designated entry points). The list of functions that can be directly 130 * called via squeue are listed before the usual function prototype. 131 * 132 * Referencing: 133 * 134 * TCP is MT-Hot and we use a reference based scheme to make sure that the 135 * tcp structure doesn't disappear when its needed. When the application 136 * creates an outgoing connection or accepts an incoming connection, we 137 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 138 * The IP reference is just a symbolic reference since ip_tcpclose() 139 * looks at tcp structure after tcp_close_output() returns which could 140 * have dropped the last TCP reference. So as long as the connection is 141 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 142 * conn_t. The classifier puts its own reference when the connection is 143 * inserted in listen or connected hash. Anytime a thread needs to enter 144 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 145 * on write side or by doing a classify on read side and then puts a 146 * reference on the conn before doing squeue_enter/tryenter/fill. For 147 * read side, the classifier itself puts the reference under fanout lock 148 * to make sure that tcp can't disappear before it gets processed. The 149 * squeue will drop this reference automatically so the called function 150 * doesn't have to do a DEC_REF. 151 * 152 * Opening a new connection: 153 * 154 * The outgoing connection open is pretty simple. tcp_open() does the 155 * work in creating the conn/tcp structure and initializing it. The 156 * squeue assignment is done based on the CPU the application 157 * is running on. So for outbound connections, processing is always done 158 * on application CPU which might be different from the incoming CPU 159 * being interrupted by the NIC. An optimal way would be to figure out 160 * the NIC <-> CPU binding at listen time, and assign the outgoing 161 * connection to the squeue attached to the CPU that will be interrupted 162 * for incoming packets (we know the NIC based on the bind IP address). 163 * This might seem like a problem if more data is going out but the 164 * fact is that in most cases the transmit is ACK driven transmit where 165 * the outgoing data normally sits on TCP's xmit queue waiting to be 166 * transmitted. 167 * 168 * Accepting a connection: 169 * 170 * This is a more interesting case because of various races involved in 171 * establishing a eager in its own perimeter. Read the meta comment on 172 * top of tcp_input_listener(). But briefly, the squeue is picked by 173 * ip_fanout based on the ring or the sender (if loopback). 174 * 175 * Closing a connection: 176 * 177 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 178 * via squeue to do the close and mark the tcp as detached if the connection 179 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 180 * reference but tcp_close() drop IP's reference always. So if tcp was 181 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 182 * and 1 because it is in classifier's connected hash. This is the condition 183 * we use to determine that its OK to clean up the tcp outside of squeue 184 * when time wait expires (check the ref under fanout and conn_lock and 185 * if it is 2, remove it from fanout hash and kill it). 186 * 187 * Although close just drops the necessary references and marks the 188 * tcp_detached state, tcp_close needs to know the tcp_detached has been 189 * set (under squeue) before letting the STREAM go away (because a 190 * inbound packet might attempt to go up the STREAM while the close 191 * has happened and tcp_detached is not set). So a special lock and 192 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 193 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 194 * tcp_detached. 195 * 196 * Special provisions and fast paths: 197 * 198 * We make special provisions for sockfs by marking tcp_issocket 199 * whenever we have only sockfs on top of TCP. This allows us to skip 200 * putting the tcp in acceptor hash since a sockfs listener can never 201 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 202 * since eager has already been allocated and the accept now happens 203 * on acceptor STREAM. There is a big blob of comment on top of 204 * tcp_input_listener explaining the new accept. When socket is POP'd, 205 * sockfs sends us an ioctl to mark the fact and we go back to old 206 * behaviour. Once tcp_issocket is unset, its never set for the 207 * life of that connection. 208 * 209 * IPsec notes : 210 * 211 * Since a packet is always executed on the correct TCP perimeter 212 * all IPsec processing is defered to IP including checking new 213 * connections and setting IPSEC policies for new connection. The 214 * only exception is tcp_xmit_listeners_reset() which is called 215 * directly from IP and needs to policy check to see if TH_RST 216 * can be sent out. 217 */ 218 219 /* 220 * Values for squeue switch: 221 * 1: SQ_NODRAIN 222 * 2: SQ_PROCESS 223 * 3: SQ_FILL 224 */ 225 int tcp_squeue_wput = 2; /* /etc/systems */ 226 int tcp_squeue_flag; 227 228 /* 229 * To prevent memory hog, limit the number of entries in tcp_free_list 230 * to 1% of available memory / number of cpus 231 */ 232 uint_t tcp_free_list_max_cnt = 0; 233 234 #define TCP_XMIT_LOWATER 4096 235 #define TCP_XMIT_HIWATER 49152 236 #define TCP_RECV_LOWATER 2048 237 #define TCP_RECV_HIWATER 128000 238 239 #define TIDUSZ 4096 /* transport interface data unit size */ 240 241 /* 242 * Size of acceptor hash list. It has to be a power of 2 for hashing. 243 */ 244 #define TCP_ACCEPTOR_FANOUT_SIZE 256 245 246 #ifdef _ILP32 247 #define TCP_ACCEPTOR_HASH(accid) \ 248 (((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 249 #else 250 #define TCP_ACCEPTOR_HASH(accid) \ 251 ((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 252 #endif /* _ILP32 */ 253 254 /* Minimum number of connections per listener. */ 255 static uint32_t tcp_min_conn_listener = 2; 256 257 uint32_t tcp_early_abort = 30; 258 259 /* TCP Timer control structure */ 260 typedef struct tcpt_s { 261 pfv_t tcpt_pfv; /* The routine we are to call */ 262 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 263 } tcpt_t; 264 265 /* 266 * Functions called directly via squeue having a prototype of edesc_t. 267 */ 268 void tcp_input_listener(void *arg, mblk_t *mp, void *arg2, 269 ip_recv_attr_t *ira); 270 void tcp_input_data(void *arg, mblk_t *mp, void *arg2, 271 ip_recv_attr_t *ira); 272 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, 273 ip_recv_attr_t *dummy); 274 275 276 /* Prototype for TCP functions */ 277 static void tcp_random_init(void); 278 int tcp_random(void); 279 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 280 in_port_t dstport, uint_t srcid); 281 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 282 in_port_t dstport, uint32_t flowinfo, 283 uint_t srcid, uint32_t scope_id); 284 static void tcp_iss_init(tcp_t *tcp); 285 static void tcp_reinit(tcp_t *tcp); 286 static void tcp_reinit_values(tcp_t *tcp); 287 288 static void tcp_wsrv(queue_t *q); 289 static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa); 290 static void tcp_update_zcopy(tcp_t *tcp); 291 static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t, 292 ixa_notify_arg_t); 293 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 294 static void tcp_stack_fini(netstackid_t stackid, void *arg); 295 296 static int tcp_squeue_switch(int); 297 298 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 299 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 300 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 301 302 static void tcp_squeue_add(squeue_t *); 303 304 struct module_info tcp_rinfo = { 305 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 306 }; 307 308 static struct module_info tcp_winfo = { 309 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 310 }; 311 312 /* 313 * Entry points for TCP as a device. The normal case which supports 314 * the TCP functionality. 315 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 316 */ 317 struct qinit tcp_rinitv4 = { 318 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 319 }; 320 321 struct qinit tcp_rinitv6 = { 322 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 323 }; 324 325 struct qinit tcp_winit = { 326 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 327 }; 328 329 /* Initial entry point for TCP in socket mode. */ 330 struct qinit tcp_sock_winit = { 331 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 332 }; 333 334 /* TCP entry point during fallback */ 335 struct qinit tcp_fallback_sock_winit = { 336 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 337 }; 338 339 /* 340 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 341 * an accept. Avoid allocating data structures since eager has already 342 * been created. 343 */ 344 struct qinit tcp_acceptor_rinit = { 345 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 346 }; 347 348 struct qinit tcp_acceptor_winit = { 349 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 350 }; 351 352 /* For AF_INET aka /dev/tcp */ 353 struct streamtab tcpinfov4 = { 354 &tcp_rinitv4, &tcp_winit 355 }; 356 357 /* For AF_INET6 aka /dev/tcp6 */ 358 struct streamtab tcpinfov6 = { 359 &tcp_rinitv6, &tcp_winit 360 }; 361 362 /* 363 * Following assumes TPI alignment requirements stay along 32 bit 364 * boundaries 365 */ 366 #define ROUNDUP32(x) \ 367 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 368 369 /* Template for response to info request. */ 370 struct T_info_ack tcp_g_t_info_ack = { 371 T_INFO_ACK, /* PRIM_type */ 372 0, /* TSDU_size */ 373 T_INFINITE, /* ETSDU_size */ 374 T_INVALID, /* CDATA_size */ 375 T_INVALID, /* DDATA_size */ 376 sizeof (sin_t), /* ADDR_size */ 377 0, /* OPT_size - not initialized here */ 378 TIDUSZ, /* TIDU_size */ 379 T_COTS_ORD, /* SERV_type */ 380 TCPS_IDLE, /* CURRENT_state */ 381 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 382 }; 383 384 struct T_info_ack tcp_g_t_info_ack_v6 = { 385 T_INFO_ACK, /* PRIM_type */ 386 0, /* TSDU_size */ 387 T_INFINITE, /* ETSDU_size */ 388 T_INVALID, /* CDATA_size */ 389 T_INVALID, /* DDATA_size */ 390 sizeof (sin6_t), /* ADDR_size */ 391 0, /* OPT_size - not initialized here */ 392 TIDUSZ, /* TIDU_size */ 393 T_COTS_ORD, /* SERV_type */ 394 TCPS_IDLE, /* CURRENT_state */ 395 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 396 }; 397 398 /* 399 * TCP tunables related declarations. Definitions are in tcp_tunables.c 400 */ 401 extern mod_prop_info_t tcp_propinfo_tbl[]; 402 extern int tcp_propinfo_count; 403 404 #define MB (1024 * 1024) 405 406 #define IS_VMLOANED_MBLK(mp) \ 407 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 408 409 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 410 411 /* 412 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 413 * tunable settable via NDD. Otherwise, the per-connection behavior is 414 * determined dynamically during tcp_set_destination(), which is the default. 415 */ 416 boolean_t tcp_static_maxpsz = B_FALSE; 417 418 /* 419 * If the receive buffer size is changed, this function is called to update 420 * the upper socket layer on the new delayed receive wake up threshold. 421 */ 422 static void 423 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh) 424 { 425 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3; 426 427 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 428 conn_t *connp = tcp->tcp_connp; 429 struct sock_proto_props sopp; 430 431 /* 432 * only increase rcvthresh upto default_threshold 433 */ 434 if (new_rcvthresh > default_threshold) 435 new_rcvthresh = default_threshold; 436 437 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 438 sopp.sopp_rcvthresh = new_rcvthresh; 439 440 (*connp->conn_upcalls->su_set_proto_props) 441 (connp->conn_upper_handle, &sopp); 442 } 443 } 444 445 /* 446 * Figure out the value of window scale opton. Note that the rwnd is 447 * ASSUMED to be rounded up to the nearest MSS before the calculation. 448 * We cannot find the scale value and then do a round up of tcp_rwnd 449 * because the scale value may not be correct after that. 450 * 451 * Set the compiler flag to make this function inline. 452 */ 453 void 454 tcp_set_ws_value(tcp_t *tcp) 455 { 456 int i; 457 uint32_t rwnd = tcp->tcp_rwnd; 458 459 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 460 i++, rwnd >>= 1) 461 ; 462 tcp->tcp_rcv_ws = i; 463 } 464 465 /* 466 * Remove cached/latched IPsec references. 467 */ 468 void 469 tcp_ipsec_cleanup(tcp_t *tcp) 470 { 471 conn_t *connp = tcp->tcp_connp; 472 473 ASSERT(connp->conn_flags & IPCL_TCPCONN); 474 475 if (connp->conn_latch != NULL) { 476 IPLATCH_REFRELE(connp->conn_latch); 477 connp->conn_latch = NULL; 478 } 479 if (connp->conn_latch_in_policy != NULL) { 480 IPPOL_REFRELE(connp->conn_latch_in_policy); 481 connp->conn_latch_in_policy = NULL; 482 } 483 if (connp->conn_latch_in_action != NULL) { 484 IPACT_REFRELE(connp->conn_latch_in_action); 485 connp->conn_latch_in_action = NULL; 486 } 487 if (connp->conn_policy != NULL) { 488 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 489 connp->conn_policy = NULL; 490 } 491 } 492 493 /* 494 * Cleaup before placing on free list. 495 * Disassociate from the netstack/tcp_stack_t since the freelist 496 * is per squeue and not per netstack. 497 */ 498 void 499 tcp_cleanup(tcp_t *tcp) 500 { 501 mblk_t *mp; 502 conn_t *connp = tcp->tcp_connp; 503 tcp_stack_t *tcps = tcp->tcp_tcps; 504 netstack_t *ns = tcps->tcps_netstack; 505 mblk_t *tcp_rsrv_mp; 506 507 tcp_bind_hash_remove(tcp); 508 509 /* Cleanup that which needs the netstack first */ 510 tcp_ipsec_cleanup(tcp); 511 ixa_cleanup(connp->conn_ixa); 512 513 if (connp->conn_ht_iphc != NULL) { 514 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 515 connp->conn_ht_iphc = NULL; 516 connp->conn_ht_iphc_allocated = 0; 517 connp->conn_ht_iphc_len = 0; 518 connp->conn_ht_ulp = NULL; 519 connp->conn_ht_ulp_len = 0; 520 tcp->tcp_ipha = NULL; 521 tcp->tcp_ip6h = NULL; 522 tcp->tcp_tcpha = NULL; 523 } 524 525 /* We clear any IP_OPTIONS and extension headers */ 526 ip_pkt_free(&connp->conn_xmit_ipp); 527 528 tcp_free(tcp); 529 530 /* Release any SSL context */ 531 if (tcp->tcp_kssl_ent != NULL) { 532 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 533 tcp->tcp_kssl_ent = NULL; 534 } 535 536 if (tcp->tcp_kssl_ctx != NULL) { 537 kssl_release_ctx(tcp->tcp_kssl_ctx); 538 tcp->tcp_kssl_ctx = NULL; 539 } 540 tcp->tcp_kssl_pending = B_FALSE; 541 542 /* 543 * Since we will bzero the entire structure, we need to 544 * remove it and reinsert it in global hash list. We 545 * know the walkers can't get to this conn because we 546 * had set CONDEMNED flag earlier and checked reference 547 * under conn_lock so walker won't pick it and when we 548 * go the ipcl_globalhash_remove() below, no walker 549 * can get to it. 550 */ 551 ipcl_globalhash_remove(connp); 552 553 /* Save some state */ 554 mp = tcp->tcp_timercache; 555 556 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 557 558 if (connp->conn_cred != NULL) { 559 crfree(connp->conn_cred); 560 connp->conn_cred = NULL; 561 } 562 ipcl_conn_cleanup(connp); 563 connp->conn_flags = IPCL_TCPCONN; 564 565 /* 566 * Now it is safe to decrement the reference counts. 567 * This might be the last reference on the netstack 568 * in which case it will cause the freeing of the IP Instance. 569 */ 570 connp->conn_netstack = NULL; 571 connp->conn_ixa->ixa_ipst = NULL; 572 netstack_rele(ns); 573 ASSERT(tcps != NULL); 574 tcp->tcp_tcps = NULL; 575 576 bzero(tcp, sizeof (tcp_t)); 577 578 /* restore the state */ 579 tcp->tcp_timercache = mp; 580 581 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 582 583 tcp->tcp_connp = connp; 584 585 ASSERT(connp->conn_tcp == tcp); 586 ASSERT(connp->conn_flags & IPCL_TCPCONN); 587 connp->conn_state_flags = CONN_INCIPIENT; 588 ASSERT(connp->conn_proto == IPPROTO_TCP); 589 ASSERT(connp->conn_ref == 1); 590 } 591 592 /* 593 * Adapt to the information, such as rtt and rtt_sd, provided from the 594 * DCE and IRE maintained by IP. 595 * 596 * Checks for multicast and broadcast destination address. 597 * Returns zero if ok; an errno on failure. 598 * 599 * Note that the MSS calculation here is based on the info given in 600 * the DCE and IRE. We do not do any calculation based on TCP options. They 601 * will be handled in tcp_input_data() when TCP knows which options to use. 602 * 603 * Note on how TCP gets its parameters for a connection. 604 * 605 * When a tcp_t structure is allocated, it gets all the default parameters. 606 * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd, 607 * spipe, rpipe, ... from the route metrics. Route metric overrides the 608 * default. 609 * 610 * An incoming SYN with a multicast or broadcast destination address is dropped 611 * in ip_fanout_v4/v6. 612 * 613 * An incoming SYN with a multicast or broadcast source address is always 614 * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in 615 * conn_connect. 616 * The same logic in tcp_set_destination also serves to 617 * reject an attempt to connect to a broadcast or multicast (destination) 618 * address. 619 */ 620 int 621 tcp_set_destination(tcp_t *tcp) 622 { 623 uint32_t mss_max; 624 uint32_t mss; 625 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 626 conn_t *connp = tcp->tcp_connp; 627 tcp_stack_t *tcps = tcp->tcp_tcps; 628 iulp_t uinfo; 629 int error; 630 uint32_t flags; 631 632 flags = IPDF_LSO | IPDF_ZCOPY; 633 /* 634 * Make sure we have a dce for the destination to avoid dce_ident 635 * contention for connected sockets. 636 */ 637 flags |= IPDF_UNIQUE_DCE; 638 639 if (!tcps->tcps_ignore_path_mtu) 640 connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY; 641 642 /* Use conn_lock to satify ASSERT; tcp is already serialized */ 643 mutex_enter(&connp->conn_lock); 644 error = conn_connect(connp, &uinfo, flags); 645 mutex_exit(&connp->conn_lock); 646 if (error != 0) 647 return (error); 648 649 error = tcp_build_hdrs(tcp); 650 if (error != 0) 651 return (error); 652 653 tcp->tcp_localnet = uinfo.iulp_localnet; 654 655 if (uinfo.iulp_rtt != 0) { 656 clock_t rto; 657 658 tcp->tcp_rtt_sa = uinfo.iulp_rtt; 659 tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd; 660 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 661 tcps->tcps_rexmit_interval_extra + 662 (tcp->tcp_rtt_sa >> 5); 663 664 if (rto > tcps->tcps_rexmit_interval_max) { 665 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 666 } else if (rto < tcps->tcps_rexmit_interval_min) { 667 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 668 } else { 669 tcp->tcp_rto = rto; 670 } 671 } 672 if (uinfo.iulp_ssthresh != 0) 673 tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh; 674 else 675 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 676 if (uinfo.iulp_spipe > 0) { 677 connp->conn_sndbuf = MIN(uinfo.iulp_spipe, 678 tcps->tcps_max_buf); 679 if (tcps->tcps_snd_lowat_fraction != 0) { 680 connp->conn_sndlowat = connp->conn_sndbuf / 681 tcps->tcps_snd_lowat_fraction; 682 } 683 (void) tcp_maxpsz_set(tcp, B_TRUE); 684 } 685 /* 686 * Note that up till now, acceptor always inherits receive 687 * window from the listener. But if there is a metrics 688 * associated with a host, we should use that instead of 689 * inheriting it from listener. Thus we need to pass this 690 * info back to the caller. 691 */ 692 if (uinfo.iulp_rpipe > 0) { 693 tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe, 694 tcps->tcps_max_buf); 695 } 696 697 if (uinfo.iulp_rtomax > 0) { 698 tcp->tcp_second_timer_threshold = 699 uinfo.iulp_rtomax; 700 } 701 702 /* 703 * Use the metric option settings, iulp_tstamp_ok and 704 * iulp_wscale_ok, only for active open. What this means 705 * is that if the other side uses timestamp or window 706 * scale option, TCP will also use those options. That 707 * is for passive open. If the application sets a 708 * large window, window scale is enabled regardless of 709 * the value in iulp_wscale_ok. This is the behavior 710 * since 2.6. So we keep it. 711 * The only case left in passive open processing is the 712 * check for SACK. 713 * For ECN, it should probably be like SACK. But the 714 * current value is binary, so we treat it like the other 715 * cases. The metric only controls active open.For passive 716 * open, the ndd param, tcp_ecn_permitted, controls the 717 * behavior. 718 */ 719 if (!tcp_detached) { 720 /* 721 * The if check means that the following can only 722 * be turned on by the metrics only IRE, but not off. 723 */ 724 if (uinfo.iulp_tstamp_ok) 725 tcp->tcp_snd_ts_ok = B_TRUE; 726 if (uinfo.iulp_wscale_ok) 727 tcp->tcp_snd_ws_ok = B_TRUE; 728 if (uinfo.iulp_sack == 2) 729 tcp->tcp_snd_sack_ok = B_TRUE; 730 if (uinfo.iulp_ecn_ok) 731 tcp->tcp_ecn_ok = B_TRUE; 732 } else { 733 /* 734 * Passive open. 735 * 736 * As above, the if check means that SACK can only be 737 * turned on by the metric only IRE. 738 */ 739 if (uinfo.iulp_sack > 0) { 740 tcp->tcp_snd_sack_ok = B_TRUE; 741 } 742 } 743 744 /* 745 * XXX Note that currently, iulp_mtu can be as small as 68 746 * because of PMTUd. So tcp_mss may go to negative if combined 747 * length of all those options exceeds 28 bytes. But because 748 * of the tcp_mss_min check below, we may not have a problem if 749 * tcp_mss_min is of a reasonable value. The default is 1 so 750 * the negative problem still exists. And the check defeats PMTUd. 751 * In fact, if PMTUd finds that the MSS should be smaller than 752 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 753 * value. 754 * 755 * We do not deal with that now. All those problems related to 756 * PMTUd will be fixed later. 757 */ 758 ASSERT(uinfo.iulp_mtu != 0); 759 mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu; 760 761 /* Sanity check for MSS value. */ 762 if (connp->conn_ipversion == IPV4_VERSION) 763 mss_max = tcps->tcps_mss_max_ipv4; 764 else 765 mss_max = tcps->tcps_mss_max_ipv6; 766 767 if (tcp->tcp_ipsec_overhead == 0) 768 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 769 770 mss -= tcp->tcp_ipsec_overhead; 771 772 if (mss < tcps->tcps_mss_min) 773 mss = tcps->tcps_mss_min; 774 if (mss > mss_max) 775 mss = mss_max; 776 777 /* Note that this is the maximum MSS, excluding all options. */ 778 tcp->tcp_mss = mss; 779 780 /* 781 * Update the tcp connection with LSO capability. 782 */ 783 tcp_update_lso(tcp, connp->conn_ixa); 784 785 /* 786 * Initialize the ISS here now that we have the full connection ID. 787 * The RFC 1948 method of initial sequence number generation requires 788 * knowledge of the full connection ID before setting the ISS. 789 */ 790 tcp_iss_init(tcp); 791 792 tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local); 793 794 /* 795 * Make sure that conn is not marked incipient 796 * for incoming connections. A blind 797 * removal of incipient flag is cheaper than 798 * check and removal. 799 */ 800 mutex_enter(&connp->conn_lock); 801 connp->conn_state_flags &= ~CONN_INCIPIENT; 802 mutex_exit(&connp->conn_lock); 803 return (0); 804 } 805 806 /* 807 * tcp_clean_death / tcp_close_detached must not be called more than once 808 * on a tcp. Thus every function that potentially calls tcp_clean_death 809 * must check for the tcp state before calling tcp_clean_death. 810 * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper, 811 * tcp_timer_handler, all check for the tcp state. 812 */ 813 /* ARGSUSED */ 814 void 815 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 816 ip_recv_attr_t *dummy) 817 { 818 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 819 820 freemsg(mp); 821 if (tcp->tcp_state > TCPS_BOUND) 822 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT); 823 } 824 825 /* 826 * We are dying for some reason. Try to do it gracefully. (May be called 827 * as writer.) 828 * 829 * Return -1 if the structure was not cleaned up (if the cleanup had to be 830 * done by a service procedure). 831 * TBD - Should the return value distinguish between the tcp_t being 832 * freed and it being reinitialized? 833 */ 834 int 835 tcp_clean_death(tcp_t *tcp, int err) 836 { 837 mblk_t *mp; 838 queue_t *q; 839 conn_t *connp = tcp->tcp_connp; 840 tcp_stack_t *tcps = tcp->tcp_tcps; 841 842 if (tcp->tcp_fused) 843 tcp_unfuse(tcp); 844 845 if (tcp->tcp_linger_tid != 0 && 846 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 847 tcp_stop_lingering(tcp); 848 } 849 850 ASSERT(tcp != NULL); 851 ASSERT((connp->conn_family == AF_INET && 852 connp->conn_ipversion == IPV4_VERSION) || 853 (connp->conn_family == AF_INET6 && 854 (connp->conn_ipversion == IPV4_VERSION || 855 connp->conn_ipversion == IPV6_VERSION))); 856 857 if (TCP_IS_DETACHED(tcp)) { 858 if (tcp->tcp_hard_binding) { 859 /* 860 * Its an eager that we are dealing with. We close the 861 * eager but in case a conn_ind has already gone to the 862 * listener, let tcp_accept_finish() send a discon_ind 863 * to the listener and drop the last reference. If the 864 * listener doesn't even know about the eager i.e. the 865 * conn_ind hasn't gone up, blow away the eager and drop 866 * the last reference as well. If the conn_ind has gone 867 * up, state should be BOUND. tcp_accept_finish 868 * will figure out that the connection has received a 869 * RST and will send a DISCON_IND to the application. 870 */ 871 tcp_closei_local(tcp); 872 if (!tcp->tcp_tconnind_started) { 873 CONN_DEC_REF(connp); 874 } else { 875 tcp->tcp_state = TCPS_BOUND; 876 } 877 } else { 878 tcp_close_detached(tcp); 879 } 880 return (0); 881 } 882 883 TCP_STAT(tcps, tcp_clean_death_nondetached); 884 885 /* 886 * The connection is dead. Decrement listener connection counter if 887 * necessary. 888 */ 889 if (tcp->tcp_listen_cnt != NULL) 890 TCP_DECR_LISTEN_CNT(tcp); 891 892 /* 893 * When a connection is moved to TIME_WAIT state, the connection 894 * counter is already decremented. So no need to decrement here 895 * again. See SET_TIME_WAIT() macro. 896 */ 897 if (tcp->tcp_state >= TCPS_ESTABLISHED && 898 tcp->tcp_state < TCPS_TIME_WAIT) { 899 TCPS_CONN_DEC(tcps); 900 } 901 902 q = connp->conn_rq; 903 904 /* Trash all inbound data */ 905 if (!IPCL_IS_NONSTR(connp)) { 906 ASSERT(q != NULL); 907 flushq(q, FLUSHALL); 908 } 909 910 /* 911 * If we are at least part way open and there is error 912 * (err==0 implies no error) 913 * notify our client by a T_DISCON_IND. 914 */ 915 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 916 if (tcp->tcp_state >= TCPS_ESTABLISHED && 917 !TCP_IS_SOCKET(tcp)) { 918 /* 919 * Send M_FLUSH according to TPI. Because sockets will 920 * (and must) ignore FLUSHR we do that only for TPI 921 * endpoints and sockets in STREAMS mode. 922 */ 923 (void) putnextctl1(q, M_FLUSH, FLUSHR); 924 } 925 if (connp->conn_debug) { 926 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 927 "tcp_clean_death: discon err %d", err); 928 } 929 if (IPCL_IS_NONSTR(connp)) { 930 /* Direct socket, use upcall */ 931 (*connp->conn_upcalls->su_disconnected)( 932 connp->conn_upper_handle, tcp->tcp_connid, err); 933 } else { 934 mp = mi_tpi_discon_ind(NULL, err, 0); 935 if (mp != NULL) { 936 putnext(q, mp); 937 } else { 938 if (connp->conn_debug) { 939 (void) strlog(TCP_MOD_ID, 0, 1, 940 SL_ERROR|SL_TRACE, 941 "tcp_clean_death, sending M_ERROR"); 942 } 943 (void) putnextctl1(q, M_ERROR, EPROTO); 944 } 945 } 946 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 947 /* SYN_SENT or SYN_RCVD */ 948 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 949 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 950 /* ESTABLISHED or CLOSE_WAIT */ 951 TCPS_BUMP_MIB(tcps, tcpEstabResets); 952 } 953 } 954 955 tcp_reinit(tcp); 956 if (IPCL_IS_NONSTR(connp)) 957 (void) tcp_do_unbind(connp); 958 959 return (-1); 960 } 961 962 /* 963 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 964 * to expire, stop the wait and finish the close. 965 */ 966 void 967 tcp_stop_lingering(tcp_t *tcp) 968 { 969 clock_t delta = 0; 970 tcp_stack_t *tcps = tcp->tcp_tcps; 971 conn_t *connp = tcp->tcp_connp; 972 973 tcp->tcp_linger_tid = 0; 974 if (tcp->tcp_state > TCPS_LISTEN) { 975 tcp_acceptor_hash_remove(tcp); 976 mutex_enter(&tcp->tcp_non_sq_lock); 977 if (tcp->tcp_flow_stopped) { 978 tcp_clrqfull(tcp); 979 } 980 mutex_exit(&tcp->tcp_non_sq_lock); 981 982 if (tcp->tcp_timer_tid != 0) { 983 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 984 tcp->tcp_timer_tid = 0; 985 } 986 /* 987 * Need to cancel those timers which will not be used when 988 * TCP is detached. This has to be done before the conn_wq 989 * is cleared. 990 */ 991 tcp_timers_stop(tcp); 992 993 tcp->tcp_detached = B_TRUE; 994 connp->conn_rq = NULL; 995 connp->conn_wq = NULL; 996 997 if (tcp->tcp_state == TCPS_TIME_WAIT) { 998 tcp_time_wait_append(tcp); 999 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 1000 goto finish; 1001 } 1002 1003 /* 1004 * If delta is zero the timer event wasn't executed and was 1005 * successfully canceled. In this case we need to restart it 1006 * with the minimal delta possible. 1007 */ 1008 if (delta >= 0) { 1009 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 1010 delta ? delta : 1); 1011 } 1012 } else { 1013 tcp_closei_local(tcp); 1014 CONN_DEC_REF(connp); 1015 } 1016 finish: 1017 /* Signal closing thread that it can complete close */ 1018 mutex_enter(&tcp->tcp_closelock); 1019 tcp->tcp_detached = B_TRUE; 1020 connp->conn_rq = NULL; 1021 connp->conn_wq = NULL; 1022 1023 tcp->tcp_closed = 1; 1024 cv_signal(&tcp->tcp_closecv); 1025 mutex_exit(&tcp->tcp_closelock); 1026 } 1027 1028 void 1029 tcp_close_common(conn_t *connp, int flags) 1030 { 1031 tcp_t *tcp = connp->conn_tcp; 1032 mblk_t *mp = &tcp->tcp_closemp; 1033 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 1034 mblk_t *bp; 1035 1036 ASSERT(connp->conn_ref >= 2); 1037 1038 /* 1039 * Mark the conn as closing. ipsq_pending_mp_add will not 1040 * add any mp to the pending mp list, after this conn has 1041 * started closing. 1042 */ 1043 mutex_enter(&connp->conn_lock); 1044 connp->conn_state_flags |= CONN_CLOSING; 1045 if (connp->conn_oper_pending_ill != NULL) 1046 conn_ioctl_cleanup_reqd = B_TRUE; 1047 CONN_INC_REF_LOCKED(connp); 1048 mutex_exit(&connp->conn_lock); 1049 tcp->tcp_closeflags = (uint8_t)flags; 1050 ASSERT(connp->conn_ref >= 3); 1051 1052 /* 1053 * tcp_closemp_used is used below without any protection of a lock 1054 * as we don't expect any one else to use it concurrently at this 1055 * point otherwise it would be a major defect. 1056 */ 1057 1058 if (mp->b_prev == NULL) 1059 tcp->tcp_closemp_used = B_TRUE; 1060 else 1061 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 1062 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 1063 1064 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1065 1066 /* 1067 * Cleanup any queued ioctls here. This must be done before the wq/rq 1068 * are re-written by tcp_close_output(). 1069 */ 1070 if (conn_ioctl_cleanup_reqd) 1071 conn_ioctl_cleanup(connp); 1072 1073 /* 1074 * As CONN_CLOSING is set, no further ioctls should be passed down to 1075 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and 1076 * tcp_wput_iocdata). If the ioctl was queued on an ipsq, 1077 * conn_ioctl_cleanup should have found it and removed it. If the ioctl 1078 * was still in flight at the time, we wait for it here. See comments 1079 * for CONN_INC_IOCTLREF in ip.h for details. 1080 */ 1081 mutex_enter(&connp->conn_lock); 1082 while (connp->conn_ioctlref > 0) 1083 cv_wait(&connp->conn_cv, &connp->conn_lock); 1084 ASSERT(connp->conn_ioctlref == 0); 1085 ASSERT(connp->conn_oper_pending_ill == NULL); 1086 mutex_exit(&connp->conn_lock); 1087 1088 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 1089 NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 1090 1091 mutex_enter(&tcp->tcp_closelock); 1092 while (!tcp->tcp_closed) { 1093 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 1094 /* 1095 * The cv_wait_sig() was interrupted. We now do the 1096 * following: 1097 * 1098 * 1) If the endpoint was lingering, we allow this 1099 * to be interrupted by cancelling the linger timeout 1100 * and closing normally. 1101 * 1102 * 2) Revert to calling cv_wait() 1103 * 1104 * We revert to using cv_wait() to avoid an 1105 * infinite loop which can occur if the calling 1106 * thread is higher priority than the squeue worker 1107 * thread and is bound to the same cpu. 1108 */ 1109 if (connp->conn_linger && connp->conn_lingertime > 0) { 1110 mutex_exit(&tcp->tcp_closelock); 1111 /* Entering squeue, bump ref count. */ 1112 CONN_INC_REF(connp); 1113 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 1114 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 1115 tcp_linger_interrupted, connp, NULL, 1116 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 1117 mutex_enter(&tcp->tcp_closelock); 1118 } 1119 break; 1120 } 1121 } 1122 while (!tcp->tcp_closed) 1123 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 1124 mutex_exit(&tcp->tcp_closelock); 1125 1126 /* 1127 * In the case of listener streams that have eagers in the q or q0 1128 * we wait for the eagers to drop their reference to us. conn_rq and 1129 * conn_wq of the eagers point to our queues. By waiting for the 1130 * refcnt to drop to 1, we are sure that the eagers have cleaned 1131 * up their queue pointers and also dropped their references to us. 1132 */ 1133 if (tcp->tcp_wait_for_eagers) { 1134 mutex_enter(&connp->conn_lock); 1135 while (connp->conn_ref != 1) { 1136 cv_wait(&connp->conn_cv, &connp->conn_lock); 1137 } 1138 mutex_exit(&connp->conn_lock); 1139 } 1140 1141 connp->conn_cpid = NOPID; 1142 } 1143 1144 /* 1145 * Called by tcp_close() routine via squeue when lingering is 1146 * interrupted by a signal. 1147 */ 1148 1149 /* ARGSUSED */ 1150 static void 1151 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 1152 { 1153 conn_t *connp = (conn_t *)arg; 1154 tcp_t *tcp = connp->conn_tcp; 1155 1156 freeb(mp); 1157 if (tcp->tcp_linger_tid != 0 && 1158 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 1159 tcp_stop_lingering(tcp); 1160 tcp->tcp_client_errno = EINTR; 1161 } 1162 } 1163 1164 /* 1165 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 1166 * Some stream heads get upset if they see these later on as anything but NULL. 1167 */ 1168 void 1169 tcp_close_mpp(mblk_t **mpp) 1170 { 1171 mblk_t *mp; 1172 1173 if ((mp = *mpp) != NULL) { 1174 do { 1175 mp->b_next = NULL; 1176 mp->b_prev = NULL; 1177 } while ((mp = mp->b_cont) != NULL); 1178 1179 mp = *mpp; 1180 *mpp = NULL; 1181 freemsg(mp); 1182 } 1183 } 1184 1185 /* Do detached close. */ 1186 void 1187 tcp_close_detached(tcp_t *tcp) 1188 { 1189 if (tcp->tcp_fused) 1190 tcp_unfuse(tcp); 1191 1192 /* 1193 * Clustering code serializes TCP disconnect callbacks and 1194 * cluster tcp list walks by blocking a TCP disconnect callback 1195 * if a cluster tcp list walk is in progress. This ensures 1196 * accurate accounting of TCPs in the cluster code even though 1197 * the TCP list walk itself is not atomic. 1198 */ 1199 tcp_closei_local(tcp); 1200 CONN_DEC_REF(tcp->tcp_connp); 1201 } 1202 1203 /* 1204 * The tcp_t is going away. Remove it from all lists and set it 1205 * to TCPS_CLOSED. The freeing up of memory is deferred until 1206 * tcp_inactive. This is needed since a thread in tcp_rput might have 1207 * done a CONN_INC_REF on this structure before it was removed from the 1208 * hashes. 1209 */ 1210 void 1211 tcp_closei_local(tcp_t *tcp) 1212 { 1213 conn_t *connp = tcp->tcp_connp; 1214 tcp_stack_t *tcps = tcp->tcp_tcps; 1215 1216 if (!TCP_IS_SOCKET(tcp)) 1217 tcp_acceptor_hash_remove(tcp); 1218 1219 TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs); 1220 tcp->tcp_ibsegs = 0; 1221 TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs); 1222 tcp->tcp_obsegs = 0; 1223 1224 /* 1225 * This can be called via tcp_time_wait_processing() if TCP gets a 1226 * SYN with sequence number outside the TIME-WAIT connection's 1227 * window. So we need to check for TIME-WAIT state here as the 1228 * connection counter is already decremented. See SET_TIME_WAIT() 1229 * macro 1230 */ 1231 if (tcp->tcp_state >= TCPS_ESTABLISHED && 1232 tcp->tcp_state < TCPS_TIME_WAIT) { 1233 TCPS_CONN_DEC(tcps); 1234 } 1235 1236 /* 1237 * If we are an eager connection hanging off a listener that 1238 * hasn't formally accepted the connection yet, get off his 1239 * list and blow off any data that we have accumulated. 1240 */ 1241 if (tcp->tcp_listener != NULL) { 1242 tcp_t *listener = tcp->tcp_listener; 1243 mutex_enter(&listener->tcp_eager_lock); 1244 /* 1245 * tcp_tconnind_started == B_TRUE means that the 1246 * conn_ind has already gone to listener. At 1247 * this point, eager will be closed but we 1248 * leave it in listeners eager list so that 1249 * if listener decides to close without doing 1250 * accept, we can clean this up. In tcp_tli_accept 1251 * we take care of the case of accept on closed 1252 * eager. 1253 */ 1254 if (!tcp->tcp_tconnind_started) { 1255 tcp_eager_unlink(tcp); 1256 mutex_exit(&listener->tcp_eager_lock); 1257 /* 1258 * We don't want to have any pointers to the 1259 * listener queue, after we have released our 1260 * reference on the listener 1261 */ 1262 ASSERT(tcp->tcp_detached); 1263 connp->conn_rq = NULL; 1264 connp->conn_wq = NULL; 1265 CONN_DEC_REF(listener->tcp_connp); 1266 } else { 1267 mutex_exit(&listener->tcp_eager_lock); 1268 } 1269 } 1270 1271 /* Stop all the timers */ 1272 tcp_timers_stop(tcp); 1273 1274 if (tcp->tcp_state == TCPS_LISTEN) { 1275 if (tcp->tcp_ip_addr_cache) { 1276 kmem_free((void *)tcp->tcp_ip_addr_cache, 1277 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1278 tcp->tcp_ip_addr_cache = NULL; 1279 } 1280 } 1281 1282 /* Decrement listerner connection counter if necessary. */ 1283 if (tcp->tcp_listen_cnt != NULL) 1284 TCP_DECR_LISTEN_CNT(tcp); 1285 1286 mutex_enter(&tcp->tcp_non_sq_lock); 1287 if (tcp->tcp_flow_stopped) 1288 tcp_clrqfull(tcp); 1289 mutex_exit(&tcp->tcp_non_sq_lock); 1290 1291 tcp_bind_hash_remove(tcp); 1292 /* 1293 * If the tcp_time_wait_collector (which runs outside the squeue) 1294 * is trying to remove this tcp from the time wait list, we will 1295 * block in tcp_time_wait_remove while trying to acquire the 1296 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 1297 * requires the ipcl_hash_remove to be ordered after the 1298 * tcp_time_wait_remove for the refcnt checks to work correctly. 1299 */ 1300 if (tcp->tcp_state == TCPS_TIME_WAIT) 1301 (void) tcp_time_wait_remove(tcp, NULL); 1302 CL_INET_DISCONNECT(connp); 1303 ipcl_hash_remove(connp); 1304 ixa_cleanup(connp->conn_ixa); 1305 1306 /* 1307 * Mark the conn as CONDEMNED 1308 */ 1309 mutex_enter(&connp->conn_lock); 1310 connp->conn_state_flags |= CONN_CONDEMNED; 1311 mutex_exit(&connp->conn_lock); 1312 1313 ASSERT(tcp->tcp_time_wait_next == NULL); 1314 ASSERT(tcp->tcp_time_wait_prev == NULL); 1315 ASSERT(tcp->tcp_time_wait_expire == 0); 1316 tcp->tcp_state = TCPS_CLOSED; 1317 1318 /* Release any SSL context */ 1319 if (tcp->tcp_kssl_ent != NULL) { 1320 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1321 tcp->tcp_kssl_ent = NULL; 1322 } 1323 if (tcp->tcp_kssl_ctx != NULL) { 1324 kssl_release_ctx(tcp->tcp_kssl_ctx); 1325 tcp->tcp_kssl_ctx = NULL; 1326 } 1327 tcp->tcp_kssl_pending = B_FALSE; 1328 1329 tcp_ipsec_cleanup(tcp); 1330 } 1331 1332 /* 1333 * tcp is dying (called from ipcl_conn_destroy and error cases). 1334 * Free the tcp_t in either case. 1335 */ 1336 void 1337 tcp_free(tcp_t *tcp) 1338 { 1339 mblk_t *mp; 1340 conn_t *connp = tcp->tcp_connp; 1341 1342 ASSERT(tcp != NULL); 1343 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 1344 1345 connp->conn_rq = NULL; 1346 connp->conn_wq = NULL; 1347 1348 tcp_close_mpp(&tcp->tcp_xmit_head); 1349 tcp_close_mpp(&tcp->tcp_reass_head); 1350 if (tcp->tcp_rcv_list != NULL) { 1351 /* Free b_next chain */ 1352 tcp_close_mpp(&tcp->tcp_rcv_list); 1353 } 1354 if ((mp = tcp->tcp_urp_mp) != NULL) { 1355 freemsg(mp); 1356 } 1357 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 1358 freemsg(mp); 1359 } 1360 1361 if (tcp->tcp_fused_sigurg_mp != NULL) { 1362 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1363 freeb(tcp->tcp_fused_sigurg_mp); 1364 tcp->tcp_fused_sigurg_mp = NULL; 1365 } 1366 1367 if (tcp->tcp_ordrel_mp != NULL) { 1368 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1369 freeb(tcp->tcp_ordrel_mp); 1370 tcp->tcp_ordrel_mp = NULL; 1371 } 1372 1373 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 1374 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 1375 1376 if (tcp->tcp_hopopts != NULL) { 1377 mi_free(tcp->tcp_hopopts); 1378 tcp->tcp_hopopts = NULL; 1379 tcp->tcp_hopoptslen = 0; 1380 } 1381 ASSERT(tcp->tcp_hopoptslen == 0); 1382 if (tcp->tcp_dstopts != NULL) { 1383 mi_free(tcp->tcp_dstopts); 1384 tcp->tcp_dstopts = NULL; 1385 tcp->tcp_dstoptslen = 0; 1386 } 1387 ASSERT(tcp->tcp_dstoptslen == 0); 1388 if (tcp->tcp_rthdrdstopts != NULL) { 1389 mi_free(tcp->tcp_rthdrdstopts); 1390 tcp->tcp_rthdrdstopts = NULL; 1391 tcp->tcp_rthdrdstoptslen = 0; 1392 } 1393 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 1394 if (tcp->tcp_rthdr != NULL) { 1395 mi_free(tcp->tcp_rthdr); 1396 tcp->tcp_rthdr = NULL; 1397 tcp->tcp_rthdrlen = 0; 1398 } 1399 ASSERT(tcp->tcp_rthdrlen == 0); 1400 1401 /* 1402 * Following is really a blowing away a union. 1403 * It happens to have exactly two members of identical size 1404 * the following code is enough. 1405 */ 1406 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 1407 } 1408 1409 /* 1410 * tcp_get_conn/tcp_free_conn 1411 * 1412 * tcp_get_conn is used to get a clean tcp connection structure. 1413 * It tries to reuse the connections put on the freelist by the 1414 * time_wait_collector failing which it goes to kmem_cache. This 1415 * way has two benefits compared to just allocating from and 1416 * freeing to kmem_cache. 1417 * 1) The time_wait_collector can free (which includes the cleanup) 1418 * outside the squeue. So when the interrupt comes, we have a clean 1419 * connection sitting in the freelist. Obviously, this buys us 1420 * performance. 1421 * 1422 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener 1423 * has multiple disadvantages - tying up the squeue during alloc. 1424 * But allocating the conn/tcp in IP land is also not the best since 1425 * we can't check the 'q' and 'q0' which are protected by squeue and 1426 * blindly allocate memory which might have to be freed here if we are 1427 * not allowed to accept the connection. By using the freelist and 1428 * putting the conn/tcp back in freelist, we don't pay a penalty for 1429 * allocating memory without checking 'q/q0' and freeing it if we can't 1430 * accept the connection. 1431 * 1432 * Care should be taken to put the conn back in the same squeue's freelist 1433 * from which it was allocated. Best results are obtained if conn is 1434 * allocated from listener's squeue and freed to the same. Time wait 1435 * collector will free up the freelist is the connection ends up sitting 1436 * there for too long. 1437 */ 1438 void * 1439 tcp_get_conn(void *arg, tcp_stack_t *tcps) 1440 { 1441 tcp_t *tcp = NULL; 1442 conn_t *connp = NULL; 1443 squeue_t *sqp = (squeue_t *)arg; 1444 tcp_squeue_priv_t *tcp_time_wait; 1445 netstack_t *ns; 1446 mblk_t *tcp_rsrv_mp = NULL; 1447 1448 tcp_time_wait = 1449 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1450 1451 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1452 tcp = tcp_time_wait->tcp_free_list; 1453 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 1454 if (tcp != NULL) { 1455 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1456 tcp_time_wait->tcp_free_list_cnt--; 1457 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1458 tcp->tcp_time_wait_next = NULL; 1459 connp = tcp->tcp_connp; 1460 connp->conn_flags |= IPCL_REUSED; 1461 1462 ASSERT(tcp->tcp_tcps == NULL); 1463 ASSERT(connp->conn_netstack == NULL); 1464 ASSERT(tcp->tcp_rsrv_mp != NULL); 1465 ns = tcps->tcps_netstack; 1466 netstack_hold(ns); 1467 connp->conn_netstack = ns; 1468 connp->conn_ixa->ixa_ipst = ns->netstack_ip; 1469 tcp->tcp_tcps = tcps; 1470 ipcl_globalhash_insert(connp); 1471 1472 connp->conn_ixa->ixa_notify_cookie = tcp; 1473 ASSERT(connp->conn_ixa->ixa_notify == tcp_notify); 1474 connp->conn_recv = tcp_input_data; 1475 ASSERT(connp->conn_recvicmp == tcp_icmp_input); 1476 ASSERT(connp->conn_verifyicmp == tcp_verifyicmp); 1477 return ((void *)connp); 1478 } 1479 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1480 /* 1481 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 1482 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 1483 */ 1484 tcp_rsrv_mp = allocb(0, BPRI_HI); 1485 if (tcp_rsrv_mp == NULL) 1486 return (NULL); 1487 1488 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 1489 tcps->tcps_netstack)) == NULL) { 1490 freeb(tcp_rsrv_mp); 1491 return (NULL); 1492 } 1493 1494 tcp = connp->conn_tcp; 1495 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1496 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 1497 1498 tcp->tcp_tcps = tcps; 1499 1500 connp->conn_recv = tcp_input_data; 1501 connp->conn_recvicmp = tcp_icmp_input; 1502 connp->conn_verifyicmp = tcp_verifyicmp; 1503 1504 /* 1505 * Register tcp_notify to listen to capability changes detected by IP. 1506 * This upcall is made in the context of the call to conn_ip_output 1507 * thus it is inside the squeue. 1508 */ 1509 connp->conn_ixa->ixa_notify = tcp_notify; 1510 connp->conn_ixa->ixa_notify_cookie = tcp; 1511 1512 return ((void *)connp); 1513 } 1514 1515 /* 1516 * Handle connect to IPv4 destinations, including connections for AF_INET6 1517 * sockets connecting to IPv4 mapped IPv6 destinations. 1518 * Returns zero if OK, a positive errno, or a negative TLI error. 1519 */ 1520 static int 1521 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 1522 uint_t srcid) 1523 { 1524 ipaddr_t dstaddr = *dstaddrp; 1525 uint16_t lport; 1526 conn_t *connp = tcp->tcp_connp; 1527 tcp_stack_t *tcps = tcp->tcp_tcps; 1528 int error; 1529 1530 ASSERT(connp->conn_ipversion == IPV4_VERSION); 1531 1532 /* Check for attempt to connect to INADDR_ANY */ 1533 if (dstaddr == INADDR_ANY) { 1534 /* 1535 * SunOS 4.x and 4.3 BSD allow an application 1536 * to connect a TCP socket to INADDR_ANY. 1537 * When they do this, the kernel picks the 1538 * address of one interface and uses it 1539 * instead. The kernel usually ends up 1540 * picking the address of the loopback 1541 * interface. This is an undocumented feature. 1542 * However, we provide the same thing here 1543 * in order to have source and binary 1544 * compatibility with SunOS 4.x. 1545 * Update the T_CONN_REQ (sin/sin6) since it is used to 1546 * generate the T_CONN_CON. 1547 */ 1548 dstaddr = htonl(INADDR_LOOPBACK); 1549 *dstaddrp = dstaddr; 1550 } 1551 1552 /* Handle __sin6_src_id if socket not bound to an IP address */ 1553 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) { 1554 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 1555 IPCL_ZONEID(connp), tcps->tcps_netstack); 1556 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1557 } 1558 1559 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6); 1560 connp->conn_fport = dstport; 1561 1562 /* 1563 * At this point the remote destination address and remote port fields 1564 * in the tcp-four-tuple have been filled in the tcp structure. Now we 1565 * have to see which state tcp was in so we can take appropriate action. 1566 */ 1567 if (tcp->tcp_state == TCPS_IDLE) { 1568 /* 1569 * We support a quick connect capability here, allowing 1570 * clients to transition directly from IDLE to SYN_SENT 1571 * tcp_bindi will pick an unused port, insert the connection 1572 * in the bind hash and transition to BOUND state. 1573 */ 1574 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 1575 tcp, B_TRUE); 1576 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 1577 B_FALSE, B_FALSE); 1578 if (lport == 0) 1579 return (-TNOADDR); 1580 } 1581 1582 /* 1583 * Lookup the route to determine a source address and the uinfo. 1584 * Setup TCP parameters based on the metrics/DCE. 1585 */ 1586 error = tcp_set_destination(tcp); 1587 if (error != 0) 1588 return (error); 1589 1590 /* 1591 * Don't let an endpoint connect to itself. 1592 */ 1593 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 && 1594 connp->conn_fport == connp->conn_lport) 1595 return (-TBADADDR); 1596 1597 tcp->tcp_state = TCPS_SYN_SENT; 1598 1599 return (ipcl_conn_insert_v4(connp)); 1600 } 1601 1602 /* 1603 * Handle connect to IPv6 destinations. 1604 * Returns zero if OK, a positive errno, or a negative TLI error. 1605 */ 1606 static int 1607 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 1608 uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 1609 { 1610 uint16_t lport; 1611 conn_t *connp = tcp->tcp_connp; 1612 tcp_stack_t *tcps = tcp->tcp_tcps; 1613 int error; 1614 1615 ASSERT(connp->conn_family == AF_INET6); 1616 1617 /* 1618 * If we're here, it means that the destination address is a native 1619 * IPv6 address. Return an error if conn_ipversion is not IPv6. A 1620 * reason why it might not be IPv6 is if the socket was bound to an 1621 * IPv4-mapped IPv6 address. 1622 */ 1623 if (connp->conn_ipversion != IPV6_VERSION) 1624 return (-TBADADDR); 1625 1626 /* 1627 * Interpret a zero destination to mean loopback. 1628 * Update the T_CONN_REQ (sin/sin6) since it is used to 1629 * generate the T_CONN_CON. 1630 */ 1631 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) 1632 *dstaddrp = ipv6_loopback; 1633 1634 /* Handle __sin6_src_id if socket not bound to an IP address */ 1635 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) { 1636 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 1637 IPCL_ZONEID(connp), tcps->tcps_netstack); 1638 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1639 } 1640 1641 /* 1642 * Take care of the scope_id now. 1643 */ 1644 if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 1645 connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 1646 connp->conn_ixa->ixa_scopeid = scope_id; 1647 } else { 1648 connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 1649 } 1650 1651 connp->conn_flowinfo = flowinfo; 1652 connp->conn_faddr_v6 = *dstaddrp; 1653 connp->conn_fport = dstport; 1654 1655 /* 1656 * At this point the remote destination address and remote port fields 1657 * in the tcp-four-tuple have been filled in the tcp structure. Now we 1658 * have to see which state tcp was in so we can take appropriate action. 1659 */ 1660 if (tcp->tcp_state == TCPS_IDLE) { 1661 /* 1662 * We support a quick connect capability here, allowing 1663 * clients to transition directly from IDLE to SYN_SENT 1664 * tcp_bindi will pick an unused port, insert the connection 1665 * in the bind hash and transition to BOUND state. 1666 */ 1667 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 1668 tcp, B_TRUE); 1669 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 1670 B_FALSE, B_FALSE); 1671 if (lport == 0) 1672 return (-TNOADDR); 1673 } 1674 1675 /* 1676 * Lookup the route to determine a source address and the uinfo. 1677 * Setup TCP parameters based on the metrics/DCE. 1678 */ 1679 error = tcp_set_destination(tcp); 1680 if (error != 0) 1681 return (error); 1682 1683 /* 1684 * Don't let an endpoint connect to itself. 1685 */ 1686 if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) && 1687 connp->conn_fport == connp->conn_lport) 1688 return (-TBADADDR); 1689 1690 tcp->tcp_state = TCPS_SYN_SENT; 1691 1692 return (ipcl_conn_insert_v6(connp)); 1693 } 1694 1695 /* 1696 * Disconnect 1697 * Note that unlike other functions this returns a positive tli error 1698 * when it fails; it never returns an errno. 1699 */ 1700 static int 1701 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 1702 { 1703 conn_t *lconnp; 1704 tcp_stack_t *tcps = tcp->tcp_tcps; 1705 conn_t *connp = tcp->tcp_connp; 1706 1707 /* 1708 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 1709 * when the stream is in BOUND state. Do not send a reset, 1710 * since the destination IP address is not valid, and it can 1711 * be the initialized value of all zeros (broadcast address). 1712 */ 1713 if (tcp->tcp_state <= TCPS_BOUND) { 1714 if (connp->conn_debug) { 1715 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 1716 "tcp_disconnect: bad state, %d", tcp->tcp_state); 1717 } 1718 return (TOUTSTATE); 1719 } else if (tcp->tcp_state >= TCPS_ESTABLISHED) { 1720 TCPS_CONN_DEC(tcps); 1721 } 1722 1723 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 1724 1725 /* 1726 * According to TPI, for non-listeners, ignore seqnum 1727 * and disconnect. 1728 * Following interpretation of -1 seqnum is historical 1729 * and implied TPI ? (TPI only states that for T_CONN_IND, 1730 * a valid seqnum should not be -1). 1731 * 1732 * -1 means disconnect everything 1733 * regardless even on a listener. 1734 */ 1735 1736 int old_state = tcp->tcp_state; 1737 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 1738 1739 /* 1740 * The connection can't be on the tcp_time_wait_head list 1741 * since it is not detached. 1742 */ 1743 ASSERT(tcp->tcp_time_wait_next == NULL); 1744 ASSERT(tcp->tcp_time_wait_prev == NULL); 1745 ASSERT(tcp->tcp_time_wait_expire == 0); 1746 /* 1747 * If it used to be a listener, check to make sure no one else 1748 * has taken the port before switching back to LISTEN state. 1749 */ 1750 if (connp->conn_ipversion == IPV4_VERSION) { 1751 lconnp = ipcl_lookup_listener_v4(connp->conn_lport, 1752 connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst); 1753 } else { 1754 uint_t ifindex = 0; 1755 1756 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) 1757 ifindex = connp->conn_ixa->ixa_scopeid; 1758 1759 /* Allow conn_bound_if listeners? */ 1760 lconnp = ipcl_lookup_listener_v6(connp->conn_lport, 1761 &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp), 1762 ipst); 1763 } 1764 if (tcp->tcp_conn_req_max && lconnp == NULL) { 1765 tcp->tcp_state = TCPS_LISTEN; 1766 } else if (old_state > TCPS_BOUND) { 1767 tcp->tcp_conn_req_max = 0; 1768 tcp->tcp_state = TCPS_BOUND; 1769 1770 /* 1771 * If this end point is not going to become a listener, 1772 * decrement the listener connection count if 1773 * necessary. Note that we do not do this if it is 1774 * going to be a listner (the above if case) since 1775 * then it may remove the counter struct. 1776 */ 1777 if (tcp->tcp_listen_cnt != NULL) 1778 TCP_DECR_LISTEN_CNT(tcp); 1779 } 1780 if (lconnp != NULL) 1781 CONN_DEC_REF(lconnp); 1782 switch (old_state) { 1783 case TCPS_SYN_SENT: 1784 case TCPS_SYN_RCVD: 1785 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 1786 break; 1787 case TCPS_ESTABLISHED: 1788 case TCPS_CLOSE_WAIT: 1789 TCPS_BUMP_MIB(tcps, tcpEstabResets); 1790 break; 1791 } 1792 1793 if (tcp->tcp_fused) 1794 tcp_unfuse(tcp); 1795 1796 mutex_enter(&tcp->tcp_eager_lock); 1797 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 1798 (tcp->tcp_conn_req_cnt_q != 0)) { 1799 tcp_eager_cleanup(tcp, 0); 1800 } 1801 mutex_exit(&tcp->tcp_eager_lock); 1802 1803 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 1804 tcp->tcp_rnxt, TH_RST | TH_ACK); 1805 1806 tcp_reinit(tcp); 1807 1808 return (0); 1809 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 1810 return (TBADSEQ); 1811 } 1812 return (0); 1813 } 1814 1815 /* 1816 * Our client hereby directs us to reject the connection request 1817 * that tcp_input_listener() marked with 'seqnum'. Rejection consists 1818 * of sending the appropriate RST, not an ICMP error. 1819 */ 1820 void 1821 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 1822 { 1823 t_scalar_t seqnum; 1824 int error; 1825 conn_t *connp = tcp->tcp_connp; 1826 1827 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 1828 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 1829 tcp_err_ack(tcp, mp, TPROTO, 0); 1830 return; 1831 } 1832 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 1833 error = tcp_disconnect_common(tcp, seqnum); 1834 if (error != 0) 1835 tcp_err_ack(tcp, mp, error, 0); 1836 else { 1837 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 1838 /* Send M_FLUSH according to TPI */ 1839 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 1840 } 1841 mp = mi_tpi_ok_ack_alloc(mp); 1842 if (mp != NULL) 1843 putnext(connp->conn_rq, mp); 1844 } 1845 } 1846 1847 /* 1848 * Handle reinitialization of a tcp structure. 1849 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 1850 */ 1851 static void 1852 tcp_reinit(tcp_t *tcp) 1853 { 1854 mblk_t *mp; 1855 tcp_stack_t *tcps = tcp->tcp_tcps; 1856 conn_t *connp = tcp->tcp_connp; 1857 1858 /* tcp_reinit should never be called for detached tcp_t's */ 1859 ASSERT(tcp->tcp_listener == NULL); 1860 ASSERT((connp->conn_family == AF_INET && 1861 connp->conn_ipversion == IPV4_VERSION) || 1862 (connp->conn_family == AF_INET6 && 1863 (connp->conn_ipversion == IPV4_VERSION || 1864 connp->conn_ipversion == IPV6_VERSION))); 1865 1866 /* Cancel outstanding timers */ 1867 tcp_timers_stop(tcp); 1868 1869 /* 1870 * Reset everything in the state vector, after updating global 1871 * MIB data from instance counters. 1872 */ 1873 TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs); 1874 tcp->tcp_ibsegs = 0; 1875 TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs); 1876 tcp->tcp_obsegs = 0; 1877 1878 tcp_close_mpp(&tcp->tcp_xmit_head); 1879 if (tcp->tcp_snd_zcopy_aware) 1880 tcp_zcopy_notify(tcp); 1881 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 1882 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 1883 mutex_enter(&tcp->tcp_non_sq_lock); 1884 if (tcp->tcp_flow_stopped && 1885 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 1886 tcp_clrqfull(tcp); 1887 } 1888 mutex_exit(&tcp->tcp_non_sq_lock); 1889 tcp_close_mpp(&tcp->tcp_reass_head); 1890 tcp->tcp_reass_tail = NULL; 1891 if (tcp->tcp_rcv_list != NULL) { 1892 /* Free b_next chain */ 1893 tcp_close_mpp(&tcp->tcp_rcv_list); 1894 tcp->tcp_rcv_last_head = NULL; 1895 tcp->tcp_rcv_last_tail = NULL; 1896 tcp->tcp_rcv_cnt = 0; 1897 } 1898 tcp->tcp_rcv_last_tail = NULL; 1899 1900 if ((mp = tcp->tcp_urp_mp) != NULL) { 1901 freemsg(mp); 1902 tcp->tcp_urp_mp = NULL; 1903 } 1904 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 1905 freemsg(mp); 1906 tcp->tcp_urp_mark_mp = NULL; 1907 } 1908 if (tcp->tcp_fused_sigurg_mp != NULL) { 1909 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1910 freeb(tcp->tcp_fused_sigurg_mp); 1911 tcp->tcp_fused_sigurg_mp = NULL; 1912 } 1913 if (tcp->tcp_ordrel_mp != NULL) { 1914 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1915 freeb(tcp->tcp_ordrel_mp); 1916 tcp->tcp_ordrel_mp = NULL; 1917 } 1918 1919 /* 1920 * Following is a union with two members which are 1921 * identical types and size so the following cleanup 1922 * is enough. 1923 */ 1924 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 1925 1926 CL_INET_DISCONNECT(connp); 1927 1928 /* 1929 * The connection can't be on the tcp_time_wait_head list 1930 * since it is not detached. 1931 */ 1932 ASSERT(tcp->tcp_time_wait_next == NULL); 1933 ASSERT(tcp->tcp_time_wait_prev == NULL); 1934 ASSERT(tcp->tcp_time_wait_expire == 0); 1935 1936 if (tcp->tcp_kssl_pending) { 1937 tcp->tcp_kssl_pending = B_FALSE; 1938 1939 /* Don't reset if the initialized by bind. */ 1940 if (tcp->tcp_kssl_ent != NULL) { 1941 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 1942 KSSL_NO_PROXY); 1943 } 1944 } 1945 if (tcp->tcp_kssl_ctx != NULL) { 1946 kssl_release_ctx(tcp->tcp_kssl_ctx); 1947 tcp->tcp_kssl_ctx = NULL; 1948 } 1949 1950 /* 1951 * Reset/preserve other values 1952 */ 1953 tcp_reinit_values(tcp); 1954 ipcl_hash_remove(connp); 1955 /* Note that ixa_cred gets cleared in ixa_cleanup */ 1956 ixa_cleanup(connp->conn_ixa); 1957 tcp_ipsec_cleanup(tcp); 1958 1959 connp->conn_laddr_v6 = connp->conn_bound_addr_v6; 1960 connp->conn_saddr_v6 = connp->conn_bound_addr_v6; 1961 1962 if (tcp->tcp_conn_req_max != 0) { 1963 /* 1964 * This is the case when a TLI program uses the same 1965 * transport end point to accept a connection. This 1966 * makes the TCP both a listener and acceptor. When 1967 * this connection is closed, we need to set the state 1968 * back to TCPS_LISTEN. Make sure that the eager list 1969 * is reinitialized. 1970 * 1971 * Note that this stream is still bound to the four 1972 * tuples of the previous connection in IP. If a new 1973 * SYN with different foreign address comes in, IP will 1974 * not find it and will send it to the global queue. In 1975 * the global queue, TCP will do a tcp_lookup_listener() 1976 * to find this stream. This works because this stream 1977 * is only removed from connected hash. 1978 * 1979 */ 1980 tcp->tcp_state = TCPS_LISTEN; 1981 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 1982 tcp->tcp_eager_next_drop_q0 = tcp; 1983 tcp->tcp_eager_prev_drop_q0 = tcp; 1984 /* 1985 * Initially set conn_recv to tcp_input_listener_unbound to try 1986 * to pick a good squeue for the listener when the first SYN 1987 * arrives. tcp_input_listener_unbound sets it to 1988 * tcp_input_listener on that first SYN. 1989 */ 1990 connp->conn_recv = tcp_input_listener_unbound; 1991 1992 connp->conn_proto = IPPROTO_TCP; 1993 connp->conn_faddr_v6 = ipv6_all_zeros; 1994 connp->conn_fport = 0; 1995 1996 (void) ipcl_bind_insert(connp); 1997 } else { 1998 tcp->tcp_state = TCPS_BOUND; 1999 } 2000 2001 /* 2002 * Initialize to default values 2003 */ 2004 tcp_init_values(tcp); 2005 2006 ASSERT(tcp->tcp_ptpbhn != NULL); 2007 tcp->tcp_rwnd = connp->conn_rcvbuf; 2008 tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ? 2009 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 2010 } 2011 2012 /* 2013 * Force values to zero that need be zero. 2014 * Do not touch values asociated with the BOUND or LISTEN state 2015 * since the connection will end up in that state after the reinit. 2016 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 2017 * structure! 2018 */ 2019 static void 2020 tcp_reinit_values(tcp) 2021 tcp_t *tcp; 2022 { 2023 tcp_stack_t *tcps = tcp->tcp_tcps; 2024 conn_t *connp = tcp->tcp_connp; 2025 2026 #ifndef lint 2027 #define DONTCARE(x) 2028 #define PRESERVE(x) 2029 #else 2030 #define DONTCARE(x) ((x) = (x)) 2031 #define PRESERVE(x) ((x) = (x)) 2032 #endif /* lint */ 2033 2034 PRESERVE(tcp->tcp_bind_hash_port); 2035 PRESERVE(tcp->tcp_bind_hash); 2036 PRESERVE(tcp->tcp_ptpbhn); 2037 PRESERVE(tcp->tcp_acceptor_hash); 2038 PRESERVE(tcp->tcp_ptpahn); 2039 2040 /* Should be ASSERT NULL on these with new code! */ 2041 ASSERT(tcp->tcp_time_wait_next == NULL); 2042 ASSERT(tcp->tcp_time_wait_prev == NULL); 2043 ASSERT(tcp->tcp_time_wait_expire == 0); 2044 PRESERVE(tcp->tcp_state); 2045 PRESERVE(connp->conn_rq); 2046 PRESERVE(connp->conn_wq); 2047 2048 ASSERT(tcp->tcp_xmit_head == NULL); 2049 ASSERT(tcp->tcp_xmit_last == NULL); 2050 ASSERT(tcp->tcp_unsent == 0); 2051 ASSERT(tcp->tcp_xmit_tail == NULL); 2052 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 2053 2054 tcp->tcp_snxt = 0; /* Displayed in mib */ 2055 tcp->tcp_suna = 0; /* Displayed in mib */ 2056 tcp->tcp_swnd = 0; 2057 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */ 2058 2059 ASSERT(tcp->tcp_ibsegs == 0); 2060 ASSERT(tcp->tcp_obsegs == 0); 2061 2062 if (connp->conn_ht_iphc != NULL) { 2063 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 2064 connp->conn_ht_iphc = NULL; 2065 connp->conn_ht_iphc_allocated = 0; 2066 connp->conn_ht_iphc_len = 0; 2067 connp->conn_ht_ulp = NULL; 2068 connp->conn_ht_ulp_len = 0; 2069 tcp->tcp_ipha = NULL; 2070 tcp->tcp_ip6h = NULL; 2071 tcp->tcp_tcpha = NULL; 2072 } 2073 2074 /* We clear any IP_OPTIONS and extension headers */ 2075 ip_pkt_free(&connp->conn_xmit_ipp); 2076 2077 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 2078 DONTCARE(tcp->tcp_ipha); 2079 DONTCARE(tcp->tcp_ip6h); 2080 DONTCARE(tcp->tcp_tcpha); 2081 tcp->tcp_valid_bits = 0; 2082 2083 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 2084 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 2085 tcp->tcp_last_rcv_lbolt = 0; 2086 2087 tcp->tcp_init_cwnd = 0; 2088 2089 tcp->tcp_urp_last_valid = 0; 2090 tcp->tcp_hard_binding = 0; 2091 2092 tcp->tcp_fin_acked = 0; 2093 tcp->tcp_fin_rcvd = 0; 2094 tcp->tcp_fin_sent = 0; 2095 tcp->tcp_ordrel_done = 0; 2096 2097 tcp->tcp_detached = 0; 2098 2099 tcp->tcp_snd_ws_ok = B_FALSE; 2100 tcp->tcp_snd_ts_ok = B_FALSE; 2101 tcp->tcp_zero_win_probe = 0; 2102 2103 tcp->tcp_loopback = 0; 2104 tcp->tcp_localnet = 0; 2105 tcp->tcp_syn_defense = 0; 2106 tcp->tcp_set_timer = 0; 2107 2108 tcp->tcp_active_open = 0; 2109 tcp->tcp_rexmit = B_FALSE; 2110 tcp->tcp_xmit_zc_clean = B_FALSE; 2111 2112 tcp->tcp_snd_sack_ok = B_FALSE; 2113 tcp->tcp_hwcksum = B_FALSE; 2114 2115 DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */ 2116 2117 tcp->tcp_conn_def_q0 = 0; 2118 tcp->tcp_ip_forward_progress = B_FALSE; 2119 tcp->tcp_ecn_ok = B_FALSE; 2120 2121 tcp->tcp_cwr = B_FALSE; 2122 tcp->tcp_ecn_echo_on = B_FALSE; 2123 tcp->tcp_is_wnd_shrnk = B_FALSE; 2124 2125 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 2126 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 2127 2128 tcp->tcp_rcv_ws = 0; 2129 tcp->tcp_snd_ws = 0; 2130 tcp->tcp_ts_recent = 0; 2131 tcp->tcp_rnxt = 0; /* Displayed in mib */ 2132 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 2133 tcp->tcp_initial_pmtu = 0; 2134 2135 ASSERT(tcp->tcp_reass_head == NULL); 2136 ASSERT(tcp->tcp_reass_tail == NULL); 2137 2138 tcp->tcp_cwnd_cnt = 0; 2139 2140 ASSERT(tcp->tcp_rcv_list == NULL); 2141 ASSERT(tcp->tcp_rcv_last_head == NULL); 2142 ASSERT(tcp->tcp_rcv_last_tail == NULL); 2143 ASSERT(tcp->tcp_rcv_cnt == 0); 2144 2145 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */ 2146 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 2147 tcp->tcp_csuna = 0; 2148 2149 tcp->tcp_rto = 0; /* Displayed in MIB */ 2150 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 2151 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 2152 tcp->tcp_rtt_update = 0; 2153 2154 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 2155 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 2156 2157 tcp->tcp_rack = 0; /* Displayed in mib */ 2158 tcp->tcp_rack_cnt = 0; 2159 tcp->tcp_rack_cur_max = 0; 2160 tcp->tcp_rack_abs_max = 0; 2161 2162 tcp->tcp_max_swnd = 0; 2163 2164 ASSERT(tcp->tcp_listener == NULL); 2165 2166 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 2167 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 2168 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 2169 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 2170 2171 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 2172 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 2173 PRESERVE(tcp->tcp_conn_req_max); 2174 PRESERVE(tcp->tcp_conn_req_seqnum); 2175 2176 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 2177 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 2178 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 2179 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 2180 2181 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 2182 ASSERT(tcp->tcp_urp_mp == NULL); 2183 ASSERT(tcp->tcp_urp_mark_mp == NULL); 2184 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 2185 2186 ASSERT(tcp->tcp_eager_next_q == NULL); 2187 ASSERT(tcp->tcp_eager_last_q == NULL); 2188 ASSERT((tcp->tcp_eager_next_q0 == NULL && 2189 tcp->tcp_eager_prev_q0 == NULL) || 2190 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 2191 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 2192 2193 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 2194 tcp->tcp_eager_prev_drop_q0 == NULL) || 2195 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 2196 2197 tcp->tcp_client_errno = 0; 2198 2199 DONTCARE(connp->conn_sum); /* Init in tcp_init_values */ 2200 2201 connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */ 2202 2203 PRESERVE(connp->conn_bound_addr_v6); 2204 tcp->tcp_last_sent_len = 0; 2205 tcp->tcp_dupack_cnt = 0; 2206 2207 connp->conn_fport = 0; /* Displayed in MIB */ 2208 PRESERVE(connp->conn_lport); 2209 2210 PRESERVE(tcp->tcp_acceptor_lockp); 2211 2212 ASSERT(tcp->tcp_ordrel_mp == NULL); 2213 PRESERVE(tcp->tcp_acceptor_id); 2214 DONTCARE(tcp->tcp_ipsec_overhead); 2215 2216 PRESERVE(connp->conn_family); 2217 /* Remove any remnants of mapped address binding */ 2218 if (connp->conn_family == AF_INET6) { 2219 connp->conn_ipversion = IPV6_VERSION; 2220 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 2221 } else { 2222 connp->conn_ipversion = IPV4_VERSION; 2223 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 2224 } 2225 2226 connp->conn_bound_if = 0; 2227 connp->conn_recv_ancillary.crb_all = 0; 2228 tcp->tcp_recvifindex = 0; 2229 tcp->tcp_recvhops = 0; 2230 tcp->tcp_closed = 0; 2231 if (tcp->tcp_hopopts != NULL) { 2232 mi_free(tcp->tcp_hopopts); 2233 tcp->tcp_hopopts = NULL; 2234 tcp->tcp_hopoptslen = 0; 2235 } 2236 ASSERT(tcp->tcp_hopoptslen == 0); 2237 if (tcp->tcp_dstopts != NULL) { 2238 mi_free(tcp->tcp_dstopts); 2239 tcp->tcp_dstopts = NULL; 2240 tcp->tcp_dstoptslen = 0; 2241 } 2242 ASSERT(tcp->tcp_dstoptslen == 0); 2243 if (tcp->tcp_rthdrdstopts != NULL) { 2244 mi_free(tcp->tcp_rthdrdstopts); 2245 tcp->tcp_rthdrdstopts = NULL; 2246 tcp->tcp_rthdrdstoptslen = 0; 2247 } 2248 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 2249 if (tcp->tcp_rthdr != NULL) { 2250 mi_free(tcp->tcp_rthdr); 2251 tcp->tcp_rthdr = NULL; 2252 tcp->tcp_rthdrlen = 0; 2253 } 2254 ASSERT(tcp->tcp_rthdrlen == 0); 2255 2256 /* Reset fusion-related fields */ 2257 tcp->tcp_fused = B_FALSE; 2258 tcp->tcp_unfusable = B_FALSE; 2259 tcp->tcp_fused_sigurg = B_FALSE; 2260 tcp->tcp_loopback_peer = NULL; 2261 2262 tcp->tcp_lso = B_FALSE; 2263 2264 tcp->tcp_in_ack_unsent = 0; 2265 tcp->tcp_cork = B_FALSE; 2266 tcp->tcp_tconnind_started = B_FALSE; 2267 2268 PRESERVE(tcp->tcp_squeue_bytes); 2269 2270 ASSERT(tcp->tcp_kssl_ctx == NULL); 2271 ASSERT(!tcp->tcp_kssl_pending); 2272 PRESERVE(tcp->tcp_kssl_ent); 2273 2274 tcp->tcp_closemp_used = B_FALSE; 2275 2276 PRESERVE(tcp->tcp_rsrv_mp); 2277 PRESERVE(tcp->tcp_rsrv_mp_lock); 2278 2279 #ifdef DEBUG 2280 DONTCARE(tcp->tcmp_stk[0]); 2281 #endif 2282 2283 PRESERVE(tcp->tcp_connid); 2284 2285 ASSERT(tcp->tcp_listen_cnt == NULL); 2286 ASSERT(tcp->tcp_reass_tid == 0); 2287 2288 #undef DONTCARE 2289 #undef PRESERVE 2290 } 2291 2292 void 2293 tcp_init_values(tcp_t *tcp) 2294 { 2295 tcp_stack_t *tcps = tcp->tcp_tcps; 2296 conn_t *connp = tcp->tcp_connp; 2297 2298 ASSERT((connp->conn_family == AF_INET && 2299 connp->conn_ipversion == IPV4_VERSION) || 2300 (connp->conn_family == AF_INET6 && 2301 (connp->conn_ipversion == IPV4_VERSION || 2302 connp->conn_ipversion == IPV6_VERSION))); 2303 2304 /* 2305 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 2306 * will be close to tcp_rexmit_interval_initial. By doing this, we 2307 * allow the algorithm to adjust slowly to large fluctuations of RTT 2308 * during first few transmissions of a connection as seen in slow 2309 * links. 2310 */ 2311 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 2312 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 2313 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2314 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 2315 tcps->tcps_conn_grace_period; 2316 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 2317 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2318 tcp->tcp_timer_backoff = 0; 2319 tcp->tcp_ms_we_have_waited = 0; 2320 tcp->tcp_last_recv_time = ddi_get_lbolt(); 2321 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 2322 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2323 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 2324 2325 tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier; 2326 2327 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 2328 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 2329 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 2330 /* 2331 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 2332 * passive open. 2333 */ 2334 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 2335 2336 tcp->tcp_naglim = tcps->tcps_naglim_def; 2337 2338 /* NOTE: ISS is now set in tcp_set_destination(). */ 2339 2340 /* Reset fusion-related fields */ 2341 tcp->tcp_fused = B_FALSE; 2342 tcp->tcp_unfusable = B_FALSE; 2343 tcp->tcp_fused_sigurg = B_FALSE; 2344 tcp->tcp_loopback_peer = NULL; 2345 2346 /* We rebuild the header template on the next connect/conn_request */ 2347 2348 connp->conn_mlp_type = mlptSingle; 2349 2350 /* 2351 * Init the window scale to the max so tcp_rwnd_set() won't pare 2352 * down tcp_rwnd. tcp_set_destination() will set the right value later. 2353 */ 2354 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 2355 tcp->tcp_rwnd = connp->conn_rcvbuf; 2356 2357 tcp->tcp_cork = B_FALSE; 2358 /* 2359 * Init the tcp_debug option if it wasn't already set. This value 2360 * determines whether TCP 2361 * calls strlog() to print out debug messages. Doing this 2362 * initialization here means that this value is not inherited thru 2363 * tcp_reinit(). 2364 */ 2365 if (!connp->conn_debug) 2366 connp->conn_debug = tcps->tcps_dbg; 2367 2368 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 2369 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 2370 } 2371 2372 /* 2373 * Update the TCP connection according to change of PMTU. 2374 * 2375 * Path MTU might have changed by either increase or decrease, so need to 2376 * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny 2377 * or negative MSS, since tcp_mss_set() will do it. 2378 */ 2379 void 2380 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only) 2381 { 2382 uint32_t pmtu; 2383 int32_t mss; 2384 conn_t *connp = tcp->tcp_connp; 2385 ip_xmit_attr_t *ixa = connp->conn_ixa; 2386 iaflags_t ixaflags; 2387 2388 if (tcp->tcp_tcps->tcps_ignore_path_mtu) 2389 return; 2390 2391 if (tcp->tcp_state < TCPS_ESTABLISHED) 2392 return; 2393 2394 /* 2395 * Always call ip_get_pmtu() to make sure that IP has updated 2396 * ixa_flags properly. 2397 */ 2398 pmtu = ip_get_pmtu(ixa); 2399 ixaflags = ixa->ixa_flags; 2400 2401 /* 2402 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and 2403 * IPsec overhead if applied. Make sure to use the most recent 2404 * IPsec information. 2405 */ 2406 mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp); 2407 2408 /* 2409 * Nothing to change, so just return. 2410 */ 2411 if (mss == tcp->tcp_mss) 2412 return; 2413 2414 /* 2415 * Currently, for ICMP errors, only PMTU decrease is handled. 2416 */ 2417 if (mss > tcp->tcp_mss && decrease_only) 2418 return; 2419 2420 DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss); 2421 2422 /* 2423 * Update ixa_fragsize and ixa_pmtu. 2424 */ 2425 ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu; 2426 2427 /* 2428 * Adjust MSS and all relevant variables. 2429 */ 2430 tcp_mss_set(tcp, mss); 2431 2432 /* 2433 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu 2434 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP 2435 * has a (potentially different) min size we do the same. Make sure to 2436 * clear IXAF_DONTFRAG, which is used by IP to decide whether to 2437 * fragment the packet. 2438 * 2439 * LSO over IPv6 can not be fragmented. So need to disable LSO 2440 * when IPv6 fragmentation is needed. 2441 */ 2442 if (mss < tcp->tcp_tcps->tcps_mss_min) 2443 ixaflags |= IXAF_PMTU_TOO_SMALL; 2444 2445 if (ixaflags & IXAF_PMTU_TOO_SMALL) 2446 ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF); 2447 2448 if ((connp->conn_ipversion == IPV4_VERSION) && 2449 !(ixaflags & IXAF_PMTU_IPV4_DF)) { 2450 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 2451 } 2452 ixa->ixa_flags = ixaflags; 2453 } 2454 2455 int 2456 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 2457 { 2458 conn_t *connp = tcp->tcp_connp; 2459 queue_t *q = connp->conn_rq; 2460 int32_t mss = tcp->tcp_mss; 2461 int maxpsz; 2462 2463 if (TCP_IS_DETACHED(tcp)) 2464 return (mss); 2465 if (tcp->tcp_fused) { 2466 maxpsz = tcp_fuse_maxpsz(tcp); 2467 mss = INFPSZ; 2468 } else if (tcp->tcp_maxpsz_multiplier == 0) { 2469 /* 2470 * Set the sd_qn_maxpsz according to the socket send buffer 2471 * size, and sd_maxblk to INFPSZ (-1). This will essentially 2472 * instruct the stream head to copyin user data into contiguous 2473 * kernel-allocated buffers without breaking it up into smaller 2474 * chunks. We round up the buffer size to the nearest SMSS. 2475 */ 2476 maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss); 2477 if (tcp->tcp_kssl_ctx == NULL) 2478 mss = INFPSZ; 2479 else 2480 mss = SSL3_MAX_RECORD_LEN; 2481 } else { 2482 /* 2483 * Set sd_qn_maxpsz to approx half the (receivers) buffer 2484 * (and a multiple of the mss). This instructs the stream 2485 * head to break down larger than SMSS writes into SMSS- 2486 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 2487 */ 2488 maxpsz = tcp->tcp_maxpsz_multiplier * mss; 2489 if (maxpsz > connp->conn_sndbuf / 2) { 2490 maxpsz = connp->conn_sndbuf / 2; 2491 /* Round up to nearest mss */ 2492 maxpsz = MSS_ROUNDUP(maxpsz, mss); 2493 } 2494 } 2495 2496 (void) proto_set_maxpsz(q, connp, maxpsz); 2497 if (!(IPCL_IS_NONSTR(connp))) 2498 connp->conn_wq->q_maxpsz = maxpsz; 2499 if (set_maxblk) 2500 (void) proto_set_tx_maxblk(q, connp, mss); 2501 return (mss); 2502 } 2503 2504 /* For /dev/tcp aka AF_INET open */ 2505 static int 2506 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2507 { 2508 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 2509 } 2510 2511 /* For /dev/tcp6 aka AF_INET6 open */ 2512 static int 2513 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2514 { 2515 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 2516 } 2517 2518 conn_t * 2519 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket, 2520 int *errorp) 2521 { 2522 tcp_t *tcp = NULL; 2523 conn_t *connp; 2524 zoneid_t zoneid; 2525 tcp_stack_t *tcps; 2526 squeue_t *sqp; 2527 2528 ASSERT(errorp != NULL); 2529 /* 2530 * Find the proper zoneid and netstack. 2531 */ 2532 /* 2533 * Special case for install: miniroot needs to be able to 2534 * access files via NFS as though it were always in the 2535 * global zone. 2536 */ 2537 if (credp == kcred && nfs_global_client_only != 0) { 2538 zoneid = GLOBAL_ZONEID; 2539 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 2540 netstack_tcp; 2541 ASSERT(tcps != NULL); 2542 } else { 2543 netstack_t *ns; 2544 int err; 2545 2546 if ((err = secpolicy_basic_net_access(credp)) != 0) { 2547 *errorp = err; 2548 return (NULL); 2549 } 2550 2551 ns = netstack_find_by_cred(credp); 2552 ASSERT(ns != NULL); 2553 tcps = ns->netstack_tcp; 2554 ASSERT(tcps != NULL); 2555 2556 /* 2557 * For exclusive stacks we set the zoneid to zero 2558 * to make TCP operate as if in the global zone. 2559 */ 2560 if (tcps->tcps_netstack->netstack_stackid != 2561 GLOBAL_NETSTACKID) 2562 zoneid = GLOBAL_ZONEID; 2563 else 2564 zoneid = crgetzoneid(credp); 2565 } 2566 2567 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 2568 connp = (conn_t *)tcp_get_conn(sqp, tcps); 2569 /* 2570 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 2571 * so we drop it by one. 2572 */ 2573 netstack_rele(tcps->tcps_netstack); 2574 if (connp == NULL) { 2575 *errorp = ENOSR; 2576 return (NULL); 2577 } 2578 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto); 2579 2580 connp->conn_sqp = sqp; 2581 connp->conn_initial_sqp = connp->conn_sqp; 2582 connp->conn_ixa->ixa_sqp = connp->conn_sqp; 2583 tcp = connp->conn_tcp; 2584 2585 /* 2586 * Besides asking IP to set the checksum for us, have conn_ip_output 2587 * to do the following checks when necessary: 2588 * 2589 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid 2590 * IXAF_VERIFY_PMTU: verify PMTU changes 2591 * IXAF_VERIFY_LSO: verify LSO capability changes 2592 */ 2593 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 2594 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO; 2595 2596 if (!tcps->tcps_dev_flow_ctl) 2597 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 2598 2599 if (isv6) { 2600 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 2601 connp->conn_ipversion = IPV6_VERSION; 2602 connp->conn_family = AF_INET6; 2603 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 2604 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit; 2605 } else { 2606 connp->conn_ipversion = IPV4_VERSION; 2607 connp->conn_family = AF_INET; 2608 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 2609 connp->conn_default_ttl = tcps->tcps_ipv4_ttl; 2610 } 2611 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl; 2612 2613 crhold(credp); 2614 connp->conn_cred = credp; 2615 connp->conn_cpid = curproc->p_pid; 2616 connp->conn_open_time = ddi_get_lbolt64(); 2617 2618 /* Cache things in the ixa without any refhold */ 2619 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 2620 connp->conn_ixa->ixa_cred = credp; 2621 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 2622 2623 connp->conn_zoneid = zoneid; 2624 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 2625 connp->conn_ixa->ixa_zoneid = zoneid; 2626 connp->conn_mlp_type = mlptSingle; 2627 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 2628 ASSERT(tcp->tcp_tcps == tcps); 2629 2630 /* 2631 * If the caller has the process-wide flag set, then default to MAC 2632 * exempt mode. This allows read-down to unlabeled hosts. 2633 */ 2634 if (getpflags(NET_MAC_AWARE, credp) != 0) 2635 connp->conn_mac_mode = CONN_MAC_AWARE; 2636 2637 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 2638 2639 if (issocket) { 2640 tcp->tcp_issocket = 1; 2641 } 2642 2643 connp->conn_rcvbuf = tcps->tcps_recv_hiwat; 2644 connp->conn_sndbuf = tcps->tcps_xmit_hiwat; 2645 connp->conn_sndlowat = tcps->tcps_xmit_lowat; 2646 connp->conn_so_type = SOCK_STREAM; 2647 connp->conn_wroff = connp->conn_ht_iphc_allocated + 2648 tcps->tcps_wroff_xtra; 2649 2650 SOCK_CONNID_INIT(tcp->tcp_connid); 2651 tcp->tcp_state = TCPS_IDLE; 2652 tcp_init_values(tcp); 2653 return (connp); 2654 } 2655 2656 static int 2657 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 2658 boolean_t isv6) 2659 { 2660 tcp_t *tcp = NULL; 2661 conn_t *connp = NULL; 2662 int err; 2663 vmem_t *minor_arena = NULL; 2664 dev_t conn_dev; 2665 boolean_t issocket; 2666 2667 if (q->q_ptr != NULL) 2668 return (0); 2669 2670 if (sflag == MODOPEN) 2671 return (EINVAL); 2672 2673 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 2674 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 2675 minor_arena = ip_minor_arena_la; 2676 } else { 2677 /* 2678 * Either minor numbers in the large arena were exhausted 2679 * or a non socket application is doing the open. 2680 * Try to allocate from the small arena. 2681 */ 2682 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 2683 return (EBUSY); 2684 } 2685 minor_arena = ip_minor_arena_sa; 2686 } 2687 2688 ASSERT(minor_arena != NULL); 2689 2690 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 2691 2692 if (flag & SO_FALLBACK) { 2693 /* 2694 * Non streams socket needs a stream to fallback to 2695 */ 2696 RD(q)->q_ptr = (void *)conn_dev; 2697 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 2698 WR(q)->q_ptr = (void *)minor_arena; 2699 qprocson(q); 2700 return (0); 2701 } else if (flag & SO_ACCEPTOR) { 2702 q->q_qinfo = &tcp_acceptor_rinit; 2703 /* 2704 * the conn_dev and minor_arena will be subsequently used by 2705 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out 2706 * the minor device number for this connection from the q_ptr. 2707 */ 2708 RD(q)->q_ptr = (void *)conn_dev; 2709 WR(q)->q_qinfo = &tcp_acceptor_winit; 2710 WR(q)->q_ptr = (void *)minor_arena; 2711 qprocson(q); 2712 return (0); 2713 } 2714 2715 issocket = flag & SO_SOCKSTR; 2716 connp = tcp_create_common(credp, isv6, issocket, &err); 2717 2718 if (connp == NULL) { 2719 inet_minor_free(minor_arena, conn_dev); 2720 q->q_ptr = WR(q)->q_ptr = NULL; 2721 return (err); 2722 } 2723 2724 connp->conn_rq = q; 2725 connp->conn_wq = WR(q); 2726 q->q_ptr = WR(q)->q_ptr = connp; 2727 2728 connp->conn_dev = conn_dev; 2729 connp->conn_minor_arena = minor_arena; 2730 2731 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 2732 ASSERT(WR(q)->q_qinfo == &tcp_winit); 2733 2734 tcp = connp->conn_tcp; 2735 2736 if (issocket) { 2737 WR(q)->q_qinfo = &tcp_sock_winit; 2738 } else { 2739 #ifdef _ILP32 2740 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 2741 #else 2742 tcp->tcp_acceptor_id = conn_dev; 2743 #endif /* _ILP32 */ 2744 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 2745 } 2746 2747 /* 2748 * Put the ref for TCP. Ref for IP was already put 2749 * by ipcl_conn_create. Also Make the conn_t globally 2750 * visible to walkers 2751 */ 2752 mutex_enter(&connp->conn_lock); 2753 CONN_INC_REF_LOCKED(connp); 2754 ASSERT(connp->conn_ref == 2); 2755 connp->conn_state_flags &= ~CONN_INCIPIENT; 2756 mutex_exit(&connp->conn_lock); 2757 2758 qprocson(q); 2759 return (0); 2760 } 2761 2762 /* 2763 * Build/update the tcp header template (in conn_ht_iphc) based on 2764 * conn_xmit_ipp. The headers include ip6_t, any extension 2765 * headers, and the maximum size tcp header (to avoid reallocation 2766 * on the fly for additional tcp options). 2767 * 2768 * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}. 2769 * Returns failure if can't allocate memory. 2770 */ 2771 int 2772 tcp_build_hdrs(tcp_t *tcp) 2773 { 2774 tcp_stack_t *tcps = tcp->tcp_tcps; 2775 conn_t *connp = tcp->tcp_connp; 2776 char buf[TCP_MAX_HDR_LENGTH]; 2777 uint_t buflen; 2778 uint_t ulplen = TCP_MIN_HEADER_LENGTH; 2779 uint_t extralen = TCP_MAX_TCP_OPTIONS_LENGTH; 2780 tcpha_t *tcpha; 2781 uint32_t cksum; 2782 int error; 2783 2784 /* 2785 * We might be called after the connection is set up, and we might 2786 * have TS options already in the TCP header. Thus we save any 2787 * existing tcp header. 2788 */ 2789 buflen = connp->conn_ht_ulp_len; 2790 if (buflen != 0) { 2791 bcopy(connp->conn_ht_ulp, buf, buflen); 2792 extralen -= buflen - ulplen; 2793 ulplen = buflen; 2794 } 2795 2796 /* Grab lock to satisfy ASSERT; TCP is serialized using squeue */ 2797 mutex_enter(&connp->conn_lock); 2798 error = conn_build_hdr_template(connp, ulplen, extralen, 2799 &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo); 2800 mutex_exit(&connp->conn_lock); 2801 if (error != 0) 2802 return (error); 2803 2804 /* 2805 * Any routing header/option has been massaged. The checksum difference 2806 * is stored in conn_sum for later use. 2807 */ 2808 tcpha = (tcpha_t *)connp->conn_ht_ulp; 2809 tcp->tcp_tcpha = tcpha; 2810 2811 /* restore any old tcp header */ 2812 if (buflen != 0) { 2813 bcopy(buf, connp->conn_ht_ulp, buflen); 2814 } else { 2815 tcpha->tha_sum = 0; 2816 tcpha->tha_urp = 0; 2817 tcpha->tha_ack = 0; 2818 tcpha->tha_offset_and_reserved = (5 << 4); 2819 tcpha->tha_lport = connp->conn_lport; 2820 tcpha->tha_fport = connp->conn_fport; 2821 } 2822 2823 /* 2824 * IP wants our header length in the checksum field to 2825 * allow it to perform a single pseudo-header+checksum 2826 * calculation on behalf of TCP. 2827 * Include the adjustment for a source route once IP_OPTIONS is set. 2828 */ 2829 cksum = sizeof (tcpha_t) + connp->conn_sum; 2830 cksum = (cksum >> 16) + (cksum & 0xFFFF); 2831 ASSERT(cksum < 0x10000); 2832 tcpha->tha_sum = htons(cksum); 2833 2834 if (connp->conn_ipversion == IPV4_VERSION) 2835 tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc; 2836 else 2837 tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc; 2838 2839 if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra > 2840 connp->conn_wroff) { 2841 connp->conn_wroff = connp->conn_ht_iphc_allocated + 2842 tcps->tcps_wroff_xtra; 2843 (void) proto_set_tx_wroff(connp->conn_rq, connp, 2844 connp->conn_wroff); 2845 } 2846 return (0); 2847 } 2848 2849 /* 2850 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 2851 * We do not allow the receive window to shrink. After setting rwnd, 2852 * set the flow control hiwat of the stream. 2853 * 2854 * This function is called in 2 cases: 2855 * 2856 * 1) Before data transfer begins, in tcp_input_listener() for accepting a 2857 * connection (passive open) and in tcp_input_data() for active connect. 2858 * This is called after tcp_mss_set() when the desired MSS value is known. 2859 * This makes sure that our window size is a mutiple of the other side's 2860 * MSS. 2861 * 2) Handling SO_RCVBUF option. 2862 * 2863 * It is ASSUMED that the requested size is a multiple of the current MSS. 2864 * 2865 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 2866 * user requests so. 2867 */ 2868 int 2869 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 2870 { 2871 uint32_t mss = tcp->tcp_mss; 2872 uint32_t old_max_rwnd; 2873 uint32_t max_transmittable_rwnd; 2874 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2875 tcp_stack_t *tcps = tcp->tcp_tcps; 2876 conn_t *connp = tcp->tcp_connp; 2877 2878 /* 2879 * Insist on a receive window that is at least 2880 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 2881 * funny TCP interactions of Nagle algorithm, SWS avoidance 2882 * and delayed acknowledgement. 2883 */ 2884 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 2885 2886 if (tcp->tcp_fused) { 2887 size_t sth_hiwat; 2888 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 2889 2890 ASSERT(peer_tcp != NULL); 2891 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 2892 if (!tcp_detached) { 2893 (void) proto_set_rx_hiwat(connp->conn_rq, connp, 2894 sth_hiwat); 2895 tcp_set_recv_threshold(tcp, sth_hiwat >> 3); 2896 } 2897 2898 /* Caller could have changed tcp_rwnd; update tha_win */ 2899 if (tcp->tcp_tcpha != NULL) { 2900 tcp->tcp_tcpha->tha_win = 2901 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 2902 } 2903 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 2904 tcp->tcp_cwnd_max = rwnd; 2905 2906 /* 2907 * In the fusion case, the maxpsz stream head value of 2908 * our peer is set according to its send buffer size 2909 * and our receive buffer size; since the latter may 2910 * have changed we need to update the peer's maxpsz. 2911 */ 2912 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 2913 return (sth_hiwat); 2914 } 2915 2916 if (tcp_detached) 2917 old_max_rwnd = tcp->tcp_rwnd; 2918 else 2919 old_max_rwnd = connp->conn_rcvbuf; 2920 2921 2922 /* 2923 * If window size info has already been exchanged, TCP should not 2924 * shrink the window. Shrinking window is doable if done carefully. 2925 * We may add that support later. But so far there is not a real 2926 * need to do that. 2927 */ 2928 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 2929 /* MSS may have changed, do a round up again. */ 2930 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 2931 } 2932 2933 /* 2934 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 2935 * can be applied even before the window scale option is decided. 2936 */ 2937 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 2938 if (rwnd > max_transmittable_rwnd) { 2939 rwnd = max_transmittable_rwnd - 2940 (max_transmittable_rwnd % mss); 2941 if (rwnd < mss) 2942 rwnd = max_transmittable_rwnd; 2943 /* 2944 * If we're over the limit we may have to back down tcp_rwnd. 2945 * The increment below won't work for us. So we set all three 2946 * here and the increment below will have no effect. 2947 */ 2948 tcp->tcp_rwnd = old_max_rwnd = rwnd; 2949 } 2950 if (tcp->tcp_localnet) { 2951 tcp->tcp_rack_abs_max = 2952 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 2953 } else { 2954 /* 2955 * For a remote host on a different subnet (through a router), 2956 * we ack every other packet to be conforming to RFC1122. 2957 * tcp_deferred_acks_max is default to 2. 2958 */ 2959 tcp->tcp_rack_abs_max = 2960 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 2961 } 2962 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 2963 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 2964 else 2965 tcp->tcp_rack_cur_max = 0; 2966 /* 2967 * Increment the current rwnd by the amount the maximum grew (we 2968 * can not overwrite it since we might be in the middle of a 2969 * connection.) 2970 */ 2971 tcp->tcp_rwnd += rwnd - old_max_rwnd; 2972 connp->conn_rcvbuf = rwnd; 2973 2974 /* Are we already connected? */ 2975 if (tcp->tcp_tcpha != NULL) { 2976 tcp->tcp_tcpha->tha_win = 2977 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 2978 } 2979 2980 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 2981 tcp->tcp_cwnd_max = rwnd; 2982 2983 if (tcp_detached) 2984 return (rwnd); 2985 2986 tcp_set_recv_threshold(tcp, rwnd >> 3); 2987 2988 (void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd); 2989 return (rwnd); 2990 } 2991 2992 int 2993 tcp_do_unbind(conn_t *connp) 2994 { 2995 tcp_t *tcp = connp->conn_tcp; 2996 2997 switch (tcp->tcp_state) { 2998 case TCPS_BOUND: 2999 case TCPS_LISTEN: 3000 break; 3001 default: 3002 return (-TOUTSTATE); 3003 } 3004 3005 /* 3006 * Need to clean up all the eagers since after the unbind, segments 3007 * will no longer be delivered to this listener stream. 3008 */ 3009 mutex_enter(&tcp->tcp_eager_lock); 3010 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3011 tcp_eager_cleanup(tcp, 0); 3012 } 3013 mutex_exit(&tcp->tcp_eager_lock); 3014 3015 /* Clean up the listener connection counter if necessary. */ 3016 if (tcp->tcp_listen_cnt != NULL) 3017 TCP_DECR_LISTEN_CNT(tcp); 3018 connp->conn_laddr_v6 = ipv6_all_zeros; 3019 connp->conn_saddr_v6 = ipv6_all_zeros; 3020 tcp_bind_hash_remove(tcp); 3021 tcp->tcp_state = TCPS_IDLE; 3022 3023 ip_unbind(connp); 3024 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 3025 3026 return (0); 3027 } 3028 3029 /* 3030 * This runs at the tail end of accept processing on the squeue of the 3031 * new connection. 3032 */ 3033 /* ARGSUSED */ 3034 void 3035 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 3036 { 3037 conn_t *connp = (conn_t *)arg; 3038 tcp_t *tcp = connp->conn_tcp; 3039 queue_t *q = connp->conn_rq; 3040 tcp_stack_t *tcps = tcp->tcp_tcps; 3041 /* socket options */ 3042 struct sock_proto_props sopp; 3043 3044 /* We should just receive a single mblk that fits a T_discon_ind */ 3045 ASSERT(mp->b_cont == NULL); 3046 3047 /* 3048 * Drop the eager's ref on the listener, that was placed when 3049 * this eager began life in tcp_input_listener. 3050 */ 3051 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 3052 if (IPCL_IS_NONSTR(connp)) { 3053 /* Safe to free conn_ind message */ 3054 freemsg(tcp->tcp_conn.tcp_eager_conn_ind); 3055 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 3056 } 3057 3058 tcp->tcp_detached = B_FALSE; 3059 3060 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 3061 /* 3062 * Someone blewoff the eager before we could finish 3063 * the accept. 3064 * 3065 * The only reason eager exists it because we put in 3066 * a ref on it when conn ind went up. We need to send 3067 * a disconnect indication up while the last reference 3068 * on the eager will be dropped by the squeue when we 3069 * return. 3070 */ 3071 ASSERT(tcp->tcp_listener == NULL); 3072 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 3073 if (IPCL_IS_NONSTR(connp)) { 3074 ASSERT(tcp->tcp_issocket); 3075 (*connp->conn_upcalls->su_disconnected)( 3076 connp->conn_upper_handle, tcp->tcp_connid, 3077 ECONNREFUSED); 3078 freemsg(mp); 3079 } else { 3080 struct T_discon_ind *tdi; 3081 3082 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 3083 /* 3084 * Let us reuse the incoming mblk to avoid 3085 * memory allocation failure problems. We know 3086 * that the size of the incoming mblk i.e. 3087 * stroptions is greater than sizeof 3088 * T_discon_ind. 3089 */ 3090 ASSERT(DB_REF(mp) == 1); 3091 ASSERT(MBLKSIZE(mp) >= 3092 sizeof (struct T_discon_ind)); 3093 3094 DB_TYPE(mp) = M_PROTO; 3095 ((union T_primitives *)mp->b_rptr)->type = 3096 T_DISCON_IND; 3097 tdi = (struct T_discon_ind *)mp->b_rptr; 3098 if (tcp->tcp_issocket) { 3099 tdi->DISCON_reason = ECONNREFUSED; 3100 tdi->SEQ_number = 0; 3101 } else { 3102 tdi->DISCON_reason = ENOPROTOOPT; 3103 tdi->SEQ_number = 3104 tcp->tcp_conn_req_seqnum; 3105 } 3106 mp->b_wptr = mp->b_rptr + 3107 sizeof (struct T_discon_ind); 3108 putnext(q, mp); 3109 } 3110 } 3111 tcp->tcp_hard_binding = B_FALSE; 3112 return; 3113 } 3114 3115 /* 3116 * This is the first time we run on the correct 3117 * queue after tcp_accept. So fix all the q parameters 3118 * here. 3119 */ 3120 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 3121 sopp.sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 3122 3123 sopp.sopp_rxhiwat = tcp->tcp_fused ? 3124 tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) : 3125 connp->conn_rcvbuf; 3126 3127 /* 3128 * Determine what write offset value to use depending on SACK and 3129 * whether the endpoint is fused or not. 3130 */ 3131 if (tcp->tcp_fused) { 3132 ASSERT(tcp->tcp_loopback); 3133 ASSERT(tcp->tcp_loopback_peer != NULL); 3134 /* 3135 * For fused tcp loopback, set the stream head's write 3136 * offset value to zero since we won't be needing any room 3137 * for TCP/IP headers. This would also improve performance 3138 * since it would reduce the amount of work done by kmem. 3139 * Non-fused tcp loopback case is handled separately below. 3140 */ 3141 sopp.sopp_wroff = 0; 3142 /* 3143 * Update the peer's transmit parameters according to 3144 * our recently calculated high water mark value. 3145 */ 3146 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 3147 } else if (tcp->tcp_snd_sack_ok) { 3148 sopp.sopp_wroff = connp->conn_ht_iphc_allocated + 3149 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 3150 } else { 3151 sopp.sopp_wroff = connp->conn_ht_iphc_len + 3152 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 3153 } 3154 3155 /* 3156 * If this is endpoint is handling SSL, then reserve extra 3157 * offset and space at the end. 3158 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 3159 * overriding the previous setting. The extra cost of signing and 3160 * encrypting multiple MSS-size records (12 of them with Ethernet), 3161 * instead of a single contiguous one by the stream head 3162 * largely outweighs the statistical reduction of ACKs, when 3163 * applicable. The peer will also save on decryption and verification 3164 * costs. 3165 */ 3166 if (tcp->tcp_kssl_ctx != NULL) { 3167 sopp.sopp_wroff += SSL3_WROFFSET; 3168 3169 sopp.sopp_flags |= SOCKOPT_TAIL; 3170 sopp.sopp_tail = SSL3_MAX_TAIL_LEN; 3171 3172 sopp.sopp_flags |= SOCKOPT_ZCOPY; 3173 sopp.sopp_zcopyflag = ZCVMUNSAFE; 3174 3175 sopp.sopp_maxblk = SSL3_MAX_RECORD_LEN; 3176 } 3177 3178 /* Send the options up */ 3179 if (IPCL_IS_NONSTR(connp)) { 3180 if (sopp.sopp_flags & SOCKOPT_TAIL) { 3181 ASSERT(tcp->tcp_kssl_ctx != NULL); 3182 ASSERT(sopp.sopp_flags & SOCKOPT_ZCOPY); 3183 } 3184 if (tcp->tcp_loopback) { 3185 sopp.sopp_flags |= SOCKOPT_LOOPBACK; 3186 sopp.sopp_loopback = B_TRUE; 3187 } 3188 (*connp->conn_upcalls->su_set_proto_props) 3189 (connp->conn_upper_handle, &sopp); 3190 freemsg(mp); 3191 } else { 3192 /* 3193 * Let us reuse the incoming mblk to avoid 3194 * memory allocation failure problems. We know 3195 * that the size of the incoming mblk is at least 3196 * stroptions 3197 */ 3198 struct stroptions *stropt; 3199 3200 ASSERT(DB_REF(mp) == 1); 3201 ASSERT(MBLKSIZE(mp) >= sizeof (struct stroptions)); 3202 3203 DB_TYPE(mp) = M_SETOPTS; 3204 stropt = (struct stroptions *)mp->b_rptr; 3205 mp->b_wptr = mp->b_rptr + sizeof (struct stroptions); 3206 stropt = (struct stroptions *)mp->b_rptr; 3207 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 3208 stropt->so_hiwat = sopp.sopp_rxhiwat; 3209 stropt->so_wroff = sopp.sopp_wroff; 3210 stropt->so_maxblk = sopp.sopp_maxblk; 3211 3212 if (sopp.sopp_flags & SOCKOPT_TAIL) { 3213 ASSERT(tcp->tcp_kssl_ctx != NULL); 3214 3215 stropt->so_flags |= SO_TAIL | SO_COPYOPT; 3216 stropt->so_tail = sopp.sopp_tail; 3217 stropt->so_copyopt = sopp.sopp_zcopyflag; 3218 } 3219 3220 /* Send the options up */ 3221 putnext(q, mp); 3222 } 3223 3224 /* 3225 * Pass up any data and/or a fin that has been received. 3226 * 3227 * Adjust receive window in case it had decreased 3228 * (because there is data <=> tcp_rcv_list != NULL) 3229 * while the connection was detached. Note that 3230 * in case the eager was flow-controlled, w/o this 3231 * code, the rwnd may never open up again! 3232 */ 3233 if (tcp->tcp_rcv_list != NULL) { 3234 if (IPCL_IS_NONSTR(connp)) { 3235 mblk_t *mp; 3236 int space_left; 3237 int error; 3238 boolean_t push = B_TRUE; 3239 3240 if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv) 3241 (connp->conn_upper_handle, NULL, 0, 0, &error, 3242 &push) >= 0) { 3243 tcp->tcp_rwnd = connp->conn_rcvbuf; 3244 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3245 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 3246 tcp_xmit_ctl(NULL, 3247 tcp, (tcp->tcp_swnd == 0) ? 3248 tcp->tcp_suna : tcp->tcp_snxt, 3249 tcp->tcp_rnxt, TH_ACK); 3250 } 3251 } 3252 while ((mp = tcp->tcp_rcv_list) != NULL) { 3253 push = B_TRUE; 3254 tcp->tcp_rcv_list = mp->b_next; 3255 mp->b_next = NULL; 3256 space_left = (*connp->conn_upcalls->su_recv) 3257 (connp->conn_upper_handle, mp, msgdsize(mp), 3258 0, &error, &push); 3259 if (space_left < 0) { 3260 /* 3261 * We should never be in middle of a 3262 * fallback, the squeue guarantees that. 3263 */ 3264 ASSERT(error != EOPNOTSUPP); 3265 } 3266 } 3267 tcp->tcp_rcv_last_head = NULL; 3268 tcp->tcp_rcv_last_tail = NULL; 3269 tcp->tcp_rcv_cnt = 0; 3270 } else { 3271 /* We drain directly in case of fused tcp loopback */ 3272 3273 if (!tcp->tcp_fused && canputnext(q)) { 3274 tcp->tcp_rwnd = connp->conn_rcvbuf; 3275 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3276 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 3277 tcp_xmit_ctl(NULL, 3278 tcp, (tcp->tcp_swnd == 0) ? 3279 tcp->tcp_suna : tcp->tcp_snxt, 3280 tcp->tcp_rnxt, TH_ACK); 3281 } 3282 } 3283 3284 (void) tcp_rcv_drain(tcp); 3285 } 3286 3287 /* 3288 * For fused tcp loopback, back-enable peer endpoint 3289 * if it's currently flow-controlled. 3290 */ 3291 if (tcp->tcp_fused) { 3292 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 3293 3294 ASSERT(peer_tcp != NULL); 3295 ASSERT(peer_tcp->tcp_fused); 3296 3297 mutex_enter(&peer_tcp->tcp_non_sq_lock); 3298 if (peer_tcp->tcp_flow_stopped) { 3299 tcp_clrqfull(peer_tcp); 3300 TCP_STAT(tcps, tcp_fusion_backenabled); 3301 } 3302 mutex_exit(&peer_tcp->tcp_non_sq_lock); 3303 } 3304 } 3305 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 3306 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 3307 tcp->tcp_ordrel_done = B_TRUE; 3308 if (IPCL_IS_NONSTR(connp)) { 3309 ASSERT(tcp->tcp_ordrel_mp == NULL); 3310 (*connp->conn_upcalls->su_opctl)( 3311 connp->conn_upper_handle, 3312 SOCK_OPCTL_SHUT_RECV, 0); 3313 } else { 3314 mp = tcp->tcp_ordrel_mp; 3315 tcp->tcp_ordrel_mp = NULL; 3316 putnext(q, mp); 3317 } 3318 } 3319 tcp->tcp_hard_binding = B_FALSE; 3320 3321 if (connp->conn_keepalive) { 3322 tcp->tcp_ka_last_intrvl = 0; 3323 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_timer, 3324 tcp->tcp_ka_interval); 3325 } 3326 3327 /* 3328 * At this point, eager is fully established and will 3329 * have the following references - 3330 * 3331 * 2 references for connection to exist (1 for TCP and 1 for IP). 3332 * 1 reference for the squeue which will be dropped by the squeue as 3333 * soon as this function returns. 3334 * There will be 1 additonal reference for being in classifier 3335 * hash list provided something bad hasn't happened. 3336 */ 3337 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3338 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3339 } 3340 3341 /* 3342 * Common to TPI and sockfs accept code. 3343 */ 3344 /* ARGSUSED2 */ 3345 int 3346 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr) 3347 { 3348 tcp_t *listener, *eager; 3349 mblk_t *discon_mp; 3350 3351 listener = lconnp->conn_tcp; 3352 ASSERT(listener->tcp_state == TCPS_LISTEN); 3353 eager = econnp->conn_tcp; 3354 ASSERT(eager->tcp_listener != NULL); 3355 3356 /* 3357 * Pre allocate the discon_ind mblk also. tcp_accept_finish will 3358 * use it if something failed. 3359 */ 3360 discon_mp = allocb(MAX(sizeof (struct T_discon_ind), 3361 sizeof (struct stroptions)), BPRI_HI); 3362 3363 if (discon_mp == NULL) { 3364 return (-TPROTO); 3365 } 3366 eager->tcp_issocket = B_TRUE; 3367 3368 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 3369 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 3370 ASSERT(econnp->conn_netstack == 3371 listener->tcp_connp->conn_netstack); 3372 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 3373 3374 /* Put the ref for IP */ 3375 CONN_INC_REF(econnp); 3376 3377 /* 3378 * We should have minimum of 3 references on the conn 3379 * at this point. One each for TCP and IP and one for 3380 * the T_conn_ind that was sent up when the 3-way handshake 3381 * completed. In the normal case we would also have another 3382 * reference (making a total of 4) for the conn being in the 3383 * classifier hash list. However the eager could have received 3384 * an RST subsequently and tcp_closei_local could have removed 3385 * the eager from the classifier hash list, hence we can't 3386 * assert that reference. 3387 */ 3388 ASSERT(econnp->conn_ref >= 3); 3389 3390 mutex_enter(&listener->tcp_eager_lock); 3391 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 3392 3393 tcp_t *tail; 3394 tcp_t *tcp; 3395 mblk_t *mp1; 3396 3397 tcp = listener->tcp_eager_prev_q0; 3398 /* 3399 * listener->tcp_eager_prev_q0 points to the TAIL of the 3400 * deferred T_conn_ind queue. We need to get to the head 3401 * of the queue in order to send up T_conn_ind the same 3402 * order as how the 3WHS is completed. 3403 */ 3404 while (tcp != listener) { 3405 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 3406 !tcp->tcp_kssl_pending) 3407 break; 3408 else 3409 tcp = tcp->tcp_eager_prev_q0; 3410 } 3411 /* None of the pending eagers can be sent up now */ 3412 if (tcp == listener) 3413 goto no_more_eagers; 3414 3415 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 3416 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 3417 /* Move from q0 to q */ 3418 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 3419 listener->tcp_conn_req_cnt_q0--; 3420 listener->tcp_conn_req_cnt_q++; 3421 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 3422 tcp->tcp_eager_prev_q0; 3423 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 3424 tcp->tcp_eager_next_q0; 3425 tcp->tcp_eager_prev_q0 = NULL; 3426 tcp->tcp_eager_next_q0 = NULL; 3427 tcp->tcp_conn_def_q0 = B_FALSE; 3428 3429 /* Make sure the tcp isn't in the list of droppables */ 3430 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 3431 tcp->tcp_eager_prev_drop_q0 == NULL); 3432 3433 /* 3434 * Insert at end of the queue because sockfs sends 3435 * down T_CONN_RES in chronological order. Leaving 3436 * the older conn indications at front of the queue 3437 * helps reducing search time. 3438 */ 3439 tail = listener->tcp_eager_last_q; 3440 if (tail != NULL) { 3441 tail->tcp_eager_next_q = tcp; 3442 } else { 3443 listener->tcp_eager_next_q = tcp; 3444 } 3445 listener->tcp_eager_last_q = tcp; 3446 tcp->tcp_eager_next_q = NULL; 3447 3448 /* Need to get inside the listener perimeter */ 3449 CONN_INC_REF(listener->tcp_connp); 3450 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, 3451 tcp_send_pending, listener->tcp_connp, NULL, SQ_FILL, 3452 SQTAG_TCP_SEND_PENDING); 3453 } 3454 no_more_eagers: 3455 tcp_eager_unlink(eager); 3456 mutex_exit(&listener->tcp_eager_lock); 3457 3458 /* 3459 * At this point, the eager is detached from the listener 3460 * but we still have an extra refs on eager (apart from the 3461 * usual tcp references). The ref was placed in tcp_input_data 3462 * before sending the conn_ind in tcp_send_conn_ind. 3463 * The ref will be dropped in tcp_accept_finish(). 3464 */ 3465 SQUEUE_ENTER_ONE(econnp->conn_sqp, discon_mp, tcp_accept_finish, 3466 econnp, NULL, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); 3467 return (0); 3468 } 3469 3470 /* 3471 * Check the usability of ZEROCOPY. It's instead checking the flag set by IP. 3472 */ 3473 boolean_t 3474 tcp_zcopy_check(tcp_t *tcp) 3475 { 3476 conn_t *connp = tcp->tcp_connp; 3477 ip_xmit_attr_t *ixa = connp->conn_ixa; 3478 boolean_t zc_enabled = B_FALSE; 3479 tcp_stack_t *tcps = tcp->tcp_tcps; 3480 3481 if (do_tcpzcopy == 2) 3482 zc_enabled = B_TRUE; 3483 else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB)) 3484 zc_enabled = B_TRUE; 3485 3486 tcp->tcp_snd_zcopy_on = zc_enabled; 3487 if (!TCP_IS_DETACHED(tcp)) { 3488 if (zc_enabled) { 3489 ixa->ixa_flags |= IXAF_VERIFY_ZCOPY; 3490 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3491 ZCVMSAFE); 3492 TCP_STAT(tcps, tcp_zcopy_on); 3493 } else { 3494 ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY; 3495 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3496 ZCVMUNSAFE); 3497 TCP_STAT(tcps, tcp_zcopy_off); 3498 } 3499 } 3500 return (zc_enabled); 3501 } 3502 3503 /* 3504 * Backoff from a zero-copy message by copying data to a new allocated 3505 * message and freeing the original desballoca'ed segmapped message. 3506 * 3507 * This function is called by following two callers: 3508 * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free 3509 * the origial desballoca'ed message and notify sockfs. This is in re- 3510 * transmit state. 3511 * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need 3512 * to be copied to new message. 3513 */ 3514 mblk_t * 3515 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist) 3516 { 3517 mblk_t *nbp; 3518 mblk_t *head = NULL; 3519 mblk_t *tail = NULL; 3520 tcp_stack_t *tcps = tcp->tcp_tcps; 3521 3522 ASSERT(bp != NULL); 3523 while (bp != NULL) { 3524 if (IS_VMLOANED_MBLK(bp)) { 3525 TCP_STAT(tcps, tcp_zcopy_backoff); 3526 if ((nbp = copyb(bp)) == NULL) { 3527 tcp->tcp_xmit_zc_clean = B_FALSE; 3528 if (tail != NULL) 3529 tail->b_cont = bp; 3530 return ((head == NULL) ? bp : head); 3531 } 3532 3533 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 3534 if (fix_xmitlist) 3535 tcp_zcopy_notify(tcp); 3536 else 3537 nbp->b_datap->db_struioflag |= 3538 STRUIO_ZCNOTIFY; 3539 } 3540 nbp->b_cont = bp->b_cont; 3541 3542 /* 3543 * Copy saved information and adjust tcp_xmit_tail 3544 * if needed. 3545 */ 3546 if (fix_xmitlist) { 3547 nbp->b_prev = bp->b_prev; 3548 nbp->b_next = bp->b_next; 3549 3550 if (tcp->tcp_xmit_tail == bp) 3551 tcp->tcp_xmit_tail = nbp; 3552 } 3553 3554 /* Free the original message. */ 3555 bp->b_prev = NULL; 3556 bp->b_next = NULL; 3557 freeb(bp); 3558 3559 bp = nbp; 3560 } 3561 3562 if (head == NULL) { 3563 head = bp; 3564 } 3565 if (tail == NULL) { 3566 tail = bp; 3567 } else { 3568 tail->b_cont = bp; 3569 tail = bp; 3570 } 3571 3572 /* Move forward. */ 3573 bp = bp->b_cont; 3574 } 3575 3576 if (fix_xmitlist) { 3577 tcp->tcp_xmit_last = tail; 3578 tcp->tcp_xmit_zc_clean = B_TRUE; 3579 } 3580 3581 return (head); 3582 } 3583 3584 void 3585 tcp_zcopy_notify(tcp_t *tcp) 3586 { 3587 struct stdata *stp; 3588 conn_t *connp; 3589 3590 if (tcp->tcp_detached) 3591 return; 3592 connp = tcp->tcp_connp; 3593 if (IPCL_IS_NONSTR(connp)) { 3594 (*connp->conn_upcalls->su_zcopy_notify) 3595 (connp->conn_upper_handle); 3596 return; 3597 } 3598 stp = STREAM(connp->conn_rq); 3599 mutex_enter(&stp->sd_lock); 3600 stp->sd_flag |= STZCNOTIFY; 3601 cv_broadcast(&stp->sd_zcopy_wait); 3602 mutex_exit(&stp->sd_lock); 3603 } 3604 3605 /* 3606 * Update the TCP connection according to change of LSO capability. 3607 */ 3608 static void 3609 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa) 3610 { 3611 /* 3612 * We check against IPv4 header length to preserve the old behavior 3613 * of only enabling LSO when there are no IP options. 3614 * But this restriction might not be necessary at all. Before removing 3615 * it, need to verify how LSO is handled for source routing case, with 3616 * which IP does software checksum. 3617 * 3618 * For IPv6, whenever any extension header is needed, LSO is supressed. 3619 */ 3620 if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ? 3621 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN)) 3622 return; 3623 3624 /* 3625 * Either the LSO capability newly became usable, or it has changed. 3626 */ 3627 if (ixa->ixa_flags & IXAF_LSO_CAPAB) { 3628 ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab; 3629 3630 ASSERT(lsoc->ill_lso_max > 0); 3631 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max); 3632 3633 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 3634 boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max); 3635 3636 /* 3637 * If LSO to be enabled, notify the STREAM header with larger 3638 * data block. 3639 */ 3640 if (!tcp->tcp_lso) 3641 tcp->tcp_maxpsz_multiplier = 0; 3642 3643 tcp->tcp_lso = B_TRUE; 3644 TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled); 3645 } else { /* LSO capability is not usable any more. */ 3646 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 3647 boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max); 3648 3649 /* 3650 * If LSO to be disabled, notify the STREAM header with smaller 3651 * data block. And need to restore fragsize to PMTU. 3652 */ 3653 if (tcp->tcp_lso) { 3654 tcp->tcp_maxpsz_multiplier = 3655 tcp->tcp_tcps->tcps_maxpsz_multiplier; 3656 ixa->ixa_fragsize = ixa->ixa_pmtu; 3657 tcp->tcp_lso = B_FALSE; 3658 TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled); 3659 } 3660 } 3661 3662 (void) tcp_maxpsz_set(tcp, B_TRUE); 3663 } 3664 3665 /* 3666 * Update the TCP connection according to change of ZEROCOPY capability. 3667 */ 3668 static void 3669 tcp_update_zcopy(tcp_t *tcp) 3670 { 3671 conn_t *connp = tcp->tcp_connp; 3672 tcp_stack_t *tcps = tcp->tcp_tcps; 3673 3674 if (tcp->tcp_snd_zcopy_on) { 3675 tcp->tcp_snd_zcopy_on = B_FALSE; 3676 if (!TCP_IS_DETACHED(tcp)) { 3677 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3678 ZCVMUNSAFE); 3679 TCP_STAT(tcps, tcp_zcopy_off); 3680 } 3681 } else { 3682 tcp->tcp_snd_zcopy_on = B_TRUE; 3683 if (!TCP_IS_DETACHED(tcp)) { 3684 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3685 ZCVMSAFE); 3686 TCP_STAT(tcps, tcp_zcopy_on); 3687 } 3688 } 3689 } 3690 3691 /* 3692 * Notify function registered with ip_xmit_attr_t. It's called in the squeue 3693 * so it's safe to update the TCP connection. 3694 */ 3695 /* ARGSUSED1 */ 3696 static void 3697 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype, 3698 ixa_notify_arg_t narg) 3699 { 3700 tcp_t *tcp = (tcp_t *)arg; 3701 conn_t *connp = tcp->tcp_connp; 3702 3703 switch (ntype) { 3704 case IXAN_LSO: 3705 tcp_update_lso(tcp, connp->conn_ixa); 3706 break; 3707 case IXAN_PMTU: 3708 tcp_update_pmtu(tcp, B_FALSE); 3709 break; 3710 case IXAN_ZCOPY: 3711 tcp_update_zcopy(tcp); 3712 break; 3713 default: 3714 break; 3715 } 3716 } 3717 3718 /* 3719 * The TCP write service routine should never be called... 3720 */ 3721 /* ARGSUSED */ 3722 static void 3723 tcp_wsrv(queue_t *q) 3724 { 3725 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 3726 3727 TCP_STAT(tcps, tcp_wsrv_called); 3728 } 3729 3730 /* 3731 * Hash list lookup routine for tcp_t structures. 3732 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 3733 */ 3734 tcp_t * 3735 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 3736 { 3737 tf_t *tf; 3738 tcp_t *tcp; 3739 3740 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 3741 mutex_enter(&tf->tf_lock); 3742 for (tcp = tf->tf_tcp; tcp != NULL; 3743 tcp = tcp->tcp_acceptor_hash) { 3744 if (tcp->tcp_acceptor_id == id) { 3745 CONN_INC_REF(tcp->tcp_connp); 3746 mutex_exit(&tf->tf_lock); 3747 return (tcp); 3748 } 3749 } 3750 mutex_exit(&tf->tf_lock); 3751 return (NULL); 3752 } 3753 3754 /* 3755 * Hash list insertion routine for tcp_t structures. 3756 */ 3757 void 3758 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 3759 { 3760 tf_t *tf; 3761 tcp_t **tcpp; 3762 tcp_t *tcpnext; 3763 tcp_stack_t *tcps = tcp->tcp_tcps; 3764 3765 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 3766 3767 if (tcp->tcp_ptpahn != NULL) 3768 tcp_acceptor_hash_remove(tcp); 3769 tcpp = &tf->tf_tcp; 3770 mutex_enter(&tf->tf_lock); 3771 tcpnext = tcpp[0]; 3772 if (tcpnext) 3773 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 3774 tcp->tcp_acceptor_hash = tcpnext; 3775 tcp->tcp_ptpahn = tcpp; 3776 tcpp[0] = tcp; 3777 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 3778 mutex_exit(&tf->tf_lock); 3779 } 3780 3781 /* 3782 * Hash list removal routine for tcp_t structures. 3783 */ 3784 void 3785 tcp_acceptor_hash_remove(tcp_t *tcp) 3786 { 3787 tcp_t *tcpnext; 3788 kmutex_t *lockp; 3789 3790 /* 3791 * Extract the lock pointer in case there are concurrent 3792 * hash_remove's for this instance. 3793 */ 3794 lockp = tcp->tcp_acceptor_lockp; 3795 3796 if (tcp->tcp_ptpahn == NULL) 3797 return; 3798 3799 ASSERT(lockp != NULL); 3800 mutex_enter(lockp); 3801 if (tcp->tcp_ptpahn) { 3802 tcpnext = tcp->tcp_acceptor_hash; 3803 if (tcpnext) { 3804 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 3805 tcp->tcp_acceptor_hash = NULL; 3806 } 3807 *tcp->tcp_ptpahn = tcpnext; 3808 tcp->tcp_ptpahn = NULL; 3809 } 3810 mutex_exit(lockp); 3811 tcp->tcp_acceptor_lockp = NULL; 3812 } 3813 3814 /* 3815 * Type three generator adapted from the random() function in 4.4 BSD: 3816 */ 3817 3818 /* 3819 * Copyright (c) 1983, 1993 3820 * The Regents of the University of California. All rights reserved. 3821 * 3822 * Redistribution and use in source and binary forms, with or without 3823 * modification, are permitted provided that the following conditions 3824 * are met: 3825 * 1. Redistributions of source code must retain the above copyright 3826 * notice, this list of conditions and the following disclaimer. 3827 * 2. Redistributions in binary form must reproduce the above copyright 3828 * notice, this list of conditions and the following disclaimer in the 3829 * documentation and/or other materials provided with the distribution. 3830 * 3. All advertising materials mentioning features or use of this software 3831 * must display the following acknowledgement: 3832 * This product includes software developed by the University of 3833 * California, Berkeley and its contributors. 3834 * 4. Neither the name of the University nor the names of its contributors 3835 * may be used to endorse or promote products derived from this software 3836 * without specific prior written permission. 3837 * 3838 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 3839 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 3840 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 3841 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 3842 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 3843 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 3844 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 3845 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 3846 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 3847 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 3848 * SUCH DAMAGE. 3849 */ 3850 3851 /* Type 3 -- x**31 + x**3 + 1 */ 3852 #define DEG_3 31 3853 #define SEP_3 3 3854 3855 3856 /* Protected by tcp_random_lock */ 3857 static int tcp_randtbl[DEG_3 + 1]; 3858 3859 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 3860 static int *tcp_random_rptr = &tcp_randtbl[1]; 3861 3862 static int *tcp_random_state = &tcp_randtbl[1]; 3863 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 3864 3865 kmutex_t tcp_random_lock; 3866 3867 void 3868 tcp_random_init(void) 3869 { 3870 int i; 3871 hrtime_t hrt; 3872 time_t wallclock; 3873 uint64_t result; 3874 3875 /* 3876 * Use high-res timer and current time for seed. Gethrtime() returns 3877 * a longlong, which may contain resolution down to nanoseconds. 3878 * The current time will either be a 32-bit or a 64-bit quantity. 3879 * XOR the two together in a 64-bit result variable. 3880 * Convert the result to a 32-bit value by multiplying the high-order 3881 * 32-bits by the low-order 32-bits. 3882 */ 3883 3884 hrt = gethrtime(); 3885 (void) drv_getparm(TIME, &wallclock); 3886 result = (uint64_t)wallclock ^ (uint64_t)hrt; 3887 mutex_enter(&tcp_random_lock); 3888 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 3889 (result & 0xffffffff); 3890 3891 for (i = 1; i < DEG_3; i++) 3892 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 3893 + 12345; 3894 tcp_random_fptr = &tcp_random_state[SEP_3]; 3895 tcp_random_rptr = &tcp_random_state[0]; 3896 mutex_exit(&tcp_random_lock); 3897 for (i = 0; i < 10 * DEG_3; i++) 3898 (void) tcp_random(); 3899 } 3900 3901 /* 3902 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 3903 * This range is selected to be approximately centered on TCP_ISS / 2, 3904 * and easy to compute. We get this value by generating a 32-bit random 3905 * number, selecting out the high-order 17 bits, and then adding one so 3906 * that we never return zero. 3907 */ 3908 int 3909 tcp_random(void) 3910 { 3911 int i; 3912 3913 mutex_enter(&tcp_random_lock); 3914 *tcp_random_fptr += *tcp_random_rptr; 3915 3916 /* 3917 * The high-order bits are more random than the low-order bits, 3918 * so we select out the high-order 17 bits and add one so that 3919 * we never return zero. 3920 */ 3921 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 3922 if (++tcp_random_fptr >= tcp_random_end_ptr) { 3923 tcp_random_fptr = tcp_random_state; 3924 ++tcp_random_rptr; 3925 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 3926 tcp_random_rptr = tcp_random_state; 3927 3928 mutex_exit(&tcp_random_lock); 3929 return (i); 3930 } 3931 3932 /* 3933 * Split this function out so that if the secret changes, I'm okay. 3934 * 3935 * Initialize the tcp_iss_cookie and tcp_iss_key. 3936 */ 3937 3938 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 3939 3940 void 3941 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 3942 { 3943 struct { 3944 int32_t current_time; 3945 uint32_t randnum; 3946 uint16_t pad; 3947 uint8_t ether[6]; 3948 uint8_t passwd[PASSWD_SIZE]; 3949 } tcp_iss_cookie; 3950 time_t t; 3951 3952 /* 3953 * Start with the current absolute time. 3954 */ 3955 (void) drv_getparm(TIME, &t); 3956 tcp_iss_cookie.current_time = t; 3957 3958 /* 3959 * XXX - Need a more random number per RFC 1750, not this crap. 3960 * OTOH, if what follows is pretty random, then I'm in better shape. 3961 */ 3962 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 3963 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 3964 3965 /* 3966 * The cpu_type_info is pretty non-random. Ugggh. It does serve 3967 * as a good template. 3968 */ 3969 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 3970 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 3971 3972 /* 3973 * The pass-phrase. Normally this is supplied by user-called NDD. 3974 */ 3975 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 3976 3977 /* 3978 * See 4010593 if this section becomes a problem again, 3979 * but the local ethernet address is useful here. 3980 */ 3981 (void) localetheraddr(NULL, 3982 (struct ether_addr *)&tcp_iss_cookie.ether); 3983 3984 /* 3985 * Hash 'em all together. The MD5Final is called per-connection. 3986 */ 3987 mutex_enter(&tcps->tcps_iss_key_lock); 3988 MD5Init(&tcps->tcps_iss_key); 3989 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 3990 sizeof (tcp_iss_cookie)); 3991 mutex_exit(&tcps->tcps_iss_key_lock); 3992 } 3993 3994 /* 3995 * Called by IP when IP is loaded into the kernel 3996 */ 3997 void 3998 tcp_ddi_g_init(void) 3999 { 4000 tcp_timercache = kmem_cache_create("tcp_timercache", 4001 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 4002 NULL, NULL, NULL, NULL, NULL, 0); 4003 4004 tcp_notsack_blk_cache = kmem_cache_create("tcp_notsack_blk_cache", 4005 sizeof (notsack_blk_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 4006 4007 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 4008 4009 /* Initialize the random number generator */ 4010 tcp_random_init(); 4011 4012 /* A single callback independently of how many netstacks we have */ 4013 ip_squeue_init(tcp_squeue_add); 4014 4015 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 4016 4017 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 4018 4019 /* 4020 * We want to be informed each time a stack is created or 4021 * destroyed in the kernel, so we can maintain the 4022 * set of tcp_stack_t's. 4023 */ 4024 netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini); 4025 4026 mutex_enter(&cpu_lock); 4027 register_cpu_setup_func(tcp_cpu_update, NULL); 4028 mutex_exit(&cpu_lock); 4029 } 4030 4031 4032 #define INET_NAME "ip" 4033 4034 /* 4035 * Initialize the TCP stack instance. 4036 */ 4037 static void * 4038 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 4039 { 4040 tcp_stack_t *tcps; 4041 int i; 4042 int error = 0; 4043 major_t major; 4044 size_t arrsz; 4045 4046 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 4047 tcps->tcps_netstack = ns; 4048 4049 /* Initialize locks */ 4050 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 4051 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 4052 4053 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 4054 tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1; 4055 tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2; 4056 tcps->tcps_min_anonpriv_port = 512; 4057 4058 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 4059 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 4060 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 4061 TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP); 4062 4063 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 4064 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 4065 MUTEX_DEFAULT, NULL); 4066 } 4067 4068 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 4069 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 4070 MUTEX_DEFAULT, NULL); 4071 } 4072 4073 /* TCP's IPsec code calls the packet dropper. */ 4074 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 4075 4076 arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t); 4077 tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, 4078 KM_SLEEP); 4079 bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz); 4080 4081 /* 4082 * Note: To really walk the device tree you need the devinfo 4083 * pointer to your device which is only available after probe/attach. 4084 * The following is safe only because it uses ddi_root_node() 4085 */ 4086 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 4087 tcp_opt_obj.odb_opt_arr_cnt); 4088 4089 /* 4090 * Initialize RFC 1948 secret values. This will probably be reset once 4091 * by the boot scripts. 4092 * 4093 * Use NULL name, as the name is caught by the new lockstats. 4094 * 4095 * Initialize with some random, non-guessable string, like the global 4096 * T_INFO_ACK. 4097 */ 4098 4099 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 4100 sizeof (tcp_g_t_info_ack), tcps); 4101 4102 tcps->tcps_kstat = tcp_kstat2_init(stackid); 4103 tcps->tcps_mibkp = tcp_kstat_init(stackid); 4104 4105 major = mod_name_to_major(INET_NAME); 4106 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 4107 ASSERT(error == 0); 4108 tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL); 4109 ASSERT(tcps->tcps_ixa_cleanup_mp != NULL); 4110 cv_init(&tcps->tcps_ixa_cleanup_cv, NULL, CV_DEFAULT, NULL); 4111 mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL); 4112 4113 mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 4114 tcps->tcps_reclaim = B_FALSE; 4115 tcps->tcps_reclaim_tid = 0; 4116 tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max; 4117 4118 /* 4119 * ncpus is the current number of CPUs, which can be bigger than 4120 * boot_ncpus. But we don't want to use ncpus to allocate all the 4121 * tcp_stats_cpu_t at system boot up time since it will be 1. While 4122 * we handle adding CPU in tcp_cpu_update(), it will be slow if 4123 * there are many CPUs as we will be adding them 1 by 1. 4124 * 4125 * Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers 4126 * are not freed until the stack is going away. So there is no need 4127 * to grab a lock to access the per CPU tcps_sc[x] pointer. 4128 */ 4129 tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus); 4130 tcps->tcps_sc = kmem_zalloc(max_ncpus * sizeof (tcp_stats_cpu_t *), 4131 KM_SLEEP); 4132 for (i = 0; i < tcps->tcps_sc_cnt; i++) { 4133 tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t), 4134 KM_SLEEP); 4135 } 4136 4137 mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL); 4138 list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t), 4139 offsetof(tcp_listener_t, tl_link)); 4140 4141 return (tcps); 4142 } 4143 4144 /* 4145 * Called when the IP module is about to be unloaded. 4146 */ 4147 void 4148 tcp_ddi_g_destroy(void) 4149 { 4150 mutex_enter(&cpu_lock); 4151 unregister_cpu_setup_func(tcp_cpu_update, NULL); 4152 mutex_exit(&cpu_lock); 4153 4154 tcp_g_kstat_fini(tcp_g_kstat); 4155 tcp_g_kstat = NULL; 4156 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 4157 4158 mutex_destroy(&tcp_random_lock); 4159 4160 kmem_cache_destroy(tcp_timercache); 4161 kmem_cache_destroy(tcp_notsack_blk_cache); 4162 4163 netstack_unregister(NS_TCP); 4164 } 4165 4166 /* 4167 * Free the TCP stack instance. 4168 */ 4169 static void 4170 tcp_stack_fini(netstackid_t stackid, void *arg) 4171 { 4172 tcp_stack_t *tcps = (tcp_stack_t *)arg; 4173 int i; 4174 4175 freeb(tcps->tcps_ixa_cleanup_mp); 4176 tcps->tcps_ixa_cleanup_mp = NULL; 4177 cv_destroy(&tcps->tcps_ixa_cleanup_cv); 4178 mutex_destroy(&tcps->tcps_ixa_cleanup_lock); 4179 4180 /* 4181 * Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart 4182 * the timer. 4183 */ 4184 mutex_enter(&tcps->tcps_reclaim_lock); 4185 tcps->tcps_reclaim = B_FALSE; 4186 mutex_exit(&tcps->tcps_reclaim_lock); 4187 if (tcps->tcps_reclaim_tid != 0) 4188 (void) untimeout(tcps->tcps_reclaim_tid); 4189 mutex_destroy(&tcps->tcps_reclaim_lock); 4190 4191 tcp_listener_conf_cleanup(tcps); 4192 4193 for (i = 0; i < tcps->tcps_sc_cnt; i++) 4194 kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t)); 4195 kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *)); 4196 4197 kmem_free(tcps->tcps_propinfo_tbl, 4198 tcp_propinfo_count * sizeof (mod_prop_info_t)); 4199 tcps->tcps_propinfo_tbl = NULL; 4200 4201 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 4202 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 4203 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 4204 } 4205 4206 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 4207 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 4208 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 4209 } 4210 4211 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 4212 tcps->tcps_bind_fanout = NULL; 4213 4214 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * 4215 TCP_ACCEPTOR_FANOUT_SIZE); 4216 tcps->tcps_acceptor_fanout = NULL; 4217 4218 mutex_destroy(&tcps->tcps_iss_key_lock); 4219 mutex_destroy(&tcps->tcps_epriv_port_lock); 4220 4221 ip_drop_unregister(&tcps->tcps_dropper); 4222 4223 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 4224 tcps->tcps_kstat = NULL; 4225 4226 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 4227 tcps->tcps_mibkp = NULL; 4228 4229 ldi_ident_release(tcps->tcps_ldi_ident); 4230 kmem_free(tcps, sizeof (*tcps)); 4231 } 4232 4233 /* 4234 * Generate ISS, taking into account NDD changes may happen halfway through. 4235 * (If the iss is not zero, set it.) 4236 */ 4237 4238 static void 4239 tcp_iss_init(tcp_t *tcp) 4240 { 4241 MD5_CTX context; 4242 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 4243 uint32_t answer[4]; 4244 tcp_stack_t *tcps = tcp->tcp_tcps; 4245 conn_t *connp = tcp->tcp_connp; 4246 4247 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 4248 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 4249 switch (tcps->tcps_strong_iss) { 4250 case 2: 4251 mutex_enter(&tcps->tcps_iss_key_lock); 4252 context = tcps->tcps_iss_key; 4253 mutex_exit(&tcps->tcps_iss_key_lock); 4254 arg.ports = connp->conn_ports; 4255 arg.src = connp->conn_laddr_v6; 4256 arg.dst = connp->conn_faddr_v6; 4257 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 4258 MD5Final((uchar_t *)answer, &context); 4259 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 4260 /* 4261 * Now that we've hashed into a unique per-connection sequence 4262 * space, add a random increment per strong_iss == 1. So I 4263 * guess we'll have to... 4264 */ 4265 /* FALLTHRU */ 4266 case 1: 4267 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 4268 break; 4269 default: 4270 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 4271 break; 4272 } 4273 tcp->tcp_valid_bits = TCP_ISS_VALID; 4274 tcp->tcp_fss = tcp->tcp_iss - 1; 4275 tcp->tcp_suna = tcp->tcp_iss; 4276 tcp->tcp_snxt = tcp->tcp_iss + 1; 4277 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 4278 tcp->tcp_csuna = tcp->tcp_snxt; 4279 } 4280 4281 /* 4282 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 4283 * on the specified backing STREAMS q. Note, the caller may make the 4284 * decision to call based on the tcp_t.tcp_flow_stopped value which 4285 * when check outside the q's lock is only an advisory check ... 4286 */ 4287 void 4288 tcp_setqfull(tcp_t *tcp) 4289 { 4290 tcp_stack_t *tcps = tcp->tcp_tcps; 4291 conn_t *connp = tcp->tcp_connp; 4292 4293 if (tcp->tcp_closed) 4294 return; 4295 4296 conn_setqfull(connp, &tcp->tcp_flow_stopped); 4297 if (tcp->tcp_flow_stopped) 4298 TCP_STAT(tcps, tcp_flwctl_on); 4299 } 4300 4301 void 4302 tcp_clrqfull(tcp_t *tcp) 4303 { 4304 conn_t *connp = tcp->tcp_connp; 4305 4306 if (tcp->tcp_closed) 4307 return; 4308 conn_clrqfull(connp, &tcp->tcp_flow_stopped); 4309 } 4310 4311 static int 4312 tcp_squeue_switch(int val) 4313 { 4314 int rval = SQ_FILL; 4315 4316 switch (val) { 4317 case 1: 4318 rval = SQ_NODRAIN; 4319 break; 4320 case 2: 4321 rval = SQ_PROCESS; 4322 break; 4323 default: 4324 break; 4325 } 4326 return (rval); 4327 } 4328 4329 /* 4330 * This is called once for each squeue - globally for all stack 4331 * instances. 4332 */ 4333 static void 4334 tcp_squeue_add(squeue_t *sqp) 4335 { 4336 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 4337 sizeof (tcp_squeue_priv_t), KM_SLEEP); 4338 4339 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 4340 if (tcp_free_list_max_cnt == 0) { 4341 int tcp_ncpus = ((boot_max_ncpus == -1) ? 4342 max_ncpus : boot_max_ncpus); 4343 4344 /* 4345 * Limit number of entries to 1% of availble memory / tcp_ncpus 4346 */ 4347 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 4348 (tcp_ncpus * sizeof (tcp_t) * 100); 4349 } 4350 tcp_time_wait->tcp_free_list_cnt = 0; 4351 } 4352 /* 4353 * Return unix error is tli error is TSYSERR, otherwise return a negative 4354 * tli error. 4355 */ 4356 int 4357 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 4358 boolean_t bind_to_req_port_only) 4359 { 4360 int error; 4361 tcp_t *tcp = connp->conn_tcp; 4362 4363 if (tcp->tcp_state >= TCPS_BOUND) { 4364 if (connp->conn_debug) { 4365 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 4366 "tcp_bind: bad state, %d", tcp->tcp_state); 4367 } 4368 return (-TOUTSTATE); 4369 } 4370 4371 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 4372 if (error != 0) 4373 return (error); 4374 4375 ASSERT(tcp->tcp_state == TCPS_BOUND); 4376 tcp->tcp_conn_req_max = 0; 4377 return (0); 4378 } 4379 4380 /* 4381 * If the return value from this function is positive, it's a UNIX error. 4382 * Otherwise, if it's negative, then the absolute value is a TLI error. 4383 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 4384 */ 4385 int 4386 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 4387 cred_t *cr, pid_t pid) 4388 { 4389 tcp_t *tcp = connp->conn_tcp; 4390 sin_t *sin = (sin_t *)sa; 4391 sin6_t *sin6 = (sin6_t *)sa; 4392 ipaddr_t *dstaddrp; 4393 in_port_t dstport; 4394 uint_t srcid; 4395 int error; 4396 uint32_t mss; 4397 mblk_t *syn_mp; 4398 tcp_stack_t *tcps = tcp->tcp_tcps; 4399 int32_t oldstate; 4400 ip_xmit_attr_t *ixa = connp->conn_ixa; 4401 4402 oldstate = tcp->tcp_state; 4403 4404 switch (len) { 4405 default: 4406 /* 4407 * Should never happen 4408 */ 4409 return (EINVAL); 4410 4411 case sizeof (sin_t): 4412 sin = (sin_t *)sa; 4413 if (sin->sin_port == 0) { 4414 return (-TBADADDR); 4415 } 4416 if (connp->conn_ipv6_v6only) { 4417 return (EAFNOSUPPORT); 4418 } 4419 break; 4420 4421 case sizeof (sin6_t): 4422 sin6 = (sin6_t *)sa; 4423 if (sin6->sin6_port == 0) { 4424 return (-TBADADDR); 4425 } 4426 break; 4427 } 4428 /* 4429 * If we're connecting to an IPv4-mapped IPv6 address, we need to 4430 * make sure that the conn_ipversion is IPV4_VERSION. We 4431 * need to this before we call tcp_bindi() so that the port lookup 4432 * code will look for ports in the correct port space (IPv4 and 4433 * IPv6 have separate port spaces). 4434 */ 4435 if (connp->conn_family == AF_INET6 && 4436 connp->conn_ipversion == IPV6_VERSION && 4437 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 4438 if (connp->conn_ipv6_v6only) 4439 return (EADDRNOTAVAIL); 4440 4441 connp->conn_ipversion = IPV4_VERSION; 4442 } 4443 4444 switch (tcp->tcp_state) { 4445 case TCPS_LISTEN: 4446 /* 4447 * Listening sockets are not allowed to issue connect(). 4448 */ 4449 if (IPCL_IS_NONSTR(connp)) 4450 return (EOPNOTSUPP); 4451 /* FALLTHRU */ 4452 case TCPS_IDLE: 4453 /* 4454 * We support quick connect, refer to comments in 4455 * tcp_connect_*() 4456 */ 4457 /* FALLTHRU */ 4458 case TCPS_BOUND: 4459 break; 4460 default: 4461 return (-TOUTSTATE); 4462 } 4463 4464 /* 4465 * We update our cred/cpid based on the caller of connect 4466 */ 4467 if (connp->conn_cred != cr) { 4468 crhold(cr); 4469 crfree(connp->conn_cred); 4470 connp->conn_cred = cr; 4471 } 4472 connp->conn_cpid = pid; 4473 4474 /* Cache things in the ixa without any refhold */ 4475 ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); 4476 ixa->ixa_cred = cr; 4477 ixa->ixa_cpid = pid; 4478 if (is_system_labeled()) { 4479 /* We need to restart with a label based on the cred */ 4480 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred); 4481 } 4482 4483 if (connp->conn_family == AF_INET6) { 4484 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 4485 error = tcp_connect_ipv6(tcp, &sin6->sin6_addr, 4486 sin6->sin6_port, sin6->sin6_flowinfo, 4487 sin6->__sin6_src_id, sin6->sin6_scope_id); 4488 } else { 4489 /* 4490 * Destination adress is mapped IPv6 address. 4491 * Source bound address should be unspecified or 4492 * IPv6 mapped address as well. 4493 */ 4494 if (!IN6_IS_ADDR_UNSPECIFIED( 4495 &connp->conn_bound_addr_v6) && 4496 !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) { 4497 return (EADDRNOTAVAIL); 4498 } 4499 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 4500 dstport = sin6->sin6_port; 4501 srcid = sin6->__sin6_src_id; 4502 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, 4503 srcid); 4504 } 4505 } else { 4506 dstaddrp = &sin->sin_addr.s_addr; 4507 dstport = sin->sin_port; 4508 srcid = 0; 4509 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid); 4510 } 4511 4512 if (error != 0) 4513 goto connect_failed; 4514 4515 CL_INET_CONNECT(connp, B_TRUE, error); 4516 if (error != 0) 4517 goto connect_failed; 4518 4519 /* connect succeeded */ 4520 TCPS_BUMP_MIB(tcps, tcpActiveOpens); 4521 tcp->tcp_active_open = 1; 4522 4523 /* 4524 * tcp_set_destination() does not adjust for TCP/IP header length. 4525 */ 4526 mss = tcp->tcp_mss - connp->conn_ht_iphc_len; 4527 4528 /* 4529 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up 4530 * to the nearest MSS. 4531 * 4532 * We do the round up here because we need to get the interface MTU 4533 * first before we can do the round up. 4534 */ 4535 tcp->tcp_rwnd = connp->conn_rcvbuf; 4536 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 4537 tcps->tcps_recv_hiwat_minmss * mss); 4538 connp->conn_rcvbuf = tcp->tcp_rwnd; 4539 tcp_set_ws_value(tcp); 4540 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 4541 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 4542 tcp->tcp_snd_ws_ok = B_TRUE; 4543 4544 /* 4545 * Set tcp_snd_ts_ok to true 4546 * so that tcp_xmit_mp will 4547 * include the timestamp 4548 * option in the SYN segment. 4549 */ 4550 if (tcps->tcps_tstamp_always || 4551 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 4552 tcp->tcp_snd_ts_ok = B_TRUE; 4553 } 4554 4555 /* 4556 * Note that tcp_snd_sack_ok can be set in tcp_set_destination() if 4557 * the SACK metric is set. So here we just check the per stack SACK 4558 * permitted param. 4559 */ 4560 if (tcps->tcps_sack_permitted == 2) { 4561 ASSERT(tcp->tcp_num_sack_blk == 0); 4562 ASSERT(tcp->tcp_notsack_list == NULL); 4563 tcp->tcp_snd_sack_ok = B_TRUE; 4564 } 4565 4566 /* 4567 * Should we use ECN? Note that the current 4568 * default value (SunOS 5.9) of tcp_ecn_permitted 4569 * is 1. The reason for doing this is that there 4570 * are equipments out there that will drop ECN 4571 * enabled IP packets. Setting it to 1 avoids 4572 * compatibility problems. 4573 */ 4574 if (tcps->tcps_ecn_permitted == 2) 4575 tcp->tcp_ecn_ok = B_TRUE; 4576 4577 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4578 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 4579 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 4580 if (syn_mp != NULL) { 4581 /* 4582 * We must bump the generation before sending the syn 4583 * to ensure that we use the right generation in case 4584 * this thread issues a "connected" up call. 4585 */ 4586 SOCK_CONNID_BUMP(tcp->tcp_connid); 4587 tcp_send_data(tcp, syn_mp); 4588 } 4589 4590 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4591 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4592 return (0); 4593 4594 connect_failed: 4595 connp->conn_faddr_v6 = ipv6_all_zeros; 4596 connp->conn_fport = 0; 4597 tcp->tcp_state = oldstate; 4598 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4599 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4600 return (error); 4601 } 4602 4603 int 4604 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 4605 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 4606 { 4607 tcp_t *tcp = connp->conn_tcp; 4608 int error = 0; 4609 tcp_stack_t *tcps = tcp->tcp_tcps; 4610 4611 /* All Solaris components should pass a cred for this operation. */ 4612 ASSERT(cr != NULL); 4613 4614 if (tcp->tcp_state >= TCPS_BOUND) { 4615 if ((tcp->tcp_state == TCPS_BOUND || 4616 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 4617 /* 4618 * Handle listen() increasing backlog. 4619 * This is more "liberal" then what the TPI spec 4620 * requires but is needed to avoid a t_unbind 4621 * when handling listen() since the port number 4622 * might be "stolen" between the unbind and bind. 4623 */ 4624 goto do_listen; 4625 } 4626 if (connp->conn_debug) { 4627 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 4628 "tcp_listen: bad state, %d", tcp->tcp_state); 4629 } 4630 return (-TOUTSTATE); 4631 } else { 4632 if (sa == NULL) { 4633 sin6_t addr; 4634 sin_t *sin; 4635 sin6_t *sin6; 4636 4637 ASSERT(IPCL_IS_NONSTR(connp)); 4638 /* Do an implicit bind: Request for a generic port. */ 4639 if (connp->conn_family == AF_INET) { 4640 len = sizeof (sin_t); 4641 sin = (sin_t *)&addr; 4642 *sin = sin_null; 4643 sin->sin_family = AF_INET; 4644 } else { 4645 ASSERT(connp->conn_family == AF_INET6); 4646 len = sizeof (sin6_t); 4647 sin6 = (sin6_t *)&addr; 4648 *sin6 = sin6_null; 4649 sin6->sin6_family = AF_INET6; 4650 } 4651 sa = (struct sockaddr *)&addr; 4652 } 4653 4654 error = tcp_bind_check(connp, sa, len, cr, 4655 bind_to_req_port_only); 4656 if (error) 4657 return (error); 4658 /* Fall through and do the fanout insertion */ 4659 } 4660 4661 do_listen: 4662 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 4663 tcp->tcp_conn_req_max = backlog; 4664 if (tcp->tcp_conn_req_max) { 4665 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 4666 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 4667 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 4668 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 4669 /* 4670 * If this is a listener, do not reset the eager list 4671 * and other stuffs. Note that we don't check if the 4672 * existing eager list meets the new tcp_conn_req_max 4673 * requirement. 4674 */ 4675 if (tcp->tcp_state != TCPS_LISTEN) { 4676 tcp->tcp_state = TCPS_LISTEN; 4677 /* Initialize the chain. Don't need the eager_lock */ 4678 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 4679 tcp->tcp_eager_next_drop_q0 = tcp; 4680 tcp->tcp_eager_prev_drop_q0 = tcp; 4681 tcp->tcp_second_ctimer_threshold = 4682 tcps->tcps_ip_abort_linterval; 4683 } 4684 } 4685 4686 /* 4687 * We need to make sure that the conn_recv is set to a non-null 4688 * value before we insert the conn into the classifier table. 4689 * This is to avoid a race with an incoming packet which does an 4690 * ipcl_classify(). 4691 * We initially set it to tcp_input_listener_unbound to try to 4692 * pick a good squeue for the listener when the first SYN arrives. 4693 * tcp_input_listener_unbound sets it to tcp_input_listener on that 4694 * first SYN. 4695 */ 4696 connp->conn_recv = tcp_input_listener_unbound; 4697 4698 /* Insert the listener in the classifier table */ 4699 error = ip_laddr_fanout_insert(connp); 4700 if (error != 0) { 4701 /* Undo the bind - release the port number */ 4702 tcp->tcp_state = TCPS_IDLE; 4703 connp->conn_bound_addr_v6 = ipv6_all_zeros; 4704 4705 connp->conn_laddr_v6 = ipv6_all_zeros; 4706 connp->conn_saddr_v6 = ipv6_all_zeros; 4707 connp->conn_ports = 0; 4708 4709 if (connp->conn_anon_port) { 4710 zone_t *zone; 4711 4712 zone = crgetzone(cr); 4713 connp->conn_anon_port = B_FALSE; 4714 (void) tsol_mlp_anon(zone, connp->conn_mlp_type, 4715 connp->conn_proto, connp->conn_lport, B_FALSE); 4716 } 4717 connp->conn_mlp_type = mlptSingle; 4718 4719 tcp_bind_hash_remove(tcp); 4720 return (error); 4721 } else { 4722 /* 4723 * If there is a connection limit, allocate and initialize 4724 * the counter struct. Note that since listen can be called 4725 * multiple times, the struct may have been allready allocated. 4726 */ 4727 if (!list_is_empty(&tcps->tcps_listener_conf) && 4728 tcp->tcp_listen_cnt == NULL) { 4729 tcp_listen_cnt_t *tlc; 4730 uint32_t ratio; 4731 4732 ratio = tcp_find_listener_conf(tcps, 4733 ntohs(connp->conn_lport)); 4734 if (ratio != 0) { 4735 uint32_t mem_ratio, tot_buf; 4736 4737 tlc = kmem_alloc(sizeof (tcp_listen_cnt_t), 4738 KM_SLEEP); 4739 /* 4740 * Calculate the connection limit based on 4741 * the configured ratio and maxusers. Maxusers 4742 * are calculated based on memory size, 4743 * ~ 1 user per MB. Note that the conn_rcvbuf 4744 * and conn_sndbuf may change after a 4745 * connection is accepted. So what we have 4746 * is only an approximation. 4747 */ 4748 if ((tot_buf = connp->conn_rcvbuf + 4749 connp->conn_sndbuf) < MB) { 4750 mem_ratio = MB / tot_buf; 4751 tlc->tlc_max = maxusers / ratio * 4752 mem_ratio; 4753 } else { 4754 mem_ratio = tot_buf / MB; 4755 tlc->tlc_max = maxusers / ratio / 4756 mem_ratio; 4757 } 4758 /* At least we should allow two connections! */ 4759 if (tlc->tlc_max <= tcp_min_conn_listener) 4760 tlc->tlc_max = tcp_min_conn_listener; 4761 tlc->tlc_cnt = 1; 4762 tlc->tlc_drop = 0; 4763 tcp->tcp_listen_cnt = tlc; 4764 } 4765 } 4766 } 4767 return (error); 4768 } 4769