1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #define _SUN_TPI_VERSION 2 35 #include <sys/tihdr.h> 36 #include <sys/timod.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #include <sys/suntpi.h> 40 #include <sys/xti_inet.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/sdt.h> 44 #include <sys/vtrace.h> 45 #include <sys/kmem.h> 46 #include <sys/ethernet.h> 47 #include <sys/cpuvar.h> 48 #include <sys/dlpi.h> 49 #include <sys/multidata.h> 50 #include <sys/multidata_impl.h> 51 #include <sys/pattr.h> 52 #include <sys/policy.h> 53 #include <sys/priv.h> 54 #include <sys/zone.h> 55 #include <sys/sunldi.h> 56 57 #include <sys/errno.h> 58 #include <sys/signal.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/sockio.h> 62 #include <sys/isa_defs.h> 63 #include <sys/md5.h> 64 #include <sys/random.h> 65 #include <sys/uio.h> 66 #include <sys/systm.h> 67 #include <netinet/in.h> 68 #include <netinet/tcp.h> 69 #include <netinet/ip6.h> 70 #include <netinet/icmp6.h> 71 #include <net/if.h> 72 #include <net/route.h> 73 #include <inet/ipsec_impl.h> 74 75 #include <inet/common.h> 76 #include <inet/ip.h> 77 #include <inet/ip_impl.h> 78 #include <inet/ip6.h> 79 #include <inet/ip_ndp.h> 80 #include <inet/proto_set.h> 81 #include <inet/mib2.h> 82 #include <inet/nd.h> 83 #include <inet/optcom.h> 84 #include <inet/snmpcom.h> 85 #include <inet/kstatcom.h> 86 #include <inet/tcp.h> 87 #include <inet/tcp_impl.h> 88 #include <inet/udp_impl.h> 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/ipdrop.h> 92 93 #include <inet/ipclassifier.h> 94 #include <inet/ip_ire.h> 95 #include <inet/ip_ftable.h> 96 #include <inet/ip_if.h> 97 #include <inet/ipp_common.h> 98 #include <inet/ip_netinfo.h> 99 #include <sys/squeue_impl.h> 100 #include <sys/squeue.h> 101 #include <inet/kssl/ksslapi.h> 102 #include <sys/tsol/label.h> 103 #include <sys/tsol/tnet.h> 104 #include <rpc/pmap_prot.h> 105 #include <sys/callo.h> 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 129 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. tcp_open() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_conn_request(). But briefly, the squeue is picked by 176 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 202 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 203 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 204 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 205 * check to send packets directly to tcp_rput_data via squeue. Everyone 206 * else comes through tcp_input() on the read side. 207 * 208 * We also make special provisions for sockfs by marking tcp_issocket 209 * whenever we have only sockfs on top of TCP. This allows us to skip 210 * putting the tcp in acceptor hash since a sockfs listener can never 211 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 212 * since eager has already been allocated and the accept now happens 213 * on acceptor STREAM. There is a big blob of comment on top of 214 * tcp_conn_request explaining the new accept. When socket is POP'd, 215 * sockfs sends us an ioctl to mark the fact and we go back to old 216 * behaviour. Once tcp_issocket is unset, its never set for the 217 * life of that connection. 218 * 219 * IPsec notes : 220 * 221 * Since a packet is always executed on the correct TCP perimeter 222 * all IPsec processing is defered to IP including checking new 223 * connections and setting IPSEC policies for new connection. The 224 * only exception is tcp_xmit_listeners_reset() which is called 225 * directly from IP and needs to policy check to see if TH_RST 226 * can be sent out. 227 * 228 * PFHooks notes : 229 * 230 * For mdt case, one meta buffer contains multiple packets. Mblks for every 231 * packet are assembled and passed to the hooks. When packets are blocked, 232 * or boundary of any packet is changed, the mdt processing is stopped, and 233 * packets of the meta buffer are send to the IP path one by one. 234 */ 235 236 /* 237 * Values for squeue switch: 238 * 1: SQ_NODRAIN 239 * 2: SQ_PROCESS 240 * 3: SQ_FILL 241 */ 242 int tcp_squeue_wput = 2; /* /etc/systems */ 243 int tcp_squeue_flag; 244 245 /* 246 * This controls how tiny a write must be before we try to copy it 247 * into the the mblk on the tail of the transmit queue. Not much 248 * speedup is observed for values larger than sixteen. Zero will 249 * disable the optimisation. 250 */ 251 int tcp_tx_pull_len = 16; 252 253 /* 254 * TCP Statistics. 255 * 256 * How TCP statistics work. 257 * 258 * There are two types of statistics invoked by two macros. 259 * 260 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 261 * supposed to be used in non MT-hot paths of the code. 262 * 263 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 264 * supposed to be used for DEBUG purposes and may be used on a hot path. 265 * 266 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 267 * (use "kstat tcp" to get them). 268 * 269 * There is also additional debugging facility that marks tcp_clean_death() 270 * instances and saves them in tcp_t structure. It is triggered by 271 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 272 * tcp_clean_death() calls that counts the number of times each tag was hit. It 273 * is triggered by TCP_CLD_COUNTERS define. 274 * 275 * How to add new counters. 276 * 277 * 1) Add a field in the tcp_stat structure describing your counter. 278 * 2) Add a line in the template in tcp_kstat2_init() with the name 279 * of the counter. 280 * 281 * IMPORTANT!! - make sure that both are in sync !! 282 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 283 * 284 * Please avoid using private counters which are not kstat-exported. 285 * 286 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 287 * in tcp_t structure. 288 * 289 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 290 */ 291 292 #ifndef TCP_DEBUG_COUNTER 293 #ifdef DEBUG 294 #define TCP_DEBUG_COUNTER 1 295 #else 296 #define TCP_DEBUG_COUNTER 0 297 #endif 298 #endif 299 300 #define TCP_CLD_COUNTERS 0 301 302 #define TCP_TAG_CLEAN_DEATH 1 303 #define TCP_MAX_CLEAN_DEATH_TAG 32 304 305 #ifdef lint 306 static int _lint_dummy_; 307 #endif 308 309 #if TCP_CLD_COUNTERS 310 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 311 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 312 #elif defined(lint) 313 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 314 #else 315 #define TCP_CLD_STAT(x) 316 #endif 317 318 #if TCP_DEBUG_COUNTER 319 #define TCP_DBGSTAT(tcps, x) \ 320 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 321 #define TCP_G_DBGSTAT(x) \ 322 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 323 #elif defined(lint) 324 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 325 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 326 #else 327 #define TCP_DBGSTAT(tcps, x) 328 #define TCP_G_DBGSTAT(x) 329 #endif 330 331 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 332 333 tcp_g_stat_t tcp_g_statistics; 334 kstat_t *tcp_g_kstat; 335 336 /* 337 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 338 * tcp write side. 339 */ 340 #define CALL_IP_WPUT(connp, q, mp) { \ 341 ASSERT(((q)->q_flag & QREADR) == 0); \ 342 TCP_DBGSTAT(connp->conn_netstack->netstack_tcp, tcp_ip_output); \ 343 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 344 } 345 346 /* Macros for timestamp comparisons */ 347 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 348 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 349 350 /* 351 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 352 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 353 * by adding three components: a time component which grows by 1 every 4096 354 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 355 * a per-connection component which grows by 125000 for every new connection; 356 * and an "extra" component that grows by a random amount centered 357 * approximately on 64000. This causes the the ISS generator to cycle every 358 * 4.89 hours if no TCP connections are made, and faster if connections are 359 * made. 360 * 361 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 362 * components: a time component which grows by 250000 every second; and 363 * a per-connection component which grows by 125000 for every new connections. 364 * 365 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 366 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 367 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 368 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 369 * password. 370 */ 371 #define ISS_INCR 250000 372 #define ISS_NSEC_SHT 12 373 374 static sin_t sin_null; /* Zero address for quick clears */ 375 static sin6_t sin6_null; /* Zero address for quick clears */ 376 377 /* 378 * This implementation follows the 4.3BSD interpretation of the urgent 379 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 380 * incompatible changes in protocols like telnet and rlogin. 381 */ 382 #define TCP_OLD_URP_INTERPRETATION 1 383 384 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 385 (TCP_IS_DETACHED(tcp) && \ 386 (!(tcp)->tcp_hard_binding)) 387 388 /* 389 * TCP reassembly macros. We hide starting and ending sequence numbers in 390 * b_next and b_prev of messages on the reassembly queue. The messages are 391 * chained using b_cont. These macros are used in tcp_reass() so we don't 392 * have to see the ugly casts and assignments. 393 */ 394 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 395 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 396 (mblk_t *)(uintptr_t)(u)) 397 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 398 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 399 (mblk_t *)(uintptr_t)(u)) 400 401 /* 402 * Implementation of TCP Timers. 403 * ============================= 404 * 405 * INTERFACE: 406 * 407 * There are two basic functions dealing with tcp timers: 408 * 409 * timeout_id_t tcp_timeout(connp, func, time) 410 * clock_t tcp_timeout_cancel(connp, timeout_id) 411 * TCP_TIMER_RESTART(tcp, intvl) 412 * 413 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 414 * after 'time' ticks passed. The function called by timeout() must adhere to 415 * the same restrictions as a driver soft interrupt handler - it must not sleep 416 * or call other functions that might sleep. The value returned is the opaque 417 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 418 * cancel the request. The call to tcp_timeout() may fail in which case it 419 * returns zero. This is different from the timeout(9F) function which never 420 * fails. 421 * 422 * The call-back function 'func' always receives 'connp' as its single 423 * argument. It is always executed in the squeue corresponding to the tcp 424 * structure. The tcp structure is guaranteed to be present at the time the 425 * call-back is called. 426 * 427 * NOTE: The call-back function 'func' is never called if tcp is in 428 * the TCPS_CLOSED state. 429 * 430 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 431 * request. locks acquired by the call-back routine should not be held across 432 * the call to tcp_timeout_cancel() or a deadlock may result. 433 * 434 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 435 * Otherwise, it returns an integer value greater than or equal to 0. In 436 * particular, if the call-back function is already placed on the squeue, it can 437 * not be canceled. 438 * 439 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 440 * within squeue context corresponding to the tcp instance. Since the 441 * call-back is also called via the same squeue, there are no race 442 * conditions described in untimeout(9F) manual page since all calls are 443 * strictly serialized. 444 * 445 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 446 * stored in tcp_timer_tid and starts a new one using 447 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 448 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 449 * field. 450 * 451 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 452 * call-back may still be called, so it is possible tcp_timer() will be 453 * called several times. This should not be a problem since tcp_timer() 454 * should always check the tcp instance state. 455 * 456 * 457 * IMPLEMENTATION: 458 * 459 * TCP timers are implemented using three-stage process. The call to 460 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 461 * when the timer expires. The tcp_timer_callback() arranges the call of the 462 * tcp_timer_handler() function via squeue corresponding to the tcp 463 * instance. The tcp_timer_handler() calls actual requested timeout call-back 464 * and passes tcp instance as an argument to it. Information is passed between 465 * stages using the tcp_timer_t structure which contains the connp pointer, the 466 * tcp call-back to call and the timeout id returned by the timeout(9F). 467 * 468 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 469 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 470 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 471 * returns the pointer to this mblk. 472 * 473 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 474 * looks like a normal mblk without actual dblk attached to it. 475 * 476 * To optimize performance each tcp instance holds a small cache of timer 477 * mblocks. In the current implementation it caches up to two timer mblocks per 478 * tcp instance. The cache is preserved over tcp frees and is only freed when 479 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 480 * timer processing happens on a corresponding squeue, the cache manipulation 481 * does not require any locks. Experiments show that majority of timer mblocks 482 * allocations are satisfied from the tcp cache and do not involve kmem calls. 483 * 484 * The tcp_timeout() places a refhold on the connp instance which guarantees 485 * that it will be present at the time the call-back function fires. The 486 * tcp_timer_handler() drops the reference after calling the call-back, so the 487 * call-back function does not need to manipulate the references explicitly. 488 */ 489 490 typedef struct tcp_timer_s { 491 conn_t *connp; 492 void (*tcpt_proc)(void *); 493 callout_id_t tcpt_tid; 494 } tcp_timer_t; 495 496 static kmem_cache_t *tcp_timercache; 497 kmem_cache_t *tcp_sack_info_cache; 498 kmem_cache_t *tcp_iphc_cache; 499 500 /* 501 * For scalability, we must not run a timer for every TCP connection 502 * in TIME_WAIT state. To see why, consider (for time wait interval of 503 * 4 minutes): 504 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 505 * 506 * This list is ordered by time, so you need only delete from the head 507 * until you get to entries which aren't old enough to delete yet. 508 * The list consists of only the detached TIME_WAIT connections. 509 * 510 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 511 * becomes detached TIME_WAIT (either by changing the state and already 512 * being detached or the other way around). This means that the TIME_WAIT 513 * state can be extended (up to doubled) if the connection doesn't become 514 * detached for a long time. 515 * 516 * The list manipulations (including tcp_time_wait_next/prev) 517 * are protected by the tcp_time_wait_lock. The content of the 518 * detached TIME_WAIT connections is protected by the normal perimeters. 519 * 520 * This list is per squeue and squeues are shared across the tcp_stack_t's. 521 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 522 * and conn_netstack. 523 * The tcp_t's that are added to tcp_free_list are disassociated and 524 * have NULL tcp_tcps and conn_netstack pointers. 525 */ 526 typedef struct tcp_squeue_priv_s { 527 kmutex_t tcp_time_wait_lock; 528 callout_id_t tcp_time_wait_tid; 529 tcp_t *tcp_time_wait_head; 530 tcp_t *tcp_time_wait_tail; 531 tcp_t *tcp_free_list; 532 uint_t tcp_free_list_cnt; 533 } tcp_squeue_priv_t; 534 535 /* 536 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 537 * Running it every 5 seconds seems to give the best results. 538 */ 539 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 540 541 /* 542 * To prevent memory hog, limit the number of entries in tcp_free_list 543 * to 1% of available memory / number of cpus 544 */ 545 uint_t tcp_free_list_max_cnt = 0; 546 547 #define TCP_XMIT_LOWATER 4096 548 #define TCP_XMIT_HIWATER 49152 549 #define TCP_RECV_LOWATER 2048 550 #define TCP_RECV_HIWATER 49152 551 552 /* 553 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 554 */ 555 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 556 557 #define TIDUSZ 4096 /* transport interface data unit size */ 558 559 /* 560 * Bind hash list size and has function. It has to be a power of 2 for 561 * hashing. 562 */ 563 #define TCP_BIND_FANOUT_SIZE 512 564 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 565 /* 566 * Size of listen and acceptor hash list. It has to be a power of 2 for 567 * hashing. 568 */ 569 #define TCP_FANOUT_SIZE 256 570 571 #ifdef _ILP32 572 #define TCP_ACCEPTOR_HASH(accid) \ 573 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 574 #else 575 #define TCP_ACCEPTOR_HASH(accid) \ 576 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 577 #endif /* _ILP32 */ 578 579 #define IP_ADDR_CACHE_SIZE 2048 580 #define IP_ADDR_CACHE_HASH(faddr) \ 581 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 582 583 /* 584 * TCP options struct returned from tcp_parse_options. 585 */ 586 typedef struct tcp_opt_s { 587 uint32_t tcp_opt_mss; 588 uint32_t tcp_opt_wscale; 589 uint32_t tcp_opt_ts_val; 590 uint32_t tcp_opt_ts_ecr; 591 tcp_t *tcp; 592 } tcp_opt_t; 593 594 /* 595 * TCP option struct passing information b/w lisenter and eager. 596 */ 597 struct tcp_options { 598 uint_t to_flags; 599 ssize_t to_boundif; /* IPV6_BOUND_IF */ 600 }; 601 602 #define TCPOPT_BOUNDIF 0x00000001 /* set IPV6_BOUND_IF */ 603 #define TCPOPT_RECVPKTINFO 0x00000002 /* set IPV6_RECVPKTINFO */ 604 605 /* 606 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 607 */ 608 609 #ifdef _BIG_ENDIAN 610 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 611 (TCPOPT_TSTAMP << 8) | 10) 612 #else 613 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 614 (TCPOPT_NOP << 8) | TCPOPT_NOP) 615 #endif 616 617 /* 618 * Flags returned from tcp_parse_options. 619 */ 620 #define TCP_OPT_MSS_PRESENT 1 621 #define TCP_OPT_WSCALE_PRESENT 2 622 #define TCP_OPT_TSTAMP_PRESENT 4 623 #define TCP_OPT_SACK_OK_PRESENT 8 624 #define TCP_OPT_SACK_PRESENT 16 625 626 /* TCP option length */ 627 #define TCPOPT_NOP_LEN 1 628 #define TCPOPT_MAXSEG_LEN 4 629 #define TCPOPT_WS_LEN 3 630 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 631 #define TCPOPT_TSTAMP_LEN 10 632 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 633 #define TCPOPT_SACK_OK_LEN 2 634 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 635 #define TCPOPT_REAL_SACK_LEN 4 636 #define TCPOPT_MAX_SACK_LEN 36 637 #define TCPOPT_HEADER_LEN 2 638 639 /* TCP cwnd burst factor. */ 640 #define TCP_CWND_INFINITE 65535 641 #define TCP_CWND_SS 3 642 #define TCP_CWND_NORMAL 5 643 644 /* Maximum TCP initial cwin (start/restart). */ 645 #define TCP_MAX_INIT_CWND 8 646 647 /* 648 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 649 * either tcp_slow_start_initial or tcp_slow_start_after idle 650 * depending on the caller. If the upper layer has not used the 651 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 652 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 653 * If the upper layer has changed set the tcp_init_cwnd, just use 654 * it to calculate the tcp_cwnd. 655 */ 656 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 657 { \ 658 if ((tcp)->tcp_init_cwnd == 0) { \ 659 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 660 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 661 } else { \ 662 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 663 } \ 664 tcp->tcp_cwnd_cnt = 0; \ 665 } 666 667 /* TCP Timer control structure */ 668 typedef struct tcpt_s { 669 pfv_t tcpt_pfv; /* The routine we are to call */ 670 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 671 } tcpt_t; 672 673 /* 674 * Functions called directly via squeue having a prototype of edesc_t. 675 */ 676 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 677 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 678 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 679 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 680 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 681 void tcp_input(void *arg, mblk_t *mp, void *arg2); 682 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 683 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 684 void tcp_output(void *arg, mblk_t *mp, void *arg2); 685 void tcp_output_urgent(void *arg, mblk_t *mp, void *arg2); 686 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 687 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 688 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 689 690 691 /* Prototype for TCP functions */ 692 static void tcp_random_init(void); 693 int tcp_random(void); 694 static void tcp_tli_accept(tcp_t *tcp, mblk_t *mp); 695 static int tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 696 tcp_t *eager); 697 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 698 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 699 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 700 boolean_t user_specified); 701 static void tcp_closei_local(tcp_t *tcp); 702 static void tcp_close_detached(tcp_t *tcp); 703 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 704 mblk_t *idmp, mblk_t **defermp); 705 static void tcp_tpi_connect(tcp_t *tcp, mblk_t *mp); 706 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 707 in_port_t dstport, uint_t srcid, cred_t *cr, pid_t pid); 708 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 709 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 710 uint32_t scope_id, cred_t *cr, pid_t pid); 711 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 712 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 713 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 714 static char *tcp_display(tcp_t *tcp, char *, char); 715 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 716 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 717 static void tcp_eager_unlink(tcp_t *tcp); 718 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 719 int unixerr); 720 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 721 int tlierr, int unixerr); 722 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 723 cred_t *cr); 724 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 725 char *value, caddr_t cp, cred_t *cr); 726 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 727 char *value, caddr_t cp, cred_t *cr); 728 static int tcp_tpistate(tcp_t *tcp); 729 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 730 int caller_holds_lock); 731 static void tcp_bind_hash_remove(tcp_t *tcp); 732 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 733 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 734 static void tcp_acceptor_hash_remove(tcp_t *tcp); 735 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 736 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 737 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 738 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 739 void tcp_g_q_setup(tcp_stack_t *); 740 void tcp_g_q_create(tcp_stack_t *); 741 void tcp_g_q_destroy(tcp_stack_t *); 742 static int tcp_header_init_ipv4(tcp_t *tcp); 743 static int tcp_header_init_ipv6(tcp_t *tcp); 744 int tcp_init(tcp_t *tcp, queue_t *q); 745 static int tcp_init_values(tcp_t *tcp); 746 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 747 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 748 static void tcp_ip_notify(tcp_t *tcp); 749 static mblk_t *tcp_ire_mp(mblk_t **mpp); 750 static void tcp_iss_init(tcp_t *tcp); 751 static void tcp_keepalive_killer(void *arg); 752 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 753 static void tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss); 754 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 755 int *do_disconnectp, int *t_errorp, int *sys_errorp); 756 static boolean_t tcp_allow_connopt_set(int level, int name); 757 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 758 int tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 759 int tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, 760 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 761 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 762 mblk_t *mblk); 763 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 764 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 765 uchar_t *ptr, uint_t len); 766 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 767 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 768 tcp_stack_t *); 769 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 770 caddr_t cp, cred_t *cr); 771 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 772 caddr_t cp, cred_t *cr); 773 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 774 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 775 caddr_t cp, cred_t *cr); 776 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 777 static void tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt); 778 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 779 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 780 static void tcp_reinit(tcp_t *tcp); 781 static void tcp_reinit_values(tcp_t *tcp); 782 783 static uint_t tcp_rwnd_reopen(tcp_t *tcp); 784 static uint_t tcp_rcv_drain(tcp_t *tcp); 785 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 786 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 787 static void tcp_ss_rexmit(tcp_t *tcp); 788 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 789 static void tcp_process_options(tcp_t *, tcph_t *); 790 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 791 static void tcp_rsrv(queue_t *q); 792 static int tcp_snmp_state(tcp_t *tcp); 793 static void tcp_timer(void *arg); 794 static void tcp_timer_callback(void *); 795 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 796 boolean_t random); 797 static in_port_t tcp_get_next_priv_port(const tcp_t *); 798 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 799 static void tcp_wput_fallback(queue_t *q, mblk_t *mp); 800 void tcp_tpi_accept(queue_t *q, mblk_t *mp); 801 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 802 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 803 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 804 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 805 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 806 const int num_sack_blk, int *usable, uint_t *snxt, 807 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 808 const int mdt_thres); 809 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 810 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 811 const int num_sack_blk, int *usable, uint_t *snxt, 812 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 813 const int mdt_thres); 814 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 815 int num_sack_blk); 816 static void tcp_wsrv(queue_t *q); 817 static int tcp_xmit_end(tcp_t *tcp); 818 static void tcp_ack_timer(void *arg); 819 static mblk_t *tcp_ack_mp(tcp_t *tcp); 820 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 821 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 822 zoneid_t zoneid, tcp_stack_t *, conn_t *connp); 823 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 824 uint32_t ack, int ctl); 825 static int setmaxps(queue_t *q, int maxpsz); 826 static void tcp_set_rto(tcp_t *, time_t); 827 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 828 boolean_t, boolean_t); 829 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 830 boolean_t ipsec_mctl); 831 static int tcp_build_hdrs(tcp_t *); 832 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 833 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 834 tcph_t *tcph); 835 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 836 static mblk_t *tcp_mdt_info_mp(mblk_t *); 837 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 838 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 839 const boolean_t, const uint32_t, const uint32_t, 840 const uint32_t, const uint32_t, tcp_stack_t *); 841 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 842 const uint_t, const uint_t, boolean_t *); 843 static mblk_t *tcp_lso_info_mp(mblk_t *); 844 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 845 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 846 extern mblk_t *tcp_timermp_alloc(int); 847 extern void tcp_timermp_free(tcp_t *); 848 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 849 static void tcp_stop_lingering(tcp_t *tcp); 850 static void tcp_close_linger_timeout(void *arg); 851 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 852 static void tcp_stack_shutdown(netstackid_t stackid, void *arg); 853 static void tcp_stack_fini(netstackid_t stackid, void *arg); 854 static void *tcp_g_kstat_init(tcp_g_stat_t *); 855 static void tcp_g_kstat_fini(kstat_t *); 856 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 857 static void tcp_kstat_fini(netstackid_t, kstat_t *); 858 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 859 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 860 static int tcp_kstat_update(kstat_t *kp, int rw); 861 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 862 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 863 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 864 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 865 tcph_t *tcph, mblk_t *idmp); 866 static int tcp_squeue_switch(int); 867 868 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 869 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 870 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 871 static int tcp_tpi_close(queue_t *, int); 872 static int tcp_tpi_close_accept(queue_t *); 873 874 static void tcp_squeue_add(squeue_t *); 875 static boolean_t tcp_zcopy_check(tcp_t *); 876 static void tcp_zcopy_notify(tcp_t *); 877 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 878 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 879 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 880 881 extern void tcp_kssl_input(tcp_t *, mblk_t *); 882 883 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 884 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 885 886 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t, 887 sock_upper_handle_t, cred_t *); 888 static int tcp_listen(sock_lower_handle_t, int, cred_t *); 889 static int tcp_post_ip_bind(tcp_t *, mblk_t *, int, cred_t *, pid_t); 890 static int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int, cred_t *, 891 boolean_t); 892 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t, 893 cred_t *, pid_t); 894 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *, 895 boolean_t); 896 static int tcp_do_unbind(conn_t *); 897 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *, 898 boolean_t); 899 900 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *); 901 902 /* 903 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 904 * 905 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 906 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 907 * (defined in tcp.h) needs to be filled in and passed into the kernel 908 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 909 * structure contains the four-tuple of a TCP connection and a range of TCP 910 * states (specified by ac_start and ac_end). The use of wildcard addresses 911 * and ports is allowed. Connections with a matching four tuple and a state 912 * within the specified range will be aborted. The valid states for the 913 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 914 * inclusive. 915 * 916 * An application which has its connection aborted by this ioctl will receive 917 * an error that is dependent on the connection state at the time of the abort. 918 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 919 * though a RST packet has been received. If the connection state is equal to 920 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 921 * and all resources associated with the connection will be freed. 922 */ 923 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 924 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 925 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 926 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 927 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 928 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 929 boolean_t, tcp_stack_t *); 930 931 static struct module_info tcp_rinfo = { 932 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 933 }; 934 935 static struct module_info tcp_winfo = { 936 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 937 }; 938 939 /* 940 * Entry points for TCP as a device. The normal case which supports 941 * the TCP functionality. 942 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 943 */ 944 struct qinit tcp_rinitv4 = { 945 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 946 }; 947 948 struct qinit tcp_rinitv6 = { 949 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 950 }; 951 952 struct qinit tcp_winit = { 953 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 954 }; 955 956 /* Initial entry point for TCP in socket mode. */ 957 struct qinit tcp_sock_winit = { 958 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 959 }; 960 961 /* TCP entry point during fallback */ 962 struct qinit tcp_fallback_sock_winit = { 963 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 964 }; 965 966 /* 967 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 968 * an accept. Avoid allocating data structures since eager has already 969 * been created. 970 */ 971 struct qinit tcp_acceptor_rinit = { 972 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 973 }; 974 975 struct qinit tcp_acceptor_winit = { 976 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 977 }; 978 979 /* For AF_INET aka /dev/tcp */ 980 struct streamtab tcpinfov4 = { 981 &tcp_rinitv4, &tcp_winit 982 }; 983 984 /* For AF_INET6 aka /dev/tcp6 */ 985 struct streamtab tcpinfov6 = { 986 &tcp_rinitv6, &tcp_winit 987 }; 988 989 sock_downcalls_t sock_tcp_downcalls; 990 991 /* 992 * Have to ensure that tcp_g_q_close is not done by an 993 * interrupt thread. 994 */ 995 static taskq_t *tcp_taskq; 996 997 /* Setable only in /etc/system. Move to ndd? */ 998 boolean_t tcp_icmp_source_quench = B_FALSE; 999 1000 /* 1001 * Following assumes TPI alignment requirements stay along 32 bit 1002 * boundaries 1003 */ 1004 #define ROUNDUP32(x) \ 1005 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1006 1007 /* Template for response to info request. */ 1008 static struct T_info_ack tcp_g_t_info_ack = { 1009 T_INFO_ACK, /* PRIM_type */ 1010 0, /* TSDU_size */ 1011 T_INFINITE, /* ETSDU_size */ 1012 T_INVALID, /* CDATA_size */ 1013 T_INVALID, /* DDATA_size */ 1014 sizeof (sin_t), /* ADDR_size */ 1015 0, /* OPT_size - not initialized here */ 1016 TIDUSZ, /* TIDU_size */ 1017 T_COTS_ORD, /* SERV_type */ 1018 TCPS_IDLE, /* CURRENT_state */ 1019 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1020 }; 1021 1022 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1023 T_INFO_ACK, /* PRIM_type */ 1024 0, /* TSDU_size */ 1025 T_INFINITE, /* ETSDU_size */ 1026 T_INVALID, /* CDATA_size */ 1027 T_INVALID, /* DDATA_size */ 1028 sizeof (sin6_t), /* ADDR_size */ 1029 0, /* OPT_size - not initialized here */ 1030 TIDUSZ, /* TIDU_size */ 1031 T_COTS_ORD, /* SERV_type */ 1032 TCPS_IDLE, /* CURRENT_state */ 1033 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1034 }; 1035 1036 #define MS 1L 1037 #define SECONDS (1000 * MS) 1038 #define MINUTES (60 * SECONDS) 1039 #define HOURS (60 * MINUTES) 1040 #define DAYS (24 * HOURS) 1041 1042 #define PARAM_MAX (~(uint32_t)0) 1043 1044 /* Max size IP datagram is 64k - 1 */ 1045 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1046 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1047 /* Max of the above */ 1048 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1049 1050 /* Largest TCP port number */ 1051 #define TCP_MAX_PORT (64 * 1024 - 1) 1052 1053 /* 1054 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1055 * layer header. It has to be a multiple of 4. 1056 */ 1057 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1058 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1059 1060 /* 1061 * All of these are alterable, within the min/max values given, at run time. 1062 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1063 * per the TCP spec. 1064 */ 1065 /* BEGIN CSTYLED */ 1066 static tcpparam_t lcl_tcp_param_arr[] = { 1067 /*min max value name */ 1068 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1069 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1070 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1071 { 1, 1024, 1, "tcp_conn_req_min" }, 1072 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1073 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1074 { 0, 10, 0, "tcp_debug" }, 1075 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1076 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1077 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1078 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1079 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1080 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1081 { 1, 255, 64, "tcp_ipv4_ttl"}, 1082 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1083 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1084 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1085 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1086 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1087 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1088 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1089 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1090 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1091 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1092 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1093 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1094 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1095 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1096 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1097 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1098 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1099 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1100 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1101 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1102 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1103 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1104 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1105 /* 1106 * Question: What default value should I set for tcp_strong_iss? 1107 */ 1108 { 0, 2, 1, "tcp_strong_iss"}, 1109 { 0, 65536, 20, "tcp_rtt_updates"}, 1110 { 0, 1, 1, "tcp_wscale_always"}, 1111 { 0, 1, 0, "tcp_tstamp_always"}, 1112 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1113 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1114 { 0, 16, 2, "tcp_deferred_acks_max"}, 1115 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1116 { 1, 4, 4, "tcp_slow_start_initial"}, 1117 { 0, 2, 2, "tcp_sack_permitted"}, 1118 { 0, 1, 1, "tcp_compression_enabled"}, 1119 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1120 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1121 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1122 { 0, 1, 0, "tcp_rev_src_routes"}, 1123 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1124 { 0, 16, 8, "tcp_local_dacks_max"}, 1125 { 0, 2, 1, "tcp_ecn_permitted"}, 1126 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1127 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1128 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1129 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1130 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1131 }; 1132 /* END CSTYLED */ 1133 1134 /* 1135 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1136 * each header fragment in the header buffer. Each parameter value has 1137 * to be a multiple of 4 (32-bit aligned). 1138 */ 1139 static tcpparam_t lcl_tcp_mdt_head_param = 1140 { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1141 static tcpparam_t lcl_tcp_mdt_tail_param = 1142 { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1143 #define tcps_mdt_hdr_head_min tcps_mdt_head_param->tcp_param_val 1144 #define tcps_mdt_hdr_tail_min tcps_mdt_tail_param->tcp_param_val 1145 1146 /* 1147 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1148 * the maximum number of payload buffers associated per Multidata. 1149 */ 1150 static tcpparam_t lcl_tcp_mdt_max_pbufs_param = 1151 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1152 #define tcps_mdt_max_pbufs tcps_mdt_max_pbufs_param->tcp_param_val 1153 1154 /* Round up the value to the nearest mss. */ 1155 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1156 1157 /* 1158 * Set ECN capable transport (ECT) code point in IP header. 1159 * 1160 * Note that there are 2 ECT code points '01' and '10', which are called 1161 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1162 * point ECT(0) for TCP as described in RFC 2481. 1163 */ 1164 #define SET_ECT(tcp, iph) \ 1165 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1166 /* We need to clear the code point first. */ \ 1167 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1168 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1169 } else { \ 1170 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1171 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1172 } 1173 1174 /* 1175 * The format argument to pass to tcp_display(). 1176 * DISP_PORT_ONLY means that the returned string has only port info. 1177 * DISP_ADDR_AND_PORT means that the returned string also contains the 1178 * remote and local IP address. 1179 */ 1180 #define DISP_PORT_ONLY 1 1181 #define DISP_ADDR_AND_PORT 2 1182 1183 #define IS_VMLOANED_MBLK(mp) \ 1184 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1185 1186 1187 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1188 boolean_t tcp_mdt_chain = B_TRUE; 1189 1190 /* 1191 * MDT threshold in the form of effective send MSS multiplier; we take 1192 * the MDT path if the amount of unsent data exceeds the threshold value 1193 * (default threshold is 1*SMSS). 1194 */ 1195 uint_t tcp_mdt_smss_threshold = 1; 1196 1197 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1198 1199 /* 1200 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1201 * tunable settable via NDD. Otherwise, the per-connection behavior is 1202 * determined dynamically during tcp_adapt_ire(), which is the default. 1203 */ 1204 boolean_t tcp_static_maxpsz = B_FALSE; 1205 1206 /* Setable in /etc/system */ 1207 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1208 uint32_t tcp_random_anon_port = 1; 1209 1210 /* 1211 * To reach to an eager in Q0 which can be dropped due to an incoming 1212 * new SYN request when Q0 is full, a new doubly linked list is 1213 * introduced. This list allows to select an eager from Q0 in O(1) time. 1214 * This is needed to avoid spending too much time walking through the 1215 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1216 * this new list has to be a member of Q0. 1217 * This list is headed by listener's tcp_t. When the list is empty, 1218 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1219 * of listener's tcp_t point to listener's tcp_t itself. 1220 * 1221 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1222 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1223 * These macros do not affect the eager's membership to Q0. 1224 */ 1225 1226 1227 #define MAKE_DROPPABLE(listener, eager) \ 1228 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1229 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1230 = (eager); \ 1231 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1232 (eager)->tcp_eager_next_drop_q0 = \ 1233 (listener)->tcp_eager_next_drop_q0; \ 1234 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1235 } 1236 1237 #define MAKE_UNDROPPABLE(eager) \ 1238 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1239 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1240 = (eager)->tcp_eager_prev_drop_q0; \ 1241 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1242 = (eager)->tcp_eager_next_drop_q0; \ 1243 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1244 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1245 } 1246 1247 /* 1248 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1249 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1250 * data, TCP will not respond with an ACK. RFC 793 requires that 1251 * TCP responds with an ACK for such a bogus ACK. By not following 1252 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1253 * an attacker successfully spoofs an acceptable segment to our 1254 * peer; or when our peer is "confused." 1255 */ 1256 uint32_t tcp_drop_ack_unsent_cnt = 10; 1257 1258 /* 1259 * Hook functions to enable cluster networking 1260 * On non-clustered systems these vectors must always be NULL. 1261 */ 1262 1263 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol, 1264 sa_family_t addr_family, uint8_t *laddrp, 1265 in_port_t lport, void *args) = NULL; 1266 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol, 1267 sa_family_t addr_family, uint8_t *laddrp, 1268 in_port_t lport, void *args) = NULL; 1269 1270 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol, 1271 boolean_t is_outgoing, 1272 sa_family_t addr_family, 1273 uint8_t *laddrp, in_port_t lport, 1274 uint8_t *faddrp, in_port_t fport, 1275 void *args) = NULL; 1276 1277 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol, 1278 sa_family_t addr_family, uint8_t *laddrp, 1279 in_port_t lport, uint8_t *faddrp, 1280 in_port_t fport, void *args) = NULL; 1281 1282 /* 1283 * The following are defined in ip.c 1284 */ 1285 extern int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 1286 sa_family_t addr_family, uint8_t *laddrp, 1287 void *args); 1288 extern uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 1289 sa_family_t addr_family, uint8_t *laddrp, 1290 uint8_t *faddrp, void *args); 1291 1292 1293 /* 1294 * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err) 1295 */ 1296 #define CL_INET_CONNECT(connp, tcp, is_outgoing, err) { \ 1297 (err) = 0; \ 1298 if (cl_inet_connect2 != NULL) { \ 1299 /* \ 1300 * Running in cluster mode - register active connection \ 1301 * information \ 1302 */ \ 1303 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1304 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1305 (err) = (*cl_inet_connect2)( \ 1306 (connp)->conn_netstack->netstack_stackid,\ 1307 IPPROTO_TCP, is_outgoing, AF_INET, \ 1308 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1309 (in_port_t)(tcp)->tcp_lport, \ 1310 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1311 (in_port_t)(tcp)->tcp_fport, NULL); \ 1312 } \ 1313 } else { \ 1314 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1315 &(tcp)->tcp_ip6h->ip6_src)) { \ 1316 (err) = (*cl_inet_connect2)( \ 1317 (connp)->conn_netstack->netstack_stackid,\ 1318 IPPROTO_TCP, is_outgoing, AF_INET6, \ 1319 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1320 (in_port_t)(tcp)->tcp_lport, \ 1321 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1322 (in_port_t)(tcp)->tcp_fport, NULL); \ 1323 } \ 1324 } \ 1325 } \ 1326 } 1327 1328 #define CL_INET_DISCONNECT(connp, tcp) { \ 1329 if (cl_inet_disconnect != NULL) { \ 1330 /* \ 1331 * Running in cluster mode - deregister active \ 1332 * connection information \ 1333 */ \ 1334 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1335 if ((tcp)->tcp_ip_src != 0) { \ 1336 (*cl_inet_disconnect)( \ 1337 (connp)->conn_netstack->netstack_stackid,\ 1338 IPPROTO_TCP, AF_INET, \ 1339 (uint8_t *)(&((tcp)->tcp_ip_src)), \ 1340 (in_port_t)(tcp)->tcp_lport, \ 1341 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1342 (in_port_t)(tcp)->tcp_fport, NULL); \ 1343 } \ 1344 } else { \ 1345 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1346 &(tcp)->tcp_ip_src_v6)) { \ 1347 (*cl_inet_disconnect)( \ 1348 (connp)->conn_netstack->netstack_stackid,\ 1349 IPPROTO_TCP, AF_INET6, \ 1350 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1351 (in_port_t)(tcp)->tcp_lport, \ 1352 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1353 (in_port_t)(tcp)->tcp_fport, NULL); \ 1354 } \ 1355 } \ 1356 } \ 1357 } 1358 1359 /* 1360 * Cluster networking hook for traversing current connection list. 1361 * This routine is used to extract the current list of live connections 1362 * which must continue to to be dispatched to this node. 1363 */ 1364 int cl_tcp_walk_list(netstackid_t stack_id, 1365 int (*callback)(cl_tcp_info_t *, void *), void *arg); 1366 1367 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1368 void *arg, tcp_stack_t *tcps); 1369 1370 #define DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) \ 1371 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, \ 1372 iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, \ 1373 ip6_t *, ip6h, int, 0); 1374 1375 static void 1376 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh) 1377 { 1378 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3; 1379 1380 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 1381 conn_t *connp = tcp->tcp_connp; 1382 struct sock_proto_props sopp; 1383 1384 /* 1385 * only increase rcvthresh upto default_threshold 1386 */ 1387 if (new_rcvthresh > default_threshold) 1388 new_rcvthresh = default_threshold; 1389 1390 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 1391 sopp.sopp_rcvthresh = new_rcvthresh; 1392 1393 (*connp->conn_upcalls->su_set_proto_props) 1394 (connp->conn_upper_handle, &sopp); 1395 } 1396 } 1397 /* 1398 * Figure out the value of window scale opton. Note that the rwnd is 1399 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1400 * We cannot find the scale value and then do a round up of tcp_rwnd 1401 * because the scale value may not be correct after that. 1402 * 1403 * Set the compiler flag to make this function inline. 1404 */ 1405 static void 1406 tcp_set_ws_value(tcp_t *tcp) 1407 { 1408 int i; 1409 uint32_t rwnd = tcp->tcp_rwnd; 1410 1411 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1412 i++, rwnd >>= 1) 1413 ; 1414 tcp->tcp_rcv_ws = i; 1415 } 1416 1417 /* 1418 * Remove a connection from the list of detached TIME_WAIT connections. 1419 * It returns B_FALSE if it can't remove the connection from the list 1420 * as the connection has already been removed from the list due to an 1421 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1422 */ 1423 static boolean_t 1424 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1425 { 1426 boolean_t locked = B_FALSE; 1427 1428 if (tcp_time_wait == NULL) { 1429 tcp_time_wait = *((tcp_squeue_priv_t **) 1430 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1431 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1432 locked = B_TRUE; 1433 } else { 1434 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1435 } 1436 1437 if (tcp->tcp_time_wait_expire == 0) { 1438 ASSERT(tcp->tcp_time_wait_next == NULL); 1439 ASSERT(tcp->tcp_time_wait_prev == NULL); 1440 if (locked) 1441 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1442 return (B_FALSE); 1443 } 1444 ASSERT(TCP_IS_DETACHED(tcp)); 1445 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1446 1447 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1448 ASSERT(tcp->tcp_time_wait_prev == NULL); 1449 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1450 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1451 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1452 NULL; 1453 } else { 1454 tcp_time_wait->tcp_time_wait_tail = NULL; 1455 } 1456 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1457 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1458 ASSERT(tcp->tcp_time_wait_next == NULL); 1459 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1460 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1461 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1462 } else { 1463 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1464 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1465 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1466 tcp->tcp_time_wait_next; 1467 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1468 tcp->tcp_time_wait_prev; 1469 } 1470 tcp->tcp_time_wait_next = NULL; 1471 tcp->tcp_time_wait_prev = NULL; 1472 tcp->tcp_time_wait_expire = 0; 1473 1474 if (locked) 1475 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1476 return (B_TRUE); 1477 } 1478 1479 /* 1480 * Add a connection to the list of detached TIME_WAIT connections 1481 * and set its time to expire. 1482 */ 1483 static void 1484 tcp_time_wait_append(tcp_t *tcp) 1485 { 1486 tcp_stack_t *tcps = tcp->tcp_tcps; 1487 tcp_squeue_priv_t *tcp_time_wait = 1488 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1489 SQPRIVATE_TCP)); 1490 1491 tcp_timers_stop(tcp); 1492 1493 /* Freed above */ 1494 ASSERT(tcp->tcp_timer_tid == 0); 1495 ASSERT(tcp->tcp_ack_tid == 0); 1496 1497 /* must have happened at the time of detaching the tcp */ 1498 ASSERT(tcp->tcp_ptpahn == NULL); 1499 ASSERT(tcp->tcp_flow_stopped == 0); 1500 ASSERT(tcp->tcp_time_wait_next == NULL); 1501 ASSERT(tcp->tcp_time_wait_prev == NULL); 1502 ASSERT(tcp->tcp_time_wait_expire == NULL); 1503 ASSERT(tcp->tcp_listener == NULL); 1504 1505 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1506 /* 1507 * The value computed below in tcp->tcp_time_wait_expire may 1508 * appear negative or wrap around. That is ok since our 1509 * interest is only in the difference between the current lbolt 1510 * value and tcp->tcp_time_wait_expire. But the value should not 1511 * be zero, since it means the tcp is not in the TIME_WAIT list. 1512 * The corresponding comparison in tcp_time_wait_collector() uses 1513 * modular arithmetic. 1514 */ 1515 tcp->tcp_time_wait_expire += 1516 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1517 if (tcp->tcp_time_wait_expire == 0) 1518 tcp->tcp_time_wait_expire = 1; 1519 1520 ASSERT(TCP_IS_DETACHED(tcp)); 1521 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1522 ASSERT(tcp->tcp_time_wait_next == NULL); 1523 ASSERT(tcp->tcp_time_wait_prev == NULL); 1524 TCP_DBGSTAT(tcps, tcp_time_wait); 1525 1526 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1527 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1528 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1529 tcp_time_wait->tcp_time_wait_head = tcp; 1530 } else { 1531 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1532 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1533 TCPS_TIME_WAIT); 1534 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1535 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1536 } 1537 tcp_time_wait->tcp_time_wait_tail = tcp; 1538 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1539 } 1540 1541 /* ARGSUSED */ 1542 void 1543 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1544 { 1545 conn_t *connp = (conn_t *)arg; 1546 tcp_t *tcp = connp->conn_tcp; 1547 tcp_stack_t *tcps = tcp->tcp_tcps; 1548 1549 ASSERT(tcp != NULL); 1550 if (tcp->tcp_state == TCPS_CLOSED) { 1551 return; 1552 } 1553 1554 ASSERT((tcp->tcp_family == AF_INET && 1555 tcp->tcp_ipversion == IPV4_VERSION) || 1556 (tcp->tcp_family == AF_INET6 && 1557 (tcp->tcp_ipversion == IPV4_VERSION || 1558 tcp->tcp_ipversion == IPV6_VERSION))); 1559 ASSERT(!tcp->tcp_listener); 1560 1561 TCP_STAT(tcps, tcp_time_wait_reap); 1562 ASSERT(TCP_IS_DETACHED(tcp)); 1563 1564 /* 1565 * Because they have no upstream client to rebind or tcp_close() 1566 * them later, we axe the connection here and now. 1567 */ 1568 tcp_close_detached(tcp); 1569 } 1570 1571 /* 1572 * Remove cached/latched IPsec references. 1573 */ 1574 void 1575 tcp_ipsec_cleanup(tcp_t *tcp) 1576 { 1577 conn_t *connp = tcp->tcp_connp; 1578 1579 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1580 1581 if (connp->conn_latch != NULL) { 1582 IPLATCH_REFRELE(connp->conn_latch, 1583 connp->conn_netstack); 1584 connp->conn_latch = NULL; 1585 } 1586 if (connp->conn_policy != NULL) { 1587 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1588 connp->conn_policy = NULL; 1589 } 1590 } 1591 1592 /* 1593 * Cleaup before placing on free list. 1594 * Disassociate from the netstack/tcp_stack_t since the freelist 1595 * is per squeue and not per netstack. 1596 */ 1597 void 1598 tcp_cleanup(tcp_t *tcp) 1599 { 1600 mblk_t *mp; 1601 char *tcp_iphc; 1602 int tcp_iphc_len; 1603 int tcp_hdr_grown; 1604 tcp_sack_info_t *tcp_sack_info; 1605 conn_t *connp = tcp->tcp_connp; 1606 tcp_stack_t *tcps = tcp->tcp_tcps; 1607 netstack_t *ns = tcps->tcps_netstack; 1608 mblk_t *tcp_rsrv_mp; 1609 1610 tcp_bind_hash_remove(tcp); 1611 1612 /* Cleanup that which needs the netstack first */ 1613 tcp_ipsec_cleanup(tcp); 1614 1615 tcp_free(tcp); 1616 1617 /* Release any SSL context */ 1618 if (tcp->tcp_kssl_ent != NULL) { 1619 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1620 tcp->tcp_kssl_ent = NULL; 1621 } 1622 1623 if (tcp->tcp_kssl_ctx != NULL) { 1624 kssl_release_ctx(tcp->tcp_kssl_ctx); 1625 tcp->tcp_kssl_ctx = NULL; 1626 } 1627 tcp->tcp_kssl_pending = B_FALSE; 1628 1629 conn_delete_ire(connp, NULL); 1630 1631 /* 1632 * Since we will bzero the entire structure, we need to 1633 * remove it and reinsert it in global hash list. We 1634 * know the walkers can't get to this conn because we 1635 * had set CONDEMNED flag earlier and checked reference 1636 * under conn_lock so walker won't pick it and when we 1637 * go the ipcl_globalhash_remove() below, no walker 1638 * can get to it. 1639 */ 1640 ipcl_globalhash_remove(connp); 1641 1642 /* 1643 * Now it is safe to decrement the reference counts. 1644 * This might be the last reference on the netstack and TCPS 1645 * in which case it will cause the tcp_g_q_close and 1646 * the freeing of the IP Instance. 1647 */ 1648 connp->conn_netstack = NULL; 1649 netstack_rele(ns); 1650 ASSERT(tcps != NULL); 1651 tcp->tcp_tcps = NULL; 1652 TCPS_REFRELE(tcps); 1653 1654 /* Save some state */ 1655 mp = tcp->tcp_timercache; 1656 1657 tcp_sack_info = tcp->tcp_sack_info; 1658 tcp_iphc = tcp->tcp_iphc; 1659 tcp_iphc_len = tcp->tcp_iphc_len; 1660 tcp_hdr_grown = tcp->tcp_hdr_grown; 1661 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 1662 1663 if (connp->conn_cred != NULL) { 1664 crfree(connp->conn_cred); 1665 connp->conn_cred = NULL; 1666 } 1667 if (connp->conn_effective_cred != NULL) { 1668 crfree(connp->conn_effective_cred); 1669 connp->conn_effective_cred = NULL; 1670 } 1671 ipcl_conn_cleanup(connp); 1672 connp->conn_flags = IPCL_TCPCONN; 1673 bzero(tcp, sizeof (tcp_t)); 1674 1675 /* restore the state */ 1676 tcp->tcp_timercache = mp; 1677 1678 tcp->tcp_sack_info = tcp_sack_info; 1679 tcp->tcp_iphc = tcp_iphc; 1680 tcp->tcp_iphc_len = tcp_iphc_len; 1681 tcp->tcp_hdr_grown = tcp_hdr_grown; 1682 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1683 1684 tcp->tcp_connp = connp; 1685 1686 ASSERT(connp->conn_tcp == tcp); 1687 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1688 connp->conn_state_flags = CONN_INCIPIENT; 1689 ASSERT(connp->conn_ulp == IPPROTO_TCP); 1690 ASSERT(connp->conn_ref == 1); 1691 } 1692 1693 /* 1694 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1695 * is done forwards from the head. 1696 * This walks all stack instances since 1697 * tcp_time_wait remains global across all stacks. 1698 */ 1699 /* ARGSUSED */ 1700 void 1701 tcp_time_wait_collector(void *arg) 1702 { 1703 tcp_t *tcp; 1704 clock_t now; 1705 mblk_t *mp; 1706 conn_t *connp; 1707 kmutex_t *lock; 1708 boolean_t removed; 1709 1710 squeue_t *sqp = (squeue_t *)arg; 1711 tcp_squeue_priv_t *tcp_time_wait = 1712 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1713 1714 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1715 tcp_time_wait->tcp_time_wait_tid = 0; 1716 1717 if (tcp_time_wait->tcp_free_list != NULL && 1718 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1719 TCP_G_STAT(tcp_freelist_cleanup); 1720 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1721 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1722 tcp->tcp_time_wait_next = NULL; 1723 tcp_time_wait->tcp_free_list_cnt--; 1724 ASSERT(tcp->tcp_tcps == NULL); 1725 CONN_DEC_REF(tcp->tcp_connp); 1726 } 1727 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1728 } 1729 1730 /* 1731 * In order to reap time waits reliably, we should use a 1732 * source of time that is not adjustable by the user -- hence 1733 * the call to ddi_get_lbolt(). 1734 */ 1735 now = ddi_get_lbolt(); 1736 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1737 /* 1738 * Compare times using modular arithmetic, since 1739 * lbolt can wrapover. 1740 */ 1741 if ((now - tcp->tcp_time_wait_expire) < 0) { 1742 break; 1743 } 1744 1745 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1746 ASSERT(removed); 1747 1748 connp = tcp->tcp_connp; 1749 ASSERT(connp->conn_fanout != NULL); 1750 lock = &connp->conn_fanout->connf_lock; 1751 /* 1752 * This is essentially a TW reclaim fast path optimization for 1753 * performance where the timewait collector checks under the 1754 * fanout lock (so that no one else can get access to the 1755 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1756 * the classifier hash list. If ref count is indeed 2, we can 1757 * just remove the conn under the fanout lock and avoid 1758 * cleaning up the conn under the squeue, provided that 1759 * clustering callbacks are not enabled. If clustering is 1760 * enabled, we need to make the clustering callback before 1761 * setting the CONDEMNED flag and after dropping all locks and 1762 * so we forego this optimization and fall back to the slow 1763 * path. Also please see the comments in tcp_closei_local 1764 * regarding the refcnt logic. 1765 * 1766 * Since we are holding the tcp_time_wait_lock, its better 1767 * not to block on the fanout_lock because other connections 1768 * can't add themselves to time_wait list. So we do a 1769 * tryenter instead of mutex_enter. 1770 */ 1771 if (mutex_tryenter(lock)) { 1772 mutex_enter(&connp->conn_lock); 1773 if ((connp->conn_ref == 2) && 1774 (cl_inet_disconnect == NULL)) { 1775 ipcl_hash_remove_locked(connp, 1776 connp->conn_fanout); 1777 /* 1778 * Set the CONDEMNED flag now itself so that 1779 * the refcnt cannot increase due to any 1780 * walker. But we have still not cleaned up 1781 * conn_ire_cache. This is still ok since 1782 * we are going to clean it up in tcp_cleanup 1783 * immediately and any interface unplumb 1784 * thread will wait till the ire is blown away 1785 */ 1786 connp->conn_state_flags |= CONN_CONDEMNED; 1787 mutex_exit(lock); 1788 mutex_exit(&connp->conn_lock); 1789 if (tcp_time_wait->tcp_free_list_cnt < 1790 tcp_free_list_max_cnt) { 1791 /* Add to head of tcp_free_list */ 1792 mutex_exit( 1793 &tcp_time_wait->tcp_time_wait_lock); 1794 tcp_cleanup(tcp); 1795 ASSERT(connp->conn_latch == NULL); 1796 ASSERT(connp->conn_policy == NULL); 1797 ASSERT(tcp->tcp_tcps == NULL); 1798 ASSERT(connp->conn_netstack == NULL); 1799 1800 mutex_enter( 1801 &tcp_time_wait->tcp_time_wait_lock); 1802 tcp->tcp_time_wait_next = 1803 tcp_time_wait->tcp_free_list; 1804 tcp_time_wait->tcp_free_list = tcp; 1805 tcp_time_wait->tcp_free_list_cnt++; 1806 continue; 1807 } else { 1808 /* Do not add to tcp_free_list */ 1809 mutex_exit( 1810 &tcp_time_wait->tcp_time_wait_lock); 1811 tcp_bind_hash_remove(tcp); 1812 conn_delete_ire(tcp->tcp_connp, NULL); 1813 tcp_ipsec_cleanup(tcp); 1814 CONN_DEC_REF(tcp->tcp_connp); 1815 } 1816 } else { 1817 CONN_INC_REF_LOCKED(connp); 1818 mutex_exit(lock); 1819 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1820 mutex_exit(&connp->conn_lock); 1821 /* 1822 * We can reuse the closemp here since conn has 1823 * detached (otherwise we wouldn't even be in 1824 * time_wait list). tcp_closemp_used can safely 1825 * be changed without taking a lock as no other 1826 * thread can concurrently access it at this 1827 * point in the connection lifecycle. 1828 */ 1829 1830 if (tcp->tcp_closemp.b_prev == NULL) 1831 tcp->tcp_closemp_used = B_TRUE; 1832 else 1833 cmn_err(CE_PANIC, 1834 "tcp_timewait_collector: " 1835 "concurrent use of tcp_closemp: " 1836 "connp %p tcp %p\n", (void *)connp, 1837 (void *)tcp); 1838 1839 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1840 mp = &tcp->tcp_closemp; 1841 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1842 tcp_timewait_output, connp, 1843 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1844 } 1845 } else { 1846 mutex_enter(&connp->conn_lock); 1847 CONN_INC_REF_LOCKED(connp); 1848 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1849 mutex_exit(&connp->conn_lock); 1850 /* 1851 * We can reuse the closemp here since conn has 1852 * detached (otherwise we wouldn't even be in 1853 * time_wait list). tcp_closemp_used can safely 1854 * be changed without taking a lock as no other 1855 * thread can concurrently access it at this 1856 * point in the connection lifecycle. 1857 */ 1858 1859 if (tcp->tcp_closemp.b_prev == NULL) 1860 tcp->tcp_closemp_used = B_TRUE; 1861 else 1862 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1863 "concurrent use of tcp_closemp: " 1864 "connp %p tcp %p\n", (void *)connp, 1865 (void *)tcp); 1866 1867 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1868 mp = &tcp->tcp_closemp; 1869 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1870 tcp_timewait_output, connp, 1871 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1872 } 1873 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1874 } 1875 1876 if (tcp_time_wait->tcp_free_list != NULL) 1877 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1878 1879 tcp_time_wait->tcp_time_wait_tid = 1880 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 1881 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 1882 CALLOUT_FLAG_ROUNDUP); 1883 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1884 } 1885 1886 /* 1887 * Reply to a clients T_CONN_RES TPI message. This function 1888 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1889 * on the acceptor STREAM and processed in tcp_wput_accept(). 1890 * Read the block comment on top of tcp_conn_request(). 1891 */ 1892 static void 1893 tcp_tli_accept(tcp_t *listener, mblk_t *mp) 1894 { 1895 tcp_t *acceptor; 1896 tcp_t *eager; 1897 tcp_t *tcp; 1898 struct T_conn_res *tcr; 1899 t_uscalar_t acceptor_id; 1900 t_scalar_t seqnum; 1901 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1902 struct tcp_options *tcpopt; 1903 mblk_t *ok_mp; 1904 mblk_t *mp1; 1905 tcp_stack_t *tcps = listener->tcp_tcps; 1906 int error; 1907 1908 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1909 tcp_err_ack(listener, mp, TPROTO, 0); 1910 return; 1911 } 1912 tcr = (struct T_conn_res *)mp->b_rptr; 1913 1914 /* 1915 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1916 * read side queue of the streams device underneath us i.e. the 1917 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1918 * look it up in the queue_hash. Under LP64 it sends down the 1919 * minor_t of the accepting endpoint. 1920 * 1921 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1922 * fanout hash lock is held. 1923 * This prevents any thread from entering the acceptor queue from 1924 * below (since it has not been hard bound yet i.e. any inbound 1925 * packets will arrive on the listener or default tcp queue and 1926 * go through tcp_lookup). 1927 * The CONN_INC_REF will prevent the acceptor from closing. 1928 * 1929 * XXX It is still possible for a tli application to send down data 1930 * on the accepting stream while another thread calls t_accept. 1931 * This should not be a problem for well-behaved applications since 1932 * the T_OK_ACK is sent after the queue swapping is completed. 1933 * 1934 * If the accepting fd is the same as the listening fd, avoid 1935 * queue hash lookup since that will return an eager listener in a 1936 * already established state. 1937 */ 1938 acceptor_id = tcr->ACCEPTOR_id; 1939 mutex_enter(&listener->tcp_eager_lock); 1940 if (listener->tcp_acceptor_id == acceptor_id) { 1941 eager = listener->tcp_eager_next_q; 1942 /* only count how many T_CONN_INDs so don't count q0 */ 1943 if ((listener->tcp_conn_req_cnt_q != 1) || 1944 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1945 mutex_exit(&listener->tcp_eager_lock); 1946 tcp_err_ack(listener, mp, TBADF, 0); 1947 return; 1948 } 1949 if (listener->tcp_conn_req_cnt_q0 != 0) { 1950 /* Throw away all the eagers on q0. */ 1951 tcp_eager_cleanup(listener, 1); 1952 } 1953 if (listener->tcp_syn_defense) { 1954 listener->tcp_syn_defense = B_FALSE; 1955 if (listener->tcp_ip_addr_cache != NULL) { 1956 kmem_free(listener->tcp_ip_addr_cache, 1957 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1958 listener->tcp_ip_addr_cache = NULL; 1959 } 1960 } 1961 /* 1962 * Transfer tcp_conn_req_max to the eager so that when 1963 * a disconnect occurs we can revert the endpoint to the 1964 * listen state. 1965 */ 1966 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1967 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1968 /* 1969 * Get a reference on the acceptor just like the 1970 * tcp_acceptor_hash_lookup below. 1971 */ 1972 acceptor = listener; 1973 CONN_INC_REF(acceptor->tcp_connp); 1974 } else { 1975 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 1976 if (acceptor == NULL) { 1977 if (listener->tcp_debug) { 1978 (void) strlog(TCP_MOD_ID, 0, 1, 1979 SL_ERROR|SL_TRACE, 1980 "tcp_accept: did not find acceptor 0x%x\n", 1981 acceptor_id); 1982 } 1983 mutex_exit(&listener->tcp_eager_lock); 1984 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1985 return; 1986 } 1987 /* 1988 * Verify acceptor state. The acceptable states for an acceptor 1989 * include TCPS_IDLE and TCPS_BOUND. 1990 */ 1991 switch (acceptor->tcp_state) { 1992 case TCPS_IDLE: 1993 /* FALLTHRU */ 1994 case TCPS_BOUND: 1995 break; 1996 default: 1997 CONN_DEC_REF(acceptor->tcp_connp); 1998 mutex_exit(&listener->tcp_eager_lock); 1999 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2000 return; 2001 } 2002 } 2003 2004 /* The listener must be in TCPS_LISTEN */ 2005 if (listener->tcp_state != TCPS_LISTEN) { 2006 CONN_DEC_REF(acceptor->tcp_connp); 2007 mutex_exit(&listener->tcp_eager_lock); 2008 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2009 return; 2010 } 2011 2012 /* 2013 * Rendezvous with an eager connection request packet hanging off 2014 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2015 * tcp structure when the connection packet arrived in 2016 * tcp_conn_request(). 2017 */ 2018 seqnum = tcr->SEQ_number; 2019 eager = listener; 2020 do { 2021 eager = eager->tcp_eager_next_q; 2022 if (eager == NULL) { 2023 CONN_DEC_REF(acceptor->tcp_connp); 2024 mutex_exit(&listener->tcp_eager_lock); 2025 tcp_err_ack(listener, mp, TBADSEQ, 0); 2026 return; 2027 } 2028 } while (eager->tcp_conn_req_seqnum != seqnum); 2029 mutex_exit(&listener->tcp_eager_lock); 2030 2031 /* 2032 * At this point, both acceptor and listener have 2 ref 2033 * that they begin with. Acceptor has one additional ref 2034 * we placed in lookup while listener has 3 additional 2035 * ref for being behind the squeue (tcp_accept() is 2036 * done on listener's squeue); being in classifier hash; 2037 * and eager's ref on listener. 2038 */ 2039 ASSERT(listener->tcp_connp->conn_ref >= 5); 2040 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2041 2042 /* 2043 * The eager at this point is set in its own squeue and 2044 * could easily have been killed (tcp_accept_finish will 2045 * deal with that) because of a TH_RST so we can only 2046 * ASSERT for a single ref. 2047 */ 2048 ASSERT(eager->tcp_connp->conn_ref >= 1); 2049 2050 /* Pre allocate the stroptions mblk also */ 2051 opt_mp = allocb(MAX(sizeof (struct tcp_options), 2052 sizeof (struct T_conn_res)), BPRI_HI); 2053 if (opt_mp == NULL) { 2054 CONN_DEC_REF(acceptor->tcp_connp); 2055 CONN_DEC_REF(eager->tcp_connp); 2056 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2057 return; 2058 } 2059 DB_TYPE(opt_mp) = M_SETOPTS; 2060 opt_mp->b_wptr += sizeof (struct tcp_options); 2061 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 2062 tcpopt->to_flags = 0; 2063 2064 /* 2065 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2066 * from listener to acceptor. 2067 */ 2068 if (listener->tcp_bound_if != 0) { 2069 tcpopt->to_flags |= TCPOPT_BOUNDIF; 2070 tcpopt->to_boundif = listener->tcp_bound_if; 2071 } 2072 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2073 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 2074 } 2075 2076 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2077 if ((mp1 = copymsg(mp)) == NULL) { 2078 CONN_DEC_REF(acceptor->tcp_connp); 2079 CONN_DEC_REF(eager->tcp_connp); 2080 freemsg(opt_mp); 2081 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2082 return; 2083 } 2084 2085 tcr = (struct T_conn_res *)mp1->b_rptr; 2086 2087 /* 2088 * This is an expanded version of mi_tpi_ok_ack_alloc() 2089 * which allocates a larger mblk and appends the new 2090 * local address to the ok_ack. The address is copied by 2091 * soaccept() for getsockname(). 2092 */ 2093 { 2094 int extra; 2095 2096 extra = (eager->tcp_family == AF_INET) ? 2097 sizeof (sin_t) : sizeof (sin6_t); 2098 2099 /* 2100 * Try to re-use mp, if possible. Otherwise, allocate 2101 * an mblk and return it as ok_mp. In any case, mp 2102 * is no longer usable upon return. 2103 */ 2104 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2105 CONN_DEC_REF(acceptor->tcp_connp); 2106 CONN_DEC_REF(eager->tcp_connp); 2107 freemsg(opt_mp); 2108 /* Original mp has been freed by now, so use mp1 */ 2109 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2110 return; 2111 } 2112 2113 mp = NULL; /* We should never use mp after this point */ 2114 2115 switch (extra) { 2116 case sizeof (sin_t): { 2117 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2118 2119 ok_mp->b_wptr += extra; 2120 sin->sin_family = AF_INET; 2121 sin->sin_port = eager->tcp_lport; 2122 sin->sin_addr.s_addr = 2123 eager->tcp_ipha->ipha_src; 2124 break; 2125 } 2126 case sizeof (sin6_t): { 2127 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2128 2129 ok_mp->b_wptr += extra; 2130 sin6->sin6_family = AF_INET6; 2131 sin6->sin6_port = eager->tcp_lport; 2132 if (eager->tcp_ipversion == IPV4_VERSION) { 2133 sin6->sin6_flowinfo = 0; 2134 IN6_IPADDR_TO_V4MAPPED( 2135 eager->tcp_ipha->ipha_src, 2136 &sin6->sin6_addr); 2137 } else { 2138 ASSERT(eager->tcp_ip6h != NULL); 2139 sin6->sin6_flowinfo = 2140 eager->tcp_ip6h->ip6_vcf & 2141 ~IPV6_VERS_AND_FLOW_MASK; 2142 sin6->sin6_addr = 2143 eager->tcp_ip6h->ip6_src; 2144 } 2145 sin6->sin6_scope_id = 0; 2146 sin6->__sin6_src_id = 0; 2147 break; 2148 } 2149 default: 2150 break; 2151 } 2152 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2153 } 2154 2155 /* 2156 * If there are no options we know that the T_CONN_RES will 2157 * succeed. However, we can't send the T_OK_ACK upstream until 2158 * the tcp_accept_swap is done since it would be dangerous to 2159 * let the application start using the new fd prior to the swap. 2160 */ 2161 error = tcp_accept_swap(listener, acceptor, eager); 2162 if (error != 0) { 2163 CONN_DEC_REF(acceptor->tcp_connp); 2164 CONN_DEC_REF(eager->tcp_connp); 2165 freemsg(ok_mp); 2166 /* Original mp has been freed by now, so use mp1 */ 2167 tcp_err_ack(listener, mp1, TSYSERR, error); 2168 return; 2169 } 2170 2171 /* 2172 * tcp_accept_swap unlinks eager from listener but does not drop 2173 * the eager's reference on the listener. 2174 */ 2175 ASSERT(eager->tcp_listener == NULL); 2176 ASSERT(listener->tcp_connp->conn_ref >= 5); 2177 2178 /* 2179 * The eager is now associated with its own queue. Insert in 2180 * the hash so that the connection can be reused for a future 2181 * T_CONN_RES. 2182 */ 2183 tcp_acceptor_hash_insert(acceptor_id, eager); 2184 2185 /* 2186 * We now do the processing of options with T_CONN_RES. 2187 * We delay till now since we wanted to have queue to pass to 2188 * option processing routines that points back to the right 2189 * instance structure which does not happen until after 2190 * tcp_accept_swap(). 2191 * 2192 * Note: 2193 * The sanity of the logic here assumes that whatever options 2194 * are appropriate to inherit from listner=>eager are done 2195 * before this point, and whatever were to be overridden (or not) 2196 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2197 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2198 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2199 * This may not be true at this point in time but can be fixed 2200 * independently. This option processing code starts with 2201 * the instantiated acceptor instance and the final queue at 2202 * this point. 2203 */ 2204 2205 if (tcr->OPT_length != 0) { 2206 /* Options to process */ 2207 int t_error = 0; 2208 int sys_error = 0; 2209 int do_disconnect = 0; 2210 2211 if (tcp_conprim_opt_process(eager, mp1, 2212 &do_disconnect, &t_error, &sys_error) < 0) { 2213 eager->tcp_accept_error = 1; 2214 if (do_disconnect) { 2215 /* 2216 * An option failed which does not allow 2217 * connection to be accepted. 2218 * 2219 * We allow T_CONN_RES to succeed and 2220 * put a T_DISCON_IND on the eager queue. 2221 */ 2222 ASSERT(t_error == 0 && sys_error == 0); 2223 eager->tcp_send_discon_ind = 1; 2224 } else { 2225 ASSERT(t_error != 0); 2226 freemsg(ok_mp); 2227 /* 2228 * Original mp was either freed or set 2229 * to ok_mp above, so use mp1 instead. 2230 */ 2231 tcp_err_ack(listener, mp1, t_error, sys_error); 2232 goto finish; 2233 } 2234 } 2235 /* 2236 * Most likely success in setting options (except if 2237 * eager->tcp_send_discon_ind set). 2238 * mp1 option buffer represented by OPT_length/offset 2239 * potentially modified and contains results of setting 2240 * options at this point 2241 */ 2242 } 2243 2244 /* We no longer need mp1, since all options processing has passed */ 2245 freemsg(mp1); 2246 2247 putnext(listener->tcp_rq, ok_mp); 2248 2249 mutex_enter(&listener->tcp_eager_lock); 2250 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2251 tcp_t *tail; 2252 mblk_t *conn_ind; 2253 2254 /* 2255 * This path should not be executed if listener and 2256 * acceptor streams are the same. 2257 */ 2258 ASSERT(listener != acceptor); 2259 2260 tcp = listener->tcp_eager_prev_q0; 2261 /* 2262 * listener->tcp_eager_prev_q0 points to the TAIL of the 2263 * deferred T_conn_ind queue. We need to get to the head of 2264 * the queue in order to send up T_conn_ind the same order as 2265 * how the 3WHS is completed. 2266 */ 2267 while (tcp != listener) { 2268 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2269 break; 2270 else 2271 tcp = tcp->tcp_eager_prev_q0; 2272 } 2273 ASSERT(tcp != listener); 2274 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2275 ASSERT(conn_ind != NULL); 2276 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2277 2278 /* Move from q0 to q */ 2279 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2280 listener->tcp_conn_req_cnt_q0--; 2281 listener->tcp_conn_req_cnt_q++; 2282 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2283 tcp->tcp_eager_prev_q0; 2284 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2285 tcp->tcp_eager_next_q0; 2286 tcp->tcp_eager_prev_q0 = NULL; 2287 tcp->tcp_eager_next_q0 = NULL; 2288 tcp->tcp_conn_def_q0 = B_FALSE; 2289 2290 /* Make sure the tcp isn't in the list of droppables */ 2291 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2292 tcp->tcp_eager_prev_drop_q0 == NULL); 2293 2294 /* 2295 * Insert at end of the queue because sockfs sends 2296 * down T_CONN_RES in chronological order. Leaving 2297 * the older conn indications at front of the queue 2298 * helps reducing search time. 2299 */ 2300 tail = listener->tcp_eager_last_q; 2301 if (tail != NULL) 2302 tail->tcp_eager_next_q = tcp; 2303 else 2304 listener->tcp_eager_next_q = tcp; 2305 listener->tcp_eager_last_q = tcp; 2306 tcp->tcp_eager_next_q = NULL; 2307 mutex_exit(&listener->tcp_eager_lock); 2308 putnext(tcp->tcp_rq, conn_ind); 2309 } else { 2310 mutex_exit(&listener->tcp_eager_lock); 2311 } 2312 2313 /* 2314 * Done with the acceptor - free it 2315 * 2316 * Note: from this point on, no access to listener should be made 2317 * as listener can be equal to acceptor. 2318 */ 2319 finish: 2320 ASSERT(acceptor->tcp_detached); 2321 ASSERT(tcps->tcps_g_q != NULL); 2322 ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp)); 2323 acceptor->tcp_rq = tcps->tcps_g_q; 2324 acceptor->tcp_wq = WR(tcps->tcps_g_q); 2325 (void) tcp_clean_death(acceptor, 0, 2); 2326 CONN_DEC_REF(acceptor->tcp_connp); 2327 2328 /* 2329 * In case we already received a FIN we have to make tcp_rput send 2330 * the ordrel_ind. This will also send up a window update if the window 2331 * has opened up. 2332 * 2333 * In the normal case of a successful connection acceptance 2334 * we give the O_T_BIND_REQ to the read side put procedure as an 2335 * indication that this was just accepted. This tells tcp_rput to 2336 * pass up any data queued in tcp_rcv_list. 2337 * 2338 * In the fringe case where options sent with T_CONN_RES failed and 2339 * we required, we would be indicating a T_DISCON_IND to blow 2340 * away this connection. 2341 */ 2342 2343 /* 2344 * XXX: we currently have a problem if XTI application closes the 2345 * acceptor stream in between. This problem exists in on10-gate also 2346 * and is well know but nothing can be done short of major rewrite 2347 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2348 * eager same squeue as listener (we can distinguish non socket 2349 * listeners at the time of handling a SYN in tcp_conn_request) 2350 * and do most of the work that tcp_accept_finish does here itself 2351 * and then get behind the acceptor squeue to access the acceptor 2352 * queue. 2353 */ 2354 /* 2355 * We already have a ref on tcp so no need to do one before squeue_enter 2356 */ 2357 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, opt_mp, tcp_accept_finish, 2358 eager->tcp_connp, SQ_FILL, SQTAG_TCP_ACCEPT_FINISH); 2359 } 2360 2361 /* 2362 * Swap information between the eager and acceptor for a TLI/XTI client. 2363 * The sockfs accept is done on the acceptor stream and control goes 2364 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2365 * called. In either case, both the eager and listener are in their own 2366 * perimeter (squeue) and the code has to deal with potential race. 2367 * 2368 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2369 */ 2370 static int 2371 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2372 { 2373 conn_t *econnp, *aconnp; 2374 cred_t *effective_cred = NULL; 2375 2376 ASSERT(eager->tcp_rq == listener->tcp_rq); 2377 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2378 ASSERT(!eager->tcp_hard_bound); 2379 ASSERT(!TCP_IS_SOCKET(acceptor)); 2380 ASSERT(!TCP_IS_SOCKET(eager)); 2381 ASSERT(!TCP_IS_SOCKET(listener)); 2382 2383 econnp = eager->tcp_connp; 2384 aconnp = acceptor->tcp_connp; 2385 2386 /* 2387 * Trusted Extensions may need to use a security label that is 2388 * different from the acceptor's label on MLP and MAC-Exempt 2389 * sockets. If this is the case, the required security label 2390 * already exists in econnp->conn_effective_cred. Use this label 2391 * to generate a new effective cred for the acceptor. 2392 * 2393 * We allow for potential application level retry attempts by 2394 * checking for transient errors before modifying eager. 2395 */ 2396 if (is_system_labeled() && 2397 aconnp->conn_cred != NULL && econnp->conn_effective_cred != NULL) { 2398 effective_cred = copycred_from_tslabel(aconnp->conn_cred, 2399 crgetlabel(econnp->conn_effective_cred), KM_NOSLEEP); 2400 if (effective_cred == NULL) 2401 return (ENOMEM); 2402 } 2403 2404 acceptor->tcp_detached = B_TRUE; 2405 /* 2406 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2407 * the acceptor id. 2408 */ 2409 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2410 2411 /* remove eager from listen list... */ 2412 mutex_enter(&listener->tcp_eager_lock); 2413 tcp_eager_unlink(eager); 2414 ASSERT(eager->tcp_eager_next_q == NULL && 2415 eager->tcp_eager_last_q == NULL); 2416 ASSERT(eager->tcp_eager_next_q0 == NULL && 2417 eager->tcp_eager_prev_q0 == NULL); 2418 mutex_exit(&listener->tcp_eager_lock); 2419 eager->tcp_rq = acceptor->tcp_rq; 2420 eager->tcp_wq = acceptor->tcp_wq; 2421 2422 eager->tcp_rq->q_ptr = econnp; 2423 eager->tcp_wq->q_ptr = econnp; 2424 2425 /* 2426 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2427 * which might be a different squeue from our peer TCP instance. 2428 * For TCP Fusion, the peer expects that whenever tcp_detached is 2429 * clear, our TCP queues point to the acceptor's queues. Thus, use 2430 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2431 * above reach global visibility prior to the clearing of tcp_detached. 2432 */ 2433 membar_producer(); 2434 eager->tcp_detached = B_FALSE; 2435 2436 ASSERT(eager->tcp_ack_tid == 0); 2437 2438 econnp->conn_dev = aconnp->conn_dev; 2439 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2440 2441 ASSERT(econnp->conn_minor_arena != NULL); 2442 if (eager->tcp_cred != NULL) 2443 crfree(eager->tcp_cred); 2444 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2445 if (econnp->conn_effective_cred != NULL) 2446 crfree(econnp->conn_effective_cred); 2447 econnp->conn_effective_cred = effective_cred; 2448 aconnp->conn_cred = NULL; 2449 ASSERT(aconnp->conn_effective_cred == NULL); 2450 2451 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2452 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2453 2454 econnp->conn_zoneid = aconnp->conn_zoneid; 2455 econnp->conn_allzones = aconnp->conn_allzones; 2456 2457 aconnp->conn_mac_exempt = B_FALSE; 2458 2459 /* Do the IPC initialization */ 2460 CONN_INC_REF(econnp); 2461 2462 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2463 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2464 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2465 2466 /* Done with old IPC. Drop its ref on its connp */ 2467 CONN_DEC_REF(aconnp); 2468 return (0); 2469 } 2470 2471 2472 /* 2473 * Adapt to the information, such as rtt and rtt_sd, provided from the 2474 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2475 * 2476 * Checks for multicast and broadcast destination address. 2477 * Returns zero on failure; non-zero if ok. 2478 * 2479 * Note that the MSS calculation here is based on the info given in 2480 * the IRE. We do not do any calculation based on TCP options. They 2481 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2482 * knows which options to use. 2483 * 2484 * Note on how TCP gets its parameters for a connection. 2485 * 2486 * When a tcp_t structure is allocated, it gets all the default parameters. 2487 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2488 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2489 * default. 2490 * 2491 * An incoming SYN with a multicast or broadcast destination address, is dropped 2492 * in 1 of 2 places. 2493 * 2494 * 1. If the packet was received over the wire it is dropped in 2495 * ip_rput_process_broadcast() 2496 * 2497 * 2. If the packet was received through internal IP loopback, i.e. the packet 2498 * was generated and received on the same machine, it is dropped in 2499 * ip_wput_local() 2500 * 2501 * An incoming SYN with a multicast or broadcast source address is always 2502 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2503 * reject an attempt to connect to a broadcast or multicast (destination) 2504 * address. 2505 */ 2506 static int 2507 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2508 { 2509 ire_t *ire; 2510 ire_t *sire = NULL; 2511 iulp_t *ire_uinfo = NULL; 2512 uint32_t mss_max; 2513 uint32_t mss; 2514 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2515 conn_t *connp = tcp->tcp_connp; 2516 boolean_t ire_cacheable = B_FALSE; 2517 zoneid_t zoneid = connp->conn_zoneid; 2518 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2519 MATCH_IRE_SECATTR; 2520 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2521 ill_t *ill = NULL; 2522 boolean_t incoming = (ire_mp == NULL); 2523 tcp_stack_t *tcps = tcp->tcp_tcps; 2524 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2525 2526 ASSERT(connp->conn_ire_cache == NULL); 2527 2528 if (tcp->tcp_ipversion == IPV4_VERSION) { 2529 2530 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2531 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 2532 return (0); 2533 } 2534 /* 2535 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2536 * for the destination with the nexthop as gateway. 2537 * ire_ctable_lookup() is used because this particular 2538 * ire, if it exists, will be marked private. 2539 * If that is not available, use the interface ire 2540 * for the nexthop. 2541 * 2542 * TSol: tcp_update_label will detect label mismatches based 2543 * only on the destination's label, but that would not 2544 * detect label mismatches based on the security attributes 2545 * of routes or next hop gateway. Hence we need to pass the 2546 * label to ire_ftable_lookup below in order to locate the 2547 * right prefix (and/or) ire cache. Similarly we also need 2548 * pass the label to the ire_cache_lookup below to locate 2549 * the right ire that also matches on the label. 2550 */ 2551 if (tcp->tcp_connp->conn_nexthop_set) { 2552 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2553 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2554 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, 2555 ipst); 2556 if (ire == NULL) { 2557 ire = ire_ftable_lookup( 2558 tcp->tcp_connp->conn_nexthop_v4, 2559 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2560 tsl, match_flags, ipst); 2561 if (ire == NULL) 2562 return (0); 2563 } else { 2564 ire_uinfo = &ire->ire_uinfo; 2565 } 2566 } else { 2567 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2568 zoneid, tsl, ipst); 2569 if (ire != NULL) { 2570 ire_cacheable = B_TRUE; 2571 ire_uinfo = (ire_mp != NULL) ? 2572 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2573 &ire->ire_uinfo; 2574 2575 } else { 2576 if (ire_mp == NULL) { 2577 ire = ire_ftable_lookup( 2578 tcp->tcp_connp->conn_rem, 2579 0, 0, 0, NULL, &sire, zoneid, 0, 2580 tsl, (MATCH_IRE_RECURSIVE | 2581 MATCH_IRE_DEFAULT), ipst); 2582 if (ire == NULL) 2583 return (0); 2584 ire_uinfo = (sire != NULL) ? 2585 &sire->ire_uinfo : 2586 &ire->ire_uinfo; 2587 } else { 2588 ire = (ire_t *)ire_mp->b_rptr; 2589 ire_uinfo = 2590 &((ire_t *) 2591 ire_mp->b_rptr)->ire_uinfo; 2592 } 2593 } 2594 } 2595 ASSERT(ire != NULL); 2596 2597 if ((ire->ire_src_addr == INADDR_ANY) || 2598 (ire->ire_type & IRE_BROADCAST)) { 2599 /* 2600 * ire->ire_mp is non null when ire_mp passed in is used 2601 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2602 */ 2603 if (ire->ire_mp == NULL) 2604 ire_refrele(ire); 2605 if (sire != NULL) 2606 ire_refrele(sire); 2607 return (0); 2608 } 2609 2610 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2611 ipaddr_t src_addr; 2612 2613 /* 2614 * ip_bind_connected() has stored the correct source 2615 * address in conn_src. 2616 */ 2617 src_addr = tcp->tcp_connp->conn_src; 2618 tcp->tcp_ipha->ipha_src = src_addr; 2619 /* 2620 * Copy of the src addr. in tcp_t is needed 2621 * for the lookup funcs. 2622 */ 2623 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2624 } 2625 /* 2626 * Set the fragment bit so that IP will tell us if the MTU 2627 * should change. IP tells us the latest setting of 2628 * ip_path_mtu_discovery through ire_frag_flag. 2629 */ 2630 if (ipst->ips_ip_path_mtu_discovery) { 2631 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2632 htons(IPH_DF); 2633 } 2634 /* 2635 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2636 * for IP_NEXTHOP. No cache ire has been found for the 2637 * destination and we are working with the nexthop's 2638 * interface ire. Since we need to forward all packets 2639 * to the nexthop first, we "blindly" set tcp_localnet 2640 * to false, eventhough the destination may also be 2641 * onlink. 2642 */ 2643 if (ire_uinfo == NULL) 2644 tcp->tcp_localnet = 0; 2645 else 2646 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2647 } else { 2648 /* 2649 * For incoming connection ire_mp = NULL 2650 * For outgoing connection ire_mp != NULL 2651 * Technically we should check conn_incoming_ill 2652 * when ire_mp is NULL and conn_outgoing_ill when 2653 * ire_mp is non-NULL. But this is performance 2654 * critical path and for IPV*_BOUND_IF, outgoing 2655 * and incoming ill are always set to the same value. 2656 */ 2657 ill_t *dst_ill = NULL; 2658 ipif_t *dst_ipif = NULL; 2659 2660 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2661 2662 if (connp->conn_outgoing_ill != NULL) { 2663 /* Outgoing or incoming path */ 2664 int err; 2665 2666 dst_ill = conn_get_held_ill(connp, 2667 &connp->conn_outgoing_ill, &err); 2668 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2669 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2670 return (0); 2671 } 2672 match_flags |= MATCH_IRE_ILL; 2673 dst_ipif = dst_ill->ill_ipif; 2674 } 2675 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2676 0, 0, dst_ipif, zoneid, tsl, match_flags, ipst); 2677 2678 if (ire != NULL) { 2679 ire_cacheable = B_TRUE; 2680 ire_uinfo = (ire_mp != NULL) ? 2681 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2682 &ire->ire_uinfo; 2683 } else { 2684 if (ire_mp == NULL) { 2685 ire = ire_ftable_lookup_v6( 2686 &tcp->tcp_connp->conn_remv6, 2687 0, 0, 0, dst_ipif, &sire, zoneid, 2688 0, tsl, match_flags, ipst); 2689 if (ire == NULL) { 2690 if (dst_ill != NULL) 2691 ill_refrele(dst_ill); 2692 return (0); 2693 } 2694 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2695 &ire->ire_uinfo; 2696 } else { 2697 ire = (ire_t *)ire_mp->b_rptr; 2698 ire_uinfo = 2699 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2700 } 2701 } 2702 if (dst_ill != NULL) 2703 ill_refrele(dst_ill); 2704 2705 ASSERT(ire != NULL); 2706 ASSERT(ire_uinfo != NULL); 2707 2708 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2709 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2710 /* 2711 * ire->ire_mp is non null when ire_mp passed in is used 2712 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2713 */ 2714 if (ire->ire_mp == NULL) 2715 ire_refrele(ire); 2716 if (sire != NULL) 2717 ire_refrele(sire); 2718 return (0); 2719 } 2720 2721 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2722 in6_addr_t src_addr; 2723 2724 /* 2725 * ip_bind_connected_v6() has stored the correct source 2726 * address per IPv6 addr. selection policy in 2727 * conn_src_v6. 2728 */ 2729 src_addr = tcp->tcp_connp->conn_srcv6; 2730 2731 tcp->tcp_ip6h->ip6_src = src_addr; 2732 /* 2733 * Copy of the src addr. in tcp_t is needed 2734 * for the lookup funcs. 2735 */ 2736 tcp->tcp_ip_src_v6 = src_addr; 2737 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2738 &connp->conn_srcv6)); 2739 } 2740 tcp->tcp_localnet = 2741 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2742 } 2743 2744 /* 2745 * This allows applications to fail quickly when connections are made 2746 * to dead hosts. Hosts can be labeled dead by adding a reject route 2747 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2748 */ 2749 if ((ire->ire_flags & RTF_REJECT) && 2750 (ire->ire_flags & RTF_PRIVATE)) 2751 goto error; 2752 2753 /* 2754 * Make use of the cached rtt and rtt_sd values to calculate the 2755 * initial RTO. Note that they are already initialized in 2756 * tcp_init_values(). 2757 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2758 * IP_NEXTHOP, but instead are using the interface ire for the 2759 * nexthop, then we do not use the ire_uinfo from that ire to 2760 * do any initializations. 2761 */ 2762 if (ire_uinfo != NULL) { 2763 if (ire_uinfo->iulp_rtt != 0) { 2764 clock_t rto; 2765 2766 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2767 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2768 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2769 tcps->tcps_rexmit_interval_extra + 2770 (tcp->tcp_rtt_sa >> 5); 2771 2772 if (rto > tcps->tcps_rexmit_interval_max) { 2773 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2774 } else if (rto < tcps->tcps_rexmit_interval_min) { 2775 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2776 } else { 2777 tcp->tcp_rto = rto; 2778 } 2779 } 2780 if (ire_uinfo->iulp_ssthresh != 0) 2781 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2782 else 2783 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2784 if (ire_uinfo->iulp_spipe > 0) { 2785 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2786 tcps->tcps_max_buf); 2787 if (tcps->tcps_snd_lowat_fraction != 0) 2788 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2789 tcps->tcps_snd_lowat_fraction; 2790 (void) tcp_maxpsz_set(tcp, B_TRUE); 2791 } 2792 /* 2793 * Note that up till now, acceptor always inherits receive 2794 * window from the listener. But if there is a metrics 2795 * associated with a host, we should use that instead of 2796 * inheriting it from listener. Thus we need to pass this 2797 * info back to the caller. 2798 */ 2799 if (ire_uinfo->iulp_rpipe > 0) { 2800 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, 2801 tcps->tcps_max_buf); 2802 } 2803 2804 if (ire_uinfo->iulp_rtomax > 0) { 2805 tcp->tcp_second_timer_threshold = 2806 ire_uinfo->iulp_rtomax; 2807 } 2808 2809 /* 2810 * Use the metric option settings, iulp_tstamp_ok and 2811 * iulp_wscale_ok, only for active open. What this means 2812 * is that if the other side uses timestamp or window 2813 * scale option, TCP will also use those options. That 2814 * is for passive open. If the application sets a 2815 * large window, window scale is enabled regardless of 2816 * the value in iulp_wscale_ok. This is the behavior 2817 * since 2.6. So we keep it. 2818 * The only case left in passive open processing is the 2819 * check for SACK. 2820 * For ECN, it should probably be like SACK. But the 2821 * current value is binary, so we treat it like the other 2822 * cases. The metric only controls active open.For passive 2823 * open, the ndd param, tcp_ecn_permitted, controls the 2824 * behavior. 2825 */ 2826 if (!tcp_detached) { 2827 /* 2828 * The if check means that the following can only 2829 * be turned on by the metrics only IRE, but not off. 2830 */ 2831 if (ire_uinfo->iulp_tstamp_ok) 2832 tcp->tcp_snd_ts_ok = B_TRUE; 2833 if (ire_uinfo->iulp_wscale_ok) 2834 tcp->tcp_snd_ws_ok = B_TRUE; 2835 if (ire_uinfo->iulp_sack == 2) 2836 tcp->tcp_snd_sack_ok = B_TRUE; 2837 if (ire_uinfo->iulp_ecn_ok) 2838 tcp->tcp_ecn_ok = B_TRUE; 2839 } else { 2840 /* 2841 * Passive open. 2842 * 2843 * As above, the if check means that SACK can only be 2844 * turned on by the metric only IRE. 2845 */ 2846 if (ire_uinfo->iulp_sack > 0) { 2847 tcp->tcp_snd_sack_ok = B_TRUE; 2848 } 2849 } 2850 } 2851 2852 2853 /* 2854 * XXX: Note that currently, ire_max_frag can be as small as 68 2855 * because of PMTUd. So tcp_mss may go to negative if combined 2856 * length of all those options exceeds 28 bytes. But because 2857 * of the tcp_mss_min check below, we may not have a problem if 2858 * tcp_mss_min is of a reasonable value. The default is 1 so 2859 * the negative problem still exists. And the check defeats PMTUd. 2860 * In fact, if PMTUd finds that the MSS should be smaller than 2861 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2862 * value. 2863 * 2864 * We do not deal with that now. All those problems related to 2865 * PMTUd will be fixed later. 2866 */ 2867 ASSERT(ire->ire_max_frag != 0); 2868 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2869 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2870 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2871 mss = MIN(mss, IPV6_MIN_MTU); 2872 } 2873 } 2874 2875 /* Sanity check for MSS value. */ 2876 if (tcp->tcp_ipversion == IPV4_VERSION) 2877 mss_max = tcps->tcps_mss_max_ipv4; 2878 else 2879 mss_max = tcps->tcps_mss_max_ipv6; 2880 2881 if (tcp->tcp_ipversion == IPV6_VERSION && 2882 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2883 /* 2884 * After receiving an ICMPv6 "packet too big" message with a 2885 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2886 * will insert a 8-byte fragment header in every packet; we 2887 * reduce the MSS by that amount here. 2888 */ 2889 mss -= sizeof (ip6_frag_t); 2890 } 2891 2892 if (tcp->tcp_ipsec_overhead == 0) 2893 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2894 2895 mss -= tcp->tcp_ipsec_overhead; 2896 2897 if (mss < tcps->tcps_mss_min) 2898 mss = tcps->tcps_mss_min; 2899 if (mss > mss_max) 2900 mss = mss_max; 2901 2902 /* Note that this is the maximum MSS, excluding all options. */ 2903 tcp->tcp_mss = mss; 2904 2905 /* 2906 * Initialize the ISS here now that we have the full connection ID. 2907 * The RFC 1948 method of initial sequence number generation requires 2908 * knowledge of the full connection ID before setting the ISS. 2909 */ 2910 2911 tcp_iss_init(tcp); 2912 2913 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2914 tcp->tcp_loopback = B_TRUE; 2915 2916 if (sire != NULL) 2917 IRE_REFRELE(sire); 2918 2919 /* 2920 * If we got an IRE_CACHE and an ILL, go through their properties; 2921 * otherwise, this is deferred until later when we have an IRE_CACHE. 2922 */ 2923 if (tcp->tcp_loopback || 2924 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2925 /* 2926 * For incoming, see if this tcp may be MDT-capable. For 2927 * outgoing, this process has been taken care of through 2928 * tcp_rput_other. 2929 */ 2930 tcp_ire_ill_check(tcp, ire, ill, incoming); 2931 tcp->tcp_ire_ill_check_done = B_TRUE; 2932 } 2933 2934 mutex_enter(&connp->conn_lock); 2935 /* 2936 * Make sure that conn is not marked incipient 2937 * for incoming connections. A blind 2938 * removal of incipient flag is cheaper than 2939 * check and removal. 2940 */ 2941 connp->conn_state_flags &= ~CONN_INCIPIENT; 2942 2943 /* 2944 * Must not cache forwarding table routes 2945 * or recache an IRE after the conn_t has 2946 * had conn_ire_cache cleared and is flagged 2947 * unusable, (see the CONN_CACHE_IRE() macro). 2948 */ 2949 if (ire_cacheable && CONN_CACHE_IRE(connp)) { 2950 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2951 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 2952 connp->conn_ire_cache = ire; 2953 IRE_UNTRACE_REF(ire); 2954 rw_exit(&ire->ire_bucket->irb_lock); 2955 mutex_exit(&connp->conn_lock); 2956 return (1); 2957 } 2958 rw_exit(&ire->ire_bucket->irb_lock); 2959 } 2960 mutex_exit(&connp->conn_lock); 2961 2962 if (ire->ire_mp == NULL) 2963 ire_refrele(ire); 2964 return (1); 2965 2966 error: 2967 if (ire->ire_mp == NULL) 2968 ire_refrele(ire); 2969 if (sire != NULL) 2970 ire_refrele(sire); 2971 return (0); 2972 } 2973 2974 static void 2975 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp) 2976 { 2977 int error; 2978 conn_t *connp = tcp->tcp_connp; 2979 struct sockaddr *sa; 2980 mblk_t *mp1; 2981 struct T_bind_req *tbr; 2982 int backlog; 2983 socklen_t len; 2984 sin_t *sin; 2985 sin6_t *sin6; 2986 cred_t *cr; 2987 2988 /* 2989 * All Solaris components should pass a db_credp 2990 * for this TPI message, hence we ASSERT. 2991 * But in case there is some other M_PROTO that looks 2992 * like a TPI message sent by some other kernel 2993 * component, we check and return an error. 2994 */ 2995 cr = msg_getcred(mp, NULL); 2996 ASSERT(cr != NULL); 2997 if (cr == NULL) { 2998 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 2999 return; 3000 } 3001 3002 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3003 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3004 if (tcp->tcp_debug) { 3005 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3006 "tcp_tpi_bind: bad req, len %u", 3007 (uint_t)(mp->b_wptr - mp->b_rptr)); 3008 } 3009 tcp_err_ack(tcp, mp, TPROTO, 0); 3010 return; 3011 } 3012 /* Make sure the largest address fits */ 3013 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3014 if (mp1 == NULL) { 3015 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3016 return; 3017 } 3018 mp = mp1; 3019 tbr = (struct T_bind_req *)mp->b_rptr; 3020 3021 backlog = tbr->CONIND_number; 3022 len = tbr->ADDR_length; 3023 3024 switch (len) { 3025 case 0: /* request for a generic port */ 3026 tbr->ADDR_offset = sizeof (struct T_bind_req); 3027 if (tcp->tcp_family == AF_INET) { 3028 tbr->ADDR_length = sizeof (sin_t); 3029 sin = (sin_t *)&tbr[1]; 3030 *sin = sin_null; 3031 sin->sin_family = AF_INET; 3032 sa = (struct sockaddr *)sin; 3033 len = sizeof (sin_t); 3034 mp->b_wptr = (uchar_t *)&sin[1]; 3035 } else { 3036 ASSERT(tcp->tcp_family == AF_INET6); 3037 tbr->ADDR_length = sizeof (sin6_t); 3038 sin6 = (sin6_t *)&tbr[1]; 3039 *sin6 = sin6_null; 3040 sin6->sin6_family = AF_INET6; 3041 sa = (struct sockaddr *)sin6; 3042 len = sizeof (sin6_t); 3043 mp->b_wptr = (uchar_t *)&sin6[1]; 3044 } 3045 break; 3046 3047 case sizeof (sin_t): /* Complete IPv4 address */ 3048 sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset, 3049 sizeof (sin_t)); 3050 break; 3051 3052 case sizeof (sin6_t): /* Complete IPv6 address */ 3053 sa = (struct sockaddr *)mi_offset_param(mp, 3054 tbr->ADDR_offset, sizeof (sin6_t)); 3055 break; 3056 3057 default: 3058 if (tcp->tcp_debug) { 3059 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3060 "tcp_tpi_bind: bad address length, %d", 3061 tbr->ADDR_length); 3062 } 3063 tcp_err_ack(tcp, mp, TBADADDR, 0); 3064 return; 3065 } 3066 3067 if (backlog > 0) { 3068 error = tcp_do_listen(connp, sa, len, backlog, DB_CRED(mp), 3069 tbr->PRIM_type != O_T_BIND_REQ); 3070 } else { 3071 error = tcp_do_bind(connp, sa, len, DB_CRED(mp), 3072 tbr->PRIM_type != O_T_BIND_REQ); 3073 } 3074 done: 3075 if (error > 0) { 3076 tcp_err_ack(tcp, mp, TSYSERR, error); 3077 } else if (error < 0) { 3078 tcp_err_ack(tcp, mp, -error, 0); 3079 } else { 3080 /* 3081 * Update port information as sockfs/tpi needs it for checking 3082 */ 3083 if (tcp->tcp_family == AF_INET) { 3084 sin = (sin_t *)sa; 3085 sin->sin_port = tcp->tcp_lport; 3086 } else { 3087 sin6 = (sin6_t *)sa; 3088 sin6->sin6_port = tcp->tcp_lport; 3089 } 3090 mp->b_datap->db_type = M_PCPROTO; 3091 tbr->PRIM_type = T_BIND_ACK; 3092 putnext(tcp->tcp_rq, mp); 3093 } 3094 } 3095 3096 /* 3097 * If the "bind_to_req_port_only" parameter is set, if the requested port 3098 * number is available, return it, If not return 0 3099 * 3100 * If "bind_to_req_port_only" parameter is not set and 3101 * If the requested port number is available, return it. If not, return 3102 * the first anonymous port we happen across. If no anonymous ports are 3103 * available, return 0. addr is the requested local address, if any. 3104 * 3105 * In either case, when succeeding update the tcp_t to record the port number 3106 * and insert it in the bind hash table. 3107 * 3108 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3109 * without setting SO_REUSEADDR. This is needed so that they 3110 * can be viewed as two independent transport protocols. 3111 */ 3112 static in_port_t 3113 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3114 int reuseaddr, boolean_t quick_connect, 3115 boolean_t bind_to_req_port_only, boolean_t user_specified) 3116 { 3117 /* number of times we have run around the loop */ 3118 int count = 0; 3119 /* maximum number of times to run around the loop */ 3120 int loopmax; 3121 conn_t *connp = tcp->tcp_connp; 3122 zoneid_t zoneid = connp->conn_zoneid; 3123 tcp_stack_t *tcps = tcp->tcp_tcps; 3124 3125 /* 3126 * Lookup for free addresses is done in a loop and "loopmax" 3127 * influences how long we spin in the loop 3128 */ 3129 if (bind_to_req_port_only) { 3130 /* 3131 * If the requested port is busy, don't bother to look 3132 * for a new one. Setting loop maximum count to 1 has 3133 * that effect. 3134 */ 3135 loopmax = 1; 3136 } else { 3137 /* 3138 * If the requested port is busy, look for a free one 3139 * in the anonymous port range. 3140 * Set loopmax appropriately so that one does not look 3141 * forever in the case all of the anonymous ports are in use. 3142 */ 3143 if (tcp->tcp_anon_priv_bind) { 3144 /* 3145 * loopmax = 3146 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3147 */ 3148 loopmax = IPPORT_RESERVED - 3149 tcps->tcps_min_anonpriv_port; 3150 } else { 3151 loopmax = (tcps->tcps_largest_anon_port - 3152 tcps->tcps_smallest_anon_port + 1); 3153 } 3154 } 3155 do { 3156 uint16_t lport; 3157 tf_t *tbf; 3158 tcp_t *ltcp; 3159 conn_t *lconnp; 3160 3161 lport = htons(port); 3162 3163 /* 3164 * Ensure that the tcp_t is not currently in the bind hash. 3165 * Hold the lock on the hash bucket to ensure that 3166 * the duplicate check plus the insertion is an atomic 3167 * operation. 3168 * 3169 * This function does an inline lookup on the bind hash list 3170 * Make sure that we access only members of tcp_t 3171 * and that we don't look at tcp_tcp, since we are not 3172 * doing a CONN_INC_REF. 3173 */ 3174 tcp_bind_hash_remove(tcp); 3175 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 3176 mutex_enter(&tbf->tf_lock); 3177 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3178 ltcp = ltcp->tcp_bind_hash) { 3179 if (lport == ltcp->tcp_lport) 3180 break; 3181 } 3182 3183 for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) { 3184 boolean_t not_socket; 3185 boolean_t exclbind; 3186 3187 lconnp = ltcp->tcp_connp; 3188 3189 /* 3190 * On a labeled system, we must treat bindings to ports 3191 * on shared IP addresses by sockets with MAC exemption 3192 * privilege as being in all zones, as there's 3193 * otherwise no way to identify the right receiver. 3194 */ 3195 if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) || 3196 IPCL_ZONE_MATCH(connp, 3197 ltcp->tcp_connp->conn_zoneid)) && 3198 !lconnp->conn_mac_exempt && 3199 !connp->conn_mac_exempt) 3200 continue; 3201 3202 /* 3203 * If TCP_EXCLBIND is set for either the bound or 3204 * binding endpoint, the semantics of bind 3205 * is changed according to the following. 3206 * 3207 * spec = specified address (v4 or v6) 3208 * unspec = unspecified address (v4 or v6) 3209 * A = specified addresses are different for endpoints 3210 * 3211 * bound bind to allowed 3212 * ------------------------------------- 3213 * unspec unspec no 3214 * unspec spec no 3215 * spec unspec no 3216 * spec spec yes if A 3217 * 3218 * For labeled systems, SO_MAC_EXEMPT behaves the same 3219 * as TCP_EXCLBIND, except that zoneid is ignored. 3220 * 3221 * Note: 3222 * 3223 * 1. Because of TLI semantics, an endpoint can go 3224 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3225 * TCPS_BOUND, depending on whether it is originally 3226 * a listener or not. That is why we need to check 3227 * for states greater than or equal to TCPS_BOUND 3228 * here. 3229 * 3230 * 2. Ideally, we should only check for state equals 3231 * to TCPS_LISTEN. And the following check should be 3232 * added. 3233 * 3234 * if (ltcp->tcp_state == TCPS_LISTEN || 3235 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3236 * ... 3237 * } 3238 * 3239 * The semantics will be changed to this. If the 3240 * endpoint on the list is in state not equal to 3241 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3242 * set, let the bind succeed. 3243 * 3244 * Because of (1), we cannot do that for TLI 3245 * endpoints. But we can do that for socket endpoints. 3246 * If in future, we can change this going back 3247 * semantics, we can use the above check for TLI also. 3248 */ 3249 not_socket = !(TCP_IS_SOCKET(ltcp) && 3250 TCP_IS_SOCKET(tcp)); 3251 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3252 3253 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3254 (exclbind && (not_socket || 3255 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3256 if (V6_OR_V4_INADDR_ANY( 3257 ltcp->tcp_bound_source_v6) || 3258 V6_OR_V4_INADDR_ANY(*laddr) || 3259 IN6_ARE_ADDR_EQUAL(laddr, 3260 <cp->tcp_bound_source_v6)) { 3261 break; 3262 } 3263 continue; 3264 } 3265 3266 /* 3267 * Check ipversion to allow IPv4 and IPv6 sockets to 3268 * have disjoint port number spaces, if *_EXCLBIND 3269 * is not set and only if the application binds to a 3270 * specific port. We use the same autoassigned port 3271 * number space for IPv4 and IPv6 sockets. 3272 */ 3273 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3274 bind_to_req_port_only) 3275 continue; 3276 3277 /* 3278 * Ideally, we should make sure that the source 3279 * address, remote address, and remote port in the 3280 * four tuple for this tcp-connection is unique. 3281 * However, trying to find out the local source 3282 * address would require too much code duplication 3283 * with IP, since IP needs needs to have that code 3284 * to support userland TCP implementations. 3285 */ 3286 if (quick_connect && 3287 (ltcp->tcp_state > TCPS_LISTEN) && 3288 ((tcp->tcp_fport != ltcp->tcp_fport) || 3289 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3290 <cp->tcp_remote_v6))) 3291 continue; 3292 3293 if (!reuseaddr) { 3294 /* 3295 * No socket option SO_REUSEADDR. 3296 * If existing port is bound to 3297 * a non-wildcard IP address 3298 * and the requesting stream is 3299 * bound to a distinct 3300 * different IP addresses 3301 * (non-wildcard, also), keep 3302 * going. 3303 */ 3304 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3305 !V6_OR_V4_INADDR_ANY( 3306 ltcp->tcp_bound_source_v6) && 3307 !IN6_ARE_ADDR_EQUAL(laddr, 3308 <cp->tcp_bound_source_v6)) 3309 continue; 3310 if (ltcp->tcp_state >= TCPS_BOUND) { 3311 /* 3312 * This port is being used and 3313 * its state is >= TCPS_BOUND, 3314 * so we can't bind to it. 3315 */ 3316 break; 3317 } 3318 } else { 3319 /* 3320 * socket option SO_REUSEADDR is set on the 3321 * binding tcp_t. 3322 * 3323 * If two streams are bound to 3324 * same IP address or both addr 3325 * and bound source are wildcards 3326 * (INADDR_ANY), we want to stop 3327 * searching. 3328 * We have found a match of IP source 3329 * address and source port, which is 3330 * refused regardless of the 3331 * SO_REUSEADDR setting, so we break. 3332 */ 3333 if (IN6_ARE_ADDR_EQUAL(laddr, 3334 <cp->tcp_bound_source_v6) && 3335 (ltcp->tcp_state == TCPS_LISTEN || 3336 ltcp->tcp_state == TCPS_BOUND)) 3337 break; 3338 } 3339 } 3340 if (ltcp != NULL) { 3341 /* The port number is busy */ 3342 mutex_exit(&tbf->tf_lock); 3343 } else { 3344 /* 3345 * This port is ours. Insert in fanout and mark as 3346 * bound to prevent others from getting the port 3347 * number. 3348 */ 3349 tcp->tcp_state = TCPS_BOUND; 3350 tcp->tcp_lport = htons(port); 3351 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3352 3353 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3354 tcp->tcp_lport)] == tbf); 3355 tcp_bind_hash_insert(tbf, tcp, 1); 3356 3357 mutex_exit(&tbf->tf_lock); 3358 3359 /* 3360 * We don't want tcp_next_port_to_try to "inherit" 3361 * a port number supplied by the user in a bind. 3362 */ 3363 if (user_specified) 3364 return (port); 3365 3366 /* 3367 * This is the only place where tcp_next_port_to_try 3368 * is updated. After the update, it may or may not 3369 * be in the valid range. 3370 */ 3371 if (!tcp->tcp_anon_priv_bind) 3372 tcps->tcps_next_port_to_try = port + 1; 3373 return (port); 3374 } 3375 3376 if (tcp->tcp_anon_priv_bind) { 3377 port = tcp_get_next_priv_port(tcp); 3378 } else { 3379 if (count == 0 && user_specified) { 3380 /* 3381 * We may have to return an anonymous port. So 3382 * get one to start with. 3383 */ 3384 port = 3385 tcp_update_next_port( 3386 tcps->tcps_next_port_to_try, 3387 tcp, B_TRUE); 3388 user_specified = B_FALSE; 3389 } else { 3390 port = tcp_update_next_port(port + 1, tcp, 3391 B_FALSE); 3392 } 3393 } 3394 if (port == 0) 3395 break; 3396 3397 /* 3398 * Don't let this loop run forever in the case where 3399 * all of the anonymous ports are in use. 3400 */ 3401 } while (++count < loopmax); 3402 return (0); 3403 } 3404 3405 /* 3406 * tcp_clean_death / tcp_close_detached must not be called more than once 3407 * on a tcp. Thus every function that potentially calls tcp_clean_death 3408 * must check for the tcp state before calling tcp_clean_death. 3409 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3410 * tcp_timer_handler, all check for the tcp state. 3411 */ 3412 /* ARGSUSED */ 3413 void 3414 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3415 { 3416 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3417 3418 freemsg(mp); 3419 if (tcp->tcp_state > TCPS_BOUND) 3420 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3421 ETIMEDOUT, 5); 3422 } 3423 3424 /* 3425 * We are dying for some reason. Try to do it gracefully. (May be called 3426 * as writer.) 3427 * 3428 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3429 * done by a service procedure). 3430 * TBD - Should the return value distinguish between the tcp_t being 3431 * freed and it being reinitialized? 3432 */ 3433 static int 3434 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3435 { 3436 mblk_t *mp; 3437 queue_t *q; 3438 conn_t *connp = tcp->tcp_connp; 3439 tcp_stack_t *tcps = tcp->tcp_tcps; 3440 3441 TCP_CLD_STAT(tag); 3442 3443 #if TCP_TAG_CLEAN_DEATH 3444 tcp->tcp_cleandeathtag = tag; 3445 #endif 3446 3447 if (tcp->tcp_fused) 3448 tcp_unfuse(tcp); 3449 3450 if (tcp->tcp_linger_tid != 0 && 3451 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3452 tcp_stop_lingering(tcp); 3453 } 3454 3455 ASSERT(tcp != NULL); 3456 ASSERT((tcp->tcp_family == AF_INET && 3457 tcp->tcp_ipversion == IPV4_VERSION) || 3458 (tcp->tcp_family == AF_INET6 && 3459 (tcp->tcp_ipversion == IPV4_VERSION || 3460 tcp->tcp_ipversion == IPV6_VERSION))); 3461 3462 if (TCP_IS_DETACHED(tcp)) { 3463 if (tcp->tcp_hard_binding) { 3464 /* 3465 * Its an eager that we are dealing with. We close the 3466 * eager but in case a conn_ind has already gone to the 3467 * listener, let tcp_accept_finish() send a discon_ind 3468 * to the listener and drop the last reference. If the 3469 * listener doesn't even know about the eager i.e. the 3470 * conn_ind hasn't gone up, blow away the eager and drop 3471 * the last reference as well. If the conn_ind has gone 3472 * up, state should be BOUND. tcp_accept_finish 3473 * will figure out that the connection has received a 3474 * RST and will send a DISCON_IND to the application. 3475 */ 3476 tcp_closei_local(tcp); 3477 if (!tcp->tcp_tconnind_started) { 3478 CONN_DEC_REF(connp); 3479 } else { 3480 tcp->tcp_state = TCPS_BOUND; 3481 } 3482 } else { 3483 tcp_close_detached(tcp); 3484 } 3485 return (0); 3486 } 3487 3488 TCP_STAT(tcps, tcp_clean_death_nondetached); 3489 3490 q = tcp->tcp_rq; 3491 3492 /* Trash all inbound data */ 3493 if (!IPCL_IS_NONSTR(connp)) { 3494 ASSERT(q != NULL); 3495 flushq(q, FLUSHALL); 3496 } 3497 3498 /* 3499 * If we are at least part way open and there is error 3500 * (err==0 implies no error) 3501 * notify our client by a T_DISCON_IND. 3502 */ 3503 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3504 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3505 !TCP_IS_SOCKET(tcp)) { 3506 /* 3507 * Send M_FLUSH according to TPI. Because sockets will 3508 * (and must) ignore FLUSHR we do that only for TPI 3509 * endpoints and sockets in STREAMS mode. 3510 */ 3511 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3512 } 3513 if (tcp->tcp_debug) { 3514 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3515 "tcp_clean_death: discon err %d", err); 3516 } 3517 if (IPCL_IS_NONSTR(connp)) { 3518 /* Direct socket, use upcall */ 3519 (*connp->conn_upcalls->su_disconnected)( 3520 connp->conn_upper_handle, tcp->tcp_connid, err); 3521 } else { 3522 mp = mi_tpi_discon_ind(NULL, err, 0); 3523 if (mp != NULL) { 3524 putnext(q, mp); 3525 } else { 3526 if (tcp->tcp_debug) { 3527 (void) strlog(TCP_MOD_ID, 0, 1, 3528 SL_ERROR|SL_TRACE, 3529 "tcp_clean_death, sending M_ERROR"); 3530 } 3531 (void) putnextctl1(q, M_ERROR, EPROTO); 3532 } 3533 } 3534 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3535 /* SYN_SENT or SYN_RCVD */ 3536 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3537 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3538 /* ESTABLISHED or CLOSE_WAIT */ 3539 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3540 } 3541 } 3542 3543 tcp_reinit(tcp); 3544 if (IPCL_IS_NONSTR(connp)) 3545 (void) tcp_do_unbind(connp); 3546 3547 return (-1); 3548 } 3549 3550 /* 3551 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3552 * to expire, stop the wait and finish the close. 3553 */ 3554 static void 3555 tcp_stop_lingering(tcp_t *tcp) 3556 { 3557 clock_t delta = 0; 3558 tcp_stack_t *tcps = tcp->tcp_tcps; 3559 3560 tcp->tcp_linger_tid = 0; 3561 if (tcp->tcp_state > TCPS_LISTEN) { 3562 tcp_acceptor_hash_remove(tcp); 3563 mutex_enter(&tcp->tcp_non_sq_lock); 3564 if (tcp->tcp_flow_stopped) { 3565 tcp_clrqfull(tcp); 3566 } 3567 mutex_exit(&tcp->tcp_non_sq_lock); 3568 3569 if (tcp->tcp_timer_tid != 0) { 3570 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3571 tcp->tcp_timer_tid = 0; 3572 } 3573 /* 3574 * Need to cancel those timers which will not be used when 3575 * TCP is detached. This has to be done before the tcp_wq 3576 * is set to the global queue. 3577 */ 3578 tcp_timers_stop(tcp); 3579 3580 tcp->tcp_detached = B_TRUE; 3581 ASSERT(tcps->tcps_g_q != NULL); 3582 tcp->tcp_rq = tcps->tcps_g_q; 3583 tcp->tcp_wq = WR(tcps->tcps_g_q); 3584 3585 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3586 tcp_time_wait_append(tcp); 3587 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3588 goto finish; 3589 } 3590 3591 /* 3592 * If delta is zero the timer event wasn't executed and was 3593 * successfully canceled. In this case we need to restart it 3594 * with the minimal delta possible. 3595 */ 3596 if (delta >= 0) { 3597 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3598 delta ? delta : 1); 3599 } 3600 } else { 3601 tcp_closei_local(tcp); 3602 CONN_DEC_REF(tcp->tcp_connp); 3603 } 3604 finish: 3605 /* Signal closing thread that it can complete close */ 3606 mutex_enter(&tcp->tcp_closelock); 3607 tcp->tcp_detached = B_TRUE; 3608 ASSERT(tcps->tcps_g_q != NULL); 3609 3610 tcp->tcp_rq = tcps->tcps_g_q; 3611 tcp->tcp_wq = WR(tcps->tcps_g_q); 3612 3613 tcp->tcp_closed = 1; 3614 cv_signal(&tcp->tcp_closecv); 3615 mutex_exit(&tcp->tcp_closelock); 3616 } 3617 3618 /* 3619 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3620 * expires. 3621 */ 3622 static void 3623 tcp_close_linger_timeout(void *arg) 3624 { 3625 conn_t *connp = (conn_t *)arg; 3626 tcp_t *tcp = connp->conn_tcp; 3627 3628 tcp->tcp_client_errno = ETIMEDOUT; 3629 tcp_stop_lingering(tcp); 3630 } 3631 3632 static void 3633 tcp_close_common(conn_t *connp, int flags) 3634 { 3635 tcp_t *tcp = connp->conn_tcp; 3636 mblk_t *mp = &tcp->tcp_closemp; 3637 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3638 mblk_t *bp; 3639 3640 ASSERT(connp->conn_ref >= 2); 3641 3642 /* 3643 * Mark the conn as closing. ill_pending_mp_add will not 3644 * add any mp to the pending mp list, after this conn has 3645 * started closing. Same for sq_pending_mp_add 3646 */ 3647 mutex_enter(&connp->conn_lock); 3648 connp->conn_state_flags |= CONN_CLOSING; 3649 if (connp->conn_oper_pending_ill != NULL) 3650 conn_ioctl_cleanup_reqd = B_TRUE; 3651 CONN_INC_REF_LOCKED(connp); 3652 mutex_exit(&connp->conn_lock); 3653 tcp->tcp_closeflags = (uint8_t)flags; 3654 ASSERT(connp->conn_ref >= 3); 3655 3656 /* 3657 * tcp_closemp_used is used below without any protection of a lock 3658 * as we don't expect any one else to use it concurrently at this 3659 * point otherwise it would be a major defect. 3660 */ 3661 3662 if (mp->b_prev == NULL) 3663 tcp->tcp_closemp_used = B_TRUE; 3664 else 3665 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 3666 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 3667 3668 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 3669 3670 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 3671 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3672 3673 mutex_enter(&tcp->tcp_closelock); 3674 while (!tcp->tcp_closed) { 3675 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 3676 /* 3677 * The cv_wait_sig() was interrupted. We now do the 3678 * following: 3679 * 3680 * 1) If the endpoint was lingering, we allow this 3681 * to be interrupted by cancelling the linger timeout 3682 * and closing normally. 3683 * 3684 * 2) Revert to calling cv_wait() 3685 * 3686 * We revert to using cv_wait() to avoid an 3687 * infinite loop which can occur if the calling 3688 * thread is higher priority than the squeue worker 3689 * thread and is bound to the same cpu. 3690 */ 3691 if (tcp->tcp_linger && tcp->tcp_lingertime > 0) { 3692 mutex_exit(&tcp->tcp_closelock); 3693 /* Entering squeue, bump ref count. */ 3694 CONN_INC_REF(connp); 3695 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 3696 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 3697 tcp_linger_interrupted, connp, 3698 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3699 mutex_enter(&tcp->tcp_closelock); 3700 } 3701 break; 3702 } 3703 } 3704 while (!tcp->tcp_closed) 3705 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3706 mutex_exit(&tcp->tcp_closelock); 3707 3708 /* 3709 * In the case of listener streams that have eagers in the q or q0 3710 * we wait for the eagers to drop their reference to us. tcp_rq and 3711 * tcp_wq of the eagers point to our queues. By waiting for the 3712 * refcnt to drop to 1, we are sure that the eagers have cleaned 3713 * up their queue pointers and also dropped their references to us. 3714 */ 3715 if (tcp->tcp_wait_for_eagers) { 3716 mutex_enter(&connp->conn_lock); 3717 while (connp->conn_ref != 1) { 3718 cv_wait(&connp->conn_cv, &connp->conn_lock); 3719 } 3720 mutex_exit(&connp->conn_lock); 3721 } 3722 /* 3723 * ioctl cleanup. The mp is queued in the 3724 * ill_pending_mp or in the sq_pending_mp. 3725 */ 3726 if (conn_ioctl_cleanup_reqd) 3727 conn_ioctl_cleanup(connp); 3728 3729 tcp->tcp_cpid = -1; 3730 } 3731 3732 static int 3733 tcp_tpi_close(queue_t *q, int flags) 3734 { 3735 conn_t *connp; 3736 3737 ASSERT(WR(q)->q_next == NULL); 3738 3739 if (flags & SO_FALLBACK) { 3740 /* 3741 * stream is being closed while in fallback 3742 * simply free the resources that were allocated 3743 */ 3744 inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr)); 3745 qprocsoff(q); 3746 goto done; 3747 } 3748 3749 connp = Q_TO_CONN(q); 3750 /* 3751 * We are being closed as /dev/tcp or /dev/tcp6. 3752 */ 3753 tcp_close_common(connp, flags); 3754 3755 qprocsoff(q); 3756 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 3757 3758 /* 3759 * Drop IP's reference on the conn. This is the last reference 3760 * on the connp if the state was less than established. If the 3761 * connection has gone into timewait state, then we will have 3762 * one ref for the TCP and one more ref (total of two) for the 3763 * classifier connected hash list (a timewait connections stays 3764 * in connected hash till closed). 3765 * 3766 * We can't assert the references because there might be other 3767 * transient reference places because of some walkers or queued 3768 * packets in squeue for the timewait state. 3769 */ 3770 CONN_DEC_REF(connp); 3771 done: 3772 q->q_ptr = WR(q)->q_ptr = NULL; 3773 return (0); 3774 } 3775 3776 static int 3777 tcp_tpi_close_accept(queue_t *q) 3778 { 3779 vmem_t *minor_arena; 3780 dev_t conn_dev; 3781 3782 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3783 3784 /* 3785 * We had opened an acceptor STREAM for sockfs which is 3786 * now being closed due to some error. 3787 */ 3788 qprocsoff(q); 3789 3790 minor_arena = (vmem_t *)WR(q)->q_ptr; 3791 conn_dev = (dev_t)RD(q)->q_ptr; 3792 ASSERT(minor_arena != NULL); 3793 ASSERT(conn_dev != 0); 3794 inet_minor_free(minor_arena, conn_dev); 3795 q->q_ptr = WR(q)->q_ptr = NULL; 3796 return (0); 3797 } 3798 3799 /* 3800 * Called by tcp_close() routine via squeue when lingering is 3801 * interrupted by a signal. 3802 */ 3803 3804 /* ARGSUSED */ 3805 static void 3806 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 3807 { 3808 conn_t *connp = (conn_t *)arg; 3809 tcp_t *tcp = connp->conn_tcp; 3810 3811 freeb(mp); 3812 if (tcp->tcp_linger_tid != 0 && 3813 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3814 tcp_stop_lingering(tcp); 3815 tcp->tcp_client_errno = EINTR; 3816 } 3817 } 3818 3819 /* 3820 * Called by streams close routine via squeues when our client blows off her 3821 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3822 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3823 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3824 * acked. 3825 * 3826 * NOTE: tcp_close potentially returns error when lingering. 3827 * However, the stream head currently does not pass these errors 3828 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3829 * errors to the application (from tsleep()) and not errors 3830 * like ECONNRESET caused by receiving a reset packet. 3831 */ 3832 3833 /* ARGSUSED */ 3834 static void 3835 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 3836 { 3837 char *msg; 3838 conn_t *connp = (conn_t *)arg; 3839 tcp_t *tcp = connp->conn_tcp; 3840 clock_t delta = 0; 3841 tcp_stack_t *tcps = tcp->tcp_tcps; 3842 3843 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3844 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3845 3846 mutex_enter(&tcp->tcp_eager_lock); 3847 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3848 /* Cleanup for listener */ 3849 tcp_eager_cleanup(tcp, 0); 3850 tcp->tcp_wait_for_eagers = 1; 3851 } 3852 mutex_exit(&tcp->tcp_eager_lock); 3853 3854 connp->conn_mdt_ok = B_FALSE; 3855 tcp->tcp_mdt = B_FALSE; 3856 3857 connp->conn_lso_ok = B_FALSE; 3858 tcp->tcp_lso = B_FALSE; 3859 3860 msg = NULL; 3861 switch (tcp->tcp_state) { 3862 case TCPS_CLOSED: 3863 case TCPS_IDLE: 3864 case TCPS_BOUND: 3865 case TCPS_LISTEN: 3866 break; 3867 case TCPS_SYN_SENT: 3868 msg = "tcp_close, during connect"; 3869 break; 3870 case TCPS_SYN_RCVD: 3871 /* 3872 * Close during the connect 3-way handshake 3873 * but here there may or may not be pending data 3874 * already on queue. Process almost same as in 3875 * the ESTABLISHED state. 3876 */ 3877 /* FALLTHRU */ 3878 default: 3879 if (tcp->tcp_fused) 3880 tcp_unfuse(tcp); 3881 3882 /* 3883 * If SO_LINGER has set a zero linger time, abort the 3884 * connection with a reset. 3885 */ 3886 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 3887 msg = "tcp_close, zero lingertime"; 3888 break; 3889 } 3890 3891 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 3892 /* 3893 * Abort connection if there is unread data queued. 3894 */ 3895 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3896 msg = "tcp_close, unread data"; 3897 break; 3898 } 3899 /* 3900 * tcp_hard_bound is now cleared thus all packets go through 3901 * tcp_lookup. This fact is used by tcp_detach below. 3902 * 3903 * We have done a qwait() above which could have possibly 3904 * drained more messages in turn causing transition to a 3905 * different state. Check whether we have to do the rest 3906 * of the processing or not. 3907 */ 3908 if (tcp->tcp_state <= TCPS_LISTEN) 3909 break; 3910 3911 /* 3912 * Transmit the FIN before detaching the tcp_t. 3913 * After tcp_detach returns this queue/perimeter 3914 * no longer owns the tcp_t thus others can modify it. 3915 */ 3916 (void) tcp_xmit_end(tcp); 3917 3918 /* 3919 * If lingering on close then wait until the fin is acked, 3920 * the SO_LINGER time passes, or a reset is sent/received. 3921 */ 3922 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 3923 !(tcp->tcp_fin_acked) && 3924 tcp->tcp_state >= TCPS_ESTABLISHED) { 3925 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3926 tcp->tcp_client_errno = EWOULDBLOCK; 3927 } else if (tcp->tcp_client_errno == 0) { 3928 3929 ASSERT(tcp->tcp_linger_tid == 0); 3930 3931 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3932 tcp_close_linger_timeout, 3933 tcp->tcp_lingertime * hz); 3934 3935 /* tcp_close_linger_timeout will finish close */ 3936 if (tcp->tcp_linger_tid == 0) 3937 tcp->tcp_client_errno = ENOSR; 3938 else 3939 return; 3940 } 3941 3942 /* 3943 * Check if we need to detach or just close 3944 * the instance. 3945 */ 3946 if (tcp->tcp_state <= TCPS_LISTEN) 3947 break; 3948 } 3949 3950 /* 3951 * Make sure that no other thread will access the tcp_rq of 3952 * this instance (through lookups etc.) as tcp_rq will go 3953 * away shortly. 3954 */ 3955 tcp_acceptor_hash_remove(tcp); 3956 3957 mutex_enter(&tcp->tcp_non_sq_lock); 3958 if (tcp->tcp_flow_stopped) { 3959 tcp_clrqfull(tcp); 3960 } 3961 mutex_exit(&tcp->tcp_non_sq_lock); 3962 3963 if (tcp->tcp_timer_tid != 0) { 3964 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3965 tcp->tcp_timer_tid = 0; 3966 } 3967 /* 3968 * Need to cancel those timers which will not be used when 3969 * TCP is detached. This has to be done before the tcp_wq 3970 * is set to the global queue. 3971 */ 3972 tcp_timers_stop(tcp); 3973 3974 tcp->tcp_detached = B_TRUE; 3975 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3976 tcp_time_wait_append(tcp); 3977 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3978 ASSERT(connp->conn_ref >= 3); 3979 goto finish; 3980 } 3981 3982 /* 3983 * If delta is zero the timer event wasn't executed and was 3984 * successfully canceled. In this case we need to restart it 3985 * with the minimal delta possible. 3986 */ 3987 if (delta >= 0) 3988 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3989 delta ? delta : 1); 3990 3991 ASSERT(connp->conn_ref >= 3); 3992 goto finish; 3993 } 3994 3995 /* Detach did not complete. Still need to remove q from stream. */ 3996 if (msg) { 3997 if (tcp->tcp_state == TCPS_ESTABLISHED || 3998 tcp->tcp_state == TCPS_CLOSE_WAIT) 3999 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 4000 if (tcp->tcp_state == TCPS_SYN_SENT || 4001 tcp->tcp_state == TCPS_SYN_RCVD) 4002 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4003 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4004 } 4005 4006 tcp_closei_local(tcp); 4007 CONN_DEC_REF(connp); 4008 ASSERT(connp->conn_ref >= 2); 4009 4010 finish: 4011 /* 4012 * Although packets are always processed on the correct 4013 * tcp's perimeter and access is serialized via squeue's, 4014 * IP still needs a queue when sending packets in time_wait 4015 * state so use WR(tcps_g_q) till ip_output() can be 4016 * changed to deal with just connp. For read side, we 4017 * could have set tcp_rq to NULL but there are some cases 4018 * in tcp_rput_data() from early days of this code which 4019 * do a putnext without checking if tcp is closed. Those 4020 * need to be identified before both tcp_rq and tcp_wq 4021 * can be set to NULL and tcps_g_q can disappear forever. 4022 */ 4023 mutex_enter(&tcp->tcp_closelock); 4024 /* 4025 * Don't change the queues in the case of a listener that has 4026 * eagers in its q or q0. It could surprise the eagers. 4027 * Instead wait for the eagers outside the squeue. 4028 */ 4029 if (!tcp->tcp_wait_for_eagers) { 4030 tcp->tcp_detached = B_TRUE; 4031 /* 4032 * When default queue is closing we set tcps_g_q to NULL 4033 * after the close is done. 4034 */ 4035 ASSERT(tcps->tcps_g_q != NULL); 4036 tcp->tcp_rq = tcps->tcps_g_q; 4037 tcp->tcp_wq = WR(tcps->tcps_g_q); 4038 } 4039 4040 /* Signal tcp_close() to finish closing. */ 4041 tcp->tcp_closed = 1; 4042 cv_signal(&tcp->tcp_closecv); 4043 mutex_exit(&tcp->tcp_closelock); 4044 } 4045 4046 /* 4047 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4048 * Some stream heads get upset if they see these later on as anything but NULL. 4049 */ 4050 static void 4051 tcp_close_mpp(mblk_t **mpp) 4052 { 4053 mblk_t *mp; 4054 4055 if ((mp = *mpp) != NULL) { 4056 do { 4057 mp->b_next = NULL; 4058 mp->b_prev = NULL; 4059 } while ((mp = mp->b_cont) != NULL); 4060 4061 mp = *mpp; 4062 *mpp = NULL; 4063 freemsg(mp); 4064 } 4065 } 4066 4067 /* Do detached close. */ 4068 static void 4069 tcp_close_detached(tcp_t *tcp) 4070 { 4071 if (tcp->tcp_fused) 4072 tcp_unfuse(tcp); 4073 4074 /* 4075 * Clustering code serializes TCP disconnect callbacks and 4076 * cluster tcp list walks by blocking a TCP disconnect callback 4077 * if a cluster tcp list walk is in progress. This ensures 4078 * accurate accounting of TCPs in the cluster code even though 4079 * the TCP list walk itself is not atomic. 4080 */ 4081 tcp_closei_local(tcp); 4082 CONN_DEC_REF(tcp->tcp_connp); 4083 } 4084 4085 /* 4086 * Stop all TCP timers, and free the timer mblks if requested. 4087 */ 4088 void 4089 tcp_timers_stop(tcp_t *tcp) 4090 { 4091 if (tcp->tcp_timer_tid != 0) { 4092 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4093 tcp->tcp_timer_tid = 0; 4094 } 4095 if (tcp->tcp_ka_tid != 0) { 4096 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4097 tcp->tcp_ka_tid = 0; 4098 } 4099 if (tcp->tcp_ack_tid != 0) { 4100 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4101 tcp->tcp_ack_tid = 0; 4102 } 4103 if (tcp->tcp_push_tid != 0) { 4104 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4105 tcp->tcp_push_tid = 0; 4106 } 4107 } 4108 4109 /* 4110 * The tcp_t is going away. Remove it from all lists and set it 4111 * to TCPS_CLOSED. The freeing up of memory is deferred until 4112 * tcp_inactive. This is needed since a thread in tcp_rput might have 4113 * done a CONN_INC_REF on this structure before it was removed from the 4114 * hashes. 4115 */ 4116 static void 4117 tcp_closei_local(tcp_t *tcp) 4118 { 4119 ire_t *ire; 4120 conn_t *connp = tcp->tcp_connp; 4121 tcp_stack_t *tcps = tcp->tcp_tcps; 4122 4123 if (!TCP_IS_SOCKET(tcp)) 4124 tcp_acceptor_hash_remove(tcp); 4125 4126 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 4127 tcp->tcp_ibsegs = 0; 4128 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 4129 tcp->tcp_obsegs = 0; 4130 4131 /* 4132 * If we are an eager connection hanging off a listener that 4133 * hasn't formally accepted the connection yet, get off his 4134 * list and blow off any data that we have accumulated. 4135 */ 4136 if (tcp->tcp_listener != NULL) { 4137 tcp_t *listener = tcp->tcp_listener; 4138 mutex_enter(&listener->tcp_eager_lock); 4139 /* 4140 * tcp_tconnind_started == B_TRUE means that the 4141 * conn_ind has already gone to listener. At 4142 * this point, eager will be closed but we 4143 * leave it in listeners eager list so that 4144 * if listener decides to close without doing 4145 * accept, we can clean this up. In tcp_wput_accept 4146 * we take care of the case of accept on closed 4147 * eager. 4148 */ 4149 if (!tcp->tcp_tconnind_started) { 4150 tcp_eager_unlink(tcp); 4151 mutex_exit(&listener->tcp_eager_lock); 4152 /* 4153 * We don't want to have any pointers to the 4154 * listener queue, after we have released our 4155 * reference on the listener 4156 */ 4157 ASSERT(tcps->tcps_g_q != NULL); 4158 tcp->tcp_rq = tcps->tcps_g_q; 4159 tcp->tcp_wq = WR(tcps->tcps_g_q); 4160 CONN_DEC_REF(listener->tcp_connp); 4161 } else { 4162 mutex_exit(&listener->tcp_eager_lock); 4163 } 4164 } 4165 4166 /* Stop all the timers */ 4167 tcp_timers_stop(tcp); 4168 4169 if (tcp->tcp_state == TCPS_LISTEN) { 4170 if (tcp->tcp_ip_addr_cache) { 4171 kmem_free((void *)tcp->tcp_ip_addr_cache, 4172 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4173 tcp->tcp_ip_addr_cache = NULL; 4174 } 4175 } 4176 mutex_enter(&tcp->tcp_non_sq_lock); 4177 if (tcp->tcp_flow_stopped) 4178 tcp_clrqfull(tcp); 4179 mutex_exit(&tcp->tcp_non_sq_lock); 4180 4181 tcp_bind_hash_remove(tcp); 4182 /* 4183 * If the tcp_time_wait_collector (which runs outside the squeue) 4184 * is trying to remove this tcp from the time wait list, we will 4185 * block in tcp_time_wait_remove while trying to acquire the 4186 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4187 * requires the ipcl_hash_remove to be ordered after the 4188 * tcp_time_wait_remove for the refcnt checks to work correctly. 4189 */ 4190 if (tcp->tcp_state == TCPS_TIME_WAIT) 4191 (void) tcp_time_wait_remove(tcp, NULL); 4192 CL_INET_DISCONNECT(connp, tcp); 4193 ipcl_hash_remove(connp); 4194 4195 /* 4196 * Delete the cached ire in conn_ire_cache and also mark 4197 * the conn as CONDEMNED 4198 */ 4199 mutex_enter(&connp->conn_lock); 4200 connp->conn_state_flags |= CONN_CONDEMNED; 4201 ire = connp->conn_ire_cache; 4202 connp->conn_ire_cache = NULL; 4203 mutex_exit(&connp->conn_lock); 4204 if (ire != NULL) 4205 IRE_REFRELE_NOTR(ire); 4206 4207 /* Need to cleanup any pending ioctls */ 4208 ASSERT(tcp->tcp_time_wait_next == NULL); 4209 ASSERT(tcp->tcp_time_wait_prev == NULL); 4210 ASSERT(tcp->tcp_time_wait_expire == 0); 4211 tcp->tcp_state = TCPS_CLOSED; 4212 4213 /* Release any SSL context */ 4214 if (tcp->tcp_kssl_ent != NULL) { 4215 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4216 tcp->tcp_kssl_ent = NULL; 4217 } 4218 if (tcp->tcp_kssl_ctx != NULL) { 4219 kssl_release_ctx(tcp->tcp_kssl_ctx); 4220 tcp->tcp_kssl_ctx = NULL; 4221 } 4222 tcp->tcp_kssl_pending = B_FALSE; 4223 4224 tcp_ipsec_cleanup(tcp); 4225 } 4226 4227 /* 4228 * tcp is dying (called from ipcl_conn_destroy and error cases). 4229 * Free the tcp_t in either case. 4230 */ 4231 void 4232 tcp_free(tcp_t *tcp) 4233 { 4234 mblk_t *mp; 4235 ip6_pkt_t *ipp; 4236 4237 ASSERT(tcp != NULL); 4238 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4239 4240 tcp->tcp_rq = NULL; 4241 tcp->tcp_wq = NULL; 4242 4243 tcp_close_mpp(&tcp->tcp_xmit_head); 4244 tcp_close_mpp(&tcp->tcp_reass_head); 4245 if (tcp->tcp_rcv_list != NULL) { 4246 /* Free b_next chain */ 4247 tcp_close_mpp(&tcp->tcp_rcv_list); 4248 } 4249 if ((mp = tcp->tcp_urp_mp) != NULL) { 4250 freemsg(mp); 4251 } 4252 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4253 freemsg(mp); 4254 } 4255 4256 if (tcp->tcp_fused_sigurg_mp != NULL) { 4257 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4258 freeb(tcp->tcp_fused_sigurg_mp); 4259 tcp->tcp_fused_sigurg_mp = NULL; 4260 } 4261 4262 if (tcp->tcp_ordrel_mp != NULL) { 4263 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4264 freeb(tcp->tcp_ordrel_mp); 4265 tcp->tcp_ordrel_mp = NULL; 4266 } 4267 4268 if (tcp->tcp_sack_info != NULL) { 4269 if (tcp->tcp_notsack_list != NULL) { 4270 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 4271 tcp); 4272 } 4273 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4274 } 4275 4276 if (tcp->tcp_hopopts != NULL) { 4277 mi_free(tcp->tcp_hopopts); 4278 tcp->tcp_hopopts = NULL; 4279 tcp->tcp_hopoptslen = 0; 4280 } 4281 ASSERT(tcp->tcp_hopoptslen == 0); 4282 if (tcp->tcp_dstopts != NULL) { 4283 mi_free(tcp->tcp_dstopts); 4284 tcp->tcp_dstopts = NULL; 4285 tcp->tcp_dstoptslen = 0; 4286 } 4287 ASSERT(tcp->tcp_dstoptslen == 0); 4288 if (tcp->tcp_rtdstopts != NULL) { 4289 mi_free(tcp->tcp_rtdstopts); 4290 tcp->tcp_rtdstopts = NULL; 4291 tcp->tcp_rtdstoptslen = 0; 4292 } 4293 ASSERT(tcp->tcp_rtdstoptslen == 0); 4294 if (tcp->tcp_rthdr != NULL) { 4295 mi_free(tcp->tcp_rthdr); 4296 tcp->tcp_rthdr = NULL; 4297 tcp->tcp_rthdrlen = 0; 4298 } 4299 ASSERT(tcp->tcp_rthdrlen == 0); 4300 4301 ipp = &tcp->tcp_sticky_ipp; 4302 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4303 IPPF_RTHDR)) 4304 ip6_pkt_free(ipp); 4305 4306 /* 4307 * Free memory associated with the tcp/ip header template. 4308 */ 4309 4310 if (tcp->tcp_iphc != NULL) 4311 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4312 4313 /* 4314 * Following is really a blowing away a union. 4315 * It happens to have exactly two members of identical size 4316 * the following code is enough. 4317 */ 4318 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4319 } 4320 4321 4322 /* 4323 * Put a connection confirmation message upstream built from the 4324 * address information within 'iph' and 'tcph'. Report our success or failure. 4325 */ 4326 static boolean_t 4327 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4328 mblk_t **defermp) 4329 { 4330 sin_t sin; 4331 sin6_t sin6; 4332 mblk_t *mp; 4333 char *optp = NULL; 4334 int optlen = 0; 4335 4336 if (defermp != NULL) 4337 *defermp = NULL; 4338 4339 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4340 /* 4341 * Return in T_CONN_CON results of option negotiation through 4342 * the T_CONN_REQ. Note: If there is an real end-to-end option 4343 * negotiation, then what is received from remote end needs 4344 * to be taken into account but there is no such thing (yet?) 4345 * in our TCP/IP. 4346 * Note: We do not use mi_offset_param() here as 4347 * tcp_opts_conn_req contents do not directly come from 4348 * an application and are either generated in kernel or 4349 * from user input that was already verified. 4350 */ 4351 mp = tcp->tcp_conn.tcp_opts_conn_req; 4352 optp = (char *)(mp->b_rptr + 4353 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4354 optlen = (int) 4355 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4356 } 4357 4358 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4359 ipha_t *ipha = (ipha_t *)iphdr; 4360 4361 /* packet is IPv4 */ 4362 if (tcp->tcp_family == AF_INET) { 4363 sin = sin_null; 4364 sin.sin_addr.s_addr = ipha->ipha_src; 4365 sin.sin_port = *(uint16_t *)tcph->th_lport; 4366 sin.sin_family = AF_INET; 4367 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4368 (int)sizeof (sin_t), optp, optlen); 4369 } else { 4370 sin6 = sin6_null; 4371 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4372 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4373 sin6.sin6_family = AF_INET6; 4374 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4375 (int)sizeof (sin6_t), optp, optlen); 4376 4377 } 4378 } else { 4379 ip6_t *ip6h = (ip6_t *)iphdr; 4380 4381 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4382 ASSERT(tcp->tcp_family == AF_INET6); 4383 sin6 = sin6_null; 4384 sin6.sin6_addr = ip6h->ip6_src; 4385 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4386 sin6.sin6_family = AF_INET6; 4387 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4388 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4389 (int)sizeof (sin6_t), optp, optlen); 4390 } 4391 4392 if (!mp) 4393 return (B_FALSE); 4394 4395 mblk_copycred(mp, idmp); 4396 4397 if (defermp == NULL) { 4398 conn_t *connp = tcp->tcp_connp; 4399 if (IPCL_IS_NONSTR(connp)) { 4400 cred_t *cr; 4401 pid_t cpid; 4402 4403 cr = msg_getcred(mp, &cpid); 4404 (*connp->conn_upcalls->su_connected) 4405 (connp->conn_upper_handle, tcp->tcp_connid, cr, 4406 cpid); 4407 freemsg(mp); 4408 } else { 4409 putnext(tcp->tcp_rq, mp); 4410 } 4411 } else { 4412 *defermp = mp; 4413 } 4414 4415 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4416 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4417 return (B_TRUE); 4418 } 4419 4420 /* 4421 * Defense for the SYN attack - 4422 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4423 * one from the list of droppable eagers. This list is a subset of q0. 4424 * see comments before the definition of MAKE_DROPPABLE(). 4425 * 2. Don't drop a SYN request before its first timeout. This gives every 4426 * request at least til the first timeout to complete its 3-way handshake. 4427 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4428 * requests currently on the queue that has timed out. This will be used 4429 * as an indicator of whether an attack is under way, so that appropriate 4430 * actions can be taken. (It's incremented in tcp_timer() and decremented 4431 * either when eager goes into ESTABLISHED, or gets freed up.) 4432 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4433 * # of timeout drops back to <= q0len/32 => SYN alert off 4434 */ 4435 static boolean_t 4436 tcp_drop_q0(tcp_t *tcp) 4437 { 4438 tcp_t *eager; 4439 mblk_t *mp; 4440 tcp_stack_t *tcps = tcp->tcp_tcps; 4441 4442 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4443 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4444 4445 /* Pick oldest eager from the list of droppable eagers */ 4446 eager = tcp->tcp_eager_prev_drop_q0; 4447 4448 /* If list is empty. return B_FALSE */ 4449 if (eager == tcp) { 4450 return (B_FALSE); 4451 } 4452 4453 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4454 if ((mp = allocb(0, BPRI_HI)) == NULL) 4455 return (B_FALSE); 4456 4457 /* 4458 * Take this eager out from the list of droppable eagers since we are 4459 * going to drop it. 4460 */ 4461 MAKE_UNDROPPABLE(eager); 4462 4463 if (tcp->tcp_debug) { 4464 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4465 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4466 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4467 tcp->tcp_conn_req_cnt_q0, 4468 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4469 } 4470 4471 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4472 4473 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4474 CONN_INC_REF(eager->tcp_connp); 4475 4476 /* Mark the IRE created for this SYN request temporary */ 4477 tcp_ip_ire_mark_advice(eager); 4478 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 4479 tcp_clean_death_wrapper, eager->tcp_connp, 4480 SQ_FILL, SQTAG_TCP_DROP_Q0); 4481 4482 return (B_TRUE); 4483 } 4484 4485 int 4486 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4487 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4488 { 4489 tcp_t *ltcp = lconnp->conn_tcp; 4490 tcp_t *tcp = connp->conn_tcp; 4491 mblk_t *tpi_mp; 4492 ipha_t *ipha; 4493 ip6_t *ip6h; 4494 sin6_t sin6; 4495 in6_addr_t v6dst; 4496 int err; 4497 int ifindex = 0; 4498 tcp_stack_t *tcps = tcp->tcp_tcps; 4499 4500 if (ipvers == IPV4_VERSION) { 4501 ipha = (ipha_t *)mp->b_rptr; 4502 4503 connp->conn_send = ip_output; 4504 connp->conn_recv = tcp_input; 4505 4506 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4507 &connp->conn_bound_source_v6); 4508 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4509 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4510 4511 sin6 = sin6_null; 4512 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4513 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4514 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4515 sin6.sin6_family = AF_INET6; 4516 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4517 lconnp->conn_zoneid, tcps->tcps_netstack); 4518 if (tcp->tcp_recvdstaddr) { 4519 sin6_t sin6d; 4520 4521 sin6d = sin6_null; 4522 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4523 &sin6d.sin6_addr); 4524 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4525 sin6d.sin6_family = AF_INET; 4526 tpi_mp = mi_tpi_extconn_ind(NULL, 4527 (char *)&sin6d, sizeof (sin6_t), 4528 (char *)&tcp, 4529 (t_scalar_t)sizeof (intptr_t), 4530 (char *)&sin6d, sizeof (sin6_t), 4531 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4532 } else { 4533 tpi_mp = mi_tpi_conn_ind(NULL, 4534 (char *)&sin6, sizeof (sin6_t), 4535 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4536 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4537 } 4538 } else { 4539 ip6h = (ip6_t *)mp->b_rptr; 4540 4541 connp->conn_send = ip_output_v6; 4542 connp->conn_recv = tcp_input; 4543 4544 connp->conn_bound_source_v6 = ip6h->ip6_dst; 4545 connp->conn_srcv6 = ip6h->ip6_dst; 4546 connp->conn_remv6 = ip6h->ip6_src; 4547 4548 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4549 ifindex = (int)DB_CKSUMSTUFF(mp); 4550 DB_CKSUMSTUFF(mp) = 0; 4551 4552 sin6 = sin6_null; 4553 sin6.sin6_addr = ip6h->ip6_src; 4554 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4555 sin6.sin6_family = AF_INET6; 4556 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4557 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4558 lconnp->conn_zoneid, tcps->tcps_netstack); 4559 4560 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4561 /* Pass up the scope_id of remote addr */ 4562 sin6.sin6_scope_id = ifindex; 4563 } else { 4564 sin6.sin6_scope_id = 0; 4565 } 4566 if (tcp->tcp_recvdstaddr) { 4567 sin6_t sin6d; 4568 4569 sin6d = sin6_null; 4570 sin6.sin6_addr = ip6h->ip6_dst; 4571 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4572 sin6d.sin6_family = AF_INET; 4573 tpi_mp = mi_tpi_extconn_ind(NULL, 4574 (char *)&sin6d, sizeof (sin6_t), 4575 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4576 (char *)&sin6d, sizeof (sin6_t), 4577 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4578 } else { 4579 tpi_mp = mi_tpi_conn_ind(NULL, 4580 (char *)&sin6, sizeof (sin6_t), 4581 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4582 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4583 } 4584 } 4585 4586 if (tpi_mp == NULL) 4587 return (ENOMEM); 4588 4589 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4590 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4591 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4592 connp->conn_fully_bound = B_FALSE; 4593 4594 /* Inherit information from the "parent" */ 4595 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4596 tcp->tcp_family = ltcp->tcp_family; 4597 4598 tcp->tcp_wq = ltcp->tcp_wq; 4599 tcp->tcp_rq = ltcp->tcp_rq; 4600 4601 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4602 tcp->tcp_detached = B_TRUE; 4603 SOCK_CONNID_INIT(tcp->tcp_connid); 4604 if ((err = tcp_init_values(tcp)) != 0) { 4605 freemsg(tpi_mp); 4606 return (err); 4607 } 4608 4609 if (ipvers == IPV4_VERSION) { 4610 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4611 freemsg(tpi_mp); 4612 return (err); 4613 } 4614 ASSERT(tcp->tcp_ipha != NULL); 4615 } else { 4616 /* ifindex must be already set */ 4617 ASSERT(ifindex != 0); 4618 4619 if (ltcp->tcp_bound_if != 0) 4620 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4621 else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) 4622 tcp->tcp_bound_if = ifindex; 4623 4624 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4625 tcp->tcp_recvifindex = 0; 4626 tcp->tcp_recvhops = 0xffffffffU; 4627 ASSERT(tcp->tcp_ip6h != NULL); 4628 } 4629 4630 tcp->tcp_lport = ltcp->tcp_lport; 4631 4632 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4633 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4634 /* 4635 * Listener had options of some sort; eager inherits. 4636 * Free up the eager template and allocate one 4637 * of the right size. 4638 */ 4639 if (tcp->tcp_hdr_grown) { 4640 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4641 } else { 4642 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4643 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4644 } 4645 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4646 KM_NOSLEEP); 4647 if (tcp->tcp_iphc == NULL) { 4648 tcp->tcp_iphc_len = 0; 4649 freemsg(tpi_mp); 4650 return (ENOMEM); 4651 } 4652 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 4653 tcp->tcp_hdr_grown = B_TRUE; 4654 } 4655 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4656 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4657 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4658 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 4659 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 4660 4661 /* 4662 * Copy the IP+TCP header template from listener to eager 4663 */ 4664 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4665 if (tcp->tcp_ipversion == IPV6_VERSION) { 4666 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 4667 IPPROTO_RAW) { 4668 tcp->tcp_ip6h = 4669 (ip6_t *)(tcp->tcp_iphc + 4670 sizeof (ip6i_t)); 4671 } else { 4672 tcp->tcp_ip6h = 4673 (ip6_t *)(tcp->tcp_iphc); 4674 } 4675 tcp->tcp_ipha = NULL; 4676 } else { 4677 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4678 tcp->tcp_ip6h = NULL; 4679 } 4680 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4681 tcp->tcp_ip_hdr_len); 4682 } else { 4683 /* 4684 * only valid case when ipversion of listener and 4685 * eager differ is when listener is IPv6 and 4686 * eager is IPv4. 4687 * Eager header template has been initialized to the 4688 * maximum v4 header sizes, which includes space for 4689 * TCP and IP options. 4690 */ 4691 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 4692 (tcp->tcp_ipversion == IPV4_VERSION)); 4693 ASSERT(tcp->tcp_iphc_len >= 4694 TCP_MAX_COMBINED_HEADER_LENGTH); 4695 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4696 /* copy IP header fields individually */ 4697 tcp->tcp_ipha->ipha_ttl = 4698 ltcp->tcp_ip6h->ip6_hops; 4699 bcopy(ltcp->tcp_tcph->th_lport, 4700 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 4701 } 4702 4703 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4704 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 4705 sizeof (in_port_t)); 4706 4707 if (ltcp->tcp_lport == 0) { 4708 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 4709 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 4710 sizeof (in_port_t)); 4711 } 4712 4713 if (tcp->tcp_ipversion == IPV4_VERSION) { 4714 ASSERT(ipha != NULL); 4715 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4716 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4717 4718 /* Source routing option copyover (reverse it) */ 4719 if (tcps->tcps_rev_src_routes) 4720 tcp_opt_reverse(tcp, ipha); 4721 } else { 4722 ASSERT(ip6h != NULL); 4723 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 4724 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 4725 } 4726 4727 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4728 ASSERT(!tcp->tcp_tconnind_started); 4729 /* 4730 * If the SYN contains a credential, it's a loopback packet; attach 4731 * the credential to the TPI message. 4732 */ 4733 mblk_copycred(tpi_mp, idmp); 4734 4735 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4736 4737 /* Inherit the listener's SSL protection state */ 4738 4739 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4740 kssl_hold_ent(tcp->tcp_kssl_ent); 4741 tcp->tcp_kssl_pending = B_TRUE; 4742 } 4743 4744 /* Inherit the listener's non-STREAMS flag */ 4745 if (IPCL_IS_NONSTR(lconnp)) { 4746 connp->conn_flags |= IPCL_NONSTR; 4747 } 4748 4749 return (0); 4750 } 4751 4752 4753 int 4754 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 4755 tcph_t *tcph, mblk_t *idmp) 4756 { 4757 tcp_t *ltcp = lconnp->conn_tcp; 4758 tcp_t *tcp = connp->conn_tcp; 4759 sin_t sin; 4760 mblk_t *tpi_mp = NULL; 4761 int err; 4762 tcp_stack_t *tcps = tcp->tcp_tcps; 4763 4764 sin = sin_null; 4765 sin.sin_addr.s_addr = ipha->ipha_src; 4766 sin.sin_port = *(uint16_t *)tcph->th_lport; 4767 sin.sin_family = AF_INET; 4768 if (ltcp->tcp_recvdstaddr) { 4769 sin_t sind; 4770 4771 sind = sin_null; 4772 sind.sin_addr.s_addr = ipha->ipha_dst; 4773 sind.sin_port = *(uint16_t *)tcph->th_fport; 4774 sind.sin_family = AF_INET; 4775 tpi_mp = mi_tpi_extconn_ind(NULL, 4776 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4777 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4778 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4779 } else { 4780 tpi_mp = mi_tpi_conn_ind(NULL, 4781 (char *)&sin, sizeof (sin_t), 4782 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4783 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4784 } 4785 4786 if (tpi_mp == NULL) { 4787 return (ENOMEM); 4788 } 4789 4790 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 4791 connp->conn_send = ip_output; 4792 connp->conn_recv = tcp_input; 4793 connp->conn_fully_bound = B_FALSE; 4794 4795 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_bound_source_v6); 4796 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4797 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4798 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4799 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4800 4801 /* Inherit information from the "parent" */ 4802 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4803 tcp->tcp_family = ltcp->tcp_family; 4804 tcp->tcp_wq = ltcp->tcp_wq; 4805 tcp->tcp_rq = ltcp->tcp_rq; 4806 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 4807 tcp->tcp_detached = B_TRUE; 4808 SOCK_CONNID_INIT(tcp->tcp_connid); 4809 if ((err = tcp_init_values(tcp)) != 0) { 4810 freemsg(tpi_mp); 4811 return (err); 4812 } 4813 4814 /* 4815 * Let's make sure that eager tcp template has enough space to 4816 * copy IPv4 listener's tcp template. Since the conn_t structure is 4817 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 4818 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 4819 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 4820 * extension headers or with ip6i_t struct). Note that bcopy() below 4821 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 4822 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 4823 */ 4824 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 4825 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 4826 4827 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4828 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4829 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4830 tcp->tcp_ttl = ltcp->tcp_ttl; 4831 tcp->tcp_tos = ltcp->tcp_tos; 4832 4833 /* Copy the IP+TCP header template from listener to eager */ 4834 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4835 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4836 tcp->tcp_ip6h = NULL; 4837 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4838 tcp->tcp_ip_hdr_len); 4839 4840 /* Initialize the IP addresses and Ports */ 4841 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4842 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4843 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4844 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 4845 4846 /* Source routing option copyover (reverse it) */ 4847 if (tcps->tcps_rev_src_routes) 4848 tcp_opt_reverse(tcp, ipha); 4849 4850 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4851 ASSERT(!tcp->tcp_tconnind_started); 4852 4853 /* 4854 * If the SYN contains a credential, it's a loopback packet; attach 4855 * the credential to the TPI message. 4856 */ 4857 mblk_copycred(tpi_mp, idmp); 4858 4859 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4860 4861 /* Inherit the listener's SSL protection state */ 4862 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4863 kssl_hold_ent(tcp->tcp_kssl_ent); 4864 tcp->tcp_kssl_pending = B_TRUE; 4865 } 4866 4867 /* Inherit the listener's non-STREAMS flag */ 4868 if (IPCL_IS_NONSTR(lconnp)) { 4869 connp->conn_flags |= IPCL_NONSTR; 4870 } 4871 4872 return (0); 4873 } 4874 4875 /* 4876 * sets up conn for ipsec. 4877 * if the first mblk is M_CTL it is consumed and mpp is updated. 4878 * in case of error mpp is freed. 4879 */ 4880 conn_t * 4881 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 4882 { 4883 conn_t *connp = tcp->tcp_connp; 4884 conn_t *econnp; 4885 squeue_t *new_sqp; 4886 mblk_t *first_mp = *mpp; 4887 mblk_t *mp = *mpp; 4888 boolean_t mctl_present = B_FALSE; 4889 uint_t ipvers; 4890 4891 econnp = tcp_get_conn(sqp, tcp->tcp_tcps); 4892 if (econnp == NULL) { 4893 freemsg(first_mp); 4894 return (NULL); 4895 } 4896 if (DB_TYPE(mp) == M_CTL) { 4897 if (mp->b_cont == NULL || 4898 mp->b_cont->b_datap->db_type != M_DATA) { 4899 freemsg(first_mp); 4900 return (NULL); 4901 } 4902 mp = mp->b_cont; 4903 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 4904 freemsg(first_mp); 4905 return (NULL); 4906 } 4907 4908 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 4909 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4910 mctl_present = B_TRUE; 4911 } else { 4912 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 4913 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4914 } 4915 4916 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 4917 DB_CKSUMSTART(mp) = 0; 4918 4919 ASSERT(OK_32PTR(mp->b_rptr)); 4920 ipvers = IPH_HDR_VERSION(mp->b_rptr); 4921 if (ipvers == IPV4_VERSION) { 4922 uint16_t *up; 4923 uint32_t ports; 4924 ipha_t *ipha; 4925 4926 ipha = (ipha_t *)mp->b_rptr; 4927 up = (uint16_t *)((uchar_t *)ipha + 4928 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 4929 ports = *(uint32_t *)up; 4930 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 4931 ipha->ipha_dst, ipha->ipha_src, ports); 4932 } else { 4933 uint16_t *up; 4934 uint32_t ports; 4935 uint16_t ip_hdr_len; 4936 uint8_t *nexthdrp; 4937 ip6_t *ip6h; 4938 tcph_t *tcph; 4939 4940 ip6h = (ip6_t *)mp->b_rptr; 4941 if (ip6h->ip6_nxt == IPPROTO_TCP) { 4942 ip_hdr_len = IPV6_HDR_LEN; 4943 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 4944 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 4945 CONN_DEC_REF(econnp); 4946 freemsg(first_mp); 4947 return (NULL); 4948 } 4949 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 4950 up = (uint16_t *)tcph->th_lport; 4951 ports = *(uint32_t *)up; 4952 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 4953 ip6h->ip6_dst, ip6h->ip6_src, ports); 4954 } 4955 4956 /* 4957 * The caller already ensured that there is a sqp present. 4958 */ 4959 econnp->conn_sqp = new_sqp; 4960 econnp->conn_initial_sqp = new_sqp; 4961 4962 if (connp->conn_policy != NULL) { 4963 ipsec_in_t *ii; 4964 ii = (ipsec_in_t *)(first_mp->b_rptr); 4965 ASSERT(ii->ipsec_in_policy == NULL); 4966 IPPH_REFHOLD(connp->conn_policy); 4967 ii->ipsec_in_policy = connp->conn_policy; 4968 4969 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 4970 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 4971 CONN_DEC_REF(econnp); 4972 freemsg(first_mp); 4973 return (NULL); 4974 } 4975 } 4976 4977 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 4978 CONN_DEC_REF(econnp); 4979 freemsg(first_mp); 4980 return (NULL); 4981 } 4982 4983 /* 4984 * If we know we have some policy, pass the "IPSEC" 4985 * options size TCP uses this adjust the MSS. 4986 */ 4987 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 4988 if (mctl_present) { 4989 freeb(first_mp); 4990 *mpp = mp; 4991 } 4992 4993 return (econnp); 4994 } 4995 4996 /* 4997 * tcp_get_conn/tcp_free_conn 4998 * 4999 * tcp_get_conn is used to get a clean tcp connection structure. 5000 * It tries to reuse the connections put on the freelist by the 5001 * time_wait_collector failing which it goes to kmem_cache. This 5002 * way has two benefits compared to just allocating from and 5003 * freeing to kmem_cache. 5004 * 1) The time_wait_collector can free (which includes the cleanup) 5005 * outside the squeue. So when the interrupt comes, we have a clean 5006 * connection sitting in the freelist. Obviously, this buys us 5007 * performance. 5008 * 5009 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5010 * has multiple disadvantages - tying up the squeue during alloc, and the 5011 * fact that IPSec policy initialization has to happen here which 5012 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5013 * But allocating the conn/tcp in IP land is also not the best since 5014 * we can't check the 'q' and 'q0' which are protected by squeue and 5015 * blindly allocate memory which might have to be freed here if we are 5016 * not allowed to accept the connection. By using the freelist and 5017 * putting the conn/tcp back in freelist, we don't pay a penalty for 5018 * allocating memory without checking 'q/q0' and freeing it if we can't 5019 * accept the connection. 5020 * 5021 * Care should be taken to put the conn back in the same squeue's freelist 5022 * from which it was allocated. Best results are obtained if conn is 5023 * allocated from listener's squeue and freed to the same. Time wait 5024 * collector will free up the freelist is the connection ends up sitting 5025 * there for too long. 5026 */ 5027 void * 5028 tcp_get_conn(void *arg, tcp_stack_t *tcps) 5029 { 5030 tcp_t *tcp = NULL; 5031 conn_t *connp = NULL; 5032 squeue_t *sqp = (squeue_t *)arg; 5033 tcp_squeue_priv_t *tcp_time_wait; 5034 netstack_t *ns; 5035 mblk_t *tcp_rsrv_mp = NULL; 5036 5037 tcp_time_wait = 5038 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5039 5040 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5041 tcp = tcp_time_wait->tcp_free_list; 5042 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5043 if (tcp != NULL) { 5044 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5045 tcp_time_wait->tcp_free_list_cnt--; 5046 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5047 tcp->tcp_time_wait_next = NULL; 5048 connp = tcp->tcp_connp; 5049 connp->conn_flags |= IPCL_REUSED; 5050 5051 ASSERT(tcp->tcp_tcps == NULL); 5052 ASSERT(connp->conn_netstack == NULL); 5053 ASSERT(tcp->tcp_rsrv_mp != NULL); 5054 ns = tcps->tcps_netstack; 5055 netstack_hold(ns); 5056 connp->conn_netstack = ns; 5057 tcp->tcp_tcps = tcps; 5058 TCPS_REFHOLD(tcps); 5059 ipcl_globalhash_insert(connp); 5060 return ((void *)connp); 5061 } 5062 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5063 /* 5064 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 5065 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 5066 */ 5067 tcp_rsrv_mp = allocb(0, BPRI_HI); 5068 if (tcp_rsrv_mp == NULL) 5069 return (NULL); 5070 5071 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 5072 tcps->tcps_netstack)) == NULL) { 5073 freeb(tcp_rsrv_mp); 5074 return (NULL); 5075 } 5076 5077 tcp = connp->conn_tcp; 5078 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 5079 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 5080 5081 tcp->tcp_tcps = tcps; 5082 TCPS_REFHOLD(tcps); 5083 5084 return ((void *)connp); 5085 } 5086 5087 /* 5088 * Update the cached label for the given tcp_t. This should be called once per 5089 * connection, and before any packets are sent or tcp_process_options is 5090 * invoked. Returns B_FALSE if the correct label could not be constructed. 5091 */ 5092 static boolean_t 5093 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5094 { 5095 conn_t *connp = tcp->tcp_connp; 5096 5097 if (tcp->tcp_ipversion == IPV4_VERSION) { 5098 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5099 int added; 5100 5101 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5102 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5103 return (B_FALSE); 5104 5105 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5106 if (added == -1) 5107 return (B_FALSE); 5108 tcp->tcp_hdr_len += added; 5109 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5110 tcp->tcp_ip_hdr_len += added; 5111 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5112 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5113 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5114 tcp->tcp_hdr_len); 5115 if (added == -1) 5116 return (B_FALSE); 5117 tcp->tcp_hdr_len += added; 5118 tcp->tcp_tcph = (tcph_t *) 5119 ((uchar_t *)tcp->tcp_tcph + added); 5120 tcp->tcp_ip_hdr_len += added; 5121 } 5122 } else { 5123 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5124 5125 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5126 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5127 return (B_FALSE); 5128 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5129 &tcp->tcp_label_len, optbuf) != 0) 5130 return (B_FALSE); 5131 if (tcp_build_hdrs(tcp) != 0) 5132 return (B_FALSE); 5133 } 5134 5135 connp->conn_ulp_labeled = 1; 5136 5137 return (B_TRUE); 5138 } 5139 5140 /* BEGIN CSTYLED */ 5141 /* 5142 * 5143 * The sockfs ACCEPT path: 5144 * ======================= 5145 * 5146 * The eager is now established in its own perimeter as soon as SYN is 5147 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5148 * completes the accept processing on the acceptor STREAM. The sending 5149 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5150 * listener but a TLI/XTI listener completes the accept processing 5151 * on the listener perimeter. 5152 * 5153 * Common control flow for 3 way handshake: 5154 * ---------------------------------------- 5155 * 5156 * incoming SYN (listener perimeter) -> tcp_rput_data() 5157 * -> tcp_conn_request() 5158 * 5159 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5160 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5161 * 5162 * Sockfs ACCEPT Path: 5163 * ------------------- 5164 * 5165 * open acceptor stream (tcp_open allocates tcp_wput_accept() 5166 * as STREAM entry point) 5167 * 5168 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5169 * 5170 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5171 * association (we are not behind eager's squeue but sockfs is protecting us 5172 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5173 * is changed to point at tcp_wput(). 5174 * 5175 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5176 * listener (done on listener's perimeter). 5177 * 5178 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5179 * accept. 5180 * 5181 * TLI/XTI client ACCEPT path: 5182 * --------------------------- 5183 * 5184 * soaccept() sends T_CONN_RES on the listener STREAM. 5185 * 5186 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5187 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5188 * 5189 * Locks: 5190 * ====== 5191 * 5192 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5193 * and listeners->tcp_eager_next_q. 5194 * 5195 * Referencing: 5196 * ============ 5197 * 5198 * 1) We start out in tcp_conn_request by eager placing a ref on 5199 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5200 * 5201 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5202 * doing so we place a ref on the eager. This ref is finally dropped at the 5203 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5204 * reference is dropped by the squeue framework. 5205 * 5206 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5207 * 5208 * The reference must be released by the same entity that added the reference 5209 * In the above scheme, the eager is the entity that adds and releases the 5210 * references. Note that tcp_accept_finish executes in the squeue of the eager 5211 * (albeit after it is attached to the acceptor stream). Though 1. executes 5212 * in the listener's squeue, the eager is nascent at this point and the 5213 * reference can be considered to have been added on behalf of the eager. 5214 * 5215 * Eager getting a Reset or listener closing: 5216 * ========================================== 5217 * 5218 * Once the listener and eager are linked, the listener never does the unlink. 5219 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5220 * a message on all eager perimeter. The eager then does the unlink, clears 5221 * any pointers to the listener's queue and drops the reference to the 5222 * listener. The listener waits in tcp_close outside the squeue until its 5223 * refcount has dropped to 1. This ensures that the listener has waited for 5224 * all eagers to clear their association with the listener. 5225 * 5226 * Similarly, if eager decides to go away, it can unlink itself and close. 5227 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5228 * the reference to eager is still valid because of the extra ref we put 5229 * in tcp_send_conn_ind. 5230 * 5231 * Listener can always locate the eager under the protection 5232 * of the listener->tcp_eager_lock, and then do a refhold 5233 * on the eager during the accept processing. 5234 * 5235 * The acceptor stream accesses the eager in the accept processing 5236 * based on the ref placed on eager before sending T_conn_ind. 5237 * The only entity that can negate this refhold is a listener close 5238 * which is mutually exclusive with an active acceptor stream. 5239 * 5240 * Eager's reference on the listener 5241 * =================================== 5242 * 5243 * If the accept happens (even on a closed eager) the eager drops its 5244 * reference on the listener at the start of tcp_accept_finish. If the 5245 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5246 * the reference is dropped in tcp_closei_local. If the listener closes, 5247 * the reference is dropped in tcp_eager_kill. In all cases the reference 5248 * is dropped while executing in the eager's context (squeue). 5249 */ 5250 /* END CSTYLED */ 5251 5252 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5253 5254 /* 5255 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5256 * tcp_rput_data will not see any SYN packets. 5257 */ 5258 /* ARGSUSED */ 5259 void 5260 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5261 { 5262 tcph_t *tcph; 5263 uint32_t seg_seq; 5264 tcp_t *eager; 5265 uint_t ipvers; 5266 ipha_t *ipha; 5267 ip6_t *ip6h; 5268 int err; 5269 conn_t *econnp = NULL; 5270 squeue_t *new_sqp; 5271 mblk_t *mp1; 5272 uint_t ip_hdr_len; 5273 conn_t *connp = (conn_t *)arg; 5274 tcp_t *tcp = connp->conn_tcp; 5275 cred_t *credp; 5276 tcp_stack_t *tcps = tcp->tcp_tcps; 5277 ip_stack_t *ipst; 5278 5279 if (tcp->tcp_state != TCPS_LISTEN) 5280 goto error2; 5281 5282 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5283 5284 mutex_enter(&tcp->tcp_eager_lock); 5285 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5286 mutex_exit(&tcp->tcp_eager_lock); 5287 TCP_STAT(tcps, tcp_listendrop); 5288 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 5289 if (tcp->tcp_debug) { 5290 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5291 "tcp_conn_request: listen backlog (max=%d) " 5292 "overflow (%d pending) on %s", 5293 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5294 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5295 } 5296 goto error2; 5297 } 5298 5299 if (tcp->tcp_conn_req_cnt_q0 >= 5300 tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 5301 /* 5302 * Q0 is full. Drop a pending half-open req from the queue 5303 * to make room for the new SYN req. Also mark the time we 5304 * drop a SYN. 5305 * 5306 * A more aggressive defense against SYN attack will 5307 * be to set the "tcp_syn_defense" flag now. 5308 */ 5309 TCP_STAT(tcps, tcp_listendropq0); 5310 tcp->tcp_last_rcv_lbolt = lbolt64; 5311 if (!tcp_drop_q0(tcp)) { 5312 mutex_exit(&tcp->tcp_eager_lock); 5313 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 5314 if (tcp->tcp_debug) { 5315 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5316 "tcp_conn_request: listen half-open queue " 5317 "(max=%d) full (%d pending) on %s", 5318 tcps->tcps_conn_req_max_q0, 5319 tcp->tcp_conn_req_cnt_q0, 5320 tcp_display(tcp, NULL, 5321 DISP_PORT_ONLY)); 5322 } 5323 goto error2; 5324 } 5325 } 5326 mutex_exit(&tcp->tcp_eager_lock); 5327 5328 /* 5329 * IP adds STRUIO_EAGER and ensures that the received packet is 5330 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5331 * link local address. If IPSec is enabled, db_struioflag has 5332 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5333 * otherwise an error case if neither of them is set. 5334 */ 5335 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5336 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5337 DB_CKSUMSTART(mp) = 0; 5338 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5339 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 5340 if (econnp == NULL) 5341 goto error2; 5342 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5343 econnp->conn_sqp = new_sqp; 5344 econnp->conn_initial_sqp = new_sqp; 5345 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5346 /* 5347 * mp is updated in tcp_get_ipsec_conn(). 5348 */ 5349 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5350 if (econnp == NULL) { 5351 /* 5352 * mp freed by tcp_get_ipsec_conn. 5353 */ 5354 return; 5355 } 5356 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5357 } else { 5358 goto error2; 5359 } 5360 5361 ASSERT(DB_TYPE(mp) == M_DATA); 5362 5363 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5364 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5365 ASSERT(OK_32PTR(mp->b_rptr)); 5366 if (ipvers == IPV4_VERSION) { 5367 ipha = (ipha_t *)mp->b_rptr; 5368 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5369 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5370 } else { 5371 ip6h = (ip6_t *)mp->b_rptr; 5372 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5373 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5374 } 5375 5376 if (tcp->tcp_family == AF_INET) { 5377 ASSERT(ipvers == IPV4_VERSION); 5378 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5379 } else { 5380 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5381 } 5382 5383 if (err) 5384 goto error3; 5385 5386 eager = econnp->conn_tcp; 5387 ASSERT(eager->tcp_ordrel_mp == NULL); 5388 5389 if (!IPCL_IS_NONSTR(econnp)) { 5390 /* 5391 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that 5392 * at close time, we will always have that to send up. 5393 * Otherwise, we need to do special handling in case the 5394 * allocation fails at that time. 5395 */ 5396 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 5397 goto error3; 5398 } 5399 /* Inherit various TCP parameters from the listener */ 5400 eager->tcp_naglim = tcp->tcp_naglim; 5401 eager->tcp_first_timer_threshold = tcp->tcp_first_timer_threshold; 5402 eager->tcp_second_timer_threshold = tcp->tcp_second_timer_threshold; 5403 5404 eager->tcp_first_ctimer_threshold = tcp->tcp_first_ctimer_threshold; 5405 eager->tcp_second_ctimer_threshold = tcp->tcp_second_ctimer_threshold; 5406 5407 /* 5408 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5409 * If it does not, the eager's receive window will be set to the 5410 * listener's receive window later in this function. 5411 */ 5412 eager->tcp_rwnd = 0; 5413 5414 /* 5415 * Inherit listener's tcp_init_cwnd. Need to do this before 5416 * calling tcp_process_options() where tcp_mss_set() is called 5417 * to set the initial cwnd. 5418 */ 5419 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5420 5421 /* 5422 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5423 * zone id before the accept is completed in tcp_wput_accept(). 5424 */ 5425 econnp->conn_zoneid = connp->conn_zoneid; 5426 econnp->conn_allzones = connp->conn_allzones; 5427 5428 /* Copy nexthop information from listener to eager */ 5429 if (connp->conn_nexthop_set) { 5430 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5431 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5432 } 5433 5434 /* 5435 * TSOL: tsol_input_proc() needs the eager's cred before the 5436 * eager is accepted 5437 */ 5438 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5439 crhold(credp); 5440 5441 ASSERT(econnp->conn_effective_cred == NULL); 5442 if (is_system_labeled()) { 5443 cred_t *cr; 5444 ts_label_t *tsl; 5445 5446 /* 5447 * If this is an MLP connection or a MAC-Exempt connection 5448 * with an unlabeled node, packets are to be 5449 * exchanged using the security label of the received 5450 * SYN packet instead of the server application's label. 5451 */ 5452 if ((cr = msg_getcred(mp, NULL)) != NULL && 5453 (tsl = crgetlabel(cr)) != NULL && 5454 (connp->conn_mlp_type != mlptSingle || 5455 (connp->conn_mac_exempt == B_TRUE && 5456 (tsl->tsl_flags & TSLF_UNLABELED)))) { 5457 if ((econnp->conn_effective_cred = 5458 copycred_from_tslabel(econnp->conn_cred, 5459 tsl, KM_NOSLEEP)) != NULL) { 5460 DTRACE_PROBE2( 5461 syn_accept_peerlabel, 5462 conn_t *, econnp, cred_t *, 5463 econnp->conn_effective_cred); 5464 } else { 5465 DTRACE_PROBE3( 5466 tx__ip__log__error__set__eagercred__tcp, 5467 char *, 5468 "SYN mp(1) label on eager connp(2) failed", 5469 mblk_t *, mp, conn_t *, econnp); 5470 goto error3; 5471 } 5472 } else { 5473 DTRACE_PROBE2(syn_accept, conn_t *, 5474 econnp, cred_t *, econnp->conn_cred) 5475 } 5476 5477 /* 5478 * Verify the destination is allowed to receive packets 5479 * at the security label of the SYN-ACK we are generating. 5480 * tsol_check_dest() may create a new effective cred for 5481 * this connection with a modified label or label flags. 5482 */ 5483 if (IN6_IS_ADDR_V4MAPPED(&econnp->conn_remv6)) { 5484 uint32_t dst; 5485 IN6_V4MAPPED_TO_IPADDR(&econnp->conn_remv6, dst); 5486 err = tsol_check_dest(CONN_CRED(econnp), &dst, 5487 IPV4_VERSION, B_FALSE, &cr); 5488 } else { 5489 err = tsol_check_dest(CONN_CRED(econnp), 5490 &econnp->conn_remv6, IPV6_VERSION, 5491 B_FALSE, &cr); 5492 } 5493 if (err != 0) 5494 goto error3; 5495 if (cr != NULL) { 5496 if (econnp->conn_effective_cred != NULL) 5497 crfree(econnp->conn_effective_cred); 5498 econnp->conn_effective_cred = cr; 5499 } 5500 5501 /* 5502 * Generate the security label to be used in the text of 5503 * this connection's outgoing packets. 5504 */ 5505 if (!tcp_update_label(eager, CONN_CRED(econnp))) { 5506 DTRACE_PROBE3( 5507 tx__ip__log__error__connrequest__tcp, 5508 char *, "eager connp(1) label on SYN mp(2) failed", 5509 conn_t *, econnp, mblk_t *, mp); 5510 goto error3; 5511 } 5512 } 5513 5514 eager->tcp_hard_binding = B_TRUE; 5515 5516 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 5517 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5518 5519 CL_INET_CONNECT(connp, eager, B_FALSE, err); 5520 if (err != 0) { 5521 tcp_bind_hash_remove(eager); 5522 goto error3; 5523 } 5524 5525 /* 5526 * No need to check for multicast destination since ip will only pass 5527 * up multicasts to those that have expressed interest 5528 * TODO: what about rejecting broadcasts? 5529 * Also check that source is not a multicast or broadcast address. 5530 */ 5531 eager->tcp_state = TCPS_SYN_RCVD; 5532 5533 5534 /* 5535 * There should be no ire in the mp as we are being called after 5536 * receiving the SYN. 5537 */ 5538 ASSERT(tcp_ire_mp(&mp) == NULL); 5539 5540 /* 5541 * Adapt our mss, ttl, ... according to information provided in IRE. 5542 */ 5543 5544 if (tcp_adapt_ire(eager, NULL) == 0) { 5545 /* Undo the bind_hash_insert */ 5546 tcp_bind_hash_remove(eager); 5547 goto error3; 5548 } 5549 5550 /* Process all TCP options. */ 5551 tcp_process_options(eager, tcph); 5552 5553 /* Is the other end ECN capable? */ 5554 if (tcps->tcps_ecn_permitted >= 1 && 5555 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5556 eager->tcp_ecn_ok = B_TRUE; 5557 } 5558 5559 /* 5560 * listeners tcp_recv_hiwater should be the default window size or a 5561 * window size changed via SO_RCVBUF option. First round up the 5562 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5563 * scale option value if needed. Call tcp_rwnd_set() to finish the 5564 * setting. 5565 * 5566 * Note if there is a rpipe metric associated with the remote host, 5567 * we should not inherit receive window size from listener. 5568 */ 5569 eager->tcp_rwnd = MSS_ROUNDUP( 5570 (eager->tcp_rwnd == 0 ? tcp->tcp_recv_hiwater: 5571 eager->tcp_rwnd), eager->tcp_mss); 5572 if (eager->tcp_snd_ws_ok) 5573 tcp_set_ws_value(eager); 5574 /* 5575 * Note that this is the only place tcp_rwnd_set() is called for 5576 * accepting a connection. We need to call it here instead of 5577 * after the 3-way handshake because we need to tell the other 5578 * side our rwnd in the SYN-ACK segment. 5579 */ 5580 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5581 5582 /* 5583 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5584 * via soaccept()->soinheritoptions() which essentially applies 5585 * all the listener options to the new STREAM. The options that we 5586 * need to take care of are: 5587 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5588 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5589 * SO_SNDBUF, SO_RCVBUF. 5590 * 5591 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5592 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5593 * tcp_maxpsz_set() gets called later from 5594 * tcp_accept_finish(), the option takes effect. 5595 * 5596 */ 5597 /* Set the TCP options */ 5598 eager->tcp_recv_hiwater = tcp->tcp_recv_hiwater; 5599 eager->tcp_recv_lowater = tcp->tcp_recv_lowater; 5600 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5601 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5602 eager->tcp_oobinline = tcp->tcp_oobinline; 5603 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5604 eager->tcp_broadcast = tcp->tcp_broadcast; 5605 eager->tcp_useloopback = tcp->tcp_useloopback; 5606 eager->tcp_dontroute = tcp->tcp_dontroute; 5607 eager->tcp_debug = tcp->tcp_debug; 5608 eager->tcp_linger = tcp->tcp_linger; 5609 eager->tcp_lingertime = tcp->tcp_lingertime; 5610 if (tcp->tcp_ka_enabled) 5611 eager->tcp_ka_enabled = 1; 5612 5613 /* Set the IP options */ 5614 econnp->conn_broadcast = connp->conn_broadcast; 5615 econnp->conn_loopback = connp->conn_loopback; 5616 econnp->conn_dontroute = connp->conn_dontroute; 5617 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5618 5619 /* Put a ref on the listener for the eager. */ 5620 CONN_INC_REF(connp); 5621 mutex_enter(&tcp->tcp_eager_lock); 5622 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5623 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5624 tcp->tcp_eager_next_q0 = eager; 5625 eager->tcp_eager_prev_q0 = tcp; 5626 5627 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5628 eager->tcp_listener = tcp; 5629 eager->tcp_saved_listener = tcp; 5630 5631 /* 5632 * Tag this detached tcp vector for later retrieval 5633 * by our listener client in tcp_accept(). 5634 */ 5635 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5636 tcp->tcp_conn_req_cnt_q0++; 5637 if (++tcp->tcp_conn_req_seqnum == -1) { 5638 /* 5639 * -1 is "special" and defined in TPI as something 5640 * that should never be used in T_CONN_IND 5641 */ 5642 ++tcp->tcp_conn_req_seqnum; 5643 } 5644 mutex_exit(&tcp->tcp_eager_lock); 5645 5646 if (tcp->tcp_syn_defense) { 5647 /* Don't drop the SYN that comes from a good IP source */ 5648 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5649 if (addr_cache != NULL && eager->tcp_remote == 5650 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5651 eager->tcp_dontdrop = B_TRUE; 5652 } 5653 } 5654 5655 /* 5656 * We need to insert the eager in its own perimeter but as soon 5657 * as we do that, we expose the eager to the classifier and 5658 * should not touch any field outside the eager's perimeter. 5659 * So do all the work necessary before inserting the eager 5660 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5661 * will succeed but undo everything if it fails. 5662 */ 5663 seg_seq = ABE32_TO_U32(tcph->th_seq); 5664 eager->tcp_irs = seg_seq; 5665 eager->tcp_rack = seg_seq; 5666 eager->tcp_rnxt = seg_seq + 1; 5667 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5668 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 5669 eager->tcp_state = TCPS_SYN_RCVD; 5670 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5671 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5672 if (mp1 == NULL) { 5673 /* 5674 * Increment the ref count as we are going to 5675 * enqueueing an mp in squeue 5676 */ 5677 CONN_INC_REF(econnp); 5678 goto error; 5679 } 5680 5681 /* 5682 * Note that in theory this should use the current pid 5683 * so that getpeerucred on the client returns the actual listener 5684 * that does accept. But accept() hasn't been called yet. We could use 5685 * the pid of the process that did bind/listen on the server. 5686 * However, with common usage like inetd() the bind/listen can be done 5687 * by a different process than the accept(). 5688 * Hence we do the simple thing of using the open pid here. 5689 * Note that db_credp is set later in tcp_send_data(). 5690 */ 5691 mblk_setcred(mp1, credp, tcp->tcp_cpid); 5692 eager->tcp_cpid = tcp->tcp_cpid; 5693 eager->tcp_open_time = lbolt64; 5694 5695 /* 5696 * We need to start the rto timer. In normal case, we start 5697 * the timer after sending the packet on the wire (or at 5698 * least believing that packet was sent by waiting for 5699 * CALL_IP_WPUT() to return). Since this is the first packet 5700 * being sent on the wire for the eager, our initial tcp_rto 5701 * is at least tcp_rexmit_interval_min which is a fairly 5702 * large value to allow the algorithm to adjust slowly to large 5703 * fluctuations of RTT during first few transmissions. 5704 * 5705 * Starting the timer first and then sending the packet in this 5706 * case shouldn't make much difference since tcp_rexmit_interval_min 5707 * is of the order of several 100ms and starting the timer 5708 * first and then sending the packet will result in difference 5709 * of few micro seconds. 5710 * 5711 * Without this optimization, we are forced to hold the fanout 5712 * lock across the ipcl_bind_insert() and sending the packet 5713 * so that we don't race against an incoming packet (maybe RST) 5714 * for this eager. 5715 * 5716 * It is necessary to acquire an extra reference on the eager 5717 * at this point and hold it until after tcp_send_data() to 5718 * ensure against an eager close race. 5719 */ 5720 5721 CONN_INC_REF(eager->tcp_connp); 5722 5723 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5724 5725 /* 5726 * Insert the eager in its own perimeter now. We are ready to deal 5727 * with any packets on eager. 5728 */ 5729 if (eager->tcp_ipversion == IPV4_VERSION) { 5730 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5731 goto error; 5732 } 5733 } else { 5734 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5735 goto error; 5736 } 5737 } 5738 5739 /* mark conn as fully-bound */ 5740 econnp->conn_fully_bound = B_TRUE; 5741 5742 /* Send the SYN-ACK */ 5743 tcp_send_data(eager, eager->tcp_wq, mp1); 5744 CONN_DEC_REF(eager->tcp_connp); 5745 freemsg(mp); 5746 5747 return; 5748 error: 5749 freemsg(mp1); 5750 eager->tcp_closemp_used = B_TRUE; 5751 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5752 mp1 = &eager->tcp_closemp; 5753 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 5754 econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 5755 5756 /* 5757 * If a connection already exists, send the mp to that connections so 5758 * that it can be appropriately dealt with. 5759 */ 5760 ipst = tcps->tcps_netstack->netstack_ip; 5761 5762 if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) { 5763 if (!IPCL_IS_CONNECTED(econnp)) { 5764 /* 5765 * Something bad happened. ipcl_conn_insert() 5766 * failed because a connection already existed 5767 * in connected hash but we can't find it 5768 * anymore (someone blew it away). Just 5769 * free this message and hopefully remote 5770 * will retransmit at which time the SYN can be 5771 * treated as a new connection or dealth with 5772 * a TH_RST if a connection already exists. 5773 */ 5774 CONN_DEC_REF(econnp); 5775 freemsg(mp); 5776 } else { 5777 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, 5778 tcp_input, econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 5779 } 5780 } else { 5781 /* Nobody wants this packet */ 5782 freemsg(mp); 5783 } 5784 return; 5785 error3: 5786 CONN_DEC_REF(econnp); 5787 error2: 5788 freemsg(mp); 5789 } 5790 5791 /* 5792 * In an ideal case of vertical partition in NUMA architecture, its 5793 * beneficial to have the listener and all the incoming connections 5794 * tied to the same squeue. The other constraint is that incoming 5795 * connections should be tied to the squeue attached to interrupted 5796 * CPU for obvious locality reason so this leaves the listener to 5797 * be tied to the same squeue. Our only problem is that when listener 5798 * is binding, the CPU that will get interrupted by the NIC whose 5799 * IP address the listener is binding to is not even known. So 5800 * the code below allows us to change that binding at the time the 5801 * CPU is interrupted by virtue of incoming connection's squeue. 5802 * 5803 * This is usefull only in case of a listener bound to a specific IP 5804 * address. For other kind of listeners, they get bound the 5805 * very first time and there is no attempt to rebind them. 5806 */ 5807 void 5808 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 5809 { 5810 conn_t *connp = (conn_t *)arg; 5811 squeue_t *sqp = (squeue_t *)arg2; 5812 squeue_t *new_sqp; 5813 uint32_t conn_flags; 5814 5815 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5816 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5817 } else { 5818 goto done; 5819 } 5820 5821 if (connp->conn_fanout == NULL) 5822 goto done; 5823 5824 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5825 mutex_enter(&connp->conn_fanout->connf_lock); 5826 mutex_enter(&connp->conn_lock); 5827 /* 5828 * No one from read or write side can access us now 5829 * except for already queued packets on this squeue. 5830 * But since we haven't changed the squeue yet, they 5831 * can't execute. If they are processed after we have 5832 * changed the squeue, they are sent back to the 5833 * correct squeue down below. 5834 * But a listner close can race with processing of 5835 * incoming SYN. If incoming SYN processing changes 5836 * the squeue then the listener close which is waiting 5837 * to enter the squeue would operate on the wrong 5838 * squeue. Hence we don't change the squeue here unless 5839 * the refcount is exactly the minimum refcount. The 5840 * minimum refcount of 4 is counted as - 1 each for 5841 * TCP and IP, 1 for being in the classifier hash, and 5842 * 1 for the mblk being processed. 5843 */ 5844 5845 if (connp->conn_ref != 4 || 5846 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 5847 mutex_exit(&connp->conn_lock); 5848 mutex_exit(&connp->conn_fanout->connf_lock); 5849 goto done; 5850 } 5851 if (connp->conn_sqp != new_sqp) { 5852 while (connp->conn_sqp != new_sqp) 5853 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5854 } 5855 5856 do { 5857 conn_flags = connp->conn_flags; 5858 conn_flags |= IPCL_FULLY_BOUND; 5859 (void) cas32(&connp->conn_flags, connp->conn_flags, 5860 conn_flags); 5861 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5862 5863 mutex_exit(&connp->conn_fanout->connf_lock); 5864 mutex_exit(&connp->conn_lock); 5865 } 5866 5867 done: 5868 if (connp->conn_sqp != sqp) { 5869 CONN_INC_REF(connp); 5870 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 5871 SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 5872 } else { 5873 tcp_conn_request(connp, mp, sqp); 5874 } 5875 } 5876 5877 /* 5878 * Successful connect request processing begins when our client passes 5879 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 5880 * our T_OK_ACK reply message upstream. The control flow looks like this: 5881 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_tpi_connect() -> IP 5882 * upstream <- tcp_rput() <- IP 5883 * After various error checks are completed, tcp_tpi_connect() lays 5884 * the target address and port into the composite header template, 5885 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 5886 * request followed by an IRE request, and passes the three mblk message 5887 * down to IP looking like this: 5888 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 5889 * Processing continues in tcp_rput() when we receive the following message: 5890 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 5891 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 5892 * to fire off the connection request, and then passes the T_OK_ACK mblk 5893 * upstream that we filled in below. There are, of course, numerous 5894 * error conditions along the way which truncate the processing described 5895 * above. 5896 */ 5897 static void 5898 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp) 5899 { 5900 sin_t *sin; 5901 queue_t *q = tcp->tcp_wq; 5902 struct T_conn_req *tcr; 5903 struct sockaddr *sa; 5904 socklen_t len; 5905 int error; 5906 cred_t *cr; 5907 pid_t cpid; 5908 5909 /* 5910 * All Solaris components should pass a db_credp 5911 * for this TPI message, hence we ASSERT. 5912 * But in case there is some other M_PROTO that looks 5913 * like a TPI message sent by some other kernel 5914 * component, we check and return an error. 5915 */ 5916 cr = msg_getcred(mp, &cpid); 5917 ASSERT(cr != NULL); 5918 if (cr == NULL) { 5919 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5920 return; 5921 } 5922 5923 tcr = (struct T_conn_req *)mp->b_rptr; 5924 5925 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5926 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5927 tcp_err_ack(tcp, mp, TPROTO, 0); 5928 return; 5929 } 5930 5931 /* 5932 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 5933 * will always have that to send up. Otherwise, we need to do 5934 * special handling in case the allocation fails at that time. 5935 * If the end point is TPI, the tcp_t can be reused and the 5936 * tcp_ordrel_mp may be allocated already. 5937 */ 5938 if (tcp->tcp_ordrel_mp == NULL) { 5939 if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) { 5940 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5941 return; 5942 } 5943 } 5944 5945 /* 5946 * Determine packet type based on type of address passed in 5947 * the request should contain an IPv4 or IPv6 address. 5948 * Make sure that address family matches the type of 5949 * family of the the address passed down 5950 */ 5951 switch (tcr->DEST_length) { 5952 default: 5953 tcp_err_ack(tcp, mp, TBADADDR, 0); 5954 return; 5955 5956 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5957 /* 5958 * XXX: The check for valid DEST_length was not there 5959 * in earlier releases and some buggy 5960 * TLI apps (e.g Sybase) got away with not feeding 5961 * in sin_zero part of address. 5962 * We allow that bug to keep those buggy apps humming. 5963 * Test suites require the check on DEST_length. 5964 * We construct a new mblk with valid DEST_length 5965 * free the original so the rest of the code does 5966 * not have to keep track of this special shorter 5967 * length address case. 5968 */ 5969 mblk_t *nmp; 5970 struct T_conn_req *ntcr; 5971 sin_t *nsin; 5972 5973 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5974 tcr->OPT_length, BPRI_HI); 5975 if (nmp == NULL) { 5976 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5977 return; 5978 } 5979 ntcr = (struct T_conn_req *)nmp->b_rptr; 5980 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5981 ntcr->PRIM_type = T_CONN_REQ; 5982 ntcr->DEST_length = sizeof (sin_t); 5983 ntcr->DEST_offset = sizeof (struct T_conn_req); 5984 5985 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 5986 *nsin = sin_null; 5987 /* Get pointer to shorter address to copy from original mp */ 5988 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5989 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 5990 if (sin == NULL || !OK_32PTR((char *)sin)) { 5991 freemsg(nmp); 5992 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5993 return; 5994 } 5995 nsin->sin_family = sin->sin_family; 5996 nsin->sin_port = sin->sin_port; 5997 nsin->sin_addr = sin->sin_addr; 5998 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 5999 nmp->b_wptr = (uchar_t *)&nsin[1]; 6000 if (tcr->OPT_length != 0) { 6001 ntcr->OPT_length = tcr->OPT_length; 6002 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6003 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6004 (uchar_t *)ntcr + ntcr->OPT_offset, 6005 tcr->OPT_length); 6006 nmp->b_wptr += tcr->OPT_length; 6007 } 6008 freemsg(mp); /* original mp freed */ 6009 mp = nmp; /* re-initialize original variables */ 6010 tcr = ntcr; 6011 } 6012 /* FALLTHRU */ 6013 6014 case sizeof (sin_t): 6015 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 6016 sizeof (sin_t)); 6017 len = sizeof (sin_t); 6018 break; 6019 6020 case sizeof (sin6_t): 6021 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 6022 sizeof (sin6_t)); 6023 len = sizeof (sin6_t); 6024 break; 6025 } 6026 6027 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 6028 if (error != 0) { 6029 tcp_err_ack(tcp, mp, TSYSERR, error); 6030 return; 6031 } 6032 6033 /* 6034 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6035 * should key on their sequence number and cut them loose. 6036 */ 6037 6038 /* 6039 * If options passed in, feed it for verification and handling 6040 */ 6041 if (tcr->OPT_length != 0) { 6042 mblk_t *ok_mp; 6043 mblk_t *discon_mp; 6044 mblk_t *conn_opts_mp; 6045 int t_error, sys_error, do_disconnect; 6046 6047 conn_opts_mp = NULL; 6048 6049 if (tcp_conprim_opt_process(tcp, mp, 6050 &do_disconnect, &t_error, &sys_error) < 0) { 6051 if (do_disconnect) { 6052 ASSERT(t_error == 0 && sys_error == 0); 6053 discon_mp = mi_tpi_discon_ind(NULL, 6054 ECONNREFUSED, 0); 6055 if (!discon_mp) { 6056 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6057 TSYSERR, ENOMEM); 6058 return; 6059 } 6060 ok_mp = mi_tpi_ok_ack_alloc(mp); 6061 if (!ok_mp) { 6062 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6063 TSYSERR, ENOMEM); 6064 return; 6065 } 6066 qreply(q, ok_mp); 6067 qreply(q, discon_mp); /* no flush! */ 6068 } else { 6069 ASSERT(t_error != 0); 6070 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6071 sys_error); 6072 } 6073 return; 6074 } 6075 /* 6076 * Success in setting options, the mp option buffer represented 6077 * by OPT_length/offset has been potentially modified and 6078 * contains results of option processing. We copy it in 6079 * another mp to save it for potentially influencing returning 6080 * it in T_CONN_CONN. 6081 */ 6082 if (tcr->OPT_length != 0) { /* there are resulting options */ 6083 conn_opts_mp = copyb(mp); 6084 if (!conn_opts_mp) { 6085 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6086 TSYSERR, ENOMEM); 6087 return; 6088 } 6089 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6090 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6091 /* 6092 * Note: 6093 * These resulting option negotiation can include any 6094 * end-to-end negotiation options but there no such 6095 * thing (yet?) in our TCP/IP. 6096 */ 6097 } 6098 } 6099 6100 /* call the non-TPI version */ 6101 error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid); 6102 if (error < 0) { 6103 mp = mi_tpi_err_ack_alloc(mp, -error, 0); 6104 } else if (error > 0) { 6105 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 6106 } else { 6107 mp = mi_tpi_ok_ack_alloc(mp); 6108 } 6109 6110 /* 6111 * Note: Code below is the "failure" case 6112 */ 6113 /* return error ack and blow away saved option results if any */ 6114 connect_failed: 6115 if (mp != NULL) 6116 putnext(tcp->tcp_rq, mp); 6117 else { 6118 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6119 TSYSERR, ENOMEM); 6120 } 6121 } 6122 6123 /* 6124 * Handle connect to IPv4 destinations, including connections for AF_INET6 6125 * sockets connecting to IPv4 mapped IPv6 destinations. 6126 */ 6127 static int 6128 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 6129 uint_t srcid, cred_t *cr, pid_t pid) 6130 { 6131 tcph_t *tcph; 6132 mblk_t *mp; 6133 ipaddr_t dstaddr = *dstaddrp; 6134 int32_t oldstate; 6135 uint16_t lport; 6136 int error = 0; 6137 tcp_stack_t *tcps = tcp->tcp_tcps; 6138 6139 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6140 6141 /* Check for attempt to connect to INADDR_ANY */ 6142 if (dstaddr == INADDR_ANY) { 6143 /* 6144 * SunOS 4.x and 4.3 BSD allow an application 6145 * to connect a TCP socket to INADDR_ANY. 6146 * When they do this, the kernel picks the 6147 * address of one interface and uses it 6148 * instead. The kernel usually ends up 6149 * picking the address of the loopback 6150 * interface. This is an undocumented feature. 6151 * However, we provide the same thing here 6152 * in order to have source and binary 6153 * compatibility with SunOS 4.x. 6154 * Update the T_CONN_REQ (sin/sin6) since it is used to 6155 * generate the T_CONN_CON. 6156 */ 6157 dstaddr = htonl(INADDR_LOOPBACK); 6158 *dstaddrp = dstaddr; 6159 } 6160 6161 /* Handle __sin6_src_id if socket not bound to an IP address */ 6162 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6163 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6164 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6165 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6166 tcp->tcp_ipha->ipha_src); 6167 } 6168 6169 /* 6170 * Don't let an endpoint connect to itself. Note that 6171 * the test here does not catch the case where the 6172 * source IP addr was left unspecified by the user. In 6173 * this case, the source addr is set in tcp_adapt_ire() 6174 * using the reply to the T_BIND message that we send 6175 * down to IP here and the check is repeated in tcp_rput_other. 6176 */ 6177 if (dstaddr == tcp->tcp_ipha->ipha_src && 6178 dstport == tcp->tcp_lport) { 6179 error = -TBADADDR; 6180 goto failed; 6181 } 6182 6183 /* 6184 * Verify the destination is allowed to receive packets 6185 * at the security label of the connection we are initiating. 6186 * tsol_check_dest() may create a new effective cred for this 6187 * connection with a modified label or label flags. 6188 */ 6189 if (is_system_labeled()) { 6190 ASSERT(tcp->tcp_connp->conn_effective_cred == NULL); 6191 if ((error = tsol_check_dest(CONN_CRED(tcp->tcp_connp), 6192 &dstaddr, IPV4_VERSION, tcp->tcp_connp->conn_mac_exempt, 6193 &tcp->tcp_connp->conn_effective_cred)) != 0) { 6194 if (error != EHOSTUNREACH) 6195 error = -TSYSERR; 6196 goto failed; 6197 } 6198 } 6199 6200 tcp->tcp_ipha->ipha_dst = dstaddr; 6201 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6202 6203 /* 6204 * Massage a source route if any putting the first hop 6205 * in iph_dst. Compute a starting value for the checksum which 6206 * takes into account that the original iph_dst should be 6207 * included in the checksum but that ip will include the 6208 * first hop in the source route in the tcp checksum. 6209 */ 6210 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack); 6211 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6212 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6213 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6214 if ((int)tcp->tcp_sum < 0) 6215 tcp->tcp_sum--; 6216 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6217 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6218 (tcp->tcp_sum >> 16)); 6219 tcph = tcp->tcp_tcph; 6220 *(uint16_t *)tcph->th_fport = dstport; 6221 tcp->tcp_fport = dstport; 6222 6223 oldstate = tcp->tcp_state; 6224 /* 6225 * At this point the remote destination address and remote port fields 6226 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6227 * have to see which state tcp was in so we can take apropriate action. 6228 */ 6229 if (oldstate == TCPS_IDLE) { 6230 /* 6231 * We support a quick connect capability here, allowing 6232 * clients to transition directly from IDLE to SYN_SENT 6233 * tcp_bindi will pick an unused port, insert the connection 6234 * in the bind hash and transition to BOUND state. 6235 */ 6236 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6237 tcp, B_TRUE); 6238 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6239 B_FALSE, B_FALSE); 6240 if (lport == 0) { 6241 error = -TNOADDR; 6242 goto failed; 6243 } 6244 } 6245 tcp->tcp_state = TCPS_SYN_SENT; 6246 6247 mp = allocb(sizeof (ire_t), BPRI_HI); 6248 if (mp == NULL) { 6249 tcp->tcp_state = oldstate; 6250 error = ENOMEM; 6251 goto failed; 6252 } 6253 6254 mp->b_wptr += sizeof (ire_t); 6255 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6256 tcp->tcp_hard_binding = 1; 6257 6258 /* 6259 * We need to make sure that the conn_recv is set to a non-null 6260 * value before we insert the conn_t into the classifier table. 6261 * This is to avoid a race with an incoming packet which does 6262 * an ipcl_classify(). 6263 */ 6264 tcp->tcp_connp->conn_recv = tcp_input; 6265 6266 if (tcp->tcp_family == AF_INET) { 6267 error = ip_proto_bind_connected_v4(tcp->tcp_connp, &mp, 6268 IPPROTO_TCP, &tcp->tcp_ipha->ipha_src, tcp->tcp_lport, 6269 tcp->tcp_remote, tcp->tcp_fport, B_TRUE, B_TRUE, cr); 6270 } else { 6271 in6_addr_t v6src; 6272 if (tcp->tcp_ipversion == IPV4_VERSION) { 6273 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6274 } else { 6275 v6src = tcp->tcp_ip6h->ip6_src; 6276 } 6277 error = ip_proto_bind_connected_v6(tcp->tcp_connp, &mp, 6278 IPPROTO_TCP, &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6279 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr); 6280 } 6281 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6282 tcp->tcp_active_open = 1; 6283 6284 6285 return (tcp_post_ip_bind(tcp, mp, error, cr, pid)); 6286 failed: 6287 /* return error ack and blow away saved option results if any */ 6288 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6289 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6290 return (error); 6291 } 6292 6293 /* 6294 * Handle connect to IPv6 destinations. 6295 */ 6296 static int 6297 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 6298 uint32_t flowinfo, uint_t srcid, uint32_t scope_id, cred_t *cr, pid_t pid) 6299 { 6300 tcph_t *tcph; 6301 mblk_t *mp; 6302 ip6_rthdr_t *rth; 6303 int32_t oldstate; 6304 uint16_t lport; 6305 tcp_stack_t *tcps = tcp->tcp_tcps; 6306 int error = 0; 6307 conn_t *connp = tcp->tcp_connp; 6308 6309 ASSERT(tcp->tcp_family == AF_INET6); 6310 6311 /* 6312 * If we're here, it means that the destination address is a native 6313 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6314 * reason why it might not be IPv6 is if the socket was bound to an 6315 * IPv4-mapped IPv6 address. 6316 */ 6317 if (tcp->tcp_ipversion != IPV6_VERSION) { 6318 return (-TBADADDR); 6319 } 6320 6321 /* 6322 * Interpret a zero destination to mean loopback. 6323 * Update the T_CONN_REQ (sin/sin6) since it is used to 6324 * generate the T_CONN_CON. 6325 */ 6326 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6327 *dstaddrp = ipv6_loopback; 6328 } 6329 6330 /* Handle __sin6_src_id if socket not bound to an IP address */ 6331 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6332 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6333 connp->conn_zoneid, tcps->tcps_netstack); 6334 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6335 } 6336 6337 /* 6338 * Take care of the scope_id now and add ip6i_t 6339 * if ip6i_t is not already allocated through TCP 6340 * sticky options. At this point tcp_ip6h does not 6341 * have dst info, thus use dstaddrp. 6342 */ 6343 if (scope_id != 0 && 6344 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6345 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6346 ip6i_t *ip6i; 6347 6348 ipp->ipp_ifindex = scope_id; 6349 ip6i = (ip6i_t *)tcp->tcp_iphc; 6350 6351 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6352 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6353 /* Already allocated */ 6354 ip6i->ip6i_flags |= IP6I_IFINDEX; 6355 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6356 ipp->ipp_fields |= IPPF_SCOPE_ID; 6357 } else { 6358 int reterr; 6359 6360 ipp->ipp_fields |= IPPF_SCOPE_ID; 6361 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6362 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6363 reterr = tcp_build_hdrs(tcp); 6364 if (reterr != 0) 6365 goto failed; 6366 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6367 } 6368 } 6369 6370 /* 6371 * Don't let an endpoint connect to itself. Note that 6372 * the test here does not catch the case where the 6373 * source IP addr was left unspecified by the user. In 6374 * this case, the source addr is set in tcp_adapt_ire() 6375 * using the reply to the T_BIND message that we send 6376 * down to IP here and the check is repeated in tcp_rput_other. 6377 */ 6378 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6379 (dstport == tcp->tcp_lport)) { 6380 error = -TBADADDR; 6381 goto failed; 6382 } 6383 6384 /* 6385 * Verify the destination is allowed to receive packets 6386 * at the security label of the connection we are initiating. 6387 * check_dest may create a new effective cred for this 6388 * connection with a modified label or label flags. 6389 */ 6390 if (is_system_labeled()) { 6391 ASSERT(tcp->tcp_connp->conn_effective_cred == NULL); 6392 if ((error = tsol_check_dest(CONN_CRED(tcp->tcp_connp), 6393 dstaddrp, IPV6_VERSION, tcp->tcp_connp->conn_mac_exempt, 6394 &tcp->tcp_connp->conn_effective_cred)) != 0) { 6395 if (error != EHOSTUNREACH) 6396 error = -TSYSERR; 6397 goto failed; 6398 } 6399 } 6400 6401 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6402 tcp->tcp_remote_v6 = *dstaddrp; 6403 tcp->tcp_ip6h->ip6_vcf = 6404 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6405 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6406 6407 /* 6408 * Massage a routing header (if present) putting the first hop 6409 * in ip6_dst. Compute a starting value for the checksum which 6410 * takes into account that the original ip6_dst should be 6411 * included in the checksum but that ip will include the 6412 * first hop in the source route in the tcp checksum. 6413 */ 6414 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6415 if (rth != NULL) { 6416 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth, 6417 tcps->tcps_netstack); 6418 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6419 (tcp->tcp_sum >> 16)); 6420 } else { 6421 tcp->tcp_sum = 0; 6422 } 6423 6424 tcph = tcp->tcp_tcph; 6425 *(uint16_t *)tcph->th_fport = dstport; 6426 tcp->tcp_fport = dstport; 6427 6428 oldstate = tcp->tcp_state; 6429 /* 6430 * At this point the remote destination address and remote port fields 6431 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6432 * have to see which state tcp was in so we can take apropriate action. 6433 */ 6434 if (oldstate == TCPS_IDLE) { 6435 /* 6436 * We support a quick connect capability here, allowing 6437 * clients to transition directly from IDLE to SYN_SENT 6438 * tcp_bindi will pick an unused port, insert the connection 6439 * in the bind hash and transition to BOUND state. 6440 */ 6441 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6442 tcp, B_TRUE); 6443 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6444 B_FALSE, B_FALSE); 6445 if (lport == 0) { 6446 error = -TNOADDR; 6447 goto failed; 6448 } 6449 } 6450 tcp->tcp_state = TCPS_SYN_SENT; 6451 6452 mp = allocb(sizeof (ire_t), BPRI_HI); 6453 if (mp != NULL) { 6454 in6_addr_t v6src; 6455 6456 mp->b_wptr += sizeof (ire_t); 6457 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6458 6459 tcp->tcp_hard_binding = 1; 6460 6461 /* 6462 * We need to make sure that the conn_recv is set to a non-null 6463 * value before we insert the conn_t into the classifier table. 6464 * This is to avoid a race with an incoming packet which does 6465 * an ipcl_classify(). 6466 */ 6467 tcp->tcp_connp->conn_recv = tcp_input; 6468 6469 if (tcp->tcp_ipversion == IPV4_VERSION) { 6470 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6471 } else { 6472 v6src = tcp->tcp_ip6h->ip6_src; 6473 } 6474 error = ip_proto_bind_connected_v6(connp, &mp, IPPROTO_TCP, 6475 &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6476 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr); 6477 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6478 tcp->tcp_active_open = 1; 6479 6480 return (tcp_post_ip_bind(tcp, mp, error, cr, pid)); 6481 } 6482 /* Error case */ 6483 tcp->tcp_state = oldstate; 6484 error = ENOMEM; 6485 6486 failed: 6487 /* return error ack and blow away saved option results if any */ 6488 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6489 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6490 return (error); 6491 } 6492 6493 /* 6494 * We need a stream q for detached closing tcp connections 6495 * to use. Our client hereby indicates that this q is the 6496 * one to use. 6497 */ 6498 static void 6499 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6500 { 6501 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6502 queue_t *q = tcp->tcp_wq; 6503 tcp_stack_t *tcps = tcp->tcp_tcps; 6504 6505 #ifdef NS_DEBUG 6506 (void) printf("TCP_IOC_DEFAULT_Q for stack %d\n", 6507 tcps->tcps_netstack->netstack_stackid); 6508 #endif 6509 mp->b_datap->db_type = M_IOCACK; 6510 iocp->ioc_count = 0; 6511 mutex_enter(&tcps->tcps_g_q_lock); 6512 if (tcps->tcps_g_q != NULL) { 6513 mutex_exit(&tcps->tcps_g_q_lock); 6514 iocp->ioc_error = EALREADY; 6515 } else { 6516 int error = 0; 6517 conn_t *connp = tcp->tcp_connp; 6518 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6519 6520 tcps->tcps_g_q = tcp->tcp_rq; 6521 mutex_exit(&tcps->tcps_g_q_lock); 6522 iocp->ioc_error = 0; 6523 iocp->ioc_rval = 0; 6524 /* 6525 * We are passing tcp_sticky_ipp as NULL 6526 * as it is not useful for tcp_default queue 6527 * 6528 * Set conn_recv just in case. 6529 */ 6530 tcp->tcp_connp->conn_recv = tcp_conn_request; 6531 6532 ASSERT(connp->conn_af_isv6); 6533 connp->conn_ulp = IPPROTO_TCP; 6534 6535 if (ipst->ips_ipcl_proto_fanout_v6[IPPROTO_TCP].connf_head != 6536 NULL || connp->conn_mac_exempt) { 6537 error = -TBADADDR; 6538 } else { 6539 connp->conn_srcv6 = ipv6_all_zeros; 6540 ipcl_proto_insert_v6(connp, IPPROTO_TCP); 6541 } 6542 6543 (void) tcp_post_ip_bind(tcp, NULL, error, NULL, 0); 6544 } 6545 qreply(q, mp); 6546 } 6547 6548 static int 6549 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 6550 { 6551 tcp_t *ltcp = NULL; 6552 conn_t *connp; 6553 tcp_stack_t *tcps = tcp->tcp_tcps; 6554 6555 /* 6556 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6557 * when the stream is in BOUND state. Do not send a reset, 6558 * since the destination IP address is not valid, and it can 6559 * be the initialized value of all zeros (broadcast address). 6560 * 6561 * XXX There won't be any pending bind request to IP. 6562 */ 6563 if (tcp->tcp_state <= TCPS_BOUND) { 6564 if (tcp->tcp_debug) { 6565 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6566 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6567 } 6568 return (TOUTSTATE); 6569 } 6570 6571 6572 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6573 6574 /* 6575 * According to TPI, for non-listeners, ignore seqnum 6576 * and disconnect. 6577 * Following interpretation of -1 seqnum is historical 6578 * and implied TPI ? (TPI only states that for T_CONN_IND, 6579 * a valid seqnum should not be -1). 6580 * 6581 * -1 means disconnect everything 6582 * regardless even on a listener. 6583 */ 6584 6585 int old_state = tcp->tcp_state; 6586 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 6587 6588 /* 6589 * The connection can't be on the tcp_time_wait_head list 6590 * since it is not detached. 6591 */ 6592 ASSERT(tcp->tcp_time_wait_next == NULL); 6593 ASSERT(tcp->tcp_time_wait_prev == NULL); 6594 ASSERT(tcp->tcp_time_wait_expire == 0); 6595 ltcp = NULL; 6596 /* 6597 * If it used to be a listener, check to make sure no one else 6598 * has taken the port before switching back to LISTEN state. 6599 */ 6600 if (tcp->tcp_ipversion == IPV4_VERSION) { 6601 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6602 tcp->tcp_ipha->ipha_src, 6603 tcp->tcp_connp->conn_zoneid, ipst); 6604 if (connp != NULL) 6605 ltcp = connp->conn_tcp; 6606 } else { 6607 /* Allow tcp_bound_if listeners? */ 6608 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6609 &tcp->tcp_ip6h->ip6_src, 0, 6610 tcp->tcp_connp->conn_zoneid, ipst); 6611 if (connp != NULL) 6612 ltcp = connp->conn_tcp; 6613 } 6614 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6615 tcp->tcp_state = TCPS_LISTEN; 6616 } else if (old_state > TCPS_BOUND) { 6617 tcp->tcp_conn_req_max = 0; 6618 tcp->tcp_state = TCPS_BOUND; 6619 } 6620 if (ltcp != NULL) 6621 CONN_DEC_REF(ltcp->tcp_connp); 6622 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6623 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 6624 } else if (old_state == TCPS_ESTABLISHED || 6625 old_state == TCPS_CLOSE_WAIT) { 6626 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 6627 } 6628 6629 if (tcp->tcp_fused) 6630 tcp_unfuse(tcp); 6631 6632 mutex_enter(&tcp->tcp_eager_lock); 6633 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6634 (tcp->tcp_conn_req_cnt_q != 0)) { 6635 tcp_eager_cleanup(tcp, 0); 6636 } 6637 mutex_exit(&tcp->tcp_eager_lock); 6638 6639 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6640 tcp->tcp_rnxt, TH_RST | TH_ACK); 6641 6642 tcp_reinit(tcp); 6643 6644 return (0); 6645 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6646 return (TBADSEQ); 6647 } 6648 return (0); 6649 } 6650 6651 /* 6652 * Our client hereby directs us to reject the connection request 6653 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6654 * of sending the appropriate RST, not an ICMP error. 6655 */ 6656 static void 6657 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6658 { 6659 t_scalar_t seqnum; 6660 int error; 6661 6662 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6663 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6664 tcp_err_ack(tcp, mp, TPROTO, 0); 6665 return; 6666 } 6667 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6668 error = tcp_disconnect_common(tcp, seqnum); 6669 if (error != 0) 6670 tcp_err_ack(tcp, mp, error, 0); 6671 else { 6672 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6673 /* Send M_FLUSH according to TPI */ 6674 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6675 } 6676 mp = mi_tpi_ok_ack_alloc(mp); 6677 if (mp) 6678 putnext(tcp->tcp_rq, mp); 6679 } 6680 } 6681 6682 /* 6683 * Diagnostic routine used to return a string associated with the tcp state. 6684 * Note that if the caller does not supply a buffer, it will use an internal 6685 * static string. This means that if multiple threads call this function at 6686 * the same time, output can be corrupted... Note also that this function 6687 * does not check the size of the supplied buffer. The caller has to make 6688 * sure that it is big enough. 6689 */ 6690 static char * 6691 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6692 { 6693 char buf1[30]; 6694 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6695 char *buf; 6696 char *cp; 6697 in6_addr_t local, remote; 6698 char local_addrbuf[INET6_ADDRSTRLEN]; 6699 char remote_addrbuf[INET6_ADDRSTRLEN]; 6700 6701 if (sup_buf != NULL) 6702 buf = sup_buf; 6703 else 6704 buf = priv_buf; 6705 6706 if (tcp == NULL) 6707 return ("NULL_TCP"); 6708 switch (tcp->tcp_state) { 6709 case TCPS_CLOSED: 6710 cp = "TCP_CLOSED"; 6711 break; 6712 case TCPS_IDLE: 6713 cp = "TCP_IDLE"; 6714 break; 6715 case TCPS_BOUND: 6716 cp = "TCP_BOUND"; 6717 break; 6718 case TCPS_LISTEN: 6719 cp = "TCP_LISTEN"; 6720 break; 6721 case TCPS_SYN_SENT: 6722 cp = "TCP_SYN_SENT"; 6723 break; 6724 case TCPS_SYN_RCVD: 6725 cp = "TCP_SYN_RCVD"; 6726 break; 6727 case TCPS_ESTABLISHED: 6728 cp = "TCP_ESTABLISHED"; 6729 break; 6730 case TCPS_CLOSE_WAIT: 6731 cp = "TCP_CLOSE_WAIT"; 6732 break; 6733 case TCPS_FIN_WAIT_1: 6734 cp = "TCP_FIN_WAIT_1"; 6735 break; 6736 case TCPS_CLOSING: 6737 cp = "TCP_CLOSING"; 6738 break; 6739 case TCPS_LAST_ACK: 6740 cp = "TCP_LAST_ACK"; 6741 break; 6742 case TCPS_FIN_WAIT_2: 6743 cp = "TCP_FIN_WAIT_2"; 6744 break; 6745 case TCPS_TIME_WAIT: 6746 cp = "TCP_TIME_WAIT"; 6747 break; 6748 default: 6749 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 6750 cp = buf1; 6751 break; 6752 } 6753 switch (format) { 6754 case DISP_ADDR_AND_PORT: 6755 if (tcp->tcp_ipversion == IPV4_VERSION) { 6756 /* 6757 * Note that we use the remote address in the tcp_b 6758 * structure. This means that it will print out 6759 * the real destination address, not the next hop's 6760 * address if source routing is used. 6761 */ 6762 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 6763 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 6764 6765 } else { 6766 local = tcp->tcp_ip_src_v6; 6767 remote = tcp->tcp_remote_v6; 6768 } 6769 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 6770 sizeof (local_addrbuf)); 6771 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 6772 sizeof (remote_addrbuf)); 6773 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 6774 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 6775 ntohs(tcp->tcp_fport), cp); 6776 break; 6777 case DISP_PORT_ONLY: 6778 default: 6779 (void) mi_sprintf(buf, "[%u, %u] %s", 6780 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 6781 break; 6782 } 6783 6784 return (buf); 6785 } 6786 6787 /* 6788 * Called via squeue to get on to eager's perimeter. It sends a 6789 * TH_RST if eager is in the fanout table. The listener wants the 6790 * eager to disappear either by means of tcp_eager_blowoff() or 6791 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 6792 * called (via squeue) if the eager cannot be inserted in the 6793 * fanout table in tcp_conn_request(). 6794 */ 6795 /* ARGSUSED */ 6796 void 6797 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 6798 { 6799 conn_t *econnp = (conn_t *)arg; 6800 tcp_t *eager = econnp->conn_tcp; 6801 tcp_t *listener = eager->tcp_listener; 6802 tcp_stack_t *tcps = eager->tcp_tcps; 6803 6804 /* 6805 * We could be called because listener is closing. Since 6806 * the eager is using listener's queue's, its not safe. 6807 * Better use the default queue just to send the TH_RST 6808 * out. 6809 */ 6810 ASSERT(tcps->tcps_g_q != NULL); 6811 eager->tcp_rq = tcps->tcps_g_q; 6812 eager->tcp_wq = WR(tcps->tcps_g_q); 6813 6814 /* 6815 * An eager's conn_fanout will be NULL if it's a duplicate 6816 * for an existing 4-tuples in the conn fanout table. 6817 * We don't want to send an RST out in such case. 6818 */ 6819 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 6820 tcp_xmit_ctl("tcp_eager_kill, can't wait", 6821 eager, eager->tcp_snxt, 0, TH_RST); 6822 } 6823 6824 /* We are here because listener wants this eager gone */ 6825 if (listener != NULL) { 6826 mutex_enter(&listener->tcp_eager_lock); 6827 tcp_eager_unlink(eager); 6828 if (eager->tcp_tconnind_started) { 6829 /* 6830 * The eager has sent a conn_ind up to the 6831 * listener but listener decides to close 6832 * instead. We need to drop the extra ref 6833 * placed on eager in tcp_rput_data() before 6834 * sending the conn_ind to listener. 6835 */ 6836 CONN_DEC_REF(econnp); 6837 } 6838 mutex_exit(&listener->tcp_eager_lock); 6839 CONN_DEC_REF(listener->tcp_connp); 6840 } 6841 6842 if (eager->tcp_state != TCPS_CLOSED) 6843 tcp_close_detached(eager); 6844 } 6845 6846 /* 6847 * Reset any eager connection hanging off this listener marked 6848 * with 'seqnum' and then reclaim it's resources. 6849 */ 6850 static boolean_t 6851 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 6852 { 6853 tcp_t *eager; 6854 mblk_t *mp; 6855 tcp_stack_t *tcps = listener->tcp_tcps; 6856 6857 TCP_STAT(tcps, tcp_eager_blowoff_calls); 6858 eager = listener; 6859 mutex_enter(&listener->tcp_eager_lock); 6860 do { 6861 eager = eager->tcp_eager_next_q; 6862 if (eager == NULL) { 6863 mutex_exit(&listener->tcp_eager_lock); 6864 return (B_FALSE); 6865 } 6866 } while (eager->tcp_conn_req_seqnum != seqnum); 6867 6868 if (eager->tcp_closemp_used) { 6869 mutex_exit(&listener->tcp_eager_lock); 6870 return (B_TRUE); 6871 } 6872 eager->tcp_closemp_used = B_TRUE; 6873 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6874 CONN_INC_REF(eager->tcp_connp); 6875 mutex_exit(&listener->tcp_eager_lock); 6876 mp = &eager->tcp_closemp; 6877 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 6878 eager->tcp_connp, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 6879 return (B_TRUE); 6880 } 6881 6882 /* 6883 * Reset any eager connection hanging off this listener 6884 * and then reclaim it's resources. 6885 */ 6886 static void 6887 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 6888 { 6889 tcp_t *eager; 6890 mblk_t *mp; 6891 tcp_stack_t *tcps = listener->tcp_tcps; 6892 6893 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6894 6895 if (!q0_only) { 6896 /* First cleanup q */ 6897 TCP_STAT(tcps, tcp_eager_blowoff_q); 6898 eager = listener->tcp_eager_next_q; 6899 while (eager != NULL) { 6900 if (!eager->tcp_closemp_used) { 6901 eager->tcp_closemp_used = B_TRUE; 6902 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6903 CONN_INC_REF(eager->tcp_connp); 6904 mp = &eager->tcp_closemp; 6905 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6906 tcp_eager_kill, eager->tcp_connp, 6907 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 6908 } 6909 eager = eager->tcp_eager_next_q; 6910 } 6911 } 6912 /* Then cleanup q0 */ 6913 TCP_STAT(tcps, tcp_eager_blowoff_q0); 6914 eager = listener->tcp_eager_next_q0; 6915 while (eager != listener) { 6916 if (!eager->tcp_closemp_used) { 6917 eager->tcp_closemp_used = B_TRUE; 6918 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6919 CONN_INC_REF(eager->tcp_connp); 6920 mp = &eager->tcp_closemp; 6921 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6922 tcp_eager_kill, eager->tcp_connp, SQ_FILL, 6923 SQTAG_TCP_EAGER_CLEANUP_Q0); 6924 } 6925 eager = eager->tcp_eager_next_q0; 6926 } 6927 } 6928 6929 /* 6930 * If we are an eager connection hanging off a listener that hasn't 6931 * formally accepted the connection yet, get off his list and blow off 6932 * any data that we have accumulated. 6933 */ 6934 static void 6935 tcp_eager_unlink(tcp_t *tcp) 6936 { 6937 tcp_t *listener = tcp->tcp_listener; 6938 6939 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6940 ASSERT(listener != NULL); 6941 if (tcp->tcp_eager_next_q0 != NULL) { 6942 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 6943 6944 /* Remove the eager tcp from q0 */ 6945 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 6946 tcp->tcp_eager_prev_q0; 6947 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 6948 tcp->tcp_eager_next_q0; 6949 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 6950 listener->tcp_conn_req_cnt_q0--; 6951 6952 tcp->tcp_eager_next_q0 = NULL; 6953 tcp->tcp_eager_prev_q0 = NULL; 6954 6955 /* 6956 * Take the eager out, if it is in the list of droppable 6957 * eagers. 6958 */ 6959 MAKE_UNDROPPABLE(tcp); 6960 6961 if (tcp->tcp_syn_rcvd_timeout != 0) { 6962 /* we have timed out before */ 6963 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 6964 listener->tcp_syn_rcvd_timeout--; 6965 } 6966 } else { 6967 tcp_t **tcpp = &listener->tcp_eager_next_q; 6968 tcp_t *prev = NULL; 6969 6970 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 6971 if (tcpp[0] == tcp) { 6972 if (listener->tcp_eager_last_q == tcp) { 6973 /* 6974 * If we are unlinking the last 6975 * element on the list, adjust 6976 * tail pointer. Set tail pointer 6977 * to nil when list is empty. 6978 */ 6979 ASSERT(tcp->tcp_eager_next_q == NULL); 6980 if (listener->tcp_eager_last_q == 6981 listener->tcp_eager_next_q) { 6982 listener->tcp_eager_last_q = 6983 NULL; 6984 } else { 6985 /* 6986 * We won't get here if there 6987 * is only one eager in the 6988 * list. 6989 */ 6990 ASSERT(prev != NULL); 6991 listener->tcp_eager_last_q = 6992 prev; 6993 } 6994 } 6995 tcpp[0] = tcp->tcp_eager_next_q; 6996 tcp->tcp_eager_next_q = NULL; 6997 tcp->tcp_eager_last_q = NULL; 6998 ASSERT(listener->tcp_conn_req_cnt_q > 0); 6999 listener->tcp_conn_req_cnt_q--; 7000 break; 7001 } 7002 prev = tcpp[0]; 7003 } 7004 } 7005 tcp->tcp_listener = NULL; 7006 } 7007 7008 /* Shorthand to generate and send TPI error acks to our client */ 7009 static void 7010 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 7011 { 7012 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7013 putnext(tcp->tcp_rq, mp); 7014 } 7015 7016 /* Shorthand to generate and send TPI error acks to our client */ 7017 static void 7018 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7019 int t_error, int sys_error) 7020 { 7021 struct T_error_ack *teackp; 7022 7023 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7024 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7025 teackp = (struct T_error_ack *)mp->b_rptr; 7026 teackp->ERROR_prim = primitive; 7027 teackp->TLI_error = t_error; 7028 teackp->UNIX_error = sys_error; 7029 putnext(tcp->tcp_rq, mp); 7030 } 7031 } 7032 7033 /* 7034 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7035 * but instead the code relies on: 7036 * - the fact that the address of the array and its size never changes 7037 * - the atomic assignment of the elements of the array 7038 */ 7039 /* ARGSUSED */ 7040 static int 7041 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7042 { 7043 int i; 7044 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7045 7046 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7047 if (tcps->tcps_g_epriv_ports[i] != 0) 7048 (void) mi_mpprintf(mp, "%d ", 7049 tcps->tcps_g_epriv_ports[i]); 7050 } 7051 return (0); 7052 } 7053 7054 /* 7055 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7056 * threads from changing it at the same time. 7057 */ 7058 /* ARGSUSED */ 7059 static int 7060 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7061 cred_t *cr) 7062 { 7063 long new_value; 7064 int i; 7065 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7066 7067 /* 7068 * Fail the request if the new value does not lie within the 7069 * port number limits. 7070 */ 7071 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7072 new_value <= 0 || new_value >= 65536) { 7073 return (EINVAL); 7074 } 7075 7076 mutex_enter(&tcps->tcps_epriv_port_lock); 7077 /* Check if the value is already in the list */ 7078 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7079 if (new_value == tcps->tcps_g_epriv_ports[i]) { 7080 mutex_exit(&tcps->tcps_epriv_port_lock); 7081 return (EEXIST); 7082 } 7083 } 7084 /* Find an empty slot */ 7085 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7086 if (tcps->tcps_g_epriv_ports[i] == 0) 7087 break; 7088 } 7089 if (i == tcps->tcps_g_num_epriv_ports) { 7090 mutex_exit(&tcps->tcps_epriv_port_lock); 7091 return (EOVERFLOW); 7092 } 7093 /* Set the new value */ 7094 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 7095 mutex_exit(&tcps->tcps_epriv_port_lock); 7096 return (0); 7097 } 7098 7099 /* 7100 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7101 * threads from changing it at the same time. 7102 */ 7103 /* ARGSUSED */ 7104 static int 7105 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7106 cred_t *cr) 7107 { 7108 long new_value; 7109 int i; 7110 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7111 7112 /* 7113 * Fail the request if the new value does not lie within the 7114 * port number limits. 7115 */ 7116 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7117 new_value >= 65536) { 7118 return (EINVAL); 7119 } 7120 7121 mutex_enter(&tcps->tcps_epriv_port_lock); 7122 /* Check that the value is already in the list */ 7123 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7124 if (tcps->tcps_g_epriv_ports[i] == new_value) 7125 break; 7126 } 7127 if (i == tcps->tcps_g_num_epriv_ports) { 7128 mutex_exit(&tcps->tcps_epriv_port_lock); 7129 return (ESRCH); 7130 } 7131 /* Clear the value */ 7132 tcps->tcps_g_epriv_ports[i] = 0; 7133 mutex_exit(&tcps->tcps_epriv_port_lock); 7134 return (0); 7135 } 7136 7137 /* Return the TPI/TLI equivalent of our current tcp_state */ 7138 static int 7139 tcp_tpistate(tcp_t *tcp) 7140 { 7141 switch (tcp->tcp_state) { 7142 case TCPS_IDLE: 7143 return (TS_UNBND); 7144 case TCPS_LISTEN: 7145 /* 7146 * Return whether there are outstanding T_CONN_IND waiting 7147 * for the matching T_CONN_RES. Therefore don't count q0. 7148 */ 7149 if (tcp->tcp_conn_req_cnt_q > 0) 7150 return (TS_WRES_CIND); 7151 else 7152 return (TS_IDLE); 7153 case TCPS_BOUND: 7154 return (TS_IDLE); 7155 case TCPS_SYN_SENT: 7156 return (TS_WCON_CREQ); 7157 case TCPS_SYN_RCVD: 7158 /* 7159 * Note: assumption: this has to the active open SYN_RCVD. 7160 * The passive instance is detached in SYN_RCVD stage of 7161 * incoming connection processing so we cannot get request 7162 * for T_info_ack on it. 7163 */ 7164 return (TS_WACK_CRES); 7165 case TCPS_ESTABLISHED: 7166 return (TS_DATA_XFER); 7167 case TCPS_CLOSE_WAIT: 7168 return (TS_WREQ_ORDREL); 7169 case TCPS_FIN_WAIT_1: 7170 return (TS_WIND_ORDREL); 7171 case TCPS_FIN_WAIT_2: 7172 return (TS_WIND_ORDREL); 7173 7174 case TCPS_CLOSING: 7175 case TCPS_LAST_ACK: 7176 case TCPS_TIME_WAIT: 7177 case TCPS_CLOSED: 7178 /* 7179 * Following TS_WACK_DREQ7 is a rendition of "not 7180 * yet TS_IDLE" TPI state. There is no best match to any 7181 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7182 * choose a value chosen that will map to TLI/XTI level 7183 * state of TSTATECHNG (state is process of changing) which 7184 * captures what this dummy state represents. 7185 */ 7186 return (TS_WACK_DREQ7); 7187 default: 7188 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7189 tcp->tcp_state, tcp_display(tcp, NULL, 7190 DISP_PORT_ONLY)); 7191 return (TS_UNBND); 7192 } 7193 } 7194 7195 static void 7196 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7197 { 7198 tcp_stack_t *tcps = tcp->tcp_tcps; 7199 7200 if (tcp->tcp_family == AF_INET6) 7201 *tia = tcp_g_t_info_ack_v6; 7202 else 7203 *tia = tcp_g_t_info_ack; 7204 tia->CURRENT_state = tcp_tpistate(tcp); 7205 tia->OPT_size = tcp_max_optsize; 7206 if (tcp->tcp_mss == 0) { 7207 /* Not yet set - tcp_open does not set mss */ 7208 if (tcp->tcp_ipversion == IPV4_VERSION) 7209 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 7210 else 7211 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 7212 } else { 7213 tia->TIDU_size = tcp->tcp_mss; 7214 } 7215 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7216 } 7217 7218 static void 7219 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap, 7220 t_uscalar_t cap_bits1) 7221 { 7222 tcap->CAP_bits1 = 0; 7223 7224 if (cap_bits1 & TC1_INFO) { 7225 tcp_copy_info(&tcap->INFO_ack, tcp); 7226 tcap->CAP_bits1 |= TC1_INFO; 7227 } 7228 7229 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7230 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7231 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7232 } 7233 7234 } 7235 7236 /* 7237 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7238 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7239 * tcp_g_t_info_ack. The current state of the stream is copied from 7240 * tcp_state. 7241 */ 7242 static void 7243 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7244 { 7245 t_uscalar_t cap_bits1; 7246 struct T_capability_ack *tcap; 7247 7248 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7249 freemsg(mp); 7250 return; 7251 } 7252 7253 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7254 7255 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7256 mp->b_datap->db_type, T_CAPABILITY_ACK); 7257 if (mp == NULL) 7258 return; 7259 7260 tcap = (struct T_capability_ack *)mp->b_rptr; 7261 tcp_do_capability_ack(tcp, tcap, cap_bits1); 7262 7263 putnext(tcp->tcp_rq, mp); 7264 } 7265 7266 /* 7267 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7268 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7269 * The current state of the stream is copied from tcp_state. 7270 */ 7271 static void 7272 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7273 { 7274 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7275 T_INFO_ACK); 7276 if (!mp) { 7277 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7278 return; 7279 } 7280 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7281 putnext(tcp->tcp_rq, mp); 7282 } 7283 7284 /* Respond to the TPI addr request */ 7285 static void 7286 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7287 { 7288 sin_t *sin; 7289 mblk_t *ackmp; 7290 struct T_addr_ack *taa; 7291 7292 /* Make it large enough for worst case */ 7293 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7294 2 * sizeof (sin6_t), 1); 7295 if (ackmp == NULL) { 7296 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7297 return; 7298 } 7299 7300 if (tcp->tcp_ipversion == IPV6_VERSION) { 7301 tcp_addr_req_ipv6(tcp, ackmp); 7302 return; 7303 } 7304 taa = (struct T_addr_ack *)ackmp->b_rptr; 7305 7306 bzero(taa, sizeof (struct T_addr_ack)); 7307 ackmp->b_wptr = (uchar_t *)&taa[1]; 7308 7309 taa->PRIM_type = T_ADDR_ACK; 7310 ackmp->b_datap->db_type = M_PCPROTO; 7311 7312 /* 7313 * Note: Following code assumes 32 bit alignment of basic 7314 * data structures like sin_t and struct T_addr_ack. 7315 */ 7316 if (tcp->tcp_state >= TCPS_BOUND) { 7317 /* 7318 * Fill in local address 7319 */ 7320 taa->LOCADDR_length = sizeof (sin_t); 7321 taa->LOCADDR_offset = sizeof (*taa); 7322 7323 sin = (sin_t *)&taa[1]; 7324 7325 /* Fill zeroes and then intialize non-zero fields */ 7326 *sin = sin_null; 7327 7328 sin->sin_family = AF_INET; 7329 7330 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7331 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7332 7333 ackmp->b_wptr = (uchar_t *)&sin[1]; 7334 7335 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7336 /* 7337 * Fill in Remote address 7338 */ 7339 taa->REMADDR_length = sizeof (sin_t); 7340 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7341 taa->LOCADDR_length); 7342 7343 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7344 *sin = sin_null; 7345 sin->sin_family = AF_INET; 7346 sin->sin_addr.s_addr = tcp->tcp_remote; 7347 sin->sin_port = tcp->tcp_fport; 7348 7349 ackmp->b_wptr = (uchar_t *)&sin[1]; 7350 } 7351 } 7352 putnext(tcp->tcp_rq, ackmp); 7353 } 7354 7355 /* Assumes that tcp_addr_req gets enough space and alignment */ 7356 static void 7357 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7358 { 7359 sin6_t *sin6; 7360 struct T_addr_ack *taa; 7361 7362 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7363 ASSERT(OK_32PTR(ackmp->b_rptr)); 7364 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7365 2 * sizeof (sin6_t)); 7366 7367 taa = (struct T_addr_ack *)ackmp->b_rptr; 7368 7369 bzero(taa, sizeof (struct T_addr_ack)); 7370 ackmp->b_wptr = (uchar_t *)&taa[1]; 7371 7372 taa->PRIM_type = T_ADDR_ACK; 7373 ackmp->b_datap->db_type = M_PCPROTO; 7374 7375 /* 7376 * Note: Following code assumes 32 bit alignment of basic 7377 * data structures like sin6_t and struct T_addr_ack. 7378 */ 7379 if (tcp->tcp_state >= TCPS_BOUND) { 7380 /* 7381 * Fill in local address 7382 */ 7383 taa->LOCADDR_length = sizeof (sin6_t); 7384 taa->LOCADDR_offset = sizeof (*taa); 7385 7386 sin6 = (sin6_t *)&taa[1]; 7387 *sin6 = sin6_null; 7388 7389 sin6->sin6_family = AF_INET6; 7390 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7391 sin6->sin6_port = tcp->tcp_lport; 7392 7393 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7394 7395 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7396 /* 7397 * Fill in Remote address 7398 */ 7399 taa->REMADDR_length = sizeof (sin6_t); 7400 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7401 taa->LOCADDR_length); 7402 7403 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7404 *sin6 = sin6_null; 7405 sin6->sin6_family = AF_INET6; 7406 sin6->sin6_flowinfo = 7407 tcp->tcp_ip6h->ip6_vcf & 7408 ~IPV6_VERS_AND_FLOW_MASK; 7409 sin6->sin6_addr = tcp->tcp_remote_v6; 7410 sin6->sin6_port = tcp->tcp_fport; 7411 7412 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7413 } 7414 } 7415 putnext(tcp->tcp_rq, ackmp); 7416 } 7417 7418 /* 7419 * Handle reinitialization of a tcp structure. 7420 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7421 */ 7422 static void 7423 tcp_reinit(tcp_t *tcp) 7424 { 7425 mblk_t *mp; 7426 int err; 7427 tcp_stack_t *tcps = tcp->tcp_tcps; 7428 7429 TCP_STAT(tcps, tcp_reinit_calls); 7430 7431 /* tcp_reinit should never be called for detached tcp_t's */ 7432 ASSERT(tcp->tcp_listener == NULL); 7433 ASSERT((tcp->tcp_family == AF_INET && 7434 tcp->tcp_ipversion == IPV4_VERSION) || 7435 (tcp->tcp_family == AF_INET6 && 7436 (tcp->tcp_ipversion == IPV4_VERSION || 7437 tcp->tcp_ipversion == IPV6_VERSION))); 7438 7439 /* Cancel outstanding timers */ 7440 tcp_timers_stop(tcp); 7441 7442 /* 7443 * Reset everything in the state vector, after updating global 7444 * MIB data from instance counters. 7445 */ 7446 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 7447 tcp->tcp_ibsegs = 0; 7448 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 7449 tcp->tcp_obsegs = 0; 7450 7451 tcp_close_mpp(&tcp->tcp_xmit_head); 7452 if (tcp->tcp_snd_zcopy_aware) 7453 tcp_zcopy_notify(tcp); 7454 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7455 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7456 mutex_enter(&tcp->tcp_non_sq_lock); 7457 if (tcp->tcp_flow_stopped && 7458 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7459 tcp_clrqfull(tcp); 7460 } 7461 mutex_exit(&tcp->tcp_non_sq_lock); 7462 tcp_close_mpp(&tcp->tcp_reass_head); 7463 tcp->tcp_reass_tail = NULL; 7464 if (tcp->tcp_rcv_list != NULL) { 7465 /* Free b_next chain */ 7466 tcp_close_mpp(&tcp->tcp_rcv_list); 7467 tcp->tcp_rcv_last_head = NULL; 7468 tcp->tcp_rcv_last_tail = NULL; 7469 tcp->tcp_rcv_cnt = 0; 7470 } 7471 tcp->tcp_rcv_last_tail = NULL; 7472 7473 if ((mp = tcp->tcp_urp_mp) != NULL) { 7474 freemsg(mp); 7475 tcp->tcp_urp_mp = NULL; 7476 } 7477 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7478 freemsg(mp); 7479 tcp->tcp_urp_mark_mp = NULL; 7480 } 7481 if (tcp->tcp_fused_sigurg_mp != NULL) { 7482 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7483 freeb(tcp->tcp_fused_sigurg_mp); 7484 tcp->tcp_fused_sigurg_mp = NULL; 7485 } 7486 if (tcp->tcp_ordrel_mp != NULL) { 7487 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7488 freeb(tcp->tcp_ordrel_mp); 7489 tcp->tcp_ordrel_mp = NULL; 7490 } 7491 7492 /* 7493 * Following is a union with two members which are 7494 * identical types and size so the following cleanup 7495 * is enough. 7496 */ 7497 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7498 7499 CL_INET_DISCONNECT(tcp->tcp_connp, tcp); 7500 7501 /* 7502 * The connection can't be on the tcp_time_wait_head list 7503 * since it is not detached. 7504 */ 7505 ASSERT(tcp->tcp_time_wait_next == NULL); 7506 ASSERT(tcp->tcp_time_wait_prev == NULL); 7507 ASSERT(tcp->tcp_time_wait_expire == 0); 7508 7509 if (tcp->tcp_kssl_pending) { 7510 tcp->tcp_kssl_pending = B_FALSE; 7511 7512 /* Don't reset if the initialized by bind. */ 7513 if (tcp->tcp_kssl_ent != NULL) { 7514 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7515 KSSL_NO_PROXY); 7516 } 7517 } 7518 if (tcp->tcp_kssl_ctx != NULL) { 7519 kssl_release_ctx(tcp->tcp_kssl_ctx); 7520 tcp->tcp_kssl_ctx = NULL; 7521 } 7522 7523 /* 7524 * Reset/preserve other values 7525 */ 7526 tcp_reinit_values(tcp); 7527 ipcl_hash_remove(tcp->tcp_connp); 7528 conn_delete_ire(tcp->tcp_connp, NULL); 7529 tcp_ipsec_cleanup(tcp); 7530 7531 if (tcp->tcp_connp->conn_effective_cred != NULL) { 7532 crfree(tcp->tcp_connp->conn_effective_cred); 7533 tcp->tcp_connp->conn_effective_cred = NULL; 7534 } 7535 7536 if (tcp->tcp_conn_req_max != 0) { 7537 /* 7538 * This is the case when a TLI program uses the same 7539 * transport end point to accept a connection. This 7540 * makes the TCP both a listener and acceptor. When 7541 * this connection is closed, we need to set the state 7542 * back to TCPS_LISTEN. Make sure that the eager list 7543 * is reinitialized. 7544 * 7545 * Note that this stream is still bound to the four 7546 * tuples of the previous connection in IP. If a new 7547 * SYN with different foreign address comes in, IP will 7548 * not find it and will send it to the global queue. In 7549 * the global queue, TCP will do a tcp_lookup_listener() 7550 * to find this stream. This works because this stream 7551 * is only removed from connected hash. 7552 * 7553 */ 7554 tcp->tcp_state = TCPS_LISTEN; 7555 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7556 tcp->tcp_eager_next_drop_q0 = tcp; 7557 tcp->tcp_eager_prev_drop_q0 = tcp; 7558 tcp->tcp_connp->conn_recv = tcp_conn_request; 7559 if (tcp->tcp_family == AF_INET6) { 7560 ASSERT(tcp->tcp_connp->conn_af_isv6); 7561 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7562 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7563 } else { 7564 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7565 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7566 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7567 } 7568 } else { 7569 tcp->tcp_state = TCPS_BOUND; 7570 } 7571 7572 /* 7573 * Initialize to default values 7574 * Can't fail since enough header template space already allocated 7575 * at open(). 7576 */ 7577 err = tcp_init_values(tcp); 7578 ASSERT(err == 0); 7579 /* Restore state in tcp_tcph */ 7580 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7581 if (tcp->tcp_ipversion == IPV4_VERSION) 7582 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7583 else 7584 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7585 /* 7586 * Copy of the src addr. in tcp_t is needed in tcp_t 7587 * since the lookup funcs can only lookup on tcp_t 7588 */ 7589 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7590 7591 ASSERT(tcp->tcp_ptpbhn != NULL); 7592 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 7593 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 7594 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 7595 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7596 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 7597 } 7598 7599 /* 7600 * Force values to zero that need be zero. 7601 * Do not touch values asociated with the BOUND or LISTEN state 7602 * since the connection will end up in that state after the reinit. 7603 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7604 * structure! 7605 */ 7606 static void 7607 tcp_reinit_values(tcp) 7608 tcp_t *tcp; 7609 { 7610 tcp_stack_t *tcps = tcp->tcp_tcps; 7611 7612 #ifndef lint 7613 #define DONTCARE(x) 7614 #define PRESERVE(x) 7615 #else 7616 #define DONTCARE(x) ((x) = (x)) 7617 #define PRESERVE(x) ((x) = (x)) 7618 #endif /* lint */ 7619 7620 PRESERVE(tcp->tcp_bind_hash_port); 7621 PRESERVE(tcp->tcp_bind_hash); 7622 PRESERVE(tcp->tcp_ptpbhn); 7623 PRESERVE(tcp->tcp_acceptor_hash); 7624 PRESERVE(tcp->tcp_ptpahn); 7625 7626 /* Should be ASSERT NULL on these with new code! */ 7627 ASSERT(tcp->tcp_time_wait_next == NULL); 7628 ASSERT(tcp->tcp_time_wait_prev == NULL); 7629 ASSERT(tcp->tcp_time_wait_expire == 0); 7630 PRESERVE(tcp->tcp_state); 7631 PRESERVE(tcp->tcp_rq); 7632 PRESERVE(tcp->tcp_wq); 7633 7634 ASSERT(tcp->tcp_xmit_head == NULL); 7635 ASSERT(tcp->tcp_xmit_last == NULL); 7636 ASSERT(tcp->tcp_unsent == 0); 7637 ASSERT(tcp->tcp_xmit_tail == NULL); 7638 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7639 7640 tcp->tcp_snxt = 0; /* Displayed in mib */ 7641 tcp->tcp_suna = 0; /* Displayed in mib */ 7642 tcp->tcp_swnd = 0; 7643 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7644 7645 ASSERT(tcp->tcp_ibsegs == 0); 7646 ASSERT(tcp->tcp_obsegs == 0); 7647 7648 if (tcp->tcp_iphc != NULL) { 7649 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7650 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7651 } 7652 7653 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7654 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7655 DONTCARE(tcp->tcp_ipha); 7656 DONTCARE(tcp->tcp_ip6h); 7657 DONTCARE(tcp->tcp_ip_hdr_len); 7658 DONTCARE(tcp->tcp_tcph); 7659 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7660 tcp->tcp_valid_bits = 0; 7661 7662 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7663 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7664 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7665 tcp->tcp_last_rcv_lbolt = 0; 7666 7667 tcp->tcp_init_cwnd = 0; 7668 7669 tcp->tcp_urp_last_valid = 0; 7670 tcp->tcp_hard_binding = 0; 7671 tcp->tcp_hard_bound = 0; 7672 PRESERVE(tcp->tcp_cred); 7673 PRESERVE(tcp->tcp_cpid); 7674 PRESERVE(tcp->tcp_open_time); 7675 PRESERVE(tcp->tcp_exclbind); 7676 7677 tcp->tcp_fin_acked = 0; 7678 tcp->tcp_fin_rcvd = 0; 7679 tcp->tcp_fin_sent = 0; 7680 tcp->tcp_ordrel_done = 0; 7681 7682 tcp->tcp_debug = 0; 7683 tcp->tcp_dontroute = 0; 7684 tcp->tcp_broadcast = 0; 7685 7686 tcp->tcp_useloopback = 0; 7687 tcp->tcp_reuseaddr = 0; 7688 tcp->tcp_oobinline = 0; 7689 tcp->tcp_dgram_errind = 0; 7690 7691 tcp->tcp_detached = 0; 7692 tcp->tcp_bind_pending = 0; 7693 tcp->tcp_unbind_pending = 0; 7694 7695 tcp->tcp_snd_ws_ok = B_FALSE; 7696 tcp->tcp_snd_ts_ok = B_FALSE; 7697 tcp->tcp_linger = 0; 7698 tcp->tcp_ka_enabled = 0; 7699 tcp->tcp_zero_win_probe = 0; 7700 7701 tcp->tcp_loopback = 0; 7702 tcp->tcp_refuse = 0; 7703 tcp->tcp_localnet = 0; 7704 tcp->tcp_syn_defense = 0; 7705 tcp->tcp_set_timer = 0; 7706 7707 tcp->tcp_active_open = 0; 7708 tcp->tcp_rexmit = B_FALSE; 7709 tcp->tcp_xmit_zc_clean = B_FALSE; 7710 7711 tcp->tcp_snd_sack_ok = B_FALSE; 7712 PRESERVE(tcp->tcp_recvdstaddr); 7713 tcp->tcp_hwcksum = B_FALSE; 7714 7715 tcp->tcp_ire_ill_check_done = B_FALSE; 7716 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7717 7718 tcp->tcp_mdt = B_FALSE; 7719 tcp->tcp_mdt_hdr_head = 0; 7720 tcp->tcp_mdt_hdr_tail = 0; 7721 7722 tcp->tcp_conn_def_q0 = 0; 7723 tcp->tcp_ip_forward_progress = B_FALSE; 7724 tcp->tcp_anon_priv_bind = 0; 7725 tcp->tcp_ecn_ok = B_FALSE; 7726 7727 tcp->tcp_cwr = B_FALSE; 7728 tcp->tcp_ecn_echo_on = B_FALSE; 7729 tcp->tcp_is_wnd_shrnk = B_FALSE; 7730 7731 if (tcp->tcp_sack_info != NULL) { 7732 if (tcp->tcp_notsack_list != NULL) { 7733 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 7734 tcp); 7735 } 7736 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7737 tcp->tcp_sack_info = NULL; 7738 } 7739 7740 tcp->tcp_rcv_ws = 0; 7741 tcp->tcp_snd_ws = 0; 7742 tcp->tcp_ts_recent = 0; 7743 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7744 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7745 tcp->tcp_if_mtu = 0; 7746 7747 ASSERT(tcp->tcp_reass_head == NULL); 7748 ASSERT(tcp->tcp_reass_tail == NULL); 7749 7750 tcp->tcp_cwnd_cnt = 0; 7751 7752 ASSERT(tcp->tcp_rcv_list == NULL); 7753 ASSERT(tcp->tcp_rcv_last_head == NULL); 7754 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7755 ASSERT(tcp->tcp_rcv_cnt == 0); 7756 7757 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 7758 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 7759 tcp->tcp_csuna = 0; 7760 7761 tcp->tcp_rto = 0; /* Displayed in MIB */ 7762 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 7763 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 7764 tcp->tcp_rtt_update = 0; 7765 7766 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7767 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7768 7769 tcp->tcp_rack = 0; /* Displayed in mib */ 7770 tcp->tcp_rack_cnt = 0; 7771 tcp->tcp_rack_cur_max = 0; 7772 tcp->tcp_rack_abs_max = 0; 7773 7774 tcp->tcp_max_swnd = 0; 7775 7776 ASSERT(tcp->tcp_listener == NULL); 7777 7778 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 7779 7780 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 7781 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 7782 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 7783 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 7784 7785 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 7786 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 7787 PRESERVE(tcp->tcp_conn_req_max); 7788 PRESERVE(tcp->tcp_conn_req_seqnum); 7789 7790 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 7791 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 7792 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 7793 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 7794 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 7795 7796 tcp->tcp_lingertime = 0; 7797 7798 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 7799 ASSERT(tcp->tcp_urp_mp == NULL); 7800 ASSERT(tcp->tcp_urp_mark_mp == NULL); 7801 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 7802 7803 ASSERT(tcp->tcp_eager_next_q == NULL); 7804 ASSERT(tcp->tcp_eager_last_q == NULL); 7805 ASSERT((tcp->tcp_eager_next_q0 == NULL && 7806 tcp->tcp_eager_prev_q0 == NULL) || 7807 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 7808 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 7809 7810 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 7811 tcp->tcp_eager_prev_drop_q0 == NULL) || 7812 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 7813 7814 tcp->tcp_client_errno = 0; 7815 7816 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 7817 7818 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 7819 7820 PRESERVE(tcp->tcp_bound_source_v6); 7821 tcp->tcp_last_sent_len = 0; 7822 tcp->tcp_dupack_cnt = 0; 7823 7824 tcp->tcp_fport = 0; /* Displayed in MIB */ 7825 PRESERVE(tcp->tcp_lport); 7826 7827 PRESERVE(tcp->tcp_acceptor_lockp); 7828 7829 ASSERT(tcp->tcp_ordrel_mp == NULL); 7830 PRESERVE(tcp->tcp_acceptor_id); 7831 DONTCARE(tcp->tcp_ipsec_overhead); 7832 7833 PRESERVE(tcp->tcp_family); 7834 if (tcp->tcp_family == AF_INET6) { 7835 tcp->tcp_ipversion = IPV6_VERSION; 7836 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 7837 } else { 7838 tcp->tcp_ipversion = IPV4_VERSION; 7839 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 7840 } 7841 7842 tcp->tcp_bound_if = 0; 7843 tcp->tcp_ipv6_recvancillary = 0; 7844 tcp->tcp_recvifindex = 0; 7845 tcp->tcp_recvhops = 0; 7846 tcp->tcp_closed = 0; 7847 tcp->tcp_cleandeathtag = 0; 7848 if (tcp->tcp_hopopts != NULL) { 7849 mi_free(tcp->tcp_hopopts); 7850 tcp->tcp_hopopts = NULL; 7851 tcp->tcp_hopoptslen = 0; 7852 } 7853 ASSERT(tcp->tcp_hopoptslen == 0); 7854 if (tcp->tcp_dstopts != NULL) { 7855 mi_free(tcp->tcp_dstopts); 7856 tcp->tcp_dstopts = NULL; 7857 tcp->tcp_dstoptslen = 0; 7858 } 7859 ASSERT(tcp->tcp_dstoptslen == 0); 7860 if (tcp->tcp_rtdstopts != NULL) { 7861 mi_free(tcp->tcp_rtdstopts); 7862 tcp->tcp_rtdstopts = NULL; 7863 tcp->tcp_rtdstoptslen = 0; 7864 } 7865 ASSERT(tcp->tcp_rtdstoptslen == 0); 7866 if (tcp->tcp_rthdr != NULL) { 7867 mi_free(tcp->tcp_rthdr); 7868 tcp->tcp_rthdr = NULL; 7869 tcp->tcp_rthdrlen = 0; 7870 } 7871 ASSERT(tcp->tcp_rthdrlen == 0); 7872 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 7873 7874 /* Reset fusion-related fields */ 7875 tcp->tcp_fused = B_FALSE; 7876 tcp->tcp_unfusable = B_FALSE; 7877 tcp->tcp_fused_sigurg = B_FALSE; 7878 tcp->tcp_loopback_peer = NULL; 7879 tcp->tcp_recv_hiwater = 0; 7880 7881 tcp->tcp_lso = B_FALSE; 7882 7883 tcp->tcp_in_ack_unsent = 0; 7884 tcp->tcp_cork = B_FALSE; 7885 tcp->tcp_tconnind_started = B_FALSE; 7886 7887 PRESERVE(tcp->tcp_squeue_bytes); 7888 7889 ASSERT(tcp->tcp_kssl_ctx == NULL); 7890 ASSERT(!tcp->tcp_kssl_pending); 7891 PRESERVE(tcp->tcp_kssl_ent); 7892 7893 tcp->tcp_closemp_used = B_FALSE; 7894 7895 PRESERVE(tcp->tcp_rsrv_mp); 7896 PRESERVE(tcp->tcp_rsrv_mp_lock); 7897 7898 #ifdef DEBUG 7899 DONTCARE(tcp->tcmp_stk[0]); 7900 #endif 7901 7902 PRESERVE(tcp->tcp_connid); 7903 7904 7905 #undef DONTCARE 7906 #undef PRESERVE 7907 } 7908 7909 /* 7910 * Allocate necessary resources and initialize state vector. 7911 * Guaranteed not to fail so that when an error is returned, 7912 * the caller doesn't need to do any additional cleanup. 7913 */ 7914 int 7915 tcp_init(tcp_t *tcp, queue_t *q) 7916 { 7917 int err; 7918 7919 tcp->tcp_rq = q; 7920 tcp->tcp_wq = WR(q); 7921 tcp->tcp_state = TCPS_IDLE; 7922 if ((err = tcp_init_values(tcp)) != 0) 7923 tcp_timers_stop(tcp); 7924 return (err); 7925 } 7926 7927 static int 7928 tcp_init_values(tcp_t *tcp) 7929 { 7930 int err; 7931 tcp_stack_t *tcps = tcp->tcp_tcps; 7932 7933 ASSERT((tcp->tcp_family == AF_INET && 7934 tcp->tcp_ipversion == IPV4_VERSION) || 7935 (tcp->tcp_family == AF_INET6 && 7936 (tcp->tcp_ipversion == IPV4_VERSION || 7937 tcp->tcp_ipversion == IPV6_VERSION))); 7938 7939 /* 7940 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 7941 * will be close to tcp_rexmit_interval_initial. By doing this, we 7942 * allow the algorithm to adjust slowly to large fluctuations of RTT 7943 * during first few transmissions of a connection as seen in slow 7944 * links. 7945 */ 7946 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 7947 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 7948 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 7949 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 7950 tcps->tcps_conn_grace_period; 7951 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 7952 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 7953 tcp->tcp_timer_backoff = 0; 7954 tcp->tcp_ms_we_have_waited = 0; 7955 tcp->tcp_last_recv_time = lbolt; 7956 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 7957 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 7958 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 7959 7960 tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier; 7961 7962 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 7963 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 7964 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 7965 /* 7966 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 7967 * passive open. 7968 */ 7969 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 7970 7971 tcp->tcp_naglim = tcps->tcps_naglim_def; 7972 7973 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 7974 7975 tcp->tcp_mdt_hdr_head = 0; 7976 tcp->tcp_mdt_hdr_tail = 0; 7977 7978 /* Reset fusion-related fields */ 7979 tcp->tcp_fused = B_FALSE; 7980 tcp->tcp_unfusable = B_FALSE; 7981 tcp->tcp_fused_sigurg = B_FALSE; 7982 tcp->tcp_loopback_peer = NULL; 7983 tcp->tcp_recv_hiwater = 0; 7984 7985 /* Initialize the header template */ 7986 if (tcp->tcp_ipversion == IPV4_VERSION) { 7987 err = tcp_header_init_ipv4(tcp); 7988 } else { 7989 err = tcp_header_init_ipv6(tcp); 7990 } 7991 if (err) 7992 return (err); 7993 7994 /* 7995 * Init the window scale to the max so tcp_rwnd_set() won't pare 7996 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 7997 */ 7998 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 7999 tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat; 8000 tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat; 8001 8002 tcp->tcp_cork = B_FALSE; 8003 /* 8004 * Init the tcp_debug option. This value determines whether TCP 8005 * calls strlog() to print out debug messages. Doing this 8006 * initialization here means that this value is not inherited thru 8007 * tcp_reinit(). 8008 */ 8009 tcp->tcp_debug = tcps->tcps_dbg; 8010 8011 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 8012 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 8013 8014 return (0); 8015 } 8016 8017 /* 8018 * Initialize the IPv4 header. Loses any record of any IP options. 8019 */ 8020 static int 8021 tcp_header_init_ipv4(tcp_t *tcp) 8022 { 8023 tcph_t *tcph; 8024 uint32_t sum; 8025 conn_t *connp; 8026 tcp_stack_t *tcps = tcp->tcp_tcps; 8027 8028 /* 8029 * This is a simple initialization. If there's 8030 * already a template, it should never be too small, 8031 * so reuse it. Otherwise, allocate space for the new one. 8032 */ 8033 if (tcp->tcp_iphc == NULL) { 8034 ASSERT(tcp->tcp_iphc_len == 0); 8035 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8036 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8037 if (tcp->tcp_iphc == NULL) { 8038 tcp->tcp_iphc_len = 0; 8039 return (ENOMEM); 8040 } 8041 } 8042 8043 /* options are gone; may need a new label */ 8044 connp = tcp->tcp_connp; 8045 connp->conn_mlp_type = mlptSingle; 8046 connp->conn_ulp_labeled = !is_system_labeled(); 8047 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8048 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8049 tcp->tcp_ip6h = NULL; 8050 tcp->tcp_ipversion = IPV4_VERSION; 8051 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8052 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8053 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8054 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8055 tcp->tcp_ipha->ipha_version_and_hdr_length 8056 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8057 tcp->tcp_ipha->ipha_ident = 0; 8058 8059 tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8060 tcp->tcp_tos = 0; 8061 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8062 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8063 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8064 8065 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8066 tcp->tcp_tcph = tcph; 8067 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8068 /* 8069 * IP wants our header length in the checksum field to 8070 * allow it to perform a single pseudo-header+checksum 8071 * calculation on behalf of TCP. 8072 * Include the adjustment for a source route once IP_OPTIONS is set. 8073 */ 8074 sum = sizeof (tcph_t) + tcp->tcp_sum; 8075 sum = (sum >> 16) + (sum & 0xFFFF); 8076 U16_TO_ABE16(sum, tcph->th_sum); 8077 return (0); 8078 } 8079 8080 /* 8081 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8082 */ 8083 static int 8084 tcp_header_init_ipv6(tcp_t *tcp) 8085 { 8086 tcph_t *tcph; 8087 uint32_t sum; 8088 conn_t *connp; 8089 tcp_stack_t *tcps = tcp->tcp_tcps; 8090 8091 /* 8092 * This is a simple initialization. If there's 8093 * already a template, it should never be too small, 8094 * so reuse it. Otherwise, allocate space for the new one. 8095 * Ensure that there is enough space to "downgrade" the tcp_t 8096 * to an IPv4 tcp_t. This requires having space for a full load 8097 * of IPv4 options, as well as a full load of TCP options 8098 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8099 * than a v6 header and a TCP header with a full load of TCP options 8100 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8101 * We want to avoid reallocation in the "downgraded" case when 8102 * processing outbound IPv4 options. 8103 */ 8104 if (tcp->tcp_iphc == NULL) { 8105 ASSERT(tcp->tcp_iphc_len == 0); 8106 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8107 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8108 if (tcp->tcp_iphc == NULL) { 8109 tcp->tcp_iphc_len = 0; 8110 return (ENOMEM); 8111 } 8112 } 8113 8114 /* options are gone; may need a new label */ 8115 connp = tcp->tcp_connp; 8116 connp->conn_mlp_type = mlptSingle; 8117 connp->conn_ulp_labeled = !is_system_labeled(); 8118 8119 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8120 tcp->tcp_ipversion = IPV6_VERSION; 8121 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8122 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8123 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8124 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8125 tcp->tcp_ipha = NULL; 8126 8127 /* Initialize the header template */ 8128 8129 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8130 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8131 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8132 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit; 8133 8134 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8135 tcp->tcp_tcph = tcph; 8136 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8137 /* 8138 * IP wants our header length in the checksum field to 8139 * allow it to perform a single psuedo-header+checksum 8140 * calculation on behalf of TCP. 8141 * Include the adjustment for a source route when IPV6_RTHDR is set. 8142 */ 8143 sum = sizeof (tcph_t) + tcp->tcp_sum; 8144 sum = (sum >> 16) + (sum & 0xFFFF); 8145 U16_TO_ABE16(sum, tcph->th_sum); 8146 return (0); 8147 } 8148 8149 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8150 #define ICMP_MIN_TCP_HDR 8 8151 8152 /* 8153 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8154 * passed up by IP. The message is always received on the correct tcp_t. 8155 * Assumes that IP has pulled up everything up to and including the ICMP header. 8156 */ 8157 void 8158 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8159 { 8160 icmph_t *icmph; 8161 ipha_t *ipha; 8162 int iph_hdr_length; 8163 tcph_t *tcph; 8164 boolean_t ipsec_mctl = B_FALSE; 8165 boolean_t secure; 8166 mblk_t *first_mp = mp; 8167 int32_t new_mss; 8168 uint32_t ratio; 8169 size_t mp_size = MBLKL(mp); 8170 uint32_t seg_seq; 8171 tcp_stack_t *tcps = tcp->tcp_tcps; 8172 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 8173 8174 /* Assume IP provides aligned packets - otherwise toss */ 8175 if (!OK_32PTR(mp->b_rptr)) { 8176 freemsg(mp); 8177 return; 8178 } 8179 8180 /* 8181 * Since ICMP errors are normal data marked with M_CTL when sent 8182 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8183 * packets starting with an ipsec_info_t, see ipsec_info.h. 8184 */ 8185 if ((mp_size == sizeof (ipsec_info_t)) && 8186 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8187 ASSERT(mp->b_cont != NULL); 8188 mp = mp->b_cont; 8189 /* IP should have done this */ 8190 ASSERT(OK_32PTR(mp->b_rptr)); 8191 mp_size = MBLKL(mp); 8192 ipsec_mctl = B_TRUE; 8193 } 8194 8195 /* 8196 * Verify that we have a complete outer IP header. If not, drop it. 8197 */ 8198 if (mp_size < sizeof (ipha_t)) { 8199 noticmpv4: 8200 freemsg(first_mp); 8201 return; 8202 } 8203 8204 ipha = (ipha_t *)mp->b_rptr; 8205 /* 8206 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8207 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8208 */ 8209 switch (IPH_HDR_VERSION(ipha)) { 8210 case IPV6_VERSION: 8211 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8212 return; 8213 case IPV4_VERSION: 8214 break; 8215 default: 8216 goto noticmpv4; 8217 } 8218 8219 /* Skip past the outer IP and ICMP headers */ 8220 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8221 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8222 /* 8223 * If we don't have the correct outer IP header length or if the ULP 8224 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8225 * send it upstream. 8226 */ 8227 if (iph_hdr_length < sizeof (ipha_t) || 8228 ipha->ipha_protocol != IPPROTO_ICMP || 8229 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8230 goto noticmpv4; 8231 } 8232 ipha = (ipha_t *)&icmph[1]; 8233 8234 /* Skip past the inner IP and find the ULP header */ 8235 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8236 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8237 /* 8238 * If we don't have the correct inner IP header length or if the ULP 8239 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8240 * bytes of TCP header, drop it. 8241 */ 8242 if (iph_hdr_length < sizeof (ipha_t) || 8243 ipha->ipha_protocol != IPPROTO_TCP || 8244 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8245 goto noticmpv4; 8246 } 8247 8248 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8249 if (ipsec_mctl) { 8250 secure = ipsec_in_is_secure(first_mp); 8251 } else { 8252 secure = B_FALSE; 8253 } 8254 if (secure) { 8255 /* 8256 * If we are willing to accept this in clear 8257 * we don't have to verify policy. 8258 */ 8259 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8260 if (!tcp_check_policy(tcp, first_mp, 8261 ipha, NULL, secure, ipsec_mctl)) { 8262 /* 8263 * tcp_check_policy called 8264 * ip_drop_packet() on failure. 8265 */ 8266 return; 8267 } 8268 } 8269 } 8270 } else if (ipsec_mctl) { 8271 /* 8272 * This is a hard_bound connection. IP has already 8273 * verified policy. We don't have to do it again. 8274 */ 8275 freeb(first_mp); 8276 first_mp = mp; 8277 ipsec_mctl = B_FALSE; 8278 } 8279 8280 seg_seq = ABE32_TO_U32(tcph->th_seq); 8281 /* 8282 * TCP SHOULD check that the TCP sequence number contained in 8283 * payload of the ICMP error message is within the range 8284 * SND.UNA <= SEG.SEQ < SND.NXT. 8285 */ 8286 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8287 /* 8288 * The ICMP message is bogus, just drop it. But if this is 8289 * an ICMP too big message, IP has already changed 8290 * the ire_max_frag to the bogus value. We need to change 8291 * it back. 8292 */ 8293 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 8294 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 8295 conn_t *connp = tcp->tcp_connp; 8296 ire_t *ire; 8297 int flag; 8298 8299 if (tcp->tcp_ipversion == IPV4_VERSION) { 8300 flag = tcp->tcp_ipha-> 8301 ipha_fragment_offset_and_flags; 8302 } else { 8303 flag = 0; 8304 } 8305 mutex_enter(&connp->conn_lock); 8306 if ((ire = connp->conn_ire_cache) != NULL) { 8307 mutex_enter(&ire->ire_lock); 8308 mutex_exit(&connp->conn_lock); 8309 ire->ire_max_frag = tcp->tcp_if_mtu; 8310 ire->ire_frag_flag |= flag; 8311 mutex_exit(&ire->ire_lock); 8312 } else { 8313 mutex_exit(&connp->conn_lock); 8314 } 8315 } 8316 goto noticmpv4; 8317 } 8318 8319 switch (icmph->icmph_type) { 8320 case ICMP_DEST_UNREACHABLE: 8321 switch (icmph->icmph_code) { 8322 case ICMP_FRAGMENTATION_NEEDED: 8323 /* 8324 * Reduce the MSS based on the new MTU. This will 8325 * eliminate any fragmentation locally. 8326 * N.B. There may well be some funny side-effects on 8327 * the local send policy and the remote receive policy. 8328 * Pending further research, we provide 8329 * tcp_ignore_path_mtu just in case this proves 8330 * disastrous somewhere. 8331 * 8332 * After updating the MSS, retransmit part of the 8333 * dropped segment using the new mss by calling 8334 * tcp_wput_data(). Need to adjust all those 8335 * params to make sure tcp_wput_data() work properly. 8336 */ 8337 if (tcps->tcps_ignore_path_mtu || 8338 tcp->tcp_ipha->ipha_fragment_offset_and_flags == 0) 8339 break; 8340 8341 /* 8342 * Decrease the MSS by time stamp options 8343 * IP options and IPSEC options. tcp_hdr_len 8344 * includes time stamp option and IP option 8345 * length. Note that new_mss may be negative 8346 * if tcp_ipsec_overhead is large and the 8347 * icmph_du_mtu is the minimum value, which is 68. 8348 */ 8349 new_mss = ntohs(icmph->icmph_du_mtu) - 8350 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8351 8352 DTRACE_PROBE2(tcp__pmtu__change, tcp_t *, tcp, int, 8353 new_mss); 8354 8355 /* 8356 * Only update the MSS if the new one is 8357 * smaller than the previous one. This is 8358 * to avoid problems when getting multiple 8359 * ICMP errors for the same MTU. 8360 */ 8361 if (new_mss >= tcp->tcp_mss) 8362 break; 8363 8364 /* 8365 * Note that we are using the template header's DF 8366 * bit in the fast path sending. So we need to compare 8367 * the new mss with both tcps_mss_min and ip_pmtu_min. 8368 * And stop doing IPv4 PMTUd if new_mss is less than 8369 * MAX(tcps_mss_min, ip_pmtu_min). 8370 */ 8371 if (new_mss < tcps->tcps_mss_min || 8372 new_mss < ipst->ips_ip_pmtu_min) { 8373 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8374 0; 8375 } 8376 8377 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8378 ASSERT(ratio >= 1); 8379 tcp_mss_set(tcp, new_mss, B_TRUE); 8380 8381 /* 8382 * Make sure we have something to 8383 * send. 8384 */ 8385 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8386 (tcp->tcp_xmit_head != NULL)) { 8387 /* 8388 * Shrink tcp_cwnd in 8389 * proportion to the old MSS/new MSS. 8390 */ 8391 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8392 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8393 (tcp->tcp_unsent == 0)) { 8394 tcp->tcp_rexmit_max = tcp->tcp_fss; 8395 } else { 8396 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8397 } 8398 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8399 tcp->tcp_rexmit = B_TRUE; 8400 tcp->tcp_dupack_cnt = 0; 8401 tcp->tcp_snd_burst = TCP_CWND_SS; 8402 tcp_ss_rexmit(tcp); 8403 } 8404 break; 8405 case ICMP_PORT_UNREACHABLE: 8406 case ICMP_PROTOCOL_UNREACHABLE: 8407 switch (tcp->tcp_state) { 8408 case TCPS_SYN_SENT: 8409 case TCPS_SYN_RCVD: 8410 /* 8411 * ICMP can snipe away incipient 8412 * TCP connections as long as 8413 * seq number is same as initial 8414 * send seq number. 8415 */ 8416 if (seg_seq == tcp->tcp_iss) { 8417 (void) tcp_clean_death(tcp, 8418 ECONNREFUSED, 6); 8419 } 8420 break; 8421 } 8422 break; 8423 case ICMP_HOST_UNREACHABLE: 8424 case ICMP_NET_UNREACHABLE: 8425 /* Record the error in case we finally time out. */ 8426 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8427 tcp->tcp_client_errno = EHOSTUNREACH; 8428 else 8429 tcp->tcp_client_errno = ENETUNREACH; 8430 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8431 if (tcp->tcp_listener != NULL && 8432 tcp->tcp_listener->tcp_syn_defense) { 8433 /* 8434 * Ditch the half-open connection if we 8435 * suspect a SYN attack is under way. 8436 */ 8437 tcp_ip_ire_mark_advice(tcp); 8438 (void) tcp_clean_death(tcp, 8439 tcp->tcp_client_errno, 7); 8440 } 8441 } 8442 break; 8443 default: 8444 break; 8445 } 8446 break; 8447 case ICMP_SOURCE_QUENCH: { 8448 /* 8449 * use a global boolean to control 8450 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8451 * The default is false. 8452 */ 8453 if (tcp_icmp_source_quench) { 8454 /* 8455 * Reduce the sending rate as if we got a 8456 * retransmit timeout 8457 */ 8458 uint32_t npkt; 8459 8460 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8461 tcp->tcp_mss; 8462 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8463 tcp->tcp_cwnd = tcp->tcp_mss; 8464 tcp->tcp_cwnd_cnt = 0; 8465 } 8466 break; 8467 } 8468 } 8469 freemsg(first_mp); 8470 } 8471 8472 /* 8473 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8474 * error messages passed up by IP. 8475 * Assumes that IP has pulled up all the extension headers as well 8476 * as the ICMPv6 header. 8477 */ 8478 static void 8479 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8480 { 8481 icmp6_t *icmp6; 8482 ip6_t *ip6h; 8483 uint16_t iph_hdr_length; 8484 tcpha_t *tcpha; 8485 uint8_t *nexthdrp; 8486 uint32_t new_mss; 8487 uint32_t ratio; 8488 boolean_t secure; 8489 mblk_t *first_mp = mp; 8490 size_t mp_size; 8491 uint32_t seg_seq; 8492 tcp_stack_t *tcps = tcp->tcp_tcps; 8493 8494 /* 8495 * The caller has determined if this is an IPSEC_IN packet and 8496 * set ipsec_mctl appropriately (see tcp_icmp_error). 8497 */ 8498 if (ipsec_mctl) 8499 mp = mp->b_cont; 8500 8501 mp_size = MBLKL(mp); 8502 8503 /* 8504 * Verify that we have a complete IP header. If not, send it upstream. 8505 */ 8506 if (mp_size < sizeof (ip6_t)) { 8507 noticmpv6: 8508 freemsg(first_mp); 8509 return; 8510 } 8511 8512 /* 8513 * Verify this is an ICMPV6 packet, else send it upstream. 8514 */ 8515 ip6h = (ip6_t *)mp->b_rptr; 8516 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8517 iph_hdr_length = IPV6_HDR_LEN; 8518 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8519 &nexthdrp) || 8520 *nexthdrp != IPPROTO_ICMPV6) { 8521 goto noticmpv6; 8522 } 8523 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8524 ip6h = (ip6_t *)&icmp6[1]; 8525 /* 8526 * Verify if we have a complete ICMP and inner IP header. 8527 */ 8528 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8529 goto noticmpv6; 8530 8531 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8532 goto noticmpv6; 8533 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8534 /* 8535 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8536 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8537 * packet. 8538 */ 8539 if ((*nexthdrp != IPPROTO_TCP) || 8540 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8541 goto noticmpv6; 8542 } 8543 8544 /* 8545 * ICMP errors come on the right queue or come on 8546 * listener/global queue for detached connections and 8547 * get switched to the right queue. If it comes on the 8548 * right queue, policy check has already been done by IP 8549 * and thus free the first_mp without verifying the policy. 8550 * If it has come for a non-hard bound connection, we need 8551 * to verify policy as IP may not have done it. 8552 */ 8553 if (!tcp->tcp_hard_bound) { 8554 if (ipsec_mctl) { 8555 secure = ipsec_in_is_secure(first_mp); 8556 } else { 8557 secure = B_FALSE; 8558 } 8559 if (secure) { 8560 /* 8561 * If we are willing to accept this in clear 8562 * we don't have to verify policy. 8563 */ 8564 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8565 if (!tcp_check_policy(tcp, first_mp, 8566 NULL, ip6h, secure, ipsec_mctl)) { 8567 /* 8568 * tcp_check_policy called 8569 * ip_drop_packet() on failure. 8570 */ 8571 return; 8572 } 8573 } 8574 } 8575 } else if (ipsec_mctl) { 8576 /* 8577 * This is a hard_bound connection. IP has already 8578 * verified policy. We don't have to do it again. 8579 */ 8580 freeb(first_mp); 8581 first_mp = mp; 8582 ipsec_mctl = B_FALSE; 8583 } 8584 8585 seg_seq = ntohl(tcpha->tha_seq); 8586 /* 8587 * TCP SHOULD check that the TCP sequence number contained in 8588 * payload of the ICMP error message is within the range 8589 * SND.UNA <= SEG.SEQ < SND.NXT. 8590 */ 8591 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8592 /* 8593 * If the ICMP message is bogus, should we kill the 8594 * connection, or should we just drop the bogus ICMP 8595 * message? It would probably make more sense to just 8596 * drop the message so that if this one managed to get 8597 * in, the real connection should not suffer. 8598 */ 8599 goto noticmpv6; 8600 } 8601 8602 switch (icmp6->icmp6_type) { 8603 case ICMP6_PACKET_TOO_BIG: 8604 /* 8605 * Reduce the MSS based on the new MTU. This will 8606 * eliminate any fragmentation locally. 8607 * N.B. There may well be some funny side-effects on 8608 * the local send policy and the remote receive policy. 8609 * Pending further research, we provide 8610 * tcp_ignore_path_mtu just in case this proves 8611 * disastrous somewhere. 8612 * 8613 * After updating the MSS, retransmit part of the 8614 * dropped segment using the new mss by calling 8615 * tcp_wput_data(). Need to adjust all those 8616 * params to make sure tcp_wput_data() work properly. 8617 */ 8618 if (tcps->tcps_ignore_path_mtu) 8619 break; 8620 8621 /* 8622 * Decrease the MSS by time stamp options 8623 * IP options and IPSEC options. tcp_hdr_len 8624 * includes time stamp option and IP option 8625 * length. 8626 */ 8627 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8628 tcp->tcp_ipsec_overhead; 8629 8630 /* 8631 * Only update the MSS if the new one is 8632 * smaller than the previous one. This is 8633 * to avoid problems when getting multiple 8634 * ICMP errors for the same MTU. 8635 */ 8636 if (new_mss >= tcp->tcp_mss) 8637 break; 8638 8639 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8640 ASSERT(ratio >= 1); 8641 tcp_mss_set(tcp, new_mss, B_TRUE); 8642 8643 /* 8644 * Make sure we have something to 8645 * send. 8646 */ 8647 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8648 (tcp->tcp_xmit_head != NULL)) { 8649 /* 8650 * Shrink tcp_cwnd in 8651 * proportion to the old MSS/new MSS. 8652 */ 8653 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8654 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8655 (tcp->tcp_unsent == 0)) { 8656 tcp->tcp_rexmit_max = tcp->tcp_fss; 8657 } else { 8658 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8659 } 8660 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8661 tcp->tcp_rexmit = B_TRUE; 8662 tcp->tcp_dupack_cnt = 0; 8663 tcp->tcp_snd_burst = TCP_CWND_SS; 8664 tcp_ss_rexmit(tcp); 8665 } 8666 break; 8667 8668 case ICMP6_DST_UNREACH: 8669 switch (icmp6->icmp6_code) { 8670 case ICMP6_DST_UNREACH_NOPORT: 8671 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8672 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8673 (seg_seq == tcp->tcp_iss)) { 8674 (void) tcp_clean_death(tcp, 8675 ECONNREFUSED, 8); 8676 } 8677 break; 8678 8679 case ICMP6_DST_UNREACH_ADMIN: 8680 case ICMP6_DST_UNREACH_NOROUTE: 8681 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8682 case ICMP6_DST_UNREACH_ADDR: 8683 /* Record the error in case we finally time out. */ 8684 tcp->tcp_client_errno = EHOSTUNREACH; 8685 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8686 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8687 (seg_seq == tcp->tcp_iss)) { 8688 if (tcp->tcp_listener != NULL && 8689 tcp->tcp_listener->tcp_syn_defense) { 8690 /* 8691 * Ditch the half-open connection if we 8692 * suspect a SYN attack is under way. 8693 */ 8694 tcp_ip_ire_mark_advice(tcp); 8695 (void) tcp_clean_death(tcp, 8696 tcp->tcp_client_errno, 9); 8697 } 8698 } 8699 8700 8701 break; 8702 default: 8703 break; 8704 } 8705 break; 8706 8707 case ICMP6_PARAM_PROB: 8708 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8709 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8710 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8711 (uchar_t *)nexthdrp) { 8712 if (tcp->tcp_state == TCPS_SYN_SENT || 8713 tcp->tcp_state == TCPS_SYN_RCVD) { 8714 (void) tcp_clean_death(tcp, 8715 ECONNREFUSED, 10); 8716 } 8717 break; 8718 } 8719 break; 8720 8721 case ICMP6_TIME_EXCEEDED: 8722 default: 8723 break; 8724 } 8725 freemsg(first_mp); 8726 } 8727 8728 /* 8729 * Notify IP that we are having trouble with this connection. IP should 8730 * blow the IRE away and start over. 8731 */ 8732 static void 8733 tcp_ip_notify(tcp_t *tcp) 8734 { 8735 struct iocblk *iocp; 8736 ipid_t *ipid; 8737 mblk_t *mp; 8738 8739 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 8740 if (tcp->tcp_ipversion == IPV6_VERSION) 8741 return; 8742 8743 mp = mkiocb(IP_IOCTL); 8744 if (mp == NULL) 8745 return; 8746 8747 iocp = (struct iocblk *)mp->b_rptr; 8748 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 8749 8750 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 8751 if (!mp->b_cont) { 8752 freeb(mp); 8753 return; 8754 } 8755 8756 ipid = (ipid_t *)mp->b_cont->b_rptr; 8757 mp->b_cont->b_wptr += iocp->ioc_count; 8758 bzero(ipid, sizeof (*ipid)); 8759 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 8760 ipid->ipid_ire_type = IRE_CACHE; 8761 ipid->ipid_addr_offset = sizeof (ipid_t); 8762 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 8763 /* 8764 * Note: in the case of source routing we want to blow away the 8765 * route to the first source route hop. 8766 */ 8767 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 8768 sizeof (tcp->tcp_ipha->ipha_dst)); 8769 8770 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 8771 } 8772 8773 /* Unlink and return any mblk that looks like it contains an ire */ 8774 static mblk_t * 8775 tcp_ire_mp(mblk_t **mpp) 8776 { 8777 mblk_t *mp = *mpp; 8778 mblk_t *prev_mp = NULL; 8779 8780 for (;;) { 8781 switch (DB_TYPE(mp)) { 8782 case IRE_DB_TYPE: 8783 case IRE_DB_REQ_TYPE: 8784 if (mp == *mpp) { 8785 *mpp = mp->b_cont; 8786 } else { 8787 prev_mp->b_cont = mp->b_cont; 8788 } 8789 mp->b_cont = NULL; 8790 return (mp); 8791 default: 8792 break; 8793 } 8794 prev_mp = mp; 8795 mp = mp->b_cont; 8796 if (mp == NULL) 8797 break; 8798 } 8799 return (mp); 8800 } 8801 8802 /* 8803 * Timer callback routine for keepalive probe. We do a fake resend of 8804 * last ACKed byte. Then set a timer using RTO. When the timer expires, 8805 * check to see if we have heard anything from the other end for the last 8806 * RTO period. If we have, set the timer to expire for another 8807 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 8808 * RTO << 1 and check again when it expires. Keep exponentially increasing 8809 * the timeout if we have not heard from the other side. If for more than 8810 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 8811 * kill the connection unless the keepalive abort threshold is 0. In 8812 * that case, we will probe "forever." 8813 */ 8814 static void 8815 tcp_keepalive_killer(void *arg) 8816 { 8817 mblk_t *mp; 8818 conn_t *connp = (conn_t *)arg; 8819 tcp_t *tcp = connp->conn_tcp; 8820 int32_t firetime; 8821 int32_t idletime; 8822 int32_t ka_intrvl; 8823 tcp_stack_t *tcps = tcp->tcp_tcps; 8824 8825 tcp->tcp_ka_tid = 0; 8826 8827 if (tcp->tcp_fused) 8828 return; 8829 8830 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 8831 ka_intrvl = tcp->tcp_ka_interval; 8832 8833 /* 8834 * Keepalive probe should only be sent if the application has not 8835 * done a close on the connection. 8836 */ 8837 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 8838 return; 8839 } 8840 /* Timer fired too early, restart it. */ 8841 if (tcp->tcp_state < TCPS_ESTABLISHED) { 8842 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8843 MSEC_TO_TICK(ka_intrvl)); 8844 return; 8845 } 8846 8847 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 8848 /* 8849 * If we have not heard from the other side for a long 8850 * time, kill the connection unless the keepalive abort 8851 * threshold is 0. In that case, we will probe "forever." 8852 */ 8853 if (tcp->tcp_ka_abort_thres != 0 && 8854 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 8855 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 8856 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 8857 tcp->tcp_client_errno : ETIMEDOUT, 11); 8858 return; 8859 } 8860 8861 if (tcp->tcp_snxt == tcp->tcp_suna && 8862 idletime >= ka_intrvl) { 8863 /* Fake resend of last ACKed byte. */ 8864 mblk_t *mp1 = allocb(1, BPRI_LO); 8865 8866 if (mp1 != NULL) { 8867 *mp1->b_wptr++ = '\0'; 8868 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 8869 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 8870 freeb(mp1); 8871 /* 8872 * if allocation failed, fall through to start the 8873 * timer back. 8874 */ 8875 if (mp != NULL) { 8876 tcp_send_data(tcp, tcp->tcp_wq, mp); 8877 BUMP_MIB(&tcps->tcps_mib, 8878 tcpTimKeepaliveProbe); 8879 if (tcp->tcp_ka_last_intrvl != 0) { 8880 int max; 8881 /* 8882 * We should probe again at least 8883 * in ka_intrvl, but not more than 8884 * tcp_rexmit_interval_max. 8885 */ 8886 max = tcps->tcps_rexmit_interval_max; 8887 firetime = MIN(ka_intrvl - 1, 8888 tcp->tcp_ka_last_intrvl << 1); 8889 if (firetime > max) 8890 firetime = max; 8891 } else { 8892 firetime = tcp->tcp_rto; 8893 } 8894 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8895 tcp_keepalive_killer, 8896 MSEC_TO_TICK(firetime)); 8897 tcp->tcp_ka_last_intrvl = firetime; 8898 return; 8899 } 8900 } 8901 } else { 8902 tcp->tcp_ka_last_intrvl = 0; 8903 } 8904 8905 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 8906 if ((firetime = ka_intrvl - idletime) < 0) { 8907 firetime = ka_intrvl; 8908 } 8909 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8910 MSEC_TO_TICK(firetime)); 8911 } 8912 8913 int 8914 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 8915 { 8916 queue_t *q = tcp->tcp_rq; 8917 int32_t mss = tcp->tcp_mss; 8918 int maxpsz; 8919 conn_t *connp = tcp->tcp_connp; 8920 8921 if (TCP_IS_DETACHED(tcp)) 8922 return (mss); 8923 if (tcp->tcp_fused) { 8924 maxpsz = tcp_fuse_maxpsz(tcp); 8925 mss = INFPSZ; 8926 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 8927 /* 8928 * Set the sd_qn_maxpsz according to the socket send buffer 8929 * size, and sd_maxblk to INFPSZ (-1). This will essentially 8930 * instruct the stream head to copyin user data into contiguous 8931 * kernel-allocated buffers without breaking it up into smaller 8932 * chunks. We round up the buffer size to the nearest SMSS. 8933 */ 8934 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 8935 if (tcp->tcp_kssl_ctx == NULL) 8936 mss = INFPSZ; 8937 else 8938 mss = SSL3_MAX_RECORD_LEN; 8939 } else { 8940 /* 8941 * Set sd_qn_maxpsz to approx half the (receivers) buffer 8942 * (and a multiple of the mss). This instructs the stream 8943 * head to break down larger than SMSS writes into SMSS- 8944 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 8945 */ 8946 /* XXX tune this with ndd tcp_maxpsz_multiplier */ 8947 maxpsz = tcp->tcp_maxpsz * mss; 8948 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 8949 maxpsz = tcp->tcp_xmit_hiwater/2; 8950 /* Round up to nearest mss */ 8951 maxpsz = MSS_ROUNDUP(maxpsz, mss); 8952 } 8953 } 8954 8955 (void) proto_set_maxpsz(q, connp, maxpsz); 8956 if (!(IPCL_IS_NONSTR(connp))) { 8957 /* XXX do it in set_maxpsz()? */ 8958 tcp->tcp_wq->q_maxpsz = maxpsz; 8959 } 8960 8961 if (set_maxblk) 8962 (void) proto_set_tx_maxblk(q, connp, mss); 8963 return (mss); 8964 } 8965 8966 /* 8967 * Extract option values from a tcp header. We put any found values into the 8968 * tcpopt struct and return a bitmask saying which options were found. 8969 */ 8970 static int 8971 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 8972 { 8973 uchar_t *endp; 8974 int len; 8975 uint32_t mss; 8976 uchar_t *up = (uchar_t *)tcph; 8977 int found = 0; 8978 int32_t sack_len; 8979 tcp_seq sack_begin, sack_end; 8980 tcp_t *tcp; 8981 8982 endp = up + TCP_HDR_LENGTH(tcph); 8983 up += TCP_MIN_HEADER_LENGTH; 8984 while (up < endp) { 8985 len = endp - up; 8986 switch (*up) { 8987 case TCPOPT_EOL: 8988 break; 8989 8990 case TCPOPT_NOP: 8991 up++; 8992 continue; 8993 8994 case TCPOPT_MAXSEG: 8995 if (len < TCPOPT_MAXSEG_LEN || 8996 up[1] != TCPOPT_MAXSEG_LEN) 8997 break; 8998 8999 mss = BE16_TO_U16(up+2); 9000 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 9001 tcpopt->tcp_opt_mss = mss; 9002 found |= TCP_OPT_MSS_PRESENT; 9003 9004 up += TCPOPT_MAXSEG_LEN; 9005 continue; 9006 9007 case TCPOPT_WSCALE: 9008 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9009 break; 9010 9011 if (up[2] > TCP_MAX_WINSHIFT) 9012 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9013 else 9014 tcpopt->tcp_opt_wscale = up[2]; 9015 found |= TCP_OPT_WSCALE_PRESENT; 9016 9017 up += TCPOPT_WS_LEN; 9018 continue; 9019 9020 case TCPOPT_SACK_PERMITTED: 9021 if (len < TCPOPT_SACK_OK_LEN || 9022 up[1] != TCPOPT_SACK_OK_LEN) 9023 break; 9024 found |= TCP_OPT_SACK_OK_PRESENT; 9025 up += TCPOPT_SACK_OK_LEN; 9026 continue; 9027 9028 case TCPOPT_SACK: 9029 if (len <= 2 || up[1] <= 2 || len < up[1]) 9030 break; 9031 9032 /* If TCP is not interested in SACK blks... */ 9033 if ((tcp = tcpopt->tcp) == NULL) { 9034 up += up[1]; 9035 continue; 9036 } 9037 sack_len = up[1] - TCPOPT_HEADER_LEN; 9038 up += TCPOPT_HEADER_LEN; 9039 9040 /* 9041 * If the list is empty, allocate one and assume 9042 * nothing is sack'ed. 9043 */ 9044 ASSERT(tcp->tcp_sack_info != NULL); 9045 if (tcp->tcp_notsack_list == NULL) { 9046 tcp_notsack_update(&(tcp->tcp_notsack_list), 9047 tcp->tcp_suna, tcp->tcp_snxt, 9048 &(tcp->tcp_num_notsack_blk), 9049 &(tcp->tcp_cnt_notsack_list)); 9050 9051 /* 9052 * Make sure tcp_notsack_list is not NULL. 9053 * This happens when kmem_alloc(KM_NOSLEEP) 9054 * returns NULL. 9055 */ 9056 if (tcp->tcp_notsack_list == NULL) { 9057 up += sack_len; 9058 continue; 9059 } 9060 tcp->tcp_fack = tcp->tcp_suna; 9061 } 9062 9063 while (sack_len > 0) { 9064 if (up + 8 > endp) { 9065 up = endp; 9066 break; 9067 } 9068 sack_begin = BE32_TO_U32(up); 9069 up += 4; 9070 sack_end = BE32_TO_U32(up); 9071 up += 4; 9072 sack_len -= 8; 9073 /* 9074 * Bounds checking. Make sure the SACK 9075 * info is within tcp_suna and tcp_snxt. 9076 * If this SACK blk is out of bound, ignore 9077 * it but continue to parse the following 9078 * blks. 9079 */ 9080 if (SEQ_LEQ(sack_end, sack_begin) || 9081 SEQ_LT(sack_begin, tcp->tcp_suna) || 9082 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9083 continue; 9084 } 9085 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9086 sack_begin, sack_end, 9087 &(tcp->tcp_num_notsack_blk), 9088 &(tcp->tcp_cnt_notsack_list)); 9089 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9090 tcp->tcp_fack = sack_end; 9091 } 9092 } 9093 found |= TCP_OPT_SACK_PRESENT; 9094 continue; 9095 9096 case TCPOPT_TSTAMP: 9097 if (len < TCPOPT_TSTAMP_LEN || 9098 up[1] != TCPOPT_TSTAMP_LEN) 9099 break; 9100 9101 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9102 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9103 9104 found |= TCP_OPT_TSTAMP_PRESENT; 9105 9106 up += TCPOPT_TSTAMP_LEN; 9107 continue; 9108 9109 default: 9110 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9111 break; 9112 up += up[1]; 9113 continue; 9114 } 9115 break; 9116 } 9117 return (found); 9118 } 9119 9120 /* 9121 * Set the mss associated with a particular tcp based on its current value, 9122 * and a new one passed in. Observe minimums and maximums, and reset 9123 * other state variables that we want to view as multiples of mss. 9124 * 9125 * This function is called mainly because values like tcp_mss, tcp_cwnd, 9126 * highwater marks etc. need to be initialized or adjusted. 9127 * 1) From tcp_process_options() when the other side's SYN/SYN-ACK 9128 * packet arrives. 9129 * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or 9130 * ICMP6_PACKET_TOO_BIG arrives. 9131 * 3) From tcp_paws_check() if the other side stops sending the timestamp, 9132 * to increase the MSS to use the extra bytes available. 9133 * 9134 * Callers except tcp_paws_check() ensure that they only reduce mss. 9135 */ 9136 static void 9137 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss) 9138 { 9139 uint32_t mss_max; 9140 tcp_stack_t *tcps = tcp->tcp_tcps; 9141 9142 if (tcp->tcp_ipversion == IPV4_VERSION) 9143 mss_max = tcps->tcps_mss_max_ipv4; 9144 else 9145 mss_max = tcps->tcps_mss_max_ipv6; 9146 9147 if (mss < tcps->tcps_mss_min) 9148 mss = tcps->tcps_mss_min; 9149 if (mss > mss_max) 9150 mss = mss_max; 9151 /* 9152 * Unless naglim has been set by our client to 9153 * a non-mss value, force naglim to track mss. 9154 * This can help to aggregate small writes. 9155 */ 9156 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9157 tcp->tcp_naglim = mss; 9158 /* 9159 * TCP should be able to buffer at least 4 MSS data for obvious 9160 * performance reason. 9161 */ 9162 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9163 tcp->tcp_xmit_hiwater = mss << 2; 9164 9165 /* 9166 * Set the xmit_lowater to at least twice of MSS. 9167 */ 9168 if ((mss << 1) > tcp->tcp_xmit_lowater) 9169 tcp->tcp_xmit_lowater = mss << 1; 9170 9171 if (do_ss) { 9172 /* 9173 * Either the tcp_cwnd is as yet uninitialized, or mss is 9174 * changing due to a reduction in MTU, presumably as a 9175 * result of a new path component, reset cwnd to its 9176 * "initial" value, as a multiple of the new mss. 9177 */ 9178 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial); 9179 } else { 9180 /* 9181 * Called by tcp_paws_check(), the mss increased 9182 * marginally to allow use of space previously taken 9183 * by the timestamp option. It would be inappropriate 9184 * to apply slow start or tcp_init_cwnd values to 9185 * tcp_cwnd, simply adjust to a multiple of the new mss. 9186 */ 9187 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 9188 tcp->tcp_cwnd_cnt = 0; 9189 } 9190 tcp->tcp_mss = mss; 9191 (void) tcp_maxpsz_set(tcp, B_TRUE); 9192 } 9193 9194 /* For /dev/tcp aka AF_INET open */ 9195 static int 9196 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9197 { 9198 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 9199 } 9200 9201 /* For /dev/tcp6 aka AF_INET6 open */ 9202 static int 9203 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9204 { 9205 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 9206 } 9207 9208 static conn_t * 9209 tcp_create_common(queue_t *q, cred_t *credp, boolean_t isv6, 9210 boolean_t issocket, int *errorp) 9211 { 9212 tcp_t *tcp = NULL; 9213 conn_t *connp; 9214 int err; 9215 zoneid_t zoneid; 9216 tcp_stack_t *tcps; 9217 squeue_t *sqp; 9218 9219 ASSERT(errorp != NULL); 9220 /* 9221 * Find the proper zoneid and netstack. 9222 */ 9223 /* 9224 * Special case for install: miniroot needs to be able to 9225 * access files via NFS as though it were always in the 9226 * global zone. 9227 */ 9228 if (credp == kcred && nfs_global_client_only != 0) { 9229 zoneid = GLOBAL_ZONEID; 9230 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 9231 netstack_tcp; 9232 ASSERT(tcps != NULL); 9233 } else { 9234 netstack_t *ns; 9235 9236 ns = netstack_find_by_cred(credp); 9237 ASSERT(ns != NULL); 9238 tcps = ns->netstack_tcp; 9239 ASSERT(tcps != NULL); 9240 9241 /* 9242 * For exclusive stacks we set the zoneid to zero 9243 * to make TCP operate as if in the global zone. 9244 */ 9245 if (tcps->tcps_netstack->netstack_stackid != 9246 GLOBAL_NETSTACKID) 9247 zoneid = GLOBAL_ZONEID; 9248 else 9249 zoneid = crgetzoneid(credp); 9250 } 9251 /* 9252 * For stackid zero this is done from strplumb.c, but 9253 * non-zero stackids are handled here. 9254 */ 9255 if (tcps->tcps_g_q == NULL && 9256 tcps->tcps_netstack->netstack_stackid != 9257 GLOBAL_NETSTACKID) { 9258 tcp_g_q_setup(tcps); 9259 } 9260 9261 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 9262 connp = (conn_t *)tcp_get_conn(sqp, tcps); 9263 /* 9264 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 9265 * so we drop it by one. 9266 */ 9267 netstack_rele(tcps->tcps_netstack); 9268 if (connp == NULL) { 9269 *errorp = ENOSR; 9270 return (NULL); 9271 } 9272 connp->conn_sqp = sqp; 9273 connp->conn_initial_sqp = connp->conn_sqp; 9274 tcp = connp->conn_tcp; 9275 9276 if (isv6) { 9277 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9278 connp->conn_send = ip_output_v6; 9279 connp->conn_af_isv6 = B_TRUE; 9280 connp->conn_pkt_isv6 = B_TRUE; 9281 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9282 tcp->tcp_ipversion = IPV6_VERSION; 9283 tcp->tcp_family = AF_INET6; 9284 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 9285 } else { 9286 connp->conn_flags |= IPCL_TCP4; 9287 connp->conn_send = ip_output; 9288 connp->conn_af_isv6 = B_FALSE; 9289 connp->conn_pkt_isv6 = B_FALSE; 9290 tcp->tcp_ipversion = IPV4_VERSION; 9291 tcp->tcp_family = AF_INET; 9292 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 9293 } 9294 9295 /* 9296 * TCP keeps a copy of cred for cache locality reasons but 9297 * we put a reference only once. If connp->conn_cred 9298 * becomes invalid, tcp_cred should also be set to NULL. 9299 */ 9300 tcp->tcp_cred = connp->conn_cred = credp; 9301 crhold(connp->conn_cred); 9302 tcp->tcp_cpid = curproc->p_pid; 9303 tcp->tcp_open_time = lbolt64; 9304 connp->conn_zoneid = zoneid; 9305 connp->conn_mlp_type = mlptSingle; 9306 connp->conn_ulp_labeled = !is_system_labeled(); 9307 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 9308 ASSERT(tcp->tcp_tcps == tcps); 9309 9310 /* 9311 * If the caller has the process-wide flag set, then default to MAC 9312 * exempt mode. This allows read-down to unlabeled hosts. 9313 */ 9314 if (getpflags(NET_MAC_AWARE, credp) != 0) 9315 connp->conn_mac_exempt = B_TRUE; 9316 9317 connp->conn_dev = NULL; 9318 if (issocket) { 9319 connp->conn_flags |= IPCL_SOCKET; 9320 tcp->tcp_issocket = 1; 9321 } 9322 9323 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 9324 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 9325 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 9326 9327 /* Non-zero default values */ 9328 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9329 9330 if (q == NULL) { 9331 /* 9332 * Create a helper stream for non-STREAMS socket. 9333 */ 9334 err = ip_create_helper_stream(connp, tcps->tcps_ldi_ident); 9335 if (err != 0) { 9336 ip1dbg(("tcp_create_common: create of IP helper stream " 9337 "failed\n")); 9338 CONN_DEC_REF(connp); 9339 *errorp = err; 9340 return (NULL); 9341 } 9342 q = connp->conn_rq; 9343 } 9344 9345 SOCK_CONNID_INIT(tcp->tcp_connid); 9346 err = tcp_init(tcp, q); 9347 if (err != 0) { 9348 CONN_DEC_REF(connp); 9349 *errorp = err; 9350 return (NULL); 9351 } 9352 9353 return (connp); 9354 } 9355 9356 static int 9357 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9358 boolean_t isv6) 9359 { 9360 tcp_t *tcp = NULL; 9361 conn_t *connp = NULL; 9362 int err; 9363 vmem_t *minor_arena = NULL; 9364 dev_t conn_dev; 9365 boolean_t issocket; 9366 9367 if (q->q_ptr != NULL) 9368 return (0); 9369 9370 if (sflag == MODOPEN) 9371 return (EINVAL); 9372 9373 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9374 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9375 minor_arena = ip_minor_arena_la; 9376 } else { 9377 /* 9378 * Either minor numbers in the large arena were exhausted 9379 * or a non socket application is doing the open. 9380 * Try to allocate from the small arena. 9381 */ 9382 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9383 return (EBUSY); 9384 } 9385 minor_arena = ip_minor_arena_sa; 9386 } 9387 9388 ASSERT(minor_arena != NULL); 9389 9390 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 9391 9392 if (flag & SO_FALLBACK) { 9393 /* 9394 * Non streams socket needs a stream to fallback to 9395 */ 9396 RD(q)->q_ptr = (void *)conn_dev; 9397 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 9398 WR(q)->q_ptr = (void *)minor_arena; 9399 qprocson(q); 9400 return (0); 9401 } else if (flag & SO_ACCEPTOR) { 9402 q->q_qinfo = &tcp_acceptor_rinit; 9403 /* 9404 * the conn_dev and minor_arena will be subsequently used by 9405 * tcp_wput_accept() and tcp_tpi_close_accept() to figure out 9406 * the minor device number for this connection from the q_ptr. 9407 */ 9408 RD(q)->q_ptr = (void *)conn_dev; 9409 WR(q)->q_qinfo = &tcp_acceptor_winit; 9410 WR(q)->q_ptr = (void *)minor_arena; 9411 qprocson(q); 9412 return (0); 9413 } 9414 9415 issocket = flag & SO_SOCKSTR; 9416 connp = tcp_create_common(q, credp, isv6, issocket, &err); 9417 9418 if (connp == NULL) { 9419 inet_minor_free(minor_arena, conn_dev); 9420 q->q_ptr = WR(q)->q_ptr = NULL; 9421 return (err); 9422 } 9423 9424 q->q_ptr = WR(q)->q_ptr = connp; 9425 9426 connp->conn_dev = conn_dev; 9427 connp->conn_minor_arena = minor_arena; 9428 9429 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 9430 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9431 9432 tcp = connp->conn_tcp; 9433 9434 if (issocket) { 9435 WR(q)->q_qinfo = &tcp_sock_winit; 9436 } else { 9437 #ifdef _ILP32 9438 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9439 #else 9440 tcp->tcp_acceptor_id = conn_dev; 9441 #endif /* _ILP32 */ 9442 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9443 } 9444 9445 /* 9446 * Put the ref for TCP. Ref for IP was already put 9447 * by ipcl_conn_create. Also Make the conn_t globally 9448 * visible to walkers 9449 */ 9450 mutex_enter(&connp->conn_lock); 9451 CONN_INC_REF_LOCKED(connp); 9452 ASSERT(connp->conn_ref == 2); 9453 connp->conn_state_flags &= ~CONN_INCIPIENT; 9454 mutex_exit(&connp->conn_lock); 9455 9456 qprocson(q); 9457 return (0); 9458 } 9459 9460 /* 9461 * Some TCP options can be "set" by requesting them in the option 9462 * buffer. This is needed for XTI feature test though we do not 9463 * allow it in general. We interpret that this mechanism is more 9464 * applicable to OSI protocols and need not be allowed in general. 9465 * This routine filters out options for which it is not allowed (most) 9466 * and lets through those (few) for which it is. [ The XTI interface 9467 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9468 * ever implemented will have to be allowed here ]. 9469 */ 9470 static boolean_t 9471 tcp_allow_connopt_set(int level, int name) 9472 { 9473 9474 switch (level) { 9475 case IPPROTO_TCP: 9476 switch (name) { 9477 case TCP_NODELAY: 9478 return (B_TRUE); 9479 default: 9480 return (B_FALSE); 9481 } 9482 /*NOTREACHED*/ 9483 default: 9484 return (B_FALSE); 9485 } 9486 /*NOTREACHED*/ 9487 } 9488 9489 /* 9490 * this routine gets default values of certain options whose default 9491 * values are maintained by protocol specific code 9492 */ 9493 /* ARGSUSED */ 9494 int 9495 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9496 { 9497 int32_t *i1 = (int32_t *)ptr; 9498 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 9499 9500 switch (level) { 9501 case IPPROTO_TCP: 9502 switch (name) { 9503 case TCP_NOTIFY_THRESHOLD: 9504 *i1 = tcps->tcps_ip_notify_interval; 9505 break; 9506 case TCP_ABORT_THRESHOLD: 9507 *i1 = tcps->tcps_ip_abort_interval; 9508 break; 9509 case TCP_CONN_NOTIFY_THRESHOLD: 9510 *i1 = tcps->tcps_ip_notify_cinterval; 9511 break; 9512 case TCP_CONN_ABORT_THRESHOLD: 9513 *i1 = tcps->tcps_ip_abort_cinterval; 9514 break; 9515 default: 9516 return (-1); 9517 } 9518 break; 9519 case IPPROTO_IP: 9520 switch (name) { 9521 case IP_TTL: 9522 *i1 = tcps->tcps_ipv4_ttl; 9523 break; 9524 default: 9525 return (-1); 9526 } 9527 break; 9528 case IPPROTO_IPV6: 9529 switch (name) { 9530 case IPV6_UNICAST_HOPS: 9531 *i1 = tcps->tcps_ipv6_hoplimit; 9532 break; 9533 default: 9534 return (-1); 9535 } 9536 break; 9537 default: 9538 return (-1); 9539 } 9540 return (sizeof (int)); 9541 } 9542 9543 static int 9544 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 9545 { 9546 int *i1 = (int *)ptr; 9547 tcp_t *tcp = connp->conn_tcp; 9548 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9549 9550 switch (level) { 9551 case SOL_SOCKET: 9552 switch (name) { 9553 case SO_LINGER: { 9554 struct linger *lgr = (struct linger *)ptr; 9555 9556 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9557 lgr->l_linger = tcp->tcp_lingertime; 9558 } 9559 return (sizeof (struct linger)); 9560 case SO_DEBUG: 9561 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9562 break; 9563 case SO_KEEPALIVE: 9564 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9565 break; 9566 case SO_DONTROUTE: 9567 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9568 break; 9569 case SO_USELOOPBACK: 9570 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9571 break; 9572 case SO_BROADCAST: 9573 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9574 break; 9575 case SO_REUSEADDR: 9576 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9577 break; 9578 case SO_OOBINLINE: 9579 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9580 break; 9581 case SO_DGRAM_ERRIND: 9582 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9583 break; 9584 case SO_TYPE: 9585 *i1 = SOCK_STREAM; 9586 break; 9587 case SO_SNDBUF: 9588 *i1 = tcp->tcp_xmit_hiwater; 9589 break; 9590 case SO_RCVBUF: 9591 *i1 = tcp->tcp_recv_hiwater; 9592 break; 9593 case SO_SND_COPYAVOID: 9594 *i1 = tcp->tcp_snd_zcopy_on ? 9595 SO_SND_COPYAVOID : 0; 9596 break; 9597 case SO_ALLZONES: 9598 *i1 = connp->conn_allzones ? 1 : 0; 9599 break; 9600 case SO_ANON_MLP: 9601 *i1 = connp->conn_anon_mlp; 9602 break; 9603 case SO_MAC_EXEMPT: 9604 *i1 = connp->conn_mac_exempt; 9605 break; 9606 case SO_EXCLBIND: 9607 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9608 break; 9609 case SO_PROTOTYPE: 9610 *i1 = IPPROTO_TCP; 9611 break; 9612 case SO_DOMAIN: 9613 *i1 = tcp->tcp_family; 9614 break; 9615 case SO_ACCEPTCONN: 9616 *i1 = (tcp->tcp_state == TCPS_LISTEN); 9617 default: 9618 return (-1); 9619 } 9620 break; 9621 case IPPROTO_TCP: 9622 switch (name) { 9623 case TCP_NODELAY: 9624 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9625 break; 9626 case TCP_MAXSEG: 9627 *i1 = tcp->tcp_mss; 9628 break; 9629 case TCP_NOTIFY_THRESHOLD: 9630 *i1 = (int)tcp->tcp_first_timer_threshold; 9631 break; 9632 case TCP_ABORT_THRESHOLD: 9633 *i1 = tcp->tcp_second_timer_threshold; 9634 break; 9635 case TCP_CONN_NOTIFY_THRESHOLD: 9636 *i1 = tcp->tcp_first_ctimer_threshold; 9637 break; 9638 case TCP_CONN_ABORT_THRESHOLD: 9639 *i1 = tcp->tcp_second_ctimer_threshold; 9640 break; 9641 case TCP_RECVDSTADDR: 9642 *i1 = tcp->tcp_recvdstaddr; 9643 break; 9644 case TCP_ANONPRIVBIND: 9645 *i1 = tcp->tcp_anon_priv_bind; 9646 break; 9647 case TCP_EXCLBIND: 9648 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9649 break; 9650 case TCP_INIT_CWND: 9651 *i1 = tcp->tcp_init_cwnd; 9652 break; 9653 case TCP_KEEPALIVE_THRESHOLD: 9654 *i1 = tcp->tcp_ka_interval; 9655 break; 9656 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9657 *i1 = tcp->tcp_ka_abort_thres; 9658 break; 9659 case TCP_CORK: 9660 *i1 = tcp->tcp_cork; 9661 break; 9662 default: 9663 return (-1); 9664 } 9665 break; 9666 case IPPROTO_IP: 9667 if (tcp->tcp_family != AF_INET) 9668 return (-1); 9669 switch (name) { 9670 case IP_OPTIONS: 9671 case T_IP_OPTIONS: { 9672 /* 9673 * This is compatible with BSD in that in only return 9674 * the reverse source route with the final destination 9675 * as the last entry. The first 4 bytes of the option 9676 * will contain the final destination. 9677 */ 9678 int opt_len; 9679 9680 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 9681 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 9682 ASSERT(opt_len >= 0); 9683 /* Caller ensures enough space */ 9684 if (opt_len > 0) { 9685 /* 9686 * TODO: Do we have to handle getsockopt on an 9687 * initiator as well? 9688 */ 9689 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 9690 } 9691 return (0); 9692 } 9693 case IP_TOS: 9694 case T_IP_TOS: 9695 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9696 break; 9697 case IP_TTL: 9698 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9699 break; 9700 case IP_NEXTHOP: 9701 /* Handled at IP level */ 9702 return (-EINVAL); 9703 default: 9704 return (-1); 9705 } 9706 break; 9707 case IPPROTO_IPV6: 9708 /* 9709 * IPPROTO_IPV6 options are only supported for sockets 9710 * that are using IPv6 on the wire. 9711 */ 9712 if (tcp->tcp_ipversion != IPV6_VERSION) { 9713 return (-1); 9714 } 9715 switch (name) { 9716 case IPV6_UNICAST_HOPS: 9717 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9718 break; /* goto sizeof (int) option return */ 9719 case IPV6_BOUND_IF: 9720 /* Zero if not set */ 9721 *i1 = tcp->tcp_bound_if; 9722 break; /* goto sizeof (int) option return */ 9723 case IPV6_RECVPKTINFO: 9724 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9725 *i1 = 1; 9726 else 9727 *i1 = 0; 9728 break; /* goto sizeof (int) option return */ 9729 case IPV6_RECVTCLASS: 9730 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9731 *i1 = 1; 9732 else 9733 *i1 = 0; 9734 break; /* goto sizeof (int) option return */ 9735 case IPV6_RECVHOPLIMIT: 9736 if (tcp->tcp_ipv6_recvancillary & 9737 TCP_IPV6_RECVHOPLIMIT) 9738 *i1 = 1; 9739 else 9740 *i1 = 0; 9741 break; /* goto sizeof (int) option return */ 9742 case IPV6_RECVHOPOPTS: 9743 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9744 *i1 = 1; 9745 else 9746 *i1 = 0; 9747 break; /* goto sizeof (int) option return */ 9748 case IPV6_RECVDSTOPTS: 9749 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 9750 *i1 = 1; 9751 else 9752 *i1 = 0; 9753 break; /* goto sizeof (int) option return */ 9754 case _OLD_IPV6_RECVDSTOPTS: 9755 if (tcp->tcp_ipv6_recvancillary & 9756 TCP_OLD_IPV6_RECVDSTOPTS) 9757 *i1 = 1; 9758 else 9759 *i1 = 0; 9760 break; /* goto sizeof (int) option return */ 9761 case IPV6_RECVRTHDR: 9762 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 9763 *i1 = 1; 9764 else 9765 *i1 = 0; 9766 break; /* goto sizeof (int) option return */ 9767 case IPV6_RECVRTHDRDSTOPTS: 9768 if (tcp->tcp_ipv6_recvancillary & 9769 TCP_IPV6_RECVRTDSTOPTS) 9770 *i1 = 1; 9771 else 9772 *i1 = 0; 9773 break; /* goto sizeof (int) option return */ 9774 case IPV6_PKTINFO: { 9775 /* XXX assumes that caller has room for max size! */ 9776 struct in6_pktinfo *pkti; 9777 9778 pkti = (struct in6_pktinfo *)ptr; 9779 if (ipp->ipp_fields & IPPF_IFINDEX) 9780 pkti->ipi6_ifindex = ipp->ipp_ifindex; 9781 else 9782 pkti->ipi6_ifindex = 0; 9783 if (ipp->ipp_fields & IPPF_ADDR) 9784 pkti->ipi6_addr = ipp->ipp_addr; 9785 else 9786 pkti->ipi6_addr = ipv6_all_zeros; 9787 return (sizeof (struct in6_pktinfo)); 9788 } 9789 case IPV6_TCLASS: 9790 if (ipp->ipp_fields & IPPF_TCLASS) 9791 *i1 = ipp->ipp_tclass; 9792 else 9793 *i1 = IPV6_FLOW_TCLASS( 9794 IPV6_DEFAULT_VERS_AND_FLOW); 9795 break; /* goto sizeof (int) option return */ 9796 case IPV6_NEXTHOP: { 9797 sin6_t *sin6 = (sin6_t *)ptr; 9798 9799 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 9800 return (0); 9801 *sin6 = sin6_null; 9802 sin6->sin6_family = AF_INET6; 9803 sin6->sin6_addr = ipp->ipp_nexthop; 9804 return (sizeof (sin6_t)); 9805 } 9806 case IPV6_HOPOPTS: 9807 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 9808 return (0); 9809 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 9810 return (0); 9811 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 9812 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 9813 if (tcp->tcp_label_len > 0) { 9814 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 9815 ptr[1] = (ipp->ipp_hopoptslen - 9816 tcp->tcp_label_len + 7) / 8 - 1; 9817 } 9818 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 9819 case IPV6_RTHDRDSTOPTS: 9820 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 9821 return (0); 9822 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 9823 return (ipp->ipp_rtdstoptslen); 9824 case IPV6_RTHDR: 9825 if (!(ipp->ipp_fields & IPPF_RTHDR)) 9826 return (0); 9827 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 9828 return (ipp->ipp_rthdrlen); 9829 case IPV6_DSTOPTS: 9830 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 9831 return (0); 9832 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 9833 return (ipp->ipp_dstoptslen); 9834 case IPV6_SRC_PREFERENCES: 9835 return (ip6_get_src_preferences(connp, 9836 (uint32_t *)ptr)); 9837 case IPV6_PATHMTU: { 9838 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 9839 9840 if (tcp->tcp_state < TCPS_ESTABLISHED) 9841 return (-1); 9842 9843 return (ip_fill_mtuinfo(&connp->conn_remv6, 9844 connp->conn_fport, mtuinfo, 9845 connp->conn_netstack)); 9846 } 9847 default: 9848 return (-1); 9849 } 9850 break; 9851 default: 9852 return (-1); 9853 } 9854 return (sizeof (int)); 9855 } 9856 9857 /* 9858 * TCP routine to get the values of options. 9859 */ 9860 int 9861 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9862 { 9863 return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr)); 9864 } 9865 9866 /* returns UNIX error, the optlen is a value-result arg */ 9867 int 9868 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 9869 void *optvalp, socklen_t *optlen, cred_t *cr) 9870 { 9871 conn_t *connp = (conn_t *)proto_handle; 9872 squeue_t *sqp = connp->conn_sqp; 9873 int error; 9874 t_uscalar_t max_optbuf_len; 9875 void *optvalp_buf; 9876 int len; 9877 9878 ASSERT(connp->conn_upper_handle != NULL); 9879 9880 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 9881 tcp_opt_obj.odb_opt_des_arr, 9882 tcp_opt_obj.odb_opt_arr_cnt, 9883 tcp_opt_obj.odb_topmost_tpiprovider, 9884 B_FALSE, B_TRUE, cr); 9885 if (error != 0) { 9886 if (error < 0) { 9887 error = proto_tlitosyserr(-error); 9888 } 9889 return (error); 9890 } 9891 9892 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 9893 9894 error = squeue_synch_enter(sqp, connp, NULL); 9895 if (error == ENOMEM) { 9896 return (ENOMEM); 9897 } 9898 9899 len = tcp_opt_get(connp, level, option_name, optvalp_buf); 9900 squeue_synch_exit(sqp, connp); 9901 9902 if (len < 0) { 9903 /* 9904 * Pass on to IP 9905 */ 9906 kmem_free(optvalp_buf, max_optbuf_len); 9907 return (ip_get_options(connp, level, option_name, 9908 optvalp, optlen, cr)); 9909 } else { 9910 /* 9911 * update optlen and copy option value 9912 */ 9913 t_uscalar_t size = MIN(len, *optlen); 9914 bcopy(optvalp_buf, optvalp, size); 9915 bcopy(&size, optlen, sizeof (size)); 9916 9917 kmem_free(optvalp_buf, max_optbuf_len); 9918 return (0); 9919 } 9920 } 9921 9922 /* 9923 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 9924 * Parameters are assumed to be verified by the caller. 9925 */ 9926 /* ARGSUSED */ 9927 int 9928 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 9929 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9930 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 9931 { 9932 tcp_t *tcp = connp->conn_tcp; 9933 int *i1 = (int *)invalp; 9934 boolean_t onoff = (*i1 == 0) ? 0 : 1; 9935 boolean_t checkonly; 9936 int reterr; 9937 tcp_stack_t *tcps = tcp->tcp_tcps; 9938 9939 switch (optset_context) { 9940 case SETFN_OPTCOM_CHECKONLY: 9941 checkonly = B_TRUE; 9942 /* 9943 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9944 * inlen != 0 implies value supplied and 9945 * we have to "pretend" to set it. 9946 * inlen == 0 implies that there is no 9947 * value part in T_CHECK request and just validation 9948 * done elsewhere should be enough, we just return here. 9949 */ 9950 if (inlen == 0) { 9951 *outlenp = 0; 9952 return (0); 9953 } 9954 break; 9955 case SETFN_OPTCOM_NEGOTIATE: 9956 checkonly = B_FALSE; 9957 break; 9958 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 9959 case SETFN_CONN_NEGOTIATE: 9960 checkonly = B_FALSE; 9961 /* 9962 * Negotiating local and "association-related" options 9963 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 9964 * primitives is allowed by XTI, but we choose 9965 * to not implement this style negotiation for Internet 9966 * protocols (We interpret it is a must for OSI world but 9967 * optional for Internet protocols) for all options. 9968 * [ Will do only for the few options that enable test 9969 * suites that our XTI implementation of this feature 9970 * works for transports that do allow it ] 9971 */ 9972 if (!tcp_allow_connopt_set(level, name)) { 9973 *outlenp = 0; 9974 return (EINVAL); 9975 } 9976 break; 9977 default: 9978 /* 9979 * We should never get here 9980 */ 9981 *outlenp = 0; 9982 return (EINVAL); 9983 } 9984 9985 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9986 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9987 9988 /* 9989 * For TCP, we should have no ancillary data sent down 9990 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 9991 * has to be zero. 9992 */ 9993 ASSERT(thisdg_attrs == NULL); 9994 9995 /* 9996 * For fixed length options, no sanity check 9997 * of passed in length is done. It is assumed *_optcom_req() 9998 * routines do the right thing. 9999 */ 10000 switch (level) { 10001 case SOL_SOCKET: 10002 switch (name) { 10003 case SO_LINGER: { 10004 struct linger *lgr = (struct linger *)invalp; 10005 10006 if (!checkonly) { 10007 if (lgr->l_onoff) { 10008 tcp->tcp_linger = 1; 10009 tcp->tcp_lingertime = lgr->l_linger; 10010 } else { 10011 tcp->tcp_linger = 0; 10012 tcp->tcp_lingertime = 0; 10013 } 10014 /* struct copy */ 10015 *(struct linger *)outvalp = *lgr; 10016 } else { 10017 if (!lgr->l_onoff) { 10018 ((struct linger *) 10019 outvalp)->l_onoff = 0; 10020 ((struct linger *) 10021 outvalp)->l_linger = 0; 10022 } else { 10023 /* struct copy */ 10024 *(struct linger *)outvalp = *lgr; 10025 } 10026 } 10027 *outlenp = sizeof (struct linger); 10028 return (0); 10029 } 10030 case SO_DEBUG: 10031 if (!checkonly) 10032 tcp->tcp_debug = onoff; 10033 break; 10034 case SO_KEEPALIVE: 10035 if (checkonly) { 10036 /* check only case */ 10037 break; 10038 } 10039 10040 if (!onoff) { 10041 if (tcp->tcp_ka_enabled) { 10042 if (tcp->tcp_ka_tid != 0) { 10043 (void) TCP_TIMER_CANCEL(tcp, 10044 tcp->tcp_ka_tid); 10045 tcp->tcp_ka_tid = 0; 10046 } 10047 tcp->tcp_ka_enabled = 0; 10048 } 10049 break; 10050 } 10051 if (!tcp->tcp_ka_enabled) { 10052 /* Crank up the keepalive timer */ 10053 tcp->tcp_ka_last_intrvl = 0; 10054 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10055 tcp_keepalive_killer, 10056 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10057 tcp->tcp_ka_enabled = 1; 10058 } 10059 break; 10060 case SO_DONTROUTE: 10061 /* 10062 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10063 * only of interest to IP. We track them here only so 10064 * that we can report their current value. 10065 */ 10066 if (!checkonly) { 10067 tcp->tcp_dontroute = onoff; 10068 tcp->tcp_connp->conn_dontroute = onoff; 10069 } 10070 break; 10071 case SO_USELOOPBACK: 10072 if (!checkonly) { 10073 tcp->tcp_useloopback = onoff; 10074 tcp->tcp_connp->conn_loopback = onoff; 10075 } 10076 break; 10077 case SO_BROADCAST: 10078 if (!checkonly) { 10079 tcp->tcp_broadcast = onoff; 10080 tcp->tcp_connp->conn_broadcast = onoff; 10081 } 10082 break; 10083 case SO_REUSEADDR: 10084 if (!checkonly) { 10085 tcp->tcp_reuseaddr = onoff; 10086 tcp->tcp_connp->conn_reuseaddr = onoff; 10087 } 10088 break; 10089 case SO_OOBINLINE: 10090 if (!checkonly) { 10091 tcp->tcp_oobinline = onoff; 10092 if (IPCL_IS_NONSTR(tcp->tcp_connp)) 10093 proto_set_rx_oob_opt(connp, onoff); 10094 } 10095 break; 10096 case SO_DGRAM_ERRIND: 10097 if (!checkonly) 10098 tcp->tcp_dgram_errind = onoff; 10099 break; 10100 case SO_SNDBUF: { 10101 if (*i1 > tcps->tcps_max_buf) { 10102 *outlenp = 0; 10103 return (ENOBUFS); 10104 } 10105 if (checkonly) 10106 break; 10107 10108 tcp->tcp_xmit_hiwater = *i1; 10109 if (tcps->tcps_snd_lowat_fraction != 0) 10110 tcp->tcp_xmit_lowater = 10111 tcp->tcp_xmit_hiwater / 10112 tcps->tcps_snd_lowat_fraction; 10113 (void) tcp_maxpsz_set(tcp, B_TRUE); 10114 /* 10115 * If we are flow-controlled, recheck the condition. 10116 * There are apps that increase SO_SNDBUF size when 10117 * flow-controlled (EWOULDBLOCK), and expect the flow 10118 * control condition to be lifted right away. 10119 */ 10120 mutex_enter(&tcp->tcp_non_sq_lock); 10121 if (tcp->tcp_flow_stopped && 10122 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10123 tcp_clrqfull(tcp); 10124 } 10125 mutex_exit(&tcp->tcp_non_sq_lock); 10126 break; 10127 } 10128 case SO_RCVBUF: 10129 if (*i1 > tcps->tcps_max_buf) { 10130 *outlenp = 0; 10131 return (ENOBUFS); 10132 } 10133 /* Silently ignore zero */ 10134 if (!checkonly && *i1 != 0) { 10135 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10136 (void) tcp_rwnd_set(tcp, *i1); 10137 } 10138 /* 10139 * XXX should we return the rwnd here 10140 * and tcp_opt_get ? 10141 */ 10142 break; 10143 case SO_SND_COPYAVOID: 10144 if (!checkonly) { 10145 /* we only allow enable at most once for now */ 10146 if (tcp->tcp_loopback || 10147 (tcp->tcp_kssl_ctx != NULL) || 10148 (!tcp->tcp_snd_zcopy_aware && 10149 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10150 *outlenp = 0; 10151 return (EOPNOTSUPP); 10152 } 10153 tcp->tcp_snd_zcopy_aware = 1; 10154 } 10155 break; 10156 case SO_RCVTIMEO: 10157 case SO_SNDTIMEO: 10158 /* 10159 * Pass these two options in order for third part 10160 * protocol usage. Here just return directly. 10161 */ 10162 return (0); 10163 case SO_ALLZONES: 10164 /* Pass option along to IP level for handling */ 10165 return (-EINVAL); 10166 case SO_ANON_MLP: 10167 /* Pass option along to IP level for handling */ 10168 return (-EINVAL); 10169 case SO_MAC_EXEMPT: 10170 /* Pass option along to IP level for handling */ 10171 return (-EINVAL); 10172 case SO_EXCLBIND: 10173 if (!checkonly) 10174 tcp->tcp_exclbind = onoff; 10175 break; 10176 default: 10177 *outlenp = 0; 10178 return (EINVAL); 10179 } 10180 break; 10181 case IPPROTO_TCP: 10182 switch (name) { 10183 case TCP_NODELAY: 10184 if (!checkonly) 10185 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10186 break; 10187 case TCP_NOTIFY_THRESHOLD: 10188 if (!checkonly) 10189 tcp->tcp_first_timer_threshold = *i1; 10190 break; 10191 case TCP_ABORT_THRESHOLD: 10192 if (!checkonly) 10193 tcp->tcp_second_timer_threshold = *i1; 10194 break; 10195 case TCP_CONN_NOTIFY_THRESHOLD: 10196 if (!checkonly) 10197 tcp->tcp_first_ctimer_threshold = *i1; 10198 break; 10199 case TCP_CONN_ABORT_THRESHOLD: 10200 if (!checkonly) 10201 tcp->tcp_second_ctimer_threshold = *i1; 10202 break; 10203 case TCP_RECVDSTADDR: 10204 if (tcp->tcp_state > TCPS_LISTEN) 10205 return (EOPNOTSUPP); 10206 if (!checkonly) 10207 tcp->tcp_recvdstaddr = onoff; 10208 break; 10209 case TCP_ANONPRIVBIND: 10210 if ((reterr = secpolicy_net_privaddr(cr, 0, 10211 IPPROTO_TCP)) != 0) { 10212 *outlenp = 0; 10213 return (reterr); 10214 } 10215 if (!checkonly) { 10216 tcp->tcp_anon_priv_bind = onoff; 10217 } 10218 break; 10219 case TCP_EXCLBIND: 10220 if (!checkonly) 10221 tcp->tcp_exclbind = onoff; 10222 break; /* goto sizeof (int) option return */ 10223 case TCP_INIT_CWND: { 10224 uint32_t init_cwnd = *((uint32_t *)invalp); 10225 10226 if (checkonly) 10227 break; 10228 10229 /* 10230 * Only allow socket with network configuration 10231 * privilege to set the initial cwnd to be larger 10232 * than allowed by RFC 3390. 10233 */ 10234 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10235 tcp->tcp_init_cwnd = init_cwnd; 10236 break; 10237 } 10238 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 10239 *outlenp = 0; 10240 return (reterr); 10241 } 10242 if (init_cwnd > TCP_MAX_INIT_CWND) { 10243 *outlenp = 0; 10244 return (EINVAL); 10245 } 10246 tcp->tcp_init_cwnd = init_cwnd; 10247 break; 10248 } 10249 case TCP_KEEPALIVE_THRESHOLD: 10250 if (checkonly) 10251 break; 10252 10253 if (*i1 < tcps->tcps_keepalive_interval_low || 10254 *i1 > tcps->tcps_keepalive_interval_high) { 10255 *outlenp = 0; 10256 return (EINVAL); 10257 } 10258 if (*i1 != tcp->tcp_ka_interval) { 10259 tcp->tcp_ka_interval = *i1; 10260 /* 10261 * Check if we need to restart the 10262 * keepalive timer. 10263 */ 10264 if (tcp->tcp_ka_tid != 0) { 10265 ASSERT(tcp->tcp_ka_enabled); 10266 (void) TCP_TIMER_CANCEL(tcp, 10267 tcp->tcp_ka_tid); 10268 tcp->tcp_ka_last_intrvl = 0; 10269 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10270 tcp_keepalive_killer, 10271 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10272 } 10273 } 10274 break; 10275 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10276 if (!checkonly) { 10277 if (*i1 < 10278 tcps->tcps_keepalive_abort_interval_low || 10279 *i1 > 10280 tcps->tcps_keepalive_abort_interval_high) { 10281 *outlenp = 0; 10282 return (EINVAL); 10283 } 10284 tcp->tcp_ka_abort_thres = *i1; 10285 } 10286 break; 10287 case TCP_CORK: 10288 if (!checkonly) { 10289 /* 10290 * if tcp->tcp_cork was set and is now 10291 * being unset, we have to make sure that 10292 * the remaining data gets sent out. Also 10293 * unset tcp->tcp_cork so that tcp_wput_data() 10294 * can send data even if it is less than mss 10295 */ 10296 if (tcp->tcp_cork && onoff == 0 && 10297 tcp->tcp_unsent > 0) { 10298 tcp->tcp_cork = B_FALSE; 10299 tcp_wput_data(tcp, NULL, B_FALSE); 10300 } 10301 tcp->tcp_cork = onoff; 10302 } 10303 break; 10304 default: 10305 *outlenp = 0; 10306 return (EINVAL); 10307 } 10308 break; 10309 case IPPROTO_IP: 10310 if (tcp->tcp_family != AF_INET) { 10311 *outlenp = 0; 10312 return (ENOPROTOOPT); 10313 } 10314 switch (name) { 10315 case IP_OPTIONS: 10316 case T_IP_OPTIONS: 10317 reterr = tcp_opt_set_header(tcp, checkonly, 10318 invalp, inlen); 10319 if (reterr) { 10320 *outlenp = 0; 10321 return (reterr); 10322 } 10323 /* OK return - copy input buffer into output buffer */ 10324 if (invalp != outvalp) { 10325 /* don't trust bcopy for identical src/dst */ 10326 bcopy(invalp, outvalp, inlen); 10327 } 10328 *outlenp = inlen; 10329 return (0); 10330 case IP_TOS: 10331 case T_IP_TOS: 10332 if (!checkonly) { 10333 tcp->tcp_ipha->ipha_type_of_service = 10334 (uchar_t)*i1; 10335 tcp->tcp_tos = (uchar_t)*i1; 10336 } 10337 break; 10338 case IP_TTL: 10339 if (!checkonly) { 10340 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10341 tcp->tcp_ttl = (uchar_t)*i1; 10342 } 10343 break; 10344 case IP_BOUND_IF: 10345 case IP_NEXTHOP: 10346 /* Handled at the IP level */ 10347 return (-EINVAL); 10348 case IP_SEC_OPT: 10349 /* 10350 * We should not allow policy setting after 10351 * we start listening for connections. 10352 */ 10353 if (tcp->tcp_state == TCPS_LISTEN) { 10354 return (EINVAL); 10355 } else { 10356 /* Handled at the IP level */ 10357 return (-EINVAL); 10358 } 10359 default: 10360 *outlenp = 0; 10361 return (EINVAL); 10362 } 10363 break; 10364 case IPPROTO_IPV6: { 10365 ip6_pkt_t *ipp; 10366 10367 /* 10368 * IPPROTO_IPV6 options are only supported for sockets 10369 * that are using IPv6 on the wire. 10370 */ 10371 if (tcp->tcp_ipversion != IPV6_VERSION) { 10372 *outlenp = 0; 10373 return (ENOPROTOOPT); 10374 } 10375 /* 10376 * Only sticky options; no ancillary data 10377 */ 10378 ipp = &tcp->tcp_sticky_ipp; 10379 10380 switch (name) { 10381 case IPV6_UNICAST_HOPS: 10382 /* -1 means use default */ 10383 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10384 *outlenp = 0; 10385 return (EINVAL); 10386 } 10387 if (!checkonly) { 10388 if (*i1 == -1) { 10389 tcp->tcp_ip6h->ip6_hops = 10390 ipp->ipp_unicast_hops = 10391 (uint8_t)tcps->tcps_ipv6_hoplimit; 10392 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10393 /* Pass modified value to IP. */ 10394 *i1 = tcp->tcp_ip6h->ip6_hops; 10395 } else { 10396 tcp->tcp_ip6h->ip6_hops = 10397 ipp->ipp_unicast_hops = 10398 (uint8_t)*i1; 10399 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10400 } 10401 reterr = tcp_build_hdrs(tcp); 10402 if (reterr != 0) 10403 return (reterr); 10404 } 10405 break; 10406 case IPV6_BOUND_IF: 10407 if (!checkonly) { 10408 tcp->tcp_bound_if = *i1; 10409 PASS_OPT_TO_IP(connp); 10410 } 10411 break; 10412 /* 10413 * Set boolean switches for ancillary data delivery 10414 */ 10415 case IPV6_RECVPKTINFO: 10416 if (!checkonly) { 10417 if (onoff) 10418 tcp->tcp_ipv6_recvancillary |= 10419 TCP_IPV6_RECVPKTINFO; 10420 else 10421 tcp->tcp_ipv6_recvancillary &= 10422 ~TCP_IPV6_RECVPKTINFO; 10423 /* Force it to be sent up with the next msg */ 10424 tcp->tcp_recvifindex = 0; 10425 PASS_OPT_TO_IP(connp); 10426 } 10427 break; 10428 case IPV6_RECVTCLASS: 10429 if (!checkonly) { 10430 if (onoff) 10431 tcp->tcp_ipv6_recvancillary |= 10432 TCP_IPV6_RECVTCLASS; 10433 else 10434 tcp->tcp_ipv6_recvancillary &= 10435 ~TCP_IPV6_RECVTCLASS; 10436 PASS_OPT_TO_IP(connp); 10437 } 10438 break; 10439 case IPV6_RECVHOPLIMIT: 10440 if (!checkonly) { 10441 if (onoff) 10442 tcp->tcp_ipv6_recvancillary |= 10443 TCP_IPV6_RECVHOPLIMIT; 10444 else 10445 tcp->tcp_ipv6_recvancillary &= 10446 ~TCP_IPV6_RECVHOPLIMIT; 10447 /* Force it to be sent up with the next msg */ 10448 tcp->tcp_recvhops = 0xffffffffU; 10449 PASS_OPT_TO_IP(connp); 10450 } 10451 break; 10452 case IPV6_RECVHOPOPTS: 10453 if (!checkonly) { 10454 if (onoff) 10455 tcp->tcp_ipv6_recvancillary |= 10456 TCP_IPV6_RECVHOPOPTS; 10457 else 10458 tcp->tcp_ipv6_recvancillary &= 10459 ~TCP_IPV6_RECVHOPOPTS; 10460 PASS_OPT_TO_IP(connp); 10461 } 10462 break; 10463 case IPV6_RECVDSTOPTS: 10464 if (!checkonly) { 10465 if (onoff) 10466 tcp->tcp_ipv6_recvancillary |= 10467 TCP_IPV6_RECVDSTOPTS; 10468 else 10469 tcp->tcp_ipv6_recvancillary &= 10470 ~TCP_IPV6_RECVDSTOPTS; 10471 PASS_OPT_TO_IP(connp); 10472 } 10473 break; 10474 case _OLD_IPV6_RECVDSTOPTS: 10475 if (!checkonly) { 10476 if (onoff) 10477 tcp->tcp_ipv6_recvancillary |= 10478 TCP_OLD_IPV6_RECVDSTOPTS; 10479 else 10480 tcp->tcp_ipv6_recvancillary &= 10481 ~TCP_OLD_IPV6_RECVDSTOPTS; 10482 } 10483 break; 10484 case IPV6_RECVRTHDR: 10485 if (!checkonly) { 10486 if (onoff) 10487 tcp->tcp_ipv6_recvancillary |= 10488 TCP_IPV6_RECVRTHDR; 10489 else 10490 tcp->tcp_ipv6_recvancillary &= 10491 ~TCP_IPV6_RECVRTHDR; 10492 PASS_OPT_TO_IP(connp); 10493 } 10494 break; 10495 case IPV6_RECVRTHDRDSTOPTS: 10496 if (!checkonly) { 10497 if (onoff) 10498 tcp->tcp_ipv6_recvancillary |= 10499 TCP_IPV6_RECVRTDSTOPTS; 10500 else 10501 tcp->tcp_ipv6_recvancillary &= 10502 ~TCP_IPV6_RECVRTDSTOPTS; 10503 PASS_OPT_TO_IP(connp); 10504 } 10505 break; 10506 case IPV6_PKTINFO: 10507 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10508 return (EINVAL); 10509 if (checkonly) 10510 break; 10511 10512 if (inlen == 0) { 10513 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10514 } else { 10515 struct in6_pktinfo *pkti; 10516 10517 pkti = (struct in6_pktinfo *)invalp; 10518 /* 10519 * RFC 3542 states that ipi6_addr must be 10520 * the unspecified address when setting the 10521 * IPV6_PKTINFO sticky socket option on a 10522 * TCP socket. 10523 */ 10524 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10525 return (EINVAL); 10526 /* 10527 * IP will validate the source address and 10528 * interface index. 10529 */ 10530 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 10531 reterr = ip_set_options(tcp->tcp_connp, 10532 level, name, invalp, inlen, cr); 10533 } else { 10534 reterr = ip6_set_pktinfo(cr, 10535 tcp->tcp_connp, pkti); 10536 } 10537 if (reterr != 0) 10538 return (reterr); 10539 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10540 ipp->ipp_addr = pkti->ipi6_addr; 10541 if (ipp->ipp_ifindex != 0) 10542 ipp->ipp_fields |= IPPF_IFINDEX; 10543 else 10544 ipp->ipp_fields &= ~IPPF_IFINDEX; 10545 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10546 ipp->ipp_fields |= IPPF_ADDR; 10547 else 10548 ipp->ipp_fields &= ~IPPF_ADDR; 10549 } 10550 reterr = tcp_build_hdrs(tcp); 10551 if (reterr != 0) 10552 return (reterr); 10553 break; 10554 case IPV6_TCLASS: 10555 if (inlen != 0 && inlen != sizeof (int)) 10556 return (EINVAL); 10557 if (checkonly) 10558 break; 10559 10560 if (inlen == 0) { 10561 ipp->ipp_fields &= ~IPPF_TCLASS; 10562 } else { 10563 if (*i1 > 255 || *i1 < -1) 10564 return (EINVAL); 10565 if (*i1 == -1) { 10566 ipp->ipp_tclass = 0; 10567 *i1 = 0; 10568 } else { 10569 ipp->ipp_tclass = *i1; 10570 } 10571 ipp->ipp_fields |= IPPF_TCLASS; 10572 } 10573 reterr = tcp_build_hdrs(tcp); 10574 if (reterr != 0) 10575 return (reterr); 10576 break; 10577 case IPV6_NEXTHOP: 10578 /* 10579 * IP will verify that the nexthop is reachable 10580 * and fail for sticky options. 10581 */ 10582 if (inlen != 0 && inlen != sizeof (sin6_t)) 10583 return (EINVAL); 10584 if (checkonly) 10585 break; 10586 10587 if (inlen == 0) { 10588 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10589 } else { 10590 sin6_t *sin6 = (sin6_t *)invalp; 10591 10592 if (sin6->sin6_family != AF_INET6) 10593 return (EAFNOSUPPORT); 10594 if (IN6_IS_ADDR_V4MAPPED( 10595 &sin6->sin6_addr)) 10596 return (EADDRNOTAVAIL); 10597 ipp->ipp_nexthop = sin6->sin6_addr; 10598 if (!IN6_IS_ADDR_UNSPECIFIED( 10599 &ipp->ipp_nexthop)) 10600 ipp->ipp_fields |= IPPF_NEXTHOP; 10601 else 10602 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10603 } 10604 reterr = tcp_build_hdrs(tcp); 10605 if (reterr != 0) 10606 return (reterr); 10607 PASS_OPT_TO_IP(connp); 10608 break; 10609 case IPV6_HOPOPTS: { 10610 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10611 10612 /* 10613 * Sanity checks - minimum size, size a multiple of 10614 * eight bytes, and matching size passed in. 10615 */ 10616 if (inlen != 0 && 10617 inlen != (8 * (hopts->ip6h_len + 1))) 10618 return (EINVAL); 10619 10620 if (checkonly) 10621 break; 10622 10623 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10624 (uchar_t **)&ipp->ipp_hopopts, 10625 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10626 if (reterr != 0) 10627 return (reterr); 10628 if (ipp->ipp_hopoptslen == 0) 10629 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10630 else 10631 ipp->ipp_fields |= IPPF_HOPOPTS; 10632 reterr = tcp_build_hdrs(tcp); 10633 if (reterr != 0) 10634 return (reterr); 10635 break; 10636 } 10637 case IPV6_RTHDRDSTOPTS: { 10638 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10639 10640 /* 10641 * Sanity checks - minimum size, size a multiple of 10642 * eight bytes, and matching size passed in. 10643 */ 10644 if (inlen != 0 && 10645 inlen != (8 * (dopts->ip6d_len + 1))) 10646 return (EINVAL); 10647 10648 if (checkonly) 10649 break; 10650 10651 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10652 (uchar_t **)&ipp->ipp_rtdstopts, 10653 &ipp->ipp_rtdstoptslen, 0); 10654 if (reterr != 0) 10655 return (reterr); 10656 if (ipp->ipp_rtdstoptslen == 0) 10657 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10658 else 10659 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10660 reterr = tcp_build_hdrs(tcp); 10661 if (reterr != 0) 10662 return (reterr); 10663 break; 10664 } 10665 case IPV6_DSTOPTS: { 10666 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10667 10668 /* 10669 * Sanity checks - minimum size, size a multiple of 10670 * eight bytes, and matching size passed in. 10671 */ 10672 if (inlen != 0 && 10673 inlen != (8 * (dopts->ip6d_len + 1))) 10674 return (EINVAL); 10675 10676 if (checkonly) 10677 break; 10678 10679 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10680 (uchar_t **)&ipp->ipp_dstopts, 10681 &ipp->ipp_dstoptslen, 0); 10682 if (reterr != 0) 10683 return (reterr); 10684 if (ipp->ipp_dstoptslen == 0) 10685 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10686 else 10687 ipp->ipp_fields |= IPPF_DSTOPTS; 10688 reterr = tcp_build_hdrs(tcp); 10689 if (reterr != 0) 10690 return (reterr); 10691 break; 10692 } 10693 case IPV6_RTHDR: { 10694 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10695 10696 /* 10697 * Sanity checks - minimum size, size a multiple of 10698 * eight bytes, and matching size passed in. 10699 */ 10700 if (inlen != 0 && 10701 inlen != (8 * (rt->ip6r_len + 1))) 10702 return (EINVAL); 10703 10704 if (checkonly) 10705 break; 10706 10707 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10708 (uchar_t **)&ipp->ipp_rthdr, 10709 &ipp->ipp_rthdrlen, 0); 10710 if (reterr != 0) 10711 return (reterr); 10712 if (ipp->ipp_rthdrlen == 0) 10713 ipp->ipp_fields &= ~IPPF_RTHDR; 10714 else 10715 ipp->ipp_fields |= IPPF_RTHDR; 10716 reterr = tcp_build_hdrs(tcp); 10717 if (reterr != 0) 10718 return (reterr); 10719 break; 10720 } 10721 case IPV6_V6ONLY: 10722 if (!checkonly) { 10723 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10724 } 10725 break; 10726 case IPV6_USE_MIN_MTU: 10727 if (inlen != sizeof (int)) 10728 return (EINVAL); 10729 10730 if (*i1 < -1 || *i1 > 1) 10731 return (EINVAL); 10732 10733 if (checkonly) 10734 break; 10735 10736 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10737 ipp->ipp_use_min_mtu = *i1; 10738 break; 10739 case IPV6_SEC_OPT: 10740 /* 10741 * We should not allow policy setting after 10742 * we start listening for connections. 10743 */ 10744 if (tcp->tcp_state == TCPS_LISTEN) { 10745 return (EINVAL); 10746 } else { 10747 /* Handled at the IP level */ 10748 return (-EINVAL); 10749 } 10750 case IPV6_SRC_PREFERENCES: 10751 if (inlen != sizeof (uint32_t)) 10752 return (EINVAL); 10753 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10754 *(uint32_t *)invalp); 10755 if (reterr != 0) { 10756 *outlenp = 0; 10757 return (reterr); 10758 } 10759 break; 10760 default: 10761 *outlenp = 0; 10762 return (EINVAL); 10763 } 10764 break; 10765 } /* end IPPROTO_IPV6 */ 10766 default: 10767 *outlenp = 0; 10768 return (EINVAL); 10769 } 10770 /* 10771 * Common case of OK return with outval same as inval 10772 */ 10773 if (invalp != outvalp) { 10774 /* don't trust bcopy for identical src/dst */ 10775 (void) bcopy(invalp, outvalp, inlen); 10776 } 10777 *outlenp = inlen; 10778 return (0); 10779 } 10780 10781 /* ARGSUSED */ 10782 int 10783 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10784 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10785 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10786 { 10787 conn_t *connp = Q_TO_CONN(q); 10788 10789 return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp, 10790 outlenp, outvalp, thisdg_attrs, cr, mblk)); 10791 } 10792 10793 int 10794 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 10795 const void *optvalp, socklen_t optlen, cred_t *cr) 10796 { 10797 conn_t *connp = (conn_t *)proto_handle; 10798 squeue_t *sqp = connp->conn_sqp; 10799 int error; 10800 10801 ASSERT(connp->conn_upper_handle != NULL); 10802 /* 10803 * Entering the squeue synchronously can result in a context switch, 10804 * which can cause a rather sever performance degradation. So we try to 10805 * handle whatever options we can without entering the squeue. 10806 */ 10807 if (level == IPPROTO_TCP) { 10808 switch (option_name) { 10809 case TCP_NODELAY: 10810 if (optlen != sizeof (int32_t)) 10811 return (EINVAL); 10812 mutex_enter(&connp->conn_tcp->tcp_non_sq_lock); 10813 connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 : 10814 connp->conn_tcp->tcp_mss; 10815 mutex_exit(&connp->conn_tcp->tcp_non_sq_lock); 10816 return (0); 10817 default: 10818 break; 10819 } 10820 } 10821 10822 error = squeue_synch_enter(sqp, connp, NULL); 10823 if (error == ENOMEM) { 10824 return (ENOMEM); 10825 } 10826 10827 error = proto_opt_check(level, option_name, optlen, NULL, 10828 tcp_opt_obj.odb_opt_des_arr, 10829 tcp_opt_obj.odb_opt_arr_cnt, 10830 tcp_opt_obj.odb_topmost_tpiprovider, 10831 B_TRUE, B_FALSE, cr); 10832 10833 if (error != 0) { 10834 if (error < 0) { 10835 error = proto_tlitosyserr(-error); 10836 } 10837 squeue_synch_exit(sqp, connp); 10838 return (error); 10839 } 10840 10841 error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 10842 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 10843 NULL, cr, NULL); 10844 squeue_synch_exit(sqp, connp); 10845 10846 if (error < 0) { 10847 /* 10848 * Pass on to ip 10849 */ 10850 error = ip_set_options(connp, level, option_name, optvalp, 10851 optlen, cr); 10852 } 10853 return (error); 10854 } 10855 10856 /* 10857 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10858 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10859 * headers, and the maximum size tcp header (to avoid reallocation 10860 * on the fly for additional tcp options). 10861 * Returns failure if can't allocate memory. 10862 */ 10863 static int 10864 tcp_build_hdrs(tcp_t *tcp) 10865 { 10866 char *hdrs; 10867 uint_t hdrs_len; 10868 ip6i_t *ip6i; 10869 char buf[TCP_MAX_HDR_LENGTH]; 10870 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10871 in6_addr_t src, dst; 10872 tcp_stack_t *tcps = tcp->tcp_tcps; 10873 conn_t *connp = tcp->tcp_connp; 10874 10875 /* 10876 * save the existing tcp header and source/dest IP addresses 10877 */ 10878 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10879 src = tcp->tcp_ip6h->ip6_src; 10880 dst = tcp->tcp_ip6h->ip6_dst; 10881 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10882 ASSERT(hdrs_len != 0); 10883 if (hdrs_len > tcp->tcp_iphc_len) { 10884 /* Need to reallocate */ 10885 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10886 if (hdrs == NULL) 10887 return (ENOMEM); 10888 if (tcp->tcp_iphc != NULL) { 10889 if (tcp->tcp_hdr_grown) { 10890 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10891 } else { 10892 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10893 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10894 } 10895 tcp->tcp_iphc_len = 0; 10896 } 10897 ASSERT(tcp->tcp_iphc_len == 0); 10898 tcp->tcp_iphc = hdrs; 10899 tcp->tcp_iphc_len = hdrs_len; 10900 tcp->tcp_hdr_grown = B_TRUE; 10901 } 10902 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 10903 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 10904 10905 /* Set header fields not in ipp */ 10906 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 10907 ip6i = (ip6i_t *)tcp->tcp_iphc; 10908 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 10909 } else { 10910 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 10911 } 10912 /* 10913 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 10914 * 10915 * tcp->tcp_tcp_hdr_len doesn't change here. 10916 */ 10917 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 10918 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 10919 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 10920 10921 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 10922 10923 tcp->tcp_ip6h->ip6_src = src; 10924 tcp->tcp_ip6h->ip6_dst = dst; 10925 10926 /* 10927 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 10928 * the default value for TCP. 10929 */ 10930 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 10931 tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit; 10932 10933 /* 10934 * If we're setting extension headers after a connection 10935 * has been established, and if we have a routing header 10936 * among the extension headers, call ip_massage_options_v6 to 10937 * manipulate the routing header/ip6_dst set the checksum 10938 * difference in the tcp header template. 10939 * (This happens in tcp_connect_ipv6 if the routing header 10940 * is set prior to the connect.) 10941 * Set the tcp_sum to zero first in case we've cleared a 10942 * routing header or don't have one at all. 10943 */ 10944 tcp->tcp_sum = 0; 10945 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 10946 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 10947 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 10948 (uint8_t *)tcp->tcp_tcph); 10949 if (rth != NULL) { 10950 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 10951 rth, tcps->tcps_netstack); 10952 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 10953 (tcp->tcp_sum >> 16)); 10954 } 10955 } 10956 10957 /* Try to get everything in a single mblk */ 10958 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 10959 hdrs_len + tcps->tcps_wroff_xtra); 10960 return (0); 10961 } 10962 10963 /* 10964 * Transfer any source route option from ipha to buf/dst in reversed form. 10965 */ 10966 static int 10967 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 10968 { 10969 ipoptp_t opts; 10970 uchar_t *opt; 10971 uint8_t optval; 10972 uint8_t optlen; 10973 uint32_t len = 0; 10974 10975 for (optval = ipoptp_first(&opts, ipha); 10976 optval != IPOPT_EOL; 10977 optval = ipoptp_next(&opts)) { 10978 opt = opts.ipoptp_cur; 10979 optlen = opts.ipoptp_len; 10980 switch (optval) { 10981 int off1, off2; 10982 case IPOPT_SSRR: 10983 case IPOPT_LSRR: 10984 10985 /* Reverse source route */ 10986 /* 10987 * First entry should be the next to last one in the 10988 * current source route (the last entry is our 10989 * address.) 10990 * The last entry should be the final destination. 10991 */ 10992 buf[IPOPT_OPTVAL] = (uint8_t)optval; 10993 buf[IPOPT_OLEN] = (uint8_t)optlen; 10994 off1 = IPOPT_MINOFF_SR - 1; 10995 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 10996 if (off2 < 0) { 10997 /* No entries in source route */ 10998 break; 10999 } 11000 bcopy(opt + off2, dst, IP_ADDR_LEN); 11001 /* 11002 * Note: use src since ipha has not had its src 11003 * and dst reversed (it is in the state it was 11004 * received. 11005 */ 11006 bcopy(&ipha->ipha_src, buf + off2, 11007 IP_ADDR_LEN); 11008 off2 -= IP_ADDR_LEN; 11009 11010 while (off2 > 0) { 11011 bcopy(opt + off2, buf + off1, 11012 IP_ADDR_LEN); 11013 off1 += IP_ADDR_LEN; 11014 off2 -= IP_ADDR_LEN; 11015 } 11016 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 11017 buf += optlen; 11018 len += optlen; 11019 break; 11020 } 11021 } 11022 done: 11023 /* Pad the resulting options */ 11024 while (len & 0x3) { 11025 *buf++ = IPOPT_EOL; 11026 len++; 11027 } 11028 return (len); 11029 } 11030 11031 11032 /* 11033 * Extract and revert a source route from ipha (if any) 11034 * and then update the relevant fields in both tcp_t and the standard header. 11035 */ 11036 static void 11037 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11038 { 11039 char buf[TCP_MAX_HDR_LENGTH]; 11040 uint_t tcph_len; 11041 int len; 11042 11043 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11044 len = IPH_HDR_LENGTH(ipha); 11045 if (len == IP_SIMPLE_HDR_LENGTH) 11046 /* Nothing to do */ 11047 return; 11048 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11049 (len & 0x3)) 11050 return; 11051 11052 tcph_len = tcp->tcp_tcp_hdr_len; 11053 bcopy(tcp->tcp_tcph, buf, tcph_len); 11054 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11055 (tcp->tcp_ipha->ipha_dst & 0xffff); 11056 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11057 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11058 len += IP_SIMPLE_HDR_LENGTH; 11059 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11060 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11061 if ((int)tcp->tcp_sum < 0) 11062 tcp->tcp_sum--; 11063 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11064 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11065 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11066 bcopy(buf, tcp->tcp_tcph, tcph_len); 11067 tcp->tcp_ip_hdr_len = len; 11068 tcp->tcp_ipha->ipha_version_and_hdr_length = 11069 (IP_VERSION << 4) | (len >> 2); 11070 len += tcph_len; 11071 tcp->tcp_hdr_len = len; 11072 } 11073 11074 /* 11075 * Copy the standard header into its new location, 11076 * lay in the new options and then update the relevant 11077 * fields in both tcp_t and the standard header. 11078 */ 11079 static int 11080 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11081 { 11082 uint_t tcph_len; 11083 uint8_t *ip_optp; 11084 tcph_t *new_tcph; 11085 tcp_stack_t *tcps = tcp->tcp_tcps; 11086 conn_t *connp = tcp->tcp_connp; 11087 11088 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11089 return (EINVAL); 11090 11091 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11092 return (EINVAL); 11093 11094 if (checkonly) { 11095 /* 11096 * do not really set, just pretend to - T_CHECK 11097 */ 11098 return (0); 11099 } 11100 11101 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11102 if (tcp->tcp_label_len > 0) { 11103 int padlen; 11104 uint8_t opt; 11105 11106 /* convert list termination to no-ops */ 11107 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11108 ip_optp += ip_optp[IPOPT_OLEN]; 11109 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11110 while (--padlen >= 0) 11111 *ip_optp++ = opt; 11112 } 11113 tcph_len = tcp->tcp_tcp_hdr_len; 11114 new_tcph = (tcph_t *)(ip_optp + len); 11115 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11116 tcp->tcp_tcph = new_tcph; 11117 bcopy(ptr, ip_optp, len); 11118 11119 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11120 11121 tcp->tcp_ip_hdr_len = len; 11122 tcp->tcp_ipha->ipha_version_and_hdr_length = 11123 (IP_VERSION << 4) | (len >> 2); 11124 tcp->tcp_hdr_len = len + tcph_len; 11125 if (!TCP_IS_DETACHED(tcp)) { 11126 /* Always allocate room for all options. */ 11127 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 11128 TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra); 11129 } 11130 return (0); 11131 } 11132 11133 /* Get callback routine passed to nd_load by tcp_param_register */ 11134 /* ARGSUSED */ 11135 static int 11136 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11137 { 11138 tcpparam_t *tcppa = (tcpparam_t *)cp; 11139 11140 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11141 return (0); 11142 } 11143 11144 /* 11145 * Walk through the param array specified registering each element with the 11146 * named dispatch handler. 11147 */ 11148 static boolean_t 11149 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 11150 { 11151 for (; cnt-- > 0; tcppa++) { 11152 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11153 if (!nd_load(ndp, tcppa->tcp_param_name, 11154 tcp_param_get, tcp_param_set, 11155 (caddr_t)tcppa)) { 11156 nd_free(ndp); 11157 return (B_FALSE); 11158 } 11159 } 11160 } 11161 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 11162 KM_SLEEP); 11163 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 11164 sizeof (tcpparam_t)); 11165 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 11166 tcp_param_get, tcp_param_set_aligned, 11167 (caddr_t)tcps->tcps_wroff_xtra_param)) { 11168 nd_free(ndp); 11169 return (B_FALSE); 11170 } 11171 tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t), 11172 KM_SLEEP); 11173 bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param, 11174 sizeof (tcpparam_t)); 11175 if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name, 11176 tcp_param_get, tcp_param_set_aligned, 11177 (caddr_t)tcps->tcps_mdt_head_param)) { 11178 nd_free(ndp); 11179 return (B_FALSE); 11180 } 11181 tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t), 11182 KM_SLEEP); 11183 bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param, 11184 sizeof (tcpparam_t)); 11185 if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name, 11186 tcp_param_get, tcp_param_set_aligned, 11187 (caddr_t)tcps->tcps_mdt_tail_param)) { 11188 nd_free(ndp); 11189 return (B_FALSE); 11190 } 11191 tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t), 11192 KM_SLEEP); 11193 bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param, 11194 sizeof (tcpparam_t)); 11195 if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name, 11196 tcp_param_get, tcp_param_set_aligned, 11197 (caddr_t)tcps->tcps_mdt_max_pbufs_param)) { 11198 nd_free(ndp); 11199 return (B_FALSE); 11200 } 11201 if (!nd_load(ndp, "tcp_extra_priv_ports", 11202 tcp_extra_priv_ports_get, NULL, NULL)) { 11203 nd_free(ndp); 11204 return (B_FALSE); 11205 } 11206 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 11207 NULL, tcp_extra_priv_ports_add, NULL)) { 11208 nd_free(ndp); 11209 return (B_FALSE); 11210 } 11211 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 11212 NULL, tcp_extra_priv_ports_del, NULL)) { 11213 nd_free(ndp); 11214 return (B_FALSE); 11215 } 11216 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 11217 tcp_1948_phrase_set, NULL)) { 11218 nd_free(ndp); 11219 return (B_FALSE); 11220 } 11221 /* 11222 * Dummy ndd variables - only to convey obsolescence information 11223 * through printing of their name (no get or set routines) 11224 * XXX Remove in future releases ? 11225 */ 11226 if (!nd_load(ndp, 11227 "tcp_close_wait_interval(obsoleted - " 11228 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11229 nd_free(ndp); 11230 return (B_FALSE); 11231 } 11232 return (B_TRUE); 11233 } 11234 11235 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11236 /* ARGSUSED */ 11237 static int 11238 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11239 cred_t *cr) 11240 { 11241 long new_value; 11242 tcpparam_t *tcppa = (tcpparam_t *)cp; 11243 11244 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11245 new_value < tcppa->tcp_param_min || 11246 new_value > tcppa->tcp_param_max) { 11247 return (EINVAL); 11248 } 11249 /* 11250 * Need to make sure new_value is a multiple of 4. If it is not, 11251 * round it up. For future 64 bit requirement, we actually make it 11252 * a multiple of 8. 11253 */ 11254 if (new_value & 0x7) { 11255 new_value = (new_value & ~0x7) + 0x8; 11256 } 11257 tcppa->tcp_param_val = new_value; 11258 return (0); 11259 } 11260 11261 /* Set callback routine passed to nd_load by tcp_param_register */ 11262 /* ARGSUSED */ 11263 static int 11264 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11265 { 11266 long new_value; 11267 tcpparam_t *tcppa = (tcpparam_t *)cp; 11268 11269 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11270 new_value < tcppa->tcp_param_min || 11271 new_value > tcppa->tcp_param_max) { 11272 return (EINVAL); 11273 } 11274 tcppa->tcp_param_val = new_value; 11275 return (0); 11276 } 11277 11278 /* 11279 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11280 * is filled, return as much as we can. The message passed in may be 11281 * multi-part, chained using b_cont. "start" is the starting sequence 11282 * number for this piece. 11283 */ 11284 static mblk_t * 11285 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11286 { 11287 uint32_t end; 11288 mblk_t *mp1; 11289 mblk_t *mp2; 11290 mblk_t *next_mp; 11291 uint32_t u1; 11292 tcp_stack_t *tcps = tcp->tcp_tcps; 11293 11294 /* Walk through all the new pieces. */ 11295 do { 11296 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11297 (uintptr_t)INT_MAX); 11298 end = start + (int)(mp->b_wptr - mp->b_rptr); 11299 next_mp = mp->b_cont; 11300 if (start == end) { 11301 /* Empty. Blast it. */ 11302 freeb(mp); 11303 continue; 11304 } 11305 mp->b_cont = NULL; 11306 TCP_REASS_SET_SEQ(mp, start); 11307 TCP_REASS_SET_END(mp, end); 11308 mp1 = tcp->tcp_reass_tail; 11309 if (!mp1) { 11310 tcp->tcp_reass_tail = mp; 11311 tcp->tcp_reass_head = mp; 11312 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11313 UPDATE_MIB(&tcps->tcps_mib, 11314 tcpInDataUnorderBytes, end - start); 11315 continue; 11316 } 11317 /* New stuff completely beyond tail? */ 11318 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11319 /* Link it on end. */ 11320 mp1->b_cont = mp; 11321 tcp->tcp_reass_tail = mp; 11322 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11323 UPDATE_MIB(&tcps->tcps_mib, 11324 tcpInDataUnorderBytes, end - start); 11325 continue; 11326 } 11327 mp1 = tcp->tcp_reass_head; 11328 u1 = TCP_REASS_SEQ(mp1); 11329 /* New stuff at the front? */ 11330 if (SEQ_LT(start, u1)) { 11331 /* Yes... Check for overlap. */ 11332 mp->b_cont = mp1; 11333 tcp->tcp_reass_head = mp; 11334 tcp_reass_elim_overlap(tcp, mp); 11335 continue; 11336 } 11337 /* 11338 * The new piece fits somewhere between the head and tail. 11339 * We find our slot, where mp1 precedes us and mp2 trails. 11340 */ 11341 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11342 u1 = TCP_REASS_SEQ(mp2); 11343 if (SEQ_LEQ(start, u1)) 11344 break; 11345 } 11346 /* Link ourselves in */ 11347 mp->b_cont = mp2; 11348 mp1->b_cont = mp; 11349 11350 /* Trim overlap with following mblk(s) first */ 11351 tcp_reass_elim_overlap(tcp, mp); 11352 11353 /* Trim overlap with preceding mblk */ 11354 tcp_reass_elim_overlap(tcp, mp1); 11355 11356 } while (start = end, mp = next_mp); 11357 mp1 = tcp->tcp_reass_head; 11358 /* Anything ready to go? */ 11359 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11360 return (NULL); 11361 /* Eat what we can off the queue */ 11362 for (;;) { 11363 mp = mp1->b_cont; 11364 end = TCP_REASS_END(mp1); 11365 TCP_REASS_SET_SEQ(mp1, 0); 11366 TCP_REASS_SET_END(mp1, 0); 11367 if (!mp) { 11368 tcp->tcp_reass_tail = NULL; 11369 break; 11370 } 11371 if (end != TCP_REASS_SEQ(mp)) { 11372 mp1->b_cont = NULL; 11373 break; 11374 } 11375 mp1 = mp; 11376 } 11377 mp1 = tcp->tcp_reass_head; 11378 tcp->tcp_reass_head = mp; 11379 return (mp1); 11380 } 11381 11382 /* Eliminate any overlap that mp may have over later mblks */ 11383 static void 11384 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11385 { 11386 uint32_t end; 11387 mblk_t *mp1; 11388 uint32_t u1; 11389 tcp_stack_t *tcps = tcp->tcp_tcps; 11390 11391 end = TCP_REASS_END(mp); 11392 while ((mp1 = mp->b_cont) != NULL) { 11393 u1 = TCP_REASS_SEQ(mp1); 11394 if (!SEQ_GT(end, u1)) 11395 break; 11396 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11397 mp->b_wptr -= end - u1; 11398 TCP_REASS_SET_END(mp, u1); 11399 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 11400 UPDATE_MIB(&tcps->tcps_mib, 11401 tcpInDataPartDupBytes, end - u1); 11402 break; 11403 } 11404 mp->b_cont = mp1->b_cont; 11405 TCP_REASS_SET_SEQ(mp1, 0); 11406 TCP_REASS_SET_END(mp1, 0); 11407 freeb(mp1); 11408 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 11409 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 11410 } 11411 if (!mp1) 11412 tcp->tcp_reass_tail = mp; 11413 } 11414 11415 static uint_t 11416 tcp_rwnd_reopen(tcp_t *tcp) 11417 { 11418 uint_t ret = 0; 11419 uint_t thwin; 11420 11421 /* Learn the latest rwnd information that we sent to the other side. */ 11422 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11423 << tcp->tcp_rcv_ws; 11424 /* This is peer's calculated send window (our receive window). */ 11425 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11426 /* 11427 * Increase the receive window to max. But we need to do receiver 11428 * SWS avoidance. This means that we need to check the increase of 11429 * of receive window is at least 1 MSS. 11430 */ 11431 if (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss) { 11432 /* 11433 * If the window that the other side knows is less than max 11434 * deferred acks segments, send an update immediately. 11435 */ 11436 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11437 BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate); 11438 ret = TH_ACK_NEEDED; 11439 } 11440 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 11441 } 11442 return (ret); 11443 } 11444 11445 /* 11446 * Send up all messages queued on tcp_rcv_list. 11447 */ 11448 static uint_t 11449 tcp_rcv_drain(tcp_t *tcp) 11450 { 11451 mblk_t *mp; 11452 uint_t ret = 0; 11453 #ifdef DEBUG 11454 uint_t cnt = 0; 11455 #endif 11456 queue_t *q = tcp->tcp_rq; 11457 11458 /* Can't drain on an eager connection */ 11459 if (tcp->tcp_listener != NULL) 11460 return (ret); 11461 11462 /* Can't be a non-STREAMS connection */ 11463 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 11464 11465 /* No need for the push timer now. */ 11466 if (tcp->tcp_push_tid != 0) { 11467 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11468 tcp->tcp_push_tid = 0; 11469 } 11470 11471 /* 11472 * Handle two cases here: we are currently fused or we were 11473 * previously fused and have some urgent data to be delivered 11474 * upstream. The latter happens because we either ran out of 11475 * memory or were detached and therefore sending the SIGURG was 11476 * deferred until this point. In either case we pass control 11477 * over to tcp_fuse_rcv_drain() since it may need to complete 11478 * some work. 11479 */ 11480 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11481 ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) || 11482 tcp->tcp_fused_sigurg_mp != NULL); 11483 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11484 &tcp->tcp_fused_sigurg_mp)) 11485 return (ret); 11486 } 11487 11488 while ((mp = tcp->tcp_rcv_list) != NULL) { 11489 tcp->tcp_rcv_list = mp->b_next; 11490 mp->b_next = NULL; 11491 #ifdef DEBUG 11492 cnt += msgdsize(mp); 11493 #endif 11494 /* Does this need SSL processing first? */ 11495 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11496 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 11497 mblk_t *, mp); 11498 tcp_kssl_input(tcp, mp); 11499 continue; 11500 } 11501 putnext(q, mp); 11502 } 11503 #ifdef DEBUG 11504 ASSERT(cnt == tcp->tcp_rcv_cnt); 11505 #endif 11506 tcp->tcp_rcv_last_head = NULL; 11507 tcp->tcp_rcv_last_tail = NULL; 11508 tcp->tcp_rcv_cnt = 0; 11509 11510 if (canputnext(q)) 11511 return (tcp_rwnd_reopen(tcp)); 11512 11513 return (ret); 11514 } 11515 11516 /* 11517 * Queue data on tcp_rcv_list which is a b_next chain. 11518 * tcp_rcv_last_head/tail is the last element of this chain. 11519 * Each element of the chain is a b_cont chain. 11520 * 11521 * M_DATA messages are added to the current element. 11522 * Other messages are added as new (b_next) elements. 11523 */ 11524 void 11525 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11526 { 11527 ASSERT(seg_len == msgdsize(mp)); 11528 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11529 11530 if (tcp->tcp_rcv_list == NULL) { 11531 ASSERT(tcp->tcp_rcv_last_head == NULL); 11532 tcp->tcp_rcv_list = mp; 11533 tcp->tcp_rcv_last_head = mp; 11534 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11535 tcp->tcp_rcv_last_tail->b_cont = mp; 11536 } else { 11537 tcp->tcp_rcv_last_head->b_next = mp; 11538 tcp->tcp_rcv_last_head = mp; 11539 } 11540 11541 while (mp->b_cont) 11542 mp = mp->b_cont; 11543 11544 tcp->tcp_rcv_last_tail = mp; 11545 tcp->tcp_rcv_cnt += seg_len; 11546 tcp->tcp_rwnd -= seg_len; 11547 } 11548 11549 /* 11550 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11551 * 11552 * This is the default entry function into TCP on the read side. TCP is 11553 * always entered via squeue i.e. using squeue's for mutual exclusion. 11554 * When classifier does a lookup to find the tcp, it also puts a reference 11555 * on the conn structure associated so the tcp is guaranteed to exist 11556 * when we come here. We still need to check the state because it might 11557 * as well has been closed. The squeue processing function i.e. squeue_enter, 11558 * is responsible for doing the CONN_DEC_REF. 11559 * 11560 * Apart from the default entry point, IP also sends packets directly to 11561 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11562 * connections. 11563 */ 11564 boolean_t tcp_outbound_squeue_switch = B_FALSE; 11565 void 11566 tcp_input(void *arg, mblk_t *mp, void *arg2) 11567 { 11568 conn_t *connp = (conn_t *)arg; 11569 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11570 11571 /* arg2 is the sqp */ 11572 ASSERT(arg2 != NULL); 11573 ASSERT(mp != NULL); 11574 11575 /* 11576 * Don't accept any input on a closed tcp as this TCP logically does 11577 * not exist on the system. Don't proceed further with this TCP. 11578 * For eg. this packet could trigger another close of this tcp 11579 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11580 * tcp_clean_death / tcp_closei_local must be called at most once 11581 * on a TCP. In this case we need to refeed the packet into the 11582 * classifier and figure out where the packet should go. Need to 11583 * preserve the recv_ill somehow. Until we figure that out, for 11584 * now just drop the packet if we can't classify the packet. 11585 */ 11586 if (tcp->tcp_state == TCPS_CLOSED || 11587 tcp->tcp_state == TCPS_BOUND) { 11588 conn_t *new_connp; 11589 ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip; 11590 11591 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 11592 if (new_connp != NULL) { 11593 tcp_reinput(new_connp, mp, arg2); 11594 return; 11595 } 11596 /* We failed to classify. For now just drop the packet */ 11597 freemsg(mp); 11598 return; 11599 } 11600 11601 if (DB_TYPE(mp) != M_DATA) { 11602 tcp_rput_common(tcp, mp); 11603 return; 11604 } 11605 11606 if (mp->b_datap->db_struioflag & STRUIO_CONNECT) { 11607 squeue_t *final_sqp; 11608 11609 mp->b_datap->db_struioflag &= ~STRUIO_CONNECT; 11610 final_sqp = (squeue_t *)DB_CKSUMSTART(mp); 11611 DB_CKSUMSTART(mp) = 0; 11612 if (tcp->tcp_state == TCPS_SYN_SENT && 11613 connp->conn_final_sqp == NULL && 11614 tcp_outbound_squeue_switch) { 11615 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 11616 connp->conn_final_sqp = final_sqp; 11617 if (connp->conn_final_sqp != connp->conn_sqp) { 11618 CONN_INC_REF(connp); 11619 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 11620 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 11621 tcp_rput_data, connp, ip_squeue_flag, 11622 SQTAG_CONNECT_FINISH); 11623 return; 11624 } 11625 } 11626 } 11627 tcp_rput_data(connp, mp, arg2); 11628 } 11629 11630 /* 11631 * The read side put procedure. 11632 * The packets passed up by ip are assume to be aligned according to 11633 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11634 */ 11635 static void 11636 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11637 { 11638 /* 11639 * tcp_rput_data() does not expect M_CTL except for the case 11640 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11641 * type. Need to make sure that any other M_CTLs don't make 11642 * it to tcp_rput_data since it is not expecting any and doesn't 11643 * check for it. 11644 */ 11645 if (DB_TYPE(mp) == M_CTL) { 11646 switch (*(uint32_t *)(mp->b_rptr)) { 11647 case TCP_IOC_ABORT_CONN: 11648 /* 11649 * Handle connection abort request. 11650 */ 11651 tcp_ioctl_abort_handler(tcp, mp); 11652 return; 11653 case IPSEC_IN: 11654 /* 11655 * Only secure icmp arrive in TCP and they 11656 * don't go through data path. 11657 */ 11658 tcp_icmp_error(tcp, mp); 11659 return; 11660 case IN_PKTINFO: 11661 /* 11662 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11663 * sockets that are receiving IPv4 traffic. tcp 11664 */ 11665 ASSERT(tcp->tcp_family == AF_INET6); 11666 ASSERT(tcp->tcp_ipv6_recvancillary & 11667 TCP_IPV6_RECVPKTINFO); 11668 tcp_rput_data(tcp->tcp_connp, mp, 11669 tcp->tcp_connp->conn_sqp); 11670 return; 11671 case MDT_IOC_INFO_UPDATE: 11672 /* 11673 * Handle Multidata information update; the 11674 * following routine will free the message. 11675 */ 11676 if (tcp->tcp_connp->conn_mdt_ok) { 11677 tcp_mdt_update(tcp, 11678 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11679 B_FALSE); 11680 } 11681 freemsg(mp); 11682 return; 11683 case LSO_IOC_INFO_UPDATE: 11684 /* 11685 * Handle LSO information update; the following 11686 * routine will free the message. 11687 */ 11688 if (tcp->tcp_connp->conn_lso_ok) { 11689 tcp_lso_update(tcp, 11690 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 11691 } 11692 freemsg(mp); 11693 return; 11694 default: 11695 /* 11696 * tcp_icmp_err() will process the M_CTL packets. 11697 * Non-ICMP packets, if any, will be discarded in 11698 * tcp_icmp_err(). We will process the ICMP packet 11699 * even if we are TCP_IS_DETACHED_NONEAGER as the 11700 * incoming ICMP packet may result in changing 11701 * the tcp_mss, which we would need if we have 11702 * packets to retransmit. 11703 */ 11704 tcp_icmp_error(tcp, mp); 11705 return; 11706 } 11707 } 11708 11709 /* No point processing the message if tcp is already closed */ 11710 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11711 freemsg(mp); 11712 return; 11713 } 11714 11715 tcp_rput_other(tcp, mp); 11716 } 11717 11718 11719 /* The minimum of smoothed mean deviation in RTO calculation. */ 11720 #define TCP_SD_MIN 400 11721 11722 /* 11723 * Set RTO for this connection. The formula is from Jacobson and Karels' 11724 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11725 * are the same as those in Appendix A.2 of that paper. 11726 * 11727 * m = new measurement 11728 * sa = smoothed RTT average (8 * average estimates). 11729 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11730 */ 11731 static void 11732 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11733 { 11734 long m = TICK_TO_MSEC(rtt); 11735 clock_t sa = tcp->tcp_rtt_sa; 11736 clock_t sv = tcp->tcp_rtt_sd; 11737 clock_t rto; 11738 tcp_stack_t *tcps = tcp->tcp_tcps; 11739 11740 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 11741 tcp->tcp_rtt_update++; 11742 11743 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11744 if (sa != 0) { 11745 /* 11746 * Update average estimator: 11747 * new rtt = 7/8 old rtt + 1/8 Error 11748 */ 11749 11750 /* m is now Error in estimate. */ 11751 m -= sa >> 3; 11752 if ((sa += m) <= 0) { 11753 /* 11754 * Don't allow the smoothed average to be negative. 11755 * We use 0 to denote reinitialization of the 11756 * variables. 11757 */ 11758 sa = 1; 11759 } 11760 11761 /* 11762 * Update deviation estimator: 11763 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11764 */ 11765 if (m < 0) 11766 m = -m; 11767 m -= sv >> 2; 11768 sv += m; 11769 } else { 11770 /* 11771 * This follows BSD's implementation. So the reinitialized 11772 * RTO is 3 * m. We cannot go less than 2 because if the 11773 * link is bandwidth dominated, doubling the window size 11774 * during slow start means doubling the RTT. We want to be 11775 * more conservative when we reinitialize our estimates. 3 11776 * is just a convenient number. 11777 */ 11778 sa = m << 3; 11779 sv = m << 1; 11780 } 11781 if (sv < TCP_SD_MIN) { 11782 /* 11783 * We do not know that if sa captures the delay ACK 11784 * effect as in a long train of segments, a receiver 11785 * does not delay its ACKs. So set the minimum of sv 11786 * to be TCP_SD_MIN, which is default to 400 ms, twice 11787 * of BSD DATO. That means the minimum of mean 11788 * deviation is 100 ms. 11789 * 11790 */ 11791 sv = TCP_SD_MIN; 11792 } 11793 tcp->tcp_rtt_sa = sa; 11794 tcp->tcp_rtt_sd = sv; 11795 /* 11796 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 11797 * 11798 * Add tcp_rexmit_interval extra in case of extreme environment 11799 * where the algorithm fails to work. The default value of 11800 * tcp_rexmit_interval_extra should be 0. 11801 * 11802 * As we use a finer grained clock than BSD and update 11803 * RTO for every ACKs, add in another .25 of RTT to the 11804 * deviation of RTO to accomodate burstiness of 1/4 of 11805 * window size. 11806 */ 11807 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 11808 11809 if (rto > tcps->tcps_rexmit_interval_max) { 11810 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 11811 } else if (rto < tcps->tcps_rexmit_interval_min) { 11812 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 11813 } else { 11814 tcp->tcp_rto = rto; 11815 } 11816 11817 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 11818 tcp->tcp_timer_backoff = 0; 11819 } 11820 11821 /* 11822 * tcp_get_seg_mp() is called to get the pointer to a segment in the 11823 * send queue which starts at the given sequence number. If the given 11824 * sequence number is equal to last valid sequence number (tcp_snxt), the 11825 * returned mblk is the last valid mblk, and off is set to the length of 11826 * that mblk. 11827 * 11828 * send queue which starts at the given seq. no. 11829 * 11830 * Parameters: 11831 * tcp_t *tcp: the tcp instance pointer. 11832 * uint32_t seq: the starting seq. no of the requested segment. 11833 * int32_t *off: after the execution, *off will be the offset to 11834 * the returned mblk which points to the requested seq no. 11835 * It is the caller's responsibility to send in a non-null off. 11836 * 11837 * Return: 11838 * A mblk_t pointer pointing to the requested segment in send queue. 11839 */ 11840 static mblk_t * 11841 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 11842 { 11843 int32_t cnt; 11844 mblk_t *mp; 11845 11846 /* Defensive coding. Make sure we don't send incorrect data. */ 11847 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GT(seq, tcp->tcp_snxt)) 11848 return (NULL); 11849 11850 cnt = seq - tcp->tcp_suna; 11851 mp = tcp->tcp_xmit_head; 11852 while (cnt > 0 && mp != NULL) { 11853 cnt -= mp->b_wptr - mp->b_rptr; 11854 if (cnt <= 0) { 11855 cnt += mp->b_wptr - mp->b_rptr; 11856 break; 11857 } 11858 mp = mp->b_cont; 11859 } 11860 ASSERT(mp != NULL); 11861 *off = cnt; 11862 return (mp); 11863 } 11864 11865 /* 11866 * This function handles all retransmissions if SACK is enabled for this 11867 * connection. First it calculates how many segments can be retransmitted 11868 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 11869 * segments. A segment is eligible if sack_cnt for that segment is greater 11870 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 11871 * all eligible segments, it checks to see if TCP can send some new segments 11872 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 11873 * 11874 * Parameters: 11875 * tcp_t *tcp: the tcp structure of the connection. 11876 * uint_t *flags: in return, appropriate value will be set for 11877 * tcp_rput_data(). 11878 */ 11879 static void 11880 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 11881 { 11882 notsack_blk_t *notsack_blk; 11883 int32_t usable_swnd; 11884 int32_t mss; 11885 uint32_t seg_len; 11886 mblk_t *xmit_mp; 11887 tcp_stack_t *tcps = tcp->tcp_tcps; 11888 11889 ASSERT(tcp->tcp_sack_info != NULL); 11890 ASSERT(tcp->tcp_notsack_list != NULL); 11891 ASSERT(tcp->tcp_rexmit == B_FALSE); 11892 11893 /* Defensive coding in case there is a bug... */ 11894 if (tcp->tcp_notsack_list == NULL) { 11895 return; 11896 } 11897 notsack_blk = tcp->tcp_notsack_list; 11898 mss = tcp->tcp_mss; 11899 11900 /* 11901 * Limit the num of outstanding data in the network to be 11902 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 11903 */ 11904 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11905 11906 /* At least retransmit 1 MSS of data. */ 11907 if (usable_swnd <= 0) { 11908 usable_swnd = mss; 11909 } 11910 11911 /* Make sure no new RTT samples will be taken. */ 11912 tcp->tcp_csuna = tcp->tcp_snxt; 11913 11914 notsack_blk = tcp->tcp_notsack_list; 11915 while (usable_swnd > 0) { 11916 mblk_t *snxt_mp, *tmp_mp; 11917 tcp_seq begin = tcp->tcp_sack_snxt; 11918 tcp_seq end; 11919 int32_t off; 11920 11921 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 11922 if (SEQ_GT(notsack_blk->end, begin) && 11923 (notsack_blk->sack_cnt >= 11924 tcps->tcps_dupack_fast_retransmit)) { 11925 end = notsack_blk->end; 11926 if (SEQ_LT(begin, notsack_blk->begin)) { 11927 begin = notsack_blk->begin; 11928 } 11929 break; 11930 } 11931 } 11932 /* 11933 * All holes are filled. Manipulate tcp_cwnd to send more 11934 * if we can. Note that after the SACK recovery, tcp_cwnd is 11935 * set to tcp_cwnd_ssthresh. 11936 */ 11937 if (notsack_blk == NULL) { 11938 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11939 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 11940 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 11941 ASSERT(tcp->tcp_cwnd > 0); 11942 return; 11943 } else { 11944 usable_swnd = usable_swnd / mss; 11945 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 11946 MAX(usable_swnd * mss, mss); 11947 *flags |= TH_XMIT_NEEDED; 11948 return; 11949 } 11950 } 11951 11952 /* 11953 * Note that we may send more than usable_swnd allows here 11954 * because of round off, but no more than 1 MSS of data. 11955 */ 11956 seg_len = end - begin; 11957 if (seg_len > mss) 11958 seg_len = mss; 11959 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 11960 ASSERT(snxt_mp != NULL); 11961 /* This should not happen. Defensive coding again... */ 11962 if (snxt_mp == NULL) { 11963 return; 11964 } 11965 11966 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 11967 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 11968 if (xmit_mp == NULL) 11969 return; 11970 11971 usable_swnd -= seg_len; 11972 tcp->tcp_pipe += seg_len; 11973 tcp->tcp_sack_snxt = begin + seg_len; 11974 11975 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 11976 11977 /* 11978 * Update the send timestamp to avoid false retransmission. 11979 */ 11980 snxt_mp->b_prev = (mblk_t *)lbolt; 11981 11982 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 11983 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 11984 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 11985 /* 11986 * Update tcp_rexmit_max to extend this SACK recovery phase. 11987 * This happens when new data sent during fast recovery is 11988 * also lost. If TCP retransmits those new data, it needs 11989 * to extend SACK recover phase to avoid starting another 11990 * fast retransmit/recovery unnecessarily. 11991 */ 11992 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 11993 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 11994 } 11995 } 11996 } 11997 11998 /* 11999 * This function handles policy checking at TCP level for non-hard_bound/ 12000 * detached connections. 12001 */ 12002 static boolean_t 12003 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12004 boolean_t secure, boolean_t mctl_present) 12005 { 12006 ipsec_latch_t *ipl = NULL; 12007 ipsec_action_t *act = NULL; 12008 mblk_t *data_mp; 12009 ipsec_in_t *ii; 12010 const char *reason; 12011 kstat_named_t *counter; 12012 tcp_stack_t *tcps = tcp->tcp_tcps; 12013 ipsec_stack_t *ipss; 12014 ip_stack_t *ipst; 12015 12016 ASSERT(mctl_present || !secure); 12017 12018 ASSERT((ipha == NULL && ip6h != NULL) || 12019 (ip6h == NULL && ipha != NULL)); 12020 12021 /* 12022 * We don't necessarily have an ipsec_in_act action to verify 12023 * policy because of assymetrical policy where we have only 12024 * outbound policy and no inbound policy (possible with global 12025 * policy). 12026 */ 12027 if (!secure) { 12028 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12029 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12030 return (B_TRUE); 12031 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12032 "tcp_check_policy", ipha, ip6h, secure, 12033 tcps->tcps_netstack); 12034 ipss = tcps->tcps_netstack->netstack_ipsec; 12035 12036 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12037 DROPPER(ipss, ipds_tcp_clear), 12038 &tcps->tcps_dropper); 12039 return (B_FALSE); 12040 } 12041 12042 /* 12043 * We have a secure packet. 12044 */ 12045 if (act == NULL) { 12046 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12047 "tcp_check_policy", ipha, ip6h, secure, 12048 tcps->tcps_netstack); 12049 ipss = tcps->tcps_netstack->netstack_ipsec; 12050 12051 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12052 DROPPER(ipss, ipds_tcp_secure), 12053 &tcps->tcps_dropper); 12054 return (B_FALSE); 12055 } 12056 12057 /* 12058 * XXX This whole routine is currently incorrect. ipl should 12059 * be set to the latch pointer, but is currently not set, so 12060 * we initialize it to NULL to avoid picking up random garbage. 12061 */ 12062 if (ipl == NULL) 12063 return (B_TRUE); 12064 12065 data_mp = first_mp->b_cont; 12066 12067 ii = (ipsec_in_t *)first_mp->b_rptr; 12068 12069 ipst = tcps->tcps_netstack->netstack_ip; 12070 12071 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12072 &counter, tcp->tcp_connp)) { 12073 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 12074 return (B_TRUE); 12075 } 12076 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12077 "tcp inbound policy mismatch: %s, packet dropped\n", 12078 reason); 12079 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 12080 12081 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 12082 &tcps->tcps_dropper); 12083 return (B_FALSE); 12084 } 12085 12086 /* 12087 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12088 * retransmission after a timeout. 12089 * 12090 * To limit the number of duplicate segments, we limit the number of segment 12091 * to be sent in one time to tcp_snd_burst, the burst variable. 12092 */ 12093 static void 12094 tcp_ss_rexmit(tcp_t *tcp) 12095 { 12096 uint32_t snxt; 12097 uint32_t smax; 12098 int32_t win; 12099 int32_t mss; 12100 int32_t off; 12101 int32_t burst = tcp->tcp_snd_burst; 12102 mblk_t *snxt_mp; 12103 tcp_stack_t *tcps = tcp->tcp_tcps; 12104 12105 /* 12106 * Note that tcp_rexmit can be set even though TCP has retransmitted 12107 * all unack'ed segments. 12108 */ 12109 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12110 smax = tcp->tcp_rexmit_max; 12111 snxt = tcp->tcp_rexmit_nxt; 12112 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12113 snxt = tcp->tcp_suna; 12114 } 12115 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12116 win -= snxt - tcp->tcp_suna; 12117 mss = tcp->tcp_mss; 12118 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12119 12120 while (SEQ_LT(snxt, smax) && (win > 0) && 12121 (burst > 0) && (snxt_mp != NULL)) { 12122 mblk_t *xmit_mp; 12123 mblk_t *old_snxt_mp = snxt_mp; 12124 uint32_t cnt = mss; 12125 12126 if (win < cnt) { 12127 cnt = win; 12128 } 12129 if (SEQ_GT(snxt + cnt, smax)) { 12130 cnt = smax - snxt; 12131 } 12132 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12133 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12134 if (xmit_mp == NULL) 12135 return; 12136 12137 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12138 12139 snxt += cnt; 12140 win -= cnt; 12141 /* 12142 * Update the send timestamp to avoid false 12143 * retransmission. 12144 */ 12145 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12146 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12147 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 12148 12149 tcp->tcp_rexmit_nxt = snxt; 12150 burst--; 12151 } 12152 /* 12153 * If we have transmitted all we have at the time 12154 * we started the retranmission, we can leave 12155 * the rest of the job to tcp_wput_data(). But we 12156 * need to check the send window first. If the 12157 * win is not 0, go on with tcp_wput_data(). 12158 */ 12159 if (SEQ_LT(snxt, smax) || win == 0) { 12160 return; 12161 } 12162 } 12163 /* Only call tcp_wput_data() if there is data to be sent. */ 12164 if (tcp->tcp_unsent) { 12165 tcp_wput_data(tcp, NULL, B_FALSE); 12166 } 12167 } 12168 12169 /* 12170 * Process all TCP option in SYN segment. Note that this function should 12171 * be called after tcp_adapt_ire() is called so that the necessary info 12172 * from IRE is already set in the tcp structure. 12173 * 12174 * This function sets up the correct tcp_mss value according to the 12175 * MSS option value and our header size. It also sets up the window scale 12176 * and timestamp values, and initialize SACK info blocks. But it does not 12177 * change receive window size after setting the tcp_mss value. The caller 12178 * should do the appropriate change. 12179 */ 12180 void 12181 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12182 { 12183 int options; 12184 tcp_opt_t tcpopt; 12185 uint32_t mss_max; 12186 char *tmp_tcph; 12187 tcp_stack_t *tcps = tcp->tcp_tcps; 12188 12189 tcpopt.tcp = NULL; 12190 options = tcp_parse_options(tcph, &tcpopt); 12191 12192 /* 12193 * Process MSS option. Note that MSS option value does not account 12194 * for IP or TCP options. This means that it is equal to MTU - minimum 12195 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12196 * IPv6. 12197 */ 12198 if (!(options & TCP_OPT_MSS_PRESENT)) { 12199 if (tcp->tcp_ipversion == IPV4_VERSION) 12200 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 12201 else 12202 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 12203 } else { 12204 if (tcp->tcp_ipversion == IPV4_VERSION) 12205 mss_max = tcps->tcps_mss_max_ipv4; 12206 else 12207 mss_max = tcps->tcps_mss_max_ipv6; 12208 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 12209 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 12210 else if (tcpopt.tcp_opt_mss > mss_max) 12211 tcpopt.tcp_opt_mss = mss_max; 12212 } 12213 12214 /* Process Window Scale option. */ 12215 if (options & TCP_OPT_WSCALE_PRESENT) { 12216 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12217 tcp->tcp_snd_ws_ok = B_TRUE; 12218 } else { 12219 tcp->tcp_snd_ws = B_FALSE; 12220 tcp->tcp_snd_ws_ok = B_FALSE; 12221 tcp->tcp_rcv_ws = B_FALSE; 12222 } 12223 12224 /* Process Timestamp option. */ 12225 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12226 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12227 tmp_tcph = (char *)tcp->tcp_tcph; 12228 12229 tcp->tcp_snd_ts_ok = B_TRUE; 12230 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12231 tcp->tcp_last_rcv_lbolt = lbolt64; 12232 ASSERT(OK_32PTR(tmp_tcph)); 12233 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12234 12235 /* Fill in our template header with basic timestamp option. */ 12236 tmp_tcph += tcp->tcp_tcp_hdr_len; 12237 tmp_tcph[0] = TCPOPT_NOP; 12238 tmp_tcph[1] = TCPOPT_NOP; 12239 tmp_tcph[2] = TCPOPT_TSTAMP; 12240 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12241 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12242 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12243 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12244 } else { 12245 tcp->tcp_snd_ts_ok = B_FALSE; 12246 } 12247 12248 /* 12249 * Process SACK options. If SACK is enabled for this connection, 12250 * then allocate the SACK info structure. Note the following ways 12251 * when tcp_snd_sack_ok is set to true. 12252 * 12253 * For active connection: in tcp_adapt_ire() called in 12254 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12255 * is checked. 12256 * 12257 * For passive connection: in tcp_adapt_ire() called in 12258 * tcp_accept_comm(). 12259 * 12260 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12261 * That check makes sure that if we did not send a SACK OK option, 12262 * we will not enable SACK for this connection even though the other 12263 * side sends us SACK OK option. For active connection, the SACK 12264 * info structure has already been allocated. So we need to free 12265 * it if SACK is disabled. 12266 */ 12267 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12268 (tcp->tcp_snd_sack_ok || 12269 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12270 /* This should be true only in the passive case. */ 12271 if (tcp->tcp_sack_info == NULL) { 12272 ASSERT(TCP_IS_DETACHED(tcp)); 12273 tcp->tcp_sack_info = 12274 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12275 } 12276 if (tcp->tcp_sack_info == NULL) { 12277 tcp->tcp_snd_sack_ok = B_FALSE; 12278 } else { 12279 tcp->tcp_snd_sack_ok = B_TRUE; 12280 if (tcp->tcp_snd_ts_ok) { 12281 tcp->tcp_max_sack_blk = 3; 12282 } else { 12283 tcp->tcp_max_sack_blk = 4; 12284 } 12285 } 12286 } else { 12287 /* 12288 * Resetting tcp_snd_sack_ok to B_FALSE so that 12289 * no SACK info will be used for this 12290 * connection. This assumes that SACK usage 12291 * permission is negotiated. This may need 12292 * to be changed once this is clarified. 12293 */ 12294 if (tcp->tcp_sack_info != NULL) { 12295 ASSERT(tcp->tcp_notsack_list == NULL); 12296 kmem_cache_free(tcp_sack_info_cache, 12297 tcp->tcp_sack_info); 12298 tcp->tcp_sack_info = NULL; 12299 } 12300 tcp->tcp_snd_sack_ok = B_FALSE; 12301 } 12302 12303 /* 12304 * Now we know the exact TCP/IP header length, subtract 12305 * that from tcp_mss to get our side's MSS. 12306 */ 12307 tcp->tcp_mss -= tcp->tcp_hdr_len; 12308 /* 12309 * Here we assume that the other side's header size will be equal to 12310 * our header size. We calculate the real MSS accordingly. Need to 12311 * take into additional stuffs IPsec puts in. 12312 * 12313 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12314 */ 12315 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12316 ((tcp->tcp_ipversion == IPV4_VERSION ? 12317 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12318 12319 /* 12320 * Set MSS to the smaller one of both ends of the connection. 12321 * We should not have called tcp_mss_set() before, but our 12322 * side of the MSS should have been set to a proper value 12323 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12324 * STREAM head parameters properly. 12325 * 12326 * If we have a larger-than-16-bit window but the other side 12327 * didn't want to do window scale, tcp_rwnd_set() will take 12328 * care of that. 12329 */ 12330 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE); 12331 } 12332 12333 /* 12334 * Sends the T_CONN_IND to the listener. The caller calls this 12335 * functions via squeue to get inside the listener's perimeter 12336 * once the 3 way hand shake is done a T_CONN_IND needs to be 12337 * sent. As an optimization, the caller can call this directly 12338 * if listener's perimeter is same as eager's. 12339 */ 12340 /* ARGSUSED */ 12341 void 12342 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12343 { 12344 conn_t *lconnp = (conn_t *)arg; 12345 tcp_t *listener = lconnp->conn_tcp; 12346 tcp_t *tcp; 12347 struct T_conn_ind *conn_ind; 12348 ipaddr_t *addr_cache; 12349 boolean_t need_send_conn_ind = B_FALSE; 12350 tcp_stack_t *tcps = listener->tcp_tcps; 12351 12352 /* retrieve the eager */ 12353 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12354 ASSERT(conn_ind->OPT_offset != 0 && 12355 conn_ind->OPT_length == sizeof (intptr_t)); 12356 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12357 conn_ind->OPT_length); 12358 12359 /* 12360 * TLI/XTI applications will get confused by 12361 * sending eager as an option since it violates 12362 * the option semantics. So remove the eager as 12363 * option since TLI/XTI app doesn't need it anyway. 12364 */ 12365 if (!TCP_IS_SOCKET(listener)) { 12366 conn_ind->OPT_length = 0; 12367 conn_ind->OPT_offset = 0; 12368 } 12369 if (listener->tcp_state != TCPS_LISTEN) { 12370 /* 12371 * If listener has closed, it would have caused a 12372 * a cleanup/blowoff to happen for the eager. We 12373 * just need to return. 12374 */ 12375 freemsg(mp); 12376 return; 12377 } 12378 12379 12380 /* 12381 * if the conn_req_q is full defer passing up the 12382 * T_CONN_IND until space is availabe after t_accept() 12383 * processing 12384 */ 12385 mutex_enter(&listener->tcp_eager_lock); 12386 12387 /* 12388 * Take the eager out, if it is in the list of droppable eagers 12389 * as we are here because the 3W handshake is over. 12390 */ 12391 MAKE_UNDROPPABLE(tcp); 12392 12393 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12394 tcp_t *tail; 12395 12396 /* 12397 * The eager already has an extra ref put in tcp_rput_data 12398 * so that it stays till accept comes back even though it 12399 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12400 */ 12401 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12402 listener->tcp_conn_req_cnt_q0--; 12403 listener->tcp_conn_req_cnt_q++; 12404 12405 /* Move from SYN_RCVD to ESTABLISHED list */ 12406 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12407 tcp->tcp_eager_prev_q0; 12408 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12409 tcp->tcp_eager_next_q0; 12410 tcp->tcp_eager_prev_q0 = NULL; 12411 tcp->tcp_eager_next_q0 = NULL; 12412 12413 /* 12414 * Insert at end of the queue because sockfs 12415 * sends down T_CONN_RES in chronological 12416 * order. Leaving the older conn indications 12417 * at front of the queue helps reducing search 12418 * time. 12419 */ 12420 tail = listener->tcp_eager_last_q; 12421 if (tail != NULL) 12422 tail->tcp_eager_next_q = tcp; 12423 else 12424 listener->tcp_eager_next_q = tcp; 12425 listener->tcp_eager_last_q = tcp; 12426 tcp->tcp_eager_next_q = NULL; 12427 /* 12428 * Delay sending up the T_conn_ind until we are 12429 * done with the eager. Once we have have sent up 12430 * the T_conn_ind, the accept can potentially complete 12431 * any time and release the refhold we have on the eager. 12432 */ 12433 need_send_conn_ind = B_TRUE; 12434 } else { 12435 /* 12436 * Defer connection on q0 and set deferred 12437 * connection bit true 12438 */ 12439 tcp->tcp_conn_def_q0 = B_TRUE; 12440 12441 /* take tcp out of q0 ... */ 12442 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12443 tcp->tcp_eager_next_q0; 12444 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12445 tcp->tcp_eager_prev_q0; 12446 12447 /* ... and place it at the end of q0 */ 12448 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12449 tcp->tcp_eager_next_q0 = listener; 12450 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12451 listener->tcp_eager_prev_q0 = tcp; 12452 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12453 } 12454 12455 /* we have timed out before */ 12456 if (tcp->tcp_syn_rcvd_timeout != 0) { 12457 tcp->tcp_syn_rcvd_timeout = 0; 12458 listener->tcp_syn_rcvd_timeout--; 12459 if (listener->tcp_syn_defense && 12460 listener->tcp_syn_rcvd_timeout <= 12461 (tcps->tcps_conn_req_max_q0 >> 5) && 12462 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12463 listener->tcp_last_rcv_lbolt)) { 12464 /* 12465 * Turn off the defense mode if we 12466 * believe the SYN attack is over. 12467 */ 12468 listener->tcp_syn_defense = B_FALSE; 12469 if (listener->tcp_ip_addr_cache) { 12470 kmem_free((void *)listener->tcp_ip_addr_cache, 12471 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12472 listener->tcp_ip_addr_cache = NULL; 12473 } 12474 } 12475 } 12476 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12477 if (addr_cache != NULL) { 12478 /* 12479 * We have finished a 3-way handshake with this 12480 * remote host. This proves the IP addr is good. 12481 * Cache it! 12482 */ 12483 addr_cache[IP_ADDR_CACHE_HASH( 12484 tcp->tcp_remote)] = tcp->tcp_remote; 12485 } 12486 mutex_exit(&listener->tcp_eager_lock); 12487 if (need_send_conn_ind) 12488 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 12489 } 12490 12491 /* 12492 * Send the newconn notification to ulp. The eager is blown off if the 12493 * notification fails. 12494 */ 12495 static void 12496 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp) 12497 { 12498 if (IPCL_IS_NONSTR(lconnp)) { 12499 cred_t *cr; 12500 pid_t cpid; 12501 12502 cr = msg_getcred(mp, &cpid); 12503 12504 ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp); 12505 ASSERT(econnp->conn_tcp->tcp_saved_listener == 12506 lconnp->conn_tcp); 12507 12508 /* Keep the message around in case of a fallback to TPI */ 12509 econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp; 12510 12511 /* 12512 * Notify the ULP about the newconn. It is guaranteed that no 12513 * tcp_accept() call will be made for the eager if the 12514 * notification fails, so it's safe to blow it off in that 12515 * case. 12516 * 12517 * The upper handle will be assigned when tcp_accept() is 12518 * called. 12519 */ 12520 if ((*lconnp->conn_upcalls->su_newconn) 12521 (lconnp->conn_upper_handle, 12522 (sock_lower_handle_t)econnp, 12523 &sock_tcp_downcalls, cr, cpid, 12524 &econnp->conn_upcalls) == NULL) { 12525 /* Failed to allocate a socket */ 12526 BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib, 12527 tcpEstabResets); 12528 (void) tcp_eager_blowoff(lconnp->conn_tcp, 12529 econnp->conn_tcp->tcp_conn_req_seqnum); 12530 } 12531 } else { 12532 putnext(lconnp->conn_tcp->tcp_rq, mp); 12533 } 12534 } 12535 12536 mblk_t * 12537 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12538 uint_t *ifindexp, ip6_pkt_t *ippp) 12539 { 12540 ip_pktinfo_t *pinfo; 12541 ip6_t *ip6h; 12542 uchar_t *rptr; 12543 mblk_t *first_mp = mp; 12544 boolean_t mctl_present = B_FALSE; 12545 uint_t ifindex = 0; 12546 ip6_pkt_t ipp; 12547 uint_t ipvers; 12548 uint_t ip_hdr_len; 12549 tcp_stack_t *tcps = tcp->tcp_tcps; 12550 12551 rptr = mp->b_rptr; 12552 ASSERT(OK_32PTR(rptr)); 12553 ASSERT(tcp != NULL); 12554 ipp.ipp_fields = 0; 12555 12556 switch DB_TYPE(mp) { 12557 case M_CTL: 12558 mp = mp->b_cont; 12559 if (mp == NULL) { 12560 freemsg(first_mp); 12561 return (NULL); 12562 } 12563 if (DB_TYPE(mp) != M_DATA) { 12564 freemsg(first_mp); 12565 return (NULL); 12566 } 12567 mctl_present = B_TRUE; 12568 break; 12569 case M_DATA: 12570 break; 12571 default: 12572 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12573 freemsg(mp); 12574 return (NULL); 12575 } 12576 ipvers = IPH_HDR_VERSION(rptr); 12577 if (ipvers == IPV4_VERSION) { 12578 if (tcp == NULL) { 12579 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12580 goto done; 12581 } 12582 12583 ipp.ipp_fields |= IPPF_HOPLIMIT; 12584 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12585 12586 /* 12587 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12588 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12589 */ 12590 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12591 mctl_present) { 12592 pinfo = (ip_pktinfo_t *)first_mp->b_rptr; 12593 if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) && 12594 (pinfo->ip_pkt_ulp_type == IN_PKTINFO) && 12595 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 12596 ipp.ipp_fields |= IPPF_IFINDEX; 12597 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 12598 ifindex = pinfo->ip_pkt_ifindex; 12599 } 12600 freeb(first_mp); 12601 mctl_present = B_FALSE; 12602 } 12603 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12604 } else { 12605 ip6h = (ip6_t *)rptr; 12606 12607 ASSERT(ipvers == IPV6_VERSION); 12608 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12609 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12610 ipp.ipp_hoplimit = ip6h->ip6_hops; 12611 12612 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12613 uint8_t nexthdrp; 12614 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 12615 12616 /* Look for ifindex information */ 12617 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12618 ip6i_t *ip6i = (ip6i_t *)ip6h; 12619 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12620 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12621 freemsg(first_mp); 12622 return (NULL); 12623 } 12624 12625 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12626 ASSERT(ip6i->ip6i_ifindex != 0); 12627 ipp.ipp_fields |= IPPF_IFINDEX; 12628 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12629 ifindex = ip6i->ip6i_ifindex; 12630 } 12631 rptr = (uchar_t *)&ip6i[1]; 12632 mp->b_rptr = rptr; 12633 if (rptr == mp->b_wptr) { 12634 mblk_t *mp1; 12635 mp1 = mp->b_cont; 12636 freeb(mp); 12637 mp = mp1; 12638 rptr = mp->b_rptr; 12639 } 12640 if (MBLKL(mp) < IPV6_HDR_LEN + 12641 sizeof (tcph_t)) { 12642 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12643 freemsg(first_mp); 12644 return (NULL); 12645 } 12646 ip6h = (ip6_t *)rptr; 12647 } 12648 12649 /* 12650 * Find any potentially interesting extension headers 12651 * as well as the length of the IPv6 + extension 12652 * headers. 12653 */ 12654 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12655 /* Verify if this is a TCP packet */ 12656 if (nexthdrp != IPPROTO_TCP) { 12657 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12658 freemsg(first_mp); 12659 return (NULL); 12660 } 12661 } else { 12662 ip_hdr_len = IPV6_HDR_LEN; 12663 } 12664 } 12665 12666 done: 12667 if (ipversp != NULL) 12668 *ipversp = ipvers; 12669 if (ip_hdr_lenp != NULL) 12670 *ip_hdr_lenp = ip_hdr_len; 12671 if (ippp != NULL) 12672 *ippp = ipp; 12673 if (ifindexp != NULL) 12674 *ifindexp = ifindex; 12675 if (mctl_present) { 12676 freeb(first_mp); 12677 } 12678 return (mp); 12679 } 12680 12681 /* 12682 * Handle M_DATA messages from IP. Its called directly from IP via 12683 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12684 * in this path. 12685 * 12686 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12687 * v4 and v6), we are called through tcp_input() and a M_CTL can 12688 * be present for options but tcp_find_pktinfo() deals with it. We 12689 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12690 * 12691 * The first argument is always the connp/tcp to which the mp belongs. 12692 * There are no exceptions to this rule. The caller has already put 12693 * a reference on this connp/tcp and once tcp_rput_data() returns, 12694 * the squeue will do the refrele. 12695 * 12696 * The TH_SYN for the listener directly go to tcp_conn_request via 12697 * squeue. 12698 * 12699 * sqp: NULL = recursive, sqp != NULL means called from squeue 12700 */ 12701 void 12702 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12703 { 12704 int32_t bytes_acked; 12705 int32_t gap; 12706 mblk_t *mp1; 12707 uint_t flags; 12708 uint32_t new_swnd = 0; 12709 uchar_t *iphdr; 12710 uchar_t *rptr; 12711 int32_t rgap; 12712 uint32_t seg_ack; 12713 int seg_len; 12714 uint_t ip_hdr_len; 12715 uint32_t seg_seq; 12716 tcph_t *tcph; 12717 int urp; 12718 tcp_opt_t tcpopt; 12719 uint_t ipvers; 12720 ip6_pkt_t ipp; 12721 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12722 uint32_t cwnd; 12723 uint32_t add; 12724 int npkt; 12725 int mss; 12726 conn_t *connp = (conn_t *)arg; 12727 squeue_t *sqp = (squeue_t *)arg2; 12728 tcp_t *tcp = connp->conn_tcp; 12729 tcp_stack_t *tcps = tcp->tcp_tcps; 12730 12731 /* 12732 * RST from fused tcp loopback peer should trigger an unfuse. 12733 */ 12734 if (tcp->tcp_fused) { 12735 TCP_STAT(tcps, tcp_fusion_aborted); 12736 tcp_unfuse(tcp); 12737 } 12738 12739 iphdr = mp->b_rptr; 12740 rptr = mp->b_rptr; 12741 ASSERT(OK_32PTR(rptr)); 12742 12743 /* 12744 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12745 * processing here. For rest call tcp_find_pktinfo to fill up the 12746 * necessary information. 12747 */ 12748 if (IPCL_IS_TCP4(connp)) { 12749 ipvers = IPV4_VERSION; 12750 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12751 } else { 12752 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12753 NULL, &ipp); 12754 if (mp == NULL) { 12755 TCP_STAT(tcps, tcp_rput_v6_error); 12756 return; 12757 } 12758 iphdr = mp->b_rptr; 12759 rptr = mp->b_rptr; 12760 } 12761 ASSERT(DB_TYPE(mp) == M_DATA); 12762 ASSERT(mp->b_next == NULL); 12763 12764 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12765 seg_seq = ABE32_TO_U32(tcph->th_seq); 12766 seg_ack = ABE32_TO_U32(tcph->th_ack); 12767 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12768 seg_len = (int)(mp->b_wptr - rptr) - 12769 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12770 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12771 do { 12772 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12773 (uintptr_t)INT_MAX); 12774 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12775 } while ((mp1 = mp1->b_cont) != NULL && 12776 mp1->b_datap->db_type == M_DATA); 12777 } 12778 12779 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12780 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12781 seg_len, tcph); 12782 return; 12783 } 12784 12785 if (sqp != NULL) { 12786 /* 12787 * This is the correct place to update tcp_last_recv_time. Note 12788 * that it is also updated for tcp structure that belongs to 12789 * global and listener queues which do not really need updating. 12790 * But that should not cause any harm. And it is updated for 12791 * all kinds of incoming segments, not only for data segments. 12792 */ 12793 tcp->tcp_last_recv_time = lbolt; 12794 } 12795 12796 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12797 12798 BUMP_LOCAL(tcp->tcp_ibsegs); 12799 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 12800 12801 if ((flags & TH_URG) && sqp != NULL) { 12802 /* 12803 * TCP can't handle urgent pointers that arrive before 12804 * the connection has been accept()ed since it can't 12805 * buffer OOB data. Discard segment if this happens. 12806 * 12807 * We can't just rely on a non-null tcp_listener to indicate 12808 * that the accept() has completed since unlinking of the 12809 * eager and completion of the accept are not atomic. 12810 * tcp_detached, when it is not set (B_FALSE) indicates 12811 * that the accept() has completed. 12812 * 12813 * Nor can it reassemble urgent pointers, so discard 12814 * if it's not the next segment expected. 12815 * 12816 * Otherwise, collapse chain into one mblk (discard if 12817 * that fails). This makes sure the headers, retransmitted 12818 * data, and new data all are in the same mblk. 12819 */ 12820 ASSERT(mp != NULL); 12821 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 12822 freemsg(mp); 12823 return; 12824 } 12825 /* Update pointers into message */ 12826 iphdr = rptr = mp->b_rptr; 12827 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12828 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 12829 /* 12830 * Since we can't handle any data with this urgent 12831 * pointer that is out of sequence, we expunge 12832 * the data. This allows us to still register 12833 * the urgent mark and generate the M_PCSIG, 12834 * which we can do. 12835 */ 12836 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12837 seg_len = 0; 12838 } 12839 } 12840 12841 switch (tcp->tcp_state) { 12842 case TCPS_SYN_SENT: 12843 if (flags & TH_ACK) { 12844 /* 12845 * Note that our stack cannot send data before a 12846 * connection is established, therefore the 12847 * following check is valid. Otherwise, it has 12848 * to be changed. 12849 */ 12850 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 12851 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12852 freemsg(mp); 12853 if (flags & TH_RST) 12854 return; 12855 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 12856 tcp, seg_ack, 0, TH_RST); 12857 return; 12858 } 12859 ASSERT(tcp->tcp_suna + 1 == seg_ack); 12860 } 12861 if (flags & TH_RST) { 12862 freemsg(mp); 12863 if (flags & TH_ACK) 12864 (void) tcp_clean_death(tcp, 12865 ECONNREFUSED, 13); 12866 return; 12867 } 12868 if (!(flags & TH_SYN)) { 12869 freemsg(mp); 12870 return; 12871 } 12872 12873 /* Process all TCP options. */ 12874 tcp_process_options(tcp, tcph); 12875 /* 12876 * The following changes our rwnd to be a multiple of the 12877 * MIN(peer MSS, our MSS) for performance reason. 12878 */ 12879 (void) tcp_rwnd_set(tcp, 12880 MSS_ROUNDUP(tcp->tcp_recv_hiwater, tcp->tcp_mss)); 12881 12882 /* Is the other end ECN capable? */ 12883 if (tcp->tcp_ecn_ok) { 12884 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 12885 tcp->tcp_ecn_ok = B_FALSE; 12886 } 12887 } 12888 /* 12889 * Clear ECN flags because it may interfere with later 12890 * processing. 12891 */ 12892 flags &= ~(TH_ECE|TH_CWR); 12893 12894 tcp->tcp_irs = seg_seq; 12895 tcp->tcp_rack = seg_seq; 12896 tcp->tcp_rnxt = seg_seq + 1; 12897 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12898 if (!TCP_IS_DETACHED(tcp)) { 12899 /* Allocate room for SACK options if needed. */ 12900 if (tcp->tcp_snd_sack_ok) { 12901 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 12902 tcp->tcp_hdr_len + 12903 TCPOPT_MAX_SACK_LEN + 12904 (tcp->tcp_loopback ? 0 : 12905 tcps->tcps_wroff_xtra)); 12906 } else { 12907 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 12908 tcp->tcp_hdr_len + 12909 (tcp->tcp_loopback ? 0 : 12910 tcps->tcps_wroff_xtra)); 12911 } 12912 } 12913 if (flags & TH_ACK) { 12914 /* 12915 * If we can't get the confirmation upstream, pretend 12916 * we didn't even see this one. 12917 * 12918 * XXX: how can we pretend we didn't see it if we 12919 * have updated rnxt et. al. 12920 * 12921 * For loopback we defer sending up the T_CONN_CON 12922 * until after some checks below. 12923 */ 12924 mp1 = NULL; 12925 /* 12926 * tcp_sendmsg() checks tcp_state without entering 12927 * the squeue so tcp_state should be updated before 12928 * sending up connection confirmation 12929 */ 12930 tcp->tcp_state = TCPS_ESTABLISHED; 12931 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 12932 tcp->tcp_loopback ? &mp1 : NULL)) { 12933 tcp->tcp_state = TCPS_SYN_SENT; 12934 freemsg(mp); 12935 return; 12936 } 12937 /* SYN was acked - making progress */ 12938 if (tcp->tcp_ipversion == IPV6_VERSION) 12939 tcp->tcp_ip_forward_progress = B_TRUE; 12940 12941 /* One for the SYN */ 12942 tcp->tcp_suna = tcp->tcp_iss + 1; 12943 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 12944 12945 /* 12946 * If SYN was retransmitted, need to reset all 12947 * retransmission info. This is because this 12948 * segment will be treated as a dup ACK. 12949 */ 12950 if (tcp->tcp_rexmit) { 12951 tcp->tcp_rexmit = B_FALSE; 12952 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 12953 tcp->tcp_rexmit_max = tcp->tcp_snxt; 12954 tcp->tcp_snd_burst = tcp->tcp_localnet ? 12955 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 12956 tcp->tcp_ms_we_have_waited = 0; 12957 12958 /* 12959 * Set tcp_cwnd back to 1 MSS, per 12960 * recommendation from 12961 * draft-floyd-incr-init-win-01.txt, 12962 * Increasing TCP's Initial Window. 12963 */ 12964 tcp->tcp_cwnd = tcp->tcp_mss; 12965 } 12966 12967 tcp->tcp_swl1 = seg_seq; 12968 tcp->tcp_swl2 = seg_ack; 12969 12970 new_swnd = BE16_TO_U16(tcph->th_win); 12971 tcp->tcp_swnd = new_swnd; 12972 if (new_swnd > tcp->tcp_max_swnd) 12973 tcp->tcp_max_swnd = new_swnd; 12974 12975 /* 12976 * Always send the three-way handshake ack immediately 12977 * in order to make the connection complete as soon as 12978 * possible on the accepting host. 12979 */ 12980 flags |= TH_ACK_NEEDED; 12981 12982 /* 12983 * Special case for loopback. At this point we have 12984 * received SYN-ACK from the remote endpoint. In 12985 * order to ensure that both endpoints reach the 12986 * fused state prior to any data exchange, the final 12987 * ACK needs to be sent before we indicate T_CONN_CON 12988 * to the module upstream. 12989 */ 12990 if (tcp->tcp_loopback) { 12991 mblk_t *ack_mp; 12992 12993 ASSERT(!tcp->tcp_unfusable); 12994 ASSERT(mp1 != NULL); 12995 /* 12996 * For loopback, we always get a pure SYN-ACK 12997 * and only need to send back the final ACK 12998 * with no data (this is because the other 12999 * tcp is ours and we don't do T/TCP). This 13000 * final ACK triggers the passive side to 13001 * perform fusion in ESTABLISHED state. 13002 */ 13003 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 13004 if (tcp->tcp_ack_tid != 0) { 13005 (void) TCP_TIMER_CANCEL(tcp, 13006 tcp->tcp_ack_tid); 13007 tcp->tcp_ack_tid = 0; 13008 } 13009 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 13010 BUMP_LOCAL(tcp->tcp_obsegs); 13011 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 13012 13013 if (!IPCL_IS_NONSTR(connp)) { 13014 /* Send up T_CONN_CON */ 13015 putnext(tcp->tcp_rq, mp1); 13016 } else { 13017 cred_t *cr; 13018 pid_t cpid; 13019 13020 cr = msg_getcred(mp1, &cpid); 13021 (*connp->conn_upcalls-> 13022 su_connected) 13023 (connp->conn_upper_handle, 13024 tcp->tcp_connid, cr, cpid); 13025 freemsg(mp1); 13026 } 13027 13028 freemsg(mp); 13029 return; 13030 } 13031 /* 13032 * Forget fusion; we need to handle more 13033 * complex cases below. Send the deferred 13034 * T_CONN_CON message upstream and proceed 13035 * as usual. Mark this tcp as not capable 13036 * of fusion. 13037 */ 13038 TCP_STAT(tcps, tcp_fusion_unfusable); 13039 tcp->tcp_unfusable = B_TRUE; 13040 if (!IPCL_IS_NONSTR(connp)) { 13041 putnext(tcp->tcp_rq, mp1); 13042 } else { 13043 cred_t *cr; 13044 pid_t cpid; 13045 13046 cr = msg_getcred(mp1, &cpid); 13047 (*connp->conn_upcalls->su_connected) 13048 (connp->conn_upper_handle, 13049 tcp->tcp_connid, cr, cpid); 13050 freemsg(mp1); 13051 } 13052 } 13053 13054 /* 13055 * Check to see if there is data to be sent. If 13056 * yes, set the transmit flag. Then check to see 13057 * if received data processing needs to be done. 13058 * If not, go straight to xmit_check. This short 13059 * cut is OK as we don't support T/TCP. 13060 */ 13061 if (tcp->tcp_unsent) 13062 flags |= TH_XMIT_NEEDED; 13063 13064 if (seg_len == 0 && !(flags & TH_URG)) { 13065 freemsg(mp); 13066 goto xmit_check; 13067 } 13068 13069 flags &= ~TH_SYN; 13070 seg_seq++; 13071 break; 13072 } 13073 tcp->tcp_state = TCPS_SYN_RCVD; 13074 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13075 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13076 if (mp1) { 13077 /* 13078 * See comment in tcp_conn_request() for why we use 13079 * the open() time pid here. 13080 */ 13081 DB_CPID(mp1) = tcp->tcp_cpid; 13082 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13083 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13084 } 13085 freemsg(mp); 13086 return; 13087 case TCPS_SYN_RCVD: 13088 if (flags & TH_ACK) { 13089 /* 13090 * In this state, a SYN|ACK packet is either bogus 13091 * because the other side must be ACKing our SYN which 13092 * indicates it has seen the ACK for their SYN and 13093 * shouldn't retransmit it or we're crossing SYNs 13094 * on active open. 13095 */ 13096 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13097 freemsg(mp); 13098 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13099 tcp, seg_ack, 0, TH_RST); 13100 return; 13101 } 13102 /* 13103 * NOTE: RFC 793 pg. 72 says this should be 13104 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13105 * but that would mean we have an ack that ignored 13106 * our SYN. 13107 */ 13108 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13109 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13110 freemsg(mp); 13111 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13112 tcp, seg_ack, 0, TH_RST); 13113 return; 13114 } 13115 } 13116 break; 13117 case TCPS_LISTEN: 13118 /* 13119 * Only a TLI listener can come through this path when a 13120 * acceptor is going back to be a listener and a packet 13121 * for the acceptor hits the classifier. For a socket 13122 * listener, this can never happen because a listener 13123 * can never accept connection on itself and hence a 13124 * socket acceptor can not go back to being a listener. 13125 */ 13126 ASSERT(!TCP_IS_SOCKET(tcp)); 13127 /*FALLTHRU*/ 13128 case TCPS_CLOSED: 13129 case TCPS_BOUND: { 13130 conn_t *new_connp; 13131 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13132 13133 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 13134 if (new_connp != NULL) { 13135 tcp_reinput(new_connp, mp, connp->conn_sqp); 13136 return; 13137 } 13138 /* We failed to classify. For now just drop the packet */ 13139 freemsg(mp); 13140 return; 13141 } 13142 case TCPS_IDLE: 13143 /* 13144 * Handle the case where the tcp_clean_death() has happened 13145 * on a connection (application hasn't closed yet) but a packet 13146 * was already queued on squeue before tcp_clean_death() 13147 * was processed. Calling tcp_clean_death() twice on same 13148 * connection can result in weird behaviour. 13149 */ 13150 freemsg(mp); 13151 return; 13152 default: 13153 break; 13154 } 13155 13156 /* 13157 * Already on the correct queue/perimeter. 13158 * If this is a detached connection and not an eager 13159 * connection hanging off a listener then new data 13160 * (past the FIN) will cause a reset. 13161 * We do a special check here where it 13162 * is out of the main line, rather than check 13163 * if we are detached every time we see new 13164 * data down below. 13165 */ 13166 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13167 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13168 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 13169 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 13170 13171 freemsg(mp); 13172 /* 13173 * This could be an SSL closure alert. We're detached so just 13174 * acknowledge it this last time. 13175 */ 13176 if (tcp->tcp_kssl_ctx != NULL) { 13177 kssl_release_ctx(tcp->tcp_kssl_ctx); 13178 tcp->tcp_kssl_ctx = NULL; 13179 13180 tcp->tcp_rnxt += seg_len; 13181 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13182 flags |= TH_ACK_NEEDED; 13183 goto ack_check; 13184 } 13185 13186 tcp_xmit_ctl("new data when detached", tcp, 13187 tcp->tcp_snxt, 0, TH_RST); 13188 (void) tcp_clean_death(tcp, EPROTO, 12); 13189 return; 13190 } 13191 13192 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13193 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13194 new_swnd = BE16_TO_U16(tcph->th_win) << 13195 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13196 13197 if (tcp->tcp_snd_ts_ok) { 13198 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13199 /* 13200 * This segment is not acceptable. 13201 * Drop it and send back an ACK. 13202 */ 13203 freemsg(mp); 13204 flags |= TH_ACK_NEEDED; 13205 goto ack_check; 13206 } 13207 } else if (tcp->tcp_snd_sack_ok) { 13208 ASSERT(tcp->tcp_sack_info != NULL); 13209 tcpopt.tcp = tcp; 13210 /* 13211 * SACK info in already updated in tcp_parse_options. Ignore 13212 * all other TCP options... 13213 */ 13214 (void) tcp_parse_options(tcph, &tcpopt); 13215 } 13216 try_again:; 13217 mss = tcp->tcp_mss; 13218 gap = seg_seq - tcp->tcp_rnxt; 13219 rgap = tcp->tcp_rwnd - (gap + seg_len); 13220 /* 13221 * gap is the amount of sequence space between what we expect to see 13222 * and what we got for seg_seq. A positive value for gap means 13223 * something got lost. A negative value means we got some old stuff. 13224 */ 13225 if (gap < 0) { 13226 /* Old stuff present. Is the SYN in there? */ 13227 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13228 (seg_len != 0)) { 13229 flags &= ~TH_SYN; 13230 seg_seq++; 13231 urp--; 13232 /* Recompute the gaps after noting the SYN. */ 13233 goto try_again; 13234 } 13235 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 13236 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 13237 (seg_len > -gap ? -gap : seg_len)); 13238 /* Remove the old stuff from seg_len. */ 13239 seg_len += gap; 13240 /* 13241 * Anything left? 13242 * Make sure to check for unack'd FIN when rest of data 13243 * has been previously ack'd. 13244 */ 13245 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13246 /* 13247 * Resets are only valid if they lie within our offered 13248 * window. If the RST bit is set, we just ignore this 13249 * segment. 13250 */ 13251 if (flags & TH_RST) { 13252 freemsg(mp); 13253 return; 13254 } 13255 13256 /* 13257 * The arriving of dup data packets indicate that we 13258 * may have postponed an ack for too long, or the other 13259 * side's RTT estimate is out of shape. Start acking 13260 * more often. 13261 */ 13262 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13263 tcp->tcp_rack_cnt >= 1 && 13264 tcp->tcp_rack_abs_max > 2) { 13265 tcp->tcp_rack_abs_max--; 13266 } 13267 tcp->tcp_rack_cur_max = 1; 13268 13269 /* 13270 * This segment is "unacceptable". None of its 13271 * sequence space lies within our advertized window. 13272 * 13273 * Adjust seg_len to the original value for tracing. 13274 */ 13275 seg_len -= gap; 13276 if (tcp->tcp_debug) { 13277 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13278 "tcp_rput: unacceptable, gap %d, rgap %d, " 13279 "flags 0x%x, seg_seq %u, seg_ack %u, " 13280 "seg_len %d, rnxt %u, snxt %u, %s", 13281 gap, rgap, flags, seg_seq, seg_ack, 13282 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13283 tcp_display(tcp, NULL, 13284 DISP_ADDR_AND_PORT)); 13285 } 13286 13287 /* 13288 * Arrange to send an ACK in response to the 13289 * unacceptable segment per RFC 793 page 69. There 13290 * is only one small difference between ours and the 13291 * acceptability test in the RFC - we accept ACK-only 13292 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13293 * will be generated. 13294 * 13295 * Note that we have to ACK an ACK-only packet at least 13296 * for stacks that send 0-length keep-alives with 13297 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13298 * section 4.2.3.6. As long as we don't ever generate 13299 * an unacceptable packet in response to an incoming 13300 * packet that is unacceptable, it should not cause 13301 * "ACK wars". 13302 */ 13303 flags |= TH_ACK_NEEDED; 13304 13305 /* 13306 * Continue processing this segment in order to use the 13307 * ACK information it contains, but skip all other 13308 * sequence-number processing. Processing the ACK 13309 * information is necessary in order to 13310 * re-synchronize connections that may have lost 13311 * synchronization. 13312 * 13313 * We clear seg_len and flag fields related to 13314 * sequence number processing as they are not 13315 * to be trusted for an unacceptable segment. 13316 */ 13317 seg_len = 0; 13318 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13319 goto process_ack; 13320 } 13321 13322 /* Fix seg_seq, and chew the gap off the front. */ 13323 seg_seq = tcp->tcp_rnxt; 13324 urp += gap; 13325 do { 13326 mblk_t *mp2; 13327 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13328 (uintptr_t)UINT_MAX); 13329 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13330 if (gap > 0) { 13331 mp->b_rptr = mp->b_wptr - gap; 13332 break; 13333 } 13334 mp2 = mp; 13335 mp = mp->b_cont; 13336 freeb(mp2); 13337 } while (gap < 0); 13338 /* 13339 * If the urgent data has already been acknowledged, we 13340 * should ignore TH_URG below 13341 */ 13342 if (urp < 0) 13343 flags &= ~TH_URG; 13344 } 13345 /* 13346 * rgap is the amount of stuff received out of window. A negative 13347 * value is the amount out of window. 13348 */ 13349 if (rgap < 0) { 13350 mblk_t *mp2; 13351 13352 if (tcp->tcp_rwnd == 0) { 13353 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 13354 } else { 13355 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 13356 UPDATE_MIB(&tcps->tcps_mib, 13357 tcpInDataPastWinBytes, -rgap); 13358 } 13359 13360 /* 13361 * seg_len does not include the FIN, so if more than 13362 * just the FIN is out of window, we act like we don't 13363 * see it. (If just the FIN is out of window, rgap 13364 * will be zero and we will go ahead and acknowledge 13365 * the FIN.) 13366 */ 13367 flags &= ~TH_FIN; 13368 13369 /* Fix seg_len and make sure there is something left. */ 13370 seg_len += rgap; 13371 if (seg_len <= 0) { 13372 /* 13373 * Resets are only valid if they lie within our offered 13374 * window. If the RST bit is set, we just ignore this 13375 * segment. 13376 */ 13377 if (flags & TH_RST) { 13378 freemsg(mp); 13379 return; 13380 } 13381 13382 /* Per RFC 793, we need to send back an ACK. */ 13383 flags |= TH_ACK_NEEDED; 13384 13385 /* 13386 * Send SIGURG as soon as possible i.e. even 13387 * if the TH_URG was delivered in a window probe 13388 * packet (which will be unacceptable). 13389 * 13390 * We generate a signal if none has been generated 13391 * for this connection or if this is a new urgent 13392 * byte. Also send a zero-length "unmarked" message 13393 * to inform SIOCATMARK that this is not the mark. 13394 * 13395 * tcp_urp_last_valid is cleared when the T_exdata_ind 13396 * is sent up. This plus the check for old data 13397 * (gap >= 0) handles the wraparound of the sequence 13398 * number space without having to always track the 13399 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13400 * this max in its rcv_up variable). 13401 * 13402 * This prevents duplicate SIGURGS due to a "late" 13403 * zero-window probe when the T_EXDATA_IND has already 13404 * been sent up. 13405 */ 13406 if ((flags & TH_URG) && 13407 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13408 tcp->tcp_urp_last))) { 13409 if (IPCL_IS_NONSTR(connp)) { 13410 if (!TCP_IS_DETACHED(tcp)) { 13411 (*connp->conn_upcalls-> 13412 su_signal_oob) 13413 (connp->conn_upper_handle, 13414 urp); 13415 } 13416 } else { 13417 mp1 = allocb(0, BPRI_MED); 13418 if (mp1 == NULL) { 13419 freemsg(mp); 13420 return; 13421 } 13422 if (!TCP_IS_DETACHED(tcp) && 13423 !putnextctl1(tcp->tcp_rq, 13424 M_PCSIG, SIGURG)) { 13425 /* Try again on the rexmit. */ 13426 freemsg(mp1); 13427 freemsg(mp); 13428 return; 13429 } 13430 /* 13431 * If the next byte would be the mark 13432 * then mark with MARKNEXT else mark 13433 * with NOTMARKNEXT. 13434 */ 13435 if (gap == 0 && urp == 0) 13436 mp1->b_flag |= MSGMARKNEXT; 13437 else 13438 mp1->b_flag |= MSGNOTMARKNEXT; 13439 freemsg(tcp->tcp_urp_mark_mp); 13440 tcp->tcp_urp_mark_mp = mp1; 13441 flags |= TH_SEND_URP_MARK; 13442 } 13443 tcp->tcp_urp_last_valid = B_TRUE; 13444 tcp->tcp_urp_last = urp + seg_seq; 13445 } 13446 /* 13447 * If this is a zero window probe, continue to 13448 * process the ACK part. But we need to set seg_len 13449 * to 0 to avoid data processing. Otherwise just 13450 * drop the segment and send back an ACK. 13451 */ 13452 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13453 flags &= ~(TH_SYN | TH_URG); 13454 seg_len = 0; 13455 goto process_ack; 13456 } else { 13457 freemsg(mp); 13458 goto ack_check; 13459 } 13460 } 13461 /* Pitch out of window stuff off the end. */ 13462 rgap = seg_len; 13463 mp2 = mp; 13464 do { 13465 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13466 (uintptr_t)INT_MAX); 13467 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13468 if (rgap < 0) { 13469 mp2->b_wptr += rgap; 13470 if ((mp1 = mp2->b_cont) != NULL) { 13471 mp2->b_cont = NULL; 13472 freemsg(mp1); 13473 } 13474 break; 13475 } 13476 } while ((mp2 = mp2->b_cont) != NULL); 13477 } 13478 ok:; 13479 /* 13480 * TCP should check ECN info for segments inside the window only. 13481 * Therefore the check should be done here. 13482 */ 13483 if (tcp->tcp_ecn_ok) { 13484 if (flags & TH_CWR) { 13485 tcp->tcp_ecn_echo_on = B_FALSE; 13486 } 13487 /* 13488 * Note that both ECN_CE and CWR can be set in the 13489 * same segment. In this case, we once again turn 13490 * on ECN_ECHO. 13491 */ 13492 if (tcp->tcp_ipversion == IPV4_VERSION) { 13493 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13494 13495 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13496 tcp->tcp_ecn_echo_on = B_TRUE; 13497 } 13498 } else { 13499 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13500 13501 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13502 htonl(IPH_ECN_CE << 20)) { 13503 tcp->tcp_ecn_echo_on = B_TRUE; 13504 } 13505 } 13506 } 13507 13508 /* 13509 * Check whether we can update tcp_ts_recent. This test is 13510 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13511 * Extensions for High Performance: An Update", Internet Draft. 13512 */ 13513 if (tcp->tcp_snd_ts_ok && 13514 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13515 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13516 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13517 tcp->tcp_last_rcv_lbolt = lbolt64; 13518 } 13519 13520 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13521 /* 13522 * FIN in an out of order segment. We record this in 13523 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13524 * Clear the FIN so that any check on FIN flag will fail. 13525 * Remember that FIN also counts in the sequence number 13526 * space. So we need to ack out of order FIN only segments. 13527 */ 13528 if (flags & TH_FIN) { 13529 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13530 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13531 flags &= ~TH_FIN; 13532 flags |= TH_ACK_NEEDED; 13533 } 13534 if (seg_len > 0) { 13535 /* Fill in the SACK blk list. */ 13536 if (tcp->tcp_snd_sack_ok) { 13537 ASSERT(tcp->tcp_sack_info != NULL); 13538 tcp_sack_insert(tcp->tcp_sack_list, 13539 seg_seq, seg_seq + seg_len, 13540 &(tcp->tcp_num_sack_blk)); 13541 } 13542 13543 /* 13544 * Attempt reassembly and see if we have something 13545 * ready to go. 13546 */ 13547 mp = tcp_reass(tcp, mp, seg_seq); 13548 /* Always ack out of order packets */ 13549 flags |= TH_ACK_NEEDED | TH_PUSH; 13550 if (mp) { 13551 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13552 (uintptr_t)INT_MAX); 13553 seg_len = mp->b_cont ? msgdsize(mp) : 13554 (int)(mp->b_wptr - mp->b_rptr); 13555 seg_seq = tcp->tcp_rnxt; 13556 /* 13557 * A gap is filled and the seq num and len 13558 * of the gap match that of a previously 13559 * received FIN, put the FIN flag back in. 13560 */ 13561 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13562 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13563 flags |= TH_FIN; 13564 tcp->tcp_valid_bits &= 13565 ~TCP_OFO_FIN_VALID; 13566 } 13567 } else { 13568 /* 13569 * Keep going even with NULL mp. 13570 * There may be a useful ACK or something else 13571 * we don't want to miss. 13572 * 13573 * But TCP should not perform fast retransmit 13574 * because of the ack number. TCP uses 13575 * seg_len == 0 to determine if it is a pure 13576 * ACK. And this is not a pure ACK. 13577 */ 13578 seg_len = 0; 13579 ofo_seg = B_TRUE; 13580 } 13581 } 13582 } else if (seg_len > 0) { 13583 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 13584 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 13585 /* 13586 * If an out of order FIN was received before, and the seq 13587 * num and len of the new segment match that of the FIN, 13588 * put the FIN flag back in. 13589 */ 13590 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13591 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13592 flags |= TH_FIN; 13593 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13594 } 13595 } 13596 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13597 if (flags & TH_RST) { 13598 freemsg(mp); 13599 switch (tcp->tcp_state) { 13600 case TCPS_SYN_RCVD: 13601 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13602 break; 13603 case TCPS_ESTABLISHED: 13604 case TCPS_FIN_WAIT_1: 13605 case TCPS_FIN_WAIT_2: 13606 case TCPS_CLOSE_WAIT: 13607 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13608 break; 13609 case TCPS_CLOSING: 13610 case TCPS_LAST_ACK: 13611 (void) tcp_clean_death(tcp, 0, 16); 13612 break; 13613 default: 13614 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13615 (void) tcp_clean_death(tcp, ENXIO, 17); 13616 break; 13617 } 13618 return; 13619 } 13620 if (flags & TH_SYN) { 13621 /* 13622 * See RFC 793, Page 71 13623 * 13624 * The seq number must be in the window as it should 13625 * be "fixed" above. If it is outside window, it should 13626 * be already rejected. Note that we allow seg_seq to be 13627 * rnxt + rwnd because we want to accept 0 window probe. 13628 */ 13629 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13630 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13631 freemsg(mp); 13632 /* 13633 * If the ACK flag is not set, just use our snxt as the 13634 * seq number of the RST segment. 13635 */ 13636 if (!(flags & TH_ACK)) { 13637 seg_ack = tcp->tcp_snxt; 13638 } 13639 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13640 TH_RST|TH_ACK); 13641 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13642 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13643 return; 13644 } 13645 /* 13646 * urp could be -1 when the urp field in the packet is 0 13647 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13648 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13649 */ 13650 if (flags & TH_URG && urp >= 0) { 13651 if (!tcp->tcp_urp_last_valid || 13652 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13653 /* 13654 * Non-STREAMS sockets handle the urgent data a litte 13655 * differently from STREAMS based sockets. There is no 13656 * need to mark any mblks with the MSG{NOT,}MARKNEXT 13657 * flags to keep SIOCATMARK happy. Instead a 13658 * su_signal_oob upcall is made to update the mark. 13659 * Neither is a T_EXDATA_IND mblk needed to be 13660 * prepended to the urgent data. The urgent data is 13661 * delivered using the su_recv upcall, where we set 13662 * the MSG_OOB flag to indicate that it is urg data. 13663 * 13664 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED 13665 * are used by non-STREAMS sockets. 13666 */ 13667 if (IPCL_IS_NONSTR(connp)) { 13668 if (!TCP_IS_DETACHED(tcp)) { 13669 (*connp->conn_upcalls->su_signal_oob) 13670 (connp->conn_upper_handle, urp); 13671 } 13672 } else { 13673 /* 13674 * If we haven't generated the signal yet for 13675 * this urgent pointer value, do it now. Also, 13676 * send up a zero-length M_DATA indicating 13677 * whether or not this is the mark. The latter 13678 * is not needed when a T_EXDATA_IND is sent up. 13679 * However, if there are allocation failures 13680 * this code relies on the sender retransmitting 13681 * and the socket code for determining the mark 13682 * should not block waiting for the peer to 13683 * transmit. Thus, for simplicity we always 13684 * send up the mark indication. 13685 */ 13686 mp1 = allocb(0, BPRI_MED); 13687 if (mp1 == NULL) { 13688 freemsg(mp); 13689 return; 13690 } 13691 if (!TCP_IS_DETACHED(tcp) && 13692 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13693 SIGURG)) { 13694 /* Try again on the rexmit. */ 13695 freemsg(mp1); 13696 freemsg(mp); 13697 return; 13698 } 13699 /* 13700 * Mark with NOTMARKNEXT for now. 13701 * The code below will change this to MARKNEXT 13702 * if we are at the mark. 13703 * 13704 * If there are allocation failures (e.g. in 13705 * dupmsg below) the next time tcp_rput_data 13706 * sees the urgent segment it will send up the 13707 * MSGMARKNEXT message. 13708 */ 13709 mp1->b_flag |= MSGNOTMARKNEXT; 13710 freemsg(tcp->tcp_urp_mark_mp); 13711 tcp->tcp_urp_mark_mp = mp1; 13712 flags |= TH_SEND_URP_MARK; 13713 #ifdef DEBUG 13714 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13715 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13716 "last %x, %s", 13717 seg_seq, urp, tcp->tcp_urp_last, 13718 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13719 #endif /* DEBUG */ 13720 } 13721 tcp->tcp_urp_last_valid = B_TRUE; 13722 tcp->tcp_urp_last = urp + seg_seq; 13723 } else if (tcp->tcp_urp_mark_mp != NULL) { 13724 /* 13725 * An allocation failure prevented the previous 13726 * tcp_rput_data from sending up the allocated 13727 * MSG*MARKNEXT message - send it up this time 13728 * around. 13729 */ 13730 flags |= TH_SEND_URP_MARK; 13731 } 13732 13733 /* 13734 * If the urgent byte is in this segment, make sure that it is 13735 * all by itself. This makes it much easier to deal with the 13736 * possibility of an allocation failure on the T_exdata_ind. 13737 * Note that seg_len is the number of bytes in the segment, and 13738 * urp is the offset into the segment of the urgent byte. 13739 * urp < seg_len means that the urgent byte is in this segment. 13740 */ 13741 if (urp < seg_len) { 13742 if (seg_len != 1) { 13743 uint32_t tmp_rnxt; 13744 /* 13745 * Break it up and feed it back in. 13746 * Re-attach the IP header. 13747 */ 13748 mp->b_rptr = iphdr; 13749 if (urp > 0) { 13750 /* 13751 * There is stuff before the urgent 13752 * byte. 13753 */ 13754 mp1 = dupmsg(mp); 13755 if (!mp1) { 13756 /* 13757 * Trim from urgent byte on. 13758 * The rest will come back. 13759 */ 13760 (void) adjmsg(mp, 13761 urp - seg_len); 13762 tcp_rput_data(connp, 13763 mp, NULL); 13764 return; 13765 } 13766 (void) adjmsg(mp1, urp - seg_len); 13767 /* Feed this piece back in. */ 13768 tmp_rnxt = tcp->tcp_rnxt; 13769 tcp_rput_data(connp, mp1, NULL); 13770 /* 13771 * If the data passed back in was not 13772 * processed (ie: bad ACK) sending 13773 * the remainder back in will cause a 13774 * loop. In this case, drop the 13775 * packet and let the sender try 13776 * sending a good packet. 13777 */ 13778 if (tmp_rnxt == tcp->tcp_rnxt) { 13779 freemsg(mp); 13780 return; 13781 } 13782 } 13783 if (urp != seg_len - 1) { 13784 uint32_t tmp_rnxt; 13785 /* 13786 * There is stuff after the urgent 13787 * byte. 13788 */ 13789 mp1 = dupmsg(mp); 13790 if (!mp1) { 13791 /* 13792 * Trim everything beyond the 13793 * urgent byte. The rest will 13794 * come back. 13795 */ 13796 (void) adjmsg(mp, 13797 urp + 1 - seg_len); 13798 tcp_rput_data(connp, 13799 mp, NULL); 13800 return; 13801 } 13802 (void) adjmsg(mp1, urp + 1 - seg_len); 13803 tmp_rnxt = tcp->tcp_rnxt; 13804 tcp_rput_data(connp, mp1, NULL); 13805 /* 13806 * If the data passed back in was not 13807 * processed (ie: bad ACK) sending 13808 * the remainder back in will cause a 13809 * loop. In this case, drop the 13810 * packet and let the sender try 13811 * sending a good packet. 13812 */ 13813 if (tmp_rnxt == tcp->tcp_rnxt) { 13814 freemsg(mp); 13815 return; 13816 } 13817 } 13818 tcp_rput_data(connp, mp, NULL); 13819 return; 13820 } 13821 /* 13822 * This segment contains only the urgent byte. We 13823 * have to allocate the T_exdata_ind, if we can. 13824 */ 13825 if (IPCL_IS_NONSTR(connp)) { 13826 int error; 13827 13828 (*connp->conn_upcalls->su_recv) 13829 (connp->conn_upper_handle, mp, seg_len, 13830 MSG_OOB, &error, NULL); 13831 /* 13832 * We should never be in middle of a 13833 * fallback, the squeue guarantees that. 13834 */ 13835 ASSERT(error != EOPNOTSUPP); 13836 mp = NULL; 13837 goto update_ack; 13838 } else if (!tcp->tcp_urp_mp) { 13839 struct T_exdata_ind *tei; 13840 mp1 = allocb(sizeof (struct T_exdata_ind), 13841 BPRI_MED); 13842 if (!mp1) { 13843 /* 13844 * Sigh... It'll be back. 13845 * Generate any MSG*MARK message now. 13846 */ 13847 freemsg(mp); 13848 seg_len = 0; 13849 if (flags & TH_SEND_URP_MARK) { 13850 13851 13852 ASSERT(tcp->tcp_urp_mark_mp); 13853 tcp->tcp_urp_mark_mp->b_flag &= 13854 ~MSGNOTMARKNEXT; 13855 tcp->tcp_urp_mark_mp->b_flag |= 13856 MSGMARKNEXT; 13857 } 13858 goto ack_check; 13859 } 13860 mp1->b_datap->db_type = M_PROTO; 13861 tei = (struct T_exdata_ind *)mp1->b_rptr; 13862 tei->PRIM_type = T_EXDATA_IND; 13863 tei->MORE_flag = 0; 13864 mp1->b_wptr = (uchar_t *)&tei[1]; 13865 tcp->tcp_urp_mp = mp1; 13866 #ifdef DEBUG 13867 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13868 "tcp_rput: allocated exdata_ind %s", 13869 tcp_display(tcp, NULL, 13870 DISP_PORT_ONLY)); 13871 #endif /* DEBUG */ 13872 /* 13873 * There is no need to send a separate MSG*MARK 13874 * message since the T_EXDATA_IND will be sent 13875 * now. 13876 */ 13877 flags &= ~TH_SEND_URP_MARK; 13878 freemsg(tcp->tcp_urp_mark_mp); 13879 tcp->tcp_urp_mark_mp = NULL; 13880 } 13881 /* 13882 * Now we are all set. On the next putnext upstream, 13883 * tcp_urp_mp will be non-NULL and will get prepended 13884 * to what has to be this piece containing the urgent 13885 * byte. If for any reason we abort this segment below, 13886 * if it comes back, we will have this ready, or it 13887 * will get blown off in close. 13888 */ 13889 } else if (urp == seg_len) { 13890 /* 13891 * The urgent byte is the next byte after this sequence 13892 * number. If this endpoint is non-STREAMS, then there 13893 * is nothing to do here since the socket has already 13894 * been notified about the urg pointer by the 13895 * su_signal_oob call above. 13896 * 13897 * In case of STREAMS, some more work might be needed. 13898 * If there is data it is marked with MSGMARKNEXT and 13899 * and any tcp_urp_mark_mp is discarded since it is not 13900 * needed. Otherwise, if the code above just allocated 13901 * a zero-length tcp_urp_mark_mp message, that message 13902 * is tagged with MSGMARKNEXT. Sending up these 13903 * MSGMARKNEXT messages makes SIOCATMARK work correctly 13904 * even though the T_EXDATA_IND will not be sent up 13905 * until the urgent byte arrives. 13906 */ 13907 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 13908 if (seg_len != 0) { 13909 flags |= TH_MARKNEXT_NEEDED; 13910 freemsg(tcp->tcp_urp_mark_mp); 13911 tcp->tcp_urp_mark_mp = NULL; 13912 flags &= ~TH_SEND_URP_MARK; 13913 } else if (tcp->tcp_urp_mark_mp != NULL) { 13914 flags |= TH_SEND_URP_MARK; 13915 tcp->tcp_urp_mark_mp->b_flag &= 13916 ~MSGNOTMARKNEXT; 13917 tcp->tcp_urp_mark_mp->b_flag |= 13918 MSGMARKNEXT; 13919 } 13920 } 13921 #ifdef DEBUG 13922 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13923 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 13924 seg_len, flags, 13925 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13926 #endif /* DEBUG */ 13927 } 13928 #ifdef DEBUG 13929 else { 13930 /* Data left until we hit mark */ 13931 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13932 "tcp_rput: URP %d bytes left, %s", 13933 urp - seg_len, tcp_display(tcp, NULL, 13934 DISP_PORT_ONLY)); 13935 } 13936 #endif /* DEBUG */ 13937 } 13938 13939 process_ack: 13940 if (!(flags & TH_ACK)) { 13941 freemsg(mp); 13942 goto xmit_check; 13943 } 13944 } 13945 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 13946 13947 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 13948 tcp->tcp_ip_forward_progress = B_TRUE; 13949 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13950 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 13951 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 13952 /* 3-way handshake complete - pass up the T_CONN_IND */ 13953 tcp_t *listener = tcp->tcp_listener; 13954 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 13955 13956 tcp->tcp_tconnind_started = B_TRUE; 13957 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 13958 /* 13959 * We are here means eager is fine but it can 13960 * get a TH_RST at any point between now and till 13961 * accept completes and disappear. We need to 13962 * ensure that reference to eager is valid after 13963 * we get out of eager's perimeter. So we do 13964 * an extra refhold. 13965 */ 13966 CONN_INC_REF(connp); 13967 13968 /* 13969 * The listener also exists because of the refhold 13970 * done in tcp_conn_request. Its possible that it 13971 * might have closed. We will check that once we 13972 * get inside listeners context. 13973 */ 13974 CONN_INC_REF(listener->tcp_connp); 13975 if (listener->tcp_connp->conn_sqp == 13976 connp->conn_sqp) { 13977 /* 13978 * We optimize by not calling an SQUEUE_ENTER 13979 * on the listener since we know that the 13980 * listener and eager squeues are the same. 13981 * We are able to make this check safely only 13982 * because neither the eager nor the listener 13983 * can change its squeue. Only an active connect 13984 * can change its squeue 13985 */ 13986 tcp_send_conn_ind(listener->tcp_connp, mp, 13987 listener->tcp_connp->conn_sqp); 13988 CONN_DEC_REF(listener->tcp_connp); 13989 } else if (!tcp->tcp_loopback) { 13990 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 13991 mp, tcp_send_conn_ind, 13992 listener->tcp_connp, SQ_FILL, 13993 SQTAG_TCP_CONN_IND); 13994 } else { 13995 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 13996 mp, tcp_send_conn_ind, 13997 listener->tcp_connp, SQ_PROCESS, 13998 SQTAG_TCP_CONN_IND); 13999 } 14000 } 14001 14002 /* 14003 * We are seeing the final ack in the three way 14004 * hand shake of a active open'ed connection 14005 * so we must send up a T_CONN_CON 14006 * 14007 * tcp_sendmsg() checks tcp_state without entering 14008 * the squeue so tcp_state should be updated before 14009 * sending up connection confirmation. 14010 */ 14011 tcp->tcp_state = TCPS_ESTABLISHED; 14012 if (tcp->tcp_active_open) { 14013 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 14014 freemsg(mp); 14015 tcp->tcp_state = TCPS_SYN_RCVD; 14016 return; 14017 } 14018 /* 14019 * Don't fuse the loopback endpoints for 14020 * simultaneous active opens. 14021 */ 14022 if (tcp->tcp_loopback) { 14023 TCP_STAT(tcps, tcp_fusion_unfusable); 14024 tcp->tcp_unfusable = B_TRUE; 14025 } 14026 } 14027 14028 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 14029 bytes_acked--; 14030 /* SYN was acked - making progress */ 14031 if (tcp->tcp_ipversion == IPV6_VERSION) 14032 tcp->tcp_ip_forward_progress = B_TRUE; 14033 14034 /* 14035 * If SYN was retransmitted, need to reset all 14036 * retransmission info as this segment will be 14037 * treated as a dup ACK. 14038 */ 14039 if (tcp->tcp_rexmit) { 14040 tcp->tcp_rexmit = B_FALSE; 14041 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14042 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14043 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14044 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14045 tcp->tcp_ms_we_have_waited = 0; 14046 tcp->tcp_cwnd = mss; 14047 } 14048 14049 /* 14050 * We set the send window to zero here. 14051 * This is needed if there is data to be 14052 * processed already on the queue. 14053 * Later (at swnd_update label), the 14054 * "new_swnd > tcp_swnd" condition is satisfied 14055 * the XMIT_NEEDED flag is set in the current 14056 * (SYN_RCVD) state. This ensures tcp_wput_data() is 14057 * called if there is already data on queue in 14058 * this state. 14059 */ 14060 tcp->tcp_swnd = 0; 14061 14062 if (new_swnd > tcp->tcp_max_swnd) 14063 tcp->tcp_max_swnd = new_swnd; 14064 tcp->tcp_swl1 = seg_seq; 14065 tcp->tcp_swl2 = seg_ack; 14066 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 14067 14068 /* Fuse when both sides are in ESTABLISHED state */ 14069 if (tcp->tcp_loopback && do_tcp_fusion) 14070 tcp_fuse(tcp, iphdr, tcph); 14071 14072 } 14073 /* This code follows 4.4BSD-Lite2 mostly. */ 14074 if (bytes_acked < 0) 14075 goto est; 14076 14077 /* 14078 * If TCP is ECN capable and the congestion experience bit is 14079 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 14080 * done once per window (or more loosely, per RTT). 14081 */ 14082 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 14083 tcp->tcp_cwr = B_FALSE; 14084 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 14085 if (!tcp->tcp_cwr) { 14086 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 14087 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 14088 tcp->tcp_cwnd = npkt * mss; 14089 /* 14090 * If the cwnd is 0, use the timer to clock out 14091 * new segments. This is required by the ECN spec. 14092 */ 14093 if (npkt == 0) { 14094 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14095 /* 14096 * This makes sure that when the ACK comes 14097 * back, we will increase tcp_cwnd by 1 MSS. 14098 */ 14099 tcp->tcp_cwnd_cnt = 0; 14100 } 14101 tcp->tcp_cwr = B_TRUE; 14102 /* 14103 * This marks the end of the current window of in 14104 * flight data. That is why we don't use 14105 * tcp_suna + tcp_swnd. Only data in flight can 14106 * provide ECN info. 14107 */ 14108 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14109 tcp->tcp_ecn_cwr_sent = B_FALSE; 14110 } 14111 } 14112 14113 mp1 = tcp->tcp_xmit_head; 14114 if (bytes_acked == 0) { 14115 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14116 int dupack_cnt; 14117 14118 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 14119 /* 14120 * Fast retransmit. When we have seen exactly three 14121 * identical ACKs while we have unacked data 14122 * outstanding we take it as a hint that our peer 14123 * dropped something. 14124 * 14125 * If TCP is retransmitting, don't do fast retransmit. 14126 */ 14127 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14128 ! tcp->tcp_rexmit) { 14129 /* Do Limited Transmit */ 14130 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14131 tcps->tcps_dupack_fast_retransmit) { 14132 /* 14133 * RFC 3042 14134 * 14135 * What we need to do is temporarily 14136 * increase tcp_cwnd so that new 14137 * data can be sent if it is allowed 14138 * by the receive window (tcp_rwnd). 14139 * tcp_wput_data() will take care of 14140 * the rest. 14141 * 14142 * If the connection is SACK capable, 14143 * only do limited xmit when there 14144 * is SACK info. 14145 * 14146 * Note how tcp_cwnd is incremented. 14147 * The first dup ACK will increase 14148 * it by 1 MSS. The second dup ACK 14149 * will increase it by 2 MSS. This 14150 * means that only 1 new segment will 14151 * be sent for each dup ACK. 14152 */ 14153 if (tcp->tcp_unsent > 0 && 14154 (!tcp->tcp_snd_sack_ok || 14155 (tcp->tcp_snd_sack_ok && 14156 tcp->tcp_notsack_list != NULL))) { 14157 tcp->tcp_cwnd += mss << 14158 (tcp->tcp_dupack_cnt - 1); 14159 flags |= TH_LIMIT_XMIT; 14160 } 14161 } else if (dupack_cnt == 14162 tcps->tcps_dupack_fast_retransmit) { 14163 14164 /* 14165 * If we have reduced tcp_ssthresh 14166 * because of ECN, do not reduce it again 14167 * unless it is already one window of data 14168 * away. After one window of data, tcp_cwr 14169 * should then be cleared. Note that 14170 * for non ECN capable connection, tcp_cwr 14171 * should always be false. 14172 * 14173 * Adjust cwnd since the duplicate 14174 * ack indicates that a packet was 14175 * dropped (due to congestion.) 14176 */ 14177 if (!tcp->tcp_cwr) { 14178 npkt = ((tcp->tcp_snxt - 14179 tcp->tcp_suna) >> 1) / mss; 14180 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14181 mss; 14182 tcp->tcp_cwnd = (npkt + 14183 tcp->tcp_dupack_cnt) * mss; 14184 } 14185 if (tcp->tcp_ecn_ok) { 14186 tcp->tcp_cwr = B_TRUE; 14187 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14188 tcp->tcp_ecn_cwr_sent = B_FALSE; 14189 } 14190 14191 /* 14192 * We do Hoe's algorithm. Refer to her 14193 * paper "Improving the Start-up Behavior 14194 * of a Congestion Control Scheme for TCP," 14195 * appeared in SIGCOMM'96. 14196 * 14197 * Save highest seq no we have sent so far. 14198 * Be careful about the invisible FIN byte. 14199 */ 14200 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14201 (tcp->tcp_unsent == 0)) { 14202 tcp->tcp_rexmit_max = tcp->tcp_fss; 14203 } else { 14204 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14205 } 14206 14207 /* 14208 * Do not allow bursty traffic during. 14209 * fast recovery. Refer to Fall and Floyd's 14210 * paper "Simulation-based Comparisons of 14211 * Tahoe, Reno and SACK TCP" (in CCR?) 14212 * This is a best current practise. 14213 */ 14214 tcp->tcp_snd_burst = TCP_CWND_SS; 14215 14216 /* 14217 * For SACK: 14218 * Calculate tcp_pipe, which is the 14219 * estimated number of bytes in 14220 * network. 14221 * 14222 * tcp_fack is the highest sack'ed seq num 14223 * TCP has received. 14224 * 14225 * tcp_pipe is explained in the above quoted 14226 * Fall and Floyd's paper. tcp_fack is 14227 * explained in Mathis and Mahdavi's 14228 * "Forward Acknowledgment: Refining TCP 14229 * Congestion Control" in SIGCOMM '96. 14230 */ 14231 if (tcp->tcp_snd_sack_ok) { 14232 ASSERT(tcp->tcp_sack_info != NULL); 14233 if (tcp->tcp_notsack_list != NULL) { 14234 tcp->tcp_pipe = tcp->tcp_snxt - 14235 tcp->tcp_fack; 14236 tcp->tcp_sack_snxt = seg_ack; 14237 flags |= TH_NEED_SACK_REXMIT; 14238 } else { 14239 /* 14240 * Always initialize tcp_pipe 14241 * even though we don't have 14242 * any SACK info. If later 14243 * we get SACK info and 14244 * tcp_pipe is not initialized, 14245 * funny things will happen. 14246 */ 14247 tcp->tcp_pipe = 14248 tcp->tcp_cwnd_ssthresh; 14249 } 14250 } else { 14251 flags |= TH_REXMIT_NEEDED; 14252 } /* tcp_snd_sack_ok */ 14253 14254 } else { 14255 /* 14256 * Here we perform congestion 14257 * avoidance, but NOT slow start. 14258 * This is known as the Fast 14259 * Recovery Algorithm. 14260 */ 14261 if (tcp->tcp_snd_sack_ok && 14262 tcp->tcp_notsack_list != NULL) { 14263 flags |= TH_NEED_SACK_REXMIT; 14264 tcp->tcp_pipe -= mss; 14265 if (tcp->tcp_pipe < 0) 14266 tcp->tcp_pipe = 0; 14267 } else { 14268 /* 14269 * We know that one more packet has 14270 * left the pipe thus we can update 14271 * cwnd. 14272 */ 14273 cwnd = tcp->tcp_cwnd + mss; 14274 if (cwnd > tcp->tcp_cwnd_max) 14275 cwnd = tcp->tcp_cwnd_max; 14276 tcp->tcp_cwnd = cwnd; 14277 if (tcp->tcp_unsent > 0) 14278 flags |= TH_XMIT_NEEDED; 14279 } 14280 } 14281 } 14282 } else if (tcp->tcp_zero_win_probe) { 14283 /* 14284 * If the window has opened, need to arrange 14285 * to send additional data. 14286 */ 14287 if (new_swnd != 0) { 14288 /* tcp_suna != tcp_snxt */ 14289 /* Packet contains a window update */ 14290 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 14291 tcp->tcp_zero_win_probe = 0; 14292 tcp->tcp_timer_backoff = 0; 14293 tcp->tcp_ms_we_have_waited = 0; 14294 14295 /* 14296 * Transmit starting with tcp_suna since 14297 * the one byte probe is not ack'ed. 14298 * If TCP has sent more than one identical 14299 * probe, tcp_rexmit will be set. That means 14300 * tcp_ss_rexmit() will send out the one 14301 * byte along with new data. Otherwise, 14302 * fake the retransmission. 14303 */ 14304 flags |= TH_XMIT_NEEDED; 14305 if (!tcp->tcp_rexmit) { 14306 tcp->tcp_rexmit = B_TRUE; 14307 tcp->tcp_dupack_cnt = 0; 14308 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14309 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14310 } 14311 } 14312 } 14313 goto swnd_update; 14314 } 14315 14316 /* 14317 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14318 * If the ACK value acks something that we have not yet sent, it might 14319 * be an old duplicate segment. Send an ACK to re-synchronize the 14320 * other side. 14321 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14322 * state is handled above, so we can always just drop the segment and 14323 * send an ACK here. 14324 * 14325 * In the case where the peer shrinks the window, we see the new window 14326 * update, but all the data sent previously is queued up by the peer. 14327 * To account for this, in tcp_process_shrunk_swnd(), the sequence 14328 * number, which was already sent, and within window, is recorded. 14329 * tcp_snxt is then updated. 14330 * 14331 * If the window has previously shrunk, and an ACK for data not yet 14332 * sent, according to tcp_snxt is recieved, it may still be valid. If 14333 * the ACK is for data within the window at the time the window was 14334 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to 14335 * the sequence number ACK'ed. 14336 * 14337 * If the ACK covers all the data sent at the time the window was 14338 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE. 14339 * 14340 * Should we send ACKs in response to ACK only segments? 14341 */ 14342 14343 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14344 if ((tcp->tcp_is_wnd_shrnk) && 14345 (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) { 14346 uint32_t data_acked_ahead_snxt; 14347 14348 data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt; 14349 tcp_update_xmit_tail(tcp, seg_ack); 14350 tcp->tcp_unsent -= data_acked_ahead_snxt; 14351 } else { 14352 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 14353 /* drop the received segment */ 14354 freemsg(mp); 14355 14356 /* 14357 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14358 * greater than 0, check if the number of such 14359 * bogus ACks is greater than that count. If yes, 14360 * don't send back any ACK. This prevents TCP from 14361 * getting into an ACK storm if somehow an attacker 14362 * successfully spoofs an acceptable segment to our 14363 * peer. 14364 */ 14365 if (tcp_drop_ack_unsent_cnt > 0 && 14366 ++tcp->tcp_in_ack_unsent > 14367 tcp_drop_ack_unsent_cnt) { 14368 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 14369 return; 14370 } 14371 mp = tcp_ack_mp(tcp); 14372 if (mp != NULL) { 14373 BUMP_LOCAL(tcp->tcp_obsegs); 14374 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 14375 tcp_send_data(tcp, tcp->tcp_wq, mp); 14376 } 14377 return; 14378 } 14379 } else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack, 14380 tcp->tcp_snxt_shrunk)) { 14381 tcp->tcp_is_wnd_shrnk = B_FALSE; 14382 } 14383 14384 /* 14385 * TCP gets a new ACK, update the notsack'ed list to delete those 14386 * blocks that are covered by this ACK. 14387 */ 14388 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14389 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14390 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14391 } 14392 14393 /* 14394 * If we got an ACK after fast retransmit, check to see 14395 * if it is a partial ACK. If it is not and the congestion 14396 * window was inflated to account for the other side's 14397 * cached packets, retract it. If it is, do Hoe's algorithm. 14398 */ 14399 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 14400 ASSERT(tcp->tcp_rexmit == B_FALSE); 14401 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14402 tcp->tcp_dupack_cnt = 0; 14403 /* 14404 * Restore the orig tcp_cwnd_ssthresh after 14405 * fast retransmit phase. 14406 */ 14407 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14408 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14409 } 14410 tcp->tcp_rexmit_max = seg_ack; 14411 tcp->tcp_cwnd_cnt = 0; 14412 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14413 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14414 14415 /* 14416 * Remove all notsack info to avoid confusion with 14417 * the next fast retrasnmit/recovery phase. 14418 */ 14419 if (tcp->tcp_snd_sack_ok && 14420 tcp->tcp_notsack_list != NULL) { 14421 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 14422 tcp); 14423 } 14424 } else { 14425 if (tcp->tcp_snd_sack_ok && 14426 tcp->tcp_notsack_list != NULL) { 14427 flags |= TH_NEED_SACK_REXMIT; 14428 tcp->tcp_pipe -= mss; 14429 if (tcp->tcp_pipe < 0) 14430 tcp->tcp_pipe = 0; 14431 } else { 14432 /* 14433 * Hoe's algorithm: 14434 * 14435 * Retransmit the unack'ed segment and 14436 * restart fast recovery. Note that we 14437 * need to scale back tcp_cwnd to the 14438 * original value when we started fast 14439 * recovery. This is to prevent overly 14440 * aggressive behaviour in sending new 14441 * segments. 14442 */ 14443 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14444 tcps->tcps_dupack_fast_retransmit * mss; 14445 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14446 flags |= TH_REXMIT_NEEDED; 14447 } 14448 } 14449 } else { 14450 tcp->tcp_dupack_cnt = 0; 14451 if (tcp->tcp_rexmit) { 14452 /* 14453 * TCP is retranmitting. If the ACK ack's all 14454 * outstanding data, update tcp_rexmit_max and 14455 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14456 * to the correct value. 14457 * 14458 * Note that SEQ_LEQ() is used. This is to avoid 14459 * unnecessary fast retransmit caused by dup ACKs 14460 * received when TCP does slow start retransmission 14461 * after a time out. During this phase, TCP may 14462 * send out segments which are already received. 14463 * This causes dup ACKs to be sent back. 14464 */ 14465 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14466 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14467 tcp->tcp_rexmit_nxt = seg_ack; 14468 } 14469 if (seg_ack != tcp->tcp_rexmit_max) { 14470 flags |= TH_XMIT_NEEDED; 14471 } 14472 } else { 14473 tcp->tcp_rexmit = B_FALSE; 14474 tcp->tcp_xmit_zc_clean = B_FALSE; 14475 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14476 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14477 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14478 } 14479 tcp->tcp_ms_we_have_waited = 0; 14480 } 14481 } 14482 14483 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 14484 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 14485 tcp->tcp_suna = seg_ack; 14486 if (tcp->tcp_zero_win_probe != 0) { 14487 tcp->tcp_zero_win_probe = 0; 14488 tcp->tcp_timer_backoff = 0; 14489 } 14490 14491 /* 14492 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14493 * Note that it cannot be the SYN being ack'ed. The code flow 14494 * will not reach here. 14495 */ 14496 if (mp1 == NULL) { 14497 goto fin_acked; 14498 } 14499 14500 /* 14501 * Update the congestion window. 14502 * 14503 * If TCP is not ECN capable or TCP is ECN capable but the 14504 * congestion experience bit is not set, increase the tcp_cwnd as 14505 * usual. 14506 */ 14507 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14508 cwnd = tcp->tcp_cwnd; 14509 add = mss; 14510 14511 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14512 /* 14513 * This is to prevent an increase of less than 1 MSS of 14514 * tcp_cwnd. With partial increase, tcp_wput_data() 14515 * may send out tinygrams in order to preserve mblk 14516 * boundaries. 14517 * 14518 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14519 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14520 * increased by 1 MSS for every RTTs. 14521 */ 14522 if (tcp->tcp_cwnd_cnt <= 0) { 14523 tcp->tcp_cwnd_cnt = cwnd + add; 14524 } else { 14525 tcp->tcp_cwnd_cnt -= add; 14526 add = 0; 14527 } 14528 } 14529 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14530 } 14531 14532 /* See if the latest urgent data has been acknowledged */ 14533 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14534 SEQ_GT(seg_ack, tcp->tcp_urg)) 14535 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14536 14537 /* Can we update the RTT estimates? */ 14538 if (tcp->tcp_snd_ts_ok) { 14539 /* Ignore zero timestamp echo-reply. */ 14540 if (tcpopt.tcp_opt_ts_ecr != 0) { 14541 tcp_set_rto(tcp, (int32_t)lbolt - 14542 (int32_t)tcpopt.tcp_opt_ts_ecr); 14543 } 14544 14545 /* If needed, restart the timer. */ 14546 if (tcp->tcp_set_timer == 1) { 14547 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14548 tcp->tcp_set_timer = 0; 14549 } 14550 /* 14551 * Update tcp_csuna in case the other side stops sending 14552 * us timestamps. 14553 */ 14554 tcp->tcp_csuna = tcp->tcp_snxt; 14555 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14556 /* 14557 * An ACK sequence we haven't seen before, so get the RTT 14558 * and update the RTO. But first check if the timestamp is 14559 * valid to use. 14560 */ 14561 if ((mp1->b_next != NULL) && 14562 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14563 tcp_set_rto(tcp, (int32_t)lbolt - 14564 (int32_t)(intptr_t)mp1->b_prev); 14565 else 14566 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14567 14568 /* Remeber the last sequence to be ACKed */ 14569 tcp->tcp_csuna = seg_ack; 14570 if (tcp->tcp_set_timer == 1) { 14571 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14572 tcp->tcp_set_timer = 0; 14573 } 14574 } else { 14575 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14576 } 14577 14578 /* Eat acknowledged bytes off the xmit queue. */ 14579 for (;;) { 14580 mblk_t *mp2; 14581 uchar_t *wptr; 14582 14583 wptr = mp1->b_wptr; 14584 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14585 bytes_acked -= (int)(wptr - mp1->b_rptr); 14586 if (bytes_acked < 0) { 14587 mp1->b_rptr = wptr + bytes_acked; 14588 /* 14589 * Set a new timestamp if all the bytes timed by the 14590 * old timestamp have been ack'ed. 14591 */ 14592 if (SEQ_GT(seg_ack, 14593 (uint32_t)(uintptr_t)(mp1->b_next))) { 14594 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14595 mp1->b_next = NULL; 14596 } 14597 break; 14598 } 14599 mp1->b_next = NULL; 14600 mp1->b_prev = NULL; 14601 mp2 = mp1; 14602 mp1 = mp1->b_cont; 14603 14604 /* 14605 * This notification is required for some zero-copy 14606 * clients to maintain a copy semantic. After the data 14607 * is ack'ed, client is safe to modify or reuse the buffer. 14608 */ 14609 if (tcp->tcp_snd_zcopy_aware && 14610 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14611 tcp_zcopy_notify(tcp); 14612 freeb(mp2); 14613 if (bytes_acked == 0) { 14614 if (mp1 == NULL) { 14615 /* Everything is ack'ed, clear the tail. */ 14616 tcp->tcp_xmit_tail = NULL; 14617 /* 14618 * Cancel the timer unless we are still 14619 * waiting for an ACK for the FIN packet. 14620 */ 14621 if (tcp->tcp_timer_tid != 0 && 14622 tcp->tcp_snxt == tcp->tcp_suna) { 14623 (void) TCP_TIMER_CANCEL(tcp, 14624 tcp->tcp_timer_tid); 14625 tcp->tcp_timer_tid = 0; 14626 } 14627 goto pre_swnd_update; 14628 } 14629 if (mp2 != tcp->tcp_xmit_tail) 14630 break; 14631 tcp->tcp_xmit_tail = mp1; 14632 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14633 (uintptr_t)INT_MAX); 14634 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14635 mp1->b_rptr); 14636 break; 14637 } 14638 if (mp1 == NULL) { 14639 /* 14640 * More was acked but there is nothing more 14641 * outstanding. This means that the FIN was 14642 * just acked or that we're talking to a clown. 14643 */ 14644 fin_acked: 14645 ASSERT(tcp->tcp_fin_sent); 14646 tcp->tcp_xmit_tail = NULL; 14647 if (tcp->tcp_fin_sent) { 14648 /* FIN was acked - making progress */ 14649 if (tcp->tcp_ipversion == IPV6_VERSION && 14650 !tcp->tcp_fin_acked) 14651 tcp->tcp_ip_forward_progress = B_TRUE; 14652 tcp->tcp_fin_acked = B_TRUE; 14653 if (tcp->tcp_linger_tid != 0 && 14654 TCP_TIMER_CANCEL(tcp, 14655 tcp->tcp_linger_tid) >= 0) { 14656 tcp_stop_lingering(tcp); 14657 freemsg(mp); 14658 mp = NULL; 14659 } 14660 } else { 14661 /* 14662 * We should never get here because 14663 * we have already checked that the 14664 * number of bytes ack'ed should be 14665 * smaller than or equal to what we 14666 * have sent so far (it is the 14667 * acceptability check of the ACK). 14668 * We can only get here if the send 14669 * queue is corrupted. 14670 * 14671 * Terminate the connection and 14672 * panic the system. It is better 14673 * for us to panic instead of 14674 * continuing to avoid other disaster. 14675 */ 14676 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14677 tcp->tcp_rnxt, TH_RST|TH_ACK); 14678 panic("Memory corruption " 14679 "detected for connection %s.", 14680 tcp_display(tcp, NULL, 14681 DISP_ADDR_AND_PORT)); 14682 /*NOTREACHED*/ 14683 } 14684 goto pre_swnd_update; 14685 } 14686 ASSERT(mp2 != tcp->tcp_xmit_tail); 14687 } 14688 if (tcp->tcp_unsent) { 14689 flags |= TH_XMIT_NEEDED; 14690 } 14691 pre_swnd_update: 14692 tcp->tcp_xmit_head = mp1; 14693 swnd_update: 14694 /* 14695 * The following check is different from most other implementations. 14696 * For bi-directional transfer, when segments are dropped, the 14697 * "normal" check will not accept a window update in those 14698 * retransmitted segemnts. Failing to do that, TCP may send out 14699 * segments which are outside receiver's window. As TCP accepts 14700 * the ack in those retransmitted segments, if the window update in 14701 * the same segment is not accepted, TCP will incorrectly calculates 14702 * that it can send more segments. This can create a deadlock 14703 * with the receiver if its window becomes zero. 14704 */ 14705 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14706 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14707 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14708 /* 14709 * The criteria for update is: 14710 * 14711 * 1. the segment acknowledges some data. Or 14712 * 2. the segment is new, i.e. it has a higher seq num. Or 14713 * 3. the segment is not old and the advertised window is 14714 * larger than the previous advertised window. 14715 */ 14716 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14717 flags |= TH_XMIT_NEEDED; 14718 tcp->tcp_swnd = new_swnd; 14719 if (new_swnd > tcp->tcp_max_swnd) 14720 tcp->tcp_max_swnd = new_swnd; 14721 tcp->tcp_swl1 = seg_seq; 14722 tcp->tcp_swl2 = seg_ack; 14723 } 14724 est: 14725 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14726 14727 switch (tcp->tcp_state) { 14728 case TCPS_FIN_WAIT_1: 14729 if (tcp->tcp_fin_acked) { 14730 tcp->tcp_state = TCPS_FIN_WAIT_2; 14731 /* 14732 * We implement the non-standard BSD/SunOS 14733 * FIN_WAIT_2 flushing algorithm. 14734 * If there is no user attached to this 14735 * TCP endpoint, then this TCP struct 14736 * could hang around forever in FIN_WAIT_2 14737 * state if the peer forgets to send us 14738 * a FIN. To prevent this, we wait only 14739 * 2*MSL (a convenient time value) for 14740 * the FIN to arrive. If it doesn't show up, 14741 * we flush the TCP endpoint. This algorithm, 14742 * though a violation of RFC-793, has worked 14743 * for over 10 years in BSD systems. 14744 * Note: SunOS 4.x waits 675 seconds before 14745 * flushing the FIN_WAIT_2 connection. 14746 */ 14747 TCP_TIMER_RESTART(tcp, 14748 tcps->tcps_fin_wait_2_flush_interval); 14749 } 14750 break; 14751 case TCPS_FIN_WAIT_2: 14752 break; /* Shutdown hook? */ 14753 case TCPS_LAST_ACK: 14754 freemsg(mp); 14755 if (tcp->tcp_fin_acked) { 14756 (void) tcp_clean_death(tcp, 0, 19); 14757 return; 14758 } 14759 goto xmit_check; 14760 case TCPS_CLOSING: 14761 if (tcp->tcp_fin_acked) { 14762 tcp->tcp_state = TCPS_TIME_WAIT; 14763 /* 14764 * Unconditionally clear the exclusive binding 14765 * bit so this TIME-WAIT connection won't 14766 * interfere with new ones. 14767 */ 14768 tcp->tcp_exclbind = 0; 14769 if (!TCP_IS_DETACHED(tcp)) { 14770 TCP_TIMER_RESTART(tcp, 14771 tcps->tcps_time_wait_interval); 14772 } else { 14773 tcp_time_wait_append(tcp); 14774 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14775 } 14776 } 14777 /*FALLTHRU*/ 14778 case TCPS_CLOSE_WAIT: 14779 freemsg(mp); 14780 goto xmit_check; 14781 default: 14782 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14783 break; 14784 } 14785 } 14786 if (flags & TH_FIN) { 14787 /* Make sure we ack the fin */ 14788 flags |= TH_ACK_NEEDED; 14789 if (!tcp->tcp_fin_rcvd) { 14790 tcp->tcp_fin_rcvd = B_TRUE; 14791 tcp->tcp_rnxt++; 14792 tcph = tcp->tcp_tcph; 14793 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14794 14795 /* 14796 * Generate the ordrel_ind at the end unless we 14797 * are an eager guy. 14798 * In the eager case tcp_rsrv will do this when run 14799 * after tcp_accept is done. 14800 */ 14801 if (tcp->tcp_listener == NULL && 14802 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14803 flags |= TH_ORDREL_NEEDED; 14804 switch (tcp->tcp_state) { 14805 case TCPS_SYN_RCVD: 14806 case TCPS_ESTABLISHED: 14807 tcp->tcp_state = TCPS_CLOSE_WAIT; 14808 /* Keepalive? */ 14809 break; 14810 case TCPS_FIN_WAIT_1: 14811 if (!tcp->tcp_fin_acked) { 14812 tcp->tcp_state = TCPS_CLOSING; 14813 break; 14814 } 14815 /* FALLTHRU */ 14816 case TCPS_FIN_WAIT_2: 14817 tcp->tcp_state = TCPS_TIME_WAIT; 14818 /* 14819 * Unconditionally clear the exclusive binding 14820 * bit so this TIME-WAIT connection won't 14821 * interfere with new ones. 14822 */ 14823 tcp->tcp_exclbind = 0; 14824 if (!TCP_IS_DETACHED(tcp)) { 14825 TCP_TIMER_RESTART(tcp, 14826 tcps->tcps_time_wait_interval); 14827 } else { 14828 tcp_time_wait_append(tcp); 14829 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14830 } 14831 if (seg_len) { 14832 /* 14833 * implies data piggybacked on FIN. 14834 * break to handle data. 14835 */ 14836 break; 14837 } 14838 freemsg(mp); 14839 goto ack_check; 14840 } 14841 } 14842 } 14843 if (mp == NULL) 14844 goto xmit_check; 14845 if (seg_len == 0) { 14846 freemsg(mp); 14847 goto xmit_check; 14848 } 14849 if (mp->b_rptr == mp->b_wptr) { 14850 /* 14851 * The header has been consumed, so we remove the 14852 * zero-length mblk here. 14853 */ 14854 mp1 = mp; 14855 mp = mp->b_cont; 14856 freeb(mp1); 14857 } 14858 update_ack: 14859 tcph = tcp->tcp_tcph; 14860 tcp->tcp_rack_cnt++; 14861 { 14862 uint32_t cur_max; 14863 14864 cur_max = tcp->tcp_rack_cur_max; 14865 if (tcp->tcp_rack_cnt >= cur_max) { 14866 /* 14867 * We have more unacked data than we should - send 14868 * an ACK now. 14869 */ 14870 flags |= TH_ACK_NEEDED; 14871 cur_max++; 14872 if (cur_max > tcp->tcp_rack_abs_max) 14873 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14874 else 14875 tcp->tcp_rack_cur_max = cur_max; 14876 } else if (TCP_IS_DETACHED(tcp)) { 14877 /* We don't have an ACK timer for detached TCP. */ 14878 flags |= TH_ACK_NEEDED; 14879 } else if (seg_len < mss) { 14880 /* 14881 * If we get a segment that is less than an mss, and we 14882 * already have unacknowledged data, and the amount 14883 * unacknowledged is not a multiple of mss, then we 14884 * better generate an ACK now. Otherwise, this may be 14885 * the tail piece of a transaction, and we would rather 14886 * wait for the response. 14887 */ 14888 uint32_t udif; 14889 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14890 (uintptr_t)INT_MAX); 14891 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14892 if (udif && (udif % mss)) 14893 flags |= TH_ACK_NEEDED; 14894 else 14895 flags |= TH_ACK_TIMER_NEEDED; 14896 } else { 14897 /* Start delayed ack timer */ 14898 flags |= TH_ACK_TIMER_NEEDED; 14899 } 14900 } 14901 tcp->tcp_rnxt += seg_len; 14902 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14903 14904 if (mp == NULL) 14905 goto xmit_check; 14906 14907 /* Update SACK list */ 14908 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 14909 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 14910 &(tcp->tcp_num_sack_blk)); 14911 } 14912 14913 if (tcp->tcp_urp_mp) { 14914 tcp->tcp_urp_mp->b_cont = mp; 14915 mp = tcp->tcp_urp_mp; 14916 tcp->tcp_urp_mp = NULL; 14917 /* Ready for a new signal. */ 14918 tcp->tcp_urp_last_valid = B_FALSE; 14919 #ifdef DEBUG 14920 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14921 "tcp_rput: sending exdata_ind %s", 14922 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14923 #endif /* DEBUG */ 14924 } 14925 14926 /* 14927 * Check for ancillary data changes compared to last segment. 14928 */ 14929 if (tcp->tcp_ipv6_recvancillary != 0) { 14930 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 14931 ASSERT(mp != NULL); 14932 } 14933 14934 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 14935 /* 14936 * Side queue inbound data until the accept happens. 14937 * tcp_accept/tcp_rput drains this when the accept happens. 14938 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 14939 * T_EXDATA_IND) it is queued on b_next. 14940 * XXX Make urgent data use this. Requires: 14941 * Removing tcp_listener check for TH_URG 14942 * Making M_PCPROTO and MARK messages skip the eager case 14943 */ 14944 14945 if (tcp->tcp_kssl_pending) { 14946 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 14947 mblk_t *, mp); 14948 tcp_kssl_input(tcp, mp); 14949 } else { 14950 tcp_rcv_enqueue(tcp, mp, seg_len); 14951 } 14952 } else if (IPCL_IS_NONSTR(connp)) { 14953 /* 14954 * Non-STREAMS socket 14955 * 14956 * Note that no KSSL processing is done here, because 14957 * KSSL is not supported for non-STREAMS sockets. 14958 */ 14959 boolean_t push = flags & (TH_PUSH|TH_FIN); 14960 int error; 14961 14962 if ((*connp->conn_upcalls->su_recv)( 14963 connp->conn_upper_handle, 14964 mp, seg_len, 0, &error, &push) <= 0) { 14965 /* 14966 * We should never be in middle of a 14967 * fallback, the squeue guarantees that. 14968 */ 14969 ASSERT(error != EOPNOTSUPP); 14970 if (error == ENOSPC) 14971 tcp->tcp_rwnd -= seg_len; 14972 } else if (push) { 14973 /* PUSH bit set and sockfs is not flow controlled */ 14974 flags |= tcp_rwnd_reopen(tcp); 14975 } 14976 } else { 14977 /* STREAMS socket */ 14978 if (mp->b_datap->db_type != M_DATA || 14979 (flags & TH_MARKNEXT_NEEDED)) { 14980 if (tcp->tcp_rcv_list != NULL) { 14981 flags |= tcp_rcv_drain(tcp); 14982 } 14983 ASSERT(tcp->tcp_rcv_list == NULL || 14984 tcp->tcp_fused_sigurg); 14985 14986 if (flags & TH_MARKNEXT_NEEDED) { 14987 #ifdef DEBUG 14988 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14989 "tcp_rput: sending MSGMARKNEXT %s", 14990 tcp_display(tcp, NULL, 14991 DISP_PORT_ONLY)); 14992 #endif /* DEBUG */ 14993 mp->b_flag |= MSGMARKNEXT; 14994 flags &= ~TH_MARKNEXT_NEEDED; 14995 } 14996 14997 /* Does this need SSL processing first? */ 14998 if ((tcp->tcp_kssl_ctx != NULL) && 14999 (DB_TYPE(mp) == M_DATA)) { 15000 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 15001 mblk_t *, mp); 15002 tcp_kssl_input(tcp, mp); 15003 } else { 15004 putnext(tcp->tcp_rq, mp); 15005 if (!canputnext(tcp->tcp_rq)) 15006 tcp->tcp_rwnd -= seg_len; 15007 } 15008 } else if ((tcp->tcp_kssl_ctx != NULL) && 15009 (DB_TYPE(mp) == M_DATA)) { 15010 /* Does this need SSL processing first? */ 15011 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp); 15012 tcp_kssl_input(tcp, mp); 15013 } else if ((flags & (TH_PUSH|TH_FIN)) || 15014 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_recv_hiwater >> 3) { 15015 if (tcp->tcp_rcv_list != NULL) { 15016 /* 15017 * Enqueue the new segment first and then 15018 * call tcp_rcv_drain() to send all data 15019 * up. The other way to do this is to 15020 * send all queued data up and then call 15021 * putnext() to send the new segment up. 15022 * This way can remove the else part later 15023 * on. 15024 * 15025 * We don't do this to avoid one more call to 15026 * canputnext() as tcp_rcv_drain() needs to 15027 * call canputnext(). 15028 */ 15029 tcp_rcv_enqueue(tcp, mp, seg_len); 15030 flags |= tcp_rcv_drain(tcp); 15031 } else { 15032 putnext(tcp->tcp_rq, mp); 15033 if (!canputnext(tcp->tcp_rq)) 15034 tcp->tcp_rwnd -= seg_len; 15035 } 15036 } else { 15037 /* 15038 * Enqueue all packets when processing an mblk 15039 * from the co queue and also enqueue normal packets. 15040 */ 15041 tcp_rcv_enqueue(tcp, mp, seg_len); 15042 } 15043 /* 15044 * Make sure the timer is running if we have data waiting 15045 * for a push bit. This provides resiliency against 15046 * implementations that do not correctly generate push bits. 15047 */ 15048 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 15049 /* 15050 * The connection may be closed at this point, so don't 15051 * do anything for a detached tcp. 15052 */ 15053 if (!TCP_IS_DETACHED(tcp)) 15054 tcp->tcp_push_tid = TCP_TIMER(tcp, 15055 tcp_push_timer, 15056 MSEC_TO_TICK( 15057 tcps->tcps_push_timer_interval)); 15058 } 15059 } 15060 15061 xmit_check: 15062 /* Is there anything left to do? */ 15063 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15064 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 15065 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 15066 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15067 goto done; 15068 15069 /* Any transmit work to do and a non-zero window? */ 15070 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 15071 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 15072 if (flags & TH_REXMIT_NEEDED) { 15073 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 15074 15075 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 15076 if (snd_size > mss) 15077 snd_size = mss; 15078 if (snd_size > tcp->tcp_swnd) 15079 snd_size = tcp->tcp_swnd; 15080 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 15081 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 15082 B_TRUE); 15083 15084 if (mp1 != NULL) { 15085 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15086 tcp->tcp_csuna = tcp->tcp_snxt; 15087 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 15088 UPDATE_MIB(&tcps->tcps_mib, 15089 tcpRetransBytes, snd_size); 15090 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15091 } 15092 } 15093 if (flags & TH_NEED_SACK_REXMIT) { 15094 tcp_sack_rxmit(tcp, &flags); 15095 } 15096 /* 15097 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 15098 * out new segment. Note that tcp_rexmit should not be 15099 * set, otherwise TH_LIMIT_XMIT should not be set. 15100 */ 15101 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 15102 if (!tcp->tcp_rexmit) { 15103 tcp_wput_data(tcp, NULL, B_FALSE); 15104 } else { 15105 tcp_ss_rexmit(tcp); 15106 } 15107 } 15108 /* 15109 * Adjust tcp_cwnd back to normal value after sending 15110 * new data segments. 15111 */ 15112 if (flags & TH_LIMIT_XMIT) { 15113 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 15114 /* 15115 * This will restart the timer. Restarting the 15116 * timer is used to avoid a timeout before the 15117 * limited transmitted segment's ACK gets back. 15118 */ 15119 if (tcp->tcp_xmit_head != NULL) 15120 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15121 } 15122 15123 /* Anything more to do? */ 15124 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 15125 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15126 goto done; 15127 } 15128 ack_check: 15129 if (flags & TH_SEND_URP_MARK) { 15130 ASSERT(tcp->tcp_urp_mark_mp); 15131 ASSERT(!IPCL_IS_NONSTR(connp)); 15132 /* 15133 * Send up any queued data and then send the mark message 15134 */ 15135 if (tcp->tcp_rcv_list != NULL) { 15136 flags |= tcp_rcv_drain(tcp); 15137 15138 } 15139 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15140 mp1 = tcp->tcp_urp_mark_mp; 15141 tcp->tcp_urp_mark_mp = NULL; 15142 putnext(tcp->tcp_rq, mp1); 15143 #ifdef DEBUG 15144 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15145 "tcp_rput: sending zero-length %s %s", 15146 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 15147 "MSGNOTMARKNEXT"), 15148 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15149 #endif /* DEBUG */ 15150 flags &= ~TH_SEND_URP_MARK; 15151 } 15152 if (flags & TH_ACK_NEEDED) { 15153 /* 15154 * Time to send an ack for some reason. 15155 */ 15156 mp1 = tcp_ack_mp(tcp); 15157 15158 if (mp1 != NULL) { 15159 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15160 BUMP_LOCAL(tcp->tcp_obsegs); 15161 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 15162 } 15163 if (tcp->tcp_ack_tid != 0) { 15164 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 15165 tcp->tcp_ack_tid = 0; 15166 } 15167 } 15168 if (flags & TH_ACK_TIMER_NEEDED) { 15169 /* 15170 * Arrange for deferred ACK or push wait timeout. 15171 * Start timer if it is not already running. 15172 */ 15173 if (tcp->tcp_ack_tid == 0) { 15174 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15175 MSEC_TO_TICK(tcp->tcp_localnet ? 15176 (clock_t)tcps->tcps_local_dack_interval : 15177 (clock_t)tcps->tcps_deferred_ack_interval)); 15178 } 15179 } 15180 if (flags & TH_ORDREL_NEEDED) { 15181 /* 15182 * Send up the ordrel_ind unless we are an eager guy. 15183 * In the eager case tcp_rsrv will do this when run 15184 * after tcp_accept is done. 15185 */ 15186 ASSERT(tcp->tcp_listener == NULL); 15187 15188 if (IPCL_IS_NONSTR(connp)) { 15189 ASSERT(tcp->tcp_ordrel_mp == NULL); 15190 tcp->tcp_ordrel_done = B_TRUE; 15191 (*connp->conn_upcalls->su_opctl) 15192 (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); 15193 goto done; 15194 } 15195 15196 if (tcp->tcp_rcv_list != NULL) { 15197 /* 15198 * Push any mblk(s) enqueued from co processing. 15199 */ 15200 flags |= tcp_rcv_drain(tcp); 15201 } 15202 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15203 15204 mp1 = tcp->tcp_ordrel_mp; 15205 tcp->tcp_ordrel_mp = NULL; 15206 tcp->tcp_ordrel_done = B_TRUE; 15207 putnext(tcp->tcp_rq, mp1); 15208 } 15209 done: 15210 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15211 } 15212 15213 /* 15214 * This routine adjusts next-to-send sequence number variables, in the 15215 * case where the reciever has shrunk it's window. 15216 */ 15217 static void 15218 tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt) 15219 { 15220 mblk_t *xmit_tail; 15221 int32_t offset; 15222 15223 tcp->tcp_snxt = snxt; 15224 15225 /* Get the mblk, and the offset in it, as per the shrunk window */ 15226 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 15227 ASSERT(xmit_tail != NULL); 15228 tcp->tcp_xmit_tail = xmit_tail; 15229 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - 15230 xmit_tail->b_rptr - offset; 15231 } 15232 15233 /* 15234 * This function does PAWS protection check. Returns B_TRUE if the 15235 * segment passes the PAWS test, else returns B_FALSE. 15236 */ 15237 boolean_t 15238 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15239 { 15240 uint8_t flags; 15241 int options; 15242 uint8_t *up; 15243 15244 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15245 /* 15246 * If timestamp option is aligned nicely, get values inline, 15247 * otherwise call general routine to parse. Only do that 15248 * if timestamp is the only option. 15249 */ 15250 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15251 TCPOPT_REAL_TS_LEN && 15252 OK_32PTR((up = ((uint8_t *)tcph) + 15253 TCP_MIN_HEADER_LENGTH)) && 15254 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15255 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15256 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15257 15258 options = TCP_OPT_TSTAMP_PRESENT; 15259 } else { 15260 if (tcp->tcp_snd_sack_ok) { 15261 tcpoptp->tcp = tcp; 15262 } else { 15263 tcpoptp->tcp = NULL; 15264 } 15265 options = tcp_parse_options(tcph, tcpoptp); 15266 } 15267 15268 if (options & TCP_OPT_TSTAMP_PRESENT) { 15269 /* 15270 * Do PAWS per RFC 1323 section 4.2. Accept RST 15271 * regardless of the timestamp, page 18 RFC 1323.bis. 15272 */ 15273 if ((flags & TH_RST) == 0 && 15274 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15275 tcp->tcp_ts_recent)) { 15276 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15277 PAWS_TIMEOUT)) { 15278 /* This segment is not acceptable. */ 15279 return (B_FALSE); 15280 } else { 15281 /* 15282 * Connection has been idle for 15283 * too long. Reset the timestamp 15284 * and assume the segment is valid. 15285 */ 15286 tcp->tcp_ts_recent = 15287 tcpoptp->tcp_opt_ts_val; 15288 } 15289 } 15290 } else { 15291 /* 15292 * If we don't get a timestamp on every packet, we 15293 * figure we can't really trust 'em, so we stop sending 15294 * and parsing them. 15295 */ 15296 tcp->tcp_snd_ts_ok = B_FALSE; 15297 15298 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15299 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15300 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15301 /* 15302 * Adjust the tcp_mss accordingly. We also need to 15303 * adjust tcp_cwnd here in accordance with the new mss. 15304 * But we avoid doing a slow start here so as to not 15305 * to lose on the transfer rate built up so far. 15306 */ 15307 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE); 15308 if (tcp->tcp_snd_sack_ok) { 15309 ASSERT(tcp->tcp_sack_info != NULL); 15310 tcp->tcp_max_sack_blk = 4; 15311 } 15312 } 15313 return (B_TRUE); 15314 } 15315 15316 /* 15317 * Attach ancillary data to a received TCP segments for the 15318 * ancillary pieces requested by the application that are 15319 * different than they were in the previous data segment. 15320 * 15321 * Save the "current" values once memory allocation is ok so that 15322 * when memory allocation fails we can just wait for the next data segment. 15323 */ 15324 static mblk_t * 15325 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15326 { 15327 struct T_optdata_ind *todi; 15328 int optlen; 15329 uchar_t *optptr; 15330 struct T_opthdr *toh; 15331 uint_t addflag; /* Which pieces to add */ 15332 mblk_t *mp1; 15333 15334 optlen = 0; 15335 addflag = 0; 15336 /* If app asked for pktinfo and the index has changed ... */ 15337 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15338 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15339 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15340 optlen += sizeof (struct T_opthdr) + 15341 sizeof (struct in6_pktinfo); 15342 addflag |= TCP_IPV6_RECVPKTINFO; 15343 } 15344 /* If app asked for hoplimit and it has changed ... */ 15345 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15346 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15347 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15348 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15349 addflag |= TCP_IPV6_RECVHOPLIMIT; 15350 } 15351 /* If app asked for tclass and it has changed ... */ 15352 if ((ipp->ipp_fields & IPPF_TCLASS) && 15353 ipp->ipp_tclass != tcp->tcp_recvtclass && 15354 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15355 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15356 addflag |= TCP_IPV6_RECVTCLASS; 15357 } 15358 /* 15359 * If app asked for hopbyhop headers and it has changed ... 15360 * For security labels, note that (1) security labels can't change on 15361 * a connected socket at all, (2) we're connected to at most one peer, 15362 * (3) if anything changes, then it must be some other extra option. 15363 */ 15364 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15365 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15366 (ipp->ipp_fields & IPPF_HOPOPTS), 15367 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15368 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15369 tcp->tcp_label_len; 15370 addflag |= TCP_IPV6_RECVHOPOPTS; 15371 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15372 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15373 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15374 return (mp); 15375 } 15376 /* If app asked for dst headers before routing headers ... */ 15377 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15378 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15379 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15380 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15381 optlen += sizeof (struct T_opthdr) + 15382 ipp->ipp_rtdstoptslen; 15383 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15384 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15385 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15386 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15387 return (mp); 15388 } 15389 /* If app asked for routing headers and it has changed ... */ 15390 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15391 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15392 (ipp->ipp_fields & IPPF_RTHDR), 15393 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15394 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15395 addflag |= TCP_IPV6_RECVRTHDR; 15396 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15397 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15398 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15399 return (mp); 15400 } 15401 /* If app asked for dest headers and it has changed ... */ 15402 if ((tcp->tcp_ipv6_recvancillary & 15403 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15404 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15405 (ipp->ipp_fields & IPPF_DSTOPTS), 15406 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15407 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15408 addflag |= TCP_IPV6_RECVDSTOPTS; 15409 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15410 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15411 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15412 return (mp); 15413 } 15414 15415 if (optlen == 0) { 15416 /* Nothing to add */ 15417 return (mp); 15418 } 15419 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15420 if (mp1 == NULL) { 15421 /* 15422 * Defer sending ancillary data until the next TCP segment 15423 * arrives. 15424 */ 15425 return (mp); 15426 } 15427 mp1->b_cont = mp; 15428 mp = mp1; 15429 mp->b_wptr += sizeof (*todi) + optlen; 15430 mp->b_datap->db_type = M_PROTO; 15431 todi = (struct T_optdata_ind *)mp->b_rptr; 15432 todi->PRIM_type = T_OPTDATA_IND; 15433 todi->DATA_flag = 1; /* MORE data */ 15434 todi->OPT_length = optlen; 15435 todi->OPT_offset = sizeof (*todi); 15436 optptr = (uchar_t *)&todi[1]; 15437 /* 15438 * If app asked for pktinfo and the index has changed ... 15439 * Note that the local address never changes for the connection. 15440 */ 15441 if (addflag & TCP_IPV6_RECVPKTINFO) { 15442 struct in6_pktinfo *pkti; 15443 15444 toh = (struct T_opthdr *)optptr; 15445 toh->level = IPPROTO_IPV6; 15446 toh->name = IPV6_PKTINFO; 15447 toh->len = sizeof (*toh) + sizeof (*pkti); 15448 toh->status = 0; 15449 optptr += sizeof (*toh); 15450 pkti = (struct in6_pktinfo *)optptr; 15451 if (tcp->tcp_ipversion == IPV6_VERSION) 15452 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15453 else 15454 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15455 &pkti->ipi6_addr); 15456 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15457 optptr += sizeof (*pkti); 15458 ASSERT(OK_32PTR(optptr)); 15459 /* Save as "last" value */ 15460 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15461 } 15462 /* If app asked for hoplimit and it has changed ... */ 15463 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15464 toh = (struct T_opthdr *)optptr; 15465 toh->level = IPPROTO_IPV6; 15466 toh->name = IPV6_HOPLIMIT; 15467 toh->len = sizeof (*toh) + sizeof (uint_t); 15468 toh->status = 0; 15469 optptr += sizeof (*toh); 15470 *(uint_t *)optptr = ipp->ipp_hoplimit; 15471 optptr += sizeof (uint_t); 15472 ASSERT(OK_32PTR(optptr)); 15473 /* Save as "last" value */ 15474 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15475 } 15476 /* If app asked for tclass and it has changed ... */ 15477 if (addflag & TCP_IPV6_RECVTCLASS) { 15478 toh = (struct T_opthdr *)optptr; 15479 toh->level = IPPROTO_IPV6; 15480 toh->name = IPV6_TCLASS; 15481 toh->len = sizeof (*toh) + sizeof (uint_t); 15482 toh->status = 0; 15483 optptr += sizeof (*toh); 15484 *(uint_t *)optptr = ipp->ipp_tclass; 15485 optptr += sizeof (uint_t); 15486 ASSERT(OK_32PTR(optptr)); 15487 /* Save as "last" value */ 15488 tcp->tcp_recvtclass = ipp->ipp_tclass; 15489 } 15490 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15491 toh = (struct T_opthdr *)optptr; 15492 toh->level = IPPROTO_IPV6; 15493 toh->name = IPV6_HOPOPTS; 15494 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15495 tcp->tcp_label_len; 15496 toh->status = 0; 15497 optptr += sizeof (*toh); 15498 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15499 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15500 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15501 ASSERT(OK_32PTR(optptr)); 15502 /* Save as last value */ 15503 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15504 (ipp->ipp_fields & IPPF_HOPOPTS), 15505 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15506 } 15507 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15508 toh = (struct T_opthdr *)optptr; 15509 toh->level = IPPROTO_IPV6; 15510 toh->name = IPV6_RTHDRDSTOPTS; 15511 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15512 toh->status = 0; 15513 optptr += sizeof (*toh); 15514 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15515 optptr += ipp->ipp_rtdstoptslen; 15516 ASSERT(OK_32PTR(optptr)); 15517 /* Save as last value */ 15518 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15519 &tcp->tcp_rtdstoptslen, 15520 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15521 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15522 } 15523 if (addflag & TCP_IPV6_RECVRTHDR) { 15524 toh = (struct T_opthdr *)optptr; 15525 toh->level = IPPROTO_IPV6; 15526 toh->name = IPV6_RTHDR; 15527 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15528 toh->status = 0; 15529 optptr += sizeof (*toh); 15530 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15531 optptr += ipp->ipp_rthdrlen; 15532 ASSERT(OK_32PTR(optptr)); 15533 /* Save as last value */ 15534 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15535 (ipp->ipp_fields & IPPF_RTHDR), 15536 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15537 } 15538 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15539 toh = (struct T_opthdr *)optptr; 15540 toh->level = IPPROTO_IPV6; 15541 toh->name = IPV6_DSTOPTS; 15542 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15543 toh->status = 0; 15544 optptr += sizeof (*toh); 15545 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15546 optptr += ipp->ipp_dstoptslen; 15547 ASSERT(OK_32PTR(optptr)); 15548 /* Save as last value */ 15549 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15550 (ipp->ipp_fields & IPPF_DSTOPTS), 15551 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15552 } 15553 ASSERT(optptr == mp->b_wptr); 15554 return (mp); 15555 } 15556 15557 /* 15558 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15559 * messages. 15560 */ 15561 void 15562 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15563 { 15564 uchar_t *rptr = mp->b_rptr; 15565 queue_t *q = tcp->tcp_rq; 15566 struct T_error_ack *tea; 15567 15568 switch (mp->b_datap->db_type) { 15569 case M_PROTO: 15570 case M_PCPROTO: 15571 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15572 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15573 break; 15574 tea = (struct T_error_ack *)rptr; 15575 ASSERT(tea->PRIM_type != T_BIND_ACK); 15576 ASSERT(tea->ERROR_prim != O_T_BIND_REQ && 15577 tea->ERROR_prim != T_BIND_REQ); 15578 switch (tea->PRIM_type) { 15579 case T_ERROR_ACK: 15580 if (tcp->tcp_debug) { 15581 (void) strlog(TCP_MOD_ID, 0, 1, 15582 SL_TRACE|SL_ERROR, 15583 "tcp_rput_other: case T_ERROR_ACK, " 15584 "ERROR_prim == %d", 15585 tea->ERROR_prim); 15586 } 15587 switch (tea->ERROR_prim) { 15588 case T_SVR4_OPTMGMT_REQ: 15589 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15590 /* T_OPTMGMT_REQ generated by TCP */ 15591 printf("T_SVR4_OPTMGMT_REQ failed " 15592 "%d/%d - dropped (cnt %d)\n", 15593 tea->TLI_error, tea->UNIX_error, 15594 tcp->tcp_drop_opt_ack_cnt); 15595 freemsg(mp); 15596 tcp->tcp_drop_opt_ack_cnt--; 15597 return; 15598 } 15599 break; 15600 } 15601 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15602 tcp->tcp_drop_opt_ack_cnt > 0) { 15603 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15604 "- dropped (cnt %d)\n", 15605 tea->TLI_error, tea->UNIX_error, 15606 tcp->tcp_drop_opt_ack_cnt); 15607 freemsg(mp); 15608 tcp->tcp_drop_opt_ack_cnt--; 15609 return; 15610 } 15611 break; 15612 case T_OPTMGMT_ACK: 15613 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15614 /* T_OPTMGMT_REQ generated by TCP */ 15615 freemsg(mp); 15616 tcp->tcp_drop_opt_ack_cnt--; 15617 return; 15618 } 15619 break; 15620 default: 15621 ASSERT(tea->ERROR_prim != T_UNBIND_REQ); 15622 break; 15623 } 15624 break; 15625 case M_FLUSH: 15626 if (*rptr & FLUSHR) 15627 flushq(q, FLUSHDATA); 15628 break; 15629 default: 15630 /* M_CTL will be directly sent to tcp_icmp_error() */ 15631 ASSERT(DB_TYPE(mp) != M_CTL); 15632 break; 15633 } 15634 /* 15635 * Make sure we set this bit before sending the ACK for 15636 * bind. Otherwise accept could possibly run and free 15637 * this tcp struct. 15638 */ 15639 ASSERT(q != NULL); 15640 putnext(q, mp); 15641 } 15642 15643 /* ARGSUSED */ 15644 static void 15645 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15646 { 15647 conn_t *connp = (conn_t *)arg; 15648 tcp_t *tcp = connp->conn_tcp; 15649 queue_t *q = tcp->tcp_rq; 15650 tcp_stack_t *tcps = tcp->tcp_tcps; 15651 15652 ASSERT(!IPCL_IS_NONSTR(connp)); 15653 mutex_enter(&tcp->tcp_rsrv_mp_lock); 15654 tcp->tcp_rsrv_mp = mp; 15655 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15656 15657 TCP_STAT(tcps, tcp_rsrv_calls); 15658 15659 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15660 return; 15661 } 15662 15663 if (tcp->tcp_fused) { 15664 tcp_fuse_backenable(tcp); 15665 return; 15666 } 15667 15668 if (canputnext(q)) { 15669 /* Not flow-controlled, open rwnd */ 15670 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 15671 15672 /* 15673 * Send back a window update immediately if TCP is above 15674 * ESTABLISHED state and the increase of the rcv window 15675 * that the other side knows is at least 1 MSS after flow 15676 * control is lifted. 15677 */ 15678 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15679 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 15680 tcp_xmit_ctl(NULL, tcp, 15681 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15682 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15683 } 15684 } 15685 } 15686 15687 /* 15688 * The read side service routine is called mostly when we get back-enabled as a 15689 * result of flow control relief. Since we don't actually queue anything in 15690 * TCP, we have no data to send out of here. What we do is clear the receive 15691 * window, and send out a window update. 15692 */ 15693 static void 15694 tcp_rsrv(queue_t *q) 15695 { 15696 conn_t *connp = Q_TO_CONN(q); 15697 tcp_t *tcp = connp->conn_tcp; 15698 mblk_t *mp; 15699 tcp_stack_t *tcps = tcp->tcp_tcps; 15700 15701 /* No code does a putq on the read side */ 15702 ASSERT(q->q_first == NULL); 15703 15704 /* Nothing to do for the default queue */ 15705 if (q == tcps->tcps_g_q) { 15706 return; 15707 } 15708 15709 /* 15710 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 15711 * been run. So just return. 15712 */ 15713 mutex_enter(&tcp->tcp_rsrv_mp_lock); 15714 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 15715 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15716 return; 15717 } 15718 tcp->tcp_rsrv_mp = NULL; 15719 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15720 15721 CONN_INC_REF(connp); 15722 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 15723 SQ_PROCESS, SQTAG_TCP_RSRV); 15724 } 15725 15726 /* 15727 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 15728 * We do not allow the receive window to shrink. After setting rwnd, 15729 * set the flow control hiwat of the stream. 15730 * 15731 * This function is called in 2 cases: 15732 * 15733 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 15734 * connection (passive open) and in tcp_rput_data() for active connect. 15735 * This is called after tcp_mss_set() when the desired MSS value is known. 15736 * This makes sure that our window size is a mutiple of the other side's 15737 * MSS. 15738 * 2) Handling SO_RCVBUF option. 15739 * 15740 * It is ASSUMED that the requested size is a multiple of the current MSS. 15741 * 15742 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 15743 * user requests so. 15744 */ 15745 int 15746 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 15747 { 15748 uint32_t mss = tcp->tcp_mss; 15749 uint32_t old_max_rwnd; 15750 uint32_t max_transmittable_rwnd; 15751 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 15752 tcp_stack_t *tcps = tcp->tcp_tcps; 15753 15754 if (tcp->tcp_fused) { 15755 size_t sth_hiwat; 15756 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15757 15758 ASSERT(peer_tcp != NULL); 15759 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 15760 if (!tcp_detached) { 15761 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, 15762 sth_hiwat); 15763 tcp_set_recv_threshold(tcp, sth_hiwat >> 3); 15764 } 15765 15766 /* 15767 * In the fusion case, the maxpsz stream head value of 15768 * our peer is set according to its send buffer size 15769 * and our receive buffer size; since the latter may 15770 * have changed we need to update the peer's maxpsz. 15771 */ 15772 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 15773 return (sth_hiwat); 15774 } 15775 15776 if (tcp_detached) { 15777 old_max_rwnd = tcp->tcp_rwnd; 15778 } else { 15779 old_max_rwnd = tcp->tcp_recv_hiwater; 15780 } 15781 15782 /* 15783 * Insist on a receive window that is at least 15784 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 15785 * funny TCP interactions of Nagle algorithm, SWS avoidance 15786 * and delayed acknowledgement. 15787 */ 15788 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 15789 15790 /* 15791 * If window size info has already been exchanged, TCP should not 15792 * shrink the window. Shrinking window is doable if done carefully. 15793 * We may add that support later. But so far there is not a real 15794 * need to do that. 15795 */ 15796 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 15797 /* MSS may have changed, do a round up again. */ 15798 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 15799 } 15800 15801 /* 15802 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 15803 * can be applied even before the window scale option is decided. 15804 */ 15805 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 15806 if (rwnd > max_transmittable_rwnd) { 15807 rwnd = max_transmittable_rwnd - 15808 (max_transmittable_rwnd % mss); 15809 if (rwnd < mss) 15810 rwnd = max_transmittable_rwnd; 15811 /* 15812 * If we're over the limit we may have to back down tcp_rwnd. 15813 * The increment below won't work for us. So we set all three 15814 * here and the increment below will have no effect. 15815 */ 15816 tcp->tcp_rwnd = old_max_rwnd = rwnd; 15817 } 15818 if (tcp->tcp_localnet) { 15819 tcp->tcp_rack_abs_max = 15820 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 15821 } else { 15822 /* 15823 * For a remote host on a different subnet (through a router), 15824 * we ack every other packet to be conforming to RFC1122. 15825 * tcp_deferred_acks_max is default to 2. 15826 */ 15827 tcp->tcp_rack_abs_max = 15828 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 15829 } 15830 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 15831 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 15832 else 15833 tcp->tcp_rack_cur_max = 0; 15834 /* 15835 * Increment the current rwnd by the amount the maximum grew (we 15836 * can not overwrite it since we might be in the middle of a 15837 * connection.) 15838 */ 15839 tcp->tcp_rwnd += rwnd - old_max_rwnd; 15840 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 15841 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 15842 tcp->tcp_cwnd_max = rwnd; 15843 15844 if (tcp_detached) 15845 return (rwnd); 15846 15847 tcp_set_recv_threshold(tcp, rwnd >> 3); 15848 15849 tcp->tcp_recv_hiwater = rwnd; 15850 15851 /* 15852 * Set the STREAM head high water mark. This doesn't have to be 15853 * here, since we are simply using default values, but we would 15854 * prefer to choose these values algorithmically, with a likely 15855 * relationship to rwnd. 15856 */ 15857 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, 15858 MAX(rwnd, tcps->tcps_sth_rcv_hiwat)); 15859 return (rwnd); 15860 } 15861 15862 /* 15863 * Return SNMP stuff in buffer in mpdata. 15864 */ 15865 mblk_t * 15866 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 15867 { 15868 mblk_t *mpdata; 15869 mblk_t *mp_conn_ctl = NULL; 15870 mblk_t *mp_conn_tail; 15871 mblk_t *mp_attr_ctl = NULL; 15872 mblk_t *mp_attr_tail; 15873 mblk_t *mp6_conn_ctl = NULL; 15874 mblk_t *mp6_conn_tail; 15875 mblk_t *mp6_attr_ctl = NULL; 15876 mblk_t *mp6_attr_tail; 15877 struct opthdr *optp; 15878 mib2_tcpConnEntry_t tce; 15879 mib2_tcp6ConnEntry_t tce6; 15880 mib2_transportMLPEntry_t mlp; 15881 connf_t *connfp; 15882 int i; 15883 boolean_t ispriv; 15884 zoneid_t zoneid; 15885 int v4_conn_idx; 15886 int v6_conn_idx; 15887 conn_t *connp = Q_TO_CONN(q); 15888 tcp_stack_t *tcps; 15889 ip_stack_t *ipst; 15890 mblk_t *mp2ctl; 15891 15892 /* 15893 * make a copy of the original message 15894 */ 15895 mp2ctl = copymsg(mpctl); 15896 15897 if (mpctl == NULL || 15898 (mpdata = mpctl->b_cont) == NULL || 15899 (mp_conn_ctl = copymsg(mpctl)) == NULL || 15900 (mp_attr_ctl = copymsg(mpctl)) == NULL || 15901 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 15902 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 15903 freemsg(mp_conn_ctl); 15904 freemsg(mp_attr_ctl); 15905 freemsg(mp6_conn_ctl); 15906 freemsg(mp6_attr_ctl); 15907 freemsg(mpctl); 15908 freemsg(mp2ctl); 15909 return (NULL); 15910 } 15911 15912 ipst = connp->conn_netstack->netstack_ip; 15913 tcps = connp->conn_netstack->netstack_tcp; 15914 15915 /* build table of connections -- need count in fixed part */ 15916 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 15917 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 15918 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 15919 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 15920 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 15921 15922 ispriv = 15923 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 15924 zoneid = Q_TO_CONN(q)->conn_zoneid; 15925 15926 v4_conn_idx = v6_conn_idx = 0; 15927 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 15928 15929 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 15930 ipst = tcps->tcps_netstack->netstack_ip; 15931 15932 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 15933 15934 connp = NULL; 15935 15936 while ((connp = 15937 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 15938 tcp_t *tcp; 15939 boolean_t needattr; 15940 15941 if (connp->conn_zoneid != zoneid) 15942 continue; /* not in this zone */ 15943 15944 tcp = connp->conn_tcp; 15945 UPDATE_MIB(&tcps->tcps_mib, 15946 tcpHCInSegs, tcp->tcp_ibsegs); 15947 tcp->tcp_ibsegs = 0; 15948 UPDATE_MIB(&tcps->tcps_mib, 15949 tcpHCOutSegs, tcp->tcp_obsegs); 15950 tcp->tcp_obsegs = 0; 15951 15952 tce6.tcp6ConnState = tce.tcpConnState = 15953 tcp_snmp_state(tcp); 15954 if (tce.tcpConnState == MIB2_TCP_established || 15955 tce.tcpConnState == MIB2_TCP_closeWait) 15956 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 15957 15958 needattr = B_FALSE; 15959 bzero(&mlp, sizeof (mlp)); 15960 if (connp->conn_mlp_type != mlptSingle) { 15961 if (connp->conn_mlp_type == mlptShared || 15962 connp->conn_mlp_type == mlptBoth) 15963 mlp.tme_flags |= MIB2_TMEF_SHARED; 15964 if (connp->conn_mlp_type == mlptPrivate || 15965 connp->conn_mlp_type == mlptBoth) 15966 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 15967 needattr = B_TRUE; 15968 } 15969 if (connp->conn_anon_mlp) { 15970 mlp.tme_flags |= MIB2_TMEF_ANONMLP; 15971 needattr = B_TRUE; 15972 } 15973 if (connp->conn_mac_exempt) { 15974 mlp.tme_flags |= MIB2_TMEF_MACEXEMPT; 15975 needattr = B_TRUE; 15976 } 15977 if (connp->conn_fully_bound && 15978 connp->conn_effective_cred != NULL) { 15979 ts_label_t *tsl; 15980 15981 tsl = crgetlabel(connp->conn_effective_cred); 15982 mlp.tme_flags |= MIB2_TMEF_IS_LABELED; 15983 mlp.tme_doi = label2doi(tsl); 15984 mlp.tme_label = *label2bslabel(tsl); 15985 needattr = B_TRUE; 15986 } 15987 15988 /* Create a message to report on IPv6 entries */ 15989 if (tcp->tcp_ipversion == IPV6_VERSION) { 15990 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 15991 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 15992 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 15993 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 15994 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 15995 /* Don't want just anybody seeing these... */ 15996 if (ispriv) { 15997 tce6.tcp6ConnEntryInfo.ce_snxt = 15998 tcp->tcp_snxt; 15999 tce6.tcp6ConnEntryInfo.ce_suna = 16000 tcp->tcp_suna; 16001 tce6.tcp6ConnEntryInfo.ce_rnxt = 16002 tcp->tcp_rnxt; 16003 tce6.tcp6ConnEntryInfo.ce_rack = 16004 tcp->tcp_rack; 16005 } else { 16006 /* 16007 * Netstat, unfortunately, uses this to 16008 * get send/receive queue sizes. How to fix? 16009 * Why not compute the difference only? 16010 */ 16011 tce6.tcp6ConnEntryInfo.ce_snxt = 16012 tcp->tcp_snxt - tcp->tcp_suna; 16013 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16014 tce6.tcp6ConnEntryInfo.ce_rnxt = 16015 tcp->tcp_rnxt - tcp->tcp_rack; 16016 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16017 } 16018 16019 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16020 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16021 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16022 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16023 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16024 16025 tce6.tcp6ConnCreationProcess = 16026 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16027 tcp->tcp_cpid; 16028 tce6.tcp6ConnCreationTime = tcp->tcp_open_time; 16029 16030 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 16031 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 16032 16033 mlp.tme_connidx = v6_conn_idx++; 16034 if (needattr) 16035 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 16036 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 16037 } 16038 /* 16039 * Create an IPv4 table entry for IPv4 entries and also 16040 * for IPv6 entries which are bound to in6addr_any 16041 * but don't have IPV6_V6ONLY set. 16042 * (i.e. anything an IPv4 peer could connect to) 16043 */ 16044 if (tcp->tcp_ipversion == IPV4_VERSION || 16045 (tcp->tcp_state <= TCPS_LISTEN && 16046 !tcp->tcp_connp->conn_ipv6_v6only && 16047 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16048 if (tcp->tcp_ipversion == IPV6_VERSION) { 16049 tce.tcpConnRemAddress = INADDR_ANY; 16050 tce.tcpConnLocalAddress = INADDR_ANY; 16051 } else { 16052 tce.tcpConnRemAddress = 16053 tcp->tcp_remote; 16054 tce.tcpConnLocalAddress = 16055 tcp->tcp_ip_src; 16056 } 16057 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16058 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16059 /* Don't want just anybody seeing these... */ 16060 if (ispriv) { 16061 tce.tcpConnEntryInfo.ce_snxt = 16062 tcp->tcp_snxt; 16063 tce.tcpConnEntryInfo.ce_suna = 16064 tcp->tcp_suna; 16065 tce.tcpConnEntryInfo.ce_rnxt = 16066 tcp->tcp_rnxt; 16067 tce.tcpConnEntryInfo.ce_rack = 16068 tcp->tcp_rack; 16069 } else { 16070 /* 16071 * Netstat, unfortunately, uses this to 16072 * get send/receive queue sizes. How 16073 * to fix? 16074 * Why not compute the difference only? 16075 */ 16076 tce.tcpConnEntryInfo.ce_snxt = 16077 tcp->tcp_snxt - tcp->tcp_suna; 16078 tce.tcpConnEntryInfo.ce_suna = 0; 16079 tce.tcpConnEntryInfo.ce_rnxt = 16080 tcp->tcp_rnxt - tcp->tcp_rack; 16081 tce.tcpConnEntryInfo.ce_rack = 0; 16082 } 16083 16084 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16085 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16086 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16087 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16088 tce.tcpConnEntryInfo.ce_state = 16089 tcp->tcp_state; 16090 16091 tce.tcpConnCreationProcess = 16092 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16093 tcp->tcp_cpid; 16094 tce.tcpConnCreationTime = tcp->tcp_open_time; 16095 16096 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16097 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16098 16099 mlp.tme_connidx = v4_conn_idx++; 16100 if (needattr) 16101 (void) snmp_append_data2( 16102 mp_attr_ctl->b_cont, 16103 &mp_attr_tail, (char *)&mlp, 16104 sizeof (mlp)); 16105 } 16106 } 16107 } 16108 16109 /* fixed length structure for IPv4 and IPv6 counters */ 16110 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16111 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 16112 sizeof (mib2_tcp6ConnEntry_t)); 16113 /* synchronize 32- and 64-bit counters */ 16114 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 16115 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 16116 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16117 optp->level = MIB2_TCP; 16118 optp->name = 0; 16119 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 16120 sizeof (tcps->tcps_mib)); 16121 optp->len = msgdsize(mpdata); 16122 qreply(q, mpctl); 16123 16124 /* table of connections... */ 16125 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16126 sizeof (struct T_optmgmt_ack)]; 16127 optp->level = MIB2_TCP; 16128 optp->name = MIB2_TCP_CONN; 16129 optp->len = msgdsize(mp_conn_ctl->b_cont); 16130 qreply(q, mp_conn_ctl); 16131 16132 /* table of MLP attributes... */ 16133 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16134 sizeof (struct T_optmgmt_ack)]; 16135 optp->level = MIB2_TCP; 16136 optp->name = EXPER_XPORT_MLP; 16137 optp->len = msgdsize(mp_attr_ctl->b_cont); 16138 if (optp->len == 0) 16139 freemsg(mp_attr_ctl); 16140 else 16141 qreply(q, mp_attr_ctl); 16142 16143 /* table of IPv6 connections... */ 16144 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16145 sizeof (struct T_optmgmt_ack)]; 16146 optp->level = MIB2_TCP6; 16147 optp->name = MIB2_TCP6_CONN; 16148 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16149 qreply(q, mp6_conn_ctl); 16150 16151 /* table of IPv6 MLP attributes... */ 16152 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16153 sizeof (struct T_optmgmt_ack)]; 16154 optp->level = MIB2_TCP6; 16155 optp->name = EXPER_XPORT_MLP; 16156 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16157 if (optp->len == 0) 16158 freemsg(mp6_attr_ctl); 16159 else 16160 qreply(q, mp6_attr_ctl); 16161 return (mp2ctl); 16162 } 16163 16164 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16165 /* ARGSUSED */ 16166 int 16167 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16168 { 16169 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16170 16171 switch (level) { 16172 case MIB2_TCP: 16173 switch (name) { 16174 case 13: 16175 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16176 return (0); 16177 /* TODO: delete entry defined by tce */ 16178 return (1); 16179 default: 16180 return (0); 16181 } 16182 default: 16183 return (1); 16184 } 16185 } 16186 16187 /* Translate TCP state to MIB2 TCP state. */ 16188 static int 16189 tcp_snmp_state(tcp_t *tcp) 16190 { 16191 if (tcp == NULL) 16192 return (0); 16193 16194 switch (tcp->tcp_state) { 16195 case TCPS_CLOSED: 16196 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16197 case TCPS_BOUND: 16198 return (MIB2_TCP_closed); 16199 case TCPS_LISTEN: 16200 return (MIB2_TCP_listen); 16201 case TCPS_SYN_SENT: 16202 return (MIB2_TCP_synSent); 16203 case TCPS_SYN_RCVD: 16204 return (MIB2_TCP_synReceived); 16205 case TCPS_ESTABLISHED: 16206 return (MIB2_TCP_established); 16207 case TCPS_CLOSE_WAIT: 16208 return (MIB2_TCP_closeWait); 16209 case TCPS_FIN_WAIT_1: 16210 return (MIB2_TCP_finWait1); 16211 case TCPS_CLOSING: 16212 return (MIB2_TCP_closing); 16213 case TCPS_LAST_ACK: 16214 return (MIB2_TCP_lastAck); 16215 case TCPS_FIN_WAIT_2: 16216 return (MIB2_TCP_finWait2); 16217 case TCPS_TIME_WAIT: 16218 return (MIB2_TCP_timeWait); 16219 default: 16220 return (0); 16221 } 16222 } 16223 16224 /* 16225 * tcp_timer is the timer service routine. It handles the retransmission, 16226 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16227 * from the state of the tcp instance what kind of action needs to be done 16228 * at the time it is called. 16229 */ 16230 static void 16231 tcp_timer(void *arg) 16232 { 16233 mblk_t *mp; 16234 clock_t first_threshold; 16235 clock_t second_threshold; 16236 clock_t ms; 16237 uint32_t mss; 16238 conn_t *connp = (conn_t *)arg; 16239 tcp_t *tcp = connp->conn_tcp; 16240 tcp_stack_t *tcps = tcp->tcp_tcps; 16241 16242 tcp->tcp_timer_tid = 0; 16243 16244 if (tcp->tcp_fused) 16245 return; 16246 16247 first_threshold = tcp->tcp_first_timer_threshold; 16248 second_threshold = tcp->tcp_second_timer_threshold; 16249 switch (tcp->tcp_state) { 16250 case TCPS_IDLE: 16251 case TCPS_BOUND: 16252 case TCPS_LISTEN: 16253 return; 16254 case TCPS_SYN_RCVD: { 16255 tcp_t *listener = tcp->tcp_listener; 16256 16257 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16258 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16259 /* it's our first timeout */ 16260 tcp->tcp_syn_rcvd_timeout = 1; 16261 mutex_enter(&listener->tcp_eager_lock); 16262 listener->tcp_syn_rcvd_timeout++; 16263 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 16264 /* 16265 * Make this eager available for drop if we 16266 * need to drop one to accomodate a new 16267 * incoming SYN request. 16268 */ 16269 MAKE_DROPPABLE(listener, tcp); 16270 } 16271 if (!listener->tcp_syn_defense && 16272 (listener->tcp_syn_rcvd_timeout > 16273 (tcps->tcps_conn_req_max_q0 >> 2)) && 16274 (tcps->tcps_conn_req_max_q0 > 200)) { 16275 /* We may be under attack. Put on a defense. */ 16276 listener->tcp_syn_defense = B_TRUE; 16277 cmn_err(CE_WARN, "High TCP connect timeout " 16278 "rate! System (port %d) may be under a " 16279 "SYN flood attack!", 16280 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16281 16282 listener->tcp_ip_addr_cache = kmem_zalloc( 16283 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16284 KM_NOSLEEP); 16285 } 16286 mutex_exit(&listener->tcp_eager_lock); 16287 } else if (listener != NULL) { 16288 mutex_enter(&listener->tcp_eager_lock); 16289 tcp->tcp_syn_rcvd_timeout++; 16290 if (tcp->tcp_syn_rcvd_timeout > 1 && 16291 !tcp->tcp_closemp_used) { 16292 /* 16293 * This is our second timeout. Put the tcp in 16294 * the list of droppable eagers to allow it to 16295 * be dropped, if needed. We don't check 16296 * whether tcp_dontdrop is set or not to 16297 * protect ourselve from a SYN attack where a 16298 * remote host can spoof itself as one of the 16299 * good IP source and continue to hold 16300 * resources too long. 16301 */ 16302 MAKE_DROPPABLE(listener, tcp); 16303 } 16304 mutex_exit(&listener->tcp_eager_lock); 16305 } 16306 } 16307 /* FALLTHRU */ 16308 case TCPS_SYN_SENT: 16309 first_threshold = tcp->tcp_first_ctimer_threshold; 16310 second_threshold = tcp->tcp_second_ctimer_threshold; 16311 break; 16312 case TCPS_ESTABLISHED: 16313 case TCPS_FIN_WAIT_1: 16314 case TCPS_CLOSING: 16315 case TCPS_CLOSE_WAIT: 16316 case TCPS_LAST_ACK: 16317 /* If we have data to rexmit */ 16318 if (tcp->tcp_suna != tcp->tcp_snxt) { 16319 clock_t time_to_wait; 16320 16321 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 16322 if (!tcp->tcp_xmit_head) 16323 break; 16324 time_to_wait = lbolt - 16325 (clock_t)tcp->tcp_xmit_head->b_prev; 16326 time_to_wait = tcp->tcp_rto - 16327 TICK_TO_MSEC(time_to_wait); 16328 /* 16329 * If the timer fires too early, 1 clock tick earlier, 16330 * restart the timer. 16331 */ 16332 if (time_to_wait > msec_per_tick) { 16333 TCP_STAT(tcps, tcp_timer_fire_early); 16334 TCP_TIMER_RESTART(tcp, time_to_wait); 16335 return; 16336 } 16337 /* 16338 * When we probe zero windows, we force the swnd open. 16339 * If our peer acks with a closed window swnd will be 16340 * set to zero by tcp_rput(). As long as we are 16341 * receiving acks tcp_rput will 16342 * reset 'tcp_ms_we_have_waited' so as not to trip the 16343 * first and second interval actions. NOTE: the timer 16344 * interval is allowed to continue its exponential 16345 * backoff. 16346 */ 16347 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 16348 if (tcp->tcp_debug) { 16349 (void) strlog(TCP_MOD_ID, 0, 1, 16350 SL_TRACE, "tcp_timer: zero win"); 16351 } 16352 } else { 16353 /* 16354 * After retransmission, we need to do 16355 * slow start. Set the ssthresh to one 16356 * half of current effective window and 16357 * cwnd to one MSS. Also reset 16358 * tcp_cwnd_cnt. 16359 * 16360 * Note that if tcp_ssthresh is reduced because 16361 * of ECN, do not reduce it again unless it is 16362 * already one window of data away (tcp_cwr 16363 * should then be cleared) or this is a 16364 * timeout for a retransmitted segment. 16365 */ 16366 uint32_t npkt; 16367 16368 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 16369 npkt = ((tcp->tcp_timer_backoff ? 16370 tcp->tcp_cwnd_ssthresh : 16371 tcp->tcp_snxt - 16372 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 16373 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 16374 tcp->tcp_mss; 16375 } 16376 tcp->tcp_cwnd = tcp->tcp_mss; 16377 tcp->tcp_cwnd_cnt = 0; 16378 if (tcp->tcp_ecn_ok) { 16379 tcp->tcp_cwr = B_TRUE; 16380 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 16381 tcp->tcp_ecn_cwr_sent = B_FALSE; 16382 } 16383 } 16384 break; 16385 } 16386 /* 16387 * We have something to send yet we cannot send. The 16388 * reason can be: 16389 * 16390 * 1. Zero send window: we need to do zero window probe. 16391 * 2. Zero cwnd: because of ECN, we need to "clock out 16392 * segments. 16393 * 3. SWS avoidance: receiver may have shrunk window, 16394 * reset our knowledge. 16395 * 16396 * Note that condition 2 can happen with either 1 or 16397 * 3. But 1 and 3 are exclusive. 16398 */ 16399 if (tcp->tcp_unsent != 0) { 16400 if (tcp->tcp_cwnd == 0) { 16401 /* 16402 * Set tcp_cwnd to 1 MSS so that a 16403 * new segment can be sent out. We 16404 * are "clocking out" new data when 16405 * the network is really congested. 16406 */ 16407 ASSERT(tcp->tcp_ecn_ok); 16408 tcp->tcp_cwnd = tcp->tcp_mss; 16409 } 16410 if (tcp->tcp_swnd == 0) { 16411 /* Extend window for zero window probe */ 16412 tcp->tcp_swnd++; 16413 tcp->tcp_zero_win_probe = B_TRUE; 16414 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 16415 } else { 16416 /* 16417 * Handle timeout from sender SWS avoidance. 16418 * Reset our knowledge of the max send window 16419 * since the receiver might have reduced its 16420 * receive buffer. Avoid setting tcp_max_swnd 16421 * to one since that will essentially disable 16422 * the SWS checks. 16423 * 16424 * Note that since we don't have a SWS 16425 * state variable, if the timeout is set 16426 * for ECN but not for SWS, this 16427 * code will also be executed. This is 16428 * fine as tcp_max_swnd is updated 16429 * constantly and it will not affect 16430 * anything. 16431 */ 16432 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 16433 } 16434 tcp_wput_data(tcp, NULL, B_FALSE); 16435 return; 16436 } 16437 /* Is there a FIN that needs to be to re retransmitted? */ 16438 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16439 !tcp->tcp_fin_acked) 16440 break; 16441 /* Nothing to do, return without restarting timer. */ 16442 TCP_STAT(tcps, tcp_timer_fire_miss); 16443 return; 16444 case TCPS_FIN_WAIT_2: 16445 /* 16446 * User closed the TCP endpoint and peer ACK'ed our FIN. 16447 * We waited some time for for peer's FIN, but it hasn't 16448 * arrived. We flush the connection now to avoid 16449 * case where the peer has rebooted. 16450 */ 16451 if (TCP_IS_DETACHED(tcp)) { 16452 (void) tcp_clean_death(tcp, 0, 23); 16453 } else { 16454 TCP_TIMER_RESTART(tcp, 16455 tcps->tcps_fin_wait_2_flush_interval); 16456 } 16457 return; 16458 case TCPS_TIME_WAIT: 16459 (void) tcp_clean_death(tcp, 0, 24); 16460 return; 16461 default: 16462 if (tcp->tcp_debug) { 16463 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 16464 "tcp_timer: strange state (%d) %s", 16465 tcp->tcp_state, tcp_display(tcp, NULL, 16466 DISP_PORT_ONLY)); 16467 } 16468 return; 16469 } 16470 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 16471 /* 16472 * For zero window probe, we need to send indefinitely, 16473 * unless we have not heard from the other side for some 16474 * time... 16475 */ 16476 if ((tcp->tcp_zero_win_probe == 0) || 16477 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 16478 second_threshold)) { 16479 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 16480 /* 16481 * If TCP is in SYN_RCVD state, send back a 16482 * RST|ACK as BSD does. Note that tcp_zero_win_probe 16483 * should be zero in TCPS_SYN_RCVD state. 16484 */ 16485 if (tcp->tcp_state == TCPS_SYN_RCVD) { 16486 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 16487 "in SYN_RCVD", 16488 tcp, tcp->tcp_snxt, 16489 tcp->tcp_rnxt, TH_RST | TH_ACK); 16490 } 16491 (void) tcp_clean_death(tcp, 16492 tcp->tcp_client_errno ? 16493 tcp->tcp_client_errno : ETIMEDOUT, 25); 16494 return; 16495 } else { 16496 /* 16497 * Set tcp_ms_we_have_waited to second_threshold 16498 * so that in next timeout, we will do the above 16499 * check (lbolt - tcp_last_recv_time). This is 16500 * also to avoid overflow. 16501 * 16502 * We don't need to decrement tcp_timer_backoff 16503 * to avoid overflow because it will be decremented 16504 * later if new timeout value is greater than 16505 * tcp_rexmit_interval_max. In the case when 16506 * tcp_rexmit_interval_max is greater than 16507 * second_threshold, it means that we will wait 16508 * longer than second_threshold to send the next 16509 * window probe. 16510 */ 16511 tcp->tcp_ms_we_have_waited = second_threshold; 16512 } 16513 } else if (ms > first_threshold) { 16514 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 16515 tcp->tcp_xmit_head != NULL) { 16516 tcp->tcp_xmit_head = 16517 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 16518 } 16519 /* 16520 * We have been retransmitting for too long... The RTT 16521 * we calculated is probably incorrect. Reinitialize it. 16522 * Need to compensate for 0 tcp_rtt_sa. Reset 16523 * tcp_rtt_update so that we won't accidentally cache a 16524 * bad value. But only do this if this is not a zero 16525 * window probe. 16526 */ 16527 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 16528 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 16529 (tcp->tcp_rtt_sa >> 5); 16530 tcp->tcp_rtt_sa = 0; 16531 tcp_ip_notify(tcp); 16532 tcp->tcp_rtt_update = 0; 16533 } 16534 } 16535 tcp->tcp_timer_backoff++; 16536 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 16537 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 16538 tcps->tcps_rexmit_interval_min) { 16539 /* 16540 * This means the original RTO is tcp_rexmit_interval_min. 16541 * So we will use tcp_rexmit_interval_min as the RTO value 16542 * and do the backoff. 16543 */ 16544 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 16545 } else { 16546 ms <<= tcp->tcp_timer_backoff; 16547 } 16548 if (ms > tcps->tcps_rexmit_interval_max) { 16549 ms = tcps->tcps_rexmit_interval_max; 16550 /* 16551 * ms is at max, decrement tcp_timer_backoff to avoid 16552 * overflow. 16553 */ 16554 tcp->tcp_timer_backoff--; 16555 } 16556 tcp->tcp_ms_we_have_waited += ms; 16557 if (tcp->tcp_zero_win_probe == 0) { 16558 tcp->tcp_rto = ms; 16559 } 16560 TCP_TIMER_RESTART(tcp, ms); 16561 /* 16562 * This is after a timeout and tcp_rto is backed off. Set 16563 * tcp_set_timer to 1 so that next time RTO is updated, we will 16564 * restart the timer with a correct value. 16565 */ 16566 tcp->tcp_set_timer = 1; 16567 mss = tcp->tcp_snxt - tcp->tcp_suna; 16568 if (mss > tcp->tcp_mss) 16569 mss = tcp->tcp_mss; 16570 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 16571 mss = tcp->tcp_swnd; 16572 16573 if ((mp = tcp->tcp_xmit_head) != NULL) 16574 mp->b_prev = (mblk_t *)lbolt; 16575 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 16576 B_TRUE); 16577 16578 /* 16579 * When slow start after retransmission begins, start with 16580 * this seq no. tcp_rexmit_max marks the end of special slow 16581 * start phase. tcp_snd_burst controls how many segments 16582 * can be sent because of an ack. 16583 */ 16584 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 16585 tcp->tcp_snd_burst = TCP_CWND_SS; 16586 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16587 (tcp->tcp_unsent == 0)) { 16588 tcp->tcp_rexmit_max = tcp->tcp_fss; 16589 } else { 16590 tcp->tcp_rexmit_max = tcp->tcp_snxt; 16591 } 16592 tcp->tcp_rexmit = B_TRUE; 16593 tcp->tcp_dupack_cnt = 0; 16594 16595 /* 16596 * Remove all rexmit SACK blk to start from fresh. 16597 */ 16598 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) 16599 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 16600 if (mp == NULL) { 16601 return; 16602 } 16603 /* 16604 * Attach credentials to retransmitted initial SYNs. 16605 * In theory we should use the credentials from the connect() 16606 * call to ensure that getpeerucred() on the peer will be correct. 16607 * But we assume that SYN's are not dropped for loopback connections. 16608 */ 16609 if (tcp->tcp_state == TCPS_SYN_SENT) { 16610 mblk_setcred(mp, CONN_CRED(tcp->tcp_connp), tcp->tcp_cpid); 16611 } 16612 16613 tcp->tcp_csuna = tcp->tcp_snxt; 16614 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 16615 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 16616 tcp_send_data(tcp, tcp->tcp_wq, mp); 16617 16618 } 16619 16620 static int 16621 tcp_do_unbind(conn_t *connp) 16622 { 16623 tcp_t *tcp = connp->conn_tcp; 16624 int error = 0; 16625 16626 switch (tcp->tcp_state) { 16627 case TCPS_BOUND: 16628 case TCPS_LISTEN: 16629 break; 16630 default: 16631 return (-TOUTSTATE); 16632 } 16633 16634 /* 16635 * Need to clean up all the eagers since after the unbind, segments 16636 * will no longer be delivered to this listener stream. 16637 */ 16638 mutex_enter(&tcp->tcp_eager_lock); 16639 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 16640 tcp_eager_cleanup(tcp, 0); 16641 } 16642 mutex_exit(&tcp->tcp_eager_lock); 16643 16644 if (tcp->tcp_ipversion == IPV4_VERSION) { 16645 tcp->tcp_ipha->ipha_src = 0; 16646 } else { 16647 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 16648 } 16649 V6_SET_ZERO(tcp->tcp_ip_src_v6); 16650 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 16651 tcp_bind_hash_remove(tcp); 16652 tcp->tcp_state = TCPS_IDLE; 16653 tcp->tcp_mdt = B_FALSE; 16654 16655 connp = tcp->tcp_connp; 16656 connp->conn_mdt_ok = B_FALSE; 16657 ipcl_hash_remove(connp); 16658 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 16659 16660 return (error); 16661 } 16662 16663 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 16664 static void 16665 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp) 16666 { 16667 int error = tcp_do_unbind(tcp->tcp_connp); 16668 16669 if (error > 0) { 16670 tcp_err_ack(tcp, mp, TSYSERR, error); 16671 } else if (error < 0) { 16672 tcp_err_ack(tcp, mp, -error, 0); 16673 } else { 16674 /* Send M_FLUSH according to TPI */ 16675 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 16676 16677 mp = mi_tpi_ok_ack_alloc(mp); 16678 putnext(tcp->tcp_rq, mp); 16679 } 16680 } 16681 16682 /* 16683 * Don't let port fall into the privileged range. 16684 * Since the extra privileged ports can be arbitrary we also 16685 * ensure that we exclude those from consideration. 16686 * tcp_g_epriv_ports is not sorted thus we loop over it until 16687 * there are no changes. 16688 * 16689 * Note: No locks are held when inspecting tcp_g_*epriv_ports 16690 * but instead the code relies on: 16691 * - the fact that the address of the array and its size never changes 16692 * - the atomic assignment of the elements of the array 16693 * 16694 * Returns 0 if there are no more ports available. 16695 * 16696 * TS note: skip multilevel ports. 16697 */ 16698 static in_port_t 16699 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 16700 { 16701 int i; 16702 boolean_t restart = B_FALSE; 16703 tcp_stack_t *tcps = tcp->tcp_tcps; 16704 16705 if (random && tcp_random_anon_port != 0) { 16706 (void) random_get_pseudo_bytes((uint8_t *)&port, 16707 sizeof (in_port_t)); 16708 /* 16709 * Unless changed by a sys admin, the smallest anon port 16710 * is 32768 and the largest anon port is 65535. It is 16711 * very likely (50%) for the random port to be smaller 16712 * than the smallest anon port. When that happens, 16713 * add port % (anon port range) to the smallest anon 16714 * port to get the random port. It should fall into the 16715 * valid anon port range. 16716 */ 16717 if (port < tcps->tcps_smallest_anon_port) { 16718 port = tcps->tcps_smallest_anon_port + 16719 port % (tcps->tcps_largest_anon_port - 16720 tcps->tcps_smallest_anon_port); 16721 } 16722 } 16723 16724 retry: 16725 if (port < tcps->tcps_smallest_anon_port) 16726 port = (in_port_t)tcps->tcps_smallest_anon_port; 16727 16728 if (port > tcps->tcps_largest_anon_port) { 16729 if (restart) 16730 return (0); 16731 restart = B_TRUE; 16732 port = (in_port_t)tcps->tcps_smallest_anon_port; 16733 } 16734 16735 if (port < tcps->tcps_smallest_nonpriv_port) 16736 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 16737 16738 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 16739 if (port == tcps->tcps_g_epriv_ports[i]) { 16740 port++; 16741 /* 16742 * Make sure whether the port is in the 16743 * valid range. 16744 */ 16745 goto retry; 16746 } 16747 } 16748 if (is_system_labeled() && 16749 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 16750 IPPROTO_TCP, B_TRUE)) != 0) { 16751 port = i; 16752 goto retry; 16753 } 16754 return (port); 16755 } 16756 16757 /* 16758 * Return the next anonymous port in the privileged port range for 16759 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 16760 * downwards. This is the same behavior as documented in the userland 16761 * library call rresvport(3N). 16762 * 16763 * TS note: skip multilevel ports. 16764 */ 16765 static in_port_t 16766 tcp_get_next_priv_port(const tcp_t *tcp) 16767 { 16768 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 16769 in_port_t nextport; 16770 boolean_t restart = B_FALSE; 16771 tcp_stack_t *tcps = tcp->tcp_tcps; 16772 retry: 16773 if (next_priv_port < tcps->tcps_min_anonpriv_port || 16774 next_priv_port >= IPPORT_RESERVED) { 16775 next_priv_port = IPPORT_RESERVED - 1; 16776 if (restart) 16777 return (0); 16778 restart = B_TRUE; 16779 } 16780 if (is_system_labeled() && 16781 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 16782 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 16783 next_priv_port = nextport; 16784 goto retry; 16785 } 16786 return (next_priv_port--); 16787 } 16788 16789 /* The write side r/w procedure. */ 16790 16791 #if CCS_STATS 16792 struct { 16793 struct { 16794 int64_t count, bytes; 16795 } tot, hit; 16796 } wrw_stats; 16797 #endif 16798 16799 /* 16800 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 16801 * messages. 16802 */ 16803 /* ARGSUSED */ 16804 static void 16805 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 16806 { 16807 conn_t *connp = (conn_t *)arg; 16808 tcp_t *tcp = connp->conn_tcp; 16809 queue_t *q = tcp->tcp_wq; 16810 16811 ASSERT(DB_TYPE(mp) != M_IOCTL); 16812 /* 16813 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 16814 * Once the close starts, streamhead and sockfs will not let any data 16815 * packets come down (close ensures that there are no threads using the 16816 * queue and no new threads will come down) but since qprocsoff() 16817 * hasn't happened yet, a M_FLUSH or some non data message might 16818 * get reflected back (in response to our own FLUSHRW) and get 16819 * processed after tcp_close() is done. The conn would still be valid 16820 * because a ref would have added but we need to check the state 16821 * before actually processing the packet. 16822 */ 16823 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 16824 freemsg(mp); 16825 return; 16826 } 16827 16828 switch (DB_TYPE(mp)) { 16829 case M_IOCDATA: 16830 tcp_wput_iocdata(tcp, mp); 16831 break; 16832 case M_FLUSH: 16833 tcp_wput_flush(tcp, mp); 16834 break; 16835 default: 16836 CALL_IP_WPUT(connp, q, mp); 16837 break; 16838 } 16839 } 16840 16841 /* 16842 * The TCP fast path write put procedure. 16843 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 16844 */ 16845 /* ARGSUSED */ 16846 void 16847 tcp_output(void *arg, mblk_t *mp, void *arg2) 16848 { 16849 int len; 16850 int hdrlen; 16851 int plen; 16852 mblk_t *mp1; 16853 uchar_t *rptr; 16854 uint32_t snxt; 16855 tcph_t *tcph; 16856 struct datab *db; 16857 uint32_t suna; 16858 uint32_t mss; 16859 ipaddr_t *dst; 16860 ipaddr_t *src; 16861 uint32_t sum; 16862 int usable; 16863 conn_t *connp = (conn_t *)arg; 16864 tcp_t *tcp = connp->conn_tcp; 16865 uint32_t msize; 16866 tcp_stack_t *tcps = tcp->tcp_tcps; 16867 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 16868 16869 /* 16870 * Try and ASSERT the minimum possible references on the 16871 * conn early enough. Since we are executing on write side, 16872 * the connection is obviously not detached and that means 16873 * there is a ref each for TCP and IP. Since we are behind 16874 * the squeue, the minimum references needed are 3. If the 16875 * conn is in classifier hash list, there should be an 16876 * extra ref for that (we check both the possibilities). 16877 */ 16878 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16879 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16880 16881 ASSERT(DB_TYPE(mp) == M_DATA); 16882 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 16883 16884 mutex_enter(&tcp->tcp_non_sq_lock); 16885 tcp->tcp_squeue_bytes -= msize; 16886 mutex_exit(&tcp->tcp_non_sq_lock); 16887 16888 /* Check to see if this connection wants to be re-fused. */ 16889 if (tcp->tcp_refuse && !ipst->ips_ipobs_enabled) { 16890 if (tcp->tcp_ipversion == IPV4_VERSION) { 16891 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha, 16892 &tcp->tcp_saved_tcph); 16893 } else { 16894 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h, 16895 &tcp->tcp_saved_tcph); 16896 } 16897 } 16898 /* Bypass tcp protocol for fused tcp loopback */ 16899 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 16900 return; 16901 16902 mss = tcp->tcp_mss; 16903 if (tcp->tcp_xmit_zc_clean) 16904 mp = tcp_zcopy_backoff(tcp, mp, 0); 16905 16906 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 16907 len = (int)(mp->b_wptr - mp->b_rptr); 16908 16909 /* 16910 * Criteria for fast path: 16911 * 16912 * 1. no unsent data 16913 * 2. single mblk in request 16914 * 3. connection established 16915 * 4. data in mblk 16916 * 5. len <= mss 16917 * 6. no tcp_valid bits 16918 */ 16919 if ((tcp->tcp_unsent != 0) || 16920 (tcp->tcp_cork) || 16921 (mp->b_cont != NULL) || 16922 (tcp->tcp_state != TCPS_ESTABLISHED) || 16923 (len == 0) || 16924 (len > mss) || 16925 (tcp->tcp_valid_bits != 0)) { 16926 tcp_wput_data(tcp, mp, B_FALSE); 16927 return; 16928 } 16929 16930 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 16931 ASSERT(tcp->tcp_fin_sent == 0); 16932 16933 /* queue new packet onto retransmission queue */ 16934 if (tcp->tcp_xmit_head == NULL) { 16935 tcp->tcp_xmit_head = mp; 16936 } else { 16937 tcp->tcp_xmit_last->b_cont = mp; 16938 } 16939 tcp->tcp_xmit_last = mp; 16940 tcp->tcp_xmit_tail = mp; 16941 16942 /* find out how much we can send */ 16943 /* BEGIN CSTYLED */ 16944 /* 16945 * un-acked usable 16946 * |--------------|-----------------| 16947 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 16948 */ 16949 /* END CSTYLED */ 16950 16951 /* start sending from tcp_snxt */ 16952 snxt = tcp->tcp_snxt; 16953 16954 /* 16955 * Check to see if this connection has been idled for some 16956 * time and no ACK is expected. If it is, we need to slow 16957 * start again to get back the connection's "self-clock" as 16958 * described in VJ's paper. 16959 * 16960 * Refer to the comment in tcp_mss_set() for the calculation 16961 * of tcp_cwnd after idle. 16962 */ 16963 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 16964 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 16965 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 16966 } 16967 16968 usable = tcp->tcp_swnd; /* tcp window size */ 16969 if (usable > tcp->tcp_cwnd) 16970 usable = tcp->tcp_cwnd; /* congestion window smaller */ 16971 usable -= snxt; /* subtract stuff already sent */ 16972 suna = tcp->tcp_suna; 16973 usable += suna; 16974 /* usable can be < 0 if the congestion window is smaller */ 16975 if (len > usable) { 16976 /* Can't send complete M_DATA in one shot */ 16977 goto slow; 16978 } 16979 16980 mutex_enter(&tcp->tcp_non_sq_lock); 16981 if (tcp->tcp_flow_stopped && 16982 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 16983 tcp_clrqfull(tcp); 16984 } 16985 mutex_exit(&tcp->tcp_non_sq_lock); 16986 16987 /* 16988 * determine if anything to send (Nagle). 16989 * 16990 * 1. len < tcp_mss (i.e. small) 16991 * 2. unacknowledged data present 16992 * 3. len < nagle limit 16993 * 4. last packet sent < nagle limit (previous packet sent) 16994 */ 16995 if ((len < mss) && (snxt != suna) && 16996 (len < (int)tcp->tcp_naglim) && 16997 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 16998 /* 16999 * This was the first unsent packet and normally 17000 * mss < xmit_hiwater so there is no need to worry 17001 * about flow control. The next packet will go 17002 * through the flow control check in tcp_wput_data(). 17003 */ 17004 /* leftover work from above */ 17005 tcp->tcp_unsent = len; 17006 tcp->tcp_xmit_tail_unsent = len; 17007 17008 return; 17009 } 17010 17011 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17012 17013 if (snxt == suna) { 17014 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17015 } 17016 17017 /* we have always sent something */ 17018 tcp->tcp_rack_cnt = 0; 17019 17020 tcp->tcp_snxt = snxt + len; 17021 tcp->tcp_rack = tcp->tcp_rnxt; 17022 17023 if ((mp1 = dupb(mp)) == 0) 17024 goto no_memory; 17025 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17026 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17027 17028 /* adjust tcp header information */ 17029 tcph = tcp->tcp_tcph; 17030 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17031 17032 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17033 sum = (sum >> 16) + (sum & 0xFFFF); 17034 U16_TO_ABE16(sum, tcph->th_sum); 17035 17036 U32_TO_ABE32(snxt, tcph->th_seq); 17037 17038 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 17039 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 17040 BUMP_LOCAL(tcp->tcp_obsegs); 17041 17042 /* Update the latest receive window size in TCP header. */ 17043 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17044 tcph->th_win); 17045 17046 tcp->tcp_last_sent_len = (ushort_t)len; 17047 17048 plen = len + tcp->tcp_hdr_len; 17049 17050 if (tcp->tcp_ipversion == IPV4_VERSION) { 17051 tcp->tcp_ipha->ipha_length = htons(plen); 17052 } else { 17053 tcp->tcp_ip6h->ip6_plen = htons(plen - 17054 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17055 } 17056 17057 /* see if we need to allocate a mblk for the headers */ 17058 hdrlen = tcp->tcp_hdr_len; 17059 rptr = mp1->b_rptr - hdrlen; 17060 db = mp1->b_datap; 17061 if ((db->db_ref != 2) || rptr < db->db_base || 17062 (!OK_32PTR(rptr))) { 17063 /* NOTE: we assume allocb returns an OK_32PTR */ 17064 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17065 tcps->tcps_wroff_xtra, BPRI_MED); 17066 if (!mp) { 17067 freemsg(mp1); 17068 goto no_memory; 17069 } 17070 mp->b_cont = mp1; 17071 mp1 = mp; 17072 /* Leave room for Link Level header */ 17073 /* hdrlen = tcp->tcp_hdr_len; */ 17074 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 17075 mp1->b_wptr = &rptr[hdrlen]; 17076 } 17077 mp1->b_rptr = rptr; 17078 17079 /* Fill in the timestamp option. */ 17080 if (tcp->tcp_snd_ts_ok) { 17081 U32_TO_BE32((uint32_t)lbolt, 17082 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17083 U32_TO_BE32(tcp->tcp_ts_recent, 17084 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17085 } else { 17086 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17087 } 17088 17089 /* copy header into outgoing packet */ 17090 dst = (ipaddr_t *)rptr; 17091 src = (ipaddr_t *)tcp->tcp_iphc; 17092 dst[0] = src[0]; 17093 dst[1] = src[1]; 17094 dst[2] = src[2]; 17095 dst[3] = src[3]; 17096 dst[4] = src[4]; 17097 dst[5] = src[5]; 17098 dst[6] = src[6]; 17099 dst[7] = src[7]; 17100 dst[8] = src[8]; 17101 dst[9] = src[9]; 17102 if (hdrlen -= 40) { 17103 hdrlen >>= 2; 17104 dst += 10; 17105 src += 10; 17106 do { 17107 *dst++ = *src++; 17108 } while (--hdrlen); 17109 } 17110 17111 /* 17112 * Set the ECN info in the TCP header. Note that this 17113 * is not the template header. 17114 */ 17115 if (tcp->tcp_ecn_ok) { 17116 SET_ECT(tcp, rptr); 17117 17118 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17119 if (tcp->tcp_ecn_echo_on) 17120 tcph->th_flags[0] |= TH_ECE; 17121 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17122 tcph->th_flags[0] |= TH_CWR; 17123 tcp->tcp_ecn_cwr_sent = B_TRUE; 17124 } 17125 } 17126 17127 if (tcp->tcp_ip_forward_progress) { 17128 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17129 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17130 tcp->tcp_ip_forward_progress = B_FALSE; 17131 } 17132 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17133 return; 17134 17135 /* 17136 * If we ran out of memory, we pretend to have sent the packet 17137 * and that it was lost on the wire. 17138 */ 17139 no_memory: 17140 return; 17141 17142 slow: 17143 /* leftover work from above */ 17144 tcp->tcp_unsent = len; 17145 tcp->tcp_xmit_tail_unsent = len; 17146 tcp_wput_data(tcp, NULL, B_FALSE); 17147 } 17148 17149 /* ARGSUSED */ 17150 void 17151 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17152 { 17153 conn_t *connp = (conn_t *)arg; 17154 tcp_t *tcp = connp->conn_tcp; 17155 queue_t *q = tcp->tcp_rq; 17156 struct tcp_options *tcpopt; 17157 tcp_stack_t *tcps = tcp->tcp_tcps; 17158 17159 /* socket options */ 17160 uint_t sopp_flags; 17161 ssize_t sopp_rxhiwat; 17162 ssize_t sopp_maxblk; 17163 ushort_t sopp_wroff; 17164 ushort_t sopp_tail; 17165 ushort_t sopp_copyopt; 17166 17167 tcpopt = (struct tcp_options *)mp->b_rptr; 17168 17169 /* 17170 * Drop the eager's ref on the listener, that was placed when 17171 * this eager began life in tcp_conn_request. 17172 */ 17173 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17174 if (IPCL_IS_NONSTR(connp)) { 17175 /* Safe to free conn_ind message */ 17176 freemsg(tcp->tcp_conn.tcp_eager_conn_ind); 17177 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17178 } 17179 17180 tcp->tcp_detached = B_FALSE; 17181 17182 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17183 /* 17184 * Someone blewoff the eager before we could finish 17185 * the accept. 17186 * 17187 * The only reason eager exists it because we put in 17188 * a ref on it when conn ind went up. We need to send 17189 * a disconnect indication up while the last reference 17190 * on the eager will be dropped by the squeue when we 17191 * return. 17192 */ 17193 ASSERT(tcp->tcp_listener == NULL); 17194 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17195 if (IPCL_IS_NONSTR(connp)) { 17196 ASSERT(tcp->tcp_issocket); 17197 (*connp->conn_upcalls->su_disconnected)( 17198 connp->conn_upper_handle, tcp->tcp_connid, 17199 ECONNREFUSED); 17200 freemsg(mp); 17201 } else { 17202 struct T_discon_ind *tdi; 17203 17204 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17205 /* 17206 * Let us reuse the incoming mblk to avoid 17207 * memory allocation failure problems. We know 17208 * that the size of the incoming mblk i.e. 17209 * stroptions is greater than sizeof 17210 * T_discon_ind. So the reallocb below can't 17211 * fail. 17212 */ 17213 freemsg(mp->b_cont); 17214 mp->b_cont = NULL; 17215 ASSERT(DB_REF(mp) == 1); 17216 mp = reallocb(mp, sizeof (struct T_discon_ind), 17217 B_FALSE); 17218 ASSERT(mp != NULL); 17219 DB_TYPE(mp) = M_PROTO; 17220 ((union T_primitives *)mp->b_rptr)->type = 17221 T_DISCON_IND; 17222 tdi = (struct T_discon_ind *)mp->b_rptr; 17223 if (tcp->tcp_issocket) { 17224 tdi->DISCON_reason = ECONNREFUSED; 17225 tdi->SEQ_number = 0; 17226 } else { 17227 tdi->DISCON_reason = ENOPROTOOPT; 17228 tdi->SEQ_number = 17229 tcp->tcp_conn_req_seqnum; 17230 } 17231 mp->b_wptr = mp->b_rptr + 17232 sizeof (struct T_discon_ind); 17233 putnext(q, mp); 17234 return; 17235 } 17236 } 17237 if (tcp->tcp_hard_binding) { 17238 tcp->tcp_hard_binding = B_FALSE; 17239 tcp->tcp_hard_bound = B_TRUE; 17240 } 17241 return; 17242 } 17243 17244 if (tcpopt->to_flags & TCPOPT_BOUNDIF) { 17245 int boundif = tcpopt->to_boundif; 17246 uint_t len = sizeof (int); 17247 17248 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 17249 IPV6_BOUND_IF, len, (uchar_t *)&boundif, &len, 17250 (uchar_t *)&boundif, NULL, tcp->tcp_cred, NULL); 17251 } 17252 if (tcpopt->to_flags & TCPOPT_RECVPKTINFO) { 17253 uint_t on = 1; 17254 uint_t len = sizeof (uint_t); 17255 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 17256 IPV6_RECVPKTINFO, len, (uchar_t *)&on, &len, 17257 (uchar_t *)&on, NULL, tcp->tcp_cred, NULL); 17258 } 17259 17260 /* 17261 * Set max window size (tcp_recv_hiwater) of the acceptor. 17262 */ 17263 if (tcp->tcp_rcv_list == NULL) { 17264 /* 17265 * Recv queue is empty, tcp_rwnd should not have changed. 17266 * That means it should be equal to the listener's tcp_rwnd. 17267 */ 17268 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 17269 } else { 17270 #ifdef DEBUG 17271 mblk_t *tmp; 17272 mblk_t *mp1; 17273 uint_t cnt = 0; 17274 17275 mp1 = tcp->tcp_rcv_list; 17276 while ((tmp = mp1) != NULL) { 17277 mp1 = tmp->b_next; 17278 cnt += msgdsize(tmp); 17279 } 17280 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17281 #endif 17282 /* There is some data, add them back to get the max. */ 17283 tcp->tcp_recv_hiwater = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17284 } 17285 /* 17286 * This is the first time we run on the correct 17287 * queue after tcp_accept. So fix all the q parameters 17288 * here. 17289 */ 17290 sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 17291 sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17292 17293 sopp_rxhiwat = tcp->tcp_fused ? 17294 tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) : 17295 MAX(tcp->tcp_recv_hiwater, tcps->tcps_sth_rcv_hiwat); 17296 17297 /* 17298 * Determine what write offset value to use depending on SACK and 17299 * whether the endpoint is fused or not. 17300 */ 17301 if (tcp->tcp_fused) { 17302 ASSERT(tcp->tcp_loopback); 17303 ASSERT(tcp->tcp_loopback_peer != NULL); 17304 /* 17305 * For fused tcp loopback, set the stream head's write 17306 * offset value to zero since we won't be needing any room 17307 * for TCP/IP headers. This would also improve performance 17308 * since it would reduce the amount of work done by kmem. 17309 * Non-fused tcp loopback case is handled separately below. 17310 */ 17311 sopp_wroff = 0; 17312 /* 17313 * Update the peer's transmit parameters according to 17314 * our recently calculated high water mark value. 17315 */ 17316 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 17317 } else if (tcp->tcp_snd_sack_ok) { 17318 sopp_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17319 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 17320 } else { 17321 sopp_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17322 tcps->tcps_wroff_xtra); 17323 } 17324 17325 /* 17326 * If this is endpoint is handling SSL, then reserve extra 17327 * offset and space at the end. 17328 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 17329 * overriding the previous setting. The extra cost of signing and 17330 * encrypting multiple MSS-size records (12 of them with Ethernet), 17331 * instead of a single contiguous one by the stream head 17332 * largely outweighs the statistical reduction of ACKs, when 17333 * applicable. The peer will also save on decryption and verification 17334 * costs. 17335 */ 17336 if (tcp->tcp_kssl_ctx != NULL) { 17337 sopp_wroff += SSL3_WROFFSET; 17338 17339 sopp_flags |= SOCKOPT_TAIL; 17340 sopp_tail = SSL3_MAX_TAIL_LEN; 17341 17342 sopp_flags |= SOCKOPT_ZCOPY; 17343 sopp_copyopt = ZCVMUNSAFE; 17344 17345 sopp_maxblk = SSL3_MAX_RECORD_LEN; 17346 } 17347 17348 /* Send the options up */ 17349 if (IPCL_IS_NONSTR(connp)) { 17350 struct sock_proto_props sopp; 17351 17352 sopp.sopp_flags = sopp_flags; 17353 sopp.sopp_wroff = sopp_wroff; 17354 sopp.sopp_maxblk = sopp_maxblk; 17355 sopp.sopp_rxhiwat = sopp_rxhiwat; 17356 if (sopp_flags & SOCKOPT_TAIL) { 17357 ASSERT(tcp->tcp_kssl_ctx != NULL); 17358 ASSERT(sopp_flags & SOCKOPT_ZCOPY); 17359 sopp.sopp_tail = sopp_tail; 17360 sopp.sopp_zcopyflag = sopp_copyopt; 17361 } 17362 if (tcp->tcp_loopback) { 17363 sopp.sopp_flags |= SOCKOPT_LOOPBACK; 17364 sopp.sopp_loopback = B_TRUE; 17365 } 17366 (*connp->conn_upcalls->su_set_proto_props) 17367 (connp->conn_upper_handle, &sopp); 17368 } else { 17369 struct stroptions *stropt; 17370 mblk_t *stropt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 17371 if (stropt_mp == NULL) { 17372 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 17373 return; 17374 } 17375 DB_TYPE(stropt_mp) = M_SETOPTS; 17376 stropt = (struct stroptions *)stropt_mp->b_rptr; 17377 stropt_mp->b_wptr += sizeof (struct stroptions); 17378 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 17379 stropt->so_hiwat = sopp_rxhiwat; 17380 stropt->so_wroff = sopp_wroff; 17381 stropt->so_maxblk = sopp_maxblk; 17382 17383 if (sopp_flags & SOCKOPT_TAIL) { 17384 ASSERT(tcp->tcp_kssl_ctx != NULL); 17385 17386 stropt->so_flags |= SO_TAIL | SO_COPYOPT; 17387 stropt->so_tail = sopp_tail; 17388 stropt->so_copyopt = sopp_copyopt; 17389 } 17390 17391 /* Send the options up */ 17392 putnext(q, stropt_mp); 17393 } 17394 17395 freemsg(mp); 17396 /* 17397 * Pass up any data and/or a fin that has been received. 17398 * 17399 * Adjust receive window in case it had decreased 17400 * (because there is data <=> tcp_rcv_list != NULL) 17401 * while the connection was detached. Note that 17402 * in case the eager was flow-controlled, w/o this 17403 * code, the rwnd may never open up again! 17404 */ 17405 if (tcp->tcp_rcv_list != NULL) { 17406 if (IPCL_IS_NONSTR(connp)) { 17407 mblk_t *mp; 17408 int space_left; 17409 int error; 17410 boolean_t push = B_TRUE; 17411 17412 if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv) 17413 (connp->conn_upper_handle, NULL, 0, 0, &error, 17414 &push) >= 0) { 17415 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 17416 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17417 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 17418 tcp_xmit_ctl(NULL, 17419 tcp, (tcp->tcp_swnd == 0) ? 17420 tcp->tcp_suna : tcp->tcp_snxt, 17421 tcp->tcp_rnxt, TH_ACK); 17422 } 17423 } 17424 while ((mp = tcp->tcp_rcv_list) != NULL) { 17425 push = B_TRUE; 17426 tcp->tcp_rcv_list = mp->b_next; 17427 mp->b_next = NULL; 17428 space_left = (*connp->conn_upcalls->su_recv) 17429 (connp->conn_upper_handle, mp, msgdsize(mp), 17430 0, &error, &push); 17431 if (space_left < 0) { 17432 /* 17433 * We should never be in middle of a 17434 * fallback, the squeue guarantees that. 17435 */ 17436 ASSERT(error != EOPNOTSUPP); 17437 } 17438 } 17439 tcp->tcp_rcv_last_head = NULL; 17440 tcp->tcp_rcv_last_tail = NULL; 17441 tcp->tcp_rcv_cnt = 0; 17442 } else { 17443 /* We drain directly in case of fused tcp loopback */ 17444 17445 if (!tcp->tcp_fused && canputnext(q)) { 17446 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 17447 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17448 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 17449 tcp_xmit_ctl(NULL, 17450 tcp, (tcp->tcp_swnd == 0) ? 17451 tcp->tcp_suna : tcp->tcp_snxt, 17452 tcp->tcp_rnxt, TH_ACK); 17453 } 17454 } 17455 17456 (void) tcp_rcv_drain(tcp); 17457 } 17458 17459 /* 17460 * For fused tcp loopback, back-enable peer endpoint 17461 * if it's currently flow-controlled. 17462 */ 17463 if (tcp->tcp_fused) { 17464 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 17465 17466 ASSERT(peer_tcp != NULL); 17467 ASSERT(peer_tcp->tcp_fused); 17468 17469 mutex_enter(&peer_tcp->tcp_non_sq_lock); 17470 if (peer_tcp->tcp_flow_stopped) { 17471 tcp_clrqfull(peer_tcp); 17472 TCP_STAT(tcps, tcp_fusion_backenabled); 17473 } 17474 mutex_exit(&peer_tcp->tcp_non_sq_lock); 17475 } 17476 } 17477 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 17478 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 17479 tcp->tcp_ordrel_done = B_TRUE; 17480 if (IPCL_IS_NONSTR(connp)) { 17481 ASSERT(tcp->tcp_ordrel_mp == NULL); 17482 (*connp->conn_upcalls->su_opctl)( 17483 connp->conn_upper_handle, 17484 SOCK_OPCTL_SHUT_RECV, 0); 17485 } else { 17486 mp = tcp->tcp_ordrel_mp; 17487 tcp->tcp_ordrel_mp = NULL; 17488 putnext(q, mp); 17489 } 17490 } 17491 if (tcp->tcp_hard_binding) { 17492 tcp->tcp_hard_binding = B_FALSE; 17493 tcp->tcp_hard_bound = B_TRUE; 17494 } 17495 17496 if (tcp->tcp_ka_enabled) { 17497 tcp->tcp_ka_last_intrvl = 0; 17498 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 17499 MSEC_TO_TICK(tcp->tcp_ka_interval)); 17500 } 17501 17502 /* 17503 * At this point, eager is fully established and will 17504 * have the following references - 17505 * 17506 * 2 references for connection to exist (1 for TCP and 1 for IP). 17507 * 1 reference for the squeue which will be dropped by the squeue as 17508 * soon as this function returns. 17509 * There will be 1 additonal reference for being in classifier 17510 * hash list provided something bad hasn't happened. 17511 */ 17512 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17513 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17514 } 17515 17516 /* 17517 * The function called through squeue to get behind listener's perimeter to 17518 * send a deffered conn_ind. 17519 */ 17520 /* ARGSUSED */ 17521 void 17522 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 17523 { 17524 conn_t *connp = (conn_t *)arg; 17525 tcp_t *listener = connp->conn_tcp; 17526 struct T_conn_ind *conn_ind; 17527 tcp_t *tcp; 17528 17529 conn_ind = (struct T_conn_ind *)mp->b_rptr; 17530 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 17531 conn_ind->OPT_length); 17532 17533 if (listener->tcp_state != TCPS_LISTEN) { 17534 /* 17535 * If listener has closed, it would have caused a 17536 * a cleanup/blowoff to happen for the eager, so 17537 * we don't need to do anything more. 17538 */ 17539 freemsg(mp); 17540 return; 17541 } 17542 17543 tcp_ulp_newconn(connp, tcp->tcp_connp, mp); 17544 } 17545 17546 /* ARGSUSED */ 17547 static int 17548 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr) 17549 { 17550 tcp_t *listener, *eager; 17551 mblk_t *opt_mp; 17552 struct tcp_options *tcpopt; 17553 17554 listener = lconnp->conn_tcp; 17555 ASSERT(listener->tcp_state == TCPS_LISTEN); 17556 eager = econnp->conn_tcp; 17557 ASSERT(eager->tcp_listener != NULL); 17558 17559 ASSERT(eager->tcp_rq != NULL); 17560 17561 opt_mp = allocb(sizeof (struct tcp_options), BPRI_HI); 17562 if (opt_mp == NULL) { 17563 return (-TPROTO); 17564 } 17565 bzero((char *)opt_mp->b_rptr, sizeof (struct tcp_options)); 17566 eager->tcp_issocket = B_TRUE; 17567 17568 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 17569 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 17570 ASSERT(econnp->conn_netstack == 17571 listener->tcp_connp->conn_netstack); 17572 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 17573 17574 /* Put the ref for IP */ 17575 CONN_INC_REF(econnp); 17576 17577 /* 17578 * We should have minimum of 3 references on the conn 17579 * at this point. One each for TCP and IP and one for 17580 * the T_conn_ind that was sent up when the 3-way handshake 17581 * completed. In the normal case we would also have another 17582 * reference (making a total of 4) for the conn being in the 17583 * classifier hash list. However the eager could have received 17584 * an RST subsequently and tcp_closei_local could have removed 17585 * the eager from the classifier hash list, hence we can't 17586 * assert that reference. 17587 */ 17588 ASSERT(econnp->conn_ref >= 3); 17589 17590 opt_mp->b_datap->db_type = M_SETOPTS; 17591 opt_mp->b_wptr += sizeof (struct tcp_options); 17592 17593 /* 17594 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 17595 * from listener to acceptor. 17596 */ 17597 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 17598 tcpopt->to_flags = 0; 17599 17600 if (listener->tcp_bound_if != 0) { 17601 tcpopt->to_flags |= TCPOPT_BOUNDIF; 17602 tcpopt->to_boundif = listener->tcp_bound_if; 17603 } 17604 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 17605 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 17606 } 17607 17608 mutex_enter(&listener->tcp_eager_lock); 17609 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 17610 17611 tcp_t *tail; 17612 tcp_t *tcp; 17613 mblk_t *mp1; 17614 17615 tcp = listener->tcp_eager_prev_q0; 17616 /* 17617 * listener->tcp_eager_prev_q0 points to the TAIL of the 17618 * deferred T_conn_ind queue. We need to get to the head 17619 * of the queue in order to send up T_conn_ind the same 17620 * order as how the 3WHS is completed. 17621 */ 17622 while (tcp != listener) { 17623 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 17624 !tcp->tcp_kssl_pending) 17625 break; 17626 else 17627 tcp = tcp->tcp_eager_prev_q0; 17628 } 17629 /* None of the pending eagers can be sent up now */ 17630 if (tcp == listener) 17631 goto no_more_eagers; 17632 17633 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 17634 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17635 /* Move from q0 to q */ 17636 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 17637 listener->tcp_conn_req_cnt_q0--; 17638 listener->tcp_conn_req_cnt_q++; 17639 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 17640 tcp->tcp_eager_prev_q0; 17641 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 17642 tcp->tcp_eager_next_q0; 17643 tcp->tcp_eager_prev_q0 = NULL; 17644 tcp->tcp_eager_next_q0 = NULL; 17645 tcp->tcp_conn_def_q0 = B_FALSE; 17646 17647 /* Make sure the tcp isn't in the list of droppables */ 17648 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 17649 tcp->tcp_eager_prev_drop_q0 == NULL); 17650 17651 /* 17652 * Insert at end of the queue because sockfs sends 17653 * down T_CONN_RES in chronological order. Leaving 17654 * the older conn indications at front of the queue 17655 * helps reducing search time. 17656 */ 17657 tail = listener->tcp_eager_last_q; 17658 if (tail != NULL) { 17659 tail->tcp_eager_next_q = tcp; 17660 } else { 17661 listener->tcp_eager_next_q = tcp; 17662 } 17663 listener->tcp_eager_last_q = tcp; 17664 tcp->tcp_eager_next_q = NULL; 17665 17666 /* Need to get inside the listener perimeter */ 17667 CONN_INC_REF(listener->tcp_connp); 17668 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, 17669 tcp_send_pending, listener->tcp_connp, SQ_FILL, 17670 SQTAG_TCP_SEND_PENDING); 17671 } 17672 no_more_eagers: 17673 tcp_eager_unlink(eager); 17674 mutex_exit(&listener->tcp_eager_lock); 17675 17676 /* 17677 * At this point, the eager is detached from the listener 17678 * but we still have an extra refs on eager (apart from the 17679 * usual tcp references). The ref was placed in tcp_rput_data 17680 * before sending the conn_ind in tcp_send_conn_ind. 17681 * The ref will be dropped in tcp_accept_finish(). 17682 */ 17683 SQUEUE_ENTER_ONE(econnp->conn_sqp, opt_mp, tcp_accept_finish, 17684 econnp, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); 17685 return (0); 17686 } 17687 17688 int 17689 tcp_accept(sock_lower_handle_t lproto_handle, 17690 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 17691 cred_t *cr) 17692 { 17693 conn_t *lconnp, *econnp; 17694 tcp_t *listener, *eager; 17695 tcp_stack_t *tcps; 17696 17697 lconnp = (conn_t *)lproto_handle; 17698 listener = lconnp->conn_tcp; 17699 ASSERT(listener->tcp_state == TCPS_LISTEN); 17700 econnp = (conn_t *)eproto_handle; 17701 eager = econnp->conn_tcp; 17702 ASSERT(eager->tcp_listener != NULL); 17703 tcps = eager->tcp_tcps; 17704 17705 /* 17706 * It is OK to manipulate these fields outside the eager's squeue 17707 * because they will not start being used until tcp_accept_finish 17708 * has been called. 17709 */ 17710 ASSERT(lconnp->conn_upper_handle != NULL); 17711 ASSERT(econnp->conn_upper_handle == NULL); 17712 econnp->conn_upper_handle = sock_handle; 17713 econnp->conn_upcalls = lconnp->conn_upcalls; 17714 ASSERT(IPCL_IS_NONSTR(econnp)); 17715 /* 17716 * Create helper stream if it is a non-TPI TCP connection. 17717 */ 17718 if (ip_create_helper_stream(econnp, tcps->tcps_ldi_ident)) { 17719 ip1dbg(("tcp_accept: create of IP helper stream" 17720 " failed\n")); 17721 return (EPROTO); 17722 } 17723 eager->tcp_rq = econnp->conn_rq; 17724 eager->tcp_wq = econnp->conn_wq; 17725 17726 ASSERT(eager->tcp_rq != NULL); 17727 17728 return (tcp_accept_common(lconnp, econnp, cr)); 17729 } 17730 17731 17732 /* 17733 * This is the STREAMS entry point for T_CONN_RES coming down on 17734 * Acceptor STREAM when sockfs listener does accept processing. 17735 * Read the block comment on top of tcp_conn_request(). 17736 */ 17737 void 17738 tcp_tpi_accept(queue_t *q, mblk_t *mp) 17739 { 17740 queue_t *rq = RD(q); 17741 struct T_conn_res *conn_res; 17742 tcp_t *eager; 17743 tcp_t *listener; 17744 struct T_ok_ack *ok; 17745 t_scalar_t PRIM_type; 17746 conn_t *econnp; 17747 cred_t *cr; 17748 17749 ASSERT(DB_TYPE(mp) == M_PROTO); 17750 17751 /* 17752 * All Solaris components should pass a db_credp 17753 * for this TPI message, hence we ASSERT. 17754 * But in case there is some other M_PROTO that looks 17755 * like a TPI message sent by some other kernel 17756 * component, we check and return an error. 17757 */ 17758 cr = msg_getcred(mp, NULL); 17759 ASSERT(cr != NULL); 17760 if (cr == NULL) { 17761 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 17762 if (mp != NULL) 17763 putnext(rq, mp); 17764 return; 17765 } 17766 conn_res = (struct T_conn_res *)mp->b_rptr; 17767 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17768 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 17769 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17770 if (mp != NULL) 17771 putnext(rq, mp); 17772 return; 17773 } 17774 switch (conn_res->PRIM_type) { 17775 case O_T_CONN_RES: 17776 case T_CONN_RES: 17777 /* 17778 * We pass up an err ack if allocb fails. This will 17779 * cause sockfs to issue a T_DISCON_REQ which will cause 17780 * tcp_eager_blowoff to be called. sockfs will then call 17781 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 17782 * we need to do the allocb up here because we have to 17783 * make sure rq->q_qinfo->qi_qclose still points to the 17784 * correct function (tcp_tpi_close_accept) in case allocb 17785 * fails. 17786 */ 17787 bcopy(mp->b_rptr + conn_res->OPT_offset, 17788 &eager, conn_res->OPT_length); 17789 PRIM_type = conn_res->PRIM_type; 17790 mp->b_datap->db_type = M_PCPROTO; 17791 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 17792 ok = (struct T_ok_ack *)mp->b_rptr; 17793 ok->PRIM_type = T_OK_ACK; 17794 ok->CORRECT_prim = PRIM_type; 17795 econnp = eager->tcp_connp; 17796 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 17797 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 17798 eager->tcp_rq = rq; 17799 eager->tcp_wq = q; 17800 rq->q_ptr = econnp; 17801 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 17802 q->q_ptr = econnp; 17803 q->q_qinfo = &tcp_winit; 17804 listener = eager->tcp_listener; 17805 17806 if (tcp_accept_common(listener->tcp_connp, 17807 econnp, cr) < 0) { 17808 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17809 if (mp != NULL) 17810 putnext(rq, mp); 17811 return; 17812 } 17813 17814 /* 17815 * Send the new local address also up to sockfs. There 17816 * should already be enough space in the mp that came 17817 * down from soaccept(). 17818 */ 17819 if (eager->tcp_family == AF_INET) { 17820 sin_t *sin; 17821 17822 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17823 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 17824 sin = (sin_t *)mp->b_wptr; 17825 mp->b_wptr += sizeof (sin_t); 17826 sin->sin_family = AF_INET; 17827 sin->sin_port = eager->tcp_lport; 17828 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 17829 } else { 17830 sin6_t *sin6; 17831 17832 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17833 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 17834 sin6 = (sin6_t *)mp->b_wptr; 17835 mp->b_wptr += sizeof (sin6_t); 17836 sin6->sin6_family = AF_INET6; 17837 sin6->sin6_port = eager->tcp_lport; 17838 if (eager->tcp_ipversion == IPV4_VERSION) { 17839 sin6->sin6_flowinfo = 0; 17840 IN6_IPADDR_TO_V4MAPPED( 17841 eager->tcp_ipha->ipha_src, 17842 &sin6->sin6_addr); 17843 } else { 17844 ASSERT(eager->tcp_ip6h != NULL); 17845 sin6->sin6_flowinfo = 17846 eager->tcp_ip6h->ip6_vcf & 17847 ~IPV6_VERS_AND_FLOW_MASK; 17848 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 17849 } 17850 sin6->sin6_scope_id = 0; 17851 sin6->__sin6_src_id = 0; 17852 } 17853 17854 putnext(rq, mp); 17855 return; 17856 default: 17857 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 17858 if (mp != NULL) 17859 putnext(rq, mp); 17860 return; 17861 } 17862 } 17863 17864 static int 17865 tcp_do_getsockname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 17866 { 17867 sin_t *sin = (sin_t *)sa; 17868 sin6_t *sin6 = (sin6_t *)sa; 17869 17870 switch (tcp->tcp_family) { 17871 case AF_INET: 17872 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 17873 17874 if (*salenp < sizeof (sin_t)) 17875 return (EINVAL); 17876 17877 *sin = sin_null; 17878 sin->sin_family = AF_INET; 17879 if (tcp->tcp_state >= TCPS_BOUND) { 17880 sin->sin_port = tcp->tcp_lport; 17881 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 17882 } 17883 *salenp = sizeof (sin_t); 17884 break; 17885 17886 case AF_INET6: 17887 if (*salenp < sizeof (sin6_t)) 17888 return (EINVAL); 17889 17890 *sin6 = sin6_null; 17891 sin6->sin6_family = AF_INET6; 17892 if (tcp->tcp_state >= TCPS_BOUND) { 17893 sin6->sin6_port = tcp->tcp_lport; 17894 if (tcp->tcp_ipversion == IPV4_VERSION) { 17895 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 17896 &sin6->sin6_addr); 17897 } else { 17898 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 17899 } 17900 } 17901 *salenp = sizeof (sin6_t); 17902 break; 17903 } 17904 17905 return (0); 17906 } 17907 17908 static int 17909 tcp_do_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 17910 { 17911 sin_t *sin = (sin_t *)sa; 17912 sin6_t *sin6 = (sin6_t *)sa; 17913 17914 if (tcp->tcp_state < TCPS_SYN_RCVD) 17915 return (ENOTCONN); 17916 17917 switch (tcp->tcp_family) { 17918 case AF_INET: 17919 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 17920 17921 if (*salenp < sizeof (sin_t)) 17922 return (EINVAL); 17923 17924 *sin = sin_null; 17925 sin->sin_family = AF_INET; 17926 sin->sin_port = tcp->tcp_fport; 17927 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 17928 sin->sin_addr.s_addr); 17929 *salenp = sizeof (sin_t); 17930 break; 17931 17932 case AF_INET6: 17933 if (*salenp < sizeof (sin6_t)) 17934 return (EINVAL); 17935 17936 *sin6 = sin6_null; 17937 sin6->sin6_family = AF_INET6; 17938 sin6->sin6_port = tcp->tcp_fport; 17939 sin6->sin6_addr = tcp->tcp_remote_v6; 17940 if (tcp->tcp_ipversion == IPV6_VERSION) { 17941 sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf & 17942 ~IPV6_VERS_AND_FLOW_MASK; 17943 } 17944 *salenp = sizeof (sin6_t); 17945 break; 17946 } 17947 17948 return (0); 17949 } 17950 17951 /* 17952 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 17953 */ 17954 static void 17955 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 17956 { 17957 void *data; 17958 mblk_t *datamp = mp->b_cont; 17959 tcp_t *tcp = Q_TO_TCP(q); 17960 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 17961 17962 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 17963 cmdp->cb_error = EPROTO; 17964 qreply(q, mp); 17965 return; 17966 } 17967 17968 data = datamp->b_rptr; 17969 17970 switch (cmdp->cb_cmd) { 17971 case TI_GETPEERNAME: 17972 cmdp->cb_error = tcp_do_getpeername(tcp, data, &cmdp->cb_len); 17973 break; 17974 case TI_GETMYNAME: 17975 cmdp->cb_error = tcp_do_getsockname(tcp, data, &cmdp->cb_len); 17976 break; 17977 default: 17978 cmdp->cb_error = EINVAL; 17979 break; 17980 } 17981 17982 qreply(q, mp); 17983 } 17984 17985 void 17986 tcp_wput(queue_t *q, mblk_t *mp) 17987 { 17988 conn_t *connp = Q_TO_CONN(q); 17989 tcp_t *tcp; 17990 void (*output_proc)(); 17991 t_scalar_t type; 17992 uchar_t *rptr; 17993 struct iocblk *iocp; 17994 size_t size; 17995 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 17996 17997 ASSERT(connp->conn_ref >= 2); 17998 17999 switch (DB_TYPE(mp)) { 18000 case M_DATA: 18001 tcp = connp->conn_tcp; 18002 ASSERT(tcp != NULL); 18003 18004 size = msgdsize(mp); 18005 18006 mutex_enter(&tcp->tcp_non_sq_lock); 18007 tcp->tcp_squeue_bytes += size; 18008 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18009 tcp_setqfull(tcp); 18010 } 18011 mutex_exit(&tcp->tcp_non_sq_lock); 18012 18013 CONN_INC_REF(connp); 18014 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp, 18015 tcp_squeue_flag, SQTAG_TCP_OUTPUT); 18016 return; 18017 18018 case M_CMD: 18019 tcp_wput_cmdblk(q, mp); 18020 return; 18021 18022 case M_PROTO: 18023 case M_PCPROTO: 18024 /* 18025 * if it is a snmp message, don't get behind the squeue 18026 */ 18027 tcp = connp->conn_tcp; 18028 rptr = mp->b_rptr; 18029 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18030 type = ((union T_primitives *)rptr)->type; 18031 } else { 18032 if (tcp->tcp_debug) { 18033 (void) strlog(TCP_MOD_ID, 0, 1, 18034 SL_ERROR|SL_TRACE, 18035 "tcp_wput_proto, dropping one..."); 18036 } 18037 freemsg(mp); 18038 return; 18039 } 18040 if (type == T_SVR4_OPTMGMT_REQ) { 18041 /* 18042 * All Solaris components should pass a db_credp 18043 * for this TPI message, hence we ASSERT. 18044 * But in case there is some other M_PROTO that looks 18045 * like a TPI message sent by some other kernel 18046 * component, we check and return an error. 18047 */ 18048 cred_t *cr = msg_getcred(mp, NULL); 18049 18050 ASSERT(cr != NULL); 18051 if (cr == NULL) { 18052 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 18053 return; 18054 } 18055 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 18056 cr)) { 18057 /* 18058 * This was a SNMP request 18059 */ 18060 return; 18061 } else { 18062 output_proc = tcp_wput_proto; 18063 } 18064 } else { 18065 output_proc = tcp_wput_proto; 18066 } 18067 break; 18068 case M_IOCTL: 18069 /* 18070 * Most ioctls can be processed right away without going via 18071 * squeues - process them right here. Those that do require 18072 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18073 * are processed by tcp_wput_ioctl(). 18074 */ 18075 iocp = (struct iocblk *)mp->b_rptr; 18076 tcp = connp->conn_tcp; 18077 18078 switch (iocp->ioc_cmd) { 18079 case TCP_IOC_ABORT_CONN: 18080 tcp_ioctl_abort_conn(q, mp); 18081 return; 18082 case TI_GETPEERNAME: 18083 case TI_GETMYNAME: 18084 mi_copyin(q, mp, NULL, 18085 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18086 return; 18087 case ND_SET: 18088 /* nd_getset does the necessary checks */ 18089 case ND_GET: 18090 if (!nd_getset(q, tcps->tcps_g_nd, mp)) { 18091 CALL_IP_WPUT(connp, q, mp); 18092 return; 18093 } 18094 qreply(q, mp); 18095 return; 18096 case TCP_IOC_DEFAULT_Q: 18097 /* 18098 * Wants to be the default wq. Check the credentials 18099 * first, the rest is executed via squeue. 18100 */ 18101 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 18102 iocp->ioc_error = EPERM; 18103 iocp->ioc_count = 0; 18104 mp->b_datap->db_type = M_IOCACK; 18105 qreply(q, mp); 18106 return; 18107 } 18108 output_proc = tcp_wput_ioctl; 18109 break; 18110 default: 18111 output_proc = tcp_wput_ioctl; 18112 break; 18113 } 18114 break; 18115 default: 18116 output_proc = tcp_wput_nondata; 18117 break; 18118 } 18119 18120 CONN_INC_REF(connp); 18121 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp, 18122 tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER); 18123 } 18124 18125 /* 18126 * Initial STREAMS write side put() procedure for sockets. It tries to 18127 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18128 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18129 * are handled by tcp_wput() as usual. 18130 * 18131 * All further messages will also be handled by tcp_wput() because we cannot 18132 * be sure that the above short cut is safe later. 18133 */ 18134 static void 18135 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18136 { 18137 conn_t *connp = Q_TO_CONN(wq); 18138 tcp_t *tcp = connp->conn_tcp; 18139 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18140 18141 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18142 wq->q_qinfo = &tcp_winit; 18143 18144 ASSERT(IPCL_IS_TCP(connp)); 18145 ASSERT(TCP_IS_SOCKET(tcp)); 18146 18147 if (DB_TYPE(mp) == M_PCPROTO && 18148 MBLKL(mp) == sizeof (struct T_capability_req) && 18149 car->PRIM_type == T_CAPABILITY_REQ) { 18150 tcp_capability_req(tcp, mp); 18151 return; 18152 } 18153 18154 tcp_wput(wq, mp); 18155 } 18156 18157 /* ARGSUSED */ 18158 static void 18159 tcp_wput_fallback(queue_t *wq, mblk_t *mp) 18160 { 18161 #ifdef DEBUG 18162 cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n"); 18163 #endif 18164 freemsg(mp); 18165 } 18166 18167 static boolean_t 18168 tcp_zcopy_check(tcp_t *tcp) 18169 { 18170 conn_t *connp = tcp->tcp_connp; 18171 ire_t *ire; 18172 boolean_t zc_enabled = B_FALSE; 18173 tcp_stack_t *tcps = tcp->tcp_tcps; 18174 18175 if (do_tcpzcopy == 2) 18176 zc_enabled = B_TRUE; 18177 else if (tcp->tcp_ipversion == IPV4_VERSION && 18178 IPCL_IS_CONNECTED(connp) && 18179 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18180 connp->conn_dontroute == 0 && 18181 !connp->conn_nexthop_set && 18182 connp->conn_outgoing_ill == NULL && 18183 do_tcpzcopy == 1) { 18184 /* 18185 * the checks above closely resemble the fast path checks 18186 * in tcp_send_data(). 18187 */ 18188 mutex_enter(&connp->conn_lock); 18189 ire = connp->conn_ire_cache; 18190 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18191 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18192 IRE_REFHOLD(ire); 18193 if (ire->ire_stq != NULL) { 18194 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18195 18196 zc_enabled = ill && (ill->ill_capabilities & 18197 ILL_CAPAB_ZEROCOPY) && 18198 (ill->ill_zerocopy_capab-> 18199 ill_zerocopy_flags != 0); 18200 } 18201 IRE_REFRELE(ire); 18202 } 18203 mutex_exit(&connp->conn_lock); 18204 } 18205 tcp->tcp_snd_zcopy_on = zc_enabled; 18206 if (!TCP_IS_DETACHED(tcp)) { 18207 if (zc_enabled) { 18208 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 18209 ZCVMSAFE); 18210 TCP_STAT(tcps, tcp_zcopy_on); 18211 } else { 18212 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 18213 ZCVMUNSAFE); 18214 TCP_STAT(tcps, tcp_zcopy_off); 18215 } 18216 } 18217 return (zc_enabled); 18218 } 18219 18220 static mblk_t * 18221 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18222 { 18223 tcp_stack_t *tcps = tcp->tcp_tcps; 18224 18225 if (do_tcpzcopy == 2) 18226 return (bp); 18227 else if (tcp->tcp_snd_zcopy_on) { 18228 tcp->tcp_snd_zcopy_on = B_FALSE; 18229 if (!TCP_IS_DETACHED(tcp)) { 18230 (void) proto_set_tx_copyopt(tcp->tcp_rq, tcp->tcp_connp, 18231 ZCVMUNSAFE); 18232 TCP_STAT(tcps, tcp_zcopy_disable); 18233 } 18234 } 18235 return (tcp_zcopy_backoff(tcp, bp, 0)); 18236 } 18237 18238 /* 18239 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18240 * the original desballoca'ed segmapped mblk. 18241 */ 18242 static mblk_t * 18243 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18244 { 18245 mblk_t *head, *tail, *nbp; 18246 tcp_stack_t *tcps = tcp->tcp_tcps; 18247 18248 if (IS_VMLOANED_MBLK(bp)) { 18249 TCP_STAT(tcps, tcp_zcopy_backoff); 18250 if ((head = copyb(bp)) == NULL) { 18251 /* fail to backoff; leave it for the next backoff */ 18252 tcp->tcp_xmit_zc_clean = B_FALSE; 18253 return (bp); 18254 } 18255 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18256 if (fix_xmitlist) 18257 tcp_zcopy_notify(tcp); 18258 else 18259 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18260 } 18261 nbp = bp->b_cont; 18262 if (fix_xmitlist) { 18263 head->b_prev = bp->b_prev; 18264 head->b_next = bp->b_next; 18265 if (tcp->tcp_xmit_tail == bp) 18266 tcp->tcp_xmit_tail = head; 18267 } 18268 bp->b_next = NULL; 18269 bp->b_prev = NULL; 18270 freeb(bp); 18271 } else { 18272 head = bp; 18273 nbp = bp->b_cont; 18274 } 18275 tail = head; 18276 while (nbp) { 18277 if (IS_VMLOANED_MBLK(nbp)) { 18278 TCP_STAT(tcps, tcp_zcopy_backoff); 18279 if ((tail->b_cont = copyb(nbp)) == NULL) { 18280 tcp->tcp_xmit_zc_clean = B_FALSE; 18281 tail->b_cont = nbp; 18282 return (head); 18283 } 18284 tail = tail->b_cont; 18285 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18286 if (fix_xmitlist) 18287 tcp_zcopy_notify(tcp); 18288 else 18289 tail->b_datap->db_struioflag |= 18290 STRUIO_ZCNOTIFY; 18291 } 18292 bp = nbp; 18293 nbp = nbp->b_cont; 18294 if (fix_xmitlist) { 18295 tail->b_prev = bp->b_prev; 18296 tail->b_next = bp->b_next; 18297 if (tcp->tcp_xmit_tail == bp) 18298 tcp->tcp_xmit_tail = tail; 18299 } 18300 bp->b_next = NULL; 18301 bp->b_prev = NULL; 18302 freeb(bp); 18303 } else { 18304 tail->b_cont = nbp; 18305 tail = nbp; 18306 nbp = nbp->b_cont; 18307 } 18308 } 18309 if (fix_xmitlist) { 18310 tcp->tcp_xmit_last = tail; 18311 tcp->tcp_xmit_zc_clean = B_TRUE; 18312 } 18313 return (head); 18314 } 18315 18316 static void 18317 tcp_zcopy_notify(tcp_t *tcp) 18318 { 18319 struct stdata *stp; 18320 conn_t *connp; 18321 18322 if (tcp->tcp_detached) 18323 return; 18324 connp = tcp->tcp_connp; 18325 if (IPCL_IS_NONSTR(connp)) { 18326 (*connp->conn_upcalls->su_zcopy_notify) 18327 (connp->conn_upper_handle); 18328 return; 18329 } 18330 stp = STREAM(tcp->tcp_rq); 18331 mutex_enter(&stp->sd_lock); 18332 stp->sd_flag |= STZCNOTIFY; 18333 cv_broadcast(&stp->sd_zcopy_wait); 18334 mutex_exit(&stp->sd_lock); 18335 } 18336 18337 static boolean_t 18338 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 18339 { 18340 ire_t *ire; 18341 conn_t *connp = tcp->tcp_connp; 18342 tcp_stack_t *tcps = tcp->tcp_tcps; 18343 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18344 18345 mutex_enter(&connp->conn_lock); 18346 ire = connp->conn_ire_cache; 18347 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18348 18349 if ((ire != NULL) && 18350 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 18351 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 18352 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18353 IRE_REFHOLD(ire); 18354 mutex_exit(&connp->conn_lock); 18355 } else { 18356 boolean_t cached = B_FALSE; 18357 ts_label_t *tsl; 18358 18359 /* force a recheck later on */ 18360 tcp->tcp_ire_ill_check_done = B_FALSE; 18361 18362 TCP_DBGSTAT(tcps, tcp_ire_null1); 18363 connp->conn_ire_cache = NULL; 18364 mutex_exit(&connp->conn_lock); 18365 18366 if (ire != NULL) 18367 IRE_REFRELE_NOTR(ire); 18368 18369 tsl = crgetlabel(CONN_CRED(connp)); 18370 ire = (dst ? 18371 ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) : 18372 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 18373 connp->conn_zoneid, tsl, ipst)); 18374 18375 if (ire == NULL) { 18376 TCP_STAT(tcps, tcp_ire_null); 18377 return (B_FALSE); 18378 } 18379 18380 IRE_REFHOLD_NOTR(ire); 18381 18382 mutex_enter(&connp->conn_lock); 18383 if (CONN_CACHE_IRE(connp)) { 18384 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18385 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18386 TCP_CHECK_IREINFO(tcp, ire); 18387 connp->conn_ire_cache = ire; 18388 cached = B_TRUE; 18389 } 18390 rw_exit(&ire->ire_bucket->irb_lock); 18391 } 18392 mutex_exit(&connp->conn_lock); 18393 18394 /* 18395 * We can continue to use the ire but since it was 18396 * not cached, we should drop the extra reference. 18397 */ 18398 if (!cached) 18399 IRE_REFRELE_NOTR(ire); 18400 18401 /* 18402 * Rampart note: no need to select a new label here, since 18403 * labels are not allowed to change during the life of a TCP 18404 * connection. 18405 */ 18406 } 18407 18408 *irep = ire; 18409 18410 return (B_TRUE); 18411 } 18412 18413 /* 18414 * Called from tcp_send() or tcp_send_data() to find workable IRE. 18415 * 18416 * 0 = success; 18417 * 1 = failed to find ire and ill. 18418 */ 18419 static boolean_t 18420 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 18421 { 18422 ipha_t *ipha; 18423 ipaddr_t dst; 18424 ire_t *ire; 18425 ill_t *ill; 18426 mblk_t *ire_fp_mp; 18427 tcp_stack_t *tcps = tcp->tcp_tcps; 18428 18429 if (mp != NULL) 18430 ipha = (ipha_t *)mp->b_rptr; 18431 else 18432 ipha = tcp->tcp_ipha; 18433 dst = ipha->ipha_dst; 18434 18435 if (!tcp_send_find_ire(tcp, &dst, &ire)) 18436 return (B_FALSE); 18437 18438 if ((ire->ire_flags & RTF_MULTIRT) || 18439 (ire->ire_stq == NULL) || 18440 (ire->ire_nce == NULL) || 18441 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 18442 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 18443 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 18444 TCP_STAT(tcps, tcp_ip_ire_send); 18445 IRE_REFRELE(ire); 18446 return (B_FALSE); 18447 } 18448 18449 ill = ire_to_ill(ire); 18450 ASSERT(ill != NULL); 18451 18452 if (!tcp->tcp_ire_ill_check_done) { 18453 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18454 tcp->tcp_ire_ill_check_done = B_TRUE; 18455 } 18456 18457 *irep = ire; 18458 *illp = ill; 18459 18460 return (B_TRUE); 18461 } 18462 18463 static void 18464 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 18465 { 18466 ipha_t *ipha; 18467 ipaddr_t src; 18468 ipaddr_t dst; 18469 uint32_t cksum; 18470 ire_t *ire; 18471 uint16_t *up; 18472 ill_t *ill; 18473 conn_t *connp = tcp->tcp_connp; 18474 uint32_t hcksum_txflags = 0; 18475 mblk_t *ire_fp_mp; 18476 uint_t ire_fp_mp_len; 18477 tcp_stack_t *tcps = tcp->tcp_tcps; 18478 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18479 cred_t *cr; 18480 pid_t cpid; 18481 18482 ASSERT(DB_TYPE(mp) == M_DATA); 18483 18484 /* 18485 * Here we need to handle the overloading of the cred_t for 18486 * both getpeerucred and TX. 18487 * If this is a SYN then the caller already set db_credp so 18488 * that getpeerucred will work. But if TX is in use we might have 18489 * a conn_effective_cred which is different, and we need to use that 18490 * cred to make TX use the correct label and label dependent route. 18491 */ 18492 if (is_system_labeled()) { 18493 cr = msg_getcred(mp, &cpid); 18494 if (cr == NULL || connp->conn_effective_cred != NULL) 18495 mblk_setcred(mp, CONN_CRED(connp), cpid); 18496 } 18497 18498 ipha = (ipha_t *)mp->b_rptr; 18499 src = ipha->ipha_src; 18500 dst = ipha->ipha_dst; 18501 18502 ASSERT(q != NULL); 18503 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 18504 18505 /* 18506 * Drop off fast path for IPv6 and also if options are present or 18507 * we need to resolve a TS label. 18508 */ 18509 if (tcp->tcp_ipversion != IPV4_VERSION || 18510 !IPCL_IS_CONNECTED(connp) || 18511 !CONN_IS_LSO_MD_FASTPATH(connp) || 18512 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 18513 !connp->conn_ulp_labeled || 18514 ipha->ipha_ident == IP_HDR_INCLUDED || 18515 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 18516 IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 18517 if (tcp->tcp_snd_zcopy_aware) 18518 mp = tcp_zcopy_disable(tcp, mp); 18519 TCP_STAT(tcps, tcp_ip_send); 18520 CALL_IP_WPUT(connp, q, mp); 18521 return; 18522 } 18523 18524 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 18525 if (tcp->tcp_snd_zcopy_aware) 18526 mp = tcp_zcopy_backoff(tcp, mp, 0); 18527 CALL_IP_WPUT(connp, q, mp); 18528 return; 18529 } 18530 ire_fp_mp = ire->ire_nce->nce_fp_mp; 18531 ire_fp_mp_len = MBLKL(ire_fp_mp); 18532 18533 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 18534 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 18535 #ifndef _BIG_ENDIAN 18536 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 18537 #endif 18538 18539 /* 18540 * Check to see if we need to re-enable LSO/MDT for this connection 18541 * because it was previously disabled due to changes in the ill; 18542 * note that by doing it here, this re-enabling only applies when 18543 * the packet is not dispatched through CALL_IP_WPUT(). 18544 * 18545 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 18546 * case, since that's how we ended up here. For IPv6, we do the 18547 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 18548 */ 18549 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 18550 /* 18551 * Restore LSO for this connection, so that next time around 18552 * it is eligible to go through tcp_lsosend() path again. 18553 */ 18554 TCP_STAT(tcps, tcp_lso_enabled); 18555 tcp->tcp_lso = B_TRUE; 18556 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 18557 "interface %s\n", (void *)connp, ill->ill_name)); 18558 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 18559 /* 18560 * Restore MDT for this connection, so that next time around 18561 * it is eligible to go through tcp_multisend() path again. 18562 */ 18563 TCP_STAT(tcps, tcp_mdt_conn_resumed1); 18564 tcp->tcp_mdt = B_TRUE; 18565 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 18566 "interface %s\n", (void *)connp, ill->ill_name)); 18567 } 18568 18569 if (tcp->tcp_snd_zcopy_aware) { 18570 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 18571 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 18572 mp = tcp_zcopy_disable(tcp, mp); 18573 /* 18574 * we shouldn't need to reset ipha as the mp containing 18575 * ipha should never be a zero-copy mp. 18576 */ 18577 } 18578 18579 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 18580 ASSERT(ill->ill_hcksum_capab != NULL); 18581 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 18582 } 18583 18584 /* pseudo-header checksum (do it in parts for IP header checksum) */ 18585 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 18586 18587 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 18588 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 18589 18590 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 18591 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 18592 18593 /* Software checksum? */ 18594 if (DB_CKSUMFLAGS(mp) == 0) { 18595 TCP_STAT(tcps, tcp_out_sw_cksum); 18596 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 18597 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 18598 } 18599 18600 /* Calculate IP header checksum if hardware isn't capable */ 18601 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 18602 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 18603 ((uint16_t *)ipha)[4]); 18604 } 18605 18606 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 18607 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 18608 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 18609 18610 UPDATE_OB_PKT_COUNT(ire); 18611 ire->ire_last_used_time = lbolt; 18612 18613 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 18614 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 18615 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 18616 ntohs(ipha->ipha_length)); 18617 18618 DTRACE_PROBE4(ip4__physical__out__start, 18619 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 18620 FW_HOOKS(ipst->ips_ip4_physical_out_event, 18621 ipst->ips_ipv4firewall_physical_out, 18622 NULL, ill, ipha, mp, mp, 0, ipst); 18623 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 18624 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 18625 18626 if (mp != NULL) { 18627 if (ipst->ips_ipobs_enabled) { 18628 zoneid_t szone; 18629 18630 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 18631 ipst, ALL_ZONES); 18632 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 18633 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst); 18634 } 18635 18636 ILL_SEND_TX(ill, ire, connp, mp, 0, NULL); 18637 } 18638 18639 IRE_REFRELE(ire); 18640 } 18641 18642 /* 18643 * This handles the case when the receiver has shrunk its win. Per RFC 1122 18644 * if the receiver shrinks the window, i.e. moves the right window to the 18645 * left, the we should not send new data, but should retransmit normally the 18646 * old unacked data between suna and suna + swnd. We might has sent data 18647 * that is now outside the new window, pretend that we didn't send it. 18648 */ 18649 static void 18650 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 18651 { 18652 uint32_t snxt = tcp->tcp_snxt; 18653 18654 ASSERT(shrunk_count > 0); 18655 18656 if (!tcp->tcp_is_wnd_shrnk) { 18657 tcp->tcp_snxt_shrunk = snxt; 18658 tcp->tcp_is_wnd_shrnk = B_TRUE; 18659 } else if (SEQ_GT(snxt, tcp->tcp_snxt_shrunk)) { 18660 tcp->tcp_snxt_shrunk = snxt; 18661 } 18662 18663 /* Pretend we didn't send the data outside the window */ 18664 snxt -= shrunk_count; 18665 18666 /* Reset all the values per the now shrunk window */ 18667 tcp_update_xmit_tail(tcp, snxt); 18668 tcp->tcp_unsent += shrunk_count; 18669 18670 /* 18671 * If the SACK option is set, delete the entire list of 18672 * notsack'ed blocks. 18673 */ 18674 if (tcp->tcp_sack_info != NULL) { 18675 if (tcp->tcp_notsack_list != NULL) 18676 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 18677 } 18678 18679 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 18680 /* 18681 * Make sure the timer is running so that we will probe a zero 18682 * window. 18683 */ 18684 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18685 } 18686 18687 18688 /* 18689 * The TCP normal data output path. 18690 * NOTE: the logic of the fast path is duplicated from this function. 18691 */ 18692 static void 18693 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 18694 { 18695 int len; 18696 mblk_t *local_time; 18697 mblk_t *mp1; 18698 uint32_t snxt; 18699 int tail_unsent; 18700 int tcpstate; 18701 int usable = 0; 18702 mblk_t *xmit_tail; 18703 queue_t *q = tcp->tcp_wq; 18704 int32_t mss; 18705 int32_t num_sack_blk = 0; 18706 int32_t tcp_hdr_len; 18707 int32_t tcp_tcp_hdr_len; 18708 int mdt_thres; 18709 int rc; 18710 tcp_stack_t *tcps = tcp->tcp_tcps; 18711 ip_stack_t *ipst; 18712 18713 tcpstate = tcp->tcp_state; 18714 if (mp == NULL) { 18715 /* 18716 * tcp_wput_data() with NULL mp should only be called when 18717 * there is unsent data. 18718 */ 18719 ASSERT(tcp->tcp_unsent > 0); 18720 /* Really tacky... but we need this for detached closes. */ 18721 len = tcp->tcp_unsent; 18722 goto data_null; 18723 } 18724 18725 #if CCS_STATS 18726 wrw_stats.tot.count++; 18727 wrw_stats.tot.bytes += msgdsize(mp); 18728 #endif 18729 ASSERT(mp->b_datap->db_type == M_DATA); 18730 /* 18731 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 18732 * or before a connection attempt has begun. 18733 */ 18734 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 18735 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18736 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18737 #ifdef DEBUG 18738 cmn_err(CE_WARN, 18739 "tcp_wput_data: data after ordrel, %s", 18740 tcp_display(tcp, NULL, 18741 DISP_ADDR_AND_PORT)); 18742 #else 18743 if (tcp->tcp_debug) { 18744 (void) strlog(TCP_MOD_ID, 0, 1, 18745 SL_TRACE|SL_ERROR, 18746 "tcp_wput_data: data after ordrel, %s\n", 18747 tcp_display(tcp, NULL, 18748 DISP_ADDR_AND_PORT)); 18749 } 18750 #endif /* DEBUG */ 18751 } 18752 if (tcp->tcp_snd_zcopy_aware && 18753 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 18754 tcp_zcopy_notify(tcp); 18755 freemsg(mp); 18756 mutex_enter(&tcp->tcp_non_sq_lock); 18757 if (tcp->tcp_flow_stopped && 18758 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18759 tcp_clrqfull(tcp); 18760 } 18761 mutex_exit(&tcp->tcp_non_sq_lock); 18762 return; 18763 } 18764 18765 /* Strip empties */ 18766 for (;;) { 18767 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 18768 (uintptr_t)INT_MAX); 18769 len = (int)(mp->b_wptr - mp->b_rptr); 18770 if (len > 0) 18771 break; 18772 mp1 = mp; 18773 mp = mp->b_cont; 18774 freeb(mp1); 18775 if (!mp) { 18776 return; 18777 } 18778 } 18779 18780 /* If we are the first on the list ... */ 18781 if (tcp->tcp_xmit_head == NULL) { 18782 tcp->tcp_xmit_head = mp; 18783 tcp->tcp_xmit_tail = mp; 18784 tcp->tcp_xmit_tail_unsent = len; 18785 } else { 18786 /* If tiny tx and room in txq tail, pullup to save mblks. */ 18787 struct datab *dp; 18788 18789 mp1 = tcp->tcp_xmit_last; 18790 if (len < tcp_tx_pull_len && 18791 (dp = mp1->b_datap)->db_ref == 1 && 18792 dp->db_lim - mp1->b_wptr >= len) { 18793 ASSERT(len > 0); 18794 ASSERT(!mp1->b_cont); 18795 if (len == 1) { 18796 *mp1->b_wptr++ = *mp->b_rptr; 18797 } else { 18798 bcopy(mp->b_rptr, mp1->b_wptr, len); 18799 mp1->b_wptr += len; 18800 } 18801 if (mp1 == tcp->tcp_xmit_tail) 18802 tcp->tcp_xmit_tail_unsent += len; 18803 mp1->b_cont = mp->b_cont; 18804 if (tcp->tcp_snd_zcopy_aware && 18805 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 18806 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18807 freeb(mp); 18808 mp = mp1; 18809 } else { 18810 tcp->tcp_xmit_last->b_cont = mp; 18811 } 18812 len += tcp->tcp_unsent; 18813 } 18814 18815 /* Tack on however many more positive length mblks we have */ 18816 if ((mp1 = mp->b_cont) != NULL) { 18817 do { 18818 int tlen; 18819 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 18820 (uintptr_t)INT_MAX); 18821 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 18822 if (tlen <= 0) { 18823 mp->b_cont = mp1->b_cont; 18824 freeb(mp1); 18825 } else { 18826 len += tlen; 18827 mp = mp1; 18828 } 18829 } while ((mp1 = mp->b_cont) != NULL); 18830 } 18831 tcp->tcp_xmit_last = mp; 18832 tcp->tcp_unsent = len; 18833 18834 if (urgent) 18835 usable = 1; 18836 18837 data_null: 18838 snxt = tcp->tcp_snxt; 18839 xmit_tail = tcp->tcp_xmit_tail; 18840 tail_unsent = tcp->tcp_xmit_tail_unsent; 18841 18842 /* 18843 * Note that tcp_mss has been adjusted to take into account the 18844 * timestamp option if applicable. Because SACK options do not 18845 * appear in every TCP segments and they are of variable lengths, 18846 * they cannot be included in tcp_mss. Thus we need to calculate 18847 * the actual segment length when we need to send a segment which 18848 * includes SACK options. 18849 */ 18850 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 18851 int32_t opt_len; 18852 18853 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 18854 tcp->tcp_num_sack_blk); 18855 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 18856 2 + TCPOPT_HEADER_LEN; 18857 mss = tcp->tcp_mss - opt_len; 18858 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 18859 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 18860 } else { 18861 mss = tcp->tcp_mss; 18862 tcp_hdr_len = tcp->tcp_hdr_len; 18863 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 18864 } 18865 18866 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 18867 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 18868 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 18869 } 18870 if (tcpstate == TCPS_SYN_RCVD) { 18871 /* 18872 * The three-way connection establishment handshake is not 18873 * complete yet. We want to queue the data for transmission 18874 * after entering ESTABLISHED state (RFC793). A jump to 18875 * "done" label effectively leaves data on the queue. 18876 */ 18877 goto done; 18878 } else { 18879 int usable_r; 18880 18881 /* 18882 * In the special case when cwnd is zero, which can only 18883 * happen if the connection is ECN capable, return now. 18884 * New segments is sent using tcp_timer(). The timer 18885 * is set in tcp_rput_data(). 18886 */ 18887 if (tcp->tcp_cwnd == 0) { 18888 /* 18889 * Note that tcp_cwnd is 0 before 3-way handshake is 18890 * finished. 18891 */ 18892 ASSERT(tcp->tcp_ecn_ok || 18893 tcp->tcp_state < TCPS_ESTABLISHED); 18894 return; 18895 } 18896 18897 /* NOTE: trouble if xmitting while SYN not acked? */ 18898 usable_r = snxt - tcp->tcp_suna; 18899 usable_r = tcp->tcp_swnd - usable_r; 18900 18901 /* 18902 * Check if the receiver has shrunk the window. If 18903 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 18904 * cannot be set as there is unsent data, so FIN cannot 18905 * be sent out. Otherwise, we need to take into account 18906 * of FIN as it consumes an "invisible" sequence number. 18907 */ 18908 ASSERT(tcp->tcp_fin_sent == 0); 18909 if (usable_r < 0) { 18910 /* 18911 * The receiver has shrunk the window and we have sent 18912 * -usable_r date beyond the window, re-adjust. 18913 * 18914 * If TCP window scaling is enabled, there can be 18915 * round down error as the advertised receive window 18916 * is actually right shifted n bits. This means that 18917 * the lower n bits info is wiped out. It will look 18918 * like the window is shrunk. Do a check here to 18919 * see if the shrunk amount is actually within the 18920 * error in window calculation. If it is, just 18921 * return. Note that this check is inside the 18922 * shrunk window check. This makes sure that even 18923 * though tcp_process_shrunk_swnd() is not called, 18924 * we will stop further processing. 18925 */ 18926 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 18927 tcp_process_shrunk_swnd(tcp, -usable_r); 18928 } 18929 return; 18930 } 18931 18932 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 18933 if (tcp->tcp_swnd > tcp->tcp_cwnd) 18934 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 18935 18936 /* usable = MIN(usable, unsent) */ 18937 if (usable_r > len) 18938 usable_r = len; 18939 18940 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 18941 if (usable_r > 0) { 18942 usable = usable_r; 18943 } else { 18944 /* Bypass all other unnecessary processing. */ 18945 goto done; 18946 } 18947 } 18948 18949 local_time = (mblk_t *)lbolt; 18950 18951 /* 18952 * "Our" Nagle Algorithm. This is not the same as in the old 18953 * BSD. This is more in line with the true intent of Nagle. 18954 * 18955 * The conditions are: 18956 * 1. The amount of unsent data (or amount of data which can be 18957 * sent, whichever is smaller) is less than Nagle limit. 18958 * 2. The last sent size is also less than Nagle limit. 18959 * 3. There is unack'ed data. 18960 * 4. Urgent pointer is not set. Send urgent data ignoring the 18961 * Nagle algorithm. This reduces the probability that urgent 18962 * bytes get "merged" together. 18963 * 5. The app has not closed the connection. This eliminates the 18964 * wait time of the receiving side waiting for the last piece of 18965 * (small) data. 18966 * 18967 * If all are satisified, exit without sending anything. Note 18968 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 18969 * the smaller of 1 MSS and global tcp_naglim_def (default to be 18970 * 4095). 18971 */ 18972 if (usable < (int)tcp->tcp_naglim && 18973 tcp->tcp_naglim > tcp->tcp_last_sent_len && 18974 snxt != tcp->tcp_suna && 18975 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 18976 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 18977 goto done; 18978 } 18979 18980 /* 18981 * If tcp_zero_win_probe is not set and the tcp->tcp_cork option 18982 * is set, then we have to force TCP not to send partial segment 18983 * (smaller than MSS bytes). We are calculating the usable now 18984 * based on full mss and will save the rest of remaining data for 18985 * later. When tcp_zero_win_probe is set, TCP needs to send out 18986 * something to do zero window probe. 18987 */ 18988 if (tcp->tcp_cork && !tcp->tcp_zero_win_probe) { 18989 if (usable < mss) 18990 goto done; 18991 usable = (usable / mss) * mss; 18992 } 18993 18994 /* Update the latest receive window size in TCP header. */ 18995 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 18996 tcp->tcp_tcph->th_win); 18997 18998 /* 18999 * Determine if it's worthwhile to attempt LSO or MDT, based on: 19000 * 19001 * 1. Simple TCP/IP{v4,v6} (no options). 19002 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 19003 * 3. If the TCP connection is in ESTABLISHED state. 19004 * 4. The TCP is not detached. 19005 * 19006 * If any of the above conditions have changed during the 19007 * connection, stop using LSO/MDT and restore the stream head 19008 * parameters accordingly. 19009 */ 19010 ipst = tcps->tcps_netstack->netstack_ip; 19011 19012 if ((tcp->tcp_lso || tcp->tcp_mdt) && 19013 ((tcp->tcp_ipversion == IPV4_VERSION && 19014 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19015 (tcp->tcp_ipversion == IPV6_VERSION && 19016 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19017 tcp->tcp_state != TCPS_ESTABLISHED || 19018 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19019 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19020 IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 19021 if (tcp->tcp_lso) { 19022 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19023 tcp->tcp_lso = B_FALSE; 19024 } else { 19025 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19026 tcp->tcp_mdt = B_FALSE; 19027 } 19028 19029 /* Anything other than detached is considered pathological */ 19030 if (!TCP_IS_DETACHED(tcp)) { 19031 if (tcp->tcp_lso) 19032 TCP_STAT(tcps, tcp_lso_disabled); 19033 else 19034 TCP_STAT(tcps, tcp_mdt_conn_halted1); 19035 (void) tcp_maxpsz_set(tcp, B_TRUE); 19036 } 19037 } 19038 19039 /* Use MDT if sendable amount is greater than the threshold */ 19040 if (tcp->tcp_mdt && 19041 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19042 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19043 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19044 (tcp->tcp_valid_bits == 0 || 19045 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19046 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19047 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19048 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19049 local_time, mdt_thres); 19050 } else { 19051 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19052 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19053 local_time, INT_MAX); 19054 } 19055 19056 /* Pretend that all we were trying to send really got sent */ 19057 if (rc < 0 && tail_unsent < 0) { 19058 do { 19059 xmit_tail = xmit_tail->b_cont; 19060 xmit_tail->b_prev = local_time; 19061 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19062 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19063 tail_unsent += (int)(xmit_tail->b_wptr - 19064 xmit_tail->b_rptr); 19065 } while (tail_unsent < 0); 19066 } 19067 done:; 19068 tcp->tcp_xmit_tail = xmit_tail; 19069 tcp->tcp_xmit_tail_unsent = tail_unsent; 19070 len = tcp->tcp_snxt - snxt; 19071 if (len) { 19072 /* 19073 * If new data was sent, need to update the notsack 19074 * list, which is, afterall, data blocks that have 19075 * not been sack'ed by the receiver. New data is 19076 * not sack'ed. 19077 */ 19078 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19079 /* len is a negative value. */ 19080 tcp->tcp_pipe -= len; 19081 tcp_notsack_update(&(tcp->tcp_notsack_list), 19082 tcp->tcp_snxt, snxt, 19083 &(tcp->tcp_num_notsack_blk), 19084 &(tcp->tcp_cnt_notsack_list)); 19085 } 19086 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19087 tcp->tcp_rack = tcp->tcp_rnxt; 19088 tcp->tcp_rack_cnt = 0; 19089 if ((snxt + len) == tcp->tcp_suna) { 19090 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19091 } 19092 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19093 /* 19094 * Didn't send anything. Make sure the timer is running 19095 * so that we will probe a zero window. 19096 */ 19097 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19098 } 19099 /* Note that len is the amount we just sent but with a negative sign */ 19100 tcp->tcp_unsent += len; 19101 mutex_enter(&tcp->tcp_non_sq_lock); 19102 if (tcp->tcp_flow_stopped) { 19103 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19104 tcp_clrqfull(tcp); 19105 } 19106 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19107 tcp_setqfull(tcp); 19108 } 19109 mutex_exit(&tcp->tcp_non_sq_lock); 19110 } 19111 19112 /* 19113 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19114 * outgoing TCP header with the template header, as well as other 19115 * options such as time-stamp, ECN and/or SACK. 19116 */ 19117 static void 19118 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19119 { 19120 tcph_t *tcp_tmpl, *tcp_h; 19121 uint32_t *dst, *src; 19122 int hdrlen; 19123 19124 ASSERT(OK_32PTR(rptr)); 19125 19126 /* Template header */ 19127 tcp_tmpl = tcp->tcp_tcph; 19128 19129 /* Header of outgoing packet */ 19130 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19131 19132 /* dst and src are opaque 32-bit fields, used for copying */ 19133 dst = (uint32_t *)rptr; 19134 src = (uint32_t *)tcp->tcp_iphc; 19135 hdrlen = tcp->tcp_hdr_len; 19136 19137 /* Fill time-stamp option if needed */ 19138 if (tcp->tcp_snd_ts_ok) { 19139 U32_TO_BE32((uint32_t)now, 19140 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19141 U32_TO_BE32(tcp->tcp_ts_recent, 19142 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19143 } else { 19144 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19145 } 19146 19147 /* 19148 * Copy the template header; is this really more efficient than 19149 * calling bcopy()? For simple IPv4/TCP, it may be the case, 19150 * but perhaps not for other scenarios. 19151 */ 19152 dst[0] = src[0]; 19153 dst[1] = src[1]; 19154 dst[2] = src[2]; 19155 dst[3] = src[3]; 19156 dst[4] = src[4]; 19157 dst[5] = src[5]; 19158 dst[6] = src[6]; 19159 dst[7] = src[7]; 19160 dst[8] = src[8]; 19161 dst[9] = src[9]; 19162 if (hdrlen -= 40) { 19163 hdrlen >>= 2; 19164 dst += 10; 19165 src += 10; 19166 do { 19167 *dst++ = *src++; 19168 } while (--hdrlen); 19169 } 19170 19171 /* 19172 * Set the ECN info in the TCP header if it is not a zero 19173 * window probe. Zero window probe is only sent in 19174 * tcp_wput_data() and tcp_timer(). 19175 */ 19176 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19177 SET_ECT(tcp, rptr); 19178 19179 if (tcp->tcp_ecn_echo_on) 19180 tcp_h->th_flags[0] |= TH_ECE; 19181 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19182 tcp_h->th_flags[0] |= TH_CWR; 19183 tcp->tcp_ecn_cwr_sent = B_TRUE; 19184 } 19185 } 19186 19187 /* Fill in SACK options */ 19188 if (num_sack_blk > 0) { 19189 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19190 sack_blk_t *tmp; 19191 int32_t i; 19192 19193 wptr[0] = TCPOPT_NOP; 19194 wptr[1] = TCPOPT_NOP; 19195 wptr[2] = TCPOPT_SACK; 19196 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 19197 sizeof (sack_blk_t); 19198 wptr += TCPOPT_REAL_SACK_LEN; 19199 19200 tmp = tcp->tcp_sack_list; 19201 for (i = 0; i < num_sack_blk; i++) { 19202 U32_TO_BE32(tmp[i].begin, wptr); 19203 wptr += sizeof (tcp_seq); 19204 U32_TO_BE32(tmp[i].end, wptr); 19205 wptr += sizeof (tcp_seq); 19206 } 19207 tcp_h->th_offset_and_rsrvd[0] += 19208 ((num_sack_blk * 2 + 1) << 4); 19209 } 19210 } 19211 19212 /* 19213 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 19214 * the destination address and SAP attribute, and if necessary, the 19215 * hardware checksum offload attribute to a Multidata message. 19216 */ 19217 static int 19218 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 19219 const uint32_t start, const uint32_t stuff, const uint32_t end, 19220 const uint32_t flags, tcp_stack_t *tcps) 19221 { 19222 /* Add global destination address & SAP attribute */ 19223 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 19224 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 19225 "destination address+SAP\n")); 19226 19227 if (dlmp != NULL) 19228 TCP_STAT(tcps, tcp_mdt_allocfail); 19229 return (-1); 19230 } 19231 19232 /* Add global hwcksum attribute */ 19233 if (hwcksum && 19234 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 19235 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 19236 "checksum attribute\n")); 19237 19238 TCP_STAT(tcps, tcp_mdt_allocfail); 19239 return (-1); 19240 } 19241 19242 return (0); 19243 } 19244 19245 /* 19246 * Smaller and private version of pdescinfo_t used specifically for TCP, 19247 * which allows for only two payload spans per packet. 19248 */ 19249 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 19250 19251 /* 19252 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19253 * scheme, and returns one the following: 19254 * 19255 * -1 = failed allocation. 19256 * 0 = success; burst count reached, or usable send window is too small, 19257 * and that we'd rather wait until later before sending again. 19258 */ 19259 static int 19260 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19261 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19262 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19263 const int mdt_thres) 19264 { 19265 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19266 multidata_t *mmd; 19267 uint_t obsegs, obbytes, hdr_frag_sz; 19268 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19269 int num_burst_seg, max_pld; 19270 pdesc_t *pkt; 19271 tcp_pdescinfo_t tcp_pkt_info; 19272 pdescinfo_t *pkt_info; 19273 int pbuf_idx, pbuf_idx_nxt; 19274 int seg_len, len, spill, af; 19275 boolean_t add_buffer, zcopy, clusterwide; 19276 boolean_t rconfirm = B_FALSE; 19277 boolean_t done = B_FALSE; 19278 uint32_t cksum; 19279 uint32_t hwcksum_flags; 19280 ire_t *ire = NULL; 19281 ill_t *ill; 19282 ipha_t *ipha; 19283 ip6_t *ip6h; 19284 ipaddr_t src, dst; 19285 ill_zerocopy_capab_t *zc_cap = NULL; 19286 uint16_t *up; 19287 int err; 19288 conn_t *connp; 19289 tcp_stack_t *tcps = tcp->tcp_tcps; 19290 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19291 int usable_mmd, tail_unsent_mmd; 19292 uint_t snxt_mmd, obsegs_mmd, obbytes_mmd; 19293 mblk_t *xmit_tail_mmd; 19294 netstackid_t stack_id; 19295 19296 #ifdef _BIG_ENDIAN 19297 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19298 #else 19299 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19300 #endif 19301 19302 #define PREP_NEW_MULTIDATA() { \ 19303 mmd = NULL; \ 19304 md_mp = md_hbuf = NULL; \ 19305 cur_hdr_off = 0; \ 19306 max_pld = tcp->tcp_mdt_max_pld; \ 19307 pbuf_idx = pbuf_idx_nxt = -1; \ 19308 add_buffer = B_TRUE; \ 19309 zcopy = B_FALSE; \ 19310 } 19311 19312 #define PREP_NEW_PBUF() { \ 19313 md_pbuf = md_pbuf_nxt = NULL; \ 19314 pbuf_idx = pbuf_idx_nxt = -1; \ 19315 cur_pld_off = 0; \ 19316 first_snxt = *snxt; \ 19317 ASSERT(*tail_unsent > 0); \ 19318 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 19319 } 19320 19321 ASSERT(mdt_thres >= mss); 19322 ASSERT(*usable > 0 && *usable > mdt_thres); 19323 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 19324 ASSERT(!TCP_IS_DETACHED(tcp)); 19325 ASSERT(tcp->tcp_valid_bits == 0 || 19326 tcp->tcp_valid_bits == TCP_FSS_VALID); 19327 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 19328 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 19329 (tcp->tcp_ipversion == IPV6_VERSION && 19330 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 19331 19332 connp = tcp->tcp_connp; 19333 ASSERT(connp != NULL); 19334 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 19335 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 19336 19337 stack_id = connp->conn_netstack->netstack_stackid; 19338 19339 usable_mmd = tail_unsent_mmd = 0; 19340 snxt_mmd = obsegs_mmd = obbytes_mmd = 0; 19341 xmit_tail_mmd = NULL; 19342 /* 19343 * Note that tcp will only declare at most 2 payload spans per 19344 * packet, which is much lower than the maximum allowable number 19345 * of packet spans per Multidata. For this reason, we use the 19346 * privately declared and smaller descriptor info structure, in 19347 * order to save some stack space. 19348 */ 19349 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 19350 19351 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 19352 if (af == AF_INET) { 19353 dst = tcp->tcp_ipha->ipha_dst; 19354 src = tcp->tcp_ipha->ipha_src; 19355 ASSERT(!CLASSD(dst)); 19356 } 19357 ASSERT(af == AF_INET || 19358 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 19359 19360 obsegs = obbytes = 0; 19361 num_burst_seg = tcp->tcp_snd_burst; 19362 md_mp_head = NULL; 19363 PREP_NEW_MULTIDATA(); 19364 19365 /* 19366 * Before we go on further, make sure there is an IRE that we can 19367 * use, and that the ILL supports MDT. Otherwise, there's no point 19368 * in proceeding any further, and we should just hand everything 19369 * off to the legacy path. 19370 */ 19371 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 19372 goto legacy_send_no_md; 19373 19374 ASSERT(ire != NULL); 19375 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 19376 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 19377 ASSERT(af == AF_INET || ire->ire_nce != NULL); 19378 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19379 /* 19380 * If we do support loopback for MDT (which requires modifications 19381 * to the receiving paths), the following assertions should go away, 19382 * and we would be sending the Multidata to loopback conn later on. 19383 */ 19384 ASSERT(!IRE_IS_LOCAL(ire)); 19385 ASSERT(ire->ire_stq != NULL); 19386 19387 ill = ire_to_ill(ire); 19388 ASSERT(ill != NULL); 19389 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 19390 19391 if (!tcp->tcp_ire_ill_check_done) { 19392 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19393 tcp->tcp_ire_ill_check_done = B_TRUE; 19394 } 19395 19396 /* 19397 * If the underlying interface conditions have changed, or if the 19398 * new interface does not support MDT, go back to legacy path. 19399 */ 19400 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 19401 /* don't go through this path anymore for this connection */ 19402 TCP_STAT(tcps, tcp_mdt_conn_halted2); 19403 tcp->tcp_mdt = B_FALSE; 19404 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 19405 "interface %s\n", (void *)connp, ill->ill_name)); 19406 /* IRE will be released prior to returning */ 19407 goto legacy_send_no_md; 19408 } 19409 19410 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 19411 zc_cap = ill->ill_zerocopy_capab; 19412 19413 /* 19414 * Check if we can take tcp fast-path. Note that "incomplete" 19415 * ire's (where the link-layer for next hop is not resolved 19416 * or where the fast-path header in nce_fp_mp is not available 19417 * yet) are sent down the legacy (slow) path. 19418 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 19419 */ 19420 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 19421 /* IRE will be released prior to returning */ 19422 goto legacy_send_no_md; 19423 } 19424 19425 /* go to legacy path if interface doesn't support zerocopy */ 19426 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 19427 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 19428 /* IRE will be released prior to returning */ 19429 goto legacy_send_no_md; 19430 } 19431 19432 /* does the interface support hardware checksum offload? */ 19433 hwcksum_flags = 0; 19434 if (ILL_HCKSUM_CAPABLE(ill) && 19435 (ill->ill_hcksum_capab->ill_hcksum_txflags & 19436 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 19437 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 19438 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19439 HCKSUM_IPHDRCKSUM) 19440 hwcksum_flags = HCK_IPV4_HDRCKSUM; 19441 19442 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19443 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 19444 hwcksum_flags |= HCK_FULLCKSUM; 19445 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19446 HCKSUM_INET_PARTIAL) 19447 hwcksum_flags |= HCK_PARTIALCKSUM; 19448 } 19449 19450 /* 19451 * Each header fragment consists of the leading extra space, 19452 * followed by the TCP/IP header, and the trailing extra space. 19453 * We make sure that each header fragment begins on a 32-bit 19454 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 19455 * aligned in tcp_mdt_update). 19456 */ 19457 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 19458 tcp->tcp_mdt_hdr_tail), 4); 19459 19460 /* are we starting from the beginning of data block? */ 19461 if (*tail_unsent == 0) { 19462 *xmit_tail = (*xmit_tail)->b_cont; 19463 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 19464 *tail_unsent = (int)MBLKL(*xmit_tail); 19465 } 19466 19467 /* 19468 * Here we create one or more Multidata messages, each made up of 19469 * one header buffer and up to N payload buffers. This entire 19470 * operation is done within two loops: 19471 * 19472 * The outer loop mostly deals with creating the Multidata message, 19473 * as well as the header buffer that gets added to it. It also 19474 * links the Multidata messages together such that all of them can 19475 * be sent down to the lower layer in a single putnext call; this 19476 * linking behavior depends on the tcp_mdt_chain tunable. 19477 * 19478 * The inner loop takes an existing Multidata message, and adds 19479 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 19480 * packetizes those buffers by filling up the corresponding header 19481 * buffer fragments with the proper IP and TCP headers, and by 19482 * describing the layout of each packet in the packet descriptors 19483 * that get added to the Multidata. 19484 */ 19485 do { 19486 /* 19487 * If usable send window is too small, or data blocks in 19488 * transmit list are smaller than our threshold (i.e. app 19489 * performs large writes followed by small ones), we hand 19490 * off the control over to the legacy path. Note that we'll 19491 * get back the control once it encounters a large block. 19492 */ 19493 if (*usable < mss || (*tail_unsent <= mdt_thres && 19494 (*xmit_tail)->b_cont != NULL && 19495 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 19496 /* send down what we've got so far */ 19497 if (md_mp_head != NULL) { 19498 tcp_multisend_data(tcp, ire, ill, md_mp_head, 19499 obsegs, obbytes, &rconfirm); 19500 } 19501 /* 19502 * Pass control over to tcp_send(), but tell it to 19503 * return to us once a large-size transmission is 19504 * possible. 19505 */ 19506 TCP_STAT(tcps, tcp_mdt_legacy_small); 19507 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 19508 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 19509 tail_unsent, xmit_tail, local_time, 19510 mdt_thres)) <= 0) { 19511 /* burst count reached, or alloc failed */ 19512 IRE_REFRELE(ire); 19513 return (err); 19514 } 19515 19516 /* tcp_send() may have sent everything, so check */ 19517 if (*usable <= 0) { 19518 IRE_REFRELE(ire); 19519 return (0); 19520 } 19521 19522 TCP_STAT(tcps, tcp_mdt_legacy_ret); 19523 /* 19524 * We may have delivered the Multidata, so make sure 19525 * to re-initialize before the next round. 19526 */ 19527 md_mp_head = NULL; 19528 obsegs = obbytes = 0; 19529 num_burst_seg = tcp->tcp_snd_burst; 19530 PREP_NEW_MULTIDATA(); 19531 19532 /* are we starting from the beginning of data block? */ 19533 if (*tail_unsent == 0) { 19534 *xmit_tail = (*xmit_tail)->b_cont; 19535 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19536 (uintptr_t)INT_MAX); 19537 *tail_unsent = (int)MBLKL(*xmit_tail); 19538 } 19539 } 19540 /* 19541 * Record current values for parameters we may need to pass 19542 * to tcp_send() or tcp_multisend_data(). We checkpoint at 19543 * each iteration of the outer loop (each multidata message 19544 * creation). If we have a failure in the inner loop, we send 19545 * any complete multidata messages we have before reverting 19546 * to using the traditional non-md path. 19547 */ 19548 snxt_mmd = *snxt; 19549 usable_mmd = *usable; 19550 xmit_tail_mmd = *xmit_tail; 19551 tail_unsent_mmd = *tail_unsent; 19552 obsegs_mmd = obsegs; 19553 obbytes_mmd = obbytes; 19554 19555 /* 19556 * max_pld limits the number of mblks in tcp's transmit 19557 * queue that can be added to a Multidata message. Once 19558 * this counter reaches zero, no more additional mblks 19559 * can be added to it. What happens afterwards depends 19560 * on whether or not we are set to chain the Multidata 19561 * messages. If we are to link them together, reset 19562 * max_pld to its original value (tcp_mdt_max_pld) and 19563 * prepare to create a new Multidata message which will 19564 * get linked to md_mp_head. Else, leave it alone and 19565 * let the inner loop break on its own. 19566 */ 19567 if (tcp_mdt_chain && max_pld == 0) 19568 PREP_NEW_MULTIDATA(); 19569 19570 /* adding a payload buffer; re-initialize values */ 19571 if (add_buffer) 19572 PREP_NEW_PBUF(); 19573 19574 /* 19575 * If we don't have a Multidata, either because we just 19576 * (re)entered this outer loop, or after we branched off 19577 * to tcp_send above, setup the Multidata and header 19578 * buffer to be used. 19579 */ 19580 if (md_mp == NULL) { 19581 int md_hbuflen; 19582 uint32_t start, stuff; 19583 19584 /* 19585 * Calculate Multidata header buffer size large enough 19586 * to hold all of the headers that can possibly be 19587 * sent at this moment. We'd rather over-estimate 19588 * the size than running out of space; this is okay 19589 * since this buffer is small anyway. 19590 */ 19591 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 19592 19593 /* 19594 * Start and stuff offset for partial hardware 19595 * checksum offload; these are currently for IPv4. 19596 * For full checksum offload, they are set to zero. 19597 */ 19598 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 19599 if (af == AF_INET) { 19600 start = IP_SIMPLE_HDR_LENGTH; 19601 stuff = IP_SIMPLE_HDR_LENGTH + 19602 TCP_CHECKSUM_OFFSET; 19603 } else { 19604 start = IPV6_HDR_LEN; 19605 stuff = IPV6_HDR_LEN + 19606 TCP_CHECKSUM_OFFSET; 19607 } 19608 } else { 19609 start = stuff = 0; 19610 } 19611 19612 /* 19613 * Create the header buffer, Multidata, as well as 19614 * any necessary attributes (destination address, 19615 * SAP and hardware checksum offload) that should 19616 * be associated with the Multidata message. 19617 */ 19618 ASSERT(cur_hdr_off == 0); 19619 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 19620 ((md_hbuf->b_wptr += md_hbuflen), 19621 (mmd = mmd_alloc(md_hbuf, &md_mp, 19622 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 19623 /* fastpath mblk */ 19624 ire->ire_nce->nce_res_mp, 19625 /* hardware checksum enabled */ 19626 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 19627 /* hardware checksum offsets */ 19628 start, stuff, 0, 19629 /* hardware checksum flag */ 19630 hwcksum_flags, tcps) != 0)) { 19631 legacy_send: 19632 /* 19633 * We arrive here from a failure within the 19634 * inner (packetizer) loop or we fail one of 19635 * the conditionals above. We restore the 19636 * previously checkpointed values for: 19637 * xmit_tail 19638 * usable 19639 * tail_unsent 19640 * snxt 19641 * obbytes 19642 * obsegs 19643 * We should then be able to dispatch any 19644 * complete multidata before reverting to the 19645 * traditional path with consistent parameters 19646 * (the inner loop updates these as it 19647 * iterates). 19648 */ 19649 *xmit_tail = xmit_tail_mmd; 19650 *usable = usable_mmd; 19651 *tail_unsent = tail_unsent_mmd; 19652 *snxt = snxt_mmd; 19653 obbytes = obbytes_mmd; 19654 obsegs = obsegs_mmd; 19655 if (md_mp != NULL) { 19656 /* Unlink message from the chain */ 19657 if (md_mp_head != NULL) { 19658 err = (intptr_t)rmvb(md_mp_head, 19659 md_mp); 19660 /* 19661 * We can't assert that rmvb 19662 * did not return -1, since we 19663 * may get here before linkb 19664 * happens. We do, however, 19665 * check if we just removed the 19666 * only element in the list. 19667 */ 19668 if (err == 0) 19669 md_mp_head = NULL; 19670 } 19671 /* md_hbuf gets freed automatically */ 19672 TCP_STAT(tcps, tcp_mdt_discarded); 19673 freeb(md_mp); 19674 } else { 19675 /* Either allocb or mmd_alloc failed */ 19676 TCP_STAT(tcps, tcp_mdt_allocfail); 19677 if (md_hbuf != NULL) 19678 freeb(md_hbuf); 19679 } 19680 19681 /* send down what we've got so far */ 19682 if (md_mp_head != NULL) { 19683 tcp_multisend_data(tcp, ire, ill, 19684 md_mp_head, obsegs, obbytes, 19685 &rconfirm); 19686 } 19687 legacy_send_no_md: 19688 if (ire != NULL) 19689 IRE_REFRELE(ire); 19690 /* 19691 * Too bad; let the legacy path handle this. 19692 * We specify INT_MAX for the threshold, since 19693 * we gave up with the Multidata processings 19694 * and let the old path have it all. 19695 */ 19696 TCP_STAT(tcps, tcp_mdt_legacy_all); 19697 return (tcp_send(q, tcp, mss, tcp_hdr_len, 19698 tcp_tcp_hdr_len, num_sack_blk, usable, 19699 snxt, tail_unsent, xmit_tail, local_time, 19700 INT_MAX)); 19701 } 19702 19703 /* link to any existing ones, if applicable */ 19704 TCP_STAT(tcps, tcp_mdt_allocd); 19705 if (md_mp_head == NULL) { 19706 md_mp_head = md_mp; 19707 } else if (tcp_mdt_chain) { 19708 TCP_STAT(tcps, tcp_mdt_linked); 19709 linkb(md_mp_head, md_mp); 19710 } 19711 } 19712 19713 ASSERT(md_mp_head != NULL); 19714 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 19715 ASSERT(md_mp != NULL && mmd != NULL); 19716 ASSERT(md_hbuf != NULL); 19717 19718 /* 19719 * Packetize the transmittable portion of the data block; 19720 * each data block is essentially added to the Multidata 19721 * as a payload buffer. We also deal with adding more 19722 * than one payload buffers, which happens when the remaining 19723 * packetized portion of the current payload buffer is less 19724 * than MSS, while the next data block in transmit queue 19725 * has enough data to make up for one. This "spillover" 19726 * case essentially creates a split-packet, where portions 19727 * of the packet's payload fragments may span across two 19728 * virtually discontiguous address blocks. 19729 */ 19730 seg_len = mss; 19731 do { 19732 len = seg_len; 19733 19734 /* one must remain NULL for DTRACE_IP_FASTPATH */ 19735 ipha = NULL; 19736 ip6h = NULL; 19737 19738 ASSERT(len > 0); 19739 ASSERT(max_pld >= 0); 19740 ASSERT(!add_buffer || cur_pld_off == 0); 19741 19742 /* 19743 * First time around for this payload buffer; note 19744 * in the case of a spillover, the following has 19745 * been done prior to adding the split-packet 19746 * descriptor to Multidata, and we don't want to 19747 * repeat the process. 19748 */ 19749 if (add_buffer) { 19750 ASSERT(mmd != NULL); 19751 ASSERT(md_pbuf == NULL); 19752 ASSERT(md_pbuf_nxt == NULL); 19753 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 19754 19755 /* 19756 * Have we reached the limit? We'd get to 19757 * this case when we're not chaining the 19758 * Multidata messages together, and since 19759 * we're done, terminate this loop. 19760 */ 19761 if (max_pld == 0) 19762 break; /* done */ 19763 19764 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 19765 TCP_STAT(tcps, tcp_mdt_allocfail); 19766 goto legacy_send; /* out_of_mem */ 19767 } 19768 19769 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 19770 zc_cap != NULL) { 19771 if (!ip_md_zcopy_attr(mmd, NULL, 19772 zc_cap->ill_zerocopy_flags)) { 19773 freeb(md_pbuf); 19774 TCP_STAT(tcps, 19775 tcp_mdt_allocfail); 19776 /* out_of_mem */ 19777 goto legacy_send; 19778 } 19779 zcopy = B_TRUE; 19780 } 19781 19782 md_pbuf->b_rptr += base_pld_off; 19783 19784 /* 19785 * Add a payload buffer to the Multidata; this 19786 * operation must not fail, or otherwise our 19787 * logic in this routine is broken. There 19788 * is no memory allocation done by the 19789 * routine, so any returned failure simply 19790 * tells us that we've done something wrong. 19791 * 19792 * A failure tells us that either we're adding 19793 * the same payload buffer more than once, or 19794 * we're trying to add more buffers than 19795 * allowed (max_pld calculation is wrong). 19796 * None of the above cases should happen, and 19797 * we panic because either there's horrible 19798 * heap corruption, and/or programming mistake. 19799 */ 19800 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 19801 if (pbuf_idx < 0) { 19802 cmn_err(CE_PANIC, "tcp_multisend: " 19803 "payload buffer logic error " 19804 "detected for tcp %p mmd %p " 19805 "pbuf %p (%d)\n", 19806 (void *)tcp, (void *)mmd, 19807 (void *)md_pbuf, pbuf_idx); 19808 } 19809 19810 ASSERT(max_pld > 0); 19811 --max_pld; 19812 add_buffer = B_FALSE; 19813 } 19814 19815 ASSERT(md_mp_head != NULL); 19816 ASSERT(md_pbuf != NULL); 19817 ASSERT(md_pbuf_nxt == NULL); 19818 ASSERT(pbuf_idx != -1); 19819 ASSERT(pbuf_idx_nxt == -1); 19820 ASSERT(*usable > 0); 19821 19822 /* 19823 * We spillover to the next payload buffer only 19824 * if all of the following is true: 19825 * 19826 * 1. There is not enough data on the current 19827 * payload buffer to make up `len', 19828 * 2. We are allowed to send `len', 19829 * 3. The next payload buffer length is large 19830 * enough to accomodate `spill'. 19831 */ 19832 if ((spill = len - *tail_unsent) > 0 && 19833 *usable >= len && 19834 MBLKL((*xmit_tail)->b_cont) >= spill && 19835 max_pld > 0) { 19836 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 19837 if (md_pbuf_nxt == NULL) { 19838 TCP_STAT(tcps, tcp_mdt_allocfail); 19839 goto legacy_send; /* out_of_mem */ 19840 } 19841 19842 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 19843 zc_cap != NULL) { 19844 if (!ip_md_zcopy_attr(mmd, NULL, 19845 zc_cap->ill_zerocopy_flags)) { 19846 freeb(md_pbuf_nxt); 19847 TCP_STAT(tcps, 19848 tcp_mdt_allocfail); 19849 /* out_of_mem */ 19850 goto legacy_send; 19851 } 19852 zcopy = B_TRUE; 19853 } 19854 19855 /* 19856 * See comments above on the first call to 19857 * mmd_addpldbuf for explanation on the panic. 19858 */ 19859 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 19860 if (pbuf_idx_nxt < 0) { 19861 panic("tcp_multisend: " 19862 "next payload buffer logic error " 19863 "detected for tcp %p mmd %p " 19864 "pbuf %p (%d)\n", 19865 (void *)tcp, (void *)mmd, 19866 (void *)md_pbuf_nxt, pbuf_idx_nxt); 19867 } 19868 19869 ASSERT(max_pld > 0); 19870 --max_pld; 19871 } else if (spill > 0) { 19872 /* 19873 * If there's a spillover, but the following 19874 * xmit_tail couldn't give us enough octets 19875 * to reach "len", then stop the current 19876 * Multidata creation and let the legacy 19877 * tcp_send() path take over. We don't want 19878 * to send the tiny segment as part of this 19879 * Multidata for performance reasons; instead, 19880 * we let the legacy path deal with grouping 19881 * it with the subsequent small mblks. 19882 */ 19883 if (*usable >= len && 19884 MBLKL((*xmit_tail)->b_cont) < spill) { 19885 max_pld = 0; 19886 break; /* done */ 19887 } 19888 19889 /* 19890 * We can't spillover, and we are near 19891 * the end of the current payload buffer, 19892 * so send what's left. 19893 */ 19894 ASSERT(*tail_unsent > 0); 19895 len = *tail_unsent; 19896 } 19897 19898 /* tail_unsent is negated if there is a spillover */ 19899 *tail_unsent -= len; 19900 *usable -= len; 19901 ASSERT(*usable >= 0); 19902 19903 if (*usable < mss) 19904 seg_len = *usable; 19905 /* 19906 * Sender SWS avoidance; see comments in tcp_send(); 19907 * everything else is the same, except that we only 19908 * do this here if there is no more data to be sent 19909 * following the current xmit_tail. We don't check 19910 * for 1-byte urgent data because we shouldn't get 19911 * here if TCP_URG_VALID is set. 19912 */ 19913 if (*usable > 0 && *usable < mss && 19914 ((md_pbuf_nxt == NULL && 19915 (*xmit_tail)->b_cont == NULL) || 19916 (md_pbuf_nxt != NULL && 19917 (*xmit_tail)->b_cont->b_cont == NULL)) && 19918 seg_len < (tcp->tcp_max_swnd >> 1) && 19919 (tcp->tcp_unsent - 19920 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 19921 !tcp->tcp_zero_win_probe) { 19922 if ((*snxt + len) == tcp->tcp_snxt && 19923 (*snxt + len) == tcp->tcp_suna) { 19924 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19925 } 19926 done = B_TRUE; 19927 } 19928 19929 /* 19930 * Prime pump for IP's checksumming on our behalf; 19931 * include the adjustment for a source route if any. 19932 * Do this only for software/partial hardware checksum 19933 * offload, as this field gets zeroed out later for 19934 * the full hardware checksum offload case. 19935 */ 19936 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 19937 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 19938 cksum = (cksum >> 16) + (cksum & 0xFFFF); 19939 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 19940 } 19941 19942 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 19943 *snxt += len; 19944 19945 tcp->tcp_tcph->th_flags[0] = TH_ACK; 19946 /* 19947 * We set the PUSH bit only if TCP has no more buffered 19948 * data to be transmitted (or if sender SWS avoidance 19949 * takes place), as opposed to setting it for every 19950 * last packet in the burst. 19951 */ 19952 if (done || 19953 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 19954 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 19955 19956 /* 19957 * Set FIN bit if this is our last segment; snxt 19958 * already includes its length, and it will not 19959 * be adjusted after this point. 19960 */ 19961 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 19962 *snxt == tcp->tcp_fss) { 19963 if (!tcp->tcp_fin_acked) { 19964 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 19965 BUMP_MIB(&tcps->tcps_mib, 19966 tcpOutControl); 19967 } 19968 if (!tcp->tcp_fin_sent) { 19969 tcp->tcp_fin_sent = B_TRUE; 19970 /* 19971 * tcp state must be ESTABLISHED 19972 * in order for us to get here in 19973 * the first place. 19974 */ 19975 tcp->tcp_state = TCPS_FIN_WAIT_1; 19976 19977 /* 19978 * Upon returning from this routine, 19979 * tcp_wput_data() will set tcp_snxt 19980 * to be equal to snxt + tcp_fin_sent. 19981 * This is essentially the same as 19982 * setting it to tcp_fss + 1. 19983 */ 19984 } 19985 } 19986 19987 tcp->tcp_last_sent_len = (ushort_t)len; 19988 19989 len += tcp_hdr_len; 19990 if (tcp->tcp_ipversion == IPV4_VERSION) 19991 tcp->tcp_ipha->ipha_length = htons(len); 19992 else 19993 tcp->tcp_ip6h->ip6_plen = htons(len - 19994 ((char *)&tcp->tcp_ip6h[1] - 19995 tcp->tcp_iphc)); 19996 19997 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 19998 19999 /* setup header fragment */ 20000 PDESC_HDR_ADD(pkt_info, 20001 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20002 tcp->tcp_mdt_hdr_head, /* head room */ 20003 tcp_hdr_len, /* len */ 20004 tcp->tcp_mdt_hdr_tail); /* tail room */ 20005 20006 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20007 hdr_frag_sz); 20008 ASSERT(MBLKIN(md_hbuf, 20009 (pkt_info->hdr_base - md_hbuf->b_rptr), 20010 PDESC_HDRSIZE(pkt_info))); 20011 20012 /* setup first payload fragment */ 20013 PDESC_PLD_INIT(pkt_info); 20014 PDESC_PLD_SPAN_ADD(pkt_info, 20015 pbuf_idx, /* index */ 20016 md_pbuf->b_rptr + cur_pld_off, /* start */ 20017 tcp->tcp_last_sent_len); /* len */ 20018 20019 /* create a split-packet in case of a spillover */ 20020 if (md_pbuf_nxt != NULL) { 20021 ASSERT(spill > 0); 20022 ASSERT(pbuf_idx_nxt > pbuf_idx); 20023 ASSERT(!add_buffer); 20024 20025 md_pbuf = md_pbuf_nxt; 20026 md_pbuf_nxt = NULL; 20027 pbuf_idx = pbuf_idx_nxt; 20028 pbuf_idx_nxt = -1; 20029 cur_pld_off = spill; 20030 20031 /* trim out first payload fragment */ 20032 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20033 20034 /* setup second payload fragment */ 20035 PDESC_PLD_SPAN_ADD(pkt_info, 20036 pbuf_idx, /* index */ 20037 md_pbuf->b_rptr, /* start */ 20038 spill); /* len */ 20039 20040 if ((*xmit_tail)->b_next == NULL) { 20041 /* 20042 * Store the lbolt used for RTT 20043 * estimation. We can only record one 20044 * timestamp per mblk so we do it when 20045 * we reach the end of the payload 20046 * buffer. Also we only take a new 20047 * timestamp sample when the previous 20048 * timed data from the same mblk has 20049 * been ack'ed. 20050 */ 20051 (*xmit_tail)->b_prev = local_time; 20052 (*xmit_tail)->b_next = 20053 (mblk_t *)(uintptr_t)first_snxt; 20054 } 20055 20056 first_snxt = *snxt - spill; 20057 20058 /* 20059 * Advance xmit_tail; usable could be 0 by 20060 * the time we got here, but we made sure 20061 * above that we would only spillover to 20062 * the next data block if usable includes 20063 * the spilled-over amount prior to the 20064 * subtraction. Therefore, we are sure 20065 * that xmit_tail->b_cont can't be NULL. 20066 */ 20067 ASSERT((*xmit_tail)->b_cont != NULL); 20068 *xmit_tail = (*xmit_tail)->b_cont; 20069 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20070 (uintptr_t)INT_MAX); 20071 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20072 } else { 20073 cur_pld_off += tcp->tcp_last_sent_len; 20074 } 20075 20076 /* 20077 * Fill in the header using the template header, and 20078 * add options such as time-stamp, ECN and/or SACK, 20079 * as needed. 20080 */ 20081 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20082 (clock_t)local_time, num_sack_blk); 20083 20084 /* take care of some IP header businesses */ 20085 if (af == AF_INET) { 20086 ipha = (ipha_t *)pkt_info->hdr_rptr; 20087 20088 ASSERT(OK_32PTR((uchar_t *)ipha)); 20089 ASSERT(PDESC_HDRL(pkt_info) >= 20090 IP_SIMPLE_HDR_LENGTH); 20091 ASSERT(ipha->ipha_version_and_hdr_length == 20092 IP_SIMPLE_HDR_VERSION); 20093 20094 /* 20095 * Assign ident value for current packet; see 20096 * related comments in ip_wput_ire() about the 20097 * contract private interface with clustering 20098 * group. 20099 */ 20100 clusterwide = B_FALSE; 20101 if (cl_inet_ipident != NULL) { 20102 ASSERT(cl_inet_isclusterwide != NULL); 20103 if ((*cl_inet_isclusterwide)(stack_id, 20104 IPPROTO_IP, AF_INET, 20105 (uint8_t *)(uintptr_t)src, NULL)) { 20106 ipha->ipha_ident = 20107 (*cl_inet_ipident)(stack_id, 20108 IPPROTO_IP, AF_INET, 20109 (uint8_t *)(uintptr_t)src, 20110 (uint8_t *)(uintptr_t)dst, 20111 NULL); 20112 clusterwide = B_TRUE; 20113 } 20114 } 20115 20116 if (!clusterwide) { 20117 ipha->ipha_ident = (uint16_t) 20118 atomic_add_32_nv( 20119 &ire->ire_ident, 1); 20120 } 20121 #ifndef _BIG_ENDIAN 20122 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20123 (ipha->ipha_ident >> 8); 20124 #endif 20125 } else { 20126 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20127 20128 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20129 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20130 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20131 ASSERT(PDESC_HDRL(pkt_info) >= 20132 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 20133 TCP_CHECKSUM_SIZE)); 20134 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20135 20136 if (tcp->tcp_ip_forward_progress) { 20137 rconfirm = B_TRUE; 20138 tcp->tcp_ip_forward_progress = B_FALSE; 20139 } 20140 } 20141 20142 /* at least one payload span, and at most two */ 20143 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20144 20145 /* add the packet descriptor to Multidata */ 20146 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20147 KM_NOSLEEP)) == NULL) { 20148 /* 20149 * Any failure other than ENOMEM indicates 20150 * that we have passed in invalid pkt_info 20151 * or parameters to mmd_addpdesc, which must 20152 * not happen. 20153 * 20154 * EINVAL is a result of failure on boundary 20155 * checks against the pkt_info contents. It 20156 * should not happen, and we panic because 20157 * either there's horrible heap corruption, 20158 * and/or programming mistake. 20159 */ 20160 if (err != ENOMEM) { 20161 cmn_err(CE_PANIC, "tcp_multisend: " 20162 "pdesc logic error detected for " 20163 "tcp %p mmd %p pinfo %p (%d)\n", 20164 (void *)tcp, (void *)mmd, 20165 (void *)pkt_info, err); 20166 } 20167 TCP_STAT(tcps, tcp_mdt_addpdescfail); 20168 goto legacy_send; /* out_of_mem */ 20169 } 20170 ASSERT(pkt != NULL); 20171 20172 /* calculate IP header and TCP checksums */ 20173 if (af == AF_INET) { 20174 /* calculate pseudo-header checksum */ 20175 cksum = (dst >> 16) + (dst & 0xFFFF) + 20176 (src >> 16) + (src & 0xFFFF); 20177 20178 /* offset for TCP header checksum */ 20179 up = IPH_TCPH_CHECKSUMP(ipha, 20180 IP_SIMPLE_HDR_LENGTH); 20181 } else { 20182 up = (uint16_t *)&ip6h->ip6_src; 20183 20184 /* calculate pseudo-header checksum */ 20185 cksum = up[0] + up[1] + up[2] + up[3] + 20186 up[4] + up[5] + up[6] + up[7] + 20187 up[8] + up[9] + up[10] + up[11] + 20188 up[12] + up[13] + up[14] + up[15]; 20189 20190 /* Fold the initial sum */ 20191 cksum = (cksum & 0xffff) + (cksum >> 16); 20192 20193 up = (uint16_t *)(((uchar_t *)ip6h) + 20194 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 20195 } 20196 20197 if (hwcksum_flags & HCK_FULLCKSUM) { 20198 /* clear checksum field for hardware */ 20199 *up = 0; 20200 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 20201 uint32_t sum; 20202 20203 /* pseudo-header checksumming */ 20204 sum = *up + cksum + IP_TCP_CSUM_COMP; 20205 sum = (sum & 0xFFFF) + (sum >> 16); 20206 *up = (sum & 0xFFFF) + (sum >> 16); 20207 } else { 20208 /* software checksumming */ 20209 TCP_STAT(tcps, tcp_out_sw_cksum); 20210 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 20211 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 20212 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 20213 cksum + IP_TCP_CSUM_COMP); 20214 if (*up == 0) 20215 *up = 0xFFFF; 20216 } 20217 20218 /* IPv4 header checksum */ 20219 if (af == AF_INET) { 20220 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20221 ipha->ipha_hdr_checksum = 0; 20222 } else { 20223 IP_HDR_CKSUM(ipha, cksum, 20224 ((uint32_t *)ipha)[0], 20225 ((uint16_t *)ipha)[4]); 20226 } 20227 } 20228 20229 if (af == AF_INET && 20230 HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) || 20231 af == AF_INET6 && 20232 HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) { 20233 mblk_t *mp, *mp1; 20234 uchar_t *hdr_rptr, *hdr_wptr; 20235 uchar_t *pld_rptr, *pld_wptr; 20236 20237 /* 20238 * We reconstruct a pseudo packet for the hooks 20239 * framework using mmd_transform_link(). 20240 * If it is a split packet we pullup the 20241 * payload. FW_HOOKS expects a pkt comprising 20242 * of two mblks: a header and the payload. 20243 */ 20244 if ((mp = mmd_transform_link(pkt)) == NULL) { 20245 TCP_STAT(tcps, tcp_mdt_allocfail); 20246 goto legacy_send; 20247 } 20248 20249 if (pkt_info->pld_cnt > 1) { 20250 /* split payload, more than one pld */ 20251 if ((mp1 = msgpullup(mp->b_cont, -1)) == 20252 NULL) { 20253 freemsg(mp); 20254 TCP_STAT(tcps, 20255 tcp_mdt_allocfail); 20256 goto legacy_send; 20257 } 20258 freemsg(mp->b_cont); 20259 mp->b_cont = mp1; 20260 } else { 20261 mp1 = mp->b_cont; 20262 } 20263 ASSERT(mp1 != NULL && mp1->b_cont == NULL); 20264 20265 /* 20266 * Remember the message offsets. This is so we 20267 * can detect changes when we return from the 20268 * FW_HOOKS callbacks. 20269 */ 20270 hdr_rptr = mp->b_rptr; 20271 hdr_wptr = mp->b_wptr; 20272 pld_rptr = mp->b_cont->b_rptr; 20273 pld_wptr = mp->b_cont->b_wptr; 20274 20275 if (af == AF_INET) { 20276 DTRACE_PROBE4( 20277 ip4__physical__out__start, 20278 ill_t *, NULL, 20279 ill_t *, ill, 20280 ipha_t *, ipha, 20281 mblk_t *, mp); 20282 FW_HOOKS( 20283 ipst->ips_ip4_physical_out_event, 20284 ipst->ips_ipv4firewall_physical_out, 20285 NULL, ill, ipha, mp, mp, 0, ipst); 20286 DTRACE_PROBE1( 20287 ip4__physical__out__end, 20288 mblk_t *, mp); 20289 } else { 20290 DTRACE_PROBE4( 20291 ip6__physical__out_start, 20292 ill_t *, NULL, 20293 ill_t *, ill, 20294 ip6_t *, ip6h, 20295 mblk_t *, mp); 20296 FW_HOOKS6( 20297 ipst->ips_ip6_physical_out_event, 20298 ipst->ips_ipv6firewall_physical_out, 20299 NULL, ill, ip6h, mp, mp, 0, ipst); 20300 DTRACE_PROBE1( 20301 ip6__physical__out__end, 20302 mblk_t *, mp); 20303 } 20304 20305 if (mp == NULL || 20306 (mp1 = mp->b_cont) == NULL || 20307 mp->b_rptr != hdr_rptr || 20308 mp->b_wptr != hdr_wptr || 20309 mp1->b_rptr != pld_rptr || 20310 mp1->b_wptr != pld_wptr || 20311 mp1->b_cont != NULL) { 20312 /* 20313 * We abandon multidata processing and 20314 * return to the normal path, either 20315 * when a packet is blocked, or when 20316 * the boundaries of header buffer or 20317 * payload buffer have been changed by 20318 * FW_HOOKS[6]. 20319 */ 20320 if (mp != NULL) 20321 freemsg(mp); 20322 goto legacy_send; 20323 } 20324 /* Finished with the pseudo packet */ 20325 freemsg(mp); 20326 } 20327 DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr, 20328 ill, ipha, ip6h); 20329 /* advance header offset */ 20330 cur_hdr_off += hdr_frag_sz; 20331 20332 obbytes += tcp->tcp_last_sent_len; 20333 ++obsegs; 20334 } while (!done && *usable > 0 && --num_burst_seg > 0 && 20335 *tail_unsent > 0); 20336 20337 if ((*xmit_tail)->b_next == NULL) { 20338 /* 20339 * Store the lbolt used for RTT estimation. We can only 20340 * record one timestamp per mblk so we do it when we 20341 * reach the end of the payload buffer. Also we only 20342 * take a new timestamp sample when the previous timed 20343 * data from the same mblk has been ack'ed. 20344 */ 20345 (*xmit_tail)->b_prev = local_time; 20346 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 20347 } 20348 20349 ASSERT(*tail_unsent >= 0); 20350 if (*tail_unsent > 0) { 20351 /* 20352 * We got here because we broke out of the above 20353 * loop due to of one of the following cases: 20354 * 20355 * 1. len < adjusted MSS (i.e. small), 20356 * 2. Sender SWS avoidance, 20357 * 3. max_pld is zero. 20358 * 20359 * We are done for this Multidata, so trim our 20360 * last payload buffer (if any) accordingly. 20361 */ 20362 if (md_pbuf != NULL) 20363 md_pbuf->b_wptr -= *tail_unsent; 20364 } else if (*usable > 0) { 20365 *xmit_tail = (*xmit_tail)->b_cont; 20366 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20367 (uintptr_t)INT_MAX); 20368 *tail_unsent = (int)MBLKL(*xmit_tail); 20369 add_buffer = B_TRUE; 20370 } 20371 } while (!done && *usable > 0 && num_burst_seg > 0 && 20372 (tcp_mdt_chain || max_pld > 0)); 20373 20374 if (md_mp_head != NULL) { 20375 /* send everything down */ 20376 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 20377 &rconfirm); 20378 } 20379 20380 #undef PREP_NEW_MULTIDATA 20381 #undef PREP_NEW_PBUF 20382 #undef IPVER 20383 20384 IRE_REFRELE(ire); 20385 return (0); 20386 } 20387 20388 /* 20389 * A wrapper function for sending one or more Multidata messages down to 20390 * the module below ip; this routine does not release the reference of the 20391 * IRE (caller does that). This routine is analogous to tcp_send_data(). 20392 */ 20393 static void 20394 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 20395 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 20396 { 20397 uint64_t delta; 20398 nce_t *nce; 20399 tcp_stack_t *tcps = tcp->tcp_tcps; 20400 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20401 20402 ASSERT(ire != NULL && ill != NULL); 20403 ASSERT(ire->ire_stq != NULL); 20404 ASSERT(md_mp_head != NULL); 20405 ASSERT(rconfirm != NULL); 20406 20407 /* adjust MIBs and IRE timestamp */ 20408 DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp); 20409 tcp->tcp_obsegs += obsegs; 20410 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs); 20411 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes); 20412 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs); 20413 20414 if (tcp->tcp_ipversion == IPV4_VERSION) { 20415 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs); 20416 } else { 20417 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs); 20418 } 20419 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs); 20420 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs); 20421 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes); 20422 20423 ire->ire_ob_pkt_count += obsegs; 20424 if (ire->ire_ipif != NULL) 20425 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 20426 ire->ire_last_used_time = lbolt; 20427 20428 if (ipst->ips_ipobs_enabled) { 20429 multidata_t *dlmdp = mmd_getmultidata(md_mp_head); 20430 pdesc_t *dl_pkt; 20431 pdescinfo_t pinfo; 20432 mblk_t *nmp; 20433 zoneid_t szone = tcp->tcp_connp->conn_zoneid; 20434 20435 for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo); 20436 (dl_pkt != NULL); 20437 dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) { 20438 if ((nmp = mmd_transform_link(dl_pkt)) == NULL) 20439 continue; 20440 ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone, 20441 ALL_ZONES, ill, tcp->tcp_ipversion, 0, ipst); 20442 freemsg(nmp); 20443 } 20444 } 20445 20446 /* send it down */ 20447 putnext(ire->ire_stq, md_mp_head); 20448 20449 /* we're done for TCP/IPv4 */ 20450 if (tcp->tcp_ipversion == IPV4_VERSION) 20451 return; 20452 20453 nce = ire->ire_nce; 20454 20455 ASSERT(nce != NULL); 20456 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 20457 ASSERT(nce->nce_state != ND_INCOMPLETE); 20458 20459 /* reachability confirmation? */ 20460 if (*rconfirm) { 20461 nce->nce_last = TICK_TO_MSEC(lbolt64); 20462 if (nce->nce_state != ND_REACHABLE) { 20463 mutex_enter(&nce->nce_lock); 20464 nce->nce_state = ND_REACHABLE; 20465 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 20466 mutex_exit(&nce->nce_lock); 20467 (void) untimeout(nce->nce_timeout_id); 20468 if (ip_debug > 2) { 20469 /* ip1dbg */ 20470 pr_addr_dbg("tcp_multisend_data: state " 20471 "for %s changed to REACHABLE\n", 20472 AF_INET6, &ire->ire_addr_v6); 20473 } 20474 } 20475 /* reset transport reachability confirmation */ 20476 *rconfirm = B_FALSE; 20477 } 20478 20479 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 20480 ip1dbg(("tcp_multisend_data: delta = %" PRId64 20481 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 20482 20483 if (delta > (uint64_t)ill->ill_reachable_time) { 20484 mutex_enter(&nce->nce_lock); 20485 switch (nce->nce_state) { 20486 case ND_REACHABLE: 20487 case ND_STALE: 20488 /* 20489 * ND_REACHABLE is identical to ND_STALE in this 20490 * specific case. If reachable time has expired for 20491 * this neighbor (delta is greater than reachable 20492 * time), conceptually, the neighbor cache is no 20493 * longer in REACHABLE state, but already in STALE 20494 * state. So the correct transition here is to 20495 * ND_DELAY. 20496 */ 20497 nce->nce_state = ND_DELAY; 20498 mutex_exit(&nce->nce_lock); 20499 NDP_RESTART_TIMER(nce, 20500 ipst->ips_delay_first_probe_time); 20501 if (ip_debug > 3) { 20502 /* ip2dbg */ 20503 pr_addr_dbg("tcp_multisend_data: state " 20504 "for %s changed to DELAY\n", 20505 AF_INET6, &ire->ire_addr_v6); 20506 } 20507 break; 20508 case ND_DELAY: 20509 case ND_PROBE: 20510 mutex_exit(&nce->nce_lock); 20511 /* Timers have already started */ 20512 break; 20513 case ND_UNREACHABLE: 20514 /* 20515 * ndp timer has detected that this nce is 20516 * unreachable and initiated deleting this nce 20517 * and all its associated IREs. This is a race 20518 * where we found the ire before it was deleted 20519 * and have just sent out a packet using this 20520 * unreachable nce. 20521 */ 20522 mutex_exit(&nce->nce_lock); 20523 break; 20524 default: 20525 ASSERT(0); 20526 } 20527 } 20528 } 20529 20530 /* 20531 * Derived from tcp_send_data(). 20532 */ 20533 static void 20534 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 20535 int num_lso_seg) 20536 { 20537 ipha_t *ipha; 20538 mblk_t *ire_fp_mp; 20539 uint_t ire_fp_mp_len; 20540 uint32_t hcksum_txflags = 0; 20541 ipaddr_t src; 20542 ipaddr_t dst; 20543 uint32_t cksum; 20544 uint16_t *up; 20545 tcp_stack_t *tcps = tcp->tcp_tcps; 20546 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20547 20548 ASSERT(DB_TYPE(mp) == M_DATA); 20549 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20550 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 20551 ASSERT(tcp->tcp_connp != NULL); 20552 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 20553 20554 ipha = (ipha_t *)mp->b_rptr; 20555 src = ipha->ipha_src; 20556 dst = ipha->ipha_dst; 20557 20558 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 20559 20560 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 20561 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 20562 num_lso_seg); 20563 #ifndef _BIG_ENDIAN 20564 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 20565 #endif 20566 if (tcp->tcp_snd_zcopy_aware) { 20567 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 20568 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 20569 mp = tcp_zcopy_disable(tcp, mp); 20570 } 20571 20572 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 20573 ASSERT(ill->ill_hcksum_capab != NULL); 20574 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 20575 } 20576 20577 /* 20578 * Since the TCP checksum should be recalculated by h/w, we can just 20579 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 20580 * pseudo-header checksum for HCK_PARTIALCKSUM. 20581 * The partial pseudo-header excludes TCP length, that was calculated 20582 * in tcp_send(), so to zero *up before further processing. 20583 */ 20584 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 20585 20586 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 20587 *up = 0; 20588 20589 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 20590 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 20591 20592 /* 20593 * Append LSO flags and mss to the mp. 20594 */ 20595 lso_info_set(mp, mss, HW_LSO); 20596 20597 ipha->ipha_fragment_offset_and_flags |= 20598 (uint32_t)htons(ire->ire_frag_flag); 20599 20600 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20601 ire_fp_mp_len = MBLKL(ire_fp_mp); 20602 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 20603 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 20604 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 20605 20606 UPDATE_OB_PKT_COUNT(ire); 20607 ire->ire_last_used_time = lbolt; 20608 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 20609 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 20610 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 20611 ntohs(ipha->ipha_length)); 20612 20613 DTRACE_PROBE4(ip4__physical__out__start, 20614 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 20615 FW_HOOKS(ipst->ips_ip4_physical_out_event, 20616 ipst->ips_ipv4firewall_physical_out, NULL, 20617 ill, ipha, mp, mp, 0, ipst); 20618 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 20619 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 20620 20621 if (mp != NULL) { 20622 if (ipst->ips_ipobs_enabled) { 20623 zoneid_t szone; 20624 20625 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 20626 ipst, ALL_ZONES); 20627 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 20628 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst); 20629 } 20630 20631 ILL_SEND_TX(ill, ire, tcp->tcp_connp, mp, 0, NULL); 20632 } 20633 } 20634 20635 /* 20636 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 20637 * scheme, and returns one of the following: 20638 * 20639 * -1 = failed allocation. 20640 * 0 = success; burst count reached, or usable send window is too small, 20641 * and that we'd rather wait until later before sending again. 20642 * 1 = success; we are called from tcp_multisend(), and both usable send 20643 * window and tail_unsent are greater than the MDT threshold, and thus 20644 * Multidata Transmit should be used instead. 20645 */ 20646 static int 20647 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20648 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20649 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 20650 const int mdt_thres) 20651 { 20652 int num_burst_seg = tcp->tcp_snd_burst; 20653 ire_t *ire = NULL; 20654 ill_t *ill = NULL; 20655 mblk_t *ire_fp_mp = NULL; 20656 uint_t ire_fp_mp_len = 0; 20657 int num_lso_seg = 1; 20658 uint_t lso_usable; 20659 boolean_t do_lso_send = B_FALSE; 20660 tcp_stack_t *tcps = tcp->tcp_tcps; 20661 20662 /* 20663 * Check LSO capability before any further work. And the similar check 20664 * need to be done in for(;;) loop. 20665 * LSO will be deployed when therer is more than one mss of available 20666 * data and a burst transmission is allowed. 20667 */ 20668 if (tcp->tcp_lso && 20669 (tcp->tcp_valid_bits == 0 || 20670 tcp->tcp_valid_bits == TCP_FSS_VALID) && 20671 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 20672 /* 20673 * Try to find usable IRE/ILL and do basic check to the ILL. 20674 * Double check LSO usability before going further, since the 20675 * underlying interface could have been changed. In case of any 20676 * change of LSO capability, set tcp_ire_ill_check_done to 20677 * B_FALSE to force to check the ILL with the next send. 20678 */ 20679 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill) && 20680 tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 20681 /* 20682 * Enable LSO with this transmission. 20683 * Since IRE has been hold in tcp_send_find_ire_ill(), 20684 * IRE_REFRELE(ire) should be called before return. 20685 */ 20686 do_lso_send = B_TRUE; 20687 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20688 ire_fp_mp_len = MBLKL(ire_fp_mp); 20689 /* Round up to multiple of 4 */ 20690 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 20691 } else { 20692 tcp->tcp_lso = B_FALSE; 20693 tcp->tcp_ire_ill_check_done = B_FALSE; 20694 do_lso_send = B_FALSE; 20695 ill = NULL; 20696 } 20697 } 20698 20699 for (;;) { 20700 struct datab *db; 20701 tcph_t *tcph; 20702 uint32_t sum; 20703 mblk_t *mp, *mp1; 20704 uchar_t *rptr; 20705 int len; 20706 20707 /* 20708 * If we're called by tcp_multisend(), and the amount of 20709 * sendable data as well as the size of current xmit_tail 20710 * is beyond the MDT threshold, return to the caller and 20711 * let the large data transmit be done using MDT. 20712 */ 20713 if (*usable > 0 && *usable > mdt_thres && 20714 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 20715 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 20716 ASSERT(tcp->tcp_mdt); 20717 return (1); /* success; do large send */ 20718 } 20719 20720 if (num_burst_seg == 0) 20721 break; /* success; burst count reached */ 20722 20723 /* 20724 * Calculate the maximum payload length we can send in *one* 20725 * time. 20726 */ 20727 if (do_lso_send) { 20728 /* 20729 * Check whether need to do LSO any more. 20730 */ 20731 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 20732 lso_usable = MIN(tcp->tcp_lso_max, *usable); 20733 lso_usable = MIN(lso_usable, 20734 num_burst_seg * mss); 20735 20736 num_lso_seg = lso_usable / mss; 20737 if (lso_usable % mss) { 20738 num_lso_seg++; 20739 tcp->tcp_last_sent_len = (ushort_t) 20740 (lso_usable % mss); 20741 } else { 20742 tcp->tcp_last_sent_len = (ushort_t)mss; 20743 } 20744 } else { 20745 do_lso_send = B_FALSE; 20746 num_lso_seg = 1; 20747 lso_usable = mss; 20748 } 20749 } 20750 20751 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 20752 20753 /* 20754 * Adjust num_burst_seg here. 20755 */ 20756 num_burst_seg -= num_lso_seg; 20757 20758 len = mss; 20759 if (len > *usable) { 20760 ASSERT(do_lso_send == B_FALSE); 20761 20762 len = *usable; 20763 if (len <= 0) { 20764 /* Terminate the loop */ 20765 break; /* success; too small */ 20766 } 20767 /* 20768 * Sender silly-window avoidance. 20769 * Ignore this if we are going to send a 20770 * zero window probe out. 20771 * 20772 * TODO: force data into microscopic window? 20773 * ==> (!pushed || (unsent > usable)) 20774 */ 20775 if (len < (tcp->tcp_max_swnd >> 1) && 20776 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 20777 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 20778 len == 1) && (! tcp->tcp_zero_win_probe)) { 20779 /* 20780 * If the retransmit timer is not running 20781 * we start it so that we will retransmit 20782 * in the case when the the receiver has 20783 * decremented the window. 20784 */ 20785 if (*snxt == tcp->tcp_snxt && 20786 *snxt == tcp->tcp_suna) { 20787 /* 20788 * We are not supposed to send 20789 * anything. So let's wait a little 20790 * bit longer before breaking SWS 20791 * avoidance. 20792 * 20793 * What should the value be? 20794 * Suggestion: MAX(init rexmit time, 20795 * tcp->tcp_rto) 20796 */ 20797 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20798 } 20799 break; /* success; too small */ 20800 } 20801 } 20802 20803 tcph = tcp->tcp_tcph; 20804 20805 /* 20806 * The reason to adjust len here is that we need to set flags 20807 * and calculate checksum. 20808 */ 20809 if (do_lso_send) 20810 len = lso_usable; 20811 20812 *usable -= len; /* Approximate - can be adjusted later */ 20813 if (*usable > 0) 20814 tcph->th_flags[0] = TH_ACK; 20815 else 20816 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 20817 20818 /* 20819 * Prime pump for IP's checksumming on our behalf 20820 * Include the adjustment for a source route if any. 20821 */ 20822 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20823 sum = (sum >> 16) + (sum & 0xFFFF); 20824 U16_TO_ABE16(sum, tcph->th_sum); 20825 20826 U32_TO_ABE32(*snxt, tcph->th_seq); 20827 20828 /* 20829 * Branch off to tcp_xmit_mp() if any of the VALID bits is 20830 * set. For the case when TCP_FSS_VALID is the only valid 20831 * bit (normal active close), branch off only when we think 20832 * that the FIN flag needs to be set. Note for this case, 20833 * that (snxt + len) may not reflect the actual seg_len, 20834 * as len may be further reduced in tcp_xmit_mp(). If len 20835 * gets modified, we will end up here again. 20836 */ 20837 if (tcp->tcp_valid_bits != 0 && 20838 (tcp->tcp_valid_bits != TCP_FSS_VALID || 20839 ((*snxt + len) == tcp->tcp_fss))) { 20840 uchar_t *prev_rptr; 20841 uint32_t prev_snxt = tcp->tcp_snxt; 20842 20843 if (*tail_unsent == 0) { 20844 ASSERT((*xmit_tail)->b_cont != NULL); 20845 *xmit_tail = (*xmit_tail)->b_cont; 20846 prev_rptr = (*xmit_tail)->b_rptr; 20847 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20848 (*xmit_tail)->b_rptr); 20849 } else { 20850 prev_rptr = (*xmit_tail)->b_rptr; 20851 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 20852 *tail_unsent; 20853 } 20854 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 20855 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 20856 /* Restore tcp_snxt so we get amount sent right. */ 20857 tcp->tcp_snxt = prev_snxt; 20858 if (prev_rptr == (*xmit_tail)->b_rptr) { 20859 /* 20860 * If the previous timestamp is still in use, 20861 * don't stomp on it. 20862 */ 20863 if ((*xmit_tail)->b_next == NULL) { 20864 (*xmit_tail)->b_prev = local_time; 20865 (*xmit_tail)->b_next = 20866 (mblk_t *)(uintptr_t)(*snxt); 20867 } 20868 } else 20869 (*xmit_tail)->b_rptr = prev_rptr; 20870 20871 if (mp == NULL) { 20872 if (ire != NULL) 20873 IRE_REFRELE(ire); 20874 return (-1); 20875 } 20876 mp1 = mp->b_cont; 20877 20878 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 20879 tcp->tcp_last_sent_len = (ushort_t)len; 20880 while (mp1->b_cont) { 20881 *xmit_tail = (*xmit_tail)->b_cont; 20882 (*xmit_tail)->b_prev = local_time; 20883 (*xmit_tail)->b_next = 20884 (mblk_t *)(uintptr_t)(*snxt); 20885 mp1 = mp1->b_cont; 20886 } 20887 *snxt += len; 20888 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 20889 BUMP_LOCAL(tcp->tcp_obsegs); 20890 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 20891 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 20892 tcp_send_data(tcp, q, mp); 20893 continue; 20894 } 20895 20896 *snxt += len; /* Adjust later if we don't send all of len */ 20897 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 20898 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 20899 20900 if (*tail_unsent) { 20901 /* Are the bytes above us in flight? */ 20902 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 20903 if (rptr != (*xmit_tail)->b_rptr) { 20904 *tail_unsent -= len; 20905 if (len <= mss) /* LSO is unusable */ 20906 tcp->tcp_last_sent_len = (ushort_t)len; 20907 len += tcp_hdr_len; 20908 if (tcp->tcp_ipversion == IPV4_VERSION) 20909 tcp->tcp_ipha->ipha_length = htons(len); 20910 else 20911 tcp->tcp_ip6h->ip6_plen = 20912 htons(len - 20913 ((char *)&tcp->tcp_ip6h[1] - 20914 tcp->tcp_iphc)); 20915 mp = dupb(*xmit_tail); 20916 if (mp == NULL) { 20917 if (ire != NULL) 20918 IRE_REFRELE(ire); 20919 return (-1); /* out_of_mem */ 20920 } 20921 mp->b_rptr = rptr; 20922 /* 20923 * If the old timestamp is no longer in use, 20924 * sample a new timestamp now. 20925 */ 20926 if ((*xmit_tail)->b_next == NULL) { 20927 (*xmit_tail)->b_prev = local_time; 20928 (*xmit_tail)->b_next = 20929 (mblk_t *)(uintptr_t)(*snxt-len); 20930 } 20931 goto must_alloc; 20932 } 20933 } else { 20934 *xmit_tail = (*xmit_tail)->b_cont; 20935 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 20936 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 20937 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20938 (*xmit_tail)->b_rptr); 20939 } 20940 20941 (*xmit_tail)->b_prev = local_time; 20942 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 20943 20944 *tail_unsent -= len; 20945 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 20946 tcp->tcp_last_sent_len = (ushort_t)len; 20947 20948 len += tcp_hdr_len; 20949 if (tcp->tcp_ipversion == IPV4_VERSION) 20950 tcp->tcp_ipha->ipha_length = htons(len); 20951 else 20952 tcp->tcp_ip6h->ip6_plen = htons(len - 20953 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 20954 20955 mp = dupb(*xmit_tail); 20956 if (mp == NULL) { 20957 if (ire != NULL) 20958 IRE_REFRELE(ire); 20959 return (-1); /* out_of_mem */ 20960 } 20961 20962 len = tcp_hdr_len; 20963 /* 20964 * There are four reasons to allocate a new hdr mblk: 20965 * 1) The bytes above us are in use by another packet 20966 * 2) We don't have good alignment 20967 * 3) The mblk is being shared 20968 * 4) We don't have enough room for a header 20969 */ 20970 rptr = mp->b_rptr - len; 20971 if (!OK_32PTR(rptr) || 20972 ((db = mp->b_datap), db->db_ref != 2) || 20973 rptr < db->db_base + ire_fp_mp_len) { 20974 /* NOTE: we assume allocb returns an OK_32PTR */ 20975 20976 must_alloc:; 20977 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 20978 tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED); 20979 if (mp1 == NULL) { 20980 freemsg(mp); 20981 if (ire != NULL) 20982 IRE_REFRELE(ire); 20983 return (-1); /* out_of_mem */ 20984 } 20985 mp1->b_cont = mp; 20986 mp = mp1; 20987 /* Leave room for Link Level header */ 20988 len = tcp_hdr_len; 20989 rptr = 20990 &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len]; 20991 mp->b_wptr = &rptr[len]; 20992 } 20993 20994 /* 20995 * Fill in the header using the template header, and add 20996 * options such as time-stamp, ECN and/or SACK, as needed. 20997 */ 20998 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 20999 21000 mp->b_rptr = rptr; 21001 21002 if (*tail_unsent) { 21003 int spill = *tail_unsent; 21004 21005 mp1 = mp->b_cont; 21006 if (mp1 == NULL) 21007 mp1 = mp; 21008 21009 /* 21010 * If we're a little short, tack on more mblks until 21011 * there is no more spillover. 21012 */ 21013 while (spill < 0) { 21014 mblk_t *nmp; 21015 int nmpsz; 21016 21017 nmp = (*xmit_tail)->b_cont; 21018 nmpsz = MBLKL(nmp); 21019 21020 /* 21021 * Excess data in mblk; can we split it? 21022 * If MDT is enabled for the connection, 21023 * keep on splitting as this is a transient 21024 * send path. 21025 */ 21026 if (!do_lso_send && !tcp->tcp_mdt && 21027 (spill + nmpsz > 0)) { 21028 /* 21029 * Don't split if stream head was 21030 * told to break up larger writes 21031 * into smaller ones. 21032 */ 21033 if (tcp->tcp_maxpsz > 0) 21034 break; 21035 21036 /* 21037 * Next mblk is less than SMSS/2 21038 * rounded up to nearest 64-byte; 21039 * let it get sent as part of the 21040 * next segment. 21041 */ 21042 if (tcp->tcp_localnet && 21043 !tcp->tcp_cork && 21044 (nmpsz < roundup((mss >> 1), 64))) 21045 break; 21046 } 21047 21048 *xmit_tail = nmp; 21049 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21050 /* Stash for rtt use later */ 21051 (*xmit_tail)->b_prev = local_time; 21052 (*xmit_tail)->b_next = 21053 (mblk_t *)(uintptr_t)(*snxt - len); 21054 mp1->b_cont = dupb(*xmit_tail); 21055 mp1 = mp1->b_cont; 21056 21057 spill += nmpsz; 21058 if (mp1 == NULL) { 21059 *tail_unsent = spill; 21060 freemsg(mp); 21061 if (ire != NULL) 21062 IRE_REFRELE(ire); 21063 return (-1); /* out_of_mem */ 21064 } 21065 } 21066 21067 /* Trim back any surplus on the last mblk */ 21068 if (spill >= 0) { 21069 mp1->b_wptr -= spill; 21070 *tail_unsent = spill; 21071 } else { 21072 /* 21073 * We did not send everything we could in 21074 * order to remain within the b_cont limit. 21075 */ 21076 *usable -= spill; 21077 *snxt += spill; 21078 tcp->tcp_last_sent_len += spill; 21079 UPDATE_MIB(&tcps->tcps_mib, 21080 tcpOutDataBytes, spill); 21081 /* 21082 * Adjust the checksum 21083 */ 21084 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21085 sum += spill; 21086 sum = (sum >> 16) + (sum & 0xFFFF); 21087 U16_TO_ABE16(sum, tcph->th_sum); 21088 if (tcp->tcp_ipversion == IPV4_VERSION) { 21089 sum = ntohs( 21090 ((ipha_t *)rptr)->ipha_length) + 21091 spill; 21092 ((ipha_t *)rptr)->ipha_length = 21093 htons(sum); 21094 } else { 21095 sum = ntohs( 21096 ((ip6_t *)rptr)->ip6_plen) + 21097 spill; 21098 ((ip6_t *)rptr)->ip6_plen = 21099 htons(sum); 21100 } 21101 *tail_unsent = 0; 21102 } 21103 } 21104 if (tcp->tcp_ip_forward_progress) { 21105 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21106 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 21107 tcp->tcp_ip_forward_progress = B_FALSE; 21108 } 21109 21110 if (do_lso_send) { 21111 tcp_lsosend_data(tcp, mp, ire, ill, mss, 21112 num_lso_seg); 21113 tcp->tcp_obsegs += num_lso_seg; 21114 21115 TCP_STAT(tcps, tcp_lso_times); 21116 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 21117 } else { 21118 tcp_send_data(tcp, q, mp); 21119 BUMP_LOCAL(tcp->tcp_obsegs); 21120 } 21121 } 21122 21123 if (ire != NULL) 21124 IRE_REFRELE(ire); 21125 return (0); 21126 } 21127 21128 /* Unlink and return any mblk that looks like it contains a MDT info */ 21129 static mblk_t * 21130 tcp_mdt_info_mp(mblk_t *mp) 21131 { 21132 mblk_t *prev_mp; 21133 21134 for (;;) { 21135 prev_mp = mp; 21136 /* no more to process? */ 21137 if ((mp = mp->b_cont) == NULL) 21138 break; 21139 21140 switch (DB_TYPE(mp)) { 21141 case M_CTL: 21142 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 21143 continue; 21144 ASSERT(prev_mp != NULL); 21145 prev_mp->b_cont = mp->b_cont; 21146 mp->b_cont = NULL; 21147 return (mp); 21148 default: 21149 break; 21150 } 21151 } 21152 return (mp); 21153 } 21154 21155 /* MDT info update routine, called when IP notifies us about MDT */ 21156 static void 21157 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 21158 { 21159 boolean_t prev_state; 21160 tcp_stack_t *tcps = tcp->tcp_tcps; 21161 21162 /* 21163 * IP is telling us to abort MDT on this connection? We know 21164 * this because the capability is only turned off when IP 21165 * encounters some pathological cases, e.g. link-layer change 21166 * where the new driver doesn't support MDT, or in situation 21167 * where MDT usage on the link-layer has been switched off. 21168 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 21169 * if the link-layer doesn't support MDT, and if it does, it 21170 * will indicate that the feature is to be turned on. 21171 */ 21172 prev_state = tcp->tcp_mdt; 21173 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 21174 if (!tcp->tcp_mdt && !first) { 21175 TCP_STAT(tcps, tcp_mdt_conn_halted3); 21176 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 21177 (void *)tcp->tcp_connp)); 21178 } 21179 21180 /* 21181 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 21182 * so disable MDT otherwise. The checks are done here 21183 * and in tcp_wput_data(). 21184 */ 21185 if (tcp->tcp_mdt && 21186 (tcp->tcp_ipversion == IPV4_VERSION && 21187 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21188 (tcp->tcp_ipversion == IPV6_VERSION && 21189 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 21190 tcp->tcp_mdt = B_FALSE; 21191 21192 if (tcp->tcp_mdt) { 21193 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 21194 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 21195 "version (%d), expected version is %d", 21196 mdt_capab->ill_mdt_version, MDT_VERSION_2); 21197 tcp->tcp_mdt = B_FALSE; 21198 return; 21199 } 21200 21201 /* 21202 * We need the driver to be able to handle at least three 21203 * spans per packet in order for tcp MDT to be utilized. 21204 * The first is for the header portion, while the rest are 21205 * needed to handle a packet that straddles across two 21206 * virtually non-contiguous buffers; a typical tcp packet 21207 * therefore consists of only two spans. Note that we take 21208 * a zero as "don't care". 21209 */ 21210 if (mdt_capab->ill_mdt_span_limit > 0 && 21211 mdt_capab->ill_mdt_span_limit < 3) { 21212 tcp->tcp_mdt = B_FALSE; 21213 return; 21214 } 21215 21216 /* a zero means driver wants default value */ 21217 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 21218 tcps->tcps_mdt_max_pbufs); 21219 if (tcp->tcp_mdt_max_pld == 0) 21220 tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs; 21221 21222 /* ensure 32-bit alignment */ 21223 tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min, 21224 mdt_capab->ill_mdt_hdr_head), 4); 21225 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min, 21226 mdt_capab->ill_mdt_hdr_tail), 4); 21227 21228 if (!first && !prev_state) { 21229 TCP_STAT(tcps, tcp_mdt_conn_resumed2); 21230 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 21231 (void *)tcp->tcp_connp)); 21232 } 21233 } 21234 } 21235 21236 /* Unlink and return any mblk that looks like it contains a LSO info */ 21237 static mblk_t * 21238 tcp_lso_info_mp(mblk_t *mp) 21239 { 21240 mblk_t *prev_mp; 21241 21242 for (;;) { 21243 prev_mp = mp; 21244 /* no more to process? */ 21245 if ((mp = mp->b_cont) == NULL) 21246 break; 21247 21248 switch (DB_TYPE(mp)) { 21249 case M_CTL: 21250 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 21251 continue; 21252 ASSERT(prev_mp != NULL); 21253 prev_mp->b_cont = mp->b_cont; 21254 mp->b_cont = NULL; 21255 return (mp); 21256 default: 21257 break; 21258 } 21259 } 21260 21261 return (mp); 21262 } 21263 21264 /* LSO info update routine, called when IP notifies us about LSO */ 21265 static void 21266 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 21267 { 21268 tcp_stack_t *tcps = tcp->tcp_tcps; 21269 21270 /* 21271 * IP is telling us to abort LSO on this connection? We know 21272 * this because the capability is only turned off when IP 21273 * encounters some pathological cases, e.g. link-layer change 21274 * where the new NIC/driver doesn't support LSO, or in situation 21275 * where LSO usage on the link-layer has been switched off. 21276 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 21277 * if the link-layer doesn't support LSO, and if it does, it 21278 * will indicate that the feature is to be turned on. 21279 */ 21280 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 21281 TCP_STAT(tcps, tcp_lso_enabled); 21282 21283 /* 21284 * We currently only support LSO on simple TCP/IPv4, 21285 * so disable LSO otherwise. The checks are done here 21286 * and in tcp_wput_data(). 21287 */ 21288 if (tcp->tcp_lso && 21289 (tcp->tcp_ipversion == IPV4_VERSION && 21290 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21291 (tcp->tcp_ipversion == IPV6_VERSION)) { 21292 tcp->tcp_lso = B_FALSE; 21293 TCP_STAT(tcps, tcp_lso_disabled); 21294 } else { 21295 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 21296 lso_capab->ill_lso_max); 21297 } 21298 } 21299 21300 static void 21301 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 21302 { 21303 conn_t *connp = tcp->tcp_connp; 21304 tcp_stack_t *tcps = tcp->tcp_tcps; 21305 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21306 21307 ASSERT(ire != NULL); 21308 21309 /* 21310 * We may be in the fastpath here, and although we essentially do 21311 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 21312 * we try to keep things as brief as possible. After all, these 21313 * are only best-effort checks, and we do more thorough ones prior 21314 * to calling tcp_send()/tcp_multisend(). 21315 */ 21316 if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) && 21317 check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 21318 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 21319 !(ire->ire_flags & RTF_MULTIRT) && 21320 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 21321 CONN_IS_LSO_MD_FASTPATH(connp)) { 21322 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 21323 /* Cache the result */ 21324 connp->conn_lso_ok = B_TRUE; 21325 21326 ASSERT(ill->ill_lso_capab != NULL); 21327 if (!ill->ill_lso_capab->ill_lso_on) { 21328 ill->ill_lso_capab->ill_lso_on = 1; 21329 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21330 "LSO for interface %s\n", (void *)connp, 21331 ill->ill_name)); 21332 } 21333 tcp_lso_update(tcp, ill->ill_lso_capab); 21334 } else if (ipst->ips_ip_multidata_outbound && 21335 ILL_MDT_CAPABLE(ill)) { 21336 /* Cache the result */ 21337 connp->conn_mdt_ok = B_TRUE; 21338 21339 ASSERT(ill->ill_mdt_capab != NULL); 21340 if (!ill->ill_mdt_capab->ill_mdt_on) { 21341 ill->ill_mdt_capab->ill_mdt_on = 1; 21342 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21343 "MDT for interface %s\n", (void *)connp, 21344 ill->ill_name)); 21345 } 21346 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 21347 } 21348 } 21349 21350 /* 21351 * The goal is to reduce the number of generated tcp segments by 21352 * setting the maxpsz multiplier to 0; this will have an affect on 21353 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 21354 * into each packet, up to SMSS bytes. Doing this reduces the number 21355 * of outbound segments and incoming ACKs, thus allowing for better 21356 * network and system performance. In contrast the legacy behavior 21357 * may result in sending less than SMSS size, because the last mblk 21358 * for some packets may have more data than needed to make up SMSS, 21359 * and the legacy code refused to "split" it. 21360 * 21361 * We apply the new behavior on following situations: 21362 * 21363 * 1) Loopback connections, 21364 * 2) Connections in which the remote peer is not on local subnet, 21365 * 3) Local subnet connections over the bge interface (see below). 21366 * 21367 * Ideally, we would like this behavior to apply for interfaces other 21368 * than bge. However, doing so would negatively impact drivers which 21369 * perform dynamic mapping and unmapping of DMA resources, which are 21370 * increased by setting the maxpsz multiplier to 0 (more mblks per 21371 * packet will be generated by tcp). The bge driver does not suffer 21372 * from this, as it copies the mblks into pre-mapped buffers, and 21373 * therefore does not require more I/O resources than before. 21374 * 21375 * Otherwise, this behavior is present on all network interfaces when 21376 * the destination endpoint is non-local, since reducing the number 21377 * of packets in general is good for the network. 21378 * 21379 * TODO We need to remove this hard-coded conditional for bge once 21380 * a better "self-tuning" mechanism, or a way to comprehend 21381 * the driver transmit strategy is devised. Until the solution 21382 * is found and well understood, we live with this hack. 21383 */ 21384 if (!tcp_static_maxpsz && 21385 (tcp->tcp_loopback || !tcp->tcp_localnet || 21386 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 21387 /* override the default value */ 21388 tcp->tcp_maxpsz = 0; 21389 21390 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 21391 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 21392 ill != NULL ? ill->ill_name : ipif_loopback_name)); 21393 } 21394 21395 /* set the stream head parameters accordingly */ 21396 (void) tcp_maxpsz_set(tcp, B_TRUE); 21397 } 21398 21399 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 21400 static void 21401 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 21402 { 21403 uchar_t fval = *mp->b_rptr; 21404 mblk_t *tail; 21405 queue_t *q = tcp->tcp_wq; 21406 21407 /* TODO: How should flush interact with urgent data? */ 21408 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 21409 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 21410 /* 21411 * Flush only data that has not yet been put on the wire. If 21412 * we flush data that we have already transmitted, life, as we 21413 * know it, may come to an end. 21414 */ 21415 tail = tcp->tcp_xmit_tail; 21416 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 21417 tcp->tcp_xmit_tail_unsent = 0; 21418 tcp->tcp_unsent = 0; 21419 if (tail->b_wptr != tail->b_rptr) 21420 tail = tail->b_cont; 21421 if (tail) { 21422 mblk_t **excess = &tcp->tcp_xmit_head; 21423 for (;;) { 21424 mblk_t *mp1 = *excess; 21425 if (mp1 == tail) 21426 break; 21427 tcp->tcp_xmit_tail = mp1; 21428 tcp->tcp_xmit_last = mp1; 21429 excess = &mp1->b_cont; 21430 } 21431 *excess = NULL; 21432 tcp_close_mpp(&tail); 21433 if (tcp->tcp_snd_zcopy_aware) 21434 tcp_zcopy_notify(tcp); 21435 } 21436 /* 21437 * We have no unsent data, so unsent must be less than 21438 * tcp_xmit_lowater, so re-enable flow. 21439 */ 21440 mutex_enter(&tcp->tcp_non_sq_lock); 21441 if (tcp->tcp_flow_stopped) { 21442 tcp_clrqfull(tcp); 21443 } 21444 mutex_exit(&tcp->tcp_non_sq_lock); 21445 } 21446 /* 21447 * TODO: you can't just flush these, you have to increase rwnd for one 21448 * thing. For another, how should urgent data interact? 21449 */ 21450 if (fval & FLUSHR) { 21451 *mp->b_rptr = fval & ~FLUSHW; 21452 /* XXX */ 21453 qreply(q, mp); 21454 return; 21455 } 21456 freemsg(mp); 21457 } 21458 21459 /* 21460 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 21461 * messages. 21462 */ 21463 static void 21464 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 21465 { 21466 mblk_t *mp1; 21467 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 21468 STRUCT_HANDLE(strbuf, sb); 21469 queue_t *q = tcp->tcp_wq; 21470 int error; 21471 uint_t addrlen; 21472 21473 /* Make sure it is one of ours. */ 21474 switch (iocp->ioc_cmd) { 21475 case TI_GETMYNAME: 21476 case TI_GETPEERNAME: 21477 break; 21478 default: 21479 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 21480 return; 21481 } 21482 switch (mi_copy_state(q, mp, &mp1)) { 21483 case -1: 21484 return; 21485 case MI_COPY_CASE(MI_COPY_IN, 1): 21486 break; 21487 case MI_COPY_CASE(MI_COPY_OUT, 1): 21488 /* Copy out the strbuf. */ 21489 mi_copyout(q, mp); 21490 return; 21491 case MI_COPY_CASE(MI_COPY_OUT, 2): 21492 /* All done. */ 21493 mi_copy_done(q, mp, 0); 21494 return; 21495 default: 21496 mi_copy_done(q, mp, EPROTO); 21497 return; 21498 } 21499 /* Check alignment of the strbuf */ 21500 if (!OK_32PTR(mp1->b_rptr)) { 21501 mi_copy_done(q, mp, EINVAL); 21502 return; 21503 } 21504 21505 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 21506 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 21507 if (STRUCT_FGET(sb, maxlen) < addrlen) { 21508 mi_copy_done(q, mp, EINVAL); 21509 return; 21510 } 21511 21512 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 21513 if (mp1 == NULL) 21514 return; 21515 21516 switch (iocp->ioc_cmd) { 21517 case TI_GETMYNAME: 21518 error = tcp_do_getsockname(tcp, (void *)mp1->b_rptr, &addrlen); 21519 break; 21520 case TI_GETPEERNAME: 21521 error = tcp_do_getpeername(tcp, (void *)mp1->b_rptr, &addrlen); 21522 break; 21523 } 21524 21525 if (error != 0) { 21526 mi_copy_done(q, mp, error); 21527 } else { 21528 mp1->b_wptr += addrlen; 21529 STRUCT_FSET(sb, len, addrlen); 21530 21531 /* Copy out the address */ 21532 mi_copyout(q, mp); 21533 } 21534 } 21535 21536 static void 21537 tcp_use_pure_tpi(tcp_t *tcp) 21538 { 21539 #ifdef _ILP32 21540 tcp->tcp_acceptor_id = (t_uscalar_t)tcp->tcp_rq; 21541 #else 21542 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 21543 #endif 21544 /* 21545 * Insert this socket into the acceptor hash. 21546 * We might need it for T_CONN_RES message 21547 */ 21548 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 21549 21550 tcp->tcp_issocket = B_FALSE; 21551 TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback); 21552 } 21553 21554 /* 21555 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 21556 * messages. 21557 */ 21558 /* ARGSUSED */ 21559 static void 21560 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 21561 { 21562 conn_t *connp = (conn_t *)arg; 21563 tcp_t *tcp = connp->conn_tcp; 21564 queue_t *q = tcp->tcp_wq; 21565 struct iocblk *iocp; 21566 21567 ASSERT(DB_TYPE(mp) == M_IOCTL); 21568 /* 21569 * Try and ASSERT the minimum possible references on the 21570 * conn early enough. Since we are executing on write side, 21571 * the connection is obviously not detached and that means 21572 * there is a ref each for TCP and IP. Since we are behind 21573 * the squeue, the minimum references needed are 3. If the 21574 * conn is in classifier hash list, there should be an 21575 * extra ref for that (we check both the possibilities). 21576 */ 21577 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21578 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21579 21580 iocp = (struct iocblk *)mp->b_rptr; 21581 switch (iocp->ioc_cmd) { 21582 case TCP_IOC_DEFAULT_Q: 21583 /* Wants to be the default wq. */ 21584 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 21585 iocp->ioc_error = EPERM; 21586 iocp->ioc_count = 0; 21587 mp->b_datap->db_type = M_IOCACK; 21588 qreply(q, mp); 21589 return; 21590 } 21591 tcp_def_q_set(tcp, mp); 21592 return; 21593 case _SIOCSOCKFALLBACK: 21594 /* 21595 * Either sockmod is about to be popped and the socket 21596 * would now be treated as a plain stream, or a module 21597 * is about to be pushed so we could no longer use read- 21598 * side synchronous streams for fused loopback tcp. 21599 * Drain any queued data and disable direct sockfs 21600 * interface from now on. 21601 */ 21602 if (!tcp->tcp_issocket) { 21603 DB_TYPE(mp) = M_IOCNAK; 21604 iocp->ioc_error = EINVAL; 21605 } else { 21606 tcp_use_pure_tpi(tcp); 21607 DB_TYPE(mp) = M_IOCACK; 21608 iocp->ioc_error = 0; 21609 } 21610 iocp->ioc_count = 0; 21611 iocp->ioc_rval = 0; 21612 qreply(q, mp); 21613 return; 21614 } 21615 CALL_IP_WPUT(connp, q, mp); 21616 } 21617 21618 /* 21619 * This routine is called by tcp_wput() to handle all TPI requests. 21620 */ 21621 /* ARGSUSED */ 21622 static void 21623 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 21624 { 21625 conn_t *connp = (conn_t *)arg; 21626 tcp_t *tcp = connp->conn_tcp; 21627 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 21628 uchar_t *rptr; 21629 t_scalar_t type; 21630 cred_t *cr; 21631 21632 /* 21633 * Try and ASSERT the minimum possible references on the 21634 * conn early enough. Since we are executing on write side, 21635 * the connection is obviously not detached and that means 21636 * there is a ref each for TCP and IP. Since we are behind 21637 * the squeue, the minimum references needed are 3. If the 21638 * conn is in classifier hash list, there should be an 21639 * extra ref for that (we check both the possibilities). 21640 */ 21641 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21642 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21643 21644 rptr = mp->b_rptr; 21645 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 21646 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 21647 type = ((union T_primitives *)rptr)->type; 21648 if (type == T_EXDATA_REQ) { 21649 tcp_output_urgent(connp, mp, arg2); 21650 } else if (type != T_DATA_REQ) { 21651 goto non_urgent_data; 21652 } else { 21653 /* TODO: options, flags, ... from user */ 21654 /* Set length to zero for reclamation below */ 21655 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 21656 freeb(mp); 21657 } 21658 return; 21659 } else { 21660 if (tcp->tcp_debug) { 21661 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21662 "tcp_wput_proto, dropping one..."); 21663 } 21664 freemsg(mp); 21665 return; 21666 } 21667 21668 non_urgent_data: 21669 21670 switch ((int)tprim->type) { 21671 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 21672 /* 21673 * save the kssl_ent_t from the next block, and convert this 21674 * back to a normal bind_req. 21675 */ 21676 if (mp->b_cont != NULL) { 21677 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 21678 21679 if (tcp->tcp_kssl_ent != NULL) { 21680 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 21681 KSSL_NO_PROXY); 21682 tcp->tcp_kssl_ent = NULL; 21683 } 21684 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 21685 sizeof (kssl_ent_t)); 21686 kssl_hold_ent(tcp->tcp_kssl_ent); 21687 freemsg(mp->b_cont); 21688 mp->b_cont = NULL; 21689 } 21690 tprim->type = T_BIND_REQ; 21691 21692 /* FALLTHROUGH */ 21693 case O_T_BIND_REQ: /* bind request */ 21694 case T_BIND_REQ: /* new semantics bind request */ 21695 tcp_tpi_bind(tcp, mp); 21696 break; 21697 case T_UNBIND_REQ: /* unbind request */ 21698 tcp_tpi_unbind(tcp, mp); 21699 break; 21700 case O_T_CONN_RES: /* old connection response XXX */ 21701 case T_CONN_RES: /* connection response */ 21702 tcp_tli_accept(tcp, mp); 21703 break; 21704 case T_CONN_REQ: /* connection request */ 21705 tcp_tpi_connect(tcp, mp); 21706 break; 21707 case T_DISCON_REQ: /* disconnect request */ 21708 tcp_disconnect(tcp, mp); 21709 break; 21710 case T_CAPABILITY_REQ: 21711 tcp_capability_req(tcp, mp); /* capability request */ 21712 break; 21713 case T_INFO_REQ: /* information request */ 21714 tcp_info_req(tcp, mp); 21715 break; 21716 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 21717 case T_OPTMGMT_REQ: 21718 /* 21719 * Note: no support for snmpcom_req() through new 21720 * T_OPTMGMT_REQ. See comments in ip.c 21721 */ 21722 21723 /* 21724 * All Solaris components should pass a db_credp 21725 * for this TPI message, hence we ASSERT. 21726 * But in case there is some other M_PROTO that looks 21727 * like a TPI message sent by some other kernel 21728 * component, we check and return an error. 21729 */ 21730 cr = msg_getcred(mp, NULL); 21731 ASSERT(cr != NULL); 21732 if (cr == NULL) { 21733 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 21734 return; 21735 } 21736 /* 21737 * If EINPROGRESS is returned, the request has been queued 21738 * for subsequent processing by ip_restart_optmgmt(), which 21739 * will do the CONN_DEC_REF(). 21740 */ 21741 CONN_INC_REF(connp); 21742 if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) { 21743 if (svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 21744 B_TRUE) != EINPROGRESS) { 21745 CONN_DEC_REF(connp); 21746 } 21747 } else { 21748 if (tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 21749 B_TRUE) != EINPROGRESS) { 21750 CONN_DEC_REF(connp); 21751 } 21752 } 21753 break; 21754 21755 case T_UNITDATA_REQ: /* unitdata request */ 21756 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21757 break; 21758 case T_ORDREL_REQ: /* orderly release req */ 21759 freemsg(mp); 21760 21761 if (tcp->tcp_fused) 21762 tcp_unfuse(tcp); 21763 21764 if (tcp_xmit_end(tcp) != 0) { 21765 /* 21766 * We were crossing FINs and got a reset from 21767 * the other side. Just ignore it. 21768 */ 21769 if (tcp->tcp_debug) { 21770 (void) strlog(TCP_MOD_ID, 0, 1, 21771 SL_ERROR|SL_TRACE, 21772 "tcp_wput_proto, T_ORDREL_REQ out of " 21773 "state %s", 21774 tcp_display(tcp, NULL, 21775 DISP_ADDR_AND_PORT)); 21776 } 21777 } 21778 break; 21779 case T_ADDR_REQ: 21780 tcp_addr_req(tcp, mp); 21781 break; 21782 default: 21783 if (tcp->tcp_debug) { 21784 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21785 "tcp_wput_proto, bogus TPI msg, type %d", 21786 tprim->type); 21787 } 21788 /* 21789 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 21790 * to recover. 21791 */ 21792 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21793 break; 21794 } 21795 } 21796 21797 /* 21798 * The TCP write service routine should never be called... 21799 */ 21800 /* ARGSUSED */ 21801 static void 21802 tcp_wsrv(queue_t *q) 21803 { 21804 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 21805 21806 TCP_STAT(tcps, tcp_wsrv_called); 21807 } 21808 21809 /* Non overlapping byte exchanger */ 21810 static void 21811 tcp_xchg(uchar_t *a, uchar_t *b, int len) 21812 { 21813 uchar_t uch; 21814 21815 while (len-- > 0) { 21816 uch = a[len]; 21817 a[len] = b[len]; 21818 b[len] = uch; 21819 } 21820 } 21821 21822 /* 21823 * Send out a control packet on the tcp connection specified. This routine 21824 * is typically called where we need a simple ACK or RST generated. 21825 */ 21826 static void 21827 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 21828 { 21829 uchar_t *rptr; 21830 tcph_t *tcph; 21831 ipha_t *ipha = NULL; 21832 ip6_t *ip6h = NULL; 21833 uint32_t sum; 21834 int tcp_hdr_len; 21835 int tcp_ip_hdr_len; 21836 mblk_t *mp; 21837 tcp_stack_t *tcps = tcp->tcp_tcps; 21838 21839 /* 21840 * Save sum for use in source route later. 21841 */ 21842 ASSERT(tcp != NULL); 21843 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 21844 tcp_hdr_len = tcp->tcp_hdr_len; 21845 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 21846 21847 /* If a text string is passed in with the request, pass it to strlog. */ 21848 if (str != NULL && tcp->tcp_debug) { 21849 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 21850 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 21851 str, seq, ack, ctl); 21852 } 21853 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra, 21854 BPRI_MED); 21855 if (mp == NULL) { 21856 return; 21857 } 21858 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 21859 mp->b_rptr = rptr; 21860 mp->b_wptr = &rptr[tcp_hdr_len]; 21861 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 21862 21863 if (tcp->tcp_ipversion == IPV4_VERSION) { 21864 ipha = (ipha_t *)rptr; 21865 ipha->ipha_length = htons(tcp_hdr_len); 21866 } else { 21867 ip6h = (ip6_t *)rptr; 21868 ASSERT(tcp != NULL); 21869 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 21870 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21871 } 21872 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 21873 tcph->th_flags[0] = (uint8_t)ctl; 21874 if (ctl & TH_RST) { 21875 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 21876 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 21877 /* 21878 * Don't send TSopt w/ TH_RST packets per RFC 1323. 21879 */ 21880 if (tcp->tcp_snd_ts_ok && 21881 tcp->tcp_state > TCPS_SYN_SENT) { 21882 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 21883 *(mp->b_wptr) = TCPOPT_EOL; 21884 if (tcp->tcp_ipversion == IPV4_VERSION) { 21885 ipha->ipha_length = htons(tcp_hdr_len - 21886 TCPOPT_REAL_TS_LEN); 21887 } else { 21888 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 21889 TCPOPT_REAL_TS_LEN); 21890 } 21891 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 21892 sum -= TCPOPT_REAL_TS_LEN; 21893 } 21894 } 21895 if (ctl & TH_ACK) { 21896 if (tcp->tcp_snd_ts_ok) { 21897 U32_TO_BE32(lbolt, 21898 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 21899 U32_TO_BE32(tcp->tcp_ts_recent, 21900 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 21901 } 21902 21903 /* Update the latest receive window size in TCP header. */ 21904 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 21905 tcph->th_win); 21906 tcp->tcp_rack = ack; 21907 tcp->tcp_rack_cnt = 0; 21908 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 21909 } 21910 BUMP_LOCAL(tcp->tcp_obsegs); 21911 U32_TO_BE32(seq, tcph->th_seq); 21912 U32_TO_BE32(ack, tcph->th_ack); 21913 /* 21914 * Include the adjustment for a source route if any. 21915 */ 21916 sum = (sum >> 16) + (sum & 0xFFFF); 21917 U16_TO_BE16(sum, tcph->th_sum); 21918 tcp_send_data(tcp, tcp->tcp_wq, mp); 21919 } 21920 21921 /* 21922 * If this routine returns B_TRUE, TCP can generate a RST in response 21923 * to a segment. If it returns B_FALSE, TCP should not respond. 21924 */ 21925 static boolean_t 21926 tcp_send_rst_chk(tcp_stack_t *tcps) 21927 { 21928 clock_t now; 21929 21930 /* 21931 * TCP needs to protect itself from generating too many RSTs. 21932 * This can be a DoS attack by sending us random segments 21933 * soliciting RSTs. 21934 * 21935 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 21936 * in each 1 second interval. In this way, TCP still generate 21937 * RSTs in normal cases but when under attack, the impact is 21938 * limited. 21939 */ 21940 if (tcps->tcps_rst_sent_rate_enabled != 0) { 21941 now = lbolt; 21942 /* lbolt can wrap around. */ 21943 if ((tcps->tcps_last_rst_intrvl > now) || 21944 (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 21945 1*SECONDS)) { 21946 tcps->tcps_last_rst_intrvl = now; 21947 tcps->tcps_rst_cnt = 1; 21948 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 21949 return (B_FALSE); 21950 } 21951 } 21952 return (B_TRUE); 21953 } 21954 21955 /* 21956 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 21957 */ 21958 static void 21959 tcp_ip_ire_mark_advice(tcp_t *tcp) 21960 { 21961 mblk_t *mp; 21962 ipic_t *ipic; 21963 21964 if (tcp->tcp_ipversion == IPV4_VERSION) { 21965 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 21966 &ipic); 21967 } else { 21968 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 21969 &ipic); 21970 } 21971 if (mp == NULL) 21972 return; 21973 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 21974 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21975 } 21976 21977 /* 21978 * Return an IP advice ioctl mblk and set ipic to be the pointer 21979 * to the advice structure. 21980 */ 21981 static mblk_t * 21982 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 21983 { 21984 struct iocblk *ioc; 21985 mblk_t *mp, *mp1; 21986 21987 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 21988 if (mp == NULL) 21989 return (NULL); 21990 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 21991 *ipic = (ipic_t *)mp->b_rptr; 21992 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 21993 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 21994 21995 bcopy(addr, *ipic + 1, addr_len); 21996 21997 (*ipic)->ipic_addr_length = addr_len; 21998 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 21999 22000 mp1 = mkiocb(IP_IOCTL); 22001 if (mp1 == NULL) { 22002 freemsg(mp); 22003 return (NULL); 22004 } 22005 mp1->b_cont = mp; 22006 ioc = (struct iocblk *)mp1->b_rptr; 22007 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22008 22009 return (mp1); 22010 } 22011 22012 /* 22013 * Generate a reset based on an inbound packet, connp is set by caller 22014 * when RST is in response to an unexpected inbound packet for which 22015 * there is active tcp state in the system. 22016 * 22017 * IPSEC NOTE : Try to send the reply with the same protection as it came 22018 * in. We still have the ipsec_mp that the packet was attached to. Thus 22019 * the packet will go out at the same level of protection as it came in by 22020 * converting the IPSEC_IN to IPSEC_OUT. 22021 */ 22022 static void 22023 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22024 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid, 22025 tcp_stack_t *tcps, conn_t *connp) 22026 { 22027 ipha_t *ipha = NULL; 22028 ip6_t *ip6h = NULL; 22029 ushort_t len; 22030 tcph_t *tcph; 22031 int i; 22032 mblk_t *ipsec_mp; 22033 boolean_t mctl_present; 22034 ipic_t *ipic; 22035 ipaddr_t v4addr; 22036 in6_addr_t v6addr; 22037 int addr_len; 22038 void *addr; 22039 queue_t *q = tcps->tcps_g_q; 22040 tcp_t *tcp; 22041 cred_t *cr; 22042 pid_t pid; 22043 mblk_t *nmp; 22044 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22045 22046 if (tcps->tcps_g_q == NULL) { 22047 /* 22048 * For non-zero stackids the default queue isn't created 22049 * until the first open, thus there can be a need to send 22050 * a reset before then. But we can't do that, hence we just 22051 * drop the packet. Later during boot, when the default queue 22052 * has been setup, a retransmitted packet from the peer 22053 * will result in a reset. 22054 */ 22055 ASSERT(tcps->tcps_netstack->netstack_stackid != 22056 GLOBAL_NETSTACKID); 22057 freemsg(mp); 22058 return; 22059 } 22060 22061 if (connp != NULL) 22062 tcp = connp->conn_tcp; 22063 else 22064 tcp = Q_TO_TCP(q); 22065 22066 if (!tcp_send_rst_chk(tcps)) { 22067 tcps->tcps_rst_unsent++; 22068 freemsg(mp); 22069 return; 22070 } 22071 22072 if (mp->b_datap->db_type == M_CTL) { 22073 ipsec_mp = mp; 22074 mp = mp->b_cont; 22075 mctl_present = B_TRUE; 22076 } else { 22077 ipsec_mp = mp; 22078 mctl_present = B_FALSE; 22079 } 22080 22081 if (str && q && tcps->tcps_dbg) { 22082 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22083 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22084 "flags 0x%x", 22085 str, seq, ack, ctl); 22086 } 22087 if (mp->b_datap->db_ref != 1) { 22088 mblk_t *mp1 = copyb(mp); 22089 freemsg(mp); 22090 mp = mp1; 22091 if (!mp) { 22092 if (mctl_present) 22093 freeb(ipsec_mp); 22094 return; 22095 } else { 22096 if (mctl_present) { 22097 ipsec_mp->b_cont = mp; 22098 } else { 22099 ipsec_mp = mp; 22100 } 22101 } 22102 } else if (mp->b_cont) { 22103 freemsg(mp->b_cont); 22104 mp->b_cont = NULL; 22105 } 22106 /* 22107 * We skip reversing source route here. 22108 * (for now we replace all IP options with EOL) 22109 */ 22110 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22111 ipha = (ipha_t *)mp->b_rptr; 22112 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 22113 mp->b_rptr[i] = IPOPT_EOL; 22114 /* 22115 * Make sure that src address isn't flagrantly invalid. 22116 * Not all broadcast address checking for the src address 22117 * is possible, since we don't know the netmask of the src 22118 * addr. No check for destination address is done, since 22119 * IP will not pass up a packet with a broadcast dest 22120 * address to TCP. Similar checks are done below for IPv6. 22121 */ 22122 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 22123 CLASSD(ipha->ipha_src)) { 22124 freemsg(ipsec_mp); 22125 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 22126 return; 22127 } 22128 } else { 22129 ip6h = (ip6_t *)mp->b_rptr; 22130 22131 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 22132 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 22133 freemsg(ipsec_mp); 22134 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 22135 return; 22136 } 22137 22138 /* Remove any extension headers assuming partial overlay */ 22139 if (ip_hdr_len > IPV6_HDR_LEN) { 22140 uint8_t *to; 22141 22142 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 22143 ovbcopy(ip6h, to, IPV6_HDR_LEN); 22144 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 22145 ip_hdr_len = IPV6_HDR_LEN; 22146 ip6h = (ip6_t *)mp->b_rptr; 22147 ip6h->ip6_nxt = IPPROTO_TCP; 22148 } 22149 } 22150 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 22151 if (tcph->th_flags[0] & TH_RST) { 22152 freemsg(ipsec_mp); 22153 return; 22154 } 22155 tcph->th_offset_and_rsrvd[0] = (5 << 4); 22156 len = ip_hdr_len + sizeof (tcph_t); 22157 mp->b_wptr = &mp->b_rptr[len]; 22158 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22159 ipha->ipha_length = htons(len); 22160 /* Swap addresses */ 22161 v4addr = ipha->ipha_src; 22162 ipha->ipha_src = ipha->ipha_dst; 22163 ipha->ipha_dst = v4addr; 22164 ipha->ipha_ident = 0; 22165 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 22166 addr_len = IP_ADDR_LEN; 22167 addr = &v4addr; 22168 } else { 22169 /* No ip6i_t in this case */ 22170 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 22171 /* Swap addresses */ 22172 v6addr = ip6h->ip6_src; 22173 ip6h->ip6_src = ip6h->ip6_dst; 22174 ip6h->ip6_dst = v6addr; 22175 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 22176 addr_len = IPV6_ADDR_LEN; 22177 addr = &v6addr; 22178 } 22179 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 22180 U32_TO_BE32(ack, tcph->th_ack); 22181 U32_TO_BE32(seq, tcph->th_seq); 22182 U16_TO_BE16(0, tcph->th_win); 22183 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 22184 tcph->th_flags[0] = (uint8_t)ctl; 22185 if (ctl & TH_RST) { 22186 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22187 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22188 } 22189 22190 /* IP trusts us to set up labels when required. */ 22191 if (is_system_labeled() && (cr = msg_getcred(mp, &pid)) != NULL && 22192 crgetlabel(cr) != NULL) { 22193 int err; 22194 22195 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 22196 err = tsol_check_label(cr, &mp, 22197 tcp->tcp_connp->conn_mac_exempt, 22198 tcps->tcps_netstack->netstack_ip, pid); 22199 else 22200 err = tsol_check_label_v6(cr, &mp, 22201 tcp->tcp_connp->conn_mac_exempt, 22202 tcps->tcps_netstack->netstack_ip, pid); 22203 if (mctl_present) 22204 ipsec_mp->b_cont = mp; 22205 else 22206 ipsec_mp = mp; 22207 if (err != 0) { 22208 freemsg(ipsec_mp); 22209 return; 22210 } 22211 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22212 ipha = (ipha_t *)mp->b_rptr; 22213 } else { 22214 ip6h = (ip6_t *)mp->b_rptr; 22215 } 22216 } 22217 22218 if (mctl_present) { 22219 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22220 22221 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22222 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 22223 return; 22224 } 22225 } 22226 if (zoneid == ALL_ZONES) 22227 zoneid = GLOBAL_ZONEID; 22228 22229 /* Add the zoneid so ip_output routes it properly */ 22230 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) { 22231 freemsg(ipsec_mp); 22232 return; 22233 } 22234 ipsec_mp = nmp; 22235 22236 /* 22237 * NOTE: one might consider tracing a TCP packet here, but 22238 * this function has no active TCP state and no tcp structure 22239 * that has a trace buffer. If we traced here, we would have 22240 * to keep a local trace buffer in tcp_record_trace(). 22241 * 22242 * TSol note: The mblk that contains the incoming packet was 22243 * reused by tcp_xmit_listener_reset, so it already contains 22244 * the right credentials and we don't need to call mblk_setcred. 22245 * Also the conn's cred is not right since it is associated 22246 * with tcps_g_q. 22247 */ 22248 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 22249 22250 /* 22251 * Tell IP to mark the IRE used for this destination temporary. 22252 * This way, we can limit our exposure to DoS attack because IP 22253 * creates an IRE for each destination. If there are too many, 22254 * the time to do any routing lookup will be extremely long. And 22255 * the lookup can be in interrupt context. 22256 * 22257 * Note that in normal circumstances, this marking should not 22258 * affect anything. It would be nice if only 1 message is 22259 * needed to inform IP that the IRE created for this RST should 22260 * not be added to the cache table. But there is currently 22261 * not such communication mechanism between TCP and IP. So 22262 * the best we can do now is to send the advice ioctl to IP 22263 * to mark the IRE temporary. 22264 */ 22265 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 22266 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22267 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22268 } 22269 } 22270 22271 /* 22272 * Initiate closedown sequence on an active connection. (May be called as 22273 * writer.) Return value zero for OK return, non-zero for error return. 22274 */ 22275 static int 22276 tcp_xmit_end(tcp_t *tcp) 22277 { 22278 ipic_t *ipic; 22279 mblk_t *mp; 22280 tcp_stack_t *tcps = tcp->tcp_tcps; 22281 22282 if (tcp->tcp_state < TCPS_SYN_RCVD || 22283 tcp->tcp_state > TCPS_CLOSE_WAIT) { 22284 /* 22285 * Invalid state, only states TCPS_SYN_RCVD, 22286 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 22287 */ 22288 return (-1); 22289 } 22290 22291 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 22292 tcp->tcp_valid_bits |= TCP_FSS_VALID; 22293 /* 22294 * If there is nothing more unsent, send the FIN now. 22295 * Otherwise, it will go out with the last segment. 22296 */ 22297 if (tcp->tcp_unsent == 0) { 22298 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 22299 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 22300 22301 if (mp) { 22302 tcp_send_data(tcp, tcp->tcp_wq, mp); 22303 } else { 22304 /* 22305 * Couldn't allocate msg. Pretend we got it out. 22306 * Wait for rexmit timeout. 22307 */ 22308 tcp->tcp_snxt = tcp->tcp_fss + 1; 22309 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22310 } 22311 22312 /* 22313 * If needed, update tcp_rexmit_snxt as tcp_snxt is 22314 * changed. 22315 */ 22316 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 22317 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 22318 } 22319 } else { 22320 /* 22321 * If tcp->tcp_cork is set, then the data will not get sent, 22322 * so we have to check that and unset it first. 22323 */ 22324 if (tcp->tcp_cork) 22325 tcp->tcp_cork = B_FALSE; 22326 tcp_wput_data(tcp, NULL, B_FALSE); 22327 } 22328 22329 /* 22330 * If TCP does not get enough samples of RTT or tcp_rtt_updates 22331 * is 0, don't update the cache. 22332 */ 22333 if (tcps->tcps_rtt_updates == 0 || 22334 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 22335 return (0); 22336 22337 /* 22338 * NOTE: should not update if source routes i.e. if tcp_remote if 22339 * different from the destination. 22340 */ 22341 if (tcp->tcp_ipversion == IPV4_VERSION) { 22342 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 22343 return (0); 22344 } 22345 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22346 &ipic); 22347 } else { 22348 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 22349 &tcp->tcp_ip6h->ip6_dst))) { 22350 return (0); 22351 } 22352 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22353 &ipic); 22354 } 22355 22356 /* Record route attributes in the IRE for use by future connections. */ 22357 if (mp == NULL) 22358 return (0); 22359 22360 /* 22361 * We do not have a good algorithm to update ssthresh at this time. 22362 * So don't do any update. 22363 */ 22364 ipic->ipic_rtt = tcp->tcp_rtt_sa; 22365 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 22366 22367 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22368 22369 return (0); 22370 } 22371 22372 /* ARGSUSED */ 22373 void 22374 tcp_xmit_reset(void *arg, mblk_t *mp, void *arg2) 22375 { 22376 conn_t *connp = (conn_t *)arg; 22377 mblk_t *mp1; 22378 tcp_t *tcp = connp->conn_tcp; 22379 tcp_xmit_reset_event_t *eventp; 22380 22381 ASSERT(mp->b_datap->db_type == M_PROTO && 22382 MBLKL(mp) == sizeof (tcp_xmit_reset_event_t)); 22383 22384 if (tcp->tcp_state != TCPS_LISTEN) { 22385 freemsg(mp); 22386 return; 22387 } 22388 22389 mp1 = mp->b_cont; 22390 mp->b_cont = NULL; 22391 eventp = (tcp_xmit_reset_event_t *)mp->b_rptr; 22392 ASSERT(eventp->tcp_xre_tcps->tcps_netstack == 22393 connp->conn_netstack); 22394 22395 tcp_xmit_listeners_reset(mp1, eventp->tcp_xre_iphdrlen, 22396 eventp->tcp_xre_zoneid, eventp->tcp_xre_tcps, connp); 22397 freemsg(mp); 22398 } 22399 22400 /* 22401 * Generate a "no listener here" RST in response to an "unknown" segment. 22402 * connp is set by caller when RST is in response to an unexpected 22403 * inbound packet for which there is active tcp state in the system. 22404 * Note that we are reusing the incoming mp to construct the outgoing RST. 22405 */ 22406 void 22407 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid, 22408 tcp_stack_t *tcps, conn_t *connp) 22409 { 22410 uchar_t *rptr; 22411 uint32_t seg_len; 22412 tcph_t *tcph; 22413 uint32_t seg_seq; 22414 uint32_t seg_ack; 22415 uint_t flags; 22416 mblk_t *ipsec_mp; 22417 ipha_t *ipha; 22418 ip6_t *ip6h; 22419 boolean_t mctl_present = B_FALSE; 22420 boolean_t check = B_TRUE; 22421 boolean_t policy_present; 22422 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 22423 22424 TCP_STAT(tcps, tcp_no_listener); 22425 22426 ipsec_mp = mp; 22427 22428 if (mp->b_datap->db_type == M_CTL) { 22429 ipsec_in_t *ii; 22430 22431 mctl_present = B_TRUE; 22432 mp = mp->b_cont; 22433 22434 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22435 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22436 if (ii->ipsec_in_dont_check) { 22437 check = B_FALSE; 22438 if (!ii->ipsec_in_secure) { 22439 freeb(ipsec_mp); 22440 mctl_present = B_FALSE; 22441 ipsec_mp = mp; 22442 } 22443 } 22444 } 22445 22446 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22447 policy_present = ipss->ipsec_inbound_v4_policy_present; 22448 ipha = (ipha_t *)mp->b_rptr; 22449 ip6h = NULL; 22450 } else { 22451 policy_present = ipss->ipsec_inbound_v6_policy_present; 22452 ipha = NULL; 22453 ip6h = (ip6_t *)mp->b_rptr; 22454 } 22455 22456 if (check && policy_present) { 22457 /* 22458 * The conn_t parameter is NULL because we already know 22459 * nobody's home. 22460 */ 22461 ipsec_mp = ipsec_check_global_policy( 22462 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present, 22463 tcps->tcps_netstack); 22464 if (ipsec_mp == NULL) 22465 return; 22466 } 22467 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 22468 DTRACE_PROBE2( 22469 tx__ip__log__error__nolistener__tcp, 22470 char *, "Could not reply with RST to mp(1)", 22471 mblk_t *, mp); 22472 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 22473 freemsg(ipsec_mp); 22474 return; 22475 } 22476 22477 rptr = mp->b_rptr; 22478 22479 tcph = (tcph_t *)&rptr[ip_hdr_len]; 22480 seg_seq = BE32_TO_U32(tcph->th_seq); 22481 seg_ack = BE32_TO_U32(tcph->th_ack); 22482 flags = tcph->th_flags[0]; 22483 22484 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 22485 if (flags & TH_RST) { 22486 freemsg(ipsec_mp); 22487 } else if (flags & TH_ACK) { 22488 tcp_xmit_early_reset("no tcp, reset", 22489 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps, 22490 connp); 22491 } else { 22492 if (flags & TH_SYN) { 22493 seg_len++; 22494 } else { 22495 /* 22496 * Here we violate the RFC. Note that a normal 22497 * TCP will never send a segment without the ACK 22498 * flag, except for RST or SYN segment. This 22499 * segment is neither. Just drop it on the 22500 * floor. 22501 */ 22502 freemsg(ipsec_mp); 22503 tcps->tcps_rst_unsent++; 22504 return; 22505 } 22506 22507 tcp_xmit_early_reset("no tcp, reset/ack", 22508 ipsec_mp, 0, seg_seq + seg_len, 22509 TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp); 22510 } 22511 } 22512 22513 /* 22514 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 22515 * ip and tcp header ready to pass down to IP. If the mp passed in is 22516 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 22517 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 22518 * otherwise it will dup partial mblks.) 22519 * Otherwise, an appropriate ACK packet will be generated. This 22520 * routine is not usually called to send new data for the first time. It 22521 * is mostly called out of the timer for retransmits, and to generate ACKs. 22522 * 22523 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 22524 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 22525 * of the original mblk chain will be returned in *offset and *end_mp. 22526 */ 22527 mblk_t * 22528 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 22529 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 22530 boolean_t rexmit) 22531 { 22532 int data_length; 22533 int32_t off = 0; 22534 uint_t flags; 22535 mblk_t *mp1; 22536 mblk_t *mp2; 22537 uchar_t *rptr; 22538 tcph_t *tcph; 22539 int32_t num_sack_blk = 0; 22540 int32_t sack_opt_len = 0; 22541 tcp_stack_t *tcps = tcp->tcp_tcps; 22542 22543 /* Allocate for our maximum TCP header + link-level */ 22544 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 22545 tcps->tcps_wroff_xtra, BPRI_MED); 22546 if (!mp1) 22547 return (NULL); 22548 data_length = 0; 22549 22550 /* 22551 * Note that tcp_mss has been adjusted to take into account the 22552 * timestamp option if applicable. Because SACK options do not 22553 * appear in every TCP segments and they are of variable lengths, 22554 * they cannot be included in tcp_mss. Thus we need to calculate 22555 * the actual segment length when we need to send a segment which 22556 * includes SACK options. 22557 */ 22558 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 22559 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 22560 tcp->tcp_num_sack_blk); 22561 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 22562 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 22563 if (max_to_send + sack_opt_len > tcp->tcp_mss) 22564 max_to_send -= sack_opt_len; 22565 } 22566 22567 if (offset != NULL) { 22568 off = *offset; 22569 /* We use offset as an indicator that end_mp is not NULL. */ 22570 *end_mp = NULL; 22571 } 22572 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 22573 /* This could be faster with cooperation from downstream */ 22574 if (mp2 != mp1 && !sendall && 22575 data_length + (int)(mp->b_wptr - mp->b_rptr) > 22576 max_to_send) 22577 /* 22578 * Don't send the next mblk since the whole mblk 22579 * does not fit. 22580 */ 22581 break; 22582 mp2->b_cont = dupb(mp); 22583 mp2 = mp2->b_cont; 22584 if (!mp2) { 22585 freemsg(mp1); 22586 return (NULL); 22587 } 22588 mp2->b_rptr += off; 22589 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 22590 (uintptr_t)INT_MAX); 22591 22592 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 22593 if (data_length > max_to_send) { 22594 mp2->b_wptr -= data_length - max_to_send; 22595 data_length = max_to_send; 22596 off = mp2->b_wptr - mp->b_rptr; 22597 break; 22598 } else { 22599 off = 0; 22600 } 22601 } 22602 if (offset != NULL) { 22603 *offset = off; 22604 *end_mp = mp; 22605 } 22606 if (seg_len != NULL) { 22607 *seg_len = data_length; 22608 } 22609 22610 /* Update the latest receive window size in TCP header. */ 22611 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22612 tcp->tcp_tcph->th_win); 22613 22614 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 22615 mp1->b_rptr = rptr; 22616 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 22617 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 22618 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 22619 U32_TO_ABE32(seq, tcph->th_seq); 22620 22621 /* 22622 * Use tcp_unsent to determine if the PUSH bit should be used assumes 22623 * that this function was called from tcp_wput_data. Thus, when called 22624 * to retransmit data the setting of the PUSH bit may appear some 22625 * what random in that it might get set when it should not. This 22626 * should not pose any performance issues. 22627 */ 22628 if (data_length != 0 && (tcp->tcp_unsent == 0 || 22629 tcp->tcp_unsent == data_length)) { 22630 flags = TH_ACK | TH_PUSH; 22631 } else { 22632 flags = TH_ACK; 22633 } 22634 22635 if (tcp->tcp_ecn_ok) { 22636 if (tcp->tcp_ecn_echo_on) 22637 flags |= TH_ECE; 22638 22639 /* 22640 * Only set ECT bit and ECN_CWR if a segment contains new data. 22641 * There is no TCP flow control for non-data segments, and 22642 * only data segment is transmitted reliably. 22643 */ 22644 if (data_length > 0 && !rexmit) { 22645 SET_ECT(tcp, rptr); 22646 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 22647 flags |= TH_CWR; 22648 tcp->tcp_ecn_cwr_sent = B_TRUE; 22649 } 22650 } 22651 } 22652 22653 if (tcp->tcp_valid_bits) { 22654 uint32_t u1; 22655 22656 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 22657 seq == tcp->tcp_iss) { 22658 uchar_t *wptr; 22659 22660 /* 22661 * If TCP_ISS_VALID and the seq number is tcp_iss, 22662 * TCP can only be in SYN-SENT, SYN-RCVD or 22663 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 22664 * our SYN is not ack'ed but the app closes this 22665 * TCP connection. 22666 */ 22667 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 22668 tcp->tcp_state == TCPS_SYN_RCVD || 22669 tcp->tcp_state == TCPS_FIN_WAIT_1); 22670 22671 /* 22672 * Tack on the MSS option. It is always needed 22673 * for both active and passive open. 22674 * 22675 * MSS option value should be interface MTU - MIN 22676 * TCP/IP header according to RFC 793 as it means 22677 * the maximum segment size TCP can receive. But 22678 * to get around some broken middle boxes/end hosts 22679 * out there, we allow the option value to be the 22680 * same as the MSS option size on the peer side. 22681 * In this way, the other side will not send 22682 * anything larger than they can receive. 22683 * 22684 * Note that for SYN_SENT state, the ndd param 22685 * tcp_use_smss_as_mss_opt has no effect as we 22686 * don't know the peer's MSS option value. So 22687 * the only case we need to take care of is in 22688 * SYN_RCVD state, which is done later. 22689 */ 22690 wptr = mp1->b_wptr; 22691 wptr[0] = TCPOPT_MAXSEG; 22692 wptr[1] = TCPOPT_MAXSEG_LEN; 22693 wptr += 2; 22694 u1 = tcp->tcp_if_mtu - 22695 (tcp->tcp_ipversion == IPV4_VERSION ? 22696 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 22697 TCP_MIN_HEADER_LENGTH; 22698 U16_TO_BE16(u1, wptr); 22699 mp1->b_wptr = wptr + 2; 22700 /* Update the offset to cover the additional word */ 22701 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22702 22703 /* 22704 * Note that the following way of filling in 22705 * TCP options are not optimal. Some NOPs can 22706 * be saved. But there is no need at this time 22707 * to optimize it. When it is needed, we will 22708 * do it. 22709 */ 22710 switch (tcp->tcp_state) { 22711 case TCPS_SYN_SENT: 22712 flags = TH_SYN; 22713 22714 if (tcp->tcp_snd_ts_ok) { 22715 uint32_t llbolt = (uint32_t)lbolt; 22716 22717 wptr = mp1->b_wptr; 22718 wptr[0] = TCPOPT_NOP; 22719 wptr[1] = TCPOPT_NOP; 22720 wptr[2] = TCPOPT_TSTAMP; 22721 wptr[3] = TCPOPT_TSTAMP_LEN; 22722 wptr += 4; 22723 U32_TO_BE32(llbolt, wptr); 22724 wptr += 4; 22725 ASSERT(tcp->tcp_ts_recent == 0); 22726 U32_TO_BE32(0L, wptr); 22727 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 22728 tcph->th_offset_and_rsrvd[0] += 22729 (3 << 4); 22730 } 22731 22732 /* 22733 * Set up all the bits to tell other side 22734 * we are ECN capable. 22735 */ 22736 if (tcp->tcp_ecn_ok) { 22737 flags |= (TH_ECE | TH_CWR); 22738 } 22739 break; 22740 case TCPS_SYN_RCVD: 22741 flags |= TH_SYN; 22742 22743 /* 22744 * Reset the MSS option value to be SMSS 22745 * We should probably add back the bytes 22746 * for timestamp option and IPsec. We 22747 * don't do that as this is a workaround 22748 * for broken middle boxes/end hosts, it 22749 * is better for us to be more cautious. 22750 * They may not take these things into 22751 * account in their SMSS calculation. Thus 22752 * the peer's calculated SMSS may be smaller 22753 * than what it can be. This should be OK. 22754 */ 22755 if (tcps->tcps_use_smss_as_mss_opt) { 22756 u1 = tcp->tcp_mss; 22757 U16_TO_BE16(u1, wptr); 22758 } 22759 22760 /* 22761 * If the other side is ECN capable, reply 22762 * that we are also ECN capable. 22763 */ 22764 if (tcp->tcp_ecn_ok) 22765 flags |= TH_ECE; 22766 break; 22767 default: 22768 /* 22769 * The above ASSERT() makes sure that this 22770 * must be FIN-WAIT-1 state. Our SYN has 22771 * not been ack'ed so retransmit it. 22772 */ 22773 flags |= TH_SYN; 22774 break; 22775 } 22776 22777 if (tcp->tcp_snd_ws_ok) { 22778 wptr = mp1->b_wptr; 22779 wptr[0] = TCPOPT_NOP; 22780 wptr[1] = TCPOPT_WSCALE; 22781 wptr[2] = TCPOPT_WS_LEN; 22782 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 22783 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 22784 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22785 } 22786 22787 if (tcp->tcp_snd_sack_ok) { 22788 wptr = mp1->b_wptr; 22789 wptr[0] = TCPOPT_NOP; 22790 wptr[1] = TCPOPT_NOP; 22791 wptr[2] = TCPOPT_SACK_PERMITTED; 22792 wptr[3] = TCPOPT_SACK_OK_LEN; 22793 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 22794 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22795 } 22796 22797 /* allocb() of adequate mblk assures space */ 22798 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 22799 (uintptr_t)INT_MAX); 22800 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 22801 /* 22802 * Get IP set to checksum on our behalf 22803 * Include the adjustment for a source route if any. 22804 */ 22805 u1 += tcp->tcp_sum; 22806 u1 = (u1 >> 16) + (u1 & 0xFFFF); 22807 U16_TO_BE16(u1, tcph->th_sum); 22808 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22809 } 22810 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 22811 (seq + data_length) == tcp->tcp_fss) { 22812 if (!tcp->tcp_fin_acked) { 22813 flags |= TH_FIN; 22814 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22815 } 22816 if (!tcp->tcp_fin_sent) { 22817 tcp->tcp_fin_sent = B_TRUE; 22818 switch (tcp->tcp_state) { 22819 case TCPS_SYN_RCVD: 22820 case TCPS_ESTABLISHED: 22821 tcp->tcp_state = TCPS_FIN_WAIT_1; 22822 break; 22823 case TCPS_CLOSE_WAIT: 22824 tcp->tcp_state = TCPS_LAST_ACK; 22825 break; 22826 } 22827 if (tcp->tcp_suna == tcp->tcp_snxt) 22828 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22829 tcp->tcp_snxt = tcp->tcp_fss + 1; 22830 } 22831 } 22832 /* 22833 * Note the trick here. u1 is unsigned. When tcp_urg 22834 * is smaller than seq, u1 will become a very huge value. 22835 * So the comparison will fail. Also note that tcp_urp 22836 * should be positive, see RFC 793 page 17. 22837 */ 22838 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 22839 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 22840 u1 < (uint32_t)(64 * 1024)) { 22841 flags |= TH_URG; 22842 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 22843 U32_TO_ABE16(u1, tcph->th_urp); 22844 } 22845 } 22846 tcph->th_flags[0] = (uchar_t)flags; 22847 tcp->tcp_rack = tcp->tcp_rnxt; 22848 tcp->tcp_rack_cnt = 0; 22849 22850 if (tcp->tcp_snd_ts_ok) { 22851 if (tcp->tcp_state != TCPS_SYN_SENT) { 22852 uint32_t llbolt = (uint32_t)lbolt; 22853 22854 U32_TO_BE32(llbolt, 22855 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22856 U32_TO_BE32(tcp->tcp_ts_recent, 22857 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22858 } 22859 } 22860 22861 if (num_sack_blk > 0) { 22862 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 22863 sack_blk_t *tmp; 22864 int32_t i; 22865 22866 wptr[0] = TCPOPT_NOP; 22867 wptr[1] = TCPOPT_NOP; 22868 wptr[2] = TCPOPT_SACK; 22869 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 22870 sizeof (sack_blk_t); 22871 wptr += TCPOPT_REAL_SACK_LEN; 22872 22873 tmp = tcp->tcp_sack_list; 22874 for (i = 0; i < num_sack_blk; i++) { 22875 U32_TO_BE32(tmp[i].begin, wptr); 22876 wptr += sizeof (tcp_seq); 22877 U32_TO_BE32(tmp[i].end, wptr); 22878 wptr += sizeof (tcp_seq); 22879 } 22880 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 22881 } 22882 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22883 data_length += (int)(mp1->b_wptr - rptr); 22884 if (tcp->tcp_ipversion == IPV4_VERSION) { 22885 ((ipha_t *)rptr)->ipha_length = htons(data_length); 22886 } else { 22887 ip6_t *ip6 = (ip6_t *)(rptr + 22888 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 22889 sizeof (ip6i_t) : 0)); 22890 22891 ip6->ip6_plen = htons(data_length - 22892 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22893 } 22894 22895 /* 22896 * Prime pump for IP 22897 * Include the adjustment for a source route if any. 22898 */ 22899 data_length -= tcp->tcp_ip_hdr_len; 22900 data_length += tcp->tcp_sum; 22901 data_length = (data_length >> 16) + (data_length & 0xFFFF); 22902 U16_TO_ABE16(data_length, tcph->th_sum); 22903 if (tcp->tcp_ip_forward_progress) { 22904 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22905 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 22906 tcp->tcp_ip_forward_progress = B_FALSE; 22907 } 22908 return (mp1); 22909 } 22910 22911 /* This function handles the push timeout. */ 22912 void 22913 tcp_push_timer(void *arg) 22914 { 22915 conn_t *connp = (conn_t *)arg; 22916 tcp_t *tcp = connp->conn_tcp; 22917 22918 TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt); 22919 22920 ASSERT(tcp->tcp_listener == NULL); 22921 22922 ASSERT(!IPCL_IS_NONSTR(connp)); 22923 22924 tcp->tcp_push_tid = 0; 22925 22926 if (tcp->tcp_rcv_list != NULL && 22927 tcp_rcv_drain(tcp) == TH_ACK_NEEDED) 22928 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 22929 } 22930 22931 /* 22932 * This function handles delayed ACK timeout. 22933 */ 22934 static void 22935 tcp_ack_timer(void *arg) 22936 { 22937 conn_t *connp = (conn_t *)arg; 22938 tcp_t *tcp = connp->conn_tcp; 22939 mblk_t *mp; 22940 tcp_stack_t *tcps = tcp->tcp_tcps; 22941 22942 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 22943 22944 tcp->tcp_ack_tid = 0; 22945 22946 if (tcp->tcp_fused) 22947 return; 22948 22949 /* 22950 * Do not send ACK if there is no outstanding unack'ed data. 22951 */ 22952 if (tcp->tcp_rnxt == tcp->tcp_rack) { 22953 return; 22954 } 22955 22956 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 22957 /* 22958 * Make sure we don't allow deferred ACKs to result in 22959 * timer-based ACKing. If we have held off an ACK 22960 * when there was more than an mss here, and the timer 22961 * goes off, we have to worry about the possibility 22962 * that the sender isn't doing slow-start, or is out 22963 * of step with us for some other reason. We fall 22964 * permanently back in the direction of 22965 * ACK-every-other-packet as suggested in RFC 1122. 22966 */ 22967 if (tcp->tcp_rack_abs_max > 2) 22968 tcp->tcp_rack_abs_max--; 22969 tcp->tcp_rack_cur_max = 2; 22970 } 22971 mp = tcp_ack_mp(tcp); 22972 22973 if (mp != NULL) { 22974 BUMP_LOCAL(tcp->tcp_obsegs); 22975 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 22976 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 22977 tcp_send_data(tcp, tcp->tcp_wq, mp); 22978 } 22979 } 22980 22981 22982 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 22983 static mblk_t * 22984 tcp_ack_mp(tcp_t *tcp) 22985 { 22986 uint32_t seq_no; 22987 tcp_stack_t *tcps = tcp->tcp_tcps; 22988 22989 /* 22990 * There are a few cases to be considered while setting the sequence no. 22991 * Essentially, we can come here while processing an unacceptable pkt 22992 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 22993 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 22994 * If we are here for a zero window probe, stick with suna. In all 22995 * other cases, we check if suna + swnd encompasses snxt and set 22996 * the sequence number to snxt, if so. If snxt falls outside the 22997 * window (the receiver probably shrunk its window), we will go with 22998 * suna + swnd, otherwise the sequence no will be unacceptable to the 22999 * receiver. 23000 */ 23001 if (tcp->tcp_zero_win_probe) { 23002 seq_no = tcp->tcp_suna; 23003 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23004 ASSERT(tcp->tcp_swnd == 0); 23005 seq_no = tcp->tcp_snxt; 23006 } else { 23007 seq_no = SEQ_GT(tcp->tcp_snxt, 23008 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23009 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23010 } 23011 23012 if (tcp->tcp_valid_bits) { 23013 /* 23014 * For the complex case where we have to send some 23015 * controls (FIN or SYN), let tcp_xmit_mp do it. 23016 */ 23017 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23018 NULL, B_FALSE)); 23019 } else { 23020 /* Generate a simple ACK */ 23021 int data_length; 23022 uchar_t *rptr; 23023 tcph_t *tcph; 23024 mblk_t *mp1; 23025 int32_t tcp_hdr_len; 23026 int32_t tcp_tcp_hdr_len; 23027 int32_t num_sack_blk = 0; 23028 int32_t sack_opt_len; 23029 23030 /* 23031 * Allocate space for TCP + IP headers 23032 * and link-level header 23033 */ 23034 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23035 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23036 tcp->tcp_num_sack_blk); 23037 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23038 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23039 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23040 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23041 } else { 23042 tcp_hdr_len = tcp->tcp_hdr_len; 23043 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23044 } 23045 mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 23046 if (!mp1) 23047 return (NULL); 23048 23049 /* Update the latest receive window size in TCP header. */ 23050 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23051 tcp->tcp_tcph->th_win); 23052 /* copy in prototype TCP + IP header */ 23053 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23054 mp1->b_rptr = rptr; 23055 mp1->b_wptr = rptr + tcp_hdr_len; 23056 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23057 23058 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23059 23060 /* Set the TCP sequence number. */ 23061 U32_TO_ABE32(seq_no, tcph->th_seq); 23062 23063 /* Set up the TCP flag field. */ 23064 tcph->th_flags[0] = (uchar_t)TH_ACK; 23065 if (tcp->tcp_ecn_echo_on) 23066 tcph->th_flags[0] |= TH_ECE; 23067 23068 tcp->tcp_rack = tcp->tcp_rnxt; 23069 tcp->tcp_rack_cnt = 0; 23070 23071 /* fill in timestamp option if in use */ 23072 if (tcp->tcp_snd_ts_ok) { 23073 uint32_t llbolt = (uint32_t)lbolt; 23074 23075 U32_TO_BE32(llbolt, 23076 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23077 U32_TO_BE32(tcp->tcp_ts_recent, 23078 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23079 } 23080 23081 /* Fill in SACK options */ 23082 if (num_sack_blk > 0) { 23083 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23084 sack_blk_t *tmp; 23085 int32_t i; 23086 23087 wptr[0] = TCPOPT_NOP; 23088 wptr[1] = TCPOPT_NOP; 23089 wptr[2] = TCPOPT_SACK; 23090 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23091 sizeof (sack_blk_t); 23092 wptr += TCPOPT_REAL_SACK_LEN; 23093 23094 tmp = tcp->tcp_sack_list; 23095 for (i = 0; i < num_sack_blk; i++) { 23096 U32_TO_BE32(tmp[i].begin, wptr); 23097 wptr += sizeof (tcp_seq); 23098 U32_TO_BE32(tmp[i].end, wptr); 23099 wptr += sizeof (tcp_seq); 23100 } 23101 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 23102 << 4); 23103 } 23104 23105 if (tcp->tcp_ipversion == IPV4_VERSION) { 23106 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 23107 } else { 23108 /* Check for ip6i_t header in sticky hdrs */ 23109 ip6_t *ip6 = (ip6_t *)(rptr + 23110 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23111 sizeof (ip6i_t) : 0)); 23112 23113 ip6->ip6_plen = htons(tcp_hdr_len - 23114 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23115 } 23116 23117 /* 23118 * Prime pump for checksum calculation in IP. Include the 23119 * adjustment for a source route if any. 23120 */ 23121 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 23122 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23123 U16_TO_ABE16(data_length, tcph->th_sum); 23124 23125 if (tcp->tcp_ip_forward_progress) { 23126 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23127 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23128 tcp->tcp_ip_forward_progress = B_FALSE; 23129 } 23130 return (mp1); 23131 } 23132 } 23133 23134 /* 23135 * Hash list insertion routine for tcp_t structures. Each hash bucket 23136 * contains a list of tcp_t entries, and each entry is bound to a unique 23137 * port. If there are multiple tcp_t's that are bound to the same port, then 23138 * one of them will be linked into the hash bucket list, and the rest will 23139 * hang off of that one entry. For each port, entries bound to a specific IP 23140 * address will be inserted before those those bound to INADDR_ANY. 23141 */ 23142 static void 23143 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23144 { 23145 tcp_t **tcpp; 23146 tcp_t *tcpnext; 23147 tcp_t *tcphash; 23148 23149 if (tcp->tcp_ptpbhn != NULL) { 23150 ASSERT(!caller_holds_lock); 23151 tcp_bind_hash_remove(tcp); 23152 } 23153 tcpp = &tbf->tf_tcp; 23154 if (!caller_holds_lock) { 23155 mutex_enter(&tbf->tf_lock); 23156 } else { 23157 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23158 } 23159 tcphash = tcpp[0]; 23160 tcpnext = NULL; 23161 if (tcphash != NULL) { 23162 /* Look for an entry using the same port */ 23163 while ((tcphash = tcpp[0]) != NULL && 23164 tcp->tcp_lport != tcphash->tcp_lport) 23165 tcpp = &(tcphash->tcp_bind_hash); 23166 23167 /* The port was not found, just add to the end */ 23168 if (tcphash == NULL) 23169 goto insert; 23170 23171 /* 23172 * OK, there already exists an entry bound to the 23173 * same port. 23174 * 23175 * If the new tcp bound to the INADDR_ANY address 23176 * and the first one in the list is not bound to 23177 * INADDR_ANY we skip all entries until we find the 23178 * first one bound to INADDR_ANY. 23179 * This makes sure that applications binding to a 23180 * specific address get preference over those binding to 23181 * INADDR_ANY. 23182 */ 23183 tcpnext = tcphash; 23184 tcphash = NULL; 23185 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 23186 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 23187 while ((tcpnext = tcpp[0]) != NULL && 23188 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 23189 tcpp = &(tcpnext->tcp_bind_hash_port); 23190 23191 if (tcpnext) { 23192 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23193 tcphash = tcpnext->tcp_bind_hash; 23194 if (tcphash != NULL) { 23195 tcphash->tcp_ptpbhn = 23196 &(tcp->tcp_bind_hash); 23197 tcpnext->tcp_bind_hash = NULL; 23198 } 23199 } 23200 } else { 23201 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23202 tcphash = tcpnext->tcp_bind_hash; 23203 if (tcphash != NULL) { 23204 tcphash->tcp_ptpbhn = 23205 &(tcp->tcp_bind_hash); 23206 tcpnext->tcp_bind_hash = NULL; 23207 } 23208 } 23209 } 23210 insert: 23211 tcp->tcp_bind_hash_port = tcpnext; 23212 tcp->tcp_bind_hash = tcphash; 23213 tcp->tcp_ptpbhn = tcpp; 23214 tcpp[0] = tcp; 23215 if (!caller_holds_lock) 23216 mutex_exit(&tbf->tf_lock); 23217 } 23218 23219 /* 23220 * Hash list removal routine for tcp_t structures. 23221 */ 23222 static void 23223 tcp_bind_hash_remove(tcp_t *tcp) 23224 { 23225 tcp_t *tcpnext; 23226 kmutex_t *lockp; 23227 tcp_stack_t *tcps = tcp->tcp_tcps; 23228 23229 if (tcp->tcp_ptpbhn == NULL) 23230 return; 23231 23232 /* 23233 * Extract the lock pointer in case there are concurrent 23234 * hash_remove's for this instance. 23235 */ 23236 ASSERT(tcp->tcp_lport != 0); 23237 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 23238 23239 ASSERT(lockp != NULL); 23240 mutex_enter(lockp); 23241 if (tcp->tcp_ptpbhn) { 23242 tcpnext = tcp->tcp_bind_hash_port; 23243 if (tcpnext != NULL) { 23244 tcp->tcp_bind_hash_port = NULL; 23245 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23246 tcpnext->tcp_bind_hash = tcp->tcp_bind_hash; 23247 if (tcpnext->tcp_bind_hash != NULL) { 23248 tcpnext->tcp_bind_hash->tcp_ptpbhn = 23249 &(tcpnext->tcp_bind_hash); 23250 tcp->tcp_bind_hash = NULL; 23251 } 23252 } else if ((tcpnext = tcp->tcp_bind_hash) != NULL) { 23253 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23254 tcp->tcp_bind_hash = NULL; 23255 } 23256 *tcp->tcp_ptpbhn = tcpnext; 23257 tcp->tcp_ptpbhn = NULL; 23258 } 23259 mutex_exit(lockp); 23260 } 23261 23262 23263 /* 23264 * Hash list lookup routine for tcp_t structures. 23265 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 23266 */ 23267 static tcp_t * 23268 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 23269 { 23270 tf_t *tf; 23271 tcp_t *tcp; 23272 23273 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23274 mutex_enter(&tf->tf_lock); 23275 for (tcp = tf->tf_tcp; tcp != NULL; 23276 tcp = tcp->tcp_acceptor_hash) { 23277 if (tcp->tcp_acceptor_id == id) { 23278 CONN_INC_REF(tcp->tcp_connp); 23279 mutex_exit(&tf->tf_lock); 23280 return (tcp); 23281 } 23282 } 23283 mutex_exit(&tf->tf_lock); 23284 return (NULL); 23285 } 23286 23287 23288 /* 23289 * Hash list insertion routine for tcp_t structures. 23290 */ 23291 void 23292 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 23293 { 23294 tf_t *tf; 23295 tcp_t **tcpp; 23296 tcp_t *tcpnext; 23297 tcp_stack_t *tcps = tcp->tcp_tcps; 23298 23299 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23300 23301 if (tcp->tcp_ptpahn != NULL) 23302 tcp_acceptor_hash_remove(tcp); 23303 tcpp = &tf->tf_tcp; 23304 mutex_enter(&tf->tf_lock); 23305 tcpnext = tcpp[0]; 23306 if (tcpnext) 23307 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 23308 tcp->tcp_acceptor_hash = tcpnext; 23309 tcp->tcp_ptpahn = tcpp; 23310 tcpp[0] = tcp; 23311 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 23312 mutex_exit(&tf->tf_lock); 23313 } 23314 23315 /* 23316 * Hash list removal routine for tcp_t structures. 23317 */ 23318 static void 23319 tcp_acceptor_hash_remove(tcp_t *tcp) 23320 { 23321 tcp_t *tcpnext; 23322 kmutex_t *lockp; 23323 23324 /* 23325 * Extract the lock pointer in case there are concurrent 23326 * hash_remove's for this instance. 23327 */ 23328 lockp = tcp->tcp_acceptor_lockp; 23329 23330 if (tcp->tcp_ptpahn == NULL) 23331 return; 23332 23333 ASSERT(lockp != NULL); 23334 mutex_enter(lockp); 23335 if (tcp->tcp_ptpahn) { 23336 tcpnext = tcp->tcp_acceptor_hash; 23337 if (tcpnext) { 23338 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 23339 tcp->tcp_acceptor_hash = NULL; 23340 } 23341 *tcp->tcp_ptpahn = tcpnext; 23342 tcp->tcp_ptpahn = NULL; 23343 } 23344 mutex_exit(lockp); 23345 tcp->tcp_acceptor_lockp = NULL; 23346 } 23347 23348 /* 23349 * Type three generator adapted from the random() function in 4.4 BSD: 23350 */ 23351 23352 /* 23353 * Copyright (c) 1983, 1993 23354 * The Regents of the University of California. All rights reserved. 23355 * 23356 * Redistribution and use in source and binary forms, with or without 23357 * modification, are permitted provided that the following conditions 23358 * are met: 23359 * 1. Redistributions of source code must retain the above copyright 23360 * notice, this list of conditions and the following disclaimer. 23361 * 2. Redistributions in binary form must reproduce the above copyright 23362 * notice, this list of conditions and the following disclaimer in the 23363 * documentation and/or other materials provided with the distribution. 23364 * 3. All advertising materials mentioning features or use of this software 23365 * must display the following acknowledgement: 23366 * This product includes software developed by the University of 23367 * California, Berkeley and its contributors. 23368 * 4. Neither the name of the University nor the names of its contributors 23369 * may be used to endorse or promote products derived from this software 23370 * without specific prior written permission. 23371 * 23372 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23373 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23374 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23375 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23376 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23377 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23378 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23379 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23380 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23381 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23382 * SUCH DAMAGE. 23383 */ 23384 23385 /* Type 3 -- x**31 + x**3 + 1 */ 23386 #define DEG_3 31 23387 #define SEP_3 3 23388 23389 23390 /* Protected by tcp_random_lock */ 23391 static int tcp_randtbl[DEG_3 + 1]; 23392 23393 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 23394 static int *tcp_random_rptr = &tcp_randtbl[1]; 23395 23396 static int *tcp_random_state = &tcp_randtbl[1]; 23397 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 23398 23399 kmutex_t tcp_random_lock; 23400 23401 void 23402 tcp_random_init(void) 23403 { 23404 int i; 23405 hrtime_t hrt; 23406 time_t wallclock; 23407 uint64_t result; 23408 23409 /* 23410 * Use high-res timer and current time for seed. Gethrtime() returns 23411 * a longlong, which may contain resolution down to nanoseconds. 23412 * The current time will either be a 32-bit or a 64-bit quantity. 23413 * XOR the two together in a 64-bit result variable. 23414 * Convert the result to a 32-bit value by multiplying the high-order 23415 * 32-bits by the low-order 32-bits. 23416 */ 23417 23418 hrt = gethrtime(); 23419 (void) drv_getparm(TIME, &wallclock); 23420 result = (uint64_t)wallclock ^ (uint64_t)hrt; 23421 mutex_enter(&tcp_random_lock); 23422 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 23423 (result & 0xffffffff); 23424 23425 for (i = 1; i < DEG_3; i++) 23426 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 23427 + 12345; 23428 tcp_random_fptr = &tcp_random_state[SEP_3]; 23429 tcp_random_rptr = &tcp_random_state[0]; 23430 mutex_exit(&tcp_random_lock); 23431 for (i = 0; i < 10 * DEG_3; i++) 23432 (void) tcp_random(); 23433 } 23434 23435 /* 23436 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 23437 * This range is selected to be approximately centered on TCP_ISS / 2, 23438 * and easy to compute. We get this value by generating a 32-bit random 23439 * number, selecting out the high-order 17 bits, and then adding one so 23440 * that we never return zero. 23441 */ 23442 int 23443 tcp_random(void) 23444 { 23445 int i; 23446 23447 mutex_enter(&tcp_random_lock); 23448 *tcp_random_fptr += *tcp_random_rptr; 23449 23450 /* 23451 * The high-order bits are more random than the low-order bits, 23452 * so we select out the high-order 17 bits and add one so that 23453 * we never return zero. 23454 */ 23455 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 23456 if (++tcp_random_fptr >= tcp_random_end_ptr) { 23457 tcp_random_fptr = tcp_random_state; 23458 ++tcp_random_rptr; 23459 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 23460 tcp_random_rptr = tcp_random_state; 23461 23462 mutex_exit(&tcp_random_lock); 23463 return (i); 23464 } 23465 23466 static int 23467 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 23468 int *t_errorp, int *sys_errorp) 23469 { 23470 int error; 23471 int is_absreq_failure; 23472 t_scalar_t *opt_lenp; 23473 t_scalar_t opt_offset; 23474 int prim_type; 23475 struct T_conn_req *tcreqp; 23476 struct T_conn_res *tcresp; 23477 cred_t *cr; 23478 23479 /* 23480 * All Solaris components should pass a db_credp 23481 * for this TPI message, hence we ASSERT. 23482 * But in case there is some other M_PROTO that looks 23483 * like a TPI message sent by some other kernel 23484 * component, we check and return an error. 23485 */ 23486 cr = msg_getcred(mp, NULL); 23487 ASSERT(cr != NULL); 23488 if (cr == NULL) 23489 return (-1); 23490 23491 prim_type = ((union T_primitives *)mp->b_rptr)->type; 23492 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 23493 prim_type == T_CONN_RES); 23494 23495 switch (prim_type) { 23496 case T_CONN_REQ: 23497 tcreqp = (struct T_conn_req *)mp->b_rptr; 23498 opt_offset = tcreqp->OPT_offset; 23499 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 23500 break; 23501 case O_T_CONN_RES: 23502 case T_CONN_RES: 23503 tcresp = (struct T_conn_res *)mp->b_rptr; 23504 opt_offset = tcresp->OPT_offset; 23505 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 23506 break; 23507 } 23508 23509 *t_errorp = 0; 23510 *sys_errorp = 0; 23511 *do_disconnectp = 0; 23512 23513 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 23514 opt_offset, cr, &tcp_opt_obj, 23515 NULL, &is_absreq_failure); 23516 23517 switch (error) { 23518 case 0: /* no error */ 23519 ASSERT(is_absreq_failure == 0); 23520 return (0); 23521 case ENOPROTOOPT: 23522 *t_errorp = TBADOPT; 23523 break; 23524 case EACCES: 23525 *t_errorp = TACCES; 23526 break; 23527 default: 23528 *t_errorp = TSYSERR; *sys_errorp = error; 23529 break; 23530 } 23531 if (is_absreq_failure != 0) { 23532 /* 23533 * The connection request should get the local ack 23534 * T_OK_ACK and then a T_DISCON_IND. 23535 */ 23536 *do_disconnectp = 1; 23537 } 23538 return (-1); 23539 } 23540 23541 /* 23542 * Split this function out so that if the secret changes, I'm okay. 23543 * 23544 * Initialize the tcp_iss_cookie and tcp_iss_key. 23545 */ 23546 23547 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 23548 23549 static void 23550 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 23551 { 23552 struct { 23553 int32_t current_time; 23554 uint32_t randnum; 23555 uint16_t pad; 23556 uint8_t ether[6]; 23557 uint8_t passwd[PASSWD_SIZE]; 23558 } tcp_iss_cookie; 23559 time_t t; 23560 23561 /* 23562 * Start with the current absolute time. 23563 */ 23564 (void) drv_getparm(TIME, &t); 23565 tcp_iss_cookie.current_time = t; 23566 23567 /* 23568 * XXX - Need a more random number per RFC 1750, not this crap. 23569 * OTOH, if what follows is pretty random, then I'm in better shape. 23570 */ 23571 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 23572 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 23573 23574 /* 23575 * The cpu_type_info is pretty non-random. Ugggh. It does serve 23576 * as a good template. 23577 */ 23578 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 23579 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 23580 23581 /* 23582 * The pass-phrase. Normally this is supplied by user-called NDD. 23583 */ 23584 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 23585 23586 /* 23587 * See 4010593 if this section becomes a problem again, 23588 * but the local ethernet address is useful here. 23589 */ 23590 (void) localetheraddr(NULL, 23591 (struct ether_addr *)&tcp_iss_cookie.ether); 23592 23593 /* 23594 * Hash 'em all together. The MD5Final is called per-connection. 23595 */ 23596 mutex_enter(&tcps->tcps_iss_key_lock); 23597 MD5Init(&tcps->tcps_iss_key); 23598 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 23599 sizeof (tcp_iss_cookie)); 23600 mutex_exit(&tcps->tcps_iss_key_lock); 23601 } 23602 23603 /* 23604 * Set the RFC 1948 pass phrase 23605 */ 23606 /* ARGSUSED */ 23607 static int 23608 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23609 cred_t *cr) 23610 { 23611 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 23612 23613 /* 23614 * Basically, value contains a new pass phrase. Pass it along! 23615 */ 23616 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 23617 return (0); 23618 } 23619 23620 /* ARGSUSED */ 23621 static int 23622 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 23623 { 23624 bzero(buf, sizeof (tcp_sack_info_t)); 23625 return (0); 23626 } 23627 23628 /* ARGSUSED */ 23629 static int 23630 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 23631 { 23632 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 23633 return (0); 23634 } 23635 23636 /* 23637 * Make sure we wait until the default queue is setup, yet allow 23638 * tcp_g_q_create() to open a TCP stream. 23639 * We need to allow tcp_g_q_create() do do an open 23640 * of tcp, hence we compare curhread. 23641 * All others have to wait until the tcps_g_q has been 23642 * setup. 23643 */ 23644 void 23645 tcp_g_q_setup(tcp_stack_t *tcps) 23646 { 23647 mutex_enter(&tcps->tcps_g_q_lock); 23648 if (tcps->tcps_g_q != NULL) { 23649 mutex_exit(&tcps->tcps_g_q_lock); 23650 return; 23651 } 23652 if (tcps->tcps_g_q_creator == NULL) { 23653 /* This thread will set it up */ 23654 tcps->tcps_g_q_creator = curthread; 23655 mutex_exit(&tcps->tcps_g_q_lock); 23656 tcp_g_q_create(tcps); 23657 mutex_enter(&tcps->tcps_g_q_lock); 23658 ASSERT(tcps->tcps_g_q_creator == curthread); 23659 tcps->tcps_g_q_creator = NULL; 23660 cv_signal(&tcps->tcps_g_q_cv); 23661 ASSERT(tcps->tcps_g_q != NULL); 23662 mutex_exit(&tcps->tcps_g_q_lock); 23663 return; 23664 } 23665 /* Everybody but the creator has to wait */ 23666 if (tcps->tcps_g_q_creator != curthread) { 23667 while (tcps->tcps_g_q == NULL) 23668 cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock); 23669 } 23670 mutex_exit(&tcps->tcps_g_q_lock); 23671 } 23672 23673 #define IP "ip" 23674 23675 #define TCP6DEV "/devices/pseudo/tcp6@0:tcp6" 23676 23677 /* 23678 * Create a default tcp queue here instead of in strplumb 23679 */ 23680 void 23681 tcp_g_q_create(tcp_stack_t *tcps) 23682 { 23683 int error; 23684 ldi_handle_t lh = NULL; 23685 ldi_ident_t li = NULL; 23686 int rval; 23687 cred_t *cr; 23688 major_t IP_MAJ; 23689 23690 #ifdef NS_DEBUG 23691 (void) printf("tcp_g_q_create()\n"); 23692 #endif 23693 23694 IP_MAJ = ddi_name_to_major(IP); 23695 23696 ASSERT(tcps->tcps_g_q_creator == curthread); 23697 23698 error = ldi_ident_from_major(IP_MAJ, &li); 23699 if (error) { 23700 #ifdef DEBUG 23701 printf("tcp_g_q_create: lyr ident get failed error %d\n", 23702 error); 23703 #endif 23704 return; 23705 } 23706 23707 cr = zone_get_kcred(netstackid_to_zoneid( 23708 tcps->tcps_netstack->netstack_stackid)); 23709 ASSERT(cr != NULL); 23710 /* 23711 * We set the tcp default queue to IPv6 because IPv4 falls 23712 * back to IPv6 when it can't find a client, but 23713 * IPv6 does not fall back to IPv4. 23714 */ 23715 error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li); 23716 if (error) { 23717 #ifdef DEBUG 23718 printf("tcp_g_q_create: open of TCP6DEV failed error %d\n", 23719 error); 23720 #endif 23721 goto out; 23722 } 23723 23724 /* 23725 * This ioctl causes the tcp framework to cache a pointer to 23726 * this stream, so we don't want to close the stream after 23727 * this operation. 23728 * Use the kernel credentials that are for the zone we're in. 23729 */ 23730 error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q, 23731 (intptr_t)0, FKIOCTL, cr, &rval); 23732 if (error) { 23733 #ifdef DEBUG 23734 printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed " 23735 "error %d\n", error); 23736 #endif 23737 goto out; 23738 } 23739 tcps->tcps_g_q_lh = lh; /* For tcp_g_q_close */ 23740 lh = NULL; 23741 out: 23742 /* Close layered handles */ 23743 if (li) 23744 ldi_ident_release(li); 23745 /* Keep cred around until _inactive needs it */ 23746 tcps->tcps_g_q_cr = cr; 23747 } 23748 23749 /* 23750 * We keep tcp_g_q set until all other tcp_t's in the zone 23751 * has gone away, and then when tcp_g_q_inactive() is called 23752 * we clear it. 23753 */ 23754 void 23755 tcp_g_q_destroy(tcp_stack_t *tcps) 23756 { 23757 #ifdef NS_DEBUG 23758 (void) printf("tcp_g_q_destroy()for stack %d\n", 23759 tcps->tcps_netstack->netstack_stackid); 23760 #endif 23761 23762 if (tcps->tcps_g_q == NULL) { 23763 return; /* Nothing to cleanup */ 23764 } 23765 /* 23766 * Drop reference corresponding to the default queue. 23767 * This reference was added from tcp_open when the default queue 23768 * was created, hence we compensate for this extra drop in 23769 * tcp_g_q_close. If the refcnt drops to zero here it means 23770 * the default queue was the last one to be open, in which 23771 * case, then tcp_g_q_inactive will be 23772 * called as a result of the refrele. 23773 */ 23774 TCPS_REFRELE(tcps); 23775 } 23776 23777 /* 23778 * Called when last tcp_t drops reference count using TCPS_REFRELE. 23779 * Run by tcp_q_q_inactive using a taskq. 23780 */ 23781 static void 23782 tcp_g_q_close(void *arg) 23783 { 23784 tcp_stack_t *tcps = arg; 23785 int error; 23786 ldi_handle_t lh = NULL; 23787 ldi_ident_t li = NULL; 23788 cred_t *cr; 23789 major_t IP_MAJ; 23790 23791 IP_MAJ = ddi_name_to_major(IP); 23792 23793 #ifdef NS_DEBUG 23794 (void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n", 23795 tcps->tcps_netstack->netstack_stackid, 23796 tcps->tcps_netstack->netstack_refcnt); 23797 #endif 23798 lh = tcps->tcps_g_q_lh; 23799 if (lh == NULL) 23800 return; /* Nothing to cleanup */ 23801 23802 ASSERT(tcps->tcps_refcnt == 1); 23803 ASSERT(tcps->tcps_g_q != NULL); 23804 23805 error = ldi_ident_from_major(IP_MAJ, &li); 23806 if (error) { 23807 #ifdef DEBUG 23808 printf("tcp_g_q_inactive: lyr ident get failed error %d\n", 23809 error); 23810 #endif 23811 return; 23812 } 23813 23814 cr = tcps->tcps_g_q_cr; 23815 tcps->tcps_g_q_cr = NULL; 23816 ASSERT(cr != NULL); 23817 23818 /* 23819 * Make sure we can break the recursion when tcp_close decrements 23820 * the reference count causing g_q_inactive to be called again. 23821 */ 23822 tcps->tcps_g_q_lh = NULL; 23823 23824 /* close the default queue */ 23825 (void) ldi_close(lh, FREAD|FWRITE, cr); 23826 /* 23827 * At this point in time tcps and the rest of netstack_t might 23828 * have been deleted. 23829 */ 23830 tcps = NULL; 23831 23832 /* Close layered handles */ 23833 ldi_ident_release(li); 23834 crfree(cr); 23835 } 23836 23837 /* 23838 * Called when last tcp_t drops reference count using TCPS_REFRELE. 23839 * 23840 * Have to ensure that the ldi routines are not used by an 23841 * interrupt thread by using a taskq. 23842 */ 23843 void 23844 tcp_g_q_inactive(tcp_stack_t *tcps) 23845 { 23846 if (tcps->tcps_g_q_lh == NULL) 23847 return; /* Nothing to cleanup */ 23848 23849 ASSERT(tcps->tcps_refcnt == 0); 23850 TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */ 23851 23852 if (servicing_interrupt()) { 23853 (void) taskq_dispatch(tcp_taskq, tcp_g_q_close, 23854 (void *) tcps, TQ_SLEEP); 23855 } else { 23856 tcp_g_q_close(tcps); 23857 } 23858 } 23859 23860 /* 23861 * Called by IP when IP is loaded into the kernel 23862 */ 23863 void 23864 tcp_ddi_g_init(void) 23865 { 23866 tcp_timercache = kmem_cache_create("tcp_timercache", 23867 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 23868 NULL, NULL, NULL, NULL, NULL, 0); 23869 23870 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 23871 sizeof (tcp_sack_info_t), 0, 23872 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 23873 23874 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 23875 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 23876 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 23877 23878 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 23879 23880 /* Initialize the random number generator */ 23881 tcp_random_init(); 23882 23883 /* A single callback independently of how many netstacks we have */ 23884 ip_squeue_init(tcp_squeue_add); 23885 23886 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 23887 23888 tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1, 23889 TASKQ_PREPOPULATE); 23890 23891 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 23892 23893 /* 23894 * We want to be informed each time a stack is created or 23895 * destroyed in the kernel, so we can maintain the 23896 * set of tcp_stack_t's. 23897 */ 23898 netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown, 23899 tcp_stack_fini); 23900 } 23901 23902 23903 #define INET_NAME "ip" 23904 23905 /* 23906 * Initialize the TCP stack instance. 23907 */ 23908 static void * 23909 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 23910 { 23911 tcp_stack_t *tcps; 23912 tcpparam_t *pa; 23913 int i; 23914 int error = 0; 23915 major_t major; 23916 23917 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 23918 tcps->tcps_netstack = ns; 23919 23920 /* Initialize locks */ 23921 mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 23922 cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL); 23923 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 23924 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 23925 23926 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 23927 tcps->tcps_g_epriv_ports[0] = 2049; 23928 tcps->tcps_g_epriv_ports[1] = 4045; 23929 tcps->tcps_min_anonpriv_port = 512; 23930 23931 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 23932 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 23933 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 23934 TCP_FANOUT_SIZE, KM_SLEEP); 23935 23936 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 23937 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 23938 MUTEX_DEFAULT, NULL); 23939 } 23940 23941 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 23942 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 23943 MUTEX_DEFAULT, NULL); 23944 } 23945 23946 /* TCP's IPsec code calls the packet dropper. */ 23947 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 23948 23949 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 23950 tcps->tcps_params = pa; 23951 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 23952 23953 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 23954 A_CNT(lcl_tcp_param_arr), tcps); 23955 23956 /* 23957 * Note: To really walk the device tree you need the devinfo 23958 * pointer to your device which is only available after probe/attach. 23959 * The following is safe only because it uses ddi_root_node() 23960 */ 23961 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 23962 tcp_opt_obj.odb_opt_arr_cnt); 23963 23964 /* 23965 * Initialize RFC 1948 secret values. This will probably be reset once 23966 * by the boot scripts. 23967 * 23968 * Use NULL name, as the name is caught by the new lockstats. 23969 * 23970 * Initialize with some random, non-guessable string, like the global 23971 * T_INFO_ACK. 23972 */ 23973 23974 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 23975 sizeof (tcp_g_t_info_ack), tcps); 23976 23977 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 23978 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 23979 23980 major = mod_name_to_major(INET_NAME); 23981 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 23982 ASSERT(error == 0); 23983 return (tcps); 23984 } 23985 23986 /* 23987 * Called when the IP module is about to be unloaded. 23988 */ 23989 void 23990 tcp_ddi_g_destroy(void) 23991 { 23992 tcp_g_kstat_fini(tcp_g_kstat); 23993 tcp_g_kstat = NULL; 23994 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 23995 23996 mutex_destroy(&tcp_random_lock); 23997 23998 kmem_cache_destroy(tcp_timercache); 23999 kmem_cache_destroy(tcp_sack_info_cache); 24000 kmem_cache_destroy(tcp_iphc_cache); 24001 24002 netstack_unregister(NS_TCP); 24003 taskq_destroy(tcp_taskq); 24004 } 24005 24006 /* 24007 * Shut down the TCP stack instance. 24008 */ 24009 /* ARGSUSED */ 24010 static void 24011 tcp_stack_shutdown(netstackid_t stackid, void *arg) 24012 { 24013 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24014 24015 tcp_g_q_destroy(tcps); 24016 } 24017 24018 /* 24019 * Free the TCP stack instance. 24020 */ 24021 static void 24022 tcp_stack_fini(netstackid_t stackid, void *arg) 24023 { 24024 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24025 int i; 24026 24027 nd_free(&tcps->tcps_g_nd); 24028 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 24029 tcps->tcps_params = NULL; 24030 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 24031 tcps->tcps_wroff_xtra_param = NULL; 24032 kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t)); 24033 tcps->tcps_mdt_head_param = NULL; 24034 kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t)); 24035 tcps->tcps_mdt_tail_param = NULL; 24036 kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t)); 24037 tcps->tcps_mdt_max_pbufs_param = NULL; 24038 24039 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 24040 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 24041 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 24042 } 24043 24044 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 24045 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 24046 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 24047 } 24048 24049 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 24050 tcps->tcps_bind_fanout = NULL; 24051 24052 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); 24053 tcps->tcps_acceptor_fanout = NULL; 24054 24055 mutex_destroy(&tcps->tcps_iss_key_lock); 24056 mutex_destroy(&tcps->tcps_g_q_lock); 24057 cv_destroy(&tcps->tcps_g_q_cv); 24058 mutex_destroy(&tcps->tcps_epriv_port_lock); 24059 24060 ip_drop_unregister(&tcps->tcps_dropper); 24061 24062 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 24063 tcps->tcps_kstat = NULL; 24064 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 24065 24066 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 24067 tcps->tcps_mibkp = NULL; 24068 24069 ldi_ident_release(tcps->tcps_ldi_ident); 24070 kmem_free(tcps, sizeof (*tcps)); 24071 } 24072 24073 /* 24074 * Generate ISS, taking into account NDD changes may happen halfway through. 24075 * (If the iss is not zero, set it.) 24076 */ 24077 24078 static void 24079 tcp_iss_init(tcp_t *tcp) 24080 { 24081 MD5_CTX context; 24082 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 24083 uint32_t answer[4]; 24084 tcp_stack_t *tcps = tcp->tcp_tcps; 24085 24086 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 24087 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 24088 switch (tcps->tcps_strong_iss) { 24089 case 2: 24090 mutex_enter(&tcps->tcps_iss_key_lock); 24091 context = tcps->tcps_iss_key; 24092 mutex_exit(&tcps->tcps_iss_key_lock); 24093 arg.ports = tcp->tcp_ports; 24094 if (tcp->tcp_ipversion == IPV4_VERSION) { 24095 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 24096 &arg.src); 24097 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 24098 &arg.dst); 24099 } else { 24100 arg.src = tcp->tcp_ip6h->ip6_src; 24101 arg.dst = tcp->tcp_ip6h->ip6_dst; 24102 } 24103 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 24104 MD5Final((uchar_t *)answer, &context); 24105 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 24106 /* 24107 * Now that we've hashed into a unique per-connection sequence 24108 * space, add a random increment per strong_iss == 1. So I 24109 * guess we'll have to... 24110 */ 24111 /* FALLTHRU */ 24112 case 1: 24113 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 24114 break; 24115 default: 24116 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24117 break; 24118 } 24119 tcp->tcp_valid_bits = TCP_ISS_VALID; 24120 tcp->tcp_fss = tcp->tcp_iss - 1; 24121 tcp->tcp_suna = tcp->tcp_iss; 24122 tcp->tcp_snxt = tcp->tcp_iss + 1; 24123 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 24124 tcp->tcp_csuna = tcp->tcp_snxt; 24125 } 24126 24127 /* 24128 * Exported routine for extracting active tcp connection status. 24129 * 24130 * This is used by the Solaris Cluster Networking software to 24131 * gather a list of connections that need to be forwarded to 24132 * specific nodes in the cluster when configuration changes occur. 24133 * 24134 * The callback is invoked for each tcp_t structure from all netstacks, 24135 * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures 24136 * from the netstack with the specified stack_id. Returning 24137 * non-zero from the callback routine terminates the search. 24138 */ 24139 int 24140 cl_tcp_walk_list(netstackid_t stack_id, 24141 int (*cl_callback)(cl_tcp_info_t *, void *), void *arg) 24142 { 24143 netstack_handle_t nh; 24144 netstack_t *ns; 24145 int ret = 0; 24146 24147 if (stack_id >= 0) { 24148 if ((ns = netstack_find_by_stackid(stack_id)) == NULL) 24149 return (EINVAL); 24150 24151 ret = cl_tcp_walk_list_stack(cl_callback, arg, 24152 ns->netstack_tcp); 24153 netstack_rele(ns); 24154 return (ret); 24155 } 24156 24157 netstack_next_init(&nh); 24158 while ((ns = netstack_next(&nh)) != NULL) { 24159 ret = cl_tcp_walk_list_stack(cl_callback, arg, 24160 ns->netstack_tcp); 24161 netstack_rele(ns); 24162 } 24163 netstack_next_fini(&nh); 24164 return (ret); 24165 } 24166 24167 static int 24168 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 24169 tcp_stack_t *tcps) 24170 { 24171 tcp_t *tcp; 24172 cl_tcp_info_t cl_tcpi; 24173 connf_t *connfp; 24174 conn_t *connp; 24175 int i; 24176 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24177 24178 ASSERT(callback != NULL); 24179 24180 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 24181 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 24182 connp = NULL; 24183 24184 while ((connp = 24185 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 24186 24187 tcp = connp->conn_tcp; 24188 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 24189 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 24190 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 24191 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 24192 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 24193 /* 24194 * The macros tcp_laddr and tcp_faddr give the IPv4 24195 * addresses. They are copied implicitly below as 24196 * mapped addresses. 24197 */ 24198 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 24199 if (tcp->tcp_ipversion == IPV4_VERSION) { 24200 cl_tcpi.cl_tcpi_faddr = 24201 tcp->tcp_ipha->ipha_dst; 24202 } else { 24203 cl_tcpi.cl_tcpi_faddr_v6 = 24204 tcp->tcp_ip6h->ip6_dst; 24205 } 24206 24207 /* 24208 * If the callback returns non-zero 24209 * we terminate the traversal. 24210 */ 24211 if ((*callback)(&cl_tcpi, arg) != 0) { 24212 CONN_DEC_REF(tcp->tcp_connp); 24213 return (1); 24214 } 24215 } 24216 } 24217 24218 return (0); 24219 } 24220 24221 /* 24222 * Macros used for accessing the different types of sockaddr 24223 * structures inside a tcp_ioc_abort_conn_t. 24224 */ 24225 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 24226 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 24227 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 24228 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 24229 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 24230 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 24231 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 24232 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 24233 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 24234 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 24235 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 24236 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 24237 24238 /* 24239 * Return the correct error code to mimic the behavior 24240 * of a connection reset. 24241 */ 24242 #define TCP_AC_GET_ERRCODE(state, err) { \ 24243 switch ((state)) { \ 24244 case TCPS_SYN_SENT: \ 24245 case TCPS_SYN_RCVD: \ 24246 (err) = ECONNREFUSED; \ 24247 break; \ 24248 case TCPS_ESTABLISHED: \ 24249 case TCPS_FIN_WAIT_1: \ 24250 case TCPS_FIN_WAIT_2: \ 24251 case TCPS_CLOSE_WAIT: \ 24252 (err) = ECONNRESET; \ 24253 break; \ 24254 case TCPS_CLOSING: \ 24255 case TCPS_LAST_ACK: \ 24256 case TCPS_TIME_WAIT: \ 24257 (err) = 0; \ 24258 break; \ 24259 default: \ 24260 (err) = ENXIO; \ 24261 } \ 24262 } 24263 24264 /* 24265 * Check if a tcp structure matches the info in acp. 24266 */ 24267 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 24268 (((acp)->ac_local.ss_family == AF_INET) ? \ 24269 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 24270 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 24271 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 24272 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 24273 (TCP_AC_V4LPORT((acp)) == 0 || \ 24274 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 24275 (TCP_AC_V4RPORT((acp)) == 0 || \ 24276 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 24277 (acp)->ac_start <= (tcp)->tcp_state && \ 24278 (acp)->ac_end >= (tcp)->tcp_state) : \ 24279 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 24280 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 24281 &(tcp)->tcp_ip_src_v6)) && \ 24282 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 24283 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 24284 &(tcp)->tcp_remote_v6)) && \ 24285 (TCP_AC_V6LPORT((acp)) == 0 || \ 24286 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 24287 (TCP_AC_V6RPORT((acp)) == 0 || \ 24288 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 24289 (acp)->ac_start <= (tcp)->tcp_state && \ 24290 (acp)->ac_end >= (tcp)->tcp_state)) 24291 24292 #define TCP_AC_MATCH(acp, tcp) \ 24293 (((acp)->ac_zoneid == ALL_ZONES || \ 24294 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 24295 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 24296 24297 /* 24298 * Build a message containing a tcp_ioc_abort_conn_t structure 24299 * which is filled in with information from acp and tp. 24300 */ 24301 static mblk_t * 24302 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 24303 { 24304 mblk_t *mp; 24305 tcp_ioc_abort_conn_t *tacp; 24306 24307 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 24308 if (mp == NULL) 24309 return (NULL); 24310 24311 mp->b_datap->db_type = M_CTL; 24312 24313 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 24314 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 24315 sizeof (uint32_t)); 24316 24317 tacp->ac_start = acp->ac_start; 24318 tacp->ac_end = acp->ac_end; 24319 tacp->ac_zoneid = acp->ac_zoneid; 24320 24321 if (acp->ac_local.ss_family == AF_INET) { 24322 tacp->ac_local.ss_family = AF_INET; 24323 tacp->ac_remote.ss_family = AF_INET; 24324 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 24325 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 24326 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 24327 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 24328 } else { 24329 tacp->ac_local.ss_family = AF_INET6; 24330 tacp->ac_remote.ss_family = AF_INET6; 24331 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 24332 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 24333 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 24334 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 24335 } 24336 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 24337 return (mp); 24338 } 24339 24340 /* 24341 * Print a tcp_ioc_abort_conn_t structure. 24342 */ 24343 static void 24344 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 24345 { 24346 char lbuf[128]; 24347 char rbuf[128]; 24348 sa_family_t af; 24349 in_port_t lport, rport; 24350 ushort_t logflags; 24351 24352 af = acp->ac_local.ss_family; 24353 24354 if (af == AF_INET) { 24355 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 24356 lbuf, 128); 24357 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 24358 rbuf, 128); 24359 lport = ntohs(TCP_AC_V4LPORT(acp)); 24360 rport = ntohs(TCP_AC_V4RPORT(acp)); 24361 } else { 24362 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 24363 lbuf, 128); 24364 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 24365 rbuf, 128); 24366 lport = ntohs(TCP_AC_V6LPORT(acp)); 24367 rport = ntohs(TCP_AC_V6RPORT(acp)); 24368 } 24369 24370 logflags = SL_TRACE | SL_NOTE; 24371 /* 24372 * Don't print this message to the console if the operation was done 24373 * to a non-global zone. 24374 */ 24375 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24376 logflags |= SL_CONSOLE; 24377 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 24378 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 24379 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 24380 acp->ac_start, acp->ac_end); 24381 } 24382 24383 /* 24384 * Called inside tcp_rput when a message built using 24385 * tcp_ioctl_abort_build_msg is put into a queue. 24386 * Note that when we get here there is no wildcard in acp any more. 24387 */ 24388 static void 24389 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 24390 { 24391 tcp_ioc_abort_conn_t *acp; 24392 24393 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 24394 if (tcp->tcp_state <= acp->ac_end) { 24395 /* 24396 * If we get here, we are already on the correct 24397 * squeue. This ioctl follows the following path 24398 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 24399 * ->tcp_ioctl_abort->squeue_enter (if on a 24400 * different squeue) 24401 */ 24402 int errcode; 24403 24404 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 24405 (void) tcp_clean_death(tcp, errcode, 26); 24406 } 24407 freemsg(mp); 24408 } 24409 24410 /* 24411 * Abort all matching connections on a hash chain. 24412 */ 24413 static int 24414 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 24415 boolean_t exact, tcp_stack_t *tcps) 24416 { 24417 int nmatch, err = 0; 24418 tcp_t *tcp; 24419 MBLKP mp, last, listhead = NULL; 24420 conn_t *tconnp; 24421 connf_t *connfp; 24422 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24423 24424 connfp = &ipst->ips_ipcl_conn_fanout[index]; 24425 24426 startover: 24427 nmatch = 0; 24428 24429 mutex_enter(&connfp->connf_lock); 24430 for (tconnp = connfp->connf_head; tconnp != NULL; 24431 tconnp = tconnp->conn_next) { 24432 tcp = tconnp->conn_tcp; 24433 if (TCP_AC_MATCH(acp, tcp)) { 24434 CONN_INC_REF(tcp->tcp_connp); 24435 mp = tcp_ioctl_abort_build_msg(acp, tcp); 24436 if (mp == NULL) { 24437 err = ENOMEM; 24438 CONN_DEC_REF(tcp->tcp_connp); 24439 break; 24440 } 24441 mp->b_prev = (mblk_t *)tcp; 24442 24443 if (listhead == NULL) { 24444 listhead = mp; 24445 last = mp; 24446 } else { 24447 last->b_next = mp; 24448 last = mp; 24449 } 24450 nmatch++; 24451 if (exact) 24452 break; 24453 } 24454 24455 /* Avoid holding lock for too long. */ 24456 if (nmatch >= 500) 24457 break; 24458 } 24459 mutex_exit(&connfp->connf_lock); 24460 24461 /* Pass mp into the correct tcp */ 24462 while ((mp = listhead) != NULL) { 24463 listhead = listhead->b_next; 24464 tcp = (tcp_t *)mp->b_prev; 24465 mp->b_next = mp->b_prev = NULL; 24466 SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, tcp_input, 24467 tcp->tcp_connp, SQ_FILL, SQTAG_TCP_ABORT_BUCKET); 24468 } 24469 24470 *count += nmatch; 24471 if (nmatch >= 500 && err == 0) 24472 goto startover; 24473 return (err); 24474 } 24475 24476 /* 24477 * Abort all connections that matches the attributes specified in acp. 24478 */ 24479 static int 24480 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 24481 { 24482 sa_family_t af; 24483 uint32_t ports; 24484 uint16_t *pports; 24485 int err = 0, count = 0; 24486 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 24487 int index = -1; 24488 ushort_t logflags; 24489 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24490 24491 af = acp->ac_local.ss_family; 24492 24493 if (af == AF_INET) { 24494 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 24495 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 24496 pports = (uint16_t *)&ports; 24497 pports[1] = TCP_AC_V4LPORT(acp); 24498 pports[0] = TCP_AC_V4RPORT(acp); 24499 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 24500 } 24501 } else { 24502 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 24503 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 24504 pports = (uint16_t *)&ports; 24505 pports[1] = TCP_AC_V6LPORT(acp); 24506 pports[0] = TCP_AC_V6RPORT(acp); 24507 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 24508 } 24509 } 24510 24511 /* 24512 * For cases where remote addr, local port, and remote port are non- 24513 * wildcards, tcp_ioctl_abort_bucket will only be called once. 24514 */ 24515 if (index != -1) { 24516 err = tcp_ioctl_abort_bucket(acp, index, 24517 &count, exact, tcps); 24518 } else { 24519 /* 24520 * loop through all entries for wildcard case 24521 */ 24522 for (index = 0; 24523 index < ipst->ips_ipcl_conn_fanout_size; 24524 index++) { 24525 err = tcp_ioctl_abort_bucket(acp, index, 24526 &count, exact, tcps); 24527 if (err != 0) 24528 break; 24529 } 24530 } 24531 24532 logflags = SL_TRACE | SL_NOTE; 24533 /* 24534 * Don't print this message to the console if the operation was done 24535 * to a non-global zone. 24536 */ 24537 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24538 logflags |= SL_CONSOLE; 24539 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 24540 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 24541 if (err == 0 && count == 0) 24542 err = ENOENT; 24543 return (err); 24544 } 24545 24546 /* 24547 * Process the TCP_IOC_ABORT_CONN ioctl request. 24548 */ 24549 static void 24550 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 24551 { 24552 int err; 24553 IOCP iocp; 24554 MBLKP mp1; 24555 sa_family_t laf, raf; 24556 tcp_ioc_abort_conn_t *acp; 24557 zone_t *zptr; 24558 conn_t *connp = Q_TO_CONN(q); 24559 zoneid_t zoneid = connp->conn_zoneid; 24560 tcp_t *tcp = connp->conn_tcp; 24561 tcp_stack_t *tcps = tcp->tcp_tcps; 24562 24563 iocp = (IOCP)mp->b_rptr; 24564 24565 if ((mp1 = mp->b_cont) == NULL || 24566 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 24567 err = EINVAL; 24568 goto out; 24569 } 24570 24571 /* check permissions */ 24572 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 24573 err = EPERM; 24574 goto out; 24575 } 24576 24577 if (mp1->b_cont != NULL) { 24578 freemsg(mp1->b_cont); 24579 mp1->b_cont = NULL; 24580 } 24581 24582 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 24583 laf = acp->ac_local.ss_family; 24584 raf = acp->ac_remote.ss_family; 24585 24586 /* check that a zone with the supplied zoneid exists */ 24587 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 24588 zptr = zone_find_by_id(zoneid); 24589 if (zptr != NULL) { 24590 zone_rele(zptr); 24591 } else { 24592 err = EINVAL; 24593 goto out; 24594 } 24595 } 24596 24597 /* 24598 * For exclusive stacks we set the zoneid to zero 24599 * to make TCP operate as if in the global zone. 24600 */ 24601 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 24602 acp->ac_zoneid = GLOBAL_ZONEID; 24603 24604 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 24605 acp->ac_start > acp->ac_end || laf != raf || 24606 (laf != AF_INET && laf != AF_INET6)) { 24607 err = EINVAL; 24608 goto out; 24609 } 24610 24611 tcp_ioctl_abort_dump(acp); 24612 err = tcp_ioctl_abort(acp, tcps); 24613 24614 out: 24615 if (mp1 != NULL) { 24616 freemsg(mp1); 24617 mp->b_cont = NULL; 24618 } 24619 24620 if (err != 0) 24621 miocnak(q, mp, 0, err); 24622 else 24623 miocack(q, mp, 0, 0); 24624 } 24625 24626 /* 24627 * tcp_time_wait_processing() handles processing of incoming packets when 24628 * the tcp is in the TIME_WAIT state. 24629 * A TIME_WAIT tcp that has an associated open TCP stream is never put 24630 * on the time wait list. 24631 */ 24632 void 24633 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 24634 uint32_t seg_ack, int seg_len, tcph_t *tcph) 24635 { 24636 int32_t bytes_acked; 24637 int32_t gap; 24638 int32_t rgap; 24639 tcp_opt_t tcpopt; 24640 uint_t flags; 24641 uint32_t new_swnd = 0; 24642 conn_t *connp; 24643 tcp_stack_t *tcps = tcp->tcp_tcps; 24644 24645 BUMP_LOCAL(tcp->tcp_ibsegs); 24646 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 24647 24648 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 24649 new_swnd = BE16_TO_U16(tcph->th_win) << 24650 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 24651 if (tcp->tcp_snd_ts_ok) { 24652 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 24653 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24654 tcp->tcp_rnxt, TH_ACK); 24655 goto done; 24656 } 24657 } 24658 gap = seg_seq - tcp->tcp_rnxt; 24659 rgap = tcp->tcp_rwnd - (gap + seg_len); 24660 if (gap < 0) { 24661 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 24662 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 24663 (seg_len > -gap ? -gap : seg_len)); 24664 seg_len += gap; 24665 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 24666 if (flags & TH_RST) { 24667 goto done; 24668 } 24669 if ((flags & TH_FIN) && seg_len == -1) { 24670 /* 24671 * When TCP receives a duplicate FIN in 24672 * TIME_WAIT state, restart the 2 MSL timer. 24673 * See page 73 in RFC 793. Make sure this TCP 24674 * is already on the TIME_WAIT list. If not, 24675 * just restart the timer. 24676 */ 24677 if (TCP_IS_DETACHED(tcp)) { 24678 if (tcp_time_wait_remove(tcp, NULL) == 24679 B_TRUE) { 24680 tcp_time_wait_append(tcp); 24681 TCP_DBGSTAT(tcps, 24682 tcp_rput_time_wait); 24683 } 24684 } else { 24685 ASSERT(tcp != NULL); 24686 TCP_TIMER_RESTART(tcp, 24687 tcps->tcps_time_wait_interval); 24688 } 24689 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24690 tcp->tcp_rnxt, TH_ACK); 24691 goto done; 24692 } 24693 flags |= TH_ACK_NEEDED; 24694 seg_len = 0; 24695 goto process_ack; 24696 } 24697 24698 /* Fix seg_seq, and chew the gap off the front. */ 24699 seg_seq = tcp->tcp_rnxt; 24700 } 24701 24702 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 24703 /* 24704 * Make sure that when we accept the connection, pick 24705 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 24706 * old connection. 24707 * 24708 * The next ISS generated is equal to tcp_iss_incr_extra 24709 * + ISS_INCR/2 + other components depending on the 24710 * value of tcp_strong_iss. We pre-calculate the new 24711 * ISS here and compare with tcp_snxt to determine if 24712 * we need to make adjustment to tcp_iss_incr_extra. 24713 * 24714 * The above calculation is ugly and is a 24715 * waste of CPU cycles... 24716 */ 24717 uint32_t new_iss = tcps->tcps_iss_incr_extra; 24718 int32_t adj; 24719 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24720 24721 switch (tcps->tcps_strong_iss) { 24722 case 2: { 24723 /* Add time and MD5 components. */ 24724 uint32_t answer[4]; 24725 struct { 24726 uint32_t ports; 24727 in6_addr_t src; 24728 in6_addr_t dst; 24729 } arg; 24730 MD5_CTX context; 24731 24732 mutex_enter(&tcps->tcps_iss_key_lock); 24733 context = tcps->tcps_iss_key; 24734 mutex_exit(&tcps->tcps_iss_key_lock); 24735 arg.ports = tcp->tcp_ports; 24736 /* We use MAPPED addresses in tcp_iss_init */ 24737 arg.src = tcp->tcp_ip_src_v6; 24738 if (tcp->tcp_ipversion == IPV4_VERSION) { 24739 IN6_IPADDR_TO_V4MAPPED( 24740 tcp->tcp_ipha->ipha_dst, 24741 &arg.dst); 24742 } else { 24743 arg.dst = 24744 tcp->tcp_ip6h->ip6_dst; 24745 } 24746 MD5Update(&context, (uchar_t *)&arg, 24747 sizeof (arg)); 24748 MD5Final((uchar_t *)answer, &context); 24749 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 24750 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 24751 break; 24752 } 24753 case 1: 24754 /* Add time component and min random (i.e. 1). */ 24755 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 24756 break; 24757 default: 24758 /* Add only time component. */ 24759 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24760 break; 24761 } 24762 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 24763 /* 24764 * New ISS not guaranteed to be ISS_INCR/2 24765 * ahead of the current tcp_snxt, so add the 24766 * difference to tcp_iss_incr_extra. 24767 */ 24768 tcps->tcps_iss_incr_extra += adj; 24769 } 24770 /* 24771 * If tcp_clean_death() can not perform the task now, 24772 * drop the SYN packet and let the other side re-xmit. 24773 * Otherwise pass the SYN packet back in, since the 24774 * old tcp state has been cleaned up or freed. 24775 */ 24776 if (tcp_clean_death(tcp, 0, 27) == -1) 24777 goto done; 24778 /* 24779 * We will come back to tcp_rput_data 24780 * on the global queue. Packets destined 24781 * for the global queue will be checked 24782 * with global policy. But the policy for 24783 * this packet has already been checked as 24784 * this was destined for the detached 24785 * connection. We need to bypass policy 24786 * check this time by attaching a dummy 24787 * ipsec_in with ipsec_in_dont_check set. 24788 */ 24789 connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst); 24790 if (connp != NULL) { 24791 TCP_STAT(tcps, tcp_time_wait_syn_success); 24792 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 24793 return; 24794 } 24795 goto done; 24796 } 24797 24798 /* 24799 * rgap is the amount of stuff received out of window. A negative 24800 * value is the amount out of window. 24801 */ 24802 if (rgap < 0) { 24803 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 24804 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 24805 /* Fix seg_len and make sure there is something left. */ 24806 seg_len += rgap; 24807 if (seg_len <= 0) { 24808 if (flags & TH_RST) { 24809 goto done; 24810 } 24811 flags |= TH_ACK_NEEDED; 24812 seg_len = 0; 24813 goto process_ack; 24814 } 24815 } 24816 /* 24817 * Check whether we can update tcp_ts_recent. This test is 24818 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 24819 * Extensions for High Performance: An Update", Internet Draft. 24820 */ 24821 if (tcp->tcp_snd_ts_ok && 24822 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 24823 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 24824 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 24825 tcp->tcp_last_rcv_lbolt = lbolt64; 24826 } 24827 24828 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 24829 /* Always ack out of order packets */ 24830 flags |= TH_ACK_NEEDED; 24831 seg_len = 0; 24832 } else if (seg_len > 0) { 24833 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 24834 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 24835 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 24836 } 24837 if (flags & TH_RST) { 24838 (void) tcp_clean_death(tcp, 0, 28); 24839 goto done; 24840 } 24841 if (flags & TH_SYN) { 24842 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 24843 TH_RST|TH_ACK); 24844 /* 24845 * Do not delete the TCP structure if it is in 24846 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 24847 */ 24848 goto done; 24849 } 24850 process_ack: 24851 if (flags & TH_ACK) { 24852 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 24853 if (bytes_acked <= 0) { 24854 if (bytes_acked == 0 && seg_len == 0 && 24855 new_swnd == tcp->tcp_swnd) 24856 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 24857 } else { 24858 /* Acks something not sent */ 24859 flags |= TH_ACK_NEEDED; 24860 } 24861 } 24862 if (flags & TH_ACK_NEEDED) { 24863 /* 24864 * Time to send an ack for some reason. 24865 */ 24866 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24867 tcp->tcp_rnxt, TH_ACK); 24868 } 24869 done: 24870 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 24871 DB_CKSUMSTART(mp) = 0; 24872 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 24873 TCP_STAT(tcps, tcp_time_wait_syn_fail); 24874 } 24875 freemsg(mp); 24876 } 24877 24878 /* 24879 * TCP Timers Implementation. 24880 */ 24881 timeout_id_t 24882 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 24883 { 24884 mblk_t *mp; 24885 tcp_timer_t *tcpt; 24886 tcp_t *tcp = connp->conn_tcp; 24887 24888 ASSERT(connp->conn_sqp != NULL); 24889 24890 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls); 24891 24892 if (tcp->tcp_timercache == NULL) { 24893 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 24894 } else { 24895 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc); 24896 mp = tcp->tcp_timercache; 24897 tcp->tcp_timercache = mp->b_next; 24898 mp->b_next = NULL; 24899 ASSERT(mp->b_wptr == NULL); 24900 } 24901 24902 CONN_INC_REF(connp); 24903 tcpt = (tcp_timer_t *)mp->b_rptr; 24904 tcpt->connp = connp; 24905 tcpt->tcpt_proc = f; 24906 /* 24907 * TCP timers are normal timeouts. Plus, they do not require more than 24908 * a 10 millisecond resolution. By choosing a coarser resolution and by 24909 * rounding up the expiration to the next resolution boundary, we can 24910 * batch timers in the callout subsystem to make TCP timers more 24911 * efficient. The roundup also protects short timers from expiring too 24912 * early before they have a chance to be cancelled. 24913 */ 24914 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 24915 TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 24916 24917 return ((timeout_id_t)mp); 24918 } 24919 24920 static void 24921 tcp_timer_callback(void *arg) 24922 { 24923 mblk_t *mp = (mblk_t *)arg; 24924 tcp_timer_t *tcpt; 24925 conn_t *connp; 24926 24927 tcpt = (tcp_timer_t *)mp->b_rptr; 24928 connp = tcpt->connp; 24929 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp, 24930 SQ_FILL, SQTAG_TCP_TIMER); 24931 } 24932 24933 static void 24934 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 24935 { 24936 tcp_timer_t *tcpt; 24937 conn_t *connp = (conn_t *)arg; 24938 tcp_t *tcp = connp->conn_tcp; 24939 24940 tcpt = (tcp_timer_t *)mp->b_rptr; 24941 ASSERT(connp == tcpt->connp); 24942 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 24943 24944 /* 24945 * If the TCP has reached the closed state, don't proceed any 24946 * further. This TCP logically does not exist on the system. 24947 * tcpt_proc could for example access queues, that have already 24948 * been qprocoff'ed off. Also see comments at the start of tcp_input 24949 */ 24950 if (tcp->tcp_state != TCPS_CLOSED) { 24951 (*tcpt->tcpt_proc)(connp); 24952 } else { 24953 tcp->tcp_timer_tid = 0; 24954 } 24955 tcp_timer_free(connp->conn_tcp, mp); 24956 } 24957 24958 /* 24959 * There is potential race with untimeout and the handler firing at the same 24960 * time. The mblock may be freed by the handler while we are trying to use 24961 * it. But since both should execute on the same squeue, this race should not 24962 * occur. 24963 */ 24964 clock_t 24965 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 24966 { 24967 mblk_t *mp = (mblk_t *)id; 24968 tcp_timer_t *tcpt; 24969 clock_t delta; 24970 24971 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs); 24972 24973 if (mp == NULL) 24974 return (-1); 24975 24976 tcpt = (tcp_timer_t *)mp->b_rptr; 24977 ASSERT(tcpt->connp == connp); 24978 24979 delta = untimeout_default(tcpt->tcpt_tid, 0); 24980 24981 if (delta >= 0) { 24982 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled); 24983 tcp_timer_free(connp->conn_tcp, mp); 24984 CONN_DEC_REF(connp); 24985 } 24986 24987 return (delta); 24988 } 24989 24990 /* 24991 * Allocate space for the timer event. The allocation looks like mblk, but it is 24992 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 24993 * 24994 * Dealing with failures: If we can't allocate from the timer cache we try 24995 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 24996 * points to b_rptr. 24997 * If we can't allocate anything using allocb_tryhard(), we perform a last 24998 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 24999 * save the actual allocation size in b_datap. 25000 */ 25001 mblk_t * 25002 tcp_timermp_alloc(int kmflags) 25003 { 25004 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 25005 kmflags & ~KM_PANIC); 25006 25007 if (mp != NULL) { 25008 mp->b_next = mp->b_prev = NULL; 25009 mp->b_rptr = (uchar_t *)(&mp[1]); 25010 mp->b_wptr = NULL; 25011 mp->b_datap = NULL; 25012 mp->b_queue = NULL; 25013 mp->b_cont = NULL; 25014 } else if (kmflags & KM_PANIC) { 25015 /* 25016 * Failed to allocate memory for the timer. Try allocating from 25017 * dblock caches. 25018 */ 25019 /* ipclassifier calls this from a constructor - hence no tcps */ 25020 TCP_G_STAT(tcp_timermp_allocfail); 25021 mp = allocb_tryhard(sizeof (tcp_timer_t)); 25022 if (mp == NULL) { 25023 size_t size = 0; 25024 /* 25025 * Memory is really low. Try tryhard allocation. 25026 * 25027 * ipclassifier calls this from a constructor - 25028 * hence no tcps 25029 */ 25030 TCP_G_STAT(tcp_timermp_allocdblfail); 25031 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 25032 sizeof (tcp_timer_t), &size, kmflags); 25033 mp->b_rptr = (uchar_t *)(&mp[1]); 25034 mp->b_next = mp->b_prev = NULL; 25035 mp->b_wptr = (uchar_t *)-1; 25036 mp->b_datap = (dblk_t *)size; 25037 mp->b_queue = NULL; 25038 mp->b_cont = NULL; 25039 } 25040 ASSERT(mp->b_wptr != NULL); 25041 } 25042 /* ipclassifier calls this from a constructor - hence no tcps */ 25043 TCP_G_DBGSTAT(tcp_timermp_alloced); 25044 25045 return (mp); 25046 } 25047 25048 /* 25049 * Free per-tcp timer cache. 25050 * It can only contain entries from tcp_timercache. 25051 */ 25052 void 25053 tcp_timermp_free(tcp_t *tcp) 25054 { 25055 mblk_t *mp; 25056 25057 while ((mp = tcp->tcp_timercache) != NULL) { 25058 ASSERT(mp->b_wptr == NULL); 25059 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 25060 kmem_cache_free(tcp_timercache, mp); 25061 } 25062 } 25063 25064 /* 25065 * Free timer event. Put it on the per-tcp timer cache if there is not too many 25066 * events there already (currently at most two events are cached). 25067 * If the event is not allocated from the timer cache, free it right away. 25068 */ 25069 static void 25070 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 25071 { 25072 mblk_t *mp1 = tcp->tcp_timercache; 25073 25074 if (mp->b_wptr != NULL) { 25075 /* 25076 * This allocation is not from a timer cache, free it right 25077 * away. 25078 */ 25079 if (mp->b_wptr != (uchar_t *)-1) 25080 freeb(mp); 25081 else 25082 kmem_free(mp, (size_t)mp->b_datap); 25083 } else if (mp1 == NULL || mp1->b_next == NULL) { 25084 /* Cache this timer block for future allocations */ 25085 mp->b_rptr = (uchar_t *)(&mp[1]); 25086 mp->b_next = mp1; 25087 tcp->tcp_timercache = mp; 25088 } else { 25089 kmem_cache_free(tcp_timercache, mp); 25090 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed); 25091 } 25092 } 25093 25094 /* 25095 * End of TCP Timers implementation. 25096 */ 25097 25098 /* 25099 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 25100 * on the specified backing STREAMS q. Note, the caller may make the 25101 * decision to call based on the tcp_t.tcp_flow_stopped value which 25102 * when check outside the q's lock is only an advisory check ... 25103 */ 25104 void 25105 tcp_setqfull(tcp_t *tcp) 25106 { 25107 tcp_stack_t *tcps = tcp->tcp_tcps; 25108 conn_t *connp = tcp->tcp_connp; 25109 25110 if (tcp->tcp_closed) 25111 return; 25112 25113 if (IPCL_IS_NONSTR(connp)) { 25114 (*connp->conn_upcalls->su_txq_full) 25115 (tcp->tcp_connp->conn_upper_handle, B_TRUE); 25116 tcp->tcp_flow_stopped = B_TRUE; 25117 } else { 25118 queue_t *q = tcp->tcp_wq; 25119 25120 if (!(q->q_flag & QFULL)) { 25121 mutex_enter(QLOCK(q)); 25122 if (!(q->q_flag & QFULL)) { 25123 /* still need to set QFULL */ 25124 q->q_flag |= QFULL; 25125 tcp->tcp_flow_stopped = B_TRUE; 25126 mutex_exit(QLOCK(q)); 25127 TCP_STAT(tcps, tcp_flwctl_on); 25128 } else { 25129 mutex_exit(QLOCK(q)); 25130 } 25131 } 25132 } 25133 } 25134 25135 void 25136 tcp_clrqfull(tcp_t *tcp) 25137 { 25138 conn_t *connp = tcp->tcp_connp; 25139 25140 if (tcp->tcp_closed) 25141 return; 25142 25143 if (IPCL_IS_NONSTR(connp)) { 25144 (*connp->conn_upcalls->su_txq_full) 25145 (tcp->tcp_connp->conn_upper_handle, B_FALSE); 25146 tcp->tcp_flow_stopped = B_FALSE; 25147 } else { 25148 queue_t *q = tcp->tcp_wq; 25149 25150 if (q->q_flag & QFULL) { 25151 mutex_enter(QLOCK(q)); 25152 if (q->q_flag & QFULL) { 25153 q->q_flag &= ~QFULL; 25154 tcp->tcp_flow_stopped = B_FALSE; 25155 mutex_exit(QLOCK(q)); 25156 if (q->q_flag & QWANTW) 25157 qbackenable(q, 0); 25158 } else { 25159 mutex_exit(QLOCK(q)); 25160 } 25161 } 25162 } 25163 } 25164 25165 /* 25166 * kstats related to squeues i.e. not per IP instance 25167 */ 25168 static void * 25169 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 25170 { 25171 kstat_t *ksp; 25172 25173 tcp_g_stat_t template = { 25174 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 25175 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 25176 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 25177 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 25178 }; 25179 25180 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 25181 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 25182 KSTAT_FLAG_VIRTUAL); 25183 25184 if (ksp == NULL) 25185 return (NULL); 25186 25187 bcopy(&template, tcp_g_statp, sizeof (template)); 25188 ksp->ks_data = (void *)tcp_g_statp; 25189 25190 kstat_install(ksp); 25191 return (ksp); 25192 } 25193 25194 static void 25195 tcp_g_kstat_fini(kstat_t *ksp) 25196 { 25197 if (ksp != NULL) { 25198 kstat_delete(ksp); 25199 } 25200 } 25201 25202 25203 static void * 25204 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 25205 { 25206 kstat_t *ksp; 25207 25208 tcp_stat_t template = { 25209 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 25210 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 25211 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 25212 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 25213 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 25214 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 25215 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 25216 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 25217 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 25218 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 25219 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 25220 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 25221 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 25222 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 25223 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 25224 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 25225 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 25226 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 25227 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 25228 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 25229 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 25230 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 25231 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 25232 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 25233 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 25234 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 25235 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 25236 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 25237 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 25238 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 25239 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 25240 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 25241 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 25242 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 25243 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 25244 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 25245 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 25246 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 25247 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 25248 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 25249 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 25250 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 25251 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 25252 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 25253 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 25254 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 25255 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 25256 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 25257 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 25258 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 25259 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 25260 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 25261 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 25262 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 25263 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 25264 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 25265 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 25266 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 25267 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 25268 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 25269 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 25270 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 25271 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 25272 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 25273 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 25274 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 25275 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 25276 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 25277 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 25278 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 25279 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 25280 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 25281 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 25282 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 25283 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 25284 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 25285 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 25286 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 25287 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 25288 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 25289 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 25290 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 25291 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 25292 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 25293 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 25294 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 25295 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 25296 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 25297 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 25298 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 25299 }; 25300 25301 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 25302 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 25303 KSTAT_FLAG_VIRTUAL, stackid); 25304 25305 if (ksp == NULL) 25306 return (NULL); 25307 25308 bcopy(&template, tcps_statisticsp, sizeof (template)); 25309 ksp->ks_data = (void *)tcps_statisticsp; 25310 ksp->ks_private = (void *)(uintptr_t)stackid; 25311 25312 kstat_install(ksp); 25313 return (ksp); 25314 } 25315 25316 static void 25317 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 25318 { 25319 if (ksp != NULL) { 25320 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 25321 kstat_delete_netstack(ksp, stackid); 25322 } 25323 } 25324 25325 /* 25326 * TCP Kstats implementation 25327 */ 25328 static void * 25329 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 25330 { 25331 kstat_t *ksp; 25332 25333 tcp_named_kstat_t template = { 25334 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 25335 { "rtoMin", KSTAT_DATA_INT32, 0 }, 25336 { "rtoMax", KSTAT_DATA_INT32, 0 }, 25337 { "maxConn", KSTAT_DATA_INT32, 0 }, 25338 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 25339 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 25340 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 25341 { "estabResets", KSTAT_DATA_UINT32, 0 }, 25342 { "currEstab", KSTAT_DATA_UINT32, 0 }, 25343 { "inSegs", KSTAT_DATA_UINT64, 0 }, 25344 { "outSegs", KSTAT_DATA_UINT64, 0 }, 25345 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 25346 { "connTableSize", KSTAT_DATA_INT32, 0 }, 25347 { "outRsts", KSTAT_DATA_UINT32, 0 }, 25348 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 25349 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 25350 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 25351 { "outAck", KSTAT_DATA_UINT32, 0 }, 25352 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 25353 { "outUrg", KSTAT_DATA_UINT32, 0 }, 25354 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 25355 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 25356 { "outControl", KSTAT_DATA_UINT32, 0 }, 25357 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 25358 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 25359 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 25360 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 25361 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 25362 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 25363 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 25364 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 25365 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 25366 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 25367 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 25368 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 25369 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 25370 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 25371 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 25372 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 25373 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 25374 { "inClosed", KSTAT_DATA_UINT32, 0 }, 25375 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 25376 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 25377 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 25378 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 25379 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 25380 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 25381 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 25382 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 25383 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 25384 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 25385 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 25386 { "connTableSize6", KSTAT_DATA_INT32, 0 } 25387 }; 25388 25389 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 25390 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 25391 25392 if (ksp == NULL) 25393 return (NULL); 25394 25395 template.rtoAlgorithm.value.ui32 = 4; 25396 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 25397 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 25398 template.maxConn.value.i32 = -1; 25399 25400 bcopy(&template, ksp->ks_data, sizeof (template)); 25401 ksp->ks_update = tcp_kstat_update; 25402 ksp->ks_private = (void *)(uintptr_t)stackid; 25403 25404 kstat_install(ksp); 25405 return (ksp); 25406 } 25407 25408 static void 25409 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 25410 { 25411 if (ksp != NULL) { 25412 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 25413 kstat_delete_netstack(ksp, stackid); 25414 } 25415 } 25416 25417 static int 25418 tcp_kstat_update(kstat_t *kp, int rw) 25419 { 25420 tcp_named_kstat_t *tcpkp; 25421 tcp_t *tcp; 25422 connf_t *connfp; 25423 conn_t *connp; 25424 int i; 25425 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 25426 netstack_t *ns; 25427 tcp_stack_t *tcps; 25428 ip_stack_t *ipst; 25429 25430 if ((kp == NULL) || (kp->ks_data == NULL)) 25431 return (EIO); 25432 25433 if (rw == KSTAT_WRITE) 25434 return (EACCES); 25435 25436 ns = netstack_find_by_stackid(stackid); 25437 if (ns == NULL) 25438 return (-1); 25439 tcps = ns->netstack_tcp; 25440 if (tcps == NULL) { 25441 netstack_rele(ns); 25442 return (-1); 25443 } 25444 25445 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 25446 25447 tcpkp->currEstab.value.ui32 = 0; 25448 25449 ipst = ns->netstack_ip; 25450 25451 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25452 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 25453 connp = NULL; 25454 while ((connp = 25455 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25456 tcp = connp->conn_tcp; 25457 switch (tcp_snmp_state(tcp)) { 25458 case MIB2_TCP_established: 25459 case MIB2_TCP_closeWait: 25460 tcpkp->currEstab.value.ui32++; 25461 break; 25462 } 25463 } 25464 } 25465 25466 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 25467 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 25468 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 25469 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 25470 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 25471 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 25472 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 25473 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 25474 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 25475 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 25476 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 25477 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 25478 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 25479 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 25480 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 25481 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 25482 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 25483 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 25484 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 25485 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 25486 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 25487 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 25488 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 25489 tcpkp->inDataInorderSegs.value.ui32 = 25490 tcps->tcps_mib.tcpInDataInorderSegs; 25491 tcpkp->inDataInorderBytes.value.ui32 = 25492 tcps->tcps_mib.tcpInDataInorderBytes; 25493 tcpkp->inDataUnorderSegs.value.ui32 = 25494 tcps->tcps_mib.tcpInDataUnorderSegs; 25495 tcpkp->inDataUnorderBytes.value.ui32 = 25496 tcps->tcps_mib.tcpInDataUnorderBytes; 25497 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 25498 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 25499 tcpkp->inDataPartDupSegs.value.ui32 = 25500 tcps->tcps_mib.tcpInDataPartDupSegs; 25501 tcpkp->inDataPartDupBytes.value.ui32 = 25502 tcps->tcps_mib.tcpInDataPartDupBytes; 25503 tcpkp->inDataPastWinSegs.value.ui32 = 25504 tcps->tcps_mib.tcpInDataPastWinSegs; 25505 tcpkp->inDataPastWinBytes.value.ui32 = 25506 tcps->tcps_mib.tcpInDataPastWinBytes; 25507 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 25508 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 25509 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 25510 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 25511 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 25512 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 25513 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 25514 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 25515 tcpkp->timKeepaliveProbe.value.ui32 = 25516 tcps->tcps_mib.tcpTimKeepaliveProbe; 25517 tcpkp->timKeepaliveDrop.value.ui32 = 25518 tcps->tcps_mib.tcpTimKeepaliveDrop; 25519 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 25520 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 25521 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 25522 tcpkp->outSackRetransSegs.value.ui32 = 25523 tcps->tcps_mib.tcpOutSackRetransSegs; 25524 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 25525 25526 netstack_rele(ns); 25527 return (0); 25528 } 25529 25530 void 25531 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 25532 { 25533 uint16_t hdr_len; 25534 ipha_t *ipha; 25535 uint8_t *nexthdrp; 25536 tcph_t *tcph; 25537 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 25538 25539 /* Already has an eager */ 25540 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25541 TCP_STAT(tcps, tcp_reinput_syn); 25542 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 25543 SQ_PROCESS, SQTAG_TCP_REINPUT_EAGER); 25544 return; 25545 } 25546 25547 switch (IPH_HDR_VERSION(mp->b_rptr)) { 25548 case IPV4_VERSION: 25549 ipha = (ipha_t *)mp->b_rptr; 25550 hdr_len = IPH_HDR_LENGTH(ipha); 25551 break; 25552 case IPV6_VERSION: 25553 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 25554 &hdr_len, &nexthdrp)) { 25555 CONN_DEC_REF(connp); 25556 freemsg(mp); 25557 return; 25558 } 25559 break; 25560 } 25561 25562 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 25563 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 25564 mp->b_datap->db_struioflag |= STRUIO_EAGER; 25565 DB_CKSUMSTART(mp) = (intptr_t)sqp; 25566 } 25567 25568 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 25569 SQ_FILL, SQTAG_TCP_REINPUT); 25570 } 25571 25572 static int 25573 tcp_squeue_switch(int val) 25574 { 25575 int rval = SQ_FILL; 25576 25577 switch (val) { 25578 case 1: 25579 rval = SQ_NODRAIN; 25580 break; 25581 case 2: 25582 rval = SQ_PROCESS; 25583 break; 25584 default: 25585 break; 25586 } 25587 return (rval); 25588 } 25589 25590 /* 25591 * This is called once for each squeue - globally for all stack 25592 * instances. 25593 */ 25594 static void 25595 tcp_squeue_add(squeue_t *sqp) 25596 { 25597 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 25598 sizeof (tcp_squeue_priv_t), KM_SLEEP); 25599 25600 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 25601 tcp_time_wait->tcp_time_wait_tid = 25602 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 25603 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 25604 CALLOUT_FLAG_ROUNDUP); 25605 if (tcp_free_list_max_cnt == 0) { 25606 int tcp_ncpus = ((boot_max_ncpus == -1) ? 25607 max_ncpus : boot_max_ncpus); 25608 25609 /* 25610 * Limit number of entries to 1% of availble memory / tcp_ncpus 25611 */ 25612 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 25613 (tcp_ncpus * sizeof (tcp_t) * 100); 25614 } 25615 tcp_time_wait->tcp_free_list_cnt = 0; 25616 } 25617 25618 static int 25619 tcp_post_ip_bind(tcp_t *tcp, mblk_t *mp, int error, cred_t *cr, pid_t pid) 25620 { 25621 mblk_t *ire_mp = NULL; 25622 mblk_t *syn_mp; 25623 mblk_t *mdti; 25624 mblk_t *lsoi; 25625 int retval; 25626 tcph_t *tcph; 25627 cred_t *ecr; 25628 ts_label_t *tsl; 25629 uint32_t mss; 25630 conn_t *connp = tcp->tcp_connp; 25631 tcp_stack_t *tcps = tcp->tcp_tcps; 25632 25633 if (error == 0) { 25634 /* 25635 * Adapt Multidata information, if any. The 25636 * following tcp_mdt_update routine will free 25637 * the message. 25638 */ 25639 if (mp != NULL && ((mdti = tcp_mdt_info_mp(mp)) != NULL)) { 25640 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 25641 b_rptr)->mdt_capab, B_TRUE); 25642 freemsg(mdti); 25643 } 25644 25645 /* 25646 * Check to update LSO information with tcp, and 25647 * tcp_lso_update routine will free the message. 25648 */ 25649 if (mp != NULL && ((lsoi = tcp_lso_info_mp(mp)) != NULL)) { 25650 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 25651 b_rptr)->lso_capab); 25652 freemsg(lsoi); 25653 } 25654 25655 /* Get the IRE, if we had requested for it */ 25656 if (mp != NULL) 25657 ire_mp = tcp_ire_mp(&mp); 25658 25659 if (tcp->tcp_hard_binding) { 25660 tcp->tcp_hard_binding = B_FALSE; 25661 tcp->tcp_hard_bound = B_TRUE; 25662 CL_INET_CONNECT(tcp->tcp_connp, tcp, B_TRUE, retval); 25663 if (retval != 0) { 25664 error = EADDRINUSE; 25665 goto bind_failed; 25666 } 25667 } else { 25668 if (ire_mp != NULL) 25669 freeb(ire_mp); 25670 goto after_syn_sent; 25671 } 25672 25673 retval = tcp_adapt_ire(tcp, ire_mp); 25674 if (ire_mp != NULL) 25675 freeb(ire_mp); 25676 if (retval == 0) { 25677 error = (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 25678 ENETUNREACH : EADDRNOTAVAIL); 25679 goto ipcl_rm; 25680 } 25681 /* 25682 * Don't let an endpoint connect to itself. 25683 * Also checked in tcp_connect() but that 25684 * check can't handle the case when the 25685 * local IP address is INADDR_ANY. 25686 */ 25687 if (tcp->tcp_ipversion == IPV4_VERSION) { 25688 if ((tcp->tcp_ipha->ipha_dst == 25689 tcp->tcp_ipha->ipha_src) && 25690 (BE16_EQL(tcp->tcp_tcph->th_lport, 25691 tcp->tcp_tcph->th_fport))) { 25692 error = EADDRNOTAVAIL; 25693 goto ipcl_rm; 25694 } 25695 } else { 25696 if (IN6_ARE_ADDR_EQUAL( 25697 &tcp->tcp_ip6h->ip6_dst, 25698 &tcp->tcp_ip6h->ip6_src) && 25699 (BE16_EQL(tcp->tcp_tcph->th_lport, 25700 tcp->tcp_tcph->th_fport))) { 25701 error = EADDRNOTAVAIL; 25702 goto ipcl_rm; 25703 } 25704 } 25705 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 25706 /* 25707 * This should not be possible! Just for 25708 * defensive coding... 25709 */ 25710 if (tcp->tcp_state != TCPS_SYN_SENT) 25711 goto after_syn_sent; 25712 25713 if (is_system_labeled() && 25714 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 25715 error = EHOSTUNREACH; 25716 goto ipcl_rm; 25717 } 25718 25719 /* 25720 * tcp_adapt_ire() does not adjust 25721 * for TCP/IP header length. 25722 */ 25723 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 25724 25725 /* 25726 * Just make sure our rwnd is at 25727 * least tcp_recv_hiwat_mss * MSS 25728 * large, and round up to the nearest 25729 * MSS. 25730 * 25731 * We do the round up here because 25732 * we need to get the interface 25733 * MTU first before we can do the 25734 * round up. 25735 */ 25736 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 25737 tcps->tcps_recv_hiwat_minmss * mss); 25738 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 25739 tcp_set_ws_value(tcp); 25740 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 25741 tcp->tcp_tcph->th_win); 25742 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 25743 tcp->tcp_snd_ws_ok = B_TRUE; 25744 25745 /* 25746 * Set tcp_snd_ts_ok to true 25747 * so that tcp_xmit_mp will 25748 * include the timestamp 25749 * option in the SYN segment. 25750 */ 25751 if (tcps->tcps_tstamp_always || 25752 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 25753 tcp->tcp_snd_ts_ok = B_TRUE; 25754 } 25755 25756 /* 25757 * tcp_snd_sack_ok can be set in 25758 * tcp_adapt_ire() if the sack metric 25759 * is set. So check it here also. 25760 */ 25761 if (tcps->tcps_sack_permitted == 2 || 25762 tcp->tcp_snd_sack_ok) { 25763 if (tcp->tcp_sack_info == NULL) { 25764 tcp->tcp_sack_info = 25765 kmem_cache_alloc(tcp_sack_info_cache, 25766 KM_SLEEP); 25767 } 25768 tcp->tcp_snd_sack_ok = B_TRUE; 25769 } 25770 25771 /* 25772 * Should we use ECN? Note that the current 25773 * default value (SunOS 5.9) of tcp_ecn_permitted 25774 * is 1. The reason for doing this is that there 25775 * are equipments out there that will drop ECN 25776 * enabled IP packets. Setting it to 1 avoids 25777 * compatibility problems. 25778 */ 25779 if (tcps->tcps_ecn_permitted == 2) 25780 tcp->tcp_ecn_ok = B_TRUE; 25781 25782 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 25783 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 25784 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 25785 if (syn_mp) { 25786 /* 25787 * cr contains the cred from the thread calling 25788 * connect(). 25789 * 25790 * If no thread cred is available, use the 25791 * socket creator's cred instead. If still no 25792 * cred, drop the request rather than risk a 25793 * panic on production systems. 25794 */ 25795 if (cr == NULL) { 25796 cr = CONN_CRED(connp); 25797 pid = tcp->tcp_cpid; 25798 ASSERT(cr != NULL); 25799 if (cr != NULL) { 25800 mblk_setcred(syn_mp, cr, pid); 25801 } else { 25802 error = ECONNABORTED; 25803 goto ipcl_rm; 25804 } 25805 25806 /* 25807 * If an effective security label exists for 25808 * the connection, create a copy of the thread's 25809 * cred but with the effective label attached. 25810 */ 25811 } else if (is_system_labeled() && 25812 connp->conn_effective_cred != NULL && 25813 (tsl = crgetlabel(connp-> 25814 conn_effective_cred)) != NULL) { 25815 if ((ecr = copycred_from_tslabel(cr, 25816 tsl, KM_NOSLEEP)) == NULL) { 25817 error = ENOMEM; 25818 goto ipcl_rm; 25819 } 25820 mblk_setcred(syn_mp, ecr, pid); 25821 crfree(ecr); 25822 25823 /* 25824 * Default to using the thread's cred unchanged. 25825 */ 25826 } else { 25827 mblk_setcred(syn_mp, cr, pid); 25828 } 25829 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 25830 } 25831 after_syn_sent: 25832 if (mp != NULL) { 25833 ASSERT(mp->b_cont == NULL); 25834 freeb(mp); 25835 } 25836 return (error); 25837 } else { 25838 /* error */ 25839 if (tcp->tcp_debug) { 25840 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 25841 "tcp_post_ip_bind: error == %d", error); 25842 } 25843 if (mp != NULL) { 25844 freeb(mp); 25845 } 25846 } 25847 25848 ipcl_rm: 25849 /* 25850 * Need to unbind with classifier since we were just 25851 * told that our bind succeeded. a.k.a error == 0 at the entry. 25852 */ 25853 tcp->tcp_hard_bound = B_FALSE; 25854 tcp->tcp_hard_binding = B_FALSE; 25855 25856 ipcl_hash_remove(connp); 25857 25858 bind_failed: 25859 tcp->tcp_state = TCPS_IDLE; 25860 if (tcp->tcp_ipversion == IPV4_VERSION) 25861 tcp->tcp_ipha->ipha_src = 0; 25862 else 25863 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 25864 /* 25865 * Copy of the src addr. in tcp_t is needed since 25866 * the lookup funcs. can only look at tcp_t 25867 */ 25868 V6_SET_ZERO(tcp->tcp_ip_src_v6); 25869 25870 tcph = tcp->tcp_tcph; 25871 tcph->th_lport[0] = 0; 25872 tcph->th_lport[1] = 0; 25873 tcp_bind_hash_remove(tcp); 25874 bzero(&connp->u_port, sizeof (connp->u_port)); 25875 /* blow away saved option results if any */ 25876 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 25877 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 25878 25879 conn_delete_ire(tcp->tcp_connp, NULL); 25880 25881 return (error); 25882 } 25883 25884 static int 25885 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr, 25886 boolean_t bind_to_req_port_only, cred_t *cr) 25887 { 25888 in_port_t mlp_port; 25889 mlp_type_t addrtype, mlptype; 25890 boolean_t user_specified; 25891 in_port_t allocated_port; 25892 in_port_t requested_port = *requested_port_ptr; 25893 conn_t *connp; 25894 zone_t *zone; 25895 tcp_stack_t *tcps = tcp->tcp_tcps; 25896 in6_addr_t v6addr = tcp->tcp_ip_src_v6; 25897 25898 /* 25899 * XXX It's up to the caller to specify bind_to_req_port_only or not. 25900 */ 25901 if (cr == NULL) 25902 cr = tcp->tcp_cred; 25903 /* 25904 * Get a valid port (within the anonymous range and should not 25905 * be a privileged one) to use if the user has not given a port. 25906 * If multiple threads are here, they may all start with 25907 * with the same initial port. But, it should be fine as long as 25908 * tcp_bindi will ensure that no two threads will be assigned 25909 * the same port. 25910 * 25911 * NOTE: XXX If a privileged process asks for an anonymous port, we 25912 * still check for ports only in the range > tcp_smallest_non_priv_port, 25913 * unless TCP_ANONPRIVBIND option is set. 25914 */ 25915 mlptype = mlptSingle; 25916 mlp_port = requested_port; 25917 if (requested_port == 0) { 25918 requested_port = tcp->tcp_anon_priv_bind ? 25919 tcp_get_next_priv_port(tcp) : 25920 tcp_update_next_port(tcps->tcps_next_port_to_try, 25921 tcp, B_TRUE); 25922 if (requested_port == 0) { 25923 return (-TNOADDR); 25924 } 25925 user_specified = B_FALSE; 25926 25927 /* 25928 * If the user went through one of the RPC interfaces to create 25929 * this socket and RPC is MLP in this zone, then give him an 25930 * anonymous MLP. 25931 */ 25932 connp = tcp->tcp_connp; 25933 if (connp->conn_anon_mlp && is_system_labeled()) { 25934 zone = crgetzone(cr); 25935 addrtype = tsol_mlp_addr_type(zone->zone_id, 25936 IPV6_VERSION, &v6addr, 25937 tcps->tcps_netstack->netstack_ip); 25938 if (addrtype == mlptSingle) { 25939 return (-TNOADDR); 25940 } 25941 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 25942 PMAPPORT, addrtype); 25943 mlp_port = PMAPPORT; 25944 } 25945 } else { 25946 int i; 25947 boolean_t priv = B_FALSE; 25948 25949 /* 25950 * If the requested_port is in the well-known privileged range, 25951 * verify that the stream was opened by a privileged user. 25952 * Note: No locks are held when inspecting tcp_g_*epriv_ports 25953 * but instead the code relies on: 25954 * - the fact that the address of the array and its size never 25955 * changes 25956 * - the atomic assignment of the elements of the array 25957 */ 25958 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 25959 priv = B_TRUE; 25960 } else { 25961 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 25962 if (requested_port == 25963 tcps->tcps_g_epriv_ports[i]) { 25964 priv = B_TRUE; 25965 break; 25966 } 25967 } 25968 } 25969 if (priv) { 25970 if (secpolicy_net_privaddr(cr, requested_port, 25971 IPPROTO_TCP) != 0) { 25972 if (tcp->tcp_debug) { 25973 (void) strlog(TCP_MOD_ID, 0, 1, 25974 SL_ERROR|SL_TRACE, 25975 "tcp_bind: no priv for port %d", 25976 requested_port); 25977 } 25978 return (-TACCES); 25979 } 25980 } 25981 user_specified = B_TRUE; 25982 25983 connp = tcp->tcp_connp; 25984 if (is_system_labeled()) { 25985 zone = crgetzone(cr); 25986 addrtype = tsol_mlp_addr_type(zone->zone_id, 25987 IPV6_VERSION, &v6addr, 25988 tcps->tcps_netstack->netstack_ip); 25989 if (addrtype == mlptSingle) { 25990 return (-TNOADDR); 25991 } 25992 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 25993 requested_port, addrtype); 25994 } 25995 } 25996 25997 if (mlptype != mlptSingle) { 25998 if (secpolicy_net_bindmlp(cr) != 0) { 25999 if (tcp->tcp_debug) { 26000 (void) strlog(TCP_MOD_ID, 0, 1, 26001 SL_ERROR|SL_TRACE, 26002 "tcp_bind: no priv for multilevel port %d", 26003 requested_port); 26004 } 26005 return (-TACCES); 26006 } 26007 26008 /* 26009 * If we're specifically binding a shared IP address and the 26010 * port is MLP on shared addresses, then check to see if this 26011 * zone actually owns the MLP. Reject if not. 26012 */ 26013 if (mlptype == mlptShared && addrtype == mlptShared) { 26014 /* 26015 * No need to handle exclusive-stack zones since 26016 * ALL_ZONES only applies to the shared stack. 26017 */ 26018 zoneid_t mlpzone; 26019 26020 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 26021 htons(mlp_port)); 26022 if (connp->conn_zoneid != mlpzone) { 26023 if (tcp->tcp_debug) { 26024 (void) strlog(TCP_MOD_ID, 0, 1, 26025 SL_ERROR|SL_TRACE, 26026 "tcp_bind: attempt to bind port " 26027 "%d on shared addr in zone %d " 26028 "(should be %d)", 26029 mlp_port, connp->conn_zoneid, 26030 mlpzone); 26031 } 26032 return (-TACCES); 26033 } 26034 } 26035 26036 if (!user_specified) { 26037 int err; 26038 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 26039 requested_port, B_TRUE); 26040 if (err != 0) { 26041 if (tcp->tcp_debug) { 26042 (void) strlog(TCP_MOD_ID, 0, 1, 26043 SL_ERROR|SL_TRACE, 26044 "tcp_bind: cannot establish anon " 26045 "MLP for port %d", 26046 requested_port); 26047 } 26048 return (err); 26049 } 26050 connp->conn_anon_port = B_TRUE; 26051 } 26052 connp->conn_mlp_type = mlptype; 26053 } 26054 26055 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 26056 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 26057 26058 if (allocated_port == 0) { 26059 connp->conn_mlp_type = mlptSingle; 26060 if (connp->conn_anon_port) { 26061 connp->conn_anon_port = B_FALSE; 26062 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 26063 requested_port, B_FALSE); 26064 } 26065 if (bind_to_req_port_only) { 26066 if (tcp->tcp_debug) { 26067 (void) strlog(TCP_MOD_ID, 0, 1, 26068 SL_ERROR|SL_TRACE, 26069 "tcp_bind: requested addr busy"); 26070 } 26071 return (-TADDRBUSY); 26072 } else { 26073 /* If we are out of ports, fail the bind. */ 26074 if (tcp->tcp_debug) { 26075 (void) strlog(TCP_MOD_ID, 0, 1, 26076 SL_ERROR|SL_TRACE, 26077 "tcp_bind: out of ports?"); 26078 } 26079 return (-TNOADDR); 26080 } 26081 } 26082 26083 /* Pass the allocated port back */ 26084 *requested_port_ptr = allocated_port; 26085 return (0); 26086 } 26087 26088 static int 26089 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 26090 boolean_t bind_to_req_port_only) 26091 { 26092 tcp_t *tcp = connp->conn_tcp; 26093 sin_t *sin; 26094 sin6_t *sin6; 26095 in_port_t requested_port; 26096 ipaddr_t v4addr; 26097 in6_addr_t v6addr; 26098 uint_t origipversion; 26099 int error = 0; 26100 26101 ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX); 26102 26103 if (tcp->tcp_state == TCPS_BOUND) { 26104 return (0); 26105 } else if (tcp->tcp_state > TCPS_BOUND) { 26106 if (tcp->tcp_debug) { 26107 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26108 "tcp_bind: bad state, %d", tcp->tcp_state); 26109 } 26110 return (-TOUTSTATE); 26111 } 26112 origipversion = tcp->tcp_ipversion; 26113 26114 ASSERT(sa != NULL && len != 0); 26115 26116 if (!OK_32PTR((char *)sa)) { 26117 if (tcp->tcp_debug) { 26118 (void) strlog(TCP_MOD_ID, 0, 1, 26119 SL_ERROR|SL_TRACE, 26120 "tcp_bind: bad address parameter, " 26121 "address %p, len %d", 26122 (void *)sa, len); 26123 } 26124 return (-TPROTO); 26125 } 26126 26127 switch (len) { 26128 case sizeof (sin_t): /* Complete IPv4 address */ 26129 sin = (sin_t *)sa; 26130 /* 26131 * With sockets sockfs will accept bogus sin_family in 26132 * bind() and replace it with the family used in the socket 26133 * call. 26134 */ 26135 if (sin->sin_family != AF_INET || 26136 tcp->tcp_family != AF_INET) { 26137 return (EAFNOSUPPORT); 26138 } 26139 requested_port = ntohs(sin->sin_port); 26140 tcp->tcp_ipversion = IPV4_VERSION; 26141 v4addr = sin->sin_addr.s_addr; 26142 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 26143 break; 26144 26145 case sizeof (sin6_t): /* Complete IPv6 address */ 26146 sin6 = (sin6_t *)sa; 26147 if (sin6->sin6_family != AF_INET6 || 26148 tcp->tcp_family != AF_INET6) { 26149 return (EAFNOSUPPORT); 26150 } 26151 requested_port = ntohs(sin6->sin6_port); 26152 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 26153 IPV4_VERSION : IPV6_VERSION; 26154 v6addr = sin6->sin6_addr; 26155 break; 26156 26157 default: 26158 if (tcp->tcp_debug) { 26159 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26160 "tcp_bind: bad address length, %d", len); 26161 } 26162 return (EAFNOSUPPORT); 26163 /* return (-TBADADDR); */ 26164 } 26165 26166 tcp->tcp_bound_source_v6 = v6addr; 26167 26168 /* Check for change in ipversion */ 26169 if (origipversion != tcp->tcp_ipversion) { 26170 ASSERT(tcp->tcp_family == AF_INET6); 26171 error = tcp->tcp_ipversion == IPV6_VERSION ? 26172 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 26173 if (error) { 26174 return (ENOMEM); 26175 } 26176 } 26177 26178 /* 26179 * Initialize family specific fields. Copy of the src addr. 26180 * in tcp_t is needed for the lookup funcs. 26181 */ 26182 if (tcp->tcp_ipversion == IPV6_VERSION) { 26183 tcp->tcp_ip6h->ip6_src = v6addr; 26184 } else { 26185 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 26186 } 26187 tcp->tcp_ip_src_v6 = v6addr; 26188 26189 bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only; 26190 26191 error = tcp_bind_select_lport(tcp, &requested_port, 26192 bind_to_req_port_only, cr); 26193 26194 return (error); 26195 } 26196 26197 /* 26198 * Return unix error is tli error is TSYSERR, otherwise return a negative 26199 * tli error. 26200 */ 26201 int 26202 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 26203 boolean_t bind_to_req_port_only) 26204 { 26205 int error; 26206 tcp_t *tcp = connp->conn_tcp; 26207 26208 if (tcp->tcp_state >= TCPS_BOUND) { 26209 if (tcp->tcp_debug) { 26210 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26211 "tcp_bind: bad state, %d", tcp->tcp_state); 26212 } 26213 return (-TOUTSTATE); 26214 } 26215 26216 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 26217 if (error != 0) 26218 return (error); 26219 26220 ASSERT(tcp->tcp_state == TCPS_BOUND); 26221 26222 tcp->tcp_conn_req_max = 0; 26223 26224 if (tcp->tcp_family == AF_INET6) { 26225 ASSERT(tcp->tcp_connp->conn_af_isv6); 26226 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 26227 &tcp->tcp_bound_source_v6, 0, B_FALSE); 26228 } else { 26229 ASSERT(!tcp->tcp_connp->conn_af_isv6); 26230 error = ip_proto_bind_laddr_v4(connp, NULL, IPPROTO_TCP, 26231 tcp->tcp_ipha->ipha_src, 0, B_FALSE); 26232 } 26233 return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0)); 26234 } 26235 26236 int 26237 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 26238 socklen_t len, cred_t *cr) 26239 { 26240 int error; 26241 conn_t *connp = (conn_t *)proto_handle; 26242 squeue_t *sqp = connp->conn_sqp; 26243 26244 /* All Solaris components should pass a cred for this operation. */ 26245 ASSERT(cr != NULL); 26246 26247 ASSERT(sqp != NULL); 26248 ASSERT(connp->conn_upper_handle != NULL); 26249 26250 error = squeue_synch_enter(sqp, connp, NULL); 26251 if (error != 0) { 26252 /* failed to enter */ 26253 return (ENOSR); 26254 } 26255 26256 /* binding to a NULL address really means unbind */ 26257 if (sa == NULL) { 26258 if (connp->conn_tcp->tcp_state < TCPS_LISTEN) 26259 error = tcp_do_unbind(connp); 26260 else 26261 error = EINVAL; 26262 } else { 26263 error = tcp_do_bind(connp, sa, len, cr, B_TRUE); 26264 } 26265 26266 squeue_synch_exit(sqp, connp); 26267 26268 if (error < 0) { 26269 if (error == -TOUTSTATE) 26270 error = EINVAL; 26271 else 26272 error = proto_tlitosyserr(-error); 26273 } 26274 26275 return (error); 26276 } 26277 26278 /* 26279 * If the return value from this function is positive, it's a UNIX error. 26280 * Otherwise, if it's negative, then the absolute value is a TLI error. 26281 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 26282 */ 26283 int 26284 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 26285 cred_t *cr, pid_t pid) 26286 { 26287 tcp_t *tcp = connp->conn_tcp; 26288 sin_t *sin = (sin_t *)sa; 26289 sin6_t *sin6 = (sin6_t *)sa; 26290 ipaddr_t *dstaddrp; 26291 in_port_t dstport; 26292 uint_t srcid; 26293 int error = 0; 26294 26295 switch (len) { 26296 default: 26297 /* 26298 * Should never happen 26299 */ 26300 return (EINVAL); 26301 26302 case sizeof (sin_t): 26303 sin = (sin_t *)sa; 26304 if (sin->sin_port == 0) { 26305 return (-TBADADDR); 26306 } 26307 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 26308 return (EAFNOSUPPORT); 26309 } 26310 break; 26311 26312 case sizeof (sin6_t): 26313 sin6 = (sin6_t *)sa; 26314 if (sin6->sin6_port == 0) { 26315 return (-TBADADDR); 26316 } 26317 break; 26318 } 26319 /* 26320 * If we're connecting to an IPv4-mapped IPv6 address, we need to 26321 * make sure that the template IP header in the tcp structure is an 26322 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 26323 * need to this before we call tcp_bindi() so that the port lookup 26324 * code will look for ports in the correct port space (IPv4 and 26325 * IPv6 have separate port spaces). 26326 */ 26327 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 26328 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 26329 int err = 0; 26330 26331 err = tcp_header_init_ipv4(tcp); 26332 if (err != 0) { 26333 error = ENOMEM; 26334 goto connect_failed; 26335 } 26336 if (tcp->tcp_lport != 0) 26337 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 26338 } 26339 26340 switch (tcp->tcp_state) { 26341 case TCPS_LISTEN: 26342 /* 26343 * Listening sockets are not allowed to issue connect(). 26344 */ 26345 if (IPCL_IS_NONSTR(connp)) 26346 return (EOPNOTSUPP); 26347 /* FALLTHRU */ 26348 case TCPS_IDLE: 26349 /* 26350 * We support quick connect, refer to comments in 26351 * tcp_connect_*() 26352 */ 26353 /* FALLTHRU */ 26354 case TCPS_BOUND: 26355 /* 26356 * We must bump the generation before the operation start. 26357 * This is done to ensure that any upcall made later on sends 26358 * up the right generation to the socket. 26359 */ 26360 SOCK_CONNID_BUMP(tcp->tcp_connid); 26361 26362 if (tcp->tcp_family == AF_INET6) { 26363 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 26364 return (tcp_connect_ipv6(tcp, 26365 &sin6->sin6_addr, 26366 sin6->sin6_port, sin6->sin6_flowinfo, 26367 sin6->__sin6_src_id, sin6->sin6_scope_id, 26368 cr, pid)); 26369 } 26370 /* 26371 * Destination adress is mapped IPv6 address. 26372 * Source bound address should be unspecified or 26373 * IPv6 mapped address as well. 26374 */ 26375 if (!IN6_IS_ADDR_UNSPECIFIED( 26376 &tcp->tcp_bound_source_v6) && 26377 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 26378 return (EADDRNOTAVAIL); 26379 } 26380 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 26381 dstport = sin6->sin6_port; 26382 srcid = sin6->__sin6_src_id; 26383 } else { 26384 dstaddrp = &sin->sin_addr.s_addr; 26385 dstport = sin->sin_port; 26386 srcid = 0; 26387 } 26388 26389 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid, cr, 26390 pid); 26391 break; 26392 default: 26393 return (-TOUTSTATE); 26394 } 26395 /* 26396 * Note: Code below is the "failure" case 26397 */ 26398 connect_failed: 26399 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 26400 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 26401 return (error); 26402 } 26403 26404 int 26405 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 26406 socklen_t len, sock_connid_t *id, cred_t *cr) 26407 { 26408 conn_t *connp = (conn_t *)proto_handle; 26409 tcp_t *tcp = connp->conn_tcp; 26410 squeue_t *sqp = connp->conn_sqp; 26411 int error; 26412 26413 ASSERT(connp->conn_upper_handle != NULL); 26414 26415 /* All Solaris components should pass a cred for this operation. */ 26416 ASSERT(cr != NULL); 26417 26418 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 26419 if (error != 0) { 26420 return (error); 26421 } 26422 26423 error = squeue_synch_enter(sqp, connp, NULL); 26424 if (error != 0) { 26425 /* failed to enter */ 26426 return (ENOSR); 26427 } 26428 26429 /* 26430 * TCP supports quick connect, so no need to do an implicit bind 26431 */ 26432 error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid); 26433 if (error == 0) { 26434 *id = connp->conn_tcp->tcp_connid; 26435 } else if (error < 0) { 26436 if (error == -TOUTSTATE) { 26437 switch (connp->conn_tcp->tcp_state) { 26438 case TCPS_SYN_SENT: 26439 error = EALREADY; 26440 break; 26441 case TCPS_ESTABLISHED: 26442 error = EISCONN; 26443 break; 26444 case TCPS_LISTEN: 26445 error = EOPNOTSUPP; 26446 break; 26447 default: 26448 error = EINVAL; 26449 break; 26450 } 26451 } else { 26452 error = proto_tlitosyserr(-error); 26453 } 26454 } 26455 26456 if (tcp->tcp_loopback) { 26457 struct sock_proto_props sopp; 26458 26459 sopp.sopp_flags = SOCKOPT_LOOPBACK; 26460 sopp.sopp_loopback = B_TRUE; 26461 26462 (*connp->conn_upcalls->su_set_proto_props)( 26463 connp->conn_upper_handle, &sopp); 26464 } 26465 done: 26466 squeue_synch_exit(sqp, connp); 26467 26468 return ((error == 0) ? EINPROGRESS : error); 26469 } 26470 26471 /* ARGSUSED */ 26472 sock_lower_handle_t 26473 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 26474 uint_t *smodep, int *errorp, int flags, cred_t *credp) 26475 { 26476 conn_t *connp; 26477 boolean_t isv6 = family == AF_INET6; 26478 if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) || 26479 (proto != 0 && proto != IPPROTO_TCP)) { 26480 *errorp = EPROTONOSUPPORT; 26481 return (NULL); 26482 } 26483 26484 connp = tcp_create_common(NULL, credp, isv6, B_TRUE, errorp); 26485 if (connp == NULL) { 26486 return (NULL); 26487 } 26488 26489 /* 26490 * Put the ref for TCP. Ref for IP was already put 26491 * by ipcl_conn_create. Also Make the conn_t globally 26492 * visible to walkers 26493 */ 26494 mutex_enter(&connp->conn_lock); 26495 CONN_INC_REF_LOCKED(connp); 26496 ASSERT(connp->conn_ref == 2); 26497 connp->conn_state_flags &= ~CONN_INCIPIENT; 26498 26499 connp->conn_flags |= IPCL_NONSTR; 26500 mutex_exit(&connp->conn_lock); 26501 26502 ASSERT(errorp != NULL); 26503 *errorp = 0; 26504 *sock_downcalls = &sock_tcp_downcalls; 26505 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP | 26506 SM_SENDFILESUPP; 26507 26508 return ((sock_lower_handle_t)connp); 26509 } 26510 26511 /* ARGSUSED */ 26512 void 26513 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 26514 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 26515 { 26516 conn_t *connp = (conn_t *)proto_handle; 26517 struct sock_proto_props sopp; 26518 26519 ASSERT(connp->conn_upper_handle == NULL); 26520 26521 /* All Solaris components should pass a cred for this operation. */ 26522 ASSERT(cr != NULL); 26523 26524 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 26525 SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER | 26526 SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ; 26527 26528 sopp.sopp_rxhiwat = SOCKET_RECVHIWATER; 26529 sopp.sopp_rxlowat = SOCKET_RECVLOWATER; 26530 sopp.sopp_maxpsz = INFPSZ; 26531 sopp.sopp_maxblk = INFPSZ; 26532 sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL; 26533 sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3; 26534 sopp.sopp_maxaddrlen = sizeof (sin6_t); 26535 sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 : 26536 tcp_rinfo.mi_minpsz; 26537 26538 connp->conn_upcalls = sock_upcalls; 26539 connp->conn_upper_handle = sock_handle; 26540 26541 (*sock_upcalls->su_set_proto_props)(sock_handle, &sopp); 26542 } 26543 26544 /* ARGSUSED */ 26545 int 26546 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 26547 { 26548 conn_t *connp = (conn_t *)proto_handle; 26549 26550 ASSERT(connp->conn_upper_handle != NULL); 26551 26552 /* All Solaris components should pass a cred for this operation. */ 26553 ASSERT(cr != NULL); 26554 26555 tcp_close_common(connp, flags); 26556 26557 ip_free_helper_stream(connp); 26558 26559 /* 26560 * Drop IP's reference on the conn. This is the last reference 26561 * on the connp if the state was less than established. If the 26562 * connection has gone into timewait state, then we will have 26563 * one ref for the TCP and one more ref (total of two) for the 26564 * classifier connected hash list (a timewait connections stays 26565 * in connected hash till closed). 26566 * 26567 * We can't assert the references because there might be other 26568 * transient reference places because of some walkers or queued 26569 * packets in squeue for the timewait state. 26570 */ 26571 CONN_DEC_REF(connp); 26572 return (0); 26573 } 26574 26575 /* ARGSUSED */ 26576 int 26577 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg, 26578 cred_t *cr) 26579 { 26580 tcp_t *tcp; 26581 uint32_t msize; 26582 conn_t *connp = (conn_t *)proto_handle; 26583 int32_t tcpstate; 26584 26585 /* All Solaris components should pass a cred for this operation. */ 26586 ASSERT(cr != NULL); 26587 26588 ASSERT(connp->conn_ref >= 2); 26589 ASSERT(connp->conn_upper_handle != NULL); 26590 26591 if (msg->msg_controllen != 0) { 26592 return (EOPNOTSUPP); 26593 26594 } 26595 switch (DB_TYPE(mp)) { 26596 case M_DATA: 26597 tcp = connp->conn_tcp; 26598 ASSERT(tcp != NULL); 26599 26600 tcpstate = tcp->tcp_state; 26601 if (tcpstate < TCPS_ESTABLISHED) { 26602 freemsg(mp); 26603 return (ENOTCONN); 26604 } else if (tcpstate > TCPS_CLOSE_WAIT) { 26605 freemsg(mp); 26606 return (EPIPE); 26607 } 26608 26609 msize = msgdsize(mp); 26610 26611 mutex_enter(&tcp->tcp_non_sq_lock); 26612 tcp->tcp_squeue_bytes += msize; 26613 /* 26614 * Squeue Flow Control 26615 */ 26616 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 26617 tcp_setqfull(tcp); 26618 } 26619 mutex_exit(&tcp->tcp_non_sq_lock); 26620 26621 /* 26622 * The application may pass in an address in the msghdr, but 26623 * we ignore the address on connection-oriented sockets. 26624 * Just like BSD this code does not generate an error for 26625 * TCP (a CONNREQUIRED socket) when sending to an address 26626 * passed in with sendto/sendmsg. Instead the data is 26627 * delivered on the connection as if no address had been 26628 * supplied. 26629 */ 26630 CONN_INC_REF(connp); 26631 26632 if (msg != NULL && msg->msg_flags & MSG_OOB) { 26633 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 26634 tcp_output_urgent, connp, tcp_squeue_flag, 26635 SQTAG_TCP_OUTPUT); 26636 } else { 26637 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, 26638 connp, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 26639 } 26640 26641 return (0); 26642 26643 default: 26644 ASSERT(0); 26645 } 26646 26647 freemsg(mp); 26648 return (0); 26649 } 26650 26651 /* ARGSUSED */ 26652 void 26653 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2) 26654 { 26655 int len; 26656 uint32_t msize; 26657 conn_t *connp = (conn_t *)arg; 26658 tcp_t *tcp = connp->conn_tcp; 26659 26660 msize = msgdsize(mp); 26661 26662 len = msize - 1; 26663 if (len < 0) { 26664 freemsg(mp); 26665 return; 26666 } 26667 26668 /* 26669 * Try to force urgent data out on the wire. Even if we have unsent 26670 * data this will at least send the urgent flag. 26671 * XXX does not handle more flag correctly. 26672 */ 26673 len += tcp->tcp_unsent; 26674 len += tcp->tcp_snxt; 26675 tcp->tcp_urg = len; 26676 tcp->tcp_valid_bits |= TCP_URG_VALID; 26677 26678 /* Bypass tcp protocol for fused tcp loopback */ 26679 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 26680 return; 26681 26682 /* Strip off the T_EXDATA_REQ if the data is from TPI */ 26683 if (DB_TYPE(mp) != M_DATA) { 26684 mblk_t *mp1 = mp; 26685 ASSERT(!IPCL_IS_NONSTR(connp)); 26686 mp = mp->b_cont; 26687 freeb(mp1); 26688 } 26689 tcp_wput_data(tcp, mp, B_TRUE); 26690 } 26691 26692 /* ARGSUSED */ 26693 int 26694 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 26695 socklen_t *addrlenp, cred_t *cr) 26696 { 26697 conn_t *connp = (conn_t *)proto_handle; 26698 tcp_t *tcp = connp->conn_tcp; 26699 26700 ASSERT(connp->conn_upper_handle != NULL); 26701 /* All Solaris components should pass a cred for this operation. */ 26702 ASSERT(cr != NULL); 26703 26704 ASSERT(tcp != NULL); 26705 26706 return (tcp_do_getpeername(tcp, addr, addrlenp)); 26707 } 26708 26709 /* ARGSUSED */ 26710 int 26711 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 26712 socklen_t *addrlenp, cred_t *cr) 26713 { 26714 conn_t *connp = (conn_t *)proto_handle; 26715 tcp_t *tcp = connp->conn_tcp; 26716 26717 /* All Solaris components should pass a cred for this operation. */ 26718 ASSERT(cr != NULL); 26719 26720 ASSERT(connp->conn_upper_handle != NULL); 26721 26722 return (tcp_do_getsockname(tcp, addr, addrlenp)); 26723 } 26724 26725 /* 26726 * tcp_fallback 26727 * 26728 * A direct socket is falling back to using STREAMS. The queue 26729 * that is being passed down was created using tcp_open() with 26730 * the SO_FALLBACK flag set. As a result, the queue is not 26731 * associated with a conn, and the q_ptrs instead contain the 26732 * dev and minor area that should be used. 26733 * 26734 * The 'issocket' flag indicates whether the FireEngine 26735 * optimizations should be used. The common case would be that 26736 * optimizations are enabled, and they might be subsequently 26737 * disabled using the _SIOCSOCKFALLBACK ioctl. 26738 */ 26739 26740 /* 26741 * An active connection is falling back to TPI. Gather all the information 26742 * required by the STREAM head and TPI sonode and send it up. 26743 */ 26744 void 26745 tcp_fallback_noneager(tcp_t *tcp, mblk_t *stropt_mp, queue_t *q, 26746 boolean_t issocket, so_proto_quiesced_cb_t quiesced_cb) 26747 { 26748 conn_t *connp = tcp->tcp_connp; 26749 struct stroptions *stropt; 26750 struct T_capability_ack tca; 26751 struct sockaddr_in6 laddr, faddr; 26752 socklen_t laddrlen, faddrlen; 26753 short opts; 26754 int error; 26755 mblk_t *mp; 26756 26757 connp->conn_dev = (dev_t)RD(q)->q_ptr; 26758 connp->conn_minor_arena = WR(q)->q_ptr; 26759 26760 RD(q)->q_ptr = WR(q)->q_ptr = connp; 26761 26762 connp->conn_tcp->tcp_rq = connp->conn_rq = RD(q); 26763 connp->conn_tcp->tcp_wq = connp->conn_wq = WR(q); 26764 26765 WR(q)->q_qinfo = &tcp_sock_winit; 26766 26767 if (!issocket) 26768 tcp_use_pure_tpi(tcp); 26769 26770 /* 26771 * free the helper stream 26772 */ 26773 ip_free_helper_stream(connp); 26774 26775 /* 26776 * Notify the STREAM head about options 26777 */ 26778 DB_TYPE(stropt_mp) = M_SETOPTS; 26779 stropt = (struct stroptions *)stropt_mp->b_rptr; 26780 stropt_mp->b_wptr += sizeof (struct stroptions); 26781 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 26782 26783 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 26784 tcp->tcp_tcps->tcps_wroff_xtra); 26785 if (tcp->tcp_snd_sack_ok) 26786 stropt->so_wroff += TCPOPT_MAX_SACK_LEN; 26787 stropt->so_hiwat = tcp->tcp_recv_hiwater; 26788 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 26789 26790 putnext(RD(q), stropt_mp); 26791 26792 /* 26793 * Collect the information needed to sync with the sonode 26794 */ 26795 tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID); 26796 26797 laddrlen = faddrlen = sizeof (sin6_t); 26798 (void) tcp_do_getsockname(tcp, (struct sockaddr *)&laddr, &laddrlen); 26799 error = tcp_do_getpeername(tcp, (struct sockaddr *)&faddr, &faddrlen); 26800 if (error != 0) 26801 faddrlen = 0; 26802 26803 opts = 0; 26804 if (tcp->tcp_oobinline) 26805 opts |= SO_OOBINLINE; 26806 if (tcp->tcp_dontroute) 26807 opts |= SO_DONTROUTE; 26808 26809 /* 26810 * Notify the socket that the protocol is now quiescent, 26811 * and it's therefore safe move data from the socket 26812 * to the stream head. 26813 */ 26814 (*quiesced_cb)(connp->conn_upper_handle, q, &tca, 26815 (struct sockaddr *)&laddr, laddrlen, 26816 (struct sockaddr *)&faddr, faddrlen, opts); 26817 26818 while ((mp = tcp->tcp_rcv_list) != NULL) { 26819 tcp->tcp_rcv_list = mp->b_next; 26820 mp->b_next = NULL; 26821 putnext(q, mp); 26822 } 26823 tcp->tcp_rcv_last_head = NULL; 26824 tcp->tcp_rcv_last_tail = NULL; 26825 tcp->tcp_rcv_cnt = 0; 26826 } 26827 26828 /* 26829 * An eager is falling back to TPI. All we have to do is send 26830 * up a T_CONN_IND. 26831 */ 26832 void 26833 tcp_fallback_eager(tcp_t *eager, boolean_t direct_sockfs) 26834 { 26835 tcp_t *listener = eager->tcp_listener; 26836 mblk_t *mp = eager->tcp_conn.tcp_eager_conn_ind; 26837 26838 ASSERT(listener != NULL); 26839 ASSERT(mp != NULL); 26840 26841 eager->tcp_conn.tcp_eager_conn_ind = NULL; 26842 26843 /* 26844 * TLI/XTI applications will get confused by 26845 * sending eager as an option since it violates 26846 * the option semantics. So remove the eager as 26847 * option since TLI/XTI app doesn't need it anyway. 26848 */ 26849 if (!direct_sockfs) { 26850 struct T_conn_ind *conn_ind; 26851 26852 conn_ind = (struct T_conn_ind *)mp->b_rptr; 26853 conn_ind->OPT_length = 0; 26854 conn_ind->OPT_offset = 0; 26855 } 26856 26857 /* 26858 * Sockfs guarantees that the listener will not be closed 26859 * during fallback. So we can safely use the listener's queue. 26860 */ 26861 putnext(listener->tcp_rq, mp); 26862 } 26863 26864 int 26865 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q, 26866 boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) 26867 { 26868 tcp_t *tcp; 26869 conn_t *connp = (conn_t *)proto_handle; 26870 int error; 26871 mblk_t *stropt_mp; 26872 mblk_t *ordrel_mp; 26873 26874 tcp = connp->conn_tcp; 26875 26876 stropt_mp = allocb_wait(sizeof (struct stroptions), BPRI_HI, STR_NOSIG, 26877 NULL); 26878 26879 /* Pre-allocate the T_ordrel_ind mblk. */ 26880 ASSERT(tcp->tcp_ordrel_mp == NULL); 26881 ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI, 26882 STR_NOSIG, NULL); 26883 ordrel_mp->b_datap->db_type = M_PROTO; 26884 ((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND; 26885 ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind); 26886 26887 /* 26888 * Enter the squeue so that no new packets can come in 26889 */ 26890 error = squeue_synch_enter(connp->conn_sqp, connp, NULL); 26891 if (error != 0) { 26892 /* failed to enter, free all the pre-allocated messages. */ 26893 freeb(stropt_mp); 26894 freeb(ordrel_mp); 26895 /* 26896 * We cannot process the eager, so at least send out a 26897 * RST so the peer can reconnect. 26898 */ 26899 if (tcp->tcp_listener != NULL) { 26900 (void) tcp_eager_blowoff(tcp->tcp_listener, 26901 tcp->tcp_conn_req_seqnum); 26902 } 26903 return (ENOMEM); 26904 } 26905 26906 /* 26907 * Both endpoints must be of the same type (either STREAMS or 26908 * non-STREAMS) for fusion to be enabled. So if we are fused, 26909 * we have to unfuse. 26910 */ 26911 if (tcp->tcp_fused) 26912 tcp_unfuse(tcp); 26913 26914 /* 26915 * No longer a direct socket 26916 */ 26917 connp->conn_flags &= ~IPCL_NONSTR; 26918 tcp->tcp_ordrel_mp = ordrel_mp; 26919 26920 if (tcp->tcp_listener != NULL) { 26921 /* The eager will deal with opts when accept() is called */ 26922 freeb(stropt_mp); 26923 tcp_fallback_eager(tcp, direct_sockfs); 26924 } else { 26925 tcp_fallback_noneager(tcp, stropt_mp, q, direct_sockfs, 26926 quiesced_cb); 26927 } 26928 26929 /* 26930 * There should be atleast two ref's (IP + TCP) 26931 */ 26932 ASSERT(connp->conn_ref >= 2); 26933 squeue_synch_exit(connp->conn_sqp, connp); 26934 26935 return (0); 26936 } 26937 26938 /* ARGSUSED */ 26939 static void 26940 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2) 26941 { 26942 conn_t *connp = (conn_t *)arg; 26943 tcp_t *tcp = connp->conn_tcp; 26944 26945 freemsg(mp); 26946 26947 if (tcp->tcp_fused) 26948 tcp_unfuse(tcp); 26949 26950 if (tcp_xmit_end(tcp) != 0) { 26951 /* 26952 * We were crossing FINs and got a reset from 26953 * the other side. Just ignore it. 26954 */ 26955 if (tcp->tcp_debug) { 26956 (void) strlog(TCP_MOD_ID, 0, 1, 26957 SL_ERROR|SL_TRACE, 26958 "tcp_shutdown_output() out of state %s", 26959 tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); 26960 } 26961 } 26962 } 26963 26964 /* ARGSUSED */ 26965 int 26966 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 26967 { 26968 conn_t *connp = (conn_t *)proto_handle; 26969 tcp_t *tcp = connp->conn_tcp; 26970 26971 ASSERT(connp->conn_upper_handle != NULL); 26972 26973 /* All Solaris components should pass a cred for this operation. */ 26974 ASSERT(cr != NULL); 26975 26976 /* 26977 * X/Open requires that we check the connected state. 26978 */ 26979 if (tcp->tcp_state < TCPS_SYN_SENT) 26980 return (ENOTCONN); 26981 26982 /* shutdown the send side */ 26983 if (how != SHUT_RD) { 26984 mblk_t *bp; 26985 26986 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 26987 CONN_INC_REF(connp); 26988 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output, 26989 connp, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT); 26990 26991 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 26992 SOCK_OPCTL_SHUT_SEND, 0); 26993 } 26994 26995 /* shutdown the recv side */ 26996 if (how != SHUT_WR) 26997 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 26998 SOCK_OPCTL_SHUT_RECV, 0); 26999 27000 return (0); 27001 } 27002 27003 /* 27004 * SOP_LISTEN() calls into tcp_listen(). 27005 */ 27006 /* ARGSUSED */ 27007 int 27008 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 27009 { 27010 conn_t *connp = (conn_t *)proto_handle; 27011 int error; 27012 squeue_t *sqp = connp->conn_sqp; 27013 27014 ASSERT(connp->conn_upper_handle != NULL); 27015 27016 /* All Solaris components should pass a cred for this operation. */ 27017 ASSERT(cr != NULL); 27018 27019 error = squeue_synch_enter(sqp, connp, NULL); 27020 if (error != 0) { 27021 /* failed to enter */ 27022 return (ENOBUFS); 27023 } 27024 27025 error = tcp_do_listen(connp, NULL, 0, backlog, cr, FALSE); 27026 if (error == 0) { 27027 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27028 SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog); 27029 } else if (error < 0) { 27030 if (error == -TOUTSTATE) 27031 error = EINVAL; 27032 else 27033 error = proto_tlitosyserr(-error); 27034 } 27035 squeue_synch_exit(sqp, connp); 27036 return (error); 27037 } 27038 27039 static int 27040 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 27041 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 27042 { 27043 tcp_t *tcp = connp->conn_tcp; 27044 int error = 0; 27045 tcp_stack_t *tcps = tcp->tcp_tcps; 27046 27047 /* All Solaris components should pass a cred for this operation. */ 27048 ASSERT(cr != NULL); 27049 27050 if (tcp->tcp_state >= TCPS_BOUND) { 27051 if ((tcp->tcp_state == TCPS_BOUND || 27052 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 27053 /* 27054 * Handle listen() increasing backlog. 27055 * This is more "liberal" then what the TPI spec 27056 * requires but is needed to avoid a t_unbind 27057 * when handling listen() since the port number 27058 * might be "stolen" between the unbind and bind. 27059 */ 27060 goto do_listen; 27061 } 27062 if (tcp->tcp_debug) { 27063 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 27064 "tcp_listen: bad state, %d", tcp->tcp_state); 27065 } 27066 return (-TOUTSTATE); 27067 } else { 27068 if (sa == NULL) { 27069 sin6_t addr; 27070 sin_t *sin; 27071 sin6_t *sin6; 27072 27073 ASSERT(IPCL_IS_NONSTR(connp)); 27074 27075 /* Do an implicit bind: Request for a generic port. */ 27076 if (tcp->tcp_family == AF_INET) { 27077 len = sizeof (sin_t); 27078 sin = (sin_t *)&addr; 27079 *sin = sin_null; 27080 sin->sin_family = AF_INET; 27081 tcp->tcp_ipversion = IPV4_VERSION; 27082 } else { 27083 ASSERT(tcp->tcp_family == AF_INET6); 27084 len = sizeof (sin6_t); 27085 sin6 = (sin6_t *)&addr; 27086 *sin6 = sin6_null; 27087 sin6->sin6_family = AF_INET6; 27088 tcp->tcp_ipversion = IPV6_VERSION; 27089 } 27090 sa = (struct sockaddr *)&addr; 27091 } 27092 27093 error = tcp_bind_check(connp, sa, len, cr, 27094 bind_to_req_port_only); 27095 if (error) 27096 return (error); 27097 /* Fall through and do the fanout insertion */ 27098 } 27099 27100 do_listen: 27101 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 27102 tcp->tcp_conn_req_max = backlog; 27103 if (tcp->tcp_conn_req_max) { 27104 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 27105 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 27106 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 27107 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 27108 /* 27109 * If this is a listener, do not reset the eager list 27110 * and other stuffs. Note that we don't check if the 27111 * existing eager list meets the new tcp_conn_req_max 27112 * requirement. 27113 */ 27114 if (tcp->tcp_state != TCPS_LISTEN) { 27115 tcp->tcp_state = TCPS_LISTEN; 27116 /* Initialize the chain. Don't need the eager_lock */ 27117 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 27118 tcp->tcp_eager_next_drop_q0 = tcp; 27119 tcp->tcp_eager_prev_drop_q0 = tcp; 27120 tcp->tcp_second_ctimer_threshold = 27121 tcps->tcps_ip_abort_linterval; 27122 } 27123 } 27124 27125 /* 27126 * We can call ip_bind directly, the processing continues 27127 * in tcp_post_ip_bind(). 27128 * 27129 * We need to make sure that the conn_recv is set to a non-null 27130 * value before we insert the conn into the classifier table. 27131 * This is to avoid a race with an incoming packet which does an 27132 * ipcl_classify(). 27133 */ 27134 connp->conn_recv = tcp_conn_request; 27135 if (tcp->tcp_family == AF_INET) { 27136 error = ip_proto_bind_laddr_v4(connp, NULL, 27137 IPPROTO_TCP, tcp->tcp_bound_source, tcp->tcp_lport, B_TRUE); 27138 } else { 27139 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 27140 &tcp->tcp_bound_source_v6, tcp->tcp_lport, B_TRUE); 27141 } 27142 return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0)); 27143 } 27144 27145 void 27146 tcp_clr_flowctrl(sock_lower_handle_t proto_handle) 27147 { 27148 conn_t *connp = (conn_t *)proto_handle; 27149 tcp_t *tcp = connp->conn_tcp; 27150 mblk_t *mp; 27151 int error; 27152 27153 ASSERT(connp->conn_upper_handle != NULL); 27154 27155 /* 27156 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_clr_flowctrl() 27157 * is currently running. 27158 */ 27159 mutex_enter(&tcp->tcp_rsrv_mp_lock); 27160 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 27161 mutex_exit(&tcp->tcp_rsrv_mp_lock); 27162 return; 27163 } 27164 tcp->tcp_rsrv_mp = NULL; 27165 mutex_exit(&tcp->tcp_rsrv_mp_lock); 27166 27167 error = squeue_synch_enter(connp->conn_sqp, connp, mp); 27168 ASSERT(error == 0); 27169 27170 mutex_enter(&tcp->tcp_rsrv_mp_lock); 27171 tcp->tcp_rsrv_mp = mp; 27172 mutex_exit(&tcp->tcp_rsrv_mp_lock); 27173 27174 if (tcp->tcp_fused) { 27175 tcp_fuse_backenable(tcp); 27176 } else { 27177 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 27178 /* 27179 * Send back a window update immediately if TCP is above 27180 * ESTABLISHED state and the increase of the rcv window 27181 * that the other side knows is at least 1 MSS after flow 27182 * control is lifted. 27183 */ 27184 if (tcp->tcp_state >= TCPS_ESTABLISHED && 27185 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 27186 tcp_xmit_ctl(NULL, tcp, 27187 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 27188 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 27189 } 27190 } 27191 27192 squeue_synch_exit(connp->conn_sqp, connp); 27193 } 27194 27195 /* ARGSUSED */ 27196 int 27197 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 27198 int mode, int32_t *rvalp, cred_t *cr) 27199 { 27200 conn_t *connp = (conn_t *)proto_handle; 27201 int error; 27202 27203 ASSERT(connp->conn_upper_handle != NULL); 27204 27205 /* All Solaris components should pass a cred for this operation. */ 27206 ASSERT(cr != NULL); 27207 27208 switch (cmd) { 27209 case ND_SET: 27210 case ND_GET: 27211 case TCP_IOC_DEFAULT_Q: 27212 case _SIOCSOCKFALLBACK: 27213 case TCP_IOC_ABORT_CONN: 27214 case TI_GETPEERNAME: 27215 case TI_GETMYNAME: 27216 ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket", 27217 cmd)); 27218 error = EINVAL; 27219 break; 27220 default: 27221 /* 27222 * Pass on to IP using helper stream 27223 */ 27224 error = ldi_ioctl(connp->conn_helper_info->iphs_handle, 27225 cmd, arg, mode, cr, rvalp); 27226 break; 27227 } 27228 return (error); 27229 } 27230 27231 sock_downcalls_t sock_tcp_downcalls = { 27232 tcp_activate, 27233 tcp_accept, 27234 tcp_bind, 27235 tcp_listen, 27236 tcp_connect, 27237 tcp_getpeername, 27238 tcp_getsockname, 27239 tcp_getsockopt, 27240 tcp_setsockopt, 27241 tcp_sendmsg, 27242 NULL, 27243 NULL, 27244 NULL, 27245 tcp_shutdown, 27246 tcp_clr_flowctrl, 27247 tcp_ioctl, 27248 tcp_close, 27249 }; 27250