1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #define _SUN_TPI_VERSION 2 35 #include <sys/tihdr.h> 36 #include <sys/timod.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #include <sys/suntpi.h> 40 #include <sys/xti_inet.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/sdt.h> 44 #include <sys/vtrace.h> 45 #include <sys/kmem.h> 46 #include <sys/ethernet.h> 47 #include <sys/cpuvar.h> 48 #include <sys/dlpi.h> 49 #include <sys/multidata.h> 50 #include <sys/multidata_impl.h> 51 #include <sys/pattr.h> 52 #include <sys/policy.h> 53 #include <sys/priv.h> 54 #include <sys/zone.h> 55 #include <sys/sunldi.h> 56 57 #include <sys/errno.h> 58 #include <sys/signal.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/sockio.h> 62 #include <sys/isa_defs.h> 63 #include <sys/md5.h> 64 #include <sys/random.h> 65 #include <sys/uio.h> 66 #include <sys/systm.h> 67 #include <netinet/in.h> 68 #include <netinet/tcp.h> 69 #include <netinet/ip6.h> 70 #include <netinet/icmp6.h> 71 #include <net/if.h> 72 #include <net/route.h> 73 #include <inet/ipsec_impl.h> 74 75 #include <inet/common.h> 76 #include <inet/ip.h> 77 #include <inet/ip_impl.h> 78 #include <inet/ip6.h> 79 #include <inet/ip_ndp.h> 80 #include <inet/proto_set.h> 81 #include <inet/mib2.h> 82 #include <inet/nd.h> 83 #include <inet/optcom.h> 84 #include <inet/snmpcom.h> 85 #include <inet/kstatcom.h> 86 #include <inet/tcp.h> 87 #include <inet/tcp_impl.h> 88 #include <inet/udp_impl.h> 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/ipdrop.h> 92 93 #include <inet/ipclassifier.h> 94 #include <inet/ip_ire.h> 95 #include <inet/ip_ftable.h> 96 #include <inet/ip_if.h> 97 #include <inet/ipp_common.h> 98 #include <inet/ip_netinfo.h> 99 #include <sys/squeue_impl.h> 100 #include <sys/squeue.h> 101 #include <inet/kssl/ksslapi.h> 102 #include <sys/tsol/label.h> 103 #include <sys/tsol/tnet.h> 104 #include <rpc/pmap_prot.h> 105 #include <sys/callo.h> 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 129 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. tcp_open() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_conn_request(). But briefly, the squeue is picked by 176 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 202 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 203 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 204 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 205 * check to send packets directly to tcp_rput_data via squeue. Everyone 206 * else comes through tcp_input() on the read side. 207 * 208 * We also make special provisions for sockfs by marking tcp_issocket 209 * whenever we have only sockfs on top of TCP. This allows us to skip 210 * putting the tcp in acceptor hash since a sockfs listener can never 211 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 212 * since eager has already been allocated and the accept now happens 213 * on acceptor STREAM. There is a big blob of comment on top of 214 * tcp_conn_request explaining the new accept. When socket is POP'd, 215 * sockfs sends us an ioctl to mark the fact and we go back to old 216 * behaviour. Once tcp_issocket is unset, its never set for the 217 * life of that connection. 218 * 219 * IPsec notes : 220 * 221 * Since a packet is always executed on the correct TCP perimeter 222 * all IPsec processing is defered to IP including checking new 223 * connections and setting IPSEC policies for new connection. The 224 * only exception is tcp_xmit_listeners_reset() which is called 225 * directly from IP and needs to policy check to see if TH_RST 226 * can be sent out. 227 * 228 * PFHooks notes : 229 * 230 * For mdt case, one meta buffer contains multiple packets. Mblks for every 231 * packet are assembled and passed to the hooks. When packets are blocked, 232 * or boundary of any packet is changed, the mdt processing is stopped, and 233 * packets of the meta buffer are send to the IP path one by one. 234 */ 235 236 /* 237 * Values for squeue switch: 238 * 1: SQ_NODRAIN 239 * 2: SQ_PROCESS 240 * 3: SQ_FILL 241 */ 242 int tcp_squeue_wput = 2; /* /etc/systems */ 243 int tcp_squeue_flag; 244 245 /* 246 * This controls how tiny a write must be before we try to copy it 247 * into the the mblk on the tail of the transmit queue. Not much 248 * speedup is observed for values larger than sixteen. Zero will 249 * disable the optimisation. 250 */ 251 int tcp_tx_pull_len = 16; 252 253 /* 254 * TCP Statistics. 255 * 256 * How TCP statistics work. 257 * 258 * There are two types of statistics invoked by two macros. 259 * 260 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 261 * supposed to be used in non MT-hot paths of the code. 262 * 263 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 264 * supposed to be used for DEBUG purposes and may be used on a hot path. 265 * 266 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 267 * (use "kstat tcp" to get them). 268 * 269 * There is also additional debugging facility that marks tcp_clean_death() 270 * instances and saves them in tcp_t structure. It is triggered by 271 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 272 * tcp_clean_death() calls that counts the number of times each tag was hit. It 273 * is triggered by TCP_CLD_COUNTERS define. 274 * 275 * How to add new counters. 276 * 277 * 1) Add a field in the tcp_stat structure describing your counter. 278 * 2) Add a line in the template in tcp_kstat2_init() with the name 279 * of the counter. 280 * 281 * IMPORTANT!! - make sure that both are in sync !! 282 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 283 * 284 * Please avoid using private counters which are not kstat-exported. 285 * 286 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 287 * in tcp_t structure. 288 * 289 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 290 */ 291 292 #ifndef TCP_DEBUG_COUNTER 293 #ifdef DEBUG 294 #define TCP_DEBUG_COUNTER 1 295 #else 296 #define TCP_DEBUG_COUNTER 0 297 #endif 298 #endif 299 300 #define TCP_CLD_COUNTERS 0 301 302 #define TCP_TAG_CLEAN_DEATH 1 303 #define TCP_MAX_CLEAN_DEATH_TAG 32 304 305 #ifdef lint 306 static int _lint_dummy_; 307 #endif 308 309 #if TCP_CLD_COUNTERS 310 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 311 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 312 #elif defined(lint) 313 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 314 #else 315 #define TCP_CLD_STAT(x) 316 #endif 317 318 #if TCP_DEBUG_COUNTER 319 #define TCP_DBGSTAT(tcps, x) \ 320 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 321 #define TCP_G_DBGSTAT(x) \ 322 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 323 #elif defined(lint) 324 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 325 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 326 #else 327 #define TCP_DBGSTAT(tcps, x) 328 #define TCP_G_DBGSTAT(x) 329 #endif 330 331 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 332 333 tcp_g_stat_t tcp_g_statistics; 334 kstat_t *tcp_g_kstat; 335 336 /* 337 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 338 * tcp write side. 339 */ 340 #define CALL_IP_WPUT(connp, q, mp) { \ 341 ASSERT(((q)->q_flag & QREADR) == 0); \ 342 TCP_DBGSTAT(connp->conn_netstack->netstack_tcp, tcp_ip_output); \ 343 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 344 } 345 346 /* Macros for timestamp comparisons */ 347 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 348 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 349 350 /* 351 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 352 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 353 * by adding three components: a time component which grows by 1 every 4096 354 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 355 * a per-connection component which grows by 125000 for every new connection; 356 * and an "extra" component that grows by a random amount centered 357 * approximately on 64000. This causes the the ISS generator to cycle every 358 * 4.89 hours if no TCP connections are made, and faster if connections are 359 * made. 360 * 361 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 362 * components: a time component which grows by 250000 every second; and 363 * a per-connection component which grows by 125000 for every new connections. 364 * 365 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 366 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 367 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 368 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 369 * password. 370 */ 371 #define ISS_INCR 250000 372 #define ISS_NSEC_SHT 12 373 374 static sin_t sin_null; /* Zero address for quick clears */ 375 static sin6_t sin6_null; /* Zero address for quick clears */ 376 377 /* 378 * This implementation follows the 4.3BSD interpretation of the urgent 379 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 380 * incompatible changes in protocols like telnet and rlogin. 381 */ 382 #define TCP_OLD_URP_INTERPRETATION 1 383 384 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 385 (TCP_IS_DETACHED(tcp) && \ 386 (!(tcp)->tcp_hard_binding)) 387 388 /* 389 * TCP reassembly macros. We hide starting and ending sequence numbers in 390 * b_next and b_prev of messages on the reassembly queue. The messages are 391 * chained using b_cont. These macros are used in tcp_reass() so we don't 392 * have to see the ugly casts and assignments. 393 */ 394 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 395 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 396 (mblk_t *)(uintptr_t)(u)) 397 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 398 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 399 (mblk_t *)(uintptr_t)(u)) 400 401 /* 402 * Implementation of TCP Timers. 403 * ============================= 404 * 405 * INTERFACE: 406 * 407 * There are two basic functions dealing with tcp timers: 408 * 409 * timeout_id_t tcp_timeout(connp, func, time) 410 * clock_t tcp_timeout_cancel(connp, timeout_id) 411 * TCP_TIMER_RESTART(tcp, intvl) 412 * 413 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 414 * after 'time' ticks passed. The function called by timeout() must adhere to 415 * the same restrictions as a driver soft interrupt handler - it must not sleep 416 * or call other functions that might sleep. The value returned is the opaque 417 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 418 * cancel the request. The call to tcp_timeout() may fail in which case it 419 * returns zero. This is different from the timeout(9F) function which never 420 * fails. 421 * 422 * The call-back function 'func' always receives 'connp' as its single 423 * argument. It is always executed in the squeue corresponding to the tcp 424 * structure. The tcp structure is guaranteed to be present at the time the 425 * call-back is called. 426 * 427 * NOTE: The call-back function 'func' is never called if tcp is in 428 * the TCPS_CLOSED state. 429 * 430 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 431 * request. locks acquired by the call-back routine should not be held across 432 * the call to tcp_timeout_cancel() or a deadlock may result. 433 * 434 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 435 * Otherwise, it returns an integer value greater than or equal to 0. In 436 * particular, if the call-back function is already placed on the squeue, it can 437 * not be canceled. 438 * 439 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 440 * within squeue context corresponding to the tcp instance. Since the 441 * call-back is also called via the same squeue, there are no race 442 * conditions described in untimeout(9F) manual page since all calls are 443 * strictly serialized. 444 * 445 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 446 * stored in tcp_timer_tid and starts a new one using 447 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 448 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 449 * field. 450 * 451 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 452 * call-back may still be called, so it is possible tcp_timer() will be 453 * called several times. This should not be a problem since tcp_timer() 454 * should always check the tcp instance state. 455 * 456 * 457 * IMPLEMENTATION: 458 * 459 * TCP timers are implemented using three-stage process. The call to 460 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 461 * when the timer expires. The tcp_timer_callback() arranges the call of the 462 * tcp_timer_handler() function via squeue corresponding to the tcp 463 * instance. The tcp_timer_handler() calls actual requested timeout call-back 464 * and passes tcp instance as an argument to it. Information is passed between 465 * stages using the tcp_timer_t structure which contains the connp pointer, the 466 * tcp call-back to call and the timeout id returned by the timeout(9F). 467 * 468 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 469 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 470 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 471 * returns the pointer to this mblk. 472 * 473 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 474 * looks like a normal mblk without actual dblk attached to it. 475 * 476 * To optimize performance each tcp instance holds a small cache of timer 477 * mblocks. In the current implementation it caches up to two timer mblocks per 478 * tcp instance. The cache is preserved over tcp frees and is only freed when 479 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 480 * timer processing happens on a corresponding squeue, the cache manipulation 481 * does not require any locks. Experiments show that majority of timer mblocks 482 * allocations are satisfied from the tcp cache and do not involve kmem calls. 483 * 484 * The tcp_timeout() places a refhold on the connp instance which guarantees 485 * that it will be present at the time the call-back function fires. The 486 * tcp_timer_handler() drops the reference after calling the call-back, so the 487 * call-back function does not need to manipulate the references explicitly. 488 */ 489 490 typedef struct tcp_timer_s { 491 conn_t *connp; 492 void (*tcpt_proc)(void *); 493 callout_id_t tcpt_tid; 494 } tcp_timer_t; 495 496 static kmem_cache_t *tcp_timercache; 497 kmem_cache_t *tcp_sack_info_cache; 498 kmem_cache_t *tcp_iphc_cache; 499 500 /* 501 * For scalability, we must not run a timer for every TCP connection 502 * in TIME_WAIT state. To see why, consider (for time wait interval of 503 * 4 minutes): 504 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 505 * 506 * This list is ordered by time, so you need only delete from the head 507 * until you get to entries which aren't old enough to delete yet. 508 * The list consists of only the detached TIME_WAIT connections. 509 * 510 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 511 * becomes detached TIME_WAIT (either by changing the state and already 512 * being detached or the other way around). This means that the TIME_WAIT 513 * state can be extended (up to doubled) if the connection doesn't become 514 * detached for a long time. 515 * 516 * The list manipulations (including tcp_time_wait_next/prev) 517 * are protected by the tcp_time_wait_lock. The content of the 518 * detached TIME_WAIT connections is protected by the normal perimeters. 519 * 520 * This list is per squeue and squeues are shared across the tcp_stack_t's. 521 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 522 * and conn_netstack. 523 * The tcp_t's that are added to tcp_free_list are disassociated and 524 * have NULL tcp_tcps and conn_netstack pointers. 525 */ 526 typedef struct tcp_squeue_priv_s { 527 kmutex_t tcp_time_wait_lock; 528 callout_id_t tcp_time_wait_tid; 529 tcp_t *tcp_time_wait_head; 530 tcp_t *tcp_time_wait_tail; 531 tcp_t *tcp_free_list; 532 uint_t tcp_free_list_cnt; 533 } tcp_squeue_priv_t; 534 535 /* 536 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 537 * Running it every 5 seconds seems to give the best results. 538 */ 539 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 540 541 /* 542 * To prevent memory hog, limit the number of entries in tcp_free_list 543 * to 1% of available memory / number of cpus 544 */ 545 uint_t tcp_free_list_max_cnt = 0; 546 547 #define TCP_XMIT_LOWATER 4096 548 #define TCP_XMIT_HIWATER 49152 549 #define TCP_RECV_LOWATER 2048 550 #define TCP_RECV_HIWATER 49152 551 552 /* 553 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 554 */ 555 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 556 557 #define TIDUSZ 4096 /* transport interface data unit size */ 558 559 /* 560 * Bind hash list size and has function. It has to be a power of 2 for 561 * hashing. 562 */ 563 #define TCP_BIND_FANOUT_SIZE 512 564 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 565 /* 566 * Size of listen and acceptor hash list. It has to be a power of 2 for 567 * hashing. 568 */ 569 #define TCP_FANOUT_SIZE 256 570 571 #ifdef _ILP32 572 #define TCP_ACCEPTOR_HASH(accid) \ 573 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 574 #else 575 #define TCP_ACCEPTOR_HASH(accid) \ 576 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 577 #endif /* _ILP32 */ 578 579 #define IP_ADDR_CACHE_SIZE 2048 580 #define IP_ADDR_CACHE_HASH(faddr) \ 581 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 582 583 /* 584 * TCP options struct returned from tcp_parse_options. 585 */ 586 typedef struct tcp_opt_s { 587 uint32_t tcp_opt_mss; 588 uint32_t tcp_opt_wscale; 589 uint32_t tcp_opt_ts_val; 590 uint32_t tcp_opt_ts_ecr; 591 tcp_t *tcp; 592 } tcp_opt_t; 593 594 /* 595 * TCP option struct passing information b/w lisenter and eager. 596 */ 597 struct tcp_options { 598 uint_t to_flags; 599 ssize_t to_boundif; /* IPV6_BOUND_IF */ 600 }; 601 602 #define TCPOPT_BOUNDIF 0x00000001 /* set IPV6_BOUND_IF */ 603 #define TCPOPT_RECVPKTINFO 0x00000002 /* set IPV6_RECVPKTINFO */ 604 605 /* 606 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 607 */ 608 609 #ifdef _BIG_ENDIAN 610 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 611 (TCPOPT_TSTAMP << 8) | 10) 612 #else 613 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 614 (TCPOPT_NOP << 8) | TCPOPT_NOP) 615 #endif 616 617 /* 618 * Flags returned from tcp_parse_options. 619 */ 620 #define TCP_OPT_MSS_PRESENT 1 621 #define TCP_OPT_WSCALE_PRESENT 2 622 #define TCP_OPT_TSTAMP_PRESENT 4 623 #define TCP_OPT_SACK_OK_PRESENT 8 624 #define TCP_OPT_SACK_PRESENT 16 625 626 /* TCP option length */ 627 #define TCPOPT_NOP_LEN 1 628 #define TCPOPT_MAXSEG_LEN 4 629 #define TCPOPT_WS_LEN 3 630 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 631 #define TCPOPT_TSTAMP_LEN 10 632 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 633 #define TCPOPT_SACK_OK_LEN 2 634 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 635 #define TCPOPT_REAL_SACK_LEN 4 636 #define TCPOPT_MAX_SACK_LEN 36 637 #define TCPOPT_HEADER_LEN 2 638 639 /* TCP cwnd burst factor. */ 640 #define TCP_CWND_INFINITE 65535 641 #define TCP_CWND_SS 3 642 #define TCP_CWND_NORMAL 5 643 644 /* Maximum TCP initial cwin (start/restart). */ 645 #define TCP_MAX_INIT_CWND 8 646 647 /* 648 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 649 * either tcp_slow_start_initial or tcp_slow_start_after idle 650 * depending on the caller. If the upper layer has not used the 651 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 652 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 653 * If the upper layer has changed set the tcp_init_cwnd, just use 654 * it to calculate the tcp_cwnd. 655 */ 656 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 657 { \ 658 if ((tcp)->tcp_init_cwnd == 0) { \ 659 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 660 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 661 } else { \ 662 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 663 } \ 664 tcp->tcp_cwnd_cnt = 0; \ 665 } 666 667 /* TCP Timer control structure */ 668 typedef struct tcpt_s { 669 pfv_t tcpt_pfv; /* The routine we are to call */ 670 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 671 } tcpt_t; 672 673 /* 674 * Functions called directly via squeue having a prototype of edesc_t. 675 */ 676 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 677 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 678 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 679 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 680 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 681 void tcp_input(void *arg, mblk_t *mp, void *arg2); 682 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 683 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 684 void tcp_output(void *arg, mblk_t *mp, void *arg2); 685 void tcp_output_urgent(void *arg, mblk_t *mp, void *arg2); 686 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 687 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 688 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 689 690 691 /* Prototype for TCP functions */ 692 static void tcp_random_init(void); 693 int tcp_random(void); 694 static void tcp_tli_accept(tcp_t *tcp, mblk_t *mp); 695 static int tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 696 tcp_t *eager); 697 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 698 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 699 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 700 boolean_t user_specified); 701 static void tcp_closei_local(tcp_t *tcp); 702 static void tcp_close_detached(tcp_t *tcp); 703 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 704 mblk_t *idmp, mblk_t **defermp); 705 static void tcp_tpi_connect(tcp_t *tcp, mblk_t *mp); 706 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 707 in_port_t dstport, uint_t srcid, cred_t *cr, pid_t pid); 708 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 709 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 710 uint32_t scope_id, cred_t *cr, pid_t pid); 711 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 712 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 713 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 714 static char *tcp_display(tcp_t *tcp, char *, char); 715 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 716 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 717 static void tcp_eager_unlink(tcp_t *tcp); 718 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 719 int unixerr); 720 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 721 int tlierr, int unixerr); 722 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 723 cred_t *cr); 724 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 725 char *value, caddr_t cp, cred_t *cr); 726 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 727 char *value, caddr_t cp, cred_t *cr); 728 static int tcp_tpistate(tcp_t *tcp); 729 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 730 int caller_holds_lock); 731 static void tcp_bind_hash_remove(tcp_t *tcp); 732 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 733 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 734 static void tcp_acceptor_hash_remove(tcp_t *tcp); 735 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 736 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 737 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 738 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 739 void tcp_g_q_setup(tcp_stack_t *); 740 void tcp_g_q_create(tcp_stack_t *); 741 void tcp_g_q_destroy(tcp_stack_t *); 742 static int tcp_header_init_ipv4(tcp_t *tcp); 743 static int tcp_header_init_ipv6(tcp_t *tcp); 744 int tcp_init(tcp_t *tcp, queue_t *q); 745 static int tcp_init_values(tcp_t *tcp); 746 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 747 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 748 static void tcp_ip_notify(tcp_t *tcp); 749 static mblk_t *tcp_ire_mp(mblk_t **mpp); 750 static void tcp_iss_init(tcp_t *tcp); 751 static void tcp_keepalive_killer(void *arg); 752 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 753 static void tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss); 754 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 755 int *do_disconnectp, int *t_errorp, int *sys_errorp); 756 static boolean_t tcp_allow_connopt_set(int level, int name); 757 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 758 int tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 759 int tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, 760 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 761 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 762 mblk_t *mblk); 763 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 764 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 765 uchar_t *ptr, uint_t len); 766 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 767 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 768 tcp_stack_t *); 769 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 770 caddr_t cp, cred_t *cr); 771 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 772 caddr_t cp, cred_t *cr); 773 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 774 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 775 caddr_t cp, cred_t *cr); 776 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 777 static void tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt); 778 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 779 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 780 static void tcp_reinit(tcp_t *tcp); 781 static void tcp_reinit_values(tcp_t *tcp); 782 783 static uint_t tcp_rwnd_reopen(tcp_t *tcp); 784 static uint_t tcp_rcv_drain(tcp_t *tcp); 785 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 786 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 787 static void tcp_ss_rexmit(tcp_t *tcp); 788 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 789 static void tcp_process_options(tcp_t *, tcph_t *); 790 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 791 static void tcp_rsrv(queue_t *q); 792 static int tcp_snmp_state(tcp_t *tcp); 793 static void tcp_timer(void *arg); 794 static void tcp_timer_callback(void *); 795 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 796 boolean_t random); 797 static in_port_t tcp_get_next_priv_port(const tcp_t *); 798 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 799 static void tcp_wput_fallback(queue_t *q, mblk_t *mp); 800 void tcp_tpi_accept(queue_t *q, mblk_t *mp); 801 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 802 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 803 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 804 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 805 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 806 const int num_sack_blk, int *usable, uint_t *snxt, 807 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 808 const int mdt_thres); 809 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 810 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 811 const int num_sack_blk, int *usable, uint_t *snxt, 812 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 813 const int mdt_thres); 814 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 815 int num_sack_blk); 816 static void tcp_wsrv(queue_t *q); 817 static int tcp_xmit_end(tcp_t *tcp); 818 static void tcp_ack_timer(void *arg); 819 static mblk_t *tcp_ack_mp(tcp_t *tcp); 820 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 821 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 822 zoneid_t zoneid, tcp_stack_t *, conn_t *connp); 823 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 824 uint32_t ack, int ctl); 825 static int setmaxps(queue_t *q, int maxpsz); 826 static void tcp_set_rto(tcp_t *, time_t); 827 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 828 boolean_t, boolean_t); 829 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 830 boolean_t ipsec_mctl); 831 static int tcp_build_hdrs(tcp_t *); 832 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 833 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 834 tcph_t *tcph); 835 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 836 static mblk_t *tcp_mdt_info_mp(mblk_t *); 837 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 838 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 839 const boolean_t, const uint32_t, const uint32_t, 840 const uint32_t, const uint32_t, tcp_stack_t *); 841 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 842 const uint_t, const uint_t, boolean_t *); 843 static mblk_t *tcp_lso_info_mp(mblk_t *); 844 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 845 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 846 extern mblk_t *tcp_timermp_alloc(int); 847 extern void tcp_timermp_free(tcp_t *); 848 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 849 static void tcp_stop_lingering(tcp_t *tcp); 850 static void tcp_close_linger_timeout(void *arg); 851 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 852 static void tcp_stack_shutdown(netstackid_t stackid, void *arg); 853 static void tcp_stack_fini(netstackid_t stackid, void *arg); 854 static void *tcp_g_kstat_init(tcp_g_stat_t *); 855 static void tcp_g_kstat_fini(kstat_t *); 856 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 857 static void tcp_kstat_fini(netstackid_t, kstat_t *); 858 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 859 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 860 static int tcp_kstat_update(kstat_t *kp, int rw); 861 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 862 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 863 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 864 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 865 tcph_t *tcph, mblk_t *idmp); 866 static int tcp_squeue_switch(int); 867 868 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 869 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 870 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 871 static int tcp_tpi_close(queue_t *, int); 872 static int tcp_tpi_close_accept(queue_t *); 873 874 static void tcp_squeue_add(squeue_t *); 875 static boolean_t tcp_zcopy_check(tcp_t *); 876 static void tcp_zcopy_notify(tcp_t *); 877 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 878 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 879 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 880 881 extern void tcp_kssl_input(tcp_t *, mblk_t *); 882 883 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 884 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 885 886 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t, 887 sock_upper_handle_t, cred_t *); 888 static int tcp_listen(sock_lower_handle_t, int, cred_t *); 889 static int tcp_post_ip_bind(tcp_t *, mblk_t *, int, cred_t *, pid_t); 890 static int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int, cred_t *, 891 boolean_t); 892 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t, 893 cred_t *, pid_t); 894 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *, 895 boolean_t); 896 static int tcp_do_unbind(conn_t *); 897 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *, 898 boolean_t); 899 900 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *); 901 902 /* 903 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 904 * 905 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 906 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 907 * (defined in tcp.h) needs to be filled in and passed into the kernel 908 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 909 * structure contains the four-tuple of a TCP connection and a range of TCP 910 * states (specified by ac_start and ac_end). The use of wildcard addresses 911 * and ports is allowed. Connections with a matching four tuple and a state 912 * within the specified range will be aborted. The valid states for the 913 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 914 * inclusive. 915 * 916 * An application which has its connection aborted by this ioctl will receive 917 * an error that is dependent on the connection state at the time of the abort. 918 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 919 * though a RST packet has been received. If the connection state is equal to 920 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 921 * and all resources associated with the connection will be freed. 922 */ 923 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 924 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 925 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 926 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 927 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 928 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 929 boolean_t, tcp_stack_t *); 930 931 static struct module_info tcp_rinfo = { 932 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 933 }; 934 935 static struct module_info tcp_winfo = { 936 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 937 }; 938 939 /* 940 * Entry points for TCP as a device. The normal case which supports 941 * the TCP functionality. 942 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 943 */ 944 struct qinit tcp_rinitv4 = { 945 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 946 }; 947 948 struct qinit tcp_rinitv6 = { 949 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 950 }; 951 952 struct qinit tcp_winit = { 953 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 954 }; 955 956 /* Initial entry point for TCP in socket mode. */ 957 struct qinit tcp_sock_winit = { 958 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 959 }; 960 961 /* TCP entry point during fallback */ 962 struct qinit tcp_fallback_sock_winit = { 963 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 964 }; 965 966 /* 967 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 968 * an accept. Avoid allocating data structures since eager has already 969 * been created. 970 */ 971 struct qinit tcp_acceptor_rinit = { 972 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 973 }; 974 975 struct qinit tcp_acceptor_winit = { 976 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 977 }; 978 979 /* For AF_INET aka /dev/tcp */ 980 struct streamtab tcpinfov4 = { 981 &tcp_rinitv4, &tcp_winit 982 }; 983 984 /* For AF_INET6 aka /dev/tcp6 */ 985 struct streamtab tcpinfov6 = { 986 &tcp_rinitv6, &tcp_winit 987 }; 988 989 sock_downcalls_t sock_tcp_downcalls; 990 991 /* 992 * Have to ensure that tcp_g_q_close is not done by an 993 * interrupt thread. 994 */ 995 static taskq_t *tcp_taskq; 996 997 /* Setable only in /etc/system. Move to ndd? */ 998 boolean_t tcp_icmp_source_quench = B_FALSE; 999 1000 /* 1001 * Following assumes TPI alignment requirements stay along 32 bit 1002 * boundaries 1003 */ 1004 #define ROUNDUP32(x) \ 1005 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1006 1007 /* Template for response to info request. */ 1008 static struct T_info_ack tcp_g_t_info_ack = { 1009 T_INFO_ACK, /* PRIM_type */ 1010 0, /* TSDU_size */ 1011 T_INFINITE, /* ETSDU_size */ 1012 T_INVALID, /* CDATA_size */ 1013 T_INVALID, /* DDATA_size */ 1014 sizeof (sin_t), /* ADDR_size */ 1015 0, /* OPT_size - not initialized here */ 1016 TIDUSZ, /* TIDU_size */ 1017 T_COTS_ORD, /* SERV_type */ 1018 TCPS_IDLE, /* CURRENT_state */ 1019 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1020 }; 1021 1022 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1023 T_INFO_ACK, /* PRIM_type */ 1024 0, /* TSDU_size */ 1025 T_INFINITE, /* ETSDU_size */ 1026 T_INVALID, /* CDATA_size */ 1027 T_INVALID, /* DDATA_size */ 1028 sizeof (sin6_t), /* ADDR_size */ 1029 0, /* OPT_size - not initialized here */ 1030 TIDUSZ, /* TIDU_size */ 1031 T_COTS_ORD, /* SERV_type */ 1032 TCPS_IDLE, /* CURRENT_state */ 1033 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1034 }; 1035 1036 #define MS 1L 1037 #define SECONDS (1000 * MS) 1038 #define MINUTES (60 * SECONDS) 1039 #define HOURS (60 * MINUTES) 1040 #define DAYS (24 * HOURS) 1041 1042 #define PARAM_MAX (~(uint32_t)0) 1043 1044 /* Max size IP datagram is 64k - 1 */ 1045 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1046 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1047 /* Max of the above */ 1048 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1049 1050 /* Largest TCP port number */ 1051 #define TCP_MAX_PORT (64 * 1024 - 1) 1052 1053 /* 1054 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1055 * layer header. It has to be a multiple of 4. 1056 */ 1057 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1058 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1059 1060 /* 1061 * All of these are alterable, within the min/max values given, at run time. 1062 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1063 * per the TCP spec. 1064 */ 1065 /* BEGIN CSTYLED */ 1066 static tcpparam_t lcl_tcp_param_arr[] = { 1067 /*min max value name */ 1068 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1069 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1070 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1071 { 1, 1024, 1, "tcp_conn_req_min" }, 1072 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1073 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1074 { 0, 10, 0, "tcp_debug" }, 1075 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1076 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1077 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1078 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1079 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1080 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1081 { 1, 255, 64, "tcp_ipv4_ttl"}, 1082 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1083 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1084 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1085 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1086 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1087 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1088 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1089 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1090 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1091 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1092 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1093 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1094 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1095 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1096 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1097 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1098 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1099 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1100 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1101 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1102 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1103 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1104 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1105 /* 1106 * Question: What default value should I set for tcp_strong_iss? 1107 */ 1108 { 0, 2, 1, "tcp_strong_iss"}, 1109 { 0, 65536, 20, "tcp_rtt_updates"}, 1110 { 0, 1, 1, "tcp_wscale_always"}, 1111 { 0, 1, 0, "tcp_tstamp_always"}, 1112 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1113 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1114 { 0, 16, 2, "tcp_deferred_acks_max"}, 1115 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1116 { 1, 4, 4, "tcp_slow_start_initial"}, 1117 { 0, 2, 2, "tcp_sack_permitted"}, 1118 { 0, 1, 1, "tcp_compression_enabled"}, 1119 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1120 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1121 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1122 { 0, 1, 0, "tcp_rev_src_routes"}, 1123 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1124 { 0, 16, 8, "tcp_local_dacks_max"}, 1125 { 0, 2, 1, "tcp_ecn_permitted"}, 1126 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1127 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1128 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1129 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1130 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1131 }; 1132 /* END CSTYLED */ 1133 1134 /* 1135 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1136 * each header fragment in the header buffer. Each parameter value has 1137 * to be a multiple of 4 (32-bit aligned). 1138 */ 1139 static tcpparam_t lcl_tcp_mdt_head_param = 1140 { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1141 static tcpparam_t lcl_tcp_mdt_tail_param = 1142 { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1143 #define tcps_mdt_hdr_head_min tcps_mdt_head_param->tcp_param_val 1144 #define tcps_mdt_hdr_tail_min tcps_mdt_tail_param->tcp_param_val 1145 1146 /* 1147 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1148 * the maximum number of payload buffers associated per Multidata. 1149 */ 1150 static tcpparam_t lcl_tcp_mdt_max_pbufs_param = 1151 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1152 #define tcps_mdt_max_pbufs tcps_mdt_max_pbufs_param->tcp_param_val 1153 1154 /* Round up the value to the nearest mss. */ 1155 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1156 1157 /* 1158 * Set ECN capable transport (ECT) code point in IP header. 1159 * 1160 * Note that there are 2 ECT code points '01' and '10', which are called 1161 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1162 * point ECT(0) for TCP as described in RFC 2481. 1163 */ 1164 #define SET_ECT(tcp, iph) \ 1165 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1166 /* We need to clear the code point first. */ \ 1167 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1168 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1169 } else { \ 1170 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1171 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1172 } 1173 1174 /* 1175 * The format argument to pass to tcp_display(). 1176 * DISP_PORT_ONLY means that the returned string has only port info. 1177 * DISP_ADDR_AND_PORT means that the returned string also contains the 1178 * remote and local IP address. 1179 */ 1180 #define DISP_PORT_ONLY 1 1181 #define DISP_ADDR_AND_PORT 2 1182 1183 #define IS_VMLOANED_MBLK(mp) \ 1184 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1185 1186 1187 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1188 boolean_t tcp_mdt_chain = B_TRUE; 1189 1190 /* 1191 * MDT threshold in the form of effective send MSS multiplier; we take 1192 * the MDT path if the amount of unsent data exceeds the threshold value 1193 * (default threshold is 1*SMSS). 1194 */ 1195 uint_t tcp_mdt_smss_threshold = 1; 1196 1197 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1198 1199 /* 1200 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1201 * tunable settable via NDD. Otherwise, the per-connection behavior is 1202 * determined dynamically during tcp_adapt_ire(), which is the default. 1203 */ 1204 boolean_t tcp_static_maxpsz = B_FALSE; 1205 1206 /* Setable in /etc/system */ 1207 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1208 uint32_t tcp_random_anon_port = 1; 1209 1210 /* 1211 * To reach to an eager in Q0 which can be dropped due to an incoming 1212 * new SYN request when Q0 is full, a new doubly linked list is 1213 * introduced. This list allows to select an eager from Q0 in O(1) time. 1214 * This is needed to avoid spending too much time walking through the 1215 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1216 * this new list has to be a member of Q0. 1217 * This list is headed by listener's tcp_t. When the list is empty, 1218 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1219 * of listener's tcp_t point to listener's tcp_t itself. 1220 * 1221 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1222 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1223 * These macros do not affect the eager's membership to Q0. 1224 */ 1225 1226 1227 #define MAKE_DROPPABLE(listener, eager) \ 1228 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1229 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1230 = (eager); \ 1231 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1232 (eager)->tcp_eager_next_drop_q0 = \ 1233 (listener)->tcp_eager_next_drop_q0; \ 1234 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1235 } 1236 1237 #define MAKE_UNDROPPABLE(eager) \ 1238 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1239 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1240 = (eager)->tcp_eager_prev_drop_q0; \ 1241 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1242 = (eager)->tcp_eager_next_drop_q0; \ 1243 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1244 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1245 } 1246 1247 /* 1248 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1249 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1250 * data, TCP will not respond with an ACK. RFC 793 requires that 1251 * TCP responds with an ACK for such a bogus ACK. By not following 1252 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1253 * an attacker successfully spoofs an acceptable segment to our 1254 * peer; or when our peer is "confused." 1255 */ 1256 uint32_t tcp_drop_ack_unsent_cnt = 10; 1257 1258 /* 1259 * Hook functions to enable cluster networking 1260 * On non-clustered systems these vectors must always be NULL. 1261 */ 1262 1263 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol, 1264 sa_family_t addr_family, uint8_t *laddrp, 1265 in_port_t lport, void *args) = NULL; 1266 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol, 1267 sa_family_t addr_family, uint8_t *laddrp, 1268 in_port_t lport, void *args) = NULL; 1269 1270 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol, 1271 boolean_t is_outgoing, 1272 sa_family_t addr_family, 1273 uint8_t *laddrp, in_port_t lport, 1274 uint8_t *faddrp, in_port_t fport, 1275 void *args) = NULL; 1276 1277 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol, 1278 sa_family_t addr_family, uint8_t *laddrp, 1279 in_port_t lport, uint8_t *faddrp, 1280 in_port_t fport, void *args) = NULL; 1281 1282 /* 1283 * The following are defined in ip.c 1284 */ 1285 extern int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 1286 sa_family_t addr_family, uint8_t *laddrp, 1287 void *args); 1288 extern uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 1289 sa_family_t addr_family, uint8_t *laddrp, 1290 uint8_t *faddrp, void *args); 1291 1292 1293 /* 1294 * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err) 1295 */ 1296 #define CL_INET_CONNECT(connp, tcp, is_outgoing, err) { \ 1297 (err) = 0; \ 1298 if (cl_inet_connect2 != NULL) { \ 1299 /* \ 1300 * Running in cluster mode - register active connection \ 1301 * information \ 1302 */ \ 1303 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1304 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1305 (err) = (*cl_inet_connect2)( \ 1306 (connp)->conn_netstack->netstack_stackid,\ 1307 IPPROTO_TCP, is_outgoing, AF_INET, \ 1308 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1309 (in_port_t)(tcp)->tcp_lport, \ 1310 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1311 (in_port_t)(tcp)->tcp_fport, NULL); \ 1312 } \ 1313 } else { \ 1314 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1315 &(tcp)->tcp_ip6h->ip6_src)) { \ 1316 (err) = (*cl_inet_connect2)( \ 1317 (connp)->conn_netstack->netstack_stackid,\ 1318 IPPROTO_TCP, is_outgoing, AF_INET6, \ 1319 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1320 (in_port_t)(tcp)->tcp_lport, \ 1321 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1322 (in_port_t)(tcp)->tcp_fport, NULL); \ 1323 } \ 1324 } \ 1325 } \ 1326 } 1327 1328 #define CL_INET_DISCONNECT(connp, tcp) { \ 1329 if (cl_inet_disconnect != NULL) { \ 1330 /* \ 1331 * Running in cluster mode - deregister active \ 1332 * connection information \ 1333 */ \ 1334 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1335 if ((tcp)->tcp_ip_src != 0) { \ 1336 (*cl_inet_disconnect)( \ 1337 (connp)->conn_netstack->netstack_stackid,\ 1338 IPPROTO_TCP, AF_INET, \ 1339 (uint8_t *)(&((tcp)->tcp_ip_src)), \ 1340 (in_port_t)(tcp)->tcp_lport, \ 1341 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1342 (in_port_t)(tcp)->tcp_fport, NULL); \ 1343 } \ 1344 } else { \ 1345 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1346 &(tcp)->tcp_ip_src_v6)) { \ 1347 (*cl_inet_disconnect)( \ 1348 (connp)->conn_netstack->netstack_stackid,\ 1349 IPPROTO_TCP, AF_INET6, \ 1350 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1351 (in_port_t)(tcp)->tcp_lport, \ 1352 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1353 (in_port_t)(tcp)->tcp_fport, NULL); \ 1354 } \ 1355 } \ 1356 } \ 1357 } 1358 1359 /* 1360 * Cluster networking hook for traversing current connection list. 1361 * This routine is used to extract the current list of live connections 1362 * which must continue to to be dispatched to this node. 1363 */ 1364 int cl_tcp_walk_list(netstackid_t stack_id, 1365 int (*callback)(cl_tcp_info_t *, void *), void *arg); 1366 1367 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1368 void *arg, tcp_stack_t *tcps); 1369 1370 #define DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) \ 1371 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, \ 1372 iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, \ 1373 ip6_t *, ip6h, int, 0); 1374 1375 static void 1376 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh) 1377 { 1378 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3; 1379 1380 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 1381 conn_t *connp = tcp->tcp_connp; 1382 struct sock_proto_props sopp; 1383 1384 /* 1385 * only increase rcvthresh upto default_threshold 1386 */ 1387 if (new_rcvthresh > default_threshold) 1388 new_rcvthresh = default_threshold; 1389 1390 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 1391 sopp.sopp_rcvthresh = new_rcvthresh; 1392 1393 (*connp->conn_upcalls->su_set_proto_props) 1394 (connp->conn_upper_handle, &sopp); 1395 } 1396 } 1397 /* 1398 * Figure out the value of window scale opton. Note that the rwnd is 1399 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1400 * We cannot find the scale value and then do a round up of tcp_rwnd 1401 * because the scale value may not be correct after that. 1402 * 1403 * Set the compiler flag to make this function inline. 1404 */ 1405 static void 1406 tcp_set_ws_value(tcp_t *tcp) 1407 { 1408 int i; 1409 uint32_t rwnd = tcp->tcp_rwnd; 1410 1411 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1412 i++, rwnd >>= 1) 1413 ; 1414 tcp->tcp_rcv_ws = i; 1415 } 1416 1417 /* 1418 * Remove a connection from the list of detached TIME_WAIT connections. 1419 * It returns B_FALSE if it can't remove the connection from the list 1420 * as the connection has already been removed from the list due to an 1421 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1422 */ 1423 static boolean_t 1424 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1425 { 1426 boolean_t locked = B_FALSE; 1427 1428 if (tcp_time_wait == NULL) { 1429 tcp_time_wait = *((tcp_squeue_priv_t **) 1430 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1431 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1432 locked = B_TRUE; 1433 } else { 1434 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1435 } 1436 1437 if (tcp->tcp_time_wait_expire == 0) { 1438 ASSERT(tcp->tcp_time_wait_next == NULL); 1439 ASSERT(tcp->tcp_time_wait_prev == NULL); 1440 if (locked) 1441 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1442 return (B_FALSE); 1443 } 1444 ASSERT(TCP_IS_DETACHED(tcp)); 1445 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1446 1447 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1448 ASSERT(tcp->tcp_time_wait_prev == NULL); 1449 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1450 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1451 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1452 NULL; 1453 } else { 1454 tcp_time_wait->tcp_time_wait_tail = NULL; 1455 } 1456 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1457 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1458 ASSERT(tcp->tcp_time_wait_next == NULL); 1459 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1460 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1461 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1462 } else { 1463 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1464 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1465 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1466 tcp->tcp_time_wait_next; 1467 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1468 tcp->tcp_time_wait_prev; 1469 } 1470 tcp->tcp_time_wait_next = NULL; 1471 tcp->tcp_time_wait_prev = NULL; 1472 tcp->tcp_time_wait_expire = 0; 1473 1474 if (locked) 1475 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1476 return (B_TRUE); 1477 } 1478 1479 /* 1480 * Add a connection to the list of detached TIME_WAIT connections 1481 * and set its time to expire. 1482 */ 1483 static void 1484 tcp_time_wait_append(tcp_t *tcp) 1485 { 1486 tcp_stack_t *tcps = tcp->tcp_tcps; 1487 tcp_squeue_priv_t *tcp_time_wait = 1488 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1489 SQPRIVATE_TCP)); 1490 1491 tcp_timers_stop(tcp); 1492 1493 /* Freed above */ 1494 ASSERT(tcp->tcp_timer_tid == 0); 1495 ASSERT(tcp->tcp_ack_tid == 0); 1496 1497 /* must have happened at the time of detaching the tcp */ 1498 ASSERT(tcp->tcp_ptpahn == NULL); 1499 ASSERT(tcp->tcp_flow_stopped == 0); 1500 ASSERT(tcp->tcp_time_wait_next == NULL); 1501 ASSERT(tcp->tcp_time_wait_prev == NULL); 1502 ASSERT(tcp->tcp_time_wait_expire == NULL); 1503 ASSERT(tcp->tcp_listener == NULL); 1504 1505 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1506 /* 1507 * The value computed below in tcp->tcp_time_wait_expire may 1508 * appear negative or wrap around. That is ok since our 1509 * interest is only in the difference between the current lbolt 1510 * value and tcp->tcp_time_wait_expire. But the value should not 1511 * be zero, since it means the tcp is not in the TIME_WAIT list. 1512 * The corresponding comparison in tcp_time_wait_collector() uses 1513 * modular arithmetic. 1514 */ 1515 tcp->tcp_time_wait_expire += 1516 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1517 if (tcp->tcp_time_wait_expire == 0) 1518 tcp->tcp_time_wait_expire = 1; 1519 1520 ASSERT(TCP_IS_DETACHED(tcp)); 1521 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1522 ASSERT(tcp->tcp_time_wait_next == NULL); 1523 ASSERT(tcp->tcp_time_wait_prev == NULL); 1524 TCP_DBGSTAT(tcps, tcp_time_wait); 1525 1526 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1527 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1528 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1529 tcp_time_wait->tcp_time_wait_head = tcp; 1530 } else { 1531 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1532 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1533 TCPS_TIME_WAIT); 1534 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1535 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1536 } 1537 tcp_time_wait->tcp_time_wait_tail = tcp; 1538 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1539 } 1540 1541 /* ARGSUSED */ 1542 void 1543 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1544 { 1545 conn_t *connp = (conn_t *)arg; 1546 tcp_t *tcp = connp->conn_tcp; 1547 tcp_stack_t *tcps = tcp->tcp_tcps; 1548 1549 ASSERT(tcp != NULL); 1550 if (tcp->tcp_state == TCPS_CLOSED) { 1551 return; 1552 } 1553 1554 ASSERT((tcp->tcp_family == AF_INET && 1555 tcp->tcp_ipversion == IPV4_VERSION) || 1556 (tcp->tcp_family == AF_INET6 && 1557 (tcp->tcp_ipversion == IPV4_VERSION || 1558 tcp->tcp_ipversion == IPV6_VERSION))); 1559 ASSERT(!tcp->tcp_listener); 1560 1561 TCP_STAT(tcps, tcp_time_wait_reap); 1562 ASSERT(TCP_IS_DETACHED(tcp)); 1563 1564 /* 1565 * Because they have no upstream client to rebind or tcp_close() 1566 * them later, we axe the connection here and now. 1567 */ 1568 tcp_close_detached(tcp); 1569 } 1570 1571 /* 1572 * Remove cached/latched IPsec references. 1573 */ 1574 void 1575 tcp_ipsec_cleanup(tcp_t *tcp) 1576 { 1577 conn_t *connp = tcp->tcp_connp; 1578 1579 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1580 1581 if (connp->conn_latch != NULL) { 1582 IPLATCH_REFRELE(connp->conn_latch, 1583 connp->conn_netstack); 1584 connp->conn_latch = NULL; 1585 } 1586 if (connp->conn_policy != NULL) { 1587 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1588 connp->conn_policy = NULL; 1589 } 1590 } 1591 1592 /* 1593 * Cleaup before placing on free list. 1594 * Disassociate from the netstack/tcp_stack_t since the freelist 1595 * is per squeue and not per netstack. 1596 */ 1597 void 1598 tcp_cleanup(tcp_t *tcp) 1599 { 1600 mblk_t *mp; 1601 char *tcp_iphc; 1602 int tcp_iphc_len; 1603 int tcp_hdr_grown; 1604 tcp_sack_info_t *tcp_sack_info; 1605 conn_t *connp = tcp->tcp_connp; 1606 tcp_stack_t *tcps = tcp->tcp_tcps; 1607 netstack_t *ns = tcps->tcps_netstack; 1608 mblk_t *tcp_rsrv_mp; 1609 1610 tcp_bind_hash_remove(tcp); 1611 1612 /* Cleanup that which needs the netstack first */ 1613 tcp_ipsec_cleanup(tcp); 1614 1615 tcp_free(tcp); 1616 1617 /* Release any SSL context */ 1618 if (tcp->tcp_kssl_ent != NULL) { 1619 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1620 tcp->tcp_kssl_ent = NULL; 1621 } 1622 1623 if (tcp->tcp_kssl_ctx != NULL) { 1624 kssl_release_ctx(tcp->tcp_kssl_ctx); 1625 tcp->tcp_kssl_ctx = NULL; 1626 } 1627 tcp->tcp_kssl_pending = B_FALSE; 1628 1629 conn_delete_ire(connp, NULL); 1630 1631 /* 1632 * Since we will bzero the entire structure, we need to 1633 * remove it and reinsert it in global hash list. We 1634 * know the walkers can't get to this conn because we 1635 * had set CONDEMNED flag earlier and checked reference 1636 * under conn_lock so walker won't pick it and when we 1637 * go the ipcl_globalhash_remove() below, no walker 1638 * can get to it. 1639 */ 1640 ipcl_globalhash_remove(connp); 1641 1642 /* 1643 * Now it is safe to decrement the reference counts. 1644 * This might be the last reference on the netstack and TCPS 1645 * in which case it will cause the tcp_g_q_close and 1646 * the freeing of the IP Instance. 1647 */ 1648 connp->conn_netstack = NULL; 1649 netstack_rele(ns); 1650 ASSERT(tcps != NULL); 1651 tcp->tcp_tcps = NULL; 1652 TCPS_REFRELE(tcps); 1653 1654 /* Save some state */ 1655 mp = tcp->tcp_timercache; 1656 1657 tcp_sack_info = tcp->tcp_sack_info; 1658 tcp_iphc = tcp->tcp_iphc; 1659 tcp_iphc_len = tcp->tcp_iphc_len; 1660 tcp_hdr_grown = tcp->tcp_hdr_grown; 1661 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 1662 1663 if (connp->conn_cred != NULL) { 1664 crfree(connp->conn_cred); 1665 connp->conn_cred = NULL; 1666 } 1667 if (connp->conn_effective_cred != NULL) { 1668 crfree(connp->conn_effective_cred); 1669 connp->conn_effective_cred = NULL; 1670 } 1671 ipcl_conn_cleanup(connp); 1672 connp->conn_flags = IPCL_TCPCONN; 1673 bzero(tcp, sizeof (tcp_t)); 1674 1675 /* restore the state */ 1676 tcp->tcp_timercache = mp; 1677 1678 tcp->tcp_sack_info = tcp_sack_info; 1679 tcp->tcp_iphc = tcp_iphc; 1680 tcp->tcp_iphc_len = tcp_iphc_len; 1681 tcp->tcp_hdr_grown = tcp_hdr_grown; 1682 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1683 1684 tcp->tcp_connp = connp; 1685 1686 ASSERT(connp->conn_tcp == tcp); 1687 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1688 connp->conn_state_flags = CONN_INCIPIENT; 1689 ASSERT(connp->conn_ulp == IPPROTO_TCP); 1690 ASSERT(connp->conn_ref == 1); 1691 } 1692 1693 /* 1694 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1695 * is done forwards from the head. 1696 * This walks all stack instances since 1697 * tcp_time_wait remains global across all stacks. 1698 */ 1699 /* ARGSUSED */ 1700 void 1701 tcp_time_wait_collector(void *arg) 1702 { 1703 tcp_t *tcp; 1704 clock_t now; 1705 mblk_t *mp; 1706 conn_t *connp; 1707 kmutex_t *lock; 1708 boolean_t removed; 1709 1710 squeue_t *sqp = (squeue_t *)arg; 1711 tcp_squeue_priv_t *tcp_time_wait = 1712 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1713 1714 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1715 tcp_time_wait->tcp_time_wait_tid = 0; 1716 1717 if (tcp_time_wait->tcp_free_list != NULL && 1718 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1719 TCP_G_STAT(tcp_freelist_cleanup); 1720 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1721 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1722 tcp->tcp_time_wait_next = NULL; 1723 tcp_time_wait->tcp_free_list_cnt--; 1724 ASSERT(tcp->tcp_tcps == NULL); 1725 CONN_DEC_REF(tcp->tcp_connp); 1726 } 1727 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1728 } 1729 1730 /* 1731 * In order to reap time waits reliably, we should use a 1732 * source of time that is not adjustable by the user -- hence 1733 * the call to ddi_get_lbolt(). 1734 */ 1735 now = ddi_get_lbolt(); 1736 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1737 /* 1738 * Compare times using modular arithmetic, since 1739 * lbolt can wrapover. 1740 */ 1741 if ((now - tcp->tcp_time_wait_expire) < 0) { 1742 break; 1743 } 1744 1745 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1746 ASSERT(removed); 1747 1748 connp = tcp->tcp_connp; 1749 ASSERT(connp->conn_fanout != NULL); 1750 lock = &connp->conn_fanout->connf_lock; 1751 /* 1752 * This is essentially a TW reclaim fast path optimization for 1753 * performance where the timewait collector checks under the 1754 * fanout lock (so that no one else can get access to the 1755 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1756 * the classifier hash list. If ref count is indeed 2, we can 1757 * just remove the conn under the fanout lock and avoid 1758 * cleaning up the conn under the squeue, provided that 1759 * clustering callbacks are not enabled. If clustering is 1760 * enabled, we need to make the clustering callback before 1761 * setting the CONDEMNED flag and after dropping all locks and 1762 * so we forego this optimization and fall back to the slow 1763 * path. Also please see the comments in tcp_closei_local 1764 * regarding the refcnt logic. 1765 * 1766 * Since we are holding the tcp_time_wait_lock, its better 1767 * not to block on the fanout_lock because other connections 1768 * can't add themselves to time_wait list. So we do a 1769 * tryenter instead of mutex_enter. 1770 */ 1771 if (mutex_tryenter(lock)) { 1772 mutex_enter(&connp->conn_lock); 1773 if ((connp->conn_ref == 2) && 1774 (cl_inet_disconnect == NULL)) { 1775 ipcl_hash_remove_locked(connp, 1776 connp->conn_fanout); 1777 /* 1778 * Set the CONDEMNED flag now itself so that 1779 * the refcnt cannot increase due to any 1780 * walker. But we have still not cleaned up 1781 * conn_ire_cache. This is still ok since 1782 * we are going to clean it up in tcp_cleanup 1783 * immediately and any interface unplumb 1784 * thread will wait till the ire is blown away 1785 */ 1786 connp->conn_state_flags |= CONN_CONDEMNED; 1787 mutex_exit(lock); 1788 mutex_exit(&connp->conn_lock); 1789 if (tcp_time_wait->tcp_free_list_cnt < 1790 tcp_free_list_max_cnt) { 1791 /* Add to head of tcp_free_list */ 1792 mutex_exit( 1793 &tcp_time_wait->tcp_time_wait_lock); 1794 tcp_cleanup(tcp); 1795 ASSERT(connp->conn_latch == NULL); 1796 ASSERT(connp->conn_policy == NULL); 1797 ASSERT(tcp->tcp_tcps == NULL); 1798 ASSERT(connp->conn_netstack == NULL); 1799 1800 mutex_enter( 1801 &tcp_time_wait->tcp_time_wait_lock); 1802 tcp->tcp_time_wait_next = 1803 tcp_time_wait->tcp_free_list; 1804 tcp_time_wait->tcp_free_list = tcp; 1805 tcp_time_wait->tcp_free_list_cnt++; 1806 continue; 1807 } else { 1808 /* Do not add to tcp_free_list */ 1809 mutex_exit( 1810 &tcp_time_wait->tcp_time_wait_lock); 1811 tcp_bind_hash_remove(tcp); 1812 conn_delete_ire(tcp->tcp_connp, NULL); 1813 tcp_ipsec_cleanup(tcp); 1814 CONN_DEC_REF(tcp->tcp_connp); 1815 } 1816 } else { 1817 CONN_INC_REF_LOCKED(connp); 1818 mutex_exit(lock); 1819 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1820 mutex_exit(&connp->conn_lock); 1821 /* 1822 * We can reuse the closemp here since conn has 1823 * detached (otherwise we wouldn't even be in 1824 * time_wait list). tcp_closemp_used can safely 1825 * be changed without taking a lock as no other 1826 * thread can concurrently access it at this 1827 * point in the connection lifecycle. 1828 */ 1829 1830 if (tcp->tcp_closemp.b_prev == NULL) 1831 tcp->tcp_closemp_used = B_TRUE; 1832 else 1833 cmn_err(CE_PANIC, 1834 "tcp_timewait_collector: " 1835 "concurrent use of tcp_closemp: " 1836 "connp %p tcp %p\n", (void *)connp, 1837 (void *)tcp); 1838 1839 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1840 mp = &tcp->tcp_closemp; 1841 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1842 tcp_timewait_output, connp, 1843 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1844 } 1845 } else { 1846 mutex_enter(&connp->conn_lock); 1847 CONN_INC_REF_LOCKED(connp); 1848 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1849 mutex_exit(&connp->conn_lock); 1850 /* 1851 * We can reuse the closemp here since conn has 1852 * detached (otherwise we wouldn't even be in 1853 * time_wait list). tcp_closemp_used can safely 1854 * be changed without taking a lock as no other 1855 * thread can concurrently access it at this 1856 * point in the connection lifecycle. 1857 */ 1858 1859 if (tcp->tcp_closemp.b_prev == NULL) 1860 tcp->tcp_closemp_used = B_TRUE; 1861 else 1862 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1863 "concurrent use of tcp_closemp: " 1864 "connp %p tcp %p\n", (void *)connp, 1865 (void *)tcp); 1866 1867 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1868 mp = &tcp->tcp_closemp; 1869 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1870 tcp_timewait_output, connp, 1871 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1872 } 1873 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1874 } 1875 1876 if (tcp_time_wait->tcp_free_list != NULL) 1877 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1878 1879 tcp_time_wait->tcp_time_wait_tid = 1880 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 1881 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 1882 CALLOUT_FLAG_ROUNDUP); 1883 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1884 } 1885 1886 /* 1887 * Reply to a clients T_CONN_RES TPI message. This function 1888 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1889 * on the acceptor STREAM and processed in tcp_wput_accept(). 1890 * Read the block comment on top of tcp_conn_request(). 1891 */ 1892 static void 1893 tcp_tli_accept(tcp_t *listener, mblk_t *mp) 1894 { 1895 tcp_t *acceptor; 1896 tcp_t *eager; 1897 tcp_t *tcp; 1898 struct T_conn_res *tcr; 1899 t_uscalar_t acceptor_id; 1900 t_scalar_t seqnum; 1901 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1902 struct tcp_options *tcpopt; 1903 mblk_t *ok_mp; 1904 mblk_t *mp1; 1905 tcp_stack_t *tcps = listener->tcp_tcps; 1906 int error; 1907 1908 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1909 tcp_err_ack(listener, mp, TPROTO, 0); 1910 return; 1911 } 1912 tcr = (struct T_conn_res *)mp->b_rptr; 1913 1914 /* 1915 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1916 * read side queue of the streams device underneath us i.e. the 1917 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1918 * look it up in the queue_hash. Under LP64 it sends down the 1919 * minor_t of the accepting endpoint. 1920 * 1921 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1922 * fanout hash lock is held. 1923 * This prevents any thread from entering the acceptor queue from 1924 * below (since it has not been hard bound yet i.e. any inbound 1925 * packets will arrive on the listener or default tcp queue and 1926 * go through tcp_lookup). 1927 * The CONN_INC_REF will prevent the acceptor from closing. 1928 * 1929 * XXX It is still possible for a tli application to send down data 1930 * on the accepting stream while another thread calls t_accept. 1931 * This should not be a problem for well-behaved applications since 1932 * the T_OK_ACK is sent after the queue swapping is completed. 1933 * 1934 * If the accepting fd is the same as the listening fd, avoid 1935 * queue hash lookup since that will return an eager listener in a 1936 * already established state. 1937 */ 1938 acceptor_id = tcr->ACCEPTOR_id; 1939 mutex_enter(&listener->tcp_eager_lock); 1940 if (listener->tcp_acceptor_id == acceptor_id) { 1941 eager = listener->tcp_eager_next_q; 1942 /* only count how many T_CONN_INDs so don't count q0 */ 1943 if ((listener->tcp_conn_req_cnt_q != 1) || 1944 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1945 mutex_exit(&listener->tcp_eager_lock); 1946 tcp_err_ack(listener, mp, TBADF, 0); 1947 return; 1948 } 1949 if (listener->tcp_conn_req_cnt_q0 != 0) { 1950 /* Throw away all the eagers on q0. */ 1951 tcp_eager_cleanup(listener, 1); 1952 } 1953 if (listener->tcp_syn_defense) { 1954 listener->tcp_syn_defense = B_FALSE; 1955 if (listener->tcp_ip_addr_cache != NULL) { 1956 kmem_free(listener->tcp_ip_addr_cache, 1957 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1958 listener->tcp_ip_addr_cache = NULL; 1959 } 1960 } 1961 /* 1962 * Transfer tcp_conn_req_max to the eager so that when 1963 * a disconnect occurs we can revert the endpoint to the 1964 * listen state. 1965 */ 1966 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1967 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1968 /* 1969 * Get a reference on the acceptor just like the 1970 * tcp_acceptor_hash_lookup below. 1971 */ 1972 acceptor = listener; 1973 CONN_INC_REF(acceptor->tcp_connp); 1974 } else { 1975 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 1976 if (acceptor == NULL) { 1977 if (listener->tcp_debug) { 1978 (void) strlog(TCP_MOD_ID, 0, 1, 1979 SL_ERROR|SL_TRACE, 1980 "tcp_accept: did not find acceptor 0x%x\n", 1981 acceptor_id); 1982 } 1983 mutex_exit(&listener->tcp_eager_lock); 1984 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1985 return; 1986 } 1987 /* 1988 * Verify acceptor state. The acceptable states for an acceptor 1989 * include TCPS_IDLE and TCPS_BOUND. 1990 */ 1991 switch (acceptor->tcp_state) { 1992 case TCPS_IDLE: 1993 /* FALLTHRU */ 1994 case TCPS_BOUND: 1995 break; 1996 default: 1997 CONN_DEC_REF(acceptor->tcp_connp); 1998 mutex_exit(&listener->tcp_eager_lock); 1999 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2000 return; 2001 } 2002 } 2003 2004 /* The listener must be in TCPS_LISTEN */ 2005 if (listener->tcp_state != TCPS_LISTEN) { 2006 CONN_DEC_REF(acceptor->tcp_connp); 2007 mutex_exit(&listener->tcp_eager_lock); 2008 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2009 return; 2010 } 2011 2012 /* 2013 * Rendezvous with an eager connection request packet hanging off 2014 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2015 * tcp structure when the connection packet arrived in 2016 * tcp_conn_request(). 2017 */ 2018 seqnum = tcr->SEQ_number; 2019 eager = listener; 2020 do { 2021 eager = eager->tcp_eager_next_q; 2022 if (eager == NULL) { 2023 CONN_DEC_REF(acceptor->tcp_connp); 2024 mutex_exit(&listener->tcp_eager_lock); 2025 tcp_err_ack(listener, mp, TBADSEQ, 0); 2026 return; 2027 } 2028 } while (eager->tcp_conn_req_seqnum != seqnum); 2029 mutex_exit(&listener->tcp_eager_lock); 2030 2031 /* 2032 * At this point, both acceptor and listener have 2 ref 2033 * that they begin with. Acceptor has one additional ref 2034 * we placed in lookup while listener has 3 additional 2035 * ref for being behind the squeue (tcp_accept() is 2036 * done on listener's squeue); being in classifier hash; 2037 * and eager's ref on listener. 2038 */ 2039 ASSERT(listener->tcp_connp->conn_ref >= 5); 2040 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2041 2042 /* 2043 * The eager at this point is set in its own squeue and 2044 * could easily have been killed (tcp_accept_finish will 2045 * deal with that) because of a TH_RST so we can only 2046 * ASSERT for a single ref. 2047 */ 2048 ASSERT(eager->tcp_connp->conn_ref >= 1); 2049 2050 /* Pre allocate the stroptions mblk also */ 2051 opt_mp = allocb(MAX(sizeof (struct tcp_options), 2052 sizeof (struct T_conn_res)), BPRI_HI); 2053 if (opt_mp == NULL) { 2054 CONN_DEC_REF(acceptor->tcp_connp); 2055 CONN_DEC_REF(eager->tcp_connp); 2056 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2057 return; 2058 } 2059 DB_TYPE(opt_mp) = M_SETOPTS; 2060 opt_mp->b_wptr += sizeof (struct tcp_options); 2061 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 2062 tcpopt->to_flags = 0; 2063 2064 /* 2065 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2066 * from listener to acceptor. 2067 */ 2068 if (listener->tcp_bound_if != 0) { 2069 tcpopt->to_flags |= TCPOPT_BOUNDIF; 2070 tcpopt->to_boundif = listener->tcp_bound_if; 2071 } 2072 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2073 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 2074 } 2075 2076 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2077 if ((mp1 = copymsg(mp)) == NULL) { 2078 CONN_DEC_REF(acceptor->tcp_connp); 2079 CONN_DEC_REF(eager->tcp_connp); 2080 freemsg(opt_mp); 2081 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2082 return; 2083 } 2084 2085 tcr = (struct T_conn_res *)mp1->b_rptr; 2086 2087 /* 2088 * This is an expanded version of mi_tpi_ok_ack_alloc() 2089 * which allocates a larger mblk and appends the new 2090 * local address to the ok_ack. The address is copied by 2091 * soaccept() for getsockname(). 2092 */ 2093 { 2094 int extra; 2095 2096 extra = (eager->tcp_family == AF_INET) ? 2097 sizeof (sin_t) : sizeof (sin6_t); 2098 2099 /* 2100 * Try to re-use mp, if possible. Otherwise, allocate 2101 * an mblk and return it as ok_mp. In any case, mp 2102 * is no longer usable upon return. 2103 */ 2104 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2105 CONN_DEC_REF(acceptor->tcp_connp); 2106 CONN_DEC_REF(eager->tcp_connp); 2107 freemsg(opt_mp); 2108 /* Original mp has been freed by now, so use mp1 */ 2109 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2110 return; 2111 } 2112 2113 mp = NULL; /* We should never use mp after this point */ 2114 2115 switch (extra) { 2116 case sizeof (sin_t): { 2117 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2118 2119 ok_mp->b_wptr += extra; 2120 sin->sin_family = AF_INET; 2121 sin->sin_port = eager->tcp_lport; 2122 sin->sin_addr.s_addr = 2123 eager->tcp_ipha->ipha_src; 2124 break; 2125 } 2126 case sizeof (sin6_t): { 2127 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2128 2129 ok_mp->b_wptr += extra; 2130 sin6->sin6_family = AF_INET6; 2131 sin6->sin6_port = eager->tcp_lport; 2132 if (eager->tcp_ipversion == IPV4_VERSION) { 2133 sin6->sin6_flowinfo = 0; 2134 IN6_IPADDR_TO_V4MAPPED( 2135 eager->tcp_ipha->ipha_src, 2136 &sin6->sin6_addr); 2137 } else { 2138 ASSERT(eager->tcp_ip6h != NULL); 2139 sin6->sin6_flowinfo = 2140 eager->tcp_ip6h->ip6_vcf & 2141 ~IPV6_VERS_AND_FLOW_MASK; 2142 sin6->sin6_addr = 2143 eager->tcp_ip6h->ip6_src; 2144 } 2145 sin6->sin6_scope_id = 0; 2146 sin6->__sin6_src_id = 0; 2147 break; 2148 } 2149 default: 2150 break; 2151 } 2152 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2153 } 2154 2155 /* 2156 * If there are no options we know that the T_CONN_RES will 2157 * succeed. However, we can't send the T_OK_ACK upstream until 2158 * the tcp_accept_swap is done since it would be dangerous to 2159 * let the application start using the new fd prior to the swap. 2160 */ 2161 error = tcp_accept_swap(listener, acceptor, eager); 2162 if (error != 0) { 2163 CONN_DEC_REF(acceptor->tcp_connp); 2164 CONN_DEC_REF(eager->tcp_connp); 2165 freemsg(ok_mp); 2166 /* Original mp has been freed by now, so use mp1 */ 2167 tcp_err_ack(listener, mp1, TSYSERR, error); 2168 return; 2169 } 2170 2171 /* 2172 * tcp_accept_swap unlinks eager from listener but does not drop 2173 * the eager's reference on the listener. 2174 */ 2175 ASSERT(eager->tcp_listener == NULL); 2176 ASSERT(listener->tcp_connp->conn_ref >= 5); 2177 2178 /* 2179 * The eager is now associated with its own queue. Insert in 2180 * the hash so that the connection can be reused for a future 2181 * T_CONN_RES. 2182 */ 2183 tcp_acceptor_hash_insert(acceptor_id, eager); 2184 2185 /* 2186 * We now do the processing of options with T_CONN_RES. 2187 * We delay till now since we wanted to have queue to pass to 2188 * option processing routines that points back to the right 2189 * instance structure which does not happen until after 2190 * tcp_accept_swap(). 2191 * 2192 * Note: 2193 * The sanity of the logic here assumes that whatever options 2194 * are appropriate to inherit from listner=>eager are done 2195 * before this point, and whatever were to be overridden (or not) 2196 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2197 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2198 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2199 * This may not be true at this point in time but can be fixed 2200 * independently. This option processing code starts with 2201 * the instantiated acceptor instance and the final queue at 2202 * this point. 2203 */ 2204 2205 if (tcr->OPT_length != 0) { 2206 /* Options to process */ 2207 int t_error = 0; 2208 int sys_error = 0; 2209 int do_disconnect = 0; 2210 2211 if (tcp_conprim_opt_process(eager, mp1, 2212 &do_disconnect, &t_error, &sys_error) < 0) { 2213 eager->tcp_accept_error = 1; 2214 if (do_disconnect) { 2215 /* 2216 * An option failed which does not allow 2217 * connection to be accepted. 2218 * 2219 * We allow T_CONN_RES to succeed and 2220 * put a T_DISCON_IND on the eager queue. 2221 */ 2222 ASSERT(t_error == 0 && sys_error == 0); 2223 eager->tcp_send_discon_ind = 1; 2224 } else { 2225 ASSERT(t_error != 0); 2226 freemsg(ok_mp); 2227 /* 2228 * Original mp was either freed or set 2229 * to ok_mp above, so use mp1 instead. 2230 */ 2231 tcp_err_ack(listener, mp1, t_error, sys_error); 2232 goto finish; 2233 } 2234 } 2235 /* 2236 * Most likely success in setting options (except if 2237 * eager->tcp_send_discon_ind set). 2238 * mp1 option buffer represented by OPT_length/offset 2239 * potentially modified and contains results of setting 2240 * options at this point 2241 */ 2242 } 2243 2244 /* We no longer need mp1, since all options processing has passed */ 2245 freemsg(mp1); 2246 2247 putnext(listener->tcp_rq, ok_mp); 2248 2249 mutex_enter(&listener->tcp_eager_lock); 2250 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2251 tcp_t *tail; 2252 mblk_t *conn_ind; 2253 2254 /* 2255 * This path should not be executed if listener and 2256 * acceptor streams are the same. 2257 */ 2258 ASSERT(listener != acceptor); 2259 2260 tcp = listener->tcp_eager_prev_q0; 2261 /* 2262 * listener->tcp_eager_prev_q0 points to the TAIL of the 2263 * deferred T_conn_ind queue. We need to get to the head of 2264 * the queue in order to send up T_conn_ind the same order as 2265 * how the 3WHS is completed. 2266 */ 2267 while (tcp != listener) { 2268 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2269 break; 2270 else 2271 tcp = tcp->tcp_eager_prev_q0; 2272 } 2273 ASSERT(tcp != listener); 2274 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2275 ASSERT(conn_ind != NULL); 2276 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2277 2278 /* Move from q0 to q */ 2279 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2280 listener->tcp_conn_req_cnt_q0--; 2281 listener->tcp_conn_req_cnt_q++; 2282 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2283 tcp->tcp_eager_prev_q0; 2284 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2285 tcp->tcp_eager_next_q0; 2286 tcp->tcp_eager_prev_q0 = NULL; 2287 tcp->tcp_eager_next_q0 = NULL; 2288 tcp->tcp_conn_def_q0 = B_FALSE; 2289 2290 /* Make sure the tcp isn't in the list of droppables */ 2291 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2292 tcp->tcp_eager_prev_drop_q0 == NULL); 2293 2294 /* 2295 * Insert at end of the queue because sockfs sends 2296 * down T_CONN_RES in chronological order. Leaving 2297 * the older conn indications at front of the queue 2298 * helps reducing search time. 2299 */ 2300 tail = listener->tcp_eager_last_q; 2301 if (tail != NULL) 2302 tail->tcp_eager_next_q = tcp; 2303 else 2304 listener->tcp_eager_next_q = tcp; 2305 listener->tcp_eager_last_q = tcp; 2306 tcp->tcp_eager_next_q = NULL; 2307 mutex_exit(&listener->tcp_eager_lock); 2308 putnext(tcp->tcp_rq, conn_ind); 2309 } else { 2310 mutex_exit(&listener->tcp_eager_lock); 2311 } 2312 2313 /* 2314 * Done with the acceptor - free it 2315 * 2316 * Note: from this point on, no access to listener should be made 2317 * as listener can be equal to acceptor. 2318 */ 2319 finish: 2320 ASSERT(acceptor->tcp_detached); 2321 ASSERT(tcps->tcps_g_q != NULL); 2322 ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp)); 2323 acceptor->tcp_rq = tcps->tcps_g_q; 2324 acceptor->tcp_wq = WR(tcps->tcps_g_q); 2325 (void) tcp_clean_death(acceptor, 0, 2); 2326 CONN_DEC_REF(acceptor->tcp_connp); 2327 2328 /* 2329 * In case we already received a FIN we have to make tcp_rput send 2330 * the ordrel_ind. This will also send up a window update if the window 2331 * has opened up. 2332 * 2333 * In the normal case of a successful connection acceptance 2334 * we give the O_T_BIND_REQ to the read side put procedure as an 2335 * indication that this was just accepted. This tells tcp_rput to 2336 * pass up any data queued in tcp_rcv_list. 2337 * 2338 * In the fringe case where options sent with T_CONN_RES failed and 2339 * we required, we would be indicating a T_DISCON_IND to blow 2340 * away this connection. 2341 */ 2342 2343 /* 2344 * XXX: we currently have a problem if XTI application closes the 2345 * acceptor stream in between. This problem exists in on10-gate also 2346 * and is well know but nothing can be done short of major rewrite 2347 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2348 * eager same squeue as listener (we can distinguish non socket 2349 * listeners at the time of handling a SYN in tcp_conn_request) 2350 * and do most of the work that tcp_accept_finish does here itself 2351 * and then get behind the acceptor squeue to access the acceptor 2352 * queue. 2353 */ 2354 /* 2355 * We already have a ref on tcp so no need to do one before squeue_enter 2356 */ 2357 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, opt_mp, tcp_accept_finish, 2358 eager->tcp_connp, SQ_FILL, SQTAG_TCP_ACCEPT_FINISH); 2359 } 2360 2361 /* 2362 * Swap information between the eager and acceptor for a TLI/XTI client. 2363 * The sockfs accept is done on the acceptor stream and control goes 2364 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2365 * called. In either case, both the eager and listener are in their own 2366 * perimeter (squeue) and the code has to deal with potential race. 2367 * 2368 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2369 */ 2370 static int 2371 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2372 { 2373 conn_t *econnp, *aconnp; 2374 cred_t *effective_cred = NULL; 2375 2376 ASSERT(eager->tcp_rq == listener->tcp_rq); 2377 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2378 ASSERT(!eager->tcp_hard_bound); 2379 ASSERT(!TCP_IS_SOCKET(acceptor)); 2380 ASSERT(!TCP_IS_SOCKET(eager)); 2381 ASSERT(!TCP_IS_SOCKET(listener)); 2382 2383 econnp = eager->tcp_connp; 2384 aconnp = acceptor->tcp_connp; 2385 2386 /* 2387 * Trusted Extensions may need to use a security label that is 2388 * different from the acceptor's label on MLP and MAC-Exempt 2389 * sockets. If this is the case, the required security label 2390 * already exists in econnp->conn_effective_cred. Use this label 2391 * to generate a new effective cred for the acceptor. 2392 * 2393 * We allow for potential application level retry attempts by 2394 * checking for transient errors before modifying eager. 2395 */ 2396 if (is_system_labeled() && 2397 aconnp->conn_cred != NULL && econnp->conn_effective_cred != NULL) { 2398 effective_cred = copycred_from_tslabel(aconnp->conn_cred, 2399 crgetlabel(econnp->conn_effective_cred), KM_NOSLEEP); 2400 if (effective_cred == NULL) 2401 return (ENOMEM); 2402 } 2403 2404 acceptor->tcp_detached = B_TRUE; 2405 /* 2406 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2407 * the acceptor id. 2408 */ 2409 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2410 2411 /* remove eager from listen list... */ 2412 mutex_enter(&listener->tcp_eager_lock); 2413 tcp_eager_unlink(eager); 2414 ASSERT(eager->tcp_eager_next_q == NULL && 2415 eager->tcp_eager_last_q == NULL); 2416 ASSERT(eager->tcp_eager_next_q0 == NULL && 2417 eager->tcp_eager_prev_q0 == NULL); 2418 mutex_exit(&listener->tcp_eager_lock); 2419 eager->tcp_rq = acceptor->tcp_rq; 2420 eager->tcp_wq = acceptor->tcp_wq; 2421 2422 eager->tcp_rq->q_ptr = econnp; 2423 eager->tcp_wq->q_ptr = econnp; 2424 2425 /* 2426 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2427 * which might be a different squeue from our peer TCP instance. 2428 * For TCP Fusion, the peer expects that whenever tcp_detached is 2429 * clear, our TCP queues point to the acceptor's queues. Thus, use 2430 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2431 * above reach global visibility prior to the clearing of tcp_detached. 2432 */ 2433 membar_producer(); 2434 eager->tcp_detached = B_FALSE; 2435 2436 ASSERT(eager->tcp_ack_tid == 0); 2437 2438 econnp->conn_dev = aconnp->conn_dev; 2439 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2440 2441 ASSERT(econnp->conn_minor_arena != NULL); 2442 if (eager->tcp_cred != NULL) 2443 crfree(eager->tcp_cred); 2444 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2445 if (econnp->conn_effective_cred != NULL) 2446 crfree(econnp->conn_effective_cred); 2447 econnp->conn_effective_cred = effective_cred; 2448 aconnp->conn_cred = NULL; 2449 ASSERT(aconnp->conn_effective_cred == NULL); 2450 2451 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2452 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2453 2454 econnp->conn_zoneid = aconnp->conn_zoneid; 2455 econnp->conn_allzones = aconnp->conn_allzones; 2456 2457 aconnp->conn_mac_exempt = B_FALSE; 2458 2459 /* Do the IPC initialization */ 2460 CONN_INC_REF(econnp); 2461 2462 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2463 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2464 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2465 2466 /* Done with old IPC. Drop its ref on its connp */ 2467 CONN_DEC_REF(aconnp); 2468 return (0); 2469 } 2470 2471 2472 /* 2473 * Adapt to the information, such as rtt and rtt_sd, provided from the 2474 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2475 * 2476 * Checks for multicast and broadcast destination address. 2477 * Returns zero on failure; non-zero if ok. 2478 * 2479 * Note that the MSS calculation here is based on the info given in 2480 * the IRE. We do not do any calculation based on TCP options. They 2481 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2482 * knows which options to use. 2483 * 2484 * Note on how TCP gets its parameters for a connection. 2485 * 2486 * When a tcp_t structure is allocated, it gets all the default parameters. 2487 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2488 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2489 * default. 2490 * 2491 * An incoming SYN with a multicast or broadcast destination address, is dropped 2492 * in 1 of 2 places. 2493 * 2494 * 1. If the packet was received over the wire it is dropped in 2495 * ip_rput_process_broadcast() 2496 * 2497 * 2. If the packet was received through internal IP loopback, i.e. the packet 2498 * was generated and received on the same machine, it is dropped in 2499 * ip_wput_local() 2500 * 2501 * An incoming SYN with a multicast or broadcast source address is always 2502 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2503 * reject an attempt to connect to a broadcast or multicast (destination) 2504 * address. 2505 */ 2506 static int 2507 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2508 { 2509 ire_t *ire; 2510 ire_t *sire = NULL; 2511 iulp_t *ire_uinfo = NULL; 2512 uint32_t mss_max; 2513 uint32_t mss; 2514 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2515 conn_t *connp = tcp->tcp_connp; 2516 boolean_t ire_cacheable = B_FALSE; 2517 zoneid_t zoneid = connp->conn_zoneid; 2518 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2519 MATCH_IRE_SECATTR; 2520 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2521 ill_t *ill = NULL; 2522 boolean_t incoming = (ire_mp == NULL); 2523 tcp_stack_t *tcps = tcp->tcp_tcps; 2524 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2525 2526 ASSERT(connp->conn_ire_cache == NULL); 2527 2528 if (tcp->tcp_ipversion == IPV4_VERSION) { 2529 2530 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2531 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 2532 return (0); 2533 } 2534 /* 2535 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2536 * for the destination with the nexthop as gateway. 2537 * ire_ctable_lookup() is used because this particular 2538 * ire, if it exists, will be marked private. 2539 * If that is not available, use the interface ire 2540 * for the nexthop. 2541 * 2542 * TSol: tcp_update_label will detect label mismatches based 2543 * only on the destination's label, but that would not 2544 * detect label mismatches based on the security attributes 2545 * of routes or next hop gateway. Hence we need to pass the 2546 * label to ire_ftable_lookup below in order to locate the 2547 * right prefix (and/or) ire cache. Similarly we also need 2548 * pass the label to the ire_cache_lookup below to locate 2549 * the right ire that also matches on the label. 2550 */ 2551 if (tcp->tcp_connp->conn_nexthop_set) { 2552 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2553 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2554 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, 2555 ipst); 2556 if (ire == NULL) { 2557 ire = ire_ftable_lookup( 2558 tcp->tcp_connp->conn_nexthop_v4, 2559 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2560 tsl, match_flags, ipst); 2561 if (ire == NULL) 2562 return (0); 2563 } else { 2564 ire_uinfo = &ire->ire_uinfo; 2565 } 2566 } else { 2567 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2568 zoneid, tsl, ipst); 2569 if (ire != NULL) { 2570 ire_cacheable = B_TRUE; 2571 ire_uinfo = (ire_mp != NULL) ? 2572 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2573 &ire->ire_uinfo; 2574 2575 } else { 2576 if (ire_mp == NULL) { 2577 ire = ire_ftable_lookup( 2578 tcp->tcp_connp->conn_rem, 2579 0, 0, 0, NULL, &sire, zoneid, 0, 2580 tsl, (MATCH_IRE_RECURSIVE | 2581 MATCH_IRE_DEFAULT), ipst); 2582 if (ire == NULL) 2583 return (0); 2584 ire_uinfo = (sire != NULL) ? 2585 &sire->ire_uinfo : 2586 &ire->ire_uinfo; 2587 } else { 2588 ire = (ire_t *)ire_mp->b_rptr; 2589 ire_uinfo = 2590 &((ire_t *) 2591 ire_mp->b_rptr)->ire_uinfo; 2592 } 2593 } 2594 } 2595 ASSERT(ire != NULL); 2596 2597 if ((ire->ire_src_addr == INADDR_ANY) || 2598 (ire->ire_type & IRE_BROADCAST)) { 2599 /* 2600 * ire->ire_mp is non null when ire_mp passed in is used 2601 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2602 */ 2603 if (ire->ire_mp == NULL) 2604 ire_refrele(ire); 2605 if (sire != NULL) 2606 ire_refrele(sire); 2607 return (0); 2608 } 2609 2610 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2611 ipaddr_t src_addr; 2612 2613 /* 2614 * ip_bind_connected() has stored the correct source 2615 * address in conn_src. 2616 */ 2617 src_addr = tcp->tcp_connp->conn_src; 2618 tcp->tcp_ipha->ipha_src = src_addr; 2619 /* 2620 * Copy of the src addr. in tcp_t is needed 2621 * for the lookup funcs. 2622 */ 2623 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2624 } 2625 /* 2626 * Set the fragment bit so that IP will tell us if the MTU 2627 * should change. IP tells us the latest setting of 2628 * ip_path_mtu_discovery through ire_frag_flag. 2629 */ 2630 if (ipst->ips_ip_path_mtu_discovery) { 2631 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2632 htons(IPH_DF); 2633 } 2634 /* 2635 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2636 * for IP_NEXTHOP. No cache ire has been found for the 2637 * destination and we are working with the nexthop's 2638 * interface ire. Since we need to forward all packets 2639 * to the nexthop first, we "blindly" set tcp_localnet 2640 * to false, eventhough the destination may also be 2641 * onlink. 2642 */ 2643 if (ire_uinfo == NULL) 2644 tcp->tcp_localnet = 0; 2645 else 2646 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2647 } else { 2648 /* 2649 * For incoming connection ire_mp = NULL 2650 * For outgoing connection ire_mp != NULL 2651 * Technically we should check conn_incoming_ill 2652 * when ire_mp is NULL and conn_outgoing_ill when 2653 * ire_mp is non-NULL. But this is performance 2654 * critical path and for IPV*_BOUND_IF, outgoing 2655 * and incoming ill are always set to the same value. 2656 */ 2657 ill_t *dst_ill = NULL; 2658 ipif_t *dst_ipif = NULL; 2659 2660 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2661 2662 if (connp->conn_outgoing_ill != NULL) { 2663 /* Outgoing or incoming path */ 2664 int err; 2665 2666 dst_ill = conn_get_held_ill(connp, 2667 &connp->conn_outgoing_ill, &err); 2668 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2669 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2670 return (0); 2671 } 2672 match_flags |= MATCH_IRE_ILL; 2673 dst_ipif = dst_ill->ill_ipif; 2674 } 2675 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2676 0, 0, dst_ipif, zoneid, tsl, match_flags, ipst); 2677 2678 if (ire != NULL) { 2679 ire_cacheable = B_TRUE; 2680 ire_uinfo = (ire_mp != NULL) ? 2681 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2682 &ire->ire_uinfo; 2683 } else { 2684 if (ire_mp == NULL) { 2685 ire = ire_ftable_lookup_v6( 2686 &tcp->tcp_connp->conn_remv6, 2687 0, 0, 0, dst_ipif, &sire, zoneid, 2688 0, tsl, match_flags, ipst); 2689 if (ire == NULL) { 2690 if (dst_ill != NULL) 2691 ill_refrele(dst_ill); 2692 return (0); 2693 } 2694 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2695 &ire->ire_uinfo; 2696 } else { 2697 ire = (ire_t *)ire_mp->b_rptr; 2698 ire_uinfo = 2699 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2700 } 2701 } 2702 if (dst_ill != NULL) 2703 ill_refrele(dst_ill); 2704 2705 ASSERT(ire != NULL); 2706 ASSERT(ire_uinfo != NULL); 2707 2708 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2709 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2710 /* 2711 * ire->ire_mp is non null when ire_mp passed in is used 2712 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2713 */ 2714 if (ire->ire_mp == NULL) 2715 ire_refrele(ire); 2716 if (sire != NULL) 2717 ire_refrele(sire); 2718 return (0); 2719 } 2720 2721 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2722 in6_addr_t src_addr; 2723 2724 /* 2725 * ip_bind_connected_v6() has stored the correct source 2726 * address per IPv6 addr. selection policy in 2727 * conn_src_v6. 2728 */ 2729 src_addr = tcp->tcp_connp->conn_srcv6; 2730 2731 tcp->tcp_ip6h->ip6_src = src_addr; 2732 /* 2733 * Copy of the src addr. in tcp_t is needed 2734 * for the lookup funcs. 2735 */ 2736 tcp->tcp_ip_src_v6 = src_addr; 2737 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2738 &connp->conn_srcv6)); 2739 } 2740 tcp->tcp_localnet = 2741 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2742 } 2743 2744 /* 2745 * This allows applications to fail quickly when connections are made 2746 * to dead hosts. Hosts can be labeled dead by adding a reject route 2747 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2748 */ 2749 if ((ire->ire_flags & RTF_REJECT) && 2750 (ire->ire_flags & RTF_PRIVATE)) 2751 goto error; 2752 2753 /* 2754 * Make use of the cached rtt and rtt_sd values to calculate the 2755 * initial RTO. Note that they are already initialized in 2756 * tcp_init_values(). 2757 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2758 * IP_NEXTHOP, but instead are using the interface ire for the 2759 * nexthop, then we do not use the ire_uinfo from that ire to 2760 * do any initializations. 2761 */ 2762 if (ire_uinfo != NULL) { 2763 if (ire_uinfo->iulp_rtt != 0) { 2764 clock_t rto; 2765 2766 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2767 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2768 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2769 tcps->tcps_rexmit_interval_extra + 2770 (tcp->tcp_rtt_sa >> 5); 2771 2772 if (rto > tcps->tcps_rexmit_interval_max) { 2773 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2774 } else if (rto < tcps->tcps_rexmit_interval_min) { 2775 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2776 } else { 2777 tcp->tcp_rto = rto; 2778 } 2779 } 2780 if (ire_uinfo->iulp_ssthresh != 0) 2781 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2782 else 2783 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2784 if (ire_uinfo->iulp_spipe > 0) { 2785 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2786 tcps->tcps_max_buf); 2787 if (tcps->tcps_snd_lowat_fraction != 0) 2788 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2789 tcps->tcps_snd_lowat_fraction; 2790 (void) tcp_maxpsz_set(tcp, B_TRUE); 2791 } 2792 /* 2793 * Note that up till now, acceptor always inherits receive 2794 * window from the listener. But if there is a metrics 2795 * associated with a host, we should use that instead of 2796 * inheriting it from listener. Thus we need to pass this 2797 * info back to the caller. 2798 */ 2799 if (ire_uinfo->iulp_rpipe > 0) { 2800 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, 2801 tcps->tcps_max_buf); 2802 } 2803 2804 if (ire_uinfo->iulp_rtomax > 0) { 2805 tcp->tcp_second_timer_threshold = 2806 ire_uinfo->iulp_rtomax; 2807 } 2808 2809 /* 2810 * Use the metric option settings, iulp_tstamp_ok and 2811 * iulp_wscale_ok, only for active open. What this means 2812 * is that if the other side uses timestamp or window 2813 * scale option, TCP will also use those options. That 2814 * is for passive open. If the application sets a 2815 * large window, window scale is enabled regardless of 2816 * the value in iulp_wscale_ok. This is the behavior 2817 * since 2.6. So we keep it. 2818 * The only case left in passive open processing is the 2819 * check for SACK. 2820 * For ECN, it should probably be like SACK. But the 2821 * current value is binary, so we treat it like the other 2822 * cases. The metric only controls active open.For passive 2823 * open, the ndd param, tcp_ecn_permitted, controls the 2824 * behavior. 2825 */ 2826 if (!tcp_detached) { 2827 /* 2828 * The if check means that the following can only 2829 * be turned on by the metrics only IRE, but not off. 2830 */ 2831 if (ire_uinfo->iulp_tstamp_ok) 2832 tcp->tcp_snd_ts_ok = B_TRUE; 2833 if (ire_uinfo->iulp_wscale_ok) 2834 tcp->tcp_snd_ws_ok = B_TRUE; 2835 if (ire_uinfo->iulp_sack == 2) 2836 tcp->tcp_snd_sack_ok = B_TRUE; 2837 if (ire_uinfo->iulp_ecn_ok) 2838 tcp->tcp_ecn_ok = B_TRUE; 2839 } else { 2840 /* 2841 * Passive open. 2842 * 2843 * As above, the if check means that SACK can only be 2844 * turned on by the metric only IRE. 2845 */ 2846 if (ire_uinfo->iulp_sack > 0) { 2847 tcp->tcp_snd_sack_ok = B_TRUE; 2848 } 2849 } 2850 } 2851 2852 2853 /* 2854 * XXX: Note that currently, ire_max_frag can be as small as 68 2855 * because of PMTUd. So tcp_mss may go to negative if combined 2856 * length of all those options exceeds 28 bytes. But because 2857 * of the tcp_mss_min check below, we may not have a problem if 2858 * tcp_mss_min is of a reasonable value. The default is 1 so 2859 * the negative problem still exists. And the check defeats PMTUd. 2860 * In fact, if PMTUd finds that the MSS should be smaller than 2861 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2862 * value. 2863 * 2864 * We do not deal with that now. All those problems related to 2865 * PMTUd will be fixed later. 2866 */ 2867 ASSERT(ire->ire_max_frag != 0); 2868 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2869 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2870 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2871 mss = MIN(mss, IPV6_MIN_MTU); 2872 } 2873 } 2874 2875 /* Sanity check for MSS value. */ 2876 if (tcp->tcp_ipversion == IPV4_VERSION) 2877 mss_max = tcps->tcps_mss_max_ipv4; 2878 else 2879 mss_max = tcps->tcps_mss_max_ipv6; 2880 2881 if (tcp->tcp_ipversion == IPV6_VERSION && 2882 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2883 /* 2884 * After receiving an ICMPv6 "packet too big" message with a 2885 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2886 * will insert a 8-byte fragment header in every packet; we 2887 * reduce the MSS by that amount here. 2888 */ 2889 mss -= sizeof (ip6_frag_t); 2890 } 2891 2892 if (tcp->tcp_ipsec_overhead == 0) 2893 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2894 2895 mss -= tcp->tcp_ipsec_overhead; 2896 2897 if (mss < tcps->tcps_mss_min) 2898 mss = tcps->tcps_mss_min; 2899 if (mss > mss_max) 2900 mss = mss_max; 2901 2902 /* Note that this is the maximum MSS, excluding all options. */ 2903 tcp->tcp_mss = mss; 2904 2905 /* 2906 * Initialize the ISS here now that we have the full connection ID. 2907 * The RFC 1948 method of initial sequence number generation requires 2908 * knowledge of the full connection ID before setting the ISS. 2909 */ 2910 2911 tcp_iss_init(tcp); 2912 2913 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2914 tcp->tcp_loopback = B_TRUE; 2915 2916 if (sire != NULL) 2917 IRE_REFRELE(sire); 2918 2919 /* 2920 * If we got an IRE_CACHE and an ILL, go through their properties; 2921 * otherwise, this is deferred until later when we have an IRE_CACHE. 2922 */ 2923 if (tcp->tcp_loopback || 2924 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2925 /* 2926 * For incoming, see if this tcp may be MDT-capable. For 2927 * outgoing, this process has been taken care of through 2928 * tcp_rput_other. 2929 */ 2930 tcp_ire_ill_check(tcp, ire, ill, incoming); 2931 tcp->tcp_ire_ill_check_done = B_TRUE; 2932 } 2933 2934 mutex_enter(&connp->conn_lock); 2935 /* 2936 * Make sure that conn is not marked incipient 2937 * for incoming connections. A blind 2938 * removal of incipient flag is cheaper than 2939 * check and removal. 2940 */ 2941 connp->conn_state_flags &= ~CONN_INCIPIENT; 2942 2943 /* 2944 * Must not cache forwarding table routes 2945 * or recache an IRE after the conn_t has 2946 * had conn_ire_cache cleared and is flagged 2947 * unusable, (see the CONN_CACHE_IRE() macro). 2948 */ 2949 if (ire_cacheable && CONN_CACHE_IRE(connp)) { 2950 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2951 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 2952 connp->conn_ire_cache = ire; 2953 IRE_UNTRACE_REF(ire); 2954 rw_exit(&ire->ire_bucket->irb_lock); 2955 mutex_exit(&connp->conn_lock); 2956 return (1); 2957 } 2958 rw_exit(&ire->ire_bucket->irb_lock); 2959 } 2960 mutex_exit(&connp->conn_lock); 2961 2962 if (ire->ire_mp == NULL) 2963 ire_refrele(ire); 2964 return (1); 2965 2966 error: 2967 if (ire->ire_mp == NULL) 2968 ire_refrele(ire); 2969 if (sire != NULL) 2970 ire_refrele(sire); 2971 return (0); 2972 } 2973 2974 static void 2975 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp) 2976 { 2977 int error; 2978 conn_t *connp = tcp->tcp_connp; 2979 struct sockaddr *sa; 2980 mblk_t *mp1; 2981 struct T_bind_req *tbr; 2982 int backlog; 2983 socklen_t len; 2984 sin_t *sin; 2985 sin6_t *sin6; 2986 cred_t *cr; 2987 2988 /* 2989 * All Solaris components should pass a db_credp 2990 * for this TPI message, hence we ASSERT. 2991 * But in case there is some other M_PROTO that looks 2992 * like a TPI message sent by some other kernel 2993 * component, we check and return an error. 2994 */ 2995 cr = msg_getcred(mp, NULL); 2996 ASSERT(cr != NULL); 2997 if (cr == NULL) { 2998 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 2999 return; 3000 } 3001 3002 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3003 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3004 if (tcp->tcp_debug) { 3005 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3006 "tcp_tpi_bind: bad req, len %u", 3007 (uint_t)(mp->b_wptr - mp->b_rptr)); 3008 } 3009 tcp_err_ack(tcp, mp, TPROTO, 0); 3010 return; 3011 } 3012 /* Make sure the largest address fits */ 3013 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3014 if (mp1 == NULL) { 3015 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3016 return; 3017 } 3018 mp = mp1; 3019 tbr = (struct T_bind_req *)mp->b_rptr; 3020 3021 backlog = tbr->CONIND_number; 3022 len = tbr->ADDR_length; 3023 3024 switch (len) { 3025 case 0: /* request for a generic port */ 3026 tbr->ADDR_offset = sizeof (struct T_bind_req); 3027 if (tcp->tcp_family == AF_INET) { 3028 tbr->ADDR_length = sizeof (sin_t); 3029 sin = (sin_t *)&tbr[1]; 3030 *sin = sin_null; 3031 sin->sin_family = AF_INET; 3032 sa = (struct sockaddr *)sin; 3033 len = sizeof (sin_t); 3034 mp->b_wptr = (uchar_t *)&sin[1]; 3035 } else { 3036 ASSERT(tcp->tcp_family == AF_INET6); 3037 tbr->ADDR_length = sizeof (sin6_t); 3038 sin6 = (sin6_t *)&tbr[1]; 3039 *sin6 = sin6_null; 3040 sin6->sin6_family = AF_INET6; 3041 sa = (struct sockaddr *)sin6; 3042 len = sizeof (sin6_t); 3043 mp->b_wptr = (uchar_t *)&sin6[1]; 3044 } 3045 break; 3046 3047 case sizeof (sin_t): /* Complete IPv4 address */ 3048 sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset, 3049 sizeof (sin_t)); 3050 break; 3051 3052 case sizeof (sin6_t): /* Complete IPv6 address */ 3053 sa = (struct sockaddr *)mi_offset_param(mp, 3054 tbr->ADDR_offset, sizeof (sin6_t)); 3055 break; 3056 3057 default: 3058 if (tcp->tcp_debug) { 3059 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3060 "tcp_tpi_bind: bad address length, %d", 3061 tbr->ADDR_length); 3062 } 3063 tcp_err_ack(tcp, mp, TBADADDR, 0); 3064 return; 3065 } 3066 3067 if (backlog > 0) { 3068 error = tcp_do_listen(connp, sa, len, backlog, DB_CRED(mp), 3069 tbr->PRIM_type != O_T_BIND_REQ); 3070 } else { 3071 error = tcp_do_bind(connp, sa, len, DB_CRED(mp), 3072 tbr->PRIM_type != O_T_BIND_REQ); 3073 } 3074 done: 3075 if (error > 0) { 3076 tcp_err_ack(tcp, mp, TSYSERR, error); 3077 } else if (error < 0) { 3078 tcp_err_ack(tcp, mp, -error, 0); 3079 } else { 3080 /* 3081 * Update port information as sockfs/tpi needs it for checking 3082 */ 3083 if (tcp->tcp_family == AF_INET) { 3084 sin = (sin_t *)sa; 3085 sin->sin_port = tcp->tcp_lport; 3086 } else { 3087 sin6 = (sin6_t *)sa; 3088 sin6->sin6_port = tcp->tcp_lport; 3089 } 3090 mp->b_datap->db_type = M_PCPROTO; 3091 tbr->PRIM_type = T_BIND_ACK; 3092 putnext(tcp->tcp_rq, mp); 3093 } 3094 } 3095 3096 /* 3097 * If the "bind_to_req_port_only" parameter is set, if the requested port 3098 * number is available, return it, If not return 0 3099 * 3100 * If "bind_to_req_port_only" parameter is not set and 3101 * If the requested port number is available, return it. If not, return 3102 * the first anonymous port we happen across. If no anonymous ports are 3103 * available, return 0. addr is the requested local address, if any. 3104 * 3105 * In either case, when succeeding update the tcp_t to record the port number 3106 * and insert it in the bind hash table. 3107 * 3108 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3109 * without setting SO_REUSEADDR. This is needed so that they 3110 * can be viewed as two independent transport protocols. 3111 */ 3112 static in_port_t 3113 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3114 int reuseaddr, boolean_t quick_connect, 3115 boolean_t bind_to_req_port_only, boolean_t user_specified) 3116 { 3117 /* number of times we have run around the loop */ 3118 int count = 0; 3119 /* maximum number of times to run around the loop */ 3120 int loopmax; 3121 conn_t *connp = tcp->tcp_connp; 3122 zoneid_t zoneid = connp->conn_zoneid; 3123 tcp_stack_t *tcps = tcp->tcp_tcps; 3124 3125 /* 3126 * Lookup for free addresses is done in a loop and "loopmax" 3127 * influences how long we spin in the loop 3128 */ 3129 if (bind_to_req_port_only) { 3130 /* 3131 * If the requested port is busy, don't bother to look 3132 * for a new one. Setting loop maximum count to 1 has 3133 * that effect. 3134 */ 3135 loopmax = 1; 3136 } else { 3137 /* 3138 * If the requested port is busy, look for a free one 3139 * in the anonymous port range. 3140 * Set loopmax appropriately so that one does not look 3141 * forever in the case all of the anonymous ports are in use. 3142 */ 3143 if (tcp->tcp_anon_priv_bind) { 3144 /* 3145 * loopmax = 3146 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3147 */ 3148 loopmax = IPPORT_RESERVED - 3149 tcps->tcps_min_anonpriv_port; 3150 } else { 3151 loopmax = (tcps->tcps_largest_anon_port - 3152 tcps->tcps_smallest_anon_port + 1); 3153 } 3154 } 3155 do { 3156 uint16_t lport; 3157 tf_t *tbf; 3158 tcp_t *ltcp; 3159 conn_t *lconnp; 3160 3161 lport = htons(port); 3162 3163 /* 3164 * Ensure that the tcp_t is not currently in the bind hash. 3165 * Hold the lock on the hash bucket to ensure that 3166 * the duplicate check plus the insertion is an atomic 3167 * operation. 3168 * 3169 * This function does an inline lookup on the bind hash list 3170 * Make sure that we access only members of tcp_t 3171 * and that we don't look at tcp_tcp, since we are not 3172 * doing a CONN_INC_REF. 3173 */ 3174 tcp_bind_hash_remove(tcp); 3175 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 3176 mutex_enter(&tbf->tf_lock); 3177 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3178 ltcp = ltcp->tcp_bind_hash) { 3179 if (lport == ltcp->tcp_lport) 3180 break; 3181 } 3182 3183 for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) { 3184 boolean_t not_socket; 3185 boolean_t exclbind; 3186 3187 lconnp = ltcp->tcp_connp; 3188 3189 /* 3190 * On a labeled system, we must treat bindings to ports 3191 * on shared IP addresses by sockets with MAC exemption 3192 * privilege as being in all zones, as there's 3193 * otherwise no way to identify the right receiver. 3194 */ 3195 if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) || 3196 IPCL_ZONE_MATCH(connp, 3197 ltcp->tcp_connp->conn_zoneid)) && 3198 !lconnp->conn_mac_exempt && 3199 !connp->conn_mac_exempt) 3200 continue; 3201 3202 /* 3203 * If TCP_EXCLBIND is set for either the bound or 3204 * binding endpoint, the semantics of bind 3205 * is changed according to the following. 3206 * 3207 * spec = specified address (v4 or v6) 3208 * unspec = unspecified address (v4 or v6) 3209 * A = specified addresses are different for endpoints 3210 * 3211 * bound bind to allowed 3212 * ------------------------------------- 3213 * unspec unspec no 3214 * unspec spec no 3215 * spec unspec no 3216 * spec spec yes if A 3217 * 3218 * For labeled systems, SO_MAC_EXEMPT behaves the same 3219 * as TCP_EXCLBIND, except that zoneid is ignored. 3220 * 3221 * Note: 3222 * 3223 * 1. Because of TLI semantics, an endpoint can go 3224 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3225 * TCPS_BOUND, depending on whether it is originally 3226 * a listener or not. That is why we need to check 3227 * for states greater than or equal to TCPS_BOUND 3228 * here. 3229 * 3230 * 2. Ideally, we should only check for state equals 3231 * to TCPS_LISTEN. And the following check should be 3232 * added. 3233 * 3234 * if (ltcp->tcp_state == TCPS_LISTEN || 3235 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3236 * ... 3237 * } 3238 * 3239 * The semantics will be changed to this. If the 3240 * endpoint on the list is in state not equal to 3241 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3242 * set, let the bind succeed. 3243 * 3244 * Because of (1), we cannot do that for TLI 3245 * endpoints. But we can do that for socket endpoints. 3246 * If in future, we can change this going back 3247 * semantics, we can use the above check for TLI also. 3248 */ 3249 not_socket = !(TCP_IS_SOCKET(ltcp) && 3250 TCP_IS_SOCKET(tcp)); 3251 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3252 3253 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3254 (exclbind && (not_socket || 3255 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3256 if (V6_OR_V4_INADDR_ANY( 3257 ltcp->tcp_bound_source_v6) || 3258 V6_OR_V4_INADDR_ANY(*laddr) || 3259 IN6_ARE_ADDR_EQUAL(laddr, 3260 <cp->tcp_bound_source_v6)) { 3261 break; 3262 } 3263 continue; 3264 } 3265 3266 /* 3267 * Check ipversion to allow IPv4 and IPv6 sockets to 3268 * have disjoint port number spaces, if *_EXCLBIND 3269 * is not set and only if the application binds to a 3270 * specific port. We use the same autoassigned port 3271 * number space for IPv4 and IPv6 sockets. 3272 */ 3273 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3274 bind_to_req_port_only) 3275 continue; 3276 3277 /* 3278 * Ideally, we should make sure that the source 3279 * address, remote address, and remote port in the 3280 * four tuple for this tcp-connection is unique. 3281 * However, trying to find out the local source 3282 * address would require too much code duplication 3283 * with IP, since IP needs needs to have that code 3284 * to support userland TCP implementations. 3285 */ 3286 if (quick_connect && 3287 (ltcp->tcp_state > TCPS_LISTEN) && 3288 ((tcp->tcp_fport != ltcp->tcp_fport) || 3289 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3290 <cp->tcp_remote_v6))) 3291 continue; 3292 3293 if (!reuseaddr) { 3294 /* 3295 * No socket option SO_REUSEADDR. 3296 * If existing port is bound to 3297 * a non-wildcard IP address 3298 * and the requesting stream is 3299 * bound to a distinct 3300 * different IP addresses 3301 * (non-wildcard, also), keep 3302 * going. 3303 */ 3304 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3305 !V6_OR_V4_INADDR_ANY( 3306 ltcp->tcp_bound_source_v6) && 3307 !IN6_ARE_ADDR_EQUAL(laddr, 3308 <cp->tcp_bound_source_v6)) 3309 continue; 3310 if (ltcp->tcp_state >= TCPS_BOUND) { 3311 /* 3312 * This port is being used and 3313 * its state is >= TCPS_BOUND, 3314 * so we can't bind to it. 3315 */ 3316 break; 3317 } 3318 } else { 3319 /* 3320 * socket option SO_REUSEADDR is set on the 3321 * binding tcp_t. 3322 * 3323 * If two streams are bound to 3324 * same IP address or both addr 3325 * and bound source are wildcards 3326 * (INADDR_ANY), we want to stop 3327 * searching. 3328 * We have found a match of IP source 3329 * address and source port, which is 3330 * refused regardless of the 3331 * SO_REUSEADDR setting, so we break. 3332 */ 3333 if (IN6_ARE_ADDR_EQUAL(laddr, 3334 <cp->tcp_bound_source_v6) && 3335 (ltcp->tcp_state == TCPS_LISTEN || 3336 ltcp->tcp_state == TCPS_BOUND)) 3337 break; 3338 } 3339 } 3340 if (ltcp != NULL) { 3341 /* The port number is busy */ 3342 mutex_exit(&tbf->tf_lock); 3343 } else { 3344 /* 3345 * This port is ours. Insert in fanout and mark as 3346 * bound to prevent others from getting the port 3347 * number. 3348 */ 3349 tcp->tcp_state = TCPS_BOUND; 3350 tcp->tcp_lport = htons(port); 3351 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3352 3353 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3354 tcp->tcp_lport)] == tbf); 3355 tcp_bind_hash_insert(tbf, tcp, 1); 3356 3357 mutex_exit(&tbf->tf_lock); 3358 3359 /* 3360 * We don't want tcp_next_port_to_try to "inherit" 3361 * a port number supplied by the user in a bind. 3362 */ 3363 if (user_specified) 3364 return (port); 3365 3366 /* 3367 * This is the only place where tcp_next_port_to_try 3368 * is updated. After the update, it may or may not 3369 * be in the valid range. 3370 */ 3371 if (!tcp->tcp_anon_priv_bind) 3372 tcps->tcps_next_port_to_try = port + 1; 3373 return (port); 3374 } 3375 3376 if (tcp->tcp_anon_priv_bind) { 3377 port = tcp_get_next_priv_port(tcp); 3378 } else { 3379 if (count == 0 && user_specified) { 3380 /* 3381 * We may have to return an anonymous port. So 3382 * get one to start with. 3383 */ 3384 port = 3385 tcp_update_next_port( 3386 tcps->tcps_next_port_to_try, 3387 tcp, B_TRUE); 3388 user_specified = B_FALSE; 3389 } else { 3390 port = tcp_update_next_port(port + 1, tcp, 3391 B_FALSE); 3392 } 3393 } 3394 if (port == 0) 3395 break; 3396 3397 /* 3398 * Don't let this loop run forever in the case where 3399 * all of the anonymous ports are in use. 3400 */ 3401 } while (++count < loopmax); 3402 return (0); 3403 } 3404 3405 /* 3406 * tcp_clean_death / tcp_close_detached must not be called more than once 3407 * on a tcp. Thus every function that potentially calls tcp_clean_death 3408 * must check for the tcp state before calling tcp_clean_death. 3409 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3410 * tcp_timer_handler, all check for the tcp state. 3411 */ 3412 /* ARGSUSED */ 3413 void 3414 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3415 { 3416 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3417 3418 freemsg(mp); 3419 if (tcp->tcp_state > TCPS_BOUND) 3420 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3421 ETIMEDOUT, 5); 3422 } 3423 3424 /* 3425 * We are dying for some reason. Try to do it gracefully. (May be called 3426 * as writer.) 3427 * 3428 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3429 * done by a service procedure). 3430 * TBD - Should the return value distinguish between the tcp_t being 3431 * freed and it being reinitialized? 3432 */ 3433 static int 3434 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3435 { 3436 mblk_t *mp; 3437 queue_t *q; 3438 conn_t *connp = tcp->tcp_connp; 3439 tcp_stack_t *tcps = tcp->tcp_tcps; 3440 3441 TCP_CLD_STAT(tag); 3442 3443 #if TCP_TAG_CLEAN_DEATH 3444 tcp->tcp_cleandeathtag = tag; 3445 #endif 3446 3447 if (tcp->tcp_fused) 3448 tcp_unfuse(tcp); 3449 3450 if (tcp->tcp_linger_tid != 0 && 3451 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3452 tcp_stop_lingering(tcp); 3453 } 3454 3455 ASSERT(tcp != NULL); 3456 ASSERT((tcp->tcp_family == AF_INET && 3457 tcp->tcp_ipversion == IPV4_VERSION) || 3458 (tcp->tcp_family == AF_INET6 && 3459 (tcp->tcp_ipversion == IPV4_VERSION || 3460 tcp->tcp_ipversion == IPV6_VERSION))); 3461 3462 if (TCP_IS_DETACHED(tcp)) { 3463 if (tcp->tcp_hard_binding) { 3464 /* 3465 * Its an eager that we are dealing with. We close the 3466 * eager but in case a conn_ind has already gone to the 3467 * listener, let tcp_accept_finish() send a discon_ind 3468 * to the listener and drop the last reference. If the 3469 * listener doesn't even know about the eager i.e. the 3470 * conn_ind hasn't gone up, blow away the eager and drop 3471 * the last reference as well. If the conn_ind has gone 3472 * up, state should be BOUND. tcp_accept_finish 3473 * will figure out that the connection has received a 3474 * RST and will send a DISCON_IND to the application. 3475 */ 3476 tcp_closei_local(tcp); 3477 if (!tcp->tcp_tconnind_started) { 3478 CONN_DEC_REF(connp); 3479 } else { 3480 tcp->tcp_state = TCPS_BOUND; 3481 } 3482 } else { 3483 tcp_close_detached(tcp); 3484 } 3485 return (0); 3486 } 3487 3488 TCP_STAT(tcps, tcp_clean_death_nondetached); 3489 3490 q = tcp->tcp_rq; 3491 3492 /* Trash all inbound data */ 3493 if (!IPCL_IS_NONSTR(connp)) { 3494 ASSERT(q != NULL); 3495 flushq(q, FLUSHALL); 3496 } 3497 3498 /* 3499 * If we are at least part way open and there is error 3500 * (err==0 implies no error) 3501 * notify our client by a T_DISCON_IND. 3502 */ 3503 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3504 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3505 !TCP_IS_SOCKET(tcp)) { 3506 /* 3507 * Send M_FLUSH according to TPI. Because sockets will 3508 * (and must) ignore FLUSHR we do that only for TPI 3509 * endpoints and sockets in STREAMS mode. 3510 */ 3511 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3512 } 3513 if (tcp->tcp_debug) { 3514 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3515 "tcp_clean_death: discon err %d", err); 3516 } 3517 if (IPCL_IS_NONSTR(connp)) { 3518 /* Direct socket, use upcall */ 3519 (*connp->conn_upcalls->su_disconnected)( 3520 connp->conn_upper_handle, tcp->tcp_connid, err); 3521 } else { 3522 mp = mi_tpi_discon_ind(NULL, err, 0); 3523 if (mp != NULL) { 3524 putnext(q, mp); 3525 } else { 3526 if (tcp->tcp_debug) { 3527 (void) strlog(TCP_MOD_ID, 0, 1, 3528 SL_ERROR|SL_TRACE, 3529 "tcp_clean_death, sending M_ERROR"); 3530 } 3531 (void) putnextctl1(q, M_ERROR, EPROTO); 3532 } 3533 } 3534 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3535 /* SYN_SENT or SYN_RCVD */ 3536 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3537 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3538 /* ESTABLISHED or CLOSE_WAIT */ 3539 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3540 } 3541 } 3542 3543 tcp_reinit(tcp); 3544 if (IPCL_IS_NONSTR(connp)) 3545 (void) tcp_do_unbind(connp); 3546 3547 return (-1); 3548 } 3549 3550 /* 3551 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3552 * to expire, stop the wait and finish the close. 3553 */ 3554 static void 3555 tcp_stop_lingering(tcp_t *tcp) 3556 { 3557 clock_t delta = 0; 3558 tcp_stack_t *tcps = tcp->tcp_tcps; 3559 3560 tcp->tcp_linger_tid = 0; 3561 if (tcp->tcp_state > TCPS_LISTEN) { 3562 tcp_acceptor_hash_remove(tcp); 3563 mutex_enter(&tcp->tcp_non_sq_lock); 3564 if (tcp->tcp_flow_stopped) { 3565 tcp_clrqfull(tcp); 3566 } 3567 mutex_exit(&tcp->tcp_non_sq_lock); 3568 3569 if (tcp->tcp_timer_tid != 0) { 3570 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3571 tcp->tcp_timer_tid = 0; 3572 } 3573 /* 3574 * Need to cancel those timers which will not be used when 3575 * TCP is detached. This has to be done before the tcp_wq 3576 * is set to the global queue. 3577 */ 3578 tcp_timers_stop(tcp); 3579 3580 tcp->tcp_detached = B_TRUE; 3581 ASSERT(tcps->tcps_g_q != NULL); 3582 tcp->tcp_rq = tcps->tcps_g_q; 3583 tcp->tcp_wq = WR(tcps->tcps_g_q); 3584 3585 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3586 tcp_time_wait_append(tcp); 3587 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3588 goto finish; 3589 } 3590 3591 /* 3592 * If delta is zero the timer event wasn't executed and was 3593 * successfully canceled. In this case we need to restart it 3594 * with the minimal delta possible. 3595 */ 3596 if (delta >= 0) { 3597 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3598 delta ? delta : 1); 3599 } 3600 } else { 3601 tcp_closei_local(tcp); 3602 CONN_DEC_REF(tcp->tcp_connp); 3603 } 3604 finish: 3605 /* Signal closing thread that it can complete close */ 3606 mutex_enter(&tcp->tcp_closelock); 3607 tcp->tcp_detached = B_TRUE; 3608 ASSERT(tcps->tcps_g_q != NULL); 3609 3610 tcp->tcp_rq = tcps->tcps_g_q; 3611 tcp->tcp_wq = WR(tcps->tcps_g_q); 3612 3613 tcp->tcp_closed = 1; 3614 cv_signal(&tcp->tcp_closecv); 3615 mutex_exit(&tcp->tcp_closelock); 3616 } 3617 3618 /* 3619 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3620 * expires. 3621 */ 3622 static void 3623 tcp_close_linger_timeout(void *arg) 3624 { 3625 conn_t *connp = (conn_t *)arg; 3626 tcp_t *tcp = connp->conn_tcp; 3627 3628 tcp->tcp_client_errno = ETIMEDOUT; 3629 tcp_stop_lingering(tcp); 3630 } 3631 3632 static void 3633 tcp_close_common(conn_t *connp, int flags) 3634 { 3635 tcp_t *tcp = connp->conn_tcp; 3636 mblk_t *mp = &tcp->tcp_closemp; 3637 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3638 mblk_t *bp; 3639 3640 ASSERT(connp->conn_ref >= 2); 3641 3642 /* 3643 * Mark the conn as closing. ill_pending_mp_add will not 3644 * add any mp to the pending mp list, after this conn has 3645 * started closing. Same for sq_pending_mp_add 3646 */ 3647 mutex_enter(&connp->conn_lock); 3648 connp->conn_state_flags |= CONN_CLOSING; 3649 if (connp->conn_oper_pending_ill != NULL) 3650 conn_ioctl_cleanup_reqd = B_TRUE; 3651 CONN_INC_REF_LOCKED(connp); 3652 mutex_exit(&connp->conn_lock); 3653 tcp->tcp_closeflags = (uint8_t)flags; 3654 ASSERT(connp->conn_ref >= 3); 3655 3656 /* 3657 * tcp_closemp_used is used below without any protection of a lock 3658 * as we don't expect any one else to use it concurrently at this 3659 * point otherwise it would be a major defect. 3660 */ 3661 3662 if (mp->b_prev == NULL) 3663 tcp->tcp_closemp_used = B_TRUE; 3664 else 3665 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 3666 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 3667 3668 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 3669 3670 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 3671 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3672 3673 mutex_enter(&tcp->tcp_closelock); 3674 while (!tcp->tcp_closed) { 3675 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 3676 /* 3677 * The cv_wait_sig() was interrupted. We now do the 3678 * following: 3679 * 3680 * 1) If the endpoint was lingering, we allow this 3681 * to be interrupted by cancelling the linger timeout 3682 * and closing normally. 3683 * 3684 * 2) Revert to calling cv_wait() 3685 * 3686 * We revert to using cv_wait() to avoid an 3687 * infinite loop which can occur if the calling 3688 * thread is higher priority than the squeue worker 3689 * thread and is bound to the same cpu. 3690 */ 3691 if (tcp->tcp_linger && tcp->tcp_lingertime > 0) { 3692 mutex_exit(&tcp->tcp_closelock); 3693 /* Entering squeue, bump ref count. */ 3694 CONN_INC_REF(connp); 3695 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 3696 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 3697 tcp_linger_interrupted, connp, 3698 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3699 mutex_enter(&tcp->tcp_closelock); 3700 } 3701 break; 3702 } 3703 } 3704 while (!tcp->tcp_closed) 3705 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3706 mutex_exit(&tcp->tcp_closelock); 3707 3708 /* 3709 * In the case of listener streams that have eagers in the q or q0 3710 * we wait for the eagers to drop their reference to us. tcp_rq and 3711 * tcp_wq of the eagers point to our queues. By waiting for the 3712 * refcnt to drop to 1, we are sure that the eagers have cleaned 3713 * up their queue pointers and also dropped their references to us. 3714 */ 3715 if (tcp->tcp_wait_for_eagers) { 3716 mutex_enter(&connp->conn_lock); 3717 while (connp->conn_ref != 1) { 3718 cv_wait(&connp->conn_cv, &connp->conn_lock); 3719 } 3720 mutex_exit(&connp->conn_lock); 3721 } 3722 /* 3723 * ioctl cleanup. The mp is queued in the 3724 * ill_pending_mp or in the sq_pending_mp. 3725 */ 3726 if (conn_ioctl_cleanup_reqd) 3727 conn_ioctl_cleanup(connp); 3728 3729 tcp->tcp_cpid = -1; 3730 } 3731 3732 static int 3733 tcp_tpi_close(queue_t *q, int flags) 3734 { 3735 conn_t *connp; 3736 3737 ASSERT(WR(q)->q_next == NULL); 3738 3739 if (flags & SO_FALLBACK) { 3740 /* 3741 * stream is being closed while in fallback 3742 * simply free the resources that were allocated 3743 */ 3744 inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr)); 3745 qprocsoff(q); 3746 goto done; 3747 } 3748 3749 connp = Q_TO_CONN(q); 3750 /* 3751 * We are being closed as /dev/tcp or /dev/tcp6. 3752 */ 3753 tcp_close_common(connp, flags); 3754 3755 qprocsoff(q); 3756 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 3757 3758 /* 3759 * Drop IP's reference on the conn. This is the last reference 3760 * on the connp if the state was less than established. If the 3761 * connection has gone into timewait state, then we will have 3762 * one ref for the TCP and one more ref (total of two) for the 3763 * classifier connected hash list (a timewait connections stays 3764 * in connected hash till closed). 3765 * 3766 * We can't assert the references because there might be other 3767 * transient reference places because of some walkers or queued 3768 * packets in squeue for the timewait state. 3769 */ 3770 CONN_DEC_REF(connp); 3771 done: 3772 q->q_ptr = WR(q)->q_ptr = NULL; 3773 return (0); 3774 } 3775 3776 static int 3777 tcp_tpi_close_accept(queue_t *q) 3778 { 3779 vmem_t *minor_arena; 3780 dev_t conn_dev; 3781 3782 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3783 3784 /* 3785 * We had opened an acceptor STREAM for sockfs which is 3786 * now being closed due to some error. 3787 */ 3788 qprocsoff(q); 3789 3790 minor_arena = (vmem_t *)WR(q)->q_ptr; 3791 conn_dev = (dev_t)RD(q)->q_ptr; 3792 ASSERT(minor_arena != NULL); 3793 ASSERT(conn_dev != 0); 3794 inet_minor_free(minor_arena, conn_dev); 3795 q->q_ptr = WR(q)->q_ptr = NULL; 3796 return (0); 3797 } 3798 3799 /* 3800 * Called by tcp_close() routine via squeue when lingering is 3801 * interrupted by a signal. 3802 */ 3803 3804 /* ARGSUSED */ 3805 static void 3806 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 3807 { 3808 conn_t *connp = (conn_t *)arg; 3809 tcp_t *tcp = connp->conn_tcp; 3810 3811 freeb(mp); 3812 if (tcp->tcp_linger_tid != 0 && 3813 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3814 tcp_stop_lingering(tcp); 3815 tcp->tcp_client_errno = EINTR; 3816 } 3817 } 3818 3819 /* 3820 * Called by streams close routine via squeues when our client blows off her 3821 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3822 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3823 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3824 * acked. 3825 * 3826 * NOTE: tcp_close potentially returns error when lingering. 3827 * However, the stream head currently does not pass these errors 3828 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3829 * errors to the application (from tsleep()) and not errors 3830 * like ECONNRESET caused by receiving a reset packet. 3831 */ 3832 3833 /* ARGSUSED */ 3834 static void 3835 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 3836 { 3837 char *msg; 3838 conn_t *connp = (conn_t *)arg; 3839 tcp_t *tcp = connp->conn_tcp; 3840 clock_t delta = 0; 3841 tcp_stack_t *tcps = tcp->tcp_tcps; 3842 3843 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3844 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3845 3846 mutex_enter(&tcp->tcp_eager_lock); 3847 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3848 /* Cleanup for listener */ 3849 tcp_eager_cleanup(tcp, 0); 3850 tcp->tcp_wait_for_eagers = 1; 3851 } 3852 mutex_exit(&tcp->tcp_eager_lock); 3853 3854 connp->conn_mdt_ok = B_FALSE; 3855 tcp->tcp_mdt = B_FALSE; 3856 3857 connp->conn_lso_ok = B_FALSE; 3858 tcp->tcp_lso = B_FALSE; 3859 3860 msg = NULL; 3861 switch (tcp->tcp_state) { 3862 case TCPS_CLOSED: 3863 case TCPS_IDLE: 3864 case TCPS_BOUND: 3865 case TCPS_LISTEN: 3866 break; 3867 case TCPS_SYN_SENT: 3868 msg = "tcp_close, during connect"; 3869 break; 3870 case TCPS_SYN_RCVD: 3871 /* 3872 * Close during the connect 3-way handshake 3873 * but here there may or may not be pending data 3874 * already on queue. Process almost same as in 3875 * the ESTABLISHED state. 3876 */ 3877 /* FALLTHRU */ 3878 default: 3879 if (tcp->tcp_fused) 3880 tcp_unfuse(tcp); 3881 3882 /* 3883 * If SO_LINGER has set a zero linger time, abort the 3884 * connection with a reset. 3885 */ 3886 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 3887 msg = "tcp_close, zero lingertime"; 3888 break; 3889 } 3890 3891 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 3892 /* 3893 * Abort connection if there is unread data queued. 3894 */ 3895 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3896 msg = "tcp_close, unread data"; 3897 break; 3898 } 3899 /* 3900 * tcp_hard_bound is now cleared thus all packets go through 3901 * tcp_lookup. This fact is used by tcp_detach below. 3902 * 3903 * We have done a qwait() above which could have possibly 3904 * drained more messages in turn causing transition to a 3905 * different state. Check whether we have to do the rest 3906 * of the processing or not. 3907 */ 3908 if (tcp->tcp_state <= TCPS_LISTEN) 3909 break; 3910 3911 /* 3912 * Transmit the FIN before detaching the tcp_t. 3913 * After tcp_detach returns this queue/perimeter 3914 * no longer owns the tcp_t thus others can modify it. 3915 */ 3916 (void) tcp_xmit_end(tcp); 3917 3918 /* 3919 * If lingering on close then wait until the fin is acked, 3920 * the SO_LINGER time passes, or a reset is sent/received. 3921 */ 3922 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 3923 !(tcp->tcp_fin_acked) && 3924 tcp->tcp_state >= TCPS_ESTABLISHED) { 3925 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3926 tcp->tcp_client_errno = EWOULDBLOCK; 3927 } else if (tcp->tcp_client_errno == 0) { 3928 3929 ASSERT(tcp->tcp_linger_tid == 0); 3930 3931 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3932 tcp_close_linger_timeout, 3933 tcp->tcp_lingertime * hz); 3934 3935 /* tcp_close_linger_timeout will finish close */ 3936 if (tcp->tcp_linger_tid == 0) 3937 tcp->tcp_client_errno = ENOSR; 3938 else 3939 return; 3940 } 3941 3942 /* 3943 * Check if we need to detach or just close 3944 * the instance. 3945 */ 3946 if (tcp->tcp_state <= TCPS_LISTEN) 3947 break; 3948 } 3949 3950 /* 3951 * Make sure that no other thread will access the tcp_rq of 3952 * this instance (through lookups etc.) as tcp_rq will go 3953 * away shortly. 3954 */ 3955 tcp_acceptor_hash_remove(tcp); 3956 3957 mutex_enter(&tcp->tcp_non_sq_lock); 3958 if (tcp->tcp_flow_stopped) { 3959 tcp_clrqfull(tcp); 3960 } 3961 mutex_exit(&tcp->tcp_non_sq_lock); 3962 3963 if (tcp->tcp_timer_tid != 0) { 3964 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3965 tcp->tcp_timer_tid = 0; 3966 } 3967 /* 3968 * Need to cancel those timers which will not be used when 3969 * TCP is detached. This has to be done before the tcp_wq 3970 * is set to the global queue. 3971 */ 3972 tcp_timers_stop(tcp); 3973 3974 tcp->tcp_detached = B_TRUE; 3975 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3976 tcp_time_wait_append(tcp); 3977 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3978 ASSERT(connp->conn_ref >= 3); 3979 goto finish; 3980 } 3981 3982 /* 3983 * If delta is zero the timer event wasn't executed and was 3984 * successfully canceled. In this case we need to restart it 3985 * with the minimal delta possible. 3986 */ 3987 if (delta >= 0) 3988 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3989 delta ? delta : 1); 3990 3991 ASSERT(connp->conn_ref >= 3); 3992 goto finish; 3993 } 3994 3995 /* Detach did not complete. Still need to remove q from stream. */ 3996 if (msg) { 3997 if (tcp->tcp_state == TCPS_ESTABLISHED || 3998 tcp->tcp_state == TCPS_CLOSE_WAIT) 3999 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 4000 if (tcp->tcp_state == TCPS_SYN_SENT || 4001 tcp->tcp_state == TCPS_SYN_RCVD) 4002 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4003 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4004 } 4005 4006 tcp_closei_local(tcp); 4007 CONN_DEC_REF(connp); 4008 ASSERT(connp->conn_ref >= 2); 4009 4010 finish: 4011 /* 4012 * Although packets are always processed on the correct 4013 * tcp's perimeter and access is serialized via squeue's, 4014 * IP still needs a queue when sending packets in time_wait 4015 * state so use WR(tcps_g_q) till ip_output() can be 4016 * changed to deal with just connp. For read side, we 4017 * could have set tcp_rq to NULL but there are some cases 4018 * in tcp_rput_data() from early days of this code which 4019 * do a putnext without checking if tcp is closed. Those 4020 * need to be identified before both tcp_rq and tcp_wq 4021 * can be set to NULL and tcps_g_q can disappear forever. 4022 */ 4023 mutex_enter(&tcp->tcp_closelock); 4024 /* 4025 * Don't change the queues in the case of a listener that has 4026 * eagers in its q or q0. It could surprise the eagers. 4027 * Instead wait for the eagers outside the squeue. 4028 */ 4029 if (!tcp->tcp_wait_for_eagers) { 4030 tcp->tcp_detached = B_TRUE; 4031 /* 4032 * When default queue is closing we set tcps_g_q to NULL 4033 * after the close is done. 4034 */ 4035 ASSERT(tcps->tcps_g_q != NULL); 4036 tcp->tcp_rq = tcps->tcps_g_q; 4037 tcp->tcp_wq = WR(tcps->tcps_g_q); 4038 } 4039 4040 /* Signal tcp_close() to finish closing. */ 4041 tcp->tcp_closed = 1; 4042 cv_signal(&tcp->tcp_closecv); 4043 mutex_exit(&tcp->tcp_closelock); 4044 } 4045 4046 /* 4047 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4048 * Some stream heads get upset if they see these later on as anything but NULL. 4049 */ 4050 static void 4051 tcp_close_mpp(mblk_t **mpp) 4052 { 4053 mblk_t *mp; 4054 4055 if ((mp = *mpp) != NULL) { 4056 do { 4057 mp->b_next = NULL; 4058 mp->b_prev = NULL; 4059 } while ((mp = mp->b_cont) != NULL); 4060 4061 mp = *mpp; 4062 *mpp = NULL; 4063 freemsg(mp); 4064 } 4065 } 4066 4067 /* Do detached close. */ 4068 static void 4069 tcp_close_detached(tcp_t *tcp) 4070 { 4071 if (tcp->tcp_fused) 4072 tcp_unfuse(tcp); 4073 4074 /* 4075 * Clustering code serializes TCP disconnect callbacks and 4076 * cluster tcp list walks by blocking a TCP disconnect callback 4077 * if a cluster tcp list walk is in progress. This ensures 4078 * accurate accounting of TCPs in the cluster code even though 4079 * the TCP list walk itself is not atomic. 4080 */ 4081 tcp_closei_local(tcp); 4082 CONN_DEC_REF(tcp->tcp_connp); 4083 } 4084 4085 /* 4086 * Stop all TCP timers, and free the timer mblks if requested. 4087 */ 4088 void 4089 tcp_timers_stop(tcp_t *tcp) 4090 { 4091 if (tcp->tcp_timer_tid != 0) { 4092 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4093 tcp->tcp_timer_tid = 0; 4094 } 4095 if (tcp->tcp_ka_tid != 0) { 4096 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4097 tcp->tcp_ka_tid = 0; 4098 } 4099 if (tcp->tcp_ack_tid != 0) { 4100 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4101 tcp->tcp_ack_tid = 0; 4102 } 4103 if (tcp->tcp_push_tid != 0) { 4104 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4105 tcp->tcp_push_tid = 0; 4106 } 4107 } 4108 4109 /* 4110 * The tcp_t is going away. Remove it from all lists and set it 4111 * to TCPS_CLOSED. The freeing up of memory is deferred until 4112 * tcp_inactive. This is needed since a thread in tcp_rput might have 4113 * done a CONN_INC_REF on this structure before it was removed from the 4114 * hashes. 4115 */ 4116 static void 4117 tcp_closei_local(tcp_t *tcp) 4118 { 4119 ire_t *ire; 4120 conn_t *connp = tcp->tcp_connp; 4121 tcp_stack_t *tcps = tcp->tcp_tcps; 4122 4123 if (!TCP_IS_SOCKET(tcp)) 4124 tcp_acceptor_hash_remove(tcp); 4125 4126 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 4127 tcp->tcp_ibsegs = 0; 4128 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 4129 tcp->tcp_obsegs = 0; 4130 4131 /* 4132 * If we are an eager connection hanging off a listener that 4133 * hasn't formally accepted the connection yet, get off his 4134 * list and blow off any data that we have accumulated. 4135 */ 4136 if (tcp->tcp_listener != NULL) { 4137 tcp_t *listener = tcp->tcp_listener; 4138 mutex_enter(&listener->tcp_eager_lock); 4139 /* 4140 * tcp_tconnind_started == B_TRUE means that the 4141 * conn_ind has already gone to listener. At 4142 * this point, eager will be closed but we 4143 * leave it in listeners eager list so that 4144 * if listener decides to close without doing 4145 * accept, we can clean this up. In tcp_wput_accept 4146 * we take care of the case of accept on closed 4147 * eager. 4148 */ 4149 if (!tcp->tcp_tconnind_started) { 4150 tcp_eager_unlink(tcp); 4151 mutex_exit(&listener->tcp_eager_lock); 4152 /* 4153 * We don't want to have any pointers to the 4154 * listener queue, after we have released our 4155 * reference on the listener 4156 */ 4157 ASSERT(tcps->tcps_g_q != NULL); 4158 tcp->tcp_rq = tcps->tcps_g_q; 4159 tcp->tcp_wq = WR(tcps->tcps_g_q); 4160 CONN_DEC_REF(listener->tcp_connp); 4161 } else { 4162 mutex_exit(&listener->tcp_eager_lock); 4163 } 4164 } 4165 4166 /* Stop all the timers */ 4167 tcp_timers_stop(tcp); 4168 4169 if (tcp->tcp_state == TCPS_LISTEN) { 4170 if (tcp->tcp_ip_addr_cache) { 4171 kmem_free((void *)tcp->tcp_ip_addr_cache, 4172 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4173 tcp->tcp_ip_addr_cache = NULL; 4174 } 4175 } 4176 mutex_enter(&tcp->tcp_non_sq_lock); 4177 if (tcp->tcp_flow_stopped) 4178 tcp_clrqfull(tcp); 4179 mutex_exit(&tcp->tcp_non_sq_lock); 4180 4181 tcp_bind_hash_remove(tcp); 4182 /* 4183 * If the tcp_time_wait_collector (which runs outside the squeue) 4184 * is trying to remove this tcp from the time wait list, we will 4185 * block in tcp_time_wait_remove while trying to acquire the 4186 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4187 * requires the ipcl_hash_remove to be ordered after the 4188 * tcp_time_wait_remove for the refcnt checks to work correctly. 4189 */ 4190 if (tcp->tcp_state == TCPS_TIME_WAIT) 4191 (void) tcp_time_wait_remove(tcp, NULL); 4192 CL_INET_DISCONNECT(connp, tcp); 4193 ipcl_hash_remove(connp); 4194 4195 /* 4196 * Delete the cached ire in conn_ire_cache and also mark 4197 * the conn as CONDEMNED 4198 */ 4199 mutex_enter(&connp->conn_lock); 4200 connp->conn_state_flags |= CONN_CONDEMNED; 4201 ire = connp->conn_ire_cache; 4202 connp->conn_ire_cache = NULL; 4203 mutex_exit(&connp->conn_lock); 4204 if (ire != NULL) 4205 IRE_REFRELE_NOTR(ire); 4206 4207 /* Need to cleanup any pending ioctls */ 4208 ASSERT(tcp->tcp_time_wait_next == NULL); 4209 ASSERT(tcp->tcp_time_wait_prev == NULL); 4210 ASSERT(tcp->tcp_time_wait_expire == 0); 4211 tcp->tcp_state = TCPS_CLOSED; 4212 4213 /* Release any SSL context */ 4214 if (tcp->tcp_kssl_ent != NULL) { 4215 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4216 tcp->tcp_kssl_ent = NULL; 4217 } 4218 if (tcp->tcp_kssl_ctx != NULL) { 4219 kssl_release_ctx(tcp->tcp_kssl_ctx); 4220 tcp->tcp_kssl_ctx = NULL; 4221 } 4222 tcp->tcp_kssl_pending = B_FALSE; 4223 4224 tcp_ipsec_cleanup(tcp); 4225 } 4226 4227 /* 4228 * tcp is dying (called from ipcl_conn_destroy and error cases). 4229 * Free the tcp_t in either case. 4230 */ 4231 void 4232 tcp_free(tcp_t *tcp) 4233 { 4234 mblk_t *mp; 4235 ip6_pkt_t *ipp; 4236 4237 ASSERT(tcp != NULL); 4238 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4239 4240 tcp->tcp_rq = NULL; 4241 tcp->tcp_wq = NULL; 4242 4243 tcp_close_mpp(&tcp->tcp_xmit_head); 4244 tcp_close_mpp(&tcp->tcp_reass_head); 4245 if (tcp->tcp_rcv_list != NULL) { 4246 /* Free b_next chain */ 4247 tcp_close_mpp(&tcp->tcp_rcv_list); 4248 } 4249 if ((mp = tcp->tcp_urp_mp) != NULL) { 4250 freemsg(mp); 4251 } 4252 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4253 freemsg(mp); 4254 } 4255 4256 if (tcp->tcp_fused_sigurg_mp != NULL) { 4257 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4258 freeb(tcp->tcp_fused_sigurg_mp); 4259 tcp->tcp_fused_sigurg_mp = NULL; 4260 } 4261 4262 if (tcp->tcp_ordrel_mp != NULL) { 4263 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4264 freeb(tcp->tcp_ordrel_mp); 4265 tcp->tcp_ordrel_mp = NULL; 4266 } 4267 4268 if (tcp->tcp_sack_info != NULL) { 4269 if (tcp->tcp_notsack_list != NULL) { 4270 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 4271 tcp); 4272 } 4273 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4274 } 4275 4276 if (tcp->tcp_hopopts != NULL) { 4277 mi_free(tcp->tcp_hopopts); 4278 tcp->tcp_hopopts = NULL; 4279 tcp->tcp_hopoptslen = 0; 4280 } 4281 ASSERT(tcp->tcp_hopoptslen == 0); 4282 if (tcp->tcp_dstopts != NULL) { 4283 mi_free(tcp->tcp_dstopts); 4284 tcp->tcp_dstopts = NULL; 4285 tcp->tcp_dstoptslen = 0; 4286 } 4287 ASSERT(tcp->tcp_dstoptslen == 0); 4288 if (tcp->tcp_rtdstopts != NULL) { 4289 mi_free(tcp->tcp_rtdstopts); 4290 tcp->tcp_rtdstopts = NULL; 4291 tcp->tcp_rtdstoptslen = 0; 4292 } 4293 ASSERT(tcp->tcp_rtdstoptslen == 0); 4294 if (tcp->tcp_rthdr != NULL) { 4295 mi_free(tcp->tcp_rthdr); 4296 tcp->tcp_rthdr = NULL; 4297 tcp->tcp_rthdrlen = 0; 4298 } 4299 ASSERT(tcp->tcp_rthdrlen == 0); 4300 4301 ipp = &tcp->tcp_sticky_ipp; 4302 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4303 IPPF_RTHDR)) 4304 ip6_pkt_free(ipp); 4305 4306 /* 4307 * Free memory associated with the tcp/ip header template. 4308 */ 4309 4310 if (tcp->tcp_iphc != NULL) 4311 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4312 4313 /* 4314 * Following is really a blowing away a union. 4315 * It happens to have exactly two members of identical size 4316 * the following code is enough. 4317 */ 4318 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4319 } 4320 4321 4322 /* 4323 * Put a connection confirmation message upstream built from the 4324 * address information within 'iph' and 'tcph'. Report our success or failure. 4325 */ 4326 static boolean_t 4327 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4328 mblk_t **defermp) 4329 { 4330 sin_t sin; 4331 sin6_t sin6; 4332 mblk_t *mp; 4333 char *optp = NULL; 4334 int optlen = 0; 4335 4336 if (defermp != NULL) 4337 *defermp = NULL; 4338 4339 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4340 /* 4341 * Return in T_CONN_CON results of option negotiation through 4342 * the T_CONN_REQ. Note: If there is an real end-to-end option 4343 * negotiation, then what is received from remote end needs 4344 * to be taken into account but there is no such thing (yet?) 4345 * in our TCP/IP. 4346 * Note: We do not use mi_offset_param() here as 4347 * tcp_opts_conn_req contents do not directly come from 4348 * an application and are either generated in kernel or 4349 * from user input that was already verified. 4350 */ 4351 mp = tcp->tcp_conn.tcp_opts_conn_req; 4352 optp = (char *)(mp->b_rptr + 4353 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4354 optlen = (int) 4355 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4356 } 4357 4358 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4359 ipha_t *ipha = (ipha_t *)iphdr; 4360 4361 /* packet is IPv4 */ 4362 if (tcp->tcp_family == AF_INET) { 4363 sin = sin_null; 4364 sin.sin_addr.s_addr = ipha->ipha_src; 4365 sin.sin_port = *(uint16_t *)tcph->th_lport; 4366 sin.sin_family = AF_INET; 4367 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4368 (int)sizeof (sin_t), optp, optlen); 4369 } else { 4370 sin6 = sin6_null; 4371 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4372 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4373 sin6.sin6_family = AF_INET6; 4374 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4375 (int)sizeof (sin6_t), optp, optlen); 4376 4377 } 4378 } else { 4379 ip6_t *ip6h = (ip6_t *)iphdr; 4380 4381 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4382 ASSERT(tcp->tcp_family == AF_INET6); 4383 sin6 = sin6_null; 4384 sin6.sin6_addr = ip6h->ip6_src; 4385 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4386 sin6.sin6_family = AF_INET6; 4387 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4388 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4389 (int)sizeof (sin6_t), optp, optlen); 4390 } 4391 4392 if (!mp) 4393 return (B_FALSE); 4394 4395 mblk_copycred(mp, idmp); 4396 4397 if (defermp == NULL) { 4398 conn_t *connp = tcp->tcp_connp; 4399 if (IPCL_IS_NONSTR(connp)) { 4400 cred_t *cr; 4401 pid_t cpid; 4402 4403 cr = msg_getcred(mp, &cpid); 4404 (*connp->conn_upcalls->su_connected) 4405 (connp->conn_upper_handle, tcp->tcp_connid, cr, 4406 cpid); 4407 freemsg(mp); 4408 } else { 4409 putnext(tcp->tcp_rq, mp); 4410 } 4411 } else { 4412 *defermp = mp; 4413 } 4414 4415 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4416 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4417 return (B_TRUE); 4418 } 4419 4420 /* 4421 * Defense for the SYN attack - 4422 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4423 * one from the list of droppable eagers. This list is a subset of q0. 4424 * see comments before the definition of MAKE_DROPPABLE(). 4425 * 2. Don't drop a SYN request before its first timeout. This gives every 4426 * request at least til the first timeout to complete its 3-way handshake. 4427 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4428 * requests currently on the queue that has timed out. This will be used 4429 * as an indicator of whether an attack is under way, so that appropriate 4430 * actions can be taken. (It's incremented in tcp_timer() and decremented 4431 * either when eager goes into ESTABLISHED, or gets freed up.) 4432 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4433 * # of timeout drops back to <= q0len/32 => SYN alert off 4434 */ 4435 static boolean_t 4436 tcp_drop_q0(tcp_t *tcp) 4437 { 4438 tcp_t *eager; 4439 mblk_t *mp; 4440 tcp_stack_t *tcps = tcp->tcp_tcps; 4441 4442 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4443 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4444 4445 /* Pick oldest eager from the list of droppable eagers */ 4446 eager = tcp->tcp_eager_prev_drop_q0; 4447 4448 /* If list is empty. return B_FALSE */ 4449 if (eager == tcp) { 4450 return (B_FALSE); 4451 } 4452 4453 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4454 if ((mp = allocb(0, BPRI_HI)) == NULL) 4455 return (B_FALSE); 4456 4457 /* 4458 * Take this eager out from the list of droppable eagers since we are 4459 * going to drop it. 4460 */ 4461 MAKE_UNDROPPABLE(eager); 4462 4463 if (tcp->tcp_debug) { 4464 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4465 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4466 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4467 tcp->tcp_conn_req_cnt_q0, 4468 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4469 } 4470 4471 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4472 4473 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4474 CONN_INC_REF(eager->tcp_connp); 4475 4476 /* Mark the IRE created for this SYN request temporary */ 4477 tcp_ip_ire_mark_advice(eager); 4478 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 4479 tcp_clean_death_wrapper, eager->tcp_connp, 4480 SQ_FILL, SQTAG_TCP_DROP_Q0); 4481 4482 return (B_TRUE); 4483 } 4484 4485 int 4486 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4487 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4488 { 4489 tcp_t *ltcp = lconnp->conn_tcp; 4490 tcp_t *tcp = connp->conn_tcp; 4491 mblk_t *tpi_mp; 4492 ipha_t *ipha; 4493 ip6_t *ip6h; 4494 sin6_t sin6; 4495 in6_addr_t v6dst; 4496 int err; 4497 int ifindex = 0; 4498 tcp_stack_t *tcps = tcp->tcp_tcps; 4499 4500 if (ipvers == IPV4_VERSION) { 4501 ipha = (ipha_t *)mp->b_rptr; 4502 4503 connp->conn_send = ip_output; 4504 connp->conn_recv = tcp_input; 4505 4506 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4507 &connp->conn_bound_source_v6); 4508 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4509 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4510 4511 sin6 = sin6_null; 4512 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4513 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4514 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4515 sin6.sin6_family = AF_INET6; 4516 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4517 lconnp->conn_zoneid, tcps->tcps_netstack); 4518 if (tcp->tcp_recvdstaddr) { 4519 sin6_t sin6d; 4520 4521 sin6d = sin6_null; 4522 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4523 &sin6d.sin6_addr); 4524 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4525 sin6d.sin6_family = AF_INET; 4526 tpi_mp = mi_tpi_extconn_ind(NULL, 4527 (char *)&sin6d, sizeof (sin6_t), 4528 (char *)&tcp, 4529 (t_scalar_t)sizeof (intptr_t), 4530 (char *)&sin6d, sizeof (sin6_t), 4531 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4532 } else { 4533 tpi_mp = mi_tpi_conn_ind(NULL, 4534 (char *)&sin6, sizeof (sin6_t), 4535 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4536 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4537 } 4538 } else { 4539 ip6h = (ip6_t *)mp->b_rptr; 4540 4541 connp->conn_send = ip_output_v6; 4542 connp->conn_recv = tcp_input; 4543 4544 connp->conn_bound_source_v6 = ip6h->ip6_dst; 4545 connp->conn_srcv6 = ip6h->ip6_dst; 4546 connp->conn_remv6 = ip6h->ip6_src; 4547 4548 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4549 ifindex = (int)DB_CKSUMSTUFF(mp); 4550 DB_CKSUMSTUFF(mp) = 0; 4551 4552 sin6 = sin6_null; 4553 sin6.sin6_addr = ip6h->ip6_src; 4554 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4555 sin6.sin6_family = AF_INET6; 4556 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4557 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4558 lconnp->conn_zoneid, tcps->tcps_netstack); 4559 4560 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4561 /* Pass up the scope_id of remote addr */ 4562 sin6.sin6_scope_id = ifindex; 4563 } else { 4564 sin6.sin6_scope_id = 0; 4565 } 4566 if (tcp->tcp_recvdstaddr) { 4567 sin6_t sin6d; 4568 4569 sin6d = sin6_null; 4570 sin6.sin6_addr = ip6h->ip6_dst; 4571 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4572 sin6d.sin6_family = AF_INET; 4573 tpi_mp = mi_tpi_extconn_ind(NULL, 4574 (char *)&sin6d, sizeof (sin6_t), 4575 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4576 (char *)&sin6d, sizeof (sin6_t), 4577 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4578 } else { 4579 tpi_mp = mi_tpi_conn_ind(NULL, 4580 (char *)&sin6, sizeof (sin6_t), 4581 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4582 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4583 } 4584 } 4585 4586 if (tpi_mp == NULL) 4587 return (ENOMEM); 4588 4589 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4590 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4591 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4592 connp->conn_fully_bound = B_FALSE; 4593 4594 /* Inherit information from the "parent" */ 4595 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4596 tcp->tcp_family = ltcp->tcp_family; 4597 4598 tcp->tcp_wq = ltcp->tcp_wq; 4599 tcp->tcp_rq = ltcp->tcp_rq; 4600 4601 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4602 tcp->tcp_detached = B_TRUE; 4603 SOCK_CONNID_INIT(tcp->tcp_connid); 4604 if ((err = tcp_init_values(tcp)) != 0) { 4605 freemsg(tpi_mp); 4606 return (err); 4607 } 4608 4609 if (ipvers == IPV4_VERSION) { 4610 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4611 freemsg(tpi_mp); 4612 return (err); 4613 } 4614 ASSERT(tcp->tcp_ipha != NULL); 4615 } else { 4616 /* ifindex must be already set */ 4617 ASSERT(ifindex != 0); 4618 4619 if (ltcp->tcp_bound_if != 0) 4620 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4621 else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) 4622 tcp->tcp_bound_if = ifindex; 4623 4624 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4625 tcp->tcp_recvifindex = 0; 4626 tcp->tcp_recvhops = 0xffffffffU; 4627 ASSERT(tcp->tcp_ip6h != NULL); 4628 } 4629 4630 tcp->tcp_lport = ltcp->tcp_lport; 4631 4632 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4633 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4634 /* 4635 * Listener had options of some sort; eager inherits. 4636 * Free up the eager template and allocate one 4637 * of the right size. 4638 */ 4639 if (tcp->tcp_hdr_grown) { 4640 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4641 } else { 4642 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4643 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4644 } 4645 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4646 KM_NOSLEEP); 4647 if (tcp->tcp_iphc == NULL) { 4648 tcp->tcp_iphc_len = 0; 4649 freemsg(tpi_mp); 4650 return (ENOMEM); 4651 } 4652 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 4653 tcp->tcp_hdr_grown = B_TRUE; 4654 } 4655 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4656 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4657 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4658 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 4659 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 4660 4661 /* 4662 * Copy the IP+TCP header template from listener to eager 4663 */ 4664 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4665 if (tcp->tcp_ipversion == IPV6_VERSION) { 4666 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 4667 IPPROTO_RAW) { 4668 tcp->tcp_ip6h = 4669 (ip6_t *)(tcp->tcp_iphc + 4670 sizeof (ip6i_t)); 4671 } else { 4672 tcp->tcp_ip6h = 4673 (ip6_t *)(tcp->tcp_iphc); 4674 } 4675 tcp->tcp_ipha = NULL; 4676 } else { 4677 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4678 tcp->tcp_ip6h = NULL; 4679 } 4680 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4681 tcp->tcp_ip_hdr_len); 4682 } else { 4683 /* 4684 * only valid case when ipversion of listener and 4685 * eager differ is when listener is IPv6 and 4686 * eager is IPv4. 4687 * Eager header template has been initialized to the 4688 * maximum v4 header sizes, which includes space for 4689 * TCP and IP options. 4690 */ 4691 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 4692 (tcp->tcp_ipversion == IPV4_VERSION)); 4693 ASSERT(tcp->tcp_iphc_len >= 4694 TCP_MAX_COMBINED_HEADER_LENGTH); 4695 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4696 /* copy IP header fields individually */ 4697 tcp->tcp_ipha->ipha_ttl = 4698 ltcp->tcp_ip6h->ip6_hops; 4699 bcopy(ltcp->tcp_tcph->th_lport, 4700 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 4701 } 4702 4703 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4704 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 4705 sizeof (in_port_t)); 4706 4707 if (ltcp->tcp_lport == 0) { 4708 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 4709 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 4710 sizeof (in_port_t)); 4711 } 4712 4713 if (tcp->tcp_ipversion == IPV4_VERSION) { 4714 ASSERT(ipha != NULL); 4715 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4716 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4717 4718 /* Source routing option copyover (reverse it) */ 4719 if (tcps->tcps_rev_src_routes) 4720 tcp_opt_reverse(tcp, ipha); 4721 } else { 4722 ASSERT(ip6h != NULL); 4723 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 4724 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 4725 } 4726 4727 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4728 ASSERT(!tcp->tcp_tconnind_started); 4729 /* 4730 * If the SYN contains a credential, it's a loopback packet; attach 4731 * the credential to the TPI message. 4732 */ 4733 mblk_copycred(tpi_mp, idmp); 4734 4735 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4736 4737 /* Inherit the listener's SSL protection state */ 4738 4739 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4740 kssl_hold_ent(tcp->tcp_kssl_ent); 4741 tcp->tcp_kssl_pending = B_TRUE; 4742 } 4743 4744 /* Inherit the listener's non-STREAMS flag */ 4745 if (IPCL_IS_NONSTR(lconnp)) { 4746 connp->conn_flags |= IPCL_NONSTR; 4747 } 4748 4749 return (0); 4750 } 4751 4752 4753 int 4754 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 4755 tcph_t *tcph, mblk_t *idmp) 4756 { 4757 tcp_t *ltcp = lconnp->conn_tcp; 4758 tcp_t *tcp = connp->conn_tcp; 4759 sin_t sin; 4760 mblk_t *tpi_mp = NULL; 4761 int err; 4762 tcp_stack_t *tcps = tcp->tcp_tcps; 4763 4764 sin = sin_null; 4765 sin.sin_addr.s_addr = ipha->ipha_src; 4766 sin.sin_port = *(uint16_t *)tcph->th_lport; 4767 sin.sin_family = AF_INET; 4768 if (ltcp->tcp_recvdstaddr) { 4769 sin_t sind; 4770 4771 sind = sin_null; 4772 sind.sin_addr.s_addr = ipha->ipha_dst; 4773 sind.sin_port = *(uint16_t *)tcph->th_fport; 4774 sind.sin_family = AF_INET; 4775 tpi_mp = mi_tpi_extconn_ind(NULL, 4776 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4777 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4778 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4779 } else { 4780 tpi_mp = mi_tpi_conn_ind(NULL, 4781 (char *)&sin, sizeof (sin_t), 4782 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4783 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4784 } 4785 4786 if (tpi_mp == NULL) { 4787 return (ENOMEM); 4788 } 4789 4790 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 4791 connp->conn_send = ip_output; 4792 connp->conn_recv = tcp_input; 4793 connp->conn_fully_bound = B_FALSE; 4794 4795 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_bound_source_v6); 4796 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4797 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4798 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4799 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4800 4801 /* Inherit information from the "parent" */ 4802 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4803 tcp->tcp_family = ltcp->tcp_family; 4804 tcp->tcp_wq = ltcp->tcp_wq; 4805 tcp->tcp_rq = ltcp->tcp_rq; 4806 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 4807 tcp->tcp_detached = B_TRUE; 4808 SOCK_CONNID_INIT(tcp->tcp_connid); 4809 if ((err = tcp_init_values(tcp)) != 0) { 4810 freemsg(tpi_mp); 4811 return (err); 4812 } 4813 4814 /* 4815 * Let's make sure that eager tcp template has enough space to 4816 * copy IPv4 listener's tcp template. Since the conn_t structure is 4817 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 4818 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 4819 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 4820 * extension headers or with ip6i_t struct). Note that bcopy() below 4821 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 4822 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 4823 */ 4824 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 4825 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 4826 4827 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4828 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4829 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4830 tcp->tcp_ttl = ltcp->tcp_ttl; 4831 tcp->tcp_tos = ltcp->tcp_tos; 4832 4833 /* Copy the IP+TCP header template from listener to eager */ 4834 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4835 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4836 tcp->tcp_ip6h = NULL; 4837 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4838 tcp->tcp_ip_hdr_len); 4839 4840 /* Initialize the IP addresses and Ports */ 4841 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4842 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4843 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4844 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 4845 4846 /* Source routing option copyover (reverse it) */ 4847 if (tcps->tcps_rev_src_routes) 4848 tcp_opt_reverse(tcp, ipha); 4849 4850 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4851 ASSERT(!tcp->tcp_tconnind_started); 4852 4853 /* 4854 * If the SYN contains a credential, it's a loopback packet; attach 4855 * the credential to the TPI message. 4856 */ 4857 mblk_copycred(tpi_mp, idmp); 4858 4859 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4860 4861 /* Inherit the listener's SSL protection state */ 4862 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4863 kssl_hold_ent(tcp->tcp_kssl_ent); 4864 tcp->tcp_kssl_pending = B_TRUE; 4865 } 4866 4867 /* Inherit the listener's non-STREAMS flag */ 4868 if (IPCL_IS_NONSTR(lconnp)) { 4869 connp->conn_flags |= IPCL_NONSTR; 4870 } 4871 4872 return (0); 4873 } 4874 4875 /* 4876 * sets up conn for ipsec. 4877 * if the first mblk is M_CTL it is consumed and mpp is updated. 4878 * in case of error mpp is freed. 4879 */ 4880 conn_t * 4881 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 4882 { 4883 conn_t *connp = tcp->tcp_connp; 4884 conn_t *econnp; 4885 squeue_t *new_sqp; 4886 mblk_t *first_mp = *mpp; 4887 mblk_t *mp = *mpp; 4888 boolean_t mctl_present = B_FALSE; 4889 uint_t ipvers; 4890 4891 econnp = tcp_get_conn(sqp, tcp->tcp_tcps); 4892 if (econnp == NULL) { 4893 freemsg(first_mp); 4894 return (NULL); 4895 } 4896 if (DB_TYPE(mp) == M_CTL) { 4897 if (mp->b_cont == NULL || 4898 mp->b_cont->b_datap->db_type != M_DATA) { 4899 freemsg(first_mp); 4900 return (NULL); 4901 } 4902 mp = mp->b_cont; 4903 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 4904 freemsg(first_mp); 4905 return (NULL); 4906 } 4907 4908 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 4909 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4910 mctl_present = B_TRUE; 4911 } else { 4912 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 4913 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4914 } 4915 4916 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 4917 DB_CKSUMSTART(mp) = 0; 4918 4919 ASSERT(OK_32PTR(mp->b_rptr)); 4920 ipvers = IPH_HDR_VERSION(mp->b_rptr); 4921 if (ipvers == IPV4_VERSION) { 4922 uint16_t *up; 4923 uint32_t ports; 4924 ipha_t *ipha; 4925 4926 ipha = (ipha_t *)mp->b_rptr; 4927 up = (uint16_t *)((uchar_t *)ipha + 4928 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 4929 ports = *(uint32_t *)up; 4930 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 4931 ipha->ipha_dst, ipha->ipha_src, ports); 4932 } else { 4933 uint16_t *up; 4934 uint32_t ports; 4935 uint16_t ip_hdr_len; 4936 uint8_t *nexthdrp; 4937 ip6_t *ip6h; 4938 tcph_t *tcph; 4939 4940 ip6h = (ip6_t *)mp->b_rptr; 4941 if (ip6h->ip6_nxt == IPPROTO_TCP) { 4942 ip_hdr_len = IPV6_HDR_LEN; 4943 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 4944 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 4945 CONN_DEC_REF(econnp); 4946 freemsg(first_mp); 4947 return (NULL); 4948 } 4949 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 4950 up = (uint16_t *)tcph->th_lport; 4951 ports = *(uint32_t *)up; 4952 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 4953 ip6h->ip6_dst, ip6h->ip6_src, ports); 4954 } 4955 4956 /* 4957 * The caller already ensured that there is a sqp present. 4958 */ 4959 econnp->conn_sqp = new_sqp; 4960 econnp->conn_initial_sqp = new_sqp; 4961 4962 if (connp->conn_policy != NULL) { 4963 ipsec_in_t *ii; 4964 ii = (ipsec_in_t *)(first_mp->b_rptr); 4965 ASSERT(ii->ipsec_in_policy == NULL); 4966 IPPH_REFHOLD(connp->conn_policy); 4967 ii->ipsec_in_policy = connp->conn_policy; 4968 4969 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 4970 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 4971 CONN_DEC_REF(econnp); 4972 freemsg(first_mp); 4973 return (NULL); 4974 } 4975 } 4976 4977 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 4978 CONN_DEC_REF(econnp); 4979 freemsg(first_mp); 4980 return (NULL); 4981 } 4982 4983 /* 4984 * If we know we have some policy, pass the "IPSEC" 4985 * options size TCP uses this adjust the MSS. 4986 */ 4987 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 4988 if (mctl_present) { 4989 freeb(first_mp); 4990 *mpp = mp; 4991 } 4992 4993 return (econnp); 4994 } 4995 4996 /* 4997 * tcp_get_conn/tcp_free_conn 4998 * 4999 * tcp_get_conn is used to get a clean tcp connection structure. 5000 * It tries to reuse the connections put on the freelist by the 5001 * time_wait_collector failing which it goes to kmem_cache. This 5002 * way has two benefits compared to just allocating from and 5003 * freeing to kmem_cache. 5004 * 1) The time_wait_collector can free (which includes the cleanup) 5005 * outside the squeue. So when the interrupt comes, we have a clean 5006 * connection sitting in the freelist. Obviously, this buys us 5007 * performance. 5008 * 5009 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5010 * has multiple disadvantages - tying up the squeue during alloc, and the 5011 * fact that IPSec policy initialization has to happen here which 5012 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5013 * But allocating the conn/tcp in IP land is also not the best since 5014 * we can't check the 'q' and 'q0' which are protected by squeue and 5015 * blindly allocate memory which might have to be freed here if we are 5016 * not allowed to accept the connection. By using the freelist and 5017 * putting the conn/tcp back in freelist, we don't pay a penalty for 5018 * allocating memory without checking 'q/q0' and freeing it if we can't 5019 * accept the connection. 5020 * 5021 * Care should be taken to put the conn back in the same squeue's freelist 5022 * from which it was allocated. Best results are obtained if conn is 5023 * allocated from listener's squeue and freed to the same. Time wait 5024 * collector will free up the freelist is the connection ends up sitting 5025 * there for too long. 5026 */ 5027 void * 5028 tcp_get_conn(void *arg, tcp_stack_t *tcps) 5029 { 5030 tcp_t *tcp = NULL; 5031 conn_t *connp = NULL; 5032 squeue_t *sqp = (squeue_t *)arg; 5033 tcp_squeue_priv_t *tcp_time_wait; 5034 netstack_t *ns; 5035 mblk_t *tcp_rsrv_mp = NULL; 5036 5037 tcp_time_wait = 5038 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5039 5040 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5041 tcp = tcp_time_wait->tcp_free_list; 5042 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5043 if (tcp != NULL) { 5044 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5045 tcp_time_wait->tcp_free_list_cnt--; 5046 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5047 tcp->tcp_time_wait_next = NULL; 5048 connp = tcp->tcp_connp; 5049 connp->conn_flags |= IPCL_REUSED; 5050 5051 ASSERT(tcp->tcp_tcps == NULL); 5052 ASSERT(connp->conn_netstack == NULL); 5053 ASSERT(tcp->tcp_rsrv_mp != NULL); 5054 ns = tcps->tcps_netstack; 5055 netstack_hold(ns); 5056 connp->conn_netstack = ns; 5057 tcp->tcp_tcps = tcps; 5058 TCPS_REFHOLD(tcps); 5059 ipcl_globalhash_insert(connp); 5060 return ((void *)connp); 5061 } 5062 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5063 /* 5064 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 5065 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 5066 */ 5067 tcp_rsrv_mp = allocb(0, BPRI_HI); 5068 if (tcp_rsrv_mp == NULL) 5069 return (NULL); 5070 5071 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 5072 tcps->tcps_netstack)) == NULL) { 5073 freeb(tcp_rsrv_mp); 5074 return (NULL); 5075 } 5076 5077 tcp = connp->conn_tcp; 5078 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 5079 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 5080 5081 tcp->tcp_tcps = tcps; 5082 TCPS_REFHOLD(tcps); 5083 5084 return ((void *)connp); 5085 } 5086 5087 /* 5088 * Update the cached label for the given tcp_t. This should be called once per 5089 * connection, and before any packets are sent or tcp_process_options is 5090 * invoked. Returns B_FALSE if the correct label could not be constructed. 5091 */ 5092 static boolean_t 5093 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5094 { 5095 conn_t *connp = tcp->tcp_connp; 5096 5097 if (tcp->tcp_ipversion == IPV4_VERSION) { 5098 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5099 int added; 5100 5101 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5102 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5103 return (B_FALSE); 5104 5105 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5106 if (added == -1) 5107 return (B_FALSE); 5108 tcp->tcp_hdr_len += added; 5109 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5110 tcp->tcp_ip_hdr_len += added; 5111 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5112 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5113 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5114 tcp->tcp_hdr_len); 5115 if (added == -1) 5116 return (B_FALSE); 5117 tcp->tcp_hdr_len += added; 5118 tcp->tcp_tcph = (tcph_t *) 5119 ((uchar_t *)tcp->tcp_tcph + added); 5120 tcp->tcp_ip_hdr_len += added; 5121 } 5122 } else { 5123 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5124 5125 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5126 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5127 return (B_FALSE); 5128 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5129 &tcp->tcp_label_len, optbuf) != 0) 5130 return (B_FALSE); 5131 if (tcp_build_hdrs(tcp) != 0) 5132 return (B_FALSE); 5133 } 5134 5135 connp->conn_ulp_labeled = 1; 5136 5137 return (B_TRUE); 5138 } 5139 5140 /* BEGIN CSTYLED */ 5141 /* 5142 * 5143 * The sockfs ACCEPT path: 5144 * ======================= 5145 * 5146 * The eager is now established in its own perimeter as soon as SYN is 5147 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5148 * completes the accept processing on the acceptor STREAM. The sending 5149 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5150 * listener but a TLI/XTI listener completes the accept processing 5151 * on the listener perimeter. 5152 * 5153 * Common control flow for 3 way handshake: 5154 * ---------------------------------------- 5155 * 5156 * incoming SYN (listener perimeter) -> tcp_rput_data() 5157 * -> tcp_conn_request() 5158 * 5159 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5160 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5161 * 5162 * Sockfs ACCEPT Path: 5163 * ------------------- 5164 * 5165 * open acceptor stream (tcp_open allocates tcp_wput_accept() 5166 * as STREAM entry point) 5167 * 5168 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5169 * 5170 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5171 * association (we are not behind eager's squeue but sockfs is protecting us 5172 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5173 * is changed to point at tcp_wput(). 5174 * 5175 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5176 * listener (done on listener's perimeter). 5177 * 5178 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5179 * accept. 5180 * 5181 * TLI/XTI client ACCEPT path: 5182 * --------------------------- 5183 * 5184 * soaccept() sends T_CONN_RES on the listener STREAM. 5185 * 5186 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5187 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5188 * 5189 * Locks: 5190 * ====== 5191 * 5192 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5193 * and listeners->tcp_eager_next_q. 5194 * 5195 * Referencing: 5196 * ============ 5197 * 5198 * 1) We start out in tcp_conn_request by eager placing a ref on 5199 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5200 * 5201 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5202 * doing so we place a ref on the eager. This ref is finally dropped at the 5203 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5204 * reference is dropped by the squeue framework. 5205 * 5206 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5207 * 5208 * The reference must be released by the same entity that added the reference 5209 * In the above scheme, the eager is the entity that adds and releases the 5210 * references. Note that tcp_accept_finish executes in the squeue of the eager 5211 * (albeit after it is attached to the acceptor stream). Though 1. executes 5212 * in the listener's squeue, the eager is nascent at this point and the 5213 * reference can be considered to have been added on behalf of the eager. 5214 * 5215 * Eager getting a Reset or listener closing: 5216 * ========================================== 5217 * 5218 * Once the listener and eager are linked, the listener never does the unlink. 5219 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5220 * a message on all eager perimeter. The eager then does the unlink, clears 5221 * any pointers to the listener's queue and drops the reference to the 5222 * listener. The listener waits in tcp_close outside the squeue until its 5223 * refcount has dropped to 1. This ensures that the listener has waited for 5224 * all eagers to clear their association with the listener. 5225 * 5226 * Similarly, if eager decides to go away, it can unlink itself and close. 5227 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5228 * the reference to eager is still valid because of the extra ref we put 5229 * in tcp_send_conn_ind. 5230 * 5231 * Listener can always locate the eager under the protection 5232 * of the listener->tcp_eager_lock, and then do a refhold 5233 * on the eager during the accept processing. 5234 * 5235 * The acceptor stream accesses the eager in the accept processing 5236 * based on the ref placed on eager before sending T_conn_ind. 5237 * The only entity that can negate this refhold is a listener close 5238 * which is mutually exclusive with an active acceptor stream. 5239 * 5240 * Eager's reference on the listener 5241 * =================================== 5242 * 5243 * If the accept happens (even on a closed eager) the eager drops its 5244 * reference on the listener at the start of tcp_accept_finish. If the 5245 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5246 * the reference is dropped in tcp_closei_local. If the listener closes, 5247 * the reference is dropped in tcp_eager_kill. In all cases the reference 5248 * is dropped while executing in the eager's context (squeue). 5249 */ 5250 /* END CSTYLED */ 5251 5252 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5253 5254 /* 5255 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5256 * tcp_rput_data will not see any SYN packets. 5257 */ 5258 /* ARGSUSED */ 5259 void 5260 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5261 { 5262 tcph_t *tcph; 5263 uint32_t seg_seq; 5264 tcp_t *eager; 5265 uint_t ipvers; 5266 ipha_t *ipha; 5267 ip6_t *ip6h; 5268 int err; 5269 conn_t *econnp = NULL; 5270 squeue_t *new_sqp; 5271 mblk_t *mp1; 5272 uint_t ip_hdr_len; 5273 conn_t *connp = (conn_t *)arg; 5274 tcp_t *tcp = connp->conn_tcp; 5275 cred_t *credp; 5276 tcp_stack_t *tcps = tcp->tcp_tcps; 5277 ip_stack_t *ipst; 5278 5279 if (tcp->tcp_state != TCPS_LISTEN) 5280 goto error2; 5281 5282 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5283 5284 mutex_enter(&tcp->tcp_eager_lock); 5285 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5286 mutex_exit(&tcp->tcp_eager_lock); 5287 TCP_STAT(tcps, tcp_listendrop); 5288 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 5289 if (tcp->tcp_debug) { 5290 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5291 "tcp_conn_request: listen backlog (max=%d) " 5292 "overflow (%d pending) on %s", 5293 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5294 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5295 } 5296 goto error2; 5297 } 5298 5299 if (tcp->tcp_conn_req_cnt_q0 >= 5300 tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 5301 /* 5302 * Q0 is full. Drop a pending half-open req from the queue 5303 * to make room for the new SYN req. Also mark the time we 5304 * drop a SYN. 5305 * 5306 * A more aggressive defense against SYN attack will 5307 * be to set the "tcp_syn_defense" flag now. 5308 */ 5309 TCP_STAT(tcps, tcp_listendropq0); 5310 tcp->tcp_last_rcv_lbolt = lbolt64; 5311 if (!tcp_drop_q0(tcp)) { 5312 mutex_exit(&tcp->tcp_eager_lock); 5313 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 5314 if (tcp->tcp_debug) { 5315 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5316 "tcp_conn_request: listen half-open queue " 5317 "(max=%d) full (%d pending) on %s", 5318 tcps->tcps_conn_req_max_q0, 5319 tcp->tcp_conn_req_cnt_q0, 5320 tcp_display(tcp, NULL, 5321 DISP_PORT_ONLY)); 5322 } 5323 goto error2; 5324 } 5325 } 5326 mutex_exit(&tcp->tcp_eager_lock); 5327 5328 /* 5329 * IP adds STRUIO_EAGER and ensures that the received packet is 5330 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5331 * link local address. If IPSec is enabled, db_struioflag has 5332 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5333 * otherwise an error case if neither of them is set. 5334 */ 5335 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5336 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5337 DB_CKSUMSTART(mp) = 0; 5338 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5339 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 5340 if (econnp == NULL) 5341 goto error2; 5342 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5343 econnp->conn_sqp = new_sqp; 5344 econnp->conn_initial_sqp = new_sqp; 5345 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5346 /* 5347 * mp is updated in tcp_get_ipsec_conn(). 5348 */ 5349 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5350 if (econnp == NULL) { 5351 /* 5352 * mp freed by tcp_get_ipsec_conn. 5353 */ 5354 return; 5355 } 5356 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5357 } else { 5358 goto error2; 5359 } 5360 5361 ASSERT(DB_TYPE(mp) == M_DATA); 5362 5363 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5364 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5365 ASSERT(OK_32PTR(mp->b_rptr)); 5366 if (ipvers == IPV4_VERSION) { 5367 ipha = (ipha_t *)mp->b_rptr; 5368 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5369 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5370 } else { 5371 ip6h = (ip6_t *)mp->b_rptr; 5372 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5373 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5374 } 5375 5376 if (tcp->tcp_family == AF_INET) { 5377 ASSERT(ipvers == IPV4_VERSION); 5378 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5379 } else { 5380 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5381 } 5382 5383 if (err) 5384 goto error3; 5385 5386 eager = econnp->conn_tcp; 5387 ASSERT(eager->tcp_ordrel_mp == NULL); 5388 5389 if (!IPCL_IS_NONSTR(econnp)) { 5390 /* 5391 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that 5392 * at close time, we will always have that to send up. 5393 * Otherwise, we need to do special handling in case the 5394 * allocation fails at that time. 5395 */ 5396 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 5397 goto error3; 5398 } 5399 /* Inherit various TCP parameters from the listener */ 5400 eager->tcp_naglim = tcp->tcp_naglim; 5401 eager->tcp_first_timer_threshold = tcp->tcp_first_timer_threshold; 5402 eager->tcp_second_timer_threshold = tcp->tcp_second_timer_threshold; 5403 5404 eager->tcp_first_ctimer_threshold = tcp->tcp_first_ctimer_threshold; 5405 eager->tcp_second_ctimer_threshold = tcp->tcp_second_ctimer_threshold; 5406 5407 /* 5408 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5409 * If it does not, the eager's receive window will be set to the 5410 * listener's receive window later in this function. 5411 */ 5412 eager->tcp_rwnd = 0; 5413 5414 /* 5415 * Inherit listener's tcp_init_cwnd. Need to do this before 5416 * calling tcp_process_options() where tcp_mss_set() is called 5417 * to set the initial cwnd. 5418 */ 5419 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5420 5421 /* 5422 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5423 * zone id before the accept is completed in tcp_wput_accept(). 5424 */ 5425 econnp->conn_zoneid = connp->conn_zoneid; 5426 econnp->conn_allzones = connp->conn_allzones; 5427 5428 /* Copy nexthop information from listener to eager */ 5429 if (connp->conn_nexthop_set) { 5430 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5431 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5432 } 5433 5434 /* 5435 * TSOL: tsol_input_proc() needs the eager's cred before the 5436 * eager is accepted 5437 */ 5438 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5439 crhold(credp); 5440 5441 ASSERT(econnp->conn_effective_cred == NULL); 5442 if (is_system_labeled()) { 5443 cred_t *cr; 5444 ts_label_t *tsl; 5445 5446 /* 5447 * If this is an MLP connection or a MAC-Exempt connection 5448 * with an unlabeled node, packets are to be 5449 * exchanged using the security label of the received 5450 * SYN packet instead of the server application's label. 5451 */ 5452 if ((cr = msg_getcred(mp, NULL)) != NULL && 5453 (tsl = crgetlabel(cr)) != NULL && 5454 (connp->conn_mlp_type != mlptSingle || 5455 (connp->conn_mac_exempt == B_TRUE && 5456 (tsl->tsl_flags & TSLF_UNLABELED)))) { 5457 if ((econnp->conn_effective_cred = 5458 copycred_from_tslabel(econnp->conn_cred, 5459 tsl, KM_NOSLEEP)) != NULL) { 5460 DTRACE_PROBE2( 5461 syn_accept_peerlabel, 5462 conn_t *, econnp, cred_t *, 5463 econnp->conn_effective_cred); 5464 } else { 5465 DTRACE_PROBE3( 5466 tx__ip__log__error__set__eagercred__tcp, 5467 char *, 5468 "SYN mp(1) label on eager connp(2) failed", 5469 mblk_t *, mp, conn_t *, econnp); 5470 goto error3; 5471 } 5472 } else { 5473 DTRACE_PROBE2(syn_accept, conn_t *, 5474 econnp, cred_t *, econnp->conn_cred) 5475 } 5476 5477 /* 5478 * Verify the destination is allowed to receive packets 5479 * at the security label of the SYN-ACK we are generating. 5480 * tsol_check_dest() may create a new effective cred for 5481 * this connection with a modified label or label flags. 5482 */ 5483 if (IN6_IS_ADDR_V4MAPPED(&econnp->conn_remv6)) { 5484 uint32_t dst; 5485 IN6_V4MAPPED_TO_IPADDR(&econnp->conn_remv6, dst); 5486 err = tsol_check_dest(CONN_CRED(econnp), &dst, 5487 IPV4_VERSION, B_FALSE, &cr); 5488 } else { 5489 err = tsol_check_dest(CONN_CRED(econnp), 5490 &econnp->conn_remv6, IPV6_VERSION, 5491 B_FALSE, &cr); 5492 } 5493 if (err != 0) 5494 goto error3; 5495 if (cr != NULL) { 5496 if (econnp->conn_effective_cred != NULL) 5497 crfree(econnp->conn_effective_cred); 5498 econnp->conn_effective_cred = cr; 5499 } 5500 5501 /* 5502 * Generate the security label to be used in the text of 5503 * this connection's outgoing packets. 5504 */ 5505 if (!tcp_update_label(eager, CONN_CRED(econnp))) { 5506 DTRACE_PROBE3( 5507 tx__ip__log__error__connrequest__tcp, 5508 char *, "eager connp(1) label on SYN mp(2) failed", 5509 conn_t *, econnp, mblk_t *, mp); 5510 goto error3; 5511 } 5512 } 5513 5514 eager->tcp_hard_binding = B_TRUE; 5515 5516 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 5517 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5518 5519 CL_INET_CONNECT(connp, eager, B_FALSE, err); 5520 if (err != 0) { 5521 tcp_bind_hash_remove(eager); 5522 goto error3; 5523 } 5524 5525 /* 5526 * No need to check for multicast destination since ip will only pass 5527 * up multicasts to those that have expressed interest 5528 * TODO: what about rejecting broadcasts? 5529 * Also check that source is not a multicast or broadcast address. 5530 */ 5531 eager->tcp_state = TCPS_SYN_RCVD; 5532 5533 5534 /* 5535 * There should be no ire in the mp as we are being called after 5536 * receiving the SYN. 5537 */ 5538 ASSERT(tcp_ire_mp(&mp) == NULL); 5539 5540 /* 5541 * Adapt our mss, ttl, ... according to information provided in IRE. 5542 */ 5543 5544 if (tcp_adapt_ire(eager, NULL) == 0) { 5545 /* Undo the bind_hash_insert */ 5546 tcp_bind_hash_remove(eager); 5547 goto error3; 5548 } 5549 5550 /* Process all TCP options. */ 5551 tcp_process_options(eager, tcph); 5552 5553 /* Is the other end ECN capable? */ 5554 if (tcps->tcps_ecn_permitted >= 1 && 5555 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5556 eager->tcp_ecn_ok = B_TRUE; 5557 } 5558 5559 /* 5560 * listeners tcp_recv_hiwater should be the default window size or a 5561 * window size changed via SO_RCVBUF option. First round up the 5562 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5563 * scale option value if needed. Call tcp_rwnd_set() to finish the 5564 * setting. 5565 * 5566 * Note if there is a rpipe metric associated with the remote host, 5567 * we should not inherit receive window size from listener. 5568 */ 5569 eager->tcp_rwnd = MSS_ROUNDUP( 5570 (eager->tcp_rwnd == 0 ? tcp->tcp_recv_hiwater: 5571 eager->tcp_rwnd), eager->tcp_mss); 5572 if (eager->tcp_snd_ws_ok) 5573 tcp_set_ws_value(eager); 5574 /* 5575 * Note that this is the only place tcp_rwnd_set() is called for 5576 * accepting a connection. We need to call it here instead of 5577 * after the 3-way handshake because we need to tell the other 5578 * side our rwnd in the SYN-ACK segment. 5579 */ 5580 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5581 5582 /* 5583 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5584 * via soaccept()->soinheritoptions() which essentially applies 5585 * all the listener options to the new STREAM. The options that we 5586 * need to take care of are: 5587 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5588 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5589 * SO_SNDBUF, SO_RCVBUF. 5590 * 5591 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5592 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5593 * tcp_maxpsz_set() gets called later from 5594 * tcp_accept_finish(), the option takes effect. 5595 * 5596 */ 5597 /* Set the TCP options */ 5598 eager->tcp_recv_lowater = tcp->tcp_recv_lowater; 5599 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5600 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5601 eager->tcp_oobinline = tcp->tcp_oobinline; 5602 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5603 eager->tcp_broadcast = tcp->tcp_broadcast; 5604 eager->tcp_useloopback = tcp->tcp_useloopback; 5605 eager->tcp_dontroute = tcp->tcp_dontroute; 5606 eager->tcp_debug = tcp->tcp_debug; 5607 eager->tcp_linger = tcp->tcp_linger; 5608 eager->tcp_lingertime = tcp->tcp_lingertime; 5609 if (tcp->tcp_ka_enabled) 5610 eager->tcp_ka_enabled = 1; 5611 5612 ASSERT(eager->tcp_recv_hiwater != 0 && 5613 eager->tcp_recv_hiwater == eager->tcp_rwnd); 5614 5615 /* Set the IP options */ 5616 econnp->conn_broadcast = connp->conn_broadcast; 5617 econnp->conn_loopback = connp->conn_loopback; 5618 econnp->conn_dontroute = connp->conn_dontroute; 5619 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5620 5621 /* Put a ref on the listener for the eager. */ 5622 CONN_INC_REF(connp); 5623 mutex_enter(&tcp->tcp_eager_lock); 5624 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5625 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5626 tcp->tcp_eager_next_q0 = eager; 5627 eager->tcp_eager_prev_q0 = tcp; 5628 5629 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5630 eager->tcp_listener = tcp; 5631 eager->tcp_saved_listener = tcp; 5632 5633 /* 5634 * Tag this detached tcp vector for later retrieval 5635 * by our listener client in tcp_accept(). 5636 */ 5637 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5638 tcp->tcp_conn_req_cnt_q0++; 5639 if (++tcp->tcp_conn_req_seqnum == -1) { 5640 /* 5641 * -1 is "special" and defined in TPI as something 5642 * that should never be used in T_CONN_IND 5643 */ 5644 ++tcp->tcp_conn_req_seqnum; 5645 } 5646 mutex_exit(&tcp->tcp_eager_lock); 5647 5648 if (tcp->tcp_syn_defense) { 5649 /* Don't drop the SYN that comes from a good IP source */ 5650 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5651 if (addr_cache != NULL && eager->tcp_remote == 5652 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5653 eager->tcp_dontdrop = B_TRUE; 5654 } 5655 } 5656 5657 /* 5658 * We need to insert the eager in its own perimeter but as soon 5659 * as we do that, we expose the eager to the classifier and 5660 * should not touch any field outside the eager's perimeter. 5661 * So do all the work necessary before inserting the eager 5662 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5663 * will succeed but undo everything if it fails. 5664 */ 5665 seg_seq = ABE32_TO_U32(tcph->th_seq); 5666 eager->tcp_irs = seg_seq; 5667 eager->tcp_rack = seg_seq; 5668 eager->tcp_rnxt = seg_seq + 1; 5669 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5670 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 5671 eager->tcp_state = TCPS_SYN_RCVD; 5672 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5673 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5674 if (mp1 == NULL) { 5675 /* 5676 * Increment the ref count as we are going to 5677 * enqueueing an mp in squeue 5678 */ 5679 CONN_INC_REF(econnp); 5680 goto error; 5681 } 5682 5683 /* 5684 * Note that in theory this should use the current pid 5685 * so that getpeerucred on the client returns the actual listener 5686 * that does accept. But accept() hasn't been called yet. We could use 5687 * the pid of the process that did bind/listen on the server. 5688 * However, with common usage like inetd() the bind/listen can be done 5689 * by a different process than the accept(). 5690 * Hence we do the simple thing of using the open pid here. 5691 * Note that db_credp is set later in tcp_send_data(). 5692 */ 5693 mblk_setcred(mp1, credp, tcp->tcp_cpid); 5694 eager->tcp_cpid = tcp->tcp_cpid; 5695 eager->tcp_open_time = lbolt64; 5696 5697 /* 5698 * We need to start the rto timer. In normal case, we start 5699 * the timer after sending the packet on the wire (or at 5700 * least believing that packet was sent by waiting for 5701 * CALL_IP_WPUT() to return). Since this is the first packet 5702 * being sent on the wire for the eager, our initial tcp_rto 5703 * is at least tcp_rexmit_interval_min which is a fairly 5704 * large value to allow the algorithm to adjust slowly to large 5705 * fluctuations of RTT during first few transmissions. 5706 * 5707 * Starting the timer first and then sending the packet in this 5708 * case shouldn't make much difference since tcp_rexmit_interval_min 5709 * is of the order of several 100ms and starting the timer 5710 * first and then sending the packet will result in difference 5711 * of few micro seconds. 5712 * 5713 * Without this optimization, we are forced to hold the fanout 5714 * lock across the ipcl_bind_insert() and sending the packet 5715 * so that we don't race against an incoming packet (maybe RST) 5716 * for this eager. 5717 * 5718 * It is necessary to acquire an extra reference on the eager 5719 * at this point and hold it until after tcp_send_data() to 5720 * ensure against an eager close race. 5721 */ 5722 5723 CONN_INC_REF(eager->tcp_connp); 5724 5725 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5726 5727 /* 5728 * Insert the eager in its own perimeter now. We are ready to deal 5729 * with any packets on eager. 5730 */ 5731 if (eager->tcp_ipversion == IPV4_VERSION) { 5732 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5733 goto error; 5734 } 5735 } else { 5736 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5737 goto error; 5738 } 5739 } 5740 5741 /* mark conn as fully-bound */ 5742 econnp->conn_fully_bound = B_TRUE; 5743 5744 /* Send the SYN-ACK */ 5745 tcp_send_data(eager, eager->tcp_wq, mp1); 5746 CONN_DEC_REF(eager->tcp_connp); 5747 freemsg(mp); 5748 5749 return; 5750 error: 5751 freemsg(mp1); 5752 eager->tcp_closemp_used = B_TRUE; 5753 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5754 mp1 = &eager->tcp_closemp; 5755 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 5756 econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 5757 5758 /* 5759 * If a connection already exists, send the mp to that connections so 5760 * that it can be appropriately dealt with. 5761 */ 5762 ipst = tcps->tcps_netstack->netstack_ip; 5763 5764 if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) { 5765 if (!IPCL_IS_CONNECTED(econnp)) { 5766 /* 5767 * Something bad happened. ipcl_conn_insert() 5768 * failed because a connection already existed 5769 * in connected hash but we can't find it 5770 * anymore (someone blew it away). Just 5771 * free this message and hopefully remote 5772 * will retransmit at which time the SYN can be 5773 * treated as a new connection or dealth with 5774 * a TH_RST if a connection already exists. 5775 */ 5776 CONN_DEC_REF(econnp); 5777 freemsg(mp); 5778 } else { 5779 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, 5780 tcp_input, econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 5781 } 5782 } else { 5783 /* Nobody wants this packet */ 5784 freemsg(mp); 5785 } 5786 return; 5787 error3: 5788 CONN_DEC_REF(econnp); 5789 error2: 5790 freemsg(mp); 5791 } 5792 5793 /* 5794 * In an ideal case of vertical partition in NUMA architecture, its 5795 * beneficial to have the listener and all the incoming connections 5796 * tied to the same squeue. The other constraint is that incoming 5797 * connections should be tied to the squeue attached to interrupted 5798 * CPU for obvious locality reason so this leaves the listener to 5799 * be tied to the same squeue. Our only problem is that when listener 5800 * is binding, the CPU that will get interrupted by the NIC whose 5801 * IP address the listener is binding to is not even known. So 5802 * the code below allows us to change that binding at the time the 5803 * CPU is interrupted by virtue of incoming connection's squeue. 5804 * 5805 * This is usefull only in case of a listener bound to a specific IP 5806 * address. For other kind of listeners, they get bound the 5807 * very first time and there is no attempt to rebind them. 5808 */ 5809 void 5810 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 5811 { 5812 conn_t *connp = (conn_t *)arg; 5813 squeue_t *sqp = (squeue_t *)arg2; 5814 squeue_t *new_sqp; 5815 uint32_t conn_flags; 5816 5817 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5818 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5819 } else { 5820 goto done; 5821 } 5822 5823 if (connp->conn_fanout == NULL) 5824 goto done; 5825 5826 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5827 mutex_enter(&connp->conn_fanout->connf_lock); 5828 mutex_enter(&connp->conn_lock); 5829 /* 5830 * No one from read or write side can access us now 5831 * except for already queued packets on this squeue. 5832 * But since we haven't changed the squeue yet, they 5833 * can't execute. If they are processed after we have 5834 * changed the squeue, they are sent back to the 5835 * correct squeue down below. 5836 * But a listner close can race with processing of 5837 * incoming SYN. If incoming SYN processing changes 5838 * the squeue then the listener close which is waiting 5839 * to enter the squeue would operate on the wrong 5840 * squeue. Hence we don't change the squeue here unless 5841 * the refcount is exactly the minimum refcount. The 5842 * minimum refcount of 4 is counted as - 1 each for 5843 * TCP and IP, 1 for being in the classifier hash, and 5844 * 1 for the mblk being processed. 5845 */ 5846 5847 if (connp->conn_ref != 4 || 5848 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 5849 mutex_exit(&connp->conn_lock); 5850 mutex_exit(&connp->conn_fanout->connf_lock); 5851 goto done; 5852 } 5853 if (connp->conn_sqp != new_sqp) { 5854 while (connp->conn_sqp != new_sqp) 5855 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5856 } 5857 5858 do { 5859 conn_flags = connp->conn_flags; 5860 conn_flags |= IPCL_FULLY_BOUND; 5861 (void) cas32(&connp->conn_flags, connp->conn_flags, 5862 conn_flags); 5863 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5864 5865 mutex_exit(&connp->conn_fanout->connf_lock); 5866 mutex_exit(&connp->conn_lock); 5867 } 5868 5869 done: 5870 if (connp->conn_sqp != sqp) { 5871 CONN_INC_REF(connp); 5872 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 5873 SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 5874 } else { 5875 tcp_conn_request(connp, mp, sqp); 5876 } 5877 } 5878 5879 /* 5880 * Successful connect request processing begins when our client passes 5881 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 5882 * our T_OK_ACK reply message upstream. The control flow looks like this: 5883 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_tpi_connect() -> IP 5884 * upstream <- tcp_rput() <- IP 5885 * After various error checks are completed, tcp_tpi_connect() lays 5886 * the target address and port into the composite header template, 5887 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 5888 * request followed by an IRE request, and passes the three mblk message 5889 * down to IP looking like this: 5890 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 5891 * Processing continues in tcp_rput() when we receive the following message: 5892 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 5893 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 5894 * to fire off the connection request, and then passes the T_OK_ACK mblk 5895 * upstream that we filled in below. There are, of course, numerous 5896 * error conditions along the way which truncate the processing described 5897 * above. 5898 */ 5899 static void 5900 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp) 5901 { 5902 sin_t *sin; 5903 queue_t *q = tcp->tcp_wq; 5904 struct T_conn_req *tcr; 5905 struct sockaddr *sa; 5906 socklen_t len; 5907 int error; 5908 cred_t *cr; 5909 pid_t cpid; 5910 5911 /* 5912 * All Solaris components should pass a db_credp 5913 * for this TPI message, hence we ASSERT. 5914 * But in case there is some other M_PROTO that looks 5915 * like a TPI message sent by some other kernel 5916 * component, we check and return an error. 5917 */ 5918 cr = msg_getcred(mp, &cpid); 5919 ASSERT(cr != NULL); 5920 if (cr == NULL) { 5921 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5922 return; 5923 } 5924 5925 tcr = (struct T_conn_req *)mp->b_rptr; 5926 5927 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5928 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5929 tcp_err_ack(tcp, mp, TPROTO, 0); 5930 return; 5931 } 5932 5933 /* 5934 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 5935 * will always have that to send up. Otherwise, we need to do 5936 * special handling in case the allocation fails at that time. 5937 * If the end point is TPI, the tcp_t can be reused and the 5938 * tcp_ordrel_mp may be allocated already. 5939 */ 5940 if (tcp->tcp_ordrel_mp == NULL) { 5941 if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) { 5942 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5943 return; 5944 } 5945 } 5946 5947 /* 5948 * Determine packet type based on type of address passed in 5949 * the request should contain an IPv4 or IPv6 address. 5950 * Make sure that address family matches the type of 5951 * family of the the address passed down 5952 */ 5953 switch (tcr->DEST_length) { 5954 default: 5955 tcp_err_ack(tcp, mp, TBADADDR, 0); 5956 return; 5957 5958 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5959 /* 5960 * XXX: The check for valid DEST_length was not there 5961 * in earlier releases and some buggy 5962 * TLI apps (e.g Sybase) got away with not feeding 5963 * in sin_zero part of address. 5964 * We allow that bug to keep those buggy apps humming. 5965 * Test suites require the check on DEST_length. 5966 * We construct a new mblk with valid DEST_length 5967 * free the original so the rest of the code does 5968 * not have to keep track of this special shorter 5969 * length address case. 5970 */ 5971 mblk_t *nmp; 5972 struct T_conn_req *ntcr; 5973 sin_t *nsin; 5974 5975 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5976 tcr->OPT_length, BPRI_HI); 5977 if (nmp == NULL) { 5978 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5979 return; 5980 } 5981 ntcr = (struct T_conn_req *)nmp->b_rptr; 5982 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5983 ntcr->PRIM_type = T_CONN_REQ; 5984 ntcr->DEST_length = sizeof (sin_t); 5985 ntcr->DEST_offset = sizeof (struct T_conn_req); 5986 5987 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 5988 *nsin = sin_null; 5989 /* Get pointer to shorter address to copy from original mp */ 5990 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5991 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 5992 if (sin == NULL || !OK_32PTR((char *)sin)) { 5993 freemsg(nmp); 5994 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5995 return; 5996 } 5997 nsin->sin_family = sin->sin_family; 5998 nsin->sin_port = sin->sin_port; 5999 nsin->sin_addr = sin->sin_addr; 6000 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 6001 nmp->b_wptr = (uchar_t *)&nsin[1]; 6002 if (tcr->OPT_length != 0) { 6003 ntcr->OPT_length = tcr->OPT_length; 6004 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6005 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6006 (uchar_t *)ntcr + ntcr->OPT_offset, 6007 tcr->OPT_length); 6008 nmp->b_wptr += tcr->OPT_length; 6009 } 6010 freemsg(mp); /* original mp freed */ 6011 mp = nmp; /* re-initialize original variables */ 6012 tcr = ntcr; 6013 } 6014 /* FALLTHRU */ 6015 6016 case sizeof (sin_t): 6017 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 6018 sizeof (sin_t)); 6019 len = sizeof (sin_t); 6020 break; 6021 6022 case sizeof (sin6_t): 6023 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 6024 sizeof (sin6_t)); 6025 len = sizeof (sin6_t); 6026 break; 6027 } 6028 6029 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 6030 if (error != 0) { 6031 tcp_err_ack(tcp, mp, TSYSERR, error); 6032 return; 6033 } 6034 6035 /* 6036 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6037 * should key on their sequence number and cut them loose. 6038 */ 6039 6040 /* 6041 * If options passed in, feed it for verification and handling 6042 */ 6043 if (tcr->OPT_length != 0) { 6044 mblk_t *ok_mp; 6045 mblk_t *discon_mp; 6046 mblk_t *conn_opts_mp; 6047 int t_error, sys_error, do_disconnect; 6048 6049 conn_opts_mp = NULL; 6050 6051 if (tcp_conprim_opt_process(tcp, mp, 6052 &do_disconnect, &t_error, &sys_error) < 0) { 6053 if (do_disconnect) { 6054 ASSERT(t_error == 0 && sys_error == 0); 6055 discon_mp = mi_tpi_discon_ind(NULL, 6056 ECONNREFUSED, 0); 6057 if (!discon_mp) { 6058 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6059 TSYSERR, ENOMEM); 6060 return; 6061 } 6062 ok_mp = mi_tpi_ok_ack_alloc(mp); 6063 if (!ok_mp) { 6064 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6065 TSYSERR, ENOMEM); 6066 return; 6067 } 6068 qreply(q, ok_mp); 6069 qreply(q, discon_mp); /* no flush! */ 6070 } else { 6071 ASSERT(t_error != 0); 6072 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6073 sys_error); 6074 } 6075 return; 6076 } 6077 /* 6078 * Success in setting options, the mp option buffer represented 6079 * by OPT_length/offset has been potentially modified and 6080 * contains results of option processing. We copy it in 6081 * another mp to save it for potentially influencing returning 6082 * it in T_CONN_CONN. 6083 */ 6084 if (tcr->OPT_length != 0) { /* there are resulting options */ 6085 conn_opts_mp = copyb(mp); 6086 if (!conn_opts_mp) { 6087 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6088 TSYSERR, ENOMEM); 6089 return; 6090 } 6091 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6092 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6093 /* 6094 * Note: 6095 * These resulting option negotiation can include any 6096 * end-to-end negotiation options but there no such 6097 * thing (yet?) in our TCP/IP. 6098 */ 6099 } 6100 } 6101 6102 /* call the non-TPI version */ 6103 error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid); 6104 if (error < 0) { 6105 mp = mi_tpi_err_ack_alloc(mp, -error, 0); 6106 } else if (error > 0) { 6107 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 6108 } else { 6109 mp = mi_tpi_ok_ack_alloc(mp); 6110 } 6111 6112 /* 6113 * Note: Code below is the "failure" case 6114 */ 6115 /* return error ack and blow away saved option results if any */ 6116 connect_failed: 6117 if (mp != NULL) 6118 putnext(tcp->tcp_rq, mp); 6119 else { 6120 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6121 TSYSERR, ENOMEM); 6122 } 6123 } 6124 6125 /* 6126 * Handle connect to IPv4 destinations, including connections for AF_INET6 6127 * sockets connecting to IPv4 mapped IPv6 destinations. 6128 */ 6129 static int 6130 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 6131 uint_t srcid, cred_t *cr, pid_t pid) 6132 { 6133 tcph_t *tcph; 6134 mblk_t *mp; 6135 ipaddr_t dstaddr = *dstaddrp; 6136 int32_t oldstate; 6137 uint16_t lport; 6138 int error = 0; 6139 tcp_stack_t *tcps = tcp->tcp_tcps; 6140 6141 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6142 6143 /* Check for attempt to connect to INADDR_ANY */ 6144 if (dstaddr == INADDR_ANY) { 6145 /* 6146 * SunOS 4.x and 4.3 BSD allow an application 6147 * to connect a TCP socket to INADDR_ANY. 6148 * When they do this, the kernel picks the 6149 * address of one interface and uses it 6150 * instead. The kernel usually ends up 6151 * picking the address of the loopback 6152 * interface. This is an undocumented feature. 6153 * However, we provide the same thing here 6154 * in order to have source and binary 6155 * compatibility with SunOS 4.x. 6156 * Update the T_CONN_REQ (sin/sin6) since it is used to 6157 * generate the T_CONN_CON. 6158 */ 6159 dstaddr = htonl(INADDR_LOOPBACK); 6160 *dstaddrp = dstaddr; 6161 } 6162 6163 /* Handle __sin6_src_id if socket not bound to an IP address */ 6164 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6165 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6166 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6167 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6168 tcp->tcp_ipha->ipha_src); 6169 } 6170 6171 /* 6172 * Don't let an endpoint connect to itself. Note that 6173 * the test here does not catch the case where the 6174 * source IP addr was left unspecified by the user. In 6175 * this case, the source addr is set in tcp_adapt_ire() 6176 * using the reply to the T_BIND message that we send 6177 * down to IP here and the check is repeated in tcp_rput_other. 6178 */ 6179 if (dstaddr == tcp->tcp_ipha->ipha_src && 6180 dstport == tcp->tcp_lport) { 6181 error = -TBADADDR; 6182 goto failed; 6183 } 6184 6185 /* 6186 * Verify the destination is allowed to receive packets 6187 * at the security label of the connection we are initiating. 6188 * tsol_check_dest() may create a new effective cred for this 6189 * connection with a modified label or label flags. 6190 */ 6191 if (is_system_labeled()) { 6192 ASSERT(tcp->tcp_connp->conn_effective_cred == NULL); 6193 if ((error = tsol_check_dest(CONN_CRED(tcp->tcp_connp), 6194 &dstaddr, IPV4_VERSION, tcp->tcp_connp->conn_mac_exempt, 6195 &tcp->tcp_connp->conn_effective_cred)) != 0) { 6196 if (error != EHOSTUNREACH) 6197 error = -TSYSERR; 6198 goto failed; 6199 } 6200 } 6201 6202 tcp->tcp_ipha->ipha_dst = dstaddr; 6203 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6204 6205 /* 6206 * Massage a source route if any putting the first hop 6207 * in iph_dst. Compute a starting value for the checksum which 6208 * takes into account that the original iph_dst should be 6209 * included in the checksum but that ip will include the 6210 * first hop in the source route in the tcp checksum. 6211 */ 6212 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack); 6213 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6214 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6215 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6216 if ((int)tcp->tcp_sum < 0) 6217 tcp->tcp_sum--; 6218 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6219 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6220 (tcp->tcp_sum >> 16)); 6221 tcph = tcp->tcp_tcph; 6222 *(uint16_t *)tcph->th_fport = dstport; 6223 tcp->tcp_fport = dstport; 6224 6225 oldstate = tcp->tcp_state; 6226 /* 6227 * At this point the remote destination address and remote port fields 6228 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6229 * have to see which state tcp was in so we can take apropriate action. 6230 */ 6231 if (oldstate == TCPS_IDLE) { 6232 /* 6233 * We support a quick connect capability here, allowing 6234 * clients to transition directly from IDLE to SYN_SENT 6235 * tcp_bindi will pick an unused port, insert the connection 6236 * in the bind hash and transition to BOUND state. 6237 */ 6238 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6239 tcp, B_TRUE); 6240 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6241 B_FALSE, B_FALSE); 6242 if (lport == 0) { 6243 error = -TNOADDR; 6244 goto failed; 6245 } 6246 } 6247 tcp->tcp_state = TCPS_SYN_SENT; 6248 6249 mp = allocb(sizeof (ire_t), BPRI_HI); 6250 if (mp == NULL) { 6251 tcp->tcp_state = oldstate; 6252 error = ENOMEM; 6253 goto failed; 6254 } 6255 6256 mp->b_wptr += sizeof (ire_t); 6257 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6258 tcp->tcp_hard_binding = 1; 6259 6260 /* 6261 * We need to make sure that the conn_recv is set to a non-null 6262 * value before we insert the conn_t into the classifier table. 6263 * This is to avoid a race with an incoming packet which does 6264 * an ipcl_classify(). 6265 */ 6266 tcp->tcp_connp->conn_recv = tcp_input; 6267 6268 if (tcp->tcp_family == AF_INET) { 6269 error = ip_proto_bind_connected_v4(tcp->tcp_connp, &mp, 6270 IPPROTO_TCP, &tcp->tcp_ipha->ipha_src, tcp->tcp_lport, 6271 tcp->tcp_remote, tcp->tcp_fport, B_TRUE, B_TRUE, cr); 6272 } else { 6273 in6_addr_t v6src; 6274 if (tcp->tcp_ipversion == IPV4_VERSION) { 6275 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6276 } else { 6277 v6src = tcp->tcp_ip6h->ip6_src; 6278 } 6279 error = ip_proto_bind_connected_v6(tcp->tcp_connp, &mp, 6280 IPPROTO_TCP, &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6281 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr); 6282 } 6283 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6284 tcp->tcp_active_open = 1; 6285 6286 6287 return (tcp_post_ip_bind(tcp, mp, error, cr, pid)); 6288 failed: 6289 /* return error ack and blow away saved option results if any */ 6290 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6291 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6292 return (error); 6293 } 6294 6295 /* 6296 * Handle connect to IPv6 destinations. 6297 */ 6298 static int 6299 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 6300 uint32_t flowinfo, uint_t srcid, uint32_t scope_id, cred_t *cr, pid_t pid) 6301 { 6302 tcph_t *tcph; 6303 mblk_t *mp; 6304 ip6_rthdr_t *rth; 6305 int32_t oldstate; 6306 uint16_t lport; 6307 tcp_stack_t *tcps = tcp->tcp_tcps; 6308 int error = 0; 6309 conn_t *connp = tcp->tcp_connp; 6310 6311 ASSERT(tcp->tcp_family == AF_INET6); 6312 6313 /* 6314 * If we're here, it means that the destination address is a native 6315 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6316 * reason why it might not be IPv6 is if the socket was bound to an 6317 * IPv4-mapped IPv6 address. 6318 */ 6319 if (tcp->tcp_ipversion != IPV6_VERSION) { 6320 return (-TBADADDR); 6321 } 6322 6323 /* 6324 * Interpret a zero destination to mean loopback. 6325 * Update the T_CONN_REQ (sin/sin6) since it is used to 6326 * generate the T_CONN_CON. 6327 */ 6328 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6329 *dstaddrp = ipv6_loopback; 6330 } 6331 6332 /* Handle __sin6_src_id if socket not bound to an IP address */ 6333 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6334 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6335 connp->conn_zoneid, tcps->tcps_netstack); 6336 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6337 } 6338 6339 /* 6340 * Take care of the scope_id now and add ip6i_t 6341 * if ip6i_t is not already allocated through TCP 6342 * sticky options. At this point tcp_ip6h does not 6343 * have dst info, thus use dstaddrp. 6344 */ 6345 if (scope_id != 0 && 6346 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6347 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6348 ip6i_t *ip6i; 6349 6350 ipp->ipp_ifindex = scope_id; 6351 ip6i = (ip6i_t *)tcp->tcp_iphc; 6352 6353 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6354 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6355 /* Already allocated */ 6356 ip6i->ip6i_flags |= IP6I_IFINDEX; 6357 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6358 ipp->ipp_fields |= IPPF_SCOPE_ID; 6359 } else { 6360 int reterr; 6361 6362 ipp->ipp_fields |= IPPF_SCOPE_ID; 6363 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6364 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6365 reterr = tcp_build_hdrs(tcp); 6366 if (reterr != 0) 6367 goto failed; 6368 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6369 } 6370 } 6371 6372 /* 6373 * Don't let an endpoint connect to itself. Note that 6374 * the test here does not catch the case where the 6375 * source IP addr was left unspecified by the user. In 6376 * this case, the source addr is set in tcp_adapt_ire() 6377 * using the reply to the T_BIND message that we send 6378 * down to IP here and the check is repeated in tcp_rput_other. 6379 */ 6380 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6381 (dstport == tcp->tcp_lport)) { 6382 error = -TBADADDR; 6383 goto failed; 6384 } 6385 6386 /* 6387 * Verify the destination is allowed to receive packets 6388 * at the security label of the connection we are initiating. 6389 * check_dest may create a new effective cred for this 6390 * connection with a modified label or label flags. 6391 */ 6392 if (is_system_labeled()) { 6393 ASSERT(tcp->tcp_connp->conn_effective_cred == NULL); 6394 if ((error = tsol_check_dest(CONN_CRED(tcp->tcp_connp), 6395 dstaddrp, IPV6_VERSION, tcp->tcp_connp->conn_mac_exempt, 6396 &tcp->tcp_connp->conn_effective_cred)) != 0) { 6397 if (error != EHOSTUNREACH) 6398 error = -TSYSERR; 6399 goto failed; 6400 } 6401 } 6402 6403 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6404 tcp->tcp_remote_v6 = *dstaddrp; 6405 tcp->tcp_ip6h->ip6_vcf = 6406 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6407 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6408 6409 /* 6410 * Massage a routing header (if present) putting the first hop 6411 * in ip6_dst. Compute a starting value for the checksum which 6412 * takes into account that the original ip6_dst should be 6413 * included in the checksum but that ip will include the 6414 * first hop in the source route in the tcp checksum. 6415 */ 6416 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6417 if (rth != NULL) { 6418 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth, 6419 tcps->tcps_netstack); 6420 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6421 (tcp->tcp_sum >> 16)); 6422 } else { 6423 tcp->tcp_sum = 0; 6424 } 6425 6426 tcph = tcp->tcp_tcph; 6427 *(uint16_t *)tcph->th_fport = dstport; 6428 tcp->tcp_fport = dstport; 6429 6430 oldstate = tcp->tcp_state; 6431 /* 6432 * At this point the remote destination address and remote port fields 6433 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6434 * have to see which state tcp was in so we can take apropriate action. 6435 */ 6436 if (oldstate == TCPS_IDLE) { 6437 /* 6438 * We support a quick connect capability here, allowing 6439 * clients to transition directly from IDLE to SYN_SENT 6440 * tcp_bindi will pick an unused port, insert the connection 6441 * in the bind hash and transition to BOUND state. 6442 */ 6443 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6444 tcp, B_TRUE); 6445 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6446 B_FALSE, B_FALSE); 6447 if (lport == 0) { 6448 error = -TNOADDR; 6449 goto failed; 6450 } 6451 } 6452 tcp->tcp_state = TCPS_SYN_SENT; 6453 6454 mp = allocb(sizeof (ire_t), BPRI_HI); 6455 if (mp != NULL) { 6456 in6_addr_t v6src; 6457 6458 mp->b_wptr += sizeof (ire_t); 6459 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6460 6461 tcp->tcp_hard_binding = 1; 6462 6463 /* 6464 * We need to make sure that the conn_recv is set to a non-null 6465 * value before we insert the conn_t into the classifier table. 6466 * This is to avoid a race with an incoming packet which does 6467 * an ipcl_classify(). 6468 */ 6469 tcp->tcp_connp->conn_recv = tcp_input; 6470 6471 if (tcp->tcp_ipversion == IPV4_VERSION) { 6472 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6473 } else { 6474 v6src = tcp->tcp_ip6h->ip6_src; 6475 } 6476 error = ip_proto_bind_connected_v6(connp, &mp, IPPROTO_TCP, 6477 &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6478 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr); 6479 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6480 tcp->tcp_active_open = 1; 6481 6482 return (tcp_post_ip_bind(tcp, mp, error, cr, pid)); 6483 } 6484 /* Error case */ 6485 tcp->tcp_state = oldstate; 6486 error = ENOMEM; 6487 6488 failed: 6489 /* return error ack and blow away saved option results if any */ 6490 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6491 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6492 return (error); 6493 } 6494 6495 /* 6496 * We need a stream q for detached closing tcp connections 6497 * to use. Our client hereby indicates that this q is the 6498 * one to use. 6499 */ 6500 static void 6501 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6502 { 6503 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6504 queue_t *q = tcp->tcp_wq; 6505 tcp_stack_t *tcps = tcp->tcp_tcps; 6506 6507 #ifdef NS_DEBUG 6508 (void) printf("TCP_IOC_DEFAULT_Q for stack %d\n", 6509 tcps->tcps_netstack->netstack_stackid); 6510 #endif 6511 mp->b_datap->db_type = M_IOCACK; 6512 iocp->ioc_count = 0; 6513 mutex_enter(&tcps->tcps_g_q_lock); 6514 if (tcps->tcps_g_q != NULL) { 6515 mutex_exit(&tcps->tcps_g_q_lock); 6516 iocp->ioc_error = EALREADY; 6517 } else { 6518 int error = 0; 6519 conn_t *connp = tcp->tcp_connp; 6520 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6521 6522 tcps->tcps_g_q = tcp->tcp_rq; 6523 mutex_exit(&tcps->tcps_g_q_lock); 6524 iocp->ioc_error = 0; 6525 iocp->ioc_rval = 0; 6526 /* 6527 * We are passing tcp_sticky_ipp as NULL 6528 * as it is not useful for tcp_default queue 6529 * 6530 * Set conn_recv just in case. 6531 */ 6532 tcp->tcp_connp->conn_recv = tcp_conn_request; 6533 6534 ASSERT(connp->conn_af_isv6); 6535 connp->conn_ulp = IPPROTO_TCP; 6536 6537 if (ipst->ips_ipcl_proto_fanout_v6[IPPROTO_TCP].connf_head != 6538 NULL || connp->conn_mac_exempt) { 6539 error = -TBADADDR; 6540 } else { 6541 connp->conn_srcv6 = ipv6_all_zeros; 6542 ipcl_proto_insert_v6(connp, IPPROTO_TCP); 6543 } 6544 6545 (void) tcp_post_ip_bind(tcp, NULL, error, NULL, 0); 6546 } 6547 qreply(q, mp); 6548 } 6549 6550 static int 6551 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 6552 { 6553 tcp_t *ltcp = NULL; 6554 conn_t *connp; 6555 tcp_stack_t *tcps = tcp->tcp_tcps; 6556 6557 /* 6558 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6559 * when the stream is in BOUND state. Do not send a reset, 6560 * since the destination IP address is not valid, and it can 6561 * be the initialized value of all zeros (broadcast address). 6562 * 6563 * XXX There won't be any pending bind request to IP. 6564 */ 6565 if (tcp->tcp_state <= TCPS_BOUND) { 6566 if (tcp->tcp_debug) { 6567 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6568 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6569 } 6570 return (TOUTSTATE); 6571 } 6572 6573 6574 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6575 6576 /* 6577 * According to TPI, for non-listeners, ignore seqnum 6578 * and disconnect. 6579 * Following interpretation of -1 seqnum is historical 6580 * and implied TPI ? (TPI only states that for T_CONN_IND, 6581 * a valid seqnum should not be -1). 6582 * 6583 * -1 means disconnect everything 6584 * regardless even on a listener. 6585 */ 6586 6587 int old_state = tcp->tcp_state; 6588 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 6589 6590 /* 6591 * The connection can't be on the tcp_time_wait_head list 6592 * since it is not detached. 6593 */ 6594 ASSERT(tcp->tcp_time_wait_next == NULL); 6595 ASSERT(tcp->tcp_time_wait_prev == NULL); 6596 ASSERT(tcp->tcp_time_wait_expire == 0); 6597 ltcp = NULL; 6598 /* 6599 * If it used to be a listener, check to make sure no one else 6600 * has taken the port before switching back to LISTEN state. 6601 */ 6602 if (tcp->tcp_ipversion == IPV4_VERSION) { 6603 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6604 tcp->tcp_ipha->ipha_src, 6605 tcp->tcp_connp->conn_zoneid, ipst); 6606 if (connp != NULL) 6607 ltcp = connp->conn_tcp; 6608 } else { 6609 /* Allow tcp_bound_if listeners? */ 6610 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6611 &tcp->tcp_ip6h->ip6_src, 0, 6612 tcp->tcp_connp->conn_zoneid, ipst); 6613 if (connp != NULL) 6614 ltcp = connp->conn_tcp; 6615 } 6616 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6617 tcp->tcp_state = TCPS_LISTEN; 6618 } else if (old_state > TCPS_BOUND) { 6619 tcp->tcp_conn_req_max = 0; 6620 tcp->tcp_state = TCPS_BOUND; 6621 } 6622 if (ltcp != NULL) 6623 CONN_DEC_REF(ltcp->tcp_connp); 6624 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6625 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 6626 } else if (old_state == TCPS_ESTABLISHED || 6627 old_state == TCPS_CLOSE_WAIT) { 6628 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 6629 } 6630 6631 if (tcp->tcp_fused) 6632 tcp_unfuse(tcp); 6633 6634 mutex_enter(&tcp->tcp_eager_lock); 6635 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6636 (tcp->tcp_conn_req_cnt_q != 0)) { 6637 tcp_eager_cleanup(tcp, 0); 6638 } 6639 mutex_exit(&tcp->tcp_eager_lock); 6640 6641 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6642 tcp->tcp_rnxt, TH_RST | TH_ACK); 6643 6644 tcp_reinit(tcp); 6645 6646 return (0); 6647 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6648 return (TBADSEQ); 6649 } 6650 return (0); 6651 } 6652 6653 /* 6654 * Our client hereby directs us to reject the connection request 6655 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6656 * of sending the appropriate RST, not an ICMP error. 6657 */ 6658 static void 6659 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6660 { 6661 t_scalar_t seqnum; 6662 int error; 6663 6664 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6665 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6666 tcp_err_ack(tcp, mp, TPROTO, 0); 6667 return; 6668 } 6669 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6670 error = tcp_disconnect_common(tcp, seqnum); 6671 if (error != 0) 6672 tcp_err_ack(tcp, mp, error, 0); 6673 else { 6674 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6675 /* Send M_FLUSH according to TPI */ 6676 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6677 } 6678 mp = mi_tpi_ok_ack_alloc(mp); 6679 if (mp) 6680 putnext(tcp->tcp_rq, mp); 6681 } 6682 } 6683 6684 /* 6685 * Diagnostic routine used to return a string associated with the tcp state. 6686 * Note that if the caller does not supply a buffer, it will use an internal 6687 * static string. This means that if multiple threads call this function at 6688 * the same time, output can be corrupted... Note also that this function 6689 * does not check the size of the supplied buffer. The caller has to make 6690 * sure that it is big enough. 6691 */ 6692 static char * 6693 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6694 { 6695 char buf1[30]; 6696 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6697 char *buf; 6698 char *cp; 6699 in6_addr_t local, remote; 6700 char local_addrbuf[INET6_ADDRSTRLEN]; 6701 char remote_addrbuf[INET6_ADDRSTRLEN]; 6702 6703 if (sup_buf != NULL) 6704 buf = sup_buf; 6705 else 6706 buf = priv_buf; 6707 6708 if (tcp == NULL) 6709 return ("NULL_TCP"); 6710 switch (tcp->tcp_state) { 6711 case TCPS_CLOSED: 6712 cp = "TCP_CLOSED"; 6713 break; 6714 case TCPS_IDLE: 6715 cp = "TCP_IDLE"; 6716 break; 6717 case TCPS_BOUND: 6718 cp = "TCP_BOUND"; 6719 break; 6720 case TCPS_LISTEN: 6721 cp = "TCP_LISTEN"; 6722 break; 6723 case TCPS_SYN_SENT: 6724 cp = "TCP_SYN_SENT"; 6725 break; 6726 case TCPS_SYN_RCVD: 6727 cp = "TCP_SYN_RCVD"; 6728 break; 6729 case TCPS_ESTABLISHED: 6730 cp = "TCP_ESTABLISHED"; 6731 break; 6732 case TCPS_CLOSE_WAIT: 6733 cp = "TCP_CLOSE_WAIT"; 6734 break; 6735 case TCPS_FIN_WAIT_1: 6736 cp = "TCP_FIN_WAIT_1"; 6737 break; 6738 case TCPS_CLOSING: 6739 cp = "TCP_CLOSING"; 6740 break; 6741 case TCPS_LAST_ACK: 6742 cp = "TCP_LAST_ACK"; 6743 break; 6744 case TCPS_FIN_WAIT_2: 6745 cp = "TCP_FIN_WAIT_2"; 6746 break; 6747 case TCPS_TIME_WAIT: 6748 cp = "TCP_TIME_WAIT"; 6749 break; 6750 default: 6751 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 6752 cp = buf1; 6753 break; 6754 } 6755 switch (format) { 6756 case DISP_ADDR_AND_PORT: 6757 if (tcp->tcp_ipversion == IPV4_VERSION) { 6758 /* 6759 * Note that we use the remote address in the tcp_b 6760 * structure. This means that it will print out 6761 * the real destination address, not the next hop's 6762 * address if source routing is used. 6763 */ 6764 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 6765 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 6766 6767 } else { 6768 local = tcp->tcp_ip_src_v6; 6769 remote = tcp->tcp_remote_v6; 6770 } 6771 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 6772 sizeof (local_addrbuf)); 6773 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 6774 sizeof (remote_addrbuf)); 6775 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 6776 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 6777 ntohs(tcp->tcp_fport), cp); 6778 break; 6779 case DISP_PORT_ONLY: 6780 default: 6781 (void) mi_sprintf(buf, "[%u, %u] %s", 6782 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 6783 break; 6784 } 6785 6786 return (buf); 6787 } 6788 6789 /* 6790 * Called via squeue to get on to eager's perimeter. It sends a 6791 * TH_RST if eager is in the fanout table. The listener wants the 6792 * eager to disappear either by means of tcp_eager_blowoff() or 6793 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 6794 * called (via squeue) if the eager cannot be inserted in the 6795 * fanout table in tcp_conn_request(). 6796 */ 6797 /* ARGSUSED */ 6798 void 6799 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 6800 { 6801 conn_t *econnp = (conn_t *)arg; 6802 tcp_t *eager = econnp->conn_tcp; 6803 tcp_t *listener = eager->tcp_listener; 6804 tcp_stack_t *tcps = eager->tcp_tcps; 6805 6806 /* 6807 * We could be called because listener is closing. Since 6808 * the eager is using listener's queue's, its not safe. 6809 * Better use the default queue just to send the TH_RST 6810 * out. 6811 */ 6812 ASSERT(tcps->tcps_g_q != NULL); 6813 eager->tcp_rq = tcps->tcps_g_q; 6814 eager->tcp_wq = WR(tcps->tcps_g_q); 6815 6816 /* 6817 * An eager's conn_fanout will be NULL if it's a duplicate 6818 * for an existing 4-tuples in the conn fanout table. 6819 * We don't want to send an RST out in such case. 6820 */ 6821 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 6822 tcp_xmit_ctl("tcp_eager_kill, can't wait", 6823 eager, eager->tcp_snxt, 0, TH_RST); 6824 } 6825 6826 /* We are here because listener wants this eager gone */ 6827 if (listener != NULL) { 6828 mutex_enter(&listener->tcp_eager_lock); 6829 tcp_eager_unlink(eager); 6830 if (eager->tcp_tconnind_started) { 6831 /* 6832 * The eager has sent a conn_ind up to the 6833 * listener but listener decides to close 6834 * instead. We need to drop the extra ref 6835 * placed on eager in tcp_rput_data() before 6836 * sending the conn_ind to listener. 6837 */ 6838 CONN_DEC_REF(econnp); 6839 } 6840 mutex_exit(&listener->tcp_eager_lock); 6841 CONN_DEC_REF(listener->tcp_connp); 6842 } 6843 6844 if (eager->tcp_state != TCPS_CLOSED) 6845 tcp_close_detached(eager); 6846 } 6847 6848 /* 6849 * Reset any eager connection hanging off this listener marked 6850 * with 'seqnum' and then reclaim it's resources. 6851 */ 6852 static boolean_t 6853 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 6854 { 6855 tcp_t *eager; 6856 mblk_t *mp; 6857 tcp_stack_t *tcps = listener->tcp_tcps; 6858 6859 TCP_STAT(tcps, tcp_eager_blowoff_calls); 6860 eager = listener; 6861 mutex_enter(&listener->tcp_eager_lock); 6862 do { 6863 eager = eager->tcp_eager_next_q; 6864 if (eager == NULL) { 6865 mutex_exit(&listener->tcp_eager_lock); 6866 return (B_FALSE); 6867 } 6868 } while (eager->tcp_conn_req_seqnum != seqnum); 6869 6870 if (eager->tcp_closemp_used) { 6871 mutex_exit(&listener->tcp_eager_lock); 6872 return (B_TRUE); 6873 } 6874 eager->tcp_closemp_used = B_TRUE; 6875 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6876 CONN_INC_REF(eager->tcp_connp); 6877 mutex_exit(&listener->tcp_eager_lock); 6878 mp = &eager->tcp_closemp; 6879 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 6880 eager->tcp_connp, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 6881 return (B_TRUE); 6882 } 6883 6884 /* 6885 * Reset any eager connection hanging off this listener 6886 * and then reclaim it's resources. 6887 */ 6888 static void 6889 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 6890 { 6891 tcp_t *eager; 6892 mblk_t *mp; 6893 tcp_stack_t *tcps = listener->tcp_tcps; 6894 6895 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6896 6897 if (!q0_only) { 6898 /* First cleanup q */ 6899 TCP_STAT(tcps, tcp_eager_blowoff_q); 6900 eager = listener->tcp_eager_next_q; 6901 while (eager != NULL) { 6902 if (!eager->tcp_closemp_used) { 6903 eager->tcp_closemp_used = B_TRUE; 6904 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6905 CONN_INC_REF(eager->tcp_connp); 6906 mp = &eager->tcp_closemp; 6907 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6908 tcp_eager_kill, eager->tcp_connp, 6909 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 6910 } 6911 eager = eager->tcp_eager_next_q; 6912 } 6913 } 6914 /* Then cleanup q0 */ 6915 TCP_STAT(tcps, tcp_eager_blowoff_q0); 6916 eager = listener->tcp_eager_next_q0; 6917 while (eager != listener) { 6918 if (!eager->tcp_closemp_used) { 6919 eager->tcp_closemp_used = B_TRUE; 6920 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6921 CONN_INC_REF(eager->tcp_connp); 6922 mp = &eager->tcp_closemp; 6923 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6924 tcp_eager_kill, eager->tcp_connp, SQ_FILL, 6925 SQTAG_TCP_EAGER_CLEANUP_Q0); 6926 } 6927 eager = eager->tcp_eager_next_q0; 6928 } 6929 } 6930 6931 /* 6932 * If we are an eager connection hanging off a listener that hasn't 6933 * formally accepted the connection yet, get off his list and blow off 6934 * any data that we have accumulated. 6935 */ 6936 static void 6937 tcp_eager_unlink(tcp_t *tcp) 6938 { 6939 tcp_t *listener = tcp->tcp_listener; 6940 6941 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6942 ASSERT(listener != NULL); 6943 if (tcp->tcp_eager_next_q0 != NULL) { 6944 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 6945 6946 /* Remove the eager tcp from q0 */ 6947 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 6948 tcp->tcp_eager_prev_q0; 6949 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 6950 tcp->tcp_eager_next_q0; 6951 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 6952 listener->tcp_conn_req_cnt_q0--; 6953 6954 tcp->tcp_eager_next_q0 = NULL; 6955 tcp->tcp_eager_prev_q0 = NULL; 6956 6957 /* 6958 * Take the eager out, if it is in the list of droppable 6959 * eagers. 6960 */ 6961 MAKE_UNDROPPABLE(tcp); 6962 6963 if (tcp->tcp_syn_rcvd_timeout != 0) { 6964 /* we have timed out before */ 6965 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 6966 listener->tcp_syn_rcvd_timeout--; 6967 } 6968 } else { 6969 tcp_t **tcpp = &listener->tcp_eager_next_q; 6970 tcp_t *prev = NULL; 6971 6972 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 6973 if (tcpp[0] == tcp) { 6974 if (listener->tcp_eager_last_q == tcp) { 6975 /* 6976 * If we are unlinking the last 6977 * element on the list, adjust 6978 * tail pointer. Set tail pointer 6979 * to nil when list is empty. 6980 */ 6981 ASSERT(tcp->tcp_eager_next_q == NULL); 6982 if (listener->tcp_eager_last_q == 6983 listener->tcp_eager_next_q) { 6984 listener->tcp_eager_last_q = 6985 NULL; 6986 } else { 6987 /* 6988 * We won't get here if there 6989 * is only one eager in the 6990 * list. 6991 */ 6992 ASSERT(prev != NULL); 6993 listener->tcp_eager_last_q = 6994 prev; 6995 } 6996 } 6997 tcpp[0] = tcp->tcp_eager_next_q; 6998 tcp->tcp_eager_next_q = NULL; 6999 tcp->tcp_eager_last_q = NULL; 7000 ASSERT(listener->tcp_conn_req_cnt_q > 0); 7001 listener->tcp_conn_req_cnt_q--; 7002 break; 7003 } 7004 prev = tcpp[0]; 7005 } 7006 } 7007 tcp->tcp_listener = NULL; 7008 } 7009 7010 /* Shorthand to generate and send TPI error acks to our client */ 7011 static void 7012 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 7013 { 7014 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7015 putnext(tcp->tcp_rq, mp); 7016 } 7017 7018 /* Shorthand to generate and send TPI error acks to our client */ 7019 static void 7020 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7021 int t_error, int sys_error) 7022 { 7023 struct T_error_ack *teackp; 7024 7025 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7026 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7027 teackp = (struct T_error_ack *)mp->b_rptr; 7028 teackp->ERROR_prim = primitive; 7029 teackp->TLI_error = t_error; 7030 teackp->UNIX_error = sys_error; 7031 putnext(tcp->tcp_rq, mp); 7032 } 7033 } 7034 7035 /* 7036 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7037 * but instead the code relies on: 7038 * - the fact that the address of the array and its size never changes 7039 * - the atomic assignment of the elements of the array 7040 */ 7041 /* ARGSUSED */ 7042 static int 7043 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7044 { 7045 int i; 7046 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7047 7048 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7049 if (tcps->tcps_g_epriv_ports[i] != 0) 7050 (void) mi_mpprintf(mp, "%d ", 7051 tcps->tcps_g_epriv_ports[i]); 7052 } 7053 return (0); 7054 } 7055 7056 /* 7057 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7058 * threads from changing it at the same time. 7059 */ 7060 /* ARGSUSED */ 7061 static int 7062 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7063 cred_t *cr) 7064 { 7065 long new_value; 7066 int i; 7067 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7068 7069 /* 7070 * Fail the request if the new value does not lie within the 7071 * port number limits. 7072 */ 7073 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7074 new_value <= 0 || new_value >= 65536) { 7075 return (EINVAL); 7076 } 7077 7078 mutex_enter(&tcps->tcps_epriv_port_lock); 7079 /* Check if the value is already in the list */ 7080 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7081 if (new_value == tcps->tcps_g_epriv_ports[i]) { 7082 mutex_exit(&tcps->tcps_epriv_port_lock); 7083 return (EEXIST); 7084 } 7085 } 7086 /* Find an empty slot */ 7087 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7088 if (tcps->tcps_g_epriv_ports[i] == 0) 7089 break; 7090 } 7091 if (i == tcps->tcps_g_num_epriv_ports) { 7092 mutex_exit(&tcps->tcps_epriv_port_lock); 7093 return (EOVERFLOW); 7094 } 7095 /* Set the new value */ 7096 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 7097 mutex_exit(&tcps->tcps_epriv_port_lock); 7098 return (0); 7099 } 7100 7101 /* 7102 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7103 * threads from changing it at the same time. 7104 */ 7105 /* ARGSUSED */ 7106 static int 7107 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7108 cred_t *cr) 7109 { 7110 long new_value; 7111 int i; 7112 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7113 7114 /* 7115 * Fail the request if the new value does not lie within the 7116 * port number limits. 7117 */ 7118 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7119 new_value >= 65536) { 7120 return (EINVAL); 7121 } 7122 7123 mutex_enter(&tcps->tcps_epriv_port_lock); 7124 /* Check that the value is already in the list */ 7125 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7126 if (tcps->tcps_g_epriv_ports[i] == new_value) 7127 break; 7128 } 7129 if (i == tcps->tcps_g_num_epriv_ports) { 7130 mutex_exit(&tcps->tcps_epriv_port_lock); 7131 return (ESRCH); 7132 } 7133 /* Clear the value */ 7134 tcps->tcps_g_epriv_ports[i] = 0; 7135 mutex_exit(&tcps->tcps_epriv_port_lock); 7136 return (0); 7137 } 7138 7139 /* Return the TPI/TLI equivalent of our current tcp_state */ 7140 static int 7141 tcp_tpistate(tcp_t *tcp) 7142 { 7143 switch (tcp->tcp_state) { 7144 case TCPS_IDLE: 7145 return (TS_UNBND); 7146 case TCPS_LISTEN: 7147 /* 7148 * Return whether there are outstanding T_CONN_IND waiting 7149 * for the matching T_CONN_RES. Therefore don't count q0. 7150 */ 7151 if (tcp->tcp_conn_req_cnt_q > 0) 7152 return (TS_WRES_CIND); 7153 else 7154 return (TS_IDLE); 7155 case TCPS_BOUND: 7156 return (TS_IDLE); 7157 case TCPS_SYN_SENT: 7158 return (TS_WCON_CREQ); 7159 case TCPS_SYN_RCVD: 7160 /* 7161 * Note: assumption: this has to the active open SYN_RCVD. 7162 * The passive instance is detached in SYN_RCVD stage of 7163 * incoming connection processing so we cannot get request 7164 * for T_info_ack on it. 7165 */ 7166 return (TS_WACK_CRES); 7167 case TCPS_ESTABLISHED: 7168 return (TS_DATA_XFER); 7169 case TCPS_CLOSE_WAIT: 7170 return (TS_WREQ_ORDREL); 7171 case TCPS_FIN_WAIT_1: 7172 return (TS_WIND_ORDREL); 7173 case TCPS_FIN_WAIT_2: 7174 return (TS_WIND_ORDREL); 7175 7176 case TCPS_CLOSING: 7177 case TCPS_LAST_ACK: 7178 case TCPS_TIME_WAIT: 7179 case TCPS_CLOSED: 7180 /* 7181 * Following TS_WACK_DREQ7 is a rendition of "not 7182 * yet TS_IDLE" TPI state. There is no best match to any 7183 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7184 * choose a value chosen that will map to TLI/XTI level 7185 * state of TSTATECHNG (state is process of changing) which 7186 * captures what this dummy state represents. 7187 */ 7188 return (TS_WACK_DREQ7); 7189 default: 7190 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7191 tcp->tcp_state, tcp_display(tcp, NULL, 7192 DISP_PORT_ONLY)); 7193 return (TS_UNBND); 7194 } 7195 } 7196 7197 static void 7198 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7199 { 7200 tcp_stack_t *tcps = tcp->tcp_tcps; 7201 7202 if (tcp->tcp_family == AF_INET6) 7203 *tia = tcp_g_t_info_ack_v6; 7204 else 7205 *tia = tcp_g_t_info_ack; 7206 tia->CURRENT_state = tcp_tpistate(tcp); 7207 tia->OPT_size = tcp_max_optsize; 7208 if (tcp->tcp_mss == 0) { 7209 /* Not yet set - tcp_open does not set mss */ 7210 if (tcp->tcp_ipversion == IPV4_VERSION) 7211 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 7212 else 7213 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 7214 } else { 7215 tia->TIDU_size = tcp->tcp_mss; 7216 } 7217 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7218 } 7219 7220 static void 7221 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap, 7222 t_uscalar_t cap_bits1) 7223 { 7224 tcap->CAP_bits1 = 0; 7225 7226 if (cap_bits1 & TC1_INFO) { 7227 tcp_copy_info(&tcap->INFO_ack, tcp); 7228 tcap->CAP_bits1 |= TC1_INFO; 7229 } 7230 7231 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7232 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7233 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7234 } 7235 7236 } 7237 7238 /* 7239 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7240 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7241 * tcp_g_t_info_ack. The current state of the stream is copied from 7242 * tcp_state. 7243 */ 7244 static void 7245 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7246 { 7247 t_uscalar_t cap_bits1; 7248 struct T_capability_ack *tcap; 7249 7250 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7251 freemsg(mp); 7252 return; 7253 } 7254 7255 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7256 7257 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7258 mp->b_datap->db_type, T_CAPABILITY_ACK); 7259 if (mp == NULL) 7260 return; 7261 7262 tcap = (struct T_capability_ack *)mp->b_rptr; 7263 tcp_do_capability_ack(tcp, tcap, cap_bits1); 7264 7265 putnext(tcp->tcp_rq, mp); 7266 } 7267 7268 /* 7269 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7270 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7271 * The current state of the stream is copied from tcp_state. 7272 */ 7273 static void 7274 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7275 { 7276 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7277 T_INFO_ACK); 7278 if (!mp) { 7279 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7280 return; 7281 } 7282 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7283 putnext(tcp->tcp_rq, mp); 7284 } 7285 7286 /* Respond to the TPI addr request */ 7287 static void 7288 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7289 { 7290 sin_t *sin; 7291 mblk_t *ackmp; 7292 struct T_addr_ack *taa; 7293 7294 /* Make it large enough for worst case */ 7295 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7296 2 * sizeof (sin6_t), 1); 7297 if (ackmp == NULL) { 7298 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7299 return; 7300 } 7301 7302 if (tcp->tcp_ipversion == IPV6_VERSION) { 7303 tcp_addr_req_ipv6(tcp, ackmp); 7304 return; 7305 } 7306 taa = (struct T_addr_ack *)ackmp->b_rptr; 7307 7308 bzero(taa, sizeof (struct T_addr_ack)); 7309 ackmp->b_wptr = (uchar_t *)&taa[1]; 7310 7311 taa->PRIM_type = T_ADDR_ACK; 7312 ackmp->b_datap->db_type = M_PCPROTO; 7313 7314 /* 7315 * Note: Following code assumes 32 bit alignment of basic 7316 * data structures like sin_t and struct T_addr_ack. 7317 */ 7318 if (tcp->tcp_state >= TCPS_BOUND) { 7319 /* 7320 * Fill in local address 7321 */ 7322 taa->LOCADDR_length = sizeof (sin_t); 7323 taa->LOCADDR_offset = sizeof (*taa); 7324 7325 sin = (sin_t *)&taa[1]; 7326 7327 /* Fill zeroes and then intialize non-zero fields */ 7328 *sin = sin_null; 7329 7330 sin->sin_family = AF_INET; 7331 7332 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7333 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7334 7335 ackmp->b_wptr = (uchar_t *)&sin[1]; 7336 7337 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7338 /* 7339 * Fill in Remote address 7340 */ 7341 taa->REMADDR_length = sizeof (sin_t); 7342 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7343 taa->LOCADDR_length); 7344 7345 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7346 *sin = sin_null; 7347 sin->sin_family = AF_INET; 7348 sin->sin_addr.s_addr = tcp->tcp_remote; 7349 sin->sin_port = tcp->tcp_fport; 7350 7351 ackmp->b_wptr = (uchar_t *)&sin[1]; 7352 } 7353 } 7354 putnext(tcp->tcp_rq, ackmp); 7355 } 7356 7357 /* Assumes that tcp_addr_req gets enough space and alignment */ 7358 static void 7359 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7360 { 7361 sin6_t *sin6; 7362 struct T_addr_ack *taa; 7363 7364 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7365 ASSERT(OK_32PTR(ackmp->b_rptr)); 7366 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7367 2 * sizeof (sin6_t)); 7368 7369 taa = (struct T_addr_ack *)ackmp->b_rptr; 7370 7371 bzero(taa, sizeof (struct T_addr_ack)); 7372 ackmp->b_wptr = (uchar_t *)&taa[1]; 7373 7374 taa->PRIM_type = T_ADDR_ACK; 7375 ackmp->b_datap->db_type = M_PCPROTO; 7376 7377 /* 7378 * Note: Following code assumes 32 bit alignment of basic 7379 * data structures like sin6_t and struct T_addr_ack. 7380 */ 7381 if (tcp->tcp_state >= TCPS_BOUND) { 7382 /* 7383 * Fill in local address 7384 */ 7385 taa->LOCADDR_length = sizeof (sin6_t); 7386 taa->LOCADDR_offset = sizeof (*taa); 7387 7388 sin6 = (sin6_t *)&taa[1]; 7389 *sin6 = sin6_null; 7390 7391 sin6->sin6_family = AF_INET6; 7392 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7393 sin6->sin6_port = tcp->tcp_lport; 7394 7395 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7396 7397 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7398 /* 7399 * Fill in Remote address 7400 */ 7401 taa->REMADDR_length = sizeof (sin6_t); 7402 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7403 taa->LOCADDR_length); 7404 7405 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7406 *sin6 = sin6_null; 7407 sin6->sin6_family = AF_INET6; 7408 sin6->sin6_flowinfo = 7409 tcp->tcp_ip6h->ip6_vcf & 7410 ~IPV6_VERS_AND_FLOW_MASK; 7411 sin6->sin6_addr = tcp->tcp_remote_v6; 7412 sin6->sin6_port = tcp->tcp_fport; 7413 7414 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7415 } 7416 } 7417 putnext(tcp->tcp_rq, ackmp); 7418 } 7419 7420 /* 7421 * Handle reinitialization of a tcp structure. 7422 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7423 */ 7424 static void 7425 tcp_reinit(tcp_t *tcp) 7426 { 7427 mblk_t *mp; 7428 int err; 7429 tcp_stack_t *tcps = tcp->tcp_tcps; 7430 7431 TCP_STAT(tcps, tcp_reinit_calls); 7432 7433 /* tcp_reinit should never be called for detached tcp_t's */ 7434 ASSERT(tcp->tcp_listener == NULL); 7435 ASSERT((tcp->tcp_family == AF_INET && 7436 tcp->tcp_ipversion == IPV4_VERSION) || 7437 (tcp->tcp_family == AF_INET6 && 7438 (tcp->tcp_ipversion == IPV4_VERSION || 7439 tcp->tcp_ipversion == IPV6_VERSION))); 7440 7441 /* Cancel outstanding timers */ 7442 tcp_timers_stop(tcp); 7443 7444 /* 7445 * Reset everything in the state vector, after updating global 7446 * MIB data from instance counters. 7447 */ 7448 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 7449 tcp->tcp_ibsegs = 0; 7450 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 7451 tcp->tcp_obsegs = 0; 7452 7453 tcp_close_mpp(&tcp->tcp_xmit_head); 7454 if (tcp->tcp_snd_zcopy_aware) 7455 tcp_zcopy_notify(tcp); 7456 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7457 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7458 mutex_enter(&tcp->tcp_non_sq_lock); 7459 if (tcp->tcp_flow_stopped && 7460 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7461 tcp_clrqfull(tcp); 7462 } 7463 mutex_exit(&tcp->tcp_non_sq_lock); 7464 tcp_close_mpp(&tcp->tcp_reass_head); 7465 tcp->tcp_reass_tail = NULL; 7466 if (tcp->tcp_rcv_list != NULL) { 7467 /* Free b_next chain */ 7468 tcp_close_mpp(&tcp->tcp_rcv_list); 7469 tcp->tcp_rcv_last_head = NULL; 7470 tcp->tcp_rcv_last_tail = NULL; 7471 tcp->tcp_rcv_cnt = 0; 7472 } 7473 tcp->tcp_rcv_last_tail = NULL; 7474 7475 if ((mp = tcp->tcp_urp_mp) != NULL) { 7476 freemsg(mp); 7477 tcp->tcp_urp_mp = NULL; 7478 } 7479 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7480 freemsg(mp); 7481 tcp->tcp_urp_mark_mp = NULL; 7482 } 7483 if (tcp->tcp_fused_sigurg_mp != NULL) { 7484 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7485 freeb(tcp->tcp_fused_sigurg_mp); 7486 tcp->tcp_fused_sigurg_mp = NULL; 7487 } 7488 if (tcp->tcp_ordrel_mp != NULL) { 7489 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7490 freeb(tcp->tcp_ordrel_mp); 7491 tcp->tcp_ordrel_mp = NULL; 7492 } 7493 7494 /* 7495 * Following is a union with two members which are 7496 * identical types and size so the following cleanup 7497 * is enough. 7498 */ 7499 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7500 7501 CL_INET_DISCONNECT(tcp->tcp_connp, tcp); 7502 7503 /* 7504 * The connection can't be on the tcp_time_wait_head list 7505 * since it is not detached. 7506 */ 7507 ASSERT(tcp->tcp_time_wait_next == NULL); 7508 ASSERT(tcp->tcp_time_wait_prev == NULL); 7509 ASSERT(tcp->tcp_time_wait_expire == 0); 7510 7511 if (tcp->tcp_kssl_pending) { 7512 tcp->tcp_kssl_pending = B_FALSE; 7513 7514 /* Don't reset if the initialized by bind. */ 7515 if (tcp->tcp_kssl_ent != NULL) { 7516 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7517 KSSL_NO_PROXY); 7518 } 7519 } 7520 if (tcp->tcp_kssl_ctx != NULL) { 7521 kssl_release_ctx(tcp->tcp_kssl_ctx); 7522 tcp->tcp_kssl_ctx = NULL; 7523 } 7524 7525 /* 7526 * Reset/preserve other values 7527 */ 7528 tcp_reinit_values(tcp); 7529 ipcl_hash_remove(tcp->tcp_connp); 7530 conn_delete_ire(tcp->tcp_connp, NULL); 7531 tcp_ipsec_cleanup(tcp); 7532 7533 if (tcp->tcp_connp->conn_effective_cred != NULL) { 7534 crfree(tcp->tcp_connp->conn_effective_cred); 7535 tcp->tcp_connp->conn_effective_cred = NULL; 7536 } 7537 7538 if (tcp->tcp_conn_req_max != 0) { 7539 /* 7540 * This is the case when a TLI program uses the same 7541 * transport end point to accept a connection. This 7542 * makes the TCP both a listener and acceptor. When 7543 * this connection is closed, we need to set the state 7544 * back to TCPS_LISTEN. Make sure that the eager list 7545 * is reinitialized. 7546 * 7547 * Note that this stream is still bound to the four 7548 * tuples of the previous connection in IP. If a new 7549 * SYN with different foreign address comes in, IP will 7550 * not find it and will send it to the global queue. In 7551 * the global queue, TCP will do a tcp_lookup_listener() 7552 * to find this stream. This works because this stream 7553 * is only removed from connected hash. 7554 * 7555 */ 7556 tcp->tcp_state = TCPS_LISTEN; 7557 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7558 tcp->tcp_eager_next_drop_q0 = tcp; 7559 tcp->tcp_eager_prev_drop_q0 = tcp; 7560 tcp->tcp_connp->conn_recv = tcp_conn_request; 7561 if (tcp->tcp_family == AF_INET6) { 7562 ASSERT(tcp->tcp_connp->conn_af_isv6); 7563 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7564 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7565 } else { 7566 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7567 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7568 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7569 } 7570 } else { 7571 tcp->tcp_state = TCPS_BOUND; 7572 } 7573 7574 /* 7575 * Initialize to default values 7576 * Can't fail since enough header template space already allocated 7577 * at open(). 7578 */ 7579 err = tcp_init_values(tcp); 7580 ASSERT(err == 0); 7581 /* Restore state in tcp_tcph */ 7582 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7583 if (tcp->tcp_ipversion == IPV4_VERSION) 7584 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7585 else 7586 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7587 /* 7588 * Copy of the src addr. in tcp_t is needed in tcp_t 7589 * since the lookup funcs can only lookup on tcp_t 7590 */ 7591 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7592 7593 ASSERT(tcp->tcp_ptpbhn != NULL); 7594 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 7595 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 7596 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 7597 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7598 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 7599 } 7600 7601 /* 7602 * Force values to zero that need be zero. 7603 * Do not touch values asociated with the BOUND or LISTEN state 7604 * since the connection will end up in that state after the reinit. 7605 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7606 * structure! 7607 */ 7608 static void 7609 tcp_reinit_values(tcp) 7610 tcp_t *tcp; 7611 { 7612 tcp_stack_t *tcps = tcp->tcp_tcps; 7613 7614 #ifndef lint 7615 #define DONTCARE(x) 7616 #define PRESERVE(x) 7617 #else 7618 #define DONTCARE(x) ((x) = (x)) 7619 #define PRESERVE(x) ((x) = (x)) 7620 #endif /* lint */ 7621 7622 PRESERVE(tcp->tcp_bind_hash_port); 7623 PRESERVE(tcp->tcp_bind_hash); 7624 PRESERVE(tcp->tcp_ptpbhn); 7625 PRESERVE(tcp->tcp_acceptor_hash); 7626 PRESERVE(tcp->tcp_ptpahn); 7627 7628 /* Should be ASSERT NULL on these with new code! */ 7629 ASSERT(tcp->tcp_time_wait_next == NULL); 7630 ASSERT(tcp->tcp_time_wait_prev == NULL); 7631 ASSERT(tcp->tcp_time_wait_expire == 0); 7632 PRESERVE(tcp->tcp_state); 7633 PRESERVE(tcp->tcp_rq); 7634 PRESERVE(tcp->tcp_wq); 7635 7636 ASSERT(tcp->tcp_xmit_head == NULL); 7637 ASSERT(tcp->tcp_xmit_last == NULL); 7638 ASSERT(tcp->tcp_unsent == 0); 7639 ASSERT(tcp->tcp_xmit_tail == NULL); 7640 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7641 7642 tcp->tcp_snxt = 0; /* Displayed in mib */ 7643 tcp->tcp_suna = 0; /* Displayed in mib */ 7644 tcp->tcp_swnd = 0; 7645 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7646 7647 ASSERT(tcp->tcp_ibsegs == 0); 7648 ASSERT(tcp->tcp_obsegs == 0); 7649 7650 if (tcp->tcp_iphc != NULL) { 7651 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7652 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7653 } 7654 7655 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7656 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7657 DONTCARE(tcp->tcp_ipha); 7658 DONTCARE(tcp->tcp_ip6h); 7659 DONTCARE(tcp->tcp_ip_hdr_len); 7660 DONTCARE(tcp->tcp_tcph); 7661 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7662 tcp->tcp_valid_bits = 0; 7663 7664 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7665 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7666 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7667 tcp->tcp_last_rcv_lbolt = 0; 7668 7669 tcp->tcp_init_cwnd = 0; 7670 7671 tcp->tcp_urp_last_valid = 0; 7672 tcp->tcp_hard_binding = 0; 7673 tcp->tcp_hard_bound = 0; 7674 PRESERVE(tcp->tcp_cred); 7675 PRESERVE(tcp->tcp_cpid); 7676 PRESERVE(tcp->tcp_open_time); 7677 PRESERVE(tcp->tcp_exclbind); 7678 7679 tcp->tcp_fin_acked = 0; 7680 tcp->tcp_fin_rcvd = 0; 7681 tcp->tcp_fin_sent = 0; 7682 tcp->tcp_ordrel_done = 0; 7683 7684 tcp->tcp_debug = 0; 7685 tcp->tcp_dontroute = 0; 7686 tcp->tcp_broadcast = 0; 7687 7688 tcp->tcp_useloopback = 0; 7689 tcp->tcp_reuseaddr = 0; 7690 tcp->tcp_oobinline = 0; 7691 tcp->tcp_dgram_errind = 0; 7692 7693 tcp->tcp_detached = 0; 7694 tcp->tcp_bind_pending = 0; 7695 tcp->tcp_unbind_pending = 0; 7696 7697 tcp->tcp_snd_ws_ok = B_FALSE; 7698 tcp->tcp_snd_ts_ok = B_FALSE; 7699 tcp->tcp_linger = 0; 7700 tcp->tcp_ka_enabled = 0; 7701 tcp->tcp_zero_win_probe = 0; 7702 7703 tcp->tcp_loopback = 0; 7704 tcp->tcp_refuse = 0; 7705 tcp->tcp_localnet = 0; 7706 tcp->tcp_syn_defense = 0; 7707 tcp->tcp_set_timer = 0; 7708 7709 tcp->tcp_active_open = 0; 7710 tcp->tcp_rexmit = B_FALSE; 7711 tcp->tcp_xmit_zc_clean = B_FALSE; 7712 7713 tcp->tcp_snd_sack_ok = B_FALSE; 7714 PRESERVE(tcp->tcp_recvdstaddr); 7715 tcp->tcp_hwcksum = B_FALSE; 7716 7717 tcp->tcp_ire_ill_check_done = B_FALSE; 7718 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7719 7720 tcp->tcp_mdt = B_FALSE; 7721 tcp->tcp_mdt_hdr_head = 0; 7722 tcp->tcp_mdt_hdr_tail = 0; 7723 7724 tcp->tcp_conn_def_q0 = 0; 7725 tcp->tcp_ip_forward_progress = B_FALSE; 7726 tcp->tcp_anon_priv_bind = 0; 7727 tcp->tcp_ecn_ok = B_FALSE; 7728 7729 tcp->tcp_cwr = B_FALSE; 7730 tcp->tcp_ecn_echo_on = B_FALSE; 7731 tcp->tcp_is_wnd_shrnk = B_FALSE; 7732 7733 if (tcp->tcp_sack_info != NULL) { 7734 if (tcp->tcp_notsack_list != NULL) { 7735 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 7736 tcp); 7737 } 7738 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7739 tcp->tcp_sack_info = NULL; 7740 } 7741 7742 tcp->tcp_rcv_ws = 0; 7743 tcp->tcp_snd_ws = 0; 7744 tcp->tcp_ts_recent = 0; 7745 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7746 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7747 tcp->tcp_if_mtu = 0; 7748 7749 ASSERT(tcp->tcp_reass_head == NULL); 7750 ASSERT(tcp->tcp_reass_tail == NULL); 7751 7752 tcp->tcp_cwnd_cnt = 0; 7753 7754 ASSERT(tcp->tcp_rcv_list == NULL); 7755 ASSERT(tcp->tcp_rcv_last_head == NULL); 7756 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7757 ASSERT(tcp->tcp_rcv_cnt == 0); 7758 7759 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 7760 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 7761 tcp->tcp_csuna = 0; 7762 7763 tcp->tcp_rto = 0; /* Displayed in MIB */ 7764 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 7765 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 7766 tcp->tcp_rtt_update = 0; 7767 7768 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7769 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7770 7771 tcp->tcp_rack = 0; /* Displayed in mib */ 7772 tcp->tcp_rack_cnt = 0; 7773 tcp->tcp_rack_cur_max = 0; 7774 tcp->tcp_rack_abs_max = 0; 7775 7776 tcp->tcp_max_swnd = 0; 7777 7778 ASSERT(tcp->tcp_listener == NULL); 7779 7780 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 7781 7782 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 7783 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 7784 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 7785 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 7786 7787 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 7788 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 7789 PRESERVE(tcp->tcp_conn_req_max); 7790 PRESERVE(tcp->tcp_conn_req_seqnum); 7791 7792 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 7793 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 7794 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 7795 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 7796 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 7797 7798 tcp->tcp_lingertime = 0; 7799 7800 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 7801 ASSERT(tcp->tcp_urp_mp == NULL); 7802 ASSERT(tcp->tcp_urp_mark_mp == NULL); 7803 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 7804 7805 ASSERT(tcp->tcp_eager_next_q == NULL); 7806 ASSERT(tcp->tcp_eager_last_q == NULL); 7807 ASSERT((tcp->tcp_eager_next_q0 == NULL && 7808 tcp->tcp_eager_prev_q0 == NULL) || 7809 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 7810 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 7811 7812 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 7813 tcp->tcp_eager_prev_drop_q0 == NULL) || 7814 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 7815 7816 tcp->tcp_client_errno = 0; 7817 7818 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 7819 7820 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 7821 7822 PRESERVE(tcp->tcp_bound_source_v6); 7823 tcp->tcp_last_sent_len = 0; 7824 tcp->tcp_dupack_cnt = 0; 7825 7826 tcp->tcp_fport = 0; /* Displayed in MIB */ 7827 PRESERVE(tcp->tcp_lport); 7828 7829 PRESERVE(tcp->tcp_acceptor_lockp); 7830 7831 ASSERT(tcp->tcp_ordrel_mp == NULL); 7832 PRESERVE(tcp->tcp_acceptor_id); 7833 DONTCARE(tcp->tcp_ipsec_overhead); 7834 7835 PRESERVE(tcp->tcp_family); 7836 if (tcp->tcp_family == AF_INET6) { 7837 tcp->tcp_ipversion = IPV6_VERSION; 7838 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 7839 } else { 7840 tcp->tcp_ipversion = IPV4_VERSION; 7841 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 7842 } 7843 7844 tcp->tcp_bound_if = 0; 7845 tcp->tcp_ipv6_recvancillary = 0; 7846 tcp->tcp_recvifindex = 0; 7847 tcp->tcp_recvhops = 0; 7848 tcp->tcp_closed = 0; 7849 tcp->tcp_cleandeathtag = 0; 7850 if (tcp->tcp_hopopts != NULL) { 7851 mi_free(tcp->tcp_hopopts); 7852 tcp->tcp_hopopts = NULL; 7853 tcp->tcp_hopoptslen = 0; 7854 } 7855 ASSERT(tcp->tcp_hopoptslen == 0); 7856 if (tcp->tcp_dstopts != NULL) { 7857 mi_free(tcp->tcp_dstopts); 7858 tcp->tcp_dstopts = NULL; 7859 tcp->tcp_dstoptslen = 0; 7860 } 7861 ASSERT(tcp->tcp_dstoptslen == 0); 7862 if (tcp->tcp_rtdstopts != NULL) { 7863 mi_free(tcp->tcp_rtdstopts); 7864 tcp->tcp_rtdstopts = NULL; 7865 tcp->tcp_rtdstoptslen = 0; 7866 } 7867 ASSERT(tcp->tcp_rtdstoptslen == 0); 7868 if (tcp->tcp_rthdr != NULL) { 7869 mi_free(tcp->tcp_rthdr); 7870 tcp->tcp_rthdr = NULL; 7871 tcp->tcp_rthdrlen = 0; 7872 } 7873 ASSERT(tcp->tcp_rthdrlen == 0); 7874 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 7875 7876 /* Reset fusion-related fields */ 7877 tcp->tcp_fused = B_FALSE; 7878 tcp->tcp_unfusable = B_FALSE; 7879 tcp->tcp_fused_sigurg = B_FALSE; 7880 tcp->tcp_loopback_peer = NULL; 7881 7882 tcp->tcp_lso = B_FALSE; 7883 7884 tcp->tcp_in_ack_unsent = 0; 7885 tcp->tcp_cork = B_FALSE; 7886 tcp->tcp_tconnind_started = B_FALSE; 7887 7888 PRESERVE(tcp->tcp_squeue_bytes); 7889 7890 ASSERT(tcp->tcp_kssl_ctx == NULL); 7891 ASSERT(!tcp->tcp_kssl_pending); 7892 PRESERVE(tcp->tcp_kssl_ent); 7893 7894 tcp->tcp_closemp_used = B_FALSE; 7895 7896 PRESERVE(tcp->tcp_rsrv_mp); 7897 PRESERVE(tcp->tcp_rsrv_mp_lock); 7898 7899 #ifdef DEBUG 7900 DONTCARE(tcp->tcmp_stk[0]); 7901 #endif 7902 7903 PRESERVE(tcp->tcp_connid); 7904 7905 7906 #undef DONTCARE 7907 #undef PRESERVE 7908 } 7909 7910 /* 7911 * Allocate necessary resources and initialize state vector. 7912 * Guaranteed not to fail so that when an error is returned, 7913 * the caller doesn't need to do any additional cleanup. 7914 */ 7915 int 7916 tcp_init(tcp_t *tcp, queue_t *q) 7917 { 7918 int err; 7919 7920 tcp->tcp_rq = q; 7921 tcp->tcp_wq = WR(q); 7922 tcp->tcp_state = TCPS_IDLE; 7923 if ((err = tcp_init_values(tcp)) != 0) 7924 tcp_timers_stop(tcp); 7925 return (err); 7926 } 7927 7928 static int 7929 tcp_init_values(tcp_t *tcp) 7930 { 7931 int err; 7932 tcp_stack_t *tcps = tcp->tcp_tcps; 7933 7934 ASSERT((tcp->tcp_family == AF_INET && 7935 tcp->tcp_ipversion == IPV4_VERSION) || 7936 (tcp->tcp_family == AF_INET6 && 7937 (tcp->tcp_ipversion == IPV4_VERSION || 7938 tcp->tcp_ipversion == IPV6_VERSION))); 7939 7940 /* 7941 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 7942 * will be close to tcp_rexmit_interval_initial. By doing this, we 7943 * allow the algorithm to adjust slowly to large fluctuations of RTT 7944 * during first few transmissions of a connection as seen in slow 7945 * links. 7946 */ 7947 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 7948 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 7949 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 7950 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 7951 tcps->tcps_conn_grace_period; 7952 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 7953 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 7954 tcp->tcp_timer_backoff = 0; 7955 tcp->tcp_ms_we_have_waited = 0; 7956 tcp->tcp_last_recv_time = lbolt; 7957 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 7958 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 7959 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 7960 7961 tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier; 7962 7963 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 7964 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 7965 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 7966 /* 7967 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 7968 * passive open. 7969 */ 7970 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 7971 7972 tcp->tcp_naglim = tcps->tcps_naglim_def; 7973 7974 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 7975 7976 tcp->tcp_mdt_hdr_head = 0; 7977 tcp->tcp_mdt_hdr_tail = 0; 7978 7979 /* Reset fusion-related fields */ 7980 tcp->tcp_fused = B_FALSE; 7981 tcp->tcp_unfusable = B_FALSE; 7982 tcp->tcp_fused_sigurg = B_FALSE; 7983 tcp->tcp_loopback_peer = NULL; 7984 7985 /* Initialize the header template */ 7986 if (tcp->tcp_ipversion == IPV4_VERSION) { 7987 err = tcp_header_init_ipv4(tcp); 7988 } else { 7989 err = tcp_header_init_ipv6(tcp); 7990 } 7991 if (err) 7992 return (err); 7993 7994 /* 7995 * Init the window scale to the max so tcp_rwnd_set() won't pare 7996 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 7997 */ 7998 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 7999 tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat; 8000 tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat; 8001 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 8002 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 8003 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 8004 8005 tcp->tcp_cork = B_FALSE; 8006 /* 8007 * Init the tcp_debug option. This value determines whether TCP 8008 * calls strlog() to print out debug messages. Doing this 8009 * initialization here means that this value is not inherited thru 8010 * tcp_reinit(). 8011 */ 8012 tcp->tcp_debug = tcps->tcps_dbg; 8013 8014 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 8015 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 8016 8017 return (0); 8018 } 8019 8020 /* 8021 * Initialize the IPv4 header. Loses any record of any IP options. 8022 */ 8023 static int 8024 tcp_header_init_ipv4(tcp_t *tcp) 8025 { 8026 tcph_t *tcph; 8027 uint32_t sum; 8028 conn_t *connp; 8029 tcp_stack_t *tcps = tcp->tcp_tcps; 8030 8031 /* 8032 * This is a simple initialization. If there's 8033 * already a template, it should never be too small, 8034 * so reuse it. Otherwise, allocate space for the new one. 8035 */ 8036 if (tcp->tcp_iphc == NULL) { 8037 ASSERT(tcp->tcp_iphc_len == 0); 8038 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8039 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8040 if (tcp->tcp_iphc == NULL) { 8041 tcp->tcp_iphc_len = 0; 8042 return (ENOMEM); 8043 } 8044 } 8045 8046 /* options are gone; may need a new label */ 8047 connp = tcp->tcp_connp; 8048 connp->conn_mlp_type = mlptSingle; 8049 connp->conn_ulp_labeled = !is_system_labeled(); 8050 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8051 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8052 tcp->tcp_ip6h = NULL; 8053 tcp->tcp_ipversion = IPV4_VERSION; 8054 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8055 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8056 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8057 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8058 tcp->tcp_ipha->ipha_version_and_hdr_length 8059 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8060 tcp->tcp_ipha->ipha_ident = 0; 8061 8062 tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8063 tcp->tcp_tos = 0; 8064 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8065 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8066 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8067 8068 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8069 tcp->tcp_tcph = tcph; 8070 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8071 /* 8072 * IP wants our header length in the checksum field to 8073 * allow it to perform a single pseudo-header+checksum 8074 * calculation on behalf of TCP. 8075 * Include the adjustment for a source route once IP_OPTIONS is set. 8076 */ 8077 sum = sizeof (tcph_t) + tcp->tcp_sum; 8078 sum = (sum >> 16) + (sum & 0xFFFF); 8079 U16_TO_ABE16(sum, tcph->th_sum); 8080 return (0); 8081 } 8082 8083 /* 8084 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8085 */ 8086 static int 8087 tcp_header_init_ipv6(tcp_t *tcp) 8088 { 8089 tcph_t *tcph; 8090 uint32_t sum; 8091 conn_t *connp; 8092 tcp_stack_t *tcps = tcp->tcp_tcps; 8093 8094 /* 8095 * This is a simple initialization. If there's 8096 * already a template, it should never be too small, 8097 * so reuse it. Otherwise, allocate space for the new one. 8098 * Ensure that there is enough space to "downgrade" the tcp_t 8099 * to an IPv4 tcp_t. This requires having space for a full load 8100 * of IPv4 options, as well as a full load of TCP options 8101 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8102 * than a v6 header and a TCP header with a full load of TCP options 8103 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8104 * We want to avoid reallocation in the "downgraded" case when 8105 * processing outbound IPv4 options. 8106 */ 8107 if (tcp->tcp_iphc == NULL) { 8108 ASSERT(tcp->tcp_iphc_len == 0); 8109 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8110 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8111 if (tcp->tcp_iphc == NULL) { 8112 tcp->tcp_iphc_len = 0; 8113 return (ENOMEM); 8114 } 8115 } 8116 8117 /* options are gone; may need a new label */ 8118 connp = tcp->tcp_connp; 8119 connp->conn_mlp_type = mlptSingle; 8120 connp->conn_ulp_labeled = !is_system_labeled(); 8121 8122 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8123 tcp->tcp_ipversion = IPV6_VERSION; 8124 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8125 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8126 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8127 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8128 tcp->tcp_ipha = NULL; 8129 8130 /* Initialize the header template */ 8131 8132 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8133 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8134 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8135 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit; 8136 8137 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8138 tcp->tcp_tcph = tcph; 8139 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8140 /* 8141 * IP wants our header length in the checksum field to 8142 * allow it to perform a single psuedo-header+checksum 8143 * calculation on behalf of TCP. 8144 * Include the adjustment for a source route when IPV6_RTHDR is set. 8145 */ 8146 sum = sizeof (tcph_t) + tcp->tcp_sum; 8147 sum = (sum >> 16) + (sum & 0xFFFF); 8148 U16_TO_ABE16(sum, tcph->th_sum); 8149 return (0); 8150 } 8151 8152 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8153 #define ICMP_MIN_TCP_HDR 8 8154 8155 /* 8156 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8157 * passed up by IP. The message is always received on the correct tcp_t. 8158 * Assumes that IP has pulled up everything up to and including the ICMP header. 8159 */ 8160 void 8161 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8162 { 8163 icmph_t *icmph; 8164 ipha_t *ipha; 8165 int iph_hdr_length; 8166 tcph_t *tcph; 8167 boolean_t ipsec_mctl = B_FALSE; 8168 boolean_t secure; 8169 mblk_t *first_mp = mp; 8170 int32_t new_mss; 8171 uint32_t ratio; 8172 size_t mp_size = MBLKL(mp); 8173 uint32_t seg_seq; 8174 tcp_stack_t *tcps = tcp->tcp_tcps; 8175 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 8176 8177 /* Assume IP provides aligned packets - otherwise toss */ 8178 if (!OK_32PTR(mp->b_rptr)) { 8179 freemsg(mp); 8180 return; 8181 } 8182 8183 /* 8184 * Since ICMP errors are normal data marked with M_CTL when sent 8185 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8186 * packets starting with an ipsec_info_t, see ipsec_info.h. 8187 */ 8188 if ((mp_size == sizeof (ipsec_info_t)) && 8189 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8190 ASSERT(mp->b_cont != NULL); 8191 mp = mp->b_cont; 8192 /* IP should have done this */ 8193 ASSERT(OK_32PTR(mp->b_rptr)); 8194 mp_size = MBLKL(mp); 8195 ipsec_mctl = B_TRUE; 8196 } 8197 8198 /* 8199 * Verify that we have a complete outer IP header. If not, drop it. 8200 */ 8201 if (mp_size < sizeof (ipha_t)) { 8202 noticmpv4: 8203 freemsg(first_mp); 8204 return; 8205 } 8206 8207 ipha = (ipha_t *)mp->b_rptr; 8208 /* 8209 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8210 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8211 */ 8212 switch (IPH_HDR_VERSION(ipha)) { 8213 case IPV6_VERSION: 8214 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8215 return; 8216 case IPV4_VERSION: 8217 break; 8218 default: 8219 goto noticmpv4; 8220 } 8221 8222 /* Skip past the outer IP and ICMP headers */ 8223 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8224 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8225 /* 8226 * If we don't have the correct outer IP header length or if the ULP 8227 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8228 * send it upstream. 8229 */ 8230 if (iph_hdr_length < sizeof (ipha_t) || 8231 ipha->ipha_protocol != IPPROTO_ICMP || 8232 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8233 goto noticmpv4; 8234 } 8235 ipha = (ipha_t *)&icmph[1]; 8236 8237 /* Skip past the inner IP and find the ULP header */ 8238 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8239 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8240 /* 8241 * If we don't have the correct inner IP header length or if the ULP 8242 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8243 * bytes of TCP header, drop it. 8244 */ 8245 if (iph_hdr_length < sizeof (ipha_t) || 8246 ipha->ipha_protocol != IPPROTO_TCP || 8247 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8248 goto noticmpv4; 8249 } 8250 8251 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8252 if (ipsec_mctl) { 8253 secure = ipsec_in_is_secure(first_mp); 8254 } else { 8255 secure = B_FALSE; 8256 } 8257 if (secure) { 8258 /* 8259 * If we are willing to accept this in clear 8260 * we don't have to verify policy. 8261 */ 8262 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8263 if (!tcp_check_policy(tcp, first_mp, 8264 ipha, NULL, secure, ipsec_mctl)) { 8265 /* 8266 * tcp_check_policy called 8267 * ip_drop_packet() on failure. 8268 */ 8269 return; 8270 } 8271 } 8272 } 8273 } else if (ipsec_mctl) { 8274 /* 8275 * This is a hard_bound connection. IP has already 8276 * verified policy. We don't have to do it again. 8277 */ 8278 freeb(first_mp); 8279 first_mp = mp; 8280 ipsec_mctl = B_FALSE; 8281 } 8282 8283 seg_seq = ABE32_TO_U32(tcph->th_seq); 8284 /* 8285 * TCP SHOULD check that the TCP sequence number contained in 8286 * payload of the ICMP error message is within the range 8287 * SND.UNA <= SEG.SEQ < SND.NXT. 8288 */ 8289 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8290 /* 8291 * The ICMP message is bogus, just drop it. But if this is 8292 * an ICMP too big message, IP has already changed 8293 * the ire_max_frag to the bogus value. We need to change 8294 * it back. 8295 */ 8296 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 8297 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 8298 conn_t *connp = tcp->tcp_connp; 8299 ire_t *ire; 8300 int flag; 8301 8302 if (tcp->tcp_ipversion == IPV4_VERSION) { 8303 flag = tcp->tcp_ipha-> 8304 ipha_fragment_offset_and_flags; 8305 } else { 8306 flag = 0; 8307 } 8308 mutex_enter(&connp->conn_lock); 8309 if ((ire = connp->conn_ire_cache) != NULL) { 8310 mutex_enter(&ire->ire_lock); 8311 mutex_exit(&connp->conn_lock); 8312 ire->ire_max_frag = tcp->tcp_if_mtu; 8313 ire->ire_frag_flag |= flag; 8314 mutex_exit(&ire->ire_lock); 8315 } else { 8316 mutex_exit(&connp->conn_lock); 8317 } 8318 } 8319 goto noticmpv4; 8320 } 8321 8322 switch (icmph->icmph_type) { 8323 case ICMP_DEST_UNREACHABLE: 8324 switch (icmph->icmph_code) { 8325 case ICMP_FRAGMENTATION_NEEDED: 8326 /* 8327 * Reduce the MSS based on the new MTU. This will 8328 * eliminate any fragmentation locally. 8329 * N.B. There may well be some funny side-effects on 8330 * the local send policy and the remote receive policy. 8331 * Pending further research, we provide 8332 * tcp_ignore_path_mtu just in case this proves 8333 * disastrous somewhere. 8334 * 8335 * After updating the MSS, retransmit part of the 8336 * dropped segment using the new mss by calling 8337 * tcp_wput_data(). Need to adjust all those 8338 * params to make sure tcp_wput_data() work properly. 8339 */ 8340 if (tcps->tcps_ignore_path_mtu || 8341 tcp->tcp_ipha->ipha_fragment_offset_and_flags == 0) 8342 break; 8343 8344 /* 8345 * Decrease the MSS by time stamp options 8346 * IP options and IPSEC options. tcp_hdr_len 8347 * includes time stamp option and IP option 8348 * length. Note that new_mss may be negative 8349 * if tcp_ipsec_overhead is large and the 8350 * icmph_du_mtu is the minimum value, which is 68. 8351 */ 8352 new_mss = ntohs(icmph->icmph_du_mtu) - 8353 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8354 8355 DTRACE_PROBE2(tcp__pmtu__change, tcp_t *, tcp, int, 8356 new_mss); 8357 8358 /* 8359 * Only update the MSS if the new one is 8360 * smaller than the previous one. This is 8361 * to avoid problems when getting multiple 8362 * ICMP errors for the same MTU. 8363 */ 8364 if (new_mss >= tcp->tcp_mss) 8365 break; 8366 8367 /* 8368 * Note that we are using the template header's DF 8369 * bit in the fast path sending. So we need to compare 8370 * the new mss with both tcps_mss_min and ip_pmtu_min. 8371 * And stop doing IPv4 PMTUd if new_mss is less than 8372 * MAX(tcps_mss_min, ip_pmtu_min). 8373 */ 8374 if (new_mss < tcps->tcps_mss_min || 8375 new_mss < ipst->ips_ip_pmtu_min) { 8376 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8377 0; 8378 } 8379 8380 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8381 ASSERT(ratio >= 1); 8382 tcp_mss_set(tcp, new_mss, B_TRUE); 8383 8384 /* 8385 * Make sure we have something to 8386 * send. 8387 */ 8388 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8389 (tcp->tcp_xmit_head != NULL)) { 8390 /* 8391 * Shrink tcp_cwnd in 8392 * proportion to the old MSS/new MSS. 8393 */ 8394 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8395 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8396 (tcp->tcp_unsent == 0)) { 8397 tcp->tcp_rexmit_max = tcp->tcp_fss; 8398 } else { 8399 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8400 } 8401 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8402 tcp->tcp_rexmit = B_TRUE; 8403 tcp->tcp_dupack_cnt = 0; 8404 tcp->tcp_snd_burst = TCP_CWND_SS; 8405 tcp_ss_rexmit(tcp); 8406 } 8407 break; 8408 case ICMP_PORT_UNREACHABLE: 8409 case ICMP_PROTOCOL_UNREACHABLE: 8410 switch (tcp->tcp_state) { 8411 case TCPS_SYN_SENT: 8412 case TCPS_SYN_RCVD: 8413 /* 8414 * ICMP can snipe away incipient 8415 * TCP connections as long as 8416 * seq number is same as initial 8417 * send seq number. 8418 */ 8419 if (seg_seq == tcp->tcp_iss) { 8420 (void) tcp_clean_death(tcp, 8421 ECONNREFUSED, 6); 8422 } 8423 break; 8424 } 8425 break; 8426 case ICMP_HOST_UNREACHABLE: 8427 case ICMP_NET_UNREACHABLE: 8428 /* Record the error in case we finally time out. */ 8429 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8430 tcp->tcp_client_errno = EHOSTUNREACH; 8431 else 8432 tcp->tcp_client_errno = ENETUNREACH; 8433 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8434 if (tcp->tcp_listener != NULL && 8435 tcp->tcp_listener->tcp_syn_defense) { 8436 /* 8437 * Ditch the half-open connection if we 8438 * suspect a SYN attack is under way. 8439 */ 8440 tcp_ip_ire_mark_advice(tcp); 8441 (void) tcp_clean_death(tcp, 8442 tcp->tcp_client_errno, 7); 8443 } 8444 } 8445 break; 8446 default: 8447 break; 8448 } 8449 break; 8450 case ICMP_SOURCE_QUENCH: { 8451 /* 8452 * use a global boolean to control 8453 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8454 * The default is false. 8455 */ 8456 if (tcp_icmp_source_quench) { 8457 /* 8458 * Reduce the sending rate as if we got a 8459 * retransmit timeout 8460 */ 8461 uint32_t npkt; 8462 8463 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8464 tcp->tcp_mss; 8465 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8466 tcp->tcp_cwnd = tcp->tcp_mss; 8467 tcp->tcp_cwnd_cnt = 0; 8468 } 8469 break; 8470 } 8471 } 8472 freemsg(first_mp); 8473 } 8474 8475 /* 8476 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8477 * error messages passed up by IP. 8478 * Assumes that IP has pulled up all the extension headers as well 8479 * as the ICMPv6 header. 8480 */ 8481 static void 8482 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8483 { 8484 icmp6_t *icmp6; 8485 ip6_t *ip6h; 8486 uint16_t iph_hdr_length; 8487 tcpha_t *tcpha; 8488 uint8_t *nexthdrp; 8489 uint32_t new_mss; 8490 uint32_t ratio; 8491 boolean_t secure; 8492 mblk_t *first_mp = mp; 8493 size_t mp_size; 8494 uint32_t seg_seq; 8495 tcp_stack_t *tcps = tcp->tcp_tcps; 8496 8497 /* 8498 * The caller has determined if this is an IPSEC_IN packet and 8499 * set ipsec_mctl appropriately (see tcp_icmp_error). 8500 */ 8501 if (ipsec_mctl) 8502 mp = mp->b_cont; 8503 8504 mp_size = MBLKL(mp); 8505 8506 /* 8507 * Verify that we have a complete IP header. If not, send it upstream. 8508 */ 8509 if (mp_size < sizeof (ip6_t)) { 8510 noticmpv6: 8511 freemsg(first_mp); 8512 return; 8513 } 8514 8515 /* 8516 * Verify this is an ICMPV6 packet, else send it upstream. 8517 */ 8518 ip6h = (ip6_t *)mp->b_rptr; 8519 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8520 iph_hdr_length = IPV6_HDR_LEN; 8521 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8522 &nexthdrp) || 8523 *nexthdrp != IPPROTO_ICMPV6) { 8524 goto noticmpv6; 8525 } 8526 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8527 ip6h = (ip6_t *)&icmp6[1]; 8528 /* 8529 * Verify if we have a complete ICMP and inner IP header. 8530 */ 8531 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8532 goto noticmpv6; 8533 8534 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8535 goto noticmpv6; 8536 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8537 /* 8538 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8539 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8540 * packet. 8541 */ 8542 if ((*nexthdrp != IPPROTO_TCP) || 8543 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8544 goto noticmpv6; 8545 } 8546 8547 /* 8548 * ICMP errors come on the right queue or come on 8549 * listener/global queue for detached connections and 8550 * get switched to the right queue. If it comes on the 8551 * right queue, policy check has already been done by IP 8552 * and thus free the first_mp without verifying the policy. 8553 * If it has come for a non-hard bound connection, we need 8554 * to verify policy as IP may not have done it. 8555 */ 8556 if (!tcp->tcp_hard_bound) { 8557 if (ipsec_mctl) { 8558 secure = ipsec_in_is_secure(first_mp); 8559 } else { 8560 secure = B_FALSE; 8561 } 8562 if (secure) { 8563 /* 8564 * If we are willing to accept this in clear 8565 * we don't have to verify policy. 8566 */ 8567 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8568 if (!tcp_check_policy(tcp, first_mp, 8569 NULL, ip6h, secure, ipsec_mctl)) { 8570 /* 8571 * tcp_check_policy called 8572 * ip_drop_packet() on failure. 8573 */ 8574 return; 8575 } 8576 } 8577 } 8578 } else if (ipsec_mctl) { 8579 /* 8580 * This is a hard_bound connection. IP has already 8581 * verified policy. We don't have to do it again. 8582 */ 8583 freeb(first_mp); 8584 first_mp = mp; 8585 ipsec_mctl = B_FALSE; 8586 } 8587 8588 seg_seq = ntohl(tcpha->tha_seq); 8589 /* 8590 * TCP SHOULD check that the TCP sequence number contained in 8591 * payload of the ICMP error message is within the range 8592 * SND.UNA <= SEG.SEQ < SND.NXT. 8593 */ 8594 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8595 /* 8596 * If the ICMP message is bogus, should we kill the 8597 * connection, or should we just drop the bogus ICMP 8598 * message? It would probably make more sense to just 8599 * drop the message so that if this one managed to get 8600 * in, the real connection should not suffer. 8601 */ 8602 goto noticmpv6; 8603 } 8604 8605 switch (icmp6->icmp6_type) { 8606 case ICMP6_PACKET_TOO_BIG: 8607 /* 8608 * Reduce the MSS based on the new MTU. This will 8609 * eliminate any fragmentation locally. 8610 * N.B. There may well be some funny side-effects on 8611 * the local send policy and the remote receive policy. 8612 * Pending further research, we provide 8613 * tcp_ignore_path_mtu just in case this proves 8614 * disastrous somewhere. 8615 * 8616 * After updating the MSS, retransmit part of the 8617 * dropped segment using the new mss by calling 8618 * tcp_wput_data(). Need to adjust all those 8619 * params to make sure tcp_wput_data() work properly. 8620 */ 8621 if (tcps->tcps_ignore_path_mtu) 8622 break; 8623 8624 /* 8625 * Decrease the MSS by time stamp options 8626 * IP options and IPSEC options. tcp_hdr_len 8627 * includes time stamp option and IP option 8628 * length. 8629 */ 8630 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8631 tcp->tcp_ipsec_overhead; 8632 8633 /* 8634 * Only update the MSS if the new one is 8635 * smaller than the previous one. This is 8636 * to avoid problems when getting multiple 8637 * ICMP errors for the same MTU. 8638 */ 8639 if (new_mss >= tcp->tcp_mss) 8640 break; 8641 8642 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8643 ASSERT(ratio >= 1); 8644 tcp_mss_set(tcp, new_mss, B_TRUE); 8645 8646 /* 8647 * Make sure we have something to 8648 * send. 8649 */ 8650 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8651 (tcp->tcp_xmit_head != NULL)) { 8652 /* 8653 * Shrink tcp_cwnd in 8654 * proportion to the old MSS/new MSS. 8655 */ 8656 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8657 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8658 (tcp->tcp_unsent == 0)) { 8659 tcp->tcp_rexmit_max = tcp->tcp_fss; 8660 } else { 8661 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8662 } 8663 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8664 tcp->tcp_rexmit = B_TRUE; 8665 tcp->tcp_dupack_cnt = 0; 8666 tcp->tcp_snd_burst = TCP_CWND_SS; 8667 tcp_ss_rexmit(tcp); 8668 } 8669 break; 8670 8671 case ICMP6_DST_UNREACH: 8672 switch (icmp6->icmp6_code) { 8673 case ICMP6_DST_UNREACH_NOPORT: 8674 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8675 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8676 (seg_seq == tcp->tcp_iss)) { 8677 (void) tcp_clean_death(tcp, 8678 ECONNREFUSED, 8); 8679 } 8680 break; 8681 8682 case ICMP6_DST_UNREACH_ADMIN: 8683 case ICMP6_DST_UNREACH_NOROUTE: 8684 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8685 case ICMP6_DST_UNREACH_ADDR: 8686 /* Record the error in case we finally time out. */ 8687 tcp->tcp_client_errno = EHOSTUNREACH; 8688 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8689 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8690 (seg_seq == tcp->tcp_iss)) { 8691 if (tcp->tcp_listener != NULL && 8692 tcp->tcp_listener->tcp_syn_defense) { 8693 /* 8694 * Ditch the half-open connection if we 8695 * suspect a SYN attack is under way. 8696 */ 8697 tcp_ip_ire_mark_advice(tcp); 8698 (void) tcp_clean_death(tcp, 8699 tcp->tcp_client_errno, 9); 8700 } 8701 } 8702 8703 8704 break; 8705 default: 8706 break; 8707 } 8708 break; 8709 8710 case ICMP6_PARAM_PROB: 8711 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8712 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8713 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8714 (uchar_t *)nexthdrp) { 8715 if (tcp->tcp_state == TCPS_SYN_SENT || 8716 tcp->tcp_state == TCPS_SYN_RCVD) { 8717 (void) tcp_clean_death(tcp, 8718 ECONNREFUSED, 10); 8719 } 8720 break; 8721 } 8722 break; 8723 8724 case ICMP6_TIME_EXCEEDED: 8725 default: 8726 break; 8727 } 8728 freemsg(first_mp); 8729 } 8730 8731 /* 8732 * Notify IP that we are having trouble with this connection. IP should 8733 * blow the IRE away and start over. 8734 */ 8735 static void 8736 tcp_ip_notify(tcp_t *tcp) 8737 { 8738 struct iocblk *iocp; 8739 ipid_t *ipid; 8740 mblk_t *mp; 8741 8742 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 8743 if (tcp->tcp_ipversion == IPV6_VERSION) 8744 return; 8745 8746 mp = mkiocb(IP_IOCTL); 8747 if (mp == NULL) 8748 return; 8749 8750 iocp = (struct iocblk *)mp->b_rptr; 8751 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 8752 8753 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 8754 if (!mp->b_cont) { 8755 freeb(mp); 8756 return; 8757 } 8758 8759 ipid = (ipid_t *)mp->b_cont->b_rptr; 8760 mp->b_cont->b_wptr += iocp->ioc_count; 8761 bzero(ipid, sizeof (*ipid)); 8762 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 8763 ipid->ipid_ire_type = IRE_CACHE; 8764 ipid->ipid_addr_offset = sizeof (ipid_t); 8765 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 8766 /* 8767 * Note: in the case of source routing we want to blow away the 8768 * route to the first source route hop. 8769 */ 8770 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 8771 sizeof (tcp->tcp_ipha->ipha_dst)); 8772 8773 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 8774 } 8775 8776 /* Unlink and return any mblk that looks like it contains an ire */ 8777 static mblk_t * 8778 tcp_ire_mp(mblk_t **mpp) 8779 { 8780 mblk_t *mp = *mpp; 8781 mblk_t *prev_mp = NULL; 8782 8783 for (;;) { 8784 switch (DB_TYPE(mp)) { 8785 case IRE_DB_TYPE: 8786 case IRE_DB_REQ_TYPE: 8787 if (mp == *mpp) { 8788 *mpp = mp->b_cont; 8789 } else { 8790 prev_mp->b_cont = mp->b_cont; 8791 } 8792 mp->b_cont = NULL; 8793 return (mp); 8794 default: 8795 break; 8796 } 8797 prev_mp = mp; 8798 mp = mp->b_cont; 8799 if (mp == NULL) 8800 break; 8801 } 8802 return (mp); 8803 } 8804 8805 /* 8806 * Timer callback routine for keepalive probe. We do a fake resend of 8807 * last ACKed byte. Then set a timer using RTO. When the timer expires, 8808 * check to see if we have heard anything from the other end for the last 8809 * RTO period. If we have, set the timer to expire for another 8810 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 8811 * RTO << 1 and check again when it expires. Keep exponentially increasing 8812 * the timeout if we have not heard from the other side. If for more than 8813 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 8814 * kill the connection unless the keepalive abort threshold is 0. In 8815 * that case, we will probe "forever." 8816 */ 8817 static void 8818 tcp_keepalive_killer(void *arg) 8819 { 8820 mblk_t *mp; 8821 conn_t *connp = (conn_t *)arg; 8822 tcp_t *tcp = connp->conn_tcp; 8823 int32_t firetime; 8824 int32_t idletime; 8825 int32_t ka_intrvl; 8826 tcp_stack_t *tcps = tcp->tcp_tcps; 8827 8828 tcp->tcp_ka_tid = 0; 8829 8830 if (tcp->tcp_fused) 8831 return; 8832 8833 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 8834 ka_intrvl = tcp->tcp_ka_interval; 8835 8836 /* 8837 * Keepalive probe should only be sent if the application has not 8838 * done a close on the connection. 8839 */ 8840 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 8841 return; 8842 } 8843 /* Timer fired too early, restart it. */ 8844 if (tcp->tcp_state < TCPS_ESTABLISHED) { 8845 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8846 MSEC_TO_TICK(ka_intrvl)); 8847 return; 8848 } 8849 8850 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 8851 /* 8852 * If we have not heard from the other side for a long 8853 * time, kill the connection unless the keepalive abort 8854 * threshold is 0. In that case, we will probe "forever." 8855 */ 8856 if (tcp->tcp_ka_abort_thres != 0 && 8857 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 8858 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 8859 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 8860 tcp->tcp_client_errno : ETIMEDOUT, 11); 8861 return; 8862 } 8863 8864 if (tcp->tcp_snxt == tcp->tcp_suna && 8865 idletime >= ka_intrvl) { 8866 /* Fake resend of last ACKed byte. */ 8867 mblk_t *mp1 = allocb(1, BPRI_LO); 8868 8869 if (mp1 != NULL) { 8870 *mp1->b_wptr++ = '\0'; 8871 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 8872 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 8873 freeb(mp1); 8874 /* 8875 * if allocation failed, fall through to start the 8876 * timer back. 8877 */ 8878 if (mp != NULL) { 8879 tcp_send_data(tcp, tcp->tcp_wq, mp); 8880 BUMP_MIB(&tcps->tcps_mib, 8881 tcpTimKeepaliveProbe); 8882 if (tcp->tcp_ka_last_intrvl != 0) { 8883 int max; 8884 /* 8885 * We should probe again at least 8886 * in ka_intrvl, but not more than 8887 * tcp_rexmit_interval_max. 8888 */ 8889 max = tcps->tcps_rexmit_interval_max; 8890 firetime = MIN(ka_intrvl - 1, 8891 tcp->tcp_ka_last_intrvl << 1); 8892 if (firetime > max) 8893 firetime = max; 8894 } else { 8895 firetime = tcp->tcp_rto; 8896 } 8897 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8898 tcp_keepalive_killer, 8899 MSEC_TO_TICK(firetime)); 8900 tcp->tcp_ka_last_intrvl = firetime; 8901 return; 8902 } 8903 } 8904 } else { 8905 tcp->tcp_ka_last_intrvl = 0; 8906 } 8907 8908 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 8909 if ((firetime = ka_intrvl - idletime) < 0) { 8910 firetime = ka_intrvl; 8911 } 8912 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8913 MSEC_TO_TICK(firetime)); 8914 } 8915 8916 int 8917 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 8918 { 8919 queue_t *q = tcp->tcp_rq; 8920 int32_t mss = tcp->tcp_mss; 8921 int maxpsz; 8922 conn_t *connp = tcp->tcp_connp; 8923 8924 if (TCP_IS_DETACHED(tcp)) 8925 return (mss); 8926 if (tcp->tcp_fused) { 8927 maxpsz = tcp_fuse_maxpsz(tcp); 8928 mss = INFPSZ; 8929 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 8930 /* 8931 * Set the sd_qn_maxpsz according to the socket send buffer 8932 * size, and sd_maxblk to INFPSZ (-1). This will essentially 8933 * instruct the stream head to copyin user data into contiguous 8934 * kernel-allocated buffers without breaking it up into smaller 8935 * chunks. We round up the buffer size to the nearest SMSS. 8936 */ 8937 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 8938 if (tcp->tcp_kssl_ctx == NULL) 8939 mss = INFPSZ; 8940 else 8941 mss = SSL3_MAX_RECORD_LEN; 8942 } else { 8943 /* 8944 * Set sd_qn_maxpsz to approx half the (receivers) buffer 8945 * (and a multiple of the mss). This instructs the stream 8946 * head to break down larger than SMSS writes into SMSS- 8947 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 8948 */ 8949 /* XXX tune this with ndd tcp_maxpsz_multiplier */ 8950 maxpsz = tcp->tcp_maxpsz * mss; 8951 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 8952 maxpsz = tcp->tcp_xmit_hiwater/2; 8953 /* Round up to nearest mss */ 8954 maxpsz = MSS_ROUNDUP(maxpsz, mss); 8955 } 8956 } 8957 8958 (void) proto_set_maxpsz(q, connp, maxpsz); 8959 if (!(IPCL_IS_NONSTR(connp))) { 8960 /* XXX do it in set_maxpsz()? */ 8961 tcp->tcp_wq->q_maxpsz = maxpsz; 8962 } 8963 8964 if (set_maxblk) 8965 (void) proto_set_tx_maxblk(q, connp, mss); 8966 return (mss); 8967 } 8968 8969 /* 8970 * Extract option values from a tcp header. We put any found values into the 8971 * tcpopt struct and return a bitmask saying which options were found. 8972 */ 8973 static int 8974 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 8975 { 8976 uchar_t *endp; 8977 int len; 8978 uint32_t mss; 8979 uchar_t *up = (uchar_t *)tcph; 8980 int found = 0; 8981 int32_t sack_len; 8982 tcp_seq sack_begin, sack_end; 8983 tcp_t *tcp; 8984 8985 endp = up + TCP_HDR_LENGTH(tcph); 8986 up += TCP_MIN_HEADER_LENGTH; 8987 while (up < endp) { 8988 len = endp - up; 8989 switch (*up) { 8990 case TCPOPT_EOL: 8991 break; 8992 8993 case TCPOPT_NOP: 8994 up++; 8995 continue; 8996 8997 case TCPOPT_MAXSEG: 8998 if (len < TCPOPT_MAXSEG_LEN || 8999 up[1] != TCPOPT_MAXSEG_LEN) 9000 break; 9001 9002 mss = BE16_TO_U16(up+2); 9003 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 9004 tcpopt->tcp_opt_mss = mss; 9005 found |= TCP_OPT_MSS_PRESENT; 9006 9007 up += TCPOPT_MAXSEG_LEN; 9008 continue; 9009 9010 case TCPOPT_WSCALE: 9011 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9012 break; 9013 9014 if (up[2] > TCP_MAX_WINSHIFT) 9015 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9016 else 9017 tcpopt->tcp_opt_wscale = up[2]; 9018 found |= TCP_OPT_WSCALE_PRESENT; 9019 9020 up += TCPOPT_WS_LEN; 9021 continue; 9022 9023 case TCPOPT_SACK_PERMITTED: 9024 if (len < TCPOPT_SACK_OK_LEN || 9025 up[1] != TCPOPT_SACK_OK_LEN) 9026 break; 9027 found |= TCP_OPT_SACK_OK_PRESENT; 9028 up += TCPOPT_SACK_OK_LEN; 9029 continue; 9030 9031 case TCPOPT_SACK: 9032 if (len <= 2 || up[1] <= 2 || len < up[1]) 9033 break; 9034 9035 /* If TCP is not interested in SACK blks... */ 9036 if ((tcp = tcpopt->tcp) == NULL) { 9037 up += up[1]; 9038 continue; 9039 } 9040 sack_len = up[1] - TCPOPT_HEADER_LEN; 9041 up += TCPOPT_HEADER_LEN; 9042 9043 /* 9044 * If the list is empty, allocate one and assume 9045 * nothing is sack'ed. 9046 */ 9047 ASSERT(tcp->tcp_sack_info != NULL); 9048 if (tcp->tcp_notsack_list == NULL) { 9049 tcp_notsack_update(&(tcp->tcp_notsack_list), 9050 tcp->tcp_suna, tcp->tcp_snxt, 9051 &(tcp->tcp_num_notsack_blk), 9052 &(tcp->tcp_cnt_notsack_list)); 9053 9054 /* 9055 * Make sure tcp_notsack_list is not NULL. 9056 * This happens when kmem_alloc(KM_NOSLEEP) 9057 * returns NULL. 9058 */ 9059 if (tcp->tcp_notsack_list == NULL) { 9060 up += sack_len; 9061 continue; 9062 } 9063 tcp->tcp_fack = tcp->tcp_suna; 9064 } 9065 9066 while (sack_len > 0) { 9067 if (up + 8 > endp) { 9068 up = endp; 9069 break; 9070 } 9071 sack_begin = BE32_TO_U32(up); 9072 up += 4; 9073 sack_end = BE32_TO_U32(up); 9074 up += 4; 9075 sack_len -= 8; 9076 /* 9077 * Bounds checking. Make sure the SACK 9078 * info is within tcp_suna and tcp_snxt. 9079 * If this SACK blk is out of bound, ignore 9080 * it but continue to parse the following 9081 * blks. 9082 */ 9083 if (SEQ_LEQ(sack_end, sack_begin) || 9084 SEQ_LT(sack_begin, tcp->tcp_suna) || 9085 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9086 continue; 9087 } 9088 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9089 sack_begin, sack_end, 9090 &(tcp->tcp_num_notsack_blk), 9091 &(tcp->tcp_cnt_notsack_list)); 9092 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9093 tcp->tcp_fack = sack_end; 9094 } 9095 } 9096 found |= TCP_OPT_SACK_PRESENT; 9097 continue; 9098 9099 case TCPOPT_TSTAMP: 9100 if (len < TCPOPT_TSTAMP_LEN || 9101 up[1] != TCPOPT_TSTAMP_LEN) 9102 break; 9103 9104 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9105 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9106 9107 found |= TCP_OPT_TSTAMP_PRESENT; 9108 9109 up += TCPOPT_TSTAMP_LEN; 9110 continue; 9111 9112 default: 9113 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9114 break; 9115 up += up[1]; 9116 continue; 9117 } 9118 break; 9119 } 9120 return (found); 9121 } 9122 9123 /* 9124 * Set the mss associated with a particular tcp based on its current value, 9125 * and a new one passed in. Observe minimums and maximums, and reset 9126 * other state variables that we want to view as multiples of mss. 9127 * 9128 * This function is called mainly because values like tcp_mss, tcp_cwnd, 9129 * highwater marks etc. need to be initialized or adjusted. 9130 * 1) From tcp_process_options() when the other side's SYN/SYN-ACK 9131 * packet arrives. 9132 * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or 9133 * ICMP6_PACKET_TOO_BIG arrives. 9134 * 3) From tcp_paws_check() if the other side stops sending the timestamp, 9135 * to increase the MSS to use the extra bytes available. 9136 * 9137 * Callers except tcp_paws_check() ensure that they only reduce mss. 9138 */ 9139 static void 9140 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss) 9141 { 9142 uint32_t mss_max; 9143 tcp_stack_t *tcps = tcp->tcp_tcps; 9144 9145 if (tcp->tcp_ipversion == IPV4_VERSION) 9146 mss_max = tcps->tcps_mss_max_ipv4; 9147 else 9148 mss_max = tcps->tcps_mss_max_ipv6; 9149 9150 if (mss < tcps->tcps_mss_min) 9151 mss = tcps->tcps_mss_min; 9152 if (mss > mss_max) 9153 mss = mss_max; 9154 /* 9155 * Unless naglim has been set by our client to 9156 * a non-mss value, force naglim to track mss. 9157 * This can help to aggregate small writes. 9158 */ 9159 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9160 tcp->tcp_naglim = mss; 9161 /* 9162 * TCP should be able to buffer at least 4 MSS data for obvious 9163 * performance reason. 9164 */ 9165 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9166 tcp->tcp_xmit_hiwater = mss << 2; 9167 9168 /* 9169 * Set the xmit_lowater to at least twice of MSS. 9170 */ 9171 if ((mss << 1) > tcp->tcp_xmit_lowater) 9172 tcp->tcp_xmit_lowater = mss << 1; 9173 9174 if (do_ss) { 9175 /* 9176 * Either the tcp_cwnd is as yet uninitialized, or mss is 9177 * changing due to a reduction in MTU, presumably as a 9178 * result of a new path component, reset cwnd to its 9179 * "initial" value, as a multiple of the new mss. 9180 */ 9181 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial); 9182 } else { 9183 /* 9184 * Called by tcp_paws_check(), the mss increased 9185 * marginally to allow use of space previously taken 9186 * by the timestamp option. It would be inappropriate 9187 * to apply slow start or tcp_init_cwnd values to 9188 * tcp_cwnd, simply adjust to a multiple of the new mss. 9189 */ 9190 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 9191 tcp->tcp_cwnd_cnt = 0; 9192 } 9193 tcp->tcp_mss = mss; 9194 (void) tcp_maxpsz_set(tcp, B_TRUE); 9195 } 9196 9197 /* For /dev/tcp aka AF_INET open */ 9198 static int 9199 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9200 { 9201 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 9202 } 9203 9204 /* For /dev/tcp6 aka AF_INET6 open */ 9205 static int 9206 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9207 { 9208 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 9209 } 9210 9211 static conn_t * 9212 tcp_create_common(queue_t *q, cred_t *credp, boolean_t isv6, 9213 boolean_t issocket, int *errorp) 9214 { 9215 tcp_t *tcp = NULL; 9216 conn_t *connp; 9217 int err; 9218 zoneid_t zoneid; 9219 tcp_stack_t *tcps; 9220 squeue_t *sqp; 9221 9222 ASSERT(errorp != NULL); 9223 /* 9224 * Find the proper zoneid and netstack. 9225 */ 9226 /* 9227 * Special case for install: miniroot needs to be able to 9228 * access files via NFS as though it were always in the 9229 * global zone. 9230 */ 9231 if (credp == kcred && nfs_global_client_only != 0) { 9232 zoneid = GLOBAL_ZONEID; 9233 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 9234 netstack_tcp; 9235 ASSERT(tcps != NULL); 9236 } else { 9237 netstack_t *ns; 9238 9239 ns = netstack_find_by_cred(credp); 9240 ASSERT(ns != NULL); 9241 tcps = ns->netstack_tcp; 9242 ASSERT(tcps != NULL); 9243 9244 /* 9245 * For exclusive stacks we set the zoneid to zero 9246 * to make TCP operate as if in the global zone. 9247 */ 9248 if (tcps->tcps_netstack->netstack_stackid != 9249 GLOBAL_NETSTACKID) 9250 zoneid = GLOBAL_ZONEID; 9251 else 9252 zoneid = crgetzoneid(credp); 9253 } 9254 /* 9255 * For stackid zero this is done from strplumb.c, but 9256 * non-zero stackids are handled here. 9257 */ 9258 if (tcps->tcps_g_q == NULL && 9259 tcps->tcps_netstack->netstack_stackid != 9260 GLOBAL_NETSTACKID) { 9261 tcp_g_q_setup(tcps); 9262 } 9263 9264 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 9265 connp = (conn_t *)tcp_get_conn(sqp, tcps); 9266 /* 9267 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 9268 * so we drop it by one. 9269 */ 9270 netstack_rele(tcps->tcps_netstack); 9271 if (connp == NULL) { 9272 *errorp = ENOSR; 9273 return (NULL); 9274 } 9275 connp->conn_sqp = sqp; 9276 connp->conn_initial_sqp = connp->conn_sqp; 9277 tcp = connp->conn_tcp; 9278 9279 if (isv6) { 9280 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9281 connp->conn_send = ip_output_v6; 9282 connp->conn_af_isv6 = B_TRUE; 9283 connp->conn_pkt_isv6 = B_TRUE; 9284 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9285 tcp->tcp_ipversion = IPV6_VERSION; 9286 tcp->tcp_family = AF_INET6; 9287 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 9288 } else { 9289 connp->conn_flags |= IPCL_TCP4; 9290 connp->conn_send = ip_output; 9291 connp->conn_af_isv6 = B_FALSE; 9292 connp->conn_pkt_isv6 = B_FALSE; 9293 tcp->tcp_ipversion = IPV4_VERSION; 9294 tcp->tcp_family = AF_INET; 9295 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 9296 } 9297 9298 /* 9299 * TCP keeps a copy of cred for cache locality reasons but 9300 * we put a reference only once. If connp->conn_cred 9301 * becomes invalid, tcp_cred should also be set to NULL. 9302 */ 9303 tcp->tcp_cred = connp->conn_cred = credp; 9304 crhold(connp->conn_cred); 9305 tcp->tcp_cpid = curproc->p_pid; 9306 tcp->tcp_open_time = lbolt64; 9307 connp->conn_zoneid = zoneid; 9308 connp->conn_mlp_type = mlptSingle; 9309 connp->conn_ulp_labeled = !is_system_labeled(); 9310 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 9311 ASSERT(tcp->tcp_tcps == tcps); 9312 9313 /* 9314 * If the caller has the process-wide flag set, then default to MAC 9315 * exempt mode. This allows read-down to unlabeled hosts. 9316 */ 9317 if (getpflags(NET_MAC_AWARE, credp) != 0) 9318 connp->conn_mac_exempt = B_TRUE; 9319 9320 connp->conn_dev = NULL; 9321 if (issocket) { 9322 connp->conn_flags |= IPCL_SOCKET; 9323 tcp->tcp_issocket = 1; 9324 } 9325 9326 /* Non-zero default values */ 9327 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9328 9329 if (q == NULL) { 9330 /* 9331 * Create a helper stream for non-STREAMS socket. 9332 */ 9333 err = ip_create_helper_stream(connp, tcps->tcps_ldi_ident); 9334 if (err != 0) { 9335 ip1dbg(("tcp_create_common: create of IP helper stream " 9336 "failed\n")); 9337 CONN_DEC_REF(connp); 9338 *errorp = err; 9339 return (NULL); 9340 } 9341 q = connp->conn_rq; 9342 } 9343 9344 SOCK_CONNID_INIT(tcp->tcp_connid); 9345 err = tcp_init(tcp, q); 9346 if (err != 0) { 9347 CONN_DEC_REF(connp); 9348 *errorp = err; 9349 return (NULL); 9350 } 9351 9352 return (connp); 9353 } 9354 9355 static int 9356 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9357 boolean_t isv6) 9358 { 9359 tcp_t *tcp = NULL; 9360 conn_t *connp = NULL; 9361 int err; 9362 vmem_t *minor_arena = NULL; 9363 dev_t conn_dev; 9364 boolean_t issocket; 9365 9366 if (q->q_ptr != NULL) 9367 return (0); 9368 9369 if (sflag == MODOPEN) 9370 return (EINVAL); 9371 9372 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9373 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9374 minor_arena = ip_minor_arena_la; 9375 } else { 9376 /* 9377 * Either minor numbers in the large arena were exhausted 9378 * or a non socket application is doing the open. 9379 * Try to allocate from the small arena. 9380 */ 9381 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9382 return (EBUSY); 9383 } 9384 minor_arena = ip_minor_arena_sa; 9385 } 9386 9387 ASSERT(minor_arena != NULL); 9388 9389 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 9390 9391 if (flag & SO_FALLBACK) { 9392 /* 9393 * Non streams socket needs a stream to fallback to 9394 */ 9395 RD(q)->q_ptr = (void *)conn_dev; 9396 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 9397 WR(q)->q_ptr = (void *)minor_arena; 9398 qprocson(q); 9399 return (0); 9400 } else if (flag & SO_ACCEPTOR) { 9401 q->q_qinfo = &tcp_acceptor_rinit; 9402 /* 9403 * the conn_dev and minor_arena will be subsequently used by 9404 * tcp_wput_accept() and tcp_tpi_close_accept() to figure out 9405 * the minor device number for this connection from the q_ptr. 9406 */ 9407 RD(q)->q_ptr = (void *)conn_dev; 9408 WR(q)->q_qinfo = &tcp_acceptor_winit; 9409 WR(q)->q_ptr = (void *)minor_arena; 9410 qprocson(q); 9411 return (0); 9412 } 9413 9414 issocket = flag & SO_SOCKSTR; 9415 connp = tcp_create_common(q, credp, isv6, issocket, &err); 9416 9417 if (connp == NULL) { 9418 inet_minor_free(minor_arena, conn_dev); 9419 q->q_ptr = WR(q)->q_ptr = NULL; 9420 return (err); 9421 } 9422 9423 q->q_ptr = WR(q)->q_ptr = connp; 9424 9425 connp->conn_dev = conn_dev; 9426 connp->conn_minor_arena = minor_arena; 9427 9428 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 9429 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9430 9431 tcp = connp->conn_tcp; 9432 9433 if (issocket) { 9434 WR(q)->q_qinfo = &tcp_sock_winit; 9435 } else { 9436 #ifdef _ILP32 9437 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9438 #else 9439 tcp->tcp_acceptor_id = conn_dev; 9440 #endif /* _ILP32 */ 9441 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9442 } 9443 9444 /* 9445 * Put the ref for TCP. Ref for IP was already put 9446 * by ipcl_conn_create. Also Make the conn_t globally 9447 * visible to walkers 9448 */ 9449 mutex_enter(&connp->conn_lock); 9450 CONN_INC_REF_LOCKED(connp); 9451 ASSERT(connp->conn_ref == 2); 9452 connp->conn_state_flags &= ~CONN_INCIPIENT; 9453 mutex_exit(&connp->conn_lock); 9454 9455 qprocson(q); 9456 return (0); 9457 } 9458 9459 /* 9460 * Some TCP options can be "set" by requesting them in the option 9461 * buffer. This is needed for XTI feature test though we do not 9462 * allow it in general. We interpret that this mechanism is more 9463 * applicable to OSI protocols and need not be allowed in general. 9464 * This routine filters out options for which it is not allowed (most) 9465 * and lets through those (few) for which it is. [ The XTI interface 9466 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9467 * ever implemented will have to be allowed here ]. 9468 */ 9469 static boolean_t 9470 tcp_allow_connopt_set(int level, int name) 9471 { 9472 9473 switch (level) { 9474 case IPPROTO_TCP: 9475 switch (name) { 9476 case TCP_NODELAY: 9477 return (B_TRUE); 9478 default: 9479 return (B_FALSE); 9480 } 9481 /*NOTREACHED*/ 9482 default: 9483 return (B_FALSE); 9484 } 9485 /*NOTREACHED*/ 9486 } 9487 9488 /* 9489 * this routine gets default values of certain options whose default 9490 * values are maintained by protocol specific code 9491 */ 9492 /* ARGSUSED */ 9493 int 9494 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9495 { 9496 int32_t *i1 = (int32_t *)ptr; 9497 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 9498 9499 switch (level) { 9500 case IPPROTO_TCP: 9501 switch (name) { 9502 case TCP_NOTIFY_THRESHOLD: 9503 *i1 = tcps->tcps_ip_notify_interval; 9504 break; 9505 case TCP_ABORT_THRESHOLD: 9506 *i1 = tcps->tcps_ip_abort_interval; 9507 break; 9508 case TCP_CONN_NOTIFY_THRESHOLD: 9509 *i1 = tcps->tcps_ip_notify_cinterval; 9510 break; 9511 case TCP_CONN_ABORT_THRESHOLD: 9512 *i1 = tcps->tcps_ip_abort_cinterval; 9513 break; 9514 default: 9515 return (-1); 9516 } 9517 break; 9518 case IPPROTO_IP: 9519 switch (name) { 9520 case IP_TTL: 9521 *i1 = tcps->tcps_ipv4_ttl; 9522 break; 9523 default: 9524 return (-1); 9525 } 9526 break; 9527 case IPPROTO_IPV6: 9528 switch (name) { 9529 case IPV6_UNICAST_HOPS: 9530 *i1 = tcps->tcps_ipv6_hoplimit; 9531 break; 9532 default: 9533 return (-1); 9534 } 9535 break; 9536 default: 9537 return (-1); 9538 } 9539 return (sizeof (int)); 9540 } 9541 9542 static int 9543 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 9544 { 9545 int *i1 = (int *)ptr; 9546 tcp_t *tcp = connp->conn_tcp; 9547 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9548 9549 switch (level) { 9550 case SOL_SOCKET: 9551 switch (name) { 9552 case SO_LINGER: { 9553 struct linger *lgr = (struct linger *)ptr; 9554 9555 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9556 lgr->l_linger = tcp->tcp_lingertime; 9557 } 9558 return (sizeof (struct linger)); 9559 case SO_DEBUG: 9560 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9561 break; 9562 case SO_KEEPALIVE: 9563 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9564 break; 9565 case SO_DONTROUTE: 9566 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9567 break; 9568 case SO_USELOOPBACK: 9569 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9570 break; 9571 case SO_BROADCAST: 9572 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9573 break; 9574 case SO_REUSEADDR: 9575 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9576 break; 9577 case SO_OOBINLINE: 9578 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9579 break; 9580 case SO_DGRAM_ERRIND: 9581 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9582 break; 9583 case SO_TYPE: 9584 *i1 = SOCK_STREAM; 9585 break; 9586 case SO_SNDBUF: 9587 *i1 = tcp->tcp_xmit_hiwater; 9588 break; 9589 case SO_RCVBUF: 9590 *i1 = tcp->tcp_recv_hiwater; 9591 break; 9592 case SO_SND_COPYAVOID: 9593 *i1 = tcp->tcp_snd_zcopy_on ? 9594 SO_SND_COPYAVOID : 0; 9595 break; 9596 case SO_ALLZONES: 9597 *i1 = connp->conn_allzones ? 1 : 0; 9598 break; 9599 case SO_ANON_MLP: 9600 *i1 = connp->conn_anon_mlp; 9601 break; 9602 case SO_MAC_EXEMPT: 9603 *i1 = connp->conn_mac_exempt; 9604 break; 9605 case SO_EXCLBIND: 9606 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9607 break; 9608 case SO_PROTOTYPE: 9609 *i1 = IPPROTO_TCP; 9610 break; 9611 case SO_DOMAIN: 9612 *i1 = tcp->tcp_family; 9613 break; 9614 case SO_ACCEPTCONN: 9615 *i1 = (tcp->tcp_state == TCPS_LISTEN); 9616 default: 9617 return (-1); 9618 } 9619 break; 9620 case IPPROTO_TCP: 9621 switch (name) { 9622 case TCP_NODELAY: 9623 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9624 break; 9625 case TCP_MAXSEG: 9626 *i1 = tcp->tcp_mss; 9627 break; 9628 case TCP_NOTIFY_THRESHOLD: 9629 *i1 = (int)tcp->tcp_first_timer_threshold; 9630 break; 9631 case TCP_ABORT_THRESHOLD: 9632 *i1 = tcp->tcp_second_timer_threshold; 9633 break; 9634 case TCP_CONN_NOTIFY_THRESHOLD: 9635 *i1 = tcp->tcp_first_ctimer_threshold; 9636 break; 9637 case TCP_CONN_ABORT_THRESHOLD: 9638 *i1 = tcp->tcp_second_ctimer_threshold; 9639 break; 9640 case TCP_RECVDSTADDR: 9641 *i1 = tcp->tcp_recvdstaddr; 9642 break; 9643 case TCP_ANONPRIVBIND: 9644 *i1 = tcp->tcp_anon_priv_bind; 9645 break; 9646 case TCP_EXCLBIND: 9647 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9648 break; 9649 case TCP_INIT_CWND: 9650 *i1 = tcp->tcp_init_cwnd; 9651 break; 9652 case TCP_KEEPALIVE_THRESHOLD: 9653 *i1 = tcp->tcp_ka_interval; 9654 break; 9655 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9656 *i1 = tcp->tcp_ka_abort_thres; 9657 break; 9658 case TCP_CORK: 9659 *i1 = tcp->tcp_cork; 9660 break; 9661 default: 9662 return (-1); 9663 } 9664 break; 9665 case IPPROTO_IP: 9666 if (tcp->tcp_family != AF_INET) 9667 return (-1); 9668 switch (name) { 9669 case IP_OPTIONS: 9670 case T_IP_OPTIONS: { 9671 /* 9672 * This is compatible with BSD in that in only return 9673 * the reverse source route with the final destination 9674 * as the last entry. The first 4 bytes of the option 9675 * will contain the final destination. 9676 */ 9677 int opt_len; 9678 9679 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 9680 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 9681 ASSERT(opt_len >= 0); 9682 /* Caller ensures enough space */ 9683 if (opt_len > 0) { 9684 /* 9685 * TODO: Do we have to handle getsockopt on an 9686 * initiator as well? 9687 */ 9688 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 9689 } 9690 return (0); 9691 } 9692 case IP_TOS: 9693 case T_IP_TOS: 9694 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9695 break; 9696 case IP_TTL: 9697 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9698 break; 9699 case IP_NEXTHOP: 9700 /* Handled at IP level */ 9701 return (-EINVAL); 9702 default: 9703 return (-1); 9704 } 9705 break; 9706 case IPPROTO_IPV6: 9707 /* 9708 * IPPROTO_IPV6 options are only supported for sockets 9709 * that are using IPv6 on the wire. 9710 */ 9711 if (tcp->tcp_ipversion != IPV6_VERSION) { 9712 return (-1); 9713 } 9714 switch (name) { 9715 case IPV6_UNICAST_HOPS: 9716 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9717 break; /* goto sizeof (int) option return */ 9718 case IPV6_BOUND_IF: 9719 /* Zero if not set */ 9720 *i1 = tcp->tcp_bound_if; 9721 break; /* goto sizeof (int) option return */ 9722 case IPV6_RECVPKTINFO: 9723 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9724 *i1 = 1; 9725 else 9726 *i1 = 0; 9727 break; /* goto sizeof (int) option return */ 9728 case IPV6_RECVTCLASS: 9729 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9730 *i1 = 1; 9731 else 9732 *i1 = 0; 9733 break; /* goto sizeof (int) option return */ 9734 case IPV6_RECVHOPLIMIT: 9735 if (tcp->tcp_ipv6_recvancillary & 9736 TCP_IPV6_RECVHOPLIMIT) 9737 *i1 = 1; 9738 else 9739 *i1 = 0; 9740 break; /* goto sizeof (int) option return */ 9741 case IPV6_RECVHOPOPTS: 9742 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9743 *i1 = 1; 9744 else 9745 *i1 = 0; 9746 break; /* goto sizeof (int) option return */ 9747 case IPV6_RECVDSTOPTS: 9748 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 9749 *i1 = 1; 9750 else 9751 *i1 = 0; 9752 break; /* goto sizeof (int) option return */ 9753 case _OLD_IPV6_RECVDSTOPTS: 9754 if (tcp->tcp_ipv6_recvancillary & 9755 TCP_OLD_IPV6_RECVDSTOPTS) 9756 *i1 = 1; 9757 else 9758 *i1 = 0; 9759 break; /* goto sizeof (int) option return */ 9760 case IPV6_RECVRTHDR: 9761 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 9762 *i1 = 1; 9763 else 9764 *i1 = 0; 9765 break; /* goto sizeof (int) option return */ 9766 case IPV6_RECVRTHDRDSTOPTS: 9767 if (tcp->tcp_ipv6_recvancillary & 9768 TCP_IPV6_RECVRTDSTOPTS) 9769 *i1 = 1; 9770 else 9771 *i1 = 0; 9772 break; /* goto sizeof (int) option return */ 9773 case IPV6_PKTINFO: { 9774 /* XXX assumes that caller has room for max size! */ 9775 struct in6_pktinfo *pkti; 9776 9777 pkti = (struct in6_pktinfo *)ptr; 9778 if (ipp->ipp_fields & IPPF_IFINDEX) 9779 pkti->ipi6_ifindex = ipp->ipp_ifindex; 9780 else 9781 pkti->ipi6_ifindex = 0; 9782 if (ipp->ipp_fields & IPPF_ADDR) 9783 pkti->ipi6_addr = ipp->ipp_addr; 9784 else 9785 pkti->ipi6_addr = ipv6_all_zeros; 9786 return (sizeof (struct in6_pktinfo)); 9787 } 9788 case IPV6_TCLASS: 9789 if (ipp->ipp_fields & IPPF_TCLASS) 9790 *i1 = ipp->ipp_tclass; 9791 else 9792 *i1 = IPV6_FLOW_TCLASS( 9793 IPV6_DEFAULT_VERS_AND_FLOW); 9794 break; /* goto sizeof (int) option return */ 9795 case IPV6_NEXTHOP: { 9796 sin6_t *sin6 = (sin6_t *)ptr; 9797 9798 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 9799 return (0); 9800 *sin6 = sin6_null; 9801 sin6->sin6_family = AF_INET6; 9802 sin6->sin6_addr = ipp->ipp_nexthop; 9803 return (sizeof (sin6_t)); 9804 } 9805 case IPV6_HOPOPTS: 9806 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 9807 return (0); 9808 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 9809 return (0); 9810 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 9811 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 9812 if (tcp->tcp_label_len > 0) { 9813 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 9814 ptr[1] = (ipp->ipp_hopoptslen - 9815 tcp->tcp_label_len + 7) / 8 - 1; 9816 } 9817 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 9818 case IPV6_RTHDRDSTOPTS: 9819 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 9820 return (0); 9821 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 9822 return (ipp->ipp_rtdstoptslen); 9823 case IPV6_RTHDR: 9824 if (!(ipp->ipp_fields & IPPF_RTHDR)) 9825 return (0); 9826 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 9827 return (ipp->ipp_rthdrlen); 9828 case IPV6_DSTOPTS: 9829 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 9830 return (0); 9831 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 9832 return (ipp->ipp_dstoptslen); 9833 case IPV6_SRC_PREFERENCES: 9834 return (ip6_get_src_preferences(connp, 9835 (uint32_t *)ptr)); 9836 case IPV6_PATHMTU: { 9837 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 9838 9839 if (tcp->tcp_state < TCPS_ESTABLISHED) 9840 return (-1); 9841 9842 return (ip_fill_mtuinfo(&connp->conn_remv6, 9843 connp->conn_fport, mtuinfo, 9844 connp->conn_netstack)); 9845 } 9846 default: 9847 return (-1); 9848 } 9849 break; 9850 default: 9851 return (-1); 9852 } 9853 return (sizeof (int)); 9854 } 9855 9856 /* 9857 * TCP routine to get the values of options. 9858 */ 9859 int 9860 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9861 { 9862 return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr)); 9863 } 9864 9865 /* returns UNIX error, the optlen is a value-result arg */ 9866 int 9867 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 9868 void *optvalp, socklen_t *optlen, cred_t *cr) 9869 { 9870 conn_t *connp = (conn_t *)proto_handle; 9871 squeue_t *sqp = connp->conn_sqp; 9872 int error; 9873 t_uscalar_t max_optbuf_len; 9874 void *optvalp_buf; 9875 int len; 9876 9877 ASSERT(connp->conn_upper_handle != NULL); 9878 9879 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 9880 tcp_opt_obj.odb_opt_des_arr, 9881 tcp_opt_obj.odb_opt_arr_cnt, 9882 tcp_opt_obj.odb_topmost_tpiprovider, 9883 B_FALSE, B_TRUE, cr); 9884 if (error != 0) { 9885 if (error < 0) { 9886 error = proto_tlitosyserr(-error); 9887 } 9888 return (error); 9889 } 9890 9891 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 9892 9893 error = squeue_synch_enter(sqp, connp, NULL); 9894 if (error == ENOMEM) { 9895 return (ENOMEM); 9896 } 9897 9898 len = tcp_opt_get(connp, level, option_name, optvalp_buf); 9899 squeue_synch_exit(sqp, connp); 9900 9901 if (len < 0) { 9902 /* 9903 * Pass on to IP 9904 */ 9905 kmem_free(optvalp_buf, max_optbuf_len); 9906 return (ip_get_options(connp, level, option_name, 9907 optvalp, optlen, cr)); 9908 } else { 9909 /* 9910 * update optlen and copy option value 9911 */ 9912 t_uscalar_t size = MIN(len, *optlen); 9913 bcopy(optvalp_buf, optvalp, size); 9914 bcopy(&size, optlen, sizeof (size)); 9915 9916 kmem_free(optvalp_buf, max_optbuf_len); 9917 return (0); 9918 } 9919 } 9920 9921 /* 9922 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 9923 * Parameters are assumed to be verified by the caller. 9924 */ 9925 /* ARGSUSED */ 9926 int 9927 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 9928 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9929 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 9930 { 9931 tcp_t *tcp = connp->conn_tcp; 9932 int *i1 = (int *)invalp; 9933 boolean_t onoff = (*i1 == 0) ? 0 : 1; 9934 boolean_t checkonly; 9935 int reterr; 9936 tcp_stack_t *tcps = tcp->tcp_tcps; 9937 9938 switch (optset_context) { 9939 case SETFN_OPTCOM_CHECKONLY: 9940 checkonly = B_TRUE; 9941 /* 9942 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9943 * inlen != 0 implies value supplied and 9944 * we have to "pretend" to set it. 9945 * inlen == 0 implies that there is no 9946 * value part in T_CHECK request and just validation 9947 * done elsewhere should be enough, we just return here. 9948 */ 9949 if (inlen == 0) { 9950 *outlenp = 0; 9951 return (0); 9952 } 9953 break; 9954 case SETFN_OPTCOM_NEGOTIATE: 9955 checkonly = B_FALSE; 9956 break; 9957 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 9958 case SETFN_CONN_NEGOTIATE: 9959 checkonly = B_FALSE; 9960 /* 9961 * Negotiating local and "association-related" options 9962 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 9963 * primitives is allowed by XTI, but we choose 9964 * to not implement this style negotiation for Internet 9965 * protocols (We interpret it is a must for OSI world but 9966 * optional for Internet protocols) for all options. 9967 * [ Will do only for the few options that enable test 9968 * suites that our XTI implementation of this feature 9969 * works for transports that do allow it ] 9970 */ 9971 if (!tcp_allow_connopt_set(level, name)) { 9972 *outlenp = 0; 9973 return (EINVAL); 9974 } 9975 break; 9976 default: 9977 /* 9978 * We should never get here 9979 */ 9980 *outlenp = 0; 9981 return (EINVAL); 9982 } 9983 9984 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9985 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9986 9987 /* 9988 * For TCP, we should have no ancillary data sent down 9989 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 9990 * has to be zero. 9991 */ 9992 ASSERT(thisdg_attrs == NULL); 9993 9994 /* 9995 * For fixed length options, no sanity check 9996 * of passed in length is done. It is assumed *_optcom_req() 9997 * routines do the right thing. 9998 */ 9999 switch (level) { 10000 case SOL_SOCKET: 10001 switch (name) { 10002 case SO_LINGER: { 10003 struct linger *lgr = (struct linger *)invalp; 10004 10005 if (!checkonly) { 10006 if (lgr->l_onoff) { 10007 tcp->tcp_linger = 1; 10008 tcp->tcp_lingertime = lgr->l_linger; 10009 } else { 10010 tcp->tcp_linger = 0; 10011 tcp->tcp_lingertime = 0; 10012 } 10013 /* struct copy */ 10014 *(struct linger *)outvalp = *lgr; 10015 } else { 10016 if (!lgr->l_onoff) { 10017 ((struct linger *) 10018 outvalp)->l_onoff = 0; 10019 ((struct linger *) 10020 outvalp)->l_linger = 0; 10021 } else { 10022 /* struct copy */ 10023 *(struct linger *)outvalp = *lgr; 10024 } 10025 } 10026 *outlenp = sizeof (struct linger); 10027 return (0); 10028 } 10029 case SO_DEBUG: 10030 if (!checkonly) 10031 tcp->tcp_debug = onoff; 10032 break; 10033 case SO_KEEPALIVE: 10034 if (checkonly) { 10035 /* check only case */ 10036 break; 10037 } 10038 10039 if (!onoff) { 10040 if (tcp->tcp_ka_enabled) { 10041 if (tcp->tcp_ka_tid != 0) { 10042 (void) TCP_TIMER_CANCEL(tcp, 10043 tcp->tcp_ka_tid); 10044 tcp->tcp_ka_tid = 0; 10045 } 10046 tcp->tcp_ka_enabled = 0; 10047 } 10048 break; 10049 } 10050 if (!tcp->tcp_ka_enabled) { 10051 /* Crank up the keepalive timer */ 10052 tcp->tcp_ka_last_intrvl = 0; 10053 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10054 tcp_keepalive_killer, 10055 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10056 tcp->tcp_ka_enabled = 1; 10057 } 10058 break; 10059 case SO_DONTROUTE: 10060 /* 10061 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10062 * only of interest to IP. We track them here only so 10063 * that we can report their current value. 10064 */ 10065 if (!checkonly) { 10066 tcp->tcp_dontroute = onoff; 10067 tcp->tcp_connp->conn_dontroute = onoff; 10068 } 10069 break; 10070 case SO_USELOOPBACK: 10071 if (!checkonly) { 10072 tcp->tcp_useloopback = onoff; 10073 tcp->tcp_connp->conn_loopback = onoff; 10074 } 10075 break; 10076 case SO_BROADCAST: 10077 if (!checkonly) { 10078 tcp->tcp_broadcast = onoff; 10079 tcp->tcp_connp->conn_broadcast = onoff; 10080 } 10081 break; 10082 case SO_REUSEADDR: 10083 if (!checkonly) { 10084 tcp->tcp_reuseaddr = onoff; 10085 tcp->tcp_connp->conn_reuseaddr = onoff; 10086 } 10087 break; 10088 case SO_OOBINLINE: 10089 if (!checkonly) { 10090 tcp->tcp_oobinline = onoff; 10091 if (IPCL_IS_NONSTR(tcp->tcp_connp)) 10092 proto_set_rx_oob_opt(connp, onoff); 10093 } 10094 break; 10095 case SO_DGRAM_ERRIND: 10096 if (!checkonly) 10097 tcp->tcp_dgram_errind = onoff; 10098 break; 10099 case SO_SNDBUF: { 10100 if (*i1 > tcps->tcps_max_buf) { 10101 *outlenp = 0; 10102 return (ENOBUFS); 10103 } 10104 if (checkonly) 10105 break; 10106 10107 tcp->tcp_xmit_hiwater = *i1; 10108 if (tcps->tcps_snd_lowat_fraction != 0) 10109 tcp->tcp_xmit_lowater = 10110 tcp->tcp_xmit_hiwater / 10111 tcps->tcps_snd_lowat_fraction; 10112 (void) tcp_maxpsz_set(tcp, B_TRUE); 10113 /* 10114 * If we are flow-controlled, recheck the condition. 10115 * There are apps that increase SO_SNDBUF size when 10116 * flow-controlled (EWOULDBLOCK), and expect the flow 10117 * control condition to be lifted right away. 10118 */ 10119 mutex_enter(&tcp->tcp_non_sq_lock); 10120 if (tcp->tcp_flow_stopped && 10121 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10122 tcp_clrqfull(tcp); 10123 } 10124 mutex_exit(&tcp->tcp_non_sq_lock); 10125 break; 10126 } 10127 case SO_RCVBUF: 10128 if (*i1 > tcps->tcps_max_buf) { 10129 *outlenp = 0; 10130 return (ENOBUFS); 10131 } 10132 /* Silently ignore zero */ 10133 if (!checkonly && *i1 != 0) { 10134 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10135 (void) tcp_rwnd_set(tcp, *i1); 10136 } 10137 /* 10138 * XXX should we return the rwnd here 10139 * and tcp_opt_get ? 10140 */ 10141 break; 10142 case SO_SND_COPYAVOID: 10143 if (!checkonly) { 10144 /* we only allow enable at most once for now */ 10145 if (tcp->tcp_loopback || 10146 (tcp->tcp_kssl_ctx != NULL) || 10147 (!tcp->tcp_snd_zcopy_aware && 10148 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10149 *outlenp = 0; 10150 return (EOPNOTSUPP); 10151 } 10152 tcp->tcp_snd_zcopy_aware = 1; 10153 } 10154 break; 10155 case SO_RCVTIMEO: 10156 case SO_SNDTIMEO: 10157 /* 10158 * Pass these two options in order for third part 10159 * protocol usage. Here just return directly. 10160 */ 10161 return (0); 10162 case SO_ALLZONES: 10163 /* Pass option along to IP level for handling */ 10164 return (-EINVAL); 10165 case SO_ANON_MLP: 10166 /* Pass option along to IP level for handling */ 10167 return (-EINVAL); 10168 case SO_MAC_EXEMPT: 10169 /* Pass option along to IP level for handling */ 10170 return (-EINVAL); 10171 case SO_EXCLBIND: 10172 if (!checkonly) 10173 tcp->tcp_exclbind = onoff; 10174 break; 10175 default: 10176 *outlenp = 0; 10177 return (EINVAL); 10178 } 10179 break; 10180 case IPPROTO_TCP: 10181 switch (name) { 10182 case TCP_NODELAY: 10183 if (!checkonly) 10184 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10185 break; 10186 case TCP_NOTIFY_THRESHOLD: 10187 if (!checkonly) 10188 tcp->tcp_first_timer_threshold = *i1; 10189 break; 10190 case TCP_ABORT_THRESHOLD: 10191 if (!checkonly) 10192 tcp->tcp_second_timer_threshold = *i1; 10193 break; 10194 case TCP_CONN_NOTIFY_THRESHOLD: 10195 if (!checkonly) 10196 tcp->tcp_first_ctimer_threshold = *i1; 10197 break; 10198 case TCP_CONN_ABORT_THRESHOLD: 10199 if (!checkonly) 10200 tcp->tcp_second_ctimer_threshold = *i1; 10201 break; 10202 case TCP_RECVDSTADDR: 10203 if (tcp->tcp_state > TCPS_LISTEN) 10204 return (EOPNOTSUPP); 10205 if (!checkonly) 10206 tcp->tcp_recvdstaddr = onoff; 10207 break; 10208 case TCP_ANONPRIVBIND: 10209 if ((reterr = secpolicy_net_privaddr(cr, 0, 10210 IPPROTO_TCP)) != 0) { 10211 *outlenp = 0; 10212 return (reterr); 10213 } 10214 if (!checkonly) { 10215 tcp->tcp_anon_priv_bind = onoff; 10216 } 10217 break; 10218 case TCP_EXCLBIND: 10219 if (!checkonly) 10220 tcp->tcp_exclbind = onoff; 10221 break; /* goto sizeof (int) option return */ 10222 case TCP_INIT_CWND: { 10223 uint32_t init_cwnd = *((uint32_t *)invalp); 10224 10225 if (checkonly) 10226 break; 10227 10228 /* 10229 * Only allow socket with network configuration 10230 * privilege to set the initial cwnd to be larger 10231 * than allowed by RFC 3390. 10232 */ 10233 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10234 tcp->tcp_init_cwnd = init_cwnd; 10235 break; 10236 } 10237 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 10238 *outlenp = 0; 10239 return (reterr); 10240 } 10241 if (init_cwnd > TCP_MAX_INIT_CWND) { 10242 *outlenp = 0; 10243 return (EINVAL); 10244 } 10245 tcp->tcp_init_cwnd = init_cwnd; 10246 break; 10247 } 10248 case TCP_KEEPALIVE_THRESHOLD: 10249 if (checkonly) 10250 break; 10251 10252 if (*i1 < tcps->tcps_keepalive_interval_low || 10253 *i1 > tcps->tcps_keepalive_interval_high) { 10254 *outlenp = 0; 10255 return (EINVAL); 10256 } 10257 if (*i1 != tcp->tcp_ka_interval) { 10258 tcp->tcp_ka_interval = *i1; 10259 /* 10260 * Check if we need to restart the 10261 * keepalive timer. 10262 */ 10263 if (tcp->tcp_ka_tid != 0) { 10264 ASSERT(tcp->tcp_ka_enabled); 10265 (void) TCP_TIMER_CANCEL(tcp, 10266 tcp->tcp_ka_tid); 10267 tcp->tcp_ka_last_intrvl = 0; 10268 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10269 tcp_keepalive_killer, 10270 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10271 } 10272 } 10273 break; 10274 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10275 if (!checkonly) { 10276 if (*i1 < 10277 tcps->tcps_keepalive_abort_interval_low || 10278 *i1 > 10279 tcps->tcps_keepalive_abort_interval_high) { 10280 *outlenp = 0; 10281 return (EINVAL); 10282 } 10283 tcp->tcp_ka_abort_thres = *i1; 10284 } 10285 break; 10286 case TCP_CORK: 10287 if (!checkonly) { 10288 /* 10289 * if tcp->tcp_cork was set and is now 10290 * being unset, we have to make sure that 10291 * the remaining data gets sent out. Also 10292 * unset tcp->tcp_cork so that tcp_wput_data() 10293 * can send data even if it is less than mss 10294 */ 10295 if (tcp->tcp_cork && onoff == 0 && 10296 tcp->tcp_unsent > 0) { 10297 tcp->tcp_cork = B_FALSE; 10298 tcp_wput_data(tcp, NULL, B_FALSE); 10299 } 10300 tcp->tcp_cork = onoff; 10301 } 10302 break; 10303 default: 10304 *outlenp = 0; 10305 return (EINVAL); 10306 } 10307 break; 10308 case IPPROTO_IP: 10309 if (tcp->tcp_family != AF_INET) { 10310 *outlenp = 0; 10311 return (ENOPROTOOPT); 10312 } 10313 switch (name) { 10314 case IP_OPTIONS: 10315 case T_IP_OPTIONS: 10316 reterr = tcp_opt_set_header(tcp, checkonly, 10317 invalp, inlen); 10318 if (reterr) { 10319 *outlenp = 0; 10320 return (reterr); 10321 } 10322 /* OK return - copy input buffer into output buffer */ 10323 if (invalp != outvalp) { 10324 /* don't trust bcopy for identical src/dst */ 10325 bcopy(invalp, outvalp, inlen); 10326 } 10327 *outlenp = inlen; 10328 return (0); 10329 case IP_TOS: 10330 case T_IP_TOS: 10331 if (!checkonly) { 10332 tcp->tcp_ipha->ipha_type_of_service = 10333 (uchar_t)*i1; 10334 tcp->tcp_tos = (uchar_t)*i1; 10335 } 10336 break; 10337 case IP_TTL: 10338 if (!checkonly) { 10339 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10340 tcp->tcp_ttl = (uchar_t)*i1; 10341 } 10342 break; 10343 case IP_BOUND_IF: 10344 case IP_NEXTHOP: 10345 /* Handled at the IP level */ 10346 return (-EINVAL); 10347 case IP_SEC_OPT: 10348 /* 10349 * We should not allow policy setting after 10350 * we start listening for connections. 10351 */ 10352 if (tcp->tcp_state == TCPS_LISTEN) { 10353 return (EINVAL); 10354 } else { 10355 /* Handled at the IP level */ 10356 return (-EINVAL); 10357 } 10358 default: 10359 *outlenp = 0; 10360 return (EINVAL); 10361 } 10362 break; 10363 case IPPROTO_IPV6: { 10364 ip6_pkt_t *ipp; 10365 10366 /* 10367 * IPPROTO_IPV6 options are only supported for sockets 10368 * that are using IPv6 on the wire. 10369 */ 10370 if (tcp->tcp_ipversion != IPV6_VERSION) { 10371 *outlenp = 0; 10372 return (ENOPROTOOPT); 10373 } 10374 /* 10375 * Only sticky options; no ancillary data 10376 */ 10377 ipp = &tcp->tcp_sticky_ipp; 10378 10379 switch (name) { 10380 case IPV6_UNICAST_HOPS: 10381 /* -1 means use default */ 10382 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10383 *outlenp = 0; 10384 return (EINVAL); 10385 } 10386 if (!checkonly) { 10387 if (*i1 == -1) { 10388 tcp->tcp_ip6h->ip6_hops = 10389 ipp->ipp_unicast_hops = 10390 (uint8_t)tcps->tcps_ipv6_hoplimit; 10391 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10392 /* Pass modified value to IP. */ 10393 *i1 = tcp->tcp_ip6h->ip6_hops; 10394 } else { 10395 tcp->tcp_ip6h->ip6_hops = 10396 ipp->ipp_unicast_hops = 10397 (uint8_t)*i1; 10398 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10399 } 10400 reterr = tcp_build_hdrs(tcp); 10401 if (reterr != 0) 10402 return (reterr); 10403 } 10404 break; 10405 case IPV6_BOUND_IF: 10406 if (!checkonly) { 10407 tcp->tcp_bound_if = *i1; 10408 PASS_OPT_TO_IP(connp); 10409 } 10410 break; 10411 /* 10412 * Set boolean switches for ancillary data delivery 10413 */ 10414 case IPV6_RECVPKTINFO: 10415 if (!checkonly) { 10416 if (onoff) 10417 tcp->tcp_ipv6_recvancillary |= 10418 TCP_IPV6_RECVPKTINFO; 10419 else 10420 tcp->tcp_ipv6_recvancillary &= 10421 ~TCP_IPV6_RECVPKTINFO; 10422 /* Force it to be sent up with the next msg */ 10423 tcp->tcp_recvifindex = 0; 10424 PASS_OPT_TO_IP(connp); 10425 } 10426 break; 10427 case IPV6_RECVTCLASS: 10428 if (!checkonly) { 10429 if (onoff) 10430 tcp->tcp_ipv6_recvancillary |= 10431 TCP_IPV6_RECVTCLASS; 10432 else 10433 tcp->tcp_ipv6_recvancillary &= 10434 ~TCP_IPV6_RECVTCLASS; 10435 PASS_OPT_TO_IP(connp); 10436 } 10437 break; 10438 case IPV6_RECVHOPLIMIT: 10439 if (!checkonly) { 10440 if (onoff) 10441 tcp->tcp_ipv6_recvancillary |= 10442 TCP_IPV6_RECVHOPLIMIT; 10443 else 10444 tcp->tcp_ipv6_recvancillary &= 10445 ~TCP_IPV6_RECVHOPLIMIT; 10446 /* Force it to be sent up with the next msg */ 10447 tcp->tcp_recvhops = 0xffffffffU; 10448 PASS_OPT_TO_IP(connp); 10449 } 10450 break; 10451 case IPV6_RECVHOPOPTS: 10452 if (!checkonly) { 10453 if (onoff) 10454 tcp->tcp_ipv6_recvancillary |= 10455 TCP_IPV6_RECVHOPOPTS; 10456 else 10457 tcp->tcp_ipv6_recvancillary &= 10458 ~TCP_IPV6_RECVHOPOPTS; 10459 PASS_OPT_TO_IP(connp); 10460 } 10461 break; 10462 case IPV6_RECVDSTOPTS: 10463 if (!checkonly) { 10464 if (onoff) 10465 tcp->tcp_ipv6_recvancillary |= 10466 TCP_IPV6_RECVDSTOPTS; 10467 else 10468 tcp->tcp_ipv6_recvancillary &= 10469 ~TCP_IPV6_RECVDSTOPTS; 10470 PASS_OPT_TO_IP(connp); 10471 } 10472 break; 10473 case _OLD_IPV6_RECVDSTOPTS: 10474 if (!checkonly) { 10475 if (onoff) 10476 tcp->tcp_ipv6_recvancillary |= 10477 TCP_OLD_IPV6_RECVDSTOPTS; 10478 else 10479 tcp->tcp_ipv6_recvancillary &= 10480 ~TCP_OLD_IPV6_RECVDSTOPTS; 10481 } 10482 break; 10483 case IPV6_RECVRTHDR: 10484 if (!checkonly) { 10485 if (onoff) 10486 tcp->tcp_ipv6_recvancillary |= 10487 TCP_IPV6_RECVRTHDR; 10488 else 10489 tcp->tcp_ipv6_recvancillary &= 10490 ~TCP_IPV6_RECVRTHDR; 10491 PASS_OPT_TO_IP(connp); 10492 } 10493 break; 10494 case IPV6_RECVRTHDRDSTOPTS: 10495 if (!checkonly) { 10496 if (onoff) 10497 tcp->tcp_ipv6_recvancillary |= 10498 TCP_IPV6_RECVRTDSTOPTS; 10499 else 10500 tcp->tcp_ipv6_recvancillary &= 10501 ~TCP_IPV6_RECVRTDSTOPTS; 10502 PASS_OPT_TO_IP(connp); 10503 } 10504 break; 10505 case IPV6_PKTINFO: 10506 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10507 return (EINVAL); 10508 if (checkonly) 10509 break; 10510 10511 if (inlen == 0) { 10512 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10513 } else { 10514 struct in6_pktinfo *pkti; 10515 10516 pkti = (struct in6_pktinfo *)invalp; 10517 /* 10518 * RFC 3542 states that ipi6_addr must be 10519 * the unspecified address when setting the 10520 * IPV6_PKTINFO sticky socket option on a 10521 * TCP socket. 10522 */ 10523 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10524 return (EINVAL); 10525 /* 10526 * IP will validate the source address and 10527 * interface index. 10528 */ 10529 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 10530 reterr = ip_set_options(tcp->tcp_connp, 10531 level, name, invalp, inlen, cr); 10532 } else { 10533 reterr = ip6_set_pktinfo(cr, 10534 tcp->tcp_connp, pkti); 10535 } 10536 if (reterr != 0) 10537 return (reterr); 10538 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10539 ipp->ipp_addr = pkti->ipi6_addr; 10540 if (ipp->ipp_ifindex != 0) 10541 ipp->ipp_fields |= IPPF_IFINDEX; 10542 else 10543 ipp->ipp_fields &= ~IPPF_IFINDEX; 10544 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10545 ipp->ipp_fields |= IPPF_ADDR; 10546 else 10547 ipp->ipp_fields &= ~IPPF_ADDR; 10548 } 10549 reterr = tcp_build_hdrs(tcp); 10550 if (reterr != 0) 10551 return (reterr); 10552 break; 10553 case IPV6_TCLASS: 10554 if (inlen != 0 && inlen != sizeof (int)) 10555 return (EINVAL); 10556 if (checkonly) 10557 break; 10558 10559 if (inlen == 0) { 10560 ipp->ipp_fields &= ~IPPF_TCLASS; 10561 } else { 10562 if (*i1 > 255 || *i1 < -1) 10563 return (EINVAL); 10564 if (*i1 == -1) { 10565 ipp->ipp_tclass = 0; 10566 *i1 = 0; 10567 } else { 10568 ipp->ipp_tclass = *i1; 10569 } 10570 ipp->ipp_fields |= IPPF_TCLASS; 10571 } 10572 reterr = tcp_build_hdrs(tcp); 10573 if (reterr != 0) 10574 return (reterr); 10575 break; 10576 case IPV6_NEXTHOP: 10577 /* 10578 * IP will verify that the nexthop is reachable 10579 * and fail for sticky options. 10580 */ 10581 if (inlen != 0 && inlen != sizeof (sin6_t)) 10582 return (EINVAL); 10583 if (checkonly) 10584 break; 10585 10586 if (inlen == 0) { 10587 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10588 } else { 10589 sin6_t *sin6 = (sin6_t *)invalp; 10590 10591 if (sin6->sin6_family != AF_INET6) 10592 return (EAFNOSUPPORT); 10593 if (IN6_IS_ADDR_V4MAPPED( 10594 &sin6->sin6_addr)) 10595 return (EADDRNOTAVAIL); 10596 ipp->ipp_nexthop = sin6->sin6_addr; 10597 if (!IN6_IS_ADDR_UNSPECIFIED( 10598 &ipp->ipp_nexthop)) 10599 ipp->ipp_fields |= IPPF_NEXTHOP; 10600 else 10601 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10602 } 10603 reterr = tcp_build_hdrs(tcp); 10604 if (reterr != 0) 10605 return (reterr); 10606 PASS_OPT_TO_IP(connp); 10607 break; 10608 case IPV6_HOPOPTS: { 10609 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10610 10611 /* 10612 * Sanity checks - minimum size, size a multiple of 10613 * eight bytes, and matching size passed in. 10614 */ 10615 if (inlen != 0 && 10616 inlen != (8 * (hopts->ip6h_len + 1))) 10617 return (EINVAL); 10618 10619 if (checkonly) 10620 break; 10621 10622 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10623 (uchar_t **)&ipp->ipp_hopopts, 10624 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10625 if (reterr != 0) 10626 return (reterr); 10627 if (ipp->ipp_hopoptslen == 0) 10628 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10629 else 10630 ipp->ipp_fields |= IPPF_HOPOPTS; 10631 reterr = tcp_build_hdrs(tcp); 10632 if (reterr != 0) 10633 return (reterr); 10634 break; 10635 } 10636 case IPV6_RTHDRDSTOPTS: { 10637 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10638 10639 /* 10640 * Sanity checks - minimum size, size a multiple of 10641 * eight bytes, and matching size passed in. 10642 */ 10643 if (inlen != 0 && 10644 inlen != (8 * (dopts->ip6d_len + 1))) 10645 return (EINVAL); 10646 10647 if (checkonly) 10648 break; 10649 10650 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10651 (uchar_t **)&ipp->ipp_rtdstopts, 10652 &ipp->ipp_rtdstoptslen, 0); 10653 if (reterr != 0) 10654 return (reterr); 10655 if (ipp->ipp_rtdstoptslen == 0) 10656 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10657 else 10658 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10659 reterr = tcp_build_hdrs(tcp); 10660 if (reterr != 0) 10661 return (reterr); 10662 break; 10663 } 10664 case IPV6_DSTOPTS: { 10665 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10666 10667 /* 10668 * Sanity checks - minimum size, size a multiple of 10669 * eight bytes, and matching size passed in. 10670 */ 10671 if (inlen != 0 && 10672 inlen != (8 * (dopts->ip6d_len + 1))) 10673 return (EINVAL); 10674 10675 if (checkonly) 10676 break; 10677 10678 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10679 (uchar_t **)&ipp->ipp_dstopts, 10680 &ipp->ipp_dstoptslen, 0); 10681 if (reterr != 0) 10682 return (reterr); 10683 if (ipp->ipp_dstoptslen == 0) 10684 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10685 else 10686 ipp->ipp_fields |= IPPF_DSTOPTS; 10687 reterr = tcp_build_hdrs(tcp); 10688 if (reterr != 0) 10689 return (reterr); 10690 break; 10691 } 10692 case IPV6_RTHDR: { 10693 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10694 10695 /* 10696 * Sanity checks - minimum size, size a multiple of 10697 * eight bytes, and matching size passed in. 10698 */ 10699 if (inlen != 0 && 10700 inlen != (8 * (rt->ip6r_len + 1))) 10701 return (EINVAL); 10702 10703 if (checkonly) 10704 break; 10705 10706 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10707 (uchar_t **)&ipp->ipp_rthdr, 10708 &ipp->ipp_rthdrlen, 0); 10709 if (reterr != 0) 10710 return (reterr); 10711 if (ipp->ipp_rthdrlen == 0) 10712 ipp->ipp_fields &= ~IPPF_RTHDR; 10713 else 10714 ipp->ipp_fields |= IPPF_RTHDR; 10715 reterr = tcp_build_hdrs(tcp); 10716 if (reterr != 0) 10717 return (reterr); 10718 break; 10719 } 10720 case IPV6_V6ONLY: 10721 if (!checkonly) { 10722 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10723 } 10724 break; 10725 case IPV6_USE_MIN_MTU: 10726 if (inlen != sizeof (int)) 10727 return (EINVAL); 10728 10729 if (*i1 < -1 || *i1 > 1) 10730 return (EINVAL); 10731 10732 if (checkonly) 10733 break; 10734 10735 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10736 ipp->ipp_use_min_mtu = *i1; 10737 break; 10738 case IPV6_SEC_OPT: 10739 /* 10740 * We should not allow policy setting after 10741 * we start listening for connections. 10742 */ 10743 if (tcp->tcp_state == TCPS_LISTEN) { 10744 return (EINVAL); 10745 } else { 10746 /* Handled at the IP level */ 10747 return (-EINVAL); 10748 } 10749 case IPV6_SRC_PREFERENCES: 10750 if (inlen != sizeof (uint32_t)) 10751 return (EINVAL); 10752 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10753 *(uint32_t *)invalp); 10754 if (reterr != 0) { 10755 *outlenp = 0; 10756 return (reterr); 10757 } 10758 break; 10759 default: 10760 *outlenp = 0; 10761 return (EINVAL); 10762 } 10763 break; 10764 } /* end IPPROTO_IPV6 */ 10765 default: 10766 *outlenp = 0; 10767 return (EINVAL); 10768 } 10769 /* 10770 * Common case of OK return with outval same as inval 10771 */ 10772 if (invalp != outvalp) { 10773 /* don't trust bcopy for identical src/dst */ 10774 (void) bcopy(invalp, outvalp, inlen); 10775 } 10776 *outlenp = inlen; 10777 return (0); 10778 } 10779 10780 /* ARGSUSED */ 10781 int 10782 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10783 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10784 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10785 { 10786 conn_t *connp = Q_TO_CONN(q); 10787 10788 return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp, 10789 outlenp, outvalp, thisdg_attrs, cr, mblk)); 10790 } 10791 10792 int 10793 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 10794 const void *optvalp, socklen_t optlen, cred_t *cr) 10795 { 10796 conn_t *connp = (conn_t *)proto_handle; 10797 squeue_t *sqp = connp->conn_sqp; 10798 int error; 10799 10800 ASSERT(connp->conn_upper_handle != NULL); 10801 /* 10802 * Entering the squeue synchronously can result in a context switch, 10803 * which can cause a rather sever performance degradation. So we try to 10804 * handle whatever options we can without entering the squeue. 10805 */ 10806 if (level == IPPROTO_TCP) { 10807 switch (option_name) { 10808 case TCP_NODELAY: 10809 if (optlen != sizeof (int32_t)) 10810 return (EINVAL); 10811 mutex_enter(&connp->conn_tcp->tcp_non_sq_lock); 10812 connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 : 10813 connp->conn_tcp->tcp_mss; 10814 mutex_exit(&connp->conn_tcp->tcp_non_sq_lock); 10815 return (0); 10816 default: 10817 break; 10818 } 10819 } 10820 10821 error = squeue_synch_enter(sqp, connp, NULL); 10822 if (error == ENOMEM) { 10823 return (ENOMEM); 10824 } 10825 10826 error = proto_opt_check(level, option_name, optlen, NULL, 10827 tcp_opt_obj.odb_opt_des_arr, 10828 tcp_opt_obj.odb_opt_arr_cnt, 10829 tcp_opt_obj.odb_topmost_tpiprovider, 10830 B_TRUE, B_FALSE, cr); 10831 10832 if (error != 0) { 10833 if (error < 0) { 10834 error = proto_tlitosyserr(-error); 10835 } 10836 squeue_synch_exit(sqp, connp); 10837 return (error); 10838 } 10839 10840 error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 10841 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 10842 NULL, cr, NULL); 10843 squeue_synch_exit(sqp, connp); 10844 10845 if (error < 0) { 10846 /* 10847 * Pass on to ip 10848 */ 10849 error = ip_set_options(connp, level, option_name, optvalp, 10850 optlen, cr); 10851 } 10852 return (error); 10853 } 10854 10855 /* 10856 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10857 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10858 * headers, and the maximum size tcp header (to avoid reallocation 10859 * on the fly for additional tcp options). 10860 * Returns failure if can't allocate memory. 10861 */ 10862 static int 10863 tcp_build_hdrs(tcp_t *tcp) 10864 { 10865 char *hdrs; 10866 uint_t hdrs_len; 10867 ip6i_t *ip6i; 10868 char buf[TCP_MAX_HDR_LENGTH]; 10869 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10870 in6_addr_t src, dst; 10871 tcp_stack_t *tcps = tcp->tcp_tcps; 10872 conn_t *connp = tcp->tcp_connp; 10873 10874 /* 10875 * save the existing tcp header and source/dest IP addresses 10876 */ 10877 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10878 src = tcp->tcp_ip6h->ip6_src; 10879 dst = tcp->tcp_ip6h->ip6_dst; 10880 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10881 ASSERT(hdrs_len != 0); 10882 if (hdrs_len > tcp->tcp_iphc_len) { 10883 /* Need to reallocate */ 10884 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10885 if (hdrs == NULL) 10886 return (ENOMEM); 10887 if (tcp->tcp_iphc != NULL) { 10888 if (tcp->tcp_hdr_grown) { 10889 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10890 } else { 10891 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10892 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10893 } 10894 tcp->tcp_iphc_len = 0; 10895 } 10896 ASSERT(tcp->tcp_iphc_len == 0); 10897 tcp->tcp_iphc = hdrs; 10898 tcp->tcp_iphc_len = hdrs_len; 10899 tcp->tcp_hdr_grown = B_TRUE; 10900 } 10901 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 10902 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 10903 10904 /* Set header fields not in ipp */ 10905 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 10906 ip6i = (ip6i_t *)tcp->tcp_iphc; 10907 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 10908 } else { 10909 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 10910 } 10911 /* 10912 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 10913 * 10914 * tcp->tcp_tcp_hdr_len doesn't change here. 10915 */ 10916 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 10917 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 10918 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 10919 10920 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 10921 10922 tcp->tcp_ip6h->ip6_src = src; 10923 tcp->tcp_ip6h->ip6_dst = dst; 10924 10925 /* 10926 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 10927 * the default value for TCP. 10928 */ 10929 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 10930 tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit; 10931 10932 /* 10933 * If we're setting extension headers after a connection 10934 * has been established, and if we have a routing header 10935 * among the extension headers, call ip_massage_options_v6 to 10936 * manipulate the routing header/ip6_dst set the checksum 10937 * difference in the tcp header template. 10938 * (This happens in tcp_connect_ipv6 if the routing header 10939 * is set prior to the connect.) 10940 * Set the tcp_sum to zero first in case we've cleared a 10941 * routing header or don't have one at all. 10942 */ 10943 tcp->tcp_sum = 0; 10944 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 10945 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 10946 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 10947 (uint8_t *)tcp->tcp_tcph); 10948 if (rth != NULL) { 10949 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 10950 rth, tcps->tcps_netstack); 10951 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 10952 (tcp->tcp_sum >> 16)); 10953 } 10954 } 10955 10956 /* Try to get everything in a single mblk */ 10957 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 10958 hdrs_len + tcps->tcps_wroff_xtra); 10959 return (0); 10960 } 10961 10962 /* 10963 * Transfer any source route option from ipha to buf/dst in reversed form. 10964 */ 10965 static int 10966 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 10967 { 10968 ipoptp_t opts; 10969 uchar_t *opt; 10970 uint8_t optval; 10971 uint8_t optlen; 10972 uint32_t len = 0; 10973 10974 for (optval = ipoptp_first(&opts, ipha); 10975 optval != IPOPT_EOL; 10976 optval = ipoptp_next(&opts)) { 10977 opt = opts.ipoptp_cur; 10978 optlen = opts.ipoptp_len; 10979 switch (optval) { 10980 int off1, off2; 10981 case IPOPT_SSRR: 10982 case IPOPT_LSRR: 10983 10984 /* Reverse source route */ 10985 /* 10986 * First entry should be the next to last one in the 10987 * current source route (the last entry is our 10988 * address.) 10989 * The last entry should be the final destination. 10990 */ 10991 buf[IPOPT_OPTVAL] = (uint8_t)optval; 10992 buf[IPOPT_OLEN] = (uint8_t)optlen; 10993 off1 = IPOPT_MINOFF_SR - 1; 10994 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 10995 if (off2 < 0) { 10996 /* No entries in source route */ 10997 break; 10998 } 10999 bcopy(opt + off2, dst, IP_ADDR_LEN); 11000 /* 11001 * Note: use src since ipha has not had its src 11002 * and dst reversed (it is in the state it was 11003 * received. 11004 */ 11005 bcopy(&ipha->ipha_src, buf + off2, 11006 IP_ADDR_LEN); 11007 off2 -= IP_ADDR_LEN; 11008 11009 while (off2 > 0) { 11010 bcopy(opt + off2, buf + off1, 11011 IP_ADDR_LEN); 11012 off1 += IP_ADDR_LEN; 11013 off2 -= IP_ADDR_LEN; 11014 } 11015 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 11016 buf += optlen; 11017 len += optlen; 11018 break; 11019 } 11020 } 11021 done: 11022 /* Pad the resulting options */ 11023 while (len & 0x3) { 11024 *buf++ = IPOPT_EOL; 11025 len++; 11026 } 11027 return (len); 11028 } 11029 11030 11031 /* 11032 * Extract and revert a source route from ipha (if any) 11033 * and then update the relevant fields in both tcp_t and the standard header. 11034 */ 11035 static void 11036 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11037 { 11038 char buf[TCP_MAX_HDR_LENGTH]; 11039 uint_t tcph_len; 11040 int len; 11041 11042 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11043 len = IPH_HDR_LENGTH(ipha); 11044 if (len == IP_SIMPLE_HDR_LENGTH) 11045 /* Nothing to do */ 11046 return; 11047 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11048 (len & 0x3)) 11049 return; 11050 11051 tcph_len = tcp->tcp_tcp_hdr_len; 11052 bcopy(tcp->tcp_tcph, buf, tcph_len); 11053 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11054 (tcp->tcp_ipha->ipha_dst & 0xffff); 11055 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11056 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11057 len += IP_SIMPLE_HDR_LENGTH; 11058 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11059 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11060 if ((int)tcp->tcp_sum < 0) 11061 tcp->tcp_sum--; 11062 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11063 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11064 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11065 bcopy(buf, tcp->tcp_tcph, tcph_len); 11066 tcp->tcp_ip_hdr_len = len; 11067 tcp->tcp_ipha->ipha_version_and_hdr_length = 11068 (IP_VERSION << 4) | (len >> 2); 11069 len += tcph_len; 11070 tcp->tcp_hdr_len = len; 11071 } 11072 11073 /* 11074 * Copy the standard header into its new location, 11075 * lay in the new options and then update the relevant 11076 * fields in both tcp_t and the standard header. 11077 */ 11078 static int 11079 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11080 { 11081 uint_t tcph_len; 11082 uint8_t *ip_optp; 11083 tcph_t *new_tcph; 11084 tcp_stack_t *tcps = tcp->tcp_tcps; 11085 conn_t *connp = tcp->tcp_connp; 11086 11087 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11088 return (EINVAL); 11089 11090 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11091 return (EINVAL); 11092 11093 if (checkonly) { 11094 /* 11095 * do not really set, just pretend to - T_CHECK 11096 */ 11097 return (0); 11098 } 11099 11100 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11101 if (tcp->tcp_label_len > 0) { 11102 int padlen; 11103 uint8_t opt; 11104 11105 /* convert list termination to no-ops */ 11106 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11107 ip_optp += ip_optp[IPOPT_OLEN]; 11108 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11109 while (--padlen >= 0) 11110 *ip_optp++ = opt; 11111 } 11112 tcph_len = tcp->tcp_tcp_hdr_len; 11113 new_tcph = (tcph_t *)(ip_optp + len); 11114 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11115 tcp->tcp_tcph = new_tcph; 11116 bcopy(ptr, ip_optp, len); 11117 11118 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11119 11120 tcp->tcp_ip_hdr_len = len; 11121 tcp->tcp_ipha->ipha_version_and_hdr_length = 11122 (IP_VERSION << 4) | (len >> 2); 11123 tcp->tcp_hdr_len = len + tcph_len; 11124 if (!TCP_IS_DETACHED(tcp)) { 11125 /* Always allocate room for all options. */ 11126 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 11127 TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra); 11128 } 11129 return (0); 11130 } 11131 11132 /* Get callback routine passed to nd_load by tcp_param_register */ 11133 /* ARGSUSED */ 11134 static int 11135 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11136 { 11137 tcpparam_t *tcppa = (tcpparam_t *)cp; 11138 11139 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11140 return (0); 11141 } 11142 11143 /* 11144 * Walk through the param array specified registering each element with the 11145 * named dispatch handler. 11146 */ 11147 static boolean_t 11148 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 11149 { 11150 for (; cnt-- > 0; tcppa++) { 11151 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11152 if (!nd_load(ndp, tcppa->tcp_param_name, 11153 tcp_param_get, tcp_param_set, 11154 (caddr_t)tcppa)) { 11155 nd_free(ndp); 11156 return (B_FALSE); 11157 } 11158 } 11159 } 11160 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 11161 KM_SLEEP); 11162 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 11163 sizeof (tcpparam_t)); 11164 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 11165 tcp_param_get, tcp_param_set_aligned, 11166 (caddr_t)tcps->tcps_wroff_xtra_param)) { 11167 nd_free(ndp); 11168 return (B_FALSE); 11169 } 11170 tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t), 11171 KM_SLEEP); 11172 bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param, 11173 sizeof (tcpparam_t)); 11174 if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name, 11175 tcp_param_get, tcp_param_set_aligned, 11176 (caddr_t)tcps->tcps_mdt_head_param)) { 11177 nd_free(ndp); 11178 return (B_FALSE); 11179 } 11180 tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t), 11181 KM_SLEEP); 11182 bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param, 11183 sizeof (tcpparam_t)); 11184 if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name, 11185 tcp_param_get, tcp_param_set_aligned, 11186 (caddr_t)tcps->tcps_mdt_tail_param)) { 11187 nd_free(ndp); 11188 return (B_FALSE); 11189 } 11190 tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t), 11191 KM_SLEEP); 11192 bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param, 11193 sizeof (tcpparam_t)); 11194 if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name, 11195 tcp_param_get, tcp_param_set_aligned, 11196 (caddr_t)tcps->tcps_mdt_max_pbufs_param)) { 11197 nd_free(ndp); 11198 return (B_FALSE); 11199 } 11200 if (!nd_load(ndp, "tcp_extra_priv_ports", 11201 tcp_extra_priv_ports_get, NULL, NULL)) { 11202 nd_free(ndp); 11203 return (B_FALSE); 11204 } 11205 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 11206 NULL, tcp_extra_priv_ports_add, NULL)) { 11207 nd_free(ndp); 11208 return (B_FALSE); 11209 } 11210 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 11211 NULL, tcp_extra_priv_ports_del, NULL)) { 11212 nd_free(ndp); 11213 return (B_FALSE); 11214 } 11215 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 11216 tcp_1948_phrase_set, NULL)) { 11217 nd_free(ndp); 11218 return (B_FALSE); 11219 } 11220 /* 11221 * Dummy ndd variables - only to convey obsolescence information 11222 * through printing of their name (no get or set routines) 11223 * XXX Remove in future releases ? 11224 */ 11225 if (!nd_load(ndp, 11226 "tcp_close_wait_interval(obsoleted - " 11227 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11228 nd_free(ndp); 11229 return (B_FALSE); 11230 } 11231 return (B_TRUE); 11232 } 11233 11234 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11235 /* ARGSUSED */ 11236 static int 11237 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11238 cred_t *cr) 11239 { 11240 long new_value; 11241 tcpparam_t *tcppa = (tcpparam_t *)cp; 11242 11243 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11244 new_value < tcppa->tcp_param_min || 11245 new_value > tcppa->tcp_param_max) { 11246 return (EINVAL); 11247 } 11248 /* 11249 * Need to make sure new_value is a multiple of 4. If it is not, 11250 * round it up. For future 64 bit requirement, we actually make it 11251 * a multiple of 8. 11252 */ 11253 if (new_value & 0x7) { 11254 new_value = (new_value & ~0x7) + 0x8; 11255 } 11256 tcppa->tcp_param_val = new_value; 11257 return (0); 11258 } 11259 11260 /* Set callback routine passed to nd_load by tcp_param_register */ 11261 /* ARGSUSED */ 11262 static int 11263 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11264 { 11265 long new_value; 11266 tcpparam_t *tcppa = (tcpparam_t *)cp; 11267 11268 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11269 new_value < tcppa->tcp_param_min || 11270 new_value > tcppa->tcp_param_max) { 11271 return (EINVAL); 11272 } 11273 tcppa->tcp_param_val = new_value; 11274 return (0); 11275 } 11276 11277 /* 11278 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11279 * is filled, return as much as we can. The message passed in may be 11280 * multi-part, chained using b_cont. "start" is the starting sequence 11281 * number for this piece. 11282 */ 11283 static mblk_t * 11284 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11285 { 11286 uint32_t end; 11287 mblk_t *mp1; 11288 mblk_t *mp2; 11289 mblk_t *next_mp; 11290 uint32_t u1; 11291 tcp_stack_t *tcps = tcp->tcp_tcps; 11292 11293 /* Walk through all the new pieces. */ 11294 do { 11295 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11296 (uintptr_t)INT_MAX); 11297 end = start + (int)(mp->b_wptr - mp->b_rptr); 11298 next_mp = mp->b_cont; 11299 if (start == end) { 11300 /* Empty. Blast it. */ 11301 freeb(mp); 11302 continue; 11303 } 11304 mp->b_cont = NULL; 11305 TCP_REASS_SET_SEQ(mp, start); 11306 TCP_REASS_SET_END(mp, end); 11307 mp1 = tcp->tcp_reass_tail; 11308 if (!mp1) { 11309 tcp->tcp_reass_tail = mp; 11310 tcp->tcp_reass_head = mp; 11311 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11312 UPDATE_MIB(&tcps->tcps_mib, 11313 tcpInDataUnorderBytes, end - start); 11314 continue; 11315 } 11316 /* New stuff completely beyond tail? */ 11317 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11318 /* Link it on end. */ 11319 mp1->b_cont = mp; 11320 tcp->tcp_reass_tail = mp; 11321 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11322 UPDATE_MIB(&tcps->tcps_mib, 11323 tcpInDataUnorderBytes, end - start); 11324 continue; 11325 } 11326 mp1 = tcp->tcp_reass_head; 11327 u1 = TCP_REASS_SEQ(mp1); 11328 /* New stuff at the front? */ 11329 if (SEQ_LT(start, u1)) { 11330 /* Yes... Check for overlap. */ 11331 mp->b_cont = mp1; 11332 tcp->tcp_reass_head = mp; 11333 tcp_reass_elim_overlap(tcp, mp); 11334 continue; 11335 } 11336 /* 11337 * The new piece fits somewhere between the head and tail. 11338 * We find our slot, where mp1 precedes us and mp2 trails. 11339 */ 11340 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11341 u1 = TCP_REASS_SEQ(mp2); 11342 if (SEQ_LEQ(start, u1)) 11343 break; 11344 } 11345 /* Link ourselves in */ 11346 mp->b_cont = mp2; 11347 mp1->b_cont = mp; 11348 11349 /* Trim overlap with following mblk(s) first */ 11350 tcp_reass_elim_overlap(tcp, mp); 11351 11352 /* Trim overlap with preceding mblk */ 11353 tcp_reass_elim_overlap(tcp, mp1); 11354 11355 } while (start = end, mp = next_mp); 11356 mp1 = tcp->tcp_reass_head; 11357 /* Anything ready to go? */ 11358 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11359 return (NULL); 11360 /* Eat what we can off the queue */ 11361 for (;;) { 11362 mp = mp1->b_cont; 11363 end = TCP_REASS_END(mp1); 11364 TCP_REASS_SET_SEQ(mp1, 0); 11365 TCP_REASS_SET_END(mp1, 0); 11366 if (!mp) { 11367 tcp->tcp_reass_tail = NULL; 11368 break; 11369 } 11370 if (end != TCP_REASS_SEQ(mp)) { 11371 mp1->b_cont = NULL; 11372 break; 11373 } 11374 mp1 = mp; 11375 } 11376 mp1 = tcp->tcp_reass_head; 11377 tcp->tcp_reass_head = mp; 11378 return (mp1); 11379 } 11380 11381 /* Eliminate any overlap that mp may have over later mblks */ 11382 static void 11383 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11384 { 11385 uint32_t end; 11386 mblk_t *mp1; 11387 uint32_t u1; 11388 tcp_stack_t *tcps = tcp->tcp_tcps; 11389 11390 end = TCP_REASS_END(mp); 11391 while ((mp1 = mp->b_cont) != NULL) { 11392 u1 = TCP_REASS_SEQ(mp1); 11393 if (!SEQ_GT(end, u1)) 11394 break; 11395 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11396 mp->b_wptr -= end - u1; 11397 TCP_REASS_SET_END(mp, u1); 11398 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 11399 UPDATE_MIB(&tcps->tcps_mib, 11400 tcpInDataPartDupBytes, end - u1); 11401 break; 11402 } 11403 mp->b_cont = mp1->b_cont; 11404 TCP_REASS_SET_SEQ(mp1, 0); 11405 TCP_REASS_SET_END(mp1, 0); 11406 freeb(mp1); 11407 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 11408 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 11409 } 11410 if (!mp1) 11411 tcp->tcp_reass_tail = mp; 11412 } 11413 11414 static uint_t 11415 tcp_rwnd_reopen(tcp_t *tcp) 11416 { 11417 uint_t ret = 0; 11418 uint_t thwin; 11419 11420 /* Learn the latest rwnd information that we sent to the other side. */ 11421 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11422 << tcp->tcp_rcv_ws; 11423 /* This is peer's calculated send window (our receive window). */ 11424 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11425 /* 11426 * Increase the receive window to max. But we need to do receiver 11427 * SWS avoidance. This means that we need to check the increase of 11428 * of receive window is at least 1 MSS. 11429 */ 11430 if (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss) { 11431 /* 11432 * If the window that the other side knows is less than max 11433 * deferred acks segments, send an update immediately. 11434 */ 11435 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11436 BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate); 11437 ret = TH_ACK_NEEDED; 11438 } 11439 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 11440 } 11441 return (ret); 11442 } 11443 11444 /* 11445 * Send up all messages queued on tcp_rcv_list. 11446 */ 11447 static uint_t 11448 tcp_rcv_drain(tcp_t *tcp) 11449 { 11450 mblk_t *mp; 11451 uint_t ret = 0; 11452 #ifdef DEBUG 11453 uint_t cnt = 0; 11454 #endif 11455 queue_t *q = tcp->tcp_rq; 11456 11457 /* Can't drain on an eager connection */ 11458 if (tcp->tcp_listener != NULL) 11459 return (ret); 11460 11461 /* Can't be a non-STREAMS connection */ 11462 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 11463 11464 /* No need for the push timer now. */ 11465 if (tcp->tcp_push_tid != 0) { 11466 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11467 tcp->tcp_push_tid = 0; 11468 } 11469 11470 /* 11471 * Handle two cases here: we are currently fused or we were 11472 * previously fused and have some urgent data to be delivered 11473 * upstream. The latter happens because we either ran out of 11474 * memory or were detached and therefore sending the SIGURG was 11475 * deferred until this point. In either case we pass control 11476 * over to tcp_fuse_rcv_drain() since it may need to complete 11477 * some work. 11478 */ 11479 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11480 ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) || 11481 tcp->tcp_fused_sigurg_mp != NULL); 11482 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11483 &tcp->tcp_fused_sigurg_mp)) 11484 return (ret); 11485 } 11486 11487 while ((mp = tcp->tcp_rcv_list) != NULL) { 11488 tcp->tcp_rcv_list = mp->b_next; 11489 mp->b_next = NULL; 11490 #ifdef DEBUG 11491 cnt += msgdsize(mp); 11492 #endif 11493 /* Does this need SSL processing first? */ 11494 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11495 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 11496 mblk_t *, mp); 11497 tcp_kssl_input(tcp, mp); 11498 continue; 11499 } 11500 putnext(q, mp); 11501 } 11502 #ifdef DEBUG 11503 ASSERT(cnt == tcp->tcp_rcv_cnt); 11504 #endif 11505 tcp->tcp_rcv_last_head = NULL; 11506 tcp->tcp_rcv_last_tail = NULL; 11507 tcp->tcp_rcv_cnt = 0; 11508 11509 if (canputnext(q)) 11510 return (tcp_rwnd_reopen(tcp)); 11511 11512 return (ret); 11513 } 11514 11515 /* 11516 * Queue data on tcp_rcv_list which is a b_next chain. 11517 * tcp_rcv_last_head/tail is the last element of this chain. 11518 * Each element of the chain is a b_cont chain. 11519 * 11520 * M_DATA messages are added to the current element. 11521 * Other messages are added as new (b_next) elements. 11522 */ 11523 void 11524 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11525 { 11526 ASSERT(seg_len == msgdsize(mp)); 11527 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11528 11529 if (tcp->tcp_rcv_list == NULL) { 11530 ASSERT(tcp->tcp_rcv_last_head == NULL); 11531 tcp->tcp_rcv_list = mp; 11532 tcp->tcp_rcv_last_head = mp; 11533 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11534 tcp->tcp_rcv_last_tail->b_cont = mp; 11535 } else { 11536 tcp->tcp_rcv_last_head->b_next = mp; 11537 tcp->tcp_rcv_last_head = mp; 11538 } 11539 11540 while (mp->b_cont) 11541 mp = mp->b_cont; 11542 11543 tcp->tcp_rcv_last_tail = mp; 11544 tcp->tcp_rcv_cnt += seg_len; 11545 tcp->tcp_rwnd -= seg_len; 11546 } 11547 11548 /* 11549 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11550 * 11551 * This is the default entry function into TCP on the read side. TCP is 11552 * always entered via squeue i.e. using squeue's for mutual exclusion. 11553 * When classifier does a lookup to find the tcp, it also puts a reference 11554 * on the conn structure associated so the tcp is guaranteed to exist 11555 * when we come here. We still need to check the state because it might 11556 * as well has been closed. The squeue processing function i.e. squeue_enter, 11557 * is responsible for doing the CONN_DEC_REF. 11558 * 11559 * Apart from the default entry point, IP also sends packets directly to 11560 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11561 * connections. 11562 */ 11563 boolean_t tcp_outbound_squeue_switch = B_FALSE; 11564 void 11565 tcp_input(void *arg, mblk_t *mp, void *arg2) 11566 { 11567 conn_t *connp = (conn_t *)arg; 11568 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11569 11570 /* arg2 is the sqp */ 11571 ASSERT(arg2 != NULL); 11572 ASSERT(mp != NULL); 11573 11574 /* 11575 * Don't accept any input on a closed tcp as this TCP logically does 11576 * not exist on the system. Don't proceed further with this TCP. 11577 * For eg. this packet could trigger another close of this tcp 11578 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11579 * tcp_clean_death / tcp_closei_local must be called at most once 11580 * on a TCP. In this case we need to refeed the packet into the 11581 * classifier and figure out where the packet should go. Need to 11582 * preserve the recv_ill somehow. Until we figure that out, for 11583 * now just drop the packet if we can't classify the packet. 11584 */ 11585 if (tcp->tcp_state == TCPS_CLOSED || 11586 tcp->tcp_state == TCPS_BOUND) { 11587 conn_t *new_connp; 11588 ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip; 11589 11590 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 11591 if (new_connp != NULL) { 11592 tcp_reinput(new_connp, mp, arg2); 11593 return; 11594 } 11595 /* We failed to classify. For now just drop the packet */ 11596 freemsg(mp); 11597 return; 11598 } 11599 11600 if (DB_TYPE(mp) != M_DATA) { 11601 tcp_rput_common(tcp, mp); 11602 return; 11603 } 11604 11605 if (mp->b_datap->db_struioflag & STRUIO_CONNECT) { 11606 squeue_t *final_sqp; 11607 11608 mp->b_datap->db_struioflag &= ~STRUIO_CONNECT; 11609 final_sqp = (squeue_t *)DB_CKSUMSTART(mp); 11610 DB_CKSUMSTART(mp) = 0; 11611 if (tcp->tcp_state == TCPS_SYN_SENT && 11612 connp->conn_final_sqp == NULL && 11613 tcp_outbound_squeue_switch) { 11614 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 11615 connp->conn_final_sqp = final_sqp; 11616 if (connp->conn_final_sqp != connp->conn_sqp) { 11617 CONN_INC_REF(connp); 11618 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 11619 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 11620 tcp_rput_data, connp, ip_squeue_flag, 11621 SQTAG_CONNECT_FINISH); 11622 return; 11623 } 11624 } 11625 } 11626 tcp_rput_data(connp, mp, arg2); 11627 } 11628 11629 /* 11630 * The read side put procedure. 11631 * The packets passed up by ip are assume to be aligned according to 11632 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11633 */ 11634 static void 11635 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11636 { 11637 /* 11638 * tcp_rput_data() does not expect M_CTL except for the case 11639 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11640 * type. Need to make sure that any other M_CTLs don't make 11641 * it to tcp_rput_data since it is not expecting any and doesn't 11642 * check for it. 11643 */ 11644 if (DB_TYPE(mp) == M_CTL) { 11645 switch (*(uint32_t *)(mp->b_rptr)) { 11646 case TCP_IOC_ABORT_CONN: 11647 /* 11648 * Handle connection abort request. 11649 */ 11650 tcp_ioctl_abort_handler(tcp, mp); 11651 return; 11652 case IPSEC_IN: 11653 /* 11654 * Only secure icmp arrive in TCP and they 11655 * don't go through data path. 11656 */ 11657 tcp_icmp_error(tcp, mp); 11658 return; 11659 case IN_PKTINFO: 11660 /* 11661 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11662 * sockets that are receiving IPv4 traffic. tcp 11663 */ 11664 ASSERT(tcp->tcp_family == AF_INET6); 11665 ASSERT(tcp->tcp_ipv6_recvancillary & 11666 TCP_IPV6_RECVPKTINFO); 11667 tcp_rput_data(tcp->tcp_connp, mp, 11668 tcp->tcp_connp->conn_sqp); 11669 return; 11670 case MDT_IOC_INFO_UPDATE: 11671 /* 11672 * Handle Multidata information update; the 11673 * following routine will free the message. 11674 */ 11675 if (tcp->tcp_connp->conn_mdt_ok) { 11676 tcp_mdt_update(tcp, 11677 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11678 B_FALSE); 11679 } 11680 freemsg(mp); 11681 return; 11682 case LSO_IOC_INFO_UPDATE: 11683 /* 11684 * Handle LSO information update; the following 11685 * routine will free the message. 11686 */ 11687 if (tcp->tcp_connp->conn_lso_ok) { 11688 tcp_lso_update(tcp, 11689 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 11690 } 11691 freemsg(mp); 11692 return; 11693 default: 11694 /* 11695 * tcp_icmp_err() will process the M_CTL packets. 11696 * Non-ICMP packets, if any, will be discarded in 11697 * tcp_icmp_err(). We will process the ICMP packet 11698 * even if we are TCP_IS_DETACHED_NONEAGER as the 11699 * incoming ICMP packet may result in changing 11700 * the tcp_mss, which we would need if we have 11701 * packets to retransmit. 11702 */ 11703 tcp_icmp_error(tcp, mp); 11704 return; 11705 } 11706 } 11707 11708 /* No point processing the message if tcp is already closed */ 11709 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11710 freemsg(mp); 11711 return; 11712 } 11713 11714 tcp_rput_other(tcp, mp); 11715 } 11716 11717 11718 /* The minimum of smoothed mean deviation in RTO calculation. */ 11719 #define TCP_SD_MIN 400 11720 11721 /* 11722 * Set RTO for this connection. The formula is from Jacobson and Karels' 11723 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11724 * are the same as those in Appendix A.2 of that paper. 11725 * 11726 * m = new measurement 11727 * sa = smoothed RTT average (8 * average estimates). 11728 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11729 */ 11730 static void 11731 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11732 { 11733 long m = TICK_TO_MSEC(rtt); 11734 clock_t sa = tcp->tcp_rtt_sa; 11735 clock_t sv = tcp->tcp_rtt_sd; 11736 clock_t rto; 11737 tcp_stack_t *tcps = tcp->tcp_tcps; 11738 11739 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 11740 tcp->tcp_rtt_update++; 11741 11742 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11743 if (sa != 0) { 11744 /* 11745 * Update average estimator: 11746 * new rtt = 7/8 old rtt + 1/8 Error 11747 */ 11748 11749 /* m is now Error in estimate. */ 11750 m -= sa >> 3; 11751 if ((sa += m) <= 0) { 11752 /* 11753 * Don't allow the smoothed average to be negative. 11754 * We use 0 to denote reinitialization of the 11755 * variables. 11756 */ 11757 sa = 1; 11758 } 11759 11760 /* 11761 * Update deviation estimator: 11762 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11763 */ 11764 if (m < 0) 11765 m = -m; 11766 m -= sv >> 2; 11767 sv += m; 11768 } else { 11769 /* 11770 * This follows BSD's implementation. So the reinitialized 11771 * RTO is 3 * m. We cannot go less than 2 because if the 11772 * link is bandwidth dominated, doubling the window size 11773 * during slow start means doubling the RTT. We want to be 11774 * more conservative when we reinitialize our estimates. 3 11775 * is just a convenient number. 11776 */ 11777 sa = m << 3; 11778 sv = m << 1; 11779 } 11780 if (sv < TCP_SD_MIN) { 11781 /* 11782 * We do not know that if sa captures the delay ACK 11783 * effect as in a long train of segments, a receiver 11784 * does not delay its ACKs. So set the minimum of sv 11785 * to be TCP_SD_MIN, which is default to 400 ms, twice 11786 * of BSD DATO. That means the minimum of mean 11787 * deviation is 100 ms. 11788 * 11789 */ 11790 sv = TCP_SD_MIN; 11791 } 11792 tcp->tcp_rtt_sa = sa; 11793 tcp->tcp_rtt_sd = sv; 11794 /* 11795 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 11796 * 11797 * Add tcp_rexmit_interval extra in case of extreme environment 11798 * where the algorithm fails to work. The default value of 11799 * tcp_rexmit_interval_extra should be 0. 11800 * 11801 * As we use a finer grained clock than BSD and update 11802 * RTO for every ACKs, add in another .25 of RTT to the 11803 * deviation of RTO to accomodate burstiness of 1/4 of 11804 * window size. 11805 */ 11806 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 11807 11808 if (rto > tcps->tcps_rexmit_interval_max) { 11809 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 11810 } else if (rto < tcps->tcps_rexmit_interval_min) { 11811 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 11812 } else { 11813 tcp->tcp_rto = rto; 11814 } 11815 11816 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 11817 tcp->tcp_timer_backoff = 0; 11818 } 11819 11820 /* 11821 * tcp_get_seg_mp() is called to get the pointer to a segment in the 11822 * send queue which starts at the given sequence number. If the given 11823 * sequence number is equal to last valid sequence number (tcp_snxt), the 11824 * returned mblk is the last valid mblk, and off is set to the length of 11825 * that mblk. 11826 * 11827 * send queue which starts at the given seq. no. 11828 * 11829 * Parameters: 11830 * tcp_t *tcp: the tcp instance pointer. 11831 * uint32_t seq: the starting seq. no of the requested segment. 11832 * int32_t *off: after the execution, *off will be the offset to 11833 * the returned mblk which points to the requested seq no. 11834 * It is the caller's responsibility to send in a non-null off. 11835 * 11836 * Return: 11837 * A mblk_t pointer pointing to the requested segment in send queue. 11838 */ 11839 static mblk_t * 11840 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 11841 { 11842 int32_t cnt; 11843 mblk_t *mp; 11844 11845 /* Defensive coding. Make sure we don't send incorrect data. */ 11846 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GT(seq, tcp->tcp_snxt)) 11847 return (NULL); 11848 11849 cnt = seq - tcp->tcp_suna; 11850 mp = tcp->tcp_xmit_head; 11851 while (cnt > 0 && mp != NULL) { 11852 cnt -= mp->b_wptr - mp->b_rptr; 11853 if (cnt <= 0) { 11854 cnt += mp->b_wptr - mp->b_rptr; 11855 break; 11856 } 11857 mp = mp->b_cont; 11858 } 11859 ASSERT(mp != NULL); 11860 *off = cnt; 11861 return (mp); 11862 } 11863 11864 /* 11865 * This function handles all retransmissions if SACK is enabled for this 11866 * connection. First it calculates how many segments can be retransmitted 11867 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 11868 * segments. A segment is eligible if sack_cnt for that segment is greater 11869 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 11870 * all eligible segments, it checks to see if TCP can send some new segments 11871 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 11872 * 11873 * Parameters: 11874 * tcp_t *tcp: the tcp structure of the connection. 11875 * uint_t *flags: in return, appropriate value will be set for 11876 * tcp_rput_data(). 11877 */ 11878 static void 11879 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 11880 { 11881 notsack_blk_t *notsack_blk; 11882 int32_t usable_swnd; 11883 int32_t mss; 11884 uint32_t seg_len; 11885 mblk_t *xmit_mp; 11886 tcp_stack_t *tcps = tcp->tcp_tcps; 11887 11888 ASSERT(tcp->tcp_sack_info != NULL); 11889 ASSERT(tcp->tcp_notsack_list != NULL); 11890 ASSERT(tcp->tcp_rexmit == B_FALSE); 11891 11892 /* Defensive coding in case there is a bug... */ 11893 if (tcp->tcp_notsack_list == NULL) { 11894 return; 11895 } 11896 notsack_blk = tcp->tcp_notsack_list; 11897 mss = tcp->tcp_mss; 11898 11899 /* 11900 * Limit the num of outstanding data in the network to be 11901 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 11902 */ 11903 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11904 11905 /* At least retransmit 1 MSS of data. */ 11906 if (usable_swnd <= 0) { 11907 usable_swnd = mss; 11908 } 11909 11910 /* Make sure no new RTT samples will be taken. */ 11911 tcp->tcp_csuna = tcp->tcp_snxt; 11912 11913 notsack_blk = tcp->tcp_notsack_list; 11914 while (usable_swnd > 0) { 11915 mblk_t *snxt_mp, *tmp_mp; 11916 tcp_seq begin = tcp->tcp_sack_snxt; 11917 tcp_seq end; 11918 int32_t off; 11919 11920 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 11921 if (SEQ_GT(notsack_blk->end, begin) && 11922 (notsack_blk->sack_cnt >= 11923 tcps->tcps_dupack_fast_retransmit)) { 11924 end = notsack_blk->end; 11925 if (SEQ_LT(begin, notsack_blk->begin)) { 11926 begin = notsack_blk->begin; 11927 } 11928 break; 11929 } 11930 } 11931 /* 11932 * All holes are filled. Manipulate tcp_cwnd to send more 11933 * if we can. Note that after the SACK recovery, tcp_cwnd is 11934 * set to tcp_cwnd_ssthresh. 11935 */ 11936 if (notsack_blk == NULL) { 11937 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11938 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 11939 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 11940 ASSERT(tcp->tcp_cwnd > 0); 11941 return; 11942 } else { 11943 usable_swnd = usable_swnd / mss; 11944 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 11945 MAX(usable_swnd * mss, mss); 11946 *flags |= TH_XMIT_NEEDED; 11947 return; 11948 } 11949 } 11950 11951 /* 11952 * Note that we may send more than usable_swnd allows here 11953 * because of round off, but no more than 1 MSS of data. 11954 */ 11955 seg_len = end - begin; 11956 if (seg_len > mss) 11957 seg_len = mss; 11958 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 11959 ASSERT(snxt_mp != NULL); 11960 /* This should not happen. Defensive coding again... */ 11961 if (snxt_mp == NULL) { 11962 return; 11963 } 11964 11965 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 11966 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 11967 if (xmit_mp == NULL) 11968 return; 11969 11970 usable_swnd -= seg_len; 11971 tcp->tcp_pipe += seg_len; 11972 tcp->tcp_sack_snxt = begin + seg_len; 11973 11974 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 11975 11976 /* 11977 * Update the send timestamp to avoid false retransmission. 11978 */ 11979 snxt_mp->b_prev = (mblk_t *)lbolt; 11980 11981 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 11982 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 11983 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 11984 /* 11985 * Update tcp_rexmit_max to extend this SACK recovery phase. 11986 * This happens when new data sent during fast recovery is 11987 * also lost. If TCP retransmits those new data, it needs 11988 * to extend SACK recover phase to avoid starting another 11989 * fast retransmit/recovery unnecessarily. 11990 */ 11991 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 11992 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 11993 } 11994 } 11995 } 11996 11997 /* 11998 * This function handles policy checking at TCP level for non-hard_bound/ 11999 * detached connections. 12000 */ 12001 static boolean_t 12002 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12003 boolean_t secure, boolean_t mctl_present) 12004 { 12005 ipsec_latch_t *ipl = NULL; 12006 ipsec_action_t *act = NULL; 12007 mblk_t *data_mp; 12008 ipsec_in_t *ii; 12009 const char *reason; 12010 kstat_named_t *counter; 12011 tcp_stack_t *tcps = tcp->tcp_tcps; 12012 ipsec_stack_t *ipss; 12013 ip_stack_t *ipst; 12014 12015 ASSERT(mctl_present || !secure); 12016 12017 ASSERT((ipha == NULL && ip6h != NULL) || 12018 (ip6h == NULL && ipha != NULL)); 12019 12020 /* 12021 * We don't necessarily have an ipsec_in_act action to verify 12022 * policy because of assymetrical policy where we have only 12023 * outbound policy and no inbound policy (possible with global 12024 * policy). 12025 */ 12026 if (!secure) { 12027 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12028 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12029 return (B_TRUE); 12030 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12031 "tcp_check_policy", ipha, ip6h, secure, 12032 tcps->tcps_netstack); 12033 ipss = tcps->tcps_netstack->netstack_ipsec; 12034 12035 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12036 DROPPER(ipss, ipds_tcp_clear), 12037 &tcps->tcps_dropper); 12038 return (B_FALSE); 12039 } 12040 12041 /* 12042 * We have a secure packet. 12043 */ 12044 if (act == NULL) { 12045 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12046 "tcp_check_policy", ipha, ip6h, secure, 12047 tcps->tcps_netstack); 12048 ipss = tcps->tcps_netstack->netstack_ipsec; 12049 12050 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12051 DROPPER(ipss, ipds_tcp_secure), 12052 &tcps->tcps_dropper); 12053 return (B_FALSE); 12054 } 12055 12056 /* 12057 * XXX This whole routine is currently incorrect. ipl should 12058 * be set to the latch pointer, but is currently not set, so 12059 * we initialize it to NULL to avoid picking up random garbage. 12060 */ 12061 if (ipl == NULL) 12062 return (B_TRUE); 12063 12064 data_mp = first_mp->b_cont; 12065 12066 ii = (ipsec_in_t *)first_mp->b_rptr; 12067 12068 ipst = tcps->tcps_netstack->netstack_ip; 12069 12070 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12071 &counter, tcp->tcp_connp)) { 12072 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 12073 return (B_TRUE); 12074 } 12075 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12076 "tcp inbound policy mismatch: %s, packet dropped\n", 12077 reason); 12078 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 12079 12080 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 12081 &tcps->tcps_dropper); 12082 return (B_FALSE); 12083 } 12084 12085 /* 12086 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12087 * retransmission after a timeout. 12088 * 12089 * To limit the number of duplicate segments, we limit the number of segment 12090 * to be sent in one time to tcp_snd_burst, the burst variable. 12091 */ 12092 static void 12093 tcp_ss_rexmit(tcp_t *tcp) 12094 { 12095 uint32_t snxt; 12096 uint32_t smax; 12097 int32_t win; 12098 int32_t mss; 12099 int32_t off; 12100 int32_t burst = tcp->tcp_snd_burst; 12101 mblk_t *snxt_mp; 12102 tcp_stack_t *tcps = tcp->tcp_tcps; 12103 12104 /* 12105 * Note that tcp_rexmit can be set even though TCP has retransmitted 12106 * all unack'ed segments. 12107 */ 12108 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12109 smax = tcp->tcp_rexmit_max; 12110 snxt = tcp->tcp_rexmit_nxt; 12111 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12112 snxt = tcp->tcp_suna; 12113 } 12114 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12115 win -= snxt - tcp->tcp_suna; 12116 mss = tcp->tcp_mss; 12117 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12118 12119 while (SEQ_LT(snxt, smax) && (win > 0) && 12120 (burst > 0) && (snxt_mp != NULL)) { 12121 mblk_t *xmit_mp; 12122 mblk_t *old_snxt_mp = snxt_mp; 12123 uint32_t cnt = mss; 12124 12125 if (win < cnt) { 12126 cnt = win; 12127 } 12128 if (SEQ_GT(snxt + cnt, smax)) { 12129 cnt = smax - snxt; 12130 } 12131 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12132 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12133 if (xmit_mp == NULL) 12134 return; 12135 12136 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12137 12138 snxt += cnt; 12139 win -= cnt; 12140 /* 12141 * Update the send timestamp to avoid false 12142 * retransmission. 12143 */ 12144 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12145 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12146 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 12147 12148 tcp->tcp_rexmit_nxt = snxt; 12149 burst--; 12150 } 12151 /* 12152 * If we have transmitted all we have at the time 12153 * we started the retranmission, we can leave 12154 * the rest of the job to tcp_wput_data(). But we 12155 * need to check the send window first. If the 12156 * win is not 0, go on with tcp_wput_data(). 12157 */ 12158 if (SEQ_LT(snxt, smax) || win == 0) { 12159 return; 12160 } 12161 } 12162 /* Only call tcp_wput_data() if there is data to be sent. */ 12163 if (tcp->tcp_unsent) { 12164 tcp_wput_data(tcp, NULL, B_FALSE); 12165 } 12166 } 12167 12168 /* 12169 * Process all TCP option in SYN segment. Note that this function should 12170 * be called after tcp_adapt_ire() is called so that the necessary info 12171 * from IRE is already set in the tcp structure. 12172 * 12173 * This function sets up the correct tcp_mss value according to the 12174 * MSS option value and our header size. It also sets up the window scale 12175 * and timestamp values, and initialize SACK info blocks. But it does not 12176 * change receive window size after setting the tcp_mss value. The caller 12177 * should do the appropriate change. 12178 */ 12179 void 12180 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12181 { 12182 int options; 12183 tcp_opt_t tcpopt; 12184 uint32_t mss_max; 12185 char *tmp_tcph; 12186 tcp_stack_t *tcps = tcp->tcp_tcps; 12187 12188 tcpopt.tcp = NULL; 12189 options = tcp_parse_options(tcph, &tcpopt); 12190 12191 /* 12192 * Process MSS option. Note that MSS option value does not account 12193 * for IP or TCP options. This means that it is equal to MTU - minimum 12194 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12195 * IPv6. 12196 */ 12197 if (!(options & TCP_OPT_MSS_PRESENT)) { 12198 if (tcp->tcp_ipversion == IPV4_VERSION) 12199 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 12200 else 12201 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 12202 } else { 12203 if (tcp->tcp_ipversion == IPV4_VERSION) 12204 mss_max = tcps->tcps_mss_max_ipv4; 12205 else 12206 mss_max = tcps->tcps_mss_max_ipv6; 12207 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 12208 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 12209 else if (tcpopt.tcp_opt_mss > mss_max) 12210 tcpopt.tcp_opt_mss = mss_max; 12211 } 12212 12213 /* Process Window Scale option. */ 12214 if (options & TCP_OPT_WSCALE_PRESENT) { 12215 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12216 tcp->tcp_snd_ws_ok = B_TRUE; 12217 } else { 12218 tcp->tcp_snd_ws = B_FALSE; 12219 tcp->tcp_snd_ws_ok = B_FALSE; 12220 tcp->tcp_rcv_ws = B_FALSE; 12221 } 12222 12223 /* Process Timestamp option. */ 12224 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12225 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12226 tmp_tcph = (char *)tcp->tcp_tcph; 12227 12228 tcp->tcp_snd_ts_ok = B_TRUE; 12229 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12230 tcp->tcp_last_rcv_lbolt = lbolt64; 12231 ASSERT(OK_32PTR(tmp_tcph)); 12232 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12233 12234 /* Fill in our template header with basic timestamp option. */ 12235 tmp_tcph += tcp->tcp_tcp_hdr_len; 12236 tmp_tcph[0] = TCPOPT_NOP; 12237 tmp_tcph[1] = TCPOPT_NOP; 12238 tmp_tcph[2] = TCPOPT_TSTAMP; 12239 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12240 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12241 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12242 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12243 } else { 12244 tcp->tcp_snd_ts_ok = B_FALSE; 12245 } 12246 12247 /* 12248 * Process SACK options. If SACK is enabled for this connection, 12249 * then allocate the SACK info structure. Note the following ways 12250 * when tcp_snd_sack_ok is set to true. 12251 * 12252 * For active connection: in tcp_adapt_ire() called in 12253 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12254 * is checked. 12255 * 12256 * For passive connection: in tcp_adapt_ire() called in 12257 * tcp_accept_comm(). 12258 * 12259 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12260 * That check makes sure that if we did not send a SACK OK option, 12261 * we will not enable SACK for this connection even though the other 12262 * side sends us SACK OK option. For active connection, the SACK 12263 * info structure has already been allocated. So we need to free 12264 * it if SACK is disabled. 12265 */ 12266 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12267 (tcp->tcp_snd_sack_ok || 12268 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12269 /* This should be true only in the passive case. */ 12270 if (tcp->tcp_sack_info == NULL) { 12271 ASSERT(TCP_IS_DETACHED(tcp)); 12272 tcp->tcp_sack_info = 12273 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12274 } 12275 if (tcp->tcp_sack_info == NULL) { 12276 tcp->tcp_snd_sack_ok = B_FALSE; 12277 } else { 12278 tcp->tcp_snd_sack_ok = B_TRUE; 12279 if (tcp->tcp_snd_ts_ok) { 12280 tcp->tcp_max_sack_blk = 3; 12281 } else { 12282 tcp->tcp_max_sack_blk = 4; 12283 } 12284 } 12285 } else { 12286 /* 12287 * Resetting tcp_snd_sack_ok to B_FALSE so that 12288 * no SACK info will be used for this 12289 * connection. This assumes that SACK usage 12290 * permission is negotiated. This may need 12291 * to be changed once this is clarified. 12292 */ 12293 if (tcp->tcp_sack_info != NULL) { 12294 ASSERT(tcp->tcp_notsack_list == NULL); 12295 kmem_cache_free(tcp_sack_info_cache, 12296 tcp->tcp_sack_info); 12297 tcp->tcp_sack_info = NULL; 12298 } 12299 tcp->tcp_snd_sack_ok = B_FALSE; 12300 } 12301 12302 /* 12303 * Now we know the exact TCP/IP header length, subtract 12304 * that from tcp_mss to get our side's MSS. 12305 */ 12306 tcp->tcp_mss -= tcp->tcp_hdr_len; 12307 /* 12308 * Here we assume that the other side's header size will be equal to 12309 * our header size. We calculate the real MSS accordingly. Need to 12310 * take into additional stuffs IPsec puts in. 12311 * 12312 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12313 */ 12314 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12315 ((tcp->tcp_ipversion == IPV4_VERSION ? 12316 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12317 12318 /* 12319 * Set MSS to the smaller one of both ends of the connection. 12320 * We should not have called tcp_mss_set() before, but our 12321 * side of the MSS should have been set to a proper value 12322 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12323 * STREAM head parameters properly. 12324 * 12325 * If we have a larger-than-16-bit window but the other side 12326 * didn't want to do window scale, tcp_rwnd_set() will take 12327 * care of that. 12328 */ 12329 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE); 12330 } 12331 12332 /* 12333 * Sends the T_CONN_IND to the listener. The caller calls this 12334 * functions via squeue to get inside the listener's perimeter 12335 * once the 3 way hand shake is done a T_CONN_IND needs to be 12336 * sent. As an optimization, the caller can call this directly 12337 * if listener's perimeter is same as eager's. 12338 */ 12339 /* ARGSUSED */ 12340 void 12341 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12342 { 12343 conn_t *lconnp = (conn_t *)arg; 12344 tcp_t *listener = lconnp->conn_tcp; 12345 tcp_t *tcp; 12346 struct T_conn_ind *conn_ind; 12347 ipaddr_t *addr_cache; 12348 boolean_t need_send_conn_ind = B_FALSE; 12349 tcp_stack_t *tcps = listener->tcp_tcps; 12350 12351 /* retrieve the eager */ 12352 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12353 ASSERT(conn_ind->OPT_offset != 0 && 12354 conn_ind->OPT_length == sizeof (intptr_t)); 12355 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12356 conn_ind->OPT_length); 12357 12358 /* 12359 * TLI/XTI applications will get confused by 12360 * sending eager as an option since it violates 12361 * the option semantics. So remove the eager as 12362 * option since TLI/XTI app doesn't need it anyway. 12363 */ 12364 if (!TCP_IS_SOCKET(listener)) { 12365 conn_ind->OPT_length = 0; 12366 conn_ind->OPT_offset = 0; 12367 } 12368 if (listener->tcp_state != TCPS_LISTEN) { 12369 /* 12370 * If listener has closed, it would have caused a 12371 * a cleanup/blowoff to happen for the eager. We 12372 * just need to return. 12373 */ 12374 freemsg(mp); 12375 return; 12376 } 12377 12378 12379 /* 12380 * if the conn_req_q is full defer passing up the 12381 * T_CONN_IND until space is availabe after t_accept() 12382 * processing 12383 */ 12384 mutex_enter(&listener->tcp_eager_lock); 12385 12386 /* 12387 * Take the eager out, if it is in the list of droppable eagers 12388 * as we are here because the 3W handshake is over. 12389 */ 12390 MAKE_UNDROPPABLE(tcp); 12391 12392 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12393 tcp_t *tail; 12394 12395 /* 12396 * The eager already has an extra ref put in tcp_rput_data 12397 * so that it stays till accept comes back even though it 12398 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12399 */ 12400 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12401 listener->tcp_conn_req_cnt_q0--; 12402 listener->tcp_conn_req_cnt_q++; 12403 12404 /* Move from SYN_RCVD to ESTABLISHED list */ 12405 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12406 tcp->tcp_eager_prev_q0; 12407 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12408 tcp->tcp_eager_next_q0; 12409 tcp->tcp_eager_prev_q0 = NULL; 12410 tcp->tcp_eager_next_q0 = NULL; 12411 12412 /* 12413 * Insert at end of the queue because sockfs 12414 * sends down T_CONN_RES in chronological 12415 * order. Leaving the older conn indications 12416 * at front of the queue helps reducing search 12417 * time. 12418 */ 12419 tail = listener->tcp_eager_last_q; 12420 if (tail != NULL) 12421 tail->tcp_eager_next_q = tcp; 12422 else 12423 listener->tcp_eager_next_q = tcp; 12424 listener->tcp_eager_last_q = tcp; 12425 tcp->tcp_eager_next_q = NULL; 12426 /* 12427 * Delay sending up the T_conn_ind until we are 12428 * done with the eager. Once we have have sent up 12429 * the T_conn_ind, the accept can potentially complete 12430 * any time and release the refhold we have on the eager. 12431 */ 12432 need_send_conn_ind = B_TRUE; 12433 } else { 12434 /* 12435 * Defer connection on q0 and set deferred 12436 * connection bit true 12437 */ 12438 tcp->tcp_conn_def_q0 = B_TRUE; 12439 12440 /* take tcp out of q0 ... */ 12441 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12442 tcp->tcp_eager_next_q0; 12443 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12444 tcp->tcp_eager_prev_q0; 12445 12446 /* ... and place it at the end of q0 */ 12447 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12448 tcp->tcp_eager_next_q0 = listener; 12449 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12450 listener->tcp_eager_prev_q0 = tcp; 12451 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12452 } 12453 12454 /* we have timed out before */ 12455 if (tcp->tcp_syn_rcvd_timeout != 0) { 12456 tcp->tcp_syn_rcvd_timeout = 0; 12457 listener->tcp_syn_rcvd_timeout--; 12458 if (listener->tcp_syn_defense && 12459 listener->tcp_syn_rcvd_timeout <= 12460 (tcps->tcps_conn_req_max_q0 >> 5) && 12461 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12462 listener->tcp_last_rcv_lbolt)) { 12463 /* 12464 * Turn off the defense mode if we 12465 * believe the SYN attack is over. 12466 */ 12467 listener->tcp_syn_defense = B_FALSE; 12468 if (listener->tcp_ip_addr_cache) { 12469 kmem_free((void *)listener->tcp_ip_addr_cache, 12470 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12471 listener->tcp_ip_addr_cache = NULL; 12472 } 12473 } 12474 } 12475 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12476 if (addr_cache != NULL) { 12477 /* 12478 * We have finished a 3-way handshake with this 12479 * remote host. This proves the IP addr is good. 12480 * Cache it! 12481 */ 12482 addr_cache[IP_ADDR_CACHE_HASH( 12483 tcp->tcp_remote)] = tcp->tcp_remote; 12484 } 12485 mutex_exit(&listener->tcp_eager_lock); 12486 if (need_send_conn_ind) 12487 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 12488 } 12489 12490 /* 12491 * Send the newconn notification to ulp. The eager is blown off if the 12492 * notification fails. 12493 */ 12494 static void 12495 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp) 12496 { 12497 if (IPCL_IS_NONSTR(lconnp)) { 12498 cred_t *cr; 12499 pid_t cpid; 12500 12501 cr = msg_getcred(mp, &cpid); 12502 12503 ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp); 12504 ASSERT(econnp->conn_tcp->tcp_saved_listener == 12505 lconnp->conn_tcp); 12506 12507 /* Keep the message around in case of a fallback to TPI */ 12508 econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp; 12509 12510 /* 12511 * Notify the ULP about the newconn. It is guaranteed that no 12512 * tcp_accept() call will be made for the eager if the 12513 * notification fails, so it's safe to blow it off in that 12514 * case. 12515 * 12516 * The upper handle will be assigned when tcp_accept() is 12517 * called. 12518 */ 12519 if ((*lconnp->conn_upcalls->su_newconn) 12520 (lconnp->conn_upper_handle, 12521 (sock_lower_handle_t)econnp, 12522 &sock_tcp_downcalls, cr, cpid, 12523 &econnp->conn_upcalls) == NULL) { 12524 /* Failed to allocate a socket */ 12525 BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib, 12526 tcpEstabResets); 12527 (void) tcp_eager_blowoff(lconnp->conn_tcp, 12528 econnp->conn_tcp->tcp_conn_req_seqnum); 12529 } 12530 } else { 12531 putnext(lconnp->conn_tcp->tcp_rq, mp); 12532 } 12533 } 12534 12535 mblk_t * 12536 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12537 uint_t *ifindexp, ip6_pkt_t *ippp) 12538 { 12539 ip_pktinfo_t *pinfo; 12540 ip6_t *ip6h; 12541 uchar_t *rptr; 12542 mblk_t *first_mp = mp; 12543 boolean_t mctl_present = B_FALSE; 12544 uint_t ifindex = 0; 12545 ip6_pkt_t ipp; 12546 uint_t ipvers; 12547 uint_t ip_hdr_len; 12548 tcp_stack_t *tcps = tcp->tcp_tcps; 12549 12550 rptr = mp->b_rptr; 12551 ASSERT(OK_32PTR(rptr)); 12552 ASSERT(tcp != NULL); 12553 ipp.ipp_fields = 0; 12554 12555 switch DB_TYPE(mp) { 12556 case M_CTL: 12557 mp = mp->b_cont; 12558 if (mp == NULL) { 12559 freemsg(first_mp); 12560 return (NULL); 12561 } 12562 if (DB_TYPE(mp) != M_DATA) { 12563 freemsg(first_mp); 12564 return (NULL); 12565 } 12566 mctl_present = B_TRUE; 12567 break; 12568 case M_DATA: 12569 break; 12570 default: 12571 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12572 freemsg(mp); 12573 return (NULL); 12574 } 12575 ipvers = IPH_HDR_VERSION(rptr); 12576 if (ipvers == IPV4_VERSION) { 12577 if (tcp == NULL) { 12578 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12579 goto done; 12580 } 12581 12582 ipp.ipp_fields |= IPPF_HOPLIMIT; 12583 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12584 12585 /* 12586 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12587 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12588 */ 12589 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12590 mctl_present) { 12591 pinfo = (ip_pktinfo_t *)first_mp->b_rptr; 12592 if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) && 12593 (pinfo->ip_pkt_ulp_type == IN_PKTINFO) && 12594 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 12595 ipp.ipp_fields |= IPPF_IFINDEX; 12596 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 12597 ifindex = pinfo->ip_pkt_ifindex; 12598 } 12599 freeb(first_mp); 12600 mctl_present = B_FALSE; 12601 } 12602 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12603 } else { 12604 ip6h = (ip6_t *)rptr; 12605 12606 ASSERT(ipvers == IPV6_VERSION); 12607 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12608 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12609 ipp.ipp_hoplimit = ip6h->ip6_hops; 12610 12611 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12612 uint8_t nexthdrp; 12613 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 12614 12615 /* Look for ifindex information */ 12616 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12617 ip6i_t *ip6i = (ip6i_t *)ip6h; 12618 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12619 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12620 freemsg(first_mp); 12621 return (NULL); 12622 } 12623 12624 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12625 ASSERT(ip6i->ip6i_ifindex != 0); 12626 ipp.ipp_fields |= IPPF_IFINDEX; 12627 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12628 ifindex = ip6i->ip6i_ifindex; 12629 } 12630 rptr = (uchar_t *)&ip6i[1]; 12631 mp->b_rptr = rptr; 12632 if (rptr == mp->b_wptr) { 12633 mblk_t *mp1; 12634 mp1 = mp->b_cont; 12635 freeb(mp); 12636 mp = mp1; 12637 rptr = mp->b_rptr; 12638 } 12639 if (MBLKL(mp) < IPV6_HDR_LEN + 12640 sizeof (tcph_t)) { 12641 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12642 freemsg(first_mp); 12643 return (NULL); 12644 } 12645 ip6h = (ip6_t *)rptr; 12646 } 12647 12648 /* 12649 * Find any potentially interesting extension headers 12650 * as well as the length of the IPv6 + extension 12651 * headers. 12652 */ 12653 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12654 /* Verify if this is a TCP packet */ 12655 if (nexthdrp != IPPROTO_TCP) { 12656 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12657 freemsg(first_mp); 12658 return (NULL); 12659 } 12660 } else { 12661 ip_hdr_len = IPV6_HDR_LEN; 12662 } 12663 } 12664 12665 done: 12666 if (ipversp != NULL) 12667 *ipversp = ipvers; 12668 if (ip_hdr_lenp != NULL) 12669 *ip_hdr_lenp = ip_hdr_len; 12670 if (ippp != NULL) 12671 *ippp = ipp; 12672 if (ifindexp != NULL) 12673 *ifindexp = ifindex; 12674 if (mctl_present) { 12675 freeb(first_mp); 12676 } 12677 return (mp); 12678 } 12679 12680 /* 12681 * Handle M_DATA messages from IP. Its called directly from IP via 12682 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12683 * in this path. 12684 * 12685 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12686 * v4 and v6), we are called through tcp_input() and a M_CTL can 12687 * be present for options but tcp_find_pktinfo() deals with it. We 12688 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12689 * 12690 * The first argument is always the connp/tcp to which the mp belongs. 12691 * There are no exceptions to this rule. The caller has already put 12692 * a reference on this connp/tcp and once tcp_rput_data() returns, 12693 * the squeue will do the refrele. 12694 * 12695 * The TH_SYN for the listener directly go to tcp_conn_request via 12696 * squeue. 12697 * 12698 * sqp: NULL = recursive, sqp != NULL means called from squeue 12699 */ 12700 void 12701 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12702 { 12703 int32_t bytes_acked; 12704 int32_t gap; 12705 mblk_t *mp1; 12706 uint_t flags; 12707 uint32_t new_swnd = 0; 12708 uchar_t *iphdr; 12709 uchar_t *rptr; 12710 int32_t rgap; 12711 uint32_t seg_ack; 12712 int seg_len; 12713 uint_t ip_hdr_len; 12714 uint32_t seg_seq; 12715 tcph_t *tcph; 12716 int urp; 12717 tcp_opt_t tcpopt; 12718 uint_t ipvers; 12719 ip6_pkt_t ipp; 12720 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12721 uint32_t cwnd; 12722 uint32_t add; 12723 int npkt; 12724 int mss; 12725 conn_t *connp = (conn_t *)arg; 12726 squeue_t *sqp = (squeue_t *)arg2; 12727 tcp_t *tcp = connp->conn_tcp; 12728 tcp_stack_t *tcps = tcp->tcp_tcps; 12729 12730 /* 12731 * RST from fused tcp loopback peer should trigger an unfuse. 12732 */ 12733 if (tcp->tcp_fused) { 12734 TCP_STAT(tcps, tcp_fusion_aborted); 12735 tcp_unfuse(tcp); 12736 } 12737 12738 iphdr = mp->b_rptr; 12739 rptr = mp->b_rptr; 12740 ASSERT(OK_32PTR(rptr)); 12741 12742 /* 12743 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12744 * processing here. For rest call tcp_find_pktinfo to fill up the 12745 * necessary information. 12746 */ 12747 if (IPCL_IS_TCP4(connp)) { 12748 ipvers = IPV4_VERSION; 12749 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12750 } else { 12751 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12752 NULL, &ipp); 12753 if (mp == NULL) { 12754 TCP_STAT(tcps, tcp_rput_v6_error); 12755 return; 12756 } 12757 iphdr = mp->b_rptr; 12758 rptr = mp->b_rptr; 12759 } 12760 ASSERT(DB_TYPE(mp) == M_DATA); 12761 ASSERT(mp->b_next == NULL); 12762 12763 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12764 seg_seq = ABE32_TO_U32(tcph->th_seq); 12765 seg_ack = ABE32_TO_U32(tcph->th_ack); 12766 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12767 seg_len = (int)(mp->b_wptr - rptr) - 12768 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12769 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12770 do { 12771 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12772 (uintptr_t)INT_MAX); 12773 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12774 } while ((mp1 = mp1->b_cont) != NULL && 12775 mp1->b_datap->db_type == M_DATA); 12776 } 12777 12778 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12779 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12780 seg_len, tcph); 12781 return; 12782 } 12783 12784 if (sqp != NULL) { 12785 /* 12786 * This is the correct place to update tcp_last_recv_time. Note 12787 * that it is also updated for tcp structure that belongs to 12788 * global and listener queues which do not really need updating. 12789 * But that should not cause any harm. And it is updated for 12790 * all kinds of incoming segments, not only for data segments. 12791 */ 12792 tcp->tcp_last_recv_time = lbolt; 12793 } 12794 12795 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12796 12797 BUMP_LOCAL(tcp->tcp_ibsegs); 12798 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 12799 12800 if ((flags & TH_URG) && sqp != NULL) { 12801 /* 12802 * TCP can't handle urgent pointers that arrive before 12803 * the connection has been accept()ed since it can't 12804 * buffer OOB data. Discard segment if this happens. 12805 * 12806 * We can't just rely on a non-null tcp_listener to indicate 12807 * that the accept() has completed since unlinking of the 12808 * eager and completion of the accept are not atomic. 12809 * tcp_detached, when it is not set (B_FALSE) indicates 12810 * that the accept() has completed. 12811 * 12812 * Nor can it reassemble urgent pointers, so discard 12813 * if it's not the next segment expected. 12814 * 12815 * Otherwise, collapse chain into one mblk (discard if 12816 * that fails). This makes sure the headers, retransmitted 12817 * data, and new data all are in the same mblk. 12818 */ 12819 ASSERT(mp != NULL); 12820 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 12821 freemsg(mp); 12822 return; 12823 } 12824 /* Update pointers into message */ 12825 iphdr = rptr = mp->b_rptr; 12826 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12827 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 12828 /* 12829 * Since we can't handle any data with this urgent 12830 * pointer that is out of sequence, we expunge 12831 * the data. This allows us to still register 12832 * the urgent mark and generate the M_PCSIG, 12833 * which we can do. 12834 */ 12835 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12836 seg_len = 0; 12837 } 12838 } 12839 12840 switch (tcp->tcp_state) { 12841 case TCPS_SYN_SENT: 12842 if (flags & TH_ACK) { 12843 /* 12844 * Note that our stack cannot send data before a 12845 * connection is established, therefore the 12846 * following check is valid. Otherwise, it has 12847 * to be changed. 12848 */ 12849 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 12850 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12851 freemsg(mp); 12852 if (flags & TH_RST) 12853 return; 12854 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 12855 tcp, seg_ack, 0, TH_RST); 12856 return; 12857 } 12858 ASSERT(tcp->tcp_suna + 1 == seg_ack); 12859 } 12860 if (flags & TH_RST) { 12861 freemsg(mp); 12862 if (flags & TH_ACK) 12863 (void) tcp_clean_death(tcp, 12864 ECONNREFUSED, 13); 12865 return; 12866 } 12867 if (!(flags & TH_SYN)) { 12868 freemsg(mp); 12869 return; 12870 } 12871 12872 /* Process all TCP options. */ 12873 tcp_process_options(tcp, tcph); 12874 /* 12875 * The following changes our rwnd to be a multiple of the 12876 * MIN(peer MSS, our MSS) for performance reason. 12877 */ 12878 (void) tcp_rwnd_set(tcp, 12879 MSS_ROUNDUP(tcp->tcp_recv_hiwater, tcp->tcp_mss)); 12880 12881 /* Is the other end ECN capable? */ 12882 if (tcp->tcp_ecn_ok) { 12883 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 12884 tcp->tcp_ecn_ok = B_FALSE; 12885 } 12886 } 12887 /* 12888 * Clear ECN flags because it may interfere with later 12889 * processing. 12890 */ 12891 flags &= ~(TH_ECE|TH_CWR); 12892 12893 tcp->tcp_irs = seg_seq; 12894 tcp->tcp_rack = seg_seq; 12895 tcp->tcp_rnxt = seg_seq + 1; 12896 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12897 if (!TCP_IS_DETACHED(tcp)) { 12898 /* Allocate room for SACK options if needed. */ 12899 if (tcp->tcp_snd_sack_ok) { 12900 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 12901 tcp->tcp_hdr_len + 12902 TCPOPT_MAX_SACK_LEN + 12903 (tcp->tcp_loopback ? 0 : 12904 tcps->tcps_wroff_xtra)); 12905 } else { 12906 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 12907 tcp->tcp_hdr_len + 12908 (tcp->tcp_loopback ? 0 : 12909 tcps->tcps_wroff_xtra)); 12910 } 12911 } 12912 if (flags & TH_ACK) { 12913 /* 12914 * If we can't get the confirmation upstream, pretend 12915 * we didn't even see this one. 12916 * 12917 * XXX: how can we pretend we didn't see it if we 12918 * have updated rnxt et. al. 12919 * 12920 * For loopback we defer sending up the T_CONN_CON 12921 * until after some checks below. 12922 */ 12923 mp1 = NULL; 12924 /* 12925 * tcp_sendmsg() checks tcp_state without entering 12926 * the squeue so tcp_state should be updated before 12927 * sending up connection confirmation 12928 */ 12929 tcp->tcp_state = TCPS_ESTABLISHED; 12930 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 12931 tcp->tcp_loopback ? &mp1 : NULL)) { 12932 tcp->tcp_state = TCPS_SYN_SENT; 12933 freemsg(mp); 12934 return; 12935 } 12936 /* SYN was acked - making progress */ 12937 if (tcp->tcp_ipversion == IPV6_VERSION) 12938 tcp->tcp_ip_forward_progress = B_TRUE; 12939 12940 /* One for the SYN */ 12941 tcp->tcp_suna = tcp->tcp_iss + 1; 12942 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 12943 12944 /* 12945 * If SYN was retransmitted, need to reset all 12946 * retransmission info. This is because this 12947 * segment will be treated as a dup ACK. 12948 */ 12949 if (tcp->tcp_rexmit) { 12950 tcp->tcp_rexmit = B_FALSE; 12951 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 12952 tcp->tcp_rexmit_max = tcp->tcp_snxt; 12953 tcp->tcp_snd_burst = tcp->tcp_localnet ? 12954 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 12955 tcp->tcp_ms_we_have_waited = 0; 12956 12957 /* 12958 * Set tcp_cwnd back to 1 MSS, per 12959 * recommendation from 12960 * draft-floyd-incr-init-win-01.txt, 12961 * Increasing TCP's Initial Window. 12962 */ 12963 tcp->tcp_cwnd = tcp->tcp_mss; 12964 } 12965 12966 tcp->tcp_swl1 = seg_seq; 12967 tcp->tcp_swl2 = seg_ack; 12968 12969 new_swnd = BE16_TO_U16(tcph->th_win); 12970 tcp->tcp_swnd = new_swnd; 12971 if (new_swnd > tcp->tcp_max_swnd) 12972 tcp->tcp_max_swnd = new_swnd; 12973 12974 /* 12975 * Always send the three-way handshake ack immediately 12976 * in order to make the connection complete as soon as 12977 * possible on the accepting host. 12978 */ 12979 flags |= TH_ACK_NEEDED; 12980 12981 /* 12982 * Special case for loopback. At this point we have 12983 * received SYN-ACK from the remote endpoint. In 12984 * order to ensure that both endpoints reach the 12985 * fused state prior to any data exchange, the final 12986 * ACK needs to be sent before we indicate T_CONN_CON 12987 * to the module upstream. 12988 */ 12989 if (tcp->tcp_loopback) { 12990 mblk_t *ack_mp; 12991 12992 ASSERT(!tcp->tcp_unfusable); 12993 ASSERT(mp1 != NULL); 12994 /* 12995 * For loopback, we always get a pure SYN-ACK 12996 * and only need to send back the final ACK 12997 * with no data (this is because the other 12998 * tcp is ours and we don't do T/TCP). This 12999 * final ACK triggers the passive side to 13000 * perform fusion in ESTABLISHED state. 13001 */ 13002 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 13003 if (tcp->tcp_ack_tid != 0) { 13004 (void) TCP_TIMER_CANCEL(tcp, 13005 tcp->tcp_ack_tid); 13006 tcp->tcp_ack_tid = 0; 13007 } 13008 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 13009 BUMP_LOCAL(tcp->tcp_obsegs); 13010 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 13011 13012 if (!IPCL_IS_NONSTR(connp)) { 13013 /* Send up T_CONN_CON */ 13014 putnext(tcp->tcp_rq, mp1); 13015 } else { 13016 cred_t *cr; 13017 pid_t cpid; 13018 13019 cr = msg_getcred(mp1, &cpid); 13020 (*connp->conn_upcalls-> 13021 su_connected) 13022 (connp->conn_upper_handle, 13023 tcp->tcp_connid, cr, cpid); 13024 freemsg(mp1); 13025 } 13026 13027 freemsg(mp); 13028 return; 13029 } 13030 /* 13031 * Forget fusion; we need to handle more 13032 * complex cases below. Send the deferred 13033 * T_CONN_CON message upstream and proceed 13034 * as usual. Mark this tcp as not capable 13035 * of fusion. 13036 */ 13037 TCP_STAT(tcps, tcp_fusion_unfusable); 13038 tcp->tcp_unfusable = B_TRUE; 13039 if (!IPCL_IS_NONSTR(connp)) { 13040 putnext(tcp->tcp_rq, mp1); 13041 } else { 13042 cred_t *cr; 13043 pid_t cpid; 13044 13045 cr = msg_getcred(mp1, &cpid); 13046 (*connp->conn_upcalls->su_connected) 13047 (connp->conn_upper_handle, 13048 tcp->tcp_connid, cr, cpid); 13049 freemsg(mp1); 13050 } 13051 } 13052 13053 /* 13054 * Check to see if there is data to be sent. If 13055 * yes, set the transmit flag. Then check to see 13056 * if received data processing needs to be done. 13057 * If not, go straight to xmit_check. This short 13058 * cut is OK as we don't support T/TCP. 13059 */ 13060 if (tcp->tcp_unsent) 13061 flags |= TH_XMIT_NEEDED; 13062 13063 if (seg_len == 0 && !(flags & TH_URG)) { 13064 freemsg(mp); 13065 goto xmit_check; 13066 } 13067 13068 flags &= ~TH_SYN; 13069 seg_seq++; 13070 break; 13071 } 13072 tcp->tcp_state = TCPS_SYN_RCVD; 13073 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13074 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13075 if (mp1) { 13076 /* 13077 * See comment in tcp_conn_request() for why we use 13078 * the open() time pid here. 13079 */ 13080 DB_CPID(mp1) = tcp->tcp_cpid; 13081 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13082 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13083 } 13084 freemsg(mp); 13085 return; 13086 case TCPS_SYN_RCVD: 13087 if (flags & TH_ACK) { 13088 /* 13089 * In this state, a SYN|ACK packet is either bogus 13090 * because the other side must be ACKing our SYN which 13091 * indicates it has seen the ACK for their SYN and 13092 * shouldn't retransmit it or we're crossing SYNs 13093 * on active open. 13094 */ 13095 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13096 freemsg(mp); 13097 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13098 tcp, seg_ack, 0, TH_RST); 13099 return; 13100 } 13101 /* 13102 * NOTE: RFC 793 pg. 72 says this should be 13103 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13104 * but that would mean we have an ack that ignored 13105 * our SYN. 13106 */ 13107 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13108 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13109 freemsg(mp); 13110 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13111 tcp, seg_ack, 0, TH_RST); 13112 return; 13113 } 13114 } 13115 break; 13116 case TCPS_LISTEN: 13117 /* 13118 * Only a TLI listener can come through this path when a 13119 * acceptor is going back to be a listener and a packet 13120 * for the acceptor hits the classifier. For a socket 13121 * listener, this can never happen because a listener 13122 * can never accept connection on itself and hence a 13123 * socket acceptor can not go back to being a listener. 13124 */ 13125 ASSERT(!TCP_IS_SOCKET(tcp)); 13126 /*FALLTHRU*/ 13127 case TCPS_CLOSED: 13128 case TCPS_BOUND: { 13129 conn_t *new_connp; 13130 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13131 13132 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 13133 if (new_connp != NULL) { 13134 tcp_reinput(new_connp, mp, connp->conn_sqp); 13135 return; 13136 } 13137 /* We failed to classify. For now just drop the packet */ 13138 freemsg(mp); 13139 return; 13140 } 13141 case TCPS_IDLE: 13142 /* 13143 * Handle the case where the tcp_clean_death() has happened 13144 * on a connection (application hasn't closed yet) but a packet 13145 * was already queued on squeue before tcp_clean_death() 13146 * was processed. Calling tcp_clean_death() twice on same 13147 * connection can result in weird behaviour. 13148 */ 13149 freemsg(mp); 13150 return; 13151 default: 13152 break; 13153 } 13154 13155 /* 13156 * Already on the correct queue/perimeter. 13157 * If this is a detached connection and not an eager 13158 * connection hanging off a listener then new data 13159 * (past the FIN) will cause a reset. 13160 * We do a special check here where it 13161 * is out of the main line, rather than check 13162 * if we are detached every time we see new 13163 * data down below. 13164 */ 13165 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13166 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13167 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 13168 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 13169 13170 freemsg(mp); 13171 /* 13172 * This could be an SSL closure alert. We're detached so just 13173 * acknowledge it this last time. 13174 */ 13175 if (tcp->tcp_kssl_ctx != NULL) { 13176 kssl_release_ctx(tcp->tcp_kssl_ctx); 13177 tcp->tcp_kssl_ctx = NULL; 13178 13179 tcp->tcp_rnxt += seg_len; 13180 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13181 flags |= TH_ACK_NEEDED; 13182 goto ack_check; 13183 } 13184 13185 tcp_xmit_ctl("new data when detached", tcp, 13186 tcp->tcp_snxt, 0, TH_RST); 13187 (void) tcp_clean_death(tcp, EPROTO, 12); 13188 return; 13189 } 13190 13191 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13192 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13193 new_swnd = BE16_TO_U16(tcph->th_win) << 13194 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13195 13196 if (tcp->tcp_snd_ts_ok) { 13197 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13198 /* 13199 * This segment is not acceptable. 13200 * Drop it and send back an ACK. 13201 */ 13202 freemsg(mp); 13203 flags |= TH_ACK_NEEDED; 13204 goto ack_check; 13205 } 13206 } else if (tcp->tcp_snd_sack_ok) { 13207 ASSERT(tcp->tcp_sack_info != NULL); 13208 tcpopt.tcp = tcp; 13209 /* 13210 * SACK info in already updated in tcp_parse_options. Ignore 13211 * all other TCP options... 13212 */ 13213 (void) tcp_parse_options(tcph, &tcpopt); 13214 } 13215 try_again:; 13216 mss = tcp->tcp_mss; 13217 gap = seg_seq - tcp->tcp_rnxt; 13218 rgap = tcp->tcp_rwnd - (gap + seg_len); 13219 /* 13220 * gap is the amount of sequence space between what we expect to see 13221 * and what we got for seg_seq. A positive value for gap means 13222 * something got lost. A negative value means we got some old stuff. 13223 */ 13224 if (gap < 0) { 13225 /* Old stuff present. Is the SYN in there? */ 13226 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13227 (seg_len != 0)) { 13228 flags &= ~TH_SYN; 13229 seg_seq++; 13230 urp--; 13231 /* Recompute the gaps after noting the SYN. */ 13232 goto try_again; 13233 } 13234 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 13235 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 13236 (seg_len > -gap ? -gap : seg_len)); 13237 /* Remove the old stuff from seg_len. */ 13238 seg_len += gap; 13239 /* 13240 * Anything left? 13241 * Make sure to check for unack'd FIN when rest of data 13242 * has been previously ack'd. 13243 */ 13244 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13245 /* 13246 * Resets are only valid if they lie within our offered 13247 * window. If the RST bit is set, we just ignore this 13248 * segment. 13249 */ 13250 if (flags & TH_RST) { 13251 freemsg(mp); 13252 return; 13253 } 13254 13255 /* 13256 * The arriving of dup data packets indicate that we 13257 * may have postponed an ack for too long, or the other 13258 * side's RTT estimate is out of shape. Start acking 13259 * more often. 13260 */ 13261 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13262 tcp->tcp_rack_cnt >= 1 && 13263 tcp->tcp_rack_abs_max > 2) { 13264 tcp->tcp_rack_abs_max--; 13265 } 13266 tcp->tcp_rack_cur_max = 1; 13267 13268 /* 13269 * This segment is "unacceptable". None of its 13270 * sequence space lies within our advertized window. 13271 * 13272 * Adjust seg_len to the original value for tracing. 13273 */ 13274 seg_len -= gap; 13275 if (tcp->tcp_debug) { 13276 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13277 "tcp_rput: unacceptable, gap %d, rgap %d, " 13278 "flags 0x%x, seg_seq %u, seg_ack %u, " 13279 "seg_len %d, rnxt %u, snxt %u, %s", 13280 gap, rgap, flags, seg_seq, seg_ack, 13281 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13282 tcp_display(tcp, NULL, 13283 DISP_ADDR_AND_PORT)); 13284 } 13285 13286 /* 13287 * Arrange to send an ACK in response to the 13288 * unacceptable segment per RFC 793 page 69. There 13289 * is only one small difference between ours and the 13290 * acceptability test in the RFC - we accept ACK-only 13291 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13292 * will be generated. 13293 * 13294 * Note that we have to ACK an ACK-only packet at least 13295 * for stacks that send 0-length keep-alives with 13296 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13297 * section 4.2.3.6. As long as we don't ever generate 13298 * an unacceptable packet in response to an incoming 13299 * packet that is unacceptable, it should not cause 13300 * "ACK wars". 13301 */ 13302 flags |= TH_ACK_NEEDED; 13303 13304 /* 13305 * Continue processing this segment in order to use the 13306 * ACK information it contains, but skip all other 13307 * sequence-number processing. Processing the ACK 13308 * information is necessary in order to 13309 * re-synchronize connections that may have lost 13310 * synchronization. 13311 * 13312 * We clear seg_len and flag fields related to 13313 * sequence number processing as they are not 13314 * to be trusted for an unacceptable segment. 13315 */ 13316 seg_len = 0; 13317 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13318 goto process_ack; 13319 } 13320 13321 /* Fix seg_seq, and chew the gap off the front. */ 13322 seg_seq = tcp->tcp_rnxt; 13323 urp += gap; 13324 do { 13325 mblk_t *mp2; 13326 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13327 (uintptr_t)UINT_MAX); 13328 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13329 if (gap > 0) { 13330 mp->b_rptr = mp->b_wptr - gap; 13331 break; 13332 } 13333 mp2 = mp; 13334 mp = mp->b_cont; 13335 freeb(mp2); 13336 } while (gap < 0); 13337 /* 13338 * If the urgent data has already been acknowledged, we 13339 * should ignore TH_URG below 13340 */ 13341 if (urp < 0) 13342 flags &= ~TH_URG; 13343 } 13344 /* 13345 * rgap is the amount of stuff received out of window. A negative 13346 * value is the amount out of window. 13347 */ 13348 if (rgap < 0) { 13349 mblk_t *mp2; 13350 13351 if (tcp->tcp_rwnd == 0) { 13352 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 13353 } else { 13354 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 13355 UPDATE_MIB(&tcps->tcps_mib, 13356 tcpInDataPastWinBytes, -rgap); 13357 } 13358 13359 /* 13360 * seg_len does not include the FIN, so if more than 13361 * just the FIN is out of window, we act like we don't 13362 * see it. (If just the FIN is out of window, rgap 13363 * will be zero and we will go ahead and acknowledge 13364 * the FIN.) 13365 */ 13366 flags &= ~TH_FIN; 13367 13368 /* Fix seg_len and make sure there is something left. */ 13369 seg_len += rgap; 13370 if (seg_len <= 0) { 13371 /* 13372 * Resets are only valid if they lie within our offered 13373 * window. If the RST bit is set, we just ignore this 13374 * segment. 13375 */ 13376 if (flags & TH_RST) { 13377 freemsg(mp); 13378 return; 13379 } 13380 13381 /* Per RFC 793, we need to send back an ACK. */ 13382 flags |= TH_ACK_NEEDED; 13383 13384 /* 13385 * Send SIGURG as soon as possible i.e. even 13386 * if the TH_URG was delivered in a window probe 13387 * packet (which will be unacceptable). 13388 * 13389 * We generate a signal if none has been generated 13390 * for this connection or if this is a new urgent 13391 * byte. Also send a zero-length "unmarked" message 13392 * to inform SIOCATMARK that this is not the mark. 13393 * 13394 * tcp_urp_last_valid is cleared when the T_exdata_ind 13395 * is sent up. This plus the check for old data 13396 * (gap >= 0) handles the wraparound of the sequence 13397 * number space without having to always track the 13398 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13399 * this max in its rcv_up variable). 13400 * 13401 * This prevents duplicate SIGURGS due to a "late" 13402 * zero-window probe when the T_EXDATA_IND has already 13403 * been sent up. 13404 */ 13405 if ((flags & TH_URG) && 13406 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13407 tcp->tcp_urp_last))) { 13408 if (IPCL_IS_NONSTR(connp)) { 13409 if (!TCP_IS_DETACHED(tcp)) { 13410 (*connp->conn_upcalls-> 13411 su_signal_oob) 13412 (connp->conn_upper_handle, 13413 urp); 13414 } 13415 } else { 13416 mp1 = allocb(0, BPRI_MED); 13417 if (mp1 == NULL) { 13418 freemsg(mp); 13419 return; 13420 } 13421 if (!TCP_IS_DETACHED(tcp) && 13422 !putnextctl1(tcp->tcp_rq, 13423 M_PCSIG, SIGURG)) { 13424 /* Try again on the rexmit. */ 13425 freemsg(mp1); 13426 freemsg(mp); 13427 return; 13428 } 13429 /* 13430 * If the next byte would be the mark 13431 * then mark with MARKNEXT else mark 13432 * with NOTMARKNEXT. 13433 */ 13434 if (gap == 0 && urp == 0) 13435 mp1->b_flag |= MSGMARKNEXT; 13436 else 13437 mp1->b_flag |= MSGNOTMARKNEXT; 13438 freemsg(tcp->tcp_urp_mark_mp); 13439 tcp->tcp_urp_mark_mp = mp1; 13440 flags |= TH_SEND_URP_MARK; 13441 } 13442 tcp->tcp_urp_last_valid = B_TRUE; 13443 tcp->tcp_urp_last = urp + seg_seq; 13444 } 13445 /* 13446 * If this is a zero window probe, continue to 13447 * process the ACK part. But we need to set seg_len 13448 * to 0 to avoid data processing. Otherwise just 13449 * drop the segment and send back an ACK. 13450 */ 13451 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13452 flags &= ~(TH_SYN | TH_URG); 13453 seg_len = 0; 13454 goto process_ack; 13455 } else { 13456 freemsg(mp); 13457 goto ack_check; 13458 } 13459 } 13460 /* Pitch out of window stuff off the end. */ 13461 rgap = seg_len; 13462 mp2 = mp; 13463 do { 13464 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13465 (uintptr_t)INT_MAX); 13466 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13467 if (rgap < 0) { 13468 mp2->b_wptr += rgap; 13469 if ((mp1 = mp2->b_cont) != NULL) { 13470 mp2->b_cont = NULL; 13471 freemsg(mp1); 13472 } 13473 break; 13474 } 13475 } while ((mp2 = mp2->b_cont) != NULL); 13476 } 13477 ok:; 13478 /* 13479 * TCP should check ECN info for segments inside the window only. 13480 * Therefore the check should be done here. 13481 */ 13482 if (tcp->tcp_ecn_ok) { 13483 if (flags & TH_CWR) { 13484 tcp->tcp_ecn_echo_on = B_FALSE; 13485 } 13486 /* 13487 * Note that both ECN_CE and CWR can be set in the 13488 * same segment. In this case, we once again turn 13489 * on ECN_ECHO. 13490 */ 13491 if (tcp->tcp_ipversion == IPV4_VERSION) { 13492 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13493 13494 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13495 tcp->tcp_ecn_echo_on = B_TRUE; 13496 } 13497 } else { 13498 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13499 13500 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13501 htonl(IPH_ECN_CE << 20)) { 13502 tcp->tcp_ecn_echo_on = B_TRUE; 13503 } 13504 } 13505 } 13506 13507 /* 13508 * Check whether we can update tcp_ts_recent. This test is 13509 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13510 * Extensions for High Performance: An Update", Internet Draft. 13511 */ 13512 if (tcp->tcp_snd_ts_ok && 13513 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13514 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13515 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13516 tcp->tcp_last_rcv_lbolt = lbolt64; 13517 } 13518 13519 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13520 /* 13521 * FIN in an out of order segment. We record this in 13522 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13523 * Clear the FIN so that any check on FIN flag will fail. 13524 * Remember that FIN also counts in the sequence number 13525 * space. So we need to ack out of order FIN only segments. 13526 */ 13527 if (flags & TH_FIN) { 13528 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13529 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13530 flags &= ~TH_FIN; 13531 flags |= TH_ACK_NEEDED; 13532 } 13533 if (seg_len > 0) { 13534 /* Fill in the SACK blk list. */ 13535 if (tcp->tcp_snd_sack_ok) { 13536 ASSERT(tcp->tcp_sack_info != NULL); 13537 tcp_sack_insert(tcp->tcp_sack_list, 13538 seg_seq, seg_seq + seg_len, 13539 &(tcp->tcp_num_sack_blk)); 13540 } 13541 13542 /* 13543 * Attempt reassembly and see if we have something 13544 * ready to go. 13545 */ 13546 mp = tcp_reass(tcp, mp, seg_seq); 13547 /* Always ack out of order packets */ 13548 flags |= TH_ACK_NEEDED | TH_PUSH; 13549 if (mp) { 13550 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13551 (uintptr_t)INT_MAX); 13552 seg_len = mp->b_cont ? msgdsize(mp) : 13553 (int)(mp->b_wptr - mp->b_rptr); 13554 seg_seq = tcp->tcp_rnxt; 13555 /* 13556 * A gap is filled and the seq num and len 13557 * of the gap match that of a previously 13558 * received FIN, put the FIN flag back in. 13559 */ 13560 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13561 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13562 flags |= TH_FIN; 13563 tcp->tcp_valid_bits &= 13564 ~TCP_OFO_FIN_VALID; 13565 } 13566 } else { 13567 /* 13568 * Keep going even with NULL mp. 13569 * There may be a useful ACK or something else 13570 * we don't want to miss. 13571 * 13572 * But TCP should not perform fast retransmit 13573 * because of the ack number. TCP uses 13574 * seg_len == 0 to determine if it is a pure 13575 * ACK. And this is not a pure ACK. 13576 */ 13577 seg_len = 0; 13578 ofo_seg = B_TRUE; 13579 } 13580 } 13581 } else if (seg_len > 0) { 13582 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 13583 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 13584 /* 13585 * If an out of order FIN was received before, and the seq 13586 * num and len of the new segment match that of the FIN, 13587 * put the FIN flag back in. 13588 */ 13589 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13590 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13591 flags |= TH_FIN; 13592 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13593 } 13594 } 13595 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13596 if (flags & TH_RST) { 13597 freemsg(mp); 13598 switch (tcp->tcp_state) { 13599 case TCPS_SYN_RCVD: 13600 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13601 break; 13602 case TCPS_ESTABLISHED: 13603 case TCPS_FIN_WAIT_1: 13604 case TCPS_FIN_WAIT_2: 13605 case TCPS_CLOSE_WAIT: 13606 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13607 break; 13608 case TCPS_CLOSING: 13609 case TCPS_LAST_ACK: 13610 (void) tcp_clean_death(tcp, 0, 16); 13611 break; 13612 default: 13613 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13614 (void) tcp_clean_death(tcp, ENXIO, 17); 13615 break; 13616 } 13617 return; 13618 } 13619 if (flags & TH_SYN) { 13620 /* 13621 * See RFC 793, Page 71 13622 * 13623 * The seq number must be in the window as it should 13624 * be "fixed" above. If it is outside window, it should 13625 * be already rejected. Note that we allow seg_seq to be 13626 * rnxt + rwnd because we want to accept 0 window probe. 13627 */ 13628 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13629 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13630 freemsg(mp); 13631 /* 13632 * If the ACK flag is not set, just use our snxt as the 13633 * seq number of the RST segment. 13634 */ 13635 if (!(flags & TH_ACK)) { 13636 seg_ack = tcp->tcp_snxt; 13637 } 13638 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13639 TH_RST|TH_ACK); 13640 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13641 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13642 return; 13643 } 13644 /* 13645 * urp could be -1 when the urp field in the packet is 0 13646 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13647 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13648 */ 13649 if (flags & TH_URG && urp >= 0) { 13650 if (!tcp->tcp_urp_last_valid || 13651 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13652 /* 13653 * Non-STREAMS sockets handle the urgent data a litte 13654 * differently from STREAMS based sockets. There is no 13655 * need to mark any mblks with the MSG{NOT,}MARKNEXT 13656 * flags to keep SIOCATMARK happy. Instead a 13657 * su_signal_oob upcall is made to update the mark. 13658 * Neither is a T_EXDATA_IND mblk needed to be 13659 * prepended to the urgent data. The urgent data is 13660 * delivered using the su_recv upcall, where we set 13661 * the MSG_OOB flag to indicate that it is urg data. 13662 * 13663 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED 13664 * are used by non-STREAMS sockets. 13665 */ 13666 if (IPCL_IS_NONSTR(connp)) { 13667 if (!TCP_IS_DETACHED(tcp)) { 13668 (*connp->conn_upcalls->su_signal_oob) 13669 (connp->conn_upper_handle, urp); 13670 } 13671 } else { 13672 /* 13673 * If we haven't generated the signal yet for 13674 * this urgent pointer value, do it now. Also, 13675 * send up a zero-length M_DATA indicating 13676 * whether or not this is the mark. The latter 13677 * is not needed when a T_EXDATA_IND is sent up. 13678 * However, if there are allocation failures 13679 * this code relies on the sender retransmitting 13680 * and the socket code for determining the mark 13681 * should not block waiting for the peer to 13682 * transmit. Thus, for simplicity we always 13683 * send up the mark indication. 13684 */ 13685 mp1 = allocb(0, BPRI_MED); 13686 if (mp1 == NULL) { 13687 freemsg(mp); 13688 return; 13689 } 13690 if (!TCP_IS_DETACHED(tcp) && 13691 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13692 SIGURG)) { 13693 /* Try again on the rexmit. */ 13694 freemsg(mp1); 13695 freemsg(mp); 13696 return; 13697 } 13698 /* 13699 * Mark with NOTMARKNEXT for now. 13700 * The code below will change this to MARKNEXT 13701 * if we are at the mark. 13702 * 13703 * If there are allocation failures (e.g. in 13704 * dupmsg below) the next time tcp_rput_data 13705 * sees the urgent segment it will send up the 13706 * MSGMARKNEXT message. 13707 */ 13708 mp1->b_flag |= MSGNOTMARKNEXT; 13709 freemsg(tcp->tcp_urp_mark_mp); 13710 tcp->tcp_urp_mark_mp = mp1; 13711 flags |= TH_SEND_URP_MARK; 13712 #ifdef DEBUG 13713 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13714 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13715 "last %x, %s", 13716 seg_seq, urp, tcp->tcp_urp_last, 13717 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13718 #endif /* DEBUG */ 13719 } 13720 tcp->tcp_urp_last_valid = B_TRUE; 13721 tcp->tcp_urp_last = urp + seg_seq; 13722 } else if (tcp->tcp_urp_mark_mp != NULL) { 13723 /* 13724 * An allocation failure prevented the previous 13725 * tcp_rput_data from sending up the allocated 13726 * MSG*MARKNEXT message - send it up this time 13727 * around. 13728 */ 13729 flags |= TH_SEND_URP_MARK; 13730 } 13731 13732 /* 13733 * If the urgent byte is in this segment, make sure that it is 13734 * all by itself. This makes it much easier to deal with the 13735 * possibility of an allocation failure on the T_exdata_ind. 13736 * Note that seg_len is the number of bytes in the segment, and 13737 * urp is the offset into the segment of the urgent byte. 13738 * urp < seg_len means that the urgent byte is in this segment. 13739 */ 13740 if (urp < seg_len) { 13741 if (seg_len != 1) { 13742 uint32_t tmp_rnxt; 13743 /* 13744 * Break it up and feed it back in. 13745 * Re-attach the IP header. 13746 */ 13747 mp->b_rptr = iphdr; 13748 if (urp > 0) { 13749 /* 13750 * There is stuff before the urgent 13751 * byte. 13752 */ 13753 mp1 = dupmsg(mp); 13754 if (!mp1) { 13755 /* 13756 * Trim from urgent byte on. 13757 * The rest will come back. 13758 */ 13759 (void) adjmsg(mp, 13760 urp - seg_len); 13761 tcp_rput_data(connp, 13762 mp, NULL); 13763 return; 13764 } 13765 (void) adjmsg(mp1, urp - seg_len); 13766 /* Feed this piece back in. */ 13767 tmp_rnxt = tcp->tcp_rnxt; 13768 tcp_rput_data(connp, mp1, NULL); 13769 /* 13770 * If the data passed back in was not 13771 * processed (ie: bad ACK) sending 13772 * the remainder back in will cause a 13773 * loop. In this case, drop the 13774 * packet and let the sender try 13775 * sending a good packet. 13776 */ 13777 if (tmp_rnxt == tcp->tcp_rnxt) { 13778 freemsg(mp); 13779 return; 13780 } 13781 } 13782 if (urp != seg_len - 1) { 13783 uint32_t tmp_rnxt; 13784 /* 13785 * There is stuff after the urgent 13786 * byte. 13787 */ 13788 mp1 = dupmsg(mp); 13789 if (!mp1) { 13790 /* 13791 * Trim everything beyond the 13792 * urgent byte. The rest will 13793 * come back. 13794 */ 13795 (void) adjmsg(mp, 13796 urp + 1 - seg_len); 13797 tcp_rput_data(connp, 13798 mp, NULL); 13799 return; 13800 } 13801 (void) adjmsg(mp1, urp + 1 - seg_len); 13802 tmp_rnxt = tcp->tcp_rnxt; 13803 tcp_rput_data(connp, mp1, NULL); 13804 /* 13805 * If the data passed back in was not 13806 * processed (ie: bad ACK) sending 13807 * the remainder back in will cause a 13808 * loop. In this case, drop the 13809 * packet and let the sender try 13810 * sending a good packet. 13811 */ 13812 if (tmp_rnxt == tcp->tcp_rnxt) { 13813 freemsg(mp); 13814 return; 13815 } 13816 } 13817 tcp_rput_data(connp, mp, NULL); 13818 return; 13819 } 13820 /* 13821 * This segment contains only the urgent byte. We 13822 * have to allocate the T_exdata_ind, if we can. 13823 */ 13824 if (IPCL_IS_NONSTR(connp)) { 13825 int error; 13826 13827 (*connp->conn_upcalls->su_recv) 13828 (connp->conn_upper_handle, mp, seg_len, 13829 MSG_OOB, &error, NULL); 13830 /* 13831 * We should never be in middle of a 13832 * fallback, the squeue guarantees that. 13833 */ 13834 ASSERT(error != EOPNOTSUPP); 13835 mp = NULL; 13836 goto update_ack; 13837 } else if (!tcp->tcp_urp_mp) { 13838 struct T_exdata_ind *tei; 13839 mp1 = allocb(sizeof (struct T_exdata_ind), 13840 BPRI_MED); 13841 if (!mp1) { 13842 /* 13843 * Sigh... It'll be back. 13844 * Generate any MSG*MARK message now. 13845 */ 13846 freemsg(mp); 13847 seg_len = 0; 13848 if (flags & TH_SEND_URP_MARK) { 13849 13850 13851 ASSERT(tcp->tcp_urp_mark_mp); 13852 tcp->tcp_urp_mark_mp->b_flag &= 13853 ~MSGNOTMARKNEXT; 13854 tcp->tcp_urp_mark_mp->b_flag |= 13855 MSGMARKNEXT; 13856 } 13857 goto ack_check; 13858 } 13859 mp1->b_datap->db_type = M_PROTO; 13860 tei = (struct T_exdata_ind *)mp1->b_rptr; 13861 tei->PRIM_type = T_EXDATA_IND; 13862 tei->MORE_flag = 0; 13863 mp1->b_wptr = (uchar_t *)&tei[1]; 13864 tcp->tcp_urp_mp = mp1; 13865 #ifdef DEBUG 13866 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13867 "tcp_rput: allocated exdata_ind %s", 13868 tcp_display(tcp, NULL, 13869 DISP_PORT_ONLY)); 13870 #endif /* DEBUG */ 13871 /* 13872 * There is no need to send a separate MSG*MARK 13873 * message since the T_EXDATA_IND will be sent 13874 * now. 13875 */ 13876 flags &= ~TH_SEND_URP_MARK; 13877 freemsg(tcp->tcp_urp_mark_mp); 13878 tcp->tcp_urp_mark_mp = NULL; 13879 } 13880 /* 13881 * Now we are all set. On the next putnext upstream, 13882 * tcp_urp_mp will be non-NULL and will get prepended 13883 * to what has to be this piece containing the urgent 13884 * byte. If for any reason we abort this segment below, 13885 * if it comes back, we will have this ready, or it 13886 * will get blown off in close. 13887 */ 13888 } else if (urp == seg_len) { 13889 /* 13890 * The urgent byte is the next byte after this sequence 13891 * number. If this endpoint is non-STREAMS, then there 13892 * is nothing to do here since the socket has already 13893 * been notified about the urg pointer by the 13894 * su_signal_oob call above. 13895 * 13896 * In case of STREAMS, some more work might be needed. 13897 * If there is data it is marked with MSGMARKNEXT and 13898 * and any tcp_urp_mark_mp is discarded since it is not 13899 * needed. Otherwise, if the code above just allocated 13900 * a zero-length tcp_urp_mark_mp message, that message 13901 * is tagged with MSGMARKNEXT. Sending up these 13902 * MSGMARKNEXT messages makes SIOCATMARK work correctly 13903 * even though the T_EXDATA_IND will not be sent up 13904 * until the urgent byte arrives. 13905 */ 13906 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 13907 if (seg_len != 0) { 13908 flags |= TH_MARKNEXT_NEEDED; 13909 freemsg(tcp->tcp_urp_mark_mp); 13910 tcp->tcp_urp_mark_mp = NULL; 13911 flags &= ~TH_SEND_URP_MARK; 13912 } else if (tcp->tcp_urp_mark_mp != NULL) { 13913 flags |= TH_SEND_URP_MARK; 13914 tcp->tcp_urp_mark_mp->b_flag &= 13915 ~MSGNOTMARKNEXT; 13916 tcp->tcp_urp_mark_mp->b_flag |= 13917 MSGMARKNEXT; 13918 } 13919 } 13920 #ifdef DEBUG 13921 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13922 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 13923 seg_len, flags, 13924 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13925 #endif /* DEBUG */ 13926 } 13927 #ifdef DEBUG 13928 else { 13929 /* Data left until we hit mark */ 13930 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13931 "tcp_rput: URP %d bytes left, %s", 13932 urp - seg_len, tcp_display(tcp, NULL, 13933 DISP_PORT_ONLY)); 13934 } 13935 #endif /* DEBUG */ 13936 } 13937 13938 process_ack: 13939 if (!(flags & TH_ACK)) { 13940 freemsg(mp); 13941 goto xmit_check; 13942 } 13943 } 13944 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 13945 13946 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 13947 tcp->tcp_ip_forward_progress = B_TRUE; 13948 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13949 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 13950 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 13951 /* 3-way handshake complete - pass up the T_CONN_IND */ 13952 tcp_t *listener = tcp->tcp_listener; 13953 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 13954 13955 tcp->tcp_tconnind_started = B_TRUE; 13956 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 13957 /* 13958 * We are here means eager is fine but it can 13959 * get a TH_RST at any point between now and till 13960 * accept completes and disappear. We need to 13961 * ensure that reference to eager is valid after 13962 * we get out of eager's perimeter. So we do 13963 * an extra refhold. 13964 */ 13965 CONN_INC_REF(connp); 13966 13967 /* 13968 * The listener also exists because of the refhold 13969 * done in tcp_conn_request. Its possible that it 13970 * might have closed. We will check that once we 13971 * get inside listeners context. 13972 */ 13973 CONN_INC_REF(listener->tcp_connp); 13974 if (listener->tcp_connp->conn_sqp == 13975 connp->conn_sqp) { 13976 /* 13977 * We optimize by not calling an SQUEUE_ENTER 13978 * on the listener since we know that the 13979 * listener and eager squeues are the same. 13980 * We are able to make this check safely only 13981 * because neither the eager nor the listener 13982 * can change its squeue. Only an active connect 13983 * can change its squeue 13984 */ 13985 tcp_send_conn_ind(listener->tcp_connp, mp, 13986 listener->tcp_connp->conn_sqp); 13987 CONN_DEC_REF(listener->tcp_connp); 13988 } else if (!tcp->tcp_loopback) { 13989 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 13990 mp, tcp_send_conn_ind, 13991 listener->tcp_connp, SQ_FILL, 13992 SQTAG_TCP_CONN_IND); 13993 } else { 13994 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 13995 mp, tcp_send_conn_ind, 13996 listener->tcp_connp, SQ_PROCESS, 13997 SQTAG_TCP_CONN_IND); 13998 } 13999 } 14000 14001 /* 14002 * We are seeing the final ack in the three way 14003 * hand shake of a active open'ed connection 14004 * so we must send up a T_CONN_CON 14005 * 14006 * tcp_sendmsg() checks tcp_state without entering 14007 * the squeue so tcp_state should be updated before 14008 * sending up connection confirmation. 14009 */ 14010 tcp->tcp_state = TCPS_ESTABLISHED; 14011 if (tcp->tcp_active_open) { 14012 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 14013 freemsg(mp); 14014 tcp->tcp_state = TCPS_SYN_RCVD; 14015 return; 14016 } 14017 /* 14018 * Don't fuse the loopback endpoints for 14019 * simultaneous active opens. 14020 */ 14021 if (tcp->tcp_loopback) { 14022 TCP_STAT(tcps, tcp_fusion_unfusable); 14023 tcp->tcp_unfusable = B_TRUE; 14024 } 14025 } 14026 14027 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 14028 bytes_acked--; 14029 /* SYN was acked - making progress */ 14030 if (tcp->tcp_ipversion == IPV6_VERSION) 14031 tcp->tcp_ip_forward_progress = B_TRUE; 14032 14033 /* 14034 * If SYN was retransmitted, need to reset all 14035 * retransmission info as this segment will be 14036 * treated as a dup ACK. 14037 */ 14038 if (tcp->tcp_rexmit) { 14039 tcp->tcp_rexmit = B_FALSE; 14040 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14041 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14042 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14043 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14044 tcp->tcp_ms_we_have_waited = 0; 14045 tcp->tcp_cwnd = mss; 14046 } 14047 14048 /* 14049 * We set the send window to zero here. 14050 * This is needed if there is data to be 14051 * processed already on the queue. 14052 * Later (at swnd_update label), the 14053 * "new_swnd > tcp_swnd" condition is satisfied 14054 * the XMIT_NEEDED flag is set in the current 14055 * (SYN_RCVD) state. This ensures tcp_wput_data() is 14056 * called if there is already data on queue in 14057 * this state. 14058 */ 14059 tcp->tcp_swnd = 0; 14060 14061 if (new_swnd > tcp->tcp_max_swnd) 14062 tcp->tcp_max_swnd = new_swnd; 14063 tcp->tcp_swl1 = seg_seq; 14064 tcp->tcp_swl2 = seg_ack; 14065 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 14066 14067 /* Fuse when both sides are in ESTABLISHED state */ 14068 if (tcp->tcp_loopback && do_tcp_fusion) 14069 tcp_fuse(tcp, iphdr, tcph); 14070 14071 } 14072 /* This code follows 4.4BSD-Lite2 mostly. */ 14073 if (bytes_acked < 0) 14074 goto est; 14075 14076 /* 14077 * If TCP is ECN capable and the congestion experience bit is 14078 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 14079 * done once per window (or more loosely, per RTT). 14080 */ 14081 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 14082 tcp->tcp_cwr = B_FALSE; 14083 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 14084 if (!tcp->tcp_cwr) { 14085 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 14086 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 14087 tcp->tcp_cwnd = npkt * mss; 14088 /* 14089 * If the cwnd is 0, use the timer to clock out 14090 * new segments. This is required by the ECN spec. 14091 */ 14092 if (npkt == 0) { 14093 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14094 /* 14095 * This makes sure that when the ACK comes 14096 * back, we will increase tcp_cwnd by 1 MSS. 14097 */ 14098 tcp->tcp_cwnd_cnt = 0; 14099 } 14100 tcp->tcp_cwr = B_TRUE; 14101 /* 14102 * This marks the end of the current window of in 14103 * flight data. That is why we don't use 14104 * tcp_suna + tcp_swnd. Only data in flight can 14105 * provide ECN info. 14106 */ 14107 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14108 tcp->tcp_ecn_cwr_sent = B_FALSE; 14109 } 14110 } 14111 14112 mp1 = tcp->tcp_xmit_head; 14113 if (bytes_acked == 0) { 14114 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14115 int dupack_cnt; 14116 14117 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 14118 /* 14119 * Fast retransmit. When we have seen exactly three 14120 * identical ACKs while we have unacked data 14121 * outstanding we take it as a hint that our peer 14122 * dropped something. 14123 * 14124 * If TCP is retransmitting, don't do fast retransmit. 14125 */ 14126 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14127 ! tcp->tcp_rexmit) { 14128 /* Do Limited Transmit */ 14129 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14130 tcps->tcps_dupack_fast_retransmit) { 14131 /* 14132 * RFC 3042 14133 * 14134 * What we need to do is temporarily 14135 * increase tcp_cwnd so that new 14136 * data can be sent if it is allowed 14137 * by the receive window (tcp_rwnd). 14138 * tcp_wput_data() will take care of 14139 * the rest. 14140 * 14141 * If the connection is SACK capable, 14142 * only do limited xmit when there 14143 * is SACK info. 14144 * 14145 * Note how tcp_cwnd is incremented. 14146 * The first dup ACK will increase 14147 * it by 1 MSS. The second dup ACK 14148 * will increase it by 2 MSS. This 14149 * means that only 1 new segment will 14150 * be sent for each dup ACK. 14151 */ 14152 if (tcp->tcp_unsent > 0 && 14153 (!tcp->tcp_snd_sack_ok || 14154 (tcp->tcp_snd_sack_ok && 14155 tcp->tcp_notsack_list != NULL))) { 14156 tcp->tcp_cwnd += mss << 14157 (tcp->tcp_dupack_cnt - 1); 14158 flags |= TH_LIMIT_XMIT; 14159 } 14160 } else if (dupack_cnt == 14161 tcps->tcps_dupack_fast_retransmit) { 14162 14163 /* 14164 * If we have reduced tcp_ssthresh 14165 * because of ECN, do not reduce it again 14166 * unless it is already one window of data 14167 * away. After one window of data, tcp_cwr 14168 * should then be cleared. Note that 14169 * for non ECN capable connection, tcp_cwr 14170 * should always be false. 14171 * 14172 * Adjust cwnd since the duplicate 14173 * ack indicates that a packet was 14174 * dropped (due to congestion.) 14175 */ 14176 if (!tcp->tcp_cwr) { 14177 npkt = ((tcp->tcp_snxt - 14178 tcp->tcp_suna) >> 1) / mss; 14179 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14180 mss; 14181 tcp->tcp_cwnd = (npkt + 14182 tcp->tcp_dupack_cnt) * mss; 14183 } 14184 if (tcp->tcp_ecn_ok) { 14185 tcp->tcp_cwr = B_TRUE; 14186 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14187 tcp->tcp_ecn_cwr_sent = B_FALSE; 14188 } 14189 14190 /* 14191 * We do Hoe's algorithm. Refer to her 14192 * paper "Improving the Start-up Behavior 14193 * of a Congestion Control Scheme for TCP," 14194 * appeared in SIGCOMM'96. 14195 * 14196 * Save highest seq no we have sent so far. 14197 * Be careful about the invisible FIN byte. 14198 */ 14199 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14200 (tcp->tcp_unsent == 0)) { 14201 tcp->tcp_rexmit_max = tcp->tcp_fss; 14202 } else { 14203 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14204 } 14205 14206 /* 14207 * Do not allow bursty traffic during. 14208 * fast recovery. Refer to Fall and Floyd's 14209 * paper "Simulation-based Comparisons of 14210 * Tahoe, Reno and SACK TCP" (in CCR?) 14211 * This is a best current practise. 14212 */ 14213 tcp->tcp_snd_burst = TCP_CWND_SS; 14214 14215 /* 14216 * For SACK: 14217 * Calculate tcp_pipe, which is the 14218 * estimated number of bytes in 14219 * network. 14220 * 14221 * tcp_fack is the highest sack'ed seq num 14222 * TCP has received. 14223 * 14224 * tcp_pipe is explained in the above quoted 14225 * Fall and Floyd's paper. tcp_fack is 14226 * explained in Mathis and Mahdavi's 14227 * "Forward Acknowledgment: Refining TCP 14228 * Congestion Control" in SIGCOMM '96. 14229 */ 14230 if (tcp->tcp_snd_sack_ok) { 14231 ASSERT(tcp->tcp_sack_info != NULL); 14232 if (tcp->tcp_notsack_list != NULL) { 14233 tcp->tcp_pipe = tcp->tcp_snxt - 14234 tcp->tcp_fack; 14235 tcp->tcp_sack_snxt = seg_ack; 14236 flags |= TH_NEED_SACK_REXMIT; 14237 } else { 14238 /* 14239 * Always initialize tcp_pipe 14240 * even though we don't have 14241 * any SACK info. If later 14242 * we get SACK info and 14243 * tcp_pipe is not initialized, 14244 * funny things will happen. 14245 */ 14246 tcp->tcp_pipe = 14247 tcp->tcp_cwnd_ssthresh; 14248 } 14249 } else { 14250 flags |= TH_REXMIT_NEEDED; 14251 } /* tcp_snd_sack_ok */ 14252 14253 } else { 14254 /* 14255 * Here we perform congestion 14256 * avoidance, but NOT slow start. 14257 * This is known as the Fast 14258 * Recovery Algorithm. 14259 */ 14260 if (tcp->tcp_snd_sack_ok && 14261 tcp->tcp_notsack_list != NULL) { 14262 flags |= TH_NEED_SACK_REXMIT; 14263 tcp->tcp_pipe -= mss; 14264 if (tcp->tcp_pipe < 0) 14265 tcp->tcp_pipe = 0; 14266 } else { 14267 /* 14268 * We know that one more packet has 14269 * left the pipe thus we can update 14270 * cwnd. 14271 */ 14272 cwnd = tcp->tcp_cwnd + mss; 14273 if (cwnd > tcp->tcp_cwnd_max) 14274 cwnd = tcp->tcp_cwnd_max; 14275 tcp->tcp_cwnd = cwnd; 14276 if (tcp->tcp_unsent > 0) 14277 flags |= TH_XMIT_NEEDED; 14278 } 14279 } 14280 } 14281 } else if (tcp->tcp_zero_win_probe) { 14282 /* 14283 * If the window has opened, need to arrange 14284 * to send additional data. 14285 */ 14286 if (new_swnd != 0) { 14287 /* tcp_suna != tcp_snxt */ 14288 /* Packet contains a window update */ 14289 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 14290 tcp->tcp_zero_win_probe = 0; 14291 tcp->tcp_timer_backoff = 0; 14292 tcp->tcp_ms_we_have_waited = 0; 14293 14294 /* 14295 * Transmit starting with tcp_suna since 14296 * the one byte probe is not ack'ed. 14297 * If TCP has sent more than one identical 14298 * probe, tcp_rexmit will be set. That means 14299 * tcp_ss_rexmit() will send out the one 14300 * byte along with new data. Otherwise, 14301 * fake the retransmission. 14302 */ 14303 flags |= TH_XMIT_NEEDED; 14304 if (!tcp->tcp_rexmit) { 14305 tcp->tcp_rexmit = B_TRUE; 14306 tcp->tcp_dupack_cnt = 0; 14307 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14308 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14309 } 14310 } 14311 } 14312 goto swnd_update; 14313 } 14314 14315 /* 14316 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14317 * If the ACK value acks something that we have not yet sent, it might 14318 * be an old duplicate segment. Send an ACK to re-synchronize the 14319 * other side. 14320 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14321 * state is handled above, so we can always just drop the segment and 14322 * send an ACK here. 14323 * 14324 * In the case where the peer shrinks the window, we see the new window 14325 * update, but all the data sent previously is queued up by the peer. 14326 * To account for this, in tcp_process_shrunk_swnd(), the sequence 14327 * number, which was already sent, and within window, is recorded. 14328 * tcp_snxt is then updated. 14329 * 14330 * If the window has previously shrunk, and an ACK for data not yet 14331 * sent, according to tcp_snxt is recieved, it may still be valid. If 14332 * the ACK is for data within the window at the time the window was 14333 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to 14334 * the sequence number ACK'ed. 14335 * 14336 * If the ACK covers all the data sent at the time the window was 14337 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE. 14338 * 14339 * Should we send ACKs in response to ACK only segments? 14340 */ 14341 14342 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14343 if ((tcp->tcp_is_wnd_shrnk) && 14344 (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) { 14345 uint32_t data_acked_ahead_snxt; 14346 14347 data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt; 14348 tcp_update_xmit_tail(tcp, seg_ack); 14349 tcp->tcp_unsent -= data_acked_ahead_snxt; 14350 } else { 14351 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 14352 /* drop the received segment */ 14353 freemsg(mp); 14354 14355 /* 14356 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14357 * greater than 0, check if the number of such 14358 * bogus ACks is greater than that count. If yes, 14359 * don't send back any ACK. This prevents TCP from 14360 * getting into an ACK storm if somehow an attacker 14361 * successfully spoofs an acceptable segment to our 14362 * peer. 14363 */ 14364 if (tcp_drop_ack_unsent_cnt > 0 && 14365 ++tcp->tcp_in_ack_unsent > 14366 tcp_drop_ack_unsent_cnt) { 14367 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 14368 return; 14369 } 14370 mp = tcp_ack_mp(tcp); 14371 if (mp != NULL) { 14372 BUMP_LOCAL(tcp->tcp_obsegs); 14373 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 14374 tcp_send_data(tcp, tcp->tcp_wq, mp); 14375 } 14376 return; 14377 } 14378 } else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack, 14379 tcp->tcp_snxt_shrunk)) { 14380 tcp->tcp_is_wnd_shrnk = B_FALSE; 14381 } 14382 14383 /* 14384 * TCP gets a new ACK, update the notsack'ed list to delete those 14385 * blocks that are covered by this ACK. 14386 */ 14387 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14388 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14389 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14390 } 14391 14392 /* 14393 * If we got an ACK after fast retransmit, check to see 14394 * if it is a partial ACK. If it is not and the congestion 14395 * window was inflated to account for the other side's 14396 * cached packets, retract it. If it is, do Hoe's algorithm. 14397 */ 14398 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 14399 ASSERT(tcp->tcp_rexmit == B_FALSE); 14400 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14401 tcp->tcp_dupack_cnt = 0; 14402 /* 14403 * Restore the orig tcp_cwnd_ssthresh after 14404 * fast retransmit phase. 14405 */ 14406 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14407 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14408 } 14409 tcp->tcp_rexmit_max = seg_ack; 14410 tcp->tcp_cwnd_cnt = 0; 14411 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14412 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14413 14414 /* 14415 * Remove all notsack info to avoid confusion with 14416 * the next fast retrasnmit/recovery phase. 14417 */ 14418 if (tcp->tcp_snd_sack_ok && 14419 tcp->tcp_notsack_list != NULL) { 14420 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 14421 tcp); 14422 } 14423 } else { 14424 if (tcp->tcp_snd_sack_ok && 14425 tcp->tcp_notsack_list != NULL) { 14426 flags |= TH_NEED_SACK_REXMIT; 14427 tcp->tcp_pipe -= mss; 14428 if (tcp->tcp_pipe < 0) 14429 tcp->tcp_pipe = 0; 14430 } else { 14431 /* 14432 * Hoe's algorithm: 14433 * 14434 * Retransmit the unack'ed segment and 14435 * restart fast recovery. Note that we 14436 * need to scale back tcp_cwnd to the 14437 * original value when we started fast 14438 * recovery. This is to prevent overly 14439 * aggressive behaviour in sending new 14440 * segments. 14441 */ 14442 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14443 tcps->tcps_dupack_fast_retransmit * mss; 14444 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14445 flags |= TH_REXMIT_NEEDED; 14446 } 14447 } 14448 } else { 14449 tcp->tcp_dupack_cnt = 0; 14450 if (tcp->tcp_rexmit) { 14451 /* 14452 * TCP is retranmitting. If the ACK ack's all 14453 * outstanding data, update tcp_rexmit_max and 14454 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14455 * to the correct value. 14456 * 14457 * Note that SEQ_LEQ() is used. This is to avoid 14458 * unnecessary fast retransmit caused by dup ACKs 14459 * received when TCP does slow start retransmission 14460 * after a time out. During this phase, TCP may 14461 * send out segments which are already received. 14462 * This causes dup ACKs to be sent back. 14463 */ 14464 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14465 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14466 tcp->tcp_rexmit_nxt = seg_ack; 14467 } 14468 if (seg_ack != tcp->tcp_rexmit_max) { 14469 flags |= TH_XMIT_NEEDED; 14470 } 14471 } else { 14472 tcp->tcp_rexmit = B_FALSE; 14473 tcp->tcp_xmit_zc_clean = B_FALSE; 14474 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14475 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14476 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14477 } 14478 tcp->tcp_ms_we_have_waited = 0; 14479 } 14480 } 14481 14482 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 14483 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 14484 tcp->tcp_suna = seg_ack; 14485 if (tcp->tcp_zero_win_probe != 0) { 14486 tcp->tcp_zero_win_probe = 0; 14487 tcp->tcp_timer_backoff = 0; 14488 } 14489 14490 /* 14491 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14492 * Note that it cannot be the SYN being ack'ed. The code flow 14493 * will not reach here. 14494 */ 14495 if (mp1 == NULL) { 14496 goto fin_acked; 14497 } 14498 14499 /* 14500 * Update the congestion window. 14501 * 14502 * If TCP is not ECN capable or TCP is ECN capable but the 14503 * congestion experience bit is not set, increase the tcp_cwnd as 14504 * usual. 14505 */ 14506 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14507 cwnd = tcp->tcp_cwnd; 14508 add = mss; 14509 14510 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14511 /* 14512 * This is to prevent an increase of less than 1 MSS of 14513 * tcp_cwnd. With partial increase, tcp_wput_data() 14514 * may send out tinygrams in order to preserve mblk 14515 * boundaries. 14516 * 14517 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14518 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14519 * increased by 1 MSS for every RTTs. 14520 */ 14521 if (tcp->tcp_cwnd_cnt <= 0) { 14522 tcp->tcp_cwnd_cnt = cwnd + add; 14523 } else { 14524 tcp->tcp_cwnd_cnt -= add; 14525 add = 0; 14526 } 14527 } 14528 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14529 } 14530 14531 /* See if the latest urgent data has been acknowledged */ 14532 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14533 SEQ_GT(seg_ack, tcp->tcp_urg)) 14534 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14535 14536 /* Can we update the RTT estimates? */ 14537 if (tcp->tcp_snd_ts_ok) { 14538 /* Ignore zero timestamp echo-reply. */ 14539 if (tcpopt.tcp_opt_ts_ecr != 0) { 14540 tcp_set_rto(tcp, (int32_t)lbolt - 14541 (int32_t)tcpopt.tcp_opt_ts_ecr); 14542 } 14543 14544 /* If needed, restart the timer. */ 14545 if (tcp->tcp_set_timer == 1) { 14546 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14547 tcp->tcp_set_timer = 0; 14548 } 14549 /* 14550 * Update tcp_csuna in case the other side stops sending 14551 * us timestamps. 14552 */ 14553 tcp->tcp_csuna = tcp->tcp_snxt; 14554 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14555 /* 14556 * An ACK sequence we haven't seen before, so get the RTT 14557 * and update the RTO. But first check if the timestamp is 14558 * valid to use. 14559 */ 14560 if ((mp1->b_next != NULL) && 14561 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14562 tcp_set_rto(tcp, (int32_t)lbolt - 14563 (int32_t)(intptr_t)mp1->b_prev); 14564 else 14565 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14566 14567 /* Remeber the last sequence to be ACKed */ 14568 tcp->tcp_csuna = seg_ack; 14569 if (tcp->tcp_set_timer == 1) { 14570 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14571 tcp->tcp_set_timer = 0; 14572 } 14573 } else { 14574 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14575 } 14576 14577 /* Eat acknowledged bytes off the xmit queue. */ 14578 for (;;) { 14579 mblk_t *mp2; 14580 uchar_t *wptr; 14581 14582 wptr = mp1->b_wptr; 14583 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14584 bytes_acked -= (int)(wptr - mp1->b_rptr); 14585 if (bytes_acked < 0) { 14586 mp1->b_rptr = wptr + bytes_acked; 14587 /* 14588 * Set a new timestamp if all the bytes timed by the 14589 * old timestamp have been ack'ed. 14590 */ 14591 if (SEQ_GT(seg_ack, 14592 (uint32_t)(uintptr_t)(mp1->b_next))) { 14593 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14594 mp1->b_next = NULL; 14595 } 14596 break; 14597 } 14598 mp1->b_next = NULL; 14599 mp1->b_prev = NULL; 14600 mp2 = mp1; 14601 mp1 = mp1->b_cont; 14602 14603 /* 14604 * This notification is required for some zero-copy 14605 * clients to maintain a copy semantic. After the data 14606 * is ack'ed, client is safe to modify or reuse the buffer. 14607 */ 14608 if (tcp->tcp_snd_zcopy_aware && 14609 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14610 tcp_zcopy_notify(tcp); 14611 freeb(mp2); 14612 if (bytes_acked == 0) { 14613 if (mp1 == NULL) { 14614 /* Everything is ack'ed, clear the tail. */ 14615 tcp->tcp_xmit_tail = NULL; 14616 /* 14617 * Cancel the timer unless we are still 14618 * waiting for an ACK for the FIN packet. 14619 */ 14620 if (tcp->tcp_timer_tid != 0 && 14621 tcp->tcp_snxt == tcp->tcp_suna) { 14622 (void) TCP_TIMER_CANCEL(tcp, 14623 tcp->tcp_timer_tid); 14624 tcp->tcp_timer_tid = 0; 14625 } 14626 goto pre_swnd_update; 14627 } 14628 if (mp2 != tcp->tcp_xmit_tail) 14629 break; 14630 tcp->tcp_xmit_tail = mp1; 14631 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14632 (uintptr_t)INT_MAX); 14633 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14634 mp1->b_rptr); 14635 break; 14636 } 14637 if (mp1 == NULL) { 14638 /* 14639 * More was acked but there is nothing more 14640 * outstanding. This means that the FIN was 14641 * just acked or that we're talking to a clown. 14642 */ 14643 fin_acked: 14644 ASSERT(tcp->tcp_fin_sent); 14645 tcp->tcp_xmit_tail = NULL; 14646 if (tcp->tcp_fin_sent) { 14647 /* FIN was acked - making progress */ 14648 if (tcp->tcp_ipversion == IPV6_VERSION && 14649 !tcp->tcp_fin_acked) 14650 tcp->tcp_ip_forward_progress = B_TRUE; 14651 tcp->tcp_fin_acked = B_TRUE; 14652 if (tcp->tcp_linger_tid != 0 && 14653 TCP_TIMER_CANCEL(tcp, 14654 tcp->tcp_linger_tid) >= 0) { 14655 tcp_stop_lingering(tcp); 14656 freemsg(mp); 14657 mp = NULL; 14658 } 14659 } else { 14660 /* 14661 * We should never get here because 14662 * we have already checked that the 14663 * number of bytes ack'ed should be 14664 * smaller than or equal to what we 14665 * have sent so far (it is the 14666 * acceptability check of the ACK). 14667 * We can only get here if the send 14668 * queue is corrupted. 14669 * 14670 * Terminate the connection and 14671 * panic the system. It is better 14672 * for us to panic instead of 14673 * continuing to avoid other disaster. 14674 */ 14675 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14676 tcp->tcp_rnxt, TH_RST|TH_ACK); 14677 panic("Memory corruption " 14678 "detected for connection %s.", 14679 tcp_display(tcp, NULL, 14680 DISP_ADDR_AND_PORT)); 14681 /*NOTREACHED*/ 14682 } 14683 goto pre_swnd_update; 14684 } 14685 ASSERT(mp2 != tcp->tcp_xmit_tail); 14686 } 14687 if (tcp->tcp_unsent) { 14688 flags |= TH_XMIT_NEEDED; 14689 } 14690 pre_swnd_update: 14691 tcp->tcp_xmit_head = mp1; 14692 swnd_update: 14693 /* 14694 * The following check is different from most other implementations. 14695 * For bi-directional transfer, when segments are dropped, the 14696 * "normal" check will not accept a window update in those 14697 * retransmitted segemnts. Failing to do that, TCP may send out 14698 * segments which are outside receiver's window. As TCP accepts 14699 * the ack in those retransmitted segments, if the window update in 14700 * the same segment is not accepted, TCP will incorrectly calculates 14701 * that it can send more segments. This can create a deadlock 14702 * with the receiver if its window becomes zero. 14703 */ 14704 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14705 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14706 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14707 /* 14708 * The criteria for update is: 14709 * 14710 * 1. the segment acknowledges some data. Or 14711 * 2. the segment is new, i.e. it has a higher seq num. Or 14712 * 3. the segment is not old and the advertised window is 14713 * larger than the previous advertised window. 14714 */ 14715 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14716 flags |= TH_XMIT_NEEDED; 14717 tcp->tcp_swnd = new_swnd; 14718 if (new_swnd > tcp->tcp_max_swnd) 14719 tcp->tcp_max_swnd = new_swnd; 14720 tcp->tcp_swl1 = seg_seq; 14721 tcp->tcp_swl2 = seg_ack; 14722 } 14723 est: 14724 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14725 14726 switch (tcp->tcp_state) { 14727 case TCPS_FIN_WAIT_1: 14728 if (tcp->tcp_fin_acked) { 14729 tcp->tcp_state = TCPS_FIN_WAIT_2; 14730 /* 14731 * We implement the non-standard BSD/SunOS 14732 * FIN_WAIT_2 flushing algorithm. 14733 * If there is no user attached to this 14734 * TCP endpoint, then this TCP struct 14735 * could hang around forever in FIN_WAIT_2 14736 * state if the peer forgets to send us 14737 * a FIN. To prevent this, we wait only 14738 * 2*MSL (a convenient time value) for 14739 * the FIN to arrive. If it doesn't show up, 14740 * we flush the TCP endpoint. This algorithm, 14741 * though a violation of RFC-793, has worked 14742 * for over 10 years in BSD systems. 14743 * Note: SunOS 4.x waits 675 seconds before 14744 * flushing the FIN_WAIT_2 connection. 14745 */ 14746 TCP_TIMER_RESTART(tcp, 14747 tcps->tcps_fin_wait_2_flush_interval); 14748 } 14749 break; 14750 case TCPS_FIN_WAIT_2: 14751 break; /* Shutdown hook? */ 14752 case TCPS_LAST_ACK: 14753 freemsg(mp); 14754 if (tcp->tcp_fin_acked) { 14755 (void) tcp_clean_death(tcp, 0, 19); 14756 return; 14757 } 14758 goto xmit_check; 14759 case TCPS_CLOSING: 14760 if (tcp->tcp_fin_acked) { 14761 tcp->tcp_state = TCPS_TIME_WAIT; 14762 /* 14763 * Unconditionally clear the exclusive binding 14764 * bit so this TIME-WAIT connection won't 14765 * interfere with new ones. 14766 */ 14767 tcp->tcp_exclbind = 0; 14768 if (!TCP_IS_DETACHED(tcp)) { 14769 TCP_TIMER_RESTART(tcp, 14770 tcps->tcps_time_wait_interval); 14771 } else { 14772 tcp_time_wait_append(tcp); 14773 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14774 } 14775 } 14776 /*FALLTHRU*/ 14777 case TCPS_CLOSE_WAIT: 14778 freemsg(mp); 14779 goto xmit_check; 14780 default: 14781 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14782 break; 14783 } 14784 } 14785 if (flags & TH_FIN) { 14786 /* Make sure we ack the fin */ 14787 flags |= TH_ACK_NEEDED; 14788 if (!tcp->tcp_fin_rcvd) { 14789 tcp->tcp_fin_rcvd = B_TRUE; 14790 tcp->tcp_rnxt++; 14791 tcph = tcp->tcp_tcph; 14792 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14793 14794 /* 14795 * Generate the ordrel_ind at the end unless we 14796 * are an eager guy. 14797 * In the eager case tcp_rsrv will do this when run 14798 * after tcp_accept is done. 14799 */ 14800 if (tcp->tcp_listener == NULL && 14801 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14802 flags |= TH_ORDREL_NEEDED; 14803 switch (tcp->tcp_state) { 14804 case TCPS_SYN_RCVD: 14805 case TCPS_ESTABLISHED: 14806 tcp->tcp_state = TCPS_CLOSE_WAIT; 14807 /* Keepalive? */ 14808 break; 14809 case TCPS_FIN_WAIT_1: 14810 if (!tcp->tcp_fin_acked) { 14811 tcp->tcp_state = TCPS_CLOSING; 14812 break; 14813 } 14814 /* FALLTHRU */ 14815 case TCPS_FIN_WAIT_2: 14816 tcp->tcp_state = TCPS_TIME_WAIT; 14817 /* 14818 * Unconditionally clear the exclusive binding 14819 * bit so this TIME-WAIT connection won't 14820 * interfere with new ones. 14821 */ 14822 tcp->tcp_exclbind = 0; 14823 if (!TCP_IS_DETACHED(tcp)) { 14824 TCP_TIMER_RESTART(tcp, 14825 tcps->tcps_time_wait_interval); 14826 } else { 14827 tcp_time_wait_append(tcp); 14828 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14829 } 14830 if (seg_len) { 14831 /* 14832 * implies data piggybacked on FIN. 14833 * break to handle data. 14834 */ 14835 break; 14836 } 14837 freemsg(mp); 14838 goto ack_check; 14839 } 14840 } 14841 } 14842 if (mp == NULL) 14843 goto xmit_check; 14844 if (seg_len == 0) { 14845 freemsg(mp); 14846 goto xmit_check; 14847 } 14848 if (mp->b_rptr == mp->b_wptr) { 14849 /* 14850 * The header has been consumed, so we remove the 14851 * zero-length mblk here. 14852 */ 14853 mp1 = mp; 14854 mp = mp->b_cont; 14855 freeb(mp1); 14856 } 14857 update_ack: 14858 tcph = tcp->tcp_tcph; 14859 tcp->tcp_rack_cnt++; 14860 { 14861 uint32_t cur_max; 14862 14863 cur_max = tcp->tcp_rack_cur_max; 14864 if (tcp->tcp_rack_cnt >= cur_max) { 14865 /* 14866 * We have more unacked data than we should - send 14867 * an ACK now. 14868 */ 14869 flags |= TH_ACK_NEEDED; 14870 cur_max++; 14871 if (cur_max > tcp->tcp_rack_abs_max) 14872 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14873 else 14874 tcp->tcp_rack_cur_max = cur_max; 14875 } else if (TCP_IS_DETACHED(tcp)) { 14876 /* We don't have an ACK timer for detached TCP. */ 14877 flags |= TH_ACK_NEEDED; 14878 } else if (seg_len < mss) { 14879 /* 14880 * If we get a segment that is less than an mss, and we 14881 * already have unacknowledged data, and the amount 14882 * unacknowledged is not a multiple of mss, then we 14883 * better generate an ACK now. Otherwise, this may be 14884 * the tail piece of a transaction, and we would rather 14885 * wait for the response. 14886 */ 14887 uint32_t udif; 14888 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14889 (uintptr_t)INT_MAX); 14890 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14891 if (udif && (udif % mss)) 14892 flags |= TH_ACK_NEEDED; 14893 else 14894 flags |= TH_ACK_TIMER_NEEDED; 14895 } else { 14896 /* Start delayed ack timer */ 14897 flags |= TH_ACK_TIMER_NEEDED; 14898 } 14899 } 14900 tcp->tcp_rnxt += seg_len; 14901 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14902 14903 if (mp == NULL) 14904 goto xmit_check; 14905 14906 /* Update SACK list */ 14907 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 14908 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 14909 &(tcp->tcp_num_sack_blk)); 14910 } 14911 14912 if (tcp->tcp_urp_mp) { 14913 tcp->tcp_urp_mp->b_cont = mp; 14914 mp = tcp->tcp_urp_mp; 14915 tcp->tcp_urp_mp = NULL; 14916 /* Ready for a new signal. */ 14917 tcp->tcp_urp_last_valid = B_FALSE; 14918 #ifdef DEBUG 14919 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14920 "tcp_rput: sending exdata_ind %s", 14921 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14922 #endif /* DEBUG */ 14923 } 14924 14925 /* 14926 * Check for ancillary data changes compared to last segment. 14927 */ 14928 if (tcp->tcp_ipv6_recvancillary != 0) { 14929 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 14930 ASSERT(mp != NULL); 14931 } 14932 14933 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 14934 /* 14935 * Side queue inbound data until the accept happens. 14936 * tcp_accept/tcp_rput drains this when the accept happens. 14937 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 14938 * T_EXDATA_IND) it is queued on b_next. 14939 * XXX Make urgent data use this. Requires: 14940 * Removing tcp_listener check for TH_URG 14941 * Making M_PCPROTO and MARK messages skip the eager case 14942 */ 14943 14944 if (tcp->tcp_kssl_pending) { 14945 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 14946 mblk_t *, mp); 14947 tcp_kssl_input(tcp, mp); 14948 } else { 14949 tcp_rcv_enqueue(tcp, mp, seg_len); 14950 } 14951 } else if (IPCL_IS_NONSTR(connp)) { 14952 /* 14953 * Non-STREAMS socket 14954 * 14955 * Note that no KSSL processing is done here, because 14956 * KSSL is not supported for non-STREAMS sockets. 14957 */ 14958 boolean_t push = flags & (TH_PUSH|TH_FIN); 14959 int error; 14960 14961 if ((*connp->conn_upcalls->su_recv)( 14962 connp->conn_upper_handle, 14963 mp, seg_len, 0, &error, &push) <= 0) { 14964 /* 14965 * We should never be in middle of a 14966 * fallback, the squeue guarantees that. 14967 */ 14968 ASSERT(error != EOPNOTSUPP); 14969 if (error == ENOSPC) 14970 tcp->tcp_rwnd -= seg_len; 14971 } else if (push) { 14972 /* PUSH bit set and sockfs is not flow controlled */ 14973 flags |= tcp_rwnd_reopen(tcp); 14974 } 14975 } else { 14976 /* STREAMS socket */ 14977 if (mp->b_datap->db_type != M_DATA || 14978 (flags & TH_MARKNEXT_NEEDED)) { 14979 if (tcp->tcp_rcv_list != NULL) { 14980 flags |= tcp_rcv_drain(tcp); 14981 } 14982 ASSERT(tcp->tcp_rcv_list == NULL || 14983 tcp->tcp_fused_sigurg); 14984 14985 if (flags & TH_MARKNEXT_NEEDED) { 14986 #ifdef DEBUG 14987 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14988 "tcp_rput: sending MSGMARKNEXT %s", 14989 tcp_display(tcp, NULL, 14990 DISP_PORT_ONLY)); 14991 #endif /* DEBUG */ 14992 mp->b_flag |= MSGMARKNEXT; 14993 flags &= ~TH_MARKNEXT_NEEDED; 14994 } 14995 14996 /* Does this need SSL processing first? */ 14997 if ((tcp->tcp_kssl_ctx != NULL) && 14998 (DB_TYPE(mp) == M_DATA)) { 14999 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 15000 mblk_t *, mp); 15001 tcp_kssl_input(tcp, mp); 15002 } else { 15003 putnext(tcp->tcp_rq, mp); 15004 if (!canputnext(tcp->tcp_rq)) 15005 tcp->tcp_rwnd -= seg_len; 15006 } 15007 } else if ((tcp->tcp_kssl_ctx != NULL) && 15008 (DB_TYPE(mp) == M_DATA)) { 15009 /* Does this need SSL processing first? */ 15010 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp); 15011 tcp_kssl_input(tcp, mp); 15012 } else if ((flags & (TH_PUSH|TH_FIN)) || 15013 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_recv_hiwater >> 3) { 15014 if (tcp->tcp_rcv_list != NULL) { 15015 /* 15016 * Enqueue the new segment first and then 15017 * call tcp_rcv_drain() to send all data 15018 * up. The other way to do this is to 15019 * send all queued data up and then call 15020 * putnext() to send the new segment up. 15021 * This way can remove the else part later 15022 * on. 15023 * 15024 * We don't do this to avoid one more call to 15025 * canputnext() as tcp_rcv_drain() needs to 15026 * call canputnext(). 15027 */ 15028 tcp_rcv_enqueue(tcp, mp, seg_len); 15029 flags |= tcp_rcv_drain(tcp); 15030 } else { 15031 putnext(tcp->tcp_rq, mp); 15032 if (!canputnext(tcp->tcp_rq)) 15033 tcp->tcp_rwnd -= seg_len; 15034 } 15035 } else { 15036 /* 15037 * Enqueue all packets when processing an mblk 15038 * from the co queue and also enqueue normal packets. 15039 */ 15040 tcp_rcv_enqueue(tcp, mp, seg_len); 15041 } 15042 /* 15043 * Make sure the timer is running if we have data waiting 15044 * for a push bit. This provides resiliency against 15045 * implementations that do not correctly generate push bits. 15046 */ 15047 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 15048 /* 15049 * The connection may be closed at this point, so don't 15050 * do anything for a detached tcp. 15051 */ 15052 if (!TCP_IS_DETACHED(tcp)) 15053 tcp->tcp_push_tid = TCP_TIMER(tcp, 15054 tcp_push_timer, 15055 MSEC_TO_TICK( 15056 tcps->tcps_push_timer_interval)); 15057 } 15058 } 15059 15060 xmit_check: 15061 /* Is there anything left to do? */ 15062 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15063 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 15064 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 15065 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15066 goto done; 15067 15068 /* Any transmit work to do and a non-zero window? */ 15069 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 15070 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 15071 if (flags & TH_REXMIT_NEEDED) { 15072 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 15073 15074 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 15075 if (snd_size > mss) 15076 snd_size = mss; 15077 if (snd_size > tcp->tcp_swnd) 15078 snd_size = tcp->tcp_swnd; 15079 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 15080 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 15081 B_TRUE); 15082 15083 if (mp1 != NULL) { 15084 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15085 tcp->tcp_csuna = tcp->tcp_snxt; 15086 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 15087 UPDATE_MIB(&tcps->tcps_mib, 15088 tcpRetransBytes, snd_size); 15089 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15090 } 15091 } 15092 if (flags & TH_NEED_SACK_REXMIT) { 15093 tcp_sack_rxmit(tcp, &flags); 15094 } 15095 /* 15096 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 15097 * out new segment. Note that tcp_rexmit should not be 15098 * set, otherwise TH_LIMIT_XMIT should not be set. 15099 */ 15100 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 15101 if (!tcp->tcp_rexmit) { 15102 tcp_wput_data(tcp, NULL, B_FALSE); 15103 } else { 15104 tcp_ss_rexmit(tcp); 15105 } 15106 } 15107 /* 15108 * Adjust tcp_cwnd back to normal value after sending 15109 * new data segments. 15110 */ 15111 if (flags & TH_LIMIT_XMIT) { 15112 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 15113 /* 15114 * This will restart the timer. Restarting the 15115 * timer is used to avoid a timeout before the 15116 * limited transmitted segment's ACK gets back. 15117 */ 15118 if (tcp->tcp_xmit_head != NULL) 15119 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15120 } 15121 15122 /* Anything more to do? */ 15123 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 15124 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15125 goto done; 15126 } 15127 ack_check: 15128 if (flags & TH_SEND_URP_MARK) { 15129 ASSERT(tcp->tcp_urp_mark_mp); 15130 ASSERT(!IPCL_IS_NONSTR(connp)); 15131 /* 15132 * Send up any queued data and then send the mark message 15133 */ 15134 if (tcp->tcp_rcv_list != NULL) { 15135 flags |= tcp_rcv_drain(tcp); 15136 15137 } 15138 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15139 mp1 = tcp->tcp_urp_mark_mp; 15140 tcp->tcp_urp_mark_mp = NULL; 15141 putnext(tcp->tcp_rq, mp1); 15142 #ifdef DEBUG 15143 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15144 "tcp_rput: sending zero-length %s %s", 15145 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 15146 "MSGNOTMARKNEXT"), 15147 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15148 #endif /* DEBUG */ 15149 flags &= ~TH_SEND_URP_MARK; 15150 } 15151 if (flags & TH_ACK_NEEDED) { 15152 /* 15153 * Time to send an ack for some reason. 15154 */ 15155 mp1 = tcp_ack_mp(tcp); 15156 15157 if (mp1 != NULL) { 15158 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15159 BUMP_LOCAL(tcp->tcp_obsegs); 15160 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 15161 } 15162 if (tcp->tcp_ack_tid != 0) { 15163 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 15164 tcp->tcp_ack_tid = 0; 15165 } 15166 } 15167 if (flags & TH_ACK_TIMER_NEEDED) { 15168 /* 15169 * Arrange for deferred ACK or push wait timeout. 15170 * Start timer if it is not already running. 15171 */ 15172 if (tcp->tcp_ack_tid == 0) { 15173 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15174 MSEC_TO_TICK(tcp->tcp_localnet ? 15175 (clock_t)tcps->tcps_local_dack_interval : 15176 (clock_t)tcps->tcps_deferred_ack_interval)); 15177 } 15178 } 15179 if (flags & TH_ORDREL_NEEDED) { 15180 /* 15181 * Send up the ordrel_ind unless we are an eager guy. 15182 * In the eager case tcp_rsrv will do this when run 15183 * after tcp_accept is done. 15184 */ 15185 ASSERT(tcp->tcp_listener == NULL); 15186 15187 if (IPCL_IS_NONSTR(connp)) { 15188 ASSERT(tcp->tcp_ordrel_mp == NULL); 15189 tcp->tcp_ordrel_done = B_TRUE; 15190 (*connp->conn_upcalls->su_opctl) 15191 (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); 15192 goto done; 15193 } 15194 15195 if (tcp->tcp_rcv_list != NULL) { 15196 /* 15197 * Push any mblk(s) enqueued from co processing. 15198 */ 15199 flags |= tcp_rcv_drain(tcp); 15200 } 15201 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15202 15203 mp1 = tcp->tcp_ordrel_mp; 15204 tcp->tcp_ordrel_mp = NULL; 15205 tcp->tcp_ordrel_done = B_TRUE; 15206 putnext(tcp->tcp_rq, mp1); 15207 } 15208 done: 15209 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15210 } 15211 15212 /* 15213 * This routine adjusts next-to-send sequence number variables, in the 15214 * case where the reciever has shrunk it's window. 15215 */ 15216 static void 15217 tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt) 15218 { 15219 mblk_t *xmit_tail; 15220 int32_t offset; 15221 15222 tcp->tcp_snxt = snxt; 15223 15224 /* Get the mblk, and the offset in it, as per the shrunk window */ 15225 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 15226 ASSERT(xmit_tail != NULL); 15227 tcp->tcp_xmit_tail = xmit_tail; 15228 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - 15229 xmit_tail->b_rptr - offset; 15230 } 15231 15232 /* 15233 * This function does PAWS protection check. Returns B_TRUE if the 15234 * segment passes the PAWS test, else returns B_FALSE. 15235 */ 15236 boolean_t 15237 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15238 { 15239 uint8_t flags; 15240 int options; 15241 uint8_t *up; 15242 15243 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15244 /* 15245 * If timestamp option is aligned nicely, get values inline, 15246 * otherwise call general routine to parse. Only do that 15247 * if timestamp is the only option. 15248 */ 15249 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15250 TCPOPT_REAL_TS_LEN && 15251 OK_32PTR((up = ((uint8_t *)tcph) + 15252 TCP_MIN_HEADER_LENGTH)) && 15253 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15254 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15255 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15256 15257 options = TCP_OPT_TSTAMP_PRESENT; 15258 } else { 15259 if (tcp->tcp_snd_sack_ok) { 15260 tcpoptp->tcp = tcp; 15261 } else { 15262 tcpoptp->tcp = NULL; 15263 } 15264 options = tcp_parse_options(tcph, tcpoptp); 15265 } 15266 15267 if (options & TCP_OPT_TSTAMP_PRESENT) { 15268 /* 15269 * Do PAWS per RFC 1323 section 4.2. Accept RST 15270 * regardless of the timestamp, page 18 RFC 1323.bis. 15271 */ 15272 if ((flags & TH_RST) == 0 && 15273 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15274 tcp->tcp_ts_recent)) { 15275 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15276 PAWS_TIMEOUT)) { 15277 /* This segment is not acceptable. */ 15278 return (B_FALSE); 15279 } else { 15280 /* 15281 * Connection has been idle for 15282 * too long. Reset the timestamp 15283 * and assume the segment is valid. 15284 */ 15285 tcp->tcp_ts_recent = 15286 tcpoptp->tcp_opt_ts_val; 15287 } 15288 } 15289 } else { 15290 /* 15291 * If we don't get a timestamp on every packet, we 15292 * figure we can't really trust 'em, so we stop sending 15293 * and parsing them. 15294 */ 15295 tcp->tcp_snd_ts_ok = B_FALSE; 15296 15297 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15298 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15299 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15300 /* 15301 * Adjust the tcp_mss accordingly. We also need to 15302 * adjust tcp_cwnd here in accordance with the new mss. 15303 * But we avoid doing a slow start here so as to not 15304 * to lose on the transfer rate built up so far. 15305 */ 15306 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE); 15307 if (tcp->tcp_snd_sack_ok) { 15308 ASSERT(tcp->tcp_sack_info != NULL); 15309 tcp->tcp_max_sack_blk = 4; 15310 } 15311 } 15312 return (B_TRUE); 15313 } 15314 15315 /* 15316 * Attach ancillary data to a received TCP segments for the 15317 * ancillary pieces requested by the application that are 15318 * different than they were in the previous data segment. 15319 * 15320 * Save the "current" values once memory allocation is ok so that 15321 * when memory allocation fails we can just wait for the next data segment. 15322 */ 15323 static mblk_t * 15324 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15325 { 15326 struct T_optdata_ind *todi; 15327 int optlen; 15328 uchar_t *optptr; 15329 struct T_opthdr *toh; 15330 uint_t addflag; /* Which pieces to add */ 15331 mblk_t *mp1; 15332 15333 optlen = 0; 15334 addflag = 0; 15335 /* If app asked for pktinfo and the index has changed ... */ 15336 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15337 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15338 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15339 optlen += sizeof (struct T_opthdr) + 15340 sizeof (struct in6_pktinfo); 15341 addflag |= TCP_IPV6_RECVPKTINFO; 15342 } 15343 /* If app asked for hoplimit and it has changed ... */ 15344 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15345 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15346 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15347 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15348 addflag |= TCP_IPV6_RECVHOPLIMIT; 15349 } 15350 /* If app asked for tclass and it has changed ... */ 15351 if ((ipp->ipp_fields & IPPF_TCLASS) && 15352 ipp->ipp_tclass != tcp->tcp_recvtclass && 15353 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15354 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15355 addflag |= TCP_IPV6_RECVTCLASS; 15356 } 15357 /* 15358 * If app asked for hopbyhop headers and it has changed ... 15359 * For security labels, note that (1) security labels can't change on 15360 * a connected socket at all, (2) we're connected to at most one peer, 15361 * (3) if anything changes, then it must be some other extra option. 15362 */ 15363 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15364 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15365 (ipp->ipp_fields & IPPF_HOPOPTS), 15366 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15367 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15368 tcp->tcp_label_len; 15369 addflag |= TCP_IPV6_RECVHOPOPTS; 15370 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15371 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15372 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15373 return (mp); 15374 } 15375 /* If app asked for dst headers before routing headers ... */ 15376 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15377 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15378 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15379 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15380 optlen += sizeof (struct T_opthdr) + 15381 ipp->ipp_rtdstoptslen; 15382 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15383 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15384 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15385 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15386 return (mp); 15387 } 15388 /* If app asked for routing headers and it has changed ... */ 15389 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15390 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15391 (ipp->ipp_fields & IPPF_RTHDR), 15392 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15393 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15394 addflag |= TCP_IPV6_RECVRTHDR; 15395 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15396 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15397 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15398 return (mp); 15399 } 15400 /* If app asked for dest headers and it has changed ... */ 15401 if ((tcp->tcp_ipv6_recvancillary & 15402 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15403 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15404 (ipp->ipp_fields & IPPF_DSTOPTS), 15405 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15406 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15407 addflag |= TCP_IPV6_RECVDSTOPTS; 15408 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15409 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15410 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15411 return (mp); 15412 } 15413 15414 if (optlen == 0) { 15415 /* Nothing to add */ 15416 return (mp); 15417 } 15418 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15419 if (mp1 == NULL) { 15420 /* 15421 * Defer sending ancillary data until the next TCP segment 15422 * arrives. 15423 */ 15424 return (mp); 15425 } 15426 mp1->b_cont = mp; 15427 mp = mp1; 15428 mp->b_wptr += sizeof (*todi) + optlen; 15429 mp->b_datap->db_type = M_PROTO; 15430 todi = (struct T_optdata_ind *)mp->b_rptr; 15431 todi->PRIM_type = T_OPTDATA_IND; 15432 todi->DATA_flag = 1; /* MORE data */ 15433 todi->OPT_length = optlen; 15434 todi->OPT_offset = sizeof (*todi); 15435 optptr = (uchar_t *)&todi[1]; 15436 /* 15437 * If app asked for pktinfo and the index has changed ... 15438 * Note that the local address never changes for the connection. 15439 */ 15440 if (addflag & TCP_IPV6_RECVPKTINFO) { 15441 struct in6_pktinfo *pkti; 15442 15443 toh = (struct T_opthdr *)optptr; 15444 toh->level = IPPROTO_IPV6; 15445 toh->name = IPV6_PKTINFO; 15446 toh->len = sizeof (*toh) + sizeof (*pkti); 15447 toh->status = 0; 15448 optptr += sizeof (*toh); 15449 pkti = (struct in6_pktinfo *)optptr; 15450 if (tcp->tcp_ipversion == IPV6_VERSION) 15451 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15452 else 15453 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15454 &pkti->ipi6_addr); 15455 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15456 optptr += sizeof (*pkti); 15457 ASSERT(OK_32PTR(optptr)); 15458 /* Save as "last" value */ 15459 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15460 } 15461 /* If app asked for hoplimit and it has changed ... */ 15462 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15463 toh = (struct T_opthdr *)optptr; 15464 toh->level = IPPROTO_IPV6; 15465 toh->name = IPV6_HOPLIMIT; 15466 toh->len = sizeof (*toh) + sizeof (uint_t); 15467 toh->status = 0; 15468 optptr += sizeof (*toh); 15469 *(uint_t *)optptr = ipp->ipp_hoplimit; 15470 optptr += sizeof (uint_t); 15471 ASSERT(OK_32PTR(optptr)); 15472 /* Save as "last" value */ 15473 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15474 } 15475 /* If app asked for tclass and it has changed ... */ 15476 if (addflag & TCP_IPV6_RECVTCLASS) { 15477 toh = (struct T_opthdr *)optptr; 15478 toh->level = IPPROTO_IPV6; 15479 toh->name = IPV6_TCLASS; 15480 toh->len = sizeof (*toh) + sizeof (uint_t); 15481 toh->status = 0; 15482 optptr += sizeof (*toh); 15483 *(uint_t *)optptr = ipp->ipp_tclass; 15484 optptr += sizeof (uint_t); 15485 ASSERT(OK_32PTR(optptr)); 15486 /* Save as "last" value */ 15487 tcp->tcp_recvtclass = ipp->ipp_tclass; 15488 } 15489 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15490 toh = (struct T_opthdr *)optptr; 15491 toh->level = IPPROTO_IPV6; 15492 toh->name = IPV6_HOPOPTS; 15493 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15494 tcp->tcp_label_len; 15495 toh->status = 0; 15496 optptr += sizeof (*toh); 15497 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15498 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15499 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15500 ASSERT(OK_32PTR(optptr)); 15501 /* Save as last value */ 15502 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15503 (ipp->ipp_fields & IPPF_HOPOPTS), 15504 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15505 } 15506 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15507 toh = (struct T_opthdr *)optptr; 15508 toh->level = IPPROTO_IPV6; 15509 toh->name = IPV6_RTHDRDSTOPTS; 15510 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15511 toh->status = 0; 15512 optptr += sizeof (*toh); 15513 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15514 optptr += ipp->ipp_rtdstoptslen; 15515 ASSERT(OK_32PTR(optptr)); 15516 /* Save as last value */ 15517 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15518 &tcp->tcp_rtdstoptslen, 15519 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15520 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15521 } 15522 if (addflag & TCP_IPV6_RECVRTHDR) { 15523 toh = (struct T_opthdr *)optptr; 15524 toh->level = IPPROTO_IPV6; 15525 toh->name = IPV6_RTHDR; 15526 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15527 toh->status = 0; 15528 optptr += sizeof (*toh); 15529 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15530 optptr += ipp->ipp_rthdrlen; 15531 ASSERT(OK_32PTR(optptr)); 15532 /* Save as last value */ 15533 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15534 (ipp->ipp_fields & IPPF_RTHDR), 15535 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15536 } 15537 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15538 toh = (struct T_opthdr *)optptr; 15539 toh->level = IPPROTO_IPV6; 15540 toh->name = IPV6_DSTOPTS; 15541 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15542 toh->status = 0; 15543 optptr += sizeof (*toh); 15544 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15545 optptr += ipp->ipp_dstoptslen; 15546 ASSERT(OK_32PTR(optptr)); 15547 /* Save as last value */ 15548 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15549 (ipp->ipp_fields & IPPF_DSTOPTS), 15550 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15551 } 15552 ASSERT(optptr == mp->b_wptr); 15553 return (mp); 15554 } 15555 15556 /* 15557 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15558 * messages. 15559 */ 15560 void 15561 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15562 { 15563 uchar_t *rptr = mp->b_rptr; 15564 queue_t *q = tcp->tcp_rq; 15565 struct T_error_ack *tea; 15566 15567 switch (mp->b_datap->db_type) { 15568 case M_PROTO: 15569 case M_PCPROTO: 15570 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15571 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15572 break; 15573 tea = (struct T_error_ack *)rptr; 15574 ASSERT(tea->PRIM_type != T_BIND_ACK); 15575 ASSERT(tea->ERROR_prim != O_T_BIND_REQ && 15576 tea->ERROR_prim != T_BIND_REQ); 15577 switch (tea->PRIM_type) { 15578 case T_ERROR_ACK: 15579 if (tcp->tcp_debug) { 15580 (void) strlog(TCP_MOD_ID, 0, 1, 15581 SL_TRACE|SL_ERROR, 15582 "tcp_rput_other: case T_ERROR_ACK, " 15583 "ERROR_prim == %d", 15584 tea->ERROR_prim); 15585 } 15586 switch (tea->ERROR_prim) { 15587 case T_SVR4_OPTMGMT_REQ: 15588 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15589 /* T_OPTMGMT_REQ generated by TCP */ 15590 printf("T_SVR4_OPTMGMT_REQ failed " 15591 "%d/%d - dropped (cnt %d)\n", 15592 tea->TLI_error, tea->UNIX_error, 15593 tcp->tcp_drop_opt_ack_cnt); 15594 freemsg(mp); 15595 tcp->tcp_drop_opt_ack_cnt--; 15596 return; 15597 } 15598 break; 15599 } 15600 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15601 tcp->tcp_drop_opt_ack_cnt > 0) { 15602 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15603 "- dropped (cnt %d)\n", 15604 tea->TLI_error, tea->UNIX_error, 15605 tcp->tcp_drop_opt_ack_cnt); 15606 freemsg(mp); 15607 tcp->tcp_drop_opt_ack_cnt--; 15608 return; 15609 } 15610 break; 15611 case T_OPTMGMT_ACK: 15612 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15613 /* T_OPTMGMT_REQ generated by TCP */ 15614 freemsg(mp); 15615 tcp->tcp_drop_opt_ack_cnt--; 15616 return; 15617 } 15618 break; 15619 default: 15620 ASSERT(tea->ERROR_prim != T_UNBIND_REQ); 15621 break; 15622 } 15623 break; 15624 case M_FLUSH: 15625 if (*rptr & FLUSHR) 15626 flushq(q, FLUSHDATA); 15627 break; 15628 default: 15629 /* M_CTL will be directly sent to tcp_icmp_error() */ 15630 ASSERT(DB_TYPE(mp) != M_CTL); 15631 break; 15632 } 15633 /* 15634 * Make sure we set this bit before sending the ACK for 15635 * bind. Otherwise accept could possibly run and free 15636 * this tcp struct. 15637 */ 15638 ASSERT(q != NULL); 15639 putnext(q, mp); 15640 } 15641 15642 /* ARGSUSED */ 15643 static void 15644 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15645 { 15646 conn_t *connp = (conn_t *)arg; 15647 tcp_t *tcp = connp->conn_tcp; 15648 queue_t *q = tcp->tcp_rq; 15649 tcp_stack_t *tcps = tcp->tcp_tcps; 15650 15651 ASSERT(!IPCL_IS_NONSTR(connp)); 15652 mutex_enter(&tcp->tcp_rsrv_mp_lock); 15653 tcp->tcp_rsrv_mp = mp; 15654 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15655 15656 TCP_STAT(tcps, tcp_rsrv_calls); 15657 15658 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15659 return; 15660 } 15661 15662 if (tcp->tcp_fused) { 15663 tcp_fuse_backenable(tcp); 15664 return; 15665 } 15666 15667 if (canputnext(q)) { 15668 /* Not flow-controlled, open rwnd */ 15669 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 15670 15671 /* 15672 * Send back a window update immediately if TCP is above 15673 * ESTABLISHED state and the increase of the rcv window 15674 * that the other side knows is at least 1 MSS after flow 15675 * control is lifted. 15676 */ 15677 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15678 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 15679 tcp_xmit_ctl(NULL, tcp, 15680 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15681 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15682 } 15683 } 15684 } 15685 15686 /* 15687 * The read side service routine is called mostly when we get back-enabled as a 15688 * result of flow control relief. Since we don't actually queue anything in 15689 * TCP, we have no data to send out of here. What we do is clear the receive 15690 * window, and send out a window update. 15691 */ 15692 static void 15693 tcp_rsrv(queue_t *q) 15694 { 15695 conn_t *connp = Q_TO_CONN(q); 15696 tcp_t *tcp = connp->conn_tcp; 15697 mblk_t *mp; 15698 tcp_stack_t *tcps = tcp->tcp_tcps; 15699 15700 /* No code does a putq on the read side */ 15701 ASSERT(q->q_first == NULL); 15702 15703 /* Nothing to do for the default queue */ 15704 if (q == tcps->tcps_g_q) { 15705 return; 15706 } 15707 15708 /* 15709 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 15710 * been run. So just return. 15711 */ 15712 mutex_enter(&tcp->tcp_rsrv_mp_lock); 15713 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 15714 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15715 return; 15716 } 15717 tcp->tcp_rsrv_mp = NULL; 15718 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15719 15720 CONN_INC_REF(connp); 15721 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 15722 SQ_PROCESS, SQTAG_TCP_RSRV); 15723 } 15724 15725 /* 15726 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 15727 * We do not allow the receive window to shrink. After setting rwnd, 15728 * set the flow control hiwat of the stream. 15729 * 15730 * This function is called in 2 cases: 15731 * 15732 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 15733 * connection (passive open) and in tcp_rput_data() for active connect. 15734 * This is called after tcp_mss_set() when the desired MSS value is known. 15735 * This makes sure that our window size is a mutiple of the other side's 15736 * MSS. 15737 * 2) Handling SO_RCVBUF option. 15738 * 15739 * It is ASSUMED that the requested size is a multiple of the current MSS. 15740 * 15741 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 15742 * user requests so. 15743 */ 15744 int 15745 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 15746 { 15747 uint32_t mss = tcp->tcp_mss; 15748 uint32_t old_max_rwnd; 15749 uint32_t max_transmittable_rwnd; 15750 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 15751 tcp_stack_t *tcps = tcp->tcp_tcps; 15752 15753 /* 15754 * Insist on a receive window that is at least 15755 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 15756 * funny TCP interactions of Nagle algorithm, SWS avoidance 15757 * and delayed acknowledgement. 15758 */ 15759 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 15760 15761 if (tcp->tcp_fused) { 15762 size_t sth_hiwat; 15763 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15764 15765 ASSERT(peer_tcp != NULL); 15766 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 15767 if (!tcp_detached) { 15768 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, 15769 sth_hiwat); 15770 tcp_set_recv_threshold(tcp, sth_hiwat >> 3); 15771 } 15772 15773 /* 15774 * In the fusion case, the maxpsz stream head value of 15775 * our peer is set according to its send buffer size 15776 * and our receive buffer size; since the latter may 15777 * have changed we need to update the peer's maxpsz. 15778 */ 15779 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 15780 return (sth_hiwat); 15781 } 15782 15783 if (tcp_detached) { 15784 old_max_rwnd = tcp->tcp_rwnd; 15785 } else { 15786 old_max_rwnd = tcp->tcp_recv_hiwater; 15787 } 15788 15789 15790 /* 15791 * If window size info has already been exchanged, TCP should not 15792 * shrink the window. Shrinking window is doable if done carefully. 15793 * We may add that support later. But so far there is not a real 15794 * need to do that. 15795 */ 15796 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 15797 /* MSS may have changed, do a round up again. */ 15798 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 15799 } 15800 15801 /* 15802 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 15803 * can be applied even before the window scale option is decided. 15804 */ 15805 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 15806 if (rwnd > max_transmittable_rwnd) { 15807 rwnd = max_transmittable_rwnd - 15808 (max_transmittable_rwnd % mss); 15809 if (rwnd < mss) 15810 rwnd = max_transmittable_rwnd; 15811 /* 15812 * If we're over the limit we may have to back down tcp_rwnd. 15813 * The increment below won't work for us. So we set all three 15814 * here and the increment below will have no effect. 15815 */ 15816 tcp->tcp_rwnd = old_max_rwnd = rwnd; 15817 } 15818 if (tcp->tcp_localnet) { 15819 tcp->tcp_rack_abs_max = 15820 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 15821 } else { 15822 /* 15823 * For a remote host on a different subnet (through a router), 15824 * we ack every other packet to be conforming to RFC1122. 15825 * tcp_deferred_acks_max is default to 2. 15826 */ 15827 tcp->tcp_rack_abs_max = 15828 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 15829 } 15830 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 15831 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 15832 else 15833 tcp->tcp_rack_cur_max = 0; 15834 /* 15835 * Increment the current rwnd by the amount the maximum grew (we 15836 * can not overwrite it since we might be in the middle of a 15837 * connection.) 15838 */ 15839 tcp->tcp_rwnd += rwnd - old_max_rwnd; 15840 tcp->tcp_recv_hiwater = rwnd; 15841 15842 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 15843 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 15844 tcp->tcp_cwnd_max = rwnd; 15845 15846 if (tcp_detached) 15847 return (rwnd); 15848 15849 tcp_set_recv_threshold(tcp, rwnd >> 3); 15850 15851 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, rwnd); 15852 return (rwnd); 15853 } 15854 15855 /* 15856 * Return SNMP stuff in buffer in mpdata. 15857 */ 15858 mblk_t * 15859 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 15860 { 15861 mblk_t *mpdata; 15862 mblk_t *mp_conn_ctl = NULL; 15863 mblk_t *mp_conn_tail; 15864 mblk_t *mp_attr_ctl = NULL; 15865 mblk_t *mp_attr_tail; 15866 mblk_t *mp6_conn_ctl = NULL; 15867 mblk_t *mp6_conn_tail; 15868 mblk_t *mp6_attr_ctl = NULL; 15869 mblk_t *mp6_attr_tail; 15870 struct opthdr *optp; 15871 mib2_tcpConnEntry_t tce; 15872 mib2_tcp6ConnEntry_t tce6; 15873 mib2_transportMLPEntry_t mlp; 15874 connf_t *connfp; 15875 int i; 15876 boolean_t ispriv; 15877 zoneid_t zoneid; 15878 int v4_conn_idx; 15879 int v6_conn_idx; 15880 conn_t *connp = Q_TO_CONN(q); 15881 tcp_stack_t *tcps; 15882 ip_stack_t *ipst; 15883 mblk_t *mp2ctl; 15884 15885 /* 15886 * make a copy of the original message 15887 */ 15888 mp2ctl = copymsg(mpctl); 15889 15890 if (mpctl == NULL || 15891 (mpdata = mpctl->b_cont) == NULL || 15892 (mp_conn_ctl = copymsg(mpctl)) == NULL || 15893 (mp_attr_ctl = copymsg(mpctl)) == NULL || 15894 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 15895 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 15896 freemsg(mp_conn_ctl); 15897 freemsg(mp_attr_ctl); 15898 freemsg(mp6_conn_ctl); 15899 freemsg(mp6_attr_ctl); 15900 freemsg(mpctl); 15901 freemsg(mp2ctl); 15902 return (NULL); 15903 } 15904 15905 ipst = connp->conn_netstack->netstack_ip; 15906 tcps = connp->conn_netstack->netstack_tcp; 15907 15908 /* build table of connections -- need count in fixed part */ 15909 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 15910 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 15911 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 15912 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 15913 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 15914 15915 ispriv = 15916 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 15917 zoneid = Q_TO_CONN(q)->conn_zoneid; 15918 15919 v4_conn_idx = v6_conn_idx = 0; 15920 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 15921 15922 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 15923 ipst = tcps->tcps_netstack->netstack_ip; 15924 15925 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 15926 15927 connp = NULL; 15928 15929 while ((connp = 15930 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 15931 tcp_t *tcp; 15932 boolean_t needattr; 15933 15934 if (connp->conn_zoneid != zoneid) 15935 continue; /* not in this zone */ 15936 15937 tcp = connp->conn_tcp; 15938 UPDATE_MIB(&tcps->tcps_mib, 15939 tcpHCInSegs, tcp->tcp_ibsegs); 15940 tcp->tcp_ibsegs = 0; 15941 UPDATE_MIB(&tcps->tcps_mib, 15942 tcpHCOutSegs, tcp->tcp_obsegs); 15943 tcp->tcp_obsegs = 0; 15944 15945 tce6.tcp6ConnState = tce.tcpConnState = 15946 tcp_snmp_state(tcp); 15947 if (tce.tcpConnState == MIB2_TCP_established || 15948 tce.tcpConnState == MIB2_TCP_closeWait) 15949 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 15950 15951 needattr = B_FALSE; 15952 bzero(&mlp, sizeof (mlp)); 15953 if (connp->conn_mlp_type != mlptSingle) { 15954 if (connp->conn_mlp_type == mlptShared || 15955 connp->conn_mlp_type == mlptBoth) 15956 mlp.tme_flags |= MIB2_TMEF_SHARED; 15957 if (connp->conn_mlp_type == mlptPrivate || 15958 connp->conn_mlp_type == mlptBoth) 15959 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 15960 needattr = B_TRUE; 15961 } 15962 if (connp->conn_anon_mlp) { 15963 mlp.tme_flags |= MIB2_TMEF_ANONMLP; 15964 needattr = B_TRUE; 15965 } 15966 if (connp->conn_mac_exempt) { 15967 mlp.tme_flags |= MIB2_TMEF_MACEXEMPT; 15968 needattr = B_TRUE; 15969 } 15970 if (connp->conn_fully_bound && 15971 connp->conn_effective_cred != NULL) { 15972 ts_label_t *tsl; 15973 15974 tsl = crgetlabel(connp->conn_effective_cred); 15975 mlp.tme_flags |= MIB2_TMEF_IS_LABELED; 15976 mlp.tme_doi = label2doi(tsl); 15977 mlp.tme_label = *label2bslabel(tsl); 15978 needattr = B_TRUE; 15979 } 15980 15981 /* Create a message to report on IPv6 entries */ 15982 if (tcp->tcp_ipversion == IPV6_VERSION) { 15983 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 15984 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 15985 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 15986 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 15987 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 15988 /* Don't want just anybody seeing these... */ 15989 if (ispriv) { 15990 tce6.tcp6ConnEntryInfo.ce_snxt = 15991 tcp->tcp_snxt; 15992 tce6.tcp6ConnEntryInfo.ce_suna = 15993 tcp->tcp_suna; 15994 tce6.tcp6ConnEntryInfo.ce_rnxt = 15995 tcp->tcp_rnxt; 15996 tce6.tcp6ConnEntryInfo.ce_rack = 15997 tcp->tcp_rack; 15998 } else { 15999 /* 16000 * Netstat, unfortunately, uses this to 16001 * get send/receive queue sizes. How to fix? 16002 * Why not compute the difference only? 16003 */ 16004 tce6.tcp6ConnEntryInfo.ce_snxt = 16005 tcp->tcp_snxt - tcp->tcp_suna; 16006 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16007 tce6.tcp6ConnEntryInfo.ce_rnxt = 16008 tcp->tcp_rnxt - tcp->tcp_rack; 16009 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16010 } 16011 16012 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16013 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16014 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16015 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16016 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16017 16018 tce6.tcp6ConnCreationProcess = 16019 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16020 tcp->tcp_cpid; 16021 tce6.tcp6ConnCreationTime = tcp->tcp_open_time; 16022 16023 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 16024 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 16025 16026 mlp.tme_connidx = v6_conn_idx++; 16027 if (needattr) 16028 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 16029 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 16030 } 16031 /* 16032 * Create an IPv4 table entry for IPv4 entries and also 16033 * for IPv6 entries which are bound to in6addr_any 16034 * but don't have IPV6_V6ONLY set. 16035 * (i.e. anything an IPv4 peer could connect to) 16036 */ 16037 if (tcp->tcp_ipversion == IPV4_VERSION || 16038 (tcp->tcp_state <= TCPS_LISTEN && 16039 !tcp->tcp_connp->conn_ipv6_v6only && 16040 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16041 if (tcp->tcp_ipversion == IPV6_VERSION) { 16042 tce.tcpConnRemAddress = INADDR_ANY; 16043 tce.tcpConnLocalAddress = INADDR_ANY; 16044 } else { 16045 tce.tcpConnRemAddress = 16046 tcp->tcp_remote; 16047 tce.tcpConnLocalAddress = 16048 tcp->tcp_ip_src; 16049 } 16050 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16051 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16052 /* Don't want just anybody seeing these... */ 16053 if (ispriv) { 16054 tce.tcpConnEntryInfo.ce_snxt = 16055 tcp->tcp_snxt; 16056 tce.tcpConnEntryInfo.ce_suna = 16057 tcp->tcp_suna; 16058 tce.tcpConnEntryInfo.ce_rnxt = 16059 tcp->tcp_rnxt; 16060 tce.tcpConnEntryInfo.ce_rack = 16061 tcp->tcp_rack; 16062 } else { 16063 /* 16064 * Netstat, unfortunately, uses this to 16065 * get send/receive queue sizes. How 16066 * to fix? 16067 * Why not compute the difference only? 16068 */ 16069 tce.tcpConnEntryInfo.ce_snxt = 16070 tcp->tcp_snxt - tcp->tcp_suna; 16071 tce.tcpConnEntryInfo.ce_suna = 0; 16072 tce.tcpConnEntryInfo.ce_rnxt = 16073 tcp->tcp_rnxt - tcp->tcp_rack; 16074 tce.tcpConnEntryInfo.ce_rack = 0; 16075 } 16076 16077 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16078 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16079 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16080 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16081 tce.tcpConnEntryInfo.ce_state = 16082 tcp->tcp_state; 16083 16084 tce.tcpConnCreationProcess = 16085 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16086 tcp->tcp_cpid; 16087 tce.tcpConnCreationTime = tcp->tcp_open_time; 16088 16089 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16090 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16091 16092 mlp.tme_connidx = v4_conn_idx++; 16093 if (needattr) 16094 (void) snmp_append_data2( 16095 mp_attr_ctl->b_cont, 16096 &mp_attr_tail, (char *)&mlp, 16097 sizeof (mlp)); 16098 } 16099 } 16100 } 16101 16102 /* fixed length structure for IPv4 and IPv6 counters */ 16103 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16104 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 16105 sizeof (mib2_tcp6ConnEntry_t)); 16106 /* synchronize 32- and 64-bit counters */ 16107 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 16108 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 16109 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16110 optp->level = MIB2_TCP; 16111 optp->name = 0; 16112 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 16113 sizeof (tcps->tcps_mib)); 16114 optp->len = msgdsize(mpdata); 16115 qreply(q, mpctl); 16116 16117 /* table of connections... */ 16118 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16119 sizeof (struct T_optmgmt_ack)]; 16120 optp->level = MIB2_TCP; 16121 optp->name = MIB2_TCP_CONN; 16122 optp->len = msgdsize(mp_conn_ctl->b_cont); 16123 qreply(q, mp_conn_ctl); 16124 16125 /* table of MLP attributes... */ 16126 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16127 sizeof (struct T_optmgmt_ack)]; 16128 optp->level = MIB2_TCP; 16129 optp->name = EXPER_XPORT_MLP; 16130 optp->len = msgdsize(mp_attr_ctl->b_cont); 16131 if (optp->len == 0) 16132 freemsg(mp_attr_ctl); 16133 else 16134 qreply(q, mp_attr_ctl); 16135 16136 /* table of IPv6 connections... */ 16137 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16138 sizeof (struct T_optmgmt_ack)]; 16139 optp->level = MIB2_TCP6; 16140 optp->name = MIB2_TCP6_CONN; 16141 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16142 qreply(q, mp6_conn_ctl); 16143 16144 /* table of IPv6 MLP attributes... */ 16145 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16146 sizeof (struct T_optmgmt_ack)]; 16147 optp->level = MIB2_TCP6; 16148 optp->name = EXPER_XPORT_MLP; 16149 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16150 if (optp->len == 0) 16151 freemsg(mp6_attr_ctl); 16152 else 16153 qreply(q, mp6_attr_ctl); 16154 return (mp2ctl); 16155 } 16156 16157 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16158 /* ARGSUSED */ 16159 int 16160 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16161 { 16162 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16163 16164 switch (level) { 16165 case MIB2_TCP: 16166 switch (name) { 16167 case 13: 16168 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16169 return (0); 16170 /* TODO: delete entry defined by tce */ 16171 return (1); 16172 default: 16173 return (0); 16174 } 16175 default: 16176 return (1); 16177 } 16178 } 16179 16180 /* Translate TCP state to MIB2 TCP state. */ 16181 static int 16182 tcp_snmp_state(tcp_t *tcp) 16183 { 16184 if (tcp == NULL) 16185 return (0); 16186 16187 switch (tcp->tcp_state) { 16188 case TCPS_CLOSED: 16189 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16190 case TCPS_BOUND: 16191 return (MIB2_TCP_closed); 16192 case TCPS_LISTEN: 16193 return (MIB2_TCP_listen); 16194 case TCPS_SYN_SENT: 16195 return (MIB2_TCP_synSent); 16196 case TCPS_SYN_RCVD: 16197 return (MIB2_TCP_synReceived); 16198 case TCPS_ESTABLISHED: 16199 return (MIB2_TCP_established); 16200 case TCPS_CLOSE_WAIT: 16201 return (MIB2_TCP_closeWait); 16202 case TCPS_FIN_WAIT_1: 16203 return (MIB2_TCP_finWait1); 16204 case TCPS_CLOSING: 16205 return (MIB2_TCP_closing); 16206 case TCPS_LAST_ACK: 16207 return (MIB2_TCP_lastAck); 16208 case TCPS_FIN_WAIT_2: 16209 return (MIB2_TCP_finWait2); 16210 case TCPS_TIME_WAIT: 16211 return (MIB2_TCP_timeWait); 16212 default: 16213 return (0); 16214 } 16215 } 16216 16217 /* 16218 * tcp_timer is the timer service routine. It handles the retransmission, 16219 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16220 * from the state of the tcp instance what kind of action needs to be done 16221 * at the time it is called. 16222 */ 16223 static void 16224 tcp_timer(void *arg) 16225 { 16226 mblk_t *mp; 16227 clock_t first_threshold; 16228 clock_t second_threshold; 16229 clock_t ms; 16230 uint32_t mss; 16231 conn_t *connp = (conn_t *)arg; 16232 tcp_t *tcp = connp->conn_tcp; 16233 tcp_stack_t *tcps = tcp->tcp_tcps; 16234 16235 tcp->tcp_timer_tid = 0; 16236 16237 if (tcp->tcp_fused) 16238 return; 16239 16240 first_threshold = tcp->tcp_first_timer_threshold; 16241 second_threshold = tcp->tcp_second_timer_threshold; 16242 switch (tcp->tcp_state) { 16243 case TCPS_IDLE: 16244 case TCPS_BOUND: 16245 case TCPS_LISTEN: 16246 return; 16247 case TCPS_SYN_RCVD: { 16248 tcp_t *listener = tcp->tcp_listener; 16249 16250 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16251 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16252 /* it's our first timeout */ 16253 tcp->tcp_syn_rcvd_timeout = 1; 16254 mutex_enter(&listener->tcp_eager_lock); 16255 listener->tcp_syn_rcvd_timeout++; 16256 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 16257 /* 16258 * Make this eager available for drop if we 16259 * need to drop one to accomodate a new 16260 * incoming SYN request. 16261 */ 16262 MAKE_DROPPABLE(listener, tcp); 16263 } 16264 if (!listener->tcp_syn_defense && 16265 (listener->tcp_syn_rcvd_timeout > 16266 (tcps->tcps_conn_req_max_q0 >> 2)) && 16267 (tcps->tcps_conn_req_max_q0 > 200)) { 16268 /* We may be under attack. Put on a defense. */ 16269 listener->tcp_syn_defense = B_TRUE; 16270 cmn_err(CE_WARN, "High TCP connect timeout " 16271 "rate! System (port %d) may be under a " 16272 "SYN flood attack!", 16273 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16274 16275 listener->tcp_ip_addr_cache = kmem_zalloc( 16276 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16277 KM_NOSLEEP); 16278 } 16279 mutex_exit(&listener->tcp_eager_lock); 16280 } else if (listener != NULL) { 16281 mutex_enter(&listener->tcp_eager_lock); 16282 tcp->tcp_syn_rcvd_timeout++; 16283 if (tcp->tcp_syn_rcvd_timeout > 1 && 16284 !tcp->tcp_closemp_used) { 16285 /* 16286 * This is our second timeout. Put the tcp in 16287 * the list of droppable eagers to allow it to 16288 * be dropped, if needed. We don't check 16289 * whether tcp_dontdrop is set or not to 16290 * protect ourselve from a SYN attack where a 16291 * remote host can spoof itself as one of the 16292 * good IP source and continue to hold 16293 * resources too long. 16294 */ 16295 MAKE_DROPPABLE(listener, tcp); 16296 } 16297 mutex_exit(&listener->tcp_eager_lock); 16298 } 16299 } 16300 /* FALLTHRU */ 16301 case TCPS_SYN_SENT: 16302 first_threshold = tcp->tcp_first_ctimer_threshold; 16303 second_threshold = tcp->tcp_second_ctimer_threshold; 16304 break; 16305 case TCPS_ESTABLISHED: 16306 case TCPS_FIN_WAIT_1: 16307 case TCPS_CLOSING: 16308 case TCPS_CLOSE_WAIT: 16309 case TCPS_LAST_ACK: 16310 /* If we have data to rexmit */ 16311 if (tcp->tcp_suna != tcp->tcp_snxt) { 16312 clock_t time_to_wait; 16313 16314 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 16315 if (!tcp->tcp_xmit_head) 16316 break; 16317 time_to_wait = lbolt - 16318 (clock_t)tcp->tcp_xmit_head->b_prev; 16319 time_to_wait = tcp->tcp_rto - 16320 TICK_TO_MSEC(time_to_wait); 16321 /* 16322 * If the timer fires too early, 1 clock tick earlier, 16323 * restart the timer. 16324 */ 16325 if (time_to_wait > msec_per_tick) { 16326 TCP_STAT(tcps, tcp_timer_fire_early); 16327 TCP_TIMER_RESTART(tcp, time_to_wait); 16328 return; 16329 } 16330 /* 16331 * When we probe zero windows, we force the swnd open. 16332 * If our peer acks with a closed window swnd will be 16333 * set to zero by tcp_rput(). As long as we are 16334 * receiving acks tcp_rput will 16335 * reset 'tcp_ms_we_have_waited' so as not to trip the 16336 * first and second interval actions. NOTE: the timer 16337 * interval is allowed to continue its exponential 16338 * backoff. 16339 */ 16340 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 16341 if (tcp->tcp_debug) { 16342 (void) strlog(TCP_MOD_ID, 0, 1, 16343 SL_TRACE, "tcp_timer: zero win"); 16344 } 16345 } else { 16346 /* 16347 * After retransmission, we need to do 16348 * slow start. Set the ssthresh to one 16349 * half of current effective window and 16350 * cwnd to one MSS. Also reset 16351 * tcp_cwnd_cnt. 16352 * 16353 * Note that if tcp_ssthresh is reduced because 16354 * of ECN, do not reduce it again unless it is 16355 * already one window of data away (tcp_cwr 16356 * should then be cleared) or this is a 16357 * timeout for a retransmitted segment. 16358 */ 16359 uint32_t npkt; 16360 16361 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 16362 npkt = ((tcp->tcp_timer_backoff ? 16363 tcp->tcp_cwnd_ssthresh : 16364 tcp->tcp_snxt - 16365 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 16366 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 16367 tcp->tcp_mss; 16368 } 16369 tcp->tcp_cwnd = tcp->tcp_mss; 16370 tcp->tcp_cwnd_cnt = 0; 16371 if (tcp->tcp_ecn_ok) { 16372 tcp->tcp_cwr = B_TRUE; 16373 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 16374 tcp->tcp_ecn_cwr_sent = B_FALSE; 16375 } 16376 } 16377 break; 16378 } 16379 /* 16380 * We have something to send yet we cannot send. The 16381 * reason can be: 16382 * 16383 * 1. Zero send window: we need to do zero window probe. 16384 * 2. Zero cwnd: because of ECN, we need to "clock out 16385 * segments. 16386 * 3. SWS avoidance: receiver may have shrunk window, 16387 * reset our knowledge. 16388 * 16389 * Note that condition 2 can happen with either 1 or 16390 * 3. But 1 and 3 are exclusive. 16391 */ 16392 if (tcp->tcp_unsent != 0) { 16393 if (tcp->tcp_cwnd == 0) { 16394 /* 16395 * Set tcp_cwnd to 1 MSS so that a 16396 * new segment can be sent out. We 16397 * are "clocking out" new data when 16398 * the network is really congested. 16399 */ 16400 ASSERT(tcp->tcp_ecn_ok); 16401 tcp->tcp_cwnd = tcp->tcp_mss; 16402 } 16403 if (tcp->tcp_swnd == 0) { 16404 /* Extend window for zero window probe */ 16405 tcp->tcp_swnd++; 16406 tcp->tcp_zero_win_probe = B_TRUE; 16407 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 16408 } else { 16409 /* 16410 * Handle timeout from sender SWS avoidance. 16411 * Reset our knowledge of the max send window 16412 * since the receiver might have reduced its 16413 * receive buffer. Avoid setting tcp_max_swnd 16414 * to one since that will essentially disable 16415 * the SWS checks. 16416 * 16417 * Note that since we don't have a SWS 16418 * state variable, if the timeout is set 16419 * for ECN but not for SWS, this 16420 * code will also be executed. This is 16421 * fine as tcp_max_swnd is updated 16422 * constantly and it will not affect 16423 * anything. 16424 */ 16425 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 16426 } 16427 tcp_wput_data(tcp, NULL, B_FALSE); 16428 return; 16429 } 16430 /* Is there a FIN that needs to be to re retransmitted? */ 16431 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16432 !tcp->tcp_fin_acked) 16433 break; 16434 /* Nothing to do, return without restarting timer. */ 16435 TCP_STAT(tcps, tcp_timer_fire_miss); 16436 return; 16437 case TCPS_FIN_WAIT_2: 16438 /* 16439 * User closed the TCP endpoint and peer ACK'ed our FIN. 16440 * We waited some time for for peer's FIN, but it hasn't 16441 * arrived. We flush the connection now to avoid 16442 * case where the peer has rebooted. 16443 */ 16444 if (TCP_IS_DETACHED(tcp)) { 16445 (void) tcp_clean_death(tcp, 0, 23); 16446 } else { 16447 TCP_TIMER_RESTART(tcp, 16448 tcps->tcps_fin_wait_2_flush_interval); 16449 } 16450 return; 16451 case TCPS_TIME_WAIT: 16452 (void) tcp_clean_death(tcp, 0, 24); 16453 return; 16454 default: 16455 if (tcp->tcp_debug) { 16456 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 16457 "tcp_timer: strange state (%d) %s", 16458 tcp->tcp_state, tcp_display(tcp, NULL, 16459 DISP_PORT_ONLY)); 16460 } 16461 return; 16462 } 16463 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 16464 /* 16465 * For zero window probe, we need to send indefinitely, 16466 * unless we have not heard from the other side for some 16467 * time... 16468 */ 16469 if ((tcp->tcp_zero_win_probe == 0) || 16470 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 16471 second_threshold)) { 16472 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 16473 /* 16474 * If TCP is in SYN_RCVD state, send back a 16475 * RST|ACK as BSD does. Note that tcp_zero_win_probe 16476 * should be zero in TCPS_SYN_RCVD state. 16477 */ 16478 if (tcp->tcp_state == TCPS_SYN_RCVD) { 16479 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 16480 "in SYN_RCVD", 16481 tcp, tcp->tcp_snxt, 16482 tcp->tcp_rnxt, TH_RST | TH_ACK); 16483 } 16484 (void) tcp_clean_death(tcp, 16485 tcp->tcp_client_errno ? 16486 tcp->tcp_client_errno : ETIMEDOUT, 25); 16487 return; 16488 } else { 16489 /* 16490 * Set tcp_ms_we_have_waited to second_threshold 16491 * so that in next timeout, we will do the above 16492 * check (lbolt - tcp_last_recv_time). This is 16493 * also to avoid overflow. 16494 * 16495 * We don't need to decrement tcp_timer_backoff 16496 * to avoid overflow because it will be decremented 16497 * later if new timeout value is greater than 16498 * tcp_rexmit_interval_max. In the case when 16499 * tcp_rexmit_interval_max is greater than 16500 * second_threshold, it means that we will wait 16501 * longer than second_threshold to send the next 16502 * window probe. 16503 */ 16504 tcp->tcp_ms_we_have_waited = second_threshold; 16505 } 16506 } else if (ms > first_threshold) { 16507 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 16508 tcp->tcp_xmit_head != NULL) { 16509 tcp->tcp_xmit_head = 16510 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 16511 } 16512 /* 16513 * We have been retransmitting for too long... The RTT 16514 * we calculated is probably incorrect. Reinitialize it. 16515 * Need to compensate for 0 tcp_rtt_sa. Reset 16516 * tcp_rtt_update so that we won't accidentally cache a 16517 * bad value. But only do this if this is not a zero 16518 * window probe. 16519 */ 16520 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 16521 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 16522 (tcp->tcp_rtt_sa >> 5); 16523 tcp->tcp_rtt_sa = 0; 16524 tcp_ip_notify(tcp); 16525 tcp->tcp_rtt_update = 0; 16526 } 16527 } 16528 tcp->tcp_timer_backoff++; 16529 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 16530 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 16531 tcps->tcps_rexmit_interval_min) { 16532 /* 16533 * This means the original RTO is tcp_rexmit_interval_min. 16534 * So we will use tcp_rexmit_interval_min as the RTO value 16535 * and do the backoff. 16536 */ 16537 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 16538 } else { 16539 ms <<= tcp->tcp_timer_backoff; 16540 } 16541 if (ms > tcps->tcps_rexmit_interval_max) { 16542 ms = tcps->tcps_rexmit_interval_max; 16543 /* 16544 * ms is at max, decrement tcp_timer_backoff to avoid 16545 * overflow. 16546 */ 16547 tcp->tcp_timer_backoff--; 16548 } 16549 tcp->tcp_ms_we_have_waited += ms; 16550 if (tcp->tcp_zero_win_probe == 0) { 16551 tcp->tcp_rto = ms; 16552 } 16553 TCP_TIMER_RESTART(tcp, ms); 16554 /* 16555 * This is after a timeout and tcp_rto is backed off. Set 16556 * tcp_set_timer to 1 so that next time RTO is updated, we will 16557 * restart the timer with a correct value. 16558 */ 16559 tcp->tcp_set_timer = 1; 16560 mss = tcp->tcp_snxt - tcp->tcp_suna; 16561 if (mss > tcp->tcp_mss) 16562 mss = tcp->tcp_mss; 16563 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 16564 mss = tcp->tcp_swnd; 16565 16566 if ((mp = tcp->tcp_xmit_head) != NULL) 16567 mp->b_prev = (mblk_t *)lbolt; 16568 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 16569 B_TRUE); 16570 16571 /* 16572 * When slow start after retransmission begins, start with 16573 * this seq no. tcp_rexmit_max marks the end of special slow 16574 * start phase. tcp_snd_burst controls how many segments 16575 * can be sent because of an ack. 16576 */ 16577 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 16578 tcp->tcp_snd_burst = TCP_CWND_SS; 16579 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16580 (tcp->tcp_unsent == 0)) { 16581 tcp->tcp_rexmit_max = tcp->tcp_fss; 16582 } else { 16583 tcp->tcp_rexmit_max = tcp->tcp_snxt; 16584 } 16585 tcp->tcp_rexmit = B_TRUE; 16586 tcp->tcp_dupack_cnt = 0; 16587 16588 /* 16589 * Remove all rexmit SACK blk to start from fresh. 16590 */ 16591 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) 16592 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 16593 if (mp == NULL) { 16594 return; 16595 } 16596 /* 16597 * Attach credentials to retransmitted initial SYNs. 16598 * In theory we should use the credentials from the connect() 16599 * call to ensure that getpeerucred() on the peer will be correct. 16600 * But we assume that SYN's are not dropped for loopback connections. 16601 */ 16602 if (tcp->tcp_state == TCPS_SYN_SENT) { 16603 mblk_setcred(mp, CONN_CRED(tcp->tcp_connp), tcp->tcp_cpid); 16604 } 16605 16606 tcp->tcp_csuna = tcp->tcp_snxt; 16607 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 16608 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 16609 tcp_send_data(tcp, tcp->tcp_wq, mp); 16610 16611 } 16612 16613 static int 16614 tcp_do_unbind(conn_t *connp) 16615 { 16616 tcp_t *tcp = connp->conn_tcp; 16617 int error = 0; 16618 16619 switch (tcp->tcp_state) { 16620 case TCPS_BOUND: 16621 case TCPS_LISTEN: 16622 break; 16623 default: 16624 return (-TOUTSTATE); 16625 } 16626 16627 /* 16628 * Need to clean up all the eagers since after the unbind, segments 16629 * will no longer be delivered to this listener stream. 16630 */ 16631 mutex_enter(&tcp->tcp_eager_lock); 16632 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 16633 tcp_eager_cleanup(tcp, 0); 16634 } 16635 mutex_exit(&tcp->tcp_eager_lock); 16636 16637 if (tcp->tcp_ipversion == IPV4_VERSION) { 16638 tcp->tcp_ipha->ipha_src = 0; 16639 } else { 16640 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 16641 } 16642 V6_SET_ZERO(tcp->tcp_ip_src_v6); 16643 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 16644 tcp_bind_hash_remove(tcp); 16645 tcp->tcp_state = TCPS_IDLE; 16646 tcp->tcp_mdt = B_FALSE; 16647 16648 connp = tcp->tcp_connp; 16649 connp->conn_mdt_ok = B_FALSE; 16650 ipcl_hash_remove(connp); 16651 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 16652 16653 return (error); 16654 } 16655 16656 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 16657 static void 16658 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp) 16659 { 16660 int error = tcp_do_unbind(tcp->tcp_connp); 16661 16662 if (error > 0) { 16663 tcp_err_ack(tcp, mp, TSYSERR, error); 16664 } else if (error < 0) { 16665 tcp_err_ack(tcp, mp, -error, 0); 16666 } else { 16667 /* Send M_FLUSH according to TPI */ 16668 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 16669 16670 mp = mi_tpi_ok_ack_alloc(mp); 16671 putnext(tcp->tcp_rq, mp); 16672 } 16673 } 16674 16675 /* 16676 * Don't let port fall into the privileged range. 16677 * Since the extra privileged ports can be arbitrary we also 16678 * ensure that we exclude those from consideration. 16679 * tcp_g_epriv_ports is not sorted thus we loop over it until 16680 * there are no changes. 16681 * 16682 * Note: No locks are held when inspecting tcp_g_*epriv_ports 16683 * but instead the code relies on: 16684 * - the fact that the address of the array and its size never changes 16685 * - the atomic assignment of the elements of the array 16686 * 16687 * Returns 0 if there are no more ports available. 16688 * 16689 * TS note: skip multilevel ports. 16690 */ 16691 static in_port_t 16692 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 16693 { 16694 int i; 16695 boolean_t restart = B_FALSE; 16696 tcp_stack_t *tcps = tcp->tcp_tcps; 16697 16698 if (random && tcp_random_anon_port != 0) { 16699 (void) random_get_pseudo_bytes((uint8_t *)&port, 16700 sizeof (in_port_t)); 16701 /* 16702 * Unless changed by a sys admin, the smallest anon port 16703 * is 32768 and the largest anon port is 65535. It is 16704 * very likely (50%) for the random port to be smaller 16705 * than the smallest anon port. When that happens, 16706 * add port % (anon port range) to the smallest anon 16707 * port to get the random port. It should fall into the 16708 * valid anon port range. 16709 */ 16710 if (port < tcps->tcps_smallest_anon_port) { 16711 port = tcps->tcps_smallest_anon_port + 16712 port % (tcps->tcps_largest_anon_port - 16713 tcps->tcps_smallest_anon_port); 16714 } 16715 } 16716 16717 retry: 16718 if (port < tcps->tcps_smallest_anon_port) 16719 port = (in_port_t)tcps->tcps_smallest_anon_port; 16720 16721 if (port > tcps->tcps_largest_anon_port) { 16722 if (restart) 16723 return (0); 16724 restart = B_TRUE; 16725 port = (in_port_t)tcps->tcps_smallest_anon_port; 16726 } 16727 16728 if (port < tcps->tcps_smallest_nonpriv_port) 16729 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 16730 16731 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 16732 if (port == tcps->tcps_g_epriv_ports[i]) { 16733 port++; 16734 /* 16735 * Make sure whether the port is in the 16736 * valid range. 16737 */ 16738 goto retry; 16739 } 16740 } 16741 if (is_system_labeled() && 16742 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 16743 IPPROTO_TCP, B_TRUE)) != 0) { 16744 port = i; 16745 goto retry; 16746 } 16747 return (port); 16748 } 16749 16750 /* 16751 * Return the next anonymous port in the privileged port range for 16752 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 16753 * downwards. This is the same behavior as documented in the userland 16754 * library call rresvport(3N). 16755 * 16756 * TS note: skip multilevel ports. 16757 */ 16758 static in_port_t 16759 tcp_get_next_priv_port(const tcp_t *tcp) 16760 { 16761 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 16762 in_port_t nextport; 16763 boolean_t restart = B_FALSE; 16764 tcp_stack_t *tcps = tcp->tcp_tcps; 16765 retry: 16766 if (next_priv_port < tcps->tcps_min_anonpriv_port || 16767 next_priv_port >= IPPORT_RESERVED) { 16768 next_priv_port = IPPORT_RESERVED - 1; 16769 if (restart) 16770 return (0); 16771 restart = B_TRUE; 16772 } 16773 if (is_system_labeled() && 16774 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 16775 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 16776 next_priv_port = nextport; 16777 goto retry; 16778 } 16779 return (next_priv_port--); 16780 } 16781 16782 /* The write side r/w procedure. */ 16783 16784 #if CCS_STATS 16785 struct { 16786 struct { 16787 int64_t count, bytes; 16788 } tot, hit; 16789 } wrw_stats; 16790 #endif 16791 16792 /* 16793 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 16794 * messages. 16795 */ 16796 /* ARGSUSED */ 16797 static void 16798 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 16799 { 16800 conn_t *connp = (conn_t *)arg; 16801 tcp_t *tcp = connp->conn_tcp; 16802 queue_t *q = tcp->tcp_wq; 16803 16804 ASSERT(DB_TYPE(mp) != M_IOCTL); 16805 /* 16806 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 16807 * Once the close starts, streamhead and sockfs will not let any data 16808 * packets come down (close ensures that there are no threads using the 16809 * queue and no new threads will come down) but since qprocsoff() 16810 * hasn't happened yet, a M_FLUSH or some non data message might 16811 * get reflected back (in response to our own FLUSHRW) and get 16812 * processed after tcp_close() is done. The conn would still be valid 16813 * because a ref would have added but we need to check the state 16814 * before actually processing the packet. 16815 */ 16816 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 16817 freemsg(mp); 16818 return; 16819 } 16820 16821 switch (DB_TYPE(mp)) { 16822 case M_IOCDATA: 16823 tcp_wput_iocdata(tcp, mp); 16824 break; 16825 case M_FLUSH: 16826 tcp_wput_flush(tcp, mp); 16827 break; 16828 default: 16829 CALL_IP_WPUT(connp, q, mp); 16830 break; 16831 } 16832 } 16833 16834 /* 16835 * The TCP fast path write put procedure. 16836 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 16837 */ 16838 /* ARGSUSED */ 16839 void 16840 tcp_output(void *arg, mblk_t *mp, void *arg2) 16841 { 16842 int len; 16843 int hdrlen; 16844 int plen; 16845 mblk_t *mp1; 16846 uchar_t *rptr; 16847 uint32_t snxt; 16848 tcph_t *tcph; 16849 struct datab *db; 16850 uint32_t suna; 16851 uint32_t mss; 16852 ipaddr_t *dst; 16853 ipaddr_t *src; 16854 uint32_t sum; 16855 int usable; 16856 conn_t *connp = (conn_t *)arg; 16857 tcp_t *tcp = connp->conn_tcp; 16858 uint32_t msize; 16859 tcp_stack_t *tcps = tcp->tcp_tcps; 16860 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 16861 16862 /* 16863 * Try and ASSERT the minimum possible references on the 16864 * conn early enough. Since we are executing on write side, 16865 * the connection is obviously not detached and that means 16866 * there is a ref each for TCP and IP. Since we are behind 16867 * the squeue, the minimum references needed are 3. If the 16868 * conn is in classifier hash list, there should be an 16869 * extra ref for that (we check both the possibilities). 16870 */ 16871 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16872 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16873 16874 ASSERT(DB_TYPE(mp) == M_DATA); 16875 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 16876 16877 mutex_enter(&tcp->tcp_non_sq_lock); 16878 tcp->tcp_squeue_bytes -= msize; 16879 mutex_exit(&tcp->tcp_non_sq_lock); 16880 16881 /* Check to see if this connection wants to be re-fused. */ 16882 if (tcp->tcp_refuse && !ipst->ips_ipobs_enabled) { 16883 if (tcp->tcp_ipversion == IPV4_VERSION) { 16884 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha, 16885 &tcp->tcp_saved_tcph); 16886 } else { 16887 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h, 16888 &tcp->tcp_saved_tcph); 16889 } 16890 } 16891 /* Bypass tcp protocol for fused tcp loopback */ 16892 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 16893 return; 16894 16895 mss = tcp->tcp_mss; 16896 if (tcp->tcp_xmit_zc_clean) 16897 mp = tcp_zcopy_backoff(tcp, mp, 0); 16898 16899 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 16900 len = (int)(mp->b_wptr - mp->b_rptr); 16901 16902 /* 16903 * Criteria for fast path: 16904 * 16905 * 1. no unsent data 16906 * 2. single mblk in request 16907 * 3. connection established 16908 * 4. data in mblk 16909 * 5. len <= mss 16910 * 6. no tcp_valid bits 16911 */ 16912 if ((tcp->tcp_unsent != 0) || 16913 (tcp->tcp_cork) || 16914 (mp->b_cont != NULL) || 16915 (tcp->tcp_state != TCPS_ESTABLISHED) || 16916 (len == 0) || 16917 (len > mss) || 16918 (tcp->tcp_valid_bits != 0)) { 16919 tcp_wput_data(tcp, mp, B_FALSE); 16920 return; 16921 } 16922 16923 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 16924 ASSERT(tcp->tcp_fin_sent == 0); 16925 16926 /* queue new packet onto retransmission queue */ 16927 if (tcp->tcp_xmit_head == NULL) { 16928 tcp->tcp_xmit_head = mp; 16929 } else { 16930 tcp->tcp_xmit_last->b_cont = mp; 16931 } 16932 tcp->tcp_xmit_last = mp; 16933 tcp->tcp_xmit_tail = mp; 16934 16935 /* find out how much we can send */ 16936 /* BEGIN CSTYLED */ 16937 /* 16938 * un-acked usable 16939 * |--------------|-----------------| 16940 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 16941 */ 16942 /* END CSTYLED */ 16943 16944 /* start sending from tcp_snxt */ 16945 snxt = tcp->tcp_snxt; 16946 16947 /* 16948 * Check to see if this connection has been idled for some 16949 * time and no ACK is expected. If it is, we need to slow 16950 * start again to get back the connection's "self-clock" as 16951 * described in VJ's paper. 16952 * 16953 * Refer to the comment in tcp_mss_set() for the calculation 16954 * of tcp_cwnd after idle. 16955 */ 16956 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 16957 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 16958 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 16959 } 16960 16961 usable = tcp->tcp_swnd; /* tcp window size */ 16962 if (usable > tcp->tcp_cwnd) 16963 usable = tcp->tcp_cwnd; /* congestion window smaller */ 16964 usable -= snxt; /* subtract stuff already sent */ 16965 suna = tcp->tcp_suna; 16966 usable += suna; 16967 /* usable can be < 0 if the congestion window is smaller */ 16968 if (len > usable) { 16969 /* Can't send complete M_DATA in one shot */ 16970 goto slow; 16971 } 16972 16973 mutex_enter(&tcp->tcp_non_sq_lock); 16974 if (tcp->tcp_flow_stopped && 16975 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 16976 tcp_clrqfull(tcp); 16977 } 16978 mutex_exit(&tcp->tcp_non_sq_lock); 16979 16980 /* 16981 * determine if anything to send (Nagle). 16982 * 16983 * 1. len < tcp_mss (i.e. small) 16984 * 2. unacknowledged data present 16985 * 3. len < nagle limit 16986 * 4. last packet sent < nagle limit (previous packet sent) 16987 */ 16988 if ((len < mss) && (snxt != suna) && 16989 (len < (int)tcp->tcp_naglim) && 16990 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 16991 /* 16992 * This was the first unsent packet and normally 16993 * mss < xmit_hiwater so there is no need to worry 16994 * about flow control. The next packet will go 16995 * through the flow control check in tcp_wput_data(). 16996 */ 16997 /* leftover work from above */ 16998 tcp->tcp_unsent = len; 16999 tcp->tcp_xmit_tail_unsent = len; 17000 17001 return; 17002 } 17003 17004 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17005 17006 if (snxt == suna) { 17007 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17008 } 17009 17010 /* we have always sent something */ 17011 tcp->tcp_rack_cnt = 0; 17012 17013 tcp->tcp_snxt = snxt + len; 17014 tcp->tcp_rack = tcp->tcp_rnxt; 17015 17016 if ((mp1 = dupb(mp)) == 0) 17017 goto no_memory; 17018 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17019 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17020 17021 /* adjust tcp header information */ 17022 tcph = tcp->tcp_tcph; 17023 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17024 17025 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17026 sum = (sum >> 16) + (sum & 0xFFFF); 17027 U16_TO_ABE16(sum, tcph->th_sum); 17028 17029 U32_TO_ABE32(snxt, tcph->th_seq); 17030 17031 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 17032 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 17033 BUMP_LOCAL(tcp->tcp_obsegs); 17034 17035 /* Update the latest receive window size in TCP header. */ 17036 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17037 tcph->th_win); 17038 17039 tcp->tcp_last_sent_len = (ushort_t)len; 17040 17041 plen = len + tcp->tcp_hdr_len; 17042 17043 if (tcp->tcp_ipversion == IPV4_VERSION) { 17044 tcp->tcp_ipha->ipha_length = htons(plen); 17045 } else { 17046 tcp->tcp_ip6h->ip6_plen = htons(plen - 17047 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17048 } 17049 17050 /* see if we need to allocate a mblk for the headers */ 17051 hdrlen = tcp->tcp_hdr_len; 17052 rptr = mp1->b_rptr - hdrlen; 17053 db = mp1->b_datap; 17054 if ((db->db_ref != 2) || rptr < db->db_base || 17055 (!OK_32PTR(rptr))) { 17056 /* NOTE: we assume allocb returns an OK_32PTR */ 17057 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17058 tcps->tcps_wroff_xtra, BPRI_MED); 17059 if (!mp) { 17060 freemsg(mp1); 17061 goto no_memory; 17062 } 17063 mp->b_cont = mp1; 17064 mp1 = mp; 17065 /* Leave room for Link Level header */ 17066 /* hdrlen = tcp->tcp_hdr_len; */ 17067 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 17068 mp1->b_wptr = &rptr[hdrlen]; 17069 } 17070 mp1->b_rptr = rptr; 17071 17072 /* Fill in the timestamp option. */ 17073 if (tcp->tcp_snd_ts_ok) { 17074 U32_TO_BE32((uint32_t)lbolt, 17075 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17076 U32_TO_BE32(tcp->tcp_ts_recent, 17077 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17078 } else { 17079 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17080 } 17081 17082 /* copy header into outgoing packet */ 17083 dst = (ipaddr_t *)rptr; 17084 src = (ipaddr_t *)tcp->tcp_iphc; 17085 dst[0] = src[0]; 17086 dst[1] = src[1]; 17087 dst[2] = src[2]; 17088 dst[3] = src[3]; 17089 dst[4] = src[4]; 17090 dst[5] = src[5]; 17091 dst[6] = src[6]; 17092 dst[7] = src[7]; 17093 dst[8] = src[8]; 17094 dst[9] = src[9]; 17095 if (hdrlen -= 40) { 17096 hdrlen >>= 2; 17097 dst += 10; 17098 src += 10; 17099 do { 17100 *dst++ = *src++; 17101 } while (--hdrlen); 17102 } 17103 17104 /* 17105 * Set the ECN info in the TCP header. Note that this 17106 * is not the template header. 17107 */ 17108 if (tcp->tcp_ecn_ok) { 17109 SET_ECT(tcp, rptr); 17110 17111 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17112 if (tcp->tcp_ecn_echo_on) 17113 tcph->th_flags[0] |= TH_ECE; 17114 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17115 tcph->th_flags[0] |= TH_CWR; 17116 tcp->tcp_ecn_cwr_sent = B_TRUE; 17117 } 17118 } 17119 17120 if (tcp->tcp_ip_forward_progress) { 17121 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17122 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17123 tcp->tcp_ip_forward_progress = B_FALSE; 17124 } 17125 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17126 return; 17127 17128 /* 17129 * If we ran out of memory, we pretend to have sent the packet 17130 * and that it was lost on the wire. 17131 */ 17132 no_memory: 17133 return; 17134 17135 slow: 17136 /* leftover work from above */ 17137 tcp->tcp_unsent = len; 17138 tcp->tcp_xmit_tail_unsent = len; 17139 tcp_wput_data(tcp, NULL, B_FALSE); 17140 } 17141 17142 /* ARGSUSED */ 17143 void 17144 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17145 { 17146 conn_t *connp = (conn_t *)arg; 17147 tcp_t *tcp = connp->conn_tcp; 17148 queue_t *q = tcp->tcp_rq; 17149 struct tcp_options *tcpopt; 17150 tcp_stack_t *tcps = tcp->tcp_tcps; 17151 17152 /* socket options */ 17153 uint_t sopp_flags; 17154 ssize_t sopp_rxhiwat; 17155 ssize_t sopp_maxblk; 17156 ushort_t sopp_wroff; 17157 ushort_t sopp_tail; 17158 ushort_t sopp_copyopt; 17159 17160 tcpopt = (struct tcp_options *)mp->b_rptr; 17161 17162 /* 17163 * Drop the eager's ref on the listener, that was placed when 17164 * this eager began life in tcp_conn_request. 17165 */ 17166 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17167 if (IPCL_IS_NONSTR(connp)) { 17168 /* Safe to free conn_ind message */ 17169 freemsg(tcp->tcp_conn.tcp_eager_conn_ind); 17170 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17171 } 17172 17173 tcp->tcp_detached = B_FALSE; 17174 17175 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17176 /* 17177 * Someone blewoff the eager before we could finish 17178 * the accept. 17179 * 17180 * The only reason eager exists it because we put in 17181 * a ref on it when conn ind went up. We need to send 17182 * a disconnect indication up while the last reference 17183 * on the eager will be dropped by the squeue when we 17184 * return. 17185 */ 17186 ASSERT(tcp->tcp_listener == NULL); 17187 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17188 if (IPCL_IS_NONSTR(connp)) { 17189 ASSERT(tcp->tcp_issocket); 17190 (*connp->conn_upcalls->su_disconnected)( 17191 connp->conn_upper_handle, tcp->tcp_connid, 17192 ECONNREFUSED); 17193 freemsg(mp); 17194 } else { 17195 struct T_discon_ind *tdi; 17196 17197 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17198 /* 17199 * Let us reuse the incoming mblk to avoid 17200 * memory allocation failure problems. We know 17201 * that the size of the incoming mblk i.e. 17202 * stroptions is greater than sizeof 17203 * T_discon_ind. So the reallocb below can't 17204 * fail. 17205 */ 17206 freemsg(mp->b_cont); 17207 mp->b_cont = NULL; 17208 ASSERT(DB_REF(mp) == 1); 17209 mp = reallocb(mp, sizeof (struct T_discon_ind), 17210 B_FALSE); 17211 ASSERT(mp != NULL); 17212 DB_TYPE(mp) = M_PROTO; 17213 ((union T_primitives *)mp->b_rptr)->type = 17214 T_DISCON_IND; 17215 tdi = (struct T_discon_ind *)mp->b_rptr; 17216 if (tcp->tcp_issocket) { 17217 tdi->DISCON_reason = ECONNREFUSED; 17218 tdi->SEQ_number = 0; 17219 } else { 17220 tdi->DISCON_reason = ENOPROTOOPT; 17221 tdi->SEQ_number = 17222 tcp->tcp_conn_req_seqnum; 17223 } 17224 mp->b_wptr = mp->b_rptr + 17225 sizeof (struct T_discon_ind); 17226 putnext(q, mp); 17227 return; 17228 } 17229 } 17230 if (tcp->tcp_hard_binding) { 17231 tcp->tcp_hard_binding = B_FALSE; 17232 tcp->tcp_hard_bound = B_TRUE; 17233 } 17234 return; 17235 } 17236 17237 if (tcpopt->to_flags & TCPOPT_BOUNDIF) { 17238 int boundif = tcpopt->to_boundif; 17239 uint_t len = sizeof (int); 17240 17241 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 17242 IPV6_BOUND_IF, len, (uchar_t *)&boundif, &len, 17243 (uchar_t *)&boundif, NULL, tcp->tcp_cred, NULL); 17244 } 17245 if (tcpopt->to_flags & TCPOPT_RECVPKTINFO) { 17246 uint_t on = 1; 17247 uint_t len = sizeof (uint_t); 17248 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 17249 IPV6_RECVPKTINFO, len, (uchar_t *)&on, &len, 17250 (uchar_t *)&on, NULL, tcp->tcp_cred, NULL); 17251 } 17252 17253 /* 17254 * Set max window size (tcp_recv_hiwater) of the acceptor. 17255 */ 17256 if (tcp->tcp_rcv_list == NULL) { 17257 /* 17258 * Recv queue is empty, tcp_rwnd should not have changed. 17259 * That means it should be equal to the listener's tcp_rwnd. 17260 */ 17261 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 17262 } else { 17263 #ifdef DEBUG 17264 mblk_t *tmp; 17265 mblk_t *mp1; 17266 uint_t cnt = 0; 17267 17268 mp1 = tcp->tcp_rcv_list; 17269 while ((tmp = mp1) != NULL) { 17270 mp1 = tmp->b_next; 17271 cnt += msgdsize(tmp); 17272 } 17273 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17274 #endif 17275 /* There is some data, add them back to get the max. */ 17276 tcp->tcp_recv_hiwater = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17277 } 17278 /* 17279 * This is the first time we run on the correct 17280 * queue after tcp_accept. So fix all the q parameters 17281 * here. 17282 */ 17283 sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 17284 sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17285 17286 sopp_rxhiwat = tcp->tcp_fused ? 17287 tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) : 17288 tcp->tcp_recv_hiwater; 17289 17290 /* 17291 * Determine what write offset value to use depending on SACK and 17292 * whether the endpoint is fused or not. 17293 */ 17294 if (tcp->tcp_fused) { 17295 ASSERT(tcp->tcp_loopback); 17296 ASSERT(tcp->tcp_loopback_peer != NULL); 17297 /* 17298 * For fused tcp loopback, set the stream head's write 17299 * offset value to zero since we won't be needing any room 17300 * for TCP/IP headers. This would also improve performance 17301 * since it would reduce the amount of work done by kmem. 17302 * Non-fused tcp loopback case is handled separately below. 17303 */ 17304 sopp_wroff = 0; 17305 /* 17306 * Update the peer's transmit parameters according to 17307 * our recently calculated high water mark value. 17308 */ 17309 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 17310 } else if (tcp->tcp_snd_sack_ok) { 17311 sopp_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17312 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 17313 } else { 17314 sopp_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17315 tcps->tcps_wroff_xtra); 17316 } 17317 17318 /* 17319 * If this is endpoint is handling SSL, then reserve extra 17320 * offset and space at the end. 17321 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 17322 * overriding the previous setting. The extra cost of signing and 17323 * encrypting multiple MSS-size records (12 of them with Ethernet), 17324 * instead of a single contiguous one by the stream head 17325 * largely outweighs the statistical reduction of ACKs, when 17326 * applicable. The peer will also save on decryption and verification 17327 * costs. 17328 */ 17329 if (tcp->tcp_kssl_ctx != NULL) { 17330 sopp_wroff += SSL3_WROFFSET; 17331 17332 sopp_flags |= SOCKOPT_TAIL; 17333 sopp_tail = SSL3_MAX_TAIL_LEN; 17334 17335 sopp_flags |= SOCKOPT_ZCOPY; 17336 sopp_copyopt = ZCVMUNSAFE; 17337 17338 sopp_maxblk = SSL3_MAX_RECORD_LEN; 17339 } 17340 17341 /* Send the options up */ 17342 if (IPCL_IS_NONSTR(connp)) { 17343 struct sock_proto_props sopp; 17344 17345 sopp.sopp_flags = sopp_flags; 17346 sopp.sopp_wroff = sopp_wroff; 17347 sopp.sopp_maxblk = sopp_maxblk; 17348 sopp.sopp_rxhiwat = sopp_rxhiwat; 17349 if (sopp_flags & SOCKOPT_TAIL) { 17350 ASSERT(tcp->tcp_kssl_ctx != NULL); 17351 ASSERT(sopp_flags & SOCKOPT_ZCOPY); 17352 sopp.sopp_tail = sopp_tail; 17353 sopp.sopp_zcopyflag = sopp_copyopt; 17354 } 17355 if (tcp->tcp_loopback) { 17356 sopp.sopp_flags |= SOCKOPT_LOOPBACK; 17357 sopp.sopp_loopback = B_TRUE; 17358 } 17359 (*connp->conn_upcalls->su_set_proto_props) 17360 (connp->conn_upper_handle, &sopp); 17361 } else { 17362 struct stroptions *stropt; 17363 mblk_t *stropt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 17364 if (stropt_mp == NULL) { 17365 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 17366 return; 17367 } 17368 DB_TYPE(stropt_mp) = M_SETOPTS; 17369 stropt = (struct stroptions *)stropt_mp->b_rptr; 17370 stropt_mp->b_wptr += sizeof (struct stroptions); 17371 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 17372 stropt->so_hiwat = sopp_rxhiwat; 17373 stropt->so_wroff = sopp_wroff; 17374 stropt->so_maxblk = sopp_maxblk; 17375 17376 if (sopp_flags & SOCKOPT_TAIL) { 17377 ASSERT(tcp->tcp_kssl_ctx != NULL); 17378 17379 stropt->so_flags |= SO_TAIL | SO_COPYOPT; 17380 stropt->so_tail = sopp_tail; 17381 stropt->so_copyopt = sopp_copyopt; 17382 } 17383 17384 /* Send the options up */ 17385 putnext(q, stropt_mp); 17386 } 17387 17388 freemsg(mp); 17389 /* 17390 * Pass up any data and/or a fin that has been received. 17391 * 17392 * Adjust receive window in case it had decreased 17393 * (because there is data <=> tcp_rcv_list != NULL) 17394 * while the connection was detached. Note that 17395 * in case the eager was flow-controlled, w/o this 17396 * code, the rwnd may never open up again! 17397 */ 17398 if (tcp->tcp_rcv_list != NULL) { 17399 if (IPCL_IS_NONSTR(connp)) { 17400 mblk_t *mp; 17401 int space_left; 17402 int error; 17403 boolean_t push = B_TRUE; 17404 17405 if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv) 17406 (connp->conn_upper_handle, NULL, 0, 0, &error, 17407 &push) >= 0) { 17408 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 17409 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17410 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 17411 tcp_xmit_ctl(NULL, 17412 tcp, (tcp->tcp_swnd == 0) ? 17413 tcp->tcp_suna : tcp->tcp_snxt, 17414 tcp->tcp_rnxt, TH_ACK); 17415 } 17416 } 17417 while ((mp = tcp->tcp_rcv_list) != NULL) { 17418 push = B_TRUE; 17419 tcp->tcp_rcv_list = mp->b_next; 17420 mp->b_next = NULL; 17421 space_left = (*connp->conn_upcalls->su_recv) 17422 (connp->conn_upper_handle, mp, msgdsize(mp), 17423 0, &error, &push); 17424 if (space_left < 0) { 17425 /* 17426 * We should never be in middle of a 17427 * fallback, the squeue guarantees that. 17428 */ 17429 ASSERT(error != EOPNOTSUPP); 17430 } 17431 } 17432 tcp->tcp_rcv_last_head = NULL; 17433 tcp->tcp_rcv_last_tail = NULL; 17434 tcp->tcp_rcv_cnt = 0; 17435 } else { 17436 /* We drain directly in case of fused tcp loopback */ 17437 17438 if (!tcp->tcp_fused && canputnext(q)) { 17439 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 17440 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17441 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 17442 tcp_xmit_ctl(NULL, 17443 tcp, (tcp->tcp_swnd == 0) ? 17444 tcp->tcp_suna : tcp->tcp_snxt, 17445 tcp->tcp_rnxt, TH_ACK); 17446 } 17447 } 17448 17449 (void) tcp_rcv_drain(tcp); 17450 } 17451 17452 /* 17453 * For fused tcp loopback, back-enable peer endpoint 17454 * if it's currently flow-controlled. 17455 */ 17456 if (tcp->tcp_fused) { 17457 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 17458 17459 ASSERT(peer_tcp != NULL); 17460 ASSERT(peer_tcp->tcp_fused); 17461 17462 mutex_enter(&peer_tcp->tcp_non_sq_lock); 17463 if (peer_tcp->tcp_flow_stopped) { 17464 tcp_clrqfull(peer_tcp); 17465 TCP_STAT(tcps, tcp_fusion_backenabled); 17466 } 17467 mutex_exit(&peer_tcp->tcp_non_sq_lock); 17468 } 17469 } 17470 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 17471 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 17472 tcp->tcp_ordrel_done = B_TRUE; 17473 if (IPCL_IS_NONSTR(connp)) { 17474 ASSERT(tcp->tcp_ordrel_mp == NULL); 17475 (*connp->conn_upcalls->su_opctl)( 17476 connp->conn_upper_handle, 17477 SOCK_OPCTL_SHUT_RECV, 0); 17478 } else { 17479 mp = tcp->tcp_ordrel_mp; 17480 tcp->tcp_ordrel_mp = NULL; 17481 putnext(q, mp); 17482 } 17483 } 17484 if (tcp->tcp_hard_binding) { 17485 tcp->tcp_hard_binding = B_FALSE; 17486 tcp->tcp_hard_bound = B_TRUE; 17487 } 17488 17489 if (tcp->tcp_ka_enabled) { 17490 tcp->tcp_ka_last_intrvl = 0; 17491 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 17492 MSEC_TO_TICK(tcp->tcp_ka_interval)); 17493 } 17494 17495 /* 17496 * At this point, eager is fully established and will 17497 * have the following references - 17498 * 17499 * 2 references for connection to exist (1 for TCP and 1 for IP). 17500 * 1 reference for the squeue which will be dropped by the squeue as 17501 * soon as this function returns. 17502 * There will be 1 additonal reference for being in classifier 17503 * hash list provided something bad hasn't happened. 17504 */ 17505 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17506 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17507 } 17508 17509 /* 17510 * The function called through squeue to get behind listener's perimeter to 17511 * send a deffered conn_ind. 17512 */ 17513 /* ARGSUSED */ 17514 void 17515 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 17516 { 17517 conn_t *connp = (conn_t *)arg; 17518 tcp_t *listener = connp->conn_tcp; 17519 struct T_conn_ind *conn_ind; 17520 tcp_t *tcp; 17521 17522 conn_ind = (struct T_conn_ind *)mp->b_rptr; 17523 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 17524 conn_ind->OPT_length); 17525 17526 if (listener->tcp_state != TCPS_LISTEN) { 17527 /* 17528 * If listener has closed, it would have caused a 17529 * a cleanup/blowoff to happen for the eager, so 17530 * we don't need to do anything more. 17531 */ 17532 freemsg(mp); 17533 return; 17534 } 17535 17536 tcp_ulp_newconn(connp, tcp->tcp_connp, mp); 17537 } 17538 17539 /* ARGSUSED */ 17540 static int 17541 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr) 17542 { 17543 tcp_t *listener, *eager; 17544 mblk_t *opt_mp; 17545 struct tcp_options *tcpopt; 17546 17547 listener = lconnp->conn_tcp; 17548 ASSERT(listener->tcp_state == TCPS_LISTEN); 17549 eager = econnp->conn_tcp; 17550 ASSERT(eager->tcp_listener != NULL); 17551 17552 ASSERT(eager->tcp_rq != NULL); 17553 17554 opt_mp = allocb(sizeof (struct tcp_options), BPRI_HI); 17555 if (opt_mp == NULL) { 17556 return (-TPROTO); 17557 } 17558 bzero((char *)opt_mp->b_rptr, sizeof (struct tcp_options)); 17559 eager->tcp_issocket = B_TRUE; 17560 17561 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 17562 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 17563 ASSERT(econnp->conn_netstack == 17564 listener->tcp_connp->conn_netstack); 17565 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 17566 17567 /* Put the ref for IP */ 17568 CONN_INC_REF(econnp); 17569 17570 /* 17571 * We should have minimum of 3 references on the conn 17572 * at this point. One each for TCP and IP and one for 17573 * the T_conn_ind that was sent up when the 3-way handshake 17574 * completed. In the normal case we would also have another 17575 * reference (making a total of 4) for the conn being in the 17576 * classifier hash list. However the eager could have received 17577 * an RST subsequently and tcp_closei_local could have removed 17578 * the eager from the classifier hash list, hence we can't 17579 * assert that reference. 17580 */ 17581 ASSERT(econnp->conn_ref >= 3); 17582 17583 opt_mp->b_datap->db_type = M_SETOPTS; 17584 opt_mp->b_wptr += sizeof (struct tcp_options); 17585 17586 /* 17587 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 17588 * from listener to acceptor. 17589 */ 17590 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 17591 tcpopt->to_flags = 0; 17592 17593 if (listener->tcp_bound_if != 0) { 17594 tcpopt->to_flags |= TCPOPT_BOUNDIF; 17595 tcpopt->to_boundif = listener->tcp_bound_if; 17596 } 17597 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 17598 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 17599 } 17600 17601 mutex_enter(&listener->tcp_eager_lock); 17602 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 17603 17604 tcp_t *tail; 17605 tcp_t *tcp; 17606 mblk_t *mp1; 17607 17608 tcp = listener->tcp_eager_prev_q0; 17609 /* 17610 * listener->tcp_eager_prev_q0 points to the TAIL of the 17611 * deferred T_conn_ind queue. We need to get to the head 17612 * of the queue in order to send up T_conn_ind the same 17613 * order as how the 3WHS is completed. 17614 */ 17615 while (tcp != listener) { 17616 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 17617 !tcp->tcp_kssl_pending) 17618 break; 17619 else 17620 tcp = tcp->tcp_eager_prev_q0; 17621 } 17622 /* None of the pending eagers can be sent up now */ 17623 if (tcp == listener) 17624 goto no_more_eagers; 17625 17626 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 17627 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17628 /* Move from q0 to q */ 17629 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 17630 listener->tcp_conn_req_cnt_q0--; 17631 listener->tcp_conn_req_cnt_q++; 17632 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 17633 tcp->tcp_eager_prev_q0; 17634 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 17635 tcp->tcp_eager_next_q0; 17636 tcp->tcp_eager_prev_q0 = NULL; 17637 tcp->tcp_eager_next_q0 = NULL; 17638 tcp->tcp_conn_def_q0 = B_FALSE; 17639 17640 /* Make sure the tcp isn't in the list of droppables */ 17641 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 17642 tcp->tcp_eager_prev_drop_q0 == NULL); 17643 17644 /* 17645 * Insert at end of the queue because sockfs sends 17646 * down T_CONN_RES in chronological order. Leaving 17647 * the older conn indications at front of the queue 17648 * helps reducing search time. 17649 */ 17650 tail = listener->tcp_eager_last_q; 17651 if (tail != NULL) { 17652 tail->tcp_eager_next_q = tcp; 17653 } else { 17654 listener->tcp_eager_next_q = tcp; 17655 } 17656 listener->tcp_eager_last_q = tcp; 17657 tcp->tcp_eager_next_q = NULL; 17658 17659 /* Need to get inside the listener perimeter */ 17660 CONN_INC_REF(listener->tcp_connp); 17661 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, 17662 tcp_send_pending, listener->tcp_connp, SQ_FILL, 17663 SQTAG_TCP_SEND_PENDING); 17664 } 17665 no_more_eagers: 17666 tcp_eager_unlink(eager); 17667 mutex_exit(&listener->tcp_eager_lock); 17668 17669 /* 17670 * At this point, the eager is detached from the listener 17671 * but we still have an extra refs on eager (apart from the 17672 * usual tcp references). The ref was placed in tcp_rput_data 17673 * before sending the conn_ind in tcp_send_conn_ind. 17674 * The ref will be dropped in tcp_accept_finish(). 17675 */ 17676 SQUEUE_ENTER_ONE(econnp->conn_sqp, opt_mp, tcp_accept_finish, 17677 econnp, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); 17678 return (0); 17679 } 17680 17681 int 17682 tcp_accept(sock_lower_handle_t lproto_handle, 17683 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 17684 cred_t *cr) 17685 { 17686 conn_t *lconnp, *econnp; 17687 tcp_t *listener, *eager; 17688 tcp_stack_t *tcps; 17689 17690 lconnp = (conn_t *)lproto_handle; 17691 listener = lconnp->conn_tcp; 17692 ASSERT(listener->tcp_state == TCPS_LISTEN); 17693 econnp = (conn_t *)eproto_handle; 17694 eager = econnp->conn_tcp; 17695 ASSERT(eager->tcp_listener != NULL); 17696 tcps = eager->tcp_tcps; 17697 17698 /* 17699 * It is OK to manipulate these fields outside the eager's squeue 17700 * because they will not start being used until tcp_accept_finish 17701 * has been called. 17702 */ 17703 ASSERT(lconnp->conn_upper_handle != NULL); 17704 ASSERT(econnp->conn_upper_handle == NULL); 17705 econnp->conn_upper_handle = sock_handle; 17706 econnp->conn_upcalls = lconnp->conn_upcalls; 17707 ASSERT(IPCL_IS_NONSTR(econnp)); 17708 /* 17709 * Create helper stream if it is a non-TPI TCP connection. 17710 */ 17711 if (ip_create_helper_stream(econnp, tcps->tcps_ldi_ident)) { 17712 ip1dbg(("tcp_accept: create of IP helper stream" 17713 " failed\n")); 17714 return (EPROTO); 17715 } 17716 eager->tcp_rq = econnp->conn_rq; 17717 eager->tcp_wq = econnp->conn_wq; 17718 17719 ASSERT(eager->tcp_rq != NULL); 17720 17721 return (tcp_accept_common(lconnp, econnp, cr)); 17722 } 17723 17724 17725 /* 17726 * This is the STREAMS entry point for T_CONN_RES coming down on 17727 * Acceptor STREAM when sockfs listener does accept processing. 17728 * Read the block comment on top of tcp_conn_request(). 17729 */ 17730 void 17731 tcp_tpi_accept(queue_t *q, mblk_t *mp) 17732 { 17733 queue_t *rq = RD(q); 17734 struct T_conn_res *conn_res; 17735 tcp_t *eager; 17736 tcp_t *listener; 17737 struct T_ok_ack *ok; 17738 t_scalar_t PRIM_type; 17739 conn_t *econnp; 17740 cred_t *cr; 17741 17742 ASSERT(DB_TYPE(mp) == M_PROTO); 17743 17744 /* 17745 * All Solaris components should pass a db_credp 17746 * for this TPI message, hence we ASSERT. 17747 * But in case there is some other M_PROTO that looks 17748 * like a TPI message sent by some other kernel 17749 * component, we check and return an error. 17750 */ 17751 cr = msg_getcred(mp, NULL); 17752 ASSERT(cr != NULL); 17753 if (cr == NULL) { 17754 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 17755 if (mp != NULL) 17756 putnext(rq, mp); 17757 return; 17758 } 17759 conn_res = (struct T_conn_res *)mp->b_rptr; 17760 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17761 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 17762 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17763 if (mp != NULL) 17764 putnext(rq, mp); 17765 return; 17766 } 17767 switch (conn_res->PRIM_type) { 17768 case O_T_CONN_RES: 17769 case T_CONN_RES: 17770 /* 17771 * We pass up an err ack if allocb fails. This will 17772 * cause sockfs to issue a T_DISCON_REQ which will cause 17773 * tcp_eager_blowoff to be called. sockfs will then call 17774 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 17775 * we need to do the allocb up here because we have to 17776 * make sure rq->q_qinfo->qi_qclose still points to the 17777 * correct function (tcp_tpi_close_accept) in case allocb 17778 * fails. 17779 */ 17780 bcopy(mp->b_rptr + conn_res->OPT_offset, 17781 &eager, conn_res->OPT_length); 17782 PRIM_type = conn_res->PRIM_type; 17783 mp->b_datap->db_type = M_PCPROTO; 17784 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 17785 ok = (struct T_ok_ack *)mp->b_rptr; 17786 ok->PRIM_type = T_OK_ACK; 17787 ok->CORRECT_prim = PRIM_type; 17788 econnp = eager->tcp_connp; 17789 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 17790 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 17791 eager->tcp_rq = rq; 17792 eager->tcp_wq = q; 17793 rq->q_ptr = econnp; 17794 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 17795 q->q_ptr = econnp; 17796 q->q_qinfo = &tcp_winit; 17797 listener = eager->tcp_listener; 17798 17799 if (tcp_accept_common(listener->tcp_connp, 17800 econnp, cr) < 0) { 17801 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17802 if (mp != NULL) 17803 putnext(rq, mp); 17804 return; 17805 } 17806 17807 /* 17808 * Send the new local address also up to sockfs. There 17809 * should already be enough space in the mp that came 17810 * down from soaccept(). 17811 */ 17812 if (eager->tcp_family == AF_INET) { 17813 sin_t *sin; 17814 17815 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17816 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 17817 sin = (sin_t *)mp->b_wptr; 17818 mp->b_wptr += sizeof (sin_t); 17819 sin->sin_family = AF_INET; 17820 sin->sin_port = eager->tcp_lport; 17821 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 17822 } else { 17823 sin6_t *sin6; 17824 17825 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17826 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 17827 sin6 = (sin6_t *)mp->b_wptr; 17828 mp->b_wptr += sizeof (sin6_t); 17829 sin6->sin6_family = AF_INET6; 17830 sin6->sin6_port = eager->tcp_lport; 17831 if (eager->tcp_ipversion == IPV4_VERSION) { 17832 sin6->sin6_flowinfo = 0; 17833 IN6_IPADDR_TO_V4MAPPED( 17834 eager->tcp_ipha->ipha_src, 17835 &sin6->sin6_addr); 17836 } else { 17837 ASSERT(eager->tcp_ip6h != NULL); 17838 sin6->sin6_flowinfo = 17839 eager->tcp_ip6h->ip6_vcf & 17840 ~IPV6_VERS_AND_FLOW_MASK; 17841 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 17842 } 17843 sin6->sin6_scope_id = 0; 17844 sin6->__sin6_src_id = 0; 17845 } 17846 17847 putnext(rq, mp); 17848 return; 17849 default: 17850 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 17851 if (mp != NULL) 17852 putnext(rq, mp); 17853 return; 17854 } 17855 } 17856 17857 static int 17858 tcp_do_getsockname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 17859 { 17860 sin_t *sin = (sin_t *)sa; 17861 sin6_t *sin6 = (sin6_t *)sa; 17862 17863 switch (tcp->tcp_family) { 17864 case AF_INET: 17865 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 17866 17867 if (*salenp < sizeof (sin_t)) 17868 return (EINVAL); 17869 17870 *sin = sin_null; 17871 sin->sin_family = AF_INET; 17872 if (tcp->tcp_state >= TCPS_BOUND) { 17873 sin->sin_port = tcp->tcp_lport; 17874 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 17875 } 17876 *salenp = sizeof (sin_t); 17877 break; 17878 17879 case AF_INET6: 17880 if (*salenp < sizeof (sin6_t)) 17881 return (EINVAL); 17882 17883 *sin6 = sin6_null; 17884 sin6->sin6_family = AF_INET6; 17885 if (tcp->tcp_state >= TCPS_BOUND) { 17886 sin6->sin6_port = tcp->tcp_lport; 17887 if (tcp->tcp_ipversion == IPV4_VERSION) { 17888 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 17889 &sin6->sin6_addr); 17890 } else { 17891 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 17892 } 17893 } 17894 *salenp = sizeof (sin6_t); 17895 break; 17896 } 17897 17898 return (0); 17899 } 17900 17901 static int 17902 tcp_do_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 17903 { 17904 sin_t *sin = (sin_t *)sa; 17905 sin6_t *sin6 = (sin6_t *)sa; 17906 17907 if (tcp->tcp_state < TCPS_SYN_RCVD) 17908 return (ENOTCONN); 17909 17910 switch (tcp->tcp_family) { 17911 case AF_INET: 17912 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 17913 17914 if (*salenp < sizeof (sin_t)) 17915 return (EINVAL); 17916 17917 *sin = sin_null; 17918 sin->sin_family = AF_INET; 17919 sin->sin_port = tcp->tcp_fport; 17920 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 17921 sin->sin_addr.s_addr); 17922 *salenp = sizeof (sin_t); 17923 break; 17924 17925 case AF_INET6: 17926 if (*salenp < sizeof (sin6_t)) 17927 return (EINVAL); 17928 17929 *sin6 = sin6_null; 17930 sin6->sin6_family = AF_INET6; 17931 sin6->sin6_port = tcp->tcp_fport; 17932 sin6->sin6_addr = tcp->tcp_remote_v6; 17933 if (tcp->tcp_ipversion == IPV6_VERSION) { 17934 sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf & 17935 ~IPV6_VERS_AND_FLOW_MASK; 17936 } 17937 *salenp = sizeof (sin6_t); 17938 break; 17939 } 17940 17941 return (0); 17942 } 17943 17944 /* 17945 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 17946 */ 17947 static void 17948 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 17949 { 17950 void *data; 17951 mblk_t *datamp = mp->b_cont; 17952 tcp_t *tcp = Q_TO_TCP(q); 17953 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 17954 17955 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 17956 cmdp->cb_error = EPROTO; 17957 qreply(q, mp); 17958 return; 17959 } 17960 17961 data = datamp->b_rptr; 17962 17963 switch (cmdp->cb_cmd) { 17964 case TI_GETPEERNAME: 17965 cmdp->cb_error = tcp_do_getpeername(tcp, data, &cmdp->cb_len); 17966 break; 17967 case TI_GETMYNAME: 17968 cmdp->cb_error = tcp_do_getsockname(tcp, data, &cmdp->cb_len); 17969 break; 17970 default: 17971 cmdp->cb_error = EINVAL; 17972 break; 17973 } 17974 17975 qreply(q, mp); 17976 } 17977 17978 void 17979 tcp_wput(queue_t *q, mblk_t *mp) 17980 { 17981 conn_t *connp = Q_TO_CONN(q); 17982 tcp_t *tcp; 17983 void (*output_proc)(); 17984 t_scalar_t type; 17985 uchar_t *rptr; 17986 struct iocblk *iocp; 17987 size_t size; 17988 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 17989 17990 ASSERT(connp->conn_ref >= 2); 17991 17992 switch (DB_TYPE(mp)) { 17993 case M_DATA: 17994 tcp = connp->conn_tcp; 17995 ASSERT(tcp != NULL); 17996 17997 size = msgdsize(mp); 17998 17999 mutex_enter(&tcp->tcp_non_sq_lock); 18000 tcp->tcp_squeue_bytes += size; 18001 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18002 tcp_setqfull(tcp); 18003 } 18004 mutex_exit(&tcp->tcp_non_sq_lock); 18005 18006 CONN_INC_REF(connp); 18007 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp, 18008 tcp_squeue_flag, SQTAG_TCP_OUTPUT); 18009 return; 18010 18011 case M_CMD: 18012 tcp_wput_cmdblk(q, mp); 18013 return; 18014 18015 case M_PROTO: 18016 case M_PCPROTO: 18017 /* 18018 * if it is a snmp message, don't get behind the squeue 18019 */ 18020 tcp = connp->conn_tcp; 18021 rptr = mp->b_rptr; 18022 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18023 type = ((union T_primitives *)rptr)->type; 18024 } else { 18025 if (tcp->tcp_debug) { 18026 (void) strlog(TCP_MOD_ID, 0, 1, 18027 SL_ERROR|SL_TRACE, 18028 "tcp_wput_proto, dropping one..."); 18029 } 18030 freemsg(mp); 18031 return; 18032 } 18033 if (type == T_SVR4_OPTMGMT_REQ) { 18034 /* 18035 * All Solaris components should pass a db_credp 18036 * for this TPI message, hence we ASSERT. 18037 * But in case there is some other M_PROTO that looks 18038 * like a TPI message sent by some other kernel 18039 * component, we check and return an error. 18040 */ 18041 cred_t *cr = msg_getcred(mp, NULL); 18042 18043 ASSERT(cr != NULL); 18044 if (cr == NULL) { 18045 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 18046 return; 18047 } 18048 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 18049 cr)) { 18050 /* 18051 * This was a SNMP request 18052 */ 18053 return; 18054 } else { 18055 output_proc = tcp_wput_proto; 18056 } 18057 } else { 18058 output_proc = tcp_wput_proto; 18059 } 18060 break; 18061 case M_IOCTL: 18062 /* 18063 * Most ioctls can be processed right away without going via 18064 * squeues - process them right here. Those that do require 18065 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18066 * are processed by tcp_wput_ioctl(). 18067 */ 18068 iocp = (struct iocblk *)mp->b_rptr; 18069 tcp = connp->conn_tcp; 18070 18071 switch (iocp->ioc_cmd) { 18072 case TCP_IOC_ABORT_CONN: 18073 tcp_ioctl_abort_conn(q, mp); 18074 return; 18075 case TI_GETPEERNAME: 18076 case TI_GETMYNAME: 18077 mi_copyin(q, mp, NULL, 18078 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18079 return; 18080 case ND_SET: 18081 /* nd_getset does the necessary checks */ 18082 case ND_GET: 18083 if (!nd_getset(q, tcps->tcps_g_nd, mp)) { 18084 CALL_IP_WPUT(connp, q, mp); 18085 return; 18086 } 18087 qreply(q, mp); 18088 return; 18089 case TCP_IOC_DEFAULT_Q: 18090 /* 18091 * Wants to be the default wq. Check the credentials 18092 * first, the rest is executed via squeue. 18093 */ 18094 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 18095 iocp->ioc_error = EPERM; 18096 iocp->ioc_count = 0; 18097 mp->b_datap->db_type = M_IOCACK; 18098 qreply(q, mp); 18099 return; 18100 } 18101 output_proc = tcp_wput_ioctl; 18102 break; 18103 default: 18104 output_proc = tcp_wput_ioctl; 18105 break; 18106 } 18107 break; 18108 default: 18109 output_proc = tcp_wput_nondata; 18110 break; 18111 } 18112 18113 CONN_INC_REF(connp); 18114 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp, 18115 tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER); 18116 } 18117 18118 /* 18119 * Initial STREAMS write side put() procedure for sockets. It tries to 18120 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18121 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18122 * are handled by tcp_wput() as usual. 18123 * 18124 * All further messages will also be handled by tcp_wput() because we cannot 18125 * be sure that the above short cut is safe later. 18126 */ 18127 static void 18128 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18129 { 18130 conn_t *connp = Q_TO_CONN(wq); 18131 tcp_t *tcp = connp->conn_tcp; 18132 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18133 18134 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18135 wq->q_qinfo = &tcp_winit; 18136 18137 ASSERT(IPCL_IS_TCP(connp)); 18138 ASSERT(TCP_IS_SOCKET(tcp)); 18139 18140 if (DB_TYPE(mp) == M_PCPROTO && 18141 MBLKL(mp) == sizeof (struct T_capability_req) && 18142 car->PRIM_type == T_CAPABILITY_REQ) { 18143 tcp_capability_req(tcp, mp); 18144 return; 18145 } 18146 18147 tcp_wput(wq, mp); 18148 } 18149 18150 /* ARGSUSED */ 18151 static void 18152 tcp_wput_fallback(queue_t *wq, mblk_t *mp) 18153 { 18154 #ifdef DEBUG 18155 cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n"); 18156 #endif 18157 freemsg(mp); 18158 } 18159 18160 static boolean_t 18161 tcp_zcopy_check(tcp_t *tcp) 18162 { 18163 conn_t *connp = tcp->tcp_connp; 18164 ire_t *ire; 18165 boolean_t zc_enabled = B_FALSE; 18166 tcp_stack_t *tcps = tcp->tcp_tcps; 18167 18168 if (do_tcpzcopy == 2) 18169 zc_enabled = B_TRUE; 18170 else if (tcp->tcp_ipversion == IPV4_VERSION && 18171 IPCL_IS_CONNECTED(connp) && 18172 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18173 connp->conn_dontroute == 0 && 18174 !connp->conn_nexthop_set && 18175 connp->conn_outgoing_ill == NULL && 18176 do_tcpzcopy == 1) { 18177 /* 18178 * the checks above closely resemble the fast path checks 18179 * in tcp_send_data(). 18180 */ 18181 mutex_enter(&connp->conn_lock); 18182 ire = connp->conn_ire_cache; 18183 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18184 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18185 IRE_REFHOLD(ire); 18186 if (ire->ire_stq != NULL) { 18187 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18188 18189 zc_enabled = ill && (ill->ill_capabilities & 18190 ILL_CAPAB_ZEROCOPY) && 18191 (ill->ill_zerocopy_capab-> 18192 ill_zerocopy_flags != 0); 18193 } 18194 IRE_REFRELE(ire); 18195 } 18196 mutex_exit(&connp->conn_lock); 18197 } 18198 tcp->tcp_snd_zcopy_on = zc_enabled; 18199 if (!TCP_IS_DETACHED(tcp)) { 18200 if (zc_enabled) { 18201 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 18202 ZCVMSAFE); 18203 TCP_STAT(tcps, tcp_zcopy_on); 18204 } else { 18205 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 18206 ZCVMUNSAFE); 18207 TCP_STAT(tcps, tcp_zcopy_off); 18208 } 18209 } 18210 return (zc_enabled); 18211 } 18212 18213 static mblk_t * 18214 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18215 { 18216 tcp_stack_t *tcps = tcp->tcp_tcps; 18217 18218 if (do_tcpzcopy == 2) 18219 return (bp); 18220 else if (tcp->tcp_snd_zcopy_on) { 18221 tcp->tcp_snd_zcopy_on = B_FALSE; 18222 if (!TCP_IS_DETACHED(tcp)) { 18223 (void) proto_set_tx_copyopt(tcp->tcp_rq, tcp->tcp_connp, 18224 ZCVMUNSAFE); 18225 TCP_STAT(tcps, tcp_zcopy_disable); 18226 } 18227 } 18228 return (tcp_zcopy_backoff(tcp, bp, 0)); 18229 } 18230 18231 /* 18232 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18233 * the original desballoca'ed segmapped mblk. 18234 */ 18235 static mblk_t * 18236 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18237 { 18238 mblk_t *head, *tail, *nbp; 18239 tcp_stack_t *tcps = tcp->tcp_tcps; 18240 18241 if (IS_VMLOANED_MBLK(bp)) { 18242 TCP_STAT(tcps, tcp_zcopy_backoff); 18243 if ((head = copyb(bp)) == NULL) { 18244 /* fail to backoff; leave it for the next backoff */ 18245 tcp->tcp_xmit_zc_clean = B_FALSE; 18246 return (bp); 18247 } 18248 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18249 if (fix_xmitlist) 18250 tcp_zcopy_notify(tcp); 18251 else 18252 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18253 } 18254 nbp = bp->b_cont; 18255 if (fix_xmitlist) { 18256 head->b_prev = bp->b_prev; 18257 head->b_next = bp->b_next; 18258 if (tcp->tcp_xmit_tail == bp) 18259 tcp->tcp_xmit_tail = head; 18260 } 18261 bp->b_next = NULL; 18262 bp->b_prev = NULL; 18263 freeb(bp); 18264 } else { 18265 head = bp; 18266 nbp = bp->b_cont; 18267 } 18268 tail = head; 18269 while (nbp) { 18270 if (IS_VMLOANED_MBLK(nbp)) { 18271 TCP_STAT(tcps, tcp_zcopy_backoff); 18272 if ((tail->b_cont = copyb(nbp)) == NULL) { 18273 tcp->tcp_xmit_zc_clean = B_FALSE; 18274 tail->b_cont = nbp; 18275 return (head); 18276 } 18277 tail = tail->b_cont; 18278 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18279 if (fix_xmitlist) 18280 tcp_zcopy_notify(tcp); 18281 else 18282 tail->b_datap->db_struioflag |= 18283 STRUIO_ZCNOTIFY; 18284 } 18285 bp = nbp; 18286 nbp = nbp->b_cont; 18287 if (fix_xmitlist) { 18288 tail->b_prev = bp->b_prev; 18289 tail->b_next = bp->b_next; 18290 if (tcp->tcp_xmit_tail == bp) 18291 tcp->tcp_xmit_tail = tail; 18292 } 18293 bp->b_next = NULL; 18294 bp->b_prev = NULL; 18295 freeb(bp); 18296 } else { 18297 tail->b_cont = nbp; 18298 tail = nbp; 18299 nbp = nbp->b_cont; 18300 } 18301 } 18302 if (fix_xmitlist) { 18303 tcp->tcp_xmit_last = tail; 18304 tcp->tcp_xmit_zc_clean = B_TRUE; 18305 } 18306 return (head); 18307 } 18308 18309 static void 18310 tcp_zcopy_notify(tcp_t *tcp) 18311 { 18312 struct stdata *stp; 18313 conn_t *connp; 18314 18315 if (tcp->tcp_detached) 18316 return; 18317 connp = tcp->tcp_connp; 18318 if (IPCL_IS_NONSTR(connp)) { 18319 (*connp->conn_upcalls->su_zcopy_notify) 18320 (connp->conn_upper_handle); 18321 return; 18322 } 18323 stp = STREAM(tcp->tcp_rq); 18324 mutex_enter(&stp->sd_lock); 18325 stp->sd_flag |= STZCNOTIFY; 18326 cv_broadcast(&stp->sd_zcopy_wait); 18327 mutex_exit(&stp->sd_lock); 18328 } 18329 18330 static boolean_t 18331 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 18332 { 18333 ire_t *ire; 18334 conn_t *connp = tcp->tcp_connp; 18335 tcp_stack_t *tcps = tcp->tcp_tcps; 18336 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18337 18338 mutex_enter(&connp->conn_lock); 18339 ire = connp->conn_ire_cache; 18340 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18341 18342 if ((ire != NULL) && 18343 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 18344 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 18345 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18346 IRE_REFHOLD(ire); 18347 mutex_exit(&connp->conn_lock); 18348 } else { 18349 boolean_t cached = B_FALSE; 18350 ts_label_t *tsl; 18351 18352 /* force a recheck later on */ 18353 tcp->tcp_ire_ill_check_done = B_FALSE; 18354 18355 TCP_DBGSTAT(tcps, tcp_ire_null1); 18356 connp->conn_ire_cache = NULL; 18357 mutex_exit(&connp->conn_lock); 18358 18359 if (ire != NULL) 18360 IRE_REFRELE_NOTR(ire); 18361 18362 tsl = crgetlabel(CONN_CRED(connp)); 18363 ire = (dst ? 18364 ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) : 18365 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 18366 connp->conn_zoneid, tsl, ipst)); 18367 18368 if (ire == NULL) { 18369 TCP_STAT(tcps, tcp_ire_null); 18370 return (B_FALSE); 18371 } 18372 18373 IRE_REFHOLD_NOTR(ire); 18374 18375 mutex_enter(&connp->conn_lock); 18376 if (CONN_CACHE_IRE(connp)) { 18377 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18378 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18379 TCP_CHECK_IREINFO(tcp, ire); 18380 connp->conn_ire_cache = ire; 18381 cached = B_TRUE; 18382 } 18383 rw_exit(&ire->ire_bucket->irb_lock); 18384 } 18385 mutex_exit(&connp->conn_lock); 18386 18387 /* 18388 * We can continue to use the ire but since it was 18389 * not cached, we should drop the extra reference. 18390 */ 18391 if (!cached) 18392 IRE_REFRELE_NOTR(ire); 18393 18394 /* 18395 * Rampart note: no need to select a new label here, since 18396 * labels are not allowed to change during the life of a TCP 18397 * connection. 18398 */ 18399 } 18400 18401 *irep = ire; 18402 18403 return (B_TRUE); 18404 } 18405 18406 /* 18407 * Called from tcp_send() or tcp_send_data() to find workable IRE. 18408 * 18409 * 0 = success; 18410 * 1 = failed to find ire and ill. 18411 */ 18412 static boolean_t 18413 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 18414 { 18415 ipha_t *ipha; 18416 ipaddr_t dst; 18417 ire_t *ire; 18418 ill_t *ill; 18419 mblk_t *ire_fp_mp; 18420 tcp_stack_t *tcps = tcp->tcp_tcps; 18421 18422 if (mp != NULL) 18423 ipha = (ipha_t *)mp->b_rptr; 18424 else 18425 ipha = tcp->tcp_ipha; 18426 dst = ipha->ipha_dst; 18427 18428 if (!tcp_send_find_ire(tcp, &dst, &ire)) 18429 return (B_FALSE); 18430 18431 if ((ire->ire_flags & RTF_MULTIRT) || 18432 (ire->ire_stq == NULL) || 18433 (ire->ire_nce == NULL) || 18434 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 18435 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 18436 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 18437 TCP_STAT(tcps, tcp_ip_ire_send); 18438 IRE_REFRELE(ire); 18439 return (B_FALSE); 18440 } 18441 18442 ill = ire_to_ill(ire); 18443 ASSERT(ill != NULL); 18444 18445 if (!tcp->tcp_ire_ill_check_done) { 18446 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18447 tcp->tcp_ire_ill_check_done = B_TRUE; 18448 } 18449 18450 *irep = ire; 18451 *illp = ill; 18452 18453 return (B_TRUE); 18454 } 18455 18456 static void 18457 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 18458 { 18459 ipha_t *ipha; 18460 ipaddr_t src; 18461 ipaddr_t dst; 18462 uint32_t cksum; 18463 ire_t *ire; 18464 uint16_t *up; 18465 ill_t *ill; 18466 conn_t *connp = tcp->tcp_connp; 18467 uint32_t hcksum_txflags = 0; 18468 mblk_t *ire_fp_mp; 18469 uint_t ire_fp_mp_len; 18470 tcp_stack_t *tcps = tcp->tcp_tcps; 18471 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18472 cred_t *cr; 18473 pid_t cpid; 18474 18475 ASSERT(DB_TYPE(mp) == M_DATA); 18476 18477 /* 18478 * Here we need to handle the overloading of the cred_t for 18479 * both getpeerucred and TX. 18480 * If this is a SYN then the caller already set db_credp so 18481 * that getpeerucred will work. But if TX is in use we might have 18482 * a conn_effective_cred which is different, and we need to use that 18483 * cred to make TX use the correct label and label dependent route. 18484 */ 18485 if (is_system_labeled()) { 18486 cr = msg_getcred(mp, &cpid); 18487 if (cr == NULL || connp->conn_effective_cred != NULL) 18488 mblk_setcred(mp, CONN_CRED(connp), cpid); 18489 } 18490 18491 ipha = (ipha_t *)mp->b_rptr; 18492 src = ipha->ipha_src; 18493 dst = ipha->ipha_dst; 18494 18495 ASSERT(q != NULL); 18496 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 18497 18498 /* 18499 * Drop off fast path for IPv6 and also if options are present or 18500 * we need to resolve a TS label. 18501 */ 18502 if (tcp->tcp_ipversion != IPV4_VERSION || 18503 !IPCL_IS_CONNECTED(connp) || 18504 !CONN_IS_LSO_MD_FASTPATH(connp) || 18505 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 18506 !connp->conn_ulp_labeled || 18507 ipha->ipha_ident == IP_HDR_INCLUDED || 18508 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 18509 IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 18510 if (tcp->tcp_snd_zcopy_aware) 18511 mp = tcp_zcopy_disable(tcp, mp); 18512 TCP_STAT(tcps, tcp_ip_send); 18513 CALL_IP_WPUT(connp, q, mp); 18514 return; 18515 } 18516 18517 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 18518 if (tcp->tcp_snd_zcopy_aware) 18519 mp = tcp_zcopy_backoff(tcp, mp, 0); 18520 CALL_IP_WPUT(connp, q, mp); 18521 return; 18522 } 18523 ire_fp_mp = ire->ire_nce->nce_fp_mp; 18524 ire_fp_mp_len = MBLKL(ire_fp_mp); 18525 18526 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 18527 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 18528 #ifndef _BIG_ENDIAN 18529 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 18530 #endif 18531 18532 /* 18533 * Check to see if we need to re-enable LSO/MDT for this connection 18534 * because it was previously disabled due to changes in the ill; 18535 * note that by doing it here, this re-enabling only applies when 18536 * the packet is not dispatched through CALL_IP_WPUT(). 18537 * 18538 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 18539 * case, since that's how we ended up here. For IPv6, we do the 18540 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 18541 */ 18542 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 18543 /* 18544 * Restore LSO for this connection, so that next time around 18545 * it is eligible to go through tcp_lsosend() path again. 18546 */ 18547 TCP_STAT(tcps, tcp_lso_enabled); 18548 tcp->tcp_lso = B_TRUE; 18549 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 18550 "interface %s\n", (void *)connp, ill->ill_name)); 18551 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 18552 /* 18553 * Restore MDT for this connection, so that next time around 18554 * it is eligible to go through tcp_multisend() path again. 18555 */ 18556 TCP_STAT(tcps, tcp_mdt_conn_resumed1); 18557 tcp->tcp_mdt = B_TRUE; 18558 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 18559 "interface %s\n", (void *)connp, ill->ill_name)); 18560 } 18561 18562 if (tcp->tcp_snd_zcopy_aware) { 18563 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 18564 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 18565 mp = tcp_zcopy_disable(tcp, mp); 18566 /* 18567 * we shouldn't need to reset ipha as the mp containing 18568 * ipha should never be a zero-copy mp. 18569 */ 18570 } 18571 18572 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 18573 ASSERT(ill->ill_hcksum_capab != NULL); 18574 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 18575 } 18576 18577 /* pseudo-header checksum (do it in parts for IP header checksum) */ 18578 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 18579 18580 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 18581 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 18582 18583 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 18584 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 18585 18586 /* Software checksum? */ 18587 if (DB_CKSUMFLAGS(mp) == 0) { 18588 TCP_STAT(tcps, tcp_out_sw_cksum); 18589 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 18590 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 18591 } 18592 18593 /* Calculate IP header checksum if hardware isn't capable */ 18594 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 18595 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 18596 ((uint16_t *)ipha)[4]); 18597 } 18598 18599 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 18600 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 18601 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 18602 18603 UPDATE_OB_PKT_COUNT(ire); 18604 ire->ire_last_used_time = lbolt; 18605 18606 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 18607 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 18608 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 18609 ntohs(ipha->ipha_length)); 18610 18611 DTRACE_PROBE4(ip4__physical__out__start, 18612 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 18613 FW_HOOKS(ipst->ips_ip4_physical_out_event, 18614 ipst->ips_ipv4firewall_physical_out, 18615 NULL, ill, ipha, mp, mp, 0, ipst); 18616 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 18617 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 18618 18619 if (mp != NULL) { 18620 if (ipst->ips_ipobs_enabled) { 18621 zoneid_t szone; 18622 18623 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 18624 ipst, ALL_ZONES); 18625 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 18626 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst); 18627 } 18628 18629 ILL_SEND_TX(ill, ire, connp, mp, 0, NULL); 18630 } 18631 18632 IRE_REFRELE(ire); 18633 } 18634 18635 /* 18636 * This handles the case when the receiver has shrunk its win. Per RFC 1122 18637 * if the receiver shrinks the window, i.e. moves the right window to the 18638 * left, the we should not send new data, but should retransmit normally the 18639 * old unacked data between suna and suna + swnd. We might has sent data 18640 * that is now outside the new window, pretend that we didn't send it. 18641 */ 18642 static void 18643 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 18644 { 18645 uint32_t snxt = tcp->tcp_snxt; 18646 18647 ASSERT(shrunk_count > 0); 18648 18649 if (!tcp->tcp_is_wnd_shrnk) { 18650 tcp->tcp_snxt_shrunk = snxt; 18651 tcp->tcp_is_wnd_shrnk = B_TRUE; 18652 } else if (SEQ_GT(snxt, tcp->tcp_snxt_shrunk)) { 18653 tcp->tcp_snxt_shrunk = snxt; 18654 } 18655 18656 /* Pretend we didn't send the data outside the window */ 18657 snxt -= shrunk_count; 18658 18659 /* Reset all the values per the now shrunk window */ 18660 tcp_update_xmit_tail(tcp, snxt); 18661 tcp->tcp_unsent += shrunk_count; 18662 18663 /* 18664 * If the SACK option is set, delete the entire list of 18665 * notsack'ed blocks. 18666 */ 18667 if (tcp->tcp_sack_info != NULL) { 18668 if (tcp->tcp_notsack_list != NULL) 18669 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 18670 } 18671 18672 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 18673 /* 18674 * Make sure the timer is running so that we will probe a zero 18675 * window. 18676 */ 18677 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18678 } 18679 18680 18681 /* 18682 * The TCP normal data output path. 18683 * NOTE: the logic of the fast path is duplicated from this function. 18684 */ 18685 static void 18686 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 18687 { 18688 int len; 18689 mblk_t *local_time; 18690 mblk_t *mp1; 18691 uint32_t snxt; 18692 int tail_unsent; 18693 int tcpstate; 18694 int usable = 0; 18695 mblk_t *xmit_tail; 18696 queue_t *q = tcp->tcp_wq; 18697 int32_t mss; 18698 int32_t num_sack_blk = 0; 18699 int32_t tcp_hdr_len; 18700 int32_t tcp_tcp_hdr_len; 18701 int mdt_thres; 18702 int rc; 18703 tcp_stack_t *tcps = tcp->tcp_tcps; 18704 ip_stack_t *ipst; 18705 18706 tcpstate = tcp->tcp_state; 18707 if (mp == NULL) { 18708 /* 18709 * tcp_wput_data() with NULL mp should only be called when 18710 * there is unsent data. 18711 */ 18712 ASSERT(tcp->tcp_unsent > 0); 18713 /* Really tacky... but we need this for detached closes. */ 18714 len = tcp->tcp_unsent; 18715 goto data_null; 18716 } 18717 18718 #if CCS_STATS 18719 wrw_stats.tot.count++; 18720 wrw_stats.tot.bytes += msgdsize(mp); 18721 #endif 18722 ASSERT(mp->b_datap->db_type == M_DATA); 18723 /* 18724 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 18725 * or before a connection attempt has begun. 18726 */ 18727 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 18728 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18729 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18730 #ifdef DEBUG 18731 cmn_err(CE_WARN, 18732 "tcp_wput_data: data after ordrel, %s", 18733 tcp_display(tcp, NULL, 18734 DISP_ADDR_AND_PORT)); 18735 #else 18736 if (tcp->tcp_debug) { 18737 (void) strlog(TCP_MOD_ID, 0, 1, 18738 SL_TRACE|SL_ERROR, 18739 "tcp_wput_data: data after ordrel, %s\n", 18740 tcp_display(tcp, NULL, 18741 DISP_ADDR_AND_PORT)); 18742 } 18743 #endif /* DEBUG */ 18744 } 18745 if (tcp->tcp_snd_zcopy_aware && 18746 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 18747 tcp_zcopy_notify(tcp); 18748 freemsg(mp); 18749 mutex_enter(&tcp->tcp_non_sq_lock); 18750 if (tcp->tcp_flow_stopped && 18751 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18752 tcp_clrqfull(tcp); 18753 } 18754 mutex_exit(&tcp->tcp_non_sq_lock); 18755 return; 18756 } 18757 18758 /* Strip empties */ 18759 for (;;) { 18760 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 18761 (uintptr_t)INT_MAX); 18762 len = (int)(mp->b_wptr - mp->b_rptr); 18763 if (len > 0) 18764 break; 18765 mp1 = mp; 18766 mp = mp->b_cont; 18767 freeb(mp1); 18768 if (!mp) { 18769 return; 18770 } 18771 } 18772 18773 /* If we are the first on the list ... */ 18774 if (tcp->tcp_xmit_head == NULL) { 18775 tcp->tcp_xmit_head = mp; 18776 tcp->tcp_xmit_tail = mp; 18777 tcp->tcp_xmit_tail_unsent = len; 18778 } else { 18779 /* If tiny tx and room in txq tail, pullup to save mblks. */ 18780 struct datab *dp; 18781 18782 mp1 = tcp->tcp_xmit_last; 18783 if (len < tcp_tx_pull_len && 18784 (dp = mp1->b_datap)->db_ref == 1 && 18785 dp->db_lim - mp1->b_wptr >= len) { 18786 ASSERT(len > 0); 18787 ASSERT(!mp1->b_cont); 18788 if (len == 1) { 18789 *mp1->b_wptr++ = *mp->b_rptr; 18790 } else { 18791 bcopy(mp->b_rptr, mp1->b_wptr, len); 18792 mp1->b_wptr += len; 18793 } 18794 if (mp1 == tcp->tcp_xmit_tail) 18795 tcp->tcp_xmit_tail_unsent += len; 18796 mp1->b_cont = mp->b_cont; 18797 if (tcp->tcp_snd_zcopy_aware && 18798 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 18799 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18800 freeb(mp); 18801 mp = mp1; 18802 } else { 18803 tcp->tcp_xmit_last->b_cont = mp; 18804 } 18805 len += tcp->tcp_unsent; 18806 } 18807 18808 /* Tack on however many more positive length mblks we have */ 18809 if ((mp1 = mp->b_cont) != NULL) { 18810 do { 18811 int tlen; 18812 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 18813 (uintptr_t)INT_MAX); 18814 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 18815 if (tlen <= 0) { 18816 mp->b_cont = mp1->b_cont; 18817 freeb(mp1); 18818 } else { 18819 len += tlen; 18820 mp = mp1; 18821 } 18822 } while ((mp1 = mp->b_cont) != NULL); 18823 } 18824 tcp->tcp_xmit_last = mp; 18825 tcp->tcp_unsent = len; 18826 18827 if (urgent) 18828 usable = 1; 18829 18830 data_null: 18831 snxt = tcp->tcp_snxt; 18832 xmit_tail = tcp->tcp_xmit_tail; 18833 tail_unsent = tcp->tcp_xmit_tail_unsent; 18834 18835 /* 18836 * Note that tcp_mss has been adjusted to take into account the 18837 * timestamp option if applicable. Because SACK options do not 18838 * appear in every TCP segments and they are of variable lengths, 18839 * they cannot be included in tcp_mss. Thus we need to calculate 18840 * the actual segment length when we need to send a segment which 18841 * includes SACK options. 18842 */ 18843 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 18844 int32_t opt_len; 18845 18846 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 18847 tcp->tcp_num_sack_blk); 18848 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 18849 2 + TCPOPT_HEADER_LEN; 18850 mss = tcp->tcp_mss - opt_len; 18851 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 18852 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 18853 } else { 18854 mss = tcp->tcp_mss; 18855 tcp_hdr_len = tcp->tcp_hdr_len; 18856 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 18857 } 18858 18859 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 18860 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 18861 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 18862 } 18863 if (tcpstate == TCPS_SYN_RCVD) { 18864 /* 18865 * The three-way connection establishment handshake is not 18866 * complete yet. We want to queue the data for transmission 18867 * after entering ESTABLISHED state (RFC793). A jump to 18868 * "done" label effectively leaves data on the queue. 18869 */ 18870 goto done; 18871 } else { 18872 int usable_r; 18873 18874 /* 18875 * In the special case when cwnd is zero, which can only 18876 * happen if the connection is ECN capable, return now. 18877 * New segments is sent using tcp_timer(). The timer 18878 * is set in tcp_rput_data(). 18879 */ 18880 if (tcp->tcp_cwnd == 0) { 18881 /* 18882 * Note that tcp_cwnd is 0 before 3-way handshake is 18883 * finished. 18884 */ 18885 ASSERT(tcp->tcp_ecn_ok || 18886 tcp->tcp_state < TCPS_ESTABLISHED); 18887 return; 18888 } 18889 18890 /* NOTE: trouble if xmitting while SYN not acked? */ 18891 usable_r = snxt - tcp->tcp_suna; 18892 usable_r = tcp->tcp_swnd - usable_r; 18893 18894 /* 18895 * Check if the receiver has shrunk the window. If 18896 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 18897 * cannot be set as there is unsent data, so FIN cannot 18898 * be sent out. Otherwise, we need to take into account 18899 * of FIN as it consumes an "invisible" sequence number. 18900 */ 18901 ASSERT(tcp->tcp_fin_sent == 0); 18902 if (usable_r < 0) { 18903 /* 18904 * The receiver has shrunk the window and we have sent 18905 * -usable_r date beyond the window, re-adjust. 18906 * 18907 * If TCP window scaling is enabled, there can be 18908 * round down error as the advertised receive window 18909 * is actually right shifted n bits. This means that 18910 * the lower n bits info is wiped out. It will look 18911 * like the window is shrunk. Do a check here to 18912 * see if the shrunk amount is actually within the 18913 * error in window calculation. If it is, just 18914 * return. Note that this check is inside the 18915 * shrunk window check. This makes sure that even 18916 * though tcp_process_shrunk_swnd() is not called, 18917 * we will stop further processing. 18918 */ 18919 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 18920 tcp_process_shrunk_swnd(tcp, -usable_r); 18921 } 18922 return; 18923 } 18924 18925 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 18926 if (tcp->tcp_swnd > tcp->tcp_cwnd) 18927 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 18928 18929 /* usable = MIN(usable, unsent) */ 18930 if (usable_r > len) 18931 usable_r = len; 18932 18933 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 18934 if (usable_r > 0) { 18935 usable = usable_r; 18936 } else { 18937 /* Bypass all other unnecessary processing. */ 18938 goto done; 18939 } 18940 } 18941 18942 local_time = (mblk_t *)lbolt; 18943 18944 /* 18945 * "Our" Nagle Algorithm. This is not the same as in the old 18946 * BSD. This is more in line with the true intent of Nagle. 18947 * 18948 * The conditions are: 18949 * 1. The amount of unsent data (or amount of data which can be 18950 * sent, whichever is smaller) is less than Nagle limit. 18951 * 2. The last sent size is also less than Nagle limit. 18952 * 3. There is unack'ed data. 18953 * 4. Urgent pointer is not set. Send urgent data ignoring the 18954 * Nagle algorithm. This reduces the probability that urgent 18955 * bytes get "merged" together. 18956 * 5. The app has not closed the connection. This eliminates the 18957 * wait time of the receiving side waiting for the last piece of 18958 * (small) data. 18959 * 18960 * If all are satisified, exit without sending anything. Note 18961 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 18962 * the smaller of 1 MSS and global tcp_naglim_def (default to be 18963 * 4095). 18964 */ 18965 if (usable < (int)tcp->tcp_naglim && 18966 tcp->tcp_naglim > tcp->tcp_last_sent_len && 18967 snxt != tcp->tcp_suna && 18968 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 18969 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 18970 goto done; 18971 } 18972 18973 /* 18974 * If tcp_zero_win_probe is not set and the tcp->tcp_cork option 18975 * is set, then we have to force TCP not to send partial segment 18976 * (smaller than MSS bytes). We are calculating the usable now 18977 * based on full mss and will save the rest of remaining data for 18978 * later. When tcp_zero_win_probe is set, TCP needs to send out 18979 * something to do zero window probe. 18980 */ 18981 if (tcp->tcp_cork && !tcp->tcp_zero_win_probe) { 18982 if (usable < mss) 18983 goto done; 18984 usable = (usable / mss) * mss; 18985 } 18986 18987 /* Update the latest receive window size in TCP header. */ 18988 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 18989 tcp->tcp_tcph->th_win); 18990 18991 /* 18992 * Determine if it's worthwhile to attempt LSO or MDT, based on: 18993 * 18994 * 1. Simple TCP/IP{v4,v6} (no options). 18995 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 18996 * 3. If the TCP connection is in ESTABLISHED state. 18997 * 4. The TCP is not detached. 18998 * 18999 * If any of the above conditions have changed during the 19000 * connection, stop using LSO/MDT and restore the stream head 19001 * parameters accordingly. 19002 */ 19003 ipst = tcps->tcps_netstack->netstack_ip; 19004 19005 if ((tcp->tcp_lso || tcp->tcp_mdt) && 19006 ((tcp->tcp_ipversion == IPV4_VERSION && 19007 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19008 (tcp->tcp_ipversion == IPV6_VERSION && 19009 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19010 tcp->tcp_state != TCPS_ESTABLISHED || 19011 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19012 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19013 IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 19014 if (tcp->tcp_lso) { 19015 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19016 tcp->tcp_lso = B_FALSE; 19017 } else { 19018 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19019 tcp->tcp_mdt = B_FALSE; 19020 } 19021 19022 /* Anything other than detached is considered pathological */ 19023 if (!TCP_IS_DETACHED(tcp)) { 19024 if (tcp->tcp_lso) 19025 TCP_STAT(tcps, tcp_lso_disabled); 19026 else 19027 TCP_STAT(tcps, tcp_mdt_conn_halted1); 19028 (void) tcp_maxpsz_set(tcp, B_TRUE); 19029 } 19030 } 19031 19032 /* Use MDT if sendable amount is greater than the threshold */ 19033 if (tcp->tcp_mdt && 19034 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19035 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19036 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19037 (tcp->tcp_valid_bits == 0 || 19038 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19039 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19040 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19041 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19042 local_time, mdt_thres); 19043 } else { 19044 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19045 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19046 local_time, INT_MAX); 19047 } 19048 19049 /* Pretend that all we were trying to send really got sent */ 19050 if (rc < 0 && tail_unsent < 0) { 19051 do { 19052 xmit_tail = xmit_tail->b_cont; 19053 xmit_tail->b_prev = local_time; 19054 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19055 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19056 tail_unsent += (int)(xmit_tail->b_wptr - 19057 xmit_tail->b_rptr); 19058 } while (tail_unsent < 0); 19059 } 19060 done:; 19061 tcp->tcp_xmit_tail = xmit_tail; 19062 tcp->tcp_xmit_tail_unsent = tail_unsent; 19063 len = tcp->tcp_snxt - snxt; 19064 if (len) { 19065 /* 19066 * If new data was sent, need to update the notsack 19067 * list, which is, afterall, data blocks that have 19068 * not been sack'ed by the receiver. New data is 19069 * not sack'ed. 19070 */ 19071 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19072 /* len is a negative value. */ 19073 tcp->tcp_pipe -= len; 19074 tcp_notsack_update(&(tcp->tcp_notsack_list), 19075 tcp->tcp_snxt, snxt, 19076 &(tcp->tcp_num_notsack_blk), 19077 &(tcp->tcp_cnt_notsack_list)); 19078 } 19079 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19080 tcp->tcp_rack = tcp->tcp_rnxt; 19081 tcp->tcp_rack_cnt = 0; 19082 if ((snxt + len) == tcp->tcp_suna) { 19083 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19084 } 19085 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19086 /* 19087 * Didn't send anything. Make sure the timer is running 19088 * so that we will probe a zero window. 19089 */ 19090 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19091 } 19092 /* Note that len is the amount we just sent but with a negative sign */ 19093 tcp->tcp_unsent += len; 19094 mutex_enter(&tcp->tcp_non_sq_lock); 19095 if (tcp->tcp_flow_stopped) { 19096 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19097 tcp_clrqfull(tcp); 19098 } 19099 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19100 tcp_setqfull(tcp); 19101 } 19102 mutex_exit(&tcp->tcp_non_sq_lock); 19103 } 19104 19105 /* 19106 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19107 * outgoing TCP header with the template header, as well as other 19108 * options such as time-stamp, ECN and/or SACK. 19109 */ 19110 static void 19111 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19112 { 19113 tcph_t *tcp_tmpl, *tcp_h; 19114 uint32_t *dst, *src; 19115 int hdrlen; 19116 19117 ASSERT(OK_32PTR(rptr)); 19118 19119 /* Template header */ 19120 tcp_tmpl = tcp->tcp_tcph; 19121 19122 /* Header of outgoing packet */ 19123 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19124 19125 /* dst and src are opaque 32-bit fields, used for copying */ 19126 dst = (uint32_t *)rptr; 19127 src = (uint32_t *)tcp->tcp_iphc; 19128 hdrlen = tcp->tcp_hdr_len; 19129 19130 /* Fill time-stamp option if needed */ 19131 if (tcp->tcp_snd_ts_ok) { 19132 U32_TO_BE32((uint32_t)now, 19133 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19134 U32_TO_BE32(tcp->tcp_ts_recent, 19135 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19136 } else { 19137 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19138 } 19139 19140 /* 19141 * Copy the template header; is this really more efficient than 19142 * calling bcopy()? For simple IPv4/TCP, it may be the case, 19143 * but perhaps not for other scenarios. 19144 */ 19145 dst[0] = src[0]; 19146 dst[1] = src[1]; 19147 dst[2] = src[2]; 19148 dst[3] = src[3]; 19149 dst[4] = src[4]; 19150 dst[5] = src[5]; 19151 dst[6] = src[6]; 19152 dst[7] = src[7]; 19153 dst[8] = src[8]; 19154 dst[9] = src[9]; 19155 if (hdrlen -= 40) { 19156 hdrlen >>= 2; 19157 dst += 10; 19158 src += 10; 19159 do { 19160 *dst++ = *src++; 19161 } while (--hdrlen); 19162 } 19163 19164 /* 19165 * Set the ECN info in the TCP header if it is not a zero 19166 * window probe. Zero window probe is only sent in 19167 * tcp_wput_data() and tcp_timer(). 19168 */ 19169 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19170 SET_ECT(tcp, rptr); 19171 19172 if (tcp->tcp_ecn_echo_on) 19173 tcp_h->th_flags[0] |= TH_ECE; 19174 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19175 tcp_h->th_flags[0] |= TH_CWR; 19176 tcp->tcp_ecn_cwr_sent = B_TRUE; 19177 } 19178 } 19179 19180 /* Fill in SACK options */ 19181 if (num_sack_blk > 0) { 19182 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19183 sack_blk_t *tmp; 19184 int32_t i; 19185 19186 wptr[0] = TCPOPT_NOP; 19187 wptr[1] = TCPOPT_NOP; 19188 wptr[2] = TCPOPT_SACK; 19189 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 19190 sizeof (sack_blk_t); 19191 wptr += TCPOPT_REAL_SACK_LEN; 19192 19193 tmp = tcp->tcp_sack_list; 19194 for (i = 0; i < num_sack_blk; i++) { 19195 U32_TO_BE32(tmp[i].begin, wptr); 19196 wptr += sizeof (tcp_seq); 19197 U32_TO_BE32(tmp[i].end, wptr); 19198 wptr += sizeof (tcp_seq); 19199 } 19200 tcp_h->th_offset_and_rsrvd[0] += 19201 ((num_sack_blk * 2 + 1) << 4); 19202 } 19203 } 19204 19205 /* 19206 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 19207 * the destination address and SAP attribute, and if necessary, the 19208 * hardware checksum offload attribute to a Multidata message. 19209 */ 19210 static int 19211 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 19212 const uint32_t start, const uint32_t stuff, const uint32_t end, 19213 const uint32_t flags, tcp_stack_t *tcps) 19214 { 19215 /* Add global destination address & SAP attribute */ 19216 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 19217 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 19218 "destination address+SAP\n")); 19219 19220 if (dlmp != NULL) 19221 TCP_STAT(tcps, tcp_mdt_allocfail); 19222 return (-1); 19223 } 19224 19225 /* Add global hwcksum attribute */ 19226 if (hwcksum && 19227 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 19228 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 19229 "checksum attribute\n")); 19230 19231 TCP_STAT(tcps, tcp_mdt_allocfail); 19232 return (-1); 19233 } 19234 19235 return (0); 19236 } 19237 19238 /* 19239 * Smaller and private version of pdescinfo_t used specifically for TCP, 19240 * which allows for only two payload spans per packet. 19241 */ 19242 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 19243 19244 /* 19245 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19246 * scheme, and returns one the following: 19247 * 19248 * -1 = failed allocation. 19249 * 0 = success; burst count reached, or usable send window is too small, 19250 * and that we'd rather wait until later before sending again. 19251 */ 19252 static int 19253 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19254 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19255 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19256 const int mdt_thres) 19257 { 19258 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19259 multidata_t *mmd; 19260 uint_t obsegs, obbytes, hdr_frag_sz; 19261 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19262 int num_burst_seg, max_pld; 19263 pdesc_t *pkt; 19264 tcp_pdescinfo_t tcp_pkt_info; 19265 pdescinfo_t *pkt_info; 19266 int pbuf_idx, pbuf_idx_nxt; 19267 int seg_len, len, spill, af; 19268 boolean_t add_buffer, zcopy, clusterwide; 19269 boolean_t rconfirm = B_FALSE; 19270 boolean_t done = B_FALSE; 19271 uint32_t cksum; 19272 uint32_t hwcksum_flags; 19273 ire_t *ire = NULL; 19274 ill_t *ill; 19275 ipha_t *ipha; 19276 ip6_t *ip6h; 19277 ipaddr_t src, dst; 19278 ill_zerocopy_capab_t *zc_cap = NULL; 19279 uint16_t *up; 19280 int err; 19281 conn_t *connp; 19282 tcp_stack_t *tcps = tcp->tcp_tcps; 19283 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19284 int usable_mmd, tail_unsent_mmd; 19285 uint_t snxt_mmd, obsegs_mmd, obbytes_mmd; 19286 mblk_t *xmit_tail_mmd; 19287 netstackid_t stack_id; 19288 19289 #ifdef _BIG_ENDIAN 19290 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19291 #else 19292 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19293 #endif 19294 19295 #define PREP_NEW_MULTIDATA() { \ 19296 mmd = NULL; \ 19297 md_mp = md_hbuf = NULL; \ 19298 cur_hdr_off = 0; \ 19299 max_pld = tcp->tcp_mdt_max_pld; \ 19300 pbuf_idx = pbuf_idx_nxt = -1; \ 19301 add_buffer = B_TRUE; \ 19302 zcopy = B_FALSE; \ 19303 } 19304 19305 #define PREP_NEW_PBUF() { \ 19306 md_pbuf = md_pbuf_nxt = NULL; \ 19307 pbuf_idx = pbuf_idx_nxt = -1; \ 19308 cur_pld_off = 0; \ 19309 first_snxt = *snxt; \ 19310 ASSERT(*tail_unsent > 0); \ 19311 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 19312 } 19313 19314 ASSERT(mdt_thres >= mss); 19315 ASSERT(*usable > 0 && *usable > mdt_thres); 19316 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 19317 ASSERT(!TCP_IS_DETACHED(tcp)); 19318 ASSERT(tcp->tcp_valid_bits == 0 || 19319 tcp->tcp_valid_bits == TCP_FSS_VALID); 19320 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 19321 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 19322 (tcp->tcp_ipversion == IPV6_VERSION && 19323 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 19324 19325 connp = tcp->tcp_connp; 19326 ASSERT(connp != NULL); 19327 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 19328 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 19329 19330 stack_id = connp->conn_netstack->netstack_stackid; 19331 19332 usable_mmd = tail_unsent_mmd = 0; 19333 snxt_mmd = obsegs_mmd = obbytes_mmd = 0; 19334 xmit_tail_mmd = NULL; 19335 /* 19336 * Note that tcp will only declare at most 2 payload spans per 19337 * packet, which is much lower than the maximum allowable number 19338 * of packet spans per Multidata. For this reason, we use the 19339 * privately declared and smaller descriptor info structure, in 19340 * order to save some stack space. 19341 */ 19342 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 19343 19344 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 19345 if (af == AF_INET) { 19346 dst = tcp->tcp_ipha->ipha_dst; 19347 src = tcp->tcp_ipha->ipha_src; 19348 ASSERT(!CLASSD(dst)); 19349 } 19350 ASSERT(af == AF_INET || 19351 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 19352 19353 obsegs = obbytes = 0; 19354 num_burst_seg = tcp->tcp_snd_burst; 19355 md_mp_head = NULL; 19356 PREP_NEW_MULTIDATA(); 19357 19358 /* 19359 * Before we go on further, make sure there is an IRE that we can 19360 * use, and that the ILL supports MDT. Otherwise, there's no point 19361 * in proceeding any further, and we should just hand everything 19362 * off to the legacy path. 19363 */ 19364 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 19365 goto legacy_send_no_md; 19366 19367 ASSERT(ire != NULL); 19368 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 19369 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 19370 ASSERT(af == AF_INET || ire->ire_nce != NULL); 19371 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19372 /* 19373 * If we do support loopback for MDT (which requires modifications 19374 * to the receiving paths), the following assertions should go away, 19375 * and we would be sending the Multidata to loopback conn later on. 19376 */ 19377 ASSERT(!IRE_IS_LOCAL(ire)); 19378 ASSERT(ire->ire_stq != NULL); 19379 19380 ill = ire_to_ill(ire); 19381 ASSERT(ill != NULL); 19382 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 19383 19384 if (!tcp->tcp_ire_ill_check_done) { 19385 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19386 tcp->tcp_ire_ill_check_done = B_TRUE; 19387 } 19388 19389 /* 19390 * If the underlying interface conditions have changed, or if the 19391 * new interface does not support MDT, go back to legacy path. 19392 */ 19393 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 19394 /* don't go through this path anymore for this connection */ 19395 TCP_STAT(tcps, tcp_mdt_conn_halted2); 19396 tcp->tcp_mdt = B_FALSE; 19397 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 19398 "interface %s\n", (void *)connp, ill->ill_name)); 19399 /* IRE will be released prior to returning */ 19400 goto legacy_send_no_md; 19401 } 19402 19403 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 19404 zc_cap = ill->ill_zerocopy_capab; 19405 19406 /* 19407 * Check if we can take tcp fast-path. Note that "incomplete" 19408 * ire's (where the link-layer for next hop is not resolved 19409 * or where the fast-path header in nce_fp_mp is not available 19410 * yet) are sent down the legacy (slow) path. 19411 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 19412 */ 19413 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 19414 /* IRE will be released prior to returning */ 19415 goto legacy_send_no_md; 19416 } 19417 19418 /* go to legacy path if interface doesn't support zerocopy */ 19419 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 19420 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 19421 /* IRE will be released prior to returning */ 19422 goto legacy_send_no_md; 19423 } 19424 19425 /* does the interface support hardware checksum offload? */ 19426 hwcksum_flags = 0; 19427 if (ILL_HCKSUM_CAPABLE(ill) && 19428 (ill->ill_hcksum_capab->ill_hcksum_txflags & 19429 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 19430 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 19431 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19432 HCKSUM_IPHDRCKSUM) 19433 hwcksum_flags = HCK_IPV4_HDRCKSUM; 19434 19435 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19436 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 19437 hwcksum_flags |= HCK_FULLCKSUM; 19438 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19439 HCKSUM_INET_PARTIAL) 19440 hwcksum_flags |= HCK_PARTIALCKSUM; 19441 } 19442 19443 /* 19444 * Each header fragment consists of the leading extra space, 19445 * followed by the TCP/IP header, and the trailing extra space. 19446 * We make sure that each header fragment begins on a 32-bit 19447 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 19448 * aligned in tcp_mdt_update). 19449 */ 19450 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 19451 tcp->tcp_mdt_hdr_tail), 4); 19452 19453 /* are we starting from the beginning of data block? */ 19454 if (*tail_unsent == 0) { 19455 *xmit_tail = (*xmit_tail)->b_cont; 19456 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 19457 *tail_unsent = (int)MBLKL(*xmit_tail); 19458 } 19459 19460 /* 19461 * Here we create one or more Multidata messages, each made up of 19462 * one header buffer and up to N payload buffers. This entire 19463 * operation is done within two loops: 19464 * 19465 * The outer loop mostly deals with creating the Multidata message, 19466 * as well as the header buffer that gets added to it. It also 19467 * links the Multidata messages together such that all of them can 19468 * be sent down to the lower layer in a single putnext call; this 19469 * linking behavior depends on the tcp_mdt_chain tunable. 19470 * 19471 * The inner loop takes an existing Multidata message, and adds 19472 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 19473 * packetizes those buffers by filling up the corresponding header 19474 * buffer fragments with the proper IP and TCP headers, and by 19475 * describing the layout of each packet in the packet descriptors 19476 * that get added to the Multidata. 19477 */ 19478 do { 19479 /* 19480 * If usable send window is too small, or data blocks in 19481 * transmit list are smaller than our threshold (i.e. app 19482 * performs large writes followed by small ones), we hand 19483 * off the control over to the legacy path. Note that we'll 19484 * get back the control once it encounters a large block. 19485 */ 19486 if (*usable < mss || (*tail_unsent <= mdt_thres && 19487 (*xmit_tail)->b_cont != NULL && 19488 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 19489 /* send down what we've got so far */ 19490 if (md_mp_head != NULL) { 19491 tcp_multisend_data(tcp, ire, ill, md_mp_head, 19492 obsegs, obbytes, &rconfirm); 19493 } 19494 /* 19495 * Pass control over to tcp_send(), but tell it to 19496 * return to us once a large-size transmission is 19497 * possible. 19498 */ 19499 TCP_STAT(tcps, tcp_mdt_legacy_small); 19500 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 19501 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 19502 tail_unsent, xmit_tail, local_time, 19503 mdt_thres)) <= 0) { 19504 /* burst count reached, or alloc failed */ 19505 IRE_REFRELE(ire); 19506 return (err); 19507 } 19508 19509 /* tcp_send() may have sent everything, so check */ 19510 if (*usable <= 0) { 19511 IRE_REFRELE(ire); 19512 return (0); 19513 } 19514 19515 TCP_STAT(tcps, tcp_mdt_legacy_ret); 19516 /* 19517 * We may have delivered the Multidata, so make sure 19518 * to re-initialize before the next round. 19519 */ 19520 md_mp_head = NULL; 19521 obsegs = obbytes = 0; 19522 num_burst_seg = tcp->tcp_snd_burst; 19523 PREP_NEW_MULTIDATA(); 19524 19525 /* are we starting from the beginning of data block? */ 19526 if (*tail_unsent == 0) { 19527 *xmit_tail = (*xmit_tail)->b_cont; 19528 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19529 (uintptr_t)INT_MAX); 19530 *tail_unsent = (int)MBLKL(*xmit_tail); 19531 } 19532 } 19533 /* 19534 * Record current values for parameters we may need to pass 19535 * to tcp_send() or tcp_multisend_data(). We checkpoint at 19536 * each iteration of the outer loop (each multidata message 19537 * creation). If we have a failure in the inner loop, we send 19538 * any complete multidata messages we have before reverting 19539 * to using the traditional non-md path. 19540 */ 19541 snxt_mmd = *snxt; 19542 usable_mmd = *usable; 19543 xmit_tail_mmd = *xmit_tail; 19544 tail_unsent_mmd = *tail_unsent; 19545 obsegs_mmd = obsegs; 19546 obbytes_mmd = obbytes; 19547 19548 /* 19549 * max_pld limits the number of mblks in tcp's transmit 19550 * queue that can be added to a Multidata message. Once 19551 * this counter reaches zero, no more additional mblks 19552 * can be added to it. What happens afterwards depends 19553 * on whether or not we are set to chain the Multidata 19554 * messages. If we are to link them together, reset 19555 * max_pld to its original value (tcp_mdt_max_pld) and 19556 * prepare to create a new Multidata message which will 19557 * get linked to md_mp_head. Else, leave it alone and 19558 * let the inner loop break on its own. 19559 */ 19560 if (tcp_mdt_chain && max_pld == 0) 19561 PREP_NEW_MULTIDATA(); 19562 19563 /* adding a payload buffer; re-initialize values */ 19564 if (add_buffer) 19565 PREP_NEW_PBUF(); 19566 19567 /* 19568 * If we don't have a Multidata, either because we just 19569 * (re)entered this outer loop, or after we branched off 19570 * to tcp_send above, setup the Multidata and header 19571 * buffer to be used. 19572 */ 19573 if (md_mp == NULL) { 19574 int md_hbuflen; 19575 uint32_t start, stuff; 19576 19577 /* 19578 * Calculate Multidata header buffer size large enough 19579 * to hold all of the headers that can possibly be 19580 * sent at this moment. We'd rather over-estimate 19581 * the size than running out of space; this is okay 19582 * since this buffer is small anyway. 19583 */ 19584 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 19585 19586 /* 19587 * Start and stuff offset for partial hardware 19588 * checksum offload; these are currently for IPv4. 19589 * For full checksum offload, they are set to zero. 19590 */ 19591 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 19592 if (af == AF_INET) { 19593 start = IP_SIMPLE_HDR_LENGTH; 19594 stuff = IP_SIMPLE_HDR_LENGTH + 19595 TCP_CHECKSUM_OFFSET; 19596 } else { 19597 start = IPV6_HDR_LEN; 19598 stuff = IPV6_HDR_LEN + 19599 TCP_CHECKSUM_OFFSET; 19600 } 19601 } else { 19602 start = stuff = 0; 19603 } 19604 19605 /* 19606 * Create the header buffer, Multidata, as well as 19607 * any necessary attributes (destination address, 19608 * SAP and hardware checksum offload) that should 19609 * be associated with the Multidata message. 19610 */ 19611 ASSERT(cur_hdr_off == 0); 19612 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 19613 ((md_hbuf->b_wptr += md_hbuflen), 19614 (mmd = mmd_alloc(md_hbuf, &md_mp, 19615 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 19616 /* fastpath mblk */ 19617 ire->ire_nce->nce_res_mp, 19618 /* hardware checksum enabled */ 19619 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 19620 /* hardware checksum offsets */ 19621 start, stuff, 0, 19622 /* hardware checksum flag */ 19623 hwcksum_flags, tcps) != 0)) { 19624 legacy_send: 19625 /* 19626 * We arrive here from a failure within the 19627 * inner (packetizer) loop or we fail one of 19628 * the conditionals above. We restore the 19629 * previously checkpointed values for: 19630 * xmit_tail 19631 * usable 19632 * tail_unsent 19633 * snxt 19634 * obbytes 19635 * obsegs 19636 * We should then be able to dispatch any 19637 * complete multidata before reverting to the 19638 * traditional path with consistent parameters 19639 * (the inner loop updates these as it 19640 * iterates). 19641 */ 19642 *xmit_tail = xmit_tail_mmd; 19643 *usable = usable_mmd; 19644 *tail_unsent = tail_unsent_mmd; 19645 *snxt = snxt_mmd; 19646 obbytes = obbytes_mmd; 19647 obsegs = obsegs_mmd; 19648 if (md_mp != NULL) { 19649 /* Unlink message from the chain */ 19650 if (md_mp_head != NULL) { 19651 err = (intptr_t)rmvb(md_mp_head, 19652 md_mp); 19653 /* 19654 * We can't assert that rmvb 19655 * did not return -1, since we 19656 * may get here before linkb 19657 * happens. We do, however, 19658 * check if we just removed the 19659 * only element in the list. 19660 */ 19661 if (err == 0) 19662 md_mp_head = NULL; 19663 } 19664 /* md_hbuf gets freed automatically */ 19665 TCP_STAT(tcps, tcp_mdt_discarded); 19666 freeb(md_mp); 19667 } else { 19668 /* Either allocb or mmd_alloc failed */ 19669 TCP_STAT(tcps, tcp_mdt_allocfail); 19670 if (md_hbuf != NULL) 19671 freeb(md_hbuf); 19672 } 19673 19674 /* send down what we've got so far */ 19675 if (md_mp_head != NULL) { 19676 tcp_multisend_data(tcp, ire, ill, 19677 md_mp_head, obsegs, obbytes, 19678 &rconfirm); 19679 } 19680 legacy_send_no_md: 19681 if (ire != NULL) 19682 IRE_REFRELE(ire); 19683 /* 19684 * Too bad; let the legacy path handle this. 19685 * We specify INT_MAX for the threshold, since 19686 * we gave up with the Multidata processings 19687 * and let the old path have it all. 19688 */ 19689 TCP_STAT(tcps, tcp_mdt_legacy_all); 19690 return (tcp_send(q, tcp, mss, tcp_hdr_len, 19691 tcp_tcp_hdr_len, num_sack_blk, usable, 19692 snxt, tail_unsent, xmit_tail, local_time, 19693 INT_MAX)); 19694 } 19695 19696 /* link to any existing ones, if applicable */ 19697 TCP_STAT(tcps, tcp_mdt_allocd); 19698 if (md_mp_head == NULL) { 19699 md_mp_head = md_mp; 19700 } else if (tcp_mdt_chain) { 19701 TCP_STAT(tcps, tcp_mdt_linked); 19702 linkb(md_mp_head, md_mp); 19703 } 19704 } 19705 19706 ASSERT(md_mp_head != NULL); 19707 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 19708 ASSERT(md_mp != NULL && mmd != NULL); 19709 ASSERT(md_hbuf != NULL); 19710 19711 /* 19712 * Packetize the transmittable portion of the data block; 19713 * each data block is essentially added to the Multidata 19714 * as a payload buffer. We also deal with adding more 19715 * than one payload buffers, which happens when the remaining 19716 * packetized portion of the current payload buffer is less 19717 * than MSS, while the next data block in transmit queue 19718 * has enough data to make up for one. This "spillover" 19719 * case essentially creates a split-packet, where portions 19720 * of the packet's payload fragments may span across two 19721 * virtually discontiguous address blocks. 19722 */ 19723 seg_len = mss; 19724 do { 19725 len = seg_len; 19726 19727 /* one must remain NULL for DTRACE_IP_FASTPATH */ 19728 ipha = NULL; 19729 ip6h = NULL; 19730 19731 ASSERT(len > 0); 19732 ASSERT(max_pld >= 0); 19733 ASSERT(!add_buffer || cur_pld_off == 0); 19734 19735 /* 19736 * First time around for this payload buffer; note 19737 * in the case of a spillover, the following has 19738 * been done prior to adding the split-packet 19739 * descriptor to Multidata, and we don't want to 19740 * repeat the process. 19741 */ 19742 if (add_buffer) { 19743 ASSERT(mmd != NULL); 19744 ASSERT(md_pbuf == NULL); 19745 ASSERT(md_pbuf_nxt == NULL); 19746 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 19747 19748 /* 19749 * Have we reached the limit? We'd get to 19750 * this case when we're not chaining the 19751 * Multidata messages together, and since 19752 * we're done, terminate this loop. 19753 */ 19754 if (max_pld == 0) 19755 break; /* done */ 19756 19757 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 19758 TCP_STAT(tcps, tcp_mdt_allocfail); 19759 goto legacy_send; /* out_of_mem */ 19760 } 19761 19762 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 19763 zc_cap != NULL) { 19764 if (!ip_md_zcopy_attr(mmd, NULL, 19765 zc_cap->ill_zerocopy_flags)) { 19766 freeb(md_pbuf); 19767 TCP_STAT(tcps, 19768 tcp_mdt_allocfail); 19769 /* out_of_mem */ 19770 goto legacy_send; 19771 } 19772 zcopy = B_TRUE; 19773 } 19774 19775 md_pbuf->b_rptr += base_pld_off; 19776 19777 /* 19778 * Add a payload buffer to the Multidata; this 19779 * operation must not fail, or otherwise our 19780 * logic in this routine is broken. There 19781 * is no memory allocation done by the 19782 * routine, so any returned failure simply 19783 * tells us that we've done something wrong. 19784 * 19785 * A failure tells us that either we're adding 19786 * the same payload buffer more than once, or 19787 * we're trying to add more buffers than 19788 * allowed (max_pld calculation is wrong). 19789 * None of the above cases should happen, and 19790 * we panic because either there's horrible 19791 * heap corruption, and/or programming mistake. 19792 */ 19793 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 19794 if (pbuf_idx < 0) { 19795 cmn_err(CE_PANIC, "tcp_multisend: " 19796 "payload buffer logic error " 19797 "detected for tcp %p mmd %p " 19798 "pbuf %p (%d)\n", 19799 (void *)tcp, (void *)mmd, 19800 (void *)md_pbuf, pbuf_idx); 19801 } 19802 19803 ASSERT(max_pld > 0); 19804 --max_pld; 19805 add_buffer = B_FALSE; 19806 } 19807 19808 ASSERT(md_mp_head != NULL); 19809 ASSERT(md_pbuf != NULL); 19810 ASSERT(md_pbuf_nxt == NULL); 19811 ASSERT(pbuf_idx != -1); 19812 ASSERT(pbuf_idx_nxt == -1); 19813 ASSERT(*usable > 0); 19814 19815 /* 19816 * We spillover to the next payload buffer only 19817 * if all of the following is true: 19818 * 19819 * 1. There is not enough data on the current 19820 * payload buffer to make up `len', 19821 * 2. We are allowed to send `len', 19822 * 3. The next payload buffer length is large 19823 * enough to accomodate `spill'. 19824 */ 19825 if ((spill = len - *tail_unsent) > 0 && 19826 *usable >= len && 19827 MBLKL((*xmit_tail)->b_cont) >= spill && 19828 max_pld > 0) { 19829 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 19830 if (md_pbuf_nxt == NULL) { 19831 TCP_STAT(tcps, tcp_mdt_allocfail); 19832 goto legacy_send; /* out_of_mem */ 19833 } 19834 19835 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 19836 zc_cap != NULL) { 19837 if (!ip_md_zcopy_attr(mmd, NULL, 19838 zc_cap->ill_zerocopy_flags)) { 19839 freeb(md_pbuf_nxt); 19840 TCP_STAT(tcps, 19841 tcp_mdt_allocfail); 19842 /* out_of_mem */ 19843 goto legacy_send; 19844 } 19845 zcopy = B_TRUE; 19846 } 19847 19848 /* 19849 * See comments above on the first call to 19850 * mmd_addpldbuf for explanation on the panic. 19851 */ 19852 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 19853 if (pbuf_idx_nxt < 0) { 19854 panic("tcp_multisend: " 19855 "next payload buffer logic error " 19856 "detected for tcp %p mmd %p " 19857 "pbuf %p (%d)\n", 19858 (void *)tcp, (void *)mmd, 19859 (void *)md_pbuf_nxt, pbuf_idx_nxt); 19860 } 19861 19862 ASSERT(max_pld > 0); 19863 --max_pld; 19864 } else if (spill > 0) { 19865 /* 19866 * If there's a spillover, but the following 19867 * xmit_tail couldn't give us enough octets 19868 * to reach "len", then stop the current 19869 * Multidata creation and let the legacy 19870 * tcp_send() path take over. We don't want 19871 * to send the tiny segment as part of this 19872 * Multidata for performance reasons; instead, 19873 * we let the legacy path deal with grouping 19874 * it with the subsequent small mblks. 19875 */ 19876 if (*usable >= len && 19877 MBLKL((*xmit_tail)->b_cont) < spill) { 19878 max_pld = 0; 19879 break; /* done */ 19880 } 19881 19882 /* 19883 * We can't spillover, and we are near 19884 * the end of the current payload buffer, 19885 * so send what's left. 19886 */ 19887 ASSERT(*tail_unsent > 0); 19888 len = *tail_unsent; 19889 } 19890 19891 /* tail_unsent is negated if there is a spillover */ 19892 *tail_unsent -= len; 19893 *usable -= len; 19894 ASSERT(*usable >= 0); 19895 19896 if (*usable < mss) 19897 seg_len = *usable; 19898 /* 19899 * Sender SWS avoidance; see comments in tcp_send(); 19900 * everything else is the same, except that we only 19901 * do this here if there is no more data to be sent 19902 * following the current xmit_tail. We don't check 19903 * for 1-byte urgent data because we shouldn't get 19904 * here if TCP_URG_VALID is set. 19905 */ 19906 if (*usable > 0 && *usable < mss && 19907 ((md_pbuf_nxt == NULL && 19908 (*xmit_tail)->b_cont == NULL) || 19909 (md_pbuf_nxt != NULL && 19910 (*xmit_tail)->b_cont->b_cont == NULL)) && 19911 seg_len < (tcp->tcp_max_swnd >> 1) && 19912 (tcp->tcp_unsent - 19913 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 19914 !tcp->tcp_zero_win_probe) { 19915 if ((*snxt + len) == tcp->tcp_snxt && 19916 (*snxt + len) == tcp->tcp_suna) { 19917 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19918 } 19919 done = B_TRUE; 19920 } 19921 19922 /* 19923 * Prime pump for IP's checksumming on our behalf; 19924 * include the adjustment for a source route if any. 19925 * Do this only for software/partial hardware checksum 19926 * offload, as this field gets zeroed out later for 19927 * the full hardware checksum offload case. 19928 */ 19929 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 19930 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 19931 cksum = (cksum >> 16) + (cksum & 0xFFFF); 19932 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 19933 } 19934 19935 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 19936 *snxt += len; 19937 19938 tcp->tcp_tcph->th_flags[0] = TH_ACK; 19939 /* 19940 * We set the PUSH bit only if TCP has no more buffered 19941 * data to be transmitted (or if sender SWS avoidance 19942 * takes place), as opposed to setting it for every 19943 * last packet in the burst. 19944 */ 19945 if (done || 19946 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 19947 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 19948 19949 /* 19950 * Set FIN bit if this is our last segment; snxt 19951 * already includes its length, and it will not 19952 * be adjusted after this point. 19953 */ 19954 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 19955 *snxt == tcp->tcp_fss) { 19956 if (!tcp->tcp_fin_acked) { 19957 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 19958 BUMP_MIB(&tcps->tcps_mib, 19959 tcpOutControl); 19960 } 19961 if (!tcp->tcp_fin_sent) { 19962 tcp->tcp_fin_sent = B_TRUE; 19963 /* 19964 * tcp state must be ESTABLISHED 19965 * in order for us to get here in 19966 * the first place. 19967 */ 19968 tcp->tcp_state = TCPS_FIN_WAIT_1; 19969 19970 /* 19971 * Upon returning from this routine, 19972 * tcp_wput_data() will set tcp_snxt 19973 * to be equal to snxt + tcp_fin_sent. 19974 * This is essentially the same as 19975 * setting it to tcp_fss + 1. 19976 */ 19977 } 19978 } 19979 19980 tcp->tcp_last_sent_len = (ushort_t)len; 19981 19982 len += tcp_hdr_len; 19983 if (tcp->tcp_ipversion == IPV4_VERSION) 19984 tcp->tcp_ipha->ipha_length = htons(len); 19985 else 19986 tcp->tcp_ip6h->ip6_plen = htons(len - 19987 ((char *)&tcp->tcp_ip6h[1] - 19988 tcp->tcp_iphc)); 19989 19990 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 19991 19992 /* setup header fragment */ 19993 PDESC_HDR_ADD(pkt_info, 19994 md_hbuf->b_rptr + cur_hdr_off, /* base */ 19995 tcp->tcp_mdt_hdr_head, /* head room */ 19996 tcp_hdr_len, /* len */ 19997 tcp->tcp_mdt_hdr_tail); /* tail room */ 19998 19999 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20000 hdr_frag_sz); 20001 ASSERT(MBLKIN(md_hbuf, 20002 (pkt_info->hdr_base - md_hbuf->b_rptr), 20003 PDESC_HDRSIZE(pkt_info))); 20004 20005 /* setup first payload fragment */ 20006 PDESC_PLD_INIT(pkt_info); 20007 PDESC_PLD_SPAN_ADD(pkt_info, 20008 pbuf_idx, /* index */ 20009 md_pbuf->b_rptr + cur_pld_off, /* start */ 20010 tcp->tcp_last_sent_len); /* len */ 20011 20012 /* create a split-packet in case of a spillover */ 20013 if (md_pbuf_nxt != NULL) { 20014 ASSERT(spill > 0); 20015 ASSERT(pbuf_idx_nxt > pbuf_idx); 20016 ASSERT(!add_buffer); 20017 20018 md_pbuf = md_pbuf_nxt; 20019 md_pbuf_nxt = NULL; 20020 pbuf_idx = pbuf_idx_nxt; 20021 pbuf_idx_nxt = -1; 20022 cur_pld_off = spill; 20023 20024 /* trim out first payload fragment */ 20025 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20026 20027 /* setup second payload fragment */ 20028 PDESC_PLD_SPAN_ADD(pkt_info, 20029 pbuf_idx, /* index */ 20030 md_pbuf->b_rptr, /* start */ 20031 spill); /* len */ 20032 20033 if ((*xmit_tail)->b_next == NULL) { 20034 /* 20035 * Store the lbolt used for RTT 20036 * estimation. We can only record one 20037 * timestamp per mblk so we do it when 20038 * we reach the end of the payload 20039 * buffer. Also we only take a new 20040 * timestamp sample when the previous 20041 * timed data from the same mblk has 20042 * been ack'ed. 20043 */ 20044 (*xmit_tail)->b_prev = local_time; 20045 (*xmit_tail)->b_next = 20046 (mblk_t *)(uintptr_t)first_snxt; 20047 } 20048 20049 first_snxt = *snxt - spill; 20050 20051 /* 20052 * Advance xmit_tail; usable could be 0 by 20053 * the time we got here, but we made sure 20054 * above that we would only spillover to 20055 * the next data block if usable includes 20056 * the spilled-over amount prior to the 20057 * subtraction. Therefore, we are sure 20058 * that xmit_tail->b_cont can't be NULL. 20059 */ 20060 ASSERT((*xmit_tail)->b_cont != NULL); 20061 *xmit_tail = (*xmit_tail)->b_cont; 20062 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20063 (uintptr_t)INT_MAX); 20064 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20065 } else { 20066 cur_pld_off += tcp->tcp_last_sent_len; 20067 } 20068 20069 /* 20070 * Fill in the header using the template header, and 20071 * add options such as time-stamp, ECN and/or SACK, 20072 * as needed. 20073 */ 20074 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20075 (clock_t)local_time, num_sack_blk); 20076 20077 /* take care of some IP header businesses */ 20078 if (af == AF_INET) { 20079 ipha = (ipha_t *)pkt_info->hdr_rptr; 20080 20081 ASSERT(OK_32PTR((uchar_t *)ipha)); 20082 ASSERT(PDESC_HDRL(pkt_info) >= 20083 IP_SIMPLE_HDR_LENGTH); 20084 ASSERT(ipha->ipha_version_and_hdr_length == 20085 IP_SIMPLE_HDR_VERSION); 20086 20087 /* 20088 * Assign ident value for current packet; see 20089 * related comments in ip_wput_ire() about the 20090 * contract private interface with clustering 20091 * group. 20092 */ 20093 clusterwide = B_FALSE; 20094 if (cl_inet_ipident != NULL) { 20095 ASSERT(cl_inet_isclusterwide != NULL); 20096 if ((*cl_inet_isclusterwide)(stack_id, 20097 IPPROTO_IP, AF_INET, 20098 (uint8_t *)(uintptr_t)src, NULL)) { 20099 ipha->ipha_ident = 20100 (*cl_inet_ipident)(stack_id, 20101 IPPROTO_IP, AF_INET, 20102 (uint8_t *)(uintptr_t)src, 20103 (uint8_t *)(uintptr_t)dst, 20104 NULL); 20105 clusterwide = B_TRUE; 20106 } 20107 } 20108 20109 if (!clusterwide) { 20110 ipha->ipha_ident = (uint16_t) 20111 atomic_add_32_nv( 20112 &ire->ire_ident, 1); 20113 } 20114 #ifndef _BIG_ENDIAN 20115 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20116 (ipha->ipha_ident >> 8); 20117 #endif 20118 } else { 20119 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20120 20121 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20122 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20123 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20124 ASSERT(PDESC_HDRL(pkt_info) >= 20125 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 20126 TCP_CHECKSUM_SIZE)); 20127 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20128 20129 if (tcp->tcp_ip_forward_progress) { 20130 rconfirm = B_TRUE; 20131 tcp->tcp_ip_forward_progress = B_FALSE; 20132 } 20133 } 20134 20135 /* at least one payload span, and at most two */ 20136 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20137 20138 /* add the packet descriptor to Multidata */ 20139 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20140 KM_NOSLEEP)) == NULL) { 20141 /* 20142 * Any failure other than ENOMEM indicates 20143 * that we have passed in invalid pkt_info 20144 * or parameters to mmd_addpdesc, which must 20145 * not happen. 20146 * 20147 * EINVAL is a result of failure on boundary 20148 * checks against the pkt_info contents. It 20149 * should not happen, and we panic because 20150 * either there's horrible heap corruption, 20151 * and/or programming mistake. 20152 */ 20153 if (err != ENOMEM) { 20154 cmn_err(CE_PANIC, "tcp_multisend: " 20155 "pdesc logic error detected for " 20156 "tcp %p mmd %p pinfo %p (%d)\n", 20157 (void *)tcp, (void *)mmd, 20158 (void *)pkt_info, err); 20159 } 20160 TCP_STAT(tcps, tcp_mdt_addpdescfail); 20161 goto legacy_send; /* out_of_mem */ 20162 } 20163 ASSERT(pkt != NULL); 20164 20165 /* calculate IP header and TCP checksums */ 20166 if (af == AF_INET) { 20167 /* calculate pseudo-header checksum */ 20168 cksum = (dst >> 16) + (dst & 0xFFFF) + 20169 (src >> 16) + (src & 0xFFFF); 20170 20171 /* offset for TCP header checksum */ 20172 up = IPH_TCPH_CHECKSUMP(ipha, 20173 IP_SIMPLE_HDR_LENGTH); 20174 } else { 20175 up = (uint16_t *)&ip6h->ip6_src; 20176 20177 /* calculate pseudo-header checksum */ 20178 cksum = up[0] + up[1] + up[2] + up[3] + 20179 up[4] + up[5] + up[6] + up[7] + 20180 up[8] + up[9] + up[10] + up[11] + 20181 up[12] + up[13] + up[14] + up[15]; 20182 20183 /* Fold the initial sum */ 20184 cksum = (cksum & 0xffff) + (cksum >> 16); 20185 20186 up = (uint16_t *)(((uchar_t *)ip6h) + 20187 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 20188 } 20189 20190 if (hwcksum_flags & HCK_FULLCKSUM) { 20191 /* clear checksum field for hardware */ 20192 *up = 0; 20193 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 20194 uint32_t sum; 20195 20196 /* pseudo-header checksumming */ 20197 sum = *up + cksum + IP_TCP_CSUM_COMP; 20198 sum = (sum & 0xFFFF) + (sum >> 16); 20199 *up = (sum & 0xFFFF) + (sum >> 16); 20200 } else { 20201 /* software checksumming */ 20202 TCP_STAT(tcps, tcp_out_sw_cksum); 20203 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 20204 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 20205 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 20206 cksum + IP_TCP_CSUM_COMP); 20207 if (*up == 0) 20208 *up = 0xFFFF; 20209 } 20210 20211 /* IPv4 header checksum */ 20212 if (af == AF_INET) { 20213 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20214 ipha->ipha_hdr_checksum = 0; 20215 } else { 20216 IP_HDR_CKSUM(ipha, cksum, 20217 ((uint32_t *)ipha)[0], 20218 ((uint16_t *)ipha)[4]); 20219 } 20220 } 20221 20222 if (af == AF_INET && 20223 HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) || 20224 af == AF_INET6 && 20225 HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) { 20226 mblk_t *mp, *mp1; 20227 uchar_t *hdr_rptr, *hdr_wptr; 20228 uchar_t *pld_rptr, *pld_wptr; 20229 20230 /* 20231 * We reconstruct a pseudo packet for the hooks 20232 * framework using mmd_transform_link(). 20233 * If it is a split packet we pullup the 20234 * payload. FW_HOOKS expects a pkt comprising 20235 * of two mblks: a header and the payload. 20236 */ 20237 if ((mp = mmd_transform_link(pkt)) == NULL) { 20238 TCP_STAT(tcps, tcp_mdt_allocfail); 20239 goto legacy_send; 20240 } 20241 20242 if (pkt_info->pld_cnt > 1) { 20243 /* split payload, more than one pld */ 20244 if ((mp1 = msgpullup(mp->b_cont, -1)) == 20245 NULL) { 20246 freemsg(mp); 20247 TCP_STAT(tcps, 20248 tcp_mdt_allocfail); 20249 goto legacy_send; 20250 } 20251 freemsg(mp->b_cont); 20252 mp->b_cont = mp1; 20253 } else { 20254 mp1 = mp->b_cont; 20255 } 20256 ASSERT(mp1 != NULL && mp1->b_cont == NULL); 20257 20258 /* 20259 * Remember the message offsets. This is so we 20260 * can detect changes when we return from the 20261 * FW_HOOKS callbacks. 20262 */ 20263 hdr_rptr = mp->b_rptr; 20264 hdr_wptr = mp->b_wptr; 20265 pld_rptr = mp->b_cont->b_rptr; 20266 pld_wptr = mp->b_cont->b_wptr; 20267 20268 if (af == AF_INET) { 20269 DTRACE_PROBE4( 20270 ip4__physical__out__start, 20271 ill_t *, NULL, 20272 ill_t *, ill, 20273 ipha_t *, ipha, 20274 mblk_t *, mp); 20275 FW_HOOKS( 20276 ipst->ips_ip4_physical_out_event, 20277 ipst->ips_ipv4firewall_physical_out, 20278 NULL, ill, ipha, mp, mp, 0, ipst); 20279 DTRACE_PROBE1( 20280 ip4__physical__out__end, 20281 mblk_t *, mp); 20282 } else { 20283 DTRACE_PROBE4( 20284 ip6__physical__out_start, 20285 ill_t *, NULL, 20286 ill_t *, ill, 20287 ip6_t *, ip6h, 20288 mblk_t *, mp); 20289 FW_HOOKS6( 20290 ipst->ips_ip6_physical_out_event, 20291 ipst->ips_ipv6firewall_physical_out, 20292 NULL, ill, ip6h, mp, mp, 0, ipst); 20293 DTRACE_PROBE1( 20294 ip6__physical__out__end, 20295 mblk_t *, mp); 20296 } 20297 20298 if (mp == NULL || 20299 (mp1 = mp->b_cont) == NULL || 20300 mp->b_rptr != hdr_rptr || 20301 mp->b_wptr != hdr_wptr || 20302 mp1->b_rptr != pld_rptr || 20303 mp1->b_wptr != pld_wptr || 20304 mp1->b_cont != NULL) { 20305 /* 20306 * We abandon multidata processing and 20307 * return to the normal path, either 20308 * when a packet is blocked, or when 20309 * the boundaries of header buffer or 20310 * payload buffer have been changed by 20311 * FW_HOOKS[6]. 20312 */ 20313 if (mp != NULL) 20314 freemsg(mp); 20315 goto legacy_send; 20316 } 20317 /* Finished with the pseudo packet */ 20318 freemsg(mp); 20319 } 20320 DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr, 20321 ill, ipha, ip6h); 20322 /* advance header offset */ 20323 cur_hdr_off += hdr_frag_sz; 20324 20325 obbytes += tcp->tcp_last_sent_len; 20326 ++obsegs; 20327 } while (!done && *usable > 0 && --num_burst_seg > 0 && 20328 *tail_unsent > 0); 20329 20330 if ((*xmit_tail)->b_next == NULL) { 20331 /* 20332 * Store the lbolt used for RTT estimation. We can only 20333 * record one timestamp per mblk so we do it when we 20334 * reach the end of the payload buffer. Also we only 20335 * take a new timestamp sample when the previous timed 20336 * data from the same mblk has been ack'ed. 20337 */ 20338 (*xmit_tail)->b_prev = local_time; 20339 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 20340 } 20341 20342 ASSERT(*tail_unsent >= 0); 20343 if (*tail_unsent > 0) { 20344 /* 20345 * We got here because we broke out of the above 20346 * loop due to of one of the following cases: 20347 * 20348 * 1. len < adjusted MSS (i.e. small), 20349 * 2. Sender SWS avoidance, 20350 * 3. max_pld is zero. 20351 * 20352 * We are done for this Multidata, so trim our 20353 * last payload buffer (if any) accordingly. 20354 */ 20355 if (md_pbuf != NULL) 20356 md_pbuf->b_wptr -= *tail_unsent; 20357 } else if (*usable > 0) { 20358 *xmit_tail = (*xmit_tail)->b_cont; 20359 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20360 (uintptr_t)INT_MAX); 20361 *tail_unsent = (int)MBLKL(*xmit_tail); 20362 add_buffer = B_TRUE; 20363 } 20364 } while (!done && *usable > 0 && num_burst_seg > 0 && 20365 (tcp_mdt_chain || max_pld > 0)); 20366 20367 if (md_mp_head != NULL) { 20368 /* send everything down */ 20369 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 20370 &rconfirm); 20371 } 20372 20373 #undef PREP_NEW_MULTIDATA 20374 #undef PREP_NEW_PBUF 20375 #undef IPVER 20376 20377 IRE_REFRELE(ire); 20378 return (0); 20379 } 20380 20381 /* 20382 * A wrapper function for sending one or more Multidata messages down to 20383 * the module below ip; this routine does not release the reference of the 20384 * IRE (caller does that). This routine is analogous to tcp_send_data(). 20385 */ 20386 static void 20387 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 20388 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 20389 { 20390 uint64_t delta; 20391 nce_t *nce; 20392 tcp_stack_t *tcps = tcp->tcp_tcps; 20393 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20394 20395 ASSERT(ire != NULL && ill != NULL); 20396 ASSERT(ire->ire_stq != NULL); 20397 ASSERT(md_mp_head != NULL); 20398 ASSERT(rconfirm != NULL); 20399 20400 /* adjust MIBs and IRE timestamp */ 20401 DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp); 20402 tcp->tcp_obsegs += obsegs; 20403 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs); 20404 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes); 20405 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs); 20406 20407 if (tcp->tcp_ipversion == IPV4_VERSION) { 20408 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs); 20409 } else { 20410 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs); 20411 } 20412 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs); 20413 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs); 20414 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes); 20415 20416 ire->ire_ob_pkt_count += obsegs; 20417 if (ire->ire_ipif != NULL) 20418 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 20419 ire->ire_last_used_time = lbolt; 20420 20421 if (ipst->ips_ipobs_enabled) { 20422 multidata_t *dlmdp = mmd_getmultidata(md_mp_head); 20423 pdesc_t *dl_pkt; 20424 pdescinfo_t pinfo; 20425 mblk_t *nmp; 20426 zoneid_t szone = tcp->tcp_connp->conn_zoneid; 20427 20428 for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo); 20429 (dl_pkt != NULL); 20430 dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) { 20431 if ((nmp = mmd_transform_link(dl_pkt)) == NULL) 20432 continue; 20433 ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone, 20434 ALL_ZONES, ill, tcp->tcp_ipversion, 0, ipst); 20435 freemsg(nmp); 20436 } 20437 } 20438 20439 /* send it down */ 20440 putnext(ire->ire_stq, md_mp_head); 20441 20442 /* we're done for TCP/IPv4 */ 20443 if (tcp->tcp_ipversion == IPV4_VERSION) 20444 return; 20445 20446 nce = ire->ire_nce; 20447 20448 ASSERT(nce != NULL); 20449 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 20450 ASSERT(nce->nce_state != ND_INCOMPLETE); 20451 20452 /* reachability confirmation? */ 20453 if (*rconfirm) { 20454 nce->nce_last = TICK_TO_MSEC(lbolt64); 20455 if (nce->nce_state != ND_REACHABLE) { 20456 mutex_enter(&nce->nce_lock); 20457 nce->nce_state = ND_REACHABLE; 20458 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 20459 mutex_exit(&nce->nce_lock); 20460 (void) untimeout(nce->nce_timeout_id); 20461 if (ip_debug > 2) { 20462 /* ip1dbg */ 20463 pr_addr_dbg("tcp_multisend_data: state " 20464 "for %s changed to REACHABLE\n", 20465 AF_INET6, &ire->ire_addr_v6); 20466 } 20467 } 20468 /* reset transport reachability confirmation */ 20469 *rconfirm = B_FALSE; 20470 } 20471 20472 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 20473 ip1dbg(("tcp_multisend_data: delta = %" PRId64 20474 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 20475 20476 if (delta > (uint64_t)ill->ill_reachable_time) { 20477 mutex_enter(&nce->nce_lock); 20478 switch (nce->nce_state) { 20479 case ND_REACHABLE: 20480 case ND_STALE: 20481 /* 20482 * ND_REACHABLE is identical to ND_STALE in this 20483 * specific case. If reachable time has expired for 20484 * this neighbor (delta is greater than reachable 20485 * time), conceptually, the neighbor cache is no 20486 * longer in REACHABLE state, but already in STALE 20487 * state. So the correct transition here is to 20488 * ND_DELAY. 20489 */ 20490 nce->nce_state = ND_DELAY; 20491 mutex_exit(&nce->nce_lock); 20492 NDP_RESTART_TIMER(nce, 20493 ipst->ips_delay_first_probe_time); 20494 if (ip_debug > 3) { 20495 /* ip2dbg */ 20496 pr_addr_dbg("tcp_multisend_data: state " 20497 "for %s changed to DELAY\n", 20498 AF_INET6, &ire->ire_addr_v6); 20499 } 20500 break; 20501 case ND_DELAY: 20502 case ND_PROBE: 20503 mutex_exit(&nce->nce_lock); 20504 /* Timers have already started */ 20505 break; 20506 case ND_UNREACHABLE: 20507 /* 20508 * ndp timer has detected that this nce is 20509 * unreachable and initiated deleting this nce 20510 * and all its associated IREs. This is a race 20511 * where we found the ire before it was deleted 20512 * and have just sent out a packet using this 20513 * unreachable nce. 20514 */ 20515 mutex_exit(&nce->nce_lock); 20516 break; 20517 default: 20518 ASSERT(0); 20519 } 20520 } 20521 } 20522 20523 /* 20524 * Derived from tcp_send_data(). 20525 */ 20526 static void 20527 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 20528 int num_lso_seg) 20529 { 20530 ipha_t *ipha; 20531 mblk_t *ire_fp_mp; 20532 uint_t ire_fp_mp_len; 20533 uint32_t hcksum_txflags = 0; 20534 ipaddr_t src; 20535 ipaddr_t dst; 20536 uint32_t cksum; 20537 uint16_t *up; 20538 tcp_stack_t *tcps = tcp->tcp_tcps; 20539 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20540 20541 ASSERT(DB_TYPE(mp) == M_DATA); 20542 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20543 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 20544 ASSERT(tcp->tcp_connp != NULL); 20545 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 20546 20547 ipha = (ipha_t *)mp->b_rptr; 20548 src = ipha->ipha_src; 20549 dst = ipha->ipha_dst; 20550 20551 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 20552 20553 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 20554 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 20555 num_lso_seg); 20556 #ifndef _BIG_ENDIAN 20557 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 20558 #endif 20559 if (tcp->tcp_snd_zcopy_aware) { 20560 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 20561 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 20562 mp = tcp_zcopy_disable(tcp, mp); 20563 } 20564 20565 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 20566 ASSERT(ill->ill_hcksum_capab != NULL); 20567 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 20568 } 20569 20570 /* 20571 * Since the TCP checksum should be recalculated by h/w, we can just 20572 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 20573 * pseudo-header checksum for HCK_PARTIALCKSUM. 20574 * The partial pseudo-header excludes TCP length, that was calculated 20575 * in tcp_send(), so to zero *up before further processing. 20576 */ 20577 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 20578 20579 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 20580 *up = 0; 20581 20582 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 20583 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 20584 20585 /* 20586 * Append LSO flags and mss to the mp. 20587 */ 20588 lso_info_set(mp, mss, HW_LSO); 20589 20590 ipha->ipha_fragment_offset_and_flags |= 20591 (uint32_t)htons(ire->ire_frag_flag); 20592 20593 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20594 ire_fp_mp_len = MBLKL(ire_fp_mp); 20595 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 20596 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 20597 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 20598 20599 UPDATE_OB_PKT_COUNT(ire); 20600 ire->ire_last_used_time = lbolt; 20601 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 20602 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 20603 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 20604 ntohs(ipha->ipha_length)); 20605 20606 DTRACE_PROBE4(ip4__physical__out__start, 20607 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 20608 FW_HOOKS(ipst->ips_ip4_physical_out_event, 20609 ipst->ips_ipv4firewall_physical_out, NULL, 20610 ill, ipha, mp, mp, 0, ipst); 20611 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 20612 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 20613 20614 if (mp != NULL) { 20615 if (ipst->ips_ipobs_enabled) { 20616 zoneid_t szone; 20617 20618 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 20619 ipst, ALL_ZONES); 20620 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 20621 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst); 20622 } 20623 20624 ILL_SEND_TX(ill, ire, tcp->tcp_connp, mp, 0, NULL); 20625 } 20626 } 20627 20628 /* 20629 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 20630 * scheme, and returns one of the following: 20631 * 20632 * -1 = failed allocation. 20633 * 0 = success; burst count reached, or usable send window is too small, 20634 * and that we'd rather wait until later before sending again. 20635 * 1 = success; we are called from tcp_multisend(), and both usable send 20636 * window and tail_unsent are greater than the MDT threshold, and thus 20637 * Multidata Transmit should be used instead. 20638 */ 20639 static int 20640 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20641 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20642 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 20643 const int mdt_thres) 20644 { 20645 int num_burst_seg = tcp->tcp_snd_burst; 20646 ire_t *ire = NULL; 20647 ill_t *ill = NULL; 20648 mblk_t *ire_fp_mp = NULL; 20649 uint_t ire_fp_mp_len = 0; 20650 int num_lso_seg = 1; 20651 uint_t lso_usable; 20652 boolean_t do_lso_send = B_FALSE; 20653 tcp_stack_t *tcps = tcp->tcp_tcps; 20654 20655 /* 20656 * Check LSO capability before any further work. And the similar check 20657 * need to be done in for(;;) loop. 20658 * LSO will be deployed when therer is more than one mss of available 20659 * data and a burst transmission is allowed. 20660 */ 20661 if (tcp->tcp_lso && 20662 (tcp->tcp_valid_bits == 0 || 20663 tcp->tcp_valid_bits == TCP_FSS_VALID) && 20664 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 20665 /* 20666 * Try to find usable IRE/ILL and do basic check to the ILL. 20667 * Double check LSO usability before going further, since the 20668 * underlying interface could have been changed. In case of any 20669 * change of LSO capability, set tcp_ire_ill_check_done to 20670 * B_FALSE to force to check the ILL with the next send. 20671 */ 20672 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill) && 20673 tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 20674 /* 20675 * Enable LSO with this transmission. 20676 * Since IRE has been hold in tcp_send_find_ire_ill(), 20677 * IRE_REFRELE(ire) should be called before return. 20678 */ 20679 do_lso_send = B_TRUE; 20680 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20681 ire_fp_mp_len = MBLKL(ire_fp_mp); 20682 /* Round up to multiple of 4 */ 20683 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 20684 } else { 20685 tcp->tcp_lso = B_FALSE; 20686 tcp->tcp_ire_ill_check_done = B_FALSE; 20687 do_lso_send = B_FALSE; 20688 ill = NULL; 20689 } 20690 } 20691 20692 for (;;) { 20693 struct datab *db; 20694 tcph_t *tcph; 20695 uint32_t sum; 20696 mblk_t *mp, *mp1; 20697 uchar_t *rptr; 20698 int len; 20699 20700 /* 20701 * If we're called by tcp_multisend(), and the amount of 20702 * sendable data as well as the size of current xmit_tail 20703 * is beyond the MDT threshold, return to the caller and 20704 * let the large data transmit be done using MDT. 20705 */ 20706 if (*usable > 0 && *usable > mdt_thres && 20707 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 20708 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 20709 ASSERT(tcp->tcp_mdt); 20710 return (1); /* success; do large send */ 20711 } 20712 20713 if (num_burst_seg == 0) 20714 break; /* success; burst count reached */ 20715 20716 /* 20717 * Calculate the maximum payload length we can send in *one* 20718 * time. 20719 */ 20720 if (do_lso_send) { 20721 /* 20722 * Check whether need to do LSO any more. 20723 */ 20724 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 20725 lso_usable = MIN(tcp->tcp_lso_max, *usable); 20726 lso_usable = MIN(lso_usable, 20727 num_burst_seg * mss); 20728 20729 num_lso_seg = lso_usable / mss; 20730 if (lso_usable % mss) { 20731 num_lso_seg++; 20732 tcp->tcp_last_sent_len = (ushort_t) 20733 (lso_usable % mss); 20734 } else { 20735 tcp->tcp_last_sent_len = (ushort_t)mss; 20736 } 20737 } else { 20738 do_lso_send = B_FALSE; 20739 num_lso_seg = 1; 20740 lso_usable = mss; 20741 } 20742 } 20743 20744 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 20745 20746 /* 20747 * Adjust num_burst_seg here. 20748 */ 20749 num_burst_seg -= num_lso_seg; 20750 20751 len = mss; 20752 if (len > *usable) { 20753 ASSERT(do_lso_send == B_FALSE); 20754 20755 len = *usable; 20756 if (len <= 0) { 20757 /* Terminate the loop */ 20758 break; /* success; too small */ 20759 } 20760 /* 20761 * Sender silly-window avoidance. 20762 * Ignore this if we are going to send a 20763 * zero window probe out. 20764 * 20765 * TODO: force data into microscopic window? 20766 * ==> (!pushed || (unsent > usable)) 20767 */ 20768 if (len < (tcp->tcp_max_swnd >> 1) && 20769 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 20770 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 20771 len == 1) && (! tcp->tcp_zero_win_probe)) { 20772 /* 20773 * If the retransmit timer is not running 20774 * we start it so that we will retransmit 20775 * in the case when the the receiver has 20776 * decremented the window. 20777 */ 20778 if (*snxt == tcp->tcp_snxt && 20779 *snxt == tcp->tcp_suna) { 20780 /* 20781 * We are not supposed to send 20782 * anything. So let's wait a little 20783 * bit longer before breaking SWS 20784 * avoidance. 20785 * 20786 * What should the value be? 20787 * Suggestion: MAX(init rexmit time, 20788 * tcp->tcp_rto) 20789 */ 20790 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20791 } 20792 break; /* success; too small */ 20793 } 20794 } 20795 20796 tcph = tcp->tcp_tcph; 20797 20798 /* 20799 * The reason to adjust len here is that we need to set flags 20800 * and calculate checksum. 20801 */ 20802 if (do_lso_send) 20803 len = lso_usable; 20804 20805 *usable -= len; /* Approximate - can be adjusted later */ 20806 if (*usable > 0) 20807 tcph->th_flags[0] = TH_ACK; 20808 else 20809 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 20810 20811 /* 20812 * Prime pump for IP's checksumming on our behalf 20813 * Include the adjustment for a source route if any. 20814 */ 20815 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20816 sum = (sum >> 16) + (sum & 0xFFFF); 20817 U16_TO_ABE16(sum, tcph->th_sum); 20818 20819 U32_TO_ABE32(*snxt, tcph->th_seq); 20820 20821 /* 20822 * Branch off to tcp_xmit_mp() if any of the VALID bits is 20823 * set. For the case when TCP_FSS_VALID is the only valid 20824 * bit (normal active close), branch off only when we think 20825 * that the FIN flag needs to be set. Note for this case, 20826 * that (snxt + len) may not reflect the actual seg_len, 20827 * as len may be further reduced in tcp_xmit_mp(). If len 20828 * gets modified, we will end up here again. 20829 */ 20830 if (tcp->tcp_valid_bits != 0 && 20831 (tcp->tcp_valid_bits != TCP_FSS_VALID || 20832 ((*snxt + len) == tcp->tcp_fss))) { 20833 uchar_t *prev_rptr; 20834 uint32_t prev_snxt = tcp->tcp_snxt; 20835 20836 if (*tail_unsent == 0) { 20837 ASSERT((*xmit_tail)->b_cont != NULL); 20838 *xmit_tail = (*xmit_tail)->b_cont; 20839 prev_rptr = (*xmit_tail)->b_rptr; 20840 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20841 (*xmit_tail)->b_rptr); 20842 } else { 20843 prev_rptr = (*xmit_tail)->b_rptr; 20844 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 20845 *tail_unsent; 20846 } 20847 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 20848 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 20849 /* Restore tcp_snxt so we get amount sent right. */ 20850 tcp->tcp_snxt = prev_snxt; 20851 if (prev_rptr == (*xmit_tail)->b_rptr) { 20852 /* 20853 * If the previous timestamp is still in use, 20854 * don't stomp on it. 20855 */ 20856 if ((*xmit_tail)->b_next == NULL) { 20857 (*xmit_tail)->b_prev = local_time; 20858 (*xmit_tail)->b_next = 20859 (mblk_t *)(uintptr_t)(*snxt); 20860 } 20861 } else 20862 (*xmit_tail)->b_rptr = prev_rptr; 20863 20864 if (mp == NULL) { 20865 if (ire != NULL) 20866 IRE_REFRELE(ire); 20867 return (-1); 20868 } 20869 mp1 = mp->b_cont; 20870 20871 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 20872 tcp->tcp_last_sent_len = (ushort_t)len; 20873 while (mp1->b_cont) { 20874 *xmit_tail = (*xmit_tail)->b_cont; 20875 (*xmit_tail)->b_prev = local_time; 20876 (*xmit_tail)->b_next = 20877 (mblk_t *)(uintptr_t)(*snxt); 20878 mp1 = mp1->b_cont; 20879 } 20880 *snxt += len; 20881 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 20882 BUMP_LOCAL(tcp->tcp_obsegs); 20883 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 20884 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 20885 tcp_send_data(tcp, q, mp); 20886 continue; 20887 } 20888 20889 *snxt += len; /* Adjust later if we don't send all of len */ 20890 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 20891 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 20892 20893 if (*tail_unsent) { 20894 /* Are the bytes above us in flight? */ 20895 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 20896 if (rptr != (*xmit_tail)->b_rptr) { 20897 *tail_unsent -= len; 20898 if (len <= mss) /* LSO is unusable */ 20899 tcp->tcp_last_sent_len = (ushort_t)len; 20900 len += tcp_hdr_len; 20901 if (tcp->tcp_ipversion == IPV4_VERSION) 20902 tcp->tcp_ipha->ipha_length = htons(len); 20903 else 20904 tcp->tcp_ip6h->ip6_plen = 20905 htons(len - 20906 ((char *)&tcp->tcp_ip6h[1] - 20907 tcp->tcp_iphc)); 20908 mp = dupb(*xmit_tail); 20909 if (mp == NULL) { 20910 if (ire != NULL) 20911 IRE_REFRELE(ire); 20912 return (-1); /* out_of_mem */ 20913 } 20914 mp->b_rptr = rptr; 20915 /* 20916 * If the old timestamp is no longer in use, 20917 * sample a new timestamp now. 20918 */ 20919 if ((*xmit_tail)->b_next == NULL) { 20920 (*xmit_tail)->b_prev = local_time; 20921 (*xmit_tail)->b_next = 20922 (mblk_t *)(uintptr_t)(*snxt-len); 20923 } 20924 goto must_alloc; 20925 } 20926 } else { 20927 *xmit_tail = (*xmit_tail)->b_cont; 20928 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 20929 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 20930 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20931 (*xmit_tail)->b_rptr); 20932 } 20933 20934 (*xmit_tail)->b_prev = local_time; 20935 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 20936 20937 *tail_unsent -= len; 20938 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 20939 tcp->tcp_last_sent_len = (ushort_t)len; 20940 20941 len += tcp_hdr_len; 20942 if (tcp->tcp_ipversion == IPV4_VERSION) 20943 tcp->tcp_ipha->ipha_length = htons(len); 20944 else 20945 tcp->tcp_ip6h->ip6_plen = htons(len - 20946 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 20947 20948 mp = dupb(*xmit_tail); 20949 if (mp == NULL) { 20950 if (ire != NULL) 20951 IRE_REFRELE(ire); 20952 return (-1); /* out_of_mem */ 20953 } 20954 20955 len = tcp_hdr_len; 20956 /* 20957 * There are four reasons to allocate a new hdr mblk: 20958 * 1) The bytes above us are in use by another packet 20959 * 2) We don't have good alignment 20960 * 3) The mblk is being shared 20961 * 4) We don't have enough room for a header 20962 */ 20963 rptr = mp->b_rptr - len; 20964 if (!OK_32PTR(rptr) || 20965 ((db = mp->b_datap), db->db_ref != 2) || 20966 rptr < db->db_base + ire_fp_mp_len) { 20967 /* NOTE: we assume allocb returns an OK_32PTR */ 20968 20969 must_alloc:; 20970 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 20971 tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED); 20972 if (mp1 == NULL) { 20973 freemsg(mp); 20974 if (ire != NULL) 20975 IRE_REFRELE(ire); 20976 return (-1); /* out_of_mem */ 20977 } 20978 mp1->b_cont = mp; 20979 mp = mp1; 20980 /* Leave room for Link Level header */ 20981 len = tcp_hdr_len; 20982 rptr = 20983 &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len]; 20984 mp->b_wptr = &rptr[len]; 20985 } 20986 20987 /* 20988 * Fill in the header using the template header, and add 20989 * options such as time-stamp, ECN and/or SACK, as needed. 20990 */ 20991 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 20992 20993 mp->b_rptr = rptr; 20994 20995 if (*tail_unsent) { 20996 int spill = *tail_unsent; 20997 20998 mp1 = mp->b_cont; 20999 if (mp1 == NULL) 21000 mp1 = mp; 21001 21002 /* 21003 * If we're a little short, tack on more mblks until 21004 * there is no more spillover. 21005 */ 21006 while (spill < 0) { 21007 mblk_t *nmp; 21008 int nmpsz; 21009 21010 nmp = (*xmit_tail)->b_cont; 21011 nmpsz = MBLKL(nmp); 21012 21013 /* 21014 * Excess data in mblk; can we split it? 21015 * If MDT is enabled for the connection, 21016 * keep on splitting as this is a transient 21017 * send path. 21018 */ 21019 if (!do_lso_send && !tcp->tcp_mdt && 21020 (spill + nmpsz > 0)) { 21021 /* 21022 * Don't split if stream head was 21023 * told to break up larger writes 21024 * into smaller ones. 21025 */ 21026 if (tcp->tcp_maxpsz > 0) 21027 break; 21028 21029 /* 21030 * Next mblk is less than SMSS/2 21031 * rounded up to nearest 64-byte; 21032 * let it get sent as part of the 21033 * next segment. 21034 */ 21035 if (tcp->tcp_localnet && 21036 !tcp->tcp_cork && 21037 (nmpsz < roundup((mss >> 1), 64))) 21038 break; 21039 } 21040 21041 *xmit_tail = nmp; 21042 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21043 /* Stash for rtt use later */ 21044 (*xmit_tail)->b_prev = local_time; 21045 (*xmit_tail)->b_next = 21046 (mblk_t *)(uintptr_t)(*snxt - len); 21047 mp1->b_cont = dupb(*xmit_tail); 21048 mp1 = mp1->b_cont; 21049 21050 spill += nmpsz; 21051 if (mp1 == NULL) { 21052 *tail_unsent = spill; 21053 freemsg(mp); 21054 if (ire != NULL) 21055 IRE_REFRELE(ire); 21056 return (-1); /* out_of_mem */ 21057 } 21058 } 21059 21060 /* Trim back any surplus on the last mblk */ 21061 if (spill >= 0) { 21062 mp1->b_wptr -= spill; 21063 *tail_unsent = spill; 21064 } else { 21065 /* 21066 * We did not send everything we could in 21067 * order to remain within the b_cont limit. 21068 */ 21069 *usable -= spill; 21070 *snxt += spill; 21071 tcp->tcp_last_sent_len += spill; 21072 UPDATE_MIB(&tcps->tcps_mib, 21073 tcpOutDataBytes, spill); 21074 /* 21075 * Adjust the checksum 21076 */ 21077 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21078 sum += spill; 21079 sum = (sum >> 16) + (sum & 0xFFFF); 21080 U16_TO_ABE16(sum, tcph->th_sum); 21081 if (tcp->tcp_ipversion == IPV4_VERSION) { 21082 sum = ntohs( 21083 ((ipha_t *)rptr)->ipha_length) + 21084 spill; 21085 ((ipha_t *)rptr)->ipha_length = 21086 htons(sum); 21087 } else { 21088 sum = ntohs( 21089 ((ip6_t *)rptr)->ip6_plen) + 21090 spill; 21091 ((ip6_t *)rptr)->ip6_plen = 21092 htons(sum); 21093 } 21094 *tail_unsent = 0; 21095 } 21096 } 21097 if (tcp->tcp_ip_forward_progress) { 21098 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21099 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 21100 tcp->tcp_ip_forward_progress = B_FALSE; 21101 } 21102 21103 if (do_lso_send) { 21104 tcp_lsosend_data(tcp, mp, ire, ill, mss, 21105 num_lso_seg); 21106 tcp->tcp_obsegs += num_lso_seg; 21107 21108 TCP_STAT(tcps, tcp_lso_times); 21109 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 21110 } else { 21111 tcp_send_data(tcp, q, mp); 21112 BUMP_LOCAL(tcp->tcp_obsegs); 21113 } 21114 } 21115 21116 if (ire != NULL) 21117 IRE_REFRELE(ire); 21118 return (0); 21119 } 21120 21121 /* Unlink and return any mblk that looks like it contains a MDT info */ 21122 static mblk_t * 21123 tcp_mdt_info_mp(mblk_t *mp) 21124 { 21125 mblk_t *prev_mp; 21126 21127 for (;;) { 21128 prev_mp = mp; 21129 /* no more to process? */ 21130 if ((mp = mp->b_cont) == NULL) 21131 break; 21132 21133 switch (DB_TYPE(mp)) { 21134 case M_CTL: 21135 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 21136 continue; 21137 ASSERT(prev_mp != NULL); 21138 prev_mp->b_cont = mp->b_cont; 21139 mp->b_cont = NULL; 21140 return (mp); 21141 default: 21142 break; 21143 } 21144 } 21145 return (mp); 21146 } 21147 21148 /* MDT info update routine, called when IP notifies us about MDT */ 21149 static void 21150 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 21151 { 21152 boolean_t prev_state; 21153 tcp_stack_t *tcps = tcp->tcp_tcps; 21154 21155 /* 21156 * IP is telling us to abort MDT on this connection? We know 21157 * this because the capability is only turned off when IP 21158 * encounters some pathological cases, e.g. link-layer change 21159 * where the new driver doesn't support MDT, or in situation 21160 * where MDT usage on the link-layer has been switched off. 21161 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 21162 * if the link-layer doesn't support MDT, and if it does, it 21163 * will indicate that the feature is to be turned on. 21164 */ 21165 prev_state = tcp->tcp_mdt; 21166 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 21167 if (!tcp->tcp_mdt && !first) { 21168 TCP_STAT(tcps, tcp_mdt_conn_halted3); 21169 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 21170 (void *)tcp->tcp_connp)); 21171 } 21172 21173 /* 21174 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 21175 * so disable MDT otherwise. The checks are done here 21176 * and in tcp_wput_data(). 21177 */ 21178 if (tcp->tcp_mdt && 21179 (tcp->tcp_ipversion == IPV4_VERSION && 21180 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21181 (tcp->tcp_ipversion == IPV6_VERSION && 21182 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 21183 tcp->tcp_mdt = B_FALSE; 21184 21185 if (tcp->tcp_mdt) { 21186 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 21187 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 21188 "version (%d), expected version is %d", 21189 mdt_capab->ill_mdt_version, MDT_VERSION_2); 21190 tcp->tcp_mdt = B_FALSE; 21191 return; 21192 } 21193 21194 /* 21195 * We need the driver to be able to handle at least three 21196 * spans per packet in order for tcp MDT to be utilized. 21197 * The first is for the header portion, while the rest are 21198 * needed to handle a packet that straddles across two 21199 * virtually non-contiguous buffers; a typical tcp packet 21200 * therefore consists of only two spans. Note that we take 21201 * a zero as "don't care". 21202 */ 21203 if (mdt_capab->ill_mdt_span_limit > 0 && 21204 mdt_capab->ill_mdt_span_limit < 3) { 21205 tcp->tcp_mdt = B_FALSE; 21206 return; 21207 } 21208 21209 /* a zero means driver wants default value */ 21210 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 21211 tcps->tcps_mdt_max_pbufs); 21212 if (tcp->tcp_mdt_max_pld == 0) 21213 tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs; 21214 21215 /* ensure 32-bit alignment */ 21216 tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min, 21217 mdt_capab->ill_mdt_hdr_head), 4); 21218 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min, 21219 mdt_capab->ill_mdt_hdr_tail), 4); 21220 21221 if (!first && !prev_state) { 21222 TCP_STAT(tcps, tcp_mdt_conn_resumed2); 21223 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 21224 (void *)tcp->tcp_connp)); 21225 } 21226 } 21227 } 21228 21229 /* Unlink and return any mblk that looks like it contains a LSO info */ 21230 static mblk_t * 21231 tcp_lso_info_mp(mblk_t *mp) 21232 { 21233 mblk_t *prev_mp; 21234 21235 for (;;) { 21236 prev_mp = mp; 21237 /* no more to process? */ 21238 if ((mp = mp->b_cont) == NULL) 21239 break; 21240 21241 switch (DB_TYPE(mp)) { 21242 case M_CTL: 21243 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 21244 continue; 21245 ASSERT(prev_mp != NULL); 21246 prev_mp->b_cont = mp->b_cont; 21247 mp->b_cont = NULL; 21248 return (mp); 21249 default: 21250 break; 21251 } 21252 } 21253 21254 return (mp); 21255 } 21256 21257 /* LSO info update routine, called when IP notifies us about LSO */ 21258 static void 21259 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 21260 { 21261 tcp_stack_t *tcps = tcp->tcp_tcps; 21262 21263 /* 21264 * IP is telling us to abort LSO on this connection? We know 21265 * this because the capability is only turned off when IP 21266 * encounters some pathological cases, e.g. link-layer change 21267 * where the new NIC/driver doesn't support LSO, or in situation 21268 * where LSO usage on the link-layer has been switched off. 21269 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 21270 * if the link-layer doesn't support LSO, and if it does, it 21271 * will indicate that the feature is to be turned on. 21272 */ 21273 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 21274 TCP_STAT(tcps, tcp_lso_enabled); 21275 21276 /* 21277 * We currently only support LSO on simple TCP/IPv4, 21278 * so disable LSO otherwise. The checks are done here 21279 * and in tcp_wput_data(). 21280 */ 21281 if (tcp->tcp_lso && 21282 (tcp->tcp_ipversion == IPV4_VERSION && 21283 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21284 (tcp->tcp_ipversion == IPV6_VERSION)) { 21285 tcp->tcp_lso = B_FALSE; 21286 TCP_STAT(tcps, tcp_lso_disabled); 21287 } else { 21288 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 21289 lso_capab->ill_lso_max); 21290 } 21291 } 21292 21293 static void 21294 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 21295 { 21296 conn_t *connp = tcp->tcp_connp; 21297 tcp_stack_t *tcps = tcp->tcp_tcps; 21298 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21299 21300 ASSERT(ire != NULL); 21301 21302 /* 21303 * We may be in the fastpath here, and although we essentially do 21304 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 21305 * we try to keep things as brief as possible. After all, these 21306 * are only best-effort checks, and we do more thorough ones prior 21307 * to calling tcp_send()/tcp_multisend(). 21308 */ 21309 if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) && 21310 check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 21311 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 21312 !(ire->ire_flags & RTF_MULTIRT) && 21313 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 21314 CONN_IS_LSO_MD_FASTPATH(connp)) { 21315 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 21316 /* Cache the result */ 21317 connp->conn_lso_ok = B_TRUE; 21318 21319 ASSERT(ill->ill_lso_capab != NULL); 21320 if (!ill->ill_lso_capab->ill_lso_on) { 21321 ill->ill_lso_capab->ill_lso_on = 1; 21322 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21323 "LSO for interface %s\n", (void *)connp, 21324 ill->ill_name)); 21325 } 21326 tcp_lso_update(tcp, ill->ill_lso_capab); 21327 } else if (ipst->ips_ip_multidata_outbound && 21328 ILL_MDT_CAPABLE(ill)) { 21329 /* Cache the result */ 21330 connp->conn_mdt_ok = B_TRUE; 21331 21332 ASSERT(ill->ill_mdt_capab != NULL); 21333 if (!ill->ill_mdt_capab->ill_mdt_on) { 21334 ill->ill_mdt_capab->ill_mdt_on = 1; 21335 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21336 "MDT for interface %s\n", (void *)connp, 21337 ill->ill_name)); 21338 } 21339 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 21340 } 21341 } 21342 21343 /* 21344 * The goal is to reduce the number of generated tcp segments by 21345 * setting the maxpsz multiplier to 0; this will have an affect on 21346 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 21347 * into each packet, up to SMSS bytes. Doing this reduces the number 21348 * of outbound segments and incoming ACKs, thus allowing for better 21349 * network and system performance. In contrast the legacy behavior 21350 * may result in sending less than SMSS size, because the last mblk 21351 * for some packets may have more data than needed to make up SMSS, 21352 * and the legacy code refused to "split" it. 21353 * 21354 * We apply the new behavior on following situations: 21355 * 21356 * 1) Loopback connections, 21357 * 2) Connections in which the remote peer is not on local subnet, 21358 * 3) Local subnet connections over the bge interface (see below). 21359 * 21360 * Ideally, we would like this behavior to apply for interfaces other 21361 * than bge. However, doing so would negatively impact drivers which 21362 * perform dynamic mapping and unmapping of DMA resources, which are 21363 * increased by setting the maxpsz multiplier to 0 (more mblks per 21364 * packet will be generated by tcp). The bge driver does not suffer 21365 * from this, as it copies the mblks into pre-mapped buffers, and 21366 * therefore does not require more I/O resources than before. 21367 * 21368 * Otherwise, this behavior is present on all network interfaces when 21369 * the destination endpoint is non-local, since reducing the number 21370 * of packets in general is good for the network. 21371 * 21372 * TODO We need to remove this hard-coded conditional for bge once 21373 * a better "self-tuning" mechanism, or a way to comprehend 21374 * the driver transmit strategy is devised. Until the solution 21375 * is found and well understood, we live with this hack. 21376 */ 21377 if (!tcp_static_maxpsz && 21378 (tcp->tcp_loopback || !tcp->tcp_localnet || 21379 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 21380 /* override the default value */ 21381 tcp->tcp_maxpsz = 0; 21382 21383 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 21384 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 21385 ill != NULL ? ill->ill_name : ipif_loopback_name)); 21386 } 21387 21388 /* set the stream head parameters accordingly */ 21389 (void) tcp_maxpsz_set(tcp, B_TRUE); 21390 } 21391 21392 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 21393 static void 21394 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 21395 { 21396 uchar_t fval = *mp->b_rptr; 21397 mblk_t *tail; 21398 queue_t *q = tcp->tcp_wq; 21399 21400 /* TODO: How should flush interact with urgent data? */ 21401 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 21402 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 21403 /* 21404 * Flush only data that has not yet been put on the wire. If 21405 * we flush data that we have already transmitted, life, as we 21406 * know it, may come to an end. 21407 */ 21408 tail = tcp->tcp_xmit_tail; 21409 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 21410 tcp->tcp_xmit_tail_unsent = 0; 21411 tcp->tcp_unsent = 0; 21412 if (tail->b_wptr != tail->b_rptr) 21413 tail = tail->b_cont; 21414 if (tail) { 21415 mblk_t **excess = &tcp->tcp_xmit_head; 21416 for (;;) { 21417 mblk_t *mp1 = *excess; 21418 if (mp1 == tail) 21419 break; 21420 tcp->tcp_xmit_tail = mp1; 21421 tcp->tcp_xmit_last = mp1; 21422 excess = &mp1->b_cont; 21423 } 21424 *excess = NULL; 21425 tcp_close_mpp(&tail); 21426 if (tcp->tcp_snd_zcopy_aware) 21427 tcp_zcopy_notify(tcp); 21428 } 21429 /* 21430 * We have no unsent data, so unsent must be less than 21431 * tcp_xmit_lowater, so re-enable flow. 21432 */ 21433 mutex_enter(&tcp->tcp_non_sq_lock); 21434 if (tcp->tcp_flow_stopped) { 21435 tcp_clrqfull(tcp); 21436 } 21437 mutex_exit(&tcp->tcp_non_sq_lock); 21438 } 21439 /* 21440 * TODO: you can't just flush these, you have to increase rwnd for one 21441 * thing. For another, how should urgent data interact? 21442 */ 21443 if (fval & FLUSHR) { 21444 *mp->b_rptr = fval & ~FLUSHW; 21445 /* XXX */ 21446 qreply(q, mp); 21447 return; 21448 } 21449 freemsg(mp); 21450 } 21451 21452 /* 21453 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 21454 * messages. 21455 */ 21456 static void 21457 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 21458 { 21459 mblk_t *mp1; 21460 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 21461 STRUCT_HANDLE(strbuf, sb); 21462 queue_t *q = tcp->tcp_wq; 21463 int error; 21464 uint_t addrlen; 21465 21466 /* Make sure it is one of ours. */ 21467 switch (iocp->ioc_cmd) { 21468 case TI_GETMYNAME: 21469 case TI_GETPEERNAME: 21470 break; 21471 default: 21472 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 21473 return; 21474 } 21475 switch (mi_copy_state(q, mp, &mp1)) { 21476 case -1: 21477 return; 21478 case MI_COPY_CASE(MI_COPY_IN, 1): 21479 break; 21480 case MI_COPY_CASE(MI_COPY_OUT, 1): 21481 /* Copy out the strbuf. */ 21482 mi_copyout(q, mp); 21483 return; 21484 case MI_COPY_CASE(MI_COPY_OUT, 2): 21485 /* All done. */ 21486 mi_copy_done(q, mp, 0); 21487 return; 21488 default: 21489 mi_copy_done(q, mp, EPROTO); 21490 return; 21491 } 21492 /* Check alignment of the strbuf */ 21493 if (!OK_32PTR(mp1->b_rptr)) { 21494 mi_copy_done(q, mp, EINVAL); 21495 return; 21496 } 21497 21498 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 21499 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 21500 if (STRUCT_FGET(sb, maxlen) < addrlen) { 21501 mi_copy_done(q, mp, EINVAL); 21502 return; 21503 } 21504 21505 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 21506 if (mp1 == NULL) 21507 return; 21508 21509 switch (iocp->ioc_cmd) { 21510 case TI_GETMYNAME: 21511 error = tcp_do_getsockname(tcp, (void *)mp1->b_rptr, &addrlen); 21512 break; 21513 case TI_GETPEERNAME: 21514 error = tcp_do_getpeername(tcp, (void *)mp1->b_rptr, &addrlen); 21515 break; 21516 } 21517 21518 if (error != 0) { 21519 mi_copy_done(q, mp, error); 21520 } else { 21521 mp1->b_wptr += addrlen; 21522 STRUCT_FSET(sb, len, addrlen); 21523 21524 /* Copy out the address */ 21525 mi_copyout(q, mp); 21526 } 21527 } 21528 21529 static void 21530 tcp_use_pure_tpi(tcp_t *tcp) 21531 { 21532 #ifdef _ILP32 21533 tcp->tcp_acceptor_id = (t_uscalar_t)tcp->tcp_rq; 21534 #else 21535 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 21536 #endif 21537 /* 21538 * Insert this socket into the acceptor hash. 21539 * We might need it for T_CONN_RES message 21540 */ 21541 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 21542 21543 tcp->tcp_issocket = B_FALSE; 21544 TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback); 21545 } 21546 21547 /* 21548 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 21549 * messages. 21550 */ 21551 /* ARGSUSED */ 21552 static void 21553 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 21554 { 21555 conn_t *connp = (conn_t *)arg; 21556 tcp_t *tcp = connp->conn_tcp; 21557 queue_t *q = tcp->tcp_wq; 21558 struct iocblk *iocp; 21559 21560 ASSERT(DB_TYPE(mp) == M_IOCTL); 21561 /* 21562 * Try and ASSERT the minimum possible references on the 21563 * conn early enough. Since we are executing on write side, 21564 * the connection is obviously not detached and that means 21565 * there is a ref each for TCP and IP. Since we are behind 21566 * the squeue, the minimum references needed are 3. If the 21567 * conn is in classifier hash list, there should be an 21568 * extra ref for that (we check both the possibilities). 21569 */ 21570 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21571 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21572 21573 iocp = (struct iocblk *)mp->b_rptr; 21574 switch (iocp->ioc_cmd) { 21575 case TCP_IOC_DEFAULT_Q: 21576 /* Wants to be the default wq. */ 21577 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 21578 iocp->ioc_error = EPERM; 21579 iocp->ioc_count = 0; 21580 mp->b_datap->db_type = M_IOCACK; 21581 qreply(q, mp); 21582 return; 21583 } 21584 tcp_def_q_set(tcp, mp); 21585 return; 21586 case _SIOCSOCKFALLBACK: 21587 /* 21588 * Either sockmod is about to be popped and the socket 21589 * would now be treated as a plain stream, or a module 21590 * is about to be pushed so we could no longer use read- 21591 * side synchronous streams for fused loopback tcp. 21592 * Drain any queued data and disable direct sockfs 21593 * interface from now on. 21594 */ 21595 if (!tcp->tcp_issocket) { 21596 DB_TYPE(mp) = M_IOCNAK; 21597 iocp->ioc_error = EINVAL; 21598 } else { 21599 tcp_use_pure_tpi(tcp); 21600 DB_TYPE(mp) = M_IOCACK; 21601 iocp->ioc_error = 0; 21602 } 21603 iocp->ioc_count = 0; 21604 iocp->ioc_rval = 0; 21605 qreply(q, mp); 21606 return; 21607 } 21608 CALL_IP_WPUT(connp, q, mp); 21609 } 21610 21611 /* 21612 * This routine is called by tcp_wput() to handle all TPI requests. 21613 */ 21614 /* ARGSUSED */ 21615 static void 21616 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 21617 { 21618 conn_t *connp = (conn_t *)arg; 21619 tcp_t *tcp = connp->conn_tcp; 21620 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 21621 uchar_t *rptr; 21622 t_scalar_t type; 21623 cred_t *cr; 21624 21625 /* 21626 * Try and ASSERT the minimum possible references on the 21627 * conn early enough. Since we are executing on write side, 21628 * the connection is obviously not detached and that means 21629 * there is a ref each for TCP and IP. Since we are behind 21630 * the squeue, the minimum references needed are 3. If the 21631 * conn is in classifier hash list, there should be an 21632 * extra ref for that (we check both the possibilities). 21633 */ 21634 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21635 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21636 21637 rptr = mp->b_rptr; 21638 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 21639 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 21640 type = ((union T_primitives *)rptr)->type; 21641 if (type == T_EXDATA_REQ) { 21642 tcp_output_urgent(connp, mp, arg2); 21643 } else if (type != T_DATA_REQ) { 21644 goto non_urgent_data; 21645 } else { 21646 /* TODO: options, flags, ... from user */ 21647 /* Set length to zero for reclamation below */ 21648 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 21649 freeb(mp); 21650 } 21651 return; 21652 } else { 21653 if (tcp->tcp_debug) { 21654 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21655 "tcp_wput_proto, dropping one..."); 21656 } 21657 freemsg(mp); 21658 return; 21659 } 21660 21661 non_urgent_data: 21662 21663 switch ((int)tprim->type) { 21664 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 21665 /* 21666 * save the kssl_ent_t from the next block, and convert this 21667 * back to a normal bind_req. 21668 */ 21669 if (mp->b_cont != NULL) { 21670 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 21671 21672 if (tcp->tcp_kssl_ent != NULL) { 21673 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 21674 KSSL_NO_PROXY); 21675 tcp->tcp_kssl_ent = NULL; 21676 } 21677 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 21678 sizeof (kssl_ent_t)); 21679 kssl_hold_ent(tcp->tcp_kssl_ent); 21680 freemsg(mp->b_cont); 21681 mp->b_cont = NULL; 21682 } 21683 tprim->type = T_BIND_REQ; 21684 21685 /* FALLTHROUGH */ 21686 case O_T_BIND_REQ: /* bind request */ 21687 case T_BIND_REQ: /* new semantics bind request */ 21688 tcp_tpi_bind(tcp, mp); 21689 break; 21690 case T_UNBIND_REQ: /* unbind request */ 21691 tcp_tpi_unbind(tcp, mp); 21692 break; 21693 case O_T_CONN_RES: /* old connection response XXX */ 21694 case T_CONN_RES: /* connection response */ 21695 tcp_tli_accept(tcp, mp); 21696 break; 21697 case T_CONN_REQ: /* connection request */ 21698 tcp_tpi_connect(tcp, mp); 21699 break; 21700 case T_DISCON_REQ: /* disconnect request */ 21701 tcp_disconnect(tcp, mp); 21702 break; 21703 case T_CAPABILITY_REQ: 21704 tcp_capability_req(tcp, mp); /* capability request */ 21705 break; 21706 case T_INFO_REQ: /* information request */ 21707 tcp_info_req(tcp, mp); 21708 break; 21709 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 21710 case T_OPTMGMT_REQ: 21711 /* 21712 * Note: no support for snmpcom_req() through new 21713 * T_OPTMGMT_REQ. See comments in ip.c 21714 */ 21715 21716 /* 21717 * All Solaris components should pass a db_credp 21718 * for this TPI message, hence we ASSERT. 21719 * But in case there is some other M_PROTO that looks 21720 * like a TPI message sent by some other kernel 21721 * component, we check and return an error. 21722 */ 21723 cr = msg_getcred(mp, NULL); 21724 ASSERT(cr != NULL); 21725 if (cr == NULL) { 21726 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 21727 return; 21728 } 21729 /* 21730 * If EINPROGRESS is returned, the request has been queued 21731 * for subsequent processing by ip_restart_optmgmt(), which 21732 * will do the CONN_DEC_REF(). 21733 */ 21734 CONN_INC_REF(connp); 21735 if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) { 21736 if (svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 21737 B_TRUE) != EINPROGRESS) { 21738 CONN_DEC_REF(connp); 21739 } 21740 } else { 21741 if (tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 21742 B_TRUE) != EINPROGRESS) { 21743 CONN_DEC_REF(connp); 21744 } 21745 } 21746 break; 21747 21748 case T_UNITDATA_REQ: /* unitdata request */ 21749 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21750 break; 21751 case T_ORDREL_REQ: /* orderly release req */ 21752 freemsg(mp); 21753 21754 if (tcp->tcp_fused) 21755 tcp_unfuse(tcp); 21756 21757 if (tcp_xmit_end(tcp) != 0) { 21758 /* 21759 * We were crossing FINs and got a reset from 21760 * the other side. Just ignore it. 21761 */ 21762 if (tcp->tcp_debug) { 21763 (void) strlog(TCP_MOD_ID, 0, 1, 21764 SL_ERROR|SL_TRACE, 21765 "tcp_wput_proto, T_ORDREL_REQ out of " 21766 "state %s", 21767 tcp_display(tcp, NULL, 21768 DISP_ADDR_AND_PORT)); 21769 } 21770 } 21771 break; 21772 case T_ADDR_REQ: 21773 tcp_addr_req(tcp, mp); 21774 break; 21775 default: 21776 if (tcp->tcp_debug) { 21777 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21778 "tcp_wput_proto, bogus TPI msg, type %d", 21779 tprim->type); 21780 } 21781 /* 21782 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 21783 * to recover. 21784 */ 21785 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21786 break; 21787 } 21788 } 21789 21790 /* 21791 * The TCP write service routine should never be called... 21792 */ 21793 /* ARGSUSED */ 21794 static void 21795 tcp_wsrv(queue_t *q) 21796 { 21797 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 21798 21799 TCP_STAT(tcps, tcp_wsrv_called); 21800 } 21801 21802 /* Non overlapping byte exchanger */ 21803 static void 21804 tcp_xchg(uchar_t *a, uchar_t *b, int len) 21805 { 21806 uchar_t uch; 21807 21808 while (len-- > 0) { 21809 uch = a[len]; 21810 a[len] = b[len]; 21811 b[len] = uch; 21812 } 21813 } 21814 21815 /* 21816 * Send out a control packet on the tcp connection specified. This routine 21817 * is typically called where we need a simple ACK or RST generated. 21818 */ 21819 static void 21820 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 21821 { 21822 uchar_t *rptr; 21823 tcph_t *tcph; 21824 ipha_t *ipha = NULL; 21825 ip6_t *ip6h = NULL; 21826 uint32_t sum; 21827 int tcp_hdr_len; 21828 int tcp_ip_hdr_len; 21829 mblk_t *mp; 21830 tcp_stack_t *tcps = tcp->tcp_tcps; 21831 21832 /* 21833 * Save sum for use in source route later. 21834 */ 21835 ASSERT(tcp != NULL); 21836 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 21837 tcp_hdr_len = tcp->tcp_hdr_len; 21838 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 21839 21840 /* If a text string is passed in with the request, pass it to strlog. */ 21841 if (str != NULL && tcp->tcp_debug) { 21842 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 21843 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 21844 str, seq, ack, ctl); 21845 } 21846 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra, 21847 BPRI_MED); 21848 if (mp == NULL) { 21849 return; 21850 } 21851 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 21852 mp->b_rptr = rptr; 21853 mp->b_wptr = &rptr[tcp_hdr_len]; 21854 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 21855 21856 if (tcp->tcp_ipversion == IPV4_VERSION) { 21857 ipha = (ipha_t *)rptr; 21858 ipha->ipha_length = htons(tcp_hdr_len); 21859 } else { 21860 ip6h = (ip6_t *)rptr; 21861 ASSERT(tcp != NULL); 21862 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 21863 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21864 } 21865 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 21866 tcph->th_flags[0] = (uint8_t)ctl; 21867 if (ctl & TH_RST) { 21868 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 21869 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 21870 /* 21871 * Don't send TSopt w/ TH_RST packets per RFC 1323. 21872 */ 21873 if (tcp->tcp_snd_ts_ok && 21874 tcp->tcp_state > TCPS_SYN_SENT) { 21875 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 21876 *(mp->b_wptr) = TCPOPT_EOL; 21877 if (tcp->tcp_ipversion == IPV4_VERSION) { 21878 ipha->ipha_length = htons(tcp_hdr_len - 21879 TCPOPT_REAL_TS_LEN); 21880 } else { 21881 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 21882 TCPOPT_REAL_TS_LEN); 21883 } 21884 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 21885 sum -= TCPOPT_REAL_TS_LEN; 21886 } 21887 } 21888 if (ctl & TH_ACK) { 21889 if (tcp->tcp_snd_ts_ok) { 21890 U32_TO_BE32(lbolt, 21891 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 21892 U32_TO_BE32(tcp->tcp_ts_recent, 21893 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 21894 } 21895 21896 /* Update the latest receive window size in TCP header. */ 21897 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 21898 tcph->th_win); 21899 tcp->tcp_rack = ack; 21900 tcp->tcp_rack_cnt = 0; 21901 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 21902 } 21903 BUMP_LOCAL(tcp->tcp_obsegs); 21904 U32_TO_BE32(seq, tcph->th_seq); 21905 U32_TO_BE32(ack, tcph->th_ack); 21906 /* 21907 * Include the adjustment for a source route if any. 21908 */ 21909 sum = (sum >> 16) + (sum & 0xFFFF); 21910 U16_TO_BE16(sum, tcph->th_sum); 21911 tcp_send_data(tcp, tcp->tcp_wq, mp); 21912 } 21913 21914 /* 21915 * If this routine returns B_TRUE, TCP can generate a RST in response 21916 * to a segment. If it returns B_FALSE, TCP should not respond. 21917 */ 21918 static boolean_t 21919 tcp_send_rst_chk(tcp_stack_t *tcps) 21920 { 21921 clock_t now; 21922 21923 /* 21924 * TCP needs to protect itself from generating too many RSTs. 21925 * This can be a DoS attack by sending us random segments 21926 * soliciting RSTs. 21927 * 21928 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 21929 * in each 1 second interval. In this way, TCP still generate 21930 * RSTs in normal cases but when under attack, the impact is 21931 * limited. 21932 */ 21933 if (tcps->tcps_rst_sent_rate_enabled != 0) { 21934 now = lbolt; 21935 /* lbolt can wrap around. */ 21936 if ((tcps->tcps_last_rst_intrvl > now) || 21937 (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 21938 1*SECONDS)) { 21939 tcps->tcps_last_rst_intrvl = now; 21940 tcps->tcps_rst_cnt = 1; 21941 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 21942 return (B_FALSE); 21943 } 21944 } 21945 return (B_TRUE); 21946 } 21947 21948 /* 21949 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 21950 */ 21951 static void 21952 tcp_ip_ire_mark_advice(tcp_t *tcp) 21953 { 21954 mblk_t *mp; 21955 ipic_t *ipic; 21956 21957 if (tcp->tcp_ipversion == IPV4_VERSION) { 21958 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 21959 &ipic); 21960 } else { 21961 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 21962 &ipic); 21963 } 21964 if (mp == NULL) 21965 return; 21966 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 21967 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21968 } 21969 21970 /* 21971 * Return an IP advice ioctl mblk and set ipic to be the pointer 21972 * to the advice structure. 21973 */ 21974 static mblk_t * 21975 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 21976 { 21977 struct iocblk *ioc; 21978 mblk_t *mp, *mp1; 21979 21980 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 21981 if (mp == NULL) 21982 return (NULL); 21983 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 21984 *ipic = (ipic_t *)mp->b_rptr; 21985 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 21986 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 21987 21988 bcopy(addr, *ipic + 1, addr_len); 21989 21990 (*ipic)->ipic_addr_length = addr_len; 21991 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 21992 21993 mp1 = mkiocb(IP_IOCTL); 21994 if (mp1 == NULL) { 21995 freemsg(mp); 21996 return (NULL); 21997 } 21998 mp1->b_cont = mp; 21999 ioc = (struct iocblk *)mp1->b_rptr; 22000 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22001 22002 return (mp1); 22003 } 22004 22005 /* 22006 * Generate a reset based on an inbound packet, connp is set by caller 22007 * when RST is in response to an unexpected inbound packet for which 22008 * there is active tcp state in the system. 22009 * 22010 * IPSEC NOTE : Try to send the reply with the same protection as it came 22011 * in. We still have the ipsec_mp that the packet was attached to. Thus 22012 * the packet will go out at the same level of protection as it came in by 22013 * converting the IPSEC_IN to IPSEC_OUT. 22014 */ 22015 static void 22016 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22017 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid, 22018 tcp_stack_t *tcps, conn_t *connp) 22019 { 22020 ipha_t *ipha = NULL; 22021 ip6_t *ip6h = NULL; 22022 ushort_t len; 22023 tcph_t *tcph; 22024 int i; 22025 mblk_t *ipsec_mp; 22026 boolean_t mctl_present; 22027 ipic_t *ipic; 22028 ipaddr_t v4addr; 22029 in6_addr_t v6addr; 22030 int addr_len; 22031 void *addr; 22032 queue_t *q = tcps->tcps_g_q; 22033 tcp_t *tcp; 22034 cred_t *cr; 22035 pid_t pid; 22036 mblk_t *nmp; 22037 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22038 22039 if (tcps->tcps_g_q == NULL) { 22040 /* 22041 * For non-zero stackids the default queue isn't created 22042 * until the first open, thus there can be a need to send 22043 * a reset before then. But we can't do that, hence we just 22044 * drop the packet. Later during boot, when the default queue 22045 * has been setup, a retransmitted packet from the peer 22046 * will result in a reset. 22047 */ 22048 ASSERT(tcps->tcps_netstack->netstack_stackid != 22049 GLOBAL_NETSTACKID); 22050 freemsg(mp); 22051 return; 22052 } 22053 22054 if (connp != NULL) 22055 tcp = connp->conn_tcp; 22056 else 22057 tcp = Q_TO_TCP(q); 22058 22059 if (!tcp_send_rst_chk(tcps)) { 22060 tcps->tcps_rst_unsent++; 22061 freemsg(mp); 22062 return; 22063 } 22064 22065 if (mp->b_datap->db_type == M_CTL) { 22066 ipsec_mp = mp; 22067 mp = mp->b_cont; 22068 mctl_present = B_TRUE; 22069 } else { 22070 ipsec_mp = mp; 22071 mctl_present = B_FALSE; 22072 } 22073 22074 if (str && q && tcps->tcps_dbg) { 22075 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22076 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22077 "flags 0x%x", 22078 str, seq, ack, ctl); 22079 } 22080 if (mp->b_datap->db_ref != 1) { 22081 mblk_t *mp1 = copyb(mp); 22082 freemsg(mp); 22083 mp = mp1; 22084 if (!mp) { 22085 if (mctl_present) 22086 freeb(ipsec_mp); 22087 return; 22088 } else { 22089 if (mctl_present) { 22090 ipsec_mp->b_cont = mp; 22091 } else { 22092 ipsec_mp = mp; 22093 } 22094 } 22095 } else if (mp->b_cont) { 22096 freemsg(mp->b_cont); 22097 mp->b_cont = NULL; 22098 } 22099 /* 22100 * We skip reversing source route here. 22101 * (for now we replace all IP options with EOL) 22102 */ 22103 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22104 ipha = (ipha_t *)mp->b_rptr; 22105 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 22106 mp->b_rptr[i] = IPOPT_EOL; 22107 /* 22108 * Make sure that src address isn't flagrantly invalid. 22109 * Not all broadcast address checking for the src address 22110 * is possible, since we don't know the netmask of the src 22111 * addr. No check for destination address is done, since 22112 * IP will not pass up a packet with a broadcast dest 22113 * address to TCP. Similar checks are done below for IPv6. 22114 */ 22115 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 22116 CLASSD(ipha->ipha_src)) { 22117 freemsg(ipsec_mp); 22118 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 22119 return; 22120 } 22121 } else { 22122 ip6h = (ip6_t *)mp->b_rptr; 22123 22124 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 22125 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 22126 freemsg(ipsec_mp); 22127 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 22128 return; 22129 } 22130 22131 /* Remove any extension headers assuming partial overlay */ 22132 if (ip_hdr_len > IPV6_HDR_LEN) { 22133 uint8_t *to; 22134 22135 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 22136 ovbcopy(ip6h, to, IPV6_HDR_LEN); 22137 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 22138 ip_hdr_len = IPV6_HDR_LEN; 22139 ip6h = (ip6_t *)mp->b_rptr; 22140 ip6h->ip6_nxt = IPPROTO_TCP; 22141 } 22142 } 22143 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 22144 if (tcph->th_flags[0] & TH_RST) { 22145 freemsg(ipsec_mp); 22146 return; 22147 } 22148 tcph->th_offset_and_rsrvd[0] = (5 << 4); 22149 len = ip_hdr_len + sizeof (tcph_t); 22150 mp->b_wptr = &mp->b_rptr[len]; 22151 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22152 ipha->ipha_length = htons(len); 22153 /* Swap addresses */ 22154 v4addr = ipha->ipha_src; 22155 ipha->ipha_src = ipha->ipha_dst; 22156 ipha->ipha_dst = v4addr; 22157 ipha->ipha_ident = 0; 22158 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 22159 addr_len = IP_ADDR_LEN; 22160 addr = &v4addr; 22161 } else { 22162 /* No ip6i_t in this case */ 22163 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 22164 /* Swap addresses */ 22165 v6addr = ip6h->ip6_src; 22166 ip6h->ip6_src = ip6h->ip6_dst; 22167 ip6h->ip6_dst = v6addr; 22168 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 22169 addr_len = IPV6_ADDR_LEN; 22170 addr = &v6addr; 22171 } 22172 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 22173 U32_TO_BE32(ack, tcph->th_ack); 22174 U32_TO_BE32(seq, tcph->th_seq); 22175 U16_TO_BE16(0, tcph->th_win); 22176 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 22177 tcph->th_flags[0] = (uint8_t)ctl; 22178 if (ctl & TH_RST) { 22179 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22180 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22181 } 22182 22183 /* IP trusts us to set up labels when required. */ 22184 if (is_system_labeled() && (cr = msg_getcred(mp, &pid)) != NULL && 22185 crgetlabel(cr) != NULL) { 22186 int err; 22187 22188 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 22189 err = tsol_check_label(cr, &mp, 22190 tcp->tcp_connp->conn_mac_exempt, 22191 tcps->tcps_netstack->netstack_ip, pid); 22192 else 22193 err = tsol_check_label_v6(cr, &mp, 22194 tcp->tcp_connp->conn_mac_exempt, 22195 tcps->tcps_netstack->netstack_ip, pid); 22196 if (mctl_present) 22197 ipsec_mp->b_cont = mp; 22198 else 22199 ipsec_mp = mp; 22200 if (err != 0) { 22201 freemsg(ipsec_mp); 22202 return; 22203 } 22204 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22205 ipha = (ipha_t *)mp->b_rptr; 22206 } else { 22207 ip6h = (ip6_t *)mp->b_rptr; 22208 } 22209 } 22210 22211 if (mctl_present) { 22212 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22213 22214 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22215 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 22216 return; 22217 } 22218 } 22219 if (zoneid == ALL_ZONES) 22220 zoneid = GLOBAL_ZONEID; 22221 22222 /* Add the zoneid so ip_output routes it properly */ 22223 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) { 22224 freemsg(ipsec_mp); 22225 return; 22226 } 22227 ipsec_mp = nmp; 22228 22229 /* 22230 * NOTE: one might consider tracing a TCP packet here, but 22231 * this function has no active TCP state and no tcp structure 22232 * that has a trace buffer. If we traced here, we would have 22233 * to keep a local trace buffer in tcp_record_trace(). 22234 * 22235 * TSol note: The mblk that contains the incoming packet was 22236 * reused by tcp_xmit_listener_reset, so it already contains 22237 * the right credentials and we don't need to call mblk_setcred. 22238 * Also the conn's cred is not right since it is associated 22239 * with tcps_g_q. 22240 */ 22241 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 22242 22243 /* 22244 * Tell IP to mark the IRE used for this destination temporary. 22245 * This way, we can limit our exposure to DoS attack because IP 22246 * creates an IRE for each destination. If there are too many, 22247 * the time to do any routing lookup will be extremely long. And 22248 * the lookup can be in interrupt context. 22249 * 22250 * Note that in normal circumstances, this marking should not 22251 * affect anything. It would be nice if only 1 message is 22252 * needed to inform IP that the IRE created for this RST should 22253 * not be added to the cache table. But there is currently 22254 * not such communication mechanism between TCP and IP. So 22255 * the best we can do now is to send the advice ioctl to IP 22256 * to mark the IRE temporary. 22257 */ 22258 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 22259 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22260 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22261 } 22262 } 22263 22264 /* 22265 * Initiate closedown sequence on an active connection. (May be called as 22266 * writer.) Return value zero for OK return, non-zero for error return. 22267 */ 22268 static int 22269 tcp_xmit_end(tcp_t *tcp) 22270 { 22271 ipic_t *ipic; 22272 mblk_t *mp; 22273 tcp_stack_t *tcps = tcp->tcp_tcps; 22274 22275 if (tcp->tcp_state < TCPS_SYN_RCVD || 22276 tcp->tcp_state > TCPS_CLOSE_WAIT) { 22277 /* 22278 * Invalid state, only states TCPS_SYN_RCVD, 22279 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 22280 */ 22281 return (-1); 22282 } 22283 22284 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 22285 tcp->tcp_valid_bits |= TCP_FSS_VALID; 22286 /* 22287 * If there is nothing more unsent, send the FIN now. 22288 * Otherwise, it will go out with the last segment. 22289 */ 22290 if (tcp->tcp_unsent == 0) { 22291 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 22292 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 22293 22294 if (mp) { 22295 tcp_send_data(tcp, tcp->tcp_wq, mp); 22296 } else { 22297 /* 22298 * Couldn't allocate msg. Pretend we got it out. 22299 * Wait for rexmit timeout. 22300 */ 22301 tcp->tcp_snxt = tcp->tcp_fss + 1; 22302 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22303 } 22304 22305 /* 22306 * If needed, update tcp_rexmit_snxt as tcp_snxt is 22307 * changed. 22308 */ 22309 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 22310 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 22311 } 22312 } else { 22313 /* 22314 * If tcp->tcp_cork is set, then the data will not get sent, 22315 * so we have to check that and unset it first. 22316 */ 22317 if (tcp->tcp_cork) 22318 tcp->tcp_cork = B_FALSE; 22319 tcp_wput_data(tcp, NULL, B_FALSE); 22320 } 22321 22322 /* 22323 * If TCP does not get enough samples of RTT or tcp_rtt_updates 22324 * is 0, don't update the cache. 22325 */ 22326 if (tcps->tcps_rtt_updates == 0 || 22327 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 22328 return (0); 22329 22330 /* 22331 * NOTE: should not update if source routes i.e. if tcp_remote if 22332 * different from the destination. 22333 */ 22334 if (tcp->tcp_ipversion == IPV4_VERSION) { 22335 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 22336 return (0); 22337 } 22338 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22339 &ipic); 22340 } else { 22341 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 22342 &tcp->tcp_ip6h->ip6_dst))) { 22343 return (0); 22344 } 22345 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22346 &ipic); 22347 } 22348 22349 /* Record route attributes in the IRE for use by future connections. */ 22350 if (mp == NULL) 22351 return (0); 22352 22353 /* 22354 * We do not have a good algorithm to update ssthresh at this time. 22355 * So don't do any update. 22356 */ 22357 ipic->ipic_rtt = tcp->tcp_rtt_sa; 22358 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 22359 22360 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22361 22362 return (0); 22363 } 22364 22365 /* ARGSUSED */ 22366 void 22367 tcp_xmit_reset(void *arg, mblk_t *mp, void *arg2) 22368 { 22369 conn_t *connp = (conn_t *)arg; 22370 mblk_t *mp1; 22371 tcp_t *tcp = connp->conn_tcp; 22372 tcp_xmit_reset_event_t *eventp; 22373 22374 ASSERT(mp->b_datap->db_type == M_PROTO && 22375 MBLKL(mp) == sizeof (tcp_xmit_reset_event_t)); 22376 22377 if (tcp->tcp_state != TCPS_LISTEN) { 22378 freemsg(mp); 22379 return; 22380 } 22381 22382 mp1 = mp->b_cont; 22383 mp->b_cont = NULL; 22384 eventp = (tcp_xmit_reset_event_t *)mp->b_rptr; 22385 ASSERT(eventp->tcp_xre_tcps->tcps_netstack == 22386 connp->conn_netstack); 22387 22388 tcp_xmit_listeners_reset(mp1, eventp->tcp_xre_iphdrlen, 22389 eventp->tcp_xre_zoneid, eventp->tcp_xre_tcps, connp); 22390 freemsg(mp); 22391 } 22392 22393 /* 22394 * Generate a "no listener here" RST in response to an "unknown" segment. 22395 * connp is set by caller when RST is in response to an unexpected 22396 * inbound packet for which there is active tcp state in the system. 22397 * Note that we are reusing the incoming mp to construct the outgoing RST. 22398 */ 22399 void 22400 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid, 22401 tcp_stack_t *tcps, conn_t *connp) 22402 { 22403 uchar_t *rptr; 22404 uint32_t seg_len; 22405 tcph_t *tcph; 22406 uint32_t seg_seq; 22407 uint32_t seg_ack; 22408 uint_t flags; 22409 mblk_t *ipsec_mp; 22410 ipha_t *ipha; 22411 ip6_t *ip6h; 22412 boolean_t mctl_present = B_FALSE; 22413 boolean_t check = B_TRUE; 22414 boolean_t policy_present; 22415 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 22416 22417 TCP_STAT(tcps, tcp_no_listener); 22418 22419 ipsec_mp = mp; 22420 22421 if (mp->b_datap->db_type == M_CTL) { 22422 ipsec_in_t *ii; 22423 22424 mctl_present = B_TRUE; 22425 mp = mp->b_cont; 22426 22427 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22428 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22429 if (ii->ipsec_in_dont_check) { 22430 check = B_FALSE; 22431 if (!ii->ipsec_in_secure) { 22432 freeb(ipsec_mp); 22433 mctl_present = B_FALSE; 22434 ipsec_mp = mp; 22435 } 22436 } 22437 } 22438 22439 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22440 policy_present = ipss->ipsec_inbound_v4_policy_present; 22441 ipha = (ipha_t *)mp->b_rptr; 22442 ip6h = NULL; 22443 } else { 22444 policy_present = ipss->ipsec_inbound_v6_policy_present; 22445 ipha = NULL; 22446 ip6h = (ip6_t *)mp->b_rptr; 22447 } 22448 22449 if (check && policy_present) { 22450 /* 22451 * The conn_t parameter is NULL because we already know 22452 * nobody's home. 22453 */ 22454 ipsec_mp = ipsec_check_global_policy( 22455 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present, 22456 tcps->tcps_netstack); 22457 if (ipsec_mp == NULL) 22458 return; 22459 } 22460 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 22461 DTRACE_PROBE2( 22462 tx__ip__log__error__nolistener__tcp, 22463 char *, "Could not reply with RST to mp(1)", 22464 mblk_t *, mp); 22465 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 22466 freemsg(ipsec_mp); 22467 return; 22468 } 22469 22470 rptr = mp->b_rptr; 22471 22472 tcph = (tcph_t *)&rptr[ip_hdr_len]; 22473 seg_seq = BE32_TO_U32(tcph->th_seq); 22474 seg_ack = BE32_TO_U32(tcph->th_ack); 22475 flags = tcph->th_flags[0]; 22476 22477 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 22478 if (flags & TH_RST) { 22479 freemsg(ipsec_mp); 22480 } else if (flags & TH_ACK) { 22481 tcp_xmit_early_reset("no tcp, reset", 22482 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps, 22483 connp); 22484 } else { 22485 if (flags & TH_SYN) { 22486 seg_len++; 22487 } else { 22488 /* 22489 * Here we violate the RFC. Note that a normal 22490 * TCP will never send a segment without the ACK 22491 * flag, except for RST or SYN segment. This 22492 * segment is neither. Just drop it on the 22493 * floor. 22494 */ 22495 freemsg(ipsec_mp); 22496 tcps->tcps_rst_unsent++; 22497 return; 22498 } 22499 22500 tcp_xmit_early_reset("no tcp, reset/ack", 22501 ipsec_mp, 0, seg_seq + seg_len, 22502 TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp); 22503 } 22504 } 22505 22506 /* 22507 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 22508 * ip and tcp header ready to pass down to IP. If the mp passed in is 22509 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 22510 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 22511 * otherwise it will dup partial mblks.) 22512 * Otherwise, an appropriate ACK packet will be generated. This 22513 * routine is not usually called to send new data for the first time. It 22514 * is mostly called out of the timer for retransmits, and to generate ACKs. 22515 * 22516 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 22517 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 22518 * of the original mblk chain will be returned in *offset and *end_mp. 22519 */ 22520 mblk_t * 22521 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 22522 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 22523 boolean_t rexmit) 22524 { 22525 int data_length; 22526 int32_t off = 0; 22527 uint_t flags; 22528 mblk_t *mp1; 22529 mblk_t *mp2; 22530 uchar_t *rptr; 22531 tcph_t *tcph; 22532 int32_t num_sack_blk = 0; 22533 int32_t sack_opt_len = 0; 22534 tcp_stack_t *tcps = tcp->tcp_tcps; 22535 22536 /* Allocate for our maximum TCP header + link-level */ 22537 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 22538 tcps->tcps_wroff_xtra, BPRI_MED); 22539 if (!mp1) 22540 return (NULL); 22541 data_length = 0; 22542 22543 /* 22544 * Note that tcp_mss has been adjusted to take into account the 22545 * timestamp option if applicable. Because SACK options do not 22546 * appear in every TCP segments and they are of variable lengths, 22547 * they cannot be included in tcp_mss. Thus we need to calculate 22548 * the actual segment length when we need to send a segment which 22549 * includes SACK options. 22550 */ 22551 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 22552 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 22553 tcp->tcp_num_sack_blk); 22554 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 22555 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 22556 if (max_to_send + sack_opt_len > tcp->tcp_mss) 22557 max_to_send -= sack_opt_len; 22558 } 22559 22560 if (offset != NULL) { 22561 off = *offset; 22562 /* We use offset as an indicator that end_mp is not NULL. */ 22563 *end_mp = NULL; 22564 } 22565 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 22566 /* This could be faster with cooperation from downstream */ 22567 if (mp2 != mp1 && !sendall && 22568 data_length + (int)(mp->b_wptr - mp->b_rptr) > 22569 max_to_send) 22570 /* 22571 * Don't send the next mblk since the whole mblk 22572 * does not fit. 22573 */ 22574 break; 22575 mp2->b_cont = dupb(mp); 22576 mp2 = mp2->b_cont; 22577 if (!mp2) { 22578 freemsg(mp1); 22579 return (NULL); 22580 } 22581 mp2->b_rptr += off; 22582 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 22583 (uintptr_t)INT_MAX); 22584 22585 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 22586 if (data_length > max_to_send) { 22587 mp2->b_wptr -= data_length - max_to_send; 22588 data_length = max_to_send; 22589 off = mp2->b_wptr - mp->b_rptr; 22590 break; 22591 } else { 22592 off = 0; 22593 } 22594 } 22595 if (offset != NULL) { 22596 *offset = off; 22597 *end_mp = mp; 22598 } 22599 if (seg_len != NULL) { 22600 *seg_len = data_length; 22601 } 22602 22603 /* Update the latest receive window size in TCP header. */ 22604 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22605 tcp->tcp_tcph->th_win); 22606 22607 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 22608 mp1->b_rptr = rptr; 22609 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 22610 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 22611 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 22612 U32_TO_ABE32(seq, tcph->th_seq); 22613 22614 /* 22615 * Use tcp_unsent to determine if the PUSH bit should be used assumes 22616 * that this function was called from tcp_wput_data. Thus, when called 22617 * to retransmit data the setting of the PUSH bit may appear some 22618 * what random in that it might get set when it should not. This 22619 * should not pose any performance issues. 22620 */ 22621 if (data_length != 0 && (tcp->tcp_unsent == 0 || 22622 tcp->tcp_unsent == data_length)) { 22623 flags = TH_ACK | TH_PUSH; 22624 } else { 22625 flags = TH_ACK; 22626 } 22627 22628 if (tcp->tcp_ecn_ok) { 22629 if (tcp->tcp_ecn_echo_on) 22630 flags |= TH_ECE; 22631 22632 /* 22633 * Only set ECT bit and ECN_CWR if a segment contains new data. 22634 * There is no TCP flow control for non-data segments, and 22635 * only data segment is transmitted reliably. 22636 */ 22637 if (data_length > 0 && !rexmit) { 22638 SET_ECT(tcp, rptr); 22639 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 22640 flags |= TH_CWR; 22641 tcp->tcp_ecn_cwr_sent = B_TRUE; 22642 } 22643 } 22644 } 22645 22646 if (tcp->tcp_valid_bits) { 22647 uint32_t u1; 22648 22649 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 22650 seq == tcp->tcp_iss) { 22651 uchar_t *wptr; 22652 22653 /* 22654 * If TCP_ISS_VALID and the seq number is tcp_iss, 22655 * TCP can only be in SYN-SENT, SYN-RCVD or 22656 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 22657 * our SYN is not ack'ed but the app closes this 22658 * TCP connection. 22659 */ 22660 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 22661 tcp->tcp_state == TCPS_SYN_RCVD || 22662 tcp->tcp_state == TCPS_FIN_WAIT_1); 22663 22664 /* 22665 * Tack on the MSS option. It is always needed 22666 * for both active and passive open. 22667 * 22668 * MSS option value should be interface MTU - MIN 22669 * TCP/IP header according to RFC 793 as it means 22670 * the maximum segment size TCP can receive. But 22671 * to get around some broken middle boxes/end hosts 22672 * out there, we allow the option value to be the 22673 * same as the MSS option size on the peer side. 22674 * In this way, the other side will not send 22675 * anything larger than they can receive. 22676 * 22677 * Note that for SYN_SENT state, the ndd param 22678 * tcp_use_smss_as_mss_opt has no effect as we 22679 * don't know the peer's MSS option value. So 22680 * the only case we need to take care of is in 22681 * SYN_RCVD state, which is done later. 22682 */ 22683 wptr = mp1->b_wptr; 22684 wptr[0] = TCPOPT_MAXSEG; 22685 wptr[1] = TCPOPT_MAXSEG_LEN; 22686 wptr += 2; 22687 u1 = tcp->tcp_if_mtu - 22688 (tcp->tcp_ipversion == IPV4_VERSION ? 22689 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 22690 TCP_MIN_HEADER_LENGTH; 22691 U16_TO_BE16(u1, wptr); 22692 mp1->b_wptr = wptr + 2; 22693 /* Update the offset to cover the additional word */ 22694 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22695 22696 /* 22697 * Note that the following way of filling in 22698 * TCP options are not optimal. Some NOPs can 22699 * be saved. But there is no need at this time 22700 * to optimize it. When it is needed, we will 22701 * do it. 22702 */ 22703 switch (tcp->tcp_state) { 22704 case TCPS_SYN_SENT: 22705 flags = TH_SYN; 22706 22707 if (tcp->tcp_snd_ts_ok) { 22708 uint32_t llbolt = (uint32_t)lbolt; 22709 22710 wptr = mp1->b_wptr; 22711 wptr[0] = TCPOPT_NOP; 22712 wptr[1] = TCPOPT_NOP; 22713 wptr[2] = TCPOPT_TSTAMP; 22714 wptr[3] = TCPOPT_TSTAMP_LEN; 22715 wptr += 4; 22716 U32_TO_BE32(llbolt, wptr); 22717 wptr += 4; 22718 ASSERT(tcp->tcp_ts_recent == 0); 22719 U32_TO_BE32(0L, wptr); 22720 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 22721 tcph->th_offset_and_rsrvd[0] += 22722 (3 << 4); 22723 } 22724 22725 /* 22726 * Set up all the bits to tell other side 22727 * we are ECN capable. 22728 */ 22729 if (tcp->tcp_ecn_ok) { 22730 flags |= (TH_ECE | TH_CWR); 22731 } 22732 break; 22733 case TCPS_SYN_RCVD: 22734 flags |= TH_SYN; 22735 22736 /* 22737 * Reset the MSS option value to be SMSS 22738 * We should probably add back the bytes 22739 * for timestamp option and IPsec. We 22740 * don't do that as this is a workaround 22741 * for broken middle boxes/end hosts, it 22742 * is better for us to be more cautious. 22743 * They may not take these things into 22744 * account in their SMSS calculation. Thus 22745 * the peer's calculated SMSS may be smaller 22746 * than what it can be. This should be OK. 22747 */ 22748 if (tcps->tcps_use_smss_as_mss_opt) { 22749 u1 = tcp->tcp_mss; 22750 U16_TO_BE16(u1, wptr); 22751 } 22752 22753 /* 22754 * If the other side is ECN capable, reply 22755 * that we are also ECN capable. 22756 */ 22757 if (tcp->tcp_ecn_ok) 22758 flags |= TH_ECE; 22759 break; 22760 default: 22761 /* 22762 * The above ASSERT() makes sure that this 22763 * must be FIN-WAIT-1 state. Our SYN has 22764 * not been ack'ed so retransmit it. 22765 */ 22766 flags |= TH_SYN; 22767 break; 22768 } 22769 22770 if (tcp->tcp_snd_ws_ok) { 22771 wptr = mp1->b_wptr; 22772 wptr[0] = TCPOPT_NOP; 22773 wptr[1] = TCPOPT_WSCALE; 22774 wptr[2] = TCPOPT_WS_LEN; 22775 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 22776 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 22777 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22778 } 22779 22780 if (tcp->tcp_snd_sack_ok) { 22781 wptr = mp1->b_wptr; 22782 wptr[0] = TCPOPT_NOP; 22783 wptr[1] = TCPOPT_NOP; 22784 wptr[2] = TCPOPT_SACK_PERMITTED; 22785 wptr[3] = TCPOPT_SACK_OK_LEN; 22786 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 22787 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22788 } 22789 22790 /* allocb() of adequate mblk assures space */ 22791 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 22792 (uintptr_t)INT_MAX); 22793 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 22794 /* 22795 * Get IP set to checksum on our behalf 22796 * Include the adjustment for a source route if any. 22797 */ 22798 u1 += tcp->tcp_sum; 22799 u1 = (u1 >> 16) + (u1 & 0xFFFF); 22800 U16_TO_BE16(u1, tcph->th_sum); 22801 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22802 } 22803 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 22804 (seq + data_length) == tcp->tcp_fss) { 22805 if (!tcp->tcp_fin_acked) { 22806 flags |= TH_FIN; 22807 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22808 } 22809 if (!tcp->tcp_fin_sent) { 22810 tcp->tcp_fin_sent = B_TRUE; 22811 switch (tcp->tcp_state) { 22812 case TCPS_SYN_RCVD: 22813 case TCPS_ESTABLISHED: 22814 tcp->tcp_state = TCPS_FIN_WAIT_1; 22815 break; 22816 case TCPS_CLOSE_WAIT: 22817 tcp->tcp_state = TCPS_LAST_ACK; 22818 break; 22819 } 22820 if (tcp->tcp_suna == tcp->tcp_snxt) 22821 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22822 tcp->tcp_snxt = tcp->tcp_fss + 1; 22823 } 22824 } 22825 /* 22826 * Note the trick here. u1 is unsigned. When tcp_urg 22827 * is smaller than seq, u1 will become a very huge value. 22828 * So the comparison will fail. Also note that tcp_urp 22829 * should be positive, see RFC 793 page 17. 22830 */ 22831 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 22832 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 22833 u1 < (uint32_t)(64 * 1024)) { 22834 flags |= TH_URG; 22835 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 22836 U32_TO_ABE16(u1, tcph->th_urp); 22837 } 22838 } 22839 tcph->th_flags[0] = (uchar_t)flags; 22840 tcp->tcp_rack = tcp->tcp_rnxt; 22841 tcp->tcp_rack_cnt = 0; 22842 22843 if (tcp->tcp_snd_ts_ok) { 22844 if (tcp->tcp_state != TCPS_SYN_SENT) { 22845 uint32_t llbolt = (uint32_t)lbolt; 22846 22847 U32_TO_BE32(llbolt, 22848 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22849 U32_TO_BE32(tcp->tcp_ts_recent, 22850 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22851 } 22852 } 22853 22854 if (num_sack_blk > 0) { 22855 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 22856 sack_blk_t *tmp; 22857 int32_t i; 22858 22859 wptr[0] = TCPOPT_NOP; 22860 wptr[1] = TCPOPT_NOP; 22861 wptr[2] = TCPOPT_SACK; 22862 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 22863 sizeof (sack_blk_t); 22864 wptr += TCPOPT_REAL_SACK_LEN; 22865 22866 tmp = tcp->tcp_sack_list; 22867 for (i = 0; i < num_sack_blk; i++) { 22868 U32_TO_BE32(tmp[i].begin, wptr); 22869 wptr += sizeof (tcp_seq); 22870 U32_TO_BE32(tmp[i].end, wptr); 22871 wptr += sizeof (tcp_seq); 22872 } 22873 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 22874 } 22875 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22876 data_length += (int)(mp1->b_wptr - rptr); 22877 if (tcp->tcp_ipversion == IPV4_VERSION) { 22878 ((ipha_t *)rptr)->ipha_length = htons(data_length); 22879 } else { 22880 ip6_t *ip6 = (ip6_t *)(rptr + 22881 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 22882 sizeof (ip6i_t) : 0)); 22883 22884 ip6->ip6_plen = htons(data_length - 22885 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22886 } 22887 22888 /* 22889 * Prime pump for IP 22890 * Include the adjustment for a source route if any. 22891 */ 22892 data_length -= tcp->tcp_ip_hdr_len; 22893 data_length += tcp->tcp_sum; 22894 data_length = (data_length >> 16) + (data_length & 0xFFFF); 22895 U16_TO_ABE16(data_length, tcph->th_sum); 22896 if (tcp->tcp_ip_forward_progress) { 22897 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22898 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 22899 tcp->tcp_ip_forward_progress = B_FALSE; 22900 } 22901 return (mp1); 22902 } 22903 22904 /* This function handles the push timeout. */ 22905 void 22906 tcp_push_timer(void *arg) 22907 { 22908 conn_t *connp = (conn_t *)arg; 22909 tcp_t *tcp = connp->conn_tcp; 22910 22911 TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt); 22912 22913 ASSERT(tcp->tcp_listener == NULL); 22914 22915 ASSERT(!IPCL_IS_NONSTR(connp)); 22916 22917 tcp->tcp_push_tid = 0; 22918 22919 if (tcp->tcp_rcv_list != NULL && 22920 tcp_rcv_drain(tcp) == TH_ACK_NEEDED) 22921 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 22922 } 22923 22924 /* 22925 * This function handles delayed ACK timeout. 22926 */ 22927 static void 22928 tcp_ack_timer(void *arg) 22929 { 22930 conn_t *connp = (conn_t *)arg; 22931 tcp_t *tcp = connp->conn_tcp; 22932 mblk_t *mp; 22933 tcp_stack_t *tcps = tcp->tcp_tcps; 22934 22935 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 22936 22937 tcp->tcp_ack_tid = 0; 22938 22939 if (tcp->tcp_fused) 22940 return; 22941 22942 /* 22943 * Do not send ACK if there is no outstanding unack'ed data. 22944 */ 22945 if (tcp->tcp_rnxt == tcp->tcp_rack) { 22946 return; 22947 } 22948 22949 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 22950 /* 22951 * Make sure we don't allow deferred ACKs to result in 22952 * timer-based ACKing. If we have held off an ACK 22953 * when there was more than an mss here, and the timer 22954 * goes off, we have to worry about the possibility 22955 * that the sender isn't doing slow-start, or is out 22956 * of step with us for some other reason. We fall 22957 * permanently back in the direction of 22958 * ACK-every-other-packet as suggested in RFC 1122. 22959 */ 22960 if (tcp->tcp_rack_abs_max > 2) 22961 tcp->tcp_rack_abs_max--; 22962 tcp->tcp_rack_cur_max = 2; 22963 } 22964 mp = tcp_ack_mp(tcp); 22965 22966 if (mp != NULL) { 22967 BUMP_LOCAL(tcp->tcp_obsegs); 22968 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 22969 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 22970 tcp_send_data(tcp, tcp->tcp_wq, mp); 22971 } 22972 } 22973 22974 22975 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 22976 static mblk_t * 22977 tcp_ack_mp(tcp_t *tcp) 22978 { 22979 uint32_t seq_no; 22980 tcp_stack_t *tcps = tcp->tcp_tcps; 22981 22982 /* 22983 * There are a few cases to be considered while setting the sequence no. 22984 * Essentially, we can come here while processing an unacceptable pkt 22985 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 22986 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 22987 * If we are here for a zero window probe, stick with suna. In all 22988 * other cases, we check if suna + swnd encompasses snxt and set 22989 * the sequence number to snxt, if so. If snxt falls outside the 22990 * window (the receiver probably shrunk its window), we will go with 22991 * suna + swnd, otherwise the sequence no will be unacceptable to the 22992 * receiver. 22993 */ 22994 if (tcp->tcp_zero_win_probe) { 22995 seq_no = tcp->tcp_suna; 22996 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 22997 ASSERT(tcp->tcp_swnd == 0); 22998 seq_no = tcp->tcp_snxt; 22999 } else { 23000 seq_no = SEQ_GT(tcp->tcp_snxt, 23001 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23002 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23003 } 23004 23005 if (tcp->tcp_valid_bits) { 23006 /* 23007 * For the complex case where we have to send some 23008 * controls (FIN or SYN), let tcp_xmit_mp do it. 23009 */ 23010 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23011 NULL, B_FALSE)); 23012 } else { 23013 /* Generate a simple ACK */ 23014 int data_length; 23015 uchar_t *rptr; 23016 tcph_t *tcph; 23017 mblk_t *mp1; 23018 int32_t tcp_hdr_len; 23019 int32_t tcp_tcp_hdr_len; 23020 int32_t num_sack_blk = 0; 23021 int32_t sack_opt_len; 23022 23023 /* 23024 * Allocate space for TCP + IP headers 23025 * and link-level header 23026 */ 23027 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23028 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23029 tcp->tcp_num_sack_blk); 23030 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23031 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23032 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23033 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23034 } else { 23035 tcp_hdr_len = tcp->tcp_hdr_len; 23036 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23037 } 23038 mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 23039 if (!mp1) 23040 return (NULL); 23041 23042 /* Update the latest receive window size in TCP header. */ 23043 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23044 tcp->tcp_tcph->th_win); 23045 /* copy in prototype TCP + IP header */ 23046 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23047 mp1->b_rptr = rptr; 23048 mp1->b_wptr = rptr + tcp_hdr_len; 23049 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23050 23051 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23052 23053 /* Set the TCP sequence number. */ 23054 U32_TO_ABE32(seq_no, tcph->th_seq); 23055 23056 /* Set up the TCP flag field. */ 23057 tcph->th_flags[0] = (uchar_t)TH_ACK; 23058 if (tcp->tcp_ecn_echo_on) 23059 tcph->th_flags[0] |= TH_ECE; 23060 23061 tcp->tcp_rack = tcp->tcp_rnxt; 23062 tcp->tcp_rack_cnt = 0; 23063 23064 /* fill in timestamp option if in use */ 23065 if (tcp->tcp_snd_ts_ok) { 23066 uint32_t llbolt = (uint32_t)lbolt; 23067 23068 U32_TO_BE32(llbolt, 23069 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23070 U32_TO_BE32(tcp->tcp_ts_recent, 23071 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23072 } 23073 23074 /* Fill in SACK options */ 23075 if (num_sack_blk > 0) { 23076 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23077 sack_blk_t *tmp; 23078 int32_t i; 23079 23080 wptr[0] = TCPOPT_NOP; 23081 wptr[1] = TCPOPT_NOP; 23082 wptr[2] = TCPOPT_SACK; 23083 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23084 sizeof (sack_blk_t); 23085 wptr += TCPOPT_REAL_SACK_LEN; 23086 23087 tmp = tcp->tcp_sack_list; 23088 for (i = 0; i < num_sack_blk; i++) { 23089 U32_TO_BE32(tmp[i].begin, wptr); 23090 wptr += sizeof (tcp_seq); 23091 U32_TO_BE32(tmp[i].end, wptr); 23092 wptr += sizeof (tcp_seq); 23093 } 23094 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 23095 << 4); 23096 } 23097 23098 if (tcp->tcp_ipversion == IPV4_VERSION) { 23099 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 23100 } else { 23101 /* Check for ip6i_t header in sticky hdrs */ 23102 ip6_t *ip6 = (ip6_t *)(rptr + 23103 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23104 sizeof (ip6i_t) : 0)); 23105 23106 ip6->ip6_plen = htons(tcp_hdr_len - 23107 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23108 } 23109 23110 /* 23111 * Prime pump for checksum calculation in IP. Include the 23112 * adjustment for a source route if any. 23113 */ 23114 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 23115 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23116 U16_TO_ABE16(data_length, tcph->th_sum); 23117 23118 if (tcp->tcp_ip_forward_progress) { 23119 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23120 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23121 tcp->tcp_ip_forward_progress = B_FALSE; 23122 } 23123 return (mp1); 23124 } 23125 } 23126 23127 /* 23128 * Hash list insertion routine for tcp_t structures. Each hash bucket 23129 * contains a list of tcp_t entries, and each entry is bound to a unique 23130 * port. If there are multiple tcp_t's that are bound to the same port, then 23131 * one of them will be linked into the hash bucket list, and the rest will 23132 * hang off of that one entry. For each port, entries bound to a specific IP 23133 * address will be inserted before those those bound to INADDR_ANY. 23134 */ 23135 static void 23136 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23137 { 23138 tcp_t **tcpp; 23139 tcp_t *tcpnext; 23140 tcp_t *tcphash; 23141 23142 if (tcp->tcp_ptpbhn != NULL) { 23143 ASSERT(!caller_holds_lock); 23144 tcp_bind_hash_remove(tcp); 23145 } 23146 tcpp = &tbf->tf_tcp; 23147 if (!caller_holds_lock) { 23148 mutex_enter(&tbf->tf_lock); 23149 } else { 23150 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23151 } 23152 tcphash = tcpp[0]; 23153 tcpnext = NULL; 23154 if (tcphash != NULL) { 23155 /* Look for an entry using the same port */ 23156 while ((tcphash = tcpp[0]) != NULL && 23157 tcp->tcp_lport != tcphash->tcp_lport) 23158 tcpp = &(tcphash->tcp_bind_hash); 23159 23160 /* The port was not found, just add to the end */ 23161 if (tcphash == NULL) 23162 goto insert; 23163 23164 /* 23165 * OK, there already exists an entry bound to the 23166 * same port. 23167 * 23168 * If the new tcp bound to the INADDR_ANY address 23169 * and the first one in the list is not bound to 23170 * INADDR_ANY we skip all entries until we find the 23171 * first one bound to INADDR_ANY. 23172 * This makes sure that applications binding to a 23173 * specific address get preference over those binding to 23174 * INADDR_ANY. 23175 */ 23176 tcpnext = tcphash; 23177 tcphash = NULL; 23178 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 23179 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 23180 while ((tcpnext = tcpp[0]) != NULL && 23181 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 23182 tcpp = &(tcpnext->tcp_bind_hash_port); 23183 23184 if (tcpnext) { 23185 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23186 tcphash = tcpnext->tcp_bind_hash; 23187 if (tcphash != NULL) { 23188 tcphash->tcp_ptpbhn = 23189 &(tcp->tcp_bind_hash); 23190 tcpnext->tcp_bind_hash = NULL; 23191 } 23192 } 23193 } else { 23194 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23195 tcphash = tcpnext->tcp_bind_hash; 23196 if (tcphash != NULL) { 23197 tcphash->tcp_ptpbhn = 23198 &(tcp->tcp_bind_hash); 23199 tcpnext->tcp_bind_hash = NULL; 23200 } 23201 } 23202 } 23203 insert: 23204 tcp->tcp_bind_hash_port = tcpnext; 23205 tcp->tcp_bind_hash = tcphash; 23206 tcp->tcp_ptpbhn = tcpp; 23207 tcpp[0] = tcp; 23208 if (!caller_holds_lock) 23209 mutex_exit(&tbf->tf_lock); 23210 } 23211 23212 /* 23213 * Hash list removal routine for tcp_t structures. 23214 */ 23215 static void 23216 tcp_bind_hash_remove(tcp_t *tcp) 23217 { 23218 tcp_t *tcpnext; 23219 kmutex_t *lockp; 23220 tcp_stack_t *tcps = tcp->tcp_tcps; 23221 23222 if (tcp->tcp_ptpbhn == NULL) 23223 return; 23224 23225 /* 23226 * Extract the lock pointer in case there are concurrent 23227 * hash_remove's for this instance. 23228 */ 23229 ASSERT(tcp->tcp_lport != 0); 23230 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 23231 23232 ASSERT(lockp != NULL); 23233 mutex_enter(lockp); 23234 if (tcp->tcp_ptpbhn) { 23235 tcpnext = tcp->tcp_bind_hash_port; 23236 if (tcpnext != NULL) { 23237 tcp->tcp_bind_hash_port = NULL; 23238 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23239 tcpnext->tcp_bind_hash = tcp->tcp_bind_hash; 23240 if (tcpnext->tcp_bind_hash != NULL) { 23241 tcpnext->tcp_bind_hash->tcp_ptpbhn = 23242 &(tcpnext->tcp_bind_hash); 23243 tcp->tcp_bind_hash = NULL; 23244 } 23245 } else if ((tcpnext = tcp->tcp_bind_hash) != NULL) { 23246 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23247 tcp->tcp_bind_hash = NULL; 23248 } 23249 *tcp->tcp_ptpbhn = tcpnext; 23250 tcp->tcp_ptpbhn = NULL; 23251 } 23252 mutex_exit(lockp); 23253 } 23254 23255 23256 /* 23257 * Hash list lookup routine for tcp_t structures. 23258 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 23259 */ 23260 static tcp_t * 23261 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 23262 { 23263 tf_t *tf; 23264 tcp_t *tcp; 23265 23266 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23267 mutex_enter(&tf->tf_lock); 23268 for (tcp = tf->tf_tcp; tcp != NULL; 23269 tcp = tcp->tcp_acceptor_hash) { 23270 if (tcp->tcp_acceptor_id == id) { 23271 CONN_INC_REF(tcp->tcp_connp); 23272 mutex_exit(&tf->tf_lock); 23273 return (tcp); 23274 } 23275 } 23276 mutex_exit(&tf->tf_lock); 23277 return (NULL); 23278 } 23279 23280 23281 /* 23282 * Hash list insertion routine for tcp_t structures. 23283 */ 23284 void 23285 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 23286 { 23287 tf_t *tf; 23288 tcp_t **tcpp; 23289 tcp_t *tcpnext; 23290 tcp_stack_t *tcps = tcp->tcp_tcps; 23291 23292 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23293 23294 if (tcp->tcp_ptpahn != NULL) 23295 tcp_acceptor_hash_remove(tcp); 23296 tcpp = &tf->tf_tcp; 23297 mutex_enter(&tf->tf_lock); 23298 tcpnext = tcpp[0]; 23299 if (tcpnext) 23300 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 23301 tcp->tcp_acceptor_hash = tcpnext; 23302 tcp->tcp_ptpahn = tcpp; 23303 tcpp[0] = tcp; 23304 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 23305 mutex_exit(&tf->tf_lock); 23306 } 23307 23308 /* 23309 * Hash list removal routine for tcp_t structures. 23310 */ 23311 static void 23312 tcp_acceptor_hash_remove(tcp_t *tcp) 23313 { 23314 tcp_t *tcpnext; 23315 kmutex_t *lockp; 23316 23317 /* 23318 * Extract the lock pointer in case there are concurrent 23319 * hash_remove's for this instance. 23320 */ 23321 lockp = tcp->tcp_acceptor_lockp; 23322 23323 if (tcp->tcp_ptpahn == NULL) 23324 return; 23325 23326 ASSERT(lockp != NULL); 23327 mutex_enter(lockp); 23328 if (tcp->tcp_ptpahn) { 23329 tcpnext = tcp->tcp_acceptor_hash; 23330 if (tcpnext) { 23331 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 23332 tcp->tcp_acceptor_hash = NULL; 23333 } 23334 *tcp->tcp_ptpahn = tcpnext; 23335 tcp->tcp_ptpahn = NULL; 23336 } 23337 mutex_exit(lockp); 23338 tcp->tcp_acceptor_lockp = NULL; 23339 } 23340 23341 /* 23342 * Type three generator adapted from the random() function in 4.4 BSD: 23343 */ 23344 23345 /* 23346 * Copyright (c) 1983, 1993 23347 * The Regents of the University of California. All rights reserved. 23348 * 23349 * Redistribution and use in source and binary forms, with or without 23350 * modification, are permitted provided that the following conditions 23351 * are met: 23352 * 1. Redistributions of source code must retain the above copyright 23353 * notice, this list of conditions and the following disclaimer. 23354 * 2. Redistributions in binary form must reproduce the above copyright 23355 * notice, this list of conditions and the following disclaimer in the 23356 * documentation and/or other materials provided with the distribution. 23357 * 3. All advertising materials mentioning features or use of this software 23358 * must display the following acknowledgement: 23359 * This product includes software developed by the University of 23360 * California, Berkeley and its contributors. 23361 * 4. Neither the name of the University nor the names of its contributors 23362 * may be used to endorse or promote products derived from this software 23363 * without specific prior written permission. 23364 * 23365 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23366 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23367 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23368 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23369 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23370 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23371 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23372 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23373 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23374 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23375 * SUCH DAMAGE. 23376 */ 23377 23378 /* Type 3 -- x**31 + x**3 + 1 */ 23379 #define DEG_3 31 23380 #define SEP_3 3 23381 23382 23383 /* Protected by tcp_random_lock */ 23384 static int tcp_randtbl[DEG_3 + 1]; 23385 23386 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 23387 static int *tcp_random_rptr = &tcp_randtbl[1]; 23388 23389 static int *tcp_random_state = &tcp_randtbl[1]; 23390 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 23391 23392 kmutex_t tcp_random_lock; 23393 23394 void 23395 tcp_random_init(void) 23396 { 23397 int i; 23398 hrtime_t hrt; 23399 time_t wallclock; 23400 uint64_t result; 23401 23402 /* 23403 * Use high-res timer and current time for seed. Gethrtime() returns 23404 * a longlong, which may contain resolution down to nanoseconds. 23405 * The current time will either be a 32-bit or a 64-bit quantity. 23406 * XOR the two together in a 64-bit result variable. 23407 * Convert the result to a 32-bit value by multiplying the high-order 23408 * 32-bits by the low-order 32-bits. 23409 */ 23410 23411 hrt = gethrtime(); 23412 (void) drv_getparm(TIME, &wallclock); 23413 result = (uint64_t)wallclock ^ (uint64_t)hrt; 23414 mutex_enter(&tcp_random_lock); 23415 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 23416 (result & 0xffffffff); 23417 23418 for (i = 1; i < DEG_3; i++) 23419 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 23420 + 12345; 23421 tcp_random_fptr = &tcp_random_state[SEP_3]; 23422 tcp_random_rptr = &tcp_random_state[0]; 23423 mutex_exit(&tcp_random_lock); 23424 for (i = 0; i < 10 * DEG_3; i++) 23425 (void) tcp_random(); 23426 } 23427 23428 /* 23429 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 23430 * This range is selected to be approximately centered on TCP_ISS / 2, 23431 * and easy to compute. We get this value by generating a 32-bit random 23432 * number, selecting out the high-order 17 bits, and then adding one so 23433 * that we never return zero. 23434 */ 23435 int 23436 tcp_random(void) 23437 { 23438 int i; 23439 23440 mutex_enter(&tcp_random_lock); 23441 *tcp_random_fptr += *tcp_random_rptr; 23442 23443 /* 23444 * The high-order bits are more random than the low-order bits, 23445 * so we select out the high-order 17 bits and add one so that 23446 * we never return zero. 23447 */ 23448 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 23449 if (++tcp_random_fptr >= tcp_random_end_ptr) { 23450 tcp_random_fptr = tcp_random_state; 23451 ++tcp_random_rptr; 23452 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 23453 tcp_random_rptr = tcp_random_state; 23454 23455 mutex_exit(&tcp_random_lock); 23456 return (i); 23457 } 23458 23459 static int 23460 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 23461 int *t_errorp, int *sys_errorp) 23462 { 23463 int error; 23464 int is_absreq_failure; 23465 t_scalar_t *opt_lenp; 23466 t_scalar_t opt_offset; 23467 int prim_type; 23468 struct T_conn_req *tcreqp; 23469 struct T_conn_res *tcresp; 23470 cred_t *cr; 23471 23472 /* 23473 * All Solaris components should pass a db_credp 23474 * for this TPI message, hence we ASSERT. 23475 * But in case there is some other M_PROTO that looks 23476 * like a TPI message sent by some other kernel 23477 * component, we check and return an error. 23478 */ 23479 cr = msg_getcred(mp, NULL); 23480 ASSERT(cr != NULL); 23481 if (cr == NULL) 23482 return (-1); 23483 23484 prim_type = ((union T_primitives *)mp->b_rptr)->type; 23485 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 23486 prim_type == T_CONN_RES); 23487 23488 switch (prim_type) { 23489 case T_CONN_REQ: 23490 tcreqp = (struct T_conn_req *)mp->b_rptr; 23491 opt_offset = tcreqp->OPT_offset; 23492 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 23493 break; 23494 case O_T_CONN_RES: 23495 case T_CONN_RES: 23496 tcresp = (struct T_conn_res *)mp->b_rptr; 23497 opt_offset = tcresp->OPT_offset; 23498 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 23499 break; 23500 } 23501 23502 *t_errorp = 0; 23503 *sys_errorp = 0; 23504 *do_disconnectp = 0; 23505 23506 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 23507 opt_offset, cr, &tcp_opt_obj, 23508 NULL, &is_absreq_failure); 23509 23510 switch (error) { 23511 case 0: /* no error */ 23512 ASSERT(is_absreq_failure == 0); 23513 return (0); 23514 case ENOPROTOOPT: 23515 *t_errorp = TBADOPT; 23516 break; 23517 case EACCES: 23518 *t_errorp = TACCES; 23519 break; 23520 default: 23521 *t_errorp = TSYSERR; *sys_errorp = error; 23522 break; 23523 } 23524 if (is_absreq_failure != 0) { 23525 /* 23526 * The connection request should get the local ack 23527 * T_OK_ACK and then a T_DISCON_IND. 23528 */ 23529 *do_disconnectp = 1; 23530 } 23531 return (-1); 23532 } 23533 23534 /* 23535 * Split this function out so that if the secret changes, I'm okay. 23536 * 23537 * Initialize the tcp_iss_cookie and tcp_iss_key. 23538 */ 23539 23540 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 23541 23542 static void 23543 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 23544 { 23545 struct { 23546 int32_t current_time; 23547 uint32_t randnum; 23548 uint16_t pad; 23549 uint8_t ether[6]; 23550 uint8_t passwd[PASSWD_SIZE]; 23551 } tcp_iss_cookie; 23552 time_t t; 23553 23554 /* 23555 * Start with the current absolute time. 23556 */ 23557 (void) drv_getparm(TIME, &t); 23558 tcp_iss_cookie.current_time = t; 23559 23560 /* 23561 * XXX - Need a more random number per RFC 1750, not this crap. 23562 * OTOH, if what follows is pretty random, then I'm in better shape. 23563 */ 23564 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 23565 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 23566 23567 /* 23568 * The cpu_type_info is pretty non-random. Ugggh. It does serve 23569 * as a good template. 23570 */ 23571 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 23572 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 23573 23574 /* 23575 * The pass-phrase. Normally this is supplied by user-called NDD. 23576 */ 23577 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 23578 23579 /* 23580 * See 4010593 if this section becomes a problem again, 23581 * but the local ethernet address is useful here. 23582 */ 23583 (void) localetheraddr(NULL, 23584 (struct ether_addr *)&tcp_iss_cookie.ether); 23585 23586 /* 23587 * Hash 'em all together. The MD5Final is called per-connection. 23588 */ 23589 mutex_enter(&tcps->tcps_iss_key_lock); 23590 MD5Init(&tcps->tcps_iss_key); 23591 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 23592 sizeof (tcp_iss_cookie)); 23593 mutex_exit(&tcps->tcps_iss_key_lock); 23594 } 23595 23596 /* 23597 * Set the RFC 1948 pass phrase 23598 */ 23599 /* ARGSUSED */ 23600 static int 23601 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23602 cred_t *cr) 23603 { 23604 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 23605 23606 /* 23607 * Basically, value contains a new pass phrase. Pass it along! 23608 */ 23609 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 23610 return (0); 23611 } 23612 23613 /* ARGSUSED */ 23614 static int 23615 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 23616 { 23617 bzero(buf, sizeof (tcp_sack_info_t)); 23618 return (0); 23619 } 23620 23621 /* ARGSUSED */ 23622 static int 23623 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 23624 { 23625 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 23626 return (0); 23627 } 23628 23629 /* 23630 * Make sure we wait until the default queue is setup, yet allow 23631 * tcp_g_q_create() to open a TCP stream. 23632 * We need to allow tcp_g_q_create() do do an open 23633 * of tcp, hence we compare curhread. 23634 * All others have to wait until the tcps_g_q has been 23635 * setup. 23636 */ 23637 void 23638 tcp_g_q_setup(tcp_stack_t *tcps) 23639 { 23640 mutex_enter(&tcps->tcps_g_q_lock); 23641 if (tcps->tcps_g_q != NULL) { 23642 mutex_exit(&tcps->tcps_g_q_lock); 23643 return; 23644 } 23645 if (tcps->tcps_g_q_creator == NULL) { 23646 /* This thread will set it up */ 23647 tcps->tcps_g_q_creator = curthread; 23648 mutex_exit(&tcps->tcps_g_q_lock); 23649 tcp_g_q_create(tcps); 23650 mutex_enter(&tcps->tcps_g_q_lock); 23651 ASSERT(tcps->tcps_g_q_creator == curthread); 23652 tcps->tcps_g_q_creator = NULL; 23653 cv_signal(&tcps->tcps_g_q_cv); 23654 ASSERT(tcps->tcps_g_q != NULL); 23655 mutex_exit(&tcps->tcps_g_q_lock); 23656 return; 23657 } 23658 /* Everybody but the creator has to wait */ 23659 if (tcps->tcps_g_q_creator != curthread) { 23660 while (tcps->tcps_g_q == NULL) 23661 cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock); 23662 } 23663 mutex_exit(&tcps->tcps_g_q_lock); 23664 } 23665 23666 #define IP "ip" 23667 23668 #define TCP6DEV "/devices/pseudo/tcp6@0:tcp6" 23669 23670 /* 23671 * Create a default tcp queue here instead of in strplumb 23672 */ 23673 void 23674 tcp_g_q_create(tcp_stack_t *tcps) 23675 { 23676 int error; 23677 ldi_handle_t lh = NULL; 23678 ldi_ident_t li = NULL; 23679 int rval; 23680 cred_t *cr; 23681 major_t IP_MAJ; 23682 23683 #ifdef NS_DEBUG 23684 (void) printf("tcp_g_q_create()\n"); 23685 #endif 23686 23687 IP_MAJ = ddi_name_to_major(IP); 23688 23689 ASSERT(tcps->tcps_g_q_creator == curthread); 23690 23691 error = ldi_ident_from_major(IP_MAJ, &li); 23692 if (error) { 23693 #ifdef DEBUG 23694 printf("tcp_g_q_create: lyr ident get failed error %d\n", 23695 error); 23696 #endif 23697 return; 23698 } 23699 23700 cr = zone_get_kcred(netstackid_to_zoneid( 23701 tcps->tcps_netstack->netstack_stackid)); 23702 ASSERT(cr != NULL); 23703 /* 23704 * We set the tcp default queue to IPv6 because IPv4 falls 23705 * back to IPv6 when it can't find a client, but 23706 * IPv6 does not fall back to IPv4. 23707 */ 23708 error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li); 23709 if (error) { 23710 #ifdef DEBUG 23711 printf("tcp_g_q_create: open of TCP6DEV failed error %d\n", 23712 error); 23713 #endif 23714 goto out; 23715 } 23716 23717 /* 23718 * This ioctl causes the tcp framework to cache a pointer to 23719 * this stream, so we don't want to close the stream after 23720 * this operation. 23721 * Use the kernel credentials that are for the zone we're in. 23722 */ 23723 error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q, 23724 (intptr_t)0, FKIOCTL, cr, &rval); 23725 if (error) { 23726 #ifdef DEBUG 23727 printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed " 23728 "error %d\n", error); 23729 #endif 23730 goto out; 23731 } 23732 tcps->tcps_g_q_lh = lh; /* For tcp_g_q_close */ 23733 lh = NULL; 23734 out: 23735 /* Close layered handles */ 23736 if (li) 23737 ldi_ident_release(li); 23738 /* Keep cred around until _inactive needs it */ 23739 tcps->tcps_g_q_cr = cr; 23740 } 23741 23742 /* 23743 * We keep tcp_g_q set until all other tcp_t's in the zone 23744 * has gone away, and then when tcp_g_q_inactive() is called 23745 * we clear it. 23746 */ 23747 void 23748 tcp_g_q_destroy(tcp_stack_t *tcps) 23749 { 23750 #ifdef NS_DEBUG 23751 (void) printf("tcp_g_q_destroy()for stack %d\n", 23752 tcps->tcps_netstack->netstack_stackid); 23753 #endif 23754 23755 if (tcps->tcps_g_q == NULL) { 23756 return; /* Nothing to cleanup */ 23757 } 23758 /* 23759 * Drop reference corresponding to the default queue. 23760 * This reference was added from tcp_open when the default queue 23761 * was created, hence we compensate for this extra drop in 23762 * tcp_g_q_close. If the refcnt drops to zero here it means 23763 * the default queue was the last one to be open, in which 23764 * case, then tcp_g_q_inactive will be 23765 * called as a result of the refrele. 23766 */ 23767 TCPS_REFRELE(tcps); 23768 } 23769 23770 /* 23771 * Called when last tcp_t drops reference count using TCPS_REFRELE. 23772 * Run by tcp_q_q_inactive using a taskq. 23773 */ 23774 static void 23775 tcp_g_q_close(void *arg) 23776 { 23777 tcp_stack_t *tcps = arg; 23778 int error; 23779 ldi_handle_t lh = NULL; 23780 ldi_ident_t li = NULL; 23781 cred_t *cr; 23782 major_t IP_MAJ; 23783 23784 IP_MAJ = ddi_name_to_major(IP); 23785 23786 #ifdef NS_DEBUG 23787 (void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n", 23788 tcps->tcps_netstack->netstack_stackid, 23789 tcps->tcps_netstack->netstack_refcnt); 23790 #endif 23791 lh = tcps->tcps_g_q_lh; 23792 if (lh == NULL) 23793 return; /* Nothing to cleanup */ 23794 23795 ASSERT(tcps->tcps_refcnt == 1); 23796 ASSERT(tcps->tcps_g_q != NULL); 23797 23798 error = ldi_ident_from_major(IP_MAJ, &li); 23799 if (error) { 23800 #ifdef DEBUG 23801 printf("tcp_g_q_inactive: lyr ident get failed error %d\n", 23802 error); 23803 #endif 23804 return; 23805 } 23806 23807 cr = tcps->tcps_g_q_cr; 23808 tcps->tcps_g_q_cr = NULL; 23809 ASSERT(cr != NULL); 23810 23811 /* 23812 * Make sure we can break the recursion when tcp_close decrements 23813 * the reference count causing g_q_inactive to be called again. 23814 */ 23815 tcps->tcps_g_q_lh = NULL; 23816 23817 /* close the default queue */ 23818 (void) ldi_close(lh, FREAD|FWRITE, cr); 23819 /* 23820 * At this point in time tcps and the rest of netstack_t might 23821 * have been deleted. 23822 */ 23823 tcps = NULL; 23824 23825 /* Close layered handles */ 23826 ldi_ident_release(li); 23827 crfree(cr); 23828 } 23829 23830 /* 23831 * Called when last tcp_t drops reference count using TCPS_REFRELE. 23832 * 23833 * Have to ensure that the ldi routines are not used by an 23834 * interrupt thread by using a taskq. 23835 */ 23836 void 23837 tcp_g_q_inactive(tcp_stack_t *tcps) 23838 { 23839 if (tcps->tcps_g_q_lh == NULL) 23840 return; /* Nothing to cleanup */ 23841 23842 ASSERT(tcps->tcps_refcnt == 0); 23843 TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */ 23844 23845 if (servicing_interrupt()) { 23846 (void) taskq_dispatch(tcp_taskq, tcp_g_q_close, 23847 (void *) tcps, TQ_SLEEP); 23848 } else { 23849 tcp_g_q_close(tcps); 23850 } 23851 } 23852 23853 /* 23854 * Called by IP when IP is loaded into the kernel 23855 */ 23856 void 23857 tcp_ddi_g_init(void) 23858 { 23859 tcp_timercache = kmem_cache_create("tcp_timercache", 23860 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 23861 NULL, NULL, NULL, NULL, NULL, 0); 23862 23863 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 23864 sizeof (tcp_sack_info_t), 0, 23865 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 23866 23867 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 23868 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 23869 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 23870 23871 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 23872 23873 /* Initialize the random number generator */ 23874 tcp_random_init(); 23875 23876 /* A single callback independently of how many netstacks we have */ 23877 ip_squeue_init(tcp_squeue_add); 23878 23879 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 23880 23881 tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1, 23882 TASKQ_PREPOPULATE); 23883 23884 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 23885 23886 /* 23887 * We want to be informed each time a stack is created or 23888 * destroyed in the kernel, so we can maintain the 23889 * set of tcp_stack_t's. 23890 */ 23891 netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown, 23892 tcp_stack_fini); 23893 } 23894 23895 23896 #define INET_NAME "ip" 23897 23898 /* 23899 * Initialize the TCP stack instance. 23900 */ 23901 static void * 23902 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 23903 { 23904 tcp_stack_t *tcps; 23905 tcpparam_t *pa; 23906 int i; 23907 int error = 0; 23908 major_t major; 23909 23910 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 23911 tcps->tcps_netstack = ns; 23912 23913 /* Initialize locks */ 23914 mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 23915 cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL); 23916 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 23917 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 23918 23919 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 23920 tcps->tcps_g_epriv_ports[0] = 2049; 23921 tcps->tcps_g_epriv_ports[1] = 4045; 23922 tcps->tcps_min_anonpriv_port = 512; 23923 23924 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 23925 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 23926 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 23927 TCP_FANOUT_SIZE, KM_SLEEP); 23928 23929 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 23930 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 23931 MUTEX_DEFAULT, NULL); 23932 } 23933 23934 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 23935 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 23936 MUTEX_DEFAULT, NULL); 23937 } 23938 23939 /* TCP's IPsec code calls the packet dropper. */ 23940 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 23941 23942 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 23943 tcps->tcps_params = pa; 23944 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 23945 23946 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 23947 A_CNT(lcl_tcp_param_arr), tcps); 23948 23949 /* 23950 * Note: To really walk the device tree you need the devinfo 23951 * pointer to your device which is only available after probe/attach. 23952 * The following is safe only because it uses ddi_root_node() 23953 */ 23954 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 23955 tcp_opt_obj.odb_opt_arr_cnt); 23956 23957 /* 23958 * Initialize RFC 1948 secret values. This will probably be reset once 23959 * by the boot scripts. 23960 * 23961 * Use NULL name, as the name is caught by the new lockstats. 23962 * 23963 * Initialize with some random, non-guessable string, like the global 23964 * T_INFO_ACK. 23965 */ 23966 23967 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 23968 sizeof (tcp_g_t_info_ack), tcps); 23969 23970 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 23971 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 23972 23973 major = mod_name_to_major(INET_NAME); 23974 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 23975 ASSERT(error == 0); 23976 return (tcps); 23977 } 23978 23979 /* 23980 * Called when the IP module is about to be unloaded. 23981 */ 23982 void 23983 tcp_ddi_g_destroy(void) 23984 { 23985 tcp_g_kstat_fini(tcp_g_kstat); 23986 tcp_g_kstat = NULL; 23987 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 23988 23989 mutex_destroy(&tcp_random_lock); 23990 23991 kmem_cache_destroy(tcp_timercache); 23992 kmem_cache_destroy(tcp_sack_info_cache); 23993 kmem_cache_destroy(tcp_iphc_cache); 23994 23995 netstack_unregister(NS_TCP); 23996 taskq_destroy(tcp_taskq); 23997 } 23998 23999 /* 24000 * Shut down the TCP stack instance. 24001 */ 24002 /* ARGSUSED */ 24003 static void 24004 tcp_stack_shutdown(netstackid_t stackid, void *arg) 24005 { 24006 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24007 24008 tcp_g_q_destroy(tcps); 24009 } 24010 24011 /* 24012 * Free the TCP stack instance. 24013 */ 24014 static void 24015 tcp_stack_fini(netstackid_t stackid, void *arg) 24016 { 24017 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24018 int i; 24019 24020 nd_free(&tcps->tcps_g_nd); 24021 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 24022 tcps->tcps_params = NULL; 24023 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 24024 tcps->tcps_wroff_xtra_param = NULL; 24025 kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t)); 24026 tcps->tcps_mdt_head_param = NULL; 24027 kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t)); 24028 tcps->tcps_mdt_tail_param = NULL; 24029 kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t)); 24030 tcps->tcps_mdt_max_pbufs_param = NULL; 24031 24032 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 24033 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 24034 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 24035 } 24036 24037 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 24038 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 24039 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 24040 } 24041 24042 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 24043 tcps->tcps_bind_fanout = NULL; 24044 24045 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); 24046 tcps->tcps_acceptor_fanout = NULL; 24047 24048 mutex_destroy(&tcps->tcps_iss_key_lock); 24049 mutex_destroy(&tcps->tcps_g_q_lock); 24050 cv_destroy(&tcps->tcps_g_q_cv); 24051 mutex_destroy(&tcps->tcps_epriv_port_lock); 24052 24053 ip_drop_unregister(&tcps->tcps_dropper); 24054 24055 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 24056 tcps->tcps_kstat = NULL; 24057 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 24058 24059 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 24060 tcps->tcps_mibkp = NULL; 24061 24062 ldi_ident_release(tcps->tcps_ldi_ident); 24063 kmem_free(tcps, sizeof (*tcps)); 24064 } 24065 24066 /* 24067 * Generate ISS, taking into account NDD changes may happen halfway through. 24068 * (If the iss is not zero, set it.) 24069 */ 24070 24071 static void 24072 tcp_iss_init(tcp_t *tcp) 24073 { 24074 MD5_CTX context; 24075 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 24076 uint32_t answer[4]; 24077 tcp_stack_t *tcps = tcp->tcp_tcps; 24078 24079 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 24080 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 24081 switch (tcps->tcps_strong_iss) { 24082 case 2: 24083 mutex_enter(&tcps->tcps_iss_key_lock); 24084 context = tcps->tcps_iss_key; 24085 mutex_exit(&tcps->tcps_iss_key_lock); 24086 arg.ports = tcp->tcp_ports; 24087 if (tcp->tcp_ipversion == IPV4_VERSION) { 24088 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 24089 &arg.src); 24090 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 24091 &arg.dst); 24092 } else { 24093 arg.src = tcp->tcp_ip6h->ip6_src; 24094 arg.dst = tcp->tcp_ip6h->ip6_dst; 24095 } 24096 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 24097 MD5Final((uchar_t *)answer, &context); 24098 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 24099 /* 24100 * Now that we've hashed into a unique per-connection sequence 24101 * space, add a random increment per strong_iss == 1. So I 24102 * guess we'll have to... 24103 */ 24104 /* FALLTHRU */ 24105 case 1: 24106 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 24107 break; 24108 default: 24109 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24110 break; 24111 } 24112 tcp->tcp_valid_bits = TCP_ISS_VALID; 24113 tcp->tcp_fss = tcp->tcp_iss - 1; 24114 tcp->tcp_suna = tcp->tcp_iss; 24115 tcp->tcp_snxt = tcp->tcp_iss + 1; 24116 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 24117 tcp->tcp_csuna = tcp->tcp_snxt; 24118 } 24119 24120 /* 24121 * Exported routine for extracting active tcp connection status. 24122 * 24123 * This is used by the Solaris Cluster Networking software to 24124 * gather a list of connections that need to be forwarded to 24125 * specific nodes in the cluster when configuration changes occur. 24126 * 24127 * The callback is invoked for each tcp_t structure from all netstacks, 24128 * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures 24129 * from the netstack with the specified stack_id. Returning 24130 * non-zero from the callback routine terminates the search. 24131 */ 24132 int 24133 cl_tcp_walk_list(netstackid_t stack_id, 24134 int (*cl_callback)(cl_tcp_info_t *, void *), void *arg) 24135 { 24136 netstack_handle_t nh; 24137 netstack_t *ns; 24138 int ret = 0; 24139 24140 if (stack_id >= 0) { 24141 if ((ns = netstack_find_by_stackid(stack_id)) == NULL) 24142 return (EINVAL); 24143 24144 ret = cl_tcp_walk_list_stack(cl_callback, arg, 24145 ns->netstack_tcp); 24146 netstack_rele(ns); 24147 return (ret); 24148 } 24149 24150 netstack_next_init(&nh); 24151 while ((ns = netstack_next(&nh)) != NULL) { 24152 ret = cl_tcp_walk_list_stack(cl_callback, arg, 24153 ns->netstack_tcp); 24154 netstack_rele(ns); 24155 } 24156 netstack_next_fini(&nh); 24157 return (ret); 24158 } 24159 24160 static int 24161 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 24162 tcp_stack_t *tcps) 24163 { 24164 tcp_t *tcp; 24165 cl_tcp_info_t cl_tcpi; 24166 connf_t *connfp; 24167 conn_t *connp; 24168 int i; 24169 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24170 24171 ASSERT(callback != NULL); 24172 24173 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 24174 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 24175 connp = NULL; 24176 24177 while ((connp = 24178 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 24179 24180 tcp = connp->conn_tcp; 24181 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 24182 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 24183 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 24184 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 24185 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 24186 /* 24187 * The macros tcp_laddr and tcp_faddr give the IPv4 24188 * addresses. They are copied implicitly below as 24189 * mapped addresses. 24190 */ 24191 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 24192 if (tcp->tcp_ipversion == IPV4_VERSION) { 24193 cl_tcpi.cl_tcpi_faddr = 24194 tcp->tcp_ipha->ipha_dst; 24195 } else { 24196 cl_tcpi.cl_tcpi_faddr_v6 = 24197 tcp->tcp_ip6h->ip6_dst; 24198 } 24199 24200 /* 24201 * If the callback returns non-zero 24202 * we terminate the traversal. 24203 */ 24204 if ((*callback)(&cl_tcpi, arg) != 0) { 24205 CONN_DEC_REF(tcp->tcp_connp); 24206 return (1); 24207 } 24208 } 24209 } 24210 24211 return (0); 24212 } 24213 24214 /* 24215 * Macros used for accessing the different types of sockaddr 24216 * structures inside a tcp_ioc_abort_conn_t. 24217 */ 24218 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 24219 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 24220 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 24221 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 24222 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 24223 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 24224 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 24225 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 24226 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 24227 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 24228 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 24229 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 24230 24231 /* 24232 * Return the correct error code to mimic the behavior 24233 * of a connection reset. 24234 */ 24235 #define TCP_AC_GET_ERRCODE(state, err) { \ 24236 switch ((state)) { \ 24237 case TCPS_SYN_SENT: \ 24238 case TCPS_SYN_RCVD: \ 24239 (err) = ECONNREFUSED; \ 24240 break; \ 24241 case TCPS_ESTABLISHED: \ 24242 case TCPS_FIN_WAIT_1: \ 24243 case TCPS_FIN_WAIT_2: \ 24244 case TCPS_CLOSE_WAIT: \ 24245 (err) = ECONNRESET; \ 24246 break; \ 24247 case TCPS_CLOSING: \ 24248 case TCPS_LAST_ACK: \ 24249 case TCPS_TIME_WAIT: \ 24250 (err) = 0; \ 24251 break; \ 24252 default: \ 24253 (err) = ENXIO; \ 24254 } \ 24255 } 24256 24257 /* 24258 * Check if a tcp structure matches the info in acp. 24259 */ 24260 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 24261 (((acp)->ac_local.ss_family == AF_INET) ? \ 24262 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 24263 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 24264 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 24265 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 24266 (TCP_AC_V4LPORT((acp)) == 0 || \ 24267 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 24268 (TCP_AC_V4RPORT((acp)) == 0 || \ 24269 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 24270 (acp)->ac_start <= (tcp)->tcp_state && \ 24271 (acp)->ac_end >= (tcp)->tcp_state) : \ 24272 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 24273 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 24274 &(tcp)->tcp_ip_src_v6)) && \ 24275 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 24276 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 24277 &(tcp)->tcp_remote_v6)) && \ 24278 (TCP_AC_V6LPORT((acp)) == 0 || \ 24279 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 24280 (TCP_AC_V6RPORT((acp)) == 0 || \ 24281 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 24282 (acp)->ac_start <= (tcp)->tcp_state && \ 24283 (acp)->ac_end >= (tcp)->tcp_state)) 24284 24285 #define TCP_AC_MATCH(acp, tcp) \ 24286 (((acp)->ac_zoneid == ALL_ZONES || \ 24287 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 24288 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 24289 24290 /* 24291 * Build a message containing a tcp_ioc_abort_conn_t structure 24292 * which is filled in with information from acp and tp. 24293 */ 24294 static mblk_t * 24295 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 24296 { 24297 mblk_t *mp; 24298 tcp_ioc_abort_conn_t *tacp; 24299 24300 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 24301 if (mp == NULL) 24302 return (NULL); 24303 24304 mp->b_datap->db_type = M_CTL; 24305 24306 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 24307 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 24308 sizeof (uint32_t)); 24309 24310 tacp->ac_start = acp->ac_start; 24311 tacp->ac_end = acp->ac_end; 24312 tacp->ac_zoneid = acp->ac_zoneid; 24313 24314 if (acp->ac_local.ss_family == AF_INET) { 24315 tacp->ac_local.ss_family = AF_INET; 24316 tacp->ac_remote.ss_family = AF_INET; 24317 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 24318 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 24319 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 24320 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 24321 } else { 24322 tacp->ac_local.ss_family = AF_INET6; 24323 tacp->ac_remote.ss_family = AF_INET6; 24324 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 24325 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 24326 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 24327 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 24328 } 24329 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 24330 return (mp); 24331 } 24332 24333 /* 24334 * Print a tcp_ioc_abort_conn_t structure. 24335 */ 24336 static void 24337 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 24338 { 24339 char lbuf[128]; 24340 char rbuf[128]; 24341 sa_family_t af; 24342 in_port_t lport, rport; 24343 ushort_t logflags; 24344 24345 af = acp->ac_local.ss_family; 24346 24347 if (af == AF_INET) { 24348 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 24349 lbuf, 128); 24350 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 24351 rbuf, 128); 24352 lport = ntohs(TCP_AC_V4LPORT(acp)); 24353 rport = ntohs(TCP_AC_V4RPORT(acp)); 24354 } else { 24355 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 24356 lbuf, 128); 24357 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 24358 rbuf, 128); 24359 lport = ntohs(TCP_AC_V6LPORT(acp)); 24360 rport = ntohs(TCP_AC_V6RPORT(acp)); 24361 } 24362 24363 logflags = SL_TRACE | SL_NOTE; 24364 /* 24365 * Don't print this message to the console if the operation was done 24366 * to a non-global zone. 24367 */ 24368 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24369 logflags |= SL_CONSOLE; 24370 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 24371 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 24372 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 24373 acp->ac_start, acp->ac_end); 24374 } 24375 24376 /* 24377 * Called inside tcp_rput when a message built using 24378 * tcp_ioctl_abort_build_msg is put into a queue. 24379 * Note that when we get here there is no wildcard in acp any more. 24380 */ 24381 static void 24382 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 24383 { 24384 tcp_ioc_abort_conn_t *acp; 24385 24386 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 24387 if (tcp->tcp_state <= acp->ac_end) { 24388 /* 24389 * If we get here, we are already on the correct 24390 * squeue. This ioctl follows the following path 24391 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 24392 * ->tcp_ioctl_abort->squeue_enter (if on a 24393 * different squeue) 24394 */ 24395 int errcode; 24396 24397 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 24398 (void) tcp_clean_death(tcp, errcode, 26); 24399 } 24400 freemsg(mp); 24401 } 24402 24403 /* 24404 * Abort all matching connections on a hash chain. 24405 */ 24406 static int 24407 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 24408 boolean_t exact, tcp_stack_t *tcps) 24409 { 24410 int nmatch, err = 0; 24411 tcp_t *tcp; 24412 MBLKP mp, last, listhead = NULL; 24413 conn_t *tconnp; 24414 connf_t *connfp; 24415 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24416 24417 connfp = &ipst->ips_ipcl_conn_fanout[index]; 24418 24419 startover: 24420 nmatch = 0; 24421 24422 mutex_enter(&connfp->connf_lock); 24423 for (tconnp = connfp->connf_head; tconnp != NULL; 24424 tconnp = tconnp->conn_next) { 24425 tcp = tconnp->conn_tcp; 24426 if (TCP_AC_MATCH(acp, tcp)) { 24427 CONN_INC_REF(tcp->tcp_connp); 24428 mp = tcp_ioctl_abort_build_msg(acp, tcp); 24429 if (mp == NULL) { 24430 err = ENOMEM; 24431 CONN_DEC_REF(tcp->tcp_connp); 24432 break; 24433 } 24434 mp->b_prev = (mblk_t *)tcp; 24435 24436 if (listhead == NULL) { 24437 listhead = mp; 24438 last = mp; 24439 } else { 24440 last->b_next = mp; 24441 last = mp; 24442 } 24443 nmatch++; 24444 if (exact) 24445 break; 24446 } 24447 24448 /* Avoid holding lock for too long. */ 24449 if (nmatch >= 500) 24450 break; 24451 } 24452 mutex_exit(&connfp->connf_lock); 24453 24454 /* Pass mp into the correct tcp */ 24455 while ((mp = listhead) != NULL) { 24456 listhead = listhead->b_next; 24457 tcp = (tcp_t *)mp->b_prev; 24458 mp->b_next = mp->b_prev = NULL; 24459 SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, tcp_input, 24460 tcp->tcp_connp, SQ_FILL, SQTAG_TCP_ABORT_BUCKET); 24461 } 24462 24463 *count += nmatch; 24464 if (nmatch >= 500 && err == 0) 24465 goto startover; 24466 return (err); 24467 } 24468 24469 /* 24470 * Abort all connections that matches the attributes specified in acp. 24471 */ 24472 static int 24473 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 24474 { 24475 sa_family_t af; 24476 uint32_t ports; 24477 uint16_t *pports; 24478 int err = 0, count = 0; 24479 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 24480 int index = -1; 24481 ushort_t logflags; 24482 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24483 24484 af = acp->ac_local.ss_family; 24485 24486 if (af == AF_INET) { 24487 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 24488 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 24489 pports = (uint16_t *)&ports; 24490 pports[1] = TCP_AC_V4LPORT(acp); 24491 pports[0] = TCP_AC_V4RPORT(acp); 24492 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 24493 } 24494 } else { 24495 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 24496 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 24497 pports = (uint16_t *)&ports; 24498 pports[1] = TCP_AC_V6LPORT(acp); 24499 pports[0] = TCP_AC_V6RPORT(acp); 24500 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 24501 } 24502 } 24503 24504 /* 24505 * For cases where remote addr, local port, and remote port are non- 24506 * wildcards, tcp_ioctl_abort_bucket will only be called once. 24507 */ 24508 if (index != -1) { 24509 err = tcp_ioctl_abort_bucket(acp, index, 24510 &count, exact, tcps); 24511 } else { 24512 /* 24513 * loop through all entries for wildcard case 24514 */ 24515 for (index = 0; 24516 index < ipst->ips_ipcl_conn_fanout_size; 24517 index++) { 24518 err = tcp_ioctl_abort_bucket(acp, index, 24519 &count, exact, tcps); 24520 if (err != 0) 24521 break; 24522 } 24523 } 24524 24525 logflags = SL_TRACE | SL_NOTE; 24526 /* 24527 * Don't print this message to the console if the operation was done 24528 * to a non-global zone. 24529 */ 24530 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24531 logflags |= SL_CONSOLE; 24532 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 24533 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 24534 if (err == 0 && count == 0) 24535 err = ENOENT; 24536 return (err); 24537 } 24538 24539 /* 24540 * Process the TCP_IOC_ABORT_CONN ioctl request. 24541 */ 24542 static void 24543 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 24544 { 24545 int err; 24546 IOCP iocp; 24547 MBLKP mp1; 24548 sa_family_t laf, raf; 24549 tcp_ioc_abort_conn_t *acp; 24550 zone_t *zptr; 24551 conn_t *connp = Q_TO_CONN(q); 24552 zoneid_t zoneid = connp->conn_zoneid; 24553 tcp_t *tcp = connp->conn_tcp; 24554 tcp_stack_t *tcps = tcp->tcp_tcps; 24555 24556 iocp = (IOCP)mp->b_rptr; 24557 24558 if ((mp1 = mp->b_cont) == NULL || 24559 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 24560 err = EINVAL; 24561 goto out; 24562 } 24563 24564 /* check permissions */ 24565 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 24566 err = EPERM; 24567 goto out; 24568 } 24569 24570 if (mp1->b_cont != NULL) { 24571 freemsg(mp1->b_cont); 24572 mp1->b_cont = NULL; 24573 } 24574 24575 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 24576 laf = acp->ac_local.ss_family; 24577 raf = acp->ac_remote.ss_family; 24578 24579 /* check that a zone with the supplied zoneid exists */ 24580 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 24581 zptr = zone_find_by_id(zoneid); 24582 if (zptr != NULL) { 24583 zone_rele(zptr); 24584 } else { 24585 err = EINVAL; 24586 goto out; 24587 } 24588 } 24589 24590 /* 24591 * For exclusive stacks we set the zoneid to zero 24592 * to make TCP operate as if in the global zone. 24593 */ 24594 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 24595 acp->ac_zoneid = GLOBAL_ZONEID; 24596 24597 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 24598 acp->ac_start > acp->ac_end || laf != raf || 24599 (laf != AF_INET && laf != AF_INET6)) { 24600 err = EINVAL; 24601 goto out; 24602 } 24603 24604 tcp_ioctl_abort_dump(acp); 24605 err = tcp_ioctl_abort(acp, tcps); 24606 24607 out: 24608 if (mp1 != NULL) { 24609 freemsg(mp1); 24610 mp->b_cont = NULL; 24611 } 24612 24613 if (err != 0) 24614 miocnak(q, mp, 0, err); 24615 else 24616 miocack(q, mp, 0, 0); 24617 } 24618 24619 /* 24620 * tcp_time_wait_processing() handles processing of incoming packets when 24621 * the tcp is in the TIME_WAIT state. 24622 * A TIME_WAIT tcp that has an associated open TCP stream is never put 24623 * on the time wait list. 24624 */ 24625 void 24626 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 24627 uint32_t seg_ack, int seg_len, tcph_t *tcph) 24628 { 24629 int32_t bytes_acked; 24630 int32_t gap; 24631 int32_t rgap; 24632 tcp_opt_t tcpopt; 24633 uint_t flags; 24634 uint32_t new_swnd = 0; 24635 conn_t *connp; 24636 tcp_stack_t *tcps = tcp->tcp_tcps; 24637 24638 BUMP_LOCAL(tcp->tcp_ibsegs); 24639 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 24640 24641 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 24642 new_swnd = BE16_TO_U16(tcph->th_win) << 24643 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 24644 if (tcp->tcp_snd_ts_ok) { 24645 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 24646 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24647 tcp->tcp_rnxt, TH_ACK); 24648 goto done; 24649 } 24650 } 24651 gap = seg_seq - tcp->tcp_rnxt; 24652 rgap = tcp->tcp_rwnd - (gap + seg_len); 24653 if (gap < 0) { 24654 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 24655 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 24656 (seg_len > -gap ? -gap : seg_len)); 24657 seg_len += gap; 24658 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 24659 if (flags & TH_RST) { 24660 goto done; 24661 } 24662 if ((flags & TH_FIN) && seg_len == -1) { 24663 /* 24664 * When TCP receives a duplicate FIN in 24665 * TIME_WAIT state, restart the 2 MSL timer. 24666 * See page 73 in RFC 793. Make sure this TCP 24667 * is already on the TIME_WAIT list. If not, 24668 * just restart the timer. 24669 */ 24670 if (TCP_IS_DETACHED(tcp)) { 24671 if (tcp_time_wait_remove(tcp, NULL) == 24672 B_TRUE) { 24673 tcp_time_wait_append(tcp); 24674 TCP_DBGSTAT(tcps, 24675 tcp_rput_time_wait); 24676 } 24677 } else { 24678 ASSERT(tcp != NULL); 24679 TCP_TIMER_RESTART(tcp, 24680 tcps->tcps_time_wait_interval); 24681 } 24682 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24683 tcp->tcp_rnxt, TH_ACK); 24684 goto done; 24685 } 24686 flags |= TH_ACK_NEEDED; 24687 seg_len = 0; 24688 goto process_ack; 24689 } 24690 24691 /* Fix seg_seq, and chew the gap off the front. */ 24692 seg_seq = tcp->tcp_rnxt; 24693 } 24694 24695 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 24696 /* 24697 * Make sure that when we accept the connection, pick 24698 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 24699 * old connection. 24700 * 24701 * The next ISS generated is equal to tcp_iss_incr_extra 24702 * + ISS_INCR/2 + other components depending on the 24703 * value of tcp_strong_iss. We pre-calculate the new 24704 * ISS here and compare with tcp_snxt to determine if 24705 * we need to make adjustment to tcp_iss_incr_extra. 24706 * 24707 * The above calculation is ugly and is a 24708 * waste of CPU cycles... 24709 */ 24710 uint32_t new_iss = tcps->tcps_iss_incr_extra; 24711 int32_t adj; 24712 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24713 24714 switch (tcps->tcps_strong_iss) { 24715 case 2: { 24716 /* Add time and MD5 components. */ 24717 uint32_t answer[4]; 24718 struct { 24719 uint32_t ports; 24720 in6_addr_t src; 24721 in6_addr_t dst; 24722 } arg; 24723 MD5_CTX context; 24724 24725 mutex_enter(&tcps->tcps_iss_key_lock); 24726 context = tcps->tcps_iss_key; 24727 mutex_exit(&tcps->tcps_iss_key_lock); 24728 arg.ports = tcp->tcp_ports; 24729 /* We use MAPPED addresses in tcp_iss_init */ 24730 arg.src = tcp->tcp_ip_src_v6; 24731 if (tcp->tcp_ipversion == IPV4_VERSION) { 24732 IN6_IPADDR_TO_V4MAPPED( 24733 tcp->tcp_ipha->ipha_dst, 24734 &arg.dst); 24735 } else { 24736 arg.dst = 24737 tcp->tcp_ip6h->ip6_dst; 24738 } 24739 MD5Update(&context, (uchar_t *)&arg, 24740 sizeof (arg)); 24741 MD5Final((uchar_t *)answer, &context); 24742 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 24743 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 24744 break; 24745 } 24746 case 1: 24747 /* Add time component and min random (i.e. 1). */ 24748 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 24749 break; 24750 default: 24751 /* Add only time component. */ 24752 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24753 break; 24754 } 24755 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 24756 /* 24757 * New ISS not guaranteed to be ISS_INCR/2 24758 * ahead of the current tcp_snxt, so add the 24759 * difference to tcp_iss_incr_extra. 24760 */ 24761 tcps->tcps_iss_incr_extra += adj; 24762 } 24763 /* 24764 * If tcp_clean_death() can not perform the task now, 24765 * drop the SYN packet and let the other side re-xmit. 24766 * Otherwise pass the SYN packet back in, since the 24767 * old tcp state has been cleaned up or freed. 24768 */ 24769 if (tcp_clean_death(tcp, 0, 27) == -1) 24770 goto done; 24771 /* 24772 * We will come back to tcp_rput_data 24773 * on the global queue. Packets destined 24774 * for the global queue will be checked 24775 * with global policy. But the policy for 24776 * this packet has already been checked as 24777 * this was destined for the detached 24778 * connection. We need to bypass policy 24779 * check this time by attaching a dummy 24780 * ipsec_in with ipsec_in_dont_check set. 24781 */ 24782 connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst); 24783 if (connp != NULL) { 24784 TCP_STAT(tcps, tcp_time_wait_syn_success); 24785 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 24786 return; 24787 } 24788 goto done; 24789 } 24790 24791 /* 24792 * rgap is the amount of stuff received out of window. A negative 24793 * value is the amount out of window. 24794 */ 24795 if (rgap < 0) { 24796 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 24797 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 24798 /* Fix seg_len and make sure there is something left. */ 24799 seg_len += rgap; 24800 if (seg_len <= 0) { 24801 if (flags & TH_RST) { 24802 goto done; 24803 } 24804 flags |= TH_ACK_NEEDED; 24805 seg_len = 0; 24806 goto process_ack; 24807 } 24808 } 24809 /* 24810 * Check whether we can update tcp_ts_recent. This test is 24811 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 24812 * Extensions for High Performance: An Update", Internet Draft. 24813 */ 24814 if (tcp->tcp_snd_ts_ok && 24815 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 24816 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 24817 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 24818 tcp->tcp_last_rcv_lbolt = lbolt64; 24819 } 24820 24821 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 24822 /* Always ack out of order packets */ 24823 flags |= TH_ACK_NEEDED; 24824 seg_len = 0; 24825 } else if (seg_len > 0) { 24826 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 24827 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 24828 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 24829 } 24830 if (flags & TH_RST) { 24831 (void) tcp_clean_death(tcp, 0, 28); 24832 goto done; 24833 } 24834 if (flags & TH_SYN) { 24835 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 24836 TH_RST|TH_ACK); 24837 /* 24838 * Do not delete the TCP structure if it is in 24839 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 24840 */ 24841 goto done; 24842 } 24843 process_ack: 24844 if (flags & TH_ACK) { 24845 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 24846 if (bytes_acked <= 0) { 24847 if (bytes_acked == 0 && seg_len == 0 && 24848 new_swnd == tcp->tcp_swnd) 24849 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 24850 } else { 24851 /* Acks something not sent */ 24852 flags |= TH_ACK_NEEDED; 24853 } 24854 } 24855 if (flags & TH_ACK_NEEDED) { 24856 /* 24857 * Time to send an ack for some reason. 24858 */ 24859 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24860 tcp->tcp_rnxt, TH_ACK); 24861 } 24862 done: 24863 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 24864 DB_CKSUMSTART(mp) = 0; 24865 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 24866 TCP_STAT(tcps, tcp_time_wait_syn_fail); 24867 } 24868 freemsg(mp); 24869 } 24870 24871 /* 24872 * TCP Timers Implementation. 24873 */ 24874 timeout_id_t 24875 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 24876 { 24877 mblk_t *mp; 24878 tcp_timer_t *tcpt; 24879 tcp_t *tcp = connp->conn_tcp; 24880 24881 ASSERT(connp->conn_sqp != NULL); 24882 24883 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls); 24884 24885 if (tcp->tcp_timercache == NULL) { 24886 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 24887 } else { 24888 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc); 24889 mp = tcp->tcp_timercache; 24890 tcp->tcp_timercache = mp->b_next; 24891 mp->b_next = NULL; 24892 ASSERT(mp->b_wptr == NULL); 24893 } 24894 24895 CONN_INC_REF(connp); 24896 tcpt = (tcp_timer_t *)mp->b_rptr; 24897 tcpt->connp = connp; 24898 tcpt->tcpt_proc = f; 24899 /* 24900 * TCP timers are normal timeouts. Plus, they do not require more than 24901 * a 10 millisecond resolution. By choosing a coarser resolution and by 24902 * rounding up the expiration to the next resolution boundary, we can 24903 * batch timers in the callout subsystem to make TCP timers more 24904 * efficient. The roundup also protects short timers from expiring too 24905 * early before they have a chance to be cancelled. 24906 */ 24907 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 24908 TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 24909 24910 return ((timeout_id_t)mp); 24911 } 24912 24913 static void 24914 tcp_timer_callback(void *arg) 24915 { 24916 mblk_t *mp = (mblk_t *)arg; 24917 tcp_timer_t *tcpt; 24918 conn_t *connp; 24919 24920 tcpt = (tcp_timer_t *)mp->b_rptr; 24921 connp = tcpt->connp; 24922 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp, 24923 SQ_FILL, SQTAG_TCP_TIMER); 24924 } 24925 24926 static void 24927 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 24928 { 24929 tcp_timer_t *tcpt; 24930 conn_t *connp = (conn_t *)arg; 24931 tcp_t *tcp = connp->conn_tcp; 24932 24933 tcpt = (tcp_timer_t *)mp->b_rptr; 24934 ASSERT(connp == tcpt->connp); 24935 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 24936 24937 /* 24938 * If the TCP has reached the closed state, don't proceed any 24939 * further. This TCP logically does not exist on the system. 24940 * tcpt_proc could for example access queues, that have already 24941 * been qprocoff'ed off. Also see comments at the start of tcp_input 24942 */ 24943 if (tcp->tcp_state != TCPS_CLOSED) { 24944 (*tcpt->tcpt_proc)(connp); 24945 } else { 24946 tcp->tcp_timer_tid = 0; 24947 } 24948 tcp_timer_free(connp->conn_tcp, mp); 24949 } 24950 24951 /* 24952 * There is potential race with untimeout and the handler firing at the same 24953 * time. The mblock may be freed by the handler while we are trying to use 24954 * it. But since both should execute on the same squeue, this race should not 24955 * occur. 24956 */ 24957 clock_t 24958 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 24959 { 24960 mblk_t *mp = (mblk_t *)id; 24961 tcp_timer_t *tcpt; 24962 clock_t delta; 24963 24964 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs); 24965 24966 if (mp == NULL) 24967 return (-1); 24968 24969 tcpt = (tcp_timer_t *)mp->b_rptr; 24970 ASSERT(tcpt->connp == connp); 24971 24972 delta = untimeout_default(tcpt->tcpt_tid, 0); 24973 24974 if (delta >= 0) { 24975 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled); 24976 tcp_timer_free(connp->conn_tcp, mp); 24977 CONN_DEC_REF(connp); 24978 } 24979 24980 return (delta); 24981 } 24982 24983 /* 24984 * Allocate space for the timer event. The allocation looks like mblk, but it is 24985 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 24986 * 24987 * Dealing with failures: If we can't allocate from the timer cache we try 24988 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 24989 * points to b_rptr. 24990 * If we can't allocate anything using allocb_tryhard(), we perform a last 24991 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 24992 * save the actual allocation size in b_datap. 24993 */ 24994 mblk_t * 24995 tcp_timermp_alloc(int kmflags) 24996 { 24997 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 24998 kmflags & ~KM_PANIC); 24999 25000 if (mp != NULL) { 25001 mp->b_next = mp->b_prev = NULL; 25002 mp->b_rptr = (uchar_t *)(&mp[1]); 25003 mp->b_wptr = NULL; 25004 mp->b_datap = NULL; 25005 mp->b_queue = NULL; 25006 mp->b_cont = NULL; 25007 } else if (kmflags & KM_PANIC) { 25008 /* 25009 * Failed to allocate memory for the timer. Try allocating from 25010 * dblock caches. 25011 */ 25012 /* ipclassifier calls this from a constructor - hence no tcps */ 25013 TCP_G_STAT(tcp_timermp_allocfail); 25014 mp = allocb_tryhard(sizeof (tcp_timer_t)); 25015 if (mp == NULL) { 25016 size_t size = 0; 25017 /* 25018 * Memory is really low. Try tryhard allocation. 25019 * 25020 * ipclassifier calls this from a constructor - 25021 * hence no tcps 25022 */ 25023 TCP_G_STAT(tcp_timermp_allocdblfail); 25024 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 25025 sizeof (tcp_timer_t), &size, kmflags); 25026 mp->b_rptr = (uchar_t *)(&mp[1]); 25027 mp->b_next = mp->b_prev = NULL; 25028 mp->b_wptr = (uchar_t *)-1; 25029 mp->b_datap = (dblk_t *)size; 25030 mp->b_queue = NULL; 25031 mp->b_cont = NULL; 25032 } 25033 ASSERT(mp->b_wptr != NULL); 25034 } 25035 /* ipclassifier calls this from a constructor - hence no tcps */ 25036 TCP_G_DBGSTAT(tcp_timermp_alloced); 25037 25038 return (mp); 25039 } 25040 25041 /* 25042 * Free per-tcp timer cache. 25043 * It can only contain entries from tcp_timercache. 25044 */ 25045 void 25046 tcp_timermp_free(tcp_t *tcp) 25047 { 25048 mblk_t *mp; 25049 25050 while ((mp = tcp->tcp_timercache) != NULL) { 25051 ASSERT(mp->b_wptr == NULL); 25052 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 25053 kmem_cache_free(tcp_timercache, mp); 25054 } 25055 } 25056 25057 /* 25058 * Free timer event. Put it on the per-tcp timer cache if there is not too many 25059 * events there already (currently at most two events are cached). 25060 * If the event is not allocated from the timer cache, free it right away. 25061 */ 25062 static void 25063 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 25064 { 25065 mblk_t *mp1 = tcp->tcp_timercache; 25066 25067 if (mp->b_wptr != NULL) { 25068 /* 25069 * This allocation is not from a timer cache, free it right 25070 * away. 25071 */ 25072 if (mp->b_wptr != (uchar_t *)-1) 25073 freeb(mp); 25074 else 25075 kmem_free(mp, (size_t)mp->b_datap); 25076 } else if (mp1 == NULL || mp1->b_next == NULL) { 25077 /* Cache this timer block for future allocations */ 25078 mp->b_rptr = (uchar_t *)(&mp[1]); 25079 mp->b_next = mp1; 25080 tcp->tcp_timercache = mp; 25081 } else { 25082 kmem_cache_free(tcp_timercache, mp); 25083 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed); 25084 } 25085 } 25086 25087 /* 25088 * End of TCP Timers implementation. 25089 */ 25090 25091 /* 25092 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 25093 * on the specified backing STREAMS q. Note, the caller may make the 25094 * decision to call based on the tcp_t.tcp_flow_stopped value which 25095 * when check outside the q's lock is only an advisory check ... 25096 */ 25097 void 25098 tcp_setqfull(tcp_t *tcp) 25099 { 25100 tcp_stack_t *tcps = tcp->tcp_tcps; 25101 conn_t *connp = tcp->tcp_connp; 25102 25103 if (tcp->tcp_closed) 25104 return; 25105 25106 if (IPCL_IS_NONSTR(connp)) { 25107 (*connp->conn_upcalls->su_txq_full) 25108 (tcp->tcp_connp->conn_upper_handle, B_TRUE); 25109 tcp->tcp_flow_stopped = B_TRUE; 25110 } else { 25111 queue_t *q = tcp->tcp_wq; 25112 25113 if (!(q->q_flag & QFULL)) { 25114 mutex_enter(QLOCK(q)); 25115 if (!(q->q_flag & QFULL)) { 25116 /* still need to set QFULL */ 25117 q->q_flag |= QFULL; 25118 tcp->tcp_flow_stopped = B_TRUE; 25119 mutex_exit(QLOCK(q)); 25120 TCP_STAT(tcps, tcp_flwctl_on); 25121 } else { 25122 mutex_exit(QLOCK(q)); 25123 } 25124 } 25125 } 25126 } 25127 25128 void 25129 tcp_clrqfull(tcp_t *tcp) 25130 { 25131 conn_t *connp = tcp->tcp_connp; 25132 25133 if (tcp->tcp_closed) 25134 return; 25135 25136 if (IPCL_IS_NONSTR(connp)) { 25137 (*connp->conn_upcalls->su_txq_full) 25138 (tcp->tcp_connp->conn_upper_handle, B_FALSE); 25139 tcp->tcp_flow_stopped = B_FALSE; 25140 } else { 25141 queue_t *q = tcp->tcp_wq; 25142 25143 if (q->q_flag & QFULL) { 25144 mutex_enter(QLOCK(q)); 25145 if (q->q_flag & QFULL) { 25146 q->q_flag &= ~QFULL; 25147 tcp->tcp_flow_stopped = B_FALSE; 25148 mutex_exit(QLOCK(q)); 25149 if (q->q_flag & QWANTW) 25150 qbackenable(q, 0); 25151 } else { 25152 mutex_exit(QLOCK(q)); 25153 } 25154 } 25155 } 25156 } 25157 25158 /* 25159 * kstats related to squeues i.e. not per IP instance 25160 */ 25161 static void * 25162 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 25163 { 25164 kstat_t *ksp; 25165 25166 tcp_g_stat_t template = { 25167 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 25168 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 25169 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 25170 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 25171 }; 25172 25173 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 25174 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 25175 KSTAT_FLAG_VIRTUAL); 25176 25177 if (ksp == NULL) 25178 return (NULL); 25179 25180 bcopy(&template, tcp_g_statp, sizeof (template)); 25181 ksp->ks_data = (void *)tcp_g_statp; 25182 25183 kstat_install(ksp); 25184 return (ksp); 25185 } 25186 25187 static void 25188 tcp_g_kstat_fini(kstat_t *ksp) 25189 { 25190 if (ksp != NULL) { 25191 kstat_delete(ksp); 25192 } 25193 } 25194 25195 25196 static void * 25197 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 25198 { 25199 kstat_t *ksp; 25200 25201 tcp_stat_t template = { 25202 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 25203 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 25204 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 25205 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 25206 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 25207 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 25208 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 25209 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 25210 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 25211 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 25212 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 25213 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 25214 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 25215 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 25216 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 25217 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 25218 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 25219 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 25220 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 25221 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 25222 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 25223 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 25224 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 25225 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 25226 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 25227 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 25228 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 25229 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 25230 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 25231 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 25232 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 25233 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 25234 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 25235 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 25236 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 25237 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 25238 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 25239 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 25240 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 25241 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 25242 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 25243 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 25244 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 25245 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 25246 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 25247 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 25248 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 25249 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 25250 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 25251 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 25252 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 25253 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 25254 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 25255 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 25256 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 25257 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 25258 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 25259 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 25260 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 25261 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 25262 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 25263 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 25264 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 25265 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 25266 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 25267 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 25268 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 25269 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 25270 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 25271 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 25272 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 25273 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 25274 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 25275 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 25276 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 25277 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 25278 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 25279 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 25280 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 25281 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 25282 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 25283 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 25284 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 25285 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 25286 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 25287 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 25288 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 25289 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 25290 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 25291 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 25292 }; 25293 25294 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 25295 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 25296 KSTAT_FLAG_VIRTUAL, stackid); 25297 25298 if (ksp == NULL) 25299 return (NULL); 25300 25301 bcopy(&template, tcps_statisticsp, sizeof (template)); 25302 ksp->ks_data = (void *)tcps_statisticsp; 25303 ksp->ks_private = (void *)(uintptr_t)stackid; 25304 25305 kstat_install(ksp); 25306 return (ksp); 25307 } 25308 25309 static void 25310 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 25311 { 25312 if (ksp != NULL) { 25313 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 25314 kstat_delete_netstack(ksp, stackid); 25315 } 25316 } 25317 25318 /* 25319 * TCP Kstats implementation 25320 */ 25321 static void * 25322 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 25323 { 25324 kstat_t *ksp; 25325 25326 tcp_named_kstat_t template = { 25327 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 25328 { "rtoMin", KSTAT_DATA_INT32, 0 }, 25329 { "rtoMax", KSTAT_DATA_INT32, 0 }, 25330 { "maxConn", KSTAT_DATA_INT32, 0 }, 25331 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 25332 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 25333 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 25334 { "estabResets", KSTAT_DATA_UINT32, 0 }, 25335 { "currEstab", KSTAT_DATA_UINT32, 0 }, 25336 { "inSegs", KSTAT_DATA_UINT64, 0 }, 25337 { "outSegs", KSTAT_DATA_UINT64, 0 }, 25338 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 25339 { "connTableSize", KSTAT_DATA_INT32, 0 }, 25340 { "outRsts", KSTAT_DATA_UINT32, 0 }, 25341 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 25342 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 25343 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 25344 { "outAck", KSTAT_DATA_UINT32, 0 }, 25345 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 25346 { "outUrg", KSTAT_DATA_UINT32, 0 }, 25347 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 25348 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 25349 { "outControl", KSTAT_DATA_UINT32, 0 }, 25350 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 25351 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 25352 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 25353 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 25354 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 25355 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 25356 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 25357 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 25358 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 25359 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 25360 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 25361 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 25362 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 25363 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 25364 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 25365 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 25366 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 25367 { "inClosed", KSTAT_DATA_UINT32, 0 }, 25368 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 25369 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 25370 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 25371 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 25372 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 25373 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 25374 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 25375 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 25376 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 25377 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 25378 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 25379 { "connTableSize6", KSTAT_DATA_INT32, 0 } 25380 }; 25381 25382 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 25383 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 25384 25385 if (ksp == NULL) 25386 return (NULL); 25387 25388 template.rtoAlgorithm.value.ui32 = 4; 25389 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 25390 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 25391 template.maxConn.value.i32 = -1; 25392 25393 bcopy(&template, ksp->ks_data, sizeof (template)); 25394 ksp->ks_update = tcp_kstat_update; 25395 ksp->ks_private = (void *)(uintptr_t)stackid; 25396 25397 kstat_install(ksp); 25398 return (ksp); 25399 } 25400 25401 static void 25402 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 25403 { 25404 if (ksp != NULL) { 25405 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 25406 kstat_delete_netstack(ksp, stackid); 25407 } 25408 } 25409 25410 static int 25411 tcp_kstat_update(kstat_t *kp, int rw) 25412 { 25413 tcp_named_kstat_t *tcpkp; 25414 tcp_t *tcp; 25415 connf_t *connfp; 25416 conn_t *connp; 25417 int i; 25418 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 25419 netstack_t *ns; 25420 tcp_stack_t *tcps; 25421 ip_stack_t *ipst; 25422 25423 if ((kp == NULL) || (kp->ks_data == NULL)) 25424 return (EIO); 25425 25426 if (rw == KSTAT_WRITE) 25427 return (EACCES); 25428 25429 ns = netstack_find_by_stackid(stackid); 25430 if (ns == NULL) 25431 return (-1); 25432 tcps = ns->netstack_tcp; 25433 if (tcps == NULL) { 25434 netstack_rele(ns); 25435 return (-1); 25436 } 25437 25438 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 25439 25440 tcpkp->currEstab.value.ui32 = 0; 25441 25442 ipst = ns->netstack_ip; 25443 25444 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25445 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 25446 connp = NULL; 25447 while ((connp = 25448 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25449 tcp = connp->conn_tcp; 25450 switch (tcp_snmp_state(tcp)) { 25451 case MIB2_TCP_established: 25452 case MIB2_TCP_closeWait: 25453 tcpkp->currEstab.value.ui32++; 25454 break; 25455 } 25456 } 25457 } 25458 25459 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 25460 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 25461 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 25462 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 25463 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 25464 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 25465 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 25466 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 25467 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 25468 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 25469 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 25470 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 25471 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 25472 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 25473 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 25474 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 25475 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 25476 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 25477 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 25478 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 25479 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 25480 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 25481 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 25482 tcpkp->inDataInorderSegs.value.ui32 = 25483 tcps->tcps_mib.tcpInDataInorderSegs; 25484 tcpkp->inDataInorderBytes.value.ui32 = 25485 tcps->tcps_mib.tcpInDataInorderBytes; 25486 tcpkp->inDataUnorderSegs.value.ui32 = 25487 tcps->tcps_mib.tcpInDataUnorderSegs; 25488 tcpkp->inDataUnorderBytes.value.ui32 = 25489 tcps->tcps_mib.tcpInDataUnorderBytes; 25490 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 25491 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 25492 tcpkp->inDataPartDupSegs.value.ui32 = 25493 tcps->tcps_mib.tcpInDataPartDupSegs; 25494 tcpkp->inDataPartDupBytes.value.ui32 = 25495 tcps->tcps_mib.tcpInDataPartDupBytes; 25496 tcpkp->inDataPastWinSegs.value.ui32 = 25497 tcps->tcps_mib.tcpInDataPastWinSegs; 25498 tcpkp->inDataPastWinBytes.value.ui32 = 25499 tcps->tcps_mib.tcpInDataPastWinBytes; 25500 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 25501 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 25502 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 25503 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 25504 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 25505 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 25506 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 25507 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 25508 tcpkp->timKeepaliveProbe.value.ui32 = 25509 tcps->tcps_mib.tcpTimKeepaliveProbe; 25510 tcpkp->timKeepaliveDrop.value.ui32 = 25511 tcps->tcps_mib.tcpTimKeepaliveDrop; 25512 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 25513 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 25514 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 25515 tcpkp->outSackRetransSegs.value.ui32 = 25516 tcps->tcps_mib.tcpOutSackRetransSegs; 25517 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 25518 25519 netstack_rele(ns); 25520 return (0); 25521 } 25522 25523 void 25524 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 25525 { 25526 uint16_t hdr_len; 25527 ipha_t *ipha; 25528 uint8_t *nexthdrp; 25529 tcph_t *tcph; 25530 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 25531 25532 /* Already has an eager */ 25533 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25534 TCP_STAT(tcps, tcp_reinput_syn); 25535 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 25536 SQ_PROCESS, SQTAG_TCP_REINPUT_EAGER); 25537 return; 25538 } 25539 25540 switch (IPH_HDR_VERSION(mp->b_rptr)) { 25541 case IPV4_VERSION: 25542 ipha = (ipha_t *)mp->b_rptr; 25543 hdr_len = IPH_HDR_LENGTH(ipha); 25544 break; 25545 case IPV6_VERSION: 25546 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 25547 &hdr_len, &nexthdrp)) { 25548 CONN_DEC_REF(connp); 25549 freemsg(mp); 25550 return; 25551 } 25552 break; 25553 } 25554 25555 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 25556 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 25557 mp->b_datap->db_struioflag |= STRUIO_EAGER; 25558 DB_CKSUMSTART(mp) = (intptr_t)sqp; 25559 } 25560 25561 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 25562 SQ_FILL, SQTAG_TCP_REINPUT); 25563 } 25564 25565 static int 25566 tcp_squeue_switch(int val) 25567 { 25568 int rval = SQ_FILL; 25569 25570 switch (val) { 25571 case 1: 25572 rval = SQ_NODRAIN; 25573 break; 25574 case 2: 25575 rval = SQ_PROCESS; 25576 break; 25577 default: 25578 break; 25579 } 25580 return (rval); 25581 } 25582 25583 /* 25584 * This is called once for each squeue - globally for all stack 25585 * instances. 25586 */ 25587 static void 25588 tcp_squeue_add(squeue_t *sqp) 25589 { 25590 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 25591 sizeof (tcp_squeue_priv_t), KM_SLEEP); 25592 25593 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 25594 tcp_time_wait->tcp_time_wait_tid = 25595 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 25596 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 25597 CALLOUT_FLAG_ROUNDUP); 25598 if (tcp_free_list_max_cnt == 0) { 25599 int tcp_ncpus = ((boot_max_ncpus == -1) ? 25600 max_ncpus : boot_max_ncpus); 25601 25602 /* 25603 * Limit number of entries to 1% of availble memory / tcp_ncpus 25604 */ 25605 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 25606 (tcp_ncpus * sizeof (tcp_t) * 100); 25607 } 25608 tcp_time_wait->tcp_free_list_cnt = 0; 25609 } 25610 25611 static int 25612 tcp_post_ip_bind(tcp_t *tcp, mblk_t *mp, int error, cred_t *cr, pid_t pid) 25613 { 25614 mblk_t *ire_mp = NULL; 25615 mblk_t *syn_mp; 25616 mblk_t *mdti; 25617 mblk_t *lsoi; 25618 int retval; 25619 tcph_t *tcph; 25620 cred_t *ecr; 25621 ts_label_t *tsl; 25622 uint32_t mss; 25623 conn_t *connp = tcp->tcp_connp; 25624 tcp_stack_t *tcps = tcp->tcp_tcps; 25625 25626 if (error == 0) { 25627 /* 25628 * Adapt Multidata information, if any. The 25629 * following tcp_mdt_update routine will free 25630 * the message. 25631 */ 25632 if (mp != NULL && ((mdti = tcp_mdt_info_mp(mp)) != NULL)) { 25633 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 25634 b_rptr)->mdt_capab, B_TRUE); 25635 freemsg(mdti); 25636 } 25637 25638 /* 25639 * Check to update LSO information with tcp, and 25640 * tcp_lso_update routine will free the message. 25641 */ 25642 if (mp != NULL && ((lsoi = tcp_lso_info_mp(mp)) != NULL)) { 25643 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 25644 b_rptr)->lso_capab); 25645 freemsg(lsoi); 25646 } 25647 25648 /* Get the IRE, if we had requested for it */ 25649 if (mp != NULL) 25650 ire_mp = tcp_ire_mp(&mp); 25651 25652 if (tcp->tcp_hard_binding) { 25653 tcp->tcp_hard_binding = B_FALSE; 25654 tcp->tcp_hard_bound = B_TRUE; 25655 CL_INET_CONNECT(tcp->tcp_connp, tcp, B_TRUE, retval); 25656 if (retval != 0) { 25657 error = EADDRINUSE; 25658 goto bind_failed; 25659 } 25660 } else { 25661 if (ire_mp != NULL) 25662 freeb(ire_mp); 25663 goto after_syn_sent; 25664 } 25665 25666 retval = tcp_adapt_ire(tcp, ire_mp); 25667 if (ire_mp != NULL) 25668 freeb(ire_mp); 25669 if (retval == 0) { 25670 error = (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 25671 ENETUNREACH : EADDRNOTAVAIL); 25672 goto ipcl_rm; 25673 } 25674 /* 25675 * Don't let an endpoint connect to itself. 25676 * Also checked in tcp_connect() but that 25677 * check can't handle the case when the 25678 * local IP address is INADDR_ANY. 25679 */ 25680 if (tcp->tcp_ipversion == IPV4_VERSION) { 25681 if ((tcp->tcp_ipha->ipha_dst == 25682 tcp->tcp_ipha->ipha_src) && 25683 (BE16_EQL(tcp->tcp_tcph->th_lport, 25684 tcp->tcp_tcph->th_fport))) { 25685 error = EADDRNOTAVAIL; 25686 goto ipcl_rm; 25687 } 25688 } else { 25689 if (IN6_ARE_ADDR_EQUAL( 25690 &tcp->tcp_ip6h->ip6_dst, 25691 &tcp->tcp_ip6h->ip6_src) && 25692 (BE16_EQL(tcp->tcp_tcph->th_lport, 25693 tcp->tcp_tcph->th_fport))) { 25694 error = EADDRNOTAVAIL; 25695 goto ipcl_rm; 25696 } 25697 } 25698 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 25699 /* 25700 * This should not be possible! Just for 25701 * defensive coding... 25702 */ 25703 if (tcp->tcp_state != TCPS_SYN_SENT) 25704 goto after_syn_sent; 25705 25706 if (is_system_labeled() && 25707 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 25708 error = EHOSTUNREACH; 25709 goto ipcl_rm; 25710 } 25711 25712 /* 25713 * tcp_adapt_ire() does not adjust 25714 * for TCP/IP header length. 25715 */ 25716 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 25717 25718 /* 25719 * Just make sure our rwnd is at 25720 * least tcp_recv_hiwat_mss * MSS 25721 * large, and round up to the nearest 25722 * MSS. 25723 * 25724 * We do the round up here because 25725 * we need to get the interface 25726 * MTU first before we can do the 25727 * round up. 25728 */ 25729 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 25730 tcps->tcps_recv_hiwat_minmss * mss); 25731 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 25732 tcp_set_ws_value(tcp); 25733 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 25734 tcp->tcp_tcph->th_win); 25735 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 25736 tcp->tcp_snd_ws_ok = B_TRUE; 25737 25738 /* 25739 * Set tcp_snd_ts_ok to true 25740 * so that tcp_xmit_mp will 25741 * include the timestamp 25742 * option in the SYN segment. 25743 */ 25744 if (tcps->tcps_tstamp_always || 25745 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 25746 tcp->tcp_snd_ts_ok = B_TRUE; 25747 } 25748 25749 /* 25750 * tcp_snd_sack_ok can be set in 25751 * tcp_adapt_ire() if the sack metric 25752 * is set. So check it here also. 25753 */ 25754 if (tcps->tcps_sack_permitted == 2 || 25755 tcp->tcp_snd_sack_ok) { 25756 if (tcp->tcp_sack_info == NULL) { 25757 tcp->tcp_sack_info = 25758 kmem_cache_alloc(tcp_sack_info_cache, 25759 KM_SLEEP); 25760 } 25761 tcp->tcp_snd_sack_ok = B_TRUE; 25762 } 25763 25764 /* 25765 * Should we use ECN? Note that the current 25766 * default value (SunOS 5.9) of tcp_ecn_permitted 25767 * is 1. The reason for doing this is that there 25768 * are equipments out there that will drop ECN 25769 * enabled IP packets. Setting it to 1 avoids 25770 * compatibility problems. 25771 */ 25772 if (tcps->tcps_ecn_permitted == 2) 25773 tcp->tcp_ecn_ok = B_TRUE; 25774 25775 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 25776 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 25777 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 25778 if (syn_mp) { 25779 /* 25780 * cr contains the cred from the thread calling 25781 * connect(). 25782 * 25783 * If no thread cred is available, use the 25784 * socket creator's cred instead. If still no 25785 * cred, drop the request rather than risk a 25786 * panic on production systems. 25787 */ 25788 if (cr == NULL) { 25789 cr = CONN_CRED(connp); 25790 pid = tcp->tcp_cpid; 25791 ASSERT(cr != NULL); 25792 if (cr != NULL) { 25793 mblk_setcred(syn_mp, cr, pid); 25794 } else { 25795 error = ECONNABORTED; 25796 goto ipcl_rm; 25797 } 25798 25799 /* 25800 * If an effective security label exists for 25801 * the connection, create a copy of the thread's 25802 * cred but with the effective label attached. 25803 */ 25804 } else if (is_system_labeled() && 25805 connp->conn_effective_cred != NULL && 25806 (tsl = crgetlabel(connp-> 25807 conn_effective_cred)) != NULL) { 25808 if ((ecr = copycred_from_tslabel(cr, 25809 tsl, KM_NOSLEEP)) == NULL) { 25810 error = ENOMEM; 25811 goto ipcl_rm; 25812 } 25813 mblk_setcred(syn_mp, ecr, pid); 25814 crfree(ecr); 25815 25816 /* 25817 * Default to using the thread's cred unchanged. 25818 */ 25819 } else { 25820 mblk_setcred(syn_mp, cr, pid); 25821 } 25822 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 25823 } 25824 after_syn_sent: 25825 if (mp != NULL) { 25826 ASSERT(mp->b_cont == NULL); 25827 freeb(mp); 25828 } 25829 return (error); 25830 } else { 25831 /* error */ 25832 if (tcp->tcp_debug) { 25833 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 25834 "tcp_post_ip_bind: error == %d", error); 25835 } 25836 if (mp != NULL) { 25837 freeb(mp); 25838 } 25839 } 25840 25841 ipcl_rm: 25842 /* 25843 * Need to unbind with classifier since we were just 25844 * told that our bind succeeded. a.k.a error == 0 at the entry. 25845 */ 25846 tcp->tcp_hard_bound = B_FALSE; 25847 tcp->tcp_hard_binding = B_FALSE; 25848 25849 ipcl_hash_remove(connp); 25850 25851 bind_failed: 25852 tcp->tcp_state = TCPS_IDLE; 25853 if (tcp->tcp_ipversion == IPV4_VERSION) 25854 tcp->tcp_ipha->ipha_src = 0; 25855 else 25856 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 25857 /* 25858 * Copy of the src addr. in tcp_t is needed since 25859 * the lookup funcs. can only look at tcp_t 25860 */ 25861 V6_SET_ZERO(tcp->tcp_ip_src_v6); 25862 25863 tcph = tcp->tcp_tcph; 25864 tcph->th_lport[0] = 0; 25865 tcph->th_lport[1] = 0; 25866 tcp_bind_hash_remove(tcp); 25867 bzero(&connp->u_port, sizeof (connp->u_port)); 25868 /* blow away saved option results if any */ 25869 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 25870 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 25871 25872 conn_delete_ire(tcp->tcp_connp, NULL); 25873 25874 return (error); 25875 } 25876 25877 static int 25878 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr, 25879 boolean_t bind_to_req_port_only, cred_t *cr) 25880 { 25881 in_port_t mlp_port; 25882 mlp_type_t addrtype, mlptype; 25883 boolean_t user_specified; 25884 in_port_t allocated_port; 25885 in_port_t requested_port = *requested_port_ptr; 25886 conn_t *connp; 25887 zone_t *zone; 25888 tcp_stack_t *tcps = tcp->tcp_tcps; 25889 in6_addr_t v6addr = tcp->tcp_ip_src_v6; 25890 25891 /* 25892 * XXX It's up to the caller to specify bind_to_req_port_only or not. 25893 */ 25894 if (cr == NULL) 25895 cr = tcp->tcp_cred; 25896 /* 25897 * Get a valid port (within the anonymous range and should not 25898 * be a privileged one) to use if the user has not given a port. 25899 * If multiple threads are here, they may all start with 25900 * with the same initial port. But, it should be fine as long as 25901 * tcp_bindi will ensure that no two threads will be assigned 25902 * the same port. 25903 * 25904 * NOTE: XXX If a privileged process asks for an anonymous port, we 25905 * still check for ports only in the range > tcp_smallest_non_priv_port, 25906 * unless TCP_ANONPRIVBIND option is set. 25907 */ 25908 mlptype = mlptSingle; 25909 mlp_port = requested_port; 25910 if (requested_port == 0) { 25911 requested_port = tcp->tcp_anon_priv_bind ? 25912 tcp_get_next_priv_port(tcp) : 25913 tcp_update_next_port(tcps->tcps_next_port_to_try, 25914 tcp, B_TRUE); 25915 if (requested_port == 0) { 25916 return (-TNOADDR); 25917 } 25918 user_specified = B_FALSE; 25919 25920 /* 25921 * If the user went through one of the RPC interfaces to create 25922 * this socket and RPC is MLP in this zone, then give him an 25923 * anonymous MLP. 25924 */ 25925 connp = tcp->tcp_connp; 25926 if (connp->conn_anon_mlp && is_system_labeled()) { 25927 zone = crgetzone(cr); 25928 addrtype = tsol_mlp_addr_type( 25929 connp->conn_allzones ? ALL_ZONES : zone->zone_id, 25930 IPV6_VERSION, &v6addr, 25931 tcps->tcps_netstack->netstack_ip); 25932 if (addrtype == mlptSingle) { 25933 return (-TNOADDR); 25934 } 25935 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 25936 PMAPPORT, addrtype); 25937 mlp_port = PMAPPORT; 25938 } 25939 } else { 25940 int i; 25941 boolean_t priv = B_FALSE; 25942 25943 /* 25944 * If the requested_port is in the well-known privileged range, 25945 * verify that the stream was opened by a privileged user. 25946 * Note: No locks are held when inspecting tcp_g_*epriv_ports 25947 * but instead the code relies on: 25948 * - the fact that the address of the array and its size never 25949 * changes 25950 * - the atomic assignment of the elements of the array 25951 */ 25952 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 25953 priv = B_TRUE; 25954 } else { 25955 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 25956 if (requested_port == 25957 tcps->tcps_g_epriv_ports[i]) { 25958 priv = B_TRUE; 25959 break; 25960 } 25961 } 25962 } 25963 if (priv) { 25964 if (secpolicy_net_privaddr(cr, requested_port, 25965 IPPROTO_TCP) != 0) { 25966 if (tcp->tcp_debug) { 25967 (void) strlog(TCP_MOD_ID, 0, 1, 25968 SL_ERROR|SL_TRACE, 25969 "tcp_bind: no priv for port %d", 25970 requested_port); 25971 } 25972 return (-TACCES); 25973 } 25974 } 25975 user_specified = B_TRUE; 25976 25977 connp = tcp->tcp_connp; 25978 if (is_system_labeled()) { 25979 zone = crgetzone(cr); 25980 addrtype = tsol_mlp_addr_type( 25981 connp->conn_allzones ? ALL_ZONES : zone->zone_id, 25982 IPV6_VERSION, &v6addr, 25983 tcps->tcps_netstack->netstack_ip); 25984 if (addrtype == mlptSingle) { 25985 return (-TNOADDR); 25986 } 25987 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 25988 requested_port, addrtype); 25989 } 25990 } 25991 25992 if (mlptype != mlptSingle) { 25993 if (secpolicy_net_bindmlp(cr) != 0) { 25994 if (tcp->tcp_debug) { 25995 (void) strlog(TCP_MOD_ID, 0, 1, 25996 SL_ERROR|SL_TRACE, 25997 "tcp_bind: no priv for multilevel port %d", 25998 requested_port); 25999 } 26000 return (-TACCES); 26001 } 26002 26003 /* 26004 * If we're specifically binding a shared IP address and the 26005 * port is MLP on shared addresses, then check to see if this 26006 * zone actually owns the MLP. Reject if not. 26007 */ 26008 if (mlptype == mlptShared && addrtype == mlptShared) { 26009 /* 26010 * No need to handle exclusive-stack zones since 26011 * ALL_ZONES only applies to the shared stack. 26012 */ 26013 zoneid_t mlpzone; 26014 26015 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 26016 htons(mlp_port)); 26017 if (connp->conn_zoneid != mlpzone) { 26018 if (tcp->tcp_debug) { 26019 (void) strlog(TCP_MOD_ID, 0, 1, 26020 SL_ERROR|SL_TRACE, 26021 "tcp_bind: attempt to bind port " 26022 "%d on shared addr in zone %d " 26023 "(should be %d)", 26024 mlp_port, connp->conn_zoneid, 26025 mlpzone); 26026 } 26027 return (-TACCES); 26028 } 26029 } 26030 26031 if (!user_specified) { 26032 int err; 26033 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 26034 requested_port, B_TRUE); 26035 if (err != 0) { 26036 if (tcp->tcp_debug) { 26037 (void) strlog(TCP_MOD_ID, 0, 1, 26038 SL_ERROR|SL_TRACE, 26039 "tcp_bind: cannot establish anon " 26040 "MLP for port %d", 26041 requested_port); 26042 } 26043 return (err); 26044 } 26045 connp->conn_anon_port = B_TRUE; 26046 } 26047 connp->conn_mlp_type = mlptype; 26048 } 26049 26050 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 26051 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 26052 26053 if (allocated_port == 0) { 26054 connp->conn_mlp_type = mlptSingle; 26055 if (connp->conn_anon_port) { 26056 connp->conn_anon_port = B_FALSE; 26057 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 26058 requested_port, B_FALSE); 26059 } 26060 if (bind_to_req_port_only) { 26061 if (tcp->tcp_debug) { 26062 (void) strlog(TCP_MOD_ID, 0, 1, 26063 SL_ERROR|SL_TRACE, 26064 "tcp_bind: requested addr busy"); 26065 } 26066 return (-TADDRBUSY); 26067 } else { 26068 /* If we are out of ports, fail the bind. */ 26069 if (tcp->tcp_debug) { 26070 (void) strlog(TCP_MOD_ID, 0, 1, 26071 SL_ERROR|SL_TRACE, 26072 "tcp_bind: out of ports?"); 26073 } 26074 return (-TNOADDR); 26075 } 26076 } 26077 26078 /* Pass the allocated port back */ 26079 *requested_port_ptr = allocated_port; 26080 return (0); 26081 } 26082 26083 static int 26084 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 26085 boolean_t bind_to_req_port_only) 26086 { 26087 tcp_t *tcp = connp->conn_tcp; 26088 sin_t *sin; 26089 sin6_t *sin6; 26090 in_port_t requested_port; 26091 ipaddr_t v4addr; 26092 in6_addr_t v6addr; 26093 uint_t origipversion; 26094 int error = 0; 26095 26096 ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX); 26097 26098 if (tcp->tcp_state == TCPS_BOUND) { 26099 return (0); 26100 } else if (tcp->tcp_state > TCPS_BOUND) { 26101 if (tcp->tcp_debug) { 26102 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26103 "tcp_bind: bad state, %d", tcp->tcp_state); 26104 } 26105 return (-TOUTSTATE); 26106 } 26107 origipversion = tcp->tcp_ipversion; 26108 26109 ASSERT(sa != NULL && len != 0); 26110 26111 if (!OK_32PTR((char *)sa)) { 26112 if (tcp->tcp_debug) { 26113 (void) strlog(TCP_MOD_ID, 0, 1, 26114 SL_ERROR|SL_TRACE, 26115 "tcp_bind: bad address parameter, " 26116 "address %p, len %d", 26117 (void *)sa, len); 26118 } 26119 return (-TPROTO); 26120 } 26121 26122 switch (len) { 26123 case sizeof (sin_t): /* Complete IPv4 address */ 26124 sin = (sin_t *)sa; 26125 /* 26126 * With sockets sockfs will accept bogus sin_family in 26127 * bind() and replace it with the family used in the socket 26128 * call. 26129 */ 26130 if (sin->sin_family != AF_INET || 26131 tcp->tcp_family != AF_INET) { 26132 return (EAFNOSUPPORT); 26133 } 26134 requested_port = ntohs(sin->sin_port); 26135 tcp->tcp_ipversion = IPV4_VERSION; 26136 v4addr = sin->sin_addr.s_addr; 26137 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 26138 break; 26139 26140 case sizeof (sin6_t): /* Complete IPv6 address */ 26141 sin6 = (sin6_t *)sa; 26142 if (sin6->sin6_family != AF_INET6 || 26143 tcp->tcp_family != AF_INET6) { 26144 return (EAFNOSUPPORT); 26145 } 26146 requested_port = ntohs(sin6->sin6_port); 26147 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 26148 IPV4_VERSION : IPV6_VERSION; 26149 v6addr = sin6->sin6_addr; 26150 break; 26151 26152 default: 26153 if (tcp->tcp_debug) { 26154 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26155 "tcp_bind: bad address length, %d", len); 26156 } 26157 return (EAFNOSUPPORT); 26158 /* return (-TBADADDR); */ 26159 } 26160 26161 tcp->tcp_bound_source_v6 = v6addr; 26162 26163 /* Check for change in ipversion */ 26164 if (origipversion != tcp->tcp_ipversion) { 26165 ASSERT(tcp->tcp_family == AF_INET6); 26166 error = tcp->tcp_ipversion == IPV6_VERSION ? 26167 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 26168 if (error) { 26169 return (ENOMEM); 26170 } 26171 } 26172 26173 /* 26174 * Initialize family specific fields. Copy of the src addr. 26175 * in tcp_t is needed for the lookup funcs. 26176 */ 26177 if (tcp->tcp_ipversion == IPV6_VERSION) { 26178 tcp->tcp_ip6h->ip6_src = v6addr; 26179 } else { 26180 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 26181 } 26182 tcp->tcp_ip_src_v6 = v6addr; 26183 26184 bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only; 26185 26186 error = tcp_bind_select_lport(tcp, &requested_port, 26187 bind_to_req_port_only, cr); 26188 26189 return (error); 26190 } 26191 26192 /* 26193 * Return unix error is tli error is TSYSERR, otherwise return a negative 26194 * tli error. 26195 */ 26196 int 26197 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 26198 boolean_t bind_to_req_port_only) 26199 { 26200 int error; 26201 tcp_t *tcp = connp->conn_tcp; 26202 26203 if (tcp->tcp_state >= TCPS_BOUND) { 26204 if (tcp->tcp_debug) { 26205 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26206 "tcp_bind: bad state, %d", tcp->tcp_state); 26207 } 26208 return (-TOUTSTATE); 26209 } 26210 26211 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 26212 if (error != 0) 26213 return (error); 26214 26215 ASSERT(tcp->tcp_state == TCPS_BOUND); 26216 26217 tcp->tcp_conn_req_max = 0; 26218 26219 if (tcp->tcp_family == AF_INET6) { 26220 ASSERT(tcp->tcp_connp->conn_af_isv6); 26221 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 26222 &tcp->tcp_bound_source_v6, 0, B_FALSE); 26223 } else { 26224 ASSERT(!tcp->tcp_connp->conn_af_isv6); 26225 error = ip_proto_bind_laddr_v4(connp, NULL, IPPROTO_TCP, 26226 tcp->tcp_ipha->ipha_src, 0, B_FALSE); 26227 } 26228 return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0)); 26229 } 26230 26231 int 26232 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 26233 socklen_t len, cred_t *cr) 26234 { 26235 int error; 26236 conn_t *connp = (conn_t *)proto_handle; 26237 squeue_t *sqp = connp->conn_sqp; 26238 26239 /* All Solaris components should pass a cred for this operation. */ 26240 ASSERT(cr != NULL); 26241 26242 ASSERT(sqp != NULL); 26243 ASSERT(connp->conn_upper_handle != NULL); 26244 26245 error = squeue_synch_enter(sqp, connp, NULL); 26246 if (error != 0) { 26247 /* failed to enter */ 26248 return (ENOSR); 26249 } 26250 26251 /* binding to a NULL address really means unbind */ 26252 if (sa == NULL) { 26253 if (connp->conn_tcp->tcp_state < TCPS_LISTEN) 26254 error = tcp_do_unbind(connp); 26255 else 26256 error = EINVAL; 26257 } else { 26258 error = tcp_do_bind(connp, sa, len, cr, B_TRUE); 26259 } 26260 26261 squeue_synch_exit(sqp, connp); 26262 26263 if (error < 0) { 26264 if (error == -TOUTSTATE) 26265 error = EINVAL; 26266 else 26267 error = proto_tlitosyserr(-error); 26268 } 26269 26270 return (error); 26271 } 26272 26273 /* 26274 * If the return value from this function is positive, it's a UNIX error. 26275 * Otherwise, if it's negative, then the absolute value is a TLI error. 26276 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 26277 */ 26278 int 26279 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 26280 cred_t *cr, pid_t pid) 26281 { 26282 tcp_t *tcp = connp->conn_tcp; 26283 sin_t *sin = (sin_t *)sa; 26284 sin6_t *sin6 = (sin6_t *)sa; 26285 ipaddr_t *dstaddrp; 26286 in_port_t dstport; 26287 uint_t srcid; 26288 int error = 0; 26289 26290 switch (len) { 26291 default: 26292 /* 26293 * Should never happen 26294 */ 26295 return (EINVAL); 26296 26297 case sizeof (sin_t): 26298 sin = (sin_t *)sa; 26299 if (sin->sin_port == 0) { 26300 return (-TBADADDR); 26301 } 26302 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 26303 return (EAFNOSUPPORT); 26304 } 26305 break; 26306 26307 case sizeof (sin6_t): 26308 sin6 = (sin6_t *)sa; 26309 if (sin6->sin6_port == 0) { 26310 return (-TBADADDR); 26311 } 26312 break; 26313 } 26314 /* 26315 * If we're connecting to an IPv4-mapped IPv6 address, we need to 26316 * make sure that the template IP header in the tcp structure is an 26317 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 26318 * need to this before we call tcp_bindi() so that the port lookup 26319 * code will look for ports in the correct port space (IPv4 and 26320 * IPv6 have separate port spaces). 26321 */ 26322 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 26323 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 26324 int err = 0; 26325 26326 err = tcp_header_init_ipv4(tcp); 26327 if (err != 0) { 26328 error = ENOMEM; 26329 goto connect_failed; 26330 } 26331 if (tcp->tcp_lport != 0) 26332 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 26333 } 26334 26335 switch (tcp->tcp_state) { 26336 case TCPS_LISTEN: 26337 /* 26338 * Listening sockets are not allowed to issue connect(). 26339 */ 26340 if (IPCL_IS_NONSTR(connp)) 26341 return (EOPNOTSUPP); 26342 /* FALLTHRU */ 26343 case TCPS_IDLE: 26344 /* 26345 * We support quick connect, refer to comments in 26346 * tcp_connect_*() 26347 */ 26348 /* FALLTHRU */ 26349 case TCPS_BOUND: 26350 /* 26351 * We must bump the generation before the operation start. 26352 * This is done to ensure that any upcall made later on sends 26353 * up the right generation to the socket. 26354 */ 26355 SOCK_CONNID_BUMP(tcp->tcp_connid); 26356 26357 if (tcp->tcp_family == AF_INET6) { 26358 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 26359 return (tcp_connect_ipv6(tcp, 26360 &sin6->sin6_addr, 26361 sin6->sin6_port, sin6->sin6_flowinfo, 26362 sin6->__sin6_src_id, sin6->sin6_scope_id, 26363 cr, pid)); 26364 } 26365 /* 26366 * Destination adress is mapped IPv6 address. 26367 * Source bound address should be unspecified or 26368 * IPv6 mapped address as well. 26369 */ 26370 if (!IN6_IS_ADDR_UNSPECIFIED( 26371 &tcp->tcp_bound_source_v6) && 26372 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 26373 return (EADDRNOTAVAIL); 26374 } 26375 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 26376 dstport = sin6->sin6_port; 26377 srcid = sin6->__sin6_src_id; 26378 } else { 26379 dstaddrp = &sin->sin_addr.s_addr; 26380 dstport = sin->sin_port; 26381 srcid = 0; 26382 } 26383 26384 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid, cr, 26385 pid); 26386 break; 26387 default: 26388 return (-TOUTSTATE); 26389 } 26390 /* 26391 * Note: Code below is the "failure" case 26392 */ 26393 connect_failed: 26394 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 26395 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 26396 return (error); 26397 } 26398 26399 int 26400 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 26401 socklen_t len, sock_connid_t *id, cred_t *cr) 26402 { 26403 conn_t *connp = (conn_t *)proto_handle; 26404 tcp_t *tcp = connp->conn_tcp; 26405 squeue_t *sqp = connp->conn_sqp; 26406 int error; 26407 26408 ASSERT(connp->conn_upper_handle != NULL); 26409 26410 /* All Solaris components should pass a cred for this operation. */ 26411 ASSERT(cr != NULL); 26412 26413 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 26414 if (error != 0) { 26415 return (error); 26416 } 26417 26418 error = squeue_synch_enter(sqp, connp, NULL); 26419 if (error != 0) { 26420 /* failed to enter */ 26421 return (ENOSR); 26422 } 26423 26424 /* 26425 * TCP supports quick connect, so no need to do an implicit bind 26426 */ 26427 error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid); 26428 if (error == 0) { 26429 *id = connp->conn_tcp->tcp_connid; 26430 } else if (error < 0) { 26431 if (error == -TOUTSTATE) { 26432 switch (connp->conn_tcp->tcp_state) { 26433 case TCPS_SYN_SENT: 26434 error = EALREADY; 26435 break; 26436 case TCPS_ESTABLISHED: 26437 error = EISCONN; 26438 break; 26439 case TCPS_LISTEN: 26440 error = EOPNOTSUPP; 26441 break; 26442 default: 26443 error = EINVAL; 26444 break; 26445 } 26446 } else { 26447 error = proto_tlitosyserr(-error); 26448 } 26449 } 26450 26451 if (tcp->tcp_loopback) { 26452 struct sock_proto_props sopp; 26453 26454 sopp.sopp_flags = SOCKOPT_LOOPBACK; 26455 sopp.sopp_loopback = B_TRUE; 26456 26457 (*connp->conn_upcalls->su_set_proto_props)( 26458 connp->conn_upper_handle, &sopp); 26459 } 26460 done: 26461 squeue_synch_exit(sqp, connp); 26462 26463 return ((error == 0) ? EINPROGRESS : error); 26464 } 26465 26466 /* ARGSUSED */ 26467 sock_lower_handle_t 26468 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 26469 uint_t *smodep, int *errorp, int flags, cred_t *credp) 26470 { 26471 conn_t *connp; 26472 boolean_t isv6 = family == AF_INET6; 26473 if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) || 26474 (proto != 0 && proto != IPPROTO_TCP)) { 26475 *errorp = EPROTONOSUPPORT; 26476 return (NULL); 26477 } 26478 26479 connp = tcp_create_common(NULL, credp, isv6, B_TRUE, errorp); 26480 if (connp == NULL) { 26481 return (NULL); 26482 } 26483 26484 /* 26485 * Put the ref for TCP. Ref for IP was already put 26486 * by ipcl_conn_create. Also Make the conn_t globally 26487 * visible to walkers 26488 */ 26489 mutex_enter(&connp->conn_lock); 26490 CONN_INC_REF_LOCKED(connp); 26491 ASSERT(connp->conn_ref == 2); 26492 connp->conn_state_flags &= ~CONN_INCIPIENT; 26493 26494 connp->conn_flags |= IPCL_NONSTR; 26495 mutex_exit(&connp->conn_lock); 26496 26497 ASSERT(errorp != NULL); 26498 *errorp = 0; 26499 *sock_downcalls = &sock_tcp_downcalls; 26500 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP | 26501 SM_SENDFILESUPP; 26502 26503 return ((sock_lower_handle_t)connp); 26504 } 26505 26506 /* ARGSUSED */ 26507 void 26508 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 26509 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 26510 { 26511 conn_t *connp = (conn_t *)proto_handle; 26512 struct sock_proto_props sopp; 26513 26514 ASSERT(connp->conn_upper_handle == NULL); 26515 26516 /* All Solaris components should pass a cred for this operation. */ 26517 ASSERT(cr != NULL); 26518 26519 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 26520 SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER | 26521 SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ; 26522 26523 sopp.sopp_rxhiwat = SOCKET_RECVHIWATER; 26524 sopp.sopp_rxlowat = SOCKET_RECVLOWATER; 26525 sopp.sopp_maxpsz = INFPSZ; 26526 sopp.sopp_maxblk = INFPSZ; 26527 sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL; 26528 sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3; 26529 sopp.sopp_maxaddrlen = sizeof (sin6_t); 26530 sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 : 26531 tcp_rinfo.mi_minpsz; 26532 26533 connp->conn_upcalls = sock_upcalls; 26534 connp->conn_upper_handle = sock_handle; 26535 26536 ASSERT(connp->conn_tcp->tcp_recv_hiwater != 0 && 26537 connp->conn_tcp->tcp_recv_hiwater == connp->conn_tcp->tcp_rwnd); 26538 (*sock_upcalls->su_set_proto_props)(sock_handle, &sopp); 26539 } 26540 26541 /* ARGSUSED */ 26542 int 26543 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 26544 { 26545 conn_t *connp = (conn_t *)proto_handle; 26546 26547 ASSERT(connp->conn_upper_handle != NULL); 26548 26549 /* All Solaris components should pass a cred for this operation. */ 26550 ASSERT(cr != NULL); 26551 26552 tcp_close_common(connp, flags); 26553 26554 ip_free_helper_stream(connp); 26555 26556 /* 26557 * Drop IP's reference on the conn. This is the last reference 26558 * on the connp if the state was less than established. If the 26559 * connection has gone into timewait state, then we will have 26560 * one ref for the TCP and one more ref (total of two) for the 26561 * classifier connected hash list (a timewait connections stays 26562 * in connected hash till closed). 26563 * 26564 * We can't assert the references because there might be other 26565 * transient reference places because of some walkers or queued 26566 * packets in squeue for the timewait state. 26567 */ 26568 CONN_DEC_REF(connp); 26569 return (0); 26570 } 26571 26572 /* ARGSUSED */ 26573 int 26574 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg, 26575 cred_t *cr) 26576 { 26577 tcp_t *tcp; 26578 uint32_t msize; 26579 conn_t *connp = (conn_t *)proto_handle; 26580 int32_t tcpstate; 26581 26582 /* All Solaris components should pass a cred for this operation. */ 26583 ASSERT(cr != NULL); 26584 26585 ASSERT(connp->conn_ref >= 2); 26586 ASSERT(connp->conn_upper_handle != NULL); 26587 26588 if (msg->msg_controllen != 0) { 26589 return (EOPNOTSUPP); 26590 26591 } 26592 switch (DB_TYPE(mp)) { 26593 case M_DATA: 26594 tcp = connp->conn_tcp; 26595 ASSERT(tcp != NULL); 26596 26597 tcpstate = tcp->tcp_state; 26598 if (tcpstate < TCPS_ESTABLISHED) { 26599 freemsg(mp); 26600 return (ENOTCONN); 26601 } else if (tcpstate > TCPS_CLOSE_WAIT) { 26602 freemsg(mp); 26603 return (EPIPE); 26604 } 26605 26606 msize = msgdsize(mp); 26607 26608 mutex_enter(&tcp->tcp_non_sq_lock); 26609 tcp->tcp_squeue_bytes += msize; 26610 /* 26611 * Squeue Flow Control 26612 */ 26613 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 26614 tcp_setqfull(tcp); 26615 } 26616 mutex_exit(&tcp->tcp_non_sq_lock); 26617 26618 /* 26619 * The application may pass in an address in the msghdr, but 26620 * we ignore the address on connection-oriented sockets. 26621 * Just like BSD this code does not generate an error for 26622 * TCP (a CONNREQUIRED socket) when sending to an address 26623 * passed in with sendto/sendmsg. Instead the data is 26624 * delivered on the connection as if no address had been 26625 * supplied. 26626 */ 26627 CONN_INC_REF(connp); 26628 26629 if (msg != NULL && msg->msg_flags & MSG_OOB) { 26630 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 26631 tcp_output_urgent, connp, tcp_squeue_flag, 26632 SQTAG_TCP_OUTPUT); 26633 } else { 26634 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, 26635 connp, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 26636 } 26637 26638 return (0); 26639 26640 default: 26641 ASSERT(0); 26642 } 26643 26644 freemsg(mp); 26645 return (0); 26646 } 26647 26648 /* ARGSUSED */ 26649 void 26650 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2) 26651 { 26652 int len; 26653 uint32_t msize; 26654 conn_t *connp = (conn_t *)arg; 26655 tcp_t *tcp = connp->conn_tcp; 26656 26657 msize = msgdsize(mp); 26658 26659 len = msize - 1; 26660 if (len < 0) { 26661 freemsg(mp); 26662 return; 26663 } 26664 26665 /* 26666 * Try to force urgent data out on the wire. Even if we have unsent 26667 * data this will at least send the urgent flag. 26668 * XXX does not handle more flag correctly. 26669 */ 26670 len += tcp->tcp_unsent; 26671 len += tcp->tcp_snxt; 26672 tcp->tcp_urg = len; 26673 tcp->tcp_valid_bits |= TCP_URG_VALID; 26674 26675 /* Bypass tcp protocol for fused tcp loopback */ 26676 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 26677 return; 26678 26679 /* Strip off the T_EXDATA_REQ if the data is from TPI */ 26680 if (DB_TYPE(mp) != M_DATA) { 26681 mblk_t *mp1 = mp; 26682 ASSERT(!IPCL_IS_NONSTR(connp)); 26683 mp = mp->b_cont; 26684 freeb(mp1); 26685 } 26686 tcp_wput_data(tcp, mp, B_TRUE); 26687 } 26688 26689 /* ARGSUSED */ 26690 int 26691 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 26692 socklen_t *addrlenp, cred_t *cr) 26693 { 26694 conn_t *connp = (conn_t *)proto_handle; 26695 tcp_t *tcp = connp->conn_tcp; 26696 26697 ASSERT(connp->conn_upper_handle != NULL); 26698 /* All Solaris components should pass a cred for this operation. */ 26699 ASSERT(cr != NULL); 26700 26701 ASSERT(tcp != NULL); 26702 26703 return (tcp_do_getpeername(tcp, addr, addrlenp)); 26704 } 26705 26706 /* ARGSUSED */ 26707 int 26708 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 26709 socklen_t *addrlenp, cred_t *cr) 26710 { 26711 conn_t *connp = (conn_t *)proto_handle; 26712 tcp_t *tcp = connp->conn_tcp; 26713 26714 /* All Solaris components should pass a cred for this operation. */ 26715 ASSERT(cr != NULL); 26716 26717 ASSERT(connp->conn_upper_handle != NULL); 26718 26719 return (tcp_do_getsockname(tcp, addr, addrlenp)); 26720 } 26721 26722 /* 26723 * tcp_fallback 26724 * 26725 * A direct socket is falling back to using STREAMS. The queue 26726 * that is being passed down was created using tcp_open() with 26727 * the SO_FALLBACK flag set. As a result, the queue is not 26728 * associated with a conn, and the q_ptrs instead contain the 26729 * dev and minor area that should be used. 26730 * 26731 * The 'issocket' flag indicates whether the FireEngine 26732 * optimizations should be used. The common case would be that 26733 * optimizations are enabled, and they might be subsequently 26734 * disabled using the _SIOCSOCKFALLBACK ioctl. 26735 */ 26736 26737 /* 26738 * An active connection is falling back to TPI. Gather all the information 26739 * required by the STREAM head and TPI sonode and send it up. 26740 */ 26741 void 26742 tcp_fallback_noneager(tcp_t *tcp, mblk_t *stropt_mp, queue_t *q, 26743 boolean_t issocket, so_proto_quiesced_cb_t quiesced_cb) 26744 { 26745 conn_t *connp = tcp->tcp_connp; 26746 struct stroptions *stropt; 26747 struct T_capability_ack tca; 26748 struct sockaddr_in6 laddr, faddr; 26749 socklen_t laddrlen, faddrlen; 26750 short opts; 26751 int error; 26752 mblk_t *mp; 26753 26754 connp->conn_dev = (dev_t)RD(q)->q_ptr; 26755 connp->conn_minor_arena = WR(q)->q_ptr; 26756 26757 RD(q)->q_ptr = WR(q)->q_ptr = connp; 26758 26759 connp->conn_tcp->tcp_rq = connp->conn_rq = RD(q); 26760 connp->conn_tcp->tcp_wq = connp->conn_wq = WR(q); 26761 26762 WR(q)->q_qinfo = &tcp_sock_winit; 26763 26764 if (!issocket) 26765 tcp_use_pure_tpi(tcp); 26766 26767 /* 26768 * free the helper stream 26769 */ 26770 ip_free_helper_stream(connp); 26771 26772 /* 26773 * Notify the STREAM head about options 26774 */ 26775 DB_TYPE(stropt_mp) = M_SETOPTS; 26776 stropt = (struct stroptions *)stropt_mp->b_rptr; 26777 stropt_mp->b_wptr += sizeof (struct stroptions); 26778 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 26779 26780 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 26781 tcp->tcp_tcps->tcps_wroff_xtra); 26782 if (tcp->tcp_snd_sack_ok) 26783 stropt->so_wroff += TCPOPT_MAX_SACK_LEN; 26784 stropt->so_hiwat = tcp->tcp_recv_hiwater; 26785 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 26786 26787 putnext(RD(q), stropt_mp); 26788 26789 /* 26790 * Collect the information needed to sync with the sonode 26791 */ 26792 tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID); 26793 26794 laddrlen = faddrlen = sizeof (sin6_t); 26795 (void) tcp_do_getsockname(tcp, (struct sockaddr *)&laddr, &laddrlen); 26796 error = tcp_do_getpeername(tcp, (struct sockaddr *)&faddr, &faddrlen); 26797 if (error != 0) 26798 faddrlen = 0; 26799 26800 opts = 0; 26801 if (tcp->tcp_oobinline) 26802 opts |= SO_OOBINLINE; 26803 if (tcp->tcp_dontroute) 26804 opts |= SO_DONTROUTE; 26805 26806 /* 26807 * Notify the socket that the protocol is now quiescent, 26808 * and it's therefore safe move data from the socket 26809 * to the stream head. 26810 */ 26811 (*quiesced_cb)(connp->conn_upper_handle, q, &tca, 26812 (struct sockaddr *)&laddr, laddrlen, 26813 (struct sockaddr *)&faddr, faddrlen, opts); 26814 26815 while ((mp = tcp->tcp_rcv_list) != NULL) { 26816 tcp->tcp_rcv_list = mp->b_next; 26817 mp->b_next = NULL; 26818 putnext(q, mp); 26819 } 26820 tcp->tcp_rcv_last_head = NULL; 26821 tcp->tcp_rcv_last_tail = NULL; 26822 tcp->tcp_rcv_cnt = 0; 26823 } 26824 26825 /* 26826 * An eager is falling back to TPI. All we have to do is send 26827 * up a T_CONN_IND. 26828 */ 26829 void 26830 tcp_fallback_eager(tcp_t *eager, boolean_t direct_sockfs) 26831 { 26832 tcp_t *listener = eager->tcp_listener; 26833 mblk_t *mp = eager->tcp_conn.tcp_eager_conn_ind; 26834 26835 ASSERT(listener != NULL); 26836 ASSERT(mp != NULL); 26837 26838 eager->tcp_conn.tcp_eager_conn_ind = NULL; 26839 26840 /* 26841 * TLI/XTI applications will get confused by 26842 * sending eager as an option since it violates 26843 * the option semantics. So remove the eager as 26844 * option since TLI/XTI app doesn't need it anyway. 26845 */ 26846 if (!direct_sockfs) { 26847 struct T_conn_ind *conn_ind; 26848 26849 conn_ind = (struct T_conn_ind *)mp->b_rptr; 26850 conn_ind->OPT_length = 0; 26851 conn_ind->OPT_offset = 0; 26852 } 26853 26854 /* 26855 * Sockfs guarantees that the listener will not be closed 26856 * during fallback. So we can safely use the listener's queue. 26857 */ 26858 putnext(listener->tcp_rq, mp); 26859 } 26860 26861 int 26862 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q, 26863 boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) 26864 { 26865 tcp_t *tcp; 26866 conn_t *connp = (conn_t *)proto_handle; 26867 int error; 26868 mblk_t *stropt_mp; 26869 mblk_t *ordrel_mp; 26870 26871 tcp = connp->conn_tcp; 26872 26873 stropt_mp = allocb_wait(sizeof (struct stroptions), BPRI_HI, STR_NOSIG, 26874 NULL); 26875 26876 /* Pre-allocate the T_ordrel_ind mblk. */ 26877 ASSERT(tcp->tcp_ordrel_mp == NULL); 26878 ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI, 26879 STR_NOSIG, NULL); 26880 ordrel_mp->b_datap->db_type = M_PROTO; 26881 ((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND; 26882 ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind); 26883 26884 /* 26885 * Enter the squeue so that no new packets can come in 26886 */ 26887 error = squeue_synch_enter(connp->conn_sqp, connp, NULL); 26888 if (error != 0) { 26889 /* failed to enter, free all the pre-allocated messages. */ 26890 freeb(stropt_mp); 26891 freeb(ordrel_mp); 26892 /* 26893 * We cannot process the eager, so at least send out a 26894 * RST so the peer can reconnect. 26895 */ 26896 if (tcp->tcp_listener != NULL) { 26897 (void) tcp_eager_blowoff(tcp->tcp_listener, 26898 tcp->tcp_conn_req_seqnum); 26899 } 26900 return (ENOMEM); 26901 } 26902 26903 /* 26904 * Both endpoints must be of the same type (either STREAMS or 26905 * non-STREAMS) for fusion to be enabled. So if we are fused, 26906 * we have to unfuse. 26907 */ 26908 if (tcp->tcp_fused) 26909 tcp_unfuse(tcp); 26910 26911 /* 26912 * No longer a direct socket 26913 */ 26914 connp->conn_flags &= ~IPCL_NONSTR; 26915 tcp->tcp_ordrel_mp = ordrel_mp; 26916 26917 if (tcp->tcp_listener != NULL) { 26918 /* The eager will deal with opts when accept() is called */ 26919 freeb(stropt_mp); 26920 tcp_fallback_eager(tcp, direct_sockfs); 26921 } else { 26922 tcp_fallback_noneager(tcp, stropt_mp, q, direct_sockfs, 26923 quiesced_cb); 26924 } 26925 26926 /* 26927 * There should be atleast two ref's (IP + TCP) 26928 */ 26929 ASSERT(connp->conn_ref >= 2); 26930 squeue_synch_exit(connp->conn_sqp, connp); 26931 26932 return (0); 26933 } 26934 26935 /* ARGSUSED */ 26936 static void 26937 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2) 26938 { 26939 conn_t *connp = (conn_t *)arg; 26940 tcp_t *tcp = connp->conn_tcp; 26941 26942 freemsg(mp); 26943 26944 if (tcp->tcp_fused) 26945 tcp_unfuse(tcp); 26946 26947 if (tcp_xmit_end(tcp) != 0) { 26948 /* 26949 * We were crossing FINs and got a reset from 26950 * the other side. Just ignore it. 26951 */ 26952 if (tcp->tcp_debug) { 26953 (void) strlog(TCP_MOD_ID, 0, 1, 26954 SL_ERROR|SL_TRACE, 26955 "tcp_shutdown_output() out of state %s", 26956 tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); 26957 } 26958 } 26959 } 26960 26961 /* ARGSUSED */ 26962 int 26963 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 26964 { 26965 conn_t *connp = (conn_t *)proto_handle; 26966 tcp_t *tcp = connp->conn_tcp; 26967 26968 ASSERT(connp->conn_upper_handle != NULL); 26969 26970 /* All Solaris components should pass a cred for this operation. */ 26971 ASSERT(cr != NULL); 26972 26973 /* 26974 * X/Open requires that we check the connected state. 26975 */ 26976 if (tcp->tcp_state < TCPS_SYN_SENT) 26977 return (ENOTCONN); 26978 26979 /* shutdown the send side */ 26980 if (how != SHUT_RD) { 26981 mblk_t *bp; 26982 26983 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 26984 CONN_INC_REF(connp); 26985 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output, 26986 connp, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT); 26987 26988 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 26989 SOCK_OPCTL_SHUT_SEND, 0); 26990 } 26991 26992 /* shutdown the recv side */ 26993 if (how != SHUT_WR) 26994 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 26995 SOCK_OPCTL_SHUT_RECV, 0); 26996 26997 return (0); 26998 } 26999 27000 /* 27001 * SOP_LISTEN() calls into tcp_listen(). 27002 */ 27003 /* ARGSUSED */ 27004 int 27005 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 27006 { 27007 conn_t *connp = (conn_t *)proto_handle; 27008 int error; 27009 squeue_t *sqp = connp->conn_sqp; 27010 27011 ASSERT(connp->conn_upper_handle != NULL); 27012 27013 /* All Solaris components should pass a cred for this operation. */ 27014 ASSERT(cr != NULL); 27015 27016 error = squeue_synch_enter(sqp, connp, NULL); 27017 if (error != 0) { 27018 /* failed to enter */ 27019 return (ENOBUFS); 27020 } 27021 27022 error = tcp_do_listen(connp, NULL, 0, backlog, cr, FALSE); 27023 if (error == 0) { 27024 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27025 SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog); 27026 } else if (error < 0) { 27027 if (error == -TOUTSTATE) 27028 error = EINVAL; 27029 else 27030 error = proto_tlitosyserr(-error); 27031 } 27032 squeue_synch_exit(sqp, connp); 27033 return (error); 27034 } 27035 27036 static int 27037 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 27038 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 27039 { 27040 tcp_t *tcp = connp->conn_tcp; 27041 int error = 0; 27042 tcp_stack_t *tcps = tcp->tcp_tcps; 27043 27044 /* All Solaris components should pass a cred for this operation. */ 27045 ASSERT(cr != NULL); 27046 27047 if (tcp->tcp_state >= TCPS_BOUND) { 27048 if ((tcp->tcp_state == TCPS_BOUND || 27049 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 27050 /* 27051 * Handle listen() increasing backlog. 27052 * This is more "liberal" then what the TPI spec 27053 * requires but is needed to avoid a t_unbind 27054 * when handling listen() since the port number 27055 * might be "stolen" between the unbind and bind. 27056 */ 27057 goto do_listen; 27058 } 27059 if (tcp->tcp_debug) { 27060 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 27061 "tcp_listen: bad state, %d", tcp->tcp_state); 27062 } 27063 return (-TOUTSTATE); 27064 } else { 27065 if (sa == NULL) { 27066 sin6_t addr; 27067 sin_t *sin; 27068 sin6_t *sin6; 27069 27070 ASSERT(IPCL_IS_NONSTR(connp)); 27071 27072 /* Do an implicit bind: Request for a generic port. */ 27073 if (tcp->tcp_family == AF_INET) { 27074 len = sizeof (sin_t); 27075 sin = (sin_t *)&addr; 27076 *sin = sin_null; 27077 sin->sin_family = AF_INET; 27078 tcp->tcp_ipversion = IPV4_VERSION; 27079 } else { 27080 ASSERT(tcp->tcp_family == AF_INET6); 27081 len = sizeof (sin6_t); 27082 sin6 = (sin6_t *)&addr; 27083 *sin6 = sin6_null; 27084 sin6->sin6_family = AF_INET6; 27085 tcp->tcp_ipversion = IPV6_VERSION; 27086 } 27087 sa = (struct sockaddr *)&addr; 27088 } 27089 27090 error = tcp_bind_check(connp, sa, len, cr, 27091 bind_to_req_port_only); 27092 if (error) 27093 return (error); 27094 /* Fall through and do the fanout insertion */ 27095 } 27096 27097 do_listen: 27098 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 27099 tcp->tcp_conn_req_max = backlog; 27100 if (tcp->tcp_conn_req_max) { 27101 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 27102 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 27103 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 27104 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 27105 /* 27106 * If this is a listener, do not reset the eager list 27107 * and other stuffs. Note that we don't check if the 27108 * existing eager list meets the new tcp_conn_req_max 27109 * requirement. 27110 */ 27111 if (tcp->tcp_state != TCPS_LISTEN) { 27112 tcp->tcp_state = TCPS_LISTEN; 27113 /* Initialize the chain. Don't need the eager_lock */ 27114 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 27115 tcp->tcp_eager_next_drop_q0 = tcp; 27116 tcp->tcp_eager_prev_drop_q0 = tcp; 27117 tcp->tcp_second_ctimer_threshold = 27118 tcps->tcps_ip_abort_linterval; 27119 } 27120 } 27121 27122 /* 27123 * We can call ip_bind directly, the processing continues 27124 * in tcp_post_ip_bind(). 27125 * 27126 * We need to make sure that the conn_recv is set to a non-null 27127 * value before we insert the conn into the classifier table. 27128 * This is to avoid a race with an incoming packet which does an 27129 * ipcl_classify(). 27130 */ 27131 connp->conn_recv = tcp_conn_request; 27132 if (tcp->tcp_family == AF_INET) { 27133 error = ip_proto_bind_laddr_v4(connp, NULL, 27134 IPPROTO_TCP, tcp->tcp_bound_source, tcp->tcp_lport, B_TRUE); 27135 } else { 27136 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 27137 &tcp->tcp_bound_source_v6, tcp->tcp_lport, B_TRUE); 27138 } 27139 return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0)); 27140 } 27141 27142 void 27143 tcp_clr_flowctrl(sock_lower_handle_t proto_handle) 27144 { 27145 conn_t *connp = (conn_t *)proto_handle; 27146 tcp_t *tcp = connp->conn_tcp; 27147 mblk_t *mp; 27148 int error; 27149 27150 ASSERT(connp->conn_upper_handle != NULL); 27151 27152 /* 27153 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_clr_flowctrl() 27154 * is currently running. 27155 */ 27156 mutex_enter(&tcp->tcp_rsrv_mp_lock); 27157 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 27158 mutex_exit(&tcp->tcp_rsrv_mp_lock); 27159 return; 27160 } 27161 tcp->tcp_rsrv_mp = NULL; 27162 mutex_exit(&tcp->tcp_rsrv_mp_lock); 27163 27164 error = squeue_synch_enter(connp->conn_sqp, connp, mp); 27165 ASSERT(error == 0); 27166 27167 mutex_enter(&tcp->tcp_rsrv_mp_lock); 27168 tcp->tcp_rsrv_mp = mp; 27169 mutex_exit(&tcp->tcp_rsrv_mp_lock); 27170 27171 if (tcp->tcp_fused) { 27172 tcp_fuse_backenable(tcp); 27173 } else { 27174 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 27175 /* 27176 * Send back a window update immediately if TCP is above 27177 * ESTABLISHED state and the increase of the rcv window 27178 * that the other side knows is at least 1 MSS after flow 27179 * control is lifted. 27180 */ 27181 if (tcp->tcp_state >= TCPS_ESTABLISHED && 27182 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 27183 tcp_xmit_ctl(NULL, tcp, 27184 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 27185 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 27186 } 27187 } 27188 27189 squeue_synch_exit(connp->conn_sqp, connp); 27190 } 27191 27192 /* ARGSUSED */ 27193 int 27194 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 27195 int mode, int32_t *rvalp, cred_t *cr) 27196 { 27197 conn_t *connp = (conn_t *)proto_handle; 27198 int error; 27199 27200 ASSERT(connp->conn_upper_handle != NULL); 27201 27202 /* All Solaris components should pass a cred for this operation. */ 27203 ASSERT(cr != NULL); 27204 27205 switch (cmd) { 27206 case ND_SET: 27207 case ND_GET: 27208 case TCP_IOC_DEFAULT_Q: 27209 case _SIOCSOCKFALLBACK: 27210 case TCP_IOC_ABORT_CONN: 27211 case TI_GETPEERNAME: 27212 case TI_GETMYNAME: 27213 ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket", 27214 cmd)); 27215 error = EINVAL; 27216 break; 27217 default: 27218 /* 27219 * Pass on to IP using helper stream 27220 */ 27221 error = ldi_ioctl(connp->conn_helper_info->iphs_handle, 27222 cmd, arg, mode, cr, rvalp); 27223 break; 27224 } 27225 return (error); 27226 } 27227 27228 sock_downcalls_t sock_tcp_downcalls = { 27229 tcp_activate, 27230 tcp_accept, 27231 tcp_bind, 27232 tcp_listen, 27233 tcp_connect, 27234 tcp_getpeername, 27235 tcp_getsockname, 27236 tcp_getsockopt, 27237 tcp_setsockopt, 27238 tcp_sendmsg, 27239 NULL, 27240 NULL, 27241 NULL, 27242 tcp_shutdown, 27243 tcp_clr_flowctrl, 27244 tcp_ioctl, 27245 tcp_close, 27246 }; 27247