xref: /titanic_41/usr/src/uts/common/inet/tcp/tcp.c (revision 505c7a699305ccafcfecc1ab0e7d4a25e2bfd1c2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/strsun.h>
31 #include <sys/strsubr.h>
32 #include <sys/stropts.h>
33 #include <sys/strlog.h>
34 #define	_SUN_TPI_VERSION 2
35 #include <sys/tihdr.h>
36 #include <sys/timod.h>
37 #include <sys/ddi.h>
38 #include <sys/sunddi.h>
39 #include <sys/suntpi.h>
40 #include <sys/xti_inet.h>
41 #include <sys/cmn_err.h>
42 #include <sys/debug.h>
43 #include <sys/sdt.h>
44 #include <sys/vtrace.h>
45 #include <sys/kmem.h>
46 #include <sys/ethernet.h>
47 #include <sys/cpuvar.h>
48 #include <sys/dlpi.h>
49 #include <sys/multidata.h>
50 #include <sys/multidata_impl.h>
51 #include <sys/pattr.h>
52 #include <sys/policy.h>
53 #include <sys/priv.h>
54 #include <sys/zone.h>
55 #include <sys/sunldi.h>
56 
57 #include <sys/errno.h>
58 #include <sys/signal.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/sockio.h>
62 #include <sys/isa_defs.h>
63 #include <sys/md5.h>
64 #include <sys/random.h>
65 #include <sys/uio.h>
66 #include <sys/systm.h>
67 #include <netinet/in.h>
68 #include <netinet/tcp.h>
69 #include <netinet/ip6.h>
70 #include <netinet/icmp6.h>
71 #include <net/if.h>
72 #include <net/route.h>
73 #include <inet/ipsec_impl.h>
74 
75 #include <inet/common.h>
76 #include <inet/ip.h>
77 #include <inet/ip_impl.h>
78 #include <inet/ip6.h>
79 #include <inet/ip_ndp.h>
80 #include <inet/proto_set.h>
81 #include <inet/mib2.h>
82 #include <inet/nd.h>
83 #include <inet/optcom.h>
84 #include <inet/snmpcom.h>
85 #include <inet/kstatcom.h>
86 #include <inet/tcp.h>
87 #include <inet/tcp_impl.h>
88 #include <inet/udp_impl.h>
89 #include <net/pfkeyv2.h>
90 #include <inet/ipsec_info.h>
91 #include <inet/ipdrop.h>
92 
93 #include <inet/ipclassifier.h>
94 #include <inet/ip_ire.h>
95 #include <inet/ip_ftable.h>
96 #include <inet/ip_if.h>
97 #include <inet/ipp_common.h>
98 #include <inet/ip_netinfo.h>
99 #include <sys/squeue_impl.h>
100 #include <sys/squeue.h>
101 #include <inet/kssl/ksslapi.h>
102 #include <sys/tsol/label.h>
103 #include <sys/tsol/tnet.h>
104 #include <rpc/pmap_prot.h>
105 #include <sys/callo.h>
106 
107 /*
108  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
109  *
110  * (Read the detailed design doc in PSARC case directory)
111  *
112  * The entire tcp state is contained in tcp_t and conn_t structure
113  * which are allocated in tandem using ipcl_conn_create() and passing
114  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
115  * the references on the tcp_t. The tcp_t structure is never compressed
116  * and packets always land on the correct TCP perimeter from the time
117  * eager is created till the time tcp_t dies (as such the old mentat
118  * TCP global queue is not used for detached state and no IPSEC checking
119  * is required). The global queue is still allocated to send out resets
120  * for connection which have no listeners and IP directly calls
121  * tcp_xmit_listeners_reset() which does any policy check.
122  *
123  * Protection and Synchronisation mechanism:
124  *
125  * The tcp data structure does not use any kind of lock for protecting
126  * its state but instead uses 'squeues' for mutual exclusion from various
127  * read and write side threads. To access a tcp member, the thread should
128  * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS,
129  * or SQ_NODRAIN). Since the squeues allow a direct function call, caller
130  * can pass any tcp function having prototype of edesc_t as argument
131  * (different from traditional STREAMs model where packets come in only
132  * designated entry points). The list of functions that can be directly
133  * called via squeue are listed before the usual function prototype.
134  *
135  * Referencing:
136  *
137  * TCP is MT-Hot and we use a reference based scheme to make sure that the
138  * tcp structure doesn't disappear when its needed. When the application
139  * creates an outgoing connection or accepts an incoming connection, we
140  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
141  * The IP reference is just a symbolic reference since ip_tcpclose()
142  * looks at tcp structure after tcp_close_output() returns which could
143  * have dropped the last TCP reference. So as long as the connection is
144  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
145  * conn_t. The classifier puts its own reference when the connection is
146  * inserted in listen or connected hash. Anytime a thread needs to enter
147  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
148  * on write side or by doing a classify on read side and then puts a
149  * reference on the conn before doing squeue_enter/tryenter/fill. For
150  * read side, the classifier itself puts the reference under fanout lock
151  * to make sure that tcp can't disappear before it gets processed. The
152  * squeue will drop this reference automatically so the called function
153  * doesn't have to do a DEC_REF.
154  *
155  * Opening a new connection:
156  *
157  * The outgoing connection open is pretty simple. tcp_open() does the
158  * work in creating the conn/tcp structure and initializing it. The
159  * squeue assignment is done based on the CPU the application
160  * is running on. So for outbound connections, processing is always done
161  * on application CPU which might be different from the incoming CPU
162  * being interrupted by the NIC. An optimal way would be to figure out
163  * the NIC <-> CPU binding at listen time, and assign the outgoing
164  * connection to the squeue attached to the CPU that will be interrupted
165  * for incoming packets (we know the NIC based on the bind IP address).
166  * This might seem like a problem if more data is going out but the
167  * fact is that in most cases the transmit is ACK driven transmit where
168  * the outgoing data normally sits on TCP's xmit queue waiting to be
169  * transmitted.
170  *
171  * Accepting a connection:
172  *
173  * This is a more interesting case because of various races involved in
174  * establishing a eager in its own perimeter. Read the meta comment on
175  * top of tcp_conn_request(). But briefly, the squeue is picked by
176  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
177  *
178  * Closing a connection:
179  *
180  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
181  * via squeue to do the close and mark the tcp as detached if the connection
182  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
183  * reference but tcp_close() drop IP's reference always. So if tcp was
184  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
185  * and 1 because it is in classifier's connected hash. This is the condition
186  * we use to determine that its OK to clean up the tcp outside of squeue
187  * when time wait expires (check the ref under fanout and conn_lock and
188  * if it is 2, remove it from fanout hash and kill it).
189  *
190  * Although close just drops the necessary references and marks the
191  * tcp_detached state, tcp_close needs to know the tcp_detached has been
192  * set (under squeue) before letting the STREAM go away (because a
193  * inbound packet might attempt to go up the STREAM while the close
194  * has happened and tcp_detached is not set). So a special lock and
195  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
196  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
197  * tcp_detached.
198  *
199  * Special provisions and fast paths:
200  *
201  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
202  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
203  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
204  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
205  * check to send packets directly to tcp_rput_data via squeue. Everyone
206  * else comes through tcp_input() on the read side.
207  *
208  * We also make special provisions for sockfs by marking tcp_issocket
209  * whenever we have only sockfs on top of TCP. This allows us to skip
210  * putting the tcp in acceptor hash since a sockfs listener can never
211  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
212  * since eager has already been allocated and the accept now happens
213  * on acceptor STREAM. There is a big blob of comment on top of
214  * tcp_conn_request explaining the new accept. When socket is POP'd,
215  * sockfs sends us an ioctl to mark the fact and we go back to old
216  * behaviour. Once tcp_issocket is unset, its never set for the
217  * life of that connection.
218  *
219  * IPsec notes :
220  *
221  * Since a packet is always executed on the correct TCP perimeter
222  * all IPsec processing is defered to IP including checking new
223  * connections and setting IPSEC policies for new connection. The
224  * only exception is tcp_xmit_listeners_reset() which is called
225  * directly from IP and needs to policy check to see if TH_RST
226  * can be sent out.
227  *
228  * PFHooks notes :
229  *
230  * For mdt case, one meta buffer contains multiple packets. Mblks for every
231  * packet are assembled and passed to the hooks. When packets are blocked,
232  * or boundary of any packet is changed, the mdt processing is stopped, and
233  * packets of the meta buffer are send to the IP path one by one.
234  */
235 
236 /*
237  * Values for squeue switch:
238  * 1: SQ_NODRAIN
239  * 2: SQ_PROCESS
240  * 3: SQ_FILL
241  */
242 int tcp_squeue_wput = 2;	/* /etc/systems */
243 int tcp_squeue_flag;
244 
245 /*
246  * This controls how tiny a write must be before we try to copy it
247  * into the the mblk on the tail of the transmit queue.  Not much
248  * speedup is observed for values larger than sixteen.  Zero will
249  * disable the optimisation.
250  */
251 int tcp_tx_pull_len = 16;
252 
253 /*
254  * TCP Statistics.
255  *
256  * How TCP statistics work.
257  *
258  * There are two types of statistics invoked by two macros.
259  *
260  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
261  * supposed to be used in non MT-hot paths of the code.
262  *
263  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
264  * supposed to be used for DEBUG purposes and may be used on a hot path.
265  *
266  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
267  * (use "kstat tcp" to get them).
268  *
269  * There is also additional debugging facility that marks tcp_clean_death()
270  * instances and saves them in tcp_t structure. It is triggered by
271  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
272  * tcp_clean_death() calls that counts the number of times each tag was hit. It
273  * is triggered by TCP_CLD_COUNTERS define.
274  *
275  * How to add new counters.
276  *
277  * 1) Add a field in the tcp_stat structure describing your counter.
278  * 2) Add a line in the template in tcp_kstat2_init() with the name
279  *    of the counter.
280  *
281  *    IMPORTANT!! - make sure that both are in sync !!
282  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
283  *
284  * Please avoid using private counters which are not kstat-exported.
285  *
286  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
287  * in tcp_t structure.
288  *
289  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
290  */
291 
292 #ifndef TCP_DEBUG_COUNTER
293 #ifdef DEBUG
294 #define	TCP_DEBUG_COUNTER 1
295 #else
296 #define	TCP_DEBUG_COUNTER 0
297 #endif
298 #endif
299 
300 #define	TCP_CLD_COUNTERS 0
301 
302 #define	TCP_TAG_CLEAN_DEATH 1
303 #define	TCP_MAX_CLEAN_DEATH_TAG 32
304 
305 #ifdef lint
306 static int _lint_dummy_;
307 #endif
308 
309 #if TCP_CLD_COUNTERS
310 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
311 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
312 #elif defined(lint)
313 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
314 #else
315 #define	TCP_CLD_STAT(x)
316 #endif
317 
318 #if TCP_DEBUG_COUNTER
319 #define	TCP_DBGSTAT(tcps, x)	\
320 	atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1)
321 #define	TCP_G_DBGSTAT(x)	\
322 	atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1)
323 #elif defined(lint)
324 #define	TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0);
325 #define	TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
326 #else
327 #define	TCP_DBGSTAT(tcps, x)
328 #define	TCP_G_DBGSTAT(x)
329 #endif
330 
331 #define	TCP_G_STAT(x)	(tcp_g_statistics.x.value.ui64++)
332 
333 tcp_g_stat_t	tcp_g_statistics;
334 kstat_t		*tcp_g_kstat;
335 
336 /*
337  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
338  * tcp write side.
339  */
340 #define	CALL_IP_WPUT(connp, q, mp) {					\
341 	ASSERT(((q)->q_flag & QREADR) == 0);				\
342 	TCP_DBGSTAT(connp->conn_netstack->netstack_tcp, tcp_ip_output);	\
343 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
344 }
345 
346 /* Macros for timestamp comparisons */
347 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
348 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
349 
350 /*
351  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
352  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
353  * by adding three components: a time component which grows by 1 every 4096
354  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
355  * a per-connection component which grows by 125000 for every new connection;
356  * and an "extra" component that grows by a random amount centered
357  * approximately on 64000.  This causes the the ISS generator to cycle every
358  * 4.89 hours if no TCP connections are made, and faster if connections are
359  * made.
360  *
361  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
362  * components: a time component which grows by 250000 every second; and
363  * a per-connection component which grows by 125000 for every new connections.
364  *
365  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
366  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
367  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
368  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
369  * password.
370  */
371 #define	ISS_INCR	250000
372 #define	ISS_NSEC_SHT	12
373 
374 static sin_t	sin_null;	/* Zero address for quick clears */
375 static sin6_t	sin6_null;	/* Zero address for quick clears */
376 
377 /*
378  * This implementation follows the 4.3BSD interpretation of the urgent
379  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
380  * incompatible changes in protocols like telnet and rlogin.
381  */
382 #define	TCP_OLD_URP_INTERPRETATION	1
383 
384 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
385 	(TCP_IS_DETACHED(tcp) && \
386 	    (!(tcp)->tcp_hard_binding))
387 
388 /*
389  * TCP reassembly macros.  We hide starting and ending sequence numbers in
390  * b_next and b_prev of messages on the reassembly queue.  The messages are
391  * chained using b_cont.  These macros are used in tcp_reass() so we don't
392  * have to see the ugly casts and assignments.
393  */
394 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
395 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
396 					(mblk_t *)(uintptr_t)(u))
397 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
398 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
399 					(mblk_t *)(uintptr_t)(u))
400 
401 /*
402  * Implementation of TCP Timers.
403  * =============================
404  *
405  * INTERFACE:
406  *
407  * There are two basic functions dealing with tcp timers:
408  *
409  *	timeout_id_t	tcp_timeout(connp, func, time)
410  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
411  *	TCP_TIMER_RESTART(tcp, intvl)
412  *
413  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
414  * after 'time' ticks passed. The function called by timeout() must adhere to
415  * the same restrictions as a driver soft interrupt handler - it must not sleep
416  * or call other functions that might sleep. The value returned is the opaque
417  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
418  * cancel the request. The call to tcp_timeout() may fail in which case it
419  * returns zero. This is different from the timeout(9F) function which never
420  * fails.
421  *
422  * The call-back function 'func' always receives 'connp' as its single
423  * argument. It is always executed in the squeue corresponding to the tcp
424  * structure. The tcp structure is guaranteed to be present at the time the
425  * call-back is called.
426  *
427  * NOTE: The call-back function 'func' is never called if tcp is in
428  * 	the TCPS_CLOSED state.
429  *
430  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
431  * request. locks acquired by the call-back routine should not be held across
432  * the call to tcp_timeout_cancel() or a deadlock may result.
433  *
434  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
435  * Otherwise, it returns an integer value greater than or equal to 0. In
436  * particular, if the call-back function is already placed on the squeue, it can
437  * not be canceled.
438  *
439  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
440  * 	within squeue context corresponding to the tcp instance. Since the
441  *	call-back is also called via the same squeue, there are no race
442  *	conditions described in untimeout(9F) manual page since all calls are
443  *	strictly serialized.
444  *
445  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
446  *	stored in tcp_timer_tid and starts a new one using
447  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
448  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
449  *	field.
450  *
451  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
452  *	call-back may still be called, so it is possible tcp_timer() will be
453  *	called several times. This should not be a problem since tcp_timer()
454  *	should always check the tcp instance state.
455  *
456  *
457  * IMPLEMENTATION:
458  *
459  * TCP timers are implemented using three-stage process. The call to
460  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
461  * when the timer expires. The tcp_timer_callback() arranges the call of the
462  * tcp_timer_handler() function via squeue corresponding to the tcp
463  * instance. The tcp_timer_handler() calls actual requested timeout call-back
464  * and passes tcp instance as an argument to it. Information is passed between
465  * stages using the tcp_timer_t structure which contains the connp pointer, the
466  * tcp call-back to call and the timeout id returned by the timeout(9F).
467  *
468  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
469  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
470  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
471  * returns the pointer to this mblk.
472  *
473  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
474  * looks like a normal mblk without actual dblk attached to it.
475  *
476  * To optimize performance each tcp instance holds a small cache of timer
477  * mblocks. In the current implementation it caches up to two timer mblocks per
478  * tcp instance. The cache is preserved over tcp frees and is only freed when
479  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
480  * timer processing happens on a corresponding squeue, the cache manipulation
481  * does not require any locks. Experiments show that majority of timer mblocks
482  * allocations are satisfied from the tcp cache and do not involve kmem calls.
483  *
484  * The tcp_timeout() places a refhold on the connp instance which guarantees
485  * that it will be present at the time the call-back function fires. The
486  * tcp_timer_handler() drops the reference after calling the call-back, so the
487  * call-back function does not need to manipulate the references explicitly.
488  */
489 
490 typedef struct tcp_timer_s {
491 	conn_t	*connp;
492 	void 	(*tcpt_proc)(void *);
493 	callout_id_t   tcpt_tid;
494 } tcp_timer_t;
495 
496 static kmem_cache_t *tcp_timercache;
497 kmem_cache_t	*tcp_sack_info_cache;
498 kmem_cache_t	*tcp_iphc_cache;
499 
500 /*
501  * For scalability, we must not run a timer for every TCP connection
502  * in TIME_WAIT state.  To see why, consider (for time wait interval of
503  * 4 minutes):
504  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
505  *
506  * This list is ordered by time, so you need only delete from the head
507  * until you get to entries which aren't old enough to delete yet.
508  * The list consists of only the detached TIME_WAIT connections.
509  *
510  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
511  * becomes detached TIME_WAIT (either by changing the state and already
512  * being detached or the other way around). This means that the TIME_WAIT
513  * state can be extended (up to doubled) if the connection doesn't become
514  * detached for a long time.
515  *
516  * The list manipulations (including tcp_time_wait_next/prev)
517  * are protected by the tcp_time_wait_lock. The content of the
518  * detached TIME_WAIT connections is protected by the normal perimeters.
519  *
520  * This list is per squeue and squeues are shared across the tcp_stack_t's.
521  * Things on tcp_time_wait_head remain associated with the tcp_stack_t
522  * and conn_netstack.
523  * The tcp_t's that are added to tcp_free_list are disassociated and
524  * have NULL tcp_tcps and conn_netstack pointers.
525  */
526 typedef struct tcp_squeue_priv_s {
527 	kmutex_t	tcp_time_wait_lock;
528 	callout_id_t	tcp_time_wait_tid;
529 	tcp_t		*tcp_time_wait_head;
530 	tcp_t		*tcp_time_wait_tail;
531 	tcp_t		*tcp_free_list;
532 	uint_t		tcp_free_list_cnt;
533 } tcp_squeue_priv_t;
534 
535 /*
536  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
537  * Running it every 5 seconds seems to give the best results.
538  */
539 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
540 
541 /*
542  * To prevent memory hog, limit the number of entries in tcp_free_list
543  * to 1% of available memory / number of cpus
544  */
545 uint_t tcp_free_list_max_cnt = 0;
546 
547 #define	TCP_XMIT_LOWATER	4096
548 #define	TCP_XMIT_HIWATER	49152
549 #define	TCP_RECV_LOWATER	2048
550 #define	TCP_RECV_HIWATER	49152
551 
552 /*
553  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
554  */
555 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
556 
557 #define	TIDUSZ	4096	/* transport interface data unit size */
558 
559 /*
560  * Bind hash list size and has function.  It has to be a power of 2 for
561  * hashing.
562  */
563 #define	TCP_BIND_FANOUT_SIZE	512
564 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
565 /*
566  * Size of listen and acceptor hash list.  It has to be a power of 2 for
567  * hashing.
568  */
569 #define	TCP_FANOUT_SIZE		256
570 
571 #ifdef	_ILP32
572 #define	TCP_ACCEPTOR_HASH(accid)					\
573 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
574 #else
575 #define	TCP_ACCEPTOR_HASH(accid)					\
576 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
577 #endif	/* _ILP32 */
578 
579 #define	IP_ADDR_CACHE_SIZE	2048
580 #define	IP_ADDR_CACHE_HASH(faddr)					\
581 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
582 
583 /*
584  * TCP options struct returned from tcp_parse_options.
585  */
586 typedef struct tcp_opt_s {
587 	uint32_t	tcp_opt_mss;
588 	uint32_t	tcp_opt_wscale;
589 	uint32_t	tcp_opt_ts_val;
590 	uint32_t	tcp_opt_ts_ecr;
591 	tcp_t		*tcp;
592 } tcp_opt_t;
593 
594 /*
595  * TCP option struct passing information b/w lisenter and eager.
596  */
597 struct tcp_options {
598 	uint_t			to_flags;
599 	ssize_t			to_boundif;	/* IPV6_BOUND_IF */
600 };
601 
602 #define	TCPOPT_BOUNDIF		0x00000001	/* set IPV6_BOUND_IF */
603 #define	TCPOPT_RECVPKTINFO	0x00000002	/* set IPV6_RECVPKTINFO */
604 
605 /*
606  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
607  */
608 
609 #ifdef _BIG_ENDIAN
610 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
611 	(TCPOPT_TSTAMP << 8) | 10)
612 #else
613 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
614 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
615 #endif
616 
617 /*
618  * Flags returned from tcp_parse_options.
619  */
620 #define	TCP_OPT_MSS_PRESENT	1
621 #define	TCP_OPT_WSCALE_PRESENT	2
622 #define	TCP_OPT_TSTAMP_PRESENT	4
623 #define	TCP_OPT_SACK_OK_PRESENT	8
624 #define	TCP_OPT_SACK_PRESENT	16
625 
626 /* TCP option length */
627 #define	TCPOPT_NOP_LEN		1
628 #define	TCPOPT_MAXSEG_LEN	4
629 #define	TCPOPT_WS_LEN		3
630 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
631 #define	TCPOPT_TSTAMP_LEN	10
632 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
633 #define	TCPOPT_SACK_OK_LEN	2
634 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
635 #define	TCPOPT_REAL_SACK_LEN	4
636 #define	TCPOPT_MAX_SACK_LEN	36
637 #define	TCPOPT_HEADER_LEN	2
638 
639 /* TCP cwnd burst factor. */
640 #define	TCP_CWND_INFINITE	65535
641 #define	TCP_CWND_SS		3
642 #define	TCP_CWND_NORMAL		5
643 
644 /* Maximum TCP initial cwin (start/restart). */
645 #define	TCP_MAX_INIT_CWND	8
646 
647 /*
648  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
649  * either tcp_slow_start_initial or tcp_slow_start_after idle
650  * depending on the caller.  If the upper layer has not used the
651  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
652  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
653  * If the upper layer has changed set the tcp_init_cwnd, just use
654  * it to calculate the tcp_cwnd.
655  */
656 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
657 {									\
658 	if ((tcp)->tcp_init_cwnd == 0) {				\
659 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
660 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
661 	} else {							\
662 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
663 	}								\
664 	tcp->tcp_cwnd_cnt = 0;						\
665 }
666 
667 /* TCP Timer control structure */
668 typedef struct tcpt_s {
669 	pfv_t	tcpt_pfv;	/* The routine we are to call */
670 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
671 } tcpt_t;
672 
673 /*
674  * Functions called directly via squeue having a prototype of edesc_t.
675  */
676 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
677 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
678 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
679 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
680 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
681 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
682 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
683 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
684 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
685 void		tcp_output_urgent(void *arg, mblk_t *mp, void *arg2);
686 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
687 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
688 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2);
689 
690 
691 /* Prototype for TCP functions */
692 static void	tcp_random_init(void);
693 int		tcp_random(void);
694 static void	tcp_tli_accept(tcp_t *tcp, mblk_t *mp);
695 static int	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
696 		    tcp_t *eager);
697 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
698 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
699     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
700     boolean_t user_specified);
701 static void	tcp_closei_local(tcp_t *tcp);
702 static void	tcp_close_detached(tcp_t *tcp);
703 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
704 			mblk_t *idmp, mblk_t **defermp);
705 static void	tcp_tpi_connect(tcp_t *tcp, mblk_t *mp);
706 static int	tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp,
707 		    in_port_t dstport, uint_t srcid, cred_t *cr, pid_t pid);
708 static int 	tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp,
709 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
710 		    uint32_t scope_id, cred_t *cr, pid_t pid);
711 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
712 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
713 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
714 static char	*tcp_display(tcp_t *tcp, char *, char);
715 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
716 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
717 static void	tcp_eager_unlink(tcp_t *tcp);
718 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
719 		    int unixerr);
720 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
721 		    int tlierr, int unixerr);
722 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
723 		    cred_t *cr);
724 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
725 		    char *value, caddr_t cp, cred_t *cr);
726 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
727 		    char *value, caddr_t cp, cred_t *cr);
728 static int	tcp_tpistate(tcp_t *tcp);
729 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
730     int caller_holds_lock);
731 static void	tcp_bind_hash_remove(tcp_t *tcp);
732 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *);
733 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
734 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
735 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
736 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
737 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
738 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
739 void		tcp_g_q_setup(tcp_stack_t *);
740 void		tcp_g_q_create(tcp_stack_t *);
741 void		tcp_g_q_destroy(tcp_stack_t *);
742 static int	tcp_header_init_ipv4(tcp_t *tcp);
743 static int	tcp_header_init_ipv6(tcp_t *tcp);
744 int		tcp_init(tcp_t *tcp, queue_t *q);
745 static int	tcp_init_values(tcp_t *tcp);
746 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
747 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
748 static void	tcp_ip_notify(tcp_t *tcp);
749 static mblk_t	*tcp_ire_mp(mblk_t **mpp);
750 static void	tcp_iss_init(tcp_t *tcp);
751 static void	tcp_keepalive_killer(void *arg);
752 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
753 static void	tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss);
754 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
755 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
756 static boolean_t tcp_allow_connopt_set(int level, int name);
757 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
758 int		tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
759 int		tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level,
760 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
761 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
762 		    mblk_t *mblk);
763 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
764 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
765 		    uchar_t *ptr, uint_t len);
766 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
767 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt,
768     tcp_stack_t *);
769 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
770 		    caddr_t cp, cred_t *cr);
771 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
772 		    caddr_t cp, cred_t *cr);
773 static void	tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *);
774 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
775 		    caddr_t cp, cred_t *cr);
776 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
777 static void	tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt);
778 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
779 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
780 static void	tcp_reinit(tcp_t *tcp);
781 static void	tcp_reinit_values(tcp_t *tcp);
782 
783 static uint_t	tcp_rwnd_reopen(tcp_t *tcp);
784 static uint_t	tcp_rcv_drain(tcp_t *tcp);
785 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
786 static boolean_t tcp_send_rst_chk(tcp_stack_t *);
787 static void	tcp_ss_rexmit(tcp_t *tcp);
788 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
789 static void	tcp_process_options(tcp_t *, tcph_t *);
790 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
791 static void	tcp_rsrv(queue_t *q);
792 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
793 static int	tcp_snmp_state(tcp_t *tcp);
794 static void	tcp_timer(void *arg);
795 static void	tcp_timer_callback(void *);
796 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
797     boolean_t random);
798 static in_port_t tcp_get_next_priv_port(const tcp_t *);
799 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
800 static void	tcp_wput_fallback(queue_t *q, mblk_t *mp);
801 void		tcp_tpi_accept(queue_t *q, mblk_t *mp);
802 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
803 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
804 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
805 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
806 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
807 		    const int num_sack_blk, int *usable, uint_t *snxt,
808 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
809 		    const int mdt_thres);
810 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
811 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
812 		    const int num_sack_blk, int *usable, uint_t *snxt,
813 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
814 		    const int mdt_thres);
815 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
816 		    int num_sack_blk);
817 static void	tcp_wsrv(queue_t *q);
818 static int	tcp_xmit_end(tcp_t *tcp);
819 static void	tcp_ack_timer(void *arg);
820 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
821 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
822 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
823 		    zoneid_t zoneid, tcp_stack_t *, conn_t *connp);
824 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
825 		    uint32_t ack, int ctl);
826 static int	setmaxps(queue_t *q, int maxpsz);
827 static void	tcp_set_rto(tcp_t *, time_t);
828 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
829 		    boolean_t, boolean_t);
830 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
831 		    boolean_t ipsec_mctl);
832 static int	tcp_build_hdrs(tcp_t *);
833 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
834 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
835 		    tcph_t *tcph);
836 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
837 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
838 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
839 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
840 		    const boolean_t, const uint32_t, const uint32_t,
841 		    const uint32_t, const uint32_t, tcp_stack_t *);
842 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
843 		    const uint_t, const uint_t, boolean_t *);
844 static mblk_t	*tcp_lso_info_mp(mblk_t *);
845 static void	tcp_lso_update(tcp_t *, ill_lso_capab_t *);
846 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
847 extern mblk_t	*tcp_timermp_alloc(int);
848 extern void	tcp_timermp_free(tcp_t *);
849 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
850 static void	tcp_stop_lingering(tcp_t *tcp);
851 static void	tcp_close_linger_timeout(void *arg);
852 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
853 static void	tcp_stack_shutdown(netstackid_t stackid, void *arg);
854 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
855 static void	*tcp_g_kstat_init(tcp_g_stat_t *);
856 static void	tcp_g_kstat_fini(kstat_t *);
857 static void	*tcp_kstat_init(netstackid_t, tcp_stack_t *);
858 static void	tcp_kstat_fini(netstackid_t, kstat_t *);
859 static void	*tcp_kstat2_init(netstackid_t, tcp_stat_t *);
860 static void	tcp_kstat2_fini(netstackid_t, kstat_t *);
861 static int	tcp_kstat_update(kstat_t *kp, int rw);
862 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
863 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
864 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
865 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
866 			tcph_t *tcph, mblk_t *idmp);
867 static int	tcp_squeue_switch(int);
868 
869 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
870 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
871 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
872 static int	tcp_tpi_close(queue_t *, int);
873 static int	tcp_tpi_close_accept(queue_t *);
874 
875 static void	tcp_squeue_add(squeue_t *);
876 static boolean_t tcp_zcopy_check(tcp_t *);
877 static void	tcp_zcopy_notify(tcp_t *);
878 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
879 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
880 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
881 
882 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
883 
884 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2);
885 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2);
886 
887 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t,
888 	    sock_upper_handle_t, cred_t *);
889 static int tcp_listen(sock_lower_handle_t, int, cred_t *);
890 static int tcp_post_ip_bind(tcp_t *, mblk_t *, int, cred_t *, pid_t);
891 static int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int, cred_t *,
892     boolean_t);
893 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t,
894     cred_t *, pid_t);
895 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *,
896     boolean_t);
897 static int tcp_do_unbind(conn_t *);
898 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *,
899     boolean_t);
900 
901 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *);
902 
903 /*
904  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
905  *
906  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
907  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
908  * (defined in tcp.h) needs to be filled in and passed into the kernel
909  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
910  * structure contains the four-tuple of a TCP connection and a range of TCP
911  * states (specified by ac_start and ac_end). The use of wildcard addresses
912  * and ports is allowed. Connections with a matching four tuple and a state
913  * within the specified range will be aborted. The valid states for the
914  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
915  * inclusive.
916  *
917  * An application which has its connection aborted by this ioctl will receive
918  * an error that is dependent on the connection state at the time of the abort.
919  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
920  * though a RST packet has been received.  If the connection state is equal to
921  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
922  * and all resources associated with the connection will be freed.
923  */
924 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
925 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
926 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
927 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps);
928 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
929 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
930     boolean_t, tcp_stack_t *);
931 
932 static struct module_info tcp_rinfo =  {
933 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
934 };
935 
936 static struct module_info tcp_winfo =  {
937 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
938 };
939 
940 /*
941  * Entry points for TCP as a device. The normal case which supports
942  * the TCP functionality.
943  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
944  */
945 struct qinit tcp_rinitv4 = {
946 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo
947 };
948 
949 struct qinit tcp_rinitv6 = {
950 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo
951 };
952 
953 struct qinit tcp_winit = {
954 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
955 };
956 
957 /* Initial entry point for TCP in socket mode. */
958 struct qinit tcp_sock_winit = {
959 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
960 };
961 
962 /* TCP entry point during fallback */
963 struct qinit tcp_fallback_sock_winit = {
964 	(pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo
965 };
966 
967 /*
968  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
969  * an accept. Avoid allocating data structures since eager has already
970  * been created.
971  */
972 struct qinit tcp_acceptor_rinit = {
973 	NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo
974 };
975 
976 struct qinit tcp_acceptor_winit = {
977 	(pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo
978 };
979 
980 /*
981  * Entry points for TCP loopback (read side only)
982  * The open routine is only used for reopens, thus no need to
983  * have a separate one for tcp_openv6.
984  */
985 struct qinit tcp_loopback_rinit = {
986 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, (pfi_t)0,
987 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
988 };
989 
990 /* For AF_INET aka /dev/tcp */
991 struct streamtab tcpinfov4 = {
992 	&tcp_rinitv4, &tcp_winit
993 };
994 
995 /* For AF_INET6 aka /dev/tcp6 */
996 struct streamtab tcpinfov6 = {
997 	&tcp_rinitv6, &tcp_winit
998 };
999 
1000 sock_downcalls_t sock_tcp_downcalls;
1001 
1002 /*
1003  * Have to ensure that tcp_g_q_close is not done by an
1004  * interrupt thread.
1005  */
1006 static taskq_t *tcp_taskq;
1007 
1008 /* Setable only in /etc/system. Move to ndd? */
1009 boolean_t tcp_icmp_source_quench = B_FALSE;
1010 
1011 /*
1012  * Following assumes TPI alignment requirements stay along 32 bit
1013  * boundaries
1014  */
1015 #define	ROUNDUP32(x) \
1016 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1017 
1018 /* Template for response to info request. */
1019 static struct T_info_ack tcp_g_t_info_ack = {
1020 	T_INFO_ACK,		/* PRIM_type */
1021 	0,			/* TSDU_size */
1022 	T_INFINITE,		/* ETSDU_size */
1023 	T_INVALID,		/* CDATA_size */
1024 	T_INVALID,		/* DDATA_size */
1025 	sizeof (sin_t),		/* ADDR_size */
1026 	0,			/* OPT_size - not initialized here */
1027 	TIDUSZ,			/* TIDU_size */
1028 	T_COTS_ORD,		/* SERV_type */
1029 	TCPS_IDLE,		/* CURRENT_state */
1030 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1031 };
1032 
1033 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1034 	T_INFO_ACK,		/* PRIM_type */
1035 	0,			/* TSDU_size */
1036 	T_INFINITE,		/* ETSDU_size */
1037 	T_INVALID,		/* CDATA_size */
1038 	T_INVALID,		/* DDATA_size */
1039 	sizeof (sin6_t),	/* ADDR_size */
1040 	0,			/* OPT_size - not initialized here */
1041 	TIDUSZ,		/* TIDU_size */
1042 	T_COTS_ORD,		/* SERV_type */
1043 	TCPS_IDLE,		/* CURRENT_state */
1044 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1045 };
1046 
1047 #define	MS	1L
1048 #define	SECONDS	(1000 * MS)
1049 #define	MINUTES	(60 * SECONDS)
1050 #define	HOURS	(60 * MINUTES)
1051 #define	DAYS	(24 * HOURS)
1052 
1053 #define	PARAM_MAX (~(uint32_t)0)
1054 
1055 /* Max size IP datagram is 64k - 1 */
1056 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1057 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1058 /* Max of the above */
1059 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1060 
1061 /* Largest TCP port number */
1062 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1063 
1064 /*
1065  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1066  * layer header.  It has to be a multiple of 4.
1067  */
1068 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1069 #define	tcps_wroff_xtra	tcps_wroff_xtra_param->tcp_param_val
1070 
1071 /*
1072  * All of these are alterable, within the min/max values given, at run time.
1073  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1074  * per the TCP spec.
1075  */
1076 /* BEGIN CSTYLED */
1077 static tcpparam_t	lcl_tcp_param_arr[] = {
1078  /*min		max		value		name */
1079  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1080  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1081  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1082  { 1,		1024,		1,		"tcp_conn_req_min" },
1083  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1084  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1085  { 0,		10,		0,		"tcp_debug" },
1086  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1087  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1088  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1089  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1090  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1091  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1092  { 1,		255,		64,		"tcp_ipv4_ttl"},
1093  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1094  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1095  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1096  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1097  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1098  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1099  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1100  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1101  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1102  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1103  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1104  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1105  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1106  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1107  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1108  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1109  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1110  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1111  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1112  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1113  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1114  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1115  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1116 /*
1117  * Question:  What default value should I set for tcp_strong_iss?
1118  */
1119  { 0,		2,		1,		"tcp_strong_iss"},
1120  { 0,		65536,		20,		"tcp_rtt_updates"},
1121  { 0,		1,		1,		"tcp_wscale_always"},
1122  { 0,		1,		0,		"tcp_tstamp_always"},
1123  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1124  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1125  { 0,		16,		2,		"tcp_deferred_acks_max"},
1126  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1127  { 1,		4,		4,		"tcp_slow_start_initial"},
1128  { 0,		2,		2,		"tcp_sack_permitted"},
1129  { 0,		1,		1,		"tcp_compression_enabled"},
1130  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1131  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1132  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1133  { 0,		1,		0,		"tcp_rev_src_routes"},
1134  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1135  { 0,		16,		8,		"tcp_local_dacks_max"},
1136  { 0,		2,		1,		"tcp_ecn_permitted"},
1137  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1138  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1139  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1140  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1141  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1142 };
1143 /* END CSTYLED */
1144 
1145 /*
1146  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1147  * each header fragment in the header buffer.  Each parameter value has
1148  * to be a multiple of 4 (32-bit aligned).
1149  */
1150 static tcpparam_t lcl_tcp_mdt_head_param =
1151 	{ 32, 256, 32, "tcp_mdt_hdr_head_min" };
1152 static tcpparam_t lcl_tcp_mdt_tail_param =
1153 	{ 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1154 #define	tcps_mdt_hdr_head_min	tcps_mdt_head_param->tcp_param_val
1155 #define	tcps_mdt_hdr_tail_min	tcps_mdt_tail_param->tcp_param_val
1156 
1157 /*
1158  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1159  * the maximum number of payload buffers associated per Multidata.
1160  */
1161 static tcpparam_t lcl_tcp_mdt_max_pbufs_param =
1162 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1163 #define	tcps_mdt_max_pbufs	tcps_mdt_max_pbufs_param->tcp_param_val
1164 
1165 /* Round up the value to the nearest mss. */
1166 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1167 
1168 /*
1169  * Set ECN capable transport (ECT) code point in IP header.
1170  *
1171  * Note that there are 2 ECT code points '01' and '10', which are called
1172  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1173  * point ECT(0) for TCP as described in RFC 2481.
1174  */
1175 #define	SET_ECT(tcp, iph) \
1176 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1177 		/* We need to clear the code point first. */ \
1178 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1179 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1180 	} else { \
1181 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1182 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1183 	}
1184 
1185 /*
1186  * The format argument to pass to tcp_display().
1187  * DISP_PORT_ONLY means that the returned string has only port info.
1188  * DISP_ADDR_AND_PORT means that the returned string also contains the
1189  * remote and local IP address.
1190  */
1191 #define	DISP_PORT_ONLY		1
1192 #define	DISP_ADDR_AND_PORT	2
1193 
1194 #define	IS_VMLOANED_MBLK(mp) \
1195 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1196 
1197 
1198 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1199 boolean_t tcp_mdt_chain = B_TRUE;
1200 
1201 /*
1202  * MDT threshold in the form of effective send MSS multiplier; we take
1203  * the MDT path if the amount of unsent data exceeds the threshold value
1204  * (default threshold is 1*SMSS).
1205  */
1206 uint_t tcp_mdt_smss_threshold = 1;
1207 
1208 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1209 
1210 /*
1211  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
1212  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1213  * determined dynamically during tcp_adapt_ire(), which is the default.
1214  */
1215 boolean_t tcp_static_maxpsz = B_FALSE;
1216 
1217 /* Setable in /etc/system */
1218 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1219 uint32_t tcp_random_anon_port = 1;
1220 
1221 /*
1222  * To reach to an eager in Q0 which can be dropped due to an incoming
1223  * new SYN request when Q0 is full, a new doubly linked list is
1224  * introduced. This list allows to select an eager from Q0 in O(1) time.
1225  * This is needed to avoid spending too much time walking through the
1226  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1227  * this new list has to be a member of Q0.
1228  * This list is headed by listener's tcp_t. When the list is empty,
1229  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1230  * of listener's tcp_t point to listener's tcp_t itself.
1231  *
1232  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1233  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1234  * These macros do not affect the eager's membership to Q0.
1235  */
1236 
1237 
1238 #define	MAKE_DROPPABLE(listener, eager)					\
1239 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1240 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1241 		    = (eager);						\
1242 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1243 		(eager)->tcp_eager_next_drop_q0 =			\
1244 		    (listener)->tcp_eager_next_drop_q0;			\
1245 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1246 	}
1247 
1248 #define	MAKE_UNDROPPABLE(eager)						\
1249 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1250 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1251 		    = (eager)->tcp_eager_prev_drop_q0;			\
1252 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1253 		    = (eager)->tcp_eager_next_drop_q0;			\
1254 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1255 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1256 	}
1257 
1258 /*
1259  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1260  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1261  * data, TCP will not respond with an ACK.  RFC 793 requires that
1262  * TCP responds with an ACK for such a bogus ACK.  By not following
1263  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1264  * an attacker successfully spoofs an acceptable segment to our
1265  * peer; or when our peer is "confused."
1266  */
1267 uint32_t tcp_drop_ack_unsent_cnt = 10;
1268 
1269 /*
1270  * Hook functions to enable cluster networking
1271  * On non-clustered systems these vectors must always be NULL.
1272  */
1273 
1274 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol,
1275 			    sa_family_t addr_family, uint8_t *laddrp,
1276 			    in_port_t lport, void *args) = NULL;
1277 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol,
1278 			    sa_family_t addr_family, uint8_t *laddrp,
1279 			    in_port_t lport, void *args) = NULL;
1280 
1281 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol,
1282 			    boolean_t is_outgoing,
1283 			    sa_family_t addr_family,
1284 			    uint8_t *laddrp, in_port_t lport,
1285 			    uint8_t *faddrp, in_port_t fport,
1286 			    void *args) = NULL;
1287 
1288 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol,
1289 			    sa_family_t addr_family, uint8_t *laddrp,
1290 			    in_port_t lport, uint8_t *faddrp,
1291 			    in_port_t fport, void *args) = NULL;
1292 
1293 /*
1294  * The following are defined in ip.c
1295  */
1296 extern int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
1297 			    sa_family_t addr_family, uint8_t *laddrp,
1298 			    void *args);
1299 extern uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
1300 			    sa_family_t addr_family, uint8_t *laddrp,
1301 			    uint8_t *faddrp, void *args);
1302 
1303 
1304 /*
1305  * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err)
1306  */
1307 #define	CL_INET_CONNECT(connp, tcp, is_outgoing, err) {		\
1308 	(err) = 0;						\
1309 	if (cl_inet_connect2 != NULL) {				\
1310 		/*						\
1311 		 * Running in cluster mode - register active connection	\
1312 		 * information						\
1313 		 */							\
1314 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1315 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1316 				(err) = (*cl_inet_connect2)(		\
1317 				    (connp)->conn_netstack->netstack_stackid,\
1318 				    IPPROTO_TCP, is_outgoing, AF_INET,	\
1319 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1320 				    (in_port_t)(tcp)->tcp_lport,	\
1321 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1322 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1323 			}						\
1324 		} else {						\
1325 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1326 			    &(tcp)->tcp_ip6h->ip6_src)) {		\
1327 				(err) = (*cl_inet_connect2)(		\
1328 				    (connp)->conn_netstack->netstack_stackid,\
1329 				    IPPROTO_TCP, is_outgoing, AF_INET6,	\
1330 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1331 				    (in_port_t)(tcp)->tcp_lport,	\
1332 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1333 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1334 			}						\
1335 		}							\
1336 	}								\
1337 }
1338 
1339 #define	CL_INET_DISCONNECT(connp, tcp)	{				\
1340 	if (cl_inet_disconnect != NULL) {				\
1341 		/*							\
1342 		 * Running in cluster mode - deregister active		\
1343 		 * connection information				\
1344 		 */							\
1345 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1346 			if ((tcp)->tcp_ip_src != 0) {			\
1347 				(*cl_inet_disconnect)(			\
1348 				    (connp)->conn_netstack->netstack_stackid,\
1349 				    IPPROTO_TCP, AF_INET,		\
1350 				    (uint8_t *)(&((tcp)->tcp_ip_src)),	\
1351 				    (in_port_t)(tcp)->tcp_lport,	\
1352 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1353 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1354 			}						\
1355 		} else {						\
1356 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1357 			    &(tcp)->tcp_ip_src_v6)) {			\
1358 				(*cl_inet_disconnect)(			\
1359 				    (connp)->conn_netstack->netstack_stackid,\
1360 				    IPPROTO_TCP, AF_INET6,		\
1361 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1362 				    (in_port_t)(tcp)->tcp_lport,	\
1363 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1364 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1365 			}						\
1366 		}							\
1367 	}								\
1368 }
1369 
1370 /*
1371  * Cluster networking hook for traversing current connection list.
1372  * This routine is used to extract the current list of live connections
1373  * which must continue to to be dispatched to this node.
1374  */
1375 int cl_tcp_walk_list(netstackid_t stack_id,
1376     int (*callback)(cl_tcp_info_t *, void *), void *arg);
1377 
1378 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *),
1379     void *arg, tcp_stack_t *tcps);
1380 
1381 #define	DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) 			\
1382 	DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *,	\
1383 	    iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha,		\
1384 	    ip6_t *, ip6h, int, 0);
1385 
1386 /*
1387  * Figure out the value of window scale opton.  Note that the rwnd is
1388  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1389  * We cannot find the scale value and then do a round up of tcp_rwnd
1390  * because the scale value may not be correct after that.
1391  *
1392  * Set the compiler flag to make this function inline.
1393  */
1394 static void
1395 tcp_set_ws_value(tcp_t *tcp)
1396 {
1397 	int i;
1398 	uint32_t rwnd = tcp->tcp_rwnd;
1399 
1400 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1401 	    i++, rwnd >>= 1)
1402 		;
1403 	tcp->tcp_rcv_ws = i;
1404 }
1405 
1406 /*
1407  * Remove a connection from the list of detached TIME_WAIT connections.
1408  * It returns B_FALSE if it can't remove the connection from the list
1409  * as the connection has already been removed from the list due to an
1410  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1411  */
1412 static boolean_t
1413 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1414 {
1415 	boolean_t	locked = B_FALSE;
1416 
1417 	if (tcp_time_wait == NULL) {
1418 		tcp_time_wait = *((tcp_squeue_priv_t **)
1419 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1420 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1421 		locked = B_TRUE;
1422 	} else {
1423 		ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock));
1424 	}
1425 
1426 	if (tcp->tcp_time_wait_expire == 0) {
1427 		ASSERT(tcp->tcp_time_wait_next == NULL);
1428 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1429 		if (locked)
1430 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1431 		return (B_FALSE);
1432 	}
1433 	ASSERT(TCP_IS_DETACHED(tcp));
1434 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1435 
1436 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1437 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1438 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1439 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1440 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1441 			    NULL;
1442 		} else {
1443 			tcp_time_wait->tcp_time_wait_tail = NULL;
1444 		}
1445 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1446 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1447 		ASSERT(tcp->tcp_time_wait_next == NULL);
1448 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1449 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1450 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1451 	} else {
1452 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1453 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1454 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1455 		    tcp->tcp_time_wait_next;
1456 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1457 		    tcp->tcp_time_wait_prev;
1458 	}
1459 	tcp->tcp_time_wait_next = NULL;
1460 	tcp->tcp_time_wait_prev = NULL;
1461 	tcp->tcp_time_wait_expire = 0;
1462 
1463 	if (locked)
1464 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1465 	return (B_TRUE);
1466 }
1467 
1468 /*
1469  * Add a connection to the list of detached TIME_WAIT connections
1470  * and set its time to expire.
1471  */
1472 static void
1473 tcp_time_wait_append(tcp_t *tcp)
1474 {
1475 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1476 	tcp_squeue_priv_t *tcp_time_wait =
1477 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1478 	    SQPRIVATE_TCP));
1479 
1480 	tcp_timers_stop(tcp);
1481 
1482 	/* Freed above */
1483 	ASSERT(tcp->tcp_timer_tid == 0);
1484 	ASSERT(tcp->tcp_ack_tid == 0);
1485 
1486 	/* must have happened at the time of detaching the tcp */
1487 	ASSERT(tcp->tcp_ptpahn == NULL);
1488 	ASSERT(tcp->tcp_flow_stopped == 0);
1489 	ASSERT(tcp->tcp_time_wait_next == NULL);
1490 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1491 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1492 	ASSERT(tcp->tcp_listener == NULL);
1493 
1494 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1495 	/*
1496 	 * The value computed below in tcp->tcp_time_wait_expire may
1497 	 * appear negative or wrap around. That is ok since our
1498 	 * interest is only in the difference between the current lbolt
1499 	 * value and tcp->tcp_time_wait_expire. But the value should not
1500 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1501 	 * The corresponding comparison in tcp_time_wait_collector() uses
1502 	 * modular arithmetic.
1503 	 */
1504 	tcp->tcp_time_wait_expire +=
1505 	    drv_usectohz(tcps->tcps_time_wait_interval * 1000);
1506 	if (tcp->tcp_time_wait_expire == 0)
1507 		tcp->tcp_time_wait_expire = 1;
1508 
1509 	ASSERT(TCP_IS_DETACHED(tcp));
1510 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1511 	ASSERT(tcp->tcp_time_wait_next == NULL);
1512 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1513 	TCP_DBGSTAT(tcps, tcp_time_wait);
1514 
1515 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1516 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1517 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1518 		tcp_time_wait->tcp_time_wait_head = tcp;
1519 	} else {
1520 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1521 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1522 		    TCPS_TIME_WAIT);
1523 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1524 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1525 	}
1526 	tcp_time_wait->tcp_time_wait_tail = tcp;
1527 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1528 }
1529 
1530 /* ARGSUSED */
1531 void
1532 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1533 {
1534 	conn_t	*connp = (conn_t *)arg;
1535 	tcp_t	*tcp = connp->conn_tcp;
1536 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1537 
1538 	ASSERT(tcp != NULL);
1539 	if (tcp->tcp_state == TCPS_CLOSED) {
1540 		return;
1541 	}
1542 
1543 	ASSERT((tcp->tcp_family == AF_INET &&
1544 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1545 	    (tcp->tcp_family == AF_INET6 &&
1546 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1547 	    tcp->tcp_ipversion == IPV6_VERSION)));
1548 	ASSERT(!tcp->tcp_listener);
1549 
1550 	TCP_STAT(tcps, tcp_time_wait_reap);
1551 	ASSERT(TCP_IS_DETACHED(tcp));
1552 
1553 	/*
1554 	 * Because they have no upstream client to rebind or tcp_close()
1555 	 * them later, we axe the connection here and now.
1556 	 */
1557 	tcp_close_detached(tcp);
1558 }
1559 
1560 /*
1561  * Remove cached/latched IPsec references.
1562  */
1563 void
1564 tcp_ipsec_cleanup(tcp_t *tcp)
1565 {
1566 	conn_t		*connp = tcp->tcp_connp;
1567 
1568 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1569 
1570 	if (connp->conn_latch != NULL) {
1571 		IPLATCH_REFRELE(connp->conn_latch,
1572 		    connp->conn_netstack);
1573 		connp->conn_latch = NULL;
1574 	}
1575 	if (connp->conn_policy != NULL) {
1576 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
1577 		connp->conn_policy = NULL;
1578 	}
1579 }
1580 
1581 /*
1582  * Cleaup before placing on free list.
1583  * Disassociate from the netstack/tcp_stack_t since the freelist
1584  * is per squeue and not per netstack.
1585  */
1586 void
1587 tcp_cleanup(tcp_t *tcp)
1588 {
1589 	mblk_t		*mp;
1590 	char		*tcp_iphc;
1591 	int		tcp_iphc_len;
1592 	int		tcp_hdr_grown;
1593 	tcp_sack_info_t	*tcp_sack_info;
1594 	conn_t		*connp = tcp->tcp_connp;
1595 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1596 	netstack_t	*ns = tcps->tcps_netstack;
1597 	mblk_t		*tcp_rsrv_mp;
1598 
1599 	tcp_bind_hash_remove(tcp);
1600 
1601 	/* Cleanup that which needs the netstack first */
1602 	tcp_ipsec_cleanup(tcp);
1603 
1604 	tcp_free(tcp);
1605 
1606 	/* Release any SSL context */
1607 	if (tcp->tcp_kssl_ent != NULL) {
1608 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1609 		tcp->tcp_kssl_ent = NULL;
1610 	}
1611 
1612 	if (tcp->tcp_kssl_ctx != NULL) {
1613 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1614 		tcp->tcp_kssl_ctx = NULL;
1615 	}
1616 	tcp->tcp_kssl_pending = B_FALSE;
1617 
1618 	conn_delete_ire(connp, NULL);
1619 
1620 	/*
1621 	 * Since we will bzero the entire structure, we need to
1622 	 * remove it and reinsert it in global hash list. We
1623 	 * know the walkers can't get to this conn because we
1624 	 * had set CONDEMNED flag earlier and checked reference
1625 	 * under conn_lock so walker won't pick it and when we
1626 	 * go the ipcl_globalhash_remove() below, no walker
1627 	 * can get to it.
1628 	 */
1629 	ipcl_globalhash_remove(connp);
1630 
1631 	/*
1632 	 * Now it is safe to decrement the reference counts.
1633 	 * This might be the last reference on the netstack and TCPS
1634 	 * in which case it will cause the tcp_g_q_close and
1635 	 * the freeing of the IP Instance.
1636 	 */
1637 	connp->conn_netstack = NULL;
1638 	netstack_rele(ns);
1639 	ASSERT(tcps != NULL);
1640 	tcp->tcp_tcps = NULL;
1641 	TCPS_REFRELE(tcps);
1642 
1643 	/* Save some state */
1644 	mp = tcp->tcp_timercache;
1645 
1646 	tcp_sack_info = tcp->tcp_sack_info;
1647 	tcp_iphc = tcp->tcp_iphc;
1648 	tcp_iphc_len = tcp->tcp_iphc_len;
1649 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1650 	tcp_rsrv_mp = tcp->tcp_rsrv_mp;
1651 
1652 	if (connp->conn_cred != NULL) {
1653 		crfree(connp->conn_cred);
1654 		connp->conn_cred = NULL;
1655 	}
1656 	if (connp->conn_effective_cred != NULL) {
1657 		crfree(connp->conn_effective_cred);
1658 		connp->conn_effective_cred = NULL;
1659 	}
1660 	ipcl_conn_cleanup(connp);
1661 	connp->conn_flags = IPCL_TCPCONN;
1662 	bzero(tcp, sizeof (tcp_t));
1663 
1664 	/* restore the state */
1665 	tcp->tcp_timercache = mp;
1666 
1667 	tcp->tcp_sack_info = tcp_sack_info;
1668 	tcp->tcp_iphc = tcp_iphc;
1669 	tcp->tcp_iphc_len = tcp_iphc_len;
1670 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1671 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1672 
1673 	tcp->tcp_connp = connp;
1674 
1675 	ASSERT(connp->conn_tcp == tcp);
1676 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1677 	connp->conn_state_flags = CONN_INCIPIENT;
1678 	ASSERT(connp->conn_ulp == IPPROTO_TCP);
1679 	ASSERT(connp->conn_ref == 1);
1680 }
1681 
1682 /*
1683  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1684  * is done forwards from the head.
1685  * This walks all stack instances since
1686  * tcp_time_wait remains global across all stacks.
1687  */
1688 /* ARGSUSED */
1689 void
1690 tcp_time_wait_collector(void *arg)
1691 {
1692 	tcp_t *tcp;
1693 	clock_t now;
1694 	mblk_t *mp;
1695 	conn_t *connp;
1696 	kmutex_t *lock;
1697 	boolean_t removed;
1698 
1699 	squeue_t *sqp = (squeue_t *)arg;
1700 	tcp_squeue_priv_t *tcp_time_wait =
1701 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1702 
1703 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1704 	tcp_time_wait->tcp_time_wait_tid = 0;
1705 
1706 	if (tcp_time_wait->tcp_free_list != NULL &&
1707 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1708 		TCP_G_STAT(tcp_freelist_cleanup);
1709 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1710 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1711 			tcp->tcp_time_wait_next = NULL;
1712 			tcp_time_wait->tcp_free_list_cnt--;
1713 			ASSERT(tcp->tcp_tcps == NULL);
1714 			CONN_DEC_REF(tcp->tcp_connp);
1715 		}
1716 		ASSERT(tcp_time_wait->tcp_free_list_cnt == 0);
1717 	}
1718 
1719 	/*
1720 	 * In order to reap time waits reliably, we should use a
1721 	 * source of time that is not adjustable by the user -- hence
1722 	 * the call to ddi_get_lbolt().
1723 	 */
1724 	now = ddi_get_lbolt();
1725 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1726 		/*
1727 		 * Compare times using modular arithmetic, since
1728 		 * lbolt can wrapover.
1729 		 */
1730 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1731 			break;
1732 		}
1733 
1734 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1735 		ASSERT(removed);
1736 
1737 		connp = tcp->tcp_connp;
1738 		ASSERT(connp->conn_fanout != NULL);
1739 		lock = &connp->conn_fanout->connf_lock;
1740 		/*
1741 		 * This is essentially a TW reclaim fast path optimization for
1742 		 * performance where the timewait collector checks under the
1743 		 * fanout lock (so that no one else can get access to the
1744 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1745 		 * the classifier hash list. If ref count is indeed 2, we can
1746 		 * just remove the conn under the fanout lock and avoid
1747 		 * cleaning up the conn under the squeue, provided that
1748 		 * clustering callbacks are not enabled. If clustering is
1749 		 * enabled, we need to make the clustering callback before
1750 		 * setting the CONDEMNED flag and after dropping all locks and
1751 		 * so we forego this optimization and fall back to the slow
1752 		 * path. Also please see the comments in tcp_closei_local
1753 		 * regarding the refcnt logic.
1754 		 *
1755 		 * Since we are holding the tcp_time_wait_lock, its better
1756 		 * not to block on the fanout_lock because other connections
1757 		 * can't add themselves to time_wait list. So we do a
1758 		 * tryenter instead of mutex_enter.
1759 		 */
1760 		if (mutex_tryenter(lock)) {
1761 			mutex_enter(&connp->conn_lock);
1762 			if ((connp->conn_ref == 2) &&
1763 			    (cl_inet_disconnect == NULL)) {
1764 				ipcl_hash_remove_locked(connp,
1765 				    connp->conn_fanout);
1766 				/*
1767 				 * Set the CONDEMNED flag now itself so that
1768 				 * the refcnt cannot increase due to any
1769 				 * walker. But we have still not cleaned up
1770 				 * conn_ire_cache. This is still ok since
1771 				 * we are going to clean it up in tcp_cleanup
1772 				 * immediately and any interface unplumb
1773 				 * thread will wait till the ire is blown away
1774 				 */
1775 				connp->conn_state_flags |= CONN_CONDEMNED;
1776 				mutex_exit(lock);
1777 				mutex_exit(&connp->conn_lock);
1778 				if (tcp_time_wait->tcp_free_list_cnt <
1779 				    tcp_free_list_max_cnt) {
1780 					/* Add to head of tcp_free_list */
1781 					mutex_exit(
1782 					    &tcp_time_wait->tcp_time_wait_lock);
1783 					tcp_cleanup(tcp);
1784 					ASSERT(connp->conn_latch == NULL);
1785 					ASSERT(connp->conn_policy == NULL);
1786 					ASSERT(tcp->tcp_tcps == NULL);
1787 					ASSERT(connp->conn_netstack == NULL);
1788 
1789 					mutex_enter(
1790 					    &tcp_time_wait->tcp_time_wait_lock);
1791 					tcp->tcp_time_wait_next =
1792 					    tcp_time_wait->tcp_free_list;
1793 					tcp_time_wait->tcp_free_list = tcp;
1794 					tcp_time_wait->tcp_free_list_cnt++;
1795 					continue;
1796 				} else {
1797 					/* Do not add to tcp_free_list */
1798 					mutex_exit(
1799 					    &tcp_time_wait->tcp_time_wait_lock);
1800 					tcp_bind_hash_remove(tcp);
1801 					conn_delete_ire(tcp->tcp_connp, NULL);
1802 					tcp_ipsec_cleanup(tcp);
1803 					CONN_DEC_REF(tcp->tcp_connp);
1804 				}
1805 			} else {
1806 				CONN_INC_REF_LOCKED(connp);
1807 				mutex_exit(lock);
1808 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1809 				mutex_exit(&connp->conn_lock);
1810 				/*
1811 				 * We can reuse the closemp here since conn has
1812 				 * detached (otherwise we wouldn't even be in
1813 				 * time_wait list). tcp_closemp_used can safely
1814 				 * be changed without taking a lock as no other
1815 				 * thread can concurrently access it at this
1816 				 * point in the connection lifecycle.
1817 				 */
1818 
1819 				if (tcp->tcp_closemp.b_prev == NULL)
1820 					tcp->tcp_closemp_used = B_TRUE;
1821 				else
1822 					cmn_err(CE_PANIC,
1823 					    "tcp_timewait_collector: "
1824 					    "concurrent use of tcp_closemp: "
1825 					    "connp %p tcp %p\n", (void *)connp,
1826 					    (void *)tcp);
1827 
1828 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1829 				mp = &tcp->tcp_closemp;
1830 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
1831 				    tcp_timewait_output, connp,
1832 				    SQ_FILL, SQTAG_TCP_TIMEWAIT);
1833 			}
1834 		} else {
1835 			mutex_enter(&connp->conn_lock);
1836 			CONN_INC_REF_LOCKED(connp);
1837 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1838 			mutex_exit(&connp->conn_lock);
1839 			/*
1840 			 * We can reuse the closemp here since conn has
1841 			 * detached (otherwise we wouldn't even be in
1842 			 * time_wait list). tcp_closemp_used can safely
1843 			 * be changed without taking a lock as no other
1844 			 * thread can concurrently access it at this
1845 			 * point in the connection lifecycle.
1846 			 */
1847 
1848 			if (tcp->tcp_closemp.b_prev == NULL)
1849 				tcp->tcp_closemp_used = B_TRUE;
1850 			else
1851 				cmn_err(CE_PANIC, "tcp_timewait_collector: "
1852 				    "concurrent use of tcp_closemp: "
1853 				    "connp %p tcp %p\n", (void *)connp,
1854 				    (void *)tcp);
1855 
1856 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1857 			mp = &tcp->tcp_closemp;
1858 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
1859 			    tcp_timewait_output, connp,
1860 			    SQ_FILL, SQTAG_TCP_TIMEWAIT);
1861 		}
1862 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1863 	}
1864 
1865 	if (tcp_time_wait->tcp_free_list != NULL)
1866 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1867 
1868 	tcp_time_wait->tcp_time_wait_tid =
1869 	    timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp,
1870 	    TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION,
1871 	    CALLOUT_FLAG_ROUNDUP);
1872 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1873 }
1874 
1875 /*
1876  * Reply to a clients T_CONN_RES TPI message. This function
1877  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1878  * on the acceptor STREAM and processed in tcp_wput_accept().
1879  * Read the block comment on top of tcp_conn_request().
1880  */
1881 static void
1882 tcp_tli_accept(tcp_t *listener, mblk_t *mp)
1883 {
1884 	tcp_t	*acceptor;
1885 	tcp_t	*eager;
1886 	tcp_t   *tcp;
1887 	struct T_conn_res	*tcr;
1888 	t_uscalar_t	acceptor_id;
1889 	t_scalar_t	seqnum;
1890 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1891 	struct tcp_options *tcpopt;
1892 	mblk_t	*ok_mp;
1893 	mblk_t	*mp1;
1894 	tcp_stack_t	*tcps = listener->tcp_tcps;
1895 	int	error;
1896 
1897 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1898 		tcp_err_ack(listener, mp, TPROTO, 0);
1899 		return;
1900 	}
1901 	tcr = (struct T_conn_res *)mp->b_rptr;
1902 
1903 	/*
1904 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1905 	 * read side queue of the streams device underneath us i.e. the
1906 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1907 	 * look it up in the queue_hash.  Under LP64 it sends down the
1908 	 * minor_t of the accepting endpoint.
1909 	 *
1910 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1911 	 * fanout hash lock is held.
1912 	 * This prevents any thread from entering the acceptor queue from
1913 	 * below (since it has not been hard bound yet i.e. any inbound
1914 	 * packets will arrive on the listener or default tcp queue and
1915 	 * go through tcp_lookup).
1916 	 * The CONN_INC_REF will prevent the acceptor from closing.
1917 	 *
1918 	 * XXX It is still possible for a tli application to send down data
1919 	 * on the accepting stream while another thread calls t_accept.
1920 	 * This should not be a problem for well-behaved applications since
1921 	 * the T_OK_ACK is sent after the queue swapping is completed.
1922 	 *
1923 	 * If the accepting fd is the same as the listening fd, avoid
1924 	 * queue hash lookup since that will return an eager listener in a
1925 	 * already established state.
1926 	 */
1927 	acceptor_id = tcr->ACCEPTOR_id;
1928 	mutex_enter(&listener->tcp_eager_lock);
1929 	if (listener->tcp_acceptor_id == acceptor_id) {
1930 		eager = listener->tcp_eager_next_q;
1931 		/* only count how many T_CONN_INDs so don't count q0 */
1932 		if ((listener->tcp_conn_req_cnt_q != 1) ||
1933 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
1934 			mutex_exit(&listener->tcp_eager_lock);
1935 			tcp_err_ack(listener, mp, TBADF, 0);
1936 			return;
1937 		}
1938 		if (listener->tcp_conn_req_cnt_q0 != 0) {
1939 			/* Throw away all the eagers on q0. */
1940 			tcp_eager_cleanup(listener, 1);
1941 		}
1942 		if (listener->tcp_syn_defense) {
1943 			listener->tcp_syn_defense = B_FALSE;
1944 			if (listener->tcp_ip_addr_cache != NULL) {
1945 				kmem_free(listener->tcp_ip_addr_cache,
1946 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1947 				listener->tcp_ip_addr_cache = NULL;
1948 			}
1949 		}
1950 		/*
1951 		 * Transfer tcp_conn_req_max to the eager so that when
1952 		 * a disconnect occurs we can revert the endpoint to the
1953 		 * listen state.
1954 		 */
1955 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
1956 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
1957 		/*
1958 		 * Get a reference on the acceptor just like the
1959 		 * tcp_acceptor_hash_lookup below.
1960 		 */
1961 		acceptor = listener;
1962 		CONN_INC_REF(acceptor->tcp_connp);
1963 	} else {
1964 		acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps);
1965 		if (acceptor == NULL) {
1966 			if (listener->tcp_debug) {
1967 				(void) strlog(TCP_MOD_ID, 0, 1,
1968 				    SL_ERROR|SL_TRACE,
1969 				    "tcp_accept: did not find acceptor 0x%x\n",
1970 				    acceptor_id);
1971 			}
1972 			mutex_exit(&listener->tcp_eager_lock);
1973 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
1974 			return;
1975 		}
1976 		/*
1977 		 * Verify acceptor state. The acceptable states for an acceptor
1978 		 * include TCPS_IDLE and TCPS_BOUND.
1979 		 */
1980 		switch (acceptor->tcp_state) {
1981 		case TCPS_IDLE:
1982 			/* FALLTHRU */
1983 		case TCPS_BOUND:
1984 			break;
1985 		default:
1986 			CONN_DEC_REF(acceptor->tcp_connp);
1987 			mutex_exit(&listener->tcp_eager_lock);
1988 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
1989 			return;
1990 		}
1991 	}
1992 
1993 	/* The listener must be in TCPS_LISTEN */
1994 	if (listener->tcp_state != TCPS_LISTEN) {
1995 		CONN_DEC_REF(acceptor->tcp_connp);
1996 		mutex_exit(&listener->tcp_eager_lock);
1997 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
1998 		return;
1999 	}
2000 
2001 	/*
2002 	 * Rendezvous with an eager connection request packet hanging off
2003 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2004 	 * tcp structure when the connection packet arrived in
2005 	 * tcp_conn_request().
2006 	 */
2007 	seqnum = tcr->SEQ_number;
2008 	eager = listener;
2009 	do {
2010 		eager = eager->tcp_eager_next_q;
2011 		if (eager == NULL) {
2012 			CONN_DEC_REF(acceptor->tcp_connp);
2013 			mutex_exit(&listener->tcp_eager_lock);
2014 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2015 			return;
2016 		}
2017 	} while (eager->tcp_conn_req_seqnum != seqnum);
2018 	mutex_exit(&listener->tcp_eager_lock);
2019 
2020 	/*
2021 	 * At this point, both acceptor and listener have 2 ref
2022 	 * that they begin with. Acceptor has one additional ref
2023 	 * we placed in lookup while listener has 3 additional
2024 	 * ref for being behind the squeue (tcp_accept() is
2025 	 * done on listener's squeue); being in classifier hash;
2026 	 * and eager's ref on listener.
2027 	 */
2028 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2029 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2030 
2031 	/*
2032 	 * The eager at this point is set in its own squeue and
2033 	 * could easily have been killed (tcp_accept_finish will
2034 	 * deal with that) because of a TH_RST so we can only
2035 	 * ASSERT for a single ref.
2036 	 */
2037 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2038 
2039 	/* Pre allocate the stroptions mblk also */
2040 	opt_mp = allocb(MAX(sizeof (struct tcp_options),
2041 	    sizeof (struct T_conn_res)), BPRI_HI);
2042 	if (opt_mp == NULL) {
2043 		CONN_DEC_REF(acceptor->tcp_connp);
2044 		CONN_DEC_REF(eager->tcp_connp);
2045 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2046 		return;
2047 	}
2048 	DB_TYPE(opt_mp) = M_SETOPTS;
2049 	opt_mp->b_wptr += sizeof (struct tcp_options);
2050 	tcpopt = (struct tcp_options *)opt_mp->b_rptr;
2051 	tcpopt->to_flags = 0;
2052 
2053 	/*
2054 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2055 	 * from listener to acceptor.
2056 	 */
2057 	if (listener->tcp_bound_if != 0) {
2058 		tcpopt->to_flags |= TCPOPT_BOUNDIF;
2059 		tcpopt->to_boundif = listener->tcp_bound_if;
2060 	}
2061 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2062 		tcpopt->to_flags |= TCPOPT_RECVPKTINFO;
2063 	}
2064 
2065 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2066 	if ((mp1 = copymsg(mp)) == NULL) {
2067 		CONN_DEC_REF(acceptor->tcp_connp);
2068 		CONN_DEC_REF(eager->tcp_connp);
2069 		freemsg(opt_mp);
2070 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2071 		return;
2072 	}
2073 
2074 	tcr = (struct T_conn_res *)mp1->b_rptr;
2075 
2076 	/*
2077 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2078 	 * which allocates a larger mblk and appends the new
2079 	 * local address to the ok_ack.  The address is copied by
2080 	 * soaccept() for getsockname().
2081 	 */
2082 	{
2083 		int extra;
2084 
2085 		extra = (eager->tcp_family == AF_INET) ?
2086 		    sizeof (sin_t) : sizeof (sin6_t);
2087 
2088 		/*
2089 		 * Try to re-use mp, if possible.  Otherwise, allocate
2090 		 * an mblk and return it as ok_mp.  In any case, mp
2091 		 * is no longer usable upon return.
2092 		 */
2093 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2094 			CONN_DEC_REF(acceptor->tcp_connp);
2095 			CONN_DEC_REF(eager->tcp_connp);
2096 			freemsg(opt_mp);
2097 			/* Original mp has been freed by now, so use mp1 */
2098 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2099 			return;
2100 		}
2101 
2102 		mp = NULL;	/* We should never use mp after this point */
2103 
2104 		switch (extra) {
2105 		case sizeof (sin_t): {
2106 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2107 
2108 				ok_mp->b_wptr += extra;
2109 				sin->sin_family = AF_INET;
2110 				sin->sin_port = eager->tcp_lport;
2111 				sin->sin_addr.s_addr =
2112 				    eager->tcp_ipha->ipha_src;
2113 				break;
2114 			}
2115 		case sizeof (sin6_t): {
2116 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2117 
2118 				ok_mp->b_wptr += extra;
2119 				sin6->sin6_family = AF_INET6;
2120 				sin6->sin6_port = eager->tcp_lport;
2121 				if (eager->tcp_ipversion == IPV4_VERSION) {
2122 					sin6->sin6_flowinfo = 0;
2123 					IN6_IPADDR_TO_V4MAPPED(
2124 					    eager->tcp_ipha->ipha_src,
2125 					    &sin6->sin6_addr);
2126 				} else {
2127 					ASSERT(eager->tcp_ip6h != NULL);
2128 					sin6->sin6_flowinfo =
2129 					    eager->tcp_ip6h->ip6_vcf &
2130 					    ~IPV6_VERS_AND_FLOW_MASK;
2131 					sin6->sin6_addr =
2132 					    eager->tcp_ip6h->ip6_src;
2133 				}
2134 				sin6->sin6_scope_id = 0;
2135 				sin6->__sin6_src_id = 0;
2136 				break;
2137 			}
2138 		default:
2139 			break;
2140 		}
2141 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2142 	}
2143 
2144 	/*
2145 	 * If there are no options we know that the T_CONN_RES will
2146 	 * succeed. However, we can't send the T_OK_ACK upstream until
2147 	 * the tcp_accept_swap is done since it would be dangerous to
2148 	 * let the application start using the new fd prior to the swap.
2149 	 */
2150 	error = tcp_accept_swap(listener, acceptor, eager);
2151 	if (error != 0) {
2152 		CONN_DEC_REF(acceptor->tcp_connp);
2153 		CONN_DEC_REF(eager->tcp_connp);
2154 		freemsg(ok_mp);
2155 		/* Original mp has been freed by now, so use mp1 */
2156 		tcp_err_ack(listener, mp1, TSYSERR, error);
2157 		return;
2158 	}
2159 
2160 	/*
2161 	 * tcp_accept_swap unlinks eager from listener but does not drop
2162 	 * the eager's reference on the listener.
2163 	 */
2164 	ASSERT(eager->tcp_listener == NULL);
2165 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2166 
2167 	/*
2168 	 * The eager is now associated with its own queue. Insert in
2169 	 * the hash so that the connection can be reused for a future
2170 	 * T_CONN_RES.
2171 	 */
2172 	tcp_acceptor_hash_insert(acceptor_id, eager);
2173 
2174 	/*
2175 	 * We now do the processing of options with T_CONN_RES.
2176 	 * We delay till now since we wanted to have queue to pass to
2177 	 * option processing routines that points back to the right
2178 	 * instance structure which does not happen until after
2179 	 * tcp_accept_swap().
2180 	 *
2181 	 * Note:
2182 	 * The sanity of the logic here assumes that whatever options
2183 	 * are appropriate to inherit from listner=>eager are done
2184 	 * before this point, and whatever were to be overridden (or not)
2185 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2186 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2187 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2188 	 * This may not be true at this point in time but can be fixed
2189 	 * independently. This option processing code starts with
2190 	 * the instantiated acceptor instance and the final queue at
2191 	 * this point.
2192 	 */
2193 
2194 	if (tcr->OPT_length != 0) {
2195 		/* Options to process */
2196 		int t_error = 0;
2197 		int sys_error = 0;
2198 		int do_disconnect = 0;
2199 
2200 		if (tcp_conprim_opt_process(eager, mp1,
2201 		    &do_disconnect, &t_error, &sys_error) < 0) {
2202 			eager->tcp_accept_error = 1;
2203 			if (do_disconnect) {
2204 				/*
2205 				 * An option failed which does not allow
2206 				 * connection to be accepted.
2207 				 *
2208 				 * We allow T_CONN_RES to succeed and
2209 				 * put a T_DISCON_IND on the eager queue.
2210 				 */
2211 				ASSERT(t_error == 0 && sys_error == 0);
2212 				eager->tcp_send_discon_ind = 1;
2213 			} else {
2214 				ASSERT(t_error != 0);
2215 				freemsg(ok_mp);
2216 				/*
2217 				 * Original mp was either freed or set
2218 				 * to ok_mp above, so use mp1 instead.
2219 				 */
2220 				tcp_err_ack(listener, mp1, t_error, sys_error);
2221 				goto finish;
2222 			}
2223 		}
2224 		/*
2225 		 * Most likely success in setting options (except if
2226 		 * eager->tcp_send_discon_ind set).
2227 		 * mp1 option buffer represented by OPT_length/offset
2228 		 * potentially modified and contains results of setting
2229 		 * options at this point
2230 		 */
2231 	}
2232 
2233 	/* We no longer need mp1, since all options processing has passed */
2234 	freemsg(mp1);
2235 
2236 	putnext(listener->tcp_rq, ok_mp);
2237 
2238 	mutex_enter(&listener->tcp_eager_lock);
2239 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2240 		tcp_t	*tail;
2241 		mblk_t	*conn_ind;
2242 
2243 		/*
2244 		 * This path should not be executed if listener and
2245 		 * acceptor streams are the same.
2246 		 */
2247 		ASSERT(listener != acceptor);
2248 
2249 		tcp = listener->tcp_eager_prev_q0;
2250 		/*
2251 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2252 		 * deferred T_conn_ind queue. We need to get to the head of
2253 		 * the queue in order to send up T_conn_ind the same order as
2254 		 * how the 3WHS is completed.
2255 		 */
2256 		while (tcp != listener) {
2257 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2258 				break;
2259 			else
2260 				tcp = tcp->tcp_eager_prev_q0;
2261 		}
2262 		ASSERT(tcp != listener);
2263 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2264 		ASSERT(conn_ind != NULL);
2265 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2266 
2267 		/* Move from q0 to q */
2268 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2269 		listener->tcp_conn_req_cnt_q0--;
2270 		listener->tcp_conn_req_cnt_q++;
2271 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2272 		    tcp->tcp_eager_prev_q0;
2273 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2274 		    tcp->tcp_eager_next_q0;
2275 		tcp->tcp_eager_prev_q0 = NULL;
2276 		tcp->tcp_eager_next_q0 = NULL;
2277 		tcp->tcp_conn_def_q0 = B_FALSE;
2278 
2279 		/* Make sure the tcp isn't in the list of droppables */
2280 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2281 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2282 
2283 		/*
2284 		 * Insert at end of the queue because sockfs sends
2285 		 * down T_CONN_RES in chronological order. Leaving
2286 		 * the older conn indications at front of the queue
2287 		 * helps reducing search time.
2288 		 */
2289 		tail = listener->tcp_eager_last_q;
2290 		if (tail != NULL)
2291 			tail->tcp_eager_next_q = tcp;
2292 		else
2293 			listener->tcp_eager_next_q = tcp;
2294 		listener->tcp_eager_last_q = tcp;
2295 		tcp->tcp_eager_next_q = NULL;
2296 		mutex_exit(&listener->tcp_eager_lock);
2297 		putnext(tcp->tcp_rq, conn_ind);
2298 	} else {
2299 		mutex_exit(&listener->tcp_eager_lock);
2300 	}
2301 
2302 	/*
2303 	 * Done with the acceptor - free it
2304 	 *
2305 	 * Note: from this point on, no access to listener should be made
2306 	 * as listener can be equal to acceptor.
2307 	 */
2308 finish:
2309 	ASSERT(acceptor->tcp_detached);
2310 	ASSERT(tcps->tcps_g_q != NULL);
2311 	ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp));
2312 	acceptor->tcp_rq = tcps->tcps_g_q;
2313 	acceptor->tcp_wq = WR(tcps->tcps_g_q);
2314 	(void) tcp_clean_death(acceptor, 0, 2);
2315 	CONN_DEC_REF(acceptor->tcp_connp);
2316 
2317 	/*
2318 	 * In case we already received a FIN we have to make tcp_rput send
2319 	 * the ordrel_ind. This will also send up a window update if the window
2320 	 * has opened up.
2321 	 *
2322 	 * In the normal case of a successful connection acceptance
2323 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2324 	 * indication that this was just accepted. This tells tcp_rput to
2325 	 * pass up any data queued in tcp_rcv_list.
2326 	 *
2327 	 * In the fringe case where options sent with T_CONN_RES failed and
2328 	 * we required, we would be indicating a T_DISCON_IND to blow
2329 	 * away this connection.
2330 	 */
2331 
2332 	/*
2333 	 * XXX: we currently have a problem if XTI application closes the
2334 	 * acceptor stream in between. This problem exists in on10-gate also
2335 	 * and is well know but nothing can be done short of major rewrite
2336 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2337 	 * eager same squeue as listener (we can distinguish non socket
2338 	 * listeners at the time of handling a SYN in tcp_conn_request)
2339 	 * and do most of the work that tcp_accept_finish does here itself
2340 	 * and then get behind the acceptor squeue to access the acceptor
2341 	 * queue.
2342 	 */
2343 	/*
2344 	 * We already have a ref on tcp so no need to do one before squeue_enter
2345 	 */
2346 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, opt_mp, tcp_accept_finish,
2347 	    eager->tcp_connp, SQ_FILL, SQTAG_TCP_ACCEPT_FINISH);
2348 }
2349 
2350 /*
2351  * Swap information between the eager and acceptor for a TLI/XTI client.
2352  * The sockfs accept is done on the acceptor stream and control goes
2353  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2354  * called. In either case, both the eager and listener are in their own
2355  * perimeter (squeue) and the code has to deal with potential race.
2356  *
2357  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2358  */
2359 static int
2360 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2361 {
2362 	conn_t	*econnp, *aconnp;
2363 	cred_t	*effective_cred = NULL;
2364 
2365 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2366 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2367 	ASSERT(!eager->tcp_hard_bound);
2368 	ASSERT(!TCP_IS_SOCKET(acceptor));
2369 	ASSERT(!TCP_IS_SOCKET(eager));
2370 	ASSERT(!TCP_IS_SOCKET(listener));
2371 
2372 	econnp = eager->tcp_connp;
2373 	aconnp = acceptor->tcp_connp;
2374 
2375 	/*
2376 	 * Trusted Extensions may need to use a security label that is
2377 	 * different from the acceptor's label on MLP and MAC-Exempt
2378 	 * sockets. If this is the case, the required security label
2379 	 * already exists in econnp->conn_effective_cred. Use this label
2380 	 * to generate a new effective cred for the acceptor.
2381 	 *
2382 	 * We allow for potential application level retry attempts by
2383 	 * checking for transient errors before modifying eager.
2384 	 */
2385 	if (is_system_labeled() &&
2386 	    aconnp->conn_cred != NULL && econnp->conn_effective_cred != NULL) {
2387 		effective_cred = copycred_from_tslabel(aconnp->conn_cred,
2388 		    crgetlabel(econnp->conn_effective_cred), KM_NOSLEEP);
2389 		if (effective_cred == NULL)
2390 			return (ENOMEM);
2391 	}
2392 
2393 	acceptor->tcp_detached = B_TRUE;
2394 	/*
2395 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2396 	 * the acceptor id.
2397 	 */
2398 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2399 
2400 	/* remove eager from listen list... */
2401 	mutex_enter(&listener->tcp_eager_lock);
2402 	tcp_eager_unlink(eager);
2403 	ASSERT(eager->tcp_eager_next_q == NULL &&
2404 	    eager->tcp_eager_last_q == NULL);
2405 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2406 	    eager->tcp_eager_prev_q0 == NULL);
2407 	mutex_exit(&listener->tcp_eager_lock);
2408 	eager->tcp_rq = acceptor->tcp_rq;
2409 	eager->tcp_wq = acceptor->tcp_wq;
2410 
2411 	eager->tcp_rq->q_ptr = econnp;
2412 	eager->tcp_wq->q_ptr = econnp;
2413 
2414 	/*
2415 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2416 	 * which might be a different squeue from our peer TCP instance.
2417 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2418 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2419 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2420 	 * above reach global visibility prior to the clearing of tcp_detached.
2421 	 */
2422 	membar_producer();
2423 	eager->tcp_detached = B_FALSE;
2424 
2425 	ASSERT(eager->tcp_ack_tid == 0);
2426 
2427 	econnp->conn_dev = aconnp->conn_dev;
2428 	econnp->conn_minor_arena = aconnp->conn_minor_arena;
2429 
2430 	ASSERT(econnp->conn_minor_arena != NULL);
2431 	if (eager->tcp_cred != NULL)
2432 		crfree(eager->tcp_cred);
2433 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2434 	if (econnp->conn_effective_cred != NULL)
2435 		crfree(econnp->conn_effective_cred);
2436 	econnp->conn_effective_cred = effective_cred;
2437 	aconnp->conn_cred = NULL;
2438 	ASSERT(aconnp->conn_effective_cred == NULL);
2439 
2440 	ASSERT(econnp->conn_netstack == aconnp->conn_netstack);
2441 	ASSERT(eager->tcp_tcps == acceptor->tcp_tcps);
2442 
2443 	econnp->conn_zoneid = aconnp->conn_zoneid;
2444 	econnp->conn_allzones = aconnp->conn_allzones;
2445 
2446 	aconnp->conn_mac_exempt = B_FALSE;
2447 
2448 	/* Do the IPC initialization */
2449 	CONN_INC_REF(econnp);
2450 
2451 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2452 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2453 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2454 
2455 	/* Done with old IPC. Drop its ref on its connp */
2456 	CONN_DEC_REF(aconnp);
2457 	return (0);
2458 }
2459 
2460 
2461 /*
2462  * Adapt to the information, such as rtt and rtt_sd, provided from the
2463  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2464  *
2465  * Checks for multicast and broadcast destination address.
2466  * Returns zero on failure; non-zero if ok.
2467  *
2468  * Note that the MSS calculation here is based on the info given in
2469  * the IRE.  We do not do any calculation based on TCP options.  They
2470  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2471  * knows which options to use.
2472  *
2473  * Note on how TCP gets its parameters for a connection.
2474  *
2475  * When a tcp_t structure is allocated, it gets all the default parameters.
2476  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2477  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2478  * default.
2479  *
2480  * An incoming SYN with a multicast or broadcast destination address, is dropped
2481  * in 1 of 2 places.
2482  *
2483  * 1. If the packet was received over the wire it is dropped in
2484  * ip_rput_process_broadcast()
2485  *
2486  * 2. If the packet was received through internal IP loopback, i.e. the packet
2487  * was generated and received on the same machine, it is dropped in
2488  * ip_wput_local()
2489  *
2490  * An incoming SYN with a multicast or broadcast source address is always
2491  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2492  * reject an attempt to connect to a broadcast or multicast (destination)
2493  * address.
2494  */
2495 static int
2496 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2497 {
2498 	ire_t		*ire;
2499 	ire_t		*sire = NULL;
2500 	iulp_t		*ire_uinfo = NULL;
2501 	uint32_t	mss_max;
2502 	uint32_t	mss;
2503 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2504 	conn_t		*connp = tcp->tcp_connp;
2505 	boolean_t	ire_cacheable = B_FALSE;
2506 	zoneid_t	zoneid = connp->conn_zoneid;
2507 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2508 	    MATCH_IRE_SECATTR;
2509 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2510 	ill_t		*ill = NULL;
2511 	boolean_t	incoming = (ire_mp == NULL);
2512 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2513 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
2514 
2515 	ASSERT(connp->conn_ire_cache == NULL);
2516 
2517 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2518 
2519 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2520 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
2521 			return (0);
2522 		}
2523 		/*
2524 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2525 		 * for the destination with the nexthop as gateway.
2526 		 * ire_ctable_lookup() is used because this particular
2527 		 * ire, if it exists, will be marked private.
2528 		 * If that is not available, use the interface ire
2529 		 * for the nexthop.
2530 		 *
2531 		 * TSol: tcp_update_label will detect label mismatches based
2532 		 * only on the destination's label, but that would not
2533 		 * detect label mismatches based on the security attributes
2534 		 * of routes or next hop gateway. Hence we need to pass the
2535 		 * label to ire_ftable_lookup below in order to locate the
2536 		 * right prefix (and/or) ire cache. Similarly we also need
2537 		 * pass the label to the ire_cache_lookup below to locate
2538 		 * the right ire that also matches on the label.
2539 		 */
2540 		if (tcp->tcp_connp->conn_nexthop_set) {
2541 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2542 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2543 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW,
2544 			    ipst);
2545 			if (ire == NULL) {
2546 				ire = ire_ftable_lookup(
2547 				    tcp->tcp_connp->conn_nexthop_v4,
2548 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2549 				    tsl, match_flags, ipst);
2550 				if (ire == NULL)
2551 					return (0);
2552 			} else {
2553 				ire_uinfo = &ire->ire_uinfo;
2554 			}
2555 		} else {
2556 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2557 			    zoneid, tsl, ipst);
2558 			if (ire != NULL) {
2559 				ire_cacheable = B_TRUE;
2560 				ire_uinfo = (ire_mp != NULL) ?
2561 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2562 				    &ire->ire_uinfo;
2563 
2564 			} else {
2565 				if (ire_mp == NULL) {
2566 					ire = ire_ftable_lookup(
2567 					    tcp->tcp_connp->conn_rem,
2568 					    0, 0, 0, NULL, &sire, zoneid, 0,
2569 					    tsl, (MATCH_IRE_RECURSIVE |
2570 					    MATCH_IRE_DEFAULT), ipst);
2571 					if (ire == NULL)
2572 						return (0);
2573 					ire_uinfo = (sire != NULL) ?
2574 					    &sire->ire_uinfo :
2575 					    &ire->ire_uinfo;
2576 				} else {
2577 					ire = (ire_t *)ire_mp->b_rptr;
2578 					ire_uinfo =
2579 					    &((ire_t *)
2580 					    ire_mp->b_rptr)->ire_uinfo;
2581 				}
2582 			}
2583 		}
2584 		ASSERT(ire != NULL);
2585 
2586 		if ((ire->ire_src_addr == INADDR_ANY) ||
2587 		    (ire->ire_type & IRE_BROADCAST)) {
2588 			/*
2589 			 * ire->ire_mp is non null when ire_mp passed in is used
2590 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2591 			 */
2592 			if (ire->ire_mp == NULL)
2593 				ire_refrele(ire);
2594 			if (sire != NULL)
2595 				ire_refrele(sire);
2596 			return (0);
2597 		}
2598 
2599 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2600 			ipaddr_t src_addr;
2601 
2602 			/*
2603 			 * ip_bind_connected() has stored the correct source
2604 			 * address in conn_src.
2605 			 */
2606 			src_addr = tcp->tcp_connp->conn_src;
2607 			tcp->tcp_ipha->ipha_src = src_addr;
2608 			/*
2609 			 * Copy of the src addr. in tcp_t is needed
2610 			 * for the lookup funcs.
2611 			 */
2612 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2613 		}
2614 		/*
2615 		 * Set the fragment bit so that IP will tell us if the MTU
2616 		 * should change. IP tells us the latest setting of
2617 		 * ip_path_mtu_discovery through ire_frag_flag.
2618 		 */
2619 		if (ipst->ips_ip_path_mtu_discovery) {
2620 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2621 			    htons(IPH_DF);
2622 		}
2623 		/*
2624 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2625 		 * for IP_NEXTHOP. No cache ire has been found for the
2626 		 * destination and we are working with the nexthop's
2627 		 * interface ire. Since we need to forward all packets
2628 		 * to the nexthop first, we "blindly" set tcp_localnet
2629 		 * to false, eventhough the destination may also be
2630 		 * onlink.
2631 		 */
2632 		if (ire_uinfo == NULL)
2633 			tcp->tcp_localnet = 0;
2634 		else
2635 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2636 	} else {
2637 		/*
2638 		 * For incoming connection ire_mp = NULL
2639 		 * For outgoing connection ire_mp != NULL
2640 		 * Technically we should check conn_incoming_ill
2641 		 * when ire_mp is NULL and conn_outgoing_ill when
2642 		 * ire_mp is non-NULL. But this is performance
2643 		 * critical path and for IPV*_BOUND_IF, outgoing
2644 		 * and incoming ill are always set to the same value.
2645 		 */
2646 		ill_t	*dst_ill = NULL;
2647 		ipif_t  *dst_ipif = NULL;
2648 
2649 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2650 
2651 		if (connp->conn_outgoing_ill != NULL) {
2652 			/* Outgoing or incoming path */
2653 			int   err;
2654 
2655 			dst_ill = conn_get_held_ill(connp,
2656 			    &connp->conn_outgoing_ill, &err);
2657 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2658 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2659 				return (0);
2660 			}
2661 			match_flags |= MATCH_IRE_ILL;
2662 			dst_ipif = dst_ill->ill_ipif;
2663 		}
2664 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2665 		    0, 0, dst_ipif, zoneid, tsl, match_flags, ipst);
2666 
2667 		if (ire != NULL) {
2668 			ire_cacheable = B_TRUE;
2669 			ire_uinfo = (ire_mp != NULL) ?
2670 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2671 			    &ire->ire_uinfo;
2672 		} else {
2673 			if (ire_mp == NULL) {
2674 				ire = ire_ftable_lookup_v6(
2675 				    &tcp->tcp_connp->conn_remv6,
2676 				    0, 0, 0, dst_ipif, &sire, zoneid,
2677 				    0, tsl, match_flags, ipst);
2678 				if (ire == NULL) {
2679 					if (dst_ill != NULL)
2680 						ill_refrele(dst_ill);
2681 					return (0);
2682 				}
2683 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2684 				    &ire->ire_uinfo;
2685 			} else {
2686 				ire = (ire_t *)ire_mp->b_rptr;
2687 				ire_uinfo =
2688 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2689 			}
2690 		}
2691 		if (dst_ill != NULL)
2692 			ill_refrele(dst_ill);
2693 
2694 		ASSERT(ire != NULL);
2695 		ASSERT(ire_uinfo != NULL);
2696 
2697 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2698 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2699 			/*
2700 			 * ire->ire_mp is non null when ire_mp passed in is used
2701 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2702 			 */
2703 			if (ire->ire_mp == NULL)
2704 				ire_refrele(ire);
2705 			if (sire != NULL)
2706 				ire_refrele(sire);
2707 			return (0);
2708 		}
2709 
2710 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2711 			in6_addr_t	src_addr;
2712 
2713 			/*
2714 			 * ip_bind_connected_v6() has stored the correct source
2715 			 * address per IPv6 addr. selection policy in
2716 			 * conn_src_v6.
2717 			 */
2718 			src_addr = tcp->tcp_connp->conn_srcv6;
2719 
2720 			tcp->tcp_ip6h->ip6_src = src_addr;
2721 			/*
2722 			 * Copy of the src addr. in tcp_t is needed
2723 			 * for the lookup funcs.
2724 			 */
2725 			tcp->tcp_ip_src_v6 = src_addr;
2726 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2727 			    &connp->conn_srcv6));
2728 		}
2729 		tcp->tcp_localnet =
2730 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2731 	}
2732 
2733 	/*
2734 	 * This allows applications to fail quickly when connections are made
2735 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2736 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2737 	 */
2738 	if ((ire->ire_flags & RTF_REJECT) &&
2739 	    (ire->ire_flags & RTF_PRIVATE))
2740 		goto error;
2741 
2742 	/*
2743 	 * Make use of the cached rtt and rtt_sd values to calculate the
2744 	 * initial RTO.  Note that they are already initialized in
2745 	 * tcp_init_values().
2746 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2747 	 * IP_NEXTHOP, but instead are using the interface ire for the
2748 	 * nexthop, then we do not use the ire_uinfo from that ire to
2749 	 * do any initializations.
2750 	 */
2751 	if (ire_uinfo != NULL) {
2752 		if (ire_uinfo->iulp_rtt != 0) {
2753 			clock_t	rto;
2754 
2755 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2756 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2757 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2758 			    tcps->tcps_rexmit_interval_extra +
2759 			    (tcp->tcp_rtt_sa >> 5);
2760 
2761 			if (rto > tcps->tcps_rexmit_interval_max) {
2762 				tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
2763 			} else if (rto < tcps->tcps_rexmit_interval_min) {
2764 				tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
2765 			} else {
2766 				tcp->tcp_rto = rto;
2767 			}
2768 		}
2769 		if (ire_uinfo->iulp_ssthresh != 0)
2770 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2771 		else
2772 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2773 		if (ire_uinfo->iulp_spipe > 0) {
2774 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2775 			    tcps->tcps_max_buf);
2776 			if (tcps->tcps_snd_lowat_fraction != 0)
2777 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2778 				    tcps->tcps_snd_lowat_fraction;
2779 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2780 		}
2781 		/*
2782 		 * Note that up till now, acceptor always inherits receive
2783 		 * window from the listener.  But if there is a metrics
2784 		 * associated with a host, we should use that instead of
2785 		 * inheriting it from listener. Thus we need to pass this
2786 		 * info back to the caller.
2787 		 */
2788 		if (ire_uinfo->iulp_rpipe > 0) {
2789 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe,
2790 			    tcps->tcps_max_buf);
2791 		}
2792 
2793 		if (ire_uinfo->iulp_rtomax > 0) {
2794 			tcp->tcp_second_timer_threshold =
2795 			    ire_uinfo->iulp_rtomax;
2796 		}
2797 
2798 		/*
2799 		 * Use the metric option settings, iulp_tstamp_ok and
2800 		 * iulp_wscale_ok, only for active open. What this means
2801 		 * is that if the other side uses timestamp or window
2802 		 * scale option, TCP will also use those options. That
2803 		 * is for passive open.  If the application sets a
2804 		 * large window, window scale is enabled regardless of
2805 		 * the value in iulp_wscale_ok.  This is the behavior
2806 		 * since 2.6.  So we keep it.
2807 		 * The only case left in passive open processing is the
2808 		 * check for SACK.
2809 		 * For ECN, it should probably be like SACK.  But the
2810 		 * current value is binary, so we treat it like the other
2811 		 * cases.  The metric only controls active open.For passive
2812 		 * open, the ndd param, tcp_ecn_permitted, controls the
2813 		 * behavior.
2814 		 */
2815 		if (!tcp_detached) {
2816 			/*
2817 			 * The if check means that the following can only
2818 			 * be turned on by the metrics only IRE, but not off.
2819 			 */
2820 			if (ire_uinfo->iulp_tstamp_ok)
2821 				tcp->tcp_snd_ts_ok = B_TRUE;
2822 			if (ire_uinfo->iulp_wscale_ok)
2823 				tcp->tcp_snd_ws_ok = B_TRUE;
2824 			if (ire_uinfo->iulp_sack == 2)
2825 				tcp->tcp_snd_sack_ok = B_TRUE;
2826 			if (ire_uinfo->iulp_ecn_ok)
2827 				tcp->tcp_ecn_ok = B_TRUE;
2828 		} else {
2829 			/*
2830 			 * Passive open.
2831 			 *
2832 			 * As above, the if check means that SACK can only be
2833 			 * turned on by the metric only IRE.
2834 			 */
2835 			if (ire_uinfo->iulp_sack > 0) {
2836 				tcp->tcp_snd_sack_ok = B_TRUE;
2837 			}
2838 		}
2839 	}
2840 
2841 
2842 	/*
2843 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2844 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2845 	 * length of all those options exceeds 28 bytes.  But because
2846 	 * of the tcp_mss_min check below, we may not have a problem if
2847 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2848 	 * the negative problem still exists.  And the check defeats PMTUd.
2849 	 * In fact, if PMTUd finds that the MSS should be smaller than
2850 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2851 	 * value.
2852 	 *
2853 	 * We do not deal with that now.  All those problems related to
2854 	 * PMTUd will be fixed later.
2855 	 */
2856 	ASSERT(ire->ire_max_frag != 0);
2857 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2858 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2859 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2860 			mss = MIN(mss, IPV6_MIN_MTU);
2861 		}
2862 	}
2863 
2864 	/* Sanity check for MSS value. */
2865 	if (tcp->tcp_ipversion == IPV4_VERSION)
2866 		mss_max = tcps->tcps_mss_max_ipv4;
2867 	else
2868 		mss_max = tcps->tcps_mss_max_ipv6;
2869 
2870 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2871 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2872 		/*
2873 		 * After receiving an ICMPv6 "packet too big" message with a
2874 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2875 		 * will insert a 8-byte fragment header in every packet; we
2876 		 * reduce the MSS by that amount here.
2877 		 */
2878 		mss -= sizeof (ip6_frag_t);
2879 	}
2880 
2881 	if (tcp->tcp_ipsec_overhead == 0)
2882 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2883 
2884 	mss -= tcp->tcp_ipsec_overhead;
2885 
2886 	if (mss < tcps->tcps_mss_min)
2887 		mss = tcps->tcps_mss_min;
2888 	if (mss > mss_max)
2889 		mss = mss_max;
2890 
2891 	/* Note that this is the maximum MSS, excluding all options. */
2892 	tcp->tcp_mss = mss;
2893 
2894 	/*
2895 	 * Initialize the ISS here now that we have the full connection ID.
2896 	 * The RFC 1948 method of initial sequence number generation requires
2897 	 * knowledge of the full connection ID before setting the ISS.
2898 	 */
2899 
2900 	tcp_iss_init(tcp);
2901 
2902 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2903 		tcp->tcp_loopback = B_TRUE;
2904 
2905 	if (sire != NULL)
2906 		IRE_REFRELE(sire);
2907 
2908 	/*
2909 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2910 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2911 	 */
2912 	if (tcp->tcp_loopback ||
2913 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2914 		/*
2915 		 * For incoming, see if this tcp may be MDT-capable.  For
2916 		 * outgoing, this process has been taken care of through
2917 		 * tcp_rput_other.
2918 		 */
2919 		tcp_ire_ill_check(tcp, ire, ill, incoming);
2920 		tcp->tcp_ire_ill_check_done = B_TRUE;
2921 	}
2922 
2923 	mutex_enter(&connp->conn_lock);
2924 	/*
2925 	 * Make sure that conn is not marked incipient
2926 	 * for incoming connections. A blind
2927 	 * removal of incipient flag is cheaper than
2928 	 * check and removal.
2929 	 */
2930 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2931 
2932 	/*
2933 	 * Must not cache forwarding table routes
2934 	 * or recache an IRE after the conn_t has
2935 	 * had conn_ire_cache cleared and is flagged
2936 	 * unusable, (see the CONN_CACHE_IRE() macro).
2937 	 */
2938 	if (ire_cacheable && CONN_CACHE_IRE(connp)) {
2939 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
2940 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
2941 			connp->conn_ire_cache = ire;
2942 			IRE_UNTRACE_REF(ire);
2943 			rw_exit(&ire->ire_bucket->irb_lock);
2944 			mutex_exit(&connp->conn_lock);
2945 			return (1);
2946 		}
2947 		rw_exit(&ire->ire_bucket->irb_lock);
2948 	}
2949 	mutex_exit(&connp->conn_lock);
2950 
2951 	if (ire->ire_mp == NULL)
2952 		ire_refrele(ire);
2953 	return (1);
2954 
2955 error:
2956 	if (ire->ire_mp == NULL)
2957 		ire_refrele(ire);
2958 	if (sire != NULL)
2959 		ire_refrele(sire);
2960 	return (0);
2961 }
2962 
2963 static void
2964 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp)
2965 {
2966 	int	error;
2967 	conn_t	*connp = tcp->tcp_connp;
2968 	struct sockaddr	*sa;
2969 	mblk_t  *mp1;
2970 	struct T_bind_req *tbr;
2971 	int	backlog;
2972 	socklen_t	len;
2973 	sin_t	*sin;
2974 	sin6_t	*sin6;
2975 	cred_t		*cr;
2976 
2977 	/*
2978 	 * All Solaris components should pass a db_credp
2979 	 * for this TPI message, hence we ASSERT.
2980 	 * But in case there is some other M_PROTO that looks
2981 	 * like a TPI message sent by some other kernel
2982 	 * component, we check and return an error.
2983 	 */
2984 	cr = msg_getcred(mp, NULL);
2985 	ASSERT(cr != NULL);
2986 	if (cr == NULL) {
2987 		tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
2988 		return;
2989 	}
2990 
2991 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
2992 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
2993 		if (tcp->tcp_debug) {
2994 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
2995 			    "tcp_tpi_bind: bad req, len %u",
2996 			    (uint_t)(mp->b_wptr - mp->b_rptr));
2997 		}
2998 		tcp_err_ack(tcp, mp, TPROTO, 0);
2999 		return;
3000 	}
3001 	/* Make sure the largest address fits */
3002 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3003 	if (mp1 == NULL) {
3004 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3005 		return;
3006 	}
3007 	mp = mp1;
3008 	tbr = (struct T_bind_req *)mp->b_rptr;
3009 
3010 	backlog = tbr->CONIND_number;
3011 	len = tbr->ADDR_length;
3012 
3013 	switch (len) {
3014 	case 0:		/* request for a generic port */
3015 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3016 		if (tcp->tcp_family == AF_INET) {
3017 			tbr->ADDR_length = sizeof (sin_t);
3018 			sin = (sin_t *)&tbr[1];
3019 			*sin = sin_null;
3020 			sin->sin_family = AF_INET;
3021 			sa = (struct sockaddr *)sin;
3022 			len = sizeof (sin_t);
3023 			mp->b_wptr = (uchar_t *)&sin[1];
3024 		} else {
3025 			ASSERT(tcp->tcp_family == AF_INET6);
3026 			tbr->ADDR_length = sizeof (sin6_t);
3027 			sin6 = (sin6_t *)&tbr[1];
3028 			*sin6 = sin6_null;
3029 			sin6->sin6_family = AF_INET6;
3030 			sa = (struct sockaddr *)sin6;
3031 			len = sizeof (sin6_t);
3032 			mp->b_wptr = (uchar_t *)&sin6[1];
3033 		}
3034 		break;
3035 
3036 	case sizeof (sin_t):    /* Complete IPv4 address */
3037 		sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset,
3038 		    sizeof (sin_t));
3039 		break;
3040 
3041 	case sizeof (sin6_t): /* Complete IPv6 address */
3042 		sa = (struct sockaddr *)mi_offset_param(mp,
3043 		    tbr->ADDR_offset, sizeof (sin6_t));
3044 		break;
3045 
3046 	default:
3047 		if (tcp->tcp_debug) {
3048 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3049 			    "tcp_tpi_bind: bad address length, %d",
3050 			    tbr->ADDR_length);
3051 		}
3052 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3053 		return;
3054 	}
3055 
3056 	if (backlog > 0) {
3057 		error = tcp_do_listen(connp, sa, len, backlog, DB_CRED(mp),
3058 		    tbr->PRIM_type != O_T_BIND_REQ);
3059 	} else {
3060 		error = tcp_do_bind(connp, sa, len, DB_CRED(mp),
3061 		    tbr->PRIM_type != O_T_BIND_REQ);
3062 	}
3063 done:
3064 	if (error > 0) {
3065 		tcp_err_ack(tcp, mp, TSYSERR, error);
3066 	} else if (error < 0) {
3067 		tcp_err_ack(tcp, mp, -error, 0);
3068 	} else {
3069 		/*
3070 		 * Update port information as sockfs/tpi needs it for checking
3071 		 */
3072 		if (tcp->tcp_family == AF_INET) {
3073 			sin = (sin_t *)sa;
3074 			sin->sin_port = tcp->tcp_lport;
3075 		} else {
3076 			sin6 = (sin6_t *)sa;
3077 			sin6->sin6_port = tcp->tcp_lport;
3078 		}
3079 		mp->b_datap->db_type = M_PCPROTO;
3080 		tbr->PRIM_type = T_BIND_ACK;
3081 		putnext(tcp->tcp_rq, mp);
3082 	}
3083 }
3084 
3085 /*
3086  * If the "bind_to_req_port_only" parameter is set, if the requested port
3087  * number is available, return it, If not return 0
3088  *
3089  * If "bind_to_req_port_only" parameter is not set and
3090  * If the requested port number is available, return it.  If not, return
3091  * the first anonymous port we happen across.  If no anonymous ports are
3092  * available, return 0. addr is the requested local address, if any.
3093  *
3094  * In either case, when succeeding update the tcp_t to record the port number
3095  * and insert it in the bind hash table.
3096  *
3097  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3098  * without setting SO_REUSEADDR. This is needed so that they
3099  * can be viewed as two independent transport protocols.
3100  */
3101 static in_port_t
3102 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3103     int reuseaddr, boolean_t quick_connect,
3104     boolean_t bind_to_req_port_only, boolean_t user_specified)
3105 {
3106 	/* number of times we have run around the loop */
3107 	int count = 0;
3108 	/* maximum number of times to run around the loop */
3109 	int loopmax;
3110 	conn_t *connp = tcp->tcp_connp;
3111 	zoneid_t zoneid = connp->conn_zoneid;
3112 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3113 
3114 	/*
3115 	 * Lookup for free addresses is done in a loop and "loopmax"
3116 	 * influences how long we spin in the loop
3117 	 */
3118 	if (bind_to_req_port_only) {
3119 		/*
3120 		 * If the requested port is busy, don't bother to look
3121 		 * for a new one. Setting loop maximum count to 1 has
3122 		 * that effect.
3123 		 */
3124 		loopmax = 1;
3125 	} else {
3126 		/*
3127 		 * If the requested port is busy, look for a free one
3128 		 * in the anonymous port range.
3129 		 * Set loopmax appropriately so that one does not look
3130 		 * forever in the case all of the anonymous ports are in use.
3131 		 */
3132 		if (tcp->tcp_anon_priv_bind) {
3133 			/*
3134 			 * loopmax =
3135 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3136 			 */
3137 			loopmax = IPPORT_RESERVED -
3138 			    tcps->tcps_min_anonpriv_port;
3139 		} else {
3140 			loopmax = (tcps->tcps_largest_anon_port -
3141 			    tcps->tcps_smallest_anon_port + 1);
3142 		}
3143 	}
3144 	do {
3145 		uint16_t	lport;
3146 		tf_t		*tbf;
3147 		tcp_t		*ltcp;
3148 		conn_t		*lconnp;
3149 
3150 		lport = htons(port);
3151 
3152 		/*
3153 		 * Ensure that the tcp_t is not currently in the bind hash.
3154 		 * Hold the lock on the hash bucket to ensure that
3155 		 * the duplicate check plus the insertion is an atomic
3156 		 * operation.
3157 		 *
3158 		 * This function does an inline lookup on the bind hash list
3159 		 * Make sure that we access only members of tcp_t
3160 		 * and that we don't look at tcp_tcp, since we are not
3161 		 * doing a CONN_INC_REF.
3162 		 */
3163 		tcp_bind_hash_remove(tcp);
3164 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)];
3165 		mutex_enter(&tbf->tf_lock);
3166 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3167 		    ltcp = ltcp->tcp_bind_hash) {
3168 			if (lport == ltcp->tcp_lport)
3169 				break;
3170 		}
3171 
3172 		for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) {
3173 			boolean_t not_socket;
3174 			boolean_t exclbind;
3175 
3176 			lconnp = ltcp->tcp_connp;
3177 
3178 			/*
3179 			 * On a labeled system, we must treat bindings to ports
3180 			 * on shared IP addresses by sockets with MAC exemption
3181 			 * privilege as being in all zones, as there's
3182 			 * otherwise no way to identify the right receiver.
3183 			 */
3184 			if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) ||
3185 			    IPCL_ZONE_MATCH(connp,
3186 			    ltcp->tcp_connp->conn_zoneid)) &&
3187 			    !lconnp->conn_mac_exempt &&
3188 			    !connp->conn_mac_exempt)
3189 				continue;
3190 
3191 			/*
3192 			 * If TCP_EXCLBIND is set for either the bound or
3193 			 * binding endpoint, the semantics of bind
3194 			 * is changed according to the following.
3195 			 *
3196 			 * spec = specified address (v4 or v6)
3197 			 * unspec = unspecified address (v4 or v6)
3198 			 * A = specified addresses are different for endpoints
3199 			 *
3200 			 * bound	bind to		allowed
3201 			 * -------------------------------------
3202 			 * unspec	unspec		no
3203 			 * unspec	spec		no
3204 			 * spec		unspec		no
3205 			 * spec		spec		yes if A
3206 			 *
3207 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3208 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3209 			 *
3210 			 * Note:
3211 			 *
3212 			 * 1. Because of TLI semantics, an endpoint can go
3213 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3214 			 * TCPS_BOUND, depending on whether it is originally
3215 			 * a listener or not.  That is why we need to check
3216 			 * for states greater than or equal to TCPS_BOUND
3217 			 * here.
3218 			 *
3219 			 * 2. Ideally, we should only check for state equals
3220 			 * to TCPS_LISTEN. And the following check should be
3221 			 * added.
3222 			 *
3223 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3224 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3225 			 *		...
3226 			 * }
3227 			 *
3228 			 * The semantics will be changed to this.  If the
3229 			 * endpoint on the list is in state not equal to
3230 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3231 			 * set, let the bind succeed.
3232 			 *
3233 			 * Because of (1), we cannot do that for TLI
3234 			 * endpoints.  But we can do that for socket endpoints.
3235 			 * If in future, we can change this going back
3236 			 * semantics, we can use the above check for TLI also.
3237 			 */
3238 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3239 			    TCP_IS_SOCKET(tcp));
3240 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3241 
3242 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3243 			    (exclbind && (not_socket ||
3244 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3245 				if (V6_OR_V4_INADDR_ANY(
3246 				    ltcp->tcp_bound_source_v6) ||
3247 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3248 				    IN6_ARE_ADDR_EQUAL(laddr,
3249 				    &ltcp->tcp_bound_source_v6)) {
3250 					break;
3251 				}
3252 				continue;
3253 			}
3254 
3255 			/*
3256 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3257 			 * have disjoint port number spaces, if *_EXCLBIND
3258 			 * is not set and only if the application binds to a
3259 			 * specific port. We use the same autoassigned port
3260 			 * number space for IPv4 and IPv6 sockets.
3261 			 */
3262 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3263 			    bind_to_req_port_only)
3264 				continue;
3265 
3266 			/*
3267 			 * Ideally, we should make sure that the source
3268 			 * address, remote address, and remote port in the
3269 			 * four tuple for this tcp-connection is unique.
3270 			 * However, trying to find out the local source
3271 			 * address would require too much code duplication
3272 			 * with IP, since IP needs needs to have that code
3273 			 * to support userland TCP implementations.
3274 			 */
3275 			if (quick_connect &&
3276 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3277 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3278 			    !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3279 			    &ltcp->tcp_remote_v6)))
3280 				continue;
3281 
3282 			if (!reuseaddr) {
3283 				/*
3284 				 * No socket option SO_REUSEADDR.
3285 				 * If existing port is bound to
3286 				 * a non-wildcard IP address
3287 				 * and the requesting stream is
3288 				 * bound to a distinct
3289 				 * different IP addresses
3290 				 * (non-wildcard, also), keep
3291 				 * going.
3292 				 */
3293 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3294 				    !V6_OR_V4_INADDR_ANY(
3295 				    ltcp->tcp_bound_source_v6) &&
3296 				    !IN6_ARE_ADDR_EQUAL(laddr,
3297 				    &ltcp->tcp_bound_source_v6))
3298 					continue;
3299 				if (ltcp->tcp_state >= TCPS_BOUND) {
3300 					/*
3301 					 * This port is being used and
3302 					 * its state is >= TCPS_BOUND,
3303 					 * so we can't bind to it.
3304 					 */
3305 					break;
3306 				}
3307 			} else {
3308 				/*
3309 				 * socket option SO_REUSEADDR is set on the
3310 				 * binding tcp_t.
3311 				 *
3312 				 * If two streams are bound to
3313 				 * same IP address or both addr
3314 				 * and bound source are wildcards
3315 				 * (INADDR_ANY), we want to stop
3316 				 * searching.
3317 				 * We have found a match of IP source
3318 				 * address and source port, which is
3319 				 * refused regardless of the
3320 				 * SO_REUSEADDR setting, so we break.
3321 				 */
3322 				if (IN6_ARE_ADDR_EQUAL(laddr,
3323 				    &ltcp->tcp_bound_source_v6) &&
3324 				    (ltcp->tcp_state == TCPS_LISTEN ||
3325 				    ltcp->tcp_state == TCPS_BOUND))
3326 					break;
3327 			}
3328 		}
3329 		if (ltcp != NULL) {
3330 			/* The port number is busy */
3331 			mutex_exit(&tbf->tf_lock);
3332 		} else {
3333 			/*
3334 			 * This port is ours. Insert in fanout and mark as
3335 			 * bound to prevent others from getting the port
3336 			 * number.
3337 			 */
3338 			tcp->tcp_state = TCPS_BOUND;
3339 			tcp->tcp_lport = htons(port);
3340 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3341 
3342 			ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH(
3343 			    tcp->tcp_lport)] == tbf);
3344 			tcp_bind_hash_insert(tbf, tcp, 1);
3345 
3346 			mutex_exit(&tbf->tf_lock);
3347 
3348 			/*
3349 			 * We don't want tcp_next_port_to_try to "inherit"
3350 			 * a port number supplied by the user in a bind.
3351 			 */
3352 			if (user_specified)
3353 				return (port);
3354 
3355 			/*
3356 			 * This is the only place where tcp_next_port_to_try
3357 			 * is updated. After the update, it may or may not
3358 			 * be in the valid range.
3359 			 */
3360 			if (!tcp->tcp_anon_priv_bind)
3361 				tcps->tcps_next_port_to_try = port + 1;
3362 			return (port);
3363 		}
3364 
3365 		if (tcp->tcp_anon_priv_bind) {
3366 			port = tcp_get_next_priv_port(tcp);
3367 		} else {
3368 			if (count == 0 && user_specified) {
3369 				/*
3370 				 * We may have to return an anonymous port. So
3371 				 * get one to start with.
3372 				 */
3373 				port =
3374 				    tcp_update_next_port(
3375 				    tcps->tcps_next_port_to_try,
3376 				    tcp, B_TRUE);
3377 				user_specified = B_FALSE;
3378 			} else {
3379 				port = tcp_update_next_port(port + 1, tcp,
3380 				    B_FALSE);
3381 			}
3382 		}
3383 		if (port == 0)
3384 			break;
3385 
3386 		/*
3387 		 * Don't let this loop run forever in the case where
3388 		 * all of the anonymous ports are in use.
3389 		 */
3390 	} while (++count < loopmax);
3391 	return (0);
3392 }
3393 
3394 /*
3395  * tcp_clean_death / tcp_close_detached must not be called more than once
3396  * on a tcp. Thus every function that potentially calls tcp_clean_death
3397  * must check for the tcp state before calling tcp_clean_death.
3398  * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper,
3399  * tcp_timer_handler, all check for the tcp state.
3400  */
3401 /* ARGSUSED */
3402 void
3403 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2)
3404 {
3405 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
3406 
3407 	freemsg(mp);
3408 	if (tcp->tcp_state > TCPS_BOUND)
3409 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp,
3410 		    ETIMEDOUT, 5);
3411 }
3412 
3413 /*
3414  * We are dying for some reason.  Try to do it gracefully.  (May be called
3415  * as writer.)
3416  *
3417  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3418  * done by a service procedure).
3419  * TBD - Should the return value distinguish between the tcp_t being
3420  * freed and it being reinitialized?
3421  */
3422 static int
3423 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3424 {
3425 	mblk_t	*mp;
3426 	queue_t	*q;
3427 	conn_t	*connp = tcp->tcp_connp;
3428 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3429 
3430 	TCP_CLD_STAT(tag);
3431 
3432 #if TCP_TAG_CLEAN_DEATH
3433 	tcp->tcp_cleandeathtag = tag;
3434 #endif
3435 
3436 	if (tcp->tcp_fused)
3437 		tcp_unfuse(tcp);
3438 
3439 	if (tcp->tcp_linger_tid != 0 &&
3440 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3441 		tcp_stop_lingering(tcp);
3442 	}
3443 
3444 	ASSERT(tcp != NULL);
3445 	ASSERT((tcp->tcp_family == AF_INET &&
3446 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3447 	    (tcp->tcp_family == AF_INET6 &&
3448 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3449 	    tcp->tcp_ipversion == IPV6_VERSION)));
3450 
3451 	if (TCP_IS_DETACHED(tcp)) {
3452 		if (tcp->tcp_hard_binding) {
3453 			/*
3454 			 * Its an eager that we are dealing with. We close the
3455 			 * eager but in case a conn_ind has already gone to the
3456 			 * listener, let tcp_accept_finish() send a discon_ind
3457 			 * to the listener and drop the last reference. If the
3458 			 * listener doesn't even know about the eager i.e. the
3459 			 * conn_ind hasn't gone up, blow away the eager and drop
3460 			 * the last reference as well. If the conn_ind has gone
3461 			 * up, state should be BOUND. tcp_accept_finish
3462 			 * will figure out that the connection has received a
3463 			 * RST and will send a DISCON_IND to the application.
3464 			 */
3465 			tcp_closei_local(tcp);
3466 			if (!tcp->tcp_tconnind_started) {
3467 				CONN_DEC_REF(connp);
3468 			} else {
3469 				tcp->tcp_state = TCPS_BOUND;
3470 			}
3471 		} else {
3472 			tcp_close_detached(tcp);
3473 		}
3474 		return (0);
3475 	}
3476 
3477 	TCP_STAT(tcps, tcp_clean_death_nondetached);
3478 
3479 	q = tcp->tcp_rq;
3480 
3481 	/* Trash all inbound data */
3482 	if (!IPCL_IS_NONSTR(connp)) {
3483 		ASSERT(q != NULL);
3484 		flushq(q, FLUSHALL);
3485 	}
3486 
3487 	/*
3488 	 * If we are at least part way open and there is error
3489 	 * (err==0 implies no error)
3490 	 * notify our client by a T_DISCON_IND.
3491 	 */
3492 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3493 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3494 		    !TCP_IS_SOCKET(tcp)) {
3495 			/*
3496 			 * Send M_FLUSH according to TPI. Because sockets will
3497 			 * (and must) ignore FLUSHR we do that only for TPI
3498 			 * endpoints and sockets in STREAMS mode.
3499 			 */
3500 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3501 		}
3502 		if (tcp->tcp_debug) {
3503 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3504 			    "tcp_clean_death: discon err %d", err);
3505 		}
3506 		if (IPCL_IS_NONSTR(connp)) {
3507 			/* Direct socket, use upcall */
3508 			(*connp->conn_upcalls->su_disconnected)(
3509 			    connp->conn_upper_handle, tcp->tcp_connid, err);
3510 		} else {
3511 			mp = mi_tpi_discon_ind(NULL, err, 0);
3512 			if (mp != NULL) {
3513 				putnext(q, mp);
3514 			} else {
3515 				if (tcp->tcp_debug) {
3516 					(void) strlog(TCP_MOD_ID, 0, 1,
3517 					    SL_ERROR|SL_TRACE,
3518 					    "tcp_clean_death, sending M_ERROR");
3519 				}
3520 				(void) putnextctl1(q, M_ERROR, EPROTO);
3521 			}
3522 		}
3523 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3524 			/* SYN_SENT or SYN_RCVD */
3525 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3526 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3527 			/* ESTABLISHED or CLOSE_WAIT */
3528 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3529 		}
3530 	}
3531 
3532 	tcp_reinit(tcp);
3533 	if (IPCL_IS_NONSTR(connp))
3534 		(void) tcp_do_unbind(connp);
3535 
3536 	return (-1);
3537 }
3538 
3539 /*
3540  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3541  * to expire, stop the wait and finish the close.
3542  */
3543 static void
3544 tcp_stop_lingering(tcp_t *tcp)
3545 {
3546 	clock_t	delta = 0;
3547 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3548 
3549 	tcp->tcp_linger_tid = 0;
3550 	if (tcp->tcp_state > TCPS_LISTEN) {
3551 		tcp_acceptor_hash_remove(tcp);
3552 		mutex_enter(&tcp->tcp_non_sq_lock);
3553 		if (tcp->tcp_flow_stopped) {
3554 			tcp_clrqfull(tcp);
3555 		}
3556 		mutex_exit(&tcp->tcp_non_sq_lock);
3557 
3558 		if (tcp->tcp_timer_tid != 0) {
3559 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3560 			tcp->tcp_timer_tid = 0;
3561 		}
3562 		/*
3563 		 * Need to cancel those timers which will not be used when
3564 		 * TCP is detached.  This has to be done before the tcp_wq
3565 		 * is set to the global queue.
3566 		 */
3567 		tcp_timers_stop(tcp);
3568 
3569 		tcp->tcp_detached = B_TRUE;
3570 		ASSERT(tcps->tcps_g_q != NULL);
3571 		tcp->tcp_rq = tcps->tcps_g_q;
3572 		tcp->tcp_wq = WR(tcps->tcps_g_q);
3573 
3574 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3575 			tcp_time_wait_append(tcp);
3576 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3577 			goto finish;
3578 		}
3579 
3580 		/*
3581 		 * If delta is zero the timer event wasn't executed and was
3582 		 * successfully canceled. In this case we need to restart it
3583 		 * with the minimal delta possible.
3584 		 */
3585 		if (delta >= 0) {
3586 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3587 			    delta ? delta : 1);
3588 		}
3589 	} else {
3590 		tcp_closei_local(tcp);
3591 		CONN_DEC_REF(tcp->tcp_connp);
3592 	}
3593 finish:
3594 	/* Signal closing thread that it can complete close */
3595 	mutex_enter(&tcp->tcp_closelock);
3596 	tcp->tcp_detached = B_TRUE;
3597 	ASSERT(tcps->tcps_g_q != NULL);
3598 
3599 	tcp->tcp_rq = tcps->tcps_g_q;
3600 	tcp->tcp_wq = WR(tcps->tcps_g_q);
3601 
3602 	tcp->tcp_closed = 1;
3603 	cv_signal(&tcp->tcp_closecv);
3604 	mutex_exit(&tcp->tcp_closelock);
3605 }
3606 
3607 /*
3608  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3609  * expires.
3610  */
3611 static void
3612 tcp_close_linger_timeout(void *arg)
3613 {
3614 	conn_t	*connp = (conn_t *)arg;
3615 	tcp_t 	*tcp = connp->conn_tcp;
3616 
3617 	tcp->tcp_client_errno = ETIMEDOUT;
3618 	tcp_stop_lingering(tcp);
3619 }
3620 
3621 static void
3622 tcp_close_common(conn_t *connp, int flags)
3623 {
3624 	tcp_t		*tcp = connp->conn_tcp;
3625 	mblk_t 		*mp = &tcp->tcp_closemp;
3626 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
3627 	mblk_t		*bp;
3628 
3629 	ASSERT(connp->conn_ref >= 2);
3630 
3631 	/*
3632 	 * Mark the conn as closing. ill_pending_mp_add will not
3633 	 * add any mp to the pending mp list, after this conn has
3634 	 * started closing. Same for sq_pending_mp_add
3635 	 */
3636 	mutex_enter(&connp->conn_lock);
3637 	connp->conn_state_flags |= CONN_CLOSING;
3638 	if (connp->conn_oper_pending_ill != NULL)
3639 		conn_ioctl_cleanup_reqd = B_TRUE;
3640 	CONN_INC_REF_LOCKED(connp);
3641 	mutex_exit(&connp->conn_lock);
3642 	tcp->tcp_closeflags = (uint8_t)flags;
3643 	ASSERT(connp->conn_ref >= 3);
3644 
3645 	/*
3646 	 * tcp_closemp_used is used below without any protection of a lock
3647 	 * as we don't expect any one else to use it concurrently at this
3648 	 * point otherwise it would be a major defect.
3649 	 */
3650 
3651 	if (mp->b_prev == NULL)
3652 		tcp->tcp_closemp_used = B_TRUE;
3653 	else
3654 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
3655 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
3656 
3657 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
3658 
3659 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp,
3660 	    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
3661 
3662 	mutex_enter(&tcp->tcp_closelock);
3663 	while (!tcp->tcp_closed) {
3664 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
3665 			/*
3666 			 * The cv_wait_sig() was interrupted. We now do the
3667 			 * following:
3668 			 *
3669 			 * 1) If the endpoint was lingering, we allow this
3670 			 * to be interrupted by cancelling the linger timeout
3671 			 * and closing normally.
3672 			 *
3673 			 * 2) Revert to calling cv_wait()
3674 			 *
3675 			 * We revert to using cv_wait() to avoid an
3676 			 * infinite loop which can occur if the calling
3677 			 * thread is higher priority than the squeue worker
3678 			 * thread and is bound to the same cpu.
3679 			 */
3680 			if (tcp->tcp_linger && tcp->tcp_lingertime > 0) {
3681 				mutex_exit(&tcp->tcp_closelock);
3682 				/* Entering squeue, bump ref count. */
3683 				CONN_INC_REF(connp);
3684 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
3685 				SQUEUE_ENTER_ONE(connp->conn_sqp, bp,
3686 				    tcp_linger_interrupted, connp,
3687 				    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
3688 				mutex_enter(&tcp->tcp_closelock);
3689 			}
3690 			break;
3691 		}
3692 	}
3693 	while (!tcp->tcp_closed)
3694 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
3695 	mutex_exit(&tcp->tcp_closelock);
3696 
3697 	/*
3698 	 * In the case of listener streams that have eagers in the q or q0
3699 	 * we wait for the eagers to drop their reference to us. tcp_rq and
3700 	 * tcp_wq of the eagers point to our queues. By waiting for the
3701 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
3702 	 * up their queue pointers and also dropped their references to us.
3703 	 */
3704 	if (tcp->tcp_wait_for_eagers) {
3705 		mutex_enter(&connp->conn_lock);
3706 		while (connp->conn_ref != 1) {
3707 			cv_wait(&connp->conn_cv, &connp->conn_lock);
3708 		}
3709 		mutex_exit(&connp->conn_lock);
3710 	}
3711 	/*
3712 	 * ioctl cleanup. The mp is queued in the
3713 	 * ill_pending_mp or in the sq_pending_mp.
3714 	 */
3715 	if (conn_ioctl_cleanup_reqd)
3716 		conn_ioctl_cleanup(connp);
3717 
3718 	tcp->tcp_cpid = -1;
3719 }
3720 
3721 static int
3722 tcp_tpi_close(queue_t *q, int flags)
3723 {
3724 	conn_t		*connp;
3725 
3726 	ASSERT(WR(q)->q_next == NULL);
3727 
3728 	if (flags & SO_FALLBACK) {
3729 		/*
3730 		 * stream is being closed while in fallback
3731 		 * simply free the resources that were allocated
3732 		 */
3733 		inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr));
3734 		qprocsoff(q);
3735 		goto done;
3736 	}
3737 
3738 	connp = Q_TO_CONN(q);
3739 	/*
3740 	 * We are being closed as /dev/tcp or /dev/tcp6.
3741 	 */
3742 	tcp_close_common(connp, flags);
3743 
3744 	qprocsoff(q);
3745 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
3746 
3747 	/*
3748 	 * Drop IP's reference on the conn. This is the last reference
3749 	 * on the connp if the state was less than established. If the
3750 	 * connection has gone into timewait state, then we will have
3751 	 * one ref for the TCP and one more ref (total of two) for the
3752 	 * classifier connected hash list (a timewait connections stays
3753 	 * in connected hash till closed).
3754 	 *
3755 	 * We can't assert the references because there might be other
3756 	 * transient reference places because of some walkers or queued
3757 	 * packets in squeue for the timewait state.
3758 	 */
3759 	CONN_DEC_REF(connp);
3760 done:
3761 	q->q_ptr = WR(q)->q_ptr = NULL;
3762 	return (0);
3763 }
3764 
3765 static int
3766 tcp_tpi_close_accept(queue_t *q)
3767 {
3768 	vmem_t	*minor_arena;
3769 	dev_t	conn_dev;
3770 
3771 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
3772 
3773 	/*
3774 	 * We had opened an acceptor STREAM for sockfs which is
3775 	 * now being closed due to some error.
3776 	 */
3777 	qprocsoff(q);
3778 
3779 	minor_arena = (vmem_t *)WR(q)->q_ptr;
3780 	conn_dev = (dev_t)RD(q)->q_ptr;
3781 	ASSERT(minor_arena != NULL);
3782 	ASSERT(conn_dev != 0);
3783 	inet_minor_free(minor_arena, conn_dev);
3784 	q->q_ptr = WR(q)->q_ptr = NULL;
3785 	return (0);
3786 }
3787 
3788 /*
3789  * Called by tcp_close() routine via squeue when lingering is
3790  * interrupted by a signal.
3791  */
3792 
3793 /* ARGSUSED */
3794 static void
3795 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2)
3796 {
3797 	conn_t	*connp = (conn_t *)arg;
3798 	tcp_t	*tcp = connp->conn_tcp;
3799 
3800 	freeb(mp);
3801 	if (tcp->tcp_linger_tid != 0 &&
3802 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3803 		tcp_stop_lingering(tcp);
3804 		tcp->tcp_client_errno = EINTR;
3805 	}
3806 }
3807 
3808 /*
3809  * Called by streams close routine via squeues when our client blows off her
3810  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
3811  * connection politely" When SO_LINGER is set (with a non-zero linger time and
3812  * it is not a nonblocking socket) then this routine sleeps until the FIN is
3813  * acked.
3814  *
3815  * NOTE: tcp_close potentially returns error when lingering.
3816  * However, the stream head currently does not pass these errors
3817  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
3818  * errors to the application (from tsleep()) and not errors
3819  * like ECONNRESET caused by receiving a reset packet.
3820  */
3821 
3822 /* ARGSUSED */
3823 static void
3824 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
3825 {
3826 	char	*msg;
3827 	conn_t	*connp = (conn_t *)arg;
3828 	tcp_t	*tcp = connp->conn_tcp;
3829 	clock_t	delta = 0;
3830 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3831 
3832 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
3833 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
3834 
3835 	mutex_enter(&tcp->tcp_eager_lock);
3836 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
3837 		/* Cleanup for listener */
3838 		tcp_eager_cleanup(tcp, 0);
3839 		tcp->tcp_wait_for_eagers = 1;
3840 	}
3841 	mutex_exit(&tcp->tcp_eager_lock);
3842 
3843 	connp->conn_mdt_ok = B_FALSE;
3844 	tcp->tcp_mdt = B_FALSE;
3845 
3846 	connp->conn_lso_ok = B_FALSE;
3847 	tcp->tcp_lso = B_FALSE;
3848 
3849 	msg = NULL;
3850 	switch (tcp->tcp_state) {
3851 	case TCPS_CLOSED:
3852 	case TCPS_IDLE:
3853 	case TCPS_BOUND:
3854 	case TCPS_LISTEN:
3855 		break;
3856 	case TCPS_SYN_SENT:
3857 		msg = "tcp_close, during connect";
3858 		break;
3859 	case TCPS_SYN_RCVD:
3860 		/*
3861 		 * Close during the connect 3-way handshake
3862 		 * but here there may or may not be pending data
3863 		 * already on queue. Process almost same as in
3864 		 * the ESTABLISHED state.
3865 		 */
3866 		/* FALLTHRU */
3867 	default:
3868 		if (tcp->tcp_fused)
3869 			tcp_unfuse(tcp);
3870 
3871 		/*
3872 		 * If SO_LINGER has set a zero linger time, abort the
3873 		 * connection with a reset.
3874 		 */
3875 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
3876 			msg = "tcp_close, zero lingertime";
3877 			break;
3878 		}
3879 
3880 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
3881 		/*
3882 		 * Abort connection if there is unread data queued.
3883 		 */
3884 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
3885 			msg = "tcp_close, unread data";
3886 			break;
3887 		}
3888 		/*
3889 		 * tcp_hard_bound is now cleared thus all packets go through
3890 		 * tcp_lookup. This fact is used by tcp_detach below.
3891 		 *
3892 		 * We have done a qwait() above which could have possibly
3893 		 * drained more messages in turn causing transition to a
3894 		 * different state. Check whether we have to do the rest
3895 		 * of the processing or not.
3896 		 */
3897 		if (tcp->tcp_state <= TCPS_LISTEN)
3898 			break;
3899 
3900 		/*
3901 		 * Transmit the FIN before detaching the tcp_t.
3902 		 * After tcp_detach returns this queue/perimeter
3903 		 * no longer owns the tcp_t thus others can modify it.
3904 		 */
3905 		(void) tcp_xmit_end(tcp);
3906 
3907 		/*
3908 		 * If lingering on close then wait until the fin is acked,
3909 		 * the SO_LINGER time passes, or a reset is sent/received.
3910 		 */
3911 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
3912 		    !(tcp->tcp_fin_acked) &&
3913 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
3914 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
3915 				tcp->tcp_client_errno = EWOULDBLOCK;
3916 			} else if (tcp->tcp_client_errno == 0) {
3917 
3918 				ASSERT(tcp->tcp_linger_tid == 0);
3919 
3920 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
3921 				    tcp_close_linger_timeout,
3922 				    tcp->tcp_lingertime * hz);
3923 
3924 				/* tcp_close_linger_timeout will finish close */
3925 				if (tcp->tcp_linger_tid == 0)
3926 					tcp->tcp_client_errno = ENOSR;
3927 				else
3928 					return;
3929 			}
3930 
3931 			/*
3932 			 * Check if we need to detach or just close
3933 			 * the instance.
3934 			 */
3935 			if (tcp->tcp_state <= TCPS_LISTEN)
3936 				break;
3937 		}
3938 
3939 		/*
3940 		 * Make sure that no other thread will access the tcp_rq of
3941 		 * this instance (through lookups etc.) as tcp_rq will go
3942 		 * away shortly.
3943 		 */
3944 		tcp_acceptor_hash_remove(tcp);
3945 
3946 		mutex_enter(&tcp->tcp_non_sq_lock);
3947 		if (tcp->tcp_flow_stopped) {
3948 			tcp_clrqfull(tcp);
3949 		}
3950 		mutex_exit(&tcp->tcp_non_sq_lock);
3951 
3952 		if (tcp->tcp_timer_tid != 0) {
3953 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3954 			tcp->tcp_timer_tid = 0;
3955 		}
3956 		/*
3957 		 * Need to cancel those timers which will not be used when
3958 		 * TCP is detached.  This has to be done before the tcp_wq
3959 		 * is set to the global queue.
3960 		 */
3961 		tcp_timers_stop(tcp);
3962 
3963 		tcp->tcp_detached = B_TRUE;
3964 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3965 			tcp_time_wait_append(tcp);
3966 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3967 			ASSERT(connp->conn_ref >= 3);
3968 			goto finish;
3969 		}
3970 
3971 		/*
3972 		 * If delta is zero the timer event wasn't executed and was
3973 		 * successfully canceled. In this case we need to restart it
3974 		 * with the minimal delta possible.
3975 		 */
3976 		if (delta >= 0)
3977 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3978 			    delta ? delta : 1);
3979 
3980 		ASSERT(connp->conn_ref >= 3);
3981 		goto finish;
3982 	}
3983 
3984 	/* Detach did not complete. Still need to remove q from stream. */
3985 	if (msg) {
3986 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
3987 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
3988 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3989 		if (tcp->tcp_state == TCPS_SYN_SENT ||
3990 		    tcp->tcp_state == TCPS_SYN_RCVD)
3991 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3992 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
3993 	}
3994 
3995 	tcp_closei_local(tcp);
3996 	CONN_DEC_REF(connp);
3997 	ASSERT(connp->conn_ref >= 2);
3998 
3999 finish:
4000 	/*
4001 	 * Although packets are always processed on the correct
4002 	 * tcp's perimeter and access is serialized via squeue's,
4003 	 * IP still needs a queue when sending packets in time_wait
4004 	 * state so use WR(tcps_g_q) till ip_output() can be
4005 	 * changed to deal with just connp. For read side, we
4006 	 * could have set tcp_rq to NULL but there are some cases
4007 	 * in tcp_rput_data() from early days of this code which
4008 	 * do a putnext without checking if tcp is closed. Those
4009 	 * need to be identified before both tcp_rq and tcp_wq
4010 	 * can be set to NULL and tcps_g_q can disappear forever.
4011 	 */
4012 	mutex_enter(&tcp->tcp_closelock);
4013 	/*
4014 	 * Don't change the queues in the case of a listener that has
4015 	 * eagers in its q or q0. It could surprise the eagers.
4016 	 * Instead wait for the eagers outside the squeue.
4017 	 */
4018 	if (!tcp->tcp_wait_for_eagers) {
4019 		tcp->tcp_detached = B_TRUE;
4020 		/*
4021 		 * When default queue is closing we set tcps_g_q to NULL
4022 		 * after the close is done.
4023 		 */
4024 		ASSERT(tcps->tcps_g_q != NULL);
4025 		tcp->tcp_rq = tcps->tcps_g_q;
4026 		tcp->tcp_wq = WR(tcps->tcps_g_q);
4027 	}
4028 
4029 	/* Signal tcp_close() to finish closing. */
4030 	tcp->tcp_closed = 1;
4031 	cv_signal(&tcp->tcp_closecv);
4032 	mutex_exit(&tcp->tcp_closelock);
4033 }
4034 
4035 /*
4036  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4037  * Some stream heads get upset if they see these later on as anything but NULL.
4038  */
4039 static void
4040 tcp_close_mpp(mblk_t **mpp)
4041 {
4042 	mblk_t	*mp;
4043 
4044 	if ((mp = *mpp) != NULL) {
4045 		do {
4046 			mp->b_next = NULL;
4047 			mp->b_prev = NULL;
4048 		} while ((mp = mp->b_cont) != NULL);
4049 
4050 		mp = *mpp;
4051 		*mpp = NULL;
4052 		freemsg(mp);
4053 	}
4054 }
4055 
4056 /* Do detached close. */
4057 static void
4058 tcp_close_detached(tcp_t *tcp)
4059 {
4060 	if (tcp->tcp_fused)
4061 		tcp_unfuse(tcp);
4062 
4063 	/*
4064 	 * Clustering code serializes TCP disconnect callbacks and
4065 	 * cluster tcp list walks by blocking a TCP disconnect callback
4066 	 * if a cluster tcp list walk is in progress. This ensures
4067 	 * accurate accounting of TCPs in the cluster code even though
4068 	 * the TCP list walk itself is not atomic.
4069 	 */
4070 	tcp_closei_local(tcp);
4071 	CONN_DEC_REF(tcp->tcp_connp);
4072 }
4073 
4074 /*
4075  * Stop all TCP timers, and free the timer mblks if requested.
4076  */
4077 void
4078 tcp_timers_stop(tcp_t *tcp)
4079 {
4080 	if (tcp->tcp_timer_tid != 0) {
4081 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4082 		tcp->tcp_timer_tid = 0;
4083 	}
4084 	if (tcp->tcp_ka_tid != 0) {
4085 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4086 		tcp->tcp_ka_tid = 0;
4087 	}
4088 	if (tcp->tcp_ack_tid != 0) {
4089 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4090 		tcp->tcp_ack_tid = 0;
4091 	}
4092 	if (tcp->tcp_push_tid != 0) {
4093 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4094 		tcp->tcp_push_tid = 0;
4095 	}
4096 }
4097 
4098 /*
4099  * The tcp_t is going away. Remove it from all lists and set it
4100  * to TCPS_CLOSED. The freeing up of memory is deferred until
4101  * tcp_inactive. This is needed since a thread in tcp_rput might have
4102  * done a CONN_INC_REF on this structure before it was removed from the
4103  * hashes.
4104  */
4105 static void
4106 tcp_closei_local(tcp_t *tcp)
4107 {
4108 	ire_t 	*ire;
4109 	conn_t	*connp = tcp->tcp_connp;
4110 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4111 
4112 	if (!TCP_IS_SOCKET(tcp))
4113 		tcp_acceptor_hash_remove(tcp);
4114 
4115 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
4116 	tcp->tcp_ibsegs = 0;
4117 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
4118 	tcp->tcp_obsegs = 0;
4119 
4120 	/*
4121 	 * If we are an eager connection hanging off a listener that
4122 	 * hasn't formally accepted the connection yet, get off his
4123 	 * list and blow off any data that we have accumulated.
4124 	 */
4125 	if (tcp->tcp_listener != NULL) {
4126 		tcp_t	*listener = tcp->tcp_listener;
4127 		mutex_enter(&listener->tcp_eager_lock);
4128 		/*
4129 		 * tcp_tconnind_started == B_TRUE means that the
4130 		 * conn_ind has already gone to listener. At
4131 		 * this point, eager will be closed but we
4132 		 * leave it in listeners eager list so that
4133 		 * if listener decides to close without doing
4134 		 * accept, we can clean this up. In tcp_wput_accept
4135 		 * we take care of the case of accept on closed
4136 		 * eager.
4137 		 */
4138 		if (!tcp->tcp_tconnind_started) {
4139 			tcp_eager_unlink(tcp);
4140 			mutex_exit(&listener->tcp_eager_lock);
4141 			/*
4142 			 * We don't want to have any pointers to the
4143 			 * listener queue, after we have released our
4144 			 * reference on the listener
4145 			 */
4146 			ASSERT(tcps->tcps_g_q != NULL);
4147 			tcp->tcp_rq = tcps->tcps_g_q;
4148 			tcp->tcp_wq = WR(tcps->tcps_g_q);
4149 			CONN_DEC_REF(listener->tcp_connp);
4150 		} else {
4151 			mutex_exit(&listener->tcp_eager_lock);
4152 		}
4153 	}
4154 
4155 	/* Stop all the timers */
4156 	tcp_timers_stop(tcp);
4157 
4158 	if (tcp->tcp_state == TCPS_LISTEN) {
4159 		if (tcp->tcp_ip_addr_cache) {
4160 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4161 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4162 			tcp->tcp_ip_addr_cache = NULL;
4163 		}
4164 	}
4165 	mutex_enter(&tcp->tcp_non_sq_lock);
4166 	if (tcp->tcp_flow_stopped)
4167 		tcp_clrqfull(tcp);
4168 	mutex_exit(&tcp->tcp_non_sq_lock);
4169 
4170 	tcp_bind_hash_remove(tcp);
4171 	/*
4172 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4173 	 * is trying to remove this tcp from the time wait list, we will
4174 	 * block in tcp_time_wait_remove while trying to acquire the
4175 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4176 	 * requires the ipcl_hash_remove to be ordered after the
4177 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4178 	 */
4179 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4180 		(void) tcp_time_wait_remove(tcp, NULL);
4181 	CL_INET_DISCONNECT(connp, tcp);
4182 	ipcl_hash_remove(connp);
4183 
4184 	/*
4185 	 * Delete the cached ire in conn_ire_cache and also mark
4186 	 * the conn as CONDEMNED
4187 	 */
4188 	mutex_enter(&connp->conn_lock);
4189 	connp->conn_state_flags |= CONN_CONDEMNED;
4190 	ire = connp->conn_ire_cache;
4191 	connp->conn_ire_cache = NULL;
4192 	mutex_exit(&connp->conn_lock);
4193 	if (ire != NULL)
4194 		IRE_REFRELE_NOTR(ire);
4195 
4196 	/* Need to cleanup any pending ioctls */
4197 	ASSERT(tcp->tcp_time_wait_next == NULL);
4198 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4199 	ASSERT(tcp->tcp_time_wait_expire == 0);
4200 	tcp->tcp_state = TCPS_CLOSED;
4201 
4202 	/* Release any SSL context */
4203 	if (tcp->tcp_kssl_ent != NULL) {
4204 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4205 		tcp->tcp_kssl_ent = NULL;
4206 	}
4207 	if (tcp->tcp_kssl_ctx != NULL) {
4208 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4209 		tcp->tcp_kssl_ctx = NULL;
4210 	}
4211 	tcp->tcp_kssl_pending = B_FALSE;
4212 
4213 	tcp_ipsec_cleanup(tcp);
4214 }
4215 
4216 /*
4217  * tcp is dying (called from ipcl_conn_destroy and error cases).
4218  * Free the tcp_t in either case.
4219  */
4220 void
4221 tcp_free(tcp_t *tcp)
4222 {
4223 	mblk_t	*mp;
4224 	ip6_pkt_t	*ipp;
4225 
4226 	ASSERT(tcp != NULL);
4227 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4228 
4229 	tcp->tcp_rq = NULL;
4230 	tcp->tcp_wq = NULL;
4231 
4232 	tcp_close_mpp(&tcp->tcp_xmit_head);
4233 	tcp_close_mpp(&tcp->tcp_reass_head);
4234 	if (tcp->tcp_rcv_list != NULL) {
4235 		/* Free b_next chain */
4236 		tcp_close_mpp(&tcp->tcp_rcv_list);
4237 	}
4238 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4239 		freemsg(mp);
4240 	}
4241 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4242 		freemsg(mp);
4243 	}
4244 
4245 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4246 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
4247 		freeb(tcp->tcp_fused_sigurg_mp);
4248 		tcp->tcp_fused_sigurg_mp = NULL;
4249 	}
4250 
4251 	if (tcp->tcp_ordrel_mp != NULL) {
4252 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
4253 		freeb(tcp->tcp_ordrel_mp);
4254 		tcp->tcp_ordrel_mp = NULL;
4255 	}
4256 
4257 	if (tcp->tcp_sack_info != NULL) {
4258 		if (tcp->tcp_notsack_list != NULL) {
4259 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list,
4260 			    tcp);
4261 		}
4262 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4263 	}
4264 
4265 	if (tcp->tcp_hopopts != NULL) {
4266 		mi_free(tcp->tcp_hopopts);
4267 		tcp->tcp_hopopts = NULL;
4268 		tcp->tcp_hopoptslen = 0;
4269 	}
4270 	ASSERT(tcp->tcp_hopoptslen == 0);
4271 	if (tcp->tcp_dstopts != NULL) {
4272 		mi_free(tcp->tcp_dstopts);
4273 		tcp->tcp_dstopts = NULL;
4274 		tcp->tcp_dstoptslen = 0;
4275 	}
4276 	ASSERT(tcp->tcp_dstoptslen == 0);
4277 	if (tcp->tcp_rtdstopts != NULL) {
4278 		mi_free(tcp->tcp_rtdstopts);
4279 		tcp->tcp_rtdstopts = NULL;
4280 		tcp->tcp_rtdstoptslen = 0;
4281 	}
4282 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4283 	if (tcp->tcp_rthdr != NULL) {
4284 		mi_free(tcp->tcp_rthdr);
4285 		tcp->tcp_rthdr = NULL;
4286 		tcp->tcp_rthdrlen = 0;
4287 	}
4288 	ASSERT(tcp->tcp_rthdrlen == 0);
4289 
4290 	ipp = &tcp->tcp_sticky_ipp;
4291 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4292 	    IPPF_RTHDR))
4293 		ip6_pkt_free(ipp);
4294 
4295 	/*
4296 	 * Free memory associated with the tcp/ip header template.
4297 	 */
4298 
4299 	if (tcp->tcp_iphc != NULL)
4300 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4301 
4302 	/*
4303 	 * Following is really a blowing away a union.
4304 	 * It happens to have exactly two members of identical size
4305 	 * the following code is enough.
4306 	 */
4307 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4308 }
4309 
4310 
4311 /*
4312  * Put a connection confirmation message upstream built from the
4313  * address information within 'iph' and 'tcph'.  Report our success or failure.
4314  */
4315 static boolean_t
4316 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4317     mblk_t **defermp)
4318 {
4319 	sin_t	sin;
4320 	sin6_t	sin6;
4321 	mblk_t	*mp;
4322 	char	*optp = NULL;
4323 	int	optlen = 0;
4324 
4325 	if (defermp != NULL)
4326 		*defermp = NULL;
4327 
4328 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4329 		/*
4330 		 * Return in T_CONN_CON results of option negotiation through
4331 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4332 		 * negotiation, then what is received from remote end needs
4333 		 * to be taken into account but there is no such thing (yet?)
4334 		 * in our TCP/IP.
4335 		 * Note: We do not use mi_offset_param() here as
4336 		 * tcp_opts_conn_req contents do not directly come from
4337 		 * an application and are either generated in kernel or
4338 		 * from user input that was already verified.
4339 		 */
4340 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4341 		optp = (char *)(mp->b_rptr +
4342 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4343 		optlen = (int)
4344 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4345 	}
4346 
4347 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4348 		ipha_t *ipha = (ipha_t *)iphdr;
4349 
4350 		/* packet is IPv4 */
4351 		if (tcp->tcp_family == AF_INET) {
4352 			sin = sin_null;
4353 			sin.sin_addr.s_addr = ipha->ipha_src;
4354 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4355 			sin.sin_family = AF_INET;
4356 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4357 			    (int)sizeof (sin_t), optp, optlen);
4358 		} else {
4359 			sin6 = sin6_null;
4360 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4361 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4362 			sin6.sin6_family = AF_INET6;
4363 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4364 			    (int)sizeof (sin6_t), optp, optlen);
4365 
4366 		}
4367 	} else {
4368 		ip6_t	*ip6h = (ip6_t *)iphdr;
4369 
4370 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4371 		ASSERT(tcp->tcp_family == AF_INET6);
4372 		sin6 = sin6_null;
4373 		sin6.sin6_addr = ip6h->ip6_src;
4374 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4375 		sin6.sin6_family = AF_INET6;
4376 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4377 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4378 		    (int)sizeof (sin6_t), optp, optlen);
4379 	}
4380 
4381 	if (!mp)
4382 		return (B_FALSE);
4383 
4384 	mblk_copycred(mp, idmp);
4385 
4386 	if (defermp == NULL) {
4387 		conn_t *connp = tcp->tcp_connp;
4388 		if (IPCL_IS_NONSTR(connp)) {
4389 			cred_t *cr;
4390 			pid_t cpid;
4391 
4392 			cr = msg_getcred(mp, &cpid);
4393 			(*connp->conn_upcalls->su_connected)
4394 			    (connp->conn_upper_handle, tcp->tcp_connid, cr,
4395 			    cpid);
4396 			freemsg(mp);
4397 		} else {
4398 			putnext(tcp->tcp_rq, mp);
4399 		}
4400 	} else {
4401 		*defermp = mp;
4402 	}
4403 
4404 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4405 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4406 	return (B_TRUE);
4407 }
4408 
4409 /*
4410  * Defense for the SYN attack -
4411  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
4412  *    one from the list of droppable eagers. This list is a subset of q0.
4413  *    see comments before the definition of MAKE_DROPPABLE().
4414  * 2. Don't drop a SYN request before its first timeout. This gives every
4415  *    request at least til the first timeout to complete its 3-way handshake.
4416  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4417  *    requests currently on the queue that has timed out. This will be used
4418  *    as an indicator of whether an attack is under way, so that appropriate
4419  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4420  *    either when eager goes into ESTABLISHED, or gets freed up.)
4421  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4422  *    # of timeout drops back to <= q0len/32 => SYN alert off
4423  */
4424 static boolean_t
4425 tcp_drop_q0(tcp_t *tcp)
4426 {
4427 	tcp_t	*eager;
4428 	mblk_t	*mp;
4429 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4430 
4431 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4432 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4433 
4434 	/* Pick oldest eager from the list of droppable eagers */
4435 	eager = tcp->tcp_eager_prev_drop_q0;
4436 
4437 	/* If list is empty. return B_FALSE */
4438 	if (eager == tcp) {
4439 		return (B_FALSE);
4440 	}
4441 
4442 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
4443 	if ((mp = allocb(0, BPRI_HI)) == NULL)
4444 		return (B_FALSE);
4445 
4446 	/*
4447 	 * Take this eager out from the list of droppable eagers since we are
4448 	 * going to drop it.
4449 	 */
4450 	MAKE_UNDROPPABLE(eager);
4451 
4452 	if (tcp->tcp_debug) {
4453 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4454 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4455 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
4456 		    tcp->tcp_conn_req_cnt_q0,
4457 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4458 	}
4459 
4460 	BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop);
4461 
4462 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
4463 	CONN_INC_REF(eager->tcp_connp);
4464 
4465 	/* Mark the IRE created for this SYN request temporary */
4466 	tcp_ip_ire_mark_advice(eager);
4467 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
4468 	    tcp_clean_death_wrapper, eager->tcp_connp,
4469 	    SQ_FILL, SQTAG_TCP_DROP_Q0);
4470 
4471 	return (B_TRUE);
4472 }
4473 
4474 int
4475 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4476     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4477 {
4478 	tcp_t 		*ltcp = lconnp->conn_tcp;
4479 	tcp_t		*tcp = connp->conn_tcp;
4480 	mblk_t		*tpi_mp;
4481 	ipha_t		*ipha;
4482 	ip6_t		*ip6h;
4483 	sin6_t 		sin6;
4484 	in6_addr_t 	v6dst;
4485 	int		err;
4486 	int		ifindex = 0;
4487 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4488 
4489 	if (ipvers == IPV4_VERSION) {
4490 		ipha = (ipha_t *)mp->b_rptr;
4491 
4492 		connp->conn_send = ip_output;
4493 		connp->conn_recv = tcp_input;
4494 
4495 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4496 		    &connp->conn_bound_source_v6);
4497 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4498 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4499 
4500 		sin6 = sin6_null;
4501 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4502 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4503 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4504 		sin6.sin6_family = AF_INET6;
4505 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4506 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4507 		if (tcp->tcp_recvdstaddr) {
4508 			sin6_t	sin6d;
4509 
4510 			sin6d = sin6_null;
4511 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4512 			    &sin6d.sin6_addr);
4513 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4514 			sin6d.sin6_family = AF_INET;
4515 			tpi_mp = mi_tpi_extconn_ind(NULL,
4516 			    (char *)&sin6d, sizeof (sin6_t),
4517 			    (char *)&tcp,
4518 			    (t_scalar_t)sizeof (intptr_t),
4519 			    (char *)&sin6d, sizeof (sin6_t),
4520 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4521 		} else {
4522 			tpi_mp = mi_tpi_conn_ind(NULL,
4523 			    (char *)&sin6, sizeof (sin6_t),
4524 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4525 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4526 		}
4527 	} else {
4528 		ip6h = (ip6_t *)mp->b_rptr;
4529 
4530 		connp->conn_send = ip_output_v6;
4531 		connp->conn_recv = tcp_input;
4532 
4533 		connp->conn_bound_source_v6 = ip6h->ip6_dst;
4534 		connp->conn_srcv6 = ip6h->ip6_dst;
4535 		connp->conn_remv6 = ip6h->ip6_src;
4536 
4537 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4538 		ifindex = (int)DB_CKSUMSTUFF(mp);
4539 		DB_CKSUMSTUFF(mp) = 0;
4540 
4541 		sin6 = sin6_null;
4542 		sin6.sin6_addr = ip6h->ip6_src;
4543 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4544 		sin6.sin6_family = AF_INET6;
4545 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4546 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4547 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4548 
4549 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4550 			/* Pass up the scope_id of remote addr */
4551 			sin6.sin6_scope_id = ifindex;
4552 		} else {
4553 			sin6.sin6_scope_id = 0;
4554 		}
4555 		if (tcp->tcp_recvdstaddr) {
4556 			sin6_t	sin6d;
4557 
4558 			sin6d = sin6_null;
4559 			sin6.sin6_addr = ip6h->ip6_dst;
4560 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4561 			sin6d.sin6_family = AF_INET;
4562 			tpi_mp = mi_tpi_extconn_ind(NULL,
4563 			    (char *)&sin6d, sizeof (sin6_t),
4564 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4565 			    (char *)&sin6d, sizeof (sin6_t),
4566 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4567 		} else {
4568 			tpi_mp = mi_tpi_conn_ind(NULL,
4569 			    (char *)&sin6, sizeof (sin6_t),
4570 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4571 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4572 		}
4573 	}
4574 
4575 	if (tpi_mp == NULL)
4576 		return (ENOMEM);
4577 
4578 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4579 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4580 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4581 	connp->conn_fully_bound = B_FALSE;
4582 
4583 	/* Inherit information from the "parent" */
4584 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4585 	tcp->tcp_family = ltcp->tcp_family;
4586 
4587 	tcp->tcp_wq = ltcp->tcp_wq;
4588 	tcp->tcp_rq = ltcp->tcp_rq;
4589 
4590 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
4591 	tcp->tcp_detached = B_TRUE;
4592 	SOCK_CONNID_INIT(tcp->tcp_connid);
4593 	if ((err = tcp_init_values(tcp)) != 0) {
4594 		freemsg(tpi_mp);
4595 		return (err);
4596 	}
4597 
4598 	if (ipvers == IPV4_VERSION) {
4599 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4600 			freemsg(tpi_mp);
4601 			return (err);
4602 		}
4603 		ASSERT(tcp->tcp_ipha != NULL);
4604 	} else {
4605 		/* ifindex must be already set */
4606 		ASSERT(ifindex != 0);
4607 
4608 		if (ltcp->tcp_bound_if != 0)
4609 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4610 		else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src))
4611 			tcp->tcp_bound_if = ifindex;
4612 
4613 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4614 		tcp->tcp_recvifindex = 0;
4615 		tcp->tcp_recvhops = 0xffffffffU;
4616 		ASSERT(tcp->tcp_ip6h != NULL);
4617 	}
4618 
4619 	tcp->tcp_lport = ltcp->tcp_lport;
4620 
4621 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4622 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4623 			/*
4624 			 * Listener had options of some sort; eager inherits.
4625 			 * Free up the eager template and allocate one
4626 			 * of the right size.
4627 			 */
4628 			if (tcp->tcp_hdr_grown) {
4629 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
4630 			} else {
4631 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4632 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
4633 			}
4634 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
4635 			    KM_NOSLEEP);
4636 			if (tcp->tcp_iphc == NULL) {
4637 				tcp->tcp_iphc_len = 0;
4638 				freemsg(tpi_mp);
4639 				return (ENOMEM);
4640 			}
4641 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
4642 			tcp->tcp_hdr_grown = B_TRUE;
4643 		}
4644 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4645 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
4646 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4647 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
4648 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
4649 
4650 		/*
4651 		 * Copy the IP+TCP header template from listener to eager
4652 		 */
4653 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
4654 		if (tcp->tcp_ipversion == IPV6_VERSION) {
4655 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
4656 			    IPPROTO_RAW) {
4657 				tcp->tcp_ip6h =
4658 				    (ip6_t *)(tcp->tcp_iphc +
4659 				    sizeof (ip6i_t));
4660 			} else {
4661 				tcp->tcp_ip6h =
4662 				    (ip6_t *)(tcp->tcp_iphc);
4663 			}
4664 			tcp->tcp_ipha = NULL;
4665 		} else {
4666 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
4667 			tcp->tcp_ip6h = NULL;
4668 		}
4669 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
4670 		    tcp->tcp_ip_hdr_len);
4671 	} else {
4672 		/*
4673 		 * only valid case when ipversion of listener and
4674 		 * eager differ is when listener is IPv6 and
4675 		 * eager is IPv4.
4676 		 * Eager header template has been initialized to the
4677 		 * maximum v4 header sizes, which includes space for
4678 		 * TCP and IP options.
4679 		 */
4680 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
4681 		    (tcp->tcp_ipversion == IPV4_VERSION));
4682 		ASSERT(tcp->tcp_iphc_len >=
4683 		    TCP_MAX_COMBINED_HEADER_LENGTH);
4684 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4685 		/* copy IP header fields individually */
4686 		tcp->tcp_ipha->ipha_ttl =
4687 		    ltcp->tcp_ip6h->ip6_hops;
4688 		bcopy(ltcp->tcp_tcph->th_lport,
4689 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
4690 	}
4691 
4692 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
4693 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
4694 	    sizeof (in_port_t));
4695 
4696 	if (ltcp->tcp_lport == 0) {
4697 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
4698 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
4699 		    sizeof (in_port_t));
4700 	}
4701 
4702 	if (tcp->tcp_ipversion == IPV4_VERSION) {
4703 		ASSERT(ipha != NULL);
4704 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
4705 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
4706 
4707 		/* Source routing option copyover (reverse it) */
4708 		if (tcps->tcps_rev_src_routes)
4709 			tcp_opt_reverse(tcp, ipha);
4710 	} else {
4711 		ASSERT(ip6h != NULL);
4712 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
4713 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
4714 	}
4715 
4716 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
4717 	ASSERT(!tcp->tcp_tconnind_started);
4718 	/*
4719 	 * If the SYN contains a credential, it's a loopback packet; attach
4720 	 * the credential to the TPI message.
4721 	 */
4722 	mblk_copycred(tpi_mp, idmp);
4723 
4724 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
4725 
4726 	/* Inherit the listener's SSL protection state */
4727 
4728 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
4729 		kssl_hold_ent(tcp->tcp_kssl_ent);
4730 		tcp->tcp_kssl_pending = B_TRUE;
4731 	}
4732 
4733 	/* Inherit the listener's non-STREAMS flag */
4734 	if (IPCL_IS_NONSTR(lconnp)) {
4735 		connp->conn_flags |= IPCL_NONSTR;
4736 	}
4737 
4738 	return (0);
4739 }
4740 
4741 
4742 int
4743 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
4744     tcph_t *tcph, mblk_t *idmp)
4745 {
4746 	tcp_t 		*ltcp = lconnp->conn_tcp;
4747 	tcp_t		*tcp = connp->conn_tcp;
4748 	sin_t		sin;
4749 	mblk_t		*tpi_mp = NULL;
4750 	int		err;
4751 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4752 
4753 	sin = sin_null;
4754 	sin.sin_addr.s_addr = ipha->ipha_src;
4755 	sin.sin_port = *(uint16_t *)tcph->th_lport;
4756 	sin.sin_family = AF_INET;
4757 	if (ltcp->tcp_recvdstaddr) {
4758 		sin_t	sind;
4759 
4760 		sind = sin_null;
4761 		sind.sin_addr.s_addr = ipha->ipha_dst;
4762 		sind.sin_port = *(uint16_t *)tcph->th_fport;
4763 		sind.sin_family = AF_INET;
4764 		tpi_mp = mi_tpi_extconn_ind(NULL,
4765 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
4766 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
4767 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4768 	} else {
4769 		tpi_mp = mi_tpi_conn_ind(NULL,
4770 		    (char *)&sin, sizeof (sin_t),
4771 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4772 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4773 	}
4774 
4775 	if (tpi_mp == NULL) {
4776 		return (ENOMEM);
4777 	}
4778 
4779 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
4780 	connp->conn_send = ip_output;
4781 	connp->conn_recv = tcp_input;
4782 	connp->conn_fully_bound = B_FALSE;
4783 
4784 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_bound_source_v6);
4785 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4786 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4787 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4788 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4789 
4790 	/* Inherit information from the "parent" */
4791 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4792 	tcp->tcp_family = ltcp->tcp_family;
4793 	tcp->tcp_wq = ltcp->tcp_wq;
4794 	tcp->tcp_rq = ltcp->tcp_rq;
4795 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
4796 	tcp->tcp_detached = B_TRUE;
4797 	SOCK_CONNID_INIT(tcp->tcp_connid);
4798 	if ((err = tcp_init_values(tcp)) != 0) {
4799 		freemsg(tpi_mp);
4800 		return (err);
4801 	}
4802 
4803 	/*
4804 	 * Let's make sure that eager tcp template has enough space to
4805 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
4806 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
4807 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
4808 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
4809 	 * extension headers or with ip6i_t struct). Note that bcopy() below
4810 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
4811 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
4812 	 */
4813 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
4814 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
4815 
4816 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4817 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
4818 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4819 	tcp->tcp_ttl = ltcp->tcp_ttl;
4820 	tcp->tcp_tos = ltcp->tcp_tos;
4821 
4822 	/* Copy the IP+TCP header template from listener to eager */
4823 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
4824 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
4825 	tcp->tcp_ip6h = NULL;
4826 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
4827 	    tcp->tcp_ip_hdr_len);
4828 
4829 	/* Initialize the IP addresses and Ports */
4830 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
4831 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
4832 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
4833 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
4834 
4835 	/* Source routing option copyover (reverse it) */
4836 	if (tcps->tcps_rev_src_routes)
4837 		tcp_opt_reverse(tcp, ipha);
4838 
4839 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
4840 	ASSERT(!tcp->tcp_tconnind_started);
4841 
4842 	/*
4843 	 * If the SYN contains a credential, it's a loopback packet; attach
4844 	 * the credential to the TPI message.
4845 	 */
4846 	mblk_copycred(tpi_mp, idmp);
4847 
4848 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
4849 
4850 	/* Inherit the listener's SSL protection state */
4851 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
4852 		kssl_hold_ent(tcp->tcp_kssl_ent);
4853 		tcp->tcp_kssl_pending = B_TRUE;
4854 	}
4855 
4856 	/* Inherit the listener's non-STREAMS flag */
4857 	if (IPCL_IS_NONSTR(lconnp)) {
4858 		connp->conn_flags |= IPCL_NONSTR;
4859 	}
4860 
4861 	return (0);
4862 }
4863 
4864 /*
4865  * sets up conn for ipsec.
4866  * if the first mblk is M_CTL it is consumed and mpp is updated.
4867  * in case of error mpp is freed.
4868  */
4869 conn_t *
4870 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
4871 {
4872 	conn_t 		*connp = tcp->tcp_connp;
4873 	conn_t 		*econnp;
4874 	squeue_t 	*new_sqp;
4875 	mblk_t 		*first_mp = *mpp;
4876 	mblk_t		*mp = *mpp;
4877 	boolean_t	mctl_present = B_FALSE;
4878 	uint_t		ipvers;
4879 
4880 	econnp = tcp_get_conn(sqp, tcp->tcp_tcps);
4881 	if (econnp == NULL) {
4882 		freemsg(first_mp);
4883 		return (NULL);
4884 	}
4885 	if (DB_TYPE(mp) == M_CTL) {
4886 		if (mp->b_cont == NULL ||
4887 		    mp->b_cont->b_datap->db_type != M_DATA) {
4888 			freemsg(first_mp);
4889 			return (NULL);
4890 		}
4891 		mp = mp->b_cont;
4892 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
4893 			freemsg(first_mp);
4894 			return (NULL);
4895 		}
4896 
4897 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
4898 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
4899 		mctl_present = B_TRUE;
4900 	} else {
4901 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
4902 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
4903 	}
4904 
4905 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
4906 	DB_CKSUMSTART(mp) = 0;
4907 
4908 	ASSERT(OK_32PTR(mp->b_rptr));
4909 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
4910 	if (ipvers == IPV4_VERSION) {
4911 		uint16_t  	*up;
4912 		uint32_t	ports;
4913 		ipha_t		*ipha;
4914 
4915 		ipha = (ipha_t *)mp->b_rptr;
4916 		up = (uint16_t *)((uchar_t *)ipha +
4917 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
4918 		ports = *(uint32_t *)up;
4919 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
4920 		    ipha->ipha_dst, ipha->ipha_src, ports);
4921 	} else {
4922 		uint16_t  	*up;
4923 		uint32_t	ports;
4924 		uint16_t	ip_hdr_len;
4925 		uint8_t		*nexthdrp;
4926 		ip6_t 		*ip6h;
4927 		tcph_t		*tcph;
4928 
4929 		ip6h = (ip6_t *)mp->b_rptr;
4930 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
4931 			ip_hdr_len = IPV6_HDR_LEN;
4932 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
4933 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
4934 			CONN_DEC_REF(econnp);
4935 			freemsg(first_mp);
4936 			return (NULL);
4937 		}
4938 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
4939 		up = (uint16_t *)tcph->th_lport;
4940 		ports = *(uint32_t *)up;
4941 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
4942 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
4943 	}
4944 
4945 	/*
4946 	 * The caller already ensured that there is a sqp present.
4947 	 */
4948 	econnp->conn_sqp = new_sqp;
4949 	econnp->conn_initial_sqp = new_sqp;
4950 
4951 	if (connp->conn_policy != NULL) {
4952 		ipsec_in_t *ii;
4953 		ii = (ipsec_in_t *)(first_mp->b_rptr);
4954 		ASSERT(ii->ipsec_in_policy == NULL);
4955 		IPPH_REFHOLD(connp->conn_policy);
4956 		ii->ipsec_in_policy = connp->conn_policy;
4957 
4958 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
4959 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
4960 			CONN_DEC_REF(econnp);
4961 			freemsg(first_mp);
4962 			return (NULL);
4963 		}
4964 	}
4965 
4966 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
4967 		CONN_DEC_REF(econnp);
4968 		freemsg(first_mp);
4969 		return (NULL);
4970 	}
4971 
4972 	/*
4973 	 * If we know we have some policy, pass the "IPSEC"
4974 	 * options size TCP uses this adjust the MSS.
4975 	 */
4976 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
4977 	if (mctl_present) {
4978 		freeb(first_mp);
4979 		*mpp = mp;
4980 	}
4981 
4982 	return (econnp);
4983 }
4984 
4985 /*
4986  * tcp_get_conn/tcp_free_conn
4987  *
4988  * tcp_get_conn is used to get a clean tcp connection structure.
4989  * It tries to reuse the connections put on the freelist by the
4990  * time_wait_collector failing which it goes to kmem_cache. This
4991  * way has two benefits compared to just allocating from and
4992  * freeing to kmem_cache.
4993  * 1) The time_wait_collector can free (which includes the cleanup)
4994  * outside the squeue. So when the interrupt comes, we have a clean
4995  * connection sitting in the freelist. Obviously, this buys us
4996  * performance.
4997  *
4998  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
4999  * has multiple disadvantages - tying up the squeue during alloc, and the
5000  * fact that IPSec policy initialization has to happen here which
5001  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5002  * But allocating the conn/tcp in IP land is also not the best since
5003  * we can't check the 'q' and 'q0' which are protected by squeue and
5004  * blindly allocate memory which might have to be freed here if we are
5005  * not allowed to accept the connection. By using the freelist and
5006  * putting the conn/tcp back in freelist, we don't pay a penalty for
5007  * allocating memory without checking 'q/q0' and freeing it if we can't
5008  * accept the connection.
5009  *
5010  * Care should be taken to put the conn back in the same squeue's freelist
5011  * from which it was allocated. Best results are obtained if conn is
5012  * allocated from listener's squeue and freed to the same. Time wait
5013  * collector will free up the freelist is the connection ends up sitting
5014  * there for too long.
5015  */
5016 void *
5017 tcp_get_conn(void *arg, tcp_stack_t *tcps)
5018 {
5019 	tcp_t			*tcp = NULL;
5020 	conn_t			*connp = NULL;
5021 	squeue_t		*sqp = (squeue_t *)arg;
5022 	tcp_squeue_priv_t 	*tcp_time_wait;
5023 	netstack_t		*ns;
5024 	mblk_t			*tcp_rsrv_mp = NULL;
5025 
5026 	tcp_time_wait =
5027 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5028 
5029 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5030 	tcp = tcp_time_wait->tcp_free_list;
5031 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5032 	if (tcp != NULL) {
5033 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5034 		tcp_time_wait->tcp_free_list_cnt--;
5035 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5036 		tcp->tcp_time_wait_next = NULL;
5037 		connp = tcp->tcp_connp;
5038 		connp->conn_flags |= IPCL_REUSED;
5039 
5040 		ASSERT(tcp->tcp_tcps == NULL);
5041 		ASSERT(connp->conn_netstack == NULL);
5042 		ASSERT(tcp->tcp_rsrv_mp != NULL);
5043 		ns = tcps->tcps_netstack;
5044 		netstack_hold(ns);
5045 		connp->conn_netstack = ns;
5046 		tcp->tcp_tcps = tcps;
5047 		TCPS_REFHOLD(tcps);
5048 		ipcl_globalhash_insert(connp);
5049 		return ((void *)connp);
5050 	}
5051 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5052 	/*
5053 	 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until
5054 	 * this conn_t/tcp_t is freed at ipcl_conn_destroy().
5055 	 */
5056 	tcp_rsrv_mp = allocb(0, BPRI_HI);
5057 	if (tcp_rsrv_mp == NULL)
5058 		return (NULL);
5059 
5060 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
5061 	    tcps->tcps_netstack)) == NULL) {
5062 		freeb(tcp_rsrv_mp);
5063 		return (NULL);
5064 	}
5065 
5066 	tcp = connp->conn_tcp;
5067 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
5068 	mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
5069 
5070 	tcp->tcp_tcps = tcps;
5071 	TCPS_REFHOLD(tcps);
5072 
5073 	return ((void *)connp);
5074 }
5075 
5076 /*
5077  * Update the cached label for the given tcp_t.  This should be called once per
5078  * connection, and before any packets are sent or tcp_process_options is
5079  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5080  */
5081 static boolean_t
5082 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5083 {
5084 	conn_t *connp = tcp->tcp_connp;
5085 
5086 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5087 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5088 		int added;
5089 
5090 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5091 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5092 			return (B_FALSE);
5093 
5094 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5095 		if (added == -1)
5096 			return (B_FALSE);
5097 		tcp->tcp_hdr_len += added;
5098 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5099 		tcp->tcp_ip_hdr_len += added;
5100 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5101 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5102 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5103 			    tcp->tcp_hdr_len);
5104 			if (added == -1)
5105 				return (B_FALSE);
5106 			tcp->tcp_hdr_len += added;
5107 			tcp->tcp_tcph = (tcph_t *)
5108 			    ((uchar_t *)tcp->tcp_tcph + added);
5109 			tcp->tcp_ip_hdr_len += added;
5110 		}
5111 	} else {
5112 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5113 
5114 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5115 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5116 			return (B_FALSE);
5117 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5118 		    &tcp->tcp_label_len, optbuf) != 0)
5119 			return (B_FALSE);
5120 		if (tcp_build_hdrs(tcp) != 0)
5121 			return (B_FALSE);
5122 	}
5123 
5124 	connp->conn_ulp_labeled = 1;
5125 
5126 	return (B_TRUE);
5127 }
5128 
5129 /* BEGIN CSTYLED */
5130 /*
5131  *
5132  * The sockfs ACCEPT path:
5133  * =======================
5134  *
5135  * The eager is now established in its own perimeter as soon as SYN is
5136  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5137  * completes the accept processing on the acceptor STREAM. The sending
5138  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5139  * listener but a TLI/XTI listener completes the accept processing
5140  * on the listener perimeter.
5141  *
5142  * Common control flow for 3 way handshake:
5143  * ----------------------------------------
5144  *
5145  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5146  *					-> tcp_conn_request()
5147  *
5148  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5149  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5150  *
5151  * Sockfs ACCEPT Path:
5152  * -------------------
5153  *
5154  * open acceptor stream (tcp_open allocates tcp_wput_accept()
5155  * as STREAM entry point)
5156  *
5157  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5158  *
5159  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5160  * association (we are not behind eager's squeue but sockfs is protecting us
5161  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5162  * is changed to point at tcp_wput().
5163  *
5164  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5165  * listener (done on listener's perimeter).
5166  *
5167  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5168  * accept.
5169  *
5170  * TLI/XTI client ACCEPT path:
5171  * ---------------------------
5172  *
5173  * soaccept() sends T_CONN_RES on the listener STREAM.
5174  *
5175  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5176  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5177  *
5178  * Locks:
5179  * ======
5180  *
5181  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5182  * and listeners->tcp_eager_next_q.
5183  *
5184  * Referencing:
5185  * ============
5186  *
5187  * 1) We start out in tcp_conn_request by eager placing a ref on
5188  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5189  *
5190  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5191  * doing so we place a ref on the eager. This ref is finally dropped at the
5192  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5193  * reference is dropped by the squeue framework.
5194  *
5195  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5196  *
5197  * The reference must be released by the same entity that added the reference
5198  * In the above scheme, the eager is the entity that adds and releases the
5199  * references. Note that tcp_accept_finish executes in the squeue of the eager
5200  * (albeit after it is attached to the acceptor stream). Though 1. executes
5201  * in the listener's squeue, the eager is nascent at this point and the
5202  * reference can be considered to have been added on behalf of the eager.
5203  *
5204  * Eager getting a Reset or listener closing:
5205  * ==========================================
5206  *
5207  * Once the listener and eager are linked, the listener never does the unlink.
5208  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5209  * a message on all eager perimeter. The eager then does the unlink, clears
5210  * any pointers to the listener's queue and drops the reference to the
5211  * listener. The listener waits in tcp_close outside the squeue until its
5212  * refcount has dropped to 1. This ensures that the listener has waited for
5213  * all eagers to clear their association with the listener.
5214  *
5215  * Similarly, if eager decides to go away, it can unlink itself and close.
5216  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5217  * the reference to eager is still valid because of the extra ref we put
5218  * in tcp_send_conn_ind.
5219  *
5220  * Listener can always locate the eager under the protection
5221  * of the listener->tcp_eager_lock, and then do a refhold
5222  * on the eager during the accept processing.
5223  *
5224  * The acceptor stream accesses the eager in the accept processing
5225  * based on the ref placed on eager before sending T_conn_ind.
5226  * The only entity that can negate this refhold is a listener close
5227  * which is mutually exclusive with an active acceptor stream.
5228  *
5229  * Eager's reference on the listener
5230  * ===================================
5231  *
5232  * If the accept happens (even on a closed eager) the eager drops its
5233  * reference on the listener at the start of tcp_accept_finish. If the
5234  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5235  * the reference is dropped in tcp_closei_local. If the listener closes,
5236  * the reference is dropped in tcp_eager_kill. In all cases the reference
5237  * is dropped while executing in the eager's context (squeue).
5238  */
5239 /* END CSTYLED */
5240 
5241 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5242 
5243 /*
5244  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5245  * tcp_rput_data will not see any SYN packets.
5246  */
5247 /* ARGSUSED */
5248 void
5249 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5250 {
5251 	tcph_t		*tcph;
5252 	uint32_t	seg_seq;
5253 	tcp_t		*eager;
5254 	uint_t		ipvers;
5255 	ipha_t		*ipha;
5256 	ip6_t		*ip6h;
5257 	int		err;
5258 	conn_t		*econnp = NULL;
5259 	squeue_t	*new_sqp;
5260 	mblk_t		*mp1;
5261 	uint_t 		ip_hdr_len;
5262 	conn_t		*connp = (conn_t *)arg;
5263 	tcp_t		*tcp = connp->conn_tcp;
5264 	cred_t		*credp;
5265 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5266 	ip_stack_t	*ipst;
5267 
5268 	if (tcp->tcp_state != TCPS_LISTEN)
5269 		goto error2;
5270 
5271 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5272 
5273 	mutex_enter(&tcp->tcp_eager_lock);
5274 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5275 		mutex_exit(&tcp->tcp_eager_lock);
5276 		TCP_STAT(tcps, tcp_listendrop);
5277 		BUMP_MIB(&tcps->tcps_mib, tcpListenDrop);
5278 		if (tcp->tcp_debug) {
5279 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5280 			    "tcp_conn_request: listen backlog (max=%d) "
5281 			    "overflow (%d pending) on %s",
5282 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5283 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5284 		}
5285 		goto error2;
5286 	}
5287 
5288 	if (tcp->tcp_conn_req_cnt_q0 >=
5289 	    tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
5290 		/*
5291 		 * Q0 is full. Drop a pending half-open req from the queue
5292 		 * to make room for the new SYN req. Also mark the time we
5293 		 * drop a SYN.
5294 		 *
5295 		 * A more aggressive defense against SYN attack will
5296 		 * be to set the "tcp_syn_defense" flag now.
5297 		 */
5298 		TCP_STAT(tcps, tcp_listendropq0);
5299 		tcp->tcp_last_rcv_lbolt = lbolt64;
5300 		if (!tcp_drop_q0(tcp)) {
5301 			mutex_exit(&tcp->tcp_eager_lock);
5302 			BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0);
5303 			if (tcp->tcp_debug) {
5304 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5305 				    "tcp_conn_request: listen half-open queue "
5306 				    "(max=%d) full (%d pending) on %s",
5307 				    tcps->tcps_conn_req_max_q0,
5308 				    tcp->tcp_conn_req_cnt_q0,
5309 				    tcp_display(tcp, NULL,
5310 				    DISP_PORT_ONLY));
5311 			}
5312 			goto error2;
5313 		}
5314 	}
5315 	mutex_exit(&tcp->tcp_eager_lock);
5316 
5317 	/*
5318 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5319 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5320 	 * link local address.  If IPSec is enabled, db_struioflag has
5321 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5322 	 * otherwise an error case if neither of them is set.
5323 	 */
5324 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5325 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5326 		DB_CKSUMSTART(mp) = 0;
5327 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5328 		econnp = (conn_t *)tcp_get_conn(arg2, tcps);
5329 		if (econnp == NULL)
5330 			goto error2;
5331 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5332 		econnp->conn_sqp = new_sqp;
5333 		econnp->conn_initial_sqp = new_sqp;
5334 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5335 		/*
5336 		 * mp is updated in tcp_get_ipsec_conn().
5337 		 */
5338 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5339 		if (econnp == NULL) {
5340 			/*
5341 			 * mp freed by tcp_get_ipsec_conn.
5342 			 */
5343 			return;
5344 		}
5345 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5346 	} else {
5347 		goto error2;
5348 	}
5349 
5350 	ASSERT(DB_TYPE(mp) == M_DATA);
5351 
5352 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5353 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5354 	ASSERT(OK_32PTR(mp->b_rptr));
5355 	if (ipvers == IPV4_VERSION) {
5356 		ipha = (ipha_t *)mp->b_rptr;
5357 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5358 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5359 	} else {
5360 		ip6h = (ip6_t *)mp->b_rptr;
5361 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5362 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5363 	}
5364 
5365 	if (tcp->tcp_family == AF_INET) {
5366 		ASSERT(ipvers == IPV4_VERSION);
5367 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5368 	} else {
5369 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5370 	}
5371 
5372 	if (err)
5373 		goto error3;
5374 
5375 	eager = econnp->conn_tcp;
5376 	ASSERT(eager->tcp_ordrel_mp == NULL);
5377 
5378 	if (!IPCL_IS_NONSTR(econnp)) {
5379 		/*
5380 		 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that
5381 		 * at close time, we will always have that to send up.
5382 		 * Otherwise, we need to do special handling in case the
5383 		 * allocation fails at that time.
5384 		 */
5385 		if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL)
5386 			goto error3;
5387 	}
5388 	/* Inherit various TCP parameters from the listener */
5389 	eager->tcp_naglim = tcp->tcp_naglim;
5390 	eager->tcp_first_timer_threshold = tcp->tcp_first_timer_threshold;
5391 	eager->tcp_second_timer_threshold = tcp->tcp_second_timer_threshold;
5392 
5393 	eager->tcp_first_ctimer_threshold = tcp->tcp_first_ctimer_threshold;
5394 	eager->tcp_second_ctimer_threshold = tcp->tcp_second_ctimer_threshold;
5395 
5396 	/*
5397 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5398 	 * If it does not, the eager's receive window will be set to the
5399 	 * listener's receive window later in this function.
5400 	 */
5401 	eager->tcp_rwnd = 0;
5402 
5403 	/*
5404 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5405 	 * calling tcp_process_options() where tcp_mss_set() is called
5406 	 * to set the initial cwnd.
5407 	 */
5408 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5409 
5410 	/*
5411 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5412 	 * zone id before the accept is completed in tcp_wput_accept().
5413 	 */
5414 	econnp->conn_zoneid = connp->conn_zoneid;
5415 	econnp->conn_allzones = connp->conn_allzones;
5416 
5417 	/* Copy nexthop information from listener to eager */
5418 	if (connp->conn_nexthop_set) {
5419 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5420 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5421 	}
5422 
5423 	/*
5424 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5425 	 * eager is accepted
5426 	 */
5427 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5428 	crhold(credp);
5429 
5430 	ASSERT(econnp->conn_effective_cred == NULL);
5431 	if (is_system_labeled()) {
5432 		cred_t *cr;
5433 		ts_label_t *tsl;
5434 
5435 		/*
5436 		 * If this is an MLP connection or a MAC-Exempt connection
5437 		 * with an unlabeled node, packets are to be
5438 		 * exchanged using the security label of the received
5439 		 * SYN packet instead of the server application's label.
5440 		 */
5441 		if ((cr = msg_getcred(mp, NULL)) != NULL &&
5442 		    (tsl = crgetlabel(cr)) != NULL &&
5443 		    (connp->conn_mlp_type != mlptSingle ||
5444 		    (connp->conn_mac_exempt == B_TRUE &&
5445 		    (tsl->tsl_flags & TSLF_UNLABELED)))) {
5446 			if ((econnp->conn_effective_cred =
5447 			    copycred_from_tslabel(econnp->conn_cred,
5448 			    tsl, KM_NOSLEEP)) != NULL) {
5449 				DTRACE_PROBE2(
5450 				    syn_accept_peerlabel,
5451 				    conn_t *, econnp, cred_t *,
5452 				    econnp->conn_effective_cred);
5453 			} else {
5454 				DTRACE_PROBE3(
5455 				    tx__ip__log__error__set__eagercred__tcp,
5456 				    char *,
5457 				    "SYN mp(1) label on eager connp(2) failed",
5458 				    mblk_t *, mp, conn_t *, econnp);
5459 				goto error3;
5460 			}
5461 		} else {
5462 			DTRACE_PROBE2(syn_accept, conn_t *,
5463 			    econnp, cred_t *, econnp->conn_cred)
5464 		}
5465 
5466 		/*
5467 		 * Verify the destination is allowed to receive packets
5468 		 * at the security label of the SYN-ACK we are generating.
5469 		 * tsol_check_dest() may create a new effective cred for
5470 		 * this connection with a modified label or label flags.
5471 		 */
5472 		if (IN6_IS_ADDR_V4MAPPED(&econnp->conn_remv6)) {
5473 			uint32_t dst;
5474 			IN6_V4MAPPED_TO_IPADDR(&econnp->conn_remv6, dst);
5475 			err = tsol_check_dest(CONN_CRED(econnp), &dst,
5476 			    IPV4_VERSION, B_FALSE, &cr);
5477 		} else {
5478 			err = tsol_check_dest(CONN_CRED(econnp),
5479 			    &econnp->conn_remv6, IPV6_VERSION,
5480 			    B_FALSE, &cr);
5481 		}
5482 		if (err != 0)
5483 			goto error3;
5484 		if (cr != NULL) {
5485 			if (econnp->conn_effective_cred != NULL)
5486 				crfree(econnp->conn_effective_cred);
5487 			econnp->conn_effective_cred = cr;
5488 		}
5489 
5490 		/*
5491 		 * Generate the security label to be used in the text of
5492 		 * this connection's outgoing packets.
5493 		 */
5494 		if (!tcp_update_label(eager, CONN_CRED(econnp))) {
5495 			DTRACE_PROBE3(
5496 			    tx__ip__log__error__connrequest__tcp,
5497 			    char *, "eager connp(1) label on SYN mp(2) failed",
5498 			    conn_t *, econnp, mblk_t *, mp);
5499 			goto error3;
5500 		}
5501 	}
5502 
5503 	eager->tcp_hard_binding = B_TRUE;
5504 
5505 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
5506 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5507 
5508 	CL_INET_CONNECT(connp, eager, B_FALSE, err);
5509 	if (err != 0) {
5510 		tcp_bind_hash_remove(eager);
5511 		goto error3;
5512 	}
5513 
5514 	/*
5515 	 * No need to check for multicast destination since ip will only pass
5516 	 * up multicasts to those that have expressed interest
5517 	 * TODO: what about rejecting broadcasts?
5518 	 * Also check that source is not a multicast or broadcast address.
5519 	 */
5520 	eager->tcp_state = TCPS_SYN_RCVD;
5521 
5522 
5523 	/*
5524 	 * There should be no ire in the mp as we are being called after
5525 	 * receiving the SYN.
5526 	 */
5527 	ASSERT(tcp_ire_mp(&mp) == NULL);
5528 
5529 	/*
5530 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5531 	 */
5532 
5533 	if (tcp_adapt_ire(eager, NULL) == 0) {
5534 		/* Undo the bind_hash_insert */
5535 		tcp_bind_hash_remove(eager);
5536 		goto error3;
5537 	}
5538 
5539 	/* Process all TCP options. */
5540 	tcp_process_options(eager, tcph);
5541 
5542 	/* Is the other end ECN capable? */
5543 	if (tcps->tcps_ecn_permitted >= 1 &&
5544 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5545 		eager->tcp_ecn_ok = B_TRUE;
5546 	}
5547 
5548 	/*
5549 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5550 	 * window size changed via SO_RCVBUF option.  First round up the
5551 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5552 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5553 	 * setting.
5554 	 *
5555 	 * Note if there is a rpipe metric associated with the remote host,
5556 	 * we should not inherit receive window size from listener.
5557 	 */
5558 	eager->tcp_rwnd = MSS_ROUNDUP(
5559 	    (eager->tcp_rwnd == 0 ? tcp->tcp_recv_hiwater:
5560 	    eager->tcp_rwnd), eager->tcp_mss);
5561 	if (eager->tcp_snd_ws_ok)
5562 		tcp_set_ws_value(eager);
5563 	/*
5564 	 * Note that this is the only place tcp_rwnd_set() is called for
5565 	 * accepting a connection.  We need to call it here instead of
5566 	 * after the 3-way handshake because we need to tell the other
5567 	 * side our rwnd in the SYN-ACK segment.
5568 	 */
5569 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5570 
5571 	/*
5572 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5573 	 * via soaccept()->soinheritoptions() which essentially applies
5574 	 * all the listener options to the new STREAM. The options that we
5575 	 * need to take care of are:
5576 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5577 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5578 	 * SO_SNDBUF, SO_RCVBUF.
5579 	 *
5580 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5581 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5582 	 *		tcp_maxpsz_set() gets called later from
5583 	 *		tcp_accept_finish(), the option takes effect.
5584 	 *
5585 	 */
5586 	/* Set the TCP options */
5587 	eager->tcp_recv_hiwater = tcp->tcp_recv_hiwater;
5588 	eager->tcp_recv_lowater = tcp->tcp_recv_lowater;
5589 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5590 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5591 	eager->tcp_oobinline = tcp->tcp_oobinline;
5592 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5593 	eager->tcp_broadcast = tcp->tcp_broadcast;
5594 	eager->tcp_useloopback = tcp->tcp_useloopback;
5595 	eager->tcp_dontroute = tcp->tcp_dontroute;
5596 	eager->tcp_debug = tcp->tcp_debug;
5597 	eager->tcp_linger = tcp->tcp_linger;
5598 	eager->tcp_lingertime = tcp->tcp_lingertime;
5599 	if (tcp->tcp_ka_enabled)
5600 		eager->tcp_ka_enabled = 1;
5601 
5602 	/* Set the IP options */
5603 	econnp->conn_broadcast = connp->conn_broadcast;
5604 	econnp->conn_loopback = connp->conn_loopback;
5605 	econnp->conn_dontroute = connp->conn_dontroute;
5606 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5607 
5608 	/* Put a ref on the listener for the eager. */
5609 	CONN_INC_REF(connp);
5610 	mutex_enter(&tcp->tcp_eager_lock);
5611 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5612 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5613 	tcp->tcp_eager_next_q0 = eager;
5614 	eager->tcp_eager_prev_q0 = tcp;
5615 
5616 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5617 	eager->tcp_listener = tcp;
5618 	eager->tcp_saved_listener = tcp;
5619 
5620 	/*
5621 	 * Tag this detached tcp vector for later retrieval
5622 	 * by our listener client in tcp_accept().
5623 	 */
5624 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5625 	tcp->tcp_conn_req_cnt_q0++;
5626 	if (++tcp->tcp_conn_req_seqnum == -1) {
5627 		/*
5628 		 * -1 is "special" and defined in TPI as something
5629 		 * that should never be used in T_CONN_IND
5630 		 */
5631 		++tcp->tcp_conn_req_seqnum;
5632 	}
5633 	mutex_exit(&tcp->tcp_eager_lock);
5634 
5635 	if (tcp->tcp_syn_defense) {
5636 		/* Don't drop the SYN that comes from a good IP source */
5637 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5638 		if (addr_cache != NULL && eager->tcp_remote ==
5639 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5640 			eager->tcp_dontdrop = B_TRUE;
5641 		}
5642 	}
5643 
5644 	/*
5645 	 * We need to insert the eager in its own perimeter but as soon
5646 	 * as we do that, we expose the eager to the classifier and
5647 	 * should not touch any field outside the eager's perimeter.
5648 	 * So do all the work necessary before inserting the eager
5649 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5650 	 * will succeed but undo everything if it fails.
5651 	 */
5652 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5653 	eager->tcp_irs = seg_seq;
5654 	eager->tcp_rack = seg_seq;
5655 	eager->tcp_rnxt = seg_seq + 1;
5656 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5657 	BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens);
5658 	eager->tcp_state = TCPS_SYN_RCVD;
5659 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5660 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5661 	if (mp1 == NULL) {
5662 		/*
5663 		 * Increment the ref count as we are going to
5664 		 * enqueueing an mp in squeue
5665 		 */
5666 		CONN_INC_REF(econnp);
5667 		goto error;
5668 	}
5669 
5670 	/*
5671 	 * Note that in theory this should use the current pid
5672 	 * so that getpeerucred on the client returns the actual listener
5673 	 * that does accept. But accept() hasn't been called yet. We could use
5674 	 * the pid of the process that did bind/listen on the server.
5675 	 * However, with common usage like inetd() the bind/listen can be done
5676 	 * by a different process than the accept().
5677 	 * Hence we do the simple thing of using the open pid here.
5678 	 * Note that db_credp is set later in tcp_send_data().
5679 	 */
5680 	mblk_setcred(mp1, credp, tcp->tcp_cpid);
5681 	eager->tcp_cpid = tcp->tcp_cpid;
5682 	eager->tcp_open_time = lbolt64;
5683 
5684 	/*
5685 	 * We need to start the rto timer. In normal case, we start
5686 	 * the timer after sending the packet on the wire (or at
5687 	 * least believing that packet was sent by waiting for
5688 	 * CALL_IP_WPUT() to return). Since this is the first packet
5689 	 * being sent on the wire for the eager, our initial tcp_rto
5690 	 * is at least tcp_rexmit_interval_min which is a fairly
5691 	 * large value to allow the algorithm to adjust slowly to large
5692 	 * fluctuations of RTT during first few transmissions.
5693 	 *
5694 	 * Starting the timer first and then sending the packet in this
5695 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5696 	 * is of the order of several 100ms and starting the timer
5697 	 * first and then sending the packet will result in difference
5698 	 * of few micro seconds.
5699 	 *
5700 	 * Without this optimization, we are forced to hold the fanout
5701 	 * lock across the ipcl_bind_insert() and sending the packet
5702 	 * so that we don't race against an incoming packet (maybe RST)
5703 	 * for this eager.
5704 	 *
5705 	 * It is necessary to acquire an extra reference on the eager
5706 	 * at this point and hold it until after tcp_send_data() to
5707 	 * ensure against an eager close race.
5708 	 */
5709 
5710 	CONN_INC_REF(eager->tcp_connp);
5711 
5712 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5713 
5714 	/*
5715 	 * Insert the eager in its own perimeter now. We are ready to deal
5716 	 * with any packets on eager.
5717 	 */
5718 	if (eager->tcp_ipversion == IPV4_VERSION) {
5719 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
5720 			goto error;
5721 		}
5722 	} else {
5723 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
5724 			goto error;
5725 		}
5726 	}
5727 
5728 	/* mark conn as fully-bound */
5729 	econnp->conn_fully_bound = B_TRUE;
5730 
5731 	/* Send the SYN-ACK */
5732 	tcp_send_data(eager, eager->tcp_wq, mp1);
5733 	CONN_DEC_REF(eager->tcp_connp);
5734 	freemsg(mp);
5735 
5736 	return;
5737 error:
5738 	freemsg(mp1);
5739 	eager->tcp_closemp_used = B_TRUE;
5740 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
5741 	mp1 = &eager->tcp_closemp;
5742 	SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill,
5743 	    econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_2);
5744 
5745 	/*
5746 	 * If a connection already exists, send the mp to that connections so
5747 	 * that it can be appropriately dealt with.
5748 	 */
5749 	ipst = tcps->tcps_netstack->netstack_ip;
5750 
5751 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) {
5752 		if (!IPCL_IS_CONNECTED(econnp)) {
5753 			/*
5754 			 * Something bad happened. ipcl_conn_insert()
5755 			 * failed because a connection already existed
5756 			 * in connected hash but we can't find it
5757 			 * anymore (someone blew it away). Just
5758 			 * free this message and hopefully remote
5759 			 * will retransmit at which time the SYN can be
5760 			 * treated as a new connection or dealth with
5761 			 * a TH_RST if a connection already exists.
5762 			 */
5763 			CONN_DEC_REF(econnp);
5764 			freemsg(mp);
5765 		} else {
5766 			SQUEUE_ENTER_ONE(econnp->conn_sqp, mp,
5767 			    tcp_input, econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_1);
5768 		}
5769 	} else {
5770 		/* Nobody wants this packet */
5771 		freemsg(mp);
5772 	}
5773 	return;
5774 error3:
5775 	CONN_DEC_REF(econnp);
5776 error2:
5777 	freemsg(mp);
5778 }
5779 
5780 /*
5781  * In an ideal case of vertical partition in NUMA architecture, its
5782  * beneficial to have the listener and all the incoming connections
5783  * tied to the same squeue. The other constraint is that incoming
5784  * connections should be tied to the squeue attached to interrupted
5785  * CPU for obvious locality reason so this leaves the listener to
5786  * be tied to the same squeue. Our only problem is that when listener
5787  * is binding, the CPU that will get interrupted by the NIC whose
5788  * IP address the listener is binding to is not even known. So
5789  * the code below allows us to change that binding at the time the
5790  * CPU is interrupted by virtue of incoming connection's squeue.
5791  *
5792  * This is usefull only in case of a listener bound to a specific IP
5793  * address. For other kind of listeners, they get bound the
5794  * very first time and there is no attempt to rebind them.
5795  */
5796 void
5797 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
5798 {
5799 	conn_t		*connp = (conn_t *)arg;
5800 	squeue_t	*sqp = (squeue_t *)arg2;
5801 	squeue_t	*new_sqp;
5802 	uint32_t	conn_flags;
5803 
5804 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5805 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5806 	} else {
5807 		goto done;
5808 	}
5809 
5810 	if (connp->conn_fanout == NULL)
5811 		goto done;
5812 
5813 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
5814 		mutex_enter(&connp->conn_fanout->connf_lock);
5815 		mutex_enter(&connp->conn_lock);
5816 		/*
5817 		 * No one from read or write side can access us now
5818 		 * except for already queued packets on this squeue.
5819 		 * But since we haven't changed the squeue yet, they
5820 		 * can't execute. If they are processed after we have
5821 		 * changed the squeue, they are sent back to the
5822 		 * correct squeue down below.
5823 		 * But a listner close can race with processing of
5824 		 * incoming SYN. If incoming SYN processing changes
5825 		 * the squeue then the listener close which is waiting
5826 		 * to enter the squeue would operate on the wrong
5827 		 * squeue. Hence we don't change the squeue here unless
5828 		 * the refcount is exactly the minimum refcount. The
5829 		 * minimum refcount of 4 is counted as - 1 each for
5830 		 * TCP and IP, 1 for being in the classifier hash, and
5831 		 * 1 for the mblk being processed.
5832 		 */
5833 
5834 		if (connp->conn_ref != 4 ||
5835 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
5836 			mutex_exit(&connp->conn_lock);
5837 			mutex_exit(&connp->conn_fanout->connf_lock);
5838 			goto done;
5839 		}
5840 		if (connp->conn_sqp != new_sqp) {
5841 			while (connp->conn_sqp != new_sqp)
5842 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
5843 		}
5844 
5845 		do {
5846 			conn_flags = connp->conn_flags;
5847 			conn_flags |= IPCL_FULLY_BOUND;
5848 			(void) cas32(&connp->conn_flags, connp->conn_flags,
5849 			    conn_flags);
5850 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
5851 
5852 		mutex_exit(&connp->conn_fanout->connf_lock);
5853 		mutex_exit(&connp->conn_lock);
5854 	}
5855 
5856 done:
5857 	if (connp->conn_sqp != sqp) {
5858 		CONN_INC_REF(connp);
5859 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
5860 		    SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND);
5861 	} else {
5862 		tcp_conn_request(connp, mp, sqp);
5863 	}
5864 }
5865 
5866 /*
5867  * Successful connect request processing begins when our client passes
5868  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
5869  * our T_OK_ACK reply message upstream.  The control flow looks like this:
5870  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_tpi_connect() -> IP
5871  *   upstream <- tcp_rput()		<- IP
5872  * After various error checks are completed, tcp_tpi_connect() lays
5873  * the target address and port into the composite header template,
5874  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
5875  * request followed by an IRE request, and passes the three mblk message
5876  * down to IP looking like this:
5877  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
5878  * Processing continues in tcp_rput() when we receive the following message:
5879  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
5880  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
5881  * to fire off the connection request, and then passes the T_OK_ACK mblk
5882  * upstream that we filled in below.  There are, of course, numerous
5883  * error conditions along the way which truncate the processing described
5884  * above.
5885  */
5886 static void
5887 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp)
5888 {
5889 	sin_t		*sin;
5890 	queue_t		*q = tcp->tcp_wq;
5891 	struct T_conn_req	*tcr;
5892 	struct sockaddr	*sa;
5893 	socklen_t	len;
5894 	int		error;
5895 	cred_t		*cr;
5896 	pid_t		cpid;
5897 
5898 	/*
5899 	 * All Solaris components should pass a db_credp
5900 	 * for this TPI message, hence we ASSERT.
5901 	 * But in case there is some other M_PROTO that looks
5902 	 * like a TPI message sent by some other kernel
5903 	 * component, we check and return an error.
5904 	 */
5905 	cr = msg_getcred(mp, &cpid);
5906 	ASSERT(cr != NULL);
5907 	if (cr == NULL) {
5908 		tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
5909 		return;
5910 	}
5911 
5912 	tcr = (struct T_conn_req *)mp->b_rptr;
5913 
5914 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
5915 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
5916 		tcp_err_ack(tcp, mp, TPROTO, 0);
5917 		return;
5918 	}
5919 
5920 	/*
5921 	 * Pre-allocate the T_ordrel_ind mblk so that at close time, we
5922 	 * will always have that to send up.  Otherwise, we need to do
5923 	 * special handling in case the allocation fails at that time.
5924 	 * If the end point is TPI, the tcp_t can be reused and the
5925 	 * tcp_ordrel_mp may be allocated already.
5926 	 */
5927 	if (tcp->tcp_ordrel_mp == NULL) {
5928 		if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) {
5929 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
5930 			return;
5931 		}
5932 	}
5933 
5934 	/*
5935 	 * Determine packet type based on type of address passed in
5936 	 * the request should contain an IPv4 or IPv6 address.
5937 	 * Make sure that address family matches the type of
5938 	 * family of the the address passed down
5939 	 */
5940 	switch (tcr->DEST_length) {
5941 	default:
5942 		tcp_err_ack(tcp, mp, TBADADDR, 0);
5943 		return;
5944 
5945 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
5946 		/*
5947 		 * XXX: The check for valid DEST_length was not there
5948 		 * in earlier releases and some buggy
5949 		 * TLI apps (e.g Sybase) got away with not feeding
5950 		 * in sin_zero part of address.
5951 		 * We allow that bug to keep those buggy apps humming.
5952 		 * Test suites require the check on DEST_length.
5953 		 * We construct a new mblk with valid DEST_length
5954 		 * free the original so the rest of the code does
5955 		 * not have to keep track of this special shorter
5956 		 * length address case.
5957 		 */
5958 		mblk_t *nmp;
5959 		struct T_conn_req *ntcr;
5960 		sin_t *nsin;
5961 
5962 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
5963 		    tcr->OPT_length, BPRI_HI);
5964 		if (nmp == NULL) {
5965 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
5966 			return;
5967 		}
5968 		ntcr = (struct T_conn_req *)nmp->b_rptr;
5969 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
5970 		ntcr->PRIM_type = T_CONN_REQ;
5971 		ntcr->DEST_length = sizeof (sin_t);
5972 		ntcr->DEST_offset = sizeof (struct T_conn_req);
5973 
5974 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
5975 		*nsin = sin_null;
5976 		/* Get pointer to shorter address to copy from original mp */
5977 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
5978 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
5979 		if (sin == NULL || !OK_32PTR((char *)sin)) {
5980 			freemsg(nmp);
5981 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
5982 			return;
5983 		}
5984 		nsin->sin_family = sin->sin_family;
5985 		nsin->sin_port = sin->sin_port;
5986 		nsin->sin_addr = sin->sin_addr;
5987 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
5988 		nmp->b_wptr = (uchar_t *)&nsin[1];
5989 		if (tcr->OPT_length != 0) {
5990 			ntcr->OPT_length = tcr->OPT_length;
5991 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
5992 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
5993 			    (uchar_t *)ntcr + ntcr->OPT_offset,
5994 			    tcr->OPT_length);
5995 			nmp->b_wptr += tcr->OPT_length;
5996 		}
5997 		freemsg(mp);	/* original mp freed */
5998 		mp = nmp;	/* re-initialize original variables */
5999 		tcr = ntcr;
6000 	}
6001 	/* FALLTHRU */
6002 
6003 	case sizeof (sin_t):
6004 		sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset,
6005 		    sizeof (sin_t));
6006 		len = sizeof (sin_t);
6007 		break;
6008 
6009 	case sizeof (sin6_t):
6010 		sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset,
6011 		    sizeof (sin6_t));
6012 		len = sizeof (sin6_t);
6013 		break;
6014 	}
6015 
6016 	error = proto_verify_ip_addr(tcp->tcp_family, sa, len);
6017 	if (error != 0) {
6018 		tcp_err_ack(tcp, mp, TSYSERR, error);
6019 		return;
6020 	}
6021 
6022 	/*
6023 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6024 	 * should key on their sequence number and cut them loose.
6025 	 */
6026 
6027 	/*
6028 	 * If options passed in, feed it for verification and handling
6029 	 */
6030 	if (tcr->OPT_length != 0) {
6031 		mblk_t	*ok_mp;
6032 		mblk_t	*discon_mp;
6033 		mblk_t  *conn_opts_mp;
6034 		int t_error, sys_error, do_disconnect;
6035 
6036 		conn_opts_mp = NULL;
6037 
6038 		if (tcp_conprim_opt_process(tcp, mp,
6039 		    &do_disconnect, &t_error, &sys_error) < 0) {
6040 			if (do_disconnect) {
6041 				ASSERT(t_error == 0 && sys_error == 0);
6042 				discon_mp = mi_tpi_discon_ind(NULL,
6043 				    ECONNREFUSED, 0);
6044 				if (!discon_mp) {
6045 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6046 					    TSYSERR, ENOMEM);
6047 					return;
6048 				}
6049 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6050 				if (!ok_mp) {
6051 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6052 					    TSYSERR, ENOMEM);
6053 					return;
6054 				}
6055 				qreply(q, ok_mp);
6056 				qreply(q, discon_mp); /* no flush! */
6057 			} else {
6058 				ASSERT(t_error != 0);
6059 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6060 				    sys_error);
6061 			}
6062 			return;
6063 		}
6064 		/*
6065 		 * Success in setting options, the mp option buffer represented
6066 		 * by OPT_length/offset has been potentially modified and
6067 		 * contains results of option processing. We copy it in
6068 		 * another mp to save it for potentially influencing returning
6069 		 * it in T_CONN_CONN.
6070 		 */
6071 		if (tcr->OPT_length != 0) { /* there are resulting options */
6072 			conn_opts_mp = copyb(mp);
6073 			if (!conn_opts_mp) {
6074 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6075 				    TSYSERR, ENOMEM);
6076 				return;
6077 			}
6078 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6079 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6080 			/*
6081 			 * Note:
6082 			 * These resulting option negotiation can include any
6083 			 * end-to-end negotiation options but there no such
6084 			 * thing (yet?) in our TCP/IP.
6085 			 */
6086 		}
6087 	}
6088 
6089 	/* call the non-TPI version */
6090 	error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid);
6091 	if (error < 0) {
6092 		mp = mi_tpi_err_ack_alloc(mp, -error, 0);
6093 	} else if (error > 0) {
6094 		mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error);
6095 	} else {
6096 		mp = mi_tpi_ok_ack_alloc(mp);
6097 	}
6098 
6099 	/*
6100 	 * Note: Code below is the "failure" case
6101 	 */
6102 	/* return error ack and blow away saved option results if any */
6103 connect_failed:
6104 	if (mp != NULL)
6105 		putnext(tcp->tcp_rq, mp);
6106 	else {
6107 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6108 		    TSYSERR, ENOMEM);
6109 	}
6110 }
6111 
6112 /*
6113  * Handle connect to IPv4 destinations, including connections for AF_INET6
6114  * sockets connecting to IPv4 mapped IPv6 destinations.
6115  */
6116 static int
6117 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport,
6118     uint_t srcid, cred_t *cr, pid_t pid)
6119 {
6120 	tcph_t	*tcph;
6121 	mblk_t	*mp;
6122 	ipaddr_t dstaddr = *dstaddrp;
6123 	int32_t	oldstate;
6124 	uint16_t lport;
6125 	int	error = 0;
6126 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6127 
6128 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6129 
6130 	/* Check for attempt to connect to INADDR_ANY */
6131 	if (dstaddr == INADDR_ANY)  {
6132 		/*
6133 		 * SunOS 4.x and 4.3 BSD allow an application
6134 		 * to connect a TCP socket to INADDR_ANY.
6135 		 * When they do this, the kernel picks the
6136 		 * address of one interface and uses it
6137 		 * instead.  The kernel usually ends up
6138 		 * picking the address of the loopback
6139 		 * interface.  This is an undocumented feature.
6140 		 * However, we provide the same thing here
6141 		 * in order to have source and binary
6142 		 * compatibility with SunOS 4.x.
6143 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6144 		 * generate the T_CONN_CON.
6145 		 */
6146 		dstaddr = htonl(INADDR_LOOPBACK);
6147 		*dstaddrp = dstaddr;
6148 	}
6149 
6150 	/* Handle __sin6_src_id if socket not bound to an IP address */
6151 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6152 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6153 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6154 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6155 		    tcp->tcp_ipha->ipha_src);
6156 	}
6157 
6158 	/*
6159 	 * Don't let an endpoint connect to itself.  Note that
6160 	 * the test here does not catch the case where the
6161 	 * source IP addr was left unspecified by the user. In
6162 	 * this case, the source addr is set in tcp_adapt_ire()
6163 	 * using the reply to the T_BIND message that we send
6164 	 * down to IP here and the check is repeated in tcp_rput_other.
6165 	 */
6166 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6167 	    dstport == tcp->tcp_lport) {
6168 		error = -TBADADDR;
6169 		goto failed;
6170 	}
6171 
6172 	/*
6173 	 * Verify the destination is allowed to receive packets
6174 	 * at the security label of the connection we are initiating.
6175 	 * tsol_check_dest() may create a new effective cred for this
6176 	 * connection with a modified label or label flags.
6177 	 */
6178 	if (is_system_labeled()) {
6179 		ASSERT(tcp->tcp_connp->conn_effective_cred == NULL);
6180 		if ((error = tsol_check_dest(CONN_CRED(tcp->tcp_connp),
6181 		    &dstaddr, IPV4_VERSION, tcp->tcp_connp->conn_mac_exempt,
6182 		    &tcp->tcp_connp->conn_effective_cred)) != 0) {
6183 			if (error != EHOSTUNREACH)
6184 				error = -TSYSERR;
6185 			goto failed;
6186 		}
6187 	}
6188 
6189 	tcp->tcp_ipha->ipha_dst = dstaddr;
6190 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6191 
6192 	/*
6193 	 * Massage a source route if any putting the first hop
6194 	 * in iph_dst. Compute a starting value for the checksum which
6195 	 * takes into account that the original iph_dst should be
6196 	 * included in the checksum but that ip will include the
6197 	 * first hop in the source route in the tcp checksum.
6198 	 */
6199 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack);
6200 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6201 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6202 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6203 	if ((int)tcp->tcp_sum < 0)
6204 		tcp->tcp_sum--;
6205 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6206 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6207 	    (tcp->tcp_sum >> 16));
6208 	tcph = tcp->tcp_tcph;
6209 	*(uint16_t *)tcph->th_fport = dstport;
6210 	tcp->tcp_fport = dstport;
6211 
6212 	oldstate = tcp->tcp_state;
6213 	/*
6214 	 * At this point the remote destination address and remote port fields
6215 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6216 	 * have to see which state tcp was in so we can take apropriate action.
6217 	 */
6218 	if (oldstate == TCPS_IDLE) {
6219 		/*
6220 		 * We support a quick connect capability here, allowing
6221 		 * clients to transition directly from IDLE to SYN_SENT
6222 		 * tcp_bindi will pick an unused port, insert the connection
6223 		 * in the bind hash and transition to BOUND state.
6224 		 */
6225 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6226 		    tcp, B_TRUE);
6227 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6228 		    B_FALSE, B_FALSE);
6229 		if (lport == 0) {
6230 			error = -TNOADDR;
6231 			goto failed;
6232 		}
6233 	}
6234 	tcp->tcp_state = TCPS_SYN_SENT;
6235 
6236 	mp = allocb(sizeof (ire_t), BPRI_HI);
6237 	if (mp == NULL) {
6238 		tcp->tcp_state = oldstate;
6239 		error = ENOMEM;
6240 		goto failed;
6241 	}
6242 
6243 	mp->b_wptr += sizeof (ire_t);
6244 	mp->b_datap->db_type = IRE_DB_REQ_TYPE;
6245 	tcp->tcp_hard_binding = 1;
6246 
6247 	/*
6248 	 * We need to make sure that the conn_recv is set to a non-null
6249 	 * value before we insert the conn_t into the classifier table.
6250 	 * This is to avoid a race with an incoming packet which does
6251 	 * an ipcl_classify().
6252 	 */
6253 	tcp->tcp_connp->conn_recv = tcp_input;
6254 
6255 	if (tcp->tcp_family == AF_INET) {
6256 		error = ip_proto_bind_connected_v4(tcp->tcp_connp, &mp,
6257 		    IPPROTO_TCP, &tcp->tcp_ipha->ipha_src, tcp->tcp_lport,
6258 		    tcp->tcp_remote, tcp->tcp_fport, B_TRUE, B_TRUE, cr);
6259 	} else {
6260 		in6_addr_t v6src;
6261 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6262 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src);
6263 		} else {
6264 			v6src = tcp->tcp_ip6h->ip6_src;
6265 		}
6266 		error = ip_proto_bind_connected_v6(tcp->tcp_connp, &mp,
6267 		    IPPROTO_TCP, &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6,
6268 		    &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr);
6269 	}
6270 	BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6271 	tcp->tcp_active_open = 1;
6272 
6273 
6274 	return (tcp_post_ip_bind(tcp, mp, error, cr, pid));
6275 failed:
6276 	/* return error ack and blow away saved option results if any */
6277 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6278 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6279 	return (error);
6280 }
6281 
6282 /*
6283  * Handle connect to IPv6 destinations.
6284  */
6285 static int
6286 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport,
6287     uint32_t flowinfo, uint_t srcid, uint32_t scope_id, cred_t *cr, pid_t pid)
6288 {
6289 	tcph_t	*tcph;
6290 	mblk_t	*mp;
6291 	ip6_rthdr_t *rth;
6292 	int32_t  oldstate;
6293 	uint16_t lport;
6294 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6295 	int	error = 0;
6296 	conn_t	*connp = tcp->tcp_connp;
6297 
6298 	ASSERT(tcp->tcp_family == AF_INET6);
6299 
6300 	/*
6301 	 * If we're here, it means that the destination address is a native
6302 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6303 	 * reason why it might not be IPv6 is if the socket was bound to an
6304 	 * IPv4-mapped IPv6 address.
6305 	 */
6306 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6307 		return (-TBADADDR);
6308 	}
6309 
6310 	/*
6311 	 * Interpret a zero destination to mean loopback.
6312 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6313 	 * generate the T_CONN_CON.
6314 	 */
6315 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6316 		*dstaddrp = ipv6_loopback;
6317 	}
6318 
6319 	/* Handle __sin6_src_id if socket not bound to an IP address */
6320 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6321 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6322 		    connp->conn_zoneid, tcps->tcps_netstack);
6323 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6324 	}
6325 
6326 	/*
6327 	 * Take care of the scope_id now and add ip6i_t
6328 	 * if ip6i_t is not already allocated through TCP
6329 	 * sticky options. At this point tcp_ip6h does not
6330 	 * have dst info, thus use dstaddrp.
6331 	 */
6332 	if (scope_id != 0 &&
6333 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6334 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6335 		ip6i_t  *ip6i;
6336 
6337 		ipp->ipp_ifindex = scope_id;
6338 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6339 
6340 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6341 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6342 			/* Already allocated */
6343 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6344 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6345 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6346 		} else {
6347 			int reterr;
6348 
6349 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6350 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6351 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6352 			reterr = tcp_build_hdrs(tcp);
6353 			if (reterr != 0)
6354 				goto failed;
6355 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6356 		}
6357 	}
6358 
6359 	/*
6360 	 * Don't let an endpoint connect to itself.  Note that
6361 	 * the test here does not catch the case where the
6362 	 * source IP addr was left unspecified by the user. In
6363 	 * this case, the source addr is set in tcp_adapt_ire()
6364 	 * using the reply to the T_BIND message that we send
6365 	 * down to IP here and the check is repeated in tcp_rput_other.
6366 	 */
6367 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6368 	    (dstport == tcp->tcp_lport)) {
6369 		error = -TBADADDR;
6370 		goto failed;
6371 	}
6372 
6373 	/*
6374 	 * Verify the destination is allowed to receive packets
6375 	 * at the security label of the connection we are initiating.
6376 	 * check_dest may create a new effective cred for this
6377 	 * connection with a modified label or label flags.
6378 	 */
6379 	if (is_system_labeled()) {
6380 		ASSERT(tcp->tcp_connp->conn_effective_cred == NULL);
6381 		if ((error = tsol_check_dest(CONN_CRED(tcp->tcp_connp),
6382 		    dstaddrp, IPV6_VERSION, tcp->tcp_connp->conn_mac_exempt,
6383 		    &tcp->tcp_connp->conn_effective_cred)) != 0) {
6384 			if (error != EHOSTUNREACH)
6385 				error = -TSYSERR;
6386 			goto failed;
6387 		}
6388 	}
6389 
6390 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6391 	tcp->tcp_remote_v6 = *dstaddrp;
6392 	tcp->tcp_ip6h->ip6_vcf =
6393 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6394 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6395 
6396 	/*
6397 	 * Massage a routing header (if present) putting the first hop
6398 	 * in ip6_dst. Compute a starting value for the checksum which
6399 	 * takes into account that the original ip6_dst should be
6400 	 * included in the checksum but that ip will include the
6401 	 * first hop in the source route in the tcp checksum.
6402 	 */
6403 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6404 	if (rth != NULL) {
6405 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth,
6406 		    tcps->tcps_netstack);
6407 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6408 		    (tcp->tcp_sum >> 16));
6409 	} else {
6410 		tcp->tcp_sum = 0;
6411 	}
6412 
6413 	tcph = tcp->tcp_tcph;
6414 	*(uint16_t *)tcph->th_fport = dstport;
6415 	tcp->tcp_fport = dstport;
6416 
6417 	oldstate = tcp->tcp_state;
6418 	/*
6419 	 * At this point the remote destination address and remote port fields
6420 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6421 	 * have to see which state tcp was in so we can take apropriate action.
6422 	 */
6423 	if (oldstate == TCPS_IDLE) {
6424 		/*
6425 		 * We support a quick connect capability here, allowing
6426 		 * clients to transition directly from IDLE to SYN_SENT
6427 		 * tcp_bindi will pick an unused port, insert the connection
6428 		 * in the bind hash and transition to BOUND state.
6429 		 */
6430 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6431 		    tcp, B_TRUE);
6432 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6433 		    B_FALSE, B_FALSE);
6434 		if (lport == 0) {
6435 			error = -TNOADDR;
6436 			goto failed;
6437 		}
6438 	}
6439 	tcp->tcp_state = TCPS_SYN_SENT;
6440 
6441 	mp = allocb(sizeof (ire_t), BPRI_HI);
6442 	if (mp != NULL) {
6443 		in6_addr_t v6src;
6444 
6445 		mp->b_wptr += sizeof (ire_t);
6446 		mp->b_datap->db_type = IRE_DB_REQ_TYPE;
6447 
6448 		tcp->tcp_hard_binding = 1;
6449 
6450 		/*
6451 		 * We need to make sure that the conn_recv is set to a non-null
6452 		 * value before we insert the conn_t into the classifier table.
6453 		 * This is to avoid a race with an incoming packet which does
6454 		 * an ipcl_classify().
6455 		 */
6456 		tcp->tcp_connp->conn_recv = tcp_input;
6457 
6458 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6459 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src);
6460 		} else {
6461 			v6src = tcp->tcp_ip6h->ip6_src;
6462 		}
6463 		error = ip_proto_bind_connected_v6(connp, &mp, IPPROTO_TCP,
6464 		    &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6,
6465 		    &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr);
6466 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6467 		tcp->tcp_active_open = 1;
6468 
6469 		return (tcp_post_ip_bind(tcp, mp, error, cr, pid));
6470 	}
6471 	/* Error case */
6472 	tcp->tcp_state = oldstate;
6473 	error = ENOMEM;
6474 
6475 failed:
6476 	/* return error ack and blow away saved option results if any */
6477 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6478 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6479 	return (error);
6480 }
6481 
6482 /*
6483  * We need a stream q for detached closing tcp connections
6484  * to use.  Our client hereby indicates that this q is the
6485  * one to use.
6486  */
6487 static void
6488 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6489 {
6490 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6491 	queue_t	*q = tcp->tcp_wq;
6492 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6493 
6494 #ifdef NS_DEBUG
6495 	(void) printf("TCP_IOC_DEFAULT_Q for stack %d\n",
6496 	    tcps->tcps_netstack->netstack_stackid);
6497 #endif
6498 	mp->b_datap->db_type = M_IOCACK;
6499 	iocp->ioc_count = 0;
6500 	mutex_enter(&tcps->tcps_g_q_lock);
6501 	if (tcps->tcps_g_q != NULL) {
6502 		mutex_exit(&tcps->tcps_g_q_lock);
6503 		iocp->ioc_error = EALREADY;
6504 	} else {
6505 		int error = 0;
6506 		conn_t *connp = tcp->tcp_connp;
6507 		ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
6508 
6509 		tcps->tcps_g_q = tcp->tcp_rq;
6510 		mutex_exit(&tcps->tcps_g_q_lock);
6511 		iocp->ioc_error = 0;
6512 		iocp->ioc_rval = 0;
6513 		/*
6514 		 * We are passing tcp_sticky_ipp as NULL
6515 		 * as it is not useful for tcp_default queue
6516 		 *
6517 		 * Set conn_recv just in case.
6518 		 */
6519 		tcp->tcp_connp->conn_recv = tcp_conn_request;
6520 
6521 		ASSERT(connp->conn_af_isv6);
6522 		connp->conn_ulp = IPPROTO_TCP;
6523 
6524 		if (ipst->ips_ipcl_proto_fanout_v6[IPPROTO_TCP].connf_head !=
6525 		    NULL || connp->conn_mac_exempt) {
6526 			error = -TBADADDR;
6527 		} else {
6528 			connp->conn_srcv6 = ipv6_all_zeros;
6529 			ipcl_proto_insert_v6(connp, IPPROTO_TCP);
6530 		}
6531 
6532 		(void) tcp_post_ip_bind(tcp, NULL, error, NULL, 0);
6533 	}
6534 	qreply(q, mp);
6535 }
6536 
6537 static int
6538 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum)
6539 {
6540 	tcp_t	*ltcp = NULL;
6541 	conn_t	*connp;
6542 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6543 
6544 	/*
6545 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6546 	 * when the stream is in BOUND state. Do not send a reset,
6547 	 * since the destination IP address is not valid, and it can
6548 	 * be the initialized value of all zeros (broadcast address).
6549 	 *
6550 	 * XXX There won't be any pending bind request to IP.
6551 	 */
6552 	if (tcp->tcp_state <= TCPS_BOUND) {
6553 		if (tcp->tcp_debug) {
6554 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6555 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6556 		}
6557 		return (TOUTSTATE);
6558 	}
6559 
6560 
6561 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6562 
6563 		/*
6564 		 * According to TPI, for non-listeners, ignore seqnum
6565 		 * and disconnect.
6566 		 * Following interpretation of -1 seqnum is historical
6567 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6568 		 * a valid seqnum should not be -1).
6569 		 *
6570 		 *	-1 means disconnect everything
6571 		 *	regardless even on a listener.
6572 		 */
6573 
6574 		int old_state = tcp->tcp_state;
6575 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
6576 
6577 		/*
6578 		 * The connection can't be on the tcp_time_wait_head list
6579 		 * since it is not detached.
6580 		 */
6581 		ASSERT(tcp->tcp_time_wait_next == NULL);
6582 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6583 		ASSERT(tcp->tcp_time_wait_expire == 0);
6584 		ltcp = NULL;
6585 		/*
6586 		 * If it used to be a listener, check to make sure no one else
6587 		 * has taken the port before switching back to LISTEN state.
6588 		 */
6589 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6590 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6591 			    tcp->tcp_ipha->ipha_src,
6592 			    tcp->tcp_connp->conn_zoneid, ipst);
6593 			if (connp != NULL)
6594 				ltcp = connp->conn_tcp;
6595 		} else {
6596 			/* Allow tcp_bound_if listeners? */
6597 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6598 			    &tcp->tcp_ip6h->ip6_src, 0,
6599 			    tcp->tcp_connp->conn_zoneid, ipst);
6600 			if (connp != NULL)
6601 				ltcp = connp->conn_tcp;
6602 		}
6603 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6604 			tcp->tcp_state = TCPS_LISTEN;
6605 		} else if (old_state > TCPS_BOUND) {
6606 			tcp->tcp_conn_req_max = 0;
6607 			tcp->tcp_state = TCPS_BOUND;
6608 		}
6609 		if (ltcp != NULL)
6610 			CONN_DEC_REF(ltcp->tcp_connp);
6611 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6612 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
6613 		} else if (old_state == TCPS_ESTABLISHED ||
6614 		    old_state == TCPS_CLOSE_WAIT) {
6615 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
6616 		}
6617 
6618 		if (tcp->tcp_fused)
6619 			tcp_unfuse(tcp);
6620 
6621 		mutex_enter(&tcp->tcp_eager_lock);
6622 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6623 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6624 			tcp_eager_cleanup(tcp, 0);
6625 		}
6626 		mutex_exit(&tcp->tcp_eager_lock);
6627 
6628 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6629 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6630 
6631 		tcp_reinit(tcp);
6632 
6633 		return (0);
6634 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
6635 		return (TBADSEQ);
6636 	}
6637 	return (0);
6638 }
6639 
6640 /*
6641  * Our client hereby directs us to reject the connection request
6642  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6643  * of sending the appropriate RST, not an ICMP error.
6644  */
6645 static void
6646 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6647 {
6648 	t_scalar_t seqnum;
6649 	int	error;
6650 
6651 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6652 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6653 		tcp_err_ack(tcp, mp, TPROTO, 0);
6654 		return;
6655 	}
6656 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6657 	error = tcp_disconnect_common(tcp, seqnum);
6658 	if (error != 0)
6659 		tcp_err_ack(tcp, mp, error, 0);
6660 	else {
6661 		if (tcp->tcp_state >= TCPS_ESTABLISHED) {
6662 			/* Send M_FLUSH according to TPI */
6663 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6664 		}
6665 		mp = mi_tpi_ok_ack_alloc(mp);
6666 		if (mp)
6667 			putnext(tcp->tcp_rq, mp);
6668 	}
6669 }
6670 
6671 /*
6672  * Diagnostic routine used to return a string associated with the tcp state.
6673  * Note that if the caller does not supply a buffer, it will use an internal
6674  * static string.  This means that if multiple threads call this function at
6675  * the same time, output can be corrupted...  Note also that this function
6676  * does not check the size of the supplied buffer.  The caller has to make
6677  * sure that it is big enough.
6678  */
6679 static char *
6680 tcp_display(tcp_t *tcp, char *sup_buf, char format)
6681 {
6682 	char		buf1[30];
6683 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
6684 	char		*buf;
6685 	char		*cp;
6686 	in6_addr_t	local, remote;
6687 	char		local_addrbuf[INET6_ADDRSTRLEN];
6688 	char		remote_addrbuf[INET6_ADDRSTRLEN];
6689 
6690 	if (sup_buf != NULL)
6691 		buf = sup_buf;
6692 	else
6693 		buf = priv_buf;
6694 
6695 	if (tcp == NULL)
6696 		return ("NULL_TCP");
6697 	switch (tcp->tcp_state) {
6698 	case TCPS_CLOSED:
6699 		cp = "TCP_CLOSED";
6700 		break;
6701 	case TCPS_IDLE:
6702 		cp = "TCP_IDLE";
6703 		break;
6704 	case TCPS_BOUND:
6705 		cp = "TCP_BOUND";
6706 		break;
6707 	case TCPS_LISTEN:
6708 		cp = "TCP_LISTEN";
6709 		break;
6710 	case TCPS_SYN_SENT:
6711 		cp = "TCP_SYN_SENT";
6712 		break;
6713 	case TCPS_SYN_RCVD:
6714 		cp = "TCP_SYN_RCVD";
6715 		break;
6716 	case TCPS_ESTABLISHED:
6717 		cp = "TCP_ESTABLISHED";
6718 		break;
6719 	case TCPS_CLOSE_WAIT:
6720 		cp = "TCP_CLOSE_WAIT";
6721 		break;
6722 	case TCPS_FIN_WAIT_1:
6723 		cp = "TCP_FIN_WAIT_1";
6724 		break;
6725 	case TCPS_CLOSING:
6726 		cp = "TCP_CLOSING";
6727 		break;
6728 	case TCPS_LAST_ACK:
6729 		cp = "TCP_LAST_ACK";
6730 		break;
6731 	case TCPS_FIN_WAIT_2:
6732 		cp = "TCP_FIN_WAIT_2";
6733 		break;
6734 	case TCPS_TIME_WAIT:
6735 		cp = "TCP_TIME_WAIT";
6736 		break;
6737 	default:
6738 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
6739 		cp = buf1;
6740 		break;
6741 	}
6742 	switch (format) {
6743 	case DISP_ADDR_AND_PORT:
6744 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6745 			/*
6746 			 * Note that we use the remote address in the tcp_b
6747 			 * structure.  This means that it will print out
6748 			 * the real destination address, not the next hop's
6749 			 * address if source routing is used.
6750 			 */
6751 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
6752 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
6753 
6754 		} else {
6755 			local = tcp->tcp_ip_src_v6;
6756 			remote = tcp->tcp_remote_v6;
6757 		}
6758 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
6759 		    sizeof (local_addrbuf));
6760 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
6761 		    sizeof (remote_addrbuf));
6762 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
6763 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
6764 		    ntohs(tcp->tcp_fport), cp);
6765 		break;
6766 	case DISP_PORT_ONLY:
6767 	default:
6768 		(void) mi_sprintf(buf, "[%u, %u] %s",
6769 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
6770 		break;
6771 	}
6772 
6773 	return (buf);
6774 }
6775 
6776 /*
6777  * Called via squeue to get on to eager's perimeter. It sends a
6778  * TH_RST if eager is in the fanout table. The listener wants the
6779  * eager to disappear either by means of tcp_eager_blowoff() or
6780  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
6781  * called (via squeue) if the eager cannot be inserted in the
6782  * fanout table in tcp_conn_request().
6783  */
6784 /* ARGSUSED */
6785 void
6786 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
6787 {
6788 	conn_t	*econnp = (conn_t *)arg;
6789 	tcp_t	*eager = econnp->conn_tcp;
6790 	tcp_t	*listener = eager->tcp_listener;
6791 	tcp_stack_t	*tcps = eager->tcp_tcps;
6792 
6793 	/*
6794 	 * We could be called because listener is closing. Since
6795 	 * the eager is using listener's queue's, its not safe.
6796 	 * Better use the default queue just to send the TH_RST
6797 	 * out.
6798 	 */
6799 	ASSERT(tcps->tcps_g_q != NULL);
6800 	eager->tcp_rq = tcps->tcps_g_q;
6801 	eager->tcp_wq = WR(tcps->tcps_g_q);
6802 
6803 	/*
6804 	 * An eager's conn_fanout will be NULL if it's a duplicate
6805 	 * for an existing 4-tuples in the conn fanout table.
6806 	 * We don't want to send an RST out in such case.
6807 	 */
6808 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
6809 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
6810 		    eager, eager->tcp_snxt, 0, TH_RST);
6811 	}
6812 
6813 	/* We are here because listener wants this eager gone */
6814 	if (listener != NULL) {
6815 		mutex_enter(&listener->tcp_eager_lock);
6816 		tcp_eager_unlink(eager);
6817 		if (eager->tcp_tconnind_started) {
6818 			/*
6819 			 * The eager has sent a conn_ind up to the
6820 			 * listener but listener decides to close
6821 			 * instead. We need to drop the extra ref
6822 			 * placed on eager in tcp_rput_data() before
6823 			 * sending the conn_ind to listener.
6824 			 */
6825 			CONN_DEC_REF(econnp);
6826 		}
6827 		mutex_exit(&listener->tcp_eager_lock);
6828 		CONN_DEC_REF(listener->tcp_connp);
6829 	}
6830 
6831 	if (eager->tcp_state != TCPS_CLOSED)
6832 		tcp_close_detached(eager);
6833 }
6834 
6835 /*
6836  * Reset any eager connection hanging off this listener marked
6837  * with 'seqnum' and then reclaim it's resources.
6838  */
6839 static boolean_t
6840 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
6841 {
6842 	tcp_t	*eager;
6843 	mblk_t 	*mp;
6844 	tcp_stack_t	*tcps = listener->tcp_tcps;
6845 
6846 	TCP_STAT(tcps, tcp_eager_blowoff_calls);
6847 	eager = listener;
6848 	mutex_enter(&listener->tcp_eager_lock);
6849 	do {
6850 		eager = eager->tcp_eager_next_q;
6851 		if (eager == NULL) {
6852 			mutex_exit(&listener->tcp_eager_lock);
6853 			return (B_FALSE);
6854 		}
6855 	} while (eager->tcp_conn_req_seqnum != seqnum);
6856 
6857 	if (eager->tcp_closemp_used) {
6858 		mutex_exit(&listener->tcp_eager_lock);
6859 		return (B_TRUE);
6860 	}
6861 	eager->tcp_closemp_used = B_TRUE;
6862 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6863 	CONN_INC_REF(eager->tcp_connp);
6864 	mutex_exit(&listener->tcp_eager_lock);
6865 	mp = &eager->tcp_closemp;
6866 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
6867 	    eager->tcp_connp, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF);
6868 	return (B_TRUE);
6869 }
6870 
6871 /*
6872  * Reset any eager connection hanging off this listener
6873  * and then reclaim it's resources.
6874  */
6875 static void
6876 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
6877 {
6878 	tcp_t	*eager;
6879 	mblk_t	*mp;
6880 	tcp_stack_t	*tcps = listener->tcp_tcps;
6881 
6882 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
6883 
6884 	if (!q0_only) {
6885 		/* First cleanup q */
6886 		TCP_STAT(tcps, tcp_eager_blowoff_q);
6887 		eager = listener->tcp_eager_next_q;
6888 		while (eager != NULL) {
6889 			if (!eager->tcp_closemp_used) {
6890 				eager->tcp_closemp_used = B_TRUE;
6891 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6892 				CONN_INC_REF(eager->tcp_connp);
6893 				mp = &eager->tcp_closemp;
6894 				SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
6895 				    tcp_eager_kill, eager->tcp_connp,
6896 				    SQ_FILL, SQTAG_TCP_EAGER_CLEANUP);
6897 			}
6898 			eager = eager->tcp_eager_next_q;
6899 		}
6900 	}
6901 	/* Then cleanup q0 */
6902 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
6903 	eager = listener->tcp_eager_next_q0;
6904 	while (eager != listener) {
6905 		if (!eager->tcp_closemp_used) {
6906 			eager->tcp_closemp_used = B_TRUE;
6907 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6908 			CONN_INC_REF(eager->tcp_connp);
6909 			mp = &eager->tcp_closemp;
6910 			SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
6911 			    tcp_eager_kill, eager->tcp_connp, SQ_FILL,
6912 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
6913 		}
6914 		eager = eager->tcp_eager_next_q0;
6915 	}
6916 }
6917 
6918 /*
6919  * If we are an eager connection hanging off a listener that hasn't
6920  * formally accepted the connection yet, get off his list and blow off
6921  * any data that we have accumulated.
6922  */
6923 static void
6924 tcp_eager_unlink(tcp_t *tcp)
6925 {
6926 	tcp_t	*listener = tcp->tcp_listener;
6927 
6928 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
6929 	ASSERT(listener != NULL);
6930 	if (tcp->tcp_eager_next_q0 != NULL) {
6931 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
6932 
6933 		/* Remove the eager tcp from q0 */
6934 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
6935 		    tcp->tcp_eager_prev_q0;
6936 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
6937 		    tcp->tcp_eager_next_q0;
6938 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
6939 		listener->tcp_conn_req_cnt_q0--;
6940 
6941 		tcp->tcp_eager_next_q0 = NULL;
6942 		tcp->tcp_eager_prev_q0 = NULL;
6943 
6944 		/*
6945 		 * Take the eager out, if it is in the list of droppable
6946 		 * eagers.
6947 		 */
6948 		MAKE_UNDROPPABLE(tcp);
6949 
6950 		if (tcp->tcp_syn_rcvd_timeout != 0) {
6951 			/* we have timed out before */
6952 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
6953 			listener->tcp_syn_rcvd_timeout--;
6954 		}
6955 	} else {
6956 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
6957 		tcp_t	*prev = NULL;
6958 
6959 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
6960 			if (tcpp[0] == tcp) {
6961 				if (listener->tcp_eager_last_q == tcp) {
6962 					/*
6963 					 * If we are unlinking the last
6964 					 * element on the list, adjust
6965 					 * tail pointer. Set tail pointer
6966 					 * to nil when list is empty.
6967 					 */
6968 					ASSERT(tcp->tcp_eager_next_q == NULL);
6969 					if (listener->tcp_eager_last_q ==
6970 					    listener->tcp_eager_next_q) {
6971 						listener->tcp_eager_last_q =
6972 						    NULL;
6973 					} else {
6974 						/*
6975 						 * We won't get here if there
6976 						 * is only one eager in the
6977 						 * list.
6978 						 */
6979 						ASSERT(prev != NULL);
6980 						listener->tcp_eager_last_q =
6981 						    prev;
6982 					}
6983 				}
6984 				tcpp[0] = tcp->tcp_eager_next_q;
6985 				tcp->tcp_eager_next_q = NULL;
6986 				tcp->tcp_eager_last_q = NULL;
6987 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
6988 				listener->tcp_conn_req_cnt_q--;
6989 				break;
6990 			}
6991 			prev = tcpp[0];
6992 		}
6993 	}
6994 	tcp->tcp_listener = NULL;
6995 }
6996 
6997 /* Shorthand to generate and send TPI error acks to our client */
6998 static void
6999 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7000 {
7001 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7002 		putnext(tcp->tcp_rq, mp);
7003 }
7004 
7005 /* Shorthand to generate and send TPI error acks to our client */
7006 static void
7007 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7008     int t_error, int sys_error)
7009 {
7010 	struct T_error_ack	*teackp;
7011 
7012 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7013 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7014 		teackp = (struct T_error_ack *)mp->b_rptr;
7015 		teackp->ERROR_prim = primitive;
7016 		teackp->TLI_error = t_error;
7017 		teackp->UNIX_error = sys_error;
7018 		putnext(tcp->tcp_rq, mp);
7019 	}
7020 }
7021 
7022 /*
7023  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7024  * but instead the code relies on:
7025  * - the fact that the address of the array and its size never changes
7026  * - the atomic assignment of the elements of the array
7027  */
7028 /* ARGSUSED */
7029 static int
7030 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7031 {
7032 	int i;
7033 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7034 
7035 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7036 		if (tcps->tcps_g_epriv_ports[i] != 0)
7037 			(void) mi_mpprintf(mp, "%d ",
7038 			    tcps->tcps_g_epriv_ports[i]);
7039 	}
7040 	return (0);
7041 }
7042 
7043 /*
7044  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7045  * threads from changing it at the same time.
7046  */
7047 /* ARGSUSED */
7048 static int
7049 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7050     cred_t *cr)
7051 {
7052 	long	new_value;
7053 	int	i;
7054 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7055 
7056 	/*
7057 	 * Fail the request if the new value does not lie within the
7058 	 * port number limits.
7059 	 */
7060 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7061 	    new_value <= 0 || new_value >= 65536) {
7062 		return (EINVAL);
7063 	}
7064 
7065 	mutex_enter(&tcps->tcps_epriv_port_lock);
7066 	/* Check if the value is already in the list */
7067 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7068 		if (new_value == tcps->tcps_g_epriv_ports[i]) {
7069 			mutex_exit(&tcps->tcps_epriv_port_lock);
7070 			return (EEXIST);
7071 		}
7072 	}
7073 	/* Find an empty slot */
7074 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7075 		if (tcps->tcps_g_epriv_ports[i] == 0)
7076 			break;
7077 	}
7078 	if (i == tcps->tcps_g_num_epriv_ports) {
7079 		mutex_exit(&tcps->tcps_epriv_port_lock);
7080 		return (EOVERFLOW);
7081 	}
7082 	/* Set the new value */
7083 	tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value;
7084 	mutex_exit(&tcps->tcps_epriv_port_lock);
7085 	return (0);
7086 }
7087 
7088 /*
7089  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7090  * threads from changing it at the same time.
7091  */
7092 /* ARGSUSED */
7093 static int
7094 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7095     cred_t *cr)
7096 {
7097 	long	new_value;
7098 	int	i;
7099 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7100 
7101 	/*
7102 	 * Fail the request if the new value does not lie within the
7103 	 * port number limits.
7104 	 */
7105 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7106 	    new_value >= 65536) {
7107 		return (EINVAL);
7108 	}
7109 
7110 	mutex_enter(&tcps->tcps_epriv_port_lock);
7111 	/* Check that the value is already in the list */
7112 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7113 		if (tcps->tcps_g_epriv_ports[i] == new_value)
7114 			break;
7115 	}
7116 	if (i == tcps->tcps_g_num_epriv_ports) {
7117 		mutex_exit(&tcps->tcps_epriv_port_lock);
7118 		return (ESRCH);
7119 	}
7120 	/* Clear the value */
7121 	tcps->tcps_g_epriv_ports[i] = 0;
7122 	mutex_exit(&tcps->tcps_epriv_port_lock);
7123 	return (0);
7124 }
7125 
7126 /* Return the TPI/TLI equivalent of our current tcp_state */
7127 static int
7128 tcp_tpistate(tcp_t *tcp)
7129 {
7130 	switch (tcp->tcp_state) {
7131 	case TCPS_IDLE:
7132 		return (TS_UNBND);
7133 	case TCPS_LISTEN:
7134 		/*
7135 		 * Return whether there are outstanding T_CONN_IND waiting
7136 		 * for the matching T_CONN_RES. Therefore don't count q0.
7137 		 */
7138 		if (tcp->tcp_conn_req_cnt_q > 0)
7139 			return (TS_WRES_CIND);
7140 		else
7141 			return (TS_IDLE);
7142 	case TCPS_BOUND:
7143 		return (TS_IDLE);
7144 	case TCPS_SYN_SENT:
7145 		return (TS_WCON_CREQ);
7146 	case TCPS_SYN_RCVD:
7147 		/*
7148 		 * Note: assumption: this has to the active open SYN_RCVD.
7149 		 * The passive instance is detached in SYN_RCVD stage of
7150 		 * incoming connection processing so we cannot get request
7151 		 * for T_info_ack on it.
7152 		 */
7153 		return (TS_WACK_CRES);
7154 	case TCPS_ESTABLISHED:
7155 		return (TS_DATA_XFER);
7156 	case TCPS_CLOSE_WAIT:
7157 		return (TS_WREQ_ORDREL);
7158 	case TCPS_FIN_WAIT_1:
7159 		return (TS_WIND_ORDREL);
7160 	case TCPS_FIN_WAIT_2:
7161 		return (TS_WIND_ORDREL);
7162 
7163 	case TCPS_CLOSING:
7164 	case TCPS_LAST_ACK:
7165 	case TCPS_TIME_WAIT:
7166 	case TCPS_CLOSED:
7167 		/*
7168 		 * Following TS_WACK_DREQ7 is a rendition of "not
7169 		 * yet TS_IDLE" TPI state. There is no best match to any
7170 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7171 		 * choose a value chosen that will map to TLI/XTI level
7172 		 * state of TSTATECHNG (state is process of changing) which
7173 		 * captures what this dummy state represents.
7174 		 */
7175 		return (TS_WACK_DREQ7);
7176 	default:
7177 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7178 		    tcp->tcp_state, tcp_display(tcp, NULL,
7179 		    DISP_PORT_ONLY));
7180 		return (TS_UNBND);
7181 	}
7182 }
7183 
7184 static void
7185 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7186 {
7187 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7188 
7189 	if (tcp->tcp_family == AF_INET6)
7190 		*tia = tcp_g_t_info_ack_v6;
7191 	else
7192 		*tia = tcp_g_t_info_ack;
7193 	tia->CURRENT_state = tcp_tpistate(tcp);
7194 	tia->OPT_size = tcp_max_optsize;
7195 	if (tcp->tcp_mss == 0) {
7196 		/* Not yet set - tcp_open does not set mss */
7197 		if (tcp->tcp_ipversion == IPV4_VERSION)
7198 			tia->TIDU_size = tcps->tcps_mss_def_ipv4;
7199 		else
7200 			tia->TIDU_size = tcps->tcps_mss_def_ipv6;
7201 	} else {
7202 		tia->TIDU_size = tcp->tcp_mss;
7203 	}
7204 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7205 }
7206 
7207 static void
7208 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap,
7209     t_uscalar_t cap_bits1)
7210 {
7211 	tcap->CAP_bits1 = 0;
7212 
7213 	if (cap_bits1 & TC1_INFO) {
7214 		tcp_copy_info(&tcap->INFO_ack, tcp);
7215 		tcap->CAP_bits1 |= TC1_INFO;
7216 	}
7217 
7218 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7219 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7220 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7221 	}
7222 
7223 }
7224 
7225 /*
7226  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7227  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7228  * tcp_g_t_info_ack.  The current state of the stream is copied from
7229  * tcp_state.
7230  */
7231 static void
7232 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7233 {
7234 	t_uscalar_t		cap_bits1;
7235 	struct T_capability_ack	*tcap;
7236 
7237 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7238 		freemsg(mp);
7239 		return;
7240 	}
7241 
7242 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7243 
7244 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7245 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7246 	if (mp == NULL)
7247 		return;
7248 
7249 	tcap = (struct T_capability_ack *)mp->b_rptr;
7250 	tcp_do_capability_ack(tcp, tcap, cap_bits1);
7251 
7252 	putnext(tcp->tcp_rq, mp);
7253 }
7254 
7255 /*
7256  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7257  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7258  * The current state of the stream is copied from tcp_state.
7259  */
7260 static void
7261 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7262 {
7263 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7264 	    T_INFO_ACK);
7265 	if (!mp) {
7266 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7267 		return;
7268 	}
7269 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7270 	putnext(tcp->tcp_rq, mp);
7271 }
7272 
7273 /* Respond to the TPI addr request */
7274 static void
7275 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7276 {
7277 	sin_t	*sin;
7278 	mblk_t	*ackmp;
7279 	struct T_addr_ack *taa;
7280 
7281 	/* Make it large enough for worst case */
7282 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7283 	    2 * sizeof (sin6_t), 1);
7284 	if (ackmp == NULL) {
7285 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7286 		return;
7287 	}
7288 
7289 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7290 		tcp_addr_req_ipv6(tcp, ackmp);
7291 		return;
7292 	}
7293 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7294 
7295 	bzero(taa, sizeof (struct T_addr_ack));
7296 	ackmp->b_wptr = (uchar_t *)&taa[1];
7297 
7298 	taa->PRIM_type = T_ADDR_ACK;
7299 	ackmp->b_datap->db_type = M_PCPROTO;
7300 
7301 	/*
7302 	 * Note: Following code assumes 32 bit alignment of basic
7303 	 * data structures like sin_t and struct T_addr_ack.
7304 	 */
7305 	if (tcp->tcp_state >= TCPS_BOUND) {
7306 		/*
7307 		 * Fill in local address
7308 		 */
7309 		taa->LOCADDR_length = sizeof (sin_t);
7310 		taa->LOCADDR_offset = sizeof (*taa);
7311 
7312 		sin = (sin_t *)&taa[1];
7313 
7314 		/* Fill zeroes and then intialize non-zero fields */
7315 		*sin = sin_null;
7316 
7317 		sin->sin_family = AF_INET;
7318 
7319 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7320 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7321 
7322 		ackmp->b_wptr = (uchar_t *)&sin[1];
7323 
7324 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7325 			/*
7326 			 * Fill in Remote address
7327 			 */
7328 			taa->REMADDR_length = sizeof (sin_t);
7329 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7330 			    taa->LOCADDR_length);
7331 
7332 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7333 			*sin = sin_null;
7334 			sin->sin_family = AF_INET;
7335 			sin->sin_addr.s_addr = tcp->tcp_remote;
7336 			sin->sin_port = tcp->tcp_fport;
7337 
7338 			ackmp->b_wptr = (uchar_t *)&sin[1];
7339 		}
7340 	}
7341 	putnext(tcp->tcp_rq, ackmp);
7342 }
7343 
7344 /* Assumes that tcp_addr_req gets enough space and alignment */
7345 static void
7346 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7347 {
7348 	sin6_t	*sin6;
7349 	struct T_addr_ack *taa;
7350 
7351 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7352 	ASSERT(OK_32PTR(ackmp->b_rptr));
7353 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7354 	    2 * sizeof (sin6_t));
7355 
7356 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7357 
7358 	bzero(taa, sizeof (struct T_addr_ack));
7359 	ackmp->b_wptr = (uchar_t *)&taa[1];
7360 
7361 	taa->PRIM_type = T_ADDR_ACK;
7362 	ackmp->b_datap->db_type = M_PCPROTO;
7363 
7364 	/*
7365 	 * Note: Following code assumes 32 bit alignment of basic
7366 	 * data structures like sin6_t and struct T_addr_ack.
7367 	 */
7368 	if (tcp->tcp_state >= TCPS_BOUND) {
7369 		/*
7370 		 * Fill in local address
7371 		 */
7372 		taa->LOCADDR_length = sizeof (sin6_t);
7373 		taa->LOCADDR_offset = sizeof (*taa);
7374 
7375 		sin6 = (sin6_t *)&taa[1];
7376 		*sin6 = sin6_null;
7377 
7378 		sin6->sin6_family = AF_INET6;
7379 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7380 		sin6->sin6_port = tcp->tcp_lport;
7381 
7382 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7383 
7384 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7385 			/*
7386 			 * Fill in Remote address
7387 			 */
7388 			taa->REMADDR_length = sizeof (sin6_t);
7389 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7390 			    taa->LOCADDR_length);
7391 
7392 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7393 			*sin6 = sin6_null;
7394 			sin6->sin6_family = AF_INET6;
7395 			sin6->sin6_flowinfo =
7396 			    tcp->tcp_ip6h->ip6_vcf &
7397 			    ~IPV6_VERS_AND_FLOW_MASK;
7398 			sin6->sin6_addr = tcp->tcp_remote_v6;
7399 			sin6->sin6_port = tcp->tcp_fport;
7400 
7401 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7402 		}
7403 	}
7404 	putnext(tcp->tcp_rq, ackmp);
7405 }
7406 
7407 /*
7408  * Handle reinitialization of a tcp structure.
7409  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7410  */
7411 static void
7412 tcp_reinit(tcp_t *tcp)
7413 {
7414 	mblk_t	*mp;
7415 	int 	err;
7416 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7417 
7418 	TCP_STAT(tcps, tcp_reinit_calls);
7419 
7420 	/* tcp_reinit should never be called for detached tcp_t's */
7421 	ASSERT(tcp->tcp_listener == NULL);
7422 	ASSERT((tcp->tcp_family == AF_INET &&
7423 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7424 	    (tcp->tcp_family == AF_INET6 &&
7425 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7426 	    tcp->tcp_ipversion == IPV6_VERSION)));
7427 
7428 	/* Cancel outstanding timers */
7429 	tcp_timers_stop(tcp);
7430 
7431 	/*
7432 	 * Reset everything in the state vector, after updating global
7433 	 * MIB data from instance counters.
7434 	 */
7435 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
7436 	tcp->tcp_ibsegs = 0;
7437 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
7438 	tcp->tcp_obsegs = 0;
7439 
7440 	tcp_close_mpp(&tcp->tcp_xmit_head);
7441 	if (tcp->tcp_snd_zcopy_aware)
7442 		tcp_zcopy_notify(tcp);
7443 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7444 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7445 	mutex_enter(&tcp->tcp_non_sq_lock);
7446 	if (tcp->tcp_flow_stopped &&
7447 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7448 		tcp_clrqfull(tcp);
7449 	}
7450 	mutex_exit(&tcp->tcp_non_sq_lock);
7451 	tcp_close_mpp(&tcp->tcp_reass_head);
7452 	tcp->tcp_reass_tail = NULL;
7453 	if (tcp->tcp_rcv_list != NULL) {
7454 		/* Free b_next chain */
7455 		tcp_close_mpp(&tcp->tcp_rcv_list);
7456 		tcp->tcp_rcv_last_head = NULL;
7457 		tcp->tcp_rcv_last_tail = NULL;
7458 		tcp->tcp_rcv_cnt = 0;
7459 	}
7460 	tcp->tcp_rcv_last_tail = NULL;
7461 
7462 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7463 		freemsg(mp);
7464 		tcp->tcp_urp_mp = NULL;
7465 	}
7466 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7467 		freemsg(mp);
7468 		tcp->tcp_urp_mark_mp = NULL;
7469 	}
7470 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7471 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
7472 		freeb(tcp->tcp_fused_sigurg_mp);
7473 		tcp->tcp_fused_sigurg_mp = NULL;
7474 	}
7475 	if (tcp->tcp_ordrel_mp != NULL) {
7476 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
7477 		freeb(tcp->tcp_ordrel_mp);
7478 		tcp->tcp_ordrel_mp = NULL;
7479 	}
7480 
7481 	/*
7482 	 * Following is a union with two members which are
7483 	 * identical types and size so the following cleanup
7484 	 * is enough.
7485 	 */
7486 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7487 
7488 	CL_INET_DISCONNECT(tcp->tcp_connp, tcp);
7489 
7490 	/*
7491 	 * The connection can't be on the tcp_time_wait_head list
7492 	 * since it is not detached.
7493 	 */
7494 	ASSERT(tcp->tcp_time_wait_next == NULL);
7495 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7496 	ASSERT(tcp->tcp_time_wait_expire == 0);
7497 
7498 	if (tcp->tcp_kssl_pending) {
7499 		tcp->tcp_kssl_pending = B_FALSE;
7500 
7501 		/* Don't reset if the initialized by bind. */
7502 		if (tcp->tcp_kssl_ent != NULL) {
7503 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7504 			    KSSL_NO_PROXY);
7505 		}
7506 	}
7507 	if (tcp->tcp_kssl_ctx != NULL) {
7508 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7509 		tcp->tcp_kssl_ctx = NULL;
7510 	}
7511 
7512 	/*
7513 	 * Reset/preserve other values
7514 	 */
7515 	tcp_reinit_values(tcp);
7516 	ipcl_hash_remove(tcp->tcp_connp);
7517 	conn_delete_ire(tcp->tcp_connp, NULL);
7518 	tcp_ipsec_cleanup(tcp);
7519 
7520 	if (tcp->tcp_connp->conn_effective_cred != NULL) {
7521 		crfree(tcp->tcp_connp->conn_effective_cred);
7522 		tcp->tcp_connp->conn_effective_cred = NULL;
7523 	}
7524 
7525 	if (tcp->tcp_conn_req_max != 0) {
7526 		/*
7527 		 * This is the case when a TLI program uses the same
7528 		 * transport end point to accept a connection.  This
7529 		 * makes the TCP both a listener and acceptor.  When
7530 		 * this connection is closed, we need to set the state
7531 		 * back to TCPS_LISTEN.  Make sure that the eager list
7532 		 * is reinitialized.
7533 		 *
7534 		 * Note that this stream is still bound to the four
7535 		 * tuples of the previous connection in IP.  If a new
7536 		 * SYN with different foreign address comes in, IP will
7537 		 * not find it and will send it to the global queue.  In
7538 		 * the global queue, TCP will do a tcp_lookup_listener()
7539 		 * to find this stream.  This works because this stream
7540 		 * is only removed from connected hash.
7541 		 *
7542 		 */
7543 		tcp->tcp_state = TCPS_LISTEN;
7544 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7545 		tcp->tcp_eager_next_drop_q0 = tcp;
7546 		tcp->tcp_eager_prev_drop_q0 = tcp;
7547 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7548 		if (tcp->tcp_family == AF_INET6) {
7549 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7550 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7551 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7552 		} else {
7553 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7554 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7555 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7556 		}
7557 	} else {
7558 		tcp->tcp_state = TCPS_BOUND;
7559 	}
7560 
7561 	/*
7562 	 * Initialize to default values
7563 	 * Can't fail since enough header template space already allocated
7564 	 * at open().
7565 	 */
7566 	err = tcp_init_values(tcp);
7567 	ASSERT(err == 0);
7568 	/* Restore state in tcp_tcph */
7569 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7570 	if (tcp->tcp_ipversion == IPV4_VERSION)
7571 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7572 	else
7573 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7574 	/*
7575 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7576 	 * since the lookup funcs can only lookup on tcp_t
7577 	 */
7578 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7579 
7580 	ASSERT(tcp->tcp_ptpbhn != NULL);
7581 	if (!IPCL_IS_NONSTR(tcp->tcp_connp))
7582 		tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat;
7583 	tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat;
7584 	tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat;
7585 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
7586 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7587 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
7588 }
7589 
7590 /*
7591  * Force values to zero that need be zero.
7592  * Do not touch values asociated with the BOUND or LISTEN state
7593  * since the connection will end up in that state after the reinit.
7594  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7595  * structure!
7596  */
7597 static void
7598 tcp_reinit_values(tcp)
7599 	tcp_t *tcp;
7600 {
7601 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7602 
7603 #ifndef	lint
7604 #define	DONTCARE(x)
7605 #define	PRESERVE(x)
7606 #else
7607 #define	DONTCARE(x)	((x) = (x))
7608 #define	PRESERVE(x)	((x) = (x))
7609 #endif	/* lint */
7610 
7611 	PRESERVE(tcp->tcp_bind_hash_port);
7612 	PRESERVE(tcp->tcp_bind_hash);
7613 	PRESERVE(tcp->tcp_ptpbhn);
7614 	PRESERVE(tcp->tcp_acceptor_hash);
7615 	PRESERVE(tcp->tcp_ptpahn);
7616 
7617 	/* Should be ASSERT NULL on these with new code! */
7618 	ASSERT(tcp->tcp_time_wait_next == NULL);
7619 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7620 	ASSERT(tcp->tcp_time_wait_expire == 0);
7621 	PRESERVE(tcp->tcp_state);
7622 	PRESERVE(tcp->tcp_rq);
7623 	PRESERVE(tcp->tcp_wq);
7624 
7625 	ASSERT(tcp->tcp_xmit_head == NULL);
7626 	ASSERT(tcp->tcp_xmit_last == NULL);
7627 	ASSERT(tcp->tcp_unsent == 0);
7628 	ASSERT(tcp->tcp_xmit_tail == NULL);
7629 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7630 
7631 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7632 	tcp->tcp_suna = 0;			/* Displayed in mib */
7633 	tcp->tcp_swnd = 0;
7634 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7635 
7636 	ASSERT(tcp->tcp_ibsegs == 0);
7637 	ASSERT(tcp->tcp_obsegs == 0);
7638 
7639 	if (tcp->tcp_iphc != NULL) {
7640 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7641 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7642 	}
7643 
7644 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7645 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7646 	DONTCARE(tcp->tcp_ipha);
7647 	DONTCARE(tcp->tcp_ip6h);
7648 	DONTCARE(tcp->tcp_ip_hdr_len);
7649 	DONTCARE(tcp->tcp_tcph);
7650 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7651 	tcp->tcp_valid_bits = 0;
7652 
7653 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7654 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7655 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7656 	tcp->tcp_last_rcv_lbolt = 0;
7657 
7658 	tcp->tcp_init_cwnd = 0;
7659 
7660 	tcp->tcp_urp_last_valid = 0;
7661 	tcp->tcp_hard_binding = 0;
7662 	tcp->tcp_hard_bound = 0;
7663 	PRESERVE(tcp->tcp_cred);
7664 	PRESERVE(tcp->tcp_cpid);
7665 	PRESERVE(tcp->tcp_open_time);
7666 	PRESERVE(tcp->tcp_exclbind);
7667 
7668 	tcp->tcp_fin_acked = 0;
7669 	tcp->tcp_fin_rcvd = 0;
7670 	tcp->tcp_fin_sent = 0;
7671 	tcp->tcp_ordrel_done = 0;
7672 
7673 	tcp->tcp_debug = 0;
7674 	tcp->tcp_dontroute = 0;
7675 	tcp->tcp_broadcast = 0;
7676 
7677 	tcp->tcp_useloopback = 0;
7678 	tcp->tcp_reuseaddr = 0;
7679 	tcp->tcp_oobinline = 0;
7680 	tcp->tcp_dgram_errind = 0;
7681 
7682 	tcp->tcp_detached = 0;
7683 	tcp->tcp_bind_pending = 0;
7684 	tcp->tcp_unbind_pending = 0;
7685 
7686 	tcp->tcp_snd_ws_ok = B_FALSE;
7687 	tcp->tcp_snd_ts_ok = B_FALSE;
7688 	tcp->tcp_linger = 0;
7689 	tcp->tcp_ka_enabled = 0;
7690 	tcp->tcp_zero_win_probe = 0;
7691 
7692 	tcp->tcp_loopback = 0;
7693 	tcp->tcp_refuse = 0;
7694 	tcp->tcp_localnet = 0;
7695 	tcp->tcp_syn_defense = 0;
7696 	tcp->tcp_set_timer = 0;
7697 
7698 	tcp->tcp_active_open = 0;
7699 	tcp->tcp_rexmit = B_FALSE;
7700 	tcp->tcp_xmit_zc_clean = B_FALSE;
7701 
7702 	tcp->tcp_snd_sack_ok = B_FALSE;
7703 	PRESERVE(tcp->tcp_recvdstaddr);
7704 	tcp->tcp_hwcksum = B_FALSE;
7705 
7706 	tcp->tcp_ire_ill_check_done = B_FALSE;
7707 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
7708 
7709 	tcp->tcp_mdt = B_FALSE;
7710 	tcp->tcp_mdt_hdr_head = 0;
7711 	tcp->tcp_mdt_hdr_tail = 0;
7712 
7713 	tcp->tcp_conn_def_q0 = 0;
7714 	tcp->tcp_ip_forward_progress = B_FALSE;
7715 	tcp->tcp_anon_priv_bind = 0;
7716 	tcp->tcp_ecn_ok = B_FALSE;
7717 
7718 	tcp->tcp_cwr = B_FALSE;
7719 	tcp->tcp_ecn_echo_on = B_FALSE;
7720 	tcp->tcp_is_wnd_shrnk = B_FALSE;
7721 
7722 	if (tcp->tcp_sack_info != NULL) {
7723 		if (tcp->tcp_notsack_list != NULL) {
7724 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list,
7725 			    tcp);
7726 		}
7727 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
7728 		tcp->tcp_sack_info = NULL;
7729 	}
7730 
7731 	tcp->tcp_rcv_ws = 0;
7732 	tcp->tcp_snd_ws = 0;
7733 	tcp->tcp_ts_recent = 0;
7734 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
7735 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
7736 	tcp->tcp_if_mtu = 0;
7737 
7738 	ASSERT(tcp->tcp_reass_head == NULL);
7739 	ASSERT(tcp->tcp_reass_tail == NULL);
7740 
7741 	tcp->tcp_cwnd_cnt = 0;
7742 
7743 	ASSERT(tcp->tcp_rcv_list == NULL);
7744 	ASSERT(tcp->tcp_rcv_last_head == NULL);
7745 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
7746 	ASSERT(tcp->tcp_rcv_cnt == 0);
7747 
7748 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
7749 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
7750 	tcp->tcp_csuna = 0;
7751 
7752 	tcp->tcp_rto = 0;			/* Displayed in MIB */
7753 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
7754 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
7755 	tcp->tcp_rtt_update = 0;
7756 
7757 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7758 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7759 
7760 	tcp->tcp_rack = 0;			/* Displayed in mib */
7761 	tcp->tcp_rack_cnt = 0;
7762 	tcp->tcp_rack_cur_max = 0;
7763 	tcp->tcp_rack_abs_max = 0;
7764 
7765 	tcp->tcp_max_swnd = 0;
7766 
7767 	ASSERT(tcp->tcp_listener == NULL);
7768 
7769 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
7770 
7771 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
7772 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
7773 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
7774 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
7775 
7776 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
7777 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
7778 	PRESERVE(tcp->tcp_conn_req_max);
7779 	PRESERVE(tcp->tcp_conn_req_seqnum);
7780 
7781 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
7782 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
7783 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
7784 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
7785 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
7786 
7787 	tcp->tcp_lingertime = 0;
7788 
7789 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
7790 	ASSERT(tcp->tcp_urp_mp == NULL);
7791 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
7792 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
7793 
7794 	ASSERT(tcp->tcp_eager_next_q == NULL);
7795 	ASSERT(tcp->tcp_eager_last_q == NULL);
7796 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
7797 	    tcp->tcp_eager_prev_q0 == NULL) ||
7798 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
7799 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
7800 
7801 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
7802 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
7803 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
7804 
7805 	tcp->tcp_client_errno = 0;
7806 
7807 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
7808 
7809 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
7810 
7811 	PRESERVE(tcp->tcp_bound_source_v6);
7812 	tcp->tcp_last_sent_len = 0;
7813 	tcp->tcp_dupack_cnt = 0;
7814 
7815 	tcp->tcp_fport = 0;			/* Displayed in MIB */
7816 	PRESERVE(tcp->tcp_lport);
7817 
7818 	PRESERVE(tcp->tcp_acceptor_lockp);
7819 
7820 	ASSERT(tcp->tcp_ordrel_mp == NULL);
7821 	PRESERVE(tcp->tcp_acceptor_id);
7822 	DONTCARE(tcp->tcp_ipsec_overhead);
7823 
7824 	PRESERVE(tcp->tcp_family);
7825 	if (tcp->tcp_family == AF_INET6) {
7826 		tcp->tcp_ipversion = IPV6_VERSION;
7827 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
7828 	} else {
7829 		tcp->tcp_ipversion = IPV4_VERSION;
7830 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
7831 	}
7832 
7833 	tcp->tcp_bound_if = 0;
7834 	tcp->tcp_ipv6_recvancillary = 0;
7835 	tcp->tcp_recvifindex = 0;
7836 	tcp->tcp_recvhops = 0;
7837 	tcp->tcp_closed = 0;
7838 	tcp->tcp_cleandeathtag = 0;
7839 	if (tcp->tcp_hopopts != NULL) {
7840 		mi_free(tcp->tcp_hopopts);
7841 		tcp->tcp_hopopts = NULL;
7842 		tcp->tcp_hopoptslen = 0;
7843 	}
7844 	ASSERT(tcp->tcp_hopoptslen == 0);
7845 	if (tcp->tcp_dstopts != NULL) {
7846 		mi_free(tcp->tcp_dstopts);
7847 		tcp->tcp_dstopts = NULL;
7848 		tcp->tcp_dstoptslen = 0;
7849 	}
7850 	ASSERT(tcp->tcp_dstoptslen == 0);
7851 	if (tcp->tcp_rtdstopts != NULL) {
7852 		mi_free(tcp->tcp_rtdstopts);
7853 		tcp->tcp_rtdstopts = NULL;
7854 		tcp->tcp_rtdstoptslen = 0;
7855 	}
7856 	ASSERT(tcp->tcp_rtdstoptslen == 0);
7857 	if (tcp->tcp_rthdr != NULL) {
7858 		mi_free(tcp->tcp_rthdr);
7859 		tcp->tcp_rthdr = NULL;
7860 		tcp->tcp_rthdrlen = 0;
7861 	}
7862 	ASSERT(tcp->tcp_rthdrlen == 0);
7863 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
7864 
7865 	/* Reset fusion-related fields */
7866 	tcp->tcp_fused = B_FALSE;
7867 	tcp->tcp_unfusable = B_FALSE;
7868 	tcp->tcp_fused_sigurg = B_FALSE;
7869 	tcp->tcp_direct_sockfs = B_FALSE;
7870 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
7871 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
7872 	tcp->tcp_loopback_peer = NULL;
7873 	tcp->tcp_fuse_rcv_hiwater = 0;
7874 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
7875 	tcp->tcp_fuse_rcv_unread_cnt = 0;
7876 
7877 	tcp->tcp_lso = B_FALSE;
7878 
7879 	tcp->tcp_in_ack_unsent = 0;
7880 	tcp->tcp_cork = B_FALSE;
7881 	tcp->tcp_tconnind_started = B_FALSE;
7882 
7883 	PRESERVE(tcp->tcp_squeue_bytes);
7884 
7885 	ASSERT(tcp->tcp_kssl_ctx == NULL);
7886 	ASSERT(!tcp->tcp_kssl_pending);
7887 	PRESERVE(tcp->tcp_kssl_ent);
7888 
7889 	tcp->tcp_closemp_used = B_FALSE;
7890 
7891 	PRESERVE(tcp->tcp_rsrv_mp);
7892 	PRESERVE(tcp->tcp_rsrv_mp_lock);
7893 
7894 #ifdef DEBUG
7895 	DONTCARE(tcp->tcmp_stk[0]);
7896 #endif
7897 
7898 	PRESERVE(tcp->tcp_connid);
7899 
7900 
7901 #undef	DONTCARE
7902 #undef	PRESERVE
7903 }
7904 
7905 /*
7906  * Allocate necessary resources and initialize state vector.
7907  * Guaranteed not to fail so that when an error is returned,
7908  * the caller doesn't need to do any additional cleanup.
7909  */
7910 int
7911 tcp_init(tcp_t *tcp, queue_t *q)
7912 {
7913 	int	err;
7914 
7915 	tcp->tcp_rq = q;
7916 	tcp->tcp_wq = WR(q);
7917 	tcp->tcp_state = TCPS_IDLE;
7918 	if ((err = tcp_init_values(tcp)) != 0)
7919 		tcp_timers_stop(tcp);
7920 	return (err);
7921 }
7922 
7923 static int
7924 tcp_init_values(tcp_t *tcp)
7925 {
7926 	int	err;
7927 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7928 
7929 	ASSERT((tcp->tcp_family == AF_INET &&
7930 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7931 	    (tcp->tcp_family == AF_INET6 &&
7932 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7933 	    tcp->tcp_ipversion == IPV6_VERSION)));
7934 
7935 	/*
7936 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
7937 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
7938 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
7939 	 * during first few transmissions of a connection as seen in slow
7940 	 * links.
7941 	 */
7942 	tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
7943 	tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
7944 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
7945 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
7946 	    tcps->tcps_conn_grace_period;
7947 	if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
7948 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
7949 	tcp->tcp_timer_backoff = 0;
7950 	tcp->tcp_ms_we_have_waited = 0;
7951 	tcp->tcp_last_recv_time = lbolt;
7952 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
7953 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
7954 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
7955 
7956 	tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier;
7957 
7958 	tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
7959 	tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
7960 	tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
7961 	/*
7962 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
7963 	 * passive open.
7964 	 */
7965 	tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
7966 
7967 	tcp->tcp_naglim = tcps->tcps_naglim_def;
7968 
7969 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
7970 
7971 	tcp->tcp_mdt_hdr_head = 0;
7972 	tcp->tcp_mdt_hdr_tail = 0;
7973 
7974 	/* Reset fusion-related fields */
7975 	tcp->tcp_fused = B_FALSE;
7976 	tcp->tcp_unfusable = B_FALSE;
7977 	tcp->tcp_fused_sigurg = B_FALSE;
7978 	tcp->tcp_direct_sockfs = B_FALSE;
7979 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
7980 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
7981 	tcp->tcp_loopback_peer = NULL;
7982 	tcp->tcp_fuse_rcv_hiwater = 0;
7983 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
7984 	tcp->tcp_fuse_rcv_unread_cnt = 0;
7985 
7986 	/* Initialize the header template */
7987 	if (tcp->tcp_ipversion == IPV4_VERSION) {
7988 		err = tcp_header_init_ipv4(tcp);
7989 	} else {
7990 		err = tcp_header_init_ipv6(tcp);
7991 	}
7992 	if (err)
7993 		return (err);
7994 
7995 	/*
7996 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
7997 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
7998 	 */
7999 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
8000 	tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat;
8001 	tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat;
8002 
8003 	tcp->tcp_cork = B_FALSE;
8004 	/*
8005 	 * Init the tcp_debug option.  This value determines whether TCP
8006 	 * calls strlog() to print out debug messages.  Doing this
8007 	 * initialization here means that this value is not inherited thru
8008 	 * tcp_reinit().
8009 	 */
8010 	tcp->tcp_debug = tcps->tcps_dbg;
8011 
8012 	tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
8013 	tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
8014 
8015 	return (0);
8016 }
8017 
8018 /*
8019  * Initialize the IPv4 header. Loses any record of any IP options.
8020  */
8021 static int
8022 tcp_header_init_ipv4(tcp_t *tcp)
8023 {
8024 	tcph_t		*tcph;
8025 	uint32_t	sum;
8026 	conn_t		*connp;
8027 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8028 
8029 	/*
8030 	 * This is a simple initialization. If there's
8031 	 * already a template, it should never be too small,
8032 	 * so reuse it.  Otherwise, allocate space for the new one.
8033 	 */
8034 	if (tcp->tcp_iphc == NULL) {
8035 		ASSERT(tcp->tcp_iphc_len == 0);
8036 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8037 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8038 		if (tcp->tcp_iphc == NULL) {
8039 			tcp->tcp_iphc_len = 0;
8040 			return (ENOMEM);
8041 		}
8042 	}
8043 
8044 	/* options are gone; may need a new label */
8045 	connp = tcp->tcp_connp;
8046 	connp->conn_mlp_type = mlptSingle;
8047 	connp->conn_ulp_labeled = !is_system_labeled();
8048 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8049 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8050 	tcp->tcp_ip6h = NULL;
8051 	tcp->tcp_ipversion = IPV4_VERSION;
8052 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8053 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8054 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8055 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8056 	tcp->tcp_ipha->ipha_version_and_hdr_length
8057 	    = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8058 	tcp->tcp_ipha->ipha_ident = 0;
8059 
8060 	tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8061 	tcp->tcp_tos = 0;
8062 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8063 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8064 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8065 
8066 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8067 	tcp->tcp_tcph = tcph;
8068 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8069 	/*
8070 	 * IP wants our header length in the checksum field to
8071 	 * allow it to perform a single pseudo-header+checksum
8072 	 * calculation on behalf of TCP.
8073 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8074 	 */
8075 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8076 	sum = (sum >> 16) + (sum & 0xFFFF);
8077 	U16_TO_ABE16(sum, tcph->th_sum);
8078 	return (0);
8079 }
8080 
8081 /*
8082  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8083  */
8084 static int
8085 tcp_header_init_ipv6(tcp_t *tcp)
8086 {
8087 	tcph_t	*tcph;
8088 	uint32_t	sum;
8089 	conn_t	*connp;
8090 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8091 
8092 	/*
8093 	 * This is a simple initialization. If there's
8094 	 * already a template, it should never be too small,
8095 	 * so reuse it. Otherwise, allocate space for the new one.
8096 	 * Ensure that there is enough space to "downgrade" the tcp_t
8097 	 * to an IPv4 tcp_t. This requires having space for a full load
8098 	 * of IPv4 options, as well as a full load of TCP options
8099 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8100 	 * than a v6 header and a TCP header with a full load of TCP options
8101 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8102 	 * We want to avoid reallocation in the "downgraded" case when
8103 	 * processing outbound IPv4 options.
8104 	 */
8105 	if (tcp->tcp_iphc == NULL) {
8106 		ASSERT(tcp->tcp_iphc_len == 0);
8107 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8108 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8109 		if (tcp->tcp_iphc == NULL) {
8110 			tcp->tcp_iphc_len = 0;
8111 			return (ENOMEM);
8112 		}
8113 	}
8114 
8115 	/* options are gone; may need a new label */
8116 	connp = tcp->tcp_connp;
8117 	connp->conn_mlp_type = mlptSingle;
8118 	connp->conn_ulp_labeled = !is_system_labeled();
8119 
8120 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8121 	tcp->tcp_ipversion = IPV6_VERSION;
8122 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8123 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8124 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8125 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8126 	tcp->tcp_ipha = NULL;
8127 
8128 	/* Initialize the header template */
8129 
8130 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8131 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8132 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8133 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit;
8134 
8135 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8136 	tcp->tcp_tcph = tcph;
8137 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8138 	/*
8139 	 * IP wants our header length in the checksum field to
8140 	 * allow it to perform a single psuedo-header+checksum
8141 	 * calculation on behalf of TCP.
8142 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8143 	 */
8144 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8145 	sum = (sum >> 16) + (sum & 0xFFFF);
8146 	U16_TO_ABE16(sum, tcph->th_sum);
8147 	return (0);
8148 }
8149 
8150 /* At minimum we need 8 bytes in the TCP header for the lookup */
8151 #define	ICMP_MIN_TCP_HDR	8
8152 
8153 /*
8154  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8155  * passed up by IP. The message is always received on the correct tcp_t.
8156  * Assumes that IP has pulled up everything up to and including the ICMP header.
8157  */
8158 void
8159 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8160 {
8161 	icmph_t *icmph;
8162 	ipha_t	*ipha;
8163 	int	iph_hdr_length;
8164 	tcph_t	*tcph;
8165 	boolean_t ipsec_mctl = B_FALSE;
8166 	boolean_t secure;
8167 	mblk_t *first_mp = mp;
8168 	int32_t new_mss;
8169 	uint32_t ratio;
8170 	size_t mp_size = MBLKL(mp);
8171 	uint32_t seg_seq;
8172 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8173 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
8174 
8175 	/* Assume IP provides aligned packets - otherwise toss */
8176 	if (!OK_32PTR(mp->b_rptr)) {
8177 		freemsg(mp);
8178 		return;
8179 	}
8180 
8181 	/*
8182 	 * Since ICMP errors are normal data marked with M_CTL when sent
8183 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8184 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8185 	 */
8186 	if ((mp_size == sizeof (ipsec_info_t)) &&
8187 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8188 		ASSERT(mp->b_cont != NULL);
8189 		mp = mp->b_cont;
8190 		/* IP should have done this */
8191 		ASSERT(OK_32PTR(mp->b_rptr));
8192 		mp_size = MBLKL(mp);
8193 		ipsec_mctl = B_TRUE;
8194 	}
8195 
8196 	/*
8197 	 * Verify that we have a complete outer IP header. If not, drop it.
8198 	 */
8199 	if (mp_size < sizeof (ipha_t)) {
8200 noticmpv4:
8201 		freemsg(first_mp);
8202 		return;
8203 	}
8204 
8205 	ipha = (ipha_t *)mp->b_rptr;
8206 	/*
8207 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8208 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8209 	 */
8210 	switch (IPH_HDR_VERSION(ipha)) {
8211 	case IPV6_VERSION:
8212 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8213 		return;
8214 	case IPV4_VERSION:
8215 		break;
8216 	default:
8217 		goto noticmpv4;
8218 	}
8219 
8220 	/* Skip past the outer IP and ICMP headers */
8221 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8222 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8223 	/*
8224 	 * If we don't have the correct outer IP header length or if the ULP
8225 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8226 	 * send it upstream.
8227 	 */
8228 	if (iph_hdr_length < sizeof (ipha_t) ||
8229 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8230 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8231 		goto noticmpv4;
8232 	}
8233 	ipha = (ipha_t *)&icmph[1];
8234 
8235 	/* Skip past the inner IP and find the ULP header */
8236 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8237 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8238 	/*
8239 	 * If we don't have the correct inner IP header length or if the ULP
8240 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8241 	 * bytes of TCP header, drop it.
8242 	 */
8243 	if (iph_hdr_length < sizeof (ipha_t) ||
8244 	    ipha->ipha_protocol != IPPROTO_TCP ||
8245 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8246 		goto noticmpv4;
8247 	}
8248 
8249 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8250 		if (ipsec_mctl) {
8251 			secure = ipsec_in_is_secure(first_mp);
8252 		} else {
8253 			secure = B_FALSE;
8254 		}
8255 		if (secure) {
8256 			/*
8257 			 * If we are willing to accept this in clear
8258 			 * we don't have to verify policy.
8259 			 */
8260 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8261 				if (!tcp_check_policy(tcp, first_mp,
8262 				    ipha, NULL, secure, ipsec_mctl)) {
8263 					/*
8264 					 * tcp_check_policy called
8265 					 * ip_drop_packet() on failure.
8266 					 */
8267 					return;
8268 				}
8269 			}
8270 		}
8271 	} else if (ipsec_mctl) {
8272 		/*
8273 		 * This is a hard_bound connection. IP has already
8274 		 * verified policy. We don't have to do it again.
8275 		 */
8276 		freeb(first_mp);
8277 		first_mp = mp;
8278 		ipsec_mctl = B_FALSE;
8279 	}
8280 
8281 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8282 	/*
8283 	 * TCP SHOULD check that the TCP sequence number contained in
8284 	 * payload of the ICMP error message is within the range
8285 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8286 	 */
8287 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8288 		/*
8289 		 * The ICMP message is bogus, just drop it.  But if this is
8290 		 * an ICMP too big message, IP has already changed
8291 		 * the ire_max_frag to the bogus value.  We need to change
8292 		 * it back.
8293 		 */
8294 		if (icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
8295 		    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
8296 			conn_t *connp = tcp->tcp_connp;
8297 			ire_t *ire;
8298 			int flag;
8299 
8300 			if (tcp->tcp_ipversion == IPV4_VERSION) {
8301 				flag = tcp->tcp_ipha->
8302 				    ipha_fragment_offset_and_flags;
8303 			} else {
8304 				flag = 0;
8305 			}
8306 			mutex_enter(&connp->conn_lock);
8307 			if ((ire = connp->conn_ire_cache) != NULL) {
8308 				mutex_enter(&ire->ire_lock);
8309 				mutex_exit(&connp->conn_lock);
8310 				ire->ire_max_frag = tcp->tcp_if_mtu;
8311 				ire->ire_frag_flag |= flag;
8312 				mutex_exit(&ire->ire_lock);
8313 			} else {
8314 				mutex_exit(&connp->conn_lock);
8315 			}
8316 		}
8317 		goto noticmpv4;
8318 	}
8319 
8320 	switch (icmph->icmph_type) {
8321 	case ICMP_DEST_UNREACHABLE:
8322 		switch (icmph->icmph_code) {
8323 		case ICMP_FRAGMENTATION_NEEDED:
8324 			/*
8325 			 * Reduce the MSS based on the new MTU.  This will
8326 			 * eliminate any fragmentation locally.
8327 			 * N.B.  There may well be some funny side-effects on
8328 			 * the local send policy and the remote receive policy.
8329 			 * Pending further research, we provide
8330 			 * tcp_ignore_path_mtu just in case this proves
8331 			 * disastrous somewhere.
8332 			 *
8333 			 * After updating the MSS, retransmit part of the
8334 			 * dropped segment using the new mss by calling
8335 			 * tcp_wput_data().  Need to adjust all those
8336 			 * params to make sure tcp_wput_data() work properly.
8337 			 */
8338 			if (tcps->tcps_ignore_path_mtu ||
8339 			    tcp->tcp_ipha->ipha_fragment_offset_and_flags == 0)
8340 				break;
8341 
8342 			/*
8343 			 * Decrease the MSS by time stamp options
8344 			 * IP options and IPSEC options. tcp_hdr_len
8345 			 * includes time stamp option and IP option
8346 			 * length.  Note that new_mss may be negative
8347 			 * if tcp_ipsec_overhead is large and the
8348 			 * icmph_du_mtu is the minimum value, which is 68.
8349 			 */
8350 			new_mss = ntohs(icmph->icmph_du_mtu) -
8351 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8352 
8353 			DTRACE_PROBE2(tcp__pmtu__change, tcp_t *, tcp, int,
8354 			    new_mss);
8355 
8356 			/*
8357 			 * Only update the MSS if the new one is
8358 			 * smaller than the previous one.  This is
8359 			 * to avoid problems when getting multiple
8360 			 * ICMP errors for the same MTU.
8361 			 */
8362 			if (new_mss >= tcp->tcp_mss)
8363 				break;
8364 
8365 			/*
8366 			 * Note that we are using the template header's DF
8367 			 * bit in the fast path sending.  So we need to compare
8368 			 * the new mss with both tcps_mss_min and ip_pmtu_min.
8369 			 * And stop doing IPv4 PMTUd if new_mss is less than
8370 			 * MAX(tcps_mss_min, ip_pmtu_min).
8371 			 */
8372 			if (new_mss < tcps->tcps_mss_min ||
8373 			    new_mss < ipst->ips_ip_pmtu_min) {
8374 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8375 				    0;
8376 			}
8377 
8378 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8379 			ASSERT(ratio >= 1);
8380 			tcp_mss_set(tcp, new_mss, B_TRUE);
8381 
8382 			/*
8383 			 * Make sure we have something to
8384 			 * send.
8385 			 */
8386 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8387 			    (tcp->tcp_xmit_head != NULL)) {
8388 				/*
8389 				 * Shrink tcp_cwnd in
8390 				 * proportion to the old MSS/new MSS.
8391 				 */
8392 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8393 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8394 				    (tcp->tcp_unsent == 0)) {
8395 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8396 				} else {
8397 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8398 				}
8399 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8400 				tcp->tcp_rexmit = B_TRUE;
8401 				tcp->tcp_dupack_cnt = 0;
8402 				tcp->tcp_snd_burst = TCP_CWND_SS;
8403 				tcp_ss_rexmit(tcp);
8404 			}
8405 			break;
8406 		case ICMP_PORT_UNREACHABLE:
8407 		case ICMP_PROTOCOL_UNREACHABLE:
8408 			switch (tcp->tcp_state) {
8409 			case TCPS_SYN_SENT:
8410 			case TCPS_SYN_RCVD:
8411 				/*
8412 				 * ICMP can snipe away incipient
8413 				 * TCP connections as long as
8414 				 * seq number is same as initial
8415 				 * send seq number.
8416 				 */
8417 				if (seg_seq == tcp->tcp_iss) {
8418 					(void) tcp_clean_death(tcp,
8419 					    ECONNREFUSED, 6);
8420 				}
8421 				break;
8422 			}
8423 			break;
8424 		case ICMP_HOST_UNREACHABLE:
8425 		case ICMP_NET_UNREACHABLE:
8426 			/* Record the error in case we finally time out. */
8427 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8428 				tcp->tcp_client_errno = EHOSTUNREACH;
8429 			else
8430 				tcp->tcp_client_errno = ENETUNREACH;
8431 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8432 				if (tcp->tcp_listener != NULL &&
8433 				    tcp->tcp_listener->tcp_syn_defense) {
8434 					/*
8435 					 * Ditch the half-open connection if we
8436 					 * suspect a SYN attack is under way.
8437 					 */
8438 					tcp_ip_ire_mark_advice(tcp);
8439 					(void) tcp_clean_death(tcp,
8440 					    tcp->tcp_client_errno, 7);
8441 				}
8442 			}
8443 			break;
8444 		default:
8445 			break;
8446 		}
8447 		break;
8448 	case ICMP_SOURCE_QUENCH: {
8449 		/*
8450 		 * use a global boolean to control
8451 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8452 		 * The default is false.
8453 		 */
8454 		if (tcp_icmp_source_quench) {
8455 			/*
8456 			 * Reduce the sending rate as if we got a
8457 			 * retransmit timeout
8458 			 */
8459 			uint32_t npkt;
8460 
8461 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8462 			    tcp->tcp_mss;
8463 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8464 			tcp->tcp_cwnd = tcp->tcp_mss;
8465 			tcp->tcp_cwnd_cnt = 0;
8466 		}
8467 		break;
8468 	}
8469 	}
8470 	freemsg(first_mp);
8471 }
8472 
8473 /*
8474  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8475  * error messages passed up by IP.
8476  * Assumes that IP has pulled up all the extension headers as well
8477  * as the ICMPv6 header.
8478  */
8479 static void
8480 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8481 {
8482 	icmp6_t *icmp6;
8483 	ip6_t	*ip6h;
8484 	uint16_t	iph_hdr_length;
8485 	tcpha_t	*tcpha;
8486 	uint8_t	*nexthdrp;
8487 	uint32_t new_mss;
8488 	uint32_t ratio;
8489 	boolean_t secure;
8490 	mblk_t *first_mp = mp;
8491 	size_t mp_size;
8492 	uint32_t seg_seq;
8493 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8494 
8495 	/*
8496 	 * The caller has determined if this is an IPSEC_IN packet and
8497 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8498 	 */
8499 	if (ipsec_mctl)
8500 		mp = mp->b_cont;
8501 
8502 	mp_size = MBLKL(mp);
8503 
8504 	/*
8505 	 * Verify that we have a complete IP header. If not, send it upstream.
8506 	 */
8507 	if (mp_size < sizeof (ip6_t)) {
8508 noticmpv6:
8509 		freemsg(first_mp);
8510 		return;
8511 	}
8512 
8513 	/*
8514 	 * Verify this is an ICMPV6 packet, else send it upstream.
8515 	 */
8516 	ip6h = (ip6_t *)mp->b_rptr;
8517 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8518 		iph_hdr_length = IPV6_HDR_LEN;
8519 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8520 	    &nexthdrp) ||
8521 	    *nexthdrp != IPPROTO_ICMPV6) {
8522 		goto noticmpv6;
8523 	}
8524 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8525 	ip6h = (ip6_t *)&icmp6[1];
8526 	/*
8527 	 * Verify if we have a complete ICMP and inner IP header.
8528 	 */
8529 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8530 		goto noticmpv6;
8531 
8532 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8533 		goto noticmpv6;
8534 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8535 	/*
8536 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8537 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8538 	 * packet.
8539 	 */
8540 	if ((*nexthdrp != IPPROTO_TCP) ||
8541 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8542 		goto noticmpv6;
8543 	}
8544 
8545 	/*
8546 	 * ICMP errors come on the right queue or come on
8547 	 * listener/global queue for detached connections and
8548 	 * get switched to the right queue. If it comes on the
8549 	 * right queue, policy check has already been done by IP
8550 	 * and thus free the first_mp without verifying the policy.
8551 	 * If it has come for a non-hard bound connection, we need
8552 	 * to verify policy as IP may not have done it.
8553 	 */
8554 	if (!tcp->tcp_hard_bound) {
8555 		if (ipsec_mctl) {
8556 			secure = ipsec_in_is_secure(first_mp);
8557 		} else {
8558 			secure = B_FALSE;
8559 		}
8560 		if (secure) {
8561 			/*
8562 			 * If we are willing to accept this in clear
8563 			 * we don't have to verify policy.
8564 			 */
8565 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8566 				if (!tcp_check_policy(tcp, first_mp,
8567 				    NULL, ip6h, secure, ipsec_mctl)) {
8568 					/*
8569 					 * tcp_check_policy called
8570 					 * ip_drop_packet() on failure.
8571 					 */
8572 					return;
8573 				}
8574 			}
8575 		}
8576 	} else if (ipsec_mctl) {
8577 		/*
8578 		 * This is a hard_bound connection. IP has already
8579 		 * verified policy. We don't have to do it again.
8580 		 */
8581 		freeb(first_mp);
8582 		first_mp = mp;
8583 		ipsec_mctl = B_FALSE;
8584 	}
8585 
8586 	seg_seq = ntohl(tcpha->tha_seq);
8587 	/*
8588 	 * TCP SHOULD check that the TCP sequence number contained in
8589 	 * payload of the ICMP error message is within the range
8590 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8591 	 */
8592 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8593 		/*
8594 		 * If the ICMP message is bogus, should we kill the
8595 		 * connection, or should we just drop the bogus ICMP
8596 		 * message? It would probably make more sense to just
8597 		 * drop the message so that if this one managed to get
8598 		 * in, the real connection should not suffer.
8599 		 */
8600 		goto noticmpv6;
8601 	}
8602 
8603 	switch (icmp6->icmp6_type) {
8604 	case ICMP6_PACKET_TOO_BIG:
8605 		/*
8606 		 * Reduce the MSS based on the new MTU.  This will
8607 		 * eliminate any fragmentation locally.
8608 		 * N.B.  There may well be some funny side-effects on
8609 		 * the local send policy and the remote receive policy.
8610 		 * Pending further research, we provide
8611 		 * tcp_ignore_path_mtu just in case this proves
8612 		 * disastrous somewhere.
8613 		 *
8614 		 * After updating the MSS, retransmit part of the
8615 		 * dropped segment using the new mss by calling
8616 		 * tcp_wput_data().  Need to adjust all those
8617 		 * params to make sure tcp_wput_data() work properly.
8618 		 */
8619 		if (tcps->tcps_ignore_path_mtu)
8620 			break;
8621 
8622 		/*
8623 		 * Decrease the MSS by time stamp options
8624 		 * IP options and IPSEC options. tcp_hdr_len
8625 		 * includes time stamp option and IP option
8626 		 * length.
8627 		 */
8628 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8629 		    tcp->tcp_ipsec_overhead;
8630 
8631 		/*
8632 		 * Only update the MSS if the new one is
8633 		 * smaller than the previous one.  This is
8634 		 * to avoid problems when getting multiple
8635 		 * ICMP errors for the same MTU.
8636 		 */
8637 		if (new_mss >= tcp->tcp_mss)
8638 			break;
8639 
8640 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8641 		ASSERT(ratio >= 1);
8642 		tcp_mss_set(tcp, new_mss, B_TRUE);
8643 
8644 		/*
8645 		 * Make sure we have something to
8646 		 * send.
8647 		 */
8648 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8649 		    (tcp->tcp_xmit_head != NULL)) {
8650 			/*
8651 			 * Shrink tcp_cwnd in
8652 			 * proportion to the old MSS/new MSS.
8653 			 */
8654 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8655 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8656 			    (tcp->tcp_unsent == 0)) {
8657 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8658 			} else {
8659 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8660 			}
8661 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8662 			tcp->tcp_rexmit = B_TRUE;
8663 			tcp->tcp_dupack_cnt = 0;
8664 			tcp->tcp_snd_burst = TCP_CWND_SS;
8665 			tcp_ss_rexmit(tcp);
8666 		}
8667 		break;
8668 
8669 	case ICMP6_DST_UNREACH:
8670 		switch (icmp6->icmp6_code) {
8671 		case ICMP6_DST_UNREACH_NOPORT:
8672 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8673 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8674 			    (seg_seq == tcp->tcp_iss)) {
8675 				(void) tcp_clean_death(tcp,
8676 				    ECONNREFUSED, 8);
8677 			}
8678 			break;
8679 
8680 		case ICMP6_DST_UNREACH_ADMIN:
8681 		case ICMP6_DST_UNREACH_NOROUTE:
8682 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8683 		case ICMP6_DST_UNREACH_ADDR:
8684 			/* Record the error in case we finally time out. */
8685 			tcp->tcp_client_errno = EHOSTUNREACH;
8686 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8687 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8688 			    (seg_seq == tcp->tcp_iss)) {
8689 				if (tcp->tcp_listener != NULL &&
8690 				    tcp->tcp_listener->tcp_syn_defense) {
8691 					/*
8692 					 * Ditch the half-open connection if we
8693 					 * suspect a SYN attack is under way.
8694 					 */
8695 					tcp_ip_ire_mark_advice(tcp);
8696 					(void) tcp_clean_death(tcp,
8697 					    tcp->tcp_client_errno, 9);
8698 				}
8699 			}
8700 
8701 
8702 			break;
8703 		default:
8704 			break;
8705 		}
8706 		break;
8707 
8708 	case ICMP6_PARAM_PROB:
8709 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
8710 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
8711 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
8712 		    (uchar_t *)nexthdrp) {
8713 			if (tcp->tcp_state == TCPS_SYN_SENT ||
8714 			    tcp->tcp_state == TCPS_SYN_RCVD) {
8715 				(void) tcp_clean_death(tcp,
8716 				    ECONNREFUSED, 10);
8717 			}
8718 			break;
8719 		}
8720 		break;
8721 
8722 	case ICMP6_TIME_EXCEEDED:
8723 	default:
8724 		break;
8725 	}
8726 	freemsg(first_mp);
8727 }
8728 
8729 /*
8730  * Notify IP that we are having trouble with this connection.  IP should
8731  * blow the IRE away and start over.
8732  */
8733 static void
8734 tcp_ip_notify(tcp_t *tcp)
8735 {
8736 	struct iocblk	*iocp;
8737 	ipid_t	*ipid;
8738 	mblk_t	*mp;
8739 
8740 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
8741 	if (tcp->tcp_ipversion == IPV6_VERSION)
8742 		return;
8743 
8744 	mp = mkiocb(IP_IOCTL);
8745 	if (mp == NULL)
8746 		return;
8747 
8748 	iocp = (struct iocblk *)mp->b_rptr;
8749 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
8750 
8751 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
8752 	if (!mp->b_cont) {
8753 		freeb(mp);
8754 		return;
8755 	}
8756 
8757 	ipid = (ipid_t *)mp->b_cont->b_rptr;
8758 	mp->b_cont->b_wptr += iocp->ioc_count;
8759 	bzero(ipid, sizeof (*ipid));
8760 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
8761 	ipid->ipid_ire_type = IRE_CACHE;
8762 	ipid->ipid_addr_offset = sizeof (ipid_t);
8763 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
8764 	/*
8765 	 * Note: in the case of source routing we want to blow away the
8766 	 * route to the first source route hop.
8767 	 */
8768 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
8769 	    sizeof (tcp->tcp_ipha->ipha_dst));
8770 
8771 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
8772 }
8773 
8774 /* Unlink and return any mblk that looks like it contains an ire */
8775 static mblk_t *
8776 tcp_ire_mp(mblk_t **mpp)
8777 {
8778 	mblk_t 	*mp = *mpp;
8779 	mblk_t	*prev_mp = NULL;
8780 
8781 	for (;;) {
8782 		switch (DB_TYPE(mp)) {
8783 		case IRE_DB_TYPE:
8784 		case IRE_DB_REQ_TYPE:
8785 			if (mp == *mpp) {
8786 				*mpp = mp->b_cont;
8787 			} else {
8788 				prev_mp->b_cont = mp->b_cont;
8789 			}
8790 			mp->b_cont = NULL;
8791 			return (mp);
8792 		default:
8793 			break;
8794 		}
8795 		prev_mp = mp;
8796 		mp = mp->b_cont;
8797 		if (mp == NULL)
8798 			break;
8799 	}
8800 	return (mp);
8801 }
8802 
8803 /*
8804  * Timer callback routine for keepalive probe.  We do a fake resend of
8805  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
8806  * check to see if we have heard anything from the other end for the last
8807  * RTO period.  If we have, set the timer to expire for another
8808  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
8809  * RTO << 1 and check again when it expires.  Keep exponentially increasing
8810  * the timeout if we have not heard from the other side.  If for more than
8811  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
8812  * kill the connection unless the keepalive abort threshold is 0.  In
8813  * that case, we will probe "forever."
8814  */
8815 static void
8816 tcp_keepalive_killer(void *arg)
8817 {
8818 	mblk_t	*mp;
8819 	conn_t	*connp = (conn_t *)arg;
8820 	tcp_t  	*tcp = connp->conn_tcp;
8821 	int32_t	firetime;
8822 	int32_t	idletime;
8823 	int32_t	ka_intrvl;
8824 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8825 
8826 	tcp->tcp_ka_tid = 0;
8827 
8828 	if (tcp->tcp_fused)
8829 		return;
8830 
8831 	BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive);
8832 	ka_intrvl = tcp->tcp_ka_interval;
8833 
8834 	/*
8835 	 * Keepalive probe should only be sent if the application has not
8836 	 * done a close on the connection.
8837 	 */
8838 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
8839 		return;
8840 	}
8841 	/* Timer fired too early, restart it. */
8842 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
8843 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
8844 		    MSEC_TO_TICK(ka_intrvl));
8845 		return;
8846 	}
8847 
8848 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
8849 	/*
8850 	 * If we have not heard from the other side for a long
8851 	 * time, kill the connection unless the keepalive abort
8852 	 * threshold is 0.  In that case, we will probe "forever."
8853 	 */
8854 	if (tcp->tcp_ka_abort_thres != 0 &&
8855 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
8856 		BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop);
8857 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
8858 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
8859 		return;
8860 	}
8861 
8862 	if (tcp->tcp_snxt == tcp->tcp_suna &&
8863 	    idletime >= ka_intrvl) {
8864 		/* Fake resend of last ACKed byte. */
8865 		mblk_t	*mp1 = allocb(1, BPRI_LO);
8866 
8867 		if (mp1 != NULL) {
8868 			*mp1->b_wptr++ = '\0';
8869 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
8870 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
8871 			freeb(mp1);
8872 			/*
8873 			 * if allocation failed, fall through to start the
8874 			 * timer back.
8875 			 */
8876 			if (mp != NULL) {
8877 				tcp_send_data(tcp, tcp->tcp_wq, mp);
8878 				BUMP_MIB(&tcps->tcps_mib,
8879 				    tcpTimKeepaliveProbe);
8880 				if (tcp->tcp_ka_last_intrvl != 0) {
8881 					int max;
8882 					/*
8883 					 * We should probe again at least
8884 					 * in ka_intrvl, but not more than
8885 					 * tcp_rexmit_interval_max.
8886 					 */
8887 					max = tcps->tcps_rexmit_interval_max;
8888 					firetime = MIN(ka_intrvl - 1,
8889 					    tcp->tcp_ka_last_intrvl << 1);
8890 					if (firetime > max)
8891 						firetime = max;
8892 				} else {
8893 					firetime = tcp->tcp_rto;
8894 				}
8895 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
8896 				    tcp_keepalive_killer,
8897 				    MSEC_TO_TICK(firetime));
8898 				tcp->tcp_ka_last_intrvl = firetime;
8899 				return;
8900 			}
8901 		}
8902 	} else {
8903 		tcp->tcp_ka_last_intrvl = 0;
8904 	}
8905 
8906 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
8907 	if ((firetime = ka_intrvl - idletime) < 0) {
8908 		firetime = ka_intrvl;
8909 	}
8910 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
8911 	    MSEC_TO_TICK(firetime));
8912 }
8913 
8914 int
8915 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
8916 {
8917 	queue_t	*q = tcp->tcp_rq;
8918 	int32_t	mss = tcp->tcp_mss;
8919 	int	maxpsz;
8920 	conn_t	*connp = tcp->tcp_connp;
8921 
8922 	if (TCP_IS_DETACHED(tcp))
8923 		return (mss);
8924 	if (tcp->tcp_fused) {
8925 		maxpsz = tcp_fuse_maxpsz_set(tcp);
8926 		mss = INFPSZ;
8927 	} else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) {
8928 		/*
8929 		 * Set the sd_qn_maxpsz according to the socket send buffer
8930 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
8931 		 * instruct the stream head to copyin user data into contiguous
8932 		 * kernel-allocated buffers without breaking it up into smaller
8933 		 * chunks.  We round up the buffer size to the nearest SMSS.
8934 		 */
8935 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
8936 		if (tcp->tcp_kssl_ctx == NULL)
8937 			mss = INFPSZ;
8938 		else
8939 			mss = SSL3_MAX_RECORD_LEN;
8940 	} else {
8941 		/*
8942 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
8943 		 * (and a multiple of the mss).  This instructs the stream
8944 		 * head to break down larger than SMSS writes into SMSS-
8945 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
8946 		 */
8947 		/* XXX tune this with ndd tcp_maxpsz_multiplier */
8948 		maxpsz = tcp->tcp_maxpsz * mss;
8949 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
8950 			maxpsz = tcp->tcp_xmit_hiwater/2;
8951 			/* Round up to nearest mss */
8952 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
8953 		}
8954 	}
8955 
8956 	(void) proto_set_maxpsz(q, connp, maxpsz);
8957 	if (!(IPCL_IS_NONSTR(connp))) {
8958 		/* XXX do it in set_maxpsz()? */
8959 		tcp->tcp_wq->q_maxpsz = maxpsz;
8960 	}
8961 
8962 	if (set_maxblk)
8963 		(void) proto_set_tx_maxblk(q, connp, mss);
8964 	return (mss);
8965 }
8966 
8967 /*
8968  * Extract option values from a tcp header.  We put any found values into the
8969  * tcpopt struct and return a bitmask saying which options were found.
8970  */
8971 static int
8972 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
8973 {
8974 	uchar_t		*endp;
8975 	int		len;
8976 	uint32_t	mss;
8977 	uchar_t		*up = (uchar_t *)tcph;
8978 	int		found = 0;
8979 	int32_t		sack_len;
8980 	tcp_seq		sack_begin, sack_end;
8981 	tcp_t		*tcp;
8982 
8983 	endp = up + TCP_HDR_LENGTH(tcph);
8984 	up += TCP_MIN_HEADER_LENGTH;
8985 	while (up < endp) {
8986 		len = endp - up;
8987 		switch (*up) {
8988 		case TCPOPT_EOL:
8989 			break;
8990 
8991 		case TCPOPT_NOP:
8992 			up++;
8993 			continue;
8994 
8995 		case TCPOPT_MAXSEG:
8996 			if (len < TCPOPT_MAXSEG_LEN ||
8997 			    up[1] != TCPOPT_MAXSEG_LEN)
8998 				break;
8999 
9000 			mss = BE16_TO_U16(up+2);
9001 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9002 			tcpopt->tcp_opt_mss = mss;
9003 			found |= TCP_OPT_MSS_PRESENT;
9004 
9005 			up += TCPOPT_MAXSEG_LEN;
9006 			continue;
9007 
9008 		case TCPOPT_WSCALE:
9009 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9010 				break;
9011 
9012 			if (up[2] > TCP_MAX_WINSHIFT)
9013 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9014 			else
9015 				tcpopt->tcp_opt_wscale = up[2];
9016 			found |= TCP_OPT_WSCALE_PRESENT;
9017 
9018 			up += TCPOPT_WS_LEN;
9019 			continue;
9020 
9021 		case TCPOPT_SACK_PERMITTED:
9022 			if (len < TCPOPT_SACK_OK_LEN ||
9023 			    up[1] != TCPOPT_SACK_OK_LEN)
9024 				break;
9025 			found |= TCP_OPT_SACK_OK_PRESENT;
9026 			up += TCPOPT_SACK_OK_LEN;
9027 			continue;
9028 
9029 		case TCPOPT_SACK:
9030 			if (len <= 2 || up[1] <= 2 || len < up[1])
9031 				break;
9032 
9033 			/* If TCP is not interested in SACK blks... */
9034 			if ((tcp = tcpopt->tcp) == NULL) {
9035 				up += up[1];
9036 				continue;
9037 			}
9038 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9039 			up += TCPOPT_HEADER_LEN;
9040 
9041 			/*
9042 			 * If the list is empty, allocate one and assume
9043 			 * nothing is sack'ed.
9044 			 */
9045 			ASSERT(tcp->tcp_sack_info != NULL);
9046 			if (tcp->tcp_notsack_list == NULL) {
9047 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9048 				    tcp->tcp_suna, tcp->tcp_snxt,
9049 				    &(tcp->tcp_num_notsack_blk),
9050 				    &(tcp->tcp_cnt_notsack_list));
9051 
9052 				/*
9053 				 * Make sure tcp_notsack_list is not NULL.
9054 				 * This happens when kmem_alloc(KM_NOSLEEP)
9055 				 * returns NULL.
9056 				 */
9057 				if (tcp->tcp_notsack_list == NULL) {
9058 					up += sack_len;
9059 					continue;
9060 				}
9061 				tcp->tcp_fack = tcp->tcp_suna;
9062 			}
9063 
9064 			while (sack_len > 0) {
9065 				if (up + 8 > endp) {
9066 					up = endp;
9067 					break;
9068 				}
9069 				sack_begin = BE32_TO_U32(up);
9070 				up += 4;
9071 				sack_end = BE32_TO_U32(up);
9072 				up += 4;
9073 				sack_len -= 8;
9074 				/*
9075 				 * Bounds checking.  Make sure the SACK
9076 				 * info is within tcp_suna and tcp_snxt.
9077 				 * If this SACK blk is out of bound, ignore
9078 				 * it but continue to parse the following
9079 				 * blks.
9080 				 */
9081 				if (SEQ_LEQ(sack_end, sack_begin) ||
9082 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9083 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9084 					continue;
9085 				}
9086 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9087 				    sack_begin, sack_end,
9088 				    &(tcp->tcp_num_notsack_blk),
9089 				    &(tcp->tcp_cnt_notsack_list));
9090 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9091 					tcp->tcp_fack = sack_end;
9092 				}
9093 			}
9094 			found |= TCP_OPT_SACK_PRESENT;
9095 			continue;
9096 
9097 		case TCPOPT_TSTAMP:
9098 			if (len < TCPOPT_TSTAMP_LEN ||
9099 			    up[1] != TCPOPT_TSTAMP_LEN)
9100 				break;
9101 
9102 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9103 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9104 
9105 			found |= TCP_OPT_TSTAMP_PRESENT;
9106 
9107 			up += TCPOPT_TSTAMP_LEN;
9108 			continue;
9109 
9110 		default:
9111 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9112 				break;
9113 			up += up[1];
9114 			continue;
9115 		}
9116 		break;
9117 	}
9118 	return (found);
9119 }
9120 
9121 /*
9122  * Set the mss associated with a particular tcp based on its current value,
9123  * and a new one passed in. Observe minimums and maximums, and reset
9124  * other state variables that we want to view as multiples of mss.
9125  *
9126  * This function is called mainly because values like tcp_mss, tcp_cwnd,
9127  * highwater marks etc. need to be initialized or adjusted.
9128  * 1) From tcp_process_options() when the other side's SYN/SYN-ACK
9129  *    packet arrives.
9130  * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or
9131  *    ICMP6_PACKET_TOO_BIG arrives.
9132  * 3) From tcp_paws_check() if the other side stops sending the timestamp,
9133  *    to increase the MSS to use the extra bytes available.
9134  *
9135  * Callers except tcp_paws_check() ensure that they only reduce mss.
9136  */
9137 static void
9138 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss)
9139 {
9140 	uint32_t	mss_max;
9141 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9142 
9143 	if (tcp->tcp_ipversion == IPV4_VERSION)
9144 		mss_max = tcps->tcps_mss_max_ipv4;
9145 	else
9146 		mss_max = tcps->tcps_mss_max_ipv6;
9147 
9148 	if (mss < tcps->tcps_mss_min)
9149 		mss = tcps->tcps_mss_min;
9150 	if (mss > mss_max)
9151 		mss = mss_max;
9152 	/*
9153 	 * Unless naglim has been set by our client to
9154 	 * a non-mss value, force naglim to track mss.
9155 	 * This can help to aggregate small writes.
9156 	 */
9157 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9158 		tcp->tcp_naglim = mss;
9159 	/*
9160 	 * TCP should be able to buffer at least 4 MSS data for obvious
9161 	 * performance reason.
9162 	 */
9163 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9164 		tcp->tcp_xmit_hiwater = mss << 2;
9165 
9166 	/*
9167 	 * Set the xmit_lowater to at least twice of MSS.
9168 	 */
9169 	if ((mss << 1) > tcp->tcp_xmit_lowater)
9170 		tcp->tcp_xmit_lowater = mss << 1;
9171 
9172 	if (do_ss) {
9173 		/*
9174 		 * Either the tcp_cwnd is as yet uninitialized, or mss is
9175 		 * changing due to a reduction in MTU, presumably as a
9176 		 * result of a new path component, reset cwnd to its
9177 		 * "initial" value, as a multiple of the new mss.
9178 		 */
9179 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial);
9180 	} else {
9181 		/*
9182 		 * Called by tcp_paws_check(), the mss increased
9183 		 * marginally to allow use of space previously taken
9184 		 * by the timestamp option. It would be inappropriate
9185 		 * to apply slow start or tcp_init_cwnd values to
9186 		 * tcp_cwnd, simply adjust to a multiple of the new mss.
9187 		 */
9188 		tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
9189 		tcp->tcp_cwnd_cnt = 0;
9190 	}
9191 	tcp->tcp_mss = mss;
9192 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9193 }
9194 
9195 /* For /dev/tcp aka AF_INET open */
9196 static int
9197 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9198 {
9199 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
9200 }
9201 
9202 /* For /dev/tcp6 aka AF_INET6 open */
9203 static int
9204 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9205 {
9206 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
9207 }
9208 
9209 static conn_t *
9210 tcp_create_common(queue_t *q, cred_t *credp, boolean_t isv6,
9211     boolean_t issocket, int *errorp)
9212 {
9213 	tcp_t		*tcp = NULL;
9214 	conn_t		*connp;
9215 	int		err;
9216 	zoneid_t	zoneid;
9217 	tcp_stack_t	*tcps;
9218 	squeue_t	*sqp;
9219 
9220 	ASSERT(errorp != NULL);
9221 	/*
9222 	 * Find the proper zoneid and netstack.
9223 	 */
9224 	/*
9225 	 * Special case for install: miniroot needs to be able to
9226 	 * access files via NFS as though it were always in the
9227 	 * global zone.
9228 	 */
9229 	if (credp == kcred && nfs_global_client_only != 0) {
9230 		zoneid = GLOBAL_ZONEID;
9231 		tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
9232 		    netstack_tcp;
9233 		ASSERT(tcps != NULL);
9234 	} else {
9235 		netstack_t *ns;
9236 
9237 		ns = netstack_find_by_cred(credp);
9238 		ASSERT(ns != NULL);
9239 		tcps = ns->netstack_tcp;
9240 		ASSERT(tcps != NULL);
9241 
9242 		/*
9243 		 * For exclusive stacks we set the zoneid to zero
9244 		 * to make TCP operate as if in the global zone.
9245 		 */
9246 		if (tcps->tcps_netstack->netstack_stackid !=
9247 		    GLOBAL_NETSTACKID)
9248 			zoneid = GLOBAL_ZONEID;
9249 		else
9250 			zoneid = crgetzoneid(credp);
9251 	}
9252 	/*
9253 	 * For stackid zero this is done from strplumb.c, but
9254 	 * non-zero stackids are handled here.
9255 	 */
9256 	if (tcps->tcps_g_q == NULL &&
9257 	    tcps->tcps_netstack->netstack_stackid !=
9258 	    GLOBAL_NETSTACKID) {
9259 		tcp_g_q_setup(tcps);
9260 	}
9261 
9262 	sqp = IP_SQUEUE_GET((uint_t)gethrtime());
9263 	connp = (conn_t *)tcp_get_conn(sqp, tcps);
9264 	/*
9265 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
9266 	 * so we drop it by one.
9267 	 */
9268 	netstack_rele(tcps->tcps_netstack);
9269 	if (connp == NULL) {
9270 		*errorp = ENOSR;
9271 		return (NULL);
9272 	}
9273 	connp->conn_sqp = sqp;
9274 	connp->conn_initial_sqp = connp->conn_sqp;
9275 	tcp = connp->conn_tcp;
9276 
9277 	if (isv6) {
9278 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9279 		connp->conn_send = ip_output_v6;
9280 		connp->conn_af_isv6 = B_TRUE;
9281 		connp->conn_pkt_isv6 = B_TRUE;
9282 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9283 		tcp->tcp_ipversion = IPV6_VERSION;
9284 		tcp->tcp_family = AF_INET6;
9285 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
9286 	} else {
9287 		connp->conn_flags |= IPCL_TCP4;
9288 		connp->conn_send = ip_output;
9289 		connp->conn_af_isv6 = B_FALSE;
9290 		connp->conn_pkt_isv6 = B_FALSE;
9291 		tcp->tcp_ipversion = IPV4_VERSION;
9292 		tcp->tcp_family = AF_INET;
9293 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
9294 	}
9295 
9296 	/*
9297 	 * TCP keeps a copy of cred for cache locality reasons but
9298 	 * we put a reference only once. If connp->conn_cred
9299 	 * becomes invalid, tcp_cred should also be set to NULL.
9300 	 */
9301 	tcp->tcp_cred = connp->conn_cred = credp;
9302 	crhold(connp->conn_cred);
9303 	tcp->tcp_cpid = curproc->p_pid;
9304 	tcp->tcp_open_time = lbolt64;
9305 	connp->conn_zoneid = zoneid;
9306 	connp->conn_mlp_type = mlptSingle;
9307 	connp->conn_ulp_labeled = !is_system_labeled();
9308 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
9309 	ASSERT(tcp->tcp_tcps == tcps);
9310 
9311 	/*
9312 	 * If the caller has the process-wide flag set, then default to MAC
9313 	 * exempt mode.  This allows read-down to unlabeled hosts.
9314 	 */
9315 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9316 		connp->conn_mac_exempt = B_TRUE;
9317 
9318 	connp->conn_dev = NULL;
9319 	if (issocket) {
9320 		connp->conn_flags |= IPCL_SOCKET;
9321 		tcp->tcp_issocket = 1;
9322 	}
9323 
9324 	tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat;
9325 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
9326 	tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat;
9327 
9328 	/* Non-zero default values */
9329 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9330 
9331 	if (q == NULL) {
9332 		/*
9333 		 * Create a helper stream for non-STREAMS socket.
9334 		 */
9335 		err = ip_create_helper_stream(connp, tcps->tcps_ldi_ident);
9336 		if (err != 0) {
9337 			ip1dbg(("tcp_create_common: create of IP helper stream "
9338 			    "failed\n"));
9339 			CONN_DEC_REF(connp);
9340 			*errorp = err;
9341 			return (NULL);
9342 		}
9343 		q = connp->conn_rq;
9344 	} else {
9345 		RD(q)->q_hiwat = tcps->tcps_recv_hiwat;
9346 	}
9347 
9348 	SOCK_CONNID_INIT(tcp->tcp_connid);
9349 	err = tcp_init(tcp, q);
9350 	if (err != 0) {
9351 		CONN_DEC_REF(connp);
9352 		*errorp = err;
9353 		return (NULL);
9354 	}
9355 
9356 	return (connp);
9357 }
9358 
9359 static int
9360 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
9361     boolean_t isv6)
9362 {
9363 	tcp_t		*tcp = NULL;
9364 	conn_t		*connp = NULL;
9365 	int		err;
9366 	vmem_t		*minor_arena = NULL;
9367 	dev_t		conn_dev;
9368 	boolean_t	issocket;
9369 
9370 	if (q->q_ptr != NULL)
9371 		return (0);
9372 
9373 	if (sflag == MODOPEN)
9374 		return (EINVAL);
9375 
9376 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
9377 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
9378 		minor_arena = ip_minor_arena_la;
9379 	} else {
9380 		/*
9381 		 * Either minor numbers in the large arena were exhausted
9382 		 * or a non socket application is doing the open.
9383 		 * Try to allocate from the small arena.
9384 		 */
9385 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
9386 			return (EBUSY);
9387 		}
9388 		minor_arena = ip_minor_arena_sa;
9389 	}
9390 
9391 	ASSERT(minor_arena != NULL);
9392 
9393 	*devp = makedevice(getmajor(*devp), (minor_t)conn_dev);
9394 
9395 	if (flag & SO_FALLBACK) {
9396 		/*
9397 		 * Non streams socket needs a stream to fallback to
9398 		 */
9399 		RD(q)->q_ptr = (void *)conn_dev;
9400 		WR(q)->q_qinfo = &tcp_fallback_sock_winit;
9401 		WR(q)->q_ptr = (void *)minor_arena;
9402 		qprocson(q);
9403 		return (0);
9404 	} else if (flag & SO_ACCEPTOR) {
9405 		q->q_qinfo = &tcp_acceptor_rinit;
9406 		/*
9407 		 * the conn_dev and minor_arena will be subsequently used by
9408 		 * tcp_wput_accept() and tcp_tpi_close_accept() to figure out
9409 		 * the minor device number for this connection from the q_ptr.
9410 		 */
9411 		RD(q)->q_ptr = (void *)conn_dev;
9412 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9413 		WR(q)->q_ptr = (void *)minor_arena;
9414 		qprocson(q);
9415 		return (0);
9416 	}
9417 
9418 	issocket = flag & SO_SOCKSTR;
9419 	connp = tcp_create_common(q, credp, isv6, issocket, &err);
9420 
9421 	if (connp == NULL) {
9422 		inet_minor_free(minor_arena, conn_dev);
9423 		q->q_ptr = WR(q)->q_ptr = NULL;
9424 		return (err);
9425 	}
9426 
9427 	q->q_ptr = WR(q)->q_ptr = connp;
9428 
9429 	connp->conn_dev = conn_dev;
9430 	connp->conn_minor_arena = minor_arena;
9431 
9432 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
9433 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9434 
9435 	tcp = connp->conn_tcp;
9436 
9437 	if (issocket) {
9438 		WR(q)->q_qinfo = &tcp_sock_winit;
9439 	} else {
9440 #ifdef  _ILP32
9441 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9442 #else
9443 		tcp->tcp_acceptor_id = conn_dev;
9444 #endif  /* _ILP32 */
9445 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9446 	}
9447 
9448 	/*
9449 	 * Put the ref for TCP. Ref for IP was already put
9450 	 * by ipcl_conn_create. Also Make the conn_t globally
9451 	 * visible to walkers
9452 	 */
9453 	mutex_enter(&connp->conn_lock);
9454 	CONN_INC_REF_LOCKED(connp);
9455 	ASSERT(connp->conn_ref == 2);
9456 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9457 	mutex_exit(&connp->conn_lock);
9458 
9459 	qprocson(q);
9460 	return (0);
9461 }
9462 
9463 /*
9464  * Some TCP options can be "set" by requesting them in the option
9465  * buffer. This is needed for XTI feature test though we do not
9466  * allow it in general. We interpret that this mechanism is more
9467  * applicable to OSI protocols and need not be allowed in general.
9468  * This routine filters out options for which it is not allowed (most)
9469  * and lets through those (few) for which it is. [ The XTI interface
9470  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9471  * ever implemented will have to be allowed here ].
9472  */
9473 static boolean_t
9474 tcp_allow_connopt_set(int level, int name)
9475 {
9476 
9477 	switch (level) {
9478 	case IPPROTO_TCP:
9479 		switch (name) {
9480 		case TCP_NODELAY:
9481 			return (B_TRUE);
9482 		default:
9483 			return (B_FALSE);
9484 		}
9485 		/*NOTREACHED*/
9486 	default:
9487 		return (B_FALSE);
9488 	}
9489 	/*NOTREACHED*/
9490 }
9491 
9492 /*
9493  * this routine gets default values of certain options whose default
9494  * values are maintained by protocol specific code
9495  */
9496 /* ARGSUSED */
9497 int
9498 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9499 {
9500 	int32_t	*i1 = (int32_t *)ptr;
9501 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
9502 
9503 	switch (level) {
9504 	case IPPROTO_TCP:
9505 		switch (name) {
9506 		case TCP_NOTIFY_THRESHOLD:
9507 			*i1 = tcps->tcps_ip_notify_interval;
9508 			break;
9509 		case TCP_ABORT_THRESHOLD:
9510 			*i1 = tcps->tcps_ip_abort_interval;
9511 			break;
9512 		case TCP_CONN_NOTIFY_THRESHOLD:
9513 			*i1 = tcps->tcps_ip_notify_cinterval;
9514 			break;
9515 		case TCP_CONN_ABORT_THRESHOLD:
9516 			*i1 = tcps->tcps_ip_abort_cinterval;
9517 			break;
9518 		default:
9519 			return (-1);
9520 		}
9521 		break;
9522 	case IPPROTO_IP:
9523 		switch (name) {
9524 		case IP_TTL:
9525 			*i1 = tcps->tcps_ipv4_ttl;
9526 			break;
9527 		default:
9528 			return (-1);
9529 		}
9530 		break;
9531 	case IPPROTO_IPV6:
9532 		switch (name) {
9533 		case IPV6_UNICAST_HOPS:
9534 			*i1 = tcps->tcps_ipv6_hoplimit;
9535 			break;
9536 		default:
9537 			return (-1);
9538 		}
9539 		break;
9540 	default:
9541 		return (-1);
9542 	}
9543 	return (sizeof (int));
9544 }
9545 
9546 static int
9547 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr)
9548 {
9549 	int		*i1 = (int *)ptr;
9550 	tcp_t		*tcp = connp->conn_tcp;
9551 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9552 
9553 	switch (level) {
9554 	case SOL_SOCKET:
9555 		switch (name) {
9556 		case SO_LINGER:	{
9557 			struct linger *lgr = (struct linger *)ptr;
9558 
9559 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9560 			lgr->l_linger = tcp->tcp_lingertime;
9561 			}
9562 			return (sizeof (struct linger));
9563 		case SO_DEBUG:
9564 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9565 			break;
9566 		case SO_KEEPALIVE:
9567 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9568 			break;
9569 		case SO_DONTROUTE:
9570 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9571 			break;
9572 		case SO_USELOOPBACK:
9573 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9574 			break;
9575 		case SO_BROADCAST:
9576 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9577 			break;
9578 		case SO_REUSEADDR:
9579 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9580 			break;
9581 		case SO_OOBINLINE:
9582 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9583 			break;
9584 		case SO_DGRAM_ERRIND:
9585 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9586 			break;
9587 		case SO_TYPE:
9588 			*i1 = SOCK_STREAM;
9589 			break;
9590 		case SO_SNDBUF:
9591 			*i1 = tcp->tcp_xmit_hiwater;
9592 			break;
9593 		case SO_RCVBUF:
9594 			*i1 = tcp->tcp_recv_hiwater;
9595 			break;
9596 		case SO_SND_COPYAVOID:
9597 			*i1 = tcp->tcp_snd_zcopy_on ?
9598 			    SO_SND_COPYAVOID : 0;
9599 			break;
9600 		case SO_ALLZONES:
9601 			*i1 = connp->conn_allzones ? 1 : 0;
9602 			break;
9603 		case SO_ANON_MLP:
9604 			*i1 = connp->conn_anon_mlp;
9605 			break;
9606 		case SO_MAC_EXEMPT:
9607 			*i1 = connp->conn_mac_exempt;
9608 			break;
9609 		case SO_EXCLBIND:
9610 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
9611 			break;
9612 		case SO_PROTOTYPE:
9613 			*i1 = IPPROTO_TCP;
9614 			break;
9615 		case SO_DOMAIN:
9616 			*i1 = tcp->tcp_family;
9617 			break;
9618 		case SO_ACCEPTCONN:
9619 			*i1 = (tcp->tcp_state == TCPS_LISTEN);
9620 		default:
9621 			return (-1);
9622 		}
9623 		break;
9624 	case IPPROTO_TCP:
9625 		switch (name) {
9626 		case TCP_NODELAY:
9627 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
9628 			break;
9629 		case TCP_MAXSEG:
9630 			*i1 = tcp->tcp_mss;
9631 			break;
9632 		case TCP_NOTIFY_THRESHOLD:
9633 			*i1 = (int)tcp->tcp_first_timer_threshold;
9634 			break;
9635 		case TCP_ABORT_THRESHOLD:
9636 			*i1 = tcp->tcp_second_timer_threshold;
9637 			break;
9638 		case TCP_CONN_NOTIFY_THRESHOLD:
9639 			*i1 = tcp->tcp_first_ctimer_threshold;
9640 			break;
9641 		case TCP_CONN_ABORT_THRESHOLD:
9642 			*i1 = tcp->tcp_second_ctimer_threshold;
9643 			break;
9644 		case TCP_RECVDSTADDR:
9645 			*i1 = tcp->tcp_recvdstaddr;
9646 			break;
9647 		case TCP_ANONPRIVBIND:
9648 			*i1 = tcp->tcp_anon_priv_bind;
9649 			break;
9650 		case TCP_EXCLBIND:
9651 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
9652 			break;
9653 		case TCP_INIT_CWND:
9654 			*i1 = tcp->tcp_init_cwnd;
9655 			break;
9656 		case TCP_KEEPALIVE_THRESHOLD:
9657 			*i1 = tcp->tcp_ka_interval;
9658 			break;
9659 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
9660 			*i1 = tcp->tcp_ka_abort_thres;
9661 			break;
9662 		case TCP_CORK:
9663 			*i1 = tcp->tcp_cork;
9664 			break;
9665 		default:
9666 			return (-1);
9667 		}
9668 		break;
9669 	case IPPROTO_IP:
9670 		if (tcp->tcp_family != AF_INET)
9671 			return (-1);
9672 		switch (name) {
9673 		case IP_OPTIONS:
9674 		case T_IP_OPTIONS: {
9675 			/*
9676 			 * This is compatible with BSD in that in only return
9677 			 * the reverse source route with the final destination
9678 			 * as the last entry. The first 4 bytes of the option
9679 			 * will contain the final destination.
9680 			 */
9681 			int	opt_len;
9682 
9683 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
9684 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
9685 			ASSERT(opt_len >= 0);
9686 			/* Caller ensures enough space */
9687 			if (opt_len > 0) {
9688 				/*
9689 				 * TODO: Do we have to handle getsockopt on an
9690 				 * initiator as well?
9691 				 */
9692 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
9693 			}
9694 			return (0);
9695 			}
9696 		case IP_TOS:
9697 		case T_IP_TOS:
9698 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
9699 			break;
9700 		case IP_TTL:
9701 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
9702 			break;
9703 		case IP_NEXTHOP:
9704 			/* Handled at IP level */
9705 			return (-EINVAL);
9706 		default:
9707 			return (-1);
9708 		}
9709 		break;
9710 	case IPPROTO_IPV6:
9711 		/*
9712 		 * IPPROTO_IPV6 options are only supported for sockets
9713 		 * that are using IPv6 on the wire.
9714 		 */
9715 		if (tcp->tcp_ipversion != IPV6_VERSION) {
9716 			return (-1);
9717 		}
9718 		switch (name) {
9719 		case IPV6_UNICAST_HOPS:
9720 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
9721 			break;	/* goto sizeof (int) option return */
9722 		case IPV6_BOUND_IF:
9723 			/* Zero if not set */
9724 			*i1 = tcp->tcp_bound_if;
9725 			break;	/* goto sizeof (int) option return */
9726 		case IPV6_RECVPKTINFO:
9727 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
9728 				*i1 = 1;
9729 			else
9730 				*i1 = 0;
9731 			break;	/* goto sizeof (int) option return */
9732 		case IPV6_RECVTCLASS:
9733 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
9734 				*i1 = 1;
9735 			else
9736 				*i1 = 0;
9737 			break;	/* goto sizeof (int) option return */
9738 		case IPV6_RECVHOPLIMIT:
9739 			if (tcp->tcp_ipv6_recvancillary &
9740 			    TCP_IPV6_RECVHOPLIMIT)
9741 				*i1 = 1;
9742 			else
9743 				*i1 = 0;
9744 			break;	/* goto sizeof (int) option return */
9745 		case IPV6_RECVHOPOPTS:
9746 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
9747 				*i1 = 1;
9748 			else
9749 				*i1 = 0;
9750 			break;	/* goto sizeof (int) option return */
9751 		case IPV6_RECVDSTOPTS:
9752 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
9753 				*i1 = 1;
9754 			else
9755 				*i1 = 0;
9756 			break;	/* goto sizeof (int) option return */
9757 		case _OLD_IPV6_RECVDSTOPTS:
9758 			if (tcp->tcp_ipv6_recvancillary &
9759 			    TCP_OLD_IPV6_RECVDSTOPTS)
9760 				*i1 = 1;
9761 			else
9762 				*i1 = 0;
9763 			break;	/* goto sizeof (int) option return */
9764 		case IPV6_RECVRTHDR:
9765 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
9766 				*i1 = 1;
9767 			else
9768 				*i1 = 0;
9769 			break;	/* goto sizeof (int) option return */
9770 		case IPV6_RECVRTHDRDSTOPTS:
9771 			if (tcp->tcp_ipv6_recvancillary &
9772 			    TCP_IPV6_RECVRTDSTOPTS)
9773 				*i1 = 1;
9774 			else
9775 				*i1 = 0;
9776 			break;	/* goto sizeof (int) option return */
9777 		case IPV6_PKTINFO: {
9778 			/* XXX assumes that caller has room for max size! */
9779 			struct in6_pktinfo *pkti;
9780 
9781 			pkti = (struct in6_pktinfo *)ptr;
9782 			if (ipp->ipp_fields & IPPF_IFINDEX)
9783 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
9784 			else
9785 				pkti->ipi6_ifindex = 0;
9786 			if (ipp->ipp_fields & IPPF_ADDR)
9787 				pkti->ipi6_addr = ipp->ipp_addr;
9788 			else
9789 				pkti->ipi6_addr = ipv6_all_zeros;
9790 			return (sizeof (struct in6_pktinfo));
9791 		}
9792 		case IPV6_TCLASS:
9793 			if (ipp->ipp_fields & IPPF_TCLASS)
9794 				*i1 = ipp->ipp_tclass;
9795 			else
9796 				*i1 = IPV6_FLOW_TCLASS(
9797 				    IPV6_DEFAULT_VERS_AND_FLOW);
9798 			break;	/* goto sizeof (int) option return */
9799 		case IPV6_NEXTHOP: {
9800 			sin6_t *sin6 = (sin6_t *)ptr;
9801 
9802 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
9803 				return (0);
9804 			*sin6 = sin6_null;
9805 			sin6->sin6_family = AF_INET6;
9806 			sin6->sin6_addr = ipp->ipp_nexthop;
9807 			return (sizeof (sin6_t));
9808 		}
9809 		case IPV6_HOPOPTS:
9810 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
9811 				return (0);
9812 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
9813 				return (0);
9814 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
9815 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
9816 			if (tcp->tcp_label_len > 0) {
9817 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
9818 				ptr[1] = (ipp->ipp_hopoptslen -
9819 				    tcp->tcp_label_len + 7) / 8 - 1;
9820 			}
9821 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
9822 		case IPV6_RTHDRDSTOPTS:
9823 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
9824 				return (0);
9825 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
9826 			return (ipp->ipp_rtdstoptslen);
9827 		case IPV6_RTHDR:
9828 			if (!(ipp->ipp_fields & IPPF_RTHDR))
9829 				return (0);
9830 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
9831 			return (ipp->ipp_rthdrlen);
9832 		case IPV6_DSTOPTS:
9833 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
9834 				return (0);
9835 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
9836 			return (ipp->ipp_dstoptslen);
9837 		case IPV6_SRC_PREFERENCES:
9838 			return (ip6_get_src_preferences(connp,
9839 			    (uint32_t *)ptr));
9840 		case IPV6_PATHMTU: {
9841 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
9842 
9843 			if (tcp->tcp_state < TCPS_ESTABLISHED)
9844 				return (-1);
9845 
9846 			return (ip_fill_mtuinfo(&connp->conn_remv6,
9847 			    connp->conn_fport, mtuinfo,
9848 			    connp->conn_netstack));
9849 		}
9850 		default:
9851 			return (-1);
9852 		}
9853 		break;
9854 	default:
9855 		return (-1);
9856 	}
9857 	return (sizeof (int));
9858 }
9859 
9860 /*
9861  * TCP routine to get the values of options.
9862  */
9863 int
9864 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr)
9865 {
9866 	return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr));
9867 }
9868 
9869 /* returns UNIX error, the optlen is a value-result arg */
9870 int
9871 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
9872     void *optvalp, socklen_t *optlen, cred_t *cr)
9873 {
9874 	conn_t		*connp = (conn_t *)proto_handle;
9875 	squeue_t	*sqp = connp->conn_sqp;
9876 	int		error;
9877 	t_uscalar_t	max_optbuf_len;
9878 	void		*optvalp_buf;
9879 	int		len;
9880 
9881 	ASSERT(connp->conn_upper_handle != NULL);
9882 
9883 	error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len,
9884 	    tcp_opt_obj.odb_opt_des_arr,
9885 	    tcp_opt_obj.odb_opt_arr_cnt,
9886 	    tcp_opt_obj.odb_topmost_tpiprovider,
9887 	    B_FALSE, B_TRUE, cr);
9888 	if (error != 0) {
9889 		if (error < 0) {
9890 			error = proto_tlitosyserr(-error);
9891 		}
9892 		return (error);
9893 	}
9894 
9895 	optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP);
9896 
9897 	error = squeue_synch_enter(sqp, connp, NULL);
9898 	if (error == ENOMEM) {
9899 		return (ENOMEM);
9900 	}
9901 
9902 	len = tcp_opt_get(connp, level, option_name, optvalp_buf);
9903 	squeue_synch_exit(sqp, connp);
9904 
9905 	if (len < 0) {
9906 		/*
9907 		 * Pass on to IP
9908 		 */
9909 		kmem_free(optvalp_buf, max_optbuf_len);
9910 		return (ip_get_options(connp, level, option_name,
9911 		    optvalp, optlen, cr));
9912 	} else {
9913 		/*
9914 		 * update optlen and copy option value
9915 		 */
9916 		t_uscalar_t size = MIN(len, *optlen);
9917 		bcopy(optvalp_buf, optvalp, size);
9918 		bcopy(&size, optlen, sizeof (size));
9919 
9920 		kmem_free(optvalp_buf, max_optbuf_len);
9921 		return (0);
9922 	}
9923 }
9924 
9925 /*
9926  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
9927  * Parameters are assumed to be verified by the caller.
9928  */
9929 /* ARGSUSED */
9930 int
9931 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name,
9932     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
9933     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
9934 {
9935 	tcp_t	*tcp = connp->conn_tcp;
9936 	int	*i1 = (int *)invalp;
9937 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
9938 	boolean_t checkonly;
9939 	int	reterr;
9940 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9941 
9942 	switch (optset_context) {
9943 	case SETFN_OPTCOM_CHECKONLY:
9944 		checkonly = B_TRUE;
9945 		/*
9946 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
9947 		 * inlen != 0 implies value supplied and
9948 		 * 	we have to "pretend" to set it.
9949 		 * inlen == 0 implies that there is no
9950 		 * 	value part in T_CHECK request and just validation
9951 		 * done elsewhere should be enough, we just return here.
9952 		 */
9953 		if (inlen == 0) {
9954 			*outlenp = 0;
9955 			return (0);
9956 		}
9957 		break;
9958 	case SETFN_OPTCOM_NEGOTIATE:
9959 		checkonly = B_FALSE;
9960 		break;
9961 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
9962 	case SETFN_CONN_NEGOTIATE:
9963 		checkonly = B_FALSE;
9964 		/*
9965 		 * Negotiating local and "association-related" options
9966 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
9967 		 * primitives is allowed by XTI, but we choose
9968 		 * to not implement this style negotiation for Internet
9969 		 * protocols (We interpret it is a must for OSI world but
9970 		 * optional for Internet protocols) for all options.
9971 		 * [ Will do only for the few options that enable test
9972 		 * suites that our XTI implementation of this feature
9973 		 * works for transports that do allow it ]
9974 		 */
9975 		if (!tcp_allow_connopt_set(level, name)) {
9976 			*outlenp = 0;
9977 			return (EINVAL);
9978 		}
9979 		break;
9980 	default:
9981 		/*
9982 		 * We should never get here
9983 		 */
9984 		*outlenp = 0;
9985 		return (EINVAL);
9986 	}
9987 
9988 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
9989 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
9990 
9991 	/*
9992 	 * For TCP, we should have no ancillary data sent down
9993 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
9994 	 * has to be zero.
9995 	 */
9996 	ASSERT(thisdg_attrs == NULL);
9997 
9998 	/*
9999 	 * For fixed length options, no sanity check
10000 	 * of passed in length is done. It is assumed *_optcom_req()
10001 	 * routines do the right thing.
10002 	 */
10003 	switch (level) {
10004 	case SOL_SOCKET:
10005 		switch (name) {
10006 		case SO_LINGER: {
10007 			struct linger *lgr = (struct linger *)invalp;
10008 
10009 			if (!checkonly) {
10010 				if (lgr->l_onoff) {
10011 					tcp->tcp_linger = 1;
10012 					tcp->tcp_lingertime = lgr->l_linger;
10013 				} else {
10014 					tcp->tcp_linger = 0;
10015 					tcp->tcp_lingertime = 0;
10016 				}
10017 				/* struct copy */
10018 				*(struct linger *)outvalp = *lgr;
10019 			} else {
10020 				if (!lgr->l_onoff) {
10021 					((struct linger *)
10022 					    outvalp)->l_onoff = 0;
10023 					((struct linger *)
10024 					    outvalp)->l_linger = 0;
10025 				} else {
10026 					/* struct copy */
10027 					*(struct linger *)outvalp = *lgr;
10028 				}
10029 			}
10030 			*outlenp = sizeof (struct linger);
10031 			return (0);
10032 		}
10033 		case SO_DEBUG:
10034 			if (!checkonly)
10035 				tcp->tcp_debug = onoff;
10036 			break;
10037 		case SO_KEEPALIVE:
10038 			if (checkonly) {
10039 				/* check only case */
10040 				break;
10041 			}
10042 
10043 			if (!onoff) {
10044 				if (tcp->tcp_ka_enabled) {
10045 					if (tcp->tcp_ka_tid != 0) {
10046 						(void) TCP_TIMER_CANCEL(tcp,
10047 						    tcp->tcp_ka_tid);
10048 						tcp->tcp_ka_tid = 0;
10049 					}
10050 					tcp->tcp_ka_enabled = 0;
10051 				}
10052 				break;
10053 			}
10054 			if (!tcp->tcp_ka_enabled) {
10055 				/* Crank up the keepalive timer */
10056 				tcp->tcp_ka_last_intrvl = 0;
10057 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
10058 				    tcp_keepalive_killer,
10059 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
10060 				tcp->tcp_ka_enabled = 1;
10061 			}
10062 			break;
10063 		case SO_DONTROUTE:
10064 			/*
10065 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10066 			 * only of interest to IP.  We track them here only so
10067 			 * that we can report their current value.
10068 			 */
10069 			if (!checkonly) {
10070 				tcp->tcp_dontroute = onoff;
10071 				tcp->tcp_connp->conn_dontroute = onoff;
10072 			}
10073 			break;
10074 		case SO_USELOOPBACK:
10075 			if (!checkonly) {
10076 				tcp->tcp_useloopback = onoff;
10077 				tcp->tcp_connp->conn_loopback = onoff;
10078 			}
10079 			break;
10080 		case SO_BROADCAST:
10081 			if (!checkonly) {
10082 				tcp->tcp_broadcast = onoff;
10083 				tcp->tcp_connp->conn_broadcast = onoff;
10084 			}
10085 			break;
10086 		case SO_REUSEADDR:
10087 			if (!checkonly) {
10088 				tcp->tcp_reuseaddr = onoff;
10089 				tcp->tcp_connp->conn_reuseaddr = onoff;
10090 			}
10091 			break;
10092 		case SO_OOBINLINE:
10093 			if (!checkonly) {
10094 				tcp->tcp_oobinline = onoff;
10095 				if (IPCL_IS_NONSTR(tcp->tcp_connp))
10096 					proto_set_rx_oob_opt(connp, onoff);
10097 			}
10098 			break;
10099 		case SO_DGRAM_ERRIND:
10100 			if (!checkonly)
10101 				tcp->tcp_dgram_errind = onoff;
10102 			break;
10103 		case SO_SNDBUF: {
10104 			if (*i1 > tcps->tcps_max_buf) {
10105 				*outlenp = 0;
10106 				return (ENOBUFS);
10107 			}
10108 			if (checkonly)
10109 				break;
10110 
10111 			tcp->tcp_xmit_hiwater = *i1;
10112 			if (tcps->tcps_snd_lowat_fraction != 0)
10113 				tcp->tcp_xmit_lowater =
10114 				    tcp->tcp_xmit_hiwater /
10115 				    tcps->tcps_snd_lowat_fraction;
10116 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10117 			/*
10118 			 * If we are flow-controlled, recheck the condition.
10119 			 * There are apps that increase SO_SNDBUF size when
10120 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10121 			 * control condition to be lifted right away.
10122 			 */
10123 			mutex_enter(&tcp->tcp_non_sq_lock);
10124 			if (tcp->tcp_flow_stopped &&
10125 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10126 				tcp_clrqfull(tcp);
10127 			}
10128 			mutex_exit(&tcp->tcp_non_sq_lock);
10129 			break;
10130 		}
10131 		case SO_RCVBUF:
10132 			if (*i1 > tcps->tcps_max_buf) {
10133 				*outlenp = 0;
10134 				return (ENOBUFS);
10135 			}
10136 			/* Silently ignore zero */
10137 			if (!checkonly && *i1 != 0) {
10138 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10139 				(void) tcp_rwnd_set(tcp, *i1);
10140 			}
10141 			/*
10142 			 * XXX should we return the rwnd here
10143 			 * and tcp_opt_get ?
10144 			 */
10145 			break;
10146 		case SO_SND_COPYAVOID:
10147 			if (!checkonly) {
10148 				/* we only allow enable at most once for now */
10149 				if (tcp->tcp_loopback ||
10150 				    (tcp->tcp_kssl_ctx != NULL) ||
10151 				    (!tcp->tcp_snd_zcopy_aware &&
10152 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10153 					*outlenp = 0;
10154 					return (EOPNOTSUPP);
10155 				}
10156 				tcp->tcp_snd_zcopy_aware = 1;
10157 			}
10158 			break;
10159 		case SO_RCVTIMEO:
10160 		case SO_SNDTIMEO:
10161 			/*
10162 			 * Pass these two options in order for third part
10163 			 * protocol usage. Here just return directly.
10164 			 */
10165 			return (0);
10166 		case SO_ALLZONES:
10167 			/* Pass option along to IP level for handling */
10168 			return (-EINVAL);
10169 		case SO_ANON_MLP:
10170 			/* Pass option along to IP level for handling */
10171 			return (-EINVAL);
10172 		case SO_MAC_EXEMPT:
10173 			/* Pass option along to IP level for handling */
10174 			return (-EINVAL);
10175 		case SO_EXCLBIND:
10176 			if (!checkonly)
10177 				tcp->tcp_exclbind = onoff;
10178 			break;
10179 		default:
10180 			*outlenp = 0;
10181 			return (EINVAL);
10182 		}
10183 		break;
10184 	case IPPROTO_TCP:
10185 		switch (name) {
10186 		case TCP_NODELAY:
10187 			if (!checkonly)
10188 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10189 			break;
10190 		case TCP_NOTIFY_THRESHOLD:
10191 			if (!checkonly)
10192 				tcp->tcp_first_timer_threshold = *i1;
10193 			break;
10194 		case TCP_ABORT_THRESHOLD:
10195 			if (!checkonly)
10196 				tcp->tcp_second_timer_threshold = *i1;
10197 			break;
10198 		case TCP_CONN_NOTIFY_THRESHOLD:
10199 			if (!checkonly)
10200 				tcp->tcp_first_ctimer_threshold = *i1;
10201 			break;
10202 		case TCP_CONN_ABORT_THRESHOLD:
10203 			if (!checkonly)
10204 				tcp->tcp_second_ctimer_threshold = *i1;
10205 			break;
10206 		case TCP_RECVDSTADDR:
10207 			if (tcp->tcp_state > TCPS_LISTEN)
10208 				return (EOPNOTSUPP);
10209 			if (!checkonly)
10210 				tcp->tcp_recvdstaddr = onoff;
10211 			break;
10212 		case TCP_ANONPRIVBIND:
10213 			if ((reterr = secpolicy_net_privaddr(cr, 0,
10214 			    IPPROTO_TCP)) != 0) {
10215 				*outlenp = 0;
10216 				return (reterr);
10217 			}
10218 			if (!checkonly) {
10219 				tcp->tcp_anon_priv_bind = onoff;
10220 			}
10221 			break;
10222 		case TCP_EXCLBIND:
10223 			if (!checkonly)
10224 				tcp->tcp_exclbind = onoff;
10225 			break;	/* goto sizeof (int) option return */
10226 		case TCP_INIT_CWND: {
10227 			uint32_t init_cwnd = *((uint32_t *)invalp);
10228 
10229 			if (checkonly)
10230 				break;
10231 
10232 			/*
10233 			 * Only allow socket with network configuration
10234 			 * privilege to set the initial cwnd to be larger
10235 			 * than allowed by RFC 3390.
10236 			 */
10237 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10238 				tcp->tcp_init_cwnd = init_cwnd;
10239 				break;
10240 			}
10241 			if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) {
10242 				*outlenp = 0;
10243 				return (reterr);
10244 			}
10245 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10246 				*outlenp = 0;
10247 				return (EINVAL);
10248 			}
10249 			tcp->tcp_init_cwnd = init_cwnd;
10250 			break;
10251 		}
10252 		case TCP_KEEPALIVE_THRESHOLD:
10253 			if (checkonly)
10254 				break;
10255 
10256 			if (*i1 < tcps->tcps_keepalive_interval_low ||
10257 			    *i1 > tcps->tcps_keepalive_interval_high) {
10258 				*outlenp = 0;
10259 				return (EINVAL);
10260 			}
10261 			if (*i1 != tcp->tcp_ka_interval) {
10262 				tcp->tcp_ka_interval = *i1;
10263 				/*
10264 				 * Check if we need to restart the
10265 				 * keepalive timer.
10266 				 */
10267 				if (tcp->tcp_ka_tid != 0) {
10268 					ASSERT(tcp->tcp_ka_enabled);
10269 					(void) TCP_TIMER_CANCEL(tcp,
10270 					    tcp->tcp_ka_tid);
10271 					tcp->tcp_ka_last_intrvl = 0;
10272 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10273 					    tcp_keepalive_killer,
10274 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10275 				}
10276 			}
10277 			break;
10278 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10279 			if (!checkonly) {
10280 				if (*i1 <
10281 				    tcps->tcps_keepalive_abort_interval_low ||
10282 				    *i1 >
10283 				    tcps->tcps_keepalive_abort_interval_high) {
10284 					*outlenp = 0;
10285 					return (EINVAL);
10286 				}
10287 				tcp->tcp_ka_abort_thres = *i1;
10288 			}
10289 			break;
10290 		case TCP_CORK:
10291 			if (!checkonly) {
10292 				/*
10293 				 * if tcp->tcp_cork was set and is now
10294 				 * being unset, we have to make sure that
10295 				 * the remaining data gets sent out. Also
10296 				 * unset tcp->tcp_cork so that tcp_wput_data()
10297 				 * can send data even if it is less than mss
10298 				 */
10299 				if (tcp->tcp_cork && onoff == 0 &&
10300 				    tcp->tcp_unsent > 0) {
10301 					tcp->tcp_cork = B_FALSE;
10302 					tcp_wput_data(tcp, NULL, B_FALSE);
10303 				}
10304 				tcp->tcp_cork = onoff;
10305 			}
10306 			break;
10307 		default:
10308 			*outlenp = 0;
10309 			return (EINVAL);
10310 		}
10311 		break;
10312 	case IPPROTO_IP:
10313 		if (tcp->tcp_family != AF_INET) {
10314 			*outlenp = 0;
10315 			return (ENOPROTOOPT);
10316 		}
10317 		switch (name) {
10318 		case IP_OPTIONS:
10319 		case T_IP_OPTIONS:
10320 			reterr = tcp_opt_set_header(tcp, checkonly,
10321 			    invalp, inlen);
10322 			if (reterr) {
10323 				*outlenp = 0;
10324 				return (reterr);
10325 			}
10326 			/* OK return - copy input buffer into output buffer */
10327 			if (invalp != outvalp) {
10328 				/* don't trust bcopy for identical src/dst */
10329 				bcopy(invalp, outvalp, inlen);
10330 			}
10331 			*outlenp = inlen;
10332 			return (0);
10333 		case IP_TOS:
10334 		case T_IP_TOS:
10335 			if (!checkonly) {
10336 				tcp->tcp_ipha->ipha_type_of_service =
10337 				    (uchar_t)*i1;
10338 				tcp->tcp_tos = (uchar_t)*i1;
10339 			}
10340 			break;
10341 		case IP_TTL:
10342 			if (!checkonly) {
10343 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10344 				tcp->tcp_ttl = (uchar_t)*i1;
10345 			}
10346 			break;
10347 		case IP_BOUND_IF:
10348 		case IP_NEXTHOP:
10349 			/* Handled at the IP level */
10350 			return (-EINVAL);
10351 		case IP_SEC_OPT:
10352 			/*
10353 			 * We should not allow policy setting after
10354 			 * we start listening for connections.
10355 			 */
10356 			if (tcp->tcp_state == TCPS_LISTEN) {
10357 				return (EINVAL);
10358 			} else {
10359 				/* Handled at the IP level */
10360 				return (-EINVAL);
10361 			}
10362 		default:
10363 			*outlenp = 0;
10364 			return (EINVAL);
10365 		}
10366 		break;
10367 	case IPPROTO_IPV6: {
10368 		ip6_pkt_t		*ipp;
10369 
10370 		/*
10371 		 * IPPROTO_IPV6 options are only supported for sockets
10372 		 * that are using IPv6 on the wire.
10373 		 */
10374 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10375 			*outlenp = 0;
10376 			return (ENOPROTOOPT);
10377 		}
10378 		/*
10379 		 * Only sticky options; no ancillary data
10380 		 */
10381 		ipp = &tcp->tcp_sticky_ipp;
10382 
10383 		switch (name) {
10384 		case IPV6_UNICAST_HOPS:
10385 			/* -1 means use default */
10386 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10387 				*outlenp = 0;
10388 				return (EINVAL);
10389 			}
10390 			if (!checkonly) {
10391 				if (*i1 == -1) {
10392 					tcp->tcp_ip6h->ip6_hops =
10393 					    ipp->ipp_unicast_hops =
10394 					    (uint8_t)tcps->tcps_ipv6_hoplimit;
10395 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10396 					/* Pass modified value to IP. */
10397 					*i1 = tcp->tcp_ip6h->ip6_hops;
10398 				} else {
10399 					tcp->tcp_ip6h->ip6_hops =
10400 					    ipp->ipp_unicast_hops =
10401 					    (uint8_t)*i1;
10402 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10403 				}
10404 				reterr = tcp_build_hdrs(tcp);
10405 				if (reterr != 0)
10406 					return (reterr);
10407 			}
10408 			break;
10409 		case IPV6_BOUND_IF:
10410 			if (!checkonly) {
10411 				tcp->tcp_bound_if = *i1;
10412 				PASS_OPT_TO_IP(connp);
10413 			}
10414 			break;
10415 		/*
10416 		 * Set boolean switches for ancillary data delivery
10417 		 */
10418 		case IPV6_RECVPKTINFO:
10419 			if (!checkonly) {
10420 				if (onoff)
10421 					tcp->tcp_ipv6_recvancillary |=
10422 					    TCP_IPV6_RECVPKTINFO;
10423 				else
10424 					tcp->tcp_ipv6_recvancillary &=
10425 					    ~TCP_IPV6_RECVPKTINFO;
10426 				/* Force it to be sent up with the next msg */
10427 				tcp->tcp_recvifindex = 0;
10428 				PASS_OPT_TO_IP(connp);
10429 			}
10430 			break;
10431 		case IPV6_RECVTCLASS:
10432 			if (!checkonly) {
10433 				if (onoff)
10434 					tcp->tcp_ipv6_recvancillary |=
10435 					    TCP_IPV6_RECVTCLASS;
10436 				else
10437 					tcp->tcp_ipv6_recvancillary &=
10438 					    ~TCP_IPV6_RECVTCLASS;
10439 				PASS_OPT_TO_IP(connp);
10440 			}
10441 			break;
10442 		case IPV6_RECVHOPLIMIT:
10443 			if (!checkonly) {
10444 				if (onoff)
10445 					tcp->tcp_ipv6_recvancillary |=
10446 					    TCP_IPV6_RECVHOPLIMIT;
10447 				else
10448 					tcp->tcp_ipv6_recvancillary &=
10449 					    ~TCP_IPV6_RECVHOPLIMIT;
10450 				/* Force it to be sent up with the next msg */
10451 				tcp->tcp_recvhops = 0xffffffffU;
10452 				PASS_OPT_TO_IP(connp);
10453 			}
10454 			break;
10455 		case IPV6_RECVHOPOPTS:
10456 			if (!checkonly) {
10457 				if (onoff)
10458 					tcp->tcp_ipv6_recvancillary |=
10459 					    TCP_IPV6_RECVHOPOPTS;
10460 				else
10461 					tcp->tcp_ipv6_recvancillary &=
10462 					    ~TCP_IPV6_RECVHOPOPTS;
10463 				PASS_OPT_TO_IP(connp);
10464 			}
10465 			break;
10466 		case IPV6_RECVDSTOPTS:
10467 			if (!checkonly) {
10468 				if (onoff)
10469 					tcp->tcp_ipv6_recvancillary |=
10470 					    TCP_IPV6_RECVDSTOPTS;
10471 				else
10472 					tcp->tcp_ipv6_recvancillary &=
10473 					    ~TCP_IPV6_RECVDSTOPTS;
10474 				PASS_OPT_TO_IP(connp);
10475 			}
10476 			break;
10477 		case _OLD_IPV6_RECVDSTOPTS:
10478 			if (!checkonly) {
10479 				if (onoff)
10480 					tcp->tcp_ipv6_recvancillary |=
10481 					    TCP_OLD_IPV6_RECVDSTOPTS;
10482 				else
10483 					tcp->tcp_ipv6_recvancillary &=
10484 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10485 			}
10486 			break;
10487 		case IPV6_RECVRTHDR:
10488 			if (!checkonly) {
10489 				if (onoff)
10490 					tcp->tcp_ipv6_recvancillary |=
10491 					    TCP_IPV6_RECVRTHDR;
10492 				else
10493 					tcp->tcp_ipv6_recvancillary &=
10494 					    ~TCP_IPV6_RECVRTHDR;
10495 				PASS_OPT_TO_IP(connp);
10496 			}
10497 			break;
10498 		case IPV6_RECVRTHDRDSTOPTS:
10499 			if (!checkonly) {
10500 				if (onoff)
10501 					tcp->tcp_ipv6_recvancillary |=
10502 					    TCP_IPV6_RECVRTDSTOPTS;
10503 				else
10504 					tcp->tcp_ipv6_recvancillary &=
10505 					    ~TCP_IPV6_RECVRTDSTOPTS;
10506 				PASS_OPT_TO_IP(connp);
10507 			}
10508 			break;
10509 		case IPV6_PKTINFO:
10510 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10511 				return (EINVAL);
10512 			if (checkonly)
10513 				break;
10514 
10515 			if (inlen == 0) {
10516 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10517 			} else {
10518 				struct in6_pktinfo *pkti;
10519 
10520 				pkti = (struct in6_pktinfo *)invalp;
10521 				/*
10522 				 * RFC 3542 states that ipi6_addr must be
10523 				 * the unspecified address when setting the
10524 				 * IPV6_PKTINFO sticky socket option on a
10525 				 * TCP socket.
10526 				 */
10527 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10528 					return (EINVAL);
10529 				/*
10530 				 * IP will validate the source address and
10531 				 * interface index.
10532 				 */
10533 				if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
10534 					reterr = ip_set_options(tcp->tcp_connp,
10535 					    level, name, invalp, inlen, cr);
10536 				} else {
10537 					reterr = ip6_set_pktinfo(cr,
10538 					    tcp->tcp_connp, pkti);
10539 				}
10540 				if (reterr != 0)
10541 					return (reterr);
10542 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10543 				ipp->ipp_addr = pkti->ipi6_addr;
10544 				if (ipp->ipp_ifindex != 0)
10545 					ipp->ipp_fields |= IPPF_IFINDEX;
10546 				else
10547 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10548 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10549 					ipp->ipp_fields |= IPPF_ADDR;
10550 				else
10551 					ipp->ipp_fields &= ~IPPF_ADDR;
10552 			}
10553 			reterr = tcp_build_hdrs(tcp);
10554 			if (reterr != 0)
10555 				return (reterr);
10556 			break;
10557 		case IPV6_TCLASS:
10558 			if (inlen != 0 && inlen != sizeof (int))
10559 				return (EINVAL);
10560 			if (checkonly)
10561 				break;
10562 
10563 			if (inlen == 0) {
10564 				ipp->ipp_fields &= ~IPPF_TCLASS;
10565 			} else {
10566 				if (*i1 > 255 || *i1 < -1)
10567 					return (EINVAL);
10568 				if (*i1 == -1) {
10569 					ipp->ipp_tclass = 0;
10570 					*i1 = 0;
10571 				} else {
10572 					ipp->ipp_tclass = *i1;
10573 				}
10574 				ipp->ipp_fields |= IPPF_TCLASS;
10575 			}
10576 			reterr = tcp_build_hdrs(tcp);
10577 			if (reterr != 0)
10578 				return (reterr);
10579 			break;
10580 		case IPV6_NEXTHOP:
10581 			/*
10582 			 * IP will verify that the nexthop is reachable
10583 			 * and fail for sticky options.
10584 			 */
10585 			if (inlen != 0 && inlen != sizeof (sin6_t))
10586 				return (EINVAL);
10587 			if (checkonly)
10588 				break;
10589 
10590 			if (inlen == 0) {
10591 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10592 			} else {
10593 				sin6_t *sin6 = (sin6_t *)invalp;
10594 
10595 				if (sin6->sin6_family != AF_INET6)
10596 					return (EAFNOSUPPORT);
10597 				if (IN6_IS_ADDR_V4MAPPED(
10598 				    &sin6->sin6_addr))
10599 					return (EADDRNOTAVAIL);
10600 				ipp->ipp_nexthop = sin6->sin6_addr;
10601 				if (!IN6_IS_ADDR_UNSPECIFIED(
10602 				    &ipp->ipp_nexthop))
10603 					ipp->ipp_fields |= IPPF_NEXTHOP;
10604 				else
10605 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10606 			}
10607 			reterr = tcp_build_hdrs(tcp);
10608 			if (reterr != 0)
10609 				return (reterr);
10610 			PASS_OPT_TO_IP(connp);
10611 			break;
10612 		case IPV6_HOPOPTS: {
10613 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10614 
10615 			/*
10616 			 * Sanity checks - minimum size, size a multiple of
10617 			 * eight bytes, and matching size passed in.
10618 			 */
10619 			if (inlen != 0 &&
10620 			    inlen != (8 * (hopts->ip6h_len + 1)))
10621 				return (EINVAL);
10622 
10623 			if (checkonly)
10624 				break;
10625 
10626 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10627 			    (uchar_t **)&ipp->ipp_hopopts,
10628 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10629 			if (reterr != 0)
10630 				return (reterr);
10631 			if (ipp->ipp_hopoptslen == 0)
10632 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10633 			else
10634 				ipp->ipp_fields |= IPPF_HOPOPTS;
10635 			reterr = tcp_build_hdrs(tcp);
10636 			if (reterr != 0)
10637 				return (reterr);
10638 			break;
10639 		}
10640 		case IPV6_RTHDRDSTOPTS: {
10641 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10642 
10643 			/*
10644 			 * Sanity checks - minimum size, size a multiple of
10645 			 * eight bytes, and matching size passed in.
10646 			 */
10647 			if (inlen != 0 &&
10648 			    inlen != (8 * (dopts->ip6d_len + 1)))
10649 				return (EINVAL);
10650 
10651 			if (checkonly)
10652 				break;
10653 
10654 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10655 			    (uchar_t **)&ipp->ipp_rtdstopts,
10656 			    &ipp->ipp_rtdstoptslen, 0);
10657 			if (reterr != 0)
10658 				return (reterr);
10659 			if (ipp->ipp_rtdstoptslen == 0)
10660 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10661 			else
10662 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10663 			reterr = tcp_build_hdrs(tcp);
10664 			if (reterr != 0)
10665 				return (reterr);
10666 			break;
10667 		}
10668 		case IPV6_DSTOPTS: {
10669 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10670 
10671 			/*
10672 			 * Sanity checks - minimum size, size a multiple of
10673 			 * eight bytes, and matching size passed in.
10674 			 */
10675 			if (inlen != 0 &&
10676 			    inlen != (8 * (dopts->ip6d_len + 1)))
10677 				return (EINVAL);
10678 
10679 			if (checkonly)
10680 				break;
10681 
10682 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10683 			    (uchar_t **)&ipp->ipp_dstopts,
10684 			    &ipp->ipp_dstoptslen, 0);
10685 			if (reterr != 0)
10686 				return (reterr);
10687 			if (ipp->ipp_dstoptslen == 0)
10688 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10689 			else
10690 				ipp->ipp_fields |= IPPF_DSTOPTS;
10691 			reterr = tcp_build_hdrs(tcp);
10692 			if (reterr != 0)
10693 				return (reterr);
10694 			break;
10695 		}
10696 		case IPV6_RTHDR: {
10697 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
10698 
10699 			/*
10700 			 * Sanity checks - minimum size, size a multiple of
10701 			 * eight bytes, and matching size passed in.
10702 			 */
10703 			if (inlen != 0 &&
10704 			    inlen != (8 * (rt->ip6r_len + 1)))
10705 				return (EINVAL);
10706 
10707 			if (checkonly)
10708 				break;
10709 
10710 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10711 			    (uchar_t **)&ipp->ipp_rthdr,
10712 			    &ipp->ipp_rthdrlen, 0);
10713 			if (reterr != 0)
10714 				return (reterr);
10715 			if (ipp->ipp_rthdrlen == 0)
10716 				ipp->ipp_fields &= ~IPPF_RTHDR;
10717 			else
10718 				ipp->ipp_fields |= IPPF_RTHDR;
10719 			reterr = tcp_build_hdrs(tcp);
10720 			if (reterr != 0)
10721 				return (reterr);
10722 			break;
10723 		}
10724 		case IPV6_V6ONLY:
10725 			if (!checkonly) {
10726 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
10727 			}
10728 			break;
10729 		case IPV6_USE_MIN_MTU:
10730 			if (inlen != sizeof (int))
10731 				return (EINVAL);
10732 
10733 			if (*i1 < -1 || *i1 > 1)
10734 				return (EINVAL);
10735 
10736 			if (checkonly)
10737 				break;
10738 
10739 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
10740 			ipp->ipp_use_min_mtu = *i1;
10741 			break;
10742 		case IPV6_SEC_OPT:
10743 			/*
10744 			 * We should not allow policy setting after
10745 			 * we start listening for connections.
10746 			 */
10747 			if (tcp->tcp_state == TCPS_LISTEN) {
10748 				return (EINVAL);
10749 			} else {
10750 				/* Handled at the IP level */
10751 				return (-EINVAL);
10752 			}
10753 		case IPV6_SRC_PREFERENCES:
10754 			if (inlen != sizeof (uint32_t))
10755 				return (EINVAL);
10756 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
10757 			    *(uint32_t *)invalp);
10758 			if (reterr != 0) {
10759 				*outlenp = 0;
10760 				return (reterr);
10761 			}
10762 			break;
10763 		default:
10764 			*outlenp = 0;
10765 			return (EINVAL);
10766 		}
10767 		break;
10768 	}		/* end IPPROTO_IPV6 */
10769 	default:
10770 		*outlenp = 0;
10771 		return (EINVAL);
10772 	}
10773 	/*
10774 	 * Common case of OK return with outval same as inval
10775 	 */
10776 	if (invalp != outvalp) {
10777 		/* don't trust bcopy for identical src/dst */
10778 		(void) bcopy(invalp, outvalp, inlen);
10779 	}
10780 	*outlenp = inlen;
10781 	return (0);
10782 }
10783 
10784 /* ARGSUSED */
10785 int
10786 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10787     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10788     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10789 {
10790 	conn_t	*connp =  Q_TO_CONN(q);
10791 
10792 	return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp,
10793 	    outlenp, outvalp, thisdg_attrs, cr, mblk));
10794 }
10795 
10796 int
10797 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
10798     const void *optvalp, socklen_t optlen, cred_t *cr)
10799 {
10800 	conn_t		*connp = (conn_t *)proto_handle;
10801 	squeue_t	*sqp = connp->conn_sqp;
10802 	int		error;
10803 
10804 	ASSERT(connp->conn_upper_handle != NULL);
10805 	/*
10806 	 * Entering the squeue synchronously can result in a context switch,
10807 	 * which can cause a rather sever performance degradation. So we try to
10808 	 * handle whatever options we can without entering the squeue.
10809 	 */
10810 	if (level == IPPROTO_TCP) {
10811 		switch (option_name) {
10812 		case TCP_NODELAY:
10813 			if (optlen != sizeof (int32_t))
10814 				return (EINVAL);
10815 			mutex_enter(&connp->conn_tcp->tcp_non_sq_lock);
10816 			connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 :
10817 			    connp->conn_tcp->tcp_mss;
10818 			mutex_exit(&connp->conn_tcp->tcp_non_sq_lock);
10819 			return (0);
10820 		default:
10821 			break;
10822 		}
10823 	}
10824 
10825 	error = squeue_synch_enter(sqp, connp, NULL);
10826 	if (error == ENOMEM) {
10827 		return (ENOMEM);
10828 	}
10829 
10830 	error = proto_opt_check(level, option_name, optlen, NULL,
10831 	    tcp_opt_obj.odb_opt_des_arr,
10832 	    tcp_opt_obj.odb_opt_arr_cnt,
10833 	    tcp_opt_obj.odb_topmost_tpiprovider,
10834 	    B_TRUE, B_FALSE, cr);
10835 
10836 	if (error != 0) {
10837 		if (error < 0) {
10838 			error = proto_tlitosyserr(-error);
10839 		}
10840 		squeue_synch_exit(sqp, connp);
10841 		return (error);
10842 	}
10843 
10844 	error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name,
10845 	    optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp,
10846 	    NULL, cr, NULL);
10847 	squeue_synch_exit(sqp, connp);
10848 
10849 	if (error < 0) {
10850 		/*
10851 		 * Pass on to ip
10852 		 */
10853 		error = ip_set_options(connp, level, option_name, optvalp,
10854 		    optlen, cr);
10855 	}
10856 	return (error);
10857 }
10858 
10859 /*
10860  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
10861  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
10862  * headers, and the maximum size tcp header (to avoid reallocation
10863  * on the fly for additional tcp options).
10864  * Returns failure if can't allocate memory.
10865  */
10866 static int
10867 tcp_build_hdrs(tcp_t *tcp)
10868 {
10869 	char	*hdrs;
10870 	uint_t	hdrs_len;
10871 	ip6i_t	*ip6i;
10872 	char	buf[TCP_MAX_HDR_LENGTH];
10873 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
10874 	in6_addr_t src, dst;
10875 	tcp_stack_t	*tcps = tcp->tcp_tcps;
10876 	conn_t *connp = tcp->tcp_connp;
10877 
10878 	/*
10879 	 * save the existing tcp header and source/dest IP addresses
10880 	 */
10881 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
10882 	src = tcp->tcp_ip6h->ip6_src;
10883 	dst = tcp->tcp_ip6h->ip6_dst;
10884 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
10885 	ASSERT(hdrs_len != 0);
10886 	if (hdrs_len > tcp->tcp_iphc_len) {
10887 		/* Need to reallocate */
10888 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
10889 		if (hdrs == NULL)
10890 			return (ENOMEM);
10891 		if (tcp->tcp_iphc != NULL) {
10892 			if (tcp->tcp_hdr_grown) {
10893 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
10894 			} else {
10895 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
10896 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
10897 			}
10898 			tcp->tcp_iphc_len = 0;
10899 		}
10900 		ASSERT(tcp->tcp_iphc_len == 0);
10901 		tcp->tcp_iphc = hdrs;
10902 		tcp->tcp_iphc_len = hdrs_len;
10903 		tcp->tcp_hdr_grown = B_TRUE;
10904 	}
10905 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
10906 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
10907 
10908 	/* Set header fields not in ipp */
10909 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
10910 		ip6i = (ip6i_t *)tcp->tcp_iphc;
10911 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
10912 	} else {
10913 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
10914 	}
10915 	/*
10916 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
10917 	 *
10918 	 * tcp->tcp_tcp_hdr_len doesn't change here.
10919 	 */
10920 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
10921 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
10922 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
10923 
10924 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
10925 
10926 	tcp->tcp_ip6h->ip6_src = src;
10927 	tcp->tcp_ip6h->ip6_dst = dst;
10928 
10929 	/*
10930 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
10931 	 * the default value for TCP.
10932 	 */
10933 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
10934 		tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit;
10935 
10936 	/*
10937 	 * If we're setting extension headers after a connection
10938 	 * has been established, and if we have a routing header
10939 	 * among the extension headers, call ip_massage_options_v6 to
10940 	 * manipulate the routing header/ip6_dst set the checksum
10941 	 * difference in the tcp header template.
10942 	 * (This happens in tcp_connect_ipv6 if the routing header
10943 	 * is set prior to the connect.)
10944 	 * Set the tcp_sum to zero first in case we've cleared a
10945 	 * routing header or don't have one at all.
10946 	 */
10947 	tcp->tcp_sum = 0;
10948 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
10949 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
10950 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
10951 		    (uint8_t *)tcp->tcp_tcph);
10952 		if (rth != NULL) {
10953 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
10954 			    rth, tcps->tcps_netstack);
10955 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
10956 			    (tcp->tcp_sum >> 16));
10957 		}
10958 	}
10959 
10960 	/* Try to get everything in a single mblk */
10961 	(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
10962 	    hdrs_len + tcps->tcps_wroff_xtra);
10963 	return (0);
10964 }
10965 
10966 /*
10967  * Transfer any source route option from ipha to buf/dst in reversed form.
10968  */
10969 static int
10970 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
10971 {
10972 	ipoptp_t	opts;
10973 	uchar_t		*opt;
10974 	uint8_t		optval;
10975 	uint8_t		optlen;
10976 	uint32_t	len = 0;
10977 
10978 	for (optval = ipoptp_first(&opts, ipha);
10979 	    optval != IPOPT_EOL;
10980 	    optval = ipoptp_next(&opts)) {
10981 		opt = opts.ipoptp_cur;
10982 		optlen = opts.ipoptp_len;
10983 		switch (optval) {
10984 			int	off1, off2;
10985 		case IPOPT_SSRR:
10986 		case IPOPT_LSRR:
10987 
10988 			/* Reverse source route */
10989 			/*
10990 			 * First entry should be the next to last one in the
10991 			 * current source route (the last entry is our
10992 			 * address.)
10993 			 * The last entry should be the final destination.
10994 			 */
10995 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
10996 			buf[IPOPT_OLEN] = (uint8_t)optlen;
10997 			off1 = IPOPT_MINOFF_SR - 1;
10998 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
10999 			if (off2 < 0) {
11000 				/* No entries in source route */
11001 				break;
11002 			}
11003 			bcopy(opt + off2, dst, IP_ADDR_LEN);
11004 			/*
11005 			 * Note: use src since ipha has not had its src
11006 			 * and dst reversed (it is in the state it was
11007 			 * received.
11008 			 */
11009 			bcopy(&ipha->ipha_src, buf + off2,
11010 			    IP_ADDR_LEN);
11011 			off2 -= IP_ADDR_LEN;
11012 
11013 			while (off2 > 0) {
11014 				bcopy(opt + off2, buf + off1,
11015 				    IP_ADDR_LEN);
11016 				off1 += IP_ADDR_LEN;
11017 				off2 -= IP_ADDR_LEN;
11018 			}
11019 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
11020 			buf += optlen;
11021 			len += optlen;
11022 			break;
11023 		}
11024 	}
11025 done:
11026 	/* Pad the resulting options */
11027 	while (len & 0x3) {
11028 		*buf++ = IPOPT_EOL;
11029 		len++;
11030 	}
11031 	return (len);
11032 }
11033 
11034 
11035 /*
11036  * Extract and revert a source route from ipha (if any)
11037  * and then update the relevant fields in both tcp_t and the standard header.
11038  */
11039 static void
11040 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
11041 {
11042 	char	buf[TCP_MAX_HDR_LENGTH];
11043 	uint_t	tcph_len;
11044 	int	len;
11045 
11046 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
11047 	len = IPH_HDR_LENGTH(ipha);
11048 	if (len == IP_SIMPLE_HDR_LENGTH)
11049 		/* Nothing to do */
11050 		return;
11051 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
11052 	    (len & 0x3))
11053 		return;
11054 
11055 	tcph_len = tcp->tcp_tcp_hdr_len;
11056 	bcopy(tcp->tcp_tcph, buf, tcph_len);
11057 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
11058 	    (tcp->tcp_ipha->ipha_dst & 0xffff);
11059 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
11060 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
11061 	len += IP_SIMPLE_HDR_LENGTH;
11062 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
11063 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
11064 	if ((int)tcp->tcp_sum < 0)
11065 		tcp->tcp_sum--;
11066 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
11067 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
11068 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
11069 	bcopy(buf, tcp->tcp_tcph, tcph_len);
11070 	tcp->tcp_ip_hdr_len = len;
11071 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11072 	    (IP_VERSION << 4) | (len >> 2);
11073 	len += tcph_len;
11074 	tcp->tcp_hdr_len = len;
11075 }
11076 
11077 /*
11078  * Copy the standard header into its new location,
11079  * lay in the new options and then update the relevant
11080  * fields in both tcp_t and the standard header.
11081  */
11082 static int
11083 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
11084 {
11085 	uint_t	tcph_len;
11086 	uint8_t	*ip_optp;
11087 	tcph_t	*new_tcph;
11088 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11089 	conn_t	*connp = tcp->tcp_connp;
11090 
11091 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
11092 		return (EINVAL);
11093 
11094 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
11095 		return (EINVAL);
11096 
11097 	if (checkonly) {
11098 		/*
11099 		 * do not really set, just pretend to - T_CHECK
11100 		 */
11101 		return (0);
11102 	}
11103 
11104 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
11105 	if (tcp->tcp_label_len > 0) {
11106 		int padlen;
11107 		uint8_t opt;
11108 
11109 		/* convert list termination to no-ops */
11110 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
11111 		ip_optp += ip_optp[IPOPT_OLEN];
11112 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
11113 		while (--padlen >= 0)
11114 			*ip_optp++ = opt;
11115 	}
11116 	tcph_len = tcp->tcp_tcp_hdr_len;
11117 	new_tcph = (tcph_t *)(ip_optp + len);
11118 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
11119 	tcp->tcp_tcph = new_tcph;
11120 	bcopy(ptr, ip_optp, len);
11121 
11122 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
11123 
11124 	tcp->tcp_ip_hdr_len = len;
11125 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11126 	    (IP_VERSION << 4) | (len >> 2);
11127 	tcp->tcp_hdr_len = len + tcph_len;
11128 	if (!TCP_IS_DETACHED(tcp)) {
11129 		/* Always allocate room for all options. */
11130 		(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
11131 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra);
11132 	}
11133 	return (0);
11134 }
11135 
11136 /* Get callback routine passed to nd_load by tcp_param_register */
11137 /* ARGSUSED */
11138 static int
11139 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11140 {
11141 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11142 
11143 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11144 	return (0);
11145 }
11146 
11147 /*
11148  * Walk through the param array specified registering each element with the
11149  * named dispatch handler.
11150  */
11151 static boolean_t
11152 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps)
11153 {
11154 	for (; cnt-- > 0; tcppa++) {
11155 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11156 			if (!nd_load(ndp, tcppa->tcp_param_name,
11157 			    tcp_param_get, tcp_param_set,
11158 			    (caddr_t)tcppa)) {
11159 				nd_free(ndp);
11160 				return (B_FALSE);
11161 			}
11162 		}
11163 	}
11164 	tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t),
11165 	    KM_SLEEP);
11166 	bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param,
11167 	    sizeof (tcpparam_t));
11168 	if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name,
11169 	    tcp_param_get, tcp_param_set_aligned,
11170 	    (caddr_t)tcps->tcps_wroff_xtra_param)) {
11171 		nd_free(ndp);
11172 		return (B_FALSE);
11173 	}
11174 	tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t),
11175 	    KM_SLEEP);
11176 	bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param,
11177 	    sizeof (tcpparam_t));
11178 	if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name,
11179 	    tcp_param_get, tcp_param_set_aligned,
11180 	    (caddr_t)tcps->tcps_mdt_head_param)) {
11181 		nd_free(ndp);
11182 		return (B_FALSE);
11183 	}
11184 	tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t),
11185 	    KM_SLEEP);
11186 	bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param,
11187 	    sizeof (tcpparam_t));
11188 	if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name,
11189 	    tcp_param_get, tcp_param_set_aligned,
11190 	    (caddr_t)tcps->tcps_mdt_tail_param)) {
11191 		nd_free(ndp);
11192 		return (B_FALSE);
11193 	}
11194 	tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t),
11195 	    KM_SLEEP);
11196 	bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param,
11197 	    sizeof (tcpparam_t));
11198 	if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name,
11199 	    tcp_param_get, tcp_param_set_aligned,
11200 	    (caddr_t)tcps->tcps_mdt_max_pbufs_param)) {
11201 		nd_free(ndp);
11202 		return (B_FALSE);
11203 	}
11204 	if (!nd_load(ndp, "tcp_extra_priv_ports",
11205 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11206 		nd_free(ndp);
11207 		return (B_FALSE);
11208 	}
11209 	if (!nd_load(ndp, "tcp_extra_priv_ports_add",
11210 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11211 		nd_free(ndp);
11212 		return (B_FALSE);
11213 	}
11214 	if (!nd_load(ndp, "tcp_extra_priv_ports_del",
11215 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11216 		nd_free(ndp);
11217 		return (B_FALSE);
11218 	}
11219 	if (!nd_load(ndp, "tcp_1948_phrase", NULL,
11220 	    tcp_1948_phrase_set, NULL)) {
11221 		nd_free(ndp);
11222 		return (B_FALSE);
11223 	}
11224 	/*
11225 	 * Dummy ndd variables - only to convey obsolescence information
11226 	 * through printing of their name (no get or set routines)
11227 	 * XXX Remove in future releases ?
11228 	 */
11229 	if (!nd_load(ndp,
11230 	    "tcp_close_wait_interval(obsoleted - "
11231 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11232 		nd_free(ndp);
11233 		return (B_FALSE);
11234 	}
11235 	return (B_TRUE);
11236 }
11237 
11238 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11239 /* ARGSUSED */
11240 static int
11241 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11242     cred_t *cr)
11243 {
11244 	long new_value;
11245 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11246 
11247 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11248 	    new_value < tcppa->tcp_param_min ||
11249 	    new_value > tcppa->tcp_param_max) {
11250 		return (EINVAL);
11251 	}
11252 	/*
11253 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11254 	 * round it up.  For future 64 bit requirement, we actually make it
11255 	 * a multiple of 8.
11256 	 */
11257 	if (new_value & 0x7) {
11258 		new_value = (new_value & ~0x7) + 0x8;
11259 	}
11260 	tcppa->tcp_param_val = new_value;
11261 	return (0);
11262 }
11263 
11264 /* Set callback routine passed to nd_load by tcp_param_register */
11265 /* ARGSUSED */
11266 static int
11267 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11268 {
11269 	long	new_value;
11270 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11271 
11272 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11273 	    new_value < tcppa->tcp_param_min ||
11274 	    new_value > tcppa->tcp_param_max) {
11275 		return (EINVAL);
11276 	}
11277 	tcppa->tcp_param_val = new_value;
11278 	return (0);
11279 }
11280 
11281 /*
11282  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11283  * is filled, return as much as we can.  The message passed in may be
11284  * multi-part, chained using b_cont.  "start" is the starting sequence
11285  * number for this piece.
11286  */
11287 static mblk_t *
11288 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11289 {
11290 	uint32_t	end;
11291 	mblk_t		*mp1;
11292 	mblk_t		*mp2;
11293 	mblk_t		*next_mp;
11294 	uint32_t	u1;
11295 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11296 
11297 	/* Walk through all the new pieces. */
11298 	do {
11299 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11300 		    (uintptr_t)INT_MAX);
11301 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11302 		next_mp = mp->b_cont;
11303 		if (start == end) {
11304 			/* Empty.  Blast it. */
11305 			freeb(mp);
11306 			continue;
11307 		}
11308 		mp->b_cont = NULL;
11309 		TCP_REASS_SET_SEQ(mp, start);
11310 		TCP_REASS_SET_END(mp, end);
11311 		mp1 = tcp->tcp_reass_tail;
11312 		if (!mp1) {
11313 			tcp->tcp_reass_tail = mp;
11314 			tcp->tcp_reass_head = mp;
11315 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11316 			UPDATE_MIB(&tcps->tcps_mib,
11317 			    tcpInDataUnorderBytes, end - start);
11318 			continue;
11319 		}
11320 		/* New stuff completely beyond tail? */
11321 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11322 			/* Link it on end. */
11323 			mp1->b_cont = mp;
11324 			tcp->tcp_reass_tail = mp;
11325 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11326 			UPDATE_MIB(&tcps->tcps_mib,
11327 			    tcpInDataUnorderBytes, end - start);
11328 			continue;
11329 		}
11330 		mp1 = tcp->tcp_reass_head;
11331 		u1 = TCP_REASS_SEQ(mp1);
11332 		/* New stuff at the front? */
11333 		if (SEQ_LT(start, u1)) {
11334 			/* Yes... Check for overlap. */
11335 			mp->b_cont = mp1;
11336 			tcp->tcp_reass_head = mp;
11337 			tcp_reass_elim_overlap(tcp, mp);
11338 			continue;
11339 		}
11340 		/*
11341 		 * The new piece fits somewhere between the head and tail.
11342 		 * We find our slot, where mp1 precedes us and mp2 trails.
11343 		 */
11344 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11345 			u1 = TCP_REASS_SEQ(mp2);
11346 			if (SEQ_LEQ(start, u1))
11347 				break;
11348 		}
11349 		/* Link ourselves in */
11350 		mp->b_cont = mp2;
11351 		mp1->b_cont = mp;
11352 
11353 		/* Trim overlap with following mblk(s) first */
11354 		tcp_reass_elim_overlap(tcp, mp);
11355 
11356 		/* Trim overlap with preceding mblk */
11357 		tcp_reass_elim_overlap(tcp, mp1);
11358 
11359 	} while (start = end, mp = next_mp);
11360 	mp1 = tcp->tcp_reass_head;
11361 	/* Anything ready to go? */
11362 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11363 		return (NULL);
11364 	/* Eat what we can off the queue */
11365 	for (;;) {
11366 		mp = mp1->b_cont;
11367 		end = TCP_REASS_END(mp1);
11368 		TCP_REASS_SET_SEQ(mp1, 0);
11369 		TCP_REASS_SET_END(mp1, 0);
11370 		if (!mp) {
11371 			tcp->tcp_reass_tail = NULL;
11372 			break;
11373 		}
11374 		if (end != TCP_REASS_SEQ(mp)) {
11375 			mp1->b_cont = NULL;
11376 			break;
11377 		}
11378 		mp1 = mp;
11379 	}
11380 	mp1 = tcp->tcp_reass_head;
11381 	tcp->tcp_reass_head = mp;
11382 	return (mp1);
11383 }
11384 
11385 /* Eliminate any overlap that mp may have over later mblks */
11386 static void
11387 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11388 {
11389 	uint32_t	end;
11390 	mblk_t		*mp1;
11391 	uint32_t	u1;
11392 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11393 
11394 	end = TCP_REASS_END(mp);
11395 	while ((mp1 = mp->b_cont) != NULL) {
11396 		u1 = TCP_REASS_SEQ(mp1);
11397 		if (!SEQ_GT(end, u1))
11398 			break;
11399 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11400 			mp->b_wptr -= end - u1;
11401 			TCP_REASS_SET_END(mp, u1);
11402 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs);
11403 			UPDATE_MIB(&tcps->tcps_mib,
11404 			    tcpInDataPartDupBytes, end - u1);
11405 			break;
11406 		}
11407 		mp->b_cont = mp1->b_cont;
11408 		TCP_REASS_SET_SEQ(mp1, 0);
11409 		TCP_REASS_SET_END(mp1, 0);
11410 		freeb(mp1);
11411 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
11412 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1);
11413 	}
11414 	if (!mp1)
11415 		tcp->tcp_reass_tail = mp;
11416 }
11417 
11418 static uint_t
11419 tcp_rwnd_reopen(tcp_t *tcp)
11420 {
11421 	uint_t ret = 0;
11422 	uint_t thwin;
11423 
11424 	/* Learn the latest rwnd information that we sent to the other side. */
11425 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11426 	    << tcp->tcp_rcv_ws;
11427 	/* This is peer's calculated send window (our receive window). */
11428 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11429 	/*
11430 	 * Increase the receive window to max.  But we need to do receiver
11431 	 * SWS avoidance.  This means that we need to check the increase of
11432 	 * of receive window is at least 1 MSS.
11433 	 */
11434 	if (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss) {
11435 		/*
11436 		 * If the window that the other side knows is less than max
11437 		 * deferred acks segments, send an update immediately.
11438 		 */
11439 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11440 			BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate);
11441 			ret = TH_ACK_NEEDED;
11442 		}
11443 		tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
11444 	}
11445 	return (ret);
11446 }
11447 
11448 /*
11449  * Send up all messages queued on tcp_rcv_list.
11450  */
11451 static uint_t
11452 tcp_rcv_drain(tcp_t *tcp)
11453 {
11454 	mblk_t *mp;
11455 	uint_t ret = 0;
11456 #ifdef DEBUG
11457 	uint_t cnt = 0;
11458 #endif
11459 	queue_t	*q = tcp->tcp_rq;
11460 
11461 	/* Can't drain on an eager connection */
11462 	if (tcp->tcp_listener != NULL)
11463 		return (ret);
11464 
11465 	/* Can't be a non-STREAMS connection */
11466 	ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
11467 
11468 	/* No need for the push timer now. */
11469 	if (tcp->tcp_push_tid != 0) {
11470 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11471 		tcp->tcp_push_tid = 0;
11472 	}
11473 
11474 	/*
11475 	 * Handle two cases here: we are currently fused or we were
11476 	 * previously fused and have some urgent data to be delivered
11477 	 * upstream.  The latter happens because we either ran out of
11478 	 * memory or were detached and therefore sending the SIGURG was
11479 	 * deferred until this point.  In either case we pass control
11480 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11481 	 * some work.
11482 	 */
11483 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11484 		ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) ||
11485 		    tcp->tcp_fused_sigurg_mp != NULL);
11486 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11487 		    &tcp->tcp_fused_sigurg_mp))
11488 			return (ret);
11489 	}
11490 
11491 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11492 		tcp->tcp_rcv_list = mp->b_next;
11493 		mp->b_next = NULL;
11494 #ifdef DEBUG
11495 		cnt += msgdsize(mp);
11496 #endif
11497 		/* Does this need SSL processing first? */
11498 		if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) {
11499 			DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain,
11500 			    mblk_t *, mp);
11501 			tcp_kssl_input(tcp, mp);
11502 			continue;
11503 		}
11504 		putnext(q, mp);
11505 	}
11506 #ifdef DEBUG
11507 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11508 #endif
11509 	tcp->tcp_rcv_last_head = NULL;
11510 	tcp->tcp_rcv_last_tail = NULL;
11511 	tcp->tcp_rcv_cnt = 0;
11512 
11513 	if (canputnext(q))
11514 		return (tcp_rwnd_reopen(tcp));
11515 
11516 	return (ret);
11517 }
11518 
11519 /*
11520  * Queue data on tcp_rcv_list which is a b_next chain.
11521  * tcp_rcv_last_head/tail is the last element of this chain.
11522  * Each element of the chain is a b_cont chain.
11523  *
11524  * M_DATA messages are added to the current element.
11525  * Other messages are added as new (b_next) elements.
11526  */
11527 void
11528 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11529 {
11530 	ASSERT(seg_len == msgdsize(mp));
11531 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11532 
11533 	if (tcp->tcp_rcv_list == NULL) {
11534 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11535 		tcp->tcp_rcv_list = mp;
11536 		tcp->tcp_rcv_last_head = mp;
11537 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11538 		tcp->tcp_rcv_last_tail->b_cont = mp;
11539 	} else {
11540 		tcp->tcp_rcv_last_head->b_next = mp;
11541 		tcp->tcp_rcv_last_head = mp;
11542 	}
11543 
11544 	while (mp->b_cont)
11545 		mp = mp->b_cont;
11546 
11547 	tcp->tcp_rcv_last_tail = mp;
11548 	tcp->tcp_rcv_cnt += seg_len;
11549 	tcp->tcp_rwnd -= seg_len;
11550 }
11551 
11552 /*
11553  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11554  *
11555  * This is the default entry function into TCP on the read side. TCP is
11556  * always entered via squeue i.e. using squeue's for mutual exclusion.
11557  * When classifier does a lookup to find the tcp, it also puts a reference
11558  * on the conn structure associated so the tcp is guaranteed to exist
11559  * when we come here. We still need to check the state because it might
11560  * as well has been closed. The squeue processing function i.e. squeue_enter,
11561  * is responsible for doing the CONN_DEC_REF.
11562  *
11563  * Apart from the default entry point, IP also sends packets directly to
11564  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11565  * connections.
11566  */
11567 boolean_t tcp_outbound_squeue_switch = B_FALSE;
11568 void
11569 tcp_input(void *arg, mblk_t *mp, void *arg2)
11570 {
11571 	conn_t	*connp = (conn_t *)arg;
11572 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11573 
11574 	/* arg2 is the sqp */
11575 	ASSERT(arg2 != NULL);
11576 	ASSERT(mp != NULL);
11577 
11578 	/*
11579 	 * Don't accept any input on a closed tcp as this TCP logically does
11580 	 * not exist on the system. Don't proceed further with this TCP.
11581 	 * For eg. this packet could trigger another close of this tcp
11582 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11583 	 * tcp_clean_death / tcp_closei_local must be called at most once
11584 	 * on a TCP. In this case we need to refeed the packet into the
11585 	 * classifier and figure out where the packet should go. Need to
11586 	 * preserve the recv_ill somehow. Until we figure that out, for
11587 	 * now just drop the packet if we can't classify the packet.
11588 	 */
11589 	if (tcp->tcp_state == TCPS_CLOSED ||
11590 	    tcp->tcp_state == TCPS_BOUND) {
11591 		conn_t	*new_connp;
11592 		ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip;
11593 
11594 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
11595 		if (new_connp != NULL) {
11596 			tcp_reinput(new_connp, mp, arg2);
11597 			return;
11598 		}
11599 		/* We failed to classify. For now just drop the packet */
11600 		freemsg(mp);
11601 		return;
11602 	}
11603 
11604 	if (DB_TYPE(mp) != M_DATA) {
11605 		tcp_rput_common(tcp, mp);
11606 		return;
11607 	}
11608 
11609 	if (mp->b_datap->db_struioflag & STRUIO_CONNECT) {
11610 		squeue_t	*final_sqp;
11611 
11612 		mp->b_datap->db_struioflag &= ~STRUIO_CONNECT;
11613 		final_sqp = (squeue_t *)DB_CKSUMSTART(mp);
11614 		DB_CKSUMSTART(mp) = 0;
11615 		if (tcp->tcp_state == TCPS_SYN_SENT &&
11616 		    connp->conn_final_sqp == NULL &&
11617 		    tcp_outbound_squeue_switch) {
11618 			ASSERT(connp->conn_initial_sqp == connp->conn_sqp);
11619 			connp->conn_final_sqp = final_sqp;
11620 			if (connp->conn_final_sqp != connp->conn_sqp) {
11621 				CONN_INC_REF(connp);
11622 				SQUEUE_SWITCH(connp, connp->conn_final_sqp);
11623 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
11624 				    tcp_rput_data, connp, ip_squeue_flag,
11625 				    SQTAG_CONNECT_FINISH);
11626 				return;
11627 			}
11628 		}
11629 	}
11630 	tcp_rput_data(connp, mp, arg2);
11631 }
11632 
11633 /*
11634  * The read side put procedure.
11635  * The packets passed up by ip are assume to be aligned according to
11636  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11637  */
11638 static void
11639 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11640 {
11641 	/*
11642 	 * tcp_rput_data() does not expect M_CTL except for the case
11643 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11644 	 * type. Need to make sure that any other M_CTLs don't make
11645 	 * it to tcp_rput_data since it is not expecting any and doesn't
11646 	 * check for it.
11647 	 */
11648 	if (DB_TYPE(mp) == M_CTL) {
11649 		switch (*(uint32_t *)(mp->b_rptr)) {
11650 		case TCP_IOC_ABORT_CONN:
11651 			/*
11652 			 * Handle connection abort request.
11653 			 */
11654 			tcp_ioctl_abort_handler(tcp, mp);
11655 			return;
11656 		case IPSEC_IN:
11657 			/*
11658 			 * Only secure icmp arrive in TCP and they
11659 			 * don't go through data path.
11660 			 */
11661 			tcp_icmp_error(tcp, mp);
11662 			return;
11663 		case IN_PKTINFO:
11664 			/*
11665 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
11666 			 * sockets that are receiving IPv4 traffic. tcp
11667 			 */
11668 			ASSERT(tcp->tcp_family == AF_INET6);
11669 			ASSERT(tcp->tcp_ipv6_recvancillary &
11670 			    TCP_IPV6_RECVPKTINFO);
11671 			tcp_rput_data(tcp->tcp_connp, mp,
11672 			    tcp->tcp_connp->conn_sqp);
11673 			return;
11674 		case MDT_IOC_INFO_UPDATE:
11675 			/*
11676 			 * Handle Multidata information update; the
11677 			 * following routine will free the message.
11678 			 */
11679 			if (tcp->tcp_connp->conn_mdt_ok) {
11680 				tcp_mdt_update(tcp,
11681 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
11682 				    B_FALSE);
11683 			}
11684 			freemsg(mp);
11685 			return;
11686 		case LSO_IOC_INFO_UPDATE:
11687 			/*
11688 			 * Handle LSO information update; the following
11689 			 * routine will free the message.
11690 			 */
11691 			if (tcp->tcp_connp->conn_lso_ok) {
11692 				tcp_lso_update(tcp,
11693 				    &((ip_lso_info_t *)mp->b_rptr)->lso_capab);
11694 			}
11695 			freemsg(mp);
11696 			return;
11697 		default:
11698 			/*
11699 			 * tcp_icmp_err() will process the M_CTL packets.
11700 			 * Non-ICMP packets, if any, will be discarded in
11701 			 * tcp_icmp_err(). We will process the ICMP packet
11702 			 * even if we are TCP_IS_DETACHED_NONEAGER as the
11703 			 * incoming ICMP packet may result in changing
11704 			 * the tcp_mss, which we would need if we have
11705 			 * packets to retransmit.
11706 			 */
11707 			tcp_icmp_error(tcp, mp);
11708 			return;
11709 		}
11710 	}
11711 
11712 	/* No point processing the message if tcp is already closed */
11713 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
11714 		freemsg(mp);
11715 		return;
11716 	}
11717 
11718 	tcp_rput_other(tcp, mp);
11719 }
11720 
11721 
11722 /* The minimum of smoothed mean deviation in RTO calculation. */
11723 #define	TCP_SD_MIN	400
11724 
11725 /*
11726  * Set RTO for this connection.  The formula is from Jacobson and Karels'
11727  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
11728  * are the same as those in Appendix A.2 of that paper.
11729  *
11730  * m = new measurement
11731  * sa = smoothed RTT average (8 * average estimates).
11732  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
11733  */
11734 static void
11735 tcp_set_rto(tcp_t *tcp, clock_t rtt)
11736 {
11737 	long m = TICK_TO_MSEC(rtt);
11738 	clock_t sa = tcp->tcp_rtt_sa;
11739 	clock_t sv = tcp->tcp_rtt_sd;
11740 	clock_t rto;
11741 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11742 
11743 	BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate);
11744 	tcp->tcp_rtt_update++;
11745 
11746 	/* tcp_rtt_sa is not 0 means this is a new sample. */
11747 	if (sa != 0) {
11748 		/*
11749 		 * Update average estimator:
11750 		 *	new rtt = 7/8 old rtt + 1/8 Error
11751 		 */
11752 
11753 		/* m is now Error in estimate. */
11754 		m -= sa >> 3;
11755 		if ((sa += m) <= 0) {
11756 			/*
11757 			 * Don't allow the smoothed average to be negative.
11758 			 * We use 0 to denote reinitialization of the
11759 			 * variables.
11760 			 */
11761 			sa = 1;
11762 		}
11763 
11764 		/*
11765 		 * Update deviation estimator:
11766 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
11767 		 */
11768 		if (m < 0)
11769 			m = -m;
11770 		m -= sv >> 2;
11771 		sv += m;
11772 	} else {
11773 		/*
11774 		 * This follows BSD's implementation.  So the reinitialized
11775 		 * RTO is 3 * m.  We cannot go less than 2 because if the
11776 		 * link is bandwidth dominated, doubling the window size
11777 		 * during slow start means doubling the RTT.  We want to be
11778 		 * more conservative when we reinitialize our estimates.  3
11779 		 * is just a convenient number.
11780 		 */
11781 		sa = m << 3;
11782 		sv = m << 1;
11783 	}
11784 	if (sv < TCP_SD_MIN) {
11785 		/*
11786 		 * We do not know that if sa captures the delay ACK
11787 		 * effect as in a long train of segments, a receiver
11788 		 * does not delay its ACKs.  So set the minimum of sv
11789 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
11790 		 * of BSD DATO.  That means the minimum of mean
11791 		 * deviation is 100 ms.
11792 		 *
11793 		 */
11794 		sv = TCP_SD_MIN;
11795 	}
11796 	tcp->tcp_rtt_sa = sa;
11797 	tcp->tcp_rtt_sd = sv;
11798 	/*
11799 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
11800 	 *
11801 	 * Add tcp_rexmit_interval extra in case of extreme environment
11802 	 * where the algorithm fails to work.  The default value of
11803 	 * tcp_rexmit_interval_extra should be 0.
11804 	 *
11805 	 * As we use a finer grained clock than BSD and update
11806 	 * RTO for every ACKs, add in another .25 of RTT to the
11807 	 * deviation of RTO to accomodate burstiness of 1/4 of
11808 	 * window size.
11809 	 */
11810 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
11811 
11812 	if (rto > tcps->tcps_rexmit_interval_max) {
11813 		tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
11814 	} else if (rto < tcps->tcps_rexmit_interval_min) {
11815 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
11816 	} else {
11817 		tcp->tcp_rto = rto;
11818 	}
11819 
11820 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
11821 	tcp->tcp_timer_backoff = 0;
11822 }
11823 
11824 /*
11825  * tcp_get_seg_mp() is called to get the pointer to a segment in the
11826  * send queue which starts at the given sequence number. If the given
11827  * sequence number is equal to last valid sequence number (tcp_snxt), the
11828  * returned mblk is the last valid mblk, and off is set to the length of
11829  * that mblk.
11830  *
11831  * send queue which starts at the given seq. no.
11832  *
11833  * Parameters:
11834  *	tcp_t *tcp: the tcp instance pointer.
11835  *	uint32_t seq: the starting seq. no of the requested segment.
11836  *	int32_t *off: after the execution, *off will be the offset to
11837  *		the returned mblk which points to the requested seq no.
11838  *		It is the caller's responsibility to send in a non-null off.
11839  *
11840  * Return:
11841  *	A mblk_t pointer pointing to the requested segment in send queue.
11842  */
11843 static mblk_t *
11844 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
11845 {
11846 	int32_t	cnt;
11847 	mblk_t	*mp;
11848 
11849 	/* Defensive coding.  Make sure we don't send incorrect data. */
11850 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GT(seq, tcp->tcp_snxt))
11851 		return (NULL);
11852 
11853 	cnt = seq - tcp->tcp_suna;
11854 	mp = tcp->tcp_xmit_head;
11855 	while (cnt > 0 && mp != NULL) {
11856 		cnt -= mp->b_wptr - mp->b_rptr;
11857 		if (cnt <= 0) {
11858 			cnt += mp->b_wptr - mp->b_rptr;
11859 			break;
11860 		}
11861 		mp = mp->b_cont;
11862 	}
11863 	ASSERT(mp != NULL);
11864 	*off = cnt;
11865 	return (mp);
11866 }
11867 
11868 /*
11869  * This function handles all retransmissions if SACK is enabled for this
11870  * connection.  First it calculates how many segments can be retransmitted
11871  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
11872  * segments.  A segment is eligible if sack_cnt for that segment is greater
11873  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
11874  * all eligible segments, it checks to see if TCP can send some new segments
11875  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
11876  *
11877  * Parameters:
11878  *	tcp_t *tcp: the tcp structure of the connection.
11879  *	uint_t *flags: in return, appropriate value will be set for
11880  *	tcp_rput_data().
11881  */
11882 static void
11883 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
11884 {
11885 	notsack_blk_t	*notsack_blk;
11886 	int32_t		usable_swnd;
11887 	int32_t		mss;
11888 	uint32_t	seg_len;
11889 	mblk_t		*xmit_mp;
11890 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11891 
11892 	ASSERT(tcp->tcp_sack_info != NULL);
11893 	ASSERT(tcp->tcp_notsack_list != NULL);
11894 	ASSERT(tcp->tcp_rexmit == B_FALSE);
11895 
11896 	/* Defensive coding in case there is a bug... */
11897 	if (tcp->tcp_notsack_list == NULL) {
11898 		return;
11899 	}
11900 	notsack_blk = tcp->tcp_notsack_list;
11901 	mss = tcp->tcp_mss;
11902 
11903 	/*
11904 	 * Limit the num of outstanding data in the network to be
11905 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
11906 	 */
11907 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
11908 
11909 	/* At least retransmit 1 MSS of data. */
11910 	if (usable_swnd <= 0) {
11911 		usable_swnd = mss;
11912 	}
11913 
11914 	/* Make sure no new RTT samples will be taken. */
11915 	tcp->tcp_csuna = tcp->tcp_snxt;
11916 
11917 	notsack_blk = tcp->tcp_notsack_list;
11918 	while (usable_swnd > 0) {
11919 		mblk_t		*snxt_mp, *tmp_mp;
11920 		tcp_seq		begin = tcp->tcp_sack_snxt;
11921 		tcp_seq		end;
11922 		int32_t		off;
11923 
11924 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
11925 			if (SEQ_GT(notsack_blk->end, begin) &&
11926 			    (notsack_blk->sack_cnt >=
11927 			    tcps->tcps_dupack_fast_retransmit)) {
11928 				end = notsack_blk->end;
11929 				if (SEQ_LT(begin, notsack_blk->begin)) {
11930 					begin = notsack_blk->begin;
11931 				}
11932 				break;
11933 			}
11934 		}
11935 		/*
11936 		 * All holes are filled.  Manipulate tcp_cwnd to send more
11937 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
11938 		 * set to tcp_cwnd_ssthresh.
11939 		 */
11940 		if (notsack_blk == NULL) {
11941 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
11942 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
11943 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
11944 				ASSERT(tcp->tcp_cwnd > 0);
11945 				return;
11946 			} else {
11947 				usable_swnd = usable_swnd / mss;
11948 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
11949 				    MAX(usable_swnd * mss, mss);
11950 				*flags |= TH_XMIT_NEEDED;
11951 				return;
11952 			}
11953 		}
11954 
11955 		/*
11956 		 * Note that we may send more than usable_swnd allows here
11957 		 * because of round off, but no more than 1 MSS of data.
11958 		 */
11959 		seg_len = end - begin;
11960 		if (seg_len > mss)
11961 			seg_len = mss;
11962 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
11963 		ASSERT(snxt_mp != NULL);
11964 		/* This should not happen.  Defensive coding again... */
11965 		if (snxt_mp == NULL) {
11966 			return;
11967 		}
11968 
11969 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
11970 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
11971 		if (xmit_mp == NULL)
11972 			return;
11973 
11974 		usable_swnd -= seg_len;
11975 		tcp->tcp_pipe += seg_len;
11976 		tcp->tcp_sack_snxt = begin + seg_len;
11977 
11978 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
11979 
11980 		/*
11981 		 * Update the send timestamp to avoid false retransmission.
11982 		 */
11983 		snxt_mp->b_prev = (mblk_t *)lbolt;
11984 
11985 		BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
11986 		UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len);
11987 		BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs);
11988 		/*
11989 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
11990 		 * This happens when new data sent during fast recovery is
11991 		 * also lost.  If TCP retransmits those new data, it needs
11992 		 * to extend SACK recover phase to avoid starting another
11993 		 * fast retransmit/recovery unnecessarily.
11994 		 */
11995 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
11996 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
11997 		}
11998 	}
11999 }
12000 
12001 /*
12002  * This function handles policy checking at TCP level for non-hard_bound/
12003  * detached connections.
12004  */
12005 static boolean_t
12006 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
12007     boolean_t secure, boolean_t mctl_present)
12008 {
12009 	ipsec_latch_t *ipl = NULL;
12010 	ipsec_action_t *act = NULL;
12011 	mblk_t *data_mp;
12012 	ipsec_in_t *ii;
12013 	const char *reason;
12014 	kstat_named_t *counter;
12015 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12016 	ipsec_stack_t	*ipss;
12017 	ip_stack_t	*ipst;
12018 
12019 	ASSERT(mctl_present || !secure);
12020 
12021 	ASSERT((ipha == NULL && ip6h != NULL) ||
12022 	    (ip6h == NULL && ipha != NULL));
12023 
12024 	/*
12025 	 * We don't necessarily have an ipsec_in_act action to verify
12026 	 * policy because of assymetrical policy where we have only
12027 	 * outbound policy and no inbound policy (possible with global
12028 	 * policy).
12029 	 */
12030 	if (!secure) {
12031 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
12032 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
12033 			return (B_TRUE);
12034 		ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
12035 		    "tcp_check_policy", ipha, ip6h, secure,
12036 		    tcps->tcps_netstack);
12037 		ipss = tcps->tcps_netstack->netstack_ipsec;
12038 
12039 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12040 		    DROPPER(ipss, ipds_tcp_clear),
12041 		    &tcps->tcps_dropper);
12042 		return (B_FALSE);
12043 	}
12044 
12045 	/*
12046 	 * We have a secure packet.
12047 	 */
12048 	if (act == NULL) {
12049 		ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
12050 		    "tcp_check_policy", ipha, ip6h, secure,
12051 		    tcps->tcps_netstack);
12052 		ipss = tcps->tcps_netstack->netstack_ipsec;
12053 
12054 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12055 		    DROPPER(ipss, ipds_tcp_secure),
12056 		    &tcps->tcps_dropper);
12057 		return (B_FALSE);
12058 	}
12059 
12060 	/*
12061 	 * XXX This whole routine is currently incorrect.  ipl should
12062 	 * be set to the latch pointer, but is currently not set, so
12063 	 * we initialize it to NULL to avoid picking up random garbage.
12064 	 */
12065 	if (ipl == NULL)
12066 		return (B_TRUE);
12067 
12068 	data_mp = first_mp->b_cont;
12069 
12070 	ii = (ipsec_in_t *)first_mp->b_rptr;
12071 
12072 	ipst = tcps->tcps_netstack->netstack_ip;
12073 
12074 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
12075 	    &counter, tcp->tcp_connp)) {
12076 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
12077 		return (B_TRUE);
12078 	}
12079 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
12080 	    "tcp inbound policy mismatch: %s, packet dropped\n",
12081 	    reason);
12082 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
12083 
12084 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
12085 	    &tcps->tcps_dropper);
12086 	return (B_FALSE);
12087 }
12088 
12089 /*
12090  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
12091  * retransmission after a timeout.
12092  *
12093  * To limit the number of duplicate segments, we limit the number of segment
12094  * to be sent in one time to tcp_snd_burst, the burst variable.
12095  */
12096 static void
12097 tcp_ss_rexmit(tcp_t *tcp)
12098 {
12099 	uint32_t	snxt;
12100 	uint32_t	smax;
12101 	int32_t		win;
12102 	int32_t		mss;
12103 	int32_t		off;
12104 	int32_t		burst = tcp->tcp_snd_burst;
12105 	mblk_t		*snxt_mp;
12106 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12107 
12108 	/*
12109 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
12110 	 * all unack'ed segments.
12111 	 */
12112 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
12113 		smax = tcp->tcp_rexmit_max;
12114 		snxt = tcp->tcp_rexmit_nxt;
12115 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
12116 			snxt = tcp->tcp_suna;
12117 		}
12118 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
12119 		win -= snxt - tcp->tcp_suna;
12120 		mss = tcp->tcp_mss;
12121 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
12122 
12123 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12124 		    (burst > 0) && (snxt_mp != NULL)) {
12125 			mblk_t	*xmit_mp;
12126 			mblk_t	*old_snxt_mp = snxt_mp;
12127 			uint32_t cnt = mss;
12128 
12129 			if (win < cnt) {
12130 				cnt = win;
12131 			}
12132 			if (SEQ_GT(snxt + cnt, smax)) {
12133 				cnt = smax - snxt;
12134 			}
12135 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12136 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12137 			if (xmit_mp == NULL)
12138 				return;
12139 
12140 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12141 
12142 			snxt += cnt;
12143 			win -= cnt;
12144 			/*
12145 			 * Update the send timestamp to avoid false
12146 			 * retransmission.
12147 			 */
12148 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12149 			BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12150 			UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt);
12151 
12152 			tcp->tcp_rexmit_nxt = snxt;
12153 			burst--;
12154 		}
12155 		/*
12156 		 * If we have transmitted all we have at the time
12157 		 * we started the retranmission, we can leave
12158 		 * the rest of the job to tcp_wput_data().  But we
12159 		 * need to check the send window first.  If the
12160 		 * win is not 0, go on with tcp_wput_data().
12161 		 */
12162 		if (SEQ_LT(snxt, smax) || win == 0) {
12163 			return;
12164 		}
12165 	}
12166 	/* Only call tcp_wput_data() if there is data to be sent. */
12167 	if (tcp->tcp_unsent) {
12168 		tcp_wput_data(tcp, NULL, B_FALSE);
12169 	}
12170 }
12171 
12172 /*
12173  * Process all TCP option in SYN segment.  Note that this function should
12174  * be called after tcp_adapt_ire() is called so that the necessary info
12175  * from IRE is already set in the tcp structure.
12176  *
12177  * This function sets up the correct tcp_mss value according to the
12178  * MSS option value and our header size.  It also sets up the window scale
12179  * and timestamp values, and initialize SACK info blocks.  But it does not
12180  * change receive window size after setting the tcp_mss value.  The caller
12181  * should do the appropriate change.
12182  */
12183 void
12184 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12185 {
12186 	int options;
12187 	tcp_opt_t tcpopt;
12188 	uint32_t mss_max;
12189 	char *tmp_tcph;
12190 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12191 
12192 	tcpopt.tcp = NULL;
12193 	options = tcp_parse_options(tcph, &tcpopt);
12194 
12195 	/*
12196 	 * Process MSS option.  Note that MSS option value does not account
12197 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12198 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12199 	 * IPv6.
12200 	 */
12201 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12202 		if (tcp->tcp_ipversion == IPV4_VERSION)
12203 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
12204 		else
12205 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
12206 	} else {
12207 		if (tcp->tcp_ipversion == IPV4_VERSION)
12208 			mss_max = tcps->tcps_mss_max_ipv4;
12209 		else
12210 			mss_max = tcps->tcps_mss_max_ipv6;
12211 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
12212 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
12213 		else if (tcpopt.tcp_opt_mss > mss_max)
12214 			tcpopt.tcp_opt_mss = mss_max;
12215 	}
12216 
12217 	/* Process Window Scale option. */
12218 	if (options & TCP_OPT_WSCALE_PRESENT) {
12219 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12220 		tcp->tcp_snd_ws_ok = B_TRUE;
12221 	} else {
12222 		tcp->tcp_snd_ws = B_FALSE;
12223 		tcp->tcp_snd_ws_ok = B_FALSE;
12224 		tcp->tcp_rcv_ws = B_FALSE;
12225 	}
12226 
12227 	/* Process Timestamp option. */
12228 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12229 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12230 		tmp_tcph = (char *)tcp->tcp_tcph;
12231 
12232 		tcp->tcp_snd_ts_ok = B_TRUE;
12233 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12234 		tcp->tcp_last_rcv_lbolt = lbolt64;
12235 		ASSERT(OK_32PTR(tmp_tcph));
12236 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12237 
12238 		/* Fill in our template header with basic timestamp option. */
12239 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12240 		tmp_tcph[0] = TCPOPT_NOP;
12241 		tmp_tcph[1] = TCPOPT_NOP;
12242 		tmp_tcph[2] = TCPOPT_TSTAMP;
12243 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12244 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12245 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12246 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12247 	} else {
12248 		tcp->tcp_snd_ts_ok = B_FALSE;
12249 	}
12250 
12251 	/*
12252 	 * Process SACK options.  If SACK is enabled for this connection,
12253 	 * then allocate the SACK info structure.  Note the following ways
12254 	 * when tcp_snd_sack_ok is set to true.
12255 	 *
12256 	 * For active connection: in tcp_adapt_ire() called in
12257 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12258 	 * is checked.
12259 	 *
12260 	 * For passive connection: in tcp_adapt_ire() called in
12261 	 * tcp_accept_comm().
12262 	 *
12263 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12264 	 * That check makes sure that if we did not send a SACK OK option,
12265 	 * we will not enable SACK for this connection even though the other
12266 	 * side sends us SACK OK option.  For active connection, the SACK
12267 	 * info structure has already been allocated.  So we need to free
12268 	 * it if SACK is disabled.
12269 	 */
12270 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12271 	    (tcp->tcp_snd_sack_ok ||
12272 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12273 		/* This should be true only in the passive case. */
12274 		if (tcp->tcp_sack_info == NULL) {
12275 			ASSERT(TCP_IS_DETACHED(tcp));
12276 			tcp->tcp_sack_info =
12277 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12278 		}
12279 		if (tcp->tcp_sack_info == NULL) {
12280 			tcp->tcp_snd_sack_ok = B_FALSE;
12281 		} else {
12282 			tcp->tcp_snd_sack_ok = B_TRUE;
12283 			if (tcp->tcp_snd_ts_ok) {
12284 				tcp->tcp_max_sack_blk = 3;
12285 			} else {
12286 				tcp->tcp_max_sack_blk = 4;
12287 			}
12288 		}
12289 	} else {
12290 		/*
12291 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12292 		 * no SACK info will be used for this
12293 		 * connection.  This assumes that SACK usage
12294 		 * permission is negotiated.  This may need
12295 		 * to be changed once this is clarified.
12296 		 */
12297 		if (tcp->tcp_sack_info != NULL) {
12298 			ASSERT(tcp->tcp_notsack_list == NULL);
12299 			kmem_cache_free(tcp_sack_info_cache,
12300 			    tcp->tcp_sack_info);
12301 			tcp->tcp_sack_info = NULL;
12302 		}
12303 		tcp->tcp_snd_sack_ok = B_FALSE;
12304 	}
12305 
12306 	/*
12307 	 * Now we know the exact TCP/IP header length, subtract
12308 	 * that from tcp_mss to get our side's MSS.
12309 	 */
12310 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12311 	/*
12312 	 * Here we assume that the other side's header size will be equal to
12313 	 * our header size.  We calculate the real MSS accordingly.  Need to
12314 	 * take into additional stuffs IPsec puts in.
12315 	 *
12316 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12317 	 */
12318 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12319 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12320 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12321 
12322 	/*
12323 	 * Set MSS to the smaller one of both ends of the connection.
12324 	 * We should not have called tcp_mss_set() before, but our
12325 	 * side of the MSS should have been set to a proper value
12326 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12327 	 * STREAM head parameters properly.
12328 	 *
12329 	 * If we have a larger-than-16-bit window but the other side
12330 	 * didn't want to do window scale, tcp_rwnd_set() will take
12331 	 * care of that.
12332 	 */
12333 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE);
12334 }
12335 
12336 /*
12337  * Sends the T_CONN_IND to the listener. The caller calls this
12338  * functions via squeue to get inside the listener's perimeter
12339  * once the 3 way hand shake is done a T_CONN_IND needs to be
12340  * sent. As an optimization, the caller can call this directly
12341  * if listener's perimeter is same as eager's.
12342  */
12343 /* ARGSUSED */
12344 void
12345 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12346 {
12347 	conn_t			*lconnp = (conn_t *)arg;
12348 	tcp_t			*listener = lconnp->conn_tcp;
12349 	tcp_t			*tcp;
12350 	struct T_conn_ind	*conn_ind;
12351 	ipaddr_t 		*addr_cache;
12352 	boolean_t		need_send_conn_ind = B_FALSE;
12353 	tcp_stack_t		*tcps = listener->tcp_tcps;
12354 
12355 	/* retrieve the eager */
12356 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12357 	ASSERT(conn_ind->OPT_offset != 0 &&
12358 	    conn_ind->OPT_length == sizeof (intptr_t));
12359 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12360 	    conn_ind->OPT_length);
12361 
12362 	/*
12363 	 * TLI/XTI applications will get confused by
12364 	 * sending eager as an option since it violates
12365 	 * the option semantics. So remove the eager as
12366 	 * option since TLI/XTI app doesn't need it anyway.
12367 	 */
12368 	if (!TCP_IS_SOCKET(listener)) {
12369 		conn_ind->OPT_length = 0;
12370 		conn_ind->OPT_offset = 0;
12371 	}
12372 	if (listener->tcp_state != TCPS_LISTEN) {
12373 		/*
12374 		 * If listener has closed, it would have caused a
12375 		 * a cleanup/blowoff to happen for the eager. We
12376 		 * just need to return.
12377 		 */
12378 		freemsg(mp);
12379 		return;
12380 	}
12381 
12382 
12383 	/*
12384 	 * if the conn_req_q is full defer passing up the
12385 	 * T_CONN_IND until space is availabe after t_accept()
12386 	 * processing
12387 	 */
12388 	mutex_enter(&listener->tcp_eager_lock);
12389 
12390 	/*
12391 	 * Take the eager out, if it is in the list of droppable eagers
12392 	 * as we are here because the 3W handshake is over.
12393 	 */
12394 	MAKE_UNDROPPABLE(tcp);
12395 
12396 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12397 		tcp_t *tail;
12398 
12399 		/*
12400 		 * The eager already has an extra ref put in tcp_rput_data
12401 		 * so that it stays till accept comes back even though it
12402 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12403 		 */
12404 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12405 		listener->tcp_conn_req_cnt_q0--;
12406 		listener->tcp_conn_req_cnt_q++;
12407 
12408 		/* Move from SYN_RCVD to ESTABLISHED list  */
12409 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12410 		    tcp->tcp_eager_prev_q0;
12411 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12412 		    tcp->tcp_eager_next_q0;
12413 		tcp->tcp_eager_prev_q0 = NULL;
12414 		tcp->tcp_eager_next_q0 = NULL;
12415 
12416 		/*
12417 		 * Insert at end of the queue because sockfs
12418 		 * sends down T_CONN_RES in chronological
12419 		 * order. Leaving the older conn indications
12420 		 * at front of the queue helps reducing search
12421 		 * time.
12422 		 */
12423 		tail = listener->tcp_eager_last_q;
12424 		if (tail != NULL)
12425 			tail->tcp_eager_next_q = tcp;
12426 		else
12427 			listener->tcp_eager_next_q = tcp;
12428 		listener->tcp_eager_last_q = tcp;
12429 		tcp->tcp_eager_next_q = NULL;
12430 		/*
12431 		 * Delay sending up the T_conn_ind until we are
12432 		 * done with the eager. Once we have have sent up
12433 		 * the T_conn_ind, the accept can potentially complete
12434 		 * any time and release the refhold we have on the eager.
12435 		 */
12436 		need_send_conn_ind = B_TRUE;
12437 	} else {
12438 		/*
12439 		 * Defer connection on q0 and set deferred
12440 		 * connection bit true
12441 		 */
12442 		tcp->tcp_conn_def_q0 = B_TRUE;
12443 
12444 		/* take tcp out of q0 ... */
12445 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12446 		    tcp->tcp_eager_next_q0;
12447 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12448 		    tcp->tcp_eager_prev_q0;
12449 
12450 		/* ... and place it at the end of q0 */
12451 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12452 		tcp->tcp_eager_next_q0 = listener;
12453 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12454 		listener->tcp_eager_prev_q0 = tcp;
12455 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12456 	}
12457 
12458 	/* we have timed out before */
12459 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12460 		tcp->tcp_syn_rcvd_timeout = 0;
12461 		listener->tcp_syn_rcvd_timeout--;
12462 		if (listener->tcp_syn_defense &&
12463 		    listener->tcp_syn_rcvd_timeout <=
12464 		    (tcps->tcps_conn_req_max_q0 >> 5) &&
12465 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12466 		    listener->tcp_last_rcv_lbolt)) {
12467 			/*
12468 			 * Turn off the defense mode if we
12469 			 * believe the SYN attack is over.
12470 			 */
12471 			listener->tcp_syn_defense = B_FALSE;
12472 			if (listener->tcp_ip_addr_cache) {
12473 				kmem_free((void *)listener->tcp_ip_addr_cache,
12474 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12475 				listener->tcp_ip_addr_cache = NULL;
12476 			}
12477 		}
12478 	}
12479 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12480 	if (addr_cache != NULL) {
12481 		/*
12482 		 * We have finished a 3-way handshake with this
12483 		 * remote host. This proves the IP addr is good.
12484 		 * Cache it!
12485 		 */
12486 		addr_cache[IP_ADDR_CACHE_HASH(
12487 		    tcp->tcp_remote)] = tcp->tcp_remote;
12488 	}
12489 	mutex_exit(&listener->tcp_eager_lock);
12490 	if (need_send_conn_ind)
12491 		tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp);
12492 }
12493 
12494 /*
12495  * Send the newconn notification to ulp. The eager is blown off if the
12496  * notification fails.
12497  */
12498 static void
12499 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp)
12500 {
12501 	if (IPCL_IS_NONSTR(lconnp)) {
12502 		cred_t	*cr;
12503 		pid_t	cpid;
12504 
12505 		cr = msg_getcred(mp, &cpid);
12506 
12507 		ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp);
12508 		ASSERT(econnp->conn_tcp->tcp_saved_listener ==
12509 		    lconnp->conn_tcp);
12510 
12511 		/* Keep the message around in case of a fallback to TPI */
12512 		econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp;
12513 
12514 		/*
12515 		 * Notify the ULP about the newconn. It is guaranteed that no
12516 		 * tcp_accept() call will be made for the eager if the
12517 		 * notification fails, so it's safe to blow it off in that
12518 		 * case.
12519 		 *
12520 		 * The upper handle will be assigned when tcp_accept() is
12521 		 * called.
12522 		 */
12523 		if ((*lconnp->conn_upcalls->su_newconn)
12524 		    (lconnp->conn_upper_handle,
12525 		    (sock_lower_handle_t)econnp,
12526 		    &sock_tcp_downcalls, cr, cpid,
12527 		    &econnp->conn_upcalls) == NULL) {
12528 			/* Failed to allocate a socket */
12529 			BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib,
12530 			    tcpEstabResets);
12531 			(void) tcp_eager_blowoff(lconnp->conn_tcp,
12532 			    econnp->conn_tcp->tcp_conn_req_seqnum);
12533 		}
12534 	} else {
12535 		putnext(lconnp->conn_tcp->tcp_rq, mp);
12536 	}
12537 }
12538 
12539 mblk_t *
12540 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12541     uint_t *ifindexp, ip6_pkt_t *ippp)
12542 {
12543 	ip_pktinfo_t	*pinfo;
12544 	ip6_t		*ip6h;
12545 	uchar_t		*rptr;
12546 	mblk_t		*first_mp = mp;
12547 	boolean_t	mctl_present = B_FALSE;
12548 	uint_t 		ifindex = 0;
12549 	ip6_pkt_t	ipp;
12550 	uint_t		ipvers;
12551 	uint_t		ip_hdr_len;
12552 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12553 
12554 	rptr = mp->b_rptr;
12555 	ASSERT(OK_32PTR(rptr));
12556 	ASSERT(tcp != NULL);
12557 	ipp.ipp_fields = 0;
12558 
12559 	switch DB_TYPE(mp) {
12560 	case M_CTL:
12561 		mp = mp->b_cont;
12562 		if (mp == NULL) {
12563 			freemsg(first_mp);
12564 			return (NULL);
12565 		}
12566 		if (DB_TYPE(mp) != M_DATA) {
12567 			freemsg(first_mp);
12568 			return (NULL);
12569 		}
12570 		mctl_present = B_TRUE;
12571 		break;
12572 	case M_DATA:
12573 		break;
12574 	default:
12575 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12576 		freemsg(mp);
12577 		return (NULL);
12578 	}
12579 	ipvers = IPH_HDR_VERSION(rptr);
12580 	if (ipvers == IPV4_VERSION) {
12581 		if (tcp == NULL) {
12582 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12583 			goto done;
12584 		}
12585 
12586 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12587 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12588 
12589 		/*
12590 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12591 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12592 		 */
12593 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12594 		    mctl_present) {
12595 			pinfo = (ip_pktinfo_t *)first_mp->b_rptr;
12596 			if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) &&
12597 			    (pinfo->ip_pkt_ulp_type == IN_PKTINFO) &&
12598 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
12599 				ipp.ipp_fields |= IPPF_IFINDEX;
12600 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
12601 				ifindex = pinfo->ip_pkt_ifindex;
12602 			}
12603 			freeb(first_mp);
12604 			mctl_present = B_FALSE;
12605 		}
12606 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12607 	} else {
12608 		ip6h = (ip6_t *)rptr;
12609 
12610 		ASSERT(ipvers == IPV6_VERSION);
12611 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12612 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12613 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12614 
12615 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12616 			uint8_t	nexthdrp;
12617 			ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
12618 
12619 			/* Look for ifindex information */
12620 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12621 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12622 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12623 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12624 					freemsg(first_mp);
12625 					return (NULL);
12626 				}
12627 
12628 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12629 					ASSERT(ip6i->ip6i_ifindex != 0);
12630 					ipp.ipp_fields |= IPPF_IFINDEX;
12631 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12632 					ifindex = ip6i->ip6i_ifindex;
12633 				}
12634 				rptr = (uchar_t *)&ip6i[1];
12635 				mp->b_rptr = rptr;
12636 				if (rptr == mp->b_wptr) {
12637 					mblk_t *mp1;
12638 					mp1 = mp->b_cont;
12639 					freeb(mp);
12640 					mp = mp1;
12641 					rptr = mp->b_rptr;
12642 				}
12643 				if (MBLKL(mp) < IPV6_HDR_LEN +
12644 				    sizeof (tcph_t)) {
12645 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12646 					freemsg(first_mp);
12647 					return (NULL);
12648 				}
12649 				ip6h = (ip6_t *)rptr;
12650 			}
12651 
12652 			/*
12653 			 * Find any potentially interesting extension headers
12654 			 * as well as the length of the IPv6 + extension
12655 			 * headers.
12656 			 */
12657 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12658 			/* Verify if this is a TCP packet */
12659 			if (nexthdrp != IPPROTO_TCP) {
12660 				BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12661 				freemsg(first_mp);
12662 				return (NULL);
12663 			}
12664 		} else {
12665 			ip_hdr_len = IPV6_HDR_LEN;
12666 		}
12667 	}
12668 
12669 done:
12670 	if (ipversp != NULL)
12671 		*ipversp = ipvers;
12672 	if (ip_hdr_lenp != NULL)
12673 		*ip_hdr_lenp = ip_hdr_len;
12674 	if (ippp != NULL)
12675 		*ippp = ipp;
12676 	if (ifindexp != NULL)
12677 		*ifindexp = ifindex;
12678 	if (mctl_present) {
12679 		freeb(first_mp);
12680 	}
12681 	return (mp);
12682 }
12683 
12684 /*
12685  * Handle M_DATA messages from IP. Its called directly from IP via
12686  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12687  * in this path.
12688  *
12689  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12690  * v4 and v6), we are called through tcp_input() and a M_CTL can
12691  * be present for options but tcp_find_pktinfo() deals with it. We
12692  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12693  *
12694  * The first argument is always the connp/tcp to which the mp belongs.
12695  * There are no exceptions to this rule. The caller has already put
12696  * a reference on this connp/tcp and once tcp_rput_data() returns,
12697  * the squeue will do the refrele.
12698  *
12699  * The TH_SYN for the listener directly go to tcp_conn_request via
12700  * squeue.
12701  *
12702  * sqp: NULL = recursive, sqp != NULL means called from squeue
12703  */
12704 void
12705 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12706 {
12707 	int32_t		bytes_acked;
12708 	int32_t		gap;
12709 	mblk_t		*mp1;
12710 	uint_t		flags;
12711 	uint32_t	new_swnd = 0;
12712 	uchar_t		*iphdr;
12713 	uchar_t		*rptr;
12714 	int32_t		rgap;
12715 	uint32_t	seg_ack;
12716 	int		seg_len;
12717 	uint_t		ip_hdr_len;
12718 	uint32_t	seg_seq;
12719 	tcph_t		*tcph;
12720 	int		urp;
12721 	tcp_opt_t	tcpopt;
12722 	uint_t		ipvers;
12723 	ip6_pkt_t	ipp;
12724 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12725 	uint32_t	cwnd;
12726 	uint32_t	add;
12727 	int		npkt;
12728 	int		mss;
12729 	conn_t		*connp = (conn_t *)arg;
12730 	squeue_t	*sqp = (squeue_t *)arg2;
12731 	tcp_t		*tcp = connp->conn_tcp;
12732 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12733 
12734 	/*
12735 	 * RST from fused tcp loopback peer should trigger an unfuse.
12736 	 */
12737 	if (tcp->tcp_fused) {
12738 		TCP_STAT(tcps, tcp_fusion_aborted);
12739 		tcp_unfuse(tcp);
12740 	}
12741 
12742 	iphdr = mp->b_rptr;
12743 	rptr = mp->b_rptr;
12744 	ASSERT(OK_32PTR(rptr));
12745 
12746 	/*
12747 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12748 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12749 	 * necessary information.
12750 	 */
12751 	if (IPCL_IS_TCP4(connp)) {
12752 		ipvers = IPV4_VERSION;
12753 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12754 	} else {
12755 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
12756 		    NULL, &ipp);
12757 		if (mp == NULL) {
12758 			TCP_STAT(tcps, tcp_rput_v6_error);
12759 			return;
12760 		}
12761 		iphdr = mp->b_rptr;
12762 		rptr = mp->b_rptr;
12763 	}
12764 	ASSERT(DB_TYPE(mp) == M_DATA);
12765 	ASSERT(mp->b_next == NULL);
12766 
12767 	tcph = (tcph_t *)&rptr[ip_hdr_len];
12768 	seg_seq = ABE32_TO_U32(tcph->th_seq);
12769 	seg_ack = ABE32_TO_U32(tcph->th_ack);
12770 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
12771 	seg_len = (int)(mp->b_wptr - rptr) -
12772 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
12773 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
12774 		do {
12775 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
12776 			    (uintptr_t)INT_MAX);
12777 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
12778 		} while ((mp1 = mp1->b_cont) != NULL &&
12779 		    mp1->b_datap->db_type == M_DATA);
12780 	}
12781 
12782 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
12783 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
12784 		    seg_len, tcph);
12785 		return;
12786 	}
12787 
12788 	if (sqp != NULL) {
12789 		/*
12790 		 * This is the correct place to update tcp_last_recv_time. Note
12791 		 * that it is also updated for tcp structure that belongs to
12792 		 * global and listener queues which do not really need updating.
12793 		 * But that should not cause any harm.  And it is updated for
12794 		 * all kinds of incoming segments, not only for data segments.
12795 		 */
12796 		tcp->tcp_last_recv_time = lbolt;
12797 	}
12798 
12799 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
12800 
12801 	BUMP_LOCAL(tcp->tcp_ibsegs);
12802 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
12803 
12804 	if ((flags & TH_URG) && sqp != NULL) {
12805 		/*
12806 		 * TCP can't handle urgent pointers that arrive before
12807 		 * the connection has been accept()ed since it can't
12808 		 * buffer OOB data.  Discard segment if this happens.
12809 		 *
12810 		 * We can't just rely on a non-null tcp_listener to indicate
12811 		 * that the accept() has completed since unlinking of the
12812 		 * eager and completion of the accept are not atomic.
12813 		 * tcp_detached, when it is not set (B_FALSE) indicates
12814 		 * that the accept() has completed.
12815 		 *
12816 		 * Nor can it reassemble urgent pointers, so discard
12817 		 * if it's not the next segment expected.
12818 		 *
12819 		 * Otherwise, collapse chain into one mblk (discard if
12820 		 * that fails).  This makes sure the headers, retransmitted
12821 		 * data, and new data all are in the same mblk.
12822 		 */
12823 		ASSERT(mp != NULL);
12824 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
12825 			freemsg(mp);
12826 			return;
12827 		}
12828 		/* Update pointers into message */
12829 		iphdr = rptr = mp->b_rptr;
12830 		tcph = (tcph_t *)&rptr[ip_hdr_len];
12831 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
12832 			/*
12833 			 * Since we can't handle any data with this urgent
12834 			 * pointer that is out of sequence, we expunge
12835 			 * the data.  This allows us to still register
12836 			 * the urgent mark and generate the M_PCSIG,
12837 			 * which we can do.
12838 			 */
12839 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
12840 			seg_len = 0;
12841 		}
12842 	}
12843 
12844 	switch (tcp->tcp_state) {
12845 	case TCPS_SYN_SENT:
12846 		if (flags & TH_ACK) {
12847 			/*
12848 			 * Note that our stack cannot send data before a
12849 			 * connection is established, therefore the
12850 			 * following check is valid.  Otherwise, it has
12851 			 * to be changed.
12852 			 */
12853 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
12854 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
12855 				freemsg(mp);
12856 				if (flags & TH_RST)
12857 					return;
12858 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
12859 				    tcp, seg_ack, 0, TH_RST);
12860 				return;
12861 			}
12862 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
12863 		}
12864 		if (flags & TH_RST) {
12865 			freemsg(mp);
12866 			if (flags & TH_ACK)
12867 				(void) tcp_clean_death(tcp,
12868 				    ECONNREFUSED, 13);
12869 			return;
12870 		}
12871 		if (!(flags & TH_SYN)) {
12872 			freemsg(mp);
12873 			return;
12874 		}
12875 
12876 		/* Process all TCP options. */
12877 		tcp_process_options(tcp, tcph);
12878 		/*
12879 		 * The following changes our rwnd to be a multiple of the
12880 		 * MIN(peer MSS, our MSS) for performance reason.
12881 		 */
12882 		(void) tcp_rwnd_set(tcp,
12883 		    MSS_ROUNDUP(tcp->tcp_recv_hiwater, tcp->tcp_mss));
12884 
12885 		/* Is the other end ECN capable? */
12886 		if (tcp->tcp_ecn_ok) {
12887 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
12888 				tcp->tcp_ecn_ok = B_FALSE;
12889 			}
12890 		}
12891 		/*
12892 		 * Clear ECN flags because it may interfere with later
12893 		 * processing.
12894 		 */
12895 		flags &= ~(TH_ECE|TH_CWR);
12896 
12897 		tcp->tcp_irs = seg_seq;
12898 		tcp->tcp_rack = seg_seq;
12899 		tcp->tcp_rnxt = seg_seq + 1;
12900 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
12901 		if (!TCP_IS_DETACHED(tcp)) {
12902 			/* Allocate room for SACK options if needed. */
12903 			if (tcp->tcp_snd_sack_ok) {
12904 				(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
12905 				    tcp->tcp_hdr_len +
12906 				    TCPOPT_MAX_SACK_LEN +
12907 				    (tcp->tcp_loopback ? 0 :
12908 				    tcps->tcps_wroff_xtra));
12909 			} else {
12910 				(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
12911 				    tcp->tcp_hdr_len +
12912 				    (tcp->tcp_loopback ? 0 :
12913 				    tcps->tcps_wroff_xtra));
12914 			}
12915 		}
12916 		if (flags & TH_ACK) {
12917 			/*
12918 			 * If we can't get the confirmation upstream, pretend
12919 			 * we didn't even see this one.
12920 			 *
12921 			 * XXX: how can we pretend we didn't see it if we
12922 			 * have updated rnxt et. al.
12923 			 *
12924 			 * For loopback we defer sending up the T_CONN_CON
12925 			 * until after some checks below.
12926 			 */
12927 			mp1 = NULL;
12928 			/*
12929 			 * tcp_sendmsg() checks tcp_state without entering
12930 			 * the squeue so tcp_state should be updated before
12931 			 * sending up connection confirmation
12932 			 */
12933 			tcp->tcp_state = TCPS_ESTABLISHED;
12934 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
12935 			    tcp->tcp_loopback ? &mp1 : NULL)) {
12936 				tcp->tcp_state = TCPS_SYN_SENT;
12937 				freemsg(mp);
12938 				return;
12939 			}
12940 			/* SYN was acked - making progress */
12941 			if (tcp->tcp_ipversion == IPV6_VERSION)
12942 				tcp->tcp_ip_forward_progress = B_TRUE;
12943 
12944 			/* One for the SYN */
12945 			tcp->tcp_suna = tcp->tcp_iss + 1;
12946 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
12947 
12948 			/*
12949 			 * If SYN was retransmitted, need to reset all
12950 			 * retransmission info.  This is because this
12951 			 * segment will be treated as a dup ACK.
12952 			 */
12953 			if (tcp->tcp_rexmit) {
12954 				tcp->tcp_rexmit = B_FALSE;
12955 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
12956 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
12957 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
12958 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
12959 				tcp->tcp_ms_we_have_waited = 0;
12960 
12961 				/*
12962 				 * Set tcp_cwnd back to 1 MSS, per
12963 				 * recommendation from
12964 				 * draft-floyd-incr-init-win-01.txt,
12965 				 * Increasing TCP's Initial Window.
12966 				 */
12967 				tcp->tcp_cwnd = tcp->tcp_mss;
12968 			}
12969 
12970 			tcp->tcp_swl1 = seg_seq;
12971 			tcp->tcp_swl2 = seg_ack;
12972 
12973 			new_swnd = BE16_TO_U16(tcph->th_win);
12974 			tcp->tcp_swnd = new_swnd;
12975 			if (new_swnd > tcp->tcp_max_swnd)
12976 				tcp->tcp_max_swnd = new_swnd;
12977 
12978 			/*
12979 			 * Always send the three-way handshake ack immediately
12980 			 * in order to make the connection complete as soon as
12981 			 * possible on the accepting host.
12982 			 */
12983 			flags |= TH_ACK_NEEDED;
12984 
12985 			/*
12986 			 * Special case for loopback.  At this point we have
12987 			 * received SYN-ACK from the remote endpoint.  In
12988 			 * order to ensure that both endpoints reach the
12989 			 * fused state prior to any data exchange, the final
12990 			 * ACK needs to be sent before we indicate T_CONN_CON
12991 			 * to the module upstream.
12992 			 */
12993 			if (tcp->tcp_loopback) {
12994 				mblk_t *ack_mp;
12995 
12996 				ASSERT(!tcp->tcp_unfusable);
12997 				ASSERT(mp1 != NULL);
12998 				/*
12999 				 * For loopback, we always get a pure SYN-ACK
13000 				 * and only need to send back the final ACK
13001 				 * with no data (this is because the other
13002 				 * tcp is ours and we don't do T/TCP).  This
13003 				 * final ACK triggers the passive side to
13004 				 * perform fusion in ESTABLISHED state.
13005 				 */
13006 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
13007 					if (tcp->tcp_ack_tid != 0) {
13008 						(void) TCP_TIMER_CANCEL(tcp,
13009 						    tcp->tcp_ack_tid);
13010 						tcp->tcp_ack_tid = 0;
13011 					}
13012 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
13013 					BUMP_LOCAL(tcp->tcp_obsegs);
13014 					BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
13015 
13016 					if (!IPCL_IS_NONSTR(connp)) {
13017 						/* Send up T_CONN_CON */
13018 						putnext(tcp->tcp_rq, mp1);
13019 					} else {
13020 						cred_t	*cr;
13021 						pid_t	cpid;
13022 
13023 						cr = msg_getcred(mp1, &cpid);
13024 						(*connp->conn_upcalls->
13025 						    su_connected)
13026 						    (connp->conn_upper_handle,
13027 						    tcp->tcp_connid, cr, cpid);
13028 						freemsg(mp1);
13029 					}
13030 
13031 					freemsg(mp);
13032 					return;
13033 				}
13034 				/*
13035 				 * Forget fusion; we need to handle more
13036 				 * complex cases below.  Send the deferred
13037 				 * T_CONN_CON message upstream and proceed
13038 				 * as usual.  Mark this tcp as not capable
13039 				 * of fusion.
13040 				 */
13041 				TCP_STAT(tcps, tcp_fusion_unfusable);
13042 				tcp->tcp_unfusable = B_TRUE;
13043 				if (!IPCL_IS_NONSTR(connp)) {
13044 					putnext(tcp->tcp_rq, mp1);
13045 				} else {
13046 					cred_t	*cr;
13047 					pid_t	cpid;
13048 
13049 					cr = msg_getcred(mp1, &cpid);
13050 					(*connp->conn_upcalls->su_connected)
13051 					    (connp->conn_upper_handle,
13052 					    tcp->tcp_connid, cr, cpid);
13053 					freemsg(mp1);
13054 				}
13055 			}
13056 
13057 			/*
13058 			 * Check to see if there is data to be sent.  If
13059 			 * yes, set the transmit flag.  Then check to see
13060 			 * if received data processing needs to be done.
13061 			 * If not, go straight to xmit_check.  This short
13062 			 * cut is OK as we don't support T/TCP.
13063 			 */
13064 			if (tcp->tcp_unsent)
13065 				flags |= TH_XMIT_NEEDED;
13066 
13067 			if (seg_len == 0 && !(flags & TH_URG)) {
13068 				freemsg(mp);
13069 				goto xmit_check;
13070 			}
13071 
13072 			flags &= ~TH_SYN;
13073 			seg_seq++;
13074 			break;
13075 		}
13076 		tcp->tcp_state = TCPS_SYN_RCVD;
13077 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
13078 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
13079 		if (mp1) {
13080 			/*
13081 			 * See comment in tcp_conn_request() for why we use
13082 			 * the open() time pid here.
13083 			 */
13084 			DB_CPID(mp1) = tcp->tcp_cpid;
13085 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
13086 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13087 		}
13088 		freemsg(mp);
13089 		return;
13090 	case TCPS_SYN_RCVD:
13091 		if (flags & TH_ACK) {
13092 			/*
13093 			 * In this state, a SYN|ACK packet is either bogus
13094 			 * because the other side must be ACKing our SYN which
13095 			 * indicates it has seen the ACK for their SYN and
13096 			 * shouldn't retransmit it or we're crossing SYNs
13097 			 * on active open.
13098 			 */
13099 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
13100 				freemsg(mp);
13101 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
13102 				    tcp, seg_ack, 0, TH_RST);
13103 				return;
13104 			}
13105 			/*
13106 			 * NOTE: RFC 793 pg. 72 says this should be
13107 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
13108 			 * but that would mean we have an ack that ignored
13109 			 * our SYN.
13110 			 */
13111 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
13112 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13113 				freemsg(mp);
13114 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
13115 				    tcp, seg_ack, 0, TH_RST);
13116 				return;
13117 			}
13118 		}
13119 		break;
13120 	case TCPS_LISTEN:
13121 		/*
13122 		 * Only a TLI listener can come through this path when a
13123 		 * acceptor is going back to be a listener and a packet
13124 		 * for the acceptor hits the classifier. For a socket
13125 		 * listener, this can never happen because a listener
13126 		 * can never accept connection on itself and hence a
13127 		 * socket acceptor can not go back to being a listener.
13128 		 */
13129 		ASSERT(!TCP_IS_SOCKET(tcp));
13130 		/*FALLTHRU*/
13131 	case TCPS_CLOSED:
13132 	case TCPS_BOUND: {
13133 		conn_t	*new_connp;
13134 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13135 
13136 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
13137 		if (new_connp != NULL) {
13138 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13139 			return;
13140 		}
13141 		/* We failed to classify. For now just drop the packet */
13142 		freemsg(mp);
13143 		return;
13144 	}
13145 	case TCPS_IDLE:
13146 		/*
13147 		 * Handle the case where the tcp_clean_death() has happened
13148 		 * on a connection (application hasn't closed yet) but a packet
13149 		 * was already queued on squeue before tcp_clean_death()
13150 		 * was processed. Calling tcp_clean_death() twice on same
13151 		 * connection can result in weird behaviour.
13152 		 */
13153 		freemsg(mp);
13154 		return;
13155 	default:
13156 		break;
13157 	}
13158 
13159 	/*
13160 	 * Already on the correct queue/perimeter.
13161 	 * If this is a detached connection and not an eager
13162 	 * connection hanging off a listener then new data
13163 	 * (past the FIN) will cause a reset.
13164 	 * We do a special check here where it
13165 	 * is out of the main line, rather than check
13166 	 * if we are detached every time we see new
13167 	 * data down below.
13168 	 */
13169 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13170 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13171 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
13172 		DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
13173 
13174 		freemsg(mp);
13175 		/*
13176 		 * This could be an SSL closure alert. We're detached so just
13177 		 * acknowledge it this last time.
13178 		 */
13179 		if (tcp->tcp_kssl_ctx != NULL) {
13180 			kssl_release_ctx(tcp->tcp_kssl_ctx);
13181 			tcp->tcp_kssl_ctx = NULL;
13182 
13183 			tcp->tcp_rnxt += seg_len;
13184 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13185 			flags |= TH_ACK_NEEDED;
13186 			goto ack_check;
13187 		}
13188 
13189 		tcp_xmit_ctl("new data when detached", tcp,
13190 		    tcp->tcp_snxt, 0, TH_RST);
13191 		(void) tcp_clean_death(tcp, EPROTO, 12);
13192 		return;
13193 	}
13194 
13195 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13196 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13197 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13198 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13199 
13200 	if (tcp->tcp_snd_ts_ok) {
13201 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13202 			/*
13203 			 * This segment is not acceptable.
13204 			 * Drop it and send back an ACK.
13205 			 */
13206 			freemsg(mp);
13207 			flags |= TH_ACK_NEEDED;
13208 			goto ack_check;
13209 		}
13210 	} else if (tcp->tcp_snd_sack_ok) {
13211 		ASSERT(tcp->tcp_sack_info != NULL);
13212 		tcpopt.tcp = tcp;
13213 		/*
13214 		 * SACK info in already updated in tcp_parse_options.  Ignore
13215 		 * all other TCP options...
13216 		 */
13217 		(void) tcp_parse_options(tcph, &tcpopt);
13218 	}
13219 try_again:;
13220 	mss = tcp->tcp_mss;
13221 	gap = seg_seq - tcp->tcp_rnxt;
13222 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13223 	/*
13224 	 * gap is the amount of sequence space between what we expect to see
13225 	 * and what we got for seg_seq.  A positive value for gap means
13226 	 * something got lost.  A negative value means we got some old stuff.
13227 	 */
13228 	if (gap < 0) {
13229 		/* Old stuff present.  Is the SYN in there? */
13230 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13231 		    (seg_len != 0)) {
13232 			flags &= ~TH_SYN;
13233 			seg_seq++;
13234 			urp--;
13235 			/* Recompute the gaps after noting the SYN. */
13236 			goto try_again;
13237 		}
13238 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
13239 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
13240 		    (seg_len > -gap ? -gap : seg_len));
13241 		/* Remove the old stuff from seg_len. */
13242 		seg_len += gap;
13243 		/*
13244 		 * Anything left?
13245 		 * Make sure to check for unack'd FIN when rest of data
13246 		 * has been previously ack'd.
13247 		 */
13248 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13249 			/*
13250 			 * Resets are only valid if they lie within our offered
13251 			 * window.  If the RST bit is set, we just ignore this
13252 			 * segment.
13253 			 */
13254 			if (flags & TH_RST) {
13255 				freemsg(mp);
13256 				return;
13257 			}
13258 
13259 			/*
13260 			 * The arriving of dup data packets indicate that we
13261 			 * may have postponed an ack for too long, or the other
13262 			 * side's RTT estimate is out of shape. Start acking
13263 			 * more often.
13264 			 */
13265 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13266 			    tcp->tcp_rack_cnt >= 1 &&
13267 			    tcp->tcp_rack_abs_max > 2) {
13268 				tcp->tcp_rack_abs_max--;
13269 			}
13270 			tcp->tcp_rack_cur_max = 1;
13271 
13272 			/*
13273 			 * This segment is "unacceptable".  None of its
13274 			 * sequence space lies within our advertized window.
13275 			 *
13276 			 * Adjust seg_len to the original value for tracing.
13277 			 */
13278 			seg_len -= gap;
13279 			if (tcp->tcp_debug) {
13280 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13281 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13282 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13283 				    "seg_len %d, rnxt %u, snxt %u, %s",
13284 				    gap, rgap, flags, seg_seq, seg_ack,
13285 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13286 				    tcp_display(tcp, NULL,
13287 				    DISP_ADDR_AND_PORT));
13288 			}
13289 
13290 			/*
13291 			 * Arrange to send an ACK in response to the
13292 			 * unacceptable segment per RFC 793 page 69. There
13293 			 * is only one small difference between ours and the
13294 			 * acceptability test in the RFC - we accept ACK-only
13295 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13296 			 * will be generated.
13297 			 *
13298 			 * Note that we have to ACK an ACK-only packet at least
13299 			 * for stacks that send 0-length keep-alives with
13300 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13301 			 * section 4.2.3.6. As long as we don't ever generate
13302 			 * an unacceptable packet in response to an incoming
13303 			 * packet that is unacceptable, it should not cause
13304 			 * "ACK wars".
13305 			 */
13306 			flags |=  TH_ACK_NEEDED;
13307 
13308 			/*
13309 			 * Continue processing this segment in order to use the
13310 			 * ACK information it contains, but skip all other
13311 			 * sequence-number processing.	Processing the ACK
13312 			 * information is necessary in order to
13313 			 * re-synchronize connections that may have lost
13314 			 * synchronization.
13315 			 *
13316 			 * We clear seg_len and flag fields related to
13317 			 * sequence number processing as they are not
13318 			 * to be trusted for an unacceptable segment.
13319 			 */
13320 			seg_len = 0;
13321 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13322 			goto process_ack;
13323 		}
13324 
13325 		/* Fix seg_seq, and chew the gap off the front. */
13326 		seg_seq = tcp->tcp_rnxt;
13327 		urp += gap;
13328 		do {
13329 			mblk_t	*mp2;
13330 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13331 			    (uintptr_t)UINT_MAX);
13332 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13333 			if (gap > 0) {
13334 				mp->b_rptr = mp->b_wptr - gap;
13335 				break;
13336 			}
13337 			mp2 = mp;
13338 			mp = mp->b_cont;
13339 			freeb(mp2);
13340 		} while (gap < 0);
13341 		/*
13342 		 * If the urgent data has already been acknowledged, we
13343 		 * should ignore TH_URG below
13344 		 */
13345 		if (urp < 0)
13346 			flags &= ~TH_URG;
13347 	}
13348 	/*
13349 	 * rgap is the amount of stuff received out of window.  A negative
13350 	 * value is the amount out of window.
13351 	 */
13352 	if (rgap < 0) {
13353 		mblk_t	*mp2;
13354 
13355 		if (tcp->tcp_rwnd == 0) {
13356 			BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe);
13357 		} else {
13358 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
13359 			UPDATE_MIB(&tcps->tcps_mib,
13360 			    tcpInDataPastWinBytes, -rgap);
13361 		}
13362 
13363 		/*
13364 		 * seg_len does not include the FIN, so if more than
13365 		 * just the FIN is out of window, we act like we don't
13366 		 * see it.  (If just the FIN is out of window, rgap
13367 		 * will be zero and we will go ahead and acknowledge
13368 		 * the FIN.)
13369 		 */
13370 		flags &= ~TH_FIN;
13371 
13372 		/* Fix seg_len and make sure there is something left. */
13373 		seg_len += rgap;
13374 		if (seg_len <= 0) {
13375 			/*
13376 			 * Resets are only valid if they lie within our offered
13377 			 * window.  If the RST bit is set, we just ignore this
13378 			 * segment.
13379 			 */
13380 			if (flags & TH_RST) {
13381 				freemsg(mp);
13382 				return;
13383 			}
13384 
13385 			/* Per RFC 793, we need to send back an ACK. */
13386 			flags |= TH_ACK_NEEDED;
13387 
13388 			/*
13389 			 * Send SIGURG as soon as possible i.e. even
13390 			 * if the TH_URG was delivered in a window probe
13391 			 * packet (which will be unacceptable).
13392 			 *
13393 			 * We generate a signal if none has been generated
13394 			 * for this connection or if this is a new urgent
13395 			 * byte. Also send a zero-length "unmarked" message
13396 			 * to inform SIOCATMARK that this is not the mark.
13397 			 *
13398 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13399 			 * is sent up. This plus the check for old data
13400 			 * (gap >= 0) handles the wraparound of the sequence
13401 			 * number space without having to always track the
13402 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13403 			 * this max in its rcv_up variable).
13404 			 *
13405 			 * This prevents duplicate SIGURGS due to a "late"
13406 			 * zero-window probe when the T_EXDATA_IND has already
13407 			 * been sent up.
13408 			 */
13409 			if ((flags & TH_URG) &&
13410 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13411 			    tcp->tcp_urp_last))) {
13412 				if (IPCL_IS_NONSTR(connp)) {
13413 					if (!TCP_IS_DETACHED(tcp)) {
13414 						(*connp->conn_upcalls->
13415 						    su_signal_oob)
13416 						    (connp->conn_upper_handle,
13417 						    urp);
13418 					}
13419 				} else {
13420 					mp1 = allocb(0, BPRI_MED);
13421 					if (mp1 == NULL) {
13422 						freemsg(mp);
13423 						return;
13424 					}
13425 					if (!TCP_IS_DETACHED(tcp) &&
13426 					    !putnextctl1(tcp->tcp_rq,
13427 					    M_PCSIG, SIGURG)) {
13428 						/* Try again on the rexmit. */
13429 						freemsg(mp1);
13430 						freemsg(mp);
13431 						return;
13432 					}
13433 					/*
13434 					 * If the next byte would be the mark
13435 					 * then mark with MARKNEXT else mark
13436 					 * with NOTMARKNEXT.
13437 					 */
13438 					if (gap == 0 && urp == 0)
13439 						mp1->b_flag |= MSGMARKNEXT;
13440 					else
13441 						mp1->b_flag |= MSGNOTMARKNEXT;
13442 					freemsg(tcp->tcp_urp_mark_mp);
13443 					tcp->tcp_urp_mark_mp = mp1;
13444 					flags |= TH_SEND_URP_MARK;
13445 				}
13446 				tcp->tcp_urp_last_valid = B_TRUE;
13447 				tcp->tcp_urp_last = urp + seg_seq;
13448 			}
13449 			/*
13450 			 * If this is a zero window probe, continue to
13451 			 * process the ACK part.  But we need to set seg_len
13452 			 * to 0 to avoid data processing.  Otherwise just
13453 			 * drop the segment and send back an ACK.
13454 			 */
13455 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13456 				flags &= ~(TH_SYN | TH_URG);
13457 				seg_len = 0;
13458 				goto process_ack;
13459 			} else {
13460 				freemsg(mp);
13461 				goto ack_check;
13462 			}
13463 		}
13464 		/* Pitch out of window stuff off the end. */
13465 		rgap = seg_len;
13466 		mp2 = mp;
13467 		do {
13468 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13469 			    (uintptr_t)INT_MAX);
13470 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13471 			if (rgap < 0) {
13472 				mp2->b_wptr += rgap;
13473 				if ((mp1 = mp2->b_cont) != NULL) {
13474 					mp2->b_cont = NULL;
13475 					freemsg(mp1);
13476 				}
13477 				break;
13478 			}
13479 		} while ((mp2 = mp2->b_cont) != NULL);
13480 	}
13481 ok:;
13482 	/*
13483 	 * TCP should check ECN info for segments inside the window only.
13484 	 * Therefore the check should be done here.
13485 	 */
13486 	if (tcp->tcp_ecn_ok) {
13487 		if (flags & TH_CWR) {
13488 			tcp->tcp_ecn_echo_on = B_FALSE;
13489 		}
13490 		/*
13491 		 * Note that both ECN_CE and CWR can be set in the
13492 		 * same segment.  In this case, we once again turn
13493 		 * on ECN_ECHO.
13494 		 */
13495 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13496 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13497 
13498 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13499 				tcp->tcp_ecn_echo_on = B_TRUE;
13500 			}
13501 		} else {
13502 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13503 
13504 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13505 			    htonl(IPH_ECN_CE << 20)) {
13506 				tcp->tcp_ecn_echo_on = B_TRUE;
13507 			}
13508 		}
13509 	}
13510 
13511 	/*
13512 	 * Check whether we can update tcp_ts_recent.  This test is
13513 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13514 	 * Extensions for High Performance: An Update", Internet Draft.
13515 	 */
13516 	if (tcp->tcp_snd_ts_ok &&
13517 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13518 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13519 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13520 		tcp->tcp_last_rcv_lbolt = lbolt64;
13521 	}
13522 
13523 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13524 		/*
13525 		 * FIN in an out of order segment.  We record this in
13526 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13527 		 * Clear the FIN so that any check on FIN flag will fail.
13528 		 * Remember that FIN also counts in the sequence number
13529 		 * space.  So we need to ack out of order FIN only segments.
13530 		 */
13531 		if (flags & TH_FIN) {
13532 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13533 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13534 			flags &= ~TH_FIN;
13535 			flags |= TH_ACK_NEEDED;
13536 		}
13537 		if (seg_len > 0) {
13538 			/* Fill in the SACK blk list. */
13539 			if (tcp->tcp_snd_sack_ok) {
13540 				ASSERT(tcp->tcp_sack_info != NULL);
13541 				tcp_sack_insert(tcp->tcp_sack_list,
13542 				    seg_seq, seg_seq + seg_len,
13543 				    &(tcp->tcp_num_sack_blk));
13544 			}
13545 
13546 			/*
13547 			 * Attempt reassembly and see if we have something
13548 			 * ready to go.
13549 			 */
13550 			mp = tcp_reass(tcp, mp, seg_seq);
13551 			/* Always ack out of order packets */
13552 			flags |= TH_ACK_NEEDED | TH_PUSH;
13553 			if (mp) {
13554 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13555 				    (uintptr_t)INT_MAX);
13556 				seg_len = mp->b_cont ? msgdsize(mp) :
13557 				    (int)(mp->b_wptr - mp->b_rptr);
13558 				seg_seq = tcp->tcp_rnxt;
13559 				/*
13560 				 * A gap is filled and the seq num and len
13561 				 * of the gap match that of a previously
13562 				 * received FIN, put the FIN flag back in.
13563 				 */
13564 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13565 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13566 					flags |= TH_FIN;
13567 					tcp->tcp_valid_bits &=
13568 					    ~TCP_OFO_FIN_VALID;
13569 				}
13570 			} else {
13571 				/*
13572 				 * Keep going even with NULL mp.
13573 				 * There may be a useful ACK or something else
13574 				 * we don't want to miss.
13575 				 *
13576 				 * But TCP should not perform fast retransmit
13577 				 * because of the ack number.  TCP uses
13578 				 * seg_len == 0 to determine if it is a pure
13579 				 * ACK.  And this is not a pure ACK.
13580 				 */
13581 				seg_len = 0;
13582 				ofo_seg = B_TRUE;
13583 			}
13584 		}
13585 	} else if (seg_len > 0) {
13586 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
13587 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
13588 		/*
13589 		 * If an out of order FIN was received before, and the seq
13590 		 * num and len of the new segment match that of the FIN,
13591 		 * put the FIN flag back in.
13592 		 */
13593 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13594 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13595 			flags |= TH_FIN;
13596 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13597 		}
13598 	}
13599 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13600 	if (flags & TH_RST) {
13601 		freemsg(mp);
13602 		switch (tcp->tcp_state) {
13603 		case TCPS_SYN_RCVD:
13604 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13605 			break;
13606 		case TCPS_ESTABLISHED:
13607 		case TCPS_FIN_WAIT_1:
13608 		case TCPS_FIN_WAIT_2:
13609 		case TCPS_CLOSE_WAIT:
13610 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13611 			break;
13612 		case TCPS_CLOSING:
13613 		case TCPS_LAST_ACK:
13614 			(void) tcp_clean_death(tcp, 0, 16);
13615 			break;
13616 		default:
13617 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13618 			(void) tcp_clean_death(tcp, ENXIO, 17);
13619 			break;
13620 		}
13621 		return;
13622 	}
13623 	if (flags & TH_SYN) {
13624 		/*
13625 		 * See RFC 793, Page 71
13626 		 *
13627 		 * The seq number must be in the window as it should
13628 		 * be "fixed" above.  If it is outside window, it should
13629 		 * be already rejected.  Note that we allow seg_seq to be
13630 		 * rnxt + rwnd because we want to accept 0 window probe.
13631 		 */
13632 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13633 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13634 		freemsg(mp);
13635 		/*
13636 		 * If the ACK flag is not set, just use our snxt as the
13637 		 * seq number of the RST segment.
13638 		 */
13639 		if (!(flags & TH_ACK)) {
13640 			seg_ack = tcp->tcp_snxt;
13641 		}
13642 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13643 		    TH_RST|TH_ACK);
13644 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13645 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13646 		return;
13647 	}
13648 	/*
13649 	 * urp could be -1 when the urp field in the packet is 0
13650 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13651 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13652 	 */
13653 	if (flags & TH_URG && urp >= 0) {
13654 		if (!tcp->tcp_urp_last_valid ||
13655 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13656 			if (IPCL_IS_NONSTR(connp)) {
13657 				if (!TCP_IS_DETACHED(tcp)) {
13658 					(*connp->conn_upcalls->su_signal_oob)
13659 					    (connp->conn_upper_handle, urp);
13660 				}
13661 			} else {
13662 				/*
13663 				 * If we haven't generated the signal yet for
13664 				 * this urgent pointer value, do it now.  Also,
13665 				 * send up a zero-length M_DATA indicating
13666 				 * whether or not this is the mark. The latter
13667 				 * is not needed when a T_EXDATA_IND is sent up.
13668 				 * However, if there are allocation failures
13669 				 * this code relies on the sender retransmitting
13670 				 * and the socket code for determining the mark
13671 				 * should not block waiting for the peer to
13672 				 * transmit. Thus, for simplicity we always
13673 				 * send up the mark indication.
13674 				 */
13675 				mp1 = allocb(0, BPRI_MED);
13676 				if (mp1 == NULL) {
13677 					freemsg(mp);
13678 					return;
13679 				}
13680 				if (!TCP_IS_DETACHED(tcp) &&
13681 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13682 				    SIGURG)) {
13683 					/* Try again on the rexmit. */
13684 					freemsg(mp1);
13685 					freemsg(mp);
13686 					return;
13687 				}
13688 				/*
13689 				 * Mark with NOTMARKNEXT for now.
13690 				 * The code below will change this to MARKNEXT
13691 				 * if we are at the mark.
13692 				 *
13693 				 * If there are allocation failures (e.g. in
13694 				 * dupmsg below) the next time tcp_rput_data
13695 				 * sees the urgent segment it will send up the
13696 				 * MSGMARKNEXT message.
13697 				 */
13698 				mp1->b_flag |= MSGNOTMARKNEXT;
13699 				freemsg(tcp->tcp_urp_mark_mp);
13700 				tcp->tcp_urp_mark_mp = mp1;
13701 				flags |= TH_SEND_URP_MARK;
13702 #ifdef DEBUG
13703 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13704 				    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13705 				    "last %x, %s",
13706 				    seg_seq, urp, tcp->tcp_urp_last,
13707 				    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13708 #endif /* DEBUG */
13709 			}
13710 			tcp->tcp_urp_last_valid = B_TRUE;
13711 			tcp->tcp_urp_last = urp + seg_seq;
13712 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13713 			/*
13714 			 * An allocation failure prevented the previous
13715 			 * tcp_rput_data from sending up the allocated
13716 			 * MSG*MARKNEXT message - send it up this time
13717 			 * around.
13718 			 */
13719 			flags |= TH_SEND_URP_MARK;
13720 		}
13721 
13722 		/*
13723 		 * If the urgent byte is in this segment, make sure that it is
13724 		 * all by itself.  This makes it much easier to deal with the
13725 		 * possibility of an allocation failure on the T_exdata_ind.
13726 		 * Note that seg_len is the number of bytes in the segment, and
13727 		 * urp is the offset into the segment of the urgent byte.
13728 		 * urp < seg_len means that the urgent byte is in this segment.
13729 		 */
13730 		if (urp < seg_len) {
13731 			if (seg_len != 1) {
13732 				uint32_t  tmp_rnxt;
13733 				/*
13734 				 * Break it up and feed it back in.
13735 				 * Re-attach the IP header.
13736 				 */
13737 				mp->b_rptr = iphdr;
13738 				if (urp > 0) {
13739 					/*
13740 					 * There is stuff before the urgent
13741 					 * byte.
13742 					 */
13743 					mp1 = dupmsg(mp);
13744 					if (!mp1) {
13745 						/*
13746 						 * Trim from urgent byte on.
13747 						 * The rest will come back.
13748 						 */
13749 						(void) adjmsg(mp,
13750 						    urp - seg_len);
13751 						tcp_rput_data(connp,
13752 						    mp, NULL);
13753 						return;
13754 					}
13755 					(void) adjmsg(mp1, urp - seg_len);
13756 					/* Feed this piece back in. */
13757 					tmp_rnxt = tcp->tcp_rnxt;
13758 					tcp_rput_data(connp, mp1, NULL);
13759 					/*
13760 					 * If the data passed back in was not
13761 					 * processed (ie: bad ACK) sending
13762 					 * the remainder back in will cause a
13763 					 * loop. In this case, drop the
13764 					 * packet and let the sender try
13765 					 * sending a good packet.
13766 					 */
13767 					if (tmp_rnxt == tcp->tcp_rnxt) {
13768 						freemsg(mp);
13769 						return;
13770 					}
13771 				}
13772 				if (urp != seg_len - 1) {
13773 					uint32_t  tmp_rnxt;
13774 					/*
13775 					 * There is stuff after the urgent
13776 					 * byte.
13777 					 */
13778 					mp1 = dupmsg(mp);
13779 					if (!mp1) {
13780 						/*
13781 						 * Trim everything beyond the
13782 						 * urgent byte.  The rest will
13783 						 * come back.
13784 						 */
13785 						(void) adjmsg(mp,
13786 						    urp + 1 - seg_len);
13787 						tcp_rput_data(connp,
13788 						    mp, NULL);
13789 						return;
13790 					}
13791 					(void) adjmsg(mp1, urp + 1 - seg_len);
13792 					tmp_rnxt = tcp->tcp_rnxt;
13793 					tcp_rput_data(connp, mp1, NULL);
13794 					/*
13795 					 * If the data passed back in was not
13796 					 * processed (ie: bad ACK) sending
13797 					 * the remainder back in will cause a
13798 					 * loop. In this case, drop the
13799 					 * packet and let the sender try
13800 					 * sending a good packet.
13801 					 */
13802 					if (tmp_rnxt == tcp->tcp_rnxt) {
13803 						freemsg(mp);
13804 						return;
13805 					}
13806 				}
13807 				tcp_rput_data(connp, mp, NULL);
13808 				return;
13809 			}
13810 			/*
13811 			 * This segment contains only the urgent byte.  We
13812 			 * have to allocate the T_exdata_ind, if we can.
13813 			 */
13814 			if (IPCL_IS_NONSTR(connp)) {
13815 				int error;
13816 
13817 				(*connp->conn_upcalls->su_recv)
13818 				    (connp->conn_upper_handle, mp, seg_len,
13819 				    MSG_OOB, &error, NULL);
13820 				/*
13821 				 * We should never be in middle of a
13822 				 * fallback, the squeue guarantees that.
13823 				 */
13824 				ASSERT(error != EOPNOTSUPP);
13825 				mp = NULL;
13826 				goto update_ack;
13827 			} else if (!tcp->tcp_urp_mp) {
13828 				struct T_exdata_ind *tei;
13829 				mp1 = allocb(sizeof (struct T_exdata_ind),
13830 				    BPRI_MED);
13831 				if (!mp1) {
13832 					/*
13833 					 * Sigh... It'll be back.
13834 					 * Generate any MSG*MARK message now.
13835 					 */
13836 					freemsg(mp);
13837 					seg_len = 0;
13838 					if (flags & TH_SEND_URP_MARK) {
13839 
13840 
13841 						ASSERT(tcp->tcp_urp_mark_mp);
13842 						tcp->tcp_urp_mark_mp->b_flag &=
13843 						    ~MSGNOTMARKNEXT;
13844 						tcp->tcp_urp_mark_mp->b_flag |=
13845 						    MSGMARKNEXT;
13846 					}
13847 					goto ack_check;
13848 				}
13849 				mp1->b_datap->db_type = M_PROTO;
13850 				tei = (struct T_exdata_ind *)mp1->b_rptr;
13851 				tei->PRIM_type = T_EXDATA_IND;
13852 				tei->MORE_flag = 0;
13853 				mp1->b_wptr = (uchar_t *)&tei[1];
13854 				tcp->tcp_urp_mp = mp1;
13855 #ifdef DEBUG
13856 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13857 				    "tcp_rput: allocated exdata_ind %s",
13858 				    tcp_display(tcp, NULL,
13859 				    DISP_PORT_ONLY));
13860 #endif /* DEBUG */
13861 				/*
13862 				 * There is no need to send a separate MSG*MARK
13863 				 * message since the T_EXDATA_IND will be sent
13864 				 * now.
13865 				 */
13866 				flags &= ~TH_SEND_URP_MARK;
13867 				freemsg(tcp->tcp_urp_mark_mp);
13868 				tcp->tcp_urp_mark_mp = NULL;
13869 			}
13870 			/*
13871 			 * Now we are all set.  On the next putnext upstream,
13872 			 * tcp_urp_mp will be non-NULL and will get prepended
13873 			 * to what has to be this piece containing the urgent
13874 			 * byte.  If for any reason we abort this segment below,
13875 			 * if it comes back, we will have this ready, or it
13876 			 * will get blown off in close.
13877 			 */
13878 		} else if (urp == seg_len) {
13879 			/*
13880 			 * The urgent byte is the next byte after this sequence
13881 			 * number. If there is data it is marked with
13882 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
13883 			 * since it is not needed. Otherwise, if the code
13884 			 * above just allocated a zero-length tcp_urp_mark_mp
13885 			 * message, that message is tagged with MSGMARKNEXT.
13886 			 * Sending up these MSGMARKNEXT messages makes
13887 			 * SIOCATMARK work correctly even though
13888 			 * the T_EXDATA_IND will not be sent up until the
13889 			 * urgent byte arrives.
13890 			 */
13891 			if (seg_len != 0) {
13892 				flags |= TH_MARKNEXT_NEEDED;
13893 				freemsg(tcp->tcp_urp_mark_mp);
13894 				tcp->tcp_urp_mark_mp = NULL;
13895 				flags &= ~TH_SEND_URP_MARK;
13896 			} else if (tcp->tcp_urp_mark_mp != NULL) {
13897 				flags |= TH_SEND_URP_MARK;
13898 				tcp->tcp_urp_mark_mp->b_flag &=
13899 				    ~MSGNOTMARKNEXT;
13900 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
13901 			}
13902 #ifdef DEBUG
13903 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13904 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
13905 			    seg_len, flags,
13906 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13907 #endif /* DEBUG */
13908 		}
13909 #ifdef DEBUG
13910 		else {
13911 			/* Data left until we hit mark */
13912 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13913 			    "tcp_rput: URP %d bytes left, %s",
13914 			    urp - seg_len, tcp_display(tcp, NULL,
13915 			    DISP_PORT_ONLY));
13916 		}
13917 #endif /* DEBUG */
13918 	}
13919 
13920 process_ack:
13921 	if (!(flags & TH_ACK)) {
13922 		freemsg(mp);
13923 		goto xmit_check;
13924 	}
13925 	}
13926 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
13927 
13928 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
13929 		tcp->tcp_ip_forward_progress = B_TRUE;
13930 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
13931 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
13932 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
13933 			/* 3-way handshake complete - pass up the T_CONN_IND */
13934 			tcp_t	*listener = tcp->tcp_listener;
13935 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
13936 
13937 			tcp->tcp_tconnind_started = B_TRUE;
13938 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
13939 			/*
13940 			 * We are here means eager is fine but it can
13941 			 * get a TH_RST at any point between now and till
13942 			 * accept completes and disappear. We need to
13943 			 * ensure that reference to eager is valid after
13944 			 * we get out of eager's perimeter. So we do
13945 			 * an extra refhold.
13946 			 */
13947 			CONN_INC_REF(connp);
13948 
13949 			/*
13950 			 * The listener also exists because of the refhold
13951 			 * done in tcp_conn_request. Its possible that it
13952 			 * might have closed. We will check that once we
13953 			 * get inside listeners context.
13954 			 */
13955 			CONN_INC_REF(listener->tcp_connp);
13956 			if (listener->tcp_connp->conn_sqp ==
13957 			    connp->conn_sqp) {
13958 				/*
13959 				 * We optimize by not calling an SQUEUE_ENTER
13960 				 * on the listener since we know that the
13961 				 * listener and eager squeues are the same.
13962 				 * We are able to make this check safely only
13963 				 * because neither the eager nor the listener
13964 				 * can change its squeue. Only an active connect
13965 				 * can change its squeue
13966 				 */
13967 				tcp_send_conn_ind(listener->tcp_connp, mp,
13968 				    listener->tcp_connp->conn_sqp);
13969 				CONN_DEC_REF(listener->tcp_connp);
13970 			} else if (!tcp->tcp_loopback) {
13971 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
13972 				    mp, tcp_send_conn_ind,
13973 				    listener->tcp_connp, SQ_FILL,
13974 				    SQTAG_TCP_CONN_IND);
13975 			} else {
13976 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
13977 				    mp, tcp_send_conn_ind,
13978 				    listener->tcp_connp, SQ_PROCESS,
13979 				    SQTAG_TCP_CONN_IND);
13980 			}
13981 		}
13982 
13983 		/*
13984 		 * We are seeing the final ack in the three way
13985 		 * hand shake of a active open'ed connection
13986 		 * so we must send up a T_CONN_CON
13987 		 *
13988 		 * tcp_sendmsg() checks tcp_state without entering
13989 		 * the squeue so tcp_state should be updated before
13990 		 * sending up connection confirmation.
13991 		 */
13992 		tcp->tcp_state = TCPS_ESTABLISHED;
13993 		if (tcp->tcp_active_open) {
13994 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
13995 				freemsg(mp);
13996 				tcp->tcp_state = TCPS_SYN_RCVD;
13997 				return;
13998 			}
13999 			/*
14000 			 * Don't fuse the loopback endpoints for
14001 			 * simultaneous active opens.
14002 			 */
14003 			if (tcp->tcp_loopback) {
14004 				TCP_STAT(tcps, tcp_fusion_unfusable);
14005 				tcp->tcp_unfusable = B_TRUE;
14006 			}
14007 		}
14008 
14009 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
14010 		bytes_acked--;
14011 		/* SYN was acked - making progress */
14012 		if (tcp->tcp_ipversion == IPV6_VERSION)
14013 			tcp->tcp_ip_forward_progress = B_TRUE;
14014 
14015 		/*
14016 		 * If SYN was retransmitted, need to reset all
14017 		 * retransmission info as this segment will be
14018 		 * treated as a dup ACK.
14019 		 */
14020 		if (tcp->tcp_rexmit) {
14021 			tcp->tcp_rexmit = B_FALSE;
14022 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14023 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
14024 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14025 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14026 			tcp->tcp_ms_we_have_waited = 0;
14027 			tcp->tcp_cwnd = mss;
14028 		}
14029 
14030 		/*
14031 		 * We set the send window to zero here.
14032 		 * This is needed if there is data to be
14033 		 * processed already on the queue.
14034 		 * Later (at swnd_update label), the
14035 		 * "new_swnd > tcp_swnd" condition is satisfied
14036 		 * the XMIT_NEEDED flag is set in the current
14037 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
14038 		 * called if there is already data on queue in
14039 		 * this state.
14040 		 */
14041 		tcp->tcp_swnd = 0;
14042 
14043 		if (new_swnd > tcp->tcp_max_swnd)
14044 			tcp->tcp_max_swnd = new_swnd;
14045 		tcp->tcp_swl1 = seg_seq;
14046 		tcp->tcp_swl2 = seg_ack;
14047 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
14048 
14049 		/* Fuse when both sides are in ESTABLISHED state */
14050 		if (tcp->tcp_loopback && do_tcp_fusion)
14051 			tcp_fuse(tcp, iphdr, tcph);
14052 
14053 	}
14054 	/* This code follows 4.4BSD-Lite2 mostly. */
14055 	if (bytes_acked < 0)
14056 		goto est;
14057 
14058 	/*
14059 	 * If TCP is ECN capable and the congestion experience bit is
14060 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
14061 	 * done once per window (or more loosely, per RTT).
14062 	 */
14063 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
14064 		tcp->tcp_cwr = B_FALSE;
14065 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
14066 		if (!tcp->tcp_cwr) {
14067 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
14068 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
14069 			tcp->tcp_cwnd = npkt * mss;
14070 			/*
14071 			 * If the cwnd is 0, use the timer to clock out
14072 			 * new segments.  This is required by the ECN spec.
14073 			 */
14074 			if (npkt == 0) {
14075 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14076 				/*
14077 				 * This makes sure that when the ACK comes
14078 				 * back, we will increase tcp_cwnd by 1 MSS.
14079 				 */
14080 				tcp->tcp_cwnd_cnt = 0;
14081 			}
14082 			tcp->tcp_cwr = B_TRUE;
14083 			/*
14084 			 * This marks the end of the current window of in
14085 			 * flight data.  That is why we don't use
14086 			 * tcp_suna + tcp_swnd.  Only data in flight can
14087 			 * provide ECN info.
14088 			 */
14089 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14090 			tcp->tcp_ecn_cwr_sent = B_FALSE;
14091 		}
14092 	}
14093 
14094 	mp1 = tcp->tcp_xmit_head;
14095 	if (bytes_acked == 0) {
14096 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
14097 			int dupack_cnt;
14098 
14099 			BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
14100 			/*
14101 			 * Fast retransmit.  When we have seen exactly three
14102 			 * identical ACKs while we have unacked data
14103 			 * outstanding we take it as a hint that our peer
14104 			 * dropped something.
14105 			 *
14106 			 * If TCP is retransmitting, don't do fast retransmit.
14107 			 */
14108 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
14109 			    ! tcp->tcp_rexmit) {
14110 				/* Do Limited Transmit */
14111 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
14112 				    tcps->tcps_dupack_fast_retransmit) {
14113 					/*
14114 					 * RFC 3042
14115 					 *
14116 					 * What we need to do is temporarily
14117 					 * increase tcp_cwnd so that new
14118 					 * data can be sent if it is allowed
14119 					 * by the receive window (tcp_rwnd).
14120 					 * tcp_wput_data() will take care of
14121 					 * the rest.
14122 					 *
14123 					 * If the connection is SACK capable,
14124 					 * only do limited xmit when there
14125 					 * is SACK info.
14126 					 *
14127 					 * Note how tcp_cwnd is incremented.
14128 					 * The first dup ACK will increase
14129 					 * it by 1 MSS.  The second dup ACK
14130 					 * will increase it by 2 MSS.  This
14131 					 * means that only 1 new segment will
14132 					 * be sent for each dup ACK.
14133 					 */
14134 					if (tcp->tcp_unsent > 0 &&
14135 					    (!tcp->tcp_snd_sack_ok ||
14136 					    (tcp->tcp_snd_sack_ok &&
14137 					    tcp->tcp_notsack_list != NULL))) {
14138 						tcp->tcp_cwnd += mss <<
14139 						    (tcp->tcp_dupack_cnt - 1);
14140 						flags |= TH_LIMIT_XMIT;
14141 					}
14142 				} else if (dupack_cnt ==
14143 				    tcps->tcps_dupack_fast_retransmit) {
14144 
14145 				/*
14146 				 * If we have reduced tcp_ssthresh
14147 				 * because of ECN, do not reduce it again
14148 				 * unless it is already one window of data
14149 				 * away.  After one window of data, tcp_cwr
14150 				 * should then be cleared.  Note that
14151 				 * for non ECN capable connection, tcp_cwr
14152 				 * should always be false.
14153 				 *
14154 				 * Adjust cwnd since the duplicate
14155 				 * ack indicates that a packet was
14156 				 * dropped (due to congestion.)
14157 				 */
14158 				if (!tcp->tcp_cwr) {
14159 					npkt = ((tcp->tcp_snxt -
14160 					    tcp->tcp_suna) >> 1) / mss;
14161 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14162 					    mss;
14163 					tcp->tcp_cwnd = (npkt +
14164 					    tcp->tcp_dupack_cnt) * mss;
14165 				}
14166 				if (tcp->tcp_ecn_ok) {
14167 					tcp->tcp_cwr = B_TRUE;
14168 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14169 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14170 				}
14171 
14172 				/*
14173 				 * We do Hoe's algorithm.  Refer to her
14174 				 * paper "Improving the Start-up Behavior
14175 				 * of a Congestion Control Scheme for TCP,"
14176 				 * appeared in SIGCOMM'96.
14177 				 *
14178 				 * Save highest seq no we have sent so far.
14179 				 * Be careful about the invisible FIN byte.
14180 				 */
14181 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14182 				    (tcp->tcp_unsent == 0)) {
14183 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14184 				} else {
14185 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14186 				}
14187 
14188 				/*
14189 				 * Do not allow bursty traffic during.
14190 				 * fast recovery.  Refer to Fall and Floyd's
14191 				 * paper "Simulation-based Comparisons of
14192 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14193 				 * This is a best current practise.
14194 				 */
14195 				tcp->tcp_snd_burst = TCP_CWND_SS;
14196 
14197 				/*
14198 				 * For SACK:
14199 				 * Calculate tcp_pipe, which is the
14200 				 * estimated number of bytes in
14201 				 * network.
14202 				 *
14203 				 * tcp_fack is the highest sack'ed seq num
14204 				 * TCP has received.
14205 				 *
14206 				 * tcp_pipe is explained in the above quoted
14207 				 * Fall and Floyd's paper.  tcp_fack is
14208 				 * explained in Mathis and Mahdavi's
14209 				 * "Forward Acknowledgment: Refining TCP
14210 				 * Congestion Control" in SIGCOMM '96.
14211 				 */
14212 				if (tcp->tcp_snd_sack_ok) {
14213 					ASSERT(tcp->tcp_sack_info != NULL);
14214 					if (tcp->tcp_notsack_list != NULL) {
14215 						tcp->tcp_pipe = tcp->tcp_snxt -
14216 						    tcp->tcp_fack;
14217 						tcp->tcp_sack_snxt = seg_ack;
14218 						flags |= TH_NEED_SACK_REXMIT;
14219 					} else {
14220 						/*
14221 						 * Always initialize tcp_pipe
14222 						 * even though we don't have
14223 						 * any SACK info.  If later
14224 						 * we get SACK info and
14225 						 * tcp_pipe is not initialized,
14226 						 * funny things will happen.
14227 						 */
14228 						tcp->tcp_pipe =
14229 						    tcp->tcp_cwnd_ssthresh;
14230 					}
14231 				} else {
14232 					flags |= TH_REXMIT_NEEDED;
14233 				} /* tcp_snd_sack_ok */
14234 
14235 				} else {
14236 					/*
14237 					 * Here we perform congestion
14238 					 * avoidance, but NOT slow start.
14239 					 * This is known as the Fast
14240 					 * Recovery Algorithm.
14241 					 */
14242 					if (tcp->tcp_snd_sack_ok &&
14243 					    tcp->tcp_notsack_list != NULL) {
14244 						flags |= TH_NEED_SACK_REXMIT;
14245 						tcp->tcp_pipe -= mss;
14246 						if (tcp->tcp_pipe < 0)
14247 							tcp->tcp_pipe = 0;
14248 					} else {
14249 					/*
14250 					 * We know that one more packet has
14251 					 * left the pipe thus we can update
14252 					 * cwnd.
14253 					 */
14254 					cwnd = tcp->tcp_cwnd + mss;
14255 					if (cwnd > tcp->tcp_cwnd_max)
14256 						cwnd = tcp->tcp_cwnd_max;
14257 					tcp->tcp_cwnd = cwnd;
14258 					if (tcp->tcp_unsent > 0)
14259 						flags |= TH_XMIT_NEEDED;
14260 					}
14261 				}
14262 			}
14263 		} else if (tcp->tcp_zero_win_probe) {
14264 			/*
14265 			 * If the window has opened, need to arrange
14266 			 * to send additional data.
14267 			 */
14268 			if (new_swnd != 0) {
14269 				/* tcp_suna != tcp_snxt */
14270 				/* Packet contains a window update */
14271 				BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate);
14272 				tcp->tcp_zero_win_probe = 0;
14273 				tcp->tcp_timer_backoff = 0;
14274 				tcp->tcp_ms_we_have_waited = 0;
14275 
14276 				/*
14277 				 * Transmit starting with tcp_suna since
14278 				 * the one byte probe is not ack'ed.
14279 				 * If TCP has sent more than one identical
14280 				 * probe, tcp_rexmit will be set.  That means
14281 				 * tcp_ss_rexmit() will send out the one
14282 				 * byte along with new data.  Otherwise,
14283 				 * fake the retransmission.
14284 				 */
14285 				flags |= TH_XMIT_NEEDED;
14286 				if (!tcp->tcp_rexmit) {
14287 					tcp->tcp_rexmit = B_TRUE;
14288 					tcp->tcp_dupack_cnt = 0;
14289 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14290 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14291 				}
14292 			}
14293 		}
14294 		goto swnd_update;
14295 	}
14296 
14297 	/*
14298 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14299 	 * If the ACK value acks something that we have not yet sent, it might
14300 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14301 	 * other side.
14302 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14303 	 * state is handled above, so we can always just drop the segment and
14304 	 * send an ACK here.
14305 	 *
14306 	 * In the case where the peer shrinks the window, we see the new window
14307 	 * update, but all the data sent previously is queued up by the peer.
14308 	 * To account for this, in tcp_process_shrunk_swnd(), the sequence
14309 	 * number, which was already sent, and within window, is recorded.
14310 	 * tcp_snxt is then updated.
14311 	 *
14312 	 * If the window has previously shrunk, and an ACK for data not yet
14313 	 * sent, according to tcp_snxt is recieved, it may still be valid. If
14314 	 * the ACK is for data within the window at the time the window was
14315 	 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to
14316 	 * the sequence number ACK'ed.
14317 	 *
14318 	 * If the ACK covers all the data sent at the time the window was
14319 	 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE.
14320 	 *
14321 	 * Should we send ACKs in response to ACK only segments?
14322 	 */
14323 
14324 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14325 		if ((tcp->tcp_is_wnd_shrnk) &&
14326 		    (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) {
14327 			uint32_t data_acked_ahead_snxt;
14328 
14329 			data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt;
14330 			tcp_update_xmit_tail(tcp, seg_ack);
14331 			tcp->tcp_unsent -= data_acked_ahead_snxt;
14332 		} else {
14333 			BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent);
14334 			/* drop the received segment */
14335 			freemsg(mp);
14336 
14337 			/*
14338 			 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14339 			 * greater than 0, check if the number of such
14340 			 * bogus ACks is greater than that count.  If yes,
14341 			 * don't send back any ACK.  This prevents TCP from
14342 			 * getting into an ACK storm if somehow an attacker
14343 			 * successfully spoofs an acceptable segment to our
14344 			 * peer.
14345 			 */
14346 			if (tcp_drop_ack_unsent_cnt > 0 &&
14347 			    ++tcp->tcp_in_ack_unsent >
14348 			    tcp_drop_ack_unsent_cnt) {
14349 				TCP_STAT(tcps, tcp_in_ack_unsent_drop);
14350 				return;
14351 			}
14352 			mp = tcp_ack_mp(tcp);
14353 			if (mp != NULL) {
14354 				BUMP_LOCAL(tcp->tcp_obsegs);
14355 				BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
14356 				tcp_send_data(tcp, tcp->tcp_wq, mp);
14357 			}
14358 			return;
14359 		}
14360 	} else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack,
14361 	    tcp->tcp_snxt_shrunk)) {
14362 			tcp->tcp_is_wnd_shrnk = B_FALSE;
14363 	}
14364 
14365 	/*
14366 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14367 	 * blocks that are covered by this ACK.
14368 	 */
14369 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14370 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14371 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14372 	}
14373 
14374 	/*
14375 	 * If we got an ACK after fast retransmit, check to see
14376 	 * if it is a partial ACK.  If it is not and the congestion
14377 	 * window was inflated to account for the other side's
14378 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14379 	 */
14380 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
14381 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14382 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14383 			tcp->tcp_dupack_cnt = 0;
14384 			/*
14385 			 * Restore the orig tcp_cwnd_ssthresh after
14386 			 * fast retransmit phase.
14387 			 */
14388 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14389 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14390 			}
14391 			tcp->tcp_rexmit_max = seg_ack;
14392 			tcp->tcp_cwnd_cnt = 0;
14393 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14394 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14395 
14396 			/*
14397 			 * Remove all notsack info to avoid confusion with
14398 			 * the next fast retrasnmit/recovery phase.
14399 			 */
14400 			if (tcp->tcp_snd_sack_ok &&
14401 			    tcp->tcp_notsack_list != NULL) {
14402 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list,
14403 				    tcp);
14404 			}
14405 		} else {
14406 			if (tcp->tcp_snd_sack_ok &&
14407 			    tcp->tcp_notsack_list != NULL) {
14408 				flags |= TH_NEED_SACK_REXMIT;
14409 				tcp->tcp_pipe -= mss;
14410 				if (tcp->tcp_pipe < 0)
14411 					tcp->tcp_pipe = 0;
14412 			} else {
14413 				/*
14414 				 * Hoe's algorithm:
14415 				 *
14416 				 * Retransmit the unack'ed segment and
14417 				 * restart fast recovery.  Note that we
14418 				 * need to scale back tcp_cwnd to the
14419 				 * original value when we started fast
14420 				 * recovery.  This is to prevent overly
14421 				 * aggressive behaviour in sending new
14422 				 * segments.
14423 				 */
14424 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14425 				    tcps->tcps_dupack_fast_retransmit * mss;
14426 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14427 				flags |= TH_REXMIT_NEEDED;
14428 			}
14429 		}
14430 	} else {
14431 		tcp->tcp_dupack_cnt = 0;
14432 		if (tcp->tcp_rexmit) {
14433 			/*
14434 			 * TCP is retranmitting.  If the ACK ack's all
14435 			 * outstanding data, update tcp_rexmit_max and
14436 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14437 			 * to the correct value.
14438 			 *
14439 			 * Note that SEQ_LEQ() is used.  This is to avoid
14440 			 * unnecessary fast retransmit caused by dup ACKs
14441 			 * received when TCP does slow start retransmission
14442 			 * after a time out.  During this phase, TCP may
14443 			 * send out segments which are already received.
14444 			 * This causes dup ACKs to be sent back.
14445 			 */
14446 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14447 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14448 					tcp->tcp_rexmit_nxt = seg_ack;
14449 				}
14450 				if (seg_ack != tcp->tcp_rexmit_max) {
14451 					flags |= TH_XMIT_NEEDED;
14452 				}
14453 			} else {
14454 				tcp->tcp_rexmit = B_FALSE;
14455 				tcp->tcp_xmit_zc_clean = B_FALSE;
14456 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14457 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14458 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14459 			}
14460 			tcp->tcp_ms_we_have_waited = 0;
14461 		}
14462 	}
14463 
14464 	BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs);
14465 	UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked);
14466 	tcp->tcp_suna = seg_ack;
14467 	if (tcp->tcp_zero_win_probe != 0) {
14468 		tcp->tcp_zero_win_probe = 0;
14469 		tcp->tcp_timer_backoff = 0;
14470 	}
14471 
14472 	/*
14473 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14474 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14475 	 * will not reach here.
14476 	 */
14477 	if (mp1 == NULL) {
14478 		goto fin_acked;
14479 	}
14480 
14481 	/*
14482 	 * Update the congestion window.
14483 	 *
14484 	 * If TCP is not ECN capable or TCP is ECN capable but the
14485 	 * congestion experience bit is not set, increase the tcp_cwnd as
14486 	 * usual.
14487 	 */
14488 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14489 		cwnd = tcp->tcp_cwnd;
14490 		add = mss;
14491 
14492 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14493 			/*
14494 			 * This is to prevent an increase of less than 1 MSS of
14495 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14496 			 * may send out tinygrams in order to preserve mblk
14497 			 * boundaries.
14498 			 *
14499 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14500 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14501 			 * increased by 1 MSS for every RTTs.
14502 			 */
14503 			if (tcp->tcp_cwnd_cnt <= 0) {
14504 				tcp->tcp_cwnd_cnt = cwnd + add;
14505 			} else {
14506 				tcp->tcp_cwnd_cnt -= add;
14507 				add = 0;
14508 			}
14509 		}
14510 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14511 	}
14512 
14513 	/* See if the latest urgent data has been acknowledged */
14514 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14515 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14516 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14517 
14518 	/* Can we update the RTT estimates? */
14519 	if (tcp->tcp_snd_ts_ok) {
14520 		/* Ignore zero timestamp echo-reply. */
14521 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14522 			tcp_set_rto(tcp, (int32_t)lbolt -
14523 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14524 		}
14525 
14526 		/* If needed, restart the timer. */
14527 		if (tcp->tcp_set_timer == 1) {
14528 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14529 			tcp->tcp_set_timer = 0;
14530 		}
14531 		/*
14532 		 * Update tcp_csuna in case the other side stops sending
14533 		 * us timestamps.
14534 		 */
14535 		tcp->tcp_csuna = tcp->tcp_snxt;
14536 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14537 		/*
14538 		 * An ACK sequence we haven't seen before, so get the RTT
14539 		 * and update the RTO. But first check if the timestamp is
14540 		 * valid to use.
14541 		 */
14542 		if ((mp1->b_next != NULL) &&
14543 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14544 			tcp_set_rto(tcp, (int32_t)lbolt -
14545 			    (int32_t)(intptr_t)mp1->b_prev);
14546 		else
14547 			BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14548 
14549 		/* Remeber the last sequence to be ACKed */
14550 		tcp->tcp_csuna = seg_ack;
14551 		if (tcp->tcp_set_timer == 1) {
14552 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14553 			tcp->tcp_set_timer = 0;
14554 		}
14555 	} else {
14556 		BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14557 	}
14558 
14559 	/* Eat acknowledged bytes off the xmit queue. */
14560 	for (;;) {
14561 		mblk_t	*mp2;
14562 		uchar_t	*wptr;
14563 
14564 		wptr = mp1->b_wptr;
14565 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14566 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14567 		if (bytes_acked < 0) {
14568 			mp1->b_rptr = wptr + bytes_acked;
14569 			/*
14570 			 * Set a new timestamp if all the bytes timed by the
14571 			 * old timestamp have been ack'ed.
14572 			 */
14573 			if (SEQ_GT(seg_ack,
14574 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14575 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14576 				mp1->b_next = NULL;
14577 			}
14578 			break;
14579 		}
14580 		mp1->b_next = NULL;
14581 		mp1->b_prev = NULL;
14582 		mp2 = mp1;
14583 		mp1 = mp1->b_cont;
14584 
14585 		/*
14586 		 * This notification is required for some zero-copy
14587 		 * clients to maintain a copy semantic. After the data
14588 		 * is ack'ed, client is safe to modify or reuse the buffer.
14589 		 */
14590 		if (tcp->tcp_snd_zcopy_aware &&
14591 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14592 			tcp_zcopy_notify(tcp);
14593 		freeb(mp2);
14594 		if (bytes_acked == 0) {
14595 			if (mp1 == NULL) {
14596 				/* Everything is ack'ed, clear the tail. */
14597 				tcp->tcp_xmit_tail = NULL;
14598 				/*
14599 				 * Cancel the timer unless we are still
14600 				 * waiting for an ACK for the FIN packet.
14601 				 */
14602 				if (tcp->tcp_timer_tid != 0 &&
14603 				    tcp->tcp_snxt == tcp->tcp_suna) {
14604 					(void) TCP_TIMER_CANCEL(tcp,
14605 					    tcp->tcp_timer_tid);
14606 					tcp->tcp_timer_tid = 0;
14607 				}
14608 				goto pre_swnd_update;
14609 			}
14610 			if (mp2 != tcp->tcp_xmit_tail)
14611 				break;
14612 			tcp->tcp_xmit_tail = mp1;
14613 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14614 			    (uintptr_t)INT_MAX);
14615 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14616 			    mp1->b_rptr);
14617 			break;
14618 		}
14619 		if (mp1 == NULL) {
14620 			/*
14621 			 * More was acked but there is nothing more
14622 			 * outstanding.  This means that the FIN was
14623 			 * just acked or that we're talking to a clown.
14624 			 */
14625 fin_acked:
14626 			ASSERT(tcp->tcp_fin_sent);
14627 			tcp->tcp_xmit_tail = NULL;
14628 			if (tcp->tcp_fin_sent) {
14629 				/* FIN was acked - making progress */
14630 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14631 				    !tcp->tcp_fin_acked)
14632 					tcp->tcp_ip_forward_progress = B_TRUE;
14633 				tcp->tcp_fin_acked = B_TRUE;
14634 				if (tcp->tcp_linger_tid != 0 &&
14635 				    TCP_TIMER_CANCEL(tcp,
14636 				    tcp->tcp_linger_tid) >= 0) {
14637 					tcp_stop_lingering(tcp);
14638 					freemsg(mp);
14639 					mp = NULL;
14640 				}
14641 			} else {
14642 				/*
14643 				 * We should never get here because
14644 				 * we have already checked that the
14645 				 * number of bytes ack'ed should be
14646 				 * smaller than or equal to what we
14647 				 * have sent so far (it is the
14648 				 * acceptability check of the ACK).
14649 				 * We can only get here if the send
14650 				 * queue is corrupted.
14651 				 *
14652 				 * Terminate the connection and
14653 				 * panic the system.  It is better
14654 				 * for us to panic instead of
14655 				 * continuing to avoid other disaster.
14656 				 */
14657 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14658 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14659 				panic("Memory corruption "
14660 				    "detected for connection %s.",
14661 				    tcp_display(tcp, NULL,
14662 				    DISP_ADDR_AND_PORT));
14663 				/*NOTREACHED*/
14664 			}
14665 			goto pre_swnd_update;
14666 		}
14667 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14668 	}
14669 	if (tcp->tcp_unsent) {
14670 		flags |= TH_XMIT_NEEDED;
14671 	}
14672 pre_swnd_update:
14673 	tcp->tcp_xmit_head = mp1;
14674 swnd_update:
14675 	/*
14676 	 * The following check is different from most other implementations.
14677 	 * For bi-directional transfer, when segments are dropped, the
14678 	 * "normal" check will not accept a window update in those
14679 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14680 	 * segments which are outside receiver's window.  As TCP accepts
14681 	 * the ack in those retransmitted segments, if the window update in
14682 	 * the same segment is not accepted, TCP will incorrectly calculates
14683 	 * that it can send more segments.  This can create a deadlock
14684 	 * with the receiver if its window becomes zero.
14685 	 */
14686 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14687 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14688 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14689 		/*
14690 		 * The criteria for update is:
14691 		 *
14692 		 * 1. the segment acknowledges some data.  Or
14693 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14694 		 * 3. the segment is not old and the advertised window is
14695 		 * larger than the previous advertised window.
14696 		 */
14697 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14698 			flags |= TH_XMIT_NEEDED;
14699 		tcp->tcp_swnd = new_swnd;
14700 		if (new_swnd > tcp->tcp_max_swnd)
14701 			tcp->tcp_max_swnd = new_swnd;
14702 		tcp->tcp_swl1 = seg_seq;
14703 		tcp->tcp_swl2 = seg_ack;
14704 	}
14705 est:
14706 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14707 
14708 		switch (tcp->tcp_state) {
14709 		case TCPS_FIN_WAIT_1:
14710 			if (tcp->tcp_fin_acked) {
14711 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14712 				/*
14713 				 * We implement the non-standard BSD/SunOS
14714 				 * FIN_WAIT_2 flushing algorithm.
14715 				 * If there is no user attached to this
14716 				 * TCP endpoint, then this TCP struct
14717 				 * could hang around forever in FIN_WAIT_2
14718 				 * state if the peer forgets to send us
14719 				 * a FIN.  To prevent this, we wait only
14720 				 * 2*MSL (a convenient time value) for
14721 				 * the FIN to arrive.  If it doesn't show up,
14722 				 * we flush the TCP endpoint.  This algorithm,
14723 				 * though a violation of RFC-793, has worked
14724 				 * for over 10 years in BSD systems.
14725 				 * Note: SunOS 4.x waits 675 seconds before
14726 				 * flushing the FIN_WAIT_2 connection.
14727 				 */
14728 				TCP_TIMER_RESTART(tcp,
14729 				    tcps->tcps_fin_wait_2_flush_interval);
14730 			}
14731 			break;
14732 		case TCPS_FIN_WAIT_2:
14733 			break;	/* Shutdown hook? */
14734 		case TCPS_LAST_ACK:
14735 			freemsg(mp);
14736 			if (tcp->tcp_fin_acked) {
14737 				(void) tcp_clean_death(tcp, 0, 19);
14738 				return;
14739 			}
14740 			goto xmit_check;
14741 		case TCPS_CLOSING:
14742 			if (tcp->tcp_fin_acked) {
14743 				tcp->tcp_state = TCPS_TIME_WAIT;
14744 				/*
14745 				 * Unconditionally clear the exclusive binding
14746 				 * bit so this TIME-WAIT connection won't
14747 				 * interfere with new ones.
14748 				 */
14749 				tcp->tcp_exclbind = 0;
14750 				if (!TCP_IS_DETACHED(tcp)) {
14751 					TCP_TIMER_RESTART(tcp,
14752 					    tcps->tcps_time_wait_interval);
14753 				} else {
14754 					tcp_time_wait_append(tcp);
14755 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14756 				}
14757 			}
14758 			/*FALLTHRU*/
14759 		case TCPS_CLOSE_WAIT:
14760 			freemsg(mp);
14761 			goto xmit_check;
14762 		default:
14763 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14764 			break;
14765 		}
14766 	}
14767 	if (flags & TH_FIN) {
14768 		/* Make sure we ack the fin */
14769 		flags |= TH_ACK_NEEDED;
14770 		if (!tcp->tcp_fin_rcvd) {
14771 			tcp->tcp_fin_rcvd = B_TRUE;
14772 			tcp->tcp_rnxt++;
14773 			tcph = tcp->tcp_tcph;
14774 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14775 
14776 			/*
14777 			 * Generate the ordrel_ind at the end unless we
14778 			 * are an eager guy.
14779 			 * In the eager case tcp_rsrv will do this when run
14780 			 * after tcp_accept is done.
14781 			 */
14782 			if (tcp->tcp_listener == NULL &&
14783 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14784 				flags |= TH_ORDREL_NEEDED;
14785 			switch (tcp->tcp_state) {
14786 			case TCPS_SYN_RCVD:
14787 			case TCPS_ESTABLISHED:
14788 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14789 				/* Keepalive? */
14790 				break;
14791 			case TCPS_FIN_WAIT_1:
14792 				if (!tcp->tcp_fin_acked) {
14793 					tcp->tcp_state = TCPS_CLOSING;
14794 					break;
14795 				}
14796 				/* FALLTHRU */
14797 			case TCPS_FIN_WAIT_2:
14798 				tcp->tcp_state = TCPS_TIME_WAIT;
14799 				/*
14800 				 * Unconditionally clear the exclusive binding
14801 				 * bit so this TIME-WAIT connection won't
14802 				 * interfere with new ones.
14803 				 */
14804 				tcp->tcp_exclbind = 0;
14805 				if (!TCP_IS_DETACHED(tcp)) {
14806 					TCP_TIMER_RESTART(tcp,
14807 					    tcps->tcps_time_wait_interval);
14808 				} else {
14809 					tcp_time_wait_append(tcp);
14810 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14811 				}
14812 				if (seg_len) {
14813 					/*
14814 					 * implies data piggybacked on FIN.
14815 					 * break to handle data.
14816 					 */
14817 					break;
14818 				}
14819 				freemsg(mp);
14820 				goto ack_check;
14821 			}
14822 		}
14823 	}
14824 	if (mp == NULL)
14825 		goto xmit_check;
14826 	if (seg_len == 0) {
14827 		freemsg(mp);
14828 		goto xmit_check;
14829 	}
14830 	if (mp->b_rptr == mp->b_wptr) {
14831 		/*
14832 		 * The header has been consumed, so we remove the
14833 		 * zero-length mblk here.
14834 		 */
14835 		mp1 = mp;
14836 		mp = mp->b_cont;
14837 		freeb(mp1);
14838 	}
14839 update_ack:
14840 	tcph = tcp->tcp_tcph;
14841 	tcp->tcp_rack_cnt++;
14842 	{
14843 		uint32_t cur_max;
14844 
14845 		cur_max = tcp->tcp_rack_cur_max;
14846 		if (tcp->tcp_rack_cnt >= cur_max) {
14847 			/*
14848 			 * We have more unacked data than we should - send
14849 			 * an ACK now.
14850 			 */
14851 			flags |= TH_ACK_NEEDED;
14852 			cur_max++;
14853 			if (cur_max > tcp->tcp_rack_abs_max)
14854 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
14855 			else
14856 				tcp->tcp_rack_cur_max = cur_max;
14857 		} else if (TCP_IS_DETACHED(tcp)) {
14858 			/* We don't have an ACK timer for detached TCP. */
14859 			flags |= TH_ACK_NEEDED;
14860 		} else if (seg_len < mss) {
14861 			/*
14862 			 * If we get a segment that is less than an mss, and we
14863 			 * already have unacknowledged data, and the amount
14864 			 * unacknowledged is not a multiple of mss, then we
14865 			 * better generate an ACK now.  Otherwise, this may be
14866 			 * the tail piece of a transaction, and we would rather
14867 			 * wait for the response.
14868 			 */
14869 			uint32_t udif;
14870 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
14871 			    (uintptr_t)INT_MAX);
14872 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
14873 			if (udif && (udif % mss))
14874 				flags |= TH_ACK_NEEDED;
14875 			else
14876 				flags |= TH_ACK_TIMER_NEEDED;
14877 		} else {
14878 			/* Start delayed ack timer */
14879 			flags |= TH_ACK_TIMER_NEEDED;
14880 		}
14881 	}
14882 	tcp->tcp_rnxt += seg_len;
14883 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14884 
14885 	if (mp == NULL)
14886 		goto xmit_check;
14887 
14888 	/* Update SACK list */
14889 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
14890 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
14891 		    &(tcp->tcp_num_sack_blk));
14892 	}
14893 
14894 	if (tcp->tcp_urp_mp) {
14895 		tcp->tcp_urp_mp->b_cont = mp;
14896 		mp = tcp->tcp_urp_mp;
14897 		tcp->tcp_urp_mp = NULL;
14898 		/* Ready for a new signal. */
14899 		tcp->tcp_urp_last_valid = B_FALSE;
14900 #ifdef DEBUG
14901 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14902 		    "tcp_rput: sending exdata_ind %s",
14903 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14904 #endif /* DEBUG */
14905 	}
14906 
14907 	/*
14908 	 * Check for ancillary data changes compared to last segment.
14909 	 */
14910 	if (tcp->tcp_ipv6_recvancillary != 0) {
14911 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
14912 		ASSERT(mp != NULL);
14913 	}
14914 
14915 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
14916 		/*
14917 		 * Side queue inbound data until the accept happens.
14918 		 * tcp_accept/tcp_rput drains this when the accept happens.
14919 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
14920 		 * T_EXDATA_IND) it is queued on b_next.
14921 		 * XXX Make urgent data use this. Requires:
14922 		 *	Removing tcp_listener check for TH_URG
14923 		 *	Making M_PCPROTO and MARK messages skip the eager case
14924 		 */
14925 
14926 		if (tcp->tcp_kssl_pending) {
14927 			DTRACE_PROBE1(kssl_mblk__ksslinput_pending,
14928 			    mblk_t *, mp);
14929 			tcp_kssl_input(tcp, mp);
14930 		} else {
14931 			tcp_rcv_enqueue(tcp, mp, seg_len);
14932 		}
14933 	} else {
14934 		if (mp->b_datap->db_type != M_DATA ||
14935 		    (flags & TH_MARKNEXT_NEEDED)) {
14936 			if (IPCL_IS_NONSTR(connp)) {
14937 				int error;
14938 
14939 				if ((*connp->conn_upcalls->su_recv)
14940 				    (connp->conn_upper_handle, mp,
14941 				    seg_len, 0, &error, NULL) <= 0) {
14942 					/*
14943 					 * We should never be in middle of a
14944 					 * fallback, the squeue guarantees that.
14945 					 */
14946 					ASSERT(error != EOPNOTSUPP);
14947 					if (error == ENOSPC)
14948 						tcp->tcp_rwnd -= seg_len;
14949 				}
14950 			} else if (tcp->tcp_rcv_list != NULL) {
14951 				flags |= tcp_rcv_drain(tcp);
14952 			}
14953 			ASSERT(tcp->tcp_rcv_list == NULL ||
14954 			    tcp->tcp_fused_sigurg);
14955 
14956 			if (flags & TH_MARKNEXT_NEEDED) {
14957 #ifdef DEBUG
14958 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14959 				    "tcp_rput: sending MSGMARKNEXT %s",
14960 				    tcp_display(tcp, NULL,
14961 				    DISP_PORT_ONLY));
14962 #endif /* DEBUG */
14963 				mp->b_flag |= MSGMARKNEXT;
14964 				flags &= ~TH_MARKNEXT_NEEDED;
14965 			}
14966 
14967 			/* Does this need SSL processing first? */
14968 			if ((tcp->tcp_kssl_ctx != NULL) &&
14969 			    (DB_TYPE(mp) == M_DATA)) {
14970 				DTRACE_PROBE1(kssl_mblk__ksslinput_data1,
14971 				    mblk_t *, mp);
14972 				tcp_kssl_input(tcp, mp);
14973 			} else if (!IPCL_IS_NONSTR(connp)) {
14974 				/* Already handled non-STREAMS case. */
14975 				putnext(tcp->tcp_rq, mp);
14976 				if (!canputnext(tcp->tcp_rq))
14977 					tcp->tcp_rwnd -= seg_len;
14978 			}
14979 		} else if ((tcp->tcp_kssl_ctx != NULL) &&
14980 		    (DB_TYPE(mp) == M_DATA)) {
14981 			/* Does this need SSL processing first? */
14982 			DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp);
14983 			tcp_kssl_input(tcp, mp);
14984 		} else if (IPCL_IS_NONSTR(connp)) {
14985 			/* Non-STREAMS socket */
14986 			boolean_t push = flags & (TH_PUSH|TH_FIN);
14987 			int	error;
14988 
14989 			if ((*connp->conn_upcalls->su_recv)(
14990 			    connp->conn_upper_handle,
14991 			    mp, seg_len, 0, &error, &push) <= 0) {
14992 				/*
14993 				 * We should never be in middle of a
14994 				 * fallback, the squeue guarantees that.
14995 				 */
14996 				ASSERT(error != EOPNOTSUPP);
14997 				if (error == ENOSPC)
14998 					tcp->tcp_rwnd -= seg_len;
14999 			} else if (push) {
15000 				/*
15001 				 * PUSH bit set and sockfs is not
15002 				 * flow controlled
15003 				 */
15004 				flags |= tcp_rwnd_reopen(tcp);
15005 			}
15006 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
15007 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_recv_hiwater >> 3) {
15008 			if (tcp->tcp_rcv_list != NULL) {
15009 				/*
15010 				 * Enqueue the new segment first and then
15011 				 * call tcp_rcv_drain() to send all data
15012 				 * up.  The other way to do this is to
15013 				 * send all queued data up and then call
15014 				 * putnext() to send the new segment up.
15015 				 * This way can remove the else part later
15016 				 * on.
15017 				 *
15018 				 * We don't do this to avoid one more call to
15019 				 * canputnext() as tcp_rcv_drain() needs to
15020 				 * call canputnext().
15021 				 */
15022 				tcp_rcv_enqueue(tcp, mp, seg_len);
15023 				flags |= tcp_rcv_drain(tcp);
15024 			} else {
15025 				putnext(tcp->tcp_rq, mp);
15026 				if (!canputnext(tcp->tcp_rq))
15027 					tcp->tcp_rwnd -= seg_len;
15028 			}
15029 		} else {
15030 			/*
15031 			 * Enqueue all packets when processing an mblk
15032 			 * from the co queue and also enqueue normal packets.
15033 			 */
15034 			tcp_rcv_enqueue(tcp, mp, seg_len);
15035 		}
15036 		/*
15037 		 * Make sure the timer is running if we have data waiting
15038 		 * for a push bit. This provides resiliency against
15039 		 * implementations that do not correctly generate push bits.
15040 		 */
15041 		if (!IPCL_IS_NONSTR(connp) && tcp->tcp_rcv_list != NULL &&
15042 		    tcp->tcp_push_tid == 0) {
15043 			/*
15044 			 * The connection may be closed at this point, so don't
15045 			 * do anything for a detached tcp.
15046 			 */
15047 			if (!TCP_IS_DETACHED(tcp))
15048 				tcp->tcp_push_tid = TCP_TIMER(tcp,
15049 				    tcp_push_timer,
15050 				    MSEC_TO_TICK(
15051 				    tcps->tcps_push_timer_interval));
15052 		}
15053 	}
15054 
15055 xmit_check:
15056 	/* Is there anything left to do? */
15057 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15058 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
15059 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
15060 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15061 		goto done;
15062 
15063 	/* Any transmit work to do and a non-zero window? */
15064 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
15065 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
15066 		if (flags & TH_REXMIT_NEEDED) {
15067 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
15068 
15069 			BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans);
15070 			if (snd_size > mss)
15071 				snd_size = mss;
15072 			if (snd_size > tcp->tcp_swnd)
15073 				snd_size = tcp->tcp_swnd;
15074 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
15075 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
15076 			    B_TRUE);
15077 
15078 			if (mp1 != NULL) {
15079 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15080 				tcp->tcp_csuna = tcp->tcp_snxt;
15081 				BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
15082 				UPDATE_MIB(&tcps->tcps_mib,
15083 				    tcpRetransBytes, snd_size);
15084 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
15085 			}
15086 		}
15087 		if (flags & TH_NEED_SACK_REXMIT) {
15088 			tcp_sack_rxmit(tcp, &flags);
15089 		}
15090 		/*
15091 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
15092 		 * out new segment.  Note that tcp_rexmit should not be
15093 		 * set, otherwise TH_LIMIT_XMIT should not be set.
15094 		 */
15095 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
15096 			if (!tcp->tcp_rexmit) {
15097 				tcp_wput_data(tcp, NULL, B_FALSE);
15098 			} else {
15099 				tcp_ss_rexmit(tcp);
15100 			}
15101 		}
15102 		/*
15103 		 * Adjust tcp_cwnd back to normal value after sending
15104 		 * new data segments.
15105 		 */
15106 		if (flags & TH_LIMIT_XMIT) {
15107 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
15108 			/*
15109 			 * This will restart the timer.  Restarting the
15110 			 * timer is used to avoid a timeout before the
15111 			 * limited transmitted segment's ACK gets back.
15112 			 */
15113 			if (tcp->tcp_xmit_head != NULL)
15114 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15115 		}
15116 
15117 		/* Anything more to do? */
15118 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
15119 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15120 			goto done;
15121 	}
15122 ack_check:
15123 	if (flags & TH_SEND_URP_MARK) {
15124 		ASSERT(tcp->tcp_urp_mark_mp);
15125 		ASSERT(!IPCL_IS_NONSTR(connp));
15126 		/*
15127 		 * Send up any queued data and then send the mark message
15128 		 */
15129 		if (tcp->tcp_rcv_list != NULL) {
15130 			flags |= tcp_rcv_drain(tcp);
15131 
15132 		}
15133 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15134 		mp1 = tcp->tcp_urp_mark_mp;
15135 		tcp->tcp_urp_mark_mp = NULL;
15136 		putnext(tcp->tcp_rq, mp1);
15137 #ifdef DEBUG
15138 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15139 		    "tcp_rput: sending zero-length %s %s",
15140 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
15141 		    "MSGNOTMARKNEXT"),
15142 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15143 #endif /* DEBUG */
15144 		flags &= ~TH_SEND_URP_MARK;
15145 	}
15146 	if (flags & TH_ACK_NEEDED) {
15147 		/*
15148 		 * Time to send an ack for some reason.
15149 		 */
15150 		mp1 = tcp_ack_mp(tcp);
15151 
15152 		if (mp1 != NULL) {
15153 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
15154 			BUMP_LOCAL(tcp->tcp_obsegs);
15155 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
15156 		}
15157 		if (tcp->tcp_ack_tid != 0) {
15158 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
15159 			tcp->tcp_ack_tid = 0;
15160 		}
15161 	}
15162 	if (flags & TH_ACK_TIMER_NEEDED) {
15163 		/*
15164 		 * Arrange for deferred ACK or push wait timeout.
15165 		 * Start timer if it is not already running.
15166 		 */
15167 		if (tcp->tcp_ack_tid == 0) {
15168 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
15169 			    MSEC_TO_TICK(tcp->tcp_localnet ?
15170 			    (clock_t)tcps->tcps_local_dack_interval :
15171 			    (clock_t)tcps->tcps_deferred_ack_interval));
15172 		}
15173 	}
15174 	if (flags & TH_ORDREL_NEEDED) {
15175 		/*
15176 		 * Send up the ordrel_ind unless we are an eager guy.
15177 		 * In the eager case tcp_rsrv will do this when run
15178 		 * after tcp_accept is done.
15179 		 */
15180 		ASSERT(tcp->tcp_listener == NULL);
15181 
15182 		if (IPCL_IS_NONSTR(connp)) {
15183 			ASSERT(tcp->tcp_ordrel_mp == NULL);
15184 			tcp->tcp_ordrel_done = B_TRUE;
15185 			(*connp->conn_upcalls->su_opctl)
15186 			    (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0);
15187 			goto done;
15188 		}
15189 
15190 		if (tcp->tcp_rcv_list != NULL) {
15191 			/*
15192 			 * Push any mblk(s) enqueued from co processing.
15193 			 */
15194 			flags |= tcp_rcv_drain(tcp);
15195 		}
15196 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15197 
15198 		mp1 = tcp->tcp_ordrel_mp;
15199 		tcp->tcp_ordrel_mp = NULL;
15200 		tcp->tcp_ordrel_done = B_TRUE;
15201 		putnext(tcp->tcp_rq, mp1);
15202 	}
15203 done:
15204 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15205 }
15206 
15207 /*
15208  * This routine adjusts next-to-send sequence number variables, in the
15209  * case where the reciever has shrunk it's window.
15210  */
15211 static void
15212 tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt)
15213 {
15214 	mblk_t *xmit_tail;
15215 	int32_t offset;
15216 
15217 	tcp->tcp_snxt = snxt;
15218 
15219 	/* Get the mblk, and the offset in it, as per the shrunk window */
15220 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
15221 	ASSERT(xmit_tail != NULL);
15222 	tcp->tcp_xmit_tail = xmit_tail;
15223 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr -
15224 	    xmit_tail->b_rptr - offset;
15225 }
15226 
15227 /*
15228  * This function does PAWS protection check. Returns B_TRUE if the
15229  * segment passes the PAWS test, else returns B_FALSE.
15230  */
15231 boolean_t
15232 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15233 {
15234 	uint8_t	flags;
15235 	int	options;
15236 	uint8_t *up;
15237 
15238 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15239 	/*
15240 	 * If timestamp option is aligned nicely, get values inline,
15241 	 * otherwise call general routine to parse.  Only do that
15242 	 * if timestamp is the only option.
15243 	 */
15244 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15245 	    TCPOPT_REAL_TS_LEN &&
15246 	    OK_32PTR((up = ((uint8_t *)tcph) +
15247 	    TCP_MIN_HEADER_LENGTH)) &&
15248 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15249 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15250 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15251 
15252 		options = TCP_OPT_TSTAMP_PRESENT;
15253 	} else {
15254 		if (tcp->tcp_snd_sack_ok) {
15255 			tcpoptp->tcp = tcp;
15256 		} else {
15257 			tcpoptp->tcp = NULL;
15258 		}
15259 		options = tcp_parse_options(tcph, tcpoptp);
15260 	}
15261 
15262 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15263 		/*
15264 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15265 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15266 		 */
15267 		if ((flags & TH_RST) == 0 &&
15268 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15269 		    tcp->tcp_ts_recent)) {
15270 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15271 			    PAWS_TIMEOUT)) {
15272 				/* This segment is not acceptable. */
15273 				return (B_FALSE);
15274 			} else {
15275 				/*
15276 				 * Connection has been idle for
15277 				 * too long.  Reset the timestamp
15278 				 * and assume the segment is valid.
15279 				 */
15280 				tcp->tcp_ts_recent =
15281 				    tcpoptp->tcp_opt_ts_val;
15282 			}
15283 		}
15284 	} else {
15285 		/*
15286 		 * If we don't get a timestamp on every packet, we
15287 		 * figure we can't really trust 'em, so we stop sending
15288 		 * and parsing them.
15289 		 */
15290 		tcp->tcp_snd_ts_ok = B_FALSE;
15291 
15292 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15293 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15294 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15295 		/*
15296 		 * Adjust the tcp_mss accordingly. We also need to
15297 		 * adjust tcp_cwnd here in accordance with the new mss.
15298 		 * But we avoid doing a slow start here so as to not
15299 		 * to lose on the transfer rate built up so far.
15300 		 */
15301 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE);
15302 		if (tcp->tcp_snd_sack_ok) {
15303 			ASSERT(tcp->tcp_sack_info != NULL);
15304 			tcp->tcp_max_sack_blk = 4;
15305 		}
15306 	}
15307 	return (B_TRUE);
15308 }
15309 
15310 /*
15311  * Attach ancillary data to a received TCP segments for the
15312  * ancillary pieces requested by the application that are
15313  * different than they were in the previous data segment.
15314  *
15315  * Save the "current" values once memory allocation is ok so that
15316  * when memory allocation fails we can just wait for the next data segment.
15317  */
15318 static mblk_t *
15319 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15320 {
15321 	struct T_optdata_ind *todi;
15322 	int optlen;
15323 	uchar_t *optptr;
15324 	struct T_opthdr *toh;
15325 	uint_t addflag;	/* Which pieces to add */
15326 	mblk_t *mp1;
15327 
15328 	optlen = 0;
15329 	addflag = 0;
15330 	/* If app asked for pktinfo and the index has changed ... */
15331 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15332 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15333 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15334 		optlen += sizeof (struct T_opthdr) +
15335 		    sizeof (struct in6_pktinfo);
15336 		addflag |= TCP_IPV6_RECVPKTINFO;
15337 	}
15338 	/* If app asked for hoplimit and it has changed ... */
15339 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15340 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15341 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15342 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15343 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15344 	}
15345 	/* If app asked for tclass and it has changed ... */
15346 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15347 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15348 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15349 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15350 		addflag |= TCP_IPV6_RECVTCLASS;
15351 	}
15352 	/*
15353 	 * If app asked for hopbyhop headers and it has changed ...
15354 	 * For security labels, note that (1) security labels can't change on
15355 	 * a connected socket at all, (2) we're connected to at most one peer,
15356 	 * (3) if anything changes, then it must be some other extra option.
15357 	 */
15358 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15359 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15360 	    (ipp->ipp_fields & IPPF_HOPOPTS),
15361 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15362 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
15363 		    tcp->tcp_label_len;
15364 		addflag |= TCP_IPV6_RECVHOPOPTS;
15365 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
15366 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
15367 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15368 			return (mp);
15369 	}
15370 	/* If app asked for dst headers before routing headers ... */
15371 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15372 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15373 	    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15374 	    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15375 		optlen += sizeof (struct T_opthdr) +
15376 		    ipp->ipp_rtdstoptslen;
15377 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15378 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
15379 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
15380 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15381 			return (mp);
15382 	}
15383 	/* If app asked for routing headers and it has changed ... */
15384 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15385 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15386 	    (ipp->ipp_fields & IPPF_RTHDR),
15387 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15388 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15389 		addflag |= TCP_IPV6_RECVRTHDR;
15390 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
15391 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
15392 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15393 			return (mp);
15394 	}
15395 	/* If app asked for dest headers and it has changed ... */
15396 	if ((tcp->tcp_ipv6_recvancillary &
15397 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15398 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15399 	    (ipp->ipp_fields & IPPF_DSTOPTS),
15400 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15401 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15402 		addflag |= TCP_IPV6_RECVDSTOPTS;
15403 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
15404 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
15405 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15406 			return (mp);
15407 	}
15408 
15409 	if (optlen == 0) {
15410 		/* Nothing to add */
15411 		return (mp);
15412 	}
15413 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15414 	if (mp1 == NULL) {
15415 		/*
15416 		 * Defer sending ancillary data until the next TCP segment
15417 		 * arrives.
15418 		 */
15419 		return (mp);
15420 	}
15421 	mp1->b_cont = mp;
15422 	mp = mp1;
15423 	mp->b_wptr += sizeof (*todi) + optlen;
15424 	mp->b_datap->db_type = M_PROTO;
15425 	todi = (struct T_optdata_ind *)mp->b_rptr;
15426 	todi->PRIM_type = T_OPTDATA_IND;
15427 	todi->DATA_flag = 1;	/* MORE data */
15428 	todi->OPT_length = optlen;
15429 	todi->OPT_offset = sizeof (*todi);
15430 	optptr = (uchar_t *)&todi[1];
15431 	/*
15432 	 * If app asked for pktinfo and the index has changed ...
15433 	 * Note that the local address never changes for the connection.
15434 	 */
15435 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15436 		struct in6_pktinfo *pkti;
15437 
15438 		toh = (struct T_opthdr *)optptr;
15439 		toh->level = IPPROTO_IPV6;
15440 		toh->name = IPV6_PKTINFO;
15441 		toh->len = sizeof (*toh) + sizeof (*pkti);
15442 		toh->status = 0;
15443 		optptr += sizeof (*toh);
15444 		pkti = (struct in6_pktinfo *)optptr;
15445 		if (tcp->tcp_ipversion == IPV6_VERSION)
15446 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15447 		else
15448 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15449 			    &pkti->ipi6_addr);
15450 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15451 		optptr += sizeof (*pkti);
15452 		ASSERT(OK_32PTR(optptr));
15453 		/* Save as "last" value */
15454 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15455 	}
15456 	/* If app asked for hoplimit and it has changed ... */
15457 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15458 		toh = (struct T_opthdr *)optptr;
15459 		toh->level = IPPROTO_IPV6;
15460 		toh->name = IPV6_HOPLIMIT;
15461 		toh->len = sizeof (*toh) + sizeof (uint_t);
15462 		toh->status = 0;
15463 		optptr += sizeof (*toh);
15464 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15465 		optptr += sizeof (uint_t);
15466 		ASSERT(OK_32PTR(optptr));
15467 		/* Save as "last" value */
15468 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15469 	}
15470 	/* If app asked for tclass and it has changed ... */
15471 	if (addflag & TCP_IPV6_RECVTCLASS) {
15472 		toh = (struct T_opthdr *)optptr;
15473 		toh->level = IPPROTO_IPV6;
15474 		toh->name = IPV6_TCLASS;
15475 		toh->len = sizeof (*toh) + sizeof (uint_t);
15476 		toh->status = 0;
15477 		optptr += sizeof (*toh);
15478 		*(uint_t *)optptr = ipp->ipp_tclass;
15479 		optptr += sizeof (uint_t);
15480 		ASSERT(OK_32PTR(optptr));
15481 		/* Save as "last" value */
15482 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15483 	}
15484 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15485 		toh = (struct T_opthdr *)optptr;
15486 		toh->level = IPPROTO_IPV6;
15487 		toh->name = IPV6_HOPOPTS;
15488 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15489 		    tcp->tcp_label_len;
15490 		toh->status = 0;
15491 		optptr += sizeof (*toh);
15492 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15493 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15494 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15495 		ASSERT(OK_32PTR(optptr));
15496 		/* Save as last value */
15497 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15498 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15499 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15500 	}
15501 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15502 		toh = (struct T_opthdr *)optptr;
15503 		toh->level = IPPROTO_IPV6;
15504 		toh->name = IPV6_RTHDRDSTOPTS;
15505 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15506 		toh->status = 0;
15507 		optptr += sizeof (*toh);
15508 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15509 		optptr += ipp->ipp_rtdstoptslen;
15510 		ASSERT(OK_32PTR(optptr));
15511 		/* Save as last value */
15512 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15513 		    &tcp->tcp_rtdstoptslen,
15514 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15515 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15516 	}
15517 	if (addflag & TCP_IPV6_RECVRTHDR) {
15518 		toh = (struct T_opthdr *)optptr;
15519 		toh->level = IPPROTO_IPV6;
15520 		toh->name = IPV6_RTHDR;
15521 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15522 		toh->status = 0;
15523 		optptr += sizeof (*toh);
15524 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15525 		optptr += ipp->ipp_rthdrlen;
15526 		ASSERT(OK_32PTR(optptr));
15527 		/* Save as last value */
15528 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15529 		    (ipp->ipp_fields & IPPF_RTHDR),
15530 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15531 	}
15532 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15533 		toh = (struct T_opthdr *)optptr;
15534 		toh->level = IPPROTO_IPV6;
15535 		toh->name = IPV6_DSTOPTS;
15536 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15537 		toh->status = 0;
15538 		optptr += sizeof (*toh);
15539 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15540 		optptr += ipp->ipp_dstoptslen;
15541 		ASSERT(OK_32PTR(optptr));
15542 		/* Save as last value */
15543 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15544 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15545 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15546 	}
15547 	ASSERT(optptr == mp->b_wptr);
15548 	return (mp);
15549 }
15550 
15551 /*
15552  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15553  * messages.
15554  */
15555 void
15556 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15557 {
15558 	uchar_t	*rptr = mp->b_rptr;
15559 	queue_t	*q = tcp->tcp_rq;
15560 	struct T_error_ack *tea;
15561 
15562 	switch (mp->b_datap->db_type) {
15563 	case M_PROTO:
15564 	case M_PCPROTO:
15565 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15566 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15567 			break;
15568 		tea = (struct T_error_ack *)rptr;
15569 		ASSERT(tea->PRIM_type != T_BIND_ACK);
15570 		ASSERT(tea->ERROR_prim != O_T_BIND_REQ &&
15571 		    tea->ERROR_prim != T_BIND_REQ);
15572 		switch (tea->PRIM_type) {
15573 		case T_ERROR_ACK:
15574 			if (tcp->tcp_debug) {
15575 				(void) strlog(TCP_MOD_ID, 0, 1,
15576 				    SL_TRACE|SL_ERROR,
15577 				    "tcp_rput_other: case T_ERROR_ACK, "
15578 				    "ERROR_prim == %d",
15579 				    tea->ERROR_prim);
15580 			}
15581 			switch (tea->ERROR_prim) {
15582 			case T_SVR4_OPTMGMT_REQ:
15583 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15584 					/* T_OPTMGMT_REQ generated by TCP */
15585 					printf("T_SVR4_OPTMGMT_REQ failed "
15586 					    "%d/%d - dropped (cnt %d)\n",
15587 					    tea->TLI_error, tea->UNIX_error,
15588 					    tcp->tcp_drop_opt_ack_cnt);
15589 					freemsg(mp);
15590 					tcp->tcp_drop_opt_ack_cnt--;
15591 					return;
15592 				}
15593 				break;
15594 			}
15595 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15596 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15597 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15598 				    "- dropped (cnt %d)\n",
15599 				    tea->TLI_error, tea->UNIX_error,
15600 				    tcp->tcp_drop_opt_ack_cnt);
15601 				freemsg(mp);
15602 				tcp->tcp_drop_opt_ack_cnt--;
15603 				return;
15604 			}
15605 			break;
15606 		case T_OPTMGMT_ACK:
15607 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15608 				/* T_OPTMGMT_REQ generated by TCP */
15609 				freemsg(mp);
15610 				tcp->tcp_drop_opt_ack_cnt--;
15611 				return;
15612 			}
15613 			break;
15614 		default:
15615 			ASSERT(tea->ERROR_prim != T_UNBIND_REQ);
15616 			break;
15617 		}
15618 		break;
15619 	case M_FLUSH:
15620 		if (*rptr & FLUSHR)
15621 			flushq(q, FLUSHDATA);
15622 		break;
15623 	default:
15624 		/* M_CTL will be directly sent to tcp_icmp_error() */
15625 		ASSERT(DB_TYPE(mp) != M_CTL);
15626 		break;
15627 	}
15628 	/*
15629 	 * Make sure we set this bit before sending the ACK for
15630 	 * bind. Otherwise accept could possibly run and free
15631 	 * this tcp struct.
15632 	 */
15633 	ASSERT(q != NULL);
15634 	putnext(q, mp);
15635 }
15636 
15637 /* ARGSUSED */
15638 static void
15639 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15640 {
15641 	conn_t	*connp = (conn_t *)arg;
15642 	tcp_t	*tcp = connp->conn_tcp;
15643 	queue_t	*q = tcp->tcp_rq;
15644 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15645 
15646 	ASSERT(!IPCL_IS_NONSTR(connp));
15647 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
15648 	tcp->tcp_rsrv_mp = mp;
15649 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
15650 
15651 	TCP_STAT(tcps, tcp_rsrv_calls);
15652 
15653 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15654 		return;
15655 	}
15656 
15657 	if (tcp->tcp_fused) {
15658 		tcp_fuse_backenable(tcp);
15659 		return;
15660 	}
15661 
15662 	if (canputnext(q)) {
15663 		/* Not flow-controlled, open rwnd */
15664 		tcp->tcp_rwnd = q->q_hiwat;
15665 
15666 		/*
15667 		 * Send back a window update immediately if TCP is above
15668 		 * ESTABLISHED state and the increase of the rcv window
15669 		 * that the other side knows is at least 1 MSS after flow
15670 		 * control is lifted.
15671 		 */
15672 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
15673 		    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
15674 			tcp_xmit_ctl(NULL, tcp,
15675 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
15676 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
15677 		}
15678 	}
15679 }
15680 
15681 /*
15682  * The read side service routine is called mostly when we get back-enabled as a
15683  * result of flow control relief.  Since we don't actually queue anything in
15684  * TCP, we have no data to send out of here.  What we do is clear the receive
15685  * window, and send out a window update.
15686  */
15687 static void
15688 tcp_rsrv(queue_t *q)
15689 {
15690 	conn_t		*connp = Q_TO_CONN(q);
15691 	tcp_t		*tcp = connp->conn_tcp;
15692 	mblk_t		*mp;
15693 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15694 
15695 	/* No code does a putq on the read side */
15696 	ASSERT(q->q_first == NULL);
15697 
15698 	/* Nothing to do for the default queue */
15699 	if (q == tcps->tcps_g_q) {
15700 		return;
15701 	}
15702 
15703 	/*
15704 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already
15705 	 * been run.  So just return.
15706 	 */
15707 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
15708 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
15709 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
15710 		return;
15711 	}
15712 	tcp->tcp_rsrv_mp = NULL;
15713 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
15714 
15715 	CONN_INC_REF(connp);
15716 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp,
15717 	    SQ_PROCESS, SQTAG_TCP_RSRV);
15718 }
15719 
15720 /*
15721  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
15722  * We do not allow the receive window to shrink.  After setting rwnd,
15723  * set the flow control hiwat of the stream.
15724  *
15725  * This function is called in 2 cases:
15726  *
15727  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
15728  *    connection (passive open) and in tcp_rput_data() for active connect.
15729  *    This is called after tcp_mss_set() when the desired MSS value is known.
15730  *    This makes sure that our window size is a mutiple of the other side's
15731  *    MSS.
15732  * 2) Handling SO_RCVBUF option.
15733  *
15734  * It is ASSUMED that the requested size is a multiple of the current MSS.
15735  *
15736  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
15737  * user requests so.
15738  */
15739 static int
15740 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
15741 {
15742 	uint32_t	mss = tcp->tcp_mss;
15743 	uint32_t	old_max_rwnd;
15744 	uint32_t	max_transmittable_rwnd;
15745 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
15746 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15747 
15748 	if (tcp->tcp_fused) {
15749 		size_t sth_hiwat;
15750 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15751 
15752 		ASSERT(peer_tcp != NULL);
15753 		/*
15754 		 * Record the stream head's high water mark for
15755 		 * this endpoint; this is used for flow-control
15756 		 * purposes in tcp_fuse_output().
15757 		 */
15758 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
15759 		if (!tcp_detached) {
15760 			(void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp,
15761 			    sth_hiwat);
15762 			if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
15763 				conn_t *connp = tcp->tcp_connp;
15764 				struct sock_proto_props sopp;
15765 
15766 				sopp.sopp_flags = SOCKOPT_RCVTHRESH;
15767 				sopp.sopp_rcvthresh = sth_hiwat >> 3;
15768 
15769 				(*connp->conn_upcalls->su_set_proto_props)
15770 				    (connp->conn_upper_handle, &sopp);
15771 			}
15772 		}
15773 
15774 		/*
15775 		 * In the fusion case, the maxpsz stream head value of
15776 		 * our peer is set according to its send buffer size
15777 		 * and our receive buffer size; since the latter may
15778 		 * have changed we need to update the peer's maxpsz.
15779 		 */
15780 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
15781 		return (rwnd);
15782 	}
15783 
15784 	if (tcp_detached) {
15785 		old_max_rwnd = tcp->tcp_rwnd;
15786 	} else {
15787 		old_max_rwnd = tcp->tcp_recv_hiwater;
15788 	}
15789 
15790 	/*
15791 	 * Insist on a receive window that is at least
15792 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
15793 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
15794 	 * and delayed acknowledgement.
15795 	 */
15796 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
15797 
15798 	/*
15799 	 * If window size info has already been exchanged, TCP should not
15800 	 * shrink the window.  Shrinking window is doable if done carefully.
15801 	 * We may add that support later.  But so far there is not a real
15802 	 * need to do that.
15803 	 */
15804 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
15805 		/* MSS may have changed, do a round up again. */
15806 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
15807 	}
15808 
15809 	/*
15810 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
15811 	 * can be applied even before the window scale option is decided.
15812 	 */
15813 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
15814 	if (rwnd > max_transmittable_rwnd) {
15815 		rwnd = max_transmittable_rwnd -
15816 		    (max_transmittable_rwnd % mss);
15817 		if (rwnd < mss)
15818 			rwnd = max_transmittable_rwnd;
15819 		/*
15820 		 * If we're over the limit we may have to back down tcp_rwnd.
15821 		 * The increment below won't work for us. So we set all three
15822 		 * here and the increment below will have no effect.
15823 		 */
15824 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
15825 	}
15826 	if (tcp->tcp_localnet) {
15827 		tcp->tcp_rack_abs_max =
15828 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
15829 	} else {
15830 		/*
15831 		 * For a remote host on a different subnet (through a router),
15832 		 * we ack every other packet to be conforming to RFC1122.
15833 		 * tcp_deferred_acks_max is default to 2.
15834 		 */
15835 		tcp->tcp_rack_abs_max =
15836 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
15837 	}
15838 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
15839 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
15840 	else
15841 		tcp->tcp_rack_cur_max = 0;
15842 	/*
15843 	 * Increment the current rwnd by the amount the maximum grew (we
15844 	 * can not overwrite it since we might be in the middle of a
15845 	 * connection.)
15846 	 */
15847 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
15848 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
15849 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
15850 		tcp->tcp_cwnd_max = rwnd;
15851 
15852 	if (tcp_detached)
15853 		return (rwnd);
15854 	/*
15855 	 * We set the maximum receive window into rq->q_hiwat if it is
15856 	 * a STREAMS socket.
15857 	 * This is not actually used for flow control.
15858 	 */
15859 	if (!IPCL_IS_NONSTR(tcp->tcp_connp))
15860 		tcp->tcp_rq->q_hiwat = rwnd;
15861 	tcp->tcp_recv_hiwater = rwnd;
15862 	/*
15863 	 * Set the STREAM head high water mark. This doesn't have to be
15864 	 * here, since we are simply using default values, but we would
15865 	 * prefer to choose these values algorithmically, with a likely
15866 	 * relationship to rwnd.
15867 	 */
15868 	(void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp,
15869 	    MAX(rwnd, tcps->tcps_sth_rcv_hiwat));
15870 	return (rwnd);
15871 }
15872 
15873 /*
15874  * Return SNMP stuff in buffer in mpdata.
15875  */
15876 mblk_t *
15877 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
15878 {
15879 	mblk_t			*mpdata;
15880 	mblk_t			*mp_conn_ctl = NULL;
15881 	mblk_t			*mp_conn_tail;
15882 	mblk_t			*mp_attr_ctl = NULL;
15883 	mblk_t			*mp_attr_tail;
15884 	mblk_t			*mp6_conn_ctl = NULL;
15885 	mblk_t			*mp6_conn_tail;
15886 	mblk_t			*mp6_attr_ctl = NULL;
15887 	mblk_t			*mp6_attr_tail;
15888 	struct opthdr		*optp;
15889 	mib2_tcpConnEntry_t	tce;
15890 	mib2_tcp6ConnEntry_t	tce6;
15891 	mib2_transportMLPEntry_t mlp;
15892 	connf_t			*connfp;
15893 	int			i;
15894 	boolean_t 		ispriv;
15895 	zoneid_t 		zoneid;
15896 	int			v4_conn_idx;
15897 	int			v6_conn_idx;
15898 	conn_t			*connp = Q_TO_CONN(q);
15899 	tcp_stack_t		*tcps;
15900 	ip_stack_t		*ipst;
15901 	mblk_t			*mp2ctl;
15902 
15903 	/*
15904 	 * make a copy of the original message
15905 	 */
15906 	mp2ctl = copymsg(mpctl);
15907 
15908 	if (mpctl == NULL ||
15909 	    (mpdata = mpctl->b_cont) == NULL ||
15910 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
15911 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
15912 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
15913 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
15914 		freemsg(mp_conn_ctl);
15915 		freemsg(mp_attr_ctl);
15916 		freemsg(mp6_conn_ctl);
15917 		freemsg(mp6_attr_ctl);
15918 		freemsg(mpctl);
15919 		freemsg(mp2ctl);
15920 		return (NULL);
15921 	}
15922 
15923 	ipst = connp->conn_netstack->netstack_ip;
15924 	tcps = connp->conn_netstack->netstack_tcp;
15925 
15926 	/* build table of connections -- need count in fixed part */
15927 	SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4);   /* vanj */
15928 	SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min);
15929 	SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max);
15930 	SET_MIB(tcps->tcps_mib.tcpMaxConn, -1);
15931 	SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0);
15932 
15933 	ispriv =
15934 	    secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
15935 	zoneid = Q_TO_CONN(q)->conn_zoneid;
15936 
15937 	v4_conn_idx = v6_conn_idx = 0;
15938 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
15939 
15940 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
15941 		ipst = tcps->tcps_netstack->netstack_ip;
15942 
15943 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
15944 
15945 		connp = NULL;
15946 
15947 		while ((connp =
15948 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
15949 			tcp_t *tcp;
15950 			boolean_t needattr;
15951 
15952 			if (connp->conn_zoneid != zoneid)
15953 				continue;	/* not in this zone */
15954 
15955 			tcp = connp->conn_tcp;
15956 			UPDATE_MIB(&tcps->tcps_mib,
15957 			    tcpHCInSegs, tcp->tcp_ibsegs);
15958 			tcp->tcp_ibsegs = 0;
15959 			UPDATE_MIB(&tcps->tcps_mib,
15960 			    tcpHCOutSegs, tcp->tcp_obsegs);
15961 			tcp->tcp_obsegs = 0;
15962 
15963 			tce6.tcp6ConnState = tce.tcpConnState =
15964 			    tcp_snmp_state(tcp);
15965 			if (tce.tcpConnState == MIB2_TCP_established ||
15966 			    tce.tcpConnState == MIB2_TCP_closeWait)
15967 				BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab);
15968 
15969 			needattr = B_FALSE;
15970 			bzero(&mlp, sizeof (mlp));
15971 			if (connp->conn_mlp_type != mlptSingle) {
15972 				if (connp->conn_mlp_type == mlptShared ||
15973 				    connp->conn_mlp_type == mlptBoth)
15974 					mlp.tme_flags |= MIB2_TMEF_SHARED;
15975 				if (connp->conn_mlp_type == mlptPrivate ||
15976 				    connp->conn_mlp_type == mlptBoth)
15977 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
15978 				needattr = B_TRUE;
15979 			}
15980 			if (connp->conn_anon_mlp) {
15981 				mlp.tme_flags |= MIB2_TMEF_ANONMLP;
15982 				needattr = B_TRUE;
15983 			}
15984 			if (connp->conn_mac_exempt) {
15985 				mlp.tme_flags |= MIB2_TMEF_MACEXEMPT;
15986 				needattr = B_TRUE;
15987 			}
15988 			if (connp->conn_fully_bound &&
15989 			    connp->conn_effective_cred != NULL) {
15990 				ts_label_t *tsl;
15991 
15992 				tsl = crgetlabel(connp->conn_effective_cred);
15993 				mlp.tme_flags |= MIB2_TMEF_IS_LABELED;
15994 				mlp.tme_doi = label2doi(tsl);
15995 				mlp.tme_label = *label2bslabel(tsl);
15996 				needattr = B_TRUE;
15997 			}
15998 
15999 			/* Create a message to report on IPv6 entries */
16000 			if (tcp->tcp_ipversion == IPV6_VERSION) {
16001 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
16002 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
16003 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
16004 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
16005 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
16006 			/* Don't want just anybody seeing these... */
16007 			if (ispriv) {
16008 				tce6.tcp6ConnEntryInfo.ce_snxt =
16009 				    tcp->tcp_snxt;
16010 				tce6.tcp6ConnEntryInfo.ce_suna =
16011 				    tcp->tcp_suna;
16012 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16013 				    tcp->tcp_rnxt;
16014 				tce6.tcp6ConnEntryInfo.ce_rack =
16015 				    tcp->tcp_rack;
16016 			} else {
16017 				/*
16018 				 * Netstat, unfortunately, uses this to
16019 				 * get send/receive queue sizes.  How to fix?
16020 				 * Why not compute the difference only?
16021 				 */
16022 				tce6.tcp6ConnEntryInfo.ce_snxt =
16023 				    tcp->tcp_snxt - tcp->tcp_suna;
16024 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
16025 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16026 				    tcp->tcp_rnxt - tcp->tcp_rack;
16027 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
16028 			}
16029 
16030 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16031 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16032 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
16033 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
16034 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
16035 
16036 			tce6.tcp6ConnCreationProcess =
16037 			    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16038 			    tcp->tcp_cpid;
16039 			tce6.tcp6ConnCreationTime = tcp->tcp_open_time;
16040 
16041 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
16042 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
16043 
16044 			mlp.tme_connidx = v6_conn_idx++;
16045 			if (needattr)
16046 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
16047 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
16048 			}
16049 			/*
16050 			 * Create an IPv4 table entry for IPv4 entries and also
16051 			 * for IPv6 entries which are bound to in6addr_any
16052 			 * but don't have IPV6_V6ONLY set.
16053 			 * (i.e. anything an IPv4 peer could connect to)
16054 			 */
16055 			if (tcp->tcp_ipversion == IPV4_VERSION ||
16056 			    (tcp->tcp_state <= TCPS_LISTEN &&
16057 			    !tcp->tcp_connp->conn_ipv6_v6only &&
16058 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
16059 				if (tcp->tcp_ipversion == IPV6_VERSION) {
16060 					tce.tcpConnRemAddress = INADDR_ANY;
16061 					tce.tcpConnLocalAddress = INADDR_ANY;
16062 				} else {
16063 					tce.tcpConnRemAddress =
16064 					    tcp->tcp_remote;
16065 					tce.tcpConnLocalAddress =
16066 					    tcp->tcp_ip_src;
16067 				}
16068 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
16069 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
16070 				/* Don't want just anybody seeing these... */
16071 				if (ispriv) {
16072 					tce.tcpConnEntryInfo.ce_snxt =
16073 					    tcp->tcp_snxt;
16074 					tce.tcpConnEntryInfo.ce_suna =
16075 					    tcp->tcp_suna;
16076 					tce.tcpConnEntryInfo.ce_rnxt =
16077 					    tcp->tcp_rnxt;
16078 					tce.tcpConnEntryInfo.ce_rack =
16079 					    tcp->tcp_rack;
16080 				} else {
16081 					/*
16082 					 * Netstat, unfortunately, uses this to
16083 					 * get send/receive queue sizes.  How
16084 					 * to fix?
16085 					 * Why not compute the difference only?
16086 					 */
16087 					tce.tcpConnEntryInfo.ce_snxt =
16088 					    tcp->tcp_snxt - tcp->tcp_suna;
16089 					tce.tcpConnEntryInfo.ce_suna = 0;
16090 					tce.tcpConnEntryInfo.ce_rnxt =
16091 					    tcp->tcp_rnxt - tcp->tcp_rack;
16092 					tce.tcpConnEntryInfo.ce_rack = 0;
16093 				}
16094 
16095 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16096 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16097 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
16098 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
16099 				tce.tcpConnEntryInfo.ce_state =
16100 				    tcp->tcp_state;
16101 
16102 				tce.tcpConnCreationProcess =
16103 				    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16104 				    tcp->tcp_cpid;
16105 				tce.tcpConnCreationTime = tcp->tcp_open_time;
16106 
16107 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
16108 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
16109 
16110 				mlp.tme_connidx = v4_conn_idx++;
16111 				if (needattr)
16112 					(void) snmp_append_data2(
16113 					    mp_attr_ctl->b_cont,
16114 					    &mp_attr_tail, (char *)&mlp,
16115 					    sizeof (mlp));
16116 			}
16117 		}
16118 	}
16119 
16120 	/* fixed length structure for IPv4 and IPv6 counters */
16121 	SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
16122 	SET_MIB(tcps->tcps_mib.tcp6ConnTableSize,
16123 	    sizeof (mib2_tcp6ConnEntry_t));
16124 	/* synchronize 32- and 64-bit counters */
16125 	SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs);
16126 	SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs);
16127 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16128 	optp->level = MIB2_TCP;
16129 	optp->name = 0;
16130 	(void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib,
16131 	    sizeof (tcps->tcps_mib));
16132 	optp->len = msgdsize(mpdata);
16133 	qreply(q, mpctl);
16134 
16135 	/* table of connections... */
16136 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16137 	    sizeof (struct T_optmgmt_ack)];
16138 	optp->level = MIB2_TCP;
16139 	optp->name = MIB2_TCP_CONN;
16140 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16141 	qreply(q, mp_conn_ctl);
16142 
16143 	/* table of MLP attributes... */
16144 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16145 	    sizeof (struct T_optmgmt_ack)];
16146 	optp->level = MIB2_TCP;
16147 	optp->name = EXPER_XPORT_MLP;
16148 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16149 	if (optp->len == 0)
16150 		freemsg(mp_attr_ctl);
16151 	else
16152 		qreply(q, mp_attr_ctl);
16153 
16154 	/* table of IPv6 connections... */
16155 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16156 	    sizeof (struct T_optmgmt_ack)];
16157 	optp->level = MIB2_TCP6;
16158 	optp->name = MIB2_TCP6_CONN;
16159 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16160 	qreply(q, mp6_conn_ctl);
16161 
16162 	/* table of IPv6 MLP attributes... */
16163 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16164 	    sizeof (struct T_optmgmt_ack)];
16165 	optp->level = MIB2_TCP6;
16166 	optp->name = EXPER_XPORT_MLP;
16167 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16168 	if (optp->len == 0)
16169 		freemsg(mp6_attr_ctl);
16170 	else
16171 		qreply(q, mp6_attr_ctl);
16172 	return (mp2ctl);
16173 }
16174 
16175 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16176 /* ARGSUSED */
16177 int
16178 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16179 {
16180 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16181 
16182 	switch (level) {
16183 	case MIB2_TCP:
16184 		switch (name) {
16185 		case 13:
16186 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16187 				return (0);
16188 			/* TODO: delete entry defined by tce */
16189 			return (1);
16190 		default:
16191 			return (0);
16192 		}
16193 	default:
16194 		return (1);
16195 	}
16196 }
16197 
16198 /* Translate TCP state to MIB2 TCP state. */
16199 static int
16200 tcp_snmp_state(tcp_t *tcp)
16201 {
16202 	if (tcp == NULL)
16203 		return (0);
16204 
16205 	switch (tcp->tcp_state) {
16206 	case TCPS_CLOSED:
16207 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16208 	case TCPS_BOUND:
16209 		return (MIB2_TCP_closed);
16210 	case TCPS_LISTEN:
16211 		return (MIB2_TCP_listen);
16212 	case TCPS_SYN_SENT:
16213 		return (MIB2_TCP_synSent);
16214 	case TCPS_SYN_RCVD:
16215 		return (MIB2_TCP_synReceived);
16216 	case TCPS_ESTABLISHED:
16217 		return (MIB2_TCP_established);
16218 	case TCPS_CLOSE_WAIT:
16219 		return (MIB2_TCP_closeWait);
16220 	case TCPS_FIN_WAIT_1:
16221 		return (MIB2_TCP_finWait1);
16222 	case TCPS_CLOSING:
16223 		return (MIB2_TCP_closing);
16224 	case TCPS_LAST_ACK:
16225 		return (MIB2_TCP_lastAck);
16226 	case TCPS_FIN_WAIT_2:
16227 		return (MIB2_TCP_finWait2);
16228 	case TCPS_TIME_WAIT:
16229 		return (MIB2_TCP_timeWait);
16230 	default:
16231 		return (0);
16232 	}
16233 }
16234 
16235 /*
16236  * tcp_timer is the timer service routine.  It handles the retransmission,
16237  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
16238  * from the state of the tcp instance what kind of action needs to be done
16239  * at the time it is called.
16240  */
16241 static void
16242 tcp_timer(void *arg)
16243 {
16244 	mblk_t		*mp;
16245 	clock_t		first_threshold;
16246 	clock_t		second_threshold;
16247 	clock_t		ms;
16248 	uint32_t	mss;
16249 	conn_t		*connp = (conn_t *)arg;
16250 	tcp_t		*tcp = connp->conn_tcp;
16251 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16252 
16253 	tcp->tcp_timer_tid = 0;
16254 
16255 	if (tcp->tcp_fused)
16256 		return;
16257 
16258 	first_threshold =  tcp->tcp_first_timer_threshold;
16259 	second_threshold = tcp->tcp_second_timer_threshold;
16260 	switch (tcp->tcp_state) {
16261 	case TCPS_IDLE:
16262 	case TCPS_BOUND:
16263 	case TCPS_LISTEN:
16264 		return;
16265 	case TCPS_SYN_RCVD: {
16266 		tcp_t	*listener = tcp->tcp_listener;
16267 
16268 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
16269 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
16270 			/* it's our first timeout */
16271 			tcp->tcp_syn_rcvd_timeout = 1;
16272 			mutex_enter(&listener->tcp_eager_lock);
16273 			listener->tcp_syn_rcvd_timeout++;
16274 			if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) {
16275 				/*
16276 				 * Make this eager available for drop if we
16277 				 * need to drop one to accomodate a new
16278 				 * incoming SYN request.
16279 				 */
16280 				MAKE_DROPPABLE(listener, tcp);
16281 			}
16282 			if (!listener->tcp_syn_defense &&
16283 			    (listener->tcp_syn_rcvd_timeout >
16284 			    (tcps->tcps_conn_req_max_q0 >> 2)) &&
16285 			    (tcps->tcps_conn_req_max_q0 > 200)) {
16286 				/* We may be under attack. Put on a defense. */
16287 				listener->tcp_syn_defense = B_TRUE;
16288 				cmn_err(CE_WARN, "High TCP connect timeout "
16289 				    "rate! System (port %d) may be under a "
16290 				    "SYN flood attack!",
16291 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
16292 
16293 				listener->tcp_ip_addr_cache = kmem_zalloc(
16294 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
16295 				    KM_NOSLEEP);
16296 			}
16297 			mutex_exit(&listener->tcp_eager_lock);
16298 		} else if (listener != NULL) {
16299 			mutex_enter(&listener->tcp_eager_lock);
16300 			tcp->tcp_syn_rcvd_timeout++;
16301 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
16302 			    !tcp->tcp_closemp_used) {
16303 				/*
16304 				 * This is our second timeout. Put the tcp in
16305 				 * the list of droppable eagers to allow it to
16306 				 * be dropped, if needed. We don't check
16307 				 * whether tcp_dontdrop is set or not to
16308 				 * protect ourselve from a SYN attack where a
16309 				 * remote host can spoof itself as one of the
16310 				 * good IP source and continue to hold
16311 				 * resources too long.
16312 				 */
16313 				MAKE_DROPPABLE(listener, tcp);
16314 			}
16315 			mutex_exit(&listener->tcp_eager_lock);
16316 		}
16317 	}
16318 		/* FALLTHRU */
16319 	case TCPS_SYN_SENT:
16320 		first_threshold =  tcp->tcp_first_ctimer_threshold;
16321 		second_threshold = tcp->tcp_second_ctimer_threshold;
16322 		break;
16323 	case TCPS_ESTABLISHED:
16324 	case TCPS_FIN_WAIT_1:
16325 	case TCPS_CLOSING:
16326 	case TCPS_CLOSE_WAIT:
16327 	case TCPS_LAST_ACK:
16328 		/* If we have data to rexmit */
16329 		if (tcp->tcp_suna != tcp->tcp_snxt) {
16330 			clock_t	time_to_wait;
16331 
16332 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans);
16333 			if (!tcp->tcp_xmit_head)
16334 				break;
16335 			time_to_wait = lbolt -
16336 			    (clock_t)tcp->tcp_xmit_head->b_prev;
16337 			time_to_wait = tcp->tcp_rto -
16338 			    TICK_TO_MSEC(time_to_wait);
16339 			/*
16340 			 * If the timer fires too early, 1 clock tick earlier,
16341 			 * restart the timer.
16342 			 */
16343 			if (time_to_wait > msec_per_tick) {
16344 				TCP_STAT(tcps, tcp_timer_fire_early);
16345 				TCP_TIMER_RESTART(tcp, time_to_wait);
16346 				return;
16347 			}
16348 			/*
16349 			 * When we probe zero windows, we force the swnd open.
16350 			 * If our peer acks with a closed window swnd will be
16351 			 * set to zero by tcp_rput(). As long as we are
16352 			 * receiving acks tcp_rput will
16353 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
16354 			 * first and second interval actions.  NOTE: the timer
16355 			 * interval is allowed to continue its exponential
16356 			 * backoff.
16357 			 */
16358 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
16359 				if (tcp->tcp_debug) {
16360 					(void) strlog(TCP_MOD_ID, 0, 1,
16361 					    SL_TRACE, "tcp_timer: zero win");
16362 				}
16363 			} else {
16364 				/*
16365 				 * After retransmission, we need to do
16366 				 * slow start.  Set the ssthresh to one
16367 				 * half of current effective window and
16368 				 * cwnd to one MSS.  Also reset
16369 				 * tcp_cwnd_cnt.
16370 				 *
16371 				 * Note that if tcp_ssthresh is reduced because
16372 				 * of ECN, do not reduce it again unless it is
16373 				 * already one window of data away (tcp_cwr
16374 				 * should then be cleared) or this is a
16375 				 * timeout for a retransmitted segment.
16376 				 */
16377 				uint32_t npkt;
16378 
16379 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
16380 					npkt = ((tcp->tcp_timer_backoff ?
16381 					    tcp->tcp_cwnd_ssthresh :
16382 					    tcp->tcp_snxt -
16383 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
16384 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
16385 					    tcp->tcp_mss;
16386 				}
16387 				tcp->tcp_cwnd = tcp->tcp_mss;
16388 				tcp->tcp_cwnd_cnt = 0;
16389 				if (tcp->tcp_ecn_ok) {
16390 					tcp->tcp_cwr = B_TRUE;
16391 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
16392 					tcp->tcp_ecn_cwr_sent = B_FALSE;
16393 				}
16394 			}
16395 			break;
16396 		}
16397 		/*
16398 		 * We have something to send yet we cannot send.  The
16399 		 * reason can be:
16400 		 *
16401 		 * 1. Zero send window: we need to do zero window probe.
16402 		 * 2. Zero cwnd: because of ECN, we need to "clock out
16403 		 * segments.
16404 		 * 3. SWS avoidance: receiver may have shrunk window,
16405 		 * reset our knowledge.
16406 		 *
16407 		 * Note that condition 2 can happen with either 1 or
16408 		 * 3.  But 1 and 3 are exclusive.
16409 		 */
16410 		if (tcp->tcp_unsent != 0) {
16411 			if (tcp->tcp_cwnd == 0) {
16412 				/*
16413 				 * Set tcp_cwnd to 1 MSS so that a
16414 				 * new segment can be sent out.  We
16415 				 * are "clocking out" new data when
16416 				 * the network is really congested.
16417 				 */
16418 				ASSERT(tcp->tcp_ecn_ok);
16419 				tcp->tcp_cwnd = tcp->tcp_mss;
16420 			}
16421 			if (tcp->tcp_swnd == 0) {
16422 				/* Extend window for zero window probe */
16423 				tcp->tcp_swnd++;
16424 				tcp->tcp_zero_win_probe = B_TRUE;
16425 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe);
16426 			} else {
16427 				/*
16428 				 * Handle timeout from sender SWS avoidance.
16429 				 * Reset our knowledge of the max send window
16430 				 * since the receiver might have reduced its
16431 				 * receive buffer.  Avoid setting tcp_max_swnd
16432 				 * to one since that will essentially disable
16433 				 * the SWS checks.
16434 				 *
16435 				 * Note that since we don't have a SWS
16436 				 * state variable, if the timeout is set
16437 				 * for ECN but not for SWS, this
16438 				 * code will also be executed.  This is
16439 				 * fine as tcp_max_swnd is updated
16440 				 * constantly and it will not affect
16441 				 * anything.
16442 				 */
16443 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
16444 			}
16445 			tcp_wput_data(tcp, NULL, B_FALSE);
16446 			return;
16447 		}
16448 		/* Is there a FIN that needs to be to re retransmitted? */
16449 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
16450 		    !tcp->tcp_fin_acked)
16451 			break;
16452 		/* Nothing to do, return without restarting timer. */
16453 		TCP_STAT(tcps, tcp_timer_fire_miss);
16454 		return;
16455 	case TCPS_FIN_WAIT_2:
16456 		/*
16457 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
16458 		 * We waited some time for for peer's FIN, but it hasn't
16459 		 * arrived.  We flush the connection now to avoid
16460 		 * case where the peer has rebooted.
16461 		 */
16462 		if (TCP_IS_DETACHED(tcp)) {
16463 			(void) tcp_clean_death(tcp, 0, 23);
16464 		} else {
16465 			TCP_TIMER_RESTART(tcp,
16466 			    tcps->tcps_fin_wait_2_flush_interval);
16467 		}
16468 		return;
16469 	case TCPS_TIME_WAIT:
16470 		(void) tcp_clean_death(tcp, 0, 24);
16471 		return;
16472 	default:
16473 		if (tcp->tcp_debug) {
16474 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
16475 			    "tcp_timer: strange state (%d) %s",
16476 			    tcp->tcp_state, tcp_display(tcp, NULL,
16477 			    DISP_PORT_ONLY));
16478 		}
16479 		return;
16480 	}
16481 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
16482 		/*
16483 		 * For zero window probe, we need to send indefinitely,
16484 		 * unless we have not heard from the other side for some
16485 		 * time...
16486 		 */
16487 		if ((tcp->tcp_zero_win_probe == 0) ||
16488 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
16489 		    second_threshold)) {
16490 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop);
16491 			/*
16492 			 * If TCP is in SYN_RCVD state, send back a
16493 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
16494 			 * should be zero in TCPS_SYN_RCVD state.
16495 			 */
16496 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
16497 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
16498 				    "in SYN_RCVD",
16499 				    tcp, tcp->tcp_snxt,
16500 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
16501 			}
16502 			(void) tcp_clean_death(tcp,
16503 			    tcp->tcp_client_errno ?
16504 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
16505 			return;
16506 		} else {
16507 			/*
16508 			 * Set tcp_ms_we_have_waited to second_threshold
16509 			 * so that in next timeout, we will do the above
16510 			 * check (lbolt - tcp_last_recv_time).  This is
16511 			 * also to avoid overflow.
16512 			 *
16513 			 * We don't need to decrement tcp_timer_backoff
16514 			 * to avoid overflow because it will be decremented
16515 			 * later if new timeout value is greater than
16516 			 * tcp_rexmit_interval_max.  In the case when
16517 			 * tcp_rexmit_interval_max is greater than
16518 			 * second_threshold, it means that we will wait
16519 			 * longer than second_threshold to send the next
16520 			 * window probe.
16521 			 */
16522 			tcp->tcp_ms_we_have_waited = second_threshold;
16523 		}
16524 	} else if (ms > first_threshold) {
16525 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
16526 		    tcp->tcp_xmit_head != NULL) {
16527 			tcp->tcp_xmit_head =
16528 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
16529 		}
16530 		/*
16531 		 * We have been retransmitting for too long...  The RTT
16532 		 * we calculated is probably incorrect.  Reinitialize it.
16533 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
16534 		 * tcp_rtt_update so that we won't accidentally cache a
16535 		 * bad value.  But only do this if this is not a zero
16536 		 * window probe.
16537 		 */
16538 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
16539 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
16540 			    (tcp->tcp_rtt_sa >> 5);
16541 			tcp->tcp_rtt_sa = 0;
16542 			tcp_ip_notify(tcp);
16543 			tcp->tcp_rtt_update = 0;
16544 		}
16545 	}
16546 	tcp->tcp_timer_backoff++;
16547 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
16548 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
16549 	    tcps->tcps_rexmit_interval_min) {
16550 		/*
16551 		 * This means the original RTO is tcp_rexmit_interval_min.
16552 		 * So we will use tcp_rexmit_interval_min as the RTO value
16553 		 * and do the backoff.
16554 		 */
16555 		ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff;
16556 	} else {
16557 		ms <<= tcp->tcp_timer_backoff;
16558 	}
16559 	if (ms > tcps->tcps_rexmit_interval_max) {
16560 		ms = tcps->tcps_rexmit_interval_max;
16561 		/*
16562 		 * ms is at max, decrement tcp_timer_backoff to avoid
16563 		 * overflow.
16564 		 */
16565 		tcp->tcp_timer_backoff--;
16566 	}
16567 	tcp->tcp_ms_we_have_waited += ms;
16568 	if (tcp->tcp_zero_win_probe == 0) {
16569 		tcp->tcp_rto = ms;
16570 	}
16571 	TCP_TIMER_RESTART(tcp, ms);
16572 	/*
16573 	 * This is after a timeout and tcp_rto is backed off.  Set
16574 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
16575 	 * restart the timer with a correct value.
16576 	 */
16577 	tcp->tcp_set_timer = 1;
16578 	mss = tcp->tcp_snxt - tcp->tcp_suna;
16579 	if (mss > tcp->tcp_mss)
16580 		mss = tcp->tcp_mss;
16581 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
16582 		mss = tcp->tcp_swnd;
16583 
16584 	if ((mp = tcp->tcp_xmit_head) != NULL)
16585 		mp->b_prev = (mblk_t *)lbolt;
16586 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
16587 	    B_TRUE);
16588 
16589 	/*
16590 	 * When slow start after retransmission begins, start with
16591 	 * this seq no.  tcp_rexmit_max marks the end of special slow
16592 	 * start phase.  tcp_snd_burst controls how many segments
16593 	 * can be sent because of an ack.
16594 	 */
16595 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
16596 	tcp->tcp_snd_burst = TCP_CWND_SS;
16597 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
16598 	    (tcp->tcp_unsent == 0)) {
16599 		tcp->tcp_rexmit_max = tcp->tcp_fss;
16600 	} else {
16601 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
16602 	}
16603 	tcp->tcp_rexmit = B_TRUE;
16604 	tcp->tcp_dupack_cnt = 0;
16605 
16606 	/*
16607 	 * Remove all rexmit SACK blk to start from fresh.
16608 	 */
16609 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL)
16610 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
16611 	if (mp == NULL) {
16612 		return;
16613 	}
16614 	/*
16615 	 * Attach credentials to retransmitted initial SYNs.
16616 	 * In theory we should use the credentials from the connect()
16617 	 * call to ensure that getpeerucred() on the peer will be correct.
16618 	 * But we assume that SYN's are not dropped for loopback connections.
16619 	 */
16620 	if (tcp->tcp_state == TCPS_SYN_SENT) {
16621 		mblk_setcred(mp, CONN_CRED(tcp->tcp_connp), tcp->tcp_cpid);
16622 	}
16623 
16624 	tcp->tcp_csuna = tcp->tcp_snxt;
16625 	BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
16626 	UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss);
16627 	tcp_send_data(tcp, tcp->tcp_wq, mp);
16628 
16629 }
16630 
16631 static int
16632 tcp_do_unbind(conn_t *connp)
16633 {
16634 	tcp_t *tcp = connp->conn_tcp;
16635 	int error = 0;
16636 
16637 	switch (tcp->tcp_state) {
16638 	case TCPS_BOUND:
16639 	case TCPS_LISTEN:
16640 		break;
16641 	default:
16642 		return (-TOUTSTATE);
16643 	}
16644 
16645 	/*
16646 	 * Need to clean up all the eagers since after the unbind, segments
16647 	 * will no longer be delivered to this listener stream.
16648 	 */
16649 	mutex_enter(&tcp->tcp_eager_lock);
16650 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
16651 		tcp_eager_cleanup(tcp, 0);
16652 	}
16653 	mutex_exit(&tcp->tcp_eager_lock);
16654 
16655 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16656 		tcp->tcp_ipha->ipha_src = 0;
16657 	} else {
16658 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
16659 	}
16660 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
16661 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
16662 	tcp_bind_hash_remove(tcp);
16663 	tcp->tcp_state = TCPS_IDLE;
16664 	tcp->tcp_mdt = B_FALSE;
16665 
16666 	connp = tcp->tcp_connp;
16667 	connp->conn_mdt_ok = B_FALSE;
16668 	ipcl_hash_remove(connp);
16669 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
16670 
16671 	return (error);
16672 }
16673 
16674 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
16675 static void
16676 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp)
16677 {
16678 	int error = tcp_do_unbind(tcp->tcp_connp);
16679 
16680 	if (error > 0) {
16681 		tcp_err_ack(tcp, mp, TSYSERR, error);
16682 	} else if (error < 0) {
16683 		tcp_err_ack(tcp, mp, -error, 0);
16684 	} else {
16685 		/* Send M_FLUSH according to TPI */
16686 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
16687 
16688 		mp = mi_tpi_ok_ack_alloc(mp);
16689 		putnext(tcp->tcp_rq, mp);
16690 	}
16691 }
16692 
16693 /*
16694  * Don't let port fall into the privileged range.
16695  * Since the extra privileged ports can be arbitrary we also
16696  * ensure that we exclude those from consideration.
16697  * tcp_g_epriv_ports is not sorted thus we loop over it until
16698  * there are no changes.
16699  *
16700  * Note: No locks are held when inspecting tcp_g_*epriv_ports
16701  * but instead the code relies on:
16702  * - the fact that the address of the array and its size never changes
16703  * - the atomic assignment of the elements of the array
16704  *
16705  * Returns 0 if there are no more ports available.
16706  *
16707  * TS note: skip multilevel ports.
16708  */
16709 static in_port_t
16710 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
16711 {
16712 	int i;
16713 	boolean_t restart = B_FALSE;
16714 	tcp_stack_t *tcps = tcp->tcp_tcps;
16715 
16716 	if (random && tcp_random_anon_port != 0) {
16717 		(void) random_get_pseudo_bytes((uint8_t *)&port,
16718 		    sizeof (in_port_t));
16719 		/*
16720 		 * Unless changed by a sys admin, the smallest anon port
16721 		 * is 32768 and the largest anon port is 65535.  It is
16722 		 * very likely (50%) for the random port to be smaller
16723 		 * than the smallest anon port.  When that happens,
16724 		 * add port % (anon port range) to the smallest anon
16725 		 * port to get the random port.  It should fall into the
16726 		 * valid anon port range.
16727 		 */
16728 		if (port < tcps->tcps_smallest_anon_port) {
16729 			port = tcps->tcps_smallest_anon_port +
16730 			    port % (tcps->tcps_largest_anon_port -
16731 			    tcps->tcps_smallest_anon_port);
16732 		}
16733 	}
16734 
16735 retry:
16736 	if (port < tcps->tcps_smallest_anon_port)
16737 		port = (in_port_t)tcps->tcps_smallest_anon_port;
16738 
16739 	if (port > tcps->tcps_largest_anon_port) {
16740 		if (restart)
16741 			return (0);
16742 		restart = B_TRUE;
16743 		port = (in_port_t)tcps->tcps_smallest_anon_port;
16744 	}
16745 
16746 	if (port < tcps->tcps_smallest_nonpriv_port)
16747 		port = (in_port_t)tcps->tcps_smallest_nonpriv_port;
16748 
16749 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
16750 		if (port == tcps->tcps_g_epriv_ports[i]) {
16751 			port++;
16752 			/*
16753 			 * Make sure whether the port is in the
16754 			 * valid range.
16755 			 */
16756 			goto retry;
16757 		}
16758 	}
16759 	if (is_system_labeled() &&
16760 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
16761 	    IPPROTO_TCP, B_TRUE)) != 0) {
16762 		port = i;
16763 		goto retry;
16764 	}
16765 	return (port);
16766 }
16767 
16768 /*
16769  * Return the next anonymous port in the privileged port range for
16770  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
16771  * downwards.  This is the same behavior as documented in the userland
16772  * library call rresvport(3N).
16773  *
16774  * TS note: skip multilevel ports.
16775  */
16776 static in_port_t
16777 tcp_get_next_priv_port(const tcp_t *tcp)
16778 {
16779 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
16780 	in_port_t nextport;
16781 	boolean_t restart = B_FALSE;
16782 	tcp_stack_t *tcps = tcp->tcp_tcps;
16783 retry:
16784 	if (next_priv_port < tcps->tcps_min_anonpriv_port ||
16785 	    next_priv_port >= IPPORT_RESERVED) {
16786 		next_priv_port = IPPORT_RESERVED - 1;
16787 		if (restart)
16788 			return (0);
16789 		restart = B_TRUE;
16790 	}
16791 	if (is_system_labeled() &&
16792 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
16793 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
16794 		next_priv_port = nextport;
16795 		goto retry;
16796 	}
16797 	return (next_priv_port--);
16798 }
16799 
16800 /* The write side r/w procedure. */
16801 
16802 #if CCS_STATS
16803 struct {
16804 	struct {
16805 		int64_t count, bytes;
16806 	} tot, hit;
16807 } wrw_stats;
16808 #endif
16809 
16810 /*
16811  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
16812  * messages.
16813  */
16814 /* ARGSUSED */
16815 static void
16816 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
16817 {
16818 	conn_t	*connp = (conn_t *)arg;
16819 	tcp_t	*tcp = connp->conn_tcp;
16820 	queue_t	*q = tcp->tcp_wq;
16821 
16822 	ASSERT(DB_TYPE(mp) != M_IOCTL);
16823 	/*
16824 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
16825 	 * Once the close starts, streamhead and sockfs will not let any data
16826 	 * packets come down (close ensures that there are no threads using the
16827 	 * queue and no new threads will come down) but since qprocsoff()
16828 	 * hasn't happened yet, a M_FLUSH or some non data message might
16829 	 * get reflected back (in response to our own FLUSHRW) and get
16830 	 * processed after tcp_close() is done. The conn would still be valid
16831 	 * because a ref would have added but we need to check the state
16832 	 * before actually processing the packet.
16833 	 */
16834 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
16835 		freemsg(mp);
16836 		return;
16837 	}
16838 
16839 	switch (DB_TYPE(mp)) {
16840 	case M_IOCDATA:
16841 		tcp_wput_iocdata(tcp, mp);
16842 		break;
16843 	case M_FLUSH:
16844 		tcp_wput_flush(tcp, mp);
16845 		break;
16846 	default:
16847 		CALL_IP_WPUT(connp, q, mp);
16848 		break;
16849 	}
16850 }
16851 
16852 /*
16853  * The TCP fast path write put procedure.
16854  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
16855  */
16856 /* ARGSUSED */
16857 void
16858 tcp_output(void *arg, mblk_t *mp, void *arg2)
16859 {
16860 	int		len;
16861 	int		hdrlen;
16862 	int		plen;
16863 	mblk_t		*mp1;
16864 	uchar_t		*rptr;
16865 	uint32_t	snxt;
16866 	tcph_t		*tcph;
16867 	struct datab	*db;
16868 	uint32_t	suna;
16869 	uint32_t	mss;
16870 	ipaddr_t	*dst;
16871 	ipaddr_t	*src;
16872 	uint32_t	sum;
16873 	int		usable;
16874 	conn_t		*connp = (conn_t *)arg;
16875 	tcp_t		*tcp = connp->conn_tcp;
16876 	uint32_t	msize;
16877 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16878 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
16879 
16880 	/*
16881 	 * Try and ASSERT the minimum possible references on the
16882 	 * conn early enough. Since we are executing on write side,
16883 	 * the connection is obviously not detached and that means
16884 	 * there is a ref each for TCP and IP. Since we are behind
16885 	 * the squeue, the minimum references needed are 3. If the
16886 	 * conn is in classifier hash list, there should be an
16887 	 * extra ref for that (we check both the possibilities).
16888 	 */
16889 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
16890 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
16891 
16892 	ASSERT(DB_TYPE(mp) == M_DATA);
16893 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
16894 
16895 	mutex_enter(&tcp->tcp_non_sq_lock);
16896 	tcp->tcp_squeue_bytes -= msize;
16897 	mutex_exit(&tcp->tcp_non_sq_lock);
16898 
16899 	/* Check to see if this connection wants to be re-fused. */
16900 	if (tcp->tcp_refuse && !ipst->ips_ipobs_enabled) {
16901 		if (tcp->tcp_ipversion == IPV4_VERSION) {
16902 			tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha,
16903 			    &tcp->tcp_saved_tcph);
16904 		} else {
16905 			tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h,
16906 			    &tcp->tcp_saved_tcph);
16907 		}
16908 	}
16909 	/* Bypass tcp protocol for fused tcp loopback */
16910 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
16911 		return;
16912 
16913 	mss = tcp->tcp_mss;
16914 	if (tcp->tcp_xmit_zc_clean)
16915 		mp = tcp_zcopy_backoff(tcp, mp, 0);
16916 
16917 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
16918 	len = (int)(mp->b_wptr - mp->b_rptr);
16919 
16920 	/*
16921 	 * Criteria for fast path:
16922 	 *
16923 	 *   1. no unsent data
16924 	 *   2. single mblk in request
16925 	 *   3. connection established
16926 	 *   4. data in mblk
16927 	 *   5. len <= mss
16928 	 *   6. no tcp_valid bits
16929 	 */
16930 	if ((tcp->tcp_unsent != 0) ||
16931 	    (tcp->tcp_cork) ||
16932 	    (mp->b_cont != NULL) ||
16933 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
16934 	    (len == 0) ||
16935 	    (len > mss) ||
16936 	    (tcp->tcp_valid_bits != 0)) {
16937 		tcp_wput_data(tcp, mp, B_FALSE);
16938 		return;
16939 	}
16940 
16941 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
16942 	ASSERT(tcp->tcp_fin_sent == 0);
16943 
16944 	/* queue new packet onto retransmission queue */
16945 	if (tcp->tcp_xmit_head == NULL) {
16946 		tcp->tcp_xmit_head = mp;
16947 	} else {
16948 		tcp->tcp_xmit_last->b_cont = mp;
16949 	}
16950 	tcp->tcp_xmit_last = mp;
16951 	tcp->tcp_xmit_tail = mp;
16952 
16953 	/* find out how much we can send */
16954 	/* BEGIN CSTYLED */
16955 	/*
16956 	 *    un-acked	   usable
16957 	 *  |--------------|-----------------|
16958 	 *  tcp_suna       tcp_snxt	  tcp_suna+tcp_swnd
16959 	 */
16960 	/* END CSTYLED */
16961 
16962 	/* start sending from tcp_snxt */
16963 	snxt = tcp->tcp_snxt;
16964 
16965 	/*
16966 	 * Check to see if this connection has been idled for some
16967 	 * time and no ACK is expected.  If it is, we need to slow
16968 	 * start again to get back the connection's "self-clock" as
16969 	 * described in VJ's paper.
16970 	 *
16971 	 * Refer to the comment in tcp_mss_set() for the calculation
16972 	 * of tcp_cwnd after idle.
16973 	 */
16974 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
16975 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
16976 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
16977 	}
16978 
16979 	usable = tcp->tcp_swnd;		/* tcp window size */
16980 	if (usable > tcp->tcp_cwnd)
16981 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
16982 	usable -= snxt;		/* subtract stuff already sent */
16983 	suna = tcp->tcp_suna;
16984 	usable += suna;
16985 	/* usable can be < 0 if the congestion window is smaller */
16986 	if (len > usable) {
16987 		/* Can't send complete M_DATA in one shot */
16988 		goto slow;
16989 	}
16990 
16991 	mutex_enter(&tcp->tcp_non_sq_lock);
16992 	if (tcp->tcp_flow_stopped &&
16993 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
16994 		tcp_clrqfull(tcp);
16995 	}
16996 	mutex_exit(&tcp->tcp_non_sq_lock);
16997 
16998 	/*
16999 	 * determine if anything to send (Nagle).
17000 	 *
17001 	 *   1. len < tcp_mss (i.e. small)
17002 	 *   2. unacknowledged data present
17003 	 *   3. len < nagle limit
17004 	 *   4. last packet sent < nagle limit (previous packet sent)
17005 	 */
17006 	if ((len < mss) && (snxt != suna) &&
17007 	    (len < (int)tcp->tcp_naglim) &&
17008 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
17009 		/*
17010 		 * This was the first unsent packet and normally
17011 		 * mss < xmit_hiwater so there is no need to worry
17012 		 * about flow control. The next packet will go
17013 		 * through the flow control check in tcp_wput_data().
17014 		 */
17015 		/* leftover work from above */
17016 		tcp->tcp_unsent = len;
17017 		tcp->tcp_xmit_tail_unsent = len;
17018 
17019 		return;
17020 	}
17021 
17022 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
17023 
17024 	if (snxt == suna) {
17025 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17026 	}
17027 
17028 	/* we have always sent something */
17029 	tcp->tcp_rack_cnt = 0;
17030 
17031 	tcp->tcp_snxt = snxt + len;
17032 	tcp->tcp_rack = tcp->tcp_rnxt;
17033 
17034 	if ((mp1 = dupb(mp)) == 0)
17035 		goto no_memory;
17036 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
17037 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
17038 
17039 	/* adjust tcp header information */
17040 	tcph = tcp->tcp_tcph;
17041 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
17042 
17043 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
17044 	sum = (sum >> 16) + (sum & 0xFFFF);
17045 	U16_TO_ABE16(sum, tcph->th_sum);
17046 
17047 	U32_TO_ABE32(snxt, tcph->th_seq);
17048 
17049 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
17050 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
17051 	BUMP_LOCAL(tcp->tcp_obsegs);
17052 
17053 	/* Update the latest receive window size in TCP header. */
17054 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
17055 	    tcph->th_win);
17056 
17057 	tcp->tcp_last_sent_len = (ushort_t)len;
17058 
17059 	plen = len + tcp->tcp_hdr_len;
17060 
17061 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17062 		tcp->tcp_ipha->ipha_length = htons(plen);
17063 	} else {
17064 		tcp->tcp_ip6h->ip6_plen = htons(plen -
17065 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
17066 	}
17067 
17068 	/* see if we need to allocate a mblk for the headers */
17069 	hdrlen = tcp->tcp_hdr_len;
17070 	rptr = mp1->b_rptr - hdrlen;
17071 	db = mp1->b_datap;
17072 	if ((db->db_ref != 2) || rptr < db->db_base ||
17073 	    (!OK_32PTR(rptr))) {
17074 		/* NOTE: we assume allocb returns an OK_32PTR */
17075 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
17076 		    tcps->tcps_wroff_xtra, BPRI_MED);
17077 		if (!mp) {
17078 			freemsg(mp1);
17079 			goto no_memory;
17080 		}
17081 		mp->b_cont = mp1;
17082 		mp1 = mp;
17083 		/* Leave room for Link Level header */
17084 		/* hdrlen = tcp->tcp_hdr_len; */
17085 		rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra];
17086 		mp1->b_wptr = &rptr[hdrlen];
17087 	}
17088 	mp1->b_rptr = rptr;
17089 
17090 	/* Fill in the timestamp option. */
17091 	if (tcp->tcp_snd_ts_ok) {
17092 		U32_TO_BE32((uint32_t)lbolt,
17093 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
17094 		U32_TO_BE32(tcp->tcp_ts_recent,
17095 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
17096 	} else {
17097 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
17098 	}
17099 
17100 	/* copy header into outgoing packet */
17101 	dst = (ipaddr_t *)rptr;
17102 	src = (ipaddr_t *)tcp->tcp_iphc;
17103 	dst[0] = src[0];
17104 	dst[1] = src[1];
17105 	dst[2] = src[2];
17106 	dst[3] = src[3];
17107 	dst[4] = src[4];
17108 	dst[5] = src[5];
17109 	dst[6] = src[6];
17110 	dst[7] = src[7];
17111 	dst[8] = src[8];
17112 	dst[9] = src[9];
17113 	if (hdrlen -= 40) {
17114 		hdrlen >>= 2;
17115 		dst += 10;
17116 		src += 10;
17117 		do {
17118 			*dst++ = *src++;
17119 		} while (--hdrlen);
17120 	}
17121 
17122 	/*
17123 	 * Set the ECN info in the TCP header.  Note that this
17124 	 * is not the template header.
17125 	 */
17126 	if (tcp->tcp_ecn_ok) {
17127 		SET_ECT(tcp, rptr);
17128 
17129 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
17130 		if (tcp->tcp_ecn_echo_on)
17131 			tcph->th_flags[0] |= TH_ECE;
17132 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17133 			tcph->th_flags[0] |= TH_CWR;
17134 			tcp->tcp_ecn_cwr_sent = B_TRUE;
17135 		}
17136 	}
17137 
17138 	if (tcp->tcp_ip_forward_progress) {
17139 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
17140 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
17141 		tcp->tcp_ip_forward_progress = B_FALSE;
17142 	}
17143 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
17144 	return;
17145 
17146 	/*
17147 	 * If we ran out of memory, we pretend to have sent the packet
17148 	 * and that it was lost on the wire.
17149 	 */
17150 no_memory:
17151 	return;
17152 
17153 slow:
17154 	/* leftover work from above */
17155 	tcp->tcp_unsent = len;
17156 	tcp->tcp_xmit_tail_unsent = len;
17157 	tcp_wput_data(tcp, NULL, B_FALSE);
17158 }
17159 
17160 /* ARGSUSED */
17161 void
17162 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
17163 {
17164 	conn_t			*connp = (conn_t *)arg;
17165 	tcp_t			*tcp = connp->conn_tcp;
17166 	queue_t			*q = tcp->tcp_rq;
17167 	struct tcp_options	*tcpopt;
17168 	tcp_stack_t		*tcps = tcp->tcp_tcps;
17169 
17170 	/* socket options */
17171 	uint_t 			sopp_flags;
17172 	ssize_t			sopp_rxhiwat;
17173 	ssize_t			sopp_maxblk;
17174 	ushort_t		sopp_wroff;
17175 	ushort_t		sopp_tail;
17176 	ushort_t		sopp_copyopt;
17177 
17178 	tcpopt = (struct tcp_options *)mp->b_rptr;
17179 
17180 	/*
17181 	 * Drop the eager's ref on the listener, that was placed when
17182 	 * this eager began life in tcp_conn_request.
17183 	 */
17184 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17185 	if (IPCL_IS_NONSTR(connp)) {
17186 		/* Safe to free conn_ind message */
17187 		freemsg(tcp->tcp_conn.tcp_eager_conn_ind);
17188 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
17189 	}
17190 
17191 	tcp->tcp_detached = B_FALSE;
17192 
17193 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17194 		/*
17195 		 * Someone blewoff the eager before we could finish
17196 		 * the accept.
17197 		 *
17198 		 * The only reason eager exists it because we put in
17199 		 * a ref on it when conn ind went up. We need to send
17200 		 * a disconnect indication up while the last reference
17201 		 * on the eager will be dropped by the squeue when we
17202 		 * return.
17203 		 */
17204 		ASSERT(tcp->tcp_listener == NULL);
17205 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17206 			if (IPCL_IS_NONSTR(connp)) {
17207 				ASSERT(tcp->tcp_issocket);
17208 				(*connp->conn_upcalls->su_disconnected)(
17209 				    connp->conn_upper_handle, tcp->tcp_connid,
17210 				    ECONNREFUSED);
17211 				freemsg(mp);
17212 			} else {
17213 				struct	T_discon_ind	*tdi;
17214 
17215 				(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17216 				/*
17217 				 * Let us reuse the incoming mblk to avoid
17218 				 * memory allocation failure problems. We know
17219 				 * that the size of the incoming mblk i.e.
17220 				 * stroptions is greater than sizeof
17221 				 * T_discon_ind. So the reallocb below can't
17222 				 * fail.
17223 				 */
17224 				freemsg(mp->b_cont);
17225 				mp->b_cont = NULL;
17226 				ASSERT(DB_REF(mp) == 1);
17227 				mp = reallocb(mp, sizeof (struct T_discon_ind),
17228 				    B_FALSE);
17229 				ASSERT(mp != NULL);
17230 				DB_TYPE(mp) = M_PROTO;
17231 				((union T_primitives *)mp->b_rptr)->type =
17232 				    T_DISCON_IND;
17233 				tdi = (struct T_discon_ind *)mp->b_rptr;
17234 				if (tcp->tcp_issocket) {
17235 					tdi->DISCON_reason = ECONNREFUSED;
17236 					tdi->SEQ_number = 0;
17237 				} else {
17238 					tdi->DISCON_reason = ENOPROTOOPT;
17239 					tdi->SEQ_number =
17240 					    tcp->tcp_conn_req_seqnum;
17241 				}
17242 				mp->b_wptr = mp->b_rptr +
17243 				    sizeof (struct T_discon_ind);
17244 				putnext(q, mp);
17245 				return;
17246 			}
17247 		}
17248 		if (tcp->tcp_hard_binding) {
17249 			tcp->tcp_hard_binding = B_FALSE;
17250 			tcp->tcp_hard_bound = B_TRUE;
17251 		}
17252 		return;
17253 	}
17254 
17255 	if (tcpopt->to_flags & TCPOPT_BOUNDIF) {
17256 		int boundif = tcpopt->to_boundif;
17257 		uint_t len = sizeof (int);
17258 
17259 		(void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6,
17260 		    IPV6_BOUND_IF, len, (uchar_t *)&boundif, &len,
17261 		    (uchar_t *)&boundif, NULL, tcp->tcp_cred, NULL);
17262 	}
17263 	if (tcpopt->to_flags & TCPOPT_RECVPKTINFO) {
17264 		uint_t on = 1;
17265 		uint_t len = sizeof (uint_t);
17266 		(void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6,
17267 		    IPV6_RECVPKTINFO, len, (uchar_t *)&on, &len,
17268 		    (uchar_t *)&on, NULL, tcp->tcp_cred, NULL);
17269 	}
17270 
17271 	/*
17272 	 * For a loopback connection with tcp_direct_sockfs on, note that
17273 	 * we don't have to protect tcp_rcv_list yet because synchronous
17274 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
17275 	 * possibly race with us.
17276 	 */
17277 
17278 	/*
17279 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
17280 	 * properly.  This is the first time we know of the acceptor'
17281 	 * queue.  So we do it here.
17282 	 *
17283 	 * XXX
17284 	 */
17285 	if (tcp->tcp_rcv_list == NULL) {
17286 		/*
17287 		 * Recv queue is empty, tcp_rwnd should not have changed.
17288 		 * That means it should be equal to the listener's tcp_rwnd.
17289 		 */
17290 		if (!IPCL_IS_NONSTR(connp))
17291 			tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
17292 		tcp->tcp_recv_hiwater = tcp->tcp_rwnd;
17293 	} else {
17294 #ifdef DEBUG
17295 		mblk_t *tmp;
17296 		mblk_t	*mp1;
17297 		uint_t	cnt = 0;
17298 
17299 		mp1 = tcp->tcp_rcv_list;
17300 		while ((tmp = mp1) != NULL) {
17301 			mp1 = tmp->b_next;
17302 			cnt += msgdsize(tmp);
17303 		}
17304 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
17305 #endif
17306 		/* There is some data, add them back to get the max. */
17307 		if (!IPCL_IS_NONSTR(connp))
17308 			tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17309 		tcp->tcp_recv_hiwater = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17310 	}
17311 	/*
17312 	 * This is the first time we run on the correct
17313 	 * queue after tcp_accept. So fix all the q parameters
17314 	 * here.
17315 	 */
17316 	sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF;
17317 	sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
17318 
17319 	/*
17320 	 * Record the stream head's high water mark for this endpoint;
17321 	 * this is used for flow-control purposes.
17322 	 */
17323 	sopp_rxhiwat = tcp->tcp_fused ?
17324 	    tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) :
17325 	    MAX(tcp->tcp_recv_hiwater, tcps->tcps_sth_rcv_hiwat);
17326 
17327 	/*
17328 	 * Determine what write offset value to use depending on SACK and
17329 	 * whether the endpoint is fused or not.
17330 	 */
17331 	if (tcp->tcp_fused) {
17332 		ASSERT(tcp->tcp_loopback);
17333 		ASSERT(tcp->tcp_loopback_peer != NULL);
17334 		/*
17335 		 * For fused tcp loopback, set the stream head's write
17336 		 * offset value to zero since we won't be needing any room
17337 		 * for TCP/IP headers.  This would also improve performance
17338 		 * since it would reduce the amount of work done by kmem.
17339 		 * Non-fused tcp loopback case is handled separately below.
17340 		 */
17341 		sopp_wroff = 0;
17342 		/*
17343 		 * Update the peer's transmit parameters according to
17344 		 * our recently calculated high water mark value.
17345 		 */
17346 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
17347 	} else if (tcp->tcp_snd_sack_ok) {
17348 		sopp_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
17349 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
17350 	} else {
17351 		sopp_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
17352 		    tcps->tcps_wroff_xtra);
17353 	}
17354 
17355 	/*
17356 	 * If this is endpoint is handling SSL, then reserve extra
17357 	 * offset and space at the end.
17358 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
17359 	 * overriding the previous setting. The extra cost of signing and
17360 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
17361 	 * instead of a single contiguous one by the stream head
17362 	 * largely outweighs the statistical reduction of ACKs, when
17363 	 * applicable. The peer will also save on decryption and verification
17364 	 * costs.
17365 	 */
17366 	if (tcp->tcp_kssl_ctx != NULL) {
17367 		sopp_wroff += SSL3_WROFFSET;
17368 
17369 		sopp_flags |= SOCKOPT_TAIL;
17370 		sopp_tail = SSL3_MAX_TAIL_LEN;
17371 
17372 		sopp_flags |= SOCKOPT_ZCOPY;
17373 		sopp_copyopt = ZCVMUNSAFE;
17374 
17375 		sopp_maxblk = SSL3_MAX_RECORD_LEN;
17376 	}
17377 
17378 	/* Send the options up */
17379 	if (IPCL_IS_NONSTR(connp)) {
17380 		struct sock_proto_props sopp;
17381 
17382 		sopp.sopp_flags = sopp_flags;
17383 		sopp.sopp_wroff = sopp_wroff;
17384 		sopp.sopp_maxblk = sopp_maxblk;
17385 		sopp.sopp_rxhiwat = sopp_rxhiwat;
17386 		if (sopp_flags & SOCKOPT_TAIL) {
17387 			ASSERT(tcp->tcp_kssl_ctx != NULL);
17388 			ASSERT(sopp_flags & SOCKOPT_ZCOPY);
17389 			sopp.sopp_tail = sopp_tail;
17390 			sopp.sopp_zcopyflag = sopp_copyopt;
17391 		}
17392 		(*connp->conn_upcalls->su_set_proto_props)
17393 		    (connp->conn_upper_handle, &sopp);
17394 	} else {
17395 		struct stroptions *stropt;
17396 		mblk_t *stropt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
17397 		if (stropt_mp == NULL) {
17398 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
17399 			return;
17400 		}
17401 		DB_TYPE(stropt_mp) = M_SETOPTS;
17402 		stropt = (struct stroptions *)stropt_mp->b_rptr;
17403 		stropt_mp->b_wptr += sizeof (struct stroptions);
17404 		stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK;
17405 		stropt->so_hiwat = sopp_rxhiwat;
17406 		stropt->so_wroff = sopp_wroff;
17407 		stropt->so_maxblk = sopp_maxblk;
17408 
17409 		if (sopp_flags & SOCKOPT_TAIL) {
17410 			ASSERT(tcp->tcp_kssl_ctx != NULL);
17411 
17412 			stropt->so_flags |= SO_TAIL | SO_COPYOPT;
17413 			stropt->so_tail = sopp_tail;
17414 			stropt->so_copyopt = sopp_copyopt;
17415 		}
17416 
17417 		/* Send the options up */
17418 		putnext(q, stropt_mp);
17419 	}
17420 
17421 	freemsg(mp);
17422 	/*
17423 	 * Pass up any data and/or a fin that has been received.
17424 	 *
17425 	 * Adjust receive window in case it had decreased
17426 	 * (because there is data <=> tcp_rcv_list != NULL)
17427 	 * while the connection was detached. Note that
17428 	 * in case the eager was flow-controlled, w/o this
17429 	 * code, the rwnd may never open up again!
17430 	 */
17431 	if (tcp->tcp_rcv_list != NULL) {
17432 		if (IPCL_IS_NONSTR(connp)) {
17433 			mblk_t *mp;
17434 			int space_left;
17435 			int error;
17436 			boolean_t push = B_TRUE;
17437 
17438 			if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv)
17439 			    (connp->conn_upper_handle, NULL, 0, 0, &error,
17440 			    &push) >= 0) {
17441 				tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
17442 				if (tcp->tcp_state >= TCPS_ESTABLISHED &&
17443 				    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
17444 					tcp_xmit_ctl(NULL,
17445 					    tcp, (tcp->tcp_swnd == 0) ?
17446 					    tcp->tcp_suna : tcp->tcp_snxt,
17447 					    tcp->tcp_rnxt, TH_ACK);
17448 				}
17449 			}
17450 			while ((mp = tcp->tcp_rcv_list) != NULL) {
17451 				push = B_TRUE;
17452 				tcp->tcp_rcv_list = mp->b_next;
17453 				mp->b_next = NULL;
17454 				space_left = (*connp->conn_upcalls->su_recv)
17455 				    (connp->conn_upper_handle, mp, msgdsize(mp),
17456 				    0, &error, &push);
17457 				if (space_left < 0) {
17458 					/*
17459 					 * We should never be in middle of a
17460 					 * fallback, the squeue guarantees that.
17461 					 */
17462 					ASSERT(error != EOPNOTSUPP);
17463 				}
17464 			}
17465 			tcp->tcp_rcv_last_head = NULL;
17466 			tcp->tcp_rcv_last_tail = NULL;
17467 			tcp->tcp_rcv_cnt = 0;
17468 		} else {
17469 			/* We drain directly in case of fused tcp loopback */
17470 
17471 			if (!tcp->tcp_fused && canputnext(q)) {
17472 				tcp->tcp_rwnd = q->q_hiwat;
17473 				if (tcp->tcp_state >= TCPS_ESTABLISHED &&
17474 				    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
17475 					tcp_xmit_ctl(NULL,
17476 					    tcp, (tcp->tcp_swnd == 0) ?
17477 					    tcp->tcp_suna : tcp->tcp_snxt,
17478 					    tcp->tcp_rnxt, TH_ACK);
17479 				}
17480 			}
17481 
17482 			(void) tcp_rcv_drain(tcp);
17483 		}
17484 
17485 		/*
17486 		 * For fused tcp loopback, back-enable peer endpoint
17487 		 * if it's currently flow-controlled.
17488 		 */
17489 		if (tcp->tcp_fused) {
17490 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
17491 
17492 			ASSERT(peer_tcp != NULL);
17493 			ASSERT(peer_tcp->tcp_fused);
17494 			/*
17495 			 * In order to change the peer's tcp_flow_stopped,
17496 			 * we need to take locks for both end points. The
17497 			 * highest address is taken first.
17498 			 */
17499 			if (peer_tcp > tcp) {
17500 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
17501 				mutex_enter(&tcp->tcp_non_sq_lock);
17502 			} else {
17503 				mutex_enter(&tcp->tcp_non_sq_lock);
17504 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
17505 			}
17506 			if (peer_tcp->tcp_flow_stopped) {
17507 				tcp_clrqfull(peer_tcp);
17508 				TCP_STAT(tcps, tcp_fusion_backenabled);
17509 			}
17510 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
17511 			mutex_exit(&tcp->tcp_non_sq_lock);
17512 		}
17513 	}
17514 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
17515 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
17516 		tcp->tcp_ordrel_done = B_TRUE;
17517 		if (IPCL_IS_NONSTR(connp)) {
17518 			ASSERT(tcp->tcp_ordrel_mp == NULL);
17519 			(*connp->conn_upcalls->su_opctl)(
17520 			    connp->conn_upper_handle,
17521 			    SOCK_OPCTL_SHUT_RECV, 0);
17522 		} else {
17523 			mp = tcp->tcp_ordrel_mp;
17524 			tcp->tcp_ordrel_mp = NULL;
17525 			putnext(q, mp);
17526 		}
17527 	}
17528 	if (tcp->tcp_hard_binding) {
17529 		tcp->tcp_hard_binding = B_FALSE;
17530 		tcp->tcp_hard_bound = B_TRUE;
17531 	}
17532 
17533 	/* We can enable synchronous streams for STREAMS tcp endpoint now */
17534 	if (tcp->tcp_fused && !IPCL_IS_NONSTR(connp) &&
17535 	    tcp->tcp_loopback_peer != NULL &&
17536 	    !IPCL_IS_NONSTR(tcp->tcp_loopback_peer->tcp_connp)) {
17537 		tcp_fuse_syncstr_enable_pair(tcp);
17538 	}
17539 
17540 	if (tcp->tcp_ka_enabled) {
17541 		tcp->tcp_ka_last_intrvl = 0;
17542 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
17543 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
17544 	}
17545 
17546 	/*
17547 	 * At this point, eager is fully established and will
17548 	 * have the following references -
17549 	 *
17550 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
17551 	 * 1 reference for the squeue which will be dropped by the squeue as
17552 	 *	soon as this function returns.
17553 	 * There will be 1 additonal reference for being in classifier
17554 	 *	hash list provided something bad hasn't happened.
17555 	 */
17556 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17557 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17558 }
17559 
17560 /*
17561  * The function called through squeue to get behind listener's perimeter to
17562  * send a deffered conn_ind.
17563  */
17564 /* ARGSUSED */
17565 void
17566 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
17567 {
17568 	conn_t	*connp = (conn_t *)arg;
17569 	tcp_t *listener = connp->conn_tcp;
17570 	struct T_conn_ind *conn_ind;
17571 	tcp_t *tcp;
17572 
17573 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
17574 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
17575 	    conn_ind->OPT_length);
17576 
17577 	if (listener->tcp_state != TCPS_LISTEN) {
17578 		/*
17579 		 * If listener has closed, it would have caused a
17580 		 * a cleanup/blowoff to happen for the eager, so
17581 		 * we don't need to do anything more.
17582 		 */
17583 		freemsg(mp);
17584 		return;
17585 	}
17586 
17587 	tcp_ulp_newconn(connp, tcp->tcp_connp, mp);
17588 }
17589 
17590 /* ARGSUSED */
17591 static int
17592 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr)
17593 {
17594 	tcp_t *listener, *eager;
17595 	mblk_t *opt_mp;
17596 	struct tcp_options *tcpopt;
17597 
17598 	listener = lconnp->conn_tcp;
17599 	ASSERT(listener->tcp_state == TCPS_LISTEN);
17600 	eager = econnp->conn_tcp;
17601 	ASSERT(eager->tcp_listener != NULL);
17602 
17603 	ASSERT(eager->tcp_rq != NULL);
17604 
17605 	opt_mp = allocb(sizeof (struct tcp_options), BPRI_HI);
17606 	if (opt_mp == NULL) {
17607 		return (-TPROTO);
17608 	}
17609 	bzero((char *)opt_mp->b_rptr, sizeof (struct tcp_options));
17610 	eager->tcp_issocket = B_TRUE;
17611 
17612 	econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
17613 	econnp->conn_allzones = listener->tcp_connp->conn_allzones;
17614 	ASSERT(econnp->conn_netstack ==
17615 	    listener->tcp_connp->conn_netstack);
17616 	ASSERT(eager->tcp_tcps == listener->tcp_tcps);
17617 
17618 	/* Put the ref for IP */
17619 	CONN_INC_REF(econnp);
17620 
17621 	/*
17622 	 * We should have minimum of 3 references on the conn
17623 	 * at this point. One each for TCP and IP and one for
17624 	 * the T_conn_ind that was sent up when the 3-way handshake
17625 	 * completed. In the normal case we would also have another
17626 	 * reference (making a total of 4) for the conn being in the
17627 	 * classifier hash list. However the eager could have received
17628 	 * an RST subsequently and tcp_closei_local could have removed
17629 	 * the eager from the classifier hash list, hence we can't
17630 	 * assert that reference.
17631 	 */
17632 	ASSERT(econnp->conn_ref >= 3);
17633 
17634 	opt_mp->b_datap->db_type = M_SETOPTS;
17635 	opt_mp->b_wptr += sizeof (struct tcp_options);
17636 
17637 	/*
17638 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
17639 	 * from listener to acceptor.
17640 	 */
17641 	tcpopt = (struct tcp_options *)opt_mp->b_rptr;
17642 	tcpopt->to_flags = 0;
17643 
17644 	if (listener->tcp_bound_if != 0) {
17645 		tcpopt->to_flags |= TCPOPT_BOUNDIF;
17646 		tcpopt->to_boundif = listener->tcp_bound_if;
17647 	}
17648 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
17649 		tcpopt->to_flags |= TCPOPT_RECVPKTINFO;
17650 	}
17651 
17652 	mutex_enter(&listener->tcp_eager_lock);
17653 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
17654 
17655 		tcp_t *tail;
17656 		tcp_t *tcp;
17657 		mblk_t *mp1;
17658 
17659 		tcp = listener->tcp_eager_prev_q0;
17660 		/*
17661 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
17662 		 * deferred T_conn_ind queue. We need to get to the head
17663 		 * of the queue in order to send up T_conn_ind the same
17664 		 * order as how the 3WHS is completed.
17665 		 */
17666 		while (tcp != listener) {
17667 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
17668 			    !tcp->tcp_kssl_pending)
17669 				break;
17670 			else
17671 				tcp = tcp->tcp_eager_prev_q0;
17672 		}
17673 		/* None of the pending eagers can be sent up now */
17674 		if (tcp == listener)
17675 			goto no_more_eagers;
17676 
17677 		mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
17678 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
17679 		/* Move from q0 to q */
17680 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
17681 		listener->tcp_conn_req_cnt_q0--;
17682 		listener->tcp_conn_req_cnt_q++;
17683 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
17684 		    tcp->tcp_eager_prev_q0;
17685 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
17686 		    tcp->tcp_eager_next_q0;
17687 		tcp->tcp_eager_prev_q0 = NULL;
17688 		tcp->tcp_eager_next_q0 = NULL;
17689 		tcp->tcp_conn_def_q0 = B_FALSE;
17690 
17691 		/* Make sure the tcp isn't in the list of droppables */
17692 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
17693 		    tcp->tcp_eager_prev_drop_q0 == NULL);
17694 
17695 		/*
17696 		 * Insert at end of the queue because sockfs sends
17697 		 * down T_CONN_RES in chronological order. Leaving
17698 		 * the older conn indications at front of the queue
17699 		 * helps reducing search time.
17700 		 */
17701 		tail = listener->tcp_eager_last_q;
17702 		if (tail != NULL) {
17703 			tail->tcp_eager_next_q = tcp;
17704 		} else {
17705 			listener->tcp_eager_next_q = tcp;
17706 		}
17707 		listener->tcp_eager_last_q = tcp;
17708 		tcp->tcp_eager_next_q = NULL;
17709 
17710 		/* Need to get inside the listener perimeter */
17711 		CONN_INC_REF(listener->tcp_connp);
17712 		SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1,
17713 		    tcp_send_pending, listener->tcp_connp, SQ_FILL,
17714 		    SQTAG_TCP_SEND_PENDING);
17715 	}
17716 no_more_eagers:
17717 	tcp_eager_unlink(eager);
17718 	mutex_exit(&listener->tcp_eager_lock);
17719 
17720 	/*
17721 	 * At this point, the eager is detached from the listener
17722 	 * but we still have an extra refs on eager (apart from the
17723 	 * usual tcp references). The ref was placed in tcp_rput_data
17724 	 * before sending the conn_ind in tcp_send_conn_ind.
17725 	 * The ref will be dropped in tcp_accept_finish().
17726 	 */
17727 	SQUEUE_ENTER_ONE(econnp->conn_sqp, opt_mp, tcp_accept_finish,
17728 	    econnp, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0);
17729 	return (0);
17730 }
17731 
17732 int
17733 tcp_accept(sock_lower_handle_t lproto_handle,
17734     sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle,
17735     cred_t *cr)
17736 {
17737 	conn_t *lconnp, *econnp;
17738 	tcp_t *listener, *eager;
17739 	tcp_stack_t	*tcps;
17740 
17741 	lconnp = (conn_t *)lproto_handle;
17742 	listener = lconnp->conn_tcp;
17743 	ASSERT(listener->tcp_state == TCPS_LISTEN);
17744 	econnp = (conn_t *)eproto_handle;
17745 	eager = econnp->conn_tcp;
17746 	ASSERT(eager->tcp_listener != NULL);
17747 	tcps = eager->tcp_tcps;
17748 
17749 	/*
17750 	 * It is OK to manipulate these fields outside the eager's squeue
17751 	 * because they will not start being used until tcp_accept_finish
17752 	 * has been called.
17753 	 */
17754 	ASSERT(lconnp->conn_upper_handle != NULL);
17755 	ASSERT(econnp->conn_upper_handle == NULL);
17756 	econnp->conn_upper_handle = sock_handle;
17757 	econnp->conn_upcalls = lconnp->conn_upcalls;
17758 	ASSERT(IPCL_IS_NONSTR(econnp));
17759 	/*
17760 	 * Create helper stream if it is a non-TPI TCP connection.
17761 	 */
17762 	if (ip_create_helper_stream(econnp, tcps->tcps_ldi_ident)) {
17763 		ip1dbg(("tcp_accept: create of IP helper stream"
17764 		    " failed\n"));
17765 		return (EPROTO);
17766 	}
17767 	eager->tcp_rq = econnp->conn_rq;
17768 	eager->tcp_wq = econnp->conn_wq;
17769 
17770 	ASSERT(eager->tcp_rq != NULL);
17771 
17772 	return (tcp_accept_common(lconnp, econnp, cr));
17773 }
17774 
17775 
17776 /*
17777  * This is the STREAMS entry point for T_CONN_RES coming down on
17778  * Acceptor STREAM when  sockfs listener does accept processing.
17779  * Read the block comment on top of tcp_conn_request().
17780  */
17781 void
17782 tcp_tpi_accept(queue_t *q, mblk_t *mp)
17783 {
17784 	queue_t *rq = RD(q);
17785 	struct T_conn_res *conn_res;
17786 	tcp_t *eager;
17787 	tcp_t *listener;
17788 	struct T_ok_ack *ok;
17789 	t_scalar_t PRIM_type;
17790 	conn_t *econnp;
17791 	cred_t *cr;
17792 
17793 	ASSERT(DB_TYPE(mp) == M_PROTO);
17794 
17795 	/*
17796 	 * All Solaris components should pass a db_credp
17797 	 * for this TPI message, hence we ASSERT.
17798 	 * But in case there is some other M_PROTO that looks
17799 	 * like a TPI message sent by some other kernel
17800 	 * component, we check and return an error.
17801 	 */
17802 	cr = msg_getcred(mp, NULL);
17803 	ASSERT(cr != NULL);
17804 	if (cr == NULL) {
17805 		mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
17806 		if (mp != NULL)
17807 			putnext(rq, mp);
17808 		return;
17809 	}
17810 	conn_res = (struct T_conn_res *)mp->b_rptr;
17811 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17812 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
17813 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
17814 		if (mp != NULL)
17815 			putnext(rq, mp);
17816 		return;
17817 	}
17818 	switch (conn_res->PRIM_type) {
17819 	case O_T_CONN_RES:
17820 	case T_CONN_RES:
17821 		/*
17822 		 * We pass up an err ack if allocb fails. This will
17823 		 * cause sockfs to issue a T_DISCON_REQ which will cause
17824 		 * tcp_eager_blowoff to be called. sockfs will then call
17825 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
17826 		 * we need to do the allocb up here because we have to
17827 		 * make sure rq->q_qinfo->qi_qclose still points to the
17828 		 * correct function (tcp_tpi_close_accept) in case allocb
17829 		 * fails.
17830 		 */
17831 		bcopy(mp->b_rptr + conn_res->OPT_offset,
17832 		    &eager, conn_res->OPT_length);
17833 		PRIM_type = conn_res->PRIM_type;
17834 		mp->b_datap->db_type = M_PCPROTO;
17835 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
17836 		ok = (struct T_ok_ack *)mp->b_rptr;
17837 		ok->PRIM_type = T_OK_ACK;
17838 		ok->CORRECT_prim = PRIM_type;
17839 		econnp = eager->tcp_connp;
17840 		econnp->conn_dev = (dev_t)RD(q)->q_ptr;
17841 		econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr);
17842 		eager->tcp_rq = rq;
17843 		eager->tcp_wq = q;
17844 		rq->q_ptr = econnp;
17845 		rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
17846 		q->q_ptr = econnp;
17847 		q->q_qinfo = &tcp_winit;
17848 		listener = eager->tcp_listener;
17849 
17850 		if (tcp_accept_common(listener->tcp_connp,
17851 		    econnp, cr) < 0) {
17852 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
17853 			if (mp != NULL)
17854 				putnext(rq, mp);
17855 			return;
17856 		}
17857 
17858 		/*
17859 		 * Send the new local address also up to sockfs. There
17860 		 * should already be enough space in the mp that came
17861 		 * down from soaccept().
17862 		 */
17863 		if (eager->tcp_family == AF_INET) {
17864 			sin_t *sin;
17865 
17866 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
17867 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
17868 			sin = (sin_t *)mp->b_wptr;
17869 			mp->b_wptr += sizeof (sin_t);
17870 			sin->sin_family = AF_INET;
17871 			sin->sin_port = eager->tcp_lport;
17872 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
17873 		} else {
17874 			sin6_t *sin6;
17875 
17876 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
17877 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
17878 			sin6 = (sin6_t *)mp->b_wptr;
17879 			mp->b_wptr += sizeof (sin6_t);
17880 			sin6->sin6_family = AF_INET6;
17881 			sin6->sin6_port = eager->tcp_lport;
17882 			if (eager->tcp_ipversion == IPV4_VERSION) {
17883 				sin6->sin6_flowinfo = 0;
17884 				IN6_IPADDR_TO_V4MAPPED(
17885 				    eager->tcp_ipha->ipha_src,
17886 				    &sin6->sin6_addr);
17887 			} else {
17888 				ASSERT(eager->tcp_ip6h != NULL);
17889 				sin6->sin6_flowinfo =
17890 				    eager->tcp_ip6h->ip6_vcf &
17891 				    ~IPV6_VERS_AND_FLOW_MASK;
17892 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
17893 			}
17894 			sin6->sin6_scope_id = 0;
17895 			sin6->__sin6_src_id = 0;
17896 		}
17897 
17898 		putnext(rq, mp);
17899 		return;
17900 	default:
17901 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
17902 		if (mp != NULL)
17903 			putnext(rq, mp);
17904 		return;
17905 	}
17906 }
17907 
17908 static int
17909 tcp_do_getsockname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
17910 {
17911 	sin_t *sin = (sin_t *)sa;
17912 	sin6_t *sin6 = (sin6_t *)sa;
17913 
17914 	switch (tcp->tcp_family) {
17915 	case AF_INET:
17916 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
17917 
17918 		if (*salenp < sizeof (sin_t))
17919 			return (EINVAL);
17920 
17921 		*sin = sin_null;
17922 		sin->sin_family = AF_INET;
17923 		if (tcp->tcp_state >= TCPS_BOUND) {
17924 			sin->sin_port = tcp->tcp_lport;
17925 			sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
17926 		}
17927 		*salenp = sizeof (sin_t);
17928 		break;
17929 
17930 	case AF_INET6:
17931 		if (*salenp < sizeof (sin6_t))
17932 			return (EINVAL);
17933 
17934 		*sin6 = sin6_null;
17935 		sin6->sin6_family = AF_INET6;
17936 		if (tcp->tcp_state >= TCPS_BOUND) {
17937 			sin6->sin6_port = tcp->tcp_lport;
17938 			if (tcp->tcp_ipversion == IPV4_VERSION) {
17939 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
17940 				    &sin6->sin6_addr);
17941 			} else {
17942 				sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
17943 			}
17944 		}
17945 		*salenp = sizeof (sin6_t);
17946 		break;
17947 	}
17948 
17949 	return (0);
17950 }
17951 
17952 static int
17953 tcp_do_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
17954 {
17955 	sin_t *sin = (sin_t *)sa;
17956 	sin6_t *sin6 = (sin6_t *)sa;
17957 
17958 	if (tcp->tcp_state < TCPS_SYN_RCVD)
17959 		return (ENOTCONN);
17960 
17961 	switch (tcp->tcp_family) {
17962 	case AF_INET:
17963 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
17964 
17965 		if (*salenp < sizeof (sin_t))
17966 			return (EINVAL);
17967 
17968 		*sin = sin_null;
17969 		sin->sin_family = AF_INET;
17970 		sin->sin_port = tcp->tcp_fport;
17971 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
17972 		    sin->sin_addr.s_addr);
17973 		*salenp = sizeof (sin_t);
17974 		break;
17975 
17976 	case AF_INET6:
17977 		if (*salenp < sizeof (sin6_t))
17978 			return (EINVAL);
17979 
17980 		*sin6 = sin6_null;
17981 		sin6->sin6_family = AF_INET6;
17982 		sin6->sin6_port = tcp->tcp_fport;
17983 		sin6->sin6_addr = tcp->tcp_remote_v6;
17984 		if (tcp->tcp_ipversion == IPV6_VERSION) {
17985 			sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf &
17986 			    ~IPV6_VERS_AND_FLOW_MASK;
17987 		}
17988 		*salenp = sizeof (sin6_t);
17989 		break;
17990 	}
17991 
17992 	return (0);
17993 }
17994 
17995 /*
17996  * Handle special out-of-band ioctl requests (see PSARC/2008/265).
17997  */
17998 static void
17999 tcp_wput_cmdblk(queue_t *q, mblk_t *mp)
18000 {
18001 	void	*data;
18002 	mblk_t	*datamp = mp->b_cont;
18003 	tcp_t	*tcp = Q_TO_TCP(q);
18004 	cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr;
18005 
18006 	if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) {
18007 		cmdp->cb_error = EPROTO;
18008 		qreply(q, mp);
18009 		return;
18010 	}
18011 
18012 	data = datamp->b_rptr;
18013 
18014 	switch (cmdp->cb_cmd) {
18015 	case TI_GETPEERNAME:
18016 		cmdp->cb_error = tcp_do_getpeername(tcp, data, &cmdp->cb_len);
18017 		break;
18018 	case TI_GETMYNAME:
18019 		cmdp->cb_error = tcp_do_getsockname(tcp, data, &cmdp->cb_len);
18020 		break;
18021 	default:
18022 		cmdp->cb_error = EINVAL;
18023 		break;
18024 	}
18025 
18026 	qreply(q, mp);
18027 }
18028 
18029 void
18030 tcp_wput(queue_t *q, mblk_t *mp)
18031 {
18032 	conn_t	*connp = Q_TO_CONN(q);
18033 	tcp_t	*tcp;
18034 	void (*output_proc)();
18035 	t_scalar_t type;
18036 	uchar_t *rptr;
18037 	struct iocblk	*iocp;
18038 	size_t size;
18039 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
18040 
18041 	ASSERT(connp->conn_ref >= 2);
18042 
18043 	switch (DB_TYPE(mp)) {
18044 	case M_DATA:
18045 		tcp = connp->conn_tcp;
18046 		ASSERT(tcp != NULL);
18047 
18048 		size = msgdsize(mp);
18049 
18050 		mutex_enter(&tcp->tcp_non_sq_lock);
18051 		tcp->tcp_squeue_bytes += size;
18052 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
18053 			tcp_setqfull(tcp);
18054 		}
18055 		mutex_exit(&tcp->tcp_non_sq_lock);
18056 
18057 		CONN_INC_REF(connp);
18058 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp,
18059 		    tcp_squeue_flag, SQTAG_TCP_OUTPUT);
18060 		return;
18061 
18062 	case M_CMD:
18063 		tcp_wput_cmdblk(q, mp);
18064 		return;
18065 
18066 	case M_PROTO:
18067 	case M_PCPROTO:
18068 		/*
18069 		 * if it is a snmp message, don't get behind the squeue
18070 		 */
18071 		tcp = connp->conn_tcp;
18072 		rptr = mp->b_rptr;
18073 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
18074 			type = ((union T_primitives *)rptr)->type;
18075 		} else {
18076 			if (tcp->tcp_debug) {
18077 				(void) strlog(TCP_MOD_ID, 0, 1,
18078 				    SL_ERROR|SL_TRACE,
18079 				    "tcp_wput_proto, dropping one...");
18080 			}
18081 			freemsg(mp);
18082 			return;
18083 		}
18084 		if (type == T_SVR4_OPTMGMT_REQ) {
18085 			/*
18086 			 * All Solaris components should pass a db_credp
18087 			 * for this TPI message, hence we ASSERT.
18088 			 * But in case there is some other M_PROTO that looks
18089 			 * like a TPI message sent by some other kernel
18090 			 * component, we check and return an error.
18091 			 */
18092 			cred_t	*cr = msg_getcred(mp, NULL);
18093 
18094 			ASSERT(cr != NULL);
18095 			if (cr == NULL) {
18096 				tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
18097 				return;
18098 			}
18099 			if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get,
18100 			    cr)) {
18101 				/*
18102 				 * This was a SNMP request
18103 				 */
18104 				return;
18105 			} else {
18106 				output_proc = tcp_wput_proto;
18107 			}
18108 		} else {
18109 			output_proc = tcp_wput_proto;
18110 		}
18111 		break;
18112 	case M_IOCTL:
18113 		/*
18114 		 * Most ioctls can be processed right away without going via
18115 		 * squeues - process them right here. Those that do require
18116 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
18117 		 * are processed by tcp_wput_ioctl().
18118 		 */
18119 		iocp = (struct iocblk *)mp->b_rptr;
18120 		tcp = connp->conn_tcp;
18121 
18122 		switch (iocp->ioc_cmd) {
18123 		case TCP_IOC_ABORT_CONN:
18124 			tcp_ioctl_abort_conn(q, mp);
18125 			return;
18126 		case TI_GETPEERNAME:
18127 		case TI_GETMYNAME:
18128 			mi_copyin(q, mp, NULL,
18129 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
18130 			return;
18131 		case ND_SET:
18132 			/* nd_getset does the necessary checks */
18133 		case ND_GET:
18134 			if (!nd_getset(q, tcps->tcps_g_nd, mp)) {
18135 				CALL_IP_WPUT(connp, q, mp);
18136 				return;
18137 			}
18138 			qreply(q, mp);
18139 			return;
18140 		case TCP_IOC_DEFAULT_Q:
18141 			/*
18142 			 * Wants to be the default wq. Check the credentials
18143 			 * first, the rest is executed via squeue.
18144 			 */
18145 			if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
18146 				iocp->ioc_error = EPERM;
18147 				iocp->ioc_count = 0;
18148 				mp->b_datap->db_type = M_IOCACK;
18149 				qreply(q, mp);
18150 				return;
18151 			}
18152 			output_proc = tcp_wput_ioctl;
18153 			break;
18154 		default:
18155 			output_proc = tcp_wput_ioctl;
18156 			break;
18157 		}
18158 		break;
18159 	default:
18160 		output_proc = tcp_wput_nondata;
18161 		break;
18162 	}
18163 
18164 	CONN_INC_REF(connp);
18165 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp,
18166 	    tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER);
18167 }
18168 
18169 /*
18170  * Initial STREAMS write side put() procedure for sockets. It tries to
18171  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18172  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18173  * are handled by tcp_wput() as usual.
18174  *
18175  * All further messages will also be handled by tcp_wput() because we cannot
18176  * be sure that the above short cut is safe later.
18177  */
18178 static void
18179 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18180 {
18181 	conn_t			*connp = Q_TO_CONN(wq);
18182 	tcp_t			*tcp = connp->conn_tcp;
18183 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
18184 
18185 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
18186 	wq->q_qinfo = &tcp_winit;
18187 
18188 	ASSERT(IPCL_IS_TCP(connp));
18189 	ASSERT(TCP_IS_SOCKET(tcp));
18190 
18191 	if (DB_TYPE(mp) == M_PCPROTO &&
18192 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
18193 	    car->PRIM_type == T_CAPABILITY_REQ) {
18194 		tcp_capability_req(tcp, mp);
18195 		return;
18196 	}
18197 
18198 	tcp_wput(wq, mp);
18199 }
18200 
18201 /* ARGSUSED */
18202 static void
18203 tcp_wput_fallback(queue_t *wq, mblk_t *mp)
18204 {
18205 #ifdef DEBUG
18206 	cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n");
18207 #endif
18208 	freemsg(mp);
18209 }
18210 
18211 static boolean_t
18212 tcp_zcopy_check(tcp_t *tcp)
18213 {
18214 	conn_t	*connp = tcp->tcp_connp;
18215 	ire_t	*ire;
18216 	boolean_t	zc_enabled = B_FALSE;
18217 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18218 
18219 	if (do_tcpzcopy == 2)
18220 		zc_enabled = B_TRUE;
18221 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
18222 	    IPCL_IS_CONNECTED(connp) &&
18223 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
18224 	    connp->conn_dontroute == 0 &&
18225 	    !connp->conn_nexthop_set &&
18226 	    connp->conn_outgoing_ill == NULL &&
18227 	    do_tcpzcopy == 1) {
18228 		/*
18229 		 * the checks above  closely resemble the fast path checks
18230 		 * in tcp_send_data().
18231 		 */
18232 		mutex_enter(&connp->conn_lock);
18233 		ire = connp->conn_ire_cache;
18234 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18235 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18236 			IRE_REFHOLD(ire);
18237 			if (ire->ire_stq != NULL) {
18238 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
18239 
18240 				zc_enabled = ill && (ill->ill_capabilities &
18241 				    ILL_CAPAB_ZEROCOPY) &&
18242 				    (ill->ill_zerocopy_capab->
18243 				    ill_zerocopy_flags != 0);
18244 			}
18245 			IRE_REFRELE(ire);
18246 		}
18247 		mutex_exit(&connp->conn_lock);
18248 	}
18249 	tcp->tcp_snd_zcopy_on = zc_enabled;
18250 	if (!TCP_IS_DETACHED(tcp)) {
18251 		if (zc_enabled) {
18252 			(void) proto_set_tx_copyopt(tcp->tcp_rq, connp,
18253 			    ZCVMSAFE);
18254 			TCP_STAT(tcps, tcp_zcopy_on);
18255 		} else {
18256 			(void) proto_set_tx_copyopt(tcp->tcp_rq, connp,
18257 			    ZCVMUNSAFE);
18258 			TCP_STAT(tcps, tcp_zcopy_off);
18259 		}
18260 	}
18261 	return (zc_enabled);
18262 }
18263 
18264 static mblk_t *
18265 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
18266 {
18267 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18268 
18269 	if (do_tcpzcopy == 2)
18270 		return (bp);
18271 	else if (tcp->tcp_snd_zcopy_on) {
18272 		tcp->tcp_snd_zcopy_on = B_FALSE;
18273 		if (!TCP_IS_DETACHED(tcp)) {
18274 			(void) proto_set_tx_copyopt(tcp->tcp_rq, tcp->tcp_connp,
18275 			    ZCVMUNSAFE);
18276 			TCP_STAT(tcps, tcp_zcopy_disable);
18277 		}
18278 	}
18279 	return (tcp_zcopy_backoff(tcp, bp, 0));
18280 }
18281 
18282 /*
18283  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
18284  * the original desballoca'ed segmapped mblk.
18285  */
18286 static mblk_t *
18287 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
18288 {
18289 	mblk_t *head, *tail, *nbp;
18290 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18291 
18292 	if (IS_VMLOANED_MBLK(bp)) {
18293 		TCP_STAT(tcps, tcp_zcopy_backoff);
18294 		if ((head = copyb(bp)) == NULL) {
18295 			/* fail to backoff; leave it for the next backoff */
18296 			tcp->tcp_xmit_zc_clean = B_FALSE;
18297 			return (bp);
18298 		}
18299 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18300 			if (fix_xmitlist)
18301 				tcp_zcopy_notify(tcp);
18302 			else
18303 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18304 		}
18305 		nbp = bp->b_cont;
18306 		if (fix_xmitlist) {
18307 			head->b_prev = bp->b_prev;
18308 			head->b_next = bp->b_next;
18309 			if (tcp->tcp_xmit_tail == bp)
18310 				tcp->tcp_xmit_tail = head;
18311 		}
18312 		bp->b_next = NULL;
18313 		bp->b_prev = NULL;
18314 		freeb(bp);
18315 	} else {
18316 		head = bp;
18317 		nbp = bp->b_cont;
18318 	}
18319 	tail = head;
18320 	while (nbp) {
18321 		if (IS_VMLOANED_MBLK(nbp)) {
18322 			TCP_STAT(tcps, tcp_zcopy_backoff);
18323 			if ((tail->b_cont = copyb(nbp)) == NULL) {
18324 				tcp->tcp_xmit_zc_clean = B_FALSE;
18325 				tail->b_cont = nbp;
18326 				return (head);
18327 			}
18328 			tail = tail->b_cont;
18329 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18330 				if (fix_xmitlist)
18331 					tcp_zcopy_notify(tcp);
18332 				else
18333 					tail->b_datap->db_struioflag |=
18334 					    STRUIO_ZCNOTIFY;
18335 			}
18336 			bp = nbp;
18337 			nbp = nbp->b_cont;
18338 			if (fix_xmitlist) {
18339 				tail->b_prev = bp->b_prev;
18340 				tail->b_next = bp->b_next;
18341 				if (tcp->tcp_xmit_tail == bp)
18342 					tcp->tcp_xmit_tail = tail;
18343 			}
18344 			bp->b_next = NULL;
18345 			bp->b_prev = NULL;
18346 			freeb(bp);
18347 		} else {
18348 			tail->b_cont = nbp;
18349 			tail = nbp;
18350 			nbp = nbp->b_cont;
18351 		}
18352 	}
18353 	if (fix_xmitlist) {
18354 		tcp->tcp_xmit_last = tail;
18355 		tcp->tcp_xmit_zc_clean = B_TRUE;
18356 	}
18357 	return (head);
18358 }
18359 
18360 static void
18361 tcp_zcopy_notify(tcp_t *tcp)
18362 {
18363 	struct stdata	*stp;
18364 	conn_t *connp;
18365 
18366 	if (tcp->tcp_detached)
18367 		return;
18368 	connp = tcp->tcp_connp;
18369 	if (IPCL_IS_NONSTR(connp)) {
18370 		(*connp->conn_upcalls->su_zcopy_notify)
18371 		    (connp->conn_upper_handle);
18372 		return;
18373 	}
18374 	stp = STREAM(tcp->tcp_rq);
18375 	mutex_enter(&stp->sd_lock);
18376 	stp->sd_flag |= STZCNOTIFY;
18377 	cv_broadcast(&stp->sd_zcopy_wait);
18378 	mutex_exit(&stp->sd_lock);
18379 }
18380 
18381 static boolean_t
18382 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep)
18383 {
18384 	ire_t	*ire;
18385 	conn_t	*connp = tcp->tcp_connp;
18386 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18387 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18388 
18389 	mutex_enter(&connp->conn_lock);
18390 	ire = connp->conn_ire_cache;
18391 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18392 
18393 	if ((ire != NULL) &&
18394 	    (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) &&
18395 	    IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) &&
18396 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18397 		IRE_REFHOLD(ire);
18398 		mutex_exit(&connp->conn_lock);
18399 	} else {
18400 		boolean_t cached = B_FALSE;
18401 		ts_label_t *tsl;
18402 
18403 		/* force a recheck later on */
18404 		tcp->tcp_ire_ill_check_done = B_FALSE;
18405 
18406 		TCP_DBGSTAT(tcps, tcp_ire_null1);
18407 		connp->conn_ire_cache = NULL;
18408 		mutex_exit(&connp->conn_lock);
18409 
18410 		if (ire != NULL)
18411 			IRE_REFRELE_NOTR(ire);
18412 
18413 		tsl = crgetlabel(CONN_CRED(connp));
18414 		ire = (dst ?
18415 		    ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) :
18416 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
18417 		    connp->conn_zoneid, tsl, ipst));
18418 
18419 		if (ire == NULL) {
18420 			TCP_STAT(tcps, tcp_ire_null);
18421 			return (B_FALSE);
18422 		}
18423 
18424 		IRE_REFHOLD_NOTR(ire);
18425 
18426 		mutex_enter(&connp->conn_lock);
18427 		if (CONN_CACHE_IRE(connp)) {
18428 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
18429 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18430 				TCP_CHECK_IREINFO(tcp, ire);
18431 				connp->conn_ire_cache = ire;
18432 				cached = B_TRUE;
18433 			}
18434 			rw_exit(&ire->ire_bucket->irb_lock);
18435 		}
18436 		mutex_exit(&connp->conn_lock);
18437 
18438 		/*
18439 		 * We can continue to use the ire but since it was
18440 		 * not cached, we should drop the extra reference.
18441 		 */
18442 		if (!cached)
18443 			IRE_REFRELE_NOTR(ire);
18444 
18445 		/*
18446 		 * Rampart note: no need to select a new label here, since
18447 		 * labels are not allowed to change during the life of a TCP
18448 		 * connection.
18449 		 */
18450 	}
18451 
18452 	*irep = ire;
18453 
18454 	return (B_TRUE);
18455 }
18456 
18457 /*
18458  * Called from tcp_send() or tcp_send_data() to find workable IRE.
18459  *
18460  * 0 = success;
18461  * 1 = failed to find ire and ill.
18462  */
18463 static boolean_t
18464 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp)
18465 {
18466 	ipha_t		*ipha;
18467 	ipaddr_t	dst;
18468 	ire_t		*ire;
18469 	ill_t		*ill;
18470 	mblk_t		*ire_fp_mp;
18471 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18472 
18473 	if (mp != NULL)
18474 		ipha = (ipha_t *)mp->b_rptr;
18475 	else
18476 		ipha = tcp->tcp_ipha;
18477 	dst = ipha->ipha_dst;
18478 
18479 	if (!tcp_send_find_ire(tcp, &dst, &ire))
18480 		return (B_FALSE);
18481 
18482 	if ((ire->ire_flags & RTF_MULTIRT) ||
18483 	    (ire->ire_stq == NULL) ||
18484 	    (ire->ire_nce == NULL) ||
18485 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
18486 	    ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) ||
18487 	    MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) {
18488 		TCP_STAT(tcps, tcp_ip_ire_send);
18489 		IRE_REFRELE(ire);
18490 		return (B_FALSE);
18491 	}
18492 
18493 	ill = ire_to_ill(ire);
18494 	ASSERT(ill != NULL);
18495 
18496 	if (!tcp->tcp_ire_ill_check_done) {
18497 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
18498 		tcp->tcp_ire_ill_check_done = B_TRUE;
18499 	}
18500 
18501 	*irep = ire;
18502 	*illp = ill;
18503 
18504 	return (B_TRUE);
18505 }
18506 
18507 static void
18508 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
18509 {
18510 	ipha_t		*ipha;
18511 	ipaddr_t	src;
18512 	ipaddr_t	dst;
18513 	uint32_t	cksum;
18514 	ire_t		*ire;
18515 	uint16_t	*up;
18516 	ill_t		*ill;
18517 	conn_t		*connp = tcp->tcp_connp;
18518 	uint32_t	hcksum_txflags = 0;
18519 	mblk_t		*ire_fp_mp;
18520 	uint_t		ire_fp_mp_len;
18521 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18522 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18523 	cred_t		*cr;
18524 	pid_t		cpid;
18525 
18526 	ASSERT(DB_TYPE(mp) == M_DATA);
18527 
18528 	/*
18529 	 * Here we need to handle the overloading of the cred_t for
18530 	 * both getpeerucred and TX.
18531 	 * If this is a SYN then the caller already set db_credp so
18532 	 * that getpeerucred will work. But if TX is in use we might have
18533 	 * a conn_effective_cred which is different, and we need to use that
18534 	 * cred to make TX use the correct label and label dependent route.
18535 	 */
18536 	if (is_system_labeled()) {
18537 		cr = msg_getcred(mp, &cpid);
18538 		if (cr == NULL || connp->conn_effective_cred != NULL)
18539 			mblk_setcred(mp, CONN_CRED(connp), cpid);
18540 	}
18541 
18542 	ipha = (ipha_t *)mp->b_rptr;
18543 	src = ipha->ipha_src;
18544 	dst = ipha->ipha_dst;
18545 
18546 	ASSERT(q != NULL);
18547 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp);
18548 
18549 	/*
18550 	 * Drop off fast path for IPv6 and also if options are present or
18551 	 * we need to resolve a TS label.
18552 	 */
18553 	if (tcp->tcp_ipversion != IPV4_VERSION ||
18554 	    !IPCL_IS_CONNECTED(connp) ||
18555 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
18556 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
18557 	    !connp->conn_ulp_labeled ||
18558 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
18559 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
18560 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
18561 		if (tcp->tcp_snd_zcopy_aware)
18562 			mp = tcp_zcopy_disable(tcp, mp);
18563 		TCP_STAT(tcps, tcp_ip_send);
18564 		CALL_IP_WPUT(connp, q, mp);
18565 		return;
18566 	}
18567 
18568 	if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) {
18569 		if (tcp->tcp_snd_zcopy_aware)
18570 			mp = tcp_zcopy_backoff(tcp, mp, 0);
18571 		CALL_IP_WPUT(connp, q, mp);
18572 		return;
18573 	}
18574 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
18575 	ire_fp_mp_len = MBLKL(ire_fp_mp);
18576 
18577 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
18578 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
18579 #ifndef _BIG_ENDIAN
18580 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
18581 #endif
18582 
18583 	/*
18584 	 * Check to see if we need to re-enable LSO/MDT for this connection
18585 	 * because it was previously disabled due to changes in the ill;
18586 	 * note that by doing it here, this re-enabling only applies when
18587 	 * the packet is not dispatched through CALL_IP_WPUT().
18588 	 *
18589 	 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath
18590 	 * case, since that's how we ended up here.  For IPv6, we do the
18591 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
18592 	 */
18593 	if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
18594 		/*
18595 		 * Restore LSO for this connection, so that next time around
18596 		 * it is eligible to go through tcp_lsosend() path again.
18597 		 */
18598 		TCP_STAT(tcps, tcp_lso_enabled);
18599 		tcp->tcp_lso = B_TRUE;
18600 		ip1dbg(("tcp_send_data: reenabling LSO for connp %p on "
18601 		    "interface %s\n", (void *)connp, ill->ill_name));
18602 	} else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
18603 		/*
18604 		 * Restore MDT for this connection, so that next time around
18605 		 * it is eligible to go through tcp_multisend() path again.
18606 		 */
18607 		TCP_STAT(tcps, tcp_mdt_conn_resumed1);
18608 		tcp->tcp_mdt = B_TRUE;
18609 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
18610 		    "interface %s\n", (void *)connp, ill->ill_name));
18611 	}
18612 
18613 	if (tcp->tcp_snd_zcopy_aware) {
18614 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
18615 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
18616 			mp = tcp_zcopy_disable(tcp, mp);
18617 		/*
18618 		 * we shouldn't need to reset ipha as the mp containing
18619 		 * ipha should never be a zero-copy mp.
18620 		 */
18621 	}
18622 
18623 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
18624 		ASSERT(ill->ill_hcksum_capab != NULL);
18625 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
18626 	}
18627 
18628 	/* pseudo-header checksum (do it in parts for IP header checksum) */
18629 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
18630 
18631 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
18632 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
18633 
18634 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
18635 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
18636 
18637 	/* Software checksum? */
18638 	if (DB_CKSUMFLAGS(mp) == 0) {
18639 		TCP_STAT(tcps, tcp_out_sw_cksum);
18640 		TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
18641 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
18642 	}
18643 
18644 	/* Calculate IP header checksum if hardware isn't capable */
18645 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
18646 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
18647 		    ((uint16_t *)ipha)[4]);
18648 	}
18649 
18650 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
18651 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
18652 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
18653 
18654 	UPDATE_OB_PKT_COUNT(ire);
18655 	ire->ire_last_used_time = lbolt;
18656 
18657 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
18658 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
18659 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
18660 	    ntohs(ipha->ipha_length));
18661 
18662 	DTRACE_PROBE4(ip4__physical__out__start,
18663 	    ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp);
18664 	FW_HOOKS(ipst->ips_ip4_physical_out_event,
18665 	    ipst->ips_ipv4firewall_physical_out,
18666 	    NULL, ill, ipha, mp, mp, 0, ipst);
18667 	DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
18668 	DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL);
18669 
18670 	if (mp != NULL) {
18671 		if (ipst->ips_ipobs_enabled) {
18672 			zoneid_t szone;
18673 
18674 			szone = ip_get_zoneid_v4(ipha->ipha_src, mp,
18675 			    ipst, ALL_ZONES);
18676 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone,
18677 			    ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst);
18678 		}
18679 
18680 		ILL_SEND_TX(ill, ire, connp, mp, 0, NULL);
18681 	}
18682 
18683 	IRE_REFRELE(ire);
18684 }
18685 
18686 /*
18687  * This handles the case when the receiver has shrunk its win. Per RFC 1122
18688  * if the receiver shrinks the window, i.e. moves the right window to the
18689  * left, the we should not send new data, but should retransmit normally the
18690  * old unacked data between suna and suna + swnd. We might has sent data
18691  * that is now outside the new window, pretend that we didn't send  it.
18692  */
18693 static void
18694 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
18695 {
18696 	uint32_t	snxt = tcp->tcp_snxt;
18697 
18698 	ASSERT(shrunk_count > 0);
18699 
18700 	if (!tcp->tcp_is_wnd_shrnk) {
18701 		tcp->tcp_snxt_shrunk = snxt;
18702 		tcp->tcp_is_wnd_shrnk = B_TRUE;
18703 	} else if (SEQ_GT(snxt, tcp->tcp_snxt_shrunk)) {
18704 		tcp->tcp_snxt_shrunk = snxt;
18705 	}
18706 
18707 	/* Pretend we didn't send the data outside the window */
18708 	snxt -= shrunk_count;
18709 
18710 	/* Reset all the values per the now shrunk window */
18711 	tcp_update_xmit_tail(tcp, snxt);
18712 	tcp->tcp_unsent += shrunk_count;
18713 
18714 	/*
18715 	 * If the SACK option is set, delete the entire list of
18716 	 * notsack'ed blocks.
18717 	 */
18718 	if (tcp->tcp_sack_info != NULL) {
18719 		if (tcp->tcp_notsack_list != NULL)
18720 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
18721 	}
18722 
18723 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
18724 		/*
18725 		 * Make sure the timer is running so that we will probe a zero
18726 		 * window.
18727 		 */
18728 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18729 }
18730 
18731 
18732 /*
18733  * The TCP normal data output path.
18734  * NOTE: the logic of the fast path is duplicated from this function.
18735  */
18736 static void
18737 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
18738 {
18739 	int		len;
18740 	mblk_t		*local_time;
18741 	mblk_t		*mp1;
18742 	uint32_t	snxt;
18743 	int		tail_unsent;
18744 	int		tcpstate;
18745 	int		usable = 0;
18746 	mblk_t		*xmit_tail;
18747 	queue_t		*q = tcp->tcp_wq;
18748 	int32_t		mss;
18749 	int32_t		num_sack_blk = 0;
18750 	int32_t		tcp_hdr_len;
18751 	int32_t		tcp_tcp_hdr_len;
18752 	int		mdt_thres;
18753 	int		rc;
18754 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18755 	ip_stack_t	*ipst;
18756 
18757 	tcpstate = tcp->tcp_state;
18758 	if (mp == NULL) {
18759 		/*
18760 		 * tcp_wput_data() with NULL mp should only be called when
18761 		 * there is unsent data.
18762 		 */
18763 		ASSERT(tcp->tcp_unsent > 0);
18764 		/* Really tacky... but we need this for detached closes. */
18765 		len = tcp->tcp_unsent;
18766 		goto data_null;
18767 	}
18768 
18769 #if CCS_STATS
18770 	wrw_stats.tot.count++;
18771 	wrw_stats.tot.bytes += msgdsize(mp);
18772 #endif
18773 	ASSERT(mp->b_datap->db_type == M_DATA);
18774 	/*
18775 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
18776 	 * or before a connection attempt has begun.
18777 	 */
18778 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
18779 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18780 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18781 #ifdef DEBUG
18782 			cmn_err(CE_WARN,
18783 			    "tcp_wput_data: data after ordrel, %s",
18784 			    tcp_display(tcp, NULL,
18785 			    DISP_ADDR_AND_PORT));
18786 #else
18787 			if (tcp->tcp_debug) {
18788 				(void) strlog(TCP_MOD_ID, 0, 1,
18789 				    SL_TRACE|SL_ERROR,
18790 				    "tcp_wput_data: data after ordrel, %s\n",
18791 				    tcp_display(tcp, NULL,
18792 				    DISP_ADDR_AND_PORT));
18793 			}
18794 #endif /* DEBUG */
18795 		}
18796 		if (tcp->tcp_snd_zcopy_aware &&
18797 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
18798 			tcp_zcopy_notify(tcp);
18799 		freemsg(mp);
18800 		mutex_enter(&tcp->tcp_non_sq_lock);
18801 		if (tcp->tcp_flow_stopped &&
18802 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
18803 			tcp_clrqfull(tcp);
18804 		}
18805 		mutex_exit(&tcp->tcp_non_sq_lock);
18806 		return;
18807 	}
18808 
18809 	/* Strip empties */
18810 	for (;;) {
18811 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
18812 		    (uintptr_t)INT_MAX);
18813 		len = (int)(mp->b_wptr - mp->b_rptr);
18814 		if (len > 0)
18815 			break;
18816 		mp1 = mp;
18817 		mp = mp->b_cont;
18818 		freeb(mp1);
18819 		if (!mp) {
18820 			return;
18821 		}
18822 	}
18823 
18824 	/* If we are the first on the list ... */
18825 	if (tcp->tcp_xmit_head == NULL) {
18826 		tcp->tcp_xmit_head = mp;
18827 		tcp->tcp_xmit_tail = mp;
18828 		tcp->tcp_xmit_tail_unsent = len;
18829 	} else {
18830 		/* If tiny tx and room in txq tail, pullup to save mblks. */
18831 		struct datab *dp;
18832 
18833 		mp1 = tcp->tcp_xmit_last;
18834 		if (len < tcp_tx_pull_len &&
18835 		    (dp = mp1->b_datap)->db_ref == 1 &&
18836 		    dp->db_lim - mp1->b_wptr >= len) {
18837 			ASSERT(len > 0);
18838 			ASSERT(!mp1->b_cont);
18839 			if (len == 1) {
18840 				*mp1->b_wptr++ = *mp->b_rptr;
18841 			} else {
18842 				bcopy(mp->b_rptr, mp1->b_wptr, len);
18843 				mp1->b_wptr += len;
18844 			}
18845 			if (mp1 == tcp->tcp_xmit_tail)
18846 				tcp->tcp_xmit_tail_unsent += len;
18847 			mp1->b_cont = mp->b_cont;
18848 			if (tcp->tcp_snd_zcopy_aware &&
18849 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
18850 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18851 			freeb(mp);
18852 			mp = mp1;
18853 		} else {
18854 			tcp->tcp_xmit_last->b_cont = mp;
18855 		}
18856 		len += tcp->tcp_unsent;
18857 	}
18858 
18859 	/* Tack on however many more positive length mblks we have */
18860 	if ((mp1 = mp->b_cont) != NULL) {
18861 		do {
18862 			int tlen;
18863 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
18864 			    (uintptr_t)INT_MAX);
18865 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
18866 			if (tlen <= 0) {
18867 				mp->b_cont = mp1->b_cont;
18868 				freeb(mp1);
18869 			} else {
18870 				len += tlen;
18871 				mp = mp1;
18872 			}
18873 		} while ((mp1 = mp->b_cont) != NULL);
18874 	}
18875 	tcp->tcp_xmit_last = mp;
18876 	tcp->tcp_unsent = len;
18877 
18878 	if (urgent)
18879 		usable = 1;
18880 
18881 data_null:
18882 	snxt = tcp->tcp_snxt;
18883 	xmit_tail = tcp->tcp_xmit_tail;
18884 	tail_unsent = tcp->tcp_xmit_tail_unsent;
18885 
18886 	/*
18887 	 * Note that tcp_mss has been adjusted to take into account the
18888 	 * timestamp option if applicable.  Because SACK options do not
18889 	 * appear in every TCP segments and they are of variable lengths,
18890 	 * they cannot be included in tcp_mss.  Thus we need to calculate
18891 	 * the actual segment length when we need to send a segment which
18892 	 * includes SACK options.
18893 	 */
18894 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
18895 		int32_t	opt_len;
18896 
18897 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
18898 		    tcp->tcp_num_sack_blk);
18899 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
18900 		    2 + TCPOPT_HEADER_LEN;
18901 		mss = tcp->tcp_mss - opt_len;
18902 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
18903 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
18904 	} else {
18905 		mss = tcp->tcp_mss;
18906 		tcp_hdr_len = tcp->tcp_hdr_len;
18907 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
18908 	}
18909 
18910 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
18911 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
18912 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
18913 	}
18914 	if (tcpstate == TCPS_SYN_RCVD) {
18915 		/*
18916 		 * The three-way connection establishment handshake is not
18917 		 * complete yet. We want to queue the data for transmission
18918 		 * after entering ESTABLISHED state (RFC793). A jump to
18919 		 * "done" label effectively leaves data on the queue.
18920 		 */
18921 		goto done;
18922 	} else {
18923 		int usable_r;
18924 
18925 		/*
18926 		 * In the special case when cwnd is zero, which can only
18927 		 * happen if the connection is ECN capable, return now.
18928 		 * New segments is sent using tcp_timer().  The timer
18929 		 * is set in tcp_rput_data().
18930 		 */
18931 		if (tcp->tcp_cwnd == 0) {
18932 			/*
18933 			 * Note that tcp_cwnd is 0 before 3-way handshake is
18934 			 * finished.
18935 			 */
18936 			ASSERT(tcp->tcp_ecn_ok ||
18937 			    tcp->tcp_state < TCPS_ESTABLISHED);
18938 			return;
18939 		}
18940 
18941 		/* NOTE: trouble if xmitting while SYN not acked? */
18942 		usable_r = snxt - tcp->tcp_suna;
18943 		usable_r = tcp->tcp_swnd - usable_r;
18944 
18945 		/*
18946 		 * Check if the receiver has shrunk the window.  If
18947 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
18948 		 * cannot be set as there is unsent data, so FIN cannot
18949 		 * be sent out.  Otherwise, we need to take into account
18950 		 * of FIN as it consumes an "invisible" sequence number.
18951 		 */
18952 		ASSERT(tcp->tcp_fin_sent == 0);
18953 		if (usable_r < 0) {
18954 			/*
18955 			 * The receiver has shrunk the window and we have sent
18956 			 * -usable_r date beyond the window, re-adjust.
18957 			 *
18958 			 * If TCP window scaling is enabled, there can be
18959 			 * round down error as the advertised receive window
18960 			 * is actually right shifted n bits.  This means that
18961 			 * the lower n bits info is wiped out.  It will look
18962 			 * like the window is shrunk.  Do a check here to
18963 			 * see if the shrunk amount is actually within the
18964 			 * error in window calculation.  If it is, just
18965 			 * return.  Note that this check is inside the
18966 			 * shrunk window check.  This makes sure that even
18967 			 * though tcp_process_shrunk_swnd() is not called,
18968 			 * we will stop further processing.
18969 			 */
18970 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
18971 				tcp_process_shrunk_swnd(tcp, -usable_r);
18972 			}
18973 			return;
18974 		}
18975 
18976 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
18977 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
18978 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
18979 
18980 		/* usable = MIN(usable, unsent) */
18981 		if (usable_r > len)
18982 			usable_r = len;
18983 
18984 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
18985 		if (usable_r > 0) {
18986 			usable = usable_r;
18987 		} else {
18988 			/* Bypass all other unnecessary processing. */
18989 			goto done;
18990 		}
18991 	}
18992 
18993 	local_time = (mblk_t *)lbolt;
18994 
18995 	/*
18996 	 * "Our" Nagle Algorithm.  This is not the same as in the old
18997 	 * BSD.  This is more in line with the true intent of Nagle.
18998 	 *
18999 	 * The conditions are:
19000 	 * 1. The amount of unsent data (or amount of data which can be
19001 	 *    sent, whichever is smaller) is less than Nagle limit.
19002 	 * 2. The last sent size is also less than Nagle limit.
19003 	 * 3. There is unack'ed data.
19004 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
19005 	 *    Nagle algorithm.  This reduces the probability that urgent
19006 	 *    bytes get "merged" together.
19007 	 * 5. The app has not closed the connection.  This eliminates the
19008 	 *    wait time of the receiving side waiting for the last piece of
19009 	 *    (small) data.
19010 	 *
19011 	 * If all are satisified, exit without sending anything.  Note
19012 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
19013 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
19014 	 * 4095).
19015 	 */
19016 	if (usable < (int)tcp->tcp_naglim &&
19017 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
19018 	    snxt != tcp->tcp_suna &&
19019 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
19020 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
19021 		goto done;
19022 	}
19023 
19024 	/*
19025 	 * If tcp_zero_win_probe is not set and the tcp->tcp_cork option
19026 	 * is set, then we have to force TCP not to send partial segment
19027 	 * (smaller than MSS bytes). We are calculating the usable now
19028 	 * based on full mss and will save the rest of remaining data for
19029 	 * later. When tcp_zero_win_probe is set, TCP needs to send out
19030 	 * something to do zero window probe.
19031 	 */
19032 	if (tcp->tcp_cork && !tcp->tcp_zero_win_probe) {
19033 		if (usable < mss)
19034 			goto done;
19035 		usable = (usable / mss) * mss;
19036 	}
19037 
19038 	/* Update the latest receive window size in TCP header. */
19039 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
19040 	    tcp->tcp_tcph->th_win);
19041 
19042 	/*
19043 	 * Determine if it's worthwhile to attempt LSO or MDT, based on:
19044 	 *
19045 	 * 1. Simple TCP/IP{v4,v6} (no options).
19046 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
19047 	 * 3. If the TCP connection is in ESTABLISHED state.
19048 	 * 4. The TCP is not detached.
19049 	 *
19050 	 * If any of the above conditions have changed during the
19051 	 * connection, stop using LSO/MDT and restore the stream head
19052 	 * parameters accordingly.
19053 	 */
19054 	ipst = tcps->tcps_netstack->netstack_ip;
19055 
19056 	if ((tcp->tcp_lso || tcp->tcp_mdt) &&
19057 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
19058 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
19059 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19060 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
19061 	    tcp->tcp_state != TCPS_ESTABLISHED ||
19062 	    TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) ||
19063 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
19064 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst))) {
19065 		if (tcp->tcp_lso) {
19066 			tcp->tcp_connp->conn_lso_ok = B_FALSE;
19067 			tcp->tcp_lso = B_FALSE;
19068 		} else {
19069 			tcp->tcp_connp->conn_mdt_ok = B_FALSE;
19070 			tcp->tcp_mdt = B_FALSE;
19071 		}
19072 
19073 		/* Anything other than detached is considered pathological */
19074 		if (!TCP_IS_DETACHED(tcp)) {
19075 			if (tcp->tcp_lso)
19076 				TCP_STAT(tcps, tcp_lso_disabled);
19077 			else
19078 				TCP_STAT(tcps, tcp_mdt_conn_halted1);
19079 			(void) tcp_maxpsz_set(tcp, B_TRUE);
19080 		}
19081 	}
19082 
19083 	/* Use MDT if sendable amount is greater than the threshold */
19084 	if (tcp->tcp_mdt &&
19085 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
19086 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
19087 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
19088 	    (tcp->tcp_valid_bits == 0 ||
19089 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
19090 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
19091 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19092 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19093 		    local_time, mdt_thres);
19094 	} else {
19095 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19096 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19097 		    local_time, INT_MAX);
19098 	}
19099 
19100 	/* Pretend that all we were trying to send really got sent */
19101 	if (rc < 0 && tail_unsent < 0) {
19102 		do {
19103 			xmit_tail = xmit_tail->b_cont;
19104 			xmit_tail->b_prev = local_time;
19105 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
19106 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
19107 			tail_unsent += (int)(xmit_tail->b_wptr -
19108 			    xmit_tail->b_rptr);
19109 		} while (tail_unsent < 0);
19110 	}
19111 done:;
19112 	tcp->tcp_xmit_tail = xmit_tail;
19113 	tcp->tcp_xmit_tail_unsent = tail_unsent;
19114 	len = tcp->tcp_snxt - snxt;
19115 	if (len) {
19116 		/*
19117 		 * If new data was sent, need to update the notsack
19118 		 * list, which is, afterall, data blocks that have
19119 		 * not been sack'ed by the receiver.  New data is
19120 		 * not sack'ed.
19121 		 */
19122 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
19123 			/* len is a negative value. */
19124 			tcp->tcp_pipe -= len;
19125 			tcp_notsack_update(&(tcp->tcp_notsack_list),
19126 			    tcp->tcp_snxt, snxt,
19127 			    &(tcp->tcp_num_notsack_blk),
19128 			    &(tcp->tcp_cnt_notsack_list));
19129 		}
19130 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
19131 		tcp->tcp_rack = tcp->tcp_rnxt;
19132 		tcp->tcp_rack_cnt = 0;
19133 		if ((snxt + len) == tcp->tcp_suna) {
19134 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19135 		}
19136 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
19137 		/*
19138 		 * Didn't send anything. Make sure the timer is running
19139 		 * so that we will probe a zero window.
19140 		 */
19141 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19142 	}
19143 	/* Note that len is the amount we just sent but with a negative sign */
19144 	tcp->tcp_unsent += len;
19145 	mutex_enter(&tcp->tcp_non_sq_lock);
19146 	if (tcp->tcp_flow_stopped) {
19147 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19148 			tcp_clrqfull(tcp);
19149 		}
19150 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
19151 		tcp_setqfull(tcp);
19152 	}
19153 	mutex_exit(&tcp->tcp_non_sq_lock);
19154 }
19155 
19156 /*
19157  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
19158  * outgoing TCP header with the template header, as well as other
19159  * options such as time-stamp, ECN and/or SACK.
19160  */
19161 static void
19162 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
19163 {
19164 	tcph_t *tcp_tmpl, *tcp_h;
19165 	uint32_t *dst, *src;
19166 	int hdrlen;
19167 
19168 	ASSERT(OK_32PTR(rptr));
19169 
19170 	/* Template header */
19171 	tcp_tmpl = tcp->tcp_tcph;
19172 
19173 	/* Header of outgoing packet */
19174 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
19175 
19176 	/* dst and src are opaque 32-bit fields, used for copying */
19177 	dst = (uint32_t *)rptr;
19178 	src = (uint32_t *)tcp->tcp_iphc;
19179 	hdrlen = tcp->tcp_hdr_len;
19180 
19181 	/* Fill time-stamp option if needed */
19182 	if (tcp->tcp_snd_ts_ok) {
19183 		U32_TO_BE32((uint32_t)now,
19184 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
19185 		U32_TO_BE32(tcp->tcp_ts_recent,
19186 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
19187 	} else {
19188 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
19189 	}
19190 
19191 	/*
19192 	 * Copy the template header; is this really more efficient than
19193 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
19194 	 * but perhaps not for other scenarios.
19195 	 */
19196 	dst[0] = src[0];
19197 	dst[1] = src[1];
19198 	dst[2] = src[2];
19199 	dst[3] = src[3];
19200 	dst[4] = src[4];
19201 	dst[5] = src[5];
19202 	dst[6] = src[6];
19203 	dst[7] = src[7];
19204 	dst[8] = src[8];
19205 	dst[9] = src[9];
19206 	if (hdrlen -= 40) {
19207 		hdrlen >>= 2;
19208 		dst += 10;
19209 		src += 10;
19210 		do {
19211 			*dst++ = *src++;
19212 		} while (--hdrlen);
19213 	}
19214 
19215 	/*
19216 	 * Set the ECN info in the TCP header if it is not a zero
19217 	 * window probe.  Zero window probe is only sent in
19218 	 * tcp_wput_data() and tcp_timer().
19219 	 */
19220 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
19221 		SET_ECT(tcp, rptr);
19222 
19223 		if (tcp->tcp_ecn_echo_on)
19224 			tcp_h->th_flags[0] |= TH_ECE;
19225 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
19226 			tcp_h->th_flags[0] |= TH_CWR;
19227 			tcp->tcp_ecn_cwr_sent = B_TRUE;
19228 		}
19229 	}
19230 
19231 	/* Fill in SACK options */
19232 	if (num_sack_blk > 0) {
19233 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
19234 		sack_blk_t *tmp;
19235 		int32_t	i;
19236 
19237 		wptr[0] = TCPOPT_NOP;
19238 		wptr[1] = TCPOPT_NOP;
19239 		wptr[2] = TCPOPT_SACK;
19240 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
19241 		    sizeof (sack_blk_t);
19242 		wptr += TCPOPT_REAL_SACK_LEN;
19243 
19244 		tmp = tcp->tcp_sack_list;
19245 		for (i = 0; i < num_sack_blk; i++) {
19246 			U32_TO_BE32(tmp[i].begin, wptr);
19247 			wptr += sizeof (tcp_seq);
19248 			U32_TO_BE32(tmp[i].end, wptr);
19249 			wptr += sizeof (tcp_seq);
19250 		}
19251 		tcp_h->th_offset_and_rsrvd[0] +=
19252 		    ((num_sack_blk * 2 + 1) << 4);
19253 	}
19254 }
19255 
19256 /*
19257  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
19258  * the destination address and SAP attribute, and if necessary, the
19259  * hardware checksum offload attribute to a Multidata message.
19260  */
19261 static int
19262 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
19263     const uint32_t start, const uint32_t stuff, const uint32_t end,
19264     const uint32_t flags, tcp_stack_t *tcps)
19265 {
19266 	/* Add global destination address & SAP attribute */
19267 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
19268 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
19269 		    "destination address+SAP\n"));
19270 
19271 		if (dlmp != NULL)
19272 			TCP_STAT(tcps, tcp_mdt_allocfail);
19273 		return (-1);
19274 	}
19275 
19276 	/* Add global hwcksum attribute */
19277 	if (hwcksum &&
19278 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
19279 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
19280 		    "checksum attribute\n"));
19281 
19282 		TCP_STAT(tcps, tcp_mdt_allocfail);
19283 		return (-1);
19284 	}
19285 
19286 	return (0);
19287 }
19288 
19289 /*
19290  * Smaller and private version of pdescinfo_t used specifically for TCP,
19291  * which allows for only two payload spans per packet.
19292  */
19293 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
19294 
19295 /*
19296  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
19297  * scheme, and returns one the following:
19298  *
19299  * -1 = failed allocation.
19300  *  0 = success; burst count reached, or usable send window is too small,
19301  *      and that we'd rather wait until later before sending again.
19302  */
19303 static int
19304 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
19305     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
19306     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
19307     const int mdt_thres)
19308 {
19309 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
19310 	multidata_t	*mmd;
19311 	uint_t		obsegs, obbytes, hdr_frag_sz;
19312 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
19313 	int		num_burst_seg, max_pld;
19314 	pdesc_t		*pkt;
19315 	tcp_pdescinfo_t	tcp_pkt_info;
19316 	pdescinfo_t	*pkt_info;
19317 	int		pbuf_idx, pbuf_idx_nxt;
19318 	int		seg_len, len, spill, af;
19319 	boolean_t	add_buffer, zcopy, clusterwide;
19320 	boolean_t	rconfirm = B_FALSE;
19321 	boolean_t	done = B_FALSE;
19322 	uint32_t	cksum;
19323 	uint32_t	hwcksum_flags;
19324 	ire_t		*ire = NULL;
19325 	ill_t		*ill;
19326 	ipha_t		*ipha;
19327 	ip6_t		*ip6h;
19328 	ipaddr_t	src, dst;
19329 	ill_zerocopy_capab_t *zc_cap = NULL;
19330 	uint16_t	*up;
19331 	int		err;
19332 	conn_t		*connp;
19333 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19334 	ip_stack_t 	*ipst = tcps->tcps_netstack->netstack_ip;
19335 	int		usable_mmd, tail_unsent_mmd;
19336 	uint_t		snxt_mmd, obsegs_mmd, obbytes_mmd;
19337 	mblk_t		*xmit_tail_mmd;
19338 	netstackid_t	stack_id;
19339 
19340 #ifdef	_BIG_ENDIAN
19341 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
19342 #else
19343 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
19344 #endif
19345 
19346 #define	PREP_NEW_MULTIDATA() {			\
19347 	mmd = NULL;				\
19348 	md_mp = md_hbuf = NULL;			\
19349 	cur_hdr_off = 0;			\
19350 	max_pld = tcp->tcp_mdt_max_pld;		\
19351 	pbuf_idx = pbuf_idx_nxt = -1;		\
19352 	add_buffer = B_TRUE;			\
19353 	zcopy = B_FALSE;			\
19354 }
19355 
19356 #define	PREP_NEW_PBUF() {			\
19357 	md_pbuf = md_pbuf_nxt = NULL;		\
19358 	pbuf_idx = pbuf_idx_nxt = -1;		\
19359 	cur_pld_off = 0;			\
19360 	first_snxt = *snxt;			\
19361 	ASSERT(*tail_unsent > 0);		\
19362 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
19363 }
19364 
19365 	ASSERT(mdt_thres >= mss);
19366 	ASSERT(*usable > 0 && *usable > mdt_thres);
19367 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
19368 	ASSERT(!TCP_IS_DETACHED(tcp));
19369 	ASSERT(tcp->tcp_valid_bits == 0 ||
19370 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
19371 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
19372 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
19373 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19374 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
19375 
19376 	connp = tcp->tcp_connp;
19377 	ASSERT(connp != NULL);
19378 	ASSERT(CONN_IS_LSO_MD_FASTPATH(connp));
19379 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
19380 
19381 	stack_id = connp->conn_netstack->netstack_stackid;
19382 
19383 	usable_mmd = tail_unsent_mmd = 0;
19384 	snxt_mmd = obsegs_mmd = obbytes_mmd = 0;
19385 	xmit_tail_mmd = NULL;
19386 	/*
19387 	 * Note that tcp will only declare at most 2 payload spans per
19388 	 * packet, which is much lower than the maximum allowable number
19389 	 * of packet spans per Multidata.  For this reason, we use the
19390 	 * privately declared and smaller descriptor info structure, in
19391 	 * order to save some stack space.
19392 	 */
19393 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
19394 
19395 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
19396 	if (af == AF_INET) {
19397 		dst = tcp->tcp_ipha->ipha_dst;
19398 		src = tcp->tcp_ipha->ipha_src;
19399 		ASSERT(!CLASSD(dst));
19400 	}
19401 	ASSERT(af == AF_INET ||
19402 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
19403 
19404 	obsegs = obbytes = 0;
19405 	num_burst_seg = tcp->tcp_snd_burst;
19406 	md_mp_head = NULL;
19407 	PREP_NEW_MULTIDATA();
19408 
19409 	/*
19410 	 * Before we go on further, make sure there is an IRE that we can
19411 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
19412 	 * in proceeding any further, and we should just hand everything
19413 	 * off to the legacy path.
19414 	 */
19415 	if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire))
19416 		goto legacy_send_no_md;
19417 
19418 	ASSERT(ire != NULL);
19419 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
19420 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
19421 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
19422 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
19423 	/*
19424 	 * If we do support loopback for MDT (which requires modifications
19425 	 * to the receiving paths), the following assertions should go away,
19426 	 * and we would be sending the Multidata to loopback conn later on.
19427 	 */
19428 	ASSERT(!IRE_IS_LOCAL(ire));
19429 	ASSERT(ire->ire_stq != NULL);
19430 
19431 	ill = ire_to_ill(ire);
19432 	ASSERT(ill != NULL);
19433 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
19434 
19435 	if (!tcp->tcp_ire_ill_check_done) {
19436 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19437 		tcp->tcp_ire_ill_check_done = B_TRUE;
19438 	}
19439 
19440 	/*
19441 	 * If the underlying interface conditions have changed, or if the
19442 	 * new interface does not support MDT, go back to legacy path.
19443 	 */
19444 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
19445 		/* don't go through this path anymore for this connection */
19446 		TCP_STAT(tcps, tcp_mdt_conn_halted2);
19447 		tcp->tcp_mdt = B_FALSE;
19448 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
19449 		    "interface %s\n", (void *)connp, ill->ill_name));
19450 		/* IRE will be released prior to returning */
19451 		goto legacy_send_no_md;
19452 	}
19453 
19454 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
19455 		zc_cap = ill->ill_zerocopy_capab;
19456 
19457 	/*
19458 	 * Check if we can take tcp fast-path. Note that "incomplete"
19459 	 * ire's (where the link-layer for next hop is not resolved
19460 	 * or where the fast-path header in nce_fp_mp is not available
19461 	 * yet) are sent down the legacy (slow) path.
19462 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
19463 	 */
19464 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
19465 		/* IRE will be released prior to returning */
19466 		goto legacy_send_no_md;
19467 	}
19468 
19469 	/* go to legacy path if interface doesn't support zerocopy */
19470 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
19471 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
19472 		/* IRE will be released prior to returning */
19473 		goto legacy_send_no_md;
19474 	}
19475 
19476 	/* does the interface support hardware checksum offload? */
19477 	hwcksum_flags = 0;
19478 	if (ILL_HCKSUM_CAPABLE(ill) &&
19479 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
19480 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
19481 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
19482 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19483 		    HCKSUM_IPHDRCKSUM)
19484 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
19485 
19486 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19487 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
19488 			hwcksum_flags |= HCK_FULLCKSUM;
19489 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19490 		    HCKSUM_INET_PARTIAL)
19491 			hwcksum_flags |= HCK_PARTIALCKSUM;
19492 	}
19493 
19494 	/*
19495 	 * Each header fragment consists of the leading extra space,
19496 	 * followed by the TCP/IP header, and the trailing extra space.
19497 	 * We make sure that each header fragment begins on a 32-bit
19498 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
19499 	 * aligned in tcp_mdt_update).
19500 	 */
19501 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
19502 	    tcp->tcp_mdt_hdr_tail), 4);
19503 
19504 	/* are we starting from the beginning of data block? */
19505 	if (*tail_unsent == 0) {
19506 		*xmit_tail = (*xmit_tail)->b_cont;
19507 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
19508 		*tail_unsent = (int)MBLKL(*xmit_tail);
19509 	}
19510 
19511 	/*
19512 	 * Here we create one or more Multidata messages, each made up of
19513 	 * one header buffer and up to N payload buffers.  This entire
19514 	 * operation is done within two loops:
19515 	 *
19516 	 * The outer loop mostly deals with creating the Multidata message,
19517 	 * as well as the header buffer that gets added to it.  It also
19518 	 * links the Multidata messages together such that all of them can
19519 	 * be sent down to the lower layer in a single putnext call; this
19520 	 * linking behavior depends on the tcp_mdt_chain tunable.
19521 	 *
19522 	 * The inner loop takes an existing Multidata message, and adds
19523 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
19524 	 * packetizes those buffers by filling up the corresponding header
19525 	 * buffer fragments with the proper IP and TCP headers, and by
19526 	 * describing the layout of each packet in the packet descriptors
19527 	 * that get added to the Multidata.
19528 	 */
19529 	do {
19530 		/*
19531 		 * If usable send window is too small, or data blocks in
19532 		 * transmit list are smaller than our threshold (i.e. app
19533 		 * performs large writes followed by small ones), we hand
19534 		 * off the control over to the legacy path.  Note that we'll
19535 		 * get back the control once it encounters a large block.
19536 		 */
19537 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
19538 		    (*xmit_tail)->b_cont != NULL &&
19539 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
19540 			/* send down what we've got so far */
19541 			if (md_mp_head != NULL) {
19542 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
19543 				    obsegs, obbytes, &rconfirm);
19544 			}
19545 			/*
19546 			 * Pass control over to tcp_send(), but tell it to
19547 			 * return to us once a large-size transmission is
19548 			 * possible.
19549 			 */
19550 			TCP_STAT(tcps, tcp_mdt_legacy_small);
19551 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
19552 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
19553 			    tail_unsent, xmit_tail, local_time,
19554 			    mdt_thres)) <= 0) {
19555 				/* burst count reached, or alloc failed */
19556 				IRE_REFRELE(ire);
19557 				return (err);
19558 			}
19559 
19560 			/* tcp_send() may have sent everything, so check */
19561 			if (*usable <= 0) {
19562 				IRE_REFRELE(ire);
19563 				return (0);
19564 			}
19565 
19566 			TCP_STAT(tcps, tcp_mdt_legacy_ret);
19567 			/*
19568 			 * We may have delivered the Multidata, so make sure
19569 			 * to re-initialize before the next round.
19570 			 */
19571 			md_mp_head = NULL;
19572 			obsegs = obbytes = 0;
19573 			num_burst_seg = tcp->tcp_snd_burst;
19574 			PREP_NEW_MULTIDATA();
19575 
19576 			/* are we starting from the beginning of data block? */
19577 			if (*tail_unsent == 0) {
19578 				*xmit_tail = (*xmit_tail)->b_cont;
19579 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19580 				    (uintptr_t)INT_MAX);
19581 				*tail_unsent = (int)MBLKL(*xmit_tail);
19582 			}
19583 		}
19584 		/*
19585 		 * Record current values for parameters we may need to pass
19586 		 * to tcp_send() or tcp_multisend_data(). We checkpoint at
19587 		 * each iteration of the outer loop (each multidata message
19588 		 * creation). If we have a failure in the inner loop, we send
19589 		 * any complete multidata messages we have before reverting
19590 		 * to using the traditional non-md path.
19591 		 */
19592 		snxt_mmd = *snxt;
19593 		usable_mmd = *usable;
19594 		xmit_tail_mmd = *xmit_tail;
19595 		tail_unsent_mmd = *tail_unsent;
19596 		obsegs_mmd = obsegs;
19597 		obbytes_mmd = obbytes;
19598 
19599 		/*
19600 		 * max_pld limits the number of mblks in tcp's transmit
19601 		 * queue that can be added to a Multidata message.  Once
19602 		 * this counter reaches zero, no more additional mblks
19603 		 * can be added to it.  What happens afterwards depends
19604 		 * on whether or not we are set to chain the Multidata
19605 		 * messages.  If we are to link them together, reset
19606 		 * max_pld to its original value (tcp_mdt_max_pld) and
19607 		 * prepare to create a new Multidata message which will
19608 		 * get linked to md_mp_head.  Else, leave it alone and
19609 		 * let the inner loop break on its own.
19610 		 */
19611 		if (tcp_mdt_chain && max_pld == 0)
19612 			PREP_NEW_MULTIDATA();
19613 
19614 		/* adding a payload buffer; re-initialize values */
19615 		if (add_buffer)
19616 			PREP_NEW_PBUF();
19617 
19618 		/*
19619 		 * If we don't have a Multidata, either because we just
19620 		 * (re)entered this outer loop, or after we branched off
19621 		 * to tcp_send above, setup the Multidata and header
19622 		 * buffer to be used.
19623 		 */
19624 		if (md_mp == NULL) {
19625 			int md_hbuflen;
19626 			uint32_t start, stuff;
19627 
19628 			/*
19629 			 * Calculate Multidata header buffer size large enough
19630 			 * to hold all of the headers that can possibly be
19631 			 * sent at this moment.  We'd rather over-estimate
19632 			 * the size than running out of space; this is okay
19633 			 * since this buffer is small anyway.
19634 			 */
19635 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
19636 
19637 			/*
19638 			 * Start and stuff offset for partial hardware
19639 			 * checksum offload; these are currently for IPv4.
19640 			 * For full checksum offload, they are set to zero.
19641 			 */
19642 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
19643 				if (af == AF_INET) {
19644 					start = IP_SIMPLE_HDR_LENGTH;
19645 					stuff = IP_SIMPLE_HDR_LENGTH +
19646 					    TCP_CHECKSUM_OFFSET;
19647 				} else {
19648 					start = IPV6_HDR_LEN;
19649 					stuff = IPV6_HDR_LEN +
19650 					    TCP_CHECKSUM_OFFSET;
19651 				}
19652 			} else {
19653 				start = stuff = 0;
19654 			}
19655 
19656 			/*
19657 			 * Create the header buffer, Multidata, as well as
19658 			 * any necessary attributes (destination address,
19659 			 * SAP and hardware checksum offload) that should
19660 			 * be associated with the Multidata message.
19661 			 */
19662 			ASSERT(cur_hdr_off == 0);
19663 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
19664 			    ((md_hbuf->b_wptr += md_hbuflen),
19665 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
19666 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
19667 			    /* fastpath mblk */
19668 			    ire->ire_nce->nce_res_mp,
19669 			    /* hardware checksum enabled */
19670 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
19671 			    /* hardware checksum offsets */
19672 			    start, stuff, 0,
19673 			    /* hardware checksum flag */
19674 			    hwcksum_flags, tcps) != 0)) {
19675 legacy_send:
19676 				/*
19677 				 * We arrive here from a failure within the
19678 				 * inner (packetizer) loop or we fail one of
19679 				 * the conditionals above. We restore the
19680 				 * previously checkpointed values for:
19681 				 *    xmit_tail
19682 				 *    usable
19683 				 *    tail_unsent
19684 				 *    snxt
19685 				 *    obbytes
19686 				 *    obsegs
19687 				 * We should then be able to dispatch any
19688 				 * complete multidata before reverting to the
19689 				 * traditional path with consistent parameters
19690 				 * (the inner loop updates these as it
19691 				 * iterates).
19692 				 */
19693 				*xmit_tail = xmit_tail_mmd;
19694 				*usable = usable_mmd;
19695 				*tail_unsent = tail_unsent_mmd;
19696 				*snxt = snxt_mmd;
19697 				obbytes = obbytes_mmd;
19698 				obsegs = obsegs_mmd;
19699 				if (md_mp != NULL) {
19700 					/* Unlink message from the chain */
19701 					if (md_mp_head != NULL) {
19702 						err = (intptr_t)rmvb(md_mp_head,
19703 						    md_mp);
19704 						/*
19705 						 * We can't assert that rmvb
19706 						 * did not return -1, since we
19707 						 * may get here before linkb
19708 						 * happens.  We do, however,
19709 						 * check if we just removed the
19710 						 * only element in the list.
19711 						 */
19712 						if (err == 0)
19713 							md_mp_head = NULL;
19714 					}
19715 					/* md_hbuf gets freed automatically */
19716 					TCP_STAT(tcps, tcp_mdt_discarded);
19717 					freeb(md_mp);
19718 				} else {
19719 					/* Either allocb or mmd_alloc failed */
19720 					TCP_STAT(tcps, tcp_mdt_allocfail);
19721 					if (md_hbuf != NULL)
19722 						freeb(md_hbuf);
19723 				}
19724 
19725 				/* send down what we've got so far */
19726 				if (md_mp_head != NULL) {
19727 					tcp_multisend_data(tcp, ire, ill,
19728 					    md_mp_head, obsegs, obbytes,
19729 					    &rconfirm);
19730 				}
19731 legacy_send_no_md:
19732 				if (ire != NULL)
19733 					IRE_REFRELE(ire);
19734 				/*
19735 				 * Too bad; let the legacy path handle this.
19736 				 * We specify INT_MAX for the threshold, since
19737 				 * we gave up with the Multidata processings
19738 				 * and let the old path have it all.
19739 				 */
19740 				TCP_STAT(tcps, tcp_mdt_legacy_all);
19741 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
19742 				    tcp_tcp_hdr_len, num_sack_blk, usable,
19743 				    snxt, tail_unsent, xmit_tail, local_time,
19744 				    INT_MAX));
19745 			}
19746 
19747 			/* link to any existing ones, if applicable */
19748 			TCP_STAT(tcps, tcp_mdt_allocd);
19749 			if (md_mp_head == NULL) {
19750 				md_mp_head = md_mp;
19751 			} else if (tcp_mdt_chain) {
19752 				TCP_STAT(tcps, tcp_mdt_linked);
19753 				linkb(md_mp_head, md_mp);
19754 			}
19755 		}
19756 
19757 		ASSERT(md_mp_head != NULL);
19758 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
19759 		ASSERT(md_mp != NULL && mmd != NULL);
19760 		ASSERT(md_hbuf != NULL);
19761 
19762 		/*
19763 		 * Packetize the transmittable portion of the data block;
19764 		 * each data block is essentially added to the Multidata
19765 		 * as a payload buffer.  We also deal with adding more
19766 		 * than one payload buffers, which happens when the remaining
19767 		 * packetized portion of the current payload buffer is less
19768 		 * than MSS, while the next data block in transmit queue
19769 		 * has enough data to make up for one.  This "spillover"
19770 		 * case essentially creates a split-packet, where portions
19771 		 * of the packet's payload fragments may span across two
19772 		 * virtually discontiguous address blocks.
19773 		 */
19774 		seg_len = mss;
19775 		do {
19776 			len = seg_len;
19777 
19778 			/* one must remain NULL for DTRACE_IP_FASTPATH */
19779 			ipha = NULL;
19780 			ip6h = NULL;
19781 
19782 			ASSERT(len > 0);
19783 			ASSERT(max_pld >= 0);
19784 			ASSERT(!add_buffer || cur_pld_off == 0);
19785 
19786 			/*
19787 			 * First time around for this payload buffer; note
19788 			 * in the case of a spillover, the following has
19789 			 * been done prior to adding the split-packet
19790 			 * descriptor to Multidata, and we don't want to
19791 			 * repeat the process.
19792 			 */
19793 			if (add_buffer) {
19794 				ASSERT(mmd != NULL);
19795 				ASSERT(md_pbuf == NULL);
19796 				ASSERT(md_pbuf_nxt == NULL);
19797 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
19798 
19799 				/*
19800 				 * Have we reached the limit?  We'd get to
19801 				 * this case when we're not chaining the
19802 				 * Multidata messages together, and since
19803 				 * we're done, terminate this loop.
19804 				 */
19805 				if (max_pld == 0)
19806 					break; /* done */
19807 
19808 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
19809 					TCP_STAT(tcps, tcp_mdt_allocfail);
19810 					goto legacy_send; /* out_of_mem */
19811 				}
19812 
19813 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
19814 				    zc_cap != NULL) {
19815 					if (!ip_md_zcopy_attr(mmd, NULL,
19816 					    zc_cap->ill_zerocopy_flags)) {
19817 						freeb(md_pbuf);
19818 						TCP_STAT(tcps,
19819 						    tcp_mdt_allocfail);
19820 						/* out_of_mem */
19821 						goto legacy_send;
19822 					}
19823 					zcopy = B_TRUE;
19824 				}
19825 
19826 				md_pbuf->b_rptr += base_pld_off;
19827 
19828 				/*
19829 				 * Add a payload buffer to the Multidata; this
19830 				 * operation must not fail, or otherwise our
19831 				 * logic in this routine is broken.  There
19832 				 * is no memory allocation done by the
19833 				 * routine, so any returned failure simply
19834 				 * tells us that we've done something wrong.
19835 				 *
19836 				 * A failure tells us that either we're adding
19837 				 * the same payload buffer more than once, or
19838 				 * we're trying to add more buffers than
19839 				 * allowed (max_pld calculation is wrong).
19840 				 * None of the above cases should happen, and
19841 				 * we panic because either there's horrible
19842 				 * heap corruption, and/or programming mistake.
19843 				 */
19844 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
19845 				if (pbuf_idx < 0) {
19846 					cmn_err(CE_PANIC, "tcp_multisend: "
19847 					    "payload buffer logic error "
19848 					    "detected for tcp %p mmd %p "
19849 					    "pbuf %p (%d)\n",
19850 					    (void *)tcp, (void *)mmd,
19851 					    (void *)md_pbuf, pbuf_idx);
19852 				}
19853 
19854 				ASSERT(max_pld > 0);
19855 				--max_pld;
19856 				add_buffer = B_FALSE;
19857 			}
19858 
19859 			ASSERT(md_mp_head != NULL);
19860 			ASSERT(md_pbuf != NULL);
19861 			ASSERT(md_pbuf_nxt == NULL);
19862 			ASSERT(pbuf_idx != -1);
19863 			ASSERT(pbuf_idx_nxt == -1);
19864 			ASSERT(*usable > 0);
19865 
19866 			/*
19867 			 * We spillover to the next payload buffer only
19868 			 * if all of the following is true:
19869 			 *
19870 			 *   1. There is not enough data on the current
19871 			 *	payload buffer to make up `len',
19872 			 *   2. We are allowed to send `len',
19873 			 *   3. The next payload buffer length is large
19874 			 *	enough to accomodate `spill'.
19875 			 */
19876 			if ((spill = len - *tail_unsent) > 0 &&
19877 			    *usable >= len &&
19878 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
19879 			    max_pld > 0) {
19880 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
19881 				if (md_pbuf_nxt == NULL) {
19882 					TCP_STAT(tcps, tcp_mdt_allocfail);
19883 					goto legacy_send; /* out_of_mem */
19884 				}
19885 
19886 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
19887 				    zc_cap != NULL) {
19888 					if (!ip_md_zcopy_attr(mmd, NULL,
19889 					    zc_cap->ill_zerocopy_flags)) {
19890 						freeb(md_pbuf_nxt);
19891 						TCP_STAT(tcps,
19892 						    tcp_mdt_allocfail);
19893 						/* out_of_mem */
19894 						goto legacy_send;
19895 					}
19896 					zcopy = B_TRUE;
19897 				}
19898 
19899 				/*
19900 				 * See comments above on the first call to
19901 				 * mmd_addpldbuf for explanation on the panic.
19902 				 */
19903 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
19904 				if (pbuf_idx_nxt < 0) {
19905 					panic("tcp_multisend: "
19906 					    "next payload buffer logic error "
19907 					    "detected for tcp %p mmd %p "
19908 					    "pbuf %p (%d)\n",
19909 					    (void *)tcp, (void *)mmd,
19910 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
19911 				}
19912 
19913 				ASSERT(max_pld > 0);
19914 				--max_pld;
19915 			} else if (spill > 0) {
19916 				/*
19917 				 * If there's a spillover, but the following
19918 				 * xmit_tail couldn't give us enough octets
19919 				 * to reach "len", then stop the current
19920 				 * Multidata creation and let the legacy
19921 				 * tcp_send() path take over.  We don't want
19922 				 * to send the tiny segment as part of this
19923 				 * Multidata for performance reasons; instead,
19924 				 * we let the legacy path deal with grouping
19925 				 * it with the subsequent small mblks.
19926 				 */
19927 				if (*usable >= len &&
19928 				    MBLKL((*xmit_tail)->b_cont) < spill) {
19929 					max_pld = 0;
19930 					break;	/* done */
19931 				}
19932 
19933 				/*
19934 				 * We can't spillover, and we are near
19935 				 * the end of the current payload buffer,
19936 				 * so send what's left.
19937 				 */
19938 				ASSERT(*tail_unsent > 0);
19939 				len = *tail_unsent;
19940 			}
19941 
19942 			/* tail_unsent is negated if there is a spillover */
19943 			*tail_unsent -= len;
19944 			*usable -= len;
19945 			ASSERT(*usable >= 0);
19946 
19947 			if (*usable < mss)
19948 				seg_len = *usable;
19949 			/*
19950 			 * Sender SWS avoidance; see comments in tcp_send();
19951 			 * everything else is the same, except that we only
19952 			 * do this here if there is no more data to be sent
19953 			 * following the current xmit_tail.  We don't check
19954 			 * for 1-byte urgent data because we shouldn't get
19955 			 * here if TCP_URG_VALID is set.
19956 			 */
19957 			if (*usable > 0 && *usable < mss &&
19958 			    ((md_pbuf_nxt == NULL &&
19959 			    (*xmit_tail)->b_cont == NULL) ||
19960 			    (md_pbuf_nxt != NULL &&
19961 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
19962 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
19963 			    (tcp->tcp_unsent -
19964 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
19965 			    !tcp->tcp_zero_win_probe) {
19966 				if ((*snxt + len) == tcp->tcp_snxt &&
19967 				    (*snxt + len) == tcp->tcp_suna) {
19968 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19969 				}
19970 				done = B_TRUE;
19971 			}
19972 
19973 			/*
19974 			 * Prime pump for IP's checksumming on our behalf;
19975 			 * include the adjustment for a source route if any.
19976 			 * Do this only for software/partial hardware checksum
19977 			 * offload, as this field gets zeroed out later for
19978 			 * the full hardware checksum offload case.
19979 			 */
19980 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
19981 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
19982 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
19983 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
19984 			}
19985 
19986 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
19987 			*snxt += len;
19988 
19989 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
19990 			/*
19991 			 * We set the PUSH bit only if TCP has no more buffered
19992 			 * data to be transmitted (or if sender SWS avoidance
19993 			 * takes place), as opposed to setting it for every
19994 			 * last packet in the burst.
19995 			 */
19996 			if (done ||
19997 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
19998 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
19999 
20000 			/*
20001 			 * Set FIN bit if this is our last segment; snxt
20002 			 * already includes its length, and it will not
20003 			 * be adjusted after this point.
20004 			 */
20005 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
20006 			    *snxt == tcp->tcp_fss) {
20007 				if (!tcp->tcp_fin_acked) {
20008 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
20009 					BUMP_MIB(&tcps->tcps_mib,
20010 					    tcpOutControl);
20011 				}
20012 				if (!tcp->tcp_fin_sent) {
20013 					tcp->tcp_fin_sent = B_TRUE;
20014 					/*
20015 					 * tcp state must be ESTABLISHED
20016 					 * in order for us to get here in
20017 					 * the first place.
20018 					 */
20019 					tcp->tcp_state = TCPS_FIN_WAIT_1;
20020 
20021 					/*
20022 					 * Upon returning from this routine,
20023 					 * tcp_wput_data() will set tcp_snxt
20024 					 * to be equal to snxt + tcp_fin_sent.
20025 					 * This is essentially the same as
20026 					 * setting it to tcp_fss + 1.
20027 					 */
20028 				}
20029 			}
20030 
20031 			tcp->tcp_last_sent_len = (ushort_t)len;
20032 
20033 			len += tcp_hdr_len;
20034 			if (tcp->tcp_ipversion == IPV4_VERSION)
20035 				tcp->tcp_ipha->ipha_length = htons(len);
20036 			else
20037 				tcp->tcp_ip6h->ip6_plen = htons(len -
20038 				    ((char *)&tcp->tcp_ip6h[1] -
20039 				    tcp->tcp_iphc));
20040 
20041 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
20042 
20043 			/* setup header fragment */
20044 			PDESC_HDR_ADD(pkt_info,
20045 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
20046 			    tcp->tcp_mdt_hdr_head,		/* head room */
20047 			    tcp_hdr_len,			/* len */
20048 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
20049 
20050 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
20051 			    hdr_frag_sz);
20052 			ASSERT(MBLKIN(md_hbuf,
20053 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
20054 			    PDESC_HDRSIZE(pkt_info)));
20055 
20056 			/* setup first payload fragment */
20057 			PDESC_PLD_INIT(pkt_info);
20058 			PDESC_PLD_SPAN_ADD(pkt_info,
20059 			    pbuf_idx,				/* index */
20060 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
20061 			    tcp->tcp_last_sent_len);		/* len */
20062 
20063 			/* create a split-packet in case of a spillover */
20064 			if (md_pbuf_nxt != NULL) {
20065 				ASSERT(spill > 0);
20066 				ASSERT(pbuf_idx_nxt > pbuf_idx);
20067 				ASSERT(!add_buffer);
20068 
20069 				md_pbuf = md_pbuf_nxt;
20070 				md_pbuf_nxt = NULL;
20071 				pbuf_idx = pbuf_idx_nxt;
20072 				pbuf_idx_nxt = -1;
20073 				cur_pld_off = spill;
20074 
20075 				/* trim out first payload fragment */
20076 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
20077 
20078 				/* setup second payload fragment */
20079 				PDESC_PLD_SPAN_ADD(pkt_info,
20080 				    pbuf_idx,			/* index */
20081 				    md_pbuf->b_rptr,		/* start */
20082 				    spill);			/* len */
20083 
20084 				if ((*xmit_tail)->b_next == NULL) {
20085 					/*
20086 					 * Store the lbolt used for RTT
20087 					 * estimation. We can only record one
20088 					 * timestamp per mblk so we do it when
20089 					 * we reach the end of the payload
20090 					 * buffer.  Also we only take a new
20091 					 * timestamp sample when the previous
20092 					 * timed data from the same mblk has
20093 					 * been ack'ed.
20094 					 */
20095 					(*xmit_tail)->b_prev = local_time;
20096 					(*xmit_tail)->b_next =
20097 					    (mblk_t *)(uintptr_t)first_snxt;
20098 				}
20099 
20100 				first_snxt = *snxt - spill;
20101 
20102 				/*
20103 				 * Advance xmit_tail; usable could be 0 by
20104 				 * the time we got here, but we made sure
20105 				 * above that we would only spillover to
20106 				 * the next data block if usable includes
20107 				 * the spilled-over amount prior to the
20108 				 * subtraction.  Therefore, we are sure
20109 				 * that xmit_tail->b_cont can't be NULL.
20110 				 */
20111 				ASSERT((*xmit_tail)->b_cont != NULL);
20112 				*xmit_tail = (*xmit_tail)->b_cont;
20113 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20114 				    (uintptr_t)INT_MAX);
20115 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
20116 			} else {
20117 				cur_pld_off += tcp->tcp_last_sent_len;
20118 			}
20119 
20120 			/*
20121 			 * Fill in the header using the template header, and
20122 			 * add options such as time-stamp, ECN and/or SACK,
20123 			 * as needed.
20124 			 */
20125 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
20126 			    (clock_t)local_time, num_sack_blk);
20127 
20128 			/* take care of some IP header businesses */
20129 			if (af == AF_INET) {
20130 				ipha = (ipha_t *)pkt_info->hdr_rptr;
20131 
20132 				ASSERT(OK_32PTR((uchar_t *)ipha));
20133 				ASSERT(PDESC_HDRL(pkt_info) >=
20134 				    IP_SIMPLE_HDR_LENGTH);
20135 				ASSERT(ipha->ipha_version_and_hdr_length ==
20136 				    IP_SIMPLE_HDR_VERSION);
20137 
20138 				/*
20139 				 * Assign ident value for current packet; see
20140 				 * related comments in ip_wput_ire() about the
20141 				 * contract private interface with clustering
20142 				 * group.
20143 				 */
20144 				clusterwide = B_FALSE;
20145 				if (cl_inet_ipident != NULL) {
20146 					ASSERT(cl_inet_isclusterwide != NULL);
20147 					if ((*cl_inet_isclusterwide)(stack_id,
20148 					    IPPROTO_IP, AF_INET,
20149 					    (uint8_t *)(uintptr_t)src, NULL)) {
20150 						ipha->ipha_ident =
20151 						    (*cl_inet_ipident)(stack_id,
20152 						    IPPROTO_IP, AF_INET,
20153 						    (uint8_t *)(uintptr_t)src,
20154 						    (uint8_t *)(uintptr_t)dst,
20155 						    NULL);
20156 						clusterwide = B_TRUE;
20157 					}
20158 				}
20159 
20160 				if (!clusterwide) {
20161 					ipha->ipha_ident = (uint16_t)
20162 					    atomic_add_32_nv(
20163 						&ire->ire_ident, 1);
20164 				}
20165 #ifndef _BIG_ENDIAN
20166 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
20167 				    (ipha->ipha_ident >> 8);
20168 #endif
20169 			} else {
20170 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
20171 
20172 				ASSERT(OK_32PTR((uchar_t *)ip6h));
20173 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
20174 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
20175 				ASSERT(PDESC_HDRL(pkt_info) >=
20176 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
20177 				    TCP_CHECKSUM_SIZE));
20178 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20179 
20180 				if (tcp->tcp_ip_forward_progress) {
20181 					rconfirm = B_TRUE;
20182 					tcp->tcp_ip_forward_progress = B_FALSE;
20183 				}
20184 			}
20185 
20186 			/* at least one payload span, and at most two */
20187 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
20188 
20189 			/* add the packet descriptor to Multidata */
20190 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
20191 			    KM_NOSLEEP)) == NULL) {
20192 				/*
20193 				 * Any failure other than ENOMEM indicates
20194 				 * that we have passed in invalid pkt_info
20195 				 * or parameters to mmd_addpdesc, which must
20196 				 * not happen.
20197 				 *
20198 				 * EINVAL is a result of failure on boundary
20199 				 * checks against the pkt_info contents.  It
20200 				 * should not happen, and we panic because
20201 				 * either there's horrible heap corruption,
20202 				 * and/or programming mistake.
20203 				 */
20204 				if (err != ENOMEM) {
20205 					cmn_err(CE_PANIC, "tcp_multisend: "
20206 					    "pdesc logic error detected for "
20207 					    "tcp %p mmd %p pinfo %p (%d)\n",
20208 					    (void *)tcp, (void *)mmd,
20209 					    (void *)pkt_info, err);
20210 				}
20211 				TCP_STAT(tcps, tcp_mdt_addpdescfail);
20212 				goto legacy_send; /* out_of_mem */
20213 			}
20214 			ASSERT(pkt != NULL);
20215 
20216 			/* calculate IP header and TCP checksums */
20217 			if (af == AF_INET) {
20218 				/* calculate pseudo-header checksum */
20219 				cksum = (dst >> 16) + (dst & 0xFFFF) +
20220 				    (src >> 16) + (src & 0xFFFF);
20221 
20222 				/* offset for TCP header checksum */
20223 				up = IPH_TCPH_CHECKSUMP(ipha,
20224 				    IP_SIMPLE_HDR_LENGTH);
20225 			} else {
20226 				up = (uint16_t *)&ip6h->ip6_src;
20227 
20228 				/* calculate pseudo-header checksum */
20229 				cksum = up[0] + up[1] + up[2] + up[3] +
20230 				    up[4] + up[5] + up[6] + up[7] +
20231 				    up[8] + up[9] + up[10] + up[11] +
20232 				    up[12] + up[13] + up[14] + up[15];
20233 
20234 				/* Fold the initial sum */
20235 				cksum = (cksum & 0xffff) + (cksum >> 16);
20236 
20237 				up = (uint16_t *)(((uchar_t *)ip6h) +
20238 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
20239 			}
20240 
20241 			if (hwcksum_flags & HCK_FULLCKSUM) {
20242 				/* clear checksum field for hardware */
20243 				*up = 0;
20244 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
20245 				uint32_t sum;
20246 
20247 				/* pseudo-header checksumming */
20248 				sum = *up + cksum + IP_TCP_CSUM_COMP;
20249 				sum = (sum & 0xFFFF) + (sum >> 16);
20250 				*up = (sum & 0xFFFF) + (sum >> 16);
20251 			} else {
20252 				/* software checksumming */
20253 				TCP_STAT(tcps, tcp_out_sw_cksum);
20254 				TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
20255 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
20256 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
20257 				    cksum + IP_TCP_CSUM_COMP);
20258 				if (*up == 0)
20259 					*up = 0xFFFF;
20260 			}
20261 
20262 			/* IPv4 header checksum */
20263 			if (af == AF_INET) {
20264 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
20265 					ipha->ipha_hdr_checksum = 0;
20266 				} else {
20267 					IP_HDR_CKSUM(ipha, cksum,
20268 					    ((uint32_t *)ipha)[0],
20269 					    ((uint16_t *)ipha)[4]);
20270 				}
20271 			}
20272 
20273 			if (af == AF_INET &&
20274 			    HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) ||
20275 			    af == AF_INET6 &&
20276 			    HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) {
20277 				mblk_t	*mp, *mp1;
20278 				uchar_t	*hdr_rptr, *hdr_wptr;
20279 				uchar_t	*pld_rptr, *pld_wptr;
20280 
20281 				/*
20282 				 * We reconstruct a pseudo packet for the hooks
20283 				 * framework using mmd_transform_link().
20284 				 * If it is a split packet we pullup the
20285 				 * payload. FW_HOOKS expects a pkt comprising
20286 				 * of two mblks: a header and the payload.
20287 				 */
20288 				if ((mp = mmd_transform_link(pkt)) == NULL) {
20289 					TCP_STAT(tcps, tcp_mdt_allocfail);
20290 					goto legacy_send;
20291 				}
20292 
20293 				if (pkt_info->pld_cnt > 1) {
20294 					/* split payload, more than one pld */
20295 					if ((mp1 = msgpullup(mp->b_cont, -1)) ==
20296 					    NULL) {
20297 						freemsg(mp);
20298 						TCP_STAT(tcps,
20299 						    tcp_mdt_allocfail);
20300 						goto legacy_send;
20301 					}
20302 					freemsg(mp->b_cont);
20303 					mp->b_cont = mp1;
20304 				} else {
20305 					mp1 = mp->b_cont;
20306 				}
20307 				ASSERT(mp1 != NULL && mp1->b_cont == NULL);
20308 
20309 				/*
20310 				 * Remember the message offsets. This is so we
20311 				 * can detect changes when we return from the
20312 				 * FW_HOOKS callbacks.
20313 				 */
20314 				hdr_rptr = mp->b_rptr;
20315 				hdr_wptr = mp->b_wptr;
20316 				pld_rptr = mp->b_cont->b_rptr;
20317 				pld_wptr = mp->b_cont->b_wptr;
20318 
20319 				if (af == AF_INET) {
20320 					DTRACE_PROBE4(
20321 					    ip4__physical__out__start,
20322 					    ill_t *, NULL,
20323 					    ill_t *, ill,
20324 					    ipha_t *, ipha,
20325 					    mblk_t *, mp);
20326 					FW_HOOKS(
20327 					    ipst->ips_ip4_physical_out_event,
20328 					    ipst->ips_ipv4firewall_physical_out,
20329 					    NULL, ill, ipha, mp, mp, 0, ipst);
20330 					DTRACE_PROBE1(
20331 					    ip4__physical__out__end,
20332 					    mblk_t *, mp);
20333 				} else {
20334 					DTRACE_PROBE4(
20335 					    ip6__physical__out_start,
20336 					    ill_t *, NULL,
20337 					    ill_t *, ill,
20338 					    ip6_t *, ip6h,
20339 					    mblk_t *, mp);
20340 					FW_HOOKS6(
20341 					    ipst->ips_ip6_physical_out_event,
20342 					    ipst->ips_ipv6firewall_physical_out,
20343 					    NULL, ill, ip6h, mp, mp, 0, ipst);
20344 					DTRACE_PROBE1(
20345 					    ip6__physical__out__end,
20346 					    mblk_t *, mp);
20347 				}
20348 
20349 				if (mp == NULL ||
20350 				    (mp1 = mp->b_cont) == NULL ||
20351 				    mp->b_rptr != hdr_rptr ||
20352 				    mp->b_wptr != hdr_wptr ||
20353 				    mp1->b_rptr != pld_rptr ||
20354 				    mp1->b_wptr != pld_wptr ||
20355 				    mp1->b_cont != NULL) {
20356 					/*
20357 					 * We abandon multidata processing and
20358 					 * return to the normal path, either
20359 					 * when a packet is blocked, or when
20360 					 * the boundaries of header buffer or
20361 					 * payload buffer have been changed by
20362 					 * FW_HOOKS[6].
20363 					 */
20364 					if (mp != NULL)
20365 						freemsg(mp);
20366 					goto legacy_send;
20367 				}
20368 				/* Finished with the pseudo packet */
20369 				freemsg(mp);
20370 			}
20371 			DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr,
20372 			    ill, ipha, ip6h);
20373 			/* advance header offset */
20374 			cur_hdr_off += hdr_frag_sz;
20375 
20376 			obbytes += tcp->tcp_last_sent_len;
20377 			++obsegs;
20378 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
20379 		    *tail_unsent > 0);
20380 
20381 		if ((*xmit_tail)->b_next == NULL) {
20382 			/*
20383 			 * Store the lbolt used for RTT estimation. We can only
20384 			 * record one timestamp per mblk so we do it when we
20385 			 * reach the end of the payload buffer. Also we only
20386 			 * take a new timestamp sample when the previous timed
20387 			 * data from the same mblk has been ack'ed.
20388 			 */
20389 			(*xmit_tail)->b_prev = local_time;
20390 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
20391 		}
20392 
20393 		ASSERT(*tail_unsent >= 0);
20394 		if (*tail_unsent > 0) {
20395 			/*
20396 			 * We got here because we broke out of the above
20397 			 * loop due to of one of the following cases:
20398 			 *
20399 			 *   1. len < adjusted MSS (i.e. small),
20400 			 *   2. Sender SWS avoidance,
20401 			 *   3. max_pld is zero.
20402 			 *
20403 			 * We are done for this Multidata, so trim our
20404 			 * last payload buffer (if any) accordingly.
20405 			 */
20406 			if (md_pbuf != NULL)
20407 				md_pbuf->b_wptr -= *tail_unsent;
20408 		} else if (*usable > 0) {
20409 			*xmit_tail = (*xmit_tail)->b_cont;
20410 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20411 			    (uintptr_t)INT_MAX);
20412 			*tail_unsent = (int)MBLKL(*xmit_tail);
20413 			add_buffer = B_TRUE;
20414 		}
20415 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
20416 	    (tcp_mdt_chain || max_pld > 0));
20417 
20418 	if (md_mp_head != NULL) {
20419 		/* send everything down */
20420 		tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
20421 		    &rconfirm);
20422 	}
20423 
20424 #undef PREP_NEW_MULTIDATA
20425 #undef PREP_NEW_PBUF
20426 #undef IPVER
20427 
20428 	IRE_REFRELE(ire);
20429 	return (0);
20430 }
20431 
20432 /*
20433  * A wrapper function for sending one or more Multidata messages down to
20434  * the module below ip; this routine does not release the reference of the
20435  * IRE (caller does that).  This routine is analogous to tcp_send_data().
20436  */
20437 static void
20438 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
20439     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
20440 {
20441 	uint64_t delta;
20442 	nce_t *nce;
20443 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20444 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
20445 
20446 	ASSERT(ire != NULL && ill != NULL);
20447 	ASSERT(ire->ire_stq != NULL);
20448 	ASSERT(md_mp_head != NULL);
20449 	ASSERT(rconfirm != NULL);
20450 
20451 	/* adjust MIBs and IRE timestamp */
20452 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp);
20453 	tcp->tcp_obsegs += obsegs;
20454 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs);
20455 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes);
20456 	TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs);
20457 
20458 	if (tcp->tcp_ipversion == IPV4_VERSION) {
20459 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs);
20460 	} else {
20461 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs);
20462 	}
20463 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs);
20464 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs);
20465 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes);
20466 
20467 	ire->ire_ob_pkt_count += obsegs;
20468 	if (ire->ire_ipif != NULL)
20469 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
20470 	ire->ire_last_used_time = lbolt;
20471 
20472 	if (ipst->ips_ipobs_enabled) {
20473 		multidata_t *dlmdp = mmd_getmultidata(md_mp_head);
20474 		pdesc_t *dl_pkt;
20475 		pdescinfo_t pinfo;
20476 		mblk_t *nmp;
20477 		zoneid_t szone = tcp->tcp_connp->conn_zoneid;
20478 
20479 		for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo);
20480 		    (dl_pkt != NULL);
20481 		    dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) {
20482 			if ((nmp = mmd_transform_link(dl_pkt)) == NULL)
20483 				continue;
20484 			ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone,
20485 			    ALL_ZONES, ill, tcp->tcp_ipversion, 0, ipst);
20486 			freemsg(nmp);
20487 		}
20488 	}
20489 
20490 	/* send it down */
20491 	putnext(ire->ire_stq, md_mp_head);
20492 
20493 	/* we're done for TCP/IPv4 */
20494 	if (tcp->tcp_ipversion == IPV4_VERSION)
20495 		return;
20496 
20497 	nce = ire->ire_nce;
20498 
20499 	ASSERT(nce != NULL);
20500 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
20501 	ASSERT(nce->nce_state != ND_INCOMPLETE);
20502 
20503 	/* reachability confirmation? */
20504 	if (*rconfirm) {
20505 		nce->nce_last = TICK_TO_MSEC(lbolt64);
20506 		if (nce->nce_state != ND_REACHABLE) {
20507 			mutex_enter(&nce->nce_lock);
20508 			nce->nce_state = ND_REACHABLE;
20509 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
20510 			mutex_exit(&nce->nce_lock);
20511 			(void) untimeout(nce->nce_timeout_id);
20512 			if (ip_debug > 2) {
20513 				/* ip1dbg */
20514 				pr_addr_dbg("tcp_multisend_data: state "
20515 				    "for %s changed to REACHABLE\n",
20516 				    AF_INET6, &ire->ire_addr_v6);
20517 			}
20518 		}
20519 		/* reset transport reachability confirmation */
20520 		*rconfirm = B_FALSE;
20521 	}
20522 
20523 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
20524 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
20525 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
20526 
20527 	if (delta > (uint64_t)ill->ill_reachable_time) {
20528 		mutex_enter(&nce->nce_lock);
20529 		switch (nce->nce_state) {
20530 		case ND_REACHABLE:
20531 		case ND_STALE:
20532 			/*
20533 			 * ND_REACHABLE is identical to ND_STALE in this
20534 			 * specific case. If reachable time has expired for
20535 			 * this neighbor (delta is greater than reachable
20536 			 * time), conceptually, the neighbor cache is no
20537 			 * longer in REACHABLE state, but already in STALE
20538 			 * state.  So the correct transition here is to
20539 			 * ND_DELAY.
20540 			 */
20541 			nce->nce_state = ND_DELAY;
20542 			mutex_exit(&nce->nce_lock);
20543 			NDP_RESTART_TIMER(nce,
20544 			    ipst->ips_delay_first_probe_time);
20545 			if (ip_debug > 3) {
20546 				/* ip2dbg */
20547 				pr_addr_dbg("tcp_multisend_data: state "
20548 				    "for %s changed to DELAY\n",
20549 				    AF_INET6, &ire->ire_addr_v6);
20550 			}
20551 			break;
20552 		case ND_DELAY:
20553 		case ND_PROBE:
20554 			mutex_exit(&nce->nce_lock);
20555 			/* Timers have already started */
20556 			break;
20557 		case ND_UNREACHABLE:
20558 			/*
20559 			 * ndp timer has detected that this nce is
20560 			 * unreachable and initiated deleting this nce
20561 			 * and all its associated IREs. This is a race
20562 			 * where we found the ire before it was deleted
20563 			 * and have just sent out a packet using this
20564 			 * unreachable nce.
20565 			 */
20566 			mutex_exit(&nce->nce_lock);
20567 			break;
20568 		default:
20569 			ASSERT(0);
20570 		}
20571 	}
20572 }
20573 
20574 /*
20575  * Derived from tcp_send_data().
20576  */
20577 static void
20578 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss,
20579     int num_lso_seg)
20580 {
20581 	ipha_t		*ipha;
20582 	mblk_t		*ire_fp_mp;
20583 	uint_t		ire_fp_mp_len;
20584 	uint32_t	hcksum_txflags = 0;
20585 	ipaddr_t	src;
20586 	ipaddr_t	dst;
20587 	uint32_t	cksum;
20588 	uint16_t	*up;
20589 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20590 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
20591 
20592 	ASSERT(DB_TYPE(mp) == M_DATA);
20593 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
20594 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
20595 	ASSERT(tcp->tcp_connp != NULL);
20596 	ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp));
20597 
20598 	ipha = (ipha_t *)mp->b_rptr;
20599 	src = ipha->ipha_src;
20600 	dst = ipha->ipha_dst;
20601 
20602 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp);
20603 
20604 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
20605 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident,
20606 	    num_lso_seg);
20607 #ifndef _BIG_ENDIAN
20608 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
20609 #endif
20610 	if (tcp->tcp_snd_zcopy_aware) {
20611 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
20612 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
20613 			mp = tcp_zcopy_disable(tcp, mp);
20614 	}
20615 
20616 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
20617 		ASSERT(ill->ill_hcksum_capab != NULL);
20618 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
20619 	}
20620 
20621 	/*
20622 	 * Since the TCP checksum should be recalculated by h/w, we can just
20623 	 * zero the checksum field for HCK_FULLCKSUM, or calculate partial
20624 	 * pseudo-header checksum for HCK_PARTIALCKSUM.
20625 	 * The partial pseudo-header excludes TCP length, that was calculated
20626 	 * in tcp_send(), so to zero *up before further processing.
20627 	 */
20628 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
20629 
20630 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
20631 	*up = 0;
20632 
20633 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
20634 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
20635 
20636 	/*
20637 	 * Append LSO flags and mss to the mp.
20638 	 */
20639 	lso_info_set(mp, mss, HW_LSO);
20640 
20641 	ipha->ipha_fragment_offset_and_flags |=
20642 	    (uint32_t)htons(ire->ire_frag_flag);
20643 
20644 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
20645 	ire_fp_mp_len = MBLKL(ire_fp_mp);
20646 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
20647 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
20648 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
20649 
20650 	UPDATE_OB_PKT_COUNT(ire);
20651 	ire->ire_last_used_time = lbolt;
20652 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
20653 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
20654 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
20655 	    ntohs(ipha->ipha_length));
20656 
20657 	DTRACE_PROBE4(ip4__physical__out__start,
20658 	    ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp);
20659 	FW_HOOKS(ipst->ips_ip4_physical_out_event,
20660 	    ipst->ips_ipv4firewall_physical_out, NULL,
20661 	    ill, ipha, mp, mp, 0, ipst);
20662 	DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
20663 	DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL);
20664 
20665 	if (mp != NULL) {
20666 		if (ipst->ips_ipobs_enabled) {
20667 			zoneid_t szone;
20668 
20669 			szone = ip_get_zoneid_v4(ipha->ipha_src, mp,
20670 			    ipst, ALL_ZONES);
20671 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone,
20672 			    ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst);
20673 		}
20674 
20675 		ILL_SEND_TX(ill, ire, tcp->tcp_connp, mp, 0, NULL);
20676 	}
20677 }
20678 
20679 /*
20680  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
20681  * scheme, and returns one of the following:
20682  *
20683  * -1 = failed allocation.
20684  *  0 = success; burst count reached, or usable send window is too small,
20685  *      and that we'd rather wait until later before sending again.
20686  *  1 = success; we are called from tcp_multisend(), and both usable send
20687  *      window and tail_unsent are greater than the MDT threshold, and thus
20688  *      Multidata Transmit should be used instead.
20689  */
20690 static int
20691 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
20692     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
20693     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
20694     const int mdt_thres)
20695 {
20696 	int num_burst_seg = tcp->tcp_snd_burst;
20697 	ire_t		*ire = NULL;
20698 	ill_t		*ill = NULL;
20699 	mblk_t		*ire_fp_mp = NULL;
20700 	uint_t		ire_fp_mp_len = 0;
20701 	int		num_lso_seg = 1;
20702 	uint_t		lso_usable;
20703 	boolean_t	do_lso_send = B_FALSE;
20704 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20705 
20706 	/*
20707 	 * Check LSO capability before any further work. And the similar check
20708 	 * need to be done in for(;;) loop.
20709 	 * LSO will be deployed when therer is more than one mss of available
20710 	 * data and a burst transmission is allowed.
20711 	 */
20712 	if (tcp->tcp_lso &&
20713 	    (tcp->tcp_valid_bits == 0 ||
20714 	    tcp->tcp_valid_bits == TCP_FSS_VALID) &&
20715 	    num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
20716 		/*
20717 		 * Try to find usable IRE/ILL and do basic check to the ILL.
20718 		 * Double check LSO usability before going further, since the
20719 		 * underlying interface could have been changed. In case of any
20720 		 * change of LSO capability, set tcp_ire_ill_check_done to
20721 		 * B_FALSE to force to check the ILL with the next send.
20722 		 */
20723 		if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill) &&
20724 		    tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
20725 			/*
20726 			 * Enable LSO with this transmission.
20727 			 * Since IRE has been hold in tcp_send_find_ire_ill(),
20728 			 * IRE_REFRELE(ire) should be called before return.
20729 			 */
20730 			do_lso_send = B_TRUE;
20731 			ire_fp_mp = ire->ire_nce->nce_fp_mp;
20732 			ire_fp_mp_len = MBLKL(ire_fp_mp);
20733 			/* Round up to multiple of 4 */
20734 			ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4;
20735 		} else {
20736 			tcp->tcp_lso = B_FALSE;
20737 			tcp->tcp_ire_ill_check_done = B_FALSE;
20738 			do_lso_send = B_FALSE;
20739 			ill = NULL;
20740 		}
20741 	}
20742 
20743 	for (;;) {
20744 		struct datab	*db;
20745 		tcph_t		*tcph;
20746 		uint32_t	sum;
20747 		mblk_t		*mp, *mp1;
20748 		uchar_t		*rptr;
20749 		int		len;
20750 
20751 		/*
20752 		 * If we're called by tcp_multisend(), and the amount of
20753 		 * sendable data as well as the size of current xmit_tail
20754 		 * is beyond the MDT threshold, return to the caller and
20755 		 * let the large data transmit be done using MDT.
20756 		 */
20757 		if (*usable > 0 && *usable > mdt_thres &&
20758 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
20759 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
20760 			ASSERT(tcp->tcp_mdt);
20761 			return (1);	/* success; do large send */
20762 		}
20763 
20764 		if (num_burst_seg == 0)
20765 			break;		/* success; burst count reached */
20766 
20767 		/*
20768 		 * Calculate the maximum payload length we can send in *one*
20769 		 * time.
20770 		 */
20771 		if (do_lso_send) {
20772 			/*
20773 			 * Check whether need to do LSO any more.
20774 			 */
20775 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
20776 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
20777 				lso_usable = MIN(lso_usable,
20778 				    num_burst_seg * mss);
20779 
20780 				num_lso_seg = lso_usable / mss;
20781 				if (lso_usable % mss) {
20782 					num_lso_seg++;
20783 					tcp->tcp_last_sent_len = (ushort_t)
20784 					    (lso_usable % mss);
20785 				} else {
20786 					tcp->tcp_last_sent_len = (ushort_t)mss;
20787 				}
20788 			} else {
20789 				do_lso_send = B_FALSE;
20790 				num_lso_seg = 1;
20791 				lso_usable = mss;
20792 			}
20793 		}
20794 
20795 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
20796 
20797 		/*
20798 		 * Adjust num_burst_seg here.
20799 		 */
20800 		num_burst_seg -= num_lso_seg;
20801 
20802 		len = mss;
20803 		if (len > *usable) {
20804 			ASSERT(do_lso_send == B_FALSE);
20805 
20806 			len = *usable;
20807 			if (len <= 0) {
20808 				/* Terminate the loop */
20809 				break;	/* success; too small */
20810 			}
20811 			/*
20812 			 * Sender silly-window avoidance.
20813 			 * Ignore this if we are going to send a
20814 			 * zero window probe out.
20815 			 *
20816 			 * TODO: force data into microscopic window?
20817 			 *	==> (!pushed || (unsent > usable))
20818 			 */
20819 			if (len < (tcp->tcp_max_swnd >> 1) &&
20820 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
20821 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
20822 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
20823 				/*
20824 				 * If the retransmit timer is not running
20825 				 * we start it so that we will retransmit
20826 				 * in the case when the the receiver has
20827 				 * decremented the window.
20828 				 */
20829 				if (*snxt == tcp->tcp_snxt &&
20830 				    *snxt == tcp->tcp_suna) {
20831 					/*
20832 					 * We are not supposed to send
20833 					 * anything.  So let's wait a little
20834 					 * bit longer before breaking SWS
20835 					 * avoidance.
20836 					 *
20837 					 * What should the value be?
20838 					 * Suggestion: MAX(init rexmit time,
20839 					 * tcp->tcp_rto)
20840 					 */
20841 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20842 				}
20843 				break;	/* success; too small */
20844 			}
20845 		}
20846 
20847 		tcph = tcp->tcp_tcph;
20848 
20849 		/*
20850 		 * The reason to adjust len here is that we need to set flags
20851 		 * and calculate checksum.
20852 		 */
20853 		if (do_lso_send)
20854 			len = lso_usable;
20855 
20856 		*usable -= len; /* Approximate - can be adjusted later */
20857 		if (*usable > 0)
20858 			tcph->th_flags[0] = TH_ACK;
20859 		else
20860 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
20861 
20862 		/*
20863 		 * Prime pump for IP's checksumming on our behalf
20864 		 * Include the adjustment for a source route if any.
20865 		 */
20866 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20867 		sum = (sum >> 16) + (sum & 0xFFFF);
20868 		U16_TO_ABE16(sum, tcph->th_sum);
20869 
20870 		U32_TO_ABE32(*snxt, tcph->th_seq);
20871 
20872 		/*
20873 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
20874 		 * set.  For the case when TCP_FSS_VALID is the only valid
20875 		 * bit (normal active close), branch off only when we think
20876 		 * that the FIN flag needs to be set.  Note for this case,
20877 		 * that (snxt + len) may not reflect the actual seg_len,
20878 		 * as len may be further reduced in tcp_xmit_mp().  If len
20879 		 * gets modified, we will end up here again.
20880 		 */
20881 		if (tcp->tcp_valid_bits != 0 &&
20882 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
20883 		    ((*snxt + len) == tcp->tcp_fss))) {
20884 			uchar_t		*prev_rptr;
20885 			uint32_t	prev_snxt = tcp->tcp_snxt;
20886 
20887 			if (*tail_unsent == 0) {
20888 				ASSERT((*xmit_tail)->b_cont != NULL);
20889 				*xmit_tail = (*xmit_tail)->b_cont;
20890 				prev_rptr = (*xmit_tail)->b_rptr;
20891 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
20892 				    (*xmit_tail)->b_rptr);
20893 			} else {
20894 				prev_rptr = (*xmit_tail)->b_rptr;
20895 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
20896 				    *tail_unsent;
20897 			}
20898 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
20899 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
20900 			/* Restore tcp_snxt so we get amount sent right. */
20901 			tcp->tcp_snxt = prev_snxt;
20902 			if (prev_rptr == (*xmit_tail)->b_rptr) {
20903 				/*
20904 				 * If the previous timestamp is still in use,
20905 				 * don't stomp on it.
20906 				 */
20907 				if ((*xmit_tail)->b_next == NULL) {
20908 					(*xmit_tail)->b_prev = local_time;
20909 					(*xmit_tail)->b_next =
20910 					    (mblk_t *)(uintptr_t)(*snxt);
20911 				}
20912 			} else
20913 				(*xmit_tail)->b_rptr = prev_rptr;
20914 
20915 			if (mp == NULL) {
20916 				if (ire != NULL)
20917 					IRE_REFRELE(ire);
20918 				return (-1);
20919 			}
20920 			mp1 = mp->b_cont;
20921 
20922 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
20923 				tcp->tcp_last_sent_len = (ushort_t)len;
20924 			while (mp1->b_cont) {
20925 				*xmit_tail = (*xmit_tail)->b_cont;
20926 				(*xmit_tail)->b_prev = local_time;
20927 				(*xmit_tail)->b_next =
20928 				    (mblk_t *)(uintptr_t)(*snxt);
20929 				mp1 = mp1->b_cont;
20930 			}
20931 			*snxt += len;
20932 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
20933 			BUMP_LOCAL(tcp->tcp_obsegs);
20934 			BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
20935 			UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
20936 			tcp_send_data(tcp, q, mp);
20937 			continue;
20938 		}
20939 
20940 		*snxt += len;	/* Adjust later if we don't send all of len */
20941 		BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
20942 		UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
20943 
20944 		if (*tail_unsent) {
20945 			/* Are the bytes above us in flight? */
20946 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
20947 			if (rptr != (*xmit_tail)->b_rptr) {
20948 				*tail_unsent -= len;
20949 				if (len <= mss) /* LSO is unusable */
20950 					tcp->tcp_last_sent_len = (ushort_t)len;
20951 				len += tcp_hdr_len;
20952 				if (tcp->tcp_ipversion == IPV4_VERSION)
20953 					tcp->tcp_ipha->ipha_length = htons(len);
20954 				else
20955 					tcp->tcp_ip6h->ip6_plen =
20956 					    htons(len -
20957 					    ((char *)&tcp->tcp_ip6h[1] -
20958 					    tcp->tcp_iphc));
20959 				mp = dupb(*xmit_tail);
20960 				if (mp == NULL) {
20961 					if (ire != NULL)
20962 						IRE_REFRELE(ire);
20963 					return (-1);	/* out_of_mem */
20964 				}
20965 				mp->b_rptr = rptr;
20966 				/*
20967 				 * If the old timestamp is no longer in use,
20968 				 * sample a new timestamp now.
20969 				 */
20970 				if ((*xmit_tail)->b_next == NULL) {
20971 					(*xmit_tail)->b_prev = local_time;
20972 					(*xmit_tail)->b_next =
20973 					    (mblk_t *)(uintptr_t)(*snxt-len);
20974 				}
20975 				goto must_alloc;
20976 			}
20977 		} else {
20978 			*xmit_tail = (*xmit_tail)->b_cont;
20979 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
20980 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
20981 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
20982 			    (*xmit_tail)->b_rptr);
20983 		}
20984 
20985 		(*xmit_tail)->b_prev = local_time;
20986 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
20987 
20988 		*tail_unsent -= len;
20989 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
20990 			tcp->tcp_last_sent_len = (ushort_t)len;
20991 
20992 		len += tcp_hdr_len;
20993 		if (tcp->tcp_ipversion == IPV4_VERSION)
20994 			tcp->tcp_ipha->ipha_length = htons(len);
20995 		else
20996 			tcp->tcp_ip6h->ip6_plen = htons(len -
20997 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
20998 
20999 		mp = dupb(*xmit_tail);
21000 		if (mp == NULL) {
21001 			if (ire != NULL)
21002 				IRE_REFRELE(ire);
21003 			return (-1);	/* out_of_mem */
21004 		}
21005 
21006 		len = tcp_hdr_len;
21007 		/*
21008 		 * There are four reasons to allocate a new hdr mblk:
21009 		 *  1) The bytes above us are in use by another packet
21010 		 *  2) We don't have good alignment
21011 		 *  3) The mblk is being shared
21012 		 *  4) We don't have enough room for a header
21013 		 */
21014 		rptr = mp->b_rptr - len;
21015 		if (!OK_32PTR(rptr) ||
21016 		    ((db = mp->b_datap), db->db_ref != 2) ||
21017 		    rptr < db->db_base + ire_fp_mp_len) {
21018 			/* NOTE: we assume allocb returns an OK_32PTR */
21019 
21020 		must_alloc:;
21021 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
21022 			    tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED);
21023 			if (mp1 == NULL) {
21024 				freemsg(mp);
21025 				if (ire != NULL)
21026 					IRE_REFRELE(ire);
21027 				return (-1);	/* out_of_mem */
21028 			}
21029 			mp1->b_cont = mp;
21030 			mp = mp1;
21031 			/* Leave room for Link Level header */
21032 			len = tcp_hdr_len;
21033 			rptr =
21034 			    &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len];
21035 			mp->b_wptr = &rptr[len];
21036 		}
21037 
21038 		/*
21039 		 * Fill in the header using the template header, and add
21040 		 * options such as time-stamp, ECN and/or SACK, as needed.
21041 		 */
21042 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
21043 
21044 		mp->b_rptr = rptr;
21045 
21046 		if (*tail_unsent) {
21047 			int spill = *tail_unsent;
21048 
21049 			mp1 = mp->b_cont;
21050 			if (mp1 == NULL)
21051 				mp1 = mp;
21052 
21053 			/*
21054 			 * If we're a little short, tack on more mblks until
21055 			 * there is no more spillover.
21056 			 */
21057 			while (spill < 0) {
21058 				mblk_t *nmp;
21059 				int nmpsz;
21060 
21061 				nmp = (*xmit_tail)->b_cont;
21062 				nmpsz = MBLKL(nmp);
21063 
21064 				/*
21065 				 * Excess data in mblk; can we split it?
21066 				 * If MDT is enabled for the connection,
21067 				 * keep on splitting as this is a transient
21068 				 * send path.
21069 				 */
21070 				if (!do_lso_send && !tcp->tcp_mdt &&
21071 				    (spill + nmpsz > 0)) {
21072 					/*
21073 					 * Don't split if stream head was
21074 					 * told to break up larger writes
21075 					 * into smaller ones.
21076 					 */
21077 					if (tcp->tcp_maxpsz > 0)
21078 						break;
21079 
21080 					/*
21081 					 * Next mblk is less than SMSS/2
21082 					 * rounded up to nearest 64-byte;
21083 					 * let it get sent as part of the
21084 					 * next segment.
21085 					 */
21086 					if (tcp->tcp_localnet &&
21087 					    !tcp->tcp_cork &&
21088 					    (nmpsz < roundup((mss >> 1), 64)))
21089 						break;
21090 				}
21091 
21092 				*xmit_tail = nmp;
21093 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
21094 				/* Stash for rtt use later */
21095 				(*xmit_tail)->b_prev = local_time;
21096 				(*xmit_tail)->b_next =
21097 				    (mblk_t *)(uintptr_t)(*snxt - len);
21098 				mp1->b_cont = dupb(*xmit_tail);
21099 				mp1 = mp1->b_cont;
21100 
21101 				spill += nmpsz;
21102 				if (mp1 == NULL) {
21103 					*tail_unsent = spill;
21104 					freemsg(mp);
21105 					if (ire != NULL)
21106 						IRE_REFRELE(ire);
21107 					return (-1);	/* out_of_mem */
21108 				}
21109 			}
21110 
21111 			/* Trim back any surplus on the last mblk */
21112 			if (spill >= 0) {
21113 				mp1->b_wptr -= spill;
21114 				*tail_unsent = spill;
21115 			} else {
21116 				/*
21117 				 * We did not send everything we could in
21118 				 * order to remain within the b_cont limit.
21119 				 */
21120 				*usable -= spill;
21121 				*snxt += spill;
21122 				tcp->tcp_last_sent_len += spill;
21123 				UPDATE_MIB(&tcps->tcps_mib,
21124 				    tcpOutDataBytes, spill);
21125 				/*
21126 				 * Adjust the checksum
21127 				 */
21128 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
21129 				sum += spill;
21130 				sum = (sum >> 16) + (sum & 0xFFFF);
21131 				U16_TO_ABE16(sum, tcph->th_sum);
21132 				if (tcp->tcp_ipversion == IPV4_VERSION) {
21133 					sum = ntohs(
21134 					    ((ipha_t *)rptr)->ipha_length) +
21135 					    spill;
21136 					((ipha_t *)rptr)->ipha_length =
21137 					    htons(sum);
21138 				} else {
21139 					sum = ntohs(
21140 					    ((ip6_t *)rptr)->ip6_plen) +
21141 					    spill;
21142 					((ip6_t *)rptr)->ip6_plen =
21143 					    htons(sum);
21144 				}
21145 				*tail_unsent = 0;
21146 			}
21147 		}
21148 		if (tcp->tcp_ip_forward_progress) {
21149 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
21150 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
21151 			tcp->tcp_ip_forward_progress = B_FALSE;
21152 		}
21153 
21154 		if (do_lso_send) {
21155 			tcp_lsosend_data(tcp, mp, ire, ill, mss,
21156 			    num_lso_seg);
21157 			tcp->tcp_obsegs += num_lso_seg;
21158 
21159 			TCP_STAT(tcps, tcp_lso_times);
21160 			TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg);
21161 		} else {
21162 			tcp_send_data(tcp, q, mp);
21163 			BUMP_LOCAL(tcp->tcp_obsegs);
21164 		}
21165 	}
21166 
21167 	if (ire != NULL)
21168 		IRE_REFRELE(ire);
21169 	return (0);
21170 }
21171 
21172 /* Unlink and return any mblk that looks like it contains a MDT info */
21173 static mblk_t *
21174 tcp_mdt_info_mp(mblk_t *mp)
21175 {
21176 	mblk_t	*prev_mp;
21177 
21178 	for (;;) {
21179 		prev_mp = mp;
21180 		/* no more to process? */
21181 		if ((mp = mp->b_cont) == NULL)
21182 			break;
21183 
21184 		switch (DB_TYPE(mp)) {
21185 		case M_CTL:
21186 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
21187 				continue;
21188 			ASSERT(prev_mp != NULL);
21189 			prev_mp->b_cont = mp->b_cont;
21190 			mp->b_cont = NULL;
21191 			return (mp);
21192 		default:
21193 			break;
21194 		}
21195 	}
21196 	return (mp);
21197 }
21198 
21199 /* MDT info update routine, called when IP notifies us about MDT */
21200 static void
21201 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
21202 {
21203 	boolean_t prev_state;
21204 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21205 
21206 	/*
21207 	 * IP is telling us to abort MDT on this connection?  We know
21208 	 * this because the capability is only turned off when IP
21209 	 * encounters some pathological cases, e.g. link-layer change
21210 	 * where the new driver doesn't support MDT, or in situation
21211 	 * where MDT usage on the link-layer has been switched off.
21212 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
21213 	 * if the link-layer doesn't support MDT, and if it does, it
21214 	 * will indicate that the feature is to be turned on.
21215 	 */
21216 	prev_state = tcp->tcp_mdt;
21217 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
21218 	if (!tcp->tcp_mdt && !first) {
21219 		TCP_STAT(tcps, tcp_mdt_conn_halted3);
21220 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
21221 		    (void *)tcp->tcp_connp));
21222 	}
21223 
21224 	/*
21225 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
21226 	 * so disable MDT otherwise.  The checks are done here
21227 	 * and in tcp_wput_data().
21228 	 */
21229 	if (tcp->tcp_mdt &&
21230 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21231 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21232 	    (tcp->tcp_ipversion == IPV6_VERSION &&
21233 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
21234 		tcp->tcp_mdt = B_FALSE;
21235 
21236 	if (tcp->tcp_mdt) {
21237 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
21238 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
21239 			    "version (%d), expected version is %d",
21240 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
21241 			tcp->tcp_mdt = B_FALSE;
21242 			return;
21243 		}
21244 
21245 		/*
21246 		 * We need the driver to be able to handle at least three
21247 		 * spans per packet in order for tcp MDT to be utilized.
21248 		 * The first is for the header portion, while the rest are
21249 		 * needed to handle a packet that straddles across two
21250 		 * virtually non-contiguous buffers; a typical tcp packet
21251 		 * therefore consists of only two spans.  Note that we take
21252 		 * a zero as "don't care".
21253 		 */
21254 		if (mdt_capab->ill_mdt_span_limit > 0 &&
21255 		    mdt_capab->ill_mdt_span_limit < 3) {
21256 			tcp->tcp_mdt = B_FALSE;
21257 			return;
21258 		}
21259 
21260 		/* a zero means driver wants default value */
21261 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
21262 		    tcps->tcps_mdt_max_pbufs);
21263 		if (tcp->tcp_mdt_max_pld == 0)
21264 			tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs;
21265 
21266 		/* ensure 32-bit alignment */
21267 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min,
21268 		    mdt_capab->ill_mdt_hdr_head), 4);
21269 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min,
21270 		    mdt_capab->ill_mdt_hdr_tail), 4);
21271 
21272 		if (!first && !prev_state) {
21273 			TCP_STAT(tcps, tcp_mdt_conn_resumed2);
21274 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
21275 			    (void *)tcp->tcp_connp));
21276 		}
21277 	}
21278 }
21279 
21280 /* Unlink and return any mblk that looks like it contains a LSO info */
21281 static mblk_t *
21282 tcp_lso_info_mp(mblk_t *mp)
21283 {
21284 	mblk_t	*prev_mp;
21285 
21286 	for (;;) {
21287 		prev_mp = mp;
21288 		/* no more to process? */
21289 		if ((mp = mp->b_cont) == NULL)
21290 			break;
21291 
21292 		switch (DB_TYPE(mp)) {
21293 		case M_CTL:
21294 			if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE)
21295 				continue;
21296 			ASSERT(prev_mp != NULL);
21297 			prev_mp->b_cont = mp->b_cont;
21298 			mp->b_cont = NULL;
21299 			return (mp);
21300 		default:
21301 			break;
21302 		}
21303 	}
21304 
21305 	return (mp);
21306 }
21307 
21308 /* LSO info update routine, called when IP notifies us about LSO */
21309 static void
21310 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab)
21311 {
21312 	tcp_stack_t *tcps = tcp->tcp_tcps;
21313 
21314 	/*
21315 	 * IP is telling us to abort LSO on this connection?  We know
21316 	 * this because the capability is only turned off when IP
21317 	 * encounters some pathological cases, e.g. link-layer change
21318 	 * where the new NIC/driver doesn't support LSO, or in situation
21319 	 * where LSO usage on the link-layer has been switched off.
21320 	 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE
21321 	 * if the link-layer doesn't support LSO, and if it does, it
21322 	 * will indicate that the feature is to be turned on.
21323 	 */
21324 	tcp->tcp_lso = (lso_capab->ill_lso_on != 0);
21325 	TCP_STAT(tcps, tcp_lso_enabled);
21326 
21327 	/*
21328 	 * We currently only support LSO on simple TCP/IPv4,
21329 	 * so disable LSO otherwise.  The checks are done here
21330 	 * and in tcp_wput_data().
21331 	 */
21332 	if (tcp->tcp_lso &&
21333 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21334 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21335 	    (tcp->tcp_ipversion == IPV6_VERSION)) {
21336 		tcp->tcp_lso = B_FALSE;
21337 		TCP_STAT(tcps, tcp_lso_disabled);
21338 	} else {
21339 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH,
21340 		    lso_capab->ill_lso_max);
21341 	}
21342 }
21343 
21344 static void
21345 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt)
21346 {
21347 	conn_t *connp = tcp->tcp_connp;
21348 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21349 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21350 
21351 	ASSERT(ire != NULL);
21352 
21353 	/*
21354 	 * We may be in the fastpath here, and although we essentially do
21355 	 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return,
21356 	 * we try to keep things as brief as possible.  After all, these
21357 	 * are only best-effort checks, and we do more thorough ones prior
21358 	 * to calling tcp_send()/tcp_multisend().
21359 	 */
21360 	if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) &&
21361 	    check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
21362 	    ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
21363 	    !(ire->ire_flags & RTF_MULTIRT) &&
21364 	    !IPP_ENABLED(IPP_LOCAL_OUT, ipst) &&
21365 	    CONN_IS_LSO_MD_FASTPATH(connp)) {
21366 		if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
21367 			/* Cache the result */
21368 			connp->conn_lso_ok = B_TRUE;
21369 
21370 			ASSERT(ill->ill_lso_capab != NULL);
21371 			if (!ill->ill_lso_capab->ill_lso_on) {
21372 				ill->ill_lso_capab->ill_lso_on = 1;
21373 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21374 				    "LSO for interface %s\n", (void *)connp,
21375 				    ill->ill_name));
21376 			}
21377 			tcp_lso_update(tcp, ill->ill_lso_capab);
21378 		} else if (ipst->ips_ip_multidata_outbound &&
21379 		    ILL_MDT_CAPABLE(ill)) {
21380 			/* Cache the result */
21381 			connp->conn_mdt_ok = B_TRUE;
21382 
21383 			ASSERT(ill->ill_mdt_capab != NULL);
21384 			if (!ill->ill_mdt_capab->ill_mdt_on) {
21385 				ill->ill_mdt_capab->ill_mdt_on = 1;
21386 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21387 				    "MDT for interface %s\n", (void *)connp,
21388 				    ill->ill_name));
21389 			}
21390 			tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
21391 		}
21392 	}
21393 
21394 	/*
21395 	 * The goal is to reduce the number of generated tcp segments by
21396 	 * setting the maxpsz multiplier to 0; this will have an affect on
21397 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
21398 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
21399 	 * of outbound segments and incoming ACKs, thus allowing for better
21400 	 * network and system performance.  In contrast the legacy behavior
21401 	 * may result in sending less than SMSS size, because the last mblk
21402 	 * for some packets may have more data than needed to make up SMSS,
21403 	 * and the legacy code refused to "split" it.
21404 	 *
21405 	 * We apply the new behavior on following situations:
21406 	 *
21407 	 *   1) Loopback connections,
21408 	 *   2) Connections in which the remote peer is not on local subnet,
21409 	 *   3) Local subnet connections over the bge interface (see below).
21410 	 *
21411 	 * Ideally, we would like this behavior to apply for interfaces other
21412 	 * than bge.  However, doing so would negatively impact drivers which
21413 	 * perform dynamic mapping and unmapping of DMA resources, which are
21414 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
21415 	 * packet will be generated by tcp).  The bge driver does not suffer
21416 	 * from this, as it copies the mblks into pre-mapped buffers, and
21417 	 * therefore does not require more I/O resources than before.
21418 	 *
21419 	 * Otherwise, this behavior is present on all network interfaces when
21420 	 * the destination endpoint is non-local, since reducing the number
21421 	 * of packets in general is good for the network.
21422 	 *
21423 	 * TODO We need to remove this hard-coded conditional for bge once
21424 	 *	a better "self-tuning" mechanism, or a way to comprehend
21425 	 *	the driver transmit strategy is devised.  Until the solution
21426 	 *	is found and well understood, we live with this hack.
21427 	 */
21428 	if (!tcp_static_maxpsz &&
21429 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
21430 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
21431 		/* override the default value */
21432 		tcp->tcp_maxpsz = 0;
21433 
21434 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
21435 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
21436 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
21437 	}
21438 
21439 	/* set the stream head parameters accordingly */
21440 	(void) tcp_maxpsz_set(tcp, B_TRUE);
21441 }
21442 
21443 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
21444 static void
21445 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
21446 {
21447 	uchar_t	fval = *mp->b_rptr;
21448 	mblk_t	*tail;
21449 	queue_t	*q = tcp->tcp_wq;
21450 
21451 	/* TODO: How should flush interact with urgent data? */
21452 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
21453 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
21454 		/*
21455 		 * Flush only data that has not yet been put on the wire.  If
21456 		 * we flush data that we have already transmitted, life, as we
21457 		 * know it, may come to an end.
21458 		 */
21459 		tail = tcp->tcp_xmit_tail;
21460 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
21461 		tcp->tcp_xmit_tail_unsent = 0;
21462 		tcp->tcp_unsent = 0;
21463 		if (tail->b_wptr != tail->b_rptr)
21464 			tail = tail->b_cont;
21465 		if (tail) {
21466 			mblk_t **excess = &tcp->tcp_xmit_head;
21467 			for (;;) {
21468 				mblk_t *mp1 = *excess;
21469 				if (mp1 == tail)
21470 					break;
21471 				tcp->tcp_xmit_tail = mp1;
21472 				tcp->tcp_xmit_last = mp1;
21473 				excess = &mp1->b_cont;
21474 			}
21475 			*excess = NULL;
21476 			tcp_close_mpp(&tail);
21477 			if (tcp->tcp_snd_zcopy_aware)
21478 				tcp_zcopy_notify(tcp);
21479 		}
21480 		/*
21481 		 * We have no unsent data, so unsent must be less than
21482 		 * tcp_xmit_lowater, so re-enable flow.
21483 		 */
21484 		mutex_enter(&tcp->tcp_non_sq_lock);
21485 		if (tcp->tcp_flow_stopped) {
21486 			tcp_clrqfull(tcp);
21487 		}
21488 		mutex_exit(&tcp->tcp_non_sq_lock);
21489 	}
21490 	/*
21491 	 * TODO: you can't just flush these, you have to increase rwnd for one
21492 	 * thing.  For another, how should urgent data interact?
21493 	 */
21494 	if (fval & FLUSHR) {
21495 		*mp->b_rptr = fval & ~FLUSHW;
21496 		/* XXX */
21497 		qreply(q, mp);
21498 		return;
21499 	}
21500 	freemsg(mp);
21501 }
21502 
21503 /*
21504  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
21505  * messages.
21506  */
21507 static void
21508 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
21509 {
21510 	mblk_t	*mp1;
21511 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
21512 	STRUCT_HANDLE(strbuf, sb);
21513 	queue_t *q = tcp->tcp_wq;
21514 	int	error;
21515 	uint_t	addrlen;
21516 
21517 	/* Make sure it is one of ours. */
21518 	switch (iocp->ioc_cmd) {
21519 	case TI_GETMYNAME:
21520 	case TI_GETPEERNAME:
21521 		break;
21522 	default:
21523 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
21524 		return;
21525 	}
21526 	switch (mi_copy_state(q, mp, &mp1)) {
21527 	case -1:
21528 		return;
21529 	case MI_COPY_CASE(MI_COPY_IN, 1):
21530 		break;
21531 	case MI_COPY_CASE(MI_COPY_OUT, 1):
21532 		/* Copy out the strbuf. */
21533 		mi_copyout(q, mp);
21534 		return;
21535 	case MI_COPY_CASE(MI_COPY_OUT, 2):
21536 		/* All done. */
21537 		mi_copy_done(q, mp, 0);
21538 		return;
21539 	default:
21540 		mi_copy_done(q, mp, EPROTO);
21541 		return;
21542 	}
21543 	/* Check alignment of the strbuf */
21544 	if (!OK_32PTR(mp1->b_rptr)) {
21545 		mi_copy_done(q, mp, EINVAL);
21546 		return;
21547 	}
21548 
21549 	STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr);
21550 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
21551 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
21552 		mi_copy_done(q, mp, EINVAL);
21553 		return;
21554 	}
21555 
21556 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
21557 	if (mp1 == NULL)
21558 		return;
21559 
21560 	switch (iocp->ioc_cmd) {
21561 	case TI_GETMYNAME:
21562 		error = tcp_do_getsockname(tcp, (void *)mp1->b_rptr, &addrlen);
21563 		break;
21564 	case TI_GETPEERNAME:
21565 		error = tcp_do_getpeername(tcp, (void *)mp1->b_rptr, &addrlen);
21566 		break;
21567 	}
21568 
21569 	if (error != 0) {
21570 		mi_copy_done(q, mp, error);
21571 	} else {
21572 		mp1->b_wptr += addrlen;
21573 		STRUCT_FSET(sb, len, addrlen);
21574 
21575 		/* Copy out the address */
21576 		mi_copyout(q, mp);
21577 	}
21578 }
21579 
21580 static void
21581 tcp_disable_direct_sockfs(tcp_t *tcp)
21582 {
21583 #ifdef	_ILP32
21584 	tcp->tcp_acceptor_id = (t_uscalar_t)tcp->tcp_rq;
21585 #else
21586 	tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
21587 #endif
21588 	/*
21589 	 * Insert this socket into the acceptor hash.
21590 	 * We might need it for T_CONN_RES message
21591 	 */
21592 	tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
21593 
21594 	if (tcp->tcp_fused) {
21595 		/*
21596 		 * This is a fused loopback tcp; disable
21597 		 * read-side synchronous streams interface
21598 		 * and drain any queued data.  It is okay
21599 		 * to do this for non-synchronous streams
21600 		 * fused tcp as well.
21601 		 */
21602 		tcp_fuse_disable_pair(tcp, B_FALSE);
21603 	}
21604 	tcp->tcp_issocket = B_FALSE;
21605 	TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback);
21606 }
21607 
21608 /*
21609  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
21610  * messages.
21611  */
21612 /* ARGSUSED */
21613 static void
21614 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
21615 {
21616 	conn_t 	*connp = (conn_t *)arg;
21617 	tcp_t	*tcp = connp->conn_tcp;
21618 	queue_t	*q = tcp->tcp_wq;
21619 	struct iocblk	*iocp;
21620 
21621 	ASSERT(DB_TYPE(mp) == M_IOCTL);
21622 	/*
21623 	 * Try and ASSERT the minimum possible references on the
21624 	 * conn early enough. Since we are executing on write side,
21625 	 * the connection is obviously not detached and that means
21626 	 * there is a ref each for TCP and IP. Since we are behind
21627 	 * the squeue, the minimum references needed are 3. If the
21628 	 * conn is in classifier hash list, there should be an
21629 	 * extra ref for that (we check both the possibilities).
21630 	 */
21631 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21632 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21633 
21634 	iocp = (struct iocblk *)mp->b_rptr;
21635 	switch (iocp->ioc_cmd) {
21636 	case TCP_IOC_DEFAULT_Q:
21637 		/* Wants to be the default wq. */
21638 		if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
21639 			iocp->ioc_error = EPERM;
21640 			iocp->ioc_count = 0;
21641 			mp->b_datap->db_type = M_IOCACK;
21642 			qreply(q, mp);
21643 			return;
21644 		}
21645 		tcp_def_q_set(tcp, mp);
21646 		return;
21647 	case _SIOCSOCKFALLBACK:
21648 		/*
21649 		 * Either sockmod is about to be popped and the socket
21650 		 * would now be treated as a plain stream, or a module
21651 		 * is about to be pushed so we could no longer use read-
21652 		 * side synchronous streams for fused loopback tcp.
21653 		 * Drain any queued data and disable direct sockfs
21654 		 * interface from now on.
21655 		 */
21656 		if (!tcp->tcp_issocket) {
21657 			DB_TYPE(mp) = M_IOCNAK;
21658 			iocp->ioc_error = EINVAL;
21659 		} else {
21660 			tcp_disable_direct_sockfs(tcp);
21661 			DB_TYPE(mp) = M_IOCACK;
21662 			iocp->ioc_error = 0;
21663 		}
21664 		iocp->ioc_count = 0;
21665 		iocp->ioc_rval = 0;
21666 		qreply(q, mp);
21667 		return;
21668 	}
21669 	CALL_IP_WPUT(connp, q, mp);
21670 }
21671 
21672 /*
21673  * This routine is called by tcp_wput() to handle all TPI requests.
21674  */
21675 /* ARGSUSED */
21676 static void
21677 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
21678 {
21679 	conn_t 	*connp = (conn_t *)arg;
21680 	tcp_t	*tcp = connp->conn_tcp;
21681 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
21682 	uchar_t *rptr;
21683 	t_scalar_t type;
21684 	cred_t *cr;
21685 
21686 	/*
21687 	 * Try and ASSERT the minimum possible references on the
21688 	 * conn early enough. Since we are executing on write side,
21689 	 * the connection is obviously not detached and that means
21690 	 * there is a ref each for TCP and IP. Since we are behind
21691 	 * the squeue, the minimum references needed are 3. If the
21692 	 * conn is in classifier hash list, there should be an
21693 	 * extra ref for that (we check both the possibilities).
21694 	 */
21695 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21696 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21697 
21698 	rptr = mp->b_rptr;
21699 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
21700 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
21701 		type = ((union T_primitives *)rptr)->type;
21702 		if (type == T_EXDATA_REQ) {
21703 			tcp_output_urgent(connp, mp->b_cont, arg2);
21704 			freeb(mp);
21705 		} else if (type != T_DATA_REQ) {
21706 			goto non_urgent_data;
21707 		} else {
21708 			/* TODO: options, flags, ... from user */
21709 			/* Set length to zero for reclamation below */
21710 			tcp_wput_data(tcp, mp->b_cont, B_TRUE);
21711 			freeb(mp);
21712 		}
21713 		return;
21714 	} else {
21715 		if (tcp->tcp_debug) {
21716 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21717 			    "tcp_wput_proto, dropping one...");
21718 		}
21719 		freemsg(mp);
21720 		return;
21721 	}
21722 
21723 non_urgent_data:
21724 
21725 	switch ((int)tprim->type) {
21726 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
21727 		/*
21728 		 * save the kssl_ent_t from the next block, and convert this
21729 		 * back to a normal bind_req.
21730 		 */
21731 		if (mp->b_cont != NULL) {
21732 			ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
21733 
21734 			if (tcp->tcp_kssl_ent != NULL) {
21735 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
21736 				    KSSL_NO_PROXY);
21737 				tcp->tcp_kssl_ent = NULL;
21738 			}
21739 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
21740 			    sizeof (kssl_ent_t));
21741 			kssl_hold_ent(tcp->tcp_kssl_ent);
21742 			freemsg(mp->b_cont);
21743 			mp->b_cont = NULL;
21744 		}
21745 		tprim->type = T_BIND_REQ;
21746 
21747 	/* FALLTHROUGH */
21748 	case O_T_BIND_REQ:	/* bind request */
21749 	case T_BIND_REQ:	/* new semantics bind request */
21750 		tcp_tpi_bind(tcp, mp);
21751 		break;
21752 	case T_UNBIND_REQ:	/* unbind request */
21753 		tcp_tpi_unbind(tcp, mp);
21754 		break;
21755 	case O_T_CONN_RES:	/* old connection response XXX */
21756 	case T_CONN_RES:	/* connection response */
21757 		tcp_tli_accept(tcp, mp);
21758 		break;
21759 	case T_CONN_REQ:	/* connection request */
21760 		tcp_tpi_connect(tcp, mp);
21761 		break;
21762 	case T_DISCON_REQ:	/* disconnect request */
21763 		tcp_disconnect(tcp, mp);
21764 		break;
21765 	case T_CAPABILITY_REQ:
21766 		tcp_capability_req(tcp, mp);	/* capability request */
21767 		break;
21768 	case T_INFO_REQ:	/* information request */
21769 		tcp_info_req(tcp, mp);
21770 		break;
21771 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
21772 	case T_OPTMGMT_REQ:
21773 		/*
21774 		 * Note:  no support for snmpcom_req() through new
21775 		 * T_OPTMGMT_REQ. See comments in ip.c
21776 		 */
21777 
21778 		/*
21779 		 * All Solaris components should pass a db_credp
21780 		 * for this TPI message, hence we ASSERT.
21781 		 * But in case there is some other M_PROTO that looks
21782 		 * like a TPI message sent by some other kernel
21783 		 * component, we check and return an error.
21784 		 */
21785 		cr = msg_getcred(mp, NULL);
21786 		ASSERT(cr != NULL);
21787 		if (cr == NULL) {
21788 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
21789 			return;
21790 		}
21791 		/*
21792 		 * If EINPROGRESS is returned, the request has been queued
21793 		 * for subsequent processing by ip_restart_optmgmt(), which
21794 		 * will do the CONN_DEC_REF().
21795 		 */
21796 		CONN_INC_REF(connp);
21797 		if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) {
21798 			if (svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj,
21799 			    B_TRUE) != EINPROGRESS) {
21800 				CONN_DEC_REF(connp);
21801 			}
21802 		} else {
21803 			if (tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj,
21804 			    B_TRUE) != EINPROGRESS) {
21805 				CONN_DEC_REF(connp);
21806 			}
21807 		}
21808 		break;
21809 
21810 	case T_UNITDATA_REQ:	/* unitdata request */
21811 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21812 		break;
21813 	case T_ORDREL_REQ:	/* orderly release req */
21814 		freemsg(mp);
21815 
21816 		if (tcp->tcp_fused)
21817 			tcp_unfuse(tcp);
21818 
21819 		if (tcp_xmit_end(tcp) != 0) {
21820 			/*
21821 			 * We were crossing FINs and got a reset from
21822 			 * the other side. Just ignore it.
21823 			 */
21824 			if (tcp->tcp_debug) {
21825 				(void) strlog(TCP_MOD_ID, 0, 1,
21826 				    SL_ERROR|SL_TRACE,
21827 				    "tcp_wput_proto, T_ORDREL_REQ out of "
21828 				    "state %s",
21829 				    tcp_display(tcp, NULL,
21830 				    DISP_ADDR_AND_PORT));
21831 			}
21832 		}
21833 		break;
21834 	case T_ADDR_REQ:
21835 		tcp_addr_req(tcp, mp);
21836 		break;
21837 	default:
21838 		if (tcp->tcp_debug) {
21839 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21840 			    "tcp_wput_proto, bogus TPI msg, type %d",
21841 			    tprim->type);
21842 		}
21843 		/*
21844 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
21845 		 * to recover.
21846 		 */
21847 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21848 		break;
21849 	}
21850 }
21851 
21852 /*
21853  * The TCP write service routine should never be called...
21854  */
21855 /* ARGSUSED */
21856 static void
21857 tcp_wsrv(queue_t *q)
21858 {
21859 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
21860 
21861 	TCP_STAT(tcps, tcp_wsrv_called);
21862 }
21863 
21864 /* Non overlapping byte exchanger */
21865 static void
21866 tcp_xchg(uchar_t *a, uchar_t *b, int len)
21867 {
21868 	uchar_t	uch;
21869 
21870 	while (len-- > 0) {
21871 		uch = a[len];
21872 		a[len] = b[len];
21873 		b[len] = uch;
21874 	}
21875 }
21876 
21877 /*
21878  * Send out a control packet on the tcp connection specified.  This routine
21879  * is typically called where we need a simple ACK or RST generated.
21880  */
21881 static void
21882 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
21883 {
21884 	uchar_t		*rptr;
21885 	tcph_t		*tcph;
21886 	ipha_t		*ipha = NULL;
21887 	ip6_t		*ip6h = NULL;
21888 	uint32_t	sum;
21889 	int		tcp_hdr_len;
21890 	int		tcp_ip_hdr_len;
21891 	mblk_t		*mp;
21892 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21893 
21894 	/*
21895 	 * Save sum for use in source route later.
21896 	 */
21897 	ASSERT(tcp != NULL);
21898 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
21899 	tcp_hdr_len = tcp->tcp_hdr_len;
21900 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
21901 
21902 	/* If a text string is passed in with the request, pass it to strlog. */
21903 	if (str != NULL && tcp->tcp_debug) {
21904 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
21905 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
21906 		    str, seq, ack, ctl);
21907 	}
21908 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra,
21909 	    BPRI_MED);
21910 	if (mp == NULL) {
21911 		return;
21912 	}
21913 	rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
21914 	mp->b_rptr = rptr;
21915 	mp->b_wptr = &rptr[tcp_hdr_len];
21916 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
21917 
21918 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21919 		ipha = (ipha_t *)rptr;
21920 		ipha->ipha_length = htons(tcp_hdr_len);
21921 	} else {
21922 		ip6h = (ip6_t *)rptr;
21923 		ASSERT(tcp != NULL);
21924 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
21925 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21926 	}
21927 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
21928 	tcph->th_flags[0] = (uint8_t)ctl;
21929 	if (ctl & TH_RST) {
21930 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
21931 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
21932 		/*
21933 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
21934 		 */
21935 		if (tcp->tcp_snd_ts_ok &&
21936 		    tcp->tcp_state > TCPS_SYN_SENT) {
21937 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
21938 			*(mp->b_wptr) = TCPOPT_EOL;
21939 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21940 				ipha->ipha_length = htons(tcp_hdr_len -
21941 				    TCPOPT_REAL_TS_LEN);
21942 			} else {
21943 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
21944 				    TCPOPT_REAL_TS_LEN);
21945 			}
21946 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
21947 			sum -= TCPOPT_REAL_TS_LEN;
21948 		}
21949 	}
21950 	if (ctl & TH_ACK) {
21951 		if (tcp->tcp_snd_ts_ok) {
21952 			U32_TO_BE32(lbolt,
21953 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
21954 			U32_TO_BE32(tcp->tcp_ts_recent,
21955 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
21956 		}
21957 
21958 		/* Update the latest receive window size in TCP header. */
21959 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
21960 		    tcph->th_win);
21961 		tcp->tcp_rack = ack;
21962 		tcp->tcp_rack_cnt = 0;
21963 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
21964 	}
21965 	BUMP_LOCAL(tcp->tcp_obsegs);
21966 	U32_TO_BE32(seq, tcph->th_seq);
21967 	U32_TO_BE32(ack, tcph->th_ack);
21968 	/*
21969 	 * Include the adjustment for a source route if any.
21970 	 */
21971 	sum = (sum >> 16) + (sum & 0xFFFF);
21972 	U16_TO_BE16(sum, tcph->th_sum);
21973 	tcp_send_data(tcp, tcp->tcp_wq, mp);
21974 }
21975 
21976 /*
21977  * If this routine returns B_TRUE, TCP can generate a RST in response
21978  * to a segment.  If it returns B_FALSE, TCP should not respond.
21979  */
21980 static boolean_t
21981 tcp_send_rst_chk(tcp_stack_t *tcps)
21982 {
21983 	clock_t	now;
21984 
21985 	/*
21986 	 * TCP needs to protect itself from generating too many RSTs.
21987 	 * This can be a DoS attack by sending us random segments
21988 	 * soliciting RSTs.
21989 	 *
21990 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
21991 	 * in each 1 second interval.  In this way, TCP still generate
21992 	 * RSTs in normal cases but when under attack, the impact is
21993 	 * limited.
21994 	 */
21995 	if (tcps->tcps_rst_sent_rate_enabled != 0) {
21996 		now = lbolt;
21997 		/* lbolt can wrap around. */
21998 		if ((tcps->tcps_last_rst_intrvl > now) ||
21999 		    (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) >
22000 		    1*SECONDS)) {
22001 			tcps->tcps_last_rst_intrvl = now;
22002 			tcps->tcps_rst_cnt = 1;
22003 		} else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) {
22004 			return (B_FALSE);
22005 		}
22006 	}
22007 	return (B_TRUE);
22008 }
22009 
22010 /*
22011  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
22012  */
22013 static void
22014 tcp_ip_ire_mark_advice(tcp_t *tcp)
22015 {
22016 	mblk_t *mp;
22017 	ipic_t *ipic;
22018 
22019 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22020 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22021 		    &ipic);
22022 	} else {
22023 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22024 		    &ipic);
22025 	}
22026 	if (mp == NULL)
22027 		return;
22028 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22029 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22030 }
22031 
22032 /*
22033  * Return an IP advice ioctl mblk and set ipic to be the pointer
22034  * to the advice structure.
22035  */
22036 static mblk_t *
22037 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
22038 {
22039 	struct iocblk *ioc;
22040 	mblk_t *mp, *mp1;
22041 
22042 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
22043 	if (mp == NULL)
22044 		return (NULL);
22045 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
22046 	*ipic = (ipic_t *)mp->b_rptr;
22047 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
22048 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
22049 
22050 	bcopy(addr, *ipic + 1, addr_len);
22051 
22052 	(*ipic)->ipic_addr_length = addr_len;
22053 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
22054 
22055 	mp1 = mkiocb(IP_IOCTL);
22056 	if (mp1 == NULL) {
22057 		freemsg(mp);
22058 		return (NULL);
22059 	}
22060 	mp1->b_cont = mp;
22061 	ioc = (struct iocblk *)mp1->b_rptr;
22062 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
22063 
22064 	return (mp1);
22065 }
22066 
22067 /*
22068  * Generate a reset based on an inbound packet, connp is set by caller
22069  * when RST is in response to an unexpected inbound packet for which
22070  * there is active tcp state in the system.
22071  *
22072  * IPSEC NOTE : Try to send the reply with the same protection as it came
22073  * in.  We still have the ipsec_mp that the packet was attached to. Thus
22074  * the packet will go out at the same level of protection as it came in by
22075  * converting the IPSEC_IN to IPSEC_OUT.
22076  */
22077 static void
22078 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
22079     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid,
22080     tcp_stack_t *tcps, conn_t *connp)
22081 {
22082 	ipha_t		*ipha = NULL;
22083 	ip6_t		*ip6h = NULL;
22084 	ushort_t	len;
22085 	tcph_t		*tcph;
22086 	int		i;
22087 	mblk_t		*ipsec_mp;
22088 	boolean_t	mctl_present;
22089 	ipic_t		*ipic;
22090 	ipaddr_t	v4addr;
22091 	in6_addr_t	v6addr;
22092 	int		addr_len;
22093 	void		*addr;
22094 	queue_t		*q = tcps->tcps_g_q;
22095 	tcp_t		*tcp;
22096 	cred_t		*cr;
22097 	pid_t		pid;
22098 	mblk_t		*nmp;
22099 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
22100 
22101 	if (tcps->tcps_g_q == NULL) {
22102 		/*
22103 		 * For non-zero stackids the default queue isn't created
22104 		 * until the first open, thus there can be a need to send
22105 		 * a reset before then. But we can't do that, hence we just
22106 		 * drop the packet. Later during boot, when the default queue
22107 		 * has been setup, a retransmitted packet from the peer
22108 		 * will result in a reset.
22109 		 */
22110 		ASSERT(tcps->tcps_netstack->netstack_stackid !=
22111 		    GLOBAL_NETSTACKID);
22112 		freemsg(mp);
22113 		return;
22114 	}
22115 
22116 	if (connp != NULL)
22117 		tcp = connp->conn_tcp;
22118 	else
22119 		tcp = Q_TO_TCP(q);
22120 
22121 	if (!tcp_send_rst_chk(tcps)) {
22122 		tcps->tcps_rst_unsent++;
22123 		freemsg(mp);
22124 		return;
22125 	}
22126 
22127 	if (mp->b_datap->db_type == M_CTL) {
22128 		ipsec_mp = mp;
22129 		mp = mp->b_cont;
22130 		mctl_present = B_TRUE;
22131 	} else {
22132 		ipsec_mp = mp;
22133 		mctl_present = B_FALSE;
22134 	}
22135 
22136 	if (str && q && tcps->tcps_dbg) {
22137 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22138 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
22139 		    "flags 0x%x",
22140 		    str, seq, ack, ctl);
22141 	}
22142 	if (mp->b_datap->db_ref != 1) {
22143 		mblk_t *mp1 = copyb(mp);
22144 		freemsg(mp);
22145 		mp = mp1;
22146 		if (!mp) {
22147 			if (mctl_present)
22148 				freeb(ipsec_mp);
22149 			return;
22150 		} else {
22151 			if (mctl_present) {
22152 				ipsec_mp->b_cont = mp;
22153 			} else {
22154 				ipsec_mp = mp;
22155 			}
22156 		}
22157 	} else if (mp->b_cont) {
22158 		freemsg(mp->b_cont);
22159 		mp->b_cont = NULL;
22160 	}
22161 	/*
22162 	 * We skip reversing source route here.
22163 	 * (for now we replace all IP options with EOL)
22164 	 */
22165 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22166 		ipha = (ipha_t *)mp->b_rptr;
22167 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
22168 			mp->b_rptr[i] = IPOPT_EOL;
22169 		/*
22170 		 * Make sure that src address isn't flagrantly invalid.
22171 		 * Not all broadcast address checking for the src address
22172 		 * is possible, since we don't know the netmask of the src
22173 		 * addr.  No check for destination address is done, since
22174 		 * IP will not pass up a packet with a broadcast dest
22175 		 * address to TCP.  Similar checks are done below for IPv6.
22176 		 */
22177 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
22178 		    CLASSD(ipha->ipha_src)) {
22179 			freemsg(ipsec_mp);
22180 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
22181 			return;
22182 		}
22183 	} else {
22184 		ip6h = (ip6_t *)mp->b_rptr;
22185 
22186 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
22187 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
22188 			freemsg(ipsec_mp);
22189 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards);
22190 			return;
22191 		}
22192 
22193 		/* Remove any extension headers assuming partial overlay */
22194 		if (ip_hdr_len > IPV6_HDR_LEN) {
22195 			uint8_t *to;
22196 
22197 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
22198 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
22199 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
22200 			ip_hdr_len = IPV6_HDR_LEN;
22201 			ip6h = (ip6_t *)mp->b_rptr;
22202 			ip6h->ip6_nxt = IPPROTO_TCP;
22203 		}
22204 	}
22205 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
22206 	if (tcph->th_flags[0] & TH_RST) {
22207 		freemsg(ipsec_mp);
22208 		return;
22209 	}
22210 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
22211 	len = ip_hdr_len + sizeof (tcph_t);
22212 	mp->b_wptr = &mp->b_rptr[len];
22213 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22214 		ipha->ipha_length = htons(len);
22215 		/* Swap addresses */
22216 		v4addr = ipha->ipha_src;
22217 		ipha->ipha_src = ipha->ipha_dst;
22218 		ipha->ipha_dst = v4addr;
22219 		ipha->ipha_ident = 0;
22220 		ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
22221 		addr_len = IP_ADDR_LEN;
22222 		addr = &v4addr;
22223 	} else {
22224 		/* No ip6i_t in this case */
22225 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
22226 		/* Swap addresses */
22227 		v6addr = ip6h->ip6_src;
22228 		ip6h->ip6_src = ip6h->ip6_dst;
22229 		ip6h->ip6_dst = v6addr;
22230 		ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit;
22231 		addr_len = IPV6_ADDR_LEN;
22232 		addr = &v6addr;
22233 	}
22234 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
22235 	U32_TO_BE32(ack, tcph->th_ack);
22236 	U32_TO_BE32(seq, tcph->th_seq);
22237 	U16_TO_BE16(0, tcph->th_win);
22238 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
22239 	tcph->th_flags[0] = (uint8_t)ctl;
22240 	if (ctl & TH_RST) {
22241 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22242 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22243 	}
22244 
22245 	/* IP trusts us to set up labels when required. */
22246 	if (is_system_labeled() && (cr = msg_getcred(mp, &pid)) != NULL &&
22247 	    crgetlabel(cr) != NULL) {
22248 		int err;
22249 
22250 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
22251 			err = tsol_check_label(cr, &mp,
22252 			    tcp->tcp_connp->conn_mac_exempt,
22253 			    tcps->tcps_netstack->netstack_ip, pid);
22254 		else
22255 			err = tsol_check_label_v6(cr, &mp,
22256 			    tcp->tcp_connp->conn_mac_exempt,
22257 			    tcps->tcps_netstack->netstack_ip, pid);
22258 		if (mctl_present)
22259 			ipsec_mp->b_cont = mp;
22260 		else
22261 			ipsec_mp = mp;
22262 		if (err != 0) {
22263 			freemsg(ipsec_mp);
22264 			return;
22265 		}
22266 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22267 			ipha = (ipha_t *)mp->b_rptr;
22268 		} else {
22269 			ip6h = (ip6_t *)mp->b_rptr;
22270 		}
22271 	}
22272 
22273 	if (mctl_present) {
22274 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22275 
22276 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22277 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
22278 			return;
22279 		}
22280 	}
22281 	if (zoneid == ALL_ZONES)
22282 		zoneid = GLOBAL_ZONEID;
22283 
22284 	/* Add the zoneid so ip_output routes it properly */
22285 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) {
22286 		freemsg(ipsec_mp);
22287 		return;
22288 	}
22289 	ipsec_mp = nmp;
22290 
22291 	/*
22292 	 * NOTE:  one might consider tracing a TCP packet here, but
22293 	 * this function has no active TCP state and no tcp structure
22294 	 * that has a trace buffer.  If we traced here, we would have
22295 	 * to keep a local trace buffer in tcp_record_trace().
22296 	 *
22297 	 * TSol note: The mblk that contains the incoming packet was
22298 	 * reused by tcp_xmit_listener_reset, so it already contains
22299 	 * the right credentials and we don't need to call mblk_setcred.
22300 	 * Also the conn's cred is not right since it is associated
22301 	 * with tcps_g_q.
22302 	 */
22303 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
22304 
22305 	/*
22306 	 * Tell IP to mark the IRE used for this destination temporary.
22307 	 * This way, we can limit our exposure to DoS attack because IP
22308 	 * creates an IRE for each destination.  If there are too many,
22309 	 * the time to do any routing lookup will be extremely long.  And
22310 	 * the lookup can be in interrupt context.
22311 	 *
22312 	 * Note that in normal circumstances, this marking should not
22313 	 * affect anything.  It would be nice if only 1 message is
22314 	 * needed to inform IP that the IRE created for this RST should
22315 	 * not be added to the cache table.  But there is currently
22316 	 * not such communication mechanism between TCP and IP.  So
22317 	 * the best we can do now is to send the advice ioctl to IP
22318 	 * to mark the IRE temporary.
22319 	 */
22320 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
22321 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22322 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22323 	}
22324 }
22325 
22326 /*
22327  * Initiate closedown sequence on an active connection.  (May be called as
22328  * writer.)  Return value zero for OK return, non-zero for error return.
22329  */
22330 static int
22331 tcp_xmit_end(tcp_t *tcp)
22332 {
22333 	ipic_t	*ipic;
22334 	mblk_t	*mp;
22335 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22336 
22337 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
22338 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
22339 		/*
22340 		 * Invalid state, only states TCPS_SYN_RCVD,
22341 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
22342 		 */
22343 		return (-1);
22344 	}
22345 
22346 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
22347 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
22348 	/*
22349 	 * If there is nothing more unsent, send the FIN now.
22350 	 * Otherwise, it will go out with the last segment.
22351 	 */
22352 	if (tcp->tcp_unsent == 0) {
22353 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
22354 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
22355 
22356 		if (mp) {
22357 			tcp_send_data(tcp, tcp->tcp_wq, mp);
22358 		} else {
22359 			/*
22360 			 * Couldn't allocate msg.  Pretend we got it out.
22361 			 * Wait for rexmit timeout.
22362 			 */
22363 			tcp->tcp_snxt = tcp->tcp_fss + 1;
22364 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22365 		}
22366 
22367 		/*
22368 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
22369 		 * changed.
22370 		 */
22371 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
22372 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
22373 		}
22374 	} else {
22375 		/*
22376 		 * If tcp->tcp_cork is set, then the data will not get sent,
22377 		 * so we have to check that and unset it first.
22378 		 */
22379 		if (tcp->tcp_cork)
22380 			tcp->tcp_cork = B_FALSE;
22381 		tcp_wput_data(tcp, NULL, B_FALSE);
22382 	}
22383 
22384 	/*
22385 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
22386 	 * is 0, don't update the cache.
22387 	 */
22388 	if (tcps->tcps_rtt_updates == 0 ||
22389 	    tcp->tcp_rtt_update < tcps->tcps_rtt_updates)
22390 		return (0);
22391 
22392 	/*
22393 	 * NOTE: should not update if source routes i.e. if tcp_remote if
22394 	 * different from the destination.
22395 	 */
22396 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22397 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
22398 			return (0);
22399 		}
22400 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22401 		    &ipic);
22402 	} else {
22403 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
22404 		    &tcp->tcp_ip6h->ip6_dst))) {
22405 			return (0);
22406 		}
22407 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22408 		    &ipic);
22409 	}
22410 
22411 	/* Record route attributes in the IRE for use by future connections. */
22412 	if (mp == NULL)
22413 		return (0);
22414 
22415 	/*
22416 	 * We do not have a good algorithm to update ssthresh at this time.
22417 	 * So don't do any update.
22418 	 */
22419 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
22420 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
22421 
22422 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22423 
22424 	return (0);
22425 }
22426 
22427 /* ARGSUSED */
22428 void
22429 tcp_xmit_reset(void *arg, mblk_t *mp, void *arg2)
22430 {
22431 	conn_t *connp = (conn_t *)arg;
22432 	mblk_t *mp1;
22433 	tcp_t *tcp = connp->conn_tcp;
22434 	tcp_xmit_reset_event_t *eventp;
22435 
22436 	ASSERT(mp->b_datap->db_type == M_PROTO &&
22437 	    MBLKL(mp) == sizeof (tcp_xmit_reset_event_t));
22438 
22439 	if (tcp->tcp_state != TCPS_LISTEN) {
22440 		freemsg(mp);
22441 		return;
22442 	}
22443 
22444 	mp1 = mp->b_cont;
22445 	mp->b_cont = NULL;
22446 	eventp = (tcp_xmit_reset_event_t *)mp->b_rptr;
22447 	ASSERT(eventp->tcp_xre_tcps->tcps_netstack ==
22448 	    connp->conn_netstack);
22449 
22450 	tcp_xmit_listeners_reset(mp1, eventp->tcp_xre_iphdrlen,
22451 	    eventp->tcp_xre_zoneid, eventp->tcp_xre_tcps, connp);
22452 	freemsg(mp);
22453 }
22454 
22455 /*
22456  * Generate a "no listener here" RST in response to an "unknown" segment.
22457  * connp is set by caller when RST is in response to an unexpected
22458  * inbound packet for which there is active tcp state in the system.
22459  * Note that we are reusing the incoming mp to construct the outgoing RST.
22460  */
22461 void
22462 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid,
22463     tcp_stack_t *tcps, conn_t *connp)
22464 {
22465 	uchar_t		*rptr;
22466 	uint32_t	seg_len;
22467 	tcph_t		*tcph;
22468 	uint32_t	seg_seq;
22469 	uint32_t	seg_ack;
22470 	uint_t		flags;
22471 	mblk_t		*ipsec_mp;
22472 	ipha_t 		*ipha;
22473 	ip6_t 		*ip6h;
22474 	boolean_t	mctl_present = B_FALSE;
22475 	boolean_t	check = B_TRUE;
22476 	boolean_t	policy_present;
22477 	ipsec_stack_t	*ipss = tcps->tcps_netstack->netstack_ipsec;
22478 
22479 	TCP_STAT(tcps, tcp_no_listener);
22480 
22481 	ipsec_mp = mp;
22482 
22483 	if (mp->b_datap->db_type == M_CTL) {
22484 		ipsec_in_t *ii;
22485 
22486 		mctl_present = B_TRUE;
22487 		mp = mp->b_cont;
22488 
22489 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22490 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22491 		if (ii->ipsec_in_dont_check) {
22492 			check = B_FALSE;
22493 			if (!ii->ipsec_in_secure) {
22494 				freeb(ipsec_mp);
22495 				mctl_present = B_FALSE;
22496 				ipsec_mp = mp;
22497 			}
22498 		}
22499 	}
22500 
22501 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22502 		policy_present = ipss->ipsec_inbound_v4_policy_present;
22503 		ipha = (ipha_t *)mp->b_rptr;
22504 		ip6h = NULL;
22505 	} else {
22506 		policy_present = ipss->ipsec_inbound_v6_policy_present;
22507 		ipha = NULL;
22508 		ip6h = (ip6_t *)mp->b_rptr;
22509 	}
22510 
22511 	if (check && policy_present) {
22512 		/*
22513 		 * The conn_t parameter is NULL because we already know
22514 		 * nobody's home.
22515 		 */
22516 		ipsec_mp = ipsec_check_global_policy(
22517 		    ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present,
22518 		    tcps->tcps_netstack);
22519 		if (ipsec_mp == NULL)
22520 			return;
22521 	}
22522 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
22523 		DTRACE_PROBE2(
22524 		    tx__ip__log__error__nolistener__tcp,
22525 		    char *, "Could not reply with RST to mp(1)",
22526 		    mblk_t *, mp);
22527 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
22528 		freemsg(ipsec_mp);
22529 		return;
22530 	}
22531 
22532 	rptr = mp->b_rptr;
22533 
22534 	tcph = (tcph_t *)&rptr[ip_hdr_len];
22535 	seg_seq = BE32_TO_U32(tcph->th_seq);
22536 	seg_ack = BE32_TO_U32(tcph->th_ack);
22537 	flags = tcph->th_flags[0];
22538 
22539 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
22540 	if (flags & TH_RST) {
22541 		freemsg(ipsec_mp);
22542 	} else if (flags & TH_ACK) {
22543 		tcp_xmit_early_reset("no tcp, reset",
22544 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps,
22545 		    connp);
22546 	} else {
22547 		if (flags & TH_SYN) {
22548 			seg_len++;
22549 		} else {
22550 			/*
22551 			 * Here we violate the RFC.  Note that a normal
22552 			 * TCP will never send a segment without the ACK
22553 			 * flag, except for RST or SYN segment.  This
22554 			 * segment is neither.  Just drop it on the
22555 			 * floor.
22556 			 */
22557 			freemsg(ipsec_mp);
22558 			tcps->tcps_rst_unsent++;
22559 			return;
22560 		}
22561 
22562 		tcp_xmit_early_reset("no tcp, reset/ack",
22563 		    ipsec_mp, 0, seg_seq + seg_len,
22564 		    TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp);
22565 	}
22566 }
22567 
22568 /*
22569  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
22570  * ip and tcp header ready to pass down to IP.  If the mp passed in is
22571  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
22572  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
22573  * otherwise it will dup partial mblks.)
22574  * Otherwise, an appropriate ACK packet will be generated.  This
22575  * routine is not usually called to send new data for the first time.  It
22576  * is mostly called out of the timer for retransmits, and to generate ACKs.
22577  *
22578  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
22579  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
22580  * of the original mblk chain will be returned in *offset and *end_mp.
22581  */
22582 mblk_t *
22583 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
22584     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
22585     boolean_t rexmit)
22586 {
22587 	int	data_length;
22588 	int32_t	off = 0;
22589 	uint_t	flags;
22590 	mblk_t	*mp1;
22591 	mblk_t	*mp2;
22592 	uchar_t	*rptr;
22593 	tcph_t	*tcph;
22594 	int32_t	num_sack_blk = 0;
22595 	int32_t	sack_opt_len = 0;
22596 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22597 
22598 	/* Allocate for our maximum TCP header + link-level */
22599 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
22600 	    tcps->tcps_wroff_xtra, BPRI_MED);
22601 	if (!mp1)
22602 		return (NULL);
22603 	data_length = 0;
22604 
22605 	/*
22606 	 * Note that tcp_mss has been adjusted to take into account the
22607 	 * timestamp option if applicable.  Because SACK options do not
22608 	 * appear in every TCP segments and they are of variable lengths,
22609 	 * they cannot be included in tcp_mss.  Thus we need to calculate
22610 	 * the actual segment length when we need to send a segment which
22611 	 * includes SACK options.
22612 	 */
22613 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
22614 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
22615 		    tcp->tcp_num_sack_blk);
22616 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
22617 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
22618 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
22619 			max_to_send -= sack_opt_len;
22620 	}
22621 
22622 	if (offset != NULL) {
22623 		off = *offset;
22624 		/* We use offset as an indicator that end_mp is not NULL. */
22625 		*end_mp = NULL;
22626 	}
22627 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
22628 		/* This could be faster with cooperation from downstream */
22629 		if (mp2 != mp1 && !sendall &&
22630 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
22631 		    max_to_send)
22632 			/*
22633 			 * Don't send the next mblk since the whole mblk
22634 			 * does not fit.
22635 			 */
22636 			break;
22637 		mp2->b_cont = dupb(mp);
22638 		mp2 = mp2->b_cont;
22639 		if (!mp2) {
22640 			freemsg(mp1);
22641 			return (NULL);
22642 		}
22643 		mp2->b_rptr += off;
22644 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
22645 		    (uintptr_t)INT_MAX);
22646 
22647 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
22648 		if (data_length > max_to_send) {
22649 			mp2->b_wptr -= data_length - max_to_send;
22650 			data_length = max_to_send;
22651 			off = mp2->b_wptr - mp->b_rptr;
22652 			break;
22653 		} else {
22654 			off = 0;
22655 		}
22656 	}
22657 	if (offset != NULL) {
22658 		*offset = off;
22659 		*end_mp = mp;
22660 	}
22661 	if (seg_len != NULL) {
22662 		*seg_len = data_length;
22663 	}
22664 
22665 	/* Update the latest receive window size in TCP header. */
22666 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22667 	    tcp->tcp_tcph->th_win);
22668 
22669 	rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
22670 	mp1->b_rptr = rptr;
22671 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
22672 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
22673 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
22674 	U32_TO_ABE32(seq, tcph->th_seq);
22675 
22676 	/*
22677 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
22678 	 * that this function was called from tcp_wput_data. Thus, when called
22679 	 * to retransmit data the setting of the PUSH bit may appear some
22680 	 * what random in that it might get set when it should not. This
22681 	 * should not pose any performance issues.
22682 	 */
22683 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
22684 	    tcp->tcp_unsent == data_length)) {
22685 		flags = TH_ACK | TH_PUSH;
22686 	} else {
22687 		flags = TH_ACK;
22688 	}
22689 
22690 	if (tcp->tcp_ecn_ok) {
22691 		if (tcp->tcp_ecn_echo_on)
22692 			flags |= TH_ECE;
22693 
22694 		/*
22695 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
22696 		 * There is no TCP flow control for non-data segments, and
22697 		 * only data segment is transmitted reliably.
22698 		 */
22699 		if (data_length > 0 && !rexmit) {
22700 			SET_ECT(tcp, rptr);
22701 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
22702 				flags |= TH_CWR;
22703 				tcp->tcp_ecn_cwr_sent = B_TRUE;
22704 			}
22705 		}
22706 	}
22707 
22708 	if (tcp->tcp_valid_bits) {
22709 		uint32_t u1;
22710 
22711 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
22712 		    seq == tcp->tcp_iss) {
22713 			uchar_t	*wptr;
22714 
22715 			/*
22716 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
22717 			 * TCP can only be in SYN-SENT, SYN-RCVD or
22718 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
22719 			 * our SYN is not ack'ed but the app closes this
22720 			 * TCP connection.
22721 			 */
22722 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
22723 			    tcp->tcp_state == TCPS_SYN_RCVD ||
22724 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
22725 
22726 			/*
22727 			 * Tack on the MSS option.  It is always needed
22728 			 * for both active and passive open.
22729 			 *
22730 			 * MSS option value should be interface MTU - MIN
22731 			 * TCP/IP header according to RFC 793 as it means
22732 			 * the maximum segment size TCP can receive.  But
22733 			 * to get around some broken middle boxes/end hosts
22734 			 * out there, we allow the option value to be the
22735 			 * same as the MSS option size on the peer side.
22736 			 * In this way, the other side will not send
22737 			 * anything larger than they can receive.
22738 			 *
22739 			 * Note that for SYN_SENT state, the ndd param
22740 			 * tcp_use_smss_as_mss_opt has no effect as we
22741 			 * don't know the peer's MSS option value. So
22742 			 * the only case we need to take care of is in
22743 			 * SYN_RCVD state, which is done later.
22744 			 */
22745 			wptr = mp1->b_wptr;
22746 			wptr[0] = TCPOPT_MAXSEG;
22747 			wptr[1] = TCPOPT_MAXSEG_LEN;
22748 			wptr += 2;
22749 			u1 = tcp->tcp_if_mtu -
22750 			    (tcp->tcp_ipversion == IPV4_VERSION ?
22751 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
22752 			    TCP_MIN_HEADER_LENGTH;
22753 			U16_TO_BE16(u1, wptr);
22754 			mp1->b_wptr = wptr + 2;
22755 			/* Update the offset to cover the additional word */
22756 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
22757 
22758 			/*
22759 			 * Note that the following way of filling in
22760 			 * TCP options are not optimal.  Some NOPs can
22761 			 * be saved.  But there is no need at this time
22762 			 * to optimize it.  When it is needed, we will
22763 			 * do it.
22764 			 */
22765 			switch (tcp->tcp_state) {
22766 			case TCPS_SYN_SENT:
22767 				flags = TH_SYN;
22768 
22769 				if (tcp->tcp_snd_ts_ok) {
22770 					uint32_t llbolt = (uint32_t)lbolt;
22771 
22772 					wptr = mp1->b_wptr;
22773 					wptr[0] = TCPOPT_NOP;
22774 					wptr[1] = TCPOPT_NOP;
22775 					wptr[2] = TCPOPT_TSTAMP;
22776 					wptr[3] = TCPOPT_TSTAMP_LEN;
22777 					wptr += 4;
22778 					U32_TO_BE32(llbolt, wptr);
22779 					wptr += 4;
22780 					ASSERT(tcp->tcp_ts_recent == 0);
22781 					U32_TO_BE32(0L, wptr);
22782 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
22783 					tcph->th_offset_and_rsrvd[0] +=
22784 					    (3 << 4);
22785 				}
22786 
22787 				/*
22788 				 * Set up all the bits to tell other side
22789 				 * we are ECN capable.
22790 				 */
22791 				if (tcp->tcp_ecn_ok) {
22792 					flags |= (TH_ECE | TH_CWR);
22793 				}
22794 				break;
22795 			case TCPS_SYN_RCVD:
22796 				flags |= TH_SYN;
22797 
22798 				/*
22799 				 * Reset the MSS option value to be SMSS
22800 				 * We should probably add back the bytes
22801 				 * for timestamp option and IPsec.  We
22802 				 * don't do that as this is a workaround
22803 				 * for broken middle boxes/end hosts, it
22804 				 * is better for us to be more cautious.
22805 				 * They may not take these things into
22806 				 * account in their SMSS calculation.  Thus
22807 				 * the peer's calculated SMSS may be smaller
22808 				 * than what it can be.  This should be OK.
22809 				 */
22810 				if (tcps->tcps_use_smss_as_mss_opt) {
22811 					u1 = tcp->tcp_mss;
22812 					U16_TO_BE16(u1, wptr);
22813 				}
22814 
22815 				/*
22816 				 * If the other side is ECN capable, reply
22817 				 * that we are also ECN capable.
22818 				 */
22819 				if (tcp->tcp_ecn_ok)
22820 					flags |= TH_ECE;
22821 				break;
22822 			default:
22823 				/*
22824 				 * The above ASSERT() makes sure that this
22825 				 * must be FIN-WAIT-1 state.  Our SYN has
22826 				 * not been ack'ed so retransmit it.
22827 				 */
22828 				flags |= TH_SYN;
22829 				break;
22830 			}
22831 
22832 			if (tcp->tcp_snd_ws_ok) {
22833 				wptr = mp1->b_wptr;
22834 				wptr[0] =  TCPOPT_NOP;
22835 				wptr[1] =  TCPOPT_WSCALE;
22836 				wptr[2] =  TCPOPT_WS_LEN;
22837 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
22838 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
22839 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22840 			}
22841 
22842 			if (tcp->tcp_snd_sack_ok) {
22843 				wptr = mp1->b_wptr;
22844 				wptr[0] = TCPOPT_NOP;
22845 				wptr[1] = TCPOPT_NOP;
22846 				wptr[2] = TCPOPT_SACK_PERMITTED;
22847 				wptr[3] = TCPOPT_SACK_OK_LEN;
22848 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
22849 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22850 			}
22851 
22852 			/* allocb() of adequate mblk assures space */
22853 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
22854 			    (uintptr_t)INT_MAX);
22855 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
22856 			/*
22857 			 * Get IP set to checksum on our behalf
22858 			 * Include the adjustment for a source route if any.
22859 			 */
22860 			u1 += tcp->tcp_sum;
22861 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
22862 			U16_TO_BE16(u1, tcph->th_sum);
22863 			BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22864 		}
22865 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
22866 		    (seq + data_length) == tcp->tcp_fss) {
22867 			if (!tcp->tcp_fin_acked) {
22868 				flags |= TH_FIN;
22869 				BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22870 			}
22871 			if (!tcp->tcp_fin_sent) {
22872 				tcp->tcp_fin_sent = B_TRUE;
22873 				switch (tcp->tcp_state) {
22874 				case TCPS_SYN_RCVD:
22875 				case TCPS_ESTABLISHED:
22876 					tcp->tcp_state = TCPS_FIN_WAIT_1;
22877 					break;
22878 				case TCPS_CLOSE_WAIT:
22879 					tcp->tcp_state = TCPS_LAST_ACK;
22880 					break;
22881 				}
22882 				if (tcp->tcp_suna == tcp->tcp_snxt)
22883 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22884 				tcp->tcp_snxt = tcp->tcp_fss + 1;
22885 			}
22886 		}
22887 		/*
22888 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
22889 		 * is smaller than seq, u1 will become a very huge value.
22890 		 * So the comparison will fail.  Also note that tcp_urp
22891 		 * should be positive, see RFC 793 page 17.
22892 		 */
22893 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
22894 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
22895 		    u1 < (uint32_t)(64 * 1024)) {
22896 			flags |= TH_URG;
22897 			BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
22898 			U32_TO_ABE16(u1, tcph->th_urp);
22899 		}
22900 	}
22901 	tcph->th_flags[0] = (uchar_t)flags;
22902 	tcp->tcp_rack = tcp->tcp_rnxt;
22903 	tcp->tcp_rack_cnt = 0;
22904 
22905 	if (tcp->tcp_snd_ts_ok) {
22906 		if (tcp->tcp_state != TCPS_SYN_SENT) {
22907 			uint32_t llbolt = (uint32_t)lbolt;
22908 
22909 			U32_TO_BE32(llbolt,
22910 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22911 			U32_TO_BE32(tcp->tcp_ts_recent,
22912 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22913 		}
22914 	}
22915 
22916 	if (num_sack_blk > 0) {
22917 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
22918 		sack_blk_t *tmp;
22919 		int32_t	i;
22920 
22921 		wptr[0] = TCPOPT_NOP;
22922 		wptr[1] = TCPOPT_NOP;
22923 		wptr[2] = TCPOPT_SACK;
22924 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
22925 		    sizeof (sack_blk_t);
22926 		wptr += TCPOPT_REAL_SACK_LEN;
22927 
22928 		tmp = tcp->tcp_sack_list;
22929 		for (i = 0; i < num_sack_blk; i++) {
22930 			U32_TO_BE32(tmp[i].begin, wptr);
22931 			wptr += sizeof (tcp_seq);
22932 			U32_TO_BE32(tmp[i].end, wptr);
22933 			wptr += sizeof (tcp_seq);
22934 		}
22935 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
22936 	}
22937 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22938 	data_length += (int)(mp1->b_wptr - rptr);
22939 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22940 		((ipha_t *)rptr)->ipha_length = htons(data_length);
22941 	} else {
22942 		ip6_t *ip6 = (ip6_t *)(rptr +
22943 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
22944 		    sizeof (ip6i_t) : 0));
22945 
22946 		ip6->ip6_plen = htons(data_length -
22947 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22948 	}
22949 
22950 	/*
22951 	 * Prime pump for IP
22952 	 * Include the adjustment for a source route if any.
22953 	 */
22954 	data_length -= tcp->tcp_ip_hdr_len;
22955 	data_length += tcp->tcp_sum;
22956 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
22957 	U16_TO_ABE16(data_length, tcph->th_sum);
22958 	if (tcp->tcp_ip_forward_progress) {
22959 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
22960 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
22961 		tcp->tcp_ip_forward_progress = B_FALSE;
22962 	}
22963 	return (mp1);
22964 }
22965 
22966 /* This function handles the push timeout. */
22967 void
22968 tcp_push_timer(void *arg)
22969 {
22970 	conn_t	*connp = (conn_t *)arg;
22971 	tcp_t *tcp = connp->conn_tcp;
22972 
22973 	TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt);
22974 
22975 	ASSERT(tcp->tcp_listener == NULL);
22976 
22977 	ASSERT(!IPCL_IS_NONSTR(connp));
22978 
22979 	/*
22980 	 * We need to plug synchronous streams during our drain to prevent
22981 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
22982 	 */
22983 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
22984 	tcp->tcp_push_tid = 0;
22985 
22986 	if (tcp->tcp_rcv_list != NULL &&
22987 	    tcp_rcv_drain(tcp) == TH_ACK_NEEDED)
22988 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
22989 
22990 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
22991 }
22992 
22993 /*
22994  * This function handles delayed ACK timeout.
22995  */
22996 static void
22997 tcp_ack_timer(void *arg)
22998 {
22999 	conn_t	*connp = (conn_t *)arg;
23000 	tcp_t *tcp = connp->conn_tcp;
23001 	mblk_t *mp;
23002 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23003 
23004 	TCP_DBGSTAT(tcps, tcp_ack_timer_cnt);
23005 
23006 	tcp->tcp_ack_tid = 0;
23007 
23008 	if (tcp->tcp_fused)
23009 		return;
23010 
23011 	/*
23012 	 * Do not send ACK if there is no outstanding unack'ed data.
23013 	 */
23014 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
23015 		return;
23016 	}
23017 
23018 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
23019 		/*
23020 		 * Make sure we don't allow deferred ACKs to result in
23021 		 * timer-based ACKing.  If we have held off an ACK
23022 		 * when there was more than an mss here, and the timer
23023 		 * goes off, we have to worry about the possibility
23024 		 * that the sender isn't doing slow-start, or is out
23025 		 * of step with us for some other reason.  We fall
23026 		 * permanently back in the direction of
23027 		 * ACK-every-other-packet as suggested in RFC 1122.
23028 		 */
23029 		if (tcp->tcp_rack_abs_max > 2)
23030 			tcp->tcp_rack_abs_max--;
23031 		tcp->tcp_rack_cur_max = 2;
23032 	}
23033 	mp = tcp_ack_mp(tcp);
23034 
23035 	if (mp != NULL) {
23036 		BUMP_LOCAL(tcp->tcp_obsegs);
23037 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
23038 		BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed);
23039 		tcp_send_data(tcp, tcp->tcp_wq, mp);
23040 	}
23041 }
23042 
23043 
23044 /* Generate an ACK-only (no data) segment for a TCP endpoint */
23045 static mblk_t *
23046 tcp_ack_mp(tcp_t *tcp)
23047 {
23048 	uint32_t	seq_no;
23049 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23050 
23051 	/*
23052 	 * There are a few cases to be considered while setting the sequence no.
23053 	 * Essentially, we can come here while processing an unacceptable pkt
23054 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
23055 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
23056 	 * If we are here for a zero window probe, stick with suna. In all
23057 	 * other cases, we check if suna + swnd encompasses snxt and set
23058 	 * the sequence number to snxt, if so. If snxt falls outside the
23059 	 * window (the receiver probably shrunk its window), we will go with
23060 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
23061 	 * receiver.
23062 	 */
23063 	if (tcp->tcp_zero_win_probe) {
23064 		seq_no = tcp->tcp_suna;
23065 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
23066 		ASSERT(tcp->tcp_swnd == 0);
23067 		seq_no = tcp->tcp_snxt;
23068 	} else {
23069 		seq_no = SEQ_GT(tcp->tcp_snxt,
23070 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
23071 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
23072 	}
23073 
23074 	if (tcp->tcp_valid_bits) {
23075 		/*
23076 		 * For the complex case where we have to send some
23077 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
23078 		 */
23079 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
23080 		    NULL, B_FALSE));
23081 	} else {
23082 		/* Generate a simple ACK */
23083 		int	data_length;
23084 		uchar_t	*rptr;
23085 		tcph_t	*tcph;
23086 		mblk_t	*mp1;
23087 		int32_t	tcp_hdr_len;
23088 		int32_t	tcp_tcp_hdr_len;
23089 		int32_t	num_sack_blk = 0;
23090 		int32_t sack_opt_len;
23091 
23092 		/*
23093 		 * Allocate space for TCP + IP headers
23094 		 * and link-level header
23095 		 */
23096 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23097 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23098 			    tcp->tcp_num_sack_blk);
23099 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23100 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23101 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
23102 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
23103 		} else {
23104 			tcp_hdr_len = tcp->tcp_hdr_len;
23105 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
23106 		}
23107 		mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
23108 		if (!mp1)
23109 			return (NULL);
23110 
23111 		/* Update the latest receive window size in TCP header. */
23112 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23113 		    tcp->tcp_tcph->th_win);
23114 		/* copy in prototype TCP + IP header */
23115 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23116 		mp1->b_rptr = rptr;
23117 		mp1->b_wptr = rptr + tcp_hdr_len;
23118 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23119 
23120 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23121 
23122 		/* Set the TCP sequence number. */
23123 		U32_TO_ABE32(seq_no, tcph->th_seq);
23124 
23125 		/* Set up the TCP flag field. */
23126 		tcph->th_flags[0] = (uchar_t)TH_ACK;
23127 		if (tcp->tcp_ecn_echo_on)
23128 			tcph->th_flags[0] |= TH_ECE;
23129 
23130 		tcp->tcp_rack = tcp->tcp_rnxt;
23131 		tcp->tcp_rack_cnt = 0;
23132 
23133 		/* fill in timestamp option if in use */
23134 		if (tcp->tcp_snd_ts_ok) {
23135 			uint32_t llbolt = (uint32_t)lbolt;
23136 
23137 			U32_TO_BE32(llbolt,
23138 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23139 			U32_TO_BE32(tcp->tcp_ts_recent,
23140 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23141 		}
23142 
23143 		/* Fill in SACK options */
23144 		if (num_sack_blk > 0) {
23145 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23146 			sack_blk_t *tmp;
23147 			int32_t	i;
23148 
23149 			wptr[0] = TCPOPT_NOP;
23150 			wptr[1] = TCPOPT_NOP;
23151 			wptr[2] = TCPOPT_SACK;
23152 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23153 			    sizeof (sack_blk_t);
23154 			wptr += TCPOPT_REAL_SACK_LEN;
23155 
23156 			tmp = tcp->tcp_sack_list;
23157 			for (i = 0; i < num_sack_blk; i++) {
23158 				U32_TO_BE32(tmp[i].begin, wptr);
23159 				wptr += sizeof (tcp_seq);
23160 				U32_TO_BE32(tmp[i].end, wptr);
23161 				wptr += sizeof (tcp_seq);
23162 			}
23163 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
23164 			    << 4);
23165 		}
23166 
23167 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23168 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
23169 		} else {
23170 			/* Check for ip6i_t header in sticky hdrs */
23171 			ip6_t *ip6 = (ip6_t *)(rptr +
23172 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23173 			    sizeof (ip6i_t) : 0));
23174 
23175 			ip6->ip6_plen = htons(tcp_hdr_len -
23176 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23177 		}
23178 
23179 		/*
23180 		 * Prime pump for checksum calculation in IP.  Include the
23181 		 * adjustment for a source route if any.
23182 		 */
23183 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
23184 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
23185 		U16_TO_ABE16(data_length, tcph->th_sum);
23186 
23187 		if (tcp->tcp_ip_forward_progress) {
23188 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23189 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23190 			tcp->tcp_ip_forward_progress = B_FALSE;
23191 		}
23192 		return (mp1);
23193 	}
23194 }
23195 
23196 /*
23197  * Hash list insertion routine for tcp_t structures. Each hash bucket
23198  * contains a list of tcp_t entries, and each entry is bound to a unique
23199  * port. If there are multiple tcp_t's that are bound to the same port, then
23200  * one of them will be linked into the hash bucket list, and the rest will
23201  * hang off of that one entry. For each port, entries bound to a specific IP
23202  * address will be inserted before those those bound to INADDR_ANY.
23203  */
23204 static void
23205 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
23206 {
23207 	tcp_t	**tcpp;
23208 	tcp_t	*tcpnext;
23209 	tcp_t	*tcphash;
23210 
23211 	if (tcp->tcp_ptpbhn != NULL) {
23212 		ASSERT(!caller_holds_lock);
23213 		tcp_bind_hash_remove(tcp);
23214 	}
23215 	tcpp = &tbf->tf_tcp;
23216 	if (!caller_holds_lock) {
23217 		mutex_enter(&tbf->tf_lock);
23218 	} else {
23219 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
23220 	}
23221 	tcphash = tcpp[0];
23222 	tcpnext = NULL;
23223 	if (tcphash != NULL) {
23224 		/* Look for an entry using the same port */
23225 		while ((tcphash = tcpp[0]) != NULL &&
23226 		    tcp->tcp_lport != tcphash->tcp_lport)
23227 			tcpp = &(tcphash->tcp_bind_hash);
23228 
23229 		/* The port was not found, just add to the end */
23230 		if (tcphash == NULL)
23231 			goto insert;
23232 
23233 		/*
23234 		 * OK, there already exists an entry bound to the
23235 		 * same port.
23236 		 *
23237 		 * If the new tcp bound to the INADDR_ANY address
23238 		 * and the first one in the list is not bound to
23239 		 * INADDR_ANY we skip all entries until we find the
23240 		 * first one bound to INADDR_ANY.
23241 		 * This makes sure that applications binding to a
23242 		 * specific address get preference over those binding to
23243 		 * INADDR_ANY.
23244 		 */
23245 		tcpnext = tcphash;
23246 		tcphash = NULL;
23247 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
23248 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
23249 			while ((tcpnext = tcpp[0]) != NULL &&
23250 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
23251 				tcpp = &(tcpnext->tcp_bind_hash_port);
23252 
23253 			if (tcpnext) {
23254 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port;
23255 				tcphash = tcpnext->tcp_bind_hash;
23256 				if (tcphash != NULL) {
23257 					tcphash->tcp_ptpbhn =
23258 					    &(tcp->tcp_bind_hash);
23259 					tcpnext->tcp_bind_hash = NULL;
23260 				}
23261 			}
23262 		} else {
23263 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port;
23264 			tcphash = tcpnext->tcp_bind_hash;
23265 			if (tcphash != NULL) {
23266 				tcphash->tcp_ptpbhn =
23267 				    &(tcp->tcp_bind_hash);
23268 				tcpnext->tcp_bind_hash = NULL;
23269 			}
23270 		}
23271 	}
23272 insert:
23273 	tcp->tcp_bind_hash_port = tcpnext;
23274 	tcp->tcp_bind_hash = tcphash;
23275 	tcp->tcp_ptpbhn = tcpp;
23276 	tcpp[0] = tcp;
23277 	if (!caller_holds_lock)
23278 		mutex_exit(&tbf->tf_lock);
23279 }
23280 
23281 /*
23282  * Hash list removal routine for tcp_t structures.
23283  */
23284 static void
23285 tcp_bind_hash_remove(tcp_t *tcp)
23286 {
23287 	tcp_t	*tcpnext;
23288 	kmutex_t *lockp;
23289 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23290 
23291 	if (tcp->tcp_ptpbhn == NULL)
23292 		return;
23293 
23294 	/*
23295 	 * Extract the lock pointer in case there are concurrent
23296 	 * hash_remove's for this instance.
23297 	 */
23298 	ASSERT(tcp->tcp_lport != 0);
23299 	lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
23300 
23301 	ASSERT(lockp != NULL);
23302 	mutex_enter(lockp);
23303 	if (tcp->tcp_ptpbhn) {
23304 		tcpnext = tcp->tcp_bind_hash_port;
23305 		if (tcpnext != NULL) {
23306 			tcp->tcp_bind_hash_port = NULL;
23307 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
23308 			tcpnext->tcp_bind_hash = tcp->tcp_bind_hash;
23309 			if (tcpnext->tcp_bind_hash != NULL) {
23310 				tcpnext->tcp_bind_hash->tcp_ptpbhn =
23311 				    &(tcpnext->tcp_bind_hash);
23312 				tcp->tcp_bind_hash = NULL;
23313 			}
23314 		} else if ((tcpnext = tcp->tcp_bind_hash) != NULL) {
23315 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
23316 			tcp->tcp_bind_hash = NULL;
23317 		}
23318 		*tcp->tcp_ptpbhn = tcpnext;
23319 		tcp->tcp_ptpbhn = NULL;
23320 	}
23321 	mutex_exit(lockp);
23322 }
23323 
23324 
23325 /*
23326  * Hash list lookup routine for tcp_t structures.
23327  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
23328  */
23329 static tcp_t *
23330 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
23331 {
23332 	tf_t	*tf;
23333 	tcp_t	*tcp;
23334 
23335 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23336 	mutex_enter(&tf->tf_lock);
23337 	for (tcp = tf->tf_tcp; tcp != NULL;
23338 	    tcp = tcp->tcp_acceptor_hash) {
23339 		if (tcp->tcp_acceptor_id == id) {
23340 			CONN_INC_REF(tcp->tcp_connp);
23341 			mutex_exit(&tf->tf_lock);
23342 			return (tcp);
23343 		}
23344 	}
23345 	mutex_exit(&tf->tf_lock);
23346 	return (NULL);
23347 }
23348 
23349 
23350 /*
23351  * Hash list insertion routine for tcp_t structures.
23352  */
23353 void
23354 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
23355 {
23356 	tf_t	*tf;
23357 	tcp_t	**tcpp;
23358 	tcp_t	*tcpnext;
23359 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23360 
23361 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23362 
23363 	if (tcp->tcp_ptpahn != NULL)
23364 		tcp_acceptor_hash_remove(tcp);
23365 	tcpp = &tf->tf_tcp;
23366 	mutex_enter(&tf->tf_lock);
23367 	tcpnext = tcpp[0];
23368 	if (tcpnext)
23369 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
23370 	tcp->tcp_acceptor_hash = tcpnext;
23371 	tcp->tcp_ptpahn = tcpp;
23372 	tcpp[0] = tcp;
23373 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
23374 	mutex_exit(&tf->tf_lock);
23375 }
23376 
23377 /*
23378  * Hash list removal routine for tcp_t structures.
23379  */
23380 static void
23381 tcp_acceptor_hash_remove(tcp_t *tcp)
23382 {
23383 	tcp_t	*tcpnext;
23384 	kmutex_t *lockp;
23385 
23386 	/*
23387 	 * Extract the lock pointer in case there are concurrent
23388 	 * hash_remove's for this instance.
23389 	 */
23390 	lockp = tcp->tcp_acceptor_lockp;
23391 
23392 	if (tcp->tcp_ptpahn == NULL)
23393 		return;
23394 
23395 	ASSERT(lockp != NULL);
23396 	mutex_enter(lockp);
23397 	if (tcp->tcp_ptpahn) {
23398 		tcpnext = tcp->tcp_acceptor_hash;
23399 		if (tcpnext) {
23400 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
23401 			tcp->tcp_acceptor_hash = NULL;
23402 		}
23403 		*tcp->tcp_ptpahn = tcpnext;
23404 		tcp->tcp_ptpahn = NULL;
23405 	}
23406 	mutex_exit(lockp);
23407 	tcp->tcp_acceptor_lockp = NULL;
23408 }
23409 
23410 /*
23411  * Type three generator adapted from the random() function in 4.4 BSD:
23412  */
23413 
23414 /*
23415  * Copyright (c) 1983, 1993
23416  *	The Regents of the University of California.  All rights reserved.
23417  *
23418  * Redistribution and use in source and binary forms, with or without
23419  * modification, are permitted provided that the following conditions
23420  * are met:
23421  * 1. Redistributions of source code must retain the above copyright
23422  *    notice, this list of conditions and the following disclaimer.
23423  * 2. Redistributions in binary form must reproduce the above copyright
23424  *    notice, this list of conditions and the following disclaimer in the
23425  *    documentation and/or other materials provided with the distribution.
23426  * 3. All advertising materials mentioning features or use of this software
23427  *    must display the following acknowledgement:
23428  *	This product includes software developed by the University of
23429  *	California, Berkeley and its contributors.
23430  * 4. Neither the name of the University nor the names of its contributors
23431  *    may be used to endorse or promote products derived from this software
23432  *    without specific prior written permission.
23433  *
23434  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23435  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23436  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23437  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23438  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23439  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23440  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23441  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23442  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23443  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23444  * SUCH DAMAGE.
23445  */
23446 
23447 /* Type 3 -- x**31 + x**3 + 1 */
23448 #define	DEG_3		31
23449 #define	SEP_3		3
23450 
23451 
23452 /* Protected by tcp_random_lock */
23453 static int tcp_randtbl[DEG_3 + 1];
23454 
23455 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
23456 static int *tcp_random_rptr = &tcp_randtbl[1];
23457 
23458 static int *tcp_random_state = &tcp_randtbl[1];
23459 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
23460 
23461 kmutex_t tcp_random_lock;
23462 
23463 void
23464 tcp_random_init(void)
23465 {
23466 	int i;
23467 	hrtime_t hrt;
23468 	time_t wallclock;
23469 	uint64_t result;
23470 
23471 	/*
23472 	 * Use high-res timer and current time for seed.  Gethrtime() returns
23473 	 * a longlong, which may contain resolution down to nanoseconds.
23474 	 * The current time will either be a 32-bit or a 64-bit quantity.
23475 	 * XOR the two together in a 64-bit result variable.
23476 	 * Convert the result to a 32-bit value by multiplying the high-order
23477 	 * 32-bits by the low-order 32-bits.
23478 	 */
23479 
23480 	hrt = gethrtime();
23481 	(void) drv_getparm(TIME, &wallclock);
23482 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
23483 	mutex_enter(&tcp_random_lock);
23484 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
23485 	    (result & 0xffffffff);
23486 
23487 	for (i = 1; i < DEG_3; i++)
23488 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
23489 		    + 12345;
23490 	tcp_random_fptr = &tcp_random_state[SEP_3];
23491 	tcp_random_rptr = &tcp_random_state[0];
23492 	mutex_exit(&tcp_random_lock);
23493 	for (i = 0; i < 10 * DEG_3; i++)
23494 		(void) tcp_random();
23495 }
23496 
23497 /*
23498  * tcp_random: Return a random number in the range [1 - (128K + 1)].
23499  * This range is selected to be approximately centered on TCP_ISS / 2,
23500  * and easy to compute. We get this value by generating a 32-bit random
23501  * number, selecting out the high-order 17 bits, and then adding one so
23502  * that we never return zero.
23503  */
23504 int
23505 tcp_random(void)
23506 {
23507 	int i;
23508 
23509 	mutex_enter(&tcp_random_lock);
23510 	*tcp_random_fptr += *tcp_random_rptr;
23511 
23512 	/*
23513 	 * The high-order bits are more random than the low-order bits,
23514 	 * so we select out the high-order 17 bits and add one so that
23515 	 * we never return zero.
23516 	 */
23517 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
23518 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
23519 		tcp_random_fptr = tcp_random_state;
23520 		++tcp_random_rptr;
23521 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
23522 		tcp_random_rptr = tcp_random_state;
23523 
23524 	mutex_exit(&tcp_random_lock);
23525 	return (i);
23526 }
23527 
23528 static int
23529 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
23530     int *t_errorp, int *sys_errorp)
23531 {
23532 	int error;
23533 	int is_absreq_failure;
23534 	t_scalar_t *opt_lenp;
23535 	t_scalar_t opt_offset;
23536 	int prim_type;
23537 	struct T_conn_req *tcreqp;
23538 	struct T_conn_res *tcresp;
23539 	cred_t *cr;
23540 
23541 	/*
23542 	 * All Solaris components should pass a db_credp
23543 	 * for this TPI message, hence we ASSERT.
23544 	 * But in case there is some other M_PROTO that looks
23545 	 * like a TPI message sent by some other kernel
23546 	 * component, we check and return an error.
23547 	 */
23548 	cr = msg_getcred(mp, NULL);
23549 	ASSERT(cr != NULL);
23550 	if (cr == NULL)
23551 		return (-1);
23552 
23553 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
23554 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
23555 	    prim_type == T_CONN_RES);
23556 
23557 	switch (prim_type) {
23558 	case T_CONN_REQ:
23559 		tcreqp = (struct T_conn_req *)mp->b_rptr;
23560 		opt_offset = tcreqp->OPT_offset;
23561 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
23562 		break;
23563 	case O_T_CONN_RES:
23564 	case T_CONN_RES:
23565 		tcresp = (struct T_conn_res *)mp->b_rptr;
23566 		opt_offset = tcresp->OPT_offset;
23567 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
23568 		break;
23569 	}
23570 
23571 	*t_errorp = 0;
23572 	*sys_errorp = 0;
23573 	*do_disconnectp = 0;
23574 
23575 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
23576 	    opt_offset, cr, &tcp_opt_obj,
23577 	    NULL, &is_absreq_failure);
23578 
23579 	switch (error) {
23580 	case  0:		/* no error */
23581 		ASSERT(is_absreq_failure == 0);
23582 		return (0);
23583 	case ENOPROTOOPT:
23584 		*t_errorp = TBADOPT;
23585 		break;
23586 	case EACCES:
23587 		*t_errorp = TACCES;
23588 		break;
23589 	default:
23590 		*t_errorp = TSYSERR; *sys_errorp = error;
23591 		break;
23592 	}
23593 	if (is_absreq_failure != 0) {
23594 		/*
23595 		 * The connection request should get the local ack
23596 		 * T_OK_ACK and then a T_DISCON_IND.
23597 		 */
23598 		*do_disconnectp = 1;
23599 	}
23600 	return (-1);
23601 }
23602 
23603 /*
23604  * Split this function out so that if the secret changes, I'm okay.
23605  *
23606  * Initialize the tcp_iss_cookie and tcp_iss_key.
23607  */
23608 
23609 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
23610 
23611 static void
23612 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
23613 {
23614 	struct {
23615 		int32_t current_time;
23616 		uint32_t randnum;
23617 		uint16_t pad;
23618 		uint8_t ether[6];
23619 		uint8_t passwd[PASSWD_SIZE];
23620 	} tcp_iss_cookie;
23621 	time_t t;
23622 
23623 	/*
23624 	 * Start with the current absolute time.
23625 	 */
23626 	(void) drv_getparm(TIME, &t);
23627 	tcp_iss_cookie.current_time = t;
23628 
23629 	/*
23630 	 * XXX - Need a more random number per RFC 1750, not this crap.
23631 	 * OTOH, if what follows is pretty random, then I'm in better shape.
23632 	 */
23633 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
23634 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
23635 
23636 	/*
23637 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
23638 	 * as a good template.
23639 	 */
23640 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
23641 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
23642 
23643 	/*
23644 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
23645 	 */
23646 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
23647 
23648 	/*
23649 	 * See 4010593 if this section becomes a problem again,
23650 	 * but the local ethernet address is useful here.
23651 	 */
23652 	(void) localetheraddr(NULL,
23653 	    (struct ether_addr *)&tcp_iss_cookie.ether);
23654 
23655 	/*
23656 	 * Hash 'em all together.  The MD5Final is called per-connection.
23657 	 */
23658 	mutex_enter(&tcps->tcps_iss_key_lock);
23659 	MD5Init(&tcps->tcps_iss_key);
23660 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
23661 	    sizeof (tcp_iss_cookie));
23662 	mutex_exit(&tcps->tcps_iss_key_lock);
23663 }
23664 
23665 /*
23666  * Set the RFC 1948 pass phrase
23667  */
23668 /* ARGSUSED */
23669 static int
23670 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
23671     cred_t *cr)
23672 {
23673 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
23674 
23675 	/*
23676 	 * Basically, value contains a new pass phrase.  Pass it along!
23677 	 */
23678 	tcp_iss_key_init((uint8_t *)value, strlen(value), tcps);
23679 	return (0);
23680 }
23681 
23682 /* ARGSUSED */
23683 static int
23684 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
23685 {
23686 	bzero(buf, sizeof (tcp_sack_info_t));
23687 	return (0);
23688 }
23689 
23690 /* ARGSUSED */
23691 static int
23692 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
23693 {
23694 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
23695 	return (0);
23696 }
23697 
23698 /*
23699  * Make sure we wait until the default queue is setup, yet allow
23700  * tcp_g_q_create() to open a TCP stream.
23701  * We need to allow tcp_g_q_create() do do an open
23702  * of tcp, hence we compare curhread.
23703  * All others have to wait until the tcps_g_q has been
23704  * setup.
23705  */
23706 void
23707 tcp_g_q_setup(tcp_stack_t *tcps)
23708 {
23709 	mutex_enter(&tcps->tcps_g_q_lock);
23710 	if (tcps->tcps_g_q != NULL) {
23711 		mutex_exit(&tcps->tcps_g_q_lock);
23712 		return;
23713 	}
23714 	if (tcps->tcps_g_q_creator == NULL) {
23715 		/* This thread will set it up */
23716 		tcps->tcps_g_q_creator = curthread;
23717 		mutex_exit(&tcps->tcps_g_q_lock);
23718 		tcp_g_q_create(tcps);
23719 		mutex_enter(&tcps->tcps_g_q_lock);
23720 		ASSERT(tcps->tcps_g_q_creator == curthread);
23721 		tcps->tcps_g_q_creator = NULL;
23722 		cv_signal(&tcps->tcps_g_q_cv);
23723 		ASSERT(tcps->tcps_g_q != NULL);
23724 		mutex_exit(&tcps->tcps_g_q_lock);
23725 		return;
23726 	}
23727 	/* Everybody but the creator has to wait */
23728 	if (tcps->tcps_g_q_creator != curthread) {
23729 		while (tcps->tcps_g_q == NULL)
23730 			cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock);
23731 	}
23732 	mutex_exit(&tcps->tcps_g_q_lock);
23733 }
23734 
23735 #define	IP	"ip"
23736 
23737 #define	TCP6DEV		"/devices/pseudo/tcp6@0:tcp6"
23738 
23739 /*
23740  * Create a default tcp queue here instead of in strplumb
23741  */
23742 void
23743 tcp_g_q_create(tcp_stack_t *tcps)
23744 {
23745 	int error;
23746 	ldi_handle_t	lh = NULL;
23747 	ldi_ident_t	li = NULL;
23748 	int		rval;
23749 	cred_t		*cr;
23750 	major_t IP_MAJ;
23751 
23752 #ifdef NS_DEBUG
23753 	(void) printf("tcp_g_q_create()\n");
23754 #endif
23755 
23756 	IP_MAJ = ddi_name_to_major(IP);
23757 
23758 	ASSERT(tcps->tcps_g_q_creator == curthread);
23759 
23760 	error = ldi_ident_from_major(IP_MAJ, &li);
23761 	if (error) {
23762 #ifdef DEBUG
23763 		printf("tcp_g_q_create: lyr ident get failed error %d\n",
23764 		    error);
23765 #endif
23766 		return;
23767 	}
23768 
23769 	cr = zone_get_kcred(netstackid_to_zoneid(
23770 	    tcps->tcps_netstack->netstack_stackid));
23771 	ASSERT(cr != NULL);
23772 	/*
23773 	 * We set the tcp default queue to IPv6 because IPv4 falls
23774 	 * back to IPv6 when it can't find a client, but
23775 	 * IPv6 does not fall back to IPv4.
23776 	 */
23777 	error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li);
23778 	if (error) {
23779 #ifdef DEBUG
23780 		printf("tcp_g_q_create: open of TCP6DEV failed error %d\n",
23781 		    error);
23782 #endif
23783 		goto out;
23784 	}
23785 
23786 	/*
23787 	 * This ioctl causes the tcp framework to cache a pointer to
23788 	 * this stream, so we don't want to close the stream after
23789 	 * this operation.
23790 	 * Use the kernel credentials that are for the zone we're in.
23791 	 */
23792 	error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q,
23793 	    (intptr_t)0, FKIOCTL, cr, &rval);
23794 	if (error) {
23795 #ifdef DEBUG
23796 		printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed "
23797 		    "error %d\n", error);
23798 #endif
23799 		goto out;
23800 	}
23801 	tcps->tcps_g_q_lh = lh;	/* For tcp_g_q_close */
23802 	lh = NULL;
23803 out:
23804 	/* Close layered handles */
23805 	if (li)
23806 		ldi_ident_release(li);
23807 	/* Keep cred around until _inactive needs it */
23808 	tcps->tcps_g_q_cr = cr;
23809 }
23810 
23811 /*
23812  * We keep tcp_g_q set until all other tcp_t's in the zone
23813  * has gone away, and then when tcp_g_q_inactive() is called
23814  * we clear it.
23815  */
23816 void
23817 tcp_g_q_destroy(tcp_stack_t *tcps)
23818 {
23819 #ifdef NS_DEBUG
23820 	(void) printf("tcp_g_q_destroy()for stack %d\n",
23821 	    tcps->tcps_netstack->netstack_stackid);
23822 #endif
23823 
23824 	if (tcps->tcps_g_q == NULL) {
23825 		return;	/* Nothing to cleanup */
23826 	}
23827 	/*
23828 	 * Drop reference corresponding to the default queue.
23829 	 * This reference was added from tcp_open when the default queue
23830 	 * was created, hence we compensate for this extra drop in
23831 	 * tcp_g_q_close. If the refcnt drops to zero here it means
23832 	 * the default queue was the last one to be open, in which
23833 	 * case, then tcp_g_q_inactive will be
23834 	 * called as a result of the refrele.
23835 	 */
23836 	TCPS_REFRELE(tcps);
23837 }
23838 
23839 /*
23840  * Called when last tcp_t drops reference count using TCPS_REFRELE.
23841  * Run by tcp_q_q_inactive using a taskq.
23842  */
23843 static void
23844 tcp_g_q_close(void *arg)
23845 {
23846 	tcp_stack_t *tcps = arg;
23847 	int error;
23848 	ldi_handle_t	lh = NULL;
23849 	ldi_ident_t	li = NULL;
23850 	cred_t		*cr;
23851 	major_t IP_MAJ;
23852 
23853 	IP_MAJ = ddi_name_to_major(IP);
23854 
23855 #ifdef NS_DEBUG
23856 	(void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n",
23857 	    tcps->tcps_netstack->netstack_stackid,
23858 	    tcps->tcps_netstack->netstack_refcnt);
23859 #endif
23860 	lh = tcps->tcps_g_q_lh;
23861 	if (lh == NULL)
23862 		return;	/* Nothing to cleanup */
23863 
23864 	ASSERT(tcps->tcps_refcnt == 1);
23865 	ASSERT(tcps->tcps_g_q != NULL);
23866 
23867 	error = ldi_ident_from_major(IP_MAJ, &li);
23868 	if (error) {
23869 #ifdef DEBUG
23870 		printf("tcp_g_q_inactive: lyr ident get failed error %d\n",
23871 		    error);
23872 #endif
23873 		return;
23874 	}
23875 
23876 	cr = tcps->tcps_g_q_cr;
23877 	tcps->tcps_g_q_cr = NULL;
23878 	ASSERT(cr != NULL);
23879 
23880 	/*
23881 	 * Make sure we can break the recursion when tcp_close decrements
23882 	 * the reference count causing g_q_inactive to be called again.
23883 	 */
23884 	tcps->tcps_g_q_lh = NULL;
23885 
23886 	/* close the default queue */
23887 	(void) ldi_close(lh, FREAD|FWRITE, cr);
23888 	/*
23889 	 * At this point in time tcps and the rest of netstack_t might
23890 	 * have been deleted.
23891 	 */
23892 	tcps = NULL;
23893 
23894 	/* Close layered handles */
23895 	ldi_ident_release(li);
23896 	crfree(cr);
23897 }
23898 
23899 /*
23900  * Called when last tcp_t drops reference count using TCPS_REFRELE.
23901  *
23902  * Have to ensure that the ldi routines are not used by an
23903  * interrupt thread by using a taskq.
23904  */
23905 void
23906 tcp_g_q_inactive(tcp_stack_t *tcps)
23907 {
23908 	if (tcps->tcps_g_q_lh == NULL)
23909 		return;	/* Nothing to cleanup */
23910 
23911 	ASSERT(tcps->tcps_refcnt == 0);
23912 	TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */
23913 
23914 	if (servicing_interrupt()) {
23915 		(void) taskq_dispatch(tcp_taskq, tcp_g_q_close,
23916 		    (void *) tcps, TQ_SLEEP);
23917 	} else {
23918 		tcp_g_q_close(tcps);
23919 	}
23920 }
23921 
23922 /*
23923  * Called by IP when IP is loaded into the kernel
23924  */
23925 void
23926 tcp_ddi_g_init(void)
23927 {
23928 	tcp_timercache = kmem_cache_create("tcp_timercache",
23929 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
23930 	    NULL, NULL, NULL, NULL, NULL, 0);
23931 
23932 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
23933 	    sizeof (tcp_sack_info_t), 0,
23934 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
23935 
23936 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
23937 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
23938 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
23939 
23940 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
23941 
23942 	/* Initialize the random number generator */
23943 	tcp_random_init();
23944 
23945 	/* A single callback independently of how many netstacks we have */
23946 	ip_squeue_init(tcp_squeue_add);
23947 
23948 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
23949 
23950 	tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1,
23951 	    TASKQ_PREPOPULATE);
23952 
23953 	tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput);
23954 
23955 	/*
23956 	 * We want to be informed each time a stack is created or
23957 	 * destroyed in the kernel, so we can maintain the
23958 	 * set of tcp_stack_t's.
23959 	 */
23960 	netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown,
23961 	    tcp_stack_fini);
23962 }
23963 
23964 
23965 #define	INET_NAME	"ip"
23966 
23967 /*
23968  * Initialize the TCP stack instance.
23969  */
23970 static void *
23971 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
23972 {
23973 	tcp_stack_t	*tcps;
23974 	tcpparam_t	*pa;
23975 	int		i;
23976 	int		error = 0;
23977 	major_t		major;
23978 
23979 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
23980 	tcps->tcps_netstack = ns;
23981 
23982 	/* Initialize locks */
23983 	mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
23984 	cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL);
23985 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
23986 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
23987 
23988 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
23989 	tcps->tcps_g_epriv_ports[0] = 2049;
23990 	tcps->tcps_g_epriv_ports[1] = 4045;
23991 	tcps->tcps_min_anonpriv_port = 512;
23992 
23993 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
23994 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
23995 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
23996 	    TCP_FANOUT_SIZE, KM_SLEEP);
23997 
23998 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
23999 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
24000 		    MUTEX_DEFAULT, NULL);
24001 	}
24002 
24003 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
24004 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
24005 		    MUTEX_DEFAULT, NULL);
24006 	}
24007 
24008 	/* TCP's IPsec code calls the packet dropper. */
24009 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
24010 
24011 	pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP);
24012 	tcps->tcps_params = pa;
24013 	bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr));
24014 
24015 	(void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params,
24016 	    A_CNT(lcl_tcp_param_arr), tcps);
24017 
24018 	/*
24019 	 * Note: To really walk the device tree you need the devinfo
24020 	 * pointer to your device which is only available after probe/attach.
24021 	 * The following is safe only because it uses ddi_root_node()
24022 	 */
24023 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
24024 	    tcp_opt_obj.odb_opt_arr_cnt);
24025 
24026 	/*
24027 	 * Initialize RFC 1948 secret values.  This will probably be reset once
24028 	 * by the boot scripts.
24029 	 *
24030 	 * Use NULL name, as the name is caught by the new lockstats.
24031 	 *
24032 	 * Initialize with some random, non-guessable string, like the global
24033 	 * T_INFO_ACK.
24034 	 */
24035 
24036 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
24037 	    sizeof (tcp_g_t_info_ack), tcps);
24038 
24039 	tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics);
24040 	tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps);
24041 
24042 	major = mod_name_to_major(INET_NAME);
24043 	error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident);
24044 	ASSERT(error == 0);
24045 	return (tcps);
24046 }
24047 
24048 /*
24049  * Called when the IP module is about to be unloaded.
24050  */
24051 void
24052 tcp_ddi_g_destroy(void)
24053 {
24054 	tcp_g_kstat_fini(tcp_g_kstat);
24055 	tcp_g_kstat = NULL;
24056 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
24057 
24058 	mutex_destroy(&tcp_random_lock);
24059 
24060 	kmem_cache_destroy(tcp_timercache);
24061 	kmem_cache_destroy(tcp_sack_info_cache);
24062 	kmem_cache_destroy(tcp_iphc_cache);
24063 
24064 	netstack_unregister(NS_TCP);
24065 	taskq_destroy(tcp_taskq);
24066 }
24067 
24068 /*
24069  * Shut down the TCP stack instance.
24070  */
24071 /* ARGSUSED */
24072 static void
24073 tcp_stack_shutdown(netstackid_t stackid, void *arg)
24074 {
24075 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
24076 
24077 	tcp_g_q_destroy(tcps);
24078 }
24079 
24080 /*
24081  * Free the TCP stack instance.
24082  */
24083 static void
24084 tcp_stack_fini(netstackid_t stackid, void *arg)
24085 {
24086 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
24087 	int i;
24088 
24089 	nd_free(&tcps->tcps_g_nd);
24090 	kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr));
24091 	tcps->tcps_params = NULL;
24092 	kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t));
24093 	tcps->tcps_wroff_xtra_param = NULL;
24094 	kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t));
24095 	tcps->tcps_mdt_head_param = NULL;
24096 	kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t));
24097 	tcps->tcps_mdt_tail_param = NULL;
24098 	kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t));
24099 	tcps->tcps_mdt_max_pbufs_param = NULL;
24100 
24101 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
24102 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
24103 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
24104 	}
24105 
24106 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
24107 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
24108 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
24109 	}
24110 
24111 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
24112 	tcps->tcps_bind_fanout = NULL;
24113 
24114 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE);
24115 	tcps->tcps_acceptor_fanout = NULL;
24116 
24117 	mutex_destroy(&tcps->tcps_iss_key_lock);
24118 	mutex_destroy(&tcps->tcps_g_q_lock);
24119 	cv_destroy(&tcps->tcps_g_q_cv);
24120 	mutex_destroy(&tcps->tcps_epriv_port_lock);
24121 
24122 	ip_drop_unregister(&tcps->tcps_dropper);
24123 
24124 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
24125 	tcps->tcps_kstat = NULL;
24126 	bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics));
24127 
24128 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
24129 	tcps->tcps_mibkp = NULL;
24130 
24131 	ldi_ident_release(tcps->tcps_ldi_ident);
24132 	kmem_free(tcps, sizeof (*tcps));
24133 }
24134 
24135 /*
24136  * Generate ISS, taking into account NDD changes may happen halfway through.
24137  * (If the iss is not zero, set it.)
24138  */
24139 
24140 static void
24141 tcp_iss_init(tcp_t *tcp)
24142 {
24143 	MD5_CTX context;
24144 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
24145 	uint32_t answer[4];
24146 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24147 
24148 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
24149 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
24150 	switch (tcps->tcps_strong_iss) {
24151 	case 2:
24152 		mutex_enter(&tcps->tcps_iss_key_lock);
24153 		context = tcps->tcps_iss_key;
24154 		mutex_exit(&tcps->tcps_iss_key_lock);
24155 		arg.ports = tcp->tcp_ports;
24156 		if (tcp->tcp_ipversion == IPV4_VERSION) {
24157 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
24158 			    &arg.src);
24159 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
24160 			    &arg.dst);
24161 		} else {
24162 			arg.src = tcp->tcp_ip6h->ip6_src;
24163 			arg.dst = tcp->tcp_ip6h->ip6_dst;
24164 		}
24165 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
24166 		MD5Final((uchar_t *)answer, &context);
24167 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
24168 		/*
24169 		 * Now that we've hashed into a unique per-connection sequence
24170 		 * space, add a random increment per strong_iss == 1.  So I
24171 		 * guess we'll have to...
24172 		 */
24173 		/* FALLTHRU */
24174 	case 1:
24175 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
24176 		break;
24177 	default:
24178 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
24179 		break;
24180 	}
24181 	tcp->tcp_valid_bits = TCP_ISS_VALID;
24182 	tcp->tcp_fss = tcp->tcp_iss - 1;
24183 	tcp->tcp_suna = tcp->tcp_iss;
24184 	tcp->tcp_snxt = tcp->tcp_iss + 1;
24185 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
24186 	tcp->tcp_csuna = tcp->tcp_snxt;
24187 }
24188 
24189 /*
24190  * Exported routine for extracting active tcp connection status.
24191  *
24192  * This is used by the Solaris Cluster Networking software to
24193  * gather a list of connections that need to be forwarded to
24194  * specific nodes in the cluster when configuration changes occur.
24195  *
24196  * The callback is invoked for each tcp_t structure from all netstacks,
24197  * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures
24198  * from the netstack with the specified stack_id. Returning
24199  * non-zero from the callback routine terminates the search.
24200  */
24201 int
24202 cl_tcp_walk_list(netstackid_t stack_id,
24203     int (*cl_callback)(cl_tcp_info_t *, void *), void *arg)
24204 {
24205 	netstack_handle_t nh;
24206 	netstack_t *ns;
24207 	int ret = 0;
24208 
24209 	if (stack_id >= 0) {
24210 		if ((ns = netstack_find_by_stackid(stack_id)) == NULL)
24211 			return (EINVAL);
24212 
24213 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
24214 		    ns->netstack_tcp);
24215 		netstack_rele(ns);
24216 		return (ret);
24217 	}
24218 
24219 	netstack_next_init(&nh);
24220 	while ((ns = netstack_next(&nh)) != NULL) {
24221 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
24222 		    ns->netstack_tcp);
24223 		netstack_rele(ns);
24224 	}
24225 	netstack_next_fini(&nh);
24226 	return (ret);
24227 }
24228 
24229 static int
24230 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg,
24231     tcp_stack_t *tcps)
24232 {
24233 	tcp_t *tcp;
24234 	cl_tcp_info_t	cl_tcpi;
24235 	connf_t	*connfp;
24236 	conn_t	*connp;
24237 	int	i;
24238 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
24239 
24240 	ASSERT(callback != NULL);
24241 
24242 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
24243 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
24244 		connp = NULL;
24245 
24246 		while ((connp =
24247 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
24248 
24249 			tcp = connp->conn_tcp;
24250 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
24251 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
24252 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
24253 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
24254 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
24255 			/*
24256 			 * The macros tcp_laddr and tcp_faddr give the IPv4
24257 			 * addresses. They are copied implicitly below as
24258 			 * mapped addresses.
24259 			 */
24260 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
24261 			if (tcp->tcp_ipversion == IPV4_VERSION) {
24262 				cl_tcpi.cl_tcpi_faddr =
24263 				    tcp->tcp_ipha->ipha_dst;
24264 			} else {
24265 				cl_tcpi.cl_tcpi_faddr_v6 =
24266 				    tcp->tcp_ip6h->ip6_dst;
24267 			}
24268 
24269 			/*
24270 			 * If the callback returns non-zero
24271 			 * we terminate the traversal.
24272 			 */
24273 			if ((*callback)(&cl_tcpi, arg) != 0) {
24274 				CONN_DEC_REF(tcp->tcp_connp);
24275 				return (1);
24276 			}
24277 		}
24278 	}
24279 
24280 	return (0);
24281 }
24282 
24283 /*
24284  * Macros used for accessing the different types of sockaddr
24285  * structures inside a tcp_ioc_abort_conn_t.
24286  */
24287 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
24288 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
24289 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
24290 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
24291 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
24292 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
24293 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
24294 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
24295 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
24296 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
24297 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
24298 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
24299 
24300 /*
24301  * Return the correct error code to mimic the behavior
24302  * of a connection reset.
24303  */
24304 #define	TCP_AC_GET_ERRCODE(state, err) {	\
24305 		switch ((state)) {		\
24306 		case TCPS_SYN_SENT:		\
24307 		case TCPS_SYN_RCVD:		\
24308 			(err) = ECONNREFUSED;	\
24309 			break;			\
24310 		case TCPS_ESTABLISHED:		\
24311 		case TCPS_FIN_WAIT_1:		\
24312 		case TCPS_FIN_WAIT_2:		\
24313 		case TCPS_CLOSE_WAIT:		\
24314 			(err) = ECONNRESET;	\
24315 			break;			\
24316 		case TCPS_CLOSING:		\
24317 		case TCPS_LAST_ACK:		\
24318 		case TCPS_TIME_WAIT:		\
24319 			(err) = 0;		\
24320 			break;			\
24321 		default:			\
24322 			(err) = ENXIO;		\
24323 		}				\
24324 	}
24325 
24326 /*
24327  * Check if a tcp structure matches the info in acp.
24328  */
24329 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
24330 	(((acp)->ac_local.ss_family == AF_INET) ?		\
24331 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
24332 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
24333 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
24334 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
24335 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
24336 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
24337 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
24338 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
24339 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24340 	(acp)->ac_end >= (tcp)->tcp_state) :		\
24341 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
24342 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
24343 	&(tcp)->tcp_ip_src_v6)) &&				\
24344 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
24345 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
24346 	&(tcp)->tcp_remote_v6)) &&				\
24347 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
24348 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
24349 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
24350 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
24351 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24352 	(acp)->ac_end >= (tcp)->tcp_state))
24353 
24354 #define	TCP_AC_MATCH(acp, tcp)					\
24355 	(((acp)->ac_zoneid == ALL_ZONES ||			\
24356 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
24357 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
24358 
24359 /*
24360  * Build a message containing a tcp_ioc_abort_conn_t structure
24361  * which is filled in with information from acp and tp.
24362  */
24363 static mblk_t *
24364 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
24365 {
24366 	mblk_t *mp;
24367 	tcp_ioc_abort_conn_t *tacp;
24368 
24369 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
24370 	if (mp == NULL)
24371 		return (NULL);
24372 
24373 	mp->b_datap->db_type = M_CTL;
24374 
24375 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
24376 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
24377 	    sizeof (uint32_t));
24378 
24379 	tacp->ac_start = acp->ac_start;
24380 	tacp->ac_end = acp->ac_end;
24381 	tacp->ac_zoneid = acp->ac_zoneid;
24382 
24383 	if (acp->ac_local.ss_family == AF_INET) {
24384 		tacp->ac_local.ss_family = AF_INET;
24385 		tacp->ac_remote.ss_family = AF_INET;
24386 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
24387 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
24388 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
24389 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
24390 	} else {
24391 		tacp->ac_local.ss_family = AF_INET6;
24392 		tacp->ac_remote.ss_family = AF_INET6;
24393 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
24394 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
24395 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
24396 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
24397 	}
24398 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
24399 	return (mp);
24400 }
24401 
24402 /*
24403  * Print a tcp_ioc_abort_conn_t structure.
24404  */
24405 static void
24406 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
24407 {
24408 	char lbuf[128];
24409 	char rbuf[128];
24410 	sa_family_t af;
24411 	in_port_t lport, rport;
24412 	ushort_t logflags;
24413 
24414 	af = acp->ac_local.ss_family;
24415 
24416 	if (af == AF_INET) {
24417 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
24418 		    lbuf, 128);
24419 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
24420 		    rbuf, 128);
24421 		lport = ntohs(TCP_AC_V4LPORT(acp));
24422 		rport = ntohs(TCP_AC_V4RPORT(acp));
24423 	} else {
24424 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
24425 		    lbuf, 128);
24426 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
24427 		    rbuf, 128);
24428 		lport = ntohs(TCP_AC_V6LPORT(acp));
24429 		rport = ntohs(TCP_AC_V6RPORT(acp));
24430 	}
24431 
24432 	logflags = SL_TRACE | SL_NOTE;
24433 	/*
24434 	 * Don't print this message to the console if the operation was done
24435 	 * to a non-global zone.
24436 	 */
24437 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
24438 		logflags |= SL_CONSOLE;
24439 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
24440 	    "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
24441 	    "start = %d, end = %d\n", lbuf, lport, rbuf, rport,
24442 	    acp->ac_start, acp->ac_end);
24443 }
24444 
24445 /*
24446  * Called inside tcp_rput when a message built using
24447  * tcp_ioctl_abort_build_msg is put into a queue.
24448  * Note that when we get here there is no wildcard in acp any more.
24449  */
24450 static void
24451 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
24452 {
24453 	tcp_ioc_abort_conn_t *acp;
24454 
24455 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
24456 	if (tcp->tcp_state <= acp->ac_end) {
24457 		/*
24458 		 * If we get here, we are already on the correct
24459 		 * squeue. This ioctl follows the following path
24460 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
24461 		 * ->tcp_ioctl_abort->squeue_enter (if on a
24462 		 * different squeue)
24463 		 */
24464 		int errcode;
24465 
24466 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
24467 		(void) tcp_clean_death(tcp, errcode, 26);
24468 	}
24469 	freemsg(mp);
24470 }
24471 
24472 /*
24473  * Abort all matching connections on a hash chain.
24474  */
24475 static int
24476 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
24477     boolean_t exact, tcp_stack_t *tcps)
24478 {
24479 	int nmatch, err = 0;
24480 	tcp_t *tcp;
24481 	MBLKP mp, last, listhead = NULL;
24482 	conn_t	*tconnp;
24483 	connf_t	*connfp;
24484 	ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
24485 
24486 	connfp = &ipst->ips_ipcl_conn_fanout[index];
24487 
24488 startover:
24489 	nmatch = 0;
24490 
24491 	mutex_enter(&connfp->connf_lock);
24492 	for (tconnp = connfp->connf_head; tconnp != NULL;
24493 	    tconnp = tconnp->conn_next) {
24494 		tcp = tconnp->conn_tcp;
24495 		if (TCP_AC_MATCH(acp, tcp)) {
24496 			CONN_INC_REF(tcp->tcp_connp);
24497 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
24498 			if (mp == NULL) {
24499 				err = ENOMEM;
24500 				CONN_DEC_REF(tcp->tcp_connp);
24501 				break;
24502 			}
24503 			mp->b_prev = (mblk_t *)tcp;
24504 
24505 			if (listhead == NULL) {
24506 				listhead = mp;
24507 				last = mp;
24508 			} else {
24509 				last->b_next = mp;
24510 				last = mp;
24511 			}
24512 			nmatch++;
24513 			if (exact)
24514 				break;
24515 		}
24516 
24517 		/* Avoid holding lock for too long. */
24518 		if (nmatch >= 500)
24519 			break;
24520 	}
24521 	mutex_exit(&connfp->connf_lock);
24522 
24523 	/* Pass mp into the correct tcp */
24524 	while ((mp = listhead) != NULL) {
24525 		listhead = listhead->b_next;
24526 		tcp = (tcp_t *)mp->b_prev;
24527 		mp->b_next = mp->b_prev = NULL;
24528 		SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, tcp_input,
24529 		    tcp->tcp_connp, SQ_FILL, SQTAG_TCP_ABORT_BUCKET);
24530 	}
24531 
24532 	*count += nmatch;
24533 	if (nmatch >= 500 && err == 0)
24534 		goto startover;
24535 	return (err);
24536 }
24537 
24538 /*
24539  * Abort all connections that matches the attributes specified in acp.
24540  */
24541 static int
24542 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps)
24543 {
24544 	sa_family_t af;
24545 	uint32_t  ports;
24546 	uint16_t *pports;
24547 	int err = 0, count = 0;
24548 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
24549 	int index = -1;
24550 	ushort_t logflags;
24551 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
24552 
24553 	af = acp->ac_local.ss_family;
24554 
24555 	if (af == AF_INET) {
24556 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
24557 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
24558 			pports = (uint16_t *)&ports;
24559 			pports[1] = TCP_AC_V4LPORT(acp);
24560 			pports[0] = TCP_AC_V4RPORT(acp);
24561 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
24562 		}
24563 	} else {
24564 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
24565 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
24566 			pports = (uint16_t *)&ports;
24567 			pports[1] = TCP_AC_V6LPORT(acp);
24568 			pports[0] = TCP_AC_V6RPORT(acp);
24569 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
24570 		}
24571 	}
24572 
24573 	/*
24574 	 * For cases where remote addr, local port, and remote port are non-
24575 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
24576 	 */
24577 	if (index != -1) {
24578 		err = tcp_ioctl_abort_bucket(acp, index,
24579 		    &count, exact, tcps);
24580 	} else {
24581 		/*
24582 		 * loop through all entries for wildcard case
24583 		 */
24584 		for (index = 0;
24585 		    index < ipst->ips_ipcl_conn_fanout_size;
24586 		    index++) {
24587 			err = tcp_ioctl_abort_bucket(acp, index,
24588 			    &count, exact, tcps);
24589 			if (err != 0)
24590 				break;
24591 		}
24592 	}
24593 
24594 	logflags = SL_TRACE | SL_NOTE;
24595 	/*
24596 	 * Don't print this message to the console if the operation was done
24597 	 * to a non-global zone.
24598 	 */
24599 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
24600 		logflags |= SL_CONSOLE;
24601 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
24602 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
24603 	if (err == 0 && count == 0)
24604 		err = ENOENT;
24605 	return (err);
24606 }
24607 
24608 /*
24609  * Process the TCP_IOC_ABORT_CONN ioctl request.
24610  */
24611 static void
24612 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
24613 {
24614 	int	err;
24615 	IOCP    iocp;
24616 	MBLKP   mp1;
24617 	sa_family_t laf, raf;
24618 	tcp_ioc_abort_conn_t *acp;
24619 	zone_t		*zptr;
24620 	conn_t		*connp = Q_TO_CONN(q);
24621 	zoneid_t	zoneid = connp->conn_zoneid;
24622 	tcp_t		*tcp = connp->conn_tcp;
24623 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24624 
24625 	iocp = (IOCP)mp->b_rptr;
24626 
24627 	if ((mp1 = mp->b_cont) == NULL ||
24628 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
24629 		err = EINVAL;
24630 		goto out;
24631 	}
24632 
24633 	/* check permissions */
24634 	if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
24635 		err = EPERM;
24636 		goto out;
24637 	}
24638 
24639 	if (mp1->b_cont != NULL) {
24640 		freemsg(mp1->b_cont);
24641 		mp1->b_cont = NULL;
24642 	}
24643 
24644 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
24645 	laf = acp->ac_local.ss_family;
24646 	raf = acp->ac_remote.ss_family;
24647 
24648 	/* check that a zone with the supplied zoneid exists */
24649 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
24650 		zptr = zone_find_by_id(zoneid);
24651 		if (zptr != NULL) {
24652 			zone_rele(zptr);
24653 		} else {
24654 			err = EINVAL;
24655 			goto out;
24656 		}
24657 	}
24658 
24659 	/*
24660 	 * For exclusive stacks we set the zoneid to zero
24661 	 * to make TCP operate as if in the global zone.
24662 	 */
24663 	if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID)
24664 		acp->ac_zoneid = GLOBAL_ZONEID;
24665 
24666 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
24667 	    acp->ac_start > acp->ac_end || laf != raf ||
24668 	    (laf != AF_INET && laf != AF_INET6)) {
24669 		err = EINVAL;
24670 		goto out;
24671 	}
24672 
24673 	tcp_ioctl_abort_dump(acp);
24674 	err = tcp_ioctl_abort(acp, tcps);
24675 
24676 out:
24677 	if (mp1 != NULL) {
24678 		freemsg(mp1);
24679 		mp->b_cont = NULL;
24680 	}
24681 
24682 	if (err != 0)
24683 		miocnak(q, mp, 0, err);
24684 	else
24685 		miocack(q, mp, 0, 0);
24686 }
24687 
24688 /*
24689  * tcp_time_wait_processing() handles processing of incoming packets when
24690  * the tcp is in the TIME_WAIT state.
24691  * A TIME_WAIT tcp that has an associated open TCP stream is never put
24692  * on the time wait list.
24693  */
24694 void
24695 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
24696     uint32_t seg_ack, int seg_len, tcph_t *tcph)
24697 {
24698 	int32_t		bytes_acked;
24699 	int32_t		gap;
24700 	int32_t		rgap;
24701 	tcp_opt_t	tcpopt;
24702 	uint_t		flags;
24703 	uint32_t	new_swnd = 0;
24704 	conn_t		*connp;
24705 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24706 
24707 	BUMP_LOCAL(tcp->tcp_ibsegs);
24708 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
24709 
24710 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
24711 	new_swnd = BE16_TO_U16(tcph->th_win) <<
24712 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
24713 	if (tcp->tcp_snd_ts_ok) {
24714 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
24715 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24716 			    tcp->tcp_rnxt, TH_ACK);
24717 			goto done;
24718 		}
24719 	}
24720 	gap = seg_seq - tcp->tcp_rnxt;
24721 	rgap = tcp->tcp_rwnd - (gap + seg_len);
24722 	if (gap < 0) {
24723 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
24724 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
24725 		    (seg_len > -gap ? -gap : seg_len));
24726 		seg_len += gap;
24727 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
24728 			if (flags & TH_RST) {
24729 				goto done;
24730 			}
24731 			if ((flags & TH_FIN) && seg_len == -1) {
24732 				/*
24733 				 * When TCP receives a duplicate FIN in
24734 				 * TIME_WAIT state, restart the 2 MSL timer.
24735 				 * See page 73 in RFC 793. Make sure this TCP
24736 				 * is already on the TIME_WAIT list. If not,
24737 				 * just restart the timer.
24738 				 */
24739 				if (TCP_IS_DETACHED(tcp)) {
24740 					if (tcp_time_wait_remove(tcp, NULL) ==
24741 					    B_TRUE) {
24742 						tcp_time_wait_append(tcp);
24743 						TCP_DBGSTAT(tcps,
24744 						    tcp_rput_time_wait);
24745 					}
24746 				} else {
24747 					ASSERT(tcp != NULL);
24748 					TCP_TIMER_RESTART(tcp,
24749 					    tcps->tcps_time_wait_interval);
24750 				}
24751 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24752 				    tcp->tcp_rnxt, TH_ACK);
24753 				goto done;
24754 			}
24755 			flags |=  TH_ACK_NEEDED;
24756 			seg_len = 0;
24757 			goto process_ack;
24758 		}
24759 
24760 		/* Fix seg_seq, and chew the gap off the front. */
24761 		seg_seq = tcp->tcp_rnxt;
24762 	}
24763 
24764 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
24765 		/*
24766 		 * Make sure that when we accept the connection, pick
24767 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
24768 		 * old connection.
24769 		 *
24770 		 * The next ISS generated is equal to tcp_iss_incr_extra
24771 		 * + ISS_INCR/2 + other components depending on the
24772 		 * value of tcp_strong_iss.  We pre-calculate the new
24773 		 * ISS here and compare with tcp_snxt to determine if
24774 		 * we need to make adjustment to tcp_iss_incr_extra.
24775 		 *
24776 		 * The above calculation is ugly and is a
24777 		 * waste of CPU cycles...
24778 		 */
24779 		uint32_t new_iss = tcps->tcps_iss_incr_extra;
24780 		int32_t adj;
24781 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
24782 
24783 		switch (tcps->tcps_strong_iss) {
24784 		case 2: {
24785 			/* Add time and MD5 components. */
24786 			uint32_t answer[4];
24787 			struct {
24788 				uint32_t ports;
24789 				in6_addr_t src;
24790 				in6_addr_t dst;
24791 			} arg;
24792 			MD5_CTX context;
24793 
24794 			mutex_enter(&tcps->tcps_iss_key_lock);
24795 			context = tcps->tcps_iss_key;
24796 			mutex_exit(&tcps->tcps_iss_key_lock);
24797 			arg.ports = tcp->tcp_ports;
24798 			/* We use MAPPED addresses in tcp_iss_init */
24799 			arg.src = tcp->tcp_ip_src_v6;
24800 			if (tcp->tcp_ipversion == IPV4_VERSION) {
24801 				IN6_IPADDR_TO_V4MAPPED(
24802 				    tcp->tcp_ipha->ipha_dst,
24803 				    &arg.dst);
24804 			} else {
24805 				arg.dst =
24806 				    tcp->tcp_ip6h->ip6_dst;
24807 			}
24808 			MD5Update(&context, (uchar_t *)&arg,
24809 			    sizeof (arg));
24810 			MD5Final((uchar_t *)answer, &context);
24811 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
24812 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
24813 			break;
24814 		}
24815 		case 1:
24816 			/* Add time component and min random (i.e. 1). */
24817 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
24818 			break;
24819 		default:
24820 			/* Add only time component. */
24821 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
24822 			break;
24823 		}
24824 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
24825 			/*
24826 			 * New ISS not guaranteed to be ISS_INCR/2
24827 			 * ahead of the current tcp_snxt, so add the
24828 			 * difference to tcp_iss_incr_extra.
24829 			 */
24830 			tcps->tcps_iss_incr_extra += adj;
24831 		}
24832 		/*
24833 		 * If tcp_clean_death() can not perform the task now,
24834 		 * drop the SYN packet and let the other side re-xmit.
24835 		 * Otherwise pass the SYN packet back in, since the
24836 		 * old tcp state has been cleaned up or freed.
24837 		 */
24838 		if (tcp_clean_death(tcp, 0, 27) == -1)
24839 			goto done;
24840 		/*
24841 		 * We will come back to tcp_rput_data
24842 		 * on the global queue. Packets destined
24843 		 * for the global queue will be checked
24844 		 * with global policy. But the policy for
24845 		 * this packet has already been checked as
24846 		 * this was destined for the detached
24847 		 * connection. We need to bypass policy
24848 		 * check this time by attaching a dummy
24849 		 * ipsec_in with ipsec_in_dont_check set.
24850 		 */
24851 		connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst);
24852 		if (connp != NULL) {
24853 			TCP_STAT(tcps, tcp_time_wait_syn_success);
24854 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
24855 			return;
24856 		}
24857 		goto done;
24858 	}
24859 
24860 	/*
24861 	 * rgap is the amount of stuff received out of window.  A negative
24862 	 * value is the amount out of window.
24863 	 */
24864 	if (rgap < 0) {
24865 		BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
24866 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap);
24867 		/* Fix seg_len and make sure there is something left. */
24868 		seg_len += rgap;
24869 		if (seg_len <= 0) {
24870 			if (flags & TH_RST) {
24871 				goto done;
24872 			}
24873 			flags |=  TH_ACK_NEEDED;
24874 			seg_len = 0;
24875 			goto process_ack;
24876 		}
24877 	}
24878 	/*
24879 	 * Check whether we can update tcp_ts_recent.  This test is
24880 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
24881 	 * Extensions for High Performance: An Update", Internet Draft.
24882 	 */
24883 	if (tcp->tcp_snd_ts_ok &&
24884 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
24885 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
24886 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
24887 		tcp->tcp_last_rcv_lbolt = lbolt64;
24888 	}
24889 
24890 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
24891 		/* Always ack out of order packets */
24892 		flags |= TH_ACK_NEEDED;
24893 		seg_len = 0;
24894 	} else if (seg_len > 0) {
24895 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
24896 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
24897 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
24898 	}
24899 	if (flags & TH_RST) {
24900 		(void) tcp_clean_death(tcp, 0, 28);
24901 		goto done;
24902 	}
24903 	if (flags & TH_SYN) {
24904 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
24905 		    TH_RST|TH_ACK);
24906 		/*
24907 		 * Do not delete the TCP structure if it is in
24908 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
24909 		 */
24910 		goto done;
24911 	}
24912 process_ack:
24913 	if (flags & TH_ACK) {
24914 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
24915 		if (bytes_acked <= 0) {
24916 			if (bytes_acked == 0 && seg_len == 0 &&
24917 			    new_swnd == tcp->tcp_swnd)
24918 				BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
24919 		} else {
24920 			/* Acks something not sent */
24921 			flags |= TH_ACK_NEEDED;
24922 		}
24923 	}
24924 	if (flags & TH_ACK_NEEDED) {
24925 		/*
24926 		 * Time to send an ack for some reason.
24927 		 */
24928 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24929 		    tcp->tcp_rnxt, TH_ACK);
24930 	}
24931 done:
24932 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
24933 		DB_CKSUMSTART(mp) = 0;
24934 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
24935 		TCP_STAT(tcps, tcp_time_wait_syn_fail);
24936 	}
24937 	freemsg(mp);
24938 }
24939 
24940 /*
24941  * TCP Timers Implementation.
24942  */
24943 timeout_id_t
24944 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
24945 {
24946 	mblk_t *mp;
24947 	tcp_timer_t *tcpt;
24948 	tcp_t *tcp = connp->conn_tcp;
24949 
24950 	ASSERT(connp->conn_sqp != NULL);
24951 
24952 	TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls);
24953 
24954 	if (tcp->tcp_timercache == NULL) {
24955 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
24956 	} else {
24957 		TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc);
24958 		mp = tcp->tcp_timercache;
24959 		tcp->tcp_timercache = mp->b_next;
24960 		mp->b_next = NULL;
24961 		ASSERT(mp->b_wptr == NULL);
24962 	}
24963 
24964 	CONN_INC_REF(connp);
24965 	tcpt = (tcp_timer_t *)mp->b_rptr;
24966 	tcpt->connp = connp;
24967 	tcpt->tcpt_proc = f;
24968 	/*
24969 	 * TCP timers are normal timeouts. Plus, they do not require more than
24970 	 * a 10 millisecond resolution. By choosing a coarser resolution and by
24971 	 * rounding up the expiration to the next resolution boundary, we can
24972 	 * batch timers in the callout subsystem to make TCP timers more
24973 	 * efficient. The roundup also protects short timers from expiring too
24974 	 * early before they have a chance to be cancelled.
24975 	 */
24976 	tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp,
24977 	    TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP);
24978 
24979 	return ((timeout_id_t)mp);
24980 }
24981 
24982 static void
24983 tcp_timer_callback(void *arg)
24984 {
24985 	mblk_t *mp = (mblk_t *)arg;
24986 	tcp_timer_t *tcpt;
24987 	conn_t	*connp;
24988 
24989 	tcpt = (tcp_timer_t *)mp->b_rptr;
24990 	connp = tcpt->connp;
24991 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp,
24992 	    SQ_FILL, SQTAG_TCP_TIMER);
24993 }
24994 
24995 static void
24996 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
24997 {
24998 	tcp_timer_t *tcpt;
24999 	conn_t *connp = (conn_t *)arg;
25000 	tcp_t *tcp = connp->conn_tcp;
25001 
25002 	tcpt = (tcp_timer_t *)mp->b_rptr;
25003 	ASSERT(connp == tcpt->connp);
25004 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
25005 
25006 	/*
25007 	 * If the TCP has reached the closed state, don't proceed any
25008 	 * further. This TCP logically does not exist on the system.
25009 	 * tcpt_proc could for example access queues, that have already
25010 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
25011 	 */
25012 	if (tcp->tcp_state != TCPS_CLOSED) {
25013 		(*tcpt->tcpt_proc)(connp);
25014 	} else {
25015 		tcp->tcp_timer_tid = 0;
25016 	}
25017 	tcp_timer_free(connp->conn_tcp, mp);
25018 }
25019 
25020 /*
25021  * There is potential race with untimeout and the handler firing at the same
25022  * time. The mblock may be freed by the handler while we are trying to use
25023  * it. But since both should execute on the same squeue, this race should not
25024  * occur.
25025  */
25026 clock_t
25027 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
25028 {
25029 	mblk_t	*mp = (mblk_t *)id;
25030 	tcp_timer_t *tcpt;
25031 	clock_t delta;
25032 
25033 	TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs);
25034 
25035 	if (mp == NULL)
25036 		return (-1);
25037 
25038 	tcpt = (tcp_timer_t *)mp->b_rptr;
25039 	ASSERT(tcpt->connp == connp);
25040 
25041 	delta = untimeout_default(tcpt->tcpt_tid, 0);
25042 
25043 	if (delta >= 0) {
25044 		TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled);
25045 		tcp_timer_free(connp->conn_tcp, mp);
25046 		CONN_DEC_REF(connp);
25047 	}
25048 
25049 	return (delta);
25050 }
25051 
25052 /*
25053  * Allocate space for the timer event. The allocation looks like mblk, but it is
25054  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
25055  *
25056  * Dealing with failures: If we can't allocate from the timer cache we try
25057  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
25058  * points to b_rptr.
25059  * If we can't allocate anything using allocb_tryhard(), we perform a last
25060  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
25061  * save the actual allocation size in b_datap.
25062  */
25063 mblk_t *
25064 tcp_timermp_alloc(int kmflags)
25065 {
25066 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
25067 	    kmflags & ~KM_PANIC);
25068 
25069 	if (mp != NULL) {
25070 		mp->b_next = mp->b_prev = NULL;
25071 		mp->b_rptr = (uchar_t *)(&mp[1]);
25072 		mp->b_wptr = NULL;
25073 		mp->b_datap = NULL;
25074 		mp->b_queue = NULL;
25075 		mp->b_cont = NULL;
25076 	} else if (kmflags & KM_PANIC) {
25077 		/*
25078 		 * Failed to allocate memory for the timer. Try allocating from
25079 		 * dblock caches.
25080 		 */
25081 		/* ipclassifier calls this from a constructor - hence no tcps */
25082 		TCP_G_STAT(tcp_timermp_allocfail);
25083 		mp = allocb_tryhard(sizeof (tcp_timer_t));
25084 		if (mp == NULL) {
25085 			size_t size = 0;
25086 			/*
25087 			 * Memory is really low. Try tryhard allocation.
25088 			 *
25089 			 * ipclassifier calls this from a constructor -
25090 			 * hence no tcps
25091 			 */
25092 			TCP_G_STAT(tcp_timermp_allocdblfail);
25093 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
25094 			    sizeof (tcp_timer_t), &size, kmflags);
25095 			mp->b_rptr = (uchar_t *)(&mp[1]);
25096 			mp->b_next = mp->b_prev = NULL;
25097 			mp->b_wptr = (uchar_t *)-1;
25098 			mp->b_datap = (dblk_t *)size;
25099 			mp->b_queue = NULL;
25100 			mp->b_cont = NULL;
25101 		}
25102 		ASSERT(mp->b_wptr != NULL);
25103 	}
25104 	/* ipclassifier calls this from a constructor - hence no tcps */
25105 	TCP_G_DBGSTAT(tcp_timermp_alloced);
25106 
25107 	return (mp);
25108 }
25109 
25110 /*
25111  * Free per-tcp timer cache.
25112  * It can only contain entries from tcp_timercache.
25113  */
25114 void
25115 tcp_timermp_free(tcp_t *tcp)
25116 {
25117 	mblk_t *mp;
25118 
25119 	while ((mp = tcp->tcp_timercache) != NULL) {
25120 		ASSERT(mp->b_wptr == NULL);
25121 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
25122 		kmem_cache_free(tcp_timercache, mp);
25123 	}
25124 }
25125 
25126 /*
25127  * Free timer event. Put it on the per-tcp timer cache if there is not too many
25128  * events there already (currently at most two events are cached).
25129  * If the event is not allocated from the timer cache, free it right away.
25130  */
25131 static void
25132 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
25133 {
25134 	mblk_t *mp1 = tcp->tcp_timercache;
25135 
25136 	if (mp->b_wptr != NULL) {
25137 		/*
25138 		 * This allocation is not from a timer cache, free it right
25139 		 * away.
25140 		 */
25141 		if (mp->b_wptr != (uchar_t *)-1)
25142 			freeb(mp);
25143 		else
25144 			kmem_free(mp, (size_t)mp->b_datap);
25145 	} else if (mp1 == NULL || mp1->b_next == NULL) {
25146 		/* Cache this timer block for future allocations */
25147 		mp->b_rptr = (uchar_t *)(&mp[1]);
25148 		mp->b_next = mp1;
25149 		tcp->tcp_timercache = mp;
25150 	} else {
25151 		kmem_cache_free(tcp_timercache, mp);
25152 		TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed);
25153 	}
25154 }
25155 
25156 /*
25157  * End of TCP Timers implementation.
25158  */
25159 
25160 /*
25161  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
25162  * on the specified backing STREAMS q. Note, the caller may make the
25163  * decision to call based on the tcp_t.tcp_flow_stopped value which
25164  * when check outside the q's lock is only an advisory check ...
25165  */
25166 void
25167 tcp_setqfull(tcp_t *tcp)
25168 {
25169 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25170 	conn_t	*connp = tcp->tcp_connp;
25171 
25172 	if (tcp->tcp_closed)
25173 		return;
25174 
25175 	if (IPCL_IS_NONSTR(connp)) {
25176 		(*connp->conn_upcalls->su_txq_full)
25177 		    (tcp->tcp_connp->conn_upper_handle, B_TRUE);
25178 		tcp->tcp_flow_stopped = B_TRUE;
25179 	} else {
25180 		queue_t *q = tcp->tcp_wq;
25181 
25182 		if (!(q->q_flag & QFULL)) {
25183 			mutex_enter(QLOCK(q));
25184 			if (!(q->q_flag & QFULL)) {
25185 				/* still need to set QFULL */
25186 				q->q_flag |= QFULL;
25187 				tcp->tcp_flow_stopped = B_TRUE;
25188 				mutex_exit(QLOCK(q));
25189 				TCP_STAT(tcps, tcp_flwctl_on);
25190 			} else {
25191 				mutex_exit(QLOCK(q));
25192 			}
25193 		}
25194 	}
25195 }
25196 
25197 void
25198 tcp_clrqfull(tcp_t *tcp)
25199 {
25200 	conn_t  *connp = tcp->tcp_connp;
25201 
25202 	if (tcp->tcp_closed)
25203 		return;
25204 
25205 	if (IPCL_IS_NONSTR(connp)) {
25206 		(*connp->conn_upcalls->su_txq_full)
25207 		    (tcp->tcp_connp->conn_upper_handle, B_FALSE);
25208 		tcp->tcp_flow_stopped = B_FALSE;
25209 	} else {
25210 		queue_t *q = tcp->tcp_wq;
25211 
25212 		if (q->q_flag & QFULL) {
25213 			mutex_enter(QLOCK(q));
25214 			if (q->q_flag & QFULL) {
25215 				q->q_flag &= ~QFULL;
25216 				tcp->tcp_flow_stopped = B_FALSE;
25217 				mutex_exit(QLOCK(q));
25218 				if (q->q_flag & QWANTW)
25219 					qbackenable(q, 0);
25220 			} else {
25221 				mutex_exit(QLOCK(q));
25222 			}
25223 		}
25224 	}
25225 }
25226 
25227 /*
25228  * kstats related to squeues i.e. not per IP instance
25229  */
25230 static void *
25231 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp)
25232 {
25233 	kstat_t *ksp;
25234 
25235 	tcp_g_stat_t template = {
25236 		{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
25237 		{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
25238 		{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
25239 		{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
25240 	};
25241 
25242 	ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net",
25243 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
25244 	    KSTAT_FLAG_VIRTUAL);
25245 
25246 	if (ksp == NULL)
25247 		return (NULL);
25248 
25249 	bcopy(&template, tcp_g_statp, sizeof (template));
25250 	ksp->ks_data = (void *)tcp_g_statp;
25251 
25252 	kstat_install(ksp);
25253 	return (ksp);
25254 }
25255 
25256 static void
25257 tcp_g_kstat_fini(kstat_t *ksp)
25258 {
25259 	if (ksp != NULL) {
25260 		kstat_delete(ksp);
25261 	}
25262 }
25263 
25264 
25265 static void *
25266 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp)
25267 {
25268 	kstat_t *ksp;
25269 
25270 	tcp_stat_t template = {
25271 		{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
25272 		{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
25273 		{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
25274 		{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
25275 		{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
25276 		{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
25277 		{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
25278 		{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
25279 		{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
25280 		{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
25281 		{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
25282 		{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
25283 		{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
25284 		{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
25285 		{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
25286 		{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
25287 		{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
25288 		{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
25289 		{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
25290 		{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
25291 		{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
25292 		{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
25293 		{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
25294 		{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
25295 		{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
25296 		{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
25297 		{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
25298 		{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
25299 		{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
25300 		{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
25301 		{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
25302 		{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
25303 		{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
25304 		{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
25305 		{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
25306 		{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
25307 		{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
25308 		{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
25309 		{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
25310 		{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
25311 		{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
25312 		{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
25313 		{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
25314 		{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
25315 		{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
25316 		{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
25317 		{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
25318 		{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
25319 		{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
25320 		{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
25321 		{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
25322 		{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
25323 		{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
25324 		{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
25325 		{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
25326 		{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
25327 		{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
25328 		{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
25329 		{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
25330 		{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
25331 		{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
25332 		{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
25333 		{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
25334 		{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
25335 		{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
25336 		{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
25337 		{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
25338 		{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
25339 		{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
25340 		{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
25341 		{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
25342 		{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
25343 		{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
25344 		{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
25345 		{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
25346 		{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
25347 		{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
25348 		{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
25349 		{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
25350 		{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
25351 		{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
25352 		{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
25353 		{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
25354 		{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
25355 		{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
25356 		{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
25357 		{ "tcp_lso_enabled",		KSTAT_DATA_UINT64 },
25358 		{ "tcp_lso_disabled",		KSTAT_DATA_UINT64 },
25359 		{ "tcp_lso_times",		KSTAT_DATA_UINT64 },
25360 		{ "tcp_lso_pkt_out",		KSTAT_DATA_UINT64 },
25361 	};
25362 
25363 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net",
25364 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
25365 	    KSTAT_FLAG_VIRTUAL, stackid);
25366 
25367 	if (ksp == NULL)
25368 		return (NULL);
25369 
25370 	bcopy(&template, tcps_statisticsp, sizeof (template));
25371 	ksp->ks_data = (void *)tcps_statisticsp;
25372 	ksp->ks_private = (void *)(uintptr_t)stackid;
25373 
25374 	kstat_install(ksp);
25375 	return (ksp);
25376 }
25377 
25378 static void
25379 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
25380 {
25381 	if (ksp != NULL) {
25382 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
25383 		kstat_delete_netstack(ksp, stackid);
25384 	}
25385 }
25386 
25387 /*
25388  * TCP Kstats implementation
25389  */
25390 static void *
25391 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps)
25392 {
25393 	kstat_t	*ksp;
25394 
25395 	tcp_named_kstat_t template = {
25396 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
25397 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
25398 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
25399 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
25400 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
25401 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
25402 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
25403 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
25404 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
25405 		{ "inSegs",		KSTAT_DATA_UINT64, 0 },
25406 		{ "outSegs",		KSTAT_DATA_UINT64, 0 },
25407 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
25408 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
25409 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
25410 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
25411 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
25412 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
25413 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
25414 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
25415 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
25416 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
25417 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
25418 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
25419 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
25420 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
25421 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
25422 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
25423 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
25424 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
25425 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
25426 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
25427 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
25428 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
25429 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
25430 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
25431 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
25432 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
25433 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
25434 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
25435 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
25436 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
25437 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
25438 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
25439 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
25440 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
25441 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
25442 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
25443 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
25444 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
25445 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
25446 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
25447 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
25448 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
25449 	};
25450 
25451 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2",
25452 	    KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid);
25453 
25454 	if (ksp == NULL)
25455 		return (NULL);
25456 
25457 	template.rtoAlgorithm.value.ui32 = 4;
25458 	template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min;
25459 	template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max;
25460 	template.maxConn.value.i32 = -1;
25461 
25462 	bcopy(&template, ksp->ks_data, sizeof (template));
25463 	ksp->ks_update = tcp_kstat_update;
25464 	ksp->ks_private = (void *)(uintptr_t)stackid;
25465 
25466 	kstat_install(ksp);
25467 	return (ksp);
25468 }
25469 
25470 static void
25471 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
25472 {
25473 	if (ksp != NULL) {
25474 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
25475 		kstat_delete_netstack(ksp, stackid);
25476 	}
25477 }
25478 
25479 static int
25480 tcp_kstat_update(kstat_t *kp, int rw)
25481 {
25482 	tcp_named_kstat_t *tcpkp;
25483 	tcp_t		*tcp;
25484 	connf_t		*connfp;
25485 	conn_t		*connp;
25486 	int 		i;
25487 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
25488 	netstack_t	*ns;
25489 	tcp_stack_t	*tcps;
25490 	ip_stack_t	*ipst;
25491 
25492 	if ((kp == NULL) || (kp->ks_data == NULL))
25493 		return (EIO);
25494 
25495 	if (rw == KSTAT_WRITE)
25496 		return (EACCES);
25497 
25498 	ns = netstack_find_by_stackid(stackid);
25499 	if (ns == NULL)
25500 		return (-1);
25501 	tcps = ns->netstack_tcp;
25502 	if (tcps == NULL) {
25503 		netstack_rele(ns);
25504 		return (-1);
25505 	}
25506 
25507 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
25508 
25509 	tcpkp->currEstab.value.ui32 = 0;
25510 
25511 	ipst = ns->netstack_ip;
25512 
25513 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25514 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
25515 		connp = NULL;
25516 		while ((connp =
25517 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25518 			tcp = connp->conn_tcp;
25519 			switch (tcp_snmp_state(tcp)) {
25520 			case MIB2_TCP_established:
25521 			case MIB2_TCP_closeWait:
25522 				tcpkp->currEstab.value.ui32++;
25523 				break;
25524 			}
25525 		}
25526 	}
25527 
25528 	tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens;
25529 	tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens;
25530 	tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails;
25531 	tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets;
25532 	tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs;
25533 	tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs;
25534 	tcpkp->retransSegs.value.ui32 =	tcps->tcps_mib.tcpRetransSegs;
25535 	tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize;
25536 	tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts;
25537 	tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs;
25538 	tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes;
25539 	tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes;
25540 	tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck;
25541 	tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed;
25542 	tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg;
25543 	tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate;
25544 	tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe;
25545 	tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl;
25546 	tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans;
25547 	tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs;
25548 	tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes;
25549 	tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck;
25550 	tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent;
25551 	tcpkp->inDataInorderSegs.value.ui32 =
25552 	    tcps->tcps_mib.tcpInDataInorderSegs;
25553 	tcpkp->inDataInorderBytes.value.ui32 =
25554 	    tcps->tcps_mib.tcpInDataInorderBytes;
25555 	tcpkp->inDataUnorderSegs.value.ui32 =
25556 	    tcps->tcps_mib.tcpInDataUnorderSegs;
25557 	tcpkp->inDataUnorderBytes.value.ui32 =
25558 	    tcps->tcps_mib.tcpInDataUnorderBytes;
25559 	tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs;
25560 	tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes;
25561 	tcpkp->inDataPartDupSegs.value.ui32 =
25562 	    tcps->tcps_mib.tcpInDataPartDupSegs;
25563 	tcpkp->inDataPartDupBytes.value.ui32 =
25564 	    tcps->tcps_mib.tcpInDataPartDupBytes;
25565 	tcpkp->inDataPastWinSegs.value.ui32 =
25566 	    tcps->tcps_mib.tcpInDataPastWinSegs;
25567 	tcpkp->inDataPastWinBytes.value.ui32 =
25568 	    tcps->tcps_mib.tcpInDataPastWinBytes;
25569 	tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe;
25570 	tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate;
25571 	tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed;
25572 	tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate;
25573 	tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate;
25574 	tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans;
25575 	tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop;
25576 	tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive;
25577 	tcpkp->timKeepaliveProbe.value.ui32 =
25578 	    tcps->tcps_mib.tcpTimKeepaliveProbe;
25579 	tcpkp->timKeepaliveDrop.value.ui32 =
25580 	    tcps->tcps_mib.tcpTimKeepaliveDrop;
25581 	tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop;
25582 	tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0;
25583 	tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop;
25584 	tcpkp->outSackRetransSegs.value.ui32 =
25585 	    tcps->tcps_mib.tcpOutSackRetransSegs;
25586 	tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize;
25587 
25588 	netstack_rele(ns);
25589 	return (0);
25590 }
25591 
25592 void
25593 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
25594 {
25595 	uint16_t	hdr_len;
25596 	ipha_t		*ipha;
25597 	uint8_t		*nexthdrp;
25598 	tcph_t		*tcph;
25599 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
25600 
25601 	/* Already has an eager */
25602 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
25603 		TCP_STAT(tcps, tcp_reinput_syn);
25604 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
25605 		    SQ_PROCESS, SQTAG_TCP_REINPUT_EAGER);
25606 		return;
25607 	}
25608 
25609 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
25610 	case IPV4_VERSION:
25611 		ipha = (ipha_t *)mp->b_rptr;
25612 		hdr_len = IPH_HDR_LENGTH(ipha);
25613 		break;
25614 	case IPV6_VERSION:
25615 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
25616 		    &hdr_len, &nexthdrp)) {
25617 			CONN_DEC_REF(connp);
25618 			freemsg(mp);
25619 			return;
25620 		}
25621 		break;
25622 	}
25623 
25624 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
25625 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
25626 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
25627 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
25628 	}
25629 
25630 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
25631 	    SQ_FILL, SQTAG_TCP_REINPUT);
25632 }
25633 
25634 static int
25635 tcp_squeue_switch(int val)
25636 {
25637 	int rval = SQ_FILL;
25638 
25639 	switch (val) {
25640 	case 1:
25641 		rval = SQ_NODRAIN;
25642 		break;
25643 	case 2:
25644 		rval = SQ_PROCESS;
25645 		break;
25646 	default:
25647 		break;
25648 	}
25649 	return (rval);
25650 }
25651 
25652 /*
25653  * This is called once for each squeue - globally for all stack
25654  * instances.
25655  */
25656 static void
25657 tcp_squeue_add(squeue_t *sqp)
25658 {
25659 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
25660 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
25661 
25662 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
25663 	tcp_time_wait->tcp_time_wait_tid =
25664 	    timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp,
25665 	    TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION,
25666 	    CALLOUT_FLAG_ROUNDUP);
25667 	if (tcp_free_list_max_cnt == 0) {
25668 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
25669 		    max_ncpus : boot_max_ncpus);
25670 
25671 		/*
25672 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
25673 		 */
25674 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
25675 		    (tcp_ncpus * sizeof (tcp_t) * 100);
25676 	}
25677 	tcp_time_wait->tcp_free_list_cnt = 0;
25678 }
25679 
25680 static int
25681 tcp_post_ip_bind(tcp_t *tcp, mblk_t *mp, int error, cred_t *cr, pid_t pid)
25682 {
25683 	mblk_t	*ire_mp = NULL;
25684 	mblk_t	*syn_mp;
25685 	mblk_t	*mdti;
25686 	mblk_t	*lsoi;
25687 	int	retval;
25688 	tcph_t	*tcph;
25689 	cred_t	*ecr;
25690 	ts_label_t	*tsl;
25691 	uint32_t	mss;
25692 	queue_t	*q = tcp->tcp_rq;
25693 	conn_t	*connp = tcp->tcp_connp;
25694 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25695 
25696 	if (error == 0) {
25697 		/*
25698 		 * Adapt Multidata information, if any.  The
25699 		 * following tcp_mdt_update routine will free
25700 		 * the message.
25701 		 */
25702 		if (mp != NULL && ((mdti = tcp_mdt_info_mp(mp)) != NULL)) {
25703 			tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
25704 			    b_rptr)->mdt_capab, B_TRUE);
25705 			freemsg(mdti);
25706 		}
25707 
25708 		/*
25709 		 * Check to update LSO information with tcp, and
25710 		 * tcp_lso_update routine will free the message.
25711 		 */
25712 		if (mp != NULL && ((lsoi = tcp_lso_info_mp(mp)) != NULL)) {
25713 			tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi->
25714 			    b_rptr)->lso_capab);
25715 			freemsg(lsoi);
25716 		}
25717 
25718 		/* Get the IRE, if we had requested for it */
25719 		if (mp != NULL)
25720 			ire_mp = tcp_ire_mp(&mp);
25721 
25722 		if (tcp->tcp_hard_binding) {
25723 			tcp->tcp_hard_binding = B_FALSE;
25724 			tcp->tcp_hard_bound = B_TRUE;
25725 			CL_INET_CONNECT(tcp->tcp_connp, tcp, B_TRUE, retval);
25726 			if (retval != 0) {
25727 				error = EADDRINUSE;
25728 				goto bind_failed;
25729 			}
25730 		} else {
25731 			if (ire_mp != NULL)
25732 				freeb(ire_mp);
25733 			goto after_syn_sent;
25734 		}
25735 
25736 		retval = tcp_adapt_ire(tcp, ire_mp);
25737 		if (ire_mp != NULL)
25738 			freeb(ire_mp);
25739 		if (retval == 0) {
25740 			error = (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
25741 			    ENETUNREACH : EADDRNOTAVAIL);
25742 			goto ipcl_rm;
25743 		}
25744 		/*
25745 		 * Don't let an endpoint connect to itself.
25746 		 * Also checked in tcp_connect() but that
25747 		 * check can't handle the case when the
25748 		 * local IP address is INADDR_ANY.
25749 		 */
25750 		if (tcp->tcp_ipversion == IPV4_VERSION) {
25751 			if ((tcp->tcp_ipha->ipha_dst ==
25752 			    tcp->tcp_ipha->ipha_src) &&
25753 			    (BE16_EQL(tcp->tcp_tcph->th_lport,
25754 			    tcp->tcp_tcph->th_fport))) {
25755 				error = EADDRNOTAVAIL;
25756 				goto ipcl_rm;
25757 			}
25758 		} else {
25759 			if (IN6_ARE_ADDR_EQUAL(
25760 			    &tcp->tcp_ip6h->ip6_dst,
25761 			    &tcp->tcp_ip6h->ip6_src) &&
25762 			    (BE16_EQL(tcp->tcp_tcph->th_lport,
25763 			    tcp->tcp_tcph->th_fport))) {
25764 				error = EADDRNOTAVAIL;
25765 				goto ipcl_rm;
25766 			}
25767 		}
25768 		ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
25769 		/*
25770 		 * This should not be possible!  Just for
25771 		 * defensive coding...
25772 		 */
25773 		if (tcp->tcp_state != TCPS_SYN_SENT)
25774 			goto after_syn_sent;
25775 
25776 		if (is_system_labeled() &&
25777 		    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
25778 			error = EHOSTUNREACH;
25779 			goto ipcl_rm;
25780 		}
25781 
25782 		/*
25783 		 * tcp_adapt_ire() does not adjust
25784 		 * for TCP/IP header length.
25785 		 */
25786 		mss = tcp->tcp_mss - tcp->tcp_hdr_len;
25787 
25788 		/*
25789 		 * Just make sure our rwnd is at
25790 		 * least tcp_recv_hiwat_mss * MSS
25791 		 * large, and round up to the nearest
25792 		 * MSS.
25793 		 *
25794 		 * We do the round up here because
25795 		 * we need to get the interface
25796 		 * MTU first before we can do the
25797 		 * round up.
25798 		 */
25799 		tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
25800 		    tcps->tcps_recv_hiwat_minmss * mss);
25801 		if (!IPCL_IS_NONSTR(connp))
25802 			q->q_hiwat = tcp->tcp_rwnd;
25803 		tcp->tcp_recv_hiwater = tcp->tcp_rwnd;
25804 		tcp_set_ws_value(tcp);
25805 		U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
25806 		    tcp->tcp_tcph->th_win);
25807 		if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
25808 			tcp->tcp_snd_ws_ok = B_TRUE;
25809 
25810 		/*
25811 		 * Set tcp_snd_ts_ok to true
25812 		 * so that tcp_xmit_mp will
25813 		 * include the timestamp
25814 		 * option in the SYN segment.
25815 		 */
25816 		if (tcps->tcps_tstamp_always ||
25817 		    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
25818 			tcp->tcp_snd_ts_ok = B_TRUE;
25819 		}
25820 
25821 		/*
25822 		 * tcp_snd_sack_ok can be set in
25823 		 * tcp_adapt_ire() if the sack metric
25824 		 * is set.  So check it here also.
25825 		 */
25826 		if (tcps->tcps_sack_permitted == 2 ||
25827 		    tcp->tcp_snd_sack_ok) {
25828 			if (tcp->tcp_sack_info == NULL) {
25829 				tcp->tcp_sack_info =
25830 				    kmem_cache_alloc(tcp_sack_info_cache,
25831 				    KM_SLEEP);
25832 			}
25833 			tcp->tcp_snd_sack_ok = B_TRUE;
25834 		}
25835 
25836 		/*
25837 		 * Should we use ECN?  Note that the current
25838 		 * default value (SunOS 5.9) of tcp_ecn_permitted
25839 		 * is 1.  The reason for doing this is that there
25840 		 * are equipments out there that will drop ECN
25841 		 * enabled IP packets.  Setting it to 1 avoids
25842 		 * compatibility problems.
25843 		 */
25844 		if (tcps->tcps_ecn_permitted == 2)
25845 			tcp->tcp_ecn_ok = B_TRUE;
25846 
25847 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
25848 		syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
25849 		    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
25850 		if (syn_mp) {
25851 			/*
25852 			 * cr contains the cred from the thread calling
25853 			 * connect().
25854 			 *
25855 			 * If no thread cred is available, use the
25856 			 * socket creator's cred instead. If still no
25857 			 * cred, drop the request rather than risk a
25858 			 * panic on production systems.
25859 			 */
25860 			if (cr == NULL) {
25861 				cr = CONN_CRED(connp);
25862 				pid = tcp->tcp_cpid;
25863 				ASSERT(cr != NULL);
25864 				if (cr != NULL) {
25865 					mblk_setcred(syn_mp, cr, pid);
25866 				} else {
25867 					error = ECONNABORTED;
25868 					goto ipcl_rm;
25869 				}
25870 
25871 			/*
25872 			 * If an effective security label exists for
25873 			 * the connection, create a copy of the thread's
25874 			 * cred but with the effective label attached.
25875 			 */
25876 			} else if (is_system_labeled() &&
25877 			    connp->conn_effective_cred != NULL &&
25878 			    (tsl = crgetlabel(connp->
25879 			    conn_effective_cred)) != NULL) {
25880 				if ((ecr = copycred_from_tslabel(cr,
25881 				    tsl, KM_NOSLEEP)) == NULL) {
25882 					error = ENOMEM;
25883 					goto ipcl_rm;
25884 				}
25885 				mblk_setcred(syn_mp, ecr, pid);
25886 				crfree(ecr);
25887 
25888 			/*
25889 			 * Default to using the thread's cred unchanged.
25890 			 */
25891 			} else {
25892 				mblk_setcred(syn_mp, cr, pid);
25893 			}
25894 			tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
25895 		}
25896 	after_syn_sent:
25897 		if (mp != NULL) {
25898 			ASSERT(mp->b_cont == NULL);
25899 			freeb(mp);
25900 		}
25901 		return (error);
25902 	} else {
25903 		/* error */
25904 		if (tcp->tcp_debug) {
25905 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
25906 			    "tcp_post_ip_bind: error == %d", error);
25907 		}
25908 		if (mp != NULL) {
25909 			freeb(mp);
25910 		}
25911 	}
25912 
25913 ipcl_rm:
25914 	/*
25915 	 * Need to unbind with classifier since we were just
25916 	 * told that our bind succeeded. a.k.a error == 0 at the entry.
25917 	 */
25918 	tcp->tcp_hard_bound = B_FALSE;
25919 	tcp->tcp_hard_binding = B_FALSE;
25920 
25921 	ipcl_hash_remove(connp);
25922 
25923 bind_failed:
25924 	tcp->tcp_state = TCPS_IDLE;
25925 	if (tcp->tcp_ipversion == IPV4_VERSION)
25926 		tcp->tcp_ipha->ipha_src = 0;
25927 	else
25928 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
25929 	/*
25930 	 * Copy of the src addr. in tcp_t is needed since
25931 	 * the lookup funcs. can only look at tcp_t
25932 	 */
25933 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
25934 
25935 	tcph = tcp->tcp_tcph;
25936 	tcph->th_lport[0] = 0;
25937 	tcph->th_lport[1] = 0;
25938 	tcp_bind_hash_remove(tcp);
25939 	bzero(&connp->u_port, sizeof (connp->u_port));
25940 	/* blow away saved option results if any */
25941 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
25942 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
25943 
25944 	conn_delete_ire(tcp->tcp_connp, NULL);
25945 
25946 	return (error);
25947 }
25948 
25949 static int
25950 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr,
25951     boolean_t bind_to_req_port_only, cred_t *cr)
25952 {
25953 	in_port_t	mlp_port;
25954 	mlp_type_t 	addrtype, mlptype;
25955 	boolean_t	user_specified;
25956 	in_port_t	allocated_port;
25957 	in_port_t	requested_port = *requested_port_ptr;
25958 	conn_t		*connp;
25959 	zone_t		*zone;
25960 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25961 	in6_addr_t	v6addr = tcp->tcp_ip_src_v6;
25962 
25963 	/*
25964 	 * XXX It's up to the caller to specify bind_to_req_port_only or not.
25965 	 */
25966 	if (cr == NULL)
25967 		cr = tcp->tcp_cred;
25968 	/*
25969 	 * Get a valid port (within the anonymous range and should not
25970 	 * be a privileged one) to use if the user has not given a port.
25971 	 * If multiple threads are here, they may all start with
25972 	 * with the same initial port. But, it should be fine as long as
25973 	 * tcp_bindi will ensure that no two threads will be assigned
25974 	 * the same port.
25975 	 *
25976 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
25977 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
25978 	 * unless TCP_ANONPRIVBIND option is set.
25979 	 */
25980 	mlptype = mlptSingle;
25981 	mlp_port = requested_port;
25982 	if (requested_port == 0) {
25983 		requested_port = tcp->tcp_anon_priv_bind ?
25984 		    tcp_get_next_priv_port(tcp) :
25985 		    tcp_update_next_port(tcps->tcps_next_port_to_try,
25986 		    tcp, B_TRUE);
25987 		if (requested_port == 0) {
25988 			return (-TNOADDR);
25989 		}
25990 		user_specified = B_FALSE;
25991 
25992 		/*
25993 		 * If the user went through one of the RPC interfaces to create
25994 		 * this socket and RPC is MLP in this zone, then give him an
25995 		 * anonymous MLP.
25996 		 */
25997 		connp = tcp->tcp_connp;
25998 		if (connp->conn_anon_mlp && is_system_labeled()) {
25999 			zone = crgetzone(cr);
26000 			addrtype = tsol_mlp_addr_type(zone->zone_id,
26001 			    IPV6_VERSION, &v6addr,
26002 			    tcps->tcps_netstack->netstack_ip);
26003 			if (addrtype == mlptSingle) {
26004 				return (-TNOADDR);
26005 			}
26006 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
26007 			    PMAPPORT, addrtype);
26008 			mlp_port = PMAPPORT;
26009 		}
26010 	} else {
26011 		int i;
26012 		boolean_t priv = B_FALSE;
26013 
26014 		/*
26015 		 * If the requested_port is in the well-known privileged range,
26016 		 * verify that the stream was opened by a privileged user.
26017 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
26018 		 * but instead the code relies on:
26019 		 * - the fact that the address of the array and its size never
26020 		 *   changes
26021 		 * - the atomic assignment of the elements of the array
26022 		 */
26023 		if (requested_port < tcps->tcps_smallest_nonpriv_port) {
26024 			priv = B_TRUE;
26025 		} else {
26026 			for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
26027 				if (requested_port ==
26028 				    tcps->tcps_g_epriv_ports[i]) {
26029 					priv = B_TRUE;
26030 					break;
26031 				}
26032 			}
26033 		}
26034 		if (priv) {
26035 			if (secpolicy_net_privaddr(cr, requested_port,
26036 			    IPPROTO_TCP) != 0) {
26037 				if (tcp->tcp_debug) {
26038 					(void) strlog(TCP_MOD_ID, 0, 1,
26039 					    SL_ERROR|SL_TRACE,
26040 					    "tcp_bind: no priv for port %d",
26041 					    requested_port);
26042 				}
26043 				return (-TACCES);
26044 			}
26045 		}
26046 		user_specified = B_TRUE;
26047 
26048 		connp = tcp->tcp_connp;
26049 		if (is_system_labeled()) {
26050 			zone = crgetzone(cr);
26051 			addrtype = tsol_mlp_addr_type(zone->zone_id,
26052 			    IPV6_VERSION, &v6addr,
26053 			    tcps->tcps_netstack->netstack_ip);
26054 			if (addrtype == mlptSingle) {
26055 				return (-TNOADDR);
26056 			}
26057 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
26058 			    requested_port, addrtype);
26059 		}
26060 	}
26061 
26062 	if (mlptype != mlptSingle) {
26063 		if (secpolicy_net_bindmlp(cr) != 0) {
26064 			if (tcp->tcp_debug) {
26065 				(void) strlog(TCP_MOD_ID, 0, 1,
26066 				    SL_ERROR|SL_TRACE,
26067 				    "tcp_bind: no priv for multilevel port %d",
26068 				    requested_port);
26069 			}
26070 			return (-TACCES);
26071 		}
26072 
26073 		/*
26074 		 * If we're specifically binding a shared IP address and the
26075 		 * port is MLP on shared addresses, then check to see if this
26076 		 * zone actually owns the MLP.  Reject if not.
26077 		 */
26078 		if (mlptype == mlptShared && addrtype == mlptShared) {
26079 			/*
26080 			 * No need to handle exclusive-stack zones since
26081 			 * ALL_ZONES only applies to the shared stack.
26082 			 */
26083 			zoneid_t mlpzone;
26084 
26085 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
26086 			    htons(mlp_port));
26087 			if (connp->conn_zoneid != mlpzone) {
26088 				if (tcp->tcp_debug) {
26089 					(void) strlog(TCP_MOD_ID, 0, 1,
26090 					    SL_ERROR|SL_TRACE,
26091 					    "tcp_bind: attempt to bind port "
26092 					    "%d on shared addr in zone %d "
26093 					    "(should be %d)",
26094 					    mlp_port, connp->conn_zoneid,
26095 					    mlpzone);
26096 				}
26097 				return (-TACCES);
26098 			}
26099 		}
26100 
26101 		if (!user_specified) {
26102 			int err;
26103 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
26104 			    requested_port, B_TRUE);
26105 			if (err != 0) {
26106 				if (tcp->tcp_debug) {
26107 					(void) strlog(TCP_MOD_ID, 0, 1,
26108 					    SL_ERROR|SL_TRACE,
26109 					    "tcp_bind: cannot establish anon "
26110 					    "MLP for port %d",
26111 					    requested_port);
26112 				}
26113 				return (err);
26114 			}
26115 			connp->conn_anon_port = B_TRUE;
26116 		}
26117 		connp->conn_mlp_type = mlptype;
26118 	}
26119 
26120 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
26121 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
26122 
26123 	if (allocated_port == 0) {
26124 		connp->conn_mlp_type = mlptSingle;
26125 		if (connp->conn_anon_port) {
26126 			connp->conn_anon_port = B_FALSE;
26127 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
26128 			    requested_port, B_FALSE);
26129 		}
26130 		if (bind_to_req_port_only) {
26131 			if (tcp->tcp_debug) {
26132 				(void) strlog(TCP_MOD_ID, 0, 1,
26133 				    SL_ERROR|SL_TRACE,
26134 				    "tcp_bind: requested addr busy");
26135 			}
26136 			return (-TADDRBUSY);
26137 		} else {
26138 			/* If we are out of ports, fail the bind. */
26139 			if (tcp->tcp_debug) {
26140 				(void) strlog(TCP_MOD_ID, 0, 1,
26141 				    SL_ERROR|SL_TRACE,
26142 				    "tcp_bind: out of ports?");
26143 			}
26144 			return (-TNOADDR);
26145 		}
26146 	}
26147 
26148 	/* Pass the allocated port back */
26149 	*requested_port_ptr = allocated_port;
26150 	return (0);
26151 }
26152 
26153 static int
26154 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
26155     boolean_t bind_to_req_port_only)
26156 {
26157 	tcp_t	*tcp = connp->conn_tcp;
26158 	sin_t	*sin;
26159 	sin6_t  *sin6;
26160 	in_port_t requested_port;
26161 	ipaddr_t	v4addr;
26162 	in6_addr_t	v6addr;
26163 	uint_t	origipversion;
26164 	int	error = 0;
26165 
26166 	ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX);
26167 
26168 	if (tcp->tcp_state == TCPS_BOUND) {
26169 		return (0);
26170 	} else if (tcp->tcp_state > TCPS_BOUND) {
26171 		if (tcp->tcp_debug) {
26172 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
26173 			    "tcp_bind: bad state, %d", tcp->tcp_state);
26174 		}
26175 		return (-TOUTSTATE);
26176 	}
26177 	origipversion = tcp->tcp_ipversion;
26178 
26179 	ASSERT(sa != NULL && len != 0);
26180 
26181 	if (!OK_32PTR((char *)sa)) {
26182 		if (tcp->tcp_debug) {
26183 			(void) strlog(TCP_MOD_ID, 0, 1,
26184 			    SL_ERROR|SL_TRACE,
26185 			    "tcp_bind: bad address parameter, "
26186 			    "address %p, len %d",
26187 			    (void *)sa, len);
26188 		}
26189 		return (-TPROTO);
26190 	}
26191 
26192 	switch (len) {
26193 	case sizeof (sin_t):	/* Complete IPv4 address */
26194 		sin = (sin_t *)sa;
26195 		/*
26196 		 * With sockets sockfs will accept bogus sin_family in
26197 		 * bind() and replace it with the family used in the socket
26198 		 * call.
26199 		 */
26200 		if (sin->sin_family != AF_INET ||
26201 		    tcp->tcp_family != AF_INET) {
26202 			return (EAFNOSUPPORT);
26203 		}
26204 		requested_port = ntohs(sin->sin_port);
26205 		tcp->tcp_ipversion = IPV4_VERSION;
26206 		v4addr = sin->sin_addr.s_addr;
26207 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
26208 		break;
26209 
26210 	case sizeof (sin6_t): /* Complete IPv6 address */
26211 		sin6 = (sin6_t *)sa;
26212 		if (sin6->sin6_family != AF_INET6 ||
26213 		    tcp->tcp_family != AF_INET6) {
26214 			return (EAFNOSUPPORT);
26215 		}
26216 		requested_port = ntohs(sin6->sin6_port);
26217 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
26218 		    IPV4_VERSION : IPV6_VERSION;
26219 		v6addr = sin6->sin6_addr;
26220 		break;
26221 
26222 	default:
26223 		if (tcp->tcp_debug) {
26224 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
26225 			    "tcp_bind: bad address length, %d", len);
26226 		}
26227 		return (EAFNOSUPPORT);
26228 		/* return (-TBADADDR); */
26229 	}
26230 
26231 	tcp->tcp_bound_source_v6 = v6addr;
26232 
26233 	/* Check for change in ipversion */
26234 	if (origipversion != tcp->tcp_ipversion) {
26235 		ASSERT(tcp->tcp_family == AF_INET6);
26236 		error = tcp->tcp_ipversion == IPV6_VERSION ?
26237 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
26238 		if (error) {
26239 			return (ENOMEM);
26240 		}
26241 	}
26242 
26243 	/*
26244 	 * Initialize family specific fields. Copy of the src addr.
26245 	 * in tcp_t is needed for the lookup funcs.
26246 	 */
26247 	if (tcp->tcp_ipversion == IPV6_VERSION) {
26248 		tcp->tcp_ip6h->ip6_src = v6addr;
26249 	} else {
26250 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
26251 	}
26252 	tcp->tcp_ip_src_v6 = v6addr;
26253 
26254 	bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only;
26255 
26256 	error = tcp_bind_select_lport(tcp, &requested_port,
26257 	    bind_to_req_port_only, cr);
26258 
26259 	return (error);
26260 }
26261 
26262 /*
26263  * Return unix error is tli error is TSYSERR, otherwise return a negative
26264  * tli error.
26265  */
26266 int
26267 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
26268     boolean_t bind_to_req_port_only)
26269 {
26270 	int error;
26271 	tcp_t *tcp = connp->conn_tcp;
26272 
26273 	if (tcp->tcp_state >= TCPS_BOUND) {
26274 		if (tcp->tcp_debug) {
26275 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
26276 			    "tcp_bind: bad state, %d", tcp->tcp_state);
26277 		}
26278 		return (-TOUTSTATE);
26279 	}
26280 
26281 	error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
26282 	if (error != 0)
26283 		return (error);
26284 
26285 	ASSERT(tcp->tcp_state == TCPS_BOUND);
26286 
26287 	tcp->tcp_conn_req_max = 0;
26288 
26289 	if (tcp->tcp_family == AF_INET6) {
26290 		ASSERT(tcp->tcp_connp->conn_af_isv6);
26291 		error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP,
26292 		    &tcp->tcp_bound_source_v6, 0, B_FALSE);
26293 	} else {
26294 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
26295 		error = ip_proto_bind_laddr_v4(connp, NULL, IPPROTO_TCP,
26296 		    tcp->tcp_ipha->ipha_src, 0, B_FALSE);
26297 	}
26298 	return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0));
26299 }
26300 
26301 int
26302 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa,
26303     socklen_t len, cred_t *cr)
26304 {
26305 	int 		error;
26306 	conn_t		*connp = (conn_t *)proto_handle;
26307 	squeue_t	*sqp = connp->conn_sqp;
26308 
26309 	/* All Solaris components should pass a cred for this operation. */
26310 	ASSERT(cr != NULL);
26311 
26312 	ASSERT(sqp != NULL);
26313 	ASSERT(connp->conn_upper_handle != NULL);
26314 
26315 	error = squeue_synch_enter(sqp, connp, NULL);
26316 	if (error != 0) {
26317 		/* failed to enter */
26318 		return (ENOSR);
26319 	}
26320 
26321 	/* binding to a NULL address really means unbind */
26322 	if (sa == NULL) {
26323 		if (connp->conn_tcp->tcp_state < TCPS_LISTEN)
26324 			error = tcp_do_unbind(connp);
26325 		else
26326 			error = EINVAL;
26327 	} else {
26328 		error = tcp_do_bind(connp, sa, len, cr, B_TRUE);
26329 	}
26330 
26331 	squeue_synch_exit(sqp, connp);
26332 
26333 	if (error < 0) {
26334 		if (error == -TOUTSTATE)
26335 			error = EINVAL;
26336 		else
26337 			error = proto_tlitosyserr(-error);
26338 	}
26339 
26340 	return (error);
26341 }
26342 
26343 /*
26344  * If the return value from this function is positive, it's a UNIX error.
26345  * Otherwise, if it's negative, then the absolute value is a TLI error.
26346  * the TPI routine tcp_tpi_connect() is a wrapper function for this.
26347  */
26348 int
26349 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
26350     cred_t *cr, pid_t pid)
26351 {
26352 	tcp_t		*tcp = connp->conn_tcp;
26353 	sin_t		*sin = (sin_t *)sa;
26354 	sin6_t		*sin6 = (sin6_t *)sa;
26355 	ipaddr_t	*dstaddrp;
26356 	in_port_t	dstport;
26357 	uint_t		srcid;
26358 	int		error = 0;
26359 
26360 	switch (len) {
26361 	default:
26362 		/*
26363 		 * Should never happen
26364 		 */
26365 		return (EINVAL);
26366 
26367 	case sizeof (sin_t):
26368 		sin = (sin_t *)sa;
26369 		if (sin->sin_port == 0) {
26370 			return (-TBADADDR);
26371 		}
26372 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
26373 			return (EAFNOSUPPORT);
26374 		}
26375 		break;
26376 
26377 	case sizeof (sin6_t):
26378 		sin6 = (sin6_t *)sa;
26379 		if (sin6->sin6_port == 0) {
26380 			return (-TBADADDR);
26381 		}
26382 		break;
26383 	}
26384 	/*
26385 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
26386 	 * make sure that the template IP header in the tcp structure is an
26387 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
26388 	 * need to this before we call tcp_bindi() so that the port lookup
26389 	 * code will look for ports in the correct port space (IPv4 and
26390 	 * IPv6 have separate port spaces).
26391 	 */
26392 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
26393 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
26394 		int err = 0;
26395 
26396 		err = tcp_header_init_ipv4(tcp);
26397 			if (err != 0) {
26398 				error = ENOMEM;
26399 				goto connect_failed;
26400 			}
26401 		if (tcp->tcp_lport != 0)
26402 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
26403 	}
26404 
26405 	switch (tcp->tcp_state) {
26406 	case TCPS_LISTEN:
26407 		/*
26408 		 * Listening sockets are not allowed to issue connect().
26409 		 */
26410 		if (IPCL_IS_NONSTR(connp))
26411 			return (EOPNOTSUPP);
26412 		/* FALLTHRU */
26413 	case TCPS_IDLE:
26414 		/*
26415 		 * We support quick connect, refer to comments in
26416 		 * tcp_connect_*()
26417 		 */
26418 		/* FALLTHRU */
26419 	case TCPS_BOUND:
26420 		/*
26421 		 * We must bump the generation before the operation start.
26422 		 * This is done to ensure that any upcall made later on sends
26423 		 * up the right generation to the socket.
26424 		 */
26425 		SOCK_CONNID_BUMP(tcp->tcp_connid);
26426 
26427 		if (tcp->tcp_family == AF_INET6) {
26428 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
26429 				return (tcp_connect_ipv6(tcp,
26430 				    &sin6->sin6_addr,
26431 				    sin6->sin6_port, sin6->sin6_flowinfo,
26432 				    sin6->__sin6_src_id, sin6->sin6_scope_id,
26433 				    cr, pid));
26434 			}
26435 			/*
26436 			 * Destination adress is mapped IPv6 address.
26437 			 * Source bound address should be unspecified or
26438 			 * IPv6 mapped address as well.
26439 			 */
26440 			if (!IN6_IS_ADDR_UNSPECIFIED(
26441 			    &tcp->tcp_bound_source_v6) &&
26442 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
26443 				return (EADDRNOTAVAIL);
26444 			}
26445 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
26446 			dstport = sin6->sin6_port;
26447 			srcid = sin6->__sin6_src_id;
26448 		} else {
26449 			dstaddrp = &sin->sin_addr.s_addr;
26450 			dstport = sin->sin_port;
26451 			srcid = 0;
26452 		}
26453 
26454 		error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid, cr,
26455 		    pid);
26456 		break;
26457 	default:
26458 		return (-TOUTSTATE);
26459 	}
26460 	/*
26461 	 * Note: Code below is the "failure" case
26462 	 */
26463 connect_failed:
26464 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
26465 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
26466 	return (error);
26467 }
26468 
26469 int
26470 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa,
26471     socklen_t len, sock_connid_t *id, cred_t *cr)
26472 {
26473 	conn_t		*connp = (conn_t *)proto_handle;
26474 	tcp_t		*tcp = connp->conn_tcp;
26475 	squeue_t	*sqp = connp->conn_sqp;
26476 	int		error;
26477 
26478 	ASSERT(connp->conn_upper_handle != NULL);
26479 
26480 	/* All Solaris components should pass a cred for this operation. */
26481 	ASSERT(cr != NULL);
26482 
26483 	error = proto_verify_ip_addr(tcp->tcp_family, sa, len);
26484 	if (error != 0) {
26485 		return (error);
26486 	}
26487 
26488 	error = squeue_synch_enter(sqp, connp, NULL);
26489 	if (error != 0) {
26490 		/* failed to enter */
26491 		return (ENOSR);
26492 	}
26493 
26494 	/*
26495 	 * TCP supports quick connect, so no need to do an implicit bind
26496 	 */
26497 	error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid);
26498 	if (error == 0) {
26499 		*id = connp->conn_tcp->tcp_connid;
26500 	} else if (error < 0) {
26501 		if (error == -TOUTSTATE) {
26502 			switch (connp->conn_tcp->tcp_state) {
26503 			case TCPS_SYN_SENT:
26504 				error = EALREADY;
26505 				break;
26506 			case TCPS_ESTABLISHED:
26507 				error = EISCONN;
26508 				break;
26509 			case TCPS_LISTEN:
26510 				error = EOPNOTSUPP;
26511 				break;
26512 			default:
26513 				error = EINVAL;
26514 				break;
26515 			}
26516 		} else {
26517 			error = proto_tlitosyserr(-error);
26518 		}
26519 	}
26520 done:
26521 	squeue_synch_exit(sqp, connp);
26522 
26523 	return ((error == 0) ? EINPROGRESS : error);
26524 }
26525 
26526 /* ARGSUSED */
26527 sock_lower_handle_t
26528 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls,
26529     uint_t *smodep, int *errorp, int flags, cred_t *credp)
26530 {
26531 	conn_t		*connp;
26532 	boolean_t	isv6 = family == AF_INET6;
26533 	if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) ||
26534 	    (proto != 0 && proto != IPPROTO_TCP)) {
26535 		*errorp = EPROTONOSUPPORT;
26536 		return (NULL);
26537 	}
26538 
26539 	connp = tcp_create_common(NULL, credp, isv6, B_TRUE, errorp);
26540 	if (connp == NULL) {
26541 		return (NULL);
26542 	}
26543 
26544 	/*
26545 	 * Put the ref for TCP. Ref for IP was already put
26546 	 * by ipcl_conn_create. Also Make the conn_t globally
26547 	 * visible to walkers
26548 	 */
26549 	mutex_enter(&connp->conn_lock);
26550 	CONN_INC_REF_LOCKED(connp);
26551 	ASSERT(connp->conn_ref == 2);
26552 	connp->conn_state_flags &= ~CONN_INCIPIENT;
26553 
26554 	connp->conn_flags |= IPCL_NONSTR;
26555 	mutex_exit(&connp->conn_lock);
26556 
26557 	ASSERT(errorp != NULL);
26558 	*errorp = 0;
26559 	*sock_downcalls = &sock_tcp_downcalls;
26560 	*smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP |
26561 	    SM_SENDFILESUPP;
26562 
26563 	return ((sock_lower_handle_t)connp);
26564 }
26565 
26566 /* ARGSUSED */
26567 void
26568 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle,
26569     sock_upcalls_t *sock_upcalls, int flags, cred_t *cr)
26570 {
26571 	conn_t *connp = (conn_t *)proto_handle;
26572 	struct sock_proto_props sopp;
26573 
26574 	ASSERT(connp->conn_upper_handle == NULL);
26575 
26576 	/* All Solaris components should pass a cred for this operation. */
26577 	ASSERT(cr != NULL);
26578 
26579 	sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT |
26580 	    SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER |
26581 	    SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ;
26582 
26583 	sopp.sopp_rxhiwat = SOCKET_RECVHIWATER;
26584 	sopp.sopp_rxlowat = SOCKET_RECVLOWATER;
26585 	sopp.sopp_maxpsz = INFPSZ;
26586 	sopp.sopp_maxblk = INFPSZ;
26587 	sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL;
26588 	sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3;
26589 	sopp.sopp_maxaddrlen = sizeof (sin6_t);
26590 	sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 :
26591 	    tcp_rinfo.mi_minpsz;
26592 
26593 	connp->conn_upcalls = sock_upcalls;
26594 	connp->conn_upper_handle = sock_handle;
26595 
26596 	(*sock_upcalls->su_set_proto_props)(sock_handle, &sopp);
26597 }
26598 
26599 /* ARGSUSED */
26600 int
26601 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr)
26602 {
26603 	conn_t *connp = (conn_t *)proto_handle;
26604 
26605 	ASSERT(connp->conn_upper_handle != NULL);
26606 
26607 	/* All Solaris components should pass a cred for this operation. */
26608 	ASSERT(cr != NULL);
26609 
26610 	tcp_close_common(connp, flags);
26611 
26612 	ip_free_helper_stream(connp);
26613 
26614 	/*
26615 	 * Drop IP's reference on the conn. This is the last reference
26616 	 * on the connp if the state was less than established. If the
26617 	 * connection has gone into timewait state, then we will have
26618 	 * one ref for the TCP and one more ref (total of two) for the
26619 	 * classifier connected hash list (a timewait connections stays
26620 	 * in connected hash till closed).
26621 	 *
26622 	 * We can't assert the references because there might be other
26623 	 * transient reference places because of some walkers or queued
26624 	 * packets in squeue for the timewait state.
26625 	 */
26626 	CONN_DEC_REF(connp);
26627 	return (0);
26628 }
26629 
26630 /* ARGSUSED */
26631 int
26632 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg,
26633     cred_t *cr)
26634 {
26635 	tcp_t		*tcp;
26636 	uint32_t	msize;
26637 	conn_t *connp = (conn_t *)proto_handle;
26638 	int32_t		tcpstate;
26639 
26640 	/* All Solaris components should pass a cred for this operation. */
26641 	ASSERT(cr != NULL);
26642 
26643 	ASSERT(connp->conn_ref >= 2);
26644 	ASSERT(connp->conn_upper_handle != NULL);
26645 
26646 	if (msg->msg_controllen != 0) {
26647 		return (EOPNOTSUPP);
26648 
26649 	}
26650 	switch (DB_TYPE(mp)) {
26651 	case M_DATA:
26652 		tcp = connp->conn_tcp;
26653 		ASSERT(tcp != NULL);
26654 
26655 		tcpstate = tcp->tcp_state;
26656 		if (tcpstate < TCPS_ESTABLISHED) {
26657 			freemsg(mp);
26658 			return (ENOTCONN);
26659 		} else if (tcpstate > TCPS_CLOSE_WAIT) {
26660 			freemsg(mp);
26661 			return (EPIPE);
26662 		}
26663 
26664 		msize = msgdsize(mp);
26665 
26666 		mutex_enter(&tcp->tcp_non_sq_lock);
26667 		tcp->tcp_squeue_bytes += msize;
26668 		/*
26669 		 * Squeue Flow Control
26670 		 */
26671 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
26672 			tcp_setqfull(tcp);
26673 		}
26674 		mutex_exit(&tcp->tcp_non_sq_lock);
26675 
26676 		/*
26677 		 * The application may pass in an address in the msghdr, but
26678 		 * we ignore the address on connection-oriented sockets.
26679 		 * Just like BSD this code does not generate an error for
26680 		 * TCP (a CONNREQUIRED socket) when sending to an address
26681 		 * passed in with sendto/sendmsg. Instead the data is
26682 		 * delivered on the connection as if no address had been
26683 		 * supplied.
26684 		 */
26685 		CONN_INC_REF(connp);
26686 
26687 		if (msg != NULL && msg->msg_flags & MSG_OOB) {
26688 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
26689 			    tcp_output_urgent, connp, tcp_squeue_flag,
26690 			    SQTAG_TCP_OUTPUT);
26691 		} else {
26692 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output,
26693 			    connp, tcp_squeue_flag, SQTAG_TCP_OUTPUT);
26694 		}
26695 
26696 		return (0);
26697 
26698 	default:
26699 		ASSERT(0);
26700 	}
26701 
26702 	freemsg(mp);
26703 	return (0);
26704 }
26705 
26706 /* ARGSUSED */
26707 void
26708 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2)
26709 {
26710 	int len;
26711 	uint32_t msize;
26712 	conn_t *connp = (conn_t *)arg;
26713 	tcp_t *tcp = connp->conn_tcp;
26714 
26715 	msize = msgdsize(mp);
26716 
26717 	len = msize - 1;
26718 	if (len < 0) {
26719 		freemsg(mp);
26720 		return;
26721 	}
26722 
26723 	/*
26724 	 * Try to force urgent data out on the wire.
26725 	 * Even if we have unsent data this will
26726 	 * at least send the urgent flag.
26727 	 * XXX does not handle more flag correctly.
26728 	 */
26729 	len += tcp->tcp_unsent;
26730 	len += tcp->tcp_snxt;
26731 	tcp->tcp_urg = len;
26732 	tcp->tcp_valid_bits |= TCP_URG_VALID;
26733 
26734 	/* Bypass tcp protocol for fused tcp loopback */
26735 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
26736 		return;
26737 	tcp_wput_data(tcp, mp, B_TRUE);
26738 }
26739 
26740 /* ARGSUSED */
26741 int
26742 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr,
26743     socklen_t *addrlenp, cred_t *cr)
26744 {
26745 	conn_t	*connp = (conn_t *)proto_handle;
26746 	tcp_t	*tcp = connp->conn_tcp;
26747 
26748 	ASSERT(connp->conn_upper_handle != NULL);
26749 	/* All Solaris components should pass a cred for this operation. */
26750 	ASSERT(cr != NULL);
26751 
26752 	ASSERT(tcp != NULL);
26753 
26754 	return (tcp_do_getpeername(tcp, addr, addrlenp));
26755 }
26756 
26757 /* ARGSUSED */
26758 int
26759 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr,
26760     socklen_t *addrlenp, cred_t *cr)
26761 {
26762 	conn_t	*connp = (conn_t *)proto_handle;
26763 	tcp_t	*tcp = connp->conn_tcp;
26764 
26765 	/* All Solaris components should pass a cred for this operation. */
26766 	ASSERT(cr != NULL);
26767 
26768 	ASSERT(connp->conn_upper_handle != NULL);
26769 
26770 	return (tcp_do_getsockname(tcp, addr, addrlenp));
26771 }
26772 
26773 /*
26774  * tcp_fallback
26775  *
26776  * A direct socket is falling back to using STREAMS. The queue
26777  * that is being passed down was created using tcp_open() with
26778  * the SO_FALLBACK flag set. As a result, the queue is not
26779  * associated with a conn, and the q_ptrs instead contain the
26780  * dev and minor area that should be used.
26781  *
26782  * The 'direct_sockfs' flag indicates whether the FireEngine
26783  * optimizations should be used. The common case would be that
26784  * optimizations are enabled, and they might be subsequently
26785  * disabled using the _SIOCSOCKFALLBACK ioctl.
26786  */
26787 
26788 /*
26789  * An active connection is falling back to TPI. Gather all the information
26790  * required by the STREAM head and TPI sonode and send it up.
26791  */
26792 void
26793 tcp_fallback_noneager(tcp_t *tcp, mblk_t *stropt_mp, queue_t *q,
26794     boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb)
26795 {
26796 	conn_t			*connp = tcp->tcp_connp;
26797 	struct stroptions	*stropt;
26798 	struct T_capability_ack tca;
26799 	struct sockaddr_in6	laddr, faddr;
26800 	socklen_t 		laddrlen, faddrlen;
26801 	short			opts;
26802 	int			error;
26803 	mblk_t			*mp;
26804 
26805 	connp->conn_dev = (dev_t)RD(q)->q_ptr;
26806 	connp->conn_minor_arena = WR(q)->q_ptr;
26807 
26808 	RD(q)->q_ptr = WR(q)->q_ptr = connp;
26809 
26810 	connp->conn_tcp->tcp_rq = connp->conn_rq = RD(q);
26811 	connp->conn_tcp->tcp_wq = connp->conn_wq = WR(q);
26812 
26813 	WR(q)->q_qinfo = &tcp_sock_winit;
26814 
26815 	if (!direct_sockfs)
26816 		tcp_disable_direct_sockfs(tcp);
26817 
26818 	/*
26819 	 * free the helper stream
26820 	 */
26821 	ip_free_helper_stream(connp);
26822 
26823 	/*
26824 	 * Notify the STREAM head about options
26825 	 */
26826 	DB_TYPE(stropt_mp) = M_SETOPTS;
26827 	stropt = (struct stroptions *)stropt_mp->b_rptr;
26828 	stropt_mp->b_wptr += sizeof (struct stroptions);
26829 	stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK;
26830 
26831 	stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
26832 	    tcp->tcp_tcps->tcps_wroff_xtra);
26833 	if (tcp->tcp_snd_sack_ok)
26834 		stropt->so_wroff += TCPOPT_MAX_SACK_LEN;
26835 	stropt->so_hiwat = tcp->tcp_fused ?
26836 	    tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) :
26837 	    MAX(tcp->tcp_recv_hiwater, tcp->tcp_tcps->tcps_sth_rcv_hiwat);
26838 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
26839 
26840 	putnext(RD(q), stropt_mp);
26841 
26842 	/*
26843 	 * Collect the information needed to sync with the sonode
26844 	 */
26845 	tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID);
26846 
26847 	laddrlen = faddrlen = sizeof (sin6_t);
26848 	(void) tcp_do_getsockname(tcp, (struct sockaddr *)&laddr, &laddrlen);
26849 	error = tcp_do_getpeername(tcp, (struct sockaddr *)&faddr, &faddrlen);
26850 	if (error != 0)
26851 		faddrlen = 0;
26852 
26853 	opts = 0;
26854 	if (tcp->tcp_oobinline)
26855 		opts |= SO_OOBINLINE;
26856 	if (tcp->tcp_dontroute)
26857 		opts |= SO_DONTROUTE;
26858 
26859 	/*
26860 	 * Notify the socket that the protocol is now quiescent,
26861 	 * and it's therefore safe move data from the socket
26862 	 * to the stream head.
26863 	 */
26864 	(*quiesced_cb)(connp->conn_upper_handle, q, &tca,
26865 	    (struct sockaddr *)&laddr, laddrlen,
26866 	    (struct sockaddr *)&faddr, faddrlen, opts);
26867 
26868 	while ((mp = tcp->tcp_rcv_list) != NULL) {
26869 		tcp->tcp_rcv_list = mp->b_next;
26870 		mp->b_next = NULL;
26871 		putnext(q, mp);
26872 	}
26873 	tcp->tcp_rcv_last_head = NULL;
26874 	tcp->tcp_rcv_last_tail = NULL;
26875 	tcp->tcp_rcv_cnt = 0;
26876 }
26877 
26878 /*
26879  * An eager is falling back to TPI. All we have to do is send
26880  * up a T_CONN_IND.
26881  */
26882 void
26883 tcp_fallback_eager(tcp_t *eager, boolean_t direct_sockfs)
26884 {
26885 	tcp_t *listener = eager->tcp_listener;
26886 	mblk_t *mp = eager->tcp_conn.tcp_eager_conn_ind;
26887 
26888 	ASSERT(listener != NULL);
26889 	ASSERT(mp != NULL);
26890 
26891 	eager->tcp_conn.tcp_eager_conn_ind = NULL;
26892 
26893 	/*
26894 	 * TLI/XTI applications will get confused by
26895 	 * sending eager as an option since it violates
26896 	 * the option semantics. So remove the eager as
26897 	 * option since TLI/XTI app doesn't need it anyway.
26898 	 */
26899 	if (!direct_sockfs) {
26900 		struct T_conn_ind *conn_ind;
26901 
26902 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
26903 		conn_ind->OPT_length = 0;
26904 		conn_ind->OPT_offset = 0;
26905 	}
26906 
26907 	/*
26908 	 * Sockfs guarantees that the listener will not be closed
26909 	 * during fallback. So we can safely use the listener's queue.
26910 	 */
26911 	putnext(listener->tcp_rq, mp);
26912 }
26913 
26914 int
26915 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q,
26916     boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb)
26917 {
26918 	tcp_t			*tcp;
26919 	conn_t 			*connp = (conn_t *)proto_handle;
26920 	int			error;
26921 	mblk_t			*stropt_mp;
26922 	mblk_t			*ordrel_mp;
26923 	mblk_t			*fused_sigurp_mp;
26924 
26925 	tcp = connp->conn_tcp;
26926 
26927 	stropt_mp = allocb_wait(sizeof (struct stroptions), BPRI_HI, STR_NOSIG,
26928 	    NULL);
26929 
26930 	/* Pre-allocate the T_ordrel_ind mblk. */
26931 	ASSERT(tcp->tcp_ordrel_mp == NULL);
26932 	ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI,
26933 	    STR_NOSIG, NULL);
26934 	ordrel_mp->b_datap->db_type = M_PROTO;
26935 	((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND;
26936 	ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind);
26937 
26938 	/* Pre-allocate the M_PCSIG used by fusion */
26939 	fused_sigurp_mp = allocb_wait(1, BPRI_HI, STR_NOSIG, NULL);
26940 
26941 	/*
26942 	 * Enter the squeue so that no new packets can come in
26943 	 */
26944 	error = squeue_synch_enter(connp->conn_sqp, connp, NULL);
26945 	if (error != 0) {
26946 		/* failed to enter, free all the pre-allocated messages. */
26947 		freeb(stropt_mp);
26948 		freeb(ordrel_mp);
26949 		freeb(fused_sigurp_mp);
26950 		/*
26951 		 * We cannot process the eager, so at least send out a
26952 		 * RST so the peer can reconnect.
26953 		 */
26954 		if (tcp->tcp_listener != NULL) {
26955 			(void) tcp_eager_blowoff(tcp->tcp_listener,
26956 			    tcp->tcp_conn_req_seqnum);
26957 		}
26958 		return (ENOMEM);
26959 	}
26960 
26961 	/*
26962 	 * No longer a direct socket
26963 	 */
26964 	connp->conn_flags &= ~IPCL_NONSTR;
26965 
26966 	tcp->tcp_ordrel_mp = ordrel_mp;
26967 
26968 	if (tcp->tcp_fused) {
26969 		ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
26970 		tcp->tcp_fused_sigurg_mp = fused_sigurp_mp;
26971 	} else {
26972 		freeb(fused_sigurp_mp);
26973 	}
26974 
26975 	if (tcp->tcp_listener != NULL) {
26976 		/* The eager will deal with opts when accept() is called */
26977 		freeb(stropt_mp);
26978 		tcp_fallback_eager(tcp, direct_sockfs);
26979 	} else {
26980 		tcp_fallback_noneager(tcp, stropt_mp, q, direct_sockfs,
26981 		    quiesced_cb);
26982 	}
26983 
26984 	/*
26985 	 * There should be atleast two ref's (IP + TCP)
26986 	 */
26987 	ASSERT(connp->conn_ref >= 2);
26988 	squeue_synch_exit(connp->conn_sqp, connp);
26989 
26990 	return (0);
26991 }
26992 
26993 /* ARGSUSED */
26994 static void
26995 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2)
26996 {
26997 	conn_t 	*connp = (conn_t *)arg;
26998 	tcp_t	*tcp = connp->conn_tcp;
26999 
27000 	freemsg(mp);
27001 
27002 	if (tcp->tcp_fused)
27003 		tcp_unfuse(tcp);
27004 
27005 	if (tcp_xmit_end(tcp) != 0) {
27006 		/*
27007 		 * We were crossing FINs and got a reset from
27008 		 * the other side. Just ignore it.
27009 		 */
27010 		if (tcp->tcp_debug) {
27011 			(void) strlog(TCP_MOD_ID, 0, 1,
27012 			    SL_ERROR|SL_TRACE,
27013 			    "tcp_shutdown_output() out of state %s",
27014 			    tcp_display(tcp, NULL, DISP_ADDR_AND_PORT));
27015 		}
27016 	}
27017 }
27018 
27019 /* ARGSUSED */
27020 int
27021 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr)
27022 {
27023 	conn_t  *connp = (conn_t *)proto_handle;
27024 	tcp_t   *tcp = connp->conn_tcp;
27025 
27026 	ASSERT(connp->conn_upper_handle != NULL);
27027 
27028 	/* All Solaris components should pass a cred for this operation. */
27029 	ASSERT(cr != NULL);
27030 
27031 	/*
27032 	 * X/Open requires that we check the connected state.
27033 	 */
27034 	if (tcp->tcp_state < TCPS_SYN_SENT)
27035 		return (ENOTCONN);
27036 
27037 	/* shutdown the send side */
27038 	if (how != SHUT_RD) {
27039 		mblk_t *bp;
27040 
27041 		bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
27042 		CONN_INC_REF(connp);
27043 		SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output,
27044 		    connp, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT);
27045 
27046 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
27047 		    SOCK_OPCTL_SHUT_SEND, 0);
27048 	}
27049 
27050 	/* shutdown the recv side */
27051 	if (how != SHUT_WR)
27052 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
27053 		    SOCK_OPCTL_SHUT_RECV, 0);
27054 
27055 	return (0);
27056 }
27057 
27058 /*
27059  * SOP_LISTEN() calls into tcp_listen().
27060  */
27061 /* ARGSUSED */
27062 int
27063 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr)
27064 {
27065 	conn_t	*connp = (conn_t *)proto_handle;
27066 	int 	error;
27067 	squeue_t *sqp = connp->conn_sqp;
27068 
27069 	ASSERT(connp->conn_upper_handle != NULL);
27070 
27071 	/* All Solaris components should pass a cred for this operation. */
27072 	ASSERT(cr != NULL);
27073 
27074 	error = squeue_synch_enter(sqp, connp, NULL);
27075 	if (error != 0) {
27076 		/* failed to enter */
27077 		return (ENOBUFS);
27078 	}
27079 
27080 	error = tcp_do_listen(connp, NULL, 0, backlog, cr, FALSE);
27081 	if (error == 0) {
27082 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
27083 		    SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog);
27084 	} else if (error < 0) {
27085 		if (error == -TOUTSTATE)
27086 			error = EINVAL;
27087 		else
27088 			error = proto_tlitosyserr(-error);
27089 	}
27090 	squeue_synch_exit(sqp, connp);
27091 	return (error);
27092 }
27093 
27094 static int
27095 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len,
27096     int backlog, cred_t *cr, boolean_t bind_to_req_port_only)
27097 {
27098 	tcp_t		*tcp = connp->conn_tcp;
27099 	int		error = 0;
27100 	tcp_stack_t	*tcps = tcp->tcp_tcps;
27101 
27102 	/* All Solaris components should pass a cred for this operation. */
27103 	ASSERT(cr != NULL);
27104 
27105 	if (tcp->tcp_state >= TCPS_BOUND) {
27106 		if ((tcp->tcp_state == TCPS_BOUND ||
27107 		    tcp->tcp_state == TCPS_LISTEN) && backlog > 0) {
27108 			/*
27109 			 * Handle listen() increasing backlog.
27110 			 * This is more "liberal" then what the TPI spec
27111 			 * requires but is needed to avoid a t_unbind
27112 			 * when handling listen() since the port number
27113 			 * might be "stolen" between the unbind and bind.
27114 			 */
27115 			goto do_listen;
27116 		}
27117 		if (tcp->tcp_debug) {
27118 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
27119 			    "tcp_listen: bad state, %d", tcp->tcp_state);
27120 		}
27121 		return (-TOUTSTATE);
27122 	} else {
27123 		if (sa == NULL) {
27124 			sin6_t	addr;
27125 			sin_t *sin;
27126 			sin6_t *sin6;
27127 
27128 			ASSERT(IPCL_IS_NONSTR(connp));
27129 
27130 			/* Do an implicit bind: Request for a generic port. */
27131 			if (tcp->tcp_family == AF_INET) {
27132 				len = sizeof (sin_t);
27133 				sin = (sin_t *)&addr;
27134 				*sin = sin_null;
27135 				sin->sin_family = AF_INET;
27136 				tcp->tcp_ipversion = IPV4_VERSION;
27137 			} else {
27138 				ASSERT(tcp->tcp_family == AF_INET6);
27139 				len = sizeof (sin6_t);
27140 				sin6 = (sin6_t *)&addr;
27141 				*sin6 = sin6_null;
27142 				sin6->sin6_family = AF_INET6;
27143 				tcp->tcp_ipversion = IPV6_VERSION;
27144 			}
27145 			sa = (struct sockaddr *)&addr;
27146 		}
27147 
27148 		error = tcp_bind_check(connp, sa, len, cr,
27149 		    bind_to_req_port_only);
27150 		if (error)
27151 			return (error);
27152 		/* Fall through and do the fanout insertion */
27153 	}
27154 
27155 do_listen:
27156 	ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN);
27157 	tcp->tcp_conn_req_max = backlog;
27158 	if (tcp->tcp_conn_req_max) {
27159 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
27160 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
27161 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
27162 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
27163 		/*
27164 		 * If this is a listener, do not reset the eager list
27165 		 * and other stuffs.  Note that we don't check if the
27166 		 * existing eager list meets the new tcp_conn_req_max
27167 		 * requirement.
27168 		 */
27169 		if (tcp->tcp_state != TCPS_LISTEN) {
27170 			tcp->tcp_state = TCPS_LISTEN;
27171 			/* Initialize the chain. Don't need the eager_lock */
27172 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
27173 			tcp->tcp_eager_next_drop_q0 = tcp;
27174 			tcp->tcp_eager_prev_drop_q0 = tcp;
27175 			tcp->tcp_second_ctimer_threshold =
27176 			    tcps->tcps_ip_abort_linterval;
27177 		}
27178 	}
27179 
27180 	/*
27181 	 * We can call ip_bind directly, the processing continues
27182 	 * in tcp_post_ip_bind().
27183 	 *
27184 	 * We need to make sure that the conn_recv is set to a non-null
27185 	 * value before we insert the conn into the classifier table.
27186 	 * This is to avoid a race with an incoming packet which does an
27187 	 * ipcl_classify().
27188 	 */
27189 	connp->conn_recv = tcp_conn_request;
27190 	if (tcp->tcp_family == AF_INET) {
27191 		error = ip_proto_bind_laddr_v4(connp, NULL,
27192 		    IPPROTO_TCP, tcp->tcp_bound_source, tcp->tcp_lport, B_TRUE);
27193 	} else {
27194 		error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP,
27195 		    &tcp->tcp_bound_source_v6, tcp->tcp_lport, B_TRUE);
27196 	}
27197 	return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0));
27198 }
27199 
27200 void
27201 tcp_clr_flowctrl(sock_lower_handle_t proto_handle)
27202 {
27203 	conn_t  *connp = (conn_t *)proto_handle;
27204 	tcp_t	*tcp = connp->conn_tcp;
27205 	mblk_t *mp;
27206 	int error;
27207 
27208 	ASSERT(connp->conn_upper_handle != NULL);
27209 
27210 	/*
27211 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_clr_flowctrl()
27212 	 * is currently running.
27213 	 */
27214 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
27215 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
27216 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
27217 		return;
27218 	}
27219 	tcp->tcp_rsrv_mp = NULL;
27220 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
27221 
27222 	error = squeue_synch_enter(connp->conn_sqp, connp, mp);
27223 	ASSERT(error == 0);
27224 
27225 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
27226 	tcp->tcp_rsrv_mp = mp;
27227 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
27228 
27229 	if (tcp->tcp_fused) {
27230 		tcp_fuse_backenable(tcp);
27231 	} else {
27232 		tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
27233 		/*
27234 		 * Send back a window update immediately if TCP is above
27235 		 * ESTABLISHED state and the increase of the rcv window
27236 		 * that the other side knows is at least 1 MSS after flow
27237 		 * control is lifted.
27238 		 */
27239 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
27240 		    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
27241 			tcp_xmit_ctl(NULL, tcp,
27242 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
27243 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
27244 		}
27245 	}
27246 
27247 	squeue_synch_exit(connp->conn_sqp, connp);
27248 }
27249 
27250 /* ARGSUSED */
27251 int
27252 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg,
27253     int mode, int32_t *rvalp, cred_t *cr)
27254 {
27255 	conn_t  	*connp = (conn_t *)proto_handle;
27256 	int		error;
27257 
27258 	ASSERT(connp->conn_upper_handle != NULL);
27259 
27260 	/* All Solaris components should pass a cred for this operation. */
27261 	ASSERT(cr != NULL);
27262 
27263 	switch (cmd) {
27264 		case ND_SET:
27265 		case ND_GET:
27266 		case TCP_IOC_DEFAULT_Q:
27267 		case _SIOCSOCKFALLBACK:
27268 		case TCP_IOC_ABORT_CONN:
27269 		case TI_GETPEERNAME:
27270 		case TI_GETMYNAME:
27271 			ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket",
27272 			    cmd));
27273 			error = EINVAL;
27274 			break;
27275 		default:
27276 			/*
27277 			 * Pass on to IP using helper stream
27278 			 */
27279 			error = ldi_ioctl(connp->conn_helper_info->iphs_handle,
27280 			    cmd, arg, mode, cr, rvalp);
27281 			break;
27282 	}
27283 	return (error);
27284 }
27285 
27286 sock_downcalls_t sock_tcp_downcalls = {
27287 	tcp_activate,
27288 	tcp_accept,
27289 	tcp_bind,
27290 	tcp_listen,
27291 	tcp_connect,
27292 	tcp_getpeername,
27293 	tcp_getsockname,
27294 	tcp_getsockopt,
27295 	tcp_setsockopt,
27296 	tcp_sendmsg,
27297 	NULL,
27298 	NULL,
27299 	NULL,
27300 	tcp_shutdown,
27301 	tcp_clr_flowctrl,
27302 	tcp_ioctl,
27303 	tcp_close,
27304 };
27305