xref: /titanic_41/usr/src/uts/common/inet/tcp/tcp.c (revision 4d594c339b4bc590af28251f4d30380f003d6c35)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 const char tcp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/strsun.h>
35 #include <sys/strsubr.h>
36 #include <sys/stropts.h>
37 #include <sys/strlog.h>
38 #include <sys/strsun.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/suntpi.h>
45 #include <sys/xti_inet.h>
46 #include <sys/cmn_err.h>
47 #include <sys/debug.h>
48 #include <sys/sdt.h>
49 #include <sys/vtrace.h>
50 #include <sys/kmem.h>
51 #include <sys/ethernet.h>
52 #include <sys/cpuvar.h>
53 #include <sys/dlpi.h>
54 #include <sys/multidata.h>
55 #include <sys/multidata_impl.h>
56 #include <sys/pattr.h>
57 #include <sys/policy.h>
58 #include <sys/priv.h>
59 #include <sys/zone.h>
60 #include <sys/sunldi.h>
61 
62 #include <sys/errno.h>
63 #include <sys/signal.h>
64 #include <sys/socket.h>
65 #include <sys/sockio.h>
66 #include <sys/isa_defs.h>
67 #include <sys/md5.h>
68 #include <sys/random.h>
69 #include <netinet/in.h>
70 #include <netinet/tcp.h>
71 #include <netinet/ip6.h>
72 #include <netinet/icmp6.h>
73 #include <net/if.h>
74 #include <net/route.h>
75 #include <inet/ipsec_impl.h>
76 
77 #include <inet/common.h>
78 #include <inet/ip.h>
79 #include <inet/ip_impl.h>
80 #include <inet/ip6.h>
81 #include <inet/ip_ndp.h>
82 #include <inet/mi.h>
83 #include <inet/mib2.h>
84 #include <inet/nd.h>
85 #include <inet/optcom.h>
86 #include <inet/snmpcom.h>
87 #include <inet/kstatcom.h>
88 #include <inet/tcp.h>
89 #include <inet/tcp_impl.h>
90 #include <net/pfkeyv2.h>
91 #include <inet/ipsec_info.h>
92 #include <inet/ipdrop.h>
93 #include <inet/tcp_trace.h>
94 
95 #include <inet/ipclassifier.h>
96 #include <inet/ip_ire.h>
97 #include <inet/ip_ftable.h>
98 #include <inet/ip_if.h>
99 #include <inet/ipp_common.h>
100 #include <inet/ip_netinfo.h>
101 #include <sys/squeue.h>
102 #include <inet/kssl/ksslapi.h>
103 #include <sys/tsol/label.h>
104 #include <sys/tsol/tnet.h>
105 #include <sys/sdt.h>
106 #include <rpc/pmap_prot.h>
107 
108 /*
109  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
110  *
111  * (Read the detailed design doc in PSARC case directory)
112  *
113  * The entire tcp state is contained in tcp_t and conn_t structure
114  * which are allocated in tandem using ipcl_conn_create() and passing
115  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
116  * the references on the tcp_t. The tcp_t structure is never compressed
117  * and packets always land on the correct TCP perimeter from the time
118  * eager is created till the time tcp_t dies (as such the old mentat
119  * TCP global queue is not used for detached state and no IPSEC checking
120  * is required). The global queue is still allocated to send out resets
121  * for connection which have no listeners and IP directly calls
122  * tcp_xmit_listeners_reset() which does any policy check.
123  *
124  * Protection and Synchronisation mechanism:
125  *
126  * The tcp data structure does not use any kind of lock for protecting
127  * its state but instead uses 'squeues' for mutual exclusion from various
128  * read and write side threads. To access a tcp member, the thread should
129  * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or
130  * squeue_fill). Since the squeues allow a direct function call, caller
131  * can pass any tcp function having prototype of edesc_t as argument
132  * (different from traditional STREAMs model where packets come in only
133  * designated entry points). The list of functions that can be directly
134  * called via squeue are listed before the usual function prototype.
135  *
136  * Referencing:
137  *
138  * TCP is MT-Hot and we use a reference based scheme to make sure that the
139  * tcp structure doesn't disappear when its needed. When the application
140  * creates an outgoing connection or accepts an incoming connection, we
141  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
142  * The IP reference is just a symbolic reference since ip_tcpclose()
143  * looks at tcp structure after tcp_close_output() returns which could
144  * have dropped the last TCP reference. So as long as the connection is
145  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
146  * conn_t. The classifier puts its own reference when the connection is
147  * inserted in listen or connected hash. Anytime a thread needs to enter
148  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
149  * on write side or by doing a classify on read side and then puts a
150  * reference on the conn before doing squeue_enter/tryenter/fill. For
151  * read side, the classifier itself puts the reference under fanout lock
152  * to make sure that tcp can't disappear before it gets processed. The
153  * squeue will drop this reference automatically so the called function
154  * doesn't have to do a DEC_REF.
155  *
156  * Opening a new connection:
157  *
158  * The outgoing connection open is pretty simple. tcp_open() does the
159  * work in creating the conn/tcp structure and initializing it. The
160  * squeue assignment is done based on the CPU the application
161  * is running on. So for outbound connections, processing is always done
162  * on application CPU which might be different from the incoming CPU
163  * being interrupted by the NIC. An optimal way would be to figure out
164  * the NIC <-> CPU binding at listen time, and assign the outgoing
165  * connection to the squeue attached to the CPU that will be interrupted
166  * for incoming packets (we know the NIC based on the bind IP address).
167  * This might seem like a problem if more data is going out but the
168  * fact is that in most cases the transmit is ACK driven transmit where
169  * the outgoing data normally sits on TCP's xmit queue waiting to be
170  * transmitted.
171  *
172  * Accepting a connection:
173  *
174  * This is a more interesting case because of various races involved in
175  * establishing a eager in its own perimeter. Read the meta comment on
176  * top of tcp_conn_request(). But briefly, the squeue is picked by
177  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
178  *
179  * Closing a connection:
180  *
181  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
182  * via squeue to do the close and mark the tcp as detached if the connection
183  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
184  * reference but tcp_close() drop IP's reference always. So if tcp was
185  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
186  * and 1 because it is in classifier's connected hash. This is the condition
187  * we use to determine that its OK to clean up the tcp outside of squeue
188  * when time wait expires (check the ref under fanout and conn_lock and
189  * if it is 2, remove it from fanout hash and kill it).
190  *
191  * Although close just drops the necessary references and marks the
192  * tcp_detached state, tcp_close needs to know the tcp_detached has been
193  * set (under squeue) before letting the STREAM go away (because a
194  * inbound packet might attempt to go up the STREAM while the close
195  * has happened and tcp_detached is not set). So a special lock and
196  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
197  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
198  * tcp_detached.
199  *
200  * Special provisions and fast paths:
201  *
202  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
203  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
204  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
205  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
206  * check to send packets directly to tcp_rput_data via squeue. Everyone
207  * else comes through tcp_input() on the read side.
208  *
209  * We also make special provisions for sockfs by marking tcp_issocket
210  * whenever we have only sockfs on top of TCP. This allows us to skip
211  * putting the tcp in acceptor hash since a sockfs listener can never
212  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
213  * since eager has already been allocated and the accept now happens
214  * on acceptor STREAM. There is a big blob of comment on top of
215  * tcp_conn_request explaining the new accept. When socket is POP'd,
216  * sockfs sends us an ioctl to mark the fact and we go back to old
217  * behaviour. Once tcp_issocket is unset, its never set for the
218  * life of that connection.
219  *
220  * IPsec notes :
221  *
222  * Since a packet is always executed on the correct TCP perimeter
223  * all IPsec processing is defered to IP including checking new
224  * connections and setting IPSEC policies for new connection. The
225  * only exception is tcp_xmit_listeners_reset() which is called
226  * directly from IP and needs to policy check to see if TH_RST
227  * can be sent out.
228  *
229  * PFHooks notes :
230  *
231  * For mdt case, one meta buffer contains multiple packets. Mblks for every
232  * packet are assembled and passed to the hooks. When packets are blocked,
233  * or boundary of any packet is changed, the mdt processing is stopped, and
234  * packets of the meta buffer are send to the IP path one by one.
235  */
236 
237 /*
238  * Values for squeue switch:
239  * 1: squeue_enter_nodrain
240  * 2: squeue_enter
241  * 3: squeue_fill
242  */
243 int tcp_squeue_close = 2;	/* Setable in /etc/system */
244 int tcp_squeue_wput = 2;
245 
246 squeue_func_t tcp_squeue_close_proc;
247 squeue_func_t tcp_squeue_wput_proc;
248 
249 /*
250  * This controls how tiny a write must be before we try to copy it
251  * into the the mblk on the tail of the transmit queue.  Not much
252  * speedup is observed for values larger than sixteen.  Zero will
253  * disable the optimisation.
254  */
255 int tcp_tx_pull_len = 16;
256 
257 /*
258  * TCP Statistics.
259  *
260  * How TCP statistics work.
261  *
262  * There are two types of statistics invoked by two macros.
263  *
264  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
265  * supposed to be used in non MT-hot paths of the code.
266  *
267  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
268  * supposed to be used for DEBUG purposes and may be used on a hot path.
269  *
270  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
271  * (use "kstat tcp" to get them).
272  *
273  * There is also additional debugging facility that marks tcp_clean_death()
274  * instances and saves them in tcp_t structure. It is triggered by
275  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
276  * tcp_clean_death() calls that counts the number of times each tag was hit. It
277  * is triggered by TCP_CLD_COUNTERS define.
278  *
279  * How to add new counters.
280  *
281  * 1) Add a field in the tcp_stat structure describing your counter.
282  * 2) Add a line in the template in tcp_kstat2_init() with the name
283  *    of the counter.
284  *
285  *    IMPORTANT!! - make sure that both are in sync !!
286  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
287  *
288  * Please avoid using private counters which are not kstat-exported.
289  *
290  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
291  * in tcp_t structure.
292  *
293  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
294  */
295 
296 #ifndef TCP_DEBUG_COUNTER
297 #ifdef DEBUG
298 #define	TCP_DEBUG_COUNTER 1
299 #else
300 #define	TCP_DEBUG_COUNTER 0
301 #endif
302 #endif
303 
304 #define	TCP_CLD_COUNTERS 0
305 
306 #define	TCP_TAG_CLEAN_DEATH 1
307 #define	TCP_MAX_CLEAN_DEATH_TAG 32
308 
309 #ifdef lint
310 static int _lint_dummy_;
311 #endif
312 
313 #if TCP_CLD_COUNTERS
314 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
315 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
316 #elif defined(lint)
317 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
318 #else
319 #define	TCP_CLD_STAT(x)
320 #endif
321 
322 #if TCP_DEBUG_COUNTER
323 #define	TCP_DBGSTAT(tcps, x)	\
324 	atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1)
325 #define	TCP_G_DBGSTAT(x)	\
326 	atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1)
327 #elif defined(lint)
328 #define	TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0);
329 #define	TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
330 #else
331 #define	TCP_DBGSTAT(tcps, x)
332 #define	TCP_G_DBGSTAT(x)
333 #endif
334 
335 #define	TCP_G_STAT(x)	(tcp_g_statistics.x.value.ui64++)
336 
337 tcp_g_stat_t	tcp_g_statistics;
338 kstat_t		*tcp_g_kstat;
339 
340 /*
341  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
342  * tcp write side.
343  */
344 #define	CALL_IP_WPUT(connp, q, mp) {					\
345 	tcp_stack_t	*tcps;						\
346 									\
347 	tcps = connp->conn_netstack->netstack_tcp;			\
348 	ASSERT(((q)->q_flag & QREADR) == 0);				\
349 	TCP_DBGSTAT(tcps, tcp_ip_output);				\
350 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
351 }
352 
353 /* Macros for timestamp comparisons */
354 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
355 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
356 
357 /*
358  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
359  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
360  * by adding three components: a time component which grows by 1 every 4096
361  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
362  * a per-connection component which grows by 125000 for every new connection;
363  * and an "extra" component that grows by a random amount centered
364  * approximately on 64000.  This causes the the ISS generator to cycle every
365  * 4.89 hours if no TCP connections are made, and faster if connections are
366  * made.
367  *
368  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
369  * components: a time component which grows by 250000 every second; and
370  * a per-connection component which grows by 125000 for every new connections.
371  *
372  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
373  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
374  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
375  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
376  * password.
377  */
378 #define	ISS_INCR	250000
379 #define	ISS_NSEC_SHT	12
380 
381 static sin_t	sin_null;	/* Zero address for quick clears */
382 static sin6_t	sin6_null;	/* Zero address for quick clears */
383 
384 /*
385  * This implementation follows the 4.3BSD interpretation of the urgent
386  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
387  * incompatible changes in protocols like telnet and rlogin.
388  */
389 #define	TCP_OLD_URP_INTERPRETATION	1
390 
391 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
392 	(TCP_IS_DETACHED(tcp) && \
393 	    (!(tcp)->tcp_hard_binding))
394 
395 /*
396  * TCP reassembly macros.  We hide starting and ending sequence numbers in
397  * b_next and b_prev of messages on the reassembly queue.  The messages are
398  * chained using b_cont.  These macros are used in tcp_reass() so we don't
399  * have to see the ugly casts and assignments.
400  */
401 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
402 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
403 					(mblk_t *)(uintptr_t)(u))
404 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
405 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
406 					(mblk_t *)(uintptr_t)(u))
407 
408 /*
409  * Implementation of TCP Timers.
410  * =============================
411  *
412  * INTERFACE:
413  *
414  * There are two basic functions dealing with tcp timers:
415  *
416  *	timeout_id_t	tcp_timeout(connp, func, time)
417  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
418  *	TCP_TIMER_RESTART(tcp, intvl)
419  *
420  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
421  * after 'time' ticks passed. The function called by timeout() must adhere to
422  * the same restrictions as a driver soft interrupt handler - it must not sleep
423  * or call other functions that might sleep. The value returned is the opaque
424  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
425  * cancel the request. The call to tcp_timeout() may fail in which case it
426  * returns zero. This is different from the timeout(9F) function which never
427  * fails.
428  *
429  * The call-back function 'func' always receives 'connp' as its single
430  * argument. It is always executed in the squeue corresponding to the tcp
431  * structure. The tcp structure is guaranteed to be present at the time the
432  * call-back is called.
433  *
434  * NOTE: The call-back function 'func' is never called if tcp is in
435  * 	the TCPS_CLOSED state.
436  *
437  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
438  * request. locks acquired by the call-back routine should not be held across
439  * the call to tcp_timeout_cancel() or a deadlock may result.
440  *
441  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
442  * Otherwise, it returns an integer value greater than or equal to 0. In
443  * particular, if the call-back function is already placed on the squeue, it can
444  * not be canceled.
445  *
446  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
447  * 	within squeue context corresponding to the tcp instance. Since the
448  *	call-back is also called via the same squeue, there are no race
449  *	conditions described in untimeout(9F) manual page since all calls are
450  *	strictly serialized.
451  *
452  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
453  *	stored in tcp_timer_tid and starts a new one using
454  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
455  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
456  *	field.
457  *
458  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
459  *	call-back may still be called, so it is possible tcp_timer() will be
460  *	called several times. This should not be a problem since tcp_timer()
461  *	should always check the tcp instance state.
462  *
463  *
464  * IMPLEMENTATION:
465  *
466  * TCP timers are implemented using three-stage process. The call to
467  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
468  * when the timer expires. The tcp_timer_callback() arranges the call of the
469  * tcp_timer_handler() function via squeue corresponding to the tcp
470  * instance. The tcp_timer_handler() calls actual requested timeout call-back
471  * and passes tcp instance as an argument to it. Information is passed between
472  * stages using the tcp_timer_t structure which contains the connp pointer, the
473  * tcp call-back to call and the timeout id returned by the timeout(9F).
474  *
475  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
476  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
477  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
478  * returns the pointer to this mblk.
479  *
480  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
481  * looks like a normal mblk without actual dblk attached to it.
482  *
483  * To optimize performance each tcp instance holds a small cache of timer
484  * mblocks. In the current implementation it caches up to two timer mblocks per
485  * tcp instance. The cache is preserved over tcp frees and is only freed when
486  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
487  * timer processing happens on a corresponding squeue, the cache manipulation
488  * does not require any locks. Experiments show that majority of timer mblocks
489  * allocations are satisfied from the tcp cache and do not involve kmem calls.
490  *
491  * The tcp_timeout() places a refhold on the connp instance which guarantees
492  * that it will be present at the time the call-back function fires. The
493  * tcp_timer_handler() drops the reference after calling the call-back, so the
494  * call-back function does not need to manipulate the references explicitly.
495  */
496 
497 typedef struct tcp_timer_s {
498 	conn_t	*connp;
499 	void 	(*tcpt_proc)(void *);
500 	timeout_id_t   tcpt_tid;
501 } tcp_timer_t;
502 
503 static kmem_cache_t *tcp_timercache;
504 kmem_cache_t	*tcp_sack_info_cache;
505 kmem_cache_t	*tcp_iphc_cache;
506 
507 /*
508  * For scalability, we must not run a timer for every TCP connection
509  * in TIME_WAIT state.  To see why, consider (for time wait interval of
510  * 4 minutes):
511  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
512  *
513  * This list is ordered by time, so you need only delete from the head
514  * until you get to entries which aren't old enough to delete yet.
515  * The list consists of only the detached TIME_WAIT connections.
516  *
517  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
518  * becomes detached TIME_WAIT (either by changing the state and already
519  * being detached or the other way around). This means that the TIME_WAIT
520  * state can be extended (up to doubled) if the connection doesn't become
521  * detached for a long time.
522  *
523  * The list manipulations (including tcp_time_wait_next/prev)
524  * are protected by the tcp_time_wait_lock. The content of the
525  * detached TIME_WAIT connections is protected by the normal perimeters.
526  *
527  * This list is per squeue and squeues are shared across the tcp_stack_t's.
528  * Things on tcp_time_wait_head remain associated with the tcp_stack_t
529  * and conn_netstack.
530  * The tcp_t's that are added to tcp_free_list are disassociated and
531  * have NULL tcp_tcps and conn_netstack pointers.
532  */
533 typedef struct tcp_squeue_priv_s {
534 	kmutex_t	tcp_time_wait_lock;
535 	timeout_id_t	tcp_time_wait_tid;
536 	tcp_t		*tcp_time_wait_head;
537 	tcp_t		*tcp_time_wait_tail;
538 	tcp_t		*tcp_free_list;
539 	uint_t		tcp_free_list_cnt;
540 } tcp_squeue_priv_t;
541 
542 /*
543  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
544  * Running it every 5 seconds seems to give the best results.
545  */
546 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
547 
548 /*
549  * To prevent memory hog, limit the number of entries in tcp_free_list
550  * to 1% of available memory / number of cpus
551  */
552 uint_t tcp_free_list_max_cnt = 0;
553 
554 #define	TCP_XMIT_LOWATER	4096
555 #define	TCP_XMIT_HIWATER	49152
556 #define	TCP_RECV_LOWATER	2048
557 #define	TCP_RECV_HIWATER	49152
558 
559 /*
560  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
561  */
562 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
563 
564 #define	TIDUSZ	4096	/* transport interface data unit size */
565 
566 /*
567  * Bind hash list size and has function.  It has to be a power of 2 for
568  * hashing.
569  */
570 #define	TCP_BIND_FANOUT_SIZE	512
571 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
572 /*
573  * Size of listen and acceptor hash list.  It has to be a power of 2 for
574  * hashing.
575  */
576 #define	TCP_FANOUT_SIZE		256
577 
578 #ifdef	_ILP32
579 #define	TCP_ACCEPTOR_HASH(accid)					\
580 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
581 #else
582 #define	TCP_ACCEPTOR_HASH(accid)					\
583 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
584 #endif	/* _ILP32 */
585 
586 #define	IP_ADDR_CACHE_SIZE	2048
587 #define	IP_ADDR_CACHE_HASH(faddr)					\
588 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
589 
590 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
591 #define	TCP_HSP_HASH_SIZE 256
592 
593 #define	TCP_HSP_HASH(addr)					\
594 	(((addr>>24) ^ (addr >>16) ^			\
595 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
596 
597 /*
598  * TCP options struct returned from tcp_parse_options.
599  */
600 typedef struct tcp_opt_s {
601 	uint32_t	tcp_opt_mss;
602 	uint32_t	tcp_opt_wscale;
603 	uint32_t	tcp_opt_ts_val;
604 	uint32_t	tcp_opt_ts_ecr;
605 	tcp_t		*tcp;
606 } tcp_opt_t;
607 
608 /*
609  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
610  */
611 
612 #ifdef _BIG_ENDIAN
613 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
614 	(TCPOPT_TSTAMP << 8) | 10)
615 #else
616 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
617 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
618 #endif
619 
620 /*
621  * Flags returned from tcp_parse_options.
622  */
623 #define	TCP_OPT_MSS_PRESENT	1
624 #define	TCP_OPT_WSCALE_PRESENT	2
625 #define	TCP_OPT_TSTAMP_PRESENT	4
626 #define	TCP_OPT_SACK_OK_PRESENT	8
627 #define	TCP_OPT_SACK_PRESENT	16
628 
629 /* TCP option length */
630 #define	TCPOPT_NOP_LEN		1
631 #define	TCPOPT_MAXSEG_LEN	4
632 #define	TCPOPT_WS_LEN		3
633 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
634 #define	TCPOPT_TSTAMP_LEN	10
635 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
636 #define	TCPOPT_SACK_OK_LEN	2
637 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
638 #define	TCPOPT_REAL_SACK_LEN	4
639 #define	TCPOPT_MAX_SACK_LEN	36
640 #define	TCPOPT_HEADER_LEN	2
641 
642 /* TCP cwnd burst factor. */
643 #define	TCP_CWND_INFINITE	65535
644 #define	TCP_CWND_SS		3
645 #define	TCP_CWND_NORMAL		5
646 
647 /* Maximum TCP initial cwin (start/restart). */
648 #define	TCP_MAX_INIT_CWND	8
649 
650 /*
651  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
652  * either tcp_slow_start_initial or tcp_slow_start_after idle
653  * depending on the caller.  If the upper layer has not used the
654  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
655  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
656  * If the upper layer has changed set the tcp_init_cwnd, just use
657  * it to calculate the tcp_cwnd.
658  */
659 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
660 {									\
661 	if ((tcp)->tcp_init_cwnd == 0) {				\
662 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
663 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
664 	} else {							\
665 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
666 	}								\
667 	tcp->tcp_cwnd_cnt = 0;						\
668 }
669 
670 /* TCP Timer control structure */
671 typedef struct tcpt_s {
672 	pfv_t	tcpt_pfv;	/* The routine we are to call */
673 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
674 } tcpt_t;
675 
676 /* Host Specific Parameter structure */
677 typedef struct tcp_hsp {
678 	struct tcp_hsp	*tcp_hsp_next;
679 	in6_addr_t	tcp_hsp_addr_v6;
680 	in6_addr_t	tcp_hsp_subnet_v6;
681 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
682 	int32_t		tcp_hsp_sendspace;
683 	int32_t		tcp_hsp_recvspace;
684 	int32_t		tcp_hsp_tstamp;
685 } tcp_hsp_t;
686 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
687 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
688 
689 /*
690  * Functions called directly via squeue having a prototype of edesc_t.
691  */
692 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
693 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
694 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
695 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
696 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
697 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
698 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
699 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
700 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
701 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
702 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
703 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2);
704 
705 
706 /* Prototype for TCP functions */
707 static void	tcp_random_init(void);
708 int		tcp_random(void);
709 static void	tcp_accept(tcp_t *tcp, mblk_t *mp);
710 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
711 		    tcp_t *eager);
712 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
713 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
714     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
715     boolean_t user_specified);
716 static void	tcp_closei_local(tcp_t *tcp);
717 static void	tcp_close_detached(tcp_t *tcp);
718 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
719 			mblk_t *idmp, mblk_t **defermp);
720 static void	tcp_connect(tcp_t *tcp, mblk_t *mp);
721 static void	tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp,
722 		    in_port_t dstport, uint_t srcid);
723 static void	tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
724 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
725 		    uint32_t scope_id);
726 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
727 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
728 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
729 static char	*tcp_display(tcp_t *tcp, char *, char);
730 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
731 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
732 static void	tcp_eager_unlink(tcp_t *tcp);
733 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
734 		    int unixerr);
735 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
736 		    int tlierr, int unixerr);
737 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
738 		    cred_t *cr);
739 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
740 		    char *value, caddr_t cp, cred_t *cr);
741 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
742 		    char *value, caddr_t cp, cred_t *cr);
743 static int	tcp_tpistate(tcp_t *tcp);
744 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
745     int caller_holds_lock);
746 static void	tcp_bind_hash_remove(tcp_t *tcp);
747 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *);
748 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
749 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
750 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
751 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
752 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
753 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
754 void		tcp_g_q_setup(tcp_stack_t *);
755 void		tcp_g_q_create(tcp_stack_t *);
756 void		tcp_g_q_destroy(tcp_stack_t *);
757 static int	tcp_header_init_ipv4(tcp_t *tcp);
758 static int	tcp_header_init_ipv6(tcp_t *tcp);
759 int		tcp_init(tcp_t *tcp, queue_t *q);
760 static int	tcp_init_values(tcp_t *tcp);
761 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
762 static mblk_t	*tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim,
763 		    t_scalar_t addr_length);
764 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
765 static void	tcp_ip_notify(tcp_t *tcp);
766 static mblk_t	*tcp_ire_mp(mblk_t *mp);
767 static void	tcp_iss_init(tcp_t *tcp);
768 static void	tcp_keepalive_killer(void *arg);
769 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
770 static void	tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss);
771 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
772 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
773 static boolean_t tcp_allow_connopt_set(int level, int name);
774 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
775 int		tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
776 int		tcp_opt_set(queue_t *q, uint_t optset_context, int level,
777 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
778 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
779 		    mblk_t *mblk);
780 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
781 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
782 		    uchar_t *ptr, uint_t len);
783 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
784 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt,
785     tcp_stack_t *);
786 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
787 		    caddr_t cp, cred_t *cr);
788 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
789 		    caddr_t cp, cred_t *cr);
790 static void	tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *);
791 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
792 		    caddr_t cp, cred_t *cr);
793 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
794 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
795 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
796 static void	tcp_reinit(tcp_t *tcp);
797 static void	tcp_reinit_values(tcp_t *tcp);
798 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
799 		    tcp_t *thisstream, cred_t *cr);
800 
801 static uint_t	tcp_rcv_drain(queue_t *q, tcp_t *tcp);
802 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
803 static boolean_t tcp_send_rst_chk(tcp_stack_t *);
804 static void	tcp_ss_rexmit(tcp_t *tcp);
805 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
806 static void	tcp_process_options(tcp_t *, tcph_t *);
807 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
808 static void	tcp_rsrv(queue_t *q);
809 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
810 static int	tcp_snmp_state(tcp_t *tcp);
811 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
812 		    cred_t *cr);
813 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
814 		    cred_t *cr);
815 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
816 		    cred_t *cr);
817 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
818 		    cred_t *cr);
819 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
820 		    cred_t *cr);
821 static int	tcp_host_param_set(queue_t *q, mblk_t *mp, char *value,
822 		    caddr_t cp, cred_t *cr);
823 static int	tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value,
824 		    caddr_t cp, cred_t *cr);
825 static int	tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp,
826 		    cred_t *cr);
827 static void	tcp_timer(void *arg);
828 static void	tcp_timer_callback(void *);
829 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
830     boolean_t random);
831 static in_port_t tcp_get_next_priv_port(const tcp_t *);
832 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
833 void		tcp_wput_accept(queue_t *q, mblk_t *mp);
834 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
835 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
836 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
837 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
838 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
839 		    const int num_sack_blk, int *usable, uint_t *snxt,
840 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
841 		    const int mdt_thres);
842 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
843 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
844 		    const int num_sack_blk, int *usable, uint_t *snxt,
845 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
846 		    const int mdt_thres);
847 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
848 		    int num_sack_blk);
849 static void	tcp_wsrv(queue_t *q);
850 static int	tcp_xmit_end(tcp_t *tcp);
851 static void	tcp_ack_timer(void *arg);
852 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
853 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
854 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
855 		    zoneid_t zoneid, tcp_stack_t *, conn_t *connp);
856 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
857 		    uint32_t ack, int ctl);
858 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *);
859 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *);
860 static int	setmaxps(queue_t *q, int maxpsz);
861 static void	tcp_set_rto(tcp_t *, time_t);
862 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
863 		    boolean_t, boolean_t);
864 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
865 		    boolean_t ipsec_mctl);
866 static mblk_t	*tcp_setsockopt_mp(int level, int cmd,
867 		    char *opt, int optlen);
868 static int	tcp_build_hdrs(queue_t *, tcp_t *);
869 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
870 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
871 		    tcph_t *tcph);
872 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
873 boolean_t	tcp_reserved_port_add(int, in_port_t *, in_port_t *);
874 boolean_t	tcp_reserved_port_del(in_port_t, in_port_t);
875 boolean_t	tcp_reserved_port_check(in_port_t, tcp_stack_t *);
876 static tcp_t	*tcp_alloc_temp_tcp(in_port_t, tcp_stack_t *);
877 static int	tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *);
878 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
879 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
880 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
881 		    const boolean_t, const uint32_t, const uint32_t,
882 		    const uint32_t, const uint32_t, tcp_stack_t *);
883 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
884 		    const uint_t, const uint_t, boolean_t *);
885 static mblk_t	*tcp_lso_info_mp(mblk_t *);
886 static void	tcp_lso_update(tcp_t *, ill_lso_capab_t *);
887 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
888 extern mblk_t	*tcp_timermp_alloc(int);
889 extern void	tcp_timermp_free(tcp_t *);
890 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
891 static void	tcp_stop_lingering(tcp_t *tcp);
892 static void	tcp_close_linger_timeout(void *arg);
893 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
894 static void	tcp_stack_shutdown(netstackid_t stackid, void *arg);
895 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
896 static void	*tcp_g_kstat_init(tcp_g_stat_t *);
897 static void	tcp_g_kstat_fini(kstat_t *);
898 static void	*tcp_kstat_init(netstackid_t, tcp_stack_t *);
899 static void	tcp_kstat_fini(netstackid_t, kstat_t *);
900 static void	*tcp_kstat2_init(netstackid_t, tcp_stat_t *);
901 static void	tcp_kstat2_fini(netstackid_t, kstat_t *);
902 static int	tcp_kstat_update(kstat_t *kp, int rw);
903 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
904 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
905 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
906 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
907 			tcph_t *tcph, mblk_t *idmp);
908 static squeue_func_t tcp_squeue_switch(int);
909 
910 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
911 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
912 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
913 static int	tcp_close(queue_t *, int);
914 static int	tcpclose_accept(queue_t *);
915 
916 static void	tcp_squeue_add(squeue_t *);
917 static boolean_t tcp_zcopy_check(tcp_t *);
918 static void	tcp_zcopy_notify(tcp_t *);
919 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
920 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
921 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
922 
923 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
924 
925 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2);
926 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2);
927 
928 /*
929  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
930  *
931  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
932  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
933  * (defined in tcp.h) needs to be filled in and passed into the kernel
934  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
935  * structure contains the four-tuple of a TCP connection and a range of TCP
936  * states (specified by ac_start and ac_end). The use of wildcard addresses
937  * and ports is allowed. Connections with a matching four tuple and a state
938  * within the specified range will be aborted. The valid states for the
939  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
940  * inclusive.
941  *
942  * An application which has its connection aborted by this ioctl will receive
943  * an error that is dependent on the connection state at the time of the abort.
944  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
945  * though a RST packet has been received.  If the connection state is equal to
946  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
947  * and all resources associated with the connection will be freed.
948  */
949 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
950 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
951 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
952 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps);
953 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
954 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
955     boolean_t, tcp_stack_t *);
956 
957 static struct module_info tcp_rinfo =  {
958 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
959 };
960 
961 static struct module_info tcp_winfo =  {
962 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
963 };
964 
965 /*
966  * Entry points for TCP as a device. The normal case which supports
967  * the TCP functionality.
968  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
969  */
970 struct qinit tcp_rinitv4 = {
971 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, NULL, &tcp_rinfo
972 };
973 
974 struct qinit tcp_rinitv6 = {
975 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_close, NULL, &tcp_rinfo
976 };
977 
978 struct qinit tcp_winit = {
979 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
980 };
981 
982 /* Initial entry point for TCP in socket mode. */
983 struct qinit tcp_sock_winit = {
984 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
985 };
986 
987 /*
988  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
989  * an accept. Avoid allocating data structures since eager has already
990  * been created.
991  */
992 struct qinit tcp_acceptor_rinit = {
993 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
994 };
995 
996 struct qinit tcp_acceptor_winit = {
997 	(pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo
998 };
999 
1000 /*
1001  * Entry points for TCP loopback (read side only)
1002  * The open routine is only used for reopens, thus no need to
1003  * have a separate one for tcp_openv6.
1004  */
1005 struct qinit tcp_loopback_rinit = {
1006 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, (pfi_t)0,
1007 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1008 };
1009 
1010 /* For AF_INET aka /dev/tcp */
1011 struct streamtab tcpinfov4 = {
1012 	&tcp_rinitv4, &tcp_winit
1013 };
1014 
1015 /* For AF_INET6 aka /dev/tcp6 */
1016 struct streamtab tcpinfov6 = {
1017 	&tcp_rinitv6, &tcp_winit
1018 };
1019 
1020 /*
1021  * Have to ensure that tcp_g_q_close is not done by an
1022  * interrupt thread.
1023  */
1024 static taskq_t *tcp_taskq;
1025 
1026 /*
1027  * TCP has a private interface for other kernel modules to reserve a
1028  * port range for them to use.  Once reserved, TCP will not use any ports
1029  * in the range.  This interface relies on the TCP_EXCLBIND feature.  If
1030  * the semantics of TCP_EXCLBIND is changed, implementation of this interface
1031  * has to be verified.
1032  *
1033  * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges.  Each port
1034  * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports.  A port
1035  * range is [port a, port b] inclusive.  And each port range is between
1036  * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive.
1037  *
1038  * Note that the default anonymous port range starts from 32768.  There is
1039  * no port "collision" between that and the reserved port range.  If there
1040  * is port collision (because the default smallest anonymous port is lowered
1041  * or some apps specifically bind to ports in the reserved port range), the
1042  * system may not be able to reserve a port range even there are enough
1043  * unbound ports as a reserved port range contains consecutive ports .
1044  */
1045 #define	TCP_RESERVED_PORTS_ARRAY_MAX_SIZE	5
1046 #define	TCP_RESERVED_PORTS_RANGE_MAX		1000
1047 #define	TCP_SMALLEST_RESERVED_PORT		10240
1048 #define	TCP_LARGEST_RESERVED_PORT		20480
1049 
1050 /* Structure to represent those reserved port ranges. */
1051 typedef struct tcp_rport_s {
1052 	in_port_t	lo_port;
1053 	in_port_t	hi_port;
1054 	tcp_t		**temp_tcp_array;
1055 } tcp_rport_t;
1056 
1057 /* Setable only in /etc/system. Move to ndd? */
1058 boolean_t tcp_icmp_source_quench = B_FALSE;
1059 
1060 /*
1061  * Following assumes TPI alignment requirements stay along 32 bit
1062  * boundaries
1063  */
1064 #define	ROUNDUP32(x) \
1065 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1066 
1067 /* Template for response to info request. */
1068 static struct T_info_ack tcp_g_t_info_ack = {
1069 	T_INFO_ACK,		/* PRIM_type */
1070 	0,			/* TSDU_size */
1071 	T_INFINITE,		/* ETSDU_size */
1072 	T_INVALID,		/* CDATA_size */
1073 	T_INVALID,		/* DDATA_size */
1074 	sizeof (sin_t),		/* ADDR_size */
1075 	0,			/* OPT_size - not initialized here */
1076 	TIDUSZ,			/* TIDU_size */
1077 	T_COTS_ORD,		/* SERV_type */
1078 	TCPS_IDLE,		/* CURRENT_state */
1079 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1080 };
1081 
1082 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1083 	T_INFO_ACK,		/* PRIM_type */
1084 	0,			/* TSDU_size */
1085 	T_INFINITE,		/* ETSDU_size */
1086 	T_INVALID,		/* CDATA_size */
1087 	T_INVALID,		/* DDATA_size */
1088 	sizeof (sin6_t),	/* ADDR_size */
1089 	0,			/* OPT_size - not initialized here */
1090 	TIDUSZ,		/* TIDU_size */
1091 	T_COTS_ORD,		/* SERV_type */
1092 	TCPS_IDLE,		/* CURRENT_state */
1093 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1094 };
1095 
1096 #define	MS	1L
1097 #define	SECONDS	(1000 * MS)
1098 #define	MINUTES	(60 * SECONDS)
1099 #define	HOURS	(60 * MINUTES)
1100 #define	DAYS	(24 * HOURS)
1101 
1102 #define	PARAM_MAX (~(uint32_t)0)
1103 
1104 /* Max size IP datagram is 64k - 1 */
1105 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1106 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1107 /* Max of the above */
1108 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1109 
1110 /* Largest TCP port number */
1111 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1112 
1113 /*
1114  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1115  * layer header.  It has to be a multiple of 4.
1116  */
1117 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1118 #define	tcps_wroff_xtra	tcps_wroff_xtra_param->tcp_param_val
1119 
1120 /*
1121  * All of these are alterable, within the min/max values given, at run time.
1122  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1123  * per the TCP spec.
1124  */
1125 /* BEGIN CSTYLED */
1126 static tcpparam_t	lcl_tcp_param_arr[] = {
1127  /*min		max		value		name */
1128  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1129  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1130  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1131  { 1,		1024,		1,		"tcp_conn_req_min" },
1132  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1133  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1134  { 0,		10,		0,		"tcp_debug" },
1135  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1136  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1137  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1138  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1139  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1140  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1141  { 1,		255,		64,		"tcp_ipv4_ttl"},
1142  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1143  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1144  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1145  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1146  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1147  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1148  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1149  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1150  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1151  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1152  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1153  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1154  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1155  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1156  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1157  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1158  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1159  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1160  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1161  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1162  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1163  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1164  { 0,		TCP_MSS_MAX,	64,		"tcp_co_min"},
1165  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1166 /*
1167  * Question:  What default value should I set for tcp_strong_iss?
1168  */
1169  { 0,		2,		1,		"tcp_strong_iss"},
1170  { 0,		65536,		20,		"tcp_rtt_updates"},
1171  { 0,		1,		1,		"tcp_wscale_always"},
1172  { 0,		1,		0,		"tcp_tstamp_always"},
1173  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1174  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1175  { 0,		16,		2,		"tcp_deferred_acks_max"},
1176  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1177  { 1,		4,		4,		"tcp_slow_start_initial"},
1178  { 10*MS,	50*MS,		20*MS,		"tcp_co_timer_interval"},
1179  { 0,		2,		2,		"tcp_sack_permitted"},
1180  { 0,		1,		0,		"tcp_trace"},
1181  { 0,		1,		1,		"tcp_compression_enabled"},
1182  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1183  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1184  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1185  { 0,		1,		0,		"tcp_rev_src_routes"},
1186  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1187  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1188  { 0,		16,		8,		"tcp_local_dacks_max"},
1189  { 0,		2,		1,		"tcp_ecn_permitted"},
1190  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1191  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1192  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1193  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1194  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1195 };
1196 /* END CSTYLED */
1197 
1198 /*
1199  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1200  * each header fragment in the header buffer.  Each parameter value has
1201  * to be a multiple of 4 (32-bit aligned).
1202  */
1203 static tcpparam_t lcl_tcp_mdt_head_param =
1204 	{ 32, 256, 32, "tcp_mdt_hdr_head_min" };
1205 static tcpparam_t lcl_tcp_mdt_tail_param =
1206 	{ 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1207 #define	tcps_mdt_hdr_head_min	tcps_mdt_head_param->tcp_param_val
1208 #define	tcps_mdt_hdr_tail_min	tcps_mdt_tail_param->tcp_param_val
1209 
1210 /*
1211  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1212  * the maximum number of payload buffers associated per Multidata.
1213  */
1214 static tcpparam_t lcl_tcp_mdt_max_pbufs_param =
1215 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1216 #define	tcps_mdt_max_pbufs	tcps_mdt_max_pbufs_param->tcp_param_val
1217 
1218 /* Round up the value to the nearest mss. */
1219 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1220 
1221 /*
1222  * Set ECN capable transport (ECT) code point in IP header.
1223  *
1224  * Note that there are 2 ECT code points '01' and '10', which are called
1225  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1226  * point ECT(0) for TCP as described in RFC 2481.
1227  */
1228 #define	SET_ECT(tcp, iph) \
1229 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1230 		/* We need to clear the code point first. */ \
1231 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1232 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1233 	} else { \
1234 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1235 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1236 	}
1237 
1238 /*
1239  * The format argument to pass to tcp_display().
1240  * DISP_PORT_ONLY means that the returned string has only port info.
1241  * DISP_ADDR_AND_PORT means that the returned string also contains the
1242  * remote and local IP address.
1243  */
1244 #define	DISP_PORT_ONLY		1
1245 #define	DISP_ADDR_AND_PORT	2
1246 
1247 #define	NDD_TOO_QUICK_MSG \
1248 	"ndd get info rate too high for non-privileged users, try again " \
1249 	"later.\n"
1250 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1251 
1252 #define	IS_VMLOANED_MBLK(mp) \
1253 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1254 
1255 
1256 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1257 boolean_t tcp_mdt_chain = B_TRUE;
1258 
1259 /*
1260  * MDT threshold in the form of effective send MSS multiplier; we take
1261  * the MDT path if the amount of unsent data exceeds the threshold value
1262  * (default threshold is 1*SMSS).
1263  */
1264 uint_t tcp_mdt_smss_threshold = 1;
1265 
1266 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1267 
1268 /*
1269  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
1270  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1271  * determined dynamically during tcp_adapt_ire(), which is the default.
1272  */
1273 boolean_t tcp_static_maxpsz = B_FALSE;
1274 
1275 /* Setable in /etc/system */
1276 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1277 uint32_t tcp_random_anon_port = 1;
1278 
1279 /*
1280  * To reach to an eager in Q0 which can be dropped due to an incoming
1281  * new SYN request when Q0 is full, a new doubly linked list is
1282  * introduced. This list allows to select an eager from Q0 in O(1) time.
1283  * This is needed to avoid spending too much time walking through the
1284  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1285  * this new list has to be a member of Q0.
1286  * This list is headed by listener's tcp_t. When the list is empty,
1287  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1288  * of listener's tcp_t point to listener's tcp_t itself.
1289  *
1290  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1291  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1292  * These macros do not affect the eager's membership to Q0.
1293  */
1294 
1295 
1296 #define	MAKE_DROPPABLE(listener, eager)					\
1297 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1298 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1299 		    = (eager);						\
1300 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1301 		(eager)->tcp_eager_next_drop_q0 =			\
1302 		    (listener)->tcp_eager_next_drop_q0;			\
1303 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1304 	}
1305 
1306 #define	MAKE_UNDROPPABLE(eager)						\
1307 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1308 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1309 		    = (eager)->tcp_eager_prev_drop_q0;			\
1310 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1311 		    = (eager)->tcp_eager_next_drop_q0;			\
1312 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1313 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1314 	}
1315 
1316 /*
1317  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1318  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1319  * data, TCP will not respond with an ACK.  RFC 793 requires that
1320  * TCP responds with an ACK for such a bogus ACK.  By not following
1321  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1322  * an attacker successfully spoofs an acceptable segment to our
1323  * peer; or when our peer is "confused."
1324  */
1325 uint32_t tcp_drop_ack_unsent_cnt = 10;
1326 
1327 /*
1328  * Hook functions to enable cluster networking
1329  * On non-clustered systems these vectors must always be NULL.
1330  */
1331 
1332 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family,
1333 			    uint8_t *laddrp, in_port_t lport) = NULL;
1334 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family,
1335 			    uint8_t *laddrp, in_port_t lport) = NULL;
1336 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family,
1337 			    uint8_t *laddrp, in_port_t lport,
1338 			    uint8_t *faddrp, in_port_t fport) = NULL;
1339 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family,
1340 			    uint8_t *laddrp, in_port_t lport,
1341 			    uint8_t *faddrp, in_port_t fport) = NULL;
1342 
1343 /*
1344  * The following are defined in ip.c
1345  */
1346 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family,
1347 				uint8_t *laddrp);
1348 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
1349 				uint8_t *laddrp, uint8_t *faddrp);
1350 
1351 #define	CL_INET_CONNECT(tcp)		{			\
1352 	if (cl_inet_connect != NULL) {				\
1353 		/*						\
1354 		 * Running in cluster mode - register active connection	\
1355 		 * information						\
1356 		 */							\
1357 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1358 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1359 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET,\
1360 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1361 				    (in_port_t)(tcp)->tcp_lport,	\
1362 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1363 				    (in_port_t)(tcp)->tcp_fport);	\
1364 			}						\
1365 		} else {						\
1366 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1367 			    &(tcp)->tcp_ip6h->ip6_src)) {\
1368 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\
1369 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1370 				    (in_port_t)(tcp)->tcp_lport,	\
1371 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1372 				    (in_port_t)(tcp)->tcp_fport);	\
1373 			}						\
1374 		}							\
1375 	}								\
1376 }
1377 
1378 #define	CL_INET_DISCONNECT(tcp)	{				\
1379 	if (cl_inet_disconnect != NULL) {				\
1380 		/*							\
1381 		 * Running in cluster mode - deregister active		\
1382 		 * connection information				\
1383 		 */							\
1384 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1385 			if ((tcp)->tcp_ip_src != 0) {			\
1386 				(*cl_inet_disconnect)(IPPROTO_TCP,	\
1387 				    AF_INET,				\
1388 				    (uint8_t *)(&((tcp)->tcp_ip_src)),\
1389 				    (in_port_t)(tcp)->tcp_lport,	\
1390 				    (uint8_t *)				\
1391 				    (&((tcp)->tcp_ipha->ipha_dst)),\
1392 				    (in_port_t)(tcp)->tcp_fport);	\
1393 			}						\
1394 		} else {						\
1395 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1396 			    &(tcp)->tcp_ip_src_v6)) {			\
1397 				(*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\
1398 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1399 				    (in_port_t)(tcp)->tcp_lport,	\
1400 				    (uint8_t *)				\
1401 				    (&((tcp)->tcp_ip6h->ip6_dst)),\
1402 				    (in_port_t)(tcp)->tcp_fport);	\
1403 			}						\
1404 		}							\
1405 	}								\
1406 }
1407 
1408 /*
1409  * Cluster networking hook for traversing current connection list.
1410  * This routine is used to extract the current list of live connections
1411  * which must continue to to be dispatched to this node.
1412  */
1413 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg);
1414 
1415 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *),
1416     void *arg, tcp_stack_t *tcps);
1417 
1418 /*
1419  * Figure out the value of window scale opton.  Note that the rwnd is
1420  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1421  * We cannot find the scale value and then do a round up of tcp_rwnd
1422  * because the scale value may not be correct after that.
1423  *
1424  * Set the compiler flag to make this function inline.
1425  */
1426 static void
1427 tcp_set_ws_value(tcp_t *tcp)
1428 {
1429 	int i;
1430 	uint32_t rwnd = tcp->tcp_rwnd;
1431 
1432 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1433 	    i++, rwnd >>= 1)
1434 		;
1435 	tcp->tcp_rcv_ws = i;
1436 }
1437 
1438 /*
1439  * Remove a connection from the list of detached TIME_WAIT connections.
1440  * It returns B_FALSE if it can't remove the connection from the list
1441  * as the connection has already been removed from the list due to an
1442  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1443  */
1444 static boolean_t
1445 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1446 {
1447 	boolean_t	locked = B_FALSE;
1448 
1449 	if (tcp_time_wait == NULL) {
1450 		tcp_time_wait = *((tcp_squeue_priv_t **)
1451 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1452 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1453 		locked = B_TRUE;
1454 	} else {
1455 		ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock));
1456 	}
1457 
1458 	if (tcp->tcp_time_wait_expire == 0) {
1459 		ASSERT(tcp->tcp_time_wait_next == NULL);
1460 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1461 		if (locked)
1462 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1463 		return (B_FALSE);
1464 	}
1465 	ASSERT(TCP_IS_DETACHED(tcp));
1466 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1467 
1468 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1469 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1470 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1471 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1472 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1473 			    NULL;
1474 		} else {
1475 			tcp_time_wait->tcp_time_wait_tail = NULL;
1476 		}
1477 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1478 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1479 		ASSERT(tcp->tcp_time_wait_next == NULL);
1480 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1481 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1482 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1483 	} else {
1484 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1485 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1486 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1487 		    tcp->tcp_time_wait_next;
1488 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1489 		    tcp->tcp_time_wait_prev;
1490 	}
1491 	tcp->tcp_time_wait_next = NULL;
1492 	tcp->tcp_time_wait_prev = NULL;
1493 	tcp->tcp_time_wait_expire = 0;
1494 
1495 	if (locked)
1496 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1497 	return (B_TRUE);
1498 }
1499 
1500 /*
1501  * Add a connection to the list of detached TIME_WAIT connections
1502  * and set its time to expire.
1503  */
1504 static void
1505 tcp_time_wait_append(tcp_t *tcp)
1506 {
1507 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1508 	tcp_squeue_priv_t *tcp_time_wait =
1509 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1510 	    SQPRIVATE_TCP));
1511 
1512 	tcp_timers_stop(tcp);
1513 
1514 	/* Freed above */
1515 	ASSERT(tcp->tcp_timer_tid == 0);
1516 	ASSERT(tcp->tcp_ack_tid == 0);
1517 
1518 	/* must have happened at the time of detaching the tcp */
1519 	ASSERT(tcp->tcp_ptpahn == NULL);
1520 	ASSERT(tcp->tcp_flow_stopped == 0);
1521 	ASSERT(tcp->tcp_time_wait_next == NULL);
1522 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1523 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1524 	ASSERT(tcp->tcp_listener == NULL);
1525 
1526 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1527 	/*
1528 	 * The value computed below in tcp->tcp_time_wait_expire may
1529 	 * appear negative or wrap around. That is ok since our
1530 	 * interest is only in the difference between the current lbolt
1531 	 * value and tcp->tcp_time_wait_expire. But the value should not
1532 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1533 	 * The corresponding comparison in tcp_time_wait_collector() uses
1534 	 * modular arithmetic.
1535 	 */
1536 	tcp->tcp_time_wait_expire +=
1537 	    drv_usectohz(tcps->tcps_time_wait_interval * 1000);
1538 	if (tcp->tcp_time_wait_expire == 0)
1539 		tcp->tcp_time_wait_expire = 1;
1540 
1541 	ASSERT(TCP_IS_DETACHED(tcp));
1542 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1543 	ASSERT(tcp->tcp_time_wait_next == NULL);
1544 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1545 	TCP_DBGSTAT(tcps, tcp_time_wait);
1546 
1547 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1548 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1549 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1550 		tcp_time_wait->tcp_time_wait_head = tcp;
1551 	} else {
1552 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1553 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1554 		    TCPS_TIME_WAIT);
1555 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1556 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1557 	}
1558 	tcp_time_wait->tcp_time_wait_tail = tcp;
1559 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1560 }
1561 
1562 /* ARGSUSED */
1563 void
1564 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1565 {
1566 	conn_t	*connp = (conn_t *)arg;
1567 	tcp_t	*tcp = connp->conn_tcp;
1568 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1569 
1570 	ASSERT(tcp != NULL);
1571 	if (tcp->tcp_state == TCPS_CLOSED) {
1572 		return;
1573 	}
1574 
1575 	ASSERT((tcp->tcp_family == AF_INET &&
1576 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1577 	    (tcp->tcp_family == AF_INET6 &&
1578 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1579 	    tcp->tcp_ipversion == IPV6_VERSION)));
1580 	ASSERT(!tcp->tcp_listener);
1581 
1582 	TCP_STAT(tcps, tcp_time_wait_reap);
1583 	ASSERT(TCP_IS_DETACHED(tcp));
1584 
1585 	/*
1586 	 * Because they have no upstream client to rebind or tcp_close()
1587 	 * them later, we axe the connection here and now.
1588 	 */
1589 	tcp_close_detached(tcp);
1590 }
1591 
1592 /*
1593  * Remove cached/latched IPsec references.
1594  */
1595 void
1596 tcp_ipsec_cleanup(tcp_t *tcp)
1597 {
1598 	conn_t		*connp = tcp->tcp_connp;
1599 
1600 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1601 
1602 	if (connp->conn_latch != NULL) {
1603 		IPLATCH_REFRELE(connp->conn_latch,
1604 		    connp->conn_netstack);
1605 		connp->conn_latch = NULL;
1606 	}
1607 	if (connp->conn_policy != NULL) {
1608 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
1609 		connp->conn_policy = NULL;
1610 	}
1611 }
1612 
1613 /*
1614  * Cleaup before placing on free list.
1615  * Disassociate from the netstack/tcp_stack_t since the freelist
1616  * is per squeue and not per netstack.
1617  */
1618 void
1619 tcp_cleanup(tcp_t *tcp)
1620 {
1621 	mblk_t		*mp;
1622 	char		*tcp_iphc;
1623 	int		tcp_iphc_len;
1624 	int		tcp_hdr_grown;
1625 	tcp_sack_info_t	*tcp_sack_info;
1626 	conn_t		*connp = tcp->tcp_connp;
1627 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1628 	netstack_t	*ns = tcps->tcps_netstack;
1629 
1630 	tcp_bind_hash_remove(tcp);
1631 
1632 	/* Cleanup that which needs the netstack first */
1633 	tcp_ipsec_cleanup(tcp);
1634 
1635 	tcp_free(tcp);
1636 
1637 	/* Release any SSL context */
1638 	if (tcp->tcp_kssl_ent != NULL) {
1639 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1640 		tcp->tcp_kssl_ent = NULL;
1641 	}
1642 
1643 	if (tcp->tcp_kssl_ctx != NULL) {
1644 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1645 		tcp->tcp_kssl_ctx = NULL;
1646 	}
1647 	tcp->tcp_kssl_pending = B_FALSE;
1648 
1649 	conn_delete_ire(connp, NULL);
1650 
1651 	/*
1652 	 * Since we will bzero the entire structure, we need to
1653 	 * remove it and reinsert it in global hash list. We
1654 	 * know the walkers can't get to this conn because we
1655 	 * had set CONDEMNED flag earlier and checked reference
1656 	 * under conn_lock so walker won't pick it and when we
1657 	 * go the ipcl_globalhash_remove() below, no walker
1658 	 * can get to it.
1659 	 */
1660 	ipcl_globalhash_remove(connp);
1661 
1662 	/*
1663 	 * Now it is safe to decrement the reference counts.
1664 	 * This might be the last reference on the netstack and TCPS
1665 	 * in which case it will cause the tcp_g_q_close and
1666 	 * the freeing of the IP Instance.
1667 	 */
1668 	connp->conn_netstack = NULL;
1669 	netstack_rele(ns);
1670 	ASSERT(tcps != NULL);
1671 	tcp->tcp_tcps = NULL;
1672 	TCPS_REFRELE(tcps);
1673 
1674 	/* Save some state */
1675 	mp = tcp->tcp_timercache;
1676 
1677 	tcp_sack_info = tcp->tcp_sack_info;
1678 	tcp_iphc = tcp->tcp_iphc;
1679 	tcp_iphc_len = tcp->tcp_iphc_len;
1680 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1681 
1682 	if (connp->conn_cred != NULL) {
1683 		crfree(connp->conn_cred);
1684 		connp->conn_cred = NULL;
1685 	}
1686 	if (connp->conn_peercred != NULL) {
1687 		crfree(connp->conn_peercred);
1688 		connp->conn_peercred = NULL;
1689 	}
1690 	ipcl_conn_cleanup(connp);
1691 	connp->conn_flags = IPCL_TCPCONN;
1692 	bzero(tcp, sizeof (tcp_t));
1693 
1694 	/* restore the state */
1695 	tcp->tcp_timercache = mp;
1696 
1697 	tcp->tcp_sack_info = tcp_sack_info;
1698 	tcp->tcp_iphc = tcp_iphc;
1699 	tcp->tcp_iphc_len = tcp_iphc_len;
1700 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1701 
1702 	tcp->tcp_connp = connp;
1703 
1704 	ASSERT(connp->conn_tcp == tcp);
1705 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1706 	connp->conn_state_flags = CONN_INCIPIENT;
1707 	ASSERT(connp->conn_ulp == IPPROTO_TCP);
1708 	ASSERT(connp->conn_ref == 1);
1709 }
1710 
1711 /*
1712  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1713  * is done forwards from the head.
1714  * This walks all stack instances since
1715  * tcp_time_wait remains global across all stacks.
1716  */
1717 /* ARGSUSED */
1718 void
1719 tcp_time_wait_collector(void *arg)
1720 {
1721 	tcp_t *tcp;
1722 	clock_t now;
1723 	mblk_t *mp;
1724 	conn_t *connp;
1725 	kmutex_t *lock;
1726 	boolean_t removed;
1727 
1728 	squeue_t *sqp = (squeue_t *)arg;
1729 	tcp_squeue_priv_t *tcp_time_wait =
1730 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1731 
1732 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1733 	tcp_time_wait->tcp_time_wait_tid = 0;
1734 
1735 	if (tcp_time_wait->tcp_free_list != NULL &&
1736 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1737 		TCP_G_STAT(tcp_freelist_cleanup);
1738 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1739 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1740 			tcp->tcp_time_wait_next = NULL;
1741 			tcp_time_wait->tcp_free_list_cnt--;
1742 			ASSERT(tcp->tcp_tcps == NULL);
1743 			CONN_DEC_REF(tcp->tcp_connp);
1744 		}
1745 		ASSERT(tcp_time_wait->tcp_free_list_cnt == 0);
1746 	}
1747 
1748 	/*
1749 	 * In order to reap time waits reliably, we should use a
1750 	 * source of time that is not adjustable by the user -- hence
1751 	 * the call to ddi_get_lbolt().
1752 	 */
1753 	now = ddi_get_lbolt();
1754 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1755 		/*
1756 		 * Compare times using modular arithmetic, since
1757 		 * lbolt can wrapover.
1758 		 */
1759 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1760 			break;
1761 		}
1762 
1763 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1764 		ASSERT(removed);
1765 
1766 		connp = tcp->tcp_connp;
1767 		ASSERT(connp->conn_fanout != NULL);
1768 		lock = &connp->conn_fanout->connf_lock;
1769 		/*
1770 		 * This is essentially a TW reclaim fast path optimization for
1771 		 * performance where the timewait collector checks under the
1772 		 * fanout lock (so that no one else can get access to the
1773 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1774 		 * the classifier hash list. If ref count is indeed 2, we can
1775 		 * just remove the conn under the fanout lock and avoid
1776 		 * cleaning up the conn under the squeue, provided that
1777 		 * clustering callbacks are not enabled. If clustering is
1778 		 * enabled, we need to make the clustering callback before
1779 		 * setting the CONDEMNED flag and after dropping all locks and
1780 		 * so we forego this optimization and fall back to the slow
1781 		 * path. Also please see the comments in tcp_closei_local
1782 		 * regarding the refcnt logic.
1783 		 *
1784 		 * Since we are holding the tcp_time_wait_lock, its better
1785 		 * not to block on the fanout_lock because other connections
1786 		 * can't add themselves to time_wait list. So we do a
1787 		 * tryenter instead of mutex_enter.
1788 		 */
1789 		if (mutex_tryenter(lock)) {
1790 			mutex_enter(&connp->conn_lock);
1791 			if ((connp->conn_ref == 2) &&
1792 			    (cl_inet_disconnect == NULL)) {
1793 				ipcl_hash_remove_locked(connp,
1794 				    connp->conn_fanout);
1795 				/*
1796 				 * Set the CONDEMNED flag now itself so that
1797 				 * the refcnt cannot increase due to any
1798 				 * walker. But we have still not cleaned up
1799 				 * conn_ire_cache. This is still ok since
1800 				 * we are going to clean it up in tcp_cleanup
1801 				 * immediately and any interface unplumb
1802 				 * thread will wait till the ire is blown away
1803 				 */
1804 				connp->conn_state_flags |= CONN_CONDEMNED;
1805 				mutex_exit(lock);
1806 				mutex_exit(&connp->conn_lock);
1807 				if (tcp_time_wait->tcp_free_list_cnt <
1808 				    tcp_free_list_max_cnt) {
1809 					/* Add to head of tcp_free_list */
1810 					mutex_exit(
1811 					    &tcp_time_wait->tcp_time_wait_lock);
1812 					tcp_cleanup(tcp);
1813 					ASSERT(connp->conn_latch == NULL);
1814 					ASSERT(connp->conn_policy == NULL);
1815 					ASSERT(tcp->tcp_tcps == NULL);
1816 					ASSERT(connp->conn_netstack == NULL);
1817 
1818 					mutex_enter(
1819 					    &tcp_time_wait->tcp_time_wait_lock);
1820 					tcp->tcp_time_wait_next =
1821 					    tcp_time_wait->tcp_free_list;
1822 					tcp_time_wait->tcp_free_list = tcp;
1823 					tcp_time_wait->tcp_free_list_cnt++;
1824 					continue;
1825 				} else {
1826 					/* Do not add to tcp_free_list */
1827 					mutex_exit(
1828 					    &tcp_time_wait->tcp_time_wait_lock);
1829 					tcp_bind_hash_remove(tcp);
1830 					conn_delete_ire(tcp->tcp_connp, NULL);
1831 					tcp_ipsec_cleanup(tcp);
1832 					CONN_DEC_REF(tcp->tcp_connp);
1833 				}
1834 			} else {
1835 				CONN_INC_REF_LOCKED(connp);
1836 				mutex_exit(lock);
1837 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1838 				mutex_exit(&connp->conn_lock);
1839 				/*
1840 				 * We can reuse the closemp here since conn has
1841 				 * detached (otherwise we wouldn't even be in
1842 				 * time_wait list). tcp_closemp_used can safely
1843 				 * be changed without taking a lock as no other
1844 				 * thread can concurrently access it at this
1845 				 * point in the connection lifecycle.
1846 				 */
1847 
1848 				if (tcp->tcp_closemp.b_prev == NULL)
1849 					tcp->tcp_closemp_used = B_TRUE;
1850 				else
1851 					cmn_err(CE_PANIC,
1852 					    "tcp_timewait_collector: "
1853 					    "concurrent use of tcp_closemp: "
1854 					    "connp %p tcp %p\n", (void *)connp,
1855 					    (void *)tcp);
1856 
1857 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1858 				mp = &tcp->tcp_closemp;
1859 				squeue_fill(connp->conn_sqp, mp,
1860 				    tcp_timewait_output, connp,
1861 				    SQTAG_TCP_TIMEWAIT);
1862 			}
1863 		} else {
1864 			mutex_enter(&connp->conn_lock);
1865 			CONN_INC_REF_LOCKED(connp);
1866 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1867 			mutex_exit(&connp->conn_lock);
1868 			/*
1869 			 * We can reuse the closemp here since conn has
1870 			 * detached (otherwise we wouldn't even be in
1871 			 * time_wait list). tcp_closemp_used can safely
1872 			 * be changed without taking a lock as no other
1873 			 * thread can concurrently access it at this
1874 			 * point in the connection lifecycle.
1875 			 */
1876 
1877 			if (tcp->tcp_closemp.b_prev == NULL)
1878 				tcp->tcp_closemp_used = B_TRUE;
1879 			else
1880 				cmn_err(CE_PANIC, "tcp_timewait_collector: "
1881 				    "concurrent use of tcp_closemp: "
1882 				    "connp %p tcp %p\n", (void *)connp,
1883 				    (void *)tcp);
1884 
1885 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1886 			mp = &tcp->tcp_closemp;
1887 			squeue_fill(connp->conn_sqp, mp,
1888 			    tcp_timewait_output, connp, 0);
1889 		}
1890 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1891 	}
1892 
1893 	if (tcp_time_wait->tcp_free_list != NULL)
1894 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1895 
1896 	tcp_time_wait->tcp_time_wait_tid =
1897 	    timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY);
1898 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1899 }
1900 /*
1901  * Reply to a clients T_CONN_RES TPI message. This function
1902  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1903  * on the acceptor STREAM and processed in tcp_wput_accept().
1904  * Read the block comment on top of tcp_conn_request().
1905  */
1906 static void
1907 tcp_accept(tcp_t *listener, mblk_t *mp)
1908 {
1909 	tcp_t	*acceptor;
1910 	tcp_t	*eager;
1911 	tcp_t   *tcp;
1912 	struct T_conn_res	*tcr;
1913 	t_uscalar_t	acceptor_id;
1914 	t_scalar_t	seqnum;
1915 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1916 	mblk_t	*ok_mp;
1917 	mblk_t	*mp1;
1918 	tcp_stack_t	*tcps = listener->tcp_tcps;
1919 
1920 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1921 		tcp_err_ack(listener, mp, TPROTO, 0);
1922 		return;
1923 	}
1924 	tcr = (struct T_conn_res *)mp->b_rptr;
1925 
1926 	/*
1927 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1928 	 * read side queue of the streams device underneath us i.e. the
1929 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1930 	 * look it up in the queue_hash.  Under LP64 it sends down the
1931 	 * minor_t of the accepting endpoint.
1932 	 *
1933 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1934 	 * fanout hash lock is held.
1935 	 * This prevents any thread from entering the acceptor queue from
1936 	 * below (since it has not been hard bound yet i.e. any inbound
1937 	 * packets will arrive on the listener or default tcp queue and
1938 	 * go through tcp_lookup).
1939 	 * The CONN_INC_REF will prevent the acceptor from closing.
1940 	 *
1941 	 * XXX It is still possible for a tli application to send down data
1942 	 * on the accepting stream while another thread calls t_accept.
1943 	 * This should not be a problem for well-behaved applications since
1944 	 * the T_OK_ACK is sent after the queue swapping is completed.
1945 	 *
1946 	 * If the accepting fd is the same as the listening fd, avoid
1947 	 * queue hash lookup since that will return an eager listener in a
1948 	 * already established state.
1949 	 */
1950 	acceptor_id = tcr->ACCEPTOR_id;
1951 	mutex_enter(&listener->tcp_eager_lock);
1952 	if (listener->tcp_acceptor_id == acceptor_id) {
1953 		eager = listener->tcp_eager_next_q;
1954 		/* only count how many T_CONN_INDs so don't count q0 */
1955 		if ((listener->tcp_conn_req_cnt_q != 1) ||
1956 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
1957 			mutex_exit(&listener->tcp_eager_lock);
1958 			tcp_err_ack(listener, mp, TBADF, 0);
1959 			return;
1960 		}
1961 		if (listener->tcp_conn_req_cnt_q0 != 0) {
1962 			/* Throw away all the eagers on q0. */
1963 			tcp_eager_cleanup(listener, 1);
1964 		}
1965 		if (listener->tcp_syn_defense) {
1966 			listener->tcp_syn_defense = B_FALSE;
1967 			if (listener->tcp_ip_addr_cache != NULL) {
1968 				kmem_free(listener->tcp_ip_addr_cache,
1969 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1970 				listener->tcp_ip_addr_cache = NULL;
1971 			}
1972 		}
1973 		/*
1974 		 * Transfer tcp_conn_req_max to the eager so that when
1975 		 * a disconnect occurs we can revert the endpoint to the
1976 		 * listen state.
1977 		 */
1978 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
1979 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
1980 		/*
1981 		 * Get a reference on the acceptor just like the
1982 		 * tcp_acceptor_hash_lookup below.
1983 		 */
1984 		acceptor = listener;
1985 		CONN_INC_REF(acceptor->tcp_connp);
1986 	} else {
1987 		acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps);
1988 		if (acceptor == NULL) {
1989 			if (listener->tcp_debug) {
1990 				(void) strlog(TCP_MOD_ID, 0, 1,
1991 				    SL_ERROR|SL_TRACE,
1992 				    "tcp_accept: did not find acceptor 0x%x\n",
1993 				    acceptor_id);
1994 			}
1995 			mutex_exit(&listener->tcp_eager_lock);
1996 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
1997 			return;
1998 		}
1999 		/*
2000 		 * Verify acceptor state. The acceptable states for an acceptor
2001 		 * include TCPS_IDLE and TCPS_BOUND.
2002 		 */
2003 		switch (acceptor->tcp_state) {
2004 		case TCPS_IDLE:
2005 			/* FALLTHRU */
2006 		case TCPS_BOUND:
2007 			break;
2008 		default:
2009 			CONN_DEC_REF(acceptor->tcp_connp);
2010 			mutex_exit(&listener->tcp_eager_lock);
2011 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2012 			return;
2013 		}
2014 	}
2015 
2016 	/* The listener must be in TCPS_LISTEN */
2017 	if (listener->tcp_state != TCPS_LISTEN) {
2018 		CONN_DEC_REF(acceptor->tcp_connp);
2019 		mutex_exit(&listener->tcp_eager_lock);
2020 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2021 		return;
2022 	}
2023 
2024 	/*
2025 	 * Rendezvous with an eager connection request packet hanging off
2026 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2027 	 * tcp structure when the connection packet arrived in
2028 	 * tcp_conn_request().
2029 	 */
2030 	seqnum = tcr->SEQ_number;
2031 	eager = listener;
2032 	do {
2033 		eager = eager->tcp_eager_next_q;
2034 		if (eager == NULL) {
2035 			CONN_DEC_REF(acceptor->tcp_connp);
2036 			mutex_exit(&listener->tcp_eager_lock);
2037 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2038 			return;
2039 		}
2040 	} while (eager->tcp_conn_req_seqnum != seqnum);
2041 	mutex_exit(&listener->tcp_eager_lock);
2042 
2043 	/*
2044 	 * At this point, both acceptor and listener have 2 ref
2045 	 * that they begin with. Acceptor has one additional ref
2046 	 * we placed in lookup while listener has 3 additional
2047 	 * ref for being behind the squeue (tcp_accept() is
2048 	 * done on listener's squeue); being in classifier hash;
2049 	 * and eager's ref on listener.
2050 	 */
2051 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2052 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2053 
2054 	/*
2055 	 * The eager at this point is set in its own squeue and
2056 	 * could easily have been killed (tcp_accept_finish will
2057 	 * deal with that) because of a TH_RST so we can only
2058 	 * ASSERT for a single ref.
2059 	 */
2060 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2061 
2062 	/* Pre allocate the stroptions mblk also */
2063 	opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
2064 	if (opt_mp == NULL) {
2065 		CONN_DEC_REF(acceptor->tcp_connp);
2066 		CONN_DEC_REF(eager->tcp_connp);
2067 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2068 		return;
2069 	}
2070 	DB_TYPE(opt_mp) = M_SETOPTS;
2071 	opt_mp->b_wptr += sizeof (struct stroptions);
2072 
2073 	/*
2074 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2075 	 * from listener to acceptor. The message is chained on opt_mp
2076 	 * which will be sent onto eager's squeue.
2077 	 */
2078 	if (listener->tcp_bound_if != 0) {
2079 		/* allocate optmgmt req */
2080 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2081 		    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
2082 		    sizeof (int));
2083 		if (mp1 != NULL)
2084 			linkb(opt_mp, mp1);
2085 	}
2086 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2087 		uint_t on = 1;
2088 
2089 		/* allocate optmgmt req */
2090 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2091 		    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
2092 		if (mp1 != NULL)
2093 			linkb(opt_mp, mp1);
2094 	}
2095 
2096 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2097 	if ((mp1 = copymsg(mp)) == NULL) {
2098 		CONN_DEC_REF(acceptor->tcp_connp);
2099 		CONN_DEC_REF(eager->tcp_connp);
2100 		freemsg(opt_mp);
2101 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2102 		return;
2103 	}
2104 
2105 	tcr = (struct T_conn_res *)mp1->b_rptr;
2106 
2107 	/*
2108 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2109 	 * which allocates a larger mblk and appends the new
2110 	 * local address to the ok_ack.  The address is copied by
2111 	 * soaccept() for getsockname().
2112 	 */
2113 	{
2114 		int extra;
2115 
2116 		extra = (eager->tcp_family == AF_INET) ?
2117 		    sizeof (sin_t) : sizeof (sin6_t);
2118 
2119 		/*
2120 		 * Try to re-use mp, if possible.  Otherwise, allocate
2121 		 * an mblk and return it as ok_mp.  In any case, mp
2122 		 * is no longer usable upon return.
2123 		 */
2124 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2125 			CONN_DEC_REF(acceptor->tcp_connp);
2126 			CONN_DEC_REF(eager->tcp_connp);
2127 			freemsg(opt_mp);
2128 			/* Original mp has been freed by now, so use mp1 */
2129 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2130 			return;
2131 		}
2132 
2133 		mp = NULL;	/* We should never use mp after this point */
2134 
2135 		switch (extra) {
2136 		case sizeof (sin_t): {
2137 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2138 
2139 				ok_mp->b_wptr += extra;
2140 				sin->sin_family = AF_INET;
2141 				sin->sin_port = eager->tcp_lport;
2142 				sin->sin_addr.s_addr =
2143 				    eager->tcp_ipha->ipha_src;
2144 				break;
2145 			}
2146 		case sizeof (sin6_t): {
2147 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2148 
2149 				ok_mp->b_wptr += extra;
2150 				sin6->sin6_family = AF_INET6;
2151 				sin6->sin6_port = eager->tcp_lport;
2152 				if (eager->tcp_ipversion == IPV4_VERSION) {
2153 					sin6->sin6_flowinfo = 0;
2154 					IN6_IPADDR_TO_V4MAPPED(
2155 					    eager->tcp_ipha->ipha_src,
2156 					    &sin6->sin6_addr);
2157 				} else {
2158 					ASSERT(eager->tcp_ip6h != NULL);
2159 					sin6->sin6_flowinfo =
2160 					    eager->tcp_ip6h->ip6_vcf &
2161 					    ~IPV6_VERS_AND_FLOW_MASK;
2162 					sin6->sin6_addr =
2163 					    eager->tcp_ip6h->ip6_src;
2164 				}
2165 				sin6->sin6_scope_id = 0;
2166 				sin6->__sin6_src_id = 0;
2167 				break;
2168 			}
2169 		default:
2170 			break;
2171 		}
2172 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2173 	}
2174 
2175 	/*
2176 	 * If there are no options we know that the T_CONN_RES will
2177 	 * succeed. However, we can't send the T_OK_ACK upstream until
2178 	 * the tcp_accept_swap is done since it would be dangerous to
2179 	 * let the application start using the new fd prior to the swap.
2180 	 */
2181 	tcp_accept_swap(listener, acceptor, eager);
2182 
2183 	/*
2184 	 * tcp_accept_swap unlinks eager from listener but does not drop
2185 	 * the eager's reference on the listener.
2186 	 */
2187 	ASSERT(eager->tcp_listener == NULL);
2188 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2189 
2190 	/*
2191 	 * The eager is now associated with its own queue. Insert in
2192 	 * the hash so that the connection can be reused for a future
2193 	 * T_CONN_RES.
2194 	 */
2195 	tcp_acceptor_hash_insert(acceptor_id, eager);
2196 
2197 	/*
2198 	 * We now do the processing of options with T_CONN_RES.
2199 	 * We delay till now since we wanted to have queue to pass to
2200 	 * option processing routines that points back to the right
2201 	 * instance structure which does not happen until after
2202 	 * tcp_accept_swap().
2203 	 *
2204 	 * Note:
2205 	 * The sanity of the logic here assumes that whatever options
2206 	 * are appropriate to inherit from listner=>eager are done
2207 	 * before this point, and whatever were to be overridden (or not)
2208 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2209 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2210 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2211 	 * This may not be true at this point in time but can be fixed
2212 	 * independently. This option processing code starts with
2213 	 * the instantiated acceptor instance and the final queue at
2214 	 * this point.
2215 	 */
2216 
2217 	if (tcr->OPT_length != 0) {
2218 		/* Options to process */
2219 		int t_error = 0;
2220 		int sys_error = 0;
2221 		int do_disconnect = 0;
2222 
2223 		if (tcp_conprim_opt_process(eager, mp1,
2224 		    &do_disconnect, &t_error, &sys_error) < 0) {
2225 			eager->tcp_accept_error = 1;
2226 			if (do_disconnect) {
2227 				/*
2228 				 * An option failed which does not allow
2229 				 * connection to be accepted.
2230 				 *
2231 				 * We allow T_CONN_RES to succeed and
2232 				 * put a T_DISCON_IND on the eager queue.
2233 				 */
2234 				ASSERT(t_error == 0 && sys_error == 0);
2235 				eager->tcp_send_discon_ind = 1;
2236 			} else {
2237 				ASSERT(t_error != 0);
2238 				freemsg(ok_mp);
2239 				/*
2240 				 * Original mp was either freed or set
2241 				 * to ok_mp above, so use mp1 instead.
2242 				 */
2243 				tcp_err_ack(listener, mp1, t_error, sys_error);
2244 				goto finish;
2245 			}
2246 		}
2247 		/*
2248 		 * Most likely success in setting options (except if
2249 		 * eager->tcp_send_discon_ind set).
2250 		 * mp1 option buffer represented by OPT_length/offset
2251 		 * potentially modified and contains results of setting
2252 		 * options at this point
2253 		 */
2254 	}
2255 
2256 	/* We no longer need mp1, since all options processing has passed */
2257 	freemsg(mp1);
2258 
2259 	putnext(listener->tcp_rq, ok_mp);
2260 
2261 	mutex_enter(&listener->tcp_eager_lock);
2262 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2263 		tcp_t	*tail;
2264 		mblk_t	*conn_ind;
2265 
2266 		/*
2267 		 * This path should not be executed if listener and
2268 		 * acceptor streams are the same.
2269 		 */
2270 		ASSERT(listener != acceptor);
2271 
2272 		tcp = listener->tcp_eager_prev_q0;
2273 		/*
2274 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2275 		 * deferred T_conn_ind queue. We need to get to the head of
2276 		 * the queue in order to send up T_conn_ind the same order as
2277 		 * how the 3WHS is completed.
2278 		 */
2279 		while (tcp != listener) {
2280 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2281 				break;
2282 			else
2283 				tcp = tcp->tcp_eager_prev_q0;
2284 		}
2285 		ASSERT(tcp != listener);
2286 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2287 		ASSERT(conn_ind != NULL);
2288 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2289 
2290 		/* Move from q0 to q */
2291 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2292 		listener->tcp_conn_req_cnt_q0--;
2293 		listener->tcp_conn_req_cnt_q++;
2294 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2295 		    tcp->tcp_eager_prev_q0;
2296 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2297 		    tcp->tcp_eager_next_q0;
2298 		tcp->tcp_eager_prev_q0 = NULL;
2299 		tcp->tcp_eager_next_q0 = NULL;
2300 		tcp->tcp_conn_def_q0 = B_FALSE;
2301 
2302 		/* Make sure the tcp isn't in the list of droppables */
2303 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2304 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2305 
2306 		/*
2307 		 * Insert at end of the queue because sockfs sends
2308 		 * down T_CONN_RES in chronological order. Leaving
2309 		 * the older conn indications at front of the queue
2310 		 * helps reducing search time.
2311 		 */
2312 		tail = listener->tcp_eager_last_q;
2313 		if (tail != NULL)
2314 			tail->tcp_eager_next_q = tcp;
2315 		else
2316 			listener->tcp_eager_next_q = tcp;
2317 		listener->tcp_eager_last_q = tcp;
2318 		tcp->tcp_eager_next_q = NULL;
2319 		mutex_exit(&listener->tcp_eager_lock);
2320 		putnext(tcp->tcp_rq, conn_ind);
2321 	} else {
2322 		mutex_exit(&listener->tcp_eager_lock);
2323 	}
2324 
2325 	/*
2326 	 * Done with the acceptor - free it
2327 	 *
2328 	 * Note: from this point on, no access to listener should be made
2329 	 * as listener can be equal to acceptor.
2330 	 */
2331 finish:
2332 	ASSERT(acceptor->tcp_detached);
2333 	ASSERT(tcps->tcps_g_q != NULL);
2334 	acceptor->tcp_rq = tcps->tcps_g_q;
2335 	acceptor->tcp_wq = WR(tcps->tcps_g_q);
2336 	(void) tcp_clean_death(acceptor, 0, 2);
2337 	CONN_DEC_REF(acceptor->tcp_connp);
2338 
2339 	/*
2340 	 * In case we already received a FIN we have to make tcp_rput send
2341 	 * the ordrel_ind. This will also send up a window update if the window
2342 	 * has opened up.
2343 	 *
2344 	 * In the normal case of a successful connection acceptance
2345 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2346 	 * indication that this was just accepted. This tells tcp_rput to
2347 	 * pass up any data queued in tcp_rcv_list.
2348 	 *
2349 	 * In the fringe case where options sent with T_CONN_RES failed and
2350 	 * we required, we would be indicating a T_DISCON_IND to blow
2351 	 * away this connection.
2352 	 */
2353 
2354 	/*
2355 	 * XXX: we currently have a problem if XTI application closes the
2356 	 * acceptor stream in between. This problem exists in on10-gate also
2357 	 * and is well know but nothing can be done short of major rewrite
2358 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2359 	 * eager same squeue as listener (we can distinguish non socket
2360 	 * listeners at the time of handling a SYN in tcp_conn_request)
2361 	 * and do most of the work that tcp_accept_finish does here itself
2362 	 * and then get behind the acceptor squeue to access the acceptor
2363 	 * queue.
2364 	 */
2365 	/*
2366 	 * We already have a ref on tcp so no need to do one before squeue_fill
2367 	 */
2368 	squeue_fill(eager->tcp_connp->conn_sqp, opt_mp,
2369 	    tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH);
2370 }
2371 
2372 /*
2373  * Swap information between the eager and acceptor for a TLI/XTI client.
2374  * The sockfs accept is done on the acceptor stream and control goes
2375  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2376  * called. In either case, both the eager and listener are in their own
2377  * perimeter (squeue) and the code has to deal with potential race.
2378  *
2379  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2380  */
2381 static void
2382 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2383 {
2384 	conn_t	*econnp, *aconnp;
2385 
2386 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2387 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2388 	ASSERT(!eager->tcp_hard_bound);
2389 	ASSERT(!TCP_IS_SOCKET(acceptor));
2390 	ASSERT(!TCP_IS_SOCKET(eager));
2391 	ASSERT(!TCP_IS_SOCKET(listener));
2392 
2393 	acceptor->tcp_detached = B_TRUE;
2394 	/*
2395 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2396 	 * the acceptor id.
2397 	 */
2398 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2399 
2400 	/* remove eager from listen list... */
2401 	mutex_enter(&listener->tcp_eager_lock);
2402 	tcp_eager_unlink(eager);
2403 	ASSERT(eager->tcp_eager_next_q == NULL &&
2404 	    eager->tcp_eager_last_q == NULL);
2405 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2406 	    eager->tcp_eager_prev_q0 == NULL);
2407 	mutex_exit(&listener->tcp_eager_lock);
2408 	eager->tcp_rq = acceptor->tcp_rq;
2409 	eager->tcp_wq = acceptor->tcp_wq;
2410 
2411 	econnp = eager->tcp_connp;
2412 	aconnp = acceptor->tcp_connp;
2413 
2414 	eager->tcp_rq->q_ptr = econnp;
2415 	eager->tcp_wq->q_ptr = econnp;
2416 
2417 	/*
2418 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2419 	 * which might be a different squeue from our peer TCP instance.
2420 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2421 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2422 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2423 	 * above reach global visibility prior to the clearing of tcp_detached.
2424 	 */
2425 	membar_producer();
2426 	eager->tcp_detached = B_FALSE;
2427 
2428 	ASSERT(eager->tcp_ack_tid == 0);
2429 
2430 	econnp->conn_dev = aconnp->conn_dev;
2431 	if (eager->tcp_cred != NULL)
2432 		crfree(eager->tcp_cred);
2433 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2434 	ASSERT(econnp->conn_netstack == aconnp->conn_netstack);
2435 	ASSERT(eager->tcp_tcps == acceptor->tcp_tcps);
2436 
2437 	aconnp->conn_cred = NULL;
2438 
2439 	econnp->conn_zoneid = aconnp->conn_zoneid;
2440 	econnp->conn_allzones = aconnp->conn_allzones;
2441 
2442 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2443 	aconnp->conn_mac_exempt = B_FALSE;
2444 
2445 	ASSERT(aconnp->conn_peercred == NULL);
2446 
2447 	/* Do the IPC initialization */
2448 	CONN_INC_REF(econnp);
2449 
2450 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2451 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2452 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2453 
2454 	/* Done with old IPC. Drop its ref on its connp */
2455 	CONN_DEC_REF(aconnp);
2456 }
2457 
2458 
2459 /*
2460  * Adapt to the information, such as rtt and rtt_sd, provided from the
2461  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2462  *
2463  * Checks for multicast and broadcast destination address.
2464  * Returns zero on failure; non-zero if ok.
2465  *
2466  * Note that the MSS calculation here is based on the info given in
2467  * the IRE.  We do not do any calculation based on TCP options.  They
2468  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2469  * knows which options to use.
2470  *
2471  * Note on how TCP gets its parameters for a connection.
2472  *
2473  * When a tcp_t structure is allocated, it gets all the default parameters.
2474  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2475  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2476  * default.  But if there is an associated tcp_host_param, it will override
2477  * the metrics.
2478  *
2479  * An incoming SYN with a multicast or broadcast destination address, is dropped
2480  * in 1 of 2 places.
2481  *
2482  * 1. If the packet was received over the wire it is dropped in
2483  * ip_rput_process_broadcast()
2484  *
2485  * 2. If the packet was received through internal IP loopback, i.e. the packet
2486  * was generated and received on the same machine, it is dropped in
2487  * ip_wput_local()
2488  *
2489  * An incoming SYN with a multicast or broadcast source address is always
2490  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2491  * reject an attempt to connect to a broadcast or multicast (destination)
2492  * address.
2493  */
2494 static int
2495 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2496 {
2497 	tcp_hsp_t	*hsp;
2498 	ire_t		*ire;
2499 	ire_t		*sire = NULL;
2500 	iulp_t		*ire_uinfo = NULL;
2501 	uint32_t	mss_max;
2502 	uint32_t	mss;
2503 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2504 	conn_t		*connp = tcp->tcp_connp;
2505 	boolean_t	ire_cacheable = B_FALSE;
2506 	zoneid_t	zoneid = connp->conn_zoneid;
2507 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2508 	    MATCH_IRE_SECATTR;
2509 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2510 	ill_t		*ill = NULL;
2511 	boolean_t	incoming = (ire_mp == NULL);
2512 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2513 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
2514 
2515 	ASSERT(connp->conn_ire_cache == NULL);
2516 
2517 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2518 
2519 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2520 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
2521 			return (0);
2522 		}
2523 		/*
2524 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2525 		 * for the destination with the nexthop as gateway.
2526 		 * ire_ctable_lookup() is used because this particular
2527 		 * ire, if it exists, will be marked private.
2528 		 * If that is not available, use the interface ire
2529 		 * for the nexthop.
2530 		 *
2531 		 * TSol: tcp_update_label will detect label mismatches based
2532 		 * only on the destination's label, but that would not
2533 		 * detect label mismatches based on the security attributes
2534 		 * of routes or next hop gateway. Hence we need to pass the
2535 		 * label to ire_ftable_lookup below in order to locate the
2536 		 * right prefix (and/or) ire cache. Similarly we also need
2537 		 * pass the label to the ire_cache_lookup below to locate
2538 		 * the right ire that also matches on the label.
2539 		 */
2540 		if (tcp->tcp_connp->conn_nexthop_set) {
2541 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2542 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2543 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW,
2544 			    ipst);
2545 			if (ire == NULL) {
2546 				ire = ire_ftable_lookup(
2547 				    tcp->tcp_connp->conn_nexthop_v4,
2548 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2549 				    tsl, match_flags, ipst);
2550 				if (ire == NULL)
2551 					return (0);
2552 			} else {
2553 				ire_uinfo = &ire->ire_uinfo;
2554 			}
2555 		} else {
2556 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2557 			    zoneid, tsl, ipst);
2558 			if (ire != NULL) {
2559 				ire_cacheable = B_TRUE;
2560 				ire_uinfo = (ire_mp != NULL) ?
2561 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2562 				    &ire->ire_uinfo;
2563 
2564 			} else {
2565 				if (ire_mp == NULL) {
2566 					ire = ire_ftable_lookup(
2567 					    tcp->tcp_connp->conn_rem,
2568 					    0, 0, 0, NULL, &sire, zoneid, 0,
2569 					    tsl, (MATCH_IRE_RECURSIVE |
2570 					    MATCH_IRE_DEFAULT), ipst);
2571 					if (ire == NULL)
2572 						return (0);
2573 					ire_uinfo = (sire != NULL) ?
2574 					    &sire->ire_uinfo :
2575 					    &ire->ire_uinfo;
2576 				} else {
2577 					ire = (ire_t *)ire_mp->b_rptr;
2578 					ire_uinfo =
2579 					    &((ire_t *)
2580 					    ire_mp->b_rptr)->ire_uinfo;
2581 				}
2582 			}
2583 		}
2584 		ASSERT(ire != NULL);
2585 
2586 		if ((ire->ire_src_addr == INADDR_ANY) ||
2587 		    (ire->ire_type & IRE_BROADCAST)) {
2588 			/*
2589 			 * ire->ire_mp is non null when ire_mp passed in is used
2590 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2591 			 */
2592 			if (ire->ire_mp == NULL)
2593 				ire_refrele(ire);
2594 			if (sire != NULL)
2595 				ire_refrele(sire);
2596 			return (0);
2597 		}
2598 
2599 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2600 			ipaddr_t src_addr;
2601 
2602 			/*
2603 			 * ip_bind_connected() has stored the correct source
2604 			 * address in conn_src.
2605 			 */
2606 			src_addr = tcp->tcp_connp->conn_src;
2607 			tcp->tcp_ipha->ipha_src = src_addr;
2608 			/*
2609 			 * Copy of the src addr. in tcp_t is needed
2610 			 * for the lookup funcs.
2611 			 */
2612 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2613 		}
2614 		/*
2615 		 * Set the fragment bit so that IP will tell us if the MTU
2616 		 * should change. IP tells us the latest setting of
2617 		 * ip_path_mtu_discovery through ire_frag_flag.
2618 		 */
2619 		if (ipst->ips_ip_path_mtu_discovery) {
2620 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2621 			    htons(IPH_DF);
2622 		}
2623 		/*
2624 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2625 		 * for IP_NEXTHOP. No cache ire has been found for the
2626 		 * destination and we are working with the nexthop's
2627 		 * interface ire. Since we need to forward all packets
2628 		 * to the nexthop first, we "blindly" set tcp_localnet
2629 		 * to false, eventhough the destination may also be
2630 		 * onlink.
2631 		 */
2632 		if (ire_uinfo == NULL)
2633 			tcp->tcp_localnet = 0;
2634 		else
2635 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2636 	} else {
2637 		/*
2638 		 * For incoming connection ire_mp = NULL
2639 		 * For outgoing connection ire_mp != NULL
2640 		 * Technically we should check conn_incoming_ill
2641 		 * when ire_mp is NULL and conn_outgoing_ill when
2642 		 * ire_mp is non-NULL. But this is performance
2643 		 * critical path and for IPV*_BOUND_IF, outgoing
2644 		 * and incoming ill are always set to the same value.
2645 		 */
2646 		ill_t	*dst_ill = NULL;
2647 		ipif_t  *dst_ipif = NULL;
2648 
2649 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2650 
2651 		if (connp->conn_outgoing_ill != NULL) {
2652 			/* Outgoing or incoming path */
2653 			int   err;
2654 
2655 			dst_ill = conn_get_held_ill(connp,
2656 			    &connp->conn_outgoing_ill, &err);
2657 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2658 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2659 				return (0);
2660 			}
2661 			match_flags |= MATCH_IRE_ILL;
2662 			dst_ipif = dst_ill->ill_ipif;
2663 		}
2664 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2665 		    0, 0, dst_ipif, zoneid, tsl, match_flags, ipst);
2666 
2667 		if (ire != NULL) {
2668 			ire_cacheable = B_TRUE;
2669 			ire_uinfo = (ire_mp != NULL) ?
2670 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2671 			    &ire->ire_uinfo;
2672 		} else {
2673 			if (ire_mp == NULL) {
2674 				ire = ire_ftable_lookup_v6(
2675 				    &tcp->tcp_connp->conn_remv6,
2676 				    0, 0, 0, dst_ipif, &sire, zoneid,
2677 				    0, tsl, match_flags, ipst);
2678 				if (ire == NULL) {
2679 					if (dst_ill != NULL)
2680 						ill_refrele(dst_ill);
2681 					return (0);
2682 				}
2683 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2684 				    &ire->ire_uinfo;
2685 			} else {
2686 				ire = (ire_t *)ire_mp->b_rptr;
2687 				ire_uinfo =
2688 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2689 			}
2690 		}
2691 		if (dst_ill != NULL)
2692 			ill_refrele(dst_ill);
2693 
2694 		ASSERT(ire != NULL);
2695 		ASSERT(ire_uinfo != NULL);
2696 
2697 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2698 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2699 			/*
2700 			 * ire->ire_mp is non null when ire_mp passed in is used
2701 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2702 			 */
2703 			if (ire->ire_mp == NULL)
2704 				ire_refrele(ire);
2705 			if (sire != NULL)
2706 				ire_refrele(sire);
2707 			return (0);
2708 		}
2709 
2710 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2711 			in6_addr_t	src_addr;
2712 
2713 			/*
2714 			 * ip_bind_connected_v6() has stored the correct source
2715 			 * address per IPv6 addr. selection policy in
2716 			 * conn_src_v6.
2717 			 */
2718 			src_addr = tcp->tcp_connp->conn_srcv6;
2719 
2720 			tcp->tcp_ip6h->ip6_src = src_addr;
2721 			/*
2722 			 * Copy of the src addr. in tcp_t is needed
2723 			 * for the lookup funcs.
2724 			 */
2725 			tcp->tcp_ip_src_v6 = src_addr;
2726 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2727 			    &connp->conn_srcv6));
2728 		}
2729 		tcp->tcp_localnet =
2730 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2731 	}
2732 
2733 	/*
2734 	 * This allows applications to fail quickly when connections are made
2735 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2736 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2737 	 */
2738 	if ((ire->ire_flags & RTF_REJECT) &&
2739 	    (ire->ire_flags & RTF_PRIVATE))
2740 		goto error;
2741 
2742 	/*
2743 	 * Make use of the cached rtt and rtt_sd values to calculate the
2744 	 * initial RTO.  Note that they are already initialized in
2745 	 * tcp_init_values().
2746 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2747 	 * IP_NEXTHOP, but instead are using the interface ire for the
2748 	 * nexthop, then we do not use the ire_uinfo from that ire to
2749 	 * do any initializations.
2750 	 */
2751 	if (ire_uinfo != NULL) {
2752 		if (ire_uinfo->iulp_rtt != 0) {
2753 			clock_t	rto;
2754 
2755 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2756 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2757 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2758 			    tcps->tcps_rexmit_interval_extra +
2759 			    (tcp->tcp_rtt_sa >> 5);
2760 
2761 			if (rto > tcps->tcps_rexmit_interval_max) {
2762 				tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
2763 			} else if (rto < tcps->tcps_rexmit_interval_min) {
2764 				tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
2765 			} else {
2766 				tcp->tcp_rto = rto;
2767 			}
2768 		}
2769 		if (ire_uinfo->iulp_ssthresh != 0)
2770 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2771 		else
2772 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2773 		if (ire_uinfo->iulp_spipe > 0) {
2774 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2775 			    tcps->tcps_max_buf);
2776 			if (tcps->tcps_snd_lowat_fraction != 0)
2777 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2778 				    tcps->tcps_snd_lowat_fraction;
2779 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2780 		}
2781 		/*
2782 		 * Note that up till now, acceptor always inherits receive
2783 		 * window from the listener.  But if there is a metrics
2784 		 * associated with a host, we should use that instead of
2785 		 * inheriting it from listener. Thus we need to pass this
2786 		 * info back to the caller.
2787 		 */
2788 		if (ire_uinfo->iulp_rpipe > 0) {
2789 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe,
2790 			    tcps->tcps_max_buf);
2791 		}
2792 
2793 		if (ire_uinfo->iulp_rtomax > 0) {
2794 			tcp->tcp_second_timer_threshold =
2795 			    ire_uinfo->iulp_rtomax;
2796 		}
2797 
2798 		/*
2799 		 * Use the metric option settings, iulp_tstamp_ok and
2800 		 * iulp_wscale_ok, only for active open. What this means
2801 		 * is that if the other side uses timestamp or window
2802 		 * scale option, TCP will also use those options. That
2803 		 * is for passive open.  If the application sets a
2804 		 * large window, window scale is enabled regardless of
2805 		 * the value in iulp_wscale_ok.  This is the behavior
2806 		 * since 2.6.  So we keep it.
2807 		 * The only case left in passive open processing is the
2808 		 * check for SACK.
2809 		 * For ECN, it should probably be like SACK.  But the
2810 		 * current value is binary, so we treat it like the other
2811 		 * cases.  The metric only controls active open.For passive
2812 		 * open, the ndd param, tcp_ecn_permitted, controls the
2813 		 * behavior.
2814 		 */
2815 		if (!tcp_detached) {
2816 			/*
2817 			 * The if check means that the following can only
2818 			 * be turned on by the metrics only IRE, but not off.
2819 			 */
2820 			if (ire_uinfo->iulp_tstamp_ok)
2821 				tcp->tcp_snd_ts_ok = B_TRUE;
2822 			if (ire_uinfo->iulp_wscale_ok)
2823 				tcp->tcp_snd_ws_ok = B_TRUE;
2824 			if (ire_uinfo->iulp_sack == 2)
2825 				tcp->tcp_snd_sack_ok = B_TRUE;
2826 			if (ire_uinfo->iulp_ecn_ok)
2827 				tcp->tcp_ecn_ok = B_TRUE;
2828 		} else {
2829 			/*
2830 			 * Passive open.
2831 			 *
2832 			 * As above, the if check means that SACK can only be
2833 			 * turned on by the metric only IRE.
2834 			 */
2835 			if (ire_uinfo->iulp_sack > 0) {
2836 				tcp->tcp_snd_sack_ok = B_TRUE;
2837 			}
2838 		}
2839 	}
2840 
2841 
2842 	/*
2843 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2844 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2845 	 * length of all those options exceeds 28 bytes.  But because
2846 	 * of the tcp_mss_min check below, we may not have a problem if
2847 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2848 	 * the negative problem still exists.  And the check defeats PMTUd.
2849 	 * In fact, if PMTUd finds that the MSS should be smaller than
2850 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2851 	 * value.
2852 	 *
2853 	 * We do not deal with that now.  All those problems related to
2854 	 * PMTUd will be fixed later.
2855 	 */
2856 	ASSERT(ire->ire_max_frag != 0);
2857 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2858 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2859 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2860 			mss = MIN(mss, IPV6_MIN_MTU);
2861 		}
2862 	}
2863 
2864 	/* Sanity check for MSS value. */
2865 	if (tcp->tcp_ipversion == IPV4_VERSION)
2866 		mss_max = tcps->tcps_mss_max_ipv4;
2867 	else
2868 		mss_max = tcps->tcps_mss_max_ipv6;
2869 
2870 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2871 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2872 		/*
2873 		 * After receiving an ICMPv6 "packet too big" message with a
2874 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2875 		 * will insert a 8-byte fragment header in every packet; we
2876 		 * reduce the MSS by that amount here.
2877 		 */
2878 		mss -= sizeof (ip6_frag_t);
2879 	}
2880 
2881 	if (tcp->tcp_ipsec_overhead == 0)
2882 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2883 
2884 	mss -= tcp->tcp_ipsec_overhead;
2885 
2886 	if (mss < tcps->tcps_mss_min)
2887 		mss = tcps->tcps_mss_min;
2888 	if (mss > mss_max)
2889 		mss = mss_max;
2890 
2891 	/* Note that this is the maximum MSS, excluding all options. */
2892 	tcp->tcp_mss = mss;
2893 
2894 	/*
2895 	 * Initialize the ISS here now that we have the full connection ID.
2896 	 * The RFC 1948 method of initial sequence number generation requires
2897 	 * knowledge of the full connection ID before setting the ISS.
2898 	 */
2899 
2900 	tcp_iss_init(tcp);
2901 
2902 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2903 		tcp->tcp_loopback = B_TRUE;
2904 
2905 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2906 		hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps);
2907 	} else {
2908 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps);
2909 	}
2910 
2911 	if (hsp != NULL) {
2912 		/* Only modify if we're going to make them bigger */
2913 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2914 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2915 			if (tcps->tcps_snd_lowat_fraction != 0)
2916 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2917 				    tcps->tcps_snd_lowat_fraction;
2918 		}
2919 
2920 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2921 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2922 		}
2923 
2924 		/* Copy timestamp flag only for active open */
2925 		if (!tcp_detached)
2926 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
2927 	}
2928 
2929 	if (sire != NULL)
2930 		IRE_REFRELE(sire);
2931 
2932 	/*
2933 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2934 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2935 	 */
2936 	if (tcp->tcp_loopback ||
2937 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2938 		/*
2939 		 * For incoming, see if this tcp may be MDT-capable.  For
2940 		 * outgoing, this process has been taken care of through
2941 		 * tcp_rput_other.
2942 		 */
2943 		tcp_ire_ill_check(tcp, ire, ill, incoming);
2944 		tcp->tcp_ire_ill_check_done = B_TRUE;
2945 	}
2946 
2947 	mutex_enter(&connp->conn_lock);
2948 	/*
2949 	 * Make sure that conn is not marked incipient
2950 	 * for incoming connections. A blind
2951 	 * removal of incipient flag is cheaper than
2952 	 * check and removal.
2953 	 */
2954 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2955 
2956 	/*
2957 	 * Must not cache forwarding table routes
2958 	 * or recache an IRE after the conn_t has
2959 	 * had conn_ire_cache cleared and is flagged
2960 	 * unusable, (see the CONN_CACHE_IRE() macro).
2961 	 */
2962 	if (ire_cacheable && CONN_CACHE_IRE(connp)) {
2963 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
2964 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
2965 			connp->conn_ire_cache = ire;
2966 			IRE_UNTRACE_REF(ire);
2967 			rw_exit(&ire->ire_bucket->irb_lock);
2968 			mutex_exit(&connp->conn_lock);
2969 			return (1);
2970 		}
2971 		rw_exit(&ire->ire_bucket->irb_lock);
2972 	}
2973 	mutex_exit(&connp->conn_lock);
2974 
2975 	if (ire->ire_mp == NULL)
2976 		ire_refrele(ire);
2977 	return (1);
2978 
2979 error:
2980 	if (ire->ire_mp == NULL)
2981 		ire_refrele(ire);
2982 	if (sire != NULL)
2983 		ire_refrele(sire);
2984 	return (0);
2985 }
2986 
2987 /*
2988  * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a
2989  * O_T_BIND_REQ/T_BIND_REQ message.
2990  */
2991 static void
2992 tcp_bind(tcp_t *tcp, mblk_t *mp)
2993 {
2994 	sin_t	*sin;
2995 	sin6_t	*sin6;
2996 	mblk_t	*mp1;
2997 	in_port_t requested_port;
2998 	in_port_t allocated_port;
2999 	struct T_bind_req *tbr;
3000 	boolean_t	bind_to_req_port_only;
3001 	boolean_t	backlog_update = B_FALSE;
3002 	boolean_t	user_specified;
3003 	in6_addr_t	v6addr;
3004 	ipaddr_t	v4addr;
3005 	uint_t	origipversion;
3006 	int	err;
3007 	queue_t *q = tcp->tcp_wq;
3008 	conn_t	*connp = tcp->tcp_connp;
3009 	mlp_type_t addrtype, mlptype;
3010 	zone_t	*zone;
3011 	cred_t	*cr;
3012 	in_port_t mlp_port;
3013 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3014 
3015 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
3016 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
3017 		if (tcp->tcp_debug) {
3018 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3019 			    "tcp_bind: bad req, len %u",
3020 			    (uint_t)(mp->b_wptr - mp->b_rptr));
3021 		}
3022 		tcp_err_ack(tcp, mp, TPROTO, 0);
3023 		return;
3024 	}
3025 	/* Make sure the largest address fits */
3026 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3027 	if (mp1 == NULL) {
3028 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3029 		return;
3030 	}
3031 	mp = mp1;
3032 	tbr = (struct T_bind_req *)mp->b_rptr;
3033 	if (tcp->tcp_state >= TCPS_BOUND) {
3034 		if ((tcp->tcp_state == TCPS_BOUND ||
3035 		    tcp->tcp_state == TCPS_LISTEN) &&
3036 		    tcp->tcp_conn_req_max != tbr->CONIND_number &&
3037 		    tbr->CONIND_number > 0) {
3038 			/*
3039 			 * Handle listen() increasing CONIND_number.
3040 			 * This is more "liberal" then what the TPI spec
3041 			 * requires but is needed to avoid a t_unbind
3042 			 * when handling listen() since the port number
3043 			 * might be "stolen" between the unbind and bind.
3044 			 */
3045 			backlog_update = B_TRUE;
3046 			goto do_bind;
3047 		}
3048 		if (tcp->tcp_debug) {
3049 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3050 			    "tcp_bind: bad state, %d", tcp->tcp_state);
3051 		}
3052 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
3053 		return;
3054 	}
3055 	origipversion = tcp->tcp_ipversion;
3056 
3057 	switch (tbr->ADDR_length) {
3058 	case 0:			/* request for a generic port */
3059 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3060 		if (tcp->tcp_family == AF_INET) {
3061 			tbr->ADDR_length = sizeof (sin_t);
3062 			sin = (sin_t *)&tbr[1];
3063 			*sin = sin_null;
3064 			sin->sin_family = AF_INET;
3065 			mp->b_wptr = (uchar_t *)&sin[1];
3066 			tcp->tcp_ipversion = IPV4_VERSION;
3067 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
3068 		} else {
3069 			ASSERT(tcp->tcp_family == AF_INET6);
3070 			tbr->ADDR_length = sizeof (sin6_t);
3071 			sin6 = (sin6_t *)&tbr[1];
3072 			*sin6 = sin6_null;
3073 			sin6->sin6_family = AF_INET6;
3074 			mp->b_wptr = (uchar_t *)&sin6[1];
3075 			tcp->tcp_ipversion = IPV6_VERSION;
3076 			V6_SET_ZERO(v6addr);
3077 		}
3078 		requested_port = 0;
3079 		break;
3080 
3081 	case sizeof (sin_t):	/* Complete IPv4 address */
3082 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
3083 		    sizeof (sin_t));
3084 		if (sin == NULL || !OK_32PTR((char *)sin)) {
3085 			if (tcp->tcp_debug) {
3086 				(void) strlog(TCP_MOD_ID, 0, 1,
3087 				    SL_ERROR|SL_TRACE,
3088 				    "tcp_bind: bad address parameter, "
3089 				    "offset %d, len %d",
3090 				    tbr->ADDR_offset, tbr->ADDR_length);
3091 			}
3092 			tcp_err_ack(tcp, mp, TPROTO, 0);
3093 			return;
3094 		}
3095 		/*
3096 		 * With sockets sockfs will accept bogus sin_family in
3097 		 * bind() and replace it with the family used in the socket
3098 		 * call.
3099 		 */
3100 		if (sin->sin_family != AF_INET ||
3101 		    tcp->tcp_family != AF_INET) {
3102 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3103 			return;
3104 		}
3105 		requested_port = ntohs(sin->sin_port);
3106 		tcp->tcp_ipversion = IPV4_VERSION;
3107 		v4addr = sin->sin_addr.s_addr;
3108 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
3109 		break;
3110 
3111 	case sizeof (sin6_t): /* Complete IPv6 address */
3112 		sin6 = (sin6_t *)mi_offset_param(mp,
3113 		    tbr->ADDR_offset, sizeof (sin6_t));
3114 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
3115 			if (tcp->tcp_debug) {
3116 				(void) strlog(TCP_MOD_ID, 0, 1,
3117 				    SL_ERROR|SL_TRACE,
3118 				    "tcp_bind: bad IPv6 address parameter, "
3119 				    "offset %d, len %d", tbr->ADDR_offset,
3120 				    tbr->ADDR_length);
3121 			}
3122 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3123 			return;
3124 		}
3125 		if (sin6->sin6_family != AF_INET6 ||
3126 		    tcp->tcp_family != AF_INET6) {
3127 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3128 			return;
3129 		}
3130 		requested_port = ntohs(sin6->sin6_port);
3131 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
3132 		    IPV4_VERSION : IPV6_VERSION;
3133 		v6addr = sin6->sin6_addr;
3134 		break;
3135 
3136 	default:
3137 		if (tcp->tcp_debug) {
3138 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3139 			    "tcp_bind: bad address length, %d",
3140 			    tbr->ADDR_length);
3141 		}
3142 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3143 		return;
3144 	}
3145 	tcp->tcp_bound_source_v6 = v6addr;
3146 
3147 	/* Check for change in ipversion */
3148 	if (origipversion != tcp->tcp_ipversion) {
3149 		ASSERT(tcp->tcp_family == AF_INET6);
3150 		err = tcp->tcp_ipversion == IPV6_VERSION ?
3151 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
3152 		if (err) {
3153 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3154 			return;
3155 		}
3156 	}
3157 
3158 	/*
3159 	 * Initialize family specific fields. Copy of the src addr.
3160 	 * in tcp_t is needed for the lookup funcs.
3161 	 */
3162 	if (tcp->tcp_ipversion == IPV6_VERSION) {
3163 		tcp->tcp_ip6h->ip6_src = v6addr;
3164 	} else {
3165 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
3166 	}
3167 	tcp->tcp_ip_src_v6 = v6addr;
3168 
3169 	/*
3170 	 * For O_T_BIND_REQ:
3171 	 * Verify that the target port/addr is available, or choose
3172 	 * another.
3173 	 * For  T_BIND_REQ:
3174 	 * Verify that the target port/addr is available or fail.
3175 	 * In both cases when it succeeds the tcp is inserted in the
3176 	 * bind hash table. This ensures that the operation is atomic
3177 	 * under the lock on the hash bucket.
3178 	 */
3179 	bind_to_req_port_only = requested_port != 0 &&
3180 	    tbr->PRIM_type != O_T_BIND_REQ;
3181 	/*
3182 	 * Get a valid port (within the anonymous range and should not
3183 	 * be a privileged one) to use if the user has not given a port.
3184 	 * If multiple threads are here, they may all start with
3185 	 * with the same initial port. But, it should be fine as long as
3186 	 * tcp_bindi will ensure that no two threads will be assigned
3187 	 * the same port.
3188 	 *
3189 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
3190 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
3191 	 * unless TCP_ANONPRIVBIND option is set.
3192 	 */
3193 	mlptype = mlptSingle;
3194 	mlp_port = requested_port;
3195 	if (requested_port == 0) {
3196 		requested_port = tcp->tcp_anon_priv_bind ?
3197 		    tcp_get_next_priv_port(tcp) :
3198 		    tcp_update_next_port(tcps->tcps_next_port_to_try,
3199 		    tcp, B_TRUE);
3200 		if (requested_port == 0) {
3201 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3202 			return;
3203 		}
3204 		user_specified = B_FALSE;
3205 
3206 		/*
3207 		 * If the user went through one of the RPC interfaces to create
3208 		 * this socket and RPC is MLP in this zone, then give him an
3209 		 * anonymous MLP.
3210 		 */
3211 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3212 		if (connp->conn_anon_mlp && is_system_labeled()) {
3213 			zone = crgetzone(cr);
3214 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3215 			    IPV6_VERSION, &v6addr,
3216 			    tcps->tcps_netstack->netstack_ip);
3217 			if (addrtype == mlptSingle) {
3218 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3219 				return;
3220 			}
3221 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3222 			    PMAPPORT, addrtype);
3223 			mlp_port = PMAPPORT;
3224 		}
3225 	} else {
3226 		int i;
3227 		boolean_t priv = B_FALSE;
3228 
3229 		/*
3230 		 * If the requested_port is in the well-known privileged range,
3231 		 * verify that the stream was opened by a privileged user.
3232 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
3233 		 * but instead the code relies on:
3234 		 * - the fact that the address of the array and its size never
3235 		 *   changes
3236 		 * - the atomic assignment of the elements of the array
3237 		 */
3238 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3239 		if (requested_port < tcps->tcps_smallest_nonpriv_port) {
3240 			priv = B_TRUE;
3241 		} else {
3242 			for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
3243 				if (requested_port ==
3244 				    tcps->tcps_g_epriv_ports[i]) {
3245 					priv = B_TRUE;
3246 					break;
3247 				}
3248 			}
3249 		}
3250 		if (priv) {
3251 			if (secpolicy_net_privaddr(cr, requested_port) != 0) {
3252 				if (tcp->tcp_debug) {
3253 					(void) strlog(TCP_MOD_ID, 0, 1,
3254 					    SL_ERROR|SL_TRACE,
3255 					    "tcp_bind: no priv for port %d",
3256 					    requested_port);
3257 				}
3258 				tcp_err_ack(tcp, mp, TACCES, 0);
3259 				return;
3260 			}
3261 		}
3262 		user_specified = B_TRUE;
3263 
3264 		if (is_system_labeled()) {
3265 			zone = crgetzone(cr);
3266 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3267 			    IPV6_VERSION, &v6addr,
3268 			    tcps->tcps_netstack->netstack_ip);
3269 			if (addrtype == mlptSingle) {
3270 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3271 				return;
3272 			}
3273 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3274 			    requested_port, addrtype);
3275 		}
3276 	}
3277 
3278 	if (mlptype != mlptSingle) {
3279 		if (secpolicy_net_bindmlp(cr) != 0) {
3280 			if (tcp->tcp_debug) {
3281 				(void) strlog(TCP_MOD_ID, 0, 1,
3282 				    SL_ERROR|SL_TRACE,
3283 				    "tcp_bind: no priv for multilevel port %d",
3284 				    requested_port);
3285 			}
3286 			tcp_err_ack(tcp, mp, TACCES, 0);
3287 			return;
3288 		}
3289 
3290 		/*
3291 		 * If we're specifically binding a shared IP address and the
3292 		 * port is MLP on shared addresses, then check to see if this
3293 		 * zone actually owns the MLP.  Reject if not.
3294 		 */
3295 		if (mlptype == mlptShared && addrtype == mlptShared) {
3296 			/*
3297 			 * No need to handle exclusive-stack zones since
3298 			 * ALL_ZONES only applies to the shared stack.
3299 			 */
3300 			zoneid_t mlpzone;
3301 
3302 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
3303 			    htons(mlp_port));
3304 			if (connp->conn_zoneid != mlpzone) {
3305 				if (tcp->tcp_debug) {
3306 					(void) strlog(TCP_MOD_ID, 0, 1,
3307 					    SL_ERROR|SL_TRACE,
3308 					    "tcp_bind: attempt to bind port "
3309 					    "%d on shared addr in zone %d "
3310 					    "(should be %d)",
3311 					    mlp_port, connp->conn_zoneid,
3312 					    mlpzone);
3313 				}
3314 				tcp_err_ack(tcp, mp, TACCES, 0);
3315 				return;
3316 			}
3317 		}
3318 
3319 		if (!user_specified) {
3320 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3321 			    requested_port, B_TRUE);
3322 			if (err != 0) {
3323 				if (tcp->tcp_debug) {
3324 					(void) strlog(TCP_MOD_ID, 0, 1,
3325 					    SL_ERROR|SL_TRACE,
3326 					    "tcp_bind: cannot establish anon "
3327 					    "MLP for port %d",
3328 					    requested_port);
3329 				}
3330 				tcp_err_ack(tcp, mp, TSYSERR, err);
3331 				return;
3332 			}
3333 			connp->conn_anon_port = B_TRUE;
3334 		}
3335 		connp->conn_mlp_type = mlptype;
3336 	}
3337 
3338 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
3339 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
3340 
3341 	if (allocated_port == 0) {
3342 		connp->conn_mlp_type = mlptSingle;
3343 		if (connp->conn_anon_port) {
3344 			connp->conn_anon_port = B_FALSE;
3345 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3346 			    requested_port, B_FALSE);
3347 		}
3348 		if (bind_to_req_port_only) {
3349 			if (tcp->tcp_debug) {
3350 				(void) strlog(TCP_MOD_ID, 0, 1,
3351 				    SL_ERROR|SL_TRACE,
3352 				    "tcp_bind: requested addr busy");
3353 			}
3354 			tcp_err_ack(tcp, mp, TADDRBUSY, 0);
3355 		} else {
3356 			/* If we are out of ports, fail the bind. */
3357 			if (tcp->tcp_debug) {
3358 				(void) strlog(TCP_MOD_ID, 0, 1,
3359 				    SL_ERROR|SL_TRACE,
3360 				    "tcp_bind: out of ports?");
3361 			}
3362 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3363 		}
3364 		return;
3365 	}
3366 	ASSERT(tcp->tcp_state == TCPS_BOUND);
3367 do_bind:
3368 	if (!backlog_update) {
3369 		if (tcp->tcp_family == AF_INET)
3370 			sin->sin_port = htons(allocated_port);
3371 		else
3372 			sin6->sin6_port = htons(allocated_port);
3373 	}
3374 	if (tcp->tcp_family == AF_INET) {
3375 		if (tbr->CONIND_number != 0) {
3376 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3377 			    sizeof (sin_t));
3378 		} else {
3379 			/* Just verify the local IP address */
3380 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN);
3381 		}
3382 	} else {
3383 		if (tbr->CONIND_number != 0) {
3384 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3385 			    sizeof (sin6_t));
3386 		} else {
3387 			/* Just verify the local IP address */
3388 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3389 			    IPV6_ADDR_LEN);
3390 		}
3391 	}
3392 	if (mp1 == NULL) {
3393 		if (connp->conn_anon_port) {
3394 			connp->conn_anon_port = B_FALSE;
3395 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3396 			    requested_port, B_FALSE);
3397 		}
3398 		connp->conn_mlp_type = mlptSingle;
3399 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3400 		return;
3401 	}
3402 
3403 	tbr->PRIM_type = T_BIND_ACK;
3404 	mp->b_datap->db_type = M_PCPROTO;
3405 
3406 	/* Chain in the reply mp for tcp_rput() */
3407 	mp1->b_cont = mp;
3408 	mp = mp1;
3409 
3410 	tcp->tcp_conn_req_max = tbr->CONIND_number;
3411 	if (tcp->tcp_conn_req_max) {
3412 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
3413 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
3414 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
3415 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
3416 		/*
3417 		 * If this is a listener, do not reset the eager list
3418 		 * and other stuffs.  Note that we don't check if the
3419 		 * existing eager list meets the new tcp_conn_req_max
3420 		 * requirement.
3421 		 */
3422 		if (tcp->tcp_state != TCPS_LISTEN) {
3423 			tcp->tcp_state = TCPS_LISTEN;
3424 			/* Initialize the chain. Don't need the eager_lock */
3425 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
3426 			tcp->tcp_eager_next_drop_q0 = tcp;
3427 			tcp->tcp_eager_prev_drop_q0 = tcp;
3428 			tcp->tcp_second_ctimer_threshold =
3429 			    tcps->tcps_ip_abort_linterval;
3430 		}
3431 	}
3432 
3433 	/*
3434 	 * We can call ip_bind directly which returns a T_BIND_ACK mp. The
3435 	 * processing continues in tcp_rput_other().
3436 	 *
3437 	 * We need to make sure that the conn_recv is set to a non-null
3438 	 * value before we insert the conn into the classifier table.
3439 	 * This is to avoid a race with an incoming packet which does an
3440 	 * ipcl_classify().
3441 	 */
3442 	connp->conn_recv = tcp_conn_request;
3443 	if (tcp->tcp_family == AF_INET6) {
3444 		ASSERT(tcp->tcp_connp->conn_af_isv6);
3445 		mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp);
3446 	} else {
3447 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
3448 		mp = ip_bind_v4(q, mp, tcp->tcp_connp);
3449 	}
3450 	/*
3451 	 * If the bind cannot complete immediately
3452 	 * IP will arrange to call tcp_rput_other
3453 	 * when the bind completes.
3454 	 */
3455 	if (mp != NULL) {
3456 		tcp_rput_other(tcp, mp);
3457 	} else {
3458 		/*
3459 		 * Bind will be resumed later. Need to ensure
3460 		 * that conn doesn't disappear when that happens.
3461 		 * This will be decremented in ip_resume_tcp_bind().
3462 		 */
3463 		CONN_INC_REF(tcp->tcp_connp);
3464 	}
3465 }
3466 
3467 
3468 /*
3469  * If the "bind_to_req_port_only" parameter is set, if the requested port
3470  * number is available, return it, If not return 0
3471  *
3472  * If "bind_to_req_port_only" parameter is not set and
3473  * If the requested port number is available, return it.  If not, return
3474  * the first anonymous port we happen across.  If no anonymous ports are
3475  * available, return 0. addr is the requested local address, if any.
3476  *
3477  * In either case, when succeeding update the tcp_t to record the port number
3478  * and insert it in the bind hash table.
3479  *
3480  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3481  * without setting SO_REUSEADDR. This is needed so that they
3482  * can be viewed as two independent transport protocols.
3483  */
3484 static in_port_t
3485 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3486     int reuseaddr, boolean_t quick_connect,
3487     boolean_t bind_to_req_port_only, boolean_t user_specified)
3488 {
3489 	/* number of times we have run around the loop */
3490 	int count = 0;
3491 	/* maximum number of times to run around the loop */
3492 	int loopmax;
3493 	conn_t *connp = tcp->tcp_connp;
3494 	zoneid_t zoneid = connp->conn_zoneid;
3495 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3496 
3497 	/*
3498 	 * Lookup for free addresses is done in a loop and "loopmax"
3499 	 * influences how long we spin in the loop
3500 	 */
3501 	if (bind_to_req_port_only) {
3502 		/*
3503 		 * If the requested port is busy, don't bother to look
3504 		 * for a new one. Setting loop maximum count to 1 has
3505 		 * that effect.
3506 		 */
3507 		loopmax = 1;
3508 	} else {
3509 		/*
3510 		 * If the requested port is busy, look for a free one
3511 		 * in the anonymous port range.
3512 		 * Set loopmax appropriately so that one does not look
3513 		 * forever in the case all of the anonymous ports are in use.
3514 		 */
3515 		if (tcp->tcp_anon_priv_bind) {
3516 			/*
3517 			 * loopmax =
3518 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3519 			 */
3520 			loopmax = IPPORT_RESERVED -
3521 			    tcps->tcps_min_anonpriv_port;
3522 		} else {
3523 			loopmax = (tcps->tcps_largest_anon_port -
3524 			    tcps->tcps_smallest_anon_port + 1);
3525 		}
3526 	}
3527 	do {
3528 		uint16_t	lport;
3529 		tf_t		*tbf;
3530 		tcp_t		*ltcp;
3531 		conn_t		*lconnp;
3532 
3533 		lport = htons(port);
3534 
3535 		/*
3536 		 * Ensure that the tcp_t is not currently in the bind hash.
3537 		 * Hold the lock on the hash bucket to ensure that
3538 		 * the duplicate check plus the insertion is an atomic
3539 		 * operation.
3540 		 *
3541 		 * This function does an inline lookup on the bind hash list
3542 		 * Make sure that we access only members of tcp_t
3543 		 * and that we don't look at tcp_tcp, since we are not
3544 		 * doing a CONN_INC_REF.
3545 		 */
3546 		tcp_bind_hash_remove(tcp);
3547 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)];
3548 		mutex_enter(&tbf->tf_lock);
3549 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3550 		    ltcp = ltcp->tcp_bind_hash) {
3551 			boolean_t not_socket;
3552 			boolean_t exclbind;
3553 
3554 			if (lport != ltcp->tcp_lport)
3555 				continue;
3556 
3557 			lconnp = ltcp->tcp_connp;
3558 
3559 			/*
3560 			 * On a labeled system, we must treat bindings to ports
3561 			 * on shared IP addresses by sockets with MAC exemption
3562 			 * privilege as being in all zones, as there's
3563 			 * otherwise no way to identify the right receiver.
3564 			 */
3565 			if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) ||
3566 			    IPCL_ZONE_MATCH(connp,
3567 			    ltcp->tcp_connp->conn_zoneid)) &&
3568 			    !lconnp->conn_mac_exempt &&
3569 			    !connp->conn_mac_exempt)
3570 				continue;
3571 
3572 			/*
3573 			 * If TCP_EXCLBIND is set for either the bound or
3574 			 * binding endpoint, the semantics of bind
3575 			 * is changed according to the following.
3576 			 *
3577 			 * spec = specified address (v4 or v6)
3578 			 * unspec = unspecified address (v4 or v6)
3579 			 * A = specified addresses are different for endpoints
3580 			 *
3581 			 * bound	bind to		allowed
3582 			 * -------------------------------------
3583 			 * unspec	unspec		no
3584 			 * unspec	spec		no
3585 			 * spec		unspec		no
3586 			 * spec		spec		yes if A
3587 			 *
3588 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3589 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3590 			 *
3591 			 * Note:
3592 			 *
3593 			 * 1. Because of TLI semantics, an endpoint can go
3594 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3595 			 * TCPS_BOUND, depending on whether it is originally
3596 			 * a listener or not.  That is why we need to check
3597 			 * for states greater than or equal to TCPS_BOUND
3598 			 * here.
3599 			 *
3600 			 * 2. Ideally, we should only check for state equals
3601 			 * to TCPS_LISTEN. And the following check should be
3602 			 * added.
3603 			 *
3604 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3605 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3606 			 *		...
3607 			 * }
3608 			 *
3609 			 * The semantics will be changed to this.  If the
3610 			 * endpoint on the list is in state not equal to
3611 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3612 			 * set, let the bind succeed.
3613 			 *
3614 			 * Because of (1), we cannot do that for TLI
3615 			 * endpoints.  But we can do that for socket endpoints.
3616 			 * If in future, we can change this going back
3617 			 * semantics, we can use the above check for TLI also.
3618 			 */
3619 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3620 			    TCP_IS_SOCKET(tcp));
3621 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3622 
3623 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3624 			    (exclbind && (not_socket ||
3625 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3626 				if (V6_OR_V4_INADDR_ANY(
3627 				    ltcp->tcp_bound_source_v6) ||
3628 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3629 				    IN6_ARE_ADDR_EQUAL(laddr,
3630 				    &ltcp->tcp_bound_source_v6)) {
3631 					break;
3632 				}
3633 				continue;
3634 			}
3635 
3636 			/*
3637 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3638 			 * have disjoint port number spaces, if *_EXCLBIND
3639 			 * is not set and only if the application binds to a
3640 			 * specific port. We use the same autoassigned port
3641 			 * number space for IPv4 and IPv6 sockets.
3642 			 */
3643 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3644 			    bind_to_req_port_only)
3645 				continue;
3646 
3647 			/*
3648 			 * Ideally, we should make sure that the source
3649 			 * address, remote address, and remote port in the
3650 			 * four tuple for this tcp-connection is unique.
3651 			 * However, trying to find out the local source
3652 			 * address would require too much code duplication
3653 			 * with IP, since IP needs needs to have that code
3654 			 * to support userland TCP implementations.
3655 			 */
3656 			if (quick_connect &&
3657 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3658 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3659 			    !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3660 			    &ltcp->tcp_remote_v6)))
3661 				continue;
3662 
3663 			if (!reuseaddr) {
3664 				/*
3665 				 * No socket option SO_REUSEADDR.
3666 				 * If existing port is bound to
3667 				 * a non-wildcard IP address
3668 				 * and the requesting stream is
3669 				 * bound to a distinct
3670 				 * different IP addresses
3671 				 * (non-wildcard, also), keep
3672 				 * going.
3673 				 */
3674 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3675 				    !V6_OR_V4_INADDR_ANY(
3676 				    ltcp->tcp_bound_source_v6) &&
3677 				    !IN6_ARE_ADDR_EQUAL(laddr,
3678 				    &ltcp->tcp_bound_source_v6))
3679 					continue;
3680 				if (ltcp->tcp_state >= TCPS_BOUND) {
3681 					/*
3682 					 * This port is being used and
3683 					 * its state is >= TCPS_BOUND,
3684 					 * so we can't bind to it.
3685 					 */
3686 					break;
3687 				}
3688 			} else {
3689 				/*
3690 				 * socket option SO_REUSEADDR is set on the
3691 				 * binding tcp_t.
3692 				 *
3693 				 * If two streams are bound to
3694 				 * same IP address or both addr
3695 				 * and bound source are wildcards
3696 				 * (INADDR_ANY), we want to stop
3697 				 * searching.
3698 				 * We have found a match of IP source
3699 				 * address and source port, which is
3700 				 * refused regardless of the
3701 				 * SO_REUSEADDR setting, so we break.
3702 				 */
3703 				if (IN6_ARE_ADDR_EQUAL(laddr,
3704 				    &ltcp->tcp_bound_source_v6) &&
3705 				    (ltcp->tcp_state == TCPS_LISTEN ||
3706 				    ltcp->tcp_state == TCPS_BOUND))
3707 					break;
3708 			}
3709 		}
3710 		if (ltcp != NULL) {
3711 			/* The port number is busy */
3712 			mutex_exit(&tbf->tf_lock);
3713 		} else {
3714 			/*
3715 			 * This port is ours. Insert in fanout and mark as
3716 			 * bound to prevent others from getting the port
3717 			 * number.
3718 			 */
3719 			tcp->tcp_state = TCPS_BOUND;
3720 			tcp->tcp_lport = htons(port);
3721 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3722 
3723 			ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH(
3724 			    tcp->tcp_lport)] == tbf);
3725 			tcp_bind_hash_insert(tbf, tcp, 1);
3726 
3727 			mutex_exit(&tbf->tf_lock);
3728 
3729 			/*
3730 			 * We don't want tcp_next_port_to_try to "inherit"
3731 			 * a port number supplied by the user in a bind.
3732 			 */
3733 			if (user_specified)
3734 				return (port);
3735 
3736 			/*
3737 			 * This is the only place where tcp_next_port_to_try
3738 			 * is updated. After the update, it may or may not
3739 			 * be in the valid range.
3740 			 */
3741 			if (!tcp->tcp_anon_priv_bind)
3742 				tcps->tcps_next_port_to_try = port + 1;
3743 			return (port);
3744 		}
3745 
3746 		if (tcp->tcp_anon_priv_bind) {
3747 			port = tcp_get_next_priv_port(tcp);
3748 		} else {
3749 			if (count == 0 && user_specified) {
3750 				/*
3751 				 * We may have to return an anonymous port. So
3752 				 * get one to start with.
3753 				 */
3754 				port =
3755 				    tcp_update_next_port(
3756 				    tcps->tcps_next_port_to_try,
3757 				    tcp, B_TRUE);
3758 				user_specified = B_FALSE;
3759 			} else {
3760 				port = tcp_update_next_port(port + 1, tcp,
3761 				    B_FALSE);
3762 			}
3763 		}
3764 		if (port == 0)
3765 			break;
3766 
3767 		/*
3768 		 * Don't let this loop run forever in the case where
3769 		 * all of the anonymous ports are in use.
3770 		 */
3771 	} while (++count < loopmax);
3772 	return (0);
3773 }
3774 
3775 /*
3776  * tcp_clean_death / tcp_close_detached must not be called more than once
3777  * on a tcp. Thus every function that potentially calls tcp_clean_death
3778  * must check for the tcp state before calling tcp_clean_death.
3779  * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper,
3780  * tcp_timer_handler, all check for the tcp state.
3781  */
3782 /* ARGSUSED */
3783 void
3784 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2)
3785 {
3786 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
3787 
3788 	freemsg(mp);
3789 	if (tcp->tcp_state > TCPS_BOUND)
3790 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp,
3791 		    ETIMEDOUT, 5);
3792 }
3793 
3794 /*
3795  * We are dying for some reason.  Try to do it gracefully.  (May be called
3796  * as writer.)
3797  *
3798  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3799  * done by a service procedure).
3800  * TBD - Should the return value distinguish between the tcp_t being
3801  * freed and it being reinitialized?
3802  */
3803 static int
3804 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3805 {
3806 	mblk_t	*mp;
3807 	queue_t	*q;
3808 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3809 
3810 	TCP_CLD_STAT(tag);
3811 
3812 #if TCP_TAG_CLEAN_DEATH
3813 	tcp->tcp_cleandeathtag = tag;
3814 #endif
3815 
3816 	if (tcp->tcp_fused)
3817 		tcp_unfuse(tcp);
3818 
3819 	if (tcp->tcp_linger_tid != 0 &&
3820 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3821 		tcp_stop_lingering(tcp);
3822 	}
3823 
3824 	ASSERT(tcp != NULL);
3825 	ASSERT((tcp->tcp_family == AF_INET &&
3826 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3827 	    (tcp->tcp_family == AF_INET6 &&
3828 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3829 	    tcp->tcp_ipversion == IPV6_VERSION)));
3830 
3831 	if (TCP_IS_DETACHED(tcp)) {
3832 		if (tcp->tcp_hard_binding) {
3833 			/*
3834 			 * Its an eager that we are dealing with. We close the
3835 			 * eager but in case a conn_ind has already gone to the
3836 			 * listener, let tcp_accept_finish() send a discon_ind
3837 			 * to the listener and drop the last reference. If the
3838 			 * listener doesn't even know about the eager i.e. the
3839 			 * conn_ind hasn't gone up, blow away the eager and drop
3840 			 * the last reference as well. If the conn_ind has gone
3841 			 * up, state should be BOUND. tcp_accept_finish
3842 			 * will figure out that the connection has received a
3843 			 * RST and will send a DISCON_IND to the application.
3844 			 */
3845 			tcp_closei_local(tcp);
3846 			if (!tcp->tcp_tconnind_started) {
3847 				CONN_DEC_REF(tcp->tcp_connp);
3848 			} else {
3849 				tcp->tcp_state = TCPS_BOUND;
3850 			}
3851 		} else {
3852 			tcp_close_detached(tcp);
3853 		}
3854 		return (0);
3855 	}
3856 
3857 	TCP_STAT(tcps, tcp_clean_death_nondetached);
3858 
3859 	/*
3860 	 * If T_ORDREL_IND has not been sent yet (done when service routine
3861 	 * is run) postpone cleaning up the endpoint until service routine
3862 	 * has sent up the T_ORDREL_IND. Avoid clearing out an existing
3863 	 * client_errno since tcp_close uses the client_errno field.
3864 	 */
3865 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
3866 		if (err != 0)
3867 			tcp->tcp_client_errno = err;
3868 
3869 		tcp->tcp_deferred_clean_death = B_TRUE;
3870 		return (-1);
3871 	}
3872 
3873 	q = tcp->tcp_rq;
3874 
3875 	/* Trash all inbound data */
3876 	flushq(q, FLUSHALL);
3877 
3878 	/*
3879 	 * If we are at least part way open and there is error
3880 	 * (err==0 implies no error)
3881 	 * notify our client by a T_DISCON_IND.
3882 	 */
3883 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3884 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3885 		    !TCP_IS_SOCKET(tcp)) {
3886 			/*
3887 			 * Send M_FLUSH according to TPI. Because sockets will
3888 			 * (and must) ignore FLUSHR we do that only for TPI
3889 			 * endpoints and sockets in STREAMS mode.
3890 			 */
3891 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3892 		}
3893 		if (tcp->tcp_debug) {
3894 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3895 			    "tcp_clean_death: discon err %d", err);
3896 		}
3897 		mp = mi_tpi_discon_ind(NULL, err, 0);
3898 		if (mp != NULL) {
3899 			putnext(q, mp);
3900 		} else {
3901 			if (tcp->tcp_debug) {
3902 				(void) strlog(TCP_MOD_ID, 0, 1,
3903 				    SL_ERROR|SL_TRACE,
3904 				    "tcp_clean_death, sending M_ERROR");
3905 			}
3906 			(void) putnextctl1(q, M_ERROR, EPROTO);
3907 		}
3908 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3909 			/* SYN_SENT or SYN_RCVD */
3910 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3911 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3912 			/* ESTABLISHED or CLOSE_WAIT */
3913 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3914 		}
3915 	}
3916 
3917 	tcp_reinit(tcp);
3918 	return (-1);
3919 }
3920 
3921 /*
3922  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3923  * to expire, stop the wait and finish the close.
3924  */
3925 static void
3926 tcp_stop_lingering(tcp_t *tcp)
3927 {
3928 	clock_t	delta = 0;
3929 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3930 
3931 	tcp->tcp_linger_tid = 0;
3932 	if (tcp->tcp_state > TCPS_LISTEN) {
3933 		tcp_acceptor_hash_remove(tcp);
3934 		mutex_enter(&tcp->tcp_non_sq_lock);
3935 		if (tcp->tcp_flow_stopped) {
3936 			tcp_clrqfull(tcp);
3937 		}
3938 		mutex_exit(&tcp->tcp_non_sq_lock);
3939 
3940 		if (tcp->tcp_timer_tid != 0) {
3941 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3942 			tcp->tcp_timer_tid = 0;
3943 		}
3944 		/*
3945 		 * Need to cancel those timers which will not be used when
3946 		 * TCP is detached.  This has to be done before the tcp_wq
3947 		 * is set to the global queue.
3948 		 */
3949 		tcp_timers_stop(tcp);
3950 
3951 
3952 		tcp->tcp_detached = B_TRUE;
3953 		ASSERT(tcps->tcps_g_q != NULL);
3954 		tcp->tcp_rq = tcps->tcps_g_q;
3955 		tcp->tcp_wq = WR(tcps->tcps_g_q);
3956 
3957 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3958 			tcp_time_wait_append(tcp);
3959 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3960 			goto finish;
3961 		}
3962 
3963 		/*
3964 		 * If delta is zero the timer event wasn't executed and was
3965 		 * successfully canceled. In this case we need to restart it
3966 		 * with the minimal delta possible.
3967 		 */
3968 		if (delta >= 0) {
3969 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3970 			    delta ? delta : 1);
3971 		}
3972 	} else {
3973 		tcp_closei_local(tcp);
3974 		CONN_DEC_REF(tcp->tcp_connp);
3975 	}
3976 finish:
3977 	/* Signal closing thread that it can complete close */
3978 	mutex_enter(&tcp->tcp_closelock);
3979 	tcp->tcp_detached = B_TRUE;
3980 	ASSERT(tcps->tcps_g_q != NULL);
3981 	tcp->tcp_rq = tcps->tcps_g_q;
3982 	tcp->tcp_wq = WR(tcps->tcps_g_q);
3983 	tcp->tcp_closed = 1;
3984 	cv_signal(&tcp->tcp_closecv);
3985 	mutex_exit(&tcp->tcp_closelock);
3986 }
3987 
3988 /*
3989  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3990  * expires.
3991  */
3992 static void
3993 tcp_close_linger_timeout(void *arg)
3994 {
3995 	conn_t	*connp = (conn_t *)arg;
3996 	tcp_t 	*tcp = connp->conn_tcp;
3997 
3998 	tcp->tcp_client_errno = ETIMEDOUT;
3999 	tcp_stop_lingering(tcp);
4000 }
4001 
4002 static int
4003 tcp_close(queue_t *q, int flags)
4004 {
4005 	conn_t		*connp = Q_TO_CONN(q);
4006 	tcp_t		*tcp = connp->conn_tcp;
4007 	mblk_t 		*mp = &tcp->tcp_closemp;
4008 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4009 	mblk_t		*bp;
4010 
4011 	ASSERT(WR(q)->q_next == NULL);
4012 	ASSERT(connp->conn_ref >= 2);
4013 
4014 	/*
4015 	 * We are being closed as /dev/tcp or /dev/tcp6.
4016 	 *
4017 	 * Mark the conn as closing. ill_pending_mp_add will not
4018 	 * add any mp to the pending mp list, after this conn has
4019 	 * started closing. Same for sq_pending_mp_add
4020 	 */
4021 	mutex_enter(&connp->conn_lock);
4022 	connp->conn_state_flags |= CONN_CLOSING;
4023 	if (connp->conn_oper_pending_ill != NULL)
4024 		conn_ioctl_cleanup_reqd = B_TRUE;
4025 	CONN_INC_REF_LOCKED(connp);
4026 	mutex_exit(&connp->conn_lock);
4027 	tcp->tcp_closeflags = (uint8_t)flags;
4028 	ASSERT(connp->conn_ref >= 3);
4029 
4030 	/*
4031 	 * tcp_closemp_used is used below without any protection of a lock
4032 	 * as we don't expect any one else to use it concurrently at this
4033 	 * point otherwise it would be a major defect.
4034 	 */
4035 
4036 	if (mp->b_prev == NULL)
4037 		tcp->tcp_closemp_used = B_TRUE;
4038 	else
4039 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
4040 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
4041 
4042 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
4043 
4044 	(*tcp_squeue_close_proc)(connp->conn_sqp, mp,
4045 	    tcp_close_output, connp, SQTAG_IP_TCP_CLOSE);
4046 
4047 	mutex_enter(&tcp->tcp_closelock);
4048 	while (!tcp->tcp_closed) {
4049 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
4050 			/*
4051 			 * The cv_wait_sig() was interrupted. We now do the
4052 			 * following:
4053 			 *
4054 			 * 1) If the endpoint was lingering, we allow this
4055 			 * to be interrupted by cancelling the linger timeout
4056 			 * and closing normally.
4057 			 *
4058 			 * 2) Revert to calling cv_wait()
4059 			 *
4060 			 * We revert to using cv_wait() to avoid an
4061 			 * infinite loop which can occur if the calling
4062 			 * thread is higher priority than the squeue worker
4063 			 * thread and is bound to the same cpu.
4064 			 */
4065 			if (tcp->tcp_linger && tcp->tcp_lingertime > 0) {
4066 				mutex_exit(&tcp->tcp_closelock);
4067 				/* Entering squeue, bump ref count. */
4068 				CONN_INC_REF(connp);
4069 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
4070 				squeue_enter(connp->conn_sqp, bp,
4071 				    tcp_linger_interrupted, connp,
4072 				    SQTAG_IP_TCP_CLOSE);
4073 				mutex_enter(&tcp->tcp_closelock);
4074 			}
4075 			break;
4076 		}
4077 	}
4078 	while (!tcp->tcp_closed)
4079 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
4080 	mutex_exit(&tcp->tcp_closelock);
4081 
4082 	/*
4083 	 * In the case of listener streams that have eagers in the q or q0
4084 	 * we wait for the eagers to drop their reference to us. tcp_rq and
4085 	 * tcp_wq of the eagers point to our queues. By waiting for the
4086 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
4087 	 * up their queue pointers and also dropped their references to us.
4088 	 */
4089 	if (tcp->tcp_wait_for_eagers) {
4090 		mutex_enter(&connp->conn_lock);
4091 		while (connp->conn_ref != 1) {
4092 			cv_wait(&connp->conn_cv, &connp->conn_lock);
4093 		}
4094 		mutex_exit(&connp->conn_lock);
4095 	}
4096 	/*
4097 	 * ioctl cleanup. The mp is queued in the
4098 	 * ill_pending_mp or in the sq_pending_mp.
4099 	 */
4100 	if (conn_ioctl_cleanup_reqd)
4101 		conn_ioctl_cleanup(connp);
4102 
4103 	qprocsoff(q);
4104 	inet_minor_free(ip_minor_arena, connp->conn_dev);
4105 
4106 	tcp->tcp_cpid = -1;
4107 
4108 	/*
4109 	 * Drop IP's reference on the conn. This is the last reference
4110 	 * on the connp if the state was less than established. If the
4111 	 * connection has gone into timewait state, then we will have
4112 	 * one ref for the TCP and one more ref (total of two) for the
4113 	 * classifier connected hash list (a timewait connections stays
4114 	 * in connected hash till closed).
4115 	 *
4116 	 * We can't assert the references because there might be other
4117 	 * transient reference places because of some walkers or queued
4118 	 * packets in squeue for the timewait state.
4119 	 */
4120 	CONN_DEC_REF(connp);
4121 	q->q_ptr = WR(q)->q_ptr = NULL;
4122 	return (0);
4123 }
4124 
4125 static int
4126 tcpclose_accept(queue_t *q)
4127 {
4128 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
4129 
4130 	/*
4131 	 * We had opened an acceptor STREAM for sockfs which is
4132 	 * now being closed due to some error.
4133 	 */
4134 	qprocsoff(q);
4135 	inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr);
4136 	q->q_ptr = WR(q)->q_ptr = NULL;
4137 	return (0);
4138 }
4139 
4140 /*
4141  * Called by tcp_close() routine via squeue when lingering is
4142  * interrupted by a signal.
4143  */
4144 
4145 /* ARGSUSED */
4146 static void
4147 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2)
4148 {
4149 	conn_t	*connp = (conn_t *)arg;
4150 	tcp_t	*tcp = connp->conn_tcp;
4151 
4152 	freeb(mp);
4153 	if (tcp->tcp_linger_tid != 0 &&
4154 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
4155 		tcp_stop_lingering(tcp);
4156 		tcp->tcp_client_errno = EINTR;
4157 	}
4158 }
4159 
4160 /*
4161  * Called by streams close routine via squeues when our client blows off her
4162  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
4163  * connection politely" When SO_LINGER is set (with a non-zero linger time and
4164  * it is not a nonblocking socket) then this routine sleeps until the FIN is
4165  * acked.
4166  *
4167  * NOTE: tcp_close potentially returns error when lingering.
4168  * However, the stream head currently does not pass these errors
4169  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
4170  * errors to the application (from tsleep()) and not errors
4171  * like ECONNRESET caused by receiving a reset packet.
4172  */
4173 
4174 /* ARGSUSED */
4175 static void
4176 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
4177 {
4178 	char	*msg;
4179 	conn_t	*connp = (conn_t *)arg;
4180 	tcp_t	*tcp = connp->conn_tcp;
4181 	clock_t	delta = 0;
4182 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4183 
4184 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
4185 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
4186 
4187 	/* Cancel any pending timeout */
4188 	if (tcp->tcp_ordrelid != 0) {
4189 		if (tcp->tcp_timeout) {
4190 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid);
4191 		}
4192 		tcp->tcp_ordrelid = 0;
4193 		tcp->tcp_timeout = B_FALSE;
4194 	}
4195 
4196 	mutex_enter(&tcp->tcp_eager_lock);
4197 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
4198 		/* Cleanup for listener */
4199 		tcp_eager_cleanup(tcp, 0);
4200 		tcp->tcp_wait_for_eagers = 1;
4201 	}
4202 	mutex_exit(&tcp->tcp_eager_lock);
4203 
4204 	connp->conn_mdt_ok = B_FALSE;
4205 	tcp->tcp_mdt = B_FALSE;
4206 
4207 	connp->conn_lso_ok = B_FALSE;
4208 	tcp->tcp_lso = B_FALSE;
4209 
4210 	msg = NULL;
4211 	switch (tcp->tcp_state) {
4212 	case TCPS_CLOSED:
4213 	case TCPS_IDLE:
4214 	case TCPS_BOUND:
4215 	case TCPS_LISTEN:
4216 		break;
4217 	case TCPS_SYN_SENT:
4218 		msg = "tcp_close, during connect";
4219 		break;
4220 	case TCPS_SYN_RCVD:
4221 		/*
4222 		 * Close during the connect 3-way handshake
4223 		 * but here there may or may not be pending data
4224 		 * already on queue. Process almost same as in
4225 		 * the ESTABLISHED state.
4226 		 */
4227 		/* FALLTHRU */
4228 	default:
4229 		if (tcp->tcp_fused)
4230 			tcp_unfuse(tcp);
4231 
4232 		/*
4233 		 * If SO_LINGER has set a zero linger time, abort the
4234 		 * connection with a reset.
4235 		 */
4236 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
4237 			msg = "tcp_close, zero lingertime";
4238 			break;
4239 		}
4240 
4241 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
4242 		/*
4243 		 * Abort connection if there is unread data queued.
4244 		 */
4245 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
4246 			msg = "tcp_close, unread data";
4247 			break;
4248 		}
4249 		/*
4250 		 * tcp_hard_bound is now cleared thus all packets go through
4251 		 * tcp_lookup. This fact is used by tcp_detach below.
4252 		 *
4253 		 * We have done a qwait() above which could have possibly
4254 		 * drained more messages in turn causing transition to a
4255 		 * different state. Check whether we have to do the rest
4256 		 * of the processing or not.
4257 		 */
4258 		if (tcp->tcp_state <= TCPS_LISTEN)
4259 			break;
4260 
4261 		/*
4262 		 * Transmit the FIN before detaching the tcp_t.
4263 		 * After tcp_detach returns this queue/perimeter
4264 		 * no longer owns the tcp_t thus others can modify it.
4265 		 */
4266 		(void) tcp_xmit_end(tcp);
4267 
4268 		/*
4269 		 * If lingering on close then wait until the fin is acked,
4270 		 * the SO_LINGER time passes, or a reset is sent/received.
4271 		 */
4272 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
4273 		    !(tcp->tcp_fin_acked) &&
4274 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
4275 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
4276 				tcp->tcp_client_errno = EWOULDBLOCK;
4277 			} else if (tcp->tcp_client_errno == 0) {
4278 
4279 				ASSERT(tcp->tcp_linger_tid == 0);
4280 
4281 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
4282 				    tcp_close_linger_timeout,
4283 				    tcp->tcp_lingertime * hz);
4284 
4285 				/* tcp_close_linger_timeout will finish close */
4286 				if (tcp->tcp_linger_tid == 0)
4287 					tcp->tcp_client_errno = ENOSR;
4288 				else
4289 					return;
4290 			}
4291 
4292 			/*
4293 			 * Check if we need to detach or just close
4294 			 * the instance.
4295 			 */
4296 			if (tcp->tcp_state <= TCPS_LISTEN)
4297 				break;
4298 		}
4299 
4300 		/*
4301 		 * Make sure that no other thread will access the tcp_rq of
4302 		 * this instance (through lookups etc.) as tcp_rq will go
4303 		 * away shortly.
4304 		 */
4305 		tcp_acceptor_hash_remove(tcp);
4306 
4307 		mutex_enter(&tcp->tcp_non_sq_lock);
4308 		if (tcp->tcp_flow_stopped) {
4309 			tcp_clrqfull(tcp);
4310 		}
4311 		mutex_exit(&tcp->tcp_non_sq_lock);
4312 
4313 		if (tcp->tcp_timer_tid != 0) {
4314 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4315 			tcp->tcp_timer_tid = 0;
4316 		}
4317 		/*
4318 		 * Need to cancel those timers which will not be used when
4319 		 * TCP is detached.  This has to be done before the tcp_wq
4320 		 * is set to the global queue.
4321 		 */
4322 		tcp_timers_stop(tcp);
4323 
4324 		tcp->tcp_detached = B_TRUE;
4325 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4326 			tcp_time_wait_append(tcp);
4327 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
4328 			ASSERT(connp->conn_ref >= 3);
4329 			goto finish;
4330 		}
4331 
4332 		/*
4333 		 * If delta is zero the timer event wasn't executed and was
4334 		 * successfully canceled. In this case we need to restart it
4335 		 * with the minimal delta possible.
4336 		 */
4337 		if (delta >= 0)
4338 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4339 			    delta ? delta : 1);
4340 
4341 		ASSERT(connp->conn_ref >= 3);
4342 		goto finish;
4343 	}
4344 
4345 	/* Detach did not complete. Still need to remove q from stream. */
4346 	if (msg) {
4347 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4348 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4349 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
4350 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4351 		    tcp->tcp_state == TCPS_SYN_RCVD)
4352 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
4353 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4354 	}
4355 
4356 	tcp_closei_local(tcp);
4357 	CONN_DEC_REF(connp);
4358 	ASSERT(connp->conn_ref >= 2);
4359 
4360 finish:
4361 	/*
4362 	 * Although packets are always processed on the correct
4363 	 * tcp's perimeter and access is serialized via squeue's,
4364 	 * IP still needs a queue when sending packets in time_wait
4365 	 * state so use WR(tcps_g_q) till ip_output() can be
4366 	 * changed to deal with just connp. For read side, we
4367 	 * could have set tcp_rq to NULL but there are some cases
4368 	 * in tcp_rput_data() from early days of this code which
4369 	 * do a putnext without checking if tcp is closed. Those
4370 	 * need to be identified before both tcp_rq and tcp_wq
4371 	 * can be set to NULL and tcps_g_q can disappear forever.
4372 	 */
4373 	mutex_enter(&tcp->tcp_closelock);
4374 	/*
4375 	 * Don't change the queues in the case of a listener that has
4376 	 * eagers in its q or q0. It could surprise the eagers.
4377 	 * Instead wait for the eagers outside the squeue.
4378 	 */
4379 	if (!tcp->tcp_wait_for_eagers) {
4380 		tcp->tcp_detached = B_TRUE;
4381 		/*
4382 		 * When default queue is closing we set tcps_g_q to NULL
4383 		 * after the close is done.
4384 		 */
4385 		ASSERT(tcps->tcps_g_q != NULL);
4386 		tcp->tcp_rq = tcps->tcps_g_q;
4387 		tcp->tcp_wq = WR(tcps->tcps_g_q);
4388 	}
4389 
4390 	/* Signal tcp_close() to finish closing. */
4391 	tcp->tcp_closed = 1;
4392 	cv_signal(&tcp->tcp_closecv);
4393 	mutex_exit(&tcp->tcp_closelock);
4394 }
4395 
4396 
4397 /*
4398  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4399  * Some stream heads get upset if they see these later on as anything but NULL.
4400  */
4401 static void
4402 tcp_close_mpp(mblk_t **mpp)
4403 {
4404 	mblk_t	*mp;
4405 
4406 	if ((mp = *mpp) != NULL) {
4407 		do {
4408 			mp->b_next = NULL;
4409 			mp->b_prev = NULL;
4410 		} while ((mp = mp->b_cont) != NULL);
4411 
4412 		mp = *mpp;
4413 		*mpp = NULL;
4414 		freemsg(mp);
4415 	}
4416 }
4417 
4418 /* Do detached close. */
4419 static void
4420 tcp_close_detached(tcp_t *tcp)
4421 {
4422 	if (tcp->tcp_fused)
4423 		tcp_unfuse(tcp);
4424 
4425 	/*
4426 	 * Clustering code serializes TCP disconnect callbacks and
4427 	 * cluster tcp list walks by blocking a TCP disconnect callback
4428 	 * if a cluster tcp list walk is in progress. This ensures
4429 	 * accurate accounting of TCPs in the cluster code even though
4430 	 * the TCP list walk itself is not atomic.
4431 	 */
4432 	tcp_closei_local(tcp);
4433 	CONN_DEC_REF(tcp->tcp_connp);
4434 }
4435 
4436 /*
4437  * Stop all TCP timers, and free the timer mblks if requested.
4438  */
4439 void
4440 tcp_timers_stop(tcp_t *tcp)
4441 {
4442 	if (tcp->tcp_timer_tid != 0) {
4443 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4444 		tcp->tcp_timer_tid = 0;
4445 	}
4446 	if (tcp->tcp_ka_tid != 0) {
4447 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4448 		tcp->tcp_ka_tid = 0;
4449 	}
4450 	if (tcp->tcp_ack_tid != 0) {
4451 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4452 		tcp->tcp_ack_tid = 0;
4453 	}
4454 	if (tcp->tcp_push_tid != 0) {
4455 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4456 		tcp->tcp_push_tid = 0;
4457 	}
4458 }
4459 
4460 /*
4461  * The tcp_t is going away. Remove it from all lists and set it
4462  * to TCPS_CLOSED. The freeing up of memory is deferred until
4463  * tcp_inactive. This is needed since a thread in tcp_rput might have
4464  * done a CONN_INC_REF on this structure before it was removed from the
4465  * hashes.
4466  */
4467 static void
4468 tcp_closei_local(tcp_t *tcp)
4469 {
4470 	ire_t 	*ire;
4471 	conn_t	*connp = tcp->tcp_connp;
4472 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4473 
4474 	if (!TCP_IS_SOCKET(tcp))
4475 		tcp_acceptor_hash_remove(tcp);
4476 
4477 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
4478 	tcp->tcp_ibsegs = 0;
4479 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
4480 	tcp->tcp_obsegs = 0;
4481 
4482 	/*
4483 	 * If we are an eager connection hanging off a listener that
4484 	 * hasn't formally accepted the connection yet, get off his
4485 	 * list and blow off any data that we have accumulated.
4486 	 */
4487 	if (tcp->tcp_listener != NULL) {
4488 		tcp_t	*listener = tcp->tcp_listener;
4489 		mutex_enter(&listener->tcp_eager_lock);
4490 		/*
4491 		 * tcp_tconnind_started == B_TRUE means that the
4492 		 * conn_ind has already gone to listener. At
4493 		 * this point, eager will be closed but we
4494 		 * leave it in listeners eager list so that
4495 		 * if listener decides to close without doing
4496 		 * accept, we can clean this up. In tcp_wput_accept
4497 		 * we take care of the case of accept on closed
4498 		 * eager.
4499 		 */
4500 		if (!tcp->tcp_tconnind_started) {
4501 			tcp_eager_unlink(tcp);
4502 			mutex_exit(&listener->tcp_eager_lock);
4503 			/*
4504 			 * We don't want to have any pointers to the
4505 			 * listener queue, after we have released our
4506 			 * reference on the listener
4507 			 */
4508 			ASSERT(tcps->tcps_g_q != NULL);
4509 			tcp->tcp_rq = tcps->tcps_g_q;
4510 			tcp->tcp_wq = WR(tcps->tcps_g_q);
4511 			CONN_DEC_REF(listener->tcp_connp);
4512 		} else {
4513 			mutex_exit(&listener->tcp_eager_lock);
4514 		}
4515 	}
4516 
4517 	/* Stop all the timers */
4518 	tcp_timers_stop(tcp);
4519 
4520 	if (tcp->tcp_state == TCPS_LISTEN) {
4521 		if (tcp->tcp_ip_addr_cache) {
4522 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4523 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4524 			tcp->tcp_ip_addr_cache = NULL;
4525 		}
4526 	}
4527 	mutex_enter(&tcp->tcp_non_sq_lock);
4528 	if (tcp->tcp_flow_stopped)
4529 		tcp_clrqfull(tcp);
4530 	mutex_exit(&tcp->tcp_non_sq_lock);
4531 
4532 	tcp_bind_hash_remove(tcp);
4533 	/*
4534 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4535 	 * is trying to remove this tcp from the time wait list, we will
4536 	 * block in tcp_time_wait_remove while trying to acquire the
4537 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4538 	 * requires the ipcl_hash_remove to be ordered after the
4539 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4540 	 */
4541 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4542 		(void) tcp_time_wait_remove(tcp, NULL);
4543 	CL_INET_DISCONNECT(tcp);
4544 	ipcl_hash_remove(connp);
4545 
4546 	/*
4547 	 * Delete the cached ire in conn_ire_cache and also mark
4548 	 * the conn as CONDEMNED
4549 	 */
4550 	mutex_enter(&connp->conn_lock);
4551 	connp->conn_state_flags |= CONN_CONDEMNED;
4552 	ire = connp->conn_ire_cache;
4553 	connp->conn_ire_cache = NULL;
4554 	mutex_exit(&connp->conn_lock);
4555 	if (ire != NULL)
4556 		IRE_REFRELE_NOTR(ire);
4557 
4558 	/* Need to cleanup any pending ioctls */
4559 	ASSERT(tcp->tcp_time_wait_next == NULL);
4560 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4561 	ASSERT(tcp->tcp_time_wait_expire == 0);
4562 	tcp->tcp_state = TCPS_CLOSED;
4563 
4564 	/* Release any SSL context */
4565 	if (tcp->tcp_kssl_ent != NULL) {
4566 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4567 		tcp->tcp_kssl_ent = NULL;
4568 	}
4569 	if (tcp->tcp_kssl_ctx != NULL) {
4570 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4571 		tcp->tcp_kssl_ctx = NULL;
4572 	}
4573 	tcp->tcp_kssl_pending = B_FALSE;
4574 
4575 	tcp_ipsec_cleanup(tcp);
4576 }
4577 
4578 /*
4579  * tcp is dying (called from ipcl_conn_destroy and error cases).
4580  * Free the tcp_t in either case.
4581  */
4582 void
4583 tcp_free(tcp_t *tcp)
4584 {
4585 	mblk_t	*mp;
4586 	ip6_pkt_t	*ipp;
4587 
4588 	ASSERT(tcp != NULL);
4589 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4590 
4591 	tcp->tcp_rq = NULL;
4592 	tcp->tcp_wq = NULL;
4593 
4594 	tcp_close_mpp(&tcp->tcp_xmit_head);
4595 	tcp_close_mpp(&tcp->tcp_reass_head);
4596 	if (tcp->tcp_rcv_list != NULL) {
4597 		/* Free b_next chain */
4598 		tcp_close_mpp(&tcp->tcp_rcv_list);
4599 	}
4600 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4601 		freemsg(mp);
4602 	}
4603 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4604 		freemsg(mp);
4605 	}
4606 
4607 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4608 		freeb(tcp->tcp_fused_sigurg_mp);
4609 		tcp->tcp_fused_sigurg_mp = NULL;
4610 	}
4611 
4612 	if (tcp->tcp_sack_info != NULL) {
4613 		if (tcp->tcp_notsack_list != NULL) {
4614 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4615 		}
4616 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4617 	}
4618 
4619 	if (tcp->tcp_hopopts != NULL) {
4620 		mi_free(tcp->tcp_hopopts);
4621 		tcp->tcp_hopopts = NULL;
4622 		tcp->tcp_hopoptslen = 0;
4623 	}
4624 	ASSERT(tcp->tcp_hopoptslen == 0);
4625 	if (tcp->tcp_dstopts != NULL) {
4626 		mi_free(tcp->tcp_dstopts);
4627 		tcp->tcp_dstopts = NULL;
4628 		tcp->tcp_dstoptslen = 0;
4629 	}
4630 	ASSERT(tcp->tcp_dstoptslen == 0);
4631 	if (tcp->tcp_rtdstopts != NULL) {
4632 		mi_free(tcp->tcp_rtdstopts);
4633 		tcp->tcp_rtdstopts = NULL;
4634 		tcp->tcp_rtdstoptslen = 0;
4635 	}
4636 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4637 	if (tcp->tcp_rthdr != NULL) {
4638 		mi_free(tcp->tcp_rthdr);
4639 		tcp->tcp_rthdr = NULL;
4640 		tcp->tcp_rthdrlen = 0;
4641 	}
4642 	ASSERT(tcp->tcp_rthdrlen == 0);
4643 
4644 	ipp = &tcp->tcp_sticky_ipp;
4645 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4646 	    IPPF_RTHDR))
4647 		ip6_pkt_free(ipp);
4648 
4649 	/*
4650 	 * Free memory associated with the tcp/ip header template.
4651 	 */
4652 
4653 	if (tcp->tcp_iphc != NULL)
4654 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4655 
4656 	/*
4657 	 * Following is really a blowing away a union.
4658 	 * It happens to have exactly two members of identical size
4659 	 * the following code is enough.
4660 	 */
4661 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4662 
4663 	if (tcp->tcp_tracebuf != NULL) {
4664 		kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t));
4665 		tcp->tcp_tracebuf = NULL;
4666 	}
4667 }
4668 
4669 
4670 /*
4671  * Put a connection confirmation message upstream built from the
4672  * address information within 'iph' and 'tcph'.  Report our success or failure.
4673  */
4674 static boolean_t
4675 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4676     mblk_t **defermp)
4677 {
4678 	sin_t	sin;
4679 	sin6_t	sin6;
4680 	mblk_t	*mp;
4681 	char	*optp = NULL;
4682 	int	optlen = 0;
4683 	cred_t	*cr;
4684 
4685 	if (defermp != NULL)
4686 		*defermp = NULL;
4687 
4688 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4689 		/*
4690 		 * Return in T_CONN_CON results of option negotiation through
4691 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4692 		 * negotiation, then what is received from remote end needs
4693 		 * to be taken into account but there is no such thing (yet?)
4694 		 * in our TCP/IP.
4695 		 * Note: We do not use mi_offset_param() here as
4696 		 * tcp_opts_conn_req contents do not directly come from
4697 		 * an application and are either generated in kernel or
4698 		 * from user input that was already verified.
4699 		 */
4700 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4701 		optp = (char *)(mp->b_rptr +
4702 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4703 		optlen = (int)
4704 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4705 	}
4706 
4707 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4708 		ipha_t *ipha = (ipha_t *)iphdr;
4709 
4710 		/* packet is IPv4 */
4711 		if (tcp->tcp_family == AF_INET) {
4712 			sin = sin_null;
4713 			sin.sin_addr.s_addr = ipha->ipha_src;
4714 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4715 			sin.sin_family = AF_INET;
4716 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4717 			    (int)sizeof (sin_t), optp, optlen);
4718 		} else {
4719 			sin6 = sin6_null;
4720 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4721 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4722 			sin6.sin6_family = AF_INET6;
4723 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4724 			    (int)sizeof (sin6_t), optp, optlen);
4725 
4726 		}
4727 	} else {
4728 		ip6_t	*ip6h = (ip6_t *)iphdr;
4729 
4730 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4731 		ASSERT(tcp->tcp_family == AF_INET6);
4732 		sin6 = sin6_null;
4733 		sin6.sin6_addr = ip6h->ip6_src;
4734 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4735 		sin6.sin6_family = AF_INET6;
4736 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4737 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4738 		    (int)sizeof (sin6_t), optp, optlen);
4739 	}
4740 
4741 	if (!mp)
4742 		return (B_FALSE);
4743 
4744 	if ((cr = DB_CRED(idmp)) != NULL) {
4745 		mblk_setcred(mp, cr);
4746 		DB_CPID(mp) = DB_CPID(idmp);
4747 	}
4748 
4749 	if (defermp == NULL)
4750 		putnext(tcp->tcp_rq, mp);
4751 	else
4752 		*defermp = mp;
4753 
4754 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4755 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4756 	return (B_TRUE);
4757 }
4758 
4759 /*
4760  * Defense for the SYN attack -
4761  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
4762  *    one from the list of droppable eagers. This list is a subset of q0.
4763  *    see comments before the definition of MAKE_DROPPABLE().
4764  * 2. Don't drop a SYN request before its first timeout. This gives every
4765  *    request at least til the first timeout to complete its 3-way handshake.
4766  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4767  *    requests currently on the queue that has timed out. This will be used
4768  *    as an indicator of whether an attack is under way, so that appropriate
4769  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4770  *    either when eager goes into ESTABLISHED, or gets freed up.)
4771  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4772  *    # of timeout drops back to <= q0len/32 => SYN alert off
4773  */
4774 static boolean_t
4775 tcp_drop_q0(tcp_t *tcp)
4776 {
4777 	tcp_t	*eager;
4778 	mblk_t	*mp;
4779 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4780 
4781 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4782 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4783 
4784 	/* Pick oldest eager from the list of droppable eagers */
4785 	eager = tcp->tcp_eager_prev_drop_q0;
4786 
4787 	/* If list is empty. return B_FALSE */
4788 	if (eager == tcp) {
4789 		return (B_FALSE);
4790 	}
4791 
4792 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
4793 	if ((mp = allocb(0, BPRI_HI)) == NULL)
4794 		return (B_FALSE);
4795 
4796 	/*
4797 	 * Take this eager out from the list of droppable eagers since we are
4798 	 * going to drop it.
4799 	 */
4800 	MAKE_UNDROPPABLE(eager);
4801 
4802 	if (tcp->tcp_debug) {
4803 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4804 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4805 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
4806 		    tcp->tcp_conn_req_cnt_q0,
4807 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4808 	}
4809 
4810 	BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop);
4811 
4812 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
4813 	CONN_INC_REF(eager->tcp_connp);
4814 
4815 	/* Mark the IRE created for this SYN request temporary */
4816 	tcp_ip_ire_mark_advice(eager);
4817 	squeue_fill(eager->tcp_connp->conn_sqp, mp,
4818 	    tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0);
4819 
4820 	return (B_TRUE);
4821 }
4822 
4823 int
4824 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4825     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4826 {
4827 	tcp_t 		*ltcp = lconnp->conn_tcp;
4828 	tcp_t		*tcp = connp->conn_tcp;
4829 	mblk_t		*tpi_mp;
4830 	ipha_t		*ipha;
4831 	ip6_t		*ip6h;
4832 	sin6_t 		sin6;
4833 	in6_addr_t 	v6dst;
4834 	int		err;
4835 	int		ifindex = 0;
4836 	cred_t		*cr;
4837 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4838 
4839 	if (ipvers == IPV4_VERSION) {
4840 		ipha = (ipha_t *)mp->b_rptr;
4841 
4842 		connp->conn_send = ip_output;
4843 		connp->conn_recv = tcp_input;
4844 
4845 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4846 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4847 
4848 		sin6 = sin6_null;
4849 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4850 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4851 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4852 		sin6.sin6_family = AF_INET6;
4853 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4854 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4855 		if (tcp->tcp_recvdstaddr) {
4856 			sin6_t	sin6d;
4857 
4858 			sin6d = sin6_null;
4859 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4860 			    &sin6d.sin6_addr);
4861 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4862 			sin6d.sin6_family = AF_INET;
4863 			tpi_mp = mi_tpi_extconn_ind(NULL,
4864 			    (char *)&sin6d, sizeof (sin6_t),
4865 			    (char *)&tcp,
4866 			    (t_scalar_t)sizeof (intptr_t),
4867 			    (char *)&sin6d, sizeof (sin6_t),
4868 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4869 		} else {
4870 			tpi_mp = mi_tpi_conn_ind(NULL,
4871 			    (char *)&sin6, sizeof (sin6_t),
4872 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4873 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4874 		}
4875 	} else {
4876 		ip6h = (ip6_t *)mp->b_rptr;
4877 
4878 		connp->conn_send = ip_output_v6;
4879 		connp->conn_recv = tcp_input;
4880 
4881 		connp->conn_srcv6 = ip6h->ip6_dst;
4882 		connp->conn_remv6 = ip6h->ip6_src;
4883 
4884 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4885 		ifindex = (int)DB_CKSUMSTUFF(mp);
4886 		DB_CKSUMSTUFF(mp) = 0;
4887 
4888 		sin6 = sin6_null;
4889 		sin6.sin6_addr = ip6h->ip6_src;
4890 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4891 		sin6.sin6_family = AF_INET6;
4892 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4893 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4894 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4895 
4896 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4897 			/* Pass up the scope_id of remote addr */
4898 			sin6.sin6_scope_id = ifindex;
4899 		} else {
4900 			sin6.sin6_scope_id = 0;
4901 		}
4902 		if (tcp->tcp_recvdstaddr) {
4903 			sin6_t	sin6d;
4904 
4905 			sin6d = sin6_null;
4906 			sin6.sin6_addr = ip6h->ip6_dst;
4907 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4908 			sin6d.sin6_family = AF_INET;
4909 			tpi_mp = mi_tpi_extconn_ind(NULL,
4910 			    (char *)&sin6d, sizeof (sin6_t),
4911 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4912 			    (char *)&sin6d, sizeof (sin6_t),
4913 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4914 		} else {
4915 			tpi_mp = mi_tpi_conn_ind(NULL,
4916 			    (char *)&sin6, sizeof (sin6_t),
4917 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4918 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4919 		}
4920 	}
4921 
4922 	if (tpi_mp == NULL)
4923 		return (ENOMEM);
4924 
4925 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4926 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4927 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4928 	connp->conn_fully_bound = B_FALSE;
4929 
4930 	if (tcps->tcps_trace)
4931 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
4932 
4933 	/* Inherit information from the "parent" */
4934 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4935 	tcp->tcp_family = ltcp->tcp_family;
4936 	tcp->tcp_wq = ltcp->tcp_wq;
4937 	tcp->tcp_rq = ltcp->tcp_rq;
4938 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
4939 	tcp->tcp_detached = B_TRUE;
4940 	if ((err = tcp_init_values(tcp)) != 0) {
4941 		freemsg(tpi_mp);
4942 		return (err);
4943 	}
4944 
4945 	if (ipvers == IPV4_VERSION) {
4946 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4947 			freemsg(tpi_mp);
4948 			return (err);
4949 		}
4950 		ASSERT(tcp->tcp_ipha != NULL);
4951 	} else {
4952 		/* ifindex must be already set */
4953 		ASSERT(ifindex != 0);
4954 
4955 		if (ltcp->tcp_bound_if != 0) {
4956 			/*
4957 			 * Set newtcp's bound_if equal to
4958 			 * listener's value. If ifindex is
4959 			 * not the same as ltcp->tcp_bound_if,
4960 			 * it must be a packet for the ipmp group
4961 			 * of interfaces
4962 			 */
4963 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4964 		} else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4965 			tcp->tcp_bound_if = ifindex;
4966 		}
4967 
4968 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4969 		tcp->tcp_recvifindex = 0;
4970 		tcp->tcp_recvhops = 0xffffffffU;
4971 		ASSERT(tcp->tcp_ip6h != NULL);
4972 	}
4973 
4974 	tcp->tcp_lport = ltcp->tcp_lport;
4975 
4976 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4977 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4978 			/*
4979 			 * Listener had options of some sort; eager inherits.
4980 			 * Free up the eager template and allocate one
4981 			 * of the right size.
4982 			 */
4983 			if (tcp->tcp_hdr_grown) {
4984 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
4985 			} else {
4986 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4987 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
4988 			}
4989 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
4990 			    KM_NOSLEEP);
4991 			if (tcp->tcp_iphc == NULL) {
4992 				tcp->tcp_iphc_len = 0;
4993 				freemsg(tpi_mp);
4994 				return (ENOMEM);
4995 			}
4996 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
4997 			tcp->tcp_hdr_grown = B_TRUE;
4998 		}
4999 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5000 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5001 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5002 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
5003 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
5004 
5005 		/*
5006 		 * Copy the IP+TCP header template from listener to eager
5007 		 */
5008 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5009 		if (tcp->tcp_ipversion == IPV6_VERSION) {
5010 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
5011 			    IPPROTO_RAW) {
5012 				tcp->tcp_ip6h =
5013 				    (ip6_t *)(tcp->tcp_iphc +
5014 				    sizeof (ip6i_t));
5015 			} else {
5016 				tcp->tcp_ip6h =
5017 				    (ip6_t *)(tcp->tcp_iphc);
5018 			}
5019 			tcp->tcp_ipha = NULL;
5020 		} else {
5021 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5022 			tcp->tcp_ip6h = NULL;
5023 		}
5024 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5025 		    tcp->tcp_ip_hdr_len);
5026 	} else {
5027 		/*
5028 		 * only valid case when ipversion of listener and
5029 		 * eager differ is when listener is IPv6 and
5030 		 * eager is IPv4.
5031 		 * Eager header template has been initialized to the
5032 		 * maximum v4 header sizes, which includes space for
5033 		 * TCP and IP options.
5034 		 */
5035 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
5036 		    (tcp->tcp_ipversion == IPV4_VERSION));
5037 		ASSERT(tcp->tcp_iphc_len >=
5038 		    TCP_MAX_COMBINED_HEADER_LENGTH);
5039 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5040 		/* copy IP header fields individually */
5041 		tcp->tcp_ipha->ipha_ttl =
5042 		    ltcp->tcp_ip6h->ip6_hops;
5043 		bcopy(ltcp->tcp_tcph->th_lport,
5044 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
5045 	}
5046 
5047 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5048 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
5049 	    sizeof (in_port_t));
5050 
5051 	if (ltcp->tcp_lport == 0) {
5052 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
5053 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
5054 		    sizeof (in_port_t));
5055 	}
5056 
5057 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5058 		ASSERT(ipha != NULL);
5059 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5060 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5061 
5062 		/* Source routing option copyover (reverse it) */
5063 		if (tcps->tcps_rev_src_routes)
5064 			tcp_opt_reverse(tcp, ipha);
5065 	} else {
5066 		ASSERT(ip6h != NULL);
5067 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
5068 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
5069 	}
5070 
5071 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5072 	ASSERT(!tcp->tcp_tconnind_started);
5073 	/*
5074 	 * If the SYN contains a credential, it's a loopback packet; attach
5075 	 * the credential to the TPI message.
5076 	 */
5077 	if ((cr = DB_CRED(idmp)) != NULL) {
5078 		mblk_setcred(tpi_mp, cr);
5079 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5080 	}
5081 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5082 
5083 	/* Inherit the listener's SSL protection state */
5084 
5085 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5086 		kssl_hold_ent(tcp->tcp_kssl_ent);
5087 		tcp->tcp_kssl_pending = B_TRUE;
5088 	}
5089 
5090 	return (0);
5091 }
5092 
5093 
5094 int
5095 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
5096     tcph_t *tcph, mblk_t *idmp)
5097 {
5098 	tcp_t 		*ltcp = lconnp->conn_tcp;
5099 	tcp_t		*tcp = connp->conn_tcp;
5100 	sin_t		sin;
5101 	mblk_t		*tpi_mp = NULL;
5102 	int		err;
5103 	cred_t		*cr;
5104 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5105 
5106 	sin = sin_null;
5107 	sin.sin_addr.s_addr = ipha->ipha_src;
5108 	sin.sin_port = *(uint16_t *)tcph->th_lport;
5109 	sin.sin_family = AF_INET;
5110 	if (ltcp->tcp_recvdstaddr) {
5111 		sin_t	sind;
5112 
5113 		sind = sin_null;
5114 		sind.sin_addr.s_addr = ipha->ipha_dst;
5115 		sind.sin_port = *(uint16_t *)tcph->th_fport;
5116 		sind.sin_family = AF_INET;
5117 		tpi_mp = mi_tpi_extconn_ind(NULL,
5118 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
5119 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
5120 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5121 	} else {
5122 		tpi_mp = mi_tpi_conn_ind(NULL,
5123 		    (char *)&sin, sizeof (sin_t),
5124 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
5125 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5126 	}
5127 
5128 	if (tpi_mp == NULL) {
5129 		return (ENOMEM);
5130 	}
5131 
5132 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
5133 	connp->conn_send = ip_output;
5134 	connp->conn_recv = tcp_input;
5135 	connp->conn_fully_bound = B_FALSE;
5136 
5137 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
5138 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
5139 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
5140 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
5141 
5142 	if (tcps->tcps_trace) {
5143 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
5144 	}
5145 
5146 	/* Inherit information from the "parent" */
5147 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
5148 	tcp->tcp_family = ltcp->tcp_family;
5149 	tcp->tcp_wq = ltcp->tcp_wq;
5150 	tcp->tcp_rq = ltcp->tcp_rq;
5151 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
5152 	tcp->tcp_detached = B_TRUE;
5153 	if ((err = tcp_init_values(tcp)) != 0) {
5154 		freemsg(tpi_mp);
5155 		return (err);
5156 	}
5157 
5158 	/*
5159 	 * Let's make sure that eager tcp template has enough space to
5160 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
5161 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
5162 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
5163 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
5164 	 * extension headers or with ip6i_t struct). Note that bcopy() below
5165 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
5166 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
5167 	 */
5168 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
5169 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
5170 
5171 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5172 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5173 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5174 	tcp->tcp_ttl = ltcp->tcp_ttl;
5175 	tcp->tcp_tos = ltcp->tcp_tos;
5176 
5177 	/* Copy the IP+TCP header template from listener to eager */
5178 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5179 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5180 	tcp->tcp_ip6h = NULL;
5181 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5182 	    tcp->tcp_ip_hdr_len);
5183 
5184 	/* Initialize the IP addresses and Ports */
5185 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5186 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5187 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5188 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
5189 
5190 	/* Source routing option copyover (reverse it) */
5191 	if (tcps->tcps_rev_src_routes)
5192 		tcp_opt_reverse(tcp, ipha);
5193 
5194 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5195 	ASSERT(!tcp->tcp_tconnind_started);
5196 
5197 	/*
5198 	 * If the SYN contains a credential, it's a loopback packet; attach
5199 	 * the credential to the TPI message.
5200 	 */
5201 	if ((cr = DB_CRED(idmp)) != NULL) {
5202 		mblk_setcred(tpi_mp, cr);
5203 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5204 	}
5205 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5206 
5207 	/* Inherit the listener's SSL protection state */
5208 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5209 		kssl_hold_ent(tcp->tcp_kssl_ent);
5210 		tcp->tcp_kssl_pending = B_TRUE;
5211 	}
5212 
5213 	return (0);
5214 }
5215 
5216 /*
5217  * sets up conn for ipsec.
5218  * if the first mblk is M_CTL it is consumed and mpp is updated.
5219  * in case of error mpp is freed.
5220  */
5221 conn_t *
5222 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
5223 {
5224 	conn_t 		*connp = tcp->tcp_connp;
5225 	conn_t 		*econnp;
5226 	squeue_t 	*new_sqp;
5227 	mblk_t 		*first_mp = *mpp;
5228 	mblk_t		*mp = *mpp;
5229 	boolean_t	mctl_present = B_FALSE;
5230 	uint_t		ipvers;
5231 
5232 	econnp = tcp_get_conn(sqp, tcp->tcp_tcps);
5233 	if (econnp == NULL) {
5234 		freemsg(first_mp);
5235 		return (NULL);
5236 	}
5237 	if (DB_TYPE(mp) == M_CTL) {
5238 		if (mp->b_cont == NULL ||
5239 		    mp->b_cont->b_datap->db_type != M_DATA) {
5240 			freemsg(first_mp);
5241 			return (NULL);
5242 		}
5243 		mp = mp->b_cont;
5244 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
5245 			freemsg(first_mp);
5246 			return (NULL);
5247 		}
5248 
5249 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5250 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5251 		mctl_present = B_TRUE;
5252 	} else {
5253 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
5254 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5255 	}
5256 
5257 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5258 	DB_CKSUMSTART(mp) = 0;
5259 
5260 	ASSERT(OK_32PTR(mp->b_rptr));
5261 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5262 	if (ipvers == IPV4_VERSION) {
5263 		uint16_t  	*up;
5264 		uint32_t	ports;
5265 		ipha_t		*ipha;
5266 
5267 		ipha = (ipha_t *)mp->b_rptr;
5268 		up = (uint16_t *)((uchar_t *)ipha +
5269 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5270 		ports = *(uint32_t *)up;
5271 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5272 		    ipha->ipha_dst, ipha->ipha_src, ports);
5273 	} else {
5274 		uint16_t  	*up;
5275 		uint32_t	ports;
5276 		uint16_t	ip_hdr_len;
5277 		uint8_t		*nexthdrp;
5278 		ip6_t 		*ip6h;
5279 		tcph_t		*tcph;
5280 
5281 		ip6h = (ip6_t *)mp->b_rptr;
5282 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5283 			ip_hdr_len = IPV6_HDR_LEN;
5284 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5285 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5286 			CONN_DEC_REF(econnp);
5287 			freemsg(first_mp);
5288 			return (NULL);
5289 		}
5290 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5291 		up = (uint16_t *)tcph->th_lport;
5292 		ports = *(uint32_t *)up;
5293 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5294 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5295 	}
5296 
5297 	/*
5298 	 * The caller already ensured that there is a sqp present.
5299 	 */
5300 	econnp->conn_sqp = new_sqp;
5301 
5302 	if (connp->conn_policy != NULL) {
5303 		ipsec_in_t *ii;
5304 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5305 		ASSERT(ii->ipsec_in_policy == NULL);
5306 		IPPH_REFHOLD(connp->conn_policy);
5307 		ii->ipsec_in_policy = connp->conn_policy;
5308 
5309 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5310 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5311 			CONN_DEC_REF(econnp);
5312 			freemsg(first_mp);
5313 			return (NULL);
5314 		}
5315 	}
5316 
5317 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5318 		CONN_DEC_REF(econnp);
5319 		freemsg(first_mp);
5320 		return (NULL);
5321 	}
5322 
5323 	/*
5324 	 * If we know we have some policy, pass the "IPSEC"
5325 	 * options size TCP uses this adjust the MSS.
5326 	 */
5327 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5328 	if (mctl_present) {
5329 		freeb(first_mp);
5330 		*mpp = mp;
5331 	}
5332 
5333 	return (econnp);
5334 }
5335 
5336 /*
5337  * tcp_get_conn/tcp_free_conn
5338  *
5339  * tcp_get_conn is used to get a clean tcp connection structure.
5340  * It tries to reuse the connections put on the freelist by the
5341  * time_wait_collector failing which it goes to kmem_cache. This
5342  * way has two benefits compared to just allocating from and
5343  * freeing to kmem_cache.
5344  * 1) The time_wait_collector can free (which includes the cleanup)
5345  * outside the squeue. So when the interrupt comes, we have a clean
5346  * connection sitting in the freelist. Obviously, this buys us
5347  * performance.
5348  *
5349  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5350  * has multiple disadvantages - tying up the squeue during alloc, and the
5351  * fact that IPSec policy initialization has to happen here which
5352  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5353  * But allocating the conn/tcp in IP land is also not the best since
5354  * we can't check the 'q' and 'q0' which are protected by squeue and
5355  * blindly allocate memory which might have to be freed here if we are
5356  * not allowed to accept the connection. By using the freelist and
5357  * putting the conn/tcp back in freelist, we don't pay a penalty for
5358  * allocating memory without checking 'q/q0' and freeing it if we can't
5359  * accept the connection.
5360  *
5361  * Care should be taken to put the conn back in the same squeue's freelist
5362  * from which it was allocated. Best results are obtained if conn is
5363  * allocated from listener's squeue and freed to the same. Time wait
5364  * collector will free up the freelist is the connection ends up sitting
5365  * there for too long.
5366  */
5367 void *
5368 tcp_get_conn(void *arg, tcp_stack_t *tcps)
5369 {
5370 	tcp_t			*tcp = NULL;
5371 	conn_t			*connp = NULL;
5372 	squeue_t		*sqp = (squeue_t *)arg;
5373 	tcp_squeue_priv_t 	*tcp_time_wait;
5374 	netstack_t		*ns;
5375 
5376 	tcp_time_wait =
5377 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5378 
5379 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5380 	tcp = tcp_time_wait->tcp_free_list;
5381 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5382 	if (tcp != NULL) {
5383 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5384 		tcp_time_wait->tcp_free_list_cnt--;
5385 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5386 		tcp->tcp_time_wait_next = NULL;
5387 		connp = tcp->tcp_connp;
5388 		connp->conn_flags |= IPCL_REUSED;
5389 
5390 		ASSERT(tcp->tcp_tcps == NULL);
5391 		ASSERT(connp->conn_netstack == NULL);
5392 		ns = tcps->tcps_netstack;
5393 		netstack_hold(ns);
5394 		connp->conn_netstack = ns;
5395 		tcp->tcp_tcps = tcps;
5396 		TCPS_REFHOLD(tcps);
5397 		ipcl_globalhash_insert(connp);
5398 		return ((void *)connp);
5399 	}
5400 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5401 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
5402 	    tcps->tcps_netstack)) == NULL)
5403 		return (NULL);
5404 	tcp = connp->conn_tcp;
5405 	tcp->tcp_tcps = tcps;
5406 	TCPS_REFHOLD(tcps);
5407 	return ((void *)connp);
5408 }
5409 
5410 /*
5411  * Update the cached label for the given tcp_t.  This should be called once per
5412  * connection, and before any packets are sent or tcp_process_options is
5413  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5414  */
5415 static boolean_t
5416 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5417 {
5418 	conn_t *connp = tcp->tcp_connp;
5419 
5420 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5421 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5422 		int added;
5423 
5424 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5425 		    connp->conn_mac_exempt,
5426 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5427 			return (B_FALSE);
5428 
5429 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5430 		if (added == -1)
5431 			return (B_FALSE);
5432 		tcp->tcp_hdr_len += added;
5433 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5434 		tcp->tcp_ip_hdr_len += added;
5435 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5436 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5437 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5438 			    tcp->tcp_hdr_len);
5439 			if (added == -1)
5440 				return (B_FALSE);
5441 			tcp->tcp_hdr_len += added;
5442 			tcp->tcp_tcph = (tcph_t *)
5443 			    ((uchar_t *)tcp->tcp_tcph + added);
5444 			tcp->tcp_ip_hdr_len += added;
5445 		}
5446 	} else {
5447 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5448 
5449 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5450 		    connp->conn_mac_exempt,
5451 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5452 			return (B_FALSE);
5453 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5454 		    &tcp->tcp_label_len, optbuf) != 0)
5455 			return (B_FALSE);
5456 		if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0)
5457 			return (B_FALSE);
5458 	}
5459 
5460 	connp->conn_ulp_labeled = 1;
5461 
5462 	return (B_TRUE);
5463 }
5464 
5465 /* BEGIN CSTYLED */
5466 /*
5467  *
5468  * The sockfs ACCEPT path:
5469  * =======================
5470  *
5471  * The eager is now established in its own perimeter as soon as SYN is
5472  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5473  * completes the accept processing on the acceptor STREAM. The sending
5474  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5475  * listener but a TLI/XTI listener completes the accept processing
5476  * on the listener perimeter.
5477  *
5478  * Common control flow for 3 way handshake:
5479  * ----------------------------------------
5480  *
5481  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5482  *					-> tcp_conn_request()
5483  *
5484  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5485  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5486  *
5487  * Sockfs ACCEPT Path:
5488  * -------------------
5489  *
5490  * open acceptor stream (tcp_open allocates tcp_wput_accept()
5491  * as STREAM entry point)
5492  *
5493  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5494  *
5495  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5496  * association (we are not behind eager's squeue but sockfs is protecting us
5497  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5498  * is changed to point at tcp_wput().
5499  *
5500  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5501  * listener (done on listener's perimeter).
5502  *
5503  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5504  * accept.
5505  *
5506  * TLI/XTI client ACCEPT path:
5507  * ---------------------------
5508  *
5509  * soaccept() sends T_CONN_RES on the listener STREAM.
5510  *
5511  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5512  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5513  *
5514  * Locks:
5515  * ======
5516  *
5517  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5518  * and listeners->tcp_eager_next_q.
5519  *
5520  * Referencing:
5521  * ============
5522  *
5523  * 1) We start out in tcp_conn_request by eager placing a ref on
5524  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5525  *
5526  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5527  * doing so we place a ref on the eager. This ref is finally dropped at the
5528  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5529  * reference is dropped by the squeue framework.
5530  *
5531  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5532  *
5533  * The reference must be released by the same entity that added the reference
5534  * In the above scheme, the eager is the entity that adds and releases the
5535  * references. Note that tcp_accept_finish executes in the squeue of the eager
5536  * (albeit after it is attached to the acceptor stream). Though 1. executes
5537  * in the listener's squeue, the eager is nascent at this point and the
5538  * reference can be considered to have been added on behalf of the eager.
5539  *
5540  * Eager getting a Reset or listener closing:
5541  * ==========================================
5542  *
5543  * Once the listener and eager are linked, the listener never does the unlink.
5544  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5545  * a message on all eager perimeter. The eager then does the unlink, clears
5546  * any pointers to the listener's queue and drops the reference to the
5547  * listener. The listener waits in tcp_close outside the squeue until its
5548  * refcount has dropped to 1. This ensures that the listener has waited for
5549  * all eagers to clear their association with the listener.
5550  *
5551  * Similarly, if eager decides to go away, it can unlink itself and close.
5552  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5553  * the reference to eager is still valid because of the extra ref we put
5554  * in tcp_send_conn_ind.
5555  *
5556  * Listener can always locate the eager under the protection
5557  * of the listener->tcp_eager_lock, and then do a refhold
5558  * on the eager during the accept processing.
5559  *
5560  * The acceptor stream accesses the eager in the accept processing
5561  * based on the ref placed on eager before sending T_conn_ind.
5562  * The only entity that can negate this refhold is a listener close
5563  * which is mutually exclusive with an active acceptor stream.
5564  *
5565  * Eager's reference on the listener
5566  * ===================================
5567  *
5568  * If the accept happens (even on a closed eager) the eager drops its
5569  * reference on the listener at the start of tcp_accept_finish. If the
5570  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5571  * the reference is dropped in tcp_closei_local. If the listener closes,
5572  * the reference is dropped in tcp_eager_kill. In all cases the reference
5573  * is dropped while executing in the eager's context (squeue).
5574  */
5575 /* END CSTYLED */
5576 
5577 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5578 
5579 /*
5580  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5581  * tcp_rput_data will not see any SYN packets.
5582  */
5583 /* ARGSUSED */
5584 void
5585 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5586 {
5587 	tcph_t		*tcph;
5588 	uint32_t	seg_seq;
5589 	tcp_t		*eager;
5590 	uint_t		ipvers;
5591 	ipha_t		*ipha;
5592 	ip6_t		*ip6h;
5593 	int		err;
5594 	conn_t		*econnp = NULL;
5595 	squeue_t	*new_sqp;
5596 	mblk_t		*mp1;
5597 	uint_t 		ip_hdr_len;
5598 	conn_t		*connp = (conn_t *)arg;
5599 	tcp_t		*tcp = connp->conn_tcp;
5600 	cred_t		*credp;
5601 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5602 	ip_stack_t	*ipst;
5603 
5604 	if (tcp->tcp_state != TCPS_LISTEN)
5605 		goto error2;
5606 
5607 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5608 
5609 	mutex_enter(&tcp->tcp_eager_lock);
5610 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5611 		mutex_exit(&tcp->tcp_eager_lock);
5612 		TCP_STAT(tcps, tcp_listendrop);
5613 		BUMP_MIB(&tcps->tcps_mib, tcpListenDrop);
5614 		if (tcp->tcp_debug) {
5615 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5616 			    "tcp_conn_request: listen backlog (max=%d) "
5617 			    "overflow (%d pending) on %s",
5618 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5619 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5620 		}
5621 		goto error2;
5622 	}
5623 
5624 	if (tcp->tcp_conn_req_cnt_q0 >=
5625 	    tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
5626 		/*
5627 		 * Q0 is full. Drop a pending half-open req from the queue
5628 		 * to make room for the new SYN req. Also mark the time we
5629 		 * drop a SYN.
5630 		 *
5631 		 * A more aggressive defense against SYN attack will
5632 		 * be to set the "tcp_syn_defense" flag now.
5633 		 */
5634 		TCP_STAT(tcps, tcp_listendropq0);
5635 		tcp->tcp_last_rcv_lbolt = lbolt64;
5636 		if (!tcp_drop_q0(tcp)) {
5637 			mutex_exit(&tcp->tcp_eager_lock);
5638 			BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0);
5639 			if (tcp->tcp_debug) {
5640 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5641 				    "tcp_conn_request: listen half-open queue "
5642 				    "(max=%d) full (%d pending) on %s",
5643 				    tcps->tcps_conn_req_max_q0,
5644 				    tcp->tcp_conn_req_cnt_q0,
5645 				    tcp_display(tcp, NULL,
5646 				    DISP_PORT_ONLY));
5647 			}
5648 			goto error2;
5649 		}
5650 	}
5651 	mutex_exit(&tcp->tcp_eager_lock);
5652 
5653 	/*
5654 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5655 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5656 	 * link local address.  If IPSec is enabled, db_struioflag has
5657 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5658 	 * otherwise an error case if neither of them is set.
5659 	 */
5660 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5661 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5662 		DB_CKSUMSTART(mp) = 0;
5663 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5664 		econnp = (conn_t *)tcp_get_conn(arg2, tcps);
5665 		if (econnp == NULL)
5666 			goto error2;
5667 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5668 		econnp->conn_sqp = new_sqp;
5669 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5670 		/*
5671 		 * mp is updated in tcp_get_ipsec_conn().
5672 		 */
5673 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5674 		if (econnp == NULL) {
5675 			/*
5676 			 * mp freed by tcp_get_ipsec_conn.
5677 			 */
5678 			return;
5679 		}
5680 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5681 	} else {
5682 		goto error2;
5683 	}
5684 
5685 	ASSERT(DB_TYPE(mp) == M_DATA);
5686 
5687 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5688 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5689 	ASSERT(OK_32PTR(mp->b_rptr));
5690 	if (ipvers == IPV4_VERSION) {
5691 		ipha = (ipha_t *)mp->b_rptr;
5692 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5693 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5694 	} else {
5695 		ip6h = (ip6_t *)mp->b_rptr;
5696 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5697 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5698 	}
5699 
5700 	if (tcp->tcp_family == AF_INET) {
5701 		ASSERT(ipvers == IPV4_VERSION);
5702 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5703 	} else {
5704 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5705 	}
5706 
5707 	if (err)
5708 		goto error3;
5709 
5710 	eager = econnp->conn_tcp;
5711 
5712 	/* Inherit various TCP parameters from the listener */
5713 	eager->tcp_naglim = tcp->tcp_naglim;
5714 	eager->tcp_first_timer_threshold =
5715 	    tcp->tcp_first_timer_threshold;
5716 	eager->tcp_second_timer_threshold =
5717 	    tcp->tcp_second_timer_threshold;
5718 
5719 	eager->tcp_first_ctimer_threshold =
5720 	    tcp->tcp_first_ctimer_threshold;
5721 	eager->tcp_second_ctimer_threshold =
5722 	    tcp->tcp_second_ctimer_threshold;
5723 
5724 	/*
5725 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5726 	 * If it does not, the eager's receive window will be set to the
5727 	 * listener's receive window later in this function.
5728 	 */
5729 	eager->tcp_rwnd = 0;
5730 
5731 	/*
5732 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5733 	 * calling tcp_process_options() where tcp_mss_set() is called
5734 	 * to set the initial cwnd.
5735 	 */
5736 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5737 
5738 	/*
5739 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5740 	 * zone id before the accept is completed in tcp_wput_accept().
5741 	 */
5742 	econnp->conn_zoneid = connp->conn_zoneid;
5743 	econnp->conn_allzones = connp->conn_allzones;
5744 
5745 	/* Copy nexthop information from listener to eager */
5746 	if (connp->conn_nexthop_set) {
5747 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5748 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5749 	}
5750 
5751 	/*
5752 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5753 	 * eager is accepted
5754 	 */
5755 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5756 	crhold(credp);
5757 
5758 	/*
5759 	 * If the caller has the process-wide flag set, then default to MAC
5760 	 * exempt mode.  This allows read-down to unlabeled hosts.
5761 	 */
5762 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5763 		econnp->conn_mac_exempt = B_TRUE;
5764 
5765 	if (is_system_labeled()) {
5766 		cred_t *cr;
5767 
5768 		if (connp->conn_mlp_type != mlptSingle) {
5769 			cr = econnp->conn_peercred = DB_CRED(mp);
5770 			if (cr != NULL)
5771 				crhold(cr);
5772 			else
5773 				cr = econnp->conn_cred;
5774 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5775 			    econnp, cred_t *, cr)
5776 		} else {
5777 			cr = econnp->conn_cred;
5778 			DTRACE_PROBE2(syn_accept, conn_t *,
5779 			    econnp, cred_t *, cr)
5780 		}
5781 
5782 		if (!tcp_update_label(eager, cr)) {
5783 			DTRACE_PROBE3(
5784 			    tx__ip__log__error__connrequest__tcp,
5785 			    char *, "eager connp(1) label on SYN mp(2) failed",
5786 			    conn_t *, econnp, mblk_t *, mp);
5787 			goto error3;
5788 		}
5789 	}
5790 
5791 	eager->tcp_hard_binding = B_TRUE;
5792 
5793 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
5794 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5795 
5796 	CL_INET_CONNECT(eager);
5797 
5798 	/*
5799 	 * No need to check for multicast destination since ip will only pass
5800 	 * up multicasts to those that have expressed interest
5801 	 * TODO: what about rejecting broadcasts?
5802 	 * Also check that source is not a multicast or broadcast address.
5803 	 */
5804 	eager->tcp_state = TCPS_SYN_RCVD;
5805 
5806 
5807 	/*
5808 	 * There should be no ire in the mp as we are being called after
5809 	 * receiving the SYN.
5810 	 */
5811 	ASSERT(tcp_ire_mp(mp) == NULL);
5812 
5813 	/*
5814 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5815 	 */
5816 
5817 	if (tcp_adapt_ire(eager, NULL) == 0) {
5818 		/* Undo the bind_hash_insert */
5819 		tcp_bind_hash_remove(eager);
5820 		goto error3;
5821 	}
5822 
5823 	/* Process all TCP options. */
5824 	tcp_process_options(eager, tcph);
5825 
5826 	/* Is the other end ECN capable? */
5827 	if (tcps->tcps_ecn_permitted >= 1 &&
5828 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5829 		eager->tcp_ecn_ok = B_TRUE;
5830 	}
5831 
5832 	/*
5833 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5834 	 * window size changed via SO_RCVBUF option.  First round up the
5835 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5836 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5837 	 * setting.
5838 	 *
5839 	 * Note if there is a rpipe metric associated with the remote host,
5840 	 * we should not inherit receive window size from listener.
5841 	 */
5842 	eager->tcp_rwnd = MSS_ROUNDUP(
5843 	    (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat :
5844 	    eager->tcp_rwnd), eager->tcp_mss);
5845 	if (eager->tcp_snd_ws_ok)
5846 		tcp_set_ws_value(eager);
5847 	/*
5848 	 * Note that this is the only place tcp_rwnd_set() is called for
5849 	 * accepting a connection.  We need to call it here instead of
5850 	 * after the 3-way handshake because we need to tell the other
5851 	 * side our rwnd in the SYN-ACK segment.
5852 	 */
5853 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5854 
5855 	/*
5856 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5857 	 * via soaccept()->soinheritoptions() which essentially applies
5858 	 * all the listener options to the new STREAM. The options that we
5859 	 * need to take care of are:
5860 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5861 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5862 	 * SO_SNDBUF, SO_RCVBUF.
5863 	 *
5864 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5865 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5866 	 *		tcp_maxpsz_set() gets called later from
5867 	 *		tcp_accept_finish(), the option takes effect.
5868 	 *
5869 	 */
5870 	/* Set the TCP options */
5871 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5872 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5873 	eager->tcp_oobinline = tcp->tcp_oobinline;
5874 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5875 	eager->tcp_broadcast = tcp->tcp_broadcast;
5876 	eager->tcp_useloopback = tcp->tcp_useloopback;
5877 	eager->tcp_dontroute = tcp->tcp_dontroute;
5878 	eager->tcp_linger = tcp->tcp_linger;
5879 	eager->tcp_lingertime = tcp->tcp_lingertime;
5880 	if (tcp->tcp_ka_enabled)
5881 		eager->tcp_ka_enabled = 1;
5882 
5883 	/* Set the IP options */
5884 	econnp->conn_broadcast = connp->conn_broadcast;
5885 	econnp->conn_loopback = connp->conn_loopback;
5886 	econnp->conn_dontroute = connp->conn_dontroute;
5887 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5888 
5889 	/* Put a ref on the listener for the eager. */
5890 	CONN_INC_REF(connp);
5891 	mutex_enter(&tcp->tcp_eager_lock);
5892 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5893 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5894 	tcp->tcp_eager_next_q0 = eager;
5895 	eager->tcp_eager_prev_q0 = tcp;
5896 
5897 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5898 	eager->tcp_listener = tcp;
5899 	eager->tcp_saved_listener = tcp;
5900 
5901 	/*
5902 	 * Tag this detached tcp vector for later retrieval
5903 	 * by our listener client in tcp_accept().
5904 	 */
5905 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5906 	tcp->tcp_conn_req_cnt_q0++;
5907 	if (++tcp->tcp_conn_req_seqnum == -1) {
5908 		/*
5909 		 * -1 is "special" and defined in TPI as something
5910 		 * that should never be used in T_CONN_IND
5911 		 */
5912 		++tcp->tcp_conn_req_seqnum;
5913 	}
5914 	mutex_exit(&tcp->tcp_eager_lock);
5915 
5916 	if (tcp->tcp_syn_defense) {
5917 		/* Don't drop the SYN that comes from a good IP source */
5918 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5919 		if (addr_cache != NULL && eager->tcp_remote ==
5920 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5921 			eager->tcp_dontdrop = B_TRUE;
5922 		}
5923 	}
5924 
5925 	/*
5926 	 * We need to insert the eager in its own perimeter but as soon
5927 	 * as we do that, we expose the eager to the classifier and
5928 	 * should not touch any field outside the eager's perimeter.
5929 	 * So do all the work necessary before inserting the eager
5930 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5931 	 * will succeed but undo everything if it fails.
5932 	 */
5933 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5934 	eager->tcp_irs = seg_seq;
5935 	eager->tcp_rack = seg_seq;
5936 	eager->tcp_rnxt = seg_seq + 1;
5937 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5938 	BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens);
5939 	eager->tcp_state = TCPS_SYN_RCVD;
5940 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5941 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5942 	if (mp1 == NULL) {
5943 		/*
5944 		 * Increment the ref count as we are going to
5945 		 * enqueueing an mp in squeue
5946 		 */
5947 		CONN_INC_REF(econnp);
5948 		goto error;
5949 	}
5950 	DB_CPID(mp1) = tcp->tcp_cpid;
5951 	eager->tcp_cpid = tcp->tcp_cpid;
5952 	eager->tcp_open_time = lbolt64;
5953 
5954 	/*
5955 	 * We need to start the rto timer. In normal case, we start
5956 	 * the timer after sending the packet on the wire (or at
5957 	 * least believing that packet was sent by waiting for
5958 	 * CALL_IP_WPUT() to return). Since this is the first packet
5959 	 * being sent on the wire for the eager, our initial tcp_rto
5960 	 * is at least tcp_rexmit_interval_min which is a fairly
5961 	 * large value to allow the algorithm to adjust slowly to large
5962 	 * fluctuations of RTT during first few transmissions.
5963 	 *
5964 	 * Starting the timer first and then sending the packet in this
5965 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5966 	 * is of the order of several 100ms and starting the timer
5967 	 * first and then sending the packet will result in difference
5968 	 * of few micro seconds.
5969 	 *
5970 	 * Without this optimization, we are forced to hold the fanout
5971 	 * lock across the ipcl_bind_insert() and sending the packet
5972 	 * so that we don't race against an incoming packet (maybe RST)
5973 	 * for this eager.
5974 	 *
5975 	 * It is necessary to acquire an extra reference on the eager
5976 	 * at this point and hold it until after tcp_send_data() to
5977 	 * ensure against an eager close race.
5978 	 */
5979 
5980 	CONN_INC_REF(eager->tcp_connp);
5981 
5982 	TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT);
5983 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5984 
5985 
5986 	/*
5987 	 * Insert the eager in its own perimeter now. We are ready to deal
5988 	 * with any packets on eager.
5989 	 */
5990 	if (eager->tcp_ipversion == IPV4_VERSION) {
5991 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
5992 			goto error;
5993 		}
5994 	} else {
5995 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
5996 			goto error;
5997 		}
5998 	}
5999 
6000 	/* mark conn as fully-bound */
6001 	econnp->conn_fully_bound = B_TRUE;
6002 
6003 	/* Send the SYN-ACK */
6004 	tcp_send_data(eager, eager->tcp_wq, mp1);
6005 	CONN_DEC_REF(eager->tcp_connp);
6006 	freemsg(mp);
6007 
6008 	return;
6009 error:
6010 	freemsg(mp1);
6011 	eager->tcp_closemp_used = B_TRUE;
6012 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6013 	squeue_fill(econnp->conn_sqp, &eager->tcp_closemp, tcp_eager_kill,
6014 	    econnp, SQTAG_TCP_CONN_REQ_2);
6015 
6016 	/*
6017 	 * If a connection already exists, send the mp to that connections so
6018 	 * that it can be appropriately dealt with.
6019 	 */
6020 	ipst = tcps->tcps_netstack->netstack_ip;
6021 
6022 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) {
6023 		if (!IPCL_IS_CONNECTED(econnp)) {
6024 			/*
6025 			 * Something bad happened. ipcl_conn_insert()
6026 			 * failed because a connection already existed
6027 			 * in connected hash but we can't find it
6028 			 * anymore (someone blew it away). Just
6029 			 * free this message and hopefully remote
6030 			 * will retransmit at which time the SYN can be
6031 			 * treated as a new connection or dealth with
6032 			 * a TH_RST if a connection already exists.
6033 			 */
6034 			CONN_DEC_REF(econnp);
6035 			freemsg(mp);
6036 		} else {
6037 			squeue_fill(econnp->conn_sqp, mp, tcp_input,
6038 			    econnp, SQTAG_TCP_CONN_REQ_1);
6039 		}
6040 	} else {
6041 		/* Nobody wants this packet */
6042 		freemsg(mp);
6043 	}
6044 	return;
6045 error3:
6046 	CONN_DEC_REF(econnp);
6047 error2:
6048 	freemsg(mp);
6049 }
6050 
6051 /*
6052  * In an ideal case of vertical partition in NUMA architecture, its
6053  * beneficial to have the listener and all the incoming connections
6054  * tied to the same squeue. The other constraint is that incoming
6055  * connections should be tied to the squeue attached to interrupted
6056  * CPU for obvious locality reason so this leaves the listener to
6057  * be tied to the same squeue. Our only problem is that when listener
6058  * is binding, the CPU that will get interrupted by the NIC whose
6059  * IP address the listener is binding to is not even known. So
6060  * the code below allows us to change that binding at the time the
6061  * CPU is interrupted by virtue of incoming connection's squeue.
6062  *
6063  * This is usefull only in case of a listener bound to a specific IP
6064  * address. For other kind of listeners, they get bound the
6065  * very first time and there is no attempt to rebind them.
6066  */
6067 void
6068 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
6069 {
6070 	conn_t		*connp = (conn_t *)arg;
6071 	squeue_t	*sqp = (squeue_t *)arg2;
6072 	squeue_t	*new_sqp;
6073 	uint32_t	conn_flags;
6074 
6075 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
6076 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
6077 	} else {
6078 		goto done;
6079 	}
6080 
6081 	if (connp->conn_fanout == NULL)
6082 		goto done;
6083 
6084 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
6085 		mutex_enter(&connp->conn_fanout->connf_lock);
6086 		mutex_enter(&connp->conn_lock);
6087 		/*
6088 		 * No one from read or write side can access us now
6089 		 * except for already queued packets on this squeue.
6090 		 * But since we haven't changed the squeue yet, they
6091 		 * can't execute. If they are processed after we have
6092 		 * changed the squeue, they are sent back to the
6093 		 * correct squeue down below.
6094 		 * But a listner close can race with processing of
6095 		 * incoming SYN. If incoming SYN processing changes
6096 		 * the squeue then the listener close which is waiting
6097 		 * to enter the squeue would operate on the wrong
6098 		 * squeue. Hence we don't change the squeue here unless
6099 		 * the refcount is exactly the minimum refcount. The
6100 		 * minimum refcount of 4 is counted as - 1 each for
6101 		 * TCP and IP, 1 for being in the classifier hash, and
6102 		 * 1 for the mblk being processed.
6103 		 */
6104 
6105 		if (connp->conn_ref != 4 ||
6106 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
6107 			mutex_exit(&connp->conn_lock);
6108 			mutex_exit(&connp->conn_fanout->connf_lock);
6109 			goto done;
6110 		}
6111 		if (connp->conn_sqp != new_sqp) {
6112 			while (connp->conn_sqp != new_sqp)
6113 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
6114 		}
6115 
6116 		do {
6117 			conn_flags = connp->conn_flags;
6118 			conn_flags |= IPCL_FULLY_BOUND;
6119 			(void) cas32(&connp->conn_flags, connp->conn_flags,
6120 			    conn_flags);
6121 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
6122 
6123 		mutex_exit(&connp->conn_fanout->connf_lock);
6124 		mutex_exit(&connp->conn_lock);
6125 	}
6126 
6127 done:
6128 	if (connp->conn_sqp != sqp) {
6129 		CONN_INC_REF(connp);
6130 		squeue_fill(connp->conn_sqp, mp,
6131 		    connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND);
6132 	} else {
6133 		tcp_conn_request(connp, mp, sqp);
6134 	}
6135 }
6136 
6137 /*
6138  * Successful connect request processing begins when our client passes
6139  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
6140  * our T_OK_ACK reply message upstream.  The control flow looks like this:
6141  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP
6142  *   upstream <- tcp_rput()                <- IP
6143  * After various error checks are completed, tcp_connect() lays
6144  * the target address and port into the composite header template,
6145  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
6146  * request followed by an IRE request, and passes the three mblk message
6147  * down to IP looking like this:
6148  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
6149  * Processing continues in tcp_rput() when we receive the following message:
6150  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
6151  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
6152  * to fire off the connection request, and then passes the T_OK_ACK mblk
6153  * upstream that we filled in below.  There are, of course, numerous
6154  * error conditions along the way which truncate the processing described
6155  * above.
6156  */
6157 static void
6158 tcp_connect(tcp_t *tcp, mblk_t *mp)
6159 {
6160 	sin_t		*sin;
6161 	sin6_t		*sin6;
6162 	queue_t		*q = tcp->tcp_wq;
6163 	struct T_conn_req	*tcr;
6164 	ipaddr_t	*dstaddrp;
6165 	in_port_t	dstport;
6166 	uint_t		srcid;
6167 
6168 	tcr = (struct T_conn_req *)mp->b_rptr;
6169 
6170 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6171 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
6172 		tcp_err_ack(tcp, mp, TPROTO, 0);
6173 		return;
6174 	}
6175 
6176 	/*
6177 	 * Determine packet type based on type of address passed in
6178 	 * the request should contain an IPv4 or IPv6 address.
6179 	 * Make sure that address family matches the type of
6180 	 * family of the the address passed down
6181 	 */
6182 	switch (tcr->DEST_length) {
6183 	default:
6184 		tcp_err_ack(tcp, mp, TBADADDR, 0);
6185 		return;
6186 
6187 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
6188 		/*
6189 		 * XXX: The check for valid DEST_length was not there
6190 		 * in earlier releases and some buggy
6191 		 * TLI apps (e.g Sybase) got away with not feeding
6192 		 * in sin_zero part of address.
6193 		 * We allow that bug to keep those buggy apps humming.
6194 		 * Test suites require the check on DEST_length.
6195 		 * We construct a new mblk with valid DEST_length
6196 		 * free the original so the rest of the code does
6197 		 * not have to keep track of this special shorter
6198 		 * length address case.
6199 		 */
6200 		mblk_t *nmp;
6201 		struct T_conn_req *ntcr;
6202 		sin_t *nsin;
6203 
6204 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
6205 		    tcr->OPT_length, BPRI_HI);
6206 		if (nmp == NULL) {
6207 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6208 			return;
6209 		}
6210 		ntcr = (struct T_conn_req *)nmp->b_rptr;
6211 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
6212 		ntcr->PRIM_type = T_CONN_REQ;
6213 		ntcr->DEST_length = sizeof (sin_t);
6214 		ntcr->DEST_offset = sizeof (struct T_conn_req);
6215 
6216 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
6217 		*nsin = sin_null;
6218 		/* Get pointer to shorter address to copy from original mp */
6219 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6220 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
6221 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6222 			freemsg(nmp);
6223 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6224 			return;
6225 		}
6226 		nsin->sin_family = sin->sin_family;
6227 		nsin->sin_port = sin->sin_port;
6228 		nsin->sin_addr = sin->sin_addr;
6229 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6230 		nmp->b_wptr = (uchar_t *)&nsin[1];
6231 		if (tcr->OPT_length != 0) {
6232 			ntcr->OPT_length = tcr->OPT_length;
6233 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6234 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6235 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6236 			    tcr->OPT_length);
6237 			nmp->b_wptr += tcr->OPT_length;
6238 		}
6239 		freemsg(mp);	/* original mp freed */
6240 		mp = nmp;	/* re-initialize original variables */
6241 		tcr = ntcr;
6242 	}
6243 	/* FALLTHRU */
6244 
6245 	case sizeof (sin_t):
6246 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6247 		    sizeof (sin_t));
6248 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6249 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6250 			return;
6251 		}
6252 		if (tcp->tcp_family != AF_INET ||
6253 		    sin->sin_family != AF_INET) {
6254 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6255 			return;
6256 		}
6257 		if (sin->sin_port == 0) {
6258 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6259 			return;
6260 		}
6261 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
6262 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6263 			return;
6264 		}
6265 
6266 		break;
6267 
6268 	case sizeof (sin6_t):
6269 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
6270 		    sizeof (sin6_t));
6271 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
6272 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6273 			return;
6274 		}
6275 		if (tcp->tcp_family != AF_INET6 ||
6276 		    sin6->sin6_family != AF_INET6) {
6277 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6278 			return;
6279 		}
6280 		if (sin6->sin6_port == 0) {
6281 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6282 			return;
6283 		}
6284 		break;
6285 	}
6286 	/*
6287 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6288 	 * should key on their sequence number and cut them loose.
6289 	 */
6290 
6291 	/*
6292 	 * If options passed in, feed it for verification and handling
6293 	 */
6294 	if (tcr->OPT_length != 0) {
6295 		mblk_t	*ok_mp;
6296 		mblk_t	*discon_mp;
6297 		mblk_t  *conn_opts_mp;
6298 		int t_error, sys_error, do_disconnect;
6299 
6300 		conn_opts_mp = NULL;
6301 
6302 		if (tcp_conprim_opt_process(tcp, mp,
6303 		    &do_disconnect, &t_error, &sys_error) < 0) {
6304 			if (do_disconnect) {
6305 				ASSERT(t_error == 0 && sys_error == 0);
6306 				discon_mp = mi_tpi_discon_ind(NULL,
6307 				    ECONNREFUSED, 0);
6308 				if (!discon_mp) {
6309 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6310 					    TSYSERR, ENOMEM);
6311 					return;
6312 				}
6313 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6314 				if (!ok_mp) {
6315 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6316 					    TSYSERR, ENOMEM);
6317 					return;
6318 				}
6319 				qreply(q, ok_mp);
6320 				qreply(q, discon_mp); /* no flush! */
6321 			} else {
6322 				ASSERT(t_error != 0);
6323 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6324 				    sys_error);
6325 			}
6326 			return;
6327 		}
6328 		/*
6329 		 * Success in setting options, the mp option buffer represented
6330 		 * by OPT_length/offset has been potentially modified and
6331 		 * contains results of option processing. We copy it in
6332 		 * another mp to save it for potentially influencing returning
6333 		 * it in T_CONN_CONN.
6334 		 */
6335 		if (tcr->OPT_length != 0) { /* there are resulting options */
6336 			conn_opts_mp = copyb(mp);
6337 			if (!conn_opts_mp) {
6338 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6339 				    TSYSERR, ENOMEM);
6340 				return;
6341 			}
6342 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6343 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6344 			/*
6345 			 * Note:
6346 			 * These resulting option negotiation can include any
6347 			 * end-to-end negotiation options but there no such
6348 			 * thing (yet?) in our TCP/IP.
6349 			 */
6350 		}
6351 	}
6352 
6353 	/*
6354 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
6355 	 * make sure that the template IP header in the tcp structure is an
6356 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
6357 	 * need to this before we call tcp_bindi() so that the port lookup
6358 	 * code will look for ports in the correct port space (IPv4 and
6359 	 * IPv6 have separate port spaces).
6360 	 */
6361 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
6362 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6363 		int err = 0;
6364 
6365 		err = tcp_header_init_ipv4(tcp);
6366 		if (err != 0) {
6367 			mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6368 			goto connect_failed;
6369 		}
6370 		if (tcp->tcp_lport != 0)
6371 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
6372 	}
6373 
6374 	switch (tcp->tcp_state) {
6375 	case TCPS_IDLE:
6376 		/*
6377 		 * We support quick connect, refer to comments in
6378 		 * tcp_connect_*()
6379 		 */
6380 		/* FALLTHRU */
6381 	case TCPS_BOUND:
6382 	case TCPS_LISTEN:
6383 		if (tcp->tcp_family == AF_INET6) {
6384 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6385 				tcp_connect_ipv6(tcp, mp,
6386 				    &sin6->sin6_addr,
6387 				    sin6->sin6_port, sin6->sin6_flowinfo,
6388 				    sin6->__sin6_src_id, sin6->sin6_scope_id);
6389 				return;
6390 			}
6391 			/*
6392 			 * Destination adress is mapped IPv6 address.
6393 			 * Source bound address should be unspecified or
6394 			 * IPv6 mapped address as well.
6395 			 */
6396 			if (!IN6_IS_ADDR_UNSPECIFIED(
6397 			    &tcp->tcp_bound_source_v6) &&
6398 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
6399 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR,
6400 				    EADDRNOTAVAIL);
6401 				break;
6402 			}
6403 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
6404 			dstport = sin6->sin6_port;
6405 			srcid = sin6->__sin6_src_id;
6406 		} else {
6407 			dstaddrp = &sin->sin_addr.s_addr;
6408 			dstport = sin->sin_port;
6409 			srcid = 0;
6410 		}
6411 
6412 		tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid);
6413 		return;
6414 	default:
6415 		mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0);
6416 		break;
6417 	}
6418 	/*
6419 	 * Note: Code below is the "failure" case
6420 	 */
6421 	/* return error ack and blow away saved option results if any */
6422 connect_failed:
6423 	if (mp != NULL)
6424 		putnext(tcp->tcp_rq, mp);
6425 	else {
6426 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6427 		    TSYSERR, ENOMEM);
6428 	}
6429 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6430 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6431 }
6432 
6433 /*
6434  * Handle connect to IPv4 destinations, including connections for AF_INET6
6435  * sockets connecting to IPv4 mapped IPv6 destinations.
6436  */
6437 static void
6438 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport,
6439     uint_t srcid)
6440 {
6441 	tcph_t	*tcph;
6442 	mblk_t	*mp1;
6443 	ipaddr_t dstaddr = *dstaddrp;
6444 	int32_t	oldstate;
6445 	uint16_t lport;
6446 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6447 
6448 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6449 
6450 	/* Check for attempt to connect to INADDR_ANY */
6451 	if (dstaddr == INADDR_ANY)  {
6452 		/*
6453 		 * SunOS 4.x and 4.3 BSD allow an application
6454 		 * to connect a TCP socket to INADDR_ANY.
6455 		 * When they do this, the kernel picks the
6456 		 * address of one interface and uses it
6457 		 * instead.  The kernel usually ends up
6458 		 * picking the address of the loopback
6459 		 * interface.  This is an undocumented feature.
6460 		 * However, we provide the same thing here
6461 		 * in order to have source and binary
6462 		 * compatibility with SunOS 4.x.
6463 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6464 		 * generate the T_CONN_CON.
6465 		 */
6466 		dstaddr = htonl(INADDR_LOOPBACK);
6467 		*dstaddrp = dstaddr;
6468 	}
6469 
6470 	/* Handle __sin6_src_id if socket not bound to an IP address */
6471 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6472 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6473 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6474 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6475 		    tcp->tcp_ipha->ipha_src);
6476 	}
6477 
6478 	/*
6479 	 * Don't let an endpoint connect to itself.  Note that
6480 	 * the test here does not catch the case where the
6481 	 * source IP addr was left unspecified by the user. In
6482 	 * this case, the source addr is set in tcp_adapt_ire()
6483 	 * using the reply to the T_BIND message that we send
6484 	 * down to IP here and the check is repeated in tcp_rput_other.
6485 	 */
6486 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6487 	    dstport == tcp->tcp_lport) {
6488 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6489 		goto failed;
6490 	}
6491 
6492 	tcp->tcp_ipha->ipha_dst = dstaddr;
6493 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6494 
6495 	/*
6496 	 * Massage a source route if any putting the first hop
6497 	 * in iph_dst. Compute a starting value for the checksum which
6498 	 * takes into account that the original iph_dst should be
6499 	 * included in the checksum but that ip will include the
6500 	 * first hop in the source route in the tcp checksum.
6501 	 */
6502 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack);
6503 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6504 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6505 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6506 	if ((int)tcp->tcp_sum < 0)
6507 		tcp->tcp_sum--;
6508 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6509 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6510 	    (tcp->tcp_sum >> 16));
6511 	tcph = tcp->tcp_tcph;
6512 	*(uint16_t *)tcph->th_fport = dstport;
6513 	tcp->tcp_fport = dstport;
6514 
6515 	oldstate = tcp->tcp_state;
6516 	/*
6517 	 * At this point the remote destination address and remote port fields
6518 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6519 	 * have to see which state tcp was in so we can take apropriate action.
6520 	 */
6521 	if (oldstate == TCPS_IDLE) {
6522 		/*
6523 		 * We support a quick connect capability here, allowing
6524 		 * clients to transition directly from IDLE to SYN_SENT
6525 		 * tcp_bindi will pick an unused port, insert the connection
6526 		 * in the bind hash and transition to BOUND state.
6527 		 */
6528 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6529 		    tcp, B_TRUE);
6530 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6531 		    B_FALSE, B_FALSE);
6532 		if (lport == 0) {
6533 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6534 			goto failed;
6535 		}
6536 	}
6537 	tcp->tcp_state = TCPS_SYN_SENT;
6538 
6539 	/*
6540 	 * TODO: allow data with connect requests
6541 	 * by unlinking M_DATA trailers here and
6542 	 * linking them in behind the T_OK_ACK mblk.
6543 	 * The tcp_rput() bind ack handler would then
6544 	 * feed them to tcp_wput_data() rather than call
6545 	 * tcp_timer().
6546 	 */
6547 	mp = mi_tpi_ok_ack_alloc(mp);
6548 	if (!mp) {
6549 		tcp->tcp_state = oldstate;
6550 		goto failed;
6551 	}
6552 	if (tcp->tcp_family == AF_INET) {
6553 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6554 		    sizeof (ipa_conn_t));
6555 	} else {
6556 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6557 		    sizeof (ipa6_conn_t));
6558 	}
6559 	if (mp1) {
6560 		/*
6561 		 * We need to make sure that the conn_recv is set to a non-null
6562 		 * value before we insert the conn_t into the classifier table.
6563 		 * This is to avoid a race with an incoming packet which does
6564 		 * an ipcl_classify().
6565 		 */
6566 		tcp->tcp_connp->conn_recv = tcp_input;
6567 
6568 		/* Hang onto the T_OK_ACK for later. */
6569 		linkb(mp1, mp);
6570 		mblk_setcred(mp1, tcp->tcp_cred);
6571 		if (tcp->tcp_family == AF_INET)
6572 			mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp);
6573 		else {
6574 			mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6575 			    &tcp->tcp_sticky_ipp);
6576 		}
6577 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6578 		tcp->tcp_active_open = 1;
6579 		/*
6580 		 * If the bind cannot complete immediately
6581 		 * IP will arrange to call tcp_rput_other
6582 		 * when the bind completes.
6583 		 */
6584 		if (mp1 != NULL)
6585 			tcp_rput_other(tcp, mp1);
6586 		return;
6587 	}
6588 	/* Error case */
6589 	tcp->tcp_state = oldstate;
6590 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6591 
6592 failed:
6593 	/* return error ack and blow away saved option results if any */
6594 	if (mp != NULL)
6595 		putnext(tcp->tcp_rq, mp);
6596 	else {
6597 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6598 		    TSYSERR, ENOMEM);
6599 	}
6600 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6601 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6602 
6603 }
6604 
6605 /*
6606  * Handle connect to IPv6 destinations.
6607  */
6608 static void
6609 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
6610     in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
6611 {
6612 	tcph_t	*tcph;
6613 	mblk_t	*mp1;
6614 	ip6_rthdr_t *rth;
6615 	int32_t  oldstate;
6616 	uint16_t lport;
6617 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6618 
6619 	ASSERT(tcp->tcp_family == AF_INET6);
6620 
6621 	/*
6622 	 * If we're here, it means that the destination address is a native
6623 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6624 	 * reason why it might not be IPv6 is if the socket was bound to an
6625 	 * IPv4-mapped IPv6 address.
6626 	 */
6627 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6628 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6629 		goto failed;
6630 	}
6631 
6632 	/*
6633 	 * Interpret a zero destination to mean loopback.
6634 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6635 	 * generate the T_CONN_CON.
6636 	 */
6637 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6638 		*dstaddrp = ipv6_loopback;
6639 	}
6640 
6641 	/* Handle __sin6_src_id if socket not bound to an IP address */
6642 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6643 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6644 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6645 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6646 	}
6647 
6648 	/*
6649 	 * Take care of the scope_id now and add ip6i_t
6650 	 * if ip6i_t is not already allocated through TCP
6651 	 * sticky options. At this point tcp_ip6h does not
6652 	 * have dst info, thus use dstaddrp.
6653 	 */
6654 	if (scope_id != 0 &&
6655 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6656 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6657 		ip6i_t  *ip6i;
6658 
6659 		ipp->ipp_ifindex = scope_id;
6660 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6661 
6662 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6663 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6664 			/* Already allocated */
6665 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6666 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6667 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6668 		} else {
6669 			int reterr;
6670 
6671 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6672 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6673 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6674 			reterr = tcp_build_hdrs(tcp->tcp_rq, tcp);
6675 			if (reterr != 0)
6676 				goto failed;
6677 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6678 		}
6679 	}
6680 
6681 	/*
6682 	 * Don't let an endpoint connect to itself.  Note that
6683 	 * the test here does not catch the case where the
6684 	 * source IP addr was left unspecified by the user. In
6685 	 * this case, the source addr is set in tcp_adapt_ire()
6686 	 * using the reply to the T_BIND message that we send
6687 	 * down to IP here and the check is repeated in tcp_rput_other.
6688 	 */
6689 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6690 	    (dstport == tcp->tcp_lport)) {
6691 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6692 		goto failed;
6693 	}
6694 
6695 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6696 	tcp->tcp_remote_v6 = *dstaddrp;
6697 	tcp->tcp_ip6h->ip6_vcf =
6698 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6699 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6700 
6701 
6702 	/*
6703 	 * Massage a routing header (if present) putting the first hop
6704 	 * in ip6_dst. Compute a starting value for the checksum which
6705 	 * takes into account that the original ip6_dst should be
6706 	 * included in the checksum but that ip will include the
6707 	 * first hop in the source route in the tcp checksum.
6708 	 */
6709 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6710 	if (rth != NULL) {
6711 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth,
6712 		    tcps->tcps_netstack);
6713 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6714 		    (tcp->tcp_sum >> 16));
6715 	} else {
6716 		tcp->tcp_sum = 0;
6717 	}
6718 
6719 	tcph = tcp->tcp_tcph;
6720 	*(uint16_t *)tcph->th_fport = dstport;
6721 	tcp->tcp_fport = dstport;
6722 
6723 	oldstate = tcp->tcp_state;
6724 	/*
6725 	 * At this point the remote destination address and remote port fields
6726 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6727 	 * have to see which state tcp was in so we can take apropriate action.
6728 	 */
6729 	if (oldstate == TCPS_IDLE) {
6730 		/*
6731 		 * We support a quick connect capability here, allowing
6732 		 * clients to transition directly from IDLE to SYN_SENT
6733 		 * tcp_bindi will pick an unused port, insert the connection
6734 		 * in the bind hash and transition to BOUND state.
6735 		 */
6736 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6737 		    tcp, B_TRUE);
6738 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6739 		    B_FALSE, B_FALSE);
6740 		if (lport == 0) {
6741 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6742 			goto failed;
6743 		}
6744 	}
6745 	tcp->tcp_state = TCPS_SYN_SENT;
6746 	/*
6747 	 * TODO: allow data with connect requests
6748 	 * by unlinking M_DATA trailers here and
6749 	 * linking them in behind the T_OK_ACK mblk.
6750 	 * The tcp_rput() bind ack handler would then
6751 	 * feed them to tcp_wput_data() rather than call
6752 	 * tcp_timer().
6753 	 */
6754 	mp = mi_tpi_ok_ack_alloc(mp);
6755 	if (!mp) {
6756 		tcp->tcp_state = oldstate;
6757 		goto failed;
6758 	}
6759 	mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
6760 	if (mp1) {
6761 		/*
6762 		 * We need to make sure that the conn_recv is set to a non-null
6763 		 * value before we insert the conn_t into the classifier table.
6764 		 * This is to avoid a race with an incoming packet which does
6765 		 * an ipcl_classify().
6766 		 */
6767 		tcp->tcp_connp->conn_recv = tcp_input;
6768 
6769 		/* Hang onto the T_OK_ACK for later. */
6770 		linkb(mp1, mp);
6771 		mblk_setcred(mp1, tcp->tcp_cred);
6772 		mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6773 		    &tcp->tcp_sticky_ipp);
6774 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6775 		tcp->tcp_active_open = 1;
6776 		/* ip_bind_v6() may return ACK or ERROR */
6777 		if (mp1 != NULL)
6778 			tcp_rput_other(tcp, mp1);
6779 		return;
6780 	}
6781 	/* Error case */
6782 	tcp->tcp_state = oldstate;
6783 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6784 
6785 failed:
6786 	/* return error ack and blow away saved option results if any */
6787 	if (mp != NULL)
6788 		putnext(tcp->tcp_rq, mp);
6789 	else {
6790 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6791 		    TSYSERR, ENOMEM);
6792 	}
6793 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6794 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6795 }
6796 
6797 /*
6798  * We need a stream q for detached closing tcp connections
6799  * to use.  Our client hereby indicates that this q is the
6800  * one to use.
6801  */
6802 static void
6803 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6804 {
6805 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6806 	queue_t	*q = tcp->tcp_wq;
6807 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6808 
6809 #ifdef NS_DEBUG
6810 	(void) printf("TCP_IOC_DEFAULT_Q for stack %d\n",
6811 	    tcps->tcps_netstack->netstack_stackid);
6812 #endif
6813 	mp->b_datap->db_type = M_IOCACK;
6814 	iocp->ioc_count = 0;
6815 	mutex_enter(&tcps->tcps_g_q_lock);
6816 	if (tcps->tcps_g_q != NULL) {
6817 		mutex_exit(&tcps->tcps_g_q_lock);
6818 		iocp->ioc_error = EALREADY;
6819 	} else {
6820 		mblk_t *mp1;
6821 
6822 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0);
6823 		if (mp1 == NULL) {
6824 			mutex_exit(&tcps->tcps_g_q_lock);
6825 			iocp->ioc_error = ENOMEM;
6826 		} else {
6827 			tcps->tcps_g_q = tcp->tcp_rq;
6828 			mutex_exit(&tcps->tcps_g_q_lock);
6829 			iocp->ioc_error = 0;
6830 			iocp->ioc_rval = 0;
6831 			/*
6832 			 * We are passing tcp_sticky_ipp as NULL
6833 			 * as it is not useful for tcp_default queue
6834 			 *
6835 			 * Set conn_recv just in case.
6836 			 */
6837 			tcp->tcp_connp->conn_recv = tcp_conn_request;
6838 
6839 			mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL);
6840 			if (mp1 != NULL)
6841 				tcp_rput_other(tcp, mp1);
6842 		}
6843 	}
6844 	qreply(q, mp);
6845 }
6846 
6847 /*
6848  * Our client hereby directs us to reject the connection request
6849  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6850  * of sending the appropriate RST, not an ICMP error.
6851  */
6852 static void
6853 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6854 {
6855 	tcp_t	*ltcp = NULL;
6856 	t_scalar_t seqnum;
6857 	conn_t	*connp;
6858 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6859 
6860 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6861 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6862 		tcp_err_ack(tcp, mp, TPROTO, 0);
6863 		return;
6864 	}
6865 
6866 	/*
6867 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6868 	 * when the stream is in BOUND state. Do not send a reset,
6869 	 * since the destination IP address is not valid, and it can
6870 	 * be the initialized value of all zeros (broadcast address).
6871 	 *
6872 	 * If TCP has sent down a bind request to IP and has not
6873 	 * received the reply, reject the request.  Otherwise, TCP
6874 	 * will be confused.
6875 	 */
6876 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
6877 		if (tcp->tcp_debug) {
6878 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6879 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6880 		}
6881 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
6882 		return;
6883 	}
6884 
6885 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6886 
6887 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6888 
6889 		/*
6890 		 * According to TPI, for non-listeners, ignore seqnum
6891 		 * and disconnect.
6892 		 * Following interpretation of -1 seqnum is historical
6893 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6894 		 * a valid seqnum should not be -1).
6895 		 *
6896 		 *	-1 means disconnect everything
6897 		 *	regardless even on a listener.
6898 		 */
6899 
6900 		int old_state = tcp->tcp_state;
6901 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
6902 
6903 		/*
6904 		 * The connection can't be on the tcp_time_wait_head list
6905 		 * since it is not detached.
6906 		 */
6907 		ASSERT(tcp->tcp_time_wait_next == NULL);
6908 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6909 		ASSERT(tcp->tcp_time_wait_expire == 0);
6910 		ltcp = NULL;
6911 		/*
6912 		 * If it used to be a listener, check to make sure no one else
6913 		 * has taken the port before switching back to LISTEN state.
6914 		 */
6915 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6916 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6917 			    tcp->tcp_ipha->ipha_src,
6918 			    tcp->tcp_connp->conn_zoneid, ipst);
6919 			if (connp != NULL)
6920 				ltcp = connp->conn_tcp;
6921 		} else {
6922 			/* Allow tcp_bound_if listeners? */
6923 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6924 			    &tcp->tcp_ip6h->ip6_src, 0,
6925 			    tcp->tcp_connp->conn_zoneid, ipst);
6926 			if (connp != NULL)
6927 				ltcp = connp->conn_tcp;
6928 		}
6929 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6930 			tcp->tcp_state = TCPS_LISTEN;
6931 		} else if (old_state > TCPS_BOUND) {
6932 			tcp->tcp_conn_req_max = 0;
6933 			tcp->tcp_state = TCPS_BOUND;
6934 		}
6935 		if (ltcp != NULL)
6936 			CONN_DEC_REF(ltcp->tcp_connp);
6937 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6938 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
6939 		} else if (old_state == TCPS_ESTABLISHED ||
6940 		    old_state == TCPS_CLOSE_WAIT) {
6941 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
6942 		}
6943 
6944 		if (tcp->tcp_fused)
6945 			tcp_unfuse(tcp);
6946 
6947 		mutex_enter(&tcp->tcp_eager_lock);
6948 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6949 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6950 			tcp_eager_cleanup(tcp, 0);
6951 		}
6952 		mutex_exit(&tcp->tcp_eager_lock);
6953 
6954 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6955 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6956 
6957 		tcp_reinit(tcp);
6958 
6959 		if (old_state >= TCPS_ESTABLISHED) {
6960 			/* Send M_FLUSH according to TPI */
6961 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6962 		}
6963 		mp = mi_tpi_ok_ack_alloc(mp);
6964 		if (mp)
6965 			putnext(tcp->tcp_rq, mp);
6966 		return;
6967 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
6968 		tcp_err_ack(tcp, mp, TBADSEQ, 0);
6969 		return;
6970 	}
6971 	if (tcp->tcp_state >= TCPS_ESTABLISHED) {
6972 		/* Send M_FLUSH according to TPI */
6973 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6974 	}
6975 	mp = mi_tpi_ok_ack_alloc(mp);
6976 	if (mp)
6977 		putnext(tcp->tcp_rq, mp);
6978 }
6979 
6980 /*
6981  * Diagnostic routine used to return a string associated with the tcp state.
6982  * Note that if the caller does not supply a buffer, it will use an internal
6983  * static string.  This means that if multiple threads call this function at
6984  * the same time, output can be corrupted...  Note also that this function
6985  * does not check the size of the supplied buffer.  The caller has to make
6986  * sure that it is big enough.
6987  */
6988 static char *
6989 tcp_display(tcp_t *tcp, char *sup_buf, char format)
6990 {
6991 	char		buf1[30];
6992 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
6993 	char		*buf;
6994 	char		*cp;
6995 	in6_addr_t	local, remote;
6996 	char		local_addrbuf[INET6_ADDRSTRLEN];
6997 	char		remote_addrbuf[INET6_ADDRSTRLEN];
6998 
6999 	if (sup_buf != NULL)
7000 		buf = sup_buf;
7001 	else
7002 		buf = priv_buf;
7003 
7004 	if (tcp == NULL)
7005 		return ("NULL_TCP");
7006 	switch (tcp->tcp_state) {
7007 	case TCPS_CLOSED:
7008 		cp = "TCP_CLOSED";
7009 		break;
7010 	case TCPS_IDLE:
7011 		cp = "TCP_IDLE";
7012 		break;
7013 	case TCPS_BOUND:
7014 		cp = "TCP_BOUND";
7015 		break;
7016 	case TCPS_LISTEN:
7017 		cp = "TCP_LISTEN";
7018 		break;
7019 	case TCPS_SYN_SENT:
7020 		cp = "TCP_SYN_SENT";
7021 		break;
7022 	case TCPS_SYN_RCVD:
7023 		cp = "TCP_SYN_RCVD";
7024 		break;
7025 	case TCPS_ESTABLISHED:
7026 		cp = "TCP_ESTABLISHED";
7027 		break;
7028 	case TCPS_CLOSE_WAIT:
7029 		cp = "TCP_CLOSE_WAIT";
7030 		break;
7031 	case TCPS_FIN_WAIT_1:
7032 		cp = "TCP_FIN_WAIT_1";
7033 		break;
7034 	case TCPS_CLOSING:
7035 		cp = "TCP_CLOSING";
7036 		break;
7037 	case TCPS_LAST_ACK:
7038 		cp = "TCP_LAST_ACK";
7039 		break;
7040 	case TCPS_FIN_WAIT_2:
7041 		cp = "TCP_FIN_WAIT_2";
7042 		break;
7043 	case TCPS_TIME_WAIT:
7044 		cp = "TCP_TIME_WAIT";
7045 		break;
7046 	default:
7047 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
7048 		cp = buf1;
7049 		break;
7050 	}
7051 	switch (format) {
7052 	case DISP_ADDR_AND_PORT:
7053 		if (tcp->tcp_ipversion == IPV4_VERSION) {
7054 			/*
7055 			 * Note that we use the remote address in the tcp_b
7056 			 * structure.  This means that it will print out
7057 			 * the real destination address, not the next hop's
7058 			 * address if source routing is used.
7059 			 */
7060 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
7061 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
7062 
7063 		} else {
7064 			local = tcp->tcp_ip_src_v6;
7065 			remote = tcp->tcp_remote_v6;
7066 		}
7067 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
7068 		    sizeof (local_addrbuf));
7069 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
7070 		    sizeof (remote_addrbuf));
7071 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
7072 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
7073 		    ntohs(tcp->tcp_fport), cp);
7074 		break;
7075 	case DISP_PORT_ONLY:
7076 	default:
7077 		(void) mi_sprintf(buf, "[%u, %u] %s",
7078 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
7079 		break;
7080 	}
7081 
7082 	return (buf);
7083 }
7084 
7085 /*
7086  * Called via squeue to get on to eager's perimeter. It sends a
7087  * TH_RST if eager is in the fanout table. The listener wants the
7088  * eager to disappear either by means of tcp_eager_blowoff() or
7089  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
7090  * called (via squeue) if the eager cannot be inserted in the
7091  * fanout table in tcp_conn_request().
7092  */
7093 /* ARGSUSED */
7094 void
7095 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
7096 {
7097 	conn_t	*econnp = (conn_t *)arg;
7098 	tcp_t	*eager = econnp->conn_tcp;
7099 	tcp_t	*listener = eager->tcp_listener;
7100 	tcp_stack_t	*tcps = eager->tcp_tcps;
7101 
7102 	/*
7103 	 * We could be called because listener is closing. Since
7104 	 * the eager is using listener's queue's, its not safe.
7105 	 * Better use the default queue just to send the TH_RST
7106 	 * out.
7107 	 */
7108 	ASSERT(tcps->tcps_g_q != NULL);
7109 	eager->tcp_rq = tcps->tcps_g_q;
7110 	eager->tcp_wq = WR(tcps->tcps_g_q);
7111 
7112 	/*
7113 	 * An eager's conn_fanout will be NULL if it's a duplicate
7114 	 * for an existing 4-tuples in the conn fanout table.
7115 	 * We don't want to send an RST out in such case.
7116 	 */
7117 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
7118 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
7119 		    eager, eager->tcp_snxt, 0, TH_RST);
7120 	}
7121 
7122 	/* We are here because listener wants this eager gone */
7123 	if (listener != NULL) {
7124 		mutex_enter(&listener->tcp_eager_lock);
7125 		tcp_eager_unlink(eager);
7126 		if (eager->tcp_tconnind_started) {
7127 			/*
7128 			 * The eager has sent a conn_ind up to the
7129 			 * listener but listener decides to close
7130 			 * instead. We need to drop the extra ref
7131 			 * placed on eager in tcp_rput_data() before
7132 			 * sending the conn_ind to listener.
7133 			 */
7134 			CONN_DEC_REF(econnp);
7135 		}
7136 		mutex_exit(&listener->tcp_eager_lock);
7137 		CONN_DEC_REF(listener->tcp_connp);
7138 	}
7139 
7140 	if (eager->tcp_state > TCPS_BOUND)
7141 		tcp_close_detached(eager);
7142 }
7143 
7144 /*
7145  * Reset any eager connection hanging off this listener marked
7146  * with 'seqnum' and then reclaim it's resources.
7147  */
7148 static boolean_t
7149 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
7150 {
7151 	tcp_t	*eager;
7152 	mblk_t 	*mp;
7153 	tcp_stack_t	*tcps = listener->tcp_tcps;
7154 
7155 	TCP_STAT(tcps, tcp_eager_blowoff_calls);
7156 	eager = listener;
7157 	mutex_enter(&listener->tcp_eager_lock);
7158 	do {
7159 		eager = eager->tcp_eager_next_q;
7160 		if (eager == NULL) {
7161 			mutex_exit(&listener->tcp_eager_lock);
7162 			return (B_FALSE);
7163 		}
7164 	} while (eager->tcp_conn_req_seqnum != seqnum);
7165 
7166 	if (eager->tcp_closemp_used) {
7167 		mutex_exit(&listener->tcp_eager_lock);
7168 		return (B_TRUE);
7169 	}
7170 	eager->tcp_closemp_used = B_TRUE;
7171 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7172 	CONN_INC_REF(eager->tcp_connp);
7173 	mutex_exit(&listener->tcp_eager_lock);
7174 	mp = &eager->tcp_closemp;
7175 	squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
7176 	    eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF);
7177 	return (B_TRUE);
7178 }
7179 
7180 /*
7181  * Reset any eager connection hanging off this listener
7182  * and then reclaim it's resources.
7183  */
7184 static void
7185 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
7186 {
7187 	tcp_t	*eager;
7188 	mblk_t	*mp;
7189 	tcp_stack_t	*tcps = listener->tcp_tcps;
7190 
7191 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7192 
7193 	if (!q0_only) {
7194 		/* First cleanup q */
7195 		TCP_STAT(tcps, tcp_eager_blowoff_q);
7196 		eager = listener->tcp_eager_next_q;
7197 		while (eager != NULL) {
7198 			if (!eager->tcp_closemp_used) {
7199 				eager->tcp_closemp_used = B_TRUE;
7200 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7201 				CONN_INC_REF(eager->tcp_connp);
7202 				mp = &eager->tcp_closemp;
7203 				squeue_fill(eager->tcp_connp->conn_sqp, mp,
7204 				    tcp_eager_kill, eager->tcp_connp,
7205 				    SQTAG_TCP_EAGER_CLEANUP);
7206 			}
7207 			eager = eager->tcp_eager_next_q;
7208 		}
7209 	}
7210 	/* Then cleanup q0 */
7211 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
7212 	eager = listener->tcp_eager_next_q0;
7213 	while (eager != listener) {
7214 		if (!eager->tcp_closemp_used) {
7215 			eager->tcp_closemp_used = B_TRUE;
7216 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7217 			CONN_INC_REF(eager->tcp_connp);
7218 			mp = &eager->tcp_closemp;
7219 			squeue_fill(eager->tcp_connp->conn_sqp, mp,
7220 			    tcp_eager_kill, eager->tcp_connp,
7221 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
7222 		}
7223 		eager = eager->tcp_eager_next_q0;
7224 	}
7225 }
7226 
7227 /*
7228  * If we are an eager connection hanging off a listener that hasn't
7229  * formally accepted the connection yet, get off his list and blow off
7230  * any data that we have accumulated.
7231  */
7232 static void
7233 tcp_eager_unlink(tcp_t *tcp)
7234 {
7235 	tcp_t	*listener = tcp->tcp_listener;
7236 
7237 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7238 	ASSERT(listener != NULL);
7239 	if (tcp->tcp_eager_next_q0 != NULL) {
7240 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
7241 
7242 		/* Remove the eager tcp from q0 */
7243 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
7244 		    tcp->tcp_eager_prev_q0;
7245 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
7246 		    tcp->tcp_eager_next_q0;
7247 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
7248 		listener->tcp_conn_req_cnt_q0--;
7249 
7250 		tcp->tcp_eager_next_q0 = NULL;
7251 		tcp->tcp_eager_prev_q0 = NULL;
7252 
7253 		/*
7254 		 * Take the eager out, if it is in the list of droppable
7255 		 * eagers.
7256 		 */
7257 		MAKE_UNDROPPABLE(tcp);
7258 
7259 		if (tcp->tcp_syn_rcvd_timeout != 0) {
7260 			/* we have timed out before */
7261 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
7262 			listener->tcp_syn_rcvd_timeout--;
7263 		}
7264 	} else {
7265 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
7266 		tcp_t	*prev = NULL;
7267 
7268 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
7269 			if (tcpp[0] == tcp) {
7270 				if (listener->tcp_eager_last_q == tcp) {
7271 					/*
7272 					 * If we are unlinking the last
7273 					 * element on the list, adjust
7274 					 * tail pointer. Set tail pointer
7275 					 * to nil when list is empty.
7276 					 */
7277 					ASSERT(tcp->tcp_eager_next_q == NULL);
7278 					if (listener->tcp_eager_last_q ==
7279 					    listener->tcp_eager_next_q) {
7280 						listener->tcp_eager_last_q =
7281 						    NULL;
7282 					} else {
7283 						/*
7284 						 * We won't get here if there
7285 						 * is only one eager in the
7286 						 * list.
7287 						 */
7288 						ASSERT(prev != NULL);
7289 						listener->tcp_eager_last_q =
7290 						    prev;
7291 					}
7292 				}
7293 				tcpp[0] = tcp->tcp_eager_next_q;
7294 				tcp->tcp_eager_next_q = NULL;
7295 				tcp->tcp_eager_last_q = NULL;
7296 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
7297 				listener->tcp_conn_req_cnt_q--;
7298 				break;
7299 			}
7300 			prev = tcpp[0];
7301 		}
7302 	}
7303 	tcp->tcp_listener = NULL;
7304 }
7305 
7306 /* Shorthand to generate and send TPI error acks to our client */
7307 static void
7308 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7309 {
7310 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7311 		putnext(tcp->tcp_rq, mp);
7312 }
7313 
7314 /* Shorthand to generate and send TPI error acks to our client */
7315 static void
7316 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7317     int t_error, int sys_error)
7318 {
7319 	struct T_error_ack	*teackp;
7320 
7321 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7322 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7323 		teackp = (struct T_error_ack *)mp->b_rptr;
7324 		teackp->ERROR_prim = primitive;
7325 		teackp->TLI_error = t_error;
7326 		teackp->UNIX_error = sys_error;
7327 		putnext(tcp->tcp_rq, mp);
7328 	}
7329 }
7330 
7331 /*
7332  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7333  * but instead the code relies on:
7334  * - the fact that the address of the array and its size never changes
7335  * - the atomic assignment of the elements of the array
7336  */
7337 /* ARGSUSED */
7338 static int
7339 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7340 {
7341 	int i;
7342 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7343 
7344 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7345 		if (tcps->tcps_g_epriv_ports[i] != 0)
7346 			(void) mi_mpprintf(mp, "%d ",
7347 			    tcps->tcps_g_epriv_ports[i]);
7348 	}
7349 	return (0);
7350 }
7351 
7352 /*
7353  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7354  * threads from changing it at the same time.
7355  */
7356 /* ARGSUSED */
7357 static int
7358 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7359     cred_t *cr)
7360 {
7361 	long	new_value;
7362 	int	i;
7363 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7364 
7365 	/*
7366 	 * Fail the request if the new value does not lie within the
7367 	 * port number limits.
7368 	 */
7369 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7370 	    new_value <= 0 || new_value >= 65536) {
7371 		return (EINVAL);
7372 	}
7373 
7374 	mutex_enter(&tcps->tcps_epriv_port_lock);
7375 	/* Check if the value is already in the list */
7376 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7377 		if (new_value == tcps->tcps_g_epriv_ports[i]) {
7378 			mutex_exit(&tcps->tcps_epriv_port_lock);
7379 			return (EEXIST);
7380 		}
7381 	}
7382 	/* Find an empty slot */
7383 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7384 		if (tcps->tcps_g_epriv_ports[i] == 0)
7385 			break;
7386 	}
7387 	if (i == tcps->tcps_g_num_epriv_ports) {
7388 		mutex_exit(&tcps->tcps_epriv_port_lock);
7389 		return (EOVERFLOW);
7390 	}
7391 	/* Set the new value */
7392 	tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value;
7393 	mutex_exit(&tcps->tcps_epriv_port_lock);
7394 	return (0);
7395 }
7396 
7397 /*
7398  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7399  * threads from changing it at the same time.
7400  */
7401 /* ARGSUSED */
7402 static int
7403 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7404     cred_t *cr)
7405 {
7406 	long	new_value;
7407 	int	i;
7408 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7409 
7410 	/*
7411 	 * Fail the request if the new value does not lie within the
7412 	 * port number limits.
7413 	 */
7414 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7415 	    new_value >= 65536) {
7416 		return (EINVAL);
7417 	}
7418 
7419 	mutex_enter(&tcps->tcps_epriv_port_lock);
7420 	/* Check that the value is already in the list */
7421 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7422 		if (tcps->tcps_g_epriv_ports[i] == new_value)
7423 			break;
7424 	}
7425 	if (i == tcps->tcps_g_num_epriv_ports) {
7426 		mutex_exit(&tcps->tcps_epriv_port_lock);
7427 		return (ESRCH);
7428 	}
7429 	/* Clear the value */
7430 	tcps->tcps_g_epriv_ports[i] = 0;
7431 	mutex_exit(&tcps->tcps_epriv_port_lock);
7432 	return (0);
7433 }
7434 
7435 /* Return the TPI/TLI equivalent of our current tcp_state */
7436 static int
7437 tcp_tpistate(tcp_t *tcp)
7438 {
7439 	switch (tcp->tcp_state) {
7440 	case TCPS_IDLE:
7441 		return (TS_UNBND);
7442 	case TCPS_LISTEN:
7443 		/*
7444 		 * Return whether there are outstanding T_CONN_IND waiting
7445 		 * for the matching T_CONN_RES. Therefore don't count q0.
7446 		 */
7447 		if (tcp->tcp_conn_req_cnt_q > 0)
7448 			return (TS_WRES_CIND);
7449 		else
7450 			return (TS_IDLE);
7451 	case TCPS_BOUND:
7452 		return (TS_IDLE);
7453 	case TCPS_SYN_SENT:
7454 		return (TS_WCON_CREQ);
7455 	case TCPS_SYN_RCVD:
7456 		/*
7457 		 * Note: assumption: this has to the active open SYN_RCVD.
7458 		 * The passive instance is detached in SYN_RCVD stage of
7459 		 * incoming connection processing so we cannot get request
7460 		 * for T_info_ack on it.
7461 		 */
7462 		return (TS_WACK_CRES);
7463 	case TCPS_ESTABLISHED:
7464 		return (TS_DATA_XFER);
7465 	case TCPS_CLOSE_WAIT:
7466 		return (TS_WREQ_ORDREL);
7467 	case TCPS_FIN_WAIT_1:
7468 		return (TS_WIND_ORDREL);
7469 	case TCPS_FIN_WAIT_2:
7470 		return (TS_WIND_ORDREL);
7471 
7472 	case TCPS_CLOSING:
7473 	case TCPS_LAST_ACK:
7474 	case TCPS_TIME_WAIT:
7475 	case TCPS_CLOSED:
7476 		/*
7477 		 * Following TS_WACK_DREQ7 is a rendition of "not
7478 		 * yet TS_IDLE" TPI state. There is no best match to any
7479 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7480 		 * choose a value chosen that will map to TLI/XTI level
7481 		 * state of TSTATECHNG (state is process of changing) which
7482 		 * captures what this dummy state represents.
7483 		 */
7484 		return (TS_WACK_DREQ7);
7485 	default:
7486 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7487 		    tcp->tcp_state, tcp_display(tcp, NULL,
7488 		    DISP_PORT_ONLY));
7489 		return (TS_UNBND);
7490 	}
7491 }
7492 
7493 static void
7494 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7495 {
7496 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7497 
7498 	if (tcp->tcp_family == AF_INET6)
7499 		*tia = tcp_g_t_info_ack_v6;
7500 	else
7501 		*tia = tcp_g_t_info_ack;
7502 	tia->CURRENT_state = tcp_tpistate(tcp);
7503 	tia->OPT_size = tcp_max_optsize;
7504 	if (tcp->tcp_mss == 0) {
7505 		/* Not yet set - tcp_open does not set mss */
7506 		if (tcp->tcp_ipversion == IPV4_VERSION)
7507 			tia->TIDU_size = tcps->tcps_mss_def_ipv4;
7508 		else
7509 			tia->TIDU_size = tcps->tcps_mss_def_ipv6;
7510 	} else {
7511 		tia->TIDU_size = tcp->tcp_mss;
7512 	}
7513 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7514 }
7515 
7516 /*
7517  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7518  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7519  * tcp_g_t_info_ack.  The current state of the stream is copied from
7520  * tcp_state.
7521  */
7522 static void
7523 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7524 {
7525 	t_uscalar_t		cap_bits1;
7526 	struct T_capability_ack	*tcap;
7527 
7528 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7529 		freemsg(mp);
7530 		return;
7531 	}
7532 
7533 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7534 
7535 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7536 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7537 	if (mp == NULL)
7538 		return;
7539 
7540 	tcap = (struct T_capability_ack *)mp->b_rptr;
7541 	tcap->CAP_bits1 = 0;
7542 
7543 	if (cap_bits1 & TC1_INFO) {
7544 		tcp_copy_info(&tcap->INFO_ack, tcp);
7545 		tcap->CAP_bits1 |= TC1_INFO;
7546 	}
7547 
7548 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7549 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7550 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7551 	}
7552 
7553 	putnext(tcp->tcp_rq, mp);
7554 }
7555 
7556 /*
7557  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7558  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7559  * The current state of the stream is copied from tcp_state.
7560  */
7561 static void
7562 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7563 {
7564 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7565 	    T_INFO_ACK);
7566 	if (!mp) {
7567 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7568 		return;
7569 	}
7570 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7571 	putnext(tcp->tcp_rq, mp);
7572 }
7573 
7574 /* Respond to the TPI addr request */
7575 static void
7576 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7577 {
7578 	sin_t	*sin;
7579 	mblk_t	*ackmp;
7580 	struct T_addr_ack *taa;
7581 
7582 	/* Make it large enough for worst case */
7583 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7584 	    2 * sizeof (sin6_t), 1);
7585 	if (ackmp == NULL) {
7586 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7587 		return;
7588 	}
7589 
7590 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7591 		tcp_addr_req_ipv6(tcp, ackmp);
7592 		return;
7593 	}
7594 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7595 
7596 	bzero(taa, sizeof (struct T_addr_ack));
7597 	ackmp->b_wptr = (uchar_t *)&taa[1];
7598 
7599 	taa->PRIM_type = T_ADDR_ACK;
7600 	ackmp->b_datap->db_type = M_PCPROTO;
7601 
7602 	/*
7603 	 * Note: Following code assumes 32 bit alignment of basic
7604 	 * data structures like sin_t and struct T_addr_ack.
7605 	 */
7606 	if (tcp->tcp_state >= TCPS_BOUND) {
7607 		/*
7608 		 * Fill in local address
7609 		 */
7610 		taa->LOCADDR_length = sizeof (sin_t);
7611 		taa->LOCADDR_offset = sizeof (*taa);
7612 
7613 		sin = (sin_t *)&taa[1];
7614 
7615 		/* Fill zeroes and then intialize non-zero fields */
7616 		*sin = sin_null;
7617 
7618 		sin->sin_family = AF_INET;
7619 
7620 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7621 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7622 
7623 		ackmp->b_wptr = (uchar_t *)&sin[1];
7624 
7625 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7626 			/*
7627 			 * Fill in Remote address
7628 			 */
7629 			taa->REMADDR_length = sizeof (sin_t);
7630 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7631 			    taa->LOCADDR_length);
7632 
7633 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7634 			*sin = sin_null;
7635 			sin->sin_family = AF_INET;
7636 			sin->sin_addr.s_addr = tcp->tcp_remote;
7637 			sin->sin_port = tcp->tcp_fport;
7638 
7639 			ackmp->b_wptr = (uchar_t *)&sin[1];
7640 		}
7641 	}
7642 	putnext(tcp->tcp_rq, ackmp);
7643 }
7644 
7645 /* Assumes that tcp_addr_req gets enough space and alignment */
7646 static void
7647 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7648 {
7649 	sin6_t	*sin6;
7650 	struct T_addr_ack *taa;
7651 
7652 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7653 	ASSERT(OK_32PTR(ackmp->b_rptr));
7654 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7655 	    2 * sizeof (sin6_t));
7656 
7657 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7658 
7659 	bzero(taa, sizeof (struct T_addr_ack));
7660 	ackmp->b_wptr = (uchar_t *)&taa[1];
7661 
7662 	taa->PRIM_type = T_ADDR_ACK;
7663 	ackmp->b_datap->db_type = M_PCPROTO;
7664 
7665 	/*
7666 	 * Note: Following code assumes 32 bit alignment of basic
7667 	 * data structures like sin6_t and struct T_addr_ack.
7668 	 */
7669 	if (tcp->tcp_state >= TCPS_BOUND) {
7670 		/*
7671 		 * Fill in local address
7672 		 */
7673 		taa->LOCADDR_length = sizeof (sin6_t);
7674 		taa->LOCADDR_offset = sizeof (*taa);
7675 
7676 		sin6 = (sin6_t *)&taa[1];
7677 		*sin6 = sin6_null;
7678 
7679 		sin6->sin6_family = AF_INET6;
7680 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7681 		sin6->sin6_port = tcp->tcp_lport;
7682 
7683 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7684 
7685 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7686 			/*
7687 			 * Fill in Remote address
7688 			 */
7689 			taa->REMADDR_length = sizeof (sin6_t);
7690 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7691 			    taa->LOCADDR_length);
7692 
7693 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7694 			*sin6 = sin6_null;
7695 			sin6->sin6_family = AF_INET6;
7696 			sin6->sin6_flowinfo =
7697 			    tcp->tcp_ip6h->ip6_vcf &
7698 			    ~IPV6_VERS_AND_FLOW_MASK;
7699 			sin6->sin6_addr = tcp->tcp_remote_v6;
7700 			sin6->sin6_port = tcp->tcp_fport;
7701 
7702 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7703 		}
7704 	}
7705 	putnext(tcp->tcp_rq, ackmp);
7706 }
7707 
7708 /*
7709  * Handle reinitialization of a tcp structure.
7710  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7711  */
7712 static void
7713 tcp_reinit(tcp_t *tcp)
7714 {
7715 	mblk_t	*mp;
7716 	int 	err;
7717 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7718 
7719 	TCP_STAT(tcps, tcp_reinit_calls);
7720 
7721 	/* tcp_reinit should never be called for detached tcp_t's */
7722 	ASSERT(tcp->tcp_listener == NULL);
7723 	ASSERT((tcp->tcp_family == AF_INET &&
7724 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7725 	    (tcp->tcp_family == AF_INET6 &&
7726 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7727 	    tcp->tcp_ipversion == IPV6_VERSION)));
7728 
7729 	/* Cancel outstanding timers */
7730 	tcp_timers_stop(tcp);
7731 
7732 	/*
7733 	 * Reset everything in the state vector, after updating global
7734 	 * MIB data from instance counters.
7735 	 */
7736 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
7737 	tcp->tcp_ibsegs = 0;
7738 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
7739 	tcp->tcp_obsegs = 0;
7740 
7741 	tcp_close_mpp(&tcp->tcp_xmit_head);
7742 	if (tcp->tcp_snd_zcopy_aware)
7743 		tcp_zcopy_notify(tcp);
7744 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7745 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7746 	mutex_enter(&tcp->tcp_non_sq_lock);
7747 	if (tcp->tcp_flow_stopped &&
7748 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7749 		tcp_clrqfull(tcp);
7750 	}
7751 	mutex_exit(&tcp->tcp_non_sq_lock);
7752 	tcp_close_mpp(&tcp->tcp_reass_head);
7753 	tcp->tcp_reass_tail = NULL;
7754 	if (tcp->tcp_rcv_list != NULL) {
7755 		/* Free b_next chain */
7756 		tcp_close_mpp(&tcp->tcp_rcv_list);
7757 		tcp->tcp_rcv_last_head = NULL;
7758 		tcp->tcp_rcv_last_tail = NULL;
7759 		tcp->tcp_rcv_cnt = 0;
7760 	}
7761 	tcp->tcp_rcv_last_tail = NULL;
7762 
7763 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7764 		freemsg(mp);
7765 		tcp->tcp_urp_mp = NULL;
7766 	}
7767 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7768 		freemsg(mp);
7769 		tcp->tcp_urp_mark_mp = NULL;
7770 	}
7771 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7772 		freeb(tcp->tcp_fused_sigurg_mp);
7773 		tcp->tcp_fused_sigurg_mp = NULL;
7774 	}
7775 
7776 	/*
7777 	 * Following is a union with two members which are
7778 	 * identical types and size so the following cleanup
7779 	 * is enough.
7780 	 */
7781 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7782 
7783 	CL_INET_DISCONNECT(tcp);
7784 
7785 	/*
7786 	 * The connection can't be on the tcp_time_wait_head list
7787 	 * since it is not detached.
7788 	 */
7789 	ASSERT(tcp->tcp_time_wait_next == NULL);
7790 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7791 	ASSERT(tcp->tcp_time_wait_expire == 0);
7792 
7793 	if (tcp->tcp_kssl_pending) {
7794 		tcp->tcp_kssl_pending = B_FALSE;
7795 
7796 		/* Don't reset if the initialized by bind. */
7797 		if (tcp->tcp_kssl_ent != NULL) {
7798 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7799 			    KSSL_NO_PROXY);
7800 		}
7801 	}
7802 	if (tcp->tcp_kssl_ctx != NULL) {
7803 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7804 		tcp->tcp_kssl_ctx = NULL;
7805 	}
7806 
7807 	/*
7808 	 * Reset/preserve other values
7809 	 */
7810 	tcp_reinit_values(tcp);
7811 	ipcl_hash_remove(tcp->tcp_connp);
7812 	conn_delete_ire(tcp->tcp_connp, NULL);
7813 	tcp_ipsec_cleanup(tcp);
7814 
7815 	if (tcp->tcp_conn_req_max != 0) {
7816 		/*
7817 		 * This is the case when a TLI program uses the same
7818 		 * transport end point to accept a connection.  This
7819 		 * makes the TCP both a listener and acceptor.  When
7820 		 * this connection is closed, we need to set the state
7821 		 * back to TCPS_LISTEN.  Make sure that the eager list
7822 		 * is reinitialized.
7823 		 *
7824 		 * Note that this stream is still bound to the four
7825 		 * tuples of the previous connection in IP.  If a new
7826 		 * SYN with different foreign address comes in, IP will
7827 		 * not find it and will send it to the global queue.  In
7828 		 * the global queue, TCP will do a tcp_lookup_listener()
7829 		 * to find this stream.  This works because this stream
7830 		 * is only removed from connected hash.
7831 		 *
7832 		 */
7833 		tcp->tcp_state = TCPS_LISTEN;
7834 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7835 		tcp->tcp_eager_next_drop_q0 = tcp;
7836 		tcp->tcp_eager_prev_drop_q0 = tcp;
7837 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7838 		if (tcp->tcp_family == AF_INET6) {
7839 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7840 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7841 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7842 		} else {
7843 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7844 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7845 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7846 		}
7847 	} else {
7848 		tcp->tcp_state = TCPS_BOUND;
7849 	}
7850 
7851 	/*
7852 	 * Initialize to default values
7853 	 * Can't fail since enough header template space already allocated
7854 	 * at open().
7855 	 */
7856 	err = tcp_init_values(tcp);
7857 	ASSERT(err == 0);
7858 	/* Restore state in tcp_tcph */
7859 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7860 	if (tcp->tcp_ipversion == IPV4_VERSION)
7861 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7862 	else
7863 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7864 	/*
7865 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7866 	 * since the lookup funcs can only lookup on tcp_t
7867 	 */
7868 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7869 
7870 	ASSERT(tcp->tcp_ptpbhn != NULL);
7871 	tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat;
7872 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
7873 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7874 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
7875 }
7876 
7877 /*
7878  * Force values to zero that need be zero.
7879  * Do not touch values asociated with the BOUND or LISTEN state
7880  * since the connection will end up in that state after the reinit.
7881  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7882  * structure!
7883  */
7884 static void
7885 tcp_reinit_values(tcp)
7886 	tcp_t *tcp;
7887 {
7888 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7889 
7890 #ifndef	lint
7891 #define	DONTCARE(x)
7892 #define	PRESERVE(x)
7893 #else
7894 #define	DONTCARE(x)	((x) = (x))
7895 #define	PRESERVE(x)	((x) = (x))
7896 #endif	/* lint */
7897 
7898 	PRESERVE(tcp->tcp_bind_hash);
7899 	PRESERVE(tcp->tcp_ptpbhn);
7900 	PRESERVE(tcp->tcp_acceptor_hash);
7901 	PRESERVE(tcp->tcp_ptpahn);
7902 
7903 	/* Should be ASSERT NULL on these with new code! */
7904 	ASSERT(tcp->tcp_time_wait_next == NULL);
7905 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7906 	ASSERT(tcp->tcp_time_wait_expire == 0);
7907 	PRESERVE(tcp->tcp_state);
7908 	PRESERVE(tcp->tcp_rq);
7909 	PRESERVE(tcp->tcp_wq);
7910 
7911 	ASSERT(tcp->tcp_xmit_head == NULL);
7912 	ASSERT(tcp->tcp_xmit_last == NULL);
7913 	ASSERT(tcp->tcp_unsent == 0);
7914 	ASSERT(tcp->tcp_xmit_tail == NULL);
7915 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7916 
7917 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7918 	tcp->tcp_suna = 0;			/* Displayed in mib */
7919 	tcp->tcp_swnd = 0;
7920 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7921 
7922 	ASSERT(tcp->tcp_ibsegs == 0);
7923 	ASSERT(tcp->tcp_obsegs == 0);
7924 
7925 	if (tcp->tcp_iphc != NULL) {
7926 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7927 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7928 	}
7929 
7930 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7931 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7932 	DONTCARE(tcp->tcp_ipha);
7933 	DONTCARE(tcp->tcp_ip6h);
7934 	DONTCARE(tcp->tcp_ip_hdr_len);
7935 	DONTCARE(tcp->tcp_tcph);
7936 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7937 	tcp->tcp_valid_bits = 0;
7938 
7939 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7940 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7941 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7942 	tcp->tcp_last_rcv_lbolt = 0;
7943 
7944 	tcp->tcp_init_cwnd = 0;
7945 
7946 	tcp->tcp_urp_last_valid = 0;
7947 	tcp->tcp_hard_binding = 0;
7948 	tcp->tcp_hard_bound = 0;
7949 	PRESERVE(tcp->tcp_cred);
7950 	PRESERVE(tcp->tcp_cpid);
7951 	PRESERVE(tcp->tcp_open_time);
7952 	PRESERVE(tcp->tcp_exclbind);
7953 
7954 	tcp->tcp_fin_acked = 0;
7955 	tcp->tcp_fin_rcvd = 0;
7956 	tcp->tcp_fin_sent = 0;
7957 	tcp->tcp_ordrel_done = 0;
7958 
7959 	tcp->tcp_debug = 0;
7960 	tcp->tcp_dontroute = 0;
7961 	tcp->tcp_broadcast = 0;
7962 
7963 	tcp->tcp_useloopback = 0;
7964 	tcp->tcp_reuseaddr = 0;
7965 	tcp->tcp_oobinline = 0;
7966 	tcp->tcp_dgram_errind = 0;
7967 
7968 	tcp->tcp_detached = 0;
7969 	tcp->tcp_bind_pending = 0;
7970 	tcp->tcp_unbind_pending = 0;
7971 	tcp->tcp_deferred_clean_death = 0;
7972 
7973 	tcp->tcp_snd_ws_ok = B_FALSE;
7974 	tcp->tcp_snd_ts_ok = B_FALSE;
7975 	tcp->tcp_linger = 0;
7976 	tcp->tcp_ka_enabled = 0;
7977 	tcp->tcp_zero_win_probe = 0;
7978 
7979 	tcp->tcp_loopback = 0;
7980 	tcp->tcp_localnet = 0;
7981 	tcp->tcp_syn_defense = 0;
7982 	tcp->tcp_set_timer = 0;
7983 
7984 	tcp->tcp_active_open = 0;
7985 	ASSERT(tcp->tcp_timeout == B_FALSE);
7986 	tcp->tcp_rexmit = B_FALSE;
7987 	tcp->tcp_xmit_zc_clean = B_FALSE;
7988 
7989 	tcp->tcp_snd_sack_ok = B_FALSE;
7990 	PRESERVE(tcp->tcp_recvdstaddr);
7991 	tcp->tcp_hwcksum = B_FALSE;
7992 
7993 	tcp->tcp_ire_ill_check_done = B_FALSE;
7994 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
7995 
7996 	tcp->tcp_mdt = B_FALSE;
7997 	tcp->tcp_mdt_hdr_head = 0;
7998 	tcp->tcp_mdt_hdr_tail = 0;
7999 
8000 	tcp->tcp_conn_def_q0 = 0;
8001 	tcp->tcp_ip_forward_progress = B_FALSE;
8002 	tcp->tcp_anon_priv_bind = 0;
8003 	tcp->tcp_ecn_ok = B_FALSE;
8004 
8005 	tcp->tcp_cwr = B_FALSE;
8006 	tcp->tcp_ecn_echo_on = B_FALSE;
8007 
8008 	if (tcp->tcp_sack_info != NULL) {
8009 		if (tcp->tcp_notsack_list != NULL) {
8010 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
8011 		}
8012 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
8013 		tcp->tcp_sack_info = NULL;
8014 	}
8015 
8016 	tcp->tcp_rcv_ws = 0;
8017 	tcp->tcp_snd_ws = 0;
8018 	tcp->tcp_ts_recent = 0;
8019 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
8020 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
8021 	tcp->tcp_if_mtu = 0;
8022 
8023 	ASSERT(tcp->tcp_reass_head == NULL);
8024 	ASSERT(tcp->tcp_reass_tail == NULL);
8025 
8026 	tcp->tcp_cwnd_cnt = 0;
8027 
8028 	ASSERT(tcp->tcp_rcv_list == NULL);
8029 	ASSERT(tcp->tcp_rcv_last_head == NULL);
8030 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
8031 	ASSERT(tcp->tcp_rcv_cnt == 0);
8032 
8033 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
8034 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
8035 	tcp->tcp_csuna = 0;
8036 
8037 	tcp->tcp_rto = 0;			/* Displayed in MIB */
8038 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
8039 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
8040 	tcp->tcp_rtt_update = 0;
8041 
8042 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8043 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8044 
8045 	tcp->tcp_rack = 0;			/* Displayed in mib */
8046 	tcp->tcp_rack_cnt = 0;
8047 	tcp->tcp_rack_cur_max = 0;
8048 	tcp->tcp_rack_abs_max = 0;
8049 
8050 	tcp->tcp_max_swnd = 0;
8051 
8052 	ASSERT(tcp->tcp_listener == NULL);
8053 
8054 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
8055 
8056 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
8057 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
8058 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
8059 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
8060 
8061 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
8062 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
8063 	PRESERVE(tcp->tcp_conn_req_max);
8064 	PRESERVE(tcp->tcp_conn_req_seqnum);
8065 
8066 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
8067 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
8068 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
8069 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
8070 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
8071 
8072 	tcp->tcp_lingertime = 0;
8073 
8074 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
8075 	ASSERT(tcp->tcp_urp_mp == NULL);
8076 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
8077 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
8078 
8079 	ASSERT(tcp->tcp_eager_next_q == NULL);
8080 	ASSERT(tcp->tcp_eager_last_q == NULL);
8081 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
8082 	    tcp->tcp_eager_prev_q0 == NULL) ||
8083 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
8084 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
8085 
8086 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
8087 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
8088 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
8089 
8090 	tcp->tcp_client_errno = 0;
8091 
8092 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
8093 
8094 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
8095 
8096 	PRESERVE(tcp->tcp_bound_source_v6);
8097 	tcp->tcp_last_sent_len = 0;
8098 	tcp->tcp_dupack_cnt = 0;
8099 
8100 	tcp->tcp_fport = 0;			/* Displayed in MIB */
8101 	PRESERVE(tcp->tcp_lport);
8102 
8103 	PRESERVE(tcp->tcp_acceptor_lockp);
8104 
8105 	ASSERT(tcp->tcp_ordrelid == 0);
8106 	PRESERVE(tcp->tcp_acceptor_id);
8107 	DONTCARE(tcp->tcp_ipsec_overhead);
8108 
8109 	/*
8110 	 * If tcp_tracing flag is ON (i.e. We have a trace buffer
8111 	 * in tcp structure and now tracing), Re-initialize all
8112 	 * members of tcp_traceinfo.
8113 	 */
8114 	if (tcp->tcp_tracebuf != NULL) {
8115 		bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t));
8116 	}
8117 
8118 	PRESERVE(tcp->tcp_family);
8119 	if (tcp->tcp_family == AF_INET6) {
8120 		tcp->tcp_ipversion = IPV6_VERSION;
8121 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
8122 	} else {
8123 		tcp->tcp_ipversion = IPV4_VERSION;
8124 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
8125 	}
8126 
8127 	tcp->tcp_bound_if = 0;
8128 	tcp->tcp_ipv6_recvancillary = 0;
8129 	tcp->tcp_recvifindex = 0;
8130 	tcp->tcp_recvhops = 0;
8131 	tcp->tcp_closed = 0;
8132 	tcp->tcp_cleandeathtag = 0;
8133 	if (tcp->tcp_hopopts != NULL) {
8134 		mi_free(tcp->tcp_hopopts);
8135 		tcp->tcp_hopopts = NULL;
8136 		tcp->tcp_hopoptslen = 0;
8137 	}
8138 	ASSERT(tcp->tcp_hopoptslen == 0);
8139 	if (tcp->tcp_dstopts != NULL) {
8140 		mi_free(tcp->tcp_dstopts);
8141 		tcp->tcp_dstopts = NULL;
8142 		tcp->tcp_dstoptslen = 0;
8143 	}
8144 	ASSERT(tcp->tcp_dstoptslen == 0);
8145 	if (tcp->tcp_rtdstopts != NULL) {
8146 		mi_free(tcp->tcp_rtdstopts);
8147 		tcp->tcp_rtdstopts = NULL;
8148 		tcp->tcp_rtdstoptslen = 0;
8149 	}
8150 	ASSERT(tcp->tcp_rtdstoptslen == 0);
8151 	if (tcp->tcp_rthdr != NULL) {
8152 		mi_free(tcp->tcp_rthdr);
8153 		tcp->tcp_rthdr = NULL;
8154 		tcp->tcp_rthdrlen = 0;
8155 	}
8156 	ASSERT(tcp->tcp_rthdrlen == 0);
8157 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
8158 
8159 	/* Reset fusion-related fields */
8160 	tcp->tcp_fused = B_FALSE;
8161 	tcp->tcp_unfusable = B_FALSE;
8162 	tcp->tcp_fused_sigurg = B_FALSE;
8163 	tcp->tcp_direct_sockfs = B_FALSE;
8164 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8165 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8166 	tcp->tcp_loopback_peer = NULL;
8167 	tcp->tcp_fuse_rcv_hiwater = 0;
8168 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8169 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8170 
8171 	tcp->tcp_lso = B_FALSE;
8172 
8173 	tcp->tcp_in_ack_unsent = 0;
8174 	tcp->tcp_cork = B_FALSE;
8175 	tcp->tcp_tconnind_started = B_FALSE;
8176 
8177 	PRESERVE(tcp->tcp_squeue_bytes);
8178 
8179 	ASSERT(tcp->tcp_kssl_ctx == NULL);
8180 	ASSERT(!tcp->tcp_kssl_pending);
8181 	PRESERVE(tcp->tcp_kssl_ent);
8182 
8183 	tcp->tcp_closemp_used = B_FALSE;
8184 
8185 #ifdef DEBUG
8186 	DONTCARE(tcp->tcmp_stk[0]);
8187 #endif
8188 
8189 
8190 #undef	DONTCARE
8191 #undef	PRESERVE
8192 }
8193 
8194 /*
8195  * Allocate necessary resources and initialize state vector.
8196  * Guaranteed not to fail so that when an error is returned,
8197  * the caller doesn't need to do any additional cleanup.
8198  */
8199 int
8200 tcp_init(tcp_t *tcp, queue_t *q)
8201 {
8202 	int	err;
8203 
8204 	tcp->tcp_rq = q;
8205 	tcp->tcp_wq = WR(q);
8206 	tcp->tcp_state = TCPS_IDLE;
8207 	if ((err = tcp_init_values(tcp)) != 0)
8208 		tcp_timers_stop(tcp);
8209 	return (err);
8210 }
8211 
8212 static int
8213 tcp_init_values(tcp_t *tcp)
8214 {
8215 	int	err;
8216 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8217 
8218 	ASSERT((tcp->tcp_family == AF_INET &&
8219 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8220 	    (tcp->tcp_family == AF_INET6 &&
8221 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8222 	    tcp->tcp_ipversion == IPV6_VERSION)));
8223 
8224 	/*
8225 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
8226 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
8227 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
8228 	 * during first few transmissions of a connection as seen in slow
8229 	 * links.
8230 	 */
8231 	tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
8232 	tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
8233 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
8234 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
8235 	    tcps->tcps_conn_grace_period;
8236 	if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
8237 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
8238 	tcp->tcp_timer_backoff = 0;
8239 	tcp->tcp_ms_we_have_waited = 0;
8240 	tcp->tcp_last_recv_time = lbolt;
8241 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
8242 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
8243 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
8244 
8245 	tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier;
8246 
8247 	tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
8248 	tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
8249 	tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
8250 	/*
8251 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
8252 	 * passive open.
8253 	 */
8254 	tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
8255 
8256 	tcp->tcp_naglim = tcps->tcps_naglim_def;
8257 
8258 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
8259 
8260 	tcp->tcp_mdt_hdr_head = 0;
8261 	tcp->tcp_mdt_hdr_tail = 0;
8262 
8263 	/* Reset fusion-related fields */
8264 	tcp->tcp_fused = B_FALSE;
8265 	tcp->tcp_unfusable = B_FALSE;
8266 	tcp->tcp_fused_sigurg = B_FALSE;
8267 	tcp->tcp_direct_sockfs = B_FALSE;
8268 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8269 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8270 	tcp->tcp_loopback_peer = NULL;
8271 	tcp->tcp_fuse_rcv_hiwater = 0;
8272 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8273 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8274 
8275 	/* Initialize the header template */
8276 	if (tcp->tcp_ipversion == IPV4_VERSION) {
8277 		err = tcp_header_init_ipv4(tcp);
8278 	} else {
8279 		err = tcp_header_init_ipv6(tcp);
8280 	}
8281 	if (err)
8282 		return (err);
8283 
8284 	/*
8285 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
8286 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
8287 	 */
8288 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
8289 	tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat;
8290 	tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat;
8291 
8292 	tcp->tcp_cork = B_FALSE;
8293 	/*
8294 	 * Init the tcp_debug option.  This value determines whether TCP
8295 	 * calls strlog() to print out debug messages.  Doing this
8296 	 * initialization here means that this value is not inherited thru
8297 	 * tcp_reinit().
8298 	 */
8299 	tcp->tcp_debug = tcps->tcps_dbg;
8300 
8301 	tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
8302 	tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
8303 
8304 	return (0);
8305 }
8306 
8307 /*
8308  * Initialize the IPv4 header. Loses any record of any IP options.
8309  */
8310 static int
8311 tcp_header_init_ipv4(tcp_t *tcp)
8312 {
8313 	tcph_t		*tcph;
8314 	uint32_t	sum;
8315 	conn_t		*connp;
8316 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8317 
8318 	/*
8319 	 * This is a simple initialization. If there's
8320 	 * already a template, it should never be too small,
8321 	 * so reuse it.  Otherwise, allocate space for the new one.
8322 	 */
8323 	if (tcp->tcp_iphc == NULL) {
8324 		ASSERT(tcp->tcp_iphc_len == 0);
8325 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8326 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8327 		if (tcp->tcp_iphc == NULL) {
8328 			tcp->tcp_iphc_len = 0;
8329 			return (ENOMEM);
8330 		}
8331 	}
8332 
8333 	/* options are gone; may need a new label */
8334 	connp = tcp->tcp_connp;
8335 	connp->conn_mlp_type = mlptSingle;
8336 	connp->conn_ulp_labeled = !is_system_labeled();
8337 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8338 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8339 	tcp->tcp_ip6h = NULL;
8340 	tcp->tcp_ipversion = IPV4_VERSION;
8341 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8342 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8343 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8344 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8345 	tcp->tcp_ipha->ipha_version_and_hdr_length
8346 	    = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8347 	tcp->tcp_ipha->ipha_ident = 0;
8348 
8349 	tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8350 	tcp->tcp_tos = 0;
8351 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8352 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8353 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8354 
8355 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8356 	tcp->tcp_tcph = tcph;
8357 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8358 	/*
8359 	 * IP wants our header length in the checksum field to
8360 	 * allow it to perform a single pseudo-header+checksum
8361 	 * calculation on behalf of TCP.
8362 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8363 	 */
8364 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8365 	sum = (sum >> 16) + (sum & 0xFFFF);
8366 	U16_TO_ABE16(sum, tcph->th_sum);
8367 	return (0);
8368 }
8369 
8370 /*
8371  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8372  */
8373 static int
8374 tcp_header_init_ipv6(tcp_t *tcp)
8375 {
8376 	tcph_t	*tcph;
8377 	uint32_t	sum;
8378 	conn_t	*connp;
8379 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8380 
8381 	/*
8382 	 * This is a simple initialization. If there's
8383 	 * already a template, it should never be too small,
8384 	 * so reuse it. Otherwise, allocate space for the new one.
8385 	 * Ensure that there is enough space to "downgrade" the tcp_t
8386 	 * to an IPv4 tcp_t. This requires having space for a full load
8387 	 * of IPv4 options, as well as a full load of TCP options
8388 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8389 	 * than a v6 header and a TCP header with a full load of TCP options
8390 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8391 	 * We want to avoid reallocation in the "downgraded" case when
8392 	 * processing outbound IPv4 options.
8393 	 */
8394 	if (tcp->tcp_iphc == NULL) {
8395 		ASSERT(tcp->tcp_iphc_len == 0);
8396 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8397 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8398 		if (tcp->tcp_iphc == NULL) {
8399 			tcp->tcp_iphc_len = 0;
8400 			return (ENOMEM);
8401 		}
8402 	}
8403 
8404 	/* options are gone; may need a new label */
8405 	connp = tcp->tcp_connp;
8406 	connp->conn_mlp_type = mlptSingle;
8407 	connp->conn_ulp_labeled = !is_system_labeled();
8408 
8409 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8410 	tcp->tcp_ipversion = IPV6_VERSION;
8411 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8412 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8413 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8414 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8415 	tcp->tcp_ipha = NULL;
8416 
8417 	/* Initialize the header template */
8418 
8419 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8420 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8421 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8422 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit;
8423 
8424 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8425 	tcp->tcp_tcph = tcph;
8426 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8427 	/*
8428 	 * IP wants our header length in the checksum field to
8429 	 * allow it to perform a single psuedo-header+checksum
8430 	 * calculation on behalf of TCP.
8431 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8432 	 */
8433 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8434 	sum = (sum >> 16) + (sum & 0xFFFF);
8435 	U16_TO_ABE16(sum, tcph->th_sum);
8436 	return (0);
8437 }
8438 
8439 /* At minimum we need 8 bytes in the TCP header for the lookup */
8440 #define	ICMP_MIN_TCP_HDR	8
8441 
8442 /*
8443  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8444  * passed up by IP. The message is always received on the correct tcp_t.
8445  * Assumes that IP has pulled up everything up to and including the ICMP header.
8446  */
8447 void
8448 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8449 {
8450 	icmph_t *icmph;
8451 	ipha_t	*ipha;
8452 	int	iph_hdr_length;
8453 	tcph_t	*tcph;
8454 	boolean_t ipsec_mctl = B_FALSE;
8455 	boolean_t secure;
8456 	mblk_t *first_mp = mp;
8457 	uint32_t new_mss;
8458 	uint32_t ratio;
8459 	size_t mp_size = MBLKL(mp);
8460 	uint32_t seg_seq;
8461 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8462 
8463 	/* Assume IP provides aligned packets - otherwise toss */
8464 	if (!OK_32PTR(mp->b_rptr)) {
8465 		freemsg(mp);
8466 		return;
8467 	}
8468 
8469 	/*
8470 	 * Since ICMP errors are normal data marked with M_CTL when sent
8471 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8472 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8473 	 */
8474 	if ((mp_size == sizeof (ipsec_info_t)) &&
8475 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8476 		ASSERT(mp->b_cont != NULL);
8477 		mp = mp->b_cont;
8478 		/* IP should have done this */
8479 		ASSERT(OK_32PTR(mp->b_rptr));
8480 		mp_size = MBLKL(mp);
8481 		ipsec_mctl = B_TRUE;
8482 	}
8483 
8484 	/*
8485 	 * Verify that we have a complete outer IP header. If not, drop it.
8486 	 */
8487 	if (mp_size < sizeof (ipha_t)) {
8488 noticmpv4:
8489 		freemsg(first_mp);
8490 		return;
8491 	}
8492 
8493 	ipha = (ipha_t *)mp->b_rptr;
8494 	/*
8495 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8496 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8497 	 */
8498 	switch (IPH_HDR_VERSION(ipha)) {
8499 	case IPV6_VERSION:
8500 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8501 		return;
8502 	case IPV4_VERSION:
8503 		break;
8504 	default:
8505 		goto noticmpv4;
8506 	}
8507 
8508 	/* Skip past the outer IP and ICMP headers */
8509 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8510 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8511 	/*
8512 	 * If we don't have the correct outer IP header length or if the ULP
8513 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8514 	 * send it upstream.
8515 	 */
8516 	if (iph_hdr_length < sizeof (ipha_t) ||
8517 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8518 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8519 		goto noticmpv4;
8520 	}
8521 	ipha = (ipha_t *)&icmph[1];
8522 
8523 	/* Skip past the inner IP and find the ULP header */
8524 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8525 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8526 	/*
8527 	 * If we don't have the correct inner IP header length or if the ULP
8528 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8529 	 * bytes of TCP header, drop it.
8530 	 */
8531 	if (iph_hdr_length < sizeof (ipha_t) ||
8532 	    ipha->ipha_protocol != IPPROTO_TCP ||
8533 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8534 		goto noticmpv4;
8535 	}
8536 
8537 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8538 		if (ipsec_mctl) {
8539 			secure = ipsec_in_is_secure(first_mp);
8540 		} else {
8541 			secure = B_FALSE;
8542 		}
8543 		if (secure) {
8544 			/*
8545 			 * If we are willing to accept this in clear
8546 			 * we don't have to verify policy.
8547 			 */
8548 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8549 				if (!tcp_check_policy(tcp, first_mp,
8550 				    ipha, NULL, secure, ipsec_mctl)) {
8551 					/*
8552 					 * tcp_check_policy called
8553 					 * ip_drop_packet() on failure.
8554 					 */
8555 					return;
8556 				}
8557 			}
8558 		}
8559 	} else if (ipsec_mctl) {
8560 		/*
8561 		 * This is a hard_bound connection. IP has already
8562 		 * verified policy. We don't have to do it again.
8563 		 */
8564 		freeb(first_mp);
8565 		first_mp = mp;
8566 		ipsec_mctl = B_FALSE;
8567 	}
8568 
8569 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8570 	/*
8571 	 * TCP SHOULD check that the TCP sequence number contained in
8572 	 * payload of the ICMP error message is within the range
8573 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8574 	 */
8575 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8576 		/*
8577 		 * If the ICMP message is bogus, should we kill the
8578 		 * connection, or should we just drop the bogus ICMP
8579 		 * message? It would probably make more sense to just
8580 		 * drop the message so that if this one managed to get
8581 		 * in, the real connection should not suffer.
8582 		 */
8583 		goto noticmpv4;
8584 	}
8585 
8586 	switch (icmph->icmph_type) {
8587 	case ICMP_DEST_UNREACHABLE:
8588 		switch (icmph->icmph_code) {
8589 		case ICMP_FRAGMENTATION_NEEDED:
8590 			/*
8591 			 * Reduce the MSS based on the new MTU.  This will
8592 			 * eliminate any fragmentation locally.
8593 			 * N.B.  There may well be some funny side-effects on
8594 			 * the local send policy and the remote receive policy.
8595 			 * Pending further research, we provide
8596 			 * tcp_ignore_path_mtu just in case this proves
8597 			 * disastrous somewhere.
8598 			 *
8599 			 * After updating the MSS, retransmit part of the
8600 			 * dropped segment using the new mss by calling
8601 			 * tcp_wput_data().  Need to adjust all those
8602 			 * params to make sure tcp_wput_data() work properly.
8603 			 */
8604 			if (tcps->tcps_ignore_path_mtu)
8605 				break;
8606 
8607 			/*
8608 			 * Decrease the MSS by time stamp options
8609 			 * IP options and IPSEC options. tcp_hdr_len
8610 			 * includes time stamp option and IP option
8611 			 * length.
8612 			 */
8613 
8614 			new_mss = ntohs(icmph->icmph_du_mtu) -
8615 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8616 
8617 			/*
8618 			 * Only update the MSS if the new one is
8619 			 * smaller than the previous one.  This is
8620 			 * to avoid problems when getting multiple
8621 			 * ICMP errors for the same MTU.
8622 			 */
8623 			if (new_mss >= tcp->tcp_mss)
8624 				break;
8625 
8626 			/*
8627 			 * Stop doing PMTU if new_mss is less than 68
8628 			 * or less than tcp_mss_min.
8629 			 * The value 68 comes from rfc 1191.
8630 			 */
8631 			if (new_mss < MAX(68, tcps->tcps_mss_min))
8632 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8633 				    0;
8634 
8635 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8636 			ASSERT(ratio >= 1);
8637 			tcp_mss_set(tcp, new_mss, B_TRUE);
8638 
8639 			/*
8640 			 * Make sure we have something to
8641 			 * send.
8642 			 */
8643 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8644 			    (tcp->tcp_xmit_head != NULL)) {
8645 				/*
8646 				 * Shrink tcp_cwnd in
8647 				 * proportion to the old MSS/new MSS.
8648 				 */
8649 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8650 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8651 				    (tcp->tcp_unsent == 0)) {
8652 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8653 				} else {
8654 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8655 				}
8656 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8657 				tcp->tcp_rexmit = B_TRUE;
8658 				tcp->tcp_dupack_cnt = 0;
8659 				tcp->tcp_snd_burst = TCP_CWND_SS;
8660 				tcp_ss_rexmit(tcp);
8661 			}
8662 			break;
8663 		case ICMP_PORT_UNREACHABLE:
8664 		case ICMP_PROTOCOL_UNREACHABLE:
8665 			switch (tcp->tcp_state) {
8666 			case TCPS_SYN_SENT:
8667 			case TCPS_SYN_RCVD:
8668 				/*
8669 				 * ICMP can snipe away incipient
8670 				 * TCP connections as long as
8671 				 * seq number is same as initial
8672 				 * send seq number.
8673 				 */
8674 				if (seg_seq == tcp->tcp_iss) {
8675 					(void) tcp_clean_death(tcp,
8676 					    ECONNREFUSED, 6);
8677 				}
8678 				break;
8679 			}
8680 			break;
8681 		case ICMP_HOST_UNREACHABLE:
8682 		case ICMP_NET_UNREACHABLE:
8683 			/* Record the error in case we finally time out. */
8684 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8685 				tcp->tcp_client_errno = EHOSTUNREACH;
8686 			else
8687 				tcp->tcp_client_errno = ENETUNREACH;
8688 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8689 				if (tcp->tcp_listener != NULL &&
8690 				    tcp->tcp_listener->tcp_syn_defense) {
8691 					/*
8692 					 * Ditch the half-open connection if we
8693 					 * suspect a SYN attack is under way.
8694 					 */
8695 					tcp_ip_ire_mark_advice(tcp);
8696 					(void) tcp_clean_death(tcp,
8697 					    tcp->tcp_client_errno, 7);
8698 				}
8699 			}
8700 			break;
8701 		default:
8702 			break;
8703 		}
8704 		break;
8705 	case ICMP_SOURCE_QUENCH: {
8706 		/*
8707 		 * use a global boolean to control
8708 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8709 		 * The default is false.
8710 		 */
8711 		if (tcp_icmp_source_quench) {
8712 			/*
8713 			 * Reduce the sending rate as if we got a
8714 			 * retransmit timeout
8715 			 */
8716 			uint32_t npkt;
8717 
8718 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8719 			    tcp->tcp_mss;
8720 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8721 			tcp->tcp_cwnd = tcp->tcp_mss;
8722 			tcp->tcp_cwnd_cnt = 0;
8723 		}
8724 		break;
8725 	}
8726 	}
8727 	freemsg(first_mp);
8728 }
8729 
8730 /*
8731  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8732  * error messages passed up by IP.
8733  * Assumes that IP has pulled up all the extension headers as well
8734  * as the ICMPv6 header.
8735  */
8736 static void
8737 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8738 {
8739 	icmp6_t *icmp6;
8740 	ip6_t	*ip6h;
8741 	uint16_t	iph_hdr_length;
8742 	tcpha_t	*tcpha;
8743 	uint8_t	*nexthdrp;
8744 	uint32_t new_mss;
8745 	uint32_t ratio;
8746 	boolean_t secure;
8747 	mblk_t *first_mp = mp;
8748 	size_t mp_size;
8749 	uint32_t seg_seq;
8750 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8751 
8752 	/*
8753 	 * The caller has determined if this is an IPSEC_IN packet and
8754 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8755 	 */
8756 	if (ipsec_mctl)
8757 		mp = mp->b_cont;
8758 
8759 	mp_size = MBLKL(mp);
8760 
8761 	/*
8762 	 * Verify that we have a complete IP header. If not, send it upstream.
8763 	 */
8764 	if (mp_size < sizeof (ip6_t)) {
8765 noticmpv6:
8766 		freemsg(first_mp);
8767 		return;
8768 	}
8769 
8770 	/*
8771 	 * Verify this is an ICMPV6 packet, else send it upstream.
8772 	 */
8773 	ip6h = (ip6_t *)mp->b_rptr;
8774 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8775 		iph_hdr_length = IPV6_HDR_LEN;
8776 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8777 	    &nexthdrp) ||
8778 	    *nexthdrp != IPPROTO_ICMPV6) {
8779 		goto noticmpv6;
8780 	}
8781 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8782 	ip6h = (ip6_t *)&icmp6[1];
8783 	/*
8784 	 * Verify if we have a complete ICMP and inner IP header.
8785 	 */
8786 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8787 		goto noticmpv6;
8788 
8789 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8790 		goto noticmpv6;
8791 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8792 	/*
8793 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8794 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8795 	 * packet.
8796 	 */
8797 	if ((*nexthdrp != IPPROTO_TCP) ||
8798 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8799 		goto noticmpv6;
8800 	}
8801 
8802 	/*
8803 	 * ICMP errors come on the right queue or come on
8804 	 * listener/global queue for detached connections and
8805 	 * get switched to the right queue. If it comes on the
8806 	 * right queue, policy check has already been done by IP
8807 	 * and thus free the first_mp without verifying the policy.
8808 	 * If it has come for a non-hard bound connection, we need
8809 	 * to verify policy as IP may not have done it.
8810 	 */
8811 	if (!tcp->tcp_hard_bound) {
8812 		if (ipsec_mctl) {
8813 			secure = ipsec_in_is_secure(first_mp);
8814 		} else {
8815 			secure = B_FALSE;
8816 		}
8817 		if (secure) {
8818 			/*
8819 			 * If we are willing to accept this in clear
8820 			 * we don't have to verify policy.
8821 			 */
8822 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8823 				if (!tcp_check_policy(tcp, first_mp,
8824 				    NULL, ip6h, secure, ipsec_mctl)) {
8825 					/*
8826 					 * tcp_check_policy called
8827 					 * ip_drop_packet() on failure.
8828 					 */
8829 					return;
8830 				}
8831 			}
8832 		}
8833 	} else if (ipsec_mctl) {
8834 		/*
8835 		 * This is a hard_bound connection. IP has already
8836 		 * verified policy. We don't have to do it again.
8837 		 */
8838 		freeb(first_mp);
8839 		first_mp = mp;
8840 		ipsec_mctl = B_FALSE;
8841 	}
8842 
8843 	seg_seq = ntohl(tcpha->tha_seq);
8844 	/*
8845 	 * TCP SHOULD check that the TCP sequence number contained in
8846 	 * payload of the ICMP error message is within the range
8847 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8848 	 */
8849 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8850 		/*
8851 		 * If the ICMP message is bogus, should we kill the
8852 		 * connection, or should we just drop the bogus ICMP
8853 		 * message? It would probably make more sense to just
8854 		 * drop the message so that if this one managed to get
8855 		 * in, the real connection should not suffer.
8856 		 */
8857 		goto noticmpv6;
8858 	}
8859 
8860 	switch (icmp6->icmp6_type) {
8861 	case ICMP6_PACKET_TOO_BIG:
8862 		/*
8863 		 * Reduce the MSS based on the new MTU.  This will
8864 		 * eliminate any fragmentation locally.
8865 		 * N.B.  There may well be some funny side-effects on
8866 		 * the local send policy and the remote receive policy.
8867 		 * Pending further research, we provide
8868 		 * tcp_ignore_path_mtu just in case this proves
8869 		 * disastrous somewhere.
8870 		 *
8871 		 * After updating the MSS, retransmit part of the
8872 		 * dropped segment using the new mss by calling
8873 		 * tcp_wput_data().  Need to adjust all those
8874 		 * params to make sure tcp_wput_data() work properly.
8875 		 */
8876 		if (tcps->tcps_ignore_path_mtu)
8877 			break;
8878 
8879 		/*
8880 		 * Decrease the MSS by time stamp options
8881 		 * IP options and IPSEC options. tcp_hdr_len
8882 		 * includes time stamp option and IP option
8883 		 * length.
8884 		 */
8885 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8886 		    tcp->tcp_ipsec_overhead;
8887 
8888 		/*
8889 		 * Only update the MSS if the new one is
8890 		 * smaller than the previous one.  This is
8891 		 * to avoid problems when getting multiple
8892 		 * ICMP errors for the same MTU.
8893 		 */
8894 		if (new_mss >= tcp->tcp_mss)
8895 			break;
8896 
8897 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8898 		ASSERT(ratio >= 1);
8899 		tcp_mss_set(tcp, new_mss, B_TRUE);
8900 
8901 		/*
8902 		 * Make sure we have something to
8903 		 * send.
8904 		 */
8905 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8906 		    (tcp->tcp_xmit_head != NULL)) {
8907 			/*
8908 			 * Shrink tcp_cwnd in
8909 			 * proportion to the old MSS/new MSS.
8910 			 */
8911 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8912 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8913 			    (tcp->tcp_unsent == 0)) {
8914 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8915 			} else {
8916 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8917 			}
8918 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8919 			tcp->tcp_rexmit = B_TRUE;
8920 			tcp->tcp_dupack_cnt = 0;
8921 			tcp->tcp_snd_burst = TCP_CWND_SS;
8922 			tcp_ss_rexmit(tcp);
8923 		}
8924 		break;
8925 
8926 	case ICMP6_DST_UNREACH:
8927 		switch (icmp6->icmp6_code) {
8928 		case ICMP6_DST_UNREACH_NOPORT:
8929 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8930 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8931 			    (seg_seq == tcp->tcp_iss)) {
8932 				(void) tcp_clean_death(tcp,
8933 				    ECONNREFUSED, 8);
8934 			}
8935 			break;
8936 
8937 		case ICMP6_DST_UNREACH_ADMIN:
8938 		case ICMP6_DST_UNREACH_NOROUTE:
8939 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8940 		case ICMP6_DST_UNREACH_ADDR:
8941 			/* Record the error in case we finally time out. */
8942 			tcp->tcp_client_errno = EHOSTUNREACH;
8943 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8944 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8945 			    (seg_seq == tcp->tcp_iss)) {
8946 				if (tcp->tcp_listener != NULL &&
8947 				    tcp->tcp_listener->tcp_syn_defense) {
8948 					/*
8949 					 * Ditch the half-open connection if we
8950 					 * suspect a SYN attack is under way.
8951 					 */
8952 					tcp_ip_ire_mark_advice(tcp);
8953 					(void) tcp_clean_death(tcp,
8954 					    tcp->tcp_client_errno, 9);
8955 				}
8956 			}
8957 
8958 
8959 			break;
8960 		default:
8961 			break;
8962 		}
8963 		break;
8964 
8965 	case ICMP6_PARAM_PROB:
8966 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
8967 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
8968 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
8969 		    (uchar_t *)nexthdrp) {
8970 			if (tcp->tcp_state == TCPS_SYN_SENT ||
8971 			    tcp->tcp_state == TCPS_SYN_RCVD) {
8972 				(void) tcp_clean_death(tcp,
8973 				    ECONNREFUSED, 10);
8974 			}
8975 			break;
8976 		}
8977 		break;
8978 
8979 	case ICMP6_TIME_EXCEEDED:
8980 	default:
8981 		break;
8982 	}
8983 	freemsg(first_mp);
8984 }
8985 
8986 /*
8987  * IP recognizes seven kinds of bind requests:
8988  *
8989  * - A zero-length address binds only to the protocol number.
8990  *
8991  * - A 4-byte address is treated as a request to
8992  * validate that the address is a valid local IPv4
8993  * address, appropriate for an application to bind to.
8994  * IP does the verification, but does not make any note
8995  * of the address at this time.
8996  *
8997  * - A 16-byte address contains is treated as a request
8998  * to validate a local IPv6 address, as the 4-byte
8999  * address case above.
9000  *
9001  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
9002  * use it for the inbound fanout of packets.
9003  *
9004  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
9005  * use it for the inbound fanout of packets.
9006  *
9007  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
9008  * information consisting of local and remote addresses
9009  * and ports.  In this case, the addresses are both
9010  * validated as appropriate for this operation, and, if
9011  * so, the information is retained for use in the
9012  * inbound fanout.
9013  *
9014  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
9015  * fanout information, like the 12-byte case above.
9016  *
9017  * IP will also fill in the IRE request mblk with information
9018  * regarding our peer.  In all cases, we notify IP of our protocol
9019  * type by appending a single protocol byte to the bind request.
9020  */
9021 static mblk_t *
9022 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length)
9023 {
9024 	char	*cp;
9025 	mblk_t	*mp;
9026 	struct T_bind_req *tbr;
9027 	ipa_conn_t	*ac;
9028 	ipa6_conn_t	*ac6;
9029 	sin_t		*sin;
9030 	sin6_t		*sin6;
9031 
9032 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
9033 	ASSERT((tcp->tcp_family == AF_INET &&
9034 	    tcp->tcp_ipversion == IPV4_VERSION) ||
9035 	    (tcp->tcp_family == AF_INET6 &&
9036 	    (tcp->tcp_ipversion == IPV4_VERSION ||
9037 	    tcp->tcp_ipversion == IPV6_VERSION)));
9038 
9039 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
9040 	if (!mp)
9041 		return (mp);
9042 	mp->b_datap->db_type = M_PROTO;
9043 	tbr = (struct T_bind_req *)mp->b_rptr;
9044 	tbr->PRIM_type = bind_prim;
9045 	tbr->ADDR_offset = sizeof (*tbr);
9046 	tbr->CONIND_number = 0;
9047 	tbr->ADDR_length = addr_length;
9048 	cp = (char *)&tbr[1];
9049 	switch (addr_length) {
9050 	case sizeof (ipa_conn_t):
9051 		ASSERT(tcp->tcp_family == AF_INET);
9052 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9053 
9054 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9055 		if (mp->b_cont == NULL) {
9056 			freemsg(mp);
9057 			return (NULL);
9058 		}
9059 		mp->b_cont->b_wptr += sizeof (ire_t);
9060 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9061 
9062 		/* cp known to be 32 bit aligned */
9063 		ac = (ipa_conn_t *)cp;
9064 		ac->ac_laddr = tcp->tcp_ipha->ipha_src;
9065 		ac->ac_faddr = tcp->tcp_remote;
9066 		ac->ac_fport = tcp->tcp_fport;
9067 		ac->ac_lport = tcp->tcp_lport;
9068 		tcp->tcp_hard_binding = 1;
9069 		break;
9070 
9071 	case sizeof (ipa6_conn_t):
9072 		ASSERT(tcp->tcp_family == AF_INET6);
9073 
9074 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9075 		if (mp->b_cont == NULL) {
9076 			freemsg(mp);
9077 			return (NULL);
9078 		}
9079 		mp->b_cont->b_wptr += sizeof (ire_t);
9080 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9081 
9082 		/* cp known to be 32 bit aligned */
9083 		ac6 = (ipa6_conn_t *)cp;
9084 		if (tcp->tcp_ipversion == IPV4_VERSION) {
9085 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
9086 			    &ac6->ac6_laddr);
9087 		} else {
9088 			ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src;
9089 		}
9090 		ac6->ac6_faddr = tcp->tcp_remote_v6;
9091 		ac6->ac6_fport = tcp->tcp_fport;
9092 		ac6->ac6_lport = tcp->tcp_lport;
9093 		tcp->tcp_hard_binding = 1;
9094 		break;
9095 
9096 	case sizeof (sin_t):
9097 		/*
9098 		 * NOTE: IPV6_ADDR_LEN also has same size.
9099 		 * Use family to discriminate.
9100 		 */
9101 		if (tcp->tcp_family == AF_INET) {
9102 			sin = (sin_t *)cp;
9103 
9104 			*sin = sin_null;
9105 			sin->sin_family = AF_INET;
9106 			sin->sin_addr.s_addr = tcp->tcp_bound_source;
9107 			sin->sin_port = tcp->tcp_lport;
9108 			break;
9109 		} else {
9110 			*(in6_addr_t *)cp = tcp->tcp_bound_source_v6;
9111 		}
9112 		break;
9113 
9114 	case sizeof (sin6_t):
9115 		ASSERT(tcp->tcp_family == AF_INET6);
9116 		sin6 = (sin6_t *)cp;
9117 
9118 		*sin6 = sin6_null;
9119 		sin6->sin6_family = AF_INET6;
9120 		sin6->sin6_addr = tcp->tcp_bound_source_v6;
9121 		sin6->sin6_port = tcp->tcp_lport;
9122 		break;
9123 
9124 	case IP_ADDR_LEN:
9125 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9126 		*(uint32_t *)cp = tcp->tcp_ipha->ipha_src;
9127 		break;
9128 
9129 	}
9130 	/* Add protocol number to end */
9131 	cp[addr_length] = (char)IPPROTO_TCP;
9132 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
9133 	return (mp);
9134 }
9135 
9136 /*
9137  * Notify IP that we are having trouble with this connection.  IP should
9138  * blow the IRE away and start over.
9139  */
9140 static void
9141 tcp_ip_notify(tcp_t *tcp)
9142 {
9143 	struct iocblk	*iocp;
9144 	ipid_t	*ipid;
9145 	mblk_t	*mp;
9146 
9147 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
9148 	if (tcp->tcp_ipversion == IPV6_VERSION)
9149 		return;
9150 
9151 	mp = mkiocb(IP_IOCTL);
9152 	if (mp == NULL)
9153 		return;
9154 
9155 	iocp = (struct iocblk *)mp->b_rptr;
9156 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
9157 
9158 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
9159 	if (!mp->b_cont) {
9160 		freeb(mp);
9161 		return;
9162 	}
9163 
9164 	ipid = (ipid_t *)mp->b_cont->b_rptr;
9165 	mp->b_cont->b_wptr += iocp->ioc_count;
9166 	bzero(ipid, sizeof (*ipid));
9167 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
9168 	ipid->ipid_ire_type = IRE_CACHE;
9169 	ipid->ipid_addr_offset = sizeof (ipid_t);
9170 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
9171 	/*
9172 	 * Note: in the case of source routing we want to blow away the
9173 	 * route to the first source route hop.
9174 	 */
9175 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
9176 	    sizeof (tcp->tcp_ipha->ipha_dst));
9177 
9178 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
9179 }
9180 
9181 /* Unlink and return any mblk that looks like it contains an ire */
9182 static mblk_t *
9183 tcp_ire_mp(mblk_t *mp)
9184 {
9185 	mblk_t	*prev_mp;
9186 
9187 	for (;;) {
9188 		prev_mp = mp;
9189 		mp = mp->b_cont;
9190 		if (mp == NULL)
9191 			break;
9192 		switch (DB_TYPE(mp)) {
9193 		case IRE_DB_TYPE:
9194 		case IRE_DB_REQ_TYPE:
9195 			if (prev_mp != NULL)
9196 				prev_mp->b_cont = mp->b_cont;
9197 			mp->b_cont = NULL;
9198 			return (mp);
9199 		default:
9200 			break;
9201 		}
9202 	}
9203 	return (mp);
9204 }
9205 
9206 /*
9207  * Timer callback routine for keepalive probe.  We do a fake resend of
9208  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
9209  * check to see if we have heard anything from the other end for the last
9210  * RTO period.  If we have, set the timer to expire for another
9211  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
9212  * RTO << 1 and check again when it expires.  Keep exponentially increasing
9213  * the timeout if we have not heard from the other side.  If for more than
9214  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
9215  * kill the connection unless the keepalive abort threshold is 0.  In
9216  * that case, we will probe "forever."
9217  */
9218 static void
9219 tcp_keepalive_killer(void *arg)
9220 {
9221 	mblk_t	*mp;
9222 	conn_t	*connp = (conn_t *)arg;
9223 	tcp_t  	*tcp = connp->conn_tcp;
9224 	int32_t	firetime;
9225 	int32_t	idletime;
9226 	int32_t	ka_intrvl;
9227 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9228 
9229 	tcp->tcp_ka_tid = 0;
9230 
9231 	if (tcp->tcp_fused)
9232 		return;
9233 
9234 	BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive);
9235 	ka_intrvl = tcp->tcp_ka_interval;
9236 
9237 	/*
9238 	 * Keepalive probe should only be sent if the application has not
9239 	 * done a close on the connection.
9240 	 */
9241 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
9242 		return;
9243 	}
9244 	/* Timer fired too early, restart it. */
9245 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
9246 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9247 		    MSEC_TO_TICK(ka_intrvl));
9248 		return;
9249 	}
9250 
9251 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
9252 	/*
9253 	 * If we have not heard from the other side for a long
9254 	 * time, kill the connection unless the keepalive abort
9255 	 * threshold is 0.  In that case, we will probe "forever."
9256 	 */
9257 	if (tcp->tcp_ka_abort_thres != 0 &&
9258 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
9259 		BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop);
9260 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
9261 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
9262 		return;
9263 	}
9264 
9265 	if (tcp->tcp_snxt == tcp->tcp_suna &&
9266 	    idletime >= ka_intrvl) {
9267 		/* Fake resend of last ACKed byte. */
9268 		mblk_t	*mp1 = allocb(1, BPRI_LO);
9269 
9270 		if (mp1 != NULL) {
9271 			*mp1->b_wptr++ = '\0';
9272 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
9273 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
9274 			freeb(mp1);
9275 			/*
9276 			 * if allocation failed, fall through to start the
9277 			 * timer back.
9278 			 */
9279 			if (mp != NULL) {
9280 				TCP_RECORD_TRACE(tcp, mp,
9281 				    TCP_TRACE_SEND_PKT);
9282 				tcp_send_data(tcp, tcp->tcp_wq, mp);
9283 				BUMP_MIB(&tcps->tcps_mib,
9284 				    tcpTimKeepaliveProbe);
9285 				if (tcp->tcp_ka_last_intrvl != 0) {
9286 					int max;
9287 					/*
9288 					 * We should probe again at least
9289 					 * in ka_intrvl, but not more than
9290 					 * tcp_rexmit_interval_max.
9291 					 */
9292 					max = tcps->tcps_rexmit_interval_max;
9293 					firetime = MIN(ka_intrvl - 1,
9294 					    tcp->tcp_ka_last_intrvl << 1);
9295 					if (firetime > max)
9296 						firetime = max;
9297 				} else {
9298 					firetime = tcp->tcp_rto;
9299 				}
9300 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9301 				    tcp_keepalive_killer,
9302 				    MSEC_TO_TICK(firetime));
9303 				tcp->tcp_ka_last_intrvl = firetime;
9304 				return;
9305 			}
9306 		}
9307 	} else {
9308 		tcp->tcp_ka_last_intrvl = 0;
9309 	}
9310 
9311 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
9312 	if ((firetime = ka_intrvl - idletime) < 0) {
9313 		firetime = ka_intrvl;
9314 	}
9315 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9316 	    MSEC_TO_TICK(firetime));
9317 }
9318 
9319 int
9320 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
9321 {
9322 	queue_t	*q = tcp->tcp_rq;
9323 	int32_t	mss = tcp->tcp_mss;
9324 	int	maxpsz;
9325 
9326 	if (TCP_IS_DETACHED(tcp))
9327 		return (mss);
9328 
9329 	if (tcp->tcp_fused) {
9330 		maxpsz = tcp_fuse_maxpsz_set(tcp);
9331 		mss = INFPSZ;
9332 	} else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) {
9333 		/*
9334 		 * Set the sd_qn_maxpsz according to the socket send buffer
9335 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
9336 		 * instruct the stream head to copyin user data into contiguous
9337 		 * kernel-allocated buffers without breaking it up into smaller
9338 		 * chunks.  We round up the buffer size to the nearest SMSS.
9339 		 */
9340 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
9341 		if (tcp->tcp_kssl_ctx == NULL)
9342 			mss = INFPSZ;
9343 		else
9344 			mss = SSL3_MAX_RECORD_LEN;
9345 	} else {
9346 		/*
9347 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
9348 		 * (and a multiple of the mss).  This instructs the stream
9349 		 * head to break down larger than SMSS writes into SMSS-
9350 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
9351 		 */
9352 		maxpsz = tcp->tcp_maxpsz * mss;
9353 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
9354 			maxpsz = tcp->tcp_xmit_hiwater/2;
9355 			/* Round up to nearest mss */
9356 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
9357 		}
9358 	}
9359 	(void) setmaxps(q, maxpsz);
9360 	tcp->tcp_wq->q_maxpsz = maxpsz;
9361 
9362 	if (set_maxblk)
9363 		(void) mi_set_sth_maxblk(q, mss);
9364 
9365 	return (mss);
9366 }
9367 
9368 /*
9369  * Extract option values from a tcp header.  We put any found values into the
9370  * tcpopt struct and return a bitmask saying which options were found.
9371  */
9372 static int
9373 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
9374 {
9375 	uchar_t		*endp;
9376 	int		len;
9377 	uint32_t	mss;
9378 	uchar_t		*up = (uchar_t *)tcph;
9379 	int		found = 0;
9380 	int32_t		sack_len;
9381 	tcp_seq		sack_begin, sack_end;
9382 	tcp_t		*tcp;
9383 
9384 	endp = up + TCP_HDR_LENGTH(tcph);
9385 	up += TCP_MIN_HEADER_LENGTH;
9386 	while (up < endp) {
9387 		len = endp - up;
9388 		switch (*up) {
9389 		case TCPOPT_EOL:
9390 			break;
9391 
9392 		case TCPOPT_NOP:
9393 			up++;
9394 			continue;
9395 
9396 		case TCPOPT_MAXSEG:
9397 			if (len < TCPOPT_MAXSEG_LEN ||
9398 			    up[1] != TCPOPT_MAXSEG_LEN)
9399 				break;
9400 
9401 			mss = BE16_TO_U16(up+2);
9402 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9403 			tcpopt->tcp_opt_mss = mss;
9404 			found |= TCP_OPT_MSS_PRESENT;
9405 
9406 			up += TCPOPT_MAXSEG_LEN;
9407 			continue;
9408 
9409 		case TCPOPT_WSCALE:
9410 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9411 				break;
9412 
9413 			if (up[2] > TCP_MAX_WINSHIFT)
9414 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9415 			else
9416 				tcpopt->tcp_opt_wscale = up[2];
9417 			found |= TCP_OPT_WSCALE_PRESENT;
9418 
9419 			up += TCPOPT_WS_LEN;
9420 			continue;
9421 
9422 		case TCPOPT_SACK_PERMITTED:
9423 			if (len < TCPOPT_SACK_OK_LEN ||
9424 			    up[1] != TCPOPT_SACK_OK_LEN)
9425 				break;
9426 			found |= TCP_OPT_SACK_OK_PRESENT;
9427 			up += TCPOPT_SACK_OK_LEN;
9428 			continue;
9429 
9430 		case TCPOPT_SACK:
9431 			if (len <= 2 || up[1] <= 2 || len < up[1])
9432 				break;
9433 
9434 			/* If TCP is not interested in SACK blks... */
9435 			if ((tcp = tcpopt->tcp) == NULL) {
9436 				up += up[1];
9437 				continue;
9438 			}
9439 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9440 			up += TCPOPT_HEADER_LEN;
9441 
9442 			/*
9443 			 * If the list is empty, allocate one and assume
9444 			 * nothing is sack'ed.
9445 			 */
9446 			ASSERT(tcp->tcp_sack_info != NULL);
9447 			if (tcp->tcp_notsack_list == NULL) {
9448 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9449 				    tcp->tcp_suna, tcp->tcp_snxt,
9450 				    &(tcp->tcp_num_notsack_blk),
9451 				    &(tcp->tcp_cnt_notsack_list));
9452 
9453 				/*
9454 				 * Make sure tcp_notsack_list is not NULL.
9455 				 * This happens when kmem_alloc(KM_NOSLEEP)
9456 				 * returns NULL.
9457 				 */
9458 				if (tcp->tcp_notsack_list == NULL) {
9459 					up += sack_len;
9460 					continue;
9461 				}
9462 				tcp->tcp_fack = tcp->tcp_suna;
9463 			}
9464 
9465 			while (sack_len > 0) {
9466 				if (up + 8 > endp) {
9467 					up = endp;
9468 					break;
9469 				}
9470 				sack_begin = BE32_TO_U32(up);
9471 				up += 4;
9472 				sack_end = BE32_TO_U32(up);
9473 				up += 4;
9474 				sack_len -= 8;
9475 				/*
9476 				 * Bounds checking.  Make sure the SACK
9477 				 * info is within tcp_suna and tcp_snxt.
9478 				 * If this SACK blk is out of bound, ignore
9479 				 * it but continue to parse the following
9480 				 * blks.
9481 				 */
9482 				if (SEQ_LEQ(sack_end, sack_begin) ||
9483 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9484 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9485 					continue;
9486 				}
9487 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9488 				    sack_begin, sack_end,
9489 				    &(tcp->tcp_num_notsack_blk),
9490 				    &(tcp->tcp_cnt_notsack_list));
9491 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9492 					tcp->tcp_fack = sack_end;
9493 				}
9494 			}
9495 			found |= TCP_OPT_SACK_PRESENT;
9496 			continue;
9497 
9498 		case TCPOPT_TSTAMP:
9499 			if (len < TCPOPT_TSTAMP_LEN ||
9500 			    up[1] != TCPOPT_TSTAMP_LEN)
9501 				break;
9502 
9503 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9504 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9505 
9506 			found |= TCP_OPT_TSTAMP_PRESENT;
9507 
9508 			up += TCPOPT_TSTAMP_LEN;
9509 			continue;
9510 
9511 		default:
9512 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9513 				break;
9514 			up += up[1];
9515 			continue;
9516 		}
9517 		break;
9518 	}
9519 	return (found);
9520 }
9521 
9522 /*
9523  * Set the mss associated with a particular tcp based on its current value,
9524  * and a new one passed in. Observe minimums and maximums, and reset
9525  * other state variables that we want to view as multiples of mss.
9526  *
9527  * This function is called in various places mainly because
9528  * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the
9529  *    other side's SYN/SYN-ACK packet arrives.
9530  * 2) PMTUd may get us a new MSS.
9531  * 3) If the other side stops sending us timestamp option, we need to
9532  *    increase the MSS size to use the extra bytes available.
9533  *
9534  * do_ss is used to control whether we will be doing slow start or
9535  * not if there is a change in the mss. Note that for some events like
9536  * tcp_paws_check() we allow the tcp_cwnd to adjust to the new mss but
9537  * do not perform a slow start specifically.
9538  */
9539 static void
9540 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss)
9541 {
9542 	uint32_t	mss_max;
9543 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9544 
9545 	if (tcp->tcp_ipversion == IPV4_VERSION)
9546 		mss_max = tcps->tcps_mss_max_ipv4;
9547 	else
9548 		mss_max = tcps->tcps_mss_max_ipv6;
9549 
9550 	if (mss < tcps->tcps_mss_min)
9551 		mss = tcps->tcps_mss_min;
9552 	if (mss > mss_max)
9553 		mss = mss_max;
9554 	/*
9555 	 * Unless naglim has been set by our client to
9556 	 * a non-mss value, force naglim to track mss.
9557 	 * This can help to aggregate small writes.
9558 	 */
9559 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9560 		tcp->tcp_naglim = mss;
9561 	/*
9562 	 * TCP should be able to buffer at least 4 MSS data for obvious
9563 	 * performance reason.
9564 	 */
9565 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9566 		tcp->tcp_xmit_hiwater = mss << 2;
9567 
9568 	/*
9569 	 * Check if we need to apply the tcp_init_cwnd here.  If
9570 	 * it is set and the MSS gets bigger (should not happen
9571 	 * normally), we need to adjust the resulting tcp_cwnd properly.
9572 	 * The new tcp_cwnd should not get bigger.
9573 	 */
9574 	/*
9575 	 * We need to avoid setting tcp_cwnd to its slow start value
9576 	 * unnecessarily. However we have to let the tcp_cwnd adjust
9577 	 * to the modified mss.
9578 	 */
9579 	if (tcp->tcp_init_cwnd == 0 && do_ss) {
9580 		tcp->tcp_cwnd = MIN(tcps->tcps_slow_start_initial *
9581 		    mss, MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss)));
9582 	} else {
9583 		if (tcp->tcp_mss < mss) {
9584 			tcp->tcp_cwnd = MAX(1,
9585 			    (tcp->tcp_init_cwnd * tcp->tcp_mss /
9586 			    mss)) * mss;
9587 		} else {
9588 			tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss;
9589 		}
9590 	}
9591 	tcp->tcp_mss = mss;
9592 	tcp->tcp_cwnd_cnt = 0;
9593 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9594 }
9595 
9596 /* For /dev/tcp aka AF_INET open */
9597 static int
9598 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9599 {
9600 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
9601 }
9602 
9603 /* For /dev/tcp6 aka AF_INET6 open */
9604 static int
9605 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9606 {
9607 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
9608 }
9609 
9610 static int
9611 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
9612     boolean_t isv6)
9613 {
9614 	tcp_t		*tcp = NULL;
9615 	conn_t		*connp;
9616 	int		err;
9617 	dev_t		conn_dev;
9618 	zoneid_t	zoneid;
9619 	tcp_stack_t	*tcps = NULL;
9620 
9621 	if (q->q_ptr != NULL)
9622 		return (0);
9623 
9624 	if (sflag == MODOPEN)
9625 		return (EINVAL);
9626 
9627 	if (!(flag & SO_ACCEPTOR)) {
9628 		/*
9629 		 * Special case for install: miniroot needs to be able to
9630 		 * access files via NFS as though it were always in the
9631 		 * global zone.
9632 		 */
9633 		if (credp == kcred && nfs_global_client_only != 0) {
9634 			zoneid = GLOBAL_ZONEID;
9635 			tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
9636 			    netstack_tcp;
9637 			ASSERT(tcps != NULL);
9638 		} else {
9639 			netstack_t *ns;
9640 
9641 			ns = netstack_find_by_cred(credp);
9642 			ASSERT(ns != NULL);
9643 			tcps = ns->netstack_tcp;
9644 			ASSERT(tcps != NULL);
9645 
9646 			/*
9647 			 * For exclusive stacks we set the zoneid to zero
9648 			 * to make TCP operate as if in the global zone.
9649 			 */
9650 			if (tcps->tcps_netstack->netstack_stackid !=
9651 			    GLOBAL_NETSTACKID)
9652 				zoneid = GLOBAL_ZONEID;
9653 			else
9654 				zoneid = crgetzoneid(credp);
9655 		}
9656 		/*
9657 		 * For stackid zero this is done from strplumb.c, but
9658 		 * non-zero stackids are handled here.
9659 		 */
9660 		if (tcps->tcps_g_q == NULL &&
9661 		    tcps->tcps_netstack->netstack_stackid !=
9662 		    GLOBAL_NETSTACKID) {
9663 			tcp_g_q_setup(tcps);
9664 		}
9665 	}
9666 
9667 	if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) {
9668 		if (tcps != NULL)
9669 			netstack_rele(tcps->tcps_netstack);
9670 		return (EBUSY);
9671 	}
9672 
9673 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
9674 
9675 	if (flag & SO_ACCEPTOR) {
9676 		/* No netstack_find_by_cred, hence no netstack_rele needed */
9677 		ASSERT(tcps == NULL);
9678 		q->q_qinfo = &tcp_acceptor_rinit;
9679 		q->q_ptr = (void *)conn_dev;
9680 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9681 		WR(q)->q_ptr = (void *)conn_dev;
9682 		qprocson(q);
9683 		return (0);
9684 	}
9685 
9686 	connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps);
9687 	/*
9688 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
9689 	 * so we drop it by one.
9690 	 */
9691 	netstack_rele(tcps->tcps_netstack);
9692 	if (connp == NULL) {
9693 		inet_minor_free(ip_minor_arena, conn_dev);
9694 		q->q_ptr = NULL;
9695 		return (ENOSR);
9696 	}
9697 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
9698 	tcp = connp->conn_tcp;
9699 
9700 	q->q_ptr = WR(q)->q_ptr = connp;
9701 	if (isv6) {
9702 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9703 		connp->conn_send = ip_output_v6;
9704 		connp->conn_af_isv6 = B_TRUE;
9705 		connp->conn_pkt_isv6 = B_TRUE;
9706 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9707 		tcp->tcp_ipversion = IPV6_VERSION;
9708 		tcp->tcp_family = AF_INET6;
9709 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
9710 	} else {
9711 		connp->conn_flags |= IPCL_TCP4;
9712 		connp->conn_send = ip_output;
9713 		connp->conn_af_isv6 = B_FALSE;
9714 		connp->conn_pkt_isv6 = B_FALSE;
9715 		tcp->tcp_ipversion = IPV4_VERSION;
9716 		tcp->tcp_family = AF_INET;
9717 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
9718 	}
9719 
9720 	/*
9721 	 * TCP keeps a copy of cred for cache locality reasons but
9722 	 * we put a reference only once. If connp->conn_cred
9723 	 * becomes invalid, tcp_cred should also be set to NULL.
9724 	 */
9725 	tcp->tcp_cred = connp->conn_cred = credp;
9726 	crhold(connp->conn_cred);
9727 	tcp->tcp_cpid = curproc->p_pid;
9728 	tcp->tcp_open_time = lbolt64;
9729 	connp->conn_zoneid = zoneid;
9730 	connp->conn_mlp_type = mlptSingle;
9731 	connp->conn_ulp_labeled = !is_system_labeled();
9732 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
9733 	ASSERT(tcp->tcp_tcps == tcps);
9734 
9735 	/*
9736 	 * If the caller has the process-wide flag set, then default to MAC
9737 	 * exempt mode.  This allows read-down to unlabeled hosts.
9738 	 */
9739 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9740 		connp->conn_mac_exempt = B_TRUE;
9741 
9742 	connp->conn_dev = conn_dev;
9743 
9744 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
9745 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9746 
9747 	if (flag & SO_SOCKSTR) {
9748 		/*
9749 		 * No need to insert a socket in tcp acceptor hash.
9750 		 * If it was a socket acceptor stream, we dealt with
9751 		 * it above. A socket listener can never accept a
9752 		 * connection and doesn't need acceptor_id.
9753 		 */
9754 		connp->conn_flags |= IPCL_SOCKET;
9755 		tcp->tcp_issocket = 1;
9756 		WR(q)->q_qinfo = &tcp_sock_winit;
9757 	} else {
9758 #ifdef	_ILP32
9759 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9760 #else
9761 		tcp->tcp_acceptor_id = conn_dev;
9762 #endif	/* _ILP32 */
9763 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9764 	}
9765 
9766 	if (tcps->tcps_trace)
9767 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP);
9768 
9769 	err = tcp_init(tcp, q);
9770 	if (err != 0) {
9771 		inet_minor_free(ip_minor_arena, connp->conn_dev);
9772 		tcp_acceptor_hash_remove(tcp);
9773 		CONN_DEC_REF(connp);
9774 		q->q_ptr = WR(q)->q_ptr = NULL;
9775 		return (err);
9776 	}
9777 
9778 	RD(q)->q_hiwat = tcps->tcps_recv_hiwat;
9779 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
9780 
9781 	/* Non-zero default values */
9782 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9783 	/*
9784 	 * Put the ref for TCP. Ref for IP was already put
9785 	 * by ipcl_conn_create. Also Make the conn_t globally
9786 	 * visible to walkers
9787 	 */
9788 	mutex_enter(&connp->conn_lock);
9789 	CONN_INC_REF_LOCKED(connp);
9790 	ASSERT(connp->conn_ref == 2);
9791 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9792 	mutex_exit(&connp->conn_lock);
9793 
9794 	qprocson(q);
9795 	return (0);
9796 }
9797 
9798 /*
9799  * Some TCP options can be "set" by requesting them in the option
9800  * buffer. This is needed for XTI feature test though we do not
9801  * allow it in general. We interpret that this mechanism is more
9802  * applicable to OSI protocols and need not be allowed in general.
9803  * This routine filters out options for which it is not allowed (most)
9804  * and lets through those (few) for which it is. [ The XTI interface
9805  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9806  * ever implemented will have to be allowed here ].
9807  */
9808 static boolean_t
9809 tcp_allow_connopt_set(int level, int name)
9810 {
9811 
9812 	switch (level) {
9813 	case IPPROTO_TCP:
9814 		switch (name) {
9815 		case TCP_NODELAY:
9816 			return (B_TRUE);
9817 		default:
9818 			return (B_FALSE);
9819 		}
9820 		/*NOTREACHED*/
9821 	default:
9822 		return (B_FALSE);
9823 	}
9824 	/*NOTREACHED*/
9825 }
9826 
9827 /*
9828  * This routine gets default values of certain options whose default
9829  * values are maintained by protocol specific code
9830  */
9831 /* ARGSUSED */
9832 int
9833 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9834 {
9835 	int32_t	*i1 = (int32_t *)ptr;
9836 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
9837 
9838 	switch (level) {
9839 	case IPPROTO_TCP:
9840 		switch (name) {
9841 		case TCP_NOTIFY_THRESHOLD:
9842 			*i1 = tcps->tcps_ip_notify_interval;
9843 			break;
9844 		case TCP_ABORT_THRESHOLD:
9845 			*i1 = tcps->tcps_ip_abort_interval;
9846 			break;
9847 		case TCP_CONN_NOTIFY_THRESHOLD:
9848 			*i1 = tcps->tcps_ip_notify_cinterval;
9849 			break;
9850 		case TCP_CONN_ABORT_THRESHOLD:
9851 			*i1 = tcps->tcps_ip_abort_cinterval;
9852 			break;
9853 		default:
9854 			return (-1);
9855 		}
9856 		break;
9857 	case IPPROTO_IP:
9858 		switch (name) {
9859 		case IP_TTL:
9860 			*i1 = tcps->tcps_ipv4_ttl;
9861 			break;
9862 		default:
9863 			return (-1);
9864 		}
9865 		break;
9866 	case IPPROTO_IPV6:
9867 		switch (name) {
9868 		case IPV6_UNICAST_HOPS:
9869 			*i1 = tcps->tcps_ipv6_hoplimit;
9870 			break;
9871 		default:
9872 			return (-1);
9873 		}
9874 		break;
9875 	default:
9876 		return (-1);
9877 	}
9878 	return (sizeof (int));
9879 }
9880 
9881 
9882 /*
9883  * TCP routine to get the values of options.
9884  */
9885 int
9886 tcp_opt_get(queue_t *q, int level, int	name, uchar_t *ptr)
9887 {
9888 	int		*i1 = (int *)ptr;
9889 	conn_t		*connp = Q_TO_CONN(q);
9890 	tcp_t		*tcp = connp->conn_tcp;
9891 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9892 
9893 	switch (level) {
9894 	case SOL_SOCKET:
9895 		switch (name) {
9896 		case SO_LINGER:	{
9897 			struct linger *lgr = (struct linger *)ptr;
9898 
9899 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9900 			lgr->l_linger = tcp->tcp_lingertime;
9901 			}
9902 			return (sizeof (struct linger));
9903 		case SO_DEBUG:
9904 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9905 			break;
9906 		case SO_KEEPALIVE:
9907 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9908 			break;
9909 		case SO_DONTROUTE:
9910 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9911 			break;
9912 		case SO_USELOOPBACK:
9913 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9914 			break;
9915 		case SO_BROADCAST:
9916 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9917 			break;
9918 		case SO_REUSEADDR:
9919 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9920 			break;
9921 		case SO_OOBINLINE:
9922 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9923 			break;
9924 		case SO_DGRAM_ERRIND:
9925 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9926 			break;
9927 		case SO_TYPE:
9928 			*i1 = SOCK_STREAM;
9929 			break;
9930 		case SO_SNDBUF:
9931 			*i1 = tcp->tcp_xmit_hiwater;
9932 			break;
9933 		case SO_RCVBUF:
9934 			*i1 = RD(q)->q_hiwat;
9935 			break;
9936 		case SO_SND_COPYAVOID:
9937 			*i1 = tcp->tcp_snd_zcopy_on ?
9938 			    SO_SND_COPYAVOID : 0;
9939 			break;
9940 		case SO_ALLZONES:
9941 			*i1 = connp->conn_allzones ? 1 : 0;
9942 			break;
9943 		case SO_ANON_MLP:
9944 			*i1 = connp->conn_anon_mlp;
9945 			break;
9946 		case SO_MAC_EXEMPT:
9947 			*i1 = connp->conn_mac_exempt;
9948 			break;
9949 		case SO_EXCLBIND:
9950 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
9951 			break;
9952 		case SO_PROTOTYPE:
9953 			*i1 = IPPROTO_TCP;
9954 			break;
9955 		case SO_DOMAIN:
9956 			*i1 = tcp->tcp_family;
9957 			break;
9958 		default:
9959 			return (-1);
9960 		}
9961 		break;
9962 	case IPPROTO_TCP:
9963 		switch (name) {
9964 		case TCP_NODELAY:
9965 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
9966 			break;
9967 		case TCP_MAXSEG:
9968 			*i1 = tcp->tcp_mss;
9969 			break;
9970 		case TCP_NOTIFY_THRESHOLD:
9971 			*i1 = (int)tcp->tcp_first_timer_threshold;
9972 			break;
9973 		case TCP_ABORT_THRESHOLD:
9974 			*i1 = tcp->tcp_second_timer_threshold;
9975 			break;
9976 		case TCP_CONN_NOTIFY_THRESHOLD:
9977 			*i1 = tcp->tcp_first_ctimer_threshold;
9978 			break;
9979 		case TCP_CONN_ABORT_THRESHOLD:
9980 			*i1 = tcp->tcp_second_ctimer_threshold;
9981 			break;
9982 		case TCP_RECVDSTADDR:
9983 			*i1 = tcp->tcp_recvdstaddr;
9984 			break;
9985 		case TCP_ANONPRIVBIND:
9986 			*i1 = tcp->tcp_anon_priv_bind;
9987 			break;
9988 		case TCP_EXCLBIND:
9989 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
9990 			break;
9991 		case TCP_INIT_CWND:
9992 			*i1 = tcp->tcp_init_cwnd;
9993 			break;
9994 		case TCP_KEEPALIVE_THRESHOLD:
9995 			*i1 = tcp->tcp_ka_interval;
9996 			break;
9997 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
9998 			*i1 = tcp->tcp_ka_abort_thres;
9999 			break;
10000 		case TCP_CORK:
10001 			*i1 = tcp->tcp_cork;
10002 			break;
10003 		default:
10004 			return (-1);
10005 		}
10006 		break;
10007 	case IPPROTO_IP:
10008 		if (tcp->tcp_family != AF_INET)
10009 			return (-1);
10010 		switch (name) {
10011 		case IP_OPTIONS:
10012 		case T_IP_OPTIONS: {
10013 			/*
10014 			 * This is compatible with BSD in that in only return
10015 			 * the reverse source route with the final destination
10016 			 * as the last entry. The first 4 bytes of the option
10017 			 * will contain the final destination.
10018 			 */
10019 			int	opt_len;
10020 
10021 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
10022 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
10023 			ASSERT(opt_len >= 0);
10024 			/* Caller ensures enough space */
10025 			if (opt_len > 0) {
10026 				/*
10027 				 * TODO: Do we have to handle getsockopt on an
10028 				 * initiator as well?
10029 				 */
10030 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
10031 			}
10032 			return (0);
10033 			}
10034 		case IP_TOS:
10035 		case T_IP_TOS:
10036 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
10037 			break;
10038 		case IP_TTL:
10039 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
10040 			break;
10041 		case IP_NEXTHOP:
10042 			/* Handled at IP level */
10043 			return (-EINVAL);
10044 		default:
10045 			return (-1);
10046 		}
10047 		break;
10048 	case IPPROTO_IPV6:
10049 		/*
10050 		 * IPPROTO_IPV6 options are only supported for sockets
10051 		 * that are using IPv6 on the wire.
10052 		 */
10053 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10054 			return (-1);
10055 		}
10056 		switch (name) {
10057 		case IPV6_UNICAST_HOPS:
10058 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
10059 			break;	/* goto sizeof (int) option return */
10060 		case IPV6_BOUND_IF:
10061 			/* Zero if not set */
10062 			*i1 = tcp->tcp_bound_if;
10063 			break;	/* goto sizeof (int) option return */
10064 		case IPV6_RECVPKTINFO:
10065 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
10066 				*i1 = 1;
10067 			else
10068 				*i1 = 0;
10069 			break;	/* goto sizeof (int) option return */
10070 		case IPV6_RECVTCLASS:
10071 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
10072 				*i1 = 1;
10073 			else
10074 				*i1 = 0;
10075 			break;	/* goto sizeof (int) option return */
10076 		case IPV6_RECVHOPLIMIT:
10077 			if (tcp->tcp_ipv6_recvancillary &
10078 			    TCP_IPV6_RECVHOPLIMIT)
10079 				*i1 = 1;
10080 			else
10081 				*i1 = 0;
10082 			break;	/* goto sizeof (int) option return */
10083 		case IPV6_RECVHOPOPTS:
10084 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
10085 				*i1 = 1;
10086 			else
10087 				*i1 = 0;
10088 			break;	/* goto sizeof (int) option return */
10089 		case IPV6_RECVDSTOPTS:
10090 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
10091 				*i1 = 1;
10092 			else
10093 				*i1 = 0;
10094 			break;	/* goto sizeof (int) option return */
10095 		case _OLD_IPV6_RECVDSTOPTS:
10096 			if (tcp->tcp_ipv6_recvancillary &
10097 			    TCP_OLD_IPV6_RECVDSTOPTS)
10098 				*i1 = 1;
10099 			else
10100 				*i1 = 0;
10101 			break;	/* goto sizeof (int) option return */
10102 		case IPV6_RECVRTHDR:
10103 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
10104 				*i1 = 1;
10105 			else
10106 				*i1 = 0;
10107 			break;	/* goto sizeof (int) option return */
10108 		case IPV6_RECVRTHDRDSTOPTS:
10109 			if (tcp->tcp_ipv6_recvancillary &
10110 			    TCP_IPV6_RECVRTDSTOPTS)
10111 				*i1 = 1;
10112 			else
10113 				*i1 = 0;
10114 			break;	/* goto sizeof (int) option return */
10115 		case IPV6_PKTINFO: {
10116 			/* XXX assumes that caller has room for max size! */
10117 			struct in6_pktinfo *pkti;
10118 
10119 			pkti = (struct in6_pktinfo *)ptr;
10120 			if (ipp->ipp_fields & IPPF_IFINDEX)
10121 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
10122 			else
10123 				pkti->ipi6_ifindex = 0;
10124 			if (ipp->ipp_fields & IPPF_ADDR)
10125 				pkti->ipi6_addr = ipp->ipp_addr;
10126 			else
10127 				pkti->ipi6_addr = ipv6_all_zeros;
10128 			return (sizeof (struct in6_pktinfo));
10129 		}
10130 		case IPV6_TCLASS:
10131 			if (ipp->ipp_fields & IPPF_TCLASS)
10132 				*i1 = ipp->ipp_tclass;
10133 			else
10134 				*i1 = IPV6_FLOW_TCLASS(
10135 				    IPV6_DEFAULT_VERS_AND_FLOW);
10136 			break;	/* goto sizeof (int) option return */
10137 		case IPV6_NEXTHOP: {
10138 			sin6_t *sin6 = (sin6_t *)ptr;
10139 
10140 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
10141 				return (0);
10142 			*sin6 = sin6_null;
10143 			sin6->sin6_family = AF_INET6;
10144 			sin6->sin6_addr = ipp->ipp_nexthop;
10145 			return (sizeof (sin6_t));
10146 		}
10147 		case IPV6_HOPOPTS:
10148 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
10149 				return (0);
10150 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
10151 				return (0);
10152 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
10153 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
10154 			if (tcp->tcp_label_len > 0) {
10155 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
10156 				ptr[1] = (ipp->ipp_hopoptslen -
10157 				    tcp->tcp_label_len + 7) / 8 - 1;
10158 			}
10159 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
10160 		case IPV6_RTHDRDSTOPTS:
10161 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
10162 				return (0);
10163 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
10164 			return (ipp->ipp_rtdstoptslen);
10165 		case IPV6_RTHDR:
10166 			if (!(ipp->ipp_fields & IPPF_RTHDR))
10167 				return (0);
10168 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
10169 			return (ipp->ipp_rthdrlen);
10170 		case IPV6_DSTOPTS:
10171 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
10172 				return (0);
10173 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
10174 			return (ipp->ipp_dstoptslen);
10175 		case IPV6_SRC_PREFERENCES:
10176 			return (ip6_get_src_preferences(connp,
10177 			    (uint32_t *)ptr));
10178 		case IPV6_PATHMTU: {
10179 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
10180 
10181 			if (tcp->tcp_state < TCPS_ESTABLISHED)
10182 				return (-1);
10183 
10184 			return (ip_fill_mtuinfo(&connp->conn_remv6,
10185 			    connp->conn_fport, mtuinfo,
10186 			    connp->conn_netstack));
10187 		}
10188 		default:
10189 			return (-1);
10190 		}
10191 		break;
10192 	default:
10193 		return (-1);
10194 	}
10195 	return (sizeof (int));
10196 }
10197 
10198 /*
10199  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
10200  * Parameters are assumed to be verified by the caller.
10201  */
10202 /* ARGSUSED */
10203 int
10204 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10205     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10206     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10207 {
10208 	conn_t	*connp = Q_TO_CONN(q);
10209 	tcp_t	*tcp = connp->conn_tcp;
10210 	int	*i1 = (int *)invalp;
10211 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
10212 	boolean_t checkonly;
10213 	int	reterr;
10214 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
10215 
10216 	switch (optset_context) {
10217 	case SETFN_OPTCOM_CHECKONLY:
10218 		checkonly = B_TRUE;
10219 		/*
10220 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
10221 		 * inlen != 0 implies value supplied and
10222 		 * 	we have to "pretend" to set it.
10223 		 * inlen == 0 implies that there is no
10224 		 * 	value part in T_CHECK request and just validation
10225 		 * done elsewhere should be enough, we just return here.
10226 		 */
10227 		if (inlen == 0) {
10228 			*outlenp = 0;
10229 			return (0);
10230 		}
10231 		break;
10232 	case SETFN_OPTCOM_NEGOTIATE:
10233 		checkonly = B_FALSE;
10234 		break;
10235 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
10236 	case SETFN_CONN_NEGOTIATE:
10237 		checkonly = B_FALSE;
10238 		/*
10239 		 * Negotiating local and "association-related" options
10240 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
10241 		 * primitives is allowed by XTI, but we choose
10242 		 * to not implement this style negotiation for Internet
10243 		 * protocols (We interpret it is a must for OSI world but
10244 		 * optional for Internet protocols) for all options.
10245 		 * [ Will do only for the few options that enable test
10246 		 * suites that our XTI implementation of this feature
10247 		 * works for transports that do allow it ]
10248 		 */
10249 		if (!tcp_allow_connopt_set(level, name)) {
10250 			*outlenp = 0;
10251 			return (EINVAL);
10252 		}
10253 		break;
10254 	default:
10255 		/*
10256 		 * We should never get here
10257 		 */
10258 		*outlenp = 0;
10259 		return (EINVAL);
10260 	}
10261 
10262 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
10263 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
10264 
10265 	/*
10266 	 * For TCP, we should have no ancillary data sent down
10267 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
10268 	 * has to be zero.
10269 	 */
10270 	ASSERT(thisdg_attrs == NULL);
10271 
10272 	/*
10273 	 * For fixed length options, no sanity check
10274 	 * of passed in length is done. It is assumed *_optcom_req()
10275 	 * routines do the right thing.
10276 	 */
10277 
10278 	switch (level) {
10279 	case SOL_SOCKET:
10280 		switch (name) {
10281 		case SO_LINGER: {
10282 			struct linger *lgr = (struct linger *)invalp;
10283 
10284 			if (!checkonly) {
10285 				if (lgr->l_onoff) {
10286 					tcp->tcp_linger = 1;
10287 					tcp->tcp_lingertime = lgr->l_linger;
10288 				} else {
10289 					tcp->tcp_linger = 0;
10290 					tcp->tcp_lingertime = 0;
10291 				}
10292 				/* struct copy */
10293 				*(struct linger *)outvalp = *lgr;
10294 			} else {
10295 				if (!lgr->l_onoff) {
10296 					((struct linger *)
10297 					    outvalp)->l_onoff = 0;
10298 					((struct linger *)
10299 					    outvalp)->l_linger = 0;
10300 				} else {
10301 					/* struct copy */
10302 					*(struct linger *)outvalp = *lgr;
10303 				}
10304 			}
10305 			*outlenp = sizeof (struct linger);
10306 			return (0);
10307 		}
10308 		case SO_DEBUG:
10309 			if (!checkonly)
10310 				tcp->tcp_debug = onoff;
10311 			break;
10312 		case SO_KEEPALIVE:
10313 			if (checkonly) {
10314 				/* T_CHECK case */
10315 				break;
10316 			}
10317 
10318 			if (!onoff) {
10319 				if (tcp->tcp_ka_enabled) {
10320 					if (tcp->tcp_ka_tid != 0) {
10321 						(void) TCP_TIMER_CANCEL(tcp,
10322 						    tcp->tcp_ka_tid);
10323 						tcp->tcp_ka_tid = 0;
10324 					}
10325 					tcp->tcp_ka_enabled = 0;
10326 				}
10327 				break;
10328 			}
10329 			if (!tcp->tcp_ka_enabled) {
10330 				/* Crank up the keepalive timer */
10331 				tcp->tcp_ka_last_intrvl = 0;
10332 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
10333 				    tcp_keepalive_killer,
10334 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
10335 				tcp->tcp_ka_enabled = 1;
10336 			}
10337 			break;
10338 		case SO_DONTROUTE:
10339 			/*
10340 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10341 			 * only of interest to IP.  We track them here only so
10342 			 * that we can report their current value.
10343 			 */
10344 			if (!checkonly) {
10345 				tcp->tcp_dontroute = onoff;
10346 				tcp->tcp_connp->conn_dontroute = onoff;
10347 			}
10348 			break;
10349 		case SO_USELOOPBACK:
10350 			if (!checkonly) {
10351 				tcp->tcp_useloopback = onoff;
10352 				tcp->tcp_connp->conn_loopback = onoff;
10353 			}
10354 			break;
10355 		case SO_BROADCAST:
10356 			if (!checkonly) {
10357 				tcp->tcp_broadcast = onoff;
10358 				tcp->tcp_connp->conn_broadcast = onoff;
10359 			}
10360 			break;
10361 		case SO_REUSEADDR:
10362 			if (!checkonly) {
10363 				tcp->tcp_reuseaddr = onoff;
10364 				tcp->tcp_connp->conn_reuseaddr = onoff;
10365 			}
10366 			break;
10367 		case SO_OOBINLINE:
10368 			if (!checkonly)
10369 				tcp->tcp_oobinline = onoff;
10370 			break;
10371 		case SO_DGRAM_ERRIND:
10372 			if (!checkonly)
10373 				tcp->tcp_dgram_errind = onoff;
10374 			break;
10375 		case SO_SNDBUF: {
10376 			if (*i1 > tcps->tcps_max_buf) {
10377 				*outlenp = 0;
10378 				return (ENOBUFS);
10379 			}
10380 			if (checkonly)
10381 				break;
10382 
10383 			tcp->tcp_xmit_hiwater = *i1;
10384 			if (tcps->tcps_snd_lowat_fraction != 0)
10385 				tcp->tcp_xmit_lowater =
10386 				    tcp->tcp_xmit_hiwater /
10387 				    tcps->tcps_snd_lowat_fraction;
10388 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10389 			/*
10390 			 * If we are flow-controlled, recheck the condition.
10391 			 * There are apps that increase SO_SNDBUF size when
10392 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10393 			 * control condition to be lifted right away.
10394 			 */
10395 			mutex_enter(&tcp->tcp_non_sq_lock);
10396 			if (tcp->tcp_flow_stopped &&
10397 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10398 				tcp_clrqfull(tcp);
10399 			}
10400 			mutex_exit(&tcp->tcp_non_sq_lock);
10401 			break;
10402 		}
10403 		case SO_RCVBUF:
10404 			if (*i1 > tcps->tcps_max_buf) {
10405 				*outlenp = 0;
10406 				return (ENOBUFS);
10407 			}
10408 			/* Silently ignore zero */
10409 			if (!checkonly && *i1 != 0) {
10410 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10411 				(void) tcp_rwnd_set(tcp, *i1);
10412 			}
10413 			/*
10414 			 * XXX should we return the rwnd here
10415 			 * and tcp_opt_get ?
10416 			 */
10417 			break;
10418 		case SO_SND_COPYAVOID:
10419 			if (!checkonly) {
10420 				/* we only allow enable at most once for now */
10421 				if (tcp->tcp_loopback ||
10422 				    (!tcp->tcp_snd_zcopy_aware &&
10423 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10424 					*outlenp = 0;
10425 					return (EOPNOTSUPP);
10426 				}
10427 				tcp->tcp_snd_zcopy_aware = 1;
10428 			}
10429 			break;
10430 		case SO_ALLZONES:
10431 			/* Handled at the IP level */
10432 			return (-EINVAL);
10433 		case SO_ANON_MLP:
10434 			if (!checkonly) {
10435 				mutex_enter(&connp->conn_lock);
10436 				connp->conn_anon_mlp = onoff;
10437 				mutex_exit(&connp->conn_lock);
10438 			}
10439 			break;
10440 		case SO_MAC_EXEMPT:
10441 			if (secpolicy_net_mac_aware(cr) != 0 ||
10442 			    IPCL_IS_BOUND(connp))
10443 				return (EACCES);
10444 			if (!checkonly) {
10445 				mutex_enter(&connp->conn_lock);
10446 				connp->conn_mac_exempt = onoff;
10447 				mutex_exit(&connp->conn_lock);
10448 			}
10449 			break;
10450 		case SO_EXCLBIND:
10451 			if (!checkonly)
10452 				tcp->tcp_exclbind = onoff;
10453 			break;
10454 		default:
10455 			*outlenp = 0;
10456 			return (EINVAL);
10457 		}
10458 		break;
10459 	case IPPROTO_TCP:
10460 		switch (name) {
10461 		case TCP_NODELAY:
10462 			if (!checkonly)
10463 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10464 			break;
10465 		case TCP_NOTIFY_THRESHOLD:
10466 			if (!checkonly)
10467 				tcp->tcp_first_timer_threshold = *i1;
10468 			break;
10469 		case TCP_ABORT_THRESHOLD:
10470 			if (!checkonly)
10471 				tcp->tcp_second_timer_threshold = *i1;
10472 			break;
10473 		case TCP_CONN_NOTIFY_THRESHOLD:
10474 			if (!checkonly)
10475 				tcp->tcp_first_ctimer_threshold = *i1;
10476 			break;
10477 		case TCP_CONN_ABORT_THRESHOLD:
10478 			if (!checkonly)
10479 				tcp->tcp_second_ctimer_threshold = *i1;
10480 			break;
10481 		case TCP_RECVDSTADDR:
10482 			if (tcp->tcp_state > TCPS_LISTEN)
10483 				return (EOPNOTSUPP);
10484 			if (!checkonly)
10485 				tcp->tcp_recvdstaddr = onoff;
10486 			break;
10487 		case TCP_ANONPRIVBIND:
10488 			if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) {
10489 				*outlenp = 0;
10490 				return (reterr);
10491 			}
10492 			if (!checkonly) {
10493 				tcp->tcp_anon_priv_bind = onoff;
10494 			}
10495 			break;
10496 		case TCP_EXCLBIND:
10497 			if (!checkonly)
10498 				tcp->tcp_exclbind = onoff;
10499 			break;	/* goto sizeof (int) option return */
10500 		case TCP_INIT_CWND: {
10501 			uint32_t init_cwnd = *((uint32_t *)invalp);
10502 
10503 			if (checkonly)
10504 				break;
10505 
10506 			/*
10507 			 * Only allow socket with network configuration
10508 			 * privilege to set the initial cwnd to be larger
10509 			 * than allowed by RFC 3390.
10510 			 */
10511 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10512 				tcp->tcp_init_cwnd = init_cwnd;
10513 				break;
10514 			}
10515 			if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) {
10516 				*outlenp = 0;
10517 				return (reterr);
10518 			}
10519 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10520 				*outlenp = 0;
10521 				return (EINVAL);
10522 			}
10523 			tcp->tcp_init_cwnd = init_cwnd;
10524 			break;
10525 		}
10526 		case TCP_KEEPALIVE_THRESHOLD:
10527 			if (checkonly)
10528 				break;
10529 
10530 			if (*i1 < tcps->tcps_keepalive_interval_low ||
10531 			    *i1 > tcps->tcps_keepalive_interval_high) {
10532 				*outlenp = 0;
10533 				return (EINVAL);
10534 			}
10535 			if (*i1 != tcp->tcp_ka_interval) {
10536 				tcp->tcp_ka_interval = *i1;
10537 				/*
10538 				 * Check if we need to restart the
10539 				 * keepalive timer.
10540 				 */
10541 				if (tcp->tcp_ka_tid != 0) {
10542 					ASSERT(tcp->tcp_ka_enabled);
10543 					(void) TCP_TIMER_CANCEL(tcp,
10544 					    tcp->tcp_ka_tid);
10545 					tcp->tcp_ka_last_intrvl = 0;
10546 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10547 					    tcp_keepalive_killer,
10548 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10549 				}
10550 			}
10551 			break;
10552 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10553 			if (!checkonly) {
10554 				if (*i1 <
10555 				    tcps->tcps_keepalive_abort_interval_low ||
10556 				    *i1 >
10557 				    tcps->tcps_keepalive_abort_interval_high) {
10558 					*outlenp = 0;
10559 					return (EINVAL);
10560 				}
10561 				tcp->tcp_ka_abort_thres = *i1;
10562 			}
10563 			break;
10564 		case TCP_CORK:
10565 			if (!checkonly) {
10566 				/*
10567 				 * if tcp->tcp_cork was set and is now
10568 				 * being unset, we have to make sure that
10569 				 * the remaining data gets sent out. Also
10570 				 * unset tcp->tcp_cork so that tcp_wput_data()
10571 				 * can send data even if it is less than mss
10572 				 */
10573 				if (tcp->tcp_cork && onoff == 0 &&
10574 				    tcp->tcp_unsent > 0) {
10575 					tcp->tcp_cork = B_FALSE;
10576 					tcp_wput_data(tcp, NULL, B_FALSE);
10577 				}
10578 				tcp->tcp_cork = onoff;
10579 			}
10580 			break;
10581 		default:
10582 			*outlenp = 0;
10583 			return (EINVAL);
10584 		}
10585 		break;
10586 	case IPPROTO_IP:
10587 		if (tcp->tcp_family != AF_INET) {
10588 			*outlenp = 0;
10589 			return (ENOPROTOOPT);
10590 		}
10591 		switch (name) {
10592 		case IP_OPTIONS:
10593 		case T_IP_OPTIONS:
10594 			reterr = tcp_opt_set_header(tcp, checkonly,
10595 			    invalp, inlen);
10596 			if (reterr) {
10597 				*outlenp = 0;
10598 				return (reterr);
10599 			}
10600 			/* OK return - copy input buffer into output buffer */
10601 			if (invalp != outvalp) {
10602 				/* don't trust bcopy for identical src/dst */
10603 				bcopy(invalp, outvalp, inlen);
10604 			}
10605 			*outlenp = inlen;
10606 			return (0);
10607 		case IP_TOS:
10608 		case T_IP_TOS:
10609 			if (!checkonly) {
10610 				tcp->tcp_ipha->ipha_type_of_service =
10611 				    (uchar_t)*i1;
10612 				tcp->tcp_tos = (uchar_t)*i1;
10613 			}
10614 			break;
10615 		case IP_TTL:
10616 			if (!checkonly) {
10617 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10618 				tcp->tcp_ttl = (uchar_t)*i1;
10619 			}
10620 			break;
10621 		case IP_BOUND_IF:
10622 		case IP_NEXTHOP:
10623 			/* Handled at the IP level */
10624 			return (-EINVAL);
10625 		case IP_SEC_OPT:
10626 			/*
10627 			 * We should not allow policy setting after
10628 			 * we start listening for connections.
10629 			 */
10630 			if (tcp->tcp_state == TCPS_LISTEN) {
10631 				return (EINVAL);
10632 			} else {
10633 				/* Handled at the IP level */
10634 				return (-EINVAL);
10635 			}
10636 		default:
10637 			*outlenp = 0;
10638 			return (EINVAL);
10639 		}
10640 		break;
10641 	case IPPROTO_IPV6: {
10642 		ip6_pkt_t		*ipp;
10643 
10644 		/*
10645 		 * IPPROTO_IPV6 options are only supported for sockets
10646 		 * that are using IPv6 on the wire.
10647 		 */
10648 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10649 			*outlenp = 0;
10650 			return (ENOPROTOOPT);
10651 		}
10652 		/*
10653 		 * Only sticky options; no ancillary data
10654 		 */
10655 		ASSERT(thisdg_attrs == NULL);
10656 		ipp = &tcp->tcp_sticky_ipp;
10657 
10658 		switch (name) {
10659 		case IPV6_UNICAST_HOPS:
10660 			/* -1 means use default */
10661 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10662 				*outlenp = 0;
10663 				return (EINVAL);
10664 			}
10665 			if (!checkonly) {
10666 				if (*i1 == -1) {
10667 					tcp->tcp_ip6h->ip6_hops =
10668 					    ipp->ipp_unicast_hops =
10669 					    (uint8_t)tcps->tcps_ipv6_hoplimit;
10670 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10671 					/* Pass modified value to IP. */
10672 					*i1 = tcp->tcp_ip6h->ip6_hops;
10673 				} else {
10674 					tcp->tcp_ip6h->ip6_hops =
10675 					    ipp->ipp_unicast_hops =
10676 					    (uint8_t)*i1;
10677 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10678 				}
10679 				reterr = tcp_build_hdrs(q, tcp);
10680 				if (reterr != 0)
10681 					return (reterr);
10682 			}
10683 			break;
10684 		case IPV6_BOUND_IF:
10685 			if (!checkonly) {
10686 				int error = 0;
10687 
10688 				tcp->tcp_bound_if = *i1;
10689 				error = ip_opt_set_ill(tcp->tcp_connp, *i1,
10690 				    B_TRUE, checkonly, level, name, mblk);
10691 				if (error != 0) {
10692 					*outlenp = 0;
10693 					return (error);
10694 				}
10695 			}
10696 			break;
10697 		/*
10698 		 * Set boolean switches for ancillary data delivery
10699 		 */
10700 		case IPV6_RECVPKTINFO:
10701 			if (!checkonly) {
10702 				if (onoff)
10703 					tcp->tcp_ipv6_recvancillary |=
10704 					    TCP_IPV6_RECVPKTINFO;
10705 				else
10706 					tcp->tcp_ipv6_recvancillary &=
10707 					    ~TCP_IPV6_RECVPKTINFO;
10708 				/* Force it to be sent up with the next msg */
10709 				tcp->tcp_recvifindex = 0;
10710 			}
10711 			break;
10712 		case IPV6_RECVTCLASS:
10713 			if (!checkonly) {
10714 				if (onoff)
10715 					tcp->tcp_ipv6_recvancillary |=
10716 					    TCP_IPV6_RECVTCLASS;
10717 				else
10718 					tcp->tcp_ipv6_recvancillary &=
10719 					    ~TCP_IPV6_RECVTCLASS;
10720 			}
10721 			break;
10722 		case IPV6_RECVHOPLIMIT:
10723 			if (!checkonly) {
10724 				if (onoff)
10725 					tcp->tcp_ipv6_recvancillary |=
10726 					    TCP_IPV6_RECVHOPLIMIT;
10727 				else
10728 					tcp->tcp_ipv6_recvancillary &=
10729 					    ~TCP_IPV6_RECVHOPLIMIT;
10730 				/* Force it to be sent up with the next msg */
10731 				tcp->tcp_recvhops = 0xffffffffU;
10732 			}
10733 			break;
10734 		case IPV6_RECVHOPOPTS:
10735 			if (!checkonly) {
10736 				if (onoff)
10737 					tcp->tcp_ipv6_recvancillary |=
10738 					    TCP_IPV6_RECVHOPOPTS;
10739 				else
10740 					tcp->tcp_ipv6_recvancillary &=
10741 					    ~TCP_IPV6_RECVHOPOPTS;
10742 			}
10743 			break;
10744 		case IPV6_RECVDSTOPTS:
10745 			if (!checkonly) {
10746 				if (onoff)
10747 					tcp->tcp_ipv6_recvancillary |=
10748 					    TCP_IPV6_RECVDSTOPTS;
10749 				else
10750 					tcp->tcp_ipv6_recvancillary &=
10751 					    ~TCP_IPV6_RECVDSTOPTS;
10752 			}
10753 			break;
10754 		case _OLD_IPV6_RECVDSTOPTS:
10755 			if (!checkonly) {
10756 				if (onoff)
10757 					tcp->tcp_ipv6_recvancillary |=
10758 					    TCP_OLD_IPV6_RECVDSTOPTS;
10759 				else
10760 					tcp->tcp_ipv6_recvancillary &=
10761 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10762 			}
10763 			break;
10764 		case IPV6_RECVRTHDR:
10765 			if (!checkonly) {
10766 				if (onoff)
10767 					tcp->tcp_ipv6_recvancillary |=
10768 					    TCP_IPV6_RECVRTHDR;
10769 				else
10770 					tcp->tcp_ipv6_recvancillary &=
10771 					    ~TCP_IPV6_RECVRTHDR;
10772 			}
10773 			break;
10774 		case IPV6_RECVRTHDRDSTOPTS:
10775 			if (!checkonly) {
10776 				if (onoff)
10777 					tcp->tcp_ipv6_recvancillary |=
10778 					    TCP_IPV6_RECVRTDSTOPTS;
10779 				else
10780 					tcp->tcp_ipv6_recvancillary &=
10781 					    ~TCP_IPV6_RECVRTDSTOPTS;
10782 			}
10783 			break;
10784 		case IPV6_PKTINFO:
10785 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10786 				return (EINVAL);
10787 			if (checkonly)
10788 				break;
10789 
10790 			if (inlen == 0) {
10791 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10792 			} else {
10793 				struct in6_pktinfo *pkti;
10794 
10795 				pkti = (struct in6_pktinfo *)invalp;
10796 				/*
10797 				 * RFC 3542 states that ipi6_addr must be
10798 				 * the unspecified address when setting the
10799 				 * IPV6_PKTINFO sticky socket option on a
10800 				 * TCP socket.
10801 				 */
10802 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10803 					return (EINVAL);
10804 				/*
10805 				 * ip6_set_pktinfo() validates the source
10806 				 * address and interface index.
10807 				 */
10808 				reterr = ip6_set_pktinfo(cr, tcp->tcp_connp,
10809 				    pkti, mblk);
10810 				if (reterr != 0)
10811 					return (reterr);
10812 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10813 				ipp->ipp_addr = pkti->ipi6_addr;
10814 				if (ipp->ipp_ifindex != 0)
10815 					ipp->ipp_fields |= IPPF_IFINDEX;
10816 				else
10817 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10818 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10819 					ipp->ipp_fields |= IPPF_ADDR;
10820 				else
10821 					ipp->ipp_fields &= ~IPPF_ADDR;
10822 			}
10823 			reterr = tcp_build_hdrs(q, tcp);
10824 			if (reterr != 0)
10825 				return (reterr);
10826 			break;
10827 		case IPV6_TCLASS:
10828 			if (inlen != 0 && inlen != sizeof (int))
10829 				return (EINVAL);
10830 			if (checkonly)
10831 				break;
10832 
10833 			if (inlen == 0) {
10834 				ipp->ipp_fields &= ~IPPF_TCLASS;
10835 			} else {
10836 				if (*i1 > 255 || *i1 < -1)
10837 					return (EINVAL);
10838 				if (*i1 == -1) {
10839 					ipp->ipp_tclass = 0;
10840 					*i1 = 0;
10841 				} else {
10842 					ipp->ipp_tclass = *i1;
10843 				}
10844 				ipp->ipp_fields |= IPPF_TCLASS;
10845 			}
10846 			reterr = tcp_build_hdrs(q, tcp);
10847 			if (reterr != 0)
10848 				return (reterr);
10849 			break;
10850 		case IPV6_NEXTHOP:
10851 			/*
10852 			 * IP will verify that the nexthop is reachable
10853 			 * and fail for sticky options.
10854 			 */
10855 			if (inlen != 0 && inlen != sizeof (sin6_t))
10856 				return (EINVAL);
10857 			if (checkonly)
10858 				break;
10859 
10860 			if (inlen == 0) {
10861 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10862 			} else {
10863 				sin6_t *sin6 = (sin6_t *)invalp;
10864 
10865 				if (sin6->sin6_family != AF_INET6)
10866 					return (EAFNOSUPPORT);
10867 				if (IN6_IS_ADDR_V4MAPPED(
10868 				    &sin6->sin6_addr))
10869 					return (EADDRNOTAVAIL);
10870 				ipp->ipp_nexthop = sin6->sin6_addr;
10871 				if (!IN6_IS_ADDR_UNSPECIFIED(
10872 				    &ipp->ipp_nexthop))
10873 					ipp->ipp_fields |= IPPF_NEXTHOP;
10874 				else
10875 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10876 			}
10877 			reterr = tcp_build_hdrs(q, tcp);
10878 			if (reterr != 0)
10879 				return (reterr);
10880 			break;
10881 		case IPV6_HOPOPTS: {
10882 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10883 
10884 			/*
10885 			 * Sanity checks - minimum size, size a multiple of
10886 			 * eight bytes, and matching size passed in.
10887 			 */
10888 			if (inlen != 0 &&
10889 			    inlen != (8 * (hopts->ip6h_len + 1)))
10890 				return (EINVAL);
10891 
10892 			if (checkonly)
10893 				break;
10894 
10895 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10896 			    (uchar_t **)&ipp->ipp_hopopts,
10897 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10898 			if (reterr != 0)
10899 				return (reterr);
10900 			if (ipp->ipp_hopoptslen == 0)
10901 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10902 			else
10903 				ipp->ipp_fields |= IPPF_HOPOPTS;
10904 			reterr = tcp_build_hdrs(q, tcp);
10905 			if (reterr != 0)
10906 				return (reterr);
10907 			break;
10908 		}
10909 		case IPV6_RTHDRDSTOPTS: {
10910 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10911 
10912 			/*
10913 			 * Sanity checks - minimum size, size a multiple of
10914 			 * eight bytes, and matching size passed in.
10915 			 */
10916 			if (inlen != 0 &&
10917 			    inlen != (8 * (dopts->ip6d_len + 1)))
10918 				return (EINVAL);
10919 
10920 			if (checkonly)
10921 				break;
10922 
10923 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10924 			    (uchar_t **)&ipp->ipp_rtdstopts,
10925 			    &ipp->ipp_rtdstoptslen, 0);
10926 			if (reterr != 0)
10927 				return (reterr);
10928 			if (ipp->ipp_rtdstoptslen == 0)
10929 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10930 			else
10931 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10932 			reterr = tcp_build_hdrs(q, tcp);
10933 			if (reterr != 0)
10934 				return (reterr);
10935 			break;
10936 		}
10937 		case IPV6_DSTOPTS: {
10938 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10939 
10940 			/*
10941 			 * Sanity checks - minimum size, size a multiple of
10942 			 * eight bytes, and matching size passed in.
10943 			 */
10944 			if (inlen != 0 &&
10945 			    inlen != (8 * (dopts->ip6d_len + 1)))
10946 				return (EINVAL);
10947 
10948 			if (checkonly)
10949 				break;
10950 
10951 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10952 			    (uchar_t **)&ipp->ipp_dstopts,
10953 			    &ipp->ipp_dstoptslen, 0);
10954 			if (reterr != 0)
10955 				return (reterr);
10956 			if (ipp->ipp_dstoptslen == 0)
10957 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10958 			else
10959 				ipp->ipp_fields |= IPPF_DSTOPTS;
10960 			reterr = tcp_build_hdrs(q, tcp);
10961 			if (reterr != 0)
10962 				return (reterr);
10963 			break;
10964 		}
10965 		case IPV6_RTHDR: {
10966 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
10967 
10968 			/*
10969 			 * Sanity checks - minimum size, size a multiple of
10970 			 * eight bytes, and matching size passed in.
10971 			 */
10972 			if (inlen != 0 &&
10973 			    inlen != (8 * (rt->ip6r_len + 1)))
10974 				return (EINVAL);
10975 
10976 			if (checkonly)
10977 				break;
10978 
10979 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10980 			    (uchar_t **)&ipp->ipp_rthdr,
10981 			    &ipp->ipp_rthdrlen, 0);
10982 			if (reterr != 0)
10983 				return (reterr);
10984 			if (ipp->ipp_rthdrlen == 0)
10985 				ipp->ipp_fields &= ~IPPF_RTHDR;
10986 			else
10987 				ipp->ipp_fields |= IPPF_RTHDR;
10988 			reterr = tcp_build_hdrs(q, tcp);
10989 			if (reterr != 0)
10990 				return (reterr);
10991 			break;
10992 		}
10993 		case IPV6_V6ONLY:
10994 			if (!checkonly)
10995 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
10996 			break;
10997 		case IPV6_USE_MIN_MTU:
10998 			if (inlen != sizeof (int))
10999 				return (EINVAL);
11000 
11001 			if (*i1 < -1 || *i1 > 1)
11002 				return (EINVAL);
11003 
11004 			if (checkonly)
11005 				break;
11006 
11007 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
11008 			ipp->ipp_use_min_mtu = *i1;
11009 			break;
11010 		case IPV6_BOUND_PIF:
11011 			/* Handled at the IP level */
11012 			return (-EINVAL);
11013 		case IPV6_SEC_OPT:
11014 			/*
11015 			 * We should not allow policy setting after
11016 			 * we start listening for connections.
11017 			 */
11018 			if (tcp->tcp_state == TCPS_LISTEN) {
11019 				return (EINVAL);
11020 			} else {
11021 				/* Handled at the IP level */
11022 				return (-EINVAL);
11023 			}
11024 		case IPV6_SRC_PREFERENCES:
11025 			if (inlen != sizeof (uint32_t))
11026 				return (EINVAL);
11027 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
11028 			    *(uint32_t *)invalp);
11029 			if (reterr != 0) {
11030 				*outlenp = 0;
11031 				return (reterr);
11032 			}
11033 			break;
11034 		default:
11035 			*outlenp = 0;
11036 			return (EINVAL);
11037 		}
11038 		break;
11039 	}		/* end IPPROTO_IPV6 */
11040 	default:
11041 		*outlenp = 0;
11042 		return (EINVAL);
11043 	}
11044 	/*
11045 	 * Common case of OK return with outval same as inval
11046 	 */
11047 	if (invalp != outvalp) {
11048 		/* don't trust bcopy for identical src/dst */
11049 		(void) bcopy(invalp, outvalp, inlen);
11050 	}
11051 	*outlenp = inlen;
11052 	return (0);
11053 }
11054 
11055 /*
11056  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
11057  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
11058  * headers, and the maximum size tcp header (to avoid reallocation
11059  * on the fly for additional tcp options).
11060  * Returns failure if can't allocate memory.
11061  */
11062 static int
11063 tcp_build_hdrs(queue_t *q, tcp_t *tcp)
11064 {
11065 	char	*hdrs;
11066 	uint_t	hdrs_len;
11067 	ip6i_t	*ip6i;
11068 	char	buf[TCP_MAX_HDR_LENGTH];
11069 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
11070 	in6_addr_t src, dst;
11071 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11072 
11073 	/*
11074 	 * save the existing tcp header and source/dest IP addresses
11075 	 */
11076 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
11077 	src = tcp->tcp_ip6h->ip6_src;
11078 	dst = tcp->tcp_ip6h->ip6_dst;
11079 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
11080 	ASSERT(hdrs_len != 0);
11081 	if (hdrs_len > tcp->tcp_iphc_len) {
11082 		/* Need to reallocate */
11083 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
11084 		if (hdrs == NULL)
11085 			return (ENOMEM);
11086 		if (tcp->tcp_iphc != NULL) {
11087 			if (tcp->tcp_hdr_grown) {
11088 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
11089 			} else {
11090 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
11091 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
11092 			}
11093 			tcp->tcp_iphc_len = 0;
11094 		}
11095 		ASSERT(tcp->tcp_iphc_len == 0);
11096 		tcp->tcp_iphc = hdrs;
11097 		tcp->tcp_iphc_len = hdrs_len;
11098 		tcp->tcp_hdr_grown = B_TRUE;
11099 	}
11100 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
11101 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
11102 
11103 	/* Set header fields not in ipp */
11104 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
11105 		ip6i = (ip6i_t *)tcp->tcp_iphc;
11106 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
11107 	} else {
11108 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
11109 	}
11110 	/*
11111 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
11112 	 *
11113 	 * tcp->tcp_tcp_hdr_len doesn't change here.
11114 	 */
11115 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
11116 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
11117 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
11118 
11119 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
11120 
11121 	tcp->tcp_ip6h->ip6_src = src;
11122 	tcp->tcp_ip6h->ip6_dst = dst;
11123 
11124 	/*
11125 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
11126 	 * the default value for TCP.
11127 	 */
11128 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
11129 		tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit;
11130 
11131 	/*
11132 	 * If we're setting extension headers after a connection
11133 	 * has been established, and if we have a routing header
11134 	 * among the extension headers, call ip_massage_options_v6 to
11135 	 * manipulate the routing header/ip6_dst set the checksum
11136 	 * difference in the tcp header template.
11137 	 * (This happens in tcp_connect_ipv6 if the routing header
11138 	 * is set prior to the connect.)
11139 	 * Set the tcp_sum to zero first in case we've cleared a
11140 	 * routing header or don't have one at all.
11141 	 */
11142 	tcp->tcp_sum = 0;
11143 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
11144 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
11145 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
11146 		    (uint8_t *)tcp->tcp_tcph);
11147 		if (rth != NULL) {
11148 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
11149 			    rth, tcps->tcps_netstack);
11150 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
11151 			    (tcp->tcp_sum >> 16));
11152 		}
11153 	}
11154 
11155 	/* Try to get everything in a single mblk */
11156 	(void) mi_set_sth_wroff(RD(q), hdrs_len + tcps->tcps_wroff_xtra);
11157 	return (0);
11158 }
11159 
11160 /*
11161  * Transfer any source route option from ipha to buf/dst in reversed form.
11162  */
11163 static int
11164 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
11165 {
11166 	ipoptp_t	opts;
11167 	uchar_t		*opt;
11168 	uint8_t		optval;
11169 	uint8_t		optlen;
11170 	uint32_t	len = 0;
11171 
11172 	for (optval = ipoptp_first(&opts, ipha);
11173 	    optval != IPOPT_EOL;
11174 	    optval = ipoptp_next(&opts)) {
11175 		opt = opts.ipoptp_cur;
11176 		optlen = opts.ipoptp_len;
11177 		switch (optval) {
11178 			int	off1, off2;
11179 		case IPOPT_SSRR:
11180 		case IPOPT_LSRR:
11181 
11182 			/* Reverse source route */
11183 			/*
11184 			 * First entry should be the next to last one in the
11185 			 * current source route (the last entry is our
11186 			 * address.)
11187 			 * The last entry should be the final destination.
11188 			 */
11189 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
11190 			buf[IPOPT_OLEN] = (uint8_t)optlen;
11191 			off1 = IPOPT_MINOFF_SR - 1;
11192 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
11193 			if (off2 < 0) {
11194 				/* No entries in source route */
11195 				break;
11196 			}
11197 			bcopy(opt + off2, dst, IP_ADDR_LEN);
11198 			/*
11199 			 * Note: use src since ipha has not had its src
11200 			 * and dst reversed (it is in the state it was
11201 			 * received.
11202 			 */
11203 			bcopy(&ipha->ipha_src, buf + off2,
11204 			    IP_ADDR_LEN);
11205 			off2 -= IP_ADDR_LEN;
11206 
11207 			while (off2 > 0) {
11208 				bcopy(opt + off2, buf + off1,
11209 				    IP_ADDR_LEN);
11210 				off1 += IP_ADDR_LEN;
11211 				off2 -= IP_ADDR_LEN;
11212 			}
11213 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
11214 			buf += optlen;
11215 			len += optlen;
11216 			break;
11217 		}
11218 	}
11219 done:
11220 	/* Pad the resulting options */
11221 	while (len & 0x3) {
11222 		*buf++ = IPOPT_EOL;
11223 		len++;
11224 	}
11225 	return (len);
11226 }
11227 
11228 
11229 /*
11230  * Extract and revert a source route from ipha (if any)
11231  * and then update the relevant fields in both tcp_t and the standard header.
11232  */
11233 static void
11234 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
11235 {
11236 	char	buf[TCP_MAX_HDR_LENGTH];
11237 	uint_t	tcph_len;
11238 	int	len;
11239 
11240 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
11241 	len = IPH_HDR_LENGTH(ipha);
11242 	if (len == IP_SIMPLE_HDR_LENGTH)
11243 		/* Nothing to do */
11244 		return;
11245 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
11246 	    (len & 0x3))
11247 		return;
11248 
11249 	tcph_len = tcp->tcp_tcp_hdr_len;
11250 	bcopy(tcp->tcp_tcph, buf, tcph_len);
11251 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
11252 	    (tcp->tcp_ipha->ipha_dst & 0xffff);
11253 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
11254 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
11255 	len += IP_SIMPLE_HDR_LENGTH;
11256 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
11257 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
11258 	if ((int)tcp->tcp_sum < 0)
11259 		tcp->tcp_sum--;
11260 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
11261 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
11262 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
11263 	bcopy(buf, tcp->tcp_tcph, tcph_len);
11264 	tcp->tcp_ip_hdr_len = len;
11265 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11266 	    (IP_VERSION << 4) | (len >> 2);
11267 	len += tcph_len;
11268 	tcp->tcp_hdr_len = len;
11269 }
11270 
11271 /*
11272  * Copy the standard header into its new location,
11273  * lay in the new options and then update the relevant
11274  * fields in both tcp_t and the standard header.
11275  */
11276 static int
11277 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
11278 {
11279 	uint_t	tcph_len;
11280 	uint8_t	*ip_optp;
11281 	tcph_t	*new_tcph;
11282 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11283 
11284 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
11285 		return (EINVAL);
11286 
11287 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
11288 		return (EINVAL);
11289 
11290 	if (checkonly) {
11291 		/*
11292 		 * do not really set, just pretend to - T_CHECK
11293 		 */
11294 		return (0);
11295 	}
11296 
11297 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
11298 	if (tcp->tcp_label_len > 0) {
11299 		int padlen;
11300 		uint8_t opt;
11301 
11302 		/* convert list termination to no-ops */
11303 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
11304 		ip_optp += ip_optp[IPOPT_OLEN];
11305 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
11306 		while (--padlen >= 0)
11307 			*ip_optp++ = opt;
11308 	}
11309 	tcph_len = tcp->tcp_tcp_hdr_len;
11310 	new_tcph = (tcph_t *)(ip_optp + len);
11311 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
11312 	tcp->tcp_tcph = new_tcph;
11313 	bcopy(ptr, ip_optp, len);
11314 
11315 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
11316 
11317 	tcp->tcp_ip_hdr_len = len;
11318 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11319 	    (IP_VERSION << 4) | (len >> 2);
11320 	tcp->tcp_hdr_len = len + tcph_len;
11321 	if (!TCP_IS_DETACHED(tcp)) {
11322 		/* Always allocate room for all options. */
11323 		(void) mi_set_sth_wroff(tcp->tcp_rq,
11324 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra);
11325 	}
11326 	return (0);
11327 }
11328 
11329 /* Get callback routine passed to nd_load by tcp_param_register */
11330 /* ARGSUSED */
11331 static int
11332 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11333 {
11334 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11335 
11336 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11337 	return (0);
11338 }
11339 
11340 /*
11341  * Walk through the param array specified registering each element with the
11342  * named dispatch handler.
11343  */
11344 static boolean_t
11345 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps)
11346 {
11347 	for (; cnt-- > 0; tcppa++) {
11348 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11349 			if (!nd_load(ndp, tcppa->tcp_param_name,
11350 			    tcp_param_get, tcp_param_set,
11351 			    (caddr_t)tcppa)) {
11352 				nd_free(ndp);
11353 				return (B_FALSE);
11354 			}
11355 		}
11356 	}
11357 	tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t),
11358 	    KM_SLEEP);
11359 	bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param,
11360 	    sizeof (tcpparam_t));
11361 	if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name,
11362 	    tcp_param_get, tcp_param_set_aligned,
11363 	    (caddr_t)tcps->tcps_wroff_xtra_param)) {
11364 		nd_free(ndp);
11365 		return (B_FALSE);
11366 	}
11367 	tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t),
11368 	    KM_SLEEP);
11369 	bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param,
11370 	    sizeof (tcpparam_t));
11371 	if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name,
11372 	    tcp_param_get, tcp_param_set_aligned,
11373 	    (caddr_t)tcps->tcps_mdt_head_param)) {
11374 		nd_free(ndp);
11375 		return (B_FALSE);
11376 	}
11377 	tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t),
11378 	    KM_SLEEP);
11379 	bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param,
11380 	    sizeof (tcpparam_t));
11381 	if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name,
11382 	    tcp_param_get, tcp_param_set_aligned,
11383 	    (caddr_t)tcps->tcps_mdt_tail_param)) {
11384 		nd_free(ndp);
11385 		return (B_FALSE);
11386 	}
11387 	tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t),
11388 	    KM_SLEEP);
11389 	bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param,
11390 	    sizeof (tcpparam_t));
11391 	if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name,
11392 	    tcp_param_get, tcp_param_set_aligned,
11393 	    (caddr_t)tcps->tcps_mdt_max_pbufs_param)) {
11394 		nd_free(ndp);
11395 		return (B_FALSE);
11396 	}
11397 	if (!nd_load(ndp, "tcp_extra_priv_ports",
11398 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11399 		nd_free(ndp);
11400 		return (B_FALSE);
11401 	}
11402 	if (!nd_load(ndp, "tcp_extra_priv_ports_add",
11403 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11404 		nd_free(ndp);
11405 		return (B_FALSE);
11406 	}
11407 	if (!nd_load(ndp, "tcp_extra_priv_ports_del",
11408 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11409 		nd_free(ndp);
11410 		return (B_FALSE);
11411 	}
11412 	if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL,
11413 	    NULL)) {
11414 		nd_free(ndp);
11415 		return (B_FALSE);
11416 	}
11417 	if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report,
11418 	    NULL, NULL)) {
11419 		nd_free(ndp);
11420 		return (B_FALSE);
11421 	}
11422 	if (!nd_load(ndp, "tcp_listen_hash",
11423 	    tcp_listen_hash_report, NULL, NULL)) {
11424 		nd_free(ndp);
11425 		return (B_FALSE);
11426 	}
11427 	if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report,
11428 	    NULL, NULL)) {
11429 		nd_free(ndp);
11430 		return (B_FALSE);
11431 	}
11432 	if (!nd_load(ndp, "tcp_acceptor_hash",
11433 	    tcp_acceptor_hash_report, NULL, NULL)) {
11434 		nd_free(ndp);
11435 		return (B_FALSE);
11436 	}
11437 	if (!nd_load(ndp, "tcp_host_param", tcp_host_param_report,
11438 	    tcp_host_param_set, NULL)) {
11439 		nd_free(ndp);
11440 		return (B_FALSE);
11441 	}
11442 	if (!nd_load(ndp, "tcp_host_param_ipv6",
11443 	    tcp_host_param_report, tcp_host_param_set_ipv6, NULL)) {
11444 		nd_free(ndp);
11445 		return (B_FALSE);
11446 	}
11447 	if (!nd_load(ndp, "tcp_1948_phrase", NULL,
11448 	    tcp_1948_phrase_set, NULL)) {
11449 		nd_free(ndp);
11450 		return (B_FALSE);
11451 	}
11452 	if (!nd_load(ndp, "tcp_reserved_port_list",
11453 	    tcp_reserved_port_list, NULL, NULL)) {
11454 		nd_free(ndp);
11455 		return (B_FALSE);
11456 	}
11457 	/*
11458 	 * Dummy ndd variables - only to convey obsolescence information
11459 	 * through printing of their name (no get or set routines)
11460 	 * XXX Remove in future releases ?
11461 	 */
11462 	if (!nd_load(ndp,
11463 	    "tcp_close_wait_interval(obsoleted - "
11464 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11465 		nd_free(ndp);
11466 		return (B_FALSE);
11467 	}
11468 	return (B_TRUE);
11469 }
11470 
11471 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11472 /* ARGSUSED */
11473 static int
11474 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11475     cred_t *cr)
11476 {
11477 	long new_value;
11478 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11479 
11480 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11481 	    new_value < tcppa->tcp_param_min ||
11482 	    new_value > tcppa->tcp_param_max) {
11483 		return (EINVAL);
11484 	}
11485 	/*
11486 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11487 	 * round it up.  For future 64 bit requirement, we actually make it
11488 	 * a multiple of 8.
11489 	 */
11490 	if (new_value & 0x7) {
11491 		new_value = (new_value & ~0x7) + 0x8;
11492 	}
11493 	tcppa->tcp_param_val = new_value;
11494 	return (0);
11495 }
11496 
11497 /* Set callback routine passed to nd_load by tcp_param_register */
11498 /* ARGSUSED */
11499 static int
11500 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11501 {
11502 	long	new_value;
11503 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11504 
11505 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11506 	    new_value < tcppa->tcp_param_min ||
11507 	    new_value > tcppa->tcp_param_max) {
11508 		return (EINVAL);
11509 	}
11510 	tcppa->tcp_param_val = new_value;
11511 	return (0);
11512 }
11513 
11514 /*
11515  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11516  * is filled, return as much as we can.  The message passed in may be
11517  * multi-part, chained using b_cont.  "start" is the starting sequence
11518  * number for this piece.
11519  */
11520 static mblk_t *
11521 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11522 {
11523 	uint32_t	end;
11524 	mblk_t		*mp1;
11525 	mblk_t		*mp2;
11526 	mblk_t		*next_mp;
11527 	uint32_t	u1;
11528 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11529 
11530 	/* Walk through all the new pieces. */
11531 	do {
11532 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11533 		    (uintptr_t)INT_MAX);
11534 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11535 		next_mp = mp->b_cont;
11536 		if (start == end) {
11537 			/* Empty.  Blast it. */
11538 			freeb(mp);
11539 			continue;
11540 		}
11541 		mp->b_cont = NULL;
11542 		TCP_REASS_SET_SEQ(mp, start);
11543 		TCP_REASS_SET_END(mp, end);
11544 		mp1 = tcp->tcp_reass_tail;
11545 		if (!mp1) {
11546 			tcp->tcp_reass_tail = mp;
11547 			tcp->tcp_reass_head = mp;
11548 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11549 			UPDATE_MIB(&tcps->tcps_mib,
11550 			    tcpInDataUnorderBytes, end - start);
11551 			continue;
11552 		}
11553 		/* New stuff completely beyond tail? */
11554 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11555 			/* Link it on end. */
11556 			mp1->b_cont = mp;
11557 			tcp->tcp_reass_tail = mp;
11558 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11559 			UPDATE_MIB(&tcps->tcps_mib,
11560 			    tcpInDataUnorderBytes, end - start);
11561 			continue;
11562 		}
11563 		mp1 = tcp->tcp_reass_head;
11564 		u1 = TCP_REASS_SEQ(mp1);
11565 		/* New stuff at the front? */
11566 		if (SEQ_LT(start, u1)) {
11567 			/* Yes... Check for overlap. */
11568 			mp->b_cont = mp1;
11569 			tcp->tcp_reass_head = mp;
11570 			tcp_reass_elim_overlap(tcp, mp);
11571 			continue;
11572 		}
11573 		/*
11574 		 * The new piece fits somewhere between the head and tail.
11575 		 * We find our slot, where mp1 precedes us and mp2 trails.
11576 		 */
11577 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11578 			u1 = TCP_REASS_SEQ(mp2);
11579 			if (SEQ_LEQ(start, u1))
11580 				break;
11581 		}
11582 		/* Link ourselves in */
11583 		mp->b_cont = mp2;
11584 		mp1->b_cont = mp;
11585 
11586 		/* Trim overlap with following mblk(s) first */
11587 		tcp_reass_elim_overlap(tcp, mp);
11588 
11589 		/* Trim overlap with preceding mblk */
11590 		tcp_reass_elim_overlap(tcp, mp1);
11591 
11592 	} while (start = end, mp = next_mp);
11593 	mp1 = tcp->tcp_reass_head;
11594 	/* Anything ready to go? */
11595 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11596 		return (NULL);
11597 	/* Eat what we can off the queue */
11598 	for (;;) {
11599 		mp = mp1->b_cont;
11600 		end = TCP_REASS_END(mp1);
11601 		TCP_REASS_SET_SEQ(mp1, 0);
11602 		TCP_REASS_SET_END(mp1, 0);
11603 		if (!mp) {
11604 			tcp->tcp_reass_tail = NULL;
11605 			break;
11606 		}
11607 		if (end != TCP_REASS_SEQ(mp)) {
11608 			mp1->b_cont = NULL;
11609 			break;
11610 		}
11611 		mp1 = mp;
11612 	}
11613 	mp1 = tcp->tcp_reass_head;
11614 	tcp->tcp_reass_head = mp;
11615 	return (mp1);
11616 }
11617 
11618 /* Eliminate any overlap that mp may have over later mblks */
11619 static void
11620 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11621 {
11622 	uint32_t	end;
11623 	mblk_t		*mp1;
11624 	uint32_t	u1;
11625 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11626 
11627 	end = TCP_REASS_END(mp);
11628 	while ((mp1 = mp->b_cont) != NULL) {
11629 		u1 = TCP_REASS_SEQ(mp1);
11630 		if (!SEQ_GT(end, u1))
11631 			break;
11632 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11633 			mp->b_wptr -= end - u1;
11634 			TCP_REASS_SET_END(mp, u1);
11635 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs);
11636 			UPDATE_MIB(&tcps->tcps_mib,
11637 			    tcpInDataPartDupBytes, end - u1);
11638 			break;
11639 		}
11640 		mp->b_cont = mp1->b_cont;
11641 		TCP_REASS_SET_SEQ(mp1, 0);
11642 		TCP_REASS_SET_END(mp1, 0);
11643 		freeb(mp1);
11644 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
11645 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1);
11646 	}
11647 	if (!mp1)
11648 		tcp->tcp_reass_tail = mp;
11649 }
11650 
11651 /*
11652  * Send up all messages queued on tcp_rcv_list.
11653  */
11654 static uint_t
11655 tcp_rcv_drain(queue_t *q, tcp_t *tcp)
11656 {
11657 	mblk_t *mp;
11658 	uint_t ret = 0;
11659 	uint_t thwin;
11660 #ifdef DEBUG
11661 	uint_t cnt = 0;
11662 #endif
11663 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11664 
11665 	/* Can't drain on an eager connection */
11666 	if (tcp->tcp_listener != NULL)
11667 		return (ret);
11668 
11669 	/*
11670 	 * Handle two cases here: we are currently fused or we were
11671 	 * previously fused and have some urgent data to be delivered
11672 	 * upstream.  The latter happens because we either ran out of
11673 	 * memory or were detached and therefore sending the SIGURG was
11674 	 * deferred until this point.  In either case we pass control
11675 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11676 	 * some work.
11677 	 */
11678 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11679 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
11680 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11681 		    &tcp->tcp_fused_sigurg_mp))
11682 			return (ret);
11683 	}
11684 
11685 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11686 		tcp->tcp_rcv_list = mp->b_next;
11687 		mp->b_next = NULL;
11688 #ifdef DEBUG
11689 		cnt += msgdsize(mp);
11690 #endif
11691 		/* Does this need SSL processing first? */
11692 		if ((tcp->tcp_kssl_ctx  != NULL) && (DB_TYPE(mp) == M_DATA)) {
11693 			tcp_kssl_input(tcp, mp);
11694 			continue;
11695 		}
11696 		putnext(q, mp);
11697 	}
11698 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11699 	tcp->tcp_rcv_last_head = NULL;
11700 	tcp->tcp_rcv_last_tail = NULL;
11701 	tcp->tcp_rcv_cnt = 0;
11702 
11703 	/* Learn the latest rwnd information that we sent to the other side. */
11704 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11705 	    << tcp->tcp_rcv_ws;
11706 	/* This is peer's calculated send window (our receive window). */
11707 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11708 	/*
11709 	 * Increase the receive window to max.  But we need to do receiver
11710 	 * SWS avoidance.  This means that we need to check the increase of
11711 	 * of receive window is at least 1 MSS.
11712 	 */
11713 	if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11714 		/*
11715 		 * If the window that the other side knows is less than max
11716 		 * deferred acks segments, send an update immediately.
11717 		 */
11718 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11719 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
11720 			ret = TH_ACK_NEEDED;
11721 		}
11722 		tcp->tcp_rwnd = q->q_hiwat;
11723 	}
11724 	/* No need for the push timer now. */
11725 	if (tcp->tcp_push_tid != 0) {
11726 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11727 		tcp->tcp_push_tid = 0;
11728 	}
11729 	return (ret);
11730 }
11731 
11732 /*
11733  * Queue data on tcp_rcv_list which is a b_next chain.
11734  * tcp_rcv_last_head/tail is the last element of this chain.
11735  * Each element of the chain is a b_cont chain.
11736  *
11737  * M_DATA messages are added to the current element.
11738  * Other messages are added as new (b_next) elements.
11739  */
11740 void
11741 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11742 {
11743 	ASSERT(seg_len == msgdsize(mp));
11744 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11745 
11746 	if (tcp->tcp_rcv_list == NULL) {
11747 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11748 		tcp->tcp_rcv_list = mp;
11749 		tcp->tcp_rcv_last_head = mp;
11750 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11751 		tcp->tcp_rcv_last_tail->b_cont = mp;
11752 	} else {
11753 		tcp->tcp_rcv_last_head->b_next = mp;
11754 		tcp->tcp_rcv_last_head = mp;
11755 	}
11756 
11757 	while (mp->b_cont)
11758 		mp = mp->b_cont;
11759 
11760 	tcp->tcp_rcv_last_tail = mp;
11761 	tcp->tcp_rcv_cnt += seg_len;
11762 	tcp->tcp_rwnd -= seg_len;
11763 }
11764 
11765 /*
11766  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11767  *
11768  * This is the default entry function into TCP on the read side. TCP is
11769  * always entered via squeue i.e. using squeue's for mutual exclusion.
11770  * When classifier does a lookup to find the tcp, it also puts a reference
11771  * on the conn structure associated so the tcp is guaranteed to exist
11772  * when we come here. We still need to check the state because it might
11773  * as well has been closed. The squeue processing function i.e. squeue_enter,
11774  * squeue_enter_nodrain, or squeue_drain is responsible for doing the
11775  * CONN_DEC_REF.
11776  *
11777  * Apart from the default entry point, IP also sends packets directly to
11778  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11779  * connections.
11780  */
11781 void
11782 tcp_input(void *arg, mblk_t *mp, void *arg2)
11783 {
11784 	conn_t	*connp = (conn_t *)arg;
11785 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11786 
11787 	/* arg2 is the sqp */
11788 	ASSERT(arg2 != NULL);
11789 	ASSERT(mp != NULL);
11790 
11791 	/*
11792 	 * Don't accept any input on a closed tcp as this TCP logically does
11793 	 * not exist on the system. Don't proceed further with this TCP.
11794 	 * For eg. this packet could trigger another close of this tcp
11795 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11796 	 * tcp_clean_death / tcp_closei_local must be called at most once
11797 	 * on a TCP. In this case we need to refeed the packet into the
11798 	 * classifier and figure out where the packet should go. Need to
11799 	 * preserve the recv_ill somehow. Until we figure that out, for
11800 	 * now just drop the packet if we can't classify the packet.
11801 	 */
11802 	if (tcp->tcp_state == TCPS_CLOSED ||
11803 	    tcp->tcp_state == TCPS_BOUND) {
11804 		conn_t	*new_connp;
11805 		ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip;
11806 
11807 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
11808 		if (new_connp != NULL) {
11809 			tcp_reinput(new_connp, mp, arg2);
11810 			return;
11811 		}
11812 		/* We failed to classify. For now just drop the packet */
11813 		freemsg(mp);
11814 		return;
11815 	}
11816 
11817 	if (DB_TYPE(mp) == M_DATA)
11818 		tcp_rput_data(connp, mp, arg2);
11819 	else
11820 		tcp_rput_common(tcp, mp);
11821 }
11822 
11823 /*
11824  * The read side put procedure.
11825  * The packets passed up by ip are assume to be aligned according to
11826  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11827  */
11828 static void
11829 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11830 {
11831 	/*
11832 	 * tcp_rput_data() does not expect M_CTL except for the case
11833 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11834 	 * type. Need to make sure that any other M_CTLs don't make
11835 	 * it to tcp_rput_data since it is not expecting any and doesn't
11836 	 * check for it.
11837 	 */
11838 	if (DB_TYPE(mp) == M_CTL) {
11839 		switch (*(uint32_t *)(mp->b_rptr)) {
11840 		case TCP_IOC_ABORT_CONN:
11841 			/*
11842 			 * Handle connection abort request.
11843 			 */
11844 			tcp_ioctl_abort_handler(tcp, mp);
11845 			return;
11846 		case IPSEC_IN:
11847 			/*
11848 			 * Only secure icmp arrive in TCP and they
11849 			 * don't go through data path.
11850 			 */
11851 			tcp_icmp_error(tcp, mp);
11852 			return;
11853 		case IN_PKTINFO:
11854 			/*
11855 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
11856 			 * sockets that are receiving IPv4 traffic. tcp
11857 			 */
11858 			ASSERT(tcp->tcp_family == AF_INET6);
11859 			ASSERT(tcp->tcp_ipv6_recvancillary &
11860 			    TCP_IPV6_RECVPKTINFO);
11861 			tcp_rput_data(tcp->tcp_connp, mp,
11862 			    tcp->tcp_connp->conn_sqp);
11863 			return;
11864 		case MDT_IOC_INFO_UPDATE:
11865 			/*
11866 			 * Handle Multidata information update; the
11867 			 * following routine will free the message.
11868 			 */
11869 			if (tcp->tcp_connp->conn_mdt_ok) {
11870 				tcp_mdt_update(tcp,
11871 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
11872 				    B_FALSE);
11873 			}
11874 			freemsg(mp);
11875 			return;
11876 		case LSO_IOC_INFO_UPDATE:
11877 			/*
11878 			 * Handle LSO information update; the following
11879 			 * routine will free the message.
11880 			 */
11881 			if (tcp->tcp_connp->conn_lso_ok) {
11882 				tcp_lso_update(tcp,
11883 				    &((ip_lso_info_t *)mp->b_rptr)->lso_capab);
11884 			}
11885 			freemsg(mp);
11886 			return;
11887 		default:
11888 			/*
11889 			 * tcp_icmp_err() will process the M_CTL packets.
11890 			 * Non-ICMP packets, if any, will be discarded in
11891 			 * tcp_icmp_err(). We will process the ICMP packet
11892 			 * even if we are TCP_IS_DETACHED_NONEAGER as the
11893 			 * incoming ICMP packet may result in changing
11894 			 * the tcp_mss, which we would need if we have
11895 			 * packets to retransmit.
11896 			 */
11897 			tcp_icmp_error(tcp, mp);
11898 			return;
11899 		}
11900 	}
11901 
11902 	/* No point processing the message if tcp is already closed */
11903 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
11904 		freemsg(mp);
11905 		return;
11906 	}
11907 
11908 	tcp_rput_other(tcp, mp);
11909 }
11910 
11911 
11912 /* The minimum of smoothed mean deviation in RTO calculation. */
11913 #define	TCP_SD_MIN	400
11914 
11915 /*
11916  * Set RTO for this connection.  The formula is from Jacobson and Karels'
11917  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
11918  * are the same as those in Appendix A.2 of that paper.
11919  *
11920  * m = new measurement
11921  * sa = smoothed RTT average (8 * average estimates).
11922  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
11923  */
11924 static void
11925 tcp_set_rto(tcp_t *tcp, clock_t rtt)
11926 {
11927 	long m = TICK_TO_MSEC(rtt);
11928 	clock_t sa = tcp->tcp_rtt_sa;
11929 	clock_t sv = tcp->tcp_rtt_sd;
11930 	clock_t rto;
11931 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11932 
11933 	BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate);
11934 	tcp->tcp_rtt_update++;
11935 
11936 	/* tcp_rtt_sa is not 0 means this is a new sample. */
11937 	if (sa != 0) {
11938 		/*
11939 		 * Update average estimator:
11940 		 *	new rtt = 7/8 old rtt + 1/8 Error
11941 		 */
11942 
11943 		/* m is now Error in estimate. */
11944 		m -= sa >> 3;
11945 		if ((sa += m) <= 0) {
11946 			/*
11947 			 * Don't allow the smoothed average to be negative.
11948 			 * We use 0 to denote reinitialization of the
11949 			 * variables.
11950 			 */
11951 			sa = 1;
11952 		}
11953 
11954 		/*
11955 		 * Update deviation estimator:
11956 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
11957 		 */
11958 		if (m < 0)
11959 			m = -m;
11960 		m -= sv >> 2;
11961 		sv += m;
11962 	} else {
11963 		/*
11964 		 * This follows BSD's implementation.  So the reinitialized
11965 		 * RTO is 3 * m.  We cannot go less than 2 because if the
11966 		 * link is bandwidth dominated, doubling the window size
11967 		 * during slow start means doubling the RTT.  We want to be
11968 		 * more conservative when we reinitialize our estimates.  3
11969 		 * is just a convenient number.
11970 		 */
11971 		sa = m << 3;
11972 		sv = m << 1;
11973 	}
11974 	if (sv < TCP_SD_MIN) {
11975 		/*
11976 		 * We do not know that if sa captures the delay ACK
11977 		 * effect as in a long train of segments, a receiver
11978 		 * does not delay its ACKs.  So set the minimum of sv
11979 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
11980 		 * of BSD DATO.  That means the minimum of mean
11981 		 * deviation is 100 ms.
11982 		 *
11983 		 */
11984 		sv = TCP_SD_MIN;
11985 	}
11986 	tcp->tcp_rtt_sa = sa;
11987 	tcp->tcp_rtt_sd = sv;
11988 	/*
11989 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
11990 	 *
11991 	 * Add tcp_rexmit_interval extra in case of extreme environment
11992 	 * where the algorithm fails to work.  The default value of
11993 	 * tcp_rexmit_interval_extra should be 0.
11994 	 *
11995 	 * As we use a finer grained clock than BSD and update
11996 	 * RTO for every ACKs, add in another .25 of RTT to the
11997 	 * deviation of RTO to accomodate burstiness of 1/4 of
11998 	 * window size.
11999 	 */
12000 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
12001 
12002 	if (rto > tcps->tcps_rexmit_interval_max) {
12003 		tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
12004 	} else if (rto < tcps->tcps_rexmit_interval_min) {
12005 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
12006 	} else {
12007 		tcp->tcp_rto = rto;
12008 	}
12009 
12010 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
12011 	tcp->tcp_timer_backoff = 0;
12012 }
12013 
12014 /*
12015  * tcp_get_seg_mp() is called to get the pointer to a segment in the
12016  * send queue which starts at the given seq. no.
12017  *
12018  * Parameters:
12019  *	tcp_t *tcp: the tcp instance pointer.
12020  *	uint32_t seq: the starting seq. no of the requested segment.
12021  *	int32_t *off: after the execution, *off will be the offset to
12022  *		the returned mblk which points to the requested seq no.
12023  *		It is the caller's responsibility to send in a non-null off.
12024  *
12025  * Return:
12026  *	A mblk_t pointer pointing to the requested segment in send queue.
12027  */
12028 static mblk_t *
12029 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
12030 {
12031 	int32_t	cnt;
12032 	mblk_t	*mp;
12033 
12034 	/* Defensive coding.  Make sure we don't send incorrect data. */
12035 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
12036 		return (NULL);
12037 
12038 	cnt = seq - tcp->tcp_suna;
12039 	mp = tcp->tcp_xmit_head;
12040 	while (cnt > 0 && mp != NULL) {
12041 		cnt -= mp->b_wptr - mp->b_rptr;
12042 		if (cnt < 0) {
12043 			cnt += mp->b_wptr - mp->b_rptr;
12044 			break;
12045 		}
12046 		mp = mp->b_cont;
12047 	}
12048 	ASSERT(mp != NULL);
12049 	*off = cnt;
12050 	return (mp);
12051 }
12052 
12053 /*
12054  * This function handles all retransmissions if SACK is enabled for this
12055  * connection.  First it calculates how many segments can be retransmitted
12056  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
12057  * segments.  A segment is eligible if sack_cnt for that segment is greater
12058  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
12059  * all eligible segments, it checks to see if TCP can send some new segments
12060  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
12061  *
12062  * Parameters:
12063  *	tcp_t *tcp: the tcp structure of the connection.
12064  *	uint_t *flags: in return, appropriate value will be set for
12065  *	tcp_rput_data().
12066  */
12067 static void
12068 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
12069 {
12070 	notsack_blk_t	*notsack_blk;
12071 	int32_t		usable_swnd;
12072 	int32_t		mss;
12073 	uint32_t	seg_len;
12074 	mblk_t		*xmit_mp;
12075 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12076 
12077 	ASSERT(tcp->tcp_sack_info != NULL);
12078 	ASSERT(tcp->tcp_notsack_list != NULL);
12079 	ASSERT(tcp->tcp_rexmit == B_FALSE);
12080 
12081 	/* Defensive coding in case there is a bug... */
12082 	if (tcp->tcp_notsack_list == NULL) {
12083 		return;
12084 	}
12085 	notsack_blk = tcp->tcp_notsack_list;
12086 	mss = tcp->tcp_mss;
12087 
12088 	/*
12089 	 * Limit the num of outstanding data in the network to be
12090 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
12091 	 */
12092 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12093 
12094 	/* At least retransmit 1 MSS of data. */
12095 	if (usable_swnd <= 0) {
12096 		usable_swnd = mss;
12097 	}
12098 
12099 	/* Make sure no new RTT samples will be taken. */
12100 	tcp->tcp_csuna = tcp->tcp_snxt;
12101 
12102 	notsack_blk = tcp->tcp_notsack_list;
12103 	while (usable_swnd > 0) {
12104 		mblk_t		*snxt_mp, *tmp_mp;
12105 		tcp_seq		begin = tcp->tcp_sack_snxt;
12106 		tcp_seq		end;
12107 		int32_t		off;
12108 
12109 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
12110 			if (SEQ_GT(notsack_blk->end, begin) &&
12111 			    (notsack_blk->sack_cnt >=
12112 			    tcps->tcps_dupack_fast_retransmit)) {
12113 				end = notsack_blk->end;
12114 				if (SEQ_LT(begin, notsack_blk->begin)) {
12115 					begin = notsack_blk->begin;
12116 				}
12117 				break;
12118 			}
12119 		}
12120 		/*
12121 		 * All holes are filled.  Manipulate tcp_cwnd to send more
12122 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
12123 		 * set to tcp_cwnd_ssthresh.
12124 		 */
12125 		if (notsack_blk == NULL) {
12126 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12127 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
12128 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
12129 				ASSERT(tcp->tcp_cwnd > 0);
12130 				return;
12131 			} else {
12132 				usable_swnd = usable_swnd / mss;
12133 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
12134 				    MAX(usable_swnd * mss, mss);
12135 				*flags |= TH_XMIT_NEEDED;
12136 				return;
12137 			}
12138 		}
12139 
12140 		/*
12141 		 * Note that we may send more than usable_swnd allows here
12142 		 * because of round off, but no more than 1 MSS of data.
12143 		 */
12144 		seg_len = end - begin;
12145 		if (seg_len > mss)
12146 			seg_len = mss;
12147 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
12148 		ASSERT(snxt_mp != NULL);
12149 		/* This should not happen.  Defensive coding again... */
12150 		if (snxt_mp == NULL) {
12151 			return;
12152 		}
12153 
12154 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
12155 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
12156 		if (xmit_mp == NULL)
12157 			return;
12158 
12159 		usable_swnd -= seg_len;
12160 		tcp->tcp_pipe += seg_len;
12161 		tcp->tcp_sack_snxt = begin + seg_len;
12162 		TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT);
12163 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12164 
12165 		/*
12166 		 * Update the send timestamp to avoid false retransmission.
12167 		 */
12168 		snxt_mp->b_prev = (mblk_t *)lbolt;
12169 
12170 		BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12171 		UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len);
12172 		BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs);
12173 		/*
12174 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
12175 		 * This happens when new data sent during fast recovery is
12176 		 * also lost.  If TCP retransmits those new data, it needs
12177 		 * to extend SACK recover phase to avoid starting another
12178 		 * fast retransmit/recovery unnecessarily.
12179 		 */
12180 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
12181 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
12182 		}
12183 	}
12184 }
12185 
12186 /*
12187  * This function handles policy checking at TCP level for non-hard_bound/
12188  * detached connections.
12189  */
12190 static boolean_t
12191 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
12192     boolean_t secure, boolean_t mctl_present)
12193 {
12194 	ipsec_latch_t *ipl = NULL;
12195 	ipsec_action_t *act = NULL;
12196 	mblk_t *data_mp;
12197 	ipsec_in_t *ii;
12198 	const char *reason;
12199 	kstat_named_t *counter;
12200 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12201 	ipsec_stack_t	*ipss;
12202 	ip_stack_t	*ipst;
12203 
12204 	ASSERT(mctl_present || !secure);
12205 
12206 	ASSERT((ipha == NULL && ip6h != NULL) ||
12207 	    (ip6h == NULL && ipha != NULL));
12208 
12209 	/*
12210 	 * We don't necessarily have an ipsec_in_act action to verify
12211 	 * policy because of assymetrical policy where we have only
12212 	 * outbound policy and no inbound policy (possible with global
12213 	 * policy).
12214 	 */
12215 	if (!secure) {
12216 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
12217 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
12218 			return (B_TRUE);
12219 		ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
12220 		    "tcp_check_policy", ipha, ip6h, secure,
12221 		    tcps->tcps_netstack);
12222 		ipss = tcps->tcps_netstack->netstack_ipsec;
12223 
12224 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12225 		    DROPPER(ipss, ipds_tcp_clear),
12226 		    &tcps->tcps_dropper);
12227 		return (B_FALSE);
12228 	}
12229 
12230 	/*
12231 	 * We have a secure packet.
12232 	 */
12233 	if (act == NULL) {
12234 		ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
12235 		    "tcp_check_policy", ipha, ip6h, secure,
12236 		    tcps->tcps_netstack);
12237 		ipss = tcps->tcps_netstack->netstack_ipsec;
12238 
12239 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12240 		    DROPPER(ipss, ipds_tcp_secure),
12241 		    &tcps->tcps_dropper);
12242 		return (B_FALSE);
12243 	}
12244 
12245 	/*
12246 	 * XXX This whole routine is currently incorrect.  ipl should
12247 	 * be set to the latch pointer, but is currently not set, so
12248 	 * we initialize it to NULL to avoid picking up random garbage.
12249 	 */
12250 	if (ipl == NULL)
12251 		return (B_TRUE);
12252 
12253 	data_mp = first_mp->b_cont;
12254 
12255 	ii = (ipsec_in_t *)first_mp->b_rptr;
12256 
12257 	ipst = tcps->tcps_netstack->netstack_ip;
12258 
12259 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
12260 	    &counter, tcp->tcp_connp)) {
12261 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
12262 		return (B_TRUE);
12263 	}
12264 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
12265 	    "tcp inbound policy mismatch: %s, packet dropped\n",
12266 	    reason);
12267 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
12268 
12269 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
12270 	    &tcps->tcps_dropper);
12271 	return (B_FALSE);
12272 }
12273 
12274 /*
12275  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
12276  * retransmission after a timeout.
12277  *
12278  * To limit the number of duplicate segments, we limit the number of segment
12279  * to be sent in one time to tcp_snd_burst, the burst variable.
12280  */
12281 static void
12282 tcp_ss_rexmit(tcp_t *tcp)
12283 {
12284 	uint32_t	snxt;
12285 	uint32_t	smax;
12286 	int32_t		win;
12287 	int32_t		mss;
12288 	int32_t		off;
12289 	int32_t		burst = tcp->tcp_snd_burst;
12290 	mblk_t		*snxt_mp;
12291 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12292 
12293 	/*
12294 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
12295 	 * all unack'ed segments.
12296 	 */
12297 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
12298 		smax = tcp->tcp_rexmit_max;
12299 		snxt = tcp->tcp_rexmit_nxt;
12300 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
12301 			snxt = tcp->tcp_suna;
12302 		}
12303 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
12304 		win -= snxt - tcp->tcp_suna;
12305 		mss = tcp->tcp_mss;
12306 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
12307 
12308 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12309 		    (burst > 0) && (snxt_mp != NULL)) {
12310 			mblk_t	*xmit_mp;
12311 			mblk_t	*old_snxt_mp = snxt_mp;
12312 			uint32_t cnt = mss;
12313 
12314 			if (win < cnt) {
12315 				cnt = win;
12316 			}
12317 			if (SEQ_GT(snxt + cnt, smax)) {
12318 				cnt = smax - snxt;
12319 			}
12320 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12321 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12322 			if (xmit_mp == NULL)
12323 				return;
12324 
12325 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12326 
12327 			snxt += cnt;
12328 			win -= cnt;
12329 			/*
12330 			 * Update the send timestamp to avoid false
12331 			 * retransmission.
12332 			 */
12333 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12334 			BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12335 			UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt);
12336 
12337 			tcp->tcp_rexmit_nxt = snxt;
12338 			burst--;
12339 		}
12340 		/*
12341 		 * If we have transmitted all we have at the time
12342 		 * we started the retranmission, we can leave
12343 		 * the rest of the job to tcp_wput_data().  But we
12344 		 * need to check the send window first.  If the
12345 		 * win is not 0, go on with tcp_wput_data().
12346 		 */
12347 		if (SEQ_LT(snxt, smax) || win == 0) {
12348 			return;
12349 		}
12350 	}
12351 	/* Only call tcp_wput_data() if there is data to be sent. */
12352 	if (tcp->tcp_unsent) {
12353 		tcp_wput_data(tcp, NULL, B_FALSE);
12354 	}
12355 }
12356 
12357 /*
12358  * Process all TCP option in SYN segment.  Note that this function should
12359  * be called after tcp_adapt_ire() is called so that the necessary info
12360  * from IRE is already set in the tcp structure.
12361  *
12362  * This function sets up the correct tcp_mss value according to the
12363  * MSS option value and our header size.  It also sets up the window scale
12364  * and timestamp values, and initialize SACK info blocks.  But it does not
12365  * change receive window size after setting the tcp_mss value.  The caller
12366  * should do the appropriate change.
12367  */
12368 void
12369 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12370 {
12371 	int options;
12372 	tcp_opt_t tcpopt;
12373 	uint32_t mss_max;
12374 	char *tmp_tcph;
12375 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12376 
12377 	tcpopt.tcp = NULL;
12378 	options = tcp_parse_options(tcph, &tcpopt);
12379 
12380 	/*
12381 	 * Process MSS option.  Note that MSS option value does not account
12382 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12383 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12384 	 * IPv6.
12385 	 */
12386 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12387 		if (tcp->tcp_ipversion == IPV4_VERSION)
12388 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
12389 		else
12390 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
12391 	} else {
12392 		if (tcp->tcp_ipversion == IPV4_VERSION)
12393 			mss_max = tcps->tcps_mss_max_ipv4;
12394 		else
12395 			mss_max = tcps->tcps_mss_max_ipv6;
12396 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
12397 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
12398 		else if (tcpopt.tcp_opt_mss > mss_max)
12399 			tcpopt.tcp_opt_mss = mss_max;
12400 	}
12401 
12402 	/* Process Window Scale option. */
12403 	if (options & TCP_OPT_WSCALE_PRESENT) {
12404 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12405 		tcp->tcp_snd_ws_ok = B_TRUE;
12406 	} else {
12407 		tcp->tcp_snd_ws = B_FALSE;
12408 		tcp->tcp_snd_ws_ok = B_FALSE;
12409 		tcp->tcp_rcv_ws = B_FALSE;
12410 	}
12411 
12412 	/* Process Timestamp option. */
12413 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12414 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12415 		tmp_tcph = (char *)tcp->tcp_tcph;
12416 
12417 		tcp->tcp_snd_ts_ok = B_TRUE;
12418 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12419 		tcp->tcp_last_rcv_lbolt = lbolt64;
12420 		ASSERT(OK_32PTR(tmp_tcph));
12421 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12422 
12423 		/* Fill in our template header with basic timestamp option. */
12424 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12425 		tmp_tcph[0] = TCPOPT_NOP;
12426 		tmp_tcph[1] = TCPOPT_NOP;
12427 		tmp_tcph[2] = TCPOPT_TSTAMP;
12428 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12429 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12430 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12431 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12432 	} else {
12433 		tcp->tcp_snd_ts_ok = B_FALSE;
12434 	}
12435 
12436 	/*
12437 	 * Process SACK options.  If SACK is enabled for this connection,
12438 	 * then allocate the SACK info structure.  Note the following ways
12439 	 * when tcp_snd_sack_ok is set to true.
12440 	 *
12441 	 * For active connection: in tcp_adapt_ire() called in
12442 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12443 	 * is checked.
12444 	 *
12445 	 * For passive connection: in tcp_adapt_ire() called in
12446 	 * tcp_accept_comm().
12447 	 *
12448 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12449 	 * That check makes sure that if we did not send a SACK OK option,
12450 	 * we will not enable SACK for this connection even though the other
12451 	 * side sends us SACK OK option.  For active connection, the SACK
12452 	 * info structure has already been allocated.  So we need to free
12453 	 * it if SACK is disabled.
12454 	 */
12455 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12456 	    (tcp->tcp_snd_sack_ok ||
12457 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12458 		/* This should be true only in the passive case. */
12459 		if (tcp->tcp_sack_info == NULL) {
12460 			ASSERT(TCP_IS_DETACHED(tcp));
12461 			tcp->tcp_sack_info =
12462 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12463 		}
12464 		if (tcp->tcp_sack_info == NULL) {
12465 			tcp->tcp_snd_sack_ok = B_FALSE;
12466 		} else {
12467 			tcp->tcp_snd_sack_ok = B_TRUE;
12468 			if (tcp->tcp_snd_ts_ok) {
12469 				tcp->tcp_max_sack_blk = 3;
12470 			} else {
12471 				tcp->tcp_max_sack_blk = 4;
12472 			}
12473 		}
12474 	} else {
12475 		/*
12476 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12477 		 * no SACK info will be used for this
12478 		 * connection.  This assumes that SACK usage
12479 		 * permission is negotiated.  This may need
12480 		 * to be changed once this is clarified.
12481 		 */
12482 		if (tcp->tcp_sack_info != NULL) {
12483 			ASSERT(tcp->tcp_notsack_list == NULL);
12484 			kmem_cache_free(tcp_sack_info_cache,
12485 			    tcp->tcp_sack_info);
12486 			tcp->tcp_sack_info = NULL;
12487 		}
12488 		tcp->tcp_snd_sack_ok = B_FALSE;
12489 	}
12490 
12491 	/*
12492 	 * Now we know the exact TCP/IP header length, subtract
12493 	 * that from tcp_mss to get our side's MSS.
12494 	 */
12495 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12496 	/*
12497 	 * Here we assume that the other side's header size will be equal to
12498 	 * our header size.  We calculate the real MSS accordingly.  Need to
12499 	 * take into additional stuffs IPsec puts in.
12500 	 *
12501 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12502 	 */
12503 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12504 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12505 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12506 
12507 	/*
12508 	 * Set MSS to the smaller one of both ends of the connection.
12509 	 * We should not have called tcp_mss_set() before, but our
12510 	 * side of the MSS should have been set to a proper value
12511 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12512 	 * STREAM head parameters properly.
12513 	 *
12514 	 * If we have a larger-than-16-bit window but the other side
12515 	 * didn't want to do window scale, tcp_rwnd_set() will take
12516 	 * care of that.
12517 	 */
12518 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE);
12519 }
12520 
12521 /*
12522  * Sends the T_CONN_IND to the listener. The caller calls this
12523  * functions via squeue to get inside the listener's perimeter
12524  * once the 3 way hand shake is done a T_CONN_IND needs to be
12525  * sent. As an optimization, the caller can call this directly
12526  * if listener's perimeter is same as eager's.
12527  */
12528 /* ARGSUSED */
12529 void
12530 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12531 {
12532 	conn_t			*lconnp = (conn_t *)arg;
12533 	tcp_t			*listener = lconnp->conn_tcp;
12534 	tcp_t			*tcp;
12535 	struct T_conn_ind	*conn_ind;
12536 	ipaddr_t 		*addr_cache;
12537 	boolean_t		need_send_conn_ind = B_FALSE;
12538 	tcp_stack_t		*tcps = listener->tcp_tcps;
12539 
12540 	/* retrieve the eager */
12541 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12542 	ASSERT(conn_ind->OPT_offset != 0 &&
12543 	    conn_ind->OPT_length == sizeof (intptr_t));
12544 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12545 	    conn_ind->OPT_length);
12546 
12547 	/*
12548 	 * TLI/XTI applications will get confused by
12549 	 * sending eager as an option since it violates
12550 	 * the option semantics. So remove the eager as
12551 	 * option since TLI/XTI app doesn't need it anyway.
12552 	 */
12553 	if (!TCP_IS_SOCKET(listener)) {
12554 		conn_ind->OPT_length = 0;
12555 		conn_ind->OPT_offset = 0;
12556 	}
12557 	if (listener->tcp_state == TCPS_CLOSED ||
12558 	    TCP_IS_DETACHED(listener)) {
12559 		/*
12560 		 * If listener has closed, it would have caused a
12561 		 * a cleanup/blowoff to happen for the eager. We
12562 		 * just need to return.
12563 		 */
12564 		freemsg(mp);
12565 		return;
12566 	}
12567 
12568 
12569 	/*
12570 	 * if the conn_req_q is full defer passing up the
12571 	 * T_CONN_IND until space is availabe after t_accept()
12572 	 * processing
12573 	 */
12574 	mutex_enter(&listener->tcp_eager_lock);
12575 
12576 	/*
12577 	 * Take the eager out, if it is in the list of droppable eagers
12578 	 * as we are here because the 3W handshake is over.
12579 	 */
12580 	MAKE_UNDROPPABLE(tcp);
12581 
12582 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12583 		tcp_t *tail;
12584 
12585 		/*
12586 		 * The eager already has an extra ref put in tcp_rput_data
12587 		 * so that it stays till accept comes back even though it
12588 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12589 		 */
12590 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12591 		listener->tcp_conn_req_cnt_q0--;
12592 		listener->tcp_conn_req_cnt_q++;
12593 
12594 		/* Move from SYN_RCVD to ESTABLISHED list  */
12595 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12596 		    tcp->tcp_eager_prev_q0;
12597 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12598 		    tcp->tcp_eager_next_q0;
12599 		tcp->tcp_eager_prev_q0 = NULL;
12600 		tcp->tcp_eager_next_q0 = NULL;
12601 
12602 		/*
12603 		 * Insert at end of the queue because sockfs
12604 		 * sends down T_CONN_RES in chronological
12605 		 * order. Leaving the older conn indications
12606 		 * at front of the queue helps reducing search
12607 		 * time.
12608 		 */
12609 		tail = listener->tcp_eager_last_q;
12610 		if (tail != NULL)
12611 			tail->tcp_eager_next_q = tcp;
12612 		else
12613 			listener->tcp_eager_next_q = tcp;
12614 		listener->tcp_eager_last_q = tcp;
12615 		tcp->tcp_eager_next_q = NULL;
12616 		/*
12617 		 * Delay sending up the T_conn_ind until we are
12618 		 * done with the eager. Once we have have sent up
12619 		 * the T_conn_ind, the accept can potentially complete
12620 		 * any time and release the refhold we have on the eager.
12621 		 */
12622 		need_send_conn_ind = B_TRUE;
12623 	} else {
12624 		/*
12625 		 * Defer connection on q0 and set deferred
12626 		 * connection bit true
12627 		 */
12628 		tcp->tcp_conn_def_q0 = B_TRUE;
12629 
12630 		/* take tcp out of q0 ... */
12631 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12632 		    tcp->tcp_eager_next_q0;
12633 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12634 		    tcp->tcp_eager_prev_q0;
12635 
12636 		/* ... and place it at the end of q0 */
12637 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12638 		tcp->tcp_eager_next_q0 = listener;
12639 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12640 		listener->tcp_eager_prev_q0 = tcp;
12641 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12642 	}
12643 
12644 	/* we have timed out before */
12645 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12646 		tcp->tcp_syn_rcvd_timeout = 0;
12647 		listener->tcp_syn_rcvd_timeout--;
12648 		if (listener->tcp_syn_defense &&
12649 		    listener->tcp_syn_rcvd_timeout <=
12650 		    (tcps->tcps_conn_req_max_q0 >> 5) &&
12651 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12652 		    listener->tcp_last_rcv_lbolt)) {
12653 			/*
12654 			 * Turn off the defense mode if we
12655 			 * believe the SYN attack is over.
12656 			 */
12657 			listener->tcp_syn_defense = B_FALSE;
12658 			if (listener->tcp_ip_addr_cache) {
12659 				kmem_free((void *)listener->tcp_ip_addr_cache,
12660 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12661 				listener->tcp_ip_addr_cache = NULL;
12662 			}
12663 		}
12664 	}
12665 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12666 	if (addr_cache != NULL) {
12667 		/*
12668 		 * We have finished a 3-way handshake with this
12669 		 * remote host. This proves the IP addr is good.
12670 		 * Cache it!
12671 		 */
12672 		addr_cache[IP_ADDR_CACHE_HASH(
12673 		    tcp->tcp_remote)] = tcp->tcp_remote;
12674 	}
12675 	mutex_exit(&listener->tcp_eager_lock);
12676 	if (need_send_conn_ind)
12677 		putnext(listener->tcp_rq, mp);
12678 }
12679 
12680 mblk_t *
12681 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12682     uint_t *ifindexp, ip6_pkt_t *ippp)
12683 {
12684 	ip_pktinfo_t	*pinfo;
12685 	ip6_t		*ip6h;
12686 	uchar_t		*rptr;
12687 	mblk_t		*first_mp = mp;
12688 	boolean_t	mctl_present = B_FALSE;
12689 	uint_t 		ifindex = 0;
12690 	ip6_pkt_t	ipp;
12691 	uint_t		ipvers;
12692 	uint_t		ip_hdr_len;
12693 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12694 
12695 	rptr = mp->b_rptr;
12696 	ASSERT(OK_32PTR(rptr));
12697 	ASSERT(tcp != NULL);
12698 	ipp.ipp_fields = 0;
12699 
12700 	switch DB_TYPE(mp) {
12701 	case M_CTL:
12702 		mp = mp->b_cont;
12703 		if (mp == NULL) {
12704 			freemsg(first_mp);
12705 			return (NULL);
12706 		}
12707 		if (DB_TYPE(mp) != M_DATA) {
12708 			freemsg(first_mp);
12709 			return (NULL);
12710 		}
12711 		mctl_present = B_TRUE;
12712 		break;
12713 	case M_DATA:
12714 		break;
12715 	default:
12716 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12717 		freemsg(mp);
12718 		return (NULL);
12719 	}
12720 	ipvers = IPH_HDR_VERSION(rptr);
12721 	if (ipvers == IPV4_VERSION) {
12722 		if (tcp == NULL) {
12723 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12724 			goto done;
12725 		}
12726 
12727 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12728 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12729 
12730 		/*
12731 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12732 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12733 		 */
12734 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12735 		    mctl_present) {
12736 			pinfo = (ip_pktinfo_t *)first_mp->b_rptr;
12737 			if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) &&
12738 			    (pinfo->ip_pkt_ulp_type == IN_PKTINFO) &&
12739 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
12740 				ipp.ipp_fields |= IPPF_IFINDEX;
12741 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
12742 				ifindex = pinfo->ip_pkt_ifindex;
12743 			}
12744 			freeb(first_mp);
12745 			mctl_present = B_FALSE;
12746 		}
12747 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12748 	} else {
12749 		ip6h = (ip6_t *)rptr;
12750 
12751 		ASSERT(ipvers == IPV6_VERSION);
12752 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12753 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12754 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12755 
12756 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12757 			uint8_t	nexthdrp;
12758 			ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
12759 
12760 			/* Look for ifindex information */
12761 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12762 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12763 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12764 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12765 					freemsg(first_mp);
12766 					return (NULL);
12767 				}
12768 
12769 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12770 					ASSERT(ip6i->ip6i_ifindex != 0);
12771 					ipp.ipp_fields |= IPPF_IFINDEX;
12772 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12773 					ifindex = ip6i->ip6i_ifindex;
12774 				}
12775 				rptr = (uchar_t *)&ip6i[1];
12776 				mp->b_rptr = rptr;
12777 				if (rptr == mp->b_wptr) {
12778 					mblk_t *mp1;
12779 					mp1 = mp->b_cont;
12780 					freeb(mp);
12781 					mp = mp1;
12782 					rptr = mp->b_rptr;
12783 				}
12784 				if (MBLKL(mp) < IPV6_HDR_LEN +
12785 				    sizeof (tcph_t)) {
12786 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12787 					freemsg(first_mp);
12788 					return (NULL);
12789 				}
12790 				ip6h = (ip6_t *)rptr;
12791 			}
12792 
12793 			/*
12794 			 * Find any potentially interesting extension headers
12795 			 * as well as the length of the IPv6 + extension
12796 			 * headers.
12797 			 */
12798 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12799 			/* Verify if this is a TCP packet */
12800 			if (nexthdrp != IPPROTO_TCP) {
12801 				BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12802 				freemsg(first_mp);
12803 				return (NULL);
12804 			}
12805 		} else {
12806 			ip_hdr_len = IPV6_HDR_LEN;
12807 		}
12808 	}
12809 
12810 done:
12811 	if (ipversp != NULL)
12812 		*ipversp = ipvers;
12813 	if (ip_hdr_lenp != NULL)
12814 		*ip_hdr_lenp = ip_hdr_len;
12815 	if (ippp != NULL)
12816 		*ippp = ipp;
12817 	if (ifindexp != NULL)
12818 		*ifindexp = ifindex;
12819 	if (mctl_present) {
12820 		freeb(first_mp);
12821 	}
12822 	return (mp);
12823 }
12824 
12825 /*
12826  * Handle M_DATA messages from IP. Its called directly from IP via
12827  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12828  * in this path.
12829  *
12830  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12831  * v4 and v6), we are called through tcp_input() and a M_CTL can
12832  * be present for options but tcp_find_pktinfo() deals with it. We
12833  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12834  *
12835  * The first argument is always the connp/tcp to which the mp belongs.
12836  * There are no exceptions to this rule. The caller has already put
12837  * a reference on this connp/tcp and once tcp_rput_data() returns,
12838  * the squeue will do the refrele.
12839  *
12840  * The TH_SYN for the listener directly go to tcp_conn_request via
12841  * squeue.
12842  *
12843  * sqp: NULL = recursive, sqp != NULL means called from squeue
12844  */
12845 void
12846 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12847 {
12848 	int32_t		bytes_acked;
12849 	int32_t		gap;
12850 	mblk_t		*mp1;
12851 	uint_t		flags;
12852 	uint32_t	new_swnd = 0;
12853 	uchar_t		*iphdr;
12854 	uchar_t		*rptr;
12855 	int32_t		rgap;
12856 	uint32_t	seg_ack;
12857 	int		seg_len;
12858 	uint_t		ip_hdr_len;
12859 	uint32_t	seg_seq;
12860 	tcph_t		*tcph;
12861 	int		urp;
12862 	tcp_opt_t	tcpopt;
12863 	uint_t		ipvers;
12864 	ip6_pkt_t	ipp;
12865 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12866 	uint32_t	cwnd;
12867 	uint32_t	add;
12868 	int		npkt;
12869 	int		mss;
12870 	conn_t		*connp = (conn_t *)arg;
12871 	squeue_t	*sqp = (squeue_t *)arg2;
12872 	tcp_t		*tcp = connp->conn_tcp;
12873 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12874 
12875 	/*
12876 	 * RST from fused tcp loopback peer should trigger an unfuse.
12877 	 */
12878 	if (tcp->tcp_fused) {
12879 		TCP_STAT(tcps, tcp_fusion_aborted);
12880 		tcp_unfuse(tcp);
12881 	}
12882 
12883 	iphdr = mp->b_rptr;
12884 	rptr = mp->b_rptr;
12885 	ASSERT(OK_32PTR(rptr));
12886 
12887 	/*
12888 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12889 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12890 	 * necessary information.
12891 	 */
12892 	if (IPCL_IS_TCP4(connp)) {
12893 		ipvers = IPV4_VERSION;
12894 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12895 	} else {
12896 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
12897 		    NULL, &ipp);
12898 		if (mp == NULL) {
12899 			TCP_STAT(tcps, tcp_rput_v6_error);
12900 			return;
12901 		}
12902 		iphdr = mp->b_rptr;
12903 		rptr = mp->b_rptr;
12904 	}
12905 	ASSERT(DB_TYPE(mp) == M_DATA);
12906 
12907 	tcph = (tcph_t *)&rptr[ip_hdr_len];
12908 	seg_seq = ABE32_TO_U32(tcph->th_seq);
12909 	seg_ack = ABE32_TO_U32(tcph->th_ack);
12910 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
12911 	seg_len = (int)(mp->b_wptr - rptr) -
12912 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
12913 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
12914 		do {
12915 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
12916 			    (uintptr_t)INT_MAX);
12917 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
12918 		} while ((mp1 = mp1->b_cont) != NULL &&
12919 		    mp1->b_datap->db_type == M_DATA);
12920 	}
12921 
12922 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
12923 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
12924 		    seg_len, tcph);
12925 		return;
12926 	}
12927 
12928 	if (sqp != NULL) {
12929 		/*
12930 		 * This is the correct place to update tcp_last_recv_time. Note
12931 		 * that it is also updated for tcp structure that belongs to
12932 		 * global and listener queues which do not really need updating.
12933 		 * But that should not cause any harm.  And it is updated for
12934 		 * all kinds of incoming segments, not only for data segments.
12935 		 */
12936 		tcp->tcp_last_recv_time = lbolt;
12937 	}
12938 
12939 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
12940 
12941 	BUMP_LOCAL(tcp->tcp_ibsegs);
12942 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
12943 
12944 	if ((flags & TH_URG) && sqp != NULL) {
12945 		/*
12946 		 * TCP can't handle urgent pointers that arrive before
12947 		 * the connection has been accept()ed since it can't
12948 		 * buffer OOB data.  Discard segment if this happens.
12949 		 *
12950 		 * We can't just rely on a non-null tcp_listener to indicate
12951 		 * that the accept() has completed since unlinking of the
12952 		 * eager and completion of the accept are not atomic.
12953 		 * tcp_detached, when it is not set (B_FALSE) indicates
12954 		 * that the accept() has completed.
12955 		 *
12956 		 * Nor can it reassemble urgent pointers, so discard
12957 		 * if it's not the next segment expected.
12958 		 *
12959 		 * Otherwise, collapse chain into one mblk (discard if
12960 		 * that fails).  This makes sure the headers, retransmitted
12961 		 * data, and new data all are in the same mblk.
12962 		 */
12963 		ASSERT(mp != NULL);
12964 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
12965 			freemsg(mp);
12966 			return;
12967 		}
12968 		/* Update pointers into message */
12969 		iphdr = rptr = mp->b_rptr;
12970 		tcph = (tcph_t *)&rptr[ip_hdr_len];
12971 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
12972 			/*
12973 			 * Since we can't handle any data with this urgent
12974 			 * pointer that is out of sequence, we expunge
12975 			 * the data.  This allows us to still register
12976 			 * the urgent mark and generate the M_PCSIG,
12977 			 * which we can do.
12978 			 */
12979 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
12980 			seg_len = 0;
12981 		}
12982 	}
12983 
12984 	switch (tcp->tcp_state) {
12985 	case TCPS_SYN_SENT:
12986 		if (flags & TH_ACK) {
12987 			/*
12988 			 * Note that our stack cannot send data before a
12989 			 * connection is established, therefore the
12990 			 * following check is valid.  Otherwise, it has
12991 			 * to be changed.
12992 			 */
12993 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
12994 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
12995 				freemsg(mp);
12996 				if (flags & TH_RST)
12997 					return;
12998 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
12999 				    tcp, seg_ack, 0, TH_RST);
13000 				return;
13001 			}
13002 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
13003 		}
13004 		if (flags & TH_RST) {
13005 			freemsg(mp);
13006 			if (flags & TH_ACK)
13007 				(void) tcp_clean_death(tcp,
13008 				    ECONNREFUSED, 13);
13009 			return;
13010 		}
13011 		if (!(flags & TH_SYN)) {
13012 			freemsg(mp);
13013 			return;
13014 		}
13015 
13016 		/* Process all TCP options. */
13017 		tcp_process_options(tcp, tcph);
13018 		/*
13019 		 * The following changes our rwnd to be a multiple of the
13020 		 * MIN(peer MSS, our MSS) for performance reason.
13021 		 */
13022 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat,
13023 		    tcp->tcp_mss));
13024 
13025 		/* Is the other end ECN capable? */
13026 		if (tcp->tcp_ecn_ok) {
13027 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
13028 				tcp->tcp_ecn_ok = B_FALSE;
13029 			}
13030 		}
13031 		/*
13032 		 * Clear ECN flags because it may interfere with later
13033 		 * processing.
13034 		 */
13035 		flags &= ~(TH_ECE|TH_CWR);
13036 
13037 		tcp->tcp_irs = seg_seq;
13038 		tcp->tcp_rack = seg_seq;
13039 		tcp->tcp_rnxt = seg_seq + 1;
13040 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13041 		if (!TCP_IS_DETACHED(tcp)) {
13042 			/* Allocate room for SACK options if needed. */
13043 			if (tcp->tcp_snd_sack_ok) {
13044 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13045 				    tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
13046 				    (tcp->tcp_loopback ? 0 :
13047 				    tcps->tcps_wroff_xtra));
13048 			} else {
13049 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13050 				    tcp->tcp_hdr_len +
13051 				    (tcp->tcp_loopback ? 0 :
13052 				    tcps->tcps_wroff_xtra));
13053 			}
13054 		}
13055 		if (flags & TH_ACK) {
13056 			/*
13057 			 * If we can't get the confirmation upstream, pretend
13058 			 * we didn't even see this one.
13059 			 *
13060 			 * XXX: how can we pretend we didn't see it if we
13061 			 * have updated rnxt et. al.
13062 			 *
13063 			 * For loopback we defer sending up the T_CONN_CON
13064 			 * until after some checks below.
13065 			 */
13066 			mp1 = NULL;
13067 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
13068 			    tcp->tcp_loopback ? &mp1 : NULL)) {
13069 				freemsg(mp);
13070 				return;
13071 			}
13072 			/* SYN was acked - making progress */
13073 			if (tcp->tcp_ipversion == IPV6_VERSION)
13074 				tcp->tcp_ip_forward_progress = B_TRUE;
13075 
13076 			/* One for the SYN */
13077 			tcp->tcp_suna = tcp->tcp_iss + 1;
13078 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13079 			tcp->tcp_state = TCPS_ESTABLISHED;
13080 
13081 			/*
13082 			 * If SYN was retransmitted, need to reset all
13083 			 * retransmission info.  This is because this
13084 			 * segment will be treated as a dup ACK.
13085 			 */
13086 			if (tcp->tcp_rexmit) {
13087 				tcp->tcp_rexmit = B_FALSE;
13088 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13089 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
13090 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
13091 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13092 				tcp->tcp_ms_we_have_waited = 0;
13093 
13094 				/*
13095 				 * Set tcp_cwnd back to 1 MSS, per
13096 				 * recommendation from
13097 				 * draft-floyd-incr-init-win-01.txt,
13098 				 * Increasing TCP's Initial Window.
13099 				 */
13100 				tcp->tcp_cwnd = tcp->tcp_mss;
13101 			}
13102 
13103 			tcp->tcp_swl1 = seg_seq;
13104 			tcp->tcp_swl2 = seg_ack;
13105 
13106 			new_swnd = BE16_TO_U16(tcph->th_win);
13107 			tcp->tcp_swnd = new_swnd;
13108 			if (new_swnd > tcp->tcp_max_swnd)
13109 				tcp->tcp_max_swnd = new_swnd;
13110 
13111 			/*
13112 			 * Always send the three-way handshake ack immediately
13113 			 * in order to make the connection complete as soon as
13114 			 * possible on the accepting host.
13115 			 */
13116 			flags |= TH_ACK_NEEDED;
13117 
13118 			/*
13119 			 * Special case for loopback.  At this point we have
13120 			 * received SYN-ACK from the remote endpoint.  In
13121 			 * order to ensure that both endpoints reach the
13122 			 * fused state prior to any data exchange, the final
13123 			 * ACK needs to be sent before we indicate T_CONN_CON
13124 			 * to the module upstream.
13125 			 */
13126 			if (tcp->tcp_loopback) {
13127 				mblk_t *ack_mp;
13128 
13129 				ASSERT(!tcp->tcp_unfusable);
13130 				ASSERT(mp1 != NULL);
13131 				/*
13132 				 * For loopback, we always get a pure SYN-ACK
13133 				 * and only need to send back the final ACK
13134 				 * with no data (this is because the other
13135 				 * tcp is ours and we don't do T/TCP).  This
13136 				 * final ACK triggers the passive side to
13137 				 * perform fusion in ESTABLISHED state.
13138 				 */
13139 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
13140 					if (tcp->tcp_ack_tid != 0) {
13141 						(void) TCP_TIMER_CANCEL(tcp,
13142 						    tcp->tcp_ack_tid);
13143 						tcp->tcp_ack_tid = 0;
13144 					}
13145 					TCP_RECORD_TRACE(tcp, ack_mp,
13146 					    TCP_TRACE_SEND_PKT);
13147 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
13148 					BUMP_LOCAL(tcp->tcp_obsegs);
13149 					BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
13150 
13151 					/* Send up T_CONN_CON */
13152 					putnext(tcp->tcp_rq, mp1);
13153 
13154 					freemsg(mp);
13155 					return;
13156 				}
13157 				/*
13158 				 * Forget fusion; we need to handle more
13159 				 * complex cases below.  Send the deferred
13160 				 * T_CONN_CON message upstream and proceed
13161 				 * as usual.  Mark this tcp as not capable
13162 				 * of fusion.
13163 				 */
13164 				TCP_STAT(tcps, tcp_fusion_unfusable);
13165 				tcp->tcp_unfusable = B_TRUE;
13166 				putnext(tcp->tcp_rq, mp1);
13167 			}
13168 
13169 			/*
13170 			 * Check to see if there is data to be sent.  If
13171 			 * yes, set the transmit flag.  Then check to see
13172 			 * if received data processing needs to be done.
13173 			 * If not, go straight to xmit_check.  This short
13174 			 * cut is OK as we don't support T/TCP.
13175 			 */
13176 			if (tcp->tcp_unsent)
13177 				flags |= TH_XMIT_NEEDED;
13178 
13179 			if (seg_len == 0 && !(flags & TH_URG)) {
13180 				freemsg(mp);
13181 				goto xmit_check;
13182 			}
13183 
13184 			flags &= ~TH_SYN;
13185 			seg_seq++;
13186 			break;
13187 		}
13188 		tcp->tcp_state = TCPS_SYN_RCVD;
13189 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
13190 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
13191 		if (mp1) {
13192 			DB_CPID(mp1) = tcp->tcp_cpid;
13193 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
13194 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
13195 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13196 		}
13197 		freemsg(mp);
13198 		return;
13199 	case TCPS_SYN_RCVD:
13200 		if (flags & TH_ACK) {
13201 			/*
13202 			 * In this state, a SYN|ACK packet is either bogus
13203 			 * because the other side must be ACKing our SYN which
13204 			 * indicates it has seen the ACK for their SYN and
13205 			 * shouldn't retransmit it or we're crossing SYNs
13206 			 * on active open.
13207 			 */
13208 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
13209 				freemsg(mp);
13210 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
13211 				    tcp, seg_ack, 0, TH_RST);
13212 				return;
13213 			}
13214 			/*
13215 			 * NOTE: RFC 793 pg. 72 says this should be
13216 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
13217 			 * but that would mean we have an ack that ignored
13218 			 * our SYN.
13219 			 */
13220 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
13221 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13222 				freemsg(mp);
13223 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
13224 				    tcp, seg_ack, 0, TH_RST);
13225 				return;
13226 			}
13227 		}
13228 		break;
13229 	case TCPS_LISTEN:
13230 		/*
13231 		 * Only a TLI listener can come through this path when a
13232 		 * acceptor is going back to be a listener and a packet
13233 		 * for the acceptor hits the classifier. For a socket
13234 		 * listener, this can never happen because a listener
13235 		 * can never accept connection on itself and hence a
13236 		 * socket acceptor can not go back to being a listener.
13237 		 */
13238 		ASSERT(!TCP_IS_SOCKET(tcp));
13239 		/*FALLTHRU*/
13240 	case TCPS_CLOSED:
13241 	case TCPS_BOUND: {
13242 		conn_t	*new_connp;
13243 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13244 
13245 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
13246 		if (new_connp != NULL) {
13247 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13248 			return;
13249 		}
13250 		/* We failed to classify. For now just drop the packet */
13251 		freemsg(mp);
13252 		return;
13253 	}
13254 	case TCPS_IDLE:
13255 		/*
13256 		 * Handle the case where the tcp_clean_death() has happened
13257 		 * on a connection (application hasn't closed yet) but a packet
13258 		 * was already queued on squeue before tcp_clean_death()
13259 		 * was processed. Calling tcp_clean_death() twice on same
13260 		 * connection can result in weird behaviour.
13261 		 */
13262 		freemsg(mp);
13263 		return;
13264 	default:
13265 		break;
13266 	}
13267 
13268 	/*
13269 	 * Already on the correct queue/perimeter.
13270 	 * If this is a detached connection and not an eager
13271 	 * connection hanging off a listener then new data
13272 	 * (past the FIN) will cause a reset.
13273 	 * We do a special check here where it
13274 	 * is out of the main line, rather than check
13275 	 * if we are detached every time we see new
13276 	 * data down below.
13277 	 */
13278 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13279 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13280 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
13281 		TCP_RECORD_TRACE(tcp,
13282 		    mp, TCP_TRACE_RECV_PKT);
13283 
13284 		freemsg(mp);
13285 		/*
13286 		 * This could be an SSL closure alert. We're detached so just
13287 		 * acknowledge it this last time.
13288 		 */
13289 		if (tcp->tcp_kssl_ctx != NULL) {
13290 			kssl_release_ctx(tcp->tcp_kssl_ctx);
13291 			tcp->tcp_kssl_ctx = NULL;
13292 
13293 			tcp->tcp_rnxt += seg_len;
13294 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13295 			flags |= TH_ACK_NEEDED;
13296 			goto ack_check;
13297 		}
13298 
13299 		tcp_xmit_ctl("new data when detached", tcp,
13300 		    tcp->tcp_snxt, 0, TH_RST);
13301 		(void) tcp_clean_death(tcp, EPROTO, 12);
13302 		return;
13303 	}
13304 
13305 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13306 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13307 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13308 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13309 
13310 	if (tcp->tcp_snd_ts_ok) {
13311 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13312 			/*
13313 			 * This segment is not acceptable.
13314 			 * Drop it and send back an ACK.
13315 			 */
13316 			freemsg(mp);
13317 			flags |= TH_ACK_NEEDED;
13318 			goto ack_check;
13319 		}
13320 	} else if (tcp->tcp_snd_sack_ok) {
13321 		ASSERT(tcp->tcp_sack_info != NULL);
13322 		tcpopt.tcp = tcp;
13323 		/*
13324 		 * SACK info in already updated in tcp_parse_options.  Ignore
13325 		 * all other TCP options...
13326 		 */
13327 		(void) tcp_parse_options(tcph, &tcpopt);
13328 	}
13329 try_again:;
13330 	mss = tcp->tcp_mss;
13331 	gap = seg_seq - tcp->tcp_rnxt;
13332 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13333 	/*
13334 	 * gap is the amount of sequence space between what we expect to see
13335 	 * and what we got for seg_seq.  A positive value for gap means
13336 	 * something got lost.  A negative value means we got some old stuff.
13337 	 */
13338 	if (gap < 0) {
13339 		/* Old stuff present.  Is the SYN in there? */
13340 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13341 		    (seg_len != 0)) {
13342 			flags &= ~TH_SYN;
13343 			seg_seq++;
13344 			urp--;
13345 			/* Recompute the gaps after noting the SYN. */
13346 			goto try_again;
13347 		}
13348 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
13349 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
13350 		    (seg_len > -gap ? -gap : seg_len));
13351 		/* Remove the old stuff from seg_len. */
13352 		seg_len += gap;
13353 		/*
13354 		 * Anything left?
13355 		 * Make sure to check for unack'd FIN when rest of data
13356 		 * has been previously ack'd.
13357 		 */
13358 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13359 			/*
13360 			 * Resets are only valid if they lie within our offered
13361 			 * window.  If the RST bit is set, we just ignore this
13362 			 * segment.
13363 			 */
13364 			if (flags & TH_RST) {
13365 				freemsg(mp);
13366 				return;
13367 			}
13368 
13369 			/*
13370 			 * The arriving of dup data packets indicate that we
13371 			 * may have postponed an ack for too long, or the other
13372 			 * side's RTT estimate is out of shape. Start acking
13373 			 * more often.
13374 			 */
13375 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13376 			    tcp->tcp_rack_cnt >= 1 &&
13377 			    tcp->tcp_rack_abs_max > 2) {
13378 				tcp->tcp_rack_abs_max--;
13379 			}
13380 			tcp->tcp_rack_cur_max = 1;
13381 
13382 			/*
13383 			 * This segment is "unacceptable".  None of its
13384 			 * sequence space lies within our advertized window.
13385 			 *
13386 			 * Adjust seg_len to the original value for tracing.
13387 			 */
13388 			seg_len -= gap;
13389 			if (tcp->tcp_debug) {
13390 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13391 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13392 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13393 				    "seg_len %d, rnxt %u, snxt %u, %s",
13394 				    gap, rgap, flags, seg_seq, seg_ack,
13395 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13396 				    tcp_display(tcp, NULL,
13397 				    DISP_ADDR_AND_PORT));
13398 			}
13399 
13400 			/*
13401 			 * Arrange to send an ACK in response to the
13402 			 * unacceptable segment per RFC 793 page 69. There
13403 			 * is only one small difference between ours and the
13404 			 * acceptability test in the RFC - we accept ACK-only
13405 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13406 			 * will be generated.
13407 			 *
13408 			 * Note that we have to ACK an ACK-only packet at least
13409 			 * for stacks that send 0-length keep-alives with
13410 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13411 			 * section 4.2.3.6. As long as we don't ever generate
13412 			 * an unacceptable packet in response to an incoming
13413 			 * packet that is unacceptable, it should not cause
13414 			 * "ACK wars".
13415 			 */
13416 			flags |=  TH_ACK_NEEDED;
13417 
13418 			/*
13419 			 * Continue processing this segment in order to use the
13420 			 * ACK information it contains, but skip all other
13421 			 * sequence-number processing.	Processing the ACK
13422 			 * information is necessary in order to
13423 			 * re-synchronize connections that may have lost
13424 			 * synchronization.
13425 			 *
13426 			 * We clear seg_len and flag fields related to
13427 			 * sequence number processing as they are not
13428 			 * to be trusted for an unacceptable segment.
13429 			 */
13430 			seg_len = 0;
13431 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13432 			goto process_ack;
13433 		}
13434 
13435 		/* Fix seg_seq, and chew the gap off the front. */
13436 		seg_seq = tcp->tcp_rnxt;
13437 		urp += gap;
13438 		do {
13439 			mblk_t	*mp2;
13440 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13441 			    (uintptr_t)UINT_MAX);
13442 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13443 			if (gap > 0) {
13444 				mp->b_rptr = mp->b_wptr - gap;
13445 				break;
13446 			}
13447 			mp2 = mp;
13448 			mp = mp->b_cont;
13449 			freeb(mp2);
13450 		} while (gap < 0);
13451 		/*
13452 		 * If the urgent data has already been acknowledged, we
13453 		 * should ignore TH_URG below
13454 		 */
13455 		if (urp < 0)
13456 			flags &= ~TH_URG;
13457 	}
13458 	/*
13459 	 * rgap is the amount of stuff received out of window.  A negative
13460 	 * value is the amount out of window.
13461 	 */
13462 	if (rgap < 0) {
13463 		mblk_t	*mp2;
13464 
13465 		if (tcp->tcp_rwnd == 0) {
13466 			BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe);
13467 		} else {
13468 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
13469 			UPDATE_MIB(&tcps->tcps_mib,
13470 			    tcpInDataPastWinBytes, -rgap);
13471 		}
13472 
13473 		/*
13474 		 * seg_len does not include the FIN, so if more than
13475 		 * just the FIN is out of window, we act like we don't
13476 		 * see it.  (If just the FIN is out of window, rgap
13477 		 * will be zero and we will go ahead and acknowledge
13478 		 * the FIN.)
13479 		 */
13480 		flags &= ~TH_FIN;
13481 
13482 		/* Fix seg_len and make sure there is something left. */
13483 		seg_len += rgap;
13484 		if (seg_len <= 0) {
13485 			/*
13486 			 * Resets are only valid if they lie within our offered
13487 			 * window.  If the RST bit is set, we just ignore this
13488 			 * segment.
13489 			 */
13490 			if (flags & TH_RST) {
13491 				freemsg(mp);
13492 				return;
13493 			}
13494 
13495 			/* Per RFC 793, we need to send back an ACK. */
13496 			flags |= TH_ACK_NEEDED;
13497 
13498 			/*
13499 			 * Send SIGURG as soon as possible i.e. even
13500 			 * if the TH_URG was delivered in a window probe
13501 			 * packet (which will be unacceptable).
13502 			 *
13503 			 * We generate a signal if none has been generated
13504 			 * for this connection or if this is a new urgent
13505 			 * byte. Also send a zero-length "unmarked" message
13506 			 * to inform SIOCATMARK that this is not the mark.
13507 			 *
13508 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13509 			 * is sent up. This plus the check for old data
13510 			 * (gap >= 0) handles the wraparound of the sequence
13511 			 * number space without having to always track the
13512 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13513 			 * this max in its rcv_up variable).
13514 			 *
13515 			 * This prevents duplicate SIGURGS due to a "late"
13516 			 * zero-window probe when the T_EXDATA_IND has already
13517 			 * been sent up.
13518 			 */
13519 			if ((flags & TH_URG) &&
13520 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13521 			    tcp->tcp_urp_last))) {
13522 				mp1 = allocb(0, BPRI_MED);
13523 				if (mp1 == NULL) {
13524 					freemsg(mp);
13525 					return;
13526 				}
13527 				if (!TCP_IS_DETACHED(tcp) &&
13528 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13529 				    SIGURG)) {
13530 					/* Try again on the rexmit. */
13531 					freemsg(mp1);
13532 					freemsg(mp);
13533 					return;
13534 				}
13535 				/*
13536 				 * If the next byte would be the mark
13537 				 * then mark with MARKNEXT else mark
13538 				 * with NOTMARKNEXT.
13539 				 */
13540 				if (gap == 0 && urp == 0)
13541 					mp1->b_flag |= MSGMARKNEXT;
13542 				else
13543 					mp1->b_flag |= MSGNOTMARKNEXT;
13544 				freemsg(tcp->tcp_urp_mark_mp);
13545 				tcp->tcp_urp_mark_mp = mp1;
13546 				flags |= TH_SEND_URP_MARK;
13547 				tcp->tcp_urp_last_valid = B_TRUE;
13548 				tcp->tcp_urp_last = urp + seg_seq;
13549 			}
13550 			/*
13551 			 * If this is a zero window probe, continue to
13552 			 * process the ACK part.  But we need to set seg_len
13553 			 * to 0 to avoid data processing.  Otherwise just
13554 			 * drop the segment and send back an ACK.
13555 			 */
13556 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13557 				flags &= ~(TH_SYN | TH_URG);
13558 				seg_len = 0;
13559 				goto process_ack;
13560 			} else {
13561 				freemsg(mp);
13562 				goto ack_check;
13563 			}
13564 		}
13565 		/* Pitch out of window stuff off the end. */
13566 		rgap = seg_len;
13567 		mp2 = mp;
13568 		do {
13569 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13570 			    (uintptr_t)INT_MAX);
13571 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13572 			if (rgap < 0) {
13573 				mp2->b_wptr += rgap;
13574 				if ((mp1 = mp2->b_cont) != NULL) {
13575 					mp2->b_cont = NULL;
13576 					freemsg(mp1);
13577 				}
13578 				break;
13579 			}
13580 		} while ((mp2 = mp2->b_cont) != NULL);
13581 	}
13582 ok:;
13583 	/*
13584 	 * TCP should check ECN info for segments inside the window only.
13585 	 * Therefore the check should be done here.
13586 	 */
13587 	if (tcp->tcp_ecn_ok) {
13588 		if (flags & TH_CWR) {
13589 			tcp->tcp_ecn_echo_on = B_FALSE;
13590 		}
13591 		/*
13592 		 * Note that both ECN_CE and CWR can be set in the
13593 		 * same segment.  In this case, we once again turn
13594 		 * on ECN_ECHO.
13595 		 */
13596 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13597 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13598 
13599 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13600 				tcp->tcp_ecn_echo_on = B_TRUE;
13601 			}
13602 		} else {
13603 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13604 
13605 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13606 			    htonl(IPH_ECN_CE << 20)) {
13607 				tcp->tcp_ecn_echo_on = B_TRUE;
13608 			}
13609 		}
13610 	}
13611 
13612 	/*
13613 	 * Check whether we can update tcp_ts_recent.  This test is
13614 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13615 	 * Extensions for High Performance: An Update", Internet Draft.
13616 	 */
13617 	if (tcp->tcp_snd_ts_ok &&
13618 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13619 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13620 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13621 		tcp->tcp_last_rcv_lbolt = lbolt64;
13622 	}
13623 
13624 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13625 		/*
13626 		 * FIN in an out of order segment.  We record this in
13627 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13628 		 * Clear the FIN so that any check on FIN flag will fail.
13629 		 * Remember that FIN also counts in the sequence number
13630 		 * space.  So we need to ack out of order FIN only segments.
13631 		 */
13632 		if (flags & TH_FIN) {
13633 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13634 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13635 			flags &= ~TH_FIN;
13636 			flags |= TH_ACK_NEEDED;
13637 		}
13638 		if (seg_len > 0) {
13639 			/* Fill in the SACK blk list. */
13640 			if (tcp->tcp_snd_sack_ok) {
13641 				ASSERT(tcp->tcp_sack_info != NULL);
13642 				tcp_sack_insert(tcp->tcp_sack_list,
13643 				    seg_seq, seg_seq + seg_len,
13644 				    &(tcp->tcp_num_sack_blk));
13645 			}
13646 
13647 			/*
13648 			 * Attempt reassembly and see if we have something
13649 			 * ready to go.
13650 			 */
13651 			mp = tcp_reass(tcp, mp, seg_seq);
13652 			/* Always ack out of order packets */
13653 			flags |= TH_ACK_NEEDED | TH_PUSH;
13654 			if (mp) {
13655 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13656 				    (uintptr_t)INT_MAX);
13657 				seg_len = mp->b_cont ? msgdsize(mp) :
13658 				    (int)(mp->b_wptr - mp->b_rptr);
13659 				seg_seq = tcp->tcp_rnxt;
13660 				/*
13661 				 * A gap is filled and the seq num and len
13662 				 * of the gap match that of a previously
13663 				 * received FIN, put the FIN flag back in.
13664 				 */
13665 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13666 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13667 					flags |= TH_FIN;
13668 					tcp->tcp_valid_bits &=
13669 					    ~TCP_OFO_FIN_VALID;
13670 				}
13671 			} else {
13672 				/*
13673 				 * Keep going even with NULL mp.
13674 				 * There may be a useful ACK or something else
13675 				 * we don't want to miss.
13676 				 *
13677 				 * But TCP should not perform fast retransmit
13678 				 * because of the ack number.  TCP uses
13679 				 * seg_len == 0 to determine if it is a pure
13680 				 * ACK.  And this is not a pure ACK.
13681 				 */
13682 				seg_len = 0;
13683 				ofo_seg = B_TRUE;
13684 			}
13685 		}
13686 	} else if (seg_len > 0) {
13687 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
13688 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
13689 		/*
13690 		 * If an out of order FIN was received before, and the seq
13691 		 * num and len of the new segment match that of the FIN,
13692 		 * put the FIN flag back in.
13693 		 */
13694 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13695 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13696 			flags |= TH_FIN;
13697 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13698 		}
13699 	}
13700 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13701 	if (flags & TH_RST) {
13702 		freemsg(mp);
13703 		switch (tcp->tcp_state) {
13704 		case TCPS_SYN_RCVD:
13705 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13706 			break;
13707 		case TCPS_ESTABLISHED:
13708 		case TCPS_FIN_WAIT_1:
13709 		case TCPS_FIN_WAIT_2:
13710 		case TCPS_CLOSE_WAIT:
13711 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13712 			break;
13713 		case TCPS_CLOSING:
13714 		case TCPS_LAST_ACK:
13715 			(void) tcp_clean_death(tcp, 0, 16);
13716 			break;
13717 		default:
13718 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13719 			(void) tcp_clean_death(tcp, ENXIO, 17);
13720 			break;
13721 		}
13722 		return;
13723 	}
13724 	if (flags & TH_SYN) {
13725 		/*
13726 		 * See RFC 793, Page 71
13727 		 *
13728 		 * The seq number must be in the window as it should
13729 		 * be "fixed" above.  If it is outside window, it should
13730 		 * be already rejected.  Note that we allow seg_seq to be
13731 		 * rnxt + rwnd because we want to accept 0 window probe.
13732 		 */
13733 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13734 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13735 		freemsg(mp);
13736 		/*
13737 		 * If the ACK flag is not set, just use our snxt as the
13738 		 * seq number of the RST segment.
13739 		 */
13740 		if (!(flags & TH_ACK)) {
13741 			seg_ack = tcp->tcp_snxt;
13742 		}
13743 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13744 		    TH_RST|TH_ACK);
13745 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13746 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13747 		return;
13748 	}
13749 	/*
13750 	 * urp could be -1 when the urp field in the packet is 0
13751 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13752 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13753 	 */
13754 	if (flags & TH_URG && urp >= 0) {
13755 		if (!tcp->tcp_urp_last_valid ||
13756 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13757 			/*
13758 			 * If we haven't generated the signal yet for this
13759 			 * urgent pointer value, do it now.  Also, send up a
13760 			 * zero-length M_DATA indicating whether or not this is
13761 			 * the mark. The latter is not needed when a
13762 			 * T_EXDATA_IND is sent up. However, if there are
13763 			 * allocation failures this code relies on the sender
13764 			 * retransmitting and the socket code for determining
13765 			 * the mark should not block waiting for the peer to
13766 			 * transmit. Thus, for simplicity we always send up the
13767 			 * mark indication.
13768 			 */
13769 			mp1 = allocb(0, BPRI_MED);
13770 			if (mp1 == NULL) {
13771 				freemsg(mp);
13772 				return;
13773 			}
13774 			if (!TCP_IS_DETACHED(tcp) &&
13775 			    !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) {
13776 				/* Try again on the rexmit. */
13777 				freemsg(mp1);
13778 				freemsg(mp);
13779 				return;
13780 			}
13781 			/*
13782 			 * Mark with NOTMARKNEXT for now.
13783 			 * The code below will change this to MARKNEXT
13784 			 * if we are at the mark.
13785 			 *
13786 			 * If there are allocation failures (e.g. in dupmsg
13787 			 * below) the next time tcp_rput_data sees the urgent
13788 			 * segment it will send up the MSG*MARKNEXT message.
13789 			 */
13790 			mp1->b_flag |= MSGNOTMARKNEXT;
13791 			freemsg(tcp->tcp_urp_mark_mp);
13792 			tcp->tcp_urp_mark_mp = mp1;
13793 			flags |= TH_SEND_URP_MARK;
13794 #ifdef DEBUG
13795 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13796 			    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13797 			    "last %x, %s",
13798 			    seg_seq, urp, tcp->tcp_urp_last,
13799 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13800 #endif /* DEBUG */
13801 			tcp->tcp_urp_last_valid = B_TRUE;
13802 			tcp->tcp_urp_last = urp + seg_seq;
13803 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13804 			/*
13805 			 * An allocation failure prevented the previous
13806 			 * tcp_rput_data from sending up the allocated
13807 			 * MSG*MARKNEXT message - send it up this time
13808 			 * around.
13809 			 */
13810 			flags |= TH_SEND_URP_MARK;
13811 		}
13812 
13813 		/*
13814 		 * If the urgent byte is in this segment, make sure that it is
13815 		 * all by itself.  This makes it much easier to deal with the
13816 		 * possibility of an allocation failure on the T_exdata_ind.
13817 		 * Note that seg_len is the number of bytes in the segment, and
13818 		 * urp is the offset into the segment of the urgent byte.
13819 		 * urp < seg_len means that the urgent byte is in this segment.
13820 		 */
13821 		if (urp < seg_len) {
13822 			if (seg_len != 1) {
13823 				uint32_t  tmp_rnxt;
13824 				/*
13825 				 * Break it up and feed it back in.
13826 				 * Re-attach the IP header.
13827 				 */
13828 				mp->b_rptr = iphdr;
13829 				if (urp > 0) {
13830 					/*
13831 					 * There is stuff before the urgent
13832 					 * byte.
13833 					 */
13834 					mp1 = dupmsg(mp);
13835 					if (!mp1) {
13836 						/*
13837 						 * Trim from urgent byte on.
13838 						 * The rest will come back.
13839 						 */
13840 						(void) adjmsg(mp,
13841 						    urp - seg_len);
13842 						tcp_rput_data(connp,
13843 						    mp, NULL);
13844 						return;
13845 					}
13846 					(void) adjmsg(mp1, urp - seg_len);
13847 					/* Feed this piece back in. */
13848 					tmp_rnxt = tcp->tcp_rnxt;
13849 					tcp_rput_data(connp, mp1, NULL);
13850 					/*
13851 					 * If the data passed back in was not
13852 					 * processed (ie: bad ACK) sending
13853 					 * the remainder back in will cause a
13854 					 * loop. In this case, drop the
13855 					 * packet and let the sender try
13856 					 * sending a good packet.
13857 					 */
13858 					if (tmp_rnxt == tcp->tcp_rnxt) {
13859 						freemsg(mp);
13860 						return;
13861 					}
13862 				}
13863 				if (urp != seg_len - 1) {
13864 					uint32_t  tmp_rnxt;
13865 					/*
13866 					 * There is stuff after the urgent
13867 					 * byte.
13868 					 */
13869 					mp1 = dupmsg(mp);
13870 					if (!mp1) {
13871 						/*
13872 						 * Trim everything beyond the
13873 						 * urgent byte.  The rest will
13874 						 * come back.
13875 						 */
13876 						(void) adjmsg(mp,
13877 						    urp + 1 - seg_len);
13878 						tcp_rput_data(connp,
13879 						    mp, NULL);
13880 						return;
13881 					}
13882 					(void) adjmsg(mp1, urp + 1 - seg_len);
13883 					tmp_rnxt = tcp->tcp_rnxt;
13884 					tcp_rput_data(connp, mp1, NULL);
13885 					/*
13886 					 * If the data passed back in was not
13887 					 * processed (ie: bad ACK) sending
13888 					 * the remainder back in will cause a
13889 					 * loop. In this case, drop the
13890 					 * packet and let the sender try
13891 					 * sending a good packet.
13892 					 */
13893 					if (tmp_rnxt == tcp->tcp_rnxt) {
13894 						freemsg(mp);
13895 						return;
13896 					}
13897 				}
13898 				tcp_rput_data(connp, mp, NULL);
13899 				return;
13900 			}
13901 			/*
13902 			 * This segment contains only the urgent byte.  We
13903 			 * have to allocate the T_exdata_ind, if we can.
13904 			 */
13905 			if (!tcp->tcp_urp_mp) {
13906 				struct T_exdata_ind *tei;
13907 				mp1 = allocb(sizeof (struct T_exdata_ind),
13908 				    BPRI_MED);
13909 				if (!mp1) {
13910 					/*
13911 					 * Sigh... It'll be back.
13912 					 * Generate any MSG*MARK message now.
13913 					 */
13914 					freemsg(mp);
13915 					seg_len = 0;
13916 					if (flags & TH_SEND_URP_MARK) {
13917 
13918 
13919 						ASSERT(tcp->tcp_urp_mark_mp);
13920 						tcp->tcp_urp_mark_mp->b_flag &=
13921 						    ~MSGNOTMARKNEXT;
13922 						tcp->tcp_urp_mark_mp->b_flag |=
13923 						    MSGMARKNEXT;
13924 					}
13925 					goto ack_check;
13926 				}
13927 				mp1->b_datap->db_type = M_PROTO;
13928 				tei = (struct T_exdata_ind *)mp1->b_rptr;
13929 				tei->PRIM_type = T_EXDATA_IND;
13930 				tei->MORE_flag = 0;
13931 				mp1->b_wptr = (uchar_t *)&tei[1];
13932 				tcp->tcp_urp_mp = mp1;
13933 #ifdef DEBUG
13934 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13935 				    "tcp_rput: allocated exdata_ind %s",
13936 				    tcp_display(tcp, NULL,
13937 				    DISP_PORT_ONLY));
13938 #endif /* DEBUG */
13939 				/*
13940 				 * There is no need to send a separate MSG*MARK
13941 				 * message since the T_EXDATA_IND will be sent
13942 				 * now.
13943 				 */
13944 				flags &= ~TH_SEND_URP_MARK;
13945 				freemsg(tcp->tcp_urp_mark_mp);
13946 				tcp->tcp_urp_mark_mp = NULL;
13947 			}
13948 			/*
13949 			 * Now we are all set.  On the next putnext upstream,
13950 			 * tcp_urp_mp will be non-NULL and will get prepended
13951 			 * to what has to be this piece containing the urgent
13952 			 * byte.  If for any reason we abort this segment below,
13953 			 * if it comes back, we will have this ready, or it
13954 			 * will get blown off in close.
13955 			 */
13956 		} else if (urp == seg_len) {
13957 			/*
13958 			 * The urgent byte is the next byte after this sequence
13959 			 * number. If there is data it is marked with
13960 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
13961 			 * since it is not needed. Otherwise, if the code
13962 			 * above just allocated a zero-length tcp_urp_mark_mp
13963 			 * message, that message is tagged with MSGMARKNEXT.
13964 			 * Sending up these MSGMARKNEXT messages makes
13965 			 * SIOCATMARK work correctly even though
13966 			 * the T_EXDATA_IND will not be sent up until the
13967 			 * urgent byte arrives.
13968 			 */
13969 			if (seg_len != 0) {
13970 				flags |= TH_MARKNEXT_NEEDED;
13971 				freemsg(tcp->tcp_urp_mark_mp);
13972 				tcp->tcp_urp_mark_mp = NULL;
13973 				flags &= ~TH_SEND_URP_MARK;
13974 			} else if (tcp->tcp_urp_mark_mp != NULL) {
13975 				flags |= TH_SEND_URP_MARK;
13976 				tcp->tcp_urp_mark_mp->b_flag &=
13977 				    ~MSGNOTMARKNEXT;
13978 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
13979 			}
13980 #ifdef DEBUG
13981 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13982 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
13983 			    seg_len, flags,
13984 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13985 #endif /* DEBUG */
13986 		} else {
13987 			/* Data left until we hit mark */
13988 #ifdef DEBUG
13989 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13990 			    "tcp_rput: URP %d bytes left, %s",
13991 			    urp - seg_len, tcp_display(tcp, NULL,
13992 			    DISP_PORT_ONLY));
13993 #endif /* DEBUG */
13994 		}
13995 	}
13996 
13997 process_ack:
13998 	if (!(flags & TH_ACK)) {
13999 		freemsg(mp);
14000 		goto xmit_check;
14001 	}
14002 	}
14003 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
14004 
14005 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
14006 		tcp->tcp_ip_forward_progress = B_TRUE;
14007 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
14008 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
14009 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
14010 			/* 3-way handshake complete - pass up the T_CONN_IND */
14011 			tcp_t	*listener = tcp->tcp_listener;
14012 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
14013 
14014 			tcp->tcp_tconnind_started = B_TRUE;
14015 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
14016 			/*
14017 			 * We are here means eager is fine but it can
14018 			 * get a TH_RST at any point between now and till
14019 			 * accept completes and disappear. We need to
14020 			 * ensure that reference to eager is valid after
14021 			 * we get out of eager's perimeter. So we do
14022 			 * an extra refhold.
14023 			 */
14024 			CONN_INC_REF(connp);
14025 
14026 			/*
14027 			 * The listener also exists because of the refhold
14028 			 * done in tcp_conn_request. Its possible that it
14029 			 * might have closed. We will check that once we
14030 			 * get inside listeners context.
14031 			 */
14032 			CONN_INC_REF(listener->tcp_connp);
14033 			if (listener->tcp_connp->conn_sqp ==
14034 			    connp->conn_sqp) {
14035 				tcp_send_conn_ind(listener->tcp_connp, mp,
14036 				    listener->tcp_connp->conn_sqp);
14037 				CONN_DEC_REF(listener->tcp_connp);
14038 			} else if (!tcp->tcp_loopback) {
14039 				squeue_fill(listener->tcp_connp->conn_sqp, mp,
14040 				    tcp_send_conn_ind,
14041 				    listener->tcp_connp, SQTAG_TCP_CONN_IND);
14042 			} else {
14043 				squeue_enter(listener->tcp_connp->conn_sqp, mp,
14044 				    tcp_send_conn_ind, listener->tcp_connp,
14045 				    SQTAG_TCP_CONN_IND);
14046 			}
14047 		}
14048 
14049 		if (tcp->tcp_active_open) {
14050 			/*
14051 			 * We are seeing the final ack in the three way
14052 			 * hand shake of a active open'ed connection
14053 			 * so we must send up a T_CONN_CON
14054 			 */
14055 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
14056 				freemsg(mp);
14057 				return;
14058 			}
14059 			/*
14060 			 * Don't fuse the loopback endpoints for
14061 			 * simultaneous active opens.
14062 			 */
14063 			if (tcp->tcp_loopback) {
14064 				TCP_STAT(tcps, tcp_fusion_unfusable);
14065 				tcp->tcp_unfusable = B_TRUE;
14066 			}
14067 		}
14068 
14069 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
14070 		bytes_acked--;
14071 		/* SYN was acked - making progress */
14072 		if (tcp->tcp_ipversion == IPV6_VERSION)
14073 			tcp->tcp_ip_forward_progress = B_TRUE;
14074 
14075 		/*
14076 		 * If SYN was retransmitted, need to reset all
14077 		 * retransmission info as this segment will be
14078 		 * treated as a dup ACK.
14079 		 */
14080 		if (tcp->tcp_rexmit) {
14081 			tcp->tcp_rexmit = B_FALSE;
14082 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14083 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
14084 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14085 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14086 			tcp->tcp_ms_we_have_waited = 0;
14087 			tcp->tcp_cwnd = mss;
14088 		}
14089 
14090 		/*
14091 		 * We set the send window to zero here.
14092 		 * This is needed if there is data to be
14093 		 * processed already on the queue.
14094 		 * Later (at swnd_update label), the
14095 		 * "new_swnd > tcp_swnd" condition is satisfied
14096 		 * the XMIT_NEEDED flag is set in the current
14097 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
14098 		 * called if there is already data on queue in
14099 		 * this state.
14100 		 */
14101 		tcp->tcp_swnd = 0;
14102 
14103 		if (new_swnd > tcp->tcp_max_swnd)
14104 			tcp->tcp_max_swnd = new_swnd;
14105 		tcp->tcp_swl1 = seg_seq;
14106 		tcp->tcp_swl2 = seg_ack;
14107 		tcp->tcp_state = TCPS_ESTABLISHED;
14108 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
14109 
14110 		/* Fuse when both sides are in ESTABLISHED state */
14111 		if (tcp->tcp_loopback && do_tcp_fusion)
14112 			tcp_fuse(tcp, iphdr, tcph);
14113 
14114 	}
14115 	/* This code follows 4.4BSD-Lite2 mostly. */
14116 	if (bytes_acked < 0)
14117 		goto est;
14118 
14119 	/*
14120 	 * If TCP is ECN capable and the congestion experience bit is
14121 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
14122 	 * done once per window (or more loosely, per RTT).
14123 	 */
14124 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
14125 		tcp->tcp_cwr = B_FALSE;
14126 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
14127 		if (!tcp->tcp_cwr) {
14128 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
14129 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
14130 			tcp->tcp_cwnd = npkt * mss;
14131 			/*
14132 			 * If the cwnd is 0, use the timer to clock out
14133 			 * new segments.  This is required by the ECN spec.
14134 			 */
14135 			if (npkt == 0) {
14136 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14137 				/*
14138 				 * This makes sure that when the ACK comes
14139 				 * back, we will increase tcp_cwnd by 1 MSS.
14140 				 */
14141 				tcp->tcp_cwnd_cnt = 0;
14142 			}
14143 			tcp->tcp_cwr = B_TRUE;
14144 			/*
14145 			 * This marks the end of the current window of in
14146 			 * flight data.  That is why we don't use
14147 			 * tcp_suna + tcp_swnd.  Only data in flight can
14148 			 * provide ECN info.
14149 			 */
14150 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14151 			tcp->tcp_ecn_cwr_sent = B_FALSE;
14152 		}
14153 	}
14154 
14155 	mp1 = tcp->tcp_xmit_head;
14156 	if (bytes_acked == 0) {
14157 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
14158 			int dupack_cnt;
14159 
14160 			BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
14161 			/*
14162 			 * Fast retransmit.  When we have seen exactly three
14163 			 * identical ACKs while we have unacked data
14164 			 * outstanding we take it as a hint that our peer
14165 			 * dropped something.
14166 			 *
14167 			 * If TCP is retransmitting, don't do fast retransmit.
14168 			 */
14169 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
14170 			    ! tcp->tcp_rexmit) {
14171 				/* Do Limited Transmit */
14172 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
14173 				    tcps->tcps_dupack_fast_retransmit) {
14174 					/*
14175 					 * RFC 3042
14176 					 *
14177 					 * What we need to do is temporarily
14178 					 * increase tcp_cwnd so that new
14179 					 * data can be sent if it is allowed
14180 					 * by the receive window (tcp_rwnd).
14181 					 * tcp_wput_data() will take care of
14182 					 * the rest.
14183 					 *
14184 					 * If the connection is SACK capable,
14185 					 * only do limited xmit when there
14186 					 * is SACK info.
14187 					 *
14188 					 * Note how tcp_cwnd is incremented.
14189 					 * The first dup ACK will increase
14190 					 * it by 1 MSS.  The second dup ACK
14191 					 * will increase it by 2 MSS.  This
14192 					 * means that only 1 new segment will
14193 					 * be sent for each dup ACK.
14194 					 */
14195 					if (tcp->tcp_unsent > 0 &&
14196 					    (!tcp->tcp_snd_sack_ok ||
14197 					    (tcp->tcp_snd_sack_ok &&
14198 					    tcp->tcp_notsack_list != NULL))) {
14199 						tcp->tcp_cwnd += mss <<
14200 						    (tcp->tcp_dupack_cnt - 1);
14201 						flags |= TH_LIMIT_XMIT;
14202 					}
14203 				} else if (dupack_cnt ==
14204 				    tcps->tcps_dupack_fast_retransmit) {
14205 
14206 				/*
14207 				 * If we have reduced tcp_ssthresh
14208 				 * because of ECN, do not reduce it again
14209 				 * unless it is already one window of data
14210 				 * away.  After one window of data, tcp_cwr
14211 				 * should then be cleared.  Note that
14212 				 * for non ECN capable connection, tcp_cwr
14213 				 * should always be false.
14214 				 *
14215 				 * Adjust cwnd since the duplicate
14216 				 * ack indicates that a packet was
14217 				 * dropped (due to congestion.)
14218 				 */
14219 				if (!tcp->tcp_cwr) {
14220 					npkt = ((tcp->tcp_snxt -
14221 					    tcp->tcp_suna) >> 1) / mss;
14222 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14223 					    mss;
14224 					tcp->tcp_cwnd = (npkt +
14225 					    tcp->tcp_dupack_cnt) * mss;
14226 				}
14227 				if (tcp->tcp_ecn_ok) {
14228 					tcp->tcp_cwr = B_TRUE;
14229 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14230 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14231 				}
14232 
14233 				/*
14234 				 * We do Hoe's algorithm.  Refer to her
14235 				 * paper "Improving the Start-up Behavior
14236 				 * of a Congestion Control Scheme for TCP,"
14237 				 * appeared in SIGCOMM'96.
14238 				 *
14239 				 * Save highest seq no we have sent so far.
14240 				 * Be careful about the invisible FIN byte.
14241 				 */
14242 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14243 				    (tcp->tcp_unsent == 0)) {
14244 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14245 				} else {
14246 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14247 				}
14248 
14249 				/*
14250 				 * Do not allow bursty traffic during.
14251 				 * fast recovery.  Refer to Fall and Floyd's
14252 				 * paper "Simulation-based Comparisons of
14253 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14254 				 * This is a best current practise.
14255 				 */
14256 				tcp->tcp_snd_burst = TCP_CWND_SS;
14257 
14258 				/*
14259 				 * For SACK:
14260 				 * Calculate tcp_pipe, which is the
14261 				 * estimated number of bytes in
14262 				 * network.
14263 				 *
14264 				 * tcp_fack is the highest sack'ed seq num
14265 				 * TCP has received.
14266 				 *
14267 				 * tcp_pipe is explained in the above quoted
14268 				 * Fall and Floyd's paper.  tcp_fack is
14269 				 * explained in Mathis and Mahdavi's
14270 				 * "Forward Acknowledgment: Refining TCP
14271 				 * Congestion Control" in SIGCOMM '96.
14272 				 */
14273 				if (tcp->tcp_snd_sack_ok) {
14274 					ASSERT(tcp->tcp_sack_info != NULL);
14275 					if (tcp->tcp_notsack_list != NULL) {
14276 						tcp->tcp_pipe = tcp->tcp_snxt -
14277 						    tcp->tcp_fack;
14278 						tcp->tcp_sack_snxt = seg_ack;
14279 						flags |= TH_NEED_SACK_REXMIT;
14280 					} else {
14281 						/*
14282 						 * Always initialize tcp_pipe
14283 						 * even though we don't have
14284 						 * any SACK info.  If later
14285 						 * we get SACK info and
14286 						 * tcp_pipe is not initialized,
14287 						 * funny things will happen.
14288 						 */
14289 						tcp->tcp_pipe =
14290 						    tcp->tcp_cwnd_ssthresh;
14291 					}
14292 				} else {
14293 					flags |= TH_REXMIT_NEEDED;
14294 				} /* tcp_snd_sack_ok */
14295 
14296 				} else {
14297 					/*
14298 					 * Here we perform congestion
14299 					 * avoidance, but NOT slow start.
14300 					 * This is known as the Fast
14301 					 * Recovery Algorithm.
14302 					 */
14303 					if (tcp->tcp_snd_sack_ok &&
14304 					    tcp->tcp_notsack_list != NULL) {
14305 						flags |= TH_NEED_SACK_REXMIT;
14306 						tcp->tcp_pipe -= mss;
14307 						if (tcp->tcp_pipe < 0)
14308 							tcp->tcp_pipe = 0;
14309 					} else {
14310 					/*
14311 					 * We know that one more packet has
14312 					 * left the pipe thus we can update
14313 					 * cwnd.
14314 					 */
14315 					cwnd = tcp->tcp_cwnd + mss;
14316 					if (cwnd > tcp->tcp_cwnd_max)
14317 						cwnd = tcp->tcp_cwnd_max;
14318 					tcp->tcp_cwnd = cwnd;
14319 					if (tcp->tcp_unsent > 0)
14320 						flags |= TH_XMIT_NEEDED;
14321 					}
14322 				}
14323 			}
14324 		} else if (tcp->tcp_zero_win_probe) {
14325 			/*
14326 			 * If the window has opened, need to arrange
14327 			 * to send additional data.
14328 			 */
14329 			if (new_swnd != 0) {
14330 				/* tcp_suna != tcp_snxt */
14331 				/* Packet contains a window update */
14332 				BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate);
14333 				tcp->tcp_zero_win_probe = 0;
14334 				tcp->tcp_timer_backoff = 0;
14335 				tcp->tcp_ms_we_have_waited = 0;
14336 
14337 				/*
14338 				 * Transmit starting with tcp_suna since
14339 				 * the one byte probe is not ack'ed.
14340 				 * If TCP has sent more than one identical
14341 				 * probe, tcp_rexmit will be set.  That means
14342 				 * tcp_ss_rexmit() will send out the one
14343 				 * byte along with new data.  Otherwise,
14344 				 * fake the retransmission.
14345 				 */
14346 				flags |= TH_XMIT_NEEDED;
14347 				if (!tcp->tcp_rexmit) {
14348 					tcp->tcp_rexmit = B_TRUE;
14349 					tcp->tcp_dupack_cnt = 0;
14350 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14351 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14352 				}
14353 			}
14354 		}
14355 		goto swnd_update;
14356 	}
14357 
14358 	/*
14359 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14360 	 * If the ACK value acks something that we have not yet sent, it might
14361 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14362 	 * other side.
14363 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14364 	 * state is handled above, so we can always just drop the segment and
14365 	 * send an ACK here.
14366 	 *
14367 	 * Should we send ACKs in response to ACK only segments?
14368 	 */
14369 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14370 		BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent);
14371 		/* drop the received segment */
14372 		freemsg(mp);
14373 
14374 		/*
14375 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14376 		 * greater than 0, check if the number of such
14377 		 * bogus ACks is greater than that count.  If yes,
14378 		 * don't send back any ACK.  This prevents TCP from
14379 		 * getting into an ACK storm if somehow an attacker
14380 		 * successfully spoofs an acceptable segment to our
14381 		 * peer.
14382 		 */
14383 		if (tcp_drop_ack_unsent_cnt > 0 &&
14384 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
14385 			TCP_STAT(tcps, tcp_in_ack_unsent_drop);
14386 			return;
14387 		}
14388 		mp = tcp_ack_mp(tcp);
14389 		if (mp != NULL) {
14390 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
14391 			BUMP_LOCAL(tcp->tcp_obsegs);
14392 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
14393 			tcp_send_data(tcp, tcp->tcp_wq, mp);
14394 		}
14395 		return;
14396 	}
14397 
14398 	/*
14399 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14400 	 * blocks that are covered by this ACK.
14401 	 */
14402 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14403 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14404 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14405 	}
14406 
14407 	/*
14408 	 * If we got an ACK after fast retransmit, check to see
14409 	 * if it is a partial ACK.  If it is not and the congestion
14410 	 * window was inflated to account for the other side's
14411 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14412 	 */
14413 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
14414 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14415 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14416 			tcp->tcp_dupack_cnt = 0;
14417 			/*
14418 			 * Restore the orig tcp_cwnd_ssthresh after
14419 			 * fast retransmit phase.
14420 			 */
14421 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14422 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14423 			}
14424 			tcp->tcp_rexmit_max = seg_ack;
14425 			tcp->tcp_cwnd_cnt = 0;
14426 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14427 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14428 
14429 			/*
14430 			 * Remove all notsack info to avoid confusion with
14431 			 * the next fast retrasnmit/recovery phase.
14432 			 */
14433 			if (tcp->tcp_snd_sack_ok &&
14434 			    tcp->tcp_notsack_list != NULL) {
14435 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14436 			}
14437 		} else {
14438 			if (tcp->tcp_snd_sack_ok &&
14439 			    tcp->tcp_notsack_list != NULL) {
14440 				flags |= TH_NEED_SACK_REXMIT;
14441 				tcp->tcp_pipe -= mss;
14442 				if (tcp->tcp_pipe < 0)
14443 					tcp->tcp_pipe = 0;
14444 			} else {
14445 				/*
14446 				 * Hoe's algorithm:
14447 				 *
14448 				 * Retransmit the unack'ed segment and
14449 				 * restart fast recovery.  Note that we
14450 				 * need to scale back tcp_cwnd to the
14451 				 * original value when we started fast
14452 				 * recovery.  This is to prevent overly
14453 				 * aggressive behaviour in sending new
14454 				 * segments.
14455 				 */
14456 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14457 				    tcps->tcps_dupack_fast_retransmit * mss;
14458 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14459 				flags |= TH_REXMIT_NEEDED;
14460 			}
14461 		}
14462 	} else {
14463 		tcp->tcp_dupack_cnt = 0;
14464 		if (tcp->tcp_rexmit) {
14465 			/*
14466 			 * TCP is retranmitting.  If the ACK ack's all
14467 			 * outstanding data, update tcp_rexmit_max and
14468 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14469 			 * to the correct value.
14470 			 *
14471 			 * Note that SEQ_LEQ() is used.  This is to avoid
14472 			 * unnecessary fast retransmit caused by dup ACKs
14473 			 * received when TCP does slow start retransmission
14474 			 * after a time out.  During this phase, TCP may
14475 			 * send out segments which are already received.
14476 			 * This causes dup ACKs to be sent back.
14477 			 */
14478 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14479 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14480 					tcp->tcp_rexmit_nxt = seg_ack;
14481 				}
14482 				if (seg_ack != tcp->tcp_rexmit_max) {
14483 					flags |= TH_XMIT_NEEDED;
14484 				}
14485 			} else {
14486 				tcp->tcp_rexmit = B_FALSE;
14487 				tcp->tcp_xmit_zc_clean = B_FALSE;
14488 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14489 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14490 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14491 			}
14492 			tcp->tcp_ms_we_have_waited = 0;
14493 		}
14494 	}
14495 
14496 	BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs);
14497 	UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked);
14498 	tcp->tcp_suna = seg_ack;
14499 	if (tcp->tcp_zero_win_probe != 0) {
14500 		tcp->tcp_zero_win_probe = 0;
14501 		tcp->tcp_timer_backoff = 0;
14502 	}
14503 
14504 	/*
14505 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14506 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14507 	 * will not reach here.
14508 	 */
14509 	if (mp1 == NULL) {
14510 		goto fin_acked;
14511 	}
14512 
14513 	/*
14514 	 * Update the congestion window.
14515 	 *
14516 	 * If TCP is not ECN capable or TCP is ECN capable but the
14517 	 * congestion experience bit is not set, increase the tcp_cwnd as
14518 	 * usual.
14519 	 */
14520 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14521 		cwnd = tcp->tcp_cwnd;
14522 		add = mss;
14523 
14524 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14525 			/*
14526 			 * This is to prevent an increase of less than 1 MSS of
14527 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14528 			 * may send out tinygrams in order to preserve mblk
14529 			 * boundaries.
14530 			 *
14531 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14532 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14533 			 * increased by 1 MSS for every RTTs.
14534 			 */
14535 			if (tcp->tcp_cwnd_cnt <= 0) {
14536 				tcp->tcp_cwnd_cnt = cwnd + add;
14537 			} else {
14538 				tcp->tcp_cwnd_cnt -= add;
14539 				add = 0;
14540 			}
14541 		}
14542 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14543 	}
14544 
14545 	/* See if the latest urgent data has been acknowledged */
14546 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14547 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14548 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14549 
14550 	/* Can we update the RTT estimates? */
14551 	if (tcp->tcp_snd_ts_ok) {
14552 		/* Ignore zero timestamp echo-reply. */
14553 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14554 			tcp_set_rto(tcp, (int32_t)lbolt -
14555 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14556 		}
14557 
14558 		/* If needed, restart the timer. */
14559 		if (tcp->tcp_set_timer == 1) {
14560 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14561 			tcp->tcp_set_timer = 0;
14562 		}
14563 		/*
14564 		 * Update tcp_csuna in case the other side stops sending
14565 		 * us timestamps.
14566 		 */
14567 		tcp->tcp_csuna = tcp->tcp_snxt;
14568 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14569 		/*
14570 		 * An ACK sequence we haven't seen before, so get the RTT
14571 		 * and update the RTO. But first check if the timestamp is
14572 		 * valid to use.
14573 		 */
14574 		if ((mp1->b_next != NULL) &&
14575 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14576 			tcp_set_rto(tcp, (int32_t)lbolt -
14577 			    (int32_t)(intptr_t)mp1->b_prev);
14578 		else
14579 			BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14580 
14581 		/* Remeber the last sequence to be ACKed */
14582 		tcp->tcp_csuna = seg_ack;
14583 		if (tcp->tcp_set_timer == 1) {
14584 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14585 			tcp->tcp_set_timer = 0;
14586 		}
14587 	} else {
14588 		BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14589 	}
14590 
14591 	/* Eat acknowledged bytes off the xmit queue. */
14592 	for (;;) {
14593 		mblk_t	*mp2;
14594 		uchar_t	*wptr;
14595 
14596 		wptr = mp1->b_wptr;
14597 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14598 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14599 		if (bytes_acked < 0) {
14600 			mp1->b_rptr = wptr + bytes_acked;
14601 			/*
14602 			 * Set a new timestamp if all the bytes timed by the
14603 			 * old timestamp have been ack'ed.
14604 			 */
14605 			if (SEQ_GT(seg_ack,
14606 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14607 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14608 				mp1->b_next = NULL;
14609 			}
14610 			break;
14611 		}
14612 		mp1->b_next = NULL;
14613 		mp1->b_prev = NULL;
14614 		mp2 = mp1;
14615 		mp1 = mp1->b_cont;
14616 
14617 		/*
14618 		 * This notification is required for some zero-copy
14619 		 * clients to maintain a copy semantic. After the data
14620 		 * is ack'ed, client is safe to modify or reuse the buffer.
14621 		 */
14622 		if (tcp->tcp_snd_zcopy_aware &&
14623 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14624 			tcp_zcopy_notify(tcp);
14625 		freeb(mp2);
14626 		if (bytes_acked == 0) {
14627 			if (mp1 == NULL) {
14628 				/* Everything is ack'ed, clear the tail. */
14629 				tcp->tcp_xmit_tail = NULL;
14630 				/*
14631 				 * Cancel the timer unless we are still
14632 				 * waiting for an ACK for the FIN packet.
14633 				 */
14634 				if (tcp->tcp_timer_tid != 0 &&
14635 				    tcp->tcp_snxt == tcp->tcp_suna) {
14636 					(void) TCP_TIMER_CANCEL(tcp,
14637 					    tcp->tcp_timer_tid);
14638 					tcp->tcp_timer_tid = 0;
14639 				}
14640 				goto pre_swnd_update;
14641 			}
14642 			if (mp2 != tcp->tcp_xmit_tail)
14643 				break;
14644 			tcp->tcp_xmit_tail = mp1;
14645 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14646 			    (uintptr_t)INT_MAX);
14647 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14648 			    mp1->b_rptr);
14649 			break;
14650 		}
14651 		if (mp1 == NULL) {
14652 			/*
14653 			 * More was acked but there is nothing more
14654 			 * outstanding.  This means that the FIN was
14655 			 * just acked or that we're talking to a clown.
14656 			 */
14657 fin_acked:
14658 			ASSERT(tcp->tcp_fin_sent);
14659 			tcp->tcp_xmit_tail = NULL;
14660 			if (tcp->tcp_fin_sent) {
14661 				/* FIN was acked - making progress */
14662 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14663 				    !tcp->tcp_fin_acked)
14664 					tcp->tcp_ip_forward_progress = B_TRUE;
14665 				tcp->tcp_fin_acked = B_TRUE;
14666 				if (tcp->tcp_linger_tid != 0 &&
14667 				    TCP_TIMER_CANCEL(tcp,
14668 				    tcp->tcp_linger_tid) >= 0) {
14669 					tcp_stop_lingering(tcp);
14670 					freemsg(mp);
14671 					mp = NULL;
14672 				}
14673 			} else {
14674 				/*
14675 				 * We should never get here because
14676 				 * we have already checked that the
14677 				 * number of bytes ack'ed should be
14678 				 * smaller than or equal to what we
14679 				 * have sent so far (it is the
14680 				 * acceptability check of the ACK).
14681 				 * We can only get here if the send
14682 				 * queue is corrupted.
14683 				 *
14684 				 * Terminate the connection and
14685 				 * panic the system.  It is better
14686 				 * for us to panic instead of
14687 				 * continuing to avoid other disaster.
14688 				 */
14689 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14690 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14691 				panic("Memory corruption "
14692 				    "detected for connection %s.",
14693 				    tcp_display(tcp, NULL,
14694 				    DISP_ADDR_AND_PORT));
14695 				/*NOTREACHED*/
14696 			}
14697 			goto pre_swnd_update;
14698 		}
14699 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14700 	}
14701 	if (tcp->tcp_unsent) {
14702 		flags |= TH_XMIT_NEEDED;
14703 	}
14704 pre_swnd_update:
14705 	tcp->tcp_xmit_head = mp1;
14706 swnd_update:
14707 	/*
14708 	 * The following check is different from most other implementations.
14709 	 * For bi-directional transfer, when segments are dropped, the
14710 	 * "normal" check will not accept a window update in those
14711 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14712 	 * segments which are outside receiver's window.  As TCP accepts
14713 	 * the ack in those retransmitted segments, if the window update in
14714 	 * the same segment is not accepted, TCP will incorrectly calculates
14715 	 * that it can send more segments.  This can create a deadlock
14716 	 * with the receiver if its window becomes zero.
14717 	 */
14718 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14719 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14720 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14721 		/*
14722 		 * The criteria for update is:
14723 		 *
14724 		 * 1. the segment acknowledges some data.  Or
14725 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14726 		 * 3. the segment is not old and the advertised window is
14727 		 * larger than the previous advertised window.
14728 		 */
14729 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14730 			flags |= TH_XMIT_NEEDED;
14731 		tcp->tcp_swnd = new_swnd;
14732 		if (new_swnd > tcp->tcp_max_swnd)
14733 			tcp->tcp_max_swnd = new_swnd;
14734 		tcp->tcp_swl1 = seg_seq;
14735 		tcp->tcp_swl2 = seg_ack;
14736 	}
14737 est:
14738 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14739 
14740 		switch (tcp->tcp_state) {
14741 		case TCPS_FIN_WAIT_1:
14742 			if (tcp->tcp_fin_acked) {
14743 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14744 				/*
14745 				 * We implement the non-standard BSD/SunOS
14746 				 * FIN_WAIT_2 flushing algorithm.
14747 				 * If there is no user attached to this
14748 				 * TCP endpoint, then this TCP struct
14749 				 * could hang around forever in FIN_WAIT_2
14750 				 * state if the peer forgets to send us
14751 				 * a FIN.  To prevent this, we wait only
14752 				 * 2*MSL (a convenient time value) for
14753 				 * the FIN to arrive.  If it doesn't show up,
14754 				 * we flush the TCP endpoint.  This algorithm,
14755 				 * though a violation of RFC-793, has worked
14756 				 * for over 10 years in BSD systems.
14757 				 * Note: SunOS 4.x waits 675 seconds before
14758 				 * flushing the FIN_WAIT_2 connection.
14759 				 */
14760 				TCP_TIMER_RESTART(tcp,
14761 				    tcps->tcps_fin_wait_2_flush_interval);
14762 			}
14763 			break;
14764 		case TCPS_FIN_WAIT_2:
14765 			break;	/* Shutdown hook? */
14766 		case TCPS_LAST_ACK:
14767 			freemsg(mp);
14768 			if (tcp->tcp_fin_acked) {
14769 				(void) tcp_clean_death(tcp, 0, 19);
14770 				return;
14771 			}
14772 			goto xmit_check;
14773 		case TCPS_CLOSING:
14774 			if (tcp->tcp_fin_acked) {
14775 				tcp->tcp_state = TCPS_TIME_WAIT;
14776 				/*
14777 				 * Unconditionally clear the exclusive binding
14778 				 * bit so this TIME-WAIT connection won't
14779 				 * interfere with new ones.
14780 				 */
14781 				tcp->tcp_exclbind = 0;
14782 				if (!TCP_IS_DETACHED(tcp)) {
14783 					TCP_TIMER_RESTART(tcp,
14784 					    tcps->tcps_time_wait_interval);
14785 				} else {
14786 					tcp_time_wait_append(tcp);
14787 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14788 				}
14789 			}
14790 			/*FALLTHRU*/
14791 		case TCPS_CLOSE_WAIT:
14792 			freemsg(mp);
14793 			goto xmit_check;
14794 		default:
14795 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14796 			break;
14797 		}
14798 	}
14799 	if (flags & TH_FIN) {
14800 		/* Make sure we ack the fin */
14801 		flags |= TH_ACK_NEEDED;
14802 		if (!tcp->tcp_fin_rcvd) {
14803 			tcp->tcp_fin_rcvd = B_TRUE;
14804 			tcp->tcp_rnxt++;
14805 			tcph = tcp->tcp_tcph;
14806 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14807 
14808 			/*
14809 			 * Generate the ordrel_ind at the end unless we
14810 			 * are an eager guy.
14811 			 * In the eager case tcp_rsrv will do this when run
14812 			 * after tcp_accept is done.
14813 			 */
14814 			if (tcp->tcp_listener == NULL &&
14815 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14816 				flags |= TH_ORDREL_NEEDED;
14817 			switch (tcp->tcp_state) {
14818 			case TCPS_SYN_RCVD:
14819 			case TCPS_ESTABLISHED:
14820 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14821 				/* Keepalive? */
14822 				break;
14823 			case TCPS_FIN_WAIT_1:
14824 				if (!tcp->tcp_fin_acked) {
14825 					tcp->tcp_state = TCPS_CLOSING;
14826 					break;
14827 				}
14828 				/* FALLTHRU */
14829 			case TCPS_FIN_WAIT_2:
14830 				tcp->tcp_state = TCPS_TIME_WAIT;
14831 				/*
14832 				 * Unconditionally clear the exclusive binding
14833 				 * bit so this TIME-WAIT connection won't
14834 				 * interfere with new ones.
14835 				 */
14836 				tcp->tcp_exclbind = 0;
14837 				if (!TCP_IS_DETACHED(tcp)) {
14838 					TCP_TIMER_RESTART(tcp,
14839 					    tcps->tcps_time_wait_interval);
14840 				} else {
14841 					tcp_time_wait_append(tcp);
14842 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14843 				}
14844 				if (seg_len) {
14845 					/*
14846 					 * implies data piggybacked on FIN.
14847 					 * break to handle data.
14848 					 */
14849 					break;
14850 				}
14851 				freemsg(mp);
14852 				goto ack_check;
14853 			}
14854 		}
14855 	}
14856 	if (mp == NULL)
14857 		goto xmit_check;
14858 	if (seg_len == 0) {
14859 		freemsg(mp);
14860 		goto xmit_check;
14861 	}
14862 	if (mp->b_rptr == mp->b_wptr) {
14863 		/*
14864 		 * The header has been consumed, so we remove the
14865 		 * zero-length mblk here.
14866 		 */
14867 		mp1 = mp;
14868 		mp = mp->b_cont;
14869 		freeb(mp1);
14870 	}
14871 	tcph = tcp->tcp_tcph;
14872 	tcp->tcp_rack_cnt++;
14873 	{
14874 		uint32_t cur_max;
14875 
14876 		cur_max = tcp->tcp_rack_cur_max;
14877 		if (tcp->tcp_rack_cnt >= cur_max) {
14878 			/*
14879 			 * We have more unacked data than we should - send
14880 			 * an ACK now.
14881 			 */
14882 			flags |= TH_ACK_NEEDED;
14883 			cur_max++;
14884 			if (cur_max > tcp->tcp_rack_abs_max)
14885 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
14886 			else
14887 				tcp->tcp_rack_cur_max = cur_max;
14888 		} else if (TCP_IS_DETACHED(tcp)) {
14889 			/* We don't have an ACK timer for detached TCP. */
14890 			flags |= TH_ACK_NEEDED;
14891 		} else if (seg_len < mss) {
14892 			/*
14893 			 * If we get a segment that is less than an mss, and we
14894 			 * already have unacknowledged data, and the amount
14895 			 * unacknowledged is not a multiple of mss, then we
14896 			 * better generate an ACK now.  Otherwise, this may be
14897 			 * the tail piece of a transaction, and we would rather
14898 			 * wait for the response.
14899 			 */
14900 			uint32_t udif;
14901 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
14902 			    (uintptr_t)INT_MAX);
14903 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
14904 			if (udif && (udif % mss))
14905 				flags |= TH_ACK_NEEDED;
14906 			else
14907 				flags |= TH_ACK_TIMER_NEEDED;
14908 		} else {
14909 			/* Start delayed ack timer */
14910 			flags |= TH_ACK_TIMER_NEEDED;
14911 		}
14912 	}
14913 	tcp->tcp_rnxt += seg_len;
14914 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14915 
14916 	/* Update SACK list */
14917 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
14918 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
14919 		    &(tcp->tcp_num_sack_blk));
14920 	}
14921 
14922 	if (tcp->tcp_urp_mp) {
14923 		tcp->tcp_urp_mp->b_cont = mp;
14924 		mp = tcp->tcp_urp_mp;
14925 		tcp->tcp_urp_mp = NULL;
14926 		/* Ready for a new signal. */
14927 		tcp->tcp_urp_last_valid = B_FALSE;
14928 #ifdef DEBUG
14929 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14930 		    "tcp_rput: sending exdata_ind %s",
14931 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14932 #endif /* DEBUG */
14933 	}
14934 
14935 	/*
14936 	 * Check for ancillary data changes compared to last segment.
14937 	 */
14938 	if (tcp->tcp_ipv6_recvancillary != 0) {
14939 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
14940 		if (mp == NULL)
14941 			return;
14942 	}
14943 
14944 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
14945 		/*
14946 		 * Side queue inbound data until the accept happens.
14947 		 * tcp_accept/tcp_rput drains this when the accept happens.
14948 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
14949 		 * T_EXDATA_IND) it is queued on b_next.
14950 		 * XXX Make urgent data use this. Requires:
14951 		 *	Removing tcp_listener check for TH_URG
14952 		 *	Making M_PCPROTO and MARK messages skip the eager case
14953 		 */
14954 
14955 		if (tcp->tcp_kssl_pending) {
14956 			tcp_kssl_input(tcp, mp);
14957 		} else {
14958 			tcp_rcv_enqueue(tcp, mp, seg_len);
14959 		}
14960 	} else {
14961 		if (mp->b_datap->db_type != M_DATA ||
14962 		    (flags & TH_MARKNEXT_NEEDED)) {
14963 			if (tcp->tcp_rcv_list != NULL) {
14964 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14965 			}
14966 			ASSERT(tcp->tcp_rcv_list == NULL ||
14967 			    tcp->tcp_fused_sigurg);
14968 			if (flags & TH_MARKNEXT_NEEDED) {
14969 #ifdef DEBUG
14970 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14971 				    "tcp_rput: sending MSGMARKNEXT %s",
14972 				    tcp_display(tcp, NULL,
14973 				    DISP_PORT_ONLY));
14974 #endif /* DEBUG */
14975 				mp->b_flag |= MSGMARKNEXT;
14976 				flags &= ~TH_MARKNEXT_NEEDED;
14977 			}
14978 
14979 			/* Does this need SSL processing first? */
14980 			if ((tcp->tcp_kssl_ctx  != NULL) &&
14981 			    (DB_TYPE(mp) == M_DATA)) {
14982 				tcp_kssl_input(tcp, mp);
14983 			} else {
14984 				putnext(tcp->tcp_rq, mp);
14985 				if (!canputnext(tcp->tcp_rq))
14986 					tcp->tcp_rwnd -= seg_len;
14987 			}
14988 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
14989 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
14990 			if (tcp->tcp_rcv_list != NULL) {
14991 				/*
14992 				 * Enqueue the new segment first and then
14993 				 * call tcp_rcv_drain() to send all data
14994 				 * up.  The other way to do this is to
14995 				 * send all queued data up and then call
14996 				 * putnext() to send the new segment up.
14997 				 * This way can remove the else part later
14998 				 * on.
14999 				 *
15000 				 * We don't this to avoid one more call to
15001 				 * canputnext() as tcp_rcv_drain() needs to
15002 				 * call canputnext().
15003 				 */
15004 				tcp_rcv_enqueue(tcp, mp, seg_len);
15005 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15006 			} else {
15007 				/* Does this need SSL processing first? */
15008 				if ((tcp->tcp_kssl_ctx  != NULL) &&
15009 				    (DB_TYPE(mp) == M_DATA)) {
15010 					tcp_kssl_input(tcp, mp);
15011 				} else {
15012 					putnext(tcp->tcp_rq, mp);
15013 					if (!canputnext(tcp->tcp_rq))
15014 						tcp->tcp_rwnd -= seg_len;
15015 				}
15016 			}
15017 		} else {
15018 			/*
15019 			 * Enqueue all packets when processing an mblk
15020 			 * from the co queue and also enqueue normal packets.
15021 			 * For packets which belong to SSL stream do SSL
15022 			 * processing first.
15023 			 */
15024 			if ((tcp->tcp_kssl_ctx != NULL) &&
15025 			    (DB_TYPE(mp) == M_DATA)) {
15026 				tcp_kssl_input(tcp, mp);
15027 			} else {
15028 				tcp_rcv_enqueue(tcp, mp, seg_len);
15029 			}
15030 		}
15031 		/*
15032 		 * Make sure the timer is running if we have data waiting
15033 		 * for a push bit. This provides resiliency against
15034 		 * implementations that do not correctly generate push bits.
15035 		 */
15036 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
15037 			/*
15038 			 * The connection may be closed at this point, so don't
15039 			 * do anything for a detached tcp.
15040 			 */
15041 			if (!TCP_IS_DETACHED(tcp))
15042 				tcp->tcp_push_tid = TCP_TIMER(tcp,
15043 				    tcp_push_timer,
15044 				    MSEC_TO_TICK(
15045 				    tcps->tcps_push_timer_interval));
15046 		}
15047 	}
15048 xmit_check:
15049 	/* Is there anything left to do? */
15050 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15051 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
15052 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
15053 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15054 		goto done;
15055 
15056 	/* Any transmit work to do and a non-zero window? */
15057 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
15058 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
15059 		if (flags & TH_REXMIT_NEEDED) {
15060 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
15061 
15062 			BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans);
15063 			if (snd_size > mss)
15064 				snd_size = mss;
15065 			if (snd_size > tcp->tcp_swnd)
15066 				snd_size = tcp->tcp_swnd;
15067 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
15068 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
15069 			    B_TRUE);
15070 
15071 			if (mp1 != NULL) {
15072 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15073 				tcp->tcp_csuna = tcp->tcp_snxt;
15074 				BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
15075 				UPDATE_MIB(&tcps->tcps_mib,
15076 				    tcpRetransBytes, snd_size);
15077 				TCP_RECORD_TRACE(tcp, mp1,
15078 				    TCP_TRACE_SEND_PKT);
15079 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
15080 			}
15081 		}
15082 		if (flags & TH_NEED_SACK_REXMIT) {
15083 			tcp_sack_rxmit(tcp, &flags);
15084 		}
15085 		/*
15086 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
15087 		 * out new segment.  Note that tcp_rexmit should not be
15088 		 * set, otherwise TH_LIMIT_XMIT should not be set.
15089 		 */
15090 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
15091 			if (!tcp->tcp_rexmit) {
15092 				tcp_wput_data(tcp, NULL, B_FALSE);
15093 			} else {
15094 				tcp_ss_rexmit(tcp);
15095 			}
15096 		}
15097 		/*
15098 		 * Adjust tcp_cwnd back to normal value after sending
15099 		 * new data segments.
15100 		 */
15101 		if (flags & TH_LIMIT_XMIT) {
15102 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
15103 			/*
15104 			 * This will restart the timer.  Restarting the
15105 			 * timer is used to avoid a timeout before the
15106 			 * limited transmitted segment's ACK gets back.
15107 			 */
15108 			if (tcp->tcp_xmit_head != NULL)
15109 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15110 		}
15111 
15112 		/* Anything more to do? */
15113 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
15114 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15115 			goto done;
15116 	}
15117 ack_check:
15118 	if (flags & TH_SEND_URP_MARK) {
15119 		ASSERT(tcp->tcp_urp_mark_mp);
15120 		/*
15121 		 * Send up any queued data and then send the mark message
15122 		 */
15123 		if (tcp->tcp_rcv_list != NULL) {
15124 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15125 		}
15126 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15127 
15128 		mp1 = tcp->tcp_urp_mark_mp;
15129 		tcp->tcp_urp_mark_mp = NULL;
15130 #ifdef DEBUG
15131 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15132 		    "tcp_rput: sending zero-length %s %s",
15133 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
15134 		    "MSGNOTMARKNEXT"),
15135 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15136 #endif /* DEBUG */
15137 		putnext(tcp->tcp_rq, mp1);
15138 		flags &= ~TH_SEND_URP_MARK;
15139 	}
15140 	if (flags & TH_ACK_NEEDED) {
15141 		/*
15142 		 * Time to send an ack for some reason.
15143 		 */
15144 		mp1 = tcp_ack_mp(tcp);
15145 
15146 		if (mp1 != NULL) {
15147 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
15148 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
15149 			BUMP_LOCAL(tcp->tcp_obsegs);
15150 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
15151 		}
15152 		if (tcp->tcp_ack_tid != 0) {
15153 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
15154 			tcp->tcp_ack_tid = 0;
15155 		}
15156 	}
15157 	if (flags & TH_ACK_TIMER_NEEDED) {
15158 		/*
15159 		 * Arrange for deferred ACK or push wait timeout.
15160 		 * Start timer if it is not already running.
15161 		 */
15162 		if (tcp->tcp_ack_tid == 0) {
15163 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
15164 			    MSEC_TO_TICK(tcp->tcp_localnet ?
15165 			    (clock_t)tcps->tcps_local_dack_interval :
15166 			    (clock_t)tcps->tcps_deferred_ack_interval));
15167 		}
15168 	}
15169 	if (flags & TH_ORDREL_NEEDED) {
15170 		/*
15171 		 * Send up the ordrel_ind unless we are an eager guy.
15172 		 * In the eager case tcp_rsrv will do this when run
15173 		 * after tcp_accept is done.
15174 		 */
15175 		ASSERT(tcp->tcp_listener == NULL);
15176 		if (tcp->tcp_rcv_list != NULL) {
15177 			/*
15178 			 * Push any mblk(s) enqueued from co processing.
15179 			 */
15180 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15181 		}
15182 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15183 		if ((mp1 = mi_tpi_ordrel_ind()) != NULL) {
15184 			tcp->tcp_ordrel_done = B_TRUE;
15185 			putnext(tcp->tcp_rq, mp1);
15186 			if (tcp->tcp_deferred_clean_death) {
15187 				/*
15188 				 * tcp_clean_death was deferred
15189 				 * for T_ORDREL_IND - do it now
15190 				 */
15191 				(void) tcp_clean_death(tcp,
15192 				    tcp->tcp_client_errno, 20);
15193 				tcp->tcp_deferred_clean_death =	B_FALSE;
15194 			}
15195 		} else {
15196 			/*
15197 			 * Run the orderly release in the
15198 			 * service routine.
15199 			 */
15200 			qenable(tcp->tcp_rq);
15201 			/*
15202 			 * Caveat(XXX): The machine may be so
15203 			 * overloaded that tcp_rsrv() is not scheduled
15204 			 * until after the endpoint has transitioned
15205 			 * to TCPS_TIME_WAIT
15206 			 * and tcp_time_wait_interval expires. Then
15207 			 * tcp_timer() will blow away state in tcp_t
15208 			 * and T_ORDREL_IND will never be delivered
15209 			 * upstream. Unlikely but potentially
15210 			 * a problem.
15211 			 */
15212 		}
15213 	}
15214 done:
15215 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15216 }
15217 
15218 /*
15219  * This function does PAWS protection check. Returns B_TRUE if the
15220  * segment passes the PAWS test, else returns B_FALSE.
15221  */
15222 boolean_t
15223 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15224 {
15225 	uint8_t	flags;
15226 	int	options;
15227 	uint8_t *up;
15228 
15229 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15230 	/*
15231 	 * If timestamp option is aligned nicely, get values inline,
15232 	 * otherwise call general routine to parse.  Only do that
15233 	 * if timestamp is the only option.
15234 	 */
15235 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15236 	    TCPOPT_REAL_TS_LEN &&
15237 	    OK_32PTR((up = ((uint8_t *)tcph) +
15238 	    TCP_MIN_HEADER_LENGTH)) &&
15239 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15240 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15241 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15242 
15243 		options = TCP_OPT_TSTAMP_PRESENT;
15244 	} else {
15245 		if (tcp->tcp_snd_sack_ok) {
15246 			tcpoptp->tcp = tcp;
15247 		} else {
15248 			tcpoptp->tcp = NULL;
15249 		}
15250 		options = tcp_parse_options(tcph, tcpoptp);
15251 	}
15252 
15253 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15254 		/*
15255 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15256 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15257 		 */
15258 		if ((flags & TH_RST) == 0 &&
15259 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15260 		    tcp->tcp_ts_recent)) {
15261 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15262 			    PAWS_TIMEOUT)) {
15263 				/* This segment is not acceptable. */
15264 				return (B_FALSE);
15265 			} else {
15266 				/*
15267 				 * Connection has been idle for
15268 				 * too long.  Reset the timestamp
15269 				 * and assume the segment is valid.
15270 				 */
15271 				tcp->tcp_ts_recent =
15272 				    tcpoptp->tcp_opt_ts_val;
15273 			}
15274 		}
15275 	} else {
15276 		/*
15277 		 * If we don't get a timestamp on every packet, we
15278 		 * figure we can't really trust 'em, so we stop sending
15279 		 * and parsing them.
15280 		 */
15281 		tcp->tcp_snd_ts_ok = B_FALSE;
15282 
15283 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15284 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15285 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15286 		/*
15287 		 * Adjust the tcp_mss accordingly. We also need to
15288 		 * adjust tcp_cwnd here in accordance with the new mss.
15289 		 * But we avoid doing a slow start here so as to not
15290 		 * to lose on the transfer rate built up so far.
15291 		 */
15292 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE);
15293 		if (tcp->tcp_snd_sack_ok) {
15294 			ASSERT(tcp->tcp_sack_info != NULL);
15295 			tcp->tcp_max_sack_blk = 4;
15296 		}
15297 	}
15298 	return (B_TRUE);
15299 }
15300 
15301 /*
15302  * Attach ancillary data to a received TCP segments for the
15303  * ancillary pieces requested by the application that are
15304  * different than they were in the previous data segment.
15305  *
15306  * Save the "current" values once memory allocation is ok so that
15307  * when memory allocation fails we can just wait for the next data segment.
15308  */
15309 static mblk_t *
15310 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15311 {
15312 	struct T_optdata_ind *todi;
15313 	int optlen;
15314 	uchar_t *optptr;
15315 	struct T_opthdr *toh;
15316 	uint_t addflag;	/* Which pieces to add */
15317 	mblk_t *mp1;
15318 
15319 	optlen = 0;
15320 	addflag = 0;
15321 	/* If app asked for pktinfo and the index has changed ... */
15322 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15323 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15324 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15325 		optlen += sizeof (struct T_opthdr) +
15326 		    sizeof (struct in6_pktinfo);
15327 		addflag |= TCP_IPV6_RECVPKTINFO;
15328 	}
15329 	/* If app asked for hoplimit and it has changed ... */
15330 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15331 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15332 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15333 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15334 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15335 	}
15336 	/* If app asked for tclass and it has changed ... */
15337 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15338 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15339 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15340 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15341 		addflag |= TCP_IPV6_RECVTCLASS;
15342 	}
15343 	/*
15344 	 * If app asked for hopbyhop headers and it has changed ...
15345 	 * For security labels, note that (1) security labels can't change on
15346 	 * a connected socket at all, (2) we're connected to at most one peer,
15347 	 * (3) if anything changes, then it must be some other extra option.
15348 	 */
15349 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15350 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15351 	    (ipp->ipp_fields & IPPF_HOPOPTS),
15352 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15353 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
15354 		    tcp->tcp_label_len;
15355 		addflag |= TCP_IPV6_RECVHOPOPTS;
15356 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
15357 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
15358 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15359 			return (mp);
15360 	}
15361 	/* If app asked for dst headers before routing headers ... */
15362 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15363 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15364 	    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15365 	    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15366 		optlen += sizeof (struct T_opthdr) +
15367 		    ipp->ipp_rtdstoptslen;
15368 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15369 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
15370 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
15371 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15372 			return (mp);
15373 	}
15374 	/* If app asked for routing headers and it has changed ... */
15375 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15376 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15377 	    (ipp->ipp_fields & IPPF_RTHDR),
15378 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15379 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15380 		addflag |= TCP_IPV6_RECVRTHDR;
15381 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
15382 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
15383 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15384 			return (mp);
15385 	}
15386 	/* If app asked for dest headers and it has changed ... */
15387 	if ((tcp->tcp_ipv6_recvancillary &
15388 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15389 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15390 	    (ipp->ipp_fields & IPPF_DSTOPTS),
15391 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15392 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15393 		addflag |= TCP_IPV6_RECVDSTOPTS;
15394 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
15395 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
15396 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15397 			return (mp);
15398 	}
15399 
15400 	if (optlen == 0) {
15401 		/* Nothing to add */
15402 		return (mp);
15403 	}
15404 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15405 	if (mp1 == NULL) {
15406 		/*
15407 		 * Defer sending ancillary data until the next TCP segment
15408 		 * arrives.
15409 		 */
15410 		return (mp);
15411 	}
15412 	mp1->b_cont = mp;
15413 	mp = mp1;
15414 	mp->b_wptr += sizeof (*todi) + optlen;
15415 	mp->b_datap->db_type = M_PROTO;
15416 	todi = (struct T_optdata_ind *)mp->b_rptr;
15417 	todi->PRIM_type = T_OPTDATA_IND;
15418 	todi->DATA_flag = 1;	/* MORE data */
15419 	todi->OPT_length = optlen;
15420 	todi->OPT_offset = sizeof (*todi);
15421 	optptr = (uchar_t *)&todi[1];
15422 	/*
15423 	 * If app asked for pktinfo and the index has changed ...
15424 	 * Note that the local address never changes for the connection.
15425 	 */
15426 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15427 		struct in6_pktinfo *pkti;
15428 
15429 		toh = (struct T_opthdr *)optptr;
15430 		toh->level = IPPROTO_IPV6;
15431 		toh->name = IPV6_PKTINFO;
15432 		toh->len = sizeof (*toh) + sizeof (*pkti);
15433 		toh->status = 0;
15434 		optptr += sizeof (*toh);
15435 		pkti = (struct in6_pktinfo *)optptr;
15436 		if (tcp->tcp_ipversion == IPV6_VERSION)
15437 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15438 		else
15439 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15440 			    &pkti->ipi6_addr);
15441 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15442 		optptr += sizeof (*pkti);
15443 		ASSERT(OK_32PTR(optptr));
15444 		/* Save as "last" value */
15445 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15446 	}
15447 	/* If app asked for hoplimit and it has changed ... */
15448 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15449 		toh = (struct T_opthdr *)optptr;
15450 		toh->level = IPPROTO_IPV6;
15451 		toh->name = IPV6_HOPLIMIT;
15452 		toh->len = sizeof (*toh) + sizeof (uint_t);
15453 		toh->status = 0;
15454 		optptr += sizeof (*toh);
15455 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15456 		optptr += sizeof (uint_t);
15457 		ASSERT(OK_32PTR(optptr));
15458 		/* Save as "last" value */
15459 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15460 	}
15461 	/* If app asked for tclass and it has changed ... */
15462 	if (addflag & TCP_IPV6_RECVTCLASS) {
15463 		toh = (struct T_opthdr *)optptr;
15464 		toh->level = IPPROTO_IPV6;
15465 		toh->name = IPV6_TCLASS;
15466 		toh->len = sizeof (*toh) + sizeof (uint_t);
15467 		toh->status = 0;
15468 		optptr += sizeof (*toh);
15469 		*(uint_t *)optptr = ipp->ipp_tclass;
15470 		optptr += sizeof (uint_t);
15471 		ASSERT(OK_32PTR(optptr));
15472 		/* Save as "last" value */
15473 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15474 	}
15475 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15476 		toh = (struct T_opthdr *)optptr;
15477 		toh->level = IPPROTO_IPV6;
15478 		toh->name = IPV6_HOPOPTS;
15479 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15480 		    tcp->tcp_label_len;
15481 		toh->status = 0;
15482 		optptr += sizeof (*toh);
15483 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15484 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15485 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15486 		ASSERT(OK_32PTR(optptr));
15487 		/* Save as last value */
15488 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15489 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15490 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15491 	}
15492 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15493 		toh = (struct T_opthdr *)optptr;
15494 		toh->level = IPPROTO_IPV6;
15495 		toh->name = IPV6_RTHDRDSTOPTS;
15496 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15497 		toh->status = 0;
15498 		optptr += sizeof (*toh);
15499 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15500 		optptr += ipp->ipp_rtdstoptslen;
15501 		ASSERT(OK_32PTR(optptr));
15502 		/* Save as last value */
15503 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15504 		    &tcp->tcp_rtdstoptslen,
15505 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15506 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15507 	}
15508 	if (addflag & TCP_IPV6_RECVRTHDR) {
15509 		toh = (struct T_opthdr *)optptr;
15510 		toh->level = IPPROTO_IPV6;
15511 		toh->name = IPV6_RTHDR;
15512 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15513 		toh->status = 0;
15514 		optptr += sizeof (*toh);
15515 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15516 		optptr += ipp->ipp_rthdrlen;
15517 		ASSERT(OK_32PTR(optptr));
15518 		/* Save as last value */
15519 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15520 		    (ipp->ipp_fields & IPPF_RTHDR),
15521 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15522 	}
15523 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15524 		toh = (struct T_opthdr *)optptr;
15525 		toh->level = IPPROTO_IPV6;
15526 		toh->name = IPV6_DSTOPTS;
15527 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15528 		toh->status = 0;
15529 		optptr += sizeof (*toh);
15530 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15531 		optptr += ipp->ipp_dstoptslen;
15532 		ASSERT(OK_32PTR(optptr));
15533 		/* Save as last value */
15534 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15535 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15536 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15537 	}
15538 	ASSERT(optptr == mp->b_wptr);
15539 	return (mp);
15540 }
15541 
15542 
15543 /*
15544  * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK
15545  * or a "bad" IRE detected by tcp_adapt_ire.
15546  * We can't tell if the failure was due to the laddr or the faddr
15547  * thus we clear out all addresses and ports.
15548  */
15549 static void
15550 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error)
15551 {
15552 	queue_t	*q = tcp->tcp_rq;
15553 	tcph_t	*tcph;
15554 	struct T_error_ack *tea;
15555 	conn_t	*connp = tcp->tcp_connp;
15556 
15557 
15558 	ASSERT(mp->b_datap->db_type == M_PCPROTO);
15559 
15560 	if (mp->b_cont) {
15561 		freemsg(mp->b_cont);
15562 		mp->b_cont = NULL;
15563 	}
15564 	tea = (struct T_error_ack *)mp->b_rptr;
15565 	switch (tea->PRIM_type) {
15566 	case T_BIND_ACK:
15567 		/*
15568 		 * Need to unbind with classifier since we were just told that
15569 		 * our bind succeeded.
15570 		 */
15571 		tcp->tcp_hard_bound = B_FALSE;
15572 		tcp->tcp_hard_binding = B_FALSE;
15573 
15574 		ipcl_hash_remove(connp);
15575 		/* Reuse the mblk if possible */
15576 		ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
15577 		    sizeof (*tea));
15578 		mp->b_rptr = mp->b_datap->db_base;
15579 		mp->b_wptr = mp->b_rptr + sizeof (*tea);
15580 		tea = (struct T_error_ack *)mp->b_rptr;
15581 		tea->PRIM_type = T_ERROR_ACK;
15582 		tea->TLI_error = TSYSERR;
15583 		tea->UNIX_error = error;
15584 		if (tcp->tcp_state >= TCPS_SYN_SENT) {
15585 			tea->ERROR_prim = T_CONN_REQ;
15586 		} else {
15587 			tea->ERROR_prim = O_T_BIND_REQ;
15588 		}
15589 		break;
15590 
15591 	case T_ERROR_ACK:
15592 		if (tcp->tcp_state >= TCPS_SYN_SENT)
15593 			tea->ERROR_prim = T_CONN_REQ;
15594 		break;
15595 	default:
15596 		panic("tcp_bind_failed: unexpected TPI type");
15597 		/*NOTREACHED*/
15598 	}
15599 
15600 	tcp->tcp_state = TCPS_IDLE;
15601 	if (tcp->tcp_ipversion == IPV4_VERSION)
15602 		tcp->tcp_ipha->ipha_src = 0;
15603 	else
15604 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
15605 	/*
15606 	 * Copy of the src addr. in tcp_t is needed since
15607 	 * the lookup funcs. can only look at tcp_t
15608 	 */
15609 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
15610 
15611 	tcph = tcp->tcp_tcph;
15612 	tcph->th_lport[0] = 0;
15613 	tcph->th_lport[1] = 0;
15614 	tcp_bind_hash_remove(tcp);
15615 	bzero(&connp->u_port, sizeof (connp->u_port));
15616 	/* blow away saved option results if any */
15617 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
15618 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
15619 
15620 	conn_delete_ire(tcp->tcp_connp, NULL);
15621 	putnext(q, mp);
15622 }
15623 
15624 /*
15625  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15626  * messages.
15627  */
15628 void
15629 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15630 {
15631 	mblk_t	*mp1;
15632 	uchar_t	*rptr = mp->b_rptr;
15633 	queue_t	*q = tcp->tcp_rq;
15634 	struct T_error_ack *tea;
15635 	uint32_t mss;
15636 	mblk_t *syn_mp;
15637 	mblk_t *mdti;
15638 	mblk_t *lsoi;
15639 	int	retval;
15640 	mblk_t *ire_mp;
15641 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15642 
15643 	switch (mp->b_datap->db_type) {
15644 	case M_PROTO:
15645 	case M_PCPROTO:
15646 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15647 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15648 			break;
15649 		tea = (struct T_error_ack *)rptr;
15650 		switch (tea->PRIM_type) {
15651 		case T_BIND_ACK:
15652 			/*
15653 			 * Adapt Multidata information, if any.  The
15654 			 * following tcp_mdt_update routine will free
15655 			 * the message.
15656 			 */
15657 			if ((mdti = tcp_mdt_info_mp(mp)) != NULL) {
15658 				tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
15659 				    b_rptr)->mdt_capab, B_TRUE);
15660 				freemsg(mdti);
15661 			}
15662 
15663 			/*
15664 			 * Check to update LSO information with tcp, and
15665 			 * tcp_lso_update routine will free the message.
15666 			 */
15667 			if ((lsoi = tcp_lso_info_mp(mp)) != NULL) {
15668 				tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi->
15669 				    b_rptr)->lso_capab);
15670 				freemsg(lsoi);
15671 			}
15672 
15673 			/* Get the IRE, if we had requested for it */
15674 			ire_mp = tcp_ire_mp(mp);
15675 
15676 			if (tcp->tcp_hard_binding) {
15677 				tcp->tcp_hard_binding = B_FALSE;
15678 				tcp->tcp_hard_bound = B_TRUE;
15679 				CL_INET_CONNECT(tcp);
15680 			} else {
15681 				if (ire_mp != NULL)
15682 					freeb(ire_mp);
15683 				goto after_syn_sent;
15684 			}
15685 
15686 			retval = tcp_adapt_ire(tcp, ire_mp);
15687 			if (ire_mp != NULL)
15688 				freeb(ire_mp);
15689 			if (retval == 0) {
15690 				tcp_bind_failed(tcp, mp,
15691 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15692 				    ENETUNREACH : EADDRNOTAVAIL));
15693 				return;
15694 			}
15695 			/*
15696 			 * Don't let an endpoint connect to itself.
15697 			 * Also checked in tcp_connect() but that
15698 			 * check can't handle the case when the
15699 			 * local IP address is INADDR_ANY.
15700 			 */
15701 			if (tcp->tcp_ipversion == IPV4_VERSION) {
15702 				if ((tcp->tcp_ipha->ipha_dst ==
15703 				    tcp->tcp_ipha->ipha_src) &&
15704 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15705 				    tcp->tcp_tcph->th_fport))) {
15706 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15707 					return;
15708 				}
15709 			} else {
15710 				if (IN6_ARE_ADDR_EQUAL(
15711 				    &tcp->tcp_ip6h->ip6_dst,
15712 				    &tcp->tcp_ip6h->ip6_src) &&
15713 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15714 				    tcp->tcp_tcph->th_fport))) {
15715 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15716 					return;
15717 				}
15718 			}
15719 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
15720 			/*
15721 			 * This should not be possible!  Just for
15722 			 * defensive coding...
15723 			 */
15724 			if (tcp->tcp_state != TCPS_SYN_SENT)
15725 				goto after_syn_sent;
15726 
15727 			if (is_system_labeled() &&
15728 			    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
15729 				tcp_bind_failed(tcp, mp, EHOSTUNREACH);
15730 				return;
15731 			}
15732 
15733 			ASSERT(q == tcp->tcp_rq);
15734 			/*
15735 			 * tcp_adapt_ire() does not adjust
15736 			 * for TCP/IP header length.
15737 			 */
15738 			mss = tcp->tcp_mss - tcp->tcp_hdr_len;
15739 
15740 			/*
15741 			 * Just make sure our rwnd is at
15742 			 * least tcp_recv_hiwat_mss * MSS
15743 			 * large, and round up to the nearest
15744 			 * MSS.
15745 			 *
15746 			 * We do the round up here because
15747 			 * we need to get the interface
15748 			 * MTU first before we can do the
15749 			 * round up.
15750 			 */
15751 			tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
15752 			    tcps->tcps_recv_hiwat_minmss * mss);
15753 			q->q_hiwat = tcp->tcp_rwnd;
15754 			tcp_set_ws_value(tcp);
15755 			U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
15756 			    tcp->tcp_tcph->th_win);
15757 			if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
15758 				tcp->tcp_snd_ws_ok = B_TRUE;
15759 
15760 			/*
15761 			 * Set tcp_snd_ts_ok to true
15762 			 * so that tcp_xmit_mp will
15763 			 * include the timestamp
15764 			 * option in the SYN segment.
15765 			 */
15766 			if (tcps->tcps_tstamp_always ||
15767 			    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
15768 				tcp->tcp_snd_ts_ok = B_TRUE;
15769 			}
15770 
15771 			/*
15772 			 * tcp_snd_sack_ok can be set in
15773 			 * tcp_adapt_ire() if the sack metric
15774 			 * is set.  So check it here also.
15775 			 */
15776 			if (tcps->tcps_sack_permitted == 2 ||
15777 			    tcp->tcp_snd_sack_ok) {
15778 				if (tcp->tcp_sack_info == NULL) {
15779 					tcp->tcp_sack_info =
15780 					    kmem_cache_alloc(
15781 					    tcp_sack_info_cache,
15782 					    KM_SLEEP);
15783 				}
15784 				tcp->tcp_snd_sack_ok = B_TRUE;
15785 			}
15786 
15787 			/*
15788 			 * Should we use ECN?  Note that the current
15789 			 * default value (SunOS 5.9) of tcp_ecn_permitted
15790 			 * is 1.  The reason for doing this is that there
15791 			 * are equipments out there that will drop ECN
15792 			 * enabled IP packets.  Setting it to 1 avoids
15793 			 * compatibility problems.
15794 			 */
15795 			if (tcps->tcps_ecn_permitted == 2)
15796 				tcp->tcp_ecn_ok = B_TRUE;
15797 
15798 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15799 			syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
15800 			    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
15801 			if (syn_mp) {
15802 				cred_t *cr;
15803 				pid_t pid;
15804 
15805 				/*
15806 				 * Obtain the credential from the
15807 				 * thread calling connect(); the credential
15808 				 * lives on in the second mblk which
15809 				 * originated from T_CONN_REQ and is echoed
15810 				 * with the T_BIND_ACK from ip.  If none
15811 				 * can be found, default to the creator
15812 				 * of the socket.
15813 				 */
15814 				if (mp->b_cont == NULL ||
15815 				    (cr = DB_CRED(mp->b_cont)) == NULL) {
15816 					cr = tcp->tcp_cred;
15817 					pid = tcp->tcp_cpid;
15818 				} else {
15819 					pid = DB_CPID(mp->b_cont);
15820 				}
15821 
15822 				TCP_RECORD_TRACE(tcp, syn_mp,
15823 				    TCP_TRACE_SEND_PKT);
15824 				mblk_setcred(syn_mp, cr);
15825 				DB_CPID(syn_mp) = pid;
15826 				tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
15827 			}
15828 		after_syn_sent:
15829 			/*
15830 			 * A trailer mblk indicates a waiting client upstream.
15831 			 * We complete here the processing begun in
15832 			 * either tcp_bind() or tcp_connect() by passing
15833 			 * upstream the reply message they supplied.
15834 			 */
15835 			mp1 = mp;
15836 			mp = mp->b_cont;
15837 			freeb(mp1);
15838 			if (mp)
15839 				break;
15840 			return;
15841 		case T_ERROR_ACK:
15842 			if (tcp->tcp_debug) {
15843 				(void) strlog(TCP_MOD_ID, 0, 1,
15844 				    SL_TRACE|SL_ERROR,
15845 				    "tcp_rput_other: case T_ERROR_ACK, "
15846 				    "ERROR_prim == %d",
15847 				    tea->ERROR_prim);
15848 			}
15849 			switch (tea->ERROR_prim) {
15850 			case O_T_BIND_REQ:
15851 			case T_BIND_REQ:
15852 				tcp_bind_failed(tcp, mp,
15853 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15854 				    ENETUNREACH : EADDRNOTAVAIL));
15855 				return;
15856 			case T_UNBIND_REQ:
15857 				tcp->tcp_hard_binding = B_FALSE;
15858 				tcp->tcp_hard_bound = B_FALSE;
15859 				if (mp->b_cont) {
15860 					freemsg(mp->b_cont);
15861 					mp->b_cont = NULL;
15862 				}
15863 				if (tcp->tcp_unbind_pending)
15864 					tcp->tcp_unbind_pending = 0;
15865 				else {
15866 					/* From tcp_ip_unbind() - free */
15867 					freemsg(mp);
15868 					return;
15869 				}
15870 				break;
15871 			case T_SVR4_OPTMGMT_REQ:
15872 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15873 					/* T_OPTMGMT_REQ generated by TCP */
15874 					printf("T_SVR4_OPTMGMT_REQ failed "
15875 					    "%d/%d - dropped (cnt %d)\n",
15876 					    tea->TLI_error, tea->UNIX_error,
15877 					    tcp->tcp_drop_opt_ack_cnt);
15878 					freemsg(mp);
15879 					tcp->tcp_drop_opt_ack_cnt--;
15880 					return;
15881 				}
15882 				break;
15883 			}
15884 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15885 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15886 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15887 				    "- dropped (cnt %d)\n",
15888 				    tea->TLI_error, tea->UNIX_error,
15889 				    tcp->tcp_drop_opt_ack_cnt);
15890 				freemsg(mp);
15891 				tcp->tcp_drop_opt_ack_cnt--;
15892 				return;
15893 			}
15894 			break;
15895 		case T_OPTMGMT_ACK:
15896 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15897 				/* T_OPTMGMT_REQ generated by TCP */
15898 				freemsg(mp);
15899 				tcp->tcp_drop_opt_ack_cnt--;
15900 				return;
15901 			}
15902 			break;
15903 		default:
15904 			break;
15905 		}
15906 		break;
15907 	case M_FLUSH:
15908 		if (*rptr & FLUSHR)
15909 			flushq(q, FLUSHDATA);
15910 		break;
15911 	default:
15912 		/* M_CTL will be directly sent to tcp_icmp_error() */
15913 		ASSERT(DB_TYPE(mp) != M_CTL);
15914 		break;
15915 	}
15916 	/*
15917 	 * Make sure we set this bit before sending the ACK for
15918 	 * bind. Otherwise accept could possibly run and free
15919 	 * this tcp struct.
15920 	 */
15921 	putnext(q, mp);
15922 }
15923 
15924 /*
15925  * Called as the result of a qbufcall or a qtimeout to remedy a failure
15926  * to allocate a T_ordrel_ind in tcp_rsrv().  qenable(q) will make
15927  * tcp_rsrv() try again.
15928  */
15929 static void
15930 tcp_ordrel_kick(void *arg)
15931 {
15932 	conn_t 	*connp = (conn_t *)arg;
15933 	tcp_t	*tcp = connp->conn_tcp;
15934 
15935 	tcp->tcp_ordrelid = 0;
15936 	tcp->tcp_timeout = B_FALSE;
15937 	if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL &&
15938 	    tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15939 		qenable(tcp->tcp_rq);
15940 	}
15941 }
15942 
15943 /* ARGSUSED */
15944 static void
15945 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15946 {
15947 	conn_t	*connp = (conn_t *)arg;
15948 	tcp_t	*tcp = connp->conn_tcp;
15949 	queue_t	*q = tcp->tcp_rq;
15950 	uint_t	thwin;
15951 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15952 
15953 	freeb(mp);
15954 
15955 	TCP_STAT(tcps, tcp_rsrv_calls);
15956 
15957 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15958 		return;
15959 	}
15960 
15961 	if (tcp->tcp_fused) {
15962 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15963 
15964 		ASSERT(tcp->tcp_fused);
15965 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
15966 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
15967 		ASSERT(!TCP_IS_DETACHED(tcp));
15968 		ASSERT(tcp->tcp_connp->conn_sqp ==
15969 		    peer_tcp->tcp_connp->conn_sqp);
15970 
15971 		/*
15972 		 * Normally we would not get backenabled in synchronous
15973 		 * streams mode, but in case this happens, we need to plug
15974 		 * synchronous streams during our drain to prevent a race
15975 		 * with tcp_fuse_rrw() or tcp_fuse_rinfop().
15976 		 */
15977 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
15978 		if (tcp->tcp_rcv_list != NULL)
15979 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
15980 
15981 		if (peer_tcp > tcp) {
15982 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
15983 			mutex_enter(&tcp->tcp_non_sq_lock);
15984 		} else {
15985 			mutex_enter(&tcp->tcp_non_sq_lock);
15986 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
15987 		}
15988 
15989 		if (peer_tcp->tcp_flow_stopped &&
15990 		    (TCP_UNSENT_BYTES(peer_tcp) <=
15991 		    peer_tcp->tcp_xmit_lowater)) {
15992 			tcp_clrqfull(peer_tcp);
15993 		}
15994 		mutex_exit(&peer_tcp->tcp_non_sq_lock);
15995 		mutex_exit(&tcp->tcp_non_sq_lock);
15996 
15997 		TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
15998 		TCP_STAT(tcps, tcp_fusion_backenabled);
15999 		return;
16000 	}
16001 
16002 	if (canputnext(q)) {
16003 		tcp->tcp_rwnd = q->q_hiwat;
16004 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
16005 		    << tcp->tcp_rcv_ws;
16006 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
16007 		/*
16008 		 * Send back a window update immediately if TCP is above
16009 		 * ESTABLISHED state and the increase of the rcv window
16010 		 * that the other side knows is at least 1 MSS after flow
16011 		 * control is lifted.
16012 		 */
16013 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
16014 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
16015 			tcp_xmit_ctl(NULL, tcp,
16016 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
16017 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
16018 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
16019 		}
16020 	}
16021 	/* Handle a failure to allocate a T_ORDREL_IND here */
16022 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
16023 		ASSERT(tcp->tcp_listener == NULL);
16024 		if (tcp->tcp_rcv_list != NULL) {
16025 			(void) tcp_rcv_drain(q, tcp);
16026 		}
16027 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
16028 		mp = mi_tpi_ordrel_ind();
16029 		if (mp) {
16030 			tcp->tcp_ordrel_done = B_TRUE;
16031 			putnext(q, mp);
16032 			if (tcp->tcp_deferred_clean_death) {
16033 				/*
16034 				 * tcp_clean_death was deferred for
16035 				 * T_ORDREL_IND - do it now
16036 				 */
16037 				tcp->tcp_deferred_clean_death = B_FALSE;
16038 				(void) tcp_clean_death(tcp,
16039 				    tcp->tcp_client_errno, 22);
16040 			}
16041 		} else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
16042 			/*
16043 			 * If there isn't already a timer running
16044 			 * start one.  Use a 4 second
16045 			 * timer as a fallback since it can't fail.
16046 			 */
16047 			tcp->tcp_timeout = B_TRUE;
16048 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
16049 			    MSEC_TO_TICK(4000));
16050 		}
16051 	}
16052 }
16053 
16054 /*
16055  * The read side service routine is called mostly when we get back-enabled as a
16056  * result of flow control relief.  Since we don't actually queue anything in
16057  * TCP, we have no data to send out of here.  What we do is clear the receive
16058  * window, and send out a window update.
16059  * This routine is also called to drive an orderly release message upstream
16060  * if the attempt in tcp_rput failed.
16061  */
16062 static void
16063 tcp_rsrv(queue_t *q)
16064 {
16065 	conn_t *connp = Q_TO_CONN(q);
16066 	tcp_t	*tcp = connp->conn_tcp;
16067 	mblk_t	*mp;
16068 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16069 
16070 	/* No code does a putq on the read side */
16071 	ASSERT(q->q_first == NULL);
16072 
16073 	/* Nothing to do for the default queue */
16074 	if (q == tcps->tcps_g_q) {
16075 		return;
16076 	}
16077 
16078 	mp = allocb(0, BPRI_HI);
16079 	if (mp == NULL) {
16080 		/*
16081 		 * We are under memory pressure. Return for now and we
16082 		 * we will be called again later.
16083 		 */
16084 		if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
16085 			/*
16086 			 * If there isn't already a timer running
16087 			 * start one.  Use a 4 second
16088 			 * timer as a fallback since it can't fail.
16089 			 */
16090 			tcp->tcp_timeout = B_TRUE;
16091 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
16092 			    MSEC_TO_TICK(4000));
16093 		}
16094 		return;
16095 	}
16096 	CONN_INC_REF(connp);
16097 	squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp,
16098 	    SQTAG_TCP_RSRV);
16099 }
16100 
16101 /*
16102  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
16103  * We do not allow the receive window to shrink.  After setting rwnd,
16104  * set the flow control hiwat of the stream.
16105  *
16106  * This function is called in 2 cases:
16107  *
16108  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
16109  *    connection (passive open) and in tcp_rput_data() for active connect.
16110  *    This is called after tcp_mss_set() when the desired MSS value is known.
16111  *    This makes sure that our window size is a mutiple of the other side's
16112  *    MSS.
16113  * 2) Handling SO_RCVBUF option.
16114  *
16115  * It is ASSUMED that the requested size is a multiple of the current MSS.
16116  *
16117  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
16118  * user requests so.
16119  */
16120 static int
16121 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
16122 {
16123 	uint32_t	mss = tcp->tcp_mss;
16124 	uint32_t	old_max_rwnd;
16125 	uint32_t	max_transmittable_rwnd;
16126 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
16127 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16128 
16129 	if (tcp->tcp_fused) {
16130 		size_t sth_hiwat;
16131 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
16132 
16133 		ASSERT(peer_tcp != NULL);
16134 		/*
16135 		 * Record the stream head's high water mark for
16136 		 * this endpoint; this is used for flow-control
16137 		 * purposes in tcp_fuse_output().
16138 		 */
16139 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
16140 		if (!tcp_detached)
16141 			(void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat);
16142 
16143 		/*
16144 		 * In the fusion case, the maxpsz stream head value of
16145 		 * our peer is set according to its send buffer size
16146 		 * and our receive buffer size; since the latter may
16147 		 * have changed we need to update the peer's maxpsz.
16148 		 */
16149 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
16150 		return (rwnd);
16151 	}
16152 
16153 	if (tcp_detached)
16154 		old_max_rwnd = tcp->tcp_rwnd;
16155 	else
16156 		old_max_rwnd = tcp->tcp_rq->q_hiwat;
16157 
16158 	/*
16159 	 * Insist on a receive window that is at least
16160 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
16161 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
16162 	 * and delayed acknowledgement.
16163 	 */
16164 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
16165 
16166 	/*
16167 	 * If window size info has already been exchanged, TCP should not
16168 	 * shrink the window.  Shrinking window is doable if done carefully.
16169 	 * We may add that support later.  But so far there is not a real
16170 	 * need to do that.
16171 	 */
16172 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
16173 		/* MSS may have changed, do a round up again. */
16174 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
16175 	}
16176 
16177 	/*
16178 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
16179 	 * can be applied even before the window scale option is decided.
16180 	 */
16181 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
16182 	if (rwnd > max_transmittable_rwnd) {
16183 		rwnd = max_transmittable_rwnd -
16184 		    (max_transmittable_rwnd % mss);
16185 		if (rwnd < mss)
16186 			rwnd = max_transmittable_rwnd;
16187 		/*
16188 		 * If we're over the limit we may have to back down tcp_rwnd.
16189 		 * The increment below won't work for us. So we set all three
16190 		 * here and the increment below will have no effect.
16191 		 */
16192 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
16193 	}
16194 	if (tcp->tcp_localnet) {
16195 		tcp->tcp_rack_abs_max =
16196 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
16197 	} else {
16198 		/*
16199 		 * For a remote host on a different subnet (through a router),
16200 		 * we ack every other packet to be conforming to RFC1122.
16201 		 * tcp_deferred_acks_max is default to 2.
16202 		 */
16203 		tcp->tcp_rack_abs_max =
16204 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
16205 	}
16206 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
16207 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
16208 	else
16209 		tcp->tcp_rack_cur_max = 0;
16210 	/*
16211 	 * Increment the current rwnd by the amount the maximum grew (we
16212 	 * can not overwrite it since we might be in the middle of a
16213 	 * connection.)
16214 	 */
16215 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
16216 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
16217 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
16218 		tcp->tcp_cwnd_max = rwnd;
16219 
16220 	if (tcp_detached)
16221 		return (rwnd);
16222 	/*
16223 	 * We set the maximum receive window into rq->q_hiwat.
16224 	 * This is not actually used for flow control.
16225 	 */
16226 	tcp->tcp_rq->q_hiwat = rwnd;
16227 	/*
16228 	 * Set the Stream head high water mark. This doesn't have to be
16229 	 * here, since we are simply using default values, but we would
16230 	 * prefer to choose these values algorithmically, with a likely
16231 	 * relationship to rwnd.
16232 	 */
16233 	(void) mi_set_sth_hiwat(tcp->tcp_rq,
16234 	    MAX(rwnd, tcps->tcps_sth_rcv_hiwat));
16235 	return (rwnd);
16236 }
16237 
16238 /*
16239  * Return SNMP stuff in buffer in mpdata.
16240  */
16241 mblk_t *
16242 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
16243 {
16244 	mblk_t			*mpdata;
16245 	mblk_t			*mp_conn_ctl = NULL;
16246 	mblk_t			*mp_conn_tail;
16247 	mblk_t			*mp_attr_ctl = NULL;
16248 	mblk_t			*mp_attr_tail;
16249 	mblk_t			*mp6_conn_ctl = NULL;
16250 	mblk_t			*mp6_conn_tail;
16251 	mblk_t			*mp6_attr_ctl = NULL;
16252 	mblk_t			*mp6_attr_tail;
16253 	struct opthdr		*optp;
16254 	mib2_tcpConnEntry_t	tce;
16255 	mib2_tcp6ConnEntry_t	tce6;
16256 	mib2_transportMLPEntry_t mlp;
16257 	connf_t			*connfp;
16258 	int			i;
16259 	boolean_t 		ispriv;
16260 	zoneid_t 		zoneid;
16261 	int			v4_conn_idx;
16262 	int			v6_conn_idx;
16263 	conn_t			*connp = Q_TO_CONN(q);
16264 	tcp_stack_t		*tcps;
16265 	ip_stack_t		*ipst;
16266 	mblk_t			*mp2ctl;
16267 
16268 	/*
16269 	 * make a copy of the original message
16270 	 */
16271 	mp2ctl = copymsg(mpctl);
16272 
16273 	if (mpctl == NULL ||
16274 	    (mpdata = mpctl->b_cont) == NULL ||
16275 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
16276 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
16277 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
16278 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
16279 		freemsg(mp_conn_ctl);
16280 		freemsg(mp_attr_ctl);
16281 		freemsg(mp6_conn_ctl);
16282 		freemsg(mp6_attr_ctl);
16283 		freemsg(mpctl);
16284 		freemsg(mp2ctl);
16285 		return (NULL);
16286 	}
16287 
16288 	ipst = connp->conn_netstack->netstack_ip;
16289 	tcps = connp->conn_netstack->netstack_tcp;
16290 
16291 	/* build table of connections -- need count in fixed part */
16292 	SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4);   /* vanj */
16293 	SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min);
16294 	SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max);
16295 	SET_MIB(tcps->tcps_mib.tcpMaxConn, -1);
16296 	SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0);
16297 
16298 	ispriv =
16299 	    secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
16300 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16301 
16302 	v4_conn_idx = v6_conn_idx = 0;
16303 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
16304 
16305 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16306 		ipst = tcps->tcps_netstack->netstack_ip;
16307 
16308 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16309 
16310 		connp = NULL;
16311 
16312 		while ((connp =
16313 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16314 			tcp_t *tcp;
16315 			boolean_t needattr;
16316 
16317 			if (connp->conn_zoneid != zoneid)
16318 				continue;	/* not in this zone */
16319 
16320 			tcp = connp->conn_tcp;
16321 			UPDATE_MIB(&tcps->tcps_mib,
16322 			    tcpHCInSegs, tcp->tcp_ibsegs);
16323 			tcp->tcp_ibsegs = 0;
16324 			UPDATE_MIB(&tcps->tcps_mib,
16325 			    tcpHCOutSegs, tcp->tcp_obsegs);
16326 			tcp->tcp_obsegs = 0;
16327 
16328 			tce6.tcp6ConnState = tce.tcpConnState =
16329 			    tcp_snmp_state(tcp);
16330 			if (tce.tcpConnState == MIB2_TCP_established ||
16331 			    tce.tcpConnState == MIB2_TCP_closeWait)
16332 				BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab);
16333 
16334 			needattr = B_FALSE;
16335 			bzero(&mlp, sizeof (mlp));
16336 			if (connp->conn_mlp_type != mlptSingle) {
16337 				if (connp->conn_mlp_type == mlptShared ||
16338 				    connp->conn_mlp_type == mlptBoth)
16339 					mlp.tme_flags |= MIB2_TMEF_SHARED;
16340 				if (connp->conn_mlp_type == mlptPrivate ||
16341 				    connp->conn_mlp_type == mlptBoth)
16342 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
16343 				needattr = B_TRUE;
16344 			}
16345 			if (connp->conn_peercred != NULL) {
16346 				ts_label_t *tsl;
16347 
16348 				tsl = crgetlabel(connp->conn_peercred);
16349 				mlp.tme_doi = label2doi(tsl);
16350 				mlp.tme_label = *label2bslabel(tsl);
16351 				needattr = B_TRUE;
16352 			}
16353 
16354 			/* Create a message to report on IPv6 entries */
16355 			if (tcp->tcp_ipversion == IPV6_VERSION) {
16356 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
16357 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
16358 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
16359 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
16360 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
16361 			/* Don't want just anybody seeing these... */
16362 			if (ispriv) {
16363 				tce6.tcp6ConnEntryInfo.ce_snxt =
16364 				    tcp->tcp_snxt;
16365 				tce6.tcp6ConnEntryInfo.ce_suna =
16366 				    tcp->tcp_suna;
16367 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16368 				    tcp->tcp_rnxt;
16369 				tce6.tcp6ConnEntryInfo.ce_rack =
16370 				    tcp->tcp_rack;
16371 			} else {
16372 				/*
16373 				 * Netstat, unfortunately, uses this to
16374 				 * get send/receive queue sizes.  How to fix?
16375 				 * Why not compute the difference only?
16376 				 */
16377 				tce6.tcp6ConnEntryInfo.ce_snxt =
16378 				    tcp->tcp_snxt - tcp->tcp_suna;
16379 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
16380 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16381 				    tcp->tcp_rnxt - tcp->tcp_rack;
16382 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
16383 			}
16384 
16385 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16386 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16387 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
16388 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
16389 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
16390 
16391 			tce6.tcp6ConnCreationProcess =
16392 			    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16393 			    tcp->tcp_cpid;
16394 			tce6.tcp6ConnCreationTime = tcp->tcp_open_time;
16395 
16396 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
16397 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
16398 
16399 			mlp.tme_connidx = v6_conn_idx++;
16400 			if (needattr)
16401 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
16402 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
16403 			}
16404 			/*
16405 			 * Create an IPv4 table entry for IPv4 entries and also
16406 			 * for IPv6 entries which are bound to in6addr_any
16407 			 * but don't have IPV6_V6ONLY set.
16408 			 * (i.e. anything an IPv4 peer could connect to)
16409 			 */
16410 			if (tcp->tcp_ipversion == IPV4_VERSION ||
16411 			    (tcp->tcp_state <= TCPS_LISTEN &&
16412 			    !tcp->tcp_connp->conn_ipv6_v6only &&
16413 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
16414 				if (tcp->tcp_ipversion == IPV6_VERSION) {
16415 					tce.tcpConnRemAddress = INADDR_ANY;
16416 					tce.tcpConnLocalAddress = INADDR_ANY;
16417 				} else {
16418 					tce.tcpConnRemAddress =
16419 					    tcp->tcp_remote;
16420 					tce.tcpConnLocalAddress =
16421 					    tcp->tcp_ip_src;
16422 				}
16423 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
16424 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
16425 				/* Don't want just anybody seeing these... */
16426 				if (ispriv) {
16427 					tce.tcpConnEntryInfo.ce_snxt =
16428 					    tcp->tcp_snxt;
16429 					tce.tcpConnEntryInfo.ce_suna =
16430 					    tcp->tcp_suna;
16431 					tce.tcpConnEntryInfo.ce_rnxt =
16432 					    tcp->tcp_rnxt;
16433 					tce.tcpConnEntryInfo.ce_rack =
16434 					    tcp->tcp_rack;
16435 				} else {
16436 					/*
16437 					 * Netstat, unfortunately, uses this to
16438 					 * get send/receive queue sizes.  How
16439 					 * to fix?
16440 					 * Why not compute the difference only?
16441 					 */
16442 					tce.tcpConnEntryInfo.ce_snxt =
16443 					    tcp->tcp_snxt - tcp->tcp_suna;
16444 					tce.tcpConnEntryInfo.ce_suna = 0;
16445 					tce.tcpConnEntryInfo.ce_rnxt =
16446 					    tcp->tcp_rnxt - tcp->tcp_rack;
16447 					tce.tcpConnEntryInfo.ce_rack = 0;
16448 				}
16449 
16450 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16451 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16452 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
16453 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
16454 				tce.tcpConnEntryInfo.ce_state =
16455 				    tcp->tcp_state;
16456 
16457 				tce.tcpConnCreationProcess =
16458 				    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16459 				    tcp->tcp_cpid;
16460 				tce.tcpConnCreationTime = tcp->tcp_open_time;
16461 
16462 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
16463 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
16464 
16465 				mlp.tme_connidx = v4_conn_idx++;
16466 				if (needattr)
16467 					(void) snmp_append_data2(
16468 					    mp_attr_ctl->b_cont,
16469 					    &mp_attr_tail, (char *)&mlp,
16470 					    sizeof (mlp));
16471 			}
16472 		}
16473 	}
16474 
16475 	/* fixed length structure for IPv4 and IPv6 counters */
16476 	SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
16477 	SET_MIB(tcps->tcps_mib.tcp6ConnTableSize,
16478 	    sizeof (mib2_tcp6ConnEntry_t));
16479 	/* synchronize 32- and 64-bit counters */
16480 	SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs);
16481 	SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs);
16482 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16483 	optp->level = MIB2_TCP;
16484 	optp->name = 0;
16485 	(void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib,
16486 	    sizeof (tcps->tcps_mib));
16487 	optp->len = msgdsize(mpdata);
16488 	qreply(q, mpctl);
16489 
16490 	/* table of connections... */
16491 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16492 	    sizeof (struct T_optmgmt_ack)];
16493 	optp->level = MIB2_TCP;
16494 	optp->name = MIB2_TCP_CONN;
16495 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16496 	qreply(q, mp_conn_ctl);
16497 
16498 	/* table of MLP attributes... */
16499 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16500 	    sizeof (struct T_optmgmt_ack)];
16501 	optp->level = MIB2_TCP;
16502 	optp->name = EXPER_XPORT_MLP;
16503 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16504 	if (optp->len == 0)
16505 		freemsg(mp_attr_ctl);
16506 	else
16507 		qreply(q, mp_attr_ctl);
16508 
16509 	/* table of IPv6 connections... */
16510 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16511 	    sizeof (struct T_optmgmt_ack)];
16512 	optp->level = MIB2_TCP6;
16513 	optp->name = MIB2_TCP6_CONN;
16514 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16515 	qreply(q, mp6_conn_ctl);
16516 
16517 	/* table of IPv6 MLP attributes... */
16518 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16519 	    sizeof (struct T_optmgmt_ack)];
16520 	optp->level = MIB2_TCP6;
16521 	optp->name = EXPER_XPORT_MLP;
16522 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16523 	if (optp->len == 0)
16524 		freemsg(mp6_attr_ctl);
16525 	else
16526 		qreply(q, mp6_attr_ctl);
16527 	return (mp2ctl);
16528 }
16529 
16530 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16531 /* ARGSUSED */
16532 int
16533 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16534 {
16535 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16536 
16537 	switch (level) {
16538 	case MIB2_TCP:
16539 		switch (name) {
16540 		case 13:
16541 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16542 				return (0);
16543 			/* TODO: delete entry defined by tce */
16544 			return (1);
16545 		default:
16546 			return (0);
16547 		}
16548 	default:
16549 		return (1);
16550 	}
16551 }
16552 
16553 /* Translate TCP state to MIB2 TCP state. */
16554 static int
16555 tcp_snmp_state(tcp_t *tcp)
16556 {
16557 	if (tcp == NULL)
16558 		return (0);
16559 
16560 	switch (tcp->tcp_state) {
16561 	case TCPS_CLOSED:
16562 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16563 	case TCPS_BOUND:
16564 		return (MIB2_TCP_closed);
16565 	case TCPS_LISTEN:
16566 		return (MIB2_TCP_listen);
16567 	case TCPS_SYN_SENT:
16568 		return (MIB2_TCP_synSent);
16569 	case TCPS_SYN_RCVD:
16570 		return (MIB2_TCP_synReceived);
16571 	case TCPS_ESTABLISHED:
16572 		return (MIB2_TCP_established);
16573 	case TCPS_CLOSE_WAIT:
16574 		return (MIB2_TCP_closeWait);
16575 	case TCPS_FIN_WAIT_1:
16576 		return (MIB2_TCP_finWait1);
16577 	case TCPS_CLOSING:
16578 		return (MIB2_TCP_closing);
16579 	case TCPS_LAST_ACK:
16580 		return (MIB2_TCP_lastAck);
16581 	case TCPS_FIN_WAIT_2:
16582 		return (MIB2_TCP_finWait2);
16583 	case TCPS_TIME_WAIT:
16584 		return (MIB2_TCP_timeWait);
16585 	default:
16586 		return (0);
16587 	}
16588 }
16589 
16590 static char tcp_report_header[] =
16591 	"TCP     " MI_COL_HDRPAD_STR
16592 	"zone dest            snxt     suna     "
16593 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
16594 	"recent   [lport,fport] state";
16595 
16596 /*
16597  * TCP status report triggered via the Named Dispatch mechanism.
16598  */
16599 /* ARGSUSED */
16600 static void
16601 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
16602     cred_t *cr)
16603 {
16604 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
16605 	boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0;
16606 	char cflag;
16607 	in6_addr_t	v6dst;
16608 	char buf[80];
16609 	uint_t print_len, buf_len;
16610 
16611 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16612 	if (buf_len <= 0)
16613 		return;
16614 
16615 	if (hashval >= 0)
16616 		(void) sprintf(hash, "%03d ", hashval);
16617 	else
16618 		hash[0] = '\0';
16619 
16620 	/*
16621 	 * Note that we use the remote address in the tcp_b  structure.
16622 	 * This means that it will print out the real destination address,
16623 	 * not the next hop's address if source routing is used.  This
16624 	 * avoid the confusion on the output because user may not
16625 	 * know that source routing is used for a connection.
16626 	 */
16627 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16628 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
16629 	} else {
16630 		v6dst = tcp->tcp_remote_v6;
16631 	}
16632 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16633 	/*
16634 	 * the ispriv checks are so that normal users cannot determine
16635 	 * sequence number information using NDD.
16636 	 */
16637 
16638 	if (TCP_IS_DETACHED(tcp))
16639 		cflag = '*';
16640 	else
16641 		cflag = ' ';
16642 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16643 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
16644 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
16645 	    hash,
16646 	    (void *)tcp,
16647 	    tcp->tcp_connp->conn_zoneid,
16648 	    addrbuf,
16649 	    (ispriv) ? tcp->tcp_snxt : 0,
16650 	    (ispriv) ? tcp->tcp_suna : 0,
16651 	    tcp->tcp_swnd,
16652 	    (ispriv) ? tcp->tcp_rnxt : 0,
16653 	    (ispriv) ? tcp->tcp_rack : 0,
16654 	    tcp->tcp_rwnd,
16655 	    tcp->tcp_rto,
16656 	    tcp->tcp_mss,
16657 	    tcp->tcp_snd_ws_ok,
16658 	    tcp->tcp_snd_ws,
16659 	    tcp->tcp_rcv_ws,
16660 	    tcp->tcp_snd_ts_ok,
16661 	    tcp->tcp_ts_recent,
16662 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
16663 	if (print_len < buf_len) {
16664 		((mblk_t *)mp)->b_wptr += print_len;
16665 	} else {
16666 		((mblk_t *)mp)->b_wptr += buf_len;
16667 	}
16668 }
16669 
16670 /*
16671  * TCP status report (for listeners only) triggered via the Named Dispatch
16672  * mechanism.
16673  */
16674 /* ARGSUSED */
16675 static void
16676 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
16677 {
16678 	char addrbuf[INET6_ADDRSTRLEN];
16679 	in6_addr_t	v6dst;
16680 	uint_t print_len, buf_len;
16681 
16682 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16683 	if (buf_len <= 0)
16684 		return;
16685 
16686 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16687 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
16688 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16689 	} else {
16690 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
16691 		    addrbuf, sizeof (addrbuf));
16692 	}
16693 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16694 	    "%03d "
16695 	    MI_COL_PTRFMT_STR
16696 	    "%d %s %05u %08u %d/%d/%d%c\n",
16697 	    hashval, (void *)tcp,
16698 	    tcp->tcp_connp->conn_zoneid,
16699 	    addrbuf,
16700 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
16701 	    tcp->tcp_conn_req_seqnum,
16702 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
16703 	    tcp->tcp_conn_req_max,
16704 	    tcp->tcp_syn_defense ? '*' : ' ');
16705 	if (print_len < buf_len) {
16706 		((mblk_t *)mp)->b_wptr += print_len;
16707 	} else {
16708 		((mblk_t *)mp)->b_wptr += buf_len;
16709 	}
16710 }
16711 
16712 /* TCP status report triggered via the Named Dispatch mechanism. */
16713 /* ARGSUSED */
16714 static int
16715 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16716 {
16717 	tcp_t	*tcp;
16718 	int	i;
16719 	conn_t	*connp;
16720 	connf_t	*connfp;
16721 	zoneid_t zoneid;
16722 	tcp_stack_t *tcps;
16723 	ip_stack_t *ipst;
16724 
16725 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16726 	tcps = Q_TO_TCP(q)->tcp_tcps;
16727 
16728 	/*
16729 	 * Because of the ndd constraint, at most we can have 64K buffer
16730 	 * to put in all TCP info.  So to be more efficient, just
16731 	 * allocate a 64K buffer here, assuming we need that large buffer.
16732 	 * This may be a problem as any user can read tcp_status.  Therefore
16733 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
16734 	 * This should be OK as normal users should not do this too often.
16735 	 */
16736 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16737 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16738 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16739 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16740 			return (0);
16741 		}
16742 	}
16743 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16744 		/* The following may work even if we cannot get a large buf. */
16745 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16746 		return (0);
16747 	}
16748 
16749 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
16750 
16751 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16752 
16753 		ipst = tcps->tcps_netstack->netstack_ip;
16754 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16755 
16756 		connp = NULL;
16757 
16758 		while ((connp =
16759 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16760 			tcp = connp->conn_tcp;
16761 			if (zoneid != GLOBAL_ZONEID &&
16762 			    zoneid != connp->conn_zoneid)
16763 				continue;
16764 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
16765 			    cr);
16766 		}
16767 
16768 	}
16769 
16770 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16771 	return (0);
16772 }
16773 
16774 /* TCP status report triggered via the Named Dispatch mechanism. */
16775 /* ARGSUSED */
16776 static int
16777 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16778 {
16779 	tf_t	*tbf;
16780 	tcp_t	*tcp;
16781 	int	i;
16782 	zoneid_t zoneid;
16783 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
16784 
16785 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16786 
16787 	/* Refer to comments in tcp_status_report(). */
16788 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16789 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16790 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16791 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16792 			return (0);
16793 		}
16794 	}
16795 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16796 		/* The following may work even if we cannot get a large buf. */
16797 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16798 		return (0);
16799 	}
16800 
16801 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16802 
16803 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
16804 		tbf = &tcps->tcps_bind_fanout[i];
16805 		mutex_enter(&tbf->tf_lock);
16806 		for (tcp = tbf->tf_tcp; tcp != NULL;
16807 		    tcp = tcp->tcp_bind_hash) {
16808 			if (zoneid != GLOBAL_ZONEID &&
16809 			    zoneid != tcp->tcp_connp->conn_zoneid)
16810 				continue;
16811 			CONN_INC_REF(tcp->tcp_connp);
16812 			tcp_report_item(mp->b_cont, tcp, i,
16813 			    Q_TO_TCP(q), cr);
16814 			CONN_DEC_REF(tcp->tcp_connp);
16815 		}
16816 		mutex_exit(&tbf->tf_lock);
16817 	}
16818 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16819 	return (0);
16820 }
16821 
16822 /* TCP status report triggered via the Named Dispatch mechanism. */
16823 /* ARGSUSED */
16824 static int
16825 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16826 {
16827 	connf_t	*connfp;
16828 	conn_t	*connp;
16829 	tcp_t	*tcp;
16830 	int	i;
16831 	zoneid_t zoneid;
16832 	tcp_stack_t *tcps;
16833 	ip_stack_t	*ipst;
16834 
16835 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16836 	tcps = Q_TO_TCP(q)->tcp_tcps;
16837 
16838 	/* Refer to comments in tcp_status_report(). */
16839 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16840 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16841 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16842 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16843 			return (0);
16844 		}
16845 	}
16846 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16847 		/* The following may work even if we cannot get a large buf. */
16848 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16849 		return (0);
16850 	}
16851 
16852 	(void) mi_mpprintf(mp,
16853 	    "    TCP    " MI_COL_HDRPAD_STR
16854 	    "zone IP addr         port  seqnum   backlog (q0/q/max)");
16855 
16856 	ipst = tcps->tcps_netstack->netstack_ip;
16857 
16858 	for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) {
16859 		connfp = &ipst->ips_ipcl_bind_fanout[i];
16860 		connp = NULL;
16861 		while ((connp =
16862 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16863 			tcp = connp->conn_tcp;
16864 			if (zoneid != GLOBAL_ZONEID &&
16865 			    zoneid != connp->conn_zoneid)
16866 				continue;
16867 			tcp_report_listener(mp->b_cont, tcp, i);
16868 		}
16869 	}
16870 
16871 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16872 	return (0);
16873 }
16874 
16875 /* TCP status report triggered via the Named Dispatch mechanism. */
16876 /* ARGSUSED */
16877 static int
16878 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16879 {
16880 	connf_t	*connfp;
16881 	conn_t	*connp;
16882 	tcp_t	*tcp;
16883 	int	i;
16884 	zoneid_t zoneid;
16885 	tcp_stack_t *tcps;
16886 	ip_stack_t *ipst;
16887 
16888 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16889 	tcps = Q_TO_TCP(q)->tcp_tcps;
16890 	ipst = tcps->tcps_netstack->netstack_ip;
16891 
16892 	/* Refer to comments in tcp_status_report(). */
16893 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16894 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16895 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16896 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16897 			return (0);
16898 		}
16899 	}
16900 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16901 		/* The following may work even if we cannot get a large buf. */
16902 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16903 		return (0);
16904 	}
16905 
16906 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
16907 	    ipst->ips_ipcl_conn_fanout_size);
16908 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16909 
16910 	for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) {
16911 		connfp =  &ipst->ips_ipcl_conn_fanout[i];
16912 		connp = NULL;
16913 		while ((connp =
16914 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16915 			tcp = connp->conn_tcp;
16916 			if (zoneid != GLOBAL_ZONEID &&
16917 			    zoneid != connp->conn_zoneid)
16918 				continue;
16919 			tcp_report_item(mp->b_cont, tcp, i,
16920 			    Q_TO_TCP(q), cr);
16921 		}
16922 	}
16923 
16924 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16925 	return (0);
16926 }
16927 
16928 /* TCP status report triggered via the Named Dispatch mechanism. */
16929 /* ARGSUSED */
16930 static int
16931 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16932 {
16933 	tf_t	*tf;
16934 	tcp_t	*tcp;
16935 	int	i;
16936 	zoneid_t zoneid;
16937 	tcp_stack_t	*tcps;
16938 
16939 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16940 	tcps = Q_TO_TCP(q)->tcp_tcps;
16941 
16942 	/* Refer to comments in tcp_status_report(). */
16943 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16944 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16945 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16946 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16947 			return (0);
16948 		}
16949 	}
16950 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16951 		/* The following may work even if we cannot get a large buf. */
16952 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16953 		return (0);
16954 	}
16955 
16956 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16957 
16958 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
16959 		tf = &tcps->tcps_acceptor_fanout[i];
16960 		mutex_enter(&tf->tf_lock);
16961 		for (tcp = tf->tf_tcp; tcp != NULL;
16962 		    tcp = tcp->tcp_acceptor_hash) {
16963 			if (zoneid != GLOBAL_ZONEID &&
16964 			    zoneid != tcp->tcp_connp->conn_zoneid)
16965 				continue;
16966 			tcp_report_item(mp->b_cont, tcp, i,
16967 			    Q_TO_TCP(q), cr);
16968 		}
16969 		mutex_exit(&tf->tf_lock);
16970 	}
16971 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16972 	return (0);
16973 }
16974 
16975 /*
16976  * tcp_timer is the timer service routine.  It handles the retransmission,
16977  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
16978  * from the state of the tcp instance what kind of action needs to be done
16979  * at the time it is called.
16980  */
16981 static void
16982 tcp_timer(void *arg)
16983 {
16984 	mblk_t		*mp;
16985 	clock_t		first_threshold;
16986 	clock_t		second_threshold;
16987 	clock_t		ms;
16988 	uint32_t	mss;
16989 	conn_t		*connp = (conn_t *)arg;
16990 	tcp_t		*tcp = connp->conn_tcp;
16991 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16992 
16993 	tcp->tcp_timer_tid = 0;
16994 
16995 	if (tcp->tcp_fused)
16996 		return;
16997 
16998 	first_threshold =  tcp->tcp_first_timer_threshold;
16999 	second_threshold = tcp->tcp_second_timer_threshold;
17000 	switch (tcp->tcp_state) {
17001 	case TCPS_IDLE:
17002 	case TCPS_BOUND:
17003 	case TCPS_LISTEN:
17004 		return;
17005 	case TCPS_SYN_RCVD: {
17006 		tcp_t	*listener = tcp->tcp_listener;
17007 
17008 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
17009 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
17010 			/* it's our first timeout */
17011 			tcp->tcp_syn_rcvd_timeout = 1;
17012 			mutex_enter(&listener->tcp_eager_lock);
17013 			listener->tcp_syn_rcvd_timeout++;
17014 			if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) {
17015 				/*
17016 				 * Make this eager available for drop if we
17017 				 * need to drop one to accomodate a new
17018 				 * incoming SYN request.
17019 				 */
17020 				MAKE_DROPPABLE(listener, tcp);
17021 			}
17022 			if (!listener->tcp_syn_defense &&
17023 			    (listener->tcp_syn_rcvd_timeout >
17024 			    (tcps->tcps_conn_req_max_q0 >> 2)) &&
17025 			    (tcps->tcps_conn_req_max_q0 > 200)) {
17026 				/* We may be under attack. Put on a defense. */
17027 				listener->tcp_syn_defense = B_TRUE;
17028 				cmn_err(CE_WARN, "High TCP connect timeout "
17029 				    "rate! System (port %d) may be under a "
17030 				    "SYN flood attack!",
17031 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
17032 
17033 				listener->tcp_ip_addr_cache = kmem_zalloc(
17034 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
17035 				    KM_NOSLEEP);
17036 			}
17037 			mutex_exit(&listener->tcp_eager_lock);
17038 		} else if (listener != NULL) {
17039 			mutex_enter(&listener->tcp_eager_lock);
17040 			tcp->tcp_syn_rcvd_timeout++;
17041 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
17042 			    !tcp->tcp_closemp_used) {
17043 				/*
17044 				 * This is our second timeout. Put the tcp in
17045 				 * the list of droppable eagers to allow it to
17046 				 * be dropped, if needed. We don't check
17047 				 * whether tcp_dontdrop is set or not to
17048 				 * protect ourselve from a SYN attack where a
17049 				 * remote host can spoof itself as one of the
17050 				 * good IP source and continue to hold
17051 				 * resources too long.
17052 				 */
17053 				MAKE_DROPPABLE(listener, tcp);
17054 			}
17055 			mutex_exit(&listener->tcp_eager_lock);
17056 		}
17057 	}
17058 		/* FALLTHRU */
17059 	case TCPS_SYN_SENT:
17060 		first_threshold =  tcp->tcp_first_ctimer_threshold;
17061 		second_threshold = tcp->tcp_second_ctimer_threshold;
17062 		break;
17063 	case TCPS_ESTABLISHED:
17064 	case TCPS_FIN_WAIT_1:
17065 	case TCPS_CLOSING:
17066 	case TCPS_CLOSE_WAIT:
17067 	case TCPS_LAST_ACK:
17068 		/* If we have data to rexmit */
17069 		if (tcp->tcp_suna != tcp->tcp_snxt) {
17070 			clock_t	time_to_wait;
17071 
17072 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans);
17073 			if (!tcp->tcp_xmit_head)
17074 				break;
17075 			time_to_wait = lbolt -
17076 			    (clock_t)tcp->tcp_xmit_head->b_prev;
17077 			time_to_wait = tcp->tcp_rto -
17078 			    TICK_TO_MSEC(time_to_wait);
17079 			/*
17080 			 * If the timer fires too early, 1 clock tick earlier,
17081 			 * restart the timer.
17082 			 */
17083 			if (time_to_wait > msec_per_tick) {
17084 				TCP_STAT(tcps, tcp_timer_fire_early);
17085 				TCP_TIMER_RESTART(tcp, time_to_wait);
17086 				return;
17087 			}
17088 			/*
17089 			 * When we probe zero windows, we force the swnd open.
17090 			 * If our peer acks with a closed window swnd will be
17091 			 * set to zero by tcp_rput(). As long as we are
17092 			 * receiving acks tcp_rput will
17093 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
17094 			 * first and second interval actions.  NOTE: the timer
17095 			 * interval is allowed to continue its exponential
17096 			 * backoff.
17097 			 */
17098 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
17099 				if (tcp->tcp_debug) {
17100 					(void) strlog(TCP_MOD_ID, 0, 1,
17101 					    SL_TRACE, "tcp_timer: zero win");
17102 				}
17103 			} else {
17104 				/*
17105 				 * After retransmission, we need to do
17106 				 * slow start.  Set the ssthresh to one
17107 				 * half of current effective window and
17108 				 * cwnd to one MSS.  Also reset
17109 				 * tcp_cwnd_cnt.
17110 				 *
17111 				 * Note that if tcp_ssthresh is reduced because
17112 				 * of ECN, do not reduce it again unless it is
17113 				 * already one window of data away (tcp_cwr
17114 				 * should then be cleared) or this is a
17115 				 * timeout for a retransmitted segment.
17116 				 */
17117 				uint32_t npkt;
17118 
17119 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
17120 					npkt = ((tcp->tcp_timer_backoff ?
17121 					    tcp->tcp_cwnd_ssthresh :
17122 					    tcp->tcp_snxt -
17123 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
17124 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
17125 					    tcp->tcp_mss;
17126 				}
17127 				tcp->tcp_cwnd = tcp->tcp_mss;
17128 				tcp->tcp_cwnd_cnt = 0;
17129 				if (tcp->tcp_ecn_ok) {
17130 					tcp->tcp_cwr = B_TRUE;
17131 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
17132 					tcp->tcp_ecn_cwr_sent = B_FALSE;
17133 				}
17134 			}
17135 			break;
17136 		}
17137 		/*
17138 		 * We have something to send yet we cannot send.  The
17139 		 * reason can be:
17140 		 *
17141 		 * 1. Zero send window: we need to do zero window probe.
17142 		 * 2. Zero cwnd: because of ECN, we need to "clock out
17143 		 * segments.
17144 		 * 3. SWS avoidance: receiver may have shrunk window,
17145 		 * reset our knowledge.
17146 		 *
17147 		 * Note that condition 2 can happen with either 1 or
17148 		 * 3.  But 1 and 3 are exclusive.
17149 		 */
17150 		if (tcp->tcp_unsent != 0) {
17151 			if (tcp->tcp_cwnd == 0) {
17152 				/*
17153 				 * Set tcp_cwnd to 1 MSS so that a
17154 				 * new segment can be sent out.  We
17155 				 * are "clocking out" new data when
17156 				 * the network is really congested.
17157 				 */
17158 				ASSERT(tcp->tcp_ecn_ok);
17159 				tcp->tcp_cwnd = tcp->tcp_mss;
17160 			}
17161 			if (tcp->tcp_swnd == 0) {
17162 				/* Extend window for zero window probe */
17163 				tcp->tcp_swnd++;
17164 				tcp->tcp_zero_win_probe = B_TRUE;
17165 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe);
17166 			} else {
17167 				/*
17168 				 * Handle timeout from sender SWS avoidance.
17169 				 * Reset our knowledge of the max send window
17170 				 * since the receiver might have reduced its
17171 				 * receive buffer.  Avoid setting tcp_max_swnd
17172 				 * to one since that will essentially disable
17173 				 * the SWS checks.
17174 				 *
17175 				 * Note that since we don't have a SWS
17176 				 * state variable, if the timeout is set
17177 				 * for ECN but not for SWS, this
17178 				 * code will also be executed.  This is
17179 				 * fine as tcp_max_swnd is updated
17180 				 * constantly and it will not affect
17181 				 * anything.
17182 				 */
17183 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
17184 			}
17185 			tcp_wput_data(tcp, NULL, B_FALSE);
17186 			return;
17187 		}
17188 		/* Is there a FIN that needs to be to re retransmitted? */
17189 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17190 		    !tcp->tcp_fin_acked)
17191 			break;
17192 		/* Nothing to do, return without restarting timer. */
17193 		TCP_STAT(tcps, tcp_timer_fire_miss);
17194 		return;
17195 	case TCPS_FIN_WAIT_2:
17196 		/*
17197 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
17198 		 * We waited some time for for peer's FIN, but it hasn't
17199 		 * arrived.  We flush the connection now to avoid
17200 		 * case where the peer has rebooted.
17201 		 */
17202 		if (TCP_IS_DETACHED(tcp)) {
17203 			(void) tcp_clean_death(tcp, 0, 23);
17204 		} else {
17205 			TCP_TIMER_RESTART(tcp,
17206 			    tcps->tcps_fin_wait_2_flush_interval);
17207 		}
17208 		return;
17209 	case TCPS_TIME_WAIT:
17210 		(void) tcp_clean_death(tcp, 0, 24);
17211 		return;
17212 	default:
17213 		if (tcp->tcp_debug) {
17214 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
17215 			    "tcp_timer: strange state (%d) %s",
17216 			    tcp->tcp_state, tcp_display(tcp, NULL,
17217 			    DISP_PORT_ONLY));
17218 		}
17219 		return;
17220 	}
17221 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
17222 		/*
17223 		 * For zero window probe, we need to send indefinitely,
17224 		 * unless we have not heard from the other side for some
17225 		 * time...
17226 		 */
17227 		if ((tcp->tcp_zero_win_probe == 0) ||
17228 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
17229 		    second_threshold)) {
17230 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop);
17231 			/*
17232 			 * If TCP is in SYN_RCVD state, send back a
17233 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
17234 			 * should be zero in TCPS_SYN_RCVD state.
17235 			 */
17236 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
17237 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
17238 				    "in SYN_RCVD",
17239 				    tcp, tcp->tcp_snxt,
17240 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
17241 			}
17242 			(void) tcp_clean_death(tcp,
17243 			    tcp->tcp_client_errno ?
17244 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
17245 			return;
17246 		} else {
17247 			/*
17248 			 * Set tcp_ms_we_have_waited to second_threshold
17249 			 * so that in next timeout, we will do the above
17250 			 * check (lbolt - tcp_last_recv_time).  This is
17251 			 * also to avoid overflow.
17252 			 *
17253 			 * We don't need to decrement tcp_timer_backoff
17254 			 * to avoid overflow because it will be decremented
17255 			 * later if new timeout value is greater than
17256 			 * tcp_rexmit_interval_max.  In the case when
17257 			 * tcp_rexmit_interval_max is greater than
17258 			 * second_threshold, it means that we will wait
17259 			 * longer than second_threshold to send the next
17260 			 * window probe.
17261 			 */
17262 			tcp->tcp_ms_we_have_waited = second_threshold;
17263 		}
17264 	} else if (ms > first_threshold) {
17265 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
17266 		    tcp->tcp_xmit_head != NULL) {
17267 			tcp->tcp_xmit_head =
17268 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
17269 		}
17270 		/*
17271 		 * We have been retransmitting for too long...  The RTT
17272 		 * we calculated is probably incorrect.  Reinitialize it.
17273 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
17274 		 * tcp_rtt_update so that we won't accidentally cache a
17275 		 * bad value.  But only do this if this is not a zero
17276 		 * window probe.
17277 		 */
17278 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
17279 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
17280 			    (tcp->tcp_rtt_sa >> 5);
17281 			tcp->tcp_rtt_sa = 0;
17282 			tcp_ip_notify(tcp);
17283 			tcp->tcp_rtt_update = 0;
17284 		}
17285 	}
17286 	tcp->tcp_timer_backoff++;
17287 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
17288 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
17289 	    tcps->tcps_rexmit_interval_min) {
17290 		/*
17291 		 * This means the original RTO is tcp_rexmit_interval_min.
17292 		 * So we will use tcp_rexmit_interval_min as the RTO value
17293 		 * and do the backoff.
17294 		 */
17295 		ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff;
17296 	} else {
17297 		ms <<= tcp->tcp_timer_backoff;
17298 	}
17299 	if (ms > tcps->tcps_rexmit_interval_max) {
17300 		ms = tcps->tcps_rexmit_interval_max;
17301 		/*
17302 		 * ms is at max, decrement tcp_timer_backoff to avoid
17303 		 * overflow.
17304 		 */
17305 		tcp->tcp_timer_backoff--;
17306 	}
17307 	tcp->tcp_ms_we_have_waited += ms;
17308 	if (tcp->tcp_zero_win_probe == 0) {
17309 		tcp->tcp_rto = ms;
17310 	}
17311 	TCP_TIMER_RESTART(tcp, ms);
17312 	/*
17313 	 * This is after a timeout and tcp_rto is backed off.  Set
17314 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
17315 	 * restart the timer with a correct value.
17316 	 */
17317 	tcp->tcp_set_timer = 1;
17318 	mss = tcp->tcp_snxt - tcp->tcp_suna;
17319 	if (mss > tcp->tcp_mss)
17320 		mss = tcp->tcp_mss;
17321 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
17322 		mss = tcp->tcp_swnd;
17323 
17324 	if ((mp = tcp->tcp_xmit_head) != NULL)
17325 		mp->b_prev = (mblk_t *)lbolt;
17326 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
17327 	    B_TRUE);
17328 
17329 	/*
17330 	 * When slow start after retransmission begins, start with
17331 	 * this seq no.  tcp_rexmit_max marks the end of special slow
17332 	 * start phase.  tcp_snd_burst controls how many segments
17333 	 * can be sent because of an ack.
17334 	 */
17335 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
17336 	tcp->tcp_snd_burst = TCP_CWND_SS;
17337 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17338 	    (tcp->tcp_unsent == 0)) {
17339 		tcp->tcp_rexmit_max = tcp->tcp_fss;
17340 	} else {
17341 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
17342 	}
17343 	tcp->tcp_rexmit = B_TRUE;
17344 	tcp->tcp_dupack_cnt = 0;
17345 
17346 	/*
17347 	 * Remove all rexmit SACK blk to start from fresh.
17348 	 */
17349 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
17350 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
17351 		tcp->tcp_num_notsack_blk = 0;
17352 		tcp->tcp_cnt_notsack_list = 0;
17353 	}
17354 	if (mp == NULL) {
17355 		return;
17356 	}
17357 	/* Attach credentials to retransmitted initial SYNs. */
17358 	if (tcp->tcp_state == TCPS_SYN_SENT) {
17359 		mblk_setcred(mp, tcp->tcp_cred);
17360 		DB_CPID(mp) = tcp->tcp_cpid;
17361 	}
17362 
17363 	tcp->tcp_csuna = tcp->tcp_snxt;
17364 	BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
17365 	UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss);
17366 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
17367 	tcp_send_data(tcp, tcp->tcp_wq, mp);
17368 
17369 }
17370 
17371 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
17372 static void
17373 tcp_unbind(tcp_t *tcp, mblk_t *mp)
17374 {
17375 	conn_t	*connp;
17376 
17377 	switch (tcp->tcp_state) {
17378 	case TCPS_BOUND:
17379 	case TCPS_LISTEN:
17380 		break;
17381 	default:
17382 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
17383 		return;
17384 	}
17385 
17386 	/*
17387 	 * Need to clean up all the eagers since after the unbind, segments
17388 	 * will no longer be delivered to this listener stream.
17389 	 */
17390 	mutex_enter(&tcp->tcp_eager_lock);
17391 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
17392 		tcp_eager_cleanup(tcp, 0);
17393 	}
17394 	mutex_exit(&tcp->tcp_eager_lock);
17395 
17396 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17397 		tcp->tcp_ipha->ipha_src = 0;
17398 	} else {
17399 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
17400 	}
17401 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
17402 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
17403 	tcp_bind_hash_remove(tcp);
17404 	tcp->tcp_state = TCPS_IDLE;
17405 	tcp->tcp_mdt = B_FALSE;
17406 	/* Send M_FLUSH according to TPI */
17407 	(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
17408 	connp = tcp->tcp_connp;
17409 	connp->conn_mdt_ok = B_FALSE;
17410 	ipcl_hash_remove(connp);
17411 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
17412 	mp = mi_tpi_ok_ack_alloc(mp);
17413 	putnext(tcp->tcp_rq, mp);
17414 }
17415 
17416 /*
17417  * Don't let port fall into the privileged range.
17418  * Since the extra privileged ports can be arbitrary we also
17419  * ensure that we exclude those from consideration.
17420  * tcp_g_epriv_ports is not sorted thus we loop over it until
17421  * there are no changes.
17422  *
17423  * Note: No locks are held when inspecting tcp_g_*epriv_ports
17424  * but instead the code relies on:
17425  * - the fact that the address of the array and its size never changes
17426  * - the atomic assignment of the elements of the array
17427  *
17428  * Returns 0 if there are no more ports available.
17429  *
17430  * TS note: skip multilevel ports.
17431  */
17432 static in_port_t
17433 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
17434 {
17435 	int i;
17436 	boolean_t restart = B_FALSE;
17437 	tcp_stack_t *tcps = tcp->tcp_tcps;
17438 
17439 	if (random && tcp_random_anon_port != 0) {
17440 		(void) random_get_pseudo_bytes((uint8_t *)&port,
17441 		    sizeof (in_port_t));
17442 		/*
17443 		 * Unless changed by a sys admin, the smallest anon port
17444 		 * is 32768 and the largest anon port is 65535.  It is
17445 		 * very likely (50%) for the random port to be smaller
17446 		 * than the smallest anon port.  When that happens,
17447 		 * add port % (anon port range) to the smallest anon
17448 		 * port to get the random port.  It should fall into the
17449 		 * valid anon port range.
17450 		 */
17451 		if (port < tcps->tcps_smallest_anon_port) {
17452 			port = tcps->tcps_smallest_anon_port +
17453 			    port % (tcps->tcps_largest_anon_port -
17454 			    tcps->tcps_smallest_anon_port);
17455 		}
17456 	}
17457 
17458 retry:
17459 	if (port < tcps->tcps_smallest_anon_port)
17460 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17461 
17462 	if (port > tcps->tcps_largest_anon_port) {
17463 		if (restart)
17464 			return (0);
17465 		restart = B_TRUE;
17466 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17467 	}
17468 
17469 	if (port < tcps->tcps_smallest_nonpriv_port)
17470 		port = (in_port_t)tcps->tcps_smallest_nonpriv_port;
17471 
17472 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
17473 		if (port == tcps->tcps_g_epriv_ports[i]) {
17474 			port++;
17475 			/*
17476 			 * Make sure whether the port is in the
17477 			 * valid range.
17478 			 */
17479 			goto retry;
17480 		}
17481 	}
17482 	if (is_system_labeled() &&
17483 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
17484 	    IPPROTO_TCP, B_TRUE)) != 0) {
17485 		port = i;
17486 		goto retry;
17487 	}
17488 	return (port);
17489 }
17490 
17491 /*
17492  * Return the next anonymous port in the privileged port range for
17493  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
17494  * downwards.  This is the same behavior as documented in the userland
17495  * library call rresvport(3N).
17496  *
17497  * TS note: skip multilevel ports.
17498  */
17499 static in_port_t
17500 tcp_get_next_priv_port(const tcp_t *tcp)
17501 {
17502 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
17503 	in_port_t nextport;
17504 	boolean_t restart = B_FALSE;
17505 	tcp_stack_t *tcps = tcp->tcp_tcps;
17506 retry:
17507 	if (next_priv_port < tcps->tcps_min_anonpriv_port ||
17508 	    next_priv_port >= IPPORT_RESERVED) {
17509 		next_priv_port = IPPORT_RESERVED - 1;
17510 		if (restart)
17511 			return (0);
17512 		restart = B_TRUE;
17513 	}
17514 	if (is_system_labeled() &&
17515 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
17516 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
17517 		next_priv_port = nextport;
17518 		goto retry;
17519 	}
17520 	return (next_priv_port--);
17521 }
17522 
17523 /* The write side r/w procedure. */
17524 
17525 #if CCS_STATS
17526 struct {
17527 	struct {
17528 		int64_t count, bytes;
17529 	} tot, hit;
17530 } wrw_stats;
17531 #endif
17532 
17533 /*
17534  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17535  * messages.
17536  */
17537 /* ARGSUSED */
17538 static void
17539 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17540 {
17541 	conn_t	*connp = (conn_t *)arg;
17542 	tcp_t	*tcp = connp->conn_tcp;
17543 	queue_t	*q = tcp->tcp_wq;
17544 
17545 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17546 	/*
17547 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17548 	 * Once the close starts, streamhead and sockfs will not let any data
17549 	 * packets come down (close ensures that there are no threads using the
17550 	 * queue and no new threads will come down) but since qprocsoff()
17551 	 * hasn't happened yet, a M_FLUSH or some non data message might
17552 	 * get reflected back (in response to our own FLUSHRW) and get
17553 	 * processed after tcp_close() is done. The conn would still be valid
17554 	 * because a ref would have added but we need to check the state
17555 	 * before actually processing the packet.
17556 	 */
17557 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
17558 		freemsg(mp);
17559 		return;
17560 	}
17561 
17562 	switch (DB_TYPE(mp)) {
17563 	case M_IOCDATA:
17564 		tcp_wput_iocdata(tcp, mp);
17565 		break;
17566 	case M_FLUSH:
17567 		tcp_wput_flush(tcp, mp);
17568 		break;
17569 	default:
17570 		CALL_IP_WPUT(connp, q, mp);
17571 		break;
17572 	}
17573 }
17574 
17575 /*
17576  * The TCP fast path write put procedure.
17577  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
17578  */
17579 /* ARGSUSED */
17580 void
17581 tcp_output(void *arg, mblk_t *mp, void *arg2)
17582 {
17583 	int		len;
17584 	int		hdrlen;
17585 	int		plen;
17586 	mblk_t		*mp1;
17587 	uchar_t		*rptr;
17588 	uint32_t	snxt;
17589 	tcph_t		*tcph;
17590 	struct datab	*db;
17591 	uint32_t	suna;
17592 	uint32_t	mss;
17593 	ipaddr_t	*dst;
17594 	ipaddr_t	*src;
17595 	uint32_t	sum;
17596 	int		usable;
17597 	conn_t		*connp = (conn_t *)arg;
17598 	tcp_t		*tcp = connp->conn_tcp;
17599 	uint32_t	msize;
17600 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17601 
17602 	/*
17603 	 * Try and ASSERT the minimum possible references on the
17604 	 * conn early enough. Since we are executing on write side,
17605 	 * the connection is obviously not detached and that means
17606 	 * there is a ref each for TCP and IP. Since we are behind
17607 	 * the squeue, the minimum references needed are 3. If the
17608 	 * conn is in classifier hash list, there should be an
17609 	 * extra ref for that (we check both the possibilities).
17610 	 */
17611 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17612 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17613 
17614 	ASSERT(DB_TYPE(mp) == M_DATA);
17615 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
17616 
17617 	mutex_enter(&tcp->tcp_non_sq_lock);
17618 	tcp->tcp_squeue_bytes -= msize;
17619 	mutex_exit(&tcp->tcp_non_sq_lock);
17620 
17621 	/* Bypass tcp protocol for fused tcp loopback */
17622 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
17623 		return;
17624 
17625 	mss = tcp->tcp_mss;
17626 	if (tcp->tcp_xmit_zc_clean)
17627 		mp = tcp_zcopy_backoff(tcp, mp, 0);
17628 
17629 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17630 	len = (int)(mp->b_wptr - mp->b_rptr);
17631 
17632 	/*
17633 	 * Criteria for fast path:
17634 	 *
17635 	 *   1. no unsent data
17636 	 *   2. single mblk in request
17637 	 *   3. connection established
17638 	 *   4. data in mblk
17639 	 *   5. len <= mss
17640 	 *   6. no tcp_valid bits
17641 	 */
17642 	if ((tcp->tcp_unsent != 0) ||
17643 	    (tcp->tcp_cork) ||
17644 	    (mp->b_cont != NULL) ||
17645 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
17646 	    (len == 0) ||
17647 	    (len > mss) ||
17648 	    (tcp->tcp_valid_bits != 0)) {
17649 		tcp_wput_data(tcp, mp, B_FALSE);
17650 		return;
17651 	}
17652 
17653 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
17654 	ASSERT(tcp->tcp_fin_sent == 0);
17655 
17656 	/* queue new packet onto retransmission queue */
17657 	if (tcp->tcp_xmit_head == NULL) {
17658 		tcp->tcp_xmit_head = mp;
17659 	} else {
17660 		tcp->tcp_xmit_last->b_cont = mp;
17661 	}
17662 	tcp->tcp_xmit_last = mp;
17663 	tcp->tcp_xmit_tail = mp;
17664 
17665 	/* find out how much we can send */
17666 	/* BEGIN CSTYLED */
17667 	/*
17668 	 *    un-acked           usable
17669 	 *  |--------------|-----------------|
17670 	 *  tcp_suna       tcp_snxt          tcp_suna+tcp_swnd
17671 	 */
17672 	/* END CSTYLED */
17673 
17674 	/* start sending from tcp_snxt */
17675 	snxt = tcp->tcp_snxt;
17676 
17677 	/*
17678 	 * Check to see if this connection has been idled for some
17679 	 * time and no ACK is expected.  If it is, we need to slow
17680 	 * start again to get back the connection's "self-clock" as
17681 	 * described in VJ's paper.
17682 	 *
17683 	 * Refer to the comment in tcp_mss_set() for the calculation
17684 	 * of tcp_cwnd after idle.
17685 	 */
17686 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
17687 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
17688 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
17689 	}
17690 
17691 	usable = tcp->tcp_swnd;		/* tcp window size */
17692 	if (usable > tcp->tcp_cwnd)
17693 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
17694 	usable -= snxt;		/* subtract stuff already sent */
17695 	suna = tcp->tcp_suna;
17696 	usable += suna;
17697 	/* usable can be < 0 if the congestion window is smaller */
17698 	if (len > usable) {
17699 		/* Can't send complete M_DATA in one shot */
17700 		goto slow;
17701 	}
17702 
17703 	mutex_enter(&tcp->tcp_non_sq_lock);
17704 	if (tcp->tcp_flow_stopped &&
17705 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
17706 		tcp_clrqfull(tcp);
17707 	}
17708 	mutex_exit(&tcp->tcp_non_sq_lock);
17709 
17710 	/*
17711 	 * determine if anything to send (Nagle).
17712 	 *
17713 	 *   1. len < tcp_mss (i.e. small)
17714 	 *   2. unacknowledged data present
17715 	 *   3. len < nagle limit
17716 	 *   4. last packet sent < nagle limit (previous packet sent)
17717 	 */
17718 	if ((len < mss) && (snxt != suna) &&
17719 	    (len < (int)tcp->tcp_naglim) &&
17720 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
17721 		/*
17722 		 * This was the first unsent packet and normally
17723 		 * mss < xmit_hiwater so there is no need to worry
17724 		 * about flow control. The next packet will go
17725 		 * through the flow control check in tcp_wput_data().
17726 		 */
17727 		/* leftover work from above */
17728 		tcp->tcp_unsent = len;
17729 		tcp->tcp_xmit_tail_unsent = len;
17730 
17731 		return;
17732 	}
17733 
17734 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
17735 
17736 	if (snxt == suna) {
17737 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17738 	}
17739 
17740 	/* we have always sent something */
17741 	tcp->tcp_rack_cnt = 0;
17742 
17743 	tcp->tcp_snxt = snxt + len;
17744 	tcp->tcp_rack = tcp->tcp_rnxt;
17745 
17746 	if ((mp1 = dupb(mp)) == 0)
17747 		goto no_memory;
17748 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
17749 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
17750 
17751 	/* adjust tcp header information */
17752 	tcph = tcp->tcp_tcph;
17753 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
17754 
17755 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
17756 	sum = (sum >> 16) + (sum & 0xFFFF);
17757 	U16_TO_ABE16(sum, tcph->th_sum);
17758 
17759 	U32_TO_ABE32(snxt, tcph->th_seq);
17760 
17761 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
17762 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
17763 	BUMP_LOCAL(tcp->tcp_obsegs);
17764 
17765 	/* Update the latest receive window size in TCP header. */
17766 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
17767 	    tcph->th_win);
17768 
17769 	tcp->tcp_last_sent_len = (ushort_t)len;
17770 
17771 	plen = len + tcp->tcp_hdr_len;
17772 
17773 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17774 		tcp->tcp_ipha->ipha_length = htons(plen);
17775 	} else {
17776 		tcp->tcp_ip6h->ip6_plen = htons(plen -
17777 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
17778 	}
17779 
17780 	/* see if we need to allocate a mblk for the headers */
17781 	hdrlen = tcp->tcp_hdr_len;
17782 	rptr = mp1->b_rptr - hdrlen;
17783 	db = mp1->b_datap;
17784 	if ((db->db_ref != 2) || rptr < db->db_base ||
17785 	    (!OK_32PTR(rptr))) {
17786 		/* NOTE: we assume allocb returns an OK_32PTR */
17787 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
17788 		    tcps->tcps_wroff_xtra, BPRI_MED);
17789 		if (!mp) {
17790 			freemsg(mp1);
17791 			goto no_memory;
17792 		}
17793 		mp->b_cont = mp1;
17794 		mp1 = mp;
17795 		/* Leave room for Link Level header */
17796 		/* hdrlen = tcp->tcp_hdr_len; */
17797 		rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra];
17798 		mp1->b_wptr = &rptr[hdrlen];
17799 	}
17800 	mp1->b_rptr = rptr;
17801 
17802 	/* Fill in the timestamp option. */
17803 	if (tcp->tcp_snd_ts_ok) {
17804 		U32_TO_BE32((uint32_t)lbolt,
17805 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
17806 		U32_TO_BE32(tcp->tcp_ts_recent,
17807 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
17808 	} else {
17809 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
17810 	}
17811 
17812 	/* copy header into outgoing packet */
17813 	dst = (ipaddr_t *)rptr;
17814 	src = (ipaddr_t *)tcp->tcp_iphc;
17815 	dst[0] = src[0];
17816 	dst[1] = src[1];
17817 	dst[2] = src[2];
17818 	dst[3] = src[3];
17819 	dst[4] = src[4];
17820 	dst[5] = src[5];
17821 	dst[6] = src[6];
17822 	dst[7] = src[7];
17823 	dst[8] = src[8];
17824 	dst[9] = src[9];
17825 	if (hdrlen -= 40) {
17826 		hdrlen >>= 2;
17827 		dst += 10;
17828 		src += 10;
17829 		do {
17830 			*dst++ = *src++;
17831 		} while (--hdrlen);
17832 	}
17833 
17834 	/*
17835 	 * Set the ECN info in the TCP header.  Note that this
17836 	 * is not the template header.
17837 	 */
17838 	if (tcp->tcp_ecn_ok) {
17839 		SET_ECT(tcp, rptr);
17840 
17841 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
17842 		if (tcp->tcp_ecn_echo_on)
17843 			tcph->th_flags[0] |= TH_ECE;
17844 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17845 			tcph->th_flags[0] |= TH_CWR;
17846 			tcp->tcp_ecn_cwr_sent = B_TRUE;
17847 		}
17848 	}
17849 
17850 	if (tcp->tcp_ip_forward_progress) {
17851 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
17852 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
17853 		tcp->tcp_ip_forward_progress = B_FALSE;
17854 	}
17855 	TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
17856 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
17857 	return;
17858 
17859 	/*
17860 	 * If we ran out of memory, we pretend to have sent the packet
17861 	 * and that it was lost on the wire.
17862 	 */
17863 no_memory:
17864 	return;
17865 
17866 slow:
17867 	/* leftover work from above */
17868 	tcp->tcp_unsent = len;
17869 	tcp->tcp_xmit_tail_unsent = len;
17870 	tcp_wput_data(tcp, NULL, B_FALSE);
17871 }
17872 
17873 /*
17874  * The function called through squeue to get behind eager's perimeter to
17875  * finish the accept processing.
17876  */
17877 /* ARGSUSED */
17878 void
17879 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
17880 {
17881 	conn_t			*connp = (conn_t *)arg;
17882 	tcp_t			*tcp = connp->conn_tcp;
17883 	queue_t			*q = tcp->tcp_rq;
17884 	mblk_t			*mp1;
17885 	mblk_t			*stropt_mp = mp;
17886 	struct  stroptions	*stropt;
17887 	uint_t			thwin;
17888 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17889 
17890 	/*
17891 	 * Drop the eager's ref on the listener, that was placed when
17892 	 * this eager began life in tcp_conn_request.
17893 	 */
17894 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17895 
17896 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17897 		/*
17898 		 * Someone blewoff the eager before we could finish
17899 		 * the accept.
17900 		 *
17901 		 * The only reason eager exists it because we put in
17902 		 * a ref on it when conn ind went up. We need to send
17903 		 * a disconnect indication up while the last reference
17904 		 * on the eager will be dropped by the squeue when we
17905 		 * return.
17906 		 */
17907 		ASSERT(tcp->tcp_listener == NULL);
17908 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17909 			struct	T_discon_ind	*tdi;
17910 
17911 			(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17912 			/*
17913 			 * Let us reuse the incoming mblk to avoid memory
17914 			 * allocation failure problems. We know that the
17915 			 * size of the incoming mblk i.e. stroptions is greater
17916 			 * than sizeof T_discon_ind. So the reallocb below
17917 			 * can't fail.
17918 			 */
17919 			freemsg(mp->b_cont);
17920 			mp->b_cont = NULL;
17921 			ASSERT(DB_REF(mp) == 1);
17922 			mp = reallocb(mp, sizeof (struct T_discon_ind),
17923 			    B_FALSE);
17924 			ASSERT(mp != NULL);
17925 			DB_TYPE(mp) = M_PROTO;
17926 			((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND;
17927 			tdi = (struct T_discon_ind *)mp->b_rptr;
17928 			if (tcp->tcp_issocket) {
17929 				tdi->DISCON_reason = ECONNREFUSED;
17930 				tdi->SEQ_number = 0;
17931 			} else {
17932 				tdi->DISCON_reason = ENOPROTOOPT;
17933 				tdi->SEQ_number =
17934 				    tcp->tcp_conn_req_seqnum;
17935 			}
17936 			mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
17937 			putnext(q, mp);
17938 		} else {
17939 			freemsg(mp);
17940 		}
17941 		if (tcp->tcp_hard_binding) {
17942 			tcp->tcp_hard_binding = B_FALSE;
17943 			tcp->tcp_hard_bound = B_TRUE;
17944 		}
17945 		tcp->tcp_detached = B_FALSE;
17946 		return;
17947 	}
17948 
17949 	mp1 = stropt_mp->b_cont;
17950 	stropt_mp->b_cont = NULL;
17951 	ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS);
17952 	stropt = (struct stroptions *)stropt_mp->b_rptr;
17953 
17954 	while (mp1 != NULL) {
17955 		mp = mp1;
17956 		mp1 = mp1->b_cont;
17957 		mp->b_cont = NULL;
17958 		tcp->tcp_drop_opt_ack_cnt++;
17959 		CALL_IP_WPUT(connp, tcp->tcp_wq, mp);
17960 	}
17961 	mp = NULL;
17962 
17963 	/*
17964 	 * For a loopback connection with tcp_direct_sockfs on, note that
17965 	 * we don't have to protect tcp_rcv_list yet because synchronous
17966 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
17967 	 * possibly race with us.
17968 	 */
17969 
17970 	/*
17971 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
17972 	 * properly.  This is the first time we know of the acceptor'
17973 	 * queue.  So we do it here.
17974 	 */
17975 	if (tcp->tcp_rcv_list == NULL) {
17976 		/*
17977 		 * Recv queue is empty, tcp_rwnd should not have changed.
17978 		 * That means it should be equal to the listener's tcp_rwnd.
17979 		 */
17980 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
17981 	} else {
17982 #ifdef DEBUG
17983 		uint_t cnt = 0;
17984 
17985 		mp1 = tcp->tcp_rcv_list;
17986 		while ((mp = mp1) != NULL) {
17987 			mp1 = mp->b_next;
17988 			cnt += msgdsize(mp);
17989 		}
17990 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
17991 #endif
17992 		/* There is some data, add them back to get the max. */
17993 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17994 	}
17995 
17996 	stropt->so_flags = SO_HIWAT;
17997 	stropt->so_hiwat = MAX(q->q_hiwat, tcps->tcps_sth_rcv_hiwat);
17998 
17999 	stropt->so_flags |= SO_MAXBLK;
18000 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
18001 
18002 	/*
18003 	 * This is the first time we run on the correct
18004 	 * queue after tcp_accept. So fix all the q parameters
18005 	 * here.
18006 	 */
18007 	/* Allocate room for SACK options if needed. */
18008 	stropt->so_flags |= SO_WROFF;
18009 	if (tcp->tcp_fused) {
18010 		ASSERT(tcp->tcp_loopback);
18011 		ASSERT(tcp->tcp_loopback_peer != NULL);
18012 		/*
18013 		 * For fused tcp loopback, set the stream head's write
18014 		 * offset value to zero since we won't be needing any room
18015 		 * for TCP/IP headers.  This would also improve performance
18016 		 * since it would reduce the amount of work done by kmem.
18017 		 * Non-fused tcp loopback case is handled separately below.
18018 		 */
18019 		stropt->so_wroff = 0;
18020 		/*
18021 		 * Record the stream head's high water mark for this endpoint;
18022 		 * this is used for flow-control purposes in tcp_fuse_output().
18023 		 */
18024 		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat);
18025 		/*
18026 		 * Update the peer's transmit parameters according to
18027 		 * our recently calculated high water mark value.
18028 		 */
18029 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
18030 	} else if (tcp->tcp_snd_sack_ok) {
18031 		stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
18032 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
18033 	} else {
18034 		stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
18035 		    tcps->tcps_wroff_xtra);
18036 	}
18037 
18038 	/*
18039 	 * If this is endpoint is handling SSL, then reserve extra
18040 	 * offset and space at the end.
18041 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
18042 	 * overriding the previous setting. The extra cost of signing and
18043 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
18044 	 * instead of a single contiguous one by the stream head
18045 	 * largely outweighs the statistical reduction of ACKs, when
18046 	 * applicable. The peer will also save on decyption and verification
18047 	 * costs.
18048 	 */
18049 	if (tcp->tcp_kssl_ctx != NULL) {
18050 		stropt->so_wroff += SSL3_WROFFSET;
18051 
18052 		stropt->so_flags |= SO_TAIL;
18053 		stropt->so_tail = SSL3_MAX_TAIL_LEN;
18054 
18055 		stropt->so_maxblk = SSL3_MAX_RECORD_LEN;
18056 	}
18057 
18058 	/* Send the options up */
18059 	putnext(q, stropt_mp);
18060 
18061 	/*
18062 	 * Pass up any data and/or a fin that has been received.
18063 	 *
18064 	 * Adjust receive window in case it had decreased
18065 	 * (because there is data <=> tcp_rcv_list != NULL)
18066 	 * while the connection was detached. Note that
18067 	 * in case the eager was flow-controlled, w/o this
18068 	 * code, the rwnd may never open up again!
18069 	 */
18070 	if (tcp->tcp_rcv_list != NULL) {
18071 		/* We drain directly in case of fused tcp loopback */
18072 		if (!tcp->tcp_fused && canputnext(q)) {
18073 			tcp->tcp_rwnd = q->q_hiwat;
18074 			thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
18075 			    << tcp->tcp_rcv_ws;
18076 			thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
18077 			if (tcp->tcp_state >= TCPS_ESTABLISHED &&
18078 			    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
18079 				tcp_xmit_ctl(NULL,
18080 				    tcp, (tcp->tcp_swnd == 0) ?
18081 				    tcp->tcp_suna : tcp->tcp_snxt,
18082 				    tcp->tcp_rnxt, TH_ACK);
18083 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
18084 			}
18085 
18086 		}
18087 		(void) tcp_rcv_drain(q, tcp);
18088 
18089 		/*
18090 		 * For fused tcp loopback, back-enable peer endpoint
18091 		 * if it's currently flow-controlled.
18092 		 */
18093 		if (tcp->tcp_fused) {
18094 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
18095 
18096 			ASSERT(peer_tcp != NULL);
18097 			ASSERT(peer_tcp->tcp_fused);
18098 			/*
18099 			 * In order to change the peer's tcp_flow_stopped,
18100 			 * we need to take locks for both end points. The
18101 			 * highest address is taken first.
18102 			 */
18103 			if (peer_tcp > tcp) {
18104 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18105 				mutex_enter(&tcp->tcp_non_sq_lock);
18106 			} else {
18107 				mutex_enter(&tcp->tcp_non_sq_lock);
18108 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18109 			}
18110 			if (peer_tcp->tcp_flow_stopped) {
18111 				tcp_clrqfull(peer_tcp);
18112 				TCP_STAT(tcps, tcp_fusion_backenabled);
18113 			}
18114 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
18115 			mutex_exit(&tcp->tcp_non_sq_lock);
18116 		}
18117 	}
18118 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
18119 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
18120 		mp = mi_tpi_ordrel_ind();
18121 		if (mp) {
18122 			tcp->tcp_ordrel_done = B_TRUE;
18123 			putnext(q, mp);
18124 			if (tcp->tcp_deferred_clean_death) {
18125 				/*
18126 				 * tcp_clean_death was deferred
18127 				 * for T_ORDREL_IND - do it now
18128 				 */
18129 				(void) tcp_clean_death(tcp,
18130 				    tcp->tcp_client_errno, 21);
18131 				tcp->tcp_deferred_clean_death = B_FALSE;
18132 			}
18133 		} else {
18134 			/*
18135 			 * Run the orderly release in the
18136 			 * service routine.
18137 			 */
18138 			qenable(q);
18139 		}
18140 	}
18141 	if (tcp->tcp_hard_binding) {
18142 		tcp->tcp_hard_binding = B_FALSE;
18143 		tcp->tcp_hard_bound = B_TRUE;
18144 	}
18145 
18146 	tcp->tcp_detached = B_FALSE;
18147 
18148 	/* We can enable synchronous streams now */
18149 	if (tcp->tcp_fused) {
18150 		tcp_fuse_syncstr_enable_pair(tcp);
18151 	}
18152 
18153 	if (tcp->tcp_ka_enabled) {
18154 		tcp->tcp_ka_last_intrvl = 0;
18155 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
18156 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
18157 	}
18158 
18159 	/*
18160 	 * At this point, eager is fully established and will
18161 	 * have the following references -
18162 	 *
18163 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
18164 	 * 1 reference for the squeue which will be dropped by the squeue as
18165 	 *	soon as this function returns.
18166 	 * There will be 1 additonal reference for being in classifier
18167 	 *	hash list provided something bad hasn't happened.
18168 	 */
18169 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
18170 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
18171 }
18172 
18173 /*
18174  * The function called through squeue to get behind listener's perimeter to
18175  * send a deffered conn_ind.
18176  */
18177 /* ARGSUSED */
18178 void
18179 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
18180 {
18181 	conn_t	*connp = (conn_t *)arg;
18182 	tcp_t *listener = connp->conn_tcp;
18183 
18184 	if (listener->tcp_state == TCPS_CLOSED ||
18185 	    TCP_IS_DETACHED(listener)) {
18186 		/*
18187 		 * If listener has closed, it would have caused a
18188 		 * a cleanup/blowoff to happen for the eager.
18189 		 */
18190 		tcp_t *tcp;
18191 		struct T_conn_ind	*conn_ind;
18192 
18193 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
18194 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
18195 		    conn_ind->OPT_length);
18196 		/*
18197 		 * We need to drop the ref on eager that was put
18198 		 * tcp_rput_data() before trying to send the conn_ind
18199 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
18200 		 * and tcp_wput_accept() is sending this deferred conn_ind but
18201 		 * listener is closed so we drop the ref.
18202 		 */
18203 		CONN_DEC_REF(tcp->tcp_connp);
18204 		freemsg(mp);
18205 		return;
18206 	}
18207 	putnext(listener->tcp_rq, mp);
18208 }
18209 
18210 
18211 /*
18212  * This is the STREAMS entry point for T_CONN_RES coming down on
18213  * Acceptor STREAM when  sockfs listener does accept processing.
18214  * Read the block comment on top of tcp_conn_request().
18215  */
18216 void
18217 tcp_wput_accept(queue_t *q, mblk_t *mp)
18218 {
18219 	queue_t *rq = RD(q);
18220 	struct T_conn_res *conn_res;
18221 	tcp_t *eager;
18222 	tcp_t *listener;
18223 	struct T_ok_ack *ok;
18224 	t_scalar_t PRIM_type;
18225 	mblk_t *opt_mp;
18226 	conn_t *econnp;
18227 
18228 	ASSERT(DB_TYPE(mp) == M_PROTO);
18229 
18230 	conn_res = (struct T_conn_res *)mp->b_rptr;
18231 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
18232 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
18233 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18234 		if (mp != NULL)
18235 			putnext(rq, mp);
18236 		return;
18237 	}
18238 	switch (conn_res->PRIM_type) {
18239 	case O_T_CONN_RES:
18240 	case T_CONN_RES:
18241 		/*
18242 		 * We pass up an err ack if allocb fails. This will
18243 		 * cause sockfs to issue a T_DISCON_REQ which will cause
18244 		 * tcp_eager_blowoff to be called. sockfs will then call
18245 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
18246 		 * we need to do the allocb up here because we have to
18247 		 * make sure rq->q_qinfo->qi_qclose still points to the
18248 		 * correct function (tcpclose_accept) in case allocb
18249 		 * fails.
18250 		 */
18251 		opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
18252 		if (opt_mp == NULL) {
18253 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18254 			if (mp != NULL)
18255 				putnext(rq, mp);
18256 			return;
18257 		}
18258 
18259 		bcopy(mp->b_rptr + conn_res->OPT_offset,
18260 		    &eager, conn_res->OPT_length);
18261 		PRIM_type = conn_res->PRIM_type;
18262 		mp->b_datap->db_type = M_PCPROTO;
18263 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
18264 		ok = (struct T_ok_ack *)mp->b_rptr;
18265 		ok->PRIM_type = T_OK_ACK;
18266 		ok->CORRECT_prim = PRIM_type;
18267 		econnp = eager->tcp_connp;
18268 		econnp->conn_dev = (dev_t)q->q_ptr;
18269 		eager->tcp_rq = rq;
18270 		eager->tcp_wq = q;
18271 		rq->q_ptr = econnp;
18272 		rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
18273 		q->q_ptr = econnp;
18274 		q->q_qinfo = &tcp_winit;
18275 		listener = eager->tcp_listener;
18276 		eager->tcp_issocket = B_TRUE;
18277 
18278 		econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
18279 		econnp->conn_allzones = listener->tcp_connp->conn_allzones;
18280 		ASSERT(econnp->conn_netstack ==
18281 		    listener->tcp_connp->conn_netstack);
18282 		ASSERT(eager->tcp_tcps == listener->tcp_tcps);
18283 
18284 		/* Put the ref for IP */
18285 		CONN_INC_REF(econnp);
18286 
18287 		/*
18288 		 * We should have minimum of 3 references on the conn
18289 		 * at this point. One each for TCP and IP and one for
18290 		 * the T_conn_ind that was sent up when the 3-way handshake
18291 		 * completed. In the normal case we would also have another
18292 		 * reference (making a total of 4) for the conn being in the
18293 		 * classifier hash list. However the eager could have received
18294 		 * an RST subsequently and tcp_closei_local could have removed
18295 		 * the eager from the classifier hash list, hence we can't
18296 		 * assert that reference.
18297 		 */
18298 		ASSERT(econnp->conn_ref >= 3);
18299 
18300 		/*
18301 		 * Send the new local address also up to sockfs. There
18302 		 * should already be enough space in the mp that came
18303 		 * down from soaccept().
18304 		 */
18305 		if (eager->tcp_family == AF_INET) {
18306 			sin_t *sin;
18307 
18308 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18309 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
18310 			sin = (sin_t *)mp->b_wptr;
18311 			mp->b_wptr += sizeof (sin_t);
18312 			sin->sin_family = AF_INET;
18313 			sin->sin_port = eager->tcp_lport;
18314 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
18315 		} else {
18316 			sin6_t *sin6;
18317 
18318 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18319 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
18320 			sin6 = (sin6_t *)mp->b_wptr;
18321 			mp->b_wptr += sizeof (sin6_t);
18322 			sin6->sin6_family = AF_INET6;
18323 			sin6->sin6_port = eager->tcp_lport;
18324 			if (eager->tcp_ipversion == IPV4_VERSION) {
18325 				sin6->sin6_flowinfo = 0;
18326 				IN6_IPADDR_TO_V4MAPPED(
18327 				    eager->tcp_ipha->ipha_src,
18328 				    &sin6->sin6_addr);
18329 			} else {
18330 				ASSERT(eager->tcp_ip6h != NULL);
18331 				sin6->sin6_flowinfo =
18332 				    eager->tcp_ip6h->ip6_vcf &
18333 				    ~IPV6_VERS_AND_FLOW_MASK;
18334 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
18335 			}
18336 			sin6->sin6_scope_id = 0;
18337 			sin6->__sin6_src_id = 0;
18338 		}
18339 
18340 		putnext(rq, mp);
18341 
18342 		opt_mp->b_datap->db_type = M_SETOPTS;
18343 		opt_mp->b_wptr += sizeof (struct stroptions);
18344 
18345 		/*
18346 		 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
18347 		 * from listener to acceptor. The message is chained on the
18348 		 * bind_mp which tcp_rput_other will send down to IP.
18349 		 */
18350 		if (listener->tcp_bound_if != 0) {
18351 			/* allocate optmgmt req */
18352 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18353 			    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
18354 			    sizeof (int));
18355 			if (mp != NULL)
18356 				linkb(opt_mp, mp);
18357 		}
18358 		if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
18359 			uint_t on = 1;
18360 
18361 			/* allocate optmgmt req */
18362 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18363 			    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
18364 			if (mp != NULL)
18365 				linkb(opt_mp, mp);
18366 		}
18367 
18368 
18369 		mutex_enter(&listener->tcp_eager_lock);
18370 
18371 		if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
18372 
18373 			tcp_t *tail;
18374 			tcp_t *tcp;
18375 			mblk_t *mp1;
18376 
18377 			tcp = listener->tcp_eager_prev_q0;
18378 			/*
18379 			 * listener->tcp_eager_prev_q0 points to the TAIL of the
18380 			 * deferred T_conn_ind queue. We need to get to the head
18381 			 * of the queue in order to send up T_conn_ind the same
18382 			 * order as how the 3WHS is completed.
18383 			 */
18384 			while (tcp != listener) {
18385 				if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
18386 				    !tcp->tcp_kssl_pending)
18387 					break;
18388 				else
18389 					tcp = tcp->tcp_eager_prev_q0;
18390 			}
18391 			/* None of the pending eagers can be sent up now */
18392 			if (tcp == listener)
18393 				goto no_more_eagers;
18394 
18395 			mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
18396 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
18397 			/* Move from q0 to q */
18398 			ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
18399 			listener->tcp_conn_req_cnt_q0--;
18400 			listener->tcp_conn_req_cnt_q++;
18401 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
18402 			    tcp->tcp_eager_prev_q0;
18403 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
18404 			    tcp->tcp_eager_next_q0;
18405 			tcp->tcp_eager_prev_q0 = NULL;
18406 			tcp->tcp_eager_next_q0 = NULL;
18407 			tcp->tcp_conn_def_q0 = B_FALSE;
18408 
18409 			/* Make sure the tcp isn't in the list of droppables */
18410 			ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
18411 			    tcp->tcp_eager_prev_drop_q0 == NULL);
18412 
18413 			/*
18414 			 * Insert at end of the queue because sockfs sends
18415 			 * down T_CONN_RES in chronological order. Leaving
18416 			 * the older conn indications at front of the queue
18417 			 * helps reducing search time.
18418 			 */
18419 			tail = listener->tcp_eager_last_q;
18420 			if (tail != NULL) {
18421 				tail->tcp_eager_next_q = tcp;
18422 			} else {
18423 				listener->tcp_eager_next_q = tcp;
18424 			}
18425 			listener->tcp_eager_last_q = tcp;
18426 			tcp->tcp_eager_next_q = NULL;
18427 
18428 			/* Need to get inside the listener perimeter */
18429 			CONN_INC_REF(listener->tcp_connp);
18430 			squeue_fill(listener->tcp_connp->conn_sqp, mp1,
18431 			    tcp_send_pending, listener->tcp_connp,
18432 			    SQTAG_TCP_SEND_PENDING);
18433 		}
18434 no_more_eagers:
18435 		tcp_eager_unlink(eager);
18436 		mutex_exit(&listener->tcp_eager_lock);
18437 
18438 		/*
18439 		 * At this point, the eager is detached from the listener
18440 		 * but we still have an extra refs on eager (apart from the
18441 		 * usual tcp references). The ref was placed in tcp_rput_data
18442 		 * before sending the conn_ind in tcp_send_conn_ind.
18443 		 * The ref will be dropped in tcp_accept_finish().
18444 		 */
18445 		squeue_enter_nodrain(econnp->conn_sqp, opt_mp,
18446 		    tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0);
18447 		return;
18448 	default:
18449 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
18450 		if (mp != NULL)
18451 			putnext(rq, mp);
18452 		return;
18453 	}
18454 }
18455 
18456 void
18457 tcp_wput(queue_t *q, mblk_t *mp)
18458 {
18459 	conn_t	*connp = Q_TO_CONN(q);
18460 	tcp_t	*tcp;
18461 	void (*output_proc)();
18462 	t_scalar_t type;
18463 	uchar_t *rptr;
18464 	struct iocblk	*iocp;
18465 	uint32_t	msize;
18466 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
18467 
18468 	ASSERT(connp->conn_ref >= 2);
18469 
18470 	switch (DB_TYPE(mp)) {
18471 	case M_DATA:
18472 		tcp = connp->conn_tcp;
18473 		ASSERT(tcp != NULL);
18474 
18475 		msize = msgdsize(mp);
18476 
18477 		mutex_enter(&tcp->tcp_non_sq_lock);
18478 		tcp->tcp_squeue_bytes += msize;
18479 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
18480 			tcp_setqfull(tcp);
18481 		}
18482 		mutex_exit(&tcp->tcp_non_sq_lock);
18483 
18484 		CONN_INC_REF(connp);
18485 		(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18486 		    tcp_output, connp, SQTAG_TCP_OUTPUT);
18487 		return;
18488 	case M_PROTO:
18489 	case M_PCPROTO:
18490 		/*
18491 		 * if it is a snmp message, don't get behind the squeue
18492 		 */
18493 		tcp = connp->conn_tcp;
18494 		rptr = mp->b_rptr;
18495 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
18496 			type = ((union T_primitives *)rptr)->type;
18497 		} else {
18498 			if (tcp->tcp_debug) {
18499 				(void) strlog(TCP_MOD_ID, 0, 1,
18500 				    SL_ERROR|SL_TRACE,
18501 				    "tcp_wput_proto, dropping one...");
18502 			}
18503 			freemsg(mp);
18504 			return;
18505 		}
18506 		if (type == T_SVR4_OPTMGMT_REQ) {
18507 			cred_t	*cr = DB_CREDDEF(mp, tcp->tcp_cred);
18508 			if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get,
18509 			    cr)) {
18510 				/*
18511 				 * This was a SNMP request
18512 				 */
18513 				return;
18514 			} else {
18515 				output_proc = tcp_wput_proto;
18516 			}
18517 		} else {
18518 			output_proc = tcp_wput_proto;
18519 		}
18520 		break;
18521 	case M_IOCTL:
18522 		/*
18523 		 * Most ioctls can be processed right away without going via
18524 		 * squeues - process them right here. Those that do require
18525 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
18526 		 * are processed by tcp_wput_ioctl().
18527 		 */
18528 		iocp = (struct iocblk *)mp->b_rptr;
18529 		tcp = connp->conn_tcp;
18530 
18531 		switch (iocp->ioc_cmd) {
18532 		case TCP_IOC_ABORT_CONN:
18533 			tcp_ioctl_abort_conn(q, mp);
18534 			return;
18535 		case TI_GETPEERNAME:
18536 			if (tcp->tcp_state < TCPS_SYN_RCVD) {
18537 				iocp->ioc_error = ENOTCONN;
18538 				iocp->ioc_count = 0;
18539 				mp->b_datap->db_type = M_IOCACK;
18540 				qreply(q, mp);
18541 				return;
18542 			}
18543 			/* FALLTHRU */
18544 		case TI_GETMYNAME:
18545 			mi_copyin(q, mp, NULL,
18546 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
18547 			return;
18548 		case ND_SET:
18549 			/* nd_getset does the necessary checks */
18550 		case ND_GET:
18551 			if (!nd_getset(q, tcps->tcps_g_nd, mp)) {
18552 				CALL_IP_WPUT(connp, q, mp);
18553 				return;
18554 			}
18555 			qreply(q, mp);
18556 			return;
18557 		case TCP_IOC_DEFAULT_Q:
18558 			/*
18559 			 * Wants to be the default wq. Check the credentials
18560 			 * first, the rest is executed via squeue.
18561 			 */
18562 			if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
18563 				iocp->ioc_error = EPERM;
18564 				iocp->ioc_count = 0;
18565 				mp->b_datap->db_type = M_IOCACK;
18566 				qreply(q, mp);
18567 				return;
18568 			}
18569 			output_proc = tcp_wput_ioctl;
18570 			break;
18571 		default:
18572 			output_proc = tcp_wput_ioctl;
18573 			break;
18574 		}
18575 		break;
18576 	default:
18577 		output_proc = tcp_wput_nondata;
18578 		break;
18579 	}
18580 
18581 	CONN_INC_REF(connp);
18582 	(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18583 	    output_proc, connp, SQTAG_TCP_WPUT_OTHER);
18584 }
18585 
18586 /*
18587  * Initial STREAMS write side put() procedure for sockets. It tries to
18588  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18589  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18590  * are handled by tcp_wput() as usual.
18591  *
18592  * All further messages will also be handled by tcp_wput() because we cannot
18593  * be sure that the above short cut is safe later.
18594  */
18595 static void
18596 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18597 {
18598 	conn_t			*connp = Q_TO_CONN(wq);
18599 	tcp_t			*tcp = connp->conn_tcp;
18600 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
18601 
18602 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
18603 	wq->q_qinfo = &tcp_winit;
18604 
18605 	ASSERT(IPCL_IS_TCP(connp));
18606 	ASSERT(TCP_IS_SOCKET(tcp));
18607 
18608 	if (DB_TYPE(mp) == M_PCPROTO &&
18609 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
18610 	    car->PRIM_type == T_CAPABILITY_REQ) {
18611 		tcp_capability_req(tcp, mp);
18612 		return;
18613 	}
18614 
18615 	tcp_wput(wq, mp);
18616 }
18617 
18618 static boolean_t
18619 tcp_zcopy_check(tcp_t *tcp)
18620 {
18621 	conn_t	*connp = tcp->tcp_connp;
18622 	ire_t	*ire;
18623 	boolean_t	zc_enabled = B_FALSE;
18624 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18625 
18626 	if (do_tcpzcopy == 2)
18627 		zc_enabled = B_TRUE;
18628 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
18629 	    IPCL_IS_CONNECTED(connp) &&
18630 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
18631 	    connp->conn_dontroute == 0 &&
18632 	    !connp->conn_nexthop_set &&
18633 	    connp->conn_outgoing_ill == NULL &&
18634 	    connp->conn_nofailover_ill == NULL &&
18635 	    do_tcpzcopy == 1) {
18636 		/*
18637 		 * the checks above  closely resemble the fast path checks
18638 		 * in tcp_send_data().
18639 		 */
18640 		mutex_enter(&connp->conn_lock);
18641 		ire = connp->conn_ire_cache;
18642 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18643 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18644 			IRE_REFHOLD(ire);
18645 			if (ire->ire_stq != NULL) {
18646 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
18647 
18648 				zc_enabled = ill && (ill->ill_capabilities &
18649 				    ILL_CAPAB_ZEROCOPY) &&
18650 				    (ill->ill_zerocopy_capab->
18651 				    ill_zerocopy_flags != 0);
18652 			}
18653 			IRE_REFRELE(ire);
18654 		}
18655 		mutex_exit(&connp->conn_lock);
18656 	}
18657 	tcp->tcp_snd_zcopy_on = zc_enabled;
18658 	if (!TCP_IS_DETACHED(tcp)) {
18659 		if (zc_enabled) {
18660 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE);
18661 			TCP_STAT(tcps, tcp_zcopy_on);
18662 		} else {
18663 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18664 			TCP_STAT(tcps, tcp_zcopy_off);
18665 		}
18666 	}
18667 	return (zc_enabled);
18668 }
18669 
18670 static mblk_t *
18671 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
18672 {
18673 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18674 
18675 	if (do_tcpzcopy == 2)
18676 		return (bp);
18677 	else if (tcp->tcp_snd_zcopy_on) {
18678 		tcp->tcp_snd_zcopy_on = B_FALSE;
18679 		if (!TCP_IS_DETACHED(tcp)) {
18680 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18681 			TCP_STAT(tcps, tcp_zcopy_disable);
18682 		}
18683 	}
18684 	return (tcp_zcopy_backoff(tcp, bp, 0));
18685 }
18686 
18687 /*
18688  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
18689  * the original desballoca'ed segmapped mblk.
18690  */
18691 static mblk_t *
18692 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
18693 {
18694 	mblk_t *head, *tail, *nbp;
18695 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18696 
18697 	if (IS_VMLOANED_MBLK(bp)) {
18698 		TCP_STAT(tcps, tcp_zcopy_backoff);
18699 		if ((head = copyb(bp)) == NULL) {
18700 			/* fail to backoff; leave it for the next backoff */
18701 			tcp->tcp_xmit_zc_clean = B_FALSE;
18702 			return (bp);
18703 		}
18704 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18705 			if (fix_xmitlist)
18706 				tcp_zcopy_notify(tcp);
18707 			else
18708 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18709 		}
18710 		nbp = bp->b_cont;
18711 		if (fix_xmitlist) {
18712 			head->b_prev = bp->b_prev;
18713 			head->b_next = bp->b_next;
18714 			if (tcp->tcp_xmit_tail == bp)
18715 				tcp->tcp_xmit_tail = head;
18716 		}
18717 		bp->b_next = NULL;
18718 		bp->b_prev = NULL;
18719 		freeb(bp);
18720 	} else {
18721 		head = bp;
18722 		nbp = bp->b_cont;
18723 	}
18724 	tail = head;
18725 	while (nbp) {
18726 		if (IS_VMLOANED_MBLK(nbp)) {
18727 			TCP_STAT(tcps, tcp_zcopy_backoff);
18728 			if ((tail->b_cont = copyb(nbp)) == NULL) {
18729 				tcp->tcp_xmit_zc_clean = B_FALSE;
18730 				tail->b_cont = nbp;
18731 				return (head);
18732 			}
18733 			tail = tail->b_cont;
18734 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18735 				if (fix_xmitlist)
18736 					tcp_zcopy_notify(tcp);
18737 				else
18738 					tail->b_datap->db_struioflag |=
18739 					    STRUIO_ZCNOTIFY;
18740 			}
18741 			bp = nbp;
18742 			nbp = nbp->b_cont;
18743 			if (fix_xmitlist) {
18744 				tail->b_prev = bp->b_prev;
18745 				tail->b_next = bp->b_next;
18746 				if (tcp->tcp_xmit_tail == bp)
18747 					tcp->tcp_xmit_tail = tail;
18748 			}
18749 			bp->b_next = NULL;
18750 			bp->b_prev = NULL;
18751 			freeb(bp);
18752 		} else {
18753 			tail->b_cont = nbp;
18754 			tail = nbp;
18755 			nbp = nbp->b_cont;
18756 		}
18757 	}
18758 	if (fix_xmitlist) {
18759 		tcp->tcp_xmit_last = tail;
18760 		tcp->tcp_xmit_zc_clean = B_TRUE;
18761 	}
18762 	return (head);
18763 }
18764 
18765 static void
18766 tcp_zcopy_notify(tcp_t *tcp)
18767 {
18768 	struct stdata	*stp;
18769 
18770 	if (tcp->tcp_detached)
18771 		return;
18772 	stp = STREAM(tcp->tcp_rq);
18773 	mutex_enter(&stp->sd_lock);
18774 	stp->sd_flag |= STZCNOTIFY;
18775 	cv_broadcast(&stp->sd_zcopy_wait);
18776 	mutex_exit(&stp->sd_lock);
18777 }
18778 
18779 static boolean_t
18780 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep)
18781 {
18782 	ire_t	*ire;
18783 	conn_t	*connp = tcp->tcp_connp;
18784 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18785 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18786 
18787 	mutex_enter(&connp->conn_lock);
18788 	ire = connp->conn_ire_cache;
18789 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18790 
18791 	if ((ire != NULL) &&
18792 	    (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) &&
18793 	    IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) &&
18794 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18795 		IRE_REFHOLD(ire);
18796 		mutex_exit(&connp->conn_lock);
18797 	} else {
18798 		boolean_t cached = B_FALSE;
18799 		ts_label_t *tsl;
18800 
18801 		/* force a recheck later on */
18802 		tcp->tcp_ire_ill_check_done = B_FALSE;
18803 
18804 		TCP_DBGSTAT(tcps, tcp_ire_null1);
18805 		connp->conn_ire_cache = NULL;
18806 		mutex_exit(&connp->conn_lock);
18807 
18808 		if (ire != NULL)
18809 			IRE_REFRELE_NOTR(ire);
18810 
18811 		tsl = crgetlabel(CONN_CRED(connp));
18812 		ire = (dst ?
18813 		    ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) :
18814 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
18815 		    connp->conn_zoneid, tsl, ipst));
18816 
18817 		if (ire == NULL) {
18818 			TCP_STAT(tcps, tcp_ire_null);
18819 			return (B_FALSE);
18820 		}
18821 
18822 		IRE_REFHOLD_NOTR(ire);
18823 		/*
18824 		 * Since we are inside the squeue, there cannot be another
18825 		 * thread in TCP trying to set the conn_ire_cache now.  The
18826 		 * check for IRE_MARK_CONDEMNED ensures that an interface
18827 		 * unplumb thread has not yet started cleaning up the conns.
18828 		 * Hence we don't need to grab the conn lock.
18829 		 */
18830 		if (CONN_CACHE_IRE(connp)) {
18831 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
18832 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18833 				TCP_CHECK_IREINFO(tcp, ire);
18834 				connp->conn_ire_cache = ire;
18835 				cached = B_TRUE;
18836 			}
18837 			rw_exit(&ire->ire_bucket->irb_lock);
18838 		}
18839 
18840 		/*
18841 		 * We can continue to use the ire but since it was
18842 		 * not cached, we should drop the extra reference.
18843 		 */
18844 		if (!cached)
18845 			IRE_REFRELE_NOTR(ire);
18846 
18847 		/*
18848 		 * Rampart note: no need to select a new label here, since
18849 		 * labels are not allowed to change during the life of a TCP
18850 		 * connection.
18851 		 */
18852 	}
18853 
18854 	*irep = ire;
18855 
18856 	return (B_TRUE);
18857 }
18858 
18859 /*
18860  * Called from tcp_send() or tcp_send_data() to find workable IRE.
18861  *
18862  * 0 = success;
18863  * 1 = failed to find ire and ill.
18864  */
18865 static boolean_t
18866 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp)
18867 {
18868 	ipha_t		*ipha;
18869 	ipaddr_t	dst;
18870 	ire_t		*ire;
18871 	ill_t		*ill;
18872 	conn_t		*connp = tcp->tcp_connp;
18873 	mblk_t		*ire_fp_mp;
18874 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18875 
18876 	if (mp != NULL)
18877 		ipha = (ipha_t *)mp->b_rptr;
18878 	else
18879 		ipha = tcp->tcp_ipha;
18880 	dst = ipha->ipha_dst;
18881 
18882 	if (!tcp_send_find_ire(tcp, &dst, &ire))
18883 		return (B_FALSE);
18884 
18885 	if ((ire->ire_flags & RTF_MULTIRT) ||
18886 	    (ire->ire_stq == NULL) ||
18887 	    (ire->ire_nce == NULL) ||
18888 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
18889 	    ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) ||
18890 	    MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) {
18891 		TCP_STAT(tcps, tcp_ip_ire_send);
18892 		IRE_REFRELE(ire);
18893 		return (B_FALSE);
18894 	}
18895 
18896 	ill = ire_to_ill(ire);
18897 	if (connp->conn_outgoing_ill != NULL) {
18898 		ill_t *conn_outgoing_ill = NULL;
18899 		/*
18900 		 * Choose a good ill in the group to send the packets on.
18901 		 */
18902 		ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill);
18903 		ill = ire_to_ill(ire);
18904 	}
18905 	ASSERT(ill != NULL);
18906 
18907 	if (!tcp->tcp_ire_ill_check_done) {
18908 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
18909 		tcp->tcp_ire_ill_check_done = B_TRUE;
18910 	}
18911 
18912 	*irep = ire;
18913 	*illp = ill;
18914 
18915 	return (B_TRUE);
18916 }
18917 
18918 static void
18919 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
18920 {
18921 	ipha_t		*ipha;
18922 	ipaddr_t	src;
18923 	ipaddr_t	dst;
18924 	uint32_t	cksum;
18925 	ire_t		*ire;
18926 	uint16_t	*up;
18927 	ill_t		*ill;
18928 	conn_t		*connp = tcp->tcp_connp;
18929 	uint32_t	hcksum_txflags = 0;
18930 	mblk_t		*ire_fp_mp;
18931 	uint_t		ire_fp_mp_len;
18932 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18933 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18934 
18935 	ASSERT(DB_TYPE(mp) == M_DATA);
18936 
18937 	if (DB_CRED(mp) == NULL)
18938 		mblk_setcred(mp, CONN_CRED(connp));
18939 
18940 	ipha = (ipha_t *)mp->b_rptr;
18941 	src = ipha->ipha_src;
18942 	dst = ipha->ipha_dst;
18943 
18944 	/*
18945 	 * Drop off fast path for IPv6 and also if options are present or
18946 	 * we need to resolve a TS label.
18947 	 */
18948 	if (tcp->tcp_ipversion != IPV4_VERSION ||
18949 	    !IPCL_IS_CONNECTED(connp) ||
18950 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
18951 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
18952 	    !connp->conn_ulp_labeled ||
18953 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
18954 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
18955 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
18956 		if (tcp->tcp_snd_zcopy_aware)
18957 			mp = tcp_zcopy_disable(tcp, mp);
18958 		TCP_STAT(tcps, tcp_ip_send);
18959 		CALL_IP_WPUT(connp, q, mp);
18960 		return;
18961 	}
18962 
18963 	if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) {
18964 		if (tcp->tcp_snd_zcopy_aware)
18965 			mp = tcp_zcopy_backoff(tcp, mp, 0);
18966 		CALL_IP_WPUT(connp, q, mp);
18967 		return;
18968 	}
18969 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
18970 	ire_fp_mp_len = MBLKL(ire_fp_mp);
18971 
18972 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
18973 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
18974 #ifndef _BIG_ENDIAN
18975 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
18976 #endif
18977 
18978 	/*
18979 	 * Check to see if we need to re-enable LSO/MDT for this connection
18980 	 * because it was previously disabled due to changes in the ill;
18981 	 * note that by doing it here, this re-enabling only applies when
18982 	 * the packet is not dispatched through CALL_IP_WPUT().
18983 	 *
18984 	 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath
18985 	 * case, since that's how we ended up here.  For IPv6, we do the
18986 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
18987 	 */
18988 	if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
18989 		/*
18990 		 * Restore LSO for this connection, so that next time around
18991 		 * it is eligible to go through tcp_lsosend() path again.
18992 		 */
18993 		TCP_STAT(tcps, tcp_lso_enabled);
18994 		tcp->tcp_lso = B_TRUE;
18995 		ip1dbg(("tcp_send_data: reenabling LSO for connp %p on "
18996 		    "interface %s\n", (void *)connp, ill->ill_name));
18997 	} else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
18998 		/*
18999 		 * Restore MDT for this connection, so that next time around
19000 		 * it is eligible to go through tcp_multisend() path again.
19001 		 */
19002 		TCP_STAT(tcps, tcp_mdt_conn_resumed1);
19003 		tcp->tcp_mdt = B_TRUE;
19004 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
19005 		    "interface %s\n", (void *)connp, ill->ill_name));
19006 	}
19007 
19008 	if (tcp->tcp_snd_zcopy_aware) {
19009 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
19010 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
19011 			mp = tcp_zcopy_disable(tcp, mp);
19012 		/*
19013 		 * we shouldn't need to reset ipha as the mp containing
19014 		 * ipha should never be a zero-copy mp.
19015 		 */
19016 	}
19017 
19018 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
19019 		ASSERT(ill->ill_hcksum_capab != NULL);
19020 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
19021 	}
19022 
19023 	/* pseudo-header checksum (do it in parts for IP header checksum) */
19024 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
19025 
19026 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
19027 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
19028 
19029 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
19030 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
19031 
19032 	/* Software checksum? */
19033 	if (DB_CKSUMFLAGS(mp) == 0) {
19034 		TCP_STAT(tcps, tcp_out_sw_cksum);
19035 		TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
19036 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
19037 	}
19038 
19039 	ipha->ipha_fragment_offset_and_flags |=
19040 	    (uint32_t)htons(ire->ire_frag_flag);
19041 
19042 	/* Calculate IP header checksum if hardware isn't capable */
19043 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
19044 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
19045 		    ((uint16_t *)ipha)[4]);
19046 	}
19047 
19048 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
19049 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
19050 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
19051 
19052 	UPDATE_OB_PKT_COUNT(ire);
19053 	ire->ire_last_used_time = lbolt;
19054 
19055 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
19056 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
19057 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
19058 	    ntohs(ipha->ipha_length));
19059 
19060 	if (ILL_DLS_CAPABLE(ill)) {
19061 		/*
19062 		 * Send the packet directly to DLD, where it may be queued
19063 		 * depending on the availability of transmit resources at
19064 		 * the media layer.
19065 		 */
19066 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
19067 	} else {
19068 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
19069 		DTRACE_PROBE4(ip4__physical__out__start,
19070 		    ill_t *, NULL, ill_t *, out_ill,
19071 		    ipha_t *, ipha, mblk_t *, mp);
19072 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
19073 		    ipst->ips_ipv4firewall_physical_out,
19074 		    NULL, out_ill, ipha, mp, mp, ipst);
19075 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
19076 		if (mp != NULL)
19077 			putnext(ire->ire_stq, mp);
19078 	}
19079 	IRE_REFRELE(ire);
19080 }
19081 
19082 /*
19083  * This handles the case when the receiver has shrunk its win. Per RFC 1122
19084  * if the receiver shrinks the window, i.e. moves the right window to the
19085  * left, the we should not send new data, but should retransmit normally the
19086  * old unacked data between suna and suna + swnd. We might has sent data
19087  * that is now outside the new window, pretend that we didn't send  it.
19088  */
19089 static void
19090 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
19091 {
19092 	uint32_t	snxt = tcp->tcp_snxt;
19093 	mblk_t		*xmit_tail;
19094 	int32_t		offset;
19095 
19096 	ASSERT(shrunk_count > 0);
19097 
19098 	/* Pretend we didn't send the data outside the window */
19099 	snxt -= shrunk_count;
19100 
19101 	/* Get the mblk and the offset in it per the shrunk window */
19102 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
19103 
19104 	ASSERT(xmit_tail != NULL);
19105 
19106 	/* Reset all the values per the now shrunk window */
19107 	tcp->tcp_snxt = snxt;
19108 	tcp->tcp_xmit_tail = xmit_tail;
19109 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
19110 	    offset;
19111 	tcp->tcp_unsent += shrunk_count;
19112 
19113 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
19114 		/*
19115 		 * Make sure the timer is running so that we will probe a zero
19116 		 * window.
19117 		 */
19118 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19119 }
19120 
19121 
19122 /*
19123  * The TCP normal data output path.
19124  * NOTE: the logic of the fast path is duplicated from this function.
19125  */
19126 static void
19127 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
19128 {
19129 	int		len;
19130 	mblk_t		*local_time;
19131 	mblk_t		*mp1;
19132 	uint32_t	snxt;
19133 	int		tail_unsent;
19134 	int		tcpstate;
19135 	int		usable = 0;
19136 	mblk_t		*xmit_tail;
19137 	queue_t		*q = tcp->tcp_wq;
19138 	int32_t		mss;
19139 	int32_t		num_sack_blk = 0;
19140 	int32_t		tcp_hdr_len;
19141 	int32_t		tcp_tcp_hdr_len;
19142 	int		mdt_thres;
19143 	int		rc;
19144 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19145 	ip_stack_t	*ipst;
19146 
19147 	tcpstate = tcp->tcp_state;
19148 	if (mp == NULL) {
19149 		/*
19150 		 * tcp_wput_data() with NULL mp should only be called when
19151 		 * there is unsent data.
19152 		 */
19153 		ASSERT(tcp->tcp_unsent > 0);
19154 		/* Really tacky... but we need this for detached closes. */
19155 		len = tcp->tcp_unsent;
19156 		goto data_null;
19157 	}
19158 
19159 #if CCS_STATS
19160 	wrw_stats.tot.count++;
19161 	wrw_stats.tot.bytes += msgdsize(mp);
19162 #endif
19163 	ASSERT(mp->b_datap->db_type == M_DATA);
19164 	/*
19165 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
19166 	 * or before a connection attempt has begun.
19167 	 */
19168 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
19169 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19170 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19171 #ifdef DEBUG
19172 			cmn_err(CE_WARN,
19173 			    "tcp_wput_data: data after ordrel, %s",
19174 			    tcp_display(tcp, NULL,
19175 			    DISP_ADDR_AND_PORT));
19176 #else
19177 			if (tcp->tcp_debug) {
19178 				(void) strlog(TCP_MOD_ID, 0, 1,
19179 				    SL_TRACE|SL_ERROR,
19180 				    "tcp_wput_data: data after ordrel, %s\n",
19181 				    tcp_display(tcp, NULL,
19182 				    DISP_ADDR_AND_PORT));
19183 			}
19184 #endif /* DEBUG */
19185 		}
19186 		if (tcp->tcp_snd_zcopy_aware &&
19187 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
19188 			tcp_zcopy_notify(tcp);
19189 		freemsg(mp);
19190 		mutex_enter(&tcp->tcp_non_sq_lock);
19191 		if (tcp->tcp_flow_stopped &&
19192 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19193 			tcp_clrqfull(tcp);
19194 		}
19195 		mutex_exit(&tcp->tcp_non_sq_lock);
19196 		return;
19197 	}
19198 
19199 	/* Strip empties */
19200 	for (;;) {
19201 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
19202 		    (uintptr_t)INT_MAX);
19203 		len = (int)(mp->b_wptr - mp->b_rptr);
19204 		if (len > 0)
19205 			break;
19206 		mp1 = mp;
19207 		mp = mp->b_cont;
19208 		freeb(mp1);
19209 		if (!mp) {
19210 			return;
19211 		}
19212 	}
19213 
19214 	/* If we are the first on the list ... */
19215 	if (tcp->tcp_xmit_head == NULL) {
19216 		tcp->tcp_xmit_head = mp;
19217 		tcp->tcp_xmit_tail = mp;
19218 		tcp->tcp_xmit_tail_unsent = len;
19219 	} else {
19220 		/* If tiny tx and room in txq tail, pullup to save mblks. */
19221 		struct datab *dp;
19222 
19223 		mp1 = tcp->tcp_xmit_last;
19224 		if (len < tcp_tx_pull_len &&
19225 		    (dp = mp1->b_datap)->db_ref == 1 &&
19226 		    dp->db_lim - mp1->b_wptr >= len) {
19227 			ASSERT(len > 0);
19228 			ASSERT(!mp1->b_cont);
19229 			if (len == 1) {
19230 				*mp1->b_wptr++ = *mp->b_rptr;
19231 			} else {
19232 				bcopy(mp->b_rptr, mp1->b_wptr, len);
19233 				mp1->b_wptr += len;
19234 			}
19235 			if (mp1 == tcp->tcp_xmit_tail)
19236 				tcp->tcp_xmit_tail_unsent += len;
19237 			mp1->b_cont = mp->b_cont;
19238 			if (tcp->tcp_snd_zcopy_aware &&
19239 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
19240 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
19241 			freeb(mp);
19242 			mp = mp1;
19243 		} else {
19244 			tcp->tcp_xmit_last->b_cont = mp;
19245 		}
19246 		len += tcp->tcp_unsent;
19247 	}
19248 
19249 	/* Tack on however many more positive length mblks we have */
19250 	if ((mp1 = mp->b_cont) != NULL) {
19251 		do {
19252 			int tlen;
19253 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
19254 			    (uintptr_t)INT_MAX);
19255 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
19256 			if (tlen <= 0) {
19257 				mp->b_cont = mp1->b_cont;
19258 				freeb(mp1);
19259 			} else {
19260 				len += tlen;
19261 				mp = mp1;
19262 			}
19263 		} while ((mp1 = mp->b_cont) != NULL);
19264 	}
19265 	tcp->tcp_xmit_last = mp;
19266 	tcp->tcp_unsent = len;
19267 
19268 	if (urgent)
19269 		usable = 1;
19270 
19271 data_null:
19272 	snxt = tcp->tcp_snxt;
19273 	xmit_tail = tcp->tcp_xmit_tail;
19274 	tail_unsent = tcp->tcp_xmit_tail_unsent;
19275 
19276 	/*
19277 	 * Note that tcp_mss has been adjusted to take into account the
19278 	 * timestamp option if applicable.  Because SACK options do not
19279 	 * appear in every TCP segments and they are of variable lengths,
19280 	 * they cannot be included in tcp_mss.  Thus we need to calculate
19281 	 * the actual segment length when we need to send a segment which
19282 	 * includes SACK options.
19283 	 */
19284 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
19285 		int32_t	opt_len;
19286 
19287 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
19288 		    tcp->tcp_num_sack_blk);
19289 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
19290 		    2 + TCPOPT_HEADER_LEN;
19291 		mss = tcp->tcp_mss - opt_len;
19292 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
19293 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
19294 	} else {
19295 		mss = tcp->tcp_mss;
19296 		tcp_hdr_len = tcp->tcp_hdr_len;
19297 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
19298 	}
19299 
19300 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
19301 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
19302 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
19303 	}
19304 	if (tcpstate == TCPS_SYN_RCVD) {
19305 		/*
19306 		 * The three-way connection establishment handshake is not
19307 		 * complete yet. We want to queue the data for transmission
19308 		 * after entering ESTABLISHED state (RFC793). A jump to
19309 		 * "done" label effectively leaves data on the queue.
19310 		 */
19311 		goto done;
19312 	} else {
19313 		int usable_r;
19314 
19315 		/*
19316 		 * In the special case when cwnd is zero, which can only
19317 		 * happen if the connection is ECN capable, return now.
19318 		 * New segments is sent using tcp_timer().  The timer
19319 		 * is set in tcp_rput_data().
19320 		 */
19321 		if (tcp->tcp_cwnd == 0) {
19322 			/*
19323 			 * Note that tcp_cwnd is 0 before 3-way handshake is
19324 			 * finished.
19325 			 */
19326 			ASSERT(tcp->tcp_ecn_ok ||
19327 			    tcp->tcp_state < TCPS_ESTABLISHED);
19328 			return;
19329 		}
19330 
19331 		/* NOTE: trouble if xmitting while SYN not acked? */
19332 		usable_r = snxt - tcp->tcp_suna;
19333 		usable_r = tcp->tcp_swnd - usable_r;
19334 
19335 		/*
19336 		 * Check if the receiver has shrunk the window.  If
19337 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
19338 		 * cannot be set as there is unsent data, so FIN cannot
19339 		 * be sent out.  Otherwise, we need to take into account
19340 		 * of FIN as it consumes an "invisible" sequence number.
19341 		 */
19342 		ASSERT(tcp->tcp_fin_sent == 0);
19343 		if (usable_r < 0) {
19344 			/*
19345 			 * The receiver has shrunk the window and we have sent
19346 			 * -usable_r date beyond the window, re-adjust.
19347 			 *
19348 			 * If TCP window scaling is enabled, there can be
19349 			 * round down error as the advertised receive window
19350 			 * is actually right shifted n bits.  This means that
19351 			 * the lower n bits info is wiped out.  It will look
19352 			 * like the window is shrunk.  Do a check here to
19353 			 * see if the shrunk amount is actually within the
19354 			 * error in window calculation.  If it is, just
19355 			 * return.  Note that this check is inside the
19356 			 * shrunk window check.  This makes sure that even
19357 			 * though tcp_process_shrunk_swnd() is not called,
19358 			 * we will stop further processing.
19359 			 */
19360 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
19361 				tcp_process_shrunk_swnd(tcp, -usable_r);
19362 			}
19363 			return;
19364 		}
19365 
19366 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
19367 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
19368 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
19369 
19370 		/* usable = MIN(usable, unsent) */
19371 		if (usable_r > len)
19372 			usable_r = len;
19373 
19374 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
19375 		if (usable_r > 0) {
19376 			usable = usable_r;
19377 		} else {
19378 			/* Bypass all other unnecessary processing. */
19379 			goto done;
19380 		}
19381 	}
19382 
19383 	local_time = (mblk_t *)lbolt;
19384 
19385 	/*
19386 	 * "Our" Nagle Algorithm.  This is not the same as in the old
19387 	 * BSD.  This is more in line with the true intent of Nagle.
19388 	 *
19389 	 * The conditions are:
19390 	 * 1. The amount of unsent data (or amount of data which can be
19391 	 *    sent, whichever is smaller) is less than Nagle limit.
19392 	 * 2. The last sent size is also less than Nagle limit.
19393 	 * 3. There is unack'ed data.
19394 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
19395 	 *    Nagle algorithm.  This reduces the probability that urgent
19396 	 *    bytes get "merged" together.
19397 	 * 5. The app has not closed the connection.  This eliminates the
19398 	 *    wait time of the receiving side waiting for the last piece of
19399 	 *    (small) data.
19400 	 *
19401 	 * If all are satisified, exit without sending anything.  Note
19402 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
19403 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
19404 	 * 4095).
19405 	 */
19406 	if (usable < (int)tcp->tcp_naglim &&
19407 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
19408 	    snxt != tcp->tcp_suna &&
19409 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
19410 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
19411 		goto done;
19412 	}
19413 
19414 	if (tcp->tcp_cork) {
19415 		/*
19416 		 * if the tcp->tcp_cork option is set, then we have to force
19417 		 * TCP not to send partial segment (smaller than MSS bytes).
19418 		 * We are calculating the usable now based on full mss and
19419 		 * will save the rest of remaining data for later.
19420 		 */
19421 		if (usable < mss)
19422 			goto done;
19423 		usable = (usable / mss) * mss;
19424 	}
19425 
19426 	/* Update the latest receive window size in TCP header. */
19427 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
19428 	    tcp->tcp_tcph->th_win);
19429 
19430 	/*
19431 	 * Determine if it's worthwhile to attempt LSO or MDT, based on:
19432 	 *
19433 	 * 1. Simple TCP/IP{v4,v6} (no options).
19434 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
19435 	 * 3. If the TCP connection is in ESTABLISHED state.
19436 	 * 4. The TCP is not detached.
19437 	 *
19438 	 * If any of the above conditions have changed during the
19439 	 * connection, stop using LSO/MDT and restore the stream head
19440 	 * parameters accordingly.
19441 	 */
19442 	ipst = tcps->tcps_netstack->netstack_ip;
19443 
19444 	if ((tcp->tcp_lso || tcp->tcp_mdt) &&
19445 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
19446 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
19447 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19448 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
19449 	    tcp->tcp_state != TCPS_ESTABLISHED ||
19450 	    TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) ||
19451 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
19452 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst))) {
19453 		if (tcp->tcp_lso) {
19454 			tcp->tcp_connp->conn_lso_ok = B_FALSE;
19455 			tcp->tcp_lso = B_FALSE;
19456 		} else {
19457 			tcp->tcp_connp->conn_mdt_ok = B_FALSE;
19458 			tcp->tcp_mdt = B_FALSE;
19459 		}
19460 
19461 		/* Anything other than detached is considered pathological */
19462 		if (!TCP_IS_DETACHED(tcp)) {
19463 			if (tcp->tcp_lso)
19464 				TCP_STAT(tcps, tcp_lso_disabled);
19465 			else
19466 				TCP_STAT(tcps, tcp_mdt_conn_halted1);
19467 			(void) tcp_maxpsz_set(tcp, B_TRUE);
19468 		}
19469 	}
19470 
19471 	/* Use MDT if sendable amount is greater than the threshold */
19472 	if (tcp->tcp_mdt &&
19473 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
19474 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
19475 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
19476 	    (tcp->tcp_valid_bits == 0 ||
19477 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
19478 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
19479 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19480 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19481 		    local_time, mdt_thres);
19482 	} else {
19483 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19484 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19485 		    local_time, INT_MAX);
19486 	}
19487 
19488 	/* Pretend that all we were trying to send really got sent */
19489 	if (rc < 0 && tail_unsent < 0) {
19490 		do {
19491 			xmit_tail = xmit_tail->b_cont;
19492 			xmit_tail->b_prev = local_time;
19493 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
19494 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
19495 			tail_unsent += (int)(xmit_tail->b_wptr -
19496 			    xmit_tail->b_rptr);
19497 		} while (tail_unsent < 0);
19498 	}
19499 done:;
19500 	tcp->tcp_xmit_tail = xmit_tail;
19501 	tcp->tcp_xmit_tail_unsent = tail_unsent;
19502 	len = tcp->tcp_snxt - snxt;
19503 	if (len) {
19504 		/*
19505 		 * If new data was sent, need to update the notsack
19506 		 * list, which is, afterall, data blocks that have
19507 		 * not been sack'ed by the receiver.  New data is
19508 		 * not sack'ed.
19509 		 */
19510 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
19511 			/* len is a negative value. */
19512 			tcp->tcp_pipe -= len;
19513 			tcp_notsack_update(&(tcp->tcp_notsack_list),
19514 			    tcp->tcp_snxt, snxt,
19515 			    &(tcp->tcp_num_notsack_blk),
19516 			    &(tcp->tcp_cnt_notsack_list));
19517 		}
19518 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
19519 		tcp->tcp_rack = tcp->tcp_rnxt;
19520 		tcp->tcp_rack_cnt = 0;
19521 		if ((snxt + len) == tcp->tcp_suna) {
19522 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19523 		}
19524 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
19525 		/*
19526 		 * Didn't send anything. Make sure the timer is running
19527 		 * so that we will probe a zero window.
19528 		 */
19529 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19530 	}
19531 	/* Note that len is the amount we just sent but with a negative sign */
19532 	tcp->tcp_unsent += len;
19533 	mutex_enter(&tcp->tcp_non_sq_lock);
19534 	if (tcp->tcp_flow_stopped) {
19535 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19536 			tcp_clrqfull(tcp);
19537 		}
19538 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
19539 		tcp_setqfull(tcp);
19540 	}
19541 	mutex_exit(&tcp->tcp_non_sq_lock);
19542 }
19543 
19544 /*
19545  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
19546  * outgoing TCP header with the template header, as well as other
19547  * options such as time-stamp, ECN and/or SACK.
19548  */
19549 static void
19550 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
19551 {
19552 	tcph_t *tcp_tmpl, *tcp_h;
19553 	uint32_t *dst, *src;
19554 	int hdrlen;
19555 
19556 	ASSERT(OK_32PTR(rptr));
19557 
19558 	/* Template header */
19559 	tcp_tmpl = tcp->tcp_tcph;
19560 
19561 	/* Header of outgoing packet */
19562 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
19563 
19564 	/* dst and src are opaque 32-bit fields, used for copying */
19565 	dst = (uint32_t *)rptr;
19566 	src = (uint32_t *)tcp->tcp_iphc;
19567 	hdrlen = tcp->tcp_hdr_len;
19568 
19569 	/* Fill time-stamp option if needed */
19570 	if (tcp->tcp_snd_ts_ok) {
19571 		U32_TO_BE32((uint32_t)now,
19572 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
19573 		U32_TO_BE32(tcp->tcp_ts_recent,
19574 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
19575 	} else {
19576 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
19577 	}
19578 
19579 	/*
19580 	 * Copy the template header; is this really more efficient than
19581 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
19582 	 * but perhaps not for other scenarios.
19583 	 */
19584 	dst[0] = src[0];
19585 	dst[1] = src[1];
19586 	dst[2] = src[2];
19587 	dst[3] = src[3];
19588 	dst[4] = src[4];
19589 	dst[5] = src[5];
19590 	dst[6] = src[6];
19591 	dst[7] = src[7];
19592 	dst[8] = src[8];
19593 	dst[9] = src[9];
19594 	if (hdrlen -= 40) {
19595 		hdrlen >>= 2;
19596 		dst += 10;
19597 		src += 10;
19598 		do {
19599 			*dst++ = *src++;
19600 		} while (--hdrlen);
19601 	}
19602 
19603 	/*
19604 	 * Set the ECN info in the TCP header if it is not a zero
19605 	 * window probe.  Zero window probe is only sent in
19606 	 * tcp_wput_data() and tcp_timer().
19607 	 */
19608 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
19609 		SET_ECT(tcp, rptr);
19610 
19611 		if (tcp->tcp_ecn_echo_on)
19612 			tcp_h->th_flags[0] |= TH_ECE;
19613 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
19614 			tcp_h->th_flags[0] |= TH_CWR;
19615 			tcp->tcp_ecn_cwr_sent = B_TRUE;
19616 		}
19617 	}
19618 
19619 	/* Fill in SACK options */
19620 	if (num_sack_blk > 0) {
19621 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
19622 		sack_blk_t *tmp;
19623 		int32_t	i;
19624 
19625 		wptr[0] = TCPOPT_NOP;
19626 		wptr[1] = TCPOPT_NOP;
19627 		wptr[2] = TCPOPT_SACK;
19628 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
19629 		    sizeof (sack_blk_t);
19630 		wptr += TCPOPT_REAL_SACK_LEN;
19631 
19632 		tmp = tcp->tcp_sack_list;
19633 		for (i = 0; i < num_sack_blk; i++) {
19634 			U32_TO_BE32(tmp[i].begin, wptr);
19635 			wptr += sizeof (tcp_seq);
19636 			U32_TO_BE32(tmp[i].end, wptr);
19637 			wptr += sizeof (tcp_seq);
19638 		}
19639 		tcp_h->th_offset_and_rsrvd[0] +=
19640 		    ((num_sack_blk * 2 + 1) << 4);
19641 	}
19642 }
19643 
19644 /*
19645  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
19646  * the destination address and SAP attribute, and if necessary, the
19647  * hardware checksum offload attribute to a Multidata message.
19648  */
19649 static int
19650 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
19651     const uint32_t start, const uint32_t stuff, const uint32_t end,
19652     const uint32_t flags, tcp_stack_t *tcps)
19653 {
19654 	/* Add global destination address & SAP attribute */
19655 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
19656 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
19657 		    "destination address+SAP\n"));
19658 
19659 		if (dlmp != NULL)
19660 			TCP_STAT(tcps, tcp_mdt_allocfail);
19661 		return (-1);
19662 	}
19663 
19664 	/* Add global hwcksum attribute */
19665 	if (hwcksum &&
19666 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
19667 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
19668 		    "checksum attribute\n"));
19669 
19670 		TCP_STAT(tcps, tcp_mdt_allocfail);
19671 		return (-1);
19672 	}
19673 
19674 	return (0);
19675 }
19676 
19677 /*
19678  * Smaller and private version of pdescinfo_t used specifically for TCP,
19679  * which allows for only two payload spans per packet.
19680  */
19681 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
19682 
19683 /*
19684  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
19685  * scheme, and returns one the following:
19686  *
19687  * -1 = failed allocation.
19688  *  0 = success; burst count reached, or usable send window is too small,
19689  *      and that we'd rather wait until later before sending again.
19690  */
19691 static int
19692 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
19693     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
19694     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
19695     const int mdt_thres)
19696 {
19697 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
19698 	multidata_t	*mmd;
19699 	uint_t		obsegs, obbytes, hdr_frag_sz;
19700 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
19701 	int		num_burst_seg, max_pld;
19702 	pdesc_t		*pkt;
19703 	tcp_pdescinfo_t	tcp_pkt_info;
19704 	pdescinfo_t	*pkt_info;
19705 	int		pbuf_idx, pbuf_idx_nxt;
19706 	int		seg_len, len, spill, af;
19707 	boolean_t	add_buffer, zcopy, clusterwide;
19708 	boolean_t	buf_trunked = B_FALSE;
19709 	boolean_t	rconfirm = B_FALSE;
19710 	boolean_t	done = B_FALSE;
19711 	uint32_t	cksum;
19712 	uint32_t	hwcksum_flags;
19713 	ire_t		*ire = NULL;
19714 	ill_t		*ill;
19715 	ipha_t		*ipha;
19716 	ip6_t		*ip6h;
19717 	ipaddr_t	src, dst;
19718 	ill_zerocopy_capab_t *zc_cap = NULL;
19719 	uint16_t	*up;
19720 	int		err;
19721 	conn_t		*connp;
19722 	mblk_t		*mp, *mp1, *fw_mp_head = NULL;
19723 	uchar_t		*pld_start;
19724 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19725 	ip_stack_t 	*ipst = tcps->tcps_netstack->netstack_ip;
19726 
19727 #ifdef	_BIG_ENDIAN
19728 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
19729 #else
19730 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
19731 #endif
19732 
19733 #define	PREP_NEW_MULTIDATA() {			\
19734 	mmd = NULL;				\
19735 	md_mp = md_hbuf = NULL;			\
19736 	cur_hdr_off = 0;			\
19737 	max_pld = tcp->tcp_mdt_max_pld;		\
19738 	pbuf_idx = pbuf_idx_nxt = -1;		\
19739 	add_buffer = B_TRUE;			\
19740 	zcopy = B_FALSE;			\
19741 }
19742 
19743 #define	PREP_NEW_PBUF() {			\
19744 	md_pbuf = md_pbuf_nxt = NULL;		\
19745 	pbuf_idx = pbuf_idx_nxt = -1;		\
19746 	cur_pld_off = 0;			\
19747 	first_snxt = *snxt;			\
19748 	ASSERT(*tail_unsent > 0);		\
19749 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
19750 }
19751 
19752 	ASSERT(mdt_thres >= mss);
19753 	ASSERT(*usable > 0 && *usable > mdt_thres);
19754 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
19755 	ASSERT(!TCP_IS_DETACHED(tcp));
19756 	ASSERT(tcp->tcp_valid_bits == 0 ||
19757 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
19758 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
19759 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
19760 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19761 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
19762 
19763 	connp = tcp->tcp_connp;
19764 	ASSERT(connp != NULL);
19765 	ASSERT(CONN_IS_LSO_MD_FASTPATH(connp));
19766 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
19767 
19768 	/*
19769 	 * Note that tcp will only declare at most 2 payload spans per
19770 	 * packet, which is much lower than the maximum allowable number
19771 	 * of packet spans per Multidata.  For this reason, we use the
19772 	 * privately declared and smaller descriptor info structure, in
19773 	 * order to save some stack space.
19774 	 */
19775 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
19776 
19777 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
19778 	if (af == AF_INET) {
19779 		dst = tcp->tcp_ipha->ipha_dst;
19780 		src = tcp->tcp_ipha->ipha_src;
19781 		ASSERT(!CLASSD(dst));
19782 	}
19783 	ASSERT(af == AF_INET ||
19784 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
19785 
19786 	obsegs = obbytes = 0;
19787 	num_burst_seg = tcp->tcp_snd_burst;
19788 	md_mp_head = NULL;
19789 	PREP_NEW_MULTIDATA();
19790 
19791 	/*
19792 	 * Before we go on further, make sure there is an IRE that we can
19793 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
19794 	 * in proceeding any further, and we should just hand everything
19795 	 * off to the legacy path.
19796 	 */
19797 	if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire))
19798 		goto legacy_send_no_md;
19799 
19800 	ASSERT(ire != NULL);
19801 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
19802 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
19803 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
19804 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
19805 	/*
19806 	 * If we do support loopback for MDT (which requires modifications
19807 	 * to the receiving paths), the following assertions should go away,
19808 	 * and we would be sending the Multidata to loopback conn later on.
19809 	 */
19810 	ASSERT(!IRE_IS_LOCAL(ire));
19811 	ASSERT(ire->ire_stq != NULL);
19812 
19813 	ill = ire_to_ill(ire);
19814 	ASSERT(ill != NULL);
19815 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
19816 
19817 	if (!tcp->tcp_ire_ill_check_done) {
19818 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19819 		tcp->tcp_ire_ill_check_done = B_TRUE;
19820 	}
19821 
19822 	/*
19823 	 * If the underlying interface conditions have changed, or if the
19824 	 * new interface does not support MDT, go back to legacy path.
19825 	 */
19826 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
19827 		/* don't go through this path anymore for this connection */
19828 		TCP_STAT(tcps, tcp_mdt_conn_halted2);
19829 		tcp->tcp_mdt = B_FALSE;
19830 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
19831 		    "interface %s\n", (void *)connp, ill->ill_name));
19832 		/* IRE will be released prior to returning */
19833 		goto legacy_send_no_md;
19834 	}
19835 
19836 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
19837 		zc_cap = ill->ill_zerocopy_capab;
19838 
19839 	/*
19840 	 * Check if we can take tcp fast-path. Note that "incomplete"
19841 	 * ire's (where the link-layer for next hop is not resolved
19842 	 * or where the fast-path header in nce_fp_mp is not available
19843 	 * yet) are sent down the legacy (slow) path.
19844 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
19845 	 */
19846 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
19847 		/* IRE will be released prior to returning */
19848 		goto legacy_send_no_md;
19849 	}
19850 
19851 	/* go to legacy path if interface doesn't support zerocopy */
19852 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
19853 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
19854 		/* IRE will be released prior to returning */
19855 		goto legacy_send_no_md;
19856 	}
19857 
19858 	/* does the interface support hardware checksum offload? */
19859 	hwcksum_flags = 0;
19860 	if (ILL_HCKSUM_CAPABLE(ill) &&
19861 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
19862 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
19863 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
19864 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19865 		    HCKSUM_IPHDRCKSUM)
19866 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
19867 
19868 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19869 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
19870 			hwcksum_flags |= HCK_FULLCKSUM;
19871 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19872 		    HCKSUM_INET_PARTIAL)
19873 			hwcksum_flags |= HCK_PARTIALCKSUM;
19874 	}
19875 
19876 	/*
19877 	 * Each header fragment consists of the leading extra space,
19878 	 * followed by the TCP/IP header, and the trailing extra space.
19879 	 * We make sure that each header fragment begins on a 32-bit
19880 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
19881 	 * aligned in tcp_mdt_update).
19882 	 */
19883 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
19884 	    tcp->tcp_mdt_hdr_tail), 4);
19885 
19886 	/* are we starting from the beginning of data block? */
19887 	if (*tail_unsent == 0) {
19888 		*xmit_tail = (*xmit_tail)->b_cont;
19889 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
19890 		*tail_unsent = (int)MBLKL(*xmit_tail);
19891 	}
19892 
19893 	/*
19894 	 * Here we create one or more Multidata messages, each made up of
19895 	 * one header buffer and up to N payload buffers.  This entire
19896 	 * operation is done within two loops:
19897 	 *
19898 	 * The outer loop mostly deals with creating the Multidata message,
19899 	 * as well as the header buffer that gets added to it.  It also
19900 	 * links the Multidata messages together such that all of them can
19901 	 * be sent down to the lower layer in a single putnext call; this
19902 	 * linking behavior depends on the tcp_mdt_chain tunable.
19903 	 *
19904 	 * The inner loop takes an existing Multidata message, and adds
19905 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
19906 	 * packetizes those buffers by filling up the corresponding header
19907 	 * buffer fragments with the proper IP and TCP headers, and by
19908 	 * describing the layout of each packet in the packet descriptors
19909 	 * that get added to the Multidata.
19910 	 */
19911 	do {
19912 		/*
19913 		 * If usable send window is too small, or data blocks in
19914 		 * transmit list are smaller than our threshold (i.e. app
19915 		 * performs large writes followed by small ones), we hand
19916 		 * off the control over to the legacy path.  Note that we'll
19917 		 * get back the control once it encounters a large block.
19918 		 */
19919 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
19920 		    (*xmit_tail)->b_cont != NULL &&
19921 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
19922 			/* send down what we've got so far */
19923 			if (md_mp_head != NULL) {
19924 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
19925 				    obsegs, obbytes, &rconfirm);
19926 			}
19927 			/*
19928 			 * Pass control over to tcp_send(), but tell it to
19929 			 * return to us once a large-size transmission is
19930 			 * possible.
19931 			 */
19932 			TCP_STAT(tcps, tcp_mdt_legacy_small);
19933 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
19934 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
19935 			    tail_unsent, xmit_tail, local_time,
19936 			    mdt_thres)) <= 0) {
19937 				/* burst count reached, or alloc failed */
19938 				IRE_REFRELE(ire);
19939 				return (err);
19940 			}
19941 
19942 			/* tcp_send() may have sent everything, so check */
19943 			if (*usable <= 0) {
19944 				IRE_REFRELE(ire);
19945 				return (0);
19946 			}
19947 
19948 			TCP_STAT(tcps, tcp_mdt_legacy_ret);
19949 			/*
19950 			 * We may have delivered the Multidata, so make sure
19951 			 * to re-initialize before the next round.
19952 			 */
19953 			md_mp_head = NULL;
19954 			obsegs = obbytes = 0;
19955 			num_burst_seg = tcp->tcp_snd_burst;
19956 			PREP_NEW_MULTIDATA();
19957 
19958 			/* are we starting from the beginning of data block? */
19959 			if (*tail_unsent == 0) {
19960 				*xmit_tail = (*xmit_tail)->b_cont;
19961 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19962 				    (uintptr_t)INT_MAX);
19963 				*tail_unsent = (int)MBLKL(*xmit_tail);
19964 			}
19965 		}
19966 
19967 		/*
19968 		 * max_pld limits the number of mblks in tcp's transmit
19969 		 * queue that can be added to a Multidata message.  Once
19970 		 * this counter reaches zero, no more additional mblks
19971 		 * can be added to it.  What happens afterwards depends
19972 		 * on whether or not we are set to chain the Multidata
19973 		 * messages.  If we are to link them together, reset
19974 		 * max_pld to its original value (tcp_mdt_max_pld) and
19975 		 * prepare to create a new Multidata message which will
19976 		 * get linked to md_mp_head.  Else, leave it alone and
19977 		 * let the inner loop break on its own.
19978 		 */
19979 		if (tcp_mdt_chain && max_pld == 0)
19980 			PREP_NEW_MULTIDATA();
19981 
19982 		/* adding a payload buffer; re-initialize values */
19983 		if (add_buffer)
19984 			PREP_NEW_PBUF();
19985 
19986 		/*
19987 		 * If we don't have a Multidata, either because we just
19988 		 * (re)entered this outer loop, or after we branched off
19989 		 * to tcp_send above, setup the Multidata and header
19990 		 * buffer to be used.
19991 		 */
19992 		if (md_mp == NULL) {
19993 			int md_hbuflen;
19994 			uint32_t start, stuff;
19995 
19996 			/*
19997 			 * Calculate Multidata header buffer size large enough
19998 			 * to hold all of the headers that can possibly be
19999 			 * sent at this moment.  We'd rather over-estimate
20000 			 * the size than running out of space; this is okay
20001 			 * since this buffer is small anyway.
20002 			 */
20003 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
20004 
20005 			/*
20006 			 * Start and stuff offset for partial hardware
20007 			 * checksum offload; these are currently for IPv4.
20008 			 * For full checksum offload, they are set to zero.
20009 			 */
20010 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
20011 				if (af == AF_INET) {
20012 					start = IP_SIMPLE_HDR_LENGTH;
20013 					stuff = IP_SIMPLE_HDR_LENGTH +
20014 					    TCP_CHECKSUM_OFFSET;
20015 				} else {
20016 					start = IPV6_HDR_LEN;
20017 					stuff = IPV6_HDR_LEN +
20018 					    TCP_CHECKSUM_OFFSET;
20019 				}
20020 			} else {
20021 				start = stuff = 0;
20022 			}
20023 
20024 			/*
20025 			 * Create the header buffer, Multidata, as well as
20026 			 * any necessary attributes (destination address,
20027 			 * SAP and hardware checksum offload) that should
20028 			 * be associated with the Multidata message.
20029 			 */
20030 			ASSERT(cur_hdr_off == 0);
20031 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
20032 			    ((md_hbuf->b_wptr += md_hbuflen),
20033 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
20034 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
20035 			    /* fastpath mblk */
20036 			    ire->ire_nce->nce_res_mp,
20037 			    /* hardware checksum enabled */
20038 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
20039 			    /* hardware checksum offsets */
20040 			    start, stuff, 0,
20041 			    /* hardware checksum flag */
20042 			    hwcksum_flags, tcps) != 0)) {
20043 legacy_send:
20044 				if (md_mp != NULL) {
20045 					/* Unlink message from the chain */
20046 					if (md_mp_head != NULL) {
20047 						err = (intptr_t)rmvb(md_mp_head,
20048 						    md_mp);
20049 						/*
20050 						 * We can't assert that rmvb
20051 						 * did not return -1, since we
20052 						 * may get here before linkb
20053 						 * happens.  We do, however,
20054 						 * check if we just removed the
20055 						 * only element in the list.
20056 						 */
20057 						if (err == 0)
20058 							md_mp_head = NULL;
20059 					}
20060 					/* md_hbuf gets freed automatically */
20061 					TCP_STAT(tcps, tcp_mdt_discarded);
20062 					freeb(md_mp);
20063 				} else {
20064 					/* Either allocb or mmd_alloc failed */
20065 					TCP_STAT(tcps, tcp_mdt_allocfail);
20066 					if (md_hbuf != NULL)
20067 						freeb(md_hbuf);
20068 				}
20069 
20070 				/* send down what we've got so far */
20071 				if (md_mp_head != NULL) {
20072 					tcp_multisend_data(tcp, ire, ill,
20073 					    md_mp_head, obsegs, obbytes,
20074 					    &rconfirm);
20075 				}
20076 legacy_send_no_md:
20077 				if (ire != NULL)
20078 					IRE_REFRELE(ire);
20079 				/*
20080 				 * Too bad; let the legacy path handle this.
20081 				 * We specify INT_MAX for the threshold, since
20082 				 * we gave up with the Multidata processings
20083 				 * and let the old path have it all.
20084 				 */
20085 				TCP_STAT(tcps, tcp_mdt_legacy_all);
20086 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
20087 				    tcp_tcp_hdr_len, num_sack_blk, usable,
20088 				    snxt, tail_unsent, xmit_tail, local_time,
20089 				    INT_MAX));
20090 			}
20091 
20092 			/* link to any existing ones, if applicable */
20093 			TCP_STAT(tcps, tcp_mdt_allocd);
20094 			if (md_mp_head == NULL) {
20095 				md_mp_head = md_mp;
20096 			} else if (tcp_mdt_chain) {
20097 				TCP_STAT(tcps, tcp_mdt_linked);
20098 				linkb(md_mp_head, md_mp);
20099 			}
20100 		}
20101 
20102 		ASSERT(md_mp_head != NULL);
20103 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
20104 		ASSERT(md_mp != NULL && mmd != NULL);
20105 		ASSERT(md_hbuf != NULL);
20106 
20107 		/*
20108 		 * Packetize the transmittable portion of the data block;
20109 		 * each data block is essentially added to the Multidata
20110 		 * as a payload buffer.  We also deal with adding more
20111 		 * than one payload buffers, which happens when the remaining
20112 		 * packetized portion of the current payload buffer is less
20113 		 * than MSS, while the next data block in transmit queue
20114 		 * has enough data to make up for one.  This "spillover"
20115 		 * case essentially creates a split-packet, where portions
20116 		 * of the packet's payload fragments may span across two
20117 		 * virtually discontiguous address blocks.
20118 		 */
20119 		seg_len = mss;
20120 		do {
20121 			len = seg_len;
20122 
20123 			ASSERT(len > 0);
20124 			ASSERT(max_pld >= 0);
20125 			ASSERT(!add_buffer || cur_pld_off == 0);
20126 
20127 			/*
20128 			 * First time around for this payload buffer; note
20129 			 * in the case of a spillover, the following has
20130 			 * been done prior to adding the split-packet
20131 			 * descriptor to Multidata, and we don't want to
20132 			 * repeat the process.
20133 			 */
20134 			if (add_buffer) {
20135 				ASSERT(mmd != NULL);
20136 				ASSERT(md_pbuf == NULL);
20137 				ASSERT(md_pbuf_nxt == NULL);
20138 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
20139 
20140 				/*
20141 				 * Have we reached the limit?  We'd get to
20142 				 * this case when we're not chaining the
20143 				 * Multidata messages together, and since
20144 				 * we're done, terminate this loop.
20145 				 */
20146 				if (max_pld == 0)
20147 					break; /* done */
20148 
20149 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
20150 					TCP_STAT(tcps, tcp_mdt_allocfail);
20151 					goto legacy_send; /* out_of_mem */
20152 				}
20153 
20154 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
20155 				    zc_cap != NULL) {
20156 					if (!ip_md_zcopy_attr(mmd, NULL,
20157 					    zc_cap->ill_zerocopy_flags)) {
20158 						freeb(md_pbuf);
20159 						TCP_STAT(tcps,
20160 						    tcp_mdt_allocfail);
20161 						/* out_of_mem */
20162 						goto legacy_send;
20163 					}
20164 					zcopy = B_TRUE;
20165 				}
20166 
20167 				md_pbuf->b_rptr += base_pld_off;
20168 
20169 				/*
20170 				 * Add a payload buffer to the Multidata; this
20171 				 * operation must not fail, or otherwise our
20172 				 * logic in this routine is broken.  There
20173 				 * is no memory allocation done by the
20174 				 * routine, so any returned failure simply
20175 				 * tells us that we've done something wrong.
20176 				 *
20177 				 * A failure tells us that either we're adding
20178 				 * the same payload buffer more than once, or
20179 				 * we're trying to add more buffers than
20180 				 * allowed (max_pld calculation is wrong).
20181 				 * None of the above cases should happen, and
20182 				 * we panic because either there's horrible
20183 				 * heap corruption, and/or programming mistake.
20184 				 */
20185 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
20186 				if (pbuf_idx < 0) {
20187 					cmn_err(CE_PANIC, "tcp_multisend: "
20188 					    "payload buffer logic error "
20189 					    "detected for tcp %p mmd %p "
20190 					    "pbuf %p (%d)\n",
20191 					    (void *)tcp, (void *)mmd,
20192 					    (void *)md_pbuf, pbuf_idx);
20193 				}
20194 
20195 				ASSERT(max_pld > 0);
20196 				--max_pld;
20197 				add_buffer = B_FALSE;
20198 			}
20199 
20200 			ASSERT(md_mp_head != NULL);
20201 			ASSERT(md_pbuf != NULL);
20202 			ASSERT(md_pbuf_nxt == NULL);
20203 			ASSERT(pbuf_idx != -1);
20204 			ASSERT(pbuf_idx_nxt == -1);
20205 			ASSERT(*usable > 0);
20206 
20207 			/*
20208 			 * We spillover to the next payload buffer only
20209 			 * if all of the following is true:
20210 			 *
20211 			 *   1. There is not enough data on the current
20212 			 *	payload buffer to make up `len',
20213 			 *   2. We are allowed to send `len',
20214 			 *   3. The next payload buffer length is large
20215 			 *	enough to accomodate `spill'.
20216 			 */
20217 			if ((spill = len - *tail_unsent) > 0 &&
20218 			    *usable >= len &&
20219 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
20220 			    max_pld > 0) {
20221 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
20222 				if (md_pbuf_nxt == NULL) {
20223 					TCP_STAT(tcps, tcp_mdt_allocfail);
20224 					goto legacy_send; /* out_of_mem */
20225 				}
20226 
20227 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
20228 				    zc_cap != NULL) {
20229 					if (!ip_md_zcopy_attr(mmd, NULL,
20230 					    zc_cap->ill_zerocopy_flags)) {
20231 						freeb(md_pbuf_nxt);
20232 						TCP_STAT(tcps,
20233 						    tcp_mdt_allocfail);
20234 						/* out_of_mem */
20235 						goto legacy_send;
20236 					}
20237 					zcopy = B_TRUE;
20238 				}
20239 
20240 				/*
20241 				 * See comments above on the first call to
20242 				 * mmd_addpldbuf for explanation on the panic.
20243 				 */
20244 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
20245 				if (pbuf_idx_nxt < 0) {
20246 					panic("tcp_multisend: "
20247 					    "next payload buffer logic error "
20248 					    "detected for tcp %p mmd %p "
20249 					    "pbuf %p (%d)\n",
20250 					    (void *)tcp, (void *)mmd,
20251 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
20252 				}
20253 
20254 				ASSERT(max_pld > 0);
20255 				--max_pld;
20256 			} else if (spill > 0) {
20257 				/*
20258 				 * If there's a spillover, but the following
20259 				 * xmit_tail couldn't give us enough octets
20260 				 * to reach "len", then stop the current
20261 				 * Multidata creation and let the legacy
20262 				 * tcp_send() path take over.  We don't want
20263 				 * to send the tiny segment as part of this
20264 				 * Multidata for performance reasons; instead,
20265 				 * we let the legacy path deal with grouping
20266 				 * it with the subsequent small mblks.
20267 				 */
20268 				if (*usable >= len &&
20269 				    MBLKL((*xmit_tail)->b_cont) < spill) {
20270 					max_pld = 0;
20271 					break;	/* done */
20272 				}
20273 
20274 				/*
20275 				 * We can't spillover, and we are near
20276 				 * the end of the current payload buffer,
20277 				 * so send what's left.
20278 				 */
20279 				ASSERT(*tail_unsent > 0);
20280 				len = *tail_unsent;
20281 			}
20282 
20283 			/* tail_unsent is negated if there is a spillover */
20284 			*tail_unsent -= len;
20285 			*usable -= len;
20286 			ASSERT(*usable >= 0);
20287 
20288 			if (*usable < mss)
20289 				seg_len = *usable;
20290 			/*
20291 			 * Sender SWS avoidance; see comments in tcp_send();
20292 			 * everything else is the same, except that we only
20293 			 * do this here if there is no more data to be sent
20294 			 * following the current xmit_tail.  We don't check
20295 			 * for 1-byte urgent data because we shouldn't get
20296 			 * here if TCP_URG_VALID is set.
20297 			 */
20298 			if (*usable > 0 && *usable < mss &&
20299 			    ((md_pbuf_nxt == NULL &&
20300 			    (*xmit_tail)->b_cont == NULL) ||
20301 			    (md_pbuf_nxt != NULL &&
20302 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
20303 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
20304 			    (tcp->tcp_unsent -
20305 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
20306 			    !tcp->tcp_zero_win_probe) {
20307 				if ((*snxt + len) == tcp->tcp_snxt &&
20308 				    (*snxt + len) == tcp->tcp_suna) {
20309 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20310 				}
20311 				done = B_TRUE;
20312 			}
20313 
20314 			/*
20315 			 * Prime pump for IP's checksumming on our behalf;
20316 			 * include the adjustment for a source route if any.
20317 			 * Do this only for software/partial hardware checksum
20318 			 * offload, as this field gets zeroed out later for
20319 			 * the full hardware checksum offload case.
20320 			 */
20321 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
20322 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20323 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
20324 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
20325 			}
20326 
20327 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
20328 			*snxt += len;
20329 
20330 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
20331 			/*
20332 			 * We set the PUSH bit only if TCP has no more buffered
20333 			 * data to be transmitted (or if sender SWS avoidance
20334 			 * takes place), as opposed to setting it for every
20335 			 * last packet in the burst.
20336 			 */
20337 			if (done ||
20338 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
20339 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
20340 
20341 			/*
20342 			 * Set FIN bit if this is our last segment; snxt
20343 			 * already includes its length, and it will not
20344 			 * be adjusted after this point.
20345 			 */
20346 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
20347 			    *snxt == tcp->tcp_fss) {
20348 				if (!tcp->tcp_fin_acked) {
20349 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
20350 					BUMP_MIB(&tcps->tcps_mib,
20351 					    tcpOutControl);
20352 				}
20353 				if (!tcp->tcp_fin_sent) {
20354 					tcp->tcp_fin_sent = B_TRUE;
20355 					/*
20356 					 * tcp state must be ESTABLISHED
20357 					 * in order for us to get here in
20358 					 * the first place.
20359 					 */
20360 					tcp->tcp_state = TCPS_FIN_WAIT_1;
20361 
20362 					/*
20363 					 * Upon returning from this routine,
20364 					 * tcp_wput_data() will set tcp_snxt
20365 					 * to be equal to snxt + tcp_fin_sent.
20366 					 * This is essentially the same as
20367 					 * setting it to tcp_fss + 1.
20368 					 */
20369 				}
20370 			}
20371 
20372 			tcp->tcp_last_sent_len = (ushort_t)len;
20373 
20374 			len += tcp_hdr_len;
20375 			if (tcp->tcp_ipversion == IPV4_VERSION)
20376 				tcp->tcp_ipha->ipha_length = htons(len);
20377 			else
20378 				tcp->tcp_ip6h->ip6_plen = htons(len -
20379 				    ((char *)&tcp->tcp_ip6h[1] -
20380 				    tcp->tcp_iphc));
20381 
20382 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
20383 
20384 			/* setup header fragment */
20385 			PDESC_HDR_ADD(pkt_info,
20386 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
20387 			    tcp->tcp_mdt_hdr_head,		/* head room */
20388 			    tcp_hdr_len,			/* len */
20389 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
20390 
20391 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
20392 			    hdr_frag_sz);
20393 			ASSERT(MBLKIN(md_hbuf,
20394 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
20395 			    PDESC_HDRSIZE(pkt_info)));
20396 
20397 			/* setup first payload fragment */
20398 			PDESC_PLD_INIT(pkt_info);
20399 			PDESC_PLD_SPAN_ADD(pkt_info,
20400 			    pbuf_idx,				/* index */
20401 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
20402 			    tcp->tcp_last_sent_len);		/* len */
20403 
20404 			/* create a split-packet in case of a spillover */
20405 			if (md_pbuf_nxt != NULL) {
20406 				ASSERT(spill > 0);
20407 				ASSERT(pbuf_idx_nxt > pbuf_idx);
20408 				ASSERT(!add_buffer);
20409 
20410 				md_pbuf = md_pbuf_nxt;
20411 				md_pbuf_nxt = NULL;
20412 				pbuf_idx = pbuf_idx_nxt;
20413 				pbuf_idx_nxt = -1;
20414 				cur_pld_off = spill;
20415 
20416 				/* trim out first payload fragment */
20417 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
20418 
20419 				/* setup second payload fragment */
20420 				PDESC_PLD_SPAN_ADD(pkt_info,
20421 				    pbuf_idx,			/* index */
20422 				    md_pbuf->b_rptr,		/* start */
20423 				    spill);			/* len */
20424 
20425 				if ((*xmit_tail)->b_next == NULL) {
20426 					/*
20427 					 * Store the lbolt used for RTT
20428 					 * estimation. We can only record one
20429 					 * timestamp per mblk so we do it when
20430 					 * we reach the end of the payload
20431 					 * buffer.  Also we only take a new
20432 					 * timestamp sample when the previous
20433 					 * timed data from the same mblk has
20434 					 * been ack'ed.
20435 					 */
20436 					(*xmit_tail)->b_prev = local_time;
20437 					(*xmit_tail)->b_next =
20438 					    (mblk_t *)(uintptr_t)first_snxt;
20439 				}
20440 
20441 				first_snxt = *snxt - spill;
20442 
20443 				/*
20444 				 * Advance xmit_tail; usable could be 0 by
20445 				 * the time we got here, but we made sure
20446 				 * above that we would only spillover to
20447 				 * the next data block if usable includes
20448 				 * the spilled-over amount prior to the
20449 				 * subtraction.  Therefore, we are sure
20450 				 * that xmit_tail->b_cont can't be NULL.
20451 				 */
20452 				ASSERT((*xmit_tail)->b_cont != NULL);
20453 				*xmit_tail = (*xmit_tail)->b_cont;
20454 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20455 				    (uintptr_t)INT_MAX);
20456 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
20457 			} else {
20458 				cur_pld_off += tcp->tcp_last_sent_len;
20459 			}
20460 
20461 			/*
20462 			 * Fill in the header using the template header, and
20463 			 * add options such as time-stamp, ECN and/or SACK,
20464 			 * as needed.
20465 			 */
20466 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
20467 			    (clock_t)local_time, num_sack_blk);
20468 
20469 			/* take care of some IP header businesses */
20470 			if (af == AF_INET) {
20471 				ipha = (ipha_t *)pkt_info->hdr_rptr;
20472 
20473 				ASSERT(OK_32PTR((uchar_t *)ipha));
20474 				ASSERT(PDESC_HDRL(pkt_info) >=
20475 				    IP_SIMPLE_HDR_LENGTH);
20476 				ASSERT(ipha->ipha_version_and_hdr_length ==
20477 				    IP_SIMPLE_HDR_VERSION);
20478 
20479 				/*
20480 				 * Assign ident value for current packet; see
20481 				 * related comments in ip_wput_ire() about the
20482 				 * contract private interface with clustering
20483 				 * group.
20484 				 */
20485 				clusterwide = B_FALSE;
20486 				if (cl_inet_ipident != NULL) {
20487 					ASSERT(cl_inet_isclusterwide != NULL);
20488 					if ((*cl_inet_isclusterwide)(IPPROTO_IP,
20489 					    AF_INET,
20490 					    (uint8_t *)(uintptr_t)src)) {
20491 						ipha->ipha_ident =
20492 						    (*cl_inet_ipident)
20493 						    (IPPROTO_IP, AF_INET,
20494 						    (uint8_t *)(uintptr_t)src,
20495 						    (uint8_t *)(uintptr_t)dst);
20496 						clusterwide = B_TRUE;
20497 					}
20498 				}
20499 
20500 				if (!clusterwide) {
20501 					ipha->ipha_ident = (uint16_t)
20502 					    atomic_add_32_nv(
20503 						&ire->ire_ident, 1);
20504 				}
20505 #ifndef _BIG_ENDIAN
20506 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
20507 				    (ipha->ipha_ident >> 8);
20508 #endif
20509 			} else {
20510 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
20511 
20512 				ASSERT(OK_32PTR((uchar_t *)ip6h));
20513 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
20514 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
20515 				ASSERT(PDESC_HDRL(pkt_info) >=
20516 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
20517 				    TCP_CHECKSUM_SIZE));
20518 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20519 
20520 				if (tcp->tcp_ip_forward_progress) {
20521 					rconfirm = B_TRUE;
20522 					tcp->tcp_ip_forward_progress = B_FALSE;
20523 				}
20524 			}
20525 
20526 			/* at least one payload span, and at most two */
20527 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
20528 
20529 			/* add the packet descriptor to Multidata */
20530 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
20531 			    KM_NOSLEEP)) == NULL) {
20532 				/*
20533 				 * Any failure other than ENOMEM indicates
20534 				 * that we have passed in invalid pkt_info
20535 				 * or parameters to mmd_addpdesc, which must
20536 				 * not happen.
20537 				 *
20538 				 * EINVAL is a result of failure on boundary
20539 				 * checks against the pkt_info contents.  It
20540 				 * should not happen, and we panic because
20541 				 * either there's horrible heap corruption,
20542 				 * and/or programming mistake.
20543 				 */
20544 				if (err != ENOMEM) {
20545 					cmn_err(CE_PANIC, "tcp_multisend: "
20546 					    "pdesc logic error detected for "
20547 					    "tcp %p mmd %p pinfo %p (%d)\n",
20548 					    (void *)tcp, (void *)mmd,
20549 					    (void *)pkt_info, err);
20550 				}
20551 				TCP_STAT(tcps, tcp_mdt_addpdescfail);
20552 				goto legacy_send; /* out_of_mem */
20553 			}
20554 			ASSERT(pkt != NULL);
20555 
20556 			/* calculate IP header and TCP checksums */
20557 			if (af == AF_INET) {
20558 				/* calculate pseudo-header checksum */
20559 				cksum = (dst >> 16) + (dst & 0xFFFF) +
20560 				    (src >> 16) + (src & 0xFFFF);
20561 
20562 				/* offset for TCP header checksum */
20563 				up = IPH_TCPH_CHECKSUMP(ipha,
20564 				    IP_SIMPLE_HDR_LENGTH);
20565 			} else {
20566 				up = (uint16_t *)&ip6h->ip6_src;
20567 
20568 				/* calculate pseudo-header checksum */
20569 				cksum = up[0] + up[1] + up[2] + up[3] +
20570 				    up[4] + up[5] + up[6] + up[7] +
20571 				    up[8] + up[9] + up[10] + up[11] +
20572 				    up[12] + up[13] + up[14] + up[15];
20573 
20574 				/* Fold the initial sum */
20575 				cksum = (cksum & 0xffff) + (cksum >> 16);
20576 
20577 				up = (uint16_t *)(((uchar_t *)ip6h) +
20578 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
20579 			}
20580 
20581 			if (hwcksum_flags & HCK_FULLCKSUM) {
20582 				/* clear checksum field for hardware */
20583 				*up = 0;
20584 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
20585 				uint32_t sum;
20586 
20587 				/* pseudo-header checksumming */
20588 				sum = *up + cksum + IP_TCP_CSUM_COMP;
20589 				sum = (sum & 0xFFFF) + (sum >> 16);
20590 				*up = (sum & 0xFFFF) + (sum >> 16);
20591 			} else {
20592 				/* software checksumming */
20593 				TCP_STAT(tcps, tcp_out_sw_cksum);
20594 				TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
20595 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
20596 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
20597 				    cksum + IP_TCP_CSUM_COMP);
20598 				if (*up == 0)
20599 					*up = 0xFFFF;
20600 			}
20601 
20602 			/* IPv4 header checksum */
20603 			if (af == AF_INET) {
20604 				ipha->ipha_fragment_offset_and_flags |=
20605 				    (uint32_t)htons(ire->ire_frag_flag);
20606 
20607 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
20608 					ipha->ipha_hdr_checksum = 0;
20609 				} else {
20610 					IP_HDR_CKSUM(ipha, cksum,
20611 					    ((uint32_t *)ipha)[0],
20612 					    ((uint16_t *)ipha)[4]);
20613 				}
20614 			}
20615 
20616 			if (af == AF_INET &&
20617 			    HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) ||
20618 			    af == AF_INET6 &&
20619 			    HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) {
20620 				/* build header(IP/TCP) mblk for this segment */
20621 				if ((mp = dupb(md_hbuf)) == NULL)
20622 					goto legacy_send;
20623 
20624 				mp->b_rptr = pkt_info->hdr_rptr;
20625 				mp->b_wptr = pkt_info->hdr_wptr;
20626 
20627 				/* build payload mblk for this segment */
20628 				if ((mp1 = dupb(*xmit_tail)) == NULL) {
20629 					freemsg(mp);
20630 					goto legacy_send;
20631 				}
20632 				mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off;
20633 				mp1->b_rptr = mp1->b_wptr -
20634 				    tcp->tcp_last_sent_len;
20635 				linkb(mp, mp1);
20636 
20637 				pld_start = mp1->b_rptr;
20638 
20639 				if (af == AF_INET) {
20640 					DTRACE_PROBE4(
20641 					    ip4__physical__out__start,
20642 					    ill_t *, NULL,
20643 					    ill_t *, ill,
20644 					    ipha_t *, ipha,
20645 					    mblk_t *, mp);
20646 					FW_HOOKS(
20647 					    ipst->ips_ip4_physical_out_event,
20648 					    ipst->ips_ipv4firewall_physical_out,
20649 					    NULL, ill, ipha, mp, mp, ipst);
20650 					DTRACE_PROBE1(
20651 					    ip4__physical__out__end,
20652 					    mblk_t *, mp);
20653 				} else {
20654 					DTRACE_PROBE4(
20655 					    ip6__physical__out_start,
20656 					    ill_t *, NULL,
20657 					    ill_t *, ill,
20658 					    ip6_t *, ip6h,
20659 					    mblk_t *, mp);
20660 					FW_HOOKS6(
20661 					    ipst->ips_ip6_physical_out_event,
20662 					    ipst->ips_ipv6firewall_physical_out,
20663 					    NULL, ill, ip6h, mp, mp, ipst);
20664 					DTRACE_PROBE1(
20665 					    ip6__physical__out__end,
20666 					    mblk_t *, mp);
20667 				}
20668 
20669 				if (buf_trunked && mp != NULL) {
20670 					/*
20671 					 * Need to pass it to normal path.
20672 					 */
20673 					CALL_IP_WPUT(tcp->tcp_connp, q, mp);
20674 				} else if (mp == NULL ||
20675 				    mp->b_rptr != pkt_info->hdr_rptr ||
20676 				    mp->b_wptr != pkt_info->hdr_wptr ||
20677 				    (mp1 = mp->b_cont) == NULL ||
20678 				    mp1->b_rptr != pld_start ||
20679 				    mp1->b_wptr != pld_start +
20680 				    tcp->tcp_last_sent_len ||
20681 				    mp1->b_cont != NULL) {
20682 					/*
20683 					 * Need to pass all packets of this
20684 					 * buffer to normal path, either when
20685 					 * packet is blocked, or when boundary
20686 					 * of header buffer or payload buffer
20687 					 * has been changed by FW_HOOKS[6].
20688 					 */
20689 					buf_trunked = B_TRUE;
20690 					if (md_mp_head != NULL) {
20691 						err = (intptr_t)rmvb(md_mp_head,
20692 						    md_mp);
20693 						if (err == 0)
20694 							md_mp_head = NULL;
20695 					}
20696 
20697 					/* send down what we've got so far */
20698 					if (md_mp_head != NULL) {
20699 						tcp_multisend_data(tcp, ire,
20700 						    ill, md_mp_head, obsegs,
20701 						    obbytes, &rconfirm);
20702 					}
20703 					md_mp_head = NULL;
20704 
20705 					if (mp != NULL)
20706 						CALL_IP_WPUT(tcp->tcp_connp,
20707 						    q, mp);
20708 
20709 					mp1 = fw_mp_head;
20710 					do {
20711 						mp = mp1;
20712 						mp1 = mp1->b_next;
20713 						mp->b_next = NULL;
20714 						mp->b_prev = NULL;
20715 						CALL_IP_WPUT(tcp->tcp_connp,
20716 						    q, mp);
20717 					} while (mp1 != NULL);
20718 
20719 					fw_mp_head = NULL;
20720 				} else {
20721 					if (fw_mp_head == NULL)
20722 						fw_mp_head = mp;
20723 					else
20724 						fw_mp_head->b_prev->b_next = mp;
20725 					fw_mp_head->b_prev = mp;
20726 				}
20727 			}
20728 
20729 			/* advance header offset */
20730 			cur_hdr_off += hdr_frag_sz;
20731 
20732 			obbytes += tcp->tcp_last_sent_len;
20733 			++obsegs;
20734 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
20735 		    *tail_unsent > 0);
20736 
20737 		if ((*xmit_tail)->b_next == NULL) {
20738 			/*
20739 			 * Store the lbolt used for RTT estimation. We can only
20740 			 * record one timestamp per mblk so we do it when we
20741 			 * reach the end of the payload buffer. Also we only
20742 			 * take a new timestamp sample when the previous timed
20743 			 * data from the same mblk has been ack'ed.
20744 			 */
20745 			(*xmit_tail)->b_prev = local_time;
20746 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
20747 		}
20748 
20749 		ASSERT(*tail_unsent >= 0);
20750 		if (*tail_unsent > 0) {
20751 			/*
20752 			 * We got here because we broke out of the above
20753 			 * loop due to of one of the following cases:
20754 			 *
20755 			 *   1. len < adjusted MSS (i.e. small),
20756 			 *   2. Sender SWS avoidance,
20757 			 *   3. max_pld is zero.
20758 			 *
20759 			 * We are done for this Multidata, so trim our
20760 			 * last payload buffer (if any) accordingly.
20761 			 */
20762 			if (md_pbuf != NULL)
20763 				md_pbuf->b_wptr -= *tail_unsent;
20764 		} else if (*usable > 0) {
20765 			*xmit_tail = (*xmit_tail)->b_cont;
20766 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20767 			    (uintptr_t)INT_MAX);
20768 			*tail_unsent = (int)MBLKL(*xmit_tail);
20769 			add_buffer = B_TRUE;
20770 		}
20771 
20772 		while (fw_mp_head) {
20773 			mp = fw_mp_head;
20774 			fw_mp_head = fw_mp_head->b_next;
20775 			mp->b_prev = mp->b_next = NULL;
20776 			freemsg(mp);
20777 		}
20778 		if (buf_trunked) {
20779 			TCP_STAT(tcps, tcp_mdt_discarded);
20780 			freeb(md_mp);
20781 			buf_trunked = B_FALSE;
20782 		}
20783 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
20784 	    (tcp_mdt_chain || max_pld > 0));
20785 
20786 	if (md_mp_head != NULL) {
20787 		/* send everything down */
20788 		tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
20789 		    &rconfirm);
20790 	}
20791 
20792 #undef PREP_NEW_MULTIDATA
20793 #undef PREP_NEW_PBUF
20794 #undef IPVER
20795 
20796 	IRE_REFRELE(ire);
20797 	return (0);
20798 }
20799 
20800 /*
20801  * A wrapper function for sending one or more Multidata messages down to
20802  * the module below ip; this routine does not release the reference of the
20803  * IRE (caller does that).  This routine is analogous to tcp_send_data().
20804  */
20805 static void
20806 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
20807     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
20808 {
20809 	uint64_t delta;
20810 	nce_t *nce;
20811 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20812 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
20813 
20814 	ASSERT(ire != NULL && ill != NULL);
20815 	ASSERT(ire->ire_stq != NULL);
20816 	ASSERT(md_mp_head != NULL);
20817 	ASSERT(rconfirm != NULL);
20818 
20819 	/* adjust MIBs and IRE timestamp */
20820 	TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT);
20821 	tcp->tcp_obsegs += obsegs;
20822 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs);
20823 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes);
20824 	TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs);
20825 
20826 	if (tcp->tcp_ipversion == IPV4_VERSION) {
20827 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs);
20828 	} else {
20829 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs);
20830 	}
20831 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs);
20832 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs);
20833 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes);
20834 
20835 	ire->ire_ob_pkt_count += obsegs;
20836 	if (ire->ire_ipif != NULL)
20837 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
20838 	ire->ire_last_used_time = lbolt;
20839 
20840 	/* send it down */
20841 	putnext(ire->ire_stq, md_mp_head);
20842 
20843 	/* we're done for TCP/IPv4 */
20844 	if (tcp->tcp_ipversion == IPV4_VERSION)
20845 		return;
20846 
20847 	nce = ire->ire_nce;
20848 
20849 	ASSERT(nce != NULL);
20850 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
20851 	ASSERT(nce->nce_state != ND_INCOMPLETE);
20852 
20853 	/* reachability confirmation? */
20854 	if (*rconfirm) {
20855 		nce->nce_last = TICK_TO_MSEC(lbolt64);
20856 		if (nce->nce_state != ND_REACHABLE) {
20857 			mutex_enter(&nce->nce_lock);
20858 			nce->nce_state = ND_REACHABLE;
20859 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
20860 			mutex_exit(&nce->nce_lock);
20861 			(void) untimeout(nce->nce_timeout_id);
20862 			if (ip_debug > 2) {
20863 				/* ip1dbg */
20864 				pr_addr_dbg("tcp_multisend_data: state "
20865 				    "for %s changed to REACHABLE\n",
20866 				    AF_INET6, &ire->ire_addr_v6);
20867 			}
20868 		}
20869 		/* reset transport reachability confirmation */
20870 		*rconfirm = B_FALSE;
20871 	}
20872 
20873 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
20874 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
20875 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
20876 
20877 	if (delta > (uint64_t)ill->ill_reachable_time) {
20878 		mutex_enter(&nce->nce_lock);
20879 		switch (nce->nce_state) {
20880 		case ND_REACHABLE:
20881 		case ND_STALE:
20882 			/*
20883 			 * ND_REACHABLE is identical to ND_STALE in this
20884 			 * specific case. If reachable time has expired for
20885 			 * this neighbor (delta is greater than reachable
20886 			 * time), conceptually, the neighbor cache is no
20887 			 * longer in REACHABLE state, but already in STALE
20888 			 * state.  So the correct transition here is to
20889 			 * ND_DELAY.
20890 			 */
20891 			nce->nce_state = ND_DELAY;
20892 			mutex_exit(&nce->nce_lock);
20893 			NDP_RESTART_TIMER(nce,
20894 			    ipst->ips_delay_first_probe_time);
20895 			if (ip_debug > 3) {
20896 				/* ip2dbg */
20897 				pr_addr_dbg("tcp_multisend_data: state "
20898 				    "for %s changed to DELAY\n",
20899 				    AF_INET6, &ire->ire_addr_v6);
20900 			}
20901 			break;
20902 		case ND_DELAY:
20903 		case ND_PROBE:
20904 			mutex_exit(&nce->nce_lock);
20905 			/* Timers have already started */
20906 			break;
20907 		case ND_UNREACHABLE:
20908 			/*
20909 			 * ndp timer has detected that this nce is
20910 			 * unreachable and initiated deleting this nce
20911 			 * and all its associated IREs. This is a race
20912 			 * where we found the ire before it was deleted
20913 			 * and have just sent out a packet using this
20914 			 * unreachable nce.
20915 			 */
20916 			mutex_exit(&nce->nce_lock);
20917 			break;
20918 		default:
20919 			ASSERT(0);
20920 		}
20921 	}
20922 }
20923 
20924 /*
20925  * Derived from tcp_send_data().
20926  */
20927 static void
20928 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss,
20929     int num_lso_seg)
20930 {
20931 	ipha_t		*ipha;
20932 	mblk_t		*ire_fp_mp;
20933 	uint_t		ire_fp_mp_len;
20934 	uint32_t	hcksum_txflags = 0;
20935 	ipaddr_t	src;
20936 	ipaddr_t	dst;
20937 	uint32_t	cksum;
20938 	uint16_t	*up;
20939 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20940 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
20941 
20942 	ASSERT(DB_TYPE(mp) == M_DATA);
20943 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
20944 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
20945 	ASSERT(tcp->tcp_connp != NULL);
20946 	ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp));
20947 
20948 	ipha = (ipha_t *)mp->b_rptr;
20949 	src = ipha->ipha_src;
20950 	dst = ipha->ipha_dst;
20951 
20952 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
20953 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident,
20954 	    num_lso_seg);
20955 #ifndef _BIG_ENDIAN
20956 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
20957 #endif
20958 	if (tcp->tcp_snd_zcopy_aware) {
20959 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
20960 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
20961 			mp = tcp_zcopy_disable(tcp, mp);
20962 	}
20963 
20964 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
20965 		ASSERT(ill->ill_hcksum_capab != NULL);
20966 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
20967 	}
20968 
20969 	/*
20970 	 * Since the TCP checksum should be recalculated by h/w, we can just
20971 	 * zero the checksum field for HCK_FULLCKSUM, or calculate partial
20972 	 * pseudo-header checksum for HCK_PARTIALCKSUM.
20973 	 * The partial pseudo-header excludes TCP length, that was calculated
20974 	 * in tcp_send(), so to zero *up before further processing.
20975 	 */
20976 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
20977 
20978 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
20979 	*up = 0;
20980 
20981 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
20982 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
20983 
20984 	/*
20985 	 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp).
20986 	 */
20987 	DB_LSOFLAGS(mp) |= HW_LSO;
20988 	DB_LSOMSS(mp) = mss;
20989 
20990 	ipha->ipha_fragment_offset_and_flags |=
20991 	    (uint32_t)htons(ire->ire_frag_flag);
20992 
20993 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
20994 	ire_fp_mp_len = MBLKL(ire_fp_mp);
20995 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
20996 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
20997 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
20998 
20999 	UPDATE_OB_PKT_COUNT(ire);
21000 	ire->ire_last_used_time = lbolt;
21001 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
21002 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
21003 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
21004 	    ntohs(ipha->ipha_length));
21005 
21006 	if (ILL_DLS_CAPABLE(ill)) {
21007 		/*
21008 		 * Send the packet directly to DLD, where it may be queued
21009 		 * depending on the availability of transmit resources at
21010 		 * the media layer.
21011 		 */
21012 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
21013 	} else {
21014 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
21015 		DTRACE_PROBE4(ip4__physical__out__start,
21016 		    ill_t *, NULL, ill_t *, out_ill,
21017 		    ipha_t *, ipha, mblk_t *, mp);
21018 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
21019 		    ipst->ips_ipv4firewall_physical_out,
21020 		    NULL, out_ill, ipha, mp, mp, ipst);
21021 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
21022 		if (mp != NULL)
21023 			putnext(ire->ire_stq, mp);
21024 	}
21025 }
21026 
21027 /*
21028  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
21029  * scheme, and returns one of the following:
21030  *
21031  * -1 = failed allocation.
21032  *  0 = success; burst count reached, or usable send window is too small,
21033  *      and that we'd rather wait until later before sending again.
21034  *  1 = success; we are called from tcp_multisend(), and both usable send
21035  *      window and tail_unsent are greater than the MDT threshold, and thus
21036  *      Multidata Transmit should be used instead.
21037  */
21038 static int
21039 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
21040     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
21041     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
21042     const int mdt_thres)
21043 {
21044 	int num_burst_seg = tcp->tcp_snd_burst;
21045 	ire_t		*ire = NULL;
21046 	ill_t		*ill = NULL;
21047 	mblk_t		*ire_fp_mp = NULL;
21048 	uint_t		ire_fp_mp_len = 0;
21049 	int		num_lso_seg = 1;
21050 	uint_t		lso_usable;
21051 	boolean_t	do_lso_send = B_FALSE;
21052 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21053 
21054 	/*
21055 	 * Check LSO capability before any further work. And the similar check
21056 	 * need to be done in for(;;) loop.
21057 	 * LSO will be deployed when therer is more than one mss of available
21058 	 * data and a burst transmission is allowed.
21059 	 */
21060 	if (tcp->tcp_lso &&
21061 	    (tcp->tcp_valid_bits == 0 ||
21062 	    tcp->tcp_valid_bits == TCP_FSS_VALID) &&
21063 	    num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21064 		/*
21065 		 * Try to find usable IRE/ILL and do basic check to the ILL.
21066 		 */
21067 		if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) {
21068 			/*
21069 			 * Enable LSO with this transmission.
21070 			 * Since IRE has been hold in
21071 			 * tcp_send_find_ire_ill(), IRE_REFRELE(ire)
21072 			 * should be called before return.
21073 			 */
21074 			do_lso_send = B_TRUE;
21075 			ire_fp_mp = ire->ire_nce->nce_fp_mp;
21076 			ire_fp_mp_len = MBLKL(ire_fp_mp);
21077 			/* Round up to multiple of 4 */
21078 			ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4;
21079 		} else {
21080 			do_lso_send = B_FALSE;
21081 			ill = NULL;
21082 		}
21083 	}
21084 
21085 	for (;;) {
21086 		struct datab	*db;
21087 		tcph_t		*tcph;
21088 		uint32_t	sum;
21089 		mblk_t		*mp, *mp1;
21090 		uchar_t		*rptr;
21091 		int		len;
21092 
21093 		/*
21094 		 * If we're called by tcp_multisend(), and the amount of
21095 		 * sendable data as well as the size of current xmit_tail
21096 		 * is beyond the MDT threshold, return to the caller and
21097 		 * let the large data transmit be done using MDT.
21098 		 */
21099 		if (*usable > 0 && *usable > mdt_thres &&
21100 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
21101 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
21102 			ASSERT(tcp->tcp_mdt);
21103 			return (1);	/* success; do large send */
21104 		}
21105 
21106 		if (num_burst_seg == 0)
21107 			break;		/* success; burst count reached */
21108 
21109 		/*
21110 		 * Calculate the maximum payload length we can send in *one*
21111 		 * time.
21112 		 */
21113 		if (do_lso_send) {
21114 			/*
21115 			 * Check whether need to do LSO any more.
21116 			 */
21117 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21118 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
21119 				lso_usable = MIN(lso_usable,
21120 				    num_burst_seg * mss);
21121 
21122 				num_lso_seg = lso_usable / mss;
21123 				if (lso_usable % mss) {
21124 					num_lso_seg++;
21125 					tcp->tcp_last_sent_len = (ushort_t)
21126 					    (lso_usable % mss);
21127 				} else {
21128 					tcp->tcp_last_sent_len = (ushort_t)mss;
21129 				}
21130 			} else {
21131 				do_lso_send = B_FALSE;
21132 				num_lso_seg = 1;
21133 				lso_usable = mss;
21134 			}
21135 		}
21136 
21137 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
21138 
21139 		/*
21140 		 * Adjust num_burst_seg here.
21141 		 */
21142 		num_burst_seg -= num_lso_seg;
21143 
21144 		len = mss;
21145 		if (len > *usable) {
21146 			ASSERT(do_lso_send == B_FALSE);
21147 
21148 			len = *usable;
21149 			if (len <= 0) {
21150 				/* Terminate the loop */
21151 				break;	/* success; too small */
21152 			}
21153 			/*
21154 			 * Sender silly-window avoidance.
21155 			 * Ignore this if we are going to send a
21156 			 * zero window probe out.
21157 			 *
21158 			 * TODO: force data into microscopic window?
21159 			 *	==> (!pushed || (unsent > usable))
21160 			 */
21161 			if (len < (tcp->tcp_max_swnd >> 1) &&
21162 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
21163 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
21164 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
21165 				/*
21166 				 * If the retransmit timer is not running
21167 				 * we start it so that we will retransmit
21168 				 * in the case when the the receiver has
21169 				 * decremented the window.
21170 				 */
21171 				if (*snxt == tcp->tcp_snxt &&
21172 				    *snxt == tcp->tcp_suna) {
21173 					/*
21174 					 * We are not supposed to send
21175 					 * anything.  So let's wait a little
21176 					 * bit longer before breaking SWS
21177 					 * avoidance.
21178 					 *
21179 					 * What should the value be?
21180 					 * Suggestion: MAX(init rexmit time,
21181 					 * tcp->tcp_rto)
21182 					 */
21183 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
21184 				}
21185 				break;	/* success; too small */
21186 			}
21187 		}
21188 
21189 		tcph = tcp->tcp_tcph;
21190 
21191 		/*
21192 		 * The reason to adjust len here is that we need to set flags
21193 		 * and calculate checksum.
21194 		 */
21195 		if (do_lso_send)
21196 			len = lso_usable;
21197 
21198 		*usable -= len; /* Approximate - can be adjusted later */
21199 		if (*usable > 0)
21200 			tcph->th_flags[0] = TH_ACK;
21201 		else
21202 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
21203 
21204 		/*
21205 		 * Prime pump for IP's checksumming on our behalf
21206 		 * Include the adjustment for a source route if any.
21207 		 */
21208 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
21209 		sum = (sum >> 16) + (sum & 0xFFFF);
21210 		U16_TO_ABE16(sum, tcph->th_sum);
21211 
21212 		U32_TO_ABE32(*snxt, tcph->th_seq);
21213 
21214 		/*
21215 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
21216 		 * set.  For the case when TCP_FSS_VALID is the only valid
21217 		 * bit (normal active close), branch off only when we think
21218 		 * that the FIN flag needs to be set.  Note for this case,
21219 		 * that (snxt + len) may not reflect the actual seg_len,
21220 		 * as len may be further reduced in tcp_xmit_mp().  If len
21221 		 * gets modified, we will end up here again.
21222 		 */
21223 		if (tcp->tcp_valid_bits != 0 &&
21224 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
21225 		    ((*snxt + len) == tcp->tcp_fss))) {
21226 			uchar_t		*prev_rptr;
21227 			uint32_t	prev_snxt = tcp->tcp_snxt;
21228 
21229 			if (*tail_unsent == 0) {
21230 				ASSERT((*xmit_tail)->b_cont != NULL);
21231 				*xmit_tail = (*xmit_tail)->b_cont;
21232 				prev_rptr = (*xmit_tail)->b_rptr;
21233 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
21234 				    (*xmit_tail)->b_rptr);
21235 			} else {
21236 				prev_rptr = (*xmit_tail)->b_rptr;
21237 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
21238 				    *tail_unsent;
21239 			}
21240 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
21241 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
21242 			/* Restore tcp_snxt so we get amount sent right. */
21243 			tcp->tcp_snxt = prev_snxt;
21244 			if (prev_rptr == (*xmit_tail)->b_rptr) {
21245 				/*
21246 				 * If the previous timestamp is still in use,
21247 				 * don't stomp on it.
21248 				 */
21249 				if ((*xmit_tail)->b_next == NULL) {
21250 					(*xmit_tail)->b_prev = local_time;
21251 					(*xmit_tail)->b_next =
21252 					    (mblk_t *)(uintptr_t)(*snxt);
21253 				}
21254 			} else
21255 				(*xmit_tail)->b_rptr = prev_rptr;
21256 
21257 			if (mp == NULL) {
21258 				if (ire != NULL)
21259 					IRE_REFRELE(ire);
21260 				return (-1);
21261 			}
21262 			mp1 = mp->b_cont;
21263 
21264 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
21265 				tcp->tcp_last_sent_len = (ushort_t)len;
21266 			while (mp1->b_cont) {
21267 				*xmit_tail = (*xmit_tail)->b_cont;
21268 				(*xmit_tail)->b_prev = local_time;
21269 				(*xmit_tail)->b_next =
21270 				    (mblk_t *)(uintptr_t)(*snxt);
21271 				mp1 = mp1->b_cont;
21272 			}
21273 			*snxt += len;
21274 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
21275 			BUMP_LOCAL(tcp->tcp_obsegs);
21276 			BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21277 			UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21278 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21279 			tcp_send_data(tcp, q, mp);
21280 			continue;
21281 		}
21282 
21283 		*snxt += len;	/* Adjust later if we don't send all of len */
21284 		BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21285 		UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21286 
21287 		if (*tail_unsent) {
21288 			/* Are the bytes above us in flight? */
21289 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
21290 			if (rptr != (*xmit_tail)->b_rptr) {
21291 				*tail_unsent -= len;
21292 				if (len <= mss) /* LSO is unusable */
21293 					tcp->tcp_last_sent_len = (ushort_t)len;
21294 				len += tcp_hdr_len;
21295 				if (tcp->tcp_ipversion == IPV4_VERSION)
21296 					tcp->tcp_ipha->ipha_length = htons(len);
21297 				else
21298 					tcp->tcp_ip6h->ip6_plen =
21299 					    htons(len -
21300 					    ((char *)&tcp->tcp_ip6h[1] -
21301 					    tcp->tcp_iphc));
21302 				mp = dupb(*xmit_tail);
21303 				if (mp == NULL) {
21304 					if (ire != NULL)
21305 						IRE_REFRELE(ire);
21306 					return (-1);	/* out_of_mem */
21307 				}
21308 				mp->b_rptr = rptr;
21309 				/*
21310 				 * If the old timestamp is no longer in use,
21311 				 * sample a new timestamp now.
21312 				 */
21313 				if ((*xmit_tail)->b_next == NULL) {
21314 					(*xmit_tail)->b_prev = local_time;
21315 					(*xmit_tail)->b_next =
21316 					    (mblk_t *)(uintptr_t)(*snxt-len);
21317 				}
21318 				goto must_alloc;
21319 			}
21320 		} else {
21321 			*xmit_tail = (*xmit_tail)->b_cont;
21322 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
21323 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
21324 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
21325 			    (*xmit_tail)->b_rptr);
21326 		}
21327 
21328 		(*xmit_tail)->b_prev = local_time;
21329 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
21330 
21331 		*tail_unsent -= len;
21332 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
21333 			tcp->tcp_last_sent_len = (ushort_t)len;
21334 
21335 		len += tcp_hdr_len;
21336 		if (tcp->tcp_ipversion == IPV4_VERSION)
21337 			tcp->tcp_ipha->ipha_length = htons(len);
21338 		else
21339 			tcp->tcp_ip6h->ip6_plen = htons(len -
21340 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21341 
21342 		mp = dupb(*xmit_tail);
21343 		if (mp == NULL) {
21344 			if (ire != NULL)
21345 				IRE_REFRELE(ire);
21346 			return (-1);	/* out_of_mem */
21347 		}
21348 
21349 		len = tcp_hdr_len;
21350 		/*
21351 		 * There are four reasons to allocate a new hdr mblk:
21352 		 *  1) The bytes above us are in use by another packet
21353 		 *  2) We don't have good alignment
21354 		 *  3) The mblk is being shared
21355 		 *  4) We don't have enough room for a header
21356 		 */
21357 		rptr = mp->b_rptr - len;
21358 		if (!OK_32PTR(rptr) ||
21359 		    ((db = mp->b_datap), db->db_ref != 2) ||
21360 		    rptr < db->db_base + ire_fp_mp_len) {
21361 			/* NOTE: we assume allocb returns an OK_32PTR */
21362 
21363 		must_alloc:;
21364 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
21365 			    tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED);
21366 			if (mp1 == NULL) {
21367 				freemsg(mp);
21368 				if (ire != NULL)
21369 					IRE_REFRELE(ire);
21370 				return (-1);	/* out_of_mem */
21371 			}
21372 			mp1->b_cont = mp;
21373 			mp = mp1;
21374 			/* Leave room for Link Level header */
21375 			len = tcp_hdr_len;
21376 			rptr =
21377 			    &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len];
21378 			mp->b_wptr = &rptr[len];
21379 		}
21380 
21381 		/*
21382 		 * Fill in the header using the template header, and add
21383 		 * options such as time-stamp, ECN and/or SACK, as needed.
21384 		 */
21385 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
21386 
21387 		mp->b_rptr = rptr;
21388 
21389 		if (*tail_unsent) {
21390 			int spill = *tail_unsent;
21391 
21392 			mp1 = mp->b_cont;
21393 			if (mp1 == NULL)
21394 				mp1 = mp;
21395 
21396 			/*
21397 			 * If we're a little short, tack on more mblks until
21398 			 * there is no more spillover.
21399 			 */
21400 			while (spill < 0) {
21401 				mblk_t *nmp;
21402 				int nmpsz;
21403 
21404 				nmp = (*xmit_tail)->b_cont;
21405 				nmpsz = MBLKL(nmp);
21406 
21407 				/*
21408 				 * Excess data in mblk; can we split it?
21409 				 * If MDT is enabled for the connection,
21410 				 * keep on splitting as this is a transient
21411 				 * send path.
21412 				 */
21413 				if (!do_lso_send && !tcp->tcp_mdt &&
21414 				    (spill + nmpsz > 0)) {
21415 					/*
21416 					 * Don't split if stream head was
21417 					 * told to break up larger writes
21418 					 * into smaller ones.
21419 					 */
21420 					if (tcp->tcp_maxpsz > 0)
21421 						break;
21422 
21423 					/*
21424 					 * Next mblk is less than SMSS/2
21425 					 * rounded up to nearest 64-byte;
21426 					 * let it get sent as part of the
21427 					 * next segment.
21428 					 */
21429 					if (tcp->tcp_localnet &&
21430 					    !tcp->tcp_cork &&
21431 					    (nmpsz < roundup((mss >> 1), 64)))
21432 						break;
21433 				}
21434 
21435 				*xmit_tail = nmp;
21436 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
21437 				/* Stash for rtt use later */
21438 				(*xmit_tail)->b_prev = local_time;
21439 				(*xmit_tail)->b_next =
21440 				    (mblk_t *)(uintptr_t)(*snxt - len);
21441 				mp1->b_cont = dupb(*xmit_tail);
21442 				mp1 = mp1->b_cont;
21443 
21444 				spill += nmpsz;
21445 				if (mp1 == NULL) {
21446 					*tail_unsent = spill;
21447 					freemsg(mp);
21448 					if (ire != NULL)
21449 						IRE_REFRELE(ire);
21450 					return (-1);	/* out_of_mem */
21451 				}
21452 			}
21453 
21454 			/* Trim back any surplus on the last mblk */
21455 			if (spill >= 0) {
21456 				mp1->b_wptr -= spill;
21457 				*tail_unsent = spill;
21458 			} else {
21459 				/*
21460 				 * We did not send everything we could in
21461 				 * order to remain within the b_cont limit.
21462 				 */
21463 				*usable -= spill;
21464 				*snxt += spill;
21465 				tcp->tcp_last_sent_len += spill;
21466 				UPDATE_MIB(&tcps->tcps_mib,
21467 				    tcpOutDataBytes, spill);
21468 				/*
21469 				 * Adjust the checksum
21470 				 */
21471 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
21472 				sum += spill;
21473 				sum = (sum >> 16) + (sum & 0xFFFF);
21474 				U16_TO_ABE16(sum, tcph->th_sum);
21475 				if (tcp->tcp_ipversion == IPV4_VERSION) {
21476 					sum = ntohs(
21477 					    ((ipha_t *)rptr)->ipha_length) +
21478 					    spill;
21479 					((ipha_t *)rptr)->ipha_length =
21480 					    htons(sum);
21481 				} else {
21482 					sum = ntohs(
21483 					    ((ip6_t *)rptr)->ip6_plen) +
21484 					    spill;
21485 					((ip6_t *)rptr)->ip6_plen =
21486 					    htons(sum);
21487 				}
21488 				*tail_unsent = 0;
21489 			}
21490 		}
21491 		if (tcp->tcp_ip_forward_progress) {
21492 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
21493 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
21494 			tcp->tcp_ip_forward_progress = B_FALSE;
21495 		}
21496 
21497 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21498 		if (do_lso_send) {
21499 			tcp_lsosend_data(tcp, mp, ire, ill, mss,
21500 			    num_lso_seg);
21501 			tcp->tcp_obsegs += num_lso_seg;
21502 
21503 			TCP_STAT(tcps, tcp_lso_times);
21504 			TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg);
21505 		} else {
21506 			tcp_send_data(tcp, q, mp);
21507 			BUMP_LOCAL(tcp->tcp_obsegs);
21508 		}
21509 	}
21510 
21511 	if (ire != NULL)
21512 		IRE_REFRELE(ire);
21513 	return (0);
21514 }
21515 
21516 /* Unlink and return any mblk that looks like it contains a MDT info */
21517 static mblk_t *
21518 tcp_mdt_info_mp(mblk_t *mp)
21519 {
21520 	mblk_t	*prev_mp;
21521 
21522 	for (;;) {
21523 		prev_mp = mp;
21524 		/* no more to process? */
21525 		if ((mp = mp->b_cont) == NULL)
21526 			break;
21527 
21528 		switch (DB_TYPE(mp)) {
21529 		case M_CTL:
21530 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
21531 				continue;
21532 			ASSERT(prev_mp != NULL);
21533 			prev_mp->b_cont = mp->b_cont;
21534 			mp->b_cont = NULL;
21535 			return (mp);
21536 		default:
21537 			break;
21538 		}
21539 	}
21540 	return (mp);
21541 }
21542 
21543 /* MDT info update routine, called when IP notifies us about MDT */
21544 static void
21545 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
21546 {
21547 	boolean_t prev_state;
21548 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21549 
21550 	/*
21551 	 * IP is telling us to abort MDT on this connection?  We know
21552 	 * this because the capability is only turned off when IP
21553 	 * encounters some pathological cases, e.g. link-layer change
21554 	 * where the new driver doesn't support MDT, or in situation
21555 	 * where MDT usage on the link-layer has been switched off.
21556 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
21557 	 * if the link-layer doesn't support MDT, and if it does, it
21558 	 * will indicate that the feature is to be turned on.
21559 	 */
21560 	prev_state = tcp->tcp_mdt;
21561 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
21562 	if (!tcp->tcp_mdt && !first) {
21563 		TCP_STAT(tcps, tcp_mdt_conn_halted3);
21564 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
21565 		    (void *)tcp->tcp_connp));
21566 	}
21567 
21568 	/*
21569 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
21570 	 * so disable MDT otherwise.  The checks are done here
21571 	 * and in tcp_wput_data().
21572 	 */
21573 	if (tcp->tcp_mdt &&
21574 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21575 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21576 	    (tcp->tcp_ipversion == IPV6_VERSION &&
21577 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
21578 		tcp->tcp_mdt = B_FALSE;
21579 
21580 	if (tcp->tcp_mdt) {
21581 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
21582 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
21583 			    "version (%d), expected version is %d",
21584 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
21585 			tcp->tcp_mdt = B_FALSE;
21586 			return;
21587 		}
21588 
21589 		/*
21590 		 * We need the driver to be able to handle at least three
21591 		 * spans per packet in order for tcp MDT to be utilized.
21592 		 * The first is for the header portion, while the rest are
21593 		 * needed to handle a packet that straddles across two
21594 		 * virtually non-contiguous buffers; a typical tcp packet
21595 		 * therefore consists of only two spans.  Note that we take
21596 		 * a zero as "don't care".
21597 		 */
21598 		if (mdt_capab->ill_mdt_span_limit > 0 &&
21599 		    mdt_capab->ill_mdt_span_limit < 3) {
21600 			tcp->tcp_mdt = B_FALSE;
21601 			return;
21602 		}
21603 
21604 		/* a zero means driver wants default value */
21605 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
21606 		    tcps->tcps_mdt_max_pbufs);
21607 		if (tcp->tcp_mdt_max_pld == 0)
21608 			tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs;
21609 
21610 		/* ensure 32-bit alignment */
21611 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min,
21612 		    mdt_capab->ill_mdt_hdr_head), 4);
21613 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min,
21614 		    mdt_capab->ill_mdt_hdr_tail), 4);
21615 
21616 		if (!first && !prev_state) {
21617 			TCP_STAT(tcps, tcp_mdt_conn_resumed2);
21618 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
21619 			    (void *)tcp->tcp_connp));
21620 		}
21621 	}
21622 }
21623 
21624 /* Unlink and return any mblk that looks like it contains a LSO info */
21625 static mblk_t *
21626 tcp_lso_info_mp(mblk_t *mp)
21627 {
21628 	mblk_t	*prev_mp;
21629 
21630 	for (;;) {
21631 		prev_mp = mp;
21632 		/* no more to process? */
21633 		if ((mp = mp->b_cont) == NULL)
21634 			break;
21635 
21636 		switch (DB_TYPE(mp)) {
21637 		case M_CTL:
21638 			if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE)
21639 				continue;
21640 			ASSERT(prev_mp != NULL);
21641 			prev_mp->b_cont = mp->b_cont;
21642 			mp->b_cont = NULL;
21643 			return (mp);
21644 		default:
21645 			break;
21646 		}
21647 	}
21648 
21649 	return (mp);
21650 }
21651 
21652 /* LSO info update routine, called when IP notifies us about LSO */
21653 static void
21654 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab)
21655 {
21656 	tcp_stack_t *tcps = tcp->tcp_tcps;
21657 
21658 	/*
21659 	 * IP is telling us to abort LSO on this connection?  We know
21660 	 * this because the capability is only turned off when IP
21661 	 * encounters some pathological cases, e.g. link-layer change
21662 	 * where the new NIC/driver doesn't support LSO, or in situation
21663 	 * where LSO usage on the link-layer has been switched off.
21664 	 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE
21665 	 * if the link-layer doesn't support LSO, and if it does, it
21666 	 * will indicate that the feature is to be turned on.
21667 	 */
21668 	tcp->tcp_lso = (lso_capab->ill_lso_on != 0);
21669 	TCP_STAT(tcps, tcp_lso_enabled);
21670 
21671 	/*
21672 	 * We currently only support LSO on simple TCP/IPv4,
21673 	 * so disable LSO otherwise.  The checks are done here
21674 	 * and in tcp_wput_data().
21675 	 */
21676 	if (tcp->tcp_lso &&
21677 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21678 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21679 	    (tcp->tcp_ipversion == IPV6_VERSION)) {
21680 		tcp->tcp_lso = B_FALSE;
21681 		TCP_STAT(tcps, tcp_lso_disabled);
21682 	} else {
21683 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH,
21684 		    lso_capab->ill_lso_max);
21685 	}
21686 }
21687 
21688 static void
21689 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt)
21690 {
21691 	conn_t *connp = tcp->tcp_connp;
21692 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21693 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21694 
21695 	ASSERT(ire != NULL);
21696 
21697 	/*
21698 	 * We may be in the fastpath here, and although we essentially do
21699 	 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return,
21700 	 * we try to keep things as brief as possible.  After all, these
21701 	 * are only best-effort checks, and we do more thorough ones prior
21702 	 * to calling tcp_send()/tcp_multisend().
21703 	 */
21704 	if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) &&
21705 	    check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
21706 	    ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
21707 	    !(ire->ire_flags & RTF_MULTIRT) &&
21708 	    !IPP_ENABLED(IPP_LOCAL_OUT, ipst) &&
21709 	    CONN_IS_LSO_MD_FASTPATH(connp)) {
21710 		if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
21711 			/* Cache the result */
21712 			connp->conn_lso_ok = B_TRUE;
21713 
21714 			ASSERT(ill->ill_lso_capab != NULL);
21715 			if (!ill->ill_lso_capab->ill_lso_on) {
21716 				ill->ill_lso_capab->ill_lso_on = 1;
21717 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21718 				    "LSO for interface %s\n", (void *)connp,
21719 				    ill->ill_name));
21720 			}
21721 			tcp_lso_update(tcp, ill->ill_lso_capab);
21722 		} else if (ipst->ips_ip_multidata_outbound &&
21723 		    ILL_MDT_CAPABLE(ill)) {
21724 			/* Cache the result */
21725 			connp->conn_mdt_ok = B_TRUE;
21726 
21727 			ASSERT(ill->ill_mdt_capab != NULL);
21728 			if (!ill->ill_mdt_capab->ill_mdt_on) {
21729 				ill->ill_mdt_capab->ill_mdt_on = 1;
21730 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21731 				    "MDT for interface %s\n", (void *)connp,
21732 				    ill->ill_name));
21733 			}
21734 			tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
21735 		}
21736 	}
21737 
21738 	/*
21739 	 * The goal is to reduce the number of generated tcp segments by
21740 	 * setting the maxpsz multiplier to 0; this will have an affect on
21741 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
21742 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
21743 	 * of outbound segments and incoming ACKs, thus allowing for better
21744 	 * network and system performance.  In contrast the legacy behavior
21745 	 * may result in sending less than SMSS size, because the last mblk
21746 	 * for some packets may have more data than needed to make up SMSS,
21747 	 * and the legacy code refused to "split" it.
21748 	 *
21749 	 * We apply the new behavior on following situations:
21750 	 *
21751 	 *   1) Loopback connections,
21752 	 *   2) Connections in which the remote peer is not on local subnet,
21753 	 *   3) Local subnet connections over the bge interface (see below).
21754 	 *
21755 	 * Ideally, we would like this behavior to apply for interfaces other
21756 	 * than bge.  However, doing so would negatively impact drivers which
21757 	 * perform dynamic mapping and unmapping of DMA resources, which are
21758 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
21759 	 * packet will be generated by tcp).  The bge driver does not suffer
21760 	 * from this, as it copies the mblks into pre-mapped buffers, and
21761 	 * therefore does not require more I/O resources than before.
21762 	 *
21763 	 * Otherwise, this behavior is present on all network interfaces when
21764 	 * the destination endpoint is non-local, since reducing the number
21765 	 * of packets in general is good for the network.
21766 	 *
21767 	 * TODO We need to remove this hard-coded conditional for bge once
21768 	 *	a better "self-tuning" mechanism, or a way to comprehend
21769 	 *	the driver transmit strategy is devised.  Until the solution
21770 	 *	is found and well understood, we live with this hack.
21771 	 */
21772 	if (!tcp_static_maxpsz &&
21773 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
21774 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
21775 		/* override the default value */
21776 		tcp->tcp_maxpsz = 0;
21777 
21778 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
21779 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
21780 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
21781 	}
21782 
21783 	/* set the stream head parameters accordingly */
21784 	(void) tcp_maxpsz_set(tcp, B_TRUE);
21785 }
21786 
21787 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
21788 static void
21789 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
21790 {
21791 	uchar_t	fval = *mp->b_rptr;
21792 	mblk_t	*tail;
21793 	queue_t	*q = tcp->tcp_wq;
21794 
21795 	/* TODO: How should flush interact with urgent data? */
21796 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
21797 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
21798 		/*
21799 		 * Flush only data that has not yet been put on the wire.  If
21800 		 * we flush data that we have already transmitted, life, as we
21801 		 * know it, may come to an end.
21802 		 */
21803 		tail = tcp->tcp_xmit_tail;
21804 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
21805 		tcp->tcp_xmit_tail_unsent = 0;
21806 		tcp->tcp_unsent = 0;
21807 		if (tail->b_wptr != tail->b_rptr)
21808 			tail = tail->b_cont;
21809 		if (tail) {
21810 			mblk_t **excess = &tcp->tcp_xmit_head;
21811 			for (;;) {
21812 				mblk_t *mp1 = *excess;
21813 				if (mp1 == tail)
21814 					break;
21815 				tcp->tcp_xmit_tail = mp1;
21816 				tcp->tcp_xmit_last = mp1;
21817 				excess = &mp1->b_cont;
21818 			}
21819 			*excess = NULL;
21820 			tcp_close_mpp(&tail);
21821 			if (tcp->tcp_snd_zcopy_aware)
21822 				tcp_zcopy_notify(tcp);
21823 		}
21824 		/*
21825 		 * We have no unsent data, so unsent must be less than
21826 		 * tcp_xmit_lowater, so re-enable flow.
21827 		 */
21828 		mutex_enter(&tcp->tcp_non_sq_lock);
21829 		if (tcp->tcp_flow_stopped) {
21830 			tcp_clrqfull(tcp);
21831 		}
21832 		mutex_exit(&tcp->tcp_non_sq_lock);
21833 	}
21834 	/*
21835 	 * TODO: you can't just flush these, you have to increase rwnd for one
21836 	 * thing.  For another, how should urgent data interact?
21837 	 */
21838 	if (fval & FLUSHR) {
21839 		*mp->b_rptr = fval & ~FLUSHW;
21840 		/* XXX */
21841 		qreply(q, mp);
21842 		return;
21843 	}
21844 	freemsg(mp);
21845 }
21846 
21847 /*
21848  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
21849  * messages.
21850  */
21851 static void
21852 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
21853 {
21854 	mblk_t	*mp1;
21855 	STRUCT_HANDLE(strbuf, sb);
21856 	uint16_t port;
21857 	queue_t 	*q = tcp->tcp_wq;
21858 	in6_addr_t	v6addr;
21859 	ipaddr_t	v4addr;
21860 	uint32_t	flowinfo = 0;
21861 	int		addrlen;
21862 
21863 	/* Make sure it is one of ours. */
21864 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
21865 	case TI_GETMYNAME:
21866 	case TI_GETPEERNAME:
21867 		break;
21868 	default:
21869 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
21870 		return;
21871 	}
21872 	switch (mi_copy_state(q, mp, &mp1)) {
21873 	case -1:
21874 		return;
21875 	case MI_COPY_CASE(MI_COPY_IN, 1):
21876 		break;
21877 	case MI_COPY_CASE(MI_COPY_OUT, 1):
21878 		/* Copy out the strbuf. */
21879 		mi_copyout(q, mp);
21880 		return;
21881 	case MI_COPY_CASE(MI_COPY_OUT, 2):
21882 		/* All done. */
21883 		mi_copy_done(q, mp, 0);
21884 		return;
21885 	default:
21886 		mi_copy_done(q, mp, EPROTO);
21887 		return;
21888 	}
21889 	/* Check alignment of the strbuf */
21890 	if (!OK_32PTR(mp1->b_rptr)) {
21891 		mi_copy_done(q, mp, EINVAL);
21892 		return;
21893 	}
21894 
21895 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
21896 	    (void *)mp1->b_rptr);
21897 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
21898 
21899 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
21900 		mi_copy_done(q, mp, EINVAL);
21901 		return;
21902 	}
21903 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
21904 	case TI_GETMYNAME:
21905 		if (tcp->tcp_family == AF_INET) {
21906 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21907 				v4addr = tcp->tcp_ipha->ipha_src;
21908 			} else {
21909 				/* can't return an address in this case */
21910 				v4addr = 0;
21911 			}
21912 		} else {
21913 			/* tcp->tcp_family == AF_INET6 */
21914 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21915 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
21916 				    &v6addr);
21917 			} else {
21918 				v6addr = tcp->tcp_ip6h->ip6_src;
21919 			}
21920 		}
21921 		port = tcp->tcp_lport;
21922 		break;
21923 	case TI_GETPEERNAME:
21924 		if (tcp->tcp_family == AF_INET) {
21925 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21926 				IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
21927 				    v4addr);
21928 			} else {
21929 				/* can't return an address in this case */
21930 				v4addr = 0;
21931 			}
21932 		} else {
21933 			/* tcp->tcp_family == AF_INET6) */
21934 			v6addr = tcp->tcp_remote_v6;
21935 			if (tcp->tcp_ipversion == IPV6_VERSION) {
21936 				/*
21937 				 * No flowinfo if tcp->tcp_ipversion is v4.
21938 				 *
21939 				 * flowinfo was already initialized to zero
21940 				 * where it was declared above, so only
21941 				 * set it if ipversion is v6.
21942 				 */
21943 				flowinfo = tcp->tcp_ip6h->ip6_vcf &
21944 				    ~IPV6_VERS_AND_FLOW_MASK;
21945 			}
21946 		}
21947 		port = tcp->tcp_fport;
21948 		break;
21949 	default:
21950 		mi_copy_done(q, mp, EPROTO);
21951 		return;
21952 	}
21953 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
21954 	if (!mp1)
21955 		return;
21956 
21957 	if (tcp->tcp_family == AF_INET) {
21958 		sin_t *sin;
21959 
21960 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
21961 		sin = (sin_t *)mp1->b_rptr;
21962 		mp1->b_wptr = (uchar_t *)&sin[1];
21963 		*sin = sin_null;
21964 		sin->sin_family = AF_INET;
21965 		sin->sin_addr.s_addr = v4addr;
21966 		sin->sin_port = port;
21967 	} else {
21968 		/* tcp->tcp_family == AF_INET6 */
21969 		sin6_t *sin6;
21970 
21971 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
21972 		sin6 = (sin6_t *)mp1->b_rptr;
21973 		mp1->b_wptr = (uchar_t *)&sin6[1];
21974 		*sin6 = sin6_null;
21975 		sin6->sin6_family = AF_INET6;
21976 		sin6->sin6_flowinfo = flowinfo;
21977 		sin6->sin6_addr = v6addr;
21978 		sin6->sin6_port = port;
21979 	}
21980 	/* Copy out the address */
21981 	mi_copyout(q, mp);
21982 }
21983 
21984 /*
21985  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
21986  * messages.
21987  */
21988 /* ARGSUSED */
21989 static void
21990 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
21991 {
21992 	conn_t 	*connp = (conn_t *)arg;
21993 	tcp_t	*tcp = connp->conn_tcp;
21994 	queue_t	*q = tcp->tcp_wq;
21995 	struct iocblk	*iocp;
21996 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21997 
21998 	ASSERT(DB_TYPE(mp) == M_IOCTL);
21999 	/*
22000 	 * Try and ASSERT the minimum possible references on the
22001 	 * conn early enough. Since we are executing on write side,
22002 	 * the connection is obviously not detached and that means
22003 	 * there is a ref each for TCP and IP. Since we are behind
22004 	 * the squeue, the minimum references needed are 3. If the
22005 	 * conn is in classifier hash list, there should be an
22006 	 * extra ref for that (we check both the possibilities).
22007 	 */
22008 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22009 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22010 
22011 	iocp = (struct iocblk *)mp->b_rptr;
22012 	switch (iocp->ioc_cmd) {
22013 	case TCP_IOC_DEFAULT_Q:
22014 		/* Wants to be the default wq. */
22015 		if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
22016 			iocp->ioc_error = EPERM;
22017 			iocp->ioc_count = 0;
22018 			mp->b_datap->db_type = M_IOCACK;
22019 			qreply(q, mp);
22020 			return;
22021 		}
22022 		tcp_def_q_set(tcp, mp);
22023 		return;
22024 	case _SIOCSOCKFALLBACK:
22025 		/*
22026 		 * Either sockmod is about to be popped and the socket
22027 		 * would now be treated as a plain stream, or a module
22028 		 * is about to be pushed so we could no longer use read-
22029 		 * side synchronous streams for fused loopback tcp.
22030 		 * Drain any queued data and disable direct sockfs
22031 		 * interface from now on.
22032 		 */
22033 		if (!tcp->tcp_issocket) {
22034 			DB_TYPE(mp) = M_IOCNAK;
22035 			iocp->ioc_error = EINVAL;
22036 		} else {
22037 #ifdef	_ILP32
22038 			tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
22039 #else
22040 			tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
22041 #endif
22042 			/*
22043 			 * Insert this socket into the acceptor hash.
22044 			 * We might need it for T_CONN_RES message
22045 			 */
22046 			tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
22047 
22048 			if (tcp->tcp_fused) {
22049 				/*
22050 				 * This is a fused loopback tcp; disable
22051 				 * read-side synchronous streams interface
22052 				 * and drain any queued data.  It is okay
22053 				 * to do this for non-synchronous streams
22054 				 * fused tcp as well.
22055 				 */
22056 				tcp_fuse_disable_pair(tcp, B_FALSE);
22057 			}
22058 			tcp->tcp_issocket = B_FALSE;
22059 			TCP_STAT(tcps, tcp_sock_fallback);
22060 
22061 			DB_TYPE(mp) = M_IOCACK;
22062 			iocp->ioc_error = 0;
22063 		}
22064 		iocp->ioc_count = 0;
22065 		iocp->ioc_rval = 0;
22066 		qreply(q, mp);
22067 		return;
22068 	}
22069 	CALL_IP_WPUT(connp, q, mp);
22070 }
22071 
22072 /*
22073  * This routine is called by tcp_wput() to handle all TPI requests.
22074  */
22075 /* ARGSUSED */
22076 static void
22077 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
22078 {
22079 	conn_t 	*connp = (conn_t *)arg;
22080 	tcp_t	*tcp = connp->conn_tcp;
22081 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
22082 	uchar_t *rptr;
22083 	t_scalar_t type;
22084 	int len;
22085 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
22086 
22087 	/*
22088 	 * Try and ASSERT the minimum possible references on the
22089 	 * conn early enough. Since we are executing on write side,
22090 	 * the connection is obviously not detached and that means
22091 	 * there is a ref each for TCP and IP. Since we are behind
22092 	 * the squeue, the minimum references needed are 3. If the
22093 	 * conn is in classifier hash list, there should be an
22094 	 * extra ref for that (we check both the possibilities).
22095 	 */
22096 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22097 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22098 
22099 	rptr = mp->b_rptr;
22100 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22101 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
22102 		type = ((union T_primitives *)rptr)->type;
22103 		if (type == T_EXDATA_REQ) {
22104 			uint32_t msize = msgdsize(mp->b_cont);
22105 
22106 			len = msize - 1;
22107 			if (len < 0) {
22108 				freemsg(mp);
22109 				return;
22110 			}
22111 			/*
22112 			 * Try to force urgent data out on the wire.
22113 			 * Even if we have unsent data this will
22114 			 * at least send the urgent flag.
22115 			 * XXX does not handle more flag correctly.
22116 			 */
22117 			len += tcp->tcp_unsent;
22118 			len += tcp->tcp_snxt;
22119 			tcp->tcp_urg = len;
22120 			tcp->tcp_valid_bits |= TCP_URG_VALID;
22121 
22122 			/* Bypass tcp protocol for fused tcp loopback */
22123 			if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
22124 				return;
22125 		} else if (type != T_DATA_REQ) {
22126 			goto non_urgent_data;
22127 		}
22128 		/* TODO: options, flags, ... from user */
22129 		/* Set length to zero for reclamation below */
22130 		tcp_wput_data(tcp, mp->b_cont, B_TRUE);
22131 		freeb(mp);
22132 		return;
22133 	} else {
22134 		if (tcp->tcp_debug) {
22135 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22136 			    "tcp_wput_proto, dropping one...");
22137 		}
22138 		freemsg(mp);
22139 		return;
22140 	}
22141 
22142 non_urgent_data:
22143 
22144 	switch ((int)tprim->type) {
22145 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
22146 		/*
22147 		 * save the kssl_ent_t from the next block, and convert this
22148 		 * back to a normal bind_req.
22149 		 */
22150 		if (mp->b_cont != NULL) {
22151 			ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
22152 
22153 			if (tcp->tcp_kssl_ent != NULL) {
22154 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
22155 				    KSSL_NO_PROXY);
22156 				tcp->tcp_kssl_ent = NULL;
22157 			}
22158 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
22159 			    sizeof (kssl_ent_t));
22160 			kssl_hold_ent(tcp->tcp_kssl_ent);
22161 			freemsg(mp->b_cont);
22162 			mp->b_cont = NULL;
22163 		}
22164 		tprim->type = T_BIND_REQ;
22165 
22166 	/* FALLTHROUGH */
22167 	case O_T_BIND_REQ:	/* bind request */
22168 	case T_BIND_REQ:	/* new semantics bind request */
22169 		tcp_bind(tcp, mp);
22170 		break;
22171 	case T_UNBIND_REQ:	/* unbind request */
22172 		tcp_unbind(tcp, mp);
22173 		break;
22174 	case O_T_CONN_RES:	/* old connection response XXX */
22175 	case T_CONN_RES:	/* connection response */
22176 		tcp_accept(tcp, mp);
22177 		break;
22178 	case T_CONN_REQ:	/* connection request */
22179 		tcp_connect(tcp, mp);
22180 		break;
22181 	case T_DISCON_REQ:	/* disconnect request */
22182 		tcp_disconnect(tcp, mp);
22183 		break;
22184 	case T_CAPABILITY_REQ:
22185 		tcp_capability_req(tcp, mp);	/* capability request */
22186 		break;
22187 	case T_INFO_REQ:	/* information request */
22188 		tcp_info_req(tcp, mp);
22189 		break;
22190 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
22191 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr,
22192 		    &tcp_opt_obj, B_TRUE);
22193 		break;
22194 	case T_OPTMGMT_REQ:
22195 		/*
22196 		 * Note:  no support for snmpcom_req() through new
22197 		 * T_OPTMGMT_REQ. See comments in ip.c
22198 		 */
22199 		/* Only IP is allowed to return meaningful value */
22200 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj,
22201 		    B_TRUE);
22202 		break;
22203 
22204 	case T_UNITDATA_REQ:	/* unitdata request */
22205 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22206 		break;
22207 	case T_ORDREL_REQ:	/* orderly release req */
22208 		freemsg(mp);
22209 
22210 		if (tcp->tcp_fused)
22211 			tcp_unfuse(tcp);
22212 
22213 		if (tcp_xmit_end(tcp) != 0) {
22214 			/*
22215 			 * We were crossing FINs and got a reset from
22216 			 * the other side. Just ignore it.
22217 			 */
22218 			if (tcp->tcp_debug) {
22219 				(void) strlog(TCP_MOD_ID, 0, 1,
22220 				    SL_ERROR|SL_TRACE,
22221 				    "tcp_wput_proto, T_ORDREL_REQ out of "
22222 				    "state %s",
22223 				    tcp_display(tcp, NULL,
22224 				    DISP_ADDR_AND_PORT));
22225 			}
22226 		}
22227 		break;
22228 	case T_ADDR_REQ:
22229 		tcp_addr_req(tcp, mp);
22230 		break;
22231 	default:
22232 		if (tcp->tcp_debug) {
22233 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22234 			    "tcp_wput_proto, bogus TPI msg, type %d",
22235 			    tprim->type);
22236 		}
22237 		/*
22238 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
22239 		 * to recover.
22240 		 */
22241 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22242 		break;
22243 	}
22244 }
22245 
22246 /*
22247  * The TCP write service routine should never be called...
22248  */
22249 /* ARGSUSED */
22250 static void
22251 tcp_wsrv(queue_t *q)
22252 {
22253 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
22254 
22255 	TCP_STAT(tcps, tcp_wsrv_called);
22256 }
22257 
22258 /* Non overlapping byte exchanger */
22259 static void
22260 tcp_xchg(uchar_t *a, uchar_t *b, int len)
22261 {
22262 	uchar_t	uch;
22263 
22264 	while (len-- > 0) {
22265 		uch = a[len];
22266 		a[len] = b[len];
22267 		b[len] = uch;
22268 	}
22269 }
22270 
22271 /*
22272  * Send out a control packet on the tcp connection specified.  This routine
22273  * is typically called where we need a simple ACK or RST generated.
22274  */
22275 static void
22276 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
22277 {
22278 	uchar_t		*rptr;
22279 	tcph_t		*tcph;
22280 	ipha_t		*ipha = NULL;
22281 	ip6_t		*ip6h = NULL;
22282 	uint32_t	sum;
22283 	int		tcp_hdr_len;
22284 	int		tcp_ip_hdr_len;
22285 	mblk_t		*mp;
22286 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22287 
22288 	/*
22289 	 * Save sum for use in source route later.
22290 	 */
22291 	ASSERT(tcp != NULL);
22292 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
22293 	tcp_hdr_len = tcp->tcp_hdr_len;
22294 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
22295 
22296 	/* If a text string is passed in with the request, pass it to strlog. */
22297 	if (str != NULL && tcp->tcp_debug) {
22298 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22299 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
22300 		    str, seq, ack, ctl);
22301 	}
22302 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra,
22303 	    BPRI_MED);
22304 	if (mp == NULL) {
22305 		return;
22306 	}
22307 	rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
22308 	mp->b_rptr = rptr;
22309 	mp->b_wptr = &rptr[tcp_hdr_len];
22310 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
22311 
22312 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22313 		ipha = (ipha_t *)rptr;
22314 		ipha->ipha_length = htons(tcp_hdr_len);
22315 	} else {
22316 		ip6h = (ip6_t *)rptr;
22317 		ASSERT(tcp != NULL);
22318 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
22319 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22320 	}
22321 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
22322 	tcph->th_flags[0] = (uint8_t)ctl;
22323 	if (ctl & TH_RST) {
22324 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22325 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22326 		/*
22327 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
22328 		 */
22329 		if (tcp->tcp_snd_ts_ok &&
22330 		    tcp->tcp_state > TCPS_SYN_SENT) {
22331 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
22332 			*(mp->b_wptr) = TCPOPT_EOL;
22333 			if (tcp->tcp_ipversion == IPV4_VERSION) {
22334 				ipha->ipha_length = htons(tcp_hdr_len -
22335 				    TCPOPT_REAL_TS_LEN);
22336 			} else {
22337 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
22338 				    TCPOPT_REAL_TS_LEN);
22339 			}
22340 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
22341 			sum -= TCPOPT_REAL_TS_LEN;
22342 		}
22343 	}
22344 	if (ctl & TH_ACK) {
22345 		if (tcp->tcp_snd_ts_ok) {
22346 			U32_TO_BE32(lbolt,
22347 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22348 			U32_TO_BE32(tcp->tcp_ts_recent,
22349 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22350 		}
22351 
22352 		/* Update the latest receive window size in TCP header. */
22353 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22354 		    tcph->th_win);
22355 		tcp->tcp_rack = ack;
22356 		tcp->tcp_rack_cnt = 0;
22357 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
22358 	}
22359 	BUMP_LOCAL(tcp->tcp_obsegs);
22360 	U32_TO_BE32(seq, tcph->th_seq);
22361 	U32_TO_BE32(ack, tcph->th_ack);
22362 	/*
22363 	 * Include the adjustment for a source route if any.
22364 	 */
22365 	sum = (sum >> 16) + (sum & 0xFFFF);
22366 	U16_TO_BE16(sum, tcph->th_sum);
22367 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22368 	tcp_send_data(tcp, tcp->tcp_wq, mp);
22369 }
22370 
22371 /*
22372  * If this routine returns B_TRUE, TCP can generate a RST in response
22373  * to a segment.  If it returns B_FALSE, TCP should not respond.
22374  */
22375 static boolean_t
22376 tcp_send_rst_chk(tcp_stack_t *tcps)
22377 {
22378 	clock_t	now;
22379 
22380 	/*
22381 	 * TCP needs to protect itself from generating too many RSTs.
22382 	 * This can be a DoS attack by sending us random segments
22383 	 * soliciting RSTs.
22384 	 *
22385 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
22386 	 * in each 1 second interval.  In this way, TCP still generate
22387 	 * RSTs in normal cases but when under attack, the impact is
22388 	 * limited.
22389 	 */
22390 	if (tcps->tcps_rst_sent_rate_enabled != 0) {
22391 		now = lbolt;
22392 		/* lbolt can wrap around. */
22393 		if ((tcps->tcps_last_rst_intrvl > now) ||
22394 		    (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) >
22395 		    1*SECONDS)) {
22396 			tcps->tcps_last_rst_intrvl = now;
22397 			tcps->tcps_rst_cnt = 1;
22398 		} else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) {
22399 			return (B_FALSE);
22400 		}
22401 	}
22402 	return (B_TRUE);
22403 }
22404 
22405 /*
22406  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
22407  */
22408 static void
22409 tcp_ip_ire_mark_advice(tcp_t *tcp)
22410 {
22411 	mblk_t *mp;
22412 	ipic_t *ipic;
22413 
22414 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22415 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22416 		    &ipic);
22417 	} else {
22418 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22419 		    &ipic);
22420 	}
22421 	if (mp == NULL)
22422 		return;
22423 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22424 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22425 }
22426 
22427 /*
22428  * Return an IP advice ioctl mblk and set ipic to be the pointer
22429  * to the advice structure.
22430  */
22431 static mblk_t *
22432 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
22433 {
22434 	struct iocblk *ioc;
22435 	mblk_t *mp, *mp1;
22436 
22437 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
22438 	if (mp == NULL)
22439 		return (NULL);
22440 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
22441 	*ipic = (ipic_t *)mp->b_rptr;
22442 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
22443 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
22444 
22445 	bcopy(addr, *ipic + 1, addr_len);
22446 
22447 	(*ipic)->ipic_addr_length = addr_len;
22448 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
22449 
22450 	mp1 = mkiocb(IP_IOCTL);
22451 	if (mp1 == NULL) {
22452 		freemsg(mp);
22453 		return (NULL);
22454 	}
22455 	mp1->b_cont = mp;
22456 	ioc = (struct iocblk *)mp1->b_rptr;
22457 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
22458 
22459 	return (mp1);
22460 }
22461 
22462 /*
22463  * Generate a reset based on an inbound packet, connp is set by caller
22464  * when RST is in response to an unexpected inbound packet for which
22465  * there is active tcp state in the system.
22466  *
22467  * IPSEC NOTE : Try to send the reply with the same protection as it came
22468  * in.  We still have the ipsec_mp that the packet was attached to. Thus
22469  * the packet will go out at the same level of protection as it came in by
22470  * converting the IPSEC_IN to IPSEC_OUT.
22471  */
22472 static void
22473 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
22474     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid,
22475     tcp_stack_t *tcps, conn_t *connp)
22476 {
22477 	ipha_t		*ipha = NULL;
22478 	ip6_t		*ip6h = NULL;
22479 	ushort_t	len;
22480 	tcph_t		*tcph;
22481 	int		i;
22482 	mblk_t		*ipsec_mp;
22483 	boolean_t	mctl_present;
22484 	ipic_t		*ipic;
22485 	ipaddr_t	v4addr;
22486 	in6_addr_t	v6addr;
22487 	int		addr_len;
22488 	void		*addr;
22489 	queue_t		*q = tcps->tcps_g_q;
22490 	tcp_t		*tcp;
22491 	cred_t		*cr;
22492 	mblk_t		*nmp;
22493 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
22494 
22495 	if (tcps->tcps_g_q == NULL) {
22496 		/*
22497 		 * For non-zero stackids the default queue isn't created
22498 		 * until the first open, thus there can be a need to send
22499 		 * a reset before then. But we can't do that, hence we just
22500 		 * drop the packet. Later during boot, when the default queue
22501 		 * has been setup, a retransmitted packet from the peer
22502 		 * will result in a reset.
22503 		 */
22504 		ASSERT(tcps->tcps_netstack->netstack_stackid !=
22505 		    GLOBAL_NETSTACKID);
22506 		freemsg(mp);
22507 		return;
22508 	}
22509 
22510 	if (connp != NULL)
22511 		tcp = connp->conn_tcp;
22512 	else
22513 		tcp = Q_TO_TCP(q);
22514 
22515 	if (!tcp_send_rst_chk(tcps)) {
22516 		tcps->tcps_rst_unsent++;
22517 		freemsg(mp);
22518 		return;
22519 	}
22520 
22521 	if (mp->b_datap->db_type == M_CTL) {
22522 		ipsec_mp = mp;
22523 		mp = mp->b_cont;
22524 		mctl_present = B_TRUE;
22525 	} else {
22526 		ipsec_mp = mp;
22527 		mctl_present = B_FALSE;
22528 	}
22529 
22530 	if (str && q && tcps->tcps_dbg) {
22531 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22532 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
22533 		    "flags 0x%x",
22534 		    str, seq, ack, ctl);
22535 	}
22536 	if (mp->b_datap->db_ref != 1) {
22537 		mblk_t *mp1 = copyb(mp);
22538 		freemsg(mp);
22539 		mp = mp1;
22540 		if (!mp) {
22541 			if (mctl_present)
22542 				freeb(ipsec_mp);
22543 			return;
22544 		} else {
22545 			if (mctl_present) {
22546 				ipsec_mp->b_cont = mp;
22547 			} else {
22548 				ipsec_mp = mp;
22549 			}
22550 		}
22551 	} else if (mp->b_cont) {
22552 		freemsg(mp->b_cont);
22553 		mp->b_cont = NULL;
22554 	}
22555 	/*
22556 	 * We skip reversing source route here.
22557 	 * (for now we replace all IP options with EOL)
22558 	 */
22559 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22560 		ipha = (ipha_t *)mp->b_rptr;
22561 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
22562 			mp->b_rptr[i] = IPOPT_EOL;
22563 		/*
22564 		 * Make sure that src address isn't flagrantly invalid.
22565 		 * Not all broadcast address checking for the src address
22566 		 * is possible, since we don't know the netmask of the src
22567 		 * addr.  No check for destination address is done, since
22568 		 * IP will not pass up a packet with a broadcast dest
22569 		 * address to TCP.  Similar checks are done below for IPv6.
22570 		 */
22571 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
22572 		    CLASSD(ipha->ipha_src)) {
22573 			freemsg(ipsec_mp);
22574 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
22575 			return;
22576 		}
22577 	} else {
22578 		ip6h = (ip6_t *)mp->b_rptr;
22579 
22580 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
22581 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
22582 			freemsg(ipsec_mp);
22583 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards);
22584 			return;
22585 		}
22586 
22587 		/* Remove any extension headers assuming partial overlay */
22588 		if (ip_hdr_len > IPV6_HDR_LEN) {
22589 			uint8_t *to;
22590 
22591 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
22592 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
22593 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
22594 			ip_hdr_len = IPV6_HDR_LEN;
22595 			ip6h = (ip6_t *)mp->b_rptr;
22596 			ip6h->ip6_nxt = IPPROTO_TCP;
22597 		}
22598 	}
22599 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
22600 	if (tcph->th_flags[0] & TH_RST) {
22601 		freemsg(ipsec_mp);
22602 		return;
22603 	}
22604 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
22605 	len = ip_hdr_len + sizeof (tcph_t);
22606 	mp->b_wptr = &mp->b_rptr[len];
22607 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22608 		ipha->ipha_length = htons(len);
22609 		/* Swap addresses */
22610 		v4addr = ipha->ipha_src;
22611 		ipha->ipha_src = ipha->ipha_dst;
22612 		ipha->ipha_dst = v4addr;
22613 		ipha->ipha_ident = 0;
22614 		ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
22615 		addr_len = IP_ADDR_LEN;
22616 		addr = &v4addr;
22617 	} else {
22618 		/* No ip6i_t in this case */
22619 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
22620 		/* Swap addresses */
22621 		v6addr = ip6h->ip6_src;
22622 		ip6h->ip6_src = ip6h->ip6_dst;
22623 		ip6h->ip6_dst = v6addr;
22624 		ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit;
22625 		addr_len = IPV6_ADDR_LEN;
22626 		addr = &v6addr;
22627 	}
22628 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
22629 	U32_TO_BE32(ack, tcph->th_ack);
22630 	U32_TO_BE32(seq, tcph->th_seq);
22631 	U16_TO_BE16(0, tcph->th_win);
22632 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
22633 	tcph->th_flags[0] = (uint8_t)ctl;
22634 	if (ctl & TH_RST) {
22635 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22636 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22637 	}
22638 
22639 	/* IP trusts us to set up labels when required. */
22640 	if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL &&
22641 	    crgetlabel(cr) != NULL) {
22642 		int err, adjust;
22643 
22644 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
22645 			err = tsol_check_label(cr, &mp, &adjust,
22646 			    tcp->tcp_connp->conn_mac_exempt,
22647 			    tcps->tcps_netstack->netstack_ip);
22648 		else
22649 			err = tsol_check_label_v6(cr, &mp, &adjust,
22650 			    tcp->tcp_connp->conn_mac_exempt,
22651 			    tcps->tcps_netstack->netstack_ip);
22652 		if (mctl_present)
22653 			ipsec_mp->b_cont = mp;
22654 		else
22655 			ipsec_mp = mp;
22656 		if (err != 0) {
22657 			freemsg(ipsec_mp);
22658 			return;
22659 		}
22660 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22661 			ipha = (ipha_t *)mp->b_rptr;
22662 			adjust += ntohs(ipha->ipha_length);
22663 			ipha->ipha_length = htons(adjust);
22664 		} else {
22665 			ip6h = (ip6_t *)mp->b_rptr;
22666 		}
22667 	}
22668 
22669 	if (mctl_present) {
22670 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22671 
22672 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22673 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
22674 			return;
22675 		}
22676 	}
22677 	if (zoneid == ALL_ZONES)
22678 		zoneid = GLOBAL_ZONEID;
22679 
22680 	/* Add the zoneid so ip_output routes it properly */
22681 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) {
22682 		freemsg(ipsec_mp);
22683 		return;
22684 	}
22685 	ipsec_mp = nmp;
22686 
22687 	/*
22688 	 * NOTE:  one might consider tracing a TCP packet here, but
22689 	 * this function has no active TCP state and no tcp structure
22690 	 * that has a trace buffer.  If we traced here, we would have
22691 	 * to keep a local trace buffer in tcp_record_trace().
22692 	 *
22693 	 * TSol note: The mblk that contains the incoming packet was
22694 	 * reused by tcp_xmit_listener_reset, so it already contains
22695 	 * the right credentials and we don't need to call mblk_setcred.
22696 	 * Also the conn's cred is not right since it is associated
22697 	 * with tcps_g_q.
22698 	 */
22699 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
22700 
22701 	/*
22702 	 * Tell IP to mark the IRE used for this destination temporary.
22703 	 * This way, we can limit our exposure to DoS attack because IP
22704 	 * creates an IRE for each destination.  If there are too many,
22705 	 * the time to do any routing lookup will be extremely long.  And
22706 	 * the lookup can be in interrupt context.
22707 	 *
22708 	 * Note that in normal circumstances, this marking should not
22709 	 * affect anything.  It would be nice if only 1 message is
22710 	 * needed to inform IP that the IRE created for this RST should
22711 	 * not be added to the cache table.  But there is currently
22712 	 * not such communication mechanism between TCP and IP.  So
22713 	 * the best we can do now is to send the advice ioctl to IP
22714 	 * to mark the IRE temporary.
22715 	 */
22716 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
22717 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22718 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22719 	}
22720 }
22721 
22722 /*
22723  * Initiate closedown sequence on an active connection.  (May be called as
22724  * writer.)  Return value zero for OK return, non-zero for error return.
22725  */
22726 static int
22727 tcp_xmit_end(tcp_t *tcp)
22728 {
22729 	ipic_t	*ipic;
22730 	mblk_t	*mp;
22731 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22732 
22733 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
22734 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
22735 		/*
22736 		 * Invalid state, only states TCPS_SYN_RCVD,
22737 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
22738 		 */
22739 		return (-1);
22740 	}
22741 
22742 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
22743 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
22744 	/*
22745 	 * If there is nothing more unsent, send the FIN now.
22746 	 * Otherwise, it will go out with the last segment.
22747 	 */
22748 	if (tcp->tcp_unsent == 0) {
22749 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
22750 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
22751 
22752 		if (mp) {
22753 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22754 			tcp_send_data(tcp, tcp->tcp_wq, mp);
22755 		} else {
22756 			/*
22757 			 * Couldn't allocate msg.  Pretend we got it out.
22758 			 * Wait for rexmit timeout.
22759 			 */
22760 			tcp->tcp_snxt = tcp->tcp_fss + 1;
22761 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22762 		}
22763 
22764 		/*
22765 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
22766 		 * changed.
22767 		 */
22768 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
22769 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
22770 		}
22771 	} else {
22772 		/*
22773 		 * If tcp->tcp_cork is set, then the data will not get sent,
22774 		 * so we have to check that and unset it first.
22775 		 */
22776 		if (tcp->tcp_cork)
22777 			tcp->tcp_cork = B_FALSE;
22778 		tcp_wput_data(tcp, NULL, B_FALSE);
22779 	}
22780 
22781 	/*
22782 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
22783 	 * is 0, don't update the cache.
22784 	 */
22785 	if (tcps->tcps_rtt_updates == 0 ||
22786 	    tcp->tcp_rtt_update < tcps->tcps_rtt_updates)
22787 		return (0);
22788 
22789 	/*
22790 	 * NOTE: should not update if source routes i.e. if tcp_remote if
22791 	 * different from the destination.
22792 	 */
22793 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22794 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
22795 			return (0);
22796 		}
22797 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22798 		    &ipic);
22799 	} else {
22800 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
22801 		    &tcp->tcp_ip6h->ip6_dst))) {
22802 			return (0);
22803 		}
22804 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22805 		    &ipic);
22806 	}
22807 
22808 	/* Record route attributes in the IRE for use by future connections. */
22809 	if (mp == NULL)
22810 		return (0);
22811 
22812 	/*
22813 	 * We do not have a good algorithm to update ssthresh at this time.
22814 	 * So don't do any update.
22815 	 */
22816 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
22817 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
22818 
22819 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22820 	return (0);
22821 }
22822 
22823 /*
22824  * Generate a "no listener here" RST in response to an "unknown" segment.
22825  * connp is set by caller when RST is in response to an unexpected
22826  * inbound packet for which there is active tcp state in the system.
22827  * Note that we are reusing the incoming mp to construct the outgoing RST.
22828  */
22829 void
22830 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid,
22831     tcp_stack_t *tcps, conn_t *connp)
22832 {
22833 	uchar_t		*rptr;
22834 	uint32_t	seg_len;
22835 	tcph_t		*tcph;
22836 	uint32_t	seg_seq;
22837 	uint32_t	seg_ack;
22838 	uint_t		flags;
22839 	mblk_t		*ipsec_mp;
22840 	ipha_t 		*ipha;
22841 	ip6_t 		*ip6h;
22842 	boolean_t	mctl_present = B_FALSE;
22843 	boolean_t	check = B_TRUE;
22844 	boolean_t	policy_present;
22845 	ipsec_stack_t	*ipss = tcps->tcps_netstack->netstack_ipsec;
22846 
22847 	TCP_STAT(tcps, tcp_no_listener);
22848 
22849 	ipsec_mp = mp;
22850 
22851 	if (mp->b_datap->db_type == M_CTL) {
22852 		ipsec_in_t *ii;
22853 
22854 		mctl_present = B_TRUE;
22855 		mp = mp->b_cont;
22856 
22857 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22858 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22859 		if (ii->ipsec_in_dont_check) {
22860 			check = B_FALSE;
22861 			if (!ii->ipsec_in_secure) {
22862 				freeb(ipsec_mp);
22863 				mctl_present = B_FALSE;
22864 				ipsec_mp = mp;
22865 			}
22866 		}
22867 	}
22868 
22869 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22870 		policy_present = ipss->ipsec_inbound_v4_policy_present;
22871 		ipha = (ipha_t *)mp->b_rptr;
22872 		ip6h = NULL;
22873 	} else {
22874 		policy_present = ipss->ipsec_inbound_v6_policy_present;
22875 		ipha = NULL;
22876 		ip6h = (ip6_t *)mp->b_rptr;
22877 	}
22878 
22879 	if (check && policy_present) {
22880 		/*
22881 		 * The conn_t parameter is NULL because we already know
22882 		 * nobody's home.
22883 		 */
22884 		ipsec_mp = ipsec_check_global_policy(
22885 		    ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present,
22886 		    tcps->tcps_netstack);
22887 		if (ipsec_mp == NULL)
22888 			return;
22889 	}
22890 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
22891 		DTRACE_PROBE2(
22892 		    tx__ip__log__error__nolistener__tcp,
22893 		    char *, "Could not reply with RST to mp(1)",
22894 		    mblk_t *, mp);
22895 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
22896 		freemsg(ipsec_mp);
22897 		return;
22898 	}
22899 
22900 	rptr = mp->b_rptr;
22901 
22902 	tcph = (tcph_t *)&rptr[ip_hdr_len];
22903 	seg_seq = BE32_TO_U32(tcph->th_seq);
22904 	seg_ack = BE32_TO_U32(tcph->th_ack);
22905 	flags = tcph->th_flags[0];
22906 
22907 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
22908 	if (flags & TH_RST) {
22909 		freemsg(ipsec_mp);
22910 	} else if (flags & TH_ACK) {
22911 		tcp_xmit_early_reset("no tcp, reset",
22912 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps,
22913 		    connp);
22914 	} else {
22915 		if (flags & TH_SYN) {
22916 			seg_len++;
22917 		} else {
22918 			/*
22919 			 * Here we violate the RFC.  Note that a normal
22920 			 * TCP will never send a segment without the ACK
22921 			 * flag, except for RST or SYN segment.  This
22922 			 * segment is neither.  Just drop it on the
22923 			 * floor.
22924 			 */
22925 			freemsg(ipsec_mp);
22926 			tcps->tcps_rst_unsent++;
22927 			return;
22928 		}
22929 
22930 		tcp_xmit_early_reset("no tcp, reset/ack",
22931 		    ipsec_mp, 0, seg_seq + seg_len,
22932 		    TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp);
22933 	}
22934 }
22935 
22936 /*
22937  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
22938  * ip and tcp header ready to pass down to IP.  If the mp passed in is
22939  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
22940  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
22941  * otherwise it will dup partial mblks.)
22942  * Otherwise, an appropriate ACK packet will be generated.  This
22943  * routine is not usually called to send new data for the first time.  It
22944  * is mostly called out of the timer for retransmits, and to generate ACKs.
22945  *
22946  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
22947  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
22948  * of the original mblk chain will be returned in *offset and *end_mp.
22949  */
22950 mblk_t *
22951 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
22952     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
22953     boolean_t rexmit)
22954 {
22955 	int	data_length;
22956 	int32_t	off = 0;
22957 	uint_t	flags;
22958 	mblk_t	*mp1;
22959 	mblk_t	*mp2;
22960 	uchar_t	*rptr;
22961 	tcph_t	*tcph;
22962 	int32_t	num_sack_blk = 0;
22963 	int32_t	sack_opt_len = 0;
22964 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22965 
22966 	/* Allocate for our maximum TCP header + link-level */
22967 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
22968 	    tcps->tcps_wroff_xtra, BPRI_MED);
22969 	if (!mp1)
22970 		return (NULL);
22971 	data_length = 0;
22972 
22973 	/*
22974 	 * Note that tcp_mss has been adjusted to take into account the
22975 	 * timestamp option if applicable.  Because SACK options do not
22976 	 * appear in every TCP segments and they are of variable lengths,
22977 	 * they cannot be included in tcp_mss.  Thus we need to calculate
22978 	 * the actual segment length when we need to send a segment which
22979 	 * includes SACK options.
22980 	 */
22981 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
22982 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
22983 		    tcp->tcp_num_sack_blk);
22984 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
22985 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
22986 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
22987 			max_to_send -= sack_opt_len;
22988 	}
22989 
22990 	if (offset != NULL) {
22991 		off = *offset;
22992 		/* We use offset as an indicator that end_mp is not NULL. */
22993 		*end_mp = NULL;
22994 	}
22995 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
22996 		/* This could be faster with cooperation from downstream */
22997 		if (mp2 != mp1 && !sendall &&
22998 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
22999 		    max_to_send)
23000 			/*
23001 			 * Don't send the next mblk since the whole mblk
23002 			 * does not fit.
23003 			 */
23004 			break;
23005 		mp2->b_cont = dupb(mp);
23006 		mp2 = mp2->b_cont;
23007 		if (!mp2) {
23008 			freemsg(mp1);
23009 			return (NULL);
23010 		}
23011 		mp2->b_rptr += off;
23012 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
23013 		    (uintptr_t)INT_MAX);
23014 
23015 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
23016 		if (data_length > max_to_send) {
23017 			mp2->b_wptr -= data_length - max_to_send;
23018 			data_length = max_to_send;
23019 			off = mp2->b_wptr - mp->b_rptr;
23020 			break;
23021 		} else {
23022 			off = 0;
23023 		}
23024 	}
23025 	if (offset != NULL) {
23026 		*offset = off;
23027 		*end_mp = mp;
23028 	}
23029 	if (seg_len != NULL) {
23030 		*seg_len = data_length;
23031 	}
23032 
23033 	/* Update the latest receive window size in TCP header. */
23034 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23035 	    tcp->tcp_tcph->th_win);
23036 
23037 	rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23038 	mp1->b_rptr = rptr;
23039 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
23040 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23041 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23042 	U32_TO_ABE32(seq, tcph->th_seq);
23043 
23044 	/*
23045 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
23046 	 * that this function was called from tcp_wput_data. Thus, when called
23047 	 * to retransmit data the setting of the PUSH bit may appear some
23048 	 * what random in that it might get set when it should not. This
23049 	 * should not pose any performance issues.
23050 	 */
23051 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
23052 	    tcp->tcp_unsent == data_length)) {
23053 		flags = TH_ACK | TH_PUSH;
23054 	} else {
23055 		flags = TH_ACK;
23056 	}
23057 
23058 	if (tcp->tcp_ecn_ok) {
23059 		if (tcp->tcp_ecn_echo_on)
23060 			flags |= TH_ECE;
23061 
23062 		/*
23063 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
23064 		 * There is no TCP flow control for non-data segments, and
23065 		 * only data segment is transmitted reliably.
23066 		 */
23067 		if (data_length > 0 && !rexmit) {
23068 			SET_ECT(tcp, rptr);
23069 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
23070 				flags |= TH_CWR;
23071 				tcp->tcp_ecn_cwr_sent = B_TRUE;
23072 			}
23073 		}
23074 	}
23075 
23076 	if (tcp->tcp_valid_bits) {
23077 		uint32_t u1;
23078 
23079 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
23080 		    seq == tcp->tcp_iss) {
23081 			uchar_t	*wptr;
23082 
23083 			/*
23084 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
23085 			 * TCP can only be in SYN-SENT, SYN-RCVD or
23086 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
23087 			 * our SYN is not ack'ed but the app closes this
23088 			 * TCP connection.
23089 			 */
23090 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
23091 			    tcp->tcp_state == TCPS_SYN_RCVD ||
23092 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
23093 
23094 			/*
23095 			 * Tack on the MSS option.  It is always needed
23096 			 * for both active and passive open.
23097 			 *
23098 			 * MSS option value should be interface MTU - MIN
23099 			 * TCP/IP header according to RFC 793 as it means
23100 			 * the maximum segment size TCP can receive.  But
23101 			 * to get around some broken middle boxes/end hosts
23102 			 * out there, we allow the option value to be the
23103 			 * same as the MSS option size on the peer side.
23104 			 * In this way, the other side will not send
23105 			 * anything larger than they can receive.
23106 			 *
23107 			 * Note that for SYN_SENT state, the ndd param
23108 			 * tcp_use_smss_as_mss_opt has no effect as we
23109 			 * don't know the peer's MSS option value. So
23110 			 * the only case we need to take care of is in
23111 			 * SYN_RCVD state, which is done later.
23112 			 */
23113 			wptr = mp1->b_wptr;
23114 			wptr[0] = TCPOPT_MAXSEG;
23115 			wptr[1] = TCPOPT_MAXSEG_LEN;
23116 			wptr += 2;
23117 			u1 = tcp->tcp_if_mtu -
23118 			    (tcp->tcp_ipversion == IPV4_VERSION ?
23119 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
23120 			    TCP_MIN_HEADER_LENGTH;
23121 			U16_TO_BE16(u1, wptr);
23122 			mp1->b_wptr = wptr + 2;
23123 			/* Update the offset to cover the additional word */
23124 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
23125 
23126 			/*
23127 			 * Note that the following way of filling in
23128 			 * TCP options are not optimal.  Some NOPs can
23129 			 * be saved.  But there is no need at this time
23130 			 * to optimize it.  When it is needed, we will
23131 			 * do it.
23132 			 */
23133 			switch (tcp->tcp_state) {
23134 			case TCPS_SYN_SENT:
23135 				flags = TH_SYN;
23136 
23137 				if (tcp->tcp_snd_ts_ok) {
23138 					uint32_t llbolt = (uint32_t)lbolt;
23139 
23140 					wptr = mp1->b_wptr;
23141 					wptr[0] = TCPOPT_NOP;
23142 					wptr[1] = TCPOPT_NOP;
23143 					wptr[2] = TCPOPT_TSTAMP;
23144 					wptr[3] = TCPOPT_TSTAMP_LEN;
23145 					wptr += 4;
23146 					U32_TO_BE32(llbolt, wptr);
23147 					wptr += 4;
23148 					ASSERT(tcp->tcp_ts_recent == 0);
23149 					U32_TO_BE32(0L, wptr);
23150 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
23151 					tcph->th_offset_and_rsrvd[0] +=
23152 					    (3 << 4);
23153 				}
23154 
23155 				/*
23156 				 * Set up all the bits to tell other side
23157 				 * we are ECN capable.
23158 				 */
23159 				if (tcp->tcp_ecn_ok) {
23160 					flags |= (TH_ECE | TH_CWR);
23161 				}
23162 				break;
23163 			case TCPS_SYN_RCVD:
23164 				flags |= TH_SYN;
23165 
23166 				/*
23167 				 * Reset the MSS option value to be SMSS
23168 				 * We should probably add back the bytes
23169 				 * for timestamp option and IPsec.  We
23170 				 * don't do that as this is a workaround
23171 				 * for broken middle boxes/end hosts, it
23172 				 * is better for us to be more cautious.
23173 				 * They may not take these things into
23174 				 * account in their SMSS calculation.  Thus
23175 				 * the peer's calculated SMSS may be smaller
23176 				 * than what it can be.  This should be OK.
23177 				 */
23178 				if (tcps->tcps_use_smss_as_mss_opt) {
23179 					u1 = tcp->tcp_mss;
23180 					U16_TO_BE16(u1, wptr);
23181 				}
23182 
23183 				/*
23184 				 * If the other side is ECN capable, reply
23185 				 * that we are also ECN capable.
23186 				 */
23187 				if (tcp->tcp_ecn_ok)
23188 					flags |= TH_ECE;
23189 				break;
23190 			default:
23191 				/*
23192 				 * The above ASSERT() makes sure that this
23193 				 * must be FIN-WAIT-1 state.  Our SYN has
23194 				 * not been ack'ed so retransmit it.
23195 				 */
23196 				flags |= TH_SYN;
23197 				break;
23198 			}
23199 
23200 			if (tcp->tcp_snd_ws_ok) {
23201 				wptr = mp1->b_wptr;
23202 				wptr[0] =  TCPOPT_NOP;
23203 				wptr[1] =  TCPOPT_WSCALE;
23204 				wptr[2] =  TCPOPT_WS_LEN;
23205 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
23206 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
23207 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23208 			}
23209 
23210 			if (tcp->tcp_snd_sack_ok) {
23211 				wptr = mp1->b_wptr;
23212 				wptr[0] = TCPOPT_NOP;
23213 				wptr[1] = TCPOPT_NOP;
23214 				wptr[2] = TCPOPT_SACK_PERMITTED;
23215 				wptr[3] = TCPOPT_SACK_OK_LEN;
23216 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
23217 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23218 			}
23219 
23220 			/* allocb() of adequate mblk assures space */
23221 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
23222 			    (uintptr_t)INT_MAX);
23223 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
23224 			/*
23225 			 * Get IP set to checksum on our behalf
23226 			 * Include the adjustment for a source route if any.
23227 			 */
23228 			u1 += tcp->tcp_sum;
23229 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
23230 			U16_TO_BE16(u1, tcph->th_sum);
23231 			BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23232 		}
23233 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
23234 		    (seq + data_length) == tcp->tcp_fss) {
23235 			if (!tcp->tcp_fin_acked) {
23236 				flags |= TH_FIN;
23237 				BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23238 			}
23239 			if (!tcp->tcp_fin_sent) {
23240 				tcp->tcp_fin_sent = B_TRUE;
23241 				switch (tcp->tcp_state) {
23242 				case TCPS_SYN_RCVD:
23243 				case TCPS_ESTABLISHED:
23244 					tcp->tcp_state = TCPS_FIN_WAIT_1;
23245 					break;
23246 				case TCPS_CLOSE_WAIT:
23247 					tcp->tcp_state = TCPS_LAST_ACK;
23248 					break;
23249 				}
23250 				if (tcp->tcp_suna == tcp->tcp_snxt)
23251 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
23252 				tcp->tcp_snxt = tcp->tcp_fss + 1;
23253 			}
23254 		}
23255 		/*
23256 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
23257 		 * is smaller than seq, u1 will become a very huge value.
23258 		 * So the comparison will fail.  Also note that tcp_urp
23259 		 * should be positive, see RFC 793 page 17.
23260 		 */
23261 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
23262 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
23263 		    u1 < (uint32_t)(64 * 1024)) {
23264 			flags |= TH_URG;
23265 			BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
23266 			U32_TO_ABE16(u1, tcph->th_urp);
23267 		}
23268 	}
23269 	tcph->th_flags[0] = (uchar_t)flags;
23270 	tcp->tcp_rack = tcp->tcp_rnxt;
23271 	tcp->tcp_rack_cnt = 0;
23272 
23273 	if (tcp->tcp_snd_ts_ok) {
23274 		if (tcp->tcp_state != TCPS_SYN_SENT) {
23275 			uint32_t llbolt = (uint32_t)lbolt;
23276 
23277 			U32_TO_BE32(llbolt,
23278 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23279 			U32_TO_BE32(tcp->tcp_ts_recent,
23280 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23281 		}
23282 	}
23283 
23284 	if (num_sack_blk > 0) {
23285 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23286 		sack_blk_t *tmp;
23287 		int32_t	i;
23288 
23289 		wptr[0] = TCPOPT_NOP;
23290 		wptr[1] = TCPOPT_NOP;
23291 		wptr[2] = TCPOPT_SACK;
23292 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23293 		    sizeof (sack_blk_t);
23294 		wptr += TCPOPT_REAL_SACK_LEN;
23295 
23296 		tmp = tcp->tcp_sack_list;
23297 		for (i = 0; i < num_sack_blk; i++) {
23298 			U32_TO_BE32(tmp[i].begin, wptr);
23299 			wptr += sizeof (tcp_seq);
23300 			U32_TO_BE32(tmp[i].end, wptr);
23301 			wptr += sizeof (tcp_seq);
23302 		}
23303 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
23304 	}
23305 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
23306 	data_length += (int)(mp1->b_wptr - rptr);
23307 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23308 		((ipha_t *)rptr)->ipha_length = htons(data_length);
23309 	} else {
23310 		ip6_t *ip6 = (ip6_t *)(rptr +
23311 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23312 		    sizeof (ip6i_t) : 0));
23313 
23314 		ip6->ip6_plen = htons(data_length -
23315 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23316 	}
23317 
23318 	/*
23319 	 * Prime pump for IP
23320 	 * Include the adjustment for a source route if any.
23321 	 */
23322 	data_length -= tcp->tcp_ip_hdr_len;
23323 	data_length += tcp->tcp_sum;
23324 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
23325 	U16_TO_ABE16(data_length, tcph->th_sum);
23326 	if (tcp->tcp_ip_forward_progress) {
23327 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23328 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23329 		tcp->tcp_ip_forward_progress = B_FALSE;
23330 	}
23331 	return (mp1);
23332 }
23333 
23334 /* This function handles the push timeout. */
23335 void
23336 tcp_push_timer(void *arg)
23337 {
23338 	conn_t	*connp = (conn_t *)arg;
23339 	tcp_t *tcp = connp->conn_tcp;
23340 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23341 
23342 	TCP_DBGSTAT(tcps, tcp_push_timer_cnt);
23343 
23344 	ASSERT(tcp->tcp_listener == NULL);
23345 
23346 	/*
23347 	 * We need to plug synchronous streams during our drain to prevent
23348 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
23349 	 */
23350 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
23351 	tcp->tcp_push_tid = 0;
23352 	if ((tcp->tcp_rcv_list != NULL) &&
23353 	    (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED))
23354 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
23355 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
23356 }
23357 
23358 /*
23359  * This function handles delayed ACK timeout.
23360  */
23361 static void
23362 tcp_ack_timer(void *arg)
23363 {
23364 	conn_t	*connp = (conn_t *)arg;
23365 	tcp_t *tcp = connp->conn_tcp;
23366 	mblk_t *mp;
23367 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23368 
23369 	TCP_DBGSTAT(tcps, tcp_ack_timer_cnt);
23370 
23371 	tcp->tcp_ack_tid = 0;
23372 
23373 	if (tcp->tcp_fused)
23374 		return;
23375 
23376 	/*
23377 	 * Do not send ACK if there is no outstanding unack'ed data.
23378 	 */
23379 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
23380 		return;
23381 	}
23382 
23383 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
23384 		/*
23385 		 * Make sure we don't allow deferred ACKs to result in
23386 		 * timer-based ACKing.  If we have held off an ACK
23387 		 * when there was more than an mss here, and the timer
23388 		 * goes off, we have to worry about the possibility
23389 		 * that the sender isn't doing slow-start, or is out
23390 		 * of step with us for some other reason.  We fall
23391 		 * permanently back in the direction of
23392 		 * ACK-every-other-packet as suggested in RFC 1122.
23393 		 */
23394 		if (tcp->tcp_rack_abs_max > 2)
23395 			tcp->tcp_rack_abs_max--;
23396 		tcp->tcp_rack_cur_max = 2;
23397 	}
23398 	mp = tcp_ack_mp(tcp);
23399 
23400 	if (mp != NULL) {
23401 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
23402 		BUMP_LOCAL(tcp->tcp_obsegs);
23403 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
23404 		BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed);
23405 		tcp_send_data(tcp, tcp->tcp_wq, mp);
23406 	}
23407 }
23408 
23409 
23410 /* Generate an ACK-only (no data) segment for a TCP endpoint */
23411 static mblk_t *
23412 tcp_ack_mp(tcp_t *tcp)
23413 {
23414 	uint32_t	seq_no;
23415 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23416 
23417 	/*
23418 	 * There are a few cases to be considered while setting the sequence no.
23419 	 * Essentially, we can come here while processing an unacceptable pkt
23420 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
23421 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
23422 	 * If we are here for a zero window probe, stick with suna. In all
23423 	 * other cases, we check if suna + swnd encompasses snxt and set
23424 	 * the sequence number to snxt, if so. If snxt falls outside the
23425 	 * window (the receiver probably shrunk its window), we will go with
23426 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
23427 	 * receiver.
23428 	 */
23429 	if (tcp->tcp_zero_win_probe) {
23430 		seq_no = tcp->tcp_suna;
23431 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
23432 		ASSERT(tcp->tcp_swnd == 0);
23433 		seq_no = tcp->tcp_snxt;
23434 	} else {
23435 		seq_no = SEQ_GT(tcp->tcp_snxt,
23436 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
23437 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
23438 	}
23439 
23440 	if (tcp->tcp_valid_bits) {
23441 		/*
23442 		 * For the complex case where we have to send some
23443 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
23444 		 */
23445 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
23446 		    NULL, B_FALSE));
23447 	} else {
23448 		/* Generate a simple ACK */
23449 		int	data_length;
23450 		uchar_t	*rptr;
23451 		tcph_t	*tcph;
23452 		mblk_t	*mp1;
23453 		int32_t	tcp_hdr_len;
23454 		int32_t	tcp_tcp_hdr_len;
23455 		int32_t	num_sack_blk = 0;
23456 		int32_t sack_opt_len;
23457 
23458 		/*
23459 		 * Allocate space for TCP + IP headers
23460 		 * and link-level header
23461 		 */
23462 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23463 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23464 			    tcp->tcp_num_sack_blk);
23465 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23466 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23467 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
23468 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
23469 		} else {
23470 			tcp_hdr_len = tcp->tcp_hdr_len;
23471 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
23472 		}
23473 		mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
23474 		if (!mp1)
23475 			return (NULL);
23476 
23477 		/* Update the latest receive window size in TCP header. */
23478 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23479 		    tcp->tcp_tcph->th_win);
23480 		/* copy in prototype TCP + IP header */
23481 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23482 		mp1->b_rptr = rptr;
23483 		mp1->b_wptr = rptr + tcp_hdr_len;
23484 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23485 
23486 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23487 
23488 		/* Set the TCP sequence number. */
23489 		U32_TO_ABE32(seq_no, tcph->th_seq);
23490 
23491 		/* Set up the TCP flag field. */
23492 		tcph->th_flags[0] = (uchar_t)TH_ACK;
23493 		if (tcp->tcp_ecn_echo_on)
23494 			tcph->th_flags[0] |= TH_ECE;
23495 
23496 		tcp->tcp_rack = tcp->tcp_rnxt;
23497 		tcp->tcp_rack_cnt = 0;
23498 
23499 		/* fill in timestamp option if in use */
23500 		if (tcp->tcp_snd_ts_ok) {
23501 			uint32_t llbolt = (uint32_t)lbolt;
23502 
23503 			U32_TO_BE32(llbolt,
23504 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23505 			U32_TO_BE32(tcp->tcp_ts_recent,
23506 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23507 		}
23508 
23509 		/* Fill in SACK options */
23510 		if (num_sack_blk > 0) {
23511 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23512 			sack_blk_t *tmp;
23513 			int32_t	i;
23514 
23515 			wptr[0] = TCPOPT_NOP;
23516 			wptr[1] = TCPOPT_NOP;
23517 			wptr[2] = TCPOPT_SACK;
23518 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23519 			    sizeof (sack_blk_t);
23520 			wptr += TCPOPT_REAL_SACK_LEN;
23521 
23522 			tmp = tcp->tcp_sack_list;
23523 			for (i = 0; i < num_sack_blk; i++) {
23524 				U32_TO_BE32(tmp[i].begin, wptr);
23525 				wptr += sizeof (tcp_seq);
23526 				U32_TO_BE32(tmp[i].end, wptr);
23527 				wptr += sizeof (tcp_seq);
23528 			}
23529 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
23530 			    << 4);
23531 		}
23532 
23533 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23534 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
23535 		} else {
23536 			/* Check for ip6i_t header in sticky hdrs */
23537 			ip6_t *ip6 = (ip6_t *)(rptr +
23538 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23539 			    sizeof (ip6i_t) : 0));
23540 
23541 			ip6->ip6_plen = htons(tcp_hdr_len -
23542 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23543 		}
23544 
23545 		/*
23546 		 * Prime pump for checksum calculation in IP.  Include the
23547 		 * adjustment for a source route if any.
23548 		 */
23549 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
23550 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
23551 		U16_TO_ABE16(data_length, tcph->th_sum);
23552 
23553 		if (tcp->tcp_ip_forward_progress) {
23554 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23555 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23556 			tcp->tcp_ip_forward_progress = B_FALSE;
23557 		}
23558 		return (mp1);
23559 	}
23560 }
23561 
23562 /*
23563  * To create a temporary tcp structure for inserting into bind hash list.
23564  * The parameter is assumed to be in network byte order, ready for use.
23565  */
23566 /* ARGSUSED */
23567 static tcp_t *
23568 tcp_alloc_temp_tcp(in_port_t port, tcp_stack_t *tcps)
23569 {
23570 	conn_t	*connp;
23571 	tcp_t	*tcp;
23572 
23573 	connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP, tcps->tcps_netstack);
23574 	if (connp == NULL)
23575 		return (NULL);
23576 
23577 	tcp = connp->conn_tcp;
23578 	tcp->tcp_tcps = tcps;
23579 	TCPS_REFHOLD(tcps);
23580 
23581 	/*
23582 	 * Only initialize the necessary info in those structures.  Note
23583 	 * that since INADDR_ANY is all 0, we do not need to set
23584 	 * tcp_bound_source to INADDR_ANY here.
23585 	 */
23586 	tcp->tcp_state = TCPS_BOUND;
23587 	tcp->tcp_lport = port;
23588 	tcp->tcp_exclbind = 1;
23589 	tcp->tcp_reserved_port = 1;
23590 
23591 	/* Just for place holding... */
23592 	tcp->tcp_ipversion = IPV4_VERSION;
23593 
23594 	return (tcp);
23595 }
23596 
23597 /*
23598  * To remove a port range specified by lo_port and hi_port from the
23599  * reserved port ranges.  This is one of the three public functions of
23600  * the reserved port interface.  Note that a port range has to be removed
23601  * as a whole.  Ports in a range cannot be removed individually.
23602  *
23603  * Params:
23604  *	in_port_t lo_port: the beginning port of the reserved port range to
23605  *		be deleted.
23606  *	in_port_t hi_port: the ending port of the reserved port range to
23607  *		be deleted.
23608  *
23609  * Return:
23610  *	B_TRUE if the deletion is successful, B_FALSE otherwise.
23611  *
23612  * Assumes that nca is only for zoneid=0
23613  */
23614 boolean_t
23615 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port)
23616 {
23617 	int	i, j;
23618 	int	size;
23619 	tcp_t	**temp_tcp_array;
23620 	tcp_t	*tcp;
23621 	tcp_stack_t	*tcps;
23622 
23623 	tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp;
23624 	ASSERT(tcps != NULL);
23625 
23626 	rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER);
23627 
23628 	/* First make sure that the port ranage is indeed reserved. */
23629 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
23630 		if (tcps->tcps_reserved_port[i].lo_port == lo_port) {
23631 			hi_port = tcps->tcps_reserved_port[i].hi_port;
23632 			temp_tcp_array =
23633 			    tcps->tcps_reserved_port[i].temp_tcp_array;
23634 			break;
23635 		}
23636 	}
23637 	if (i == tcps->tcps_reserved_port_array_size) {
23638 		rw_exit(&tcps->tcps_reserved_port_lock);
23639 		netstack_rele(tcps->tcps_netstack);
23640 		return (B_FALSE);
23641 	}
23642 
23643 	/*
23644 	 * Remove the range from the array.  This simple loop is possible
23645 	 * because port ranges are inserted in ascending order.
23646 	 */
23647 	for (j = i; j < tcps->tcps_reserved_port_array_size - 1; j++) {
23648 		tcps->tcps_reserved_port[j].lo_port =
23649 		    tcps->tcps_reserved_port[j+1].lo_port;
23650 		tcps->tcps_reserved_port[j].hi_port =
23651 		    tcps->tcps_reserved_port[j+1].hi_port;
23652 		tcps->tcps_reserved_port[j].temp_tcp_array =
23653 		    tcps->tcps_reserved_port[j+1].temp_tcp_array;
23654 	}
23655 
23656 	/* Remove all the temporary tcp structures. */
23657 	size = hi_port - lo_port + 1;
23658 	while (size > 0) {
23659 		tcp = temp_tcp_array[size - 1];
23660 		ASSERT(tcp != NULL);
23661 		tcp_bind_hash_remove(tcp);
23662 		CONN_DEC_REF(tcp->tcp_connp);
23663 		size--;
23664 	}
23665 	kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *));
23666 	tcps->tcps_reserved_port_array_size--;
23667 	rw_exit(&tcps->tcps_reserved_port_lock);
23668 	netstack_rele(tcps->tcps_netstack);
23669 	return (B_TRUE);
23670 }
23671 
23672 /*
23673  * Macro to remove temporary tcp structure from the bind hash list.  The
23674  * first parameter is the list of tcp to be removed.  The second parameter
23675  * is the number of tcps in the array.
23676  */
23677 #define	TCP_TMP_TCP_REMOVE(tcp_array, num, tcps) \
23678 { \
23679 	while ((num) > 0) { \
23680 		tcp_t *tcp = (tcp_array)[(num) - 1]; \
23681 		tf_t *tbf; \
23682 		tcp_t *tcpnext; \
23683 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \
23684 		mutex_enter(&tbf->tf_lock); \
23685 		tcpnext = tcp->tcp_bind_hash; \
23686 		if (tcpnext) { \
23687 			tcpnext->tcp_ptpbhn = \
23688 				tcp->tcp_ptpbhn; \
23689 		} \
23690 		*tcp->tcp_ptpbhn = tcpnext; \
23691 		mutex_exit(&tbf->tf_lock); \
23692 		kmem_free(tcp, sizeof (tcp_t)); \
23693 		(tcp_array)[(num) - 1] = NULL; \
23694 		(num)--; \
23695 	} \
23696 }
23697 
23698 /*
23699  * The public interface for other modules to call to reserve a port range
23700  * in TCP.  The caller passes in how large a port range it wants.  TCP
23701  * will try to find a range and return it via lo_port and hi_port.  This is
23702  * used by NCA's nca_conn_init.
23703  * NCA can only be used in the global zone so this only affects the global
23704  * zone's ports.
23705  *
23706  * Params:
23707  *	int size: the size of the port range to be reserved.
23708  *	in_port_t *lo_port (referenced): returns the beginning port of the
23709  *		reserved port range added.
23710  *	in_port_t *hi_port (referenced): returns the ending port of the
23711  *		reserved port range added.
23712  *
23713  * Return:
23714  *	B_TRUE if the port reservation is successful, B_FALSE otherwise.
23715  *
23716  * Assumes that nca is only for zoneid=0
23717  */
23718 boolean_t
23719 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port)
23720 {
23721 	tcp_t		*tcp;
23722 	tcp_t		*tmp_tcp;
23723 	tcp_t		**temp_tcp_array;
23724 	tf_t		*tbf;
23725 	in_port_t	net_port;
23726 	in_port_t	port;
23727 	int32_t		cur_size;
23728 	int		i, j;
23729 	boolean_t	used;
23730 	tcp_rport_t 	tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
23731 	zoneid_t	zoneid = GLOBAL_ZONEID;
23732 	tcp_stack_t	*tcps;
23733 
23734 	/* Sanity check. */
23735 	if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) {
23736 		return (B_FALSE);
23737 	}
23738 
23739 	tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp;
23740 	ASSERT(tcps != NULL);
23741 
23742 	rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER);
23743 	if (tcps->tcps_reserved_port_array_size ==
23744 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) {
23745 		rw_exit(&tcps->tcps_reserved_port_lock);
23746 		netstack_rele(tcps->tcps_netstack);
23747 		return (B_FALSE);
23748 	}
23749 
23750 	/*
23751 	 * Find the starting port to try.  Since the port ranges are ordered
23752 	 * in the reserved port array, we can do a simple search here.
23753 	 */
23754 	*lo_port = TCP_SMALLEST_RESERVED_PORT;
23755 	*hi_port = TCP_LARGEST_RESERVED_PORT;
23756 	for (i = 0; i < tcps->tcps_reserved_port_array_size;
23757 	    *lo_port = tcps->tcps_reserved_port[i].hi_port + 1, i++) {
23758 		if (tcps->tcps_reserved_port[i].lo_port - *lo_port >= size) {
23759 			*hi_port = tcps->tcps_reserved_port[i].lo_port - 1;
23760 			break;
23761 		}
23762 	}
23763 	/* No available port range. */
23764 	if (i == tcps->tcps_reserved_port_array_size &&
23765 	    *hi_port - *lo_port < size) {
23766 		rw_exit(&tcps->tcps_reserved_port_lock);
23767 		netstack_rele(tcps->tcps_netstack);
23768 		return (B_FALSE);
23769 	}
23770 
23771 	temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP);
23772 	if (temp_tcp_array == NULL) {
23773 		rw_exit(&tcps->tcps_reserved_port_lock);
23774 		netstack_rele(tcps->tcps_netstack);
23775 		return (B_FALSE);
23776 	}
23777 
23778 	/* Go thru the port range to see if some ports are already bound. */
23779 	for (port = *lo_port, cur_size = 0;
23780 	    cur_size < size && port <= *hi_port;
23781 	    cur_size++, port++) {
23782 		used = B_FALSE;
23783 		net_port = htons(port);
23784 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(net_port)];
23785 		mutex_enter(&tbf->tf_lock);
23786 		for (tcp = tbf->tf_tcp; tcp != NULL;
23787 		    tcp = tcp->tcp_bind_hash) {
23788 			if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) &&
23789 			    net_port == tcp->tcp_lport) {
23790 				/*
23791 				 * A port is already bound.  Search again
23792 				 * starting from port + 1.  Release all
23793 				 * temporary tcps.
23794 				 */
23795 				mutex_exit(&tbf->tf_lock);
23796 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size,
23797 				    tcps);
23798 				*lo_port = port + 1;
23799 				cur_size = -1;
23800 				used = B_TRUE;
23801 				break;
23802 			}
23803 		}
23804 		if (!used) {
23805 			if ((tmp_tcp = tcp_alloc_temp_tcp(net_port, tcps)) ==
23806 			    NULL) {
23807 				/*
23808 				 * Allocation failure.  Just fail the request.
23809 				 * Need to remove all those temporary tcp
23810 				 * structures.
23811 				 */
23812 				mutex_exit(&tbf->tf_lock);
23813 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size,
23814 				    tcps);
23815 				rw_exit(&tcps->tcps_reserved_port_lock);
23816 				kmem_free(temp_tcp_array,
23817 				    (hi_port - lo_port + 1) *
23818 				    sizeof (tcp_t *));
23819 				netstack_rele(tcps->tcps_netstack);
23820 				return (B_FALSE);
23821 			}
23822 			temp_tcp_array[cur_size] = tmp_tcp;
23823 			tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE);
23824 			mutex_exit(&tbf->tf_lock);
23825 		}
23826 	}
23827 
23828 	/*
23829 	 * The current range is not large enough.  We can actually do another
23830 	 * search if this search is done between 2 reserved port ranges.  But
23831 	 * for first release, we just stop here and return saying that no port
23832 	 * range is available.
23833 	 */
23834 	if (cur_size < size) {
23835 		TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, tcps);
23836 		rw_exit(&tcps->tcps_reserved_port_lock);
23837 		kmem_free(temp_tcp_array, size * sizeof (tcp_t *));
23838 		netstack_rele(tcps->tcps_netstack);
23839 		return (B_FALSE);
23840 	}
23841 	*hi_port = port - 1;
23842 
23843 	/*
23844 	 * Insert range into array in ascending order.  Since this function
23845 	 * must not be called often, we choose to use the simplest method.
23846 	 * The above array should not consume excessive stack space as
23847 	 * the size must be very small.  If in future releases, we find
23848 	 * that we should provide more reserved port ranges, this function
23849 	 * has to be modified to be more efficient.
23850 	 */
23851 	if (tcps->tcps_reserved_port_array_size == 0) {
23852 		tcps->tcps_reserved_port[0].lo_port = *lo_port;
23853 		tcps->tcps_reserved_port[0].hi_port = *hi_port;
23854 		tcps->tcps_reserved_port[0].temp_tcp_array = temp_tcp_array;
23855 	} else {
23856 		for (i = 0, j = 0; i < tcps->tcps_reserved_port_array_size;
23857 		    i++, j++) {
23858 			if (*lo_port < tcps->tcps_reserved_port[i].lo_port &&
23859 			    i == j) {
23860 				tmp_ports[j].lo_port = *lo_port;
23861 				tmp_ports[j].hi_port = *hi_port;
23862 				tmp_ports[j].temp_tcp_array = temp_tcp_array;
23863 				j++;
23864 			}
23865 			tmp_ports[j].lo_port =
23866 			    tcps->tcps_reserved_port[i].lo_port;
23867 			tmp_ports[j].hi_port =
23868 			    tcps->tcps_reserved_port[i].hi_port;
23869 			tmp_ports[j].temp_tcp_array =
23870 			    tcps->tcps_reserved_port[i].temp_tcp_array;
23871 		}
23872 		if (j == i) {
23873 			tmp_ports[j].lo_port = *lo_port;
23874 			tmp_ports[j].hi_port = *hi_port;
23875 			tmp_ports[j].temp_tcp_array = temp_tcp_array;
23876 		}
23877 		bcopy(tmp_ports, tcps->tcps_reserved_port, sizeof (tmp_ports));
23878 	}
23879 	tcps->tcps_reserved_port_array_size++;
23880 	rw_exit(&tcps->tcps_reserved_port_lock);
23881 	netstack_rele(tcps->tcps_netstack);
23882 	return (B_TRUE);
23883 }
23884 
23885 /*
23886  * Check to see if a port is in any reserved port range.
23887  *
23888  * Params:
23889  *	in_port_t port: the port to be verified.
23890  *
23891  * Return:
23892  *	B_TRUE is the port is inside a reserved port range, B_FALSE otherwise.
23893  */
23894 boolean_t
23895 tcp_reserved_port_check(in_port_t port, tcp_stack_t *tcps)
23896 {
23897 	int i;
23898 
23899 	rw_enter(&tcps->tcps_reserved_port_lock, RW_READER);
23900 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
23901 		if (port >= tcps->tcps_reserved_port[i].lo_port ||
23902 		    port <= tcps->tcps_reserved_port[i].hi_port) {
23903 			rw_exit(&tcps->tcps_reserved_port_lock);
23904 			return (B_TRUE);
23905 		}
23906 	}
23907 	rw_exit(&tcps->tcps_reserved_port_lock);
23908 	return (B_FALSE);
23909 }
23910 
23911 /*
23912  * To list all reserved port ranges.  This is the function to handle
23913  * ndd tcp_reserved_port_list.
23914  */
23915 /* ARGSUSED */
23916 static int
23917 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
23918 {
23919 	int i;
23920 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
23921 
23922 	rw_enter(&tcps->tcps_reserved_port_lock, RW_READER);
23923 	if (tcps->tcps_reserved_port_array_size > 0)
23924 		(void) mi_mpprintf(mp, "The following ports are reserved:");
23925 	else
23926 		(void) mi_mpprintf(mp, "No port is reserved.");
23927 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
23928 		(void) mi_mpprintf(mp, "%d-%d",
23929 		    tcps->tcps_reserved_port[i].lo_port,
23930 		    tcps->tcps_reserved_port[i].hi_port);
23931 	}
23932 	rw_exit(&tcps->tcps_reserved_port_lock);
23933 	return (0);
23934 }
23935 
23936 /*
23937  * Hash list insertion routine for tcp_t structures.
23938  * Inserts entries with the ones bound to a specific IP address first
23939  * followed by those bound to INADDR_ANY.
23940  */
23941 static void
23942 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
23943 {
23944 	tcp_t	**tcpp;
23945 	tcp_t	*tcpnext;
23946 
23947 	if (tcp->tcp_ptpbhn != NULL) {
23948 		ASSERT(!caller_holds_lock);
23949 		tcp_bind_hash_remove(tcp);
23950 	}
23951 	tcpp = &tbf->tf_tcp;
23952 	if (!caller_holds_lock) {
23953 		mutex_enter(&tbf->tf_lock);
23954 	} else {
23955 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
23956 	}
23957 	tcpnext = tcpp[0];
23958 	if (tcpnext) {
23959 		/*
23960 		 * If the new tcp bound to the INADDR_ANY address
23961 		 * and the first one in the list is not bound to
23962 		 * INADDR_ANY we skip all entries until we find the
23963 		 * first one bound to INADDR_ANY.
23964 		 * This makes sure that applications binding to a
23965 		 * specific address get preference over those binding to
23966 		 * INADDR_ANY.
23967 		 */
23968 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
23969 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
23970 			while ((tcpnext = tcpp[0]) != NULL &&
23971 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
23972 				tcpp = &(tcpnext->tcp_bind_hash);
23973 			if (tcpnext)
23974 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
23975 		} else
23976 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
23977 	}
23978 	tcp->tcp_bind_hash = tcpnext;
23979 	tcp->tcp_ptpbhn = tcpp;
23980 	tcpp[0] = tcp;
23981 	if (!caller_holds_lock)
23982 		mutex_exit(&tbf->tf_lock);
23983 }
23984 
23985 /*
23986  * Hash list removal routine for tcp_t structures.
23987  */
23988 static void
23989 tcp_bind_hash_remove(tcp_t *tcp)
23990 {
23991 	tcp_t	*tcpnext;
23992 	kmutex_t *lockp;
23993 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23994 
23995 	if (tcp->tcp_ptpbhn == NULL)
23996 		return;
23997 
23998 	/*
23999 	 * Extract the lock pointer in case there are concurrent
24000 	 * hash_remove's for this instance.
24001 	 */
24002 	ASSERT(tcp->tcp_lport != 0);
24003 	lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
24004 
24005 	ASSERT(lockp != NULL);
24006 	mutex_enter(lockp);
24007 	if (tcp->tcp_ptpbhn) {
24008 		tcpnext = tcp->tcp_bind_hash;
24009 		if (tcpnext) {
24010 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
24011 			tcp->tcp_bind_hash = NULL;
24012 		}
24013 		*tcp->tcp_ptpbhn = tcpnext;
24014 		tcp->tcp_ptpbhn = NULL;
24015 	}
24016 	mutex_exit(lockp);
24017 }
24018 
24019 
24020 /*
24021  * Hash list lookup routine for tcp_t structures.
24022  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
24023  */
24024 static tcp_t *
24025 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
24026 {
24027 	tf_t	*tf;
24028 	tcp_t	*tcp;
24029 
24030 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
24031 	mutex_enter(&tf->tf_lock);
24032 	for (tcp = tf->tf_tcp; tcp != NULL;
24033 	    tcp = tcp->tcp_acceptor_hash) {
24034 		if (tcp->tcp_acceptor_id == id) {
24035 			CONN_INC_REF(tcp->tcp_connp);
24036 			mutex_exit(&tf->tf_lock);
24037 			return (tcp);
24038 		}
24039 	}
24040 	mutex_exit(&tf->tf_lock);
24041 	return (NULL);
24042 }
24043 
24044 
24045 /*
24046  * Hash list insertion routine for tcp_t structures.
24047  */
24048 void
24049 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
24050 {
24051 	tf_t	*tf;
24052 	tcp_t	**tcpp;
24053 	tcp_t	*tcpnext;
24054 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24055 
24056 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
24057 
24058 	if (tcp->tcp_ptpahn != NULL)
24059 		tcp_acceptor_hash_remove(tcp);
24060 	tcpp = &tf->tf_tcp;
24061 	mutex_enter(&tf->tf_lock);
24062 	tcpnext = tcpp[0];
24063 	if (tcpnext)
24064 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
24065 	tcp->tcp_acceptor_hash = tcpnext;
24066 	tcp->tcp_ptpahn = tcpp;
24067 	tcpp[0] = tcp;
24068 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
24069 	mutex_exit(&tf->tf_lock);
24070 }
24071 
24072 /*
24073  * Hash list removal routine for tcp_t structures.
24074  */
24075 static void
24076 tcp_acceptor_hash_remove(tcp_t *tcp)
24077 {
24078 	tcp_t	*tcpnext;
24079 	kmutex_t *lockp;
24080 
24081 	/*
24082 	 * Extract the lock pointer in case there are concurrent
24083 	 * hash_remove's for this instance.
24084 	 */
24085 	lockp = tcp->tcp_acceptor_lockp;
24086 
24087 	if (tcp->tcp_ptpahn == NULL)
24088 		return;
24089 
24090 	ASSERT(lockp != NULL);
24091 	mutex_enter(lockp);
24092 	if (tcp->tcp_ptpahn) {
24093 		tcpnext = tcp->tcp_acceptor_hash;
24094 		if (tcpnext) {
24095 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
24096 			tcp->tcp_acceptor_hash = NULL;
24097 		}
24098 		*tcp->tcp_ptpahn = tcpnext;
24099 		tcp->tcp_ptpahn = NULL;
24100 	}
24101 	mutex_exit(lockp);
24102 	tcp->tcp_acceptor_lockp = NULL;
24103 }
24104 
24105 /* ARGSUSED */
24106 static int
24107 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af)
24108 {
24109 	int error = 0;
24110 	int retval;
24111 	char *end;
24112 	tcp_hsp_t *hsp;
24113 	tcp_hsp_t *hspprev;
24114 	ipaddr_t addr = 0;		/* Address we're looking for */
24115 	in6_addr_t v6addr;		/* Address we're looking for */
24116 	uint32_t hash;			/* Hash of that address */
24117 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24118 
24119 	/*
24120 	 * If the following variables are still zero after parsing the input
24121 	 * string, the user didn't specify them and we don't change them in
24122 	 * the HSP.
24123 	 */
24124 
24125 	ipaddr_t mask = 0;		/* Subnet mask */
24126 	in6_addr_t v6mask;
24127 	long sendspace = 0;		/* Send buffer size */
24128 	long recvspace = 0;		/* Receive buffer size */
24129 	long timestamp = 0;	/* Originate TCP TSTAMP option, 1 = yes */
24130 	boolean_t delete = B_FALSE;	/* User asked to delete this HSP */
24131 
24132 	rw_enter(&tcps->tcps_hsp_lock, RW_WRITER);
24133 
24134 	/* Parse and validate address */
24135 	if (af == AF_INET) {
24136 		retval = inet_pton(af, value, &addr);
24137 		if (retval == 1)
24138 			IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
24139 	} else if (af == AF_INET6) {
24140 		retval = inet_pton(af, value, &v6addr);
24141 	} else {
24142 		error = EINVAL;
24143 		goto done;
24144 	}
24145 	if (retval == 0) {
24146 		error = EINVAL;
24147 		goto done;
24148 	}
24149 
24150 	while ((*value) && *value != ' ')
24151 		value++;
24152 
24153 	/* Parse individual keywords, set variables if found */
24154 	while (*value) {
24155 		/* Skip leading blanks */
24156 
24157 		while (*value == ' ' || *value == '\t')
24158 			value++;
24159 
24160 		/* If at end of string, we're done */
24161 
24162 		if (!*value)
24163 			break;
24164 
24165 		/* We have a word, figure out what it is */
24166 
24167 		if (strncmp("mask", value, 4) == 0) {
24168 			value += 4;
24169 			while (*value == ' ' || *value == '\t')
24170 				value++;
24171 			/* Parse subnet mask */
24172 			if (af == AF_INET) {
24173 				retval = inet_pton(af, value, &mask);
24174 				if (retval == 1) {
24175 					V4MASK_TO_V6(mask, v6mask);
24176 				}
24177 			} else if (af == AF_INET6) {
24178 				retval = inet_pton(af, value, &v6mask);
24179 			}
24180 			if (retval != 1) {
24181 				error = EINVAL;
24182 				goto done;
24183 			}
24184 			while ((*value) && *value != ' ')
24185 				value++;
24186 		} else if (strncmp("sendspace", value, 9) == 0) {
24187 			value += 9;
24188 
24189 			if (ddi_strtol(value, &end, 0, &sendspace) != 0 ||
24190 			    sendspace < TCP_XMIT_HIWATER ||
24191 			    sendspace >= (1L<<30)) {
24192 				error = EINVAL;
24193 				goto done;
24194 			}
24195 			value = end;
24196 		} else if (strncmp("recvspace", value, 9) == 0) {
24197 			value += 9;
24198 
24199 			if (ddi_strtol(value, &end, 0, &recvspace) != 0 ||
24200 			    recvspace < TCP_RECV_HIWATER ||
24201 			    recvspace >= (1L<<30)) {
24202 				error = EINVAL;
24203 				goto done;
24204 			}
24205 			value = end;
24206 		} else if (strncmp("timestamp", value, 9) == 0) {
24207 			value += 9;
24208 
24209 			if (ddi_strtol(value, &end, 0, &timestamp) != 0 ||
24210 			    timestamp < 0 || timestamp > 1) {
24211 				error = EINVAL;
24212 				goto done;
24213 			}
24214 
24215 			/*
24216 			 * We increment timestamp so we know it's been set;
24217 			 * this is undone when we put it in the HSP
24218 			 */
24219 			timestamp++;
24220 			value = end;
24221 		} else if (strncmp("delete", value, 6) == 0) {
24222 			value += 6;
24223 			delete = B_TRUE;
24224 		} else {
24225 			error = EINVAL;
24226 			goto done;
24227 		}
24228 	}
24229 
24230 	/* Hash address for lookup */
24231 
24232 	hash = TCP_HSP_HASH(addr);
24233 
24234 	if (delete) {
24235 		/*
24236 		 * Note that deletes don't return an error if the thing
24237 		 * we're trying to delete isn't there.
24238 		 */
24239 		if (tcps->tcps_hsp_hash == NULL)
24240 			goto done;
24241 		hsp = tcps->tcps_hsp_hash[hash];
24242 
24243 		if (hsp) {
24244 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24245 			    &v6addr)) {
24246 				tcps->tcps_hsp_hash[hash] = hsp->tcp_hsp_next;
24247 				mi_free((char *)hsp);
24248 			} else {
24249 				hspprev = hsp;
24250 				while ((hsp = hsp->tcp_hsp_next) != NULL) {
24251 					if (IN6_ARE_ADDR_EQUAL(
24252 					    &hsp->tcp_hsp_addr_v6, &v6addr)) {
24253 						hspprev->tcp_hsp_next =
24254 						    hsp->tcp_hsp_next;
24255 						mi_free((char *)hsp);
24256 						break;
24257 					}
24258 					hspprev = hsp;
24259 				}
24260 			}
24261 		}
24262 	} else {
24263 		/*
24264 		 * We're adding/modifying an HSP.  If we haven't already done
24265 		 * so, allocate the hash table.
24266 		 */
24267 
24268 		if (!tcps->tcps_hsp_hash) {
24269 			tcps->tcps_hsp_hash = (tcp_hsp_t **)
24270 			    mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE);
24271 			if (!tcps->tcps_hsp_hash) {
24272 				error = EINVAL;
24273 				goto done;
24274 			}
24275 		}
24276 
24277 		/* Get head of hash chain */
24278 
24279 		hsp = tcps->tcps_hsp_hash[hash];
24280 
24281 		/* Try to find pre-existing hsp on hash chain */
24282 		/* Doesn't handle CIDR prefixes. */
24283 		while (hsp) {
24284 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr))
24285 				break;
24286 			hsp = hsp->tcp_hsp_next;
24287 		}
24288 
24289 		/*
24290 		 * If we didn't, create one with default values and put it
24291 		 * at head of hash chain
24292 		 */
24293 
24294 		if (!hsp) {
24295 			hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t));
24296 			if (!hsp) {
24297 				error = EINVAL;
24298 				goto done;
24299 			}
24300 			hsp->tcp_hsp_next = tcps->tcps_hsp_hash[hash];
24301 			tcps->tcps_hsp_hash[hash] = hsp;
24302 		}
24303 
24304 		/* Set values that the user asked us to change */
24305 
24306 		hsp->tcp_hsp_addr_v6 = v6addr;
24307 		if (IN6_IS_ADDR_V4MAPPED(&v6addr))
24308 			hsp->tcp_hsp_vers = IPV4_VERSION;
24309 		else
24310 			hsp->tcp_hsp_vers = IPV6_VERSION;
24311 		hsp->tcp_hsp_subnet_v6 = v6mask;
24312 		if (sendspace > 0)
24313 			hsp->tcp_hsp_sendspace = sendspace;
24314 		if (recvspace > 0)
24315 			hsp->tcp_hsp_recvspace = recvspace;
24316 		if (timestamp > 0)
24317 			hsp->tcp_hsp_tstamp = timestamp - 1;
24318 	}
24319 
24320 done:
24321 	rw_exit(&tcps->tcps_hsp_lock);
24322 	return (error);
24323 }
24324 
24325 /* Set callback routine passed to nd_load by tcp_param_register. */
24326 /* ARGSUSED */
24327 static int
24328 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
24329 {
24330 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET));
24331 }
24332 /* ARGSUSED */
24333 static int
24334 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24335     cred_t *cr)
24336 {
24337 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6));
24338 }
24339 
24340 /* TCP host parameters report triggered via the Named Dispatch mechanism. */
24341 /* ARGSUSED */
24342 static int
24343 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
24344 {
24345 	tcp_hsp_t *hsp;
24346 	int i;
24347 	char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN];
24348 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24349 
24350 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24351 	(void) mi_mpprintf(mp,
24352 	    "Hash HSP     " MI_COL_HDRPAD_STR
24353 	    "Address         Subnet Mask     Send       Receive    TStamp");
24354 	if (tcps->tcps_hsp_hash) {
24355 		for (i = 0; i < TCP_HSP_HASH_SIZE; i++) {
24356 			hsp = tcps->tcps_hsp_hash[i];
24357 			while (hsp) {
24358 				if (hsp->tcp_hsp_vers == IPV4_VERSION) {
24359 					(void) inet_ntop(AF_INET,
24360 					    &hsp->tcp_hsp_addr,
24361 					    addrbuf, sizeof (addrbuf));
24362 					(void) inet_ntop(AF_INET,
24363 					    &hsp->tcp_hsp_subnet,
24364 					    subnetbuf, sizeof (subnetbuf));
24365 				} else {
24366 					(void) inet_ntop(AF_INET6,
24367 					    &hsp->tcp_hsp_addr_v6,
24368 					    addrbuf, sizeof (addrbuf));
24369 					(void) inet_ntop(AF_INET6,
24370 					    &hsp->tcp_hsp_subnet_v6,
24371 					    subnetbuf, sizeof (subnetbuf));
24372 				}
24373 				(void) mi_mpprintf(mp,
24374 				    " %03d " MI_COL_PTRFMT_STR
24375 				    "%s %s %010d %010d      %d",
24376 				    i,
24377 				    (void *)hsp,
24378 				    addrbuf,
24379 				    subnetbuf,
24380 				    hsp->tcp_hsp_sendspace,
24381 				    hsp->tcp_hsp_recvspace,
24382 				    hsp->tcp_hsp_tstamp);
24383 
24384 				hsp = hsp->tcp_hsp_next;
24385 			}
24386 		}
24387 	}
24388 	rw_exit(&tcps->tcps_hsp_lock);
24389 	return (0);
24390 }
24391 
24392 
24393 /* Data for fast netmask macro used by tcp_hsp_lookup */
24394 
24395 static ipaddr_t netmasks[] = {
24396 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
24397 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
24398 };
24399 
24400 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
24401 
24402 /*
24403  * XXX This routine should go away and instead we should use the metrics
24404  * associated with the routes to determine the default sndspace and rcvspace.
24405  */
24406 static tcp_hsp_t *
24407 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps)
24408 {
24409 	tcp_hsp_t *hsp = NULL;
24410 
24411 	/* Quick check without acquiring the lock. */
24412 	if (tcps->tcps_hsp_hash == NULL)
24413 		return (NULL);
24414 
24415 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24416 
24417 	/* This routine finds the best-matching HSP for address addr. */
24418 
24419 	if (tcps->tcps_hsp_hash) {
24420 		int i;
24421 		ipaddr_t srchaddr;
24422 		tcp_hsp_t *hsp_net;
24423 
24424 		/* We do three passes: host, network, and subnet. */
24425 
24426 		srchaddr = addr;
24427 
24428 		for (i = 1; i <= 3; i++) {
24429 			/* Look for exact match on srchaddr */
24430 
24431 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)];
24432 			while (hsp) {
24433 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
24434 				    hsp->tcp_hsp_addr == srchaddr)
24435 					break;
24436 				hsp = hsp->tcp_hsp_next;
24437 			}
24438 			ASSERT(hsp == NULL ||
24439 			    hsp->tcp_hsp_vers == IPV4_VERSION);
24440 
24441 			/*
24442 			 * If this is the first pass:
24443 			 *   If we found a match, great, return it.
24444 			 *   If not, search for the network on the second pass.
24445 			 */
24446 
24447 			if (i == 1)
24448 				if (hsp)
24449 					break;
24450 				else
24451 				{
24452 					srchaddr = addr & netmask(addr);
24453 					continue;
24454 				}
24455 
24456 			/*
24457 			 * If this is the second pass:
24458 			 *   If we found a match, but there's a subnet mask,
24459 			 *    save the match but try again using the subnet
24460 			 *    mask on the third pass.
24461 			 *   Otherwise, return whatever we found.
24462 			 */
24463 
24464 			if (i == 2) {
24465 				if (hsp && hsp->tcp_hsp_subnet) {
24466 					hsp_net = hsp;
24467 					srchaddr = addr & hsp->tcp_hsp_subnet;
24468 					continue;
24469 				} else {
24470 					break;
24471 				}
24472 			}
24473 
24474 			/*
24475 			 * This must be the third pass.  If we didn't find
24476 			 * anything, return the saved network HSP instead.
24477 			 */
24478 
24479 			if (!hsp)
24480 				hsp = hsp_net;
24481 		}
24482 	}
24483 
24484 	rw_exit(&tcps->tcps_hsp_lock);
24485 	return (hsp);
24486 }
24487 
24488 /*
24489  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
24490  * match lookup.
24491  */
24492 static tcp_hsp_t *
24493 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps)
24494 {
24495 	tcp_hsp_t *hsp = NULL;
24496 
24497 	/* Quick check without acquiring the lock. */
24498 	if (tcps->tcps_hsp_hash == NULL)
24499 		return (NULL);
24500 
24501 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24502 
24503 	/* This routine finds the best-matching HSP for address addr. */
24504 
24505 	if (tcps->tcps_hsp_hash) {
24506 		int i;
24507 		in6_addr_t v6srchaddr;
24508 		tcp_hsp_t *hsp_net;
24509 
24510 		/* We do three passes: host, network, and subnet. */
24511 
24512 		v6srchaddr = *v6addr;
24513 
24514 		for (i = 1; i <= 3; i++) {
24515 			/* Look for exact match on srchaddr */
24516 
24517 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(
24518 			    V4_PART_OF_V6(v6srchaddr))];
24519 			while (hsp) {
24520 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
24521 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24522 				    &v6srchaddr))
24523 					break;
24524 				hsp = hsp->tcp_hsp_next;
24525 			}
24526 
24527 			/*
24528 			 * If this is the first pass:
24529 			 *   If we found a match, great, return it.
24530 			 *   If not, search for the network on the second pass.
24531 			 */
24532 
24533 			if (i == 1)
24534 				if (hsp)
24535 					break;
24536 				else {
24537 					/* Assume a 64 bit mask */
24538 					v6srchaddr.s6_addr32[0] =
24539 					    v6addr->s6_addr32[0];
24540 					v6srchaddr.s6_addr32[1] =
24541 					    v6addr->s6_addr32[1];
24542 					v6srchaddr.s6_addr32[2] = 0;
24543 					v6srchaddr.s6_addr32[3] = 0;
24544 					continue;
24545 				}
24546 
24547 			/*
24548 			 * If this is the second pass:
24549 			 *   If we found a match, but there's a subnet mask,
24550 			 *    save the match but try again using the subnet
24551 			 *    mask on the third pass.
24552 			 *   Otherwise, return whatever we found.
24553 			 */
24554 
24555 			if (i == 2) {
24556 				ASSERT(hsp == NULL ||
24557 				    hsp->tcp_hsp_vers == IPV6_VERSION);
24558 				if (hsp &&
24559 				    !IN6_IS_ADDR_UNSPECIFIED(
24560 				    &hsp->tcp_hsp_subnet_v6)) {
24561 					hsp_net = hsp;
24562 					V6_MASK_COPY(*v6addr,
24563 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
24564 					continue;
24565 				} else {
24566 					break;
24567 				}
24568 			}
24569 
24570 			/*
24571 			 * This must be the third pass.  If we didn't find
24572 			 * anything, return the saved network HSP instead.
24573 			 */
24574 
24575 			if (!hsp)
24576 				hsp = hsp_net;
24577 		}
24578 	}
24579 
24580 	rw_exit(&tcps->tcps_hsp_lock);
24581 	return (hsp);
24582 }
24583 
24584 /*
24585  * Type three generator adapted from the random() function in 4.4 BSD:
24586  */
24587 
24588 /*
24589  * Copyright (c) 1983, 1993
24590  *	The Regents of the University of California.  All rights reserved.
24591  *
24592  * Redistribution and use in source and binary forms, with or without
24593  * modification, are permitted provided that the following conditions
24594  * are met:
24595  * 1. Redistributions of source code must retain the above copyright
24596  *    notice, this list of conditions and the following disclaimer.
24597  * 2. Redistributions in binary form must reproduce the above copyright
24598  *    notice, this list of conditions and the following disclaimer in the
24599  *    documentation and/or other materials provided with the distribution.
24600  * 3. All advertising materials mentioning features or use of this software
24601  *    must display the following acknowledgement:
24602  *	This product includes software developed by the University of
24603  *	California, Berkeley and its contributors.
24604  * 4. Neither the name of the University nor the names of its contributors
24605  *    may be used to endorse or promote products derived from this software
24606  *    without specific prior written permission.
24607  *
24608  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24609  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24610  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24611  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24612  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24613  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24614  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24615  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24616  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24617  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24618  * SUCH DAMAGE.
24619  */
24620 
24621 /* Type 3 -- x**31 + x**3 + 1 */
24622 #define	DEG_3		31
24623 #define	SEP_3		3
24624 
24625 
24626 /* Protected by tcp_random_lock */
24627 static int tcp_randtbl[DEG_3 + 1];
24628 
24629 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
24630 static int *tcp_random_rptr = &tcp_randtbl[1];
24631 
24632 static int *tcp_random_state = &tcp_randtbl[1];
24633 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
24634 
24635 kmutex_t tcp_random_lock;
24636 
24637 void
24638 tcp_random_init(void)
24639 {
24640 	int i;
24641 	hrtime_t hrt;
24642 	time_t wallclock;
24643 	uint64_t result;
24644 
24645 	/*
24646 	 * Use high-res timer and current time for seed.  Gethrtime() returns
24647 	 * a longlong, which may contain resolution down to nanoseconds.
24648 	 * The current time will either be a 32-bit or a 64-bit quantity.
24649 	 * XOR the two together in a 64-bit result variable.
24650 	 * Convert the result to a 32-bit value by multiplying the high-order
24651 	 * 32-bits by the low-order 32-bits.
24652 	 */
24653 
24654 	hrt = gethrtime();
24655 	(void) drv_getparm(TIME, &wallclock);
24656 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
24657 	mutex_enter(&tcp_random_lock);
24658 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
24659 	    (result & 0xffffffff);
24660 
24661 	for (i = 1; i < DEG_3; i++)
24662 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
24663 		    + 12345;
24664 	tcp_random_fptr = &tcp_random_state[SEP_3];
24665 	tcp_random_rptr = &tcp_random_state[0];
24666 	mutex_exit(&tcp_random_lock);
24667 	for (i = 0; i < 10 * DEG_3; i++)
24668 		(void) tcp_random();
24669 }
24670 
24671 /*
24672  * tcp_random: Return a random number in the range [1 - (128K + 1)].
24673  * This range is selected to be approximately centered on TCP_ISS / 2,
24674  * and easy to compute. We get this value by generating a 32-bit random
24675  * number, selecting out the high-order 17 bits, and then adding one so
24676  * that we never return zero.
24677  */
24678 int
24679 tcp_random(void)
24680 {
24681 	int i;
24682 
24683 	mutex_enter(&tcp_random_lock);
24684 	*tcp_random_fptr += *tcp_random_rptr;
24685 
24686 	/*
24687 	 * The high-order bits are more random than the low-order bits,
24688 	 * so we select out the high-order 17 bits and add one so that
24689 	 * we never return zero.
24690 	 */
24691 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
24692 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
24693 		tcp_random_fptr = tcp_random_state;
24694 		++tcp_random_rptr;
24695 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
24696 		tcp_random_rptr = tcp_random_state;
24697 
24698 	mutex_exit(&tcp_random_lock);
24699 	return (i);
24700 }
24701 
24702 /*
24703  * XXX This will go away when TPI is extended to send
24704  * info reqs to sockfs/timod .....
24705  * Given a queue, set the max packet size for the write
24706  * side of the queue below stream head.  This value is
24707  * cached on the stream head.
24708  * Returns 1 on success, 0 otherwise.
24709  */
24710 static int
24711 setmaxps(queue_t *q, int maxpsz)
24712 {
24713 	struct stdata	*stp;
24714 	queue_t		*wq;
24715 	stp = STREAM(q);
24716 
24717 	/*
24718 	 * At this point change of a queue parameter is not allowed
24719 	 * when a multiplexor is sitting on top.
24720 	 */
24721 	if (stp->sd_flag & STPLEX)
24722 		return (0);
24723 
24724 	claimstr(stp->sd_wrq);
24725 	wq = stp->sd_wrq->q_next;
24726 	ASSERT(wq != NULL);
24727 	(void) strqset(wq, QMAXPSZ, 0, maxpsz);
24728 	releasestr(stp->sd_wrq);
24729 	return (1);
24730 }
24731 
24732 static int
24733 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
24734     int *t_errorp, int *sys_errorp)
24735 {
24736 	int error;
24737 	int is_absreq_failure;
24738 	t_scalar_t *opt_lenp;
24739 	t_scalar_t opt_offset;
24740 	int prim_type;
24741 	struct T_conn_req *tcreqp;
24742 	struct T_conn_res *tcresp;
24743 	cred_t *cr;
24744 
24745 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
24746 
24747 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
24748 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
24749 	    prim_type == T_CONN_RES);
24750 
24751 	switch (prim_type) {
24752 	case T_CONN_REQ:
24753 		tcreqp = (struct T_conn_req *)mp->b_rptr;
24754 		opt_offset = tcreqp->OPT_offset;
24755 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
24756 		break;
24757 	case O_T_CONN_RES:
24758 	case T_CONN_RES:
24759 		tcresp = (struct T_conn_res *)mp->b_rptr;
24760 		opt_offset = tcresp->OPT_offset;
24761 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
24762 		break;
24763 	}
24764 
24765 	*t_errorp = 0;
24766 	*sys_errorp = 0;
24767 	*do_disconnectp = 0;
24768 
24769 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
24770 	    opt_offset, cr, &tcp_opt_obj,
24771 	    NULL, &is_absreq_failure);
24772 
24773 	switch (error) {
24774 	case  0:		/* no error */
24775 		ASSERT(is_absreq_failure == 0);
24776 		return (0);
24777 	case ENOPROTOOPT:
24778 		*t_errorp = TBADOPT;
24779 		break;
24780 	case EACCES:
24781 		*t_errorp = TACCES;
24782 		break;
24783 	default:
24784 		*t_errorp = TSYSERR; *sys_errorp = error;
24785 		break;
24786 	}
24787 	if (is_absreq_failure != 0) {
24788 		/*
24789 		 * The connection request should get the local ack
24790 		 * T_OK_ACK and then a T_DISCON_IND.
24791 		 */
24792 		*do_disconnectp = 1;
24793 	}
24794 	return (-1);
24795 }
24796 
24797 /*
24798  * Split this function out so that if the secret changes, I'm okay.
24799  *
24800  * Initialize the tcp_iss_cookie and tcp_iss_key.
24801  */
24802 
24803 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
24804 
24805 static void
24806 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
24807 {
24808 	struct {
24809 		int32_t current_time;
24810 		uint32_t randnum;
24811 		uint16_t pad;
24812 		uint8_t ether[6];
24813 		uint8_t passwd[PASSWD_SIZE];
24814 	} tcp_iss_cookie;
24815 	time_t t;
24816 
24817 	/*
24818 	 * Start with the current absolute time.
24819 	 */
24820 	(void) drv_getparm(TIME, &t);
24821 	tcp_iss_cookie.current_time = t;
24822 
24823 	/*
24824 	 * XXX - Need a more random number per RFC 1750, not this crap.
24825 	 * OTOH, if what follows is pretty random, then I'm in better shape.
24826 	 */
24827 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
24828 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
24829 
24830 	/*
24831 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
24832 	 * as a good template.
24833 	 */
24834 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
24835 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
24836 
24837 	/*
24838 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
24839 	 */
24840 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
24841 
24842 	/*
24843 	 * See 4010593 if this section becomes a problem again,
24844 	 * but the local ethernet address is useful here.
24845 	 */
24846 	(void) localetheraddr(NULL,
24847 	    (struct ether_addr *)&tcp_iss_cookie.ether);
24848 
24849 	/*
24850 	 * Hash 'em all together.  The MD5Final is called per-connection.
24851 	 */
24852 	mutex_enter(&tcps->tcps_iss_key_lock);
24853 	MD5Init(&tcps->tcps_iss_key);
24854 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
24855 	    sizeof (tcp_iss_cookie));
24856 	mutex_exit(&tcps->tcps_iss_key_lock);
24857 }
24858 
24859 /*
24860  * Set the RFC 1948 pass phrase
24861  */
24862 /* ARGSUSED */
24863 static int
24864 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24865     cred_t *cr)
24866 {
24867 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24868 
24869 	/*
24870 	 * Basically, value contains a new pass phrase.  Pass it along!
24871 	 */
24872 	tcp_iss_key_init((uint8_t *)value, strlen(value), tcps);
24873 	return (0);
24874 }
24875 
24876 /* ARGSUSED */
24877 static int
24878 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
24879 {
24880 	bzero(buf, sizeof (tcp_sack_info_t));
24881 	return (0);
24882 }
24883 
24884 /* ARGSUSED */
24885 static int
24886 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
24887 {
24888 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
24889 	return (0);
24890 }
24891 
24892 /*
24893  * Make sure we wait until the default queue is setup, yet allow
24894  * tcp_g_q_create() to open a TCP stream.
24895  * We need to allow tcp_g_q_create() do do an open
24896  * of tcp, hence we compare curhread.
24897  * All others have to wait until the tcps_g_q has been
24898  * setup.
24899  */
24900 void
24901 tcp_g_q_setup(tcp_stack_t *tcps)
24902 {
24903 	mutex_enter(&tcps->tcps_g_q_lock);
24904 	if (tcps->tcps_g_q != NULL) {
24905 		mutex_exit(&tcps->tcps_g_q_lock);
24906 		return;
24907 	}
24908 	if (tcps->tcps_g_q_creator == NULL) {
24909 		/* This thread will set it up */
24910 		tcps->tcps_g_q_creator = curthread;
24911 		mutex_exit(&tcps->tcps_g_q_lock);
24912 		tcp_g_q_create(tcps);
24913 		mutex_enter(&tcps->tcps_g_q_lock);
24914 		ASSERT(tcps->tcps_g_q_creator == curthread);
24915 		tcps->tcps_g_q_creator = NULL;
24916 		cv_signal(&tcps->tcps_g_q_cv);
24917 		ASSERT(tcps->tcps_g_q != NULL);
24918 		mutex_exit(&tcps->tcps_g_q_lock);
24919 		return;
24920 	}
24921 	/* Everybody but the creator has to wait */
24922 	if (tcps->tcps_g_q_creator != curthread) {
24923 		while (tcps->tcps_g_q == NULL)
24924 			cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock);
24925 	}
24926 	mutex_exit(&tcps->tcps_g_q_lock);
24927 }
24928 
24929 #define	IP	"ip"
24930 
24931 #define	TCP6DEV		"/devices/pseudo/tcp6@0:tcp6"
24932 
24933 /*
24934  * Create a default tcp queue here instead of in strplumb
24935  */
24936 void
24937 tcp_g_q_create(tcp_stack_t *tcps)
24938 {
24939 	int error;
24940 	ldi_handle_t	lh = NULL;
24941 	ldi_ident_t	li = NULL;
24942 	int		rval;
24943 	cred_t		*cr;
24944 	major_t IP_MAJ;
24945 
24946 #ifdef NS_DEBUG
24947 	(void) printf("tcp_g_q_create()\n");
24948 #endif
24949 
24950 	IP_MAJ = ddi_name_to_major(IP);
24951 
24952 	ASSERT(tcps->tcps_g_q_creator == curthread);
24953 
24954 	error = ldi_ident_from_major(IP_MAJ, &li);
24955 	if (error) {
24956 #ifdef DEBUG
24957 		printf("tcp_g_q_create: lyr ident get failed error %d\n",
24958 		    error);
24959 #endif
24960 		return;
24961 	}
24962 
24963 	cr = zone_get_kcred(netstackid_to_zoneid(
24964 	    tcps->tcps_netstack->netstack_stackid));
24965 	ASSERT(cr != NULL);
24966 	/*
24967 	 * We set the tcp default queue to IPv6 because IPv4 falls
24968 	 * back to IPv6 when it can't find a client, but
24969 	 * IPv6 does not fall back to IPv4.
24970 	 */
24971 	error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li);
24972 	if (error) {
24973 #ifdef DEBUG
24974 		printf("tcp_g_q_create: open of TCP6DEV failed error %d\n",
24975 		    error);
24976 #endif
24977 		goto out;
24978 	}
24979 
24980 	/*
24981 	 * This ioctl causes the tcp framework to cache a pointer to
24982 	 * this stream, so we don't want to close the stream after
24983 	 * this operation.
24984 	 * Use the kernel credentials that are for the zone we're in.
24985 	 */
24986 	error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q,
24987 	    (intptr_t)0, FKIOCTL, cr, &rval);
24988 	if (error) {
24989 #ifdef DEBUG
24990 		printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed "
24991 		    "error %d\n", error);
24992 #endif
24993 		goto out;
24994 	}
24995 	tcps->tcps_g_q_lh = lh;	/* For tcp_g_q_close */
24996 	lh = NULL;
24997 out:
24998 	/* Close layered handles */
24999 	if (li)
25000 		ldi_ident_release(li);
25001 	/* Keep cred around until _inactive needs it */
25002 	tcps->tcps_g_q_cr = cr;
25003 }
25004 
25005 /*
25006  * We keep tcp_g_q set until all other tcp_t's in the zone
25007  * has gone away, and then when tcp_g_q_inactive() is called
25008  * we clear it.
25009  */
25010 void
25011 tcp_g_q_destroy(tcp_stack_t *tcps)
25012 {
25013 #ifdef NS_DEBUG
25014 	(void) printf("tcp_g_q_destroy()for stack %d\n",
25015 	    tcps->tcps_netstack->netstack_stackid);
25016 #endif
25017 
25018 	if (tcps->tcps_g_q == NULL) {
25019 		return;	/* Nothing to cleanup */
25020 	}
25021 	/*
25022 	 * Drop reference corresponding to the default queue.
25023 	 * This reference was added from tcp_open when the default queue
25024 	 * was created, hence we compensate for this extra drop in
25025 	 * tcp_g_q_close. If the refcnt drops to zero here it means
25026 	 * the default queue was the last one to be open, in which
25027 	 * case, then tcp_g_q_inactive will be
25028 	 * called as a result of the refrele.
25029 	 */
25030 	TCPS_REFRELE(tcps);
25031 }
25032 
25033 /*
25034  * Called when last tcp_t drops reference count using TCPS_REFRELE.
25035  * Run by tcp_q_q_inactive using a taskq.
25036  */
25037 static void
25038 tcp_g_q_close(void *arg)
25039 {
25040 	tcp_stack_t *tcps = arg;
25041 	int error;
25042 	ldi_handle_t	lh = NULL;
25043 	ldi_ident_t	li = NULL;
25044 	cred_t		*cr;
25045 	major_t IP_MAJ;
25046 
25047 	IP_MAJ = ddi_name_to_major(IP);
25048 
25049 #ifdef NS_DEBUG
25050 	(void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n",
25051 	    tcps->tcps_netstack->netstack_stackid,
25052 	    tcps->tcps_netstack->netstack_refcnt);
25053 #endif
25054 	lh = tcps->tcps_g_q_lh;
25055 	if (lh == NULL)
25056 		return;	/* Nothing to cleanup */
25057 
25058 	ASSERT(tcps->tcps_refcnt == 1);
25059 	ASSERT(tcps->tcps_g_q != NULL);
25060 
25061 	error = ldi_ident_from_major(IP_MAJ, &li);
25062 	if (error) {
25063 #ifdef DEBUG
25064 		printf("tcp_g_q_inactive: lyr ident get failed error %d\n",
25065 		    error);
25066 #endif
25067 		return;
25068 	}
25069 
25070 	cr = tcps->tcps_g_q_cr;
25071 	tcps->tcps_g_q_cr = NULL;
25072 	ASSERT(cr != NULL);
25073 
25074 	/*
25075 	 * Make sure we can break the recursion when tcp_close decrements
25076 	 * the reference count causing g_q_inactive to be called again.
25077 	 */
25078 	tcps->tcps_g_q_lh = NULL;
25079 
25080 	/* close the default queue */
25081 	(void) ldi_close(lh, FREAD|FWRITE, cr);
25082 	/*
25083 	 * At this point in time tcps and the rest of netstack_t might
25084 	 * have been deleted.
25085 	 */
25086 	tcps = NULL;
25087 
25088 	/* Close layered handles */
25089 	ldi_ident_release(li);
25090 	crfree(cr);
25091 }
25092 
25093 /*
25094  * Called when last tcp_t drops reference count using TCPS_REFRELE.
25095  *
25096  * Have to ensure that the ldi routines are not used by an
25097  * interrupt thread by using a taskq.
25098  */
25099 void
25100 tcp_g_q_inactive(tcp_stack_t *tcps)
25101 {
25102 	if (tcps->tcps_g_q_lh == NULL)
25103 		return;	/* Nothing to cleanup */
25104 
25105 	ASSERT(tcps->tcps_refcnt == 0);
25106 	TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */
25107 
25108 	if (servicing_interrupt()) {
25109 		(void) taskq_dispatch(tcp_taskq, tcp_g_q_close,
25110 		    (void *) tcps, TQ_SLEEP);
25111 	} else {
25112 		tcp_g_q_close(tcps);
25113 	}
25114 }
25115 
25116 /*
25117  * Called by IP when IP is loaded into the kernel
25118  */
25119 void
25120 tcp_ddi_g_init(void)
25121 {
25122 	tcp_timercache = kmem_cache_create("tcp_timercache",
25123 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
25124 	    NULL, NULL, NULL, NULL, NULL, 0);
25125 
25126 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
25127 	    sizeof (tcp_sack_info_t), 0,
25128 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
25129 
25130 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
25131 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
25132 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
25133 
25134 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
25135 
25136 	/* Initialize the random number generator */
25137 	tcp_random_init();
25138 
25139 	tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput);
25140 	tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close);
25141 
25142 	/* A single callback independently of how many netstacks we have */
25143 	ip_squeue_init(tcp_squeue_add);
25144 
25145 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
25146 
25147 	tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1,
25148 	    TASKQ_PREPOPULATE);
25149 
25150 	/*
25151 	 * We want to be informed each time a stack is created or
25152 	 * destroyed in the kernel, so we can maintain the
25153 	 * set of tcp_stack_t's.
25154 	 */
25155 	netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown,
25156 	    tcp_stack_fini);
25157 }
25158 
25159 
25160 /*
25161  * Initialize the TCP stack instance.
25162  */
25163 static void *
25164 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
25165 {
25166 	tcp_stack_t	*tcps;
25167 	tcpparam_t	*pa;
25168 	int		i;
25169 
25170 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
25171 	tcps->tcps_netstack = ns;
25172 
25173 	/* Initialize locks */
25174 	rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL);
25175 	mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
25176 	cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL);
25177 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
25178 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
25179 	rw_init(&tcps->tcps_reserved_port_lock, NULL, RW_DEFAULT, NULL);
25180 
25181 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
25182 	tcps->tcps_g_epriv_ports[0] = 2049;
25183 	tcps->tcps_g_epriv_ports[1] = 4045;
25184 	tcps->tcps_min_anonpriv_port = 512;
25185 
25186 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
25187 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
25188 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
25189 	    TCP_FANOUT_SIZE, KM_SLEEP);
25190 	tcps->tcps_reserved_port = kmem_zalloc(sizeof (tcp_rport_t) *
25191 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE, KM_SLEEP);
25192 
25193 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
25194 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
25195 		    MUTEX_DEFAULT, NULL);
25196 	}
25197 
25198 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
25199 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
25200 		    MUTEX_DEFAULT, NULL);
25201 	}
25202 
25203 	/* TCP's IPsec code calls the packet dropper. */
25204 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
25205 
25206 	pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP);
25207 	tcps->tcps_params = pa;
25208 	bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr));
25209 
25210 	(void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params,
25211 	    A_CNT(lcl_tcp_param_arr), tcps);
25212 
25213 	/*
25214 	 * Note: To really walk the device tree you need the devinfo
25215 	 * pointer to your device which is only available after probe/attach.
25216 	 * The following is safe only because it uses ddi_root_node()
25217 	 */
25218 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
25219 	    tcp_opt_obj.odb_opt_arr_cnt);
25220 
25221 	/*
25222 	 * Initialize RFC 1948 secret values.  This will probably be reset once
25223 	 * by the boot scripts.
25224 	 *
25225 	 * Use NULL name, as the name is caught by the new lockstats.
25226 	 *
25227 	 * Initialize with some random, non-guessable string, like the global
25228 	 * T_INFO_ACK.
25229 	 */
25230 
25231 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
25232 	    sizeof (tcp_g_t_info_ack), tcps);
25233 
25234 	tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics);
25235 	tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps);
25236 
25237 	return (tcps);
25238 }
25239 
25240 /*
25241  * Called when the IP module is about to be unloaded.
25242  */
25243 void
25244 tcp_ddi_g_destroy(void)
25245 {
25246 	tcp_g_kstat_fini(tcp_g_kstat);
25247 	tcp_g_kstat = NULL;
25248 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
25249 
25250 	mutex_destroy(&tcp_random_lock);
25251 
25252 	kmem_cache_destroy(tcp_timercache);
25253 	kmem_cache_destroy(tcp_sack_info_cache);
25254 	kmem_cache_destroy(tcp_iphc_cache);
25255 
25256 	netstack_unregister(NS_TCP);
25257 	taskq_destroy(tcp_taskq);
25258 }
25259 
25260 /*
25261  * Shut down the TCP stack instance.
25262  */
25263 /* ARGSUSED */
25264 static void
25265 tcp_stack_shutdown(netstackid_t stackid, void *arg)
25266 {
25267 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25268 
25269 	tcp_g_q_destroy(tcps);
25270 }
25271 
25272 /*
25273  * Free the TCP stack instance.
25274  */
25275 static void
25276 tcp_stack_fini(netstackid_t stackid, void *arg)
25277 {
25278 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25279 	int i;
25280 
25281 	nd_free(&tcps->tcps_g_nd);
25282 	kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr));
25283 	tcps->tcps_params = NULL;
25284 	kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t));
25285 	tcps->tcps_wroff_xtra_param = NULL;
25286 	kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t));
25287 	tcps->tcps_mdt_head_param = NULL;
25288 	kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t));
25289 	tcps->tcps_mdt_tail_param = NULL;
25290 	kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t));
25291 	tcps->tcps_mdt_max_pbufs_param = NULL;
25292 
25293 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
25294 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
25295 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
25296 	}
25297 
25298 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
25299 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
25300 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
25301 	}
25302 
25303 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
25304 	tcps->tcps_bind_fanout = NULL;
25305 
25306 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE);
25307 	tcps->tcps_acceptor_fanout = NULL;
25308 
25309 	kmem_free(tcps->tcps_reserved_port, sizeof (tcp_rport_t) *
25310 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE);
25311 	tcps->tcps_reserved_port = NULL;
25312 
25313 	mutex_destroy(&tcps->tcps_iss_key_lock);
25314 	rw_destroy(&tcps->tcps_hsp_lock);
25315 	mutex_destroy(&tcps->tcps_g_q_lock);
25316 	cv_destroy(&tcps->tcps_g_q_cv);
25317 	mutex_destroy(&tcps->tcps_epriv_port_lock);
25318 	rw_destroy(&tcps->tcps_reserved_port_lock);
25319 
25320 	ip_drop_unregister(&tcps->tcps_dropper);
25321 
25322 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
25323 	tcps->tcps_kstat = NULL;
25324 	bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics));
25325 
25326 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
25327 	tcps->tcps_mibkp = NULL;
25328 
25329 	kmem_free(tcps, sizeof (*tcps));
25330 }
25331 
25332 /*
25333  * Generate ISS, taking into account NDD changes may happen halfway through.
25334  * (If the iss is not zero, set it.)
25335  */
25336 
25337 static void
25338 tcp_iss_init(tcp_t *tcp)
25339 {
25340 	MD5_CTX context;
25341 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
25342 	uint32_t answer[4];
25343 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25344 
25345 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
25346 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
25347 	switch (tcps->tcps_strong_iss) {
25348 	case 2:
25349 		mutex_enter(&tcps->tcps_iss_key_lock);
25350 		context = tcps->tcps_iss_key;
25351 		mutex_exit(&tcps->tcps_iss_key_lock);
25352 		arg.ports = tcp->tcp_ports;
25353 		if (tcp->tcp_ipversion == IPV4_VERSION) {
25354 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
25355 			    &arg.src);
25356 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
25357 			    &arg.dst);
25358 		} else {
25359 			arg.src = tcp->tcp_ip6h->ip6_src;
25360 			arg.dst = tcp->tcp_ip6h->ip6_dst;
25361 		}
25362 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
25363 		MD5Final((uchar_t *)answer, &context);
25364 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
25365 		/*
25366 		 * Now that we've hashed into a unique per-connection sequence
25367 		 * space, add a random increment per strong_iss == 1.  So I
25368 		 * guess we'll have to...
25369 		 */
25370 		/* FALLTHRU */
25371 	case 1:
25372 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
25373 		break;
25374 	default:
25375 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25376 		break;
25377 	}
25378 	tcp->tcp_valid_bits = TCP_ISS_VALID;
25379 	tcp->tcp_fss = tcp->tcp_iss - 1;
25380 	tcp->tcp_suna = tcp->tcp_iss;
25381 	tcp->tcp_snxt = tcp->tcp_iss + 1;
25382 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
25383 	tcp->tcp_csuna = tcp->tcp_snxt;
25384 }
25385 
25386 /*
25387  * Exported routine for extracting active tcp connection status.
25388  *
25389  * This is used by the Solaris Cluster Networking software to
25390  * gather a list of connections that need to be forwarded to
25391  * specific nodes in the cluster when configuration changes occur.
25392  *
25393  * The callback is invoked for each tcp_t structure. Returning
25394  * non-zero from the callback routine terminates the search.
25395  */
25396 int
25397 cl_tcp_walk_list(int (*cl_callback)(cl_tcp_info_t *, void *),
25398     void *arg)
25399 {
25400 	netstack_handle_t nh;
25401 	netstack_t *ns;
25402 	int ret = 0;
25403 
25404 	netstack_next_init(&nh);
25405 	while ((ns = netstack_next(&nh)) != NULL) {
25406 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
25407 		    ns->netstack_tcp);
25408 		netstack_rele(ns);
25409 	}
25410 	netstack_next_fini(&nh);
25411 	return (ret);
25412 }
25413 
25414 static int
25415 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg,
25416     tcp_stack_t *tcps)
25417 {
25418 	tcp_t *tcp;
25419 	cl_tcp_info_t	cl_tcpi;
25420 	connf_t	*connfp;
25421 	conn_t	*connp;
25422 	int	i;
25423 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25424 
25425 	ASSERT(callback != NULL);
25426 
25427 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25428 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
25429 		connp = NULL;
25430 
25431 		while ((connp =
25432 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25433 
25434 			tcp = connp->conn_tcp;
25435 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
25436 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
25437 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
25438 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
25439 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
25440 			/*
25441 			 * The macros tcp_laddr and tcp_faddr give the IPv4
25442 			 * addresses. They are copied implicitly below as
25443 			 * mapped addresses.
25444 			 */
25445 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
25446 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25447 				cl_tcpi.cl_tcpi_faddr =
25448 				    tcp->tcp_ipha->ipha_dst;
25449 			} else {
25450 				cl_tcpi.cl_tcpi_faddr_v6 =
25451 				    tcp->tcp_ip6h->ip6_dst;
25452 			}
25453 
25454 			/*
25455 			 * If the callback returns non-zero
25456 			 * we terminate the traversal.
25457 			 */
25458 			if ((*callback)(&cl_tcpi, arg) != 0) {
25459 				CONN_DEC_REF(tcp->tcp_connp);
25460 				return (1);
25461 			}
25462 		}
25463 	}
25464 
25465 	return (0);
25466 }
25467 
25468 /*
25469  * Macros used for accessing the different types of sockaddr
25470  * structures inside a tcp_ioc_abort_conn_t.
25471  */
25472 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
25473 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
25474 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
25475 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
25476 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
25477 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
25478 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
25479 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
25480 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
25481 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
25482 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
25483 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
25484 
25485 /*
25486  * Return the correct error code to mimic the behavior
25487  * of a connection reset.
25488  */
25489 #define	TCP_AC_GET_ERRCODE(state, err) {	\
25490 		switch ((state)) {		\
25491 		case TCPS_SYN_SENT:		\
25492 		case TCPS_SYN_RCVD:		\
25493 			(err) = ECONNREFUSED;	\
25494 			break;			\
25495 		case TCPS_ESTABLISHED:		\
25496 		case TCPS_FIN_WAIT_1:		\
25497 		case TCPS_FIN_WAIT_2:		\
25498 		case TCPS_CLOSE_WAIT:		\
25499 			(err) = ECONNRESET;	\
25500 			break;			\
25501 		case TCPS_CLOSING:		\
25502 		case TCPS_LAST_ACK:		\
25503 		case TCPS_TIME_WAIT:		\
25504 			(err) = 0;		\
25505 			break;			\
25506 		default:			\
25507 			(err) = ENXIO;		\
25508 		}				\
25509 	}
25510 
25511 /*
25512  * Check if a tcp structure matches the info in acp.
25513  */
25514 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
25515 	(((acp)->ac_local.ss_family == AF_INET) ?		\
25516 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
25517 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
25518 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
25519 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
25520 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
25521 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
25522 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
25523 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
25524 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25525 	(acp)->ac_end >= (tcp)->tcp_state) :		\
25526 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
25527 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
25528 	&(tcp)->tcp_ip_src_v6)) &&				\
25529 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
25530 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
25531 	&(tcp)->tcp_remote_v6)) &&				\
25532 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
25533 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
25534 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
25535 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
25536 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25537 	(acp)->ac_end >= (tcp)->tcp_state))
25538 
25539 #define	TCP_AC_MATCH(acp, tcp)					\
25540 	(((acp)->ac_zoneid == ALL_ZONES ||			\
25541 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
25542 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
25543 
25544 /*
25545  * Build a message containing a tcp_ioc_abort_conn_t structure
25546  * which is filled in with information from acp and tp.
25547  */
25548 static mblk_t *
25549 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
25550 {
25551 	mblk_t *mp;
25552 	tcp_ioc_abort_conn_t *tacp;
25553 
25554 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
25555 	if (mp == NULL)
25556 		return (NULL);
25557 
25558 	mp->b_datap->db_type = M_CTL;
25559 
25560 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
25561 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
25562 	    sizeof (uint32_t));
25563 
25564 	tacp->ac_start = acp->ac_start;
25565 	tacp->ac_end = acp->ac_end;
25566 	tacp->ac_zoneid = acp->ac_zoneid;
25567 
25568 	if (acp->ac_local.ss_family == AF_INET) {
25569 		tacp->ac_local.ss_family = AF_INET;
25570 		tacp->ac_remote.ss_family = AF_INET;
25571 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
25572 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
25573 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
25574 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
25575 	} else {
25576 		tacp->ac_local.ss_family = AF_INET6;
25577 		tacp->ac_remote.ss_family = AF_INET6;
25578 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
25579 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
25580 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
25581 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
25582 	}
25583 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
25584 	return (mp);
25585 }
25586 
25587 /*
25588  * Print a tcp_ioc_abort_conn_t structure.
25589  */
25590 static void
25591 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
25592 {
25593 	char lbuf[128];
25594 	char rbuf[128];
25595 	sa_family_t af;
25596 	in_port_t lport, rport;
25597 	ushort_t logflags;
25598 
25599 	af = acp->ac_local.ss_family;
25600 
25601 	if (af == AF_INET) {
25602 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
25603 		    lbuf, 128);
25604 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
25605 		    rbuf, 128);
25606 		lport = ntohs(TCP_AC_V4LPORT(acp));
25607 		rport = ntohs(TCP_AC_V4RPORT(acp));
25608 	} else {
25609 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
25610 		    lbuf, 128);
25611 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
25612 		    rbuf, 128);
25613 		lport = ntohs(TCP_AC_V6LPORT(acp));
25614 		rport = ntohs(TCP_AC_V6RPORT(acp));
25615 	}
25616 
25617 	logflags = SL_TRACE | SL_NOTE;
25618 	/*
25619 	 * Don't print this message to the console if the operation was done
25620 	 * to a non-global zone.
25621 	 */
25622 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25623 		logflags |= SL_CONSOLE;
25624 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
25625 	    "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
25626 	    "start = %d, end = %d\n", lbuf, lport, rbuf, rport,
25627 	    acp->ac_start, acp->ac_end);
25628 }
25629 
25630 /*
25631  * Called inside tcp_rput when a message built using
25632  * tcp_ioctl_abort_build_msg is put into a queue.
25633  * Note that when we get here there is no wildcard in acp any more.
25634  */
25635 static void
25636 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
25637 {
25638 	tcp_ioc_abort_conn_t *acp;
25639 
25640 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
25641 	if (tcp->tcp_state <= acp->ac_end) {
25642 		/*
25643 		 * If we get here, we are already on the correct
25644 		 * squeue. This ioctl follows the following path
25645 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
25646 		 * ->tcp_ioctl_abort->squeue_fill (if on a
25647 		 * different squeue)
25648 		 */
25649 		int errcode;
25650 
25651 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
25652 		(void) tcp_clean_death(tcp, errcode, 26);
25653 	}
25654 	freemsg(mp);
25655 }
25656 
25657 /*
25658  * Abort all matching connections on a hash chain.
25659  */
25660 static int
25661 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
25662     boolean_t exact, tcp_stack_t *tcps)
25663 {
25664 	int nmatch, err = 0;
25665 	tcp_t *tcp;
25666 	MBLKP mp, last, listhead = NULL;
25667 	conn_t	*tconnp;
25668 	connf_t	*connfp;
25669 	ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25670 
25671 	connfp = &ipst->ips_ipcl_conn_fanout[index];
25672 
25673 startover:
25674 	nmatch = 0;
25675 
25676 	mutex_enter(&connfp->connf_lock);
25677 	for (tconnp = connfp->connf_head; tconnp != NULL;
25678 	    tconnp = tconnp->conn_next) {
25679 		tcp = tconnp->conn_tcp;
25680 		if (TCP_AC_MATCH(acp, tcp)) {
25681 			CONN_INC_REF(tcp->tcp_connp);
25682 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
25683 			if (mp == NULL) {
25684 				err = ENOMEM;
25685 				CONN_DEC_REF(tcp->tcp_connp);
25686 				break;
25687 			}
25688 			mp->b_prev = (mblk_t *)tcp;
25689 
25690 			if (listhead == NULL) {
25691 				listhead = mp;
25692 				last = mp;
25693 			} else {
25694 				last->b_next = mp;
25695 				last = mp;
25696 			}
25697 			nmatch++;
25698 			if (exact)
25699 				break;
25700 		}
25701 
25702 		/* Avoid holding lock for too long. */
25703 		if (nmatch >= 500)
25704 			break;
25705 	}
25706 	mutex_exit(&connfp->connf_lock);
25707 
25708 	/* Pass mp into the correct tcp */
25709 	while ((mp = listhead) != NULL) {
25710 		listhead = listhead->b_next;
25711 		tcp = (tcp_t *)mp->b_prev;
25712 		mp->b_next = mp->b_prev = NULL;
25713 		squeue_fill(tcp->tcp_connp->conn_sqp, mp,
25714 		    tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET);
25715 	}
25716 
25717 	*count += nmatch;
25718 	if (nmatch >= 500 && err == 0)
25719 		goto startover;
25720 	return (err);
25721 }
25722 
25723 /*
25724  * Abort all connections that matches the attributes specified in acp.
25725  */
25726 static int
25727 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps)
25728 {
25729 	sa_family_t af;
25730 	uint32_t  ports;
25731 	uint16_t *pports;
25732 	int err = 0, count = 0;
25733 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
25734 	int index = -1;
25735 	ushort_t logflags;
25736 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25737 
25738 	af = acp->ac_local.ss_family;
25739 
25740 	if (af == AF_INET) {
25741 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
25742 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
25743 			pports = (uint16_t *)&ports;
25744 			pports[1] = TCP_AC_V4LPORT(acp);
25745 			pports[0] = TCP_AC_V4RPORT(acp);
25746 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
25747 		}
25748 	} else {
25749 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
25750 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
25751 			pports = (uint16_t *)&ports;
25752 			pports[1] = TCP_AC_V6LPORT(acp);
25753 			pports[0] = TCP_AC_V6RPORT(acp);
25754 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
25755 		}
25756 	}
25757 
25758 	/*
25759 	 * For cases where remote addr, local port, and remote port are non-
25760 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
25761 	 */
25762 	if (index != -1) {
25763 		err = tcp_ioctl_abort_bucket(acp, index,
25764 		    &count, exact, tcps);
25765 	} else {
25766 		/*
25767 		 * loop through all entries for wildcard case
25768 		 */
25769 		for (index = 0;
25770 		    index < ipst->ips_ipcl_conn_fanout_size;
25771 		    index++) {
25772 			err = tcp_ioctl_abort_bucket(acp, index,
25773 			    &count, exact, tcps);
25774 			if (err != 0)
25775 				break;
25776 		}
25777 	}
25778 
25779 	logflags = SL_TRACE | SL_NOTE;
25780 	/*
25781 	 * Don't print this message to the console if the operation was done
25782 	 * to a non-global zone.
25783 	 */
25784 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25785 		logflags |= SL_CONSOLE;
25786 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
25787 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
25788 	if (err == 0 && count == 0)
25789 		err = ENOENT;
25790 	return (err);
25791 }
25792 
25793 /*
25794  * Process the TCP_IOC_ABORT_CONN ioctl request.
25795  */
25796 static void
25797 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
25798 {
25799 	int	err;
25800 	IOCP    iocp;
25801 	MBLKP   mp1;
25802 	sa_family_t laf, raf;
25803 	tcp_ioc_abort_conn_t *acp;
25804 	zone_t		*zptr;
25805 	conn_t		*connp = Q_TO_CONN(q);
25806 	zoneid_t	zoneid = connp->conn_zoneid;
25807 	tcp_t		*tcp = connp->conn_tcp;
25808 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25809 
25810 	iocp = (IOCP)mp->b_rptr;
25811 
25812 	if ((mp1 = mp->b_cont) == NULL ||
25813 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
25814 		err = EINVAL;
25815 		goto out;
25816 	}
25817 
25818 	/* check permissions */
25819 	if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
25820 		err = EPERM;
25821 		goto out;
25822 	}
25823 
25824 	if (mp1->b_cont != NULL) {
25825 		freemsg(mp1->b_cont);
25826 		mp1->b_cont = NULL;
25827 	}
25828 
25829 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
25830 	laf = acp->ac_local.ss_family;
25831 	raf = acp->ac_remote.ss_family;
25832 
25833 	/* check that a zone with the supplied zoneid exists */
25834 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
25835 		zptr = zone_find_by_id(zoneid);
25836 		if (zptr != NULL) {
25837 			zone_rele(zptr);
25838 		} else {
25839 			err = EINVAL;
25840 			goto out;
25841 		}
25842 	}
25843 
25844 	/*
25845 	 * For exclusive stacks we set the zoneid to zero
25846 	 * to make TCP operate as if in the global zone.
25847 	 */
25848 	if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID)
25849 		acp->ac_zoneid = GLOBAL_ZONEID;
25850 
25851 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
25852 	    acp->ac_start > acp->ac_end || laf != raf ||
25853 	    (laf != AF_INET && laf != AF_INET6)) {
25854 		err = EINVAL;
25855 		goto out;
25856 	}
25857 
25858 	tcp_ioctl_abort_dump(acp);
25859 	err = tcp_ioctl_abort(acp, tcps);
25860 
25861 out:
25862 	if (mp1 != NULL) {
25863 		freemsg(mp1);
25864 		mp->b_cont = NULL;
25865 	}
25866 
25867 	if (err != 0)
25868 		miocnak(q, mp, 0, err);
25869 	else
25870 		miocack(q, mp, 0, 0);
25871 }
25872 
25873 /*
25874  * tcp_time_wait_processing() handles processing of incoming packets when
25875  * the tcp is in the TIME_WAIT state.
25876  * A TIME_WAIT tcp that has an associated open TCP stream is never put
25877  * on the time wait list.
25878  */
25879 void
25880 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
25881     uint32_t seg_ack, int seg_len, tcph_t *tcph)
25882 {
25883 	int32_t		bytes_acked;
25884 	int32_t		gap;
25885 	int32_t		rgap;
25886 	tcp_opt_t	tcpopt;
25887 	uint_t		flags;
25888 	uint32_t	new_swnd = 0;
25889 	conn_t		*connp;
25890 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25891 
25892 	BUMP_LOCAL(tcp->tcp_ibsegs);
25893 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
25894 
25895 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
25896 	new_swnd = BE16_TO_U16(tcph->th_win) <<
25897 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
25898 	if (tcp->tcp_snd_ts_ok) {
25899 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
25900 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25901 			    tcp->tcp_rnxt, TH_ACK);
25902 			goto done;
25903 		}
25904 	}
25905 	gap = seg_seq - tcp->tcp_rnxt;
25906 	rgap = tcp->tcp_rwnd - (gap + seg_len);
25907 	if (gap < 0) {
25908 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
25909 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
25910 		    (seg_len > -gap ? -gap : seg_len));
25911 		seg_len += gap;
25912 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
25913 			if (flags & TH_RST) {
25914 				goto done;
25915 			}
25916 			if ((flags & TH_FIN) && seg_len == -1) {
25917 				/*
25918 				 * When TCP receives a duplicate FIN in
25919 				 * TIME_WAIT state, restart the 2 MSL timer.
25920 				 * See page 73 in RFC 793. Make sure this TCP
25921 				 * is already on the TIME_WAIT list. If not,
25922 				 * just restart the timer.
25923 				 */
25924 				if (TCP_IS_DETACHED(tcp)) {
25925 					if (tcp_time_wait_remove(tcp, NULL) ==
25926 					    B_TRUE) {
25927 						tcp_time_wait_append(tcp);
25928 						TCP_DBGSTAT(tcps,
25929 						    tcp_rput_time_wait);
25930 					}
25931 				} else {
25932 					ASSERT(tcp != NULL);
25933 					TCP_TIMER_RESTART(tcp,
25934 					    tcps->tcps_time_wait_interval);
25935 				}
25936 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25937 				    tcp->tcp_rnxt, TH_ACK);
25938 				goto done;
25939 			}
25940 			flags |=  TH_ACK_NEEDED;
25941 			seg_len = 0;
25942 			goto process_ack;
25943 		}
25944 
25945 		/* Fix seg_seq, and chew the gap off the front. */
25946 		seg_seq = tcp->tcp_rnxt;
25947 	}
25948 
25949 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
25950 		/*
25951 		 * Make sure that when we accept the connection, pick
25952 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
25953 		 * old connection.
25954 		 *
25955 		 * The next ISS generated is equal to tcp_iss_incr_extra
25956 		 * + ISS_INCR/2 + other components depending on the
25957 		 * value of tcp_strong_iss.  We pre-calculate the new
25958 		 * ISS here and compare with tcp_snxt to determine if
25959 		 * we need to make adjustment to tcp_iss_incr_extra.
25960 		 *
25961 		 * The above calculation is ugly and is a
25962 		 * waste of CPU cycles...
25963 		 */
25964 		uint32_t new_iss = tcps->tcps_iss_incr_extra;
25965 		int32_t adj;
25966 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25967 
25968 		switch (tcps->tcps_strong_iss) {
25969 		case 2: {
25970 			/* Add time and MD5 components. */
25971 			uint32_t answer[4];
25972 			struct {
25973 				uint32_t ports;
25974 				in6_addr_t src;
25975 				in6_addr_t dst;
25976 			} arg;
25977 			MD5_CTX context;
25978 
25979 			mutex_enter(&tcps->tcps_iss_key_lock);
25980 			context = tcps->tcps_iss_key;
25981 			mutex_exit(&tcps->tcps_iss_key_lock);
25982 			arg.ports = tcp->tcp_ports;
25983 			/* We use MAPPED addresses in tcp_iss_init */
25984 			arg.src = tcp->tcp_ip_src_v6;
25985 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25986 				IN6_IPADDR_TO_V4MAPPED(
25987 				    tcp->tcp_ipha->ipha_dst,
25988 				    &arg.dst);
25989 			} else {
25990 				arg.dst =
25991 				    tcp->tcp_ip6h->ip6_dst;
25992 			}
25993 			MD5Update(&context, (uchar_t *)&arg,
25994 			    sizeof (arg));
25995 			MD5Final((uchar_t *)answer, &context);
25996 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
25997 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
25998 			break;
25999 		}
26000 		case 1:
26001 			/* Add time component and min random (i.e. 1). */
26002 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
26003 			break;
26004 		default:
26005 			/* Add only time component. */
26006 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
26007 			break;
26008 		}
26009 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
26010 			/*
26011 			 * New ISS not guaranteed to be ISS_INCR/2
26012 			 * ahead of the current tcp_snxt, so add the
26013 			 * difference to tcp_iss_incr_extra.
26014 			 */
26015 			tcps->tcps_iss_incr_extra += adj;
26016 		}
26017 		/*
26018 		 * If tcp_clean_death() can not perform the task now,
26019 		 * drop the SYN packet and let the other side re-xmit.
26020 		 * Otherwise pass the SYN packet back in, since the
26021 		 * old tcp state has been cleaned up or freed.
26022 		 */
26023 		if (tcp_clean_death(tcp, 0, 27) == -1)
26024 			goto done;
26025 		/*
26026 		 * We will come back to tcp_rput_data
26027 		 * on the global queue. Packets destined
26028 		 * for the global queue will be checked
26029 		 * with global policy. But the policy for
26030 		 * this packet has already been checked as
26031 		 * this was destined for the detached
26032 		 * connection. We need to bypass policy
26033 		 * check this time by attaching a dummy
26034 		 * ipsec_in with ipsec_in_dont_check set.
26035 		 */
26036 		connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst);
26037 		if (connp != NULL) {
26038 			TCP_STAT(tcps, tcp_time_wait_syn_success);
26039 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
26040 			return;
26041 		}
26042 		goto done;
26043 	}
26044 
26045 	/*
26046 	 * rgap is the amount of stuff received out of window.  A negative
26047 	 * value is the amount out of window.
26048 	 */
26049 	if (rgap < 0) {
26050 		BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
26051 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap);
26052 		/* Fix seg_len and make sure there is something left. */
26053 		seg_len += rgap;
26054 		if (seg_len <= 0) {
26055 			if (flags & TH_RST) {
26056 				goto done;
26057 			}
26058 			flags |=  TH_ACK_NEEDED;
26059 			seg_len = 0;
26060 			goto process_ack;
26061 		}
26062 	}
26063 	/*
26064 	 * Check whether we can update tcp_ts_recent.  This test is
26065 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
26066 	 * Extensions for High Performance: An Update", Internet Draft.
26067 	 */
26068 	if (tcp->tcp_snd_ts_ok &&
26069 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
26070 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
26071 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
26072 		tcp->tcp_last_rcv_lbolt = lbolt64;
26073 	}
26074 
26075 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
26076 		/* Always ack out of order packets */
26077 		flags |= TH_ACK_NEEDED;
26078 		seg_len = 0;
26079 	} else if (seg_len > 0) {
26080 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
26081 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
26082 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
26083 	}
26084 	if (flags & TH_RST) {
26085 		(void) tcp_clean_death(tcp, 0, 28);
26086 		goto done;
26087 	}
26088 	if (flags & TH_SYN) {
26089 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
26090 		    TH_RST|TH_ACK);
26091 		/*
26092 		 * Do not delete the TCP structure if it is in
26093 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
26094 		 */
26095 		goto done;
26096 	}
26097 process_ack:
26098 	if (flags & TH_ACK) {
26099 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
26100 		if (bytes_acked <= 0) {
26101 			if (bytes_acked == 0 && seg_len == 0 &&
26102 			    new_swnd == tcp->tcp_swnd)
26103 				BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
26104 		} else {
26105 			/* Acks something not sent */
26106 			flags |= TH_ACK_NEEDED;
26107 		}
26108 	}
26109 	if (flags & TH_ACK_NEEDED) {
26110 		/*
26111 		 * Time to send an ack for some reason.
26112 		 */
26113 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
26114 		    tcp->tcp_rnxt, TH_ACK);
26115 	}
26116 done:
26117 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
26118 		DB_CKSUMSTART(mp) = 0;
26119 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
26120 		TCP_STAT(tcps, tcp_time_wait_syn_fail);
26121 	}
26122 	freemsg(mp);
26123 }
26124 
26125 /*
26126  * Allocate a T_SVR4_OPTMGMT_REQ.
26127  * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so
26128  * that tcp_rput_other can drop the acks.
26129  */
26130 static mblk_t *
26131 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen)
26132 {
26133 	mblk_t *mp;
26134 	struct T_optmgmt_req *tor;
26135 	struct opthdr *oh;
26136 	uint_t size;
26137 	char *optptr;
26138 
26139 	size = sizeof (*tor) + sizeof (*oh) + optlen;
26140 	mp = allocb(size, BPRI_MED);
26141 	if (mp == NULL)
26142 		return (NULL);
26143 
26144 	mp->b_wptr += size;
26145 	mp->b_datap->db_type = M_PROTO;
26146 	tor = (struct T_optmgmt_req *)mp->b_rptr;
26147 	tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
26148 	tor->MGMT_flags = T_NEGOTIATE;
26149 	tor->OPT_length = sizeof (*oh) + optlen;
26150 	tor->OPT_offset = (t_scalar_t)sizeof (*tor);
26151 
26152 	oh = (struct opthdr *)&tor[1];
26153 	oh->level = level;
26154 	oh->name = cmd;
26155 	oh->len = optlen;
26156 	if (optlen != 0) {
26157 		optptr = (char *)&oh[1];
26158 		bcopy(opt, optptr, optlen);
26159 	}
26160 	return (mp);
26161 }
26162 
26163 /*
26164  * TCP Timers Implementation.
26165  */
26166 timeout_id_t
26167 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
26168 {
26169 	mblk_t *mp;
26170 	tcp_timer_t *tcpt;
26171 	tcp_t *tcp = connp->conn_tcp;
26172 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26173 
26174 	ASSERT(connp->conn_sqp != NULL);
26175 
26176 	TCP_DBGSTAT(tcps, tcp_timeout_calls);
26177 
26178 	if (tcp->tcp_timercache == NULL) {
26179 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
26180 	} else {
26181 		TCP_DBGSTAT(tcps, tcp_timeout_cached_alloc);
26182 		mp = tcp->tcp_timercache;
26183 		tcp->tcp_timercache = mp->b_next;
26184 		mp->b_next = NULL;
26185 		ASSERT(mp->b_wptr == NULL);
26186 	}
26187 
26188 	CONN_INC_REF(connp);
26189 	tcpt = (tcp_timer_t *)mp->b_rptr;
26190 	tcpt->connp = connp;
26191 	tcpt->tcpt_proc = f;
26192 	tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim);
26193 	return ((timeout_id_t)mp);
26194 }
26195 
26196 static void
26197 tcp_timer_callback(void *arg)
26198 {
26199 	mblk_t *mp = (mblk_t *)arg;
26200 	tcp_timer_t *tcpt;
26201 	conn_t	*connp;
26202 
26203 	tcpt = (tcp_timer_t *)mp->b_rptr;
26204 	connp = tcpt->connp;
26205 	squeue_fill(connp->conn_sqp, mp,
26206 	    tcp_timer_handler, connp, SQTAG_TCP_TIMER);
26207 }
26208 
26209 static void
26210 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
26211 {
26212 	tcp_timer_t *tcpt;
26213 	conn_t *connp = (conn_t *)arg;
26214 	tcp_t *tcp = connp->conn_tcp;
26215 
26216 	tcpt = (tcp_timer_t *)mp->b_rptr;
26217 	ASSERT(connp == tcpt->connp);
26218 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
26219 
26220 	/*
26221 	 * If the TCP has reached the closed state, don't proceed any
26222 	 * further. This TCP logically does not exist on the system.
26223 	 * tcpt_proc could for example access queues, that have already
26224 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
26225 	 */
26226 	if (tcp->tcp_state != TCPS_CLOSED) {
26227 		(*tcpt->tcpt_proc)(connp);
26228 	} else {
26229 		tcp->tcp_timer_tid = 0;
26230 	}
26231 	tcp_timer_free(connp->conn_tcp, mp);
26232 }
26233 
26234 /*
26235  * There is potential race with untimeout and the handler firing at the same
26236  * time. The mblock may be freed by the handler while we are trying to use
26237  * it. But since both should execute on the same squeue, this race should not
26238  * occur.
26239  */
26240 clock_t
26241 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
26242 {
26243 	mblk_t	*mp = (mblk_t *)id;
26244 	tcp_timer_t *tcpt;
26245 	clock_t delta;
26246 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26247 
26248 	TCP_DBGSTAT(tcps, tcp_timeout_cancel_reqs);
26249 
26250 	if (mp == NULL)
26251 		return (-1);
26252 
26253 	tcpt = (tcp_timer_t *)mp->b_rptr;
26254 	ASSERT(tcpt->connp == connp);
26255 
26256 	delta = untimeout(tcpt->tcpt_tid);
26257 
26258 	if (delta >= 0) {
26259 		TCP_DBGSTAT(tcps, tcp_timeout_canceled);
26260 		tcp_timer_free(connp->conn_tcp, mp);
26261 		CONN_DEC_REF(connp);
26262 	}
26263 
26264 	return (delta);
26265 }
26266 
26267 /*
26268  * Allocate space for the timer event. The allocation looks like mblk, but it is
26269  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
26270  *
26271  * Dealing with failures: If we can't allocate from the timer cache we try
26272  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
26273  * points to b_rptr.
26274  * If we can't allocate anything using allocb_tryhard(), we perform a last
26275  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
26276  * save the actual allocation size in b_datap.
26277  */
26278 mblk_t *
26279 tcp_timermp_alloc(int kmflags)
26280 {
26281 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
26282 	    kmflags & ~KM_PANIC);
26283 
26284 	if (mp != NULL) {
26285 		mp->b_next = mp->b_prev = NULL;
26286 		mp->b_rptr = (uchar_t *)(&mp[1]);
26287 		mp->b_wptr = NULL;
26288 		mp->b_datap = NULL;
26289 		mp->b_queue = NULL;
26290 		mp->b_cont = NULL;
26291 	} else if (kmflags & KM_PANIC) {
26292 		/*
26293 		 * Failed to allocate memory for the timer. Try allocating from
26294 		 * dblock caches.
26295 		 */
26296 		/* ipclassifier calls this from a constructor - hence no tcps */
26297 		TCP_G_STAT(tcp_timermp_allocfail);
26298 		mp = allocb_tryhard(sizeof (tcp_timer_t));
26299 		if (mp == NULL) {
26300 			size_t size = 0;
26301 			/*
26302 			 * Memory is really low. Try tryhard allocation.
26303 			 *
26304 			 * ipclassifier calls this from a constructor -
26305 			 * hence no tcps
26306 			 */
26307 			TCP_G_STAT(tcp_timermp_allocdblfail);
26308 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
26309 			    sizeof (tcp_timer_t), &size, kmflags);
26310 			mp->b_rptr = (uchar_t *)(&mp[1]);
26311 			mp->b_next = mp->b_prev = NULL;
26312 			mp->b_wptr = (uchar_t *)-1;
26313 			mp->b_datap = (dblk_t *)size;
26314 			mp->b_queue = NULL;
26315 			mp->b_cont = NULL;
26316 		}
26317 		ASSERT(mp->b_wptr != NULL);
26318 	}
26319 	/* ipclassifier calls this from a constructor - hence no tcps */
26320 	TCP_G_DBGSTAT(tcp_timermp_alloced);
26321 
26322 	return (mp);
26323 }
26324 
26325 /*
26326  * Free per-tcp timer cache.
26327  * It can only contain entries from tcp_timercache.
26328  */
26329 void
26330 tcp_timermp_free(tcp_t *tcp)
26331 {
26332 	mblk_t *mp;
26333 
26334 	while ((mp = tcp->tcp_timercache) != NULL) {
26335 		ASSERT(mp->b_wptr == NULL);
26336 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
26337 		kmem_cache_free(tcp_timercache, mp);
26338 	}
26339 }
26340 
26341 /*
26342  * Free timer event. Put it on the per-tcp timer cache if there is not too many
26343  * events there already (currently at most two events are cached).
26344  * If the event is not allocated from the timer cache, free it right away.
26345  */
26346 static void
26347 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
26348 {
26349 	mblk_t *mp1 = tcp->tcp_timercache;
26350 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26351 
26352 	if (mp->b_wptr != NULL) {
26353 		/*
26354 		 * This allocation is not from a timer cache, free it right
26355 		 * away.
26356 		 */
26357 		if (mp->b_wptr != (uchar_t *)-1)
26358 			freeb(mp);
26359 		else
26360 			kmem_free(mp, (size_t)mp->b_datap);
26361 	} else if (mp1 == NULL || mp1->b_next == NULL) {
26362 		/* Cache this timer block for future allocations */
26363 		mp->b_rptr = (uchar_t *)(&mp[1]);
26364 		mp->b_next = mp1;
26365 		tcp->tcp_timercache = mp;
26366 	} else {
26367 		kmem_cache_free(tcp_timercache, mp);
26368 		TCP_DBGSTAT(tcps, tcp_timermp_freed);
26369 	}
26370 }
26371 
26372 /*
26373  * End of TCP Timers implementation.
26374  */
26375 
26376 /*
26377  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
26378  * on the specified backing STREAMS q. Note, the caller may make the
26379  * decision to call based on the tcp_t.tcp_flow_stopped value which
26380  * when check outside the q's lock is only an advisory check ...
26381  */
26382 
26383 void
26384 tcp_setqfull(tcp_t *tcp)
26385 {
26386 	queue_t *q = tcp->tcp_wq;
26387 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26388 
26389 	if (!(q->q_flag & QFULL)) {
26390 		mutex_enter(QLOCK(q));
26391 		if (!(q->q_flag & QFULL)) {
26392 			/* still need to set QFULL */
26393 			q->q_flag |= QFULL;
26394 			tcp->tcp_flow_stopped = B_TRUE;
26395 			mutex_exit(QLOCK(q));
26396 			TCP_STAT(tcps, tcp_flwctl_on);
26397 		} else {
26398 			mutex_exit(QLOCK(q));
26399 		}
26400 	}
26401 }
26402 
26403 void
26404 tcp_clrqfull(tcp_t *tcp)
26405 {
26406 	queue_t *q = tcp->tcp_wq;
26407 
26408 	if (q->q_flag & QFULL) {
26409 		mutex_enter(QLOCK(q));
26410 		if (q->q_flag & QFULL) {
26411 			q->q_flag &= ~QFULL;
26412 			tcp->tcp_flow_stopped = B_FALSE;
26413 			mutex_exit(QLOCK(q));
26414 			if (q->q_flag & QWANTW)
26415 				qbackenable(q, 0);
26416 		} else {
26417 			mutex_exit(QLOCK(q));
26418 		}
26419 	}
26420 }
26421 
26422 
26423 /*
26424  * kstats related to squeues i.e. not per IP instance
26425  */
26426 static void *
26427 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp)
26428 {
26429 	kstat_t *ksp;
26430 
26431 	tcp_g_stat_t template = {
26432 		{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
26433 		{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
26434 		{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
26435 		{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
26436 	};
26437 
26438 	ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net",
26439 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26440 	    KSTAT_FLAG_VIRTUAL);
26441 
26442 	if (ksp == NULL)
26443 		return (NULL);
26444 
26445 	bcopy(&template, tcp_g_statp, sizeof (template));
26446 	ksp->ks_data = (void *)tcp_g_statp;
26447 
26448 	kstat_install(ksp);
26449 	return (ksp);
26450 }
26451 
26452 static void
26453 tcp_g_kstat_fini(kstat_t *ksp)
26454 {
26455 	if (ksp != NULL) {
26456 		kstat_delete(ksp);
26457 	}
26458 }
26459 
26460 
26461 static void *
26462 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp)
26463 {
26464 	kstat_t *ksp;
26465 
26466 	tcp_stat_t template = {
26467 		{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
26468 		{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
26469 		{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
26470 		{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
26471 		{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
26472 		{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
26473 		{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
26474 		{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
26475 		{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
26476 		{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
26477 		{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
26478 		{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
26479 		{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
26480 		{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
26481 		{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
26482 		{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
26483 		{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
26484 		{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
26485 		{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
26486 		{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
26487 		{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
26488 		{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
26489 		{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
26490 		{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
26491 		{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
26492 		{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
26493 		{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
26494 		{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
26495 		{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
26496 		{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
26497 		{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
26498 		{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
26499 		{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
26500 		{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
26501 		{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
26502 		{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
26503 		{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
26504 		{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
26505 		{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
26506 		{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
26507 		{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
26508 		{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
26509 		{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
26510 		{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
26511 		{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
26512 		{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
26513 		{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
26514 		{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
26515 		{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
26516 		{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
26517 		{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
26518 		{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
26519 		{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
26520 		{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
26521 		{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
26522 		{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
26523 		{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
26524 		{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
26525 		{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
26526 		{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
26527 		{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
26528 		{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
26529 		{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
26530 		{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
26531 		{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
26532 		{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
26533 		{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
26534 		{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
26535 		{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
26536 		{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
26537 		{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
26538 		{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
26539 		{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
26540 		{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
26541 		{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
26542 		{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
26543 		{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
26544 		{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
26545 		{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
26546 		{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
26547 		{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
26548 		{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
26549 		{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
26550 		{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
26551 		{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
26552 		{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
26553 		{ "tcp_lso_enabled",		KSTAT_DATA_UINT64 },
26554 		{ "tcp_lso_disabled",		KSTAT_DATA_UINT64 },
26555 		{ "tcp_lso_times",		KSTAT_DATA_UINT64 },
26556 		{ "tcp_lso_pkt_out",		KSTAT_DATA_UINT64 },
26557 	};
26558 
26559 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net",
26560 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26561 	    KSTAT_FLAG_VIRTUAL, stackid);
26562 
26563 	if (ksp == NULL)
26564 		return (NULL);
26565 
26566 	bcopy(&template, tcps_statisticsp, sizeof (template));
26567 	ksp->ks_data = (void *)tcps_statisticsp;
26568 	ksp->ks_private = (void *)(uintptr_t)stackid;
26569 
26570 	kstat_install(ksp);
26571 	return (ksp);
26572 }
26573 
26574 static void
26575 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
26576 {
26577 	if (ksp != NULL) {
26578 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26579 		kstat_delete_netstack(ksp, stackid);
26580 	}
26581 }
26582 
26583 /*
26584  * TCP Kstats implementation
26585  */
26586 static void *
26587 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps)
26588 {
26589 	kstat_t	*ksp;
26590 
26591 	tcp_named_kstat_t template = {
26592 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
26593 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
26594 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
26595 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
26596 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
26597 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
26598 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
26599 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
26600 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
26601 		{ "inSegs",		KSTAT_DATA_UINT64, 0 },
26602 		{ "outSegs",		KSTAT_DATA_UINT64, 0 },
26603 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
26604 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
26605 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
26606 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
26607 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
26608 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
26609 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
26610 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
26611 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
26612 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
26613 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
26614 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
26615 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
26616 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
26617 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
26618 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
26619 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
26620 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
26621 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
26622 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
26623 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
26624 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
26625 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
26626 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
26627 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
26628 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
26629 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
26630 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
26631 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
26632 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
26633 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
26634 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
26635 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
26636 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
26637 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
26638 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
26639 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
26640 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
26641 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
26642 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
26643 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
26644 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
26645 	};
26646 
26647 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2",
26648 	    KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid);
26649 
26650 	if (ksp == NULL)
26651 		return (NULL);
26652 
26653 	template.rtoAlgorithm.value.ui32 = 4;
26654 	template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min;
26655 	template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max;
26656 	template.maxConn.value.i32 = -1;
26657 
26658 	bcopy(&template, ksp->ks_data, sizeof (template));
26659 	ksp->ks_update = tcp_kstat_update;
26660 	ksp->ks_private = (void *)(uintptr_t)stackid;
26661 
26662 	kstat_install(ksp);
26663 	return (ksp);
26664 }
26665 
26666 static void
26667 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
26668 {
26669 	if (ksp != NULL) {
26670 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26671 		kstat_delete_netstack(ksp, stackid);
26672 	}
26673 }
26674 
26675 static int
26676 tcp_kstat_update(kstat_t *kp, int rw)
26677 {
26678 	tcp_named_kstat_t *tcpkp;
26679 	tcp_t		*tcp;
26680 	connf_t		*connfp;
26681 	conn_t		*connp;
26682 	int 		i;
26683 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
26684 	netstack_t	*ns;
26685 	tcp_stack_t	*tcps;
26686 	ip_stack_t	*ipst;
26687 
26688 	if ((kp == NULL) || (kp->ks_data == NULL))
26689 		return (EIO);
26690 
26691 	if (rw == KSTAT_WRITE)
26692 		return (EACCES);
26693 
26694 	ns = netstack_find_by_stackid(stackid);
26695 	if (ns == NULL)
26696 		return (-1);
26697 	tcps = ns->netstack_tcp;
26698 	if (tcps == NULL) {
26699 		netstack_rele(ns);
26700 		return (-1);
26701 	}
26702 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
26703 
26704 	tcpkp->currEstab.value.ui32 = 0;
26705 
26706 	ipst = ns->netstack_ip;
26707 
26708 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
26709 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
26710 		connp = NULL;
26711 		while ((connp =
26712 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
26713 			tcp = connp->conn_tcp;
26714 			switch (tcp_snmp_state(tcp)) {
26715 			case MIB2_TCP_established:
26716 			case MIB2_TCP_closeWait:
26717 				tcpkp->currEstab.value.ui32++;
26718 				break;
26719 			}
26720 		}
26721 	}
26722 
26723 	tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens;
26724 	tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens;
26725 	tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails;
26726 	tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets;
26727 	tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs;
26728 	tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs;
26729 	tcpkp->retransSegs.value.ui32 =	tcps->tcps_mib.tcpRetransSegs;
26730 	tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize;
26731 	tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts;
26732 	tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs;
26733 	tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes;
26734 	tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes;
26735 	tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck;
26736 	tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed;
26737 	tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg;
26738 	tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate;
26739 	tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe;
26740 	tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl;
26741 	tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans;
26742 	tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs;
26743 	tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes;
26744 	tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck;
26745 	tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent;
26746 	tcpkp->inDataInorderSegs.value.ui32 =
26747 	    tcps->tcps_mib.tcpInDataInorderSegs;
26748 	tcpkp->inDataInorderBytes.value.ui32 =
26749 	    tcps->tcps_mib.tcpInDataInorderBytes;
26750 	tcpkp->inDataUnorderSegs.value.ui32 =
26751 	    tcps->tcps_mib.tcpInDataUnorderSegs;
26752 	tcpkp->inDataUnorderBytes.value.ui32 =
26753 	    tcps->tcps_mib.tcpInDataUnorderBytes;
26754 	tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs;
26755 	tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes;
26756 	tcpkp->inDataPartDupSegs.value.ui32 =
26757 	    tcps->tcps_mib.tcpInDataPartDupSegs;
26758 	tcpkp->inDataPartDupBytes.value.ui32 =
26759 	    tcps->tcps_mib.tcpInDataPartDupBytes;
26760 	tcpkp->inDataPastWinSegs.value.ui32 =
26761 	    tcps->tcps_mib.tcpInDataPastWinSegs;
26762 	tcpkp->inDataPastWinBytes.value.ui32 =
26763 	    tcps->tcps_mib.tcpInDataPastWinBytes;
26764 	tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe;
26765 	tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate;
26766 	tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed;
26767 	tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate;
26768 	tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate;
26769 	tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans;
26770 	tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop;
26771 	tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive;
26772 	tcpkp->timKeepaliveProbe.value.ui32 =
26773 	    tcps->tcps_mib.tcpTimKeepaliveProbe;
26774 	tcpkp->timKeepaliveDrop.value.ui32 =
26775 	    tcps->tcps_mib.tcpTimKeepaliveDrop;
26776 	tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop;
26777 	tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0;
26778 	tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop;
26779 	tcpkp->outSackRetransSegs.value.ui32 =
26780 	    tcps->tcps_mib.tcpOutSackRetransSegs;
26781 	tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize;
26782 
26783 	netstack_rele(ns);
26784 	return (0);
26785 }
26786 
26787 void
26788 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
26789 {
26790 	uint16_t	hdr_len;
26791 	ipha_t		*ipha;
26792 	uint8_t		*nexthdrp;
26793 	tcph_t		*tcph;
26794 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26795 
26796 	/* Already has an eager */
26797 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
26798 		TCP_STAT(tcps, tcp_reinput_syn);
26799 		squeue_enter(connp->conn_sqp, mp, connp->conn_recv,
26800 		    connp, SQTAG_TCP_REINPUT_EAGER);
26801 		return;
26802 	}
26803 
26804 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
26805 	case IPV4_VERSION:
26806 		ipha = (ipha_t *)mp->b_rptr;
26807 		hdr_len = IPH_HDR_LENGTH(ipha);
26808 		break;
26809 	case IPV6_VERSION:
26810 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
26811 		    &hdr_len, &nexthdrp)) {
26812 			CONN_DEC_REF(connp);
26813 			freemsg(mp);
26814 			return;
26815 		}
26816 		break;
26817 	}
26818 
26819 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
26820 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
26821 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
26822 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
26823 	}
26824 
26825 	squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp,
26826 	    SQTAG_TCP_REINPUT);
26827 }
26828 
26829 static squeue_func_t
26830 tcp_squeue_switch(int val)
26831 {
26832 	squeue_func_t rval = squeue_fill;
26833 
26834 	switch (val) {
26835 	case 1:
26836 		rval = squeue_enter_nodrain;
26837 		break;
26838 	case 2:
26839 		rval = squeue_enter;
26840 		break;
26841 	default:
26842 		break;
26843 	}
26844 	return (rval);
26845 }
26846 
26847 /*
26848  * This is called once for each squeue - globally for all stack
26849  * instances.
26850  */
26851 static void
26852 tcp_squeue_add(squeue_t *sqp)
26853 {
26854 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
26855 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
26856 
26857 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
26858 	tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector,
26859 	    sqp, TCP_TIME_WAIT_DELAY);
26860 	if (tcp_free_list_max_cnt == 0) {
26861 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
26862 		    max_ncpus : boot_max_ncpus);
26863 
26864 		/*
26865 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
26866 		 */
26867 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
26868 		    (tcp_ncpus * sizeof (tcp_t) * 100);
26869 	}
26870 	tcp_time_wait->tcp_free_list_cnt = 0;
26871 }
26872